这是一篇来自已证抗体库的有关人类 p110的综述,是根据75篇发表使用所有方法的文章归纳的。这综述旨在帮助来邦网的访客找到最适合p110 抗体。
p110 同义词: CLAPO; CLOVE; CWS5; MCAP; MCM; MCMTC; PI3K; PI3K-alpha; p110-alpha

艾博抗(上海)贸易有限公司
domestic rabbit 单克隆(EP383Y)
  • 免疫印迹; 人类; 1:1000; 图 3e
艾博抗(上海)贸易有限公司 p110抗体(Abcam, ab40776)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3e). Cancer Cell Int (2020) ncbi
domestic rabbit 单克隆(EP383Y)
  • 免疫印迹; 人类
艾博抗(上海)贸易有限公司 p110抗体(Abcam, ab40776)被用于被用于免疫印迹在人类样本上. J Proteomics (2015) ncbi
圣克鲁斯生物技术
小鼠 单克隆
  • 免疫印迹; 小鼠; 1:1000; 图 7a
圣克鲁斯生物技术 p110抗体(Santa Cruz, sc-293172)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 7a). Neurochem Res (2018) ncbi
赛信通(上海)生物试剂有限公司
domestic rabbit 单克隆(C33D4)
  • 免疫印迹; 人类; 1:1000; 图 3c
赛信通(上海)生物试剂有限公司 p110抗体(CST, 3011)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3c). J Cancer (2021) ncbi
domestic rabbit 单克隆(C73F8)
  • 免疫印迹; 人类; 1:1000; 图 4a
赛信通(上海)生物试剂有限公司 p110抗体(cST, 4249)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 4a). Cell Death Dis (2021) ncbi
domestic rabbit 单克隆(C73F8)
  • 免疫印迹; 小鼠; 1:1000; 图 6d
赛信通(上海)生物试剂有限公司 p110抗体(CST, 4249)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 6d). J Exp Clin Cancer Res (2021) ncbi
domestic rabbit 单克隆(C73F8)
  • 免疫印迹; 小鼠; 1:1000; 图 2a
  • 免疫印迹; 人类; 1:1000; 图 2b
赛信通(上海)生物试剂有限公司 p110抗体(Cell Signaling, 4249)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 2a) 和 被用于免疫印迹在人类样本上浓度为1:1000 (图 2b). Adv Sci (Weinh) (2021) ncbi
domestic rabbit 单克隆(C73F8)
  • 免疫印迹; 小鼠; 1:1000; 图 4f
赛信通(上海)生物试剂有限公司 p110抗体(Cell Signalling Technology, 4249)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 4f). elife (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 1c
赛信通(上海)生物试剂有限公司 p110抗体(Cell Signaling, 4255)被用于被用于免疫印迹在人类样本上 (图 1c). Am J Cancer Res (2021) ncbi
domestic rabbit 单克隆(C73F8)
  • 免疫印迹; 大鼠; 图 6a
赛信通(上海)生物试剂有限公司 p110抗体(Cell Signaling, 4249)被用于被用于免疫印迹在大鼠样本上 (图 6a). J Inflamm Res (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:2000
赛信通(上海)生物试剂有限公司 p110抗体(Cell Signaling Technology, 4255 S)被用于被用于免疫印迹在人类样本上浓度为1:2000. Nat Commun (2021) ncbi
domestic rabbit 单克隆(C73F8)
  • 免疫细胞化学; 人类; 1:100; 图 4c
  • 免疫印迹; 人类; 1:1000; 图 4b
赛信通(上海)生物试剂有限公司 p110抗体(CST, 4249)被用于被用于免疫细胞化学在人类样本上浓度为1:100 (图 4c) 和 被用于免疫印迹在人类样本上浓度为1:1000 (图 4b). Cell Death Dis (2021) ncbi
domestic rabbit 单克隆(C73F8)
  • 免疫印迹; 人类; 图 7a
赛信通(上海)生物试剂有限公司 p110抗体(CST, 4249)被用于被用于免疫印迹在人类样本上 (图 7a). Int J Biol Sci (2020) ncbi
domestic rabbit 单克隆(C73F8)
  • 免疫印迹; 人类; 图 10a
  • 免疫印迹; 大鼠; 图 7a
赛信通(上海)生物试剂有限公司 p110抗体(Cell Signaling, 4249)被用于被用于免疫印迹在人类样本上 (图 10a) 和 被用于免疫印迹在大鼠样本上 (图 7a). Mol Ther Nucleic Acids (2020) ncbi
domestic rabbit 单克隆(C73F8)
  • 免疫印迹; 人类; 1:1000; 图 6a
赛信通(上海)生物试剂有限公司 p110抗体(Cell Signaling, C73F8)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 6a). Nat Commun (2019) ncbi
domestic rabbit 单克隆(C73F8)
  • 免疫印迹; 小鼠; 1:1000; 图 2b
  • 免疫印迹; 人类; 1:1000; 图 2a
赛信通(上海)生物试剂有限公司 p110抗体(Cell Signaling Technology, 4249)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 2b) 和 被用于免疫印迹在人类样本上浓度为1:1000 (图 2a). Science (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 5f
赛信通(上海)生物试剂有限公司 p110抗体(CST, 4255S)被用于被用于免疫印迹在人类样本上 (图 5f). Br J Cancer (2019) ncbi
domestic rabbit 单克隆(C73F8)
  • 免疫印迹; 人类; 图 5a
赛信通(上海)生物试剂有限公司 p110抗体(CST, 4249)被用于被用于免疫印迹在人类样本上 (图 5a). Oncogene (2020) ncbi
domestic rabbit 单克隆(C73F8)
  • 免疫印迹; 人类; 图 3d
赛信通(上海)生物试剂有限公司 p110抗体(Cell Signaling, 4249)被用于被用于免疫印迹在人类样本上 (图 3d). Cell (2019) ncbi
domestic rabbit 单克隆(C73F8)
  • 免疫印迹; 大鼠; 1:1000; 图 6a
赛信通(上海)生物试剂有限公司 p110抗体(CST, 4249)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 6a). Cell Death Dis (2019) ncbi
domestic rabbit 单克隆(C73F8)
  • 免疫印迹基因敲除验证; 小鼠; 图 s1a
赛信通(上海)生物试剂有限公司 p110抗体(Cell Signaling Technology, 4249S)被用于被用于免疫印迹基因敲除验证在小鼠样本上 (图 s1a). J Clin Invest (2019) ncbi
domestic rabbit 单克隆(C33D4)
  • 免疫印迹; 小鼠; 1:1000; 图 1a
赛信通(上海)生物试剂有限公司 p110抗体(Cell Signaling, 3011)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 1a). Nat Commun (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 1a
赛信通(上海)生物试剂有限公司 p110抗体(Cell Signaling, 4255)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 1a). Nat Commun (2019) ncbi
domestic rabbit 多克隆
  • 其他; 人类; 图 4c
赛信通(上海)生物试剂有限公司 p110抗体(Cell Signaling, 4255)被用于被用于其他在人类样本上 (图 4c). Cancer Cell (2018) ncbi
domestic rabbit 单克隆(C73F8)
  • 免疫印迹; 人类; 图 7a
赛信通(上海)生物试剂有限公司 p110抗体(Cell Signaling, 4249)被用于被用于免疫印迹在人类样本上 (图 7a). Biochim Biophys Acta Mol Basis Dis (2018) ncbi
domestic rabbit 单克隆(D55D5)
  • 免疫印迹; 人类; 图 s4b
赛信通(上海)生物试剂有限公司 p110抗体(Cell Signaling Technology, D55D5)被用于被用于免疫印迹在人类样本上 (图 s4b). Mol Biol Cell (2018) ncbi
domestic rabbit 单克隆(D55D5)
  • 免疫印迹; 人类; 图 5a
赛信通(上海)生物试剂有限公司 p110抗体(Cell Signaling, 5405)被用于被用于免疫印迹在人类样本上 (图 5a). Inflammation (2018) ncbi
domestic rabbit 单克隆(C73F8)
  • 免疫印迹; 小鼠; 1:1000; 图 3c
赛信通(上海)生物试剂有限公司 p110抗体(cell signaling, 4249)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 3c). Oncogene (2017) ncbi
domestic rabbit 单克隆(D55D5)
  • 免疫印迹; 小鼠; 1:1000; 图 3c
赛信通(上海)生物试剂有限公司 p110抗体(cell signaling, 5405)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 3c). Oncogene (2017) ncbi
domestic rabbit 单克隆(C73F8)
  • 免疫印迹基因敲除验证; 人类; 图 4a
  • 免疫沉淀; 人类; 图 1d
赛信通(上海)生物试剂有限公司 p110抗体(Cell Signaling Technology, 4249S)被用于被用于免疫印迹基因敲除验证在人类样本上 (图 4a) 和 被用于免疫沉淀在人类样本上 (图 1d). mSphere (2017) ncbi
domestic rabbit 单克隆(C73F8)
  • 免疫印迹; 人类; 图 1b
赛信通(上海)生物试剂有限公司 p110抗体(Cell Signaling, 4249)被用于被用于免疫印迹在人类样本上 (图 1b). Proc Natl Acad Sci U S A (2017) ncbi
domestic rabbit 单克隆(C73F8)
  • 免疫印迹; 小鼠; 图 4a
赛信通(上海)生物试剂有限公司 p110抗体(Cell Signaling Technology, 4249)被用于被用于免疫印迹在小鼠样本上 (图 4a). elife (2017) ncbi
domestic rabbit 单克隆(C73F8)
  • 免疫印迹; 人类; 图 6a
赛信通(上海)生物试剂有限公司 p110抗体(Cell signaling, 4249)被用于被用于免疫印迹在人类样本上 (图 6a). Cancer Med (2017) ncbi
domestic rabbit 单克隆(C33D4)
  • 免疫印迹; 人类; 图 6a
赛信通(上海)生物试剂有限公司 p110抗体(Cell signaling, 3011s)被用于被用于免疫印迹在人类样本上 (图 6a). Cancer Med (2017) ncbi
domestic rabbit 多克隆
  • reverse phase protein lysate microarray; 人类; 图 st6
赛信通(上海)生物试剂有限公司 p110抗体(CST, 4255)被用于被用于reverse phase protein lysate microarray在人类样本上 (图 st6). Cancer Cell (2017) ncbi
domestic rabbit 单克隆(C73F8)
  • 免疫沉淀; 人类; 1:1000; 图 4d
  • 免疫印迹; 人类; 1:1000; 图 4d
赛信通(上海)生物试剂有限公司 p110抗体(Cell Signaling Technology, 4249)被用于被用于免疫沉淀在人类样本上浓度为1:1000 (图 4d) 和 被用于免疫印迹在人类样本上浓度为1:1000 (图 4d). Oncotarget (2017) ncbi
domestic rabbit 单克隆(C73F8)
  • 免疫印迹; 人类; 1:1000; 图 2b
赛信通(上海)生物试剂有限公司 p110抗体(Cell Signaling, 4249)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 2b). Nat Commun (2017) ncbi
domestic rabbit 单克隆(C33D4)
  • 免疫印迹; 人类; 1:1000; 图 6c
赛信通(上海)生物试剂有限公司 p110抗体(Cell Signaling, C33D4)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 6c). Nat Commun (2016) ncbi
domestic rabbit 单克隆(C73F8)
  • 免疫印迹; 人类; 1:1000; 图 6c
赛信通(上海)生物试剂有限公司 p110抗体(Cell Signaling, C73FB)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 6c). Nat Commun (2016) ncbi
domestic rabbit 单克隆(C73F8)
  • 免疫印迹; 小鼠; 1:1000; 图 s9a
赛信通(上海)生物试剂有限公司 p110抗体(Cell Signaling, 4249)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 s9a). Nature (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 5b
赛信通(上海)生物试剂有限公司 p110抗体(Cell Signaling, 4255S)被用于被用于免疫印迹在人类样本上 (图 5b). PLoS ONE (2016) ncbi
domestic rabbit 单克隆(C73F8)
  • 免疫印迹; 人类; 图 5a
赛信通(上海)生物试剂有限公司 p110抗体(Cell Signaling, 4249)被用于被用于免疫印迹在人类样本上 (图 5a). Sci Rep (2016) ncbi
domestic rabbit 单克隆(C73F8)
  • 免疫印迹; 小鼠; 图 1c
赛信通(上海)生物试剂有限公司 p110抗体(Cell Signaling, 4249)被用于被用于免疫印迹在小鼠样本上 (图 1c). Oncogenesis (2016) ncbi
domestic rabbit 单克隆(C73F8)
  • 免疫印迹; 人类; 图 6a
赛信通(上海)生物试剂有限公司 p110抗体(cell signalling, 4249)被用于被用于免疫印迹在人类样本上 (图 6a). PLoS ONE (2016) ncbi
domestic rabbit 单克隆(C33D4)
  • 免疫印迹基因敲除验证; 小鼠; 图 1
赛信通(上海)生物试剂有限公司 p110抗体(Cell Signaling, 3011)被用于被用于免疫印迹基因敲除验证在小鼠样本上 (图 1). elife (2016) ncbi
domestic rabbit 单克隆(C73F8)
  • 免疫印迹基因敲除验证; 小鼠; 图 1
赛信通(上海)生物试剂有限公司 p110抗体(Cell Signaling, 4249)被用于被用于免疫印迹基因敲除验证在小鼠样本上 (图 1). elife (2016) ncbi
domestic rabbit 单克隆(C73F8)
  • 免疫印迹; 人类; 图 s1
赛信通(上海)生物试剂有限公司 p110抗体(Cell Signaling, 4249)被用于被用于免疫印迹在人类样本上 (图 s1). Cell Discov (2016) ncbi
domestic rabbit 单克隆(C33D4)
  • 免疫印迹; 人类; 图 s1
赛信通(上海)生物试剂有限公司 p110抗体(Cell Signaling, 3011)被用于被用于免疫印迹在人类样本上 (图 s1). Cell Discov (2016) ncbi
domestic rabbit 单克隆(C73F8)
  • 免疫印迹; 人类; 图 5A
赛信通(上海)生物试剂有限公司 p110抗体(Cell signaling, C73F8)被用于被用于免疫印迹在人类样本上 (图 5A). Oncotarget (2016) ncbi
domestic rabbit 单克隆(C73F8)
  • 免疫组化-石蜡切片; 小鼠; 1:100; 图 7e
  • 免疫细胞化学; 人类; 图 4c,4d
  • 免疫印迹; 人类; 1:1000; 图 5,6
赛信通(上海)生物试剂有限公司 p110抗体(CST, 4249)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:100 (图 7e), 被用于免疫细胞化学在人类样本上 (图 4c,4d) 和 被用于免疫印迹在人类样本上浓度为1:1000 (图 5,6). Oncotarget (2016) ncbi
domestic rabbit 单克隆(C73F8)
  • 免疫印迹; 小鼠; 图 5
赛信通(上海)生物试剂有限公司 p110抗体(Cell Signaling Tech, 4249)被用于被用于免疫印迹在小鼠样本上 (图 5). Mol Syst Biol (2016) ncbi
domestic rabbit 单克隆(C73F8)
  • 免疫印迹; 小鼠; 图 2a
赛信通(上海)生物试剂有限公司 p110抗体(Cell Signaling, 4249)被用于被用于免疫印迹在小鼠样本上 (图 2a). Cell Signal (2016) ncbi
domestic rabbit 单克隆(C33D4)
  • 免疫印迹; 人类; 图 4c
赛信通(上海)生物试剂有限公司 p110抗体(Cell Signaling, C33D4)被用于被用于免疫印迹在人类样本上 (图 4c). Oncotarget (2016) ncbi
domestic rabbit 单克隆(C73F8)
  • 免疫印迹; 人类; 图 4c
赛信通(上海)生物试剂有限公司 p110抗体(Cell Signaling, C73F8)被用于被用于免疫印迹在人类样本上 (图 4c). Oncotarget (2016) ncbi
domestic rabbit 单克隆(C73F8)
  • 免疫印迹; 小鼠; 图 6
赛信通(上海)生物试剂有限公司 p110抗体(Cell Signaling, 4249)被用于被用于免疫印迹在小鼠样本上 (图 6). Oncotarget (2016) ncbi
domestic rabbit 单克隆(C73F8)
  • 免疫印迹; 人类; 图 6a
赛信通(上海)生物试剂有限公司 p110抗体(Cell Signaling, 4249)被用于被用于免疫印迹在人类样本上 (图 6a). Am J Transplant (2016) ncbi
domestic rabbit 单克隆(C33D4)
  • 免疫印迹; 人类; 图 4
赛信通(上海)生物试剂有限公司 p110抗体(Cell Signaling, 3011)被用于被用于免疫印迹在人类样本上 (图 4). Oncotarget (2016) ncbi
domestic rabbit 单克隆(C73F8)
  • 免疫印迹; 人类; 图 4
赛信通(上海)生物试剂有限公司 p110抗体(Cell Signaling, 4249)被用于被用于免疫印迹在人类样本上 (图 4). Oncotarget (2016) ncbi
domestic rabbit 单克隆(D55D5)
  • 免疫印迹; 人类; 图 4
赛信通(上海)生物试剂有限公司 p110抗体(Cell Signaling, 5405)被用于被用于免疫印迹在人类样本上 (图 4). Oncotarget (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 5
赛信通(上海)生物试剂有限公司 p110抗体(Cell Signaling, 4255)被用于被用于免疫印迹在小鼠样本上 (图 5). J Clin Invest (2016) ncbi
domestic rabbit 单克隆(C73F8)
  • 免疫组化-石蜡切片; 人类; 图 7
  • 免疫组化-石蜡切片; 小鼠; 图 4
赛信通(上海)生物试剂有限公司 p110抗体(Cell signaling, 4249)被用于被用于免疫组化-石蜡切片在人类样本上 (图 7) 和 被用于免疫组化-石蜡切片在小鼠样本上 (图 4). Oncogene (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 6
赛信通(上海)生物试剂有限公司 p110抗体(Cell signaling, 4255)被用于被用于免疫印迹在小鼠样本上 (图 6). Oncogene (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 1
赛信通(上海)生物试剂有限公司 p110抗体(Cell Signaling, 4255)被用于被用于免疫印迹在人类样本上 (图 1). Oncotarget (2016) ncbi
domestic rabbit 单克隆(C73F8)
  • 免疫组化-石蜡切片; 小鼠; 1:200; 图 s5
赛信通(上海)生物试剂有限公司 p110抗体(Cell Signaling Technology, 4249)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:200 (图 s5). Cancer Sci (2016) ncbi
domestic rabbit 单克隆(C73F8)
  • 免疫细胞化学; 人类; 图 3
  • 免疫印迹; 人类; 图 3
赛信通(上海)生物试剂有限公司 p110抗体(Cell Signalling, 4249)被用于被用于免疫细胞化学在人类样本上 (图 3) 和 被用于免疫印迹在人类样本上 (图 3). Oncoscience (2015) ncbi
domestic rabbit 单克隆(C73F8)
  • 免疫印迹基因敲除验证; 小鼠; 1:1000; 图 s1
赛信通(上海)生物试剂有限公司 p110抗体(Cell Signaling Tech, 4249)被用于被用于免疫印迹基因敲除验证在小鼠样本上浓度为1:1000 (图 s1). Nat Commun (2015) ncbi
domestic rabbit 单克隆(C73F8)
  • 免疫印迹; 人类; 图 5
赛信通(上海)生物试剂有限公司 p110抗体(Cell signaling, 4249)被用于被用于免疫印迹在人类样本上 (图 5). Oncogene (2016) ncbi
domestic rabbit 单克隆(C73F8)
  • 免疫印迹; 小鼠; 图 3
赛信通(上海)生物试剂有限公司 p110抗体(Cell Signaling, 4249)被用于被用于免疫印迹在小鼠样本上 (图 3). PLoS ONE (2015) ncbi
domestic rabbit 单克隆(C73F8)
  • 免疫印迹; 大鼠; 1:1000; 图 3
赛信通(上海)生物试剂有限公司 p110抗体(Cell Signaling, 4249S)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 3). Exp Cell Res (2015) ncbi
domestic rabbit 单克隆(C73F8)
  • 免疫印迹; 小鼠; 图 3
赛信通(上海)生物试剂有限公司 p110抗体(Cell Signaling, 4249)被用于被用于免疫印迹在小鼠样本上 (图 3). EMBO Mol Med (2015) ncbi
domestic rabbit 单克隆(C73F8)
  • 免疫印迹; 人类; 1:1000; 图 3
赛信通(上海)生物试剂有限公司 p110抗体(Cell Signaling, 4249S)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3). Cell Death Dis (2015) ncbi
domestic rabbit 单克隆(C73F8)
  • 免疫印迹; 小鼠; 图 5
赛信通(上海)生物试剂有限公司 p110抗体(Cell signaling, 4249)被用于被用于免疫印迹在小鼠样本上 (图 5). Oncotarget (2015) ncbi
domestic rabbit 单克隆(C73F8)
  • 免疫印迹; 大鼠; 图 4
赛信通(上海)生物试剂有限公司 p110抗体(Cell Signaling Technology, 4249S)被用于被用于免疫印迹在大鼠样本上 (图 4). Cell Physiol Biochem (2015) ncbi
domestic rabbit 单克隆(C73F8)
  • 免疫印迹; 人类; 图 3
赛信通(上海)生物试剂有限公司 p110抗体(CST, 4249s)被用于被用于免疫印迹在人类样本上 (图 3). Cancer Res (2015) ncbi
domestic rabbit 单克隆(C73F8)
  • 免疫印迹; 人类; 图 5
赛信通(上海)生物试剂有限公司 p110抗体(Cell Signaling Technology, 4249)被用于被用于免疫印迹在人类样本上 (图 5). Sci Rep (2015) ncbi
domestic rabbit 单克隆(C73F8)
  • 免疫组化-石蜡切片; 人类; 1:200; 图 1
赛信通(上海)生物试剂有限公司 p110抗体(Cell signaling, 4249)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:200 (图 1). Hum Pathol (2015) ncbi
domestic rabbit 单克隆(C73F8)
  • 免疫印迹; 人类; 图 1
赛信通(上海)生物试剂有限公司 p110抗体(Cell Signaling, 4249)被用于被用于免疫印迹在人类样本上 (图 1). J Biol Chem (2015) ncbi
domestic rabbit 单克隆(C73F8)
  • 免疫印迹; 人类; 图 5
赛信通(上海)生物试剂有限公司 p110抗体(Cell Signaling, 4249)被用于被用于免疫印迹在人类样本上 (图 5). Cell Death Dis (2015) ncbi
domestic rabbit 单克隆(C73F8)
  • 免疫印迹; 人类; 图 1
赛信通(上海)生物试剂有限公司 p110抗体(Cell Signaling Technologies, 4249)被用于被用于免疫印迹在人类样本上 (图 1). Mol Cell (2014) ncbi
domestic rabbit 单克隆(C73F8)
  • 免疫印迹; 人类; 图 4
赛信通(上海)生物试剂有限公司 p110抗体(Cell Signaling Technology, 4249)被用于被用于免疫印迹在人类样本上 (图 4). Oncol Rep (2015) ncbi
domestic rabbit 单克隆(C73F8)
  • 免疫印迹; 人类
  • 免疫印迹; 小鼠
赛信通(上海)生物试剂有限公司 p110抗体(Cell Signaling, C73F8)被用于被用于免疫印迹在人类样本上 和 被用于免疫印迹在小鼠样本上. Mol Cell Biol (2014) ncbi
domestic rabbit 单克隆(C33D4)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 p110抗体(Cell Signaling, C33D4)被用于被用于免疫印迹在人类样本上. Mol Cell Biol (2014) ncbi
domestic rabbit 单克隆(C73F8)
  • 免疫印迹; 大鼠; 图 1
赛信通(上海)生物试剂有限公司 p110抗体(Cell Signaling Technology, 4249S)被用于被用于免疫印迹在大鼠样本上 (图 1). Pain (2014) ncbi
domestic rabbit 单克隆(C73F8)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 p110抗体(Cell Signalling, 4249)被用于被用于免疫印迹在人类样本上. J Cell Sci (2013) ncbi
domestic rabbit 单克隆(C73F8)
  • 免疫印迹; 人类; 1:1000
赛信通(上海)生物试剂有限公司 p110抗体(Cell Signaling, 4249)被用于被用于免疫印迹在人类样本上浓度为1:1000. FEBS Lett (2013) ncbi
碧迪BD
小鼠 单克隆(19/PI3-Kinase p110)
  • 免疫印迹; 小鼠; 图 1
碧迪BD p110抗体(BD Biosciences, 611398)被用于被用于免疫印迹在小鼠样本上 (图 1). Biochemistry (2013) ncbi
文章列表
  1. Lin G, Li J, Cai J, Zhang H, Xin Q, Wang N, et al. RNA-binding Protein MBNL2 regulates Cancer Cell Metastasis through MiR-182-MBNL2-AKT Pathway. J Cancer. 2021;12:6715-6726 pubmed 出版商
  2. Li R, Hao Y, Wang Q, Meng Y, Wu K, Liu C, et al. ECHS1, an interacting protein of LASP1, induces sphingolipid-metabolism imbalance to promote colorectal cancer progression by regulating ceramide glycosylation. Cell Death Dis. 2021;12:911 pubmed 出版商
  3. Xu X, Lei Y, Chen L, Zhou H, Liu H, Jiang J, et al. Phosphorylation of NF-κBp65 drives inflammation-mediated hepatocellular carcinogenesis and is a novel therapeutic target. J Exp Clin Cancer Res. 2021;40:253 pubmed 出版商
  4. Guo J, Cheng J, Zheng N, Zhang X, Dai X, Zhang L, et al. Copper Promotes Tumorigenesis by Activating the PDK1-AKT Oncogenic Pathway in a Copper Transporter 1 Dependent Manner. Adv Sci (Weinh). 2021;8:e2004303 pubmed 出版商
  5. Kearney A, Norris D, Ghomlaghi M, Kin Lok Wong M, Humphrey S, Carroll L, et al. Akt phosphorylates insulin receptor substrate to limit PI3K-mediated PIP3 synthesis. elife. 2021;10: pubmed 出版商
  6. Wang J, Zhang Y, Xiao Y, Yuan X, Li P, Wang X, et al. Boosting immune surveillance by low-dose PI3K inhibitor facilitates early intervention of breast cancer. Am J Cancer Res. 2021;11:2005-2024 pubmed
  7. Chen Y, Chen Y, Jiang X, Shi M, Yang Z, Chen Z, et al. Vascular Adventitial Fibroblasts-Derived FGF10 Promotes Vascular Smooth Muscle Cells Proliferation and Migration in vitro and the Neointima Formation in vivo. J Inflamm Res. 2021;14:2207-2223 pubmed 出版商
  8. Wang Z, Goto Y, Allevato M, Wu V, Saddawi Konefka R, Gilardi M, et al. Disruption of the HER3-PI3K-mTOR oncogenic signaling axis and PD-1 blockade as a multimodal precision immunotherapy in head and neck cancer. Nat Commun. 2021;12:2383 pubmed 出版商
  9. Wang P, Zhao L, Gong S, Xiong S, Wang J, Zou D, et al. HIF1α/HIF2α-Sox2/Klf4 promotes the malignant progression of glioblastoma via the EGFR-PI3K/AKT signalling pathway with positive feedback under hypoxia. Cell Death Dis. 2021;12:312 pubmed 出版商
  10. Wang X, Shan Y, Tan Q, Tan C, Zhang H, Liu J, et al. MEX3A knockdown inhibits the development of pancreatic ductal adenocarcinoma. Cancer Cell Int. 2020;20:63 pubmed 出版商
  11. Zhang Y, Du P, Li Y, Zhu Q, Song X, Liu S, et al. TASP1 Promotes Gallbladder Cancer Cell Proliferation and Metastasis by Up-regulating FAM49B via PI3K/AKT Pathway. Int J Biol Sci. 2020;16:739-751 pubmed 出版商
  12. Zhang Y, Mao X, Chen W, Guo X, Yu L, Jiang F, et al. A Discovery of Clinically Approved Formula FBRP for Repositioning to Treat HCC by Inhibiting PI3K/AKT/NF-κB Activation. Mol Ther Nucleic Acids. 2020;19:890-904 pubmed 出版商
  13. Ghezzi C, Wong A, Chen B, Ribalet B, Damoiseaux R, Clark P. A high-throughput screen identifies that CDK7 activates glucose consumption in lung cancer cells. Nat Commun. 2019;10:5444 pubmed 出版商
  14. VASAN N, Razavi P, Johnson J, Shao H, Shah H, Antoine A, et al. Double PIK3CA mutations in cis increase oncogenicity and sensitivity to PI3Kα inhibitors. Science. 2019;366:714-723 pubmed 出版商
  15. Chen Q, Yang C, Chen L, Zhang J, Ge W, Yuan H, et al. YY1 targets tubulin polymerisation-promoting protein to inhibit migration, invasion and angiogenesis in pancreatic cancer via p38/MAPK and PI3K/AKT pathways. Br J Cancer. 2019;121:912-921 pubmed 出版商
  16. Veschi V, Mangiapane L, Nicotra A, Di Franco S, Scavo E, Apuzzo T, et al. Targeting chemoresistant colorectal cancer via systemic administration of a BMP7 variant. Oncogene. 2020;39:987-1003 pubmed 出版商
  17. Lundby A, Franciosa G, Emdal K, Refsgaard J, Gnosa S, Bekker Jensen D, et al. Oncogenic Mutations Rewire Signaling Pathways by Switching Protein Recruitment to Phosphotyrosine Sites. Cell. 2019;179:543-560.e26 pubmed 出版商
  18. Luo X, Jiang X, Li J, Bai Y, Li Z, Wei P, et al. Insulin-like growth factor-1 attenuates oxidative stress-induced hepatocyte premature senescence in liver fibrogenesis via regulating nuclear p53-progerin interaction. Cell Death Dis. 2019;10:451 pubmed 出版商
  19. Sivaram N, McLaughlin P, Han H, Petrenko O, Jiang Y, Ballou L, et al. Tumor-intrinsic PIK3CA represses tumor immunogenecity in a model of pancreatic cancer. J Clin Invest. 2019;130: pubmed 出版商
  20. Araiz C, Yan A, Bettedi L, Samuelson I, Virtue S, McGavigan A, et al. Enhanced β-adrenergic signalling underlies an age-dependent beneficial metabolic effect of PI3K p110α inactivation in adipose tissue. Nat Commun. 2019;10:1546 pubmed 出版商
  21. Ng P, Li J, Jeong K, Shao S, Chen H, Tsang Y, et al. Systematic Functional Annotation of Somatic Mutations in Cancer. Cancer Cell. 2018;33:450-462.e10 pubmed 出版商
  22. Nan H, Han L, Ma J, Yang C, Su R, He J. STX3 represses the stability of the tumor suppressor PTEN to activate the PI3K-Akt-mTOR signaling and promotes the growth of breast cancer cells. Biochim Biophys Acta Mol Basis Dis. 2018;1864:1684-1692 pubmed 出版商
  23. Jana M, Ghosh S, Pahan K. Upregulation of Myelin Gene Expression by a Physically-Modified Saline via Phosphatidylinositol 3-Kinase-Mediated Activation of CREB: Implications for Multiple Sclerosis. Neurochem Res. 2018;43:407-419 pubmed 出版商
  24. Redka D, Gutschow M, Grinstein S, Canton J. Differential ability of proinflammatory and anti-inflammatory macrophages to perform macropinocytosis. Mol Biol Cell. 2018;29:53-65 pubmed 出版商
  25. Wang N, Li J, Zhao T, Li S, Shen C, Li D, et al. FGF-21 Plays a Crucial Role in the Glucose Uptake of Activated Monocytes. Inflammation. 2018;41:73-80 pubmed 出版商
  26. Simond A, Rao T, Zuo D, Zhao J, Muller W. ErbB2-positive mammary tumors can escape PI3K-p110α loss through downregulation of the Pten tumor suppressor. Oncogene. 2017;36:6059-6066 pubmed 出版商
  27. Carpenter V, Chen Y, Dolat L, Valdivia R. The Effector TepP Mediates Recruitment and Activation of Phosphoinositide 3-Kinase on Early Chlamydia trachomatis Vacuoles. mSphere. 2017;2: pubmed 出版商
  28. Hu L, Liang S, Chen H, Lv T, Wu J, Chen D, et al. ΔNp63α is a common inhibitory target in oncogenic PI3K/Ras/Her2-induced cell motility and tumor metastasis. Proc Natl Acad Sci U S A. 2017;114:E3964-E3973 pubmed 出版商
  29. Zhang X, Spiegelman N, Nelson O, Jing H, Lin H. SIRT6 regulates Ras-related protein R-Ras2 by lysine defatty-acylation. elife. 2017;6: pubmed 出版商
  30. Liu S, Gao G, Yan D, Chen X, Yao X, Guo S, et al. Effects of miR-145-5p through NRAS on the cell proliferation, apoptosis, migration, and invasion in melanoma by inhibiting MAPK and PI3K/AKT pathways. Cancer Med. 2017;6:819-833 pubmed 出版商
  31. Cherniack A, Shen H, Walter V, Stewart C, Murray B, Bowlby R, et al. Integrated Molecular Characterization of Uterine Carcinosarcoma. Cancer Cell. 2017;31:411-423 pubmed 出版商
  32. Dong Q, Fu L, Zhao Y, Tan S, Wang E. Derlin-1 overexpression confers poor prognosis in muscle invasive bladder cancer and contributes to chemoresistance and invasion through PI3K/AKT and ERK/MMP signaling. Oncotarget. 2017;8:17059-17069 pubmed 出版商
  33. Kang Y, Balter B, Csizmadia E, Haas B, Sharma H, Bronson R, et al. Contribution of classical end-joining to PTEN inactivation in p53-mediated glioblastoma formation and drug-resistant survival. Nat Commun. 2017;8:14013 pubmed 出版商
  34. Yang J, Savvatis K, Kang J, Fan P, Zhong H, Schwartz K, et al. Targeting LOXL2 for cardiac interstitial fibrosis and heart failure treatment. Nat Commun. 2016;7:13710 pubmed 出版商
  35. Karki R, Man S, Malireddi R, Kesavardhana S, Zhu Q, Burton A, et al. NLRC3 is an inhibitory sensor of PI3K-mTOR pathways in cancer. Nature. 2016;540:583-587 pubmed 出版商
  36. Bhagirath D, Zhao X, Mirza S, West W, Band H, Band V. Mutant PIK3CA Induces EMT in a Cell Type Specific Manner. PLoS ONE. 2016;11:e0167064 pubmed 出版商
  37. Sikander M, Hafeez B, Malik S, Alsayari A, Halaweish F, Yallapu M, et al. Cucurbitacin D exhibits potent anti-cancer activity in cervical cancer. Sci Rep. 2016;6:36594 pubmed 出版商
  38. Sheen M, Marotti J, Allegrezza M, Rutkowski M, Conejo Garcia J, Fiering S. Constitutively activated PI3K accelerates tumor initiation and modifies histopathology of breast cancer. Oncogenesis. 2016;5:e267 pubmed 出版商
  39. Visuttijai K, Pettersson J, Mehrbani Azar Y, van den Bout I, Orndal C, Marcickiewicz J, et al. Lowered Expression of Tumor Suppressor Candidate MYO1C Stimulates Cell Proliferation, Suppresses Cell Adhesion and Activates AKT. PLoS ONE. 2016;11:e0164063 pubmed 出版商
  40. Cizmecioglu O, Ni J, Xie S, Zhao J, Roberts T. Rac1-mediated membrane raft localization of PI3K/p110? is required for its activation by GPCRs or PTEN loss. elife. 2016;5: pubmed 出版商
  41. Yuzugullu H, Von T, Thorpe L, Walker S, Roberts T, Frank D, et al. NTRK2 activation cooperates with PTEN deficiency in T-ALL through activation of both the PI3K-AKT and JAK-STAT3 pathways. Cell Discov. 2016;2:16030 pubmed 出版商
  42. Di Franco S, Turdo A, Benfante A, Colorito M, Gaggianesi M, Apuzzo T, et al. ?Np63 drives metastasis in breast cancer cells via PI3K/CD44v6 axis. Oncotarget. 2016;7:54157-54173 pubmed 出版商
  43. Xi R, Pan S, Chen X, Hui B, Zhang L, Fu S, et al. HPV16 E6-E7 induces cancer stem-like cells phenotypes in esophageal squamous cell carcinoma through the activation of PI3K/Akt signaling pathway in vitro and in vivo. Oncotarget. 2016;7:57050-57065 pubmed 出版商
  44. Voisinne G, García Blesa A, Chaoui K, Fiore F, Bergot E, Girard L, et al. Co-recruitment analysis of the CBL and CBLB signalosomes in primary T cells identifies CD5 as a key regulator of TCR-induced ubiquitylation. Mol Syst Biol. 2016;12:876 pubmed 出版商
  45. Jacobsen R, Mazloumi Gavgani F, Mellgren G, Lewis A. DNA Topoisomerase II? contributes to the early steps of adipogenesis in 3T3-L1 cells. Cell Signal. 2016;28:1593-603 pubmed 出版商
  46. Monica V, Lo Iacono M, Bracco E, Busso S, di Blasio L, Primo L, et al. Dasatinib modulates sensitivity to pemetrexed in malignant pleural mesothelioma cell lines. Oncotarget. 2016;7:76577-76589 pubmed 出版商
  47. Qiu X, Wei R, Li Y, Zhu Q, Xiong C, Chen Y, et al. NEDL2 regulates enteric nervous system and kidney development in its Nedd8 ligase activity-dependent manner. Oncotarget. 2016;7:31440-53 pubmed 出版商
  48. Zwang N, Zhang R, Germana S, Fan M, Hastings W, Cao A, et al. Selective Sparing of Human Tregs by Pharmacologic Inhibitors of the Phosphatidylinositol 3-Kinase and MEK Pathways. Am J Transplant. 2016;16:2624-38 pubmed 出版商
  49. Lynch J, McEwen R, Crafter C, McDermott U, Garnett M, Barry S, et al. Identification of differential PI3K pathway target dependencies in T-cell acute lymphoblastic leukemia through a large cancer cell panel screen. Oncotarget. 2016;7:22128-39 pubmed 出版商
  50. Winnay J, Solheim M, Dirice E, Sakaguchi M, Noh H, Kang H, et al. PI3-kinase mutation linked to insulin and growth factor resistance in vivo. J Clin Invest. 2016;126:1401-12 pubmed 出版商
  51. Du L, Chen X, Cao Y, Lu L, Zhang F, Bornstein S, et al. Overexpression of PIK3CA in murine head and neck epithelium drives tumor invasion and metastasis through PDK1 and enhanced TGFβ signaling. Oncogene. 2016;35:4641-52 pubmed 出版商
  52. Kulbe H, Iorio F, Chakravarty P, Milagre C, Moore R, Thompson R, et al. Integrated transcriptomic and proteomic analysis identifies protein kinase CK2 as a key signaling node in an inflammatory cytokine network in ovarian cancer cells. Oncotarget. 2016;7:15648-61 pubmed 出版商
  53. Yamano S, Gi M, Tago Y, Doi K, Okada S, Hirayama Y, et al. Role of deltaNp63(pos)CD44v(pos) cells in the development of N-nitroso-tris-chloroethylurea-induced peripheral-type mouse lung squamous cell carcinomas. Cancer Sci. 2016;107:123-32 pubmed 出版商
  54. Munkley J, Livermore K, McClurg U, Kalna G, Knight B, McCullagh P, et al. The PI3K regulatory subunit gene PIK3R1 is under direct control of androgens and repressed in prostate cancer cells. Oncoscience. 2015;2:755-64 pubmed
  55. Yuzugullu H, Baitsch L, Von T, Steiner A, Tong H, Ni J, et al. A PI3K p110β-Rac signalling loop mediates Pten-loss-induced perturbation of haematopoiesis and leukaemogenesis. Nat Commun. 2015;6:8501 pubmed 出版商
  56. Kitatani K, Usui T, Sriraman S, Toyoshima M, Ishibashi M, Shigeta S, et al. Ceramide limits phosphatidylinositol-3-kinase C2β-controlled cell motility in ovarian cancer: potential of ceramide as a metastasis-suppressor lipid. Oncogene. 2016;35:2801-12 pubmed 出版商
  57. Okoro E, Zhang H, Guo Z, Yang F, Smith C, Yang H. A Subregion of Reelin Suppresses Lipoprotein-Induced Cholesterol Accumulation in Macrophages. PLoS ONE. 2015;10:e0136895 pubmed 出版商
  58. Geletu M, Guy S, Greer S, Raptis L. Differential effects of polyoma virus middle tumor antigen mutants upon gap junctional, intercellular communication. Exp Cell Res. 2015;336:223-31 pubmed 出版商
  59. Stoy C, Sundaram A, Rios Garcia M, Wang X, Seibert O, Zota A, et al. Transcriptional co-factor Transducin beta-like (TBL) 1 acts as a checkpoint in pancreatic cancer malignancy. EMBO Mol Med. 2015;7:1048-62 pubmed 出版商
  60. Cheng H, Liang Y, Kuo Y, Chuu C, Lin C, Lee M, et al. Identification of thioridazine, an antipsychotic drug, as an antiglioblastoma and anticancer stem cell agent using public gene expression data. Cell Death Dis. 2015;6:e1753 pubmed 出版商
  61. Zhang W, Hou J, Wang X, Jiang R, Yin Y, Ji J, et al. PTPRO-mediated autophagy prevents hepatosteatosis and tumorigenesis. Oncotarget. 2015;6:9420-33 pubmed
  62. Zhang Z, Zhang T, Zhou Y, Wei X, Zhu J, Zhang J, et al. Activated phosphatidylinositol 3-kinase/Akt inhibits the transition of endothelial progenitor cells to mesenchymal cells by regulating the forkhead box subgroup O-3a signaling. Cell Physiol Biochem. 2015;35:1643-53 pubmed 出版商
  63. Zhou Q, Derti A, Ruddy D, Rakiec D, Kao I, Lira M, et al. A chemical genetics approach for the functional assessment of novel cancer genes. Cancer Res. 2015;75:1949-58 pubmed 出版商
  64. Lin Y, Yang Z, Xu A, Dong P, Huang Y, Liu H, et al. PIK3R1 negatively regulates the epithelial-mesenchymal transition and stem-like phenotype of renal cancer cells through the AKT/GSK3β/CTNNB1 signaling pathway. Sci Rep. 2015;5:8997 pubmed 出版商
  65. You J, Yang H, Lai Y, Simon L, Au J, Burkart A. AT-rich interactive domain 2, p110α, p53, and β-catenin protein expression in hepatocellular carcinoma and clinicopathologic implications. Hum Pathol. 2015;46:583-92 pubmed 出版商
  66. Aki S, Yoshioka K, Okamoto Y, Takuwa N, Takuwa Y. Phosphatidylinositol 3-kinase class II α-isoform PI3K-C2α is required for transforming growth factor β-induced Smad signaling in endothelial cells. J Biol Chem. 2015;290:6086-105 pubmed 出版商
  67. Modelska A, Turro E, Russell R, Beaton J, Sbarrato T, Spriggs K, et al. The malignant phenotype in breast cancer is driven by eIF4A1-mediated changes in the translational landscape. Cell Death Dis. 2015;6:e1603 pubmed 出版商
  68. Gasser J, Inuzuka H, Lau A, Wei W, Beroukhim R, Toker A. SGK3 mediates INPP4B-dependent PI3K signaling in breast cancer. Mol Cell. 2014;56:595-607 pubmed 出版商
  69. Wang C, Zhang W, Fu M, Yang A, Huang H, Xie J. Establishment of human pancreatic cancer gemcitabine‑resistant cell line with ribonucleotide reductase overexpression. Oncol Rep. 2015;33:383-90 pubmed 出版商
  70. Xu W, Yang X, Li D, Zheng K, Qiu P, Zhang W, et al. Up-regulation of fatty acid oxidation in the ligament as a contributing factor of ankylosing spondylitis: A comparative proteomic study. J Proteomics. 2015;113:57-72 pubmed 出版商
  71. Perez García V, Redondo Muñoz J, Kumar A, Carrera A. Cell activation-induced phosphoinositide 3-kinase alpha/beta dimerization regulates PTEN activity. Mol Cell Biol. 2014;34:3359-73 pubmed 出版商
  72. Leinders M, Koehrn F, Bartok B, Boyle D, Shubayev V, Kalcheva I, et al. Differential distribution of PI3K isoforms in spinal cord and dorsal root ganglia: potential roles in acute inflammatory pain. Pain. 2014;155:1150-60 pubmed 出版商
  73. Wu J, Akkuratov E, Bai Y, Gaskill C, Askari A, Liu L. Cell signaling associated with Na(+)/K(+)-ATPase: activation of phosphatidylinositide 3-kinase IA/Akt by ouabain is independent of Src. Biochemistry. 2013;52:9059-67 pubmed 出版商
  74. Barceló C, Paco N, Beckett A, Alvarez Moya B, Garrido E, Gelabert M, et al. Oncogenic K-ras segregates at spatially distinct plasma membrane signaling platforms according to its phosphorylation status. J Cell Sci. 2013;126:4553-9 pubmed 出版商
  75. Kodigepalli K, Dutta P, Bauckman K, Nanjundan M. SnoN/SkiL expression is modulated via arsenic trioxide-induced activation of the PI3K/AKT pathway in ovarian cancer cells. FEBS Lett. 2013;587:5-16 pubmed 出版商