这是一篇来自已证抗体库的有关人类 neurofilament H的综述,是根据238篇发表使用所有方法的文章归纳的。这综述旨在帮助来邦网的访客找到最适合neurofilament H 抗体。
neurofilament H 同义词: CMT2CC; NFH

BioLegend
小鼠 单克隆(SMI 312)
  • 免疫细胞化学; 小鼠; 1:1000; 图 s5g
BioLegend neurofilament H抗体(Biolegend, 837904)被用于被用于免疫细胞化学在小鼠样本上浓度为1:1000 (图 s5g). PLoS Genet (2022) ncbi
小鼠 单克隆(SMI 32)
  • 免疫组化; 小鼠; 1:1000; 图 e2b
BioLegend neurofilament H抗体(Covance, SMI-32P-100)被用于被用于免疫组化在小鼠样本上浓度为1:1000 (图 e2b). EMBO J (2022) ncbi
小鼠 单克隆(SMI 31)
  • 免疫组化-石蜡切片; 人类; 1:2000; 图 1f
BioLegend neurofilament H抗体(BioLegend, SMI31)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:2000 (图 1f). Brain Commun (2022) ncbi
小鼠 单克隆(SMI 31)
  • 免疫组化; 小鼠; 图 1g
BioLegend neurofilament H抗体(Biolegend, 801601)被用于被用于免疫组化在小鼠样本上 (图 1g). Mol Biol Cell (2022) ncbi
小鼠 单克隆(SMI 32)
  • 免疫组化-自由浮动切片; African green monkey; 1:2000; 图 3a
BioLegend neurofilament H抗体(BioLegend, 801701)被用于被用于免疫组化-自由浮动切片在African green monkey样本上浓度为1:2000 (图 3a). Front Neural Circuits (2021) ncbi
小鼠 单克隆(SMI 312)
  • 免疫印迹; 小鼠; 1:500; 图 8b
BioLegend neurofilament H抗体(Biolegend, 837904)被用于被用于免疫印迹在小鼠样本上浓度为1:500 (图 8b). Acta Neuropathol Commun (2021) ncbi
小鼠 单克隆(SMI 31)
  • 免疫组化; 小鼠; 1:1000
BioLegend neurofilament H抗体(Covance, SMI-31)被用于被用于免疫组化在小鼠样本上浓度为1:1000. J Neuroinflammation (2021) ncbi
小鼠 单克隆(SMI 312)
  • 免疫细胞化学; 小鼠; 1:1000; 图 6i
BioLegend neurofilament H抗体(BioLegend, 837904)被用于被用于免疫细胞化学在小鼠样本上浓度为1:1000 (图 6i). elife (2021) ncbi
小鼠 单克隆(SMI 312)
  • 免疫细胞化学; 小鼠; 1:1000; 图 6i
BioLegend neurofilament H抗体(BioLegend, 837904)被用于被用于免疫细胞化学在小鼠样本上浓度为1:1000 (图 6i). Nature (2021) ncbi
小鼠 单克隆(SMI 32)
  • 免疫组化-冰冻切片; 小鼠; 1:1000; 图 3a
BioLegend neurofilament H抗体(BioLegend, 801701)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:1000 (图 3a). Brain Commun (2021) ncbi
小鼠 单克隆(SMI 32)
  • 免疫组化; 小鼠; 1:3000; 图 5d
BioLegend neurofilament H抗体(Biolegend, 801701)被用于被用于免疫组化在小鼠样本上浓度为1:3000 (图 5d). Nat Commun (2021) ncbi
小鼠 单克隆(SMI 34)
  • 免疫组化; 人类
BioLegend neurofilament H抗体(Biolegend, 835503)被用于被用于免疫组化在人类样本上. Front Aging Neurosci (2021) ncbi
小鼠 单克隆(SMI 32)
  • 免疫组化; 人类; 图 3d
BioLegend neurofilament H抗体(Biolegend, 801701)被用于被用于免疫组化在人类样本上 (图 3d). Front Aging Neurosci (2021) ncbi
小鼠 单克隆(SMI 32)
  • 免疫组化; 小鼠; 1:500; 图 s6
BioLegend neurofilament H抗体(BioLegend, 801701)被用于被用于免疫组化在小鼠样本上浓度为1:500 (图 s6). Sci Adv (2021) ncbi
小鼠 单克隆(SMI 32)
  • 免疫组化; 小鼠; 1:500; 图 3c
BioLegend neurofilament H抗体(Biolegend, 801701)被用于被用于免疫组化在小鼠样本上浓度为1:500 (图 3c). J Neurosci (2021) ncbi
小鼠 单克隆(SMI 32)
  • 免疫组化-自由浮动切片; 小鼠; 1:1000; 图 s3a
BioLegend neurofilament H抗体(Biolegend, 801701)被用于被用于免疫组化-自由浮动切片在小鼠样本上浓度为1:1000 (图 s3a). Dis Model Mech (2021) ncbi
小鼠 单克隆(SMI 32)
  • 免疫细胞化学; 小鼠; 1:250; 图 5e
BioLegend neurofilament H抗体(BioLegend, 801701)被用于被用于免疫细胞化学在小鼠样本上浓度为1:250 (图 5e). Cell Rep (2021) ncbi
小鼠 单克隆(SMI 312)
  • 免疫印迹; 小鼠; 图 2g
BioLegend neurofilament H抗体(Biolegend, 837904)被用于被用于免疫印迹在小鼠样本上 (图 2g). Alzheimers Res Ther (2021) ncbi
小鼠 单克隆(SMI 312)
  • 免疫细胞化学; 人类; 1:1000; 图 1b
BioLegend neurofilament H抗体(BioLegend, 837904)被用于被用于免疫细胞化学在人类样本上浓度为1:1000 (图 1b). Acta Neuropathol (2021) ncbi
小鼠 单克隆(SMI 312)
  • 免疫组化; 小鼠; 1:1000; 图 3c
BioLegend neurofilament H抗体(BioLegend, 837904)被用于被用于免疫组化在小鼠样本上浓度为1:1000 (图 3c). Eneuro (2020) ncbi
小鼠 单克隆(SMI 31)
  • 免疫组化-石蜡切片; 大鼠; 1:150; 图 4a
BioLegend neurofilament H抗体(Biolegend, SMI31)被用于被用于免疫组化-石蜡切片在大鼠样本上浓度为1:150 (图 4a). Sci Rep (2020) ncbi
小鼠 单克隆(SMI 312)
  • 免疫组化; 小鼠; 1:500; 图 5l, m
BioLegend neurofilament H抗体(BioLegend, #837904)被用于被用于免疫组化在小鼠样本上浓度为1:500 (图 5l, m). Eneuro (2020) ncbi
小鼠 单克隆(SMI 32)
  • 免疫组化-自由浮动切片; 小鼠; 1:100; 图 5c
  • 免疫组化-自由浮动切片; 大鼠; 1:100; 图 7e
BioLegend neurofilament H抗体(Biolegend, 801701)被用于被用于免疫组化-自由浮动切片在小鼠样本上浓度为1:100 (图 5c) 和 被用于免疫组化-自由浮动切片在大鼠样本上浓度为1:100 (图 7e). Theranostics (2020) ncbi
小鼠 单克隆(SMI 32)
  • 免疫组化; 人类; 图 1
BioLegend neurofilament H抗体(Covance, 801702)被用于被用于免疫组化在人类样本上 (图 1). Science (2020) ncbi
小鼠 单克隆(SMI 312)
  • 免疫组化; 大鼠; 1:500; 图 5
BioLegend neurofilament H抗体(BioLegend, SMI312)被用于被用于免疫组化在大鼠样本上浓度为1:500 (图 5). elife (2019) ncbi
小鼠 单克隆(SMI 32)
  • 免疫组化-冰冻切片; 小鼠; 1:800; 图 9d
BioLegend neurofilament H抗体(Covance, SMI-32R)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:800 (图 9d). J Comp Neurol (2020) ncbi
小鼠 单克隆(SMI 32)
  • 免疫组化-冰冻切片; 小鼠; 图 2c
BioLegend neurofilament H抗体(BioLegend, 801701)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 2c). Neuron (2020) ncbi
小鼠 单克隆(SMI 32)
  • 免疫组化; 小鼠; 1:1000; 图 3a3
BioLegend neurofilament H抗体(Biolegend, 801701)被用于被用于免疫组化在小鼠样本上浓度为1:1000 (图 3a3). elife (2019) ncbi
小鼠 单克隆(SMI 32)
  • 免疫组化-冰冻切片; 小鼠; 图 8i
BioLegend neurofilament H抗体(Biolegend, 801701)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 8i). J Comp Neurol (2019) ncbi
小鼠 单克隆(SMI 312)
  • 免疫细胞化学; 小鼠; 1:500; 图 3a
BioLegend neurofilament H抗体(BioLegend, 837904)被用于被用于免疫细胞化学在小鼠样本上浓度为1:500 (图 3a). Sci Adv (2019) ncbi
小鼠 单克隆(SMI 34)
  • 免疫组化; 小鼠; 1:500; 图 4g, 4h
BioLegend neurofilament H抗体(Biolegend, 835503)被用于被用于免疫组化在小鼠样本上浓度为1:500 (图 4g, 4h). Exp Neurol (2019) ncbi
小鼠 单克隆(SMI 34)
  • 免疫组化; 小鼠; 1:1000; 图 2f
BioLegend neurofilament H抗体(Biolegend, 835503)被用于被用于免疫组化在小鼠样本上浓度为1:1000 (图 2f). Front Neurosci (2019) ncbi
小鼠 单克隆(SMI 32)
  • 免疫组化-自由浮动切片; 小鼠; 1:500; 图 2a
BioLegend neurofilament H抗体(BioLegend, 801701)被用于被用于免疫组化-自由浮动切片在小鼠样本上浓度为1:500 (图 2a). PLoS Biol (2019) ncbi
小鼠 单克隆(SMI 312)
  • 免疫组化-冰冻切片; 小鼠; 1:250; 图 1a
BioLegend neurofilament H抗体(BioLegend, SMI-312R)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:250 (图 1a). Cell Rep (2019) ncbi
小鼠 单克隆(SMI 32)
  • 免疫组化-冰冻切片; grey mouse lemur; 1:2000
BioLegend neurofilament H抗体(BioLegend, 801701)被用于被用于免疫组化-冰冻切片在grey mouse lemur样本上浓度为1:2000. J Comp Neurol (2019) ncbi
小鼠 单克隆(SMI 312)
  • 免疫组化-冰冻切片; 人类; 1:500; 图 1b
BioLegend neurofilament H抗体(BioLegend, 837904)被用于被用于免疫组化-冰冻切片在人类样本上浓度为1:500 (图 1b). Nat Neurosci (2019) ncbi
小鼠 单克隆(SMI 31)
  • 免疫组化-冰冻切片; 人类; 图 s17a
BioLegend neurofilament H抗体(BioLegend, 801602)被用于被用于免疫组化-冰冻切片在人类样本上 (图 s17a). Nat Commun (2019) ncbi
小鼠 单克隆(SMI 312)
  • 免疫印迹; 大鼠; 1:500; 图 6c
BioLegend neurofilament H抗体(BioLegend, 837904)被用于被用于免疫印迹在大鼠样本上浓度为1:500 (图 6c). Cell Death Differ (2019) ncbi
小鼠 单克隆(SMI 31)
  • 免疫组化; 小鼠; 1:1500; 图 1b
BioLegend neurofilament H抗体(Covance, SMI-31)被用于被用于免疫组化在小鼠样本上浓度为1:1500 (图 1b). elife (2019) ncbi
小鼠 单克隆(SMI 312)
  • 免疫组化-冰冻切片; 小鼠; 1:1000; 图 4a
BioLegend neurofilament H抗体(BioLegend, 837904)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:1000 (图 4a). Alzheimers Res Ther (2019) ncbi
鸡 多克隆(Poly28226)
  • 免疫细胞化学; 小鼠; 1:5000; 图 3d
BioLegend neurofilament H抗体(Biolegend, 822601)被用于被用于免疫细胞化学在小鼠样本上浓度为1:5000 (图 3d). Nucleic Acids Res (2019) ncbi
小鼠 单克隆(SMI 312)
  • 免疫组化; 大鼠; 1:500; 图 5a`
BioLegend neurofilament H抗体(Covance, SMI-312R-100)被用于被用于免疫组化在大鼠样本上浓度为1:500 (图 5a`). Glia (2019) ncbi
小鼠 单克隆(SMI 312)
  • 免疫组化; 小鼠; 1:200; 图 5e'
  • 免疫印迹; 小鼠; 图 5m
BioLegend neurofilament H抗体(Covance, SMI-312R)被用于被用于免疫组化在小鼠样本上浓度为1:200 (图 5e') 和 被用于免疫印迹在小鼠样本上 (图 5m). J Neurosci Res (2019) ncbi
小鼠 单克隆(SMI 312)
BioLegend neurofilament H抗体(Covance, SMI-312R)被用于. J Comp Neurol (2019) ncbi
小鼠 单克隆(SMI 31)
  • 免疫组化-石蜡切片; 小鼠; 1:500; 图 8a
BioLegend neurofilament H抗体(Covance, SMI-31P-100)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:500 (图 8a). J Comp Neurol (2019) ncbi
小鼠 单克隆(SMI 32)
  • 免疫组化; grey mouse lemur; 1:2000; 图 3c
BioLegend neurofilament H抗体(BioLegend, 801701)被用于被用于免疫组化在grey mouse lemur样本上浓度为1:2000 (图 3c). J Comp Neurol (2019) ncbi
小鼠 单克隆(SMI 312)
  • 免疫印迹; 人类; 1:2000; 图 2a
BioLegend neurofilament H抗体(Covance Research Products Inc, SMI-312R)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 2a). J Biol Chem (2018) ncbi
小鼠 单克隆(SMI 31)
  • 免疫印迹; 小鼠; 1:1000; 图 3A
BioLegend neurofilament H抗体(Biolegend, 801601)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 3A). Neurochem Res (2017) ncbi
小鼠 单克隆(SMI 32)
  • 免疫组化; African green monkey; 1:500; 图 1a
BioLegend neurofilament H抗体(Covance, SMI-32)被用于被用于免疫组化在African green monkey样本上浓度为1:500 (图 1a). J Comp Neurol (2017) ncbi
小鼠 单克隆(SMI 312)
  • 免疫组化-冰冻切片; 小鼠; 1:1000; 图 4(S1A)
BioLegend neurofilament H抗体(Covance, SMI 312)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:1000 (图 4(S1A)). elife (2017) ncbi
小鼠 单克隆(SMI 312)
  • 免疫组化-冰冻切片; 小鼠; 1:1000; 图 3,4
BioLegend neurofilament H抗体(Covance, SMI 312)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:1000 (图 3,4). Sci Rep (2017) ncbi
小鼠 单克隆(SMI 312)
  • 免疫细胞化学; 人类; 1:1000; 图 s6b
BioLegend neurofilament H抗体(Biolegend, 837904)被用于被用于免疫细胞化学在人类样本上浓度为1:1000 (图 s6b). Mol Psychiatry (2017) ncbi
小鼠 单克隆(SMI 31)
  • 免疫组化-冰冻切片; 小鼠; 1:1500; 图 2
BioLegend neurofilament H抗体(covance, SMI31)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:1500 (图 2). elife (2016) ncbi
小鼠 单克隆(SMI 31)
  • 免疫组化; 大鼠; 1:1000; 图 2
BioLegend neurofilament H抗体(Covance, SMI 31P)被用于被用于免疫组化在大鼠样本上浓度为1:1000 (图 2). Neural Plast (2016) ncbi
小鼠 单克隆(SMI 312)
  • 免疫组化-石蜡切片; 小鼠; 1:500; 图 s2
BioLegend neurofilament H抗体(Covance, smi-312r)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:500 (图 s2). Acta Neuropathol Commun (2016) ncbi
小鼠 单克隆(SMI 310)
  • 免疫组化; 小鼠; 图 st1
BioLegend neurofilament H抗体(BioLegend, 837704)被用于被用于免疫组化在小鼠样本上 (图 st1). Nat Biotechnol (2016) ncbi
小鼠 单克隆(SMI 35)
  • 免疫组化; 小鼠; 图 st1
BioLegend neurofilament H抗体(BioLegend, 835604)被用于被用于免疫组化在小鼠样本上 (图 st1). Nat Biotechnol (2016) ncbi
小鼠 单克隆(SMI 37)
  • 免疫组化; 小鼠; 图 st1
BioLegend neurofilament H抗体(BioLegend, 835801)被用于被用于免疫组化在小鼠样本上 (图 st1). Nat Biotechnol (2016) ncbi
小鼠 单克隆(SMI 31)
  • 免疫组化; 小鼠; 图 st1
BioLegend neurofilament H抗体(BioLegend, 801601)被用于被用于免疫组化在小鼠样本上 (图 st1). Nat Biotechnol (2016) ncbi
小鼠 单克隆(SMI 312)
  • 免疫组化; 小鼠; 图 st1
BioLegend neurofilament H抗体(BioLegend, 837904)被用于被用于免疫组化在小鼠样本上 (图 st1). Nat Biotechnol (2016) ncbi
小鼠 单克隆(SMI 311)
  • 免疫组化; 小鼠; 图 st1
BioLegend neurofilament H抗体(BioLegend, 837801)被用于被用于免疫组化在小鼠样本上 (图 st1). Nat Biotechnol (2016) ncbi
小鼠 单克隆(SMI 32)
  • 免疫组化; 小鼠; 图 st1
BioLegend neurofilament H抗体(BioLegend, 801701)被用于被用于免疫组化在小鼠样本上 (图 st1). Nat Biotechnol (2016) ncbi
小鼠 单克隆(SMI 31)
  • 免疫组化-石蜡切片; 小鼠; 1:1000; 图 1
BioLegend neurofilament H抗体(BioLegend, Smi31)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:1000 (图 1). Nat Commun (2016) ncbi
小鼠 单克隆(SMI 312)
  • 免疫组化-石蜡切片; 小鼠; 1:1000; 图 1
BioLegend neurofilament H抗体(BioLegend, Smi312)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:1000 (图 1). Nat Commun (2016) ncbi
小鼠 单克隆(SMI 312)
  • 免疫组化-石蜡切片; 犬; 1:4000; 图 3
BioLegend neurofilament H抗体(Sternberger monoclonals, SMI-312R)被用于被用于免疫组化-石蜡切片在犬样本上浓度为1:4000 (图 3). Brain Behav (2016) ncbi
小鼠 单克隆(SMI 311)
  • 免疫组化-石蜡切片; 犬; 1:1000; 图 3
BioLegend neurofilament H抗体(Sternberger monoclonals, SMI-311R)被用于被用于免疫组化-石蜡切片在犬样本上浓度为1:1000 (图 3). Brain Behav (2016) ncbi
小鼠 单克隆(SMI 312)
  • 免疫组化-石蜡切片; 小鼠; 1:200; 图 4a
BioLegend neurofilament H抗体(Biolegend, SMI312)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:200 (图 4a). Acta Neuropathol (2016) ncbi
小鼠 单克隆(SMI 31)
  • 免疫细胞化学; 小鼠; 1:500; 图 5
BioLegend neurofilament H抗体(covance, SMI-32R)被用于被用于免疫细胞化学在小鼠样本上浓度为1:500 (图 5). Sci Rep (2016) ncbi
小鼠 单克隆(SMI 32)
  • 免疫组化-石蜡切片; 人类; 1:1000; 表 1
BioLegend neurofilament H抗体(Sternberger Immunochemicals, SMI32)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:1000 (表 1). Neuropathology (2016) ncbi
小鼠 单克隆(SMI 31)
  • 免疫组化; 小鼠; 1:1000; 图 2
BioLegend neurofilament H抗体(BioLegend, SMI-31R)被用于被用于免疫组化在小鼠样本上浓度为1:1000 (图 2). Nat Neurosci (2016) ncbi
小鼠 单克隆(SMI 31)
  • 免疫组化; 小鼠; 1:5000; 图 7a
BioLegend neurofilament H抗体(Covance, SMI32R)被用于被用于免疫组化在小鼠样本上浓度为1:5000 (图 7a). Cereb Cortex (2016) ncbi
小鼠 单克隆(SMI 31)
  • 免疫组化; 小鼠; 1:1000
BioLegend neurofilament H抗体(Covance, SMI-31P)被用于被用于免疫组化在小鼠样本上浓度为1:1000. Eur J Neurosci (2015) ncbi
小鼠 单克隆(SMI 32)
  • 免疫细胞化学; 大鼠; 1:600; 图 1
BioLegend neurofilament H抗体(Sternberger Monoclonals, SMI-32R)被用于被用于免疫细胞化学在大鼠样本上浓度为1:600 (图 1). Front Cell Neurosci (2015) ncbi
小鼠 单克隆(SMI 31)
  • 免疫组化-石蜡切片; 人类; 图 3
BioLegend neurofilament H抗体(Sternberger Monoclonals, SMI31)被用于被用于免疫组化-石蜡切片在人类样本上 (图 3). Neuropathology (2015) ncbi
小鼠 单克隆(SMI 32)
  • 免疫组化-石蜡切片; 人类; 图 3
BioLegend neurofilament H抗体(Sternberger Monoclonals, SMI32)被用于被用于免疫组化-石蜡切片在人类样本上 (图 3). Neuropathology (2015) ncbi
小鼠 单克隆(SMI 31)
  • 免疫细胞化学; 大鼠; 1:5000
BioLegend neurofilament H抗体(Covance, SMI-312R)被用于被用于免疫细胞化学在大鼠样本上浓度为1:5000. Exp Neurol (2015) ncbi
小鼠 单克隆(SMI 31)
  • 免疫印迹; 日本大米鱼; 1:1000; 图 3
BioLegend neurofilament H抗体(COVANCE, smi-31r)被用于被用于免疫印迹在日本大米鱼样本上浓度为1:1000 (图 3). PLoS Genet (2015) ncbi
小鼠 单克隆(SMI 32)
  • 免疫组化-自由浮动切片; 小鼠
BioLegend neurofilament H抗体(Covance, SMI-32P)被用于被用于免疫组化-自由浮动切片在小鼠样本上. Exp Neurol (2015) ncbi
小鼠 单克隆(SMI 32)
  • 免疫组化; 小鼠; 1:1000
BioLegend neurofilament H抗体(Sternberger Monoclonals, SMI-32P)被用于被用于免疫组化在小鼠样本上浓度为1:1000. J Comp Neurol (2015) ncbi
小鼠 单克隆(SMI 32)
  • 免疫组化; 小鼠; 1:500
BioLegend neurofilament H抗体(Sternberger Monoclonals, SMI32)被用于被用于免疫组化在小鼠样本上浓度为1:500. Neurobiol Dis (2015) ncbi
小鼠 单克隆(SMI 31)
  • 免疫细胞化学; 人类
BioLegend neurofilament H抗体(Covance, SMI-31P-100)被用于被用于免疫细胞化学在人类样本上. Cereb Cortex (2016) ncbi
小鼠 单克隆(SMI 32)
  • 免疫组化-自由浮动切片; 大鼠
  • 免疫组化-自由浮动切片; 小鼠
BioLegend neurofilament H抗体(Covance, SMI-32R)被用于被用于免疫组化-自由浮动切片在大鼠样本上 和 被用于免疫组化-自由浮动切片在小鼠样本上. J Comp Neurol (2015) ncbi
小鼠 单克隆(SMI 31)
  • 免疫组化-冰冻切片; 大鼠; 1:500
BioLegend neurofilament H抗体(Covance, SMI31)被用于被用于免疫组化-冰冻切片在大鼠样本上浓度为1:500. Brain Pathol (2015) ncbi
小鼠 单克隆(SMI 311)
  • 免疫细胞化学; 人类; 1:200
  • 免疫细胞化学; 大鼠; 1:200
BioLegend neurofilament H抗体(Covance, SMI-311R)被用于被用于免疫细胞化学在人类样本上浓度为1:200 和 被用于免疫细胞化学在大鼠样本上浓度为1:200. Arch Biochem Biophys (2014) ncbi
小鼠 单克隆(SMI 31)
  • 免疫细胞化学; 小鼠; 图 3
BioLegend neurofilament H抗体(Covance, clone SMI 31)被用于被用于免疫细胞化学在小鼠样本上 (图 3). Exp Neurol (2014) ncbi
小鼠 单克隆(SMI 311)
  • 免疫组化-冰冻切片; 小鼠; 1:1000
BioLegend neurofilament H抗体(Covance, SMI 311)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:1000. J Virol (2014) ncbi
小鼠 单克隆(SMI 32)
  • 免疫印迹; 小鼠; 1:1000
BioLegend neurofilament H抗体(Covance, SMI-32P)被用于被用于免疫印迹在小鼠样本上浓度为1:1000. ASN Neuro (2013) ncbi
小鼠 单克隆(SMI 32)
  • 免疫组化-冰冻切片; 小鼠; 1:500
BioLegend neurofilament H抗体(Covance, SMI-32R)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:500. PLoS ONE (2013) ncbi
小鼠 单克隆(SMI 311)
  • 免疫细胞化学; 人类; 1:1000
BioLegend neurofilament H抗体(Covance, SMI311)被用于被用于免疫细胞化学在人类样本上浓度为1:1000. Stem Cells Dev (2013) ncbi
小鼠 单克隆(SMI 32)
  • 免疫组化-冰冻切片; 小鼠; 1:1000
BioLegend neurofilament H抗体(Covance, SMI-32P)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:1000. Proc Natl Acad Sci U S A (2012) ncbi
小鼠 单克隆(SMI 31)
  • 免疫组化-冰冻切片; 小鼠; 1:1000
BioLegend neurofilament H抗体(Covance / Sternberger Monoclonals, SMI-312R)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:1000. J Comp Neurol (2012) ncbi
小鼠 单克隆(SMI 31)
  • 免疫组化; 大鼠; 1:1,000
BioLegend neurofilament H抗体(Covance, SMI-312R)被用于被用于免疫组化在大鼠样本上浓度为1:1,000. J Comp Neurol (2011) ncbi
小鼠 单克隆(SMI 311)
  • 免疫组化-石蜡切片; 人类; 1:1000
BioLegend neurofilament H抗体(Sternberger Monoclonals, SMI311)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:1000. Brain (2011) ncbi
小鼠 单克隆(SMI 31)
  • 免疫组化-石蜡切片; 人类; 1:1000
BioLegend neurofilament H抗体(Sternberger Monoclonals, SMI311)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:1000. Brain (2011) ncbi
小鼠 单克隆(SMI 32)
  • 免疫组化-自由浮动切片; 大鼠; 1:1000
BioLegend neurofilament H抗体(Covance, SMI-32)被用于被用于免疫组化-自由浮动切片在大鼠样本上浓度为1:1000. J Comp Neurol (2009) ncbi
小鼠 单克隆(SMI 32)
  • 免疫组化-自由浮动切片; 猕猴; 1:2,000
BioLegend neurofilament H抗体(Sternberger, SMI-32)被用于被用于免疫组化-自由浮动切片在猕猴样本上浓度为1:2,000. J Comp Neurol (2009) ncbi
小鼠 单克隆(SMI 32)
  • 免疫组化-冰冻切片; African green monkey; 1:1,000
  • 免疫组化-石蜡切片; 人类; 1:6,000
BioLegend neurofilament H抗体(Sternberger Monoclonals, SMI32)被用于被用于免疫组化-冰冻切片在African green monkey样本上浓度为1:1,000 和 被用于免疫组化-石蜡切片在人类样本上浓度为1:6,000. J Comp Neurol (2008) ncbi
小鼠 单克隆(SMI 32)
  • 免疫组化-自由浮动切片; 猕猴
BioLegend neurofilament H抗体(Sternberger Monoclonals, SMI-32)被用于被用于免疫组化-自由浮动切片在猕猴样本上. J Comp Neurol (2007) ncbi
小鼠 单克隆(SMI 31)
  • 免疫细胞化学; 大鼠; 1:200
  • 免疫印迹; 大鼠; 1:2000
BioLegend neurofilament H抗体(Covance, SMI-31)被用于被用于免疫细胞化学在大鼠样本上浓度为1:200 和 被用于免疫印迹在大鼠样本上浓度为1:2000. J Comp Neurol (2007) ncbi
小鼠 单克隆(SMI 32)
  • 免疫细胞化学; 大鼠; 1:2000
BioLegend neurofilament H抗体(Sternberger, SMI32)被用于被用于免疫细胞化学在大鼠样本上浓度为1:2000. J Comp Neurol (2006) ncbi
艾博抗(上海)贸易有限公司
鸡 多克隆
  • 免疫组化-自由浮动切片; 小鼠; 1:400; 图 6e
艾博抗(上海)贸易有限公司 neurofilament H抗体(Abcam, ab4680)被用于被用于免疫组化-自由浮动切片在小鼠样本上浓度为1:400 (图 6e). Nat Neurosci (2022) ncbi
鸡 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:400; 图 1e
艾博抗(上海)贸易有限公司 neurofilament H抗体(Abcam, ab4680)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:400 (图 1e). J Neuroinflammation (2022) ncbi
鸡 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:1000; 图 7a
艾博抗(上海)贸易有限公司 neurofilament H抗体(Abcam, ab4680)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:1000 (图 7a). Cell Mol Life Sci (2021) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:1000; 图 4a
艾博抗(上海)贸易有限公司 neurofilament H抗体(Abcam, ab8135)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:1000 (图 4a). Aging Cell (2021) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:500; 图 6c
艾博抗(上海)贸易有限公司 neurofilament H抗体(Abcam, ab8135)被用于被用于免疫组化在小鼠样本上浓度为1:500 (图 6c). elife (2021) ncbi
domestic rabbit 单克隆
  • 免疫组化-冰冻切片; 小鼠; 图 2g
  • 免疫印迹; 小鼠; 图 2i
艾博抗(上海)贸易有限公司 neurofilament H抗体(Abcam, ab207176)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 2g) 和 被用于免疫印迹在小鼠样本上 (图 2i). Aging (Albany NY) (2021) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:1000; 图 e5e
艾博抗(上海)贸易有限公司 neurofilament H抗体(Abcam, ab8135)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:1000 (图 e5e). Nat Neurosci (2021) ncbi
鸡 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:2000; 图 6a
艾博抗(上海)贸易有限公司 neurofilament H抗体(Abcam, ab4680)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:2000 (图 6a). Sci Rep (2021) ncbi
鸡 多克隆
  • 免疫组化; 小鼠; 1:800; 图 s10
艾博抗(上海)贸易有限公司 neurofilament H抗体(Abcam, ab4680)被用于被用于免疫组化在小鼠样本上浓度为1:800 (图 s10). Dis Model Mech (2020) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 图 1a, s10c
艾博抗(上海)贸易有限公司 neurofilament H抗体(Abcam, ab8135)被用于被用于免疫组化在小鼠样本上 (图 1a, s10c). Sci Adv (2020) ncbi
domestic rabbit 多克隆
  • 免疫组化; 人类; 1:3000; 图 1, 2
艾博抗(上海)贸易有限公司 neurofilament H抗体(ABCAM, AB8135)被用于被用于免疫组化在人类样本上浓度为1:3000 (图 1, 2). Brain Commun (2020) ncbi
鸡 多克隆
  • 免疫组化; 大鼠; 1:1000; 图 2a
艾博抗(上海)贸易有限公司 neurofilament H抗体(Abcam, ab4680)被用于被用于免疫组化在大鼠样本上浓度为1:1000 (图 2a). Theranostics (2020) ncbi
鸡 多克隆
  • 免疫细胞化学; 人类; 1:400; 图 s6b
艾博抗(上海)贸易有限公司 neurofilament H抗体(Abcam, ab4680)被用于被用于免疫细胞化学在人类样本上浓度为1:400 (图 s6b). Sci Rep (2020) ncbi
鸡 多克隆
  • 免疫细胞化学; 人类; 图 1c
艾博抗(上海)贸易有限公司 neurofilament H抗体(Abcam, ab72996)被用于被用于免疫细胞化学在人类样本上 (图 1c). Cell Rep (2020) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 图 s7f
艾博抗(上海)贸易有限公司 neurofilament H抗体(Abcam, ab8135)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 s7f). Nature (2020) ncbi
domestic rabbit 单克隆
  • 免疫组化-石蜡切片; 人类; 1:3000; 图 1c
艾博抗(上海)贸易有限公司 neurofilament H抗体(Abcam, ab40796)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:3000 (图 1c). J Comp Neurol (2020) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 大鼠; 1:100; 图 5a
艾博抗(上海)贸易有限公司 neurofilament H抗体(Abcam, ab8135)被用于被用于免疫组化-石蜡切片在大鼠样本上浓度为1:100 (图 5a). Braz J Med Biol Res (2019) ncbi
鸡 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:400; 图 8e
艾博抗(上海)贸易有限公司 neurofilament H抗体(Abcam, ab4680)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:400 (图 8e). J Neurosci (2019) ncbi
鸡 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:10,000; 图 2a
艾博抗(上海)贸易有限公司 neurofilament H抗体(Abcam, ab4680)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:10,000 (图 2a). Science (2019) ncbi
鸡 多克隆
  • 免疫细胞化学; 小鼠; 图 s6a
艾博抗(上海)贸易有限公司 neurofilament H抗体(Abcam, ab4680)被用于被用于免疫细胞化学在小鼠样本上 (图 s6a). Neuron (2019) ncbi
鸡 多克隆
  • 免疫细胞化学; 人类; 1:10,000; 图 5a
艾博抗(上海)贸易有限公司 neurofilament H抗体(Abcam, ab4680)被用于被用于免疫细胞化学在人类样本上浓度为1:10,000 (图 5a). Neuron (2019) ncbi
鸡 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:3000; 图 4b
艾博抗(上海)贸易有限公司 neurofilament H抗体(Abcam, 4680)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:3000 (图 4b). elife (2019) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 大鼠; 1:1000; 图 4a
艾博抗(上海)贸易有限公司 neurofilament H抗体(Abcam, Ab8135)被用于被用于免疫组化-冰冻切片在大鼠样本上浓度为1:1000 (图 4a). J Neurosci Methods (2018) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:200; 图 3a
艾博抗(上海)贸易有限公司 neurofilament H抗体(Abcam, ab8135)被用于被用于免疫组化在小鼠样本上浓度为1:200 (图 3a). Sci Rep (2017) ncbi
鸡 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:500; 图 4d
艾博抗(上海)贸易有限公司 neurofilament H抗体(Abcam, ab4680)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:500 (图 4d). J Cell Biol (2017) ncbi
鸡 多克隆
  • 免疫组化-石蜡切片; 人类; 1:5; 图 6h
艾博抗(上海)贸易有限公司 neurofilament H抗体(Abcam, ab4680)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:5 (图 6h). J Biol Chem (2017) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:1000; 图 e2
艾博抗(上海)贸易有限公司 neurofilament H抗体(Abcam, ab8135)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:1000 (图 e2). Nature (2017) ncbi
小鼠 单克隆(NF-01)
  • 免疫组化; 小鼠; 1:1000; 图 1a
艾博抗(上海)贸易有限公司 neurofilament H抗体(Millipore, ab7795)被用于被用于免疫组化在小鼠样本上浓度为1:1000 (图 1a). J Neurosci (2016) ncbi
鸡 多克隆
  • 免疫组化-冰冻切片; 小鼠; 图 4g
艾博抗(上海)贸易有限公司 neurofilament H抗体(abcam, ab4680)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 4g). Sci Rep (2016) ncbi
鸡 多克隆
  • 免疫组化; 小鼠; 1:1000; 表 1
艾博抗(上海)贸易有限公司 neurofilament H抗体(Abcam, ab4680)被用于被用于免疫组化在小鼠样本上浓度为1:1000 (表 1). Front Cell Neurosci (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:2000; 图 4
艾博抗(上海)贸易有限公司 neurofilament H抗体(Abcam, ab8135)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:2000 (图 4). Sci Rep (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:1000; 表 3
  • 免疫组化-冰冻切片; 人类; 1:1000; 表 3
艾博抗(上海)贸易有限公司 neurofilament H抗体(Abcam, ab8135)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:1000 (表 3) 和 被用于免疫组化-冰冻切片在人类样本上浓度为1:1000 (表 3). J Neuroinflammation (2016) ncbi
鸡 多克隆
  • 免疫组化-自由浮动切片; 小鼠; 1:20,000; 图 3
艾博抗(上海)贸易有限公司 neurofilament H抗体(Abcam, ab4680)被用于被用于免疫组化-自由浮动切片在小鼠样本上浓度为1:20,000 (图 3). PLoS Pathog (2016) ncbi
鸡 多克隆
  • 免疫组化; 小鼠; 1:800; 图 5
艾博抗(上海)贸易有限公司 neurofilament H抗体(Abcam, ab4680)被用于被用于免疫组化在小鼠样本上浓度为1:800 (图 5). EMBO Mol Med (2016) ncbi
小鼠 单克隆(3G3)
  • 免疫组化; 人类; 1:200; 图 5
艾博抗(上海)贸易有限公司 neurofilament H抗体(Abcam, Ab19386)被用于被用于免疫组化在人类样本上浓度为1:200 (图 5). PLoS ONE (2015) ncbi
鸡 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:10,000; 图 1
艾博抗(上海)贸易有限公司 neurofilament H抗体(Abcam, ab4680)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:10,000 (图 1). J Neurochem (2016) ncbi
小鼠 单克隆(RNF402)
  • 免疫组化-石蜡切片; 犬; 1:200; 图 3b
艾博抗(上海)贸易有限公司 neurofilament H抗体(Abcam, ab3966)被用于被用于免疫组化-石蜡切片在犬样本上浓度为1:200 (图 3b). Biomaterials (2015) ncbi
小鼠 单克隆(RNF402)
  • 免疫组化; 大鼠; 1:100
艾博抗(上海)贸易有限公司 neurofilament H抗体(Abcam, ab3966)被用于被用于免疫组化在大鼠样本上浓度为1:100. Biomaterials (2013) ncbi
赛默飞世尔
小鼠 单克隆(RMdO-20)
  • 免疫组化-石蜡切片; 大鼠; 1:500; 图 4
赛默飞世尔 neurofilament H抗体(ThermoFisher Scientific, 13-1300)被用于被用于免疫组化-石蜡切片在大鼠样本上浓度为1:500 (图 4). J Neurosci Res (2016) ncbi
鸡 多克隆
赛默飞世尔 neurofilament H抗体(Thermo Scientific, PA3-16753)被用于. Invest Ophthalmol Vis Sci (2015) ncbi
小鼠 单克隆(RMdO-20)
  • 免疫组化-石蜡切片; 人类; 1:50
赛默飞世尔 neurofilament H抗体(Zymed, RmdO20.11)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:50. Neuropathology (2014) ncbi
小鼠 单克隆(RMdO-20)
  • 免疫组化; 大鼠; 1:85
赛默飞世尔 neurofilament H抗体(Zymed/Invitrogen, 13-1300)被用于被用于免疫组化在大鼠样本上浓度为1:85. Neurobiol Dis (2007) ncbi
小鼠 单克隆(RMdO-20)
  • 免疫组化; 人类
赛默飞世尔 neurofilament H抗体(Zymed Laboratories, RmdO-20)被用于被用于免疫组化在人类样本上. Mod Pathol (2004) ncbi
EnCor Biotechnology
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:1000; 图 3d
EnCor Biotechnology neurofilament H抗体(EnCor, RPCA-NF-H)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:1000 (图 3d). J Neuroinflammation (2020) ncbi
鸡 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:2000; 图 s2f, s3a
EnCor Biotechnology neurofilament H抗体(EnCor Biotechnology, CPCA-NF-H)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:2000 (图 s2f, s3a). Nat Commun (2020) ncbi
鸡 多克隆
  • 免疫组化; 大鼠; 1:5000; 图 4g
EnCor Biotechnology neurofilament H抗体(Encor Biotechnology Inc., CPCA-NF-H)被用于被用于免疫组化在大鼠样本上浓度为1:5000 (图 4g). Sci Rep (2020) ncbi
小鼠 单克隆
  • 免疫组化-石蜡切片; 国内马; 图 4
EnCor Biotechnology neurofilament H抗体(EnCor-Biotechnology, NAP4)被用于被用于免疫组化-石蜡切片在国内马样本上 (图 4). Peerj (2016) ncbi
Novus Biologicals
小鼠 单克隆(AH1)
  • 免疫组化; 小鼠; 图 2a
Novus Biologicals neurofilament H抗体(Novus Biologicals, NBP1-05209)被用于被用于免疫组化在小鼠样本上 (图 2a). Cell Mol Gastroenterol Hepatol (2022) ncbi
圣克鲁斯生物技术
小鼠 单克隆(D-9)
  • 免疫组化-石蜡切片; 小鼠; 1:1000; 图 1d
  • 免疫印迹; 小鼠; 1:1000; 图 1e
圣克鲁斯生物技术 neurofilament H抗体(Santa Cruz, sc-137009)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:1000 (图 1d) 和 被用于免疫印迹在小鼠样本上浓度为1:1000 (图 1e). Neurobiol Dis (2019) ncbi
小鼠 单克隆(RNF402)
  • 免疫组化-石蜡切片; 人类; 1:400; 图 1g
圣克鲁斯生物技术 neurofilament H抗体(SantaCruz, sc-32729)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:400 (图 1g). Anat Rec (Hoboken) (2017) ncbi
小鼠 单克隆(RMdO-20)
  • 免疫组化-冰冻切片; 大鼠
圣克鲁斯生物技术 neurofilament H抗体(Santa Cruz, SC- 32273)被用于被用于免疫组化-冰冻切片在大鼠样本上. Neurochem Res (2015) ncbi
伯乐(Bio-Rad)公司
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 大鼠; 图 6
伯乐(Bio-Rad)公司 neurofilament H抗体(AbDSerotec, AHP2259GA)被用于被用于免疫组化-冰冻切片在大鼠样本上 (图 6). J Neuroinflammation (2016) ncbi
赛信通(上海)生物试剂有限公司
小鼠 单克隆(RMdO 20)
  • 免疫组化-石蜡切片; 小鼠; 图 2e
赛信通(上海)生物试剂有限公司 neurofilament H抗体(Cell Signaling, RMdO 20)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 2e). Front Immunol (2021) ncbi
小鼠 单克隆(RMdO 20)
  • 免疫组化; 大鼠; 1:400; 图 7c
赛信通(上海)生物试剂有限公司 neurofilament H抗体(CST, RMdo20)被用于被用于免疫组化在大鼠样本上浓度为1:400 (图 7c). Cell Prolif (2020) ncbi
小鼠 单克隆(RMdO 20)
  • 免疫组化; 大鼠; 1:200; 图 3a
  • 免疫印迹; 大鼠; 1:1000; 图 3e
赛信通(上海)生物试剂有限公司 neurofilament H抗体(Cell Signaling, 2836)被用于被用于免疫组化在大鼠样本上浓度为1:200 (图 3a) 和 被用于免疫印迹在大鼠样本上浓度为1:1000 (图 3e). Sci Rep (2018) ncbi
小鼠 单克隆(RMdO 20)
  • 免疫组化-石蜡切片; 大鼠; 1:200; 图 1b
赛信通(上海)生物试剂有限公司 neurofilament H抗体(Cell Signaling, 2836)被用于被用于免疫组化-石蜡切片在大鼠样本上浓度为1:200 (图 1b). Mol Med Rep (2017) ncbi
小鼠 单克隆(RMdO 20)
  • 免疫组化; 小鼠; 1:400; 图 1b
赛信通(上海)生物试剂有限公司 neurofilament H抗体(cell signalling, 2836)被用于被用于免疫组化在小鼠样本上浓度为1:400 (图 1b). Proc Natl Acad Sci U S A (2017) ncbi
小鼠 单克隆(RMdO 20)
  • 免疫组化-冰冻切片; 小鼠; 1:1000; 图 5a
赛信通(上海)生物试剂有限公司 neurofilament H抗体(Cell signaling, 2836)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:1000 (图 5a). Brain Res (2017) ncbi
小鼠 单克隆(RMdO 20)
  • 免疫组化; 小鼠; 图 st1
赛信通(上海)生物试剂有限公司 neurofilament H抗体(Cell Signalling, 2836)被用于被用于免疫组化在小鼠样本上 (图 st1). Nat Biotechnol (2016) ncbi
西格玛奥德里奇
小鼠 单克隆(N52)
  • 免疫组化-冰冻切片; 小鼠; 1:100; 图 1c
  • 免疫细胞化学; 小鼠; 1:100; 图 4b
西格玛奥德里奇 neurofilament H抗体(Sigma, N0142)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:100 (图 1c) 和 被用于免疫细胞化学在小鼠样本上浓度为1:100 (图 4b). Nat Commun (2022) ncbi
小鼠 单克隆(N52)
  • 免疫组化-冰冻切片; 大鼠; 图 2a
  • 免疫组化-冰冻切片; 小鼠; 图 2b
西格玛奥德里奇 neurofilament H抗体(Sigma, N0142)被用于被用于免疫组化-冰冻切片在大鼠样本上 (图 2a) 和 被用于免疫组化-冰冻切片在小鼠样本上 (图 2b). Front Physiol (2022) ncbi
小鼠 单克隆(NE14)
  • 免疫组化-冰冻切片; 小鼠; 1:500; 图 3b, 3d
西格玛奥德里奇 neurofilament H抗体(Sigma-Aldrich, N5389)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:500 (图 3b, 3d). J Clin Invest (2022) ncbi
小鼠 单克隆(N52)
  • 免疫细胞化学; 小鼠; 1:1000; 图 e6c
西格玛奥德里奇 neurofilament H抗体(Sigma, N0142)被用于被用于免疫细胞化学在小鼠样本上浓度为1:1000 (图 e6c). Nat Neurosci (2022) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:400; 图 2e
  • 免疫印迹; 小鼠; 图 2a
西格玛奥德里奇 neurofilament H抗体(Sigma, N4142)被用于被用于免疫组化在小鼠样本上浓度为1:400 (图 2e) 和 被用于免疫印迹在小鼠样本上 (图 2a). J Neuroinflammation (2021) ncbi
小鼠 单克隆(N52)
  • 免疫细胞化学; 人类; 图 1c
西格玛奥德里奇 neurofilament H抗体(Sigma-Aldrich, N0142)被用于被用于免疫细胞化学在人类样本上 (图 1c). Cell Rep Med (2021) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 1:200; 图 s1c
西格玛奥德里奇 neurofilament H抗体(Sigma, N4142)被用于被用于免疫细胞化学在人类样本上浓度为1:200 (图 s1c). Environ Health Perspect (2021) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:1000; 图 3g
西格玛奥德里奇 neurofilament H抗体(Sigma-Aldrich, N4142)被用于被用于免疫组化在小鼠样本上浓度为1:1000 (图 3g). Front Cell Neurosci (2020) ncbi
小鼠 单克隆(N52)
  • 免疫组化; 小鼠; 1:600
西格玛奥德里奇 neurofilament H抗体(Sigma-Aldrich, N0142)被用于被用于免疫组化在小鼠样本上浓度为1:600. Aging Dis (2021) ncbi
小鼠 单克隆(N52)
  • 免疫组化; 小鼠; 1:600
西格玛奥德里奇 neurofilament H抗体(Sigma-Aldrich, N0142)被用于被用于免疫组化在小鼠样本上浓度为1:600. BMC Biol (2021) ncbi
小鼠 单克隆(N52)
  • 免疫组化-自由浮动切片; 小鼠; 1:200; 图 3h
西格玛奥德里奇 neurofilament H抗体(Sigma, N0142)被用于被用于免疫组化-自由浮动切片在小鼠样本上浓度为1:200 (图 3h). elife (2021) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 人类; 1:300; 图 1c
  • 免疫组化-冰冻切片; 小鼠; 1:300; 图 1c
西格玛奥德里奇 neurofilament H抗体(Sigma, N4142)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:300 (图 1c) 和 被用于免疫组化-冰冻切片在小鼠样本上浓度为1:300 (图 1c). Nat Commun (2021) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:1000; 图 s4e
西格玛奥德里奇 neurofilament H抗体(Sigma, N4142)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:1000 (图 s4e). Sci Adv (2020) ncbi
小鼠 单克隆(N52)
  • 免疫组化; 齿鲸; 1:400; 图 6c
西格玛奥德里奇 neurofilament H抗体(Sigma, N0142)被用于被用于免疫组化在齿鲸样本上浓度为1:400 (图 6c). Front Vet Sci (2020) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:1000; 图 3c, s2g
西格玛奥德里奇 neurofilament H抗体(Sigma, N4142)被用于被用于免疫组化在小鼠样本上浓度为1:1000 (图 3c, s2g). Science (2020) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 小鼠; 图 10c
西格玛奥德里奇 neurofilament H抗体(Sigma, N4142)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 10c). elife (2020) ncbi
小鼠 单克隆(N52)
  • 免疫印迹; 人类; 1:1000; 图 1a
西格玛奥德里奇 neurofilament H抗体(Sigma, N0142)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 1a). Theranostics (2020) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 小鼠; 1:200; 图 1f
西格玛奥德里奇 neurofilament H抗体(Sigma-Aldrich, N4142)被用于被用于免疫细胞化学在小鼠样本上浓度为1:200 (图 1f). Mol Ther Nucleic Acids (2020) ncbi
domestic rabbit 多克隆
  • 免疫组化; 人类; 1:200; 图 1d, 2d, s2-b, c
西格玛奥德里奇 neurofilament H抗体(Sigma, N4142)被用于被用于免疫组化在人类样本上浓度为1:200 (图 1d, 2d, s2-b, c). Front Cell Neurosci (2020) ncbi
小鼠 单克隆(N52)
  • 免疫组化-冰冻切片; 大鼠; 1:400; 图 1l
西格玛奥德里奇 neurofilament H抗体(Sigma, N0142)被用于被用于免疫组化-冰冻切片在大鼠样本上浓度为1:400 (图 1l). J Pain Res (2020) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:500; 图 8a
西格玛奥德里奇 neurofilament H抗体(Sigma, N4142)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:500 (图 8a). Sci Rep (2020) ncbi
小鼠 单克隆(N52)
  • 免疫组化-冰冻切片; 小鼠; 1:400; 图 4c
西格玛奥德里奇 neurofilament H抗体(Sigma, N0142)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:400 (图 4c). Sci Rep (2020) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:200; 图 3a
西格玛奥德里奇 neurofilament H抗体(Sigma-Aldrich, N4142)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:200 (图 3a). Oxid Med Cell Longev (2020) ncbi
小鼠 单克隆(NE14)
  • 免疫组化; 小鼠; 1:1000; 图 1c
西格玛奥德里奇 neurofilament H抗体(Sigma, N5389)被用于被用于免疫组化在小鼠样本上浓度为1:1000 (图 1c). Nat Commun (2020) ncbi
小鼠 单克隆(N52)
  • 免疫组化; 小鼠; 1:500; 图 1s2a
西格玛奥德里奇 neurofilament H抗体(Sigma, N0142)被用于被用于免疫组化在小鼠样本上浓度为1:500 (图 1s2a). elife (2019) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:600; 图 8g
西格玛奥德里奇 neurofilament H抗体(Sigma-Aldrich, N4142)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:600 (图 8g). J Neurosci (2019) ncbi
小鼠 单克隆(N52)
  • 免疫组化-石蜡切片; 小鼠; 1:100; 图 9f
西格玛奥德里奇 neurofilament H抗体(Abcam, N0142)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:100 (图 9f). J Comp Neurol (2020) ncbi
小鼠 单克隆(NE14)
  • 免疫组化-石蜡切片; 小鼠; 1:2000; 图 2j
  • 免疫印迹; 小鼠; 1:1000; 图 2g
西格玛奥德里奇 neurofilament H抗体(Sigma, N5389)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:2000 (图 2j) 和 被用于免疫印迹在小鼠样本上浓度为1:1000 (图 2g). J Exp Med (2019) ncbi
小鼠 单克隆(N52)
  • 免疫组化-冰冻切片; 大鼠; 1:400; 图 3b
西格玛奥德里奇 neurofilament H抗体(Sigma-Aldrich, N52)被用于被用于免疫组化-冰冻切片在大鼠样本上浓度为1:400 (图 3b). J Comp Neurol (2019) ncbi
小鼠 单克隆(NE14)
  • 免疫组化; 小鼠; 1:100; 图 5b
西格玛奥德里奇 neurofilament H抗体(Sigma, N5389)被用于被用于免疫组化在小鼠样本上浓度为1:100 (图 5b). elife (2019) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:200; 图 3b
西格玛奥德里奇 neurofilament H抗体(Sigma, N4142)被用于被用于免疫组化在小鼠样本上浓度为1:200 (图 3b). Invest Ophthalmol Vis Sci (2019) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:500; 图 4a
西格玛奥德里奇 neurofilament H抗体(Sigma, N4142)被用于被用于免疫组化在小鼠样本上浓度为1:500 (图 4a). Biochem Biophys Res Commun (2018) ncbi
小鼠 单克隆(N52)
  • 免疫组化-自由浮动切片; 大鼠; 1:500; 图 4d'
  • 免疫组化; 大鼠; 1:500; 图 4a'
  • 免疫组化-自由浮动切片; 小鼠; 1:500; 图 3e
  • 免疫组化; 小鼠; 1:500; 图 2b
西格玛奥德里奇 neurofilament H抗体(Sigma, 0142)被用于被用于免疫组化-自由浮动切片在大鼠样本上浓度为1:500 (图 4d'), 被用于免疫组化在大鼠样本上浓度为1:500 (图 4a'), 被用于免疫组化-自由浮动切片在小鼠样本上浓度为1:500 (图 3e) 和 被用于免疫组化在小鼠样本上浓度为1:500 (图 2b). Neurosci Lett (2019) ncbi
小鼠 单克隆(N52)
  • 免疫组化-冰冻切片; 小鼠; 1:500; 图 5a
西格玛奥德里奇 neurofilament H抗体(Sigma, N0142)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:500 (图 5a). elife (2018) ncbi
小鼠 单克隆(N52)
  • 免疫细胞化学; 人类; 1:2000; 图 2a
西格玛奥德里奇 neurofilament H抗体(Sigma-Aldrich, N0142)被用于被用于免疫细胞化学在人类样本上浓度为1:2000 (图 2a). Sci Rep (2018) ncbi
小鼠 单克隆(N52)
  • 免疫组化; 小鼠; 1:1000; 图 8k
西格玛奥德里奇 neurofilament H抗体(Sigma-Aldich, N0142)被用于被用于免疫组化在小鼠样本上浓度为1:1000 (图 8k). Eneuro (2017) ncbi
小鼠 单克隆(NE14)
  • 免疫组化-冰冻切片; 小鼠; 1:200; 图 4fs4j
西格玛奥德里奇 neurofilament H抗体(Sigma, N5389)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:200 (图 4fs4j). elife (2017) ncbi
小鼠 单克隆(N52)
  • 免疫印迹; 大鼠; 1:1000; 表 2
西格玛奥德里奇 neurofilament H抗体(Sigma, N0142)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (表 2). J Neuroinflammation (2017) ncbi
小鼠 单克隆(NE14)
  • 免疫组化-石蜡切片; 大鼠; 1:1000; 图 st12
西格玛奥德里奇 neurofilament H抗体(Sigma-Aldrich, N5389)被用于被用于免疫组化-石蜡切片在大鼠样本上浓度为1:1000 (图 st12). J Toxicol Pathol (2017) ncbi
小鼠 单克隆(N52)
  • 免疫组化; hippopotamus; 1:3000; 图 5c
西格玛奥德里奇 neurofilament H抗体(Sigma, N0142)被用于被用于免疫组化在hippopotamus样本上浓度为1:3000 (图 5c). J Comp Neurol (2017) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:500; 图 4(S2A)
西格玛奥德里奇 neurofilament H抗体(Sigma-Aldrich, N4142)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:500 (图 4(S2A)). elife (2017) ncbi
小鼠 单克隆(N52)
  • 免疫组化-冰冻切片; 大鼠; 1:400; 图 2
西格玛奥德里奇 neurofilament H抗体(Sigma, N0142)被用于被用于免疫组化-冰冻切片在大鼠样本上浓度为1:400 (图 2). Biomed Rep (2016) ncbi
小鼠 单克隆(NE14)
  • 免疫组化; 大鼠; 图 6a
西格玛奥德里奇 neurofilament H抗体(Sigma, NE14)被用于被用于免疫组化在大鼠样本上 (图 6a). J Comp Neurol (2017) ncbi
小鼠 单克隆(NE14)
  • 免疫组化; 人类; 1:200; 图 4a
西格玛奥德里奇 neurofilament H抗体(Sigma, NE14)被用于被用于免疫组化在人类样本上浓度为1:200 (图 4a). Sci Rep (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化; 大鼠; 1:80; 图 3b
西格玛奥德里奇 neurofilament H抗体(Sigma, N4142)被用于被用于免疫组化在大鼠样本上浓度为1:80 (图 3b). Sci Rep (2016) ncbi
小鼠 单克隆(N52)
  • 免疫组化-冰冻切片; 小鼠; 1:10,000; 图 4d
西格玛奥德里奇 neurofilament H抗体(Sigma, NO142)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:10,000 (图 4d). Clin Genet (2017) ncbi
小鼠 单克隆(N52)
  • 免疫组化; square-lipped rhinoceros; 1:3000; 图 5c
西格玛奥德里奇 neurofilament H抗体(Sigma-Aldrich, N0142)被用于被用于免疫组化在square-lipped rhinoceros样本上浓度为1:3000 (图 5c). J Comp Neurol (2017) ncbi
小鼠 单克隆(N52)
  • 免疫组化; 小鼠; 1:600; 图 1a
西格玛奥德里奇 neurofilament H抗体(Sigma-Aldrich, N0142)被用于被用于免疫组化在小鼠样本上浓度为1:600 (图 1a). EMBO Mol Med (2017) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 1:200; 表 2
西格玛奥德里奇 neurofilament H抗体(Sigma, N4142)被用于被用于免疫细胞化学在人类样本上浓度为1:200 (表 2). Lab Chip (2016) ncbi
小鼠 单克隆(N52)
  • 免疫组化-冰冻切片; 小鼠; 1:1000; 图 1a
西格玛奥德里奇 neurofilament H抗体(Sigma-Aldrich, N0142)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:1000 (图 1a). Proc Natl Acad Sci U S A (2016) ncbi
小鼠 单克隆(N52)
  • 免疫组化-冰冻切片; 大鼠; 图 7a
西格玛奥德里奇 neurofilament H抗体(Sigma, N0142)被用于被用于免疫组化-冰冻切片在大鼠样本上 (图 7a). Toxicology (2016) ncbi
小鼠 单克隆(N52)
  • 免疫组化; 小鼠; 1:400
西格玛奥德里奇 neurofilament H抗体(Sigma, N0142)被用于被用于免疫组化在小鼠样本上浓度为1:400. Neuroscience (2016) ncbi
小鼠 单克隆(NE14)
  • 免疫组化-冰冻切片; 小鼠; 图 10
西格玛奥德里奇 neurofilament H抗体(Sigma, N5389)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 10). elife (2016) ncbi
小鼠 单克隆(NE14)
  • 免疫组化-石蜡切片; 小鼠; 图 5
西格玛奥德里奇 neurofilament H抗体(Sigma, N5389)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 5). J Comp Pathol (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:500; 图 5d
西格玛奥德里奇 neurofilament H抗体(Sigma-Aldrich, N4142)被用于被用于免疫组化在小鼠样本上浓度为1:500 (图 5d). Proc Natl Acad Sci U S A (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 人类; 1:250; 图 2
西格玛奥德里奇 neurofilament H抗体(Sigma, N4142)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:250 (图 2). Front Neuroanat (2016) ncbi
小鼠 单克隆(N52)
  • 免疫组化-石蜡切片; 人类; 1:250; 图 2
西格玛奥德里奇 neurofilament H抗体(Sigma, N0142)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:250 (图 2). Front Neuroanat (2016) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 小鼠; 1:1000; 图 5
西格玛奥德里奇 neurofilament H抗体(Sigma, N4142)被用于被用于免疫细胞化学在小鼠样本上浓度为1:1000 (图 5). Nat Commun (2016) ncbi
小鼠 单克隆(N52)
  • 免疫组化-冰冻切片; 小鼠; 图 2
西格玛奥德里奇 neurofilament H抗体(Sigma, N0142)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 2). Neuroscience (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:10,000; 图 2
西格玛奥德里奇 neurofilament H抗体(Sigma-Aldrich, N4142)被用于被用于免疫印迹在人类样本上浓度为1:10,000 (图 2). Stem Cell Res (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:100; 图 6a
西格玛奥德里奇 neurofilament H抗体(Sigma-Aldrich, N4142)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:100 (图 6a). Cereb Cortex (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 11
  • 免疫印迹; 大鼠; 图 9
西格玛奥德里奇 neurofilament H抗体(Sigma, N4142)被用于被用于免疫印迹在小鼠样本上 (图 11) 和 被用于免疫印迹在大鼠样本上 (图 9). PLoS ONE (2016) ncbi
小鼠 单克隆(N52)
  • 免疫组化; 小鼠; 图 2
西格玛奥德里奇 neurofilament H抗体(Sigma-Aldrich, N0142)被用于被用于免疫组化在小鼠样本上 (图 2). PLoS ONE (2016) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 1:250; 表 1
西格玛奥德里奇 neurofilament H抗体(Sigma, N4142)被用于被用于免疫细胞化学在人类样本上浓度为1:250 (表 1). Exp Eye Res (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:100; 图 2
  • 免疫印迹; 小鼠; 1:100; 图 3
西格玛奥德里奇 neurofilament H抗体(Sigma, N4142)被用于被用于免疫组化在小鼠样本上浓度为1:100 (图 2) 和 被用于免疫印迹在小鼠样本上浓度为1:100 (图 3). Sci Rep (2016) ncbi
小鼠 单克隆(N52)
  • 免疫组化-冰冻切片; 小鼠; 1:1000; 图 2
西格玛奥德里奇 neurofilament H抗体(Sigma, N0142)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:1000 (图 2). J Biol Chem (2016) ncbi
小鼠 单克隆(N52)
  • 免疫细胞化学; 小鼠; 1:500; 图 3
西格玛奥德里奇 neurofilament H抗体(Sigma-Aldrich, N0142)被用于被用于免疫细胞化学在小鼠样本上浓度为1:500 (图 3). Front Cell Neurosci (2015) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 小鼠; 1:500; 表 2
西格玛奥德里奇 neurofilament H抗体(Sigma, N4142)被用于被用于免疫细胞化学在小鼠样本上浓度为1:500 (表 2). J Cell Physiol (2016) ncbi
小鼠 单克隆(N52)
  • 免疫细胞化学; 大鼠; 1:400; 表 1
西格玛奥德里奇 neurofilament H抗体(Sigma, N0142)被用于被用于免疫细胞化学在大鼠样本上浓度为1:400 (表 1). J Neurosci Res (2016) ncbi
domestic rabbit 多克隆
西格玛奥德里奇 neurofilament H抗体(Sigma, N4142)被用于. Front Cell Neurosci (2015) ncbi
小鼠 单克隆(N52)
  • 免疫印迹; 小鼠; 1:100,000
西格玛奥德里奇 neurofilament H抗体(Sigma-Aldrich, N0142)被用于被用于免疫印迹在小鼠样本上浓度为1:100,000. Neuroscience (2015) ncbi
小鼠 单克隆(N52)
  • 免疫组化; 大鼠; 1:1000
西格玛奥德里奇 neurofilament H抗体(Sigma-Aldrich, N0142)被用于被用于免疫组化在大鼠样本上浓度为1:1000. Cereb Cortex (2016) ncbi
domestic rabbit 多克隆
西格玛奥德里奇 neurofilament H抗体(Sigma, N4142)被用于. Nat Med (2015) ncbi
小鼠 单克隆(N52)
  • 免疫组化-冰冻切片; 小鼠; 1:250; 图 2
西格玛奥德里奇 neurofilament H抗体(SIGMA, N0142)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:250 (图 2). Mol Pain (2015) ncbi
domestic rabbit 多克隆
西格玛奥德里奇 neurofilament H抗体(Sigma, 4142)被用于. Nat Methods (2015) ncbi
domestic rabbit 多克隆
西格玛奥德里奇 neurofilament H抗体(Sigma Aldrich, N4142)被用于. J Control Release (2015) ncbi
domestic rabbit 多克隆
西格玛奥德里奇 neurofilament H抗体(Sigm-Aldrich, n4142)被用于. J Neurosci Methods (2015) ncbi
domestic rabbit 多克隆
西格玛奥德里奇 neurofilament H抗体(Sigma Aldrich, N4142)被用于. J Cereb Blood Flow Metab (2015) ncbi
小鼠 单克隆(N52)
  • 免疫细胞化学; 大鼠; 1:1000; 图 5
西格玛奥德里奇 neurofilament H抗体(Sigma-Aldrich, N52)被用于被用于免疫细胞化学在大鼠样本上浓度为1:1000 (图 5). PLoS ONE (2014) ncbi
小鼠 单克隆(N52)
  • 免疫组化-石蜡切片; 大鼠; 1:500
西格玛奥德里奇 neurofilament H抗体(Sigma-Aldrich, N0142)被用于被用于免疫组化-石蜡切片在大鼠样本上浓度为1:500. Exp Neurol (2015) ncbi
小鼠 单克隆(N52)
  • 免疫组化; 小鼠; 1:400
西格玛奥德里奇 neurofilament H抗体(Sigma-Aldrich, N0142)被用于被用于免疫组化在小鼠样本上浓度为1:400. J Neurosci (2014) ncbi
小鼠 单克隆(N52)
  • 免疫组化; 小鼠; 1:500; 图  4
西格玛奥德里奇 neurofilament H抗体(Sigma Aldrich, N0142)被用于被用于免疫组化在小鼠样本上浓度为1:500 (图  4). Pharmacol Biochem Behav (2014) ncbi
小鼠 单克隆(N52)
  • 免疫组化; 大鼠; 1:500
西格玛奥德里奇 neurofilament H抗体(Sigma-Aldrich, N0142)被用于被用于免疫组化在大鼠样本上浓度为1:500. PLoS ONE (2014) ncbi
小鼠 单克隆(NE14)
  • 免疫组化-石蜡切片; 人类; 1:5000
西格玛奥德里奇 neurofilament H抗体(Sigma, NE14)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:5000. Biomed Res Int (2014) ncbi
domestic rabbit 多克隆
西格玛奥德里奇 neurofilament H抗体(Sigma-Aldrich, N4142)被用于. J Neurosci (2014) ncbi
小鼠 单克隆(NE14)
  • 免疫印迹; 大鼠
西格玛奥德里奇 neurofilament H抗体(Sigma, NE14)被用于被用于免疫印迹在大鼠样本上. Neuroscience (2014) ncbi
小鼠 单克隆(N52)
  • 免疫组化; pigs ; 1:2000
西格玛奥德里奇 neurofilament H抗体(Sigma, N0142)被用于被用于免疫组化在pigs 样本上浓度为1:2000. J Comp Neurol (2014) ncbi
小鼠 单克隆(N52)
  • 免疫组化; 大鼠; 1:200
西格玛奥德里奇 neurofilament H抗体(Sigma, N0142)被用于被用于免疫组化在大鼠样本上浓度为1:200. Exp Eye Res (2014) ncbi
小鼠 单克隆(N52)
  • 免疫组化; 栗鼠; 1:100; 图 6
西格玛奥德里奇 neurofilament H抗体(Sigma-Aldrich, N0142)被用于被用于免疫组化在栗鼠样本上浓度为1:100 (图 6). Gene Ther (2014) ncbi
小鼠 单克隆(N52)
  • 免疫组化; 小鼠
西格玛奥德里奇 neurofilament H抗体(Sigma, N 0142)被用于被用于免疫组化在小鼠样本上. J Comp Neurol (2014) ncbi
Developmental Studies Hybridoma Bank
小鼠 单克隆(RT97)
  • 免疫组化-石蜡切片; 小鼠; 1:2000
Developmental Studies Hybridoma Bank neurofilament H抗体(Developmental Studies Hybridoma Bank, RT97)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:2000. Int J Mol Sci (2017) ncbi
小鼠 单克隆(RT97)
  • 免疫组化-石蜡切片; 人类; 1:800
Developmental Studies Hybridoma Bank neurofilament H抗体(Novocastra, RT97)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:800. Hum Mutat (2017) ncbi
小鼠 单克隆(RT97)
  • 免疫组化; 大鼠; 1:50
Developmental Studies Hybridoma Bank neurofilament H抗体(DSHB, RT97)被用于被用于免疫组化在大鼠样本上浓度为1:50. Exp Eye Res (2014) ncbi
小鼠 单克隆(RT97)
  • 免疫组化-冰冻切片; 大鼠; 1:2000
Developmental Studies Hybridoma Bank neurofilament H抗体(Developmental Studies Hybridoma Bank, RT97)被用于被用于免疫组化-冰冻切片在大鼠样本上浓度为1:2000. J Comp Neurol (2008) ncbi
Monosan
  • 免疫印迹; common tree shrew ; 1:20
Monosan neurofilament H抗体(Monosan, MON3004)被用于被用于免疫印迹在common tree shrew 样本上浓度为1:20. J Comp Neurol (2007) ncbi
文章列表
  1. Yamada S, Mizukoshi T, Tokunaga A, Sakakibara S. Inka2, a novel Pak4 inhibitor, regulates actin dynamics in neuronal development. PLoS Genet. 2022;18:e1010438 pubmed 出版商
  2. Kaya T, Mattugini N, Liu L, Ji H, Cantuti Castelvetri L, Wu J, et al. CD8+ T cells induce interferon-responsive oligodendrocytes and microglia in white matter aging. Nat Neurosci. 2022;25:1446-1457 pubmed 出版商
  3. Lam M, Takeo K, Almeida R, Cooper M, Wu K, Iyer M, et al. CNS myelination requires VAMP2/3-mediated membrane expansion in oligodendrocytes. Nat Commun. 2022;13:5583 pubmed 出版商
  4. Kiryu Seo S, Matsushita R, Tashiro Y, Yoshimura T, Iguchi Y, Katsuno M, et al. Impaired disassembly of the axon initial segment restricts mitochondrial entry into damaged axons. EMBO J. 2022;41:e110486 pubmed 出版商
  5. Duan S, Sawyer T, Sontz R, Wieland B, Diaz A, Merchant J. GFAP-directed Inactivation of Men1 Exploits Glial Cell Plasticity in Favor of Neuroendocrine Reprogramming. Cell Mol Gastroenterol Hepatol. 2022;14:1025-1051 pubmed 出版商
  6. Nakamori M, Shimizu H, Ogawa K, Hasuike Y, Nakajima T, Sakurai H, et al. Cell type-specific abnormalities of central nervous system in myotonic dystrophy type 1. Brain Commun. 2022;4:fcac154 pubmed 出版商
  7. Rees T, Russo A, O Carroll S, Hay D, Walker C. CGRP and the Calcitonin Receptor are Co-Expressed in Mouse, Rat and Human Trigeminal Ganglia Neurons. Front Physiol. 2022;13:860037 pubmed 出版商
  8. Defaye M, Iftinca M, Gadotti V, Basso L, Abdullah N, Cum xe9 nal M, et al. The neuronal tyrosine kinase receptor ligand ALKAL2 mediates persistent pain. J Clin Invest. 2022;132: pubmed 出版商
  9. Powers R, Daza R, Koehler A, Courchet J, Calabrese B, Hevner R, et al. Growth cone macropinocytosis of neurotrophin receptor and neuritogenesis are regulated by neuron navigator 1. Mol Biol Cell. 2022;33:ar64 pubmed 出版商
  10. Cui H, Liu F, Fang Y, Wang T, Yuan B, Ma C. Neuronal FcεRIα directly mediates ocular itch via IgE-immune complex in a mouse model of allergic conjunctivitis. J Neuroinflammation. 2022;19:55 pubmed 出版商
  11. Tsolias A, Medalla M. Muscarinic Acetylcholine Receptor Localization on Distinct Excitatory and Inhibitory Neurons Within the ACC and LPFC of the Rhesus Monkey. Front Neural Circuits. 2021;15:795325 pubmed 出版商
  12. Hao W, Luo Q, Menger M, Fassbender K, Liu Y. Treatment With CD52 Antibody Protects Neurons in Experimental Autoimmune Encephalomyelitis Mice During the Recovering Phase. Front Immunol. 2021;12:792465 pubmed 出版商
  13. Yang N, Isensee J, Neel D, Quadros A, Zhang H, Lauzadis J, et al. Anthrax toxins regulate pain signaling and can deliver molecular cargoes into ANTXR2+ DRG sensory neurons. Nat Neurosci. 2022;25:168-179 pubmed 出版商
  14. Xu J, Wen J, Fu L, Liao L, Zou Y, Zhang J, et al. Macrophage-specific RhoA knockout delays Wallerian degeneration after peripheral nerve injury in mice. J Neuroinflammation. 2021;18:234 pubmed 出版商
  15. Soto Faguás C, Sanchez Molina P, Saura C. Loss of presenilin function enhances tau phosphorylation and aggregation in mice. Acta Neuropathol Commun. 2021;9:162 pubmed 出版商
  16. Papazian I, Tsoukala E, Boutou A, Karamita M, Kambas K, Iliopoulou L, et al. Fundamentally different roles of neuronal TNF receptors in CNS pathology: TNFR1 and IKKβ promote microglial responses and tissue injury in demyelination while TNFR2 protects against excitotoxicity in mice. J Neuroinflammation. 2021;18:222 pubmed 出版商
  17. Clark A, Kugathasan U, Baskozos G, Priestman D, Fugger N, Lone M, et al. An iPSC model of hereditary sensory neuropathy-1 reveals L-serine-responsive deficits in neuronal ganglioside composition and axoglial interactions. Cell Rep Med. 2021;2:100345 pubmed 出版商
  18. Kaucka M, Szarowska B, Kavkova M, Kastriti M, Kameneva P, Schmidt I, et al. Nerve-associated Schwann cell precursors contribute extracutaneous melanocytes to the heart, inner ear, supraorbital locations and brain meninges. Cell Mol Life Sci. 2021;78:6033-6049 pubmed 出版商
  19. Modafferi S, Zhong X, Kleensang A, Murata Y, Fagiani F, Pamies D, et al. Gene-Environment Interactions in Developmental Neurotoxicity: a Case Study of Synergy between Chlorpyrifos and CHD8 Knockout in Human BrainSpheres. Environ Health Perspect. 2021;129:77001 pubmed 出版商
  20. Pan X, Zhao J, Zhou Z, Chen J, Yang Z, Wu Y, et al. 5'-UTR SNP of FGF13 causes translational defect and intellectual disability. elife. 2021;10: pubmed 出版商
  21. Turner J, O Halloran J, Kalaidina E, Kim W, Schmitz A, Zhou J, et al. SARS-CoV-2 mRNA vaccines induce persistent human germinal centre responses. Nature. 2021;596:109-113 pubmed 出版商
  22. Zhang J, Wu N, Wang S, Yao Z, Xiao F, Lu J, et al. Neuronal loss and microgliosis are restricted to the core of Aβ deposits in mouse models of Alzheimer's disease. Aging Cell. 2021;20:e13380 pubmed 出版商
  23. Groh J, Berve K, Martini R. Immune modulation attenuates infantile neuronal ceroid lipofuscinosis in mice before and after disease onset. Brain Commun. 2021;3:fcab047 pubmed 出版商
  24. Sherafat A, Pfeiffer F, Reiss A, Wood W, Nishiyama A. Microglial neuropilin-1 promotes oligodendrocyte expansion during development and remyelination by trans-activating platelet-derived growth factor receptor. Nat Commun. 2021;12:2265 pubmed 出版商
  25. Mughrabi I, Hickman J, Jayaprakash N, Thompson D, Ahmed U, Papadoyannis E, et al. Development and characterization of a chronic implant mouse model for vagus nerve stimulation. elife. 2021;10: pubmed 出版商
  26. Miguel J, Perez S, Malek Ahmadi M, Mufson E. Cerebellar Calcium-Binding Protein and Neurotrophin Receptor Defects in Down Syndrome and Alzheimer's Disease. Front Aging Neurosci. 2021;13:645334 pubmed 出版商
  27. Brodie Kommit J, Clark B, Shi Q, Shiau F, Kim D, Langel J, et al. Atoh7-independent specification of retinal ganglion cell identity. Sci Adv. 2021;7: pubmed 出版商
  28. Wan B, Li C, Wang M, Kong F, Ding Q, Zhang C, et al. GIT1 protects traumatically injured spinal cord by prompting microvascular endothelial cells to clear myelin debris. Aging (Albany NY). 2021;13:7067-7083 pubmed 出版商
  29. Ryan B, Bengoa Vergniory N, Williamson M, Kirkiz E, Roberts R, Corda G, et al. REST protects dopaminergic neurons from mitochondrial and α-synuclein oligomer pathology in an alpha synuclein overexpressing BAC-transgenic mouse model. J Neurosci. 2021;: pubmed 出版商
  30. Fr xf6 hlich D, Mendes M, Kueh A, Bongers A, Herold M, Salomons G, et al. A Hypomorphic Dars1 D367Y Model Recapitulates Key Aspects of the Leukodystrophy HBSL. Front Cell Neurosci. 2020;14:625879 pubmed 出版商
  31. Kuang H, Zhou Z, Zhu Y, Wan Z, Yang M, Hong F, et al. Pharmacological Treatment of Vascular Dementia: A Molecular Mechanism Perspective. Aging Dis. 2021;12:308-326 pubmed 出版商
  32. Dorrier C, Aran D, Haenelt E, Sheehy R, Hoi K, Pintarić L, et al. CNS fibroblasts form a fibrotic scar in response to immune cell infiltration. Nat Neurosci. 2021;24:234-244 pubmed 出版商
  33. Zanetti L, Kilicarslan I, Netzer M, Babai N, Seitter H, Koschak A. Function of cone and cone-related pathways in CaV1.4 IT mice. Sci Rep. 2021;11:2732 pubmed 出版商
  34. Affortit C, Casas F, Ladrech S, Ceccato J, Bourien J, Coyat C, et al. Exacerbated age-related hearing loss in mice lacking the p43 mitochondrial T3 receptor. BMC Biol. 2021;19:18 pubmed 出版商
  35. Li Y, Ritchie E, Steinke C, Qi C, Chen L, Zheng B, et al. Activation of MAP3K DLK and LZK in Purkinje cells causes rapid and slow degeneration depending on signaling strength. elife. 2021;10: pubmed 出版商
  36. Deshpande D, Agarwal N, Fleming T, Gaveriaux Ruff C, Klose C, Tappe Theodor A, et al. Loss of POMC-mediated antinociception contributes to painful diabetic neuropathy. Nat Commun. 2021;12:426 pubmed 出版商
  37. Atkinson R, LEUNG J, Bender J, Kirkcaldie M, Vickers J, King A. TDP-43 mislocalization drives neurofilament changes in a novel model of TDP-43 proteinopathy. Dis Model Mech. 2021;: pubmed 出版商
  38. Hughes R, Bosanac T, Mao X, Engber T, DiAntonio A, Milbrandt J, et al. Small Molecule SARM1 Inhibitors Recapitulate the SARM1-/- Phenotype and Allow Recovery of a Metastable Pool of Axons Fated to Degenerate. Cell Rep. 2021;34:108588 pubmed 出版商
  39. Pons V, Lévesque P, Plante M, Rivest S. Conditional genetic deletion of CSF1 receptor in microglia ameliorates the physiopathology of Alzheimer's disease. Alzheimers Res Ther. 2021;13:8 pubmed 出版商
  40. Mehta A, Gregory J, Dando O, Carter R, Burr K, Nanda J, et al. Mitochondrial bioenergetic deficits in C9orf72 amyotrophic lateral sclerosis motor neurons cause dysfunctional axonal homeostasis. Acta Neuropathol. 2021;141:257-279 pubmed 出版商
  41. Lewis M, Di Domenico F, Ingham N, Prosser H, Steel K. Hearing impairment due to Mir183/96/182 mutations suggests both loss and gain of function effects. Dis Model Mech. 2020;14: pubmed 出版商
  42. Zhang X, Wang R, Hu D, Sun X, Fujioka H, Lundberg K, et al. Oligodendroglial glycolytic stress triggers inflammasome activation and neuropathology in Alzheimer's disease. Sci Adv. 2020;6: pubmed 出版商
  43. Morell M, Vogl A, IJsseldijk L, Piscitelli Doshkov M, Tong L, Ostertag S, et al. Echolocating Whales and Bats Express the Motor Protein Prestin in the Inner Ear: A Potential Marker for Hearing Loss. Front Vet Sci. 2020;7:429 pubmed 出版商
  44. Pu A, Mishra M, Dong Y, Ghorbanigazar S, Stephenson E, Rawji K, et al. The glycosyltransferase EXTL2 promotes proteoglycan deposition and injurious neuroinflammation following demyelination. J Neuroinflammation. 2020;17:220 pubmed 出版商
  45. Neubarth N, Emanuel A, Liu Y, Springel M, Handler A, Zhang Q, et al. Meissner corpuscles and their spatially intermingled afferents underlie gentle touch perception. Science. 2020;368: pubmed 出版商
  46. Chan Z, Kwan H, Wong Y, Jiang Z, Zhou Z, Tam K, et al. Site-directed MT1-MMP trafficking and surface insertion regulate AChR clustering and remodeling at developing NMJs. elife. 2020;9: pubmed 出版商
  47. Huang C, Lu S, Huang T, Huang B, Sun H, Yang S, et al. FGF9 induces functional differentiation to Schwann cells from human adipose derived stem cells. Theranostics. 2020;10:2817-2831 pubmed 出版商
  48. Martinez L, Black K, Webb B, Bell A, Baygani S, Mier T, et al. Components of Endocannabinoid Signaling System Are Expressed in the Perinatal Mouse Cerebellum and Required for Its Normal Development. Eneuro. 2020;7: pubmed 出版商
  49. Barry D, Liu X, Liu B, Liu X, Gao F, Zeng X, et al. Exploration of sensory and spinal neurons expressing gastrin-releasing peptide in itch and pain related behaviors. Nat Commun. 2020;11:1397 pubmed 出版商
  50. Zhao J, He L, Yin L. lncRNA NEAT1 Binds to MiR-339-5p to Increase HOXA1 and Alleviate Ischemic Brain Damage in Neonatal Mice. Mol Ther Nucleic Acids. 2020;20:117-127 pubmed 出版商
  51. Zhong X, Harris G, Smirnova L, Zufferey V, Sá R, Baldino Russo F, et al. Antidepressant Paroxetine Exerts Developmental Neurotoxicity in an iPSC-Derived 3D Human Brain Model. Front Cell Neurosci. 2020;14:25 pubmed 出版商
  52. Lyu C, Lyu G, Mulder J, Martinez A, Shi T. G Protein-Gated Inwardly Rectifying Potassium Channel Subunit 3 is Upregulated in Rat DRGs and Spinal Cord After Peripheral Nerve Injury. J Pain Res. 2020;13:419-429 pubmed 出版商
  53. Kucharava K, Brand Y, Albano G, Sekulic Jablanovic M, Glutz A, Xian X, et al. Sodium-hydrogen exchanger 6 (NHE6) deficiency leads to hearing loss, via reduced endosomal signalling through the BDNF/Trk pathway. Sci Rep. 2020;10:3609 pubmed 出版商
  54. Guo L, Davis B, Ravindran N, Galvão J, Kapoor N, Haamedi N, et al. Topical recombinant human Nerve growth factor (rh-NGF) is neuroprotective to retinal ganglion cells by targeting secondary degeneration. Sci Rep. 2020;10:3375 pubmed 出版商
  55. You H, Shang W, Min X, Weinreb J, Li Q, Leapman M, et al. Sight and switch off: Nerve density visualization for interventions targeting nerves in prostate cancer. Sci Adv. 2020;6:eaax6040 pubmed 出版商
  56. Serrano G, Shprecher D, Callan M, Cutler B, Glass M, Zhang N, et al. Cardiac sympathetic denervation and synucleinopathy in Alzheimer's disease with brain Lewy body disease. Brain Commun. 2020;2:fcaa004 pubmed 出版商
  57. Shibahara T, Ago T, Nakamura K, Tachibana M, Yoshikawa Y, Komori M, et al. Pericyte-Mediated Tissue Repair through PDGFRβ Promotes Peri-Infarct Astrogliosis, Oligodendrogenesis, and Functional Recovery after Acute Ischemic Stroke. Eneuro. 2020;7: pubmed 出版商
  58. Li R, Li D, Wu C, Ye L, Wu Y, Yuan Y, et al. Nerve growth factor activates autophagy in Schwann cells to enhance myelin debris clearance and to expedite nerve regeneration. Theranostics. 2020;10:1649-1677 pubmed 出版商
  59. Torres Mejía E, Trumbach D, Kleeberger C, Dornseifer U, Orschmann T, Bäcker T, et al. Sox2 controls Schwann cell self-organization through fibronectin fibrillogenesis. Sci Rep. 2020;10:1984 pubmed 出版商
  60. Lyu C, Lyu G, Mulder J, Uhlen M, Cai X, Hokfelt T, et al. Expression and regulation of FRMD6 in mouse DRG neurons and spinal cord after nerve injury. Sci Rep. 2020;10:1880 pubmed 出版商
  61. Chen W, Guo C, Jia Z, Wang J, Xia M, Li C, et al. Inhibition of Mitochondrial ROS by MitoQ Alleviates White Matter Injury and Improves Outcomes after Intracerebral Haemorrhage in Mice. Oxid Med Cell Longev. 2020;2020:8285065 pubmed 出版商
  62. Nickolls A, Lee M, Espinoza D, Szczot M, Lam R, Wang Q, et al. Transcriptional Programming of Human Mechanosensory Neuron Subtypes from Pluripotent Stem Cells. Cell Rep. 2020;30:932-946.e7 pubmed 出版商
  63. Werkman I, Sikkema A, Versluijs J, Qin J, de Boer P, Baron W. TLR3 agonists induce fibronectin aggregation by activated astrocytes: a role of pro-inflammatory cytokines and fibronectin splice variants. Sci Rep. 2020;10:532 pubmed 出版商
  64. Yang W, Chen Z, Ma X, Ouyang X, Fang J, Wei H. Co-overexpression of VEGF and GDNF in adipose-derived stem cells optimizes therapeutic effect in neurogenic erectile dysfunction model. Cell Prolif. 2020;53:e12756 pubmed 出版商
  65. Yu X, Liu H, Hamel K, Morvan M, Yu S, Leff J, et al. Dorsal root ganglion macrophages contribute to both the initiation and persistence of neuropathic pain. Nat Commun. 2020;11:264 pubmed 出版商
  66. Gate D, Saligrama N, Leventhal O, Yang A, Unger M, Middeldorp J, et al. Clonally expanded CD8 T cells patrol the cerebrospinal fluid in Alzheimer's disease. Nature. 2020;577:399-404 pubmed 出版商
  67. Zhang L, Pan J, Mamtilahun M, Zhu Y, Wang L, Venkatesh A, et al. Microglia exacerbate white matter injury via complement C3/C3aR pathway after hypoperfusion. Theranostics. 2020;10:74-90 pubmed 出版商
  68. Sperry Z, Graham R, Peck Dimit N, Lempka S, Bruns T. Spatial models of cell distribution in human lumbar dorsal root ganglia. J Comp Neurol. 2020;528:1644-1659 pubmed 出版商
  69. Cserép C, Pósfai B, Lénárt N, Fekete R, László Z, Lele Z, et al. Microglia monitor and protect neuronal function through specialized somatic purinergic junctions. Science. 2020;367:528-537 pubmed 出版商
  70. Yu T, Zhao C, Hou S, Zhou W, Wang B, Chen Y. Exosomes secreted from miRNA-29b-modified mesenchymal stem cells repaired spinal cord injury in rats. Braz J Med Biol Res. 2019;52:e8735 pubmed 出版商
  71. Ostroff L, Santini E, SEARS R, Deane Z, Kanadia R, LeDoux J, et al. Axon TRAP reveals learning-associated alterations in cortical axonal mRNAs in the lateral amgydala. elife. 2019;8: pubmed 出版商
  72. Stefanov A, Novelli E, Strettoi E. Inner retinal preservation in the photoinducible I307N rhodopsin mutant mouse, a model of autosomal dominant retinitis pigmentosa. J Comp Neurol. 2020;528:1502-1522 pubmed 出版商
  73. Yang C, Wang X, Wang J, Wang X, Chen W, Lu N, et al. Rewiring Neuronal Glycerolipid Metabolism Determines the Extent of Axon Regeneration. Neuron. 2020;105:276-292.e5 pubmed 出版商
  74. Reinhard K, Li C, Do Q, Burke E, Heynderickx S, Farrow K. A projection specific logic to sampling visual inputs in mouse superior colliculus. elife. 2019;8: pubmed 出版商
  75. Smith K, Browne T, Davis O, Coyle A, Boyle K, Watanabe M, et al. Calretinin positive neurons form an excitatory amplifier network in the spinal cord dorsal horn. elife. 2019;8: pubmed 出版商
  76. Jiang D, Burger C, Casasent A, Albrecht N, Li F, Samuel M. Spatiotemporal gene expression patterns reveal molecular relatedness between retinal laminae. J Comp Neurol. 2019;: pubmed 出版商
  77. Guo H, Li Y, Shen L, Wang T, Jia X, Liu L, et al. Disruptive variants of CSDE1 associate with autism and interfere with neuronal development and synaptic transmission. Sci Adv. 2019;5:eaax2166 pubmed 出版商
  78. Dierich M, Hartmann S, Dietrich N, Moeser P, Brede F, Johnson Chacko L, et al. β-Secretase BACE1 Is Required for Normal Cochlear Function. J Neurosci. 2019;39:9013-9027 pubmed 出版商
  79. Marion C, McDaniel D, Armstrong R. Sarm1 deletion reduces axon damage, demyelination, and white matter atrophy after experimental traumatic brain injury. Exp Neurol. 2019;321:113040 pubmed 出版商
  80. Abdo H, Calvo Enrique L, Lopez J, Song J, Zhang M, Usoskin D, et al. Specialized cutaneous Schwann cells initiate pain sensation. Science. 2019;365:695-699 pubmed 出版商
  81. Bernardo Colón A, Vest V, Cooper M, Naguib S, Calkins D, Rex T. Progression and Pathology of Traumatic Optic Neuropathy From Repeated Primary Blast Exposure. Front Neurosci. 2019;13:719 pubmed 出版商
  82. Pan H, Fatima M, Li A, Lee H, Cai W, Horwitz L, et al. Identification of a Spinal Circuit for Mechanical and Persistent Spontaneous Itch. Neuron. 2019;103:1135-1149.e6 pubmed 出版商
  83. Insolia V, Priori E, Gasperini C, Coppa F, Cocchia M, Iervasi E, et al. Prolidase enzyme is required for extracellular matrix integrity and impacts on postnatal cerebellar cortex development. J Comp Neurol. 2020;528:61-80 pubmed 出版商
  84. Zhang Q, Zhu W, Xu F, Dai X, Shi L, Cai W, et al. The interleukin-4/PPARγ signaling axis promotes oligodendrocyte differentiation and remyelination after brain injury. PLoS Biol. 2019;17:e3000330 pubmed 出版商
  85. Octeau J, Gangwani M, Allam S, Tran D, Huang S, Hoang Trong T, et al. Transient, Consequential Increases in Extracellular Potassium Ions Accompany Channelrhodopsin2 Excitation. Cell Rep. 2019;27:2249-2261.e7 pubmed 出版商
  86. Saraf M, Balaram P, Pifferi F, Kennedy H, Kaas J. The sensory thalamus and visual midbrain in mouse lemurs. J Comp Neurol. 2019;527:2599-2611 pubmed 出版商
  87. Chang H, Di T, Wang Y, Zeng X, Li G, Wan Q, et al. Seipin deletion in mice enhances phosphorylation and aggregation of tau protein through reduced neuronal PPARγ and insulin resistance. Neurobiol Dis. 2019;127:350-361 pubmed 出版商
  88. Giandomenico S, Mierau S, Gibbons G, Wenger L, Masullo L, Sit T, et al. Cerebral organoids at the air-liquid interface generate diverse nerve tracts with functional output. Nat Neurosci. 2019;22:669-679 pubmed 出版商
  89. Halabi E, Pinotsi D, Rivera Fuentes P. Photoregulated fluxional fluorophores for live-cell super-resolution microscopy with no apparent photobleaching. Nat Commun. 2019;10:1232 pubmed 出版商
  90. Aprile D, Fruscione F, Baldassari S, Fadda M, Ferrante D, Falace A, et al. TBC1D24 regulates axonal outgrowth and membrane trafficking at the growth cone in rodent and human neurons. Cell Death Differ. 2019;: pubmed 出版商
  91. Zhu C, Li B, Frontzek K, Liu Y, Aguzzi A. SARM1 deficiency up-regulates XAF1, promotes neuronal apoptosis, and accelerates prion disease. J Exp Med. 2019;216:743-756 pubmed 出版商
  92. McDermott L, Weir G, Themistocleous A, Segerdahl A, Blesneac I, Baskozos G, et al. Defining the Functional Role of NaV1.7 in Human Nociception. Neuron. 2019;101:905-919.e8 pubmed 出版商
  93. Jenkins B, Fontecilla N, Lu C, Fuchs E, Lumpkin E. The cellular basis of mechanosensory Merkel-cell innervation during development. elife. 2019;8: pubmed 出版商
  94. Koike T, Tanaka S, Hirahara Y, Oe S, Kurokawa K, Maeda M, et al. Morphological characteristics of p75 neurotrophin receptor-positive cells define a new type of glial cell in the rat dorsal root ganglia. J Comp Neurol. 2019;527:2047-2060 pubmed 出版商
  95. Erwig M, Patzig J, Steyer A, Dibaj P, Heilmann M, Heilmann I, et al. Anillin facilitates septin assembly to prevent pathological outfoldings of central nervous system myelin. elife. 2019;8: pubmed 出版商
  96. Urata S, Iida T, Yamamoto M, Mizushima Y, Fujimoto C, Matsumoto Y, et al. Cellular cartography of the organ of Corti based on optical tissue clearing and machine learning. elife. 2019;8: pubmed 出版商
  97. Cheng W, Martens K, Bashir A, Cheung H, Stukas S, Gibbs E, et al. CHIMERA repetitive mild traumatic brain injury induces chronic behavioural and neuropathological phenotypes in wild-type and APP/PS1 mice. Alzheimers Res Ther. 2019;11:6 pubmed 出版商
  98. Jassim A, Inman D. Evidence of Hypoxic Glial Cells in a Model of Ocular Hypertension. Invest Ophthalmol Vis Sci. 2019;60:1-15 pubmed 出版商
  99. Ciolli Mattioli C, Rom A, Franke V, Imami K, Arrey G, Terne M, et al. Alternative 3' UTRs direct localization of functionally diverse protein isoforms in neuronal compartments. Nucleic Acids Res. 2019;47:2560-2573 pubmed 出版商
  100. Goulao M, Ghosh B, Urban M, Sahu M, Mercogliano C, Charsar B, et al. Astrocyte progenitor transplantation promotes regeneration of bulbospinal respiratory axons, recovery of diaphragm function, and a reduced macrophage response following cervical spinal cord injury. Glia. 2019;67:452-466 pubmed 出版商
  101. Zhao Y, Sun X, Qi X. Inhibition of Drp1 hyperactivation reduces neuropathology and behavioral deficits in zQ175 knock-in mouse model of Huntington's disease. Biochem Biophys Res Commun. 2018;507:319-323 pubmed 出版商
  102. Saifetiarova J, Bhat M. Ablation of cytoskeletal scaffolding proteins, Band 4.1B and Whirlin, leads to cerebellar purkinje axon pathology and motor dysfunction. J Neurosci Res. 2019;97:313-331 pubmed 出版商
  103. Kubo A, Misonou H, Matsuyama M, Nomori A, Wada Kakuda S, Takashima A, et al. Distribution of endogenous normal tau in the mouse brain. J Comp Neurol. 2019;527:985-998 pubmed 出版商
  104. Hu M, Zhang W, Cao H, Zhang Y. Expression pattern of type 3 adenylyl cyclase in rodent dorsal root ganglion and its primary afferent terminals. Neurosci Lett. 2019;692:16-22 pubmed 出版商
  105. Giera S, Luo R, Ying Y, Ackerman S, Jeong S, Stoveken H, et al. Microglial transglutaminase-2 drives myelination and myelin repair via GPR56/ADGRG1 in oligodendrocyte precursor cells. elife. 2018;7: pubmed 出版商
  106. Zhao X, Peng Z, Long L, Chen N, Zheng H, Deng D, et al. Lentiviral vector delivery of short hairpin RNA to NgR1 promotes nerve regeneration and locomotor recovery in injured rat spinal cord. Sci Rep. 2018;8:5447 pubmed 出版商
  107. Saraf M, Balaram P, Pifferi F, Gămănuţ R, Kennedy H, Kaas J. Architectonic features and relative locations of primary sensory and related areas of neocortex in mouse lemurs. J Comp Neurol. 2019;527:625-639 pubmed 出版商
  108. Muñoz S, Li H, Ruberu K, Chu Q, Saghatelian A, Ooi L, et al. The serine protease HtrA1 contributes to the formation of an extracellular 25-kDa apolipoprotein E fragment that stimulates neuritogenesis. J Biol Chem. 2018;293:4071-4084 pubmed 出版商
  109. Alshawaf A, Viventi S, Qiu W, D Abaco G, Nayagam B, Erlichster M, et al. Phenotypic and Functional Characterization of Peripheral Sensory Neurons derived from Human Embryonic Stem Cells. Sci Rep. 2018;8:603 pubmed 出版商
  110. Jager S, Pallesen L, Vaegter C. Isolation of satellite glial cells for high-quality RNA purification. J Neurosci Methods. 2018;297:1-8 pubmed 出版商
  111. Tseng K, Danilova T, Domanskyi A, Saarma M, Lindahl M, Airavaara M. MANF Is Essential for Neurite Extension and Neuronal Migration in the Developing Cortex. Eneuro. 2017;4: pubmed 出版商
  112. Chen S, Sun J, Zhao G, Guo A, Chen Y, Fu R, et al. Liraglutide Improves Water Maze Learning and Memory Performance While Reduces Hyperphosphorylation of Tau and Neurofilaments in APP/PS1/Tau Triple Transgenic Mice. Neurochem Res. 2017;42:2326-2335 pubmed 出版商
  113. Huang T, Song J, Zheng F, Pang H, Zhao Y, Gu H, et al. Protection of FK506 against neuronal apoptosis and axonal injury following experimental diffuse axonal injury. Mol Med Rep. 2017;15:3001-3010 pubmed 出版商
  114. Savier E, Eglen S, Bathélémy A, Perraut M, Pfrieger F, Lemke G, et al. A molecular mechanism for the topographic alignment of convergent neural maps. elife. 2017;6: pubmed 出版商
  115. Han Q, Lin Q, Huang P, Chen M, Hu X, Fu H, et al. Microglia-derived IL-1? contributes to axon development disorders and synaptic deficit through p38-MAPK signal pathway in septic neonatal rats. J Neuroinflammation. 2017;14:52 pubmed 出版商
  116. Medina Rodríguez E, Bribian A, Boyd A, Palomo V, Pastor J, Lagares A, et al. Promoting in vivo remyelination with small molecules: a neuroreparative pharmacological treatment for Multiple Sclerosis. Sci Rep. 2017;7:43545 pubmed 出版商
  117. Soares D, Goldrick I, Lemon R, Kraskov A, Greensmith L, Kalmar B. Expression of Kv3.1b potassium channel is widespread in macaque motor cortex pyramidal cells: A histological comparison between rat and macaque. J Comp Neurol. 2017;525:2164-2174 pubmed 出版商
  118. Furukawa S, Nagaike M, Ozaki K. Databases for technical aspects of immunohistochemistry. J Toxicol Pathol. 2017;30:79-107 pubmed 出版商
  119. Coimbra J, Bertelsen M, Manger P. Retinal ganglion cell topography and spatial resolving power in the river hippopotamus (Hippopotamus amphibius). J Comp Neurol. 2017;525:2499-2513 pubmed 出版商
  120. Lim E, Nakanishi S, Hoghooghi V, Eaton S, Palmer A, Frederick A, et al. AlphaB-crystallin regulates remyelination after peripheral nerve injury. Proc Natl Acad Sci U S A. 2017;114:E1707-E1716 pubmed 出版商
  121. Mindos T, Dun X, North K, Doddrell R, Schulz A, Edwards P, et al. Merlin controls the repair capacity of Schwann cells after injury by regulating Hippo/YAP activity. J Cell Biol. 2017;216:495-510 pubmed 出版商
  122. Maggio D, Singh A, Iorgulescu J, Bleicher D, Ghosh M, Lopez M, et al. Identifying the Long-Term Role of Inducible Nitric Oxide Synthase after Contusive Spinal Cord Injury Using a Transgenic Mouse Model. Int J Mol Sci. 2017;18: pubmed 出版商
  123. Grove M, Kim H, Santerre M, Krupka A, Han S, Zhai J, et al. YAP/TAZ initiate and maintain Schwann cell myelination. elife. 2017;6: pubmed 出版商
  124. Rubovitch V, Zilberstein Y, Chapman J, Schreiber S, Pick C. Restoring GM1 ganglioside expression ameliorates axonal outgrowth inhibition and cognitive impairments induced by blast traumatic brain injury. Sci Rep. 2017;7:41269 pubmed 出版商
  125. Fan D, Ren H, Danzeng D, Li H, Wang P. Influence of high-altitude hypoxic environments on the survival of cochlear hair cells and spiral ganglion neurons in rats. Biomed Rep. 2016;5:681-685 pubmed 出版商
  126. Song L, Yu A, Murray K, Cortopassi G. Bipolar cell reduction precedes retinal ganglion neuron loss in a complex 1 knockout mouse model. Brain Res. 2017;1657:232-244 pubmed 出版商
  127. van der Zee J, Gijselinck I, Van Mossevelde S, Perrone F, Dillen L, Heeman B, et al. TBK1 Mutation Spectrum in an Extended European Patient Cohort with Frontotemporal Dementia and Amyotrophic Lateral Sclerosis. Hum Mutat. 2017;38:297-309 pubmed 出版商
  128. Szczyrba J, Niesen A, Wagner M, Wandernoth P, Aumüller G, Wennemuth G. Neuroendocrine Cells of the Prostate Derive from the Neural Crest. J Biol Chem. 2017;292:2021-2031 pubmed 出版商
  129. Nonomura K, Woo S, Chang R, Gillich A, Qiu Z, Francisco A, et al. Piezo2 senses airway stretch and mediates lung inflation-induced apnoea. Nature. 2017;541:176-181 pubmed 出版商
  130. Sousa Valente J, Varga A, Torres Perez J, Jenes A, Wahba J, Mackie K, et al. Inflammation of peripheral tissues and injury to peripheral nerves induce differing effects in the expression of the calcium-sensitive N-arachydonoylethanolamine-synthesizing enzyme and related molecules in rat primary sensory neurons. J Comp Neurol. 2017;525:1778-1796 pubmed 出版商
  131. Palmero E, Palmero S, Murrell W. Brain tissue banking for stem cells for our future. Sci Rep. 2016;6:39394 pubmed 出版商
  132. Sellgren C, Sheridan S, Gracias J, Xuan D, Fu T, Perlis R. Patient-specific models of microglia-mediated engulfment of synapses and neural progenitors. Mol Psychiatry. 2017;22:170-177 pubmed 出版商
  133. Kim J, Ko I, Atala A, Yoo J. Progressive Muscle Cell Delivery as a Solution for Volumetric Muscle Defect Repair. Sci Rep. 2016;6:38754 pubmed 出版商
  134. Alonso González P, Cabo R, San José I, Gago A, Suazo I, García Suárez O, et al. Human Digital Meissner Corpuscles Display Immunoreactivity for the Multifunctional Ion Channels Trpc6 and Trpv4. Anat Rec (Hoboken). 2017;300:1022-1031 pubmed 出版商
  135. Neuhaus C, Lang Roth R, Zimmermann U, Heller R, Eisenberger T, Weikert M, et al. Extension of the clinical and molecular phenotype of DIAPH1-associated autosomal dominant hearing loss (DFNA1). Clin Genet. 2017;91:892-901 pubmed 出版商
  136. Coimbra J, Manger P. Retinal ganglion cell topography and spatial resolving power in the white rhinoceros (Ceratotherium simum). J Comp Neurol. 2017;525:2484-2498 pubmed 出版商
  137. Benkafadar N, Menardo J, Bourien J, Nouvian R, François F, Decaudin D, et al. Reversible p53 inhibition prevents cisplatin ototoxicity without blocking chemotherapeutic efficacy. EMBO Mol Med. 2017;9:7-26 pubmed 出版商
  138. Kilic O, Pamies D, Lavell E, Schiapparelli P, Feng Y, Hartung T, et al. Brain-on-a-chip model enables analysis of human neuronal differentiation and chemotaxis. Lab Chip. 2016;16:4152-4162 pubmed
  139. Khoutorsky A, Sorge R, Prager Khoutorsky M, Pawlowski S, Longo G, Jafarnejad S, et al. eIF2? phosphorylation controls thermal nociception. Proc Natl Acad Sci U S A. 2016;113:11949-11954 pubmed
  140. Barik A, Li L, Sathyamurthy A, Xiong W, Mei L. Schwann Cells in Neuromuscular Junction Formation and Maintenance. J Neurosci. 2016;36:9770-81 pubmed 出版商
  141. Hu G, Huang K, Hu Y, Du G, Xue Z, Zhu X, et al. Single-cell RNA-seq reveals distinct injury responses in different types of DRG sensory neurons. Sci Rep. 2016;6:31851 pubmed 出版商
  142. Patzig J, Erwig M, Tenzer S, Kusch K, Dibaj P, Mobius W, et al. Septin/anillin filaments scaffold central nervous system myelin to accelerate nerve conduction. elife. 2016;5: pubmed 出版商
  143. Visavadiya N, Springer J. Altered Cerebellar Circuitry following Thoracic Spinal Cord Injury in Adult Rats. Neural Plast. 2016;2016:8181393 pubmed 出版商
  144. Saggu R, Schumacher T, Gerich F, Rakers C, Tai K, Delekate A, et al. Astroglial NF-kB contributes to white matter damage and cognitive impairment in a mouse model of vascular dementia. Acta Neuropathol Commun. 2016;4:76 pubmed 出版商
  145. Nishida T, Tsubota M, Kawaishi Y, Yamanishi H, Kamitani N, Sekiguchi F, et al. Involvement of high mobility group box 1 in the development and maintenance of chemotherapy-induced peripheral neuropathy in rats. Toxicology. 2016;365:48-58 pubmed 出版商
  146. Ku T, Swaney J, Park J, Albanese A, Murray E, Cho J, et al. Multiplexed and scalable super-resolution imaging of three-dimensional protein localization in size-adjustable tissues. Nat Biotechnol. 2016;34:973-81 pubmed 出版商
  147. Li T, Braunstein K, Zhang J, Lau A, Sibener L, Deeble C, et al. The neuritic plaque facilitates pathological conversion of tau in an Alzheimer's disease mouse model. Nat Commun. 2016;7:12082 pubmed 出版商
  148. Mavlyutov T, Duellman T, Kim H, Epstein M, Leese C, Davletov B, et al. Sigma-1 receptor expression in the dorsal root ganglion: Reexamination using a highly specific antibody. Neuroscience. 2016;331:148-57 pubmed 出版商
  149. Barzan R, Pfeiffer F, Kukley M. N- and L-Type Voltage-Gated Calcium Channels Mediate Fast Calcium Transients in Axonal Shafts of Mouse Peripheral Nerve. Front Cell Neurosci. 2016;10:135 pubmed 出版商
  150. Spitzbarth I, Lempp C, Kegler K, Ulrich R, Kalkuhl A, Deschl U, et al. Immunohistochemical and transcriptome analyses indicate complex breakdown of axonal transport mechanisms in canine distemper leukoencephalitis. Brain Behav. 2016;6:e00472 pubmed 出版商
  151. Schulz A, Büttner R, Hagel C, Baader S, Kluwe L, Salamon J, et al. The importance of nerve microenvironment for schwannoma development. Acta Neuropathol. 2016;132:289-307 pubmed 出版商
  152. Saito Y, Miranda Rottmann S, Ruggiu M, Park C, Fak J, Zhong R, et al. NOVA2-mediated RNA regulation is required for axonal pathfinding during development. elife. 2016;5: pubmed 出版商
  153. Marignier R, Ruiz A, Cavagna S, Nicole A, Watrin C, Touret M, et al. Neuromyelitis optica study model based on chronic infusion of autoantibodies in rat cerebrospinal fluid. J Neuroinflammation. 2016;13:111 pubmed 出版商
  154. Allodi I, Comley L, Nichterwitz S, Nizzardo M, Simone C, Benitez J, et al. Differential neuronal vulnerability identifies IGF-2 as a protective factor in ALS. Sci Rep. 2016;6:25960 pubmed 出版商
  155. Finnie J, Blumbergs P, Manavis J. Temporal Sequence of Autolysis in the Cerebellar Cortex of the Mouse. J Comp Pathol. 2016;154:323-8 pubmed 出版商
  156. Liput D, Lu V, Davis M, Puhl H, Ikeda S. Rem2, a member of the RGK family of small GTPases, is enriched in nuclei of the basal ganglia. Sci Rep. 2016;6:25137 pubmed 出版商
  157. Bahia El Idrissi N, Bosch S, Ramaglia V, Aronica E, Baas F, Troost D. Complement activation at the motor end-plates in amyotrophic lateral sclerosis. J Neuroinflammation. 2016;13:72 pubmed 出版商
  158. Lippoldt E, Ongun S, Kusaka G, McKemy D. Inflammatory and neuropathic cold allodynia are selectively mediated by the neurotrophic factor receptor GFR?3. Proc Natl Acad Sci U S A. 2016;113:4506-11 pubmed 出版商
  159. Tkachenko L, Zykin P, Nasyrov R, Krasnoshchekova E. Distinctive Features of the Human Marginal Zone and Cajal-Retzius Cells: Comparison of Morphological and Immunocytochemical Features at Midgestation. Front Neuroanat. 2016;10:26 pubmed 出版商
  160. Du C, Duan Y, Wei W, Cai Y, Chai H, Lv J, et al. Kappa opioid receptor activation alleviates experimental autoimmune encephalomyelitis and promotes oligodendrocyte-mediated remyelination. Nat Commun. 2016;7:11120 pubmed 出版商
  161. Hanna A, Thompson D, Hellenbrand D, Lee J, Madura C, Wesley M, et al. Sustained release of neurotrophin-3 via calcium phosphate-coated sutures promotes axonal regeneration after spinal cord injury. J Neurosci Res. 2016;94:645-52 pubmed 出版商
  162. Boggio E, Pancrazi L, Gennaro M, Lo Rizzo C, Mari F, Meloni I, et al. Visual impairment in FOXG1-mutated individuals and mice. Neuroscience. 2016;324:496-508 pubmed 出版商
  163. González Burguera I, Ricobaraza A, Aretxabala X, Barrondo S, Garcia del Caño G, López de Jesús M, et al. Highly efficient generation of glutamatergic/cholinergic NT2-derived postmitotic human neurons by short-term treatment with the nucleoside analogue cytosine ?-D-arabinofuranoside. Stem Cell Res. 2016;16:541-51 pubmed 出版商
  164. Bonini S, Mastinu A, Maccarinelli G, Mitola S, Premoli M, La Rosa L, et al. Cortical Structure Alterations and Social Behavior Impairment in p50-Deficient Mice. Cereb Cortex. 2016;26:2832-49 pubmed 出版商
  165. Makani V, Jang Y, Christopher K, Judy W, Eckstein J, Hensley K, et al. BBB-Permeable, Neuroprotective, and Neurotrophic Polysaccharide, Midi-GAGR. PLoS ONE. 2016;11:e0149715 pubmed 出版商
  166. Ito M, Nakamura K, Mori F, Miki Y, Tanji K, Wakabayashi K. Novel eosinophilic neuronal cytoplasmic inclusions in the external cuneate nucleus of humans. Neuropathology. 2016;36:441-447 pubmed 出版商
  167. Fong S, Lin H, Wu M, Chen C, Huang Y. CPEB3 Deficiency Elevates TRPV1 Expression in Dorsal Root Ganglia Neurons to Potentiate Thermosensation. PLoS ONE. 2016;11:e0148491 pubmed 出版商
  168. Cabral C, Tuladhar S, Dietrich H, Nguyen E, MacDonald W, Trivedi T, et al. Neurons are the Primary Target Cell for the Brain-Tropic Intracellular Parasite Toxoplasma gondii. PLoS Pathog. 2016;12:e1005447 pubmed 出版商
  169. Buniello A, Ingham N, Lewis M, Huma A, Martinez Vega R, Varela Nieto I, et al. Wbp2 is required for normal glutamatergic synapses in the cochlea and is crucial for hearing. EMBO Mol Med. 2016;8:191-207 pubmed 出版商
  170. Delcambre G, Liu J, Herrington J, Vallario K, Long M. Immunohistochemistry for the detection of neural and inflammatory cells in equine brain tissue. Peerj. 2016;4:e1601 pubmed 出版商
  171. de Souza C, Nivison Smith L, Christie D, Polkinghorne P, McGhee C, Kalloniatis M, et al. Macromolecular markers in normal human retina and applications to human retinal disease. Exp Eye Res. 2016;150:135-48 pubmed 出版商
  172. Vacca V, Marinelli S, Pieroni L, Urbani A, Luvisetto S, Pavone F. 17beta-estradiol counteracts neuropathic pain: a behavioural, immunohistochemical, and proteomic investigation on sex-related differences in mice. Sci Rep. 2016;6:18980 pubmed 出版商
  173. Schütze S, Orozco I, Jentsch T. KCNQ Potassium Channels Modulate Sensitivity of Skin Down-hair (D-hair) Mechanoreceptors. J Biol Chem. 2016;291:5566-75 pubmed 出版商
  174. Janmaat C, de Rooij K, Locher H, de Groot S, de Groot J, Frijns J, et al. Human Dermal Fibroblasts Demonstrate Positive Immunostaining for Neuron- and Glia- Specific Proteins. PLoS ONE. 2015;10:e0145235 pubmed 出版商
  175. Hristova M, Rocha Ferreira E, Fontana X, Thei L, Buckle R, Christou M, et al. Inhibition of Signal Transducer and Activator of Transcription 3 (STAT3) reduces neonatal hypoxic-ischaemic brain damage. J Neurochem. 2016;136:981-94 pubmed 出版商
  176. Traka M, Podojil J, McCarthy D, Miller S, Popko B. Oligodendrocyte death results in immune-mediated CNS demyelination. Nat Neurosci. 2016;19:65-74 pubmed 出版商
  177. Eckharter C, Junker N, Winter L, Fischer I, Fogli B, Kistner S, et al. Schwann Cell Expressed Nogo-B Modulates Axonal Branching of Adult Sensory Neurons Through the Nogo-B Receptor NgBR. Front Cell Neurosci. 2015;9:454 pubmed 出版商
  178. Wagener R, Witte M, Guy J, Mingo Moreno N, Kügler S, Staiger J. Thalamocortical Connections Drive Intracortical Activation of Functional Columns in the Mislaminated Reeler Somatosensory Cortex. Cereb Cortex. 2016;26:820-37 pubmed 出版商
  179. Li Y, Adomat H, Guns E, Hojabrpour P, Duronio V, Curran T, et al. Identification of a Hematopoietic Cell Dedifferentiation-Inducing Factor. J Cell Physiol. 2016;231:1350-63 pubmed 出版商
  180. Verleye M, Buttigieg D, Steinschneider R. Neuroprotective activity of stiripentol with a possible involvement of voltage-dependent calcium and sodium channels. J Neurosci Res. 2016;94:179-89 pubmed 出版商
  181. Nishimoto S, Tanaka H, Okamoto M, Okada K, Murase T, Yoshikawa H. Methylcobalamin promotes the differentiation of Schwann cells and remyelination in lysophosphatidylcholine-induced demyelination of the rat sciatic nerve. Front Cell Neurosci. 2015;9:298 pubmed 出版商
  182. Angliker N, Burri M, Zaichuk M, Fritschy J, Rüegg M. mTORC1 and mTORC2 have largely distinct functions in Purkinje cells. Eur J Neurosci. 2015;42:2595-612 pubmed 出版商
  183. Kim Y, Kim T, McKemy D, Bae Y. Expression of vesicular glutamate transporters in transient receptor potential melastatin 8 (TRPM8)-positive dental afferents in the mouse. Neuroscience. 2015;303:378-88 pubmed 出版商
  184. Rojas F, Gonzalez D, Cortes N, Ampuero E, Hernández D, Fritz E, et al. Reactive oxygen species trigger motoneuron death in non-cell-autonomous models of ALS through activation of c-Abl signaling. Front Cell Neurosci. 2015;9:203 pubmed 出版商
  185. Inoue K, Fujimura H, Ueda K, Matsumura T, Itoh K, Sakoda S. An autopsy case of neuronal intermediate filament inclusion disease with regard to immunophenotypic and topographical analysis of the neuronal inclusions. Neuropathology. 2015;35:545-52 pubmed 出版商
  186. Shigematsu N, Ueta Y, Mohamed A, Hatada S, Fukuda T, Kubota Y, et al. Selective Thalamic Innervation of Rat Frontal Cortical Neurons. Cereb Cortex. 2016;26:2689-2704 pubmed 出版商
  187. Heinen A, Beyer F, Tzekova N, Hartung H, Küry P. Fingolimod induces the transition to a nerve regeneration promoting Schwann cell phenotype. Exp Neurol. 2015;271:25-35 pubmed 出版商
  188. Ríos C, Orozco Suarez S, Salgado Ceballos H, Mendez Armenta M, Nava Ruiz C, Santander I, et al. Anti-Apoptotic Effects of Dapsone After Spinal Cord Injury in Rats. Neurochem Res. 2015;40:1243-51 pubmed 出版商
  189. Vicuña L, Strochlic D, Latremoliere A, Bali K, Simonetti M, Husainie D, et al. The serine protease inhibitor SerpinA3N attenuates neuropathic pain by inhibiting T cell-derived leukocyte elastase. Nat Med. 2015;21:518-23 pubmed 出版商
  190. Zhang R, Huang M, Cao Z, Qi J, Qiu Z, Chiang L. MeCP2 plays an analgesic role in pain transmission through regulating CREB / miR-132 pathway. Mol Pain. 2015;11:19 pubmed 出版商
  191. Uemura N, Koike M, Ansai S, Kinoshita M, Ishikawa Fujiwara T, Matsui H, et al. Viable neuronopathic Gaucher disease model in Medaka (Oryzias latipes) displays axonal accumulation of alpha-synuclein. PLoS Genet. 2015;11:e1005065 pubmed 出版商
  192. Collins J, King A, Woodhouse A, Kirkcaldie M, Vickers J. The effect of focal brain injury on beta-amyloid plaque deposition, inflammation and synapses in the APP/PS1 mouse model of Alzheimer's disease. Exp Neurol. 2015;267:219-29 pubmed 出版商
  193. Chavez A, Scheiman J, Vora S, Pruitt B, Tuttle M, P R Iyer E, et al. Highly efficient Cas9-mediated transcriptional programming. Nat Methods. 2015;12:326-8 pubmed 出版商
  194. Thomas A, Palma J, Shea L. Sponge-mediated lentivirus delivery to acute and chronic spinal cord injuries. J Control Release. 2015;204:1-10 pubmed 出版商
  195. Bennett R, Brody D. Array tomography for the detection of non-dilated, injured axons in traumatic brain injury. J Neurosci Methods. 2015;245:25-36 pubmed 出版商
  196. Blasi F, Whalen M, Ayata C. Lasting pure-motor deficits after focal posterior internal capsule white-matter infarcts in rats. J Cereb Blood Flow Metab. 2015;35:977-84 pubmed 出版商
  197. Lee S, Meyer A, Schubert T, Hüser L, Dedek K, Haverkamp S. Morphology and connectivity of the small bistratified A8 amacrine cell in the mouse retina. J Comp Neurol. 2015;523:1529-47 pubmed 出版商
  198. Chucair Elliott A, Zheng M, Carr D. Degeneration and regeneration of corneal nerves in response to HSV-1 infection. Invest Ophthalmol Vis Sci. 2015;56:1097-107 pubmed 出版商
  199. Isensee J, Wenzel C, Buschow R, Weissmann R, Kuss A, Hucho T. Subgroup-elimination transcriptomics identifies signaling proteins that define subclasses of TRPV1-positive neurons and a novel paracrine circuit. PLoS ONE. 2014;9:e115731 pubmed 出版商
  200. Hollis E, Ishiko N, Tolentino K, Doherty E, Rodríguez M, Calcutt N, et al. A novel and robust conditioning lesion induced by ethidium bromide. Exp Neurol. 2015;265:30-9 pubmed 出版商
  201. Han S, Wang B, Jin W, Xiao Z, Li X, Ding W, et al. The linear-ordered collagen scaffold-BDNF complex significantly promotes functional recovery after completely transected spinal cord injury in canine. Biomaterials. 2015;41:89-96 pubmed 出版商
  202. Cui W, Mizukami H, Yanagisawa M, Aida T, Nomura M, Isomura Y, et al. Glial dysfunction in the mouse habenula causes depressive-like behaviors and sleep disturbance. J Neurosci. 2014;34:16273-85 pubmed 出版商
  203. Bernard Marissal N, Sunyach C, Marissal T, Raoul C, Pettmann B. Calreticulin levels determine onset of early muscle denervation by fast motoneurons of ALS model mice. Neurobiol Dis. 2015;73:130-6 pubmed 出版商
  204. Radonjić N, Memi F, Ortega J, Glidden N, Zhan H, Zecevic N. The Role of Sonic Hedgehog in the Specification of Human Cortical Progenitors In Vitro. Cereb Cortex. 2016;26:131-43 pubmed 出版商
  205. Broms J, Antolin Fontes B, Tingström A, Ibañez Tallon I. Conserved expression of the GPR151 receptor in habenular axonal projections of vertebrates. J Comp Neurol. 2015;523:359-80 pubmed 出版商
  206. Syhr K, Kallenborn Gerhardt W, Lu R, Olbrich K, Schmitz K, Männich J, et al. Lack of effect of a P2Y6 receptor antagonist on neuropathic pain behavior in mice. Pharmacol Biochem Behav. 2014;124:389-95 pubmed 出版商
  207. Ribas V, Schnepf B, Challagundla M, Koch J, Bahr M, Lingor P. Early and sustained activation of autophagy in degenerating axons after spinal cord injury. Brain Pathol. 2015;25:157-70 pubmed 出版商
  208. Cui Y, Xu H, Wu H, Qi J, Shi J, Li Y. Spatio-temporal expression and functional involvement of transient receptor potential vanilloid 1 in diabetic mechanical allodynia in rats. PLoS ONE. 2014;9:e102052 pubmed 出版商
  209. Oenarto J, Gorg B, Moos M, Bidmon H, Haussinger D. Expression of organic osmolyte transporters in cultured rat astrocytes and rat and human cerebral cortex. Arch Biochem Biophys. 2014;560:59-72 pubmed 出版商
  210. Gaillard F, Kuny S, Sauve Y. Retinal distribution of Disabled-1 in a diurnal murine rodent, the Nile grass rat Arvicanthis niloticus. Exp Eye Res. 2014;125:236-43 pubmed 出版商
  211. van Neerven S, Krings L, Haastert Talini K, Vogt M, Tolba R, Brook G, et al. Human Schwann cells seeded on a novel collagen-based microstructured nerve guide survive, proliferate, and modify neurite outgrowth. Biomed Res Int. 2014;2014:493823 pubmed 出版商
  212. Villegas R, Martinez N, Lillo J, Pihan P, Hernandez D, Twiss J, et al. Calcium release from intra-axonal endoplasmic reticulum leads to axon degeneration through mitochondrial dysfunction. J Neurosci. 2014;34:7179-89 pubmed 出版商
  213. Han X, Cheng D, Song F, Zeng T, An L, Xie K. Decelerated transport and its mechanism of 2,5-hexanedione on middle-molecular-weight neurofilament in rat dorsal root ganglia cells. Neuroscience. 2014;269:192-8 pubmed 出版商
  214. Kuga Y, Ohnishi H, Kodama Y, Takakura S, Hayashi M, Yagi R, et al. Cerebral and spinal cord tanycytic ependymomas in a young adult with a mutation in the NF2 gene. Neuropathology. 2014;34:406-13 pubmed 出版商
  215. Bron R, Wood R, Brock J, Ivanusic J. Piezo2 expression in corneal afferent neurons. J Comp Neurol. 2014;522:2967-79 pubmed 出版商
  216. Matsumoto Y, Kanamori A, Nakamura M, Takahashi T, Nakashima I, Negi A. Sera from patients with seropositive neuromyelitis optica spectral disorders caused the degeneration of rodent optic nerve. Exp Eye Res. 2014;119:61-9 pubmed 出版商
  217. Calliari A, Bobba N, Escande C, Chini E. Resveratrol delays Wallerian degeneration in a NAD(+) and DBC1 dependent manner. Exp Neurol. 2014;251:91-100 pubmed 出版商
  218. Brison E, Jacomy H, Desforges M, Talbot P. Novel treatment with neuroprotective and antiviral properties against a neuroinvasive human respiratory virus. J Virol. 2014;88:1548-63 pubmed 出版商
  219. Chittoor V, Sooyeon L, Rangaraju S, Nicks J, Schmidt J, Madorsky I, et al. Biochemical characterization of protein quality control mechanisms during disease progression in the C22 mouse model of CMT1A. ASN Neuro. 2013;5:e00128 pubmed 出版商
  220. Qi W, Ding D, Zhu H, Lu D, Wang Y, Ding J, et al. Efficient siRNA transfection to the inner ear through the intact round window by a novel proteidic delivery technology in the chinchilla. Gene Ther. 2014;21:10-8 pubmed 出版商
  221. Cagle M, Honig M. Parcellation of cerebellins 1, 2, and 4 among different subpopulations of dorsal horn neurons in mouse spinal cord. J Comp Neurol. 2014;522:479-97 pubmed 出版商
  222. Puglisi F, Vanni V, Ponterio G, Tassone A, Sciamanna G, Bonsi P, et al. Torsin A Localization in the Mouse Cerebellar Synaptic Circuitry. PLoS ONE. 2013;8:e68063 pubmed 出版商
  223. Alicea B, Murthy S, Keaton S, Cobbett P, Cibelli J, Suhr S. Defining the diversity of phenotypic respecification using multiple cell lines and reprogramming regimens. Stem Cells Dev. 2013;22:2641-54 pubmed 出版商
  224. Li X, Xiao Z, Han J, Chen L, Xiao H, Ma F, et al. Promotion of neuronal differentiation of neural progenitor cells by using EGFR antibody functionalized collagen scaffolds for spinal cord injury repair. Biomaterials. 2013;34:5107-16 pubmed 出版商
  225. De la Huerta I, Kim I, Voinescu P, Sanes J. Direction-selective retinal ganglion cells arise from molecularly specified multipotential progenitors. Proc Natl Acad Sci U S A. 2012;109:17663-8 pubmed 出版商
  226. Chen J, Mizushige T, Nishimune H. Active zone density is conserved during synaptic growth but impaired in aged mice. J Comp Neurol. 2012;520:434-52 pubmed 出版商
  227. Petralia R, Schwartz C, Wang Y, Mattson M, Yao P. Subcellular localization of Patched and Smoothened, the receptors for Sonic hedgehog signaling, in the hippocampal neuron. J Comp Neurol. 2011;519:3684-99 pubmed 出版商
  228. Zurolo E, Iyer A, Maroso M, Carbonell C, Anink J, Ravizza T, et al. Activation of Toll-like receptor, RAGE and HMGB1 signalling in malformations of cortical development. Brain. 2011;134:1015-32 pubmed 出版商
  229. Ingham E, Gunhan E, Fuller P, Fuller C. Immunotoxin-induced ablation of melanopsin retinal ganglion cells in a non-murine mammalian model. J Comp Neurol. 2009;516:125-40 pubmed 出版商
  230. Lavenex P, Lavenex P, Bennett J, Amaral D. Postmortem changes in the neuroanatomical characteristics of the primate brain: hippocampal formation. J Comp Neurol. 2009;512:27-51 pubmed 出版商
  231. Tripathi R, McTigue D. Chronically increased ciliary neurotrophic factor and fibroblast growth factor-2 expression after spinal contusion in rats. J Comp Neurol. 2008;510:129-44 pubmed 出版商
  232. Horn A, Eberhorn A, Hartig W, Ardeleanu P, Messoudi A, Büttner Ennever J. Perioculomotor cell groups in monkey and man defined by their histochemical and functional properties: reappraisal of the Edinger-Westphal nucleus. J Comp Neurol. 2008;507:1317-35 pubmed 出版商
  233. Knabe W, Washausen S, Happel N, Kuhn H. Development of starburst cholinergic amacrine cells in the retina of Tupaia belangeri. J Comp Neurol. 2007;502:584-97 pubmed
  234. Young K, McGehee D, Brorson J. Glutamate receptor expression and chronic glutamate toxicity in rat motor cortex. Neurobiol Dis. 2007;26:78-85 pubmed
  235. Saleem K, Price J, Hashikawa T. Cytoarchitectonic and chemoarchitectonic subdivisions of the perirhinal and parahippocampal cortices in macaque monkeys. J Comp Neurol. 2007;500:973-1006 pubmed
  236. Chen H, Liu B, Neufeld A. Epidermal growth factor receptor in adult retinal neurons of rat, mouse, and human. J Comp Neurol. 2007;500:299-310 pubmed
  237. King A, Chung R, Vickers J, Dickson T. Localization of glutamate receptors in developing cortical neurons in culture and relationship to susceptibility to excitotoxicity. J Comp Neurol. 2006;498:277-94 pubmed
  238. Bouffard J, Sandberg G, Golden J, Rorke L. Double immunolabeling of central nervous system atypical teratoid/rhabdoid tumors. Mod Pathol. 2004;17:679-83 pubmed