这是一篇来自已证抗体库的有关人类 nestin的综述,是根据96篇发表使用所有方法的文章归纳的。这综述旨在帮助来邦网的访客找到最适合nestin 抗体。
nestin 同义词: Nbla00170

圣克鲁斯生物技术
小鼠 单克隆(10C2)
  • 免疫细胞化学; 人类; 1:100; 图 2c
圣克鲁斯生物技术 nestin抗体(Santa Cruz Biotech, sc-23927)被用于被用于免疫细胞化学在人类样本上浓度为1:100 (图 2c). Cell Rep (2021) ncbi
小鼠 单克隆(10C2)
  • 免疫组化-石蜡切片; 人类; 图 6c
圣克鲁斯生物技术 nestin抗体(Santa Cruz, sc-23927)被用于被用于免疫组化-石蜡切片在人类样本上 (图 6c). Cell Rep (2021) ncbi
大鼠 单克隆(7A3)
  • 免疫组化; 小鼠; 1:200; 图 4f
圣克鲁斯生物技术 nestin抗体(Santa Cruz, sc101541)被用于被用于免疫组化在小鼠样本上浓度为1:200 (图 4f). Nat Commun (2019) ncbi
小鼠 单克隆(D-9)
  • 免疫细胞化学; 人类; 图 1a
  • 免疫印迹; 人类; 图 2a
圣克鲁斯生物技术 nestin抗体(Santa Cruz, sc-377380)被用于被用于免疫细胞化学在人类样本上 (图 1a) 和 被用于免疫印迹在人类样本上 (图 2a). Oncogene (2017) ncbi
小鼠 单克隆(10C2)
  • 流式细胞仪; 人类; 图 s1b
圣克鲁斯生物技术 nestin抗体(Santa Cruz Biotechnology, sc-23927)被用于被用于流式细胞仪在人类样本上 (图 s1b). Oncotarget (2016) ncbi
小鼠 单克隆(5C93)
  • 免疫细胞化学; 人类; 1:500; 图 1
圣克鲁斯生物技术 nestin抗体(santa Cruz, sc-71665)被用于被用于免疫细胞化学在人类样本上浓度为1:500 (图 1). PLoS ONE (2016) ncbi
小鼠 单克隆(10C2)
  • 免疫细胞化学; 人类; 图 7
圣克鲁斯生物技术 nestin抗体(Santa Cruz, sc23927)被用于被用于免疫细胞化学在人类样本上 (图 7). Stem Cell Reports (2016) ncbi
小鼠 单克隆(10C2)
  • 免疫组化-石蜡切片; 人类; 1:200; 图 4
圣克鲁斯生物技术 nestin抗体(Santa Cruz, SC-23927)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:200 (图 4). Eur J Histochem (2016) ncbi
小鼠 单克隆(10C2)
  • 免疫细胞化学; 人类; 图 1
圣克鲁斯生物技术 nestin抗体(Santa Cruz Biotechnology, sc-23927)被用于被用于免疫细胞化学在人类样本上 (图 1). Virol J (2016) ncbi
小鼠 单克隆(10C2)
  • 免疫组化; 人类; 图 1d
圣克鲁斯生物技术 nestin抗体(Santa Cruz Biotechnology, sc-23927)被用于被用于免疫组化在人类样本上 (图 1d). Cancer Lett (2016) ncbi
小鼠 单克隆(10C2)
  • 免疫组化-石蜡切片; 人类; 1:100; 图 3
圣克鲁斯生物技术 nestin抗体(Santa Cruz, 10C2)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100 (图 3). PLoS ONE (2015) ncbi
大鼠 单克隆(7A3)
  • 免疫印迹; 人类; 1:1000; 图 3
圣克鲁斯生物技术 nestin抗体(Santa-Cruz, sc-101541)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3). Int J Clin Exp Pathol (2015) ncbi
小鼠 单克隆(5C93)
  • 免疫细胞化学; 人类; 1:500; 图 4
圣克鲁斯生物技术 nestin抗体(Santa Cruz Biotechnology, sc-71665)被用于被用于免疫细胞化学在人类样本上浓度为1:500 (图 4). PLoS ONE (2015) ncbi
小鼠 单克隆(10C2)
  • 免疫细胞化学; 人类; 1:200; 图 9
圣克鲁斯生物技术 nestin抗体(santa cruz, SC-23927)被用于被用于免疫细胞化学在人类样本上浓度为1:200 (图 9). Exp Cell Res (2015) ncbi
小鼠 单克隆(10C2)
  • 免疫细胞化学; 人类; 1:250; 图 s7
圣克鲁斯生物技术 nestin抗体(Santa Cruz, sc-23927)被用于被用于免疫细胞化学在人类样本上浓度为1:250 (图 s7). Mol Cancer (2015) ncbi
小鼠 单克隆(5C93)
  • 免疫细胞化学; 人类; 1:250
圣克鲁斯生物技术 nestin抗体(Santa Cruz Biotech, SC-71665)被用于被用于免疫细胞化学在人类样本上浓度为1:250. PLoS Genet (2015) ncbi
小鼠 单克隆(10C2)
  • 免疫组化-石蜡切片; 人类; 图 S4
圣克鲁斯生物技术 nestin抗体(Santa Cruz Biotechnology, sc-23927)被用于被用于免疫组化-石蜡切片在人类样本上 (图 S4). PLoS ONE (2015) ncbi
小鼠 单克隆(D-9)
  • 免疫细胞化学; 人类; 1:100
圣克鲁斯生物技术 nestin抗体(Santa Cruz Biotechnology, sc-377380)被用于被用于免疫细胞化学在人类样本上浓度为1:100. Mol Med Rep (2015) ncbi
小鼠 单克隆(10C2)
  • 免疫组化-石蜡切片; 人类
  • 免疫印迹; 人类; 1:500
圣克鲁斯生物技术 nestin抗体(Santa Cruz Biotechnology, sc-23927)被用于被用于免疫组化-石蜡切片在人类样本上 和 被用于免疫印迹在人类样本上浓度为1:500. Cell Death Dis (2014) ncbi
小鼠 单克隆(5C93)
  • 免疫细胞化学; 人类; 1:200
圣克鲁斯生物技术 nestin抗体(Santa Cruz, sc-71665)被用于被用于免疫细胞化学在人类样本上浓度为1:200. J Proteomics (2014) ncbi
小鼠 单克隆(10C2)
  • 免疫组化-石蜡切片; 人类; 1:200; 图 4
圣克鲁斯生物技术 nestin抗体(Santa Cruz, sc-23927)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:200 (图 4). Acta Neuropathol Commun (2014) ncbi
小鼠 单克隆(10C2)
  • 免疫组化-石蜡切片; 人类
圣克鲁斯生物技术 nestin抗体(Santa Cruz Biotechnology, 10C2)被用于被用于免疫组化-石蜡切片在人类样本上. Oncol Lett (2014) ncbi
小鼠 单克隆(10C2)
  • 免疫组化-石蜡切片; 人类
圣克鲁斯生物技术 nestin抗体(Santa Cruz Biotechnology, sc-23927)被用于被用于免疫组化-石蜡切片在人类样本上. J Am Acad Dermatol (2010) ncbi
艾博抗(上海)贸易有限公司
domestic rabbit 多克隆
  • 免疫细胞化学; 小鼠; 图 s4a
  • 免疫印迹; 小鼠; 图 s4c
艾博抗(上海)贸易有限公司 nestin抗体(Abcam, ab7659)被用于被用于免疫细胞化学在小鼠样本上 (图 s4a) 和 被用于免疫印迹在小鼠样本上 (图 s4c). Mol Metab (2021) ncbi
domestic rabbit 单克隆(SP103)
  • 免疫组化-石蜡切片; 人类; 图 s3j
艾博抗(上海)贸易有限公司 nestin抗体(Abcam, ab105389)被用于被用于免疫组化-石蜡切片在人类样本上 (图 s3j). Nat Commun (2021) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 图 3c
  • 免疫印迹; 小鼠; 1:500; 图 1b
艾博抗(上海)贸易有限公司 nestin抗体(Abcam, ab7659)被用于被用于免疫组化在小鼠样本上 (图 3c) 和 被用于免疫印迹在小鼠样本上浓度为1:500 (图 1b). Transl Psychiatry (2020) ncbi
rat 单克隆(rat-401)
  • 免疫组化-冰冻切片; 小鼠; 1:500; 图 1e
艾博抗(上海)贸易有限公司 nestin抗体(Abcam, ab196693)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:500 (图 1e). Autophagy (2019) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 图 1b
艾博抗(上海)贸易有限公司 nestin抗体(Abcam, ab7659)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 1b). Sci Rep (2018) ncbi
domestic rabbit 单克隆(SP103)
  • 免疫组化; 人类; 图 s2g
艾博抗(上海)贸易有限公司 nestin抗体(Abcam, ab105389)被用于被用于免疫组化在人类样本上 (图 s2g). Proc Natl Acad Sci U S A (2017) ncbi
domestic rabbit 单克隆(SP103)
  • 免疫细胞化学; 人类; 图 1e
  • 免疫印迹; 人类; 图 1d
艾博抗(上海)贸易有限公司 nestin抗体(Abcam, ab105389)被用于被用于免疫细胞化学在人类样本上 (图 1e) 和 被用于免疫印迹在人类样本上 (图 1d). Stem Cell Reports (2017) ncbi
domestic rabbit 单克隆(SP103)
  • 免疫组化-石蜡切片; 人类; 1:300; 图 2a
艾博抗(上海)贸易有限公司 nestin抗体(Abcam, SP103)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:300 (图 2a). Pathol Oncol Res (2018) ncbi
小鼠 单克隆(3k1)
  • 免疫细胞化学; 小鼠; 1:100; 图 4f
艾博抗(上海)贸易有限公司 nestin抗体(Abcam, ab6320)被用于被用于免疫细胞化学在小鼠样本上浓度为1:100 (图 4f). Am J Transl Res (2017) ncbi
domestic rabbit 单克隆(SP103)
  • 免疫组化-石蜡切片; 小鼠; 1:30; 图 3c
艾博抗(上海)贸易有限公司 nestin抗体(abcam, ab105389)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:30 (图 3c). PLoS ONE (2017) ncbi
小鼠 单克隆(3k1)
  • 免疫细胞化学; 人类; 图 2bb
  • 免疫印迹; 人类; 图 2a
艾博抗(上海)贸易有限公司 nestin抗体(Abcam, ab6320)被用于被用于免疫细胞化学在人类样本上 (图 2bb) 和 被用于免疫印迹在人类样本上 (图 2a). Mol Oncol (2017) ncbi
小鼠 单克隆(3k1)
  • 免疫细胞化学; 人类; 1:100; 图 4
艾博抗(上海)贸易有限公司 nestin抗体(abcam, ab6320)被用于被用于免疫细胞化学在人类样本上浓度为1:100 (图 4). Sci Rep (2016) ncbi
domestic rabbit 单克隆(SP103)
  • 免疫细胞化学; 人类; 图 6
艾博抗(上海)贸易有限公司 nestin抗体(Abcam, ab105389)被用于被用于免疫细胞化学在人类样本上 (图 6). Nat Commun (2016) ncbi
domestic rabbit 单克隆(EPR1301(2))
  • 免疫细胞化学; 人类; 1:200; 图 5
艾博抗(上海)贸易有限公司 nestin抗体(Abcam, ab176571)被用于被用于免疫细胞化学在人类样本上浓度为1:200 (图 5). Cell Reprogram (2016) ncbi
domestic rabbit 单克隆(EPR1301(2))
  • 免疫组化-石蜡切片; 人类; 图 1
艾博抗(上海)贸易有限公司 nestin抗体(Abcam, ab176571)被用于被用于免疫组化-石蜡切片在人类样本上 (图 1). Oncotarget (2016) ncbi
小鼠 单克隆(3k1)
  • 免疫组化; 人类; 1:500; 图 6h
艾博抗(上海)贸易有限公司 nestin抗体(Abcam, ab6320)被用于被用于免疫组化在人类样本上浓度为1:500 (图 6h). Nat Cell Biol (2015) ncbi
小鼠 单克隆(3k1)
  • 免疫细胞化学; 人类; 1:400; 图 2a
艾博抗(上海)贸易有限公司 nestin抗体(Abcam, ab6320)被用于被用于免疫细胞化学在人类样本上浓度为1:400 (图 2a). Mol Cancer (2015) ncbi
domestic rabbit 单克隆(SP103)
  • 免疫印迹; 人类; 1:500
艾博抗(上海)贸易有限公司 nestin抗体(Abcam, ab105389)被用于被用于免疫印迹在人类样本上浓度为1:500. Cancer Lett (2015) ncbi
小鼠 单克隆(3k1)
  • 免疫细胞化学; 人类; 图 S2B
  • 免疫印迹; 人类; 图 S2A
艾博抗(上海)贸易有限公司 nestin抗体(Abcam, ab6320)被用于被用于免疫细胞化学在人类样本上 (图 S2B) 和 被用于免疫印迹在人类样本上 (图 S2A). Epigenetics (2014) ncbi
小鼠 单克隆(3k1)
  • 流式细胞仪; 人类; 图 s8
艾博抗(上海)贸易有限公司 nestin抗体(abcam, ab6320)被用于被用于流式细胞仪在人类样本上 (图 s8). Int J Cancer (2014) ncbi
安迪生物R&D
小鼠 单克隆(196908)
  • 免疫细胞化学; 人类; 1:500; 图 6e, s14b
安迪生物R&D nestin抗体(R&D systems, MAB1259)被用于被用于免疫细胞化学在人类样本上浓度为1:500 (图 6e, s14b). Cell Death Differ (2022) ncbi
小鼠 单克隆(196908)
  • 免疫组化; 小鼠; 1:1000; 图 s3
安迪生物R&D nestin抗体(R&D Systems, 196,908)被用于被用于免疫组化在小鼠样本上浓度为1:1000 (图 s3). Sci Rep (2021) ncbi
小鼠 单克隆(196908)
  • 免疫细胞化学; 人类; 1:500; 图 s2b, s4a
安迪生物R&D nestin抗体(R&D Systems, MAB1259)被用于被用于免疫细胞化学在人类样本上浓度为1:500 (图 s2b, s4a). Cell Stem Cell (2021) ncbi
小鼠 单克隆(196908)
  • 免疫细胞化学; 人类; 1:100; 图 1b, s2a
安迪生物R&D nestin抗体(R&D Systems, MAB1259)被用于被用于免疫细胞化学在人类样本上浓度为1:100 (图 1b, s2a). J Neural Transm (Vienna) (2021) ncbi
赛默飞世尔
小鼠 单克隆(10C2)
  • 免疫细胞化学; 人类; 1:200; 图 s5
赛默飞世尔 nestin抗体(Thermo Fisher, MA1-110)被用于被用于免疫细胞化学在人类样本上浓度为1:200 (图 s5). EMBO Mol Med (2021) ncbi
小鼠 单克隆(10C2)
  • 免疫细胞化学; 人类; 1:250; 图 s13c
赛默飞世尔 nestin抗体(Thermo Fisher, MA1-110)被用于被用于免疫细胞化学在人类样本上浓度为1:250 (图 s13c). Nat Cell Biol (2021) ncbi
小鼠 单克隆(10C2)
  • 流式细胞仪; 人类; 图 s3
赛默飞世尔 nestin抗体(ThermoFisher, 53-9843-82)被用于被用于流式细胞仪在人类样本上 (图 s3). Stem Cell Res Ther (2019) ncbi
小鼠 单克隆(10C2)
  • 免疫印迹; 人类; 图 2g
赛默飞世尔 nestin抗体(Thermo Fisher, MA5-16104)被用于被用于免疫印迹在人类样本上 (图 2g). Oncogene (2019) ncbi
小鼠 单克隆(10C2)
  • 免疫细胞化学; 小鼠; 1:500; 图 2b
赛默飞世尔 nestin抗体(Thermo Fisher Scientific, MA1-110)被用于被用于免疫细胞化学在小鼠样本上浓度为1:500 (图 2b). J Pineal Res (2017) ncbi
小鼠 单克隆(10C2)
  • 免疫组化-石蜡切片; 人类; 1:300; 表 2
赛默飞世尔 nestin抗体(Thermo Fisher, MA1-110)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:300 (表 2). Hum Pathol (2017) ncbi
小鼠 单克隆(10C2)
  • 免疫组化-冰冻切片; 人类; 1:50; 图 1g
  • 免疫细胞化学; 人类; 1:50; 图 2e
赛默飞世尔 nestin抗体(eBioscience, 10C2)被用于被用于免疫组化-冰冻切片在人类样本上浓度为1:50 (图 1g) 和 被用于免疫细胞化学在人类样本上浓度为1:50 (图 2e). Stem Cells Transl Med (2016) ncbi
小鼠 单克隆(10C2)
  • 免疫组化-石蜡切片; 人类; 1:25; 图 1
赛默飞世尔 nestin抗体(Zymed, 10C2)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:25 (图 1). PLoS ONE (2013) ncbi
Novus Biologicals
鸡 多克隆
  • 免疫组化; 小鼠; 图 3l
Novus Biologicals nestin抗体(Novus Biologicals, NB100-1604)被用于被用于免疫组化在小鼠样本上 (图 3l). Cell Mol Gastroenterol Hepatol (2022) ncbi
小鼠 单克隆(10C2)
  • 免疫印迹; 人类; 1:1000; 图 4b
Novus Biologicals nestin抗体(Novus, 10C2)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 4b). JCI Insight (2021) ncbi
伯乐(Bio-Rad)公司
小鼠 单克隆(10C2)
  • 免疫组化; 人类; 1:200
伯乐(Bio-Rad)公司 nestin抗体(AbD Serotec, 10C2)被用于被用于免疫组化在人类样本上浓度为1:200. Ann Hematol (2021) ncbi
小鼠 单克隆(10C2)
  • 免疫组化-冰冻切片; African green monkey; 1:100
伯乐(Bio-Rad)公司 nestin抗体(ImmunologicalsDirect, OBT1610)被用于被用于免疫组化-冰冻切片在African green monkey样本上浓度为1:100. J Comp Neurol (2008) ncbi
BioLegend
小鼠 单克隆(10C2)
  • 流式细胞仪; 人类; 1:100; 图 4b
BioLegend nestin抗体(BioLegend, 656808)被用于被用于流式细胞仪在人类样本上浓度为1:100 (图 4b). Epilepsy Behav (2019) ncbi
Synaptic Systems
小鼠 单克隆(JP63)
  • 免疫印迹; 大鼠; 1:1000; 图 1c
Synaptic Systems nestin抗体(Synaptic Systems, 312011)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 1c). J Gen Physiol (2017) ncbi
赛信通(上海)生物试剂有限公司
小鼠 单克隆(rat-401)
  • 免疫组化; 小鼠; 1:300; 图 s7-2a
赛信通(上海)生物试剂有限公司 nestin抗体(Cell signaling, 4760)被用于被用于免疫组化在小鼠样本上浓度为1:300 (图 s7-2a). elife (2021) ncbi
小鼠 单克隆(rat-401)
  • 免疫细胞化学; 人类; 图 6a
  • 免疫印迹; 人类; 图 2c
赛信通(上海)生物试剂有限公司 nestin抗体(Cell Signaling, 4760)被用于被用于免疫细胞化学在人类样本上 (图 6a) 和 被用于免疫印迹在人类样本上 (图 2c). Oncogene (2017) ncbi
小鼠 单克隆(rat-401)
  • 免疫印迹; 小鼠; 1:1000; 图 1
赛信通(上海)生物试剂有限公司 nestin抗体(Cell Signaling, 4760)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 1). Front Cell Neurosci (2016) ncbi
小鼠 单克隆(rat-401)
  • 免疫组化-冰冻切片; 小鼠
赛信通(上海)生物试剂有限公司 nestin抗体(Cell Signaling, 4760)被用于被用于免疫组化-冰冻切片在小鼠样本上. Glia (2015) ncbi
Stemcell Technologies
小鼠 单克隆(10C2)
  • 流式细胞仪; 人类; 图 s7b
干细胞技术 nestin抗体(干细胞技术, 60091AD.1)被用于被用于流式细胞仪在人类样本上 (图 s7b). Cell (2018) ncbi
碧迪BD
小鼠 单克隆(25/NESTIN)
  • 免疫细胞化学; 大鼠; 1:200; 图 1a
碧迪BD nestin抗体(BD Pharmingen, 560393)被用于被用于免疫细胞化学在大鼠样本上浓度为1:200 (图 1a). Heliyon (2022) ncbi
小鼠 单克隆(25/NESTIN)
  • 免疫细胞化学; 人类; 图 1d
  • 免疫印迹; 人类; 图 1e
碧迪BD nestin抗体(BD Biosciences, 611659)被用于被用于免疫细胞化学在人类样本上 (图 1d) 和 被用于免疫印迹在人类样本上 (图 1e). iScience (2022) ncbi
小鼠 单克隆(25/NESTIN)
  • 免疫组化; 人类; 图 2b
  • 免疫印迹; 人类; 图 5a
碧迪BD nestin抗体(BD Biosciences, 611658)被用于被用于免疫组化在人类样本上 (图 2b) 和 被用于免疫印迹在人类样本上 (图 5a). Cell Rep (2021) ncbi
小鼠 单克隆(25/NESTIN)
  • 免疫印迹; 小鼠; 图 4b
碧迪BD nestin抗体(BD, 611659)被用于被用于免疫印迹在小鼠样本上 (图 4b). Neuron (2020) ncbi
小鼠 单克隆(25/NESTIN)
  • 免疫组化; 小鼠; 1:100; 图 4a
碧迪BD nestin抗体(BD Bioscience, 611658)被用于被用于免疫组化在小鼠样本上浓度为1:100 (图 4a). PLoS ONE (2019) ncbi
小鼠 单克隆(25/NESTIN)
  • 流式细胞仪; 人类; 图 s5
碧迪BD nestin抗体(BD Biosciences, 561230)被用于被用于流式细胞仪在人类样本上 (图 s5). Stem Cell Res (2019) ncbi
小鼠 单克隆(25/NESTIN)
  • 免疫细胞化学; 人类; 1:100; 图 1b
碧迪BD nestin抗体(BD, 560341)被用于被用于免疫细胞化学在人类样本上浓度为1:100 (图 1b). Science (2018) ncbi
小鼠 单克隆(25/NESTIN)
  • 流式细胞仪; 人类; 图 7c
碧迪BD nestin抗体(BD Biosciences, 561231)被用于被用于流式细胞仪在人类样本上 (图 7c). Stem Cells Transl Med (2019) ncbi
小鼠 单克隆(25/NESTIN)
  • 免疫印迹基因敲除验证; 人类; 1:1000; 图 s2f
  • 免疫印迹; 人类; 1:1000; 图 1i
碧迪BD nestin抗体(BD Biosciences, 611658)被用于被用于免疫印迹基因敲除验证在人类样本上浓度为1:1000 (图 s2f) 和 被用于免疫印迹在人类样本上浓度为1:1000 (图 1i). Nat Commun (2018) ncbi
小鼠 单克隆(25/NESTIN)
  • 流式细胞仪; 小鼠; 1 ug/ml; 图 5c
碧迪BD nestin抗体(BD Biosciences, 611659)被用于被用于流式细胞仪在小鼠样本上浓度为1 ug/ml (图 5c). Proc Natl Acad Sci U S A (2017) ncbi
小鼠 单克隆(25/NESTIN)
  • 流式细胞仪; 人类; 1:50
碧迪BD nestin抗体(BD Pharmingen, 560341)被用于被用于流式细胞仪在人类样本上浓度为1:50. Nat Biotechnol (2017) ncbi
小鼠 单克隆(25/NESTIN)
  • 免疫细胞化学; 人类; 1:150; 图 s5e
  • 免疫印迹; 人类; 1:1000; 图 5e
碧迪BD nestin抗体(BD Transduction, 611658)被用于被用于免疫细胞化学在人类样本上浓度为1:150 (图 s5e) 和 被用于免疫印迹在人类样本上浓度为1:1000 (图 5e). Nat Cell Biol (2016) ncbi
小鼠 单克隆(25/NESTIN)
  • 免疫细胞化学; 人类; 1:1000; 图 1d
碧迪BD nestin抗体(BD Bioscience, 611658)被用于被用于免疫细胞化学在人类样本上浓度为1:1000 (图 1d). Stem Cells Transl Med (2016) ncbi
小鼠 单克隆(25/NESTIN)
  • 免疫细胞化学; 人类; 1:500; 图 2
碧迪BD nestin抗体(BD Transduction laboratories, 611658)被用于被用于免疫细胞化学在人类样本上浓度为1:500 (图 2). PLoS ONE (2016) ncbi
小鼠 单克隆(25/NESTIN)
  • 免疫组化; 小鼠; 1:200; 图 3
碧迪BD nestin抗体(BD Biosciences, 611658)被用于被用于免疫组化在小鼠样本上浓度为1:200 (图 3). PLoS ONE (2016) ncbi
小鼠 单克隆(25/NESTIN)
  • 流式细胞仪; 大鼠; 图 6
碧迪BD nestin抗体(Becton, Dickinson and Company, 561231)被用于被用于流式细胞仪在大鼠样本上 (图 6). Sci Rep (2016) ncbi
小鼠 单克隆(25/NESTIN)
  • 免疫细胞化学; 人类; 1:2000; 图 s1a
碧迪BD nestin抗体(BD, 611659)被用于被用于免疫细胞化学在人类样本上浓度为1:2000 (图 s1a). Nat Commun (2016) ncbi
小鼠 单克隆(25/NESTIN)
  • 免疫细胞化学; 大鼠; 1:1000; 图 2
  • 免疫印迹; 大鼠; 1:1000; 图 3
碧迪BD nestin抗体(BD Biosciences, 611658)被用于被用于免疫细胞化学在大鼠样本上浓度为1:1000 (图 2) 和 被用于免疫印迹在大鼠样本上浓度为1:1000 (图 3). Brain Behav (2015) ncbi
小鼠 单克隆(25/NESTIN)
  • 免疫细胞化学; 斑马鱼; 1:100
碧迪BD nestin抗体(BD Biosciences, 611659)被用于被用于免疫细胞化学在斑马鱼样本上浓度为1:100. Biol Open (2015) ncbi
小鼠 单克隆(25/NESTIN)
  • 免疫细胞化学; 小鼠
碧迪BD nestin抗体(BD, 611658)被用于被用于免疫细胞化学在小鼠样本上. J Neurochem (2015) ncbi
小鼠 单克隆(25/NESTIN)
  • 流式细胞仪; 人类; 图 1
碧迪BD nestin抗体(Becton Dickinson, 560393)被用于被用于流式细胞仪在人类样本上 (图 1). J Cell Biochem (2015) ncbi
小鼠 单克隆(25/NESTIN)
  • 免疫印迹; 人类; 1:250
碧迪BD nestin抗体(BD Biosciences, 611658)被用于被用于免疫印迹在人类样本上浓度为1:250. Stem Cell Rev (2015) ncbi
小鼠 单克隆(25/NESTIN)
  • 免疫细胞化学; 人类; 1:10; 图 3, 4
碧迪BD nestin抗体(BD Biosciences, 560341)被用于被用于免疫细胞化学在人类样本上浓度为1:10 (图 3, 4). Methods Mol Biol (2015) ncbi
小鼠 单克隆(25/NESTIN)
  • 免疫组化-冰冻切片; 小鼠; 1:500
碧迪BD nestin抗体(BD Transduction Laboratories, 611659)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:500. Development (2014) ncbi
小鼠 单克隆(25/NESTIN)
  • 免疫印迹; 人类; 图 1d
碧迪BD nestin抗体(BD Biosciences, 611658)被用于被用于免疫印迹在人类样本上 (图 1d). Biochim Biophys Acta (2014) ncbi
小鼠 单克隆(25/NESTIN)
  • 免疫组化; 小鼠; 1:500
碧迪BD nestin抗体(BD Transduction Laboratories, 611658)被用于被用于免疫组化在小鼠样本上浓度为1:500. Stem Cells Dev (2014) ncbi
小鼠 单克隆(25/NESTIN)
  • 免疫细胞化学; 人类; 1:500
碧迪BD nestin抗体(BD Transduction Laboratories, 611658)被用于被用于免疫细胞化学在人类样本上浓度为1:500. Cytotherapy (2013) ncbi
小鼠 单克隆(25/NESTIN)
  • 免疫细胞化学; 小鼠
碧迪BD nestin抗体(BD Transduction, 611658)被用于被用于免疫细胞化学在小鼠样本上. EMBO J (2013) ncbi
小鼠 单克隆(25/NESTIN)
  • 免疫细胞化学; 人类; 1:500
碧迪BD nestin抗体(BD Biosciences, 611658)被用于被用于免疫细胞化学在人类样本上浓度为1:500. Stem Cells Transl Med (2012) ncbi
小鼠 单克隆(25/NESTIN)
  • 染色质免疫沉淀 ; 人类
碧迪BD nestin抗体(BD Pharmingen, 611658)被用于被用于染色质免疫沉淀 在人类样本上. J Neurosci Res (2013) ncbi
小鼠 单克隆(25/NESTIN)
  • 免疫印迹; 斑马鱼
碧迪BD nestin抗体(BD Biosciences, 611658)被用于被用于免疫印迹在斑马鱼样本上. Nucleic Acids Res (2012) ncbi
文章列表
  1. Al Zikri P, Huat T, Khan A, Patar A, Reza M, Idris F, et al. Transplantation of IGF-1-induced BMSC-derived NPCs promotes tissue repair and motor recovery in a rat spinal cord injury model. Heliyon. 2022;8:e10384 pubmed 出版商
  2. Duan S, Sawyer T, Sontz R, Wieland B, Diaz A, Merchant J. GFAP-directed Inactivation of Men1 Exploits Glial Cell Plasticity in Favor of Neuroendocrine Reprogramming. Cell Mol Gastroenterol Hepatol. 2022;14:1025-1051 pubmed 出版商
  3. Chao J, Feng L, Ye P, Chen X, Cui Q, Sun G, et al. Therapeutic development for Canavan disease using patient iPSCs introduced with the wild-type ASPA gene. iScience. 2022;25:104391 pubmed 出版商
  4. Kaushal K, Kim E, Tyagi A, Karapurkar J, Haq S, Jung H, et al. Genome-wide screening for deubiquitinase subfamily identifies ubiquitin-specific protease 49 as a novel regulator of odontogenesis. Cell Death Differ. 2022;: pubmed 出版商
  5. Lo Cascio C, McNamara J, Melendez E, Lewis E, Dufault M, Sanai N, et al. Nonredundant, isoform-specific roles of HDAC1 in glioma stem cells. JCI Insight. 2021;6: pubmed 出版商
  6. Viais R, Fariña Mosquera M, Villamor Payà M, Watanabe S, Palenzuela L, Lacasa C, et al. Augmin deficiency in neural stem cells causes p53-dependent apoptosis and aborts brain development. elife. 2021;10: pubmed 出版商
  7. Soldati C, Lopez Fabuel I, Wanderlingh L, García Macia M, Monfregola J, Esposito A, et al. Repurposing of tamoxifen ameliorates CLN3 and CLN7 disease phenotype. EMBO Mol Med. 2021;13:e13742 pubmed 出版商
  8. Truong D, Phlairaharn T, Eßwein B, Gruber C, Tümen D, Baligács E, et al. Non-invasive and high-throughput interrogation of exon-specific isoform expression. Nat Cell Biol. 2021;23:652-663 pubmed 出版商
  9. Sighel D, Notarangelo M, Aibara S, Re A, Ricci G, Guida M, et al. Inhibition of mitochondrial translation suppresses glioblastoma stem cell growth. Cell Rep. 2021;35:109024 pubmed 出版商
  10. Knudsen A, Boldt H, Jakobsen E, Kristensen B. The multi-target small-molecule inhibitor SB747651A shows in vitro and in vivo anticancer efficacy in glioblastomas. Sci Rep. 2021;11:6066 pubmed 出版商
  11. Brune M, Stussi G, Lundberg P, Vela V, Heim D, Manz M, et al. Effects of lenalidomide on the bone marrow microenvironment in acute myeloid leukemia: Translational analysis of the HOVON103 AML/SAKK30/10 Swiss trial cohort. Ann Hematol. 2021;100:1169-1179 pubmed 出版商
  12. Bressan R, Southgate B, Ferguson K, Blin C, Grant V, Alfazema N, et al. Regional identity of human neural stem cells determines oncogenic responses to histone H3.3 mutants. Cell Stem Cell. 2021;28:877-893.e9 pubmed 出版商
  13. Jansch C, Ziegler G, Forero A, Gredy S, W xe4 ldchen S, Vitale M, et al. Serotonin-specific neurons differentiated from human iPSCs form distinct subtypes with synaptic protein assembly. J Neural Transm (Vienna). 2021;128:225-241 pubmed 出版商
  14. Okawa E, Gupta M, Kahraman S, Goli P, Sakaguchi M, Hu J, et al. Essential roles of insulin and IGF-1 receptors during embryonic lineage development. Mol Metab. 2021;47:101164 pubmed 出版商
  15. Wu C, Dicks A, Steward N, Tang R, Katz D, Choi Y, et al. Single cell transcriptomic analysis of human pluripotent stem cell chondrogenesis. Nat Commun. 2021;12:362 pubmed 出版商
  16. Arber C, Lovejoy C, Harris L, Willumsen N, Alatza A, Casey J, et al. Familial Alzheimer's Disease Mutations in PSEN1 Lead to Premature Human Stem Cell Neurogenesis. Cell Rep. 2021;34:108615 pubmed 出版商
  17. Huang H, Yu X, Han X, Hao J, Zhao J, Bebek G, et al. Piwil1 Regulates Glioma Stem Cell Maintenance and Glioblastoma Progression. Cell Rep. 2021;34:108522 pubmed 出版商
  18. Morales Garcia J, Calleja Conde J, Lopez Moreno J, Alonso Gil S, Sanz Sancristobal M, Riba J, et al. N,N-dimethyltryptamine compound found in the hallucinogenic tea ayahuasca, regulates adult neurogenesis in vitro and in vivo. Transl Psychiatry. 2020;10:331 pubmed 出版商
  19. Escande Beillard N, Loh A, Saleem S, Kanata K, Hashimoto Y, Altunoglu U, et al. Loss of PYCR2 Causes Neurodegeneration by Increasing Cerebral Glycine Levels via SHMT2. Neuron. 2020;107:82-94.e6 pubmed 出版商
  20. Rocktäschel P, Sen A, Cader M. High glucose concentrations mask cellular phenotypes in a stem cell model of tuberous sclerosis complex. Epilepsy Behav. 2019;101:106581 pubmed 出版商
  21. Jin J, Ravindran P, Di Meo D, Püschel A. Igf1R/InsR function is required for axon extension and corpus callosum formation. PLoS ONE. 2019;14:e0219362 pubmed 出版商
  22. Diéguez Hurtado R, Kato K, Giaimo B, Nieminen Kelhä M, Arf H, Ferrante F, et al. Loss of the transcription factor RBPJ induces disease-promoting properties in brain pericytes. Nat Commun. 2019;10:2817 pubmed 出版商
  23. Okumura T, Horie Y, Lai C, Lin H, Shoda H, Natsumoto B, et al. Robust and highly efficient hiPSC generation from patient non-mobilized peripheral blood-derived CD34+ cells using the auto-erasable Sendai virus vector. Stem Cell Res Ther. 2019;10:185 pubmed 出版商
  24. Jung S, Choe S, Woo H, Jeong H, An H, Moon H, et al. Autophagic death of neural stem cells mediates chronic stress-induced decline of adult hippocampal neurogenesis and cognitive deficits. Autophagy. 2019;:1-19 pubmed 出版商
  25. Kuang Y, Muñoz A, Nalula G, Santostefano K, Sanghez V, Sanchez G, et al. Evaluation of commonly used ectoderm markers in iPSC trilineage differentiation. Stem Cell Res. 2019;37:101434 pubmed 出版商
  26. Rajarajan P, Borrman T, Liao W, Schrode N, Flaherty E, Casiño C, et al. Neuron-specific signatures in the chromosomal connectome associated with schizophrenia risk. Science. 2018;362: pubmed 出版商
  27. Kaindl J, Meiser I, Majer J, Sommer A, Krach F, Katsen Globa A, et al. Zooming in on Cryopreservation of hiPSCs and Neural Derivatives: A Dual-Center Study Using Adherent Vitrification. Stem Cells Transl Med. 2019;8:247-259 pubmed 出版商
  28. Zhang Y, Wang J, Huang W, Cai J, Ba J, Wang Y, et al. Nuclear Nestin deficiency drives tumor senescence via lamin A/C-dependent nuclear deformation. Nat Commun. 2018;9:3613 pubmed 出版商
  29. Lee E, Ouzounova M, Piranlioglu R, Ma M, Guzel M, Marasco D, et al. The pleiotropic effects of TNFα in breast cancer subtypes is regulated by TNFAIP3/A20. Oncogene. 2019;38:469-482 pubmed 出版商
  30. Dorraji S, Hovd A, Kanapathippillai P, Bakland G, Eilertsen G, Figenschau S, et al. Mesenchymal stem cells and T cells in the formation of Tertiary Lymphoid Structures in Lupus Nephritis. Sci Rep. 2018;8:7861 pubmed 出版商
  31. Chung H, Calis J, Wu X, Sun T, Yu Y, Sarbanes S, et al. Human ADAR1 Prevents Endogenous RNA from Triggering Translational Shutdown. Cell. 2018;172:811-824.e14 pubmed 出版商
  32. Ong D, Hu B, Ho Y, Sauvé C, Bristow C, Wang Q, et al. PAF promotes stemness and radioresistance of glioma stem cells. Proc Natl Acad Sci U S A. 2017;114:E9086-E9095 pubmed 出版商
  33. Hu J, Guan W, Liu P, Dai J, Tang K, Xiao H, et al. Endoglin Is Essential for the Maintenance of Self-Renewal and Chemoresistance in Renal Cancer Stem Cells. Stem Cell Reports. 2017;9:464-477 pubmed 出版商
  34. Ju X, Sun K, Liu R, Li S, Abulajiang G, Zou H, et al. Exploring the Histogenesis and Diagnostic Strategy Using Immunoassay and RT-PCR in Alveolar Soft Part Sarcoma. Pathol Oncol Res. 2018;24:593-600 pubmed 出版商
  35. Young F, Keruzore M, Nan X, Gennet N, Bellefroid E, Li M. The doublesex-related Dmrta2 safeguards neural progenitor maintenance involving transcriptional regulation of Hes1. Proc Natl Acad Sci U S A. 2017;114:E5599-E5607 pubmed 出版商
  36. Mendivil Perez M, Soto Mercado V, Guerra Librero A, Fernandez Gil B, Florido J, Shen Y, et al. Melatonin enhances neural stem cell differentiation and engraftment by increasing mitochondrial function. J Pineal Res. 2017;63: pubmed 出版商
  37. Ji H, Xiong Y, Zhang E, Song W, Gao Z, Yao F, et al. Which has more stem-cell characteristics: Müller cells or Müller cells derived from in vivo culture in neurospheres?. Am J Transl Res. 2017;9:611-619 pubmed
  38. Malchenko S, Sredni S, Bi Y, Margaryan N, Boyineni J, Mohanam I, et al. Stabilization of HIF-1α and HIF-2α, up-regulation of MYCC and accumulation of stabilized p53 constitute hallmarks of CNS-PNET animal model. PLoS ONE. 2017;12:e0173106 pubmed 出版商
  39. Qi Y, Zhang X, Renier N, Wu Z, Atkin T, Sun Z, et al. Combined small-molecule inhibition accelerates the derivation of functional cortical neurons from human pluripotent stem cells. Nat Biotechnol. 2017;35:154-163 pubmed 出版商
  40. Zhang C, Mukherjee S, Tucker Burden C, Ross J, Chau M, Kong J, et al. TRIM8 regulates stemness in glioblastoma through PIAS3-STAT3. Mol Oncol. 2017;11:280-294 pubmed 出版商
  41. Mesa H, Gilles S, Datta M, Murugan P, Larson W, Dachel S, et al. Comparative immunomorphology of testicular Sertoli and sertoliform tumors. Hum Pathol. 2017;61:181-189 pubmed 出版商
  42. Wolfes A, Ahmed S, Awasthi A, Stahlberg M, Rajput A, Magruder D, et al. A novel method for culturing stellate astrocytes reveals spatially distinct Ca2+ signaling and vesicle recycling in astrocytic processes. J Gen Physiol. 2017;149:149-170 pubmed 出版商
  43. Sareddy G, Viswanadhapalli S, Surapaneni P, Suzuki T, Brenner A, Vadlamudi R. Novel KDM1A inhibitors induce differentiation and apoptosis of glioma stem cells via unfolded protein response pathway. Oncogene. 2017;36:2423-2434 pubmed 出版商
  44. Yuan Y, Yang Y, Tian Y, Park J, Dai A, Roberts R, et al. Efficient long-term cryopreservation of pluripotent stem cells at -80?°C. Sci Rep. 2016;6:34476 pubmed 出版商
  45. Torres A, Vargas Y, Uribe D, Jaramillo C, Gleisner A, Salazar Onfray F, et al. Adenosine A3 receptor elicits chemoresistance mediated by multiple resistance-associated protein-1 in human glioblastoma stem-like cells. Oncotarget. 2016;7:67373-67386 pubmed 出版商
  46. Zhou A, Lin K, Zhang S, Chen Y, Zhang N, Xue J, et al. Nuclear GSK3β promotes tumorigenesis by phosphorylating KDM1A and inducing its deubiquitylation by USP22. Nat Cell Biol. 2016;18:954-966 pubmed 出版商
  47. Long Y, Xu M, Li R, Dai S, Beers J, Chen G, et al. Induced Pluripotent Stem Cells for Disease Modeling and Evaluation of Therapeutics for Niemann-Pick Disease Type A. Stem Cells Transl Med. 2016;5:1644-1655 pubmed
  48. Pijuan Galitó S, Tamm C, Schuster J, Sobol M, Forsberg L, Merry C, et al. Human serum-derived protein removes the need for coating in defined human pluripotent stem cell culture. Nat Commun. 2016;7:12170 pubmed 出版商
  49. Momcilovic O, Sivapatham R, Oron T, Meyer M, Mooney S, Rao M, et al. Derivation, Characterization, and Neural Differentiation of Integration-Free Induced Pluripotent Stem Cell Lines from Parkinson's Disease Patients Carrying SNCA, LRRK2, PARK2, and GBA Mutations. PLoS ONE. 2016;11:e0154890 pubmed 出版商
  50. Rosiak K, Smolarz M, Stec W, Peciak J, Grzela D, Winiecka Klimek M, et al. IDH1R132H in Neural Stem Cells: Differentiation Impaired by Increased Apoptosis. PLoS ONE. 2016;11:e0154726 pubmed 出版商
  51. Kushwaha R, Jagadish N, Kustagi M, Mendiratta G, Seandel M, Soni R, et al. Mechanism and Role of SOX2 Repression in Seminoma: Relevance to Human Germline Specification. Stem Cell Reports. 2016;6:772-783 pubmed 出版商
  52. Shah B, Lutter D, Bochenek M, Kato K, Tsytsyura Y, Glyvuk N, et al. C3G/Rapgef1 Is Required in Multipolar Neurons for the Transition to a Bipolar Morphology during Cortical Development. PLoS ONE. 2016;11:e0154174 pubmed 出版商
  53. Huang G, Yang X, Chen K, Xing J, Guo L, Zhu L, et al. Porf-2 Inhibits Neural Stem Cell Proliferation Through Wnt/?-Catenin Pathway by Its GAP Domain. Front Cell Neurosci. 2016;10:85 pubmed 出版商
  54. Liu Q, Zhang R, Li D, Cheng S, Yang Y, Tian T, et al. Muse Cells, a New Type of Pluripotent Stem Cell Derived from Human Fibroblasts. Cell Reprogram. 2016;18:67-77 pubmed 出版商
  55. Chen C, Liu Y, Hua M, Li X, Ji C, Ma D. Neuropathy correlated with imbalanced Foxp3/IL-17 in bone marrow microenvironment of patients with acute myeloid leukemia. Oncotarget. 2016;7:24455-65 pubmed 出版商
  56. Cui Y, Han J, Xiao Z, Chen T, Wang B, Chen B, et al. The miR-20-Rest-Wnt signaling axis regulates neural progenitor cell differentiation. Sci Rep. 2016;6:23300 pubmed 出版商
  57. Vinci L, Ravarino A, Fanos V, Naccarato A, Senes G, Gerosa C, et al. Immunohistochemical markers of neural progenitor cells in the early embryonic human cerebral cortex. Eur J Histochem. 2016;60:2563 pubmed 出版商
  58. Cui Q, Yang S, Ye P, Tian E, Sun G, Zhou J, et al. Downregulation of TLX induces TET3 expression and inhibits glioblastoma stem cell self-renewal and tumorigenesis. Nat Commun. 2016;7:10637 pubmed 出版商
  59. Yap M, Tang Y, Yeo Y, Lim W, Lim L, Tan K, et al. Pluripotent Human embryonic stem cell derived neural lineages for in vitro modelling of enterovirus 71 infection and therapy. Virol J. 2016;13:5 pubmed 出版商
  60. Wang W, Long L, Wang L, Tan C, Fei X, Chen L, et al. Knockdown of Cathepsin L promotes radiosensitivity of glioma stem cells both in vivo and in vitro. Cancer Lett. 2016;371:274-84 pubmed 出版商
  61. Joseph J, van Roosmalen I, Busschers E, Tomar T, Conroy S, Eggens Meijer E, et al. Serum-Induced Differentiation of Glioblastoma Neurospheres Leads to Enhanced Migration/Invasion Capacity That Is Associated with Increased MMP9. PLoS ONE. 2015;10:e0145393 pubmed 出版商
  62. Chao C, Kan D, Lo T, Lu K, Chien C. Induction of neural differentiation in rat C6 glioma cells with taxol. Brain Behav. 2015;5:e00414 pubmed 出版商
  63. Li D, Su D, Xue L, Liu Y, Pang W. Establishment of pancreatic cancer stem cells by flow cytometry and their biological characteristics. Int J Clin Exp Pathol. 2015;8:11218-23 pubmed
  64. Tardito S, Oudin A, Ahmed S, Fack F, Keunen O, Zheng L, et al. Glutamine synthetase activity fuels nucleotide biosynthesis and supports growth of glutamine-restricted glioblastoma. Nat Cell Biol. 2015;17:1556-68 pubmed 出版商
  65. Abe S, Yamaguchi S, Sato Y, Harada K. Sphere-Derived Multipotent Progenitor Cells Obtained From Human Oral Mucosa Are Enriched in Neural Crest Cells. Stem Cells Transl Med. 2016;5:117-28 pubmed 出版商
  66. Winiecka Klimek M, Smolarz M, Walczak M, Zieba J, Hulas Bigoszewska K, Kmieciak B, et al. SOX2 and SOX2-MYC Reprogramming Process of Fibroblasts to the Neural Stem Cells Compromised by Senescence. PLoS ONE. 2015;10:e0141688 pubmed 出版商
  67. Martínez Revollar G, Garay E, Martín Tapia D, Nava P, Huerta M, Lopez Bayghen E, et al. Heterogeneity between triple negative breast cancer cells due to differential activation of Wnt and PI3K/AKT pathways. Exp Cell Res. 2015;339:67-80 pubmed 出版商
  68. Mughal A, Grieg Z, Skjellegrind H, Fayzullin A, Lamkhannat M, Joel M, et al. Knockdown of NAT12/NAA30 reduces tumorigenic features of glioblastoma-initiating cells. Mol Cancer. 2015;14:160 pubmed 出版商
  69. Fessler E, Borovski T, Medema J. Endothelial cells induce cancer stem cell features in differentiated glioblastoma cells via bFGF. Mol Cancer. 2015;14:157 pubmed 出版商
  70. Cortés Campos C, Letelier J, Ceriani R, Whitlock K. Zebrafish adult-derived hypothalamic neurospheres generate gonadotropin-releasing hormone (GnRH) neurons. Biol Open. 2015;4:1077-86 pubmed 出版商
  71. Lebkuechner I, Wilhelmsson U, Möllerström E, Pekna M, Pekny M. Heterogeneity of Notch signaling in astrocytes and the effects of GFAP and vimentin deficiency. J Neurochem. 2015;135:234-48 pubmed 出版商
  72. Thomas S, Kagan C, Pavlovic B, Burnett J, Patterson K, Pritchard J, et al. Reprogramming LCLs to iPSCs Results in Recovery of Donor-Specific Gene Expression Signature. PLoS Genet. 2015;11:e1005216 pubmed 出版商
  73. Tate C, Mc Entire J, Pallini R, Vakana E, Wyss L, Blosser W, et al. A BMP7 Variant Inhibits Tumor Angiogenesis In Vitro and In Vivo through Direct Modulation of Endothelial Cell Biology. PLoS ONE. 2015;10:e0125697 pubmed 出版商
  74. Theotokis P, Kleopa K, Touloumi O, Lagoudaki R, Lourbopoulos A, Nousiopoulou E, et al. Connexin43 and connexin47 alterations after neural precursor cells transplantation in experimental autoimmune encephalomyelitis. Glia. 2015;63:1772-83 pubmed 出版商
  75. Ling G, Liu Y, Ke Y, Chen L, Jiang X, Jiang C, et al. All-trans retinoic acid impairs the vasculogenic mimicry formation ability of U87 stem-like cells through promoting differentiation. Mol Med Rep. 2015;12:165-72 pubmed 出版商
  76. Miconi G, Palumbo P, Dehcordi S, La Torre C, Lombardi F, Evtoski Z, et al. Immunophenotypic characterization of human glioblastoma stem cells: correlation with clinical outcome. J Cell Biochem. 2015;116:864-76 pubmed 出版商
  77. El Khattouti A, Sheehan N, Monico J, Drummond H, Haikel Y, Brodell R, et al. CD133⁺ melanoma subpopulation acquired resistance to caffeic acid phenethyl ester-induced apoptosis is attributed to the elevated expression of ABCB5: significance for melanoma treatment. Cancer Lett. 2015;357:83-104 pubmed 出版商
  78. Joseph J, Conroy S, Tomar T, Eggens Meijer E, Bhat K, Copray S, et al. TGF-β is an inducer of ZEB1-dependent mesenchymal transdifferentiation in glioblastoma that is associated with tumor invasion. Cell Death Dis. 2014;5:e1443 pubmed 出版商
  79. Jha B, Rao M, Malik N. Motor neuron differentiation from pluripotent stem cells and other intermediate proliferative precursors that can be discriminated by lineage specific reporters. Stem Cell Rev. 2015;11:194-204 pubmed 出版商
  80. Brafman D. Generation, Expansion, and Differentiation of Human Pluripotent Stem Cell (hPSC) Derived Neural Progenitor Cells (NPCs). Methods Mol Biol. 2015;1212:87-102 pubmed 出版商
  81. Hatakeyama J, Wakamatsu Y, Nagafuchi A, Kageyama R, Shigemoto R, Shimamura K. Cadherin-based adhesions in the apical endfoot are required for active Notch signaling to control neurogenesis in vertebrates. Development. 2014;141:1671-82 pubmed 出版商
  82. Fathi A, Hatami M, Vakilian H, Han C, Chen Y, Baharvand H, et al. Quantitative proteomics analysis highlights the role of redox hemostasis and energy metabolism in human embryonic stem cell differentiation to neural cells. J Proteomics. 2014;101:1-16 pubmed 出版商
  83. Pastori C, Daniel M, Penas C, Volmar C, Johnstone A, Brothers S, et al. BET bromodomain proteins are required for glioblastoma cell proliferation. Epigenetics. 2014;9:611-20 pubmed 出版商
  84. Bodi I, Curran O, Selway R, Elwes R, Burrone J, Laxton R, et al. Two cases of multinodular and vacuolating neuronal tumour. Acta Neuropathol Commun. 2014;2:7 pubmed 出版商
  85. Gasimli L, Hickey A, Yang B, Li G, dela Rosa M, Nairn A, et al. Changes in glycosaminoglycan structure on differentiation of human embryonic stem cells towards mesoderm and endoderm lineages. Biochim Biophys Acta. 2014;1840:1993-2003 pubmed 出版商
  86. Ishida M, Iwai M, Yoshida K, Kagotani A, Okabe H. Signet-ring cell melanoma with sentinel lymph node metastasis: A case report with immunohistochemical analysis and review of the clinicopathological features. Oncol Lett. 2014;7:65-68 pubmed
  87. Momcilovic O, Liu Q, Swistowski A, Russo Tait T, Zhao Y, Rao M, et al. Genome wide profiling of dopaminergic neurons derived from human embryonic and induced pluripotent stem cells. Stem Cells Dev. 2014;23:406-20 pubmed 出版商
  88. Yu P, Yan M, Lai H, Huang R, Chou Y, Lin W, et al. Downregulation of miR-29 contributes to cisplatin resistance of ovarian cancer cells. Int J Cancer. 2014;134:542-51 pubmed 出版商
  89. Liu Q, Pedersen O, Peng J, Couture L, Rao M, Zeng X. Optimizing dopaminergic differentiation of pluripotent stem cells for the manufacture of dopaminergic neurons for transplantation. Cytotherapy. 2013;15:999-1010 pubmed 出版商
  90. Sparmann A, Xie Y, Verhoeven E, Vermeulen M, Lancini C, Gargiulo G, et al. The chromodomain helicase Chd4 is required for Polycomb-mediated inhibition of astroglial differentiation. EMBO J. 2013;32:1598-612 pubmed 出版商
  91. Luo W, Li S, Peng B, Ye Y, Deng X, Yao K. Embryonic stem cells markers SOX2, OCT4 and Nanog expression and their correlations with epithelial-mesenchymal transition in nasopharyngeal carcinoma. PLoS ONE. 2013;8:e56324 pubmed 出版商
  92. Liu Q, Spusta S, Mi R, Lassiter R, Stark M, Hoke A, et al. Human neural crest stem cells derived from human ESCs and induced pluripotent stem cells: induction, maintenance, and differentiation into functional schwann cells. Stem Cells Transl Med. 2012;1:266-78 pubmed 出版商
  93. Darbinyan A, Kaminski R, White M, Darbinian Sarkissian N, Khalili K. Polyomavirus JC infection inhibits differentiation of oligodendrocyte progenitor cells. J Neurosci Res. 2013;91:116-27 pubmed 出版商
  94. Schneider L, d Adda di Fagagna F. Neural stem cells exposed to BrdU lose their global DNA methylation and undergo astrocytic differentiation. Nucleic Acids Res. 2012;40:5332-42 pubmed 出版商
  95. Sellheyer K, Krahl D. Spatiotemporal expression pattern of neuroepithelial stem cell marker nestin suggests a role in dermal homeostasis, neovasculogenesis, and tumor stroma development: a study on embryonic and adult human skin. J Am Acad Dermatol. 2010;63:93-113 pubmed 出版商
  96. Martínez Navarrete G, Angulo A, Martín Nieto J, Cuenca N. Gradual morphogenesis of retinal neurons in the peripheral retinal margin of adult monkeys and humans. J Comp Neurol. 2008;511:557-80 pubmed 出版商