这是一篇来自已证抗体库的有关人类 neurofilament L的综述,是根据101篇发表使用所有方法的文章归纳的。这综述旨在帮助来邦网的访客找到最适合neurofilament L 抗体。
neurofilament L 同义词: CMT1F; CMT2E; CMTDIG; NF-L; NF68; NFL; PPP1R110

BioLegend
小鼠 单克隆(SMI 312)
  • 免疫细胞化学; 小鼠; 1:1000; 图 s5g
BioLegend neurofilament L抗体(Biolegend, 837904)被用于被用于免疫细胞化学在小鼠样本上浓度为1:1000 (图 s5g). PLoS Genet (2022) ncbi
小鼠 单克隆(SMI 312)
  • 免疫印迹; 小鼠; 1:500; 图 8b
BioLegend neurofilament L抗体(Biolegend, 837904)被用于被用于免疫印迹在小鼠样本上浓度为1:500 (图 8b). Acta Neuropathol Commun (2021) ncbi
小鼠 单克隆(SMI 312)
  • 免疫细胞化学; 小鼠; 1:1000; 图 6i
BioLegend neurofilament L抗体(BioLegend, 837904)被用于被用于免疫细胞化学在小鼠样本上浓度为1:1000 (图 6i). elife (2021) ncbi
小鼠 单克隆(SMI 312)
  • 免疫细胞化学; 小鼠; 1:1000; 图 6i
BioLegend neurofilament L抗体(BioLegend, 837904)被用于被用于免疫细胞化学在小鼠样本上浓度为1:1000 (图 6i). Nature (2021) ncbi
小鼠 单克隆(SMI 312)
  • 免疫印迹; 小鼠; 图 2g
BioLegend neurofilament L抗体(Biolegend, 837904)被用于被用于免疫印迹在小鼠样本上 (图 2g). Alzheimers Res Ther (2021) ncbi
小鼠 单克隆(SMI 312)
  • 免疫细胞化学; 人类; 1:1000; 图 1b
BioLegend neurofilament L抗体(BioLegend, 837904)被用于被用于免疫细胞化学在人类样本上浓度为1:1000 (图 1b). Acta Neuropathol (2021) ncbi
小鼠 单克隆(SMI 312)
  • 免疫组化; 小鼠; 1:1000; 图 3c
BioLegend neurofilament L抗体(BioLegend, 837904)被用于被用于免疫组化在小鼠样本上浓度为1:1000 (图 3c). Eneuro (2020) ncbi
小鼠 单克隆(SMI 312)
  • 免疫组化; 小鼠; 1:500; 图 5l, m
BioLegend neurofilament L抗体(BioLegend, #837904)被用于被用于免疫组化在小鼠样本上浓度为1:500 (图 5l, m). Eneuro (2020) ncbi
小鼠 单克隆(SMI 312)
  • 免疫组化; 大鼠; 1:500; 图 5
BioLegend neurofilament L抗体(BioLegend, SMI312)被用于被用于免疫组化在大鼠样本上浓度为1:500 (图 5). elife (2019) ncbi
小鼠 单克隆(SMI 312)
  • 免疫细胞化学; 小鼠; 1:500; 图 3a
BioLegend neurofilament L抗体(BioLegend, 837904)被用于被用于免疫细胞化学在小鼠样本上浓度为1:500 (图 3a). Sci Adv (2019) ncbi
小鼠 单克隆(SMI 312)
  • 免疫组化-冰冻切片; 小鼠; 1:250; 图 1a
BioLegend neurofilament L抗体(BioLegend, SMI-312R)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:250 (图 1a). Cell Rep (2019) ncbi
小鼠 单克隆(SMI 312)
  • 免疫组化-冰冻切片; 人类; 1:500; 图 1b
BioLegend neurofilament L抗体(BioLegend, 837904)被用于被用于免疫组化-冰冻切片在人类样本上浓度为1:500 (图 1b). Nat Neurosci (2019) ncbi
小鼠 单克隆(SMI 312)
  • 免疫印迹; 大鼠; 1:500; 图 6c
BioLegend neurofilament L抗体(BioLegend, 837904)被用于被用于免疫印迹在大鼠样本上浓度为1:500 (图 6c). Cell Death Differ (2019) ncbi
小鼠 单克隆(SMI 312)
  • 免疫组化-冰冻切片; 小鼠; 1:1000; 图 4a
BioLegend neurofilament L抗体(BioLegend, 837904)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:1000 (图 4a). Alzheimers Res Ther (2019) ncbi
小鼠 单克隆(SMI 312)
  • 免疫组化; 大鼠; 1:500; 图 5a`
BioLegend neurofilament L抗体(Covance, SMI-312R-100)被用于被用于免疫组化在大鼠样本上浓度为1:500 (图 5a`). Glia (2019) ncbi
小鼠 单克隆(SMI 312)
  • 免疫组化; 小鼠; 1:200; 图 5e'
  • 免疫印迹; 小鼠; 图 5m
BioLegend neurofilament L抗体(Covance, SMI-312R)被用于被用于免疫组化在小鼠样本上浓度为1:200 (图 5e') 和 被用于免疫印迹在小鼠样本上 (图 5m). J Neurosci Res (2019) ncbi
小鼠 单克隆(SMI 312)
BioLegend neurofilament L抗体(Covance, SMI-312R)被用于. J Comp Neurol (2019) ncbi
小鼠 单克隆(SMI 312)
  • 免疫印迹; 人类; 1:2000; 图 2a
BioLegend neurofilament L抗体(Covance Research Products Inc, SMI-312R)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 2a). J Biol Chem (2018) ncbi
小鼠 单克隆(SMI 312)
  • 免疫组化-冰冻切片; 小鼠; 1:1000; 图 4(S1A)
BioLegend neurofilament L抗体(Covance, SMI 312)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:1000 (图 4(S1A)). elife (2017) ncbi
小鼠 单克隆(SMI 312)
  • 免疫组化-冰冻切片; 小鼠; 1:1000; 图 3,4
BioLegend neurofilament L抗体(Covance, SMI 312)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:1000 (图 3,4). Sci Rep (2017) ncbi
小鼠 单克隆(SMI 312)
  • 免疫细胞化学; 人类; 1:1000; 图 s6b
BioLegend neurofilament L抗体(Biolegend, 837904)被用于被用于免疫细胞化学在人类样本上浓度为1:1000 (图 s6b). Mol Psychiatry (2017) ncbi
小鼠 单克隆(SMI 312)
  • 免疫组化-石蜡切片; 小鼠; 1:500; 图 s2
BioLegend neurofilament L抗体(Covance, smi-312r)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:500 (图 s2). Acta Neuropathol Commun (2016) ncbi
小鼠 单克隆(SMI 311)
  • 免疫组化; 小鼠; 图 st1
BioLegend neurofilament L抗体(BioLegend, 837801)被用于被用于免疫组化在小鼠样本上 (图 st1). Nat Biotechnol (2016) ncbi
小鼠 单克隆(SMI 312)
  • 免疫组化; 小鼠; 图 st1
BioLegend neurofilament L抗体(BioLegend, 837904)被用于被用于免疫组化在小鼠样本上 (图 st1). Nat Biotechnol (2016) ncbi
小鼠 单克隆(NFL2)
  • 免疫组化; 小鼠; 图 st1
BioLegend neurofilament L抗体(BioLegend, 846002)被用于被用于免疫组化在小鼠样本上 (图 st1). Nat Biotechnol (2016) ncbi
小鼠 单克隆(SMI 312)
  • 免疫组化-石蜡切片; 小鼠; 1:1000; 图 1
BioLegend neurofilament L抗体(BioLegend, Smi312)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:1000 (图 1). Nat Commun (2016) ncbi
小鼠 单克隆(SMI 311)
  • 免疫组化-石蜡切片; 犬; 1:1000; 图 3
BioLegend neurofilament L抗体(Sternberger monoclonals, SMI-311R)被用于被用于免疫组化-石蜡切片在犬样本上浓度为1:1000 (图 3). Brain Behav (2016) ncbi
小鼠 单克隆(SMI 312)
  • 免疫组化-石蜡切片; 犬; 1:4000; 图 3
BioLegend neurofilament L抗体(Sternberger monoclonals, SMI-312R)被用于被用于免疫组化-石蜡切片在犬样本上浓度为1:4000 (图 3). Brain Behav (2016) ncbi
小鼠 单克隆(SMI 312)
  • 免疫组化-石蜡切片; 小鼠; 1:200; 图 4a
BioLegend neurofilament L抗体(Biolegend, SMI312)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:200 (图 4a). Acta Neuropathol (2016) ncbi
小鼠 单克隆(SMI 311)
  • 免疫细胞化学; 人类; 1:200
  • 免疫细胞化学; 大鼠; 1:200
BioLegend neurofilament L抗体(Covance, SMI-311R)被用于被用于免疫细胞化学在人类样本上浓度为1:200 和 被用于免疫细胞化学在大鼠样本上浓度为1:200. Arch Biochem Biophys (2014) ncbi
小鼠 单克隆(SMI 311)
  • 免疫组化-冰冻切片; 小鼠; 1:1000
BioLegend neurofilament L抗体(Covance, SMI 311)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:1000. J Virol (2014) ncbi
小鼠 单克隆(SMI 311)
  • 免疫细胞化学; 人类; 1:1000
BioLegend neurofilament L抗体(Covance, SMI311)被用于被用于免疫细胞化学在人类样本上浓度为1:1000. Stem Cells Dev (2013) ncbi
小鼠 单克隆(SMI 311)
  • 免疫组化-石蜡切片; 人类; 1:1000
BioLegend neurofilament L抗体(Sternberger Monoclonals, SMI311)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:1000. Brain (2011) ncbi
赛默飞世尔
小鼠 单克隆(2F11)
  • 免疫组化-石蜡切片; 大鼠; 图 4c
赛默飞世尔 neurofilament L抗体(Thermo Scientific, 2F11)被用于被用于免疫组化-石蜡切片在大鼠样本上 (图 4c). Turk Neurosurg (2017) ncbi
小鼠 单克隆(DA2)
  • 免疫细胞化学; 人类; 1:100; 图 5
赛默飞世尔 neurofilament L抗体(Invitrogen, 13-0400)被用于被用于免疫细胞化学在人类样本上浓度为1:100 (图 5). Cell Reprogram (2016) ncbi
小鼠 单克隆(DA2)
  • 免疫组化; 小鼠; 1:1000; 图 2
赛默飞世尔 neurofilament L抗体(Invitrogen, 13-0400)被用于被用于免疫组化在小鼠样本上浓度为1:1000 (图 2). Proc Biol Sci (2016) ncbi
domestic rabbit 单克隆(T.400.5)
  • 免疫印迹; 小鼠; 图 s4
赛默飞世尔 neurofilament L抗体(Thermo Scientific, MA5-14981)被用于被用于免疫印迹在小鼠样本上 (图 s4). PLoS ONE (2016) ncbi
小鼠 单克隆(DA2)
  • 免疫印迹; 小鼠; 1:500; 图 6
赛默飞世尔 neurofilament L抗体(Invitrogen, 13-0400)被用于被用于免疫印迹在小鼠样本上浓度为1:500 (图 6). Neural Plast (2015) ncbi
小鼠 单克隆(DA2)
  • 免疫印迹; 小鼠; 1:500
赛默飞世尔 neurofilament L抗体(Invitrogen, 13-0400)被用于被用于免疫印迹在小鼠样本上浓度为1:500. Evid Based Complement Alternat Med (2014) ncbi
小鼠 单克隆(DA2)
  • 免疫印迹; 小鼠; 1:500; 图 4
赛默飞世尔 neurofilament L抗体(Zymed, 130400)被用于被用于免疫印迹在小鼠样本上浓度为1:500 (图 4). Behav Brain Res (2012) ncbi
小鼠 单克隆(DA2)
  • 免疫组化; 人类; 表 2
赛默飞世尔 neurofilament L抗体(Zymed, DA2)被用于被用于免疫组化在人类样本上 (表 2). Glia (2012) ncbi
小鼠 单克隆(DA2)
  • 免疫印迹; 人类
赛默飞世尔 neurofilament L抗体(Zymed, clone DA2)被用于被用于免疫印迹在人类样本上. J Neuropathol Exp Neurol (2010) ncbi
小鼠 单克隆(2F11)
  • 免疫组化; fruit fly ; 1:1000
  • 免疫组化; 大鼠; 1:1000
  • 免疫细胞化学; 人类; 1:500
赛默飞世尔 neurofilament L抗体(Affinity BioReagents, MA1-06803)被用于被用于免疫组化在fruit fly 样本上浓度为1:1000, 被用于免疫组化在大鼠样本上浓度为1:1000 和 被用于免疫细胞化学在人类样本上浓度为1:500. J Comp Neurol (2009) ncbi
小鼠 单克隆(DA2)
  • 免疫组化-冰冻切片; 小鼠; 1:500; 图 1
赛默飞世尔 neurofilament L抗体(Zymed, 13-0400)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:500 (图 1). Dev Biol (2008) ncbi
小鼠 单克隆(DA2)
  • 免疫印迹; 人类
赛默飞世尔 neurofilament L抗体(ZYMED, 13-0400)被用于被用于免疫印迹在人类样本上. Mol Psychiatry (2006) ncbi
小鼠 单克隆(DA2)
  • 免疫组化-石蜡切片; 人类; 1:1000; 图 3
赛默飞世尔 neurofilament L抗体(Zymed, DA2)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:1000 (图 3). J Neurol Sci (1999) ncbi
艾博抗(上海)贸易有限公司
小鼠 单克隆(DA2)
  • 免疫组化; 小鼠; 1:1000; 图 2a
艾博抗(上海)贸易有限公司 neurofilament L抗体(Abcam, ab7255)被用于被用于免疫组化在小鼠样本上浓度为1:1000 (图 2a). iScience (2022) ncbi
domestic rabbit 单克隆(EP675Y)
艾博抗(上海)贸易有限公司 neurofilament L抗体(Abcam, ab52989)被用于. Antioxidants (Basel) (2021) ncbi
domestic rabbit 单克隆(EP675Y)
艾博抗(上海)贸易有限公司 neurofilament L抗体(Abcam, ab52989)被用于. J Virol (2020) ncbi
小鼠 单克隆(RNF406)
  • 免疫细胞化学; 人类
艾博抗(上海)贸易有限公司 neurofilament L抗体(Abcam, ab134306)被用于被用于免疫细胞化学在人类样本上. Mol Med Rep (2016) ncbi
小鼠 单克隆(DA2)
  • 免疫印迹; 小鼠; 1:5000
艾博抗(上海)贸易有限公司 neurofilament L抗体(Abcam, ab7255)被用于被用于免疫印迹在小鼠样本上浓度为1:5000. PLoS ONE (2014) ncbi
Novus Biologicals
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 小鼠; 图 2
Novus Biologicals neurofilament L抗体(Novus Biologicals, NB300-131)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 2). J Cell Biol (2016) ncbi
domestic rabbit 多克隆
Novus Biologicals neurofilament L抗体(Novus, NB300-131)被用于. Sci Rep (2015) ncbi
圣克鲁斯生物技术
小鼠 单克隆(3F285)
  • 免疫细胞化学; 人类; 图 5f
圣克鲁斯生物技术 neurofilament L抗体(Santa Cruz, sc-71678)被用于被用于免疫细胞化学在人类样本上 (图 5f). Adipocyte (2019) ncbi
小鼠 单克隆(8A1)
  • 免疫印迹; 人类; 1:500
圣克鲁斯生物技术 neurofilament L抗体(Santa Cruz, sc-20012)被用于被用于免疫印迹在人类样本上浓度为1:500. Mol Cell Biochem (2015) ncbi
EnCor Biotechnology
小鼠 单克隆
  • 免疫组化-石蜡切片; 小鼠; 1:2000
EnCor Biotechnology neurofilament L抗体(Encor Biotechnology, MCA-DA2)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:2000. Int J Mol Sci (2017) ncbi
丹科医疗器械技术服务(上海)有限公司
小鼠 单克隆(2F11)
  • 免疫组化-石蜡切片; 小鼠; 1:100; 图 3f
丹科医疗器械技术服务(上海)有限公司 neurofilament L抗体(Dako, M0762)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:100 (图 3f). Molecules (2022) ncbi
小鼠 单克隆(2F11)
丹科医疗器械技术服务(上海)有限公司 neurofilament L抗体(DAKO, M0762)被用于. Sci Rep (2020) ncbi
小鼠 单克隆(2F11)
  • 免疫组化-石蜡切片; 牛; 1:100; 图 4
丹科医疗器械技术服务(上海)有限公司 neurofilament L抗体(Dako, 2F11)被用于被用于免疫组化-石蜡切片在牛样本上浓度为1:100 (图 4). Int J Mol Sci (2020) ncbi
小鼠 单克隆(2F11)
  • 免疫组化-石蜡切片; 小鼠; 1:100; 图 2i
丹科医疗器械技术服务(上海)有限公司 neurofilament L抗体(DAKO, M076229-2)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:100 (图 2i). J Exp Med (2019) ncbi
小鼠 单克隆(2F11)
  • 免疫组化; 人类; 图 1a
丹科医疗器械技术服务(上海)有限公司 neurofilament L抗体(Dako, M0762)被用于被用于免疫组化在人类样本上 (图 1a). J Comp Neurol (2019) ncbi
小鼠 单克隆(2F11)
  • 免疫组化-石蜡切片; pigs ; 1:400; 图 st12
  • 免疫组化-冰冻切片; 大鼠; 1:100; 图 st12
  • 免疫组化-石蜡切片; 大鼠; 1:100; 图 st12
  • 免疫组化-石蜡切片; 犬; 1:200; 图 st12
  • 免疫组化-冰冻切片; African green monkey; 1:100; 图 st12
  • 免疫组化-石蜡切片; African green monkey; 图 st12
  • 免疫组化-石蜡切片; 小鼠; 1:100; 图 st12
丹科医疗器械技术服务(上海)有限公司 neurofilament L抗体(Dako, M0762)被用于被用于免疫组化-石蜡切片在pigs 样本上浓度为1:400 (图 st12), 被用于免疫组化-冰冻切片在大鼠样本上浓度为1:100 (图 st12), 被用于免疫组化-石蜡切片在大鼠样本上浓度为1:100 (图 st12), 被用于免疫组化-石蜡切片在犬样本上浓度为1:200 (图 st12), 被用于免疫组化-冰冻切片在African green monkey样本上浓度为1:100 (图 st12), 被用于免疫组化-石蜡切片在African green monkey样本上 (图 st12) 和 被用于免疫组化-石蜡切片在小鼠样本上浓度为1:100 (图 st12). J Toxicol Pathol (2017) ncbi
小鼠 单克隆(2F11)
  • 免疫组化-石蜡切片; 人类; 图 1c
丹科医疗器械技术服务(上海)有限公司 neurofilament L抗体(Dako, 2F11)被用于被用于免疫组化-石蜡切片在人类样本上 (图 1c). Neurosci Lett (2017) ncbi
小鼠 单克隆(2F11)
  • 免疫组化-石蜡切片; 小鼠; 图 s2e
丹科医疗器械技术服务(上海)有限公司 neurofilament L抗体(Dako, 2F11)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 s2e). Proc Natl Acad Sci U S A (2016) ncbi
小鼠 单克隆(2F11)
  • 免疫组化; 小鼠; 1:4000; 图 5e
丹科医疗器械技术服务(上海)有限公司 neurofilament L抗体(Dako, M0762)被用于被用于免疫组化在小鼠样本上浓度为1:4000 (图 5e). PLoS ONE (2016) ncbi
小鼠 单克隆(2F11)
  • 免疫组化-石蜡切片; 小鼠; 1:200
丹科医疗器械技术服务(上海)有限公司 neurofilament L抗体(Dako, 2F11)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:200. J Neuroimmunol (2016) ncbi
小鼠 单克隆(2F11)
  • 免疫组化-冰冻切片; 小鼠; 1:4000; 图 2
丹科医疗器械技术服务(上海)有限公司 neurofilament L抗体(Dako Cytomation, M0762)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:4000 (图 2). Front Cell Neurosci (2016) ncbi
小鼠 单克隆(2F11)
  • 免疫组化-石蜡切片; 人类; 图 3
丹科医疗器械技术服务(上海)有限公司 neurofilament L抗体(Dako, 2F11)被用于被用于免疫组化-石蜡切片在人类样本上 (图 3). J Exp Clin Cancer Res (2016) ncbi
小鼠 单克隆(2F11)
  • 免疫组化-石蜡切片; 人类; 1:200; 表 1
丹科医疗器械技术服务(上海)有限公司 neurofilament L抗体(DAKO, 2F11)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:200 (表 1). Neuropathology (2016) ncbi
小鼠 单克隆(2F11)
  • 免疫组化-石蜡切片; 人类; 1:800; 表 1
丹科医疗器械技术服务(上海)有限公司 neurofilament L抗体(Dako, 2F11)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:800 (表 1). Am J Dermatopathol (2016) ncbi
小鼠 单克隆(2F11)
  • 免疫组化; 人类; 1:500; 表 1
丹科医疗器械技术服务(上海)有限公司 neurofilament L抗体(Dako, 2F11)被用于被用于免疫组化在人类样本上浓度为1:500 (表 1). Pathol Int (2016) ncbi
小鼠 单克隆(2F11)
  • 免疫组化-石蜡切片; 人类; 1:50; 图 s6
丹科医疗器械技术服务(上海)有限公司 neurofilament L抗体(Dako, 2F11)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:50 (图 s6). Sci Rep (2015) ncbi
小鼠 单克隆(2F11)
  • 免疫组化-石蜡切片; 牛
丹科医疗器械技术服务(上海)有限公司 neurofilament L抗体(DAKO, M0762)被用于被用于免疫组化-石蜡切片在牛样本上. BMC Microbiol (2015) ncbi
小鼠 单克隆(2F11)
  • 其他; 人类; 图 3c
丹科医疗器械技术服务(上海)有限公司 neurofilament L抗体(Dako, M0762)被用于被用于其他在人类样本上 (图 3c). J Anat (2015) ncbi
小鼠 单克隆(2F11)
  • 免疫组化-石蜡切片; 人类
丹科医疗器械技术服务(上海)有限公司 neurofilament L抗体(Dako, 2 F11)被用于被用于免疫组化-石蜡切片在人类样本上. Hum Pathol (2015) ncbi
小鼠 单克隆(2F11)
  • 免疫组化-石蜡切片; 小鼠; 1:200; 图 4a
丹科医疗器械技术服务(上海)有限公司 neurofilament L抗体(Dako, 2F11)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:200 (图 4a). Mol Neurodegener (2014) ncbi
小鼠 单克隆(2F11)
  • 免疫组化-冰冻切片; 大鼠; 1:800
  • 免疫印迹; 大鼠; 1:1000
丹科医疗器械技术服务(上海)有限公司 neurofilament L抗体(Dako, M0762)被用于被用于免疫组化-冰冻切片在大鼠样本上浓度为1:800 和 被用于免疫印迹在大鼠样本上浓度为1:1000. PLoS ONE (2014) ncbi
小鼠 单克隆(2F11)
  • 免疫组化-石蜡切片; 人类; 1:200
丹科医疗器械技术服务(上海)有限公司 neurofilament L抗体(DAKO, 2F11)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:200. Neuropathology (2014) ncbi
小鼠 单克隆(2F11)
  • 免疫组化-石蜡切片; 人类; 1:500; 图 4
丹科医疗器械技术服务(上海)有限公司 neurofilament L抗体(Dako, M0762)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:500 (图 4). Acta Neuropathol Commun (2014) ncbi
小鼠 单克隆(2F11)
  • 免疫组化-石蜡切片; 大鼠; 1:100
丹科医疗器械技术服务(上海)有限公司 neurofilament L抗体(Dako, 2F11)被用于被用于免疫组化-石蜡切片在大鼠样本上浓度为1:100. Toxicol Lett (2014) ncbi
小鼠 单克隆(2F11)
  • 免疫组化-石蜡切片; 小鼠
丹科医疗器械技术服务(上海)有限公司 neurofilament L抗体(DAKO, 2F11)被用于被用于免疫组化-石蜡切片在小鼠样本上. PLoS ONE (2013) ncbi
小鼠 单克隆(2F11)
  • 免疫组化; 小鼠; 1:500
丹科医疗器械技术服务(上海)有限公司 neurofilament L抗体(DakoCytomation, M0762)被用于被用于免疫组化在小鼠样本上浓度为1:500. Hum Mol Genet (2013) ncbi
小鼠 单克隆(2F11)
  • 免疫组化-石蜡切片; 人类; 1:600
丹科医疗器械技术服务(上海)有限公司 neurofilament L抗体(Dako, 2F11)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:600. Appl Immunohistochem Mol Morphol (2014) ncbi
小鼠 单克隆(2F11)
  • 免疫组化-石蜡切片; 人类; 1:50
丹科医疗器械技术服务(上海)有限公司 neurofilament L抗体(DAKO, 2F11)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:50. Brain Pathol (2013) ncbi
小鼠 单克隆(2F11)
  • 免疫组化-冰冻切片; 小鼠; 1:50
丹科医疗器械技术服务(上海)有限公司 neurofilament L抗体(Dako, 2F11)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:50. J Comp Neurol (2011) ncbi
小鼠 单克隆(2F11)
  • 免疫组化-石蜡切片; 人类
丹科医疗器械技术服务(上海)有限公司 neurofilament L抗体(Dako, 2F11)被用于被用于免疫组化-石蜡切片在人类样本上. Mediators Inflamm (2009) ncbi
赛信通(上海)生物试剂有限公司
domestic rabbit 单克隆(C28E10)
  • 免疫组化; 小鼠; 图 4h
赛信通(上海)生物试剂有限公司 neurofilament L抗体(Cell Signaling, 2837)被用于被用于免疫组化在小鼠样本上 (图 4h). elife (2022) ncbi
domestic rabbit 单克隆(C28E10)
  • 免疫组化; 小鼠; 1:200; 图 s3d
赛信通(上海)生物试剂有限公司 neurofilament L抗体(Cell Signaling Technology, C28E10)被用于被用于免疫组化在小鼠样本上浓度为1:200 (图 s3d). elife (2020) ncbi
domestic rabbit 单克隆(C28E10)
  • 免疫组化; 小鼠; 图 1b
赛信通(上海)生物试剂有限公司 neurofilament L抗体(Cell Signaling, 2837s)被用于被用于免疫组化在小鼠样本上 (图 1b). Cell Discov (2020) ncbi
小鼠 单克隆(DA2)
  • 免疫组化; 小鼠; 1:500; 图 1f
赛信通(上海)生物试剂有限公司 neurofilament L抗体(CST, 2835)被用于被用于免疫组化在小鼠样本上浓度为1:500 (图 1f). Acta Neuropathol Commun (2019) ncbi
domestic rabbit 单克隆(C28E10)
  • 免疫组化; 小鼠; 1:1000; 图 1c
赛信通(上海)生物试剂有限公司 neurofilament L抗体(Cell Signaling Technology, 2837)被用于被用于免疫组化在小鼠样本上浓度为1:1000 (图 1c). elife (2019) ncbi
小鼠 单克隆(DA2)
  • 免疫印迹; 小鼠; 1:1000; 图 2f
赛信通(上海)生物试剂有限公司 neurofilament L抗体(Cell Signaling, 2835)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 2f). J Exp Med (2019) ncbi
domestic rabbit 单克隆(C28E10)
  • 免疫组化-冰冻切片; 小鼠; 1:100; 图 s1a
赛信通(上海)生物试剂有限公司 neurofilament L抗体(Cell Signaling, C28E10)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:100 (图 s1a). Proc Natl Acad Sci U S A (2016) ncbi
domestic rabbit 单克隆(C28E10)
  • 免疫组化; 小鼠; 图 st1
赛信通(上海)生物试剂有限公司 neurofilament L抗体(Cell Signalling, 2837)被用于被用于免疫组化在小鼠样本上 (图 st1). Nat Biotechnol (2016) ncbi
domestic rabbit 单克隆(C28E10)
  • 免疫组化; 小鼠; 1:200; 图 5
赛信通(上海)生物试剂有限公司 neurofilament L抗体(cell signaling, 2837)被用于被用于免疫组化在小鼠样本上浓度为1:200 (图 5). PLoS ONE (2016) ncbi
domestic rabbit 单克隆(C28E10)
  • 免疫细胞化学; 人类
  • 免疫印迹; 人类; 图 1
赛信通(上海)生物试剂有限公司 neurofilament L抗体(Cell signaling, 2837S)被用于被用于免疫细胞化学在人类样本上 和 被用于免疫印迹在人类样本上 (图 1). Life Sci (2016) ncbi
domestic rabbit 单克隆(C28E10)
  • 免疫细胞化学; 人类; 1:100; 图 4
赛信通(上海)生物试剂有限公司 neurofilament L抗体(Cell Signaling, 2837)被用于被用于免疫细胞化学在人类样本上浓度为1:100 (图 4). Nature (2015) ncbi
小鼠 单克隆(DA2)
  • 免疫印迹; 小鼠; 图 1
赛信通(上海)生物试剂有限公司 neurofilament L抗体(Cell Signaling Technology, 2835S)被用于被用于免疫印迹在小鼠样本上 (图 1). Mol Biol Cell (2015) ncbi
domestic rabbit 单克隆(C28E10)
  • 免疫组化-冰冻切片; 小鼠; 1:100; 图 3a
赛信通(上海)生物试剂有限公司 neurofilament L抗体(Cell signaling, 2837)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:100 (图 3a). PLoS ONE (2015) ncbi
domestic rabbit 单克隆(C28E10)
  • 免疫印迹; 人类; 1:1000; 图 3
赛信通(上海)生物试剂有限公司 neurofilament L抗体(Cell Signaling, 2837)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3). Cancer Res (2014) ncbi
西格玛奥德里奇
小鼠 单克隆(NR4)
  • 免疫印迹基因敲除验证; 小鼠; 图 1b
西格玛奥德里奇 neurofilament L抗体(Sigma-Aldrich, N5139)被用于被用于免疫印迹基因敲除验证在小鼠样本上 (图 1b). Neurosci Lett (2017) ncbi
小鼠 单克隆(NR4)
  • 免疫组化; 大鼠; 1:1000; 表 2
  • 免疫印迹; 大鼠; 1:1000; 表 2
西格玛奥德里奇 neurofilament L抗体(Sigma, N5139)被用于被用于免疫组化在大鼠样本上浓度为1:1000 (表 2) 和 被用于免疫印迹在大鼠样本上浓度为1:1000 (表 2). J Neuroinflammation (2017) ncbi
小鼠 单克隆(NR4)
  • 免疫印迹; 人类; 1:500; 图 ev3
西格玛奥德里奇 neurofilament L抗体(Sigma, 5139)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 ev3). EMBO Mol Med (2015) ncbi
小鼠 单克隆(NR4)
  • 免疫组化; 小鼠
  • 免疫印迹; 小鼠
西格玛奥德里奇 neurofilament L抗体(Sigma, NR-4)被用于被用于免疫组化在小鼠样本上 和 被用于免疫印迹在小鼠样本上. J Neurosci (2014) ncbi
小鼠 单克隆(NR4)
  • 免疫组化-冰冻切片; 小鼠; 1:400
  • 免疫组化-冰冻切片; 大鼠
西格玛奥德里奇 neurofilament L抗体(Sigma-Aldrich, N5139)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:400 和 被用于免疫组化-冰冻切片在大鼠样本上. PLoS ONE (2013) ncbi
小鼠 单克隆(NR4)
  • 免疫组化-冰冻切片; 小鼠; 1:400
西格玛奥德里奇 neurofilament L抗体(Sigma-Aldrich, N5139)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:400. J Comp Neurol (2013) ncbi
文章列表
  1. Yamada S, Mizukoshi T, Tokunaga A, Sakakibara S. Inka2, a novel Pak4 inhibitor, regulates actin dynamics in neuronal development. PLoS Genet. 2022;18:e1010438 pubmed 出版商
  2. Sefton E, Gallardo M, Tobin C, Collins B, Colasanto M, Merrell A, et al. Fibroblast-derived Hgf controls recruitment and expansion of muscle during morphogenesis of the mammalian diaphragm. elife. 2022;11: pubmed 出版商
  3. Cehofski L, Kruse A, Alsing A, Sejergaard B, Nielsen J, Schlosser A, et al. Proteome Analysis of Aflibercept Intervention in Experimental Central Retinal Vein Occlusion. Molecules. 2022;27: pubmed 出版商
  4. Park H, Tsai E, Huang D, Weaver M, Frick L, Alcantara A, et al. ACTL6a coordinates axonal caliber recognition and myelination in the peripheral nerve. iScience. 2022;25:104132 pubmed 出版商
  5. Soto Faguás C, Sanchez Molina P, Saura C. Loss of presenilin function enhances tau phosphorylation and aggregation in mice. Acta Neuropathol Commun. 2021;9:162 pubmed 出版商
  6. Pan X, Zhao J, Zhou Z, Chen J, Yang Z, Wu Y, et al. 5'-UTR SNP of FGF13 causes translational defect and intellectual disability. elife. 2021;10: pubmed 出版商
  7. Turner J, O Halloran J, Kalaidina E, Kim W, Schmitz A, Zhou J, et al. SARS-CoV-2 mRNA vaccines induce persistent human germinal centre responses. Nature. 2021;596:109-113 pubmed 出版商
  8. Garcia Mesa Y, Xu H, Vance P, Gruenewald A, Garza R, Midkiff C, et al. Dimethyl Fumarate, an Approved Multiple Sclerosis Treatment, Reduces Brain Oxidative Stress in SIV-Infected Rhesus Macaques: Potential Therapeutic Repurposing for HIV Neuroprotection. Antioxidants (Basel). 2021;10: pubmed 出版商
  9. Pons V, Lévesque P, Plante M, Rivest S. Conditional genetic deletion of CSF1 receptor in microglia ameliorates the physiopathology of Alzheimer's disease. Alzheimers Res Ther. 2021;13:8 pubmed 出版商
  10. Mehta A, Gregory J, Dando O, Carter R, Burr K, Nanda J, et al. Mitochondrial bioenergetic deficits in C9orf72 amyotrophic lateral sclerosis motor neurons cause dysfunctional axonal homeostasis. Acta Neuropathol. 2021;141:257-279 pubmed 出版商
  11. Suzuki G, Imura S, Hosokawa M, Katsumata R, Nonaka T, Hisanaga S, et al. α-synuclein strains that cause distinct pathologies differentially inhibit proteasome. elife. 2020;9: pubmed 出版商
  12. Garcia Mesa Y, Garza R, Diaz Ortiz M, Gruenewald A, Bastien B, Lobrovich R, et al. Regional Brain Recovery from Acute Synaptic Injury in Simian Immunodeficiency Virus-Infected Rhesus Macaques Associates with Heme Oxygenase Isoform Expression. J Virol. 2020;94: pubmed 出版商
  13. Martinez L, Black K, Webb B, Bell A, Baygani S, Mier T, et al. Components of Endocannabinoid Signaling System Are Expressed in the Perinatal Mouse Cerebellum and Required for Its Normal Development. Eneuro. 2020;7: pubmed 出版商
  14. De Vreese S, André M, Cozzi B, Centelleghe C, van der Schaar M, Mazzariol S. Morphological Evidence for the Sensitivity of the Ear Canal of Odontocetes as shown by Immunohistochemistry and Transmission Electron Microscopy. Sci Rep. 2020;10:4191 pubmed 出版商
  15. Fu X, Peng J, Wang A, Luo Z. Tumor necrosis factor alpha mediates neuromuscular synapse elimination. Cell Discov. 2020;6:9 pubmed 出版商
  16. Shibahara T, Ago T, Nakamura K, Tachibana M, Yoshikawa Y, Komori M, et al. Pericyte-Mediated Tissue Repair through PDGFRβ Promotes Peri-Infarct Astrogliosis, Oligodendrogenesis, and Functional Recovery after Acute Ischemic Stroke. Eneuro. 2020;7: pubmed 出版商
  17. Hierweger M, Werder S, Seuberlich T. Parainfluenza Virus 5 Infection in Neurological Disease and Encephalitis of Cattle. Int J Mol Sci. 2020;21: pubmed 出版商
  18. Elfarrash S, Jensen N, Ferreira N, Betzer C, Thevathasan J, Diekmann R, et al. Organotypic slice culture model demonstrates inter-neuronal spreading of alpha-synuclein aggregates. Acta Neuropathol Commun. 2019;7:213 pubmed 出版商
  19. Ostroff L, Santini E, SEARS R, Deane Z, Kanadia R, LeDoux J, et al. Axon TRAP reveals learning-associated alterations in cortical axonal mRNAs in the lateral amgydala. elife. 2019;8: pubmed 出版商
  20. Guo H, Li Y, Shen L, Wang T, Jia X, Liu L, et al. Disruptive variants of CSDE1 associate with autism and interfere with neuronal development and synaptic transmission. Sci Adv. 2019;5:eaax2166 pubmed 出版商
  21. Xing G, Jing H, Zhang L, Cao Y, Li L, Zhao K, et al. A mechanism in agrin signaling revealed by a prevalent Rapsyn mutation in congenital myasthenic syndrome. elife. 2019;8: pubmed 出版商
  22. Octeau J, Gangwani M, Allam S, Tran D, Huang S, Hoang Trong T, et al. Transient, Consequential Increases in Extracellular Potassium Ions Accompany Channelrhodopsin2 Excitation. Cell Rep. 2019;27:2249-2261.e7 pubmed 出版商
  23. Radhakrishnan S, Trentz O, Reddy M, Rela M, Kandasamy M, Sellathamby S. In vitro transdifferentiation of human adipose tissue-derived stem cells to neural lineage cells - a stage-specific incidence. Adipocyte. 2019;8:164-177 pubmed 出版商
  24. Giandomenico S, Mierau S, Gibbons G, Wenger L, Masullo L, Sit T, et al. Cerebral organoids at the air-liquid interface generate diverse nerve tracts with functional output. Nat Neurosci. 2019;22:669-679 pubmed 出版商
  25. Aprile D, Fruscione F, Baldassari S, Fadda M, Ferrante D, Falace A, et al. TBC1D24 regulates axonal outgrowth and membrane trafficking at the growth cone in rodent and human neurons. Cell Death Differ. 2019;: pubmed 出版商
  26. Zhu C, Li B, Frontzek K, Liu Y, Aguzzi A. SARM1 deficiency up-regulates XAF1, promotes neuronal apoptosis, and accelerates prion disease. J Exp Med. 2019;216:743-756 pubmed 出版商
  27. Cheng W, Martens K, Bashir A, Cheung H, Stukas S, Gibbs E, et al. CHIMERA repetitive mild traumatic brain injury induces chronic behavioural and neuropathological phenotypes in wild-type and APP/PS1 mice. Alzheimers Res Ther. 2019;11:6 pubmed 出版商
  28. Goulao M, Ghosh B, Urban M, Sahu M, Mercogliano C, Charsar B, et al. Astrocyte progenitor transplantation promotes regeneration of bulbospinal respiratory axons, recovery of diaphragm function, and a reduced macrophage response following cervical spinal cord injury. Glia. 2019;67:452-466 pubmed 出版商
  29. Farahani R, Rezaei Lotfi S, Simonian M, Xaymardan M, Hunter N. Neural microvascular pericytes contribute to human adult neurogenesis. J Comp Neurol. 2019;527:780-796 pubmed 出版商
  30. Saifetiarova J, Bhat M. Ablation of cytoskeletal scaffolding proteins, Band 4.1B and Whirlin, leads to cerebellar purkinje axon pathology and motor dysfunction. J Neurosci Res. 2019;97:313-331 pubmed 出版商
  31. Kubo A, Misonou H, Matsuyama M, Nomori A, Wada Kakuda S, Takashima A, et al. Distribution of endogenous normal tau in the mouse brain. J Comp Neurol. 2019;527:985-998 pubmed 出版商
  32. Muñoz S, Li H, Ruberu K, Chu Q, Saghatelian A, Ooi L, et al. The serine protease HtrA1 contributes to the formation of an extracellular 25-kDa apolipoprotein E fragment that stimulates neuritogenesis. J Biol Chem. 2018;293:4071-4084 pubmed 出版商
  33. Rutherford N, Brooks M, Riffe C, Gorion K, Howard J, Dhillon J, et al. Prion-like transmission of α-synuclein pathology in the context of an NFL null background. Neurosci Lett. 2017;661:114-120 pubmed 出版商
  34. Han Q, Lin Q, Huang P, Chen M, Hu X, Fu H, et al. Microglia-derived IL-1? contributes to axon development disorders and synaptic deficit through p38-MAPK signal pathway in septic neonatal rats. J Neuroinflammation. 2017;14:52 pubmed 出版商
  35. Furukawa S, Nagaike M, Ozaki K. Databases for technical aspects of immunohistochemistry. J Toxicol Pathol. 2017;30:79-107 pubmed 出版商
  36. Maggio D, Singh A, Iorgulescu J, Bleicher D, Ghosh M, Lopez M, et al. Identifying the Long-Term Role of Inducible Nitric Oxide Synthase after Contusive Spinal Cord Injury Using a Transgenic Mouse Model. Int J Mol Sci. 2017;18: pubmed 出版商
  37. Grove M, Kim H, Santerre M, Krupka A, Han S, Zhai J, et al. YAP/TAZ initiate and maintain Schwann cell myelination. elife. 2017;6: pubmed 出版商
  38. Rubovitch V, Zilberstein Y, Chapman J, Schreiber S, Pick C. Restoring GM1 ganglioside expression ameliorates axonal outgrowth inhibition and cognitive impairments induced by blast traumatic brain injury. Sci Rep. 2017;7:41269 pubmed 出版商
  39. Cobo J, Abbate F, de Vicente J, Cobo J, Vega J. Searching for proprioceptors in human facial muscles. Neurosci Lett. 2017;640:1-5 pubmed 出版商
  40. Sellgren C, Sheridan S, Gracias J, Xuan D, Fu T, Perlis R. Patient-specific models of microglia-mediated engulfment of synapses and neural progenitors. Mol Psychiatry. 2017;22:170-177 pubmed 出版商
  41. Kirschbaum K, Sonner J, Zeller M, Deumelandt K, Bode J, Sharma R, et al. In vivo nanoparticle imaging of innate immune cells can serve as a marker of disease severity in a model of multiple sclerosis. Proc Natl Acad Sci U S A. 2016;113:13227-13232 pubmed
  42. Bryukhovetskiy I, Dyuizen I, Shevchenko V, Bryukhovetskiy A, Mischenko P, Milkina E, et al. Hematopoietic stem cells as a tool for the treatment of glioblastoma multiforme. Mol Med Rep. 2016;14:4511-4520 pubmed 出版商
  43. Yang C, Danielson E, Qiao T, Metterville J, Brown R, Landers J, et al. Mutant PFN1 causes ALS phenotypes and progressive motor neuron degeneration in mice by a gain of toxicity. Proc Natl Acad Sci U S A. 2016;113:E6209-E6218 pubmed
  44. Ozbek Z, Kocman A, Ozatik O, Söztutar E, Ozkara E, Köse A, et al. Nerve Tissue Prefabrication Inside the Rat Femoral Bone: Does It Work?. Turk Neurosurg. 2017;27:648-655 pubmed 出版商
  45. Bombeiro A, Thomé R, Oliveira Nunes S, Monteiro Moreira B, Verinaud L, Oliveira A. MHC-I and PirB Upregulation in the Central and Peripheral Nervous System following Sciatic Nerve Injury. PLoS ONE. 2016;11:e0161463 pubmed 出版商
  46. Saggu R, Schumacher T, Gerich F, Rakers C, Tai K, Delekate A, et al. Astroglial NF-kB contributes to white matter damage and cognitive impairment in a mouse model of vascular dementia. Acta Neuropathol Commun. 2016;4:76 pubmed 出版商
  47. Ku T, Swaney J, Park J, Albanese A, Murray E, Cho J, et al. Multiplexed and scalable super-resolution imaging of three-dimensional protein localization in size-adjustable tissues. Nat Biotechnol. 2016;34:973-81 pubmed 出版商
  48. Keil M, Sonner J, Lanz T, Oezen I, Bunse T, Bittner S, et al. General control non-derepressible 2 (GCN2) in T cells controls disease progression of autoimmune neuroinflammation. J Neuroimmunol. 2016;297:117-26 pubmed 出版商
  49. Bombeiro A, Santini J, Thomé R, Ferreira E, Nunes S, Moreira B, et al. Enhanced Immune Response in Immunodeficient Mice Improves Peripheral Nerve Regeneration Following Axotomy. Front Cell Neurosci. 2016;10:151 pubmed 出版商
  50. Li T, Braunstein K, Zhang J, Lau A, Sibener L, Deeble C, et al. The neuritic plaque facilitates pathological conversion of tau in an Alzheimer's disease mouse model. Nat Commun. 2016;7:12082 pubmed 出版商
  51. Spitzbarth I, Lempp C, Kegler K, Ulrich R, Kalkuhl A, Deschl U, et al. Immunohistochemical and transcriptome analyses indicate complex breakdown of axonal transport mechanisms in canine distemper leukoencephalitis. Brain Behav. 2016;6:e00472 pubmed 出版商
  52. Schulz A, Büttner R, Hagel C, Baader S, Kluwe L, Salamon J, et al. The importance of nerve microenvironment for schwannoma development. Acta Neuropathol. 2016;132:289-307 pubmed 出版商
  53. Hamam D, Abdouh M, Gao Z, Arena V, Arena M, Arena G. Transfer of malignant trait to BRCA1 deficient human fibroblasts following exposure to serum of cancer patients. J Exp Clin Cancer Res. 2016;35:80 pubmed 出版商
  54. Shah B, Lutter D, Bochenek M, Kato K, Tsytsyura Y, Glyvuk N, et al. C3G/Rapgef1 Is Required in Multipolar Neurons for the Transition to a Bipolar Morphology during Cortical Development. PLoS ONE. 2016;11:e0154174 pubmed 出版商
  55. Liu Q, Zhang R, Li D, Cheng S, Yang Y, Tian T, et al. Muse Cells, a New Type of Pluripotent Stem Cell Derived from Human Fibroblasts. Cell Reprogram. 2016;18:67-77 pubmed 出版商
  56. Mao C, Agca C, Mocko Strand J, Wang J, Ullrich Lüter E, Pan P, et al. Substituting mouse transcription factor Pou4f2 with a sea urchin orthologue restores retinal ganglion cell development. Proc Biol Sci. 2016;283:20152978 pubmed 出版商
  57. Ito M, Nakamura K, Mori F, Miki Y, Tanji K, Wakabayashi K. Novel eosinophilic neuronal cytoplasmic inclusions in the external cuneate nucleus of humans. Neuropathology. 2016;36:441-447 pubmed 出版商
  58. Urnukhsaikhan E, Cho H, Mishig Ochir T, Seo Y, Park J. Pulsed electromagnetic fields promote survival and neuronal differentiation of human BM-MSCs. Life Sci. 2016;151:130-138 pubmed 出版商
  59. Nawaz M, Giarda E, Bedogni F, La Montanara P, Ricciardi S, Ciceri D, et al. CDKL5 and Shootin1 Interact and Concur in Regulating Neuronal Polarization. PLoS ONE. 2016;11:e0148634 pubmed 出版商
  60. Sundarkrishnan L, Bradish J, Oliai B, Hosler G. Cutaneous Cellular Pseudoglandular Schwannoma: An Unusual Histopathologic Variant. Am J Dermatopathol. 2016;38:315-8 pubmed 出版商
  61. Bian Y, Yang L, Wang Z, Wang Q, Zeng L, Xu G. Repeated Three-Hour Maternal Separation Induces Depression-Like Behavior and Affects the Expression of Hippocampal Plasticity-Related Proteins in C57BL/6N Mice. Neural Plast. 2015;2015:627837 pubmed 出版商
  62. Mardaryev A, Liu B, Rapisarda V, Poterlowicz K, Malashchuk I, Rudolf J, et al. Cbx4 maintains the epithelial lineage identity and cell proliferation in the developing stratified epithelium. J Cell Biol. 2016;212:77-89 pubmed 出版商
  63. Yamaguchi M, Komori T, Nakata Y, Yagishita A, Morino M, Isozaki E. Multinodular and vacuolating neuronal tumor affecting amygdala and hippocampus: A quasi-tumor?. Pathol Int. 2016;66:34-41 pubmed 出版商
  64. Wang H, Hsieh P, Huang D, Chin P, Chou C, Tung C, et al. RBFOX3/NeuN is Required for Hippocampal Circuit Balance and Function. Sci Rep. 2015;5:17383 pubmed 出版商
  65. Fernández Santiago R, Carballo Carbajal I, Castellano G, Torrent R, Richaud Y, Sánchez Danés A, et al. Aberrant epigenome in iPSC-derived dopaminergic neurons from Parkinson's disease patients. EMBO Mol Med. 2015;7:1529-46 pubmed 出版商
  66. Pisa D, Alonso R, Rábano A, Rodal I, Carrasco L. Different Brain Regions are Infected with Fungi in Alzheimer's Disease. Sci Rep. 2015;5:15015 pubmed 出版商
  67. Werner A, Iwasaki S, McGourty C, Medina Ruiz S, Teerikorpi N, Fedrigo I, et al. Cell-fate determination by ubiquitin-dependent regulation of translation. Nature. 2015;525:523-7 pubmed 出版商
  68. Miyamoto Y, Torii T, Takada S, Ohno N, Saitoh Y, Nakamura K, et al. Involvement of the Tyro3 receptor and its intracellular partner Fyn signaling in Schwann cell myelination. Mol Biol Cell. 2015;26:3489-503 pubmed 出版商
  69. Peng G, Yuan X, Yuan J, Liu Q, Dai M, Shen C, et al. miR-25 promotes glioblastoma cell proliferation and invasion by directly targeting NEFL. Mol Cell Biochem. 2015;409:103-11 pubmed 出版商
  70. Johnson V, Xiang M, Chen Z, Junge H. Neurite Mistargeting and Inverse Order of Intraretinal Vascular Plexus Formation Precede Subretinal Vascularization in Vldlr Mutant Mice. PLoS ONE. 2015;10:e0132013 pubmed 出版商
  71. Guldimann C, Bärtschi M, Frey J, Zurbriggen A, Seuberlich T, Oevermann A. Increased spread and replication efficiency of Listeria monocytogenes in organotypic brain-slices is related to multilocus variable number of tandem repeat analysis (MLVA) complex. BMC Microbiol. 2015;15:134 pubmed 出版商
  72. Radovanovic D, Peikert K, Lindström M, Domellöf F. Sympathetic innervation of human muscle spindles. J Anat. 2015;226:542-8 pubmed 出版商
  73. Miracco C, Toscano M, Butorano M, Baldino G, Tacchini D, Barone A, et al. Unusual clear cell, lymphoplasmacyte-rich, dural-based tumor with divergent differentiation: a tricky case mimicking a meningioma. Hum Pathol. 2015;46:1050-6 pubmed 出版商
  74. Boska M, Dash P, Knibbe J, Epstein A, Akhter S, Fields N, et al. Associations between brain microstructures, metabolites, and cognitive deficits during chronic HIV-1 infection of humanized mice. Mol Neurodegener. 2014;9:58 pubmed 出版商
  75. McLean N, Popescu B, Gordon T, Zochodne D, Verge V. Delayed nerve stimulation promotes axon-protective neurofilament phosphorylation, accelerates immune cell clearance and enhances remyelination in vivo in focally demyelinated nerves. PLoS ONE. 2014;9:e110174 pubmed 出版商
  76. Van Brocklyn J, Wojton J, Meisen W, Kellough D, Ecsedy J, Kaur B, et al. Aurora-A inhibition offers a novel therapy effective against intracranial glioblastoma. Cancer Res. 2014;74:5364-70 pubmed 出版商
  77. Rao M, McBrayer M, Campbell J, Kumar A, Hashim A, Sershen H, et al. Specific calpain inhibition by calpastatin prevents tauopathy and neurodegeneration and restores normal lifespan in tau P301L mice. J Neurosci. 2014;34:9222-34 pubmed 出版商
  78. Oenarto J, Gorg B, Moos M, Bidmon H, Haussinger D. Expression of organic osmolyte transporters in cultured rat astrocytes and rat and human cerebral cortex. Arch Biochem Biophys. 2014;560:59-72 pubmed 出版商
  79. Mori F, Watanabe Y, Miki Y, Tanji K, Odagiri S, Eto K, et al. Ubiquitin-negative, eosinophilic neuronal cytoplasmic inclusions associated with stress granules and autophagy: an immunohistochemical investigation of two cases. Neuropathology. 2014;34:140-7 pubmed
  80. Rupprecht A, Sittner D, Smorodchenko A, Hilse K, Goyn J, Moldzio R, et al. Uncoupling protein 2 and 4 expression pattern during stem cell differentiation provides new insight into their putative function. PLoS ONE. 2014;9:e88474 pubmed 出版商
  81. Chen L, Dai J, Wang Z, Zhang H, Huang Y, Zhao Y. Ginseng Total Saponins Reverse Corticosterone-Induced Changes in Depression-Like Behavior and Hippocampal Plasticity-Related Proteins by Interfering with GSK-3 ? -CREB Signaling Pathway. Evid Based Complement Alternat Med. 2014;2014:506735 pubmed 出版商
  82. Bodi I, Curran O, Selway R, Elwes R, Burrone J, Laxton R, et al. Two cases of multinodular and vacuolating neuronal tumour. Acta Neuropathol Commun. 2014;2:7 pubmed 出版商
  83. Brison E, Jacomy H, Desforges M, Talbot P. Novel treatment with neuroprotective and antiviral properties against a neuroinvasive human respiratory virus. J Virol. 2014;88:1548-63 pubmed 出版商
  84. Akane H, Shiraki A, Imatanaka N, Akahori Y, Itahashi M, Abe H, et al. Glycidol induces axonopathy and aberrations of hippocampal neurogenesis affecting late-stage differentiation by exposure to rats in a framework of 28-day toxicity study. Toxicol Lett. 2014;224:424-32 pubmed 出版商
  85. Karnas D, Hicks D, Mordel J, Pevet P, Meissl H. Intrinsic photosensitive retinal ganglion cells in the diurnal rodent, Arvicanthis ansorgei. PLoS ONE. 2013;8:e73343 pubmed 出版商
  86. Alicea B, Murthy S, Keaton S, Cobbett P, Cibelli J, Suhr S. Defining the diversity of phenotypic respecification using multiple cell lines and reprogramming regimens. Stem Cells Dev. 2013;22:2641-54 pubmed 出版商
  87. Goto K, Kato G, Kawahara I, Luo Y, Obata K, Misawa H, et al. In vivo imaging of enteric neurogenesis in the deep tissue of mouse small intestine. PLoS ONE. 2013;8:e54814 pubmed 出版商
  88. Hübener J, Weber J, Richter C, Honold L, Weiss A, Murad F, et al. Calpain-mediated ataxin-3 cleavage in the molecular pathogenesis of spinocerebellar ataxia type 3 (SCA3). Hum Mol Genet. 2013;22:508-18 pubmed 出版商
  89. Rotondo F, Bernardo M, Scheithauer B, Latif S, Bogaev C, Sav A, et al. Atypical pituitary adenoma with neurocytic transformation. Appl Immunohistochem Mol Morphol. 2014;22:72-6 pubmed 出版商
  90. Karnas D, Mordel J, Bonnet D, Pevet P, Hicks D, Meissl H. Heterogeneity of intrinsically photosensitive retinal ganglion cells in the mouse revealed by molecular phenotyping. J Comp Neurol. 2013;521:912-32 pubmed 出版商
  91. Prabowo A, Anink J, Lammens M, Nellist M, van den Ouweland A, Adle Biassette H, et al. Fetal brain lesions in tuberous sclerosis complex: TORC1 activation and inflammation. Brain Pathol. 2013;23:45-59 pubmed 出版商
  92. Zhao Y, Wang Z, Dai J, Chen L, Huang Y, Zhan Z. Beneficial effects of benzodiazepine diazepam on chronic stress-induced impairment of hippocampal structural plasticity and depression-like behavior in mice. Behav Brain Res. 2012;228:339-50 pubmed 出版商
  93. Huizinga R, van der Star B, Kipp M, Jong R, Gerritsen W, Clarner T, et al. Phagocytosis of neuronal debris by microglia is associated with neuronal damage in multiple sclerosis. Glia. 2012;60:422-31 pubmed 出版商
  94. Zurolo E, Iyer A, Maroso M, Carbonell C, Anink J, Ravizza T, et al. Activation of Toll-like receptor, RAGE and HMGB1 signalling in malformations of cortical development. Brain. 2011;134:1015-32 pubmed 出版商
  95. Bosco A, Steele M, Vetter M. Early microglia activation in a mouse model of chronic glaucoma. J Comp Neurol. 2011;519:599-620 pubmed 出版商
  96. van Noort J, Bsibsi M, Gerritsen W, van der Valk P, Bajramovic J, Steinman L, et al. Alphab-crystallin is a target for adaptive immune responses and a trigger of innate responses in preactive multiple sclerosis lesions. J Neuropathol Exp Neurol. 2010;69:694-703 pubmed 出版商
  97. Levendusky M, Basle J, Chang S, Mandalaywala N, Voigt J, DEARBORN R. Expression and regulation of vitamin D3 upregulated protein 1 (VDUP1) is conserved in mammalian and insect brain. J Comp Neurol. 2009;517:581-600 pubmed 出版商
  98. Shirasaki H, Kanaizumi E, Himi T. Immunohistochemical localization of the bradykinin B1 and B2 receptors in human nasal mucosa. Mediators Inflamm. 2009;2009:102406 pubmed 出版商
  99. Moshiri A, Gonzalez E, Tagawa K, Maeda H, Wang M, Frishman L, et al. Near complete loss of retinal ganglion cells in the math5/brn3b double knockout elicits severe reductions of other cell types during retinal development. Dev Biol. 2008;316:214-27 pubmed 出版商
  100. Kristiansen L, Beneyto M, Haroutunian V, Meador Woodruff J. Changes in NMDA receptor subunits and interacting PSD proteins in dorsolateral prefrontal and anterior cingulate cortex indicate abnormal regional expression in schizophrenia. Mol Psychiatry. 2006;11:737-47, 705 pubmed
  101. Katayama S, Watanabe C, Noda K, Ohishi H, Yamamura Y, Nishisaka T, et al. Numerous conglomerate inclusions in slowly progressive familial amyotrophic lateral sclerosis with posterior column involvement. J Neurol Sci. 1999;171:72-7 pubmed