这是一篇来自已证抗体库的有关人类 胰岛素 (insulin) 的综述,是根据85篇发表使用所有方法的文章归纳的。这综述旨在帮助来邦网的访客找到最适合胰岛素 抗体。
胰岛素 同义词: IDDM; IDDM1; IDDM2; ILPR; IRDN; MODY10; insulin; preproinsulin; proinsulin

赛默飞世尔
小鼠 单克隆(ICBTACLS)
  • 免疫组化-石蜡切片; 人类; 1:400; 图 1a
赛默飞世尔胰岛素抗体(eBiosciences, ICBTACLS)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:400 (图 1a). Diabetes (2018) ncbi
兔 多克隆
  • 免疫印迹; 人类; 1:1000; 图 s1b
赛默飞世尔胰岛素抗体(Invitrogen, AHB0052)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 s1b). Cell Rep (2017) ncbi
豚鼠 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:100; 图 st2
赛默飞世尔胰岛素抗体(Thermo Fisher, PA1- 26938)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:100 (图 st2). Nat Commun (2017) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 5b
赛默飞世尔胰岛素抗体(Invitrogen, AHB0052)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 5b). EMBO Mol Med (2017) ncbi
兔 多克隆
  • dot blot; 小鼠; 1:1000; 图 3b
赛默飞世尔胰岛素抗体(Invitrogen, AHB0052)被用于被用于dot blot在小鼠样本上浓度为1:1000 (图 3b). Sci Rep (2016) ncbi
兔 多克隆
  • dot blot; 小鼠; 图 5c
赛默飞世尔胰岛素抗体(Invitrogen, AHB0052)被用于被用于dot blot在小鼠样本上 (图 5c). Acta Neuropathol (2016) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图 s2
赛默飞世尔胰岛素抗体(Invitrogen, AHB0052)被用于被用于免疫印迹在人类样本上 (图 s2). Biochim Biophys Acta (2016) ncbi
兔 多克隆
  • 其他; 人类; 图 6
赛默飞世尔胰岛素抗体(Invitrogen, AHB0052)被用于被用于其他在人类样本上 (图 6). Free Radic Biol Med (2016) ncbi
兔 多克隆
  • 免疫细胞化学; 小鼠; 图 2
赛默飞世尔胰岛素抗体(Invitrogen, AHB0052)被用于被用于免疫细胞化学在小鼠样本上 (图 2). J Physiol (2016) ncbi
豚鼠 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:100; 图 5
  • 免疫组化-石蜡切片; 人类; 1:100; 图 5
赛默飞世尔胰岛素抗体(Thermo Scientific, PA1-26938)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:100 (图 5) 和 被用于免疫组化-石蜡切片在人类样本上浓度为1:100 (图 5). Diabetes (2016) ncbi
小鼠 单克隆(INS05 (2D11-H5))
  • 免疫组化-石蜡切片; 大鼠; 1:100; 图 1d
赛默飞世尔胰岛素抗体(Thermo Fisher Scientific, INS05)被用于被用于免疫组化-石蜡切片在大鼠样本上浓度为1:100 (图 1d). Anat Rec (Hoboken) (2016) ncbi
兔 多克隆
  • 免疫组化; degu; 1:20; 图 4
  • 酶联免疫吸附测定; degu; 图 4n
赛默飞世尔胰岛素抗体(Invitrogen, AHB0052)被用于被用于免疫组化在degu样本上浓度为1:20 (图 4) 和 被用于酶联免疫吸附测定在degu样本上 (图 4n). PLoS ONE (2015) ncbi
兔 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:1000
  • 免疫沉淀; 小鼠; 1:500
赛默飞世尔胰岛素抗体(Invitrogen, AHB0052)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:1000 和 被用于免疫沉淀在小鼠样本上浓度为1:500. J Neurosci (2015) ncbi
兔 多克隆
  • 免疫印迹; 人类; 1:500
赛默飞世尔胰岛素抗体(Invitrogen, AHB0052)被用于被用于免疫印迹在人类样本上浓度为1:500. PLoS ONE (2015) ncbi
兔 多克隆
  • dot blot; 人类; 1:1000
赛默飞世尔胰岛素抗体(Invitrogen Thermo-Fisher, AHB0052)被用于被用于dot blot在人类样本上浓度为1:1000. J Neuropathol Exp Neurol (2015) ncbi
兔 多克隆
  • 免疫印迹; 人类
赛默飞世尔胰岛素抗体(Invitrogen, AHB0052)被用于被用于免疫印迹在人类样本上. ACS Chem Neurosci (2015) ncbi
兔 多克隆
  • 免疫细胞化学; 大鼠; 1:1000; 图 3
赛默飞世尔胰岛素抗体(Invitrogen, AHB0052)被用于被用于免疫细胞化学在大鼠样本上浓度为1:1000 (图 3). Toxicol Sci (2015) ncbi
兔 多克隆
  • 免疫组化; 小鼠; 图 s2
赛默飞世尔胰岛素抗体(生活技术, AHB0052)被用于被用于免疫组化在小鼠样本上 (图 s2). Nat Commun (2015) ncbi
兔 多克隆
  • 免疫印迹; 人类
赛默飞世尔胰岛素抗体(Invitrogen, #AHB0052)被用于被用于免疫印迹在人类样本上. Neurosci Res (2015) ncbi
兔 多克隆
  • 免疫细胞化学; 大鼠; 1:200
赛默飞世尔胰岛素抗体(Invitrogen, AHB0052)被用于被用于免疫细胞化学在大鼠样本上浓度为1:200. Eur J Med Chem (2014) ncbi
兔 多克隆
  • 免疫细胞化学; 小鼠
  • 免疫印迹; 小鼠; 1 ug/ml
赛默飞世尔胰岛素抗体(Invitrogen, AHB0052)被用于被用于免疫细胞化学在小鼠样本上 和 被用于免疫印迹在小鼠样本上浓度为1 ug/ml. Mol Cell Biol (2014) ncbi
兔 多克隆
  • 免疫沉淀; 小鼠
赛默飞世尔胰岛素抗体(Invitrogen, AHB0052)被用于被用于免疫沉淀在小鼠样本上. Nat Commun (2014) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 图 7a
赛默飞世尔胰岛素抗体(生活技术, AHB0052)被用于被用于免疫印迹在小鼠样本上 (图 7a). PLoS ONE (2014) ncbi
兔 多克隆
  • 免疫印迹; 人类; 1:1000; 图 5
赛默飞世尔胰岛素抗体(Invitrogen, AHB0052)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 5). J Pathol (2014) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 1:1000
赛默飞世尔胰岛素抗体(Invitrogen, AHB0052)被用于被用于免疫印迹在小鼠样本上浓度为1:1000. J Neurotrauma (2014) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 图 5
赛默飞世尔胰岛素抗体(Invitrogen, AHB0052)被用于被用于免疫印迹在小鼠样本上 (图 5). PLoS ONE (2013) ncbi
兔 多克隆
  • dot blot; 人类
赛默飞世尔胰岛素抗体(Invitrogen, AHB0052)被用于被用于dot blot在人类样本上. FASEB J (2013) ncbi
兔 多克隆
  • 免疫细胞化学; 人类; 1:10,000; 图 3
赛默飞世尔胰岛素抗体(Invitrogen, AHB0052)被用于被用于免疫细胞化学在人类样本上浓度为1:10,000 (图 3). PLoS ONE (2013) ncbi
兔 多克隆
  • dot blot; 人类; 1:4000
赛默飞世尔胰岛素抗体(Invitrogen, AHB0052)被用于被用于dot blot在人类样本上浓度为1:4000. FEBS Lett (2012) ncbi
兔 多克隆
  • 免疫细胞化学; 人类; 1:100; 图 8
赛默飞世尔胰岛素抗体(Invitrogen, AHB0052)被用于被用于免疫细胞化学在人类样本上浓度为1:100 (图 8). Autophagy (2011) ncbi
兔 多克隆
  • 免疫印迹; 人类
赛默飞世尔胰岛素抗体(Invitrogen, AHB0052)被用于被用于免疫印迹在人类样本上. PLoS ONE (2011) ncbi
兔 多克隆
  • 免疫印迹; 大鼠; 图 2
赛默飞世尔胰岛素抗体(Invitrogen, AHB0052)被用于被用于免疫印迹在大鼠样本上 (图 2). J Biol Chem (2011) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 图 4
赛默飞世尔胰岛素抗体(Biosource, AHB0052)被用于被用于免疫印迹在小鼠样本上 (图 4). Ann Neurol (2011) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 图 1
赛默飞世尔胰岛素抗体(Invitrogen, AHB0052)被用于被用于免疫印迹在小鼠样本上 (图 1). Eur J Neurosci (2010) ncbi
兔 多克隆
赛默飞世尔胰岛素抗体(BioSource, AHB0052)被用于. Mol Cell Biol (2006) ncbi
安迪生物R&D
小鼠 单克隆(253627)
  • 免疫组化-冰冻切片; 小鼠; 图 s4a
安迪生物R&D胰岛素抗体(R&D Systems, 253627)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 s4a). Nat Commun (2016) ncbi
小鼠 单克隆(253627)
  • 免疫细胞化学; 小鼠; 1:50; 图 7
安迪生物R&D胰岛素抗体(R&D Systems, MAB13361)被用于被用于免疫细胞化学在小鼠样本上浓度为1:50 (图 7). Cell Reprogram (2016) ncbi
大鼠 单克隆(182410)
  • 免疫印迹; 小鼠; 图 3c-d
安迪生物R&D胰岛素抗体(R&D Systems, MAB1417)被用于被用于免疫印迹在小鼠样本上 (图 3c-d). Proc Natl Acad Sci U S A (2016) ncbi
大鼠 单克隆(182410)
  • 免疫组化-石蜡切片; 小鼠; 1:200
安迪生物R&D胰岛素抗体(R&D, MAB1417)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:200. Springerplus (2014) ncbi
艾博抗(上海)贸易有限公司
小鼠 单克隆(3A1)
  • 免疫细胞化学; 小鼠; 1:300; 图 4b
艾博抗(上海)贸易有限公司胰岛素抗体(Abcam, ab8301)被用于被用于免疫细胞化学在小鼠样本上浓度为1:300 (图 4b). J Cell Sci (2017) ncbi
豚鼠 多克隆
  • 免疫细胞化学; 人类; 1:100; 图 6e
艾博抗(上海)贸易有限公司胰岛素抗体(Abcam, ab30477)被用于被用于免疫细胞化学在人类样本上浓度为1:100 (图 6e). Sci Rep (2014) ncbi
豚鼠 多克隆
  • 免疫细胞化学; 人类; 1:100
艾博抗(上海)贸易有限公司胰岛素抗体(Abcam, ab30477)被用于被用于免疫细胞化学在人类样本上浓度为1:100. PLoS ONE (2014) ncbi
兔 多克隆
  • 免疫组化-石蜡切片; 小鼠
艾博抗(上海)贸易有限公司胰岛素抗体(Abcam, AB14181)被用于被用于免疫组化-石蜡切片在小鼠样本上. PLoS ONE (2013) ncbi
圣克鲁斯生物技术
小鼠 单克隆(C-12)
  • 免疫组化; 小鼠; 图 1j
圣克鲁斯生物技术胰岛素抗体(Santa Cruz, C-12)被用于被用于免疫组化在小鼠样本上 (图 1j). Diabetes (2016) ncbi
小鼠 单克隆(2D11-H5)
  • 流式细胞仪; 人类; 1:20
  • 免疫细胞化学; 人类; 1:20; 图 3
圣克鲁斯生物技术胰岛素抗体(Santa Cruz, SC-8033)被用于被用于流式细胞仪在人类样本上浓度为1:20 和 被用于免疫细胞化学在人类样本上浓度为1:20 (图 3). Methods Mol Biol (2016) ncbi
Hytest
小鼠 单克隆(D6C4)
  • 免疫组化-石蜡切片; 小鼠; 1:200; 图 s5
Hytest胰岛素抗体(HyTest, 2IP10-D6C4)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:200 (图 s5). Nat Commun (2016) ncbi
小鼠 单克隆(D6C4)
  • 酶联免疫吸附测定; 小鼠; 1:1000; 图 8
Hytest胰岛素抗体(HyTest, D6C4)被用于被用于酶联免疫吸附测定在小鼠样本上浓度为1:1000 (图 8). Biotechnol Prog (2014) ncbi
LifeSpan Biosciences
兔 多克隆
  • 免疫组化; 小鼠
LifeSpan Biosciences胰岛素抗体(LifeSpan BioSciences, LS-B2526)被用于被用于免疫组化在小鼠样本上. PLoS ONE (2014) ncbi
武汉三鹰
兔 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:10,000; 图 s9
武汉三鹰胰岛素抗体(Proteintech, 15848-1-AP)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:10,000 (图 s9). Antioxid Redox Signal (2015) ncbi
GeneTex
豚鼠 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:200
  • 免疫组化-冰冻切片; 人类; 1:200
  • 免疫印迹; 人类
GeneTex胰岛素抗体(GeneTex, GT X27842)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:200, 被用于免疫组化-冰冻切片在人类样本上浓度为1:200 和 被用于免疫印迹在人类样本上. J Biol Chem (2014) ncbi
西格玛奥德里奇
小鼠 单克隆(K36aC10)
  • 免疫组化; 小鼠; 1:250; 图 3c
西格玛奥德里奇胰岛素抗体(Sigma, K36AC10)被用于被用于免疫组化在小鼠样本上浓度为1:250 (图 3c). J Transl Med (2018) ncbi
小鼠 单克隆(K36aC10)
  • 免疫组化-石蜡切片; 小鼠; 图 s2b
西格玛奥德里奇胰岛素抗体(Sigma, I2018)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 s2b). J Clin Invest (2018) ncbi
小鼠 单克隆(K36aC10)
  • 免疫组化; 人类; 图 5a
西格玛奥德里奇胰岛素抗体(Sigma, I 2018)被用于被用于免疫组化在人类样本上 (图 5a). Autoimmunity (2017) ncbi
小鼠 单克隆(K36aC10)
  • 免疫组化-石蜡切片; 大鼠; 1:5000; 图 st9
西格玛奥德里奇胰岛素抗体(Sigma-Aldrich, I2018)被用于被用于免疫组化-石蜡切片在大鼠样本上浓度为1:5000 (图 st9). J Toxicol Pathol (2017) ncbi
豚鼠 多克隆
  • 免疫组化-石蜡切片; 人类; 图 2c
  • 免疫组化-石蜡切片; 小鼠; 图 2c
西格玛奥德里奇胰岛素抗体(Sigma, I-8510)被用于被用于免疫组化-石蜡切片在人类样本上 (图 2c) 和 被用于免疫组化-石蜡切片在小鼠样本上 (图 2c). PLoS Genet (2016) ncbi
豚鼠 多克隆
  • 免疫细胞化学; 小鼠; 1:2000; 图 1e
  • 免疫组化; 小鼠; 1:500; 图 5d
  • 免疫组化; 人类; 1:500; 图 s6a
西格玛奥德里奇胰岛素抗体(Sigma, 18510)被用于被用于免疫细胞化学在小鼠样本上浓度为1:2000 (图 1e), 被用于免疫组化在小鼠样本上浓度为1:500 (图 5d) 和 被用于免疫组化在人类样本上浓度为1:500 (图 s6a). Cell (2017) ncbi
小鼠 单克隆(K36aC10)
  • 免疫组化; 大鼠; 1:1000; 图 s1a
西格玛奥德里奇胰岛素抗体(Sigma, I2018)被用于被用于免疫组化在大鼠样本上浓度为1:1000 (图 s1a). Prog Neuropsychopharmacol Biol Psychiatry (2016) ncbi
小鼠 单克隆(K36aC10)
  • 免疫印迹; 小鼠; 1:1000; 图 1e
西格玛奥德里奇胰岛素抗体(Sigma-Aldrich, I2018)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 1e). Diabetes (2015) ncbi
小鼠 单克隆(K36aC10)
  • 免疫细胞化学; 人类; 1:100; 图 6e
西格玛奥德里奇胰岛素抗体(Sigma-Aldrich, I2018)被用于被用于免疫细胞化学在人类样本上浓度为1:100 (图 6e). Sci Rep (2014) ncbi
小鼠 单克隆(K36aC10)
  • 免疫组化-石蜡切片; 小鼠
西格玛奥德里奇胰岛素抗体(Sigma-Aldrich, I 2018)被用于被用于免疫组化-石蜡切片在小鼠样本上. Mol Cell Endocrinol (2015) ncbi
小鼠 单克隆(K36aC10)
  • 免疫组化; 小鼠; 1:500
  • 免疫组化; 人类; 1:500
西格玛奥德里奇胰岛素抗体(Sigma, I-2018)被用于被用于免疫组化在小鼠样本上浓度为1:500 和 被用于免疫组化在人类样本上浓度为1:500. Biochim Biophys Acta (2015) ncbi
小鼠 单克隆(K36aC10)
  • 免疫细胞化学; 人类; 1:100
西格玛奥德里奇胰岛素抗体(Sigma, I2018)被用于被用于免疫细胞化学在人类样本上浓度为1:100. PLoS ONE (2014) ncbi
小鼠 单克隆(K36aC10)
  • 免疫组化-石蜡切片; 大鼠; 1:1000
西格玛奥德里奇胰岛素抗体(Sigma, I2018)被用于被用于免疫组化-石蜡切片在大鼠样本上浓度为1:1000. Cell Tissue Res (2014) ncbi
小鼠 单克隆(K36aC10)
  • 免疫组化-石蜡切片; 大鼠; 1:1000
西格玛奥德里奇胰岛素抗体(Sigma-Aldrich, I-2018)被用于被用于免疫组化-石蜡切片在大鼠样本上浓度为1:1000. Exp Mol Med (2013) ncbi
小鼠 单克隆(K36aC10)
  • 免疫组化-石蜡切片; 小鼠; 1:1000
西格玛奥德里奇胰岛素抗体(Sigma, I2018)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:1000. Int J Physiol Pathophysiol Pharmacol (2013) ncbi
小鼠 单克隆(K36aC10)
  • 免疫组化-石蜡切片; 小鼠; 1:500
西格玛奥德里奇胰岛素抗体(Sigma, I2018)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:500. J Clin Invest (2012) ncbi
小鼠 单克隆(K36aC10)
  • 免疫组化-石蜡切片; 大鼠; 1:200
西格玛奥德里奇胰岛素抗体(Sigma, I2018)被用于被用于免疫组化-石蜡切片在大鼠样本上浓度为1:200. J Endocrinol (2011) ncbi
赛信通(上海)生物试剂有限公司
小鼠 单克隆(L6B10)
  • 免疫组化-石蜡切片; 大鼠; 图 5b
  • 免疫印迹; 小鼠; 图 2e
赛信通(上海)生物试剂有限公司胰岛素抗体(Cell Signaling, 8138)被用于被用于免疫组化-石蜡切片在大鼠样本上 (图 5b) 和 被用于免疫印迹在小鼠样本上 (图 2e). J Clin Invest (2018) ncbi
兔 单克隆(C27C9)
  • 免疫组化-石蜡切片; 小鼠; 图 4i
赛信通(上海)生物试剂有限公司胰岛素抗体(Cell Signaling, 3014)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 4i). Am J Physiol Gastrointest Liver Physiol (2018) ncbi
兔 单克隆(C27C9)
  • 免疫组化-石蜡切片; 大鼠; 1:100; 图 3b
赛信通(上海)生物试剂有限公司胰岛素抗体(Cell Signaling, 3014)被用于被用于免疫组化-石蜡切片在大鼠样本上浓度为1:100 (图 3b). Int J Mol Med (2017) ncbi
兔 多克隆
  • 流式细胞仪; 小鼠; 1:100; 图 7
赛信通(上海)生物试剂有限公司胰岛素抗体(Cell signaling, 45935)被用于被用于流式细胞仪在小鼠样本上浓度为1:100 (图 7). Cell Reprogram (2016) ncbi
小鼠 单克隆(L6B10)
  • 免疫组化-石蜡切片; 人类; 1:250; 图 5
赛信通(上海)生物试剂有限公司胰岛素抗体(Cell Signaling Technology, 8138S)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:250 (图 5). Diabetes (2016) ncbi
兔 单克隆(C27C9)
  • 免疫组化-石蜡切片; 小鼠; 1:200; 图 5
  • 免疫组化-石蜡切片; 人类; 1:200; 图 5
赛信通(上海)生物试剂有限公司胰岛素抗体(Cell Signaling Technology, 3014S)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:200 (图 5) 和 被用于免疫组化-石蜡切片在人类样本上浓度为1:200 (图 5). Diabetes (2016) ncbi
兔 多克隆
  • 免疫组化; 小鼠; 图 7
赛信通(上海)生物试剂有限公司胰岛素抗体(Cell Signaling Technology, 4590)被用于被用于免疫组化在小鼠样本上 (图 7). Cell Mol Gastroenterol Hepatol (2015) ncbi
兔 单克隆(C27C9)
  • 免疫组化-石蜡切片; 小鼠; 1:200; 图 1e
赛信通(上海)生物试剂有限公司胰岛素抗体(Cell Signaling, C27C9)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:200 (图 1e). Basic Res Cardiol (2016) ncbi
兔 单克隆(C27C9)
  • 免疫组化-石蜡切片; 人类; 1:100
赛信通(上海)生物试剂有限公司胰岛素抗体(Cell Signaling Technology, 3014)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100. Nat Med (2015) ncbi
兔 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:100; 图 s3
赛信通(上海)生物试剂有限公司胰岛素抗体(Cell Signaling, 4593)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:100 (图 s3). Oncogenesis (2015) ncbi
兔 多克隆
  • 免疫组化; 小鼠; 1:500; 图 4
赛信通(上海)生物试剂有限公司胰岛素抗体(Cell Signaling, 4590)被用于被用于免疫组化在小鼠样本上浓度为1:500 (图 4). J Cell Sci (2015) ncbi
兔 多克隆
  • 免疫组化-石蜡切片; 小鼠; 图 2
赛信通(上海)生物试剂有限公司胰岛素抗体(Cell Signaling, 4590)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 2). Gastroenterology (2015) ncbi
兔 多克隆
  • 免疫组化-石蜡切片; 大鼠; 1:100
赛信通(上海)生物试剂有限公司胰岛素抗体(Cell Signaling Technology, 4590S)被用于被用于免疫组化-石蜡切片在大鼠样本上浓度为1:100. Mol Med (2015) ncbi
兔 多克隆
  • 免疫组化; 小鼠; 1:300; 图 2, 4, 5
赛信通(上海)生物试剂有限公司胰岛素抗体(Cell Signaling, 4593)被用于被用于免疫组化在小鼠样本上浓度为1:300 (图 2, 4, 5). J Biol Chem (2015) ncbi
兔 单克隆(C27C9)
  • 免疫印迹; 小鼠; 图 5
赛信通(上海)生物试剂有限公司胰岛素抗体(Cell Signaling Technology, 3014S)被用于被用于免疫印迹在小鼠样本上 (图 5). Autophagy (2014) ncbi
Developmental Studies Hybridoma Bank
大鼠 单克隆(GN-ID4)
  • 免疫组化-石蜡切片; 人类; 图 7b
Developmental Studies Hybridoma Bank胰岛素抗体(DSHB, GN-ID4)被用于被用于免疫组化-石蜡切片在人类样本上 (图 7b). Cell (2019) ncbi
大鼠 单克隆(GN-ID4)
  • 流式细胞仪; 人类; 1:500; 图 4b
  • 免疫细胞化学; 人类; 1:2000; 图 5b
Developmental Studies Hybridoma Bank胰岛素抗体(DSHB, GN-ID4-c)被用于被用于流式细胞仪在人类样本上浓度为1:500 (图 4b) 和 被用于免疫细胞化学在人类样本上浓度为1:2000 (图 5b). Cell Stem Cell (2017) ncbi
小鼠 单克隆(GS-9A8)
  • 免疫组化-冰冻切片; 人类; 图 3
Developmental Studies Hybridoma Bank胰岛素抗体(Developmental Studies Hybridoma Bank, GS-9A8)被用于被用于免疫组化-冰冻切片在人类样本上 (图 3). Nat Commun (2016) ncbi
大鼠 单克隆(GN-ID4)
  • 流式细胞仪; 人类; 1:50; 图 s20
  • 免疫细胞化学; 人类; 1:50; 图 3
Developmental Studies Hybridoma Bank胰岛素抗体(Developmental Studies Hybridoma Bank, GN-ID4)被用于被用于流式细胞仪在人类样本上浓度为1:50 (图 s20) 和 被用于免疫细胞化学在人类样本上浓度为1:50 (图 3). Nat Commun (2016) ncbi
大鼠 单克隆(GN-ID4)
  • 免疫组化-石蜡切片; 人类; 图 3
Developmental Studies Hybridoma Bank胰岛素抗体(DSHB, GN-1D4)被用于被用于免疫组化-石蜡切片在人类样本上 (图 3). Nat Med (2016) ncbi
大鼠 单克隆(GN-ID4)
  • 流式细胞仪; 人类; 1:1000; 图 3
Developmental Studies Hybridoma Bank胰岛素抗体(DSHB, GN-ID4)被用于被用于流式细胞仪在人类样本上浓度为1:1000 (图 3). Methods (2016) ncbi
默克密理博中国
小鼠 单克隆(C-PEP-01)
  • 流式细胞仪; 人类; 1:100; 表 1
  • 免疫细胞化学; 人类; 1:100; 表 1
默克密理博中国胰岛素抗体(Millipore, 05-1109)被用于被用于流式细胞仪在人类样本上浓度为1:100 (表 1) 和 被用于免疫细胞化学在人类样本上浓度为1:100 (表 1). PLoS ONE (2016) ncbi
小鼠 单克隆(MAb1)
  • 免疫组化-石蜡切片; 人类; 1:200; 图 5
默克密理博中国胰岛素抗体(Millipore, 05-1108)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:200 (图 5). Diabetes (2016) ncbi
小鼠 单克隆(C-PEP-01)
  • 流式细胞仪; 人类; 1:100
  • 免疫细胞化学; 人类; 1:100; 图 3
默克密理博中国胰岛素抗体(Millipore, 05-1109)被用于被用于流式细胞仪在人类样本上浓度为1:100 和 被用于免疫细胞化学在人类样本上浓度为1:100 (图 3). Methods Mol Biol (2016) ncbi
小鼠 单克隆(MAb1)
  • 免疫组化-自由浮动切片; 小鼠; 1:500
默克密理博中国胰岛素抗体(Chemicon, MAB1560)被用于被用于免疫组化-自由浮动切片在小鼠样本上浓度为1:500. Front Cell Neurosci (2015) ncbi
小鼠 单克隆(C-PEP-01)
  • 免疫组化; 人类
默克密理博中国胰岛素抗体(Millipore, C-PEP-01)被用于被用于免疫组化在人类样本上. Hum Gene Ther Methods (2014) ncbi
文章列表
  1. Sharon N, Chawla R, Mueller J, Vanderhooft J, Whitehorn L, Rosenthal B, et al. A Peninsular Structure Coordinates Asynchronous Differentiation with Morphogenesis to Generate Pancreatic Islets. Cell. 2019;176:790-804.e13 pubmed 出版商
  2. Wang L, Sun Z, Xiang B, Wei C, Wang Y, Sun K, et al. Targeted deletion of Insm2 in mice result in reduced insulin secretion and glucose intolerance. J Transl Med. 2018;16:297 pubmed 出版商
  3. Anquetil F, Mondanelli G, Gonzalez N, Rodríguez Calvo T, Zapardiel Gonzalo J, Krogvold L, et al. Loss of IDO1 Expression From Human Pancreatic β-Cells Precedes Their Destruction During the Development of Type 1 Diabetes. Diabetes. 2018;67:1858-1866 pubmed 出版商
  4. Millership S, Da Silva Xavier G, Choudhury A, Bertazzo S, Chabosseau P, Pedroni S, et al. Neuronatin regulates pancreatic β cell insulin content and secretion. J Clin Invest. 2018;128:3369-3381 pubmed 出版商
  5. Hamada S, Shimosegawa T, Taguchi K, Nabeshima T, Yamamoto M, Masamune A. Simultaneous K-ras activation and Keap1 deletion cause atrophy of pancreatic parenchyma. Am J Physiol Gastrointest Liver Physiol. 2018;314:G65-G74 pubmed 出版商
  6. Tseng J, Xie L, Song S, Xie Y, Allen L, Ajit D, et al. The Deacetylase HDAC6 Mediates Endogenous Neuritic Tau Pathology. Cell Rep. 2017;20:2169-2183 pubmed 出版商
  7. Smith Anttila C, Bensing S, Alimohammadi M, Dalin F, Oscarson M, Zhang M, et al. Identification of endothelin-converting enzyme-2 as an autoantigen in autoimmune polyendocrine syndrome type 1. Autoimmunity. 2017;50:223-231 pubmed 出版商
  8. Shi Z, Lee K, Yang D, Amin S, Verma N, Li Q, et al. Genome Editing in hPSCs Reveals GATA6 Haploinsufficiency and a Genetic Interaction with GATA4 in Human Pancreatic Development. Cell Stem Cell. 2017;20:675-688.e6 pubmed 出版商
  9. Furukawa S, Nagaike M, Ozaki K. Databases for technical aspects of immunohistochemistry. J Toxicol Pathol. 2017;30:79-107 pubmed 出版商
  10. Zhu L, Almaca J, Dadi P, Hong H, Sakamoto W, Rossi M, et al. β-arrestin-2 is an essential regulator of pancreatic β-cell function under physiological and pathophysiological conditions. Nat Commun. 2017;8:14295 pubmed 出版商
  11. Tripathi D, Venkatasubramanian S, Cheekatla S, Paidipally P, Welch E, Tvinnereim A, et al. A TLR9 agonist promotes IL-22-dependent pancreatic islet allograft survival in type 1 diabetic mice. Nat Commun. 2016;7:13896 pubmed 出版商
  12. Keller M, Paul P, Rabaglia M, Stapleton D, Schueler K, Broman A, et al. The Transcription Factor Nfatc2 Regulates β-Cell Proliferation and Genes Associated with Type 2 Diabetes in Mouse and Human Islets. PLoS Genet. 2016;12:e1006466 pubmed 出版商
  13. Matsunaga K, Taoka M, Isobe T, Izumi T. Rab2a and Rab27a cooperatively regulate the transition from granule maturation to exocytosis through the dual effector Noc2. J Cell Sci. 2017;130:541-550 pubmed 出版商
  14. Li J, Casteels T, Frogne T, Ingvorsen C, Honore C, Courtney M, et al. Artemisinins Target GABAA Receptor Signaling and Impair ? Cell Identity. Cell. 2017;168:86-100.e15 pubmed 出版商
  15. Wang D, Ding X, Xue W, Zheng J, Tian X, Li Y, et al. A new scaffold containing small intestinal submucosa and mesenchymal stem cells improves pancreatic islet function and survival in vitro and in vivo. Int J Mol Med. 2017;39:167-173 pubmed 出版商
  16. Yang S, Lee D, Shin J, Lee S, Baek S, Kim J, et al. Nec-1 alleviates cognitive impairment with reduction of Aβ and tau abnormalities in APP/PS1 mice. EMBO Mol Med. 2017;9:61-77 pubmed 出版商
  17. Zha J, Liu X, Zhu J, Liu S, Lu S, Xu P, et al. A scFv antibody targeting common oligomeric epitope has potential for treating several amyloidoses. Sci Rep. 2016;6:36631 pubmed 出版商
  18. Laclair K, Donde A, Ling J, Jeong Y, Chhabra R, Martin L, et al. Depletion of TDP-43 decreases fibril and plaque β-amyloid and exacerbates neurodegeneration in an Alzheimer's mouse model. Acta Neuropathol. 2016;132:859-873 pubmed
  19. Massumi M, Pourasgari F, Nalla A, Batchuluun B, Nagy K, Neely E, et al. An Abbreviated Protocol for In Vitro Generation of Functional Human Embryonic Stem Cell-Derived Beta-Like Cells. PLoS ONE. 2016;11:e0164457 pubmed 出版商
  20. Dorrell C, Schug J, Canaday P, Russ H, Tarlow B, Grompe M, et al. Human islets contain four distinct subtypes of ? cells. Nat Commun. 2016;7:11756 pubmed 出版商
  21. Alba Delgado C, Cebada Aleu A, Mico J, Berrocoso E. Comorbid anxiety-like behavior and locus coeruleus impairment in diabetic peripheral neuropathy: A comparative study with the chronic constriction injury model. Prog Neuropsychopharmacol Biol Psychiatry. 2016;71:45-56 pubmed 出版商
  22. Li X, Cheng K, Liu Z, Yang J, Wang B, Jiang X, et al. The MDM2-p53-pyruvate carboxylase signalling axis couples mitochondrial metabolism to glucose-stimulated insulin secretion in pancreatic β-cells. Nat Commun. 2016;7:11740 pubmed 出版商
  23. Shirouzu Y, Yanai G, Yang K, Sumi S. Effects of Activin in Embryoid Bodies Expressing Fibroblast Growth Factor 5. Cell Reprogram. 2016;18:171-86 pubmed 出版商
  24. Gu M, Viles J. Methionine oxidation reduces lag-times for amyloid-?(1-40) fiber formation but generates highly fragmented fibers. Biochim Biophys Acta. 2016;1864:1260-1269 pubmed 出版商
  25. Saxena P, Heng B, Bai P, Folcher M, Zulewski H, Fussenegger M. A programmable synthetic lineage-control network that differentiates human IPSCs into glucose-sensitive insulin-secreting beta-like cells. Nat Commun. 2016;7:11247 pubmed 出版商
  26. Domínguez M, de Oliveira E, Odena M, Portero M, Pamplona R, Ferrer I. Redox proteomic profiling of neuroketal-adducted proteins in human brain: Regional vulnerability at middle age increases in the elderly. Free Radic Biol Med. 2016;95:1-15 pubmed 出版商
  27. Wang G, Liu X, Gaertig M, Li S, Li X. Ablation of huntingtin in adult neurons is nondeleterious but its depletion in young mice causes acute pancreatitis. Proc Natl Acad Sci U S A. 2016;113:3359-64 pubmed 出版商
  28. Kaufmann T, Harrison P, Richardson M, Pinheiro T, Wall M. Intracellular soluble α-synuclein oligomers reduce pyramidal cell excitability. J Physiol. 2016;594:2751-72 pubmed 出版商
  29. Vegas A, Veiseh O, Gürtler M, Millman J, Pagliuca F, Bader A, et al. Long-term glycemic control using polymer-encapsulated human stem cell-derived beta cells in immune-competent mice. Nat Med. 2016;22:306-11 pubmed 出版商
  30. Bruin J, Saber N, O Dwyer S, Fox J, Mojibian M, Arora P, et al. Hypothyroidism Impairs Human Stem Cell-Derived Pancreatic Progenitor Cell Maturation in Mice. Diabetes. 2016;65:1297-309 pubmed 出版商
  31. Eltony S, Elmottaleb N, Gomaa A, Anwar M, el Metwally T. Effect of All-Trans Retinoic Acid on the Pancreas of Streptozotocin-Induced Diabetic Rat. Anat Rec (Hoboken). 2016;299:334-51 pubmed 出版商
  32. Dooley J, Garcia Perez J, Sreenivasan J, Schlenner S, Vangoitsenhoven R, Papadopoulou A, et al. The microRNA-29 Family Dictates the Balance Between Homeostatic and Pathological Glucose Handling in Diabetes and Obesity. Diabetes. 2016;65:53-61 pubmed 出版商
  33. Mareninova O, Sendler M, Malla S, Yakubov I, French S, Tokhtaeva E, et al. Lysosome associated membrane proteins maintain pancreatic acinar cell homeostasis: LAMP-2 deficient mice develop pancreatitis. Cell Mol Gastroenterol Hepatol. 2015;1:678-694 pubmed
  34. Tate M, Robinson E, Green B, McDermott B, Grieve D. Exendin-4 attenuates adverse cardiac remodelling in streptozocin-induced diabetes via specific actions on infiltrating macrophages. Basic Res Cardiol. 2016;111:1 pubmed 出版商
  35. Korytnikov R, Nostro M. Generation of polyhormonal and multipotent pancreatic progenitor lineages from human pluripotent stem cells. Methods. 2016;101:56-64 pubmed 出版商
  36. Huang L, Holtzinger A, Jagan I, BeGora M, Lohse I, Ngai N, et al. Ductal pancreatic cancer modeling and drug screening using human pluripotent stem cell- and patient-derived tumor organoids. Nat Med. 2015;21:1364-71 pubmed 出版商
  37. Payne S, Maher M, Tran N, Van De Hey D, Foley T, Yueh A, et al. PIK3CA mutations can initiate pancreatic tumorigenesis and are targetable with PI3K inhibitors. Oncogenesis. 2015;4:e169 pubmed 出版商
  38. Chang C, Lin W, Pai L, Lee H, Wu S, Ding S, et al. Cytoophidium assembly reflects upregulation of IMPDH activity. J Cell Sci. 2015;128:3550-5 pubmed 出版商
  39. Du L, Chang L, Ardiles A, Tapia Rojas C, Araya J, Inestrosa N, et al. Alzheimer's Disease-Related Protein Expression in the Retina of Octodon degus. PLoS ONE. 2015;10:e0135499 pubmed 出版商
  40. Sendler M, Beyer G, Mahajan U, Kauschke V, Maertin S, Schurmann C, et al. Complement Component 5 Mediates Development of Fibrosis, via Activation of Stellate Cells, in 2 Mouse Models of Chronic Pancreatitis. Gastroenterology. 2015;149:765-76.e10 pubmed 出版商
  41. Atkin G, Moore S, Lu Y, Nelson R, Tipper N, Rajpal G, et al. Loss of F-box only protein 2 (Fbxo2) disrupts levels and localization of select NMDA receptor subunits, and promotes aberrant synaptic connectivity. J Neurosci. 2015;35:6165-78 pubmed 出版商
  42. Ding Y, Xu Y, Shuai X, Shi X, Chen X, Huang W, et al. Reg3? Overexpression Protects Pancreatic ? Cells from Cytokine-Induced Damage and Improves Islet Transplant Outcome. Mol Med. 2015;20:548-558 pubmed 出版商
  43. Singh P, Ghosh D, Tewari D, Mohite G, Carvalho E, Jha N, et al. Cytotoxic helix-rich oligomer formation by melittin and pancreatic polypeptide. PLoS ONE. 2015;10:e0120346 pubmed 出版商
  44. Han J, Song B, Kim J, Kodali V, Pottekat A, Wang M, et al. Antioxidants Complement the Requirement for Protein Chaperone Function to Maintain β-Cell Function and Glucose Homeostasis. Diabetes. 2015;64:2892-904 pubmed 出版商
  45. Bose B, Sudheer P. In Vitro Differentiation of Pluripotent Stem Cells into Functional β Islets Under 2D and 3D Culture Conditions and In Vivo Preclinical Validation of 3D Islets. Methods Mol Biol. 2016;1341:257-84 pubmed 出版商
  46. López González I, Schlüter A, Aso E, Garcia Esparcia P, Ansoleaga B, Llorens F, et al. Neuroinflammatory signals in Alzheimer disease and APP/PS1 transgenic mice: correlations with plaques, tangles, and oligomeric species. J Neuropathol Exp Neurol. 2015;74:319-44 pubmed 出版商
  47. Garza Manero S, Arias C, Bermúdez Rattoni F, Vaca L, Zepeda A. Identification of age- and disease-related alterations in circulating miRNAs in a mouse model of Alzheimer's disease. Front Cell Neurosci. 2015;9:53 pubmed 出版商
  48. Mastroeni D, Khdour O, Arce P, Hecht S, Coleman P. Novel antioxidants protect mitochondria from the effects of oligomeric amyloid beta and contribute to the maintenance of epigenome function. ACS Chem Neurosci. 2015;6:588-98 pubmed 出版商
  49. Muñoz P, Cardenas S, Huenchuguala S, Briceño A, Couve E, Paris I, et al. DT-Diaphorase Prevents Aminochrome-Induced Alpha-Synuclein Oligomer Formation and Neurotoxicity. Toxicol Sci. 2015;145:37-47 pubmed 出版商
  50. Condello C, Yuan P, Schain A, Grutzendler J. Microglia constitute a barrier that prevents neurotoxic protofibrillar Aβ42 hotspots around plaques. Nat Commun. 2015;6:6176 pubmed 出版商
  51. Zheng H, Fu J, Xue P, Zhao R, Dong J, Liu D, et al. CNC-bZIP protein Nrf1-dependent regulation of glucose-stimulated insulin secretion. Antioxid Redox Signal. 2015;22:819-31 pubmed 出版商
  52. Meng P, Yoshida H, Tanji K, Matsumiya T, Xing F, Hayakari R, et al. Carnosic acid attenuates apoptosis induced by amyloid-β 1-42 or 1-43 in SH-SY5Y human neuroblastoma cells. Neurosci Res. 2015;94:1-9 pubmed 出版商
  53. Pettinato G, Wen X, Zhang N. Formation of well-defined embryoid bodies from dissociated human induced pluripotent stem cells using microfabricated cell-repellent microwell arrays. Sci Rep. 2014;4:7402 pubmed 出版商
  54. Trasino S, Benoit Y, Gudas L. Vitamin A deficiency causes hyperglycemia and loss of pancreatic β-cell mass. J Biol Chem. 2015;290:1456-73 pubmed 出版商
  55. Kapodistria K, Tsilibary E, Politis P, Moustardas P, Charonis A, Kitsiou P. Nephrin, a transmembrane protein, is involved in pancreatic beta-cell survival signaling. Mol Cell Endocrinol. 2015;400:112-28 pubmed 出版商
  56. Aragón F, Karaca M, Novials A, Maldonado R, Maechler P, Rubí B. Pancreatic polypeptide regulates glucagon release through PPYR1 receptors expressed in mouse and human alpha-cells. Biochim Biophys Acta. 2015;1850:343-51 pubmed 出版商
  57. Masjkur J, Arps Forker C, Poser S, Nikolakopoulou P, Toutouna L, Chenna R, et al. Hes3 is expressed in the adult pancreatic islet and regulates gene expression, cell growth, and insulin release. J Biol Chem. 2014;289:35503-16 pubmed 出版商
  58. Pettinato G, Vanden Berg Foels W, Zhang N, Wen X. ROCK inhibitor is not required for embryoid body formation from singularized human embryonic stem cells. PLoS ONE. 2014;9:e100742 pubmed 出版商
  59. Micucci C, Orciari S, Catalano A. Hyperglycemia promotes K-Ras-induced lung tumorigenesis through BASCs amplification. PLoS ONE. 2014;9:e105550 pubmed 出版商
  60. Costes S, Gurlo T, Rivera J, Butler P. UCHL1 deficiency exacerbates human islet amyloid polypeptide toxicity in β-cells: evidence of interplay between the ubiquitin/proteasome system and autophagy. Autophagy. 2014;10:1004-14 pubmed 出版商
  61. Tomasello M, Sinopoli A, Attanasio F, Giuffrida M, Campagna T, Milardi D, et al. Molecular and cytotoxic properties of hIAPP17-29 and rIAPP17-29 fragments: a comparative study with the respective full-length parent polypeptides. Eur J Med Chem. 2014;81:442-55 pubmed 出版商
  62. Shimoda M, Chen S, Noguchi H, Takita M, Sugimoto K, Itoh T, et al. A new method for generating insulin-secreting cells from human pancreatic epithelial cells after islet isolation transformed by NeuroD1. Hum Gene Ther Methods. 2014;25:206-19 pubmed 出版商
  63. Chen Y, Hong F, Chen H, Fan R, Zhang X, Zhang Y, et al. Distinctive expression and cellular distribution of dopamine receptors in the pancreatic islets of rats. Cell Tissue Res. 2014;357:597-606 pubmed 出版商
  64. Guyonnet B, Egge N, Cornwall G. Functional amyloids in the mouse sperm acrosome. Mol Cell Biol. 2014;34:2624-34 pubmed
  65. Petrakova O, Terskikh V, Chernioglo E, Ashapkin V, Bragin E, Shtratnikova V, et al. Comparative analysis reveals similarities between cultured submandibular salivary gland cells and liver progenitor cells. Springerplus. 2014;3:183 pubmed 出版商
  66. Pujadas L, Rossi D, Andres R, Teixeira C, Serra Vidal B, Parcerisas A, et al. Reelin delays amyloid-beta fibril formation and rescues cognitive deficits in a model of Alzheimer's disease. Nat Commun. 2014;5:3443 pubmed 出版商
  67. Wang H, Wang R, Xu S, Lakshmana M. RanBP9 overexpression accelerates loss of pre and postsynaptic proteins in the APΔE9 transgenic mouse brain. PLoS ONE. 2014;9:e85484 pubmed 出版商
  68. Smith B, Santos M, Marshall M, Cantuti Castelvetri L, Lopez Rosas A, Li G, et al. Neuronal inclusions of ?-synuclein contribute to the pathogenesis of Krabbe disease. J Pathol. 2014;232:509-21 pubmed 出版商
  69. Shinohara M, Kimura H, Montagne K, Komori K, Fujii T, Sakai Y. Combination of microwell structures and direct oxygenation enables efficient and size-regulated aggregate formation of an insulin-secreting pancreatic ?-cell line. Biotechnol Prog. 2014;30:178-87 pubmed 出版商
  70. Diaz de Durana Y, Lau J, Knee D, Filippi C, Londei M, McNamara P, et al. IL-2 immunotherapy reveals potential for innate beta cell regeneration in the non-obese diabetic mouse model of autoimmune diabetes. PLoS ONE. 2013;8:e78483 pubmed 出版商
  71. Washington P, Morffy N, Parsadanian M, Zapple D, Burns M. Experimental traumatic brain injury induces rapid aggregation and oligomerization of amyloid-beta in an Alzheimer's disease mouse model. J Neurotrauma. 2014;31:125-34 pubmed 出版商
  72. Oh T, Shin J, Kang G, Park K, Cho Y. Effect of the combination of metformin and fenofibrate on glucose homeostasis in diabetic Goto-Kakizaki rats. Exp Mol Med. 2013;45:e30 pubmed 出版商
  73. Feng M, Xiang Y, Wang S, Lu W. An autocrine ?-aminobutyric acid signaling system exists in pancreatic ?-cell progenitors of fetal and postnatal mice. Int J Physiol Pathophysiol Pharmacol. 2013;5:91-101 pubmed
  74. Chu C, Zhang X, Ma W, Li L, Wang W, Shang L, et al. Induction of autophagy by a novel small molecule improves a? pathology and ameliorates cognitive deficits. PLoS ONE. 2013;8:e65367 pubmed 出版商
  75. Younan N, Sarell C, Davies P, Brown D, Viles J. The cellular prion protein traps Alzheimer's A? in an oligomeric form and disassembles amyloid fibers. FASEB J. 2013;27:1847-58 pubmed 出版商
  76. Mastroeni D, Chouliaras L, Grover A, Liang W, Hauns K, Rogers J, et al. Reduced RAN expression and disrupted transport between cytoplasm and nucleus; a key event in Alzheimer's disease pathophysiology. PLoS ONE. 2013;8:e53349 pubmed 出版商
  77. Vandersteen A, Hubin E, Sarroukh R, De Baets G, Schymkowitz J, Rousseau F, et al. A comparative analysis of the aggregation behavior of amyloid-? peptide variants. FEBS Lett. 2012;586:4088-93 pubmed 出版商
  78. Carrasco M, Delgado I, Soria B, Martin F, Rojas A. GATA4 and GATA6 control mouse pancreas organogenesis. J Clin Invest. 2012;122:3504-15 pubmed 出版商
  79. Zheng L, Terman A, Hallbeck M, Dehvari N, Cowburn R, Benedikz E, et al. Macroautophagy-generated increase of lysosomal amyloid β-protein mediates oxidant-induced apoptosis of cultured neuroblastoma cells. Autophagy. 2011;7:1528-45 pubmed
  80. Maarouf C, Daugs I, Kokjohn T, Walker D, Hunter J, Kruchowsky J, et al. Alzheimer's disease and non-demented high pathology control nonagenarians: comparing and contrasting the biochemistry of cognitively successful aging. PLoS ONE. 2011;6:e27291 pubmed 出版商
  81. Romero Zerbo S, Rafacho A, Diaz Arteaga A, Suarez J, Quesada I, Imbernon M, et al. A role for the putative cannabinoid receptor GPR55 in the islets of Langerhans. J Endocrinol. 2011;211:177-85 pubmed 出版商
  82. Trikha S, Jeremic A. Clustering and internalization of toxic amylin oligomers in pancreatic cells require plasma membrane cholesterol. J Biol Chem. 2011;286:36086-97 pubmed 出版商
  83. Restrepo L, Stafford P, Magee D, Johnston S. Application of immunosignatures to the assessment of Alzheimer's disease. Ann Neurol. 2011;70:286-95 pubmed 出版商
  84. Feng L, Federoff H, Vicini S, Maguire Zeiss K. Alpha-synuclein mediates alterations in membrane conductance: a potential role for alpha-synuclein oligomers in cell vulnerability. Eur J Neurosci. 2010;32:10-7 pubmed 出版商
  85. Muresan Z, Muresan V. Neuritic deposits of amyloid-beta peptide in a subpopulation of central nervous system-derived neuronal cells. Mol Cell Biol. 2006;26:4982-97 pubmed