这是一篇来自已证抗体库的有关人类 胰岛素受体 (insulin receptor) 的综述,是根据67篇发表使用所有方法的文章归纳的。这综述旨在帮助来邦网的访客找到最适合胰岛素受体 抗体。
胰岛素受体 同义词: CD220; HHF5

赛默飞世尔
小鼠 单克隆(83-14)
  • 免疫印迹; 小鼠; 图 s2d
赛默飞世尔胰岛素受体抗体(Thermo Fisher Scientific, MA5-13759)被用于被用于免疫印迹在小鼠样本上 (图 s2d). Cell (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 8b
赛默飞世尔胰岛素受体抗体(Invitrogen, 44-800G)被用于被用于免疫印迹在小鼠样本上 (图 8b). Neurobiol Aging (2017) ncbi
小鼠 单克隆(CT-3)
  • 免疫组化-石蜡切片; 小鼠; 图 2
赛默飞世尔胰岛素受体抗体(Invitrogen, AHR0271)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 2). J Pathol (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 4i
赛默飞世尔胰岛素受体抗体(Invitrogen, 44-804G)被用于被用于免疫印迹在小鼠样本上 (图 4i). JCI Insight (2016) ncbi
domestic rabbit 多克隆
  • 流式细胞仪; 人类; 图 s1a
赛默飞世尔胰岛素受体抗体(Invitrogen, 44-809G)被用于被用于流式细胞仪在人类样本上 (图 s1a). Diabetes (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类
赛默飞世尔胰岛素受体抗体(Invitrogen, 44802G)被用于被用于免疫印迹在人类样本上. Diabetes (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 6a
赛默飞世尔胰岛素受体抗体(Novex Life Technologies, 44-800G)被用于被用于免疫印迹在人类样本上 (图 6a). Diabetes (2017) ncbi
domestic rabbit 多克隆
  • 其他; 人类; 图 7
赛默飞世尔胰岛素受体抗体(Invitrogen, 44802G)被用于被用于其他在人类样本上 (图 7). Cell Signal (2016) ncbi
domestic rabbit 多克隆
  • 其他; 人类; 图 7
赛默飞世尔胰岛素受体抗体(Novex (Life Technologies), 44- 800G)被用于被用于其他在人类样本上 (图 7). Cell Signal (2016) ncbi
domestic rabbit 多克隆
  • 其他; 人类; 图 7
赛默飞世尔胰岛素受体抗体(Invitrogen, 44-809G)被用于被用于其他在人类样本上 (图 7). Cell Signal (2016) ncbi
domestic rabbit 多克隆
赛默飞世尔胰岛素受体抗体(生活技术, 44-806G)被用于. Physiol Rep (2015) ncbi
domestic rabbit 重组(97H9L7)
  • 免疫印迹; 小鼠; 图 1c
赛默飞世尔胰岛素受体抗体(Invitrogen, 700393)被用于被用于免疫印迹在小鼠样本上 (图 1c). J Clin Invest (2015) ncbi
domestic rabbit 多克隆
赛默飞世尔胰岛素受体抗体(invitrogen, 44-804G)被用于. Mol Cancer (2015) ncbi
domestic rabbit 多克隆
赛默飞世尔胰岛素受体抗体(Invitrogen, 44-804G)被用于. Gastroenterology (2015) ncbi
domestic rabbit 多克隆
赛默飞世尔胰岛素受体抗体(生活技术, 44804G)被用于. Nat Commun (2015) ncbi
domestic rabbit 多克隆
赛默飞世尔胰岛素受体抗体(BioSource, 44-809G)被用于. Sci Rep (2015) ncbi
domestic rabbit 多克隆
赛默飞世尔胰岛素受体抗体(生活技术, 44-800G)被用于. PLoS ONE (2015) ncbi
小鼠 单克隆(CT-3)
  • 免疫组化-冰冻切片; 大鼠; 4 ug/ml; 图 8
赛默飞世尔胰岛素受体抗体(Invitrogen, #AHR0271)被用于被用于免疫组化-冰冻切片在大鼠样本上浓度为4 ug/ml (图 8). PLoS ONE (2012) ncbi
小鼠 单克隆(CT-3)
  • 免疫印迹; 大鼠
赛默飞世尔胰岛素受体抗体(Invitrogen, AHR0271)被用于被用于免疫印迹在大鼠样本上. Biochim Biophys Acta (2012) ncbi
小鼠 单克隆(CT-3)
  • 免疫印迹; 大鼠; 1:1000; 图 3
赛默飞世尔胰岛素受体抗体(Invitrogen, AHR0271)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 3). J Gerontol A Biol Sci Med Sci (2012) ncbi
小鼠 单克隆(CT-3)
  • 免疫印迹; 小鼠; 图 2
赛默飞世尔胰岛素受体抗体(Invitrogen, AHR0271)被用于被用于免疫印迹在小鼠样本上 (图 2). Age (Dordr) (2013) ncbi
小鼠 单克隆(CT-3)
  • 免疫印迹; 人类; 图 2
赛默飞世尔胰岛素受体抗体(NeoMarkers, CT-3)被用于被用于免疫印迹在人类样本上 (图 2). Biochem Biophys Res Commun (2007) ncbi
小鼠 单克隆(CT-3)
  • 酶联免疫吸附测定; 人类; 0.75 ug/ml
赛默飞世尔胰岛素受体抗体(Neomarkers, Ab6)被用于被用于酶联免疫吸附测定在人类样本上浓度为0.75 ug/ml. Cancer Cell (2004) ncbi
圣克鲁斯生物技术
小鼠 单克隆(10C3)
  • 免疫印迹; 小鼠; 1:500; 图 4f
圣克鲁斯生物技术胰岛素受体抗体(Santa Cruz Biotechnology, sc-81500)被用于被用于免疫印迹在小鼠样本上浓度为1:500 (图 4f). elife (2020) ncbi
小鼠 单克隆(11B6)
  • 免疫印迹; 小鼠; 图 8b
圣克鲁斯生物技术胰岛素受体抗体(SantaCruz, SC-81465)被用于被用于免疫印迹在小鼠样本上 (图 8b). Neurobiol Aging (2017) ncbi
小鼠 单克隆(10C3)
  • 免疫印迹; 大鼠; 1:500; 图 2c
圣克鲁斯生物技术胰岛素受体抗体(Santa Cruz, sc-81500)被用于被用于免疫印迹在大鼠样本上浓度为1:500 (图 2c). Mol Med Rep (2017) ncbi
小鼠 单克隆(46)
  • 免疫印迹; Spodoptera litura; 图 3a
圣克鲁斯生物技术胰岛素受体抗体(SantaCruz, sc-135949)被用于被用于免疫印迹在Spodoptera litura样本上 (图 3a). Sci Rep (2016) ncbi
小鼠 单克隆(CT-3)
  • 免疫组化; 大鼠; 1:100; 图 2
圣克鲁斯生物技术胰岛素受体抗体(Santa Cruz, sc-57342)被用于被用于免疫组化在大鼠样本上浓度为1:100 (图 2). Nat Commun (2015) ncbi
小鼠 单克隆(29B4)
  • 免疫组化; 大鼠; 1:100; 图 2
圣克鲁斯生物技术胰岛素受体抗体(Santa Cruz, sc-09)被用于被用于免疫组化在大鼠样本上浓度为1:100 (图 2). Nat Commun (2015) ncbi
小鼠 单克隆(11B6)
  • 免疫印迹; 人类; 图 3b
圣克鲁斯生物技术胰岛素受体抗体(Santa Cruz, sc-81465)被用于被用于免疫印迹在人类样本上 (图 3b). Physiol Res (2016) ncbi
小鼠 单克隆(10C3)
  • 免疫沉淀; 人类
  • 免疫印迹; 人类
圣克鲁斯生物技术胰岛素受体抗体(Santa Cruz Biotechnology, sc-81500)被用于被用于免疫沉淀在人类样本上 和 被用于免疫印迹在人类样本上. Nucleic Acids Res (2015) ncbi
小鼠 单克隆(10C3)
  • 免疫印迹; 小鼠; 图 3b
圣克鲁斯生物技术胰岛素受体抗体(Santa Cruz, Sc-81500)被用于被用于免疫印迹在小鼠样本上 (图 3b). Biochim Biophys Acta (2015) ncbi
小鼠 单克隆(46)
  • 免疫印迹; 人类
圣克鲁斯生物技术胰岛素受体抗体(Santa Cruz Biotechnology, SC-135949)被用于被用于免疫印迹在人类样本上. J Diabetes (2016) ncbi
小鼠 单克隆(10C3)
  • 免疫印迹; 人类
圣克鲁斯生物技术胰岛素受体抗体(Santa Cruz Biotechnology, SC-81500)被用于被用于免疫印迹在人类样本上. J Diabetes (2016) ncbi
小鼠 单克隆(29B4)
  • 免疫印迹; 人类; 1:1000
圣克鲁斯生物技术胰岛素受体抗体(Santa Cruz Biotechnology, sc-09)被用于被用于免疫印迹在人类样本上浓度为1:1000. Tumour Biol (2015) ncbi
小鼠 单克隆(29B4)
  • 免疫印迹; African green monkey
圣克鲁斯生物技术胰岛素受体抗体(Santa Cruz Biotechnology, 29B4)被用于被用于免疫印迹在African green monkey样本上. J Biol Chem (2002) ncbi
艾博抗(上海)贸易有限公司
小鼠 单克隆(C18C4)
  • 免疫组化-自由浮动切片; 大鼠; 1:500; 图 5a
  • 免疫印迹; 大鼠; 1:1000; 图 3a
艾博抗(上海)贸易有限公司胰岛素受体抗体(Abcam, ab69508)被用于被用于免疫组化-自由浮动切片在大鼠样本上浓度为1:500 (图 5a) 和 被用于免疫印迹在大鼠样本上浓度为1:1000 (图 3a). Aging Cell (2020) ncbi
小鼠 单克隆(C18C4)
  • 免疫印迹; 人类; 图 3
艾博抗(上海)贸易有限公司胰岛素受体抗体(Abcam, ab69508)被用于被用于免疫印迹在人类样本上 (图 3). Sci Rep (2016) ncbi
domestic rabbit 单克隆(EP351(2)Y)
  • 免疫印迹; 小鼠; 1:1000; 图 4
艾博抗(上海)贸易有限公司胰岛素受体抗体(Abcam, 62321)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 4). Sci Rep (2016) ncbi
小鼠 单克隆(C18C4)
  • 免疫印迹; 人类; 1:200; 图 1b
艾博抗(上海)贸易有限公司胰岛素受体抗体(Abcam, ab69508)被用于被用于免疫印迹在人类样本上浓度为1:200 (图 1b). Nat Commun (2016) ncbi
Novus Biologicals
domestic rabbit 多克隆
  • 免疫印迹; 猕猴; 1:1000; 图 s6d
  • 免疫印迹; 人类; 1:1000; 图 s6d
Novus Biologicals胰岛素受体抗体(Novus, NBP2-12793)被用于被用于免疫印迹在猕猴样本上浓度为1:1000 (图 s6d) 和 被用于免疫印迹在人类样本上浓度为1:1000 (图 s6d). Cell (2019) ncbi
赛信通(上海)生物试剂有限公司
domestic rabbit 单克隆(4B8)
  • 免疫印迹; 小鼠; 图 5c
赛信通(上海)生物试剂有限公司胰岛素受体抗体(Cell Signaling, 3025)被用于被用于免疫印迹在小鼠样本上 (图 5c). iScience (2021) ncbi
domestic rabbit 单克隆(4B8)
  • 免疫印迹基因敲除验证; 小鼠; 1:1000; 图 2a, 2c
  • 免疫印迹; 小鼠; 1:1000; 图 2c
赛信通(上海)生物试剂有限公司胰岛素受体抗体(Cell Signaling, 3025)被用于被用于免疫印迹基因敲除验证在小鼠样本上浓度为1:1000 (图 2a, 2c) 和 被用于免疫印迹在小鼠样本上浓度为1:1000 (图 2c). Nat Commun (2021) ncbi
domestic rabbit 单克隆(4B8)
  • 免疫印迹; 小鼠; 1:1000
赛信通(上海)生物试剂有限公司胰岛素受体抗体(Cell Signalling Technology, 3025)被用于被用于免疫印迹在小鼠样本上浓度为1:1000. elife (2021) ncbi
小鼠 单克隆(L55B10)
  • 免疫印迹; 小鼠; 1:1000; 图 4j
赛信通(上海)生物试剂有限公司胰岛素受体抗体(Cell Signaling, 3020)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 4j). Int J Mol Sci (2021) ncbi
domestic rabbit 单克隆(4B8)
  • 免疫印迹; 小鼠; 图 3d
赛信通(上海)生物试剂有限公司胰岛素受体抗体(Cell Signaling Technology, 3025)被用于被用于免疫印迹在小鼠样本上 (图 3d). Sci Rep (2020) ncbi
domestic rabbit 单克隆(4B8)
  • 免疫印迹; 小鼠; 图 1g
赛信通(上海)生物试剂有限公司胰岛素受体抗体(Cell Signaling, 3025)被用于被用于免疫印迹在小鼠样本上 (图 1g). elife (2020) ncbi
domestic rabbit 单克隆(4B8)
  • 免疫印迹; 小鼠; 1:1000; 图 4d
赛信通(上海)生物试剂有限公司胰岛素受体抗体(Cell Signaling, 3025S)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 4d). elife (2020) ncbi
domestic rabbit 单克隆(4B8)
  • 免疫印迹; 小鼠; 1:1000; 图 5e, 5f, 5g
赛信通(上海)生物试剂有限公司胰岛素受体抗体(Cell Signaling, 3025S)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 5e, 5f, 5g). elife (2019) ncbi
domestic rabbit 单克隆(4B8)
  • 免疫沉淀; 小鼠; 图 s2b
赛信通(上海)生物试剂有限公司胰岛素受体抗体(Cell Signaling, 3025)被用于被用于免疫沉淀在小鼠样本上 (图 s2b). Cell (2019) ncbi
domestic rabbit 单克隆(4B8)
  • 免疫印迹; 人类; 图 2h
赛信通(上海)生物试剂有限公司胰岛素受体抗体(Cell Signaling, 3025)被用于被用于免疫印迹在人类样本上 (图 2h). J Appl Physiol (1985) (2019) ncbi
domestic rabbit 单克隆(4B8)
  • 免疫印迹; 大鼠; 1:1000; 图 4f, 5f
赛信通(上海)生物试剂有限公司胰岛素受体抗体(Cell Signaling, 3025)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 4f, 5f). Br J Pharmacol (2019) ncbi
domestic rabbit 单克隆(4B8)
  • 其他; 人类; 图 4c
赛信通(上海)生物试剂有限公司胰岛素受体抗体(Cell Signaling, 3025)被用于被用于其他在人类样本上 (图 4c). Cancer Cell (2018) ncbi
domestic rabbit 单克隆(4B8)
  • 免疫印迹; 小鼠; 图 3a
赛信通(上海)生物试剂有限公司胰岛素受体抗体(Cell Signaling, 3025S)被用于被用于免疫印迹在小鼠样本上 (图 3a). Biochem Biophys Res Commun (2017) ncbi
domestic rabbit 单克隆(4B8)
  • 免疫印迹; pigs ; 图 5b
赛信通(上海)生物试剂有限公司胰岛素受体抗体(Cell Signal, 3025)被用于被用于免疫印迹在pigs 样本上 (图 5b). Oncotarget (2017) ncbi
domestic rabbit 单克隆(84B2)
  • 免疫印迹; pigs ; 图 5b
赛信通(上海)生物试剂有限公司胰岛素受体抗体(Cell Signal, 3023)被用于被用于免疫印迹在pigs 样本上 (图 5b). Oncotarget (2017) ncbi
小鼠 单克隆(L55B10)
  • 免疫印迹; 小鼠; 图 s7a
赛信通(上海)生物试剂有限公司胰岛素受体抗体(Cell Signaling, 3020)被用于被用于免疫印迹在小鼠样本上 (图 s7a). Science (2017) ncbi
domestic rabbit 单克隆(4B8)
  • 免疫印迹; 小鼠; 图 s3d
  • 免疫印迹; 人类; 图 1a
赛信通(上海)生物试剂有限公司胰岛素受体抗体(Cell Signaling, 3025)被用于被用于免疫印迹在小鼠样本上 (图 s3d) 和 被用于免疫印迹在人类样本上 (图 1a). Nature (2017) ncbi
domestic rabbit 单克隆(4B8)
  • 流式细胞仪; 小鼠; 图 5b
赛信通(上海)生物试剂有限公司胰岛素受体抗体(Cell Signaling, 3025S)被用于被用于流式细胞仪在小鼠样本上 (图 5b). Nat Immunol (2017) ncbi
domestic rabbit 单克隆(14A4)
  • 免疫印迹; 人类; 图 6a
赛信通(上海)生物试剂有限公司胰岛素受体抗体(Cell Signaling, 3026)被用于被用于免疫印迹在人类样本上 (图 6a). Diabetes (2017) ncbi
domestic rabbit 单克隆(4B8)
  • 免疫印迹; 人类; 图 6a
赛信通(上海)生物试剂有限公司胰岛素受体抗体(Cell Signaling, 3025)被用于被用于免疫印迹在人类样本上 (图 6a). Diabetes (2017) ncbi
domestic rabbit 单克隆(4B8)
  • 免疫印迹; 人类; 图 4a
赛信通(上海)生物试剂有限公司胰岛素受体抗体(Cell Signaling Technology, 3025)被用于被用于免疫印迹在人类样本上 (图 4a). Autophagy (2017) ncbi
domestic rabbit 单克隆(4B8)
  • 免疫印迹基因敲除验证; 小鼠; 图 2
赛信通(上海)生物试剂有限公司胰岛素受体抗体(Cell signaling, 3025)被用于被用于免疫印迹基因敲除验证在小鼠样本上 (图 2). Endocrinology (2016) ncbi
domestic rabbit 单克隆(4B8)
  • 免疫印迹; 小鼠; 1:1000; 图 6
赛信通(上海)生物试剂有限公司胰岛素受体抗体(Cell Signaling, 3025)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 6). Sci Rep (2016) ncbi
domestic rabbit 单克隆(14A4)
  • 其他; 人类; 图 7
赛信通(上海)生物试剂有限公司胰岛素受体抗体(Cell Signaling, 3026)被用于被用于其他在人类样本上 (图 7). Cell Signal (2016) ncbi
小鼠 单克隆(L55B10)
  • 免疫沉淀; 小鼠; 图 3
  • 免疫细胞化学; 小鼠; 图 1
  • 免疫印迹; 小鼠; 图 3
赛信通(上海)生物试剂有限公司胰岛素受体抗体(Cell Signaling Technology, 3020S)被用于被用于免疫沉淀在小鼠样本上 (图 3), 被用于免疫细胞化学在小鼠样本上 (图 1) 和 被用于免疫印迹在小鼠样本上 (图 3). Mol Metab (2016) ncbi
domestic rabbit 单克隆(4B8)
  • 免疫印迹; 小鼠; 1:1000; 图 6
赛信通(上海)生物试剂有限公司胰岛素受体抗体(Cell signaling, 3025)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 6). Sci Rep (2016) ncbi
小鼠 单克隆(L55B10)
  • 免疫印迹; 人类; 图 8
赛信通(上海)生物试剂有限公司胰岛素受体抗体(Cell Signaling, 3020)被用于被用于免疫印迹在人类样本上 (图 8). J Virol (2016) ncbi
domestic rabbit 单克隆(4B8)
  • 免疫印迹; 大鼠; 图 6
赛信通(上海)生物试剂有限公司胰岛素受体抗体(Cell signaling, 3025)被用于被用于免疫印迹在大鼠样本上 (图 6). Mol Metab (2016) ncbi
小鼠 单克隆(L55B10)
  • 免疫印迹; 小鼠; 1:1000; 图 3
赛信通(上海)生物试剂有限公司胰岛素受体抗体(Cell signaling, 3020)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 3). Free Radic Biol Med (2016) ncbi
domestic rabbit 单克隆(4B8)
  • 免疫印迹; 小鼠; 图 3
赛信通(上海)生物试剂有限公司胰岛素受体抗体(Cell Signaling Tech, 3025)被用于被用于免疫印迹在小鼠样本上 (图 3). Drug Des Devel Ther (2015) ncbi
domestic rabbit 单克隆(4B8)
  • 免疫印迹; 小鼠; 图 3E
赛信通(上海)生物试剂有限公司胰岛素受体抗体(Cell Signaling Technology, 3025)被用于被用于免疫印迹在小鼠样本上 (图 3E). Sci Rep (2015) ncbi
domestic rabbit 单克隆(4B8)
  • 免疫印迹; 人类; 1:1000
赛信通(上海)生物试剂有限公司胰岛素受体抗体(Cell Signalling Technology, 3025)被用于被用于免疫印迹在人类样本上浓度为1:1000. Mol Brain (2015) ncbi
小鼠 单克隆(L55B10)
  • 免疫印迹; 人类; 图 4a
赛信通(上海)生物试剂有限公司胰岛素受体抗体(Cell signaling, L55B10)被用于被用于免疫印迹在人类样本上 (图 4a). Mar Drugs (2015) ncbi
domestic rabbit 单克隆(4B8)
  • 免疫组化; 小鼠
  • 免疫印迹; 小鼠
赛信通(上海)生物试剂有限公司胰岛素受体抗体(Cell Signaling Technology, 3025)被用于被用于免疫组化在小鼠样本上 和 被用于免疫印迹在小鼠样本上. Mol Neurodegener (2015) ncbi
domestic rabbit 单克隆(4B8)
  • 免疫印迹; 人类; 图 5
赛信通(上海)生物试剂有限公司胰岛素受体抗体(cell signaling, 3025)被用于被用于免疫印迹在人类样本上 (图 5). Mol Cell Biol (2015) ncbi
domestic rabbit 单克隆(4B8)
  • 免疫印迹; 人类; 图 1c
赛信通(上海)生物试剂有限公司胰岛素受体抗体(cst, 3025)被用于被用于免疫印迹在人类样本上 (图 1c). Mol Cancer (2015) ncbi
domestic rabbit 单克隆(4B8)
  • 免疫印迹; 小鼠; 图 2
赛信通(上海)生物试剂有限公司胰岛素受体抗体(Cell Signaling, 3025)被用于被用于免疫印迹在小鼠样本上 (图 2). Proc Natl Acad Sci U S A (2014) ncbi
domestic rabbit 单克隆(4B8)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司胰岛素受体抗体(Cell signaling, 3025)被用于被用于免疫印迹在人类样本上. Biochem Biophys Res Commun (2014) ncbi
domestic rabbit 单克隆(14A4)
  • 免疫印迹; 大鼠; 1:800
赛信通(上海)生物试剂有限公司胰岛素受体抗体(Cell Signaling Technology, 3026)被用于被用于免疫印迹在大鼠样本上浓度为1:800. J Nutr Biochem (2014) ncbi
小鼠 单克隆(L55B10)
  • 免疫印迹; 小鼠; 1:1000
赛信通(上海)生物试剂有限公司胰岛素受体抗体(Cell Signaling, 3020S)被用于被用于免疫印迹在小鼠样本上浓度为1:1000. J Biol Chem (2014) ncbi
文章列表
  1. Takaoka S, Yanagiya A, Mohamed H, Higa R, Abe T, Inoue K, et al. Neuronal XRN1 is required for maintenance of whole-body metabolic homeostasis. iScience. 2021;24:103151 pubmed 出版商
  2. Bruce J, Sánchez Alvarez R, Sans M, Sugden S, Qi N, James A, et al. Insulin protects acinar cells during pancreatitis by preserving glycolytic ATP supply to calcium pumps. Nat Commun. 2021;12:4386 pubmed 出版商
  3. Kearney A, Norris D, Ghomlaghi M, Kin Lok Wong M, Humphrey S, Carroll L, et al. Akt phosphorylates insulin receptor substrate to limit PI3K-mediated PIP3 synthesis. elife. 2021;10: pubmed 出版商
  4. López Gambero A, Rosell Valle C, Medina Vera D, Navarro J, Vargas A, Rivera P, et al. A Negative Energy Balance Is Associated with Metabolic Dysfunctions in the Hypothalamus of a Humanized Preclinical Model of Alzheimer's Disease, the 5XFAD Mouse. Int J Mol Sci. 2021;22: pubmed 出版商
  5. Ow J, Cadez M, Zafer G, Foo J, Li H, Ghosh S, et al. Remodeling of whole-body lipid metabolism and a diabetic-like phenotype caused by loss of CDK1 and hepatocyte division. elife. 2020;9: pubmed 出版商
  6. Grundmann S, Schutkowski A, Berger C, Baur A, König B, Stangl G. High-phosphorus diets reduce aortic lesions and cardiomyocyte size and modify lipid metabolism in Ldl receptor knockout mice. Sci Rep. 2020;10:20748 pubmed 出版商
  7. Frazier H, Anderson K, Ghoweri A, Lin R, Hawkinson T, Popa G, et al. Molecular elevation of insulin receptor signaling improves memory recall in aged Fischer 344 rats. Aging Cell. 2020;19:e13220 pubmed 出版商
  8. Ruiz Velasco A, Zi M, Hille S, Azam T, Kaur N, Jiang J, et al. Targeting mir128-3p alleviates myocardial insulin resistance and prevents ischemia-induced heart failure. elife. 2020;9: pubmed 出版商
  9. Shen H, Gan P, Wang K, Darehzereshki A, Wang K, Kumar S, et al. Mononuclear diploid cardiomyocytes support neonatal mouse heart regeneration in response to paracrine IGF2 signaling. elife. 2020;9: pubmed 出版商
  10. Helsley R, Varadharajan V, Brown A, Gromovsky A, Schugar R, Ramachandiran I, et al. Obesity-linked suppression of membrane-bound O-acyltransferase 7 (MBOAT7) drives non-alcoholic fatty liver disease. elife. 2019;8: pubmed 出版商
  11. Hancock M, Meyer R, Mistry M, Khetani R, Wagschal A, Shin T, et al. Insulin Receptor Associates with Promoters Genome-wide and Regulates Gene Expression. Cell. 2019;177:722-736.e22 pubmed 出版商
  12. Pollen A, Bhaduri A, Andrews M, Nowakowski T, Meyerson O, Mostajo Radji M, et al. Establishing Cerebral Organoids as Models of Human-Specific Brain Evolution. Cell. 2019;176:743-756.e17 pubmed 出版商
  13. Riis S, Christensen B, Nellemann B, Møller A, Husted A, Pedersen S, et al. Molecular adaptations in human subcutaneous adipose tissue after ten weeks of endurance exercise training in healthy males. J Appl Physiol (1985). 2019;126:569-577 pubmed 出版商
  14. Zhou X, Zhang R, Zou Z, Shen X, Xie T, Xu C, et al. Hypoglycaemic effects of glimepiride in sulfonylurea receptor 1 deficient rat. Br J Pharmacol. 2019;176:478-490 pubmed 出版商
  15. Ng P, Li J, Jeong K, Shao S, Chen H, Tsang Y, et al. Systematic Functional Annotation of Somatic Mutations in Cancer. Cancer Cell. 2018;33:450-462.e10 pubmed 出版商
  16. Wei X, Guo L, Liu Y, Zhou S, Liu Y, Dou X, et al. Synthesis of cytochrome c oxidase 1 (SCO1) inhibits insulin sensitivity by decreasing copper levels in adipocytes. Biochem Biophys Res Commun. 2017;491:814-820 pubmed 出版商
  17. Wang H, Lee K, Pei Z, Khan A, Bakshi K, Burns L. PTI-125 binds and reverses an altered conformation of filamin A to reduce Alzheimer's disease pathogenesis. Neurobiol Aging. 2017;55:99-114 pubmed 出版商
  18. Cai C, Qian L, Jiang S, Sun Y, Wang Q, Ma D, et al. Loss-of-function myostatin mutation increases insulin sensitivity and browning of white fat in Meishan pigs. Oncotarget. 2017;8:34911-34922 pubmed 出版商
  19. Bi P, Ramirez Martinez A, Li H, Cannavino J, McAnally J, Shelton J, et al. Control of muscle formation by the fusogenic micropeptide myomixer. Science. 2017;356:323-327 pubmed 出版商
  20. Roudnicky F, Dieterich L, Poyet C, Buser L, Wild P, Tang D, et al. High expression of insulin receptor on tumour-associated blood vessels in invasive bladder cancer predicts poor overall and progression-free survival. J Pathol. 2017;242:193-205 pubmed 出版商
  21. Chan L, Chen Z, Braas D, Lee J, Xiao G, Geng H, et al. Metabolic gatekeeper function of B-lymphoid transcription factors. Nature. 2017;542:479-483 pubmed 出版商
  22. Dror E, Dalmas E, Meier D, Wueest S, Thévenet J, Thienel C, et al. Postprandial macrophage-derived IL-1β stimulates insulin, and both synergistically promote glucose disposal and inflammation. Nat Immunol. 2017;18:283-292 pubmed 出版商
  23. Yan H, Gao Y, Zhang Y. Inhibition of JNK suppresses autophagy and attenuates insulin resistance in a rat model of nonalcoholic fatty liver disease. Mol Med Rep. 2017;15:180-186 pubmed 出版商
  24. Wang X, Cao Q, Yu L, Shi H, Xue B, Shi H. Epigenetic regulation of macrophage polarization and inflammation by DNA methylation in obesity. JCI Insight. 2016;1:e87748 pubmed 出版商
  25. Cieniewicz A, Kirchner T, Hinke S, Nanjunda R, D AQUINO K, Boayke K, et al. Novel Monoclonal Antibody Is an Allosteric Insulin Receptor Antagonist That Induces Insulin Resistance. Diabetes. 2017;66:206-217 pubmed 出版商
  26. Fan Y, Wang N, Rocchi A, Zhang W, Vassar R, Zhou Y, et al. Identification of natural products with neuronal and metabolic benefits through autophagy induction. Autophagy. 2017;13:41-56 pubmed 出版商
  27. Shao X, Lai D, Zhang L, Xu H. Induction of Autophagy and Apoptosis via PI3K/AKT/TOR Pathways by Azadirachtin A in Spodoptera litura Cells. Sci Rep. 2016;6:35482 pubmed 出版商
  28. Li Z, Frey J, Wong G, Faugere M, Wolfgang M, Kim J, et al. Glucose Transporter-4 Facilitates Insulin-Stimulated Glucose Uptake in Osteoblasts. Endocrinology. 2016;157:4094-4103 pubmed
  29. Leonard S, Kinsella G, Benetti E, Findlay J. Regulating the effects of GPR21, a novel target for type 2 diabetes. Sci Rep. 2016;6:27002 pubmed 出版商
  30. Wang K, Cao P, Wang H, Tang Z, Wang N, Wang J, et al. Chronic administration of Angelica sinensis polysaccharide effectively improves fatty liver and glucose homeostasis in high-fat diet-fed mice. Sci Rep. 2016;6:26229 pubmed 出版商
  31. Cieniewicz A, Cooper P, MCGEHEE J, Lingham R, Kihm A. Novel method demonstrates differential ligand activation and phosphatase-mediated deactivation of insulin receptor tyrosine-specific phosphorylation. Cell Signal. 2016;28:1037-47 pubmed 出版商
  32. Boothe T, Lim G, Cen H, Skovsø S, Piske M, Li S, et al. Inter-domain tagging implicates caveolin-1 in insulin receptor trafficking and Erk signaling bias in pancreatic beta-cells. Mol Metab. 2016;5:366-378 pubmed 出版商
  33. Dinger K, Kasper P, Hucklenbruch Rother E, Vohlen C, Jobst E, Janoschek R, et al. Early-onset obesity dysregulates pulmonary adipocytokine/insulin signaling and induces asthma-like disease in mice. Sci Rep. 2016;6:24168 pubmed 出版商
  34. Strickland S, Vande Pol S. The Human Papillomavirus 16 E7 Oncoprotein Attenuates AKT Signaling To Promote Internal Ribosome Entry Site-Dependent Translation and Expression of c-MYC. J Virol. 2016;90:5611-5621 pubmed 出版商
  35. de Castro Barbosa T, Ingerslev L, Alm P, Versteyhe S, Massart J, Rasmussen M, et al. High-fat diet reprograms the epigenome of rat spermatozoa and transgenerationally affects metabolism of the offspring. Mol Metab. 2016;5:184-197 pubmed 出版商
  36. Yamaguchi T, Lu C, Ida L, Yanagisawa K, Usukura J, Cheng J, et al. ROR1 sustains caveolae and survival signalling as a scaffold of cavin-1 and caveolin-1. Nat Commun. 2016;7:10060 pubmed 出版商
  37. Barone E, Di Domenico F, Cassano T, Arena A, Tramutola A, Lavecchia M, et al. Impairment of biliverdin reductase-A promotes brain insulin resistance in Alzheimer disease: A new paradigm. Free Radic Biol Med. 2016;91:127-42 pubmed 出版商
  38. Sun J, Fu X, Liu Y, Wang Y, Huo B, Guo Y, et al. Hypoglycemic effect and mechanism of honokiol on type 2 diabetic mice. Drug Des Devel Ther. 2015;9:6327-42 pubmed 出版商
  39. Ni Y, Nagashimada M, Zhuge F, Zhan L, Nagata N, Tsutsui A, et al. Astaxanthin prevents and reverses diet-induced insulin resistance and steatohepatitis in mice: A comparison with vitamin E. Sci Rep. 2015;5:17192 pubmed 出版商
  40. Goto A, Egawa T, Sakon I, Oshima R, Ito K, Serizawa Y, et al. Heat stress acutely activates insulin-independent glucose transport and 5'-AMP-activated protein kinase prior to an increase in HSP72 protein in rat skeletal muscle. Physiol Rep. 2015;3: pubmed 出版商
  41. Stouffer M, Woods C, Patel J, Lee C, Witkovsky P, Bao L, et al. Insulin enhances striatal dopamine release by activating cholinergic interneurons and thereby signals reward. Nat Commun. 2015;6:8543 pubmed 出版商
  42. Vigelso A, Prats C, Ploug T, Dela F, Helge J. Higher muscle content of perilipin 5 and endothelial lipase protein in trained than untrained middle-aged men. Physiol Res. 2016;65:293-302 pubmed
  43. Garwood C, Ratcliffe L, Morgan S, Simpson J, Owens H, Vazquez Villaseñor I, et al. Insulin and IGF1 signalling pathways in human astrocytes in vitro and in vivo; characterisation, subcellular localisation and modulation of the receptors. Mol Brain. 2015;8:51 pubmed 出版商
  44. Yunn N, Koh A, Han S, Lim J, Park S, Lee J, et al. Agonistic aptamer to the insulin receptor leads to biased signaling and functional selectivity through allosteric modulation. Nucleic Acids Res. 2015;43:7688-701 pubmed 出版商
  45. Krishnan N, Krishnan K, Connors C, Choy M, Page R, Peti W, et al. PTP1B inhibition suggests a therapeutic strategy for Rett syndrome. J Clin Invest. 2015;125:3163-77 pubmed 出版商
  46. Luo J, Wu N, Jiang B, Wang L, Wang S, Li X, et al. Marine Bromophenol Derivative 3,4-Dibromo-5-(2-bromo-3,4-dihydroxy-6-isopropoxymethyl benzyl)benzene-1,2-diol Protects Hepatocytes from Lipid-Induced Cell Damage and Insulin Resistance via PTP1B Inhibition. Mar Drugs. 2015;13:4452-69 pubmed 出版商
  47. Tan X, Xue Y, Ma T, Wang X, Li J, Lan L, et al. Partial eNOS deficiency causes spontaneous thrombotic cerebral infarction, amyloid angiopathy and cognitive impairment. Mol Neurodegener. 2015;10:24 pubmed 出版商
  48. Meyer K, Albaugh B, Schoenike B, Roopra A. Type 1 Insulin-Like Growth Factor Receptor/Insulin Receptor Substrate 1 Signaling Confers Pathogenic Activity on Breast Tumor Cells Lacking REST. Mol Cell Biol. 2015;35:2991-3004 pubmed 出版商
  49. Min H, Yun H, Lee J, Lee H, Cho J, Jang H, et al. Targeting the insulin-like growth factor receptor and Src signaling network for the treatment of non-small cell lung cancer. Mol Cancer. 2015;14:113 pubmed 出版商
  50. Petrov D, Pedrós I, Artiach G, Sureda F, Barroso E, Pallas M, et al. High-fat diet-induced deregulation of hippocampal insulin signaling and mitochondrial homeostasis deficiences contribute to Alzheimer disease pathology in rodents. Biochim Biophys Acta. 2015;1852:1687-99 pubmed 出版商
  51. Bettaieb A, Jiang J, Sasaki Y, Chao T, Kiss Z, Chen X, et al. Hepatocyte Nicotinamide Adenine Dinucleotide Phosphate Reduced Oxidase 4 Regulates Stress Signaling, Fibrosis, and Insulin Sensitivity During Development of Steatohepatitis in Mice. Gastroenterology. 2015;149:468-80.e10 pubmed 出版商
  52. Cabail M, Li S, Lemmon E, Bowen M, Hubbard S, Miller W. The insulin and IGF1 receptor kinase domains are functional dimers in the activated state. Nat Commun. 2015;6:6406 pubmed 出版商
  53. Slaaby R. Specific insulin/IGF1 hybrid receptor activation assay reveals IGF1 as a more potent ligand than insulin. Sci Rep. 2015;5:7911 pubmed 出版商
  54. Yoo J, Kim T, Kong S, Lee J, Choi W, Kim K, et al. Role of Mig-6 in hepatic glucose metabolism. J Diabetes. 2016;8:86-97 pubmed 出版商
  55. Nakazawa H, Yamada M, Tanaka T, Kramer J, Yu Y, Fischman A, et al. Role of protein farnesylation in burn-induced metabolic derangements and insulin resistance in mouse skeletal muscle. PLoS ONE. 2015;10:e0116633 pubmed 出版商
  56. Kim E, Kim S, Jin X, Ham S, Kim J, Park J, et al. Epidermal growth factor receptor variant III renders glioma cancer cells less differentiated by JAGGED1. Tumour Biol. 2015;36:2921-8 pubmed 出版商
  57. Kim J, Toda C, D Agostino G, Zeiss C, DiLeone R, Elsworth J, et al. Hypothalamic prolyl endopeptidase (PREP) regulates pancreatic insulin and glucagon secretion in mice. Proc Natl Acad Sci U S A. 2014;111:11876-81 pubmed 出版商
  58. Kim K, Lee S, Ryu S, Han D. Efficient isolation and elution of cellular proteins using aptamer-mediated protein precipitation assay. Biochem Biophys Res Commun. 2014;448:114-9 pubmed 出版商
  59. Zhang Q, Pan Y, Wang R, Kang L, Xue Q, Wang X, et al. Quercetin inhibits AMPK/TXNIP activation and reduces inflammatory lesions to improve insulin signaling defect in the hypothalamus of high fructose-fed rats. J Nutr Biochem. 2014;25:420-8 pubmed 出版商
  60. Ziegler A, Chidambaram S, Forbes B, Wood T, Levison S. Insulin-like growth factor-II (IGF-II) and IGF-II analogs with enhanced insulin receptor-a binding affinity promote neural stem cell expansion. J Biol Chem. 2014;289:4626-33 pubmed 出版商
  61. Aimé P, Hegoburu C, Jaillard T, Degletagne C, Garcia S, Messaoudi B, et al. A physiological increase of insulin in the olfactory bulb decreases detection of a learned aversive odor and abolishes food odor-induced sniffing behavior in rats. PLoS ONE. 2012;7:e51227 pubmed 出版商
  62. Sharma N, Arias E, Sequea D, Cartee G. Preventing the calorie restriction-induced increase in insulin-stimulated Akt2 phosphorylation eliminates calorie restriction's effect on glucose uptake in skeletal muscle. Biochim Biophys Acta. 2012;1822:1735-40 pubmed 出版商
  63. Sequea D, Sharma N, Arias E, Cartee G. Calorie restriction enhances insulin-stimulated glucose uptake and Akt phosphorylation in both fast-twitch and slow-twitch skeletal muscle of 24-month-old rats. J Gerontol A Biol Sci Med Sci. 2012;67:1279-85 pubmed 出版商
  64. Xiao Y, Sharma N, Arias E, Castorena C, Cartee G. A persistent increase in insulin-stimulated glucose uptake by both fast-twitch and slow-twitch skeletal muscles after a single exercise session by old rats. Age (Dordr). 2013;35:573-82 pubmed
  65. Kasuga K, Kaneko H, Nishizawa M, Onodera O, Ikeuchi T. Generation of intracellular domain of insulin receptor tyrosine kinase by gamma-secretase. Biochem Biophys Res Commun. 2007;360:90-6 pubmed
  66. Garcia Echeverria C, Pearson M, Marti A, Meyer T, Mestan J, Zimmermann J, et al. In vivo antitumor activity of NVP-AEW541-A novel, potent, and selective inhibitor of the IGF-IR kinase. Cancer Cell. 2004;5:231-9 pubmed
  67. Wu J, Guidotti G. Construction and characterization of a monomeric insulin receptor. J Biol Chem. 2002;277:27809-17 pubmed