这是一篇来自已证抗体库的有关人类 神经肽Y (neuropeptide Y) 的综述,是根据42篇发表使用所有方法的文章归纳的。这综述旨在帮助来邦网的访客找到最适合神经肽Y 抗体。
神经肽Y 同义词: PYY4

艾博抗(上海)贸易有限公司
domestic rabbit 多克隆
  • 免疫组化; 人类; 1:1000; 图 13j
艾博抗(上海)贸易有限公司神经肽Y抗体(ABCAM, ab30914)被用于被用于免疫组化在人类样本上浓度为1:1000 (图 13j). Endocrinology (2021) ncbi
豚鼠 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:1000; 图 7a
艾博抗(上海)贸易有限公司神经肽Y抗体(Abcam, AB-10341)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:1000 (图 7a). Arthritis Res Ther (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 大鼠; 图 5s1
艾博抗(上海)贸易有限公司神经肽Y抗体(Abcam, Ab30914)被用于被用于免疫印迹在大鼠样本上 (图 5s1). elife (2020) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:1000; 图 4a
艾博抗(上海)贸易有限公司神经肽Y抗体(Abcam, ab30914)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:1000 (图 4a). Sci Rep (2020) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:2000; 图 s4
艾博抗(上海)贸易有限公司神经肽Y抗体(Abcam, AB30914)被用于被用于免疫组化在小鼠样本上浓度为1:2000 (图 s4). Nat Commun (2020) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 大鼠; 1:500; 图 1a
艾博抗(上海)贸易有限公司神经肽Y抗体(Abcam, ab30914)被用于被用于免疫组化-石蜡切片在大鼠样本上浓度为1:500 (图 1a). J Ovarian Res (2020) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 大鼠; 1:2500; 图 5d, 8d, 11d
艾博抗(上海)贸易有限公司神经肽Y抗体(Abcam, ab30914)被用于被用于免疫组化-石蜡切片在大鼠样本上浓度为1:2500 (图 5d, 8d, 11d). J Comp Neurol (2020) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; degu; 1:10,000; 图 7a
艾博抗(上海)贸易有限公司神经肽Y抗体(Abcam, ab30914)被用于被用于免疫组化-冰冻切片在degu样本上浓度为1:10,000 (图 7a). J Comp Neurol (2019) ncbi
小鼠 单克隆(8)
  • 免疫组化-冰冻切片; 小鼠; 1:5000; 图 3a
艾博抗(上海)贸易有限公司神经肽Y抗体(Abcam, ab112473)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:5000 (图 3a). J Comp Neurol (2017) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:10,000; 图 5a
艾博抗(上海)贸易有限公司神经肽Y抗体(Abcam, ab30914)被用于被用于免疫组化在小鼠样本上浓度为1:10,000 (图 5a). Psychoneuroendocrinology (2016) ncbi
ImmunoStar
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:1000; 图 5f
ImmunoStar神经肽Y抗体(Immunostar, 22940)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:1000 (图 5f). Front Neurosci (2022) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:1000; 图 s2b
ImmunoStar神经肽Y抗体(ImmunoStar, 22940)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:1000 (图 s2b). Cell Rep (2021) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:2000; 图 10a
ImmunoStar神经肽Y抗体(ImmunoStar, 22940)被用于被用于免疫组化在小鼠样本上浓度为1:2000 (图 10a). Eneuro (2021) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:500; 图 8c
ImmunoStar神经肽Y抗体(ImmunoStar, 22940)被用于被用于免疫组化在小鼠样本上浓度为1:500 (图 8c). J Comp Neurol (2019) ncbi
domestic rabbit 多克隆
  • 免疫组化基因敲除验证; 小鼠; 1:5000; 图 3b
ImmunoStar神经肽Y抗体(Immunostar, 22940)被用于被用于免疫组化基因敲除验证在小鼠样本上浓度为1:5000 (图 3b). Neuropeptides (2019) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 图 6b
ImmunoStar神经肽Y抗体(Immunostar, 22940)被用于被用于免疫组化在小鼠样本上 (图 6b). Cell (2018) ncbi
domestic rabbit 多克隆
  • 免疫组化; 人类; 1:1000; 图 s21c
ImmunoStar神经肽Y抗体(Immunostar, 22940)被用于被用于免疫组化在人类样本上浓度为1:1000 (图 s21c). Science (2017) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:500; 图 s2
ImmunoStar神经肽Y抗体(Immunostar, 22940)被用于被用于免疫组化在小鼠样本上浓度为1:500 (图 s2). Nat Commun (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:1000; 图 3
ImmunoStar神经肽Y抗体(ImmunoStar, 22940)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:1000 (图 3). Sci Rep (2016) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类
ImmunoStar神经肽Y抗体(ImmunoStar, 22940)被用于被用于免疫细胞化学在人类样本上. Cereb Cortex (2016) ncbi
圣克鲁斯生物技术
小鼠 单克隆(F-6)
  • 免疫组化; 大鼠; 1:500; 图 4ei
圣克鲁斯生物技术神经肽Y抗体(Santa Cruz, sc-133080)被用于被用于免疫组化在大鼠样本上浓度为1:500 (图 4ei). Transl Psychiatry (2020) ncbi
小鼠 单克隆(F-6)
  • 免疫组化-冰冻切片; 大鼠; 1:500; 图 4.2
圣克鲁斯生物技术神经肽Y抗体(Santa Cruz, sc-133080)被用于被用于免疫组化-冰冻切片在大鼠样本上浓度为1:500 (图 4.2). Transl Psychiatry (2016) ncbi
小鼠 单克隆(F-6)
  • 免疫印迹; 大鼠; 1:500
圣克鲁斯生物技术神经肽Y抗体(Santa Cruz Biotechnology, sc-133080)被用于被用于免疫印迹在大鼠样本上浓度为1:500. Neuropsychopharmacology (2015) ncbi
赛默飞世尔
小鼠 单克隆(8)
赛默飞世尔神经肽Y抗体(ThermoFisher Scientific, ABS 028-08-02)被用于. Animals (Basel) (2020) ncbi
小鼠 单克隆(8)
  • 免疫组化-自由浮动切片; 大鼠; 1:500; 图 1d
赛默飞世尔神经肽Y抗体(ThermoFisher, ABS 028-08-02)被用于被用于免疫组化-自由浮动切片在大鼠样本上浓度为1:500 (图 1d). Sci Rep (2016) ncbi
赛信通(上海)生物试剂有限公司
domestic rabbit 单克隆(D7Y5A)
  • 免疫组化; 小鼠; 1:1000; 图 2j
赛信通(上海)生物试剂有限公司神经肽Y抗体(Cell Signaling, 11976S)被用于被用于免疫组化在小鼠样本上浓度为1:1000 (图 2j). Nat Commun (2021) ncbi
domestic rabbit 单克隆(D7Y5A)
  • 免疫组化; 小鼠; 1:400; 图 1c
赛信通(上海)生物试剂有限公司神经肽Y抗体(Cell Signaling Technology, 11976 s)被用于被用于免疫组化在小鼠样本上浓度为1:400 (图 1c). elife (2021) ncbi
domestic rabbit 单克隆(D7Y5A)
  • 免疫组化-冰冻切片; 小鼠; 1:1000; 图 5a
赛信通(上海)生物试剂有限公司神经肽Y抗体(Cell Signaling, 11976)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:1000 (图 5a). Nat Commun (2020) ncbi
domestic rabbit 单克隆(D7Y5A)
  • 免疫印迹; 大鼠; 1:1000; 图 2a
赛信通(上海)生物试剂有限公司神经肽Y抗体(Cell Signaling, 11976)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 2a). J Ovarian Res (2020) ncbi
domestic rabbit 单克隆(D7Y5A)
  • 免疫组化; 小鼠; 1:1000; 图 3k
赛信通(上海)生物试剂有限公司神经肽Y抗体(Cell Signaling, 11976)被用于被用于免疫组化在小鼠样本上浓度为1:1000 (图 3k). elife (2019) ncbi
domestic rabbit 单克隆(D7Y5A)
  • 免疫组化; 小鼠; 图 st1
赛信通(上海)生物试剂有限公司神经肽Y抗体(Cell Signalling, 11976)被用于被用于免疫组化在小鼠样本上 (图 st1). Nat Biotechnol (2016) ncbi
domestic rabbit 单克隆(D7Y5A)
  • 免疫组化-冰冻切片; 大鼠; 1:1600; 图 5
赛信通(上海)生物试剂有限公司神经肽Y抗体(Cell signaling, 11976)被用于被用于免疫组化-冰冻切片在大鼠样本上浓度为1:1600 (图 5). Front Neurosci (2015) ncbi
domestic rabbit 单克隆(D7Y5A)
  • 免疫组化-冰冻切片; 小鼠; 图 7h
赛信通(上海)生物试剂有限公司神经肽Y抗体(Millipore, 11976P)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 7h). PLoS ONE (2015) ncbi
Bachem
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 大鼠; 1:10,000; 图 7b
Bachem神经肽Y抗体(Peninsula Laboratories, T-4070)被用于被用于免疫组化-冰冻切片在大鼠样本上浓度为1:10,000 (图 7b). Aging Dis (2019) ncbi
domestic rabbit 多克隆
  • 免疫组化-自由浮动切片; 小鼠; 1:2000; 图 7
Bachem神经肽Y抗体(Peninsula laboratories, T-4070)被用于被用于免疫组化-自由浮动切片在小鼠样本上浓度为1:2000 (图 7). Front Cell Neurosci (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化; 大鼠; 1:4000; 图 4
Bachem神经肽Y抗体(Peninsula Lab, T-4070)被用于被用于免疫组化在大鼠样本上浓度为1:4000 (图 4). Front Cell Neurosci (2016) ncbi
西格玛奥德里奇
domestic rabbit 多克隆
  • 免疫组化-自由浮动切片; 大鼠; 1:1000; 图 11d
西格玛奥德里奇神经肽Y抗体(Sigma, N-9528)被用于被用于免疫组化-自由浮动切片在大鼠样本上浓度为1:1000 (图 11d). Glia (2022) ncbi
domestic rabbit 多克隆
  • 免疫组化基因敲除验证; 斑马鱼; 1:5000; 图 2
西格玛奥德里奇神经肽Y抗体(Sigma-Aldrich, N9528)被用于被用于免疫组化基因敲除验证在斑马鱼样本上浓度为1:5000 (图 2). Sci Rep (2020) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:500; 图 5
西格玛奥德里奇神经肽Y抗体(Sigma, N9528)被用于被用于免疫组化在小鼠样本上浓度为1:500 (图 5). Dis Model Mech (2017) ncbi
domestic rabbit 多克隆
  • 免疫组化; 斑马鱼; 1:1000; 图 4e
西格玛奥德里奇神经肽Y抗体(Sigma, N9528)被用于被用于免疫组化在斑马鱼样本上浓度为1:1000 (图 4e). Front Neural Circuits (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 大鼠; 图 6b
西格玛奥德里奇神经肽Y抗体(Sigma-Aldrich, N9528)被用于被用于免疫印迹在大鼠样本上 (图 6b). J Neuroendocrinol (2016) ncbi
domestic rabbit 多克隆
西格玛奥德里奇神经肽Y抗体(Sigma, N9528)被用于. Biol Reprod (2015) ncbi
小鼠 单克隆(3B5)
  • 免疫组化; 大鼠; 1:500
西格玛奥德里奇神经肽Y抗体(Sigma, WH0004852M1)被用于被用于免疫组化在大鼠样本上浓度为1:500. Eur J Neurosci (2011) ncbi
文章列表
  1. Fern xe1 ndez Arjona M, Le xf3 n Rodr xed guez A, Grondona J, L xf3 pez xc1 valos M. Long-term priming of hypothalamic microglia is associated with energy balance disturbances under diet-induced obesity. Glia. 2022;70:1734-1761 pubmed 出版商
  2. Moore A, Chinnaiya K, Kim D, Brown S, Stewart I, Robins S, et al. Loss of Function of the Neural Cell Adhesion Molecule NrCAM Regulates Differentiation, Proliferation and Neurogenesis in Early Postnatal Hypothalamic Tanycytes. Front Neurosci. 2022;16:832961 pubmed 出版商
  3. Zhang X, Liu Y, Hong X, Li X, Meshul C, Moore C, et al. NG2 glia-derived GABA release tunes inhibitory synapses and contributes to stress-induced anxiety. Nat Commun. 2021;12:5740 pubmed 出版商
  4. Lv X, Gao F, LI T, Xue P, Wang X, Wan M, et al. Skeleton interoception regulates bone and fat metabolism through hypothalamic neuroendocrine NPY. elife. 2021;10: pubmed 出版商
  5. Magno L, Asgarian Z, Pendolino V, Velona T, Mackintosh A, Lee F, et al. Transient developmental imbalance of cortical interneuron subtypes presages long-term changes in behavior. Cell Rep. 2021;35:109249 pubmed 出版商
  6. Keen K, Petersen A, Figueroa A, Fordyce B, Shin J, Yadav R, et al. Physiological Characterization and Transcriptomic Properties of GnRH Neurons Derived From Human Stem Cells. Endocrinology. 2021;162: pubmed 出版商
  7. Gulbranson D, Ho K, Yu G, Yu X, Das M, Shao E, et al. Phenotypic Differences between the Alzheimer's Disease-Related hAPP-J20 Model and Heterozygous Zbtb20 Knock-Out Mice. Eneuro. 2021;8: pubmed 出版商
  8. Kerr G, To B, White I, Millecamps M, Beier F, Grol M, et al. Diet-induced obesity leads to behavioral indicators of pain preceding structural joint damage in wild-type mice. Arthritis Res Ther. 2021;23:93 pubmed 出版商
  9. Kreutzberger A, Kiessling V, Doyle C, Schenk N, Upchurch C, Elmer Dixon M, et al. Distinct insulin granule subpopulations implicated in the secretory pathology of diabetes types 1 and 2. elife. 2020;9: pubmed 出版商
  10. Jana B, Całka J. Endometritis Changes the Neurochemical Characteristics of the Caudal Mesenteric Ganglion Neurons Supplying the Gilt Uterus. Animals (Basel). 2020;10: pubmed 出版商
  11. Shiozaki K, Kawabe M, Karasuyama K, Kurachi T, Hayashi A, Ataka K, et al. Neuropeptide Y deficiency induces anxiety-like behaviours in zebrafish (Danio rerio). Sci Rep. 2020;10:5913 pubmed 出版商
  12. Ghule A, Racz I, Bilkei Gorzo A, Leidmaa E, Sieburg M, Zimmer A. Modulation of feeding behavior and metabolism by dynorphin. Sci Rep. 2020;10:3821 pubmed 出版商
  13. Wu Z, Parry M, Hou X, Liu M, Wang H, Cain R, et al. Gene therapy conversion of striatal astrocytes into GABAergic neurons in mouse models of Huntington's disease. Nat Commun. 2020;11:1105 pubmed 出版商
  14. Cohen S, Matar M, Vainer E, Zohar J, Kaplan Z, Cohen H. Significance of the orexinergic system in modulating stress-related responses in an animal model of post-traumatic stress disorder. Transl Psychiatry. 2020;10:10 pubmed 出版商
  15. Engström Ruud L, Pereira M, De Solis A, Fenselau H, Bruning J. NPY mediates the rapid feeding and glucose metabolism regulatory functions of AgRP neurons. Nat Commun. 2020;11:442 pubmed 出版商
  16. Urata Y, Salehi R, Lima P, Osuga Y, Tsang B. Neuropeptide Y regulates proliferation and apoptosis in granulosa cells in a follicular stage-dependent manner. J Ovarian Res. 2020;13:5 pubmed 出版商
  17. Upadhya D, Kodali M, Gitaí D, Castro O, Zanirati G, Upadhya R, et al. A Model of Chronic Temporal Lobe Epilepsy Presenting Constantly Rhythmic and Robust Spontaneous Seizures, Co-morbidities and Hippocampal Neuropathology. Aging Dis. 2019;10:915-936 pubmed 出版商
  18. Carron S, Sun M, Shultz S, Rajan R. Inhibitory neuronal changes following a mixed diffuse-focal model of traumatic brain injury. J Comp Neurol. 2020;528:175-198 pubmed 出版商
  19. Chen Y, Essner R, Kosar S, Miller O, Lin Y, Mesgarzadeh S, et al. Sustained NPY signaling enables AgRP neurons to drive feeding. elife. 2019;8: pubmed 出版商
  20. Bienkowski M, Benavidez N, Wu K, Gou L, Becerra M, Dong H. Extrastriate connectivity of the mouse dorsal lateral geniculate thalamic nucleus. J Comp Neurol. 2019;527:1419-1442 pubmed 出版商
  21. Wee N, Sinder B, Novak S, Wang X, Stoddard C, Matthews B, et al. Skeletal phenotype of the neuropeptide Y knockout mouse. Neuropeptides. 2019;73:78-88 pubmed 出版商
  22. Deichler A, Carrasco D, González Cabrera C, Letelier J, Mar n G, Mpodozis J. The nucleus pretectalis principalis: A pretectal structure hidden in the mammalian thalamus. J Comp Neurol. 2019;527:372-391 pubmed 出版商
  23. Alhadeff A, Su Z, Hernandez E, Klima M, Phillips S, Holland R, et al. A Neural Circuit for the Suppression of Pain by a Competing Need State. Cell. 2018;173:140-152.e15 pubmed 出版商
  24. Sousa A, Zhu Y, Raghanti M, Kitchen R, Onorati M, Tebbenkamp A, et al. Molecular and cellular reorganization of neural circuits in the human lineage. Science. 2017;358:1027-1032 pubmed 出版商
  25. Ladrón de Guevara Miranda D, Millón C, Rosell Valle C, Pérez Fernández M, Missiroli M, Serrano A, et al. Long-lasting memory deficits in mice withdrawn from cocaine are concomitant with neuroadaptations in hippocampal basal activity, GABAergic interneurons and adult neurogenesis. Dis Model Mech. 2017;10:323-336 pubmed 出版商
  26. Cohen S, Ifergane G, Vainer E, Matar M, Kaplan Z, Zohar J, et al. The wake-promoting drug modafinil stimulates specific hypothalamic circuits to promote adaptive stress responses in an animal model of PTSD. Transl Psychiatry. 2016;6:e917 pubmed 出版商
  27. Yamada J, Jinno S. Molecular heterogeneity of aggrecan-based perineuronal nets around five subclasses of parvalbumin-expressing neurons in the mouse hippocampus. J Comp Neurol. 2017;525:1234-1249 pubmed 出版商
  28. Ramírez Franco J, Munoz Cuevas F, Lujan R, Jurado S. Excitatory and Inhibitory Neurons in the Hippocampus Exhibit Molecularly Distinct Large Dense Core Vesicles. Front Cell Neurosci. 2016;10:202 pubmed 出版商
  29. Yao X, Wang M, He X, He F, Zhang S, Lu W, et al. Electrical coupling regulates layer 1 interneuron microcircuit formation in the neocortex. Nat Commun. 2016;7:12229 pubmed 出版商
  30. Ku T, Swaney J, Park J, Albanese A, Murray E, Cho J, et al. Multiplexed and scalable super-resolution imaging of three-dimensional protein localization in size-adjustable tissues. Nat Biotechnol. 2016;34:973-81 pubmed 出版商
  31. Turner K, Hawkins T, Yáñez J, Anadón R, Wilson S, Folgueira M. Afferent Connectivity of the Zebrafish Habenulae. Front Neural Circuits. 2016;10:30 pubmed 出版商
  32. Liput D, Lu V, Davis M, Puhl H, Ikeda S. Rem2, a member of the RGK family of small GTPases, is enriched in nuclei of the basal ganglia. Sci Rep. 2016;6:25137 pubmed 出版商
  33. Wang X, Song X, Wu L, Nadler J, Zhan R. Persistent Hyperactivity of Hippocampal Dentate Interneurons After a Silent Period in the Rat Pilocarpine Model of Epilepsy. Front Cell Neurosci. 2016;10:94 pubmed 出版商
  34. Fuente Martín E, García Cáceres C, Argente Arizón P, Diaz F, Granado M, Freire Regatillo A, et al. Ghrelin Regulates Glucose and Glutamate Transporters in Hypothalamic Astrocytes. Sci Rep. 2016;6:23673 pubmed 出版商
  35. Conceição E, Carvalho J, Manhães A, Guarda D, Figueiredo M, Quitete F, et al. Effect of Early Overfeeding on Palatable Food Preference and Brain Dopaminergic Reward System at Adulthood: Role of Calcium Supplementation. J Neuroendocrinol. 2016;28: pubmed 出版商
  36. Cabral A, Portiansky E, Sánchez Jaramillo E, Zigman J, Perello M. Ghrelin activates hypophysiotropic corticotropin-releasing factor neurons independently of the arcuate nucleus. Psychoneuroendocrinology. 2016;67:27-39 pubmed 出版商
  37. Lee S, Kang B, Shin M, Min J, Heo C, Lee Y, et al. Chronic Stress Decreases Cerebrovascular Responses During Rat Hindlimb Electrical Stimulation. Front Neurosci. 2015;9:462 pubmed 出版商
  38. Johnson V, Xiang M, Chen Z, Junge H. Neurite Mistargeting and Inverse Order of Intraretinal Vascular Plexus Formation Precede Subretinal Vascularization in Vldlr Mutant Mice. PLoS ONE. 2015;10:e0132013 pubmed 出版商
  39. Alves B, Cardoso R, Prezotto L, Thorson J, Bedenbaugh M, Sharpton S, et al. Elevated body weight gain during the juvenile period alters neuropeptide Y-gonadotropin-releasing hormone circuitry in prepubertal heifers. Biol Reprod. 2015;92:46 pubmed 出版商
  40. Cohen S, Vainer E, Matar M, Kozlovsky N, Kaplan Z, Zohar J, et al. Diurnal fluctuations in HPA and neuropeptide Y-ergic systems underlie differences in vulnerability to traumatic stress responses at different zeitgeber times. Neuropsychopharmacology. 2015;40:774-90 pubmed 出版商
  41. Radonjić N, Memi F, Ortega J, Glidden N, Zhan H, Zecevic N. The Role of Sonic Hedgehog in the Specification of Human Cortical Progenitors In Vitro. Cereb Cortex. 2016;26:131-43 pubmed 出版商
  42. Corteen N, Cole T, Sarna A, Sieghart W, Swinny J. Localization of GABA-A receptor alpha subunits on neurochemically distinct cell types in the rat locus coeruleus. Eur J Neurosci. 2011;34:250-62 pubmed 出版商