这是一篇来自已证抗体库的有关人类 胰岛素 (insulin) 的综述,是根据70篇发表使用所有方法的文章归纳的。这综述旨在帮助来邦网的访客找到最适合胰岛素 抗体。
胰岛素 同义词: IDDM; IDDM1; IDDM2; ILPR; IRDN; MODY10

赛默飞世尔
domestic rabbit 多克隆
  • 其他; 斑马鱼
赛默飞世尔胰岛素抗体(Thermo Fisher Scientific, AHB0052)被用于被用于其他在斑马鱼样本上. Front Mol Neurosci (2021) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:500; 图 1q
赛默飞世尔胰岛素抗体(Invitrogen, AHB0052)被用于被用于免疫组化在小鼠样本上浓度为1:500 (图 1q). Acta Neuropathol Commun (2021) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 1:500; 图 s5g
赛默飞世尔胰岛素抗体(ThermoFisher, AHB0052)被用于被用于免疫细胞化学在人类样本上浓度为1:500 (图 s5g). Neuron (2019) ncbi
小鼠 单克隆(ICBTACLS)
  • 免疫组化-石蜡切片; 人类; 1:400; 图 1a
赛默飞世尔胰岛素抗体(eBiosciences, ICBTACLS)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:400 (图 1a). Diabetes (2018) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 s1b
赛默飞世尔胰岛素抗体(Invitrogen, AHB0052)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 s1b). Cell Rep (2017) ncbi
豚鼠 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:100; 图 st2
赛默飞世尔胰岛素抗体(Thermo Fisher, PA1- 26938)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:100 (图 st2). Nat Commun (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 5b
赛默飞世尔胰岛素抗体(Invitrogen, AHB0052)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 5b). EMBO Mol Med (2017) ncbi
domestic rabbit 多克隆
  • dot blot; 小鼠; 1:1000; 图 3b
赛默飞世尔胰岛素抗体(Invitrogen, AHB0052)被用于被用于dot blot在小鼠样本上浓度为1:1000 (图 3b). Sci Rep (2016) ncbi
domestic rabbit 多克隆
  • dot blot; 小鼠; 图 5c
赛默飞世尔胰岛素抗体(Invitrogen, AHB0052)被用于被用于dot blot在小鼠样本上 (图 5c). Acta Neuropathol (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 s2
赛默飞世尔胰岛素抗体(Invitrogen, AHB0052)被用于被用于免疫印迹在人类样本上 (图 s2). Biochim Biophys Acta (2016) ncbi
domestic rabbit 多克隆
  • 其他; 人类; 图 6
赛默飞世尔胰岛素抗体(Invitrogen, AHB0052)被用于被用于其他在人类样本上 (图 6). Free Radic Biol Med (2016) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 小鼠; 图 2
赛默飞世尔胰岛素抗体(Invitrogen, AHB0052)被用于被用于免疫细胞化学在小鼠样本上 (图 2). J Physiol (2016) ncbi
豚鼠 多克隆
  • 免疫组化-石蜡切片; 人类; 1:100; 图 5
  • 免疫组化-石蜡切片; 小鼠; 1:100; 图 5
赛默飞世尔胰岛素抗体(Thermo Scientific, PA1-26938)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100 (图 5) 和 被用于免疫组化-石蜡切片在小鼠样本上浓度为1:100 (图 5). Diabetes (2016) ncbi
小鼠 单克隆(INS05 (2D11-H5))
  • 免疫组化-石蜡切片; 大鼠; 1:100; 图 1d
赛默飞世尔胰岛素抗体(Thermo Fisher Scientific, INS05)被用于被用于免疫组化-石蜡切片在大鼠样本上浓度为1:100 (图 1d). Anat Rec (Hoboken) (2016) ncbi
domestic rabbit 多克隆
赛默飞世尔胰岛素抗体(Invitrogen, AHB0052)被用于. PLoS ONE (2015) ncbi
domestic rabbit 多克隆
赛默飞世尔胰岛素抗体(Invitrogen, AHB0052)被用于. J Neurosci (2015) ncbi
domestic rabbit 多克隆
赛默飞世尔胰岛素抗体(Invitrogen, AHB0052)被用于. PLoS ONE (2015) ncbi
domestic rabbit 多克隆
赛默飞世尔胰岛素抗体(Invitrogen Thermo-Fisher, AHB0052)被用于. J Neuropathol Exp Neurol (2015) ncbi
domestic rabbit 多克隆
赛默飞世尔胰岛素抗体(Invitrogen, AHB0052)被用于. ACS Chem Neurosci (2015) ncbi
domestic rabbit 多克隆
赛默飞世尔胰岛素抗体(Invitrogen, AHB0052)被用于. Toxicol Sci (2015) ncbi
domestic rabbit 多克隆
赛默飞世尔胰岛素抗体(生活技术, AHB0052)被用于. Nat Commun (2015) ncbi
domestic rabbit 多克隆
赛默飞世尔胰岛素抗体(Invitrogen, #AHB0052)被用于. Neurosci Res (2015) ncbi
艾博抗(上海)贸易有限公司
domestic rabbit 单克隆(EPR17359)
  • 免疫组化; 小鼠; 图 s1e
艾博抗(上海)贸易有限公司胰岛素抗体(Abcam, ab181547)被用于被用于免疫组化在小鼠样本上 (图 s1e). Microbiome (2021) ncbi
domestic rabbit 单克隆(EPR17359)
  • 免疫组化; 小鼠; 图 3f
艾博抗(上海)贸易有限公司胰岛素抗体(Abcam, ab181547)被用于被用于免疫组化在小鼠样本上 (图 3f). Cell Rep (2021) ncbi
domestic rabbit 单克隆(EPR17359)
  • 免疫组化-石蜡切片; 小鼠; 图 7c
艾博抗(上海)贸易有限公司胰岛素抗体(Abcam, 181547)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 7c). PLoS Biol (2020) ncbi
domestic rabbit 单克隆(EPR17359)
  • 免疫组化; 小鼠; 1:400; 图 2k, 6l
艾博抗(上海)贸易有限公司胰岛素抗体(Abcam, ab181547)被用于被用于免疫组化在小鼠样本上浓度为1:400 (图 2k, 6l). Nat Commun (2019) ncbi
安迪生物R&D
大鼠 单克隆(182410)
  • 免疫组化; 小鼠; 图 2e
安迪生物R&D胰岛素抗体(R&D systems, 182410)被用于被用于免疫组化在小鼠样本上 (图 2e). Metabolites (2021) ncbi
小鼠 单克隆(253627)
  • 免疫组化; 小鼠; 图 s3h
安迪生物R&D胰岛素抗体(R&D systems, 253627)被用于被用于免疫组化在小鼠样本上 (图 s3h). Metabolites (2021) ncbi
圣克鲁斯生物技术
小鼠 单克隆(2D11-H5)
  • 免疫组化-冰冻切片; 小鼠; 图 6d
  • 免疫组化-石蜡切片; 小鼠; 1:50; 图 6c
圣克鲁斯生物技术胰岛素抗体(Santa Cruz Biotechnology, sc-8033)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 6d) 和 被用于免疫组化-石蜡切片在小鼠样本上浓度为1:50 (图 6c). iScience (2021) ncbi
小鼠 单克隆(C-12)
  • 免疫组化; 小鼠; 图 1j
圣克鲁斯生物技术胰岛素抗体(Santa Cruz, C-12)被用于被用于免疫组化在小鼠样本上 (图 1j). Diabetes (2016) ncbi
小鼠 单克隆(2D11-H5)
  • 流式细胞仪; 人类; 1:20
  • 免疫细胞化学; 人类; 1:20; 图 3
圣克鲁斯生物技术胰岛素抗体(Santa Cruz, SC-8033)被用于被用于流式细胞仪在人类样本上浓度为1:20 和 被用于免疫细胞化学在人类样本上浓度为1:20 (图 3). Methods Mol Biol (2016) ncbi
伯乐(Bio-Rad)公司
小鼠 单克隆(D3E7 (5B6/6))
  • 免疫组化; 大鼠; 1:600; 图 4a
伯乐(Bio-Rad)公司胰岛素抗体(Bio-Rad, 5330-3369G)被用于被用于免疫组化在大鼠样本上浓度为1:600 (图 4a). BMC Med (2020) ncbi
赛信通(上海)生物试剂有限公司
domestic rabbit 单克隆(C27C9)
  • 免疫组化; 人类; 1:400; 图 1c
  • 免疫组化; 小鼠; 图 4b
赛信通(上海)生物试剂有限公司胰岛素抗体(Cell Signaling Technology, 3014s)被用于被用于免疫组化在人类样本上浓度为1:400 (图 1c) 和 被用于免疫组化在小鼠样本上 (图 4b). Cell Death Dis (2021) ncbi
domestic rabbit 单克隆(C27C9)
  • 免疫组化; 小鼠; 图 4a
赛信通(上海)生物试剂有限公司胰岛素抗体(CST, 3014)被用于被用于免疫组化在小鼠样本上 (图 4a). Front Pharmacol (2021) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:100; 图 8e
赛信通(上海)生物试剂有限公司胰岛素抗体(Cell Signaling Technology, 4590)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:100 (图 8e). J Biol Chem (2021) ncbi
domestic rabbit 单克隆(C27C9)
  • 免疫印迹; 大鼠; 图 4b
赛信通(上海)生物试剂有限公司胰岛素抗体(CST, 3014S)被用于被用于免疫印迹在大鼠样本上 (图 4b). Mol Biol Cell (2021) ncbi
domestic rabbit 单克隆(C27C9)
  • 免疫组化-石蜡切片; 小鼠; 1:500; 图 1j
赛信通(上海)生物试剂有限公司胰岛素抗体(CST, 3014)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:500 (图 1j). J Biol Chem (2021) ncbi
domestic rabbit 单克隆(C27C9)
  • 流式细胞仪; 人类; 1:50; 图 3i
赛信通(上海)生物试剂有限公司胰岛素抗体(Cell Signaling Technology, 8508S)被用于被用于流式细胞仪在人类样本上浓度为1:50 (图 3i). elife (2020) ncbi
domestic rabbit 单克隆(C27C9)
  • 免疫组化; 小鼠
赛信通(上海)生物试剂有限公司胰岛素抗体(Cell Signaling Technology, 3014)被用于被用于免疫组化在小鼠样本上. Cell Rep (2020) ncbi
小鼠 单克隆(L6B10)
  • 免疫组化; 小鼠; 1:800; 图 1d
赛信通(上海)生物试剂有限公司胰岛素抗体(Cell Signaling Technology, 8138)被用于被用于免疫组化在小鼠样本上浓度为1:800 (图 1d). Nat Commun (2020) ncbi
小鼠 单克隆(L6B10)
  • 免疫印迹; 小鼠; 图 2e
  • 免疫组化-石蜡切片; 大鼠; 图 5b
赛信通(上海)生物试剂有限公司胰岛素抗体(Cell Signaling, 8138)被用于被用于免疫印迹在小鼠样本上 (图 2e) 和 被用于免疫组化-石蜡切片在大鼠样本上 (图 5b). J Clin Invest (2018) ncbi
domestic rabbit 单克隆(C27C9)
  • 免疫组化-石蜡切片; 小鼠; 图 4i
赛信通(上海)生物试剂有限公司胰岛素抗体(Cell Signaling, 3014)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 4i). Am J Physiol Gastrointest Liver Physiol (2018) ncbi
domestic rabbit 单克隆(C27C9)
  • 免疫组化-石蜡切片; 大鼠; 1:100; 图 3b
赛信通(上海)生物试剂有限公司胰岛素抗体(Cell Signaling, 3014)被用于被用于免疫组化-石蜡切片在大鼠样本上浓度为1:100 (图 3b). Int J Mol Med (2017) ncbi
domestic rabbit 多克隆
  • 流式细胞仪; 小鼠; 1:100; 图 7
赛信通(上海)生物试剂有限公司胰岛素抗体(Cell signaling, 45935)被用于被用于流式细胞仪在小鼠样本上浓度为1:100 (图 7). Cell Reprogram (2016) ncbi
domestic rabbit 单克隆(C27C9)
  • 免疫组化-石蜡切片; 小鼠; 1:200; 图 5
  • 免疫组化-石蜡切片; 人类; 1:200; 图 5
赛信通(上海)生物试剂有限公司胰岛素抗体(Cell Signaling Technology, 3014S)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:200 (图 5) 和 被用于免疫组化-石蜡切片在人类样本上浓度为1:200 (图 5). Diabetes (2016) ncbi
小鼠 单克隆(L6B10)
  • 免疫组化-石蜡切片; 人类; 1:250; 图 5
赛信通(上海)生物试剂有限公司胰岛素抗体(Cell Signaling Technology, 8138S)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:250 (图 5). Diabetes (2016) ncbi
domestic rabbit 单克隆(C27C9)
  • 免疫组化-石蜡切片; 小鼠; 1:200; 图 1e
赛信通(上海)生物试剂有限公司胰岛素抗体(Cell Signaling, C27C9)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:200 (图 1e). Basic Res Cardiol (2016) ncbi
domestic rabbit 单克隆(C27C9)
  • 免疫组化-石蜡切片; 人类; 1:100
赛信通(上海)生物试剂有限公司胰岛素抗体(Cell Signaling Technology, 3014)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100. Nat Med (2015) ncbi
domestic rabbit 单克隆(C27C9)
  • 免疫印迹; 小鼠; 图 5
赛信通(上海)生物试剂有限公司胰岛素抗体(Cell Signaling Technology, 3014S)被用于被用于免疫印迹在小鼠样本上 (图 5). Autophagy (2014) ncbi
西格玛奥德里奇
小鼠 单克隆(K36aC10)
  • 免疫组化; 小鼠; 1:1000; 图 2k, 6l
西格玛奥德里奇胰岛素抗体(Sigma, I2018)被用于被用于免疫组化在小鼠样本上浓度为1:1000 (图 2k, 6l). Nat Commun (2019) ncbi
小鼠 单克隆(K36aC10)
  • 免疫组化; 小鼠; 1:250; 图 3c
西格玛奥德里奇胰岛素抗体(Sigma, K36AC10)被用于被用于免疫组化在小鼠样本上浓度为1:250 (图 3c). J Transl Med (2018) ncbi
小鼠 单克隆(K36aC10)
  • 免疫组化-石蜡切片; 小鼠; 图 s2b
西格玛奥德里奇胰岛素抗体(Sigma, I2018)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 s2b). J Clin Invest (2018) ncbi
小鼠 单克隆(K36aC10)
  • 免疫组化; 人类; 图 5a
西格玛奥德里奇胰岛素抗体(Sigma, I 2018)被用于被用于免疫组化在人类样本上 (图 5a). Autoimmunity (2017) ncbi
小鼠 单克隆(K36aC10)
  • 免疫组化-石蜡切片; 大鼠; 1:5000; 图 st9
西格玛奥德里奇胰岛素抗体(Sigma-Aldrich, I2018)被用于被用于免疫组化-石蜡切片在大鼠样本上浓度为1:5000 (图 st9). J Toxicol Pathol (2017) ncbi
小鼠 单克隆(K36aC10)
  • 免疫组化; 大鼠; 1:1000; 图 s1a
西格玛奥德里奇胰岛素抗体(Sigma, I2018)被用于被用于免疫组化在大鼠样本上浓度为1:1000 (图 s1a). Prog Neuropsychopharmacol Biol Psychiatry (2016) ncbi
小鼠 单克隆(K36aC10)
  • 免疫印迹; 小鼠; 1:1000; 图 1e
西格玛奥德里奇胰岛素抗体(Sigma-Aldrich, I2018)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 1e). Diabetes (2015) ncbi
小鼠 单克隆(K36aC10)
  • 免疫细胞化学; 人类; 1:100; 图 6e
西格玛奥德里奇胰岛素抗体(Sigma-Aldrich, I2018)被用于被用于免疫细胞化学在人类样本上浓度为1:100 (图 6e). Sci Rep (2014) ncbi
小鼠 单克隆(K36aC10)
  • 免疫组化-石蜡切片; 小鼠
西格玛奥德里奇胰岛素抗体(Sigma-Aldrich, I 2018)被用于被用于免疫组化-石蜡切片在小鼠样本上. Mol Cell Endocrinol (2015) ncbi
小鼠 单克隆(K36aC10)
  • 免疫组化; 小鼠; 1:500
  • 免疫组化; 人类; 1:500
西格玛奥德里奇胰岛素抗体(Sigma, I-2018)被用于被用于免疫组化在小鼠样本上浓度为1:500 和 被用于免疫组化在人类样本上浓度为1:500. Biochim Biophys Acta (2015) ncbi
小鼠 单克隆(K36aC10)
  • 免疫细胞化学; 人类; 1:100
西格玛奥德里奇胰岛素抗体(Sigma, I2018)被用于被用于免疫细胞化学在人类样本上浓度为1:100. PLoS ONE (2014) ncbi
小鼠 单克隆(K36aC10)
  • 免疫组化-石蜡切片; 大鼠; 1:1000
西格玛奥德里奇胰岛素抗体(Sigma, I2018)被用于被用于免疫组化-石蜡切片在大鼠样本上浓度为1:1000. Cell Tissue Res (2014) ncbi
小鼠 单克隆(K36aC10)
  • 免疫组化-石蜡切片; 大鼠; 1:1000
西格玛奥德里奇胰岛素抗体(Sigma-Aldrich, I-2018)被用于被用于免疫组化-石蜡切片在大鼠样本上浓度为1:1000. Exp Mol Med (2013) ncbi
小鼠 单克隆(K36aC10)
  • 免疫组化-石蜡切片; 小鼠; 1:1000
西格玛奥德里奇胰岛素抗体(Sigma, I2018)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:1000. Int J Physiol Pathophysiol Pharmacol (2013) ncbi
小鼠 单克隆(K36aC10)
  • 免疫组化-石蜡切片; 小鼠; 1:500
西格玛奥德里奇胰岛素抗体(Sigma, I2018)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:500. J Clin Invest (2012) ncbi
小鼠 单克隆(K36aC10)
  • 免疫组化-石蜡切片; 大鼠; 1:200
西格玛奥德里奇胰岛素抗体(Sigma, I2018)被用于被用于免疫组化-石蜡切片在大鼠样本上浓度为1:200. J Endocrinol (2011) ncbi
Developmental Studies Hybridoma Bank
大鼠 单克隆(GN-ID4)
  • 免疫组化; 人类; 1:100; 图 s3c
Developmental Studies Hybridoma Bank胰岛素抗体(Developmental Studies Hybridoma Bank, GN-ID4)被用于被用于免疫组化在人类样本上浓度为1:100 (图 s3c). Nat Commun (2021) ncbi
大鼠 单克隆(GN-ID4)
  • 流式细胞仪; 人类; 图 7d
Developmental Studies Hybridoma Bank胰岛素抗体(DSHB, GN-ID4)被用于被用于流式细胞仪在人类样本上 (图 7d). Nat Commun (2019) ncbi
大鼠 单克隆(GN-ID4)
  • 免疫组化-冰冻切片; 人类; 1:100; 图 e1a
  • 流式细胞仪; 人类; 1:100; 图 1a, s3b
Developmental Studies Hybridoma Bank胰岛素抗体(DHSB, GN-ID4)被用于被用于免疫组化-冰冻切片在人类样本上浓度为1:100 (图 e1a) 和 被用于流式细胞仪在人类样本上浓度为1:100 (图 1a, s3b). Nature (2019) ncbi
大鼠 单克隆(GN-ID4)
  • 免疫组化-石蜡切片; 人类; 图 7b
Developmental Studies Hybridoma Bank胰岛素抗体(DSHB, GN-ID4)被用于被用于免疫组化-石蜡切片在人类样本上 (图 7b). Cell (2019) ncbi
大鼠 单克隆(GN-ID4)
  • 流式细胞仪; 人类; 1:500; 图 4b
  • 免疫细胞化学; 人类; 1:2000; 图 5b
Developmental Studies Hybridoma Bank胰岛素抗体(DSHB, GN-ID4-c)被用于被用于流式细胞仪在人类样本上浓度为1:500 (图 4b) 和 被用于免疫细胞化学在人类样本上浓度为1:2000 (图 5b). Cell Stem Cell (2017) ncbi
小鼠 单克隆(GS-9A8)
  • 免疫组化-冰冻切片; 人类; 图 3
Developmental Studies Hybridoma Bank胰岛素抗体(Developmental Studies Hybridoma Bank, GS-9A8)被用于被用于免疫组化-冰冻切片在人类样本上 (图 3). Nat Commun (2016) ncbi
大鼠 单克隆(GN-ID4)
  • 流式细胞仪; 人类; 1:50; 图 s20
  • 免疫细胞化学; 人类; 1:50; 图 3
Developmental Studies Hybridoma Bank胰岛素抗体(Developmental Studies Hybridoma Bank, GN-ID4)被用于被用于流式细胞仪在人类样本上浓度为1:50 (图 s20) 和 被用于免疫细胞化学在人类样本上浓度为1:50 (图 3). Nat Commun (2016) ncbi
大鼠 单克隆(GN-ID4)
  • 免疫组化-石蜡切片; 人类; 图 3
Developmental Studies Hybridoma Bank胰岛素抗体(DSHB, GN-1D4)被用于被用于免疫组化-石蜡切片在人类样本上 (图 3). Nat Med (2016) ncbi
大鼠 单克隆(GN-ID4)
  • 流式细胞仪; 人类; 1:1000; 图 3
Developmental Studies Hybridoma Bank胰岛素抗体(DSHB, GN-ID4)被用于被用于流式细胞仪在人类样本上浓度为1:1000 (图 3). Methods (2016) ncbi
徕卡显微系统(上海)贸易有限公司
单克隆(2D11-H5)
  • 免疫组化-石蜡切片; 人类; 1:100
徕卡显微系统(上海)贸易有限公司胰岛素抗体(Novocastra, 2D11-H5)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100. Endocr J (2016) ncbi
单克隆(2D11-H5)
  • 免疫组化-石蜡切片; 人类; 1:100
徕卡显微系统(上海)贸易有限公司胰岛素抗体(Novocastra, 2D11-H5)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100. Am J Surg Pathol (2015) ncbi
文章列表
  1. Pakdaman Y, Denker E, Austad E, Norton W, Rolfsnes H, Bindoff L, et al. Chip Protein U-Box Domain Truncation Affects Purkinje Neuron Morphology and Leads to Behavioral Changes in Zebrafish. Front Mol Neurosci. 2021;14:723912 pubmed 出版商
  2. Zhang X, Tao J, Yu J, Hu N, Zhang X, Wang G, et al. Inhibition of Notch activity promotes pancreatic cytokeratin 5-positive cell differentiation to beta cells and improves glucose homeostasis following acute pancreatitis. Cell Death Dis. 2021;12:867 pubmed 出版商
  3. Yang S, Qu Y, Chen J, Chen S, Sun L, Zhou Y, et al. Bee Pollen Polysaccharide From Rosa rugosa Thunb. (Rosaceae) Promotes Pancreatic β-Cell Proliferation and Insulin Secretion. Front Pharmacol. 2021;12:688073 pubmed 出版商
  4. Borg D, Faridi P, Giam K, Reeves P, Fotheringham A, McCarthy D, et al. Short Duration Alagebrium Chloride Therapy Prediabetes Does Not Inhibit Progression to Autoimmune Diabetes in an Experimental Model. Metabolites. 2021;11: pubmed 出版商
  5. Zheng H, Xu P, Jiang Q, Xu Q, Zheng Y, Yan J, et al. Depletion of acetate-producing bacteria from the gut microbiota facilitates cognitive impairment through the gut-brain neural mechanism in diabetic mice. Microbiome. 2021;9:145 pubmed 出版商
  6. Zhang J, Terán G, Popa M, Madapura H, Ladds M, Lianoudaki D, et al. DHODH inhibition modulates glucose metabolism and circulating GDF15, and improves metabolic balance. iScience. 2021;24:102494 pubmed 出版商
  7. Low B, Lim C, Ding S, Tan Y, Ng N, Krishnan V, et al. Decreased GLUT2 and glucose uptake contribute to insulin secretion defects in MODY3/HNF1A hiPSC-derived mutant β cells. Nat Commun. 2021;12:3133 pubmed 出版商
  8. Kamm D, Pyles K, Sharpe M, Healy L, Colca J, McCommis K. Novel insulin sensitizer MSDC-0602K improves insulinemia and fatty liver disease in mice, alone and in combination with liraglutide. J Biol Chem. 2021;296:100807 pubmed 出版商
  9. Tokuo H, Komaba S, Coluccio L. In pancreatic β-cells myosin 1b regulates glucose-stimulated insulin secretion by modulating an early step in insulin granule trafficking from the Golgi. Mol Biol Cell. 2021;32:1210-1220 pubmed 出版商
  10. Chen Y, Hu W, Li Q, Zhao S, Zhao D, Zhang S, et al. NGBR is required to ameliorate type 2 diabetes in mice by enhancing insulin sensitivity. J Biol Chem. 2021;296:100624 pubmed 出版商
  11. Zhang X, Wang X, Yuan Z, Radford S, Liu C, Libutti S, et al. Amino acids-Rab1A-mTORC1 signaling controls whole-body glucose homeostasis. Cell Rep. 2021;34:108830 pubmed 出版商
  12. Vandenabeele M, Veys L, Lemmens S, Hadoux X, Gelders G, Masin L, et al. The AppNL-G-F mouse retina is a site for preclinical Alzheimer's disease diagnosis and research. Acta Neuropathol Commun. 2021;9:6 pubmed 出版商
  13. Gaertner B, van Heesch S, Schneider Lunitz V, Schulz J, Witte F, Blachut S, et al. A human ESC-based screen identifies a role for the translated lncRNA LINC00261 in pancreatic endocrine differentiation. elife. 2020;9: pubmed 出版商
  14. Viloria K, Nasteska D, Briant L, Heising S, Larner D, Fine N, et al. Vitamin-D-Binding Protein Contributes to the Maintenance of α Cell Function and Glucagon Secretion. Cell Rep. 2020;31:107761 pubmed 出版商
  15. Fulgenzi G, Hong Z, Tomassoni Ardori F, Barella L, Becker J, Barrick C, et al. Novel metabolic role for BDNF in pancreatic β-cell insulin secretion. Nat Commun. 2020;11:1950 pubmed 出版商
  16. Jörns A, Ishikawa D, Teraoku H, Yoshimoto T, Wedekind D, Lenzen S. Remission of autoimmune diabetes by anti-TCR combination therapies with anti-IL-17A or/and anti-IL-6 in the IDDM rat model of type 1 diabetes. BMC Med. 2020;18:33 pubmed 出版商
  17. Xu H, Du X, Xu J, Zhang Y, Tian Y, Liu G, et al. Pancreatic β cell microRNA-26a alleviates type 2 diabetes by improving peripheral insulin sensitivity and preserving β cell function. PLoS Biol. 2020;18:e3000603 pubmed 出版商
  18. Yung T, Poon F, Liang M, Coquenlorge S, McGaugh E, Hui C, et al. Sufu- and Spop-mediated downregulation of Hedgehog signaling promotes beta cell differentiation through organ-specific niche signals. Nat Commun. 2019;10:4647 pubmed 出版商
  19. Veres A, Faust A, Bushnell H, Engquist E, Kenty J, Harb G, et al. Charting cellular identity during human in vitro β-cell differentiation. Nature. 2019;569:368-373 pubmed 出版商
  20. Gasset Rosa F, Lu S, Yu H, Chen C, Melamed Z, Guo L, et al. Cytoplasmic TDP-43 De-mixing Independent of Stress Granules Drives Inhibition of Nuclear Import, Loss of Nuclear TDP-43, and Cell Death. Neuron. 2019;102:339-357.e7 pubmed 出版商
  21. Sharon N, Chawla R, Mueller J, Vanderhooft J, Whitehorn L, Rosenthal B, et al. A Peninsular Structure Coordinates Asynchronous Differentiation with Morphogenesis to Generate Pancreatic Islets. Cell. 2019;176:790-804.e13 pubmed 出版商
  22. Wang L, Sun Z, Xiang B, Wei C, Wang Y, Sun K, et al. Targeted deletion of Insm2 in mice result in reduced insulin secretion and glucose intolerance. J Transl Med. 2018;16:297 pubmed 出版商
  23. Anquetil F, Mondanelli G, Gonzalez N, Rodríguez Calvo T, Zapardiel Gonzalo J, Krogvold L, et al. Loss of IDO1 Expression From Human Pancreatic β-Cells Precedes Their Destruction During the Development of Type 1 Diabetes. Diabetes. 2018;67:1858-1866 pubmed 出版商
  24. Millership S, Da Silva Xavier G, Choudhury A, Bertazzo S, Chabosseau P, Pedroni S, et al. Neuronatin regulates pancreatic β cell insulin content and secretion. J Clin Invest. 2018;128:3369-3381 pubmed 出版商
  25. Hamada S, Shimosegawa T, Taguchi K, Nabeshima T, Yamamoto M, Masamune A. Simultaneous K-ras activation and Keap1 deletion cause atrophy of pancreatic parenchyma. Am J Physiol Gastrointest Liver Physiol. 2018;314:G65-G74 pubmed 出版商
  26. Tseng J, Xie L, Song S, Xie Y, Allen L, Ajit D, et al. The Deacetylase HDAC6 Mediates Endogenous Neuritic Tau Pathology. Cell Rep. 2017;20:2169-2183 pubmed 出版商
  27. Smith Anttila C, Bensing S, Alimohammadi M, Dalin F, Oscarson M, Zhang M, et al. Identification of endothelin-converting enzyme-2 as an autoantigen in autoimmune polyendocrine syndrome type 1. Autoimmunity. 2017;50:223-231 pubmed 出版商
  28. Shi Z, Lee K, Yang D, Amin S, Verma N, Li Q, et al. Genome Editing in hPSCs Reveals GATA6 Haploinsufficiency and a Genetic Interaction with GATA4 in Human Pancreatic Development. Cell Stem Cell. 2017;20:675-688.e6 pubmed 出版商
  29. Furukawa S, Nagaike M, Ozaki K. Databases for technical aspects of immunohistochemistry. J Toxicol Pathol. 2017;30:79-107 pubmed 出版商
  30. Zhu L, Almaca J, Dadi P, Hong H, Sakamoto W, Rossi M, et al. β-arrestin-2 is an essential regulator of pancreatic β-cell function under physiological and pathophysiological conditions. Nat Commun. 2017;8:14295 pubmed 出版商
  31. Wang D, Ding X, Xue W, Zheng J, Tian X, Li Y, et al. A new scaffold containing small intestinal submucosa and mesenchymal stem cells improves pancreatic islet function and survival in vitro and in vivo. Int J Mol Med. 2017;39:167-173 pubmed 出版商
  32. Yang S, Lee D, Shin J, Lee S, Baek S, Kim J, et al. Nec-1 alleviates cognitive impairment with reduction of Aβ and tau abnormalities in APP/PS1 mice. EMBO Mol Med. 2017;9:61-77 pubmed 出版商
  33. Zha J, Liu X, Zhu J, Liu S, Lu S, Xu P, et al. A scFv antibody targeting common oligomeric epitope has potential for treating several amyloidoses. Sci Rep. 2016;6:36631 pubmed 出版商
  34. Laclair K, Donde A, Ling J, Jeong Y, Chhabra R, Martin L, et al. Depletion of TDP-43 decreases fibril and plaque β-amyloid and exacerbates neurodegeneration in an Alzheimer's mouse model. Acta Neuropathol. 2016;132:859-873 pubmed
  35. Dorrell C, Schug J, Canaday P, Russ H, Tarlow B, Grompe M, et al. Human islets contain four distinct subtypes of ? cells. Nat Commun. 2016;7:11756 pubmed 出版商
  36. Alba Delgado C, Cebada Aleu A, Mico J, Berrocoso E. Comorbid anxiety-like behavior and locus coeruleus impairment in diabetic peripheral neuropathy: A comparative study with the chronic constriction injury model. Prog Neuropsychopharmacol Biol Psychiatry. 2016;71:45-56 pubmed 出版商
  37. Shirouzu Y, Yanai G, Yang K, Sumi S. Effects of Activin in Embryoid Bodies Expressing Fibroblast Growth Factor 5. Cell Reprogram. 2016;18:171-86 pubmed 出版商
  38. Gu M, Viles J. Methionine oxidation reduces lag-times for amyloid-?(1-40) fiber formation but generates highly fragmented fibers. Biochim Biophys Acta. 2016;1864:1260-1269 pubmed 出版商
  39. Saxena P, Heng B, Bai P, Folcher M, Zulewski H, Fussenegger M. A programmable synthetic lineage-control network that differentiates human IPSCs into glucose-sensitive insulin-secreting beta-like cells. Nat Commun. 2016;7:11247 pubmed 出版商
  40. Domínguez M, de Oliveira E, Odena M, Portero M, Pamplona R, Ferrer I. Redox proteomic profiling of neuroketal-adducted proteins in human brain: Regional vulnerability at middle age increases in the elderly. Free Radic Biol Med. 2016;95:1-15 pubmed 出版商
  41. Kaufmann T, Harrison P, Richardson M, Pinheiro T, Wall M. Intracellular soluble α-synuclein oligomers reduce pyramidal cell excitability. J Physiol. 2016;594:2751-72 pubmed 出版商
  42. Vegas A, Veiseh O, Gürtler M, Millman J, Pagliuca F, Bader A, et al. Long-term glycemic control using polymer-encapsulated human stem cell-derived beta cells in immune-competent mice. Nat Med. 2016;22:306-11 pubmed 出版商
  43. Bruin J, Saber N, O Dwyer S, Fox J, Mojibian M, Arora P, et al. Hypothyroidism Impairs Human Stem Cell-Derived Pancreatic Progenitor Cell Maturation in Mice. Diabetes. 2016;65:1297-309 pubmed 出版商
  44. Eltony S, Elmottaleb N, Gomaa A, Anwar M, el Metwally T. Effect of All-Trans Retinoic Acid on the Pancreas of Streptozotocin-Induced Diabetic Rat. Anat Rec (Hoboken). 2016;299:334-51 pubmed 出版商
  45. Dooley J, Garcia Perez J, Sreenivasan J, Schlenner S, Vangoitsenhoven R, Papadopoulou A, et al. The microRNA-29 Family Dictates the Balance Between Homeostatic and Pathological Glucose Handling in Diabetes and Obesity. Diabetes. 2016;65:53-61 pubmed 出版商
  46. Tate M, Robinson E, Green B, McDermott B, Grieve D. Exendin-4 attenuates adverse cardiac remodelling in streptozocin-induced diabetes via specific actions on infiltrating macrophages. Basic Res Cardiol. 2016;111:1 pubmed 出版商
  47. Nakamura A, Mitsuhashi T, Takano Y, Miyoshi H, Kameda H, Nomoto H, et al. Usefulness of the octreotide test in Japanese patients for predicting the presence/absence of somatostatin receptor 2 expression in insulinomas. Endocr J. 2016;63:135-42 pubmed 出版商
  48. Korytnikov R, Nostro M. Generation of polyhormonal and multipotent pancreatic progenitor lineages from human pluripotent stem cells. Methods. 2016;101:56-64 pubmed 出版商
  49. Huang L, Holtzinger A, Jagan I, BeGora M, Lohse I, Ngai N, et al. Ductal pancreatic cancer modeling and drug screening using human pluripotent stem cell- and patient-derived tumor organoids. Nat Med. 2015;21:1364-71 pubmed 出版商
  50. Du L, Chang L, Ardiles A, Tapia Rojas C, Araya J, Inestrosa N, et al. Alzheimer's Disease-Related Protein Expression in the Retina of Octodon degus. PLoS ONE. 2015;10:e0135499 pubmed 出版商
  51. Atkin G, Moore S, Lu Y, Nelson R, Tipper N, Rajpal G, et al. Loss of F-box only protein 2 (Fbxo2) disrupts levels and localization of select NMDA receptor subunits, and promotes aberrant synaptic connectivity. J Neurosci. 2015;35:6165-78 pubmed 出版商
  52. Singh P, Ghosh D, Tewari D, Mohite G, Carvalho E, Jha N, et al. Cytotoxic helix-rich oligomer formation by melittin and pancreatic polypeptide. PLoS ONE. 2015;10:e0120346 pubmed 出版商
  53. Han J, Song B, Kim J, Kodali V, Pottekat A, Wang M, et al. Antioxidants Complement the Requirement for Protein Chaperone Function to Maintain β-Cell Function and Glucose Homeostasis. Diabetes. 2015;64:2892-904 pubmed 出版商
  54. Bose B, Sudheer P. In Vitro Differentiation of Pluripotent Stem Cells into Functional β Islets Under 2D and 3D Culture Conditions and In Vivo Preclinical Validation of 3D Islets. Methods Mol Biol. 2016;1341:257-84 pubmed 出版商
  55. López González I, Schlüter A, Aso E, Garcia Esparcia P, Ansoleaga B, Llorens F, et al. Neuroinflammatory signals in Alzheimer disease and APP/PS1 transgenic mice: correlations with plaques, tangles, and oligomeric species. J Neuropathol Exp Neurol. 2015;74:319-44 pubmed 出版商
  56. Mastroeni D, Khdour O, Arce P, Hecht S, Coleman P. Novel antioxidants protect mitochondria from the effects of oligomeric amyloid beta and contribute to the maintenance of epigenome function. ACS Chem Neurosci. 2015;6:588-98 pubmed 出版商
  57. Muñoz P, Cardenas S, Huenchuguala S, Briceño A, Couve E, Paris I, et al. DT-Diaphorase Prevents Aminochrome-Induced Alpha-Synuclein Oligomer Formation and Neurotoxicity. Toxicol Sci. 2015;145:37-47 pubmed 出版商
  58. Condello C, Yuan P, Schain A, Grutzendler J. Microglia constitute a barrier that prevents neurotoxic protofibrillar Aβ42 hotspots around plaques. Nat Commun. 2015;6:6176 pubmed 出版商
  59. Kim J, Kim M, Kim K, Song K, Lee S, Hwang D, et al. Clinicopathologic and prognostic significance of multiple hormone expression in pancreatic neuroendocrine tumors. Am J Surg Pathol. 2015;39:592-601 pubmed 出版商
  60. Meng P, Yoshida H, Tanji K, Matsumiya T, Xing F, Hayakari R, et al. Carnosic acid attenuates apoptosis induced by amyloid-β 1-42 or 1-43 in SH-SY5Y human neuroblastoma cells. Neurosci Res. 2015;94:1-9 pubmed 出版商
  61. Pettinato G, Wen X, Zhang N. Formation of well-defined embryoid bodies from dissociated human induced pluripotent stem cells using microfabricated cell-repellent microwell arrays. Sci Rep. 2014;4:7402 pubmed 出版商
  62. Kapodistria K, Tsilibary E, Politis P, Moustardas P, Charonis A, Kitsiou P. Nephrin, a transmembrane protein, is involved in pancreatic beta-cell survival signaling. Mol Cell Endocrinol. 2015;400:112-28 pubmed 出版商
  63. Aragón F, Karaca M, Novials A, Maldonado R, Maechler P, Rubí B. Pancreatic polypeptide regulates glucagon release through PPYR1 receptors expressed in mouse and human alpha-cells. Biochim Biophys Acta. 2015;1850:343-51 pubmed 出版商
  64. Pettinato G, Vanden Berg Foels W, Zhang N, Wen X. ROCK inhibitor is not required for embryoid body formation from singularized human embryonic stem cells. PLoS ONE. 2014;9:e100742 pubmed 出版商
  65. Costes S, Gurlo T, Rivera J, Butler P. UCHL1 deficiency exacerbates human islet amyloid polypeptide toxicity in β-cells: evidence of interplay between the ubiquitin/proteasome system and autophagy. Autophagy. 2014;10:1004-14 pubmed 出版商
  66. Chen Y, Hong F, Chen H, Fan R, Zhang X, Zhang Y, et al. Distinctive expression and cellular distribution of dopamine receptors in the pancreatic islets of rats. Cell Tissue Res. 2014;357:597-606 pubmed 出版商
  67. Oh T, Shin J, Kang G, Park K, Cho Y. Effect of the combination of metformin and fenofibrate on glucose homeostasis in diabetic Goto-Kakizaki rats. Exp Mol Med. 2013;45:e30 pubmed 出版商
  68. Feng M, Xiang Y, Wang S, Lu W. An autocrine ?-aminobutyric acid signaling system exists in pancreatic ?-cell progenitors of fetal and postnatal mice. Int J Physiol Pathophysiol Pharmacol. 2013;5:91-101 pubmed
  69. Carrasco M, Delgado I, Soria B, Martin F, Rojas A. GATA4 and GATA6 control mouse pancreas organogenesis. J Clin Invest. 2012;122:3504-15 pubmed 出版商
  70. Romero Zerbo S, Rafacho A, Diaz Arteaga A, Suarez J, Quesada I, Imbernon M, et al. A role for the putative cannabinoid receptor GPR55 in the islets of Langerhans. J Endocrinol. 2011;211:177-85 pubmed 出版商