这是一篇来自已证抗体库的有关人类 骨钙素 (osteocalcin) 的综述,是根据32篇发表使用所有方法的文章归纳的。这综述旨在帮助来邦网的访客找到最适合骨钙素 抗体。
骨钙素 同义词: BGP; OC; OCN

圣克鲁斯生物技术
小鼠 单克隆(D-11)
  • 免疫印迹; 人类; 图 4b
圣克鲁斯生物技术骨钙素抗体(Santa, sc-390877)被用于被用于免疫印迹在人类样本上 (图 4b). Int J Med Sci (2022) ncbi
小鼠 单克隆(G-5)
  • 免疫组化-冰冻切片; 小鼠; 1:100; 图 3q
圣克鲁斯生物技术骨钙素抗体(Santa Cruz, sc-365797)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:100 (图 3q). Nat Commun (2021) ncbi
小鼠 单克隆(D-11)
  • 免疫印迹; 小鼠; 1:500; 图 5a
圣克鲁斯生物技术骨钙素抗体(Santa Cruz Biotechnology, sc-390877)被用于被用于免疫印迹在小鼠样本上浓度为1:500 (图 5a). J Clin Invest (2021) ncbi
小鼠 单克隆(G-5)
  • 免疫印迹; 小鼠; 图 7d, 7h
圣克鲁斯生物技术骨钙素抗体(Santa Cruz, sc-365797)被用于被用于免疫印迹在小鼠样本上 (图 7d, 7h). PLoS Genet (2021) ncbi
小鼠 单克隆(G-5)
  • 免疫细胞化学; 人类; 图 2c
圣克鲁斯生物技术骨钙素抗体(Santa Cruz, sc-365797)被用于被用于免疫细胞化学在人类样本上 (图 2c). Int J Mol Sci (2020) ncbi
小鼠 单克隆(G-5)
  • 免疫印迹; 小鼠; 图 s3c
圣克鲁斯生物技术骨钙素抗体(Santa Cruz, sc-365797)被用于被用于免疫印迹在小鼠样本上 (图 s3c). Genome Biol (2020) ncbi
小鼠 单克隆(G-5)
  • 免疫组化; 小鼠; 1:150; 图 1f
圣克鲁斯生物技术骨钙素抗体(Santa Cruz, sc-365797)被用于被用于免疫组化在小鼠样本上浓度为1:150 (图 1f). Nat Commun (2019) ncbi
小鼠 单克隆(G-5)
  • 免疫印迹; 人类; 图 6a
圣克鲁斯生物技术骨钙素抗体(Santa Cruz, sc-365797)被用于被用于免疫印迹在人类样本上 (图 6a). Mol Med Rep (2018) ncbi
小鼠 单克隆(C-8)
  • 免疫组化; 人类; 图 1
圣克鲁斯生物技术骨钙素抗体(Santa Cruz Biotechnology, sc-74495)被用于被用于免疫组化在人类样本上 (图 1). Int J Mol Med (2016) ncbi
小鼠 单克隆(G-5)
  • 免疫组化; 人类; 1:100; 图 3
圣克鲁斯生物技术骨钙素抗体(Santa Cruz Biotechnology, sc-365797)被用于被用于免疫组化在人类样本上浓度为1:100 (图 3). PLoS ONE (2016) ncbi
小鼠 单克隆(D-11)
  • 免疫组化-石蜡切片; 小鼠; 图 1A
圣克鲁斯生物技术骨钙素抗体(Santa Cruz, sc-390877)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 1A). Autophagy (2015) ncbi
小鼠 单克隆(G-5)
  • 免疫印迹; 大鼠; 1:1000; 图 8
圣克鲁斯生物技术骨钙素抗体(santa Cruz, sc-365797)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 8). Mol Med Rep (2015) ncbi
小鼠 单克隆(G-5)
  • 免疫组化-石蜡切片; 大鼠; 1:100; 图 4
圣克鲁斯生物技术骨钙素抗体(Santa Cruz, sc-365797)被用于被用于免疫组化-石蜡切片在大鼠样本上浓度为1:100 (图 4). Sci Rep (2015) ncbi
小鼠 单克隆(ABOC-5021)
  • 免疫细胞化学; 人类; 1:100; 表 1
圣克鲁斯生物技术骨钙素抗体(Santa Cruz, sc73464)被用于被用于免疫细胞化学在人类样本上浓度为1:100 (表 1). Acta Biomater (2015) ncbi
小鼠 单克隆(C-8)
  • 免疫细胞化学; 人类; 1:100
圣克鲁斯生物技术骨钙素抗体(Santa Cruz Biotechnology, sc-74495)被用于被用于免疫细胞化学在人类样本上浓度为1:100. Acta Biomater (2014) ncbi
小鼠 单克隆(C-8)
  • 免疫组化-冰冻切片; 人类; 1:300
圣克鲁斯生物技术骨钙素抗体(Santa, 74495)被用于被用于免疫组化-冰冻切片在人类样本上浓度为1:300. PLoS ONE (2014) ncbi
艾博抗(上海)贸易有限公司
domestic rabbit 单克隆(EPR3690)
  • 免疫印迹; 人类; 1:1000; 图 3a
艾博抗(上海)贸易有限公司骨钙素抗体(Abcam, ab133612)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3a). Dis Markers (2022) ncbi
domestic rabbit 多克隆
  • 免疫组化; 人类; 图 6g
  • 免疫组化; 小鼠; 图 2m
艾博抗(上海)贸易有限公司骨钙素抗体(Abcam, ab93876)被用于被用于免疫组化在人类样本上 (图 6g) 和 被用于免疫组化在小鼠样本上 (图 2m). Sci Adv (2022) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 5a
艾博抗(上海)贸易有限公司骨钙素抗体(Abcam, ab93876)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 5a). Exp Ther Med (2021) ncbi
domestic rabbit 单克隆(EPR3690)
  • 免疫印迹; 大鼠; 1:1000; 图 2e
艾博抗(上海)贸易有限公司骨钙素抗体(Abcam, ab133612)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 2e). Aging (Albany NY) (2021) ncbi
domestic rabbit 多克隆
艾博抗(上海)贸易有限公司骨钙素抗体(Abcam, ab198228)被用于. Stem Cell Res Ther (2021) ncbi
domestic rabbit 单克隆(EPR3690)
  • 免疫印迹; 小鼠; 图 3f
艾博抗(上海)贸易有限公司骨钙素抗体(Abcam, ab133612)被用于被用于免疫印迹在小鼠样本上 (图 3f). Cell Death Dis (2021) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 图 7h
艾博抗(上海)贸易有限公司骨钙素抗体(Abcam, ab93876)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 7h). Cell Death Dis (2021) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 图 s22b
艾博抗(上海)贸易有限公司骨钙素抗体(Abcam, Ab93876)被用于被用于免疫组化在小鼠样本上 (图 s22b). Science (2019) ncbi
domestic rabbit 单克隆(EPR3690)
  • 免疫印迹; 人类; 1:1000; 图 3e
艾博抗(上海)贸易有限公司骨钙素抗体(Abcam, ab133612)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3e). Biomed Res Int (2018) ncbi
赛默飞世尔
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 1:200; 图 1g
赛默飞世尔骨钙素抗体(Thermo Fisher Scientific, PA5-11849)被用于被用于免疫细胞化学在人类样本上浓度为1:200 (图 1g). Cell Res (2020) ncbi
小鼠 单克隆(OC4-30)
  • 免疫组化; 犬; 图 6
赛默飞世尔骨钙素抗体(Zymed, 33-5400)被用于被用于免疫组化在犬样本上 (图 6). Biotech Histochem (2016) ncbi
小鼠 单克隆(OC4-30)
  • 免疫细胞化学; 人类; 图 1
赛默飞世尔骨钙素抗体(Zymed, 33-5400)被用于被用于免疫细胞化学在人类样本上 (图 1). Arch Oral Biol (2016) ncbi
小鼠 单克隆(OC4-30)
  • 免疫组化-石蜡切片; 家羊; 1:100; 图 11
赛默飞世尔骨钙素抗体(Thermo Scientific Pierce Antibodies, MA1-20786)被用于被用于免疫组化-石蜡切片在家羊样本上浓度为1:100 (图 11). Vet Pathol (2016) ncbi
小鼠 单克隆(OC4-30)
  • 免疫组化; 犬; 图 5
赛默飞世尔骨钙素抗体(Zymed, 33-5400)被用于被用于免疫组化在犬样本上 (图 5). Biotech Histochem (2015) ncbi
小鼠 单克隆(OC4-30)
  • 免疫组化; 大鼠; 图 5
赛默飞世尔骨钙素抗体(Zymed, 33-5400)被用于被用于免疫组化在大鼠样本上 (图 5). Am J Orthod Dentofacial Orthop (2011) ncbi
Takara Bio Clontech
小鼠 单克隆(5-12H)
  • 免疫细胞化学; 人类; 1:100; 图 6c
Takara Bio Clontech骨钙素抗体(Takara, 5-12H)被用于被用于免疫细胞化学在人类样本上浓度为1:100 (图 6c). Stem Cells Transl Med (2016) ncbi
文章列表
  1. Zhao Y, Du Y, Gao Y, Xu Z, Zhao D, Yang M. ATF3 Regulates Osteogenic Function by Mediating Osteoblast Ferroptosis in Type 2 Diabetic Osteoporosis. Dis Markers. 2022;2022:9872243 pubmed 出版商
  2. Mu R, Chen B, Bi B, Yu H, Liu J, Li J, et al. LIM Mineralization Protein-1 Enhances the Committed Differentiation of Dental Pulp Stem Cells through the ERK1/2 and p38 MAPK Pathways and BMP Signaling. Int J Med Sci. 2022;19:1307-1319 pubmed 出版商
  3. Xu J, Li Z, Tower R, Negri S, Wang Y, Meyers C, et al. NGF-p75 signaling coordinates skeletal cell migration during bone repair. Sci Adv. 2022;8:eabl5716 pubmed 出版商
  4. Li X, Yang H, Zhang Y, Du X, Yan Z, Li J, et al. CGFe and TGF-β1 enhance viability and osteogenic differentiation of human dental pulp stem cells through the MAPK pathway. Exp Ther Med. 2021;22:1048 pubmed 出版商
  5. Han H, Tian T, Huang G, Li D, Yang S. The lncRNA H19/miR-541-3p/Wnt/β-catenin axis plays a vital role in melatonin-mediated osteogenic differentiation of bone marrow mesenchymal stem cells. Aging (Albany NY). 2021;13:18257-18273 pubmed 出版商
  6. Shen J, Sun Y, Liu X, Zhu Y, Bao B, Gao T, et al. EGFL6 regulates angiogenesis and osteogenesis in distraction osteogenesis via Wnt/β-catenin signaling. Stem Cell Res Ther. 2021;12:415 pubmed 出版商
  7. Zhang D, Huang J, Sun X, Chen H, Huang S, Yang J, et al. Targeting local lymphatics to ameliorate heterotopic ossification via FGFR3-BMPR1a pathway. Nat Commun. 2021;12:4391 pubmed 出版商
  8. Ouyang L, Su X, Li W, Tang L, Zhang M, Zhu Y, et al. ALKBH1-demethylated DNA N6-methyladenine modification triggers vascular calcification via osteogenic reprogramming in chronic kidney disease. J Clin Invest. 2021;131: pubmed 出版商
  9. Zheng H, Xu W, Zhou W, Yang R, Chen P, Liu T, et al. Beraprost ameliorates postmenopausal osteoporosis by regulating Nedd4-induced Runx2 ubiquitination. Cell Death Dis. 2021;12:497 pubmed 出版商
  10. Yu S, Guo J, Sun Z, Lin C, Tao H, Zhang Q, et al. BMP2-dependent gene regulatory network analysis reveals Klf4 as a novel transcription factor of osteoblast differentiation. Cell Death Dis. 2021;12:197 pubmed 出版商
  11. Tang C, Wu M, Zhao D, Edwards D, McVicar A, Luo Y, et al. Runx1 is a central regulator of osteogenesis for bone homeostasis by orchestrating BMP and WNT signaling pathways. PLoS Genet. 2021;17:e1009233 pubmed 出版商
  12. Nam B, Park H, Lee Y, Oh Y, Park J, Kim S, et al. TGFβ1 Suppressed Matrix Mineralization of Osteoblasts Differentiation by Regulating SMURF1-C/EBPβ-DKK1 Axis. Int J Mol Sci. 2020;21: pubmed 出版商
  13. Wu J, Song D, Li Z, Guo B, Xiao Y, Liu W, et al. Immunity-and-matrix-regulatory cells derived from human embryonic stem cells safely and effectively treat mouse lung injury and fibrosis. Cell Res. 2020;30:794-809 pubmed 出版商
  14. Kazakevych J, Denizot J, Liebert A, Portovedo M, Mosavie M, Jain P, et al. Smarcad1 mediates microbiota-induced inflammation in mouse and coordinates gene expression in the intestinal epithelium. Genome Biol. 2020;21:64 pubmed 出版商
  15. Yang Y, Xie J, Wang D, Kim J, Tai P, Gravallese E, et al. Bone-targeting AAV-mediated silencing of Schnurri-3 prevents bone loss in osteoporosis. Nat Commun. 2019;10:2958 pubmed 出版商
  16. Nicetto D, Donahue G, Jain T, Peng T, Sidoli S, Sheng L, et al. H3K9me3-heterochromatin loss at protein-coding genes enables developmental lineage specification. Science. 2019;363:294-297 pubmed 出版商
  17. Liu L, Liu K, Yan Y, Chu Z, Tang Y, Tang C. Two Transcripts of FBXO5 Promote Migration and Osteogenic Differentiation of Human Periodontal Ligament Mesenchymal Stem Cells. Biomed Res Int. 2018;2018:7849294 pubmed 出版商
  18. Qian Z, Ryu B, Kang K, Heo S, Kang D, Bae S, et al. Cellular properties of the fermented microalgae Pavlova lutheri and its isolated active peptide in osteoblastic differentiation of MG?63 cells. Mol Med Rep. 2018;17:2044-2050 pubmed 出版商
  19. Huang X, ZHu B, Wang X, Xiao R, Wang C. Three-dimensional co-culture of mesenchymal stromal cells and differentiated osteoblasts on human bio-derived bone scaffolds supports active multi-lineage hematopoiesis in vitro: Functional implication of the biomimetic HSC niche. Int J Mol Med. 2016;38:1141-51 pubmed 出版商
  20. Ozdal Kurt F, Tuglu I, Vatansever H, Tong S, Sen B, Deliloglu Gurhan S. The effect of different implant biomaterials on the behavior of canine bone marrow stromal cells during their differentiation into osteoblasts. Biotech Histochem. 2016;91:412-22 pubmed 出版商
  21. Ozdal Kurt F, Sen B, Tuglu I, Vatansever S, Türk B, Deliloglu Gurhan I. Attachment and growth of dental pulp stem cells on dentin in presence of extra calcium. Arch Oral Biol. 2016;68:131-41 pubmed 出版商
  22. Fox K, Wootton S, Marolf A, Rouse N, LeVan I, Spraker T, et al. Experimental Transmission of Bighorn Sheep Sinus Tumors to Bighorn Sheep (Ovis canadensis canadensis) and Domestic Sheep. Vet Pathol. 2016;53:1164-1171 pubmed
  23. Koga T, Minamizato T, Kawai Y, Miura K, I T, Nakatani Y, et al. Bone Regeneration Using Dentin Matrix Depends on the Degree of Demineralization and Particle Size. PLoS ONE. 2016;11:e0147235 pubmed 出版商
  24. Abe S, Yamaguchi S, Sato Y, Harada K. Sphere-Derived Multipotent Progenitor Cells Obtained From Human Oral Mucosa Are Enriched in Neural Crest Cells. Stem Cells Transl Med. 2016;5:117-28 pubmed 出版商
  25. Wang Z, Liu N, Liu K, Zhou G, Gan J, Wang Z, et al. Autophagy mediated CoCrMo particle-induced peri-implant osteolysis by promoting osteoblast apoptosis. Autophagy. 2015;11:2358-69 pubmed 出版商
  26. Sun J, Li J, Li C, Yu Y. Role of bone morphogenetic protein-2 in osteogenic differentiation of mesenchymal stem cells. Mol Med Rep. 2015;12:4230-4237 pubmed 出版商
  27. Rui Y, Xu L, Chen R, Zhang T, Lin S, Hou Y, et al. Epigenetic memory gained by priming with osteogenic induction medium improves osteogenesis and other properties of mesenchymal stem cells. Sci Rep. 2015;5:11056 pubmed 出版商
  28. Özdal Kurt F, TuÄŸlu I, Vatansever H, Tong S, DeliloÄŸlu Gürhan S. The effect of autologous bone marrow stromal cells differentiated on scaffolds for canine tibial bone reconstruction. Biotech Histochem. 2015;90:516-28 pubmed 出版商
  29. Johnstone S, Liley M, Dalby M, Barnett S. Comparison of human olfactory and skeletal MSCs using osteogenic nanotopography to demonstrate bone-specific bioactivity of the surfaces. Acta Biomater. 2015;13:266-76 pubmed 出版商
  30. Kang H, Shih Y, Hwang Y, Wen C, Rao V, Seo T, et al. Mineralized gelatin methacrylate-based matrices induce osteogenic differentiation of human induced pluripotent stem cells. Acta Biomater. 2014;10:4961-4970 pubmed 出版商
  31. Zhang J, Wang J. Prostaglandin E2 (PGE2) exerts biphasic effects on human tendon stem cells. PLoS ONE. 2014;9:e87706 pubmed 出版商
  32. Ozturk F, Babacan H, Inan S, Gumus C. Effects of bisphosphonates on sutural bone formation and relapse: A histologic and immunohistochemical study. Am J Orthod Dentofacial Orthop. 2011;140:e31-41 pubmed 出版商