这是一篇来自已证抗体库的有关人类 iba1的综述,是根据538篇发表使用所有方法的文章归纳的。这综述旨在帮助来邦网的访客找到最适合iba1 抗体。
iba1 同义词: AIF-1; IBA1; IRT-1; IRT1

艾博抗(上海)贸易有限公司
domestic goat 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:200; 图 5a
艾博抗(上海)贸易有限公司 iba1抗体(Abcam, ab5076)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:200 (图 5a). Stroke Vasc Neurol (2021) ncbi
domestic rabbit 单克隆(EPR16588)
  • 免疫组化; 小鼠; 图 3c
艾博抗(上海)贸易有限公司 iba1抗体(Abcam, ab178846)被用于被用于免疫组化在小鼠样本上 (图 3c). Brain Commun (2021) ncbi
domestic goat 多克隆
  • 免疫组化; 大鼠; 1:100; 图 7a
艾博抗(上海)贸易有限公司 iba1抗体(Abcam, AB5076)被用于被用于免疫组化在大鼠样本上浓度为1:100 (图 7a). Sci Rep (2021) ncbi
domestic goat 多克隆
  • 免疫组化; 小鼠; 1:500; 图 1c
艾博抗(上海)贸易有限公司 iba1抗体(Abcam, ab-5076)被用于被用于免疫组化在小鼠样本上浓度为1:500 (图 1c). J Neuroinflammation (2021) ncbi
domestic rabbit 单克隆(EPR16588)
  • 免疫组化; 小鼠; 1:500; 图 5e
艾博抗(上海)贸易有限公司 iba1抗体(Abcam, ab178846)被用于被用于免疫组化在小鼠样本上浓度为1:500 (图 5e). Transl Vis Sci Technol (2021) ncbi
domestic rabbit 单克隆(EPR16588)
  • 免疫组化; 小鼠; 图 1f
艾博抗(上海)贸易有限公司 iba1抗体(Abcam, EPR16588)被用于被用于免疫组化在小鼠样本上 (图 1f). Sci Rep (2021) ncbi
domestic goat 多克隆
  • 免疫组化; 小鼠; 1:500; 图 s6c
艾博抗(上海)贸易有限公司 iba1抗体(Abcam, ab5076)被用于被用于免疫组化在小鼠样本上浓度为1:500 (图 s6c). Aging Cell (2021) ncbi
domestic rabbit 单克隆(EPR16588)
  • 免疫组化; 小鼠; 1:1000; 图 5b
艾博抗(上海)贸易有限公司 iba1抗体(Abcam, ab178846)被用于被用于免疫组化在小鼠样本上浓度为1:1000 (图 5b). PLoS ONE (2021) ncbi
小鼠 单克隆(1022-5)
  • 免疫组化; 大鼠; 1:100; 图 2a
艾博抗(上海)贸易有限公司 iba1抗体(Abcam, ab15690)被用于被用于免疫组化在大鼠样本上浓度为1:100 (图 2a). J Neuroinflammation (2021) ncbi
domestic goat 多克隆
  • 免疫组化; 小鼠; 图 4a
艾博抗(上海)贸易有限公司 iba1抗体(Abcam, AB5076)被用于被用于免疫组化在小鼠样本上 (图 4a). Front Mol Neurosci (2021) ncbi
domestic rabbit 单克隆(EPR16589)
  • 免疫组化; 小鼠; 1:500; 图 5a
艾博抗(上海)贸易有限公司 iba1抗体(Abcam, ab178847)被用于被用于免疫组化在小鼠样本上浓度为1:500 (图 5a). Acta Neuropathol (2021) ncbi
domestic goat 多克隆
  • 免疫组化; 大鼠; 1:1000; 图 3d
艾博抗(上海)贸易有限公司 iba1抗体(Abcam, ab5076)被用于被用于免疫组化在大鼠样本上浓度为1:1000 (图 3d). Mol Brain (2021) ncbi
domestic goat 多克隆
  • 免疫组化; 小鼠; 1:1500; 图 s3a
艾博抗(上海)贸易有限公司 iba1抗体(Abcam, ab5076)被用于被用于免疫组化在小鼠样本上浓度为1:1500 (图 s3a). PLoS ONE (2021) ncbi
domestic goat 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 3g
艾博抗(上海)贸易有限公司 iba1抗体(Abcam, ab5076)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 3g). Int J Mol Sci (2021) ncbi
domestic goat 多克隆
  • 免疫组化-自由浮动切片; 大鼠; 1:1000; 图 4a
艾博抗(上海)贸易有限公司 iba1抗体(Abcam, ab5076)被用于被用于免疫组化-自由浮动切片在大鼠样本上浓度为1:1000 (图 4a). Brain Behav Immun (2021) ncbi
domestic goat 多克隆
  • 免疫组化-自由浮动切片; 小鼠; 1:200; 图 s6g
艾博抗(上海)贸易有限公司 iba1抗体(Abcam, ab5076)被用于被用于免疫组化-自由浮动切片在小鼠样本上浓度为1:200 (图 s6g). Sci Adv (2021) ncbi
domestic goat 多克隆
  • 免疫细胞化学; 小鼠; 图 6a
艾博抗(上海)贸易有限公司 iba1抗体(Abcam, ab48004)被用于被用于免疫细胞化学在小鼠样本上 (图 6a). Aging (Albany NY) (2021) ncbi
domestic goat 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:100; 图 1i
艾博抗(上海)贸易有限公司 iba1抗体(Abcam, ab5076)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:100 (图 1i). Am J Pathol (2021) ncbi
domestic rabbit 单克隆(EPR16589)
  • 免疫组化; 小鼠; 图 3b
艾博抗(上海)贸易有限公司 iba1抗体(Abcam, ab178847)被用于被用于免疫组化在小鼠样本上 (图 3b). Wellcome Open Res (2021) ncbi
domestic rabbit 单克隆(EPR16589)
  • 免疫组化; 小鼠; 1:1000; 图 2c
艾博抗(上海)贸易有限公司 iba1抗体(Abcam, ab221790)被用于被用于免疫组化在小鼠样本上浓度为1:1000 (图 2c). NPJ Regen Med (2021) ncbi
domestic goat 多克隆
  • 免疫组化; 小鼠; 1:500; 图 3a
艾博抗(上海)贸易有限公司 iba1抗体(Abcam, ab5076)被用于被用于免疫组化在小鼠样本上浓度为1:500 (图 3a). Sci Rep (2021) ncbi
domestic goat 多克隆
  • 免疫组化; 小鼠; 1:200; 图 2h
艾博抗(上海)贸易有限公司 iba1抗体(Abcam, ab48004)被用于被用于免疫组化在小鼠样本上浓度为1:200 (图 2h). Aging (Albany NY) (2021) ncbi
domestic goat 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:500; 图 1h
艾博抗(上海)贸易有限公司 iba1抗体(Abcam, ab5076)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:500 (图 1h). elife (2020) ncbi
domestic goat 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 s5a
艾博抗(上海)贸易有限公司 iba1抗体(Abcam, ab5076)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 s5a). Sci Adv (2020) ncbi
domestic goat 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:500; 图 3g
艾博抗(上海)贸易有限公司 iba1抗体(Abcam, ab5076)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:500 (图 3g). elife (2020) ncbi
domestic goat 多克隆
  • 免疫组化; 小鼠; 1:1000; 图 6c
艾博抗(上海)贸易有限公司 iba1抗体(Abcam, ab5076)被用于被用于免疫组化在小鼠样本上浓度为1:1000 (图 6c). Acta Neuropathol Commun (2020) ncbi
domestic rabbit 单克隆(EPR16589)
  • 免疫组化; 小鼠; 1:500; 图 4a
艾博抗(上海)贸易有限公司 iba1抗体(Abcam, 178847)被用于被用于免疫组化在小鼠样本上浓度为1:500 (图 4a). J Clin Invest (2020) ncbi
domestic rabbit 单克隆(EPR16588)
  • 免疫组化; 小鼠; 图 3e
  • 免疫印迹; 小鼠; 图 3f
艾博抗(上海)贸易有限公司 iba1抗体(Abcam, ab178846)被用于被用于免疫组化在小鼠样本上 (图 3e) 和 被用于免疫印迹在小鼠样本上 (图 3f). Transl Psychiatry (2020) ncbi
domestic rabbit 单克隆
  • 免疫组化-石蜡切片; 猕猴; 1:200; 图 4j
艾博抗(上海)贸易有限公司 iba1抗体(Abcam, ab195031)被用于被用于免疫组化-石蜡切片在猕猴样本上浓度为1:200 (图 4j). Science (2020) ncbi
domestic goat 多克隆
  • 免疫组化; 小鼠; 1:200
艾博抗(上海)贸易有限公司 iba1抗体(Abcam, ab5076)被用于被用于免疫组化在小鼠样本上浓度为1:200. Nat Commun (2020) ncbi
domestic goat 多克隆
  • 免疫组化; 小鼠; 1:1000; 图 2a
艾博抗(上海)贸易有限公司 iba1抗体(Abcam, ab5076)被用于被用于免疫组化在小鼠样本上浓度为1:1000 (图 2a). Front Neurosci (2020) ncbi
domestic goat 多克隆
  • 免疫组化; 小鼠; 图 6a
艾博抗(上海)贸易有限公司 iba1抗体(Abcam, ab5076)被用于被用于免疫组化在小鼠样本上 (图 6a). Front Pharmacol (2020) ncbi
domestic goat 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:500; 图 6e
艾博抗(上海)贸易有限公司 iba1抗体(Abcam, Ab5076)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:500 (图 6e). Theranostics (2020) ncbi
domestic goat 多克隆
  • 免疫组化; 大鼠; 1:1000
艾博抗(上海)贸易有限公司 iba1抗体(Abcam, ab5076)被用于被用于免疫组化在大鼠样本上浓度为1:1000. Biol Proced Online (2020) ncbi
domestic rabbit 单克隆(EPR16588)
  • 免疫组化-冰冻切片; 小鼠; 图 6a
艾博抗(上海)贸易有限公司 iba1抗体(Abcam, ab178846)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 6a). Neuropsychiatr Dis Treat (2020) ncbi
domestic rabbit 单克隆(EPR16589)
  • 免疫组化-石蜡切片; 小鼠; 1:5000; 图 4e
艾博抗(上海)贸易有限公司 iba1抗体(Abcam, ab178847)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:5000 (图 4e). PLoS Pathog (2020) ncbi
domestic rabbit 单克隆(EPR16588)
  • 免疫组化-石蜡切片; 小鼠; 1:1000; 图 5a
  • 免疫印迹; 小鼠; 1:3000; 图 4m
艾博抗(上海)贸易有限公司 iba1抗体(Abcam, ab178846)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:1000 (图 5a) 和 被用于免疫印迹在小鼠样本上浓度为1:3000 (图 4m). J Neuroinflammation (2020) ncbi
domestic rabbit 单克隆(EPR16589)
  • 免疫组化-冰冻切片; 小鼠; 1:500; 图 7e
艾博抗(上海)贸易有限公司 iba1抗体(Abcam, ab178847)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:500 (图 7e). Int J Mol Sci (2020) ncbi
domestic goat 多克隆
  • 免疫组化; 小鼠; 1:500; 图 4
艾博抗(上海)贸易有限公司 iba1抗体(Abcam, #ab5076)被用于被用于免疫组化在小鼠样本上浓度为1:500 (图 4). Eneuro (2020) ncbi
domestic goat 多克隆
  • 免疫组化; 小鼠; 1:500; 图 4a
艾博抗(上海)贸易有限公司 iba1抗体(Abcam, ab5076)被用于被用于免疫组化在小鼠样本上浓度为1:500 (图 4a). Biosci Rep (2020) ncbi
domestic goat 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:5000; 图 5a
艾博抗(上海)贸易有限公司 iba1抗体(Abcam, ab5076)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:5000 (图 5a). Front Neurosci (2019) ncbi
domestic rabbit 单克隆
  • 免疫组化-石蜡切片; 人类; 1:100
艾博抗(上海)贸易有限公司 iba1抗体(Abcam, ab195031)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100. Nat Cell Biol (2020) ncbi
domestic goat 多克隆
  • 免疫组化; 人类; 图 5h
艾博抗(上海)贸易有限公司 iba1抗体(abcam, ab5076)被用于被用于免疫组化在人类样本上 (图 5h). Aging (Albany NY) (2020) ncbi
domestic goat 多克隆
  • 免疫组化-冰冻切片; 大鼠; 1:100; 图 4c
  • 免疫印迹; 大鼠; 1:1000; 图 4d
艾博抗(上海)贸易有限公司 iba1抗体(Abcam, ab5076)被用于被用于免疫组化-冰冻切片在大鼠样本上浓度为1:100 (图 4c) 和 被用于免疫印迹在大鼠样本上浓度为1:1000 (图 4d). Oxid Med Cell Longev (2020) ncbi
domestic goat 多克隆
  • 免疫组化; 小鼠; 1:1000; 图 6b
艾博抗(上海)贸易有限公司 iba1抗体(Abcam, ab5076)被用于被用于免疫组化在小鼠样本上浓度为1:1000 (图 6b). J Neurosci (2020) ncbi
domestic rabbit 单克隆(EPR16589)
  • 免疫组化-石蜡切片; 小鼠; 1:8000; 图 3d
艾博抗(上海)贸易有限公司 iba1抗体(Abcam, ab178847)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:8000 (图 3d). J Neuroinflammation (2020) ncbi
domestic rabbit 单克隆(EPR16589)
  • 免疫印迹; 小鼠; 图 10a
艾博抗(上海)贸易有限公司 iba1抗体(Abcam, ab178847)被用于被用于免疫印迹在小鼠样本上 (图 10a). Neurochem Res (2020) ncbi
domestic goat 多克隆
  • 免疫印迹; 大鼠; 1:400; 图 2a
艾博抗(上海)贸易有限公司 iba1抗体(Abcam, ab5076)被用于被用于免疫印迹在大鼠样本上浓度为1:400 (图 2a). J Neuroinflammation (2020) ncbi
domestic rabbit 单克隆(EPR16588)
  • 免疫细胞化学; 小鼠; 图 s1a
艾博抗(上海)贸易有限公司 iba1抗体(Abcam, ab178846)被用于被用于免疫细胞化学在小鼠样本上 (图 s1a). Neuron (2020) ncbi
domestic goat 多克隆
  • 免疫组化-自由浮动切片; 小鼠; 图 1b
  • 免疫细胞化学; 小鼠; 图 s4
艾博抗(上海)贸易有限公司 iba1抗体(Abcam, ab48004)被用于被用于免疫组化-自由浮动切片在小鼠样本上 (图 1b) 和 被用于免疫细胞化学在小鼠样本上 (图 s4). J Neuroinflammation (2020) ncbi
domestic goat 多克隆
  • 免疫组化-石蜡切片; 大鼠; 1:100; 图 5c
艾博抗(上海)贸易有限公司 iba1抗体(Abcam, ab5076)被用于被用于免疫组化-石蜡切片在大鼠样本上浓度为1:100 (图 5c). Biosci Rep (2020) ncbi
domestic goat 多克隆
  • 免疫组化-石蜡切片; 人类; 1:500; 图 3b, 3c
  • 免疫组化-石蜡切片; 小鼠; 图 6
艾博抗(上海)贸易有限公司 iba1抗体(Abcam, ab5076)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:500 (图 3b, 3c) 和 被用于免疫组化-石蜡切片在小鼠样本上 (图 6). BMC Infect Dis (2019) ncbi
domestic rabbit 单克隆(EPR16589)
  • 免疫组化; 小鼠; 1:8000; 图 1, 2a
艾博抗(上海)贸易有限公司 iba1抗体(Abcam, ab178847)被用于被用于免疫组化在小鼠样本上浓度为1:8000 (图 1, 2a). JCI Insight (2020) ncbi
domestic goat 多克隆
  • 免疫组化-自由浮动切片; 小鼠; 1:1500; 图 1j
艾博抗(上海)贸易有限公司 iba1抗体(Abcam, ab5076)被用于被用于免疫组化-自由浮动切片在小鼠样本上浓度为1:1500 (图 1j). Nature (2019) ncbi
domestic rabbit 单克隆(EPR16589)
  • 免疫组化-冰冻切片; 小鼠; 图 5c
艾博抗(上海)贸易有限公司 iba1抗体(Abcam, ab178847)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 5c). Neuropharmacology (2020) ncbi
domestic goat 多克隆
  • 免疫组化-冰冻切片; 大鼠; 1:1000; 图 9b
艾博抗(上海)贸易有限公司 iba1抗体(Abcam, AB5076)被用于被用于免疫组化-冰冻切片在大鼠样本上浓度为1:1000 (图 9b). Aging Dis (2019) ncbi
domestic goat 多克隆
  • 免疫组化-冰冻切片; 小鼠; 图 7f
艾博抗(上海)贸易有限公司 iba1抗体(AbCam, ab5076)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 7f). Cell Stem Cell (2019) ncbi
domestic goat 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:500; 图 2d
艾博抗(上海)贸易有限公司 iba1抗体(Abcam, AB-5076)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:500 (图 2d). JCI Insight (2019) ncbi
domestic goat 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:5000; 图 1a
艾博抗(上海)贸易有限公司 iba1抗体(Abcam, ab5076)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:5000 (图 1a). J Comp Neurol (2020) ncbi
domestic goat 多克隆
  • 免疫组化-自由浮动切片; 小鼠; 1:500; 图 s6a
艾博抗(上海)贸易有限公司 iba1抗体(Abcam, ab5076)被用于被用于免疫组化-自由浮动切片在小鼠样本上浓度为1:500 (图 s6a). PLoS Biol (2019) ncbi
domestic rabbit 单克隆(EPR16588)
  • 免疫组化-冰冻切片; 小鼠; 1:1000; 图 3f
艾博抗(上海)贸易有限公司 iba1抗体(Abcam, ab178846)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:1000 (图 3f). FASEB J (2019) ncbi
domestic goat 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:500; 图 5e
艾博抗(上海)贸易有限公司 iba1抗体(Abcam, ab5076)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:500 (图 5e). Nat Commun (2019) ncbi
domestic goat 多克隆
  • 免疫组化-自由浮动切片; 小鼠; 1:500; 图 3b
艾博抗(上海)贸易有限公司 iba1抗体(Abcam, ab5076)被用于被用于免疫组化-自由浮动切片在小鼠样本上浓度为1:500 (图 3b). Nature (2019) ncbi
小鼠 单克隆(1022-5)
  • 免疫组化-石蜡切片; 小鼠; 1:500; 图 3g
艾博抗(上海)贸易有限公司 iba1抗体(Abcam, ab15690)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:500 (图 3g). Transl Psychiatry (2019) ncbi
domestic goat 多克隆
  • 免疫组化; 小鼠; 1:100; 图 3k
艾博抗(上海)贸易有限公司 iba1抗体(Abcam, 5076)被用于被用于免疫组化在小鼠样本上浓度为1:100 (图 3k). Nat Commun (2019) ncbi
domestic goat 多克隆
  • 免疫组化; 小鼠; 1:1000; 图 s3d
艾博抗(上海)贸易有限公司 iba1抗体(Abcam, ab5076)被用于被用于免疫组化在小鼠样本上浓度为1:1000 (图 s3d). Science (2018) ncbi
domestic goat 多克隆
  • 免疫组化; 小鼠; 1:200; 图 s5o
艾博抗(上海)贸易有限公司 iba1抗体(Abcam, ab5076)被用于被用于免疫组化在小鼠样本上浓度为1:200 (图 s5o). Nat Neurosci (2018) ncbi
domestic goat 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:300; 图 3c
艾博抗(上海)贸易有限公司 iba1抗体(Abcam, ab5076)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:300 (图 3c). Nature (2018) ncbi
domestic goat 多克隆
  • 免疫组化-石蜡切片; 人类; 1:100; 图 2
艾博抗(上海)贸易有限公司 iba1抗体(Abcam, ab5076)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100 (图 2). Epilepsia (2018) ncbi
domestic goat 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:300; 图 1b, s1b, s1e
艾博抗(上海)贸易有限公司 iba1抗体(Abcam, ab5076)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:300 (图 1b, s1b, s1e). J Exp Med (2018) ncbi
domestic goat 多克隆
  • 免疫组化; 小鼠; 1:300; 图 1a
  • 免疫印迹; 小鼠; 1:10,000; 图 1d
艾博抗(上海)贸易有限公司 iba1抗体(Abcam, ab5076)被用于被用于免疫组化在小鼠样本上浓度为1:300 (图 1a) 和 被用于免疫印迹在小鼠样本上浓度为1:10,000 (图 1d). J Neurosci (2018) ncbi
domestic rabbit 单克隆(EPR16588)
  • 免疫组化-冰冻切片; 小鼠; 1:1500; 图 10a
艾博抗(上海)贸易有限公司 iba1抗体(Abcam, ab178846)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:1500 (图 10a). J Neurosci (2018) ncbi
domestic goat 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:100; 图 4a
艾博抗(上海)贸易有限公司 iba1抗体(Abcam, ab5076)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:100 (图 4a). J Comp Neurol (2019) ncbi
domestic goat 多克隆
  • 免疫组化-冰冻切片; 小鼠; 图 4h
艾博抗(上海)贸易有限公司 iba1抗体(Abcam, ab5076)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 4h). Neuron (2018) ncbi
domestic goat 多克隆
  • 免疫组化; 小鼠; 1:200; 图 2d
艾博抗(上海)贸易有限公司 iba1抗体(Abcam, ab5076)被用于被用于免疫组化在小鼠样本上浓度为1:200 (图 2d). Proc Natl Acad Sci U S A (2018) ncbi
domestic goat 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:200; 图 4j, 5i
艾博抗(上海)贸易有限公司 iba1抗体(Abcam, ab5076)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:200 (图 4j, 5i). J Neurovirol (2018) ncbi
domestic goat 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:2500; 图 6c
艾博抗(上海)贸易有限公司 iba1抗体(Abcam, ab5076)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:2500 (图 6c). Nat Commun (2018) ncbi
domestic goat 多克隆
  • 免疫组化; 大鼠; 1:200; 图 4a
艾博抗(上海)贸易有限公司 iba1抗体(Abcam, ab5076)被用于被用于免疫组化在大鼠样本上浓度为1:200 (图 4a). Stroke (2018) ncbi
domestic rabbit 单克隆(EPR16589)
  • 免疫组化-石蜡切片; 大鼠; 1:8000; 图 2c
  • 免疫印迹; 大鼠; 1:1000; 图 2b
艾博抗(上海)贸易有限公司 iba1抗体(Abcam, ab178847)被用于被用于免疫组化-石蜡切片在大鼠样本上浓度为1:8000 (图 2c) 和 被用于免疫印迹在大鼠样本上浓度为1:1000 (图 2b). Biol Res (2017) ncbi
domestic goat 多克隆
  • 免疫组化-石蜡切片; 小鼠; 图 4e
艾博抗(上海)贸易有限公司 iba1抗体(Abcam, ab5076)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 4e). Invest Ophthalmol Vis Sci (2017) ncbi
domestic goat 多克隆
  • 免疫组化; 大鼠; 1:100; 图 8a
艾博抗(上海)贸易有限公司 iba1抗体(Abcam, ab5076)被用于被用于免疫组化在大鼠样本上浓度为1:100 (图 8a). PLoS ONE (2017) ncbi
domestic goat 多克隆
  • 免疫组化-冰冻切片; 大鼠; 1:300; 图 2m
艾博抗(上海)贸易有限公司 iba1抗体(Abcam, ab5076)被用于被用于免疫组化-冰冻切片在大鼠样本上浓度为1:300 (图 2m). J Pain (2017) ncbi
domestic goat 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:500; 图 s5e
艾博抗(上海)贸易有限公司 iba1抗体(Abcam, ab5076)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:500 (图 s5e). Mol Ther (2017) ncbi
小鼠 单克隆(1022-5)
  • 免疫组化-石蜡切片; 犬; 1:200; 图 st9
  • 免疫组化-石蜡切片; 大鼠; 1:200; 图 st9
  • 免疫组化-石蜡切片; 小鼠; 1:200; 图 st9
艾博抗(上海)贸易有限公司 iba1抗体(Abcam, 1022-5)被用于被用于免疫组化-石蜡切片在犬样本上浓度为1:200 (图 st9), 被用于免疫组化-石蜡切片在大鼠样本上浓度为1:200 (图 st9) 和 被用于免疫组化-石蜡切片在小鼠样本上浓度为1:200 (图 st9). J Toxicol Pathol (2017) ncbi
domestic goat 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:200
艾博抗(上海)贸易有限公司 iba1抗体(Abcam, ab5076)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:200. Sci Rep (2017) ncbi
domestic goat 多克隆
  • 免疫组化; 大鼠; 1:1000; 图 3a
  • 免疫印迹; 大鼠; 1:1000; 图 5a
艾博抗(上海)贸易有限公司 iba1抗体(Abcam, ab5076)被用于被用于免疫组化在大鼠样本上浓度为1:1000 (图 3a) 和 被用于免疫印迹在大鼠样本上浓度为1:1000 (图 5a). Sci Rep (2016) ncbi
domestic rabbit 单克隆(EPR6136(2))
  • 免疫组化; 人类; 图 1f
艾博抗(上海)贸易有限公司 iba1抗体(Abcam, ab178680)被用于被用于免疫组化在人类样本上 (图 1f). Proc Natl Acad Sci U S A (2017) ncbi
小鼠 单克隆(1022-5)
  • 免疫细胞化学; 人类; 1:200; 图 s3b
艾博抗(上海)贸易有限公司 iba1抗体(Abcam, ab15690)被用于被用于免疫细胞化学在人类样本上浓度为1:200 (图 s3b). Mol Psychiatry (2017) ncbi
domestic goat 多克隆
  • 免疫印迹; 小鼠; 1:500; 图 st1
艾博抗(上海)贸易有限公司 iba1抗体(Abcam, Ab5076)被用于被用于免疫印迹在小鼠样本上浓度为1:500 (图 st1). Mov Disord (2017) ncbi
domestic goat 多克隆
  • 免疫组化-自由浮动切片; 大鼠; 1:1500; 图 5
  • 免疫印迹; 大鼠; 1:1000; 图 5
艾博抗(上海)贸易有限公司 iba1抗体(Abcam, ab48004)被用于被用于免疫组化-自由浮动切片在大鼠样本上浓度为1:1500 (图 5) 和 被用于免疫印迹在大鼠样本上浓度为1:1000 (图 5). PLoS ONE (2016) ncbi
domestic goat 多克隆
  • 免疫组化; 小鼠; 1:100; 图 1b
艾博抗(上海)贸易有限公司 iba1抗体(Abcam, ab5076)被用于被用于免疫组化在小鼠样本上浓度为1:100 (图 1b). Biol Psychiatry (2017) ncbi
domestic goat 多克隆
  • 免疫组化-石蜡切片; 人类; 1:100; 表 1
艾博抗(上海)贸易有限公司 iba1抗体(Abcam, ab5076)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100 (表 1). Glia (2017) ncbi
domestic goat 多克隆
  • 免疫组化-石蜡切片; 大鼠; 1:400; 图 7
艾博抗(上海)贸易有限公司 iba1抗体(Abcam, ab5076)被用于被用于免疫组化-石蜡切片在大鼠样本上浓度为1:400 (图 7). Oncotarget (2016) ncbi
domestic goat 多克隆
  • 免疫组化; 大鼠; 1:10,000; 图 4a
艾博抗(上海)贸易有限公司 iba1抗体(Abcam, ab5076)被用于被用于免疫组化在大鼠样本上浓度为1:10,000 (图 4a). Brain Behav Immun (2017) ncbi
domestic goat 多克隆
  • 免疫组化-石蜡切片; 猕猴; 1:200; 图 4
艾博抗(上海)贸易有限公司 iba1抗体(Abcam, 5076)被用于被用于免疫组化-石蜡切片在猕猴样本上浓度为1:200 (图 4). J Neuroinflammation (2016) ncbi
domestic goat 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:500; 图 2e
艾博抗(上海)贸易有限公司 iba1抗体(Abcam, ab5076)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:500 (图 2e). Neuropharmacology (2016) ncbi
domestic goat 多克隆
  • 免疫组化-冰冻切片; 大鼠; 1:500; 图 4
艾博抗(上海)贸易有限公司 iba1抗体(Abcam, ab5076)被用于被用于免疫组化-冰冻切片在大鼠样本上浓度为1:500 (图 4). Acta Neuropathol Commun (2016) ncbi
domestic goat 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:400
艾博抗(上海)贸易有限公司 iba1抗体(Abcam, Ab5076)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:400. J Neuroinflammation (2016) ncbi
domestic goat 多克隆
  • 免疫细胞化学; 小鼠; 图 s7e
艾博抗(上海)贸易有限公司 iba1抗体(Abcam, ab5076)被用于被用于免疫细胞化学在小鼠样本上 (图 s7e). Cell Rep (2016) ncbi
domestic goat 多克隆
  • 免疫组化; 小鼠; 1:500; 图 s8f
艾博抗(上海)贸易有限公司 iba1抗体(Abcam, ab5076)被用于被用于免疫组化在小鼠样本上浓度为1:500 (图 s8f). Science (2016) ncbi
domestic goat 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:400; 图 3
艾博抗(上海)贸易有限公司 iba1抗体(Abcam, ab5076)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:400 (图 3). Acta Neuropathol Commun (2016) ncbi
domestic goat 多克隆
  • 免疫组化; 小鼠; 1:100; 图 8
艾博抗(上海)贸易有限公司 iba1抗体(Abcam, ab5076)被用于被用于免疫组化在小鼠样本上浓度为1:100 (图 8). Hum Mol Genet (2016) ncbi
小鼠 单克隆(1022-5)
  • 免疫组化-石蜡切片; 小鼠; 1:100; 图 4
艾博抗(上海)贸易有限公司 iba1抗体(Abcam, ab15690)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:100 (图 4). Sci Rep (2016) ncbi
domestic goat 多克隆
  • 免疫印迹; 大鼠; 1:500; 图 1
艾博抗(上海)贸易有限公司 iba1抗体(Abcam, ab5076)被用于被用于免疫印迹在大鼠样本上浓度为1:500 (图 1). Cell Signal (2016) ncbi
domestic goat 多克隆
  • 免疫组化-冰冻切片; 大鼠; 1:1000; 图 1
艾博抗(上海)贸易有限公司 iba1抗体(Abcam, ab5076)被用于被用于免疫组化-冰冻切片在大鼠样本上浓度为1:1000 (图 1). Exp Ther Med (2016) ncbi
domestic goat 多克隆
  • 免疫组化; 小鼠; 1:500; 图 3b
艾博抗(上海)贸易有限公司 iba1抗体(Abcam, ab5076)被用于被用于免疫组化在小鼠样本上浓度为1:500 (图 3b). PLoS ONE (2016) ncbi
domestic goat 多克隆
  • 免疫组化-冰冻切片; 小鼠; 图 1
艾博抗(上海)贸易有限公司 iba1抗体(Abcam, ab5076)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 1). Mol Neurodegener (2016) ncbi
domestic goat 多克隆
  • 免疫组化-冰冻切片; 大鼠; 1:200; 图 4a
艾博抗(上海)贸易有限公司 iba1抗体(Abcam, ab5076)被用于被用于免疫组化-冰冻切片在大鼠样本上浓度为1:200 (图 4a). Front Neurosci (2016) ncbi
小鼠 单克隆(1022-5)
  • 免疫印迹; 大鼠; 1:500; 表 1
艾博抗(上海)贸易有限公司 iba1抗体(Abcam, ab-15690)被用于被用于免疫印迹在大鼠样本上浓度为1:500 (表 1). Brain Res Bull (2016) ncbi
domestic goat 多克隆
  • 免疫细胞化学; 大鼠; 图 s3
艾博抗(上海)贸易有限公司 iba1抗体(Abcam, ab5076)被用于被用于免疫细胞化学在大鼠样本上 (图 s3). PLoS ONE (2016) ncbi
domestic goat 多克隆
  • 免疫组化-冰冻切片; 大鼠; 1:100; 图 4
  • 免疫印迹; 大鼠; 1:200; 图 4
艾博抗(上海)贸易有限公司 iba1抗体(abcam, ab5076)被用于被用于免疫组化-冰冻切片在大鼠样本上浓度为1:100 (图 4) 和 被用于免疫印迹在大鼠样本上浓度为1:200 (图 4). Mol Med Rep (2016) ncbi
小鼠 单克隆(1022-5)
  • 免疫组化-冰冻切片; 小鼠; 1:5000; 图 s3
艾博抗(上海)贸易有限公司 iba1抗体(Abcam, ab15690)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:5000 (图 s3). EMBO Rep (2016) ncbi
domestic goat 多克隆
  • 免疫组化-冰冻切片; 大鼠; 1:100; 图 5f
艾博抗(上海)贸易有限公司 iba1抗体(Abcam, ab5076)被用于被用于免疫组化-冰冻切片在大鼠样本上浓度为1:100 (图 5f). Mol Neurobiol (2017) ncbi
domestic goat 多克隆
  • 免疫组化; 小鼠; 1:1000; 图 1
艾博抗(上海)贸易有限公司 iba1抗体(Abcam, ab5076)被用于被用于免疫组化在小鼠样本上浓度为1:1000 (图 1). Sci Rep (2016) ncbi
domestic goat 多克隆
  • 免疫组化; 小鼠; 1:100; 图 s13
艾博抗(上海)贸易有限公司 iba1抗体(Abcam, ab5076)被用于被用于免疫组化在小鼠样本上浓度为1:100 (图 s13). Nat Neurosci (2016) ncbi
domestic goat 多克隆
  • 免疫组化-冰冻切片; 小鼠
艾博抗(上海)贸易有限公司 iba1抗体(Abcam Inc., ab5076)被用于被用于免疫组化-冰冻切片在小鼠样本上. FASEB J (2016) ncbi
小鼠 单克隆(1022-5)
  • 免疫印迹; 小鼠; 1:200
艾博抗(上海)贸易有限公司 iba1抗体(Abcam, 1022?C5)被用于被用于免疫印迹在小鼠样本上浓度为1:200. PLoS ONE (2015) ncbi
小鼠 单克隆(1022-5)
  • 免疫组化; 大鼠
艾博抗(上海)贸易有限公司 iba1抗体(Abcam, ab15690)被用于被用于免疫组化在大鼠样本上. Life Sci (2015) ncbi
小鼠 单克隆(1022-5)
  • 免疫组化-石蜡切片; 大鼠; 1:200
艾博抗(上海)贸易有限公司 iba1抗体(Abcam, ab15690)被用于被用于免疫组化-石蜡切片在大鼠样本上浓度为1:200. Mol Neurobiol (2016) ncbi
小鼠 单克隆(1022-5)
  • 免疫细胞化学; 大鼠; 1:200
艾博抗(上海)贸易有限公司 iba1抗体(Abcam, ab15690)被用于被用于免疫细胞化学在大鼠样本上浓度为1:200. J Neuroinflammation (2014) ncbi
小鼠 单克隆(1022-5)
  • 免疫组化; 小鼠; 1:200; 图 s10a
艾博抗(上海)贸易有限公司 iba1抗体(Abcam, ab15690)被用于被用于免疫组化在小鼠样本上浓度为1:200 (图 s10a). Nat Neurosci (2014) ncbi
domestic goat 多克隆
  • 免疫组化-石蜡切片; 大鼠; 1:500
艾博抗(上海)贸易有限公司 iba1抗体(Abcam, ab5076)被用于被用于免疫组化-石蜡切片在大鼠样本上浓度为1:500. J Tissue Eng Regen Med (2017) ncbi
小鼠 单克隆(1022-5)
  • 酶联免疫吸附测定; 小鼠; 1:100
艾博抗(上海)贸易有限公司 iba1抗体(Abcam, ab15690)被用于被用于酶联免疫吸附测定在小鼠样本上浓度为1:100. J Alzheimers Dis (2014) ncbi
小鼠 单克隆(1022-5)
  • 免疫组化-石蜡切片; 大鼠; 1:200
艾博抗(上海)贸易有限公司 iba1抗体(Abcam, ab15690)被用于被用于免疫组化-石蜡切片在大鼠样本上浓度为1:200. J Neuroinflammation (2013) ncbi
小鼠 单克隆(1022-5)
  • 免疫组化-石蜡切片; 小鼠; 1:200
艾博抗(上海)贸易有限公司 iba1抗体(Abcam, ab15690)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:200. Radiother Oncol (2013) ncbi
小鼠 单克隆(1022-5)
  • 免疫组化-冰冻切片; 大鼠; 1:500
艾博抗(上海)贸易有限公司 iba1抗体(Abcam, Ab15690)被用于被用于免疫组化-冰冻切片在大鼠样本上浓度为1:500. J Neurotrauma (2013) ncbi
小鼠 单克隆(1022-5)
  • 免疫组化; 大鼠; 1:200
艾博抗(上海)贸易有限公司 iba1抗体(Abcam, ab15690)被用于被用于免疫组化在大鼠样本上浓度为1:200. BMC Neurosci (2013) ncbi
小鼠 单克隆(1022-5)
  • 免疫组化-石蜡切片; 大鼠; 1:1000
艾博抗(上海)贸易有限公司 iba1抗体(Abcam, ab15690)被用于被用于免疫组化-石蜡切片在大鼠样本上浓度为1:1000. PLoS ONE (2012) ncbi
小鼠 单克隆(1022-5)
  • 免疫组化-石蜡切片; 大鼠; 1:200
艾博抗(上海)贸易有限公司 iba1抗体(Abcam, ab15690)被用于被用于免疫组化-石蜡切片在大鼠样本上浓度为1:200. Cell Mol Neurobiol (2013) ncbi
赛默飞世尔
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:2000; 图 2a
赛默飞世尔 iba1抗体(Invitrogen, PA5-27436)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:2000 (图 2a). Int J Mol Sci (2021) ncbi
小鼠 单克隆(GT10312)
  • 免疫组化; 大鼠; 1:1000; 图 6d
赛默飞世尔 iba1抗体(ThermoFisher, MA5-27726)被用于被用于免疫组化在大鼠样本上浓度为1:1000 (图 6d). Front Pharmacol (2021) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 图 2a
赛默飞世尔 iba1抗体(Invitrogen, PA5-21274)被用于被用于免疫组化在小鼠样本上 (图 2a). Aging Cell (2021) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:75; 图 7c
  • 免疫印迹; 小鼠; 1:1000; 图 7c
赛默飞世尔 iba1抗体(Thermo Fisher, PAS-27436)被用于被用于免疫组化在小鼠样本上浓度为1:75 (图 7c) 和 被用于免疫印迹在小鼠样本上浓度为1:1000 (图 7c). J Neuroinflammation (2020) ncbi
domestic rabbit 多克隆
  • 免疫组化; 大鼠; 1:200; 图 4d
赛默飞世尔 iba1抗体(Thermofisher, PA5-27436)被用于被用于免疫组化在大鼠样本上浓度为1:200 (图 4d). Nutrients (2020) ncbi
小鼠 单克隆(GT10312)
  • 免疫组化; 大鼠; 1:200; 图 8c
  • 免疫印迹; 大鼠; 图 8a
赛默飞世尔 iba1抗体(Thermofisher, MA5-27726)被用于被用于免疫组化在大鼠样本上浓度为1:200 (图 8c) 和 被用于免疫印迹在大鼠样本上 (图 8a). Biomolecules (2020) ncbi
小鼠 单克隆(GT10312)
  • 免疫组化-石蜡切片; 大鼠; 图 6d1
赛默飞世尔 iba1抗体(TermoFisher, MA5-27726)被用于被用于免疫组化-石蜡切片在大鼠样本上 (图 6d1). Int J Mol Sci (2020) ncbi
domestic goat 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:1000; 图 6i
赛默飞世尔 iba1抗体(Thermo Fisher, PA5-18039)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:1000 (图 6i). Eneuro (2020) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:1000; 图 6g
赛默飞世尔 iba1抗体(Thermo Fisher Scientific, PA5?C21274)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:1000 (图 6g). Front Aging Neurosci (2018) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:3000; 图 3c
赛默飞世尔 iba1抗体(Invitrogen, PA5-21274)被用于被用于免疫印迹在小鼠样本上浓度为1:3000 (图 3c). J Mol Neurosci (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 大鼠; 1:2400; 图 6
赛默飞世尔 iba1抗体(Thermo Scientific, PA5-27436)被用于被用于免疫印迹在大鼠样本上浓度为1:2400 (图 6). Exp Neurol (2016) ncbi
domestic rabbit 多克隆
赛默飞世尔 iba1抗体(Thermo Fisher Scientific, PA5- 27436)被用于. J Neurosci (2015) ncbi
domestic goat 多克隆
赛默飞世尔 iba1抗体(Thermo Fisher Scientific, PA5-18039)被用于. PLoS ONE (2015) ncbi
圣克鲁斯生物技术
小鼠 单克隆(1022-5)
  • 免疫组化; 小鼠; 1:500; 图 s7d
圣克鲁斯生物技术 iba1抗体(Santa Cruz, sc-32725)被用于被用于免疫组化在小鼠样本上浓度为1:500 (图 s7d). Front Endocrinol (Lausanne) (2021) ncbi
小鼠 单克隆(1022-5)
  • 免疫印迹; 小鼠; 1:500
圣克鲁斯生物技术 iba1抗体(Santa Cruz Biotechnology, sc- 32725)被用于被用于免疫印迹在小鼠样本上浓度为1:500. Int J Mol Sci (2020) ncbi
小鼠 单克隆(1022-5)
  • 免疫印迹; 小鼠; 图 5e
圣克鲁斯生物技术 iba1抗体(Santa, sc-32,725)被用于被用于免疫印迹在小鼠样本上 (图 5e). Mol Neurodegener (2020) ncbi
小鼠 单克隆(1022-5)
  • 免疫印迹; 小鼠; 1:1000; 图 8a
圣克鲁斯生物技术 iba1抗体(Santa Cruz Biotechnology Inc, sc-32,725)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 8a). J Neuroinflammation (2018) ncbi
小鼠 单克隆(1022-5)
  • 免疫组化-石蜡切片; 小鼠; 1:100; 表 1
圣克鲁斯生物技术 iba1抗体(Santa Cruz, sc-1022-5)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:100 (表 1). PLoS ONE (2015) ncbi
小鼠 单克隆(1022-5)
  • 免疫组化-冰冻切片; 大鼠; 1:100; 图 3
圣克鲁斯生物技术 iba1抗体(Santa Cruz, sc-32725)被用于被用于免疫组化-冰冻切片在大鼠样本上浓度为1:100 (图 3). Mol Brain (2015) ncbi
小鼠 单克隆(1022-5)
  • 免疫细胞化学; 大鼠; 图 3
  • 免疫印迹; 大鼠; 图 2
圣克鲁斯生物技术 iba1抗体(Santa Cruz, sc-32725)被用于被用于免疫细胞化学在大鼠样本上 (图 3) 和 被用于免疫印迹在大鼠样本上 (图 2). Front Cell Neurosci (2015) ncbi
小鼠 单克隆(1022-5)
  • 免疫组化-冰冻切片; 小鼠; 图 1a
  • 免疫印迹; 小鼠; 1:500; 图 1b
圣克鲁斯生物技术 iba1抗体(Santa Cruz, sc-32725)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 1a) 和 被用于免疫印迹在小鼠样本上浓度为1:500 (图 1b). Mol Neurobiol (2016) ncbi
小鼠 单克隆(1022-5)
  • 免疫组化-石蜡切片; 小鼠; 1:300; 图 2
  • 免疫组化; 小鼠; 1:10; 图 6
圣克鲁斯生物技术 iba1抗体(Santa Cruz, SC-32725)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:300 (图 2) 和 被用于免疫组化在小鼠样本上浓度为1:10 (图 6). J Neuroinflammation (2010) ncbi
Novus Biologicals
domestic goat 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:200; 图 3a
Novus Biologicals iba1抗体(Novus Biologicals, NB100-1028)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:200 (图 3a). Front Pharmacol (2021) ncbi
domestic goat 多克隆
  • 免疫组化; 人类; 1:500; 图 1a
Novus Biologicals iba1抗体(Novus, NB100-1028)被用于被用于免疫组化在人类样本上浓度为1:500 (图 1a). Nat Immunol (2021) ncbi
domestic goat 多克隆
  • 免疫组化; 大鼠; 1:200; 图 3b
Novus Biologicals iba1抗体(Novus, NB100-1028)被用于被用于免疫组化在大鼠样本上浓度为1:200 (图 3b). Mol Med (2021) ncbi
domestic goat 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:1000; 图 s1f
Novus Biologicals iba1抗体(Novus, NB100-1028)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:1000 (图 s1f). Sci Adv (2020) ncbi
domestic goat 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:250; 图 6h
Novus Biologicals iba1抗体(Novus, NB100-1028)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:250 (图 6h). Acta Neuropathol (2020) ncbi
domestic goat 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:500; 图 5a
Novus Biologicals iba1抗体(Novus, NB100-2833)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:500 (图 5a). Sci Rep (2020) ncbi
domestic goat 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:500; 图 3d
Novus Biologicals iba1抗体(Novus Biological, NB100-1028)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:500 (图 3d). Nature (2019) ncbi
domestic goat 多克隆
  • 免疫组化; 小鼠; 1:100; 图 7i
Novus Biologicals iba1抗体(Novus, NB100-1028)被用于被用于免疫组化在小鼠样本上浓度为1:100 (图 7i). Nat Commun (2019) ncbi
domestic goat 多克隆
  • 免疫组化-冰冻切片; 小鼠; 图 5a
Novus Biologicals iba1抗体(Novus Biological, NB100-1028)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 5a). Cell Stem Cell (2019) ncbi
domestic goat 多克隆
  • 免疫组化; 小鼠; 图 3c
Novus Biologicals iba1抗体(Novus, NB100-1028)被用于被用于免疫组化在小鼠样本上 (图 3c). Proc Natl Acad Sci U S A (2018) ncbi
domestic goat 多克隆
  • 免疫组化; 大鼠; 1:50; 图 s1e
Novus Biologicals iba1抗体(Novus, NB100-1028)被用于被用于免疫组化在大鼠样本上浓度为1:50 (图 s1e). Cell Death Differ (2018) ncbi
domestic goat 多克隆
  • 免疫印迹; 小鼠; 1:300
Novus Biologicals iba1抗体(Wako, NB100-1028)被用于被用于免疫印迹在小鼠样本上浓度为1:300. Mol Brain (2016) ncbi
domestic goat 多克隆
  • 免疫组化; 小鼠; 图 6a
Novus Biologicals iba1抗体(Novus, NB100-1028)被用于被用于免疫组化在小鼠样本上 (图 6a). J Neuropathol Exp Neurol (2016) ncbi
Synaptic Systems
豚鼠 多克隆
  • 免疫组化-自由浮动切片; 小鼠; 1:500; 图 4a
Synaptic Systems iba1抗体(Synaptic Systems, 234-004)被用于被用于免疫组化-自由浮动切片在小鼠样本上浓度为1:500 (图 4a). Cereb Cortex Commun (2021) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:500; 图 1b
Synaptic Systems iba1抗体(Synaptic Systems, 234003)被用于被用于免疫组化在小鼠样本上浓度为1:500 (图 1b). EMBO J (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 s3e
Synaptic Systems iba1抗体(Synaptic Systems, 234 003)被用于被用于免疫印迹在小鼠样本上 (图 s3e). Cell Metab (2021) ncbi
豚鼠 多克隆
  • 免疫组化; 小鼠; 图 1
Synaptic Systems iba1抗体(Synaptic Systems, 234004)被用于被用于免疫组化在小鼠样本上 (图 1). Neurotrauma Rep (2020) ncbi
鸡 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:1000; 图 7j
Synaptic Systems iba1抗体(Synaptic Systems, 234006)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:1000 (图 7j). Cell Rep (2020) ncbi
豚鼠 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:100; 图 4c
Synaptic Systems iba1抗体(Synaptic Systems, 134 004)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:100 (图 4c). elife (2019) ncbi
鸡 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:1000; 图 3f
Synaptic Systems iba1抗体(Synaptic Systems, 234006)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:1000 (图 3f). FASEB J (2019) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:1000; 图 5b
Synaptic Systems iba1抗体(Synaptic Systems, 234003)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:1000 (图 5b). Glia (2019) ncbi
豚鼠 多克隆
  • 免疫组化; 小鼠; 1:2000; 图 6
Synaptic Systems iba1抗体(Synaptic Systems, 234004)被用于被用于免疫组化在小鼠样本上浓度为1:2000 (图 6). PLoS ONE (2016) ncbi
Wako Chemicals USA
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:1000; 图 3
Wako Chemicals USA iba1抗体(Wako, 019-19741)被用于被用于免疫组化在小鼠样本上浓度为1:1000 (图 3). Mol Psychiatry (2021) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:200; 图 1a
Wako Chemicals USA iba1抗体(Wako, 019-19741)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:200 (图 1a). Exp Eye Res (2021) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 图 1a
Wako Chemicals USA iba1抗体(Wako, 019-19741)被用于被用于免疫组化在小鼠样本上 (图 1a). EBioMedicine (2021) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 小鼠; 1:450; 图 4c
Wako Chemicals USA iba1抗体(Wako, 019-19741)被用于被用于免疫细胞化学在小鼠样本上浓度为1:450 (图 4c). Front Immunol (2021) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:1000; 图 1f
Wako Chemicals USA iba1抗体(Wako Chemicals, 019-19,741)被用于被用于免疫组化在小鼠样本上浓度为1:1000 (图 1f). Acta Neuropathol Commun (2021) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:400; 图 2ci
Wako Chemicals USA iba1抗体(Wako chemicals, 019-19741)被用于被用于免疫组化在小鼠样本上浓度为1:400 (图 2ci). J Neuroinflammation (2021) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 图 3b
Wako Chemicals USA iba1抗体(Wako, 019-19741)被用于被用于免疫组化在小鼠样本上 (图 3b). Nagoya J Med Sci (2021) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:500; 图 4h
Wako Chemicals USA iba1抗体(Wako, 019-19741)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:500 (图 4h). Int J Ophthalmol (2021) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:800; 图 1e
Wako Chemicals USA iba1抗体(FUJIFILM Wako, 019-19741)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:800 (图 1e). Nat Commun (2021) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:1000; 图 5d
Wako Chemicals USA iba1抗体(Wako, 019-19741)被用于被用于免疫组化在小鼠样本上浓度为1:1000 (图 5d). Transl Vis Sci Technol (2021) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 小鼠; 1:200
Wako Chemicals USA iba1抗体(Wako, 016-20001)被用于被用于免疫细胞化学在小鼠样本上浓度为1:200. elife (2021) ncbi
domestic rabbit 多克隆
  • 免疫组化; 人类; 1:1000; 图 1c
Wako Chemicals USA iba1抗体(Wako, 019-19741)被用于被用于免疫组化在人类样本上浓度为1:1000 (图 1c). Neurooncol Adv (2021) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:1000; 图 2c
Wako Chemicals USA iba1抗体(Fujifilm Wako Diagnostics, 019-19741)被用于被用于免疫组化在小鼠样本上浓度为1:1000 (图 2c). Mol Ther Methods Clin Dev (2021) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:1000; 图 5b
Wako Chemicals USA iba1抗体(WAKO, 019?C19741)被用于被用于免疫组化在小鼠样本上浓度为1:1000 (图 5b). Proc Natl Acad Sci U S A (2021) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:200; 图 s1j
Wako Chemicals USA iba1抗体(Wako Chemicals, 019-19741)被用于被用于免疫组化在小鼠样本上浓度为1:200 (图 s1j). elife (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:500; 图 6c
Wako Chemicals USA iba1抗体(Wako, 016-20001)被用于被用于免疫印迹在小鼠样本上浓度为1:500 (图 6c). Front Cell Dev Biol (2021) ncbi
小鼠 单克隆(NCNP24)
  • 免疫组化; 小鼠; 图 1f
Wako Chemicals USA iba1抗体(WAKO, NCNP24)被用于被用于免疫组化在小鼠样本上 (图 1f). Sci Adv (2021) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:3000; 图 1a
Wako Chemicals USA iba1抗体(Wako Chemicals, 019-19741)被用于被用于免疫组化在小鼠样本上浓度为1:3000 (图 1a). Cell Rep (2021) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:500; 图 8a
Wako Chemicals USA iba1抗体(Wako, 019-19741)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:500 (图 8a). EMBO Mol Med (2021) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:200; 图 5a
Wako Chemicals USA iba1抗体(Wako, 019-19,741)被用于被用于免疫组化在小鼠样本上浓度为1:200 (图 5a). Acta Neuropathol Commun (2021) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:1000; 图 4b
Wako Chemicals USA iba1抗体(Wako, 019-19741)被用于被用于免疫组化在小鼠样本上浓度为1:1000 (图 4b). Exp Neurobiol (2021) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 小鼠; 图 s3a
Wako Chemicals USA iba1抗体(Wako, 019-19741)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 s3a). iScience (2021) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:1000; 图 s2c
Wako Chemicals USA iba1抗体(Wako, 019-19741)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:1000 (图 s2c). Cell Death Dis (2021) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 图 6f
Wako Chemicals USA iba1抗体(Wako, 019-19741)被用于被用于免疫组化在小鼠样本上 (图 6f). Acta Neuropathol Commun (2021) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:200; 图 1a
Wako Chemicals USA iba1抗体(FUJIFILM Wako, 019-19741)被用于被用于免疫组化在小鼠样本上浓度为1:200 (图 1a). J Neuroinflammation (2021) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 图 4c
Wako Chemicals USA iba1抗体(Wako, 019-19741)被用于被用于免疫组化在小鼠样本上 (图 4c). Int J Mol Sci (2021) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 小鼠; 图 1a
Wako Chemicals USA iba1抗体(Wako, 019-19741)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 1a). Cell Death Dis (2021) ncbi
domestic rabbit 多克隆
  • 免疫组化-自由浮动切片; 小鼠; 1:500; 图 5a
Wako Chemicals USA iba1抗体(Wako, 019-19741)被用于被用于免疫组化-自由浮动切片在小鼠样本上浓度为1:500 (图 5a). Mol Neurodegener (2021) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:1000; 图 1d
Wako Chemicals USA iba1抗体(Wako, 019-19741)被用于被用于免疫组化在小鼠样本上浓度为1:1000 (图 1d). Brain Behav Immun (2021) ncbi
domestic rabbit 多克隆
  • 免疫组化; 人类; 1:600; 图 s5e
  • 免疫组化; 食蟹猴; 图 s5e
Wako Chemicals USA iba1抗体(Wako, 019-19741)被用于被用于免疫组化在人类样本上浓度为1:600 (图 s5e) 和 被用于免疫组化在食蟹猴样本上 (图 s5e). Cell (2021) ncbi
domestic rabbit 多克隆
  • 免疫组化-自由浮动切片; 大鼠; 1:1000; 图 2c
Wako Chemicals USA iba1抗体(Wako, 019-19,741)被用于被用于免疫组化-自由浮动切片在大鼠样本上浓度为1:1000 (图 2c). Brain Struct Funct (2021) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:100; 图 2c
Wako Chemicals USA iba1抗体(Wako, 019-19,741)被用于被用于免疫组化在小鼠样本上浓度为1:100 (图 2c). Int J Mol Sci (2021) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:400; 图 s4
Wako Chemicals USA iba1抗体(Wako, 019-19741)被用于被用于免疫组化在小鼠样本上浓度为1:400 (图 s4). Acta Neuropathol Commun (2021) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 图 s1h
Wako Chemicals USA iba1抗体(Wako, 019-19741)被用于被用于免疫组化在小鼠样本上 (图 s1h). Adv Sci (Weinh) (2021) ncbi
domestic rabbit 多克隆
  • 免疫组化-自由浮动切片; 小鼠; 1:500; 图 6a
Wako Chemicals USA iba1抗体(Wako, 019-19741)被用于被用于免疫组化-自由浮动切片在小鼠样本上浓度为1:500 (图 6a). Transl Neurodegener (2021) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 猕猴; 图 7a
Wako Chemicals USA iba1抗体(Wako, 019-19741)被用于被用于免疫组化-石蜡切片在猕猴样本上 (图 7a). Cell (2021) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:1000; 图 5a
Wako Chemicals USA iba1抗体(Wako, 019-19741)被用于被用于免疫组化在小鼠样本上浓度为1:1000 (图 5a). Aging Dis (2021) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:500; 图 7a
Wako Chemicals USA iba1抗体(Wako, 019-19741)被用于被用于免疫组化在小鼠样本上浓度为1:500 (图 7a). Sci Rep (2021) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 大鼠; 1:1000; 图 8a, 8b, 8c, 8d, 10a
Wako Chemicals USA iba1抗体(FUJIFILM Wako Chemicals, 019-19741)被用于被用于免疫组化-石蜡切片在大鼠样本上浓度为1:1000 (图 8a, 8b, 8c, 8d, 10a). PLoS Genet (2021) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:500; 图 4d
Wako Chemicals USA iba1抗体(WAKO, 019-19741)被用于被用于免疫组化在小鼠样本上浓度为1:500 (图 4d). Int J Mol Sci (2021) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:500; 图 1h
Wako Chemicals USA iba1抗体(Wako Chemicals, 019-19741)被用于被用于免疫组化在小鼠样本上浓度为1:500 (图 1h). Acta Neuropathol Commun (2021) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:500; 图 4a
Wako Chemicals USA iba1抗体(Wako, 019-19741)被用于被用于免疫组化在小鼠样本上浓度为1:500 (图 4a). Acta Neuropathol Commun (2021) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:250; 图 3e
Wako Chemicals USA iba1抗体(Wako, 016-20001)被用于被用于免疫组化在小鼠样本上浓度为1:250 (图 3e). Cell Death Dis (2021) ncbi
domestic rabbit 多克隆
  • 免疫组化; 人类
Wako Chemicals USA iba1抗体(Wako Chemicals, 019-19741)被用于被用于免疫组化在人类样本上. Neuropathol Appl Neurobiol (2021) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:10,000; 图 5c
Wako Chemicals USA iba1抗体(WAKO, 019-19741)被用于被用于免疫组化在小鼠样本上浓度为1:10,000 (图 5c). Aging (Albany NY) (2021) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:1000; 图 1g
Wako Chemicals USA iba1抗体(Wako, 019-19741)被用于被用于免疫组化在小鼠样本上浓度为1:1000 (图 1g). Nat Commun (2021) ncbi
domestic rabbit 多克隆
  • 免疫组化; 人类; 1:500; 图 1a
Wako Chemicals USA iba1抗体(Wako, 019-19741)被用于被用于免疫组化在人类样本上浓度为1:500 (图 1a). Nat Immunol (2021) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:10,000; 图 5c
Wako Chemicals USA iba1抗体(WAKO, 019-19741)被用于被用于免疫组化在小鼠样本上浓度为1:10,000 (图 5c). Adv Sci (Weinh) (2021) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:500; 图 4f
Wako Chemicals USA iba1抗体(Wako, 019-19741)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:500 (图 4f). elife (2021) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:2000; 图 2i
Wako Chemicals USA iba1抗体(Wako, 019-19741)被用于被用于免疫组化在小鼠样本上浓度为1:2000 (图 2i). Eneuro (2021) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:10,000; 图 5c
Wako Chemicals USA iba1抗体(WAKO, 019-19741)被用于被用于免疫组化在小鼠样本上浓度为1:10,000 (图 5c). Acta Neuropathol Commun (2021) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:1000; 图 1b
Wako Chemicals USA iba1抗体(Wako, 019?\19741)被用于被用于免疫组化在小鼠样本上浓度为1:1000 (图 1b). Br J Pharmacol (2021) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:500; 图 2c
Wako Chemicals USA iba1抗体(Wako, 019-19741)被用于被用于免疫组化在小鼠样本上浓度为1:500 (图 2c). NPJ Regen Med (2021) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:500; 图 2a
Wako Chemicals USA iba1抗体(Wako Chemicals, 019-19741)被用于被用于免疫组化在小鼠样本上浓度为1:500 (图 2a). Cells (2021) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:500; 图 5a
Wako Chemicals USA iba1抗体(WAKO, 019-19741)被用于被用于免疫组化在小鼠样本上浓度为1:500 (图 5a). Acta Neuropathol Commun (2021) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:100; 图 6, s8
Wako Chemicals USA iba1抗体(FUJIFILM Wako, 019-19741)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:100 (图 6, s8). Brain Pathol (2021) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 大鼠; 1:1500; 图 5b
Wako Chemicals USA iba1抗体(Wako Pure Chemical Industries, 019-19741)被用于被用于免疫组化-冰冻切片在大鼠样本上浓度为1:1500 (图 5b). Front Cell Neurosci (2020) ncbi
domestic rabbit 多克隆
  • 免疫组化-自由浮动切片; 小鼠; 1:1000; 图 2s2c
Wako Chemicals USA iba1抗体(Wako, 019-19741)被用于被用于免疫组化-自由浮动切片在小鼠样本上浓度为1:1000 (图 2s2c). elife (2021) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:2000; 图 4a
Wako Chemicals USA iba1抗体(Wako, 019-19741)被用于被用于免疫组化在小鼠样本上浓度为1:2000 (图 4a). Int J Mol Sci (2021) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:1000
Wako Chemicals USA iba1抗体(Wako, 019-19741)被用于被用于免疫组化在小鼠样本上浓度为1:1000. Acta Neuropathol Commun (2021) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:500; 图 2e
Wako Chemicals USA iba1抗体(Wako, 019-C19741)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:500 (图 2e). Acta Neuropathol Commun (2021) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:800; 图 4b
Wako Chemicals USA iba1抗体(Wako, 019-19741)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:800 (图 4b). Theranostics (2021) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:500; 图 2
Wako Chemicals USA iba1抗体(Wako, 19-19741)被用于被用于免疫组化在小鼠样本上浓度为1:500 (图 2). J Neuroinflammation (2020) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:1000; 图 s1f
Wako Chemicals USA iba1抗体(Wako, 019-19741)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:1000 (图 s1f). Sci Adv (2020) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:500
Wako Chemicals USA iba1抗体(Wako, 019-19741)被用于被用于免疫组化在小鼠样本上浓度为1:500. Nat Commun (2020) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:800; 图 5f
Wako Chemicals USA iba1抗体(Wako, 019-19741)被用于被用于免疫组化在小鼠样本上浓度为1:800 (图 5f). Acta Neuropathol Commun (2020) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:1000; 图 2h
Wako Chemicals USA iba1抗体(Wako, 019-19741)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:1000 (图 2h). Mol Pain (2020) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:500; 图 1g-1j
Wako Chemicals USA iba1抗体(Wako, 019-19741)被用于被用于免疫组化在小鼠样本上浓度为1:500 (图 1g-1j). Mol Neurobiol (2021) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:1000; 图 3a
Wako Chemicals USA iba1抗体(Wako, 019-19741)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:1000 (图 3a). Nat Commun (2020) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:125; 图 1d
  • 免疫印迹; 小鼠; 1:1000; 图 6f
Wako Chemicals USA iba1抗体(Wako, 019-1974)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:125 (图 1d) 和 被用于免疫印迹在小鼠样本上浓度为1:1000 (图 6f). elife (2020) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:500; 图 1b
Wako Chemicals USA iba1抗体(Wako, 019-19741)被用于被用于免疫组化在小鼠样本上浓度为1:500 (图 1b). Acta Neuropathol Commun (2020) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:1000; 图 6c
Wako Chemicals USA iba1抗体(Wako, 01919741)被用于被用于免疫组化在小鼠样本上浓度为1:1000 (图 6c). Acta Neuropathol Commun (2020) ncbi
domestic rabbit 多克隆
Wako Chemicals USA iba1抗体(Wako, 019-19741)被用于. Acta Neuropathol Commun (2020) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:800; 图 1e
Wako Chemicals USA iba1抗体(Wako, 019-19741)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:800 (图 1e). MBio (2020) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 人类; 1:600; 图 1b
  • 免疫组化-冰冻切片; 小鼠; 1:600; 图 3a
Wako Chemicals USA iba1抗体(Wako, 019-19741)被用于被用于免疫组化-冰冻切片在人类样本上浓度为1:600 (图 1b) 和 被用于免疫组化-冰冻切片在小鼠样本上浓度为1:600 (图 3a). Acta Neuropathol (2020) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:500; 图 2
Wako Chemicals USA iba1抗体(FUJIFILM Wako Pure Chemical Corporation, 019?C19741)被用于被用于免疫组化在小鼠样本上浓度为1:500 (图 2). IBRO Rep (2020) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 人类; 图 4e
Wako Chemicals USA iba1抗体(Wako, 019-19741)被用于被用于免疫组化-石蜡切片在人类样本上 (图 4e). Aging Cell (2020) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:1000; 图 5a
Wako Chemicals USA iba1抗体(Wako, 019-19741)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:1000 (图 5a). J Neuroinflammation (2020) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 图 s1j
Wako Chemicals USA iba1抗体(©FUJIFILM Wako Pure Chemical Corporation, 019-19741)被用于被用于免疫组化在小鼠样本上 (图 s1j). Cell (2020) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 人类; 图 1e
  • 免疫细胞化学; 人类; 图 1g
Wako Chemicals USA iba1抗体(Wako, 019-19741)被用于被用于免疫组化-石蜡切片在人类样本上 (图 1e) 和 被用于免疫细胞化学在人类样本上 (图 1g). Science (2020) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:500; 图 3a
Wako Chemicals USA iba1抗体(Wako, 019-19,741)被用于被用于免疫组化在小鼠样本上浓度为1:500 (图 3a). Acta Neuropathol Commun (2020) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 图 5a
Wako Chemicals USA iba1抗体(Wako, 019-19741)被用于被用于免疫组化在小鼠样本上 (图 5a). iScience (2020) ncbi
小鼠 单克隆(NCNP24)
  • 免疫组化-自由浮动切片; 小鼠; 1:1000; 图 5b
Wako Chemicals USA iba1抗体(Wako, NCNP24)被用于被用于免疫组化-自由浮动切片在小鼠样本上浓度为1:1000 (图 5b). elife (2020) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 大鼠; 1:5000; 图 1a
Wako Chemicals USA iba1抗体(Wako, 019?C19741)被用于被用于免疫印迹在大鼠样本上浓度为1:5000 (图 1a). elife (2020) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:250; 图 2a
Wako Chemicals USA iba1抗体(Wako, 019-19741)被用于被用于免疫组化在小鼠样本上浓度为1:250 (图 2a). Front Neurosci (2020) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:500; 图 5b
Wako Chemicals USA iba1抗体(Wako, 019-19741)被用于被用于免疫组化在小鼠样本上浓度为1:500 (图 5b). Alzheimers Res Ther (2020) ncbi
domestic rabbit 多克隆
  • 免疫组化-自由浮动切片; 小鼠; 1:200; 图 4h
Wako Chemicals USA iba1抗体(Wako, 019-19741)被用于被用于免疫组化-自由浮动切片在小鼠样本上浓度为1:200 (图 4h). Nature (2020) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 大鼠; 1:200; 图 5a
Wako Chemicals USA iba1抗体(Wako, 019-19741)被用于被用于免疫组化-冰冻切片在大鼠样本上浓度为1:200 (图 5a). Sci Rep (2020) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:1000; 图 4f2
Wako Chemicals USA iba1抗体(Wako, 019-19741)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:1000 (图 4f2). J Neurosci (2020) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:200; 图 2a
Wako Chemicals USA iba1抗体(Wako, 019-19741)被用于被用于免疫组化在小鼠样本上浓度为1:200 (图 2a). elife (2020) ncbi
domestic rabbit 多克隆
  • 免疫组化-自由浮动切片; 小鼠; 1:1000; 图 2c
Wako Chemicals USA iba1抗体(Wako, 019-19741)被用于被用于免疫组化-自由浮动切片在小鼠样本上浓度为1:1000 (图 2c). J Neuroinflammation (2020) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 50 ug/ml; 图 7a, 7b
Wako Chemicals USA iba1抗体(Wako, 019-19741)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为50 ug/ml (图 7a, 7b). Mediators Inflamm (2020) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:500; 图 4f
Wako Chemicals USA iba1抗体(Wako, 019-1 9741)被用于被用于免疫组化在小鼠样本上浓度为1:500 (图 4f). Nat Commun (2020) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:1000; 图 1m
Wako Chemicals USA iba1抗体(WAKO, 019-19741)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:1000 (图 1m). PLoS Biol (2020) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:500; 图 2a
Wako Chemicals USA iba1抗体(Wako, 019-19741)被用于被用于免疫组化在小鼠样本上浓度为1:500 (图 2a). Sci Rep (2020) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; black ferret; 图 3c
Wako Chemicals USA iba1抗体(Wako, 019-19741)被用于被用于免疫组化-冰冻切片在black ferret样本上 (图 3c). Mol Brain (2020) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:500; 图 3d
Wako Chemicals USA iba1抗体(Wako, 019-19741)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:500 (图 3d). PLoS ONE (2020) ncbi
domestic rabbit 多克隆
  • 免疫组化-自由浮动切片; 大鼠; 1:500; 图 4k, 4m
Wako Chemicals USA iba1抗体(Wako, 019-19741)被用于被用于免疫组化-自由浮动切片在大鼠样本上浓度为1:500 (图 4k, 4m). Transl Psychiatry (2020) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 小鼠; 1:500; 图 2a
  • 免疫组化; 小鼠; 1:100; 图 5a
Wako Chemicals USA iba1抗体(WAKO, 019-19741)被用于被用于免疫细胞化学在小鼠样本上浓度为1:500 (图 2a) 和 被用于免疫组化在小鼠样本上浓度为1:100 (图 5a). Front Neurosci (2020) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 小鼠; 图 4c
  • 免疫印迹; 小鼠; 图 4b
Wako Chemicals USA iba1抗体(Wako, 019-19741)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 4c) 和 被用于免疫印迹在小鼠样本上 (图 4b). J Neuroinflammation (2020) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:500; 图 4a
Wako Chemicals USA iba1抗体(Wako-Chemicals, 019-19741)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:500 (图 4a). Front Cell Neurosci (2020) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:20,000; 图 1c
Wako Chemicals USA iba1抗体(Wako, 019-19741)被用于被用于免疫组化在小鼠样本上浓度为1:20,000 (图 1c). Sci Rep (2020) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:1000; 图 1c
Wako Chemicals USA iba1抗体(Wako, 019-19741)被用于被用于免疫组化在小鼠样本上浓度为1:1000 (图 1c). Nat Commun (2020) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:300; 图 s5c
Wako Chemicals USA iba1抗体(Wako, 019-19741)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:300 (图 s5c). Nat Commun (2020) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:400; 图 3i
Wako Chemicals USA iba1抗体(Wako, 019-19741)被用于被用于免疫组化在小鼠样本上浓度为1:400 (图 3i). Proc Natl Acad Sci U S A (2020) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:500; 图 6a
Wako Chemicals USA iba1抗体(Wako, 016-20001)被用于被用于免疫印迹在小鼠样本上浓度为1:500 (图 6a). Oxid Med Cell Longev (2020) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:500; 图 6b
Wako Chemicals USA iba1抗体(Wako, 019-19741)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:500 (图 6b). Oxid Med Cell Longev (2020) ncbi
domestic rabbit 多克隆
  • 免疫组化; 人类; 1:500; 图 5b
Wako Chemicals USA iba1抗体(Wako, 019-19741)被用于被用于免疫组化在人类样本上浓度为1:500 (图 5b). Front Immunol (2020) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:1000; 图 4b
Wako Chemicals USA iba1抗体(Wako, 019-19741)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:1000 (图 4b). J Neuroinflammation (2020) ncbi
domestic rabbit 多克隆
  • 免疫组化-自由浮动切片; 小鼠; 1:1000; 图 s4a
Wako Chemicals USA iba1抗体(Wako, 019-19741)被用于被用于免疫组化-自由浮动切片在小鼠样本上浓度为1:1000 (图 s4a). Mol Ther Nucleic Acids (2020) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:500; 图 2c
Wako Chemicals USA iba1抗体(Wako, 019-19741)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:500 (图 2c). Sci Rep (2020) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:500; 图 1k
Wako Chemicals USA iba1抗体(Wako, 019?C19741)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:500 (图 1k). Sci Rep (2020) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:500; 图 1a
Wako Chemicals USA iba1抗体(Wako, 019-19741)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:500 (图 1a). Acta Neuropathol (2020) ncbi
domestic rabbit 多克隆
  • 免疫组化-自由浮动切片; 小鼠; 1:1000; 图 3a
Wako Chemicals USA iba1抗体(Wako, 019-19741)被用于被用于免疫组化-自由浮动切片在小鼠样本上浓度为1:1000 (图 3a). Aging (Albany NY) (2020) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; pigs ; 1:1000; 图 4b
Wako Chemicals USA iba1抗体(Wako, 019-19741)被用于被用于免疫组化-石蜡切片在pigs 样本上浓度为1:1000 (图 4b). J Neuroinflammation (2020) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 大鼠; 1:2000; 图 1a
Wako Chemicals USA iba1抗体(Wako, 019-19741)被用于被用于免疫组化-冰冻切片在大鼠样本上浓度为1:2000 (图 1a). Sci Rep (2020) ncbi
domestic rabbit 多克隆
Wako Chemicals USA iba1抗体(Wako, 019-19741)被用于. Nat Commun (2020) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:500; 图 6d
Wako Chemicals USA iba1抗体(Wako, 019-19741)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:500 (图 6d). Front Cell Dev Biol (2019) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:1000; 图 6b
Wako Chemicals USA iba1抗体(Wako, 019-19741)被用于被用于免疫组化在小鼠样本上浓度为1:1000 (图 6b). J Neurosci (2020) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:400; 图 5b
Wako Chemicals USA iba1抗体(Wako Pure Chemical, 019-19741)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:400 (图 5b). J Clin Med (2020) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 人类; 1:1000; 图 5f
Wako Chemicals USA iba1抗体(Wako, 019-19741)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:1000 (图 5f). Int J Mol Sci (2020) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:500; 图 1a
Wako Chemicals USA iba1抗体(Wako, 019-19741)被用于被用于免疫组化在小鼠样本上浓度为1:500 (图 1a). EMBO Mol Med (2020) ncbi
domestic rabbit 多克隆
  • 免疫组化-自由浮动切片; 大鼠; 1:1000; 图 4c
  • 免疫印迹; 大鼠; 1:1000; 图 s2a
Wako Chemicals USA iba1抗体(Wako, 019-1974)被用于被用于免疫组化-自由浮动切片在大鼠样本上浓度为1:1000 (图 4c) 和 被用于免疫印迹在大鼠样本上浓度为1:1000 (图 s2a). Nat Commun (2020) ncbi
domestic rabbit 多克隆
  • 免疫组化; gerbils; 1:800; 图 5
Wako Chemicals USA iba1抗体(Wako, Osaka, Japan, 019-19741)被用于被用于免疫组化在gerbils样本上浓度为1:800 (图 5). Mar Drugs (2020) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 小鼠; 1:5000; 图 6b
  • 免疫组化; 小鼠; 1:5000; 图 6f
Wako Chemicals USA iba1抗体(Wako, 019-19741)被用于被用于免疫细胞化学在小鼠样本上浓度为1:5000 (图 6b) 和 被用于免疫组化在小鼠样本上浓度为1:5000 (图 6f). Int J Mol Sci (2020) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:2000; 图 s7b, 1i
Wako Chemicals USA iba1抗体(Wako, 019-19741)被用于被用于免疫组化在小鼠样本上浓度为1:2000 (图 s7b, 1i). Nat Commun (2020) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:1000; 图 1a
Wako Chemicals USA iba1抗体(Wako, 019-19741)被用于被用于免疫组化在小鼠样本上浓度为1:1000 (图 1a). Int J Mol Sci (2020) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:750; 图 3j, s2f
Wako Chemicals USA iba1抗体(Wako, 019-19741)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:750 (图 3j, s2f). Sci Adv (2020) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 家羊; 图 3a
Wako Chemicals USA iba1抗体(Wako, 019-19741)被用于被用于免疫组化-石蜡切片在家羊样本上 (图 3a). Stem Cell Res Ther (2020) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:1000; 图 s6c, d
Wako Chemicals USA iba1抗体(Wako, 19-19741)被用于被用于免疫组化在小鼠样本上浓度为1:1000 (图 s6c, d). Nat Commun (2020) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:500; 图 1c
Wako Chemicals USA iba1抗体(Wako, 019-19741)被用于被用于免疫组化在小鼠样本上浓度为1:500 (图 1c). Eneuro (2020) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:200; 图 3a
Wako Chemicals USA iba1抗体(Wako, 019-19741)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:200 (图 3a). Biomolecules (2020) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:500; 图 7a
Wako Chemicals USA iba1抗体(Wako, 019-19741)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:500 (图 7a). Cells (2019) ncbi
domestic rabbit 多克隆
  • 免疫组化-自由浮动切片; 小鼠; 1:500; 图 s10d
Wako Chemicals USA iba1抗体(Wako, 019-19741)被用于被用于免疫组化-自由浮动切片在小鼠样本上浓度为1:500 (图 s10d). PLoS Biol (2020) ncbi
domestic rabbit 多克隆
  • 免疫组化-自由浮动切片; 大鼠; 1:300; 图 2a
  • 免疫组化-自由浮动切片; 小鼠; 1:300; 图 5a
Wako Chemicals USA iba1抗体(Wako, 019-19741)被用于被用于免疫组化-自由浮动切片在大鼠样本上浓度为1:300 (图 2a) 和 被用于免疫组化-自由浮动切片在小鼠样本上浓度为1:300 (图 5a). Theranostics (2020) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 大鼠; 1:200; 图 2g
Wako Chemicals USA iba1抗体(Wako, 019-19741)被用于被用于免疫组化-冰冻切片在大鼠样本上浓度为1:200 (图 2g). J Comp Neurol (2020) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 小鼠; 图 5f
Wako Chemicals USA iba1抗体(Wako, 019-19741)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 5f). Cell (2020) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 图 4c
Wako Chemicals USA iba1抗体(Wako, 019-19741)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 4c). Sci Transl Med (2019) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 图 8a
Wako Chemicals USA iba1抗体(Wako, 019-19741)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 8a). J Comp Neurol (2020) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:1000; 图 4a
Wako Chemicals USA iba1抗体(Wako, 019-19741)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:1000 (图 4a). ASN Neuro (2019) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:1000; 图 3s1b
Wako Chemicals USA iba1抗体(Wako, 019?C19741)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:1000 (图 3s1b). elife (2019) ncbi
domestic rabbit 多克隆
  • 免疫组化-自由浮动切片; 小鼠; 1:400; 图 1j
Wako Chemicals USA iba1抗体(Wako, 019-19741)被用于被用于免疫组化-自由浮动切片在小鼠样本上浓度为1:400 (图 1j). Nature (2019) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 小鼠; 1:500; 图 7h
Wako Chemicals USA iba1抗体(Wako, 019-19741)被用于被用于免疫细胞化学在小鼠样本上浓度为1:500 (图 7h). Neuron (2020) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 大鼠; 图 s1a
Wako Chemicals USA iba1抗体(Wako, 019-19741)被用于被用于免疫组化-冰冻切片在大鼠样本上 (图 s1a). J Clin Invest (2020) ncbi
domestic rabbit 多克隆
  • 免疫组化; 大鼠; 1:1000; 图 2c
Wako Chemicals USA iba1抗体(WAKO, 019-19741)被用于被用于免疫组化在大鼠样本上浓度为1:1000 (图 2c). Front Cell Neurosci (2019) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:250; 图 3i
Wako Chemicals USA iba1抗体(Wako, 019-19741)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:250 (图 3i). Sci Adv (2019) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:500; 图 s4a, s4b, s4c
Wako Chemicals USA iba1抗体(Wako Chemicals, 019?C19741)被用于被用于免疫组化在小鼠样本上浓度为1:500 (图 s4a, s4b, s4c). Nature (2019) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:6000; 图 8a
Wako Chemicals USA iba1抗体(Wako, 019?C19741)被用于被用于免疫组化在小鼠样本上浓度为1:6000 (图 8a). Brain Behav Immun (2020) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 人类; 1:400; 图 4a
Wako Chemicals USA iba1抗体(Wako, 019-19741)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:400 (图 4a). Front Neurosci (2019) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; gerbils; 1:800; 图 4a
Wako Chemicals USA iba1抗体(Wako, 019-19741)被用于被用于免疫组化-冰冻切片在gerbils样本上浓度为1:800 (图 4a). Int J Mol Med (2019) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 图 4d
Wako Chemicals USA iba1抗体(Wako, 019-19741)被用于被用于免疫组化在小鼠样本上 (图 4d). Cell (2019) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:1000; 图 4a
Wako Chemicals USA iba1抗体(Wako, 019-19741)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:1000 (图 4a). CNS Neurosci Ther (2020) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 人类; 1:500; 图 1a
  • 免疫组化-石蜡切片; 小鼠; 1:500; 图 1a
Wako Chemicals USA iba1抗体(Wako, 019-19741)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:500 (图 1a) 和 被用于免疫组化-石蜡切片在小鼠样本上浓度为1:500 (图 1a). JCI Insight (2019) ncbi
domestic rabbit 多克隆
  • 免疫组化; 大鼠; 1:1000; 图 6d2
Wako Chemicals USA iba1抗体(Wako, 019-19741)被用于被用于免疫组化在大鼠样本上浓度为1:1000 (图 6d2). Alzheimers Res Ther (2019) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:500; 图 4a
Wako Chemicals USA iba1抗体(Wako, 019-19741)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:500 (图 4a). Mol Brain (2019) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:400; 图 4c
Wako Chemicals USA iba1抗体(Wako, 019-19741)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:400 (图 4c). Cell Rep (2019) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:400; 图 3b
Wako Chemicals USA iba1抗体(Wako, 019-19741)被用于被用于免疫组化在小鼠样本上浓度为1:400 (图 3b). J Neurosci (2019) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 小鼠; 1:1000; 图 4b
Wako Chemicals USA iba1抗体(Wako, 019-19741)被用于被用于免疫细胞化学在小鼠样本上浓度为1:1000 (图 4b). Cell Rep (2019) ncbi
domestic rabbit 多克隆
  • 免疫组化-自由浮动切片; 小鼠; 1:500; 图 s1b
Wako Chemicals USA iba1抗体(Wako, 019-19741)被用于被用于免疫组化-自由浮动切片在小鼠样本上浓度为1:500 (图 s1b). Aging (Albany NY) (2019) ncbi
domestic rabbit 多克隆
  • 免疫组化-自由浮动切片; 小鼠; 1:500; 图 1a
Wako Chemicals USA iba1抗体(Wako, 019-19741)被用于被用于免疫组化-自由浮动切片在小鼠样本上浓度为1:500 (图 1a). Front Cell Neurosci (2019) ncbi
domestic rabbit 多克隆
  • 免疫组化; pigs ; 1:1000; 图 5a
Wako Chemicals USA iba1抗体(Wako, 019?C19741)被用于被用于免疫组化在pigs 样本上浓度为1:1000 (图 5a). Nature (2019) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 图 1a
Wako Chemicals USA iba1抗体(Wako, 01919741)被用于被用于免疫组化在小鼠样本上 (图 1a). Front Oncol (2019) ncbi
domestic rabbit 多克隆
  • 免疫组化-自由浮动切片; 小鼠; 1:100; 图 4f
  • 免疫组化-石蜡切片; 人类; 1:100; 图 s2a
Wako Chemicals USA iba1抗体(Wako, 019-19741)被用于被用于免疫组化-自由浮动切片在小鼠样本上浓度为1:100 (图 4f) 和 被用于免疫组化-石蜡切片在人类样本上浓度为1:100 (图 s2a). Nat Neurosci (2019) ncbi
domestic rabbit 多克隆
  • 免疫组化; 人类; 1:500; 图 3a
Wako Chemicals USA iba1抗体(WAKO, 019-19741)被用于被用于免疫组化在人类样本上浓度为1:500 (图 3a). Stem Cell Res (2019) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:1000; 图 3a
Wako Chemicals USA iba1抗体(Wako, 019-19741)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:1000 (图 3a). Acta Neuropathol (2019) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:200; 图 1e
Wako Chemicals USA iba1抗体(Wako, 019-19741)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:200 (图 1e). Nat Commun (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:500; 图 2b
Wako Chemicals USA iba1抗体(Wako, 016-20001)被用于被用于免疫印迹在小鼠样本上浓度为1:500 (图 2b). Nat Commun (2019) ncbi
domestic rabbit 多克隆
  • 免疫组化; 大鼠; 1:1000; 图 8a
Wako Chemicals USA iba1抗体(Wako, 019-19741)被用于被用于免疫组化在大鼠样本上浓度为1:1000 (图 8a). elife (2019) ncbi
domestic rabbit 多克隆
  • 免疫组化-自由浮动切片; 小鼠; 图 4a
Wako Chemicals USA iba1抗体(Wako Chemicals, 019-19741)被用于被用于免疫组化-自由浮动切片在小鼠样本上 (图 4a). Cell (2019) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 大鼠; 1:1000; 图 5d
Wako Chemicals USA iba1抗体(Wako, 019-19741)被用于被用于免疫组化-石蜡切片在大鼠样本上浓度为1:1000 (图 5d). Nat Commun (2019) ncbi
domestic rabbit 多克隆
  • 免疫组化-自由浮动切片; 小鼠; 1:1000; 图 1b
Wako Chemicals USA iba1抗体(Wako, 019-19741)被用于被用于免疫组化-自由浮动切片在小鼠样本上浓度为1:1000 (图 1b). elife (2019) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 小鼠; 图 4a
Wako Chemicals USA iba1抗体(Wako, 019-19741)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 4a). Sci Adv (2019) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 图 2a
Wako Chemicals USA iba1抗体(Wako, 019-19741)被用于被用于免疫组化在小鼠样本上 (图 2a). Cell (2019) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 大鼠; 1:1000; 图 5b
Wako Chemicals USA iba1抗体(Wako Chemicals, 06-129019-19741)被用于被用于免疫组化-冰冻切片在大鼠样本上浓度为1:1000 (图 5b). J Comp Neurol (2019) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:1000; 图 5a
Wako Chemicals USA iba1抗体(Wako, 019-19741)被用于被用于免疫组化在小鼠样本上浓度为1:1000 (图 5a). elife (2019) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:200; 图 3k
Wako Chemicals USA iba1抗体(Wako, 019-19741)被用于被用于免疫组化在小鼠样本上浓度为1:200 (图 3k). Nat Commun (2019) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:500; 图 2
Wako Chemicals USA iba1抗体(Wako, 019-19741)被用于被用于免疫组化在小鼠样本上浓度为1:500 (图 2). elife (2019) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:1000; 图 4a
Wako Chemicals USA iba1抗体(Wako, 019-19741)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:1000 (图 4a). Alzheimers Res Ther (2019) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:200; 图 5e
Wako Chemicals USA iba1抗体(Wako, 019-10741)被用于被用于免疫组化在小鼠样本上浓度为1:200 (图 5e). Invest Ophthalmol Vis Sci (2019) ncbi
domestic rabbit 多克隆
  • 免疫组化; 大鼠; 1:1000; 图 2e
Wako Chemicals USA iba1抗体(Wako, 019-19,741)被用于被用于免疫组化在大鼠样本上浓度为1:1000 (图 2e). Glia (2019) ncbi
domestic rabbit 多克隆
  • 免疫组化; 大鼠; 1:150; 图 3
Wako Chemicals USA iba1抗体(Wako, 019?C19,741)被用于被用于免疫组化在大鼠样本上浓度为1:150 (图 3). J Comp Neurol (2019) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 小鼠; 图 s4
  • 免疫组化; 小鼠; 图 5d
Wako Chemicals USA iba1抗体(Wako, 019-19741)被用于被用于免疫细胞化学在小鼠样本上 (图 s4) 和 被用于免疫组化在小鼠样本上 (图 5d). Cell (2019) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:250; 图 1e
Wako Chemicals USA iba1抗体(Wako Chemicals, 019-19741)被用于被用于免疫组化在小鼠样本上浓度为1:250 (图 1e). J Neurosci (2019) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 人类; 1:1000; 图 2a
Wako Chemicals USA iba1抗体(Wako, 019-19741)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:1000 (图 2a). Brain Pathol (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 s1b
Wako Chemicals USA iba1抗体(Wako, 016-20001)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 s1b). Brain Pathol (2019) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:500; 图 6a
Wako Chemicals USA iba1抗体(Wako, 019-19741)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:500 (图 6a). Brain Behav Immun (2019) ncbi
domestic rabbit 多克隆
  • 免疫组化; 人类; 1:500; 图 1a
Wako Chemicals USA iba1抗体(Wako, 019-19741)被用于被用于免疫组化在人类样本上浓度为1:500 (图 1a). J Histochem Cytochem (2019) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:500; 图 3c
Wako Chemicals USA iba1抗体(Wako Chemicals, 019-19741)被用于被用于免疫组化在小鼠样本上浓度为1:500 (图 3c). Biochem Biophys Res Commun (2018) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:500; 图 3
Wako Chemicals USA iba1抗体(Wako, 019-19,741)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:500 (图 3). Methods Mol Biol (2019) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:200; 图 5a
Wako Chemicals USA iba1抗体(WAKO, 019-19741)被用于被用于免疫组化在小鼠样本上浓度为1:200 (图 5a). Neuroscience (2018) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:200; 图 6i
Wako Chemicals USA iba1抗体(Wako, 019 19741)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:200 (图 6i). J Clin Invest (2018) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:500; 图 3d
Wako Chemicals USA iba1抗体(Wako, 019-19741)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:500 (图 3d). Neuron (2018) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 仓鼠; 1:500; 图 s3
Wako Chemicals USA iba1抗体(Wako, 019-19741)被用于被用于免疫组化-石蜡切片在仓鼠样本上浓度为1:500 (图 s3). J Infect Dis (2018) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:200; 图 7c
Wako Chemicals USA iba1抗体(Wako Chemicals, 019-19741)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:200 (图 7c). Neuropharmacology (2018) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:100; 图 3c
Wako Chemicals USA iba1抗体(WAKO, 019-19741)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:100 (图 3c). elife (2018) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 图 1c
Wako Chemicals USA iba1抗体(Wako Chemicals, 019-19741)被用于被用于免疫组化在小鼠样本上 (图 1c). Am J Respir Cell Mol Biol (2018) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:250; 图 3b
Wako Chemicals USA iba1抗体(FUJIFILM Wako Chemicals, 019-19741)被用于被用于免疫组化在小鼠样本上浓度为1:250 (图 3b). Invest Ophthalmol Vis Sci (2018) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:1000; 图 1h
Wako Chemicals USA iba1抗体(Wako, 019-19741)被用于被用于免疫组化在小鼠样本上浓度为1:1000 (图 1h). J Clin Invest (2018) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 人类; 1:500; 图 s1d
Wako Chemicals USA iba1抗体(Wako Chemicals, 019-19741)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:500 (图 s1d). Nat Cell Biol (2018) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:400; 图 1b
Wako Chemicals USA iba1抗体(Wako, 019-19741)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:400 (图 1b). elife (2018) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 人类; 1:3000; 图 4a
Wako Chemicals USA iba1抗体(Wako, 019-19741)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:3000 (图 4a). Neuropathol Appl Neurobiol (2019) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:250; 图 6e
Wako Chemicals USA iba1抗体(Wako, 019-19741)被用于被用于免疫组化在小鼠样本上浓度为1:250 (图 6e). J Exp Med (2018) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:1000; 图 3c
Wako Chemicals USA iba1抗体(Wako, 019-19741)被用于被用于免疫组化在小鼠样本上浓度为1:1000 (图 3c). Nature (2018) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 大鼠; 图 3a
Wako Chemicals USA iba1抗体(Wako, 019-19741)被用于被用于免疫组化-冰冻切片在大鼠样本上 (图 3a). J Neurosci (2018) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 图 s4
Wako Chemicals USA iba1抗体(Wako, 019-19741)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 s4). Cell Mol Life Sci (2018) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 小鼠; 1:500; 图 1a
Wako Chemicals USA iba1抗体(WAKO, 019-19741)被用于被用于免疫细胞化学在小鼠样本上浓度为1:500 (图 1a). Glia (2018) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 小鼠; 图 3a
Wako Chemicals USA iba1抗体(Wako, 019-19741)被用于被用于免疫细胞化学在小鼠样本上 (图 3a). J Neuroinflammation (2018) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:1000; 图 6a
Wako Chemicals USA iba1抗体(Wako, 019-19741)被用于被用于免疫组化在小鼠样本上浓度为1:1000 (图 6a). J Neurosci (2018) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:500; 图 4d
Wako Chemicals USA iba1抗体(Wako Pure, 019-10741)被用于被用于免疫组化在小鼠样本上浓度为1:500 (图 4d). J Neurochem (2018) ncbi
domestic rabbit 多克隆
  • 免疫组化-自由浮动切片; 小鼠; 图 s5a
Wako Chemicals USA iba1抗体(Wako, 01919741)被用于被用于免疫组化-自由浮动切片在小鼠样本上 (图 s5a). Cell (2018) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:3000; 图 7d
Wako Chemicals USA iba1抗体(Wako, 019-19741)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:3000 (图 7d). EMBO J (2018) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 大鼠; 图 5b
Wako Chemicals USA iba1抗体(Wako, 019-19741)被用于被用于免疫组化-冰冻切片在大鼠样本上 (图 5b). J Biol Chem (2018) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 图 2a
Wako Chemicals USA iba1抗体(WAKO, 019-19741)被用于被用于免疫组化在小鼠样本上 (图 2a). Proc Natl Acad Sci U S A (2017) ncbi
domestic rabbit 多克隆
  • 免疫组化-自由浮动切片; 小鼠; 1:250; 图 3a
Wako Chemicals USA iba1抗体(Wako Chemicals, 019-19741)被用于被用于免疫组化-自由浮动切片在小鼠样本上浓度为1:250 (图 3a). J Neurosci (2017) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 人类; 1:500; 图 s2d
Wako Chemicals USA iba1抗体(Wako, 019-19741)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:500 (图 s2d). Nature (2017) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 图 3a
Wako Chemicals USA iba1抗体(Wako, 019-19741)被用于被用于免疫组化在小鼠样本上 (图 3a). J Comp Neurol (2017) ncbi
domestic rabbit 多克隆
  • 免疫组化-自由浮动切片; 人类; 1:500; 图 s13a
Wako Chemicals USA iba1抗体(Wako, 019-19741)被用于被用于免疫组化-自由浮动切片在人类样本上浓度为1:500 (图 s13a). Science (2017) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:1000; 图 s3
Wako Chemicals USA iba1抗体(Wako Chemicals, 019-19741)被用于被用于免疫组化在小鼠样本上浓度为1:1000 (图 s3). PLoS Biol (2017) ncbi
domestic rabbit 多克隆
  • 免疫组化-自由浮动切片; 小鼠; 1:500; 图 s7f
Wako Chemicals USA iba1抗体(Wako, 019-19741)被用于被用于免疫组化-自由浮动切片在小鼠样本上浓度为1:500 (图 s7f). Nature (2017) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:500; 图 4b
Wako Chemicals USA iba1抗体(Wako, 091-19741)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:500 (图 4b). Acta Neuropathol (2017) ncbi
domestic rabbit 多克隆
  • 免疫组化; 大鼠; 1:1000; 图 4
Wako Chemicals USA iba1抗体(Dako, 019-19741)被用于被用于免疫组化在大鼠样本上浓度为1:1000 (图 4). Acta Neurobiol Exp (Wars) (2017) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 大鼠; 1:750; 图 5a
Wako Chemicals USA iba1抗体(Wako, 019-19741)被用于被用于免疫组化-冰冻切片在大鼠样本上浓度为1:750 (图 5a). Brain Behav Immun (2017) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:300; 图 7b
Wako Chemicals USA iba1抗体(Wako, 019-19741)被用于被用于免疫组化在小鼠样本上浓度为1:300 (图 7b). Infect Immun (2017) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1 ug/ml; 图 s2a
Wako Chemicals USA iba1抗体(Wako, 019-19741)被用于被用于免疫组化在小鼠样本上浓度为1 ug/ml (图 s2a). J Neuroinflammation (2017) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:1000; 图 4F'
Wako Chemicals USA iba1抗体(Wako Pure Chemical, 019-19741)被用于被用于免疫组化在小鼠样本上浓度为1:1000 (图 4F'). elife (2017) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:500; 图 8j
Wako Chemicals USA iba1抗体(Wako, 019-19741)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:500 (图 8j). Front Neuroanat (2017) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:500; 图 s2a
Wako Chemicals USA iba1抗体(Wako, 019-19741)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:500 (图 s2a). Proc Natl Acad Sci U S A (2017) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:100; 图 5d
Wako Chemicals USA iba1抗体(WAKO, 019-1974)被用于被用于免疫组化在小鼠样本上浓度为1:100 (图 5d). Nat Commun (2017) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:600; 图 5a
Wako Chemicals USA iba1抗体(wako, 019-19741)被用于被用于免疫组化在小鼠样本上浓度为1:600 (图 5a). Front Aging Neurosci (2017) ncbi
domestic rabbit 多克隆
  • 免疫组化-自由浮动切片; 小鼠; 1:1000; 图 2a
Wako Chemicals USA iba1抗体(Wako, 019-19741)被用于被用于免疫组化-自由浮动切片在小鼠样本上浓度为1:1000 (图 2a). Proc Natl Acad Sci U S A (2017) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:200; 图 s4
Wako Chemicals USA iba1抗体(Wako chemicals, 019-19741)被用于被用于免疫组化在小鼠样本上浓度为1:200 (图 s4). Proc Natl Acad Sci U S A (2017) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:300; 图 4i
Wako Chemicals USA iba1抗体(Wako Pure Chemical Industries, 019-19741)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:300 (图 4i). J Cell Biol (2017) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:500; 图 1c
Wako Chemicals USA iba1抗体(Wako Chemicals, 019-19741)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:500 (图 1c). J Neurosci (2017) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 小鼠; 图 st1
Wako Chemicals USA iba1抗体(Wako, 019-19741)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 st1). Sci Rep (2017) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:1000; 图 5b
Wako Chemicals USA iba1抗体(Novachem, 019-19741)被用于被用于免疫组化在小鼠样本上浓度为1:1000 (图 5b). PLoS ONE (2017) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 图 1c
Wako Chemicals USA iba1抗体(Wako, 019-19741)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 1c). Nat Commun (2017) ncbi
domestic rabbit 多克隆
  • 免疫组化-自由浮动切片; 小鼠; 表 1
Wako Chemicals USA iba1抗体(Wako, 019-19741)被用于被用于免疫组化-自由浮动切片在小鼠样本上 (表 1). Neuron (2017) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; pigs ; 1:20,000
Wako Chemicals USA iba1抗体(Wako, 019-19741)被用于被用于免疫组化-冰冻切片在pigs 样本上浓度为1:20,000. PLoS ONE (2017) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:400; 图 3a,3b,3c
Wako Chemicals USA iba1抗体(Waco, 019-19741)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:400 (图 3a,3b,3c). J Neuroinflammation (2017) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:500; 图 4a
Wako Chemicals USA iba1抗体(Wako, 019-19741)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:500 (图 4a). Mol Oncol (2017) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:500; 图 s6a
Wako Chemicals USA iba1抗体(Wako, 019-19,741)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:500 (图 s6a). Transl Res (2017) ncbi
domestic rabbit 多克隆
  • 免疫组化-自由浮动切片; 人类; 图 s27
Wako Chemicals USA iba1抗体(Wako, 016-20001)被用于被用于免疫组化-自由浮动切片在人类样本上 (图 s27). Hum Mol Genet (2017) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:500; 图 5d
Wako Chemicals USA iba1抗体(Wako, 019-19741)被用于被用于免疫组化在小鼠样本上浓度为1:500 (图 5d). Neurotherapeutics (2017) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:600; 图 4e
Wako Chemicals USA iba1抗体(Wako, 019-19741)被用于被用于免疫组化在小鼠样本上浓度为1:600 (图 4e). Acta Neuropathol (2017) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; African green monkey; 1:300; 图 11
Wako Chemicals USA iba1抗体(Wako Chemicals, 019-19741)被用于被用于免疫细胞化学在African green monkey样本上浓度为1:300 (图 11). Front Aging Neurosci (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:200; 图 1a
Wako Chemicals USA iba1抗体(Wako, 019-19741)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:200 (图 1a). J Vis Exp (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:1000; 图 3a
Wako Chemicals USA iba1抗体(Wako, 019-19741)被用于被用于免疫组化在小鼠样本上浓度为1:1000 (图 3a). Front Cell Neurosci (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 图 6
Wako Chemicals USA iba1抗体(wako, 019-19741)被用于被用于免疫组化在小鼠样本上 (图 6). Int J Mol Med (2017) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:500; 图 s4a
Wako Chemicals USA iba1抗体(WAKO, 019-19741)被用于被用于免疫组化在小鼠样本上浓度为1:500 (图 s4a). Nat Commun (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:200; 图 2c
Wako Chemicals USA iba1抗体(Wako, 019-19741)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:200 (图 2c). J Immunol (2017) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 人类; 图 5e
Wako Chemicals USA iba1抗体(Wako Chemicals, 019-19741)被用于被用于免疫组化-冰冻切片在人类样本上 (图 5e). Front Immunol (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:250; 图 s5b
Wako Chemicals USA iba1抗体(Wako, 019-19741)被用于被用于免疫组化在小鼠样本上浓度为1:250 (图 s5b). Proc Natl Acad Sci U S A (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:5000; 图 1h
Wako Chemicals USA iba1抗体(WAKO化学品, 016-20001)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:5000 (图 1h). Exp Eye Res (2017) ncbi
domestic rabbit 多克隆
  • 免疫组化-自由浮动切片; 小鼠; 1:2000; 图 s5
Wako Chemicals USA iba1抗体(Wako, 019-19741)被用于被用于免疫组化-自由浮动切片在小鼠样本上浓度为1:2000 (图 s5). PLoS Genet (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化; 人类; 1:200; 图 1i
Wako Chemicals USA iba1抗体(Wako, 019-19741)被用于被用于免疫组化在人类样本上浓度为1:200 (图 1i). Proc Natl Acad Sci U S A (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化; 人类; 1:2000; 表 1
Wako Chemicals USA iba1抗体(Wako, 019-19741)被用于被用于免疫组化在人类样本上浓度为1:2000 (表 1). Ann Neurol (2017) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:400; 表 1
Wako Chemicals USA iba1抗体(Wako, 019-19741)被用于被用于免疫组化在小鼠样本上浓度为1:400 (表 1). Brain Struct Funct (2017) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:1000; 图 3d
Wako Chemicals USA iba1抗体(Wako, 019-19741)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:1000 (图 3d). Hepatology (2017) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 大鼠; 1:500; 图 4g
Wako Chemicals USA iba1抗体(Wako, 019-19741)被用于被用于免疫组化-冰冻切片在大鼠样本上浓度为1:500 (图 4g). J Exp Med (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-自由浮动切片; 小鼠; 图 2c
Wako Chemicals USA iba1抗体(Wako Chemicals, 019-19741)被用于被用于免疫组化-自由浮动切片在小鼠样本上 (图 2c). Neuroimage (2017) ncbi
domestic rabbit 多克隆
  • 免疫组化; 大鼠; 1:1000; 图 2a
Wako Chemicals USA iba1抗体(Wako, 019-19741)被用于被用于免疫组化在大鼠样本上浓度为1:1000 (图 2a). Brain Behav Immun (2017) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1 ug/ml; 图 1c
Wako Chemicals USA iba1抗体(Wako, 019-19741)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1 ug/ml (图 1c). J Neuroinflammation (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:500; 图 2c
Wako Chemicals USA iba1抗体(Wako, 019-19741)被用于被用于免疫组化在小鼠样本上浓度为1:500 (图 2c). Brain (2017) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 图 4c
Wako Chemicals USA iba1抗体(Wako, 019-19741)被用于被用于免疫组化在小鼠样本上 (图 4c). BMC Ophthalmol (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-自由浮动切片; 大鼠; 1:5000; 表 2
Wako Chemicals USA iba1抗体(Wako, 019-19741)被用于被用于免疫组化-自由浮动切片在大鼠样本上浓度为1:5000 (表 2). Front Neurosci (2016) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 小鼠; 图 1b
  • 免疫组化; 小鼠; 图 3a
Wako Chemicals USA iba1抗体(Wako, 019-19741)被用于被用于免疫细胞化学在小鼠样本上 (图 1b) 和 被用于免疫组化在小鼠样本上 (图 3a). Proc Natl Acad Sci U S A (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 人类; 图 s6
Wako Chemicals USA iba1抗体(Wako, 019-19741)被用于被用于免疫组化-石蜡切片在人类样本上 (图 s6). Neurology (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:1000; 图 s10a
Wako Chemicals USA iba1抗体(Wako, 019-19741)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:1000 (图 s10a). Nat Neurosci (2017) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:1000; 图 2a
Wako Chemicals USA iba1抗体(Wako Pure Chemicals, 019-19741)被用于被用于免疫组化在小鼠样本上浓度为1:1000 (图 2a). Nat Commun (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-自由浮动切片; 小鼠; 1:100; 图 2
Wako Chemicals USA iba1抗体(Wako, 019-19741)被用于被用于免疫组化-自由浮动切片在小鼠样本上浓度为1:100 (图 2). Cell Rep (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化; African green monkey; 1:300; 图 5
Wako Chemicals USA iba1抗体(Wako Pure Chemical Industries Ltd, 019-19741)被用于被用于免疫组化在African green monkey样本上浓度为1:300 (图 5). Sci Rep (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 图 5d
  • 免疫印迹; 小鼠; 图 5e
Wako Chemicals USA iba1抗体(Wako Chemicals, 019-19741)被用于被用于免疫组化在小鼠样本上 (图 5d) 和 被用于免疫印迹在小鼠样本上 (图 5e). Glia (2017) ncbi
domestic rabbit 多克隆
  • 免疫组化; 大鼠; 图 2b
Wako Chemicals USA iba1抗体(Wako Lab, 019-19741)被用于被用于免疫组化在大鼠样本上 (图 2b). PLoS ONE (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化; 人类; 1:1000; 图 3
Wako Chemicals USA iba1抗体(Wako chemicals, 019-19741)被用于被用于免疫组化在人类样本上浓度为1:1000 (图 3). J Alzheimers Dis (2017) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 图 1
Wako Chemicals USA iba1抗体(WAKO, 019-19741)被用于被用于免疫组化在小鼠样本上 (图 1). Sci Rep (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:500
Wako Chemicals USA iba1抗体(Wako, 01919741)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:500. Glia (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 大鼠; 1:2000; 图 4
Wako Chemicals USA iba1抗体(Wako, 019-19741)被用于被用于免疫组化-冰冻切片在大鼠样本上浓度为1:2000 (图 4). Neural Plast (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:10,000; 表 2
Wako Chemicals USA iba1抗体(Wako, 019-19741)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:10,000 (表 2). Glia (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:500; 图 7a
Wako Chemicals USA iba1抗体(WAKO, 019-19741)被用于被用于免疫组化在小鼠样本上浓度为1:500 (图 7a). Exp Neurol (2016) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 1:1000; 图 4b
Wako Chemicals USA iba1抗体(Wako, 019-19741)被用于被用于免疫细胞化学在人类样本上浓度为1:1000 (图 4b). Exp Neurol (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 大鼠; 1:300; 图 2
Wako Chemicals USA iba1抗体(Wako, 019-19741)被用于被用于免疫组化-石蜡切片在大鼠样本上浓度为1:300 (图 2). J Neuroinflammation (2016) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 小鼠; 图 7c
Wako Chemicals USA iba1抗体(Wako, 019-19741)被用于被用于免疫细胞化学在小鼠样本上 (图 7c). EMBO Mol Med (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:200
Wako Chemicals USA iba1抗体(Wako, 019-19741)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:200. J Neurosci (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 大鼠; 1:1000; 图 2
Wako Chemicals USA iba1抗体(Wako, 019-19741)被用于被用于免疫组化-石蜡切片在大鼠样本上浓度为1:1000 (图 2). Acta Neuropathol Commun (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:5000; 图 s5d
Wako Chemicals USA iba1抗体(Wako, 019-19741)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:5000 (图 s5d). Nature (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:700; 图 5a
Wako Chemicals USA iba1抗体(Wako, 019-19741)被用于被用于免疫组化在小鼠样本上浓度为1:700 (图 5a). PLoS ONE (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:500; 图 4b
Wako Chemicals USA iba1抗体(WAKO, 019-19741)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:500 (图 4b). PLoS Negl Trop Dis (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 小鼠; 图 2h
Wako Chemicals USA iba1抗体(Wako, 019-19741)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 2h). JCI Insight (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:1000; 图 5c, 6a
Wako Chemicals USA iba1抗体(WAKO, 019-19741)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:1000 (图 5c, 6a). J Neurosci (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 大鼠; 1:20,000; 图 6
Wako Chemicals USA iba1抗体(Wako, 019-19741)被用于被用于免疫组化-石蜡切片在大鼠样本上浓度为1:20,000 (图 6). PLoS ONE (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:1000; 图 6
Wako Chemicals USA iba1抗体(Wako, 019-19741)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:1000 (图 6). EMBO J (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:500; 图 s2
Wako Chemicals USA iba1抗体(Wako, 019-19741)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:500 (图 s2). Acta Neuropathol Commun (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 图 3e
Wako Chemicals USA iba1抗体(Wako Chemicals, 019-19741)被用于被用于免疫组化在小鼠样本上 (图 3e). Diabetes (2017) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:2000; 图 2
Wako Chemicals USA iba1抗体(Wako, 019-19741)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:2000 (图 2). Cell Death Dis (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:3000; 图 4
Wako Chemicals USA iba1抗体(Wako, 019-19741)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:3000 (图 4). Mol Neurodegener (2016) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 大鼠; 2.5 ug/ml; 图 2a
  • 免疫组化; 大鼠; 2.5 ug/ml; 图 12b
  • 免疫印迹; 大鼠; 1 ug/ml; 图 1a
Wako Chemicals USA iba1抗体(Wako, 019-19741)被用于被用于免疫细胞化学在大鼠样本上浓度为2.5 ug/ml (图 2a), 被用于免疫组化在大鼠样本上浓度为2.5 ug/ml (图 12b) 和 被用于免疫印迹在大鼠样本上浓度为1 ug/ml (图 1a). Glia (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:10,000; 图 1
Wako Chemicals USA iba1抗体(Wako, 019-19741)被用于被用于免疫组化在小鼠样本上浓度为1:10,000 (图 1). Sci Rep (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:1000; 图 1c
Wako Chemicals USA iba1抗体(Wako Pure Chemical Industries, 019-19741)被用于被用于免疫组化在小鼠样本上浓度为1:1000 (图 1c). Neurobiol Learn Mem (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 图 6d
Wako Chemicals USA iba1抗体(Wako, 019-19741)被用于被用于免疫组化在小鼠样本上 (图 6d). J Clin Invest (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化; 大鼠; 1:1000; 图 5
Wako Chemicals USA iba1抗体(WAKO, 019-19741)被用于被用于免疫组化在大鼠样本上浓度为1:1000 (图 5). Neuroscience (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:700; 图 6
Wako Chemicals USA iba1抗体(Wako, 019-19741)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:700 (图 6). Front Cell Neurosci (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:250; 图 s4
Wako Chemicals USA iba1抗体(wako, 019-19741)被用于被用于免疫组化在小鼠样本上浓度为1:250 (图 s4). Science (2016) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 小鼠; 1:500; 图 5
Wako Chemicals USA iba1抗体(WAKO, 019-19741)被用于被用于免疫细胞化学在小鼠样本上浓度为1:500 (图 5). J Neuroinflammation (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:100; 图 4
Wako Chemicals USA iba1抗体(WAKO, 019-19741)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:100 (图 4). Nature (2016) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 小鼠; 图 4
Wako Chemicals USA iba1抗体(Wako, 019-19741)被用于被用于免疫细胞化学在小鼠样本上 (图 4). Sci Rep (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:1000; 图 1
Wako Chemicals USA iba1抗体(Wako, 019-19741)被用于被用于免疫组化在小鼠样本上浓度为1:1000 (图 1). elife (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化; black ferret; 1:1000; 图 9e
Wako Chemicals USA iba1抗体(Wako, 019019741)被用于被用于免疫组化在black ferret样本上浓度为1:1000 (图 9e). Shock (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 图 3e
Wako Chemicals USA iba1抗体(Wako, 019-19741)被用于被用于免疫组化在小鼠样本上 (图 3e). Nat Neurosci (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:1000; 图 6
Wako Chemicals USA iba1抗体(Wako, 019-19741)被用于被用于免疫组化在小鼠样本上浓度为1:1000 (图 6). Sci Rep (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 图 5
Wako Chemicals USA iba1抗体(Wako, 019-19741)被用于被用于免疫组化在小鼠样本上 (图 5). BMC Neurosci (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:600; 图 5
Wako Chemicals USA iba1抗体(Wako, 019-19741)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:600 (图 5). Theranostics (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 0.1 ug/ml; 图 s3
  • 免疫组化; 小鼠; 0.2 ug/ml; 图 5
Wako Chemicals USA iba1抗体(Wako Pure Chemical Industries, 019-19741)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为0.1 ug/ml (图 s3) 和 被用于免疫组化在小鼠样本上浓度为0.2 ug/ml (图 5). Sci Rep (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-自由浮动切片; 小鼠; 1:10,000; 图 7b
Wako Chemicals USA iba1抗体(Wako, 019-19741)被用于被用于免疫组化-自由浮动切片在小鼠样本上浓度为1:10,000 (图 7b). Nat Commun (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:1000; 图 s2b
Wako Chemicals USA iba1抗体(Wako, 019-19741)被用于被用于免疫组化在小鼠样本上浓度为1:1000 (图 s2b). Sci Rep (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:400; 图 1a
Wako Chemicals USA iba1抗体(WAKO, 019-19741)被用于被用于免疫组化在小鼠样本上浓度为1:400 (图 1a). Oncotarget (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:200; 图 s4
Wako Chemicals USA iba1抗体(Wako, 019-19741)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:200 (图 s4). Sci Rep (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 大鼠
Wako Chemicals USA iba1抗体(Wako, 019-19741)被用于被用于免疫组化-冰冻切片在大鼠样本上. J Neuroinflammation (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 人类; 1:4000; 图 2
Wako Chemicals USA iba1抗体(Wako, 019-19741)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:4000 (图 2). PLoS ONE (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:50,000; 图 2
Wako Chemicals USA iba1抗体(Wako Pure Chemical Industries, 019-19741)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:50,000 (图 2). J Comp Pathol (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-自由浮动切片; 大鼠; 1:500; 图 4b
Wako Chemicals USA iba1抗体(Wako Chemicals, 019-19741)被用于被用于免疫组化-自由浮动切片在大鼠样本上浓度为1:500 (图 4b). J Dent Res (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化; 人类; 图 1
Wako Chemicals USA iba1抗体(WAKO, 019-19741)被用于被用于免疫组化在人类样本上 (图 1). Nat Commun (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-自由浮动切片; 大鼠; 1:1000; 图 3a
Wako Chemicals USA iba1抗体(Wako, 019-1974)被用于被用于免疫组化-自由浮动切片在大鼠样本上浓度为1:1000 (图 3a). Endocrinology (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-自由浮动切片; 小鼠; 1:500; 图 1
Wako Chemicals USA iba1抗体(WAKO, 019-19741)被用于被用于免疫组化-自由浮动切片在小鼠样本上浓度为1:500 (图 1). Nat Commun (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:400; 图 6
Wako Chemicals USA iba1抗体(Wako Pure Chemical Industries, 01919741)被用于被用于免疫组化在小鼠样本上浓度为1:400 (图 6). PLoS ONE (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:200; 图 5a
Wako Chemicals USA iba1抗体(Wako, 019-19741)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:200 (图 5a). Am J Physiol Regul Integr Comp Physiol (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-自由浮动切片; 人类; 1:500; 图 1
Wako Chemicals USA iba1抗体(Wako, 1919741)被用于被用于免疫组化-自由浮动切片在人类样本上浓度为1:500 (图 1). Sci Rep (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:500; 图 s1
Wako Chemicals USA iba1抗体(Wako, 019-19741)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:500 (图 s1). Eur J Neurosci (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 大鼠; 1:20,000; 图 7d
Wako Chemicals USA iba1抗体(Wako Chemicals, 019-19741)被用于被用于免疫组化-冰冻切片在大鼠样本上浓度为1:20,000 (图 7d). Mol Ther Methods Clin Dev (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:1000; 图 s4
Wako Chemicals USA iba1抗体(Wako, 019-19741)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:1000 (图 s4). J Clin Invest (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 小鼠; 图 1c
Wako Chemicals USA iba1抗体(Wako, 019-19741)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 1c). Nature (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 图 2c
Wako Chemicals USA iba1抗体(Wako, 019-19741)被用于被用于免疫组化在小鼠样本上 (图 2c). Science (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化; 大鼠; 1:300; 图 5
Wako Chemicals USA iba1抗体(Wako, 019-19741)被用于被用于免疫组化在大鼠样本上浓度为1:300 (图 5). Hum Mol Genet (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:2000
Wako Chemicals USA iba1抗体(Wako, 019-19741)被用于被用于免疫组化在小鼠样本上浓度为1:2000. Nat Commun (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:1000; 图 4j
Wako Chemicals USA iba1抗体(Wako, 019-19741)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:1000 (图 4j). Exp Neurol (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:300; 图 10a
Wako Chemicals USA iba1抗体(WAKO, 019-19741)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:300 (图 10a). Infect Immun (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 图 4a
Wako Chemicals USA iba1抗体(Wako, 019-19741)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 4a). Oncotarget (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 人类; 1:1000; 图 5
Wako Chemicals USA iba1抗体(Wako, 019-10741)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:1000 (图 5). Oncotarget (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:400; 图 s1
Wako Chemicals USA iba1抗体(Waco, 019-19741)被用于被用于免疫组化在小鼠样本上浓度为1:400 (图 s1). Nat Commun (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:1000
Wako Chemicals USA iba1抗体(Wako, 019-19741)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:1000. Nat Commun (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化; 人类; 图 5
Wako Chemicals USA iba1抗体(Wako Chemicals, 019-19741)被用于被用于免疫组化在人类样本上 (图 5). Part Fibre Toxicol (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 家羊; 1:250; 图 4
Wako Chemicals USA iba1抗体(Wako, 019-19741)被用于被用于免疫组化-石蜡切片在家羊样本上浓度为1:250 (图 4). Pediatr Crit Care Med (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 人类; 1000 ng/ml; 图 s1
Wako Chemicals USA iba1抗体(Wako, 019-19741)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1000 ng/ml (图 s1). PLoS ONE (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 图 4a
Wako Chemicals USA iba1抗体(Wako, 019-19741)被用于被用于免疫组化在小鼠样本上 (图 4a). J Mol Neurosci (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:500
  • 免疫细胞化学; 小鼠; 1:500; 图 s6b
  • 免疫细胞化学; 人类; 1:500; 图 s6a
  • 免疫组化; 人类; 1:500
Wako Chemicals USA iba1抗体(Wako, 019-19741)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:500, 被用于免疫细胞化学在小鼠样本上浓度为1:500 (图 s6b), 被用于免疫细胞化学在人类样本上浓度为1:500 (图 s6a) 和 被用于免疫组化在人类样本上浓度为1:500. Acta Neuropathol (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:400; 图 3
Wako Chemicals USA iba1抗体(Wako, 019-19741)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:400 (图 3). Hum Mol Genet (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-自由浮动切片; 小鼠; 1:5000; 图 5
Wako Chemicals USA iba1抗体(Wako Chemicals, 019-19741)被用于被用于免疫组化-自由浮动切片在小鼠样本上浓度为1:5000 (图 5). Am J Pathol (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 图 3
Wako Chemicals USA iba1抗体(Wako, 019-19741)被用于被用于免疫组化在小鼠样本上 (图 3). Glia (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 大鼠; 图 7
Wako Chemicals USA iba1抗体(Wako, 019-19741)被用于被用于免疫印迹在大鼠样本上 (图 7). J Neurosci (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:5000; 图 s1
Wako Chemicals USA iba1抗体(Wako, 019-19741)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:5000 (图 s1). Nat Commun (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:4000; 图 1
Wako Chemicals USA iba1抗体(WAKO化学品, 019-C19741)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:4000 (图 1). Sci Rep (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:5000; 图 2
Wako Chemicals USA iba1抗体(Wako, 019-19741)被用于被用于免疫印迹在小鼠样本上浓度为1:5000 (图 2). PLoS ONE (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 0.05 ug/ml; 图 4
Wako Chemicals USA iba1抗体(Wako Pure Chemicals, 019-19741)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为0.05 ug/ml (图 4). Acta Neuropathol Commun (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-自由浮动切片; 大鼠; 1:1000; 图 6
Wako Chemicals USA iba1抗体(Wako Chemicals, 019-19741)被用于被用于免疫组化-自由浮动切片在大鼠样本上浓度为1:1000 (图 6). Exp Neurol (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:1500; 图 2
Wako Chemicals USA iba1抗体(Wako, 019-19741)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:1500 (图 2). Aging (Albany NY) (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:500; 图 2z
Wako Chemicals USA iba1抗体(Wako, 019-19741)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:500 (图 2z). Neurobiol Dis (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-自由浮动切片; 小鼠; 1:3000; 图 2
Wako Chemicals USA iba1抗体(Wako, 019-19741)被用于被用于免疫组化-自由浮动切片在小鼠样本上浓度为1:3000 (图 2). J Cell Biol (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:300; 图 3
Wako Chemicals USA iba1抗体(Wako Chemicals, 019-19741)被用于被用于免疫组化在小鼠样本上浓度为1:300 (图 3). Nature (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 图 1
Wako Chemicals USA iba1抗体(Wako, 019-19741)被用于被用于免疫组化在小鼠样本上 (图 1). J Neurosci (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 小鼠; 图 1
Wako Chemicals USA iba1抗体(Wako, 019-19741)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 1). J Neurosci (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 大鼠; 1:500; 图 5
Wako Chemicals USA iba1抗体(Wako Pure Chemical Industries, 019-19741)被用于被用于免疫组化-冰冻切片在大鼠样本上浓度为1:500 (图 5). Neuroimage (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:1000; 图 2
Wako Chemicals USA iba1抗体(Wako, 019-19741)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:1000 (图 2). Oncotarget (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 小鼠
Wako Chemicals USA iba1抗体(Wako, 019-19741)被用于被用于免疫组化-冰冻切片在小鼠样本上. J Transl Med (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:500; 图 7
Wako Chemicals USA iba1抗体(Wako, 019-19741)被用于被用于免疫组化在小鼠样本上浓度为1:500 (图 7). Autophagy (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 图 s1
Wako Chemicals USA iba1抗体(WAKO化学品, 019-19741)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 s1). Eur J Immunol (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:500; 图 4
Wako Chemicals USA iba1抗体(WAK, 019-19741)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:500 (图 4). Gene Ther (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:250; 图 s10
Wako Chemicals USA iba1抗体(Wako, 019-19741)被用于被用于免疫组化在小鼠样本上浓度为1:250 (图 s10). Brain (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:1000; 图 6
Wako Chemicals USA iba1抗体(Wako Pure Chemical Industries, 019-19741)被用于被用于免疫组化在小鼠样本上浓度为1:1000 (图 6). Nat Neurosci (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:500; 图 s3a
Wako Chemicals USA iba1抗体(Wako, 016-20001)被用于被用于免疫组化在小鼠样本上浓度为1:500 (图 s3a). Am J Pathol (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:10,000; 图 2
Wako Chemicals USA iba1抗体(Wako, 019-19741)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:10,000 (图 2). Neurosci Lett (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-自由浮动切片; 小鼠; 1:1000; 图 3a
Wako Chemicals USA iba1抗体(Wako, 019-19741)被用于被用于免疫组化-自由浮动切片在小鼠样本上浓度为1:1000 (图 3a). Brain Behav Immun (2016) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 小鼠; 图 5b
Wako Chemicals USA iba1抗体(wako, 01919741)被用于被用于免疫细胞化学在小鼠样本上 (图 5b). Neurochem Res (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 大鼠; 1:1000; 图 7
Wako Chemicals USA iba1抗体(Wako, 019-19741)被用于被用于免疫组化-冰冻切片在大鼠样本上浓度为1:1000 (图 7). Eur J Neurosci (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:500; 图 8
Wako Chemicals USA iba1抗体(Wako, 019e19741)被用于被用于免疫组化在小鼠样本上浓度为1:500 (图 8). Neuropharmacology (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 小鼠; 图 7
Wako Chemicals USA iba1抗体(Wako Pure Chemical, 019-19741)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 7). J Neurosci Res (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:300
Wako Chemicals USA iba1抗体(Wako BioProducts, 016-20.001)被用于被用于免疫印迹在小鼠样本上浓度为1:300. FASEB J (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 犬; 1:500
  • 免疫组化-石蜡切片; 犬; 1:500
Wako Chemicals USA iba1抗体(Wako, 019-19741)被用于被用于免疫组化-冰冻切片在犬样本上浓度为1:500 和 被用于免疫组化-石蜡切片在犬样本上浓度为1:500. J Comp Neurol (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:2000; 图 2a
Wako Chemicals USA iba1抗体(Wako, 019-19741)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:2000 (图 2a). Mol Psychiatry (2016) ncbi
Biocare Medical
domestic rabbit 多克隆(CP-290)
  • 免疫组化-石蜡切片; pigs ; 1:500; 图 1e, 1f, 1g
Biocare Medical iba1抗体(BioCare Medical, 290)被用于被用于免疫组化-石蜡切片在pigs 样本上浓度为1:500 (图 1e, 1f, 1g). PLoS ONE (2020) ncbi
domestic rabbit 多克隆(CP-290)
  • 免疫组化-冰冻切片; 小鼠; 1:300; 图 1b, s1b, s1e
Biocare Medical iba1抗体(Biocare Medical, CP-290)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:300 (图 1b, s1b, s1e). J Exp Med (2018) ncbi
domestic rabbit 多克隆(CP-290)
  • 免疫组化-冰冻切片; 小鼠; 1:250; 图 2a
Biocare Medical iba1抗体(BioCare Medical, 290)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:250 (图 2a). Brain Behav Immun (2016) ncbi
西格玛奥德里奇
小鼠 单克隆(GT10312)
  • 免疫组化; 小鼠; 1:1000; 图 3d
西格玛奥德里奇 iba1抗体(Sigma-Aldrich, SAB2702364)被用于被用于免疫组化在小鼠样本上浓度为1:1000 (图 3d). elife (2020) ncbi
小鼠 单克隆(GT10312)
  • 免疫组化; 小鼠; 图 7a
西格玛奥德里奇 iba1抗体(Sigma, SAB2702364)被用于被用于免疫组化在小鼠样本上 (图 7a). Int J Biol Sci (2019) ncbi
小鼠 单克隆(GT10312)
  • 免疫组化-石蜡切片; 小鼠; 1:100; 图 5c
西格玛奥德里奇 iba1抗体(Sigma, SAB2702364)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:100 (图 5c). Front Aging Neurosci (2019) ncbi
文章列表
  1. Arinrad S, Wilke J, Seelbach A, Doeren J, Hindermann M, Butt U, et al. NMDAR1 autoantibodies amplify behavioral phenotypes of genetic white matter inflammation: a mild encephalitis model with neuropsychiatric relevance. Mol Psychiatry. 2021;: pubmed 出版商
  2. Sato K, Sato T, Ohno Oishi M, Ozawa M, Maekawa S, Shiga Y, et al. CHOP deletion and anti-neuroinflammation treatment with hesperidin synergistically attenuate NMDA retinal injury in mice. Exp Eye Res. 2021;213:108826 pubmed 出版商
  3. Wang T, Zhou P, Xie X, Tomita Y, Cho S, Tsirukis D, et al. Myeloid lineage contributes to pathological choroidal neovascularization formation via SOCS3. EBioMedicine. 2021;73:103632 pubmed 出版商
  4. Yu S, Cheng L, Tian D, Li Z, Yao F, Luo Y, et al. Fascin-1 is Highly Expressed Specifically in Microglia After Spinal Cord Injury and Regulates Microglial Migration. Front Pharmacol. 2021;12:729524 pubmed 出版商
  5. Zheng Z, Chen J, Lyu H, Lam S, Lu G, Chan W, et al. Novel role of STAT3 in microglia-dependent neuroinflammation after experimental subarachnoid haemorrhage. Stroke Vasc Neurol. 2021;: pubmed 出版商
  6. Klammer M, Dzaye O, Wallach T, Krüger C, Gaessler D, Buonfiglioli A, et al. UNC93B1 Is Widely Expressed in the Murine CNS and Is Required for Neuroinflammation and Neuronal Injury Induced by MicroRNA let-7b. Front Immunol. 2021;12:715774 pubmed 出版商
  7. Pankiewicz J, Lizińczyk A, Franco L, Díaz J, Martá Ariza M, Sadowski M. Absence of Apolipoprotein E is associated with exacerbation of prion pathology and promotes microglial neurodegenerative phenotype. Acta Neuropathol Commun. 2021;9:157 pubmed 出版商
  8. Papazian I, Tsoukala E, Boutou A, Karamita M, Kambas K, Iliopoulou L, et al. Fundamentally different roles of neuronal TNF receptors in CNS pathology: TNFR1 and IKKβ promote microglial responses and tissue injury in demyelination while TNFR2 protects against excitotoxicity in mice. J Neuroinflammation. 2021;18:222 pubmed 出版商
  9. Kuo P, Weng W, Scofield B, Furnas D, Paraiso H, Yu I, et al. Immunoresponsive gene 1 modulates the severity of brain injury in cerebral ischaemia. Brain Commun. 2021;3:fcab187 pubmed 出版商
  10. Zhang P, Ohkawa Y, Yamamoto S, Momota H, Kato A, Kaneko K, et al. St8sia1-deficiency in mice alters tumor environments of gliomas, leading to reduced disease severity. Nagoya J Med Sci. 2021;83:535-549 pubmed 出版商
  11. Xiao Y, Liang J, Gao M, Sun J, Liu Y, Chen J, et al. Deletion of prominin-1 in mice results in disrupted photoreceptor outer segment protein homeostasis. Int J Ophthalmol. 2021;14:1334-1344 pubmed 出版商
  12. Baeza V, Cifuentes M, Martinez F, Ramírez E, Nualart F, Ferrada L, et al. IIIG9 inhibition in adult ependymal cells changes adherens junctions structure and induces cellular detachment. Sci Rep. 2021;11:18537 pubmed 出版商
  13. Zeng H, Chen H, Li M, Zhuang J, Peng Y, Zhou H, et al. Autophagy protein NRBF2 attenuates endoplasmic reticulum stress-associated neuroinflammation and oxidative stress via promoting autophagosome maturation by interacting with Rab7 after SAH. J Neuroinflammation. 2021;18:210 pubmed 出版商
  14. Zhang D, Yamaguchi S, Zhang X, Yang B, Kurooka N, Sugawara R, et al. Upregulation of Mir342 in Diet-Induced Obesity Mouse and the Hypothalamic Appetite Control. Front Endocrinol (Lausanne). 2021;12:727915 pubmed 出版商
  15. Yang C, Lei L, Collins J, Briones M, Ma L, Sturdevant G, et al. Chlamydia evasion of neutrophil host defense results in NLRP3 dependent myeloid-mediated sterile inflammation through the purinergic P2X7 receptor. Nat Commun. 2021;12:5454 pubmed 出版商
  16. Weigelt C, Fuchs H, Schonberger T, Stierstorfer B, Strobel B, Lamla T, et al. AAV-Mediated Expression of Human VEGF, TNF-α, and IL-6 Induces Retinal Pathology in Mice. Transl Vis Sci Technol. 2021;10:15 pubmed 出版商
  17. Droho S, Cuda C, Perlman H, Lavine J. Macrophage-derived interleukin-6 is necessary and sufficient for choroidal angiogenesis. Sci Rep. 2021;11:18084 pubmed 出版商
  18. Farhy Tselnicker I, Boisvert M, Liu H, Dowling C, Erikson G, Blanco Suarez E, et al. Activity-dependent modulation of synapse-regulating genes in astrocytes. elife. 2021;10: pubmed 出版商
  19. Keane L, Cheray M, Saidi D, Kirby C, Friess L, González Rodríguez P, et al. Inhibition of microglial EZH2 leads to anti-tumoral effects in pediatric diffuse midline gliomas. Neurooncol Adv. 2021;3:vdab096 pubmed 出版商
  20. Zin E, Han D, Tran J, Morisson Welch N, Visel M, Kuronen M, et al. Outcomes of progranulin gene therapy in the retina are dependent on time and route of delivery. Mol Ther Methods Clin Dev. 2021;22:40-51 pubmed 出版商
  21. Blot F, Krijnen W, den Hoedt S, Osório C, White J, Mulder M, et al. Sphingolipid metabolism governs Purkinje cell patterned degeneration in Atxn1[82Q]/+ mice. Proc Natl Acad Sci U S A. 2021;118: pubmed 出版商
  22. Solano Fonseca R, Metang P, Egge N, Liu Y, Zuurbier K, Sivaprakasam K, et al. Glycolytic preconditioning in astrocytes mitigates trauma-induced neurodegeneration. elife. 2021;10: pubmed 出版商
  23. Hu Y, Li C, Wang X, Chen W, Qian Y, Dai X. TREM2, Driving the Microglial Polarization, Has a TLR4 Sensitivity Profile After Subarachnoid Hemorrhage. Front Cell Dev Biol. 2021;9:693342 pubmed 出版商
  24. Hülskötter K, Luhder F, Flügel A, Herder V, Baumgartner W. Tamoxifen Application Is Associated with Transiently Increased Loss of Hippocampal Neurons following Virus Infection. Int J Mol Sci. 2021;22: pubmed 出版商
  25. Cheng J, Dong Y, Ma J, Pan R, Liao Y, Kong X, et al. Microglial Calhm2 regulates neuroinflammation and contributes to Alzheimer's disease pathology. Sci Adv. 2021;7: pubmed 出版商
  26. Wu Y, Shao W, Todd T, Tong J, Yue M, Koga S, et al. Microglial lysosome dysfunction contributes to white matter pathology and TDP-43 proteinopathy in GRN-associated FTD. Cell Rep. 2021;36:109581 pubmed 出版商
  27. Xu X, Shen X, Wang J, Feng W, Wang M, Miao X, et al. YAP prevents premature senescence of astrocytes and cognitive decline of Alzheimer's disease through regulating CDK6 signaling. Aging Cell. 2021;20:e13465 pubmed 出版商
  28. Soldati C, Lopez Fabuel I, Wanderlingh L, García Macia M, Monfregola J, Esposito A, et al. Repurposing of tamoxifen ameliorates CLN3 and CLN7 disease phenotype. EMBO Mol Med. 2021;13:e13742 pubmed 出版商
  29. Wehn A, Khalin I, Duering M, Hellal F, Culmsee C, Vandenabeele P, et al. RIPK1 or RIPK3 deletion prevents progressive neuronal cell death and improves memory function after traumatic brain injury. Acta Neuropathol Commun. 2021;9:138 pubmed 出版商
  30. Lee S, Yang H, Sung Y, Kim Y, Park S. Region-Specific Differences in the Apoe4-dependent Response to Focal Brain Injury. Exp Neurobiol. 2021;30:285-293 pubmed 出版商
  31. Sugiyama T, Murao N, Kadowaki H, Takao K, Miyakawa T, Matsushita Y, et al. ERAD components Derlin-1 and Derlin-2 are essential for postnatal brain development and motor function. iScience. 2021;24:102758 pubmed 出版商
  32. Miyajima H, Itokazu T, Tanabe S, Yamashita T. Interleukin-17A regulates ependymal cell proliferation and functional recovery after spinal cord injury in mice. Cell Death Dis. 2021;12:766 pubmed 出版商
  33. Kuroda R, Tominaga K, Kasashima K, Kuroiwa K, Sakashita E, Hayakawa H, et al. Loss of mitochondrial transcription factor A in neural stem cells leads to immature brain development and triggers the activation of the integral stress response in vivo. PLoS ONE. 2021;16:e0255355 pubmed 出版商
  34. Jeong A, Cheng S, Zhong R, Bennett D, Bergo M, Li L. Protein farnesylation is upregulated in Alzheimer's human brains and neuron-specific suppression of farnesyltransferase mitigates pathogenic processes in Alzheimer's model mice. Acta Neuropathol Commun. 2021;9:129 pubmed 出版商
  35. Takahashi K, Nakamura S, Otsu W, Shimazawa M, Hara H. Progranulin deficiency in Iba-1+ myeloid cells exacerbates choroidal neovascularization by perturbation of lysosomal function and abnormal inflammation. J Neuroinflammation. 2021;18:164 pubmed 出版商
  36. Credendino S, De Menna M, Cantone I, Moccia C, Esposito M, Di Guida L, et al. FOXE1-Dependent Regulation of Macrophage Chemotaxis by Thyroid Cells In Vitro and In Vivo. Int J Mol Sci. 2021;22: pubmed 出版商
  37. Levenga J, Wong H, Milstead R, LaPlante L, Hoeffer C. Immunohistological Examination of AKT Isoforms in the Brain: Cell-Type Specificity That May Underlie AKT's Role in Complex Brain Disorders and Neurological Disease. Cereb Cortex Commun. 2021;2:tgab036 pubmed 出版商
  38. Xiao J, Cai T, Fang Y, Liu R, Flores J, Wang W, et al. Activation of GPR40 attenuates neuroinflammation and improves neurological function via PAK4/CREB/KDM6B pathway in an experimental GMH rat model. J Neuroinflammation. 2021;18:160 pubmed 出版商
  39. Lin Z, Chen C, Yang D, Ding J, Wang G, Ren H. DJ-1 inhibits microglial activation and protects dopaminergic neurons in vitro and in vivo through interacting with microglial p65. Cell Death Dis. 2021;12:715 pubmed 出版商
  40. Benitez D, Jiang S, Wood J, Wang R, Hall C, Peerboom C, et al. Knock-in models related to Alzheimer's disease: synaptic transmission, plaques and the role of microglia. Mol Neurodegener. 2021;16:47 pubmed 出版商
  41. Beecher K, Wang J, Jacques A, Chaaya N, Chehrehasa F, Belmer A, et al. Sucrose Consumption Alters Serotonin/Glutamate Co-localisation Within the Prefrontal Cortex and Hippocampus of Mice. Front Mol Neurosci. 2021;14:678267 pubmed 出版商
  42. Olson B, Zhu X, Norgard M, Diba P, Levasseur P, Buenafe A, et al. Chronic cerebral lipocalin 2 exposure elicits hippocampal neuronal dysfunction and cognitive impairment. Brain Behav Immun. 2021;97:102-118 pubmed 出版商
  43. Li D, Edwards R, Manne K, Martinez D, Schäfer A, Alam S, et al. In vitro and in vivo functions of SARS-CoV-2 infection-enhancing and neutralizing antibodies. Cell. 2021;184:4203-4219.e32 pubmed 出版商
  44. Aranda J, Fernández Arjona M, Alen F, Rivera P, Rubio L, Smith Fernández I, et al. Sudden cessation of fluoxetine before alcohol drinking reinstatement alters microglial morphology and TLR4/inflammatory neuroadaptation in the rat brain. Brain Struct Funct. 2021;226:2243-2264 pubmed 出版商
  45. Gaja Capdevila N, Hernández N, Zamanillo D, Vela J, Merlos M, Navarro X, et al. Neuroprotective Effects of Sigma 1 Receptor Ligands on Motoneuron Death after Spinal Root Injury in Mice. Int J Mol Sci. 2021;22: pubmed 出版商
  46. Emre C, Do K, Jun B, Hjorth E, Alcalde S, Kautzmann M, et al. Age-related changes in brain phospholipids and bioactive lipids in the APP knock-in mouse model of Alzheimer's disease. Acta Neuropathol Commun. 2021;9:116 pubmed 出版商
  47. Ramaglia V, Dubey M, Malpede M, Petersen N, de Vries S, Ahmed S, et al. Complement-associated loss of CA2 inhibitory synapses in the demyelinated hippocampus impairs memory. Acta Neuropathol. 2021;142:643-667 pubmed 出版商
  48. Wang Y, Su Y, Yu G, Wang X, Chen X, Yu B, et al. Reduced Oligodendrocyte Precursor Cell Impairs Astrocytic Development in Early Life Stress. Adv Sci (Weinh). 2021;8:e2101181 pubmed 出版商
  49. Liu D, Guo J, Su J, Svanbergsson A, Yuan L, Haikal C, et al. Differential seeding and propagating efficiency of α-synuclein strains generated in different conditions. Transl Neurodegener. 2021;10:20 pubmed 出版商
  50. He X, Chandrashekar A, Zahn R, Wegmann F, Yu J, Mercado N, et al. Low-dose Ad26.COV2.S protection against SARS-CoV-2 challenge in rhesus macaques. Cell. 2021;184:3467-3473.e11 pubmed 出版商
  51. Asahina M, Fujinawa R, Hirayama H, Tozawa R, Kajii Y, Suzuki T. Reversibility of motor dysfunction in the rat model of NGLY1 deficiency. Mol Brain. 2021;14:91 pubmed 出版商
  52. Polinski N, Martinez T, Gorodinsky A, Gareus R, Sasner M, Herberth M, et al. Decreased glucocerebrosidase activity and substrate accumulation of glycosphingolipids in a novel GBA1 D409V knock-in mouse model. PLoS ONE. 2021;16:e0252325 pubmed 出版商
  53. An L, Shen Y, Chopp M, Zacharek A, Venkat P, Chen Z, et al. Deficiency of Endothelial Nitric Oxide Synthase (eNOS) Exacerbates Brain Damage and Cognitive Deficit in A Mouse Model of Vascular Dementia. Aging Dis. 2021;12:732-746 pubmed 出版商
  54. Boehme N, Hedberg Buenz A, Tatro N, Bielecki M, Castonguay W, Scheetz T, et al. Axonopathy precedes cell death in ocular damage mediated by blast exposure. Sci Rep. 2021;11:11774 pubmed 出版商
  55. Keshvari S, Caruso M, Teakle N, Batoon L, Sehgal A, Patkar O, et al. CSF1R-dependent macrophages control postnatal somatic growth and organ maturation. PLoS Genet. 2021;17:e1009605 pubmed 出版商
  56. López Gambero A, Rosell Valle C, Medina Vera D, Navarro J, Vargas A, Rivera P, et al. A Negative Energy Balance Is Associated with Metabolic Dysfunctions in the Hypothalamus of a Humanized Preclinical Model of Alzheimer's Disease, the 5XFAD Mouse. Int J Mol Sci. 2021;22: pubmed 出版商
  57. Jiang X, Rashwan R, Voigt V, NERBONNE J, Hunt D, Carvalho L. Molecular, Cellular and Functional Changes in the Retinas of Young Adult Mice Lacking the Voltage-Gated K+ Channel Subunits Kv8.2 and K2.1. Int J Mol Sci. 2021;22: pubmed 出版商
  58. Vicente Rodríguez M, Singh N, Turkheimer F, Peris Yague A, Randall K, Veronese M, et al. Resolving the cellular specificity of TSPO imaging in a rat model of peripherally-induced neuroinflammation. Brain Behav Immun. 2021;96:154-167 pubmed 出版商
  59. Liu W, Rohlman A, Vetreno R, Crews F. Expression of Oligodendrocyte and Oligoprogenitor Cell Proteins in Frontal Cortical White and Gray Matter: Impact of Adolescent Development and Ethanol Exposure. Front Pharmacol. 2021;12:651418 pubmed 出版商
  60. Dá Mesquita S, Herz J, Wall M, Dykstra T, de Lima K, Norris G, et al. Aging-associated deficit in CCR7 is linked to worsened glymphatic function, cognition, neuroinflammation, and β-amyloid pathology. Sci Adv. 2021;7: pubmed 出版商
  61. Steubler V, Erdinger S, Back M, Ludewig S, Fässler D, Richter M, et al. Loss of all three APP family members during development impairs synaptic function and plasticity, disrupts learning, and causes an autism-like phenotype. EMBO J. 2021;40:e107471 pubmed 出版商
  62. Galán Ganga M, Rodríguez Cueto C, Merchán Rubira J, Hernandez F, Avila J, Posada Ayala M, et al. Cannabinoid receptor CB2 ablation protects against TAU induced neurodegeneration. Acta Neuropathol Commun. 2021;9:90 pubmed 出版商
  63. Bradshaw D, Knutsen A, Korotcov A, Sullivan G, Radomski K, Dardzinski B, et al. Genetic inactivation of SARM1 axon degeneration pathway improves outcome trajectory after experimental traumatic brain injury based on pathological, radiological, and functional measures. Acta Neuropathol Commun. 2021;9:89 pubmed 出版商
  64. Hanhai Z, Bin Q, Shengjun Z, Jingbo L, Yinghan G, Lingxin C, et al. Neutrophil extracellular traps, released from neutrophil, promote microglia inflammation and contribute to poor outcome in subarachnoid hemorrhage. Aging (Albany NY). 2021;13:13108-13123 pubmed 出版商
  65. Park G, Lee J, Han H, An H, Jin Z, Jeong E, et al. Ablation of dynamin-related protein 1 promotes diabetes-induced synaptic injury in the hippocampus. Cell Death Dis. 2021;12:445 pubmed 出版商
  66. Gruber T, Pan C, Contreras R, Wiedemann T, Morgan D, Skowronski A, et al. Obesity-associated hyperleptinemia alters the gliovascular interface of the hypothalamus to promote hypertension. Cell Metab. 2021;33:1155-1170.e10 pubmed 出版商
  67. Korotkov A, Sim N, Luinenburg M, Anink J, van Scheppingen J, Zimmer T, et al. MicroRNA-34a activation in tuberous sclerosis complex during early brain development may lead to impaired corticogenesis. Neuropathol Appl Neurobiol. 2021;47:796-811 pubmed 出版商
  68. O Hare M, Amarnani D, Whitmore H, An M, Marino C, Ramos L, et al. Targeting Runt-Related Transcription Factor 1 Prevents Pulmonary Fibrosis and Reduces Expression of Severe Acute Respiratory Syndrome Coronavirus 2 Host Mediators. Am J Pathol. 2021;191:1193-1208 pubmed 出版商
  69. Li P, Lin Z, An Y, Lin J, Zhang A, Wang S, et al. Piccolo is essential for the maintenance of mouse retina but not cochlear hair cell function. Aging (Albany NY). 2021;13:11678-11695 pubmed 出版商
  70. Mu W, Li S, Xu J, Guo X, Wu H, Chen Z, et al. Hypothalamic Rax+ tanycytes contribute to tissue repair and tumorigenesis upon oncogene activation in mice. Nat Commun. 2021;12:2288 pubmed 出版商
  71. Huang Y, Happonen K, Burrola P, O Connor C, Hah N, Huang L, et al. Microglia use TAM receptors to detect and engulf amyloid β plaques. Nat Immunol. 2021;22:586-594 pubmed 出版商
  72. Oh B, Wu Y, Swaminathan V, Lam V, Ding J, George P. Modulating the Electrical and Mechanical Microenvironment to Guide Neuronal Stem Cell Differentiation. Adv Sci (Weinh). 2021;8:2002112 pubmed 出版商
  73. Colombo A, Sadler R, Llovera G, Singh V, Roth S, Heindl S, et al. Microbiota-derived short chain fatty acids modulate microglia and promote Aβ plaque deposition. elife. 2021;10: pubmed 出版商
  74. Xu H, Wang Y, Luo Y. OTULIN is a new target of EA treatment in the alleviation of brain injury and glial cell activation via suppression of the NF-κB signalling pathway in acute ischaemic stroke rats. Mol Med. 2021;27:37 pubmed 出版商
  75. Gulbranson D, Ho K, Yu G, Yu X, Das M, Shao E, et al. Phenotypic Differences between the Alzheimer's Disease-Related hAPP-J20 Model and Heterozygous Zbtb20 Knock-Out Mice. Eneuro. 2021;8: pubmed 出版商
  76. Criado Marrero M, Gebru N, Blazier D, Gould L, Baker J, Beaulieu Abdelahad D, et al. Hsp90 co-chaperones, FKBP52 and Aha1, promote tau pathogenesis in aged wild-type mice. Acta Neuropathol Commun. 2021;9:65 pubmed 出版商
  77. Rosa J, Farré Alins V, Ortega M, Navarrete M, López Rodríguez A, Palomino Antolin A, et al. TLR4 pathway impairs synaptic number and cerebrovascular functions through astrocyte activation following traumatic brain injury. Br J Pharmacol. 2021;178:3395-3413 pubmed 出版商
  78. Zheng W, Zhao D, Zhang H, Chinnasamy P, SIBINGA N, Pollard J. Induction of interferon signaling and allograft inflammatory factor 1 in macrophages in a mouse model of breast cancer metastases. Wellcome Open Res. 2021;6:52 pubmed 出版商
  79. Saunders D, Aamodt K, Richardson T, Hopkirk A, Aramandla R, Poffenberger G, et al. Coordinated interactions between endothelial cells and macrophages in the islet microenvironment promote β cell regeneration. NPJ Regen Med. 2021;6:22 pubmed 出版商
  80. Grissi M, Boudot C, Assem M, Candellier A, Lando M, Poirot Leclercq S, et al. Metformin prevents stroke damage in non-diabetic female mice with chronic kidney disease. Sci Rep. 2021;11:7464 pubmed 出版商
  81. Bassal M, Liu J, Jankowiak W, Saftig P, Bartsch U. Rapid and Progressive Loss of Multiple Retinal Cell Types in Cathepsin D-Deficient Mice-An Animal Model of CLN10 Disease. Cells. 2021;10: pubmed 出版商
  82. Frew J, Nygaard H. Neuropathological and behavioral characterization of aged Grn R493X progranulin-deficient frontotemporal dementia knockin mice. Acta Neuropathol Commun. 2021;9:57 pubmed 出版商
  83. Higgins N, Greenslade J, Wu J, Miranda E, Galliciotti G, Monteiro M. Serpin neuropathology in the P497S UBQLN2 mouse model of ALS/FTD. Brain Pathol. 2021;:e12948 pubmed 出版商
  84. Niu M, Zhao F, Bondelid K, Siedlak S, Torres S, Fujioka H, et al. VPS35 D620N knockin mice recapitulate cardinal features of Parkinson's disease. Aging Cell. 2021;20:e13347 pubmed 出版商
  85. Greferath U, Huynh M, Jobling A, Vessey K, Venables G, Surrao D, et al. Dorsal-Ventral Differences in Retinal Structure in the Pigmented Royal College of Surgeons Model of Retinal Degeneration. Front Cell Neurosci. 2020;14:553708 pubmed 出版商
  86. Zhang Z, Zou X, Zhang R, Xie Y, Feng Z, Li F, et al. Human umbilical cord mesenchymal stem cell-derived exosomal miR-146a-5p reduces microglial-mediated neuroinflammation via suppression of the IRAK1/TRAF6 signaling pathway after ischemic stroke. Aging (Albany NY). 2021;13:3060-3079 pubmed 出版商
  87. Li Y, Ritchie E, Steinke C, Qi C, Chen L, Zheng B, et al. Activation of MAP3K DLK and LZK in Purkinje cells causes rapid and slow degeneration depending on signaling strength. elife. 2021;10: pubmed 出版商
  88. Yuan D, Cheng A, Kawahata I, Izumi H, Xu J, Fukunaga K. Single Administration of the T-Type Calcium Channel Enhancer SAK3 Reduces Oxidative Stress and Improves Cognition in Olfactory Bulbectomized Mice. Int J Mol Sci. 2021;22: pubmed 出版商
  89. Vandenabeele M, Veys L, Lemmens S, Hadoux X, Gelders G, Masin L, et al. The AppNL-G-F mouse retina is a site for preclinical Alzheimer's disease diagnosis and research. Acta Neuropathol Commun. 2021;9:6 pubmed 出版商
  90. Sobue A, Komine O, Hara Y, Endo F, Mizoguchi H, Watanabe S, et al. Microglial gene signature reveals loss of homeostatic microglia associated with neurodegeneration of Alzheimer's disease. Acta Neuropathol Commun. 2021;9:1 pubmed 出版商
  91. Thau Zuchman O, Svendsen L, Dyall S, Paredes Esquivel U, Rhodes M, Priestley J, et al. A new ketogenic formulation improves functional outcome and reduces tissue loss following traumatic brain injury in adult mice. Theranostics. 2021;11:346-360 pubmed 出版商
  92. Biechele G, Franzmeier N, Blume T, Ewers M, Luque J, Eckenweber F, et al. Glial activation is moderated by sex in response to amyloidosis but not to tau pathology in mouse models of neurodegenerative diseases. J Neuroinflammation. 2020;17:374 pubmed 出版商
  93. Campolo M, Filippone A, Biondo C, Mancuso G, Casili G, Lanza M, et al. TLR7/8 in the Pathogenesis of Parkinson's Disease. Int J Mol Sci. 2020;21: pubmed 出版商
  94. Zhang X, Wang R, Hu D, Sun X, Fujioka H, Lundberg K, et al. Oligodendroglial glycolytic stress triggers inflammasome activation and neuropathology in Alzheimer's disease. Sci Adv. 2020;6: pubmed 出版商
  95. Vita S, Redell J, Maynard M, Zhao J, Grill R, Dash P, et al. P-glycoprotein Expression Is Upregulated in a Pre-Clinical Model of Traumatic Brain Injury. Neurotrauma Rep. 2020;1:207-217 pubmed 出版商
  96. Smith S, Chen X, Brier L, Bumstead J, Rensing N, Ringel A, et al. Astrocyte deletion of α2-Na/K ATPase triggers episodic motor paralysis in mice via a metabolic pathway. Nat Commun. 2020;11:6164 pubmed 出版商
  97. Griffin P, Sheehan P, Dimitry J, Guo C, Kanan M, Lee J, et al. REV-ERBα mediates complement expression and diurnal regulation of microglial synaptic phagocytosis. elife. 2020;9: pubmed 出版商
  98. Lin L, Petralia R, Lake R, Wang Y, Hoffman D. A novel structure associated with aging is augmented in the DPP6-KO mouse brain. Acta Neuropathol Commun. 2020;8:197 pubmed 出版商
  99. Ke Y, Weng M, Chhetri G, Usman M, Li Y, Yu Q, et al. Trappc9 deficiency in mice impairs learning and memory by causing imbalance of dopamine D1 and D2 neurons. Sci Adv. 2020;6: pubmed 出版商
  100. Zhan L, Fan L, Kodama L, Sohn P, Wong M, Mousa G, et al. A MAC2-positive progenitor-like microglial population is resistant to CSF1R inhibition in adult mouse brain. elife. 2020;9: pubmed 出版商
  101. Zahedi K, Brooks M, Barone S, Rahmati N, Murray Stewart T, Dunworth M, et al. Ablation of polyamine catabolic enzymes provokes Purkinje cell damage, neuroinflammation, and severe ataxia. J Neuroinflammation. 2020;17:301 pubmed 出版商
  102. Shin S, Cai Y, Itson Zoske B, Qiu C, Hao X, Xiang H, et al. Enhanced T-type calcium channel 3.2 activity in sensory neurons contributes to neuropathic-like pain of monosodium iodoacetate-induced knee osteoarthritis. Mol Pain. 2020;16:1744806920963807 pubmed 出版商
  103. Aggio Bruce R, Chu Tan J, Wooff Y, Cioanca A, Schumann U, Natoli R. Inhibition of microRNA-155 Protects Retinal Function Through Attenuation of Inflammation in Retinal Degeneration. Mol Neurobiol. 2021;58:835-854 pubmed 出版商
  104. Bengoa Vergniory N, Faggiani E, Ramos Gonzalez P, Kirkiz E, Connor Robson N, Brown L, et al. CLR01 protects dopaminergic neurons in vitro and in mouse models of Parkinson's disease. Nat Commun. 2020;11:4885 pubmed 出版商
  105. Scheckel C, Imeri M, Schwarz P, Aguzzi A. Ribosomal profiling during prion disease uncovers progressive translational derangement in glia but not in neurons. elife. 2020;9: pubmed 出版商
  106. Ifuku M, Hinkelmann L, Kuhrt L, Efe I, Kumbol V, Buonfiglioli A, et al. Activation of Toll-like receptor 5 in microglia modulates their function and triggers neuronal injury. Acta Neuropathol Commun. 2020;8:159 pubmed 出版商
  107. Huang W, Bai X, Meyer E, Scheller A. Acute brain injuries trigger microglia as an additional source of the proteoglycan NG2. Acta Neuropathol Commun. 2020;8:146 pubmed 出版商
  108. Lackie R, Marques Lopes J, Ostapchenko V, Good S, Choy W, van Oosten Hawle P, et al. Increased levels of Stress-inducible phosphoprotein-1 accelerates amyloid-β deposition in a mouse model of Alzheimer's disease. Acta Neuropathol Commun. 2020;8:143 pubmed 出版商
  109. Yang C, Kari L, Lei L, Carlson J, Ma L, Couch C, et al. Chlamydia trachomatis Plasmid Gene Protein 3 Is Essential for the Establishment of Persistent Infection and Associated Immunopathology. MBio. 2020;11: pubmed 出版商
  110. Cignarella F, Filipello F, Bollman B, Cantoni C, Locca A, Mikesell R, et al. TREM2 activation on microglia promotes myelin debris clearance and remyelination in a model of multiple sclerosis. Acta Neuropathol. 2020;140:513-534 pubmed 出版商
  111. Ueno H, Shimada A, Suemitsu S, Murakami S, Kitamura N, Wani K, et al. Alpha-pinene and dizocilpine (MK-801) attenuate kindling development and astrocytosis in an experimental mouse model of epilepsy. IBRO Rep. 2020;9:102-114 pubmed 出版商
  112. Moreno Valladares M, Moreno Cugnon L, Silva T, Garcés J, Sáenz Antoñanzas A, Álvarez Satta M, et al. CD8+ T cells are increased in the subventricular zone with physiological and pathological aging. Aging Cell. 2020;:e13198 pubmed 出版商
  113. Pu A, Mishra M, Dong Y, Ghorbanigazar S, Stephenson E, Rawji K, et al. The glycosyltransferase EXTL2 promotes proteoglycan deposition and injurious neuroinflammation following demyelination. J Neuroinflammation. 2020;17:220 pubmed 出版商
  114. Pasciuto E, Burton O, Roca C, Lagou V, Rajan W, Theys T, et al. Microglia Require CD4 T Cells to Complete the Fetal-to-Adult Transition. Cell. 2020;182:625-640.e24 pubmed 出版商
  115. Chi Y, Remšík J, Kiseliovas V, Derderian C, Sener U, Alghader M, et al. Cancer cells deploy lipocalin-2 to collect limiting iron in leptomeningeal metastasis. Science. 2020;369:276-282 pubmed 出版商
  116. Tang S, Fesharaki Zadeh A, Takahashi H, Nies S, Smith L, Luo A, et al. Fyn kinase inhibition reduces protein aggregation, increases synapse density and improves memory in transgenic and traumatic Tauopathy. Acta Neuropathol Commun. 2020;8:96 pubmed 出版商
  117. Wander C, Tseng J, Song S, Al Housseiny H, Tart D, Ajit A, et al. The Accumulation of Tau-Immunoreactive Hippocampal Granules and Corpora Amylacea Implicates Reactive Glia in Tau Pathogenesis during Aging. iScience. 2020;23:101255 pubmed 出版商
  118. Chen T, Lennon V, Liu Y, Bosco D, Li Y, Yi M, et al. Astrocyte-microglia interaction drives evolving neuromyelitis optica lesion. J Clin Invest. 2020;130:4025-4038 pubmed 出版商
  119. Kukharsky M, Ninkina N, An H, Telezhkin V, Wei W, Meritens C, et al. Long non-coding RNA Neat1 regulates adaptive behavioural response to stress in mice. Transl Psychiatry. 2020;10:171 pubmed 出版商
  120. Chandrashekar A, Liu J, Martinot A, McMahan K, Mercado N, Peter L, et al. SARS-CoV-2 infection protects against rechallenge in rhesus macaques. Science. 2020;: pubmed 出版商
  121. Kang L, Yu H, Yang X, Zhu Y, Bai X, Wang R, et al. Neutrophil extracellular traps released by neutrophils impair revascularization and vascular remodeling after stroke. Nat Commun. 2020;11:2488 pubmed 出版商
  122. Tomassoni D, Martinelli I, Moruzzi M, Micioni Di Bonaventura M, Cifani C, Amenta F, et al. Obesity and Age-Related Changes in the Brain of the Zucker Lepr fa/fa Rats. Nutrients. 2020;12: pubmed 出版商
  123. Burfeind K, Zhu X, Norgard M, Levasseur P, Huisman C, Buenafe A, et al. Circulating myeloid cells invade the central nervous system to mediate cachexia during pancreatic cancer. elife. 2020;9: pubmed 出版商
  124. Yu X, Pandey K, Katzman A, Alberini C. A role for CIM6P/IGF2 receptor in memory consolidation and enhancement. elife. 2020;9: pubmed 出版商
  125. LeBlang C, Medalla M, Nicoletti N, Hays E, Zhao J, Shattuck J, et al. Reduction of the RNA Binding Protein TIA1 Exacerbates Neuroinflammation in Tauopathy. Front Neurosci. 2020;14:285 pubmed 出版商
  126. Gee M, Son S, Jeon S, Do J, Kim N, Ju Y, et al. A selective p38α/β MAPK inhibitor alleviates neuropathology and cognitive impairment, and modulates microglia function in 5XFAD mouse. Alzheimers Res Ther. 2020;12:45 pubmed 出版商
  127. Rauch J, Luna G, Guzman E, Audouard M, Challis C, Sibih Y, et al. LRP1 is a master regulator of tau uptake and spread. Nature. 2020;580:381-385 pubmed 出版商
  128. Tisi A, Parete G, Flati V, Maccarone R. Up-regulation of pro-angiogenic pathways and induction of neovascularization by an acute retinal light damage. Sci Rep. 2020;10:6376 pubmed 出版商
  129. Salido E, Ramamurthy V. Proteoglycan IMPG2 Shapes the Interphotoreceptor Matrix and Modulates Vision. J Neurosci. 2020;40:4059-4072 pubmed 出版商
  130. Yang X, Zhao L, Campos M, Abu Asab M, Ortolan D, Hotaling N, et al. CSF1R blockade induces macrophage ablation and results in mouse choroidal vascular atrophy and RPE disorganization. elife. 2020;9: pubmed 出版商
  131. Hongo N, Takamura Y, Nishimaru H, Matsumoto J, Tobe K, Saito T, et al. Astaxanthin Ameliorated Parvalbumin-Positive Neuron Deficits and Alzheimer's Disease-Related Pathological Progression in the Hippocampus of AppNL-G-F/NL-G-F Mice. Front Pharmacol. 2020;11:307 pubmed 出版商
  132. Morse S, Boltersdorf T, Harriss B, Chan T, Baxan N, Jung H, et al. Neuron labeling with rhodamine-conjugated Gd-based MRI contrast agents delivered to the brain via focused ultrasound. Theranostics. 2020;10:2659-2674 pubmed 出版商
  133. Mecha M, Yanguas Casás N, Feliú A, Mestre L, Carrillo Salinas F, Riecken K, et al. Involvement of Wnt7a in the role of M2c microglia in neural stem cell oligodendrogenesis. J Neuroinflammation. 2020;17:88 pubmed 出版商
  134. Aaltonen N, Singha P, Jakupović H, Wirth T, Samaranayake H, Pasonen Seppänen S, et al. High-Resolution Confocal Fluorescence Imaging of Serine Hydrolase Activity in Cryosections - Application to Glioma Brain Unveils Activity Hotspots Originating from Tumor-Associated Neutrophils. Biol Proced Online. 2020;22:6 pubmed 出版商
  135. Williams B, Lees F, Tsangari H, Hutchinson M, Perilli E, Crotti T. Assessing the Effects of Parthenolide on Inflammation, Bone Loss, and Glial Cells within a Collagen Antibody-Induced Arthritis Mouse Model. Mediators Inflamm. 2020;2020:6245798 pubmed 出版商
  136. Hu S, Hu M, Liu J, Zhang B, Zhang Z, Zhou F, et al. Phosphorylation of Tau and α-Synuclein Induced Neurodegeneration in MPTP Mouse Model of Parkinson's Disease. Neuropsychiatr Dis Treat. 2020;16:651-663 pubmed 出版商
  137. Chan K, Nestor J, Huerta T, Certain N, Moody G, Kowal C, et al. Lupus autoantibodies act as positive allosteric modulators at GluN2A-containing NMDA receptors and impair spatial memory. Nat Commun. 2020;11:1403 pubmed 出版商
  138. Kur I, Prouvot P, Fu T, Fan W, Müller Braun F, Das A, et al. Neuronal activity triggers uptake of hematopoietic extracellular vesicles in vivo. PLoS Biol. 2020;18:e3000643 pubmed 出版商
  139. Martínez González L, Rodríguez Cueto C, Cabezudo D, Bartolomé F, Andrés Benito P, Ferrer I, et al. Motor neuron preservation and decrease of in vivo TDP-43 phosphorylation by protein CK-1δ kinase inhibitor treatment. Sci Rep. 2020;10:4449 pubmed 出版商
  140. Yoshino M, Saito K, Kawasaki K, Horiike T, Shinmyo Y, Kawasaki H. The origin and development of subcortical U-fibers in gyrencephalic ferrets. Mol Brain. 2020;13:37 pubmed 出版商
  141. Yagura K, Ohtaki H, Tsumuraya T, Sato A, Miyamoto K, Kawada N, et al. The enhancement of CCL2 and CCL5 by human bone marrow-derived mesenchymal stem/stromal cells might contribute to inflammatory suppression and axonal extension after spinal cord injury. PLoS ONE. 2020;15:e0230080 pubmed 出版商
  142. Stein L, Lhamo R, Cao A, Workinger J, TINSLEY I, Doyle R, et al. Dorsal vagal complex and hypothalamic glia differentially respond to leptin and energy balance dysregulation. Transl Psychiatry. 2020;10:90 pubmed 出版商
  143. Doll J, Hoebe K, Thompson R, Sawtell N. Resolution of herpes simplex virus reactivation in vivo results in neuronal destruction. PLoS Pathog. 2020;16:e1008296 pubmed 出版商
  144. Yang H, Wang L, Zang C, Wang Y, Shang J, Zhang Z, et al. Src Inhibition Attenuates Neuroinflammation and Protects Dopaminergic Neurons in Parkinson's Disease Models. Front Neurosci. 2020;14:45 pubmed 出版商
  145. Shi H, Wang Q, Zheng M, Hao S, Lum J, Chen X, et al. Supplement of microbiota-accessible carbohydrates prevents neuroinflammation and cognitive decline by improving the gut microbiota-brain axis in diet-induced obese mice. J Neuroinflammation. 2020;17:77 pubmed 出版商
  146. Merlo S, Luaces J, Spampinato S, Toro Urrego N, Caruso G, D Amico F, et al. SIRT1 Mediates Melatonin's Effects on Microglial Activation in Hypoxia: In Vitro and In Vivo Evidence. Biomolecules. 2020;10: pubmed 出版商
  147. Sardari M, Dzyubenko E, Schmermund B, Yin D, Qi Y, Kleinschnitz C, et al. Dose-Dependent Microglial and Astrocytic Responses Associated With Post-ischemic Neuroprotection After Lipopolysaccharide-Induced Sepsis-Like State in Mice. Front Cell Neurosci. 2020;14:26 pubmed 出版商
  148. Rambousek L, Gschwind T, Lafourcade C, Paterna J, Dib L, Fritschy J, et al. Aberrant expression of PAR bZIP transcription factors is associated with epileptogenesis, focus on hepatic leukemia factor. Sci Rep. 2020;10:3760 pubmed 出版商
  149. Wu Z, Parry M, Hou X, Liu M, Wang H, Cain R, et al. Gene therapy conversion of striatal astrocytes into GABAergic neurons in mouse models of Huntington's disease. Nat Commun. 2020;11:1105 pubmed 出版商
  150. Miyawaki T, Morikawa S, Susaki E, Nakashima A, Takeuchi H, Yamaguchi S, et al. Visualization and molecular characterization of whole-brain vascular networks with capillary resolution. Nat Commun. 2020;11:1104 pubmed 出版商
  151. Lu H, Kim S, Steelman A, Tracy K, Zhou B, Michaud D, et al. STAT3 signaling in myeloid cells promotes pathogenic myelin-specific T cell differentiation and autoimmune demyelination. Proc Natl Acad Sci U S A. 2020;117:5430-5441 pubmed 出版商
  152. Sun Y, Guo Y, Feng X, Jia M, Ai N, Dong Y, et al. The behavioural and neuropathologic sexual dimorphism and absence of MIP-3α in tau P301S mouse model of Alzheimer's disease. J Neuroinflammation. 2020;17:72 pubmed 出版商
  153. Kosuge Y, Kaneko E, Nango H, Miyagishi H, Ishige K, Ito Y. Bidens pilosa Extract Administered after Symptom Onset Attenuates Glial Activation, Improves Motor Performance, and Prolongs Survival in a Mouse Model of Amyotrophic Lateral Sclerosis. Oxid Med Cell Longev. 2020;2020:1020673 pubmed 出版商
  154. Sarkar S, Dammer E, Malovic E, Olsen A, Raza S, Gao T, et al. Molecular Signatures of Neuroinflammation Induced by αSynuclein Aggregates in Microglial Cells. Front Immunol. 2020;11:33 pubmed 出版商
  155. Yang Y, He Z, Xing Z, Zuo Z, Yuan L, Wu Y, et al. Influenza vaccination in early Alzheimer's disease rescues amyloidosis and ameliorates cognitive deficits in APP/PS1 mice by inhibiting regulatory T cells. J Neuroinflammation. 2020;17:65 pubmed 出版商
  156. Swier V, White K, Meyerholz D, Chefdeville A, Khanna R, Sieren J, et al. Validating indicators of CNS disorders in a swine model of neurological disease. PLoS ONE. 2020;15:e0228222 pubmed 出版商
  157. Barros Viegas A, Carmona V, Ferreiro E, Guedes J, Cardoso A, Cunha P, et al. miRNA-31 Improves Cognition and Abolishes Amyloid-β Pathology by Targeting APP and BACE1 in an Animal Model of Alzheimer's Disease. Mol Ther Nucleic Acids. 2020;19:1219-1236 pubmed 出版商
  158. Angel A, Volkman R, Royal T, Offen D. Caspase-6 Knockout in the 5xFAD Model of Alzheimer's Disease Reveals Favorable Outcome on Memory and Neurological Hallmarks. Int J Mol Sci. 2020;21: pubmed 出版商
  159. Ullah F, Asgarov R, Venigalla M, Liang H, Niedermayer G, Munch G, et al. Effects of a solid lipid curcumin particle formulation on chronic activation of microglia and astroglia in the GFAP-IL6 mouse model. Sci Rep. 2020;10:2365 pubmed 出版商
  160. Shibahara T, Ago T, Nakamura K, Tachibana M, Yoshikawa Y, Komori M, et al. Pericyte-Mediated Tissue Repair through PDGFRβ Promotes Peri-Infarct Astrogliosis, Oligodendrogenesis, and Functional Recovery after Acute Ischemic Stroke. Eneuro. 2020;7: pubmed 出版商
  161. Liu Y, Zhang S, Li X, Liu E, Wang X, Zhou Q, et al. Peripheral inflammation promotes brain tau transmission via disrupting blood-brain barrier. Biosci Rep. 2020;40: pubmed 出版商
  162. Wooff Y, Fernando N, Wong J, Dietrich C, Aggio Bruce R, Chu Tan J, et al. Caspase-1-dependent inflammasomes mediate photoreceptor cell death in photo-oxidative damage-induced retinal degeneration. Sci Rep. 2020;10:2263 pubmed 出版商
  163. Chen K, Gu H, Zhu L, Feng D. A New Model of Repetitive Traumatic Brain Injury in Mice. Front Neurosci. 2019;13:1417 pubmed 出版商
  164. Rawji K, Young A, Ghosh T, Michaels N, Mirzaei R, Kappen J, et al. Niacin-mediated rejuvenation of macrophage/microglia enhances remyelination of the aging central nervous system. Acta Neuropathol. 2020;139:893-909 pubmed 出版商
  165. Gaglia G, Rashid R, Yapp C, Joshi G, Li C, Lindquist S, et al. HSF1 phase transition mediates stress adaptation and cell fate decisions. Nat Cell Biol. 2020;22:151-158 pubmed 出版商
  166. Cernit V, Sénécal J, Othman R, Couture R. Reciprocal Regulatory Interaction between TRPV1 and Kinin B1 Receptor in a Rat Neuropathic Pain Model. Int J Mol Sci. 2020;21: pubmed 出版商
  167. Ali S, Mansour A, Huang W, Queen N, Mo X, Anderson J, et al. CSF1R inhibitor PLX5622 and environmental enrichment additively improve metabolic outcomes in middle-aged female mice. Aging (Albany NY). 2020;12:2101-2122 pubmed 出版商
  168. Grovola M, Paleologos N, Wofford K, Harris J, Browne K, Johnson V, et al. Mossy cell hypertrophy and synaptic changes in the hilus following mild diffuse traumatic brain injury in pigs. J Neuroinflammation. 2020;17:44 pubmed 出版商
  169. Cao J, Guo Q, Guan G, Zhu C, Zou C, Zhang L, et al. Elevated lymphocyte specific protein 1 expression is involved in the regulation of leukocyte migration and immunosuppressive microenvironment in glioblastoma. Aging (Albany NY). 2020;12:1656-1684 pubmed 出版商
  170. Nomura Komoike K, Saitoh F, Fujieda H. Phosphatidylserine recognition and Rac1 activation are required for Müller glia proliferation, gliosis and phagocytosis after retinal injury. Sci Rep. 2020;10:1488 pubmed 出版商
  171. Llorens F, Hermann P, Villar Piqué A, Diaz Lucena D, Nagga K, Hansson O, et al. Cerebrospinal fluid lipocalin 2 as a novel biomarker for the differential diagnosis of vascular dementia. Nat Commun. 2020;11:619 pubmed 出版商
  172. Wang T, Wu C, Ouzounov D, Gu W, Xia F, Kim M, et al. Quantitative analysis of 1300-nm three-photon calcium imaging in the mouse brain. elife. 2020;9: pubmed 出版商
  173. Bader M, Li Y, Tweedie D, Shlobin N, Bernstein A, Rubovitch V, et al. Neuroprotective Effects and Treatment Potential of Incretin Mimetics in a Murine Model of Mild Traumatic Brain Injury. Front Cell Dev Biol. 2019;7:356 pubmed 出版商
  174. Yu J, Wang W, Matei N, Li X, Pang J, Mo J, et al. Ezetimibe Attenuates Oxidative Stress and Neuroinflammation via the AMPK/Nrf2/TXNIP Pathway after MCAO in Rats. Oxid Med Cell Longev. 2020;2020:4717258 pubmed 出版商
  175. Guyot A, Leuxe C, Disdier C, Oumata N, Costa N, Roux G, et al. A Small Compound Targeting Prohibitin with Potential Interest for Cognitive Deficit Rescue in Aging mice and Tau Pathology Treatment. Sci Rep. 2020;10:1143 pubmed 出版商
  176. Meilandt W, Ngu H, Gogineni A, Lalehzadeh G, Lee S, Srinivasan K, et al. Trem2 Deletion Reduces Late-Stage Amyloid Plaque Accumulation, Elevates the Aβ42:Aβ40 Ratio, and Exacerbates Axonal Dystrophy and Dendritic Spine Loss in the PS2APP Alzheimer's Mouse Model. J Neurosci. 2020;40:1956-1974 pubmed 出版商
  177. Yin Y, Pham T, Shin J, Shin N, Kang D, Lee S, et al. Arginase 2 Deficiency Promotes Neuroinflammation and Pain Behaviors Following Nerve Injury in Mice. J Clin Med. 2020;9: pubmed 出版商
  178. Walker D, Tang T, Mendsaikhan A, Tooyama I, Serrano G, Sue L, et al. Patterns of Expression of Purinergic Receptor P2RY12, a Putative Marker for Non-Activated Microglia, in Aged and Alzheimer's Disease Brains. Int J Mol Sci. 2020;21: pubmed 出版商
  179. Burrus C, McKinstry S, Kim N, Ozlu M, Santoki A, Fang F, et al. Striatal Projection Neurons Require Huntingtin for Synaptic Connectivity and Survival. Cell Rep. 2020;30:642-657.e6 pubmed 出版商
  180. Li J, Chiu J, Ramanjulu M, Blass B, Pratico D. A pharmacological chaperone improves memory by reducing Aβ and tau neuropathology in a mouse model with plaques and tangles. Mol Neurodegener. 2020;15:1 pubmed 出版商
  181. Yue D, Zhao J, Chen H, Guo M, Chen C, Zhou Y, et al. MicroRNA-7, synergizes with RORα, negatively controls the pathology of brain tissue inflammation. J Neuroinflammation. 2020;17:28 pubmed 出版商
  182. Sierksma A, Lu A, Mancuso R, Fattorelli N, Thrupp N, Salta E, et al. Novel Alzheimer risk genes determine the microglia response to amyloid-β but not to TAU pathology. EMBO Mol Med. 2020;12:e10606 pubmed 出版商
  183. Linker K, Elabd M, Tawadrous P, Cano M, Green K, Wood M, et al. Microglial activation increases cocaine self-administration following adolescent nicotine exposure. Nat Commun. 2020;11:306 pubmed 出版商
  184. Lee T, Ahn J, Park C, Kim B, Park Y, Lee J, et al. Pre-Treatment with Laminarin Protects Hippocampal CA1 Pyramidal Neurons and Attenuates Reactive Gliosis Following Transient Forebrain Ischemia in Gerbils. Mar Drugs. 2020;18: pubmed 出版商
  185. Gao Y, Tu D, Yang R, Chu C, Hong J, Gao H. Through Reducing ROS Production, IL-10 Suppresses Caspase-1-Dependent IL-1β Maturation, thereby Preventing Chronic Neuroinflammation and Neurodegeneration. Int J Mol Sci. 2020;21: pubmed 出版商
  186. Tang X, Yan K, Wang Y, Wang Y, Chen H, Xu J, et al. Activation of PPAR-β/δ Attenuates Brain Injury by Suppressing Inflammation and Apoptosis in a Collagenase-Induced Intracerebral Hemorrhage Mouse Model. Neurochem Res. 2020;45:837-850 pubmed 出版商
  187. Yu X, Liu H, Hamel K, Morvan M, Yu S, Leff J, et al. Dorsal root ganglion macrophages contribute to both the initiation and persistence of neuropathic pain. Nat Commun. 2020;11:264 pubmed 出版商
  188. Ozen I, Ruscher K, Nilsson R, Flygt J, Clausen F, Marklund N. Interleukin-1 Beta Neutralization Attenuates Traumatic Brain Injury-Induced Microglia Activation and Neuronal Changes in the Globus Pallidus. Int J Mol Sci. 2020;21: pubmed 出版商
  189. Evonuk K, Doyle R, Moseley C, Thornell I, Adler K, Bingaman A, et al. Reduction of AMPA receptor activity on mature oligodendrocytes attenuates loss of myelinated axons in autoimmune neuroinflammation. Sci Adv. 2020;6:eaax5936 pubmed 出版商
  190. Ding H, Chen J, Su M, Lin Z, Zhan H, Yang F, et al. BDNF promotes activation of astrocytes and microglia contributing to neuroinflammation and mechanical allodynia in cyclophosphamide-induced cystitis. J Neuroinflammation. 2020;17:19 pubmed 出版商
  191. Smith H, Freeman O, Butcher A, Holmqvist S, Humoud I, Schätzl T, et al. Astrocyte Unfolded Protein Response Induces a Specific Reactivity State that Causes Non-Cell-Autonomous Neuronal Degeneration. Neuron. 2020;: pubmed 出版商
  192. Zhang S, Hu L, Jiang J, Li H, Wu Q, Ooi K, et al. HMGB1/RAGE axis mediates stress-induced RVLM neuroinflammation in mice via impairing mitophagy flux in microglia. J Neuroinflammation. 2020;17:15 pubmed 出版商
  193. Malhotra A, Castillo Melendez M, Allison B, Sutherland A, Nitsos I, Pham Y, et al. Neurovascular effects of umbilical cord blood-derived stem cells in growth-restricted newborn lambs : UCBCs for perinatal brain injury. Stem Cell Res Ther. 2020;11:17 pubmed 出版商
  194. He Z, McBride J, Xu H, Changolkar L, Kim S, Zhang B, et al. Transmission of tauopathy strains is independent of their isoform composition. Nat Commun. 2020;11:7 pubmed 出版商
  195. Anstötz M, Maccaferri G. A Toolbox of Criteria for Distinguishing Cajal-Retzius Cells from Other Neuronal Types in the Postnatal Mouse Hippocampus. Eneuro. 2020;7: pubmed 出版商
  196. Lee J, Jeon Y, Park S, Son C. An Adrenalectomy Mouse Model Reflecting Clinical Features for Chronic Fatigue Syndrome. Biomolecules. 2020;10: pubmed 出版商
  197. Kriszta G, Nemes B, Sandor Z, Acs P, Komoly S, Berente Z, et al. Investigation of Cuprizone-Induced Demyelination in mGFAP-Driven Conditional Transient Receptor Potential Ankyrin 1 (TRPA1) Receptor Knockout Mice. Cells. 2019;9: pubmed 出版商
  198. Bhattarai P, Cosacak M, Mashkaryan V, Demir S, Popova S, Govindarajan N, et al. Neuron-glia interaction through Serotonin-BDNF-NGFR axis enables regenerative neurogenesis in Alzheimer's model of adult zebrafish brain. PLoS Biol. 2020;18:e3000585 pubmed 出版商
  199. Zhang L, Pan J, Mamtilahun M, Zhu Y, Wang L, Venkatesh A, et al. Microglia exacerbate white matter injury via complement C3/C3aR pathway after hypoperfusion. Theranostics. 2020;10:74-90 pubmed 出版商
  200. Li L, Du Z, Rong B, Zhao D, Wang A, Xu Y, et al. Foam cells promote atherosclerosis progression by releasing CXCL12. Biosci Rep. 2020;40: pubmed 出版商
  201. Tzameret A, Piontkewitz Y, Nitzan A, Rudoler N, Bruzel M, Zilberstein Y, et al. Mild carotid stenosis creates gradual, progressive, lifelong brain, and eye damage: An experimental laboratory rat model. J Comp Neurol. 2020;528:1672-1682 pubmed 出版商
  202. Tan Z, Lei Z, Zhang Z, Zhang H, Shu K, Hu F, et al. Identification and characterization of microglia/macrophages in the granuloma microenvironment of encephalic schistosomiasis japonicum. BMC Infect Dis. 2019;19:1088 pubmed 出版商
  203. Robison L, Albert N, Camargo L, Anderson B, Salinero A, Riccio D, et al. High-Fat Diet-Induced Obesity Causes Sex-Specific Deficits in Adult Hippocampal Neurogenesis in Mice. Eneuro. 2020;7: pubmed 出版商
  204. Lee J, Hall J, Kroehling L, Wu L, Najar T, Nguyen H, et al. Serum Amyloid A Proteins Induce Pathogenic Th17 Cells and Promote Inflammatory Disease. Cell. 2020;180:79-91.e16 pubmed 出版商
  205. Wheeler J, McMillan P, Strovas T, Liachko N, Amlie Wolf A, Kow R, et al. Activity of the poly(A) binding protein MSUT2 determines susceptibility to pathological tau in the mammalian brain. Sci Transl Med. 2019;11: pubmed 出版商
  206. Ward L, Lee D, Sharma A, Wang A, Naouar I, Ma X, et al. Siponimod therapy implicates Th17 cells in a preclinical model of subpial cortical injury. JCI Insight. 2020;5: pubmed 出版商
  207. Streeter K, Sunshine M, Brant J, Sandoval A, Maden M, Fuller D. Molecular and histologic outcomes following spinal cord injury in spiny mice, Acomys cahirinus. J Comp Neurol. 2020;528:1535-1547 pubmed 出版商
  208. Moutal A, Kalinin S, Kowal K, Marangoni N, Dupree J, Lin S, et al. Neuronal Conditional Knockout of Collapsin Response Mediator Protein 2 Ameliorates Disease Severity in a Mouse Model of Multiple Sclerosis. ASN Neuro. 2019;11:1759091419892090 pubmed 出版商
  209. Mathiesen Janiurek M, Soylu Kucharz R, Christoffersen C, Kucharz K, Lauritzen M. Apolipoprotein M-bound sphingosine-1-phosphate regulates blood-brain barrier paracellular permeability and transcytosis. elife. 2019;8: pubmed 出版商
  210. Ising C, Venegas C, Zhang S, Scheiblich H, Schmidt S, Vieira Saecker A, et al. NLRP3 inflammasome activation drives tau pathology. Nature. 2019;: pubmed 出版商
  211. Chini M, Pöpplau J, Lindemann C, Carol Perdiguer L, Hnida M, Oberländer V, et al. Resolving and Rescuing Developmental Miswiring in a Mouse Model of Cognitive Impairment. Neuron. 2020;105:60-74.e7 pubmed 出版商
  212. N diaye M, Brauner S, Flytzani S, Kular L, Warnecke A, Adzemovic M, et al. C-type lectin receptors Mcl and Mincle control development of multiple sclerosis-like neuroinflammation. J Clin Invest. 2020;130:838-852 pubmed 出版商
  213. Rabenstein M, Unverricht Yeboah M, Keuters M, Pikhovych A, Hucklenbroich J, Vay S, et al. Transcranial Current Stimulation Alters the Expression of Immune-Mediating Genes. Front Cell Neurosci. 2019;13:461 pubmed 出版商
  214. Wang X, Chang Y, He Y, Lyu C, Li H, Zhu J, et al. Glimepiride and glibenclamide have comparable efficacy in treating acute ischemic stroke in mice. Neuropharmacology. 2020;162:107845 pubmed 出版商
  215. Lummis N, Sánchez Pavón P, Kennedy G, Frantz A, Kihara Y, Blaho V, et al. LPA1/3 overactivation induces neonatal posthemorrhagic hydrocephalus through ependymal loss and ciliary dysfunction. Sci Adv. 2019;5:eaax2011 pubmed 出版商
  216. Piatkevich K, Bensussen S, Tseng H, Shroff S, Lopez Huerta V, Park D, et al. Population imaging of neural activity in awake behaving mice. Nature. 2019;574:413-417 pubmed 出版商
  217. Upadhya D, Kodali M, Gitaí D, Castro O, Zanirati G, Upadhya R, et al. A Model of Chronic Temporal Lobe Epilepsy Presenting Constantly Rhythmic and Robust Spontaneous Seizures, Co-morbidities and Hippocampal Neuropathology. Aging Dis. 2019;10:915-936 pubmed 出版商
  218. Feng Y, Feng F, Zheng C, Zhou Z, Jiang M, Liu Z, et al. Tanshinone IIA attenuates demyelination and promotes remyelination in A. cantonensis-infected BALB/c mice. Int J Biol Sci. 2019;15:2211-2223 pubmed 出版商
  219. Agostini A, Yuchun D, Li B, Kendall D, Pardon M. Sex-specific hippocampal metabolic signatures at the onset of systemic inflammation with lipopolysaccharide in the APPswe/PS1dE9 mouse model of Alzheimer's disease. Brain Behav Immun. 2020;83:87-111 pubmed 出版商
  220. Grimaldi A, Pediconi N, Oieni F, Pizzarelli R, Rosito M, Giubettini M, et al. Neuroinflammatory Processes, A1 Astrocyte Activation and Protein Aggregation in the Retina of Alzheimer's Disease Patients, Possible Biomarkers for Early Diagnosis. Front Neurosci. 2019;13:925 pubmed 出版商
  221. Riessland M, Kolisnyk B, Kim T, Cheng J, Ni J, Pearson J, et al. Loss of SATB1 Induces p21-Dependent Cellular Senescence in Post-mitotic Dopaminergic Neurons. Cell Stem Cell. 2019;25:514-530.e8 pubmed 出版商
  222. Ahn J, Kim D, Park J, Lee T, Lee H, Won M, et al. Expression changes of CX3CL1 and CX3CR1 proteins in the hippocampal CA1 field of the gerbil following transient global cerebral ischemia. Int J Mol Med. 2019;44:939-948 pubmed 出版商
  223. Yagensky O, Kohansal Nodehi M, Gunaseelan S, Rabe T, Zafar S, Zerr I, et al. Increased expression of heme-binding protein 1 early in Alzheimer's disease is linked to neurotoxicity. elife. 2019;8: pubmed 出版商
  224. Suh J, Romano D, Nitschke L, Herrick S, DiMarzio B, Dzhala V, et al. Loss of Ataxin-1 Potentiates Alzheimer's Pathogenesis by Elevating Cerebral BACE1 Transcription. Cell. 2019;178:1159-1175.e17 pubmed 出版商
  225. Zhang R, Liu Y, Chen Y, Li Q, Marshall C, Wu T, et al. Aquaporin 4 deletion exacerbates brain impairments in a mouse model of chronic sleep disruption. CNS Neurosci Ther. 2020;26:228-239 pubmed 出版商
  226. Wirsching H, Zhang H, Szulzewsky F, Arora S, Grandi P, Cimino P, et al. Arming oHSV with ULBP3 drives abscopal immunity in lymphocyte-depleted glioblastoma. JCI Insight. 2019;4: pubmed 出版商
  227. Dulken B, Buckley M, Navarro Negredo P, Saligrama N, Cayrol R, Leeman D, et al. Single-cell analysis reveals T cell infiltration in old neurogenic niches. Nature. 2019;571:205-210 pubmed 出版商
  228. Ghosh A, Torraville S, Mukherjee B, Walling S, Martin G, Harley C, et al. An experimental model of Braak's pretangle proposal for the origin of Alzheimer's disease: the role of locus coeruleus in early symptom development. Alzheimers Res Ther. 2019;11:59 pubmed 出版商
  229. Diéguez Hurtado R, Kato K, Giaimo B, Nieminen Kelhä M, Arf H, Ferrante F, et al. Loss of the transcription factor RBPJ induces disease-promoting properties in brain pericytes. Nat Commun. 2019;10:2817 pubmed 出版商
  230. Ohgomori T, Jinno S. The expression of keratan sulfate reveals a unique subset of microglia in the mouse hippocampus after pilocarpine-induced status epileptics. J Comp Neurol. 2020;528:14-31 pubmed 出版商
  231. Zhang Q, Zhu W, Xu F, Dai X, Shi L, Cai W, et al. The interleukin-4/PPARγ signaling axis promotes oligodendrocyte differentiation and remyelination after brain injury. PLoS Biol. 2019;17:e3000330 pubmed 出版商
  232. Lee F, Lai T, Su P, Liu F. Altered cortical Cytoarchitecture in the Fmr1 knockout mouse. Mol Brain. 2019;12:56 pubmed 出版商
  233. Andoh M, Shibata K, Okamoto K, Onodera J, Morishita K, Miura Y, et al. Exercise Reverses Behavioral and Synaptic Abnormalities after Maternal Inflammation. Cell Rep. 2019;27:2817-2825.e5 pubmed 出版商
  234. Butti E, Bacigaluppi M, Chaabane L, Ruffini F, Brambilla E, Berera G, et al. Neural stem cells of the subventricular zone contribute to neuroprotection of the corpus callosum after cuprizone-induced demyelination. J Neurosci. 2019;: pubmed 出版商
  235. Anderson S, Roberts J, Zhang J, Steele M, Romero C, Bosco A, et al. Developmental Apoptosis Promotes a Disease-Related Gene Signature and Independence from CSF1R Signaling in Retinal Microglia. Cell Rep. 2019;27:2002-2013.e5 pubmed 出版商
  236. Garcia Agudo L, Janova H, Sendler L, Arinrad S, Steixner A, Hassouna I, et al. Genetically induced brain inflammation by Cnp deletion transiently benefits from microglia depletion. FASEB J. 2019;33:8634-8647 pubmed 出版商
  237. Bertrand L, Méroth F, Tournebize M, Leda A, Sun E, Toborek M. Targeting the HIV-infected brain to improve ischemic stroke outcome. Nat Commun. 2019;10:2009 pubmed 出版商
  238. Duan W, Guo M, Yi L, Zhang J, Bi Y, Liu Y, et al. Deletion of Tbk1 disrupts autophagy and reproduces behavioral and locomotor symptoms of FTD-ALS in mice. Aging (Albany NY). 2019;11:2457-2476 pubmed 出版商
  239. Zhang X, He Q, Huang T, Zhao N, Liang F, Xu B, et al. Treadmill Exercise Decreases Aβ Deposition and Counteracts Cognitive Decline in APP/PS1 Mice, Possibly via Hippocampal Microglia Modifications. Front Aging Neurosci. 2019;11:78 pubmed 出版商
  240. Kyle J, Wu M, Gourzi S, Tsirka S. Proliferation and Differentiation in the Adult Subventricular Zone Are Not Affected by CSF1R Inhibition. Front Cell Neurosci. 2019;13:97 pubmed 出版商
  241. Vrselja Z, Daniele S, Silbereis J, Talpo F, Morozov Y, Sousa A, et al. Restoration of brain circulation and cellular functions hours post-mortem. Nature. 2019;568:336-343 pubmed 出版商
  242. Eisemann T, Costa B, Peterziel H, Angel P. Podoplanin Positive Myeloid Cells Promote Glioma Development by Immune Suppression. Front Oncol. 2019;9:187 pubmed 出版商
  243. Pluvinage J, Haney M, Smith B, Sun J, Iram T, Bonanno L, et al. CD22 blockade restores homeostatic microglial phagocytosis in ageing brains. Nature. 2019;568:187-192 pubmed 出版商
  244. Zhang P, Kishimoto Y, Grammatikakis I, Gottimukkala K, Cutler R, Zhang S, et al. Senolytic therapy alleviates Aβ-associated oligodendrocyte progenitor cell senescence and cognitive deficits in an Alzheimer's disease model. Nat Neurosci. 2019;22:719-728 pubmed 出版商
  245. Vogel S, Schäfer C, Hess S, Folz Donahue K, Nelles M, Minassian A, et al. The in vivo timeline of differentiation of engrafted human neural progenitor cells. Stem Cell Res. 2019;37:101429 pubmed 出版商
  246. Wang E, Dai Z, Ferrante A, Drake C, Christiano A. A Subset of TREM2+ Dermal Macrophages Secretes Oncostatin M to Maintain Hair Follicle Stem Cell Quiescence and Inhibit Hair Growth. Cell Stem Cell. 2019;: pubmed 出版商
  247. Bieri G, Brahic M, Bousset L, Couthouis J, Kramer N, Ma R, et al. LRRK2 modifies α-syn pathology and spread in mouse models and human neurons. Acta Neuropathol. 2019;137:961-980 pubmed 出版商
  248. Zhong L, Xu Y, Zhuo R, Wang T, Wang K, Huang R, et al. Soluble TREM2 ameliorates pathological phenotypes by modulating microglial functions in an Alzheimer's disease model. Nat Commun. 2019;10:1365 pubmed 出版商
  249. Hocker A, Beyeler S, Gardner A, Johnson S, Watters J, Huxtable A. One bout of neonatal inflammation impairs adult respiratory motor plasticity in male and female rats. elife. 2019;8: pubmed 出版商
  250. Martorell A, Paulson A, Suk H, Abdurrob F, Drummond G, Guan W, et al. Multi-sensory Gamma Stimulation Ameliorates Alzheimer's-Associated Pathology and Improves Cognition. Cell. 2019;177:256-271.e22 pubmed 出版商
  251. Carballo Carbajal I, Laguna A, Romero Gimenez J, Cuadros T, Bove J, Martinez Vicente M, et al. Brain tyrosinase overexpression implicates age-dependent neuromelanin production in Parkinson's disease pathogenesis. Nat Commun. 2019;10:973 pubmed 出版商
  252. Willard A, Isett B, Whalen T, Mastro K, Ki C, Mao X, et al. State transitions in the substantia nigra reticulata predict the onset of motor deficits in models of progressive dopamine depletion in mice. elife. 2019;8: pubmed 出版商
  253. Pan R, Ma J, Kong X, Wang X, Li S, Qi X, et al. Sodium rutin ameliorates Alzheimer's disease-like pathology by enhancing microglial amyloid-β clearance. Sci Adv. 2019;5:eaau6328 pubmed 出版商
  254. Joy M, Ben Assayag E, Shabashov Stone D, Liraz Zaltsman S, Mazzitelli J, Arenas M, et al. CCR5 Is a Therapeutic Target for Recovery after Stroke and Traumatic Brain Injury. Cell. 2019;176:1143-1157.e13 pubmed 出版商
  255. Koike T, Tanaka S, Hirahara Y, Oe S, Kurokawa K, Maeda M, et al. Morphological characteristics of p75 neurotrophin receptor-positive cells define a new type of glial cell in the rat dorsal root ganglia. J Comp Neurol. 2019;527:2047-2060 pubmed 出版商
  256. Ling S, Dastidar S, Tokunaga S, Ho W, Lim K, Ilieva H, et al. Overriding FUS autoregulation in mice triggers gain-of-toxic dysfunctions in RNA metabolism and autophagy-lysosome axis. elife. 2019;8: pubmed 出版商
  257. Amal H, Gong G, Gjoneska E, Lewis S, Wishnok J, Tsai L, et al. S-nitrosylation of E3 ubiquitin-protein ligase RNF213 alters non-canonical Wnt/Ca+2 signaling in the P301S mouse model of tauopathy. Transl Psychiatry. 2019;9:44 pubmed 出版商
  258. Rosenzweig N, Dvir Szternfeld R, Tsitsou Kampeli A, Keren Shaul H, Ben Yehuda H, Weill Raynal P, et al. PD-1/PD-L1 checkpoint blockade harnesses monocyte-derived macrophages to combat cognitive impairment in a tauopathy mouse model. Nat Commun. 2019;10:465 pubmed 出版商
  259. Ma W, Silverman S, Zhao L, Villasmil R, Campos M, Amaral J, et al. Absence of TGFβ signaling in retinal microglia induces retinal degeneration and exacerbates choroidal neovascularization. elife. 2019;8: pubmed 出版商
  260. Cheng W, Martens K, Bashir A, Cheung H, Stukas S, Gibbs E, et al. CHIMERA repetitive mild traumatic brain injury induces chronic behavioural and neuropathological phenotypes in wild-type and APP/PS1 mice. Alzheimers Res Ther. 2019;11:6 pubmed 出版商
  261. Jassim A, Inman D. Evidence of Hypoxic Glial Cells in a Model of Ocular Hypertension. Invest Ophthalmol Vis Sci. 2019;60:1-15 pubmed 出版商
  262. Düsedau H, Kleveman J, Figueiredo C, Biswas A, Steffen J, Kliche S, et al. p75NTR regulates brain mononuclear cell function and neuronal structure in Toxoplasma infection-induced neuroinflammation. Glia. 2019;67:193-211 pubmed 出版商
  263. Stojic A, Bojcevski J, Williams S, Bas Orth C, Nessler S, Linington C, et al. Preclinical stress originates in the rat optic nerve head during development of autoimmune optic neuritis. Glia. 2019;67:512-524 pubmed 出版商
  264. Noctor S, Penna E, Shepherd H, Chelson C, Barger N, Mart nez Cerde o V, et al. Periventricular microglial cells interact with dividing precursor cells in the nonhuman primate and rodent prenatal cerebral cortex. J Comp Neurol. 2019;527:1598-1609 pubmed 出版商
  265. Gibson E, Nagaraja S, Ocampo A, Tam L, Wood L, Pallegar P, et al. Methotrexate Chemotherapy Induces Persistent Tri-glial Dysregulation that Underlies Chemotherapy-Related Cognitive Impairment. Cell. 2019;176:43-55.e13 pubmed 出版商
  266. Salazar S, Cox T, Lee S, Brody A, Chyung A, Haas L, et al. Alzheimer's Disease Risk Factor Pyk2 Mediates Amyloid-β-Induced Synaptic Dysfunction and Loss. J Neurosci. 2019;39:758-772 pubmed 出版商
  267. Zeiner P, Preusse C, Golebiewska A, Zinke J, Iriondo A, Muller A, et al. Distribution and prognostic impact of microglia/macrophage subpopulations in gliomas. Brain Pathol. 2019;29:513-529 pubmed 出版商
  268. Hill J, Zuluaga Ramirez V, Gajghate S, Winfield M, Sriram U, Rom S, et al. Activation of GPR55 induces neuroprotection of hippocampal neurogenesis and immune responses of neural stem cells following chronic, systemic inflammation. Brain Behav Immun. 2019;76:165-181 pubmed 出版商
  269. Yoshimoto R, Aijima R, Ohyama Y, Yoshizumi J, Kitsuki T, Ohsaki Y, et al. Impaired Junctions and Invaded Macrophages in Oral Epithelia With Oral Pain. J Histochem Cytochem. 2019;67:245-256 pubmed 出版商
  270. Zhao Y, Sun X, Qi X. Inhibition of Drp1 hyperactivation reduces neuropathology and behavioral deficits in zQ175 knock-in mouse model of Huntington's disease. Biochem Biophys Res Commun. 2018;507:319-323 pubmed 出版商
  271. Oh H, Paik J. Genetic Ablation of FOXO in Mice to Investigate Its Physiological Role. Methods Mol Biol. 2019;1890:239-248 pubmed 出版商
  272. Aloni E, Ruggiero A, Gross A, Segal M. Learning Deficits in Adult Mitochondria Carrier Homolog 2 Forebrain Knockout Mouse. Neuroscience. 2018;394:156-163 pubmed 出版商
  273. Zhang C, Jiang M, Zhou H, Liu W, Wang C, Kang Z, et al. TLR-stimulated IRAKM activates caspase-8 inflammasome in microglia and promotes neuroinflammation. J Clin Invest. 2018;128:5399-5412 pubmed 出版商
  274. López Erauskin J, Tadokoro T, Baughn M, Myers B, McAlonis Downes M, Chillon Marinas C, et al. ALS/FTD-Linked Mutation in FUS Suppresses Intra-axonal Protein Synthesis and Drives Disease Without Nuclear Loss-of-Function of FUS. Neuron. 2018;100:816-830.e7 pubmed 出版商
  275. Nie S, Tan Y, Zhang Z, Chen G, Xiong J, Hu D, et al. Bilateral Implantation of Shear Stress Modifier in ApoE Knockout Mouse Induces Cognitive Impairment and Tau Abnormalities. Front Aging Neurosci. 2018;10:303 pubmed 出版商
  276. Real R, Peter M, Trabalza A, Khan S, Smith M, Dopp J, et al. In vivo modeling of human neuron dynamics and Down syndrome. Science. 2018;362: pubmed 出版商
  277. Louveau A, Herz J, Alme M, Salvador A, Dong M, Viar K, et al. CNS lymphatic drainage and neuroinflammation are regulated by meningeal lymphatic vasculature. Nat Neurosci. 2018;21:1380-1391 pubmed 出版商
  278. Atkins C, Miao J, Kalveram B, Juelich T, Smith J, Perez D, et al. Natural History and Pathogenesis of Wild-Type Marburg Virus Infection in STAT2 Knockout Hamsters. J Infect Dis. 2018;218:S438-S447 pubmed 出版商
  279. Han L, Wang L, Tang S, Yuan L, Wu S, Du X, et al. ITGB4 deficiency in bronchial epithelial cells directs airway inflammation and bipolar disorder-related behavior. J Neuroinflammation. 2018;15:246 pubmed 出版商
  280. Borowska Fielding J, Murataeva N, Smith B, Szczesniak A, Leishman E, Daily L, et al. Revisiting cannabinoid receptor 2 expression and function in murine retina. Neuropharmacology. 2018;141:21-31 pubmed 出版商
  281. Kaczmarek Hájek K, Zhang J, Kopp R, Grosche A, Rissiek B, Saul A, et al. Re-evaluation of neuronal P2X7 expression using novel mouse models and a P2X7-specific nanobody. elife. 2018;7: pubmed 出版商
  282. Oliveira A, Sharma R, Aquino V, Lobaton G, Bryant A, Harrison J, et al. Involvement of Microglial Cells in Hypoxia-induced Pulmonary Hypertension. Am J Respir Cell Mol Biol. 2018;59:271-273 pubmed 出版商
  283. Kiang L, Ross B, Yao J, Shanmugam S, Andrews C, Hansen S, et al. Vitreous Cytokine Expression and a Murine Model Suggest a Key Role of Microglia in the Inflammatory Response to Retinal Detachment. Invest Ophthalmol Vis Sci. 2018;59:3767-3778 pubmed 出版商
  284. Dá Mesquita S, Louveau A, Vaccari A, Smirnov I, Cornelison R, Kingsmore K, et al. Functional aspects of meningeal lymphatics in ageing and Alzheimer's disease. Nature. 2018;560:185-191 pubmed 出版商
  285. Weidner L, Kannan P, Mitsios N, Kang S, Hall M, Theodore W, et al. The expression of inflammatory markers and their potential influence on efflux transporters in drug-resistant mesial temporal lobe epilepsy tissue. Epilepsia. 2018;59:1507-1517 pubmed 出版商
  286. Bang S, Xie Y, Zhang Z, Wang Z, Xu Z, Ji R. GPR37 regulates macrophage phagocytosis and resolution of inflammatory pain. J Clin Invest. 2018;128:3568-3582 pubmed 出版商
  287. Norris G, Smirnov I, Filiano A, Shadowen H, Cody K, Thompson J, et al. Neuronal integrity and complement control synaptic material clearance by microglia after CNS injury. J Exp Med. 2018;215:1789-1801 pubmed 出版商
  288. Chhipa R, Fan Q, Anderson J, Muraleedharan R, Huang Y, Ciraolo G, et al. AMP kinase promotes glioblastoma bioenergetics and tumour growth. Nat Cell Biol. 2018;20:823-835 pubmed 出版商
  289. Appel J, Ye S, Tang F, Sun D, Zhang H, Mei L, et al. Increased Microglial Activity, Impaired Adult Hippocampal Neurogenesis, and Depressive-like Behavior in Microglial VPS35-Depleted Mice. J Neurosci. 2018;38:5949-5968 pubmed 出版商
  290. Giera S, Luo R, Ying Y, Ackerman S, Jeong S, Stoveken H, et al. Microglial transglutaminase-2 drives myelination and myelin repair via GPR56/ADGRG1 in oligodendrocyte precursor cells. elife. 2018;7: pubmed 出版商
  291. Kukreja L, Shahidehpour R, Kim G, Keegan J, Sadleir K, Russell T, et al. Differential Neurotoxicity Related to Tetracycline Transactivator and TDP-43 Expression in Conditional TDP-43 Mouse Model of Frontotemporal Lobar Degeneration. J Neurosci. 2018;38:6045-6062 pubmed 出版商
  292. Zrzavy T, Hoftberger R, Berger T, Rauschka H, Butovsky O, Weiner H, et al. Pro-inflammatory activation of microglia in the brain of patients with sepsis. Neuropathol Appl Neurobiol. 2019;45:278-290 pubmed 出版商
  293. Lee M, Sitko A, Khalid S, Shirasu Hiza M, Mason C. Spatiotemporal distribution of glia in and around the developing mouse optic tract. J Comp Neurol. 2019;527:508-521 pubmed 出版商
  294. Reichenbach N, Delekate A, Breithausen B, Keppler K, Poll S, Schulte T, et al. P2Y1 receptor blockade normalizes network dysfunction and cognition in an Alzheimer's disease model. J Exp Med. 2018;215:1649-1663 pubmed 出版商
  295. Wendeln A, Degenhardt K, Kaurani L, Gertig M, Ulas T, Jain G, et al. Innate immune memory in the brain shapes neurological disease hallmarks. Nature. 2018;556:332-338 pubmed 出版商
  296. Mironets E, Osei Owusu P, Bracchi Ricard V, Fischer R, Owens E, Ricard J, et al. Soluble TNFα Signaling within the Spinal Cord Contributes to the Development of Autonomic Dysreflexia and Ensuing Vascular and Immune Dysfunction after Spinal Cord Injury. J Neurosci. 2018;38:4146-4162 pubmed 出版商
  297. Seipold L, Altmeppen H, Koudelka T, Tholey A, Kaspárek P, Sedlacek R, et al. In vivo regulation of the A disintegrin and metalloproteinase 10 (ADAM10) by the tetraspanin 15. Cell Mol Life Sci. 2018;75:3251-3267 pubmed 出版商
  298. Zhao Y, Wu X, Li X, Jiang L, Gui X, Liu Y, et al. TREM2 Is a Receptor for β-Amyloid that Mediates Microglial Function. Neuron. 2018;97:1023-1031.e7 pubmed 出版商
  299. Giurisato E, Xu Q, Lonardi S, Telfer B, Russo I, Pearson A, et al. Myeloid ERK5 deficiency suppresses tumor growth by blocking protumor macrophage polarization via STAT3 inhibition. Proc Natl Acad Sci U S A. 2018;115:E2801-E2810 pubmed 出版商
  300. Zukor K, Wang H, Siddharthan V, Julander J, Morrey J. Zika virus-induced acute myelitis and motor deficits in adult interferon ??/? receptor knockout mice. J Neurovirol. 2018;24:273-290 pubmed 出版商
  301. Rizzi C, Tiberi A, Giustizieri M, Marrone M, Gobbo F, Carucci N, et al. NGF steers microglia toward a neuroprotective phenotype. Glia. 2018;66:1395-1416 pubmed 出版商
  302. Casali B, Reed Geaghan E, Landreth G. Nuclear receptor agonist-driven modification of inflammation and amyloid pathology enhances and sustains cognitive improvements in a mouse model of Alzheimer's disease. J Neuroinflammation. 2018;15:43 pubmed 出版商
  303. Sokhi U, Liber M, Frye L, Park S, Kang K, Pannellini T, et al. Dissection and function of autoimmunity-associated TNFAIP3 (A20) gene enhancers in humanized mouse models. Nat Commun. 2018;9:658 pubmed 出版商
  304. Hou Y, Lautrup S, Cordonnier S, Wang Y, Croteau D, Zavala E, et al. NAD+ supplementation normalizes key Alzheimer's features and DNA damage responses in a new AD mouse model with introduced DNA repair deficiency. Proc Natl Acad Sci U S A. 2018;115:E1876-E1885 pubmed 出版商
  305. Zhang R, Wu Y, Xie F, Zhong Y, Wang Y, Xu M, et al. RGMa mediates reactive astrogliosis and glial scar formation through TGF?1/Smad2/3 signaling after stroke. Cell Death Differ. 2018;25:1503-1516 pubmed 出版商
  306. Niraula A, Wang Y, Godbout J, Sheridan J. Corticosterone Production during Repeated Social Defeat Causes Monocyte Mobilization from the Bone Marrow, Glucocorticoid Resistance, and Neurovascular Adhesion Molecule Expression. J Neurosci. 2018;38:2328-2340 pubmed 出版商
  307. Watanabe S, Komine O, Endo F, Wakasugi K, Yamanaka K. Intracerebroventricular administration of Cystatin C ameliorates disease in SOD1-linked amyotrophic lateral sclerosis mice. J Neurochem. 2018;145:80-89 pubmed 出版商
  308. Thion M, Low D, Silvin A, Chen J, Grisel P, Schulte Schrepping J, et al. Microbiome Influences Prenatal and Adult Microglia in a Sex-Specific Manner. Cell. 2018;172:500-516.e16 pubmed 出版商
  309. Zhou K, Enkhjargal B, Xie Z, Sun C, Wu L, Malaguit J, et al. Dihydrolipoic Acid Inhibits Lysosomal Rupture and NLRP3 Through Lysosome-Associated Membrane Protein-1/Calcium/Calmodulin-Dependent Protein Kinase II/TAK1 Pathways After Subarachnoid Hemorrhage in Rat. Stroke. 2018;49:175-183 pubmed 出版商
  310. Ziegler Waldkirch S, d Errico P, Sauer J, Erny D, Savanthrapadian S, Loreth D, et al. Seed-induced Aβ deposition is modulated by microglia under environmental enrichment in a mouse model of Alzheimer's disease. EMBO J. 2018;37:167-182 pubmed 出版商
  311. Gasparotto J, Girardi C, Somensi N, Ribeiro C, Moreira J, Michels M, et al. Receptor for advanced glycation end products mediates sepsis-triggered amyloid-β accumulation, Tau phosphorylation, and cognitive impairment. J Biol Chem. 2018;293:226-244 pubmed 出版商
  312. Jiang Y, Lin X, Tang Z, Lee C, Tian G, Du Y, et al. Critical role of caveolin-1 in ocular neovascularization and multitargeted antiangiogenic effects of cavtratin via JNK. Proc Natl Acad Sci U S A. 2017;114:10737-10742 pubmed 出版商
  313. Zhang L, Tan J, Jiang X, Qian W, Yang T, Sun X, et al. Neuron-derived CCL2 contributes to microglia activation and neurological decline in hepatic encephalopathy. Biol Res. 2017;50:26 pubmed 出版商
  314. Gesteira T, Sun M, Coulson Thomas Y, Yamaguchi Y, Yeh L, Hascall V, et al. Hyaluronan Rich Microenvironment in the Limbal Stem Cell Niche Regulates Limbal Stem Cell Differentiation. Invest Ophthalmol Vis Sci. 2017;58:4407-4421 pubmed 出版商
  315. Salazar S, Gallardo C, Kaufman A, Herber C, Haas L, Robinson S, et al. Conditional Deletion of Prnp Rescues Behavioral and Synaptic Deficits after Disease Onset in Transgenic Alzheimer's Disease. J Neurosci. 2017;37:9207-9221 pubmed 出版商
  316. Bialas A, Presumey J, Das A, van der Poel C, Lapchak P, Mesin L, et al. Microglia-dependent synapse loss in type I interferon-mediated lupus. Nature. 2017;546:539-543 pubmed 出版商
  317. DeWalt G, Eldred W. Visual system pathology in humans and animal models of blast injury. J Comp Neurol. 2017;525:2955-2967 pubmed 出版商
  318. Gosselin D, Skola D, Coufal N, Holtman I, Schlachetzki J, Sajti E, et al. An environment-dependent transcriptional network specifies human microglia identity. Science. 2017;356: pubmed 出版商
  319. Barazzuol L, Ju L, Jeggo P. A coordinated DNA damage response promotes adult quiescent neural stem cell activation. PLoS Biol. 2017;15:e2001264 pubmed 出版商
  320. Castellano J, Mosher K, Abbey R, McBride A, James M, Berdnik D, et al. Human umbilical cord plasma proteins revitalize hippocampal function in aged mice. Nature. 2017;544:488-492 pubmed 出版商
  321. Schludi M, Becker L, Garrett L, Gendron T, Zhou Q, Schreiber F, et al. Spinal poly-GA inclusions in a C9orf72 mouse model trigger motor deficits and inflammation without neuron loss. Acta Neuropathol. 2017;134:241-254 pubmed 出版商
  322. Vaughn A, Cooper E, DiLorenzo P, O Loughlin L, Konkel M, Peters J, et al. Energy-dense diet triggers changes in gut microbiota, reorganization of gut?brain vagal communication and increases body fat accumulation. Acta Neurobiol Exp (Wars). 2017;77:18-30 pubmed
  323. Connolly N, Stokum J, Schneider C, Ozawa T, Xu S, Galisteo R, et al. Genetically engineered rat gliomas: PDGF-driven tumor initiation and progression in tv-a transgenic rats recreate key features of human brain cancer. PLoS ONE. 2017;12:e0174557 pubmed 出版商
  324. Zhou Y, Chen S, Liu D, Manyande A, Zhang W, Yang S, et al. The Role of Spinal GABAB Receptors in Cancer-Induced Bone Pain in Rats. J Pain. 2017;18:933-946 pubmed 出版商
  325. Rong H, Zhao Z, Feng J, Lei Y, Wu H, Sun R, et al. The effects of dexmedetomidine pretreatment on the pro- and anti-inflammation systems after spinal cord injury in rats. Brain Behav Immun. 2017;64:195-207 pubmed 出版商
  326. Hauptmann M, Burkhardt N, Munderloh U, Kuehl S, Richardt U, Krasemann S, et al. GFPuv-Expressing Recombinant Rickettsia typhi: a Useful Tool for the Study of Pathogenesis and CD8+ T Cell Immunology in R. typhi Infection. Infect Immun. 2017;85: pubmed 出版商
  327. Fonseca M, Chu S, Hernandez M, Fang M, Modarresi L, Selvan P, et al. Cell-specific deletion of C1qa identifies microglia as the dominant source of C1q in mouse brain. J Neuroinflammation. 2017;14:48 pubmed 出版商
  328. Bucks S, Cox B, Vlosich B, Manning J, Nguyen T, Stone J. Supporting cells remove and replace sensory receptor hair cells in a balance organ of adult mice. elife. 2017;6: pubmed 出版商
  329. Pignataro D, Sucunza D, Vanrell L, Lopez Franco E, Dopeso Reyes I, Vales A, et al. Adeno-Associated Viral Vectors Serotype 8 for Cell-Specific Delivery of Therapeutic Genes in the Central Nervous System. Front Neuroanat. 2017;11:2 pubmed 出版商
  330. Yang X, Huo F, Liu B, Liu J, Chen T, Li J, et al. Crocin Inhibits Oxidative Stress and Pro-inflammatory Response of Microglial Cells Associated with Diabetic Retinopathy Through the Activation of PI3K/Akt Signaling Pathway. J Mol Neurosci. 2017;61:581-589 pubmed 出版商
  331. Williams C, Uytingco C, Green W, McIntyre J, Ukhanov K, Zimmerman A, et al. Gene Therapeutic Reversal of Peripheral Olfactory Impairment in Bardet-Biedl Syndrome. Mol Ther. 2017;25:904-916 pubmed 出版商
  332. Aragon M, Topper L, Tyler C, Sanchez B, Zychowski K, Young T, et al. Serum-borne bioactivity caused by pulmonary multiwalled carbon nanotubes induces neuroinflammation via blood-brain barrier impairment. Proc Natl Acad Sci U S A. 2017;114:E1968-E1976 pubmed 出版商
  333. Vermillion M, Lei J, Shabi Y, Baxter V, Crilly N, McLane M, et al. Intrauterine Zika virus infection of pregnant immunocompetent mice models transplacental transmission and adverse perinatal outcomes. Nat Commun. 2017;8:14575 pubmed 出版商
  334. Zheng T, Pu J, Chen Y, Mao Y, Guo Z, Pan H, et al. Plasma Exosomes Spread and Cluster Around ?-Amyloid Plaques in an Animal Model of Alzheimer's Disease. Front Aging Neurosci. 2017;9:12 pubmed 出版商
  335. Kuipers H, Yoon J, van Horssen J, Han M, Bollyky P, Palmer T, et al. Phosphorylation of αB-crystallin supports reactive astrogliosis in demyelination. Proc Natl Acad Sci U S A. 2017;114:E1745-E1754 pubmed 出版商
  336. Furukawa S, Nagaike M, Ozaki K. Databases for technical aspects of immunohistochemistry. J Toxicol Pathol. 2017;30:79-107 pubmed 出版商
  337. Lim E, Nakanishi S, Hoghooghi V, Eaton S, Palmer A, Frederick A, et al. AlphaB-crystallin regulates remyelination after peripheral nerve injury. Proc Natl Acad Sci U S A. 2017;114:E1707-E1716 pubmed 出版商
  338. Mindos T, Dun X, North K, Doddrell R, Schulz A, Edwards P, et al. Merlin controls the repair capacity of Schwann cells after injury by regulating Hippo/YAP activity. J Cell Biol. 2017;216:495-510 pubmed 出版商
  339. Zhu Y, Lyapichev K, Lee D, Motti D, Ferraro N, Zhang Y, et al. Macrophage Transcriptional Profile Identifies Lipid Catabolic Pathways That Can Be Therapeutically Targeted after Spinal Cord Injury. J Neurosci. 2017;37:2362-2376 pubmed 出版商
  340. Yip P, Carrillo Jimenez A, King P, Vilalta A, Nomura K, Chau C, et al. Galectin-3 released in response to traumatic brain injury acts as an alarmin orchestrating brain immune response and promoting neurodegeneration. Sci Rep. 2017;7:41689 pubmed 出版商
  341. Stayte S, Rentsch P, Tröscher A, Bamberger M, Li K, Vissel B. Activin A Inhibits MPTP and LPS-Induced Increases in Inflammatory Cell Populations and Loss of Dopamine Neurons in the Mouse Midbrain In Vivo. PLoS ONE. 2017;12:e0167211 pubmed 出版商
  342. Berghoff S, Gerndt N, Winchenbach J, Stumpf S, Hosang L, Odoardi F, et al. Dietary cholesterol promotes repair of demyelinated lesions in the adult brain. Nat Commun. 2017;8:14241 pubmed 出版商
  343. Tufail Y, Cook D, Fourgeaud L, Powers C, Merten K, Clark C, et al. Phosphatidylserine Exposure Controls Viral Innate Immune Responses by Microglia. Neuron. 2017;93:574-586.e8 pubmed 出版商
  344. Kallakuri S, Desai A, Feng K, Tummala S, Saif T, Chen C, et al. Neuronal Injury and Glial Changes Are Hallmarks of Open Field Blast Exposure in Swine Frontal Lobe. PLoS ONE. 2017;12:e0169239 pubmed 出版商
  345. Zhao L, Li J, Fu Y, Zhang M, Wang B, Ouellette J, et al. Photoreceptor protection via blockade of BET epigenetic readers in a murine model of inherited retinal degeneration. J Neuroinflammation. 2017;14:14 pubmed 出版商
  346. GuhaSarkar D, Neiswender J, Su Q, Gao G, Sena Esteves M. Intracranial AAV-IFN-? gene therapy eliminates invasive xenograft glioblastoma and improves survival in orthotopic syngeneic murine model. Mol Oncol. 2017;11:180-193 pubmed 出版商
  347. Lee I, Koo K, Jung K, Kim M, Kim I, Hwang K, et al. Neurogenin-2-transduced human neural progenitor cells attenuate neonatal hypoxic-ischemic brain injury. Transl Res. 2017;183:121-136.e9 pubmed 出版商
  348. Tanaka Y, Suzuki G, Matsuwaki T, Hosokawa M, Serrano G, Beach T, et al. Progranulin regulates lysosomal function and biogenesis through acidification of lysosomes. Hum Mol Genet. 2017;26:969-988 pubmed 出版商
  349. Aggarwal T, Hoeber J, Ivert P, Vasylovska S, Kozlova E. Boundary Cap Neural Crest Stem Cells Promote Survival of Mutant SOD1 Motor Neurons. Neurotherapeutics. 2017;14:773-783 pubmed 出版商
  350. Takahashi H, Klein Z, Bhagat S, Kaufman A, Kostylev M, Ikezu T, et al. Opposing effects of progranulin deficiency on amyloid and tau pathologies via microglial TYROBP network. Acta Neuropathol. 2017;133:785-807 pubmed 出版商
  351. Rodriguez Callejas J, Fuchs E, Perez Cruz C. Evidence of Tau Hyperphosphorylation and Dystrophic Microglia in the Common Marmoset. Front Aging Neurosci. 2016;8:315 pubmed 出版商
  352. Guillot Sestier M, Weitz T, Town T. Quantitative 3D In Silico Modeling (q3DISM) of Cerebral Amyloid-beta Phagocytosis in Rodent Models of Alzheimer's Disease. J Vis Exp. 2016;: pubmed 出版商
  353. Wang S, Kugelman T, Buch A, Herman M, Han Y, Karakatsani M, et al. Non-invasive, Focused Ultrasound-Facilitated Gene Delivery for Optogenetics. Sci Rep. 2017;7:39955 pubmed 出版商
  354. Hellström Erkenstam N, Smith P, Fleiss B, Nair S, Svedin P, Wang W, et al. Temporal Characterization of Microglia/Macrophage Phenotypes in a Mouse Model of Neonatal Hypoxic-Ischemic Brain Injury. Front Cell Neurosci. 2016;10:286 pubmed 出版商
  355. Park T, Ryu Y, Park H, Kim J, Go J, Noh J, et al. Humulus japonicus inhibits the progression of Alzheimer's disease in a APP/PS1 transgenic mouse model. Int J Mol Med. 2017;39:21-30 pubmed 出版商
  356. Qi J, Chen C, Meng Q, Wu Y, Wu H, Zhao T. Crosstalk between Activated Microglia and Neurons in the Spinal Dorsal Horn Contributes to Stress-induced Hyperalgesia. Sci Rep. 2016;6:39442 pubmed 出版商
  357. Li M, Li Z, Yao Y, Jin W, Wood K, Liu Q, et al. Astrocyte-derived interleukin-15 exacerbates ischemic brain injury via propagation of cellular immunity. Proc Natl Acad Sci U S A. 2017;114:E396-E405 pubmed 出版商
  358. Jablonska B, Gierdalski M, Chew L, Hawley T, Catron M, Lichauco A, et al. Sirt1 regulates glial progenitor proliferation and regeneration in white matter after neonatal brain injury. Nat Commun. 2016;7:13866 pubmed 出版商
  359. Meng Z, Zhao T, Zhou K, Zhong Q, Wang Y, Xiong X, et al. A20 Ameliorates Intracerebral Hemorrhage-Induced Inflammatory Injury by Regulating TRAF6 Polyubiquitination. J Immunol. 2017;198:820-831 pubmed 出版商
  360. Schäfer N, Grosche A, Reinders J, Hauck S, Pouw R, Kuijpers T, et al. Complement Regulator FHR-3 Is Elevated either Locally or Systemically in a Selection of Autoimmune Diseases. Front Immunol. 2016;7:542 pubmed
  361. Sellgren C, Sheridan S, Gracias J, Xuan D, Fu T, Perlis R. Patient-specific models of microglia-mediated engulfment of synapses and neural progenitors. Mol Psychiatry. 2017;22:170-177 pubmed 出版商
  362. Wang A, Jensen E, Rexach J, Vinters H, Hsieh Wilson L. Loss of O-GlcNAc glycosylation in forebrain excitatory neurons induces neurodegeneration. Proc Natl Acad Sci U S A. 2016;113:15120-15125 pubmed 出版商
  363. Kokona D, Häner N, Ebneter A, Zinkernagel M. Imaging of macrophage dynamics with optical coherence tomography in anterior ischemic optic neuropathy. Exp Eye Res. 2017;154:159-167 pubmed 出版商
  364. Wang S, Jacquemyn J, Murru S, Martinelli P, Barth E, Langer T, et al. The Mitochondrial m-AAA Protease Prevents Demyelination and Hair Greying. PLoS Genet. 2016;12:e1006463 pubmed 出版商
  365. Retallack H, Di Lullo E, Arias C, Knopp K, Laurie M, Sandoval Espinosa C, et al. Zika virus cell tropism in the developing human brain and inhibition by azithromycin. Proc Natl Acad Sci U S A. 2016;113:14408-14413 pubmed
  366. Dzamko N, Gysbers A, Bandopadhyay R, Bolliger M, Uchino A, Zhao Y, et al. LRRK2 levels and phosphorylation in Parkinson's disease brain and cases with restricted Lewy bodies. Mov Disord. 2017;32:423-432 pubmed 出版商
  367. Kordower J, Goetz C, Chu Y, Halliday G, Nicholson D, Musial T, et al. Robust graft survival and normalized dopaminergic innervation do not obligate recovery in a Parkinson disease patient. Ann Neurol. 2017;81:46-57 pubmed 出版商
  368. Hurtado Alvarado G, Dominguez Salazar E, Velazquez Moctezuma J, Gómez González B. A2A Adenosine Receptor Antagonism Reverts the Blood-Brain Barrier Dysfunction Induced by Sleep Restriction. PLoS ONE. 2016;11:e0167236 pubmed 出版商
  369. Fraser J, Essebier A, Gronostajski R, Boden M, Wainwright B, Harvey T, et al. Cell-type-specific expression of NFIX in the developing and adult cerebellum. Brain Struct Funct. 2017;222:2251-2270 pubmed 出版商
  370. Hodges J, Yu X, Gilmore A, Bennett H, Tjia M, Perna J, et al. Astrocytic Contributions to Synaptic and Learning Abnormalities in a Mouse Model of Fragile X Syndrome. Biol Psychiatry. 2017;82:139-149 pubmed 出版商
  371. Mildner A, Huang H, Radke J, Stenzel W, Priller J. P2Y12 receptor is expressed on human microglia under physiological conditions throughout development and is sensitive to neuroinflammatory diseases. Glia. 2017;65:375-387 pubmed 出版商
  372. Ravà M, D Andrea A, Doni M, Kress T, Ostuni R, Bianchi V, et al. Mutual epithelium-macrophage dependency in liver carcinogenesis mediated by ST18. Hepatology. 2017;65:1708-1719 pubmed 出版商
  373. Hayano Y, Takasu K, Koyama Y, Yamada M, Ogawa K, Minami K, et al. Dorsal horn interneuron-derived Netrin-4 contributes to spinal sensitization in chronic pain via Unc5B. J Exp Med. 2016;213:2949-2966 pubmed
  374. Hübner N, Mechling A, Lee H, Reisert M, Bienert T, Hennig J, et al. The connectomics of brain demyelination: Functional and structural patterns in the cuprizone mouse model. Neuroimage. 2017;146:1-18 pubmed 出版商
  375. Xie Y, Guo H, Wang L, Xu L, Zhang X, Yu L, et al. Human albumin attenuates excessive innate immunity via inhibition of microglial Mincle/Syk signaling in subarachnoid hemorrhage. Brain Behav Immun. 2017;60:346-360 pubmed 出版商
  376. Le Blon D, Guglielmetti C, Hoornaert C, Quarta A, Daans J, Dooley D, et al. Intracerebral transplantation of interleukin 13-producing mesenchymal stem cells limits microgliosis, oligodendrocyte loss and demyelination in the cuprizone mouse model. J Neuroinflammation. 2016;13:288 pubmed
  377. Laurent C, Dorothee G, Hunot S, Martin E, Monnet Y, Duchamp M, et al. Hippocampal T cell infiltration promotes neuroinflammation and cognitive decline in a mouse model of tauopathy. Brain. 2017;140:184-200 pubmed 出版商
  378. Pan S, Li S, Hu Y, Zhang H, Liu Y, Jiang H, et al. Resveratrol post-treatment protects against neonatal brain injury after hypoxia-ischemia. Oncotarget. 2016;7:79247-79261 pubmed 出版商
  379. Cho S, Song J, Shin J, Kim S. Neonatal disease environment limits the efficacy of retinal transplantation in the LCA8 mouse model. BMC Ophthalmol. 2016;16:193 pubmed
  380. Shepherd D, Tsai S, O Brien T, Farrer R, Kartje G. Anti-Nogo-A Immunotherapy Does Not Alter Hippocampal Neurogenesis after Stroke in Adult Rats. Front Neurosci. 2016;10:467 pubmed
  381. Kirschbaum K, Sonner J, Zeller M, Deumelandt K, Bode J, Sharma R, et al. In vivo nanoparticle imaging of innate immune cells can serve as a marker of disease severity in a model of multiple sclerosis. Proc Natl Acad Sci U S A. 2016;113:13227-13232 pubmed
  382. Zhan X, Stamova B, Jin L, DeCarli C, Phinney B, Sharp F. Gram-negative bacterial molecules associate with Alzheimer disease pathology. Neurology. 2016;87:2324-2332 pubmed
  383. Goebbels S, Wieser G, Pieper A, Spitzer S, Weege B, Yan K, et al. A neuronal PI(3,4,5)P3-dependent program of oligodendrocyte precursor recruitment and myelination. Nat Neurosci. 2017;20:10-15 pubmed 出版商
  384. Teo J, Morris M, Jones N. Maternal obesity increases inflammation and exacerbates damage following neonatal hypoxic-ischaemic brain injury in rats. Brain Behav Immun. 2017;63:186-196 pubmed 出版商
  385. Koyanagi S, Kusunose N, Taniguchi M, Akamine T, Kanado Y, Ozono Y, et al. Glucocorticoid regulation of ATP release from spinal astrocytes underlies diurnal exacerbation of neuropathic mechanical allodynia. Nat Commun. 2016;7:13102 pubmed 出版商
  386. Alvarez Saavedra M, De Repentigny Y, Yang D, O Meara R, Yan K, Hashem L, et al. Voluntary Running Triggers VGF-Mediated Oligodendrogenesis to Prolong the Lifespan of Snf2h-Null Ataxic Mice. Cell Rep. 2016;17:862-875 pubmed 出版商
  387. He J, Xiang Z, Zhu X, Ai Z, Shen J, Huang T, et al. Neuroprotective Effects of 7, 8-dihydroxyflavone on Midbrain Dopaminergic Neurons in MPP+-treated Monkeys. Sci Rep. 2016;6:34339 pubmed 出版商
  388. Hofmann K, Lamberz C, Piotrowitz K, Offermann N, But D, Scheller A, et al. Tanycytes and a differential fatty acid metabolism in the hypothalamus. Glia. 2017;65:231-249 pubmed 出版商
  389. Pang Y, Dai X, Roller A, Carter K, Paul I, Bhatt A, et al. Early Postnatal Lipopolysaccharide Exposure Leads to Enhanced Neurogenesis and Impaired Communicative Functions in Rats. PLoS ONE. 2016;11:e0164403 pubmed 出版商
  390. Dekens D, Naudé P, Engelborghs S, Vermeiren Y, Van Dam D, Oude Voshaar R, et al. Neutrophil Gelatinase-Associated Lipocalin and its Receptors in Alzheimer's Disease (AD) Brain Regions: Differential Findings in AD with and without Depression. J Alzheimers Dis. 2017;55:763-776 pubmed
  391. Yamanaka T, Tosaki A, Miyazaki H, Kurosawa M, Koike M, Uchiyama Y, et al. Differential roles of NF-Y transcription factor in ER chaperone expression and neuronal maintenance in the CNS. Sci Rep. 2016;6:34575 pubmed 出版商
  392. Guglielmetti C, Le Blon D, Santermans E, Salas Perdomo A, Daans J, De Vocht N, et al. Interleukin-13 immune gene therapy prevents CNS inflammation and demyelination via alternative activation of microglia and macrophages. Glia. 2016;64:2181-2200 pubmed 出版商
  393. Vidigal de Castro M, Barbizan R, Seabra Ferreira R, Barraviera B, Leite Rodrigues de Oliveira A. Direct Spinal Ventral Root Repair following Avulsion: Effectiveness of a New Heterologous Fibrin Sealant on Motoneuron Survival and Regeneration. Neural Plast. 2016;2016:2932784 pubmed 出版商
  394. Draheim T, Liessem A, Scheld M, Wilms F, Weißflog M, Denecke B, et al. Activation of the astrocytic Nrf2/ARE system ameliorates the formation of demyelinating lesions in a multiple sclerosis animal model. Glia. 2016;64:2219-2230 pubmed 出版商
  395. Wu Q, Yang X, Zhang Y, Zhang L, Feng L. Chronic mild stress accelerates the progression of Parkinson's disease in A53T ?-synuclein transgenic mice. Exp Neurol. 2016;285:61-71 pubmed 出版商
  396. Kuan W, Bennett N, He X, Skepper J, Martynyuk N, Wijeyekoon R, et al. ?-Synuclein pre-formed fibrils impair tight junction protein expression without affecting cerebral endothelial cell function. Exp Neurol. 2016;285:72-81 pubmed 出版商
  397. Dadsetan S, Balzano T, Forteza J, Agusti A, Cabrera Pastor A, Taoro Gonzalez L, et al. Infliximab reduces peripheral inflammation, neuroinflammation, and extracellular GABA in the cerebellum and improves learning and motor coordination in rats with hepatic encephalopathy. J Neuroinflammation. 2016;13:245 pubmed 出版商
  398. Schmidt A, Kannan P, Chougnet C, Danzer S, Miller L, Jobe A, et al. Intra-amniotic LPS causes acute neuroinflammation in preterm rhesus macaques. J Neuroinflammation. 2016;13:238 pubmed 出版商
  399. Balusu S, Van Wonterghem E, De Rycke R, Raemdonck K, Stremersch S, Gevaert K, et al. Identification of a novel mechanism of blood-brain communication during peripheral inflammation via choroid plexus-derived extracellular vesicles. EMBO Mol Med. 2016;8:1162-1183 pubmed 出版商
  400. Xu H, Gelyana E, Rajsombath M, Yang T, Li S, Selkoe D. Environmental Enrichment Potently Prevents Microglia-Mediated Neuroinflammation by Human Amyloid ?-Protein Oligomers. J Neurosci. 2016;36:9041-56 pubmed 出版商
  401. Choi S, Roh D, Yoon S, Kwon S, Choi H, Han H, et al. Astrocyte sigma-1 receptors modulate connexin 43 expression leading to the induction of below-level mechanical allodynia in spinal cord injured mice. Neuropharmacology. 2016;111:34-46 pubmed 出版商
  402. Steffen J, Krohn M, Paarmann K, Schwitlick C, Brüning T, Marreiros R, et al. Revisiting rodent models: Octodon degus as Alzheimer's disease model?. Acta Neuropathol Commun. 2016;4:91 pubmed 出版商
  403. Vermeij W, Dollé M, Reiling E, Jaarsma D, Payan Gomez C, Bombardieri C, et al. Restricted diet delays accelerated ageing and genomic stress in DNA-repair-deficient mice. Nature. 2016;537:427-431 pubmed 出版商
  404. Dhillon R, Parker J, Syed Y, Edgley S, Young A, Fawcett J, et al. Axonal plasticity underpins the functional recovery following surgical decompression in a rat model of cervical spondylotic myelopathy. Acta Neuropathol Commun. 2016;4:89 pubmed 出版商
  405. Bombeiro A, Thomé R, Oliveira Nunes S, Monteiro Moreira B, Verinaud L, Oliveira A. MHC-I and PirB Upregulation in the Central and Peripheral Nervous System following Sciatic Nerve Injury. PLoS ONE. 2016;11:e0161463 pubmed 出版商
  406. Hillis J, Davies J, Mundim M, Al Dalahmah O, Szele F. Cuprizone demyelination induces a unique inflammatory response in the subventricular zone. J Neuroinflammation. 2016;13:190 pubmed 出版商
  407. Papp S, Moderzynski K, Rauch J, Heine L, Kuehl S, Richardt U, et al. Liver Necrosis and Lethal Systemic Inflammation in a Murine Model of Rickettsia typhi Infection: Role of Neutrophils, Macrophages and NK Cells. PLoS Negl Trop Dis. 2016;10:e0004935 pubmed 出版商
  408. Belinson H, Savage A, Fadrosh D, Kuo Y, Lin D, Valladares R, et al. Dual epithelial and immune cell function of Dvl1 regulates gut microbiota composition and intestinal homeostasis. JCI Insight. 2016;1: pubmed 出版商
  409. Gaudet A, Mandrekar Colucci S, Hall J, Sweet D, Schmitt P, Xu X, et al. miR-155 Deletion in Mice Overcomes Neuron-Intrinsic and Neuron-Extrinsic Barriers to Spinal Cord Repair. J Neurosci. 2016;36:8516-32 pubmed 出版商
  410. McAteer K, Corrigan F, Thornton E, Turner R, Vink R. Short and Long Term Behavioral and Pathological Changes in a Novel Rodent Model of Repetitive Mild Traumatic Brain Injury. PLoS ONE. 2016;11:e0160220 pubmed 出版商
  411. Vingill S, Brockelt D, Lancelin C, Tatenhorst L, Dontcheva G, Preisinger C, et al. Loss of FBXO7 (PARK15) results in reduced proteasome activity and models a parkinsonism-like phenotype in mice. EMBO J. 2016;35:2008-25 pubmed 出版商
  412. Saggu R, Schumacher T, Gerich F, Rakers C, Tai K, Delekate A, et al. Astroglial NF-kB contributes to white matter damage and cognitive impairment in a mouse model of vascular dementia. Acta Neuropathol Commun. 2016;4:76 pubmed 出版商
  413. Lee S, Le Pichon C, Adolfsson O, Gafner V, Pihlgren M, Lin H, et al. Antibody-Mediated Targeting of Tau In Vivo Does Not Require Effector Function and Microglial Engagement. Cell Rep. 2016;16:1690-1700 pubmed 出版商
  414. Portillo J, Lopez Corcino Y, Miao Y, Tang J, Sheibani N, Kern T, et al. CD40 in Retinal Müller Cells Induces P2X7-Dependent Cytokine Expression in Macrophages/Microglia in Diabetic Mice and Development of Early Experimental Diabetic Retinopathy. Diabetes. 2017;66:483-493 pubmed 出版商
  415. Palibrk V, Suganthan R, Scheffler K, Wang W, BjørÃ¥s M, Bøe S. PML regulates neuroprotective innate immunity and neuroblast commitment in a hypoxic-ischemic encephalopathy model. Cell Death Dis. 2016;7:e2320 pubmed 出版商
  416. Alves S, Marais T, Biferi M, Furling D, Marinello M, El Hachimi K, et al. Lentiviral vector-mediated overexpression of mutant ataxin-7 recapitulates SCA7 pathology and promotes accumulation of the FUS/TLS and MBNL1 RNA-binding proteins. Mol Neurodegener. 2016;11:58 pubmed 出版商
  417. Kawahara K, Hirata H, Ohbuchi K, Nishi K, Maeda A, Kuniyasu A, et al. The novel monoclonal antibody 9F5 reveals expression of a fragment of GPNMB/osteoactivin processed by furin-like protease(s) in a subpopulation of microglia in neonatal rat brain. Glia. 2016;64:1938-61 pubmed 出版商
  418. Choi M, Ahn S, Yang E, Kim H, Chong Y, Kim H. Hippocampus-based contextual memory alters the morphological characteristics of astrocytes in the dentate gyrus. Mol Brain. 2016;9:72 pubmed 出版商
  419. Takayama F, Hayashi Y, Wu Z, Liu Y, Nakanishi H. Diurnal dynamic behavior of microglia in response to infected bacteria through the UDP-P2Y6 receptor system. Sci Rep. 2016;6:30006 pubmed 出版商
  420. Urbán N, van den Berg D, Forget A, Andersen J, Demmers J, Hunt C, et al. Return to quiescence of mouse neural stem cells by degradation of a proactivation protein. Science. 2016;353:292-5 pubmed 出版商
  421. Sato M, Kawano M, Yanagawa Y, Hayashi Y. In vivo two-photon imaging of striatal neuronal circuits in mice. Neurobiol Learn Mem. 2016;135:146-151 pubmed 出版商
  422. Chuang T, Guo Y, Seki S, Rosen A, Johanson D, Mandell J, et al. LRP1 expression in microglia is protective during CNS autoimmunity. Acta Neuropathol Commun. 2016;4:68 pubmed 出版商
  423. Miloudi K, Binet F, Wilson A, Cerani A, Oubaha M, Ménard C, et al. Truncated netrin-1 contributes to pathological vascular permeability in diabetic retinopathy. J Clin Invest. 2016;126:3006-22 pubmed 出版商
  424. Duggett N, Griffiths L, McKenna O, De Santis V, Yongsanguanchai N, Mokori E, et al. Oxidative stress in the development, maintenance and resolution of paclitaxel-induced painful neuropathy. Neuroscience. 2016;333:13-26 pubmed 出版商
  425. Bombeiro A, Santini J, Thomé R, Ferreira E, Nunes S, Moreira B, et al. Enhanced Immune Response in Immunodeficient Mice Improves Peripheral Nerve Regeneration Following Axotomy. Front Cell Neurosci. 2016;10:151 pubmed 出版商
  426. Neves J, Zhu J, Sousa Victor P, Konjikusic M, Riley R, Chew S, et al. Immune modulation by MANF promotes tissue repair and regenerative success in the retina. Science. 2016;353:aaf3646 pubmed 出版商
  427. Sommer A, Fadler T, Dorfmeister E, Hoffmann A, Xiang W, Winner B, et al. Infiltrating T lymphocytes reduce myeloid phagocytosis activity in synucleinopathy model. J Neuroinflammation. 2016;13:174 pubmed 出版商
  428. Vasek M, Garber C, Dorsey D, Durrant D, Bollman B, Soung A, et al. A complement-microglial axis drives synapse loss during virus-induced memory impairment. Nature. 2016;534:538-43 pubmed 出版商
  429. Tam W, Au N, Ma C. The association between laminin and microglial morphology in vitro. Sci Rep. 2016;6:28580 pubmed 出版商
  430. Vernay A, Therreau L, Blot B, Risson V, Dirrig Grosch S, Waegaert R, et al. A transgenic mouse expressing CHMP2Bintron5 mutant in neurons develops histological and behavioural features of amyotrophic lateral sclerosis and frontotemporal dementia. Hum Mol Genet. 2016;25:3341-3360 pubmed 出版商
  431. Ure K, Lu H, Wang W, Ito Ishida A, Wu Z, He L, et al. Restoration of Mecp2 expression in GABAergic neurons is sufficient to rescue multiple disease features in a mouse model of Rett syndrome. elife. 2016;5: pubmed 出版商
  432. White K, Hutton S, Weimer J, Sheridan P. Diet-induced obesity prolongs neuroinflammation and recruits CCR2(+) monocytes to the brain following herpes simplex virus (HSV)-1 latency in mice. Brain Behav Immun. 2016;57:68-78 pubmed 出版商
  433. Hutchinson E, Schwerin S, Radomski K, Irfanoglu M, Juliano S, Pierpaoli C. Quantitative MRI and DTI Abnormalities During the Acute Period Following CCI in the Ferret. Shock. 2016;46:167-76 pubmed 出版商
  434. Safaiyan S, Kannaiyan N, Snaidero N, Brioschi S, Biber K, Yona S, et al. Age-related myelin degradation burdens the clearance function of microglia during aging. Nat Neurosci. 2016;19:995-8 pubmed 出版商
  435. Sawada Y, Konno A, Nagaoka J, Hirai H. Inflammation-induced reversible switch of the neuron-specific enolase promoter from Purkinje neurons to Bergmann glia. Sci Rep. 2016;6:27758 pubmed 出版商
  436. Kim H, Lee J, Park K, Kim W, Roh G. A mitochondrial division inhibitor, Mdivi-1, inhibits mitochondrial fragmentation and attenuates kainic acid-induced hippocampal cell death. BMC Neurosci. 2016;17:33 pubmed 出版商
  437. Auderset L, Cullen C, Young K. Low Density Lipoprotein-Receptor Related Protein 1 Is Differentially Expressed by Neuronal and Glial Populations in the Developing and Mature Mouse Central Nervous System. PLoS ONE. 2016;11:e0155878 pubmed 出版商
  438. Huang R, Harmsen S, Samii J, Karabeber H, Pitter K, Holland E, et al. High Precision Imaging of Microscopic Spread of Glioblastoma with a Targeted Ultrasensitive SERRS Molecular Imaging Probe. Theranostics. 2016;6:1075-84 pubmed 出版商
  439. Morisaki Y, Niikura M, Watanabe M, Onishi K, Tanabe S, Moriwaki Y, et al. Selective Expression of Osteopontin in ALS-resistant Motor Neurons is a Critical Determinant of Late Phase Neurodegeneration Mediated by Matrix Metalloproteinase-9. Sci Rep. 2016;6:27354 pubmed 出版商
  440. Hayashi Y, Morinaga S, Zhang J, Satoh Y, Meredith A, Nakata T, et al. BK channels in microglia are required for morphine-induced hyperalgesia. Nat Commun. 2016;7:11697 pubmed 出版商
  441. Singh V, Singh M, Gorantla S, Poluektova L, Maggirwar S. Smoothened Agonist Reduces Human Immunodeficiency Virus Type-1-Induced Blood-Brain Barrier Breakdown in Humanized Mice. Sci Rep. 2016;6:26876 pubmed 出版商
  442. Puchert M, Adams V, Linke A, Engele J. Evidence for the involvement of the CXCL12 system in the adaptation of skeletal muscles to physical exercise. Cell Signal. 2016;28:1205-15 pubmed 出版商
  443. Nagaoka A, Takehara H, Hayashi Takagi A, Noguchi J, Ishii K, Shirai F, et al. Abnormal intrinsic dynamics of dendritic spines in a fragile X syndrome mouse model in vivo. Sci Rep. 2016;6:26651 pubmed 出版商
  444. Lim S, Hosaka K, Nakamura M, Cao Y. Co-option of pre-existing vascular beds in adipose tissue controls tumor growth rates and angiogenesis. Oncotarget. 2016;7:38282-38291 pubmed 出版商
  445. Ricard C, Tchoghandjian A, Luche H, Grenot P, Figarella Branger D, Rougon G, et al. Phenotypic dynamics of microglial and monocyte-derived cells in glioblastoma-bearing mice. Sci Rep. 2016;6:26381 pubmed 出版商
  446. Marignier R, Ruiz A, Cavagna S, Nicole A, Watrin C, Touret M, et al. Neuromyelitis optica study model based on chronic infusion of autoantibodies in rat cerebrospinal fluid. J Neuroinflammation. 2016;13:111 pubmed 出版商
  447. Wharton K, Quigley C, Themeles M, Dunstan R, Doyle K, Cahir McFarland E, et al. JC Polyomavirus Abundance and Distribution in Progressive Multifocal Leukoencephalopathy (PML) Brain Tissue Implicates Myelin Sheath in Intracerebral Dissemination of Infection. PLoS ONE. 2016;11:e0155897 pubmed 出版商
  448. Keilhoff G, Lucas B, Uhde K, Fansa H. Selected gene profiles of stressed NSC-34 cells and rat spinal cord following peripheral nerve reconstruction and minocycline treatment. Exp Ther Med. 2016;11:1685-1699 pubmed
  449. Finnie J, Blumbergs P, Manavis J. Temporal Sequence of Autolysis in the Cerebellar Cortex of the Mouse. J Comp Pathol. 2016;154:323-8 pubmed 出版商
  450. Tamagawa T, Shinoda M, Honda K, Furukawa A, Kaji K, Nagashima H, et al. Involvement of Microglial P2Y12 Signaling in Tongue Cancer Pain. J Dent Res. 2016;95:1176-82 pubmed 出版商
  451. Yang Y, Andersson P, Hosaka K, Zhang Y, Cao R, Iwamoto H, et al. The PDGF-BB-SOX7 axis-modulated IL-33 in pericytes and stromal cells promotes metastasis through tumour-associated macrophages. Nat Commun. 2016;7:11385 pubmed 出版商
  452. Mohr M, Garcia F, Doncarlos L, Sisk C. Neurons and Glial Cells Are Added to the Female Rat Anteroventral Periventricular Nucleus During Puberty. Endocrinology. 2016;157:2393-402 pubmed 出版商
  453. Szalay G, Martinecz B, Lénárt N, Kornyei Z, Orsolits B, Judák L, et al. Microglia protect against brain injury and their selective elimination dysregulates neuronal network activity after stroke. Nat Commun. 2016;7:11499 pubmed 出版商
  454. Tong H, Kang W, Davy P, Shi Y, Sun S, Allsopp R, et al. Monocyte Trafficking, Engraftment, and Delivery of Nanoparticles and an Exogenous Gene into the Acutely Inflamed Brain Tissue - Evaluations on Monocyte-Based Delivery System for the Central Nervous System. PLoS ONE. 2016;11:e0154022 pubmed 出版商
  455. Anesten F, Holt M, Schéle E, Pálsdóttir V, Reimann F, Gribble F, et al. Preproglucagon neurons in the hindbrain have IL-6 receptor-α and show Ca2+ influx in response to IL-6. Am J Physiol Regul Integr Comp Physiol. 2016;311:R115-23 pubmed 出版商
  456. Bouvier D, Jones E, Quesseveur G, Davoli M, A Ferreira T, Quirion R, et al. High Resolution Dissection of Reactive Glial Nets in Alzheimer's Disease. Sci Rep. 2016;6:24544 pubmed 出版商
  457. Tzekov R, Dawson C, Orlando M, Mouzon B, Reed J, Evans J, et al. Sub-Chronic Neuropathological and Biochemical Changes in Mouse Visual System after Repetitive Mild Traumatic Brain Injury. PLoS ONE. 2016;11:e0153608 pubmed 出版商
  458. Brüggen B, Kremser C, Bickert A, Ebel P, Vom Dorp K, Schultz K, et al. Defective ceramide synthases in mice cause reduced amplitudes in electroretinograms and altered sphingolipid composition in retina and cornea. Eur J Neurosci. 2016;44:1700-13 pubmed 出版商
  459. Chtarto A, Humbert Claude M, Bockstael O, Das A, Boutry S, Breger L, et al. A regulatable AAV vector mediating GDNF biological effects at clinically-approved sub-antimicrobial doxycycline doses. Mol Ther Methods Clin Dev. 2016;5:16027 pubmed 出版商
  460. Kim S, Hayashi H, Ishikawa T, Shibata K, Shigetomi E, Shinozaki Y, et al. Cortical astrocytes rewire somatosensory cortical circuits for peripheral neuropathic pain. J Clin Invest. 2016;126:1983-97 pubmed 出版商
  461. Fourgeaud L, Traves P, Tufail Y, Leal Bailey H, Lew E, Burrola P, et al. TAM receptors regulate multiple features of microglial physiology. Nature. 2016;532:240-244 pubmed 出版商
  462. Williams P, Tribble J, Pepper K, Cross S, Morgan B, Morgan J, et al. Inhibition of the classical pathway of the complement cascade prevents early dendritic and synaptic degeneration in glaucoma. Mol Neurodegener. 2016;11:26 pubmed 出版商
  463. Hong S, Beja Glasser V, Nfonoyim B, Frouin A, Li S, Ramakrishnan S, et al. Complement and microglia mediate early synapse loss in Alzheimer mouse models. Science. 2016;352:712-716 pubmed 出版商
  464. Yang J, Ding S, Huang W, Hu J, Huang S, Zhang Y, et al. Interleukin-4 Ameliorates the Functional Recovery of Intracerebral Hemorrhage Through the Alternative Activation of Microglia/Macrophage. Front Neurosci. 2016;10:61 pubmed 出版商
  465. Viringipurampeer I, Metcalfe A, Bashar A, Sivak O, Yanai A, Mohammadi Z, et al. NLRP3 inflammasome activation drives bystander cone photoreceptor cell death in a P23H rhodopsin model of retinal degeneration. Hum Mol Genet. 2016;25:1501-16 pubmed 出版商
  466. Monai H, Ohkura M, Tanaka M, Oe Y, Konno A, Hirai H, et al. Calcium imaging reveals glial involvement in transcranial direct current stimulation-induced plasticity in mouse brain. Nat Commun. 2016;7:11100 pubmed 出版商
  467. Anastasiadou S, Knöll B. The multiple sclerosis drug fingolimod (FTY720) stimulates neuronal gene expression, axonal growth and regeneration. Exp Neurol. 2016;279:243-260 pubmed 出版商
  468. Osterloh A, Papp S, Moderzynski K, Kuehl S, Richardt U, Fleischer B. Persisting Rickettsia typhi Causes Fatal Central Nervous System Inflammation. Infect Immun. 2016;84:1615-1632 pubmed 出版商
  469. Fan J, Fan X, Li Y, Guo J, Xia D, Ding L, et al. Blunted inflammation mediated by NF-κB activation in hippocampus alleviates chronic normobaric hypoxia-induced anxiety-like behavior in rats. Brain Res Bull. 2016;122:54-61 pubmed 出版商
  470. McFarland B, Marks M, Rowse A, Fehling S, Gerigk M, Qin H, et al. Loss of SOCS3 in myeloid cells prolongs survival in a syngeneic model of glioma. Oncotarget. 2016;7:20621-35 pubmed 出版商
  471. Jennewein L, Ronellenfitsch M, Antonietti P, Ilina E, Jung J, Stadel D, et al. Diagnostic and clinical relevance of the autophago-lysosomal network in human gliomas. Oncotarget. 2016;7:20016-32 pubmed 出版商
  472. Zhao C, Deng Y, Liu L, Yu K, Zhang L, Wang H, et al. Dual regulatory switch through interactions of Tcf7l2/Tcf4 with stage-specific partners propels oligodendroglial maturation. Nat Commun. 2016;7:10883 pubmed 出版商
  473. Sipe G, Lowery R, Tremblay M, Kelly E, Lamantia C, Majewska A. Microglial P2Y12 is necessary for synaptic plasticity in mouse visual cortex. Nat Commun. 2016;7:10905 pubmed 出版商
  474. Loewen J, Barker Haliski M, Dahle E, White H, Wilcox K. Neuronal Injury, Gliosis, and Glial Proliferation in Two Models of Temporal Lobe Epilepsy. J Neuropathol Exp Neurol. 2016;75:366-78 pubmed 出版商
  475. Makani V, Jang Y, Christopher K, Judy W, Eckstein J, Hensley K, et al. BBB-Permeable, Neuroprotective, and Neurotrophic Polysaccharide, Midi-GAGR. PLoS ONE. 2016;11:e0149715 pubmed 出版商
  476. Xu A, Zheng G, Wang Z, Chen X, Jiang Q. Neuroprotective effects of Ilexonin A following transient focal cerebral ischemia in rats. Mol Med Rep. 2016;13:2957-66 pubmed 出版商
  477. Maeda S, Djukic B, Taneja P, Yu G, Lo I, Davis A, et al. Expression of A152T human tau causes age-dependent neuronal dysfunction and loss in transgenic mice. EMBO Rep. 2016;17:530-51 pubmed 出版商
  478. Recordati C, De Maglie M, Bianchessi S, Argentiere S, Cella C, Mattiello S, et al. Tissue distribution and acute toxicity of silver after single intravenous administration in mice: nano-specific and size-dependent effects. Part Fibre Toxicol. 2016;13:12 pubmed 出版商
  479. Liu H, Garzoni L, Herry C, Durosier L, Cao M, Burns P, et al. Can Monitoring Fetal Intestinal Inflammation Using Heart Rate Variability Analysis Signal Incipient Necrotizing Enterocolitis of the Neonate?. Pediatr Crit Care Med. 2016;17:e165-76 pubmed 出版商
  480. Fonseca M, Chu S, Pierce A, Brubaker W, Hauhart R, Mastroeni D, et al. Analysis of the Putative Role of CR1 in Alzheimer's Disease: Genetic Association, Expression and Function. PLoS ONE. 2016;11:e0149792 pubmed 出版商
  481. Ma Y, Matsuwaki T, Yamanouchi K, Nishihara M. Glucocorticoids Suppress the Protective Effect of Cyclooxygenase-2-Related Signaling on Hippocampal Neurogenesis Under Acute Immune Stress. Mol Neurobiol. 2017;54:1953-1966 pubmed 出版商
  482. Matsumoto M, Nakamachi T, Watanabe J, Sugiyama K, Ohtaki H, Murai N, et al. Pituitary Adenylate Cyclase-Activating Polypeptide (PACAP) Is Involved in Adult Mouse Hippocampal Neurogenesis After Stroke. J Mol Neurosci. 2016;59:270-9 pubmed 出版商
  483. Zondler L, Müller K, Khalaji S, Bliederhäuser C, Ruf W, Grozdanov V, et al. Peripheral monocytes are functionally altered and invade the CNS in ALS patients. Acta Neuropathol. 2016;132:391-411 pubmed 出版商
  484. Polyzos A, Holt A, Brown C, Cosme C, Wipf P, Gomez Marin A, et al. Mitochondrial targeting of XJB-5-131 attenuates or improves pathophysiology in HdhQ150 animals with well-developed disease phenotypes. Hum Mol Genet. 2016;25:1792-802 pubmed 出版商
  485. Puyang Z, Feng L, Chen H, Liang P, Troy J, Liu X. Retinal Ganglion Cell Loss is Delayed Following Optic Nerve Crush in NLRP3 Knockout Mice. Sci Rep. 2016;6:20998 pubmed 出版商
  486. Winston C, Noël A, Neustadtl A, Parsadanian M, Barton D, Chellappa D, et al. Dendritic Spine Loss and Chronic White Matter Inflammation in a Mouse Model of Highly Repetitive Head Trauma. Am J Pathol. 2016;186:552-67 pubmed 出版商
  487. Bisht K, Sharma K, Lecours C, Sánchez M, El Hajj H, Milior G, et al. Dark microglia: A new phenotype predominantly associated with pathological states. Glia. 2016;64:826-39 pubmed 出版商
  488. Furman J, Sompol P, Kraner S, Pleiss M, Putman E, Dunkerson J, et al. Blockade of Astrocytic Calcineurin/NFAT Signaling Helps to Normalize Hippocampal Synaptic Function and Plasticity in a Rat Model of Traumatic Brain Injury. J Neurosci. 2016;36:1502-15 pubmed 出版商
  489. Sharma A, Lyashchenko A, Lu L, Nasrabady S, Elmaleh M, Mendelsohn M, et al. ALS-associated mutant FUS induces selective motor neuron degeneration through toxic gain of function. Nat Commun. 2016;7:10465 pubmed 出版商
  490. Wilhelmus M, de Jager M, Smit A, van der Loo R, Drukarch B. Catalytically active tissue transglutaminase colocalises with Aβ pathology in Alzheimer's disease mouse models. Sci Rep. 2016;6:20569 pubmed 出版商
  491. Li H, Ruberu K, Karl T, Garner B. Cerebral Apolipoprotein-D Is Hypoglycosylated Compared to Peripheral Tissues and Is Variably Expressed in Mouse and Human Brain Regions. PLoS ONE. 2016;11:e0148238 pubmed 出版商
  492. Tokuda E, Brännström T, Andersen P, Marklund S. Low autophagy capacity implicated in motor system vulnerability to mutant superoxide dismutase. Acta Neuropathol Commun. 2016;4:6 pubmed 出版商
  493. Lee Kubli C, Ingves M, Henry K, Shiao R, Collyer E, Tuszynski M, et al. Analysis of the behavioral, cellular and molecular characteristics of pain in severe rodent spinal cord injury. Exp Neurol. 2016;278:91-104 pubmed 出版商
  494. Matzkin M, Miquet J, Fang Y, Hill C, Turyn D, Calandra R, et al. Alterations in oxidative, inflammatory and apoptotic events in short-lived and long-lived mice testes. Aging (Albany NY). 2016;8:95-110 pubmed
  495. Hackett A, Lee D, Dawood A, Rodriguez M, Funk L, Tsoulfas P, et al. STAT3 and SOCS3 regulate NG2 cell proliferation and differentiation after contusive spinal cord injury. Neurobiol Dis. 2016;89:10-22 pubmed 出版商
  496. Korwitz A, Merkwirth C, Richter Dennerlein R, Tröder S, Sprenger H, Quirós P, et al. Loss of OMA1 delays neurodegeneration by preventing stress-induced OPA1 processing in mitochondria. J Cell Biol. 2016;212:157-66 pubmed 出版商
  497. Kang S, Murphy R, Hwang S, Lee S, Harburg D, Krueger N, et al. Bioresorbable silicon electronic sensors for the brain. Nature. 2016;530:71-6 pubmed 出版商
  498. Yuan P, Grutzendler J. Attenuation of β-Amyloid Deposition and Neurotoxicity by Chemogenetic Modulation of Neural Activity. J Neurosci. 2016;36:632-41 pubmed 出版商
  499. Lian H, Litvinchuk A, Chiang A, Aithmitti N, Jankowsky J, Zheng H. Astrocyte-Microglia Cross Talk through Complement Activation Modulates Amyloid Pathology in Mouse Models of Alzheimer's Disease. J Neurosci. 2016;36:577-89 pubmed 出版商
  500. Liu Q, Sanai N, Jin W, La Cava A, Van Kaer L, Shi F. Neural stem cells sustain natural killer cells that dictate recovery from brain inflammation. Nat Neurosci. 2016;19:243-52 pubmed 出版商
  501. Backes H, Walberer M, Ladwig A, Rueger M, Neumaier B, Endepols H, et al. Glucose consumption of inflammatory cells masks metabolic deficits in the brain. Neuroimage. 2016;128:54-62 pubmed 出版商
  502. Osman A, Neumann S, Kuhn H, Blomgren K. Caspase inhibition impaired the neural stem/progenitor cell response after cortical ischemia in mice. Oncotarget. 2016;7:2239-48 pubmed 出版商
  503. Kindy M, Yu J, Zhu H, Smith M, Gattoni Celli S. A therapeutic cancer vaccine against GL261 murine glioma. J Transl Med. 2016;14:1 pubmed 出版商
  504. Xie C, Ginet V, Sun Y, Koike M, Zhou K, Li T, et al. Neuroprotection by selective neuronal deletion of Atg7 in neonatal brain injury. Autophagy. 2016;12:410-23 pubmed 出版商
  505. Slowicka K, Vereecke L, Mc Guire C, Sze M, Maelfait J, Kolpe A, et al. Optineurin deficiency in mice is associated with increased sensitivity to Salmonella but does not affect proinflammatory NF-κB signaling. Eur J Immunol. 2016;46:971-80 pubmed 出版商
  506. Gilkes J, Bloom M, Heldermon C. Mucopolysaccharidosis IIIB confers enhanced neonatal intracranial transduction by AAV8 but not by 5, 9 or rh10. Gene Ther. 2016;23:263-71 pubmed 出版商
  507. Haas L, Salazar S, Kostylev M, Um J, Kaufman A, Strittmatter S. Metabotropic glutamate receptor 5 couples cellular prion protein to intracellular signalling in Alzheimer's disease. Brain. 2016;139:526-46 pubmed 出版商
  508. Traka M, Podojil J, McCarthy D, Miller S, Popko B. Oligodendrocyte death results in immune-mediated CNS demyelination. Nat Neurosci. 2016;19:65-74 pubmed 出版商
  509. Grishchuk Y, Stember K, Matsunaga A, Olivares A, CRUZ N, King V, et al. Retinal Dystrophy and Optic Nerve Pathology in the Mouse Model of Mucolipidosis IV. Am J Pathol. 2016;186:199-209 pubmed 出版商
  510. Elahi M, Motoi Y, Matsumoto S, Hasan Z, Ishiguro K, Hattori N. Short-term treadmill exercise increased tau insolubility and neuroinflammation in tauopathy model mice. Neurosci Lett. 2016;610:207-12 pubmed 出版商
  511. Hellwig S, Brioschi S, Dieni S, Frings L, Masuch A, Blank T, et al. Altered microglia morphology and higher resilience to stress-induced depression-like behavior in CX3CR1-deficient mice. Brain Behav Immun. 2016;55:126-137 pubmed 出版商
  512. Zhu J, Wang Z, Zhang N, Ma J, Xu S, Wang Y, et al. Protein Interacting C-Kinase 1 Modulates Surface Expression of P2Y6 Purinoreceptor, Actin Polymerization and Phagocytosis in Microglia. Neurochem Res. 2016;41:795-803 pubmed 出版商
  513. Sang H, Liu L, Wang L, Qiu Z, Li M, Yu L, et al. Opposite roles of bradykinin B1 and B2 receptors during cerebral ischaemia-reperfusion injury in experimental diabetic rats. Eur J Neurosci. 2016;43:53-65 pubmed 出版商
  514. Ostapchenko V, Chen M, Guzman M, Xie Y, Lavine N, Fan J, et al. The Transient Receptor Potential Melastatin 2 (TRPM2) Channel Contributes to β-Amyloid Oligomer-Related Neurotoxicity and Memory Impairment. J Neurosci. 2015;35:15157-69 pubmed 出版商
  515. Sabogal Guáqueta A, Osorio E, Cardona Gómez G. Linalool reverses neuropathological and behavioral impairments in old triple transgenic Alzheimer's mice. Neuropharmacology. 2016;102:111-20 pubmed 出版商
  516. Gatticchi L, Bellezza I, Del Sordo R, Peirce M, Sidoni A, Roberti R, et al. The Tm7sf2 Gene Deficiency Protects Mice against Endotoxin-Induced Acute Kidney Injury. PLoS ONE. 2015;10:e0141885 pubmed 出版商
  517. Gu Y, Zhang Y, Bi Y, Liu J, Tan B, Gong M, et al. Mesenchymal stem cells suppress neuronal apoptosis and decrease IL-10 release via the TLR2/NFκB pathway in rats with hypoxic-ischemic brain damage. Mol Brain. 2015;8:65 pubmed 出版商
  518. Watamura N, Toba J, Yoshii A, Nikkuni M, Ohshima T. Colocalization of phosphorylated forms of WAVE1, CRMP2, and tau in Alzheimer's disease model mice: Involvement of Cdk5 phosphorylation and the effect of ATRA treatment. J Neurosci Res. 2016;94:15-26 pubmed 出版商
  519. Zarpelon A, Rodrigues F, Lopes A, Souza G, Carvalho T, Pinto L, et al. Spinal cord oligodendrocyte-derived alarmin IL-33 mediates neuropathic pain. FASEB J. 2016;30:54-65 pubmed 出版商
  520. Smolek T, Madari A, Farbáková J, Kandrac O, Jadhav S, Cente M, et al. Tau hyperphosphorylation in synaptosomes and neuroinflammation are associated with canine cognitive impairment. J Comp Neurol. 2016;524:874-95 pubmed 出版商
  521. Lutzenberger M, Burwinkel M, Riemer C, Bode V, Baier M. Ablation of CCAAT/Enhancer-Binding Protein Delta (C/EBPD): Increased Plaque Burden in a Murine Alzheimer's Disease Model. PLoS ONE. 2015;10:e0134228 pubmed 出版商
  522. Rolón Reyes K, Kucheryavykh Y, Cubano L, Inyushin M, Skatchkov S, Eaton M, et al. Microglia Activate Migration of Glioma Cells through a Pyk2 Intracellular Pathway. PLoS ONE. 2015;10:e0131059 pubmed 出版商
  523. Currais A, Farrokhi C, Dargusch R, Goujon Svrzic M, Maher P. Dietary glycemic index modulates the behavioral and biochemical abnormalities associated with autism spectrum disorder. Mol Psychiatry. 2016;21:426-36 pubmed 出版商
  524. Kim S, Chung Y, Lee H, Chung S, Lee J, Sohn U, et al. Protective effects of phosphatidylcholine on oxaliplatin-induced neuropathy in rats. Life Sci. 2015;130:81-7 pubmed 出版商
  525. Åšlusarczyk J, Trojan E, GÅ‚ombik K, Budziszewska B, Kubera M, LasoÅ„ W, et al. Prenatal stress is a vulnerability factor for altered morphology and biological activity of microglia cells. Front Cell Neurosci. 2015;9:82 pubmed 出版商
  526. Sunkaria A, Bhardwaj S, Halder A, Yadav A, Sandhir R. Migration and Phagocytic Ability of Activated Microglia During Post-natal Development is Mediated by Calcium-Dependent Purinergic Signalling. Mol Neurobiol. 2016;53:944-54 pubmed 出版商
  527. Maurya S, Mishra J, Abbas S, Bandyopadhyay S. Cypermethrin Stimulates GSK3β-Dependent Aβ and p-tau Proteins and Cognitive Loss in Young Rats: Reduced HB-EGF Signaling and Downstream Neuroinflammation as Critical Regulators. Mol Neurobiol. 2016;53:968-82 pubmed 出版商
  528. Huang L, Zhu G, Deng Y, Jiang W, Fang M, Chen C, et al. Hypertonic saline alleviates cerebral edema by inhibiting microglia-derived TNF-? and IL-1?-induced Na-K-Cl Cotransporter up-regulation. J Neuroinflammation. 2014;11:102 pubmed 出版商
  529. Paez Gonzalez P, Asrican B, Rodriguez E, Kuo C. Identification of distinct ChAT? neurons and activity-dependent control of postnatal SVZ neurogenesis. Nat Neurosci. 2014;17:934-42 pubmed 出版商
  530. König N, Trolle C, Kapuralin K, Adameyko I, Mitrecic D, Aldskogius H, et al. Murine neural crest stem cells and embryonic stem cell-derived neuron precursors survive and differentiate after transplantation in a model of dorsal root avulsion. J Tissue Eng Regen Med. 2017;11:129-137 pubmed 出版商
  531. Tan M, Yu J, Jiang T, Zhu X, Guan H, Tan L. IL12/23 p40 inhibition ameliorates Alzheimer's disease-associated neuropathology and spatial memory in SAMP8 mice. J Alzheimers Dis. 2014;38:633-46 pubmed 出版商
  532. Savard A, Lavoie K, Brochu M, Grbic D, Lepage M, Gris D, et al. Involvement of neuronal IL-1? in acquired brain lesions in a rat model of neonatal encephalopathy. J Neuroinflammation. 2013;10:110 pubmed 出版商
  533. Dilworth J, Krueger S, Dabjan M, Grills I, Torma J, Wilson G, et al. Pulsed low-dose irradiation of orthotopic glioblastoma multiforme (GBM) in a pre-clinical model: effects on vascularization and tumor control. Radiother Oncol. 2013;108:149-54 pubmed 出版商
  534. Harris N, Nogueira M, Verley D, Sutton R. Chondroitinase enhances cortical map plasticity and increases functionally active sprouting axons after brain injury. J Neurotrauma. 2013;30:1257-69 pubmed 出版商
  535. Chio C, Chang C, Wang C, Cheong C, Chao C, Cheng B, et al. Etanercept attenuates traumatic brain injury in rats by reducing early microglial expression of tumor necrosis factor-?. BMC Neurosci. 2013;14:33 pubmed 出版商
  536. Cao L, Li L, Lin D, Zuo Z. Isoflurane induces learning impairment that is mediated by interleukin 1? in rodents. PLoS ONE. 2012;7:e51431 pubmed 出版商
  537. Zhu X, Huang C, Li Q, Guo Q, Wang Y, He X, et al. Temporal distribution of p300/CBP immunoreactivity in the adult rat spinal dorsal horn following chronic constriction injury (CCI). Cell Mol Neurobiol. 2013;33:197-204 pubmed 出版商
  538. Roltsch E, Holcomb L, Young K, Marks A, Zimmer D. PSAPP mice exhibit regionally selective reductions in gliosis and plaque deposition in response to S100B ablation. J Neuroinflammation. 2010;7:78 pubmed 出版商