这是一篇来自已证抗体库的有关人类 组蛋白H3 (histone H3) 的综述,是根据816篇发表使用所有方法的文章归纳的。这综述旨在帮助来邦网的访客找到最适合组蛋白H3 抗体。
组蛋白H3 同义词: H3-3B; H3.3A; H3F3; H3F3A

艾博抗(上海)贸易有限公司
小鼠 单克隆(mAbcam 14955)
  • 免疫印迹; 人类; 1:1000; 图 1a
艾博抗(上海)贸易有限公司组蛋白H3抗体(Abcam, 14955)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 1a). Commun Biol (2022) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 s2a
艾博抗(上海)贸易有限公司组蛋白H3抗体(Abcam, ab1791)被用于被用于免疫印迹在小鼠样本上 (图 s2a). Acta Neuropathol Commun (2022) ncbi
domestic rabbit 多克隆
  • 染色质免疫沉淀 ; 小鼠; 图 1f
艾博抗(上海)贸易有限公司组蛋白H3抗体(Abcam, ab4729)被用于被用于染色质免疫沉淀 在小鼠样本上 (图 1f). elife (2022) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 3i
艾博抗(上海)贸易有限公司组蛋白H3抗体(Abcam, ab1791)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 3i). Nat Commun (2022) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1 ug/ml; 图 1c
艾博抗(上海)贸易有限公司组蛋白H3抗体(Abcam, ab1791)被用于被用于免疫印迹在小鼠样本上浓度为1 ug/ml (图 1c). Sci Rep (2022) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:10,000; 图 1g, e4a
  • 免疫印迹; 人类; 1:10,000; 图 5c
艾博抗(上海)贸易有限公司组蛋白H3抗体(Abcam, ab1791)被用于被用于免疫印迹在小鼠样本上浓度为1:10,000 (图 1g, e4a) 和 被用于免疫印迹在人类样本上浓度为1:10,000 (图 5c). Nat Med (2022) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:300; 图 1l, s1h
艾博抗(上海)贸易有限公司组蛋白H3抗体(Abcam, ab5176)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:300 (图 1l, s1h). Clin Transl Med (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:10,000; 图 3a
艾博抗(上海)贸易有限公司组蛋白H3抗体(Abcam, ab4729)被用于被用于免疫印迹在小鼠样本上浓度为1:10,000 (图 3a). Biol Open (2021) ncbi
domestic rabbit 多克隆
  • ChIP-Seq; 人类; 图 2c
艾博抗(上海)贸易有限公司组蛋白H3抗体(Abcam, ab4729)被用于被用于ChIP-Seq在人类样本上 (图 2c). Cancer Cell Int (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 2 ug/ml; 图 4a
艾博抗(上海)贸易有限公司组蛋白H3抗体(Abcam, ab4729)被用于被用于免疫印迹在人类样本上浓度为2 ug/ml (图 4a). JCI Insight (2021) ncbi
domestic rabbit 多克隆
  • 染色质免疫沉淀 ; 小鼠; 图 4d
艾博抗(上海)贸易有限公司组蛋白H3抗体(Abcam, ab4729)被用于被用于染色质免疫沉淀 在小鼠样本上 (图 4d). Neurooncol Adv (2021) ncbi
大鼠 单克隆(HTA28)
  • 免疫组化; 小鼠; 图 6d
艾博抗(上海)贸易有限公司组蛋白H3抗体(Abcam, ab10543)被用于被用于免疫组化在小鼠样本上 (图 6d). Development (2021) ncbi
domestic rabbit 多克隆
  • ChIP-Seq; 人类; 图 4a
  • 染色质免疫沉淀 ; 人类; 图 4d
艾博抗(上海)贸易有限公司组蛋白H3抗体(Abcam, ab4729)被用于被用于ChIP-Seq在人类样本上 (图 4a) 和 被用于染色质免疫沉淀 在人类样本上 (图 4d). PLoS Pathog (2021) ncbi
小鼠 单克隆(mAbcam 14955)
  • 免疫印迹; 人类
艾博抗(上海)贸易有限公司组蛋白H3抗体(Abcam, ab14955)被用于被用于免疫印迹在人类样本上. Sci Adv (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; ; 图 s9f
艾博抗(上海)贸易有限公司组蛋白H3抗体(Abcam, Ab1791)被用于被用于免疫印迹在人类样本上浓度为 (图 s9f). Nat Commun (2021) ncbi
domestic rabbit 多克隆
  • ChIP-Seq; 人类; 图 2e
艾博抗(上海)贸易有限公司组蛋白H3抗体(Abcam, ab4729)被用于被用于ChIP-Seq在人类样本上 (图 2e). Int J Mol Sci (2021) ncbi
单克隆
  • 免疫印迹; 人类; 图 1a
艾博抗(上海)贸易有限公司组蛋白H3抗体(Abcam, ab6147)被用于被用于免疫印迹在人类样本上 (图 1a). Exp Ther Med (2021) ncbi
domestic rabbit 单克隆(EPR17899)
  • 免疫印迹; 小鼠; 1:1000; 图 4a
艾博抗(上海)贸易有限公司组蛋白H3抗体(Abcam, ab176840)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 4a). PLoS ONE (2021) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 小鼠; 1:4000; 图 6d
艾博抗(上海)贸易有限公司组蛋白H3抗体(Abcam, ab5176)被用于被用于免疫细胞化学在小鼠样本上浓度为1:4000 (图 6d). Cell Death Dis (2021) ncbi
domestic rabbit 多克隆
  • ChIP-Seq; 人类; 图 7c
艾博抗(上海)贸易有限公司组蛋白H3抗体(Abcam, ab4729)被用于被用于ChIP-Seq在人类样本上 (图 7c). Am J Cancer Res (2021) ncbi
domestic rabbit 多克隆
  • 免疫组化; 人类; 1:200; 图 5d, e5d
艾博抗(上海)贸易有限公司组蛋白H3抗体(Abcam, ab5176)被用于被用于免疫组化在人类样本上浓度为1:200 (图 5d, e5d). Nat Cancer (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 1d
艾博抗(上海)贸易有限公司组蛋白H3抗体(Abcam, ab1791)被用于被用于免疫印迹在小鼠样本上 (图 1d). J Clin Invest (2021) ncbi
domestic rabbit 多克隆
  • ChIP-Seq; 人类; 图 s1a
艾博抗(上海)贸易有限公司组蛋白H3抗体(abcam, ab4729)被用于被用于ChIP-Seq在人类样本上 (图 s1a). Genome Biol (2021) ncbi
domestic rabbit 多克隆
  • 染色质免疫沉淀 ; 人类; 1:300; 图 s5
艾博抗(上海)贸易有限公司组蛋白H3抗体(Abcam, ab4729)被用于被用于染色质免疫沉淀 在人类样本上浓度为1:300 (图 s5). Neuro Oncol (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 s4a, s4b
艾博抗(上海)贸易有限公司组蛋白H3抗体(Abcam, ab1791)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 s4a, s4b). Neuro Oncol (2021) ncbi
domestic rabbit 多克隆
  • ChIP-Seq; 人类; 图 2a
艾博抗(上海)贸易有限公司组蛋白H3抗体(Abcam, 4729)被用于被用于ChIP-Seq在人类样本上 (图 2a). Nat Commun (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 s2d
艾博抗(上海)贸易有限公司组蛋白H3抗体(AbCam, ab1791)被用于被用于免疫印迹在人类样本上 (图 s2d). Nat Cell Biol (2021) ncbi
domestic rabbit 多克隆
  • ChIP-Seq; 小鼠; 4-10 ug / antibody; 图 3e
  • 免疫印迹; 小鼠; 图 5f
艾博抗(上海)贸易有限公司组蛋白H3抗体(Abcam, ab4729)被用于被用于ChIP-Seq在小鼠样本上浓度为4-10 ug / antibody (图 3e) 和 被用于免疫印迹在小鼠样本上 (图 5f). Nat Commun (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 3a
艾博抗(上海)贸易有限公司组蛋白H3抗体(Abcam, ab1791)被用于被用于免疫印迹在人类样本上 (图 3a). Cell Death Dis (2021) ncbi
domestic rabbit 多克隆
  • 染色质免疫沉淀 ; 小鼠; 1:500; 图 3l
  • 免疫组化; 小鼠; 1:500; 图 3l
艾博抗(上海)贸易有限公司组蛋白H3抗体(Abcam, ab4729)被用于被用于染色质免疫沉淀 在小鼠样本上浓度为1:500 (图 3l) 和 被用于免疫组化在小鼠样本上浓度为1:500 (图 3l). Proc Natl Acad Sci U S A (2021) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:500; 图 3l
艾博抗(上海)贸易有限公司组蛋白H3抗体(Abcam, ab4729)被用于被用于免疫组化在小鼠样本上浓度为1:500 (图 3l). Sci Adv (2021) ncbi
domestic rabbit 多克隆
  • 染色质免疫沉淀 ; 人类; 图 4l
  • 免疫印迹; 人类; 图 4g
艾博抗(上海)贸易有限公司组蛋白H3抗体(Abcam, ab4729)被用于被用于染色质免疫沉淀 在人类样本上 (图 4l) 和 被用于免疫印迹在人类样本上 (图 4g). Clin Transl Med (2021) ncbi
小鼠 单克隆(mAbcam 24834)
  • 免疫印迹; 人类; 1:2000; 图 s5a
艾博抗(上海)贸易有限公司组蛋白H3抗体(Abcam, ab24834)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 s5a). Cell Stem Cell (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 e5a, e6a
艾博抗(上海)贸易有限公司组蛋白H3抗体(Abcam, ab1791)被用于被用于免疫印迹在人类样本上 (图 e5a, e6a). Nat Metab (2021) ncbi
小鼠 单克隆(mAbcam 14955)
  • 免疫细胞化学; 大鼠; 1:2500; 图 7b
艾博抗(上海)贸易有限公司组蛋白H3抗体(Abcam, ab14955)被用于被用于免疫细胞化学在大鼠样本上浓度为1:2500 (图 7b). Am J Cancer Res (2021) ncbi
domestic rabbit 多克隆
  • 染色质免疫沉淀 ; 小鼠; 图 1c
艾博抗(上海)贸易有限公司组蛋白H3抗体(Abcam, ab1791)被用于被用于染色质免疫沉淀 在小鼠样本上 (图 1c). J Biol Chem (2021) ncbi
domestic rabbit 单克隆(E191)
  • 染色质免疫沉淀 ; 人类; 图 2c
艾博抗(上海)贸易有限公司组蛋白H3抗体(Abcam, ab32388)被用于被用于染色质免疫沉淀 在人类样本上 (图 2c). Nat Commun (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:5000; 图 2b, 4d, e3e, e7b
  • 免疫印迹; 小鼠; 1:5000; 图 1c
艾博抗(上海)贸易有限公司组蛋白H3抗体(Abcam, ab1791)被用于被用于免疫印迹在人类样本上浓度为1:5000 (图 2b, 4d, e3e, e7b) 和 被用于免疫印迹在小鼠样本上浓度为1:5000 (图 1c). Nature (2021) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 人类; 1:1000; 图 3d, s6b
  • 染色质免疫沉淀 ; 人类; 图 4e
  • 免疫细胞化学; 人类; 图 3c
  • 免疫印迹; 人类; 图 3b
艾博抗(上海)贸易有限公司组蛋白H3抗体(Abcam, ab4729)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:1000 (图 3d, s6b), 被用于染色质免疫沉淀 在人类样本上 (图 4e), 被用于免疫细胞化学在人类样本上 (图 3c) 和 被用于免疫印迹在人类样本上 (图 3b). Signal Transduct Target Ther (2021) ncbi
domestic rabbit 多克隆
  • 染色质免疫沉淀 ; 人类; 图 6j
艾博抗(上海)贸易有限公司组蛋白H3抗体(Abcam, ab4729)被用于被用于染色质免疫沉淀 在人类样本上 (图 6j). J Clin Invest (2021) ncbi
小鼠 单克隆(mAbcam 14955)
  • 免疫组化; 小鼠; 1:300; 图 4a
艾博抗(上海)贸易有限公司组蛋白H3抗体(Abcam, 14955)被用于被用于免疫组化在小鼠样本上浓度为1:300 (图 4a). elife (2020) ncbi
domestic rabbit 多克隆
艾博抗(上海)贸易有限公司组蛋白H3抗体(Abcam, ab5176)被用于. Front Cell Dev Biol (2020) ncbi
大鼠 单克隆(HTA28)
  • 流式细胞仪; 人类; 1:300; 图 s6g
艾博抗(上海)贸易有限公司组蛋白H3抗体(Abcam, ab10543)被用于被用于流式细胞仪在人类样本上浓度为1:300 (图 s6g). Science (2020) ncbi
大鼠 单克隆(HTA28)
  • 免疫组化; 人类; 1:300; 图 s10d
艾博抗(上海)贸易有限公司组蛋白H3抗体(Abcam, ab10543)被用于被用于免疫组化在人类样本上浓度为1:300 (图 s10d). Science (2020) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:5000; 图 3
艾博抗(上海)贸易有限公司组蛋白H3抗体(Abcam, ab1791)被用于被用于免疫印迹在人类样本上浓度为1:5000 (图 3). elife (2020) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 6d
艾博抗(上海)贸易有限公司组蛋白H3抗体(Abcam, ab1791)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 6d). EMBO Mol Med (2020) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 非洲爪蛙; 1:10,000; 图 3s1a
艾博抗(上海)贸易有限公司组蛋白H3抗体(Abcam, ab1791)被用于被用于免疫印迹在非洲爪蛙样本上浓度为1:10,000 (图 3s1a). elife (2020) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 2e
艾博抗(上海)贸易有限公司组蛋白H3抗体(Abcam, ab1791)被用于被用于免疫印迹在人类样本上 (图 2e). elife (2020) ncbi
domestic rabbit 多克隆
  • 免疫组化; fruit fly ; 1:50; 图 2s1a
艾博抗(上海)贸易有限公司组蛋白H3抗体(Abcam, ab5176)被用于被用于免疫组化在fruit fly 样本上浓度为1:50 (图 2s1a). elife (2020) ncbi
小鼠 单克隆(mAbcam 14955)
  • 免疫组化; 非洲爪蛙; 1:1000; 图 7h-7j
艾博抗(上海)贸易有限公司组蛋白H3抗体(Abcam, 14955)被用于被用于免疫组化在非洲爪蛙样本上浓度为1:1000 (图 7h-7j). elife (2020) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:50,000; 图 3h
艾博抗(上海)贸易有限公司组蛋白H3抗体(Abcam, ab1791)被用于被用于免疫印迹在小鼠样本上浓度为1:50,000 (图 3h). elife (2020) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 2a
艾博抗(上海)贸易有限公司组蛋白H3抗体(Abcam, 1791)被用于被用于免疫印迹在人类样本上 (图 2a). Mol Cell Biol (2020) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:50,000; 图 1a
艾博抗(上海)贸易有限公司组蛋白H3抗体(Abcam, ab1791)被用于被用于免疫印迹在人类样本上浓度为1:50,000 (图 1a). Science (2020) ncbi
大鼠 单克隆(HTA28)
  • 免疫组化; 小鼠; 1:500; 图 1s3a
艾博抗(上海)贸易有限公司组蛋白H3抗体(Abcam, ab10543)被用于被用于免疫组化在小鼠样本上浓度为1:500 (图 1s3a). elife (2020) ncbi
domestic rabbit 多克隆
  • 免疫印迹; fission yeast; 1:5000; 图 5b
艾博抗(上海)贸易有限公司组蛋白H3抗体(Abcam, ab1791)被用于被用于免疫印迹在fission yeast样本上浓度为1:5000 (图 5b). elife (2020) ncbi
大鼠 单克隆(HTA28)
  • 免疫组化-石蜡切片; 小鼠; 1:200; 图 3a
艾博抗(上海)贸易有限公司组蛋白H3抗体(Abcam, ab10543)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:200 (图 3a). Front Mol Biosci (2020) ncbi
domestic rabbit 多克隆
  • ChIP-Seq; 人类; 图 s12c
艾博抗(上海)贸易有限公司组蛋白H3抗体(Abcam, ab4729)被用于被用于ChIP-Seq在人类样本上 (图 s12c). Science (2020) ncbi
大鼠 单克隆(HTA28)
  • 免疫组化; 小鼠; 1:500; 图 7b
艾博抗(上海)贸易有限公司组蛋白H3抗体(Abcam, ab10543)被用于被用于免疫组化在小鼠样本上浓度为1:500 (图 7b). elife (2020) ncbi
domestic rabbit 多克隆
  • ChIP-Seq; 人类; 图 1b
艾博抗(上海)贸易有限公司组蛋白H3抗体(Abcam, ab4729)被用于被用于ChIP-Seq在人类样本上 (图 1b). BMC Med Genomics (2020) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1500; 图 4e
艾博抗(上海)贸易有限公司组蛋白H3抗体(Abcam, ab5168)被用于被用于免疫印迹在人类样本上浓度为1:1500 (图 4e). Nucleic Acids Res (2020) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 6a
艾博抗(上海)贸易有限公司组蛋白H3抗体(Abcam, ab1791)被用于被用于免疫印迹在人类样本上 (图 6a). elife (2020) ncbi
domestic rabbit 多克隆
  • 染色质免疫沉淀 ; 人类; 图 4a
艾博抗(上海)贸易有限公司组蛋白H3抗体(Abcam, ab1791)被用于被用于染色质免疫沉淀 在人类样本上 (图 4a). Nat Commun (2020) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠
艾博抗(上海)贸易有限公司组蛋白H3抗体(Abcam, ab1791)被用于被用于免疫印迹在小鼠样本上. Cell Stem Cell (2020) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 2b
艾博抗(上海)贸易有限公司组蛋白H3抗体(Abcam, ab1791)被用于被用于免疫印迹在小鼠样本上 (图 2b). Pharmacol Res (2020) ncbi
大鼠 单克隆(HTA28)
  • 免疫组化-冰冻切片; 小鼠; 1:500; 图 2l
艾博抗(上海)贸易有限公司组蛋白H3抗体(Abcam, ab10543)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:500 (图 2l). Nat Commun (2020) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:5000; 图 1s2a
艾博抗(上海)贸易有限公司组蛋白H3抗体(abcam, ab1791)被用于被用于免疫印迹在人类样本上浓度为1:5000 (图 1s2a). elife (2020) ncbi
domestic rabbit 多克隆
  • 染色质免疫沉淀 ; 小鼠; 1:500; 图 6b
艾博抗(上海)贸易有限公司组蛋白H3抗体(Abcam, ab4729)被用于被用于染色质免疫沉淀 在小鼠样本上浓度为1:500 (图 6b). Nat Commun (2020) ncbi
小鼠 单克隆(mAbcam 14955)
  • 免疫细胞化学; 人类; 图 1j
艾博抗(上海)贸易有限公司组蛋白H3抗体(Abcam, ab14955)被用于被用于免疫细胞化学在人类样本上 (图 1j). Sci Rep (2020) ncbi
domestic rabbit 多克隆
  • 染色质免疫沉淀 ; 人类; 图 2c, s3
艾博抗(上海)贸易有限公司组蛋白H3抗体(Abcam, ab4729)被用于被用于染色质免疫沉淀 在人类样本上 (图 2c, s3). EBioMedicine (2020) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 2b
艾博抗(上海)贸易有限公司组蛋白H3抗体(Abcam, ab1791)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 2b). Artif Cells Nanomed Biotechnol (2020) ncbi
domestic rabbit 多克隆
  • 免疫印迹; fission yeast; 1:2000; 图 3e
艾博抗(上海)贸易有限公司组蛋白H3抗体(Abcam, ab1791)被用于被用于免疫印迹在fission yeast样本上浓度为1:2000 (图 3e). elife (2020) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 图 5e
艾博抗(上海)贸易有限公司组蛋白H3抗体(Abcam, ab47297)被用于被用于免疫组化在小鼠样本上 (图 5e). Aging (Albany NY) (2019) ncbi
domestic rabbit 多克隆
  • ChIP-Seq; 人类; 图 4c
  • 染色质免疫沉淀 ; 人类; 图 5f, 4c, 6c
艾博抗(上海)贸易有限公司组蛋白H3抗体(Abcam, ab4729)被用于被用于ChIP-Seq在人类样本上 (图 4c) 和 被用于染色质免疫沉淀 在人类样本上 (图 5f, 4c, 6c). Cell Rep (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 3b
艾博抗(上海)贸易有限公司组蛋白H3抗体(abcam, ab1791)被用于被用于免疫印迹在人类样本上 (图 3b). elife (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:5000; 图 4a
艾博抗(上海)贸易有限公司组蛋白H3抗体(Abcam, ab1791)被用于被用于免疫印迹在小鼠样本上浓度为1:5000 (图 4a). Sci Adv (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; roundworm ; 1:2000; 图 e5a
  • 免疫印迹; 人类; 1:2000; 图 e5d
艾博抗(上海)贸易有限公司组蛋白H3抗体(Abcam, ab1791)被用于被用于免疫印迹在roundworm 样本上浓度为1:2000 (图 e5a) 和 被用于免疫印迹在人类样本上浓度为1:2000 (图 e5d). Nature (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 5e
艾博抗(上海)贸易有限公司组蛋白H3抗体(Abcam, ab1791)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 5e). Nat Commun (2019) ncbi
domestic rabbit 多克隆
  • 染色质免疫沉淀 ; 小鼠; 图 e6a
艾博抗(上海)贸易有限公司组蛋白H3抗体(Abcam, ab4729)被用于被用于染色质免疫沉淀 在小鼠样本上 (图 e6a). Nature (2019) ncbi
小鼠 单克隆(mAbcam 24834)
  • 免疫印迹; 大鼠; ; 图 6s1a
  • 免疫印迹; 小鼠; ; 图 6s1b, 6s1c, 6s1d
艾博抗(上海)贸易有限公司组蛋白H3抗体(Abcam, ab24834)被用于被用于免疫印迹在大鼠样本上浓度为 (图 6s1a) 和 被用于免疫印迹在小鼠样本上浓度为 (图 6s1b, 6s1c, 6s1d). elife (2019) ncbi
domestic rabbit 多克隆
  • ChIP-Seq; 小鼠; 图 s4a
艾博抗(上海)贸易有限公司组蛋白H3抗体(Abcam, 4729)被用于被用于ChIP-Seq在小鼠样本上 (图 s4a). Nature (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 2k
艾博抗(上海)贸易有限公司组蛋白H3抗体(Abcam, ab4729)被用于被用于免疫印迹在人类样本上 (图 2k). Nature (2019) ncbi
domestic rabbit 单克隆(E173)
  • 免疫印迹; 人类; 图 s3d
艾博抗(上海)贸易有限公司组蛋白H3抗体(Abcam, ab32107)被用于被用于免疫印迹在人类样本上 (图 s3d). Autophagy (2019) ncbi
domestic rabbit 多克隆
  • ChIP-Seq; 小鼠; ; 图 1a
  • 染色质免疫沉淀 ; 小鼠; ; 图 s10
艾博抗(上海)贸易有限公司组蛋白H3抗体(Abcam, ab4729)被用于被用于ChIP-Seq在小鼠样本上浓度为 (图 1a) 和 被用于染色质免疫沉淀 在小鼠样本上浓度为 (图 s10). Science (2019) ncbi
domestic rabbit 多克隆
  • ChIP-Seq; 鸡; 1,000 ug/ml; 图 3a
艾博抗(上海)贸易有限公司组蛋白H3抗体(Abcam, ab4729)被用于被用于ChIP-Seq在鸡样本上浓度为1,000 ug/ml (图 3a). Dev Biol (2020) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 s8b
艾博抗(上海)贸易有限公司组蛋白H3抗体(Abcam, ab1791)被用于被用于免疫印迹在人类样本上 (图 s8b). Cell (2019) ncbi
小鼠 单克隆(mAbcam 14955)
  • 免疫组化-冰冻切片; 鸡; 1:500; 图 2e
  • 免疫组化-冰冻切片; 小鼠; 1:500
艾博抗(上海)贸易有限公司组蛋白H3抗体(Abcam, ab14955)被用于被用于免疫组化-冰冻切片在鸡样本上浓度为1:500 (图 2e) 和 被用于免疫组化-冰冻切片在小鼠样本上浓度为1:500. elife (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 s3a
艾博抗(上海)贸易有限公司组蛋白H3抗体(Abcam, ab1791)被用于被用于免疫印迹在人类样本上 (图 s3a). Mol Cell (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:500; 图 4b
艾博抗(上海)贸易有限公司组蛋白H3抗体(Abcam, ab1791)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 4b). Cell Death Dis (2019) ncbi
大鼠 单克隆(HTA28)
  • 免疫组化; fruit fly ; 1:1000; 图 1a
艾博抗(上海)贸易有限公司组蛋白H3抗体(Abcam, ab10543)被用于被用于免疫组化在fruit fly 样本上浓度为1:1000 (图 1a). elife (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 3e
艾博抗(上海)贸易有限公司组蛋白H3抗体(Abcam, ab1791)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3e). elife (2019) ncbi
domestic rabbit 多克隆
  • 免疫组化; fruit fly ; 1:1000; 图 2f
艾博抗(上海)贸易有限公司组蛋白H3抗体(Abcam, ab5176)被用于被用于免疫组化在fruit fly 样本上浓度为1:1000 (图 2f). Cell Rep (2019) ncbi
domestic rabbit 多克隆
  • ChIP-Seq; 人类; 图 3a
艾博抗(上海)贸易有限公司组蛋白H3抗体(Abcam, ab4729)被用于被用于ChIP-Seq在人类样本上 (图 3a). Sci Adv (2019) ncbi
domestic rabbit 多克隆
  • 染色质免疫沉淀 ; 人类; 图 s5a
艾博抗(上海)贸易有限公司组蛋白H3抗体(Abcam, ab4729)被用于被用于染色质免疫沉淀 在人类样本上 (图 s5a). Nat Commun (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 s5d
艾博抗(上海)贸易有限公司组蛋白H3抗体(Abcam, 1791)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 s5d). Nat Commun (2019) ncbi
domestic rabbit 多克隆
艾博抗(上海)贸易有限公司组蛋白H3抗体(Abcam, ab1791)被用于. Cell (2019) ncbi
大鼠 单克隆(HTA28)
  • 免疫组化; 非洲爪蛙; 1:100; 图 s3b
艾博抗(上海)贸易有限公司组蛋白H3抗体(Abcam, ab10543)被用于被用于免疫组化在非洲爪蛙样本上浓度为1:100 (图 s3b). Science (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 1c
艾博抗(上海)贸易有限公司组蛋白H3抗体(Abcam, ab1791)被用于被用于免疫印迹在人类样本上 (图 1c). Cell Prolif (2019) ncbi
domestic rabbit 多克隆
  • ChIP-Seq; 人类; 图 9
艾博抗(上海)贸易有限公司组蛋白H3抗体(Abcam, ab4729)被用于被用于ChIP-Seq在人类样本上 (图 9). J Biol Chem (2019) ncbi
domestic rabbit 多克隆
  • ChIP-Seq; 人类; 图 4a
艾博抗(上海)贸易有限公司组蛋白H3抗体(Abcam, ab4729)被用于被用于ChIP-Seq在人类样本上 (图 4a). elife (2019) ncbi
domestic rabbit 多克隆
  • 染色质免疫沉淀 ; 小鼠; 图 s7c
艾博抗(上海)贸易有限公司组蛋白H3抗体(Abcam, ab1791)被用于被用于染色质免疫沉淀 在小鼠样本上 (图 s7c). Cell Rep (2019) ncbi
domestic rabbit 多克隆
  • ChIP-Seq; 小鼠; 图 s3e
艾博抗(上海)贸易有限公司组蛋白H3抗体(Abcam, ab4729)被用于被用于ChIP-Seq在小鼠样本上 (图 s3e). Cell Stem Cell (2019) ncbi
domestic rabbit 多克隆
  • 染色质免疫沉淀 ; 小鼠; 图 s7d
艾博抗(上海)贸易有限公司组蛋白H3抗体(Abcam, ab1791)被用于被用于染色质免疫沉淀 在小鼠样本上 (图 s7d). Cell Res (2019) ncbi
domestic rabbit 多克隆
艾博抗(上海)贸易有限公司组蛋白H3抗体(Abcam, ab1791)被用于. Cell (2019) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 小鼠; 图 9c
艾博抗(上海)贸易有限公司组蛋白H3抗体(Abcam, ab1791)被用于被用于免疫细胞化学在小鼠样本上 (图 9c). Nat Commun (2019) ncbi
domestic rabbit 多克隆
  • ChIP-Seq; 小鼠; 图 6a
  • 免疫印迹; 小鼠; 1:1000; 图 1b
艾博抗(上海)贸易有限公司组蛋白H3抗体(Abcam, ab4729)被用于被用于ChIP-Seq在小鼠样本上 (图 6a) 和 被用于免疫印迹在小鼠样本上浓度为1:1000 (图 1b). Nat Commun (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; brewer's yeast; 1:1000; 图 3a
艾博抗(上海)贸易有限公司组蛋白H3抗体(Abcam, ab5176)被用于被用于免疫印迹在brewer's yeast样本上浓度为1:1000 (图 3a). J Vis Exp (2019) ncbi
小鼠 单克隆(mAbcam 24834)
  • 免疫印迹; brewer's yeast; 1:2000; 图 3a
艾博抗(上海)贸易有限公司组蛋白H3抗体(Abcam, ab24834)被用于被用于免疫印迹在brewer's yeast样本上浓度为1:2000 (图 3a). J Vis Exp (2019) ncbi
domestic rabbit 多克隆
  • ChIP-Seq; 小鼠; 图 1m
艾博抗(上海)贸易有限公司组蛋白H3抗体(Abcam, ab4729)被用于被用于ChIP-Seq在小鼠样本上 (图 1m). Cell (2019) ncbi
domestic rabbit 多克隆
  • ChIP-Seq; 小鼠; 图 5b
艾博抗(上海)贸易有限公司组蛋白H3抗体(Abcam, ab4729)被用于被用于ChIP-Seq在小鼠样本上 (图 5b). Nat Commun (2019) ncbi
domestic rabbit 多克隆
  • ChIP-Seq; 人类; 图 s4e
艾博抗(上海)贸易有限公司组蛋白H3抗体(Abcam, ab4729)被用于被用于ChIP-Seq在人类样本上 (图 s4e). Science (2019) ncbi
domestic rabbit 多克隆
  • ChIP-Seq; 小鼠; 图 2f
艾博抗(上海)贸易有限公司组蛋白H3抗体(Abcam, AB4729)被用于被用于ChIP-Seq在小鼠样本上 (图 2f). Nat Commun (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:2000; 图 6e
艾博抗(上海)贸易有限公司组蛋白H3抗体(Abcam, ab1791)被用于被用于免疫印迹在小鼠样本上浓度为1:2000 (图 6e). Nat Commun (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:20,000; 图 s5
艾博抗(上海)贸易有限公司组蛋白H3抗体(Abcam, ab1791)被用于被用于免疫印迹在人类样本上浓度为1:20,000 (图 s5). J Biol Chem (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:10,000; 图 1a
  • 免疫印迹; 小鼠; 1:10,000; 图 1f, 1g
艾博抗(上海)贸易有限公司组蛋白H3抗体(Abcam, ab1791)被用于被用于免疫印迹在人类样本上浓度为1:10,000 (图 1a) 和 被用于免疫印迹在小鼠样本上浓度为1:10,000 (图 1f, 1g). Nature (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 s1b
艾博抗(上海)贸易有限公司组蛋白H3抗体(Abcam, ab1791)被用于被用于免疫印迹在小鼠样本上 (图 s1b). Sci Adv (2019) ncbi
domestic rabbit 多克隆
  • ChIP-Seq; 小鼠; 图 2
艾博抗(上海)贸易有限公司组蛋白H3抗体(abcam, ab4729)被用于被用于ChIP-Seq在小鼠样本上 (图 2). Nucleic Acids Res (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 s4b
艾博抗(上海)贸易有限公司组蛋白H3抗体(Abcam, ab1791)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 s4b). J Clin Invest (2019) ncbi
domestic rabbit 多克隆
  • ChIP-Seq; 小鼠; 图 4h
艾博抗(上海)贸易有限公司组蛋白H3抗体(Abcam, ab4729)被用于被用于ChIP-Seq在小鼠样本上 (图 4h). Nature (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 2a, 6a, 6b
艾博抗(上海)贸易有限公司组蛋白H3抗体(Abcam, ab1791)被用于被用于免疫印迹在人类样本上 (图 2a, 6a, 6b). Sci Adv (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 2e
艾博抗(上海)贸易有限公司组蛋白H3抗体(Abcam, 1791)被用于被用于免疫印迹在人类样本上 (图 2e). Cell Death Dis (2019) ncbi
小鼠 单克隆(mAbcam 24834)
  • 免疫印迹; 人类; 1:1000; 图 4e
艾博抗(上海)贸易有限公司组蛋白H3抗体(Abcam, ab24834)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 4e). Cell Death Differ (2019) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 小鼠; 图 s6
艾博抗(上海)贸易有限公司组蛋白H3抗体(Abcam, ab5176)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 s6). Development (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 5f
艾博抗(上海)贸易有限公司组蛋白H3抗体(Abcam, ab1791)被用于被用于免疫印迹在小鼠样本上 (图 5f). Mol Cell Biol (2019) ncbi
domestic rabbit 多克隆
  • ChIP-Seq; 人类; ; 图 3a, e4a
艾博抗(上海)贸易有限公司组蛋白H3抗体(Abcam, ab4729)被用于被用于ChIP-Seq在人类样本上浓度为 (图 3a, e4a). Nat Med (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 3d
艾博抗(上海)贸易有限公司组蛋白H3抗体(Abcam, ab1791)被用于被用于免疫印迹在人类样本上 (图 3d). Sci Adv (2019) ncbi
domestic rabbit 多克隆
  • ChIP-Seq; 小鼠; 图 3e
艾博抗(上海)贸易有限公司组蛋白H3抗体(Abcam, ab4729)被用于被用于ChIP-Seq在小鼠样本上 (图 3e). elife (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 s4a
艾博抗(上海)贸易有限公司组蛋白H3抗体(Abcam, ab1791)被用于被用于免疫印迹在人类样本上 (图 s4a). Cell (2019) ncbi
domestic rabbit 多克隆
  • 染色质免疫沉淀 ; 人类; 图 3d
艾博抗(上海)贸易有限公司组蛋白H3抗体(Abcam, ab4729)被用于被用于染色质免疫沉淀 在人类样本上 (图 3d). Cell (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:5000; 图 3b
艾博抗(上海)贸易有限公司组蛋白H3抗体(Abcam, ab1791)被用于被用于免疫印迹在小鼠样本上浓度为1:5000 (图 3b). Nucleic Acids Res (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:5000; 图 3a
艾博抗(上海)贸易有限公司组蛋白H3抗体(Abcam, ab1791)被用于被用于免疫印迹在人类样本上浓度为1:5000 (图 3a). J Cell Sci (2019) ncbi
domestic rabbit 多克隆
  • ChIP-Seq; 小鼠; 图 2e
  • 染色质免疫沉淀 ; 小鼠; 图 5c
艾博抗(上海)贸易有限公司组蛋白H3抗体(Abcam, ab4729)被用于被用于ChIP-Seq在小鼠样本上 (图 2e) 和 被用于染色质免疫沉淀 在小鼠样本上 (图 5c). Nat Commun (2018) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:5000; 图 1i
艾博抗(上海)贸易有限公司组蛋白H3抗体(Abcam, ab1791)被用于被用于免疫印迹在小鼠样本上浓度为1:5000 (图 1i). Nat Neurosci (2019) ncbi
domestic rabbit 多克隆
  • 流式细胞仪; 小鼠; 图 s1e
  • 免疫细胞化学; 小鼠; 图 s1b
艾博抗(上海)贸易有限公司组蛋白H3抗体(Abcam, ab4729)被用于被用于流式细胞仪在小鼠样本上 (图 s1e) 和 被用于免疫细胞化学在小鼠样本上 (图 s1b). Genome Biol (2018) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类免疫缺陷病毒1; 图 s1k
艾博抗(上海)贸易有限公司组蛋白H3抗体(Abcam, ab1791)被用于被用于免疫印迹在人类免疫缺陷病毒1样本上 (图 s1k). MBio (2018) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 1e
艾博抗(上海)贸易有限公司组蛋白H3抗体(Abcam, ab4729)被用于被用于免疫印迹在小鼠样本上 (图 1e). Cancer Discov (2019) ncbi
domestic rabbit 多克隆
  • 免疫组化; fruit fly ; 图 1a
艾博抗(上海)贸易有限公司组蛋白H3抗体(Abcam, ab5176)被用于被用于免疫组化在fruit fly 样本上 (图 1a). Neuron (2018) ncbi
domestic rabbit 多克隆
  • ChIP-Seq; 小鼠; 图 1a, 7b
艾博抗(上海)贸易有限公司组蛋白H3抗体(Abcam, ab4729)被用于被用于ChIP-Seq在小鼠样本上 (图 1a, 7b). Nucleic Acids Res (2018) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:10,000; 图 4e
艾博抗(上海)贸易有限公司组蛋白H3抗体(Abcam, ab1791)被用于被用于免疫印迹在小鼠样本上浓度为1:10,000 (图 4e). EMBO J (2019) ncbi
domestic rabbit 多克隆
  • 其他; 小鼠; 图 5d
艾博抗(上海)贸易有限公司组蛋白H3抗体(Abcam, ab4729)被用于被用于其他在小鼠样本上 (图 5d). J Biol Chem (2018) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:2000; 图 1i
艾博抗(上海)贸易有限公司组蛋白H3抗体(Abcam, ab1791)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 1i). Nat Commun (2018) ncbi
domestic rabbit 多克隆
  • ChIP-Seq; 人类; 图 5b
艾博抗(上海)贸易有限公司组蛋白H3抗体(Abcam, ab4729)被用于被用于ChIP-Seq在人类样本上 (图 5b). Cancer Cell (2018) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:10,000; 图 8b
艾博抗(上海)贸易有限公司组蛋白H3抗体(Abcam, ab4729)被用于被用于免疫印迹在人类样本上浓度为1:10,000 (图 8b). Nat Commun (2018) ncbi
domestic rabbit 多克隆
  • 染色质免疫沉淀 ; 小鼠; 图 3b
艾博抗(上海)贸易有限公司组蛋白H3抗体(Abcam, ab4729)被用于被用于染色质免疫沉淀 在小鼠样本上 (图 3b). Stem Cell Res (2018) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 4b
艾博抗(上海)贸易有限公司组蛋白H3抗体(Abcam, ab1791)被用于被用于免疫印迹在人类样本上 (图 4b). Science (2018) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:2000; 图 s10b
艾博抗(上海)贸易有限公司组蛋白H3抗体(Abcam, 1791)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 s10b). Nat Chem Biol (2018) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:5000; 图 s3a
艾博抗(上海)贸易有限公司组蛋白H3抗体(Abcam, ab1791)被用于被用于免疫印迹在人类样本上浓度为1:5000 (图 s3a). PLoS ONE (2018) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:5000; 图 6f
艾博抗(上海)贸易有限公司组蛋白H3抗体(abcam, ab1791)被用于被用于免疫印迹在人类样本上浓度为1:5000 (图 6f). Mol Syst Biol (2018) ncbi
domestic rabbit 多克隆
  • ChIP-Seq; 人类; 图 4a
艾博抗(上海)贸易有限公司组蛋白H3抗体(Abcam, ab4729)被用于被用于ChIP-Seq在人类样本上 (图 4a). Cell (2018) ncbi
domestic rabbit 多克隆
  • 染色质免疫沉淀 ; 人类; 图 5
艾博抗(上海)贸易有限公司组蛋白H3抗体(Abcam, ab4729)被用于被用于染色质免疫沉淀 在人类样本上 (图 5). Front Immunol (2018) ncbi
domestic rabbit 多克隆
  • 免疫沉淀; 人类; 图 6b
艾博抗(上海)贸易有限公司组蛋白H3抗体(abcam, ab4729)被用于被用于免疫沉淀在人类样本上 (图 6b). Mol Cell Biol (2018) ncbi
domestic rabbit 多克隆
  • 其他; 人类; 图 4c
艾博抗(上海)贸易有限公司组蛋白H3抗体(Abcam, ab1791)被用于被用于其他在人类样本上 (图 4c). Cancer Cell (2018) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:5000; 图 3a
艾博抗(上海)贸易有限公司组蛋白H3抗体(Abcam, ab1791)被用于被用于免疫印迹在人类样本上浓度为1:5000 (图 3a). Nat Commun (2018) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 小鼠; 图 1c
  • 免疫细胞化学; 人类; 图 1d
艾博抗(上海)贸易有限公司组蛋白H3抗体(Abcam, AB47297)被用于被用于免疫细胞化学在小鼠样本上 (图 1c) 和 被用于免疫细胞化学在人类样本上 (图 1d). Cell (2018) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 7c
艾博抗(上海)贸易有限公司组蛋白H3抗体(Abcam, ab1791)被用于被用于免疫印迹在人类样本上 (图 7c). Mol Cell (2018) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 小鼠; 图 s3k
艾博抗(上海)贸易有限公司组蛋白H3抗体(Abcam, ab5176)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 s3k). Cell (2018) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 1f
艾博抗(上海)贸易有限公司组蛋白H3抗体(Abcam, ab1791)被用于被用于免疫印迹在小鼠样本上 (图 1f). Cell (2018) ncbi
domestic rabbit 多克隆
  • ChIP-Seq; 人类; 图 3a
艾博抗(上海)贸易有限公司组蛋白H3抗体(Abcam, ab4729)被用于被用于ChIP-Seq在人类样本上 (图 3a). Cell (2018) ncbi
domestic rabbit 多克隆
  • ChIP-Seq; 斑马鱼; 图 s1a
艾博抗(上海)贸易有限公司组蛋白H3抗体(Abcam, ab4729)被用于被用于ChIP-Seq在斑马鱼样本上 (图 s1a). Cell (2018) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 1a
艾博抗(上海)贸易有限公司组蛋白H3抗体(Abcam, ab1791)被用于被用于免疫印迹在人类样本上 (图 1a). Mol Cancer Res (2018) ncbi
domestic rabbit 多克隆
  • 免疫沉淀; 人类; 图 6f
艾博抗(上海)贸易有限公司组蛋白H3抗体(Abcam, ab1791)被用于被用于免疫沉淀在人类样本上 (图 6f). Br J Cancer (2018) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 非洲爪蛙; 图 6a
艾博抗(上海)贸易有限公司组蛋白H3抗体(Abcam, ab1791)被用于被用于免疫印迹在非洲爪蛙样本上 (图 6a). Dev Cell (2018) ncbi
小鼠 单克隆(mAbcam 14955)
  • 免疫组化; 人类; 图 4??
艾博抗(上海)贸易有限公司组蛋白H3抗体(Abcam, ab14955)被用于被用于免疫组化在人类样本上 (图 4??). Oncogenesis (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 1e
艾博抗(上海)贸易有限公司组蛋白H3抗体(Abcam, ab1791)被用于被用于免疫印迹在人类样本上 (图 1e). Cancer Res (2018) ncbi
domestic rabbit 多克隆
  • 染色质免疫沉淀 ; 人类; 图 4a
艾博抗(上海)贸易有限公司组蛋白H3抗体(abcam, ab4729)被用于被用于染色质免疫沉淀 在人类样本上 (图 4a). Cancer Cell (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:2000; 图 1c
艾博抗(上海)贸易有限公司组蛋白H3抗体(Abcam, ab1791)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 1c). Science (2017) ncbi
domestic rabbit 多克隆
  • ChIP-Seq; 人类; 图 3a
艾博抗(上海)贸易有限公司组蛋白H3抗体(Abcam, ab4729)被用于被用于ChIP-Seq在人类样本上 (图 3a). elife (2017) ncbi
小鼠 单克隆(mAbcam 14955)
  • 免疫组化-冰冻切片; 小鼠; 1:1000; 图 5a
艾博抗(上海)贸易有限公司组蛋白H3抗体(Abcam, ab14955)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:1000 (图 5a). Development (2017) ncbi
domestic rabbit 多克隆
  • ChIP-Seq; 小鼠; 图 s5a
艾博抗(上海)贸易有限公司组蛋白H3抗体(Abcam, ab4729)被用于被用于ChIP-Seq在小鼠样本上 (图 s5a). Proc Natl Acad Sci U S A (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 4a
艾博抗(上海)贸易有限公司组蛋白H3抗体(Abcam, AB4729)被用于被用于免疫印迹在小鼠样本上 (图 4a). J Clin Invest (2017) ncbi
domestic rabbit 多克隆
  • ChIP-Seq; 人类; 图 4a
  • 免疫印迹; 人类; 图 3b
艾博抗(上海)贸易有限公司组蛋白H3抗体(Abcam, ab4729)被用于被用于ChIP-Seq在人类样本上 (图 4a) 和 被用于免疫印迹在人类样本上 (图 3b). Cell (2017) ncbi
domestic rabbit 多克隆
  • 染色质免疫沉淀 ; 人类; 图 2f
艾博抗(上海)贸易有限公司组蛋白H3抗体(Abcam, ab4729)被用于被用于染色质免疫沉淀 在人类样本上 (图 2f). Nat Genet (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; fruit fly ; 表 s2
艾博抗(上海)贸易有限公司组蛋白H3抗体(abcam, ab1791)被用于被用于免疫印迹在fruit fly 样本上 (表 s2). Science (2017) ncbi
domestic rabbit 多克隆
  • ChIP-Seq; 人类; 图 4e
艾博抗(上海)贸易有限公司组蛋白H3抗体(Abcam, 4729)被用于被用于ChIP-Seq在人类样本上 (图 4e). Nat Genet (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 1
艾博抗(上海)贸易有限公司组蛋白H3抗体(Abcam, ab1791)被用于被用于免疫印迹在人类样本上 (图 1). Nucleic Acids Res (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 1c
艾博抗(上海)贸易有限公司组蛋白H3抗体(Abcam, ab1791)被用于被用于免疫印迹在小鼠样本上 (图 1c). Nature (2017) ncbi
domestic rabbit 多克隆
  • ChIP-Seq; 小鼠; 图 3e
  • 免疫印迹; 小鼠; 图 s6b
艾博抗(上海)贸易有限公司组蛋白H3抗体(Abcam, ab4729)被用于被用于ChIP-Seq在小鼠样本上 (图 3e) 和 被用于免疫印迹在小鼠样本上 (图 s6b). Nature (2017) ncbi
domestic rabbit 多克隆
  • 染色质免疫沉淀 ; 人类; 图 6b
艾博抗(上海)贸易有限公司组蛋白H3抗体(Abcam, ab1791)被用于被用于染色质免疫沉淀 在人类样本上 (图 6b). Nat Commun (2017) ncbi
domestic rabbit 多克隆
  • 染色质免疫沉淀 ; 小鼠
艾博抗(上海)贸易有限公司组蛋白H3抗体(Abcam, ab4729)被用于被用于染色质免疫沉淀 在小鼠样本上. Immunity (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 s7f
艾博抗(上海)贸易有限公司组蛋白H3抗体(Abcam, ab1791)被用于被用于免疫印迹在人类样本上 (图 s7f). Genes Dev (2017) ncbi
大鼠 单克隆(HTA28)
  • 免疫组化; 小鼠; 图 s3e
艾博抗(上海)贸易有限公司组蛋白H3抗体(Abcam, AB10543)被用于被用于免疫组化在小鼠样本上 (图 s3e). Cell (2017) ncbi
domestic rabbit 多克隆
  • 染色质免疫沉淀 ; 小鼠; 图 4g
艾博抗(上海)贸易有限公司组蛋白H3抗体(Abcam, 4729)被用于被用于染色质免疫沉淀 在小鼠样本上 (图 4g). J Exp Med (2017) ncbi
大鼠 单克隆(HTA28)
  • 免疫组化-石蜡切片; 斑马鱼; 1:500; 图 2 s1B
艾博抗(上海)贸易有限公司组蛋白H3抗体(Abcam, ab10543)被用于被用于免疫组化-石蜡切片在斑马鱼样本上浓度为1:500 (图 2 s1B). elife (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:10,000; 图 s11
艾博抗(上海)贸易有限公司组蛋白H3抗体(Abcam, ab1791)被用于被用于免疫印迹在人类样本上浓度为1:10,000 (图 s11). Nat Commun (2017) ncbi
domestic rabbit 多克隆
  • 染色质免疫沉淀 ; 小鼠; 图 4c
  • 免疫印迹; 小鼠; 图 6e
  • 免疫印迹; 人类; 图 5g
艾博抗(上海)贸易有限公司组蛋白H3抗体(Abcam, ab1791)被用于被用于染色质免疫沉淀 在小鼠样本上 (图 4c), 被用于免疫印迹在小鼠样本上 (图 6e) 和 被用于免疫印迹在人类样本上 (图 5g). Proc Natl Acad Sci U S A (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 4b
艾博抗(上海)贸易有限公司组蛋白H3抗体(Abcam, ab1791)被用于被用于免疫印迹在小鼠样本上 (图 4b). Stem Cells Int (2017) ncbi
小鼠 单克隆(mAbcam 14955)
  • 免疫组化-石蜡切片; 大鼠; 1:200; 图 4a
艾博抗(上海)贸易有限公司组蛋白H3抗体(Abcam, Ab14955)被用于被用于免疫组化-石蜡切片在大鼠样本上浓度为1:200 (图 4a). Front Neurosci (2017) ncbi
domestic rabbit 多克隆
  • ChIP-Seq; 小鼠; 图 1
艾博抗(上海)贸易有限公司组蛋白H3抗体(Abcam, ab4729)被用于被用于ChIP-Seq在小鼠样本上 (图 1). Nucleic Acids Res (2017) ncbi
domestic rabbit 多克隆
  • ChIP-Seq; 小鼠; 图 2d
艾博抗(上海)贸易有限公司组蛋白H3抗体(Abcam, 4729)被用于被用于ChIP-Seq在小鼠样本上 (图 2d). Nucleic Acids Res (2017) ncbi
domestic rabbit 多克隆
  • 染色质免疫沉淀 ; 人类; 图 6c
  • 免疫印迹; 人类; 图 s1a
艾博抗(上海)贸易有限公司组蛋白H3抗体(Abcam, AB1791)被用于被用于染色质免疫沉淀 在人类样本上 (图 6c) 和 被用于免疫印迹在人类样本上 (图 s1a). elife (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 2a
艾博抗(上海)贸易有限公司组蛋白H3抗体(Abcam, ab5176)被用于被用于免疫印迹在人类样本上 (图 2a). Nat Commun (2017) ncbi
domestic rabbit 多克隆
  • 染色质免疫沉淀 ; 人类; 图 4d
  • 免疫印迹; 人类; 图 2b
艾博抗(上海)贸易有限公司组蛋白H3抗体(Abcam, ab1791)被用于被用于染色质免疫沉淀 在人类样本上 (图 4d) 和 被用于免疫印迹在人类样本上 (图 2b). J Cell Sci (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:10,000; 表 s3
艾博抗(上海)贸易有限公司组蛋白H3抗体(Abcam, ab1791)被用于被用于免疫印迹在小鼠样本上浓度为1:10,000 (表 s3). Science (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 9a
艾博抗(上海)贸易有限公司组蛋白H3抗体(Abcam, AB1791)被用于被用于免疫印迹在人类样本上 (图 9a). J Clin Invest (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; Dictyostelium discoideum; 图 1a
艾博抗(上海)贸易有限公司组蛋白H3抗体(Abcam, ab1791)被用于被用于免疫印迹在Dictyostelium discoideum样本上 (图 1a). Sci Rep (2017) ncbi
domestic rabbit 多克隆
  • 染色质免疫沉淀 ; 人类; 图 s3
  • 免疫印迹; 人类; 图 1b
艾博抗(上海)贸易有限公司组蛋白H3抗体(Abcam, AB1791)被用于被用于染色质免疫沉淀 在人类样本上 (图 s3) 和 被用于免疫印迹在人类样本上 (图 1b). MBio (2017) ncbi
domestic rabbit 多克隆
  • ChIP-Seq; 人类; 图 s6a
艾博抗(上海)贸易有限公司组蛋白H3抗体(Abcam, ab4729)被用于被用于ChIP-Seq在人类样本上 (图 s6a). Nature (2017) ncbi
domestic rabbit 单克隆(E173)
  • 免疫组化; 小鼠; 1:300; 图 2a
  • 免疫印迹; 大鼠; 1:1000; 图 s3K
艾博抗(上海)贸易有限公司组蛋白H3抗体(Abcam, ab32107)被用于被用于免疫组化在小鼠样本上浓度为1:300 (图 2a) 和 被用于免疫印迹在大鼠样本上浓度为1:1000 (图 s3K). Nat Commun (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 4
艾博抗(上海)贸易有限公司组蛋白H3抗体(Abcam, ab1791)被用于被用于免疫印迹在小鼠样本上 (图 4). PLoS Genet (2017) ncbi
domestic rabbit 多克隆
  • ChIP-Seq; 人类; 图 4e
艾博抗(上海)贸易有限公司组蛋白H3抗体(Abcam, ab4729)被用于被用于ChIP-Seq在人类样本上 (图 4e). Nat Genet (2017) ncbi
domestic rabbit 多克隆
  • ChIP-Seq; 小鼠; 图 6b
艾博抗(上海)贸易有限公司组蛋白H3抗体(Abcam, ab4729)被用于被用于ChIP-Seq在小鼠样本上 (图 6b). J Immunol (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:10,000; 图 st1
艾博抗(上海)贸易有限公司组蛋白H3抗体(Abcam, Ab1791)被用于被用于免疫印迹在人类样本上浓度为1:10,000 (图 st1). Nat Commun (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 4i
艾博抗(上海)贸易有限公司组蛋白H3抗体(Abcam, ab1791)被用于被用于免疫印迹在小鼠样本上 (图 4i). J Exp Med (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 9b
艾博抗(上海)贸易有限公司组蛋白H3抗体(Abcam, ab1791)被用于被用于免疫印迹在人类样本上 (图 9b). elife (2017) ncbi
domestic rabbit 多克隆
  • 免疫沉淀; 小鼠; 图 1c
  • 免疫沉淀; 人类; 图 5b
艾博抗(上海)贸易有限公司组蛋白H3抗体(Abcam, ab1791)被用于被用于免疫沉淀在小鼠样本上 (图 1c) 和 被用于免疫沉淀在人类样本上 (图 5b). Cell Rep (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 4c
艾博抗(上海)贸易有限公司组蛋白H3抗体(Abcam, ab4729)被用于被用于免疫印迹在小鼠样本上 (图 4c). J Clin Invest (2017) ncbi
单克隆
  • 免疫细胞化学; 小鼠; 1:200; 图 3e
艾博抗(上海)贸易有限公司组蛋白H3抗体(Abcam, ab6147)被用于被用于免疫细胞化学在小鼠样本上浓度为1:200 (图 3e). Sci Rep (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 1e
艾博抗(上海)贸易有限公司组蛋白H3抗体(Abcam, ab1791)被用于被用于免疫印迹在人类样本上 (图 1e). J Biochem (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 6G
艾博抗(上海)贸易有限公司组蛋白H3抗体(Abcam, ab4729)被用于被用于免疫印迹在小鼠样本上 (图 6G). PLoS ONE (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 s2f
艾博抗(上海)贸易有限公司组蛋白H3抗体(Abcam, ab1791)被用于被用于免疫印迹在小鼠样本上 (图 s2f). Genes Dev (2017) ncbi
大鼠 单克隆(HTA28)
  • 免疫细胞化学; 人类; 图 2b
艾博抗(上海)贸易有限公司组蛋白H3抗体(Abcam, Ab10543)被用于被用于免疫细胞化学在人类样本上 (图 2b). Cell Stem Cell (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:5000; 图 6h
艾博抗(上海)贸易有限公司组蛋白H3抗体(Abcam, ab5176)被用于被用于免疫印迹在人类样本上浓度为1:5000 (图 6h). Nat Commun (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 3b
艾博抗(上海)贸易有限公司组蛋白H3抗体(Abcam, ab1791)被用于被用于免疫印迹在人类样本上 (图 3b). Proc Natl Acad Sci U S A (2017) ncbi
大鼠 单克隆(HTA28)
  • 免疫细胞化学; 人类; 1:1000; 图 7a
艾博抗(上海)贸易有限公司组蛋白H3抗体(Abcam, ab10543)被用于被用于免疫细胞化学在人类样本上浓度为1:1000 (图 7a). Nat Commun (2017) ncbi
domestic rabbit 多克隆
  • ChIP-Seq; 小鼠; 图 5a
艾博抗(上海)贸易有限公司组蛋白H3抗体(Abcam, ab4729)被用于被用于ChIP-Seq在小鼠样本上 (图 5a). Development (2017) ncbi
domestic rabbit 多克隆
  • 染色质免疫沉淀 ; 小鼠; 图 s5i
艾博抗(上海)贸易有限公司组蛋白H3抗体(Abcam, 1791)被用于被用于染色质免疫沉淀 在小鼠样本上 (图 s5i). Science (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 4a
艾博抗(上海)贸易有限公司组蛋白H3抗体(Abcam, ab1791)被用于被用于免疫印迹在人类样本上 (图 4a). Nat Genet (2017) ncbi
小鼠 单克隆(mAbcam 14955)
  • 免疫印迹; 人类; 图 1j
艾博抗(上海)贸易有限公司组蛋白H3抗体(Abcam, ab14955)被用于被用于免疫印迹在人类样本上 (图 1j). Nat Med (2017) ncbi
domestic rabbit 多克隆
  • 染色质免疫沉淀 ; 小鼠; 图 4a
艾博抗(上海)贸易有限公司组蛋白H3抗体(Abcam, ab1791)被用于被用于染色质免疫沉淀 在小鼠样本上 (图 4a). J Neurosci (2017) ncbi
domestic rabbit 多克隆
  • 染色质免疫沉淀 ; 人类; 图 2a
艾博抗(上海)贸易有限公司组蛋白H3抗体(Abcam, ab1791)被用于被用于染色质免疫沉淀 在人类样本上 (图 2a). J Biol Chem (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 2b
艾博抗(上海)贸易有限公司组蛋白H3抗体(Abcam, ab1791)被用于被用于免疫印迹在人类样本上 (图 2b). Mol Cancer Res (2017) ncbi
domestic rabbit 多克隆
  • ChIP-Seq; 小鼠; 图 3b
艾博抗(上海)贸易有限公司组蛋白H3抗体(Abcam, ab4729)被用于被用于ChIP-Seq在小鼠样本上 (图 3b). Cell Rep (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 人类; 1:1500; 图 4a
  • 免疫沉淀; 人类; 图 2
  • 免疫印迹; 人类; 图 1
艾博抗(上海)贸易有限公司组蛋白H3抗体(Abcam, ab1791)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:1500 (图 4a), 被用于免疫沉淀在人类样本上 (图 2) 和 被用于免疫印迹在人类样本上 (图 1). Acta Neuropathol (2017) ncbi
domestic rabbit 多克隆
  • ChIP-Seq; 拟南芥; 图 9s
艾博抗(上海)贸易有限公司组蛋白H3抗体(Abcam, ab1791)被用于被用于ChIP-Seq在拟南芥样本上 (图 9s). Nucleic Acids Res (2017) ncbi
单克隆
  • 免疫细胞化学; 小鼠; 1:100; 图 s3f
艾博抗(上海)贸易有限公司组蛋白H3抗体(Abcam, ab6147)被用于被用于免疫细胞化学在小鼠样本上浓度为1:100 (图 s3f). Development (2017) ncbi
domestic rabbit 多克隆
  • ChIP-Seq; 人类; 图 s4a
艾博抗(上海)贸易有限公司组蛋白H3抗体(Abcam, ab4729)被用于被用于ChIP-Seq在人类样本上 (图 s4a). Cell (2016) ncbi
domestic rabbit 多克隆
  • 染色质免疫沉淀 ; 人类; 图 1b
艾博抗(上海)贸易有限公司组蛋白H3抗体(Abcam, ab4729)被用于被用于染色质免疫沉淀 在人类样本上 (图 1b). Nucleic Acids Res (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:10,000; 图 3a
  • 免疫印迹; 小鼠; 1:10,000; 图 1a
艾博抗(上海)贸易有限公司组蛋白H3抗体(Abcam, Ab1791)被用于被用于免疫印迹在人类样本上浓度为1:10,000 (图 3a) 和 被用于免疫印迹在小鼠样本上浓度为1:10,000 (图 1a). Oncogene (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 3b
艾博抗(上海)贸易有限公司组蛋白H3抗体(Abcam, ab1791)被用于被用于免疫印迹在小鼠样本上 (图 3b). Stem Cell Reports (2016) ncbi
小鼠 单克隆(mAbcam 14955)
  • 免疫组化; 大鼠; 1:100; 图 4a
艾博抗(上海)贸易有限公司组蛋白H3抗体(Abcam, ab14955)被用于被用于免疫组化在大鼠样本上浓度为1:100 (图 4a). PLoS ONE (2016) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 1:100; 图 2b
艾博抗(上海)贸易有限公司组蛋白H3抗体(abcam, ab1791)被用于被用于免疫细胞化学在人类样本上浓度为1:100 (图 2b). J Proteomics (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:15,000; 图 6
艾博抗(上海)贸易有限公司组蛋白H3抗体(Abcam, Ab1791)被用于被用于免疫印迹在人类样本上浓度为1:15,000 (图 6). PLoS ONE (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 4g
艾博抗(上海)贸易有限公司组蛋白H3抗体(Abcam, ab1791)被用于被用于免疫印迹在小鼠样本上 (图 4g). J Biol Chem (2016) ncbi
小鼠 单克隆(mAbcam 14955)
  • 免疫细胞化学; 小鼠; 1:1000; 图 s4c
艾博抗(上海)贸易有限公司组蛋白H3抗体(Abcam, ab14955)被用于被用于免疫细胞化学在小鼠样本上浓度为1:1000 (图 s4c). Nat Cell Biol (2016) ncbi
domestic rabbit 多克隆
  • 染色质免疫沉淀 ; 人类; 图 4
艾博抗(上海)贸易有限公司组蛋白H3抗体(Abcam, ab4729)被用于被用于染色质免疫沉淀 在人类样本上 (图 4). Oncotarget (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:3000; 图 7b
艾博抗(上海)贸易有限公司组蛋白H3抗体(Abcam, ab1791)被用于被用于免疫印迹在人类样本上浓度为1:3000 (图 7b). J Cell Biol (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 大鼠; 图 s4a
艾博抗(上海)贸易有限公司组蛋白H3抗体(Abcam, ab1791)被用于被用于免疫印迹在大鼠样本上 (图 s4a). Proc Natl Acad Sci U S A (2016) ncbi
domestic rabbit 多克隆
  • 染色质免疫沉淀 ; 小鼠; 图 4a
艾博抗(上海)贸易有限公司组蛋白H3抗体(Abcam, Ab1791)被用于被用于染色质免疫沉淀 在小鼠样本上 (图 4a). PLoS ONE (2016) ncbi
小鼠 单克隆(mAbcam 14955)
  • 免疫组化-石蜡切片; 小鼠; 1:180; 图 5a
艾博抗(上海)贸易有限公司组蛋白H3抗体(Abcam, Ab14955)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:180 (图 5a). Cancer Biol Ther (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 人类; 1:500; 图 6d
艾博抗(上海)贸易有限公司组蛋白H3抗体(Abcam, ab5176)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:500 (图 6d). Cancer Res (2017) ncbi
domestic rabbit 多克隆
  • ChIP-Seq; 小鼠; 图 1a
艾博抗(上海)贸易有限公司组蛋白H3抗体(Abcam, ab4729)被用于被用于ChIP-Seq在小鼠样本上 (图 1a). Nucleic Acids Res (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 1e
艾博抗(上海)贸易有限公司组蛋白H3抗体(Abcam, ab1791)被用于被用于免疫印迹在小鼠样本上 (图 1e). J Biol Chem (2016) ncbi
domestic rabbit 多克隆
  • 染色质免疫沉淀 ; 小鼠; 图 8
  • 免疫印迹; 小鼠; 图 8a
艾博抗(上海)贸易有限公司组蛋白H3抗体(Abcam, ab1791)被用于被用于染色质免疫沉淀 在小鼠样本上 (图 8) 和 被用于免疫印迹在小鼠样本上 (图 8a). J Exp Med (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 3a
艾博抗(上海)贸易有限公司组蛋白H3抗体(Abcam, ab1791)被用于被用于免疫印迹在人类样本上 (图 3a). Mol Cell Biol (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 4a
艾博抗(上海)贸易有限公司组蛋白H3抗体(Abcam, ab1791)被用于被用于免疫印迹在人类样本上 (图 4a). Nat Genet (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 1
艾博抗(上海)贸易有限公司组蛋白H3抗体(Abcam, ab1791)被用于被用于免疫印迹在小鼠样本上 (图 1). Sci Rep (2016) ncbi
domestic rabbit 多克隆
  • 染色质免疫沉淀 ; 人类
艾博抗(上海)贸易有限公司组蛋白H3抗体(Abcam, ab1791)被用于被用于染色质免疫沉淀 在人类样本上. Cell (2016) ncbi
domestic rabbit 多克隆
  • ChIP-Seq; 人类; 图 1d
艾博抗(上海)贸易有限公司组蛋白H3抗体(Abcam, ab4729)被用于被用于ChIP-Seq在人类样本上 (图 1d). Oncotarget (2016) ncbi
domestic rabbit 多克隆
  • ChIP-Seq; fruit fly ; 1:1000; 图 3a
艾博抗(上海)贸易有限公司组蛋白H3抗体(Abcam, 4729)被用于被用于ChIP-Seq在fruit fly 样本上浓度为1:1000 (图 3a). Nat Genet (2016) ncbi
domestic rabbit 多克隆
  • 染色质免疫沉淀 ; 人类; 图 s4d
  • 免疫印迹; 人类; 图 2f
艾博抗(上海)贸易有限公司组蛋白H3抗体(Abcam, ab4729)被用于被用于染色质免疫沉淀 在人类样本上 (图 s4d) 和 被用于免疫印迹在人类样本上 (图 2f). Nature (2016) ncbi
domestic rabbit 多克隆
  • ChIP-Seq; 非洲爪蛙; 图 6b
艾博抗(上海)贸易有限公司组蛋白H3抗体(Abcam, ab4729)被用于被用于ChIP-Seq在非洲爪蛙样本上 (图 6b). elife (2016) ncbi
小鼠 单克隆(mAbcam 24834)
  • 免疫组化; 人类; 图 4
  • 免疫印迹; 人类; 图 4
艾博抗(上海)贸易有限公司组蛋白H3抗体(Abcam, ab24834)被用于被用于免疫组化在人类样本上 (图 4) 和 被用于免疫印迹在人类样本上 (图 4). Sci Rep (2016) ncbi
小鼠 单克隆(mAbcam 14955)
  • 免疫组化; 大鼠; 1:500; 图 2
艾博抗(上海)贸易有限公司组蛋白H3抗体(Abcam, ab14955)被用于被用于免疫组化在大鼠样本上浓度为1:500 (图 2). Nat Commun (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 斑马鱼; 图 1
艾博抗(上海)贸易有限公司组蛋白H3抗体(AbCam, ab1791)被用于被用于免疫印迹在斑马鱼样本上 (图 1). Stem Cell Reports (2016) ncbi
domestic rabbit 多克隆
  • 免疫沉淀; brewer's yeast; 图 3A
  • 免疫印迹; brewer's yeast; 图 3C
艾博抗(上海)贸易有限公司组蛋白H3抗体(Abcam, ab1791)被用于被用于免疫沉淀在brewer's yeast样本上 (图 3A) 和 被用于免疫印迹在brewer's yeast样本上 (图 3C). J Biol Chem (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类
艾博抗(上海)贸易有限公司组蛋白H3抗体(Abcam, ab1791)被用于被用于免疫印迹在人类样本上. Exp Mol Med (2016) ncbi
domestic rabbit 多克隆
  • ChIP-Seq; 人类; 图 1k
艾博抗(上海)贸易有限公司组蛋白H3抗体(Abcam, ab4729)被用于被用于ChIP-Seq在人类样本上 (图 1k). EMBO Rep (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:5000; 图 s4b
艾博抗(上海)贸易有限公司组蛋白H3抗体(Abcam, ab1791)被用于被用于免疫印迹在小鼠样本上浓度为1:5000 (图 s4b). Sci Rep (2016) ncbi
domestic rabbit 多克隆
  • ChIP-Seq; 小鼠; 图 2a
艾博抗(上海)贸易有限公司组蛋白H3抗体(Abcam, ab4729)被用于被用于ChIP-Seq在小鼠样本上 (图 2a). Genome Biol (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 拟南芥; 1:2000; 图 5
艾博抗(上海)贸易有限公司组蛋白H3抗体(Abcam, ab1791)被用于被用于免疫印迹在拟南芥样本上浓度为1:2000 (图 5). Front Plant Sci (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 3
艾博抗(上海)贸易有限公司组蛋白H3抗体(abcam, ab1791)被用于被用于免疫印迹在人类样本上 (图 3). Nucleic Acids Res (2016) ncbi
domestic rabbit 多克隆
  • 染色质免疫沉淀 ; 人类; 图 s5
艾博抗(上海)贸易有限公司组蛋白H3抗体(Abcam, ab4729)被用于被用于染色质免疫沉淀 在人类样本上 (图 s5). Oncotarget (2016) ncbi
  • 免疫印迹; 人类; 1:2000; 图 2
艾博抗(上海)贸易有限公司组蛋白H3抗体(Abcam, ab33309)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 2). Nat Commun (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:10,0000; 图 1
艾博抗(上海)贸易有限公司组蛋白H3抗体(Abcam, ab1791)被用于被用于免疫印迹在人类样本上浓度为1:10,0000 (图 1). Nat Commun (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 3
艾博抗(上海)贸易有限公司组蛋白H3抗体(Abcam, ab1791)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 3). Mol Med Rep (2016) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; roundworm ; 1:200; 图 2
艾博抗(上海)贸易有限公司组蛋白H3抗体(Abcam, ab1791)被用于被用于免疫细胞化学在roundworm 样本上浓度为1:200 (图 2). PLoS ONE (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 1c
艾博抗(上海)贸易有限公司组蛋白H3抗体(Abcam, ab1791)被用于被用于免疫印迹在小鼠样本上 (图 1c). J Exp Med (2016) ncbi
domestic rabbit 多克隆
  • 染色质免疫沉淀 ; 小鼠; 图 7a
  • 免疫印迹; 小鼠; 图 1c
艾博抗(上海)贸易有限公司组蛋白H3抗体(Abcam, ab4729)被用于被用于染色质免疫沉淀 在小鼠样本上 (图 7a) 和 被用于免疫印迹在小鼠样本上 (图 1c). J Exp Med (2016) ncbi
domestic rabbit 多克隆
  • 酶联免疫吸附测定; 人类; 1:5000; 图 s3
  • 免疫印迹; 人类; 图 s1
艾博抗(上海)贸易有限公司组蛋白H3抗体(Abcam, ab1791)被用于被用于酶联免疫吸附测定在人类样本上浓度为1:5000 (图 s3) 和 被用于免疫印迹在人类样本上 (图 s1). PLoS ONE (2016) ncbi
domestic rabbit 多克隆
  • 染色质免疫沉淀 ; 人类; 图 S3
艾博抗(上海)贸易有限公司组蛋白H3抗体(Abcam, ab4729)被用于被用于染色质免疫沉淀 在人类样本上 (图 S3). PLoS Genet (2016) ncbi
domestic rabbit 多克隆
  • 染色质免疫沉淀 ; 人类; 图 3b
艾博抗(上海)贸易有限公司组蛋白H3抗体(Abcam, 1791)被用于被用于染色质免疫沉淀 在人类样本上 (图 3b). BMC Cancer (2016) ncbi
domestic rabbit 多克隆
  • ChIP-Seq; 人类; 图 5
艾博抗(上海)贸易有限公司组蛋白H3抗体(Abcam, ab4729)被用于被用于ChIP-Seq在人类样本上 (图 5). Nat Commun (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 2f
艾博抗(上海)贸易有限公司组蛋白H3抗体(Abcam, ab1791)被用于被用于免疫印迹在人类样本上 (图 2f). Cell Death Dis (2016) ncbi
domestic rabbit 单克隆(E173)
  • 免疫印迹; 人类; 图 2f
艾博抗(上海)贸易有限公司组蛋白H3抗体(Abcam, ab32107)被用于被用于免疫印迹在人类样本上 (图 2f). Cell Death Dis (2016) ncbi
domestic rabbit 多克隆
  • 免疫沉淀; 大鼠; 图 3b
  • 免疫印迹; 大鼠; 图 3b
艾博抗(上海)贸易有限公司组蛋白H3抗体(Abcam, ab1791)被用于被用于免疫沉淀在大鼠样本上 (图 3b) 和 被用于免疫印迹在大鼠样本上 (图 3b). J Cereb Blood Flow Metab (2017) ncbi
domestic rabbit 多克隆
  • ChIP-Seq; 小鼠; 图 5a
艾博抗(上海)贸易有限公司组蛋白H3抗体(Abcam, ab4729)被用于被用于ChIP-Seq在小鼠样本上 (图 5a). Nat Genet (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 5
艾博抗(上海)贸易有限公司组蛋白H3抗体(Abcam, ab1791)被用于被用于免疫印迹在人类样本上 (图 5). Sci Rep (2016) ncbi
domestic rabbit 多克隆
  • 染色质免疫沉淀 ; 人类; 图 2g
艾博抗(上海)贸易有限公司组蛋白H3抗体(Abcam, ab4729)被用于被用于染色质免疫沉淀 在人类样本上 (图 2g). Nat Commun (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:4000; 图 1g
艾博抗(上海)贸易有限公司组蛋白H3抗体(Abcam, ab1791)被用于被用于免疫印迹在人类样本上浓度为1:4000 (图 1g). Nat Commun (2016) ncbi
domestic rabbit 多克隆
  • 染色质免疫沉淀 ; 小鼠; 图 2a
艾博抗(上海)贸易有限公司组蛋白H3抗体(Abcam, ab1791)被用于被用于染色质免疫沉淀 在小鼠样本上 (图 2a). Science (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 s5
艾博抗(上海)贸易有限公司组蛋白H3抗体(Abcam, ab1791)被用于被用于免疫印迹在人类样本上 (图 s5). Nucleic Acids Res (2016) ncbi
domestic rabbit 多克隆
  • ChIP-Seq; 小鼠; 图 1b
艾博抗(上海)贸易有限公司组蛋白H3抗体(Abcam, ab4729)被用于被用于ChIP-Seq在小鼠样本上 (图 1b). Nat Commun (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 1b
  • 免疫印迹; 小鼠; 图 1a
艾博抗(上海)贸易有限公司组蛋白H3抗体(Abcam, ab1791)被用于被用于免疫印迹在人类样本上 (图 1b) 和 被用于免疫印迹在小鼠样本上 (图 1a). Nature (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; brewer's yeast; 图 5
艾博抗(上海)贸易有限公司组蛋白H3抗体(Abcam, ab1791)被用于被用于免疫印迹在brewer's yeast样本上 (图 5). Genes Dev (2016) ncbi
domestic rabbit 多克隆
  • 染色质免疫沉淀 ; 拟南芥; 图 5
艾博抗(上海)贸易有限公司组蛋白H3抗体(Abcam, ab1791)被用于被用于染色质免疫沉淀 在拟南芥样本上 (图 5). J Integr Plant Biol (2016) ncbi
domestic rabbit 多克隆
  • 染色质免疫沉淀 ; 人类; 图 5
艾博抗(上海)贸易有限公司组蛋白H3抗体(Abcam, ab5168)被用于被用于染色质免疫沉淀 在人类样本上 (图 5). Mol Endocrinol (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:5000; 图 2
艾博抗(上海)贸易有限公司组蛋白H3抗体(Abcam, ab1791)被用于被用于免疫印迹在小鼠样本上浓度为1:5000 (图 2). Nat Commun (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 1
艾博抗(上海)贸易有限公司组蛋白H3抗体(Abcam, an1791)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 1). PLoS Genet (2016) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 小鼠; 图 2
艾博抗(上海)贸易有限公司组蛋白H3抗体(Abcam, ab1791)被用于被用于免疫细胞化学在小鼠样本上 (图 2). Genes Cells (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 4d
艾博抗(上海)贸易有限公司组蛋白H3抗体(abcam, ab62642)被用于被用于免疫印迹在人类样本上 (图 4d). PLoS ONE (2016) ncbi
domestic rabbit 多克隆
  • ChIP-Seq; 鸡; 图 3
艾博抗(上海)贸易有限公司组蛋白H3抗体(Abcam, ab1791)被用于被用于ChIP-Seq在鸡样本上 (图 3). EMBO J (2016) ncbi
小鼠 单克隆(mAbcam 14955)
  • 免疫组化-冰冻切片; 人类; 1:1000; 图 s3b
艾博抗(上海)贸易有限公司组蛋白H3抗体(Abcam, 14955)被用于被用于免疫组化-冰冻切片在人类样本上浓度为1:1000 (图 s3b). Nat Neurosci (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 鸡; 图 1
艾博抗(上海)贸易有限公司组蛋白H3抗体(Abcam, ab1791)被用于被用于免疫印迹在鸡样本上 (图 1). Biochem J (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 2
艾博抗(上海)贸易有限公司组蛋白H3抗体(Abcam, ab1791)被用于被用于免疫印迹在人类样本上 (图 2). Mol Biol Rep (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 2b
艾博抗(上海)贸易有限公司组蛋白H3抗体(Abcam, ab1791)被用于被用于免疫印迹在人类样本上 (图 2b). PLoS ONE (2016) ncbi
domestic rabbit 多克隆
  • 染色质免疫沉淀 ; 人类; 图 4
  • 免疫印迹; 人类; 图 4
艾博抗(上海)贸易有限公司组蛋白H3抗体(Abcam, Ab-1791)被用于被用于染色质免疫沉淀 在人类样本上 (图 4) 和 被用于免疫印迹在人类样本上 (图 4). Nat Commun (2016) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 图 3b
艾博抗(上海)贸易有限公司组蛋白H3抗体(Abcam, ab1791)被用于被用于免疫细胞化学在人类样本上 (图 3b). Breast Dis (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 s6b
艾博抗(上海)贸易有限公司组蛋白H3抗体(Abcam, ab1791)被用于被用于免疫印迹在小鼠样本上 (图 s6b). Science (2016) ncbi
domestic rabbit 多克隆
  • 染色质免疫沉淀 ; 人类; 图 4
艾博抗(上海)贸易有限公司组蛋白H3抗体(Abcam, ab1791)被用于被用于染色质免疫沉淀 在人类样本上 (图 4). Sci Rep (2016) ncbi
domestic rabbit 多克隆
  • 染色质免疫沉淀 ; fission yeast; 图 1e
艾博抗(上海)贸易有限公司组蛋白H3抗体(Abcam, 1791)被用于被用于染色质免疫沉淀 在fission yeast样本上 (图 1e). elife (2016) ncbi
domestic rabbit 多克隆
  • 染色质免疫沉淀 ; 小鼠; 图 6
艾博抗(上海)贸易有限公司组蛋白H3抗体(Abcam, ab62642)被用于被用于染色质免疫沉淀 在小鼠样本上 (图 6). Nucleic Acids Res (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠
艾博抗(上海)贸易有限公司组蛋白H3抗体(Abcam, ab1791)被用于被用于免疫印迹在小鼠样本上. J Cell Sci (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 5
艾博抗(上海)贸易有限公司组蛋白H3抗体(Abcam, ab1791)被用于被用于免疫印迹在小鼠样本上 (图 5). PLoS ONE (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 1
艾博抗(上海)贸易有限公司组蛋白H3抗体(abcam, ab1791)被用于被用于免疫印迹在人类样本上 (图 1). Int J Mol Sci (2016) ncbi
domestic rabbit 多克隆
  • 染色质免疫沉淀 ; 小鼠
艾博抗(上海)贸易有限公司组蛋白H3抗体(Abcam, ab1791)被用于被用于染色质免疫沉淀 在小鼠样本上. Biol Open (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 3
艾博抗(上海)贸易有限公司组蛋白H3抗体(Abcam, ab1791)被用于被用于免疫印迹在小鼠样本上 (图 3). Toxicol Appl Pharmacol (2016) ncbi
domestic rabbit 多克隆
  • ChIP-Seq; 人类; 图 1
艾博抗(上海)贸易有限公司组蛋白H3抗体(Abcam, ab4729)被用于被用于ChIP-Seq在人类样本上 (图 1). Cancer Discov (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:10,000; 图 1
艾博抗(上海)贸易有限公司组蛋白H3抗体(Abcam, ab1791)被用于被用于免疫印迹在人类样本上浓度为1:10,000 (图 1). Nat Commun (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 5
艾博抗(上海)贸易有限公司组蛋白H3抗体(Abcam, ab1791)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 5). Biochim Biophys Acta (2016) ncbi
domestic rabbit 多克隆
  • ChIP-Seq; 人类; 图 8
艾博抗(上海)贸易有限公司组蛋白H3抗体(Abcam, ab4729)被用于被用于ChIP-Seq在人类样本上 (图 8). PLoS ONE (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 s8
  • 免疫印迹; 小鼠; 1:1000; 图 7
艾博抗(上海)贸易有限公司组蛋白H3抗体(Abcam, ab1791)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 s8) 和 被用于免疫印迹在小鼠样本上浓度为1:1000 (图 7). Sci Rep (2016) ncbi
domestic rabbit 多克隆
  • 染色质免疫沉淀 ; 小鼠; 1:300; 图 7b
艾博抗(上海)贸易有限公司组蛋白H3抗体(Abcam, AB4729)被用于被用于染色质免疫沉淀 在小鼠样本上浓度为1:300 (图 7b). BMC Biol (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化; 大鼠; 图 3
艾博抗(上海)贸易有限公司组蛋白H3抗体(abcam, ab62642)被用于被用于免疫组化在大鼠样本上 (图 3). Physiol Rep (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 2
艾博抗(上海)贸易有限公司组蛋白H3抗体(Abcam, ab1791)被用于被用于免疫印迹在人类样本上 (图 2). Biochem J (2016) ncbi
domestic rabbit 单克隆(EP1702Y)
  • 免疫细胞化学; 人类; 图 3
艾博抗(上海)贸易有限公司组蛋白H3抗体(Abcam, AB78351)被用于被用于免疫细胞化学在人类样本上 (图 3). Nucleic Acids Res (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 s7
艾博抗(上海)贸易有限公司组蛋白H3抗体(Abcam, ab1791)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 s7). Nature (2016) ncbi
domestic rabbit 多克隆
  • 染色质免疫沉淀 ; 小鼠; 图 3e
艾博抗(上海)贸易有限公司组蛋白H3抗体(Abcam, 4729)被用于被用于染色质免疫沉淀 在小鼠样本上 (图 3e). Oncotarget (2016) ncbi
domestic rabbit 多克隆
  • 染色质免疫沉淀 ; 小鼠; 图 5c
艾博抗(上海)贸易有限公司组蛋白H3抗体(Abcam, ab1791)被用于被用于染色质免疫沉淀 在小鼠样本上 (图 5c). BMC Biol (2016) ncbi
domestic rabbit 多克隆
  • 染色质免疫沉淀 ; 人类; 图 2
艾博抗(上海)贸易有限公司组蛋白H3抗体(Abcam, ab4729)被用于被用于染色质免疫沉淀 在人类样本上 (图 2). Nucleus (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:5000; 图 1a
艾博抗(上海)贸易有限公司组蛋白H3抗体(Abcam, ab1791)被用于被用于免疫印迹在人类样本上浓度为1:5000 (图 1a). Nat Commun (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; fruit fly ; 1:1000; 图 7
艾博抗(上海)贸易有限公司组蛋白H3抗体(Abcam, ab4729)被用于被用于免疫印迹在fruit fly 样本上浓度为1:1000 (图 7). J Biol Chem (2016) ncbi
domestic rabbit 多克隆
  • 染色质免疫沉淀 ; 小鼠; 图 s8
艾博抗(上海)贸易有限公司组蛋白H3抗体(Abcam, ab4729)被用于被用于染色质免疫沉淀 在小鼠样本上 (图 s8). elife (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:2000; 图 6
艾博抗(上海)贸易有限公司组蛋白H3抗体(Abcam, ab1791)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 6). Nucleic Acids Res (2016) ncbi
domestic rabbit 多克隆
  • ChIP-Seq; 小鼠; 图 1
艾博抗(上海)贸易有限公司组蛋白H3抗体(Abcam, ab4729)被用于被用于ChIP-Seq在小鼠样本上 (图 1). Dev Cell (2016) ncbi
domestic rabbit 多克隆
  • 染色质免疫沉淀 ; 拟南芥; 图 3
艾博抗(上海)贸易有限公司组蛋白H3抗体(Abcam, ab1791)被用于被用于染色质免疫沉淀 在拟南芥样本上 (图 3). Epigenetics Chromatin (2016) ncbi
domestic rabbit 多克隆
  • 染色质免疫沉淀 ; 小鼠; 图 s2d
艾博抗(上海)贸易有限公司组蛋白H3抗体(Abcam, ab1791)被用于被用于染色质免疫沉淀 在小鼠样本上 (图 s2d). Nucleic Acids Res (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:2000; 图 7
艾博抗(上海)贸易有限公司组蛋白H3抗体(Abcam, ab1791)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 7). elife (2016) ncbi
domestic rabbit 多克隆
  • 免疫沉淀; 人类; 图 1
  • 免疫印迹; 人类; 图 1
艾博抗(上海)贸易有限公司组蛋白H3抗体(Abcam, ab1791)被用于被用于免疫沉淀在人类样本上 (图 1) 和 被用于免疫印迹在人类样本上 (图 1). elife (2016) ncbi
  • 免疫沉淀; 人类; 图 1
  • 免疫细胞化学; 人类; 图 1
  • 免疫印迹; 人类; 图 1
  • 免疫细胞化学; roundworm ; 图 2
艾博抗(上海)贸易有限公司组蛋白H3抗体(Abcam, ab33310)被用于被用于免疫沉淀在人类样本上 (图 1), 被用于免疫细胞化学在人类样本上 (图 1), 被用于免疫印迹在人类样本上 (图 1) 和 被用于免疫细胞化学在roundworm 样本上 (图 2). elife (2016) ncbi
domestic rabbit 多克隆
  • 染色质免疫沉淀 ; 人类; 图 s8
艾博抗(上海)贸易有限公司组蛋白H3抗体(Abcam, ab4729)被用于被用于染色质免疫沉淀 在人类样本上 (图 s8). Nat Commun (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 1
艾博抗(上海)贸易有限公司组蛋白H3抗体(Abcam, ab1791)被用于被用于免疫印迹在小鼠样本上 (图 1). Nat Commun (2016) ncbi
大鼠 单克隆(HTA28)
  • 免疫组化-冰冻切片; 小鼠; 图 2
艾博抗(上海)贸易有限公司组蛋白H3抗体(Abcam, ab10543)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 2). Cell Rep (2016) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 图 2
艾博抗(上海)贸易有限公司组蛋白H3抗体(Abcam, ab4729)被用于被用于免疫细胞化学在人类样本上 (图 2). PLoS ONE (2016) ncbi
domestic rabbit 多克隆
  • 染色质免疫沉淀 ; brewer's yeast; 图 5
  • 免疫印迹; brewer's yeast; 图 5
艾博抗(上海)贸易有限公司组蛋白H3抗体(Abcam, ab1791)被用于被用于染色质免疫沉淀 在brewer's yeast样本上 (图 5) 和 被用于免疫印迹在brewer's yeast样本上 (图 5). PLoS ONE (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 热带念珠菌; 1:2500; 图 s1b
艾博抗(上海)贸易有限公司组蛋白H3抗体(Abcam, ab1791)被用于被用于免疫印迹在热带念珠菌样本上浓度为1:2500 (图 s1b). PLoS Genet (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 2a
艾博抗(上海)贸易有限公司组蛋白H3抗体(Abcam, ab1791)被用于被用于免疫印迹在人类样本上 (图 2a). Nucleic Acids Res (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 3c
艾博抗(上海)贸易有限公司组蛋白H3抗体(Abcam, ab1791)被用于被用于免疫印迹在人类样本上 (图 3c). Acta Neuropathol (2016) ncbi
domestic rabbit 多克隆
  • ChIP-Seq; 人类; 图 4
艾博抗(上海)贸易有限公司组蛋白H3抗体(Abcam, ab1791)被用于被用于ChIP-Seq在人类样本上 (图 4). Genes Dev (2016) ncbi
domestic rabbit 多克隆
  • ChIP-Seq; 人类; 图 2
艾博抗(上海)贸易有限公司组蛋白H3抗体(Abcam, ab4729)被用于被用于ChIP-Seq在人类样本上 (图 2). Cell Rep (2016) ncbi
domestic rabbit 单克隆(E173)
  • 免疫组化; fruit fly ; 1:1000; 图 2
艾博抗(上海)贸易有限公司组蛋白H3抗体(Abcam, ab32107)被用于被用于免疫组化在fruit fly 样本上浓度为1:1000 (图 2). Dis Model Mech (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 s5
艾博抗(上海)贸易有限公司组蛋白H3抗体(abcam, ab1791)被用于被用于免疫印迹在小鼠样本上 (图 s5). Sci Rep (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:5000; 图 3
艾博抗(上海)贸易有限公司组蛋白H3抗体(Abcam, ab1791)被用于被用于免疫印迹在小鼠样本上浓度为1:5000 (图 3). elife (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 牛; 1:1000; 图 1
艾博抗(上海)贸易有限公司组蛋白H3抗体(Abcam, ab1791)被用于被用于免疫印迹在牛样本上浓度为1:1000 (图 1). Mucosal Immunol (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 3
艾博抗(上海)贸易有限公司组蛋白H3抗体(Abcam, ab1791)被用于被用于免疫印迹在人类样本上 (图 3). J Cell Biol (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; fruit fly ; 1:5000; 图 4c
艾博抗(上海)贸易有限公司组蛋白H3抗体(Abcam, ab1791)被用于被用于免疫印迹在fruit fly 样本上浓度为1:5000 (图 4c). Mol Cell Proteomics (2016) ncbi
domestic rabbit 多克隆
  • 染色质免疫沉淀 ; 仓鼠; 图 7
艾博抗(上海)贸易有限公司组蛋白H3抗体(Abcam, ab62642)被用于被用于染色质免疫沉淀 在仓鼠样本上 (图 7). BMC Biotechnol (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 牛; 1:5000; 图 1
  • 免疫印迹; 溶组织内阿米巴; 1:5000; 图 1
艾博抗(上海)贸易有限公司组蛋白H3抗体(Abcam, ab1791)被用于被用于免疫印迹在牛样本上浓度为1:5000 (图 1) 和 被用于免疫印迹在溶组织内阿米巴样本上浓度为1:5000 (图 1). Parasit Vectors (2016) ncbi
小鼠 单克隆(mAbcam 14955)
  • 免疫组化; 大鼠; 图 1
艾博抗(上海)贸易有限公司组蛋白H3抗体(Abcam, ab14955)被用于被用于免疫组化在大鼠样本上 (图 1). Nat Neurosci (2016) ncbi
domestic rabbit 多克隆
  • ChIP-Seq; 小鼠; 表  s3
艾博抗(上海)贸易有限公司组蛋白H3抗体(Abcam, ab4729)被用于被用于ChIP-Seq在小鼠样本上 (表  s3). PLoS Pathog (2016) ncbi
domestic rabbit 多克隆
  • ChIP-Seq; 人类; 图 e3
艾博抗(上海)贸易有限公司组蛋白H3抗体(Abcam, ab4729)被用于被用于ChIP-Seq在人类样本上 (图 e3). Nature (2016) ncbi
domestic rabbit 多克隆
  • ChIP-Seq; 人类; 图 4
艾博抗(上海)贸易有限公司组蛋白H3抗体(Abcam, ab4729)被用于被用于ChIP-Seq在人类样本上 (图 4). elife (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:2000; 图 7
艾博抗(上海)贸易有限公司组蛋白H3抗体(Abcam, ab1791)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 7). Proc Natl Acad Sci U S A (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 1b
艾博抗(上海)贸易有限公司组蛋白H3抗体(Abcam, ab1791)被用于被用于免疫印迹在人类样本上 (图 1b). Oncogenesis (2016) ncbi
小鼠 单克隆(mAbcam 14955)
  • 流式细胞仪; 小鼠; 图 7a
艾博抗(上海)贸易有限公司组蛋白H3抗体(Abcam, ab14955)被用于被用于流式细胞仪在小鼠样本上 (图 7a). Mol Cell Biol (2015) ncbi
domestic rabbit 多克隆
  • 酶联免疫吸附测定; Austrofundulus limnaeus; 1:1000; 图 s2
  • 免疫印迹; Austrofundulus limnaeus; 图 s1b
艾博抗(上海)贸易有限公司组蛋白H3抗体(Abcam, ab1791)被用于被用于酶联免疫吸附测定在Austrofundulus limnaeus样本上浓度为1:1000 (图 s2) 和 被用于免疫印迹在Austrofundulus limnaeus样本上 (图 s1b). J Exp Biol (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 1a
艾博抗(上海)贸易有限公司组蛋白H3抗体(Abcam, 1791)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 1a). Oncotarget (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:5000; 图 1
艾博抗(上海)贸易有限公司组蛋白H3抗体(Abcam, ab1791)被用于被用于免疫印迹在人类样本上浓度为1:5000 (图 1). Mol Cell Biol (2016) ncbi
单克隆
  • 免疫印迹; 人类; 图 2
艾博抗(上海)贸易有限公司组蛋白H3抗体(Abcam, ab6147)被用于被用于免疫印迹在人类样本上 (图 2). Oncotarget (2015) ncbi
domestic rabbit 多克隆
  • 染色质免疫沉淀 ; 小鼠; 图 2a
艾博抗(上海)贸易有限公司组蛋白H3抗体(abcam, ab1791)被用于被用于染色质免疫沉淀 在小鼠样本上 (图 2a). Nucleic Acids Res (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 3g
艾博抗(上海)贸易有限公司组蛋白H3抗体(Abcam, ab1791)被用于被用于免疫印迹在小鼠样本上 (图 3g). Mol Cell Biol (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 3g
艾博抗(上海)贸易有限公司组蛋白H3抗体(Abcam, ab4729)被用于被用于免疫印迹在小鼠样本上 (图 3g). Mol Cell Biol (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 拟南芥; 图 2
艾博抗(上海)贸易有限公司组蛋白H3抗体(Abcam, ab1791)被用于被用于免疫印迹在拟南芥样本上 (图 2). Plant Physiol (2016) ncbi
domestic rabbit 多克隆
  • 染色质免疫沉淀 ; fission yeast; 图 5c
  • 免疫印迹; fission yeast; 图 2d
艾博抗(上海)贸易有限公司组蛋白H3抗体(Abcam, ab1791)被用于被用于染色质免疫沉淀 在fission yeast样本上 (图 5c) 和 被用于免疫印迹在fission yeast样本上 (图 2d). EMBO Rep (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 6
艾博抗(上海)贸易有限公司组蛋白H3抗体(Abcam, ab1791)被用于被用于免疫印迹在人类样本上 (图 6). Nucleic Acids Res (2016) ncbi
小鼠 单克隆(mAbcam 14955)
  • 免疫组化; American tobacco; 1:200; 图 4
艾博抗(上海)贸易有限公司组蛋白H3抗体(Abcam, 14955)被用于被用于免疫组化在American tobacco样本上浓度为1:200 (图 4). Front Plant Sci (2015) ncbi
domestic rabbit 多克隆
  • ChIP-Seq; 小鼠; 图 3
艾博抗(上海)贸易有限公司组蛋白H3抗体(Abcam, ab4729)被用于被用于ChIP-Seq在小鼠样本上 (图 3). Nucleic Acids Res (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 3
艾博抗(上海)贸易有限公司组蛋白H3抗体(Abcam, ab1791)被用于被用于免疫印迹在人类样本上 (图 3). Nucleic Acids Res (2016) ncbi
小鼠 单克隆(mAbcam 14955)
  • 免疫组化; 小鼠; 图 1i, j
艾博抗(上海)贸易有限公司组蛋白H3抗体(abcam, ab14955)被用于被用于免疫组化在小鼠样本上 (图 1i, j). elife (2015) ncbi
domestic rabbit 多克隆
艾博抗(上海)贸易有限公司组蛋白H3抗体(Abcam, ab1791)被用于. Mol Cell Biol (2015) ncbi
大鼠 单克隆(HTA28)
  • 免疫组化; 小鼠; 1:1000; 图 3
艾博抗(上海)贸易有限公司组蛋白H3抗体(Abcam, ab10543)被用于被用于免疫组化在小鼠样本上浓度为1:1000 (图 3). Mol Brain (2015) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 3c
艾博抗(上海)贸易有限公司组蛋白H3抗体(Abcam, ab1791)被用于被用于免疫印迹在人类样本上 (图 3c). Oncogene (2016) ncbi
小鼠 单克隆(mAbcam 14955)
  • 免疫组化; 小鼠; 1:3000; 图 s13c
艾博抗(上海)贸易有限公司组蛋白H3抗体(Abcam, ab14955)被用于被用于免疫组化在小鼠样本上浓度为1:3000 (图 s13c). Nat Med (2015) ncbi
小鼠 单克隆(mAbcam 14955)
  • 免疫印迹; 人类; 图 4
艾博抗(上海)贸易有限公司组蛋白H3抗体(Abcam, ab14955)被用于被用于免疫印迹在人类样本上 (图 4). Mol Biol Cell (2015) ncbi
domestic rabbit 多克隆
艾博抗(上海)贸易有限公司组蛋白H3抗体(Abcam, ab4729)被用于. Leukemia (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 3b
艾博抗(上海)贸易有限公司组蛋白H3抗体(Abcam, ab1791)被用于被用于免疫印迹在人类样本上 (图 3b). Cell Death Differ (2016) ncbi
domestic rabbit 多克隆
  • 染色质免疫沉淀 ; 人类; 图 5
艾博抗(上海)贸易有限公司组蛋白H3抗体(Abcam, ab4729)被用于被用于染色质免疫沉淀 在人类样本上 (图 5). Oncogene (2016) ncbi
domestic rabbit 单克隆(E191)
  • 免疫组化-石蜡切片; 小鼠; 1:300; 图 e2
艾博抗(上海)贸易有限公司组蛋白H3抗体(Abcam, ab32388)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:300 (图 e2). Nature (2015) ncbi
小鼠 单克隆(mAbcam 14955)
  • 免疫组化; 小鼠; 1:600; 图 5l
艾博抗(上海)贸易有限公司组蛋白H3抗体(Abcam, ab14955)被用于被用于免疫组化在小鼠样本上浓度为1:600 (图 5l). PLoS ONE (2015) ncbi
小鼠 单克隆(mAbcam 14955)
  • 免疫细胞化学; 人类; 1:2000; 图 5
艾博抗(上海)贸易有限公司组蛋白H3抗体(Abcam, ab14955)被用于被用于免疫细胞化学在人类样本上浓度为1:2000 (图 5). Mol Biol Cell (2015) ncbi
domestic rabbit 多克隆
艾博抗(上海)贸易有限公司组蛋白H3抗体(Abcam, ab1791)被用于. Mol Cell Biol (2015) ncbi
小鼠 单克隆(mAbcam 14955)
  • 流式细胞仪; 人类; 图 1
艾博抗(上海)贸易有限公司组蛋白H3抗体(Abcam, ab14955)被用于被用于流式细胞仪在人类样本上 (图 1). J Cell Biochem (2015) ncbi
小鼠 单克隆(mAbcam 14955)
  • 免疫印迹; 人类; 1:5000; 图 s7
艾博抗(上海)贸易有限公司组蛋白H3抗体(Abcam, ab14955)被用于被用于免疫印迹在人类样本上浓度为1:5000 (图 s7). Science (2015) ncbi
小鼠 单克隆(mAbcam 14955)
  • 酶联免疫吸附测定; 人类
艾博抗(上海)贸易有限公司组蛋白H3抗体(Abcam, 14955)被用于被用于酶联免疫吸附测定在人类样本上. Theranostics (2015) ncbi
domestic rabbit 单克隆(E173)
  • 免疫细胞化学; 家羊; 1:500; 图 3a
艾博抗(上海)贸易有限公司组蛋白H3抗体(Abcam, ab32107)被用于被用于免疫细胞化学在家羊样本上浓度为1:500 (图 3a). Cell Reprogram (2015) ncbi
domestic rabbit 单克隆(E173)
  • 免疫组化; 人类; 1:100; 图 1
艾博抗(上海)贸易有限公司组蛋白H3抗体(Abcam, ab32107)被用于被用于免疫组化在人类样本上浓度为1:100 (图 1). Sci Rep (2014) ncbi
小鼠 单克隆(mAbcam 14955)
  • 免疫组化; 斑马鱼; 1:1000
艾博抗(上海)贸易有限公司组蛋白H3抗体(Abcam, ab14955)被用于被用于免疫组化在斑马鱼样本上浓度为1:1000. Development (2014) ncbi
小鼠 单克隆(mAbcam 14955)
  • 免疫印迹; 人类; 1:5000; 图 2
艾博抗(上海)贸易有限公司组蛋白H3抗体(Abcam, 14955)被用于被用于免疫印迹在人类样本上浓度为1:5000 (图 2). Nat Commun (2014) ncbi
domestic rabbit 多克隆
艾博抗(上海)贸易有限公司组蛋白H3抗体(Abcam, Ab1791)被用于. Nat Commun (2014) ncbi
大鼠 单克隆(HTA28)
  • 免疫组化-冰冻切片; 小鼠; 1:200
艾博抗(上海)贸易有限公司组蛋白H3抗体(Abcam, AB10543)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:200. Nat Neurosci (2014) ncbi
小鼠 单克隆(mAbcam 14955)
  • 免疫组化-石蜡切片; 小鼠
艾博抗(上海)贸易有限公司组蛋白H3抗体(Abcam, ab14955)被用于被用于免疫组化-石蜡切片在小鼠样本上. Exp Toxicol Pathol (2014) ncbi
小鼠 单克隆(mAbcam 14955)
  • 免疫细胞化学; 人类
  • 免疫印迹; 人类
艾博抗(上海)贸易有限公司组蛋白H3抗体(Abcam, ab14955)被用于被用于免疫细胞化学在人类样本上 和 被用于免疫印迹在人类样本上. Cell Cycle (2014) ncbi
domestic rabbit 单克隆(E191)
  • 免疫印迹; 人类
艾博抗(上海)贸易有限公司组蛋白H3抗体(Abcam, ab32388)被用于被用于免疫印迹在人类样本上. J Biol Chem (2013) ncbi
大鼠 单克隆(HTA28)
  • 免疫组化; 小鼠
艾博抗(上海)贸易有限公司组蛋白H3抗体(Abcam, ab10543)被用于被用于免疫组化在小鼠样本上. Neural Dev (2013) ncbi
大鼠 单克隆(HTA28)
  • 免疫组化-冰冻切片; 小鼠; 1:200
艾博抗(上海)贸易有限公司组蛋白H3抗体(Abcam, ab10543)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:200. Development (2013) ncbi
domestic rabbit 多克隆
艾博抗(上海)贸易有限公司组蛋白H3抗体(Abcam, ab5176)被用于. Dev Biol (2013) ncbi
小鼠 单克隆(mAbcam 14955)
  • 免疫组化-冰冻切片; 小鼠; 1:200
艾博抗(上海)贸易有限公司组蛋白H3抗体(Abcam, Ab14955)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:200. Dev Biol (2012) ncbi
Active Motif
小鼠 单克隆(MABI 0319)
  • ChIP-Seq; 小鼠; 图 4c
  • 染色质免疫沉淀 ; 小鼠; 图 4e
  • 免疫印迹; 小鼠; 1:1000; 图 s4a
Active Motif组蛋白H3抗体(Active Motif, 61,013)被用于被用于ChIP-Seq在小鼠样本上 (图 4c), 被用于染色质免疫沉淀 在小鼠样本上 (图 4e) 和 被用于免疫印迹在小鼠样本上浓度为1:1000 (图 s4a). iScience (2022) ncbi
domestic rabbit 多克隆
  • ChIP-Seq; 小鼠; 图 1f
Active Motif组蛋白H3抗体(Active Motif, 39133)被用于被用于ChIP-Seq在小鼠样本上 (图 1f). Nat Commun (2021) ncbi
domestic rabbit 多克隆
  • 染色质免疫沉淀 ; 小鼠; 1:1000; 图 1a
Active Motif组蛋白H3抗体(Active Motif, 39133)被用于被用于染色质免疫沉淀 在小鼠样本上浓度为1:1000 (图 1a). Nat Commun (2021) ncbi
domestic rabbit 多克隆
  • 染色质免疫沉淀 ; 小鼠; 1:250; 图 1a
Active Motif组蛋白H3抗体(Active Motif, 39297)被用于被用于染色质免疫沉淀 在小鼠样本上浓度为1:250 (图 1a). Nat Commun (2021) ncbi
小鼠 单克隆(MABI 0323)
  • 免疫印迹; 人类; 1:1000; 图 3b
  • 染色质免疫沉淀 ; 小鼠; 图 4d
  • 免疫印迹; 小鼠; 1:1000; 图 4b
Active Motif组蛋白H3抗体(Active Motif, 61017)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3b), 被用于染色质免疫沉淀 在小鼠样本上 (图 4d) 和 被用于免疫印迹在小鼠样本上浓度为1:1000 (图 4b). Neurooncol Adv (2021) ncbi
小鼠 单克隆(MABI 0319)
  • 染色质免疫沉淀 ; 人类; 图 s4b
  • 免疫印迹; 人类; 图 4a, 4b, 4c
Active Motif组蛋白H3抗体(Active Motif, 61013)被用于被用于染色质免疫沉淀 在人类样本上 (图 s4b) 和 被用于免疫印迹在人类样本上 (图 4a, 4b, 4c). PLoS Pathog (2021) ncbi
domestic rabbit 多克隆
  • 染色质免疫沉淀 ; 人类; 图 4d
  • 免疫印迹; 人类; 图 4a, 4b, 4c
Active Motif组蛋白H3抗体(Active Motif, 39155)被用于被用于染色质免疫沉淀 在人类样本上 (图 4d) 和 被用于免疫印迹在人类样本上 (图 4a, 4b, 4c). PLoS Pathog (2021) ncbi
domestic rabbit 多克隆
  • ChIP-Seq; 人类; 图 5a
Active Motif组蛋白H3抗体(Active Motif, 39159)被用于被用于ChIP-Seq在人类样本上 (图 5a). Sci Adv (2021) ncbi
domestic rabbit 多克隆
  • 染色质免疫沉淀 ; 人类; 图 5d
Active Motif组蛋白H3抗体(Active Motif, 39161)被用于被用于染色质免疫沉淀 在人类样本上 (图 5d). Bone Res (2021) ncbi
domestic rabbit 多克隆
  • ChIP-Seq; 人类; 图 2b
Active Motif组蛋白H3抗体(Active Motif, 39133)被用于被用于ChIP-Seq在人类样本上 (图 2b). Genome Biol (2021) ncbi
小鼠 单克隆(MABI 0309)
  • 染色质免疫沉淀 ; 人类; 图 5c
Active Motif组蛋白H3抗体(Active motif, 39685)被用于被用于染色质免疫沉淀 在人类样本上 (图 5c). Nat Commun (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 1e
Active Motif组蛋白H3抗体(Active Motif, 39161)被用于被用于免疫印迹在人类样本上 (图 1e). Nat Cell Biol (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 3a
Active Motif组蛋白H3抗体(Active Motif, 39915)被用于被用于免疫印迹在人类样本上 (图 3a). Cell Death Dis (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类
Active Motif组蛋白H3抗体(Active Motif, 39155)被用于被用于免疫印迹在人类样本上. Theranostics (2021) ncbi
domestic rabbit 多克隆
Active Motif组蛋白H3抗体(Active Motif, 39155)被用于. Proc Natl Acad Sci U S A (2021) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 小鼠; 图 s5d
Active Motif组蛋白H3抗体(Active Motif, 39133)被用于被用于免疫细胞化学在小鼠样本上 (图 s5d). Nature (2021) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 小鼠
Active Motif组蛋白H3抗体(Active Motif, 39915)被用于被用于免疫细胞化学在小鼠样本上. Nature (2021) ncbi
小鼠 单克隆
  • 染色质免疫沉淀 ; 大鼠; 图 9b
  • 免疫印迹; 大鼠; 图 1a
Active Motif组蛋白H3抗体(Active Motif, 39535)被用于被用于染色质免疫沉淀 在大鼠样本上 (图 9b) 和 被用于免疫印迹在大鼠样本上 (图 1a). Theranostics (2021) ncbi
domestic rabbit 多克隆
  • 染色质免疫沉淀 ; 人类; 图 4b
Active Motif组蛋白H3抗体(Active Motif, 39133)被用于被用于染色质免疫沉淀 在人类样本上 (图 4b). elife (2020) ncbi
domestic rabbit 多克隆
  • ChIP-Seq; roundworm ; 图 2a
Active Motif组蛋白H3抗体(Active Motif, 39654)被用于被用于ChIP-Seq在roundworm 样本上 (图 2a). elife (2020) ncbi
domestic rabbit 多克隆
  • ChIP-Seq; roundworm ; 图 2a
Active Motif组蛋白H3抗体(Active Motif, 39388)被用于被用于ChIP-Seq在roundworm 样本上 (图 2a). elife (2020) ncbi
domestic rabbit 多克隆
  • 染色质免疫沉淀 ; 人类; 图 s3f
Active Motif组蛋白H3抗体(Active Motif, 39,155)被用于被用于染色质免疫沉淀 在人类样本上 (图 s3f). Mol Cancer (2020) ncbi
domestic rabbit 多克隆
  • ChIP-Seq; 小鼠; 图 2c
Active Motif组蛋白H3抗体(Active Motif, 39155)被用于被用于ChIP-Seq在小鼠样本上 (图 2c). Oncogene (2020) ncbi
domestic rabbit 多克隆
  • 染色质免疫沉淀 ; 小鼠; 1:500; 图 s7f, s7g
Active Motif组蛋白H3抗体(Active motif, 39297)被用于被用于染色质免疫沉淀 在小鼠样本上浓度为1:500 (图 s7f, s7g). Nat Commun (2020) ncbi
domestic rabbit 多克隆
  • ChIP-Seq; 人类; 图 5a
Active Motif组蛋白H3抗体(Active Motif, 39133)被用于被用于ChIP-Seq在人类样本上 (图 5a). Nat Commun (2019) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 图 s4d
Active Motif组蛋白H3抗体(Active Motif, 39765)被用于被用于免疫细胞化学在人类样本上 (图 s4d). Nature (2019) ncbi
domestic rabbit 多克隆
  • 染色质免疫沉淀 ; 人类; 图 s4b
Active Motif组蛋白H3抗体(Active Motif, 39297)被用于被用于染色质免疫沉淀 在人类样本上 (图 s4b). Nature (2019) ncbi
小鼠 单克隆(MABI 0309)
  • 染色质免疫沉淀 ; 人类; 图 4b
Active Motif组蛋白H3抗体(Active Motif, 39685)被用于被用于染色质免疫沉淀 在人类样本上 (图 4b). Nature (2019) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 图 s4d
Active Motif组蛋白H3抗体(Active Motif, 39155)被用于被用于免疫细胞化学在人类样本上 (图 s4d). Nature (2019) ncbi
domestic rabbit 多克隆
  • 免疫组化; fruit fly ; 1:250; 图 1c
Active Motif组蛋白H3抗体(Active Motif, 39753)被用于被用于免疫组化在fruit fly 样本上浓度为1:250 (图 1c). elife (2019) ncbi
domestic rabbit 多克隆
  • ChIP-Seq; 小鼠; 图 s4a
Active Motif组蛋白H3抗体(Active Motif, 39137)被用于被用于ChIP-Seq在小鼠样本上 (图 s4a). Nature (2019) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 1:500; 图 1a
Active Motif组蛋白H3抗体(Active Motif, 39765)被用于被用于免疫细胞化学在人类样本上浓度为1:500 (图 1a). elife (2019) ncbi
小鼠 单克隆(MABI 0302)
  • 免疫细胞化学; 人类; 1:250; 图 1a
Active Motif组蛋白H3抗体(Active Motif, 39635)被用于被用于免疫细胞化学在人类样本上浓度为1:250 (图 1a). elife (2019) ncbi
小鼠 单克隆(MABI 0323)
  • 免疫细胞化学; 人类; 1:250; 图 1a
Active Motif组蛋白H3抗体(Active Motif, 61017)被用于被用于免疫细胞化学在人类样本上浓度为1:250 (图 1a). elife (2019) ncbi
小鼠 单克隆(MABI 0309)
  • 免疫细胞化学; 人类; 1:250; 图 1a
Active Motif组蛋白H3抗体(Active Motif, 39685)被用于被用于免疫细胞化学在人类样本上浓度为1:250 (图 1a). elife (2019) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 1:500; 图 1a
Active Motif组蛋白H3抗体(Active Motif, 39133)被用于被用于免疫细胞化学在人类样本上浓度为1:500 (图 1a). elife (2019) ncbi
domestic rabbit 多克隆
  • ChIP-Seq; 小鼠; ; 图 4e
  • 染色质免疫沉淀 ; 小鼠; ; 图 4g
Active Motif组蛋白H3抗体(Active Motif, 39915)被用于被用于ChIP-Seq在小鼠样本上浓度为 (图 4e) 和 被用于染色质免疫沉淀 在小鼠样本上浓度为 (图 4g). Sci Adv (2019) ncbi
domestic rabbit 多克隆
  • ChIP-Seq; 非洲爪蛙; 图 3e
Active Motif组蛋白H3抗体(Active Motif, 39133)被用于被用于ChIP-Seq在非洲爪蛙样本上 (图 3e). Sci Adv (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 e4c
Active Motif组蛋白H3抗体(Active Motif, 61101)被用于被用于免疫印迹在小鼠样本上 (图 e4c). Nature (2019) ncbi
domestic rabbit 多克隆
  • 免疫组化; fruit fly ; 1:100; 图 s2a
Active Motif组蛋白H3抗体(Active Motif, 39141)被用于被用于免疫组化在fruit fly 样本上浓度为1:100 (图 s2a). J Cell Biol (2019) ncbi
小鼠 单克隆(MABI 0301)
  • 免疫组化; fruit fly ; 1:100; 图 2a
Active Motif组蛋白H3抗体(Active Motif, 39763)被用于被用于免疫组化在fruit fly 样本上浓度为1:100 (图 2a). J Cell Biol (2019) ncbi
domestic rabbit 多克隆
  • 免疫组化; fruit fly ; 1:100; 图 2b
Active Motif组蛋白H3抗体(Active Motif, 39135)被用于被用于免疫组化在fruit fly 样本上浓度为1:100 (图 2b). J Cell Biol (2019) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 图 s7a
Active Motif组蛋白H3抗体(Active Motif, 39239)被用于被用于免疫细胞化学在人类样本上 (图 s7a). Nature (2019) ncbi
小鼠 单克隆(MABI 0319)
  • 免疫细胞化学; 人类; 图 s7a
Active Motif组蛋白H3抗体(Active Motif, 61013)被用于被用于免疫细胞化学在人类样本上 (图 s7a). Nature (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; brewer's yeast; 图 2d
Active Motif组蛋白H3抗体(Active motif, 61277)被用于被用于免疫印迹在brewer's yeast样本上 (图 2d). Sci Adv (2019) ncbi
domestic rabbit 多克隆
  • ChIP-Seq; 人类; 图 s6b
Active Motif组蛋白H3抗体(Active Motif, 39133)被用于被用于ChIP-Seq在人类样本上 (图 s6b). Cancer Cell (2019) ncbi
domestic rabbit 多克隆
  • ChIP-Seq; fruit fly ; 图 1s2h
Active Motif组蛋白H3抗体(Active Motif, 39161)被用于被用于ChIP-Seq在fruit fly 样本上 (图 1s2h). elife (2019) ncbi
小鼠 单克隆(MABI 0309)
  • 其他; 人类; 图 s7k
Active Motif组蛋白H3抗体(Active Motif, 39685)被用于被用于其他在人类样本上 (图 s7k). Cell (2019) ncbi
domestic rabbit 多克隆
  • ChIP-Seq; 小鼠; 图 4p
Active Motif组蛋白H3抗体(Active Motif, 39159)被用于被用于ChIP-Seq在小鼠样本上 (图 4p). Sci Adv (2019) ncbi
domestic rabbit 多克隆
  • ChIP-Seq; 人类; 图 3a
Active Motif组蛋白H3抗体(Active Motif, 39133)被用于被用于ChIP-Seq在人类样本上 (图 3a). Epigenetics Chromatin (2019) ncbi
domestic rabbit 多克隆
  • 染色质免疫沉淀 ; 人类; 图 3c
Active Motif组蛋白H3抗体(Active motif, 39133)被用于被用于染色质免疫沉淀 在人类样本上 (图 3c). Nature (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 3e
Active Motif组蛋白H3抗体(Active Motif, 39155)被用于被用于免疫印迹在小鼠样本上 (图 3e). Mol Cell (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:500; 图 s9c
Active Motif组蛋白H3抗体(Active Motif, 39599)被用于被用于免疫印迹在小鼠样本上浓度为1:500 (图 s9c). Nat Commun (2019) ncbi
小鼠 单克隆(MABI 0321)
  • ChIP-Seq; 小鼠; 图 5a
  • 免疫印迹; 小鼠; 1:1000; 图 1b
Active Motif组蛋白H3抗体(Active Motif, 61015)被用于被用于ChIP-Seq在小鼠样本上 (图 5a) 和 被用于免疫印迹在小鼠样本上浓度为1:1000 (图 1b). Nat Commun (2019) ncbi
domestic rabbit 多克隆
  • ChIP-Seq; 小鼠; 图 6g
Active Motif组蛋白H3抗体(Active Motif, 39133)被用于被用于ChIP-Seq在小鼠样本上 (图 6g). Dev Biol (2019) ncbi
小鼠 单克隆(MABI 0321)
  • 免疫印迹; 人类; 1:1000; 图 1d
Active Motif组蛋白H3抗体((Active Motif, 61015)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 1d). Nat Commun (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 1h
Active Motif组蛋白H3抗体(Active Motif, 39163)被用于被用于免疫印迹在人类样本上 (图 1h). Sci Adv (2019) ncbi
domestic rabbit 多克隆
  • ChIP-Seq; 人类; 图 3b
Active Motif组蛋白H3抗体(Active Motif, 39,135)被用于被用于ChIP-Seq在人类样本上 (图 3b). BMC Med Genomics (2019) ncbi
domestic rabbit 多克隆
  • ChIP-Seq; 人类; 图 1a
  • 免疫印迹; 人类; 1:1000; 图 3f
Active Motif组蛋白H3抗体(Active Motif, 39155)被用于被用于ChIP-Seq在人类样本上 (图 1a) 和 被用于免疫印迹在人类样本上浓度为1:1000 (图 3f). Nat Commun (2019) ncbi
小鼠 单克隆(MABI 0323)
  • 免疫细胞化学; 小鼠; 图 2s1d, 3g
Active Motif组蛋白H3抗体(Active Motif, 61017)被用于被用于免疫细胞化学在小鼠样本上 (图 2s1d, 3g). elife (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 s20a
Active Motif组蛋白H3抗体(Active Motif, 39155)被用于被用于免疫印迹在小鼠样本上 (图 s20a). Science (2019) ncbi
小鼠 单克隆(MABI 0309)
  • 免疫细胞化学; 小鼠; 1:100; 图 4a
Active Motif组蛋白H3抗体(Active Motif, 39685)被用于被用于免疫细胞化学在小鼠样本上浓度为1:100 (图 4a). Cell (2019) ncbi
小鼠 单克隆(MABI 0309)
  • 染色质免疫沉淀 ; 人类; 图 7d
Active Motif组蛋白H3抗体(Active Motif, 39685)被用于被用于染色质免疫沉淀 在人类样本上 (图 7d). Nucleic Acids Res (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 5a
Active Motif组蛋白H3抗体(Active Motif, 39159)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 5a). Bone Res (2018) ncbi
小鼠 单克隆(MABI 0323)
  • 免疫细胞化学; 小鼠; 1:500; 图 1a
Active Motif组蛋白H3抗体(Active Motif, 61017)被用于被用于免疫细胞化学在小鼠样本上浓度为1:500 (图 1a). Genes Dev (2018) ncbi
domestic rabbit 多克隆
  • ChIP-Seq; 人类; 图 5b
Active Motif组蛋白H3抗体(Active Motif, 39155)被用于被用于ChIP-Seq在人类样本上 (图 5b). Cancer Cell (2018) ncbi
domestic rabbit 多克隆
  • ChIP-Seq; 人类; 图 5b
Active Motif组蛋白H3抗体(Active Motif, 61101)被用于被用于ChIP-Seq在人类样本上 (图 5b). Cancer Cell (2018) ncbi
domestic rabbit 多克隆
  • ChIP-Seq; 人类; 图 5b
Active Motif组蛋白H3抗体(Active Motif, 39133)被用于被用于ChIP-Seq在人类样本上 (图 5b). Cancer Cell (2018) ncbi
domestic rabbit 多克隆
  • ChIP-Seq; 人类; 图 5b
Active Motif组蛋白H3抗体(Active Motif, 39161)被用于被用于ChIP-Seq在人类样本上 (图 5b). Cancer Cell (2018) ncbi
domestic rabbit 多克隆
  • ChIP-Seq; 人类; 图 5b
Active Motif组蛋白H3抗体(Active Motif, 39159)被用于被用于ChIP-Seq在人类样本上 (图 5b). Cancer Cell (2018) ncbi
domestic rabbit 多克隆
  • ChIP-Seq; 人类; 图 5b
Active Motif组蛋白H3抗体(Active Motif, 39141)被用于被用于ChIP-Seq在人类样本上 (图 5b). Cancer Cell (2018) ncbi
domestic rabbit 多克隆
  • ChIP-Seq; 人类; 图 5b
Active Motif组蛋白H3抗体(Active Motif, 39297)被用于被用于ChIP-Seq在人类样本上 (图 5b). Cancer Cell (2018) ncbi
小鼠 单克隆(MABI 0319)
  • 染色质免疫沉淀 ; 小鼠; 图 3f
Active Motif组蛋白H3抗体(Active Motif, 61013)被用于被用于染色质免疫沉淀 在小鼠样本上 (图 3f). Nat Commun (2018) ncbi
domestic rabbit 多克隆
  • 染色质免疫沉淀 ; 小鼠; 图 3g
Active Motif组蛋白H3抗体(Active Motif, 39155)被用于被用于染色质免疫沉淀 在小鼠样本上 (图 3g). Nat Commun (2018) ncbi
domestic rabbit 多克隆
  • 染色质免疫沉淀 ; 小鼠; 图 8a
Active Motif组蛋白H3抗体(Active Motif, 39133)被用于被用于染色质免疫沉淀 在小鼠样本上 (图 8a). J Biol Chem (2018) ncbi
domestic rabbit 多克隆
  • ChIP-Seq; 斑马鱼; 图 s1a
Active Motif组蛋白H3抗体(Active Motif, 39155)被用于被用于ChIP-Seq在斑马鱼样本上 (图 s1a). Cell (2018) ncbi
domestic rabbit 多克隆
  • ChIP-Seq; 斑马鱼; 图 s1a
Active Motif组蛋白H3抗体(Active Motif, 39599)被用于被用于ChIP-Seq在斑马鱼样本上 (图 s1a). Cell (2018) ncbi
domestic rabbit 多克隆
  • ChIP-Seq; 斑马鱼; 图 s1a
Active Motif组蛋白H3抗体(Active Motif, 39159)被用于被用于ChIP-Seq在斑马鱼样本上 (图 s1a). Cell (2018) ncbi
domestic rabbit 多克隆
  • ChIP-Seq; 斑马鱼; 图 s1a
Active Motif组蛋白H3抗体(Active Motif, 39297)被用于被用于ChIP-Seq在斑马鱼样本上 (图 s1a). Cell (2018) ncbi
domestic rabbit 多克隆
  • ChIP-Seq; 小鼠; 图 4a
Active Motif组蛋白H3抗体(Active Motif, 39159)被用于被用于ChIP-Seq在小鼠样本上 (图 4a). Cell Rep (2017) ncbi
domestic rabbit 多克隆
  • ChIP-Seq; 人类; 图 3a
Active Motif组蛋白H3抗体(Active Motif, 39155)被用于被用于ChIP-Seq在人类样本上 (图 3a). elife (2017) ncbi
domestic rabbit 多克隆
  • ChIP-Seq; 人类; 图 3d
Active Motif组蛋白H3抗体(Active Motif, 39133)被用于被用于ChIP-Seq在人类样本上 (图 3d). Cell Rep (2017) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 小鼠; 图 s4c
Active Motif组蛋白H3抗体(Active Motif, AM39155)被用于被用于免疫细胞化学在小鼠样本上 (图 s4c). Proc Natl Acad Sci U S A (2017) ncbi
小鼠 单克隆(MABI 0303)
  • 免疫印迹; 小鼠; 1:1000; 图 5f
Active Motif组蛋白H3抗体(Active Motif, 39679)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 5f). Sci Rep (2017) ncbi
domestic rabbit 多克隆
  • 免疫组化; fruit fly ; 1:100; 表 s2
Active Motif组蛋白H3抗体(Active Motif, 39297)被用于被用于免疫组化在fruit fly 样本上浓度为1:100 (表 s2). Science (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 4e
Active Motif组蛋白H3抗体(Active Motif, 39915)被用于被用于免疫印迹在人类样本上 (图 4e). Sci Adv (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 4e
Active Motif组蛋白H3抗体(Active Motif, 39133)被用于被用于免疫印迹在人类样本上 (图 4e). Sci Adv (2017) ncbi
小鼠 单克隆(MABI 0301)
  • 免疫印迹; 人类; 图 5b
Active Motif组蛋白H3抗体(Active Motif, 39763)被用于被用于免疫印迹在人类样本上 (图 5b). J Biol Chem (2017) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 图 4b
Active Motif组蛋白H3抗体(Active Motif, 39281)被用于被用于免疫细胞化学在人类样本上 (图 4b). EBioMedicine (2017) ncbi
domestic rabbit 多克隆
  • 染色质免疫沉淀 ; 人类; 图 6e
  • 免疫印迹; 人类; 图 6b
Active Motif组蛋白H3抗体(Active Motif, 39915)被用于被用于染色质免疫沉淀 在人类样本上 (图 6e) 和 被用于免疫印迹在人类样本上 (图 6b). Cancer Cell (2017) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 1:500; 图 5b
Active Motif组蛋白H3抗体(Active Motif, 39161)被用于被用于免疫细胞化学在人类样本上浓度为1:500 (图 5b). Nat Commun (2017) ncbi
小鼠 单克隆(MABI 0309)
  • 染色质免疫沉淀 ; 小鼠; 图 8d
Active Motif组蛋白H3抗体(Active Motif, 39685)被用于被用于染色质免疫沉淀 在小鼠样本上 (图 8d). Dev Cell (2017) ncbi
domestic rabbit 多克隆
  • ChIP-Seq; 人类; 图 s9b
  • ChIP-Seq; 小鼠; 图 s9f
Active Motif组蛋白H3抗体(Active Motif, 39135)被用于被用于ChIP-Seq在人类样本上 (图 s9b) 和 被用于ChIP-Seq在小鼠样本上 (图 s9f). Science (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 2a
Active Motif组蛋白H3抗体(Active Motif, 39915)被用于被用于免疫印迹在人类样本上 (图 2a). Nat Commun (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 2a
Active Motif组蛋白H3抗体(Active Motif, 39379)被用于被用于免疫印迹在人类样本上 (图 2a). Nat Commun (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 2b
Active Motif组蛋白H3抗体(Active Motif, 39139)被用于被用于免疫印迹在人类样本上 (图 2b). Nat Commun (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 2a
Active Motif组蛋白H3抗体(Active Motif, 39133)被用于被用于免疫印迹在人类样本上 (图 2a). Nat Commun (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 2a
Active Motif组蛋白H3抗体(Active Motif, 39765)被用于被用于免疫印迹在人类样本上 (图 2a). Nat Commun (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 2a
Active Motif组蛋白H3抗体(Active Motif, 39697)被用于被用于免疫印迹在人类样本上 (图 2a). Nat Commun (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 2a
Active Motif组蛋白H3抗体(Active Motif, 39131)被用于被用于免疫印迹在人类样本上 (图 2a). Nat Commun (2017) ncbi
小鼠 单克隆(12.1)
  • 免疫印迹; 人类; 图 2a
Active Motif组蛋白H3抗体(Active Motif, 61061)被用于被用于免疫印迹在人类样本上 (图 2a). Nat Commun (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 2a
Active Motif组蛋白H3抗体(Active Motif, 39381)被用于被用于免疫印迹在人类样本上 (图 2a). Nat Commun (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 2a
Active Motif组蛋白H3抗体(Active Motif, 39917)被用于被用于免疫印迹在人类样本上 (图 2a). Nat Commun (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 2a
Active Motif组蛋白H3抗体(Active Motif, 39755)被用于被用于免疫印迹在人类样本上 (图 2a). Nat Commun (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 2a
Active Motif组蛋白H3抗体(Active Motif, 39155)被用于被用于免疫印迹在人类样本上 (图 2a). Nat Commun (2017) ncbi
domestic rabbit 多克隆
  • ChIP-Seq; 小鼠; 图 1b
Active Motif组蛋白H3抗体(Active motif, 39297)被用于被用于ChIP-Seq在小鼠样本上 (图 1b). Cell Stem Cell (2017) ncbi
domestic rabbit 多克隆
  • ChIP-Seq; 小鼠; 图 1b
Active Motif组蛋白H3抗体(Active motif, 39159)被用于被用于ChIP-Seq在小鼠样本上 (图 1b). Cell Stem Cell (2017) ncbi
domestic rabbit 多克隆
  • ChIP-Seq; 小鼠; 图 1b
Active Motif组蛋白H3抗体(Active motif, 39155)被用于被用于ChIP-Seq在小鼠样本上 (图 1b). Cell Stem Cell (2017) ncbi
domestic rabbit 多克隆
  • ChIP-Seq; 小鼠; 图 1b
Active Motif组蛋白H3抗体(Active motif, 39133)被用于被用于ChIP-Seq在小鼠样本上 (图 1b). Cell Stem Cell (2017) ncbi
小鼠 单克隆(MABI 0332)
  • 免疫组化; roundworm ; 1:200; 图 6b
Active Motif组蛋白H3抗体(Active Motif, 61019)被用于被用于免疫组化在roundworm 样本上浓度为1:200 (图 6b). PLoS Genet (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 6a
Active Motif组蛋白H3抗体(Active Motif, 39599)被用于被用于免疫印迹在人类样本上 (图 6a). Nucleic Acids Res (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 6a
Active Motif组蛋白H3抗体(Active Motif, 39281)被用于被用于免疫印迹在人类样本上 (图 6a). Nucleic Acids Res (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; brewer's yeast; 1:5000; 图 1a
Active Motif组蛋白H3抗体(Active Motif, 39255)被用于被用于免疫印迹在brewer's yeast样本上浓度为1:5000 (图 1a). BMC Genomics (2017) ncbi
domestic rabbit 多克隆
  • 染色质免疫沉淀 ; brewer's yeast; 图 s2a
  • 免疫印迹; brewer's yeast; 图 1a
Active Motif组蛋白H3抗体(Active Motif, 39159)被用于被用于染色质免疫沉淀 在brewer's yeast样本上 (图 s2a) 和 被用于免疫印迹在brewer's yeast样本上 (图 1a). BMC Genomics (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; brewer's yeast; 1:2000; 图 1b
Active Motif组蛋白H3抗体(Active Motif, 39145)被用于被用于免疫印迹在brewer's yeast样本上浓度为1:2000 (图 1b). BMC Genomics (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; brewer's yeast; 1:5000; 图 1a
Active Motif组蛋白H3抗体(Active Motif, 39913)被用于被用于免疫印迹在brewer's yeast样本上浓度为1:5000 (图 1a). BMC Genomics (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; brewer's yeast; 图 1a
Active Motif组蛋白H3抗体(Active Motif, 39163)被用于被用于免疫印迹在brewer's yeast样本上 (图 1a). BMC Genomics (2017) ncbi
domestic rabbit 多克隆
  • 染色质免疫沉淀 ; 人类; 图 3f
  • 免疫印迹; 人类; 图 3a
Active Motif组蛋白H3抗体(Active Motif, 39133)被用于被用于染色质免疫沉淀 在人类样本上 (图 3f) 和 被用于免疫印迹在人类样本上 (图 3a). Proc Natl Acad Sci U S A (2017) ncbi
小鼠 单克隆
  • proximity ligation assay; 人类; 图 4e
  • 免疫细胞化学; 人类; 1:500; 图 3e
Active Motif组蛋白H3抗体(Active Motif, 39535)被用于被用于proximity ligation assay在人类样本上 (图 4e) 和 被用于免疫细胞化学在人类样本上浓度为1:500 (图 3e). Nat Commun (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 s4b
Active Motif组蛋白H3抗体(Active Motif, 39163)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 s4b). Nat Commun (2017) ncbi
domestic rabbit 多克隆
  • ChIP-Seq; 小鼠; 图 5a
Active Motif组蛋白H3抗体(Active Motif, 39137)被用于被用于ChIP-Seq在小鼠样本上 (图 5a). Biochim Biophys Acta Gene Regul Mech (2017) ncbi
小鼠 单克隆(MABI 0333)
  • 免疫印迹; 人类; 图 4a
Active Motif组蛋白H3抗体(Active Motif, 61021)被用于被用于免疫印迹在人类样本上 (图 4a). Nat Genet (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 3e
Active Motif组蛋白H3抗体(Active Motif, 39139)被用于被用于免疫印迹在人类样本上 (图 3e). Nature (2017) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 小鼠; 1:100; 图 s3f
Active Motif组蛋白H3抗体(Active Motif, 39377)被用于被用于免疫细胞化学在小鼠样本上浓度为1:100 (图 s3f). Development (2017) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 人类; 图 1b
Active Motif组蛋白H3抗体(Active Motif, 39155)被用于被用于免疫组化-石蜡切片在人类样本上 (图 1b). Nat Med (2017) ncbi
domestic rabbit 多克隆
  • 染色质免疫沉淀 ; 人类; 图 4c
  • 免疫组化; 人类; 图 s6
Active Motif组蛋白H3抗体(Active Motif, 39141)被用于被用于染色质免疫沉淀 在人类样本上 (图 4c) 和 被用于免疫组化在人类样本上 (图 s6). Oncogene (2017) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:200; 图 s5
Active Motif组蛋白H3抗体(Active Motif, 39155)被用于被用于免疫组化在小鼠样本上浓度为1:200 (图 s5). Nat Commun (2016) ncbi
小鼠 单克隆(MABI 0309)
  • ChIP-Seq; 人类; 表 2
  • ChIP-Seq; 小鼠; 表 2
Active Motif组蛋白H3抗体(Active Motif, 39685)被用于被用于ChIP-Seq在人类样本上 (表 2) 和 被用于ChIP-Seq在小鼠样本上 (表 2). Epigenetics Chromatin (2016) ncbi
domestic rabbit 多克隆
  • 染色质免疫沉淀 ; 小鼠; 1:1000; 图 6a
Active Motif组蛋白H3抗体(Active Motif, 39143)被用于被用于染色质免疫沉淀 在小鼠样本上浓度为1:1000 (图 6a). Nat Cell Biol (2016) ncbi
小鼠 单克隆(MABI 0333)
  • 免疫组化-石蜡切片; 人类; 1:200; 图 s3
Active Motif组蛋白H3抗体(Active Motif, MABI-0333)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:200 (图 s3). Nat Commun (2016) ncbi
domestic rabbit 多克隆
  • 染色质免疫沉淀 ; 人类; 图 s2
Active Motif组蛋白H3抗体(Active Motif, 39159)被用于被用于染色质免疫沉淀 在人类样本上 (图 s2). Sci Rep (2016) ncbi
domestic rabbit 多克隆
  • ChIP-Seq; 小鼠; 图 1c
Active Motif组蛋白H3抗体(Active Motif, AM39297)被用于被用于ChIP-Seq在小鼠样本上 (图 1c). Genes Dev (2016) ncbi
domestic rabbit 多克隆
  • 染色质免疫沉淀 ; 人类; 图 5
Active Motif组蛋白H3抗体(Active Motif, 39159)被用于被用于染色质免疫沉淀 在人类样本上 (图 5). Cell (2016) ncbi
domestic rabbit 多克隆
  • 染色质免疫沉淀 ; fruit fly ; 1:100; 图 s8c
Active Motif组蛋白H3抗体(Active Motif, 39155)被用于被用于染色质免疫沉淀 在fruit fly 样本上浓度为1:100 (图 s8c). Nat Genet (2016) ncbi
domestic rabbit 多克隆
  • ChIP-Seq; 非洲爪蛙; 图 6b
Active Motif组蛋白H3抗体(Active Motif, 39159)被用于被用于ChIP-Seq在非洲爪蛙样本上 (图 6b). elife (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 2
Active Motif组蛋白H3抗体(Active Motif, 39255)被用于被用于免疫印迹在人类样本上 (图 2). Sci Rep (2016) ncbi
小鼠 单克隆(MABI 0332)
  • 染色质免疫沉淀 ; 人类; 图 s9
  • 免疫印迹; 人类; 图 2
Active Motif组蛋白H3抗体(Active Motif, 61019)被用于被用于染色质免疫沉淀 在人类样本上 (图 s9) 和 被用于免疫印迹在人类样本上 (图 2). Sci Rep (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:500; 图 6b
Active Motif组蛋白H3抗体(Active motif, 39139)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 6b). Oncotarget (2016) ncbi
大鼠 单克隆(HTA28)
  • 免疫组化; 小鼠; 图 3a
Active Motif组蛋白H3抗体(Active Motif, 39098)被用于被用于免疫组化在小鼠样本上 (图 3a). Radiat Res (2016) ncbi
domestic rabbit 多克隆
  • 染色质免疫沉淀 ; 人类; 图 6
Active Motif组蛋白H3抗体(active motif, 39917)被用于被用于染色质免疫沉淀 在人类样本上 (图 6). Sci Rep (2016) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 1:1000; 图 4
Active Motif组蛋白H3抗体(Active Motif, 39915)被用于被用于免疫细胞化学在人类样本上浓度为1:1000 (图 4). Dis Model Mech (2016) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 1:1000; 图 4
Active Motif组蛋白H3抗体(Active Motif, 39133)被用于被用于免疫细胞化学在人类样本上浓度为1:1000 (图 4). Dis Model Mech (2016) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 1:1000; 图 4
Active Motif组蛋白H3抗体(Active Motif, 39137)被用于被用于免疫细胞化学在人类样本上浓度为1:1000 (图 4). Dis Model Mech (2016) ncbi
domestic rabbit 多克隆
  • ChIP-Seq; 小鼠; 图 5
Active Motif组蛋白H3抗体(Active Motif, 39135)被用于被用于ChIP-Seq在小鼠样本上 (图 5). elife (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:500; 表 1
Active Motif组蛋白H3抗体(Active Motif, 39139)被用于被用于免疫印迹在人类样本上浓度为1:500 (表 1). Br J Cancer (2016) ncbi
domestic rabbit 多克隆
  • 染色质免疫沉淀 ; 大鼠; 图 2b
Active Motif组蛋白H3抗体(active motif, 39163)被用于被用于染色质免疫沉淀 在大鼠样本上 (图 2b). Science (2016) ncbi
domestic rabbit 多克隆
  • ChIP-Seq; 小鼠; 图 5d
Active Motif组蛋白H3抗体(Active Motif, 39135)被用于被用于ChIP-Seq在小鼠样本上 (图 5d). elife (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 6
  • 免疫印迹; 非洲爪蛙; 图 1
Active Motif组蛋白H3抗体(Active Motif, 61277)被用于被用于免疫印迹在小鼠样本上 (图 6) 和 被用于免疫印迹在非洲爪蛙样本上 (图 1). PLoS Genet (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 非洲爪蛙; 图 1
  • ChIP-Seq; 小鼠; 表 1
  • 免疫印迹; 小鼠; 图 6
Active Motif组蛋白H3抗体(Active Motif, 61101)被用于被用于免疫印迹在非洲爪蛙样本上 (图 1), 被用于ChIP-Seq在小鼠样本上 (表 1) 和 被用于免疫印迹在小鼠样本上 (图 6). PLoS Genet (2016) ncbi
domestic rabbit 多克隆
Active Motif组蛋白H3抗体(Active Motif, 39651)被用于. Sci Rep (2016) ncbi
domestic rabbit 多克隆
  • ChIP-Seq; 小鼠; 图 4
Active Motif组蛋白H3抗体(Activemotif, 39159)被用于被用于ChIP-Seq在小鼠样本上 (图 4). PLoS ONE (2016) ncbi
小鼠 单克隆(MABI 0309)
  • 染色质免疫沉淀 ; 人类; 图 4
Active Motif组蛋白H3抗体(ActiveMotif, 39685)被用于被用于染色质免疫沉淀 在人类样本上 (图 4). F1000Res (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 1s2
Active Motif组蛋白H3抗体(Active Motif, 39155)被用于被用于免疫印迹在小鼠样本上 (图 1s2). elife (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 4
Active Motif组蛋白H3抗体(active motif, 39163)被用于被用于免疫印迹在人类样本上 (图 4). Oncogene (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 1
Active Motif组蛋白H3抗体(Active Motif, 39253)被用于被用于免疫印迹在人类样本上 (图 1). Sci Rep (2016) ncbi
domestic rabbit 多克隆
  • 染色质免疫沉淀 ; 人类; 图 2a
  • 免疫细胞化学; 人类; 1:1000; 图 s3d
  • 免疫印迹; 人类; 图 1a
Active Motif组蛋白H3抗体(Active Motif, 61101)被用于被用于染色质免疫沉淀 在人类样本上 (图 2a), 被用于免疫细胞化学在人类样本上浓度为1:1000 (图 s3d) 和 被用于免疫印迹在人类样本上 (图 1a). Science (2016) ncbi
小鼠 单克隆(MABI 0301)
  • 免疫印迹; 人类; 图 2b
Active Motif组蛋白H3抗体(Active Motif, 39763)被用于被用于免疫印迹在人类样本上 (图 2b). PLoS ONE (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 2a
Active Motif组蛋白H3抗体(Active Motif, 39281)被用于被用于免疫印迹在人类样本上 (图 2a). PLoS ONE (2016) ncbi
小鼠 单克隆(12.1)
  • 免疫印迹; 人类; 图 2a
Active Motif组蛋白H3抗体(Active Motif, 61061)被用于被用于免疫印迹在人类样本上 (图 2a). PLoS ONE (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 1
Active Motif组蛋白H3抗体(Active Motif, 39161)被用于被用于免疫印迹在人类样本上 (图 1). Proc Natl Acad Sci U S A (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 1
Active Motif组蛋白H3抗体(Active Motif, 39917)被用于被用于免疫印迹在人类样本上 (图 1). Proc Natl Acad Sci U S A (2016) ncbi
domestic rabbit 多克隆
  • 染色质免疫沉淀 ; 小鼠; 图 s11b
  • 免疫印迹; 小鼠; 图 s8a
Active Motif组蛋白H3抗体(Active Motif, 61101)被用于被用于染色质免疫沉淀 在小鼠样本上 (图 s11b) 和 被用于免疫印迹在小鼠样本上 (图 s8a). Science (2016) ncbi
小鼠 单克隆(MABI 0321)
  • 免疫印迹; 小鼠; 图 s6d
Active Motif组蛋白H3抗体(Active Motif, 61015)被用于被用于免疫印迹在小鼠样本上 (图 s6d). Science (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 s6d
Active Motif组蛋白H3抗体(Active Motif, 39159)被用于被用于免疫印迹在小鼠样本上 (图 s6d). Science (2016) ncbi
domestic rabbit 多克隆
  • 染色质免疫沉淀 ; 小鼠; 图 6
Active Motif组蛋白H3抗体(Active Motif, 61101)被用于被用于染色质免疫沉淀 在小鼠样本上 (图 6). Nucleic Acids Res (2016) ncbi
domestic rabbit 多克隆
  • 染色质免疫沉淀 ; 人类; 图 6
Active Motif组蛋白H3抗体(Active Motif, 39159)被用于被用于染色质免疫沉淀 在人类样本上 (图 6). Stem Cell Reports (2016) ncbi
domestic rabbit 多克隆
  • ChIP-Seq; 人类; 1:250; 图 4c
  • 免疫印迹; 人类; 1:1000; 图 4a
Active Motif组蛋白H3抗体(ACTIVE MOTIF, 39919)被用于被用于ChIP-Seq在人类样本上浓度为1:250 (图 4c) 和 被用于免疫印迹在人类样本上浓度为1:1000 (图 4a). J Cell Sci (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 2
Active Motif组蛋白H3抗体(Active Motif, 39155)被用于被用于免疫印迹在小鼠样本上 (图 2). Biol Open (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 2
Active Motif组蛋白H3抗体(Active Motif, 39297)被用于被用于免疫印迹在小鼠样本上 (图 2). Biol Open (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 2
Active Motif组蛋白H3抗体(Active Motif, 39915)被用于被用于免疫印迹在小鼠样本上 (图 2). Biol Open (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 2
Active Motif组蛋白H3抗体(Active Motif, 61277)被用于被用于免疫印迹在小鼠样本上 (图 2). Biol Open (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 2
Active Motif组蛋白H3抗体(Active Motif, 39753)被用于被用于免疫印迹在小鼠样本上 (图 2). Biol Open (2016) ncbi
domestic rabbit 多克隆
  • 染色质免疫沉淀 ; 小鼠; 图 4b
Active Motif组蛋白H3抗体(ActiveMotif, 39159)被用于被用于染色质免疫沉淀 在小鼠样本上 (图 4b). Cell Rep (2016) ncbi
domestic rabbit 多克隆
  • 染色质免疫沉淀 ; 人类; 图 1
Active Motif组蛋白H3抗体(Active Motif, 39161)被用于被用于染色质免疫沉淀 在人类样本上 (图 1). J Virol (2016) ncbi
domestic rabbit 多克隆
  • 染色质免疫沉淀 ; 人类; 图 1
Active Motif组蛋白H3抗体(Active Motif, 39141)被用于被用于染色质免疫沉淀 在人类样本上 (图 1). J Virol (2016) ncbi
domestic rabbit 多克隆
  • 染色质免疫沉淀 ; 人类; 图 1
Active Motif组蛋白H3抗体(Active Motif, 39155)被用于被用于染色质免疫沉淀 在人类样本上 (图 1). J Virol (2016) ncbi
小鼠 单克隆(MABI 0309)
  • 染色质免疫沉淀 ; 人类; 图 1
Active Motif组蛋白H3抗体(Active Motif, 39685)被用于被用于染色质免疫沉淀 在人类样本上 (图 1). J Virol (2016) ncbi
小鼠 单克隆
  • 免疫组化-冰冻切片; 小鼠; 1:100; 图 s10
Active Motif组蛋白H3抗体(Active Motif, 39535)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:100 (图 s10). J Clin Invest (2016) ncbi
domestic rabbit 多克隆
  • 染色质免疫沉淀 ; 人类; 1:100; 图 2
Active Motif组蛋白H3抗体(Active Motif, 39133)被用于被用于染色质免疫沉淀 在人类样本上浓度为1:100 (图 2). Nat Commun (2016) ncbi
domestic rabbit 多克隆
  • 染色质免疫沉淀 ; fruit fly ; 图 1e
Active Motif组蛋白H3抗体(Active motif, 39156)被用于被用于染色质免疫沉淀 在fruit fly 样本上 (图 1e). PLoS Genet (2016) ncbi
domestic rabbit 多克隆
Active Motif组蛋白H3抗体(Active motif, 39379/39380)被用于. J Biol Chem (2016) ncbi
domestic rabbit 多克隆
Active Motif组蛋白H3抗体(Active motif, 39565/39565)被用于. J Biol Chem (2016) ncbi
domestic rabbit 多克隆
Active Motif组蛋白H3抗体(Active motif, 39131/39132)被用于. J Biol Chem (2016) ncbi
小鼠 单克隆(MABI 0301)
  • 免疫沉淀; 人类; 图 1
  • 免疫印迹; 人类; 图 1
Active Motif组蛋白H3抗体(Active Motif, 39763)被用于被用于免疫沉淀在人类样本上 (图 1) 和 被用于免疫印迹在人类样本上 (图 1). elife (2016) ncbi
domestic rabbit 多克隆
  • 染色质免疫沉淀 ; 人类; 图 4
Active Motif组蛋白H3抗体(Active Motif, 39239)被用于被用于染色质免疫沉淀 在人类样本上 (图 4). Clin Epigenetics (2016) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 小鼠; 1:800; 图 2
Active Motif组蛋白H3抗体(ActiveMotif, 39239)被用于被用于免疫细胞化学在小鼠样本上浓度为1:800 (图 2). elife (2016) ncbi
domestic rabbit 多克隆
  • ChIP-Seq; 斑马鱼; 图 1
Active Motif组蛋白H3抗体(Active Motif, AM#39133)被用于被用于ChIP-Seq在斑马鱼样本上 (图 1). Nature (2016) ncbi
domestic rabbit 多克隆
  • 染色质免疫沉淀 ; 人类; 图 2
  • 免疫印迹; 人类; 图 7
Active Motif组蛋白H3抗体(Active Motif, 39143)被用于被用于染色质免疫沉淀 在人类样本上 (图 2) 和 被用于免疫印迹在人类样本上 (图 7). Biochimie (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 s3s
Active Motif组蛋白H3抗体(Active motif, 39159)被用于被用于免疫印迹在人类样本上 (图 s3s). Proc Natl Acad Sci U S A (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 5
Active Motif组蛋白H3抗体(Active motif, 39159)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 5). Cell Res (2016) ncbi
小鼠 单克隆(MABI 0301)
  • 免疫印迹; 人类; 图 1
Active Motif组蛋白H3抗体(Active Motif, 39763)被用于被用于免疫印迹在人类样本上 (图 1). Cell Cycle (2016) ncbi
domestic rabbit 多克隆
  • ChIP-Seq; 小鼠; 图 2b
  • 免疫印迹; 小鼠; 图 1c
Active Motif组蛋白H3抗体(Active Motif, 39159)被用于被用于ChIP-Seq在小鼠样本上 (图 2b) 和 被用于免疫印迹在小鼠样本上 (图 1c). PLoS Genet (2016) ncbi
domestic rabbit 多克隆
  • ChIP-Seq; 人类; 图 3
Active Motif组蛋白H3抗体(Active Motif, 39297)被用于被用于ChIP-Seq在人类样本上 (图 3). PLoS Pathog (2016) ncbi
domestic rabbit 多克隆
  • ChIP-Seq; 人类; 图 3
Active Motif组蛋白H3抗体(Active Motif, 39155)被用于被用于ChIP-Seq在人类样本上 (图 3). PLoS Pathog (2016) ncbi
domestic rabbit 多克隆
  • ChIP-Seq; 小鼠; 表  s3
Active Motif组蛋白H3抗体(Active Motif, 39755)被用于被用于ChIP-Seq在小鼠样本上 (表  s3). PLoS Pathog (2016) ncbi
domestic rabbit 多克隆
  • 染色质免疫沉淀 ; 人类; 图 3
Active Motif组蛋白H3抗体(Active Motif, 39133)被用于被用于染色质免疫沉淀 在人类样本上 (图 3). Nature (2016) ncbi
domestic rabbit 多克隆
  • 酶联免疫吸附测定; Austrofundulus limnaeus; 1:1000; 图 5f
Active Motif组蛋白H3抗体(Active Motif, 39159)被用于被用于酶联免疫吸附测定在Austrofundulus limnaeus样本上浓度为1:1000 (图 5f). J Exp Biol (2016) ncbi
domestic rabbit 多克隆
  • 酶联免疫吸附测定; Austrofundulus limnaeus; 1:1000; 图 5c
Active Motif组蛋白H3抗体(Active Motif, 39156)被用于被用于酶联免疫吸附测定在Austrofundulus limnaeus样本上浓度为1:1000 (图 5c). J Exp Biol (2016) ncbi
小鼠 单克隆(2AG-6F12-H4)
  • 免疫细胞化学; 小鼠; 1:100; 图 6
Active Motif组蛋白H3抗体(Active Motif, 39285/6)被用于被用于免疫细胞化学在小鼠样本上浓度为1:100 (图 6). BMC Dev Biol (2015) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 3g
Active Motif组蛋白H3抗体(Active Motif, 39381)被用于被用于免疫印迹在小鼠样本上 (图 3g). Mol Cell Biol (2016) ncbi
小鼠 单克隆(2AG-6F12-H4)
  • 免疫组化; 人类; 图 7a
Active Motif组蛋白H3抗体(Active Motif, 39285)被用于被用于免疫组化在人类样本上 (图 7a). Epigenetics Chromatin (2015) ncbi
domestic rabbit 多克隆
Active Motif组蛋白H3抗体(Active Motif, 39239)被用于. Front Plant Sci (2015) ncbi
小鼠 单克隆(MABI 0301)
  • 免疫细胞化学; 小鼠; 图 1b
Active Motif组蛋白H3抗体(Active Motif, 39763)被用于被用于免疫细胞化学在小鼠样本上 (图 1b). Development (2015) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 s3
Active Motif组蛋白H3抗体(Active Motif, 39585)被用于被用于免疫印迹在人类样本上 (图 s3). Nucleic Acids Res (2016) ncbi
小鼠 单克隆(MABI 0301)
  • proximity ligation assay; 人类; 1:4000; 图 2
  • 免疫细胞化学; 人类; 1:4000; 图 2
Active Motif组蛋白H3抗体(Active Motif, 39763)被用于被用于proximity ligation assay在人类样本上浓度为1:4000 (图 2) 和 被用于免疫细胞化学在人类样本上浓度为1:4000 (图 2). Epigenetics Chromatin (2015) ncbi
小鼠 单克隆(MABI 0323)
  • 免疫细胞化学; 小鼠; 图 8
Active Motif组蛋白H3抗体(Active Motif, 61017)被用于被用于免疫细胞化学在小鼠样本上 (图 8). Mol Cell Biol (2015) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 1
Active Motif组蛋白H3抗体(Active Motif, 39163)被用于被用于免疫印迹在小鼠样本上 (图 1). Oncogene (2016) ncbi
小鼠 单克隆(MABI 0319)
  • 染色质免疫沉淀 ; 小鼠; 图 2
Active Motif组蛋白H3抗体(Active Motif, 61013)被用于被用于染色质免疫沉淀 在小鼠样本上 (图 2). Nat Commun (2015) ncbi
小鼠 单克隆(MABI 0323)
  • 染色质免疫沉淀 ; 人类
  • 免疫印迹; 人类; 图 st2
Active Motif组蛋白H3抗体(Active motif, 61017)被用于被用于染色质免疫沉淀 在人类样本上 和 被用于免疫印迹在人类样本上 (图 st2). Oncotarget (2015) ncbi
小鼠 单克隆(MABI 0323)
  • 染色质免疫沉淀 ; 人类; 图 6
Active Motif组蛋白H3抗体(Active Motif, 61017)被用于被用于染色质免疫沉淀 在人类样本上 (图 6). Oncotarget (2015) ncbi
小鼠 单克隆(MABI 0323)
  • 免疫组化; 小鼠; 图 2a
Active Motif组蛋白H3抗体(Active Motif, 61017)被用于被用于免疫组化在小鼠样本上 (图 2a). PLoS Genet (2015) ncbi
小鼠 单克隆(MABI 0301)
  • 免疫印迹; 人类; 图 1b
Active Motif组蛋白H3抗体(Active Motif, 39763)被用于被用于免疫印迹在人类样本上 (图 1b). Cell Commun Signal (2015) ncbi
domestic rabbit 多克隆
  • 染色质免疫沉淀 ; 小鼠; 图 3
Active Motif组蛋白H3抗体(Active motif, #39139)被用于被用于染色质免疫沉淀 在小鼠样本上 (图 3). Leukemia (2016) ncbi
小鼠 单克隆
  • ChIP-Seq; 小鼠; 图 3a
Active Motif组蛋白H3抗体(Active Motif, 39535)被用于被用于ChIP-Seq在小鼠样本上 (图 3a). BMC Biol (2015) ncbi
小鼠 单克隆(MABI 0309)
  • 染色质免疫沉淀 ; 人类; 图 6b,6c
Active Motif组蛋白H3抗体(Active Motif, 39685)被用于被用于染色质免疫沉淀 在人类样本上 (图 6b,6c). PLoS ONE (2015) ncbi
小鼠 单克隆
  • 染色质免疫沉淀 ; 人类; 图 7
Active Motif组蛋白H3抗体(Active Motif, 39535)被用于被用于染色质免疫沉淀 在人类样本上 (图 7). Mol Cancer (2015) ncbi
小鼠 单克隆(MABI 0301)
  • 染色质免疫沉淀 ; 人类; 图 4f
Active Motif组蛋白H3抗体(Active Motif, MABI 0301)被用于被用于染色质免疫沉淀 在人类样本上 (图 4f). Am J Pathol (2015) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类
Active Motif组蛋白H3抗体(Active Motif, 61277)被用于被用于免疫印迹在人类样本上. Oncogene (2016) ncbi
小鼠 单克隆(MABI 0307)
  • 流式细胞仪; 人类
Active Motif组蛋白H3抗体(Active Motif, 39683)被用于被用于流式细胞仪在人类样本上. Curr Protoc Cytom (2015) ncbi
小鼠 单克隆(MABI 0301)
  • 酶联免疫吸附测定; 人类
Active Motif组蛋白H3抗体(Active Motif, 39763)被用于被用于酶联免疫吸附测定在人类样本上. Theranostics (2015) ncbi
domestic rabbit 多克隆
Active Motif组蛋白H3抗体(Active Motif, 39137)被用于. Mol Cell Biol (2015) ncbi
小鼠 单克隆(7B11)
  • 免疫印迹; 小鼠; 图 6
Active Motif组蛋白H3抗体(Active Motif, 39536)被用于被用于免疫印迹在小鼠样本上 (图 6). Nat Commun (2014) ncbi
小鼠 单克隆(MABI 0304)
  • 染色质免疫沉淀 ; 拟南芥
  • 免疫组化; 拟南芥
Active Motif组蛋白H3抗体(Active Motif, 61379)被用于被用于染色质免疫沉淀 在拟南芥样本上 和 被用于免疫组化在拟南芥样本上. Nucleic Acids Res (2014) ncbi
小鼠 单克隆(MABI 0333)
  • 染色质免疫沉淀 ; 拟南芥
  • 免疫组化; 拟南芥
Active Motif组蛋白H3抗体(Active Motif, 61021)被用于被用于染色质免疫沉淀 在拟南芥样本上 和 被用于免疫组化在拟南芥样本上. Nucleic Acids Res (2014) ncbi
小鼠 单克隆(MABI 0321)
  • 免疫印迹; 人类; 图 s9e
Active Motif组蛋白H3抗体(Active Motif, 61015)被用于被用于免疫印迹在人类样本上 (图 s9e). Nature (2014) ncbi
小鼠 单克隆
  • 染色质免疫沉淀 ; 人类
Active Motif组蛋白H3抗体(Active Motif, 39535)被用于被用于染色质免疫沉淀 在人类样本上. Arch Toxicol (2014) ncbi
小鼠 单克隆(MABI 0323)
  • 免疫细胞化学; 小鼠; 1:1000; 图 1
Active Motif组蛋白H3抗体(Active Motif, 61017)被用于被用于免疫细胞化学在小鼠样本上浓度为1:1000 (图 1). Cell Rep (2014) ncbi
小鼠 单克隆(MABI 0319)
  • 免疫细胞化学; 人类
  • 免疫印迹; 人类
Active Motif组蛋白H3抗体(Active Motif, 61013)被用于被用于免疫细胞化学在人类样本上 和 被用于免疫印迹在人类样本上. Eur Respir J (2014) ncbi
小鼠 单克隆(MABI 0301)
  • 免疫组化; 小鼠; 图 s2
  • 免疫印迹; 小鼠; 图 3c
Active Motif组蛋白H3抗体(Active Motif, 39763)被用于被用于免疫组化在小鼠样本上 (图 s2) 和 被用于免疫印迹在小鼠样本上 (图 3c). Biochem J (2014) ncbi
小鼠 单克隆(MABI 0307)
  • 染色质免疫沉淀 ; 人类
  • 免疫印迹; 人类
Active Motif组蛋白H3抗体(Active Motif, 39683)被用于被用于染色质免疫沉淀 在人类样本上 和 被用于免疫印迹在人类样本上. Genome Res (2014) ncbi
小鼠 单克隆(MABI 0306)
  • 免疫印迹; 人类
Active Motif组蛋白H3抗体(Active Motif, 39681)被用于被用于免疫印迹在人类样本上. Genome Res (2014) ncbi
小鼠 单克隆
  • 免疫组化-石蜡切片; 小鼠; 1:200
Active Motif组蛋白H3抗体(Active Motif, 39535)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:200. Epigenetics (2014) ncbi
小鼠 单克隆
  • 免疫组化; roundworm ; 1:30,000
Active Motif组蛋白H3抗体(Active Motif, 39535)被用于被用于免疫组化在roundworm 样本上浓度为1:30,000. Cell Rep (2012) ncbi
domestic rabbit 多克隆
Active Motif组蛋白H3抗体(Active Motif, 39159)被用于. Proc Natl Acad Sci U S A (2012) ncbi
domestic rabbit 多克隆
Active Motif组蛋白H3抗体(Active Motif, 39159)被用于. Dev Biol (2013) ncbi
domestic rabbit 多克隆
Active Motif组蛋白H3抗体(Active Motif, 39155)被用于. Dev Biol (2013) ncbi
小鼠 单克隆(MABI 0301)
  • 染色质免疫沉淀 ; 小鼠
Active Motif组蛋白H3抗体(Active Motif, 39763)被用于被用于染色质免疫沉淀 在小鼠样本上. Mol Cell Biol (2012) ncbi
小鼠 单克隆
  • 染色质免疫沉淀 ; 小鼠
Active Motif组蛋白H3抗体(Active Motif, 39535)被用于被用于染色质免疫沉淀 在小鼠样本上. PLoS ONE (2012) ncbi
小鼠 单克隆(MABI 0301)
  • 免疫细胞化学; 人类; 1:200
Active Motif组蛋白H3抗体(Active Motif, 39763)被用于被用于免疫细胞化学在人类样本上浓度为1:200. ACS Nano (2012) ncbi
小鼠 单克隆
  • 染色质免疫沉淀 ; 人类
Active Motif组蛋白H3抗体(Active Motif, 39535)被用于被用于染色质免疫沉淀 在人类样本上. PLoS ONE (2012) ncbi
小鼠 单克隆
  • 染色质免疫沉淀 ; 人类
Active Motif组蛋白H3抗体(Active Motif, 39535)被用于被用于染色质免疫沉淀 在人类样本上. Int J Cancer (2012) ncbi
小鼠 单克隆
  • 染色质免疫沉淀 ; 人类
Active Motif组蛋白H3抗体(Active Motif, 39535)被用于被用于染色质免疫沉淀 在人类样本上. J Virol (2012) ncbi
小鼠 单克隆(12.1)
  • 免疫印迹; 人类
Active Motif组蛋白H3抗体(Active Motif, 61061)被用于被用于免疫印迹在人类样本上. Sci Rep (2012) ncbi
小鼠 单克隆(MABI 0301)
  • 免疫细胞化学; 人类
  • 免疫细胞化学; 小鼠
Active Motif组蛋白H3抗体(Active Motif, 39763)被用于被用于免疫细胞化学在人类样本上 和 被用于免疫细胞化学在小鼠样本上. Aging (Albany NY) (2011) ncbi
小鼠 单克隆(7B11)
  • 染色质免疫沉淀 ; 人类
Active Motif组蛋白H3抗体(Active Motif, 39536)被用于被用于染色质免疫沉淀 在人类样本上. Nature (2011) ncbi
小鼠 单克隆
  • 免疫细胞化学; 小鼠
Active Motif组蛋白H3抗体(Active Motif, 39535)被用于被用于免疫细胞化学在小鼠样本上. Proc Natl Acad Sci U S A (2010) ncbi
小鼠 单克隆(2AG-6F12-H4)
  • 免疫印迹; 人类
  • 免疫细胞化学; 小鼠; 1:100
Active Motif组蛋白H3抗体(Active Motif, 39285)被用于被用于免疫印迹在人类样本上 和 被用于免疫细胞化学在小鼠样本上浓度为1:100. J Proteome Res (2010) ncbi
小鼠 单克隆
Active Motif组蛋白H3抗体(Active Motif, 39535)被用于. J Biol Chem (2010) ncbi
小鼠 单克隆
  • 染色质免疫沉淀 ; 人类
Active Motif组蛋白H3抗体(Active Motif, 39535)被用于被用于染色质免疫沉淀 在人类样本上. Cancer Genomics Proteomics (2010) ncbi
小鼠 单克隆
  • 染色质免疫沉淀 ; 人类; 1:100
Active Motif组蛋白H3抗体(Active Motif, 39535)被用于被用于染色质免疫沉淀 在人类样本上浓度为1:100. Mol Cancer (2009) ncbi
亚诺法生技股份有限公司
小鼠 单克隆(2D7-H1)
  • 免疫印迹基因敲除验证; 小鼠; 1:40; 图 4
亚诺法生技股份有限公司组蛋白H3抗体(Abnova, 2D7-H1)被用于被用于免疫印迹基因敲除验证在小鼠样本上浓度为1:40 (图 4). Genes Dev (2015) ncbi
CovalAb
小鼠 单克隆
  • 免疫组化-冰冻切片; 人类; 图 s4a
  • 免疫细胞化学; 人类; 图 5f
CovalAb组蛋白H3抗体(Covalab, mab0072-P)被用于被用于免疫组化-冰冻切片在人类样本上 (图 s4a) 和 被用于免疫细胞化学在人类样本上 (图 5f). Nat Commun (2018) ncbi
赛信通(上海)生物试剂有限公司
domestic rabbit 单克隆(D2C8)
  • 免疫印迹; 人类; 图 2c
赛信通(上海)生物试剂有限公司组蛋白H3抗体(Cell Signaling, 3377)被用于被用于免疫印迹在人类样本上 (图 2c). Mol Ther Oncolytics (2022) ncbi
domestic rabbit 单克隆(C36B11)
  • 免疫细胞化学; 人类; 图 4a
赛信通(上海)生物试剂有限公司组蛋白H3抗体(Cell Signaling Technology, 9733BF)被用于被用于免疫细胞化学在人类样本上 (图 4a). iScience (2022) ncbi
domestic rabbit 单克隆(D1H2)
  • 其他; 人类; 1:2000; 图 3a
赛信通(上海)生物试剂有限公司组蛋白H3抗体(Cell Signaling, 4499)被用于被用于其他在人类样本上浓度为1:2000 (图 3a). Biomolecules (2022) ncbi
domestic rabbit 单克隆(C36B11)
  • 免疫印迹; 人类; 图 4a
赛信通(上海)生物试剂有限公司组蛋白H3抗体(Cell Signaling, 9733)被用于被用于免疫印迹在人类样本上 (图 4a). iScience (2022) ncbi
domestic rabbit 单克隆(D2B12)
  • 染色质免疫沉淀 ; 小鼠; 图 7c
赛信通(上海)生物试剂有限公司组蛋白H3抗体(Cell Signaling, D2B12)被用于被用于染色质免疫沉淀 在小鼠样本上 (图 7c). J Exp Med (2022) ncbi
domestic rabbit 单克隆(C36B11)
  • 其他; 小鼠; 1:100; 图 1d
  • 免疫印迹; 小鼠; 1:1000; 图 2d
赛信通(上海)生物试剂有限公司组蛋白H3抗体(Cell Signaling, 9733)被用于被用于其他在小鼠样本上浓度为1:100 (图 1d) 和 被用于免疫印迹在小鼠样本上浓度为1:1000 (图 2d). Nat Commun (2022) ncbi
domestic rabbit 单克隆(D5A7)
  • 免疫印迹; 小鼠; 1:1000; 图 2d
  • 免疫印迹; 人类; 1:1000; 图 5e, s8b
赛信通(上海)生物试剂有限公司组蛋白H3抗体(Cell Signaling, 4909)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 2d) 和 被用于免疫印迹在人类样本上浓度为1:1000 (图 5e, s8b). Nat Commun (2022) ncbi
domestic rabbit 单克隆(C36B11)
  • 其他; 小鼠; 图 s7i
赛信通(上海)生物试剂有限公司组蛋白H3抗体(Cell Signaling, 9733)被用于被用于其他在小鼠样本上 (图 s7i). Sci Adv (2022) ncbi
domestic rabbit 单克隆(C36B11)
  • 染色质免疫沉淀 ; 人类; 图 4j
  • 免疫印迹; 人类; 图 4c, 6e
赛信通(上海)生物试剂有限公司组蛋白H3抗体(Cell Signaling, 9733)被用于被用于染色质免疫沉淀 在人类样本上 (图 4j) 和 被用于免疫印迹在人类样本上 (图 4c, 6e). Clin Transl Med (2022) ncbi
domestic rabbit 单克隆(D1H2)
  • 免疫印迹; 人类; 1:1000; 图 s2b
赛信通(上海)生物试剂有限公司组蛋白H3抗体(Cell Signaling, 4499)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 s2b). Cell Rep (2022) ncbi
domestic rabbit 单克隆(C36B11)
  • 染色质免疫沉淀 ; 人类; 1:50; 图 6f
赛信通(上海)生物试剂有限公司组蛋白H3抗体(CST, 9733s)被用于被用于染色质免疫沉淀 在人类样本上浓度为1:50 (图 6f). Br J Cancer (2022) ncbi
domestic rabbit 单克隆(D2B12)
  • 免疫印迹; 人类; 图 9a
赛信通(上海)生物试剂有限公司组蛋白H3抗体(Cell Signaling, 4620S)被用于被用于免疫印迹在人类样本上 (图 9a). Int J Biol Sci (2022) ncbi
domestic rabbit 多克隆
  • 染色质免疫沉淀 ; 人类; 图 9e
赛信通(上海)生物试剂有限公司组蛋白H3抗体(CST, 4353)被用于被用于染色质免疫沉淀 在人类样本上 (图 9e). Int J Biol Sci (2022) ncbi
domestic rabbit 单克隆(D1H2)
  • 免疫印迹; 人类; 图 4j
赛信通(上海)生物试剂有限公司组蛋白H3抗体(Cell Signaling, 4499)被用于被用于免疫印迹在人类样本上 (图 4j). Nat Commun (2022) ncbi
domestic rabbit 单克隆(C36B11)
  • 染色质免疫沉淀 ; 小鼠; 1:50; 图 8a
  • 免疫组化; 小鼠; 1:200; 图 5a
  • 免疫印迹; 小鼠; 1:1000; 图 5e
赛信通(上海)生物试剂有限公司组蛋白H3抗体(Cell Signaling, 9733s)被用于被用于染色质免疫沉淀 在小鼠样本上浓度为1:50 (图 8a), 被用于免疫组化在小鼠样本上浓度为1:200 (图 5a) 和 被用于免疫印迹在小鼠样本上浓度为1:1000 (图 5e). elife (2022) ncbi
domestic rabbit 单克隆(C36B11)
  • ChIP-Seq; 小鼠; 1:50; 图 6a
  • 流式细胞仪; 小鼠; 1:1000; 图 6c
赛信通(上海)生物试剂有限公司组蛋白H3抗体(Cell Signaling, 9733)被用于被用于ChIP-Seq在小鼠样本上浓度为1:50 (图 6a) 和 被用于流式细胞仪在小鼠样本上浓度为1:1000 (图 6c). elife (2022) ncbi
domestic rabbit 单克隆(D1H2)
  • 免疫印迹; 小鼠; 1:1000; 图 5d
赛信通(上海)生物试剂有限公司组蛋白H3抗体(Cell Signaling, 4499)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 5d). Nat Commun (2022) ncbi
domestic rabbit 单克隆(C36B11)
  • ChIP-Seq; 小鼠; 图 6b
赛信通(上海)生物试剂有限公司组蛋白H3抗体(Cell Signaling, 9733)被用于被用于ChIP-Seq在小鼠样本上 (图 6b). Nat Commun (2022) ncbi
domestic rabbit 单克隆(D1H2)
  • 免疫印迹; pigs ; 图 1i
赛信通(上海)生物试剂有限公司组蛋白H3抗体(CST, 4499)被用于被用于免疫印迹在pigs 样本上 (图 1i). PLoS Pathog (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 3f
赛信通(上海)生物试剂有限公司组蛋白H3抗体(CST, 2650)被用于被用于免疫印迹在人类样本上 (图 3f). Theranostics (2021) ncbi
domestic rabbit 单克隆(D3B5T)
  • 免疫细胞化学; 人类; 1:1600; 图 1a
赛信通(上海)生物试剂有限公司组蛋白H3抗体(CST, 74829)被用于被用于免疫细胞化学在人类样本上浓度为1:1600 (图 1a). Neurooncol Adv (2021) ncbi
domestic rabbit 单克隆(D1H2)
  • 免疫印迹; 小鼠; 1:2000; 图 4i
赛信通(上海)生物试剂有限公司组蛋白H3抗体(CST, 4499)被用于被用于免疫印迹在小鼠样本上浓度为1:2000 (图 4i). Cell Death Dis (2021) ncbi
domestic rabbit 单克隆(C36B11)
  • ChIP-Seq; 人类; 图 3c
赛信通(上海)生物试剂有限公司组蛋白H3抗体(Cell Signaling Technology, 9733)被用于被用于ChIP-Seq在人类样本上 (图 3c). Cancer Res (2021) ncbi
domestic rabbit 单克隆(D5A7)
  • 免疫印迹; 人类; 1:1000; 图 3d
赛信通(上海)生物试剂有限公司组蛋白H3抗体(Cell Signaling Technologies, 4909)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3d). Nat Commun (2021) ncbi
domestic rabbit 单克隆(D1H2)
  • 免疫印迹; 小鼠; 1:5000; 图 7h
赛信通(上海)生物试剂有限公司组蛋白H3抗体(Cell Signalling Technology, CST4499S)被用于被用于免疫印迹在小鼠样本上浓度为1:5000 (图 7h). BMC Biol (2021) ncbi
domestic rabbit 单克隆(D1H2)
  • 免疫印迹; 小鼠; 图 4a, s1a
赛信通(上海)生物试剂有限公司组蛋白H3抗体(Cell Signaling, 4499)被用于被用于免疫印迹在小鼠样本上 (图 4a, s1a). Adv Sci (Weinh) (2021) ncbi
domestic rabbit 单克隆(C36B11)
  • 免疫印迹; 小鼠; 图 4a, s1a
赛信通(上海)生物试剂有限公司组蛋白H3抗体(Cell Signaling, 9733)被用于被用于免疫印迹在小鼠样本上 (图 4a, s1a). Adv Sci (Weinh) (2021) ncbi
domestic rabbit 单克隆(C36B11)
  • 染色质免疫沉淀 ; 小鼠; 图 2g
赛信通(上海)生物试剂有限公司组蛋白H3抗体(Cell Signaling, 9733)被用于被用于染色质免疫沉淀 在小鼠样本上 (图 2g). Nucleic Acids Res (2021) ncbi
domestic rabbit 单克隆(C75H12)
  • 染色质免疫沉淀 ; 小鼠; 图 2f
赛信通(上海)生物试剂有限公司组蛋白H3抗体(Cell Signaling, 2901)被用于被用于染色质免疫沉淀 在小鼠样本上 (图 2f). Nucleic Acids Res (2021) ncbi
domestic rabbit 单克隆(D1H2)
  • 免疫印迹; 人类; 1:2000; 图 2a
赛信通(上海)生物试剂有限公司组蛋白H3抗体(Cell Signaling, 4499)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 2a). J Biol Chem (2021) ncbi
domestic rabbit 单克隆(C36B11)
  • 免疫印迹; 人类; 1:1000; 图 4h
赛信通(上海)生物试剂有限公司组蛋白H3抗体(Cell Signaling, 9733)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 4h). BMC Cancer (2021) ncbi
domestic rabbit 单克隆(D1H2)
  • 免疫印迹; 人类; 1:2000; 图 5j, 5m
赛信通(上海)生物试剂有限公司组蛋白H3抗体(CST, 4499)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 5j, 5m). J Cell Mol Med (2021) ncbi
domestic rabbit 单克隆(D1H2)
  • 免疫印迹; 人类; 1:2000; 图 3g, 3h, 3k
赛信通(上海)生物试剂有限公司组蛋白H3抗体(CST, 4499)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 3g, 3h, 3k). J Exp Clin Cancer Res (2021) ncbi
domestic rabbit 单克隆(D85B4)
  • 免疫印迹; 人类; 1:200; 图 4h
赛信通(上海)生物试剂有限公司组蛋白H3抗体(Cell Signaling Technology, 4658S)被用于被用于免疫印迹在人类样本上浓度为1:200 (图 4h). Sci Rep (2021) ncbi
domestic rabbit 单克隆(D1H2)
  • 免疫印迹; 人类; 1:200; 图 4h
赛信通(上海)生物试剂有限公司组蛋白H3抗体(Cell Signaling Technology, 4499S)被用于被用于免疫印迹在人类样本上浓度为1:200 (图 4h). Sci Rep (2021) ncbi
domestic rabbit 单克隆(C36B11)
  • 染色质免疫沉淀 ; 小鼠; 图 5l
赛信通(上海)生物试剂有限公司组蛋白H3抗体(CST, 9733S)被用于被用于染色质免疫沉淀 在小鼠样本上 (图 5l). NPJ Regen Med (2021) ncbi
domestic rabbit 单克隆(C36B11)
  • 免疫印迹; 人类; 1:1000; 图 s1b
赛信通(上海)生物试剂有限公司组蛋白H3抗体(Cell Signaling, 9733S)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 s1b). Nat Commun (2021) ncbi
domestic rabbit 单克隆(C36B11)
  • 免疫细胞化学; 人类; 1:1000; 图 2a
  • 免疫印迹; 人类; 1:1000; 图 s5a
赛信通(上海)生物试剂有限公司组蛋白H3抗体(Cell Signaling, 9733)被用于被用于免疫细胞化学在人类样本上浓度为1:1000 (图 2a) 和 被用于免疫印迹在人类样本上浓度为1:1000 (图 s5a). Cell Stem Cell (2021) ncbi
domestic rabbit 单克隆(D4W1U)
  • 免疫印迹; 人类; 1:1000; 图 s5a
赛信通(上海)生物试剂有限公司组蛋白H3抗体(Cell Signaling, 13969)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 s5a). Cell Stem Cell (2021) ncbi
domestic rabbit 单克隆(D5A7)
  • 染色质免疫沉淀 ; 人类; 图 6h
赛信通(上海)生物试剂有限公司组蛋白H3抗体(Cell Signaling, 4909)被用于被用于染色质免疫沉淀 在人类样本上 (图 6h). Cell Rep (2021) ncbi
domestic rabbit 单克隆(C36B11)
  • 免疫组化; 人类; 图 3c
  • 免疫印迹; 人类; 图 1h, 3b
赛信通(上海)生物试剂有限公司组蛋白H3抗体(Cell Signaling Technology, 9733S)被用于被用于免疫组化在人类样本上 (图 3c) 和 被用于免疫印迹在人类样本上 (图 1h, 3b). Proc Natl Acad Sci U S A (2021) ncbi
domestic rabbit 单克隆(D4W1U)
  • 免疫印迹; 小鼠; 图 1f
赛信通(上海)生物试剂有限公司组蛋白H3抗体(Cell Signaling Technologies, 13969)被用于被用于免疫印迹在小鼠样本上 (图 1f). Cell Death Discov (2021) ncbi
domestic rabbit 单克隆(D85B4)
  • 免疫印迹; 人类; 1:1000; 图 2b
赛信通(上海)生物试剂有限公司组蛋白H3抗体(CST, 4658S)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 2b). Nature (2021) ncbi
domestic rabbit 单克隆(C75H12)
  • 免疫组化-石蜡切片; 小鼠; 1:2000; 图 e2j
赛信通(上海)生物试剂有限公司组蛋白H3抗体(CST, 2901)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:2000 (图 e2j). Nature (2021) ncbi
domestic rabbit 单克隆(C36B11)
  • 免疫细胞化学; 小鼠; 图 s10a
赛信通(上海)生物试剂有限公司组蛋白H3抗体(Cell Signaling, 9733BF)被用于被用于免疫细胞化学在小鼠样本上 (图 s10a). Nature (2021) ncbi
domestic rabbit 单克隆(C36B11)
  • 免疫组化; 小鼠; 1:1000; 图 6d
赛信通(上海)生物试剂有限公司组蛋白H3抗体(Cell Signaling Technology, 9733)被用于被用于免疫组化在小鼠样本上浓度为1:1000 (图 6d). Sci Rep (2021) ncbi
domestic rabbit 单克隆(D1H2)
  • 免疫印迹; 人类; 1:2000; 图 5a
赛信通(上海)生物试剂有限公司组蛋白H3抗体(CST, 4499)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 5a). iScience (2021) ncbi
domestic rabbit 单克隆(C36B11)
  • 免疫印迹; 人类; 图 7e
赛信通(上海)生物试剂有限公司组蛋白H3抗体(CST, 9733)被用于被用于免疫印迹在人类样本上 (图 7e). iScience (2021) ncbi
domestic rabbit 单克隆(D4W1U)
  • 免疫细胞化学; 人类; 图 2b
  • 免疫印迹; 人类; 1:2000; 图 2d, 5a
赛信通(上海)生物试剂有限公司组蛋白H3抗体(CST, 13969)被用于被用于免疫细胞化学在人类样本上 (图 2b) 和 被用于免疫印迹在人类样本上浓度为1:2000 (图 2d, 5a). iScience (2021) ncbi
domestic rabbit 单克隆(D1H2)
  • 免疫细胞化学; 人类; 图 4c
赛信通(上海)生物试剂有限公司组蛋白H3抗体(Cell Signaling Technology, 4499)被用于被用于免疫细胞化学在人类样本上 (图 4c). Antioxidants (Basel) (2021) ncbi
domestic rabbit 单克隆(D1H2)
  • 免疫印迹; 人类; 1:1000; 图 4b, 4e, 6c, 6g
赛信通(上海)生物试剂有限公司组蛋白H3抗体(CST, 4499)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 4b, 4e, 6c, 6g). Cell Death Dis (2021) ncbi
domestic rabbit 单克隆(D1H2)
  • 免疫印迹; 人类; 1:1000; 图 6a
赛信通(上海)生物试剂有限公司组蛋白H3抗体(Cell Signaling Technology, 4499)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 6a). Front Oncol (2020) ncbi
domestic rabbit 单克隆(C36B11)
  • 染色质免疫沉淀 ; 人类; 图 6b, 7d
赛信通(上海)生物试剂有限公司组蛋白H3抗体(Cell Signaling, C36B11)被用于被用于染色质免疫沉淀 在人类样本上 (图 6b, 7d). J Clin Invest (2021) ncbi
domestic rabbit 单克隆(D1H2)
  • 免疫印迹; 大鼠; 1:1000; 图 5a
赛信通(上海)生物试剂有限公司组蛋白H3抗体(Cell Signaling Technologies, 4499)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 5a). elife (2020) ncbi
domestic rabbit 单克隆(C36B11)
  • 免疫组化; 小鼠; 图 4d
赛信通(上海)生物试剂有限公司组蛋白H3抗体(Cell Signaling Technology, 9733)被用于被用于免疫组化在小鼠样本上 (图 4d). Cell Rep (2020) ncbi
domestic rabbit 单克隆(D1H2)
  • 免疫组化; 小鼠
赛信通(上海)生物试剂有限公司组蛋白H3抗体(Cell Signaling Technology, 4499)被用于被用于免疫组化在小鼠样本上. Cell Rep (2020) ncbi
domestic rabbit 单克隆(D1H2)
  • 免疫印迹; 小鼠; 1:1000; 图 6a
赛信通(上海)生物试剂有限公司组蛋白H3抗体(CST, 4499)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 6a). Theranostics (2020) ncbi
domestic rabbit 单克隆(C36B11)
  • 免疫组化; 小鼠; 图 6c
赛信通(上海)生物试剂有限公司组蛋白H3抗体(Cell Signaling, 9733)被用于被用于免疫组化在小鼠样本上 (图 6c). J Clin Invest (2020) ncbi
domestic rabbit 单克隆(D1H2)
  • 免疫印迹; 人类; 图 4e
赛信通(上海)生物试剂有限公司组蛋白H3抗体(Cell Signaling, 4499)被用于被用于免疫印迹在人类样本上 (图 4e). J Clin Invest (2020) ncbi
domestic rabbit 单克隆(D1H2)
  • 免疫印迹; 小鼠; 1:1000; 图 e7a
赛信通(上海)生物试剂有限公司组蛋白H3抗体(Cell Signaling, 4499)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 e7a). Nat Metab (2020) ncbi
domestic rabbit 单克隆(D1H2)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司组蛋白H3抗体(Cell Signaling Technology, 4499)被用于被用于免疫印迹在人类样本上. J Hematol Oncol (2020) ncbi
domestic rabbit 单克隆(C36B11)
  • 免疫印迹; 小鼠; 1:2000; 图 s7h
赛信通(上海)生物试剂有限公司组蛋白H3抗体(Cell Signaling, 9733)被用于被用于免疫印迹在小鼠样本上浓度为1:2000 (图 s7h). Nat Commun (2020) ncbi
domestic rabbit 单克隆(D2C8)
  • 免疫细胞化学; 人类; 1:400; 图 s8a
赛信通(上海)生物试剂有限公司组蛋白H3抗体(CST, 3377)被用于被用于免疫细胞化学在人类样本上浓度为1:400 (图 s8a). Proc Natl Acad Sci U S A (2020) ncbi
domestic rabbit 单克隆(D4W1U)
  • 免疫细胞化学; 人类; 图 s1g
赛信通(上海)生物试剂有限公司组蛋白H3抗体(Cell Signaling, 13969)被用于被用于免疫细胞化学在人类样本上 (图 s1g). Cell (2020) ncbi
domestic rabbit 单克隆(C36B11)
  • 免疫组化-石蜡切片; 人类; 1:200; 图 3d
  • 免疫细胞化学; 人类; 图 7
赛信通(上海)生物试剂有限公司组蛋白H3抗体(CST, C36B11)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:200 (图 3d) 和 被用于免疫细胞化学在人类样本上 (图 7). Clin Epigenetics (2020) ncbi
domestic rabbit 单克隆(D3B5T)
  • 免疫组化-石蜡切片; 小鼠; 1:1600; 图 4d
  • 免疫印迹; 小鼠; 1:1000; 图 7b
赛信通(上海)生物试剂有限公司组蛋白H3抗体(Cell Signaling, 74829)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:1600 (图 4d) 和 被用于免疫印迹在小鼠样本上浓度为1:1000 (图 7b). Nat Commun (2020) ncbi
domestic rabbit 单克隆(D2C8)
  • 免疫组化; 小鼠; 1:500; 图 4b, s6e, s6g
赛信通(上海)生物试剂有限公司组蛋白H3抗体(Cell Signaling Technology, 3377S)被用于被用于免疫组化在小鼠样本上浓度为1:500 (图 4b, s6e, s6g). Nature (2020) ncbi
domestic rabbit 单克隆(D2C8)
  • 其他; 淡水涡虫;真涡虫; 1:3000
赛信通(上海)生物试剂有限公司组蛋白H3抗体(Cell Signaling, D2C8)被用于被用于其他在淡水涡虫;真涡虫样本上浓度为1:3000. elife (2020) ncbi
domestic rabbit 单克隆(D2C8)
  • 免疫组化-冰冻切片; 小鼠; 1:300; 图 s9h
赛信通(上海)生物试剂有限公司组蛋白H3抗体(CST, 3377T)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:300 (图 s9h). Nat Commun (2020) ncbi
domestic rabbit 单克隆(C36B11)
  • 免疫组化-石蜡切片; 人类; 1:200; 图 1d
赛信通(上海)生物试剂有限公司组蛋白H3抗体(Cell Signaling, 9733)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:200 (图 1d). Neurol Med Chir (Tokyo) (2020) ncbi
domestic rabbit 单克隆(D2B12)
  • 染色质免疫沉淀 ; 人类; 图 s5c, s6a, 5d
赛信通(上海)生物试剂有限公司组蛋白H3抗体(Cell Signaling Technology, 4620)被用于被用于染色质免疫沉淀 在人类样本上 (图 s5c, s6a, 5d). Cell Rep (2019) ncbi
小鼠 单克隆(1B1B2)
  • 免疫印迹; 人类; 图 4c
赛信通(上海)生物试剂有限公司组蛋白H3抗体(Cell Signaling, 1B1B2)被用于被用于免疫印迹在人类样本上 (图 4c). Nature (2019) ncbi
domestic rabbit 单克隆(C36B11)
  • 免疫印迹; 人类; 1:500-1:2000; 图 5f, 6d
赛信通(上海)生物试剂有限公司组蛋白H3抗体(Cell Signaling, 9733)被用于被用于免疫印迹在人类样本上浓度为1:500-1:2000 (图 5f, 6d). Cell Rep (2019) ncbi
domestic rabbit 单克隆(D2C8)
  • 免疫印迹; 人类; 1:1000; 图 6c
赛信通(上海)生物试剂有限公司组蛋白H3抗体(CST, 3377)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 6c). Genes Cancer (2019) ncbi
domestic rabbit 单克隆(D5A7)
  • 流式细胞仪; 小鼠; 图 2n
赛信通(上海)生物试剂有限公司组蛋白H3抗体(Cell Signaling, D5A7)被用于被用于流式细胞仪在小鼠样本上 (图 2n). Science (2019) ncbi
domestic rabbit 单克隆(C36B11)
  • 流式细胞仪; 小鼠; 图 2n
赛信通(上海)生物试剂有限公司组蛋白H3抗体(Cell Signaling, C36B11)被用于被用于流式细胞仪在小鼠样本上 (图 2n). Science (2019) ncbi
domestic rabbit 单克隆(C36B11)
  • 免疫细胞化学; 小鼠
赛信通(上海)生物试剂有限公司组蛋白H3抗体(Cell signaling, 9733)被用于被用于免疫细胞化学在小鼠样本上. Nature (2019) ncbi
domestic rabbit 单克隆(C36B11)
  • 染色质免疫沉淀 ; 人类; 1:50; 图 4i
  • 免疫印迹; 人类; 1:1000; 图 4a, 4c, 6a
赛信通(上海)生物试剂有限公司组蛋白H3抗体(Cell Signaling, 9733)被用于被用于染色质免疫沉淀 在人类样本上浓度为1:50 (图 4i) 和 被用于免疫印迹在人类样本上浓度为1:1000 (图 4a, 4c, 6a). Oncol Rep (2019) ncbi
domestic rabbit 单克隆(D2B12)
  • 染色质免疫沉淀 ; 人类; 1:50; 图 3f
赛信通(上海)生物试剂有限公司组蛋白H3抗体(Cell Signaling, 4620)被用于被用于染色质免疫沉淀 在人类样本上浓度为1:50 (图 3f). Oncol Rep (2019) ncbi
domestic rabbit 单克隆(D1H2)
  • 免疫印迹; 小鼠; 1:1000; 图 4b
赛信通(上海)生物试剂有限公司组蛋白H3抗体(Cell Signaling, 4499)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 4b). Aging (Albany NY) (2019) ncbi
domestic rabbit 单克隆(C36B11)
  • ChIP-Seq; 非洲爪蛙; 图 3e
赛信通(上海)生物试剂有限公司组蛋白H3抗体(CST, 9733BF)被用于被用于ChIP-Seq在非洲爪蛙样本上 (图 3e). Sci Adv (2019) ncbi
domestic rabbit 单克隆(C36B11)
  • ChIP-Seq; 鸡; 图 3a
赛信通(上海)生物试剂有限公司组蛋白H3抗体(Cell signalling, C36B11)被用于被用于ChIP-Seq在鸡样本上 (图 3a). Dev Biol (2020) ncbi
小鼠 单克隆(1B1B2)
  • 免疫印迹; 人类; 图 5b
赛信通(上海)生物试剂有限公司组蛋白H3抗体(Cell Signaling, 14269)被用于被用于免疫印迹在人类样本上 (图 5b). Cells (2019) ncbi
domestic rabbit 单克隆(C75H12)
  • 免疫印迹; 小鼠; 图 2e
赛信通(上海)生物试剂有限公司组蛋白H3抗体(Cell Signaling, 2901)被用于被用于免疫印迹在小鼠样本上 (图 2e). Nature (2019) ncbi
domestic rabbit 单克隆(C36B11)
  • 免疫印迹; 人类; 1:1000; 图 s3d
赛信通(上海)生物试剂有限公司组蛋白H3抗体(Cell Signaling, 9733)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 s3d). Sci Adv (2019) ncbi
小鼠 单克隆(1B1B2)
  • 免疫印迹; 人类; 1:1000; 图 s3a
赛信通(上海)生物试剂有限公司组蛋白H3抗体(Cell Signaling, 14269S)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 s3a). Sci Adv (2019) ncbi
domestic rabbit 单克隆(D1H2)
  • 免疫印迹; 人类; 1:1000; 图 5c
赛信通(上海)生物试剂有限公司组蛋白H3抗体(Cell Signaling Technology, 4499)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 5c). Cancer Res (2019) ncbi
domestic rabbit 单克隆(D1H2)
  • 免疫印迹; 人类; 图 s1h
赛信通(上海)生物试剂有限公司组蛋白H3抗体(Cell Signaling, D1H2)被用于被用于免疫印迹在人类样本上 (图 s1h). Cell (2019) ncbi
domestic rabbit 单克隆(C36B11)
  • 免疫细胞化学; 人类; 1:200; 图 5b
赛信通(上海)生物试剂有限公司组蛋白H3抗体(Cell Signaling, 9733)被用于被用于免疫细胞化学在人类样本上浓度为1:200 (图 5b). Nucleic Acids Res (2019) ncbi
domestic rabbit 单克隆(C36B11)
  • 免疫组化; 小鼠; 1:200; 图 e10k
  • 免疫印迹; 人类; 1:1000; 图 3d
赛信通(上海)生物试剂有限公司组蛋白H3抗体(Cell Signaling, 9733)被用于被用于免疫组化在小鼠样本上浓度为1:200 (图 e10k) 和 被用于免疫印迹在人类样本上浓度为1:1000 (图 3d). Nature (2019) ncbi
domestic rabbit 单克隆(D1H2)
  • 免疫印迹; 人类; 图 6b
赛信通(上海)生物试剂有限公司组蛋白H3抗体(CST, 4499)被用于被用于免疫印迹在人类样本上 (图 6b). Oxid Med Cell Longev (2019) ncbi
domestic rabbit 单克隆(C36B11)
  • 免疫印迹; 小鼠; 1:5000; 图 4s3d
赛信通(上海)生物试剂有限公司组蛋白H3抗体(Cell Signaling, C36B11)被用于被用于免疫印迹在小鼠样本上浓度为1:5000 (图 4s3d). elife (2019) ncbi
domestic rabbit 单克隆(C36B11)
  • mass cytometry; 人类; 图 3a
赛信通(上海)生物试剂有限公司组蛋白H3抗体(Cell Signaling Technologies, 9733)被用于被用于mass cytometry在人类样本上 (图 3a). Cell (2019) ncbi
domestic rabbit 单克隆(D5A7)
  • ChIP-Seq; 小鼠; 图 5a
赛信通(上海)生物试剂有限公司组蛋白H3抗体(Cell Signaling, 4909)被用于被用于ChIP-Seq在小鼠样本上 (图 5a). Nat Commun (2019) ncbi
domestic rabbit 单克隆(C36B11)
  • ChIP-Seq; 小鼠; 图 5a
  • 免疫印迹; 小鼠; 1:1000; 图 1b
赛信通(上海)生物试剂有限公司组蛋白H3抗体(Cell Signaling, 9733)被用于被用于ChIP-Seq在小鼠样本上 (图 5a) 和 被用于免疫印迹在小鼠样本上浓度为1:1000 (图 1b). Nat Commun (2019) ncbi
domestic rabbit 单克隆(C36B11)
  • 免疫印迹; 小鼠; 1:1000; 图 3a
赛信通(上海)生物试剂有限公司组蛋白H3抗体(Cell Signaling, 9733)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 3a). EMBO Mol Med (2019) ncbi
domestic rabbit 单克隆(C36B11)
  • 免疫组化; 人类; 1:200; 图 2a
赛信通(上海)生物试剂有限公司组蛋白H3抗体(CST, 9733)被用于被用于免疫组化在人类样本上浓度为1:200 (图 2a). Nat Commun (2019) ncbi
domestic rabbit 单克隆(D85B4)
  • 免疫印迹; 小鼠; 图 5a
赛信通(上海)生物试剂有限公司组蛋白H3抗体(Cell Signaling Technology, 4658)被用于被用于免疫印迹在小鼠样本上 (图 5a). Cancer Res (2019) ncbi
domestic rabbit 单克隆(D2B12)
  • 免疫印迹; 人类; 图 6c
赛信通(上海)生物试剂有限公司组蛋白H3抗体(Cell Signaling Technology, 4620S)被用于被用于免疫印迹在人类样本上 (图 6c). Sci Adv (2019) ncbi
domestic rabbit 单克隆(D1H2)
  • 免疫印迹; 小鼠; 1:2000; 图 s16c
赛信通(上海)生物试剂有限公司组蛋白H3抗体(Cell Signaling Technology, 4499)被用于被用于免疫印迹在小鼠样本上浓度为1:2000 (图 s16c). Science (2019) ncbi
domestic rabbit 单克隆(C36B11)
  • 免疫印迹; 小鼠; 1:2000; 图 s4h
赛信通(上海)生物试剂有限公司组蛋白H3抗体(Cell Signaling Technology, 9733)被用于被用于免疫印迹在小鼠样本上浓度为1:2000 (图 s4h). Science (2019) ncbi
domestic rabbit 单克隆(C36B11)
  • ChIP-Seq; 大鼠; 图 3e
赛信通(上海)生物试剂有限公司组蛋白H3抗体(Cell Signaling, 9733S)被用于被用于ChIP-Seq在大鼠样本上 (图 3e). Nature (2019) ncbi
domestic rabbit 单克隆(C36B11)
  • 免疫细胞化学; 人类; 图 4b
赛信通(上海)生物试剂有限公司组蛋白H3抗体(CST, 9733)被用于被用于免疫细胞化学在人类样本上 (图 4b). Life Sci Alliance (2019) ncbi
domestic rabbit 单克隆(D2C8)
  • 免疫组化; 小鼠; 图 3f
赛信通(上海)生物试剂有限公司组蛋白H3抗体(Cell Signaling, 3377)被用于被用于免疫组化在小鼠样本上 (图 3f). Cell Rep (2019) ncbi
domestic rabbit 单克隆(D1H2)
  • 免疫印迹; 人类; 图 e5e
赛信通(上海)生物试剂有限公司组蛋白H3抗体(CST, 4499)被用于被用于免疫印迹在人类样本上 (图 e5e). Nature (2019) ncbi
domestic rabbit 单克隆(D1H2)
  • 免疫印迹; 人类; 图 5b
赛信通(上海)生物试剂有限公司组蛋白H3抗体(Cell Signaling Technology, 4499)被用于被用于免疫印迹在人类样本上 (图 5b). Mol Cell (2019) ncbi
domestic rabbit 单克隆(D4W1U)
  • 免疫印迹; 人类; 图 3h
赛信通(上海)生物试剂有限公司组蛋白H3抗体(Cell Signaling, 13969)被用于被用于免疫印迹在人类样本上 (图 3h). Nat Cell Biol (2019) ncbi
domestic rabbit 单克隆(D1H2)
  • 免疫印迹; 人类; 图 6h
赛信通(上海)生物试剂有限公司组蛋白H3抗体(Cell Signaling, 4499)被用于被用于免疫印迹在人类样本上 (图 6h). Nat Cell Biol (2019) ncbi
domestic rabbit 单克隆(D1H2)
  • 免疫印迹; 小鼠; 1:500; 图 1a
赛信通(上海)生物试剂有限公司组蛋白H3抗体(Cell Signaling, CST4499s)被用于被用于免疫印迹在小鼠样本上浓度为1:500 (图 1a). Brain (2019) ncbi
domestic rabbit 单克隆(C36B11)
  • 免疫印迹; 小鼠; 1:500; 图 1a
赛信通(上海)生物试剂有限公司组蛋白H3抗体(Cell Signaling, C36B11)被用于被用于免疫印迹在小鼠样本上浓度为1:500 (图 1a). Brain (2019) ncbi
domestic rabbit 单克隆(D1H2)
  • 免疫印迹; 小鼠; 1:5000; 图 4i
赛信通(上海)生物试剂有限公司组蛋白H3抗体(Cell Signaling, 4499S)被用于被用于免疫印迹在小鼠样本上浓度为1:5000 (图 4i). elife (2019) ncbi
domestic rabbit 单克隆(D1H2)
  • 免疫印迹; 人类; 1:2000; 图 s4
赛信通(上海)生物试剂有限公司组蛋白H3抗体(Cell Signaling, 4499)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 s4). Front Immunol (2018) ncbi
domestic rabbit 单克隆(D1H2)
  • 免疫印迹; 人类; 图 4b
赛信通(上海)生物试剂有限公司组蛋白H3抗体(Cell Signaling, 4499S)被用于被用于免疫印迹在人类样本上 (图 4b). Sci Adv (2019) ncbi
domestic rabbit 单克隆(C36B11)
  • 免疫细胞化学; 小鼠; 图 s6d
赛信通(上海)生物试剂有限公司组蛋白H3抗体(Cell Signaling, 9733S)被用于被用于免疫细胞化学在小鼠样本上 (图 s6d). Cell (2019) ncbi
domestic rabbit 单克隆(D2C8)
  • 流式细胞仪; 人类; 1:50; 图 s1d
赛信通(上海)生物试剂有限公司组蛋白H3抗体(Cell Signaling, D2C8)被用于被用于流式细胞仪在人类样本上浓度为1:50 (图 s1d). Nucleic Acids Res (2019) ncbi
domestic rabbit 单克隆(D1H2)
  • 免疫印迹; 人类; 图 5c
赛信通(上海)生物试剂有限公司组蛋白H3抗体(Cell Signaling, D1H2)被用于被用于免疫印迹在人类样本上 (图 5c). Nat Commun (2018) ncbi
domestic rabbit 单克隆(D1H2)
  • 免疫印迹; 人类; 图 2b
  • 免疫印迹; 小鼠; 图 1b
赛信通(上海)生物试剂有限公司组蛋白H3抗体(Cell Signaling, 4499)被用于被用于免疫印迹在人类样本上 (图 2b) 和 被用于免疫印迹在小鼠样本上 (图 1b). Science (2018) ncbi
domestic rabbit 单克隆(C36B11)
  • 免疫印迹; 小鼠; 1:5000; 图 4e
赛信通(上海)生物试剂有限公司组蛋白H3抗体(Cell Signaling Technology, C36B11)被用于被用于免疫印迹在小鼠样本上浓度为1:5000 (图 4e). EMBO J (2019) ncbi
domestic rabbit 单克隆(C36B11)
  • 免疫组化-冰冻切片; 小鼠; 图 5b
  • 流式细胞仪; 小鼠; 图 5a
赛信通(上海)生物试剂有限公司组蛋白H3抗体(Cell Signaling, C36B11)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 5b) 和 被用于流式细胞仪在小鼠样本上 (图 5a). J Cell Biol (2018) ncbi
domestic rabbit 单克隆(D1H2)
  • 免疫印迹; 小鼠; 图 3d
赛信通(上海)生物试剂有限公司组蛋白H3抗体(CST, 4499)被用于被用于免疫印迹在小鼠样本上 (图 3d). Oncogene (2018) ncbi
domestic rabbit 单克隆(D1H2)
  • 免疫印迹; 小鼠; 1:1000; 图 2f
赛信通(上海)生物试剂有限公司组蛋白H3抗体(Cell Signaling, 4499)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 2f). Science (2018) ncbi
domestic rabbit 单克隆(C36B11)
  • ChIP-Seq; 小鼠; 图 3e
赛信通(上海)生物试剂有限公司组蛋白H3抗体(Cell Signaling, 9733)被用于被用于ChIP-Seq在小鼠样本上 (图 3e). Cancer Cell (2018) ncbi
domestic rabbit 单克隆(D1H2)
  • 免疫印迹; 小鼠; 1:500; 图 1a
赛信通(上海)生物试剂有限公司组蛋白H3抗体(Cell Signaling, 4499)被用于被用于免疫印迹在小鼠样本上浓度为1:500 (图 1a). Nat Neurosci (2018) ncbi
domestic rabbit 单克隆(D2C8)
  • 免疫印迹; 人类; 1:1000; 图 2d
赛信通(上海)生物试剂有限公司组蛋白H3抗体(Cell Signaling, 3377)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 2d). Science (2018) ncbi
domestic rabbit 单克隆(D1H2)
  • 免疫印迹; 人类; 图 7d
赛信通(上海)生物试剂有限公司组蛋白H3抗体(Cell Signaling, 4499)被用于被用于免疫印迹在人类样本上 (图 7d). J Biol Chem (2018) ncbi
domestic rabbit 单克隆(D1H2)
  • 免疫印迹; 人类; 1:5000; 图 s11c
赛信通(上海)生物试剂有限公司组蛋白H3抗体(Cell Signaling, 4499)被用于被用于免疫印迹在人类样本上浓度为1:5000 (图 s11c). Nat Commun (2018) ncbi
小鼠 单克隆(1B1B2)
  • 免疫印迹; 人类; 图 3b
赛信通(上海)生物试剂有限公司组蛋白H3抗体(Cell Signaling, 14269)被用于被用于免疫印迹在人类样本上 (图 3b). Cell (2018) ncbi
domestic rabbit 单克隆(D1H2)
  • 免疫印迹; 人类; 1:5000; 图 1e
赛信通(上海)生物试剂有限公司组蛋白H3抗体(Cell Signaling, 4499)被用于被用于免疫印迹在人类样本上浓度为1:5000 (图 1e). Nat Commun (2017) ncbi
domestic rabbit 单克隆(C36B11)
  • 免疫印迹; 人类; 图 1e
赛信通(上海)生物试剂有限公司组蛋白H3抗体(Cell Signaling, 9733)被用于被用于免疫印迹在人类样本上 (图 1e). Cancer Res (2018) ncbi
domestic rabbit 单克隆(D2C8)
  • 免疫印迹; 小鼠; 图 s1h
赛信通(上海)生物试剂有限公司组蛋白H3抗体(Cell Signaling, 3377)被用于被用于免疫印迹在小鼠样本上 (图 s1h). Nature (2018) ncbi
domestic rabbit 单克隆(D1H2)
  • 免疫印迹; 人类; 1:10,000; 图 s2f
赛信通(上海)生物试剂有限公司组蛋白H3抗体(Cell Signaling Technologies, 4499S)被用于被用于免疫印迹在人类样本上浓度为1:10,000 (图 s2f). elife (2017) ncbi
domestic rabbit 单克隆(D85B4)
  • 免疫印迹; 人类; 1:2000; 图 1a
赛信通(上海)生物试剂有限公司组蛋白H3抗体(Cell Signaling, 4658)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 1a). Nat Commun (2017) ncbi
domestic rabbit 单克隆(D1H2)
  • 免疫印迹; 人类; 1:2000; 图 1a
赛信通(上海)生物试剂有限公司组蛋白H3抗体(Cell Signaling, 4499)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 1a). Nat Commun (2017) ncbi
domestic rabbit 单克隆(D1H2)
  • 免疫印迹; 人类; 1:5000; 图 1b
赛信通(上海)生物试剂有限公司组蛋白H3抗体(Cell Signaling, 4499)被用于被用于免疫印迹在人类样本上浓度为1:5000 (图 1b). Stem Cells (2017) ncbi
domestic rabbit 单克隆(D1H2)
  • 免疫印迹; 人类; 图 5b
赛信通(上海)生物试剂有限公司组蛋白H3抗体(Cell Signaling, 4499)被用于被用于免疫印迹在人类样本上 (图 5b). Proc Natl Acad Sci U S A (2017) ncbi
domestic rabbit 单克隆(D5A7)
  • 免疫印迹; 人类; 1:1000; 图 1c
赛信通(上海)生物试剂有限公司组蛋白H3抗体(Cell Signaling, 4909)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 1c). Proc Natl Acad Sci U S A (2017) ncbi
domestic rabbit 单克隆(D1H2)
  • 免疫印迹; 大鼠; 1:1000; 图 2b, 3f
  • 免疫印迹; 小鼠; 1:1000; 图 3e
赛信通(上海)生物试剂有限公司组蛋白H3抗体(Cell Signaling, 4499)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 2b, 3f) 和 被用于免疫印迹在小鼠样本上浓度为1:1000 (图 3e). Brain Res (2017) ncbi
domestic rabbit 单克隆(D1H2)
  • 免疫印迹; 人类; 图 2e
赛信通(上海)生物试剂有限公司组蛋白H3抗体(Cell Signaling Technology, 4499)被用于被用于免疫印迹在人类样本上 (图 2e). Oncotarget (2017) ncbi
domestic rabbit 单克隆(C36B11)
  • 免疫印迹; 人类; 图 5b
赛信通(上海)生物试剂有限公司组蛋白H3抗体(CST, 9733)被用于被用于免疫印迹在人类样本上 (图 5b). Sci Rep (2017) ncbi
domestic rabbit 单克隆(D1H2)
  • 免疫印迹; 小鼠; 图 5e
赛信通(上海)生物试剂有限公司组蛋白H3抗体(Cell Signaling, 4499)被用于被用于免疫印迹在小鼠样本上 (图 5e). Sci Rep (2017) ncbi
domestic rabbit 单克隆(C36B11)
  • 染色质免疫沉淀 ; 人类; 图 7h
赛信通(上海)生物试剂有限公司组蛋白H3抗体(cell signaling, 9733)被用于被用于染色质免疫沉淀 在人类样本上 (图 7h). J Clin Invest (2017) ncbi
  • 免疫印迹; 人类; 图 2a
赛信通(上海)生物试剂有限公司组蛋白H3抗体(CST, 9847)被用于被用于免疫印迹在人类样本上 (图 2a). Nat Commun (2017) ncbi
domestic rabbit 单克隆(C36B11)
  • 免疫细胞化学; 小鼠; 图 6
  • 免疫组化; 小鼠; 图 3b
  • 免疫印迹; 小鼠; 图 3b
赛信通(上海)生物试剂有限公司组蛋白H3抗体(cell signalling, C36B11)被用于被用于免疫细胞化学在小鼠样本上 (图 6), 被用于免疫组化在小鼠样本上 (图 3b) 和 被用于免疫印迹在小鼠样本上 (图 3b). Biochim Biophys Acta Gene Regul Mech (2017) ncbi
domestic rabbit 单克隆(D2C8)
  • 免疫印迹; 小鼠; 1:1000; 图 5D
赛信通(上海)生物试剂有限公司组蛋白H3抗体(Cell Signaling, D2C8)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 5D). Nucleic Acids Res (2017) ncbi
domestic rabbit 单克隆(C36B11)
  • 免疫印迹; 小鼠; 1:2000; 图 s6c
赛信通(上海)生物试剂有限公司组蛋白H3抗体(Cell Signaling Technology, CST-9733s)被用于被用于免疫印迹在小鼠样本上浓度为1:2000 (图 s6c). Cell Rep (2017) ncbi
domestic rabbit 单克隆(D2C8)
  • 免疫印迹; 小鼠; 图 1c
赛信通(上海)生物试剂有限公司组蛋白H3抗体(CST, 3377)被用于被用于免疫印迹在小鼠样本上 (图 1c). PLoS ONE (2017) ncbi
domestic rabbit 单克隆(D1H2)
  • 免疫印迹; 小鼠; 图 1c
赛信通(上海)生物试剂有限公司组蛋白H3抗体(CST, 4499)被用于被用于免疫印迹在小鼠样本上 (图 1c). PLoS ONE (2017) ncbi
domestic rabbit 单克隆(C36B11)
  • 其他; 人类; 1:2500; 图 3
  • 免疫印迹; 人类; 1:1000; 图 s10
赛信通(上海)生物试剂有限公司组蛋白H3抗体(Cell Signaling, 9733)被用于被用于其他在人类样本上浓度为1:2500 (图 3) 和 被用于免疫印迹在人类样本上浓度为1:1000 (图 s10). Nat Chem Biol (2017) ncbi
domestic rabbit 单克隆(D1H2)
  • 免疫印迹; 人类; 1:1000; 图 s10
赛信通(上海)生物试剂有限公司组蛋白H3抗体(Cell Signaling, 4499)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 s10). Nat Chem Biol (2017) ncbi
domestic rabbit 单克隆(D2C8)
  • 免疫印迹; 人类; 1:1000; 图 2d
赛信通(上海)生物试剂有限公司组蛋白H3抗体(Cell signaling, 33770)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 2d). Nat Commun (2017) ncbi
domestic rabbit 单克隆(D1H2)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司组蛋白H3抗体(Cell Signaling, 4499S)被用于被用于免疫印迹在人类样本上. Nucleic Acids Res (2017) ncbi
domestic rabbit 单克隆(D1H2)
  • 免疫印迹; 小鼠; 1:2000; 图 4e
赛信通(上海)生物试剂有限公司组蛋白H3抗体(Cell signaling, 4499)被用于被用于免疫印迹在小鼠样本上浓度为1:2000 (图 4e). Int J Mol Med (2017) ncbi
domestic rabbit 单克隆(D1H2)
  • 免疫印迹; 小鼠; 图 9f
赛信通(上海)生物试剂有限公司组蛋白H3抗体(Cell Signaling Technologies, 4499)被用于被用于免疫印迹在小鼠样本上 (图 9f). Mol Cell Biol (2017) ncbi
domestic rabbit 单克隆(C75H12)
  • 免疫组化; 人类; 1:500; 图 3
  • 免疫印迹; 人类; 图 4a
赛信通(上海)生物试剂有限公司组蛋白H3抗体(Cell Signaling Tech, 2901)被用于被用于免疫组化在人类样本上浓度为1:500 (图 3) 和 被用于免疫印迹在人类样本上 (图 4a). Nat Genet (2017) ncbi
domestic rabbit 单克隆(D1H2)
  • 免疫印迹; 人类; 图 1c
赛信通(上海)生物试剂有限公司组蛋白H3抗体(Cell Signaling, 4499)被用于被用于免疫印迹在人类样本上 (图 1c). Mol Biol Cell (2017) ncbi
domestic rabbit 单克隆(D1H2)
  • 免疫细胞化学; 人类; 图 5
赛信通(上海)生物试剂有限公司组蛋白H3抗体(Cell Signaling, 4499)被用于被用于免疫细胞化学在人类样本上 (图 5). PLoS ONE (2016) ncbi
domestic rabbit 单克隆(C36B11)
  • ChIP-Seq; 人类; 图 2f
  • 免疫印迹; 人类; 1:2000; 图 1e
赛信通(上海)生物试剂有限公司组蛋白H3抗体(Cell Signaling, 9733)被用于被用于ChIP-Seq在人类样本上 (图 2f) 和 被用于免疫印迹在人类样本上浓度为1:2000 (图 1e). Nat Med (2017) ncbi
domestic rabbit 单克隆(D2B12)
  • 免疫印迹; 人类; 图 1b
赛信通(上海)生物试剂有限公司组蛋白H3抗体(Cell Signaling, 4620S)被用于被用于免疫印迹在人类样本上 (图 1b). Front Immunol (2016) ncbi
domestic rabbit 单克隆(D1H2)
  • 染色质免疫沉淀 ; 人类; 1:2000
赛信通(上海)生物试剂有限公司组蛋白H3抗体(Cell signalling, 4499)被用于被用于染色质免疫沉淀 在人类样本上浓度为1:2000. Nat Commun (2016) ncbi
domestic rabbit 多克隆
  • 染色质免疫沉淀 ; 人类; 图 6b
赛信通(上海)生物试剂有限公司组蛋白H3抗体(Cell Signaling, 2650)被用于被用于染色质免疫沉淀 在人类样本上 (图 6b). Oncotarget (2017) ncbi
domestic rabbit 单克隆(D1H2)
  • 免疫印迹; 小鼠; 图 5b
赛信通(上海)生物试剂有限公司组蛋白H3抗体(Cell signaling, 4499)被用于被用于免疫印迹在小鼠样本上 (图 5b). JCI Insight (2016) ncbi
domestic rabbit 单克隆(D4W1U)
  • ChIP-Seq; 小鼠; 表 2
  • ChIP-Seq; 人类; 表 2
赛信通(上海)生物试剂有限公司组蛋白H3抗体(Cell Signaling, 13969)被用于被用于ChIP-Seq在小鼠样本上 (表 2) 和 被用于ChIP-Seq在人类样本上 (表 2). Epigenetics Chromatin (2016) ncbi
domestic rabbit 单克隆(C36B11)
  • ChIP-Seq; 小鼠; 表 2
  • ChIP-Seq; 人类; 表 2
赛信通(上海)生物试剂有限公司组蛋白H3抗体(Cell Signaling, 9733)被用于被用于ChIP-Seq在小鼠样本上 (表 2) 和 被用于ChIP-Seq在人类样本上 (表 2). Epigenetics Chromatin (2016) ncbi
domestic rabbit 单克隆(D2C8)
  • 免疫印迹; 人类; 1:1000; 图 s3c
赛信通(上海)生物试剂有限公司组蛋白H3抗体(Cell Signaling, 3377)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 s3c). Nat Commun (2016) ncbi
domestic rabbit 单克隆(D2C8)
  • 免疫印迹; 人类; 图 s1d
赛信通(上海)生物试剂有限公司组蛋白H3抗体(Cell signaling, 3377)被用于被用于免疫印迹在人类样本上 (图 s1d). PLoS Pathog (2016) ncbi
domestic rabbit 单克隆(C36B11)
  • 免疫印迹; 人类; 1:1000; 图 3c
赛信通(上海)生物试剂有限公司组蛋白H3抗体(Cell Signaling, C36B11)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3c). Nucleic Acids Res (2017) ncbi
domestic rabbit 单克隆(D1H2)
  • 免疫印迹; 人类; 1:1000; 图 3c
赛信通(上海)生物试剂有限公司组蛋白H3抗体(Cell Signaling, 4499)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3c). J Biol Chem (2016) ncbi
domestic rabbit 单克隆(C75H12)
  • 免疫印迹; 人类; 图 2
赛信通(上海)生物试剂有限公司组蛋白H3抗体(Cell signaling, 2901)被用于被用于免疫印迹在人类样本上 (图 2). Sci Rep (2016) ncbi
domestic rabbit 单克隆(D85B4)
  • 免疫印迹; 人类; 1:1000; 表 s6
赛信通(上海)生物试剂有限公司组蛋白H3抗体(Cell Signaling, 4658)被用于被用于免疫印迹在人类样本上浓度为1:1000 (表 s6). PLoS Genet (2016) ncbi
domestic rabbit 单克隆(C36B11)
  • 免疫印迹; 人类; 图 1b
  • ChIP-Seq; 小鼠; 1:40
  • 免疫细胞化学; 小鼠; 图 2f
赛信通(上海)生物试剂有限公司组蛋白H3抗体(Cell Signaling, 9733)被用于被用于免疫印迹在人类样本上 (图 1b), 被用于ChIP-Seq在小鼠样本上浓度为1:40 和 被用于免疫细胞化学在小鼠样本上 (图 2f). Proc Natl Acad Sci U S A (2016) ncbi
domestic rabbit 单克隆(D1H2)
  • 流式细胞仪; 小鼠; 图 s4a
赛信通(上海)生物试剂有限公司组蛋白H3抗体(Cell Signaling, 5499)被用于被用于流式细胞仪在小鼠样本上 (图 s4a). Proc Natl Acad Sci U S A (2016) ncbi
domestic rabbit 单克隆(D2C8)
  • 免疫组化; 斑马鱼; 图 4
赛信通(上海)生物试剂有限公司组蛋白H3抗体(Cell Signaling, 3377)被用于被用于免疫组化在斑马鱼样本上 (图 4). Stem Cell Reports (2016) ncbi
domestic rabbit 单克隆(D1H2)
  • 免疫印迹; 人类; 图 8
赛信通(上海)生物试剂有限公司组蛋白H3抗体(Cell Signaling, D1H2)被用于被用于免疫印迹在人类样本上 (图 8). PLoS ONE (2016) ncbi
domestic rabbit 单克隆(D1H2)
  • 免疫印迹; 人类; 1:1000; 图 s4c
赛信通(上海)生物试剂有限公司组蛋白H3抗体(Cell Signaling, 4499)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 s4c). Nat Commun (2016) ncbi
domestic rabbit 单克隆(D1H2)
  • 免疫印迹; 人类; 图 7
赛信通(上海)生物试剂有限公司组蛋白H3抗体(Cell Signaling, 4499)被用于被用于免疫印迹在人类样本上 (图 7). Cancer Med (2016) ncbi
domestic rabbit 单克隆(C36B11)
  • 染色质免疫沉淀 ; 人类; 图 5
  • 免疫印迹; 人类; 图 5
赛信通(上海)生物试剂有限公司组蛋白H3抗体(Cell Signaling, 9733)被用于被用于染色质免疫沉淀 在人类样本上 (图 5) 和 被用于免疫印迹在人类样本上 (图 5). Cell Death Dis (2016) ncbi
domestic rabbit 单克隆(C36B11)
  • 免疫印迹; 人类; 1:1000; 图 3d,4b,7b
赛信通(上海)生物试剂有限公司组蛋白H3抗体(CST, 9733)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3d,4b,7b). Oncotarget (2016) ncbi
domestic rabbit 单克隆(D85B4)
  • 免疫印迹; 人类; 1:1000; 图 1
赛信通(上海)生物试剂有限公司组蛋白H3抗体(CST, 4658)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 1). Oncotarget (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:100; 图 1
赛信通(上海)生物试剂有限公司组蛋白H3抗体(Cell Signaling, 2650)被用于被用于免疫组化在小鼠样本上浓度为1:100 (图 1). Aging (Albany NY) (2016) ncbi
domestic rabbit 单克隆(C36B11)
  • 酶联免疫吸附测定; 人类; 1:1000; 图 s3
  • 免疫印迹; 人类; 图 s1
赛信通(上海)生物试剂有限公司组蛋白H3抗体(CST, 9733)被用于被用于酶联免疫吸附测定在人类样本上浓度为1:1000 (图 s3) 和 被用于免疫印迹在人类样本上 (图 s1). PLoS ONE (2016) ncbi
domestic rabbit 单克隆(D1H2)
  • 免疫印迹; 人类; 1:3000; 图 5
赛信通(上海)生物试剂有限公司组蛋白H3抗体(Cell Signaling Technology, 4499)被用于被用于免疫印迹在人类样本上浓度为1:3000 (图 5). Oncotarget (2016) ncbi
domestic rabbit 单克隆(D2C8)
  • 免疫印迹; 人类; 1:1000; 图 5f
赛信通(上海)生物试剂有限公司组蛋白H3抗体(Cell Signaling, 3377)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 5f). Oncotarget (2016) ncbi
domestic rabbit 单克隆(D1H2)
  • 免疫印迹; 人类; 图 4
  • 免疫印迹; 小鼠; 图 6
赛信通(上海)生物试剂有限公司组蛋白H3抗体(Cell Signaling, 4499P)被用于被用于免疫印迹在人类样本上 (图 4) 和 被用于免疫印迹在小鼠样本上 (图 6). Nat Commun (2016) ncbi
domestic rabbit 单克隆(D1H2)
  • 免疫印迹; 人类; 图 5a
赛信通(上海)生物试剂有限公司组蛋白H3抗体(Cell Signaling, 4499)被用于被用于免疫印迹在人类样本上 (图 5a). Oncotarget (2016) ncbi
domestic rabbit 单克隆(D1H2)
  • 免疫印迹; 小鼠; 图 1
赛信通(上海)生物试剂有限公司组蛋白H3抗体(Cell signaling, 4499L)被用于被用于免疫印迹在小鼠样本上 (图 1). elife (2016) ncbi
domestic rabbit 单克隆(D1H2)
  • 免疫印迹; 人类; 图 s1h
赛信通(上海)生物试剂有限公司组蛋白H3抗体(Cell Signaling, 4499)被用于被用于免疫印迹在人类样本上 (图 s1h). Nat Struct Mol Biol (2016) ncbi
domestic rabbit 单克隆(C36B11)
  • 免疫印迹; 人类; 图 1b
赛信通(上海)生物试剂有限公司组蛋白H3抗体(Cell Signaling, 9733)被用于被用于免疫印迹在人类样本上 (图 1b). Science (2016) ncbi
domestic rabbit 单克隆(C75H12)
  • 染色质免疫沉淀 ; 人类; 图 2a
  • 免疫细胞化学; 人类; 1:2000; 图 s3c
  • 免疫印迹; 人类; 图 1a
赛信通(上海)生物试剂有限公司组蛋白H3抗体(Cell Signaling, 2901)被用于被用于染色质免疫沉淀 在人类样本上 (图 2a), 被用于免疫细胞化学在人类样本上浓度为1:2000 (图 s3c) 和 被用于免疫印迹在人类样本上 (图 1a). Science (2016) ncbi
domestic rabbit 单克隆(D2C8)
  • 免疫细胞化学; 人类; 图 3
  • 免疫印迹; 人类; 图 4
赛信通(上海)生物试剂有限公司组蛋白H3抗体(Cell signaling, 3377)被用于被用于免疫细胞化学在人类样本上 (图 3) 和 被用于免疫印迹在人类样本上 (图 4). J Biol Chem (2016) ncbi
domestic rabbit 单克隆(D2C8)
  • 免疫印迹; 小鼠; 图 3
赛信通(上海)生物试剂有限公司组蛋白H3抗体(Cell Signaling, 3377S)被用于被用于免疫印迹在小鼠样本上 (图 3). PLoS Genet (2016) ncbi
domestic rabbit 单克隆(D1H2)
  • 免疫印迹; 人类; 1:2000; 图 s4
赛信通(上海)生物试剂有限公司组蛋白H3抗体(Cell Signaling, 4499)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 s4). Nat Commun (2016) ncbi
domestic rabbit 单克隆(C36B11)
  • 染色质免疫沉淀 ; fruit fly ; 图 s11b
  • 免疫细胞化学; 小鼠; 图 s6c
赛信通(上海)生物试剂有限公司组蛋白H3抗体(Cell Signaling, 9733)被用于被用于染色质免疫沉淀 在fruit fly 样本上 (图 s11b) 和 被用于免疫细胞化学在小鼠样本上 (图 s6c). Science (2016) ncbi
domestic rabbit 单克隆(D1H2)
  • 免疫印迹; 大鼠; 图 10
  • 免疫印迹; 小鼠; 图 2
赛信通(上海)生物试剂有限公司组蛋白H3抗体(Cell Signaling Technology, 4499)被用于被用于免疫印迹在大鼠样本上 (图 10) 和 被用于免疫印迹在小鼠样本上 (图 2). Autophagy (2016) ncbi
domestic rabbit 单克隆(D2C8)
  • 免疫组化-石蜡切片; 小鼠; 1:2000; 图 3
赛信通(上海)生物试剂有限公司组蛋白H3抗体(Cell signaling, CST3377)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:2000 (图 3). Mol Endocrinol (2016) ncbi
domestic rabbit 单克隆(D1H2)
  • 免疫印迹; 小鼠; 1:3000; 图 5
赛信通(上海)生物试剂有限公司组蛋白H3抗体(Cell Signaling, 4499)被用于被用于免疫印迹在小鼠样本上浓度为1:3000 (图 5). Front Cell Neurosci (2016) ncbi
domestic rabbit 单克隆(D85B4)
  • 免疫印迹; 小鼠; 1:1000; 图 3
赛信通(上海)生物试剂有限公司组蛋白H3抗体(Cell Signaling, 4658)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 3). Hum Mol Genet (2016) ncbi
domestic rabbit 单克隆(D1H2)
  • 免疫印迹; 人类; 图 3e
赛信通(上海)生物试剂有限公司组蛋白H3抗体(Cell Signaling, 4499)被用于被用于免疫印迹在人类样本上 (图 3e). J Mol Med (Berl) (2016) ncbi
小鼠 单克隆(1B1B2)
  • 染色质免疫沉淀 ; 人类; 图 4
  • 免疫印迹; 人类; 图 2
赛信通(上海)生物试剂有限公司组蛋白H3抗体(Cell Signaling Technology, 14269)被用于被用于染色质免疫沉淀 在人类样本上 (图 4) 和 被用于免疫印迹在人类样本上 (图 2). Cell Rep (2016) ncbi
domestic rabbit 单克隆(D2C8)
  • 免疫印迹; 人类; 1:2000; 图 1
赛信通(上海)生物试剂有限公司组蛋白H3抗体(Cell signaling, 3377)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 1). Nat Commun (2016) ncbi
domestic rabbit 单克隆(D85B4)
  • 免疫印迹; 人类; 1:1000; 图 12a
赛信通(上海)生物试剂有限公司组蛋白H3抗体(Cell Signaling, 4658)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 12a). J Biol Chem (2016) ncbi
domestic rabbit 单克隆(C36B11)
  • 免疫印迹; 人类; 1:1000; 图 12a
赛信通(上海)生物试剂有限公司组蛋白H3抗体(Cell Signaling, 9733)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 12a). J Biol Chem (2016) ncbi
domestic rabbit 单克隆(D1H2)
  • 免疫印迹; 人类; 图 5
赛信通(上海)生物试剂有限公司组蛋白H3抗体(Cell signaling, D1H2)被用于被用于免疫印迹在人类样本上 (图 5). Oncotarget (2016) ncbi
domestic rabbit 单克隆(D2C8)
  • 免疫印迹; 人类; 图 5
赛信通(上海)生物试剂有限公司组蛋白H3抗体(Cell signaling, D2C8)被用于被用于免疫印迹在人类样本上 (图 5). Oncotarget (2016) ncbi
domestic rabbit 多克隆
  • 染色质免疫沉淀 ; fruit fly ; 表 1
赛信通(上海)生物试剂有限公司组蛋白H3抗体(Cell signaling, 2650)被用于被用于染色质免疫沉淀 在fruit fly 样本上 (表 1). Genom Data (2016) ncbi
domestic rabbit 单克隆(D1H2)
  • 免疫印迹; 人类; 表 1
赛信通(上海)生物试剂有限公司组蛋白H3抗体(Cell Signaling, 4499)被用于被用于免疫印迹在人类样本上 (表 1). elife (2016) ncbi
domestic rabbit 单克隆(D1H2)
  • 免疫印迹; 小鼠; 1:1000; 图 5
赛信通(上海)生物试剂有限公司组蛋白H3抗体(Cell Signaling Technology, 4499)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 5). PLoS ONE (2016) ncbi
domestic rabbit 单克隆(D1H2)
  • 免疫印迹; 人类; 1:1000; 图 5a
赛信通(上海)生物试剂有限公司组蛋白H3抗体(Cell Signaling, 4499)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 5a). Mol Med Rep (2016) ncbi
domestic rabbit 单克隆(D1H2)
  • 免疫印迹; 人类; 1:2000; 图 4
赛信通(上海)生物试剂有限公司组蛋白H3抗体(Cell Signaling, 4499)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 4). Oncotarget (2016) ncbi
domestic rabbit 单克隆(D1H2)
  • 免疫印迹; 大鼠; 1:1000; 图 1
赛信通(上海)生物试剂有限公司组蛋白H3抗体(Cell Signaling, 4499)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 1). J Neurosci (2016) ncbi
domestic rabbit 单克隆(D1H2)
  • 免疫印迹; 人类; 1:1000; 图 3
赛信通(上海)生物试剂有限公司组蛋白H3抗体(Cell Signaling, 4499)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3). PLoS ONE (2016) ncbi
domestic rabbit 单克隆(D2B12)
  • 免疫印迹; 小鼠; 1:2000; 图 5d
赛信通(上海)生物试剂有限公司组蛋白H3抗体(Cell Signaling, 4620)被用于被用于免疫印迹在小鼠样本上浓度为1:2000 (图 5d). Stem Cells (2016) ncbi
domestic rabbit 单克隆(D2C8)
  • 免疫沉淀; 人类; 1:5000; 图 3b
赛信通(上海)生物试剂有限公司组蛋白H3抗体(Cell Signaling Technology, 3377)被用于被用于免疫沉淀在人类样本上浓度为1:5000 (图 3b). Nat Chem Biol (2016) ncbi
domestic rabbit 单克隆(C36B11)
  • ChIP-Seq; 小鼠; 图 4
  • 免疫细胞化学; 小鼠; 1:200; 图 4
  • 免疫印迹; 小鼠; 1:1000; 图 4
赛信通(上海)生物试剂有限公司组蛋白H3抗体(Cell signaling, C36B11)被用于被用于ChIP-Seq在小鼠样本上 (图 4), 被用于免疫细胞化学在小鼠样本上浓度为1:200 (图 4) 和 被用于免疫印迹在小鼠样本上浓度为1:1000 (图 4). elife (2016) ncbi
domestic rabbit 单克隆(C36B11)
  • 免疫组化-石蜡切片; 小鼠; 1:200; 图 7
赛信通(上海)生物试剂有限公司组蛋白H3抗体(Cell Signaling Technology, C36B11)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:200 (图 7). Neoplasia (2016) ncbi
domestic rabbit 单克隆(D1H2)
  • 免疫印迹; 小鼠; 1:2000; 图 1
  • 免疫印迹; 人类; 1:2000; 图 1
赛信通(上海)生物试剂有限公司组蛋白H3抗体(Cell Signaling, 4499)被用于被用于免疫印迹在小鼠样本上浓度为1:2000 (图 1) 和 被用于免疫印迹在人类样本上浓度为1:2000 (图 1). Nat Commun (2016) ncbi
domestic rabbit 单克隆(C36B11)
  • 染色质免疫沉淀 ; 小鼠; 图 7e
赛信通(上海)生物试剂有限公司组蛋白H3抗体(Cell Signaling, 9733)被用于被用于染色质免疫沉淀 在小鼠样本上 (图 7e). Nat Immunol (2016) ncbi
domestic rabbit 单克隆(D2C8)
  • 流式细胞仪; 人类; 图 s1
赛信通(上海)生物试剂有限公司组蛋白H3抗体(Cell Signaling, 3377)被用于被用于流式细胞仪在人类样本上 (图 s1). Proc Natl Acad Sci U S A (2016) ncbi
domestic rabbit 单克隆(C36B11)
  • 免疫组化; 人类; 1:200; 图 s4
赛信通(上海)生物试剂有限公司组蛋白H3抗体(Cell Signaling, C36B11)被用于被用于免疫组化在人类样本上浓度为1:200 (图 s4). Clin Cancer Res (2016) ncbi
domestic rabbit 单克隆(D1H2)
  • 免疫印迹; 人类; 图 1b
赛信通(上海)生物试剂有限公司组蛋白H3抗体(Cell Signaling, D1H2)被用于被用于免疫印迹在人类样本上 (图 1b). Oncotarget (2016) ncbi
domestic rabbit 单克隆(D2C8)
  • 免疫印迹; 人类; 图 5a
赛信通(上海)生物试剂有限公司组蛋白H3抗体(Cell Signaling, 3377)被用于被用于免疫印迹在人类样本上 (图 5a). Oncotarget (2016) ncbi
domestic rabbit 单克隆(D2C8)
  • 流式细胞仪; 人类; 图 s5
赛信通(上海)生物试剂有限公司组蛋白H3抗体(Cell Signaling Technology, D2C8)被用于被用于流式细胞仪在人类样本上 (图 s5). Oncotarget (2016) ncbi
domestic rabbit 单克隆(D2C8)
  • 免疫印迹; 人类; 1:1000; 图 2
赛信通(上海)生物试剂有限公司组蛋白H3抗体(Cell Signaling Technology, 3377)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 2). Nat Cell Biol (2016) ncbi
domestic rabbit 单克隆(C36B11)
  • 免疫组化; 人类; 图 2c
赛信通(上海)生物试剂有限公司组蛋白H3抗体(Cell Signaling, C36B11)被用于被用于免疫组化在人类样本上 (图 2c). Genes Dev (2015) ncbi
domestic rabbit 单克隆(C36B11)
  • 染色质免疫沉淀 ; 人类; 图 3
赛信通(上海)生物试剂有限公司组蛋白H3抗体(Cell Signaling, 9733)被用于被用于染色质免疫沉淀 在人类样本上 (图 3). Nat Commun (2015) ncbi
domestic rabbit 单克隆(C36B11)
  • 免疫组化-石蜡切片; 人类; 1:200; 图 6c
  • 染色质免疫沉淀 ; 人类; 图 4a
  • 免疫印迹; 人类; 1:2000; 图 1c, 3a, 2c
赛信通(上海)生物试剂有限公司组蛋白H3抗体(Cell Signaling, 9733)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:200 (图 6c), 被用于染色质免疫沉淀 在人类样本上 (图 4a) 和 被用于免疫印迹在人类样本上浓度为1:2000 (图 1c, 3a, 2c). Mol Cell Proteomics (2016) ncbi
domestic rabbit 单克隆(C36B11)
  • 免疫组化-石蜡切片; 小鼠; 1:500; 图 s5
  • 染色质免疫沉淀 ; 小鼠; 图 3
赛信通(上海)生物试剂有限公司组蛋白H3抗体(Cell Signaling Technology, 9733)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:500 (图 s5) 和 被用于染色质免疫沉淀 在小鼠样本上 (图 3). BMC Biol (2015) ncbi
domestic rabbit 单克隆(D2C8)
  • 流式细胞仪; 人类; 图 3
  • 免疫印迹; 人类; 图 2
赛信通(上海)生物试剂有限公司组蛋白H3抗体(Cell Signaling Tech, cst-3377)被用于被用于流式细胞仪在人类样本上 (图 3) 和 被用于免疫印迹在人类样本上 (图 2). Oncotarget (2016) ncbi
domestic rabbit 单克隆(C75H12)
  • 免疫印迹; 人类; 图 1
赛信通(上海)生物试剂有限公司组蛋白H3抗体(Cell signaling, 2901)被用于被用于免疫印迹在人类样本上 (图 1). Mol Cancer Ther (2016) ncbi
domestic rabbit 单克隆(C36B11)
  • 染色质免疫沉淀 ; 人类; 图 3
  • 免疫细胞化学; 人类; 图 4
  • 免疫印迹; 人类; 图 1
赛信通(上海)生物试剂有限公司组蛋白H3抗体(Cell signaling, 9733)被用于被用于染色质免疫沉淀 在人类样本上 (图 3), 被用于免疫细胞化学在人类样本上 (图 4) 和 被用于免疫印迹在人类样本上 (图 1). Mol Cancer Ther (2016) ncbi
domestic rabbit 单克隆(C36B11)
  • 免疫印迹基因敲除验证; 人类; 图 1
赛信通(上海)生物试剂有限公司组蛋白H3抗体(Cell Signaling Tech, 9733)被用于被用于免疫印迹基因敲除验证在人类样本上 (图 1). Biol Proced Online (2015) ncbi
domestic rabbit 单克隆(C36B11)
  • 免疫印迹; 大鼠; 图 1
赛信通(上海)生物试剂有限公司组蛋白H3抗体(Cell Signaling, 9733)被用于被用于免疫印迹在大鼠样本上 (图 1). Nat Neurosci (2015) ncbi
domestic rabbit 单克隆(D1H2)
  • 免疫印迹; 人类; 1:2000; 图 2
赛信通(上海)生物试剂有限公司组蛋白H3抗体(Cell Signaling, 4499)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 2). Nat Immunol (2016) ncbi
domestic rabbit 单克隆(D1H2)
  • 免疫印迹; 小鼠; 图 2
赛信通(上海)生物试剂有限公司组蛋白H3抗体(Cell signaling, 4499P)被用于被用于免疫印迹在小鼠样本上 (图 2). PLoS ONE (2015) ncbi
domestic rabbit 单克隆(D2B12)
  • 免疫印迹; 小鼠
赛信通(上海)生物试剂有限公司组蛋白H3抗体(Cell Signaling Technology, 4620)被用于被用于免疫印迹在小鼠样本上. Biochem J (2016) ncbi
domestic rabbit 单克隆(D1H2)
  • 免疫印迹; 小鼠; 1:2000; 图 4
赛信通(上海)生物试剂有限公司组蛋白H3抗体(Cell Signaling, 4499)被用于被用于免疫印迹在小鼠样本上浓度为1:2000 (图 4). PLoS ONE (2015) ncbi
domestic rabbit 单克隆(D1H2)
  • 免疫印迹; 人类; 图 2g
赛信通(上海)生物试剂有限公司组蛋白H3抗体(Cell Signaling, 4499P)被用于被用于免疫印迹在人类样本上 (图 2g). Nat Chem Biol (2015) ncbi
domestic rabbit 单克隆(D85B4)
  • 免疫印迹; 人类; 图 2g
赛信通(上海)生物试剂有限公司组蛋白H3抗体(Cell Signaling, 4658P)被用于被用于免疫印迹在人类样本上 (图 2g). Nat Chem Biol (2015) ncbi
domestic rabbit 单克隆(D2B12)
  • 免疫印迹; 小鼠; 1:1000; 图 6
赛信通(上海)生物试剂有限公司组蛋白H3抗体(Cell Signaling, 4620)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 6). Nat Commun (2015) ncbi
domestic rabbit 单克隆(C36B11)
  • 染色质免疫沉淀 ; 人类; 图 6
赛信通(上海)生物试剂有限公司组蛋白H3抗体(Cell Signaling Tech, 9733)被用于被用于染色质免疫沉淀 在人类样本上 (图 6). Oncotarget (2015) ncbi
domestic rabbit 单克隆(D1H2)
  • 免疫印迹; 小鼠; 1:2000; 图 2
赛信通(上海)生物试剂有限公司组蛋白H3抗体(Cell Signaling, 4499)被用于被用于免疫印迹在小鼠样本上浓度为1:2000 (图 2). Nat Commun (2015) ncbi
domestic rabbit 单克隆(C36B11)
  • 免疫组化-石蜡切片; 人类; 1:100; 图 1
赛信通(上海)生物试剂有限公司组蛋白H3抗体(Cell Signaling Technology, C36B11)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100 (图 1). Tumour Biol (2016) ncbi
domestic rabbit 单克隆(D1H2)
  • 免疫印迹; 人类; 图 2
赛信通(上海)生物试剂有限公司组蛋白H3抗体(Cell Signalling, 4499L)被用于被用于免疫印迹在人类样本上 (图 2). Oncotarget (2015) ncbi
domestic rabbit 单克隆(C36B11)
  • 染色质免疫沉淀 ; 小鼠
赛信通(上海)生物试剂有限公司组蛋白H3抗体(Cell Signaling, C36B11)被用于被用于染色质免疫沉淀 在小鼠样本上. J Cell Sci (2015) ncbi
domestic rabbit 单克隆(C36B11)
  • 染色质免疫沉淀 ; 人类; 图 5
赛信通(上海)生物试剂有限公司组蛋白H3抗体(Cell signaling, 9733)被用于被用于染色质免疫沉淀 在人类样本上 (图 5). PLoS ONE (2015) ncbi
domestic rabbit 单克隆(D1H2)
  • 免疫印迹; 人类; 图 1
赛信通(上海)生物试剂有限公司组蛋白H3抗体(CST, D1H2)被用于被用于免疫印迹在人类样本上 (图 1). J Cell Biol (2015) ncbi
domestic rabbit 单克隆(C36B11)
  • 免疫细胞化学; 小鼠; 图 4
赛信通(上海)生物试剂有限公司组蛋白H3抗体(Cell Signaling, 9733)被用于被用于免疫细胞化学在小鼠样本上 (图 4). J Pathol (2015) ncbi
domestic rabbit 单克隆(D2C8)
  • 免疫细胞化学; 人类; 1:1600; 图 2a
赛信通(上海)生物试剂有限公司组蛋白H3抗体(Cell Signaling Technologies, 3377)被用于被用于免疫细胞化学在人类样本上浓度为1:1600 (图 2a). PLoS ONE (2015) ncbi
domestic rabbit 单克隆(C36B11)
  • 染色质免疫沉淀 ; 小鼠; 图 s8
赛信通(上海)生物试剂有限公司组蛋白H3抗体(Cell Signaling Technology, 9733)被用于被用于染色质免疫沉淀 在小鼠样本上 (图 s8). Nat Commun (2015) ncbi
domestic rabbit 单克隆(D85B4)
  • 免疫细胞化学; 小鼠
  • 免疫印迹; 小鼠
赛信通(上海)生物试剂有限公司组蛋白H3抗体(Cell Signaling Technology, 4658P)被用于被用于免疫细胞化学在小鼠样本上 和 被用于免疫印迹在小鼠样本上. Stem Cells Int (2015) ncbi
domestic rabbit 单克隆(D2B12)
  • 染色质免疫沉淀 ; 人类; 图 3
赛信通(上海)生物试剂有限公司组蛋白H3抗体(Cell Signaling, 4620)被用于被用于染色质免疫沉淀 在人类样本上 (图 3). EMBO Mol Med (2015) ncbi
domestic rabbit 单克隆(C36B11)
  • 染色质免疫沉淀 ; 人类; 图 6a,6b,6c,7b
  • 免疫印迹; 人类; 图 7a
赛信通(上海)生物试剂有限公司组蛋白H3抗体(Cell Signaling, 9733)被用于被用于染色质免疫沉淀 在人类样本上 (图 6a,6b,6c,7b) 和 被用于免疫印迹在人类样本上 (图 7a). PLoS ONE (2015) ncbi
domestic rabbit 单克隆(D54)
  • 免疫印迹; 人类; 图 1c
赛信通(上海)生物试剂有限公司组蛋白H3抗体(Cell signaling, 4473)被用于被用于免疫印迹在人类样本上 (图 1c). Cell Rep (2015) ncbi
domestic rabbit 单克隆(C36B11)
  • 染色质免疫沉淀 ; 人类; 图 3
  • 流式细胞仪; 人类; 图 s3
赛信通(上海)生物试剂有限公司组蛋白H3抗体(Cell Signaling, 9733)被用于被用于染色质免疫沉淀 在人类样本上 (图 3) 和 被用于流式细胞仪在人类样本上 (图 s3). PLoS ONE (2015) ncbi
domestic rabbit 单克隆(D2C8)
  • 免疫印迹; 人类; 1:1000; 图 4
赛信通(上海)生物试剂有限公司组蛋白H3抗体(Cell signaling, 3377)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 4). J Cell Biol (2015) ncbi
domestic rabbit 单克隆(D2B12)
  • 染色质免疫沉淀 ; 人类; 图 4f
赛信通(上海)生物试剂有限公司组蛋白H3抗体(Cell Signaling, D2B12)被用于被用于染色质免疫沉淀 在人类样本上 (图 4f). Am J Pathol (2015) ncbi
domestic rabbit 单克隆(D85B4)
  • 免疫细胞化学; 小鼠; 1:100
赛信通(上海)生物试剂有限公司组蛋白H3抗体(CST, 4658S)被用于被用于免疫细胞化学在小鼠样本上浓度为1:100. Microsc Microanal (2015) ncbi
domestic rabbit 单克隆(D1H2)
  • 免疫印迹; 人类; 图 7
赛信通(上海)生物试剂有限公司组蛋白H3抗体(Cell Signaling, (D1H2)XP)被用于被用于免疫印迹在人类样本上 (图 7). Nucleic Acids Res (2015) ncbi
domestic rabbit 单克隆(D1H2)
  • 免疫印迹; 人类; 图 2
赛信通(上海)生物试剂有限公司组蛋白H3抗体(Cell Signaling Technology, 4499)被用于被用于免疫印迹在人类样本上 (图 2). Oncotarget (2015) ncbi
domestic rabbit 单克隆(D2C8)
  • reverse phase protein lysate microarray; 人类; 表 s2
赛信通(上海)生物试剂有限公司组蛋白H3抗体(Cell Signaling Technology, 3377S)被用于被用于reverse phase protein lysate microarray在人类样本上 (表 s2). Mol Syst Biol (2015) ncbi
domestic rabbit 单克隆(D2B12)
  • 染色质免疫沉淀 ; 人类; 1:40; 图 8a
赛信通(上海)生物试剂有限公司组蛋白H3抗体(Cell Signaling Technologies, 4620)被用于被用于染色质免疫沉淀 在人类样本上浓度为1:40 (图 8a). Nat Commun (2015) ncbi
domestic rabbit 单克隆(D9J1D)
  • 免疫印迹; 人类; 图 2
赛信通(上海)生物试剂有限公司组蛋白H3抗体(Cell signaling, 14111S)被用于被用于免疫印迹在人类样本上 (图 2). J Biol Chem (2015) ncbi
domestic rabbit 单克隆(C75H12)
  • 免疫印迹; 人类; 图 2
赛信通(上海)生物试剂有限公司组蛋白H3抗体(Cell signaling, 2901S)被用于被用于免疫印迹在人类样本上 (图 2). J Biol Chem (2015) ncbi
domestic rabbit 单克隆(D85B4)
  • 免疫印迹; 人类; 图 6
赛信通(上海)生物试剂有限公司组蛋白H3抗体(Cell Signaling Technology, 4658P)被用于被用于免疫印迹在人类样本上 (图 6). Cell Rep (2015) ncbi
domestic rabbit 单克隆(D1H2)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司组蛋白H3抗体(Cell Signaling, 4499)被用于被用于免疫印迹在人类样本上. Oncogene (2015) ncbi
domestic rabbit 单克隆(C36B11)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司组蛋白H3抗体(Cell Signaling, 9733)被用于被用于免疫印迹在人类样本上. Oncogene (2015) ncbi
domestic rabbit 单克隆(D2C8)
  • 免疫组化; newts; 1:200; 表 1
赛信通(上海)生物试剂有限公司组蛋白H3抗体(Cell Signaling Technology, 3377)被用于被用于免疫组化在newts样本上浓度为1:200 (表 1). Methods Mol Biol (2015) ncbi
domestic rabbit 单克隆(D1H2)
  • 免疫印迹; 人类; 图 7
赛信通(上海)生物试剂有限公司组蛋白H3抗体(Cell Signaling, 4499)被用于被用于免疫印迹在人类样本上 (图 7). Cancer Immunol Res (2015) ncbi
domestic rabbit 单克隆(C36B11)
  • 免疫组化-石蜡切片; 人类; 1:1000; 图 6
  • 染色质免疫沉淀 ; 人类; 1:1000; 图 4
赛信通(上海)生物试剂有限公司组蛋白H3抗体(Cell Signaling, 9733)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:1000 (图 6) 和 被用于染色质免疫沉淀 在人类样本上浓度为1:1000 (图 4). Nat Med (2015) ncbi
domestic rabbit 单克隆(D2C8)
  • 免疫印迹; 人类; 1:2000
赛信通(上海)生物试剂有限公司组蛋白H3抗体(Cell Signaling, 3377)被用于被用于免疫印迹在人类样本上浓度为1:2000. Oncotarget (2015) ncbi
domestic rabbit 单克隆(D1H2)
  • 免疫印迹; 小鼠; 1:2000; 图 1
赛信通(上海)生物试剂有限公司组蛋白H3抗体(Cell Signaling Technology, 4499)被用于被用于免疫印迹在小鼠样本上浓度为1:2000 (图 1). Rejuvenation Res (2015) ncbi
domestic rabbit 单克隆(D2C8)
  • 免疫组化-石蜡切片; 小鼠; 1:100
赛信通(上海)生物试剂有限公司组蛋白H3抗体(Cell Signaling, 3377)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:100. PLoS ONE (2015) ncbi
domestic rabbit 单克隆(D1H2)
  • 免疫印迹; 人类; 图 3
赛信通(上海)生物试剂有限公司组蛋白H3抗体(Cell signaling, 4499)被用于被用于免疫印迹在人类样本上 (图 3). Ann Surg Oncol (2015) ncbi
domestic rabbit 单克隆(D2C8)
  • 免疫组化; 小鼠; 1:100
赛信通(上海)生物试剂有限公司组蛋白H3抗体(Cell Signaling, 3377)被用于被用于免疫组化在小鼠样本上浓度为1:100. Endocrinology (2015) ncbi
domestic rabbit 单克隆(D1H2)
  • 免疫印迹; 大鼠; 1:25,000
赛信通(上海)生物试剂有限公司组蛋白H3抗体(Cell Signaling, 4499)被用于被用于免疫印迹在大鼠样本上浓度为1:25,000. Exp Neurol (2015) ncbi
domestic rabbit 单克隆(D1H2)
  • 免疫印迹; 人类; 1:1000
赛信通(上海)生物试剂有限公司组蛋白H3抗体(Cell Signaling Technology, #4499)被用于被用于免疫印迹在人类样本上浓度为1:1000. BMC Cancer (2014) ncbi
domestic rabbit 单克隆(C36B11)
  • 染色质免疫沉淀 ; 人类; 2 ugs
赛信通(上海)生物试剂有限公司组蛋白H3抗体(Cell Signaling Technology, #9733)被用于被用于染色质免疫沉淀 在人类样本上浓度为2 ugs. BMC Cancer (2014) ncbi
domestic rabbit 单克隆(D2B12)
  • 染色质免疫沉淀 ; 人类; 2 ugs
赛信通(上海)生物试剂有限公司组蛋白H3抗体(Cell Signaling Technology, #4620)被用于被用于染色质免疫沉淀 在人类样本上浓度为2 ugs. BMC Cancer (2014) ncbi
domestic rabbit 单克隆(D1H2)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司组蛋白H3抗体(Cell Signaling Technology, 4499)被用于被用于免疫印迹在人类样本上. PLoS ONE (2014) ncbi
domestic rabbit 单克隆(D2C8)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司组蛋白H3抗体(Cell Signaling Technology, 3377)被用于被用于免疫印迹在人类样本上. DNA Repair (Amst) (2015) ncbi
domestic rabbit 单克隆(C36B11)
  • 酶联免疫吸附测定; 人类; 1:1000
赛信通(上海)生物试剂有限公司组蛋白H3抗体(CST, 9733)被用于被用于酶联免疫吸附测定在人类样本上浓度为1:1000. PLoS ONE (2014) ncbi
domestic rabbit 单克隆(D1H2)
  • 免疫细胞化学; 人类
赛信通(上海)生物试剂有限公司组蛋白H3抗体(Cell Signaling Technology, 4499)被用于被用于免疫细胞化学在人类样本上. J Biomol Screen (2015) ncbi
domestic rabbit 单克隆(C36B11)
  • 免疫细胞化学; 人类
赛信通(上海)生物试剂有限公司组蛋白H3抗体(Cell Signaling Technology, 9733)被用于被用于免疫细胞化学在人类样本上. J Biomol Screen (2015) ncbi
domestic rabbit 单克隆(D2C8)
  • 流式细胞仪; 人类; 图 5c
赛信通(上海)生物试剂有限公司组蛋白H3抗体(Cell signaling, 3377P)被用于被用于流式细胞仪在人类样本上 (图 5c). Mol Pharm (2015) ncbi
domestic rabbit 单克隆(C36B11)
  • ChIP-Seq; 人类; 1:50
  • 免疫组化-石蜡切片; 人类; 1:500
  • 免疫细胞化学; 人类; 1:800
  • 免疫印迹; 人类; 1:1000
赛信通(上海)生物试剂有限公司组蛋白H3抗体(Cell Signaling, 9733)被用于被用于ChIP-Seq在人类样本上浓度为1:50, 被用于免疫组化-石蜡切片在人类样本上浓度为1:500, 被用于免疫细胞化学在人类样本上浓度为1:800 和 被用于免疫印迹在人类样本上浓度为1:1000. Nat Med (2014) ncbi
domestic rabbit 单克隆(D2B12)
  • 免疫印迹; 人类; 1:4000
赛信通(上海)生物试剂有限公司组蛋白H3抗体(Cell Signalling, 4620)被用于被用于免疫印迹在人类样本上浓度为1:4000. J Cell Biochem (2015) ncbi
domestic rabbit 单克隆(D1H2)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司组蛋白H3抗体(CST, 4499P)被用于被用于免疫印迹在人类样本上. Oncotarget (2014) ncbi
domestic rabbit 单克隆(D2C8)
  • 流式细胞仪; 人类; 1:800
赛信通(上海)生物试剂有限公司组蛋白H3抗体(Cell Signaling, 3377)被用于被用于流式细胞仪在人类样本上浓度为1:800. Cancer Res (2014) ncbi
domestic rabbit 单克隆(C36B11)
  • 免疫印迹; 人类; 图 5
  • 免疫印迹; 小鼠; 图 3
赛信通(上海)生物试剂有限公司组蛋白H3抗体(Cell Signaling Technology, 9733)被用于被用于免疫印迹在人类样本上 (图 5) 和 被用于免疫印迹在小鼠样本上 (图 3). Blood (2015) ncbi
domestic rabbit 单克隆(D1H2)
  • 免疫细胞化学; 人类
赛信通(上海)生物试剂有限公司组蛋白H3抗体(CST, 4499)被用于被用于免疫细胞化学在人类样本上. FEBS Lett (2014) ncbi
domestic rabbit 单克隆(C75H12)
  • 免疫组化-石蜡切片; 人类; 1:1000
赛信通(上海)生物试剂有限公司组蛋白H3抗体(Cell Signaling Technology, 2901)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:1000. Mol Cancer Res (2015) ncbi
domestic rabbit 单克隆(D1H2)
  • 免疫印迹; 人类; 图 s5
赛信通(上海)生物试剂有限公司组蛋白H3抗体(Cell Signaling Tech., 4499)被用于被用于免疫印迹在人类样本上 (图 s5). PLoS ONE (2014) ncbi
domestic rabbit 单克隆(D2C8)
  • 流式细胞仪; 人类
赛信通(上海)生物试剂有限公司组蛋白H3抗体(Cell Signaling Technology, D2C8)被用于被用于流式细胞仪在人类样本上. Cancer Res (2014) ncbi
domestic rabbit 单克隆(D1H2)
  • 免疫印迹; 人类; 1:5000; 图 s1
赛信通(上海)生物试剂有限公司组蛋白H3抗体(Cell Signaling Technology, 4499)被用于被用于免疫印迹在人类样本上浓度为1:5000 (图 s1). Int J Biochem Cell Biol (2014) ncbi
domestic rabbit 单克隆(D1H2)
  • 免疫印迹; 人类; 图 4
赛信通(上海)生物试剂有限公司组蛋白H3抗体(Cell Signaling Technology, 4499)被用于被用于免疫印迹在人类样本上 (图 4). Carcinogenesis (2014) ncbi
domestic rabbit 单克隆(C36B11)
  • 染色质免疫沉淀 ; 人类; 图 3
赛信通(上海)生物试剂有限公司组蛋白H3抗体(Cell Signaling, 9733)被用于被用于染色质免疫沉淀 在人类样本上 (图 3). elife (2014) ncbi
domestic rabbit 单克隆(D1H2)
  • 免疫印迹; 人类; 图 1b
赛信通(上海)生物试剂有限公司组蛋白H3抗体(Cell Signaling, D1H2)被用于被用于免疫印迹在人类样本上 (图 1b). Oncotarget (2014) ncbi
domestic rabbit 单克隆(D2B12)
  • 染色质免疫沉淀 ; 小鼠
赛信通(上海)生物试剂有限公司组蛋白H3抗体(Cell Signaling, 4620S)被用于被用于染色质免疫沉淀 在小鼠样本上. PLoS ONE (2014) ncbi
domestic rabbit 单克隆(D2C8)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司组蛋白H3抗体(Cell Signaling Technology, 3377)被用于被用于免疫印迹在人类样本上. Mol Cell Biol (2014) ncbi
domestic rabbit 单克隆(D85B4)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司组蛋白H3抗体(Cell Signaling, 4658p)被用于被用于免疫印迹在人类样本上. Cancer Discov (2014) ncbi
domestic rabbit 单克隆(D1H2)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司组蛋白H3抗体(Cell Signaling, 4499p)被用于被用于免疫印迹在人类样本上. Cancer Discov (2014) ncbi
domestic rabbit 单克隆(D1H2)
  • 免疫印迹; 小鼠
赛信通(上海)生物试剂有限公司组蛋白H3抗体(Cell Signaling, 4499)被用于被用于免疫印迹在小鼠样本上. Clin Sci (Lond) (2014) ncbi
domestic rabbit 单克隆(C36B11)
  • 染色质免疫沉淀 ; 人类
  • 免疫组化-石蜡切片; 大鼠; 0.07 ug/ml
赛信通(上海)生物试剂有限公司组蛋白H3抗体(CST, 9733)被用于被用于染色质免疫沉淀 在人类样本上 和 被用于免疫组化-石蜡切片在大鼠样本上浓度为0.07 ug/ml. Mol Cancer Ther (2014) ncbi
domestic rabbit 单克隆(C36B11)
  • 染色质免疫沉淀 ; 人类
  • 免疫印迹; 人类; 1:1000
赛信通(上海)生物试剂有限公司组蛋白H3抗体(Cell Signaling, 9733)被用于被用于染色质免疫沉淀 在人类样本上 和 被用于免疫印迹在人类样本上浓度为1:1000. Nat Commun (2014) ncbi
domestic rabbit 单克隆(D1H2)
  • 免疫印迹; 人类; 1:5000
赛信通(上海)生物试剂有限公司组蛋白H3抗体(Cell Signaling, 4499)被用于被用于免疫印迹在人类样本上浓度为1:5000. Nat Commun (2014) ncbi
domestic rabbit 单克隆(D2C8)
  • 免疫细胞化学; 小鼠; 1:200; 图 4
赛信通(上海)生物试剂有限公司组蛋白H3抗体(Cell Signaling, 3377)被用于被用于免疫细胞化学在小鼠样本上浓度为1:200 (图 4). FASEB J (2014) ncbi
domestic rabbit 单克隆(D1H2)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司组蛋白H3抗体(Cell Signaling, 4499)被用于被用于免疫印迹在人类样本上. Cancer Res (2014) ncbi
domestic rabbit 单克隆(D2C8)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司组蛋白H3抗体(Cell Signaling, 3377)被用于被用于免疫印迹在人类样本上. Oncogene (2014) ncbi
domestic rabbit 单克隆(D85B4)
  • 染色质免疫沉淀 ; 小鼠
  • 免疫印迹; 小鼠; 1:1000
赛信通(上海)生物试剂有限公司组蛋白H3抗体(Cell Signaling Technology, 4658)被用于被用于染色质免疫沉淀 在小鼠样本上 和 被用于免疫印迹在小鼠样本上浓度为1:1000. Neuroscience (2014) ncbi
domestic rabbit 单克隆(C36B11)
  • 免疫细胞化学; 人类; 1:500
赛信通(上海)生物试剂有限公司组蛋白H3抗体(Cell Signaling Technology, C36B11)被用于被用于免疫细胞化学在人类样本上浓度为1:500. Mol Biosyst (2014) ncbi
domestic rabbit 单克隆(D2B12)
  • 染色质免疫沉淀 ; 小鼠
赛信通(上海)生物试剂有限公司组蛋白H3抗体(Cell Signaling, 4620)被用于被用于染色质免疫沉淀 在小鼠样本上. J Biol Chem (2013) ncbi
domestic rabbit 单克隆(C36B11)
  • 染色质免疫沉淀 ; 小鼠; 图 3
赛信通(上海)生物试剂有限公司组蛋白H3抗体(Cell Signaling Technology, 9733)被用于被用于染色质免疫沉淀 在小鼠样本上 (图 3). PLoS Genet (2013) ncbi
domestic rabbit 单克隆(C36B11)
  • 免疫印迹; 小鼠
赛信通(上海)生物试剂有限公司组蛋白H3抗体(Cell Signaling, C36B11)被用于被用于免疫印迹在小鼠样本上. Blood (2013) ncbi
domestic rabbit 单克隆(D1H2)
  • 免疫细胞化学; 人类; 1:200
赛信通(上海)生物试剂有限公司组蛋白H3抗体(Cell Signaling, D1H2)被用于被用于免疫细胞化学在人类样本上浓度为1:200. J Virol (2013) ncbi
domestic rabbit 单克隆(D2C8)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司组蛋白H3抗体(Cell Signaling, 3377)被用于被用于免疫印迹在人类样本上. Cell Cycle (2013) ncbi
domestic rabbit 单克隆(D85B4)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司组蛋白H3抗体(Cell Signaling, 4658)被用于被用于免疫印迹在人类样本上. J Biol Chem (2013) ncbi
domestic rabbit 单克隆(D2C8)
  • 免疫细胞化学; 人类; 1:1000
赛信通(上海)生物试剂有限公司组蛋白H3抗体(Cell signalling, 3377s)被用于被用于免疫细胞化学在人类样本上浓度为1:1000. PLoS ONE (2013) ncbi
domestic rabbit 单克隆(C36B11)
  • 染色质免疫沉淀 ; 小鼠; 1:50
赛信通(上海)生物试剂有限公司组蛋白H3抗体(Cell Signaling, 9733)被用于被用于染色质免疫沉淀 在小鼠样本上浓度为1:50. Cell Death Dis (2013) ncbi
domestic rabbit 单克隆(D85B4)
  • 免疫印迹; 小鼠; 1:1000; 图 4c
赛信通(上海)生物试剂有限公司组蛋白H3抗体(Cell Signaling, 4658)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 4c). Neurobiol Dis (2013) ncbi
domestic rabbit 单克隆(D2C8)
  • 免疫细胞化学; 人类
赛信通(上海)生物试剂有限公司组蛋白H3抗体(Cell Signaling, 3377)被用于被用于免疫细胞化学在人类样本上. Carcinogenesis (2013) ncbi
domestic rabbit 单克隆(C36B11)
  • 免疫印迹; 人类; 1:10,000
赛信通(上海)生物试剂有限公司组蛋白H3抗体(CST, 9733)被用于被用于免疫印迹在人类样本上浓度为1:10,000. Proc Natl Acad Sci U S A (2010) ncbi
Diagenode
单克隆
  • ChIP-Seq; fission yeast; 图 6s1b
Diagenode组蛋白H3抗体(Diagenode, C15500003)被用于被用于ChIP-Seq在fission yeast样本上 (图 6s1b). elife (2020) ncbi
单克隆
  • ChIP-Seq; fission yeast; 图 e3f
Diagenode组蛋白H3抗体(Diagenode, C15500003)被用于被用于ChIP-Seq在fission yeast样本上 (图 e3f). Nature (2018) ncbi
西格玛奥德里奇
大鼠 单克隆(HTA28)
  • 免疫细胞化学; 小鼠; 1:100; 图 7b
西格玛奥德里奇组蛋白H3抗体(Sigma-Aldrich, H9908)被用于被用于免疫细胞化学在小鼠样本上浓度为1:100 (图 7b). Cell Rep (2022) ncbi
大鼠 单克隆(HTA28)
  • 免疫组化; 小鼠; 1:1000
西格玛奥德里奇组蛋白H3抗体(Sigma, H9908)被用于被用于免疫组化在小鼠样本上浓度为1:1000. elife (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 3b
西格玛奥德里奇组蛋白H3抗体(sigma, H0134)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3b). J Mol Med (Berl) (2016) ncbi
小鼠 单克隆(AH3-120)
  • 染色质免疫沉淀 ; 人类; 图 s6f
西格玛奥德里奇组蛋白H3抗体(Sigma-Aldrich, H0913)被用于被用于染色质免疫沉淀 在人类样本上 (图 s6f). Sci Rep (2016) ncbi
大鼠 单克隆(HTA28)
  • 免疫组化-石蜡切片; 小鼠; 1:1500; 图 1
西格玛奥德里奇组蛋白H3抗体(Sigma, H9908)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:1500 (图 1). Breast Cancer Res (2016) ncbi
大鼠 单克隆(HTA28)
  • 免疫组化-石蜡切片; 小鼠; 图 7
西格玛奥德里奇组蛋白H3抗体(Sigma-Alrich, H9908)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 7). Lab Invest (2016) ncbi
domestic rabbit 多克隆
西格玛奥德里奇组蛋白H3抗体(Sigma, H0164)被用于. Oxid Med Cell Longev (2015) ncbi
大鼠 单克隆(HTA28)
  • 免疫细胞化学; American tobacco; 1:200; 图 5
西格玛奥德里奇组蛋白H3抗体(Sigma, H9908)被用于被用于免疫细胞化学在American tobacco样本上浓度为1:200 (图 5). Front Plant Sci (2015) ncbi
大鼠 单克隆(HTA28)
  • 免疫细胞化学; 小鼠; 1:100; 图 2
西格玛奥德里奇组蛋白H3抗体(Sigma-Aldrich, H9908)被用于被用于免疫细胞化学在小鼠样本上浓度为1:100 (图 2). Development (2015) ncbi
小鼠 单克隆(AH3-120)
  • 免疫印迹; 人类; 1:500
西格玛奥德里奇组蛋白H3抗体(Sigma Aldrich, H0913)被用于被用于免疫印迹在人类样本上浓度为1:500. Biotechnol Bioeng (2015) ncbi
domestic rabbit 多克隆
西格玛奥德里奇组蛋白H3抗体(Sigma-Aldrich, H0164)被用于. J Neurochem (2015) ncbi
大鼠 单克隆(HTA28)
  • 免疫组化-冰冻切片; 小鼠; 1:200; 图 1
西格玛奥德里奇组蛋白H3抗体(Sigma, H9908)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:200 (图 1). PLoS Genet (2015) ncbi
大鼠 单克隆(HTA28)
  • 免疫组化; 小鼠; 1:50; 图 5
西格玛奥德里奇组蛋白H3抗体(Sigma, HTA28)被用于被用于免疫组化在小鼠样本上浓度为1:50 (图 5). Nat Commun (2015) ncbi
domestic rabbit 多克隆
西格玛奥德里奇组蛋白H3抗体(Sigma, H0164)被用于. Nat Commun (2015) ncbi
domestic rabbit 多克隆
西格玛奥德里奇组蛋白H3抗体(Sigma, H0164)被用于. Development (2015) ncbi
domestic rabbit 多克隆
西格玛奥德里奇组蛋白H3抗体(Sigma-Aldrich, H0164)被用于. Neurobiol Aging (2015) ncbi
domestic rabbit 多克隆
西格玛奥德里奇组蛋白H3抗体(Sigma, H0164)被用于. Development (2015) ncbi
大鼠 单克隆(HTA28)
  • 免疫组化; 小鼠
西格玛奥德里奇组蛋白H3抗体(Sigma-Aldrich, H9908)被用于被用于免疫组化在小鼠样本上. PLoS ONE (2014) ncbi
小鼠 单克隆(AH3-120)
  • 免疫细胞化学; 人类; 1:200
西格玛奥德里奇组蛋白H3抗体(Sigma, H0913)被用于被用于免疫细胞化学在人类样本上浓度为1:200. Cryobiology (2014) ncbi
小鼠 单克隆(AH3-120)
  • 免疫组化-石蜡切片; 人类; 图 2
  • 染色质免疫沉淀 ; 人类; 2-5 ug/ChIP; 图 2
西格玛奥德里奇组蛋白H3抗体(Sigma, H0913)被用于被用于免疫组化-石蜡切片在人类样本上 (图 2) 和 被用于染色质免疫沉淀 在人类样本上浓度为2-5 ug/ChIP (图 2). Nature (2014) ncbi
大鼠 单克隆(HTA28)
  • 免疫细胞化学; 人类
西格玛奥德里奇组蛋白H3抗体(Sigma-Aldrich, H9908)被用于被用于免疫细胞化学在人类样本上. Am J Hum Genet (2014) ncbi
大鼠 单克隆(HTA28)
  • 免疫细胞化学; Planorbella trivolvis; 1:1000
西格玛奥德里奇组蛋白H3抗体(Sigma-Aldrich, H9908)被用于被用于免疫细胞化学在Planorbella trivolvis样本上浓度为1:1000. BMC Dev Biol (2014) ncbi
大鼠 单克隆(HTA28)
  • 免疫组化-冰冻切片; 小鼠; 1:100
西格玛奥德里奇组蛋白H3抗体(Sigma-Aldrich, H9908)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:100. Biol Reprod (2013) ncbi
大鼠 单克隆(HTA28)
  • 免疫印迹; 人类
西格玛奥德里奇组蛋白H3抗体(Sigma-Aldrich, H9908)被用于被用于免疫印迹在人类样本上. Nucleic Acids Res (2013) ncbi
文章列表
  1. Bertrand Chapel A, Caligaris C, Fenouil T, Savary C, Aires S, Martel S, et al. SMAD2/3 mediate oncogenic effects of TGF-β in the absence of SMAD4. Commun Biol. 2022;5:1068 pubmed 出版商
  2. Fei X, Wu X, Dou Y, Sun K, Guo Q, Zhang L, et al. TRIM22 orchestrates the proliferation of GBMs and the benefits of TMZ by coordinating the modification and degradation of RIG-I. Mol Ther Oncolytics. 2022;26:413-428 pubmed 出版商
  3. Cai S, Hu T, Venkatesan M, Allam M, Schneider F, Ramalingam S, et al. Multiplexed protein profiling reveals spatial subcellular signaling networks. iScience. 2022;25:104980 pubmed 出版商
  4. Pieger K, Schmitt V, Gauer C, Gie xdf l N, Prots I, Winner B, et al. Translocation of Distinct Alpha Synuclein Species from the Nucleus to Neuronal Processes during Neuronal Differentiation. Biomolecules. 2022;12: pubmed 出版商
  5. Gonzalez M, Naimo G, Anwar T, Paol xec A, Tekula S, Kim S, et al. EZH2 T367 phosphorylation activates p38 signaling through lysine methylation to promote breast cancer progression. iScience. 2022;25:104827 pubmed 出版商
  6. Sie C, Kant R, Peter C, Muschaweckh A, Pfaller M, Nirschl L, et al. IL-24 intrinsically regulates Th17 cell pathogenicity in mice. J Exp Med. 2022;219: pubmed 出版商
  7. Carpanini S, Torvell M, Bevan R, Byrne R, Daskoulidou N, Saito T, et al. Terminal complement pathway activation drives synaptic loss in Alzheimer's disease models. Acta Neuropathol Commun. 2022;10:99 pubmed 出版商
  8. Zhang Y, Fang Y, Tang Y, Han S, Jia J, Wan X, et al. SMYD5 catalyzes histone H3 lysine 36 trimethylation at promoters. Nat Commun. 2022;13:3190 pubmed 出版商
  9. Ma L, Xie D, Luo M, Lin X, Nie H, Chen J, et al. Identification and characterization of BEND2 as a key regulator of meiosis during mouse spermatogenesis. Sci Adv. 2022;8:eabn1606 pubmed 出版商
  10. Xing H, Gao M, Wang Y, Zhang X, Shi J, Wang X, et al. Genome-wide gain-of-function screening identifies EZH2 mediating resistance to PI3Kα inhibitors in oesophageal squamous cell carcinoma. Clin Transl Med. 2022;12:e835 pubmed 出版商
  11. Taniguchi H, Caeser R, Chavan S, Zhan Y, Chow A, Manoj P, et al. WEE1 inhibition enhances the antitumor immune response to PD-L1 blockade by the concomitant activation of STING and STAT1 pathways in SCLC. Cell Rep. 2022;39:110814 pubmed 出版商
  12. Yan W, Han Q, Gong L, Zhan X, Li W, Guo Z, et al. MBD3 promotes hepatocellular carcinoma progression and metastasis through negative regulation of tumour suppressor TFPI2. Br J Cancer. 2022;: pubmed 出版商
  13. Aibara D, Takahashi S, Yagai T, Kim D, Brocker C, Levi M, et al. Gene repression through epigenetic modulation by PPARA enhances hepatocellular proliferation. iScience. 2022;25:104196 pubmed 出版商
  14. Zhang X, Spencer W, Tabuchi N, Kitt M, Deneris E. Reorganization of postmitotic neuronal chromatin accessibility for maturation of serotonergic identity. elife. 2022;11: pubmed 出版商
  15. Mauduit O, Aure M, Delcroix V, Basova L, Srivastava A, Umazume T, et al. A mesenchymal to epithelial switch in Fgf10 expression specifies an evolutionary-conserved population of ionocytes in salivary glands. Cell Rep. 2022;39:110663 pubmed 出版商
  16. Qu K, Wang C, Huang L, Qin X, Zhang K, Zhong Y, et al. TET1s deficiency exacerbates oscillatory shear flow-induced atherosclerosis. Int J Biol Sci. 2022;18:2163-2180 pubmed 出版商
  17. Jiang N, Xie B, Xiao W, Fan M, Xu S, Duan Y, et al. Fatty acid oxidation fuels glioblastoma radioresistance with CD47-mediated immune evasion. Nat Commun. 2022;13:1511 pubmed 出版商
  18. Günes Günsel G, Conlon T, Jeridi A, Kim R, Ertuz Z, Lang N, et al. The arginine methyltransferase PRMT7 promotes extravasation of monocytes resulting in tissue injury in COPD. Nat Commun. 2022;13:1303 pubmed 出版商
  19. Suzuki K, Tsuchiya M, Yoshida S, Ogawa K, Chen W, Kanzaki M, et al. Tissue accumulation of neutrophil extracellular traps mediates muscle hyperalgesia in a mouse model. Sci Rep. 2022;12:4136 pubmed 出版商
  20. Guo T, Han X, He J, Feng J, Jing J, Jane x10d kov xe1 E, et al. KDM6B interacts with TFDP1 to activate P53 signaling in regulating mouse palatogenesis. elife. 2022;11: pubmed 出版商
  21. Lopes N, Boucherit N, Santamaria J, Provin N, Charaix J, Ferrier P, et al. Thymocytes trigger self-antigen-controlling pathways in immature medullary thymic epithelial stages. elife. 2022;11: pubmed 出版商
  22. Wu Q, Shichino Y, Abe T, Suetsugu T, Omori A, Kiyonari H, et al. Selective translation of epigenetic modifiers affects the temporal pattern and differentiation of neural stem cells. Nat Commun. 2022;13:470 pubmed 出版商
  23. Korobeynikov V, Lyashchenko A, Blanco Redondo B, Jafar Nejad P, Shneider N. Antisense oligonucleotide silencing of FUS expression as a therapeutic approach in amyotrophic lateral sclerosis. Nat Med. 2022;28:104-116 pubmed 出版商
  24. Chandrasekaran S, Espeso Gil S, Loh Y, Javidfar B, Kassim B, Zhu Y, et al. Neuron-specific chromosomal megadomain organization is adaptive to recent retrotransposon expansions. Nat Commun. 2021;12:7243 pubmed 出版商
  25. Xia R, Liu T, Li W, Xu X. RNA-binding protein RBM24 represses colorectal tumourigenesis by stabilising PTEN mRNA. Clin Transl Med. 2021;11:e383 pubmed 出版商
  26. Cameron B, Lehrmann E, Chih T, Walters J, Buksch R, Snyder S, et al. Loss of Elp1 perturbs histone H2A.Z and the Notch signaling pathway. Biol Open. 2021;10: pubmed 出版商
  27. Reddy N, Majidi S, Kong L, Nemera M, Ferguson C, Moore M, et al. CHARGE syndrome protein CHD7 regulates epigenomic activation of enhancers in granule cell precursors and gyrification of the cerebellum. Nat Commun. 2021;12:5702 pubmed 出版商
  28. Yue M, Liu T, Yan G, Luo X, Wang L. LINC01605, regulated by the EP300-SMYD2 complex, potentiates the binding between METTL3 and SPTBN2 in colorectal cancer. Cancer Cell Int. 2021;21:504 pubmed 出版商
  29. Wang Z, Chen J, Wu X, Ma D, Zhang X, Li R, et al. PCV2 targets cGAS to inhibit type I interferon induction to promote other DNA virus infection. PLoS Pathog. 2021;17:e1009940 pubmed 出版商
  30. Zheng Q, Li P, Zhou X, Qiang Y, Fan J, Lin Y, et al. Deficiency of the X-inactivation escaping gene KDM5C in clear cell renal cell carcinoma promotes tumorigenicity by reprogramming glycogen metabolism and inhibiting ferroptosis. Theranostics. 2021;11:8674-8691 pubmed 出版商
  31. Lo Cascio C, McNamara J, Melendez E, Lewis E, Dufault M, Sanai N, et al. Nonredundant, isoform-specific roles of HDAC1 in glioma stem cells. JCI Insight. 2021;6: pubmed 出版商
  32. Keane L, Cheray M, Saidi D, Kirby C, Friess L, González Rodríguez P, et al. Inhibition of microglial EZH2 leads to anti-tumoral effects in pediatric diffuse midline gliomas. Neurooncol Adv. 2021;3:vdab096 pubmed 出版商
  33. Duboc V, Sulaiman F, Feneck E, Kucharska A, Bell D, Holder Espinasse M, et al. Tbx4 function during hindlimb development reveals a mechanism that explains the origins of proximal limb defects. Development. 2021;148: pubmed 出版商
  34. Xu P, Xiong W, Lin Y, Fan L, Pan H, Li Y. Histone deacetylase 2 knockout suppresses immune escape of triple-negative breast cancer cells via downregulating PD-L1 expression. Cell Death Dis. 2021;12:779 pubmed 出版商
  35. Su C, Lu F, Soldan S, Lamontagne R, Tang H, Napoletani G, et al. EBNA2 driven enhancer switching at the CIITA-DEXI locus suppresses HLA class II gene expression during EBV infection of B-lymphocytes. PLoS Pathog. 2021;17:e1009834 pubmed 出版商
  36. Kanellis D, Espinoza J, Zisi A, Sakkas E, Bartkova J, Katsori A, et al. The exon-junction complex helicase eIF4A3 controls cell fate via coordinated regulation of ribosome biogenesis and translational output. Sci Adv. 2021;7: pubmed 出版商
  37. Zhao Z, Szczepanski A, Tsuboyama N, Abdala Valencia H, Goo Y, Singer B, et al. PAX9 Determines Epigenetic State Transition and Cell Fate in Cancer. Cancer Res. 2021;81:4696-4708 pubmed 出版商
  38. Laliotis G, Chavdoula E, Paraskevopoulou M, Kaba A, La Ferlita A, Singh S, et al. AKT3-mediated IWS1 phosphorylation promotes the proliferation of EGFR-mutant lung adenocarcinomas through cell cycle-regulated U2AF2 RNA splicing. Nat Commun. 2021;12:4624 pubmed 出版商
  39. Coudert L, Osseni A, Gangloff Y, Schaeffer L, Leblanc P. The ESCRT-0 subcomplex component Hrs/Hgs is a master regulator of myogenesis via modulation of signaling and degradation pathways. BMC Biol. 2021;19:153 pubmed 出版商
  40. Zhang Q, Agius S, Flanigan S, Uckelmann M, Levina V, Owen B, et al. PALI1 facilitates DNA and nucleosome binding by PRC2 and triggers an allosteric activation of catalysis. Nat Commun. 2021;12:4592 pubmed 出版商
  41. Wei Y, Chen J, Xu X, Li F, Wu K, Jiang Y, et al. Restoration of H3k27me3 Modification Epigenetically Silences Cry1 Expression and Sensitizes Leptin Signaling to Reduce Obesity-Related Properties. Adv Sci (Weinh). 2021;8:2004319 pubmed 出版商
  42. Kaplun D, Starshin A, Sharko F, Gainova K, Filonova G, Zhigalova N, et al. Kaiso Regulates DNA Methylation Homeostasis. Int J Mol Sci. 2021;22: pubmed 出版商
  43. Biswas A, Zhou D, Fiches G, Wu Z, Liu X, Ma Q, et al. Inhibition of polo-like kinase 1 (PLK1) facilitates reactivation of gamma-herpesviruses and their elimination. PLoS Pathog. 2021;17:e1009764 pubmed 出版商
  44. Wei X, Zhang Y, Xie L, Wang K, Wang X. Pharmacological inhibition of EZH2 by GSK126 decreases atherosclerosis by modulating foam cell formation and monocyte adhesion in apolipoprotein E-deficient mice. Exp Ther Med. 2021;22:841 pubmed 出版商
  45. Hanson M, Karkache I, Molstad D, Norton A, Mansky K, Bradley E. Phlpp1 is induced by estrogen in osteoclasts and its loss in Ctsk-expressing cells does not protect against ovariectomy-induced bone loss. PLoS ONE. 2021;16:e0251732 pubmed 出版商
  46. Wan C, Mahara S, Sun C, Doan A, Chua H, Xu D, et al. Genome-scale CRISPR-Cas9 screen of Wnt/β-catenin signaling identifies therapeutic targets for colorectal cancer. Sci Adv. 2021;7: pubmed 出版商
  47. Al Zaeed N, Budai Z, Szondy Z, Sarang Z. TAM kinase signaling is indispensable for proper skeletal muscle regeneration in mice. Cell Death Dis. 2021;12:611 pubmed 出版商
  48. Fang Y, Tang Y, Zhang Y, Pan Y, Jia J, Sun Z, et al. The H3K36me2 methyltransferase NSD1 modulates H3K27ac at active enhancers to safeguard gene expression. Nucleic Acids Res. 2021;49:6281-6295 pubmed 出版商
  49. Qian X, Qu H, Zhang F, Peng S, Dou D, Yang Y, et al. Exosomal long noncoding RNA AGAP2-AS1 regulates trastuzumab resistance via inducing autophagy in breast cancer. Am J Cancer Res. 2021;11:1962-1981 pubmed
  50. Wu S, Fukumoto T, Lin J, Nacarelli T, Wang Y, Ong D, et al. Targeting glutamine dependence through GLS1 inhibition suppresses ARID1A-inactivated clear cell ovarian carcinoma. Nat Cancer. 2021;2:189-200 pubmed 出版商
  51. Kim C, Jin J, Ye Z, Jadhav R, Gustafson C, Hu B, et al. Histone deficiency and accelerated replication stress in T cell aging. J Clin Invest. 2021;131: pubmed 出版商
  52. Goswami S, Balasubramanian I, D Agostino L, Bandyopadhyay S, Patel R, Avasthi S, et al. RAB11A-mediated YAP localization to adherens and tight junctions is essential for colonic epithelial integrity. J Biol Chem. 2021;297:100848 pubmed 出版商
  53. Yi S, Jang Y, Kim H, Lee K, Lee H, Kim Y, et al. The KDM4B-CCAR1-MED1 axis is a critical regulator of osteoclast differentiation and bone homeostasis. Bone Res. 2021;9:27 pubmed 出版商
  54. Yuan C, Chen H, Tu S, Huang H, Pan Y, Gui X, et al. A systematic dissection of the epigenomic heterogeneity of lung adenocarcinoma reveals two different subclasses with distinct prognosis and core regulatory networks. Genome Biol. 2021;22:156 pubmed 出版商
  55. Qin M, Han F, Wu J, Gao F, Li Y, Yan D, et al. KDM6B promotes ESCC cell proliferation and metastasis by facilitating C/EBPβ transcription. BMC Cancer. 2021;21:559 pubmed 出版商
  56. Gusyatiner O, Bady P, Pham M, Lei Y, Park J, Daniel R, et al. BET inhibitors repress expression of interferon-stimulated genes and synergize with HDAC inhibitors in glioblastoma. Neuro Oncol. 2021;23:1680-1692 pubmed 出版商
  57. Huang C, Lingadahalli S, Morova T, Ozturan D, Hu E, Yu I, et al. Functional mapping of androgen receptor enhancer activity. Genome Biol. 2021;22:149 pubmed 出版商
  58. Hu J, Wang J, Li C, Shang Y. Fructose-1,6-bisphosphatase aggravates oxidative stress-induced apoptosis in asthma by suppressing the Nrf2 pathway. J Cell Mol Med. 2021;25:5001-5014 pubmed 出版商
  59. Della Chiara G, Gervasoni F, Fakiola M, Godano C, D Oria C, Azzolin L, et al. Epigenomic landscape of human colorectal cancer unveils an aberrant core of pan-cancer enhancers orchestrated by YAP/TAZ. Nat Commun. 2021;12:2340 pubmed 出版商
  60. Huang H, Hu J, Maryam A, Huang Q, Zhang Y, Ramakrishnan S, et al. Defining super-enhancer landscape in triple-negative breast cancer by multiomic profiling. Nat Commun. 2021;12:2242 pubmed 出版商
  61. Zhu X, Chen L, Huang B, Li X, Yang L, Hu X, et al. Efficacy and mechanism of the combination of PARP and CDK4/6 inhibitors in the treatment of triple-negative breast cancer. J Exp Clin Cancer Res. 2021;40:122 pubmed 出版商
  62. Andrade J, Shi C, Costa A, Choi J, Kim J, Doddaballapur A, et al. Control of endothelial quiescence by FOXO-regulated metabolites. Nat Cell Biol. 2021;23:413-423 pubmed 出版商
  63. Rippe C, Morén B, Liu L, Stenkula K, Mustaniemi J, Wennström M, et al. NG2/CSPG4, CD146/MCAM and VAP1/AOC3 are regulated by myocardin-related transcription factors in smooth muscle cells. Sci Rep. 2021;11:5955 pubmed 出版商
  64. Park Y, Lee J, Yan Z, McKernan K, O Haren T, Wang W, et al. Interplay of BAF and MLL4 promotes cell type-specific enhancer activation. Nat Commun. 2021;12:1630 pubmed 出版商
  65. Lee M, Nam H, Kang H, Lee W, Lee G, Sung G, et al. Epigenetic regulation of p62/SQSTM1 overcomes the radioresistance of head and neck cancer cells via autophagy-dependent senescence induction. Cell Death Dis. 2021;12:250 pubmed 出版商
  66. Jiang Y, Li F, Gao B, Ma M, Chen M, Wu Y, et al. KDM6B-mediated histone demethylation of LDHA promotes lung metastasis of osteosarcoma. Theranostics. 2021;11:3868-3881 pubmed 出版商
  67. Mrouj K, Andrés Sánchez N, Dubra G, Singh P, Sobecki M, Chahar D, et al. Ki-67 regulates global gene expression and promotes sequential stages of carcinogenesis. Proc Natl Acad Sci U S A. 2021;118: pubmed 出版商
  68. Kim J, Chae S, Kim S, Jung Y, Kang M, Heo W, et al. Cerebellar 5HT-2A receptor mediates stress-induced onset of dystonia. Sci Adv. 2021;7: pubmed 出版商
  69. Di Luca M, Fitzpatrick E, Burtenshaw D, Liu W, Helt J, Hakimjavadi R, et al. The calcium binding protein S100β marks hedgehog-responsive resident vascular stem cells within vascular lesions. NPJ Regen Med. 2021;6:10 pubmed 出版商
  70. Zheng F, Chen J, Zhang X, Wang Z, Chen J, Lin X, et al. The HIF-1α antisense long non-coding RNA drives a positive feedback loop of HIF-1α mediated transactivation and glycolysis. Nat Commun. 2021;12:1341 pubmed 出版商
  71. Zhang C, Lu X, Huang J, He H, Chen L, Liu Y, et al. Epigenome screening highlights that JMJD6 confers an epigenetic vulnerability and mediates sunitinib sensitivity in renal cell carcinoma. Clin Transl Med. 2021;11:e328 pubmed 出版商
  72. Bressan R, Southgate B, Ferguson K, Blin C, Grant V, Alfazema N, et al. Regional identity of human neural stem cells determines oncogenic responses to histone H3.3 mutants. Cell Stem Cell. 2021;28:877-893.e9 pubmed 出版商
  73. Sela Y, Li J, Kuri P, Merrell A, Li N, Lengner C, et al. Dissecting phenotypic transitions in metastatic disease via photoconversion-based isolation. elife. 2021;10: pubmed 出版商
  74. Choi J, Sebastian C, Ferrer C, Lewis C, Sade Feldman M, LaSalle T, et al. A unique subset of glycolytic tumour-propagating cells drives squamous cell carcinoma. Nat Metab. 2021;3:182-195 pubmed 出版商
  75. Zhu C, Kim S, Mooradian A, Wang F, Li Z, Holohan S, et al. Cancer-associated exportin-6 upregulation inhibits the transcriptionally repressive and anticancer effects of nuclear profilin-1. Cell Rep. 2021;34:108749 pubmed 出版商
  76. Tang B, Sun R, Wang D, Sheng H, Wei T, Wang L, et al. ZMYND8 preferentially binds phosphorylated EZH2 to promote a PRC2-dependent to -independent function switch in hypoxia-inducible factor-activated cancer. Proc Natl Acad Sci U S A. 2021;118: pubmed 出版商
  77. Yang D, Xu X, Wang X, Feng W, Shen X, Zhang J, et al. β-elemene promotes the senescence of glioma cells through regulating YAP-CDK6 signaling. Am J Cancer Res. 2021;11:370-388 pubmed
  78. Chen T, Kuo T, Dandan M, Lee R, Chang M, Villivalam S, et al. The role of striated muscle Pik3r1 in glucose and protein metabolism following chronic glucocorticoid exposure. J Biol Chem. 2021;296:100395 pubmed 出版商
  79. Li J, Mahata B, Escobar M, Goell J, Wang K, Khemka P, et al. Programmable human histone phosphorylation and gene activation using a CRISPR/Cas9-based chromatin kinase. Nat Commun. 2021;12:896 pubmed 出版商
  80. Lee J, Park I, Kwak M, Rhee W, Kim S, Shin J. HMGB1 orchestrates STING-mediated senescence via TRIM30α modulation in cancer cells. Cell Death Discov. 2021;7:28 pubmed 出版商
  81. Yuan G, Flores N, Hausmann S, Lofgren S, Kharchenko V, Angulo Ibáñez M, et al. Elevated NSD3 histone methylation activity drives squamous cell lung cancer. Nature. 2021;590:504-508 pubmed 出版商
  82. Takei Y, Yun J, Zheng S, Ollikainen N, Pierson N, White J, et al. Integrated spatial genomics reveals global architecture of single nuclei. Nature. 2021;590:344-350 pubmed 出版商
  83. Maddala R, Gao J, Mathias R, Lewis T, Arshavsky V, Levine A, et al. Absence of S100A4 in the mouse lens induces an aberrant retina-specific differentiation program and cataract. Sci Rep. 2021;11:2203 pubmed 出版商
  84. Singh S, Abu Zaid A, Lin W, Low J, Abdolvahabi A, Jin H, et al. 17-DMAG dually inhibits Hsp90 and histone lysine demethylases in alveolar rhabdomyosarcoma. iScience. 2021;24:101996 pubmed 出版商
  85. Krzeptowski W, Chudy P, Sokołowski G, Zukowska M, Kusienicka A, Seretny A, et al. Proximity Ligation Assay Detection of Protein-DNA Interactions-Is There a Link between Heme Oxygenase-1 and G-quadruplexes?. Antioxidants (Basel). 2021;10: pubmed 出版商
  86. Huang Y, Cai K, Xu P, Wang L, Huang C, Fang Y, et al. CREBBP/EP300 mutations promoted tumor progression in diffuse large B-cell lymphoma through altering tumor-associated macrophage polarization via FBXW7-NOTCH-CCL2/CSF1 axis. Signal Transduct Target Ther. 2021;6:10 pubmed 出版商
  87. Long Z, Deng L, Li C, He Q, He Y, Hu X, et al. Loss of EHF facilitates the development of treatment-induced neuroendocrine prostate cancer. Cell Death Dis. 2021;12:46 pubmed 出版商
  88. Jiang Y, Xiang C, Zhong F, Zhang Y, Wang L, Zhao Y, et al. Histone H3K27 methyltransferase EZH2 and demethylase JMJD3 regulate hepatic stellate cells activation and liver fibrosis. Theranostics. 2021;11:361-378 pubmed 出版商
  89. Fang M, Zhang M, Wang Y, Wei F, Wu J, Mou X, et al. Long Noncoding RNA AFAP1-AS1 Is a Critical Regulator of Nasopharyngeal Carcinoma Tumorigenicity. Front Oncol. 2020;10:601055 pubmed 出版商
  90. Harro C, Perez Sanz J, Costich T, Payne K, Anadon C, Chaurio R, et al. Methyltransferase inhibitors restore SATB1 protective activity against cutaneous T cell lymphoma in mice. J Clin Invest. 2021;131: pubmed 出版商
  91. Atkins A, Xu M, Li M, Rogers N, Pryzhkova M, Jordan P. SMC5/6 is required for replication fork stability and faithful chromosome segregation during neurogenesis. elife. 2020;9: pubmed 出版商
  92. Macri S, Di Poï N. Heterochronic Developmental Shifts Underlying Squamate Cerebellar Diversity Unveil the Key Features of Amniote Cerebellogenesis. Front Cell Dev Biol. 2020;8:593377 pubmed 出版商
  93. Sanders S, Hernandez L, Soh H, Karnam S, Walikonis R, Tzingounis A, et al. The palmitoyl acyltransferase ZDHHC14 controls Kv1-family potassium channel clustering at the axon initial segment. elife. 2020;9: pubmed 出版商
  94. Wilson M, Reske J, Holladay J, Neupane S, Ngo J, Cuthrell N, et al. ARID1A Mutations Promote P300-Dependent Endometrial Invasion through Super-Enhancer Hyperacetylation. Cell Rep. 2020;33:108366 pubmed 出版商
  95. Zhao Z, Zhang Z, Li J, Dong Q, Xiong J, Li Y, et al. Sustained TNF-α stimulation leads to transcriptional memory that greatly enhances signal sensitivity and robustness. elife. 2020;9: pubmed 出版商
  96. Hu J, Wang H, Li X, Liu Y, Mi Y, Kong H, et al. Fibrinogen-like protein 2 aggravates nonalcoholic steatohepatitis via interaction with TLR4, eliciting inflammation in macrophages and inducing hepatic lipid metabolism disorder. Theranostics. 2020;10:9702-9720 pubmed 出版商
  97. Schwartz Orbach L, Zhang C, Sidoli S, Amin R, Kaur D, Zhebrun A, et al. Caenorhabditis elegans nuclear RNAi factor SET-32 deposits the transgenerational histone modification, H3K23me3. elife. 2020;9: pubmed 出版商
  98. Zatulovskiy E, Zhang S, Berenson D, Topacio B, Skotheim J. Cell growth dilutes the cell cycle inhibitor Rb to trigger cell division. Science. 2020;369:466-471 pubmed 出版商
  99. Muller A, Dickmanns A, Resch C, Schakel K, Hailfinger S, Dobbelstein M, et al. The CDK4/6-EZH2 pathway is a potential therapeutic target for psoriasis. J Clin Invest. 2020;: pubmed 出版商
  100. Reilly S, Hung C, Ahmadian M, Zhao P, Keinan O, Gomez A, et al. Catecholamines suppress fatty acid re-esterification and increase oxidation in white adipocytes via STAT3. Nat Metab. 2020;2:620-634 pubmed 出版商
  101. Zhou X, Chen N, Xu H, Zhou X, Wang J, Fang X, et al. Regulation of Hippo-YAP signaling by insulin-like growth factor-1 receptor in the tumorigenesis of diffuse large B-cell lymphoma. J Hematol Oncol. 2020;13:77 pubmed 出版商
  102. Perkail S, Andricovich J, Kai Y, Tzatsos A. BAP1 is a haploinsufficient tumor suppressor linking chronic pancreatitis to pancreatic cancer in mice. Nat Commun. 2020;11:3018 pubmed 出版商
  103. Pellegrini L, Bonfio C, Chadwick J, Begum F, Skehel M, Lancaster M. Human CNS barrier-forming organoids with cerebrospinal fluid production. Science. 2020;: pubmed 出版商
  104. Wang Z, Millard C, Lin C, Gurnett J, Wu M, Lee K, et al. Diverse nucleosome site-selectivity among histone deacetylase complexes. elife. 2020;9: pubmed 出版商
  105. Shipkovenska G, Durango A, Kalocsay M, Gygi S, Moazed D. A conserved RNA degradation complex required for spreading and epigenetic inheritance of heterochromatin. elife. 2020;9: pubmed 出版商
  106. Nielsen C, Zhang T, Barisic M, Kalitsis P, Hudson D. Topoisomerase IIα is essential for maintenance of mitotic chromosome structure. Proc Natl Acad Sci U S A. 2020;117:12131-12142 pubmed 出版商
  107. Lahiguera Á, Hyroššová P, Figueras A, Garzón D, Moreno R, Soto Cerrato V, et al. Tumors defective in homologous recombination rely on oxidative metabolism: relevance to treatments with PARP inhibitors. EMBO Mol Med. 2020;12:e11217 pubmed 出版商
  108. Golfier S, Quail T, Kimura H, Brugués J. Cohesin and condensin extrude DNA loops in a cell cycle-dependent manner. elife. 2020;9: pubmed 出版商
  109. Sollberger G, Streeck R, Apel F, Caffrey B, Skoultchi A, Zychlinsky A. Linker histone H1.2 and H1.4 affect the neutrophil lineage determination. elife. 2020;9: pubmed 出版商
  110. Smith S, Davidson L, Rebeiz M. Evolutionary expansion of apical extracellular matrix is required for the elongation of cells in a novel structure. elife. 2020;9: pubmed 出版商
  111. Kakebeen A, Chitsazan A, Williams M, Saunders L, WILLS A. Chromatin accessibility dynamics and single cell RNA-Seq reveal new regulators of regeneration in neural progenitors. elife. 2020;9: pubmed 出版商
  112. Nava M, Miroshnikova Y, Biggs L, Whitefield D, Metge F, Boucas J, et al. Heterochromatin-Driven Nuclear Softening Protects the Genome against Mechanical Stress-Induced Damage. Cell. 2020;181:800-817.e22 pubmed 出版商
  113. Mondal B, Jin H, Kallappagoudar S, Sedkov Y, Martinez T, Sentmanat M, et al. The histone deacetylase complex MiDAC regulates a neurodevelopmental gene expression program to control neurite outgrowth. elife. 2020;9: pubmed 出版商
  114. Douglas P, Ye R, Radhamani S, Cobban A, Jenkins N, Bartlett E, et al. Nocodazole-Induced Expression and Phosphorylation of Anillin and Other Mitotic Proteins Are Decreased in DNA-Dependent Protein Kinase Catalytic Subunit-Deficient Cells and Rescued by Inhibition of the Anaphase-Promoting Complex/Cyclosome with proTAME. Mol Cell Biol. 2020;40: pubmed 出版商
  115. Lepack A, Werner C, Stewart A, Fulton S, Zhong P, Farrelly L, et al. Dopaminylation of histone H3 in ventral tegmental area regulates cocaine seeking. Science. 2020;368:197-201 pubmed 出版商
  116. Nelson B, Hodge R, Daza R, Tripathi P, Arnold S, Millen K, et al. Intermediate progenitors support migration of neural stem cells into dentate gyrus outer neurogenic niches. elife. 2020;9: pubmed 出版商
  117. Raiymbek G, An S, Khurana N, Gopinath S, Larkin A, Biswas S, et al. An H3K9 methylation-dependent protein interaction regulates the non-enzymatic functions of a putative histone demethylase. elife. 2020;9: pubmed 出版商
  118. Zhang Y, Beketaev I, Segura A, Yu W, Xi Y, Chang J, et al. Contribution of Increased Expression of Yin Yang 2 to Development of Cardiomyopathy. Front Mol Biosci. 2020;7:35 pubmed 出版商
  119. Gilan O, Rioja I, Knezevic K, Bell M, Yeung M, Harker N, et al. Selective targeting of BD1 and BD2 of the BET proteins in cancer and immunoinflammation. Science. 2020;368:387-394 pubmed 出版商
  120. Guven A, Kalebic N, Long K, Florio M, Vaid S, Brandl H, et al. Extracellular matrix-inducing Sox9 promotes both basal progenitor proliferation and gliogenesis in developing neocortex. elife. 2020;9: pubmed 出版商
  121. Cai W, Greer C, Chen J, Arnal Estapé A, Cao J, Yan Q, et al. Specific chromatin landscapes and transcription factors couple breast cancer subtype with metastatic relapse to lung or brain. BMC Med Genomics. 2020;13:33 pubmed 出版商
  122. Liu H, Liu Y, Yang F, Zhang L, Zhang F, Hu X, et al. Acetylation of MORC2 by NAT10 regulates cell-cycle checkpoint control and resistance to DNA-damaging chemotherapy and radiotherapy in breast cancer. Nucleic Acids Res. 2020;48:3638-3656 pubmed 出版商
  123. Lamaa A, Humbert J, Aguirrebengoa M, Cheng X, Nicolas E, Cote J, et al. Integrated analysis of H2A.Z isoforms function reveals a complex interplay in gene regulation. elife. 2020;9: pubmed 出版商
  124. Hoffmann F, Niebel D, Aymans P, Ferring Schmitt S, Dietrich D, Landsberg J. H3K27me3 and EZH2 expression in melanoma: relevance for melanoma progression and response to immune checkpoint blockade. Clin Epigenetics. 2020;12:24 pubmed 出版商
  125. Lu C, Wei Y, Wang X, Zhang Z, Yin J, Li W, et al. DNA-methylation-mediated activating of lncRNA SNHG12 promotes temozolomide resistance in glioblastoma. Mol Cancer. 2020;19:28 pubmed 出版商
  126. Viscarra J, Wang Y, Nguyen H, Choi Y, Sul H. Histone demethylase JMJD1C is phosphorylated by mTOR to activate de novo lipogenesis. Nat Commun. 2020;11:796 pubmed 出版商
  127. Yang F, Huang X, Zang R, Chen J, Fidalgo M, Sanchez Priego C, et al. DUX-miR-344-ZMYM2-Mediated Activation of MERVL LTRs Induces a Totipotent 2C-like State. Cell Stem Cell. 2020;26:234-250.e7 pubmed 出版商
  128. Yang S, Ma C, Wu H, Zhang H, Yuan F, Yang G, et al. Tectorigenin attenuates diabetic nephropathy by improving vascular endothelium dysfunction through activating AdipoR1/2 pathway. Pharmacol Res. 2020;153:104678 pubmed 出版商
  129. Ballabio C, Anderle M, Gianesello M, Lago C, Miele E, Cardano M, et al. Modeling medulloblastoma in vivo and with human cerebellar organoids. Nat Commun. 2020;11:583 pubmed 出版商
  130. Onn L, Portillo M, Ilic S, Cleitman G, Stein D, Kaluski S, et al. SIRT6 is a DNA double-strand break sensor. elife. 2020;9: pubmed 出版商
  131. Ricci B, Millner T, Pomella N, Zhang X, Guglielmi L, Badodi S, et al. Polycomb-mediated repression of EphrinA5 promotes growth and invasion of glioblastoma. Oncogene. 2020;39:2523-2538 pubmed 出版商
  132. Mosaheb M, Dobrikova E, Brown M, Yang Y, Cable J, Okada H, et al. Genetically stable poliovirus vectors activate dendritic cells and prime antitumor CD8 T cell immunity. Nat Commun. 2020;11:524 pubmed 出版商
  133. Cooper A, Butto T, Hammer N, Jagannath S, Fend Guella D, Akhtar J, et al. Inhibition of histone deacetylation rescues phenotype in a mouse model of Birk-Barel intellectual disability syndrome. Nat Commun. 2020;11:480 pubmed 出版商
  134. Zhang B, Ma S, Rachmin I, He M, Baral P, Choi S, et al. Hyperactivation of sympathetic nerves drives depletion of melanocyte stem cells. Nature. 2020;577:676-681 pubmed 出版商
  135. Karge A, Bonar N, Wood S, Petersen C. tec-1 kinase negatively regulates regenerative neurogenesis in planarians. elife. 2020;9: pubmed 出版商
  136. Aldaz P, Otaegi Ugartemendia M, Sáenz Antoñanzas A, Garcia Puga M, Moreno Valladares M, Flores J, et al. SOX9 promotes tumor progression through the axis BMI1-p21CIP. Sci Rep. 2020;10:357 pubmed 出版商
  137. Laukoter S, Beattie R, Pauler F, Amberg N, Nakayama K, Hippenmeyer S. Imprinted Cdkn1c genomic locus cell-autonomously promotes cell survival in cerebral cortex development. Nat Commun. 2020;11:195 pubmed 出版商
  138. Liu Q, Borcherding N, Shao P, Maina P, Zhang W, Qi H. Contribution of synergism between PHF8 and HER2 signalling to breast cancer development and drug resistance. EBioMedicine. 2020;51:102612 pubmed 出版商
  139. Li Y, Xu S, Xu Q, Chen Y. Clostridium difficile toxin B induces colonic inflammation through the TRIM46/DUSP1/MAPKs and NF-κB signalling pathway. Artif Cells Nanomed Biotechnol. 2020;48:452-462 pubmed 出版商
  140. Enomoto T, Aoki M, Hamasaki M, Abe H, Nonaka M, Inoue T, et al. Midline Glioma in Adults: Clinicopathological, Genetic, and Epigenetic Analysis. Neurol Med Chir (Tokyo). 2020;60:136-146 pubmed 出版商
  141. Birot A, Tormos Pérez M, Vaur S, Feytout A, Jaegy J, Alonso Gil D, et al. The CDK Pef1 and protein phosphatase 4 oppose each other for regulating cohesin binding to fission yeast chromosomes. elife. 2020;9: pubmed 出版商
  142. Li B, Li M, Li X, Li H, Lai Y, Huang S, et al. Sirt1-inducible deacetylation of p21 promotes cardiomyocyte proliferation. Aging (Albany NY). 2019;11:12546-12567 pubmed 出版商
  143. Senigl F, Maman Y, Dinesh R, Alinikula J, Seth R, Pecnova L, et al. Topologically Associated Domains Delineate Susceptibility to Somatic Hypermutation. Cell Rep. 2019;29:3902-3915.e8 pubmed 出版商
  144. Casanova M, Moscatelli M, Chauvière L, Huret C, Samson J, Liyakat Ali T, et al. A primate-specific retroviral enhancer wires the XACT lncRNA into the core pluripotency network in humans. Nat Commun. 2019;10:5652 pubmed 出版商
  145. Volkman H, Cambier S, Gray E, Stetson D. Tight nuclear tethering of cGAS is essential for preventing autoreactivity. elife. 2019;8: pubmed 出版商
  146. Wu Y, Chen K, Xing G, Li L, Ma B, Hu Z, et al. Phospholipid remodeling is critical for stem cell pluripotency by facilitating mesenchymal-to-epithelial transition. Sci Adv. 2019;5:eaax7525 pubmed 出版商
  147. Lynn R, Weber E, Sotillo E, Gennert D, Xu P, Good Z, et al. c-Jun overexpression in CAR T cells induces exhaustion resistance. Nature. 2019;576:293-300 pubmed 出版商
  148. Bazopoulou D, Knoefler D, Zheng Y, Ulrich K, Oleson B, Xie L, et al. Developmental ROS individualizes organismal stress resistance and lifespan. Nature. 2019;576:301-305 pubmed 出版商
  149. Wall C, Rose C, Adrian M, Zeng Y, Kirkpatrick D, Bingol B. PPEF2 Opposes PINK1-Mediated Mitochondrial Quality Control by Dephosphorylating Ubiquitin. Cell Rep. 2019;29:3280-3292.e7 pubmed 出版商
  150. Santos Barriopedro I, Li Y, Bahl S, Seto E. HDAC8 affects MGMT levels in glioblastoma cell lines via interaction with the proteasome receptor ADRM1. Genes Cancer. 2019;10:119-133 pubmed 出版商
  151. Montaldo N, Bordin D, Brambilla A, Rösinger M, Fordyce Martin S, Bjørås K, et al. Alkyladenine DNA glycosylase associates with transcription elongation to coordinate DNA repair with gene expression. Nat Commun. 2019;10:5460 pubmed 出版商
  152. Hang S, Paik D, Yao L, Kim E, Jamma T, Lu J, et al. Bile acid metabolites control TH17 and Treg cell differentiation. Nature. 2019;576:143-148 pubmed 出版商
  153. Wu S, Turner K, Nguyen N, Raviram R, Erb M, Santini J, et al. Circular ecDNA promotes accessible chromatin and high oncogene expression. Nature. 2019;575:699-703 pubmed 出版商
  154. Currais A, Huang L, Goldberg J, Petrascheck M, Ates G, Pinto Duarte A, et al. Elevating acetyl-CoA levels reduces aspects of brain aging. elife. 2019;8: pubmed 出版商
  155. Leone R, Zhao L, Englert J, Sun I, Oh M, Sun I, et al. Glutamine blockade induces divergent metabolic programs to overcome tumor immune evasion. Science. 2019;366:1013-1021 pubmed 出版商
  156. Hamilton W, Mosesson Y, Monteiro R, Emdal K, Knudsen T, Francavilla C, et al. Dynamic lineage priming is driven via direct enhancer regulation by ERK. Nature. 2019;: pubmed 出版商
  157. Mills W, Lee Y, Kochendoerfer A, Dunleavy E, Karpen G. RNA from a simple-tandem repeat is required for sperm maturation and male fertility in Drosophila melanogaster. elife. 2019;8: pubmed 出版商
  158. Zhang L, Tian S, Pei M, Zhao M, Wang L, Jiang Y, et al. Crosstalk between histone modification and DNA methylation orchestrates the epigenetic regulation of the costimulatory factors, Tim‑3 and galectin‑9, in cervical cancer. Oncol Rep. 2019;42:2655-2669 pubmed 出版商
  159. Mews P, Egervári G, Nativio R, Sidoli S, Donahue G, Lombroso S, et al. Alcohol metabolism contributes to brain histone acetylation. Nature. 2019;574:717-721 pubmed 出版商
  160. Zhang D, Tang Z, Huang H, Zhou G, Cui C, Weng Y, et al. Metabolic regulation of gene expression by histone lactylation. Nature. 2019;574:575-580 pubmed 出版商
  161. Farhy C, Hariharan S, Ylanko J, Orozco L, Zeng F, Pass I, et al. Improving drug discovery using image-based multiparametric analysis of the epigenetic landscape. elife. 2019;8: pubmed 出版商
  162. Lin F, Meng X, Guo Y, Cao W, Liu W, Xia Q, et al. Epigenetic initiation of the TH17 differentiation program is promoted by Cxxc finger protein 1. Sci Adv. 2019;5:eaax1608 pubmed 出版商
  163. Liu D, Wu L, Wu Y, Wei X, Wang W, Zhang S, et al. Heat shock factor 1-mediated transcription activation of Omi/HtrA2 induces myocardial mitochondrial apoptosis in the aging heart. Aging (Albany NY). 2019;11:8982-8997 pubmed 出版商
  164. Lin T, Chan H, Chen S, Sarvagalla S, Chen P, Coumar M, et al. BIRC5/Survivin is a novel ATG12-ATG5 conjugate interactor and an autophagy-induced DNA damage suppressor in human cancer and mouse embryonic fibroblast cells. Autophagy. 2019;:1-18 pubmed 出版商
  165. Kuang Z, Wang Y, Li Y, Ye C, Ruhn K, Behrendt C, et al. The intestinal microbiota programs diurnal rhythms in host metabolism through histone deacetylase 3. Science. 2019;365:1428-1434 pubmed 出版商
  166. Kuznetsov J, Agüero T, Owens D, Kurtenbach S, Field M, Durante M, et al. BAP1 regulates epigenetic switch from pluripotency to differentiation in developmental lineages giving rise to BAP1-mutant cancers. Sci Adv. 2019;5:eaax1738 pubmed 出版商
  167. Tambalo M, Anwar M, Ahmed M, Streit A. Enhancer activation by FGF signalling during otic induction. Dev Biol. 2020;457:69-82 pubmed 出版商
  168. Barbero G, Castro M, Villanueva M, Quezada M, Fernández N, Demorrow S, et al. An Autocrine Wnt5a Loop Promotes NF-κB Pathway Activation and Cytokine/Chemokine Secretion in Melanoma. Cells. 2019;8: pubmed 出版商
  169. Weinberg D, Papillon Cavanagh S, Chen H, Yue Y, Chen X, Rajagopalan K, et al. The histone mark H3K36me2 recruits DNMT3A and shapes the intergenic DNA methylation landscape. Nature. 2019;573:281-286 pubmed 出版商
  170. Sanghvi V, Leibold J, Mina M, Mohan P, Berishaj M, Li Z, et al. The Oncogenic Action of NRF2 Depends on De-glycation by Fructosamine-3-Kinase. Cell. 2019;178:807-819.e21 pubmed 出版商
  171. Tang W, Martik M, Li Y, Bronner M. Cardiac neural crest contributes to cardiomyocytes in amniotes and heart regeneration in zebrafish. elife. 2019;8: pubmed 出版商
  172. Kuhn T, Pascual García P, Gozalo A, Little S, Capelson M. Chromatin targeting of nuclear pore proteins induces chromatin decondensation. J Cell Biol. 2019;218:2945-2961 pubmed 出版商
  173. Lee J, Termglinchan V, Diecke S, Itzhaki I, Lam C, Garg P, et al. Activation of PDGF pathway links LMNA mutation to dilated cardiomyopathy. Nature. 2019;572:335-340 pubmed 出版商
  174. Yu R, Sun L, Sun Y, Han X, Qin L, Dang W. Cellular response to moderate chromatin architectural defects promotes longevity. Sci Adv. 2019;5:eaav1165 pubmed 出版商
  175. Colomer C, Margalef P, Villanueva A, Vert A, Pecharroman I, Sole L, et al. IKKα Kinase Regulates the DNA Damage Response and Drives Chemo-resistance in Cancer. Mol Cell. 2019;75:669-682.e5 pubmed 出版商
  176. Sin Chan P, Mumal I, Suwal T, Ho B, Fan X, Singh I, et al. A C19MC-LIN28A-MYCN Oncogenic Circuit Driven by Hijacked Super-enhancers Is a Distinct Therapeutic Vulnerability in ETMRs: A Lethal Brain Tumor. Cancer Cell. 2019;36:51-67.e7 pubmed 出版商
  177. Shan C, Lu Z, Li Z, Sheng H, Fan J, Qi Q, et al. 4-hydroxyphenylpyruvate dioxygenase promotes lung cancer growth via pentose phosphate pathway (PPP) flux mediated by LKB1-AMPK/HDAC10/G6PD axis. Cell Death Dis. 2019;10:525 pubmed 出版商
  178. Piunti A, Smith E, Morgan M, Ugarenko M, Khaltyan N, Helmin K, et al. CATACOMB: An endogenous inducible gene that antagonizes H3K27 methylation activity of Polycomb repressive complex 2 via an H3K27M-like mechanism. Sci Adv. 2019;5:eaax2887 pubmed 出版商
  179. Jain A, Agostini L, McCarthy G, Chand S, Ramirez A, Nevler A, et al. Poly (ADP) ribose glycohydrolase can be effectively targeted in pancreatic cancer. Cancer Res. 2019;: pubmed 出版商
  180. Curt J, Salmani B, Thor S. Anterior CNS expansion driven by brain transcription factors. elife. 2019;8: pubmed 出版商
  181. Wang H, Xiang D, Liu B, He A, Randle H, Zhang K, et al. Inadequate DNA Damage Repair Promotes Mammary Transdifferentiation, Leading to BRCA1 Breast Cancer. Cell. 2019;178:135-151.e19 pubmed 出版商
  182. Fabry M, Ciabrelli F, Munafò M, Eastwood E, Kneuss E, Falciatori I, et al. piRNA-guided co-transcriptional silencing coopts nuclear export factors. elife. 2019;8: pubmed 出版商
  183. Azkanaz M, Rodríguez López A, de Boer B, Huiting W, Angrand P, Vellenga E, et al. Protein quality control in the nucleolus safeguards recovery of epigenetic regulators after heat shock. elife. 2019;8: pubmed 出版商
  184. Gil Ranedo J, Gonzaga E, Jaworek K, Berger C, Bossing T, Barros C. STRIPAK Members Orchestrate Hippo and Insulin Receptor Signaling to Promote Neural Stem Cell Reactivation. Cell Rep. 2019;27:2921-2933.e5 pubmed 出版商
  185. Li J, Dong A, Saydaminova K, Chang H, Wang G, Ochiai H, et al. Single-Molecule Nanoscopy Elucidates RNA Polymerase II Transcription at Single Genes in Live Cells. Cell. 2019;: pubmed 出版商
  186. Wu S, Fatkhutdinov N, Rosin L, Luppino J, Iwasaki O, Tanizawa H, et al. ARID1A spatially partitions interphase chromosomes. Sci Adv. 2019;5:eaaw5294 pubmed 出版商
  187. Traynor S, Møllegaard N, Jørgensen M, Brückmann N, Pedersen C, Terp M, et al. Remodeling and destabilization of chromosome 1 pericentromeric heterochromatin by SSX proteins. Nucleic Acids Res. 2019;47:6668-6684 pubmed 出版商
  188. Rubio K, Singh I, Dobersch S, Sarvari P, Günther S, Cordero J, et al. Inactivation of nuclear histone deacetylases by EP300 disrupts the MiCEE complex in idiopathic pulmonary fibrosis. Nat Commun. 2019;10:2229 pubmed 出版商
  189. Pivetti S, Fernandez Perez D, D Ambrosio A, Barbieri C, Manganaro D, Rossi A, et al. Loss of PRC1 activity in different stem cell compartments activates a common transcriptional program with cell type-dependent outcomes. Sci Adv. 2019;5:eaav1594 pubmed 出版商
  190. Beh L, Debelouchina G, Clay D, Thompson R, Lindblad K, Hutton E, et al. Identification of a DNA N6-Adenine Methyltransferase Complex and Its Impact on Chromatin Organization. Cell. 2019;: pubmed 出版商
  191. Aztekin C, Hiscock T, Marioni J, Gurdon J, Simons B, Jullien J. Identification of a regeneration-organizing cell in the Xenopus tail. Science. 2019;364:653-658 pubmed 出版商
  192. Sheng Y, Ji Z, Zhao H, Wang J, Cheng C, Xu W, et al. Downregulation of the histone methyltransferase SETD2 promotes imatinib resistance in chronic myeloid leukaemia cells. Cell Prolif. 2019;:e12611 pubmed 出版商
  193. Meyer M, Benkusky N, Kaufmann M, Lee S, Redfield R, Jones G, et al. Targeted genomic deletions identify diverse enhancer functions and generate a kidney-specific, endocrine-deficient Cyp27b1 pseudo-null mouse. J Biol Chem. 2019;294:9518-9535 pubmed 出版商
  194. O Geen H, Bates S, Carter S, Nisson K, Halmai J, Fink K, et al. Ezh2-dCas9 and KRAB-dCas9 enable engineering of epigenetic memory in a context-dependent manner. Epigenetics Chromatin. 2019;12:26 pubmed 出版商
  195. Shi K, Yin X, Cai M, Yan Y, Jia C, Ma P, et al. PAX8 regulon in human ovarian cancer links lineage dependency with epigenetic vulnerability to HDAC inhibitors. elife. 2019;8: pubmed 出版商
  196. Eckert M, Coscia F, Chryplewicz A, Chang J, Hernandez K, Pan S, et al. Proteomics reveals NNMT as a master metabolic regulator of cancer-associated fibroblasts. Nature. 2019;: pubmed 出版商
  197. Yen W, Sharma R, Cols M, Lau C, Chaudhry A, Chowdhury P, et al. Distinct Requirements of CHD4 during B Cell Development and Antibody Response. Cell Rep. 2019;27:1472-1486.e5 pubmed 出版商
  198. Benchetrit H, Jaber M, Zayat V, Sebban S, Pushett A, Makedonski K, et al. Direct Induction of the Three Pre-implantation Blastocyst Cell Types from Fibroblasts. Cell Stem Cell. 2019;24:983-994.e7 pubmed 出版商
  199. Gao R, Liang X, Cheedipudi S, Cordero J, Jiang X, Zhang Q, et al. Pioneering function of Isl1 in the epigenetic control of cardiomyocyte cell fate. Cell Res. 2019;29:486-501 pubmed 出版商
  200. Chowdhry S, Zanca C, Rajkumar U, Koga T, Diao Y, Raviram R, et al. NAD metabolic dependency in cancer is shaped by gene amplification and enhancer remodelling. Nature. 2019;569:570-575 pubmed 出版商
  201. Zhang H, Wang J, Wang Y, Gao C, Gu Y, Huang J, et al. Salvianolic Acid A Protects the Kidney against Oxidative Stress by Activating the Akt/GSK-3β/Nrf2 Signaling Pathway and Inhibiting the NF-κB Signaling Pathway in 5/6 Nephrectomized Rats. Oxid Med Cell Longev. 2019;2019:2853534 pubmed 出版商
  202. Tian X, Firsanov D, Zhang Z, Cheng Y, Luo L, Tombline G, et al. SIRT6 Is Responsible for More Efficient DNA Double-Strand Break Repair in Long-Lived Species. Cell. 2019;177:622-638.e22 pubmed 出版商
  203. Koupenova M, Corkrey H, Vitseva O, Manni G, Pang C, Clancy L, et al. The role of platelets in mediating a response to human influenza infection. Nat Commun. 2019;10:1780 pubmed 出版商
  204. Greenberg M, Teissandier A, Walter M, Noordermeer D, Bourc his D. Dynamic enhancer partitioning instructs activation of a growth-related gene during exit from naïve pluripotency. elife. 2019;8: pubmed 出版商
  205. Kweon S, Chen Y, Moon E, Kvederaviciute K, Klimasauskas S, Feldman D. An Adversarial DNA N6-Methyladenine-Sensor Network Preserves Polycomb Silencing. Mol Cell. 2019;74:1138-1147.e6 pubmed 出版商
  206. Wagner J, Rapsomaniki M, Chevrier S, Anzeneder T, Langwieder C, Dykgers A, et al. A Single-Cell Atlas of the Tumor and Immune Ecosystem of Human Breast Cancer. Cell. 2019;177:1330-1345.e18 pubmed 出版商
  207. Lavarone E, Barbieri C, Pasini D. Dissecting the role of H3K27 acetylation and methylation in PRC2 mediated control of cellular identity. Nat Commun. 2019;10:1679 pubmed 出版商
  208. Bennett S, Cobos S, Meykler M, Fallah M, Rana N, Chen K, et al. Characterizing Histone Post-translational Modification Alterations in Yeast Neurodegenerative Proteinopathy Models. J Vis Exp. 2019;: pubmed 出版商
  209. Lytle N, Ferguson L, Rajbhandari N, Gilroy K, Fox R, Deshpande A, et al. A Multiscale Map of the Stem Cell State in Pancreatic Adenocarcinoma. Cell. 2019;177:572-586.e22 pubmed 出版商
  210. Lin C, Hsu Y, Huang Y, Shih Y, Wang C, Chiang W, et al. A KDM6A-KLF10 reinforcing feedback mechanism aggravates diabetic podocyte dysfunction. EMBO Mol Med. 2019;11: pubmed 出版商
  211. Rajderkar S, Mann J, Panaretos C, Yumoto K, Li H, Mishina Y, et al. Trim33 is required for appropriate development of pre-cardiogenic mesoderm. Dev Biol. 2019;450:101-114 pubmed 出版商
  212. Lima Fernandes E, Murison A, da Silva Medina T, Wang Y, Ma A, Leung C, et al. Targeting bivalency de-represses Indian Hedgehog and inhibits self-renewal of colorectal cancer-initiating cells. Nat Commun. 2019;10:1436 pubmed 出版商
  213. Krimpenfort P, Snoek M, Lambooij J, Song J, van der Weide R, Bhaskaran R, et al. A natural WNT signaling variant potently synergizes with Cdkn2ab loss in skin carcinogenesis. Nat Commun. 2019;10:1425 pubmed 出版商
  214. Vodnala S, Eil R, Kishton R, Sukumar M, Yamamoto T, Ha N, et al. T cell stemness and dysfunction in tumors are triggered by a common mechanism. Science. 2019;363: pubmed 出版商
  215. Kelly M, So J, Rogers A, Gregory G, Li J, Zethoven M, et al. Bcor loss perturbs myeloid differentiation and promotes leukaemogenesis. Nat Commun. 2019;10:1347 pubmed 出版商
  216. Perdomo J, Leung H, Ahmadi Z, Yan F, Chong J, Passam F, et al. Neutrophil activation and NETosis are the major drivers of thrombosis in heparin-induced thrombocytopenia. Nat Commun. 2019;10:1322 pubmed 出版商
  217. Li H, Petersen S, García Mariscal A, Brakebusch C. Negative Regulation of p53-Induced Senescence by N-WASP Is Crucial for DMBA/TPA-Induced Skin Tumor Formation. Cancer Res. 2019;79:2167-2181 pubmed 出版商
  218. Wei X, Guo J, Li Q, Jia Q, Jing Q, Li Y, et al. Bach1 regulates self-renewal and impedes mesendodermal differentiation of human embryonic stem cells. Sci Adv. 2019;5:eaau7887 pubmed 出版商
  219. Pergu R, Dagar S, Kumar H, Kumar R, Bhattacharya J, Mylavarapu S. The chaperone ERp29 is required for tunneling nanotube formation by stabilizing MSec. J Biol Chem. 2019;294:7177-7193 pubmed 出版商
  220. Chakraborty A, Laukka T, Myllykoski M, Ringel A, Booker M, Tolstorukov M, et al. Histone demethylase KDM6A directly senses oxygen to control chromatin and cell fate. Science. 2019;363:1217-1222 pubmed 出版商
  221. Farrelly L, Thompson R, Zhao S, Lepack A, Lyu Y, Bhanu N, et al. Histone serotonylation is a permissive modification that enhances TFIID binding to H3K4me3. Nature. 2019;567:535-539 pubmed 出版商
  222. Aranda S, Alcaine Colet A, Blanco E, Borras E, Caillot C, Sabidó E, et al. Chromatin capture links the metabolic enzyme AHCY to stem cell proliferation. Sci Adv. 2019;5:eaav2448 pubmed 出版商
  223. Li W, Wang H, Zhao X, Duan H, Cheng B, Liu Y, et al. A methylation-phosphorylation switch determines Plk1 kinase activity and function in DNA damage repair. Sci Adv. 2019;5:eaau7566 pubmed 出版商
  224. Lee J, Dindorf J, Eberhardt M, Lai X, Ostalecki C, Koliha N, et al. Innate extracellular vesicles from melanoma patients suppress β-catenin in tumor cells by miRNA-34a. Life Sci Alliance. 2019;2: pubmed 出版商
  225. Zhang S, Deng T, Tang W, He B, Furusawa T, Ambs S, et al. Epigenetic regulation of REX1 expression and chromatin binding specificity by HMGNs. Nucleic Acids Res. 2019;47:4449-4461 pubmed 出版商
  226. Crippa S, Rossella V, Aprile A, Silvestri L, Rivis S, Scaramuzza S, et al. Bone marrow stromal cells from β-thalassemia patients have impaired hematopoietic supportive capacity. J Clin Invest. 2019;129:1566-1580 pubmed 出版商
  227. Liu X, Wang Y, Lu H, Li J, Yan X, Xiao M, et al. Genome-wide analysis identifies NR4A1 as a key mediator of T cell dysfunction. Nature. 2019;567:525-529 pubmed 出版商
  228. Lin K, Qiang W, Zhu M, Ding Y, Shi Q, Chen X, et al. Mammalian Pum1 and Pum2 Control Body Size via Translational Regulation of the Cell Cycle Inhibitor Cdkn1b. Cell Rep. 2019;26:2434-2450.e6 pubmed 出版商
  229. Nassa G, Salvati A, Tarallo R, Gigantino V, Alexandrova E, Memoli D, et al. Inhibition of histone methyltransferase DOT1L silences ERα gene and blocks proliferation of antiestrogen-resistant breast cancer cells. Sci Adv. 2019;5:eaav5590 pubmed 出版商
  230. Majumdar T, Sharma S, Kumar M, Hussain M, Chauhan N, Kalia I, et al. Tryptophan-kynurenine pathway attenuates β-catenin-dependent pro-parasitic role of STING-TICAM2-IRF3-IDO1 signalosome in Toxoplasma gondii infection. Cell Death Dis. 2019;10:161 pubmed 出版商
  231. Garcia Bermudez J, Baudrier L, Bayraktar E, Shen Y, La K, Guarecuco R, et al. Squalene accumulation in cholesterol auxotrophic lymphomas prevents oxidative cell death. Nature. 2019;567:118-122 pubmed 出版商
  232. Frank T, Tuppi M, Hugle M, Dötsch V, van Wijk S, Fulda S. Cell cycle arrest in mitosis promotes interferon-induced necroptosis. Cell Death Differ. 2019;: pubmed 出版商
  233. Nava M, Dutta P, Zemke N, Farias Eisner R, Vadgama J, Wu Y. Transcriptomic and ChIP-sequence interrogation of EGFR signaling in HER2+ breast cancer cells reveals a dynamic chromatin landscape and S100 genes as targets. BMC Med Genomics. 2019;12:32 pubmed 出版商
  234. Mathieu J, Detraux D, Kuppers D, Wang Y, Cavanaugh C, Sidhu S, et al. Folliculin regulates mTORC1/2 and WNT pathways in early human pluripotency. Nat Commun. 2019;10:632 pubmed 出版商
  235. Suzuki T, Kikuguchi C, Nishijima S, Nagashima T, Takahashi A, Okada M, et al. Postnatal liver functional maturation requires Cnot complex-mediated decay of mRNAs encoding cell cycle and immature liver genes. Development. 2019;146: pubmed 出版商
  236. Wei J, Kishton R, Angel M, Conn C, Dalla Venezia N, Marcel V, et al. Ribosomal Proteins Regulate MHC Class I Peptide Generation for Immunosurveillance. Mol Cell. 2019;73:1162-1173.e5 pubmed 出版商
  237. Guo J, Dai X, Laurent B, Zheng N, Gan W, Zhang J, et al. AKT methylation by SETDB1 promotes AKT kinase activity and oncogenic functions. Nat Cell Biol. 2019;21:226-237 pubmed 出版商
  238. So C, Ramachandran S, Martin A. E3 Ubiquitin Ligases RNF20 and RNF40 Are Required for Double-Stranded Break (DSB) Repair: Evidence for Monoubiquitination of Histone H2B Lysine 120 as a Novel Axis of DSB Signaling and Repair. Mol Cell Biol. 2019;39: pubmed 出版商
  239. Del Rosario B, Kriz A, Del Rosario A, Anselmo A, Fry C, White F, et al. Exploration of CTCF post-translation modifications uncovers Serine-224 phosphorylation by PLK1 at pericentric regions during the G2/M transition. elife. 2019;8: pubmed 出版商
  240. Zheng Y, Liu A, Wang Z, Cao Q, Wang W, Lin L, et al. Inhibition of EHMT1/2 rescues synaptic and cognitive functions for Alzheimer's disease. Brain. 2019;142:787-807 pubmed 出版商
  241. Sharifnia T, Wawer M, Chen T, Huang Q, Weir B, Sizemore A, et al. Small-molecule targeting of brachyury transcription factor addiction in chordoma. Nat Med. 2019;25:292-300 pubmed 出版商
  242. Vítor A, Sridhara S, Sabino J, Afonso A, Grosso A, Martin R, et al. Single-molecule imaging of transcription at damaged chromatin. Sci Adv. 2019;5:eaau1249 pubmed 出版商
  243. Philips R, Lee J, Gaonkar K, Chanana P, Chung J, Romero Arocha S, et al. HDAC3 restrains CD8-lineage genes to maintain a bi-potential state in CD4+CD8+ thymocytes for CD4-lineage commitment. elife. 2019;8: pubmed 出版商
  244. Shen B, Vardy K, Hughes P, Tasdogan A, Zhao Z, Yue R, et al. Integrin alpha11 is an Osteolectin receptor and is required for the maintenance of adult skeletal bone mass. elife. 2019;8: pubmed 出版商
  245. Gómez Fernández P, Urtasun A, Paton A, Paton J, Borrego F, Dersh D, et al. Long Interleukin-22 Binding Protein Isoform-1 Is an Intracellular Activator of the Unfolded Protein Response. Front Immunol. 2018;9:2934 pubmed 出版商
  246. May J, Kouri F, Hurley L, Liu J, Tommasini Ghelfi S, Ji Y, et al. IDH3α regulates one-carbon metabolism in glioblastoma. Sci Adv. 2019;5:eaat0456 pubmed 出版商
  247. Jachimowicz R, Beleggia F, Isensee J, Velpula B, Goergens J, Bustos M, et al. UBQLN4 Represses Homologous Recombination and Is Overexpressed in Aggressive Tumors. Cell. 2019;176:505-519.e22 pubmed 出版商
  248. Nicetto D, Donahue G, Jain T, Peng T, Sidoli S, Sheng L, et al. H3K9me3-heterochromatin loss at protein-coding genes enables developmental lineage specification. Science. 2019;363:294-297 pubmed 出版商
  249. Żylicz J, Bousard A, Zumer K, Dossin F, Mohammad E, da Rocha S, et al. The Implication of Early Chromatin Changes in X Chromosome Inactivation. Cell. 2019;176:182-197.e23 pubmed 出版商
  250. Collins P, Cella M, Porter S, Li S, Gurewitz G, Hong H, et al. Gene Regulatory Programs Conferring Phenotypic Identities to Human NK Cells. Cell. 2019;176:348-360.e12 pubmed 出版商
  251. Ciolli Mattioli C, Rom A, Franke V, Imami K, Arrey G, Terne M, et al. Alternative 3' UTRs direct localization of functionally diverse protein isoforms in neuronal compartments. Nucleic Acids Res. 2019;47:2560-2573 pubmed 出版商
  252. Liddiard K, Ruis B, Kan Y, Cleal K, Ashelford K, Hendrickson E, et al. DNA Ligase 1 is an essential mediator of sister chromatid telomere fusions in G2 cell cycle phase. Nucleic Acids Res. 2019;47:2402-2424 pubmed 出版商
  253. Haldeman J, Conway A, Arlotto M, Slentz D, Muoio D, Becker T, et al. Creation of versatile cloning platforms for transgene expression and dCas9-based epigenome editing. Nucleic Acids Res. 2019;47:e23 pubmed 出版商
  254. Volkmar N, Thezenas M, Louie S, Juszkiewicz S, Nomura D, Hegde R, et al. The ER membrane protein complex promotes biogenesis of sterol-related enzymes maintaining cholesterol homeostasis. J Cell Sci. 2019;132: pubmed 出版商
  255. Li F, Zeng Z, Xing S, Gullicksrud J, Shan Q, Choi J, et al. Ezh2 programs TFH differentiation by integrating phosphorylation-dependent activation of Bcl6 and polycomb-dependent repression of p19Arf. Nat Commun. 2018;9:5452 pubmed 出版商
  256. Laferrière F, Maniecka Z, Pérez Berlanga M, Hruska Plochan M, Gilhespy L, Hock E, et al. TDP-43 extracted from frontotemporal lobar degeneration subject brains displays distinct aggregate assemblies and neurotoxic effects reflecting disease progression rates. Nat Neurosci. 2019;22:65-77 pubmed 出版商
  257. Fiore A, Ugel S, De Sanctis F, Sandri S, Fracasso G, Trovato R, et al. Induction of immunosuppressive functions and NF-κB by FLIP in monocytes. Nat Commun. 2018;9:5193 pubmed 出版商
  258. Chen X, Zhi X, Wang J, Su J. RANKL signaling in bone marrow mesenchymal stem cells negatively regulates osteoblastic bone formation. Bone Res. 2018;6:34 pubmed 出版商
  259. Inoue A, Chen Z, Yin Q, Zhang Y. Maternal Eed knockout causes loss of H3K27me3 imprinting and random X inactivation in the extraembryonic cells. Genes Dev. 2018;32:1525-1536 pubmed 出版商
  260. Guo A, Wang Y, Chen B, Wang Y, Yuan J, Zhang L, et al. E-C coupling structural protein junctophilin-2 encodes a stress-adaptive transcription regulator. Science. 2018;362: pubmed 出版商
  261. Grigoryan A, Guidi N, Senger K, Liehr T, Soller K, Marka G, et al. LaminA/C regulates epigenetic and chromatin architecture changes upon aging of hematopoietic stem cells. Genome Biol. 2018;19:189 pubmed 出版商
  262. Kyei G, Meng S, Ramani R, Niu A, Lagisetti C, Webb T, et al. Splicing Factor 3B Subunit 1 Interacts with HIV Tat and Plays a Role in Viral Transcription and Reactivation from Latency. MBio. 2018;9: pubmed 出版商
  263. Biffi G, Oni T, Spielman B, Hao Y, Elyada E, Park Y, et al. IL1-Induced JAK/STAT Signaling Is Antagonized by TGFβ to Shape CAF Heterogeneity in Pancreatic Ductal Adenocarcinoma. Cancer Discov. 2019;9:282-301 pubmed 出版商
  264. Chen X, Wanggou S, Bodalia A, Zhu M, Dong W, Fan J, et al. A Feedforward Mechanism Mediated by Mechanosensitive Ion Channel PIEZO1 and Tissue Mechanics Promotes Glioma Aggression. Neuron. 2018;100:799-815.e7 pubmed 出版商
  265. Lee H, Willi M, Shin H, Liu C, Hennighausen L. Progressing super-enhancer landscape during mammary differentiation controls tissue-specific gene regulation. Nucleic Acids Res. 2018;46:10796-10809 pubmed 出版商
  266. Tischler J, Gruhn W, Reid J, Allgeyer E, Buettner F, Marr C, et al. Metabolic regulation of pluripotency and germ cell fate through α-ketoglutarate. EMBO J. 2019;38: pubmed 出版商
  267. Godfrey T, Wildman B, Beloti M, Kemper A, Ferraz E, Roy B, et al. The microRNA-23a cluster regulates the developmental HoxA cluster function during osteoblast differentiation. J Biol Chem. 2018;293:17646-17660 pubmed 出版商
  268. Zhang Y, Wang J, Huang W, Cai J, Ba J, Wang Y, et al. Nuclear Nestin deficiency drives tumor senescence via lamin A/C-dependent nuclear deformation. Nat Commun. 2018;9:3613 pubmed 出版商
  269. Stewart E, McEvoy J, Wang H, Chen X, Honnell V, Ocarz M, et al. Identification of Therapeutic Targets in Rhabdomyosarcoma through Integrated Genomic, Epigenomic, and Proteomic Analyses. Cancer Cell. 2018;34:411-426.e19 pubmed 出版商
  270. Peterson J, Wang D, Shettigar V, Roof S, Canan B, Bakkar N, et al. NF-κB inhibition rescues cardiac function by remodeling calcium genes in a Duchenne muscular dystrophy model. Nat Commun. 2018;9:3431 pubmed 出版商
  271. Piragyte I, Clapes T, Polyzou A, Klein Geltink R, Lefkopoulos S, Yin N, et al. A metabolic interplay coordinated by HLX regulates myeloid differentiation and AML through partly overlapping pathways. Nat Commun. 2018;9:3090 pubmed 出版商
  272. Klein R, Tung P, Somanath P, Fehling H, Knoepfler P. Genomic functions of developmental pluripotency associated factor 4 (Dppa4) in pluripotent stem cells and cancer. Stem Cell Res. 2018;31:83-94 pubmed 出版商
  273. Zhang J, Wu T, Simon J, Takada M, Saito R, Fan C, et al. VHL substrate transcription factor ZHX2 as an oncogenic driver in clear cell renal cell carcinoma. Science. 2018;361:290-295 pubmed 出版商
  274. Liszczak G, Diehl K, Dann G, Muir T. Acetylation blocks DNA damage-induced chromatin ADP-ribosylation. Nat Chem Biol. 2018;14:837-840 pubmed 出版商
  275. Yasuda Yamahara M, Rogg M, Yamahara K, Maier J, Huber T, Schell C. AIF1L regulates actomyosin contractility and filopodial extensions in human podocytes. PLoS ONE. 2018;13:e0200487 pubmed 出版商
  276. Trepte P, Kruse S, Kostova S, Hoffmann S, Buntru A, Tempelmeier A, et al. LuTHy: a double-readout bioluminescence-based two-hybrid technology for quantitative mapping of protein-protein interactions in mammalian cells. Mol Syst Biol. 2018;14:e8071 pubmed 出版商
  277. Pulikkan J, Hegde M, Ahmad H, Belaghzal H, Illendula A, Yu J, et al. CBFβ-SMMHC Inhibition Triggers Apoptosis by Disrupting MYC Chromatin Dynamics in Acute Myeloid Leukemia. Cell. 2018;174:172-186.e21 pubmed 出版商
  278. Yu R, Wang X, Moazed D. Epigenetic inheritance mediated by coupling of RNAi and histone H3K9 methylation. Nature. 2018;558:615-619 pubmed 出版商
  279. Casey A, Sinha A, Singhania R, Livingstone J, Waterhouse P, Tharmapalan P, et al. Mammary molecular portraits reveal lineage-specific features and progenitor cell vulnerabilities. J Cell Biol. 2018;217:2951-2974 pubmed 出版商
  280. Alabdi L, He M, Yang Q, Norvil A, Gowher H. The transcription factor Vezf1 represses the expression of the antiangiogenic factor Cited2 in endothelial cells. J Biol Chem. 2018;293:11109-11118 pubmed 出版商
  281. Tamassia N, Arruda Silva F, Calzetti F, Lonardi S, Gasperini S, Gardiman E, et al. A Reappraisal on the Potential Ability of Human Neutrophils to Express and Produce IL-17 Family Members In Vitro: Failure to Reproducibly Detect It. Front Immunol. 2018;9:795 pubmed 出版商
  282. Pircher J, Czermak T, Ehrlich A, Eberle C, Gaitzsch E, Margraf A, et al. Cathelicidins prime platelets to mediate arterial thrombosis and tissue inflammation. Nat Commun. 2018;9:1523 pubmed 出版商
  283. Lu J, Liu L, Zheng M, Li X, Wu A, Wu Q, et al. MEKK2 and MEKK3 suppress Hedgehog pathway-dependent medulloblastoma by inhibiting GLI1 function. Oncogene. 2018;37:3864-3878 pubmed 出版商
  284. Fujimoto M, Takii R, Katiyar A, Srivastava P, Nakai A. Poly(ADP-Ribose) Polymerase 1 Promotes the Human Heat Shock Response by Facilitating Heat Shock Transcription Factor 1 Binding to DNA. Mol Cell Biol. 2018;38: pubmed 出版商
  285. Kornberg M, Bhargava P, Kim P, Putluri V, Snowman A, Putluri N, et al. Dimethyl fumarate targets GAPDH and aerobic glycolysis to modulate immunity. Science. 2018;360:449-453 pubmed 出版商
  286. Andricovich J, Perkail S, Kai Y, Casasanta N, Peng W, Tzatsos A. Loss of KDM6A Activates Super-Enhancers to Induce Gender-Specific Squamous-like Pancreatic Cancer and Confers Sensitivity to BET Inhibitors. Cancer Cell. 2018;33:512-526.e8 pubmed 出版商
  287. Ng P, Li J, Jeong K, Shao S, Chen H, Tsang Y, et al. Systematic Functional Annotation of Somatic Mutations in Cancer. Cancer Cell. 2018;33:450-462.e10 pubmed 出版商
  288. Qin L, Ma K, Wang Z, Hu Z, Matas E, Wei J, et al. Social deficits in Shank3-deficient mouse models of autism are rescued by histone deacetylase (HDAC) inhibition. Nat Neurosci. 2018;21:564-575 pubmed 出版商
  289. Pines A, Dijk M, Makowski M, Meulenbroek E, Vrouwe M, van der Weegen Y, et al. TRiC controls transcription resumption after UV damage by regulating Cockayne syndrome protein A. Nat Commun. 2018;9:1040 pubmed 出版商
  290. Mohamed T, Ang Y, Radzinsky E, Zhou P, Huang Y, Elfenbein A, et al. Regulation of Cell Cycle to Stimulate Adult Cardiomyocyte Proliferation and Cardiac Regeneration. Cell. 2018;173:104-116.e12 pubmed 出版商
  291. Huang T, Fowler F, Chen C, Shen Z, SLECKMAN B, Tyler J. The Histone Chaperones ASF1 and CAF-1 Promote MMS22L-TONSL-Mediated Rad51 Loading onto ssDNA during Homologous Recombination in Human Cells. Mol Cell. 2018;69:879-892.e5 pubmed 出版商
  292. Silva C, Peyre E, Adhikari M, Tielens S, Tanco S, Van Damme P, et al. Cell-Intrinsic Control of Interneuron Migration Drives Cortical Morphogenesis. Cell. 2018;172:1063-1078.e19 pubmed 出版商
  293. Hoshii T, Cifani P, Feng Z, Huang C, Koche R, Chen C, et al. A Non-catalytic Function of SETD1A Regulates Cyclin K and the DNA Damage Response. Cell. 2018;172:1007-1021.e17 pubmed 出版商
  294. Vlachogiannis G, Hedayat S, Vatsiou A, Jamin Y, Fernández Mateos J, Khan K, et al. Patient-derived organoids model treatment response of metastatic gastrointestinal cancers. Science. 2018;359:920-926 pubmed 出版商
  295. Liu X, Wu H, Krzisch M, Wu X, Graef J, Muffat J, et al. Rescue of Fragile X Syndrome Neurons by DNA Methylation Editing of the FMR1 Gene. Cell. 2018;172:979-992.e6 pubmed 出版商
  296. Murphy P, Wu S, James C, Wike C, Cairns B. Placeholder Nucleosomes Underlie Germline-to-Embryo DNA Methylation Reprogramming. Cell. 2018;172:993-1006.e13 pubmed 出版商
  297. Deng H, Zeng J, Zhang T, Gong L, Zhang H, Cheung E, et al. Histone H3.3K27M Mobilizes Multiple Cancer/Testis (CT) Antigens in Pediatric Glioma. Mol Cancer Res. 2018;16:623-633 pubmed 出版商
  298. Bogdan D, Falcone J, Kanjiya M, Park S, Carbonetti G, Studholme K, et al. Fatty acid-binding protein 5 controls microsomal prostaglandin E synthase 1 (mPGES-1) induction during inflammation. J Biol Chem. 2018;293:5295-5306 pubmed 出版商
  299. Li F, Liu J, Bao R, Yan G, Feng X, Xu Y, et al. Acetylation accumulates PFKFB3 in cytoplasm to promote glycolysis and protects cells from cisplatin-induced apoptosis. Nat Commun. 2018;9:508 pubmed 出版商
  300. Ahmad S, Mu X, Yang F, Greenwald E, Park J, Jacob E, et al. Breaching Self-Tolerance to Alu Duplex RNA Underlies MDA5-Mediated Inflammation. Cell. 2018;172:797-810.e13 pubmed 出版商
  301. McClurg U, Nabbi A, Ricordel C, Korolchuk S, McCracken S, Heer R, et al. Human ex vivo prostate tissue model system identifies ING3 as an oncoprotein. Br J Cancer. 2018;118:713-726 pubmed 出版商
  302. Griffin J, del Viso F, Duncan A, Robson A, Hwang W, Kulkarni S, et al. RAPGEF5 Regulates Nuclear Translocation of β-Catenin. Dev Cell. 2018;44:248-260.e4 pubmed 出版商
  303. Arrizabalaga O, Moreno Cugnon L, Auzmendi Iriarte J, Aldaz P, Ibanez de Caceres I, Garros Regulez L, et al. High expression of MKP1/DUSP1 counteracts glioma stem cell activity and mediates HDAC inhibitor response. Oncogenesis. 2017;6:401 pubmed 出版商
  304. Oldrini B, Hsieh W, Erdjument Bromage H, Codega P, Carro M, Curiel García A, et al. EGFR feedback-inhibition by Ran-binding protein 6 is disrupted in cancer. Nat Commun. 2017;8:2035 pubmed 出版商
  305. Wu Y, Zhang Z, Cenciarini M, Proietti C, Amasino M, Hong T, et al. Tamoxifen Resistance in Breast Cancer Is Regulated by the EZH2-ERα-GREB1 Transcriptional Axis. Cancer Res. 2018;78:671-684 pubmed 出版商
  306. Zhang J, Bu X, Wang H, Zhu Y, Geng Y, Nihira N, et al. Cyclin D-CDK4 kinase destabilizes PD-L1 via cullin 3-SPOP to control cancer immune surveillance. Nature. 2018;553:91-95 pubmed 出版商
  307. Shukla S, Cyrta J, Murphy D, Walczak E, Ran L, Agrawal P, et al. Aberrant Activation of a Gastrointestinal Transcriptional Circuit in Prostate Cancer Mediates Castration Resistance. Cancer Cell. 2017;32:792-806.e7 pubmed 出版商
  308. Matson J, Dumitru R, Coryell P, Baxley R, Chen W, Twaroski K, et al. Rapid DNA replication origin licensing protects stem cell pluripotency. elife. 2017;6: pubmed 出版商
  309. Somyajit K, Gupta R, Sedlackova H, Neelsen K, Ochs F, Rask M, et al. Redox-sensitive alteration of replisome architecture safeguards genome integrity. Science. 2017;358:797-802 pubmed 出版商
  310. Fujita J, Freire P, Coarfa C, Benham A, Gunaratne P, Schneider M, et al. Ronin Governs Early Heart Development by Controlling Core Gene Expression Programs. Cell Rep. 2017;21:1562-1573 pubmed 出版商
  311. Kelso T, Porter D, Amaral M, Shokhirev M, Benner C, Hargreaves D. Chromatin accessibility underlies synthetic lethality of SWI/SNF subunits in ARID1A-mutant cancers. elife. 2017;6: pubmed 出版商
  312. Noutsou M, Li J, Ling J, Jones J, Wang Y, Chen Y, et al. The Cohesin Complex Is Necessary for Epidermal Progenitor Cell Function through Maintenance of Self-Renewal Genes. Cell Rep. 2017;20:3005-3013 pubmed 出版商
  313. Sunwoo H, Colognori D, Froberg J, Jeon Y, Lee J. Repeat E anchors Xist RNA to the inactive X chromosomal compartment through CDKN1A-interacting protein (CIZ1). Proc Natl Acad Sci U S A. 2017;114:10654-10659 pubmed 出版商
  314. Casoni F, Croci L, Bosone C, D Ambrosio R, Badaloni A, Gaudesi D, et al. Zfp423/ZNF423 regulates cell cycle progression, the mode of cell division and the DNA-damage response in Purkinje neuron progenitors. Development. 2017;144:3686-3697 pubmed 出版商
  315. Khanal T, Choi K, Leung Y, Wang J, Kim D, Janakiram V, et al. Loss of NR2E3 represses AHR by LSD1 reprogramming, is associated with poor prognosis in liver cancer. Sci Rep. 2017;7:10662 pubmed 出版商
  316. Gao X, Lee H, Li W, Platt R, Barrasa M, Ma Q, et al. Thyroid hormone receptor beta and NCOA4 regulate terminal erythrocyte differentiation. Proc Natl Acad Sci U S A. 2017;114:10107-10112 pubmed 出版商
  317. Rong X, Wang B, Palladino E, de Aguiar Vallim T, Ford D, Tontonoz P. ER phospholipid composition modulates lipogenesis during feeding and in obesity. J Clin Invest. 2017;127:3640-3651 pubmed 出版商
  318. Liu X, Zhang Y, Chen Y, Li M, Zhou F, Li K, et al. In Situ Capture of Chromatin Interactions by Biotinylated dCas9. Cell. 2017;170:1028-1043.e19 pubmed 出版商
  319. Wang Y, Zhang J, Su Y, Shen Y, Jiang D, Hou Y, et al. G9a regulates breast cancer growth by modulating iron homeostasis through the repression of ferroxidase hephaestin. Nat Commun. 2017;8:274 pubmed 出版商
  320. Rubin A, Barajas B, Furlan Magaril M, Lopez Pajares V, Mumbach M, Howard I, et al. Lineage-specific dynamic and pre-established enhancer-promoter contacts cooperate in terminal differentiation. Nat Genet. 2017;49:1522-1528 pubmed 出版商
  321. Wanet A, Caruso M, Domelevo Entfellner J, Najar M, Fattaccioli A, Demazy C, et al. The Transcription Factor 7-Like 2-Peroxisome Proliferator-Activated Receptor Gamma Coactivator-1 Alpha Axis Connects Mitochondrial Biogenesis and Metabolic Shift with Stem Cell Commitment to Hepatic Differentiation. Stem Cells. 2017;35:2184-2197 pubmed 出版商
  322. Krapivinsky G, Krapivinsky L, Renthal N, Santa Cruz A, Manasian Y, Clapham D. Histone phosphorylation by TRPM6's cleaved kinase attenuates adjacent arginine methylation to regulate gene expression. Proc Natl Acad Sci U S A. 2017;114:E7092-E7100 pubmed 出版商
  323. Zenk F, Loeser E, Schiavo R, Kilpert F, Bogdanović O, Iovino N. Germ line-inherited H3K27me3 restricts enhancer function during maternal-to-zygotic transition. Science. 2017;357:212-216 pubmed 出版商
  324. Yuen K, Slaughter B, Gerton J. Condensin II is anchored by TFIIIC and H3K4me3 in the mammalian genome and supports the expression of active dense gene clusters. Sci Adv. 2017;3:e1700191 pubmed 出版商
  325. Perez Leal O, Barrero C, Merali S. Pharmacological stimulation of nuclear factor (erythroid-derived 2)-like 2 translation activates antioxidant responses. J Biol Chem. 2017;292:14108-14121 pubmed 出版商
  326. Bleuyard J, Fournier M, Nakato R, Couturier A, Katou Y, Ralf C, et al. MRG15-mediated tethering of PALB2 to unperturbed chromatin protects active genes from genotoxic stress. Proc Natl Acad Sci U S A. 2017;114:7671-7676 pubmed 出版商
  327. van Groningen T, Koster J, Valentijn L, Zwijnenburg D, Akogul N, Hasselt N, et al. Neuroblastoma is composed of two super-enhancer-associated differentiation states. Nat Genet. 2017;49:1261-1266 pubmed 出版商
  328. Liang X, Yuan X, Yu J, Wu Y, Li K, Sun C, et al. Histone Chaperone ASF1A Predicts Poor Outcomes for Patients With Gastrointestinal Cancer and Drives Cancer Progression by Stimulating Transcription of β-Catenin Target Genes. EBioMedicine. 2017;21:104-116 pubmed 出版商
  329. Mahajan K, Malla P, Lawrence H, Chen Z, Kumar Sinha C, Malik R, et al. ACK1/TNK2 Regulates Histone H4 Tyr88-phosphorylation and AR Gene Expression in Castration-Resistant Prostate Cancer. Cancer Cell. 2017;31:790-803.e8 pubmed 出版商
  330. Sodero A, Rodríguez Silva M, Salio C, Sassoè Pognetto M, Chambers J. Sab is differentially expressed in the brain and affects neuronal activity. Brain Res. 2017;1670:76-85 pubmed 出版商
  331. Natale F, Rapp A, Yu W, Maiser A, Harz H, Scholl A, et al. Identification of the elementary structural units of the DNA damage response. Nat Commun. 2017;8:15760 pubmed 出版商
  332. Raices M, Bukata L, Sakuma S, Borlido J, Hernandez L, Hart D, et al. Nuclear Pores Regulate Muscle Development and Maintenance by Assembling a Localized Mef2C Complex. Dev Cell. 2017;41:540-554.e7 pubmed 出版商
  333. Bj Rås K, Sousa M, Sharma A, Fonseca D, S Gaard C, Bj Rås M, et al. Monitoring of the spatial and temporal dynamics of BER/SSBR pathway proteins, including MYH, UNG2, MPG, NTH1 and NEIL1-3, during DNA replication. Nucleic Acids Res. 2017;45:8291-8301 pubmed 出版商
  334. Mews P, Donahue G, Drake A, Luczak V, Abel T, Berger S. Acetyl-CoA synthetase regulates histone acetylation and hippocampal memory. Nature. 2017;546:381-386 pubmed 出版商
  335. Gosselin D, Skola D, Coufal N, Holtman I, Schlachetzki J, Sajti E, et al. An environment-dependent transcriptional network specifies human microglia identity. Science. 2017;356: pubmed 出版商
  336. Pasutto F, Zenkel M, Hoja U, Berner D, Uebe S, Ferrazzi F, et al. Pseudoexfoliation syndrome-associated genetic variants affect transcription factor binding and alternative splicing of LOXL1. Nat Commun. 2017;8:15466 pubmed 出版商
  337. Mildner A, Schönheit J, Giladi A, David E, Lara Astiaso D, Lorenzo Vivas E, et al. Genomic Characterization of Murine Monocytes Reveals C/EBP? Transcription Factor Dependence of Ly6C- Cells. Immunity. 2017;46:849-862.e7 pubmed 出版商
  338. Natsume T, Nishimura K, Minocherhomji S, Bhowmick R, Hickson I, Kanemaki M. Acute inactivation of the replicative helicase in human cells triggers MCM8-9-dependent DNA synthesis. Genes Dev. 2017;31:816-829 pubmed 出版商
  339. del Toro D, Ruff T, Cederfjäll E, Villalba A, Seyit Bremer G, Borrell V, et al. Regulation of Cerebral Cortex Folding by Controlling Neuronal Migration via FLRT Adhesion Molecules. Cell. 2017;169:621-635.e16 pubmed 出版商
  340. Ma S, Wan X, Deng Z, Shi L, Hao C, Zhou Z, et al. Epigenetic regulator CXXC5 recruits DNA demethylase Tet2 to regulate TLR7/9-elicited IFN response in pDCs. J Exp Med. 2017;214:1471-1491 pubmed 出版商
  341. Wang X, Wang R, Luo M, Li C, Wang H, Huan C, et al. (DEAD)-box RNA helicase 3 modulates NF-κB signal pathway by controlling the phosphorylation of PP2A-C subunit. Oncotarget. 2017;8:33197-33213 pubmed 出版商
  342. Yan Y, Zhao W, Huang Y, Tong H, Xia Y, Jiang Q, et al. Loss of Polycomb Group Protein Pcgf1 Severely Compromises Proper Differentiation of Embryonic Stem Cells. Sci Rep. 2017;7:46276 pubmed 出版商
  343. Shin C, Ito Y, Ichikawa S, Tokunaga M, Sakata Sogawa K, Tanaka T. MKRN2 is a novel ubiquitin E3 ligase for the p65 subunit of NF-κB and negatively regulates inflammatory responses. Sci Rep. 2017;7:46097 pubmed 出版商
  344. Sidhaye J, Norden C. Concerted action of neuroepithelial basal shrinkage and active epithelial migration ensures efficient optic cup morphogenesis. elife. 2017;6: pubmed 出版商
  345. Li X, Song N, Liu L, Liu X, Ding X, Song X, et al. USP9X regulates centrosome duplication and promotes breast carcinogenesis. Nat Commun. 2017;8:14866 pubmed 出版商
  346. Luo D, de Morrée A, Boutet S, Quach N, Natu V, Rustagi A, et al. Deltex2 represses MyoD expression and inhibits myogenic differentiation by acting as a negative regulator of Jmjd1c. Proc Natl Acad Sci U S A. 2017;114:E3071-E3080 pubmed 出版商
  347. Krejci J, Legartova S, Bartova E. Neural Differentiation in HDAC1-Depleted Cells Is Accompanied by Coilin Downregulation and the Accumulation of Cajal Bodies in Nucleoli. Stem Cells Int. 2017;2017:1021240 pubmed 出版商
  348. Chen G, Nie S, Han C, Ma K, Xu Y, Zhang Z, et al. Antidyskinetic Effects of MEK Inhibitor Are Associated with Multiple Neurochemical Alterations in the Striatum of Hemiparkinsonian Rats. Front Neurosci. 2017;11:112 pubmed 出版商
  349. Lee H, Willi M, Wang C, Yang C, Smith H, Liu C, et al. Functional assessment of CTCF sites at cytokine-sensing mammary enhancers using CRISPR/Cas9 gene editing in mice. Nucleic Acids Res. 2017;45:4606-4618 pubmed 出版商
  350. Kazakevych J, Sayols S, Messner B, Krienke C, Soshnikova N. Dynamic changes in chromatin states during specification and differentiation of adult intestinal stem cells. Nucleic Acids Res. 2017;45:5770-5784 pubmed 出版商
  351. Li N, Xue W, Yuan H, Dong B, Ding Y, Liu Y, et al. AKT-mediated stabilization of histone methyltransferase WHSC1 promotes prostate cancer metastasis. J Clin Invest. 2017;127:1284-1302 pubmed 出版商
  352. Liang Z, Brown K, Carroll T, Taylor B, Vidal I, Hendrich B, et al. A high-resolution map of transcriptional repression. elife. 2017;6: pubmed 出版商
  353. Zhang X, Li B, Rezaeian A, Xu X, Chou P, Jin G, et al. H3 ubiquitination by NEDD4 regulates H3 acetylation and tumorigenesis. Nat Commun. 2017;8:14799 pubmed 出版商
  354. Cruz Molina S, Respuela P, Tebartz C, Kolovos P, Nikolic M, Fueyo R, et al. PRC2 Facilitates the Regulatory Topology Required for Poised Enhancer Function during Pluripotent Stem Cell Differentiation. Cell Stem Cell. 2017;20:689-705.e9 pubmed 出版商
  355. Douet J, Corujo D, Malinverni R, Renauld J, Sansoni V, Posavec Marjanović M, et al. MacroH2A histone variants maintain nuclear organization and heterochromatin architecture. J Cell Sci. 2017;130:1570-1582 pubmed 出版商
  356. Lau M, Schwartz M, Kundu S, Savol A, Wang P, Marr S, et al. Mutation of a nucleosome compaction region disrupts Polycomb-mediated axial patterning. Science. 2017;355:1081-1084 pubmed 出版商
  357. Teveroni E, Pellegrino M, Sacconi S, Calandra P, Cascino I, Farioli Vecchioli S, et al. Estrogens enhance myoblast differentiation in facioscapulohumeral muscular dystrophy by antagonizing DUX4 activity. J Clin Invest. 2017;127:1531-1545 pubmed 出版商
  358. Rakhimova A, Ura S, Hsu D, Wang H, Pears C, Lakin N. Site-specific ADP-ribosylation of histone H2B in response to DNA double strand breaks. Sci Rep. 2017;7:43750 pubmed 出版商
  359. Nguyen K, Das B, Dobrowolski C, Karn J. Multiple Histone Lysine Methyltransferases Are Required for the Establishment and Maintenance of HIV-1 Latency. MBio. 2017;8: pubmed 出版商
  360. Wan L, Wen H, Li Y, Lyu J, Xi Y, Hoshii T, et al. ENL links histone acetylation to oncogenic gene expression in acute myeloid leukaemia. Nature. 2017;543:265-269 pubmed 出版商
  361. Ragni C, Diguet N, Le Garrec J, Novotova M, Resende T, Pop S, et al. Amotl1 mediates sequestration of the Hippo effector Yap1 downstream of Fat4 to restrict heart growth. Nat Commun. 2017;8:14582 pubmed 出版商
  362. Soboleva T, Parker B, Nekrasov M, Hart Smith G, Tay Y, Tng W, et al. A new link between transcriptional initiation and pre-mRNA splicing: The RNA binding histone variant H2A.B. PLoS Genet. 2017;13:e1006633 pubmed 出版商
  363. Canver M, Lessard S, Pinello L, Wu Y, Ilboudo Y, Stern E, et al. Variant-aware saturating mutagenesis using multiple Cas9 nucleases identifies regulatory elements at trait-associated loci. Nat Genet. 2017;49:625-634 pubmed 出版商
  364. Gherardi S, Ripoche D, Mikaelian I, Chanal M, Teinturier R, Goehrig D, et al. Menin regulates Inhbb expression through an Akt/Ezh2-mediated H3K27 histone modification. Biochim Biophys Acta Gene Regul Mech. 2017;1860:427-437 pubmed 出版商
  365. Conaway E, de Oliveira D, McInnis C, Snapper S, Horwitz B. Inhibition of Inflammatory Gene Transcription by IL-10 Is Associated with Rapid Suppression of Lipopolysaccharide-Induced Enhancer Activation. J Immunol. 2017;198:2906-2915 pubmed 出版商
  366. Xu H, Di Antonio M, McKinney S, Mathew V, Ho B, O Neil N, et al. CX-5461 is a DNA G-quadruplex stabilizer with selective lethality in BRCA1/2 deficient tumours. Nat Commun. 2017;8:14432 pubmed 出版商
  367. Amendola P, Zaghet N, Ramalho J, Vilstrup Johansen J, Boxem M, Salcini A. JMJD-5/KDM8 regulates H3K36me2 and is required for late steps of homologous recombination and genome integrity. PLoS Genet. 2017;13:e1006632 pubmed 出版商
  368. Guitart A, Panagopoulou T, Villacreces A, Vukovic M, Sepúlveda C, Allen L, et al. Fumarate hydratase is a critical metabolic regulator of hematopoietic stem cell functions. J Exp Med. 2017;214:719-735 pubmed 出版商
  369. Jung J, Nayak A, Schaeffer V, Starzetz T, Kirsch A, Muller S, et al. Multiplex image-based autophagy RNAi screening identifies SMCR8 as ULK1 kinase activity and gene expression regulator. elife. 2017;6: pubmed 出版商
  370. Meisenberg C, Ashour M, El Shafie L, Liao C, Hodgson A, Pilborough A, et al. Epigenetic changes in histone acetylation underpin resistance to the topoisomerase I inhibitor irinotecan. Nucleic Acids Res. 2017;45:1159-1176 pubmed 出版商
  371. Tu Y, Liu H, Zhu X, Shen H, Ma X, Wang F, et al. Ataxin-3 promotes genome integrity by stabilizing Chk1. Nucleic Acids Res. 2017;45:4532-4549 pubmed 出版商
  372. Li G, Ji T, Chen J, Fu Y, Hou L, Feng Y, et al. CRL4DCAF8 Ubiquitin Ligase Targets Histone H3K79 and Promotes H3K9 Methylation in the Liver. Cell Rep. 2017;18:1499-1511 pubmed 出版商
  373. Tormos A, Rius Pérez S, Jorques M, Rada P, Ramírez L, Valverde A, et al. p38α regulates actin cytoskeleton and cytokinesis in hepatocytes during development and aging. PLoS ONE. 2017;12:e0171738 pubmed 出版商
  374. Wu N, Jia D, Bates B, Basom R, Eberhart C, MacPherson D. A mouse model of MYCN-driven retinoblastoma reveals MYCN-independent tumor reemergence. J Clin Invest. 2017;127:888-898 pubmed 出版商
  375. Kuan I, Liang K, Wang Y, Kuo T, Meir Y, Wu S, et al. EpEX/EpCAM and Oct4 or Klf4 alone are sufficient to generate induced pluripotent stem cells through STAT3 and HIF2α. Sci Rep. 2017;7:41852 pubmed 出版商
  376. He Y, Selvaraju S, Curtin M, Jakob C, Zhu H, Comess K, et al. The EED protein-protein interaction inhibitor A-395 inactivates the PRC2 complex. Nat Chem Biol. 2017;13:389-395 pubmed 出版商
  377. Yamagata K, Kobayashi A. The cysteine-rich domain of TET2 binds preferentially to mono- and dimethylated histone H3K36. J Biochem. 2017;161:327-330 pubmed 出版商
  378. Barateau A, Vadrot N, Vicart P, Ferreiro A, Mayer M, Heron D, et al. A Novel Lamin A Mutant Responsible for Congenital Muscular Dystrophy Causes Distinct Abnormalities of the Cell Nucleus. PLoS ONE. 2017;12:e0169189 pubmed 出版商
  379. Young C, Hillyer C, Hokamp K, Fitzpatrick D, Konstantinov N, Welty J, et al. Distinct histone methylation and transcription profiles are established during the development of cellular quiescence in yeast. BMC Genomics. 2017;18:107 pubmed 出版商
  380. Gong Y, Handa N, Kowalczykowski S, de Lange T. PHF11 promotes DSB resection, ATR signaling, and HR. Genes Dev. 2017;31:46-58 pubmed 出版商
  381. Bershteyn M, Nowakowski T, Pollen A, Di Lullo E, Nene A, Wynshaw Boris A, et al. Human iPSC-Derived Cerebral Organoids Model Cellular Features of Lissencephaly and Reveal Prolonged Mitosis of Outer Radial Glia. Cell Stem Cell. 2017;20:435-449.e4 pubmed 出版商
  382. Tagal V, Wei S, Zhang W, Brekken R, Posner B, Peyton M, et al. SMARCA4-inactivating mutations increase sensitivity to Aurora kinase A inhibitor VX-680 in non-small cell lung cancers. Nat Commun. 2017;8:14098 pubmed 出版商
  383. Gopal S, Veracini L, Grall D, Butori C, Schaub S, Audebert S, et al. Fibronectin-guided migration of carcinoma collectives. Nat Commun. 2017;8:14105 pubmed 出版商
  384. Sherman M, Yu R, Tseng T, Sousa C, Liu S, Truitt M, et al. Stromal cues regulate the pancreatic cancer epigenome and metabolome. Proc Natl Acad Sci U S A. 2017;114:1129-1134 pubmed 出版商
  385. de Castro I, Budzak J, Di Giacinto M, Ligammari L, Gokhan E, Spanos C, et al. Repo-Man/PP1 regulates heterochromatin formation in interphase. Nat Commun. 2017;8:14048 pubmed 出版商
  386. Maatouk D, Natarajan A, Shibata Y, Song L, Crawford G, Ohler U, et al. Genome-wide identification of regulatory elements in Sertoli cells. Development. 2017;144:720-730 pubmed 出版商
  387. Choi Y, Lin C, Risso D, Chen S, Kim T, Tan M, et al. Deficiency of microRNA miR-34a expands cell fate potential in pluripotent stem cells. Science. 2017;355: pubmed 出版商
  388. Safina A, Cheney P, Pal M, Brodsky L, Ivanov A, Kirsanov K, et al. FACT is a sensor of DNA torsional stress in eukaryotic cells. Nucleic Acids Res. 2017;45:1925-1945 pubmed 出版商
  389. Wu H, Gordon J, Whitfield T, Tai P, Van Wijnen A, Stein J, et al. Chromatin dynamics regulate mesenchymal stem cell lineage specification and differentiation to osteogenesis. Biochim Biophys Acta Gene Regul Mech. 2017;1860:438-449 pubmed 出版商
  390. Li C, Chang L, Chen Z, Liu Z, Wang Y, Ye Q. The role of lncRNA MALAT1 in the regulation of hepatocyte proliferation during liver regeneration. Int J Mol Med. 2017;39:347-356 pubmed 出版商
  391. Fitter S, Matthews M, Martin S, Xie J, Ooi S, Walkley C, et al. mTORC1 Plays an Important Role in Skeletal Development by Controlling Preosteoblast Differentiation. Mol Cell Biol. 2017;37: pubmed 出版商
  392. Papillon Cavanagh S, Lu C, Gayden T, Mikael L, Bechet D, Karamboulas C, et al. Impaired H3K36 methylation defines a subset of head and neck squamous cell carcinomas. Nat Genet. 2017;49:180-185 pubmed 出版商
  393. Herold N, Rudd S, Ljungblad L, Sanjiv K, Myrberg I, Paulin C, et al. Targeting SAMHD1 with the Vpx protein to improve cytarabine therapy for hematological malignancies. Nat Med. 2017;23:256-263 pubmed 出版商
  394. Muralidharan B, Khatri Z, Maheshwari U, Gupta R, Roy B, Pradhan S, et al. LHX2 Interacts with the NuRD Complex and Regulates Cortical Neuron Subtype Determinants Fezf2 and Sox11. J Neurosci. 2017;37:194-203 pubmed 出版商
  395. Fantini D, Huang S, Asara J, Bagchi S, Raychaudhuri P. Chromatin association of XRCC5/6 in the absence of DNA damage depends on the XPE gene product DDB2. Mol Biol Cell. 2017;28:192-200 pubmed 出版商
  396. Schauwecker S, Kim J, Licht J, Clevenger C. Histone H1 and Chromosomal Protein HMGN2 Regulate Prolactin-induced STAT5 Transcription Factor Recruitment and Function in Breast Cancer Cells. J Biol Chem. 2017;292:2237-2254 pubmed 出版商
  397. Zhu F, Hwang B, Miyamoto S, Rui L. Nuclear Import of JAK1 Is Mediated by a Classical NLS and Is Required for Survival of Diffuse Large B-cell Lymphoma. Mol Cancer Res. 2017;15:348-357 pubmed 出版商
  398. Wong B, Wang X, Zecchin A, Thienpont B, Cornelissen I, Kalucka J, et al. The role of fatty acid ?-oxidation in lymphangiogenesis. Nature. 2017;542:49-54 pubmed 出版商
  399. Zeng X, Willi M, Shin H, Hennighausen L, Wang C. Lineage-Specific and Non-specific Cytokine-Sensing Genes Respond Differentially to the Master Regulator STAT5. Cell Rep. 2016;17:3333-3346 pubmed 出版商
  400. Jiang P, Gan M, Yen S, McLean P, Dickson D. Histones facilitate α-synuclein aggregation during neuronal apoptosis. Acta Neuropathol. 2017;133:547-558 pubmed 出版商
  401. Archacki R, Yatusevich R, Buszewicz D, Krzyczmonik K, Patryn J, Iwanicka Nowicka R, et al. Arabidopsis SWI/SNF chromatin remodeling complex binds both promoters and terminators to regulate gene expression. Nucleic Acids Res. 2017;45:3116-3129 pubmed 出版商
  402. Zhou L, Baibakov B, Canagarajah B, Xiong B, Dean J. Genetic mosaics and time-lapse imaging identify functions of histone H3.3 residues in mouse oocytes and embryos. Development. 2017;144:519-528 pubmed 出版商
  403. Ang Y, Rivas R, Ribeiro A, Srivas R, Rivera J, Stone N, et al. Disease Model of GATA4 Mutation Reveals Transcription Factor Cooperativity in Human Cardiogenesis. Cell. 2016;167:1734-1749.e22 pubmed 出版商
  404. Assadi G, Vesterlund L, Bonfiglio F, Mazzurana L, Cordeddu L, Schepis D, et al. Functional Analyses of the Crohn's Disease Risk Gene LACC1. PLoS ONE. 2016;11:e0168276 pubmed 出版商
  405. Göllner S, Oellerich T, Agrawal Singh S, Schenk T, Klein H, Rohde C, et al. Loss of the histone methyltransferase EZH2 induces resistance to multiple drugs in acute myeloid leukemia. Nat Med. 2017;23:69-78 pubmed 出版商
  406. Neeli I, Radic M. Current Challenges and Limitations in Antibody-Based Detection of Citrullinated Histones. Front Immunol. 2016;7:528 pubmed
  407. Pan G, Ameur A, Enroth S, Bysani M, Nord H, Cavalli M, et al. PATZ1 down-regulates FADS1 by binding to rs174557 and is opposed by SP1/SREBP1c. Nucleic Acids Res. 2017;45:2408-2422 pubmed 出版商
  408. Zhu P, Wang Y, Wu J, Huang G, Liu B, Ye B, et al. LncBRM initiates YAP1 signalling activation to drive self-renewal of liver cancer stem cells. Nat Commun. 2016;7:13608 pubmed 出版商
  409. Sareddy G, Viswanadhapalli S, Surapaneni P, Suzuki T, Brenner A, Vadlamudi R. Novel KDM1A inhibitors induce differentiation and apoptosis of glioma stem cells via unfolded protein response pathway. Oncogene. 2017;36:2423-2434 pubmed 出版商
  410. Cooper S, Grijzenhout A, Underwood E, Ancelin K, Zhang T, Nesterova T, et al. Jarid2 binds mono-ubiquitylated H2A lysine 119 to mediate crosstalk between Polycomb complexes PRC1 and PRC2. Nat Commun. 2016;7:13661 pubmed 出版商
  411. Svoboda L, Bailey N, Van Noord R, Krook M, Harris A, Cramer C, et al. Tumorigenicity of Ewing sarcoma is critically dependent on the trithorax proteins MLL1 and menin. Oncotarget. 2017;8:458-471 pubmed 出版商
  412. Su F, Myers V, Knezevic T, Wang J, Gao E, Madesh M, et al. Bcl-2-associated athanogene 3 protects the heart from ischemia/reperfusion injury. JCI Insight. 2016;1:e90931 pubmed 出版商
  413. Lu W, Liu S, Li B, Xie Y, Izban M, Ballard B, et al. SKP2 loss destabilizes EZH2 by promoting TRAF6-mediated ubiquitination to suppress prostate cancer. Oncogene. 2017;36:1364-1373 pubmed 出版商
  414. Okashita N, Suwa Y, Nishimura O, Sakashita N, Kadota M, Nagamatsu G, et al. PRDM14 Drives OCT3/4 Recruitment via Active Demethylation in the Transition from Primed to Naive Pluripotency. Stem Cell Reports. 2016;7:1072-1086 pubmed 出版商
  415. Ibañez Rodriguez M, Noctor S, Muñoz E. Cellular Basis of Pineal Gland Development: Emerging Role of Microglia as Phenotype Regulator. PLoS ONE. 2016;11:e0167063 pubmed 出版商
  416. Bileck A, Mayer R, Kreutz D, Weiss T, Taschner Mandl S, Meier S, et al. Evaluation of inflammation-related signaling events covering phosphorylation and nuclear translocation of proteins based on mass spectrometry data. J Proteomics. 2017;152:161-171 pubmed 出版商
  417. de León Bautista M, Cárdenas Aguayo M, Casique Aguirre D, Almaraz Salinas M, Parraguirre Martínez S, Olivo Díaz A, et al. Immunological and Functional Characterization of RhoGDI3 and Its Molecular Targets RhoG and RhoB in Human Pancreatic Cancerous and Normal Cells. PLoS ONE. 2016;11:e0166370 pubmed 出版商
  418. Busby M, Xue C, Li C, Farjoun Y, Gienger E, Yofe I, et al. Systematic comparison of monoclonal versus polyclonal antibodies for mapping histone modifications by ChIP-seq. Epigenetics Chromatin. 2016;9:49 pubmed
  419. Niu N, Shao R, Yan G, Zou W. Bromodomain and Extra-terminal (BET) Protein Inhibitors Suppress Chondrocyte Differentiation and Restrain Bone Growth. J Biol Chem. 2016;291:26647-26657 pubmed 出版商
  420. Hansen R, Mund A, Poulsen S, Sandoval M, Klement K, Tsouroula K, et al. SCAI promotes DNA double-strand break repair in distinct chromosomal contexts. Nat Cell Biol. 2016;18:1357-1366 pubmed 出版商
  421. Alfano L, Costa C, Caporaso A, Antonini D, Giordano A, Pentimalli F. HUR protects NONO from degradation by mir320, which is induced by p53 upon UV irradiation. Oncotarget. 2016;7:78127-78139 pubmed 出版商
  422. Zhu L, Gómez Durán A, Saretzki G, Jin S, Tilgner K, Melguizo Sanchís D, et al. The mitochondrial protein CHCHD2 primes the differentiation potential of human induced pluripotent stem cells to neuroectodermal lineages. J Cell Biol. 2016;215:187-202 pubmed
  423. Chakraborty D, Cui W, Rosario G, Scott R, Dhakal P, Renaud S, et al. HIF-KDM3A-MMP12 regulatory circuit ensures trophoblast plasticity and placental adaptations to hypoxia. Proc Natl Acad Sci U S A. 2016;113:E7212-E7221 pubmed
  424. Natisvili T, Yandim C, Silva R, Emanuelli G, Krueger F, Nageshwaran S, et al. Transcriptional Activation of Pericentromeric Satellite Repeats and Disruption of Centromeric Clustering upon Proteasome Inhibition. PLoS ONE. 2016;11:e0165873 pubmed 出版商
  425. Lin W, FRANCIS J, Li H, Gao X, Pedamallu C, Ernst P, et al. Kmt2a cooperates with menin to suppress tumorigenesis in mouse pancreatic islets. Cancer Biol Ther. 2016;17:1274-1281 pubmed 出版商
  426. Day K, Lorenzatti Hiles G, Kozminsky M, Dawsey S, Paul A, Broses L, et al. HER2 and EGFR Overexpression Support Metastatic Progression of Prostate Cancer to Bone. Cancer Res. 2017;77:74-85 pubmed 出版商
  427. Schlierf A, Altmann E, Quancard J, Jefferson A, Assenberg R, Renatus M, et al. Targeted inhibition of the COP9 signalosome for treatment of cancer. Nat Commun. 2016;7:13166 pubmed 出版商
  428. Ren K, Zhang W, Chen X, Ma Y, Dai Y, Fan Y, et al. An Epigenetic Compound Library Screen Identifies BET Inhibitors That Promote HSV-1 and -2 Replication by Bridging P-TEFb to Viral Gene Promoters through BRD4. PLoS Pathog. 2016;12:e1005950 pubmed 出版商
  429. Strikoudis A, Lazaris C, Trimarchi T, Galvao Neto A, Yang Y, Ntziachristos P, et al. Regulation of transcriptional elongation in pluripotency and cell differentiation by the PHD-finger protein Phf5a. Nat Cell Biol. 2016;18:1127-1138 pubmed 出版商
  430. Chen Y, Xu J, Skanderup A, Dong Y, Brannon A, Wang L, et al. Molecular analysis of aggressive renal cell carcinoma with unclassified histology reveals distinct subsets. Nat Commun. 2016;7:13131 pubmed 出版商
  431. Willi M, Yoo K, Wang C, Trajanoski Z, Hennighausen L. Differential cytokine sensitivities of STAT5-dependent enhancers rely on Stat5 autoregulation. Nucleic Acids Res. 2016;44:10277-10291 pubmed
  432. Zhuang J, Kamp W, Li J, Liu C, Kang J, Wang P, et al. Forkhead Box O3A (FOXO3) and the Mitochondrial Disulfide Relay Carrier (CHCHD4) Regulate p53 Protein Nuclear Activity in Response to Exercise. J Biol Chem. 2016;291:24819-24827 pubmed
  433. Ho T, Huang J, Zhou N, Zhang Z, Koirala P, Zhou X, et al. Regulation of PCGEM1 by p54/nrb in prostate cancer. Sci Rep. 2016;6:34529 pubmed 出版商
  434. Wu R, Wang Z, Zhang H, Gan H, Zhang Z. H3K9me3 demethylase Kdm4d facilitates the formation of pre-initiative complex and regulates DNA replication. Nucleic Acids Res. 2017;45:169-180 pubmed 出版商
  435. Liu Y, Wang T, Zhang R, Fu W, Wang X, Wang F, et al. Calorie restriction protects against experimental abdominal aortic aneurysms in mice. J Exp Med. 2016;213:2473-2488 pubmed
  436. Fang L, Chen D, Yu C, Li H, Brocato J, Huang L, et al. Mechanisms Underlying Acrolein-Mediated Inhibition of Chromatin Assembly. Mol Cell Biol. 2016;36:2995-3008 pubmed 出版商
  437. Schmitt A, Garcia J, Hung T, Flynn R, Shen Y, Qu K, et al. An inducible long noncoding RNA amplifies DNA damage signaling. Nat Genet. 2016;48:1370-1376 pubmed 出版商
  438. Ow J, Palanichamy Kala M, Rao V, Choi M, Bharathy N, Taneja R. G9a inhibits MEF2C activity to control sarcomere assembly. Sci Rep. 2016;6:34163 pubmed 出版商
  439. Hu Y, Zhang Z, Kashiwagi M, Yoshida T, Joshi I, Jena N, et al. Superenhancer reprogramming drives a B-cell-epithelial transition and high-risk leukemia. Genes Dev. 2016;30:1971-90 pubmed 出版商
  440. Amabile A, Migliara A, Capasso P, Biffi M, Cittaro D, Naldini L, et al. Inheritable Silencing of Endogenous Genes by Hit-and-Run Targeted Epigenetic Editing. Cell. 2016;167:219-232.e14 pubmed 出版商
  441. Ghazavi F, de Moerloose B, Van Loocke W, Wallaert A, Helsmoortel H, Ferster A, et al. Unique long non-coding RNA expression signature in ETV6/RUNX1-driven B-cell precursor acute lymphoblastic leukemia. Oncotarget. 2016;7:73769-73780 pubmed 出版商
  442. Loubiere V, Delest A, Thomas A, Bonev B, Schuettengruber B, Sati S, et al. Coordinate redeployment of PRC1 proteins suppresses tumor formation during Drosophila development. Nat Genet. 2016;48:1436-1442 pubmed 出版商
  443. Matsukawa K, Hashimoto T, Matsumoto T, Ihara R, Chihara T, Miura M, et al. Familial Amyotrophic Lateral Sclerosis-linked Mutations in Profilin 1 Exacerbate TDP-43-induced Degeneration in the Retina of Drosophila melanogaster through an Increase in the Cytoplasmic Localization of TDP-43. J Biol Chem. 2016;291:23464-23476 pubmed
  444. Wang D, Kon N, Lasso G, Jiang L, Leng W, Zhu W, et al. Acetylation-regulated interaction between p53 and SET reveals a widespread regulatory mode. Nature. 2016;538:118-122 pubmed 出版商
  445. Walentek P, Quigley I, Sun D, Sajjan U, Kintner C, Harland R. Ciliary transcription factors and miRNAs precisely regulate Cp110 levels required for ciliary adhesions and ciliogenesis. elife. 2016;5: pubmed 出版商
  446. Mansuroglu Z, Benhelli Mokrani H, Marcato V, Sultan A, Violet M, Chauderlier A, et al. Loss of Tau protein affects the structure, transcription and repair of neuronal pericentromeric heterochromatin. Sci Rep. 2016;6:33047 pubmed 出版商
  447. García Carpizo V, Sarmentero J, Han B, Grana O, Ruiz Llorente S, Pisano D, et al. NSD2 contributes to oncogenic RAS-driven transcription in lung cancer cells through long-range epigenetic activation. Sci Rep. 2016;6:32952 pubmed 出版商
  448. Mair B, Konopka T, Kerzendorfer C, Sleiman K, Salic S, Serra V, et al. Gain- and Loss-of-Function Mutations in the Breast Cancer Gene GATA3 Result in Differential Drug Sensitivity. PLoS Genet. 2016;12:e1006279 pubmed 出版商
  449. Ueda T, Nakata Y, Nagamachi A, Yamasaki N, Kanai A, Sera Y, et al. Propagation of trimethylated H3K27 regulated by polycomb protein EED is required for embryogenesis, hematopoietic maintenance, and tumor suppression. Proc Natl Acad Sci U S A. 2016;113:10370-5 pubmed 出版商
  450. Nettersheim D, Jostes S, Fabry M, Honecker F, Schumacher V, Kirfel J, et al. A signaling cascade including ARID1A, GADD45B and DUSP1 induces apoptosis and affects the cell cycle of germ cell cancers after romidepsin treatment. Oncotarget. 2016;7:74931-74946 pubmed 出版商
  451. Otsuka K, Suzuki K. Differences in Radiation Dose Response between Small and Large Intestinal Crypts. Radiat Res. 2016;186:302-14 pubmed 出版商
  452. Doobin D, Kemal S, Dantas T, Vallee R. Severe NDE1-mediated microcephaly results from neural progenitor cell cycle arrests at multiple specific stages. Nat Commun. 2016;7:12551 pubmed 出版商
  453. Romani B, Kamali Jamil R, Hamidi Fard M, Rahimi P, Momen S, Aghasadeghi M, et al. HIV-1 Vpr reactivates latent HIV-1 provirus by inducing depletion of class I HDACs on chromatin. Sci Rep. 2016;6:31924 pubmed 出版商
  454. Olsen J, Wong L, Deimling S, Miles A, Guo H, Li Y, et al. G9a and ZNF644 Physically Associate to Suppress Progenitor Gene Expression during Neurogenesis. Stem Cell Reports. 2016;7:454-470 pubmed 出版商
  455. Sathianathan A, Ravichandran P, Lippi J, Cohen L, Messina A, Shaju S, et al. The Eaf3/5/7 Subcomplex Stimulates NuA4 Interaction with Methylated Histone H3 Lys-36 and RNA Polymerase II. J Biol Chem. 2016;291:21195-21207 pubmed
  456. Yang J, Song T, Jo C, Park J, Lee H, Song I, et al. Differential regulation of the histone chaperone HIRA during muscle cell differentiation by a phosphorylation switch. Exp Mol Med. 2016;48:e252 pubmed 出版商
  457. Khanom R, Nguyen C, Kayamori K, Zhao X, Morita K, Miki Y, et al. Keratin 17 Is Induced in Oral Cancer and Facilitates Tumor Growth. PLoS ONE. 2016;11:e0161163 pubmed 出版商
  458. Platt J, Salama R, Smythies J, Choudhry H, Davies J, Hughes J, et al. Capture-C reveals preformed chromatin interactions between HIF-binding sites and distant promoters. EMBO Rep. 2016;17:1410-1421 pubmed
  459. Kaukonen R, Mai A, Georgiadou M, Saari M, De Franceschi N, Betz T, et al. Normal stroma suppresses cancer cell proliferation via mechanosensitive regulation of JMJD1a-mediated transcription. Nat Commun. 2016;7:12237 pubmed 出版商
  460. Tanaka G, Inoue K, Shimizu T, Akimoto K, Kubota K. Dual pharmacological inhibition of glutathione and thioredoxin systems synergizes to kill colorectal carcinoma stem cells. Cancer Med. 2016;5:2544-57 pubmed 出版商
  461. Singh N, Johnstone D, Martin K, Tempera I, Kaplan M, Denny M. Alterations in nuclear structure promote lupus autoimmunity in a mouse model. Dis Model Mech. 2016;9:885-97 pubmed 出版商
  462. Sun H, Liang L, Li Y, Feng C, Li L, Zhang Y, et al. Lysine-specific histone demethylase 1 inhibition promotes reprogramming by facilitating the expression of exogenous transcriptional factors and metabolic switch. Sci Rep. 2016;6:30903 pubmed 出版商
  463. Wang Y, Sun H, Wang J, Wang H, Meng L, Xu C, et al. DNA-PK-mediated phosphorylation of EZH2 regulates the DNA damage-induced apoptosis to maintain T-cell genomic integrity. Cell Death Dis. 2016;7:e2316 pubmed 出版商
  464. Zhang X, Wu J, Wang J, Shen T, Li H, Lu J, et al. Integrative epigenomic analysis reveals unique epigenetic signatures involved in unipotency of mouse female germline stem cells. Genome Biol. 2016;17:162 pubmed 出版商
  465. Eichenfield D, Troutman T, Link V, Lam M, Cho H, Gosselin D, et al. Tissue damage drives co-localization of NF-?B, Smad3, and Nrf2 to direct Rev-erb sensitive wound repair in mouse macrophages. elife. 2016;5: pubmed 出版商
  466. Choudhary M, Nomura Y, Shi H, Nakagami H, Somers D. Circadian Profiling of the Arabidopsis Proteome Using 2D-DIGE. Front Plant Sci. 2016;7:1007 pubmed 出版商
  467. Cao J, Wu L, Zhang S, Lu M, Cheung W, Cai W, et al. An easy and efficient inducible CRISPR/Cas9 platform with improved specificity for multiple gene targeting. Nucleic Acids Res. 2016;44:e149 pubmed
  468. Merry C, McMahon S, Forrest M, Bartels C, Saiakhova A, Bartel C, et al. Transcriptome-wide identification of mRNAs and lincRNAs associated with trastuzumab-resistance in HER2-positive breast cancer. Oncotarget. 2016;7:53230-53244 pubmed 出版商
  469. Grinshtein N, Rioseco C, Marcellus R, UEHLING D, Aman A, Lun X, et al. Small molecule epigenetic screen identifies novel EZH2 and HDAC inhibitors that target glioblastoma brain tumor-initiating cells. Oncotarget. 2016;7:59360-59376 pubmed 出版商
  470. Nettersheim D, Arndt I, Sharma R, Riesenberg S, Jostes S, Schneider S, et al. The cancer/testis-antigen PRAME supports the pluripotency network and represses somatic and germ cell differentiation programs in seminomas. Br J Cancer. 2016;115:454-64 pubmed 出版商
  471. Li L, Shi L, Yang S, Yan R, Zhang D, Yang J, et al. SIRT7 is a histone desuccinylase that functionally links to chromatin compaction and genome stability. Nat Commun. 2016;7:12235 pubmed 出版商
  472. Xia X, Yu Y, Zhang L, Ma Y, Wang H. Inhibitor of DNA binding 1 regulates cell cycle progression of endothelial progenitor cells through induction of Wnt2 expression. Mol Med Rep. 2016;14:2016-24 pubmed 出版商
  473. Gygli P, Chang J, Gokozan H, Catacutan F, Schmidt T, Kaya B, et al. Cyclin A2 promotes DNA repair in the brain during both development and aging. Aging (Albany NY). 2016;8:1540-70 pubmed 出版商
  474. Yang Y, Yamada T, Hill K, Hemberg M, Reddy N, Cho H, et al. Chromatin remodeling inactivates activity genes and regulates neural coding. Science. 2016;353:300-305 pubmed 出版商
  475. Homa J, Ortmann W, Kolaczkowska E. Conservative Mechanisms of Extracellular Trap Formation by Annelida Eisenia andrei: Serine Protease Activity Requirement. PLoS ONE. 2016;11:e0159031 pubmed 出版商
  476. Sashida G, Wang C, Tomioka T, Oshima M, Aoyama K, Kanai A, et al. The loss of Ezh2 drives the pathogenesis of myelofibrosis and sensitizes tumor-initiating cells to bromodomain inhibition. J Exp Med. 2016;213:1459-77 pubmed 出版商
  477. Kawano S, Grassian A, Tsuda M, Knutson S, Warholic N, Kuznetsov G, et al. Preclinical Evidence of Anti-Tumor Activity Induced by EZH2 Inhibition in Human Models of Synovial Sarcoma. PLoS ONE. 2016;11:e0158888 pubmed 出版商
  478. Alver T, Lavelle T, Longva A, Øy G, Hovig E, Bøe S. MITF depletion elevates expression levels of ERBB3 receptor and its cognate ligand NRG1-beta in melanoma. Oncotarget. 2016;7:55128-55140 pubmed 出版商
  479. Yang W, Ng F, Chan K, Pu X, Poston R, Ren M, et al. Coronary-Heart-Disease-Associated Genetic Variant at the COL4A1/COL4A2 Locus Affects COL4A1/COL4A2 Expression, Vascular Cell Survival, Atherosclerotic Plaque Stability and Risk of Myocardial Infarction. PLoS Genet. 2016;12:e1006127 pubmed 出版商
  480. Schmidt N, Irle I, Ripkens K, Lux V, Nelles J, Johannes C, et al. Epigenetic silencing of serine protease HTRA1 drives polyploidy. BMC Cancer. 2016;16:399 pubmed 出版商
  481. Miller C, Pjanic M, Wang T, Nguyen T, Cohain A, Lee J, et al. Integrative functional genomics identifies regulatory mechanisms at coronary artery disease loci. Nat Commun. 2016;7:12092 pubmed 出版商
  482. Zhang X, Ling Y, Guo Y, Bai Y, Shi X, Gong F, et al. Mps1 kinase regulates tumor cell viability via its novel role in mitochondria. Cell Death Dis. 2016;7:e2292 pubmed 出版商
  483. Wang H, Tri Anggraini F, Chen X, DeGracia D. Embryonic lethal abnormal vision proteins and adenine and uridine-rich element mRNAs after global cerebral ischemia and reperfusion in the rat. J Cereb Blood Flow Metab. 2017;37:1494-1507 pubmed 出版商
  484. Allison K, Sajti E, Collier J, Gosselin D, Troutman T, Stone E, et al. Affinity and dose of TCR engagement yield proportional enhancer and gene activity in CD4+ T cells. elife. 2016;5: pubmed 出版商
  485. Shin H, Willi M, HyunYoo K, Zeng X, Wang C, Metser G, et al. Hierarchy within the mammary STAT5-driven Wap super-enhancer. Nat Genet. 2016;48:904-911 pubmed 出版商
  486. Terrier O, Carron C, de Chassey B, Dubois J, Traversier A, Julien T, et al. Nucleolin interacts with influenza A nucleoprotein and contributes to viral ribonucleoprotein complexes nuclear trafficking and efficient influenza viral replication. Sci Rep. 2016;6:29006 pubmed 出版商
  487. Heckler M, Zeleke T, Divekar S, Fernandez A, Tiek D, Woodrick J, et al. Antimitotic activity of DY131 and the estrogen-related receptor beta 2 (ERRβ2) splice variant in breast cancer. Oncotarget. 2016;7:47201-47220 pubmed 出版商
  488. Powers N, Parvanov E, Baker C, Walker M, Petkov P, Paigen K. The Meiotic Recombination Activator PRDM9 Trimethylates Both H3K36 and H3K4 at Recombination Hotspots In Vivo. PLoS Genet. 2016;12:e1006146 pubmed 出版商
  489. Gao X, Lin S, Ren F, Li J, Chen J, Yao C, et al. Acetate functions as an epigenetic metabolite to promote lipid synthesis under hypoxia. Nat Commun. 2016;7:11960 pubmed 出版商
  490. Van Haute L, Dietmann S, Kremer L, Hussain S, Pearce S, Powell C, et al. Deficient methylation and formylation of mt-tRNA(Met) wobble cytosine in a patient carrying mutations in NSUN3. Nat Commun. 2016;7:12039 pubmed 出版商
  491. Dai L, Cui X, Zhang X, Cheng L, Liu Y, Yang Y, et al. SARI inhibits angiogenesis and tumour growth of human colon cancer through directly targeting ceruloplasmin. Nat Commun. 2016;7:11996 pubmed 出版商
  492. Matcovitch Natan O, Winter D, Giladi A, Vargas Aguilar S, Spinrad A, Sarrazin S, et al. Microglia development follows a stepwise program to regulate brain homeostasis. Science. 2016;353:aad8670 pubmed 出版商
  493. Gayatri S, Cowles M, Vemulapalli V, Cheng D, Sun Z, Bedford M. Using oriented peptide array libraries to evaluate methylarginine-specific antibodies and arginine methyltransferase substrate motifs. Sci Rep. 2016;6:28718 pubmed 出版商
  494. Omata Y, Nakamura S, Koyama T, Yasui T, Hirose J, Izawa N, et al. Identification of Nedd9 as a TGF-?-Smad2/3 Target Gene Involved in RANKL-Induced Osteoclastogenesis by Comprehensive Analysis. PLoS ONE. 2016;11:e0157992 pubmed 出版商
  495. Mendoza Parra M, Saravaki V, Cholley P, Blum M, Billoré B, Gronemeyer H. Antibody performance in ChIP-sequencing assays: From quality scores of public data sets to quantitative certification. F1000Res. 2016;5:54 pubmed 出版商
  496. Bennesch M, Segala G, Wider D, Picard D. LSD1 engages a corepressor complex for the activation of the estrogen receptor ? by estrogen and cAMP. Nucleic Acids Res. 2016;44:8655-8670 pubmed
  497. Ono H, Basson M, Ito H. P300 inhibition enhances gemcitabine-induced apoptosis of pancreatic cancer. Oncotarget. 2016;7:51301-51310 pubmed 出版商
  498. Klein Hessling S, Rudolf R, Muhammad K, Knobeloch K, Maqbool M, Cauchy P, et al. A threshold level of NFATc1 activity facilitates thymocyte differentiation and opposes notch-driven leukaemia development. Nat Commun. 2016;7:11841 pubmed 出版商
  499. Shin H, Kim H, Oh S, Lee J, Kee M, Ko H, et al. AMPK-SKP2-CARM1 signalling cascade in transcriptional regulation of autophagy. Nature. 2016;534:553-7 pubmed 出版商
  500. Deaton A, Gómez Rodríguez M, Mieczkowski J, Tolstorukov M, Kundu S, Sadreyev R, et al. Enhancer regions show high histone H3.3 turnover that changes during differentiation. elife. 2016;5: pubmed 出版商
  501. Bermúdez López M, Villoria M, Esteras M, Jarmuz A, Torres Rosell J, Clemente Blanco A, et al. Sgs1's roles in DNA end resection, HJ dissolution, and crossover suppression require a two-step SUMO regulation dependent on Smc5/6. Genes Dev. 2016;30:1339-56 pubmed 出版商
  502. Li Z, Li B, Liu J, Guo Z, Liu Y, Li Y, et al. Transcription factors AS1 and AS2 interact with LHP1 to repress KNOX genes in Arabidopsis. J Integr Plant Biol. 2016;58:959-970 pubmed 出版商
  503. Liu Z, Lam N, Wang E, Virden R, Pawel B, Attiyeh E, et al. Identification of CASZ1 NES reveals potential mechanisms for loss of CASZ1 tumor suppressor activity in neuroblastoma. Oncogene. 2017;36:97-109 pubmed 出版商
  504. Kim J, Yu J, Abdulkadir S, Chakravarti D. KAT8 Regulates Androgen Signaling in Prostate Cancer Cells. Mol Endocrinol. 2016;30:925-36 pubmed 出版商
  505. Hintermair C, Voß K, Forné I, Heidemann M, Flatley A, Kremmer E, et al. Specific threonine-4 phosphorylation and function of RNA polymerase II CTD during M phase progression. Sci Rep. 2016;6:27401 pubmed 出版商
  506. Fulcoli F, Franzese M, Liu X, Zhang Z, Angelini C, Baldini A. Rebalancing gene haploinsufficiency in vivo by targeting chromatin. Nat Commun. 2016;7:11688 pubmed 出版商
  507. Much C, Auchynnikava T, Pavlinić D, Buness A, Rappsilber J, Benes V, et al. Endogenous Mouse Dicer Is an Exclusively Cytoplasmic Protein. PLoS Genet. 2016;12:e1006095 pubmed 出版商
  508. Minakawa Y, Atsumi Y, Shinohara A, Murakami Y, Yoshioka K. Gamma-irradiated quiescent cells repair directly induced double-strand breaks but accumulate persistent double-strand breaks during subsequent DNA replication. Genes Cells. 2016;21:789-97 pubmed 出版商
  509. Zhu P, Wang Y, Huang G, Ye B, Liu B, Wu J, et al. lnc-?-Catm elicits EZH2-dependent ?-catenin stabilization and sustains liver CSC self-renewal. Nat Struct Mol Biol. 2016;23:631-9 pubmed 出版商
  510. Fang D, Gan H, Lee J, Han J, Wang Z, Riester S, et al. The histone H3.3K36M mutation reprograms the epigenome of chondroblastomas. Science. 2016;352:1344-8 pubmed 出版商
  511. Su C, Cheng C, Tzeng T, Lin I, Hsu M. An H2A Histone Isotype, H2ac, Associates with Telomere and Maintains Telomere Integrity. PLoS ONE. 2016;11:e0156378 pubmed 出版商
  512. Chen X, Stauffer S, Chen Y, Dong J. Ajuba Phosphorylation by CDK1 Promotes Cell Proliferation and Tumorigenesis. J Biol Chem. 2016;291:14761-72 pubmed 出版商
  513. Romanello M, Schiavone D, Frey A, Sale J. Histone H3.3 promotes IgV gene diversification by enhancing formation of AID-accessible single-stranded DNA. EMBO J. 2016;35:1452-64 pubmed 出版商
  514. Wang L, Hou S, Han Y. Hedgehog signaling promotes basal progenitor expansion and the growth and folding of the neocortex. Nat Neurosci. 2016;19:888-96 pubmed 出版商
  515. Droubi A, Bulley S, Clarke J, Irvine R. Nuclear localizations of phosphatidylinositol 5-phosphate 4-kinases ? and ? are dynamic and independently regulated during starvation-induced stress. Biochem J. 2016;473:2155-63 pubmed 出版商
  516. Zeng L, Cai C, Li S, Wang W, Li Y, Chen J, et al. Essential Roles of Cyclin Y-Like 1 and Cyclin Y in Dividing Wnt-Responsive Mammary Stem/Progenitor Cells. PLoS Genet. 2016;12:e1006055 pubmed 出版商
  517. Wang J, Hu K, Guo J, Cheng F, Lv J, Jiang W, et al. Suppression of KRas-mutant cancer through the combined inhibition of KRAS with PLK1 and ROCK. Nat Commun. 2016;7:11363 pubmed 出版商
  518. Lin S, Wang B, Lin C, Chien P, Wu Y, Ko J, et al. Chidamide alleviates TGF-?-induced epithelial-mesenchymal transition in lung cancer cell lines. Mol Biol Rep. 2016;43:687-95 pubmed 出版商
  519. Pal S, Graves H, Ohsawa R, Huang T, Wang P, Harmacek L, et al. The Commercial Antibodies Widely Used to Measure H3 K56 Acetylation Are Non-Specific in Human and Drosophila Cells. PLoS ONE. 2016;11:e0155409 pubmed 出版商
  520. Jayaram H, Hoelper D, Jain S, Cantone N, Lundgren S, Poy F, et al. S-adenosyl methionine is necessary for inhibition of the methyltransferase G9a by the lysine 9 to methionine mutation on histone H3. Proc Natl Acad Sci U S A. 2016;113:6182-7 pubmed 出版商
  521. Diamant G, Bahat A, Dikstein R. The elongation factor Spt5 facilitates transcription initiation for rapid induction of inflammatory-response genes. Nat Commun. 2016;7:11547 pubmed 出版商
  522. Jehanno C, Flouriot G, Nicol Benoît F, Le Page Y, Le Goff P, Michel D. Envisioning metastasis as a transdifferentiation phenomenon clarifies discordant results on cancer. Breast Dis. 2016;36:47-59 pubmed 出版商
  523. Lu C, Jain S, Hoelper D, Bechet D, Molden R, Ran L, et al. Histone H3K36 mutations promote sarcomagenesis through altered histone methylation landscape. Science. 2016;352:844-9 pubmed 出版商
  524. Alarcón V, Hernández S, Rubio L, Alvarez F, Flores Y, Varas Godoy M, et al. The enzymes LSD1 and Set1A cooperate with the viral protein HBx to establish an active hepatitis B viral chromatin state. Sci Rep. 2016;6:25901 pubmed 出版商
  525. Song J, Sun Y, Peluso I, Zeng Y, Yu X, Lu J, et al. A novel curcumin analog binds to and activates TFEB in vitro and in vivo independent of MTOR inhibition. Autophagy. 2016;12:1372-89 pubmed 出版商
  526. Materne P, Vazquez E, Sanchez M, Yague Sanz C, Anandhakumar J, Migeot V, et al. Histone H2B ubiquitylation represses gametogenesis by opposing RSC-dependent chromatin remodeling at the ste11 master regulator locus. elife. 2016;5: pubmed 出版商
  527. Lee B, Wu C, Lin Y, Park S, Wei L. Synergistic activation of Arg1 gene by retinoic acid and IL-4 involves chromatin remodeling for transcription initiation and elongation coupling. Nucleic Acids Res. 2016;44:7568-79 pubmed 出版商
  528. Terakawa J, Rocchi A, Serna V, Bottinger E, Graff J, Kurita T. FGFR2IIIb-MAPK Activity Is Required for Epithelial Cell Fate Decision in the Lower Müllerian Duct. Mol Endocrinol. 2016;30:783-95 pubmed 出版商
  529. Li J, Hardy K, Phetsouphanh C, Tu W, Sutcliffe E, McCuaig R, et al. Nuclear PKC-? facilitates rapid transcriptional responses in human memory CD4+ T cells through p65 and H2B phosphorylation. J Cell Sci. 2016;129:2448-61 pubmed 出版商
  530. Si S, Nakajima Takagi Y, Aoyama K, Oshima M, Saraya A, Sugishita H, et al. Loss of Pcgf5 Affects Global H2A Monoubiquitination but Not the Function of Hematopoietic Stem and Progenitor Cells. PLoS ONE. 2016;11:e0154561 pubmed 出版商
  531. Kushwaha R, Jagadish N, Kustagi M, Mendiratta G, Seandel M, Soni R, et al. Mechanism and Role of SOX2 Repression in Seminoma: Relevance to Human Germline Specification. Stem Cell Reports. 2016;6:772-783 pubmed 出版商
  532. Su S, Li C, Lei P, Wang X, Zhao Q, Cai Y, et al. The EZH1-SUZ12 complex positively regulates the transcription of NF-?B target genes through interaction with UXT. J Cell Sci. 2016;129:2343-53 pubmed 出版商
  533. Douvaras P, Rusielewicz T, Kim K, Haines J, CASACCIA P, Fossati V. Epigenetic Modulation of Human Induced Pluripotent Stem Cell Differentiation to Oligodendrocytes. Int J Mol Sci. 2016;17: pubmed 出版商
  534. Carofino B, Ayanga B, Tracey L, Brooke Bisschop T, Justice M. PRDM14 promotes RAG-dependent Notch1 driver mutations in mouse T-ALL. Biol Open. 2016;5:645-53 pubmed 出版商
  535. Hwang H, Dornbos P, Steidemann M, Dunivin T, Rizzo M, LaPres J. Mitochondrial-targeted aryl hydrocarbon receptor and the impact of 2,3,7,8-tetrachlorodibenzo-p-dioxin on cellular respiration and the mitochondrial proteome. Toxicol Appl Pharmacol. 2016;304:121-32 pubmed 出版商
  536. Tasdemir N, Banito A, Roe J, Alonso Curbelo D, Camiolo M, Tschaharganeh D, et al. BRD4 Connects Enhancer Remodeling to Senescence Immune Surveillance. Cancer Discov. 2016;6:612-29 pubmed 出版商
  537. Hiragami Hamada K, Soeroes S, Nikolov M, Wilkins B, Kreuz S, Chen C, et al. Dynamic and flexible H3K9me3 bridging via HP1? dimerization establishes a plastic state of condensed chromatin. Nat Commun. 2016;7:11310 pubmed 出版商
  538. Huang C, Lee C, Yang S, Chien C, Huang C, Yang R, et al. Upregulation of the growth arrest-specific-2 in recurrent colorectal cancers, and its susceptibility to chemotherapy in a model cell system. Biochim Biophys Acta. 2016;1862:1345-53 pubmed 出版商
  539. Shearstone J, Golonzhka O, Chonkar A, Tamang D, Van Duzer J, Jones S, et al. Chemical Inhibition of Histone Deacetylases 1 and 2 Induces Fetal Hemoglobin through Activation of GATA2. PLoS ONE. 2016;11:e0153767 pubmed 出版商
  540. Huang G, Yang X, Chen K, Xing J, Guo L, Zhu L, et al. Porf-2 Inhibits Neural Stem Cell Proliferation Through Wnt/?-Catenin Pathway by Its GAP Domain. Front Cell Neurosci. 2016;10:85 pubmed 出版商
  541. Hakim S, Dyson J, Feeney S, Davies E, Sriratana A, Koenig M, et al. Inpp5e suppresses polycystic kidney disease via inhibition of PI3K/Akt-dependent mTORC1 signaling. Hum Mol Genet. 2016;25:2295-2313 pubmed
  542. Zheng G, Li N, Jia X, Peng C, Luo L, Deng Y, et al. MYCN-mediated miR-21 overexpression enhances chemo-resistance via targeting CADM1 in tongue cancer. J Mol Med (Berl). 2016;94:1129-1141 pubmed
  543. Huang C, Cheng J, Bawa Khalfe T, Yao X, Chin Y, Yeh E. SUMOylated ORC2 Recruits a Histone Demethylase to Regulate Centromeric Histone Modification and Genomic Stability. Cell Rep. 2016;15:147-157 pubmed 出版商
  544. Garcia Cuellar M, Büttner C, Bartenhagen C, Dugas M, Slany R. Leukemogenic MLL-ENL Fusions Induce Alternative Chromatin States to Drive a Functionally Dichotomous Group of Target Genes. Cell Rep. 2016;15:310-22 pubmed 出版商
  545. Zhang Z, Ren S, Tan Y, Li Z, Tang X, Wang T, et al. Epigenetic regulation of NKG2D ligands is involved in exacerbated atherosclerosis development in Sirt6 heterozygous mice. Sci Rep. 2016;6:23912 pubmed 出版商
  546. Navarra A, Musto A, Gargiulo A, Petrosino G, Pierantoni G, Fusco A, et al. Hmga2 is necessary for Otx2-dependent exit of embryonic stem cells from the pluripotent ground state. BMC Biol. 2016;14:24 pubmed 出版商
  547. Saez F, Hong N, Garvin J. Luminal flow induces NADPH oxidase 4 translocation to the nuclei of thick ascending limbs. Physiol Rep. 2016;4: pubmed 出版商
  548. Huang Y, Chen S, Liu R, Chen Y, Lin C, Huang C, et al. CLEC5A is critical for dengue virus-induced osteoclast activation and bone homeostasis. J Mol Med (Berl). 2016;94:1025-37 pubmed 出版商
  549. Iimori M, Watanabe S, Kiyonari S, Matsuoka K, Sakasai R, Saeki H, et al. Phosphorylation of EB2 by Aurora B and CDK1 ensures mitotic progression and genome stability. Nat Commun. 2016;7:11117 pubmed 出版商
  550. Vincent A, Berthel E, Dacheux E, Magnard C, Venezia N. BRCA1 affects protein phosphatase 6 signalling through its interaction with ANKRD28. Biochem J. 2016;473:949-60 pubmed 出版商
  551. Perez R, Shen H, Duan L, Kim R, Kim T, Park N, et al. Modeling the Etiology of p53-mutated Cancer Cells. J Biol Chem. 2016;291:10131-47 pubmed 出版商
  552. Gatchalian J, Gallardo C, Shinsky S, Ospina R, Liendo A, Krajewski K, et al. Chromatin condensation and recruitment of PHD finger proteins to histone H3K4me3 are mutually exclusive. Nucleic Acids Res. 2016;44:6102-12 pubmed 出版商
  553. Xiao J, Duan Q, Wang Z, Yan W, Sun H, Xue P, et al. Phosphorylation of TOPK at Y74, Y272 by Src increases the stability of TOPK and promotes tumorigenesis of colon. Oncotarget. 2016;7:24483-94 pubmed 出版商
  554. Dheekollu J, Wiedmer A, Sentana Lledo D, Cassel J, Messick T, Lieberman P. HCF1 and OCT2 Cooperate with EBNA1 To Enhance OriP-Dependent Transcription and Episome Maintenance of Latent Epstein-Barr Virus. J Virol. 2016;90:5353-5367 pubmed 出版商
  555. Leucci E, Vendramin R, Spinazzi M, Laurette P, Fiers M, Wouters J, et al. Melanoma addiction to the long non-coding RNA SAMMSON. Nature. 2016;531:518-22 pubmed 出版商
  556. Faralli H, Wang C, Nakka K, Benyoucef A, Sebastian S, Zhuang L, et al. UTX demethylase activity is required for satellite cell-mediated muscle regeneration. J Clin Invest. 2016;126:1555-65 pubmed 出版商
  557. Lee H, Dai F, Zhuang L, Xiao Z, Kim J, Zhang Y, et al. BAF180 regulates cellular senescence and hematopoietic stem cell homeostasis through p21. Oncotarget. 2016;7:19134-46 pubmed 出版商
  558. Elnfati A, Iles D, Miller D. Nucleosomal chromatin in the mature sperm of Drosophila melanogaster. Genom Data. 2016;7:175-7 pubmed 出版商
  559. Qiu Z, Elsayed Z, Peterkin V, Alkatib S, Bennett D, Landry J. Ino80 is essential for proximal-distal axis asymmetry in part by regulating Bmp4 expression. BMC Biol. 2016;14:18 pubmed 出版商
  560. Richarson A, Scott D, Zagnitko O, Aza Blanc P, Chang C, Russler Germain D. Registered report: IDH mutation impairs histone demethylation and results in a block to cell differentiation. elife. 2016;5:e10860 pubmed 出版商
  561. Weigel C, Veldwijk M, Oakes C, Seibold P, Slynko A, Liesenfeld D, et al. Epigenetic regulation of diacylglycerol kinase alpha promotes radiation-induced fibrosis. Nat Commun. 2016;7:10893 pubmed 出版商
  562. Hardy K, Wu F, Tu W, Zafar A, Boulding T, McCuaig R, et al. Identification of chromatin accessibility domains in human breast cancer stem cells. Nucleus. 2016;7:50-67 pubmed 出版商
  563. Zhang X, Peng D, Xi Y, Yuan C, Sagum C, Klein B, et al. G9a-mediated methylation of ERα links the PHF20/MOF histone acetyltransferase complex to hormonal gene expression. Nat Commun. 2016;7:10810 pubmed 出版商
  564. Akan I, Love D, Harwood K, Bond M, Hanover J. Drosophila O-GlcNAcase Deletion Globally Perturbs Chromatin O-GlcNAcylation. J Biol Chem. 2016;291:9906-19 pubmed 出版商
  565. Mo A, Luo C, Davis F, Mukamel E, Henry G, Nery J, et al. Epigenomic landscapes of retinal rods and cones. elife. 2016;5:e11613 pubmed 出版商
  566. Ercilla A, Llopis A, Feu S, Aranda S, Ernfors P, Freire R, et al. New origin firing is inhibited by APC/CCdh1 activation in S-phase after severe replication stress. Nucleic Acids Res. 2016;44:4745-62 pubmed 出版商
  567. Nagase M, Kurihara H, Aiba A, Young M, Sakai T. Deletion of Rac1GTPase in the Myeloid Lineage Protects against Inflammation-Mediated Kidney Injury in Mice. PLoS ONE. 2016;11:e0150886 pubmed 出版商
  568. Wu J, Chi L, Chen Z, Lu X, Xiao S, Zhang G, et al. Functional analysis of the TMPRSS2:ERG fusion gene in cisplatin‑induced cell death. Mol Med Rep. 2016;13:3173-80 pubmed 出版商
  569. Sadasivam D, Huang D. Maintenance of Tissue Pluripotency by Epigenetic Factors Acting at Multiple Levels. PLoS Genet. 2016;12:e1005897 pubmed 出版商
  570. Goode D, Obier N, Vijayabaskar M, Lie A Ling M, Lilly A, Hannah R, et al. Dynamic Gene Regulatory Networks Drive Hematopoietic Specification and Differentiation. Dev Cell. 2016;36:572-87 pubmed 出版商
  571. Seip K, Fleten K, Barkovskaya A, Nygaard V, Haugen M, Engesæter B, et al. Fibroblast-induced switching to the mesenchymal-like phenotype and PI3K/mTOR signaling protects melanoma cells from BRAF inhibitors. Oncotarget. 2016;7:19997-20015 pubmed 出版商
  572. Liu N, Avramova Z. Molecular mechanism of the priming by jasmonic acid of specific dehydration stress response genes in Arabidopsis. Epigenetics Chromatin. 2016;9:8 pubmed 出版商
  573. Oswald F, Rodriguez P, Giaimo B, Antonello Z, Mira L, Mittler G, et al. A phospho-dependent mechanism involving NCoR and KMT2D controls a permissive chromatin state at Notch target genes. Nucleic Acids Res. 2016;44:4703-20 pubmed 出版商
  574. Ha S, Reid C, Meshkibaf S, Kim S. Inhibition of Interleukin 1β (IL-1β) Expression by Anthrax Lethal Toxin (LeTx) Is Reversed by Histone Deacetylase 8 (HDAC8) Inhibition in Murine Macrophages. J Biol Chem. 2016;291:8745-55 pubmed 出版商
  575. Scheckel C, Drapeau E, Frias M, Park C, Fak J, Zucker Scharff I, et al. Regulatory consequences of neuronal ELAV-like protein binding to coding and non-coding RNAs in human brain. elife. 2016;5: pubmed 出版商
  576. Wei J, Xiong Z, Lee J, Cheng J, Duffney L, Matas E, et al. Histone Modification of Nedd4 Ubiquitin Ligase Controls the Loss of AMPA Receptors and Cognitive Impairment Induced by Repeated Stress. J Neurosci. 2016;36:2119-30 pubmed 出版商
  577. Wike C, Graves H, Hawkins R, Gibson M, Ferdinand M, Zhang T, et al. Aurora-A mediated histone H3 phosphorylation of threonine 118 controls condensin I and cohesin occupancy in mitosis. elife. 2016;5:e11402 pubmed 出版商
  578. Weyemi U, Redon C, Choudhuri R, Aziz T, Maeda D, Boufraqech M, et al. The histone variant H2A.X is a regulator of the epithelial-mesenchymal transition. Nat Commun. 2016;7:10711 pubmed 出版商
  579. Ahuja A, Jodkowska K, Teloni F, Bizard A, Zellweger R, Herrador R, et al. A short G1 phase imposes constitutive replication stress and fork remodelling in mouse embryonic stem cells. Nat Commun. 2016;7:10660 pubmed 出版商
  580. Passer D, van de Vrugt A, Atmanli A, Domian I. Atypical Protein Kinase C-Dependent Polarized Cell Division Is Required for Myocardial Trabeculation. Cell Rep. 2016;14:1662-1672 pubmed 出版商
  581. Wu T, Li Y, Liu B, Zhang S, Wu L, Zhu X, et al. Expression of Ferritin Light Chain (FTL) Is Elevated in Glioblastoma, and FTL Silencing Inhibits Glioblastoma Cell Proliferation via the GADD45/JNK Pathway. PLoS ONE. 2016;11:e0149361 pubmed 出版商
  582. Tang Y, Hong Y, Bai H, Wu Q, Chen C, Lang J, et al. Plant Homeo Domain Finger Protein 8 Regulates Mesodermal and Cardiac Differentiation of Embryonic Stem Cells Through Mediating the Histone Demethylation of pmaip1. Stem Cells. 2016;34:1527-40 pubmed 出版商
  583. Boulding T, Wu F, McCuaig R, Dunn J, Sutton C, Hardy K, et al. Differential Roles for DUSP Family Members in Epithelial-to-Mesenchymal Transition and Cancer Stem Cell Regulation in Breast Cancer. PLoS ONE. 2016;11:e0148065 pubmed 出版商
  584. Brasa S, Mueller A, Jacquemont S, Hahne F, Rozenberg I, Peters T, et al. Reciprocal changes in DNA methylation and hydroxymethylation and a broad repressive epigenetic switch characterize FMR1 transcriptional silencing in fragile X syndrome. Clin Epigenetics. 2016;8:15 pubmed 出版商
  585. Jones J, Singh P, Govind C. Recruitment of Saccharomyces cerevisiae Cmr1/Ydl156w to Coding Regions Promotes Transcription Genome Wide. PLoS ONE. 2016;11:e0148897 pubmed 出版商
  586. Chatterjee G, Sankaranarayanan S, Guin K, Thattikota Y, Padmanabhan S, Siddharthan R, et al. Repeat-Associated Fission Yeast-Like Regional Centromeres in the Ascomycetous Budding Yeast Candida tropicalis. PLoS Genet. 2016;12:e1005839 pubmed 出版商
  587. Lima W, De Hoyos C, Liang X, Crooke S. RNA cleavage products generated by antisense oligonucleotides and siRNAs are processed by the RNA surveillance machinery. Nucleic Acids Res. 2016;44:3351-63 pubmed 出版商
  588. Haokip D, Goel I, Arya V, Sharma T, Kumari R, Priya R, et al. Transcriptional Regulation of Atp-Dependent Chromatin Remodeling Factors: Smarcal1 and Brg1 Mutually Co-Regulate Each Other. Sci Rep. 2016;6:20532 pubmed 出版商
  589. Jiang P, Gan M, Yen S, Moussaud S, McLean P, Dickson D. Proaggregant nuclear factor(s) trigger rapid formation of ?-synuclein aggregates in apoptotic neurons. Acta Neuropathol. 2016;132:77-91 pubmed 出版商
  590. Ancelin K, Syx L, Borensztein M, Ranisavljevic N, Vassilev I, Briseño Roa L, et al. Maternal LSD1/KDM1A is an essential regulator of chromatin and transcription landscapes during zygotic genome activation. elife. 2016;5: pubmed 出版商
  591. Capell B, Drake A, Zhu J, Shah P, Dou Z, Dorsey J, et al. MLL1 is essential for the senescence-associated secretory phenotype. Genes Dev. 2016;30:321-36 pubmed 出版商
  592. Liu X, Li H, Rajurkar M, Li Q, Cotton J, Ou J, et al. Tead and AP1 Coordinate Transcription and Motility. Cell Rep. 2016;14:1169-1180 pubmed 出版商
  593. Mo F, Zhuang X, Liu X, Yao P, Qin B, Su Z, et al. Acetylation of Aurora B by TIP60 ensures accurate chromosomal segregation. Nat Chem Biol. 2016;12:226-32 pubmed 出版商
  594. Bouge A, Parmentier M. Tau excess impairs mitosis and kinesin-5 function, leading to aneuploidy and cell death. Dis Model Mech. 2016;9:307-19 pubmed 出版商
  595. Powell E, Shao J, Yuan Y, Chen H, Cai S, Echeverria G, et al. p53 deficiency linked to B cell translocation gene 2 (BTG2) loss enhances metastatic potential by promoting tumor growth in primary and metastatic sites in patient-derived xenograft (PDX) models of triple-negative breast cancer. Breast Cancer Res. 2016;18:13 pubmed 出版商
  596. Zhang Q, Dan J, Wang H, Guo R, Mao J, Fu H, et al. Tcstv1 and Tcstv3 elongate telomeres of mouse ES cells. Sci Rep. 2016;6:19852 pubmed 出版商
  597. Lin C, Erkek S, Tong Y, Yin L, Federation A, Zapatka M, et al. Active medulloblastoma enhancers reveal subgroup-specific cellular origins. Nature. 2016;530:57-62 pubmed 出版商
  598. Walter M, Teissandier A, Pérez Palacios R, Bourc his D. An epigenetic switch ensures transposon repression upon dynamic loss of DNA methylation in embryonic stem cells. elife. 2016;5: pubmed 出版商
  599. Cronin J, Kanamarlapudi V, Thornton C, Sheldon I. Signal transducer and activator of transcription-3 licenses Toll-like receptor 4-dependent interleukin (IL)-6 and IL-8 production via IL-6 receptor-positive feedback in endometrial cells. Mucosal Immunol. 2016;9:1125-36 pubmed 出版商
  600. Moudry P, Watanabe K, Wolanin K, Bartkova J, Wassing I, Watanabe S, et al. TOPBP1 regulates RAD51 phosphorylation and chromatin loading and determines PARP inhibitor sensitivity. J Cell Biol. 2016;212:281-8 pubmed 出版商
  601. Völker Albert M, Pusch M, Fedisch A, Schilcher P, Schmidt A, Imhof A. A Quantitative Proteomic Analysis of In Vitro Assembled Chromatin. Mol Cell Proteomics. 2016;15:945-59 pubmed 出版商
  602. Misuraca K, Hu G, Barton K, Chung A, Becher O. A Novel Mouse Model of Diffuse Intrinsic Pontine Glioma Initiated in Pax3-Expressing Cells. Neoplasia. 2016;18:60-70 pubmed 出版商
  603. Veith N, Ziehr H, MacLeod R, Reamon Buettner S. Mechanisms underlying epigenetic and transcriptional heterogeneity in Chinese hamster ovary (CHO) cell lines. BMC Biotechnol. 2016;16:6 pubmed 出版商
  604. Oktyabri D, Ishimura A, Tange S, Terashima M, Suzuki T. DOT1L histone methyltransferase regulates the expression of BCAT1 and is involved in sphere formation and cell migration of breast cancer cell lines. Biochimie. 2016;123:20-31 pubmed 出版商
  605. Zheng F, Yue C, Li G, He B, Cheng W, Wang X, et al. Nuclear AURKA acquires kinase-independent transactivating function to enhance breast cancer stem cell phenotype. Nat Commun. 2016;7:10180 pubmed 出版商
  606. Minnich M, Tagoh H, Bönelt P, Axelsson E, Fischer M, Cebolla B, et al. Multifunctional role of the transcription factor Blimp-1 in coordinating plasma cell differentiation. Nat Immunol. 2016;17:331-43 pubmed 出版商
  607. Taniue K, Kurimoto A, Sugimasa H, Nasu E, Takeda Y, Iwasaki K, et al. Long noncoding RNA UPAT promotes colon tumorigenesis by inhibiting degradation of UHRF1. Proc Natl Acad Sci U S A. 2016;113:1273-8 pubmed 出版商
  608. Pan H, Guan D, Liu X, Li J, Wang L, Wu J, et al. SIRT6 safeguards human mesenchymal stem cells from oxidative stress by coactivating NRF2. Cell Res. 2016;26:190-205 pubmed 出版商
  609. Lozano Amado D, Herrera Solorio A, Valdés J, Alemán Lazarini L, Almaraz Barrera M, Luna Rivera E, et al. Identification of repressive and active epigenetic marks and nuclear bodies in Entamoeba histolytica. Parasit Vectors. 2016;9:19 pubmed 出版商
  610. Kuo C, Li X, Stark J, Shih H, Ann D. RNF4 regulates DNA double-strand break repair in a cell cycle-dependent manner. Cell Cycle. 2016;15:787-98 pubmed 出版商
  611. Yang Y, Li W, Hoque M, Hou L, Shen S, Tian B, et al. PAF Complex Plays Novel Subunit-Specific Roles in Alternative Cleavage and Polyadenylation. PLoS Genet. 2016;12:e1005794 pubmed 出版商
  612. Lu F, Chen H, Kossenkov A, DeWispeleare K, Won K, Lieberman P. EBNA2 Drives Formation of New Chromosome Binding Sites and Target Genes for B-Cell Master Regulatory Transcription Factors RBP-jκ and EBF1. PLoS Pathog. 2016;12:e1005339 pubmed 出版商
  613. Carabalona A, Hu D, Vallee R. KIF1A inhibition immortalizes brain stem cells but blocks BDNF-mediated neuronal migration. Nat Neurosci. 2016;19:253-62 pubmed 出版商
  614. Chen N, Uddin B, Voit R, Schiebel E. Human phosphatase CDC14A is recruited to the cell leading edge to regulate cell migration and adhesion. Proc Natl Acad Sci U S A. 2016;113:990-5 pubmed 出版商
  615. Yasuma K, Yasunaga J, Takemoto K, Sugata K, Mitobe Y, Takenouchi N, et al. HTLV-1 bZIP Factor Impairs Anti-viral Immunity by Inducing Co-inhibitory Molecule, T Cell Immunoglobulin and ITIM Domain (TIGIT). PLoS Pathog. 2016;12:e1005372 pubmed 出版商
  616. Shu S, Lin C, He H, Witwicki R, Tabassum D, Roberts J, et al. Response and resistance to BET bromodomain inhibitors in triple-negative breast cancer. Nature. 2016;529:413-417 pubmed 出版商
  617. Conery A, Centore R, Neiss A, Keller P, Joshi S, Spillane K, et al. Bromodomain inhibition of the transcriptional coactivators CBP/EP300 as a therapeutic strategy to target the IRF4 network in multiple myeloma. elife. 2016;5: pubmed 出版商
  618. Martínez Iglesias O, Alonso Merino E, Gómez Rey S, Velasco Martín J, Martín Orozco R, Luengo E, et al. Autoregulatory loop of nuclear corepressor 1 expression controls invasion, tumor growth, and metastasis. Proc Natl Acad Sci U S A. 2016;113:E328-37 pubmed 出版商
  619. Zheng M, Turton K, Zhu F, Li Y, Grindle K, Annis D, et al. A mix of S and ΔS variants of STAT3 enable survival of activated B-cell-like diffuse large B-cell lymphoma cells in culture. Oncogenesis. 2016;4:e184 pubmed 出版商
  620. Mir R, Bele A, Mirza S, Srivastava S, Olou A, Ammons S, et al. A Novel Interaction of Ecdysoneless (ECD) Protein with R2TP Complex Component RUVBL1 Is Required for the Functional Role of ECD in Cell Cycle Progression. Mol Cell Biol. 2015;36:886-99 pubmed 出版商
  621. Flavahan W, Drier Y, Liau B, Gillespie S, Venteicher A, Stemmer Rachamimov A, et al. Insulator dysfunction and oncogene activation in IDH mutant gliomas. Nature. 2016;529:110-4 pubmed 出版商
  622. Toledo R, Qin Y, Cheng Z, Gao Q, Iwata S, Silva G, et al. Recurrent Mutations of Chromatin-Remodeling Genes and Kinase Receptors in Pheochromocytomas and Paragangliomas. Clin Cancer Res. 2016;22:2301-10 pubmed 出版商
  623. Paladino D, Yue P, Furuya H, Acoba J, Rosser C, Turkson J. A novel nuclear Src and p300 signaling axis controls migratory and invasive behavior in pancreatic cancer. Oncotarget. 2016;7:7253-67 pubmed 出版商
  624. Toni L, Padilla P. Developmentally arrested Austrofundulus limnaeus embryos have changes in post-translational modifications of histone H3. J Exp Biol. 2016;219:544-52 pubmed 出版商
  625. García V, Lara Chica M, Cantarero I, Sterner O, Calzado M, Muñoz E. Galiellalactone induces cell cycle arrest and apoptosis through the ATM/ATR pathway in prostate cancer cells. Oncotarget. 2016;7:4490-506 pubmed 出版商
  626. Abu Odeh M, Hereema N, Aqeilan R. WWOX modulates the ATR-mediated DNA damage checkpoint response. Oncotarget. 2016;7:4344-55 pubmed 出版商
  627. Connor A, Kelley P, Tempero R. Lymphatic endothelial lineage assemblage during corneal lymphangiogenesis. Lab Invest. 2016;96:270-82 pubmed 出版商
  628. Guo X, Wang X, Wang Z, Banerjee S, Yang J, Huang L, et al. Site-specific proteasome phosphorylation controls cell proliferation and tumorigenesis. Nat Cell Biol. 2016;18:202-12 pubmed 出版商
  629. Tiedemann R, Hlady R, Hanavan P, Lake D, Tibes R, Lee J, et al. Dynamic reprogramming of DNA methylation in SETD2-deregulated renal cell carcinoma. Oncotarget. 2016;7:1927-46 pubmed 出版商
  630. Grandy R, Whitfield T, Wu H, Fitzgerald M, VanOudenhove J, Zaidi S, et al. Genome-Wide Studies Reveal that H3K4me3 Modification in Bivalent Genes Is Dynamically Regulated during the Pluripotent Cell Cycle and Stabilized upon Differentiation. Mol Cell Biol. 2016;36:615-27 pubmed 出版商
  631. Wassef M, Rodilla V, Teissandier A, Zeitouni B, Gruel N, Sadacca B, et al. Impaired PRC2 activity promotes transcriptional instability and favors breast tumorigenesis. Genes Dev. 2015;29:2547-62 pubmed 出版商
  632. Duan S, Yuan G, Liu X, Ren R, Li J, Zhang W, et al. PTEN deficiency reprogrammes human neural stem cells towards a glioblastoma stem cell-like phenotype. Nat Commun. 2015;6:10068 pubmed 出版商
  633. Valletta S, Dolatshad H, Bartenstein M, Yip B, Bello E, Gordon S, et al. ASXL1 mutation correction by CRISPR/Cas9 restores gene function in leukemia cells and increases survival in mouse xenografts. Oncotarget. 2015;6:44061-71 pubmed 出版商
  634. Sengupta D, Byrum S, Avaritt N, Davis L, Shields B, Mahmoud F, et al. Quantitative Histone Mass Spectrometry Identifies Elevated Histone H3 Lysine 27 (Lys27) Trimethylation in Melanoma. Mol Cell Proteomics. 2016;15:765-75 pubmed 出版商
  635. Zemke M, Draganova K, Klug A, Schöler A, Zurkirchen L, Gay M, et al. Loss of Ezh2 promotes a midbrain-to-forebrain identity switch by direct gene derepression and Wnt-dependent regulation. BMC Biol. 2015;13:103 pubmed 出版商
  636. Liu G, Zhao G, Chen X, Hao D, Zhao X, Lv X, et al. The long noncoding RNA Gm15055 represses Hoxa gene expression by recruiting PRC2 to the gene cluster. Nucleic Acids Res. 2016;44:2613-27 pubmed 出版商
  637. Popken J, Dahlhoff M, Guengoer T, Wolf E, Zakhartchenko V. 3D structured illumination microscopy of mammalian embryos and spermatozoa. BMC Dev Biol. 2015;15:46 pubmed 出版商
  638. Hagelkruys A, Mattes K, Moos V, Rennmayr M, Ringbauer M, Sawicka A, et al. Essential Nonredundant Function of the Catalytic Activity of Histone Deacetylase 2 in Mouse Development. Mol Cell Biol. 2016;36:462-74 pubmed 出版商
  639. Sakurikar N, Thompson R, Montano R, Eastman A. A subset of cancer cell lines is acutely sensitive to the Chk1 inhibitor MK-8776 as monotherapy due to CDK2 activation in S phase. Oncotarget. 2016;7:1380-94 pubmed 出版商
  640. Hernando H, Gelato K, Lesche R, Beckmann G, Koehr S, Otto S, et al. EZH2 Inhibition Blocks Multiple Myeloma Cell Growth through Upregulation of Epithelial Tumor Suppressor Genes. Mol Cancer Ther. 2016;15:287-98 pubmed 出版商
  641. Flores Pérez Ã, Bédard J, Tanabe N, Lymperopoulos P, Clarke A, Jarvis P. Functional Analysis of the Hsp93/ClpC Chaperone at the Chloroplast Envelope. Plant Physiol. 2016;170:147-62 pubmed 出版商
  642. dos Santos N, Matias A, Higa G, Kihara A, Cerchiaro G. Copper Uptake in Mammary Epithelial Cells Activates Cyclins and Triggers Antioxidant Response. Oxid Med Cell Longev. 2015;2015:162876 pubmed 出版商
  643. Gal C, Murton H, Subramanian L, Whale A, Moore K, Paszkiewicz K, et al. Abo1, a conserved bromodomain AAA-ATPase, maintains global nucleosome occupancy and organisation. EMBO Rep. 2016;17:79-93 pubmed 出版商
  644. Hübner B, Lomiento M, Mammoli F, Illner D, Markaki Y, Ferrari S, et al. Remodeling of nuclear landscapes during human myelopoietic cell differentiation maintains co-aligned active and inactive nuclear compartments. Epigenetics Chromatin. 2015;8:47 pubmed 出版商
  645. Grassian A, Scales T, Knutson S, Kuntz K, McCarthy N, Lowe C, et al. A Medium-Throughput Single Cell CRISPR-Cas9 Assay to Assess Gene Essentiality. Biol Proced Online. 2015;17:15 pubmed 出版商
  646. Cristini A, Park J, Capranico G, Legube G, Favre G, Sordet O. DNA-PK triggers histone ubiquitination and signaling in response to DNA double-strand breaks produced during the repair of transcription-blocking topoisomerase I lesions. Nucleic Acids Res. 2016;44:1161-78 pubmed 出版商
  647. Laumet G, Garriga J, Chen S, Zhang Y, Li D, Smith T, et al. G9a is essential for epigenetic silencing of K(+) channel genes in acute-to-chronic pain transition. Nat Neurosci. 2015;18:1746-55 pubmed 出版商
  648. Mursalimov S, Permyakova N, Deineko E, Houben A, Demidov D. Cytomixis doesn't induce obvious changes in chromatin modifications and programmed cell death in tobacco male meiocytes. Front Plant Sci. 2015;6:846 pubmed 出版商
  649. Zhao E, Maj T, Kryczek I, Li W, Wu K, Zhao L, et al. Cancer mediates effector T cell dysfunction by targeting microRNAs and EZH2 via glycolysis restriction. Nat Immunol. 2016;17:95-103 pubmed 出版商
  650. Amlie Wolf A, Ryvkin P, Tong R, Dragomir I, Suh E, Xu Y, et al. Transcriptomic Changes Due to Cytoplasmic TDP-43 Expression Reveal Dysregulation of Histone Transcripts and Nuclear Chromatin. PLoS ONE. 2015;10:e0141836 pubmed 出版商
  651. Kizuka Y, Nakano M, Kitazume S, Saito T, Saido T, Taniguchi N. Bisecting GlcNAc modification stabilizes BACE1 protein under oxidative stress conditions. Biochem J. 2016;473:21-30 pubmed 出版商
  652. Fukuda A, Mitani A, Miyashita T, Umezawa A, Akutsu H. Chromatin condensation of Xist genomic loci during oogenesis in mice. Development. 2015;142:4049-55 pubmed 出版商
  653. Meyer S, Krebs S, Thirion C, Blum H, Krause S, Pfaffl M. Tumor Necrosis Factor Alpha and Insulin-Like Growth Factor 1 Induced Modifications of the Gene Expression Kinetics of Differentiating Skeletal Muscle Cells. PLoS ONE. 2015;10:e0139520 pubmed 出版商
  654. Metser G, Shin H, Wang C, Yoo K, Oh S, Villarino A, et al. An autoregulatory enhancer controls mammary-specific STAT5 functions. Nucleic Acids Res. 2016;44:1052-63 pubmed 出版商
  655. Renaud E, Barascu A, Rosselli F. Impaired TIP60-mediated H4K16 acetylation accounts for the aberrant chromatin accumulation of 53BP1 and RAP80 in Fanconi anemia pathway-deficient cells. Nucleic Acids Res. 2016;44:648-56 pubmed 出版商
  656. Okoye Okafor U, Bartholdy B, Cartier J, Gao E, Pietrak B, Rendina A, et al. New IDH1 mutant inhibitors for treatment of acute myeloid leukemia. Nat Chem Biol. 2015;11:878-86 pubmed 出版商
  657. Hehnly H, Canton D, Bucko P, Langeberg L, Ogier L, Gelman I, et al. A mitotic kinase scaffold depleted in testicular seminomas impacts spindle orientation in germ line stem cells. elife. 2015;4:e09384 pubmed 出版商
  658. Zhan Y, Kost Alimova M, Shi X, Leo E, Bardenhagen J, Shepard H, et al. Development of novel cellular histone-binding and chromatin-displacement assays for bromodomain drug discovery. Epigenetics Chromatin. 2015;8:37 pubmed 出版商
  659. Brideau N, Coker H, Gendrel A, Siebert C, Bezstarosti K, Demmers J, et al. Independent Mechanisms Target SMCHD1 to Trimethylated Histone H3 Lysine 9-Modified Chromatin and the Inactive X Chromosome. Mol Cell Biol. 2015;35:4053-68 pubmed 出版商
  660. Sheikh B, Bechtel Walz W, Lucci J, Karpiuk O, Hild I, Hartleben B, et al. MOF maintains transcriptional programs regulating cellular stress response. Oncogene. 2016;35:2698-710 pubmed 出版商
  661. Brina D, Miluzio A, Ricciardi S, Clarke K, Davidsen P, Viero G, et al. eIF6 coordinates insulin sensitivity and lipid metabolism by coupling translation to transcription. Nat Commun. 2015;6:8261 pubmed 出版商
  662. Liu R, Yang Y, Shen J, Chen H, Zhang Q, Ba R, et al. Fstl1 is involved in the regulation of radial glial scaffold development. Mol Brain. 2015;8:53 pubmed 出版商
  663. Hu P, Chu J, Wu Y, Sun L, Lv X, Zhu Y, et al. NBAT1 suppresses breast cancer metastasis by regulating DKK1 via PRC2. Oncotarget. 2015;6:32410-25 pubmed 出版商
  664. Xiao X, Shi X, Fan Y, Zhang X, Wu M, Lan P, et al. GITR subverts Foxp3(+) Tregs to boost Th9 immunity through regulation of histone acetylation. Nat Commun. 2015;6:8266 pubmed 出版商
  665. Xue X, Yang Y, Zhang A, Fong K, Kim J, Song B, et al. LncRNA HOTAIR enhances ER signaling and confers tamoxifen resistance in breast cancer. Oncogene. 2016;35:2746-55 pubmed 出版商
  666. Kim S, Yang W, Min Y, Ko Y, Yoon S. The role of the polycomb repressive complex pathway in T and NK cell lymphoma: biological and prognostic implications. Tumour Biol. 2016;37:2037-47 pubmed 出版商
  667. Paret C, Simon P, Vormbrock K, Bender C, Kölsch A, Breitkreuz A, et al. CXorf61 is a target for T cell based immunotherapy of triple-negative breast cancer. Oncotarget. 2015;6:25356-67 pubmed 出版商
  668. Tiffen J, Gunatilake D, Gallagher S, Gowrishankar K, Heinemann A, Cullinane C, et al. Targeting activating mutations of EZH2 leads to potent cell growth inhibition in human melanoma by derepression of tumor suppressor genes. Oncotarget. 2015;6:27023-36 pubmed 出版商
  669. Bravo M, Nicolini F, Starowicz K, Barroso S, Calés C, Aguilera A, et al. Polycomb RING1A- and RING1B-dependent histone H2A monoubiquitylation at pericentromeric regions promotes S-phase progression. J Cell Sci. 2015;128:3660-71 pubmed 出版商
  670. Kang S, Kim S, Chai J, Kim S, Won K, Lee Y, et al. Transcriptomic Profiling and H3K27me3 Distribution Reveal Both Demethylase-Dependent and Independent Regulation of Developmental Gene Transcription in Cell Differentiation. PLoS ONE. 2015;10:e0135276 pubmed 出版商
  671. Liu X, Chen X, Rycaj K, Chao H, Deng Q, Jeter C, et al. Systematic dissection of phenotypic, functional, and tumorigenic heterogeneity of human prostate cancer cells. Oncotarget. 2015;6:23959-86 pubmed
  672. Yamada N, Hasegawa Y, Yue M, Hamada T, Nakagawa S, Ogawa Y. Xist Exon 7 Contributes to the Stable Localization of Xist RNA on the Inactive X-Chromosome. PLoS Genet. 2015;11:e1005430 pubmed 出版商
  673. Nezich C, Wang C, Fogel A, Youle R. MiT/TFE transcription factors are activated during mitophagy downstream of Parkin and Atg5. J Cell Biol. 2015;210:435-50 pubmed 出版商
  674. Lovisa S, LeBleu V, Tampe B, Sugimoto H, Vadnagara K, Carstens J, et al. Epithelial-to-mesenchymal transition induces cell cycle arrest and parenchymal damage in renal fibrosis. Nat Med. 2015;21:998-1009 pubmed 出版商
  675. McCleland M, Soukup T, Liu S, Esensten J, De Sousa E Melo F, Yaylaoglu M, et al. Cdk8 deletion in the Apc(Min) murine tumour model represses EZH2 activity and accelerates tumourigenesis. J Pathol. 2015;237:508-19 pubmed 出版商
  676. Massey A. Multiparametric Cell Cycle Analysis Using the Operetta High-Content Imager and Harmony Software with PhenoLOGIC. PLoS ONE. 2015;10:e0134306 pubmed 出版商
  677. Wagner W, Ciszewski W, Kania K. L- and D-lactate enhance DNA repair and modulate the resistance of cervical carcinoma cells to anticancer drugs via histone deacetylase inhibition and hydroxycarboxylic acid receptor 1 activation. Cell Commun Signal. 2015;13:36 pubmed 出版商
  678. Vishwakarma B, Nguyen N, Makishima H, Hosono N, Gudmundsson K, Negi V, et al. Runx1 repression by histone deacetylation is critical for Setbp1-induced mouse myeloid leukemia development. Leukemia. 2016;30:200-8 pubmed 出版商
  679. Sin H, Kartashov A, Hasegawa K, Barski A, Namekawa S. Poised chromatin and bivalent domains facilitate the mitosis-to-meiosis transition in the male germline. BMC Biol. 2015;13:53 pubmed 出版商
  680. Yoon J, Sudo K, Kuroda M, Kato M, Lee I, Han J, et al. Phosphorylation status determines the opposing functions of Smad2/Smad3 as STAT3 cofactors in TH17 differentiation. Nat Commun. 2015;6:7600 pubmed 出版商
  681. Jang C, Shibata Y, Starmer J, Yee D, Magnuson T. Histone H3.3 maintains genome integrity during mammalian development. Genes Dev. 2015;29:1377-92 pubmed 出版商
  682. Sadaie M, Dillon C, Narita M, Young A, Cairney C, Godwin L, et al. Cell-based screen for altered nuclear phenotypes reveals senescence progression in polyploid cells after Aurora kinase B inhibition. Mol Biol Cell. 2015;26:2971-85 pubmed 出版商
  683. Sive J, Basilico S, Hannah R, Kinston S, Calero Nieto F, Göttgens B. Genome-scale definition of the transcriptional programme associated with compromised PU.1 activity in acute myeloid leukaemia. Leukemia. 2016;30:14-23 pubmed 出版商
  684. O Shaughnessy Kirwan A, Signolet J, Costello I, Gharbi S, Hendrich B. Constraint of gene expression by the chromatin remodelling protein CHD4 facilitates lineage specification. Development. 2015;142:2586-97 pubmed 出版商
  685. Yang J, Kaur K, Ong L, Eisenberg C, Eisenberg L. Inhibition of G9a Histone Methyltransferase Converts Bone Marrow Mesenchymal Stem Cells to Cardiac Competent Progenitors. Stem Cells Int. 2015;2015:270428 pubmed 出版商
  686. Stoy C, Sundaram A, Rios Garcia M, Wang X, Seibert O, Zota A, et al. Transcriptional co-factor Transducin beta-like (TBL) 1 acts as a checkpoint in pancreatic cancer malignancy. EMBO Mol Med. 2015;7:1048-62 pubmed 出版商
  687. Petroni M, Sardina F, Heil C, Sahún Roncero M, Colicchia V, Veschi V, et al. The MRN complex is transcriptionally regulated by MYCN during neural cell proliferation to control replication stress. Cell Death Differ. 2016;23:197-206 pubmed 出版商
  688. Park S, Shim J, Park H, Eum D, Park M, Mi Yi J, et al. MacroH2A1 downregulation enhances the stem-like properties of bladder cancer cells by transactivation of Lin28B. Oncogene. 2016;35:1292-301 pubmed 出版商
  689. Kotomura N, Harada N, Ishihara S. The Proportion of Chromatin Graded between Closed and Open States Determines the Level of Transcripts Derived from Distinct Promoters in the CYP19 Gene. PLoS ONE. 2015;10:e0128282 pubmed 出版商
  690. Alexandrova E, Yallowitz A, Li D, Xu S, Schulz R, Proia D, et al. Improving survival by exploiting tumour dependence on stabilized mutant p53 for treatment. Nature. 2015;523:352-6 pubmed 出版商
  691. Sujobert P, Poulain L, Paubelle E, Zylbersztejn F, Grenier A, Lambert M, et al. Co-activation of AMPK and mTORC1 Induces Cytotoxicity in Acute Myeloid Leukemia. Cell Rep. 2015;11:1446-57 pubmed 出版商
  692. Fischer S, Paul A, Wagner A, Mathias S, Geiss M, Schandock F, et al. miR-2861 as novel HDAC5 inhibitor in CHO cells enhances productivity while maintaining product quality. Biotechnol Bioeng. 2015;112:2142-53 pubmed 出版商
  693. Heubach J, Monsior J, Deenen R, Niegisch G, Szarvas T, Niedworok C, et al. The long noncoding RNA HOTAIR has tissue and cell type-dependent effects on HOX gene expression and phenotype of urothelial cancer cells. Mol Cancer. 2015;14:108 pubmed 出版商
  694. Singh P, Konar A, Kumar A, Srivas S, Thakur M. Hippocampal chromatin-modifying enzymes are pivotal for scopolamine-induced synaptic plasticity gene expression changes and memory impairment. J Neurochem. 2015;134:642-51 pubmed 出版商
  695. Yin Y, Castro A, Hoekstra M, Yan T, Kanakamedala A, Dehner L, et al. Fibroblast Growth Factor 9 Regulation by MicroRNAs Controls Lung Development and Links DICER1 Loss to the Pathogenesis of Pleuropulmonary Blastoma. PLoS Genet. 2015;11:e1005242 pubmed 出版商
  696. Chen Q, Arai D, Kawakami K, Sawada T, Jing X, Miyajima M, et al. EphA4 Regulates the Balance between Self-Renewal and Differentiation of Radial Glial Cells and Intermediate Neuronal Precursors in Cooperation with FGF Signaling. PLoS ONE. 2015;10:e0126942 pubmed 出版商
  697. Nishioka C, Ikezoe T, Yang J, Yokoyama A. Tetraspanin Family Member, CD82, Regulates Expression of EZH2 via Inactivation of p38 MAPK Signaling in Leukemia Cells. PLoS ONE. 2015;10:e0125017 pubmed 出版商
  698. Milev M, Hasaj B, Saint Dic D, Snounou S, Zhao Q, Sacher M. TRAMM/TrappC12 plays a role in chromosome congression, kinetochore stability, and CENP-E recruitment. J Cell Biol. 2015;209:221-34 pubmed 出版商
  699. Chen H, Huang W, Yang L, Lin C. The PTEN-AKT-mTOR/RICTOR Pathway in Nasal Natural Killer Cell Lymphoma Is Activated by miR-494-3p via PTEN But Inhibited by miR-142-3p via RICTOR. Am J Pathol. 2015;185:1487-99 pubmed 出版商
  700. Morchoisne Bolhy S, Geoffroy M, Bouhlel I, Alves A, Audugé N, Baudin X, et al. Intranuclear dynamics of the Nup107-160 complex. Mol Biol Cell. 2015;26:2343-56 pubmed 出版商
  701. Huang X, Shen M, Wang L, Yu F, Wu W, Liu H. Effects of tributyltin chloride on developing mouse oocytes and preimplantation embryos. Microsc Microanal. 2015;21:358-67 pubmed 出版商
  702. Liu X, Chen Z, Xu C, Leng X, Cao H, Ouyang G, et al. Repression of hypoxia-inducible factor α signaling by Set7-mediated methylation. Nucleic Acids Res. 2015;43:5081-98 pubmed 出版商
  703. Muniz L, Davidson L, West S. Poly(A) Polymerase and the Nuclear Poly(A) Binding Protein, PABPN1, Coordinate the Splicing and Degradation of a Subset of Human Pre-mRNAs. Mol Cell Biol. 2015;35:2218-30 pubmed 出版商
  704. Fan H, Zhang H, Pascuzzi P, Andrisani O. Hepatitis B virus X protein induces EpCAM expression via active DNA demethylation directed by RelA in complex with EZH2 and TET2. Oncogene. 2016;35:715-26 pubmed 出版商
  705. Ma S, Jiang B, Deng W, Gu Z, Wu F, Li T, et al. D-2-hydroxyglutarate is essential for maintaining oncogenic property of mutant IDH-containing cancer cells but dispensable for cell growth. Oncotarget. 2015;6:8606-20 pubmed
  706. Fallahi Sichani M, Moerke N, Niepel M, Zhang T, Gray N, Sorger P. Systematic analysis of BRAF(V600E) melanomas reveals a role for JNK/c-Jun pathway in adaptive resistance to drug-induced apoptosis. Mol Syst Biol. 2015;11:797 pubmed 出版商
  707. Salvucci O, Ohnuki H, Maric D, Hou X, Li X, Yoon S, et al. EphrinB2 controls vessel pruning through STAT1-JNK3 signalling. Nat Commun. 2015;6:6576 pubmed 出版商
  708. Carlson S, Moore K, Sankaran S, Reynoird N, Elias J, Gozani O. A Proteomic Strategy Identifies Lysine Methylation of Splicing Factor snRNP70 by the SETMAR Enzyme. J Biol Chem. 2015;290:12040-7 pubmed 出版商
  709. Hendriks I, Treffers L, Verlaan de Vries M, Olsen J, Vertegaal A. SUMO-2 Orchestrates Chromatin Modifiers in Response to DNA Damage. Cell Rep. 2015;10:1778-1791 pubmed 出版商
  710. Poirier J, Gardner E, Connis N, Moreira A, de Stanchina E, Hann C, et al. DNA methylation in small cell lung cancer defines distinct disease subtypes and correlates with high expression of EZH2. Oncogene. 2015;34:5869-78 pubmed 出版商
  711. Simon H, ODELBERG S. Assessing cardiomyocyte proliferative capacity in the newt heart and primary culture. Methods Mol Biol. 2015;1290:227-40 pubmed 出版商
  712. Bardhan K, Paschall A, Yang D, Chen M, Simon P, Bhutia Y, et al. IFNγ Induces DNA Methylation-Silenced GPR109A Expression via pSTAT1/p300 and H3K18 Acetylation in Colon Cancer. Cancer Immunol Res. 2015;3:795-805 pubmed 出版商
  713. Arbeille E, Reynaud F, Sanyas I, Bozon M, Kindbeiter K, Causeret F, et al. Cerebrospinal fluid-derived Semaphorin3B orients neuroepithelial cell divisions in the apicobasal axis. Nat Commun. 2015;6:6366 pubmed 出版商
  714. Bitler B, Aird K, Garipov A, Li H, Amatangelo M, Kossenkov A, et al. Synthetic lethality by targeting EZH2 methyltransferase activity in ARID1A-mutated cancers. Nat Med. 2015;21:231-8 pubmed 出版商
  715. Ishihara S, Yasuda M, Ishizu A, Ishikawa M, Shirato H, Haga H. Activating transcription factor 5 enhances radioresistance and malignancy in cancer cells. Oncotarget. 2015;6:4602-14 pubmed
  716. Jeong H, Gil N, Lee H, Cho S, Kim K, Chun K, et al. Timely Degradation of Wip1 Phosphatase by APC/C Activator Protein Cdh1 is Necessary for Normal Mitotic Progression. J Cell Biochem. 2015;116:1602-12 pubmed 出版商
  717. Lee E, Kim S, Cho K. Reconstituted High-Density Lipoprotein Containing Human Growth Hormone-1 Shows Potent Tissue Regeneration Activity with Enhancement of Anti-Oxidant and Anti-Atherosclerotic Activities. Rejuvenation Res. 2015;18:245-56 pubmed 出版商
  718. Sun S, Ling S, Qiu J, Albuquerque C, Zhou Y, Tokunaga S, et al. ALS-causative mutations in FUS/TLS confer gain and loss of function by altered association with SMN and U1-snRNP. Nat Commun. 2015;6:6171 pubmed 出版商
  719. Tian E, Stevens S, Guan Y, Springer D, Anderson S, Starost M, et al. Galnt1 is required for normal heart valve development and cardiac function. PLoS ONE. 2015;10:e0115861 pubmed 出版商
  720. Hsiao S, Chen M, Chen C, Chien M, Hua K, Hsiao M, et al. The H3K9 Methyltransferase G9a Represses E-cadherin and is Associated with Myometrial Invasion in Endometrial Cancer. Ann Surg Oncol. 2015;22 Suppl 3:S1556-65 pubmed 出版商
  721. Kim S, Ebbert K, Cordeiro M, Romero M, Zhu J, Serna V, et al. Cell autonomous phosphoinositide 3-kinase activation in oocytes disrupts normal ovarian function through promoting survival and overgrowth of ovarian follicles. Endocrinology. 2015;156:1464-76 pubmed 出版商
  722. Ochi T, Blackford A, Coates J, Jhujh S, Mehmood S, Tamura N, et al. DNA repair. PAXX, a paralog of XRCC4 and XLF, interacts with Ku to promote DNA double-strand break repair. Science. 2015;347:185-188 pubmed 出版商
  723. Jacob V, Chernyavskaya Y, Chen X, Tan P, Kent B, Hoshida Y, et al. DNA hypomethylation induces a DNA replication-associated cell cycle arrest to block hepatic outgrowth in uhrf1 mutant zebrafish embryos. Development. 2015;142:510-21 pubmed 出版商
  724. Wang W, Visavadiya N, Pandya J, Nelson P, Sullivan P, Springer J. Mitochondria-associated microRNAs in rat hippocampus following traumatic brain injury. Exp Neurol. 2015;265:84-93 pubmed 出版商
  725. Watson M, Hedley D. Whole blood measurement of histone modifications linked to the epigenetic regulation of gene expression. Curr Protoc Cytom. 2015;71:6.36.1-9 pubmed 出版商
  726. Pacaud R, Cheray M, Nadaradjane A, Vallette F, Cartron P. Histone H3 phosphorylation in GBM: a new rational to guide the use of kinase inhibitors in anti-GBM therapy. Theranostics. 2015;5:12-22 pubmed 出版商
  727. Naganuma K, Hatta M, Ikebe T, Yamazaki J. Epigenetic alterations of the keratin 13 gene in oral squamous cell carcinoma. BMC Cancer. 2014;14:988 pubmed 出版商
  728. German S, Campbell K, Thornton E, McLachlan G, Sweetman D, Alberio R. Ovine induced pluripotent stem cells are resistant to reprogramming after nuclear transfer. Cell Reprogram. 2015;17:19-27 pubmed 出版商
  729. Ulanet D, Couto K, Jha A, Choe S, Wang A, Woo H, et al. Mesenchymal phenotype predisposes lung cancer cells to impaired proliferation and redox stress in response to glutaminase inhibition. PLoS ONE. 2014;9:e115144 pubmed 出版商
  730. Smith B, Vance C, Scotter E, Troakes C, Wong C, Topp S, et al. Novel mutations support a role for Profilin 1 in the pathogenesis of ALS. Neurobiol Aging. 2015;36:1602.e17-27 pubmed 出版商
  731. Xue L, Furusawa Y, Okayasu R, Miura M, Cui X, Liu C, et al. The complexity of DNA double strand break is a crucial factor for activating ATR signaling pathway for G2/M checkpoint regulation regardless of ATM function. DNA Repair (Amst). 2015;25:72-83 pubmed 出版商
  732. Knutson S, Warholic N, Johnston L, Klaus C, Wigle T, Iwanowicz D, et al. Synergistic Anti-Tumor Activity of EZH2 Inhibitors and Glucocorticoid Receptor Agonists in Models of Germinal Center Non-Hodgkin Lymphomas. PLoS ONE. 2014;9:e111840 pubmed 出版商
  733. Castonguay E, White S, Kagansky A, St Cyr D, Castillo A, Brugger C, et al. Panspecies small-molecule disruptors of heterochromatin-mediated transcriptional gene silencing. Mol Cell Biol. 2015;35:662-74 pubmed 出版商
  734. Lee J, Peng Y, Lin W, Parrish J. Coordinate control of terminal dendrite patterning and dynamics by the membrane protein Raw. Development. 2015;142:162-73 pubmed 出版商
  735. Luense S, Denner P, Fernández Montalván A, Hartung I, Husemann M, Stresemann C, et al. Quantification of histone H3 Lys27 trimethylation (H3K27me3) by high-throughput microscopy enables cellular large-scale screening for small-molecule EZH2 inhibitors. J Biomol Screen. 2015;20:190-201 pubmed 出版商
  736. Peterson E, Menon V, Gatti L, Kipping R, Dewasinghe D, Perego P, et al. Nucleolar targeting by platinum: p53-independent apoptosis follows rRNA inhibition, cell-cycle arrest, and DNA compaction. Mol Pharm. 2015;12:287-97 pubmed 出版商
  737. Hashizume R, Andor N, Ihara Y, Lerner R, Gan H, Chen X, et al. Pharmacologic inhibition of histone demethylation as a therapy for pediatric brainstem glioma. Nat Med. 2014;20:1394-6 pubmed 出版商
  738. Fink D, Connor A, Kelley P, Steele M, Hollingsworth M, Tempero R. Nerve growth factor regulates neurolymphatic remodeling during corneal inflammation and resolution. PLoS ONE. 2014;9:e112737 pubmed 出版商
  739. Shi X, Zhang Z, Zhan X, Cao M, Satoh T, Akira S, et al. An epigenetic switch induced by Shh signalling regulates gene activation during development and medulloblastoma growth. Nat Commun. 2014;5:5425 pubmed 出版商
  740. Santos G, da Silva A, Feldman L, Ventura G, Vassetzky Y, de Moura Gallo C. Epigenetic modifications, chromatin distribution and TP53 transcription in a model of breast cancer progression. J Cell Biochem. 2015;116:533-41 pubmed 出版商
  741. Zhuang C, Sheng C, Shin W, Wu Y, Li J, Yao J, et al. A novel drug discovery strategy: mechanistic investigation of an enantiomeric antitumor agent targeting dual p53 and NF-κB pathways. Oncotarget. 2014;5:10830-9 pubmed
  742. Kawasumi M, Bradner J, Tolliday N, Thibodeau R, Sloan H, Brummond K, et al. Identification of ATR-Chk1 pathway inhibitors that selectively target p53-deficient cells without directly suppressing ATR catalytic activity. Cancer Res. 2014;74:7534-45 pubmed 出版商
  743. Van der Meulen J, Sanghvi V, Mavrakis K, Durinck K, Fang F, Matthijssens F, et al. The H3K27me3 demethylase UTX is a gender-specific tumor suppressor in T-cell acute lymphoblastic leukemia. Blood. 2015;125:13-21 pubmed 出版商
  744. Xu S, Tong M, Huang J, Zhang Y, Qiao Y, Weng W, et al. TRIB2 inhibits Wnt/β-Catenin/TCF4 signaling through its associated ubiquitin E3 ligases, β-TrCP, COP1 and Smurf1, in liver cancer cells. FEBS Lett. 2014;588:4334-41 pubmed 出版商
  745. Tchao J, Han L, Lin B, Yang L, Tobita K. Combined biophysical and soluble factor modulation induces cardiomyocyte differentiation from human muscle derived stem cells. Sci Rep. 2014;4:6614 pubmed 出版商
  746. Bakhtari A, Rahmani H, Bonakdar E, Jafarpour F, Asgari V, Hosseini S, et al. The interfering effects of superovulation and vitrification upon some important epigenetic biomarkers in mouse blastocyst. Cryobiology. 2014;69:419-27 pubmed 出版商
  747. Saloura V, Cho H, Kiyotani K, Alachkar H, Zuo Z, Nakakido M, et al. WHSC1 promotes oncogenesis through regulation of NIMA-related kinase-7 in squamous cell carcinoma of the head and neck. Mol Cancer Res. 2015;13:293-304 pubmed 出版商
  748. Quan J, Adelmant G, Marto J, Look A, Yusufzai T. The chromatin remodeling factor CHD5 is a transcriptional repressor of WEE1. PLoS ONE. 2014;9:e108066 pubmed 出版商
  749. Seredick S, Hutchinson S, Van Ryswyk L, Talbot J, Eisen J. Lhx3 and Lhx4 suppress Kolmer-Agduhr interneuron characteristics within zebrafish axial motoneurons. Development. 2014;141:3900-9 pubmed 出版商
  750. Chan Y, West S. Spatial control of the GEN1 Holliday junction resolvase ensures genome stability. Nat Commun. 2014;5:4844 pubmed 出版商
  751. Yanagi T, Krajewska M, Matsuzawa S, Reed J. PCTAIRE1 phosphorylates p27 and regulates mitosis in cancer cells. Cancer Res. 2014;74:5795-807 pubmed 出版商
  752. Xu Y, Gan E, Zhou J, Wee W, Zhang X, Ito T. Arabidopsis MRG domain proteins bridge two histone modifications to elevate expression of flowering genes. Nucleic Acids Res. 2014;42:10960-74 pubmed 出版商
  753. Ntziachristos P, Tsirigos A, Welstead G, Trimarchi T, Bakogianni S, Xu L, et al. Contrasting roles of histone 3 lysine 27 demethylases in acute lymphoblastic leukaemia. Nature. 2014;514:513-7 pubmed 出版商
  754. Wanet A, Remacle N, Najar M, Sokal E, Arnould T, Najimi M, et al. Mitochondrial remodeling in hepatic differentiation and dedifferentiation. Int J Biochem Cell Biol. 2014;54:174-85 pubmed 出版商
  755. Piazzolla D, Palla A, Pantoja C, Canamero M, de Castro I, Ortega S, et al. Lineage-restricted function of the pluripotency factor NANOG in stratified epithelia. Nat Commun. 2014;5:4226 pubmed 出版商
  756. Balmer N, Klima S, Rempel E, Ivanova V, Kolde R, Weng M, et al. From transient transcriptome responses to disturbed neurodevelopment: role of histone acetylation and methylation as epigenetic switch between reversible and irreversible drug effects. Arch Toxicol. 2014;88:1451-68 pubmed 出版商
  757. Zhu Z, Liu Y, Li K, Liu J, Wang H, Sun B, et al. Protein tyrosine phosphatase receptor U (PTPRU) is required for glioma growth and motility. Carcinogenesis. 2014;35:1901-10 pubmed 出版商
  758. Kumar P P, Emechebe U, Smith R, Franklin S, Moore B, Yandell M, et al. Coordinated control of senescence by lncRNA and a novel T-box3 co-repressor complex. elife. 2014;3: pubmed 出版商
  759. Kielar M, Tuy F, Bizzotto S, Lebrand C, de Juan Romero C, Poirier K, et al. Mutations in Eml1 lead to ectopic progenitors and neuronal heterotopia in mouse and human. Nat Neurosci. 2014;17:923-33 pubmed 出版商
  760. Cooper S, Dienstbier M, Hassan R, Schermelleh L, Sharif J, Blackledge N, et al. Targeting polycomb to pericentric heterochromatin in embryonic stem cells reveals a role for H2AK119u1 in PRC2 recruitment. Cell Rep. 2014;7:1456-1470 pubmed 出版商
  761. Raimondi L, Amodio N, Di Martino M, Altomare E, Leotta M, Caracciolo D, et al. Targeting of multiple myeloma-related angiogenesis by miR-199a-5p mimics: in vitro and in vivo anti-tumor activity. Oncotarget. 2014;5:3039-54 pubmed
  762. Brown D, LASSEGUE B, Lee M, Zafari R, Long J, Saavedra H, et al. Poldip2 knockout results in perinatal lethality, reduced cellular growth and increased autophagy of mouse embryonic fibroblasts. PLoS ONE. 2014;9:e96657 pubmed 出版商
  763. Cen B, Xiong Y, Song J, Mahajan S, DuPont R, McEachern K, et al. The Pim-1 protein kinase is an important regulator of MET receptor tyrosine kinase levels and signaling. Mol Cell Biol. 2014;34:2517-32 pubmed 出版商
  764. Elhammali A, Ippolito J, Collins L, Crowley J, Marasa J, Piwnica Worms D. A high-throughput fluorimetric assay for 2-hydroxyglutarate identifies Zaprinast as a glutaminase inhibitor. Cancer Discov. 2014;4:828-39 pubmed 出版商
  765. Lu T, Aron L, Zullo J, Pan Y, Kim H, Chen Y, et al. REST and stress resistance in ageing and Alzheimer's disease. Nature. 2014;507:448-54 pubmed 出版商
  766. Zhang X, Ling J, Barcia G, Jing L, Wu J, Barry B, et al. Mutations in QARS, encoding glutaminyl-tRNA synthetase, cause progressive microcephaly, cerebral-cerebellar atrophy, and intractable seizures. Am J Hum Genet. 2014;94:547-58 pubmed 出版商
  767. Zeng Z, Shen L, Li X, Luo T, Wei X, Zhang J, et al. Disruption of histamine H2 receptor slows heart failure progression through reducing myocardial apoptosis and fibrosis. Clin Sci (Lond). 2014;127:435-48 pubmed 出版商
  768. Glebov K, Voronezhskaya E, Khabarova M, Ivashkin E, Nezlin L, Ponimaskin E. Mechanisms underlying dual effects of serotonin during development of Helisoma trivolvis (Mollusca). BMC Dev Biol. 2014;14:14 pubmed 出版商
  769. Sanders Y, Hagood J, Liu H, Zhang W, Ambalavanan N, Thannickal V. Histone deacetylase inhibition promotes fibroblast apoptosis and ameliorates pulmonary fibrosis in mice. Eur Respir J. 2014;43:1448-58 pubmed 出版商
  770. Knutson S, Kawano S, Minoshima Y, Warholic N, Huang K, Xiao Y, et al. Selective inhibition of EZH2 by EPZ-6438 leads to potent antitumor activity in EZH2-mutant non-Hodgkin lymphoma. Mol Cancer Ther. 2014;13:842-54 pubmed 出版商
  771. Aoshiba K, Tsuji T, Itoh M, Semba S, Yamaguchi K, Nakamura H, et al. A murine model of airway fibrosis induced by repeated naphthalene exposure. Exp Toxicol Pathol. 2014;66:169-77 pubmed 出版商
  772. Arnandis T, Ferrer Vicens I, Torres L, García C, García Trevijano E, Zaragoza R, et al. Differential functions of calpain 1 during epithelial cell death and adipocyte differentiation in mammary gland involution. Biochem J. 2014;459:355-68 pubmed 出版商
  773. Cao Q, Wang X, Zhao M, Yang R, Malik R, Qiao Y, et al. The central role of EED in the orchestration of polycomb group complexes. Nat Commun. 2014;5:3127 pubmed 出版商
  774. Schröder Heurich B, Wieland B, Lavin M, Schindler D, Dork T. Protective role of RAD50 on chromatin bridges during abnormal cytokinesis. FASEB J. 2014;28:1331-41 pubmed 出版商
  775. Hast B, Cloer E, Goldfarb D, Li H, Siesser P, Yan F, et al. Cancer-derived mutations in KEAP1 impair NRF2 degradation but not ubiquitination. Cancer Res. 2014;74:808-17 pubmed 出版商
  776. Sulahian R, Casey F, Shen J, Qian Z, Shin H, Ogino S, et al. An integrative analysis reveals functional targets of GATA6 transcriptional regulation in gastric cancer. Oncogene. 2014;33:5637-48 pubmed 出版商
  777. Subbanna S, Nagre N, Shivakumar M, Umapathy N, Psychoyos D, Basavarajappa B. Ethanol induced acetylation of histone at G9a exon1 and G9a-mediated histone H3 dimethylation leads to neurodegeneration in neonatal mice. Neuroscience. 2014;258:422-32 pubmed 出版商
  778. Gregory B, Cheung V. Natural variation in the histone demethylase, KDM4C, influences expression levels of specific genes including those that affect cell growth. Genome Res. 2014;24:52-63 pubmed 出版商
  779. Hammond S, Byrum S, Namjoshi S, Graves H, Dennehey B, Tackett A, et al. Mitotic phosphorylation of histone H3 threonine 80. Cell Cycle. 2014;13:440-52 pubmed 出版商
  780. Liu Y, Platchek M, Kement B, Bee W, Truong M, Zeng X, et al. A novel approach applying a chemical biology strategy in phenotypic screening reveals pathway-selective regulators of histone 3 K27 tri-methylation. Mol Biosyst. 2014;10:251-7 pubmed 出版商
  781. Wu H, Balsbaugh J, Chandler H, Georgilis A, Zullow H, Shabanowitz J, et al. Mitogen-activated protein kinase signaling mediates phosphorylation of polycomb ortholog Cbx7. J Biol Chem. 2013;288:36398-408 pubmed 出版商
  782. McLaughlin N, Wang F, Saifudeen Z, El Dahr S. In situ histone landscape of nephrogenesis. Epigenetics. 2014;9:222-35 pubmed 出版商
  783. Tümer E, Bröer A, Balkrishna S, Jülich T, Broer S. Enterocyte-specific regulation of the apical nutrient transporter SLC6A19 (B(0)AT1) by transcriptional and epigenetic networks. J Biol Chem. 2013;288:33813-23 pubmed 出版商
  784. Douglas N, Arora R, Chen C, Sauer M, Papaioannou V. Investigating the role of tbx4 in the female germline in mice. Biol Reprod. 2013;89:148 pubmed 出版商
  785. Subramanian V, Mazumder A, Surface L, Butty V, Fields P, Alwan A, et al. H2A.Z acidic patch couples chromatin dynamics to regulation of gene expression programs during ESC differentiation. PLoS Genet. 2013;9:e1003725 pubmed 出版商
  786. Lee S, Phipson B, Hyland C, Leong H, Allan R, Lun A, et al. Polycomb repressive complex 2 (PRC2) suppresses E?-myc lymphoma. Blood. 2013;122:2654-63 pubmed 出版商
  787. Copeland A, Altamura L, Van Deusen N, Schmaljohn C. Nuclear relocalization of polyadenylate binding protein during rift valley fever virus infection involves expression of the NSs gene. J Virol. 2013;87:11659-69 pubmed 出版商
  788. Voss M, Campbell K, Saranzewa N, Campbell D, Hastie C, Peggie M, et al. Protein phosphatase 4 is phosphorylated and inactivated by Cdk in response to spindle toxins and interacts with ?-tubulin. Cell Cycle. 2013;12:2876-87 pubmed 出版商
  789. Lauffer B, Mintzer R, Fong R, Mukund S, Tam C, Zilberleyb I, et al. Histone deacetylase (HDAC) inhibitor kinetic rate constants correlate with cellular histone acetylation but not transcription and cell viability. J Biol Chem. 2013;288:26926-43 pubmed 出版商
  790. Saurat N, Andersson T, Vasistha N, Molnár Z, Livesey F. Dicer is required for neural stem cell multipotency and lineage progression during cerebral cortex development. Neural Dev. 2013;8:14 pubmed 出版商
  791. Dai C, Sun F, Zhu C, Hu X. Tumor environmental factors glucose deprivation and lactic acidosis induce mitotic chromosomal instability--an implication in aneuploid human tumors. PLoS ONE. 2013;8:e63054 pubmed 出版商
  792. Huang S, Scruggs A, Donaghy J, Horowitz J, Zaslona Z, Przybranowski S, et al. Histone modifications are responsible for decreased Fas expression and apoptosis resistance in fibrotic lung fibroblasts. Cell Death Dis. 2013;4:e621 pubmed 出版商
  793. Oshikawa M, Okada K, Nakajima K, Ajioka I. Cortical excitatory neurons become protected from cell division during neurogenesis in an Rb family-dependent manner. Development. 2013;140:2310-20 pubmed 出版商
  794. Subbanna S, Shivakumar M, Umapathy N, Saito M, Mohan P, Kumar A, et al. G9a-mediated histone methylation regulates ethanol-induced neurodegeneration in the neonatal mouse brain. Neurobiol Dis. 2013;54:475-85 pubmed 出版商
  795. Lau P, Cheung P. Elucidating combinatorial histone modifications and crosstalks by coupling histone-modifying enzyme with biotin ligase activity. Nucleic Acids Res. 2013;41:e49 pubmed 出版商
  796. Blakemore L, Boes C, Cordell R, Manson M. Curcumin-induced mitotic arrest is characterized by spindle abnormalities, defects in chromosomal congression and DNA damage. Carcinogenesis. 2013;34:351-60 pubmed 出版商
  797. Gaydos L, Rechtsteiner A, Egelhofer T, Carroll C, Strome S. Antagonism between MES-4 and Polycomb repressive complex 2 promotes appropriate gene expression in C. elegans germ cells. Cell Rep. 2012;2:1169-77 pubmed 出版商
  798. Maltby V, Martin B, Brind Amour J, Chruscicki A, McBurney K, Schulze J, et al. Histone H3K4 demethylation is negatively regulated by histone H3 acetylation in Saccharomyces cerevisiae. Proc Natl Acad Sci U S A. 2012;109:18505-10 pubmed 出版商
  799. Gallagher S, Kofman A, Huszar J, Dannenberg J, Depinho R, Braun R, et al. Distinct requirements for Sin3a in perinatal male gonocytes and differentiating spermatogonia. Dev Biol. 2013;373:83-94 pubmed 出版商
  800. Schwab K, Smith G, Dressler G. Arrested spermatogenesis and evidence for DNA damage in PTIP mutant testes. Dev Biol. 2013;373:64-71 pubmed 出版商
  801. Ohmori S, Takai J, Ishijima Y, Suzuki M, Moriguchi T, Philipsen S, et al. Regulation of GATA factor expression is distinct between erythroid and mast cell lineages. Mol Cell Biol. 2012;32:4742-55 pubmed 出版商
  802. Makeyev A, Enkhmandakh B, Hong S, Joshi P, Shin D, Bayarsaihan D. Diversity and complexity in chromatin recognition by TFII-I transcription factors in pluripotent embryonic stem cells and embryonic tissues. PLoS ONE. 2012;7:e44443 pubmed 出版商
  803. Cerf A, Tian H, Craighead H. Ordered arrays of native chromatin molecules for high-resolution imaging and analysis. ACS Nano. 2012;6:7928-34 pubmed
  804. Weng M, Zimmer B, Pöltl D, Broeg M, Ivanova V, Gaspar J, et al. Extensive transcriptional regulation of chromatin modifiers during human neurodevelopment. PLoS ONE. 2012;7:e36708 pubmed 出版商
  805. Kloth M, Goering W, Ribarska T, Arsov C, Sorensen K, Schulz W. The SNP rs6441224 influences transcriptional activity and prognostically relevant hypermethylation of RARRES1 in prostate cancer. Int J Cancer. 2012;131:E897-904 pubmed 出版商
  806. Rothova M, Peterkova R, Tucker A. Fate map of the dental mesenchyme: dynamic development of the dental papilla and follicle. Dev Biol. 2012;366:244-54 pubmed 出版商
  807. Murata T, Kondo Y, Sugimoto A, Kawashima D, Saito S, Isomura H, et al. Epigenetic histone modification of Epstein-Barr virus BZLF1 promoter during latency and reactivation in Raji cells. J Virol. 2012;86:4752-61 pubmed 出版商
  808. Drogaris P, Villeneuve V, Pomiès C, Lee E, Bourdeau V, Bonneil E, et al. Histone deacetylase inhibitors globally enhance h3/h4 tail acetylation without affecting h3 lysine 56 acetylation. Sci Rep. 2012;2:220 pubmed 出版商
  809. De Cecco M, Jeyapalan J, Zhao X, Tamamori Adachi M, Sedivy J. Nuclear protein accumulation in cellular senescence and organismal aging revealed with a novel single-cell resolution fluorescence microscopy assay. Aging (Albany NY). 2011;3:955-67 pubmed
  810. Rada Iglesias A, Bajpai R, Swigut T, Brugmann S, Flynn R, Wysocka J. A unique chromatin signature uncovers early developmental enhancers in humans. Nature. 2011;470:279-83 pubmed 出版商
  811. Sarma K, Levasseur P, Aristarkhov A, Lee J. Locked nucleic acids (LNAs) reveal sequence requirements and kinetics of Xist RNA localization to the X chromosome. Proc Natl Acad Sci U S A. 2010;107:22196-201 pubmed 出版商
  812. Sneeringer C, Scott M, Kuntz K, Knutson S, Pollock R, Richon V, et al. Coordinated activities of wild-type plus mutant EZH2 drive tumor-associated hypertrimethylation of lysine 27 on histone H3 (H3K27) in human B-cell lymphomas. Proc Natl Acad Sci U S A. 2010;107:20980-5 pubmed 出版商
  813. Liu H, Galka M, Iberg A, Wang Z, Li L, Voss C, et al. Systematic identification of methyllysine-driven interactions for histone and nonhistone targets. J Proteome Res. 2010;9:5827-36 pubmed 出版商
  814. Dhayalan A, Rajavelu A, Rathert P, Tamas R, Jurkowska R, Ragozin S, et al. The Dnmt3a PWWP domain reads histone 3 lysine 36 trimethylation and guides DNA methylation. J Biol Chem. 2010;285:26114-20 pubmed 出版商
  815. Ribarska T, Ingenwerth M, Goering W, Engers R, Schulz W. Epigenetic inactivation of the placentally imprinted tumor suppressor gene TFPI2 in prostate carcinoma. Cancer Genomics Proteomics. 2010;7:51-60 pubmed
  816. Menigatti M, Cattaneo E, Sabates Bellver J, Ilinsky V, Went P, Buffoli F, et al. The protein tyrosine phosphatase receptor type R gene is an early and frequent target of silencing in human colorectal tumorigenesis. Mol Cancer. 2009;8:124 pubmed 出版商