这是一篇来自已证抗体库的有关人类 p16的综述,是根据96篇发表使用所有方法的文章归纳的。这综述旨在帮助来邦网的访客找到最适合p16 抗体。
p16 同义词: ARF; CDK4I; CDKN2; CMM2; INK4; INK4A; MLM; MTS-1; MTS1; P14; P14ARF; P16; P16-INK4A; P16INK4; P16INK4A; P19; P19ARF; TP16

艾博抗(上海)贸易有限公司
小鼠 单克隆(2D9A12)
  • 免疫印迹; 人类; 图 5d
艾博抗(上海)贸易有限公司 p16抗体(Santa Cruz, ab54210)被用于被用于免疫印迹在人类样本上 (图 5d). elife (2020) ncbi
domestic rabbit 单克隆(EPR1473)
  • 免疫印迹; 人类; 1:1000; 图 5b
艾博抗(上海)贸易有限公司 p16抗体(Abcam, Ab10834)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 5b). Biomolecules (2019) ncbi
domestic rabbit 单克隆(EPR1473)
  • 免疫组化-石蜡切片; 人类; 1:200; 图 1d
  • 免疫印迹; 人类; 1:1000; 图 1g
艾博抗(上海)贸易有限公司 p16抗体(Abcam, ab-108349)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:200 (图 1d) 和 被用于免疫印迹在人类样本上浓度为1:1000 (图 1g). EMBO J (2019) ncbi
domestic rabbit 单克隆(EPR1473)
  • 免疫印迹; 人类; 图 e8o
艾博抗(上海)贸易有限公司 p16抗体(Abcam, ab108349)被用于被用于免疫印迹在人类样本上 (图 e8o). Nature (2019) ncbi
domestic rabbit 单克隆(EPR1473)
  • 免疫印迹; 小鼠; 图 s5c
艾博抗(上海)贸易有限公司 p16抗体(Abcam, ab108349)被用于被用于免疫印迹在小鼠样本上 (图 s5c). Science (2019) ncbi
小鼠 单克隆(2D9A12)
  • 免疫组化-石蜡切片; 人类; 1:100; 图 1c
  • 免疫组化-自由浮动切片; 小鼠; 1:100; 图 4d
艾博抗(上海)贸易有限公司 p16抗体(Abcam, ab54210)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100 (图 1c) 和 被用于免疫组化-自由浮动切片在小鼠样本上浓度为1:100 (图 4d). Nat Neurosci (2019) ncbi
domestic rabbit 单克隆(EPR1473)
  • 免疫印迹; 人类; 1:2000; 图 6b
艾博抗(上海)贸易有限公司 p16抗体(Abcam, ab108349)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 6b). Cancer Sci (2019) ncbi
小鼠 单克隆(ARF 4C6/4)
  • 免疫印迹; 人类; 图 7a
艾博抗(上海)贸易有限公司 p16抗体(Abcam, ARF4C6/4)被用于被用于免疫印迹在人类样本上 (图 7a). Biosci Rep (2018) ncbi
domestic rabbit 单克隆(EPR1473)
  • 免疫印迹; 人类; 1:1000; 图 s2f
艾博抗(上海)贸易有限公司 p16抗体(Abcam, ab108349)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 s2f). Nat Commun (2018) ncbi
domestic rabbit 单克隆
  • 其他; 人类; 图 4c
艾博抗(上海)贸易有限公司 p16抗体(Abcam, ab81278)被用于被用于其他在人类样本上 (图 4c). Cancer Cell (2018) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:500; 图 4c
艾博抗(上海)贸易有限公司 p16抗体(Abcam, ab189034)被用于被用于免疫组化在小鼠样本上浓度为1:500 (图 4c). Cell Death Dis (2018) ncbi
小鼠 单克隆(2D9A12)
  • 免疫组化-冰冻切片; 小鼠; 1:200; 图 3i
艾博抗(上海)贸易有限公司 p16抗体(Abcam, 2D9A12)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:200 (图 3i). Genes Dev (2017) ncbi
小鼠 单克隆(2D9A12)
  • 免疫印迹; 人类; 图 8a
艾博抗(上海)贸易有限公司 p16抗体(Abcam, ab54210)被用于被用于免疫印迹在人类样本上 (图 8a). J Cell Physiol (2017) ncbi
domestic rabbit 单克隆(EPR1473)
  • 免疫印迹; 人类; 1:500; 图 2d
艾博抗(上海)贸易有限公司 p16抗体(Abcam, ab108349)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 2d). PLoS ONE (2017) ncbi
domestic rabbit 单克隆
  • 流式细胞仪; 人类; 图 2b
  • 免疫印迹; 人类; 图 2a
艾博抗(上海)贸易有限公司 p16抗体(Abcam, ab81278)被用于被用于流式细胞仪在人类样本上 (图 2b) 和 被用于免疫印迹在人类样本上 (图 2a). J Cell Physiol (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 s6
艾博抗(上海)贸易有限公司 p16抗体(abcam, ab189034)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 s6). Nat Commun (2016) ncbi
小鼠 单克隆(2D9A12)
  • 免疫组化-石蜡切片; 小鼠; 1:1000; 图 s5
艾博抗(上海)贸易有限公司 p16抗体(abcam, ab54210)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:1000 (图 s5). Nat Commun (2016) ncbi
小鼠 单克隆(ARF 4C6/4)
  • 免疫印迹; 大鼠; 1:1000; 图 4a
艾博抗(上海)贸易有限公司 p16抗体(Abcam, ab11048)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 4a). Sci Rep (2016) ncbi
小鼠 单克隆(2D9A12)
  • 免疫印迹; 人类; 图 1b
艾博抗(上海)贸易有限公司 p16抗体(Abcam, ab54210)被用于被用于免疫印迹在人类样本上 (图 1b). Oncotarget (2016) ncbi
domestic rabbit 单克隆(EPR1473)
  • 免疫印迹; 人类; 1:1000; 图 1f
艾博抗(上海)贸易有限公司 p16抗体(Abcam, ab108349)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 1f). Aging (Albany NY) (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 人类; 图 5
艾博抗(上海)贸易有限公司 p16抗体(abcam, ab3642)被用于被用于免疫组化-石蜡切片在人类样本上 (图 5). Nat Commun (2016) ncbi
小鼠 单克隆(DCS50.1)
  • 免疫印迹; 人类; 图 2a
艾博抗(上海)贸易有限公司 p16抗体(Abcam, ab16123)被用于被用于免疫印迹在人类样本上 (图 2a). Genes Dev (2016) ncbi
小鼠 单克隆(DCS50.1)
  • 免疫印迹; 人类; 图 3
艾博抗(上海)贸易有限公司 p16抗体(Abcam, ab16123)被用于被用于免疫印迹在人类样本上 (图 3). Nature (2015) ncbi
小鼠 单克隆(2D9A12)
  • 免疫印迹; 小鼠; 图 4
艾博抗(上海)贸易有限公司 p16抗体(Abcam, ab54210)被用于被用于免疫印迹在小鼠样本上 (图 4). Autophagy (2015) ncbi
小鼠 单克隆(ARF 4C6/4)
  • 免疫印迹; 人类
艾博抗(上海)贸易有限公司 p16抗体(Abcam, ab11048)被用于被用于免疫印迹在人类样本上. Oncogene (2016) ncbi
domestic rabbit 单克隆
  • 免疫印迹; 人类; 1:500; 图 3
艾博抗(上海)贸易有限公司 p16抗体(Abcam, ab81278)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 3). Cells Tissues Organs (2014) ncbi
小鼠 单克隆(2D9A12)
  • 免疫组化-石蜡切片; 人类
艾博抗(上海)贸易有限公司 p16抗体(Abcam, 2D9A12)被用于被用于免疫组化-石蜡切片在人类样本上. J Dermatol (2015) ncbi
小鼠 单克隆(2D9A12)
  • 免疫印迹; 人类; 图 7
艾博抗(上海)贸易有限公司 p16抗体(Abcam, ab54210)被用于被用于免疫印迹在人类样本上 (图 7). Oncogene (2015) ncbi
小鼠 单克隆(2D9A12)
  • 免疫组化-石蜡切片; 人类; 1:200; 图 3
  • 免疫印迹; 人类; 1:1000; 图 1
艾博抗(上海)贸易有限公司 p16抗体(Abcam, ab54210)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:200 (图 3) 和 被用于免疫印迹在人类样本上浓度为1:1000 (图 1). Arthritis Res Ther (2014) ncbi
小鼠 单克隆(2D9A12)
  • 免疫印迹; 人类
艾博抗(上海)贸易有限公司 p16抗体(Abcam, ab54210)被用于被用于免疫印迹在人类样本上. Age (Dordr) (2013) ncbi
圣克鲁斯生物技术
小鼠 单克隆(C-7)
  • 免疫印迹; 小鼠; 图 2j
圣克鲁斯生物技术 p16抗体(Santa, sc-377412)被用于被用于免疫印迹在小鼠样本上 (图 2j). Aging Cell (2019) ncbi
大鼠 单克隆(5-C3-1)
  • 免疫印迹; 小鼠; 图 4c
圣克鲁斯生物技术 p16抗体(Santa Cruz Biotechnology, sc-32748)被用于被用于免疫印迹在小鼠样本上 (图 4c). Cancer Cell (2019) ncbi
小鼠 单克隆(C-7)
  • 免疫印迹; 小鼠; 图 s2
圣克鲁斯生物技术 p16抗体(Santa Cruz, sc-377412)被用于被用于免疫印迹在小鼠样本上 (图 s2). Sci Rep (2016) ncbi
大鼠 单克隆(5-C3-1)
  • 免疫组化-石蜡切片; 小鼠; 1:100; 图 9.a","b
圣克鲁斯生物技术 p16抗体(Santa Cruz Biotech, sc-32748)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:100 (图 9.a","b). Nat Commun (2016) ncbi
大鼠 单克隆(5-C3-1)
  • 免疫印迹; 小鼠; 1:1000; 图 3
圣克鲁斯生物技术 p16抗体(Santa Cruz, sc-32748)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 3). PLoS ONE (2015) ncbi
小鼠 单克隆(C-7)
  • 免疫印迹; 人类; 1:500; 图 2
圣克鲁斯生物技术 p16抗体(Santa Cruz, sc-377412)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 2). Nat Commun (2015) ncbi
大鼠 单克隆(5-C3-1)
  • 免疫印迹; 人类
圣克鲁斯生物技术 p16抗体(Santa Cruz Biotechnology, 5-C3-1)被用于被用于免疫印迹在人类样本上. Mol Cell Biol (2015) ncbi
大鼠 单克隆(5-C3-1)
  • 免疫印迹; 小鼠; 1:200
圣克鲁斯生物技术 p16抗体(Santa Cruz Biotechnology, sc-32748)被用于被用于免疫印迹在小鼠样本上浓度为1:200. Biochim Biophys Acta (2015) ncbi
大鼠 单克隆(5-C3-1)
  • 免疫印迹; 小鼠; 图 s1
圣克鲁斯生物技术 p16抗体(Santa Cruz, sc32748)被用于被用于免疫印迹在小鼠样本上 (图 s1). Aging Cell (2015) ncbi
大鼠 单克隆(5-C3-1)
  • 免疫印迹; 小鼠; 图 s4e
圣克鲁斯生物技术 p16抗体(santa cruz, sc-32748)被用于被用于免疫印迹在小鼠样本上 (图 s4e). Nat Immunol (2015) ncbi
大鼠 单克隆(5-C3-1)
  • 免疫印迹; 小鼠
圣克鲁斯生物技术 p16抗体(Santa Cruz Biotechnology, sc-32748)被用于被用于免疫印迹在小鼠样本上. J Clin Invest (2015) ncbi
大鼠 单克隆(5-C3-1)
  • 免疫印迹; 人类
圣克鲁斯生物技术 p16抗体(Santa Cruz, sc-32748)被用于被用于免疫印迹在人类样本上. PLoS ONE (2014) ncbi
大鼠 单克隆(5-C3-1)
  • 免疫沉淀; 小鼠
圣克鲁斯生物技术 p16抗体(Santa, sc-32748)被用于被用于免疫沉淀在小鼠样本上. Cancer Res (2013) ncbi
大鼠 单克隆(5-C3-1)
  • 免疫印迹; 小鼠
圣克鲁斯生物技术 p16抗体(Santa Cruz Biotechnology, sc-32748)被用于被用于免疫印迹在小鼠样本上. Oncogene (2014) ncbi
赛默飞世尔
小鼠 单克隆(14P02 (DCS-240))
  • 免疫细胞化学; 人类; 1:100; 图 2a
  • 免疫印迹; 人类; 1:750; 图 3a
赛默飞世尔 p16抗体(Thermo Scientific, MA5-C14260)被用于被用于免疫细胞化学在人类样本上浓度为1:100 (图 2a) 和 被用于免疫印迹在人类样本上浓度为1:750 (图 3a). Oncogene (2019) ncbi
小鼠 单克隆(5A8A4)
  • 免疫组化-石蜡切片; 人类; 图 s5e-h
赛默飞世尔 p16抗体(Thermo Fisher Scientific, MA5-17093)被用于被用于免疫组化-石蜡切片在人类样本上 (图 s5e-h). Cancer Cell (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 3e
赛默飞世尔 p16抗体(Thermo Scientific, PA5-16639)被用于被用于免疫印迹在人类样本上 (图 3e). Exp Cell Res (2017) ncbi
小鼠 单克隆(14P02 (DCS-240))
  • 免疫细胞化学; 人类; 1:200; 图 4b
  • 免疫印迹; 人类; 1:750; 图 2c
赛默飞世尔 p16抗体(Neomarkers, 14P02)被用于被用于免疫细胞化学在人类样本上浓度为1:200 (图 4b) 和 被用于免疫印迹在人类样本上浓度为1:750 (图 2c). Oncotarget (2016) ncbi
小鼠 单克隆(5A8A4)
  • 免疫组化-石蜡切片; 人类; 图 3
赛默飞世尔 p16抗体(Thermo Scientific, MA5-17093)被用于被用于免疫组化-石蜡切片在人类样本上 (图 3). Oncotarget (2016) ncbi
domestic rabbit 多克隆
赛默飞世尔 p16抗体(Pierce, PA5-20379)被用于. Oncotarget (2015) ncbi
小鼠 单克隆(14P02 (DCS-240))
  • 免疫组化-石蜡切片; 人类; 1:200
赛默飞世尔 p16抗体(Neomarkers, 14PO2)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:200. Int J Gynecol Pathol (2015) ncbi
domestic rabbit 多克隆
赛默飞世尔 p16抗体(Thermoscientific, PA1-30670)被用于. Nat Med (2015) ncbi
小鼠 单克隆(14P02 (DCS-240))
  • 免疫沉淀; 人类; 图 2
  • 免疫印迹; 人类; 图 1
赛默飞世尔 p16抗体(Neomarkers, 14PO2)被用于被用于免疫沉淀在人类样本上 (图 2) 和 被用于免疫印迹在人类样本上 (图 1). PLoS ONE (2013) ncbi
武汉三鹰
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 5c
武汉三鹰 p16抗体(Proteintech, 10883-1-AP)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 5c). Aging (Albany NY) (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 1a
武汉三鹰 p16抗体(Proteintech Group, 10,883-AP)被用于被用于免疫印迹在小鼠样本上 (图 1a). Mol Neurobiol (2019) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 图 5q
武汉三鹰 p16抗体(Proteintech, 10883-1-AP)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 5q). Am J Physiol Gastrointest Liver Physiol (2018) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:100; 图 st1
武汉三鹰 p16抗体(ProteinTech Group, 10883-1-AP)被用于被用于免疫印迹在人类样本上浓度为1:100 (图 st1). Nat Commun (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 8
武汉三鹰 p16抗体(Proteintech, 10883-1-AP)被用于被用于免疫印迹在人类样本上 (图 8). J Biol Chem (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 s2
武汉三鹰 p16抗体(Proteintech, 10883)被用于被用于免疫印迹在人类样本上 (图 s2). Autophagy (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 图 3
武汉三鹰 p16抗体(Proteintech, 10883-1-AP)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 3). Oncotarget (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 5
  • 免疫印迹; 人类; 图 7
武汉三鹰 p16抗体(Proteintech, 10883-1-AP)被用于被用于免疫印迹在小鼠样本上 (图 5) 和 被用于免疫印迹在人类样本上 (图 7). Oncotarget (2016) ncbi
domestic rabbit 多克隆
武汉三鹰 p16抗体(Proteintech, 10883-1-AP)被用于. Oncotarget (2015) ncbi
西格玛奥德里奇
小鼠 单克隆(E6H4)
  • 免疫组化; 小鼠; 图 s4a
西格玛奥德里奇 p16抗体(Roche, 7054713)被用于被用于免疫组化在小鼠样本上 (图 s4a). J Clin Invest (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:2000; 图 2h
西格玛奥德里奇 p16抗体(Sigma, SAB4500072)被用于被用于免疫印迹在小鼠样本上浓度为1:2000 (图 2h). Exp Hematol (2016) ncbi
小鼠 单克隆(DCS-240)
  • 免疫印迹; 人类; 图 7
西格玛奥德里奇 p16抗体(Sigma, P2610)被用于被用于免疫印迹在人类样本上 (图 7). Oncogene (2012) ncbi
Novus Biologicals
大鼠 单克隆(5-C3-1)
  • 免疫印迹; 人类; 图 6b
Novus Biologicals p16抗体(Novus, 5-C3-1)被用于被用于免疫印迹在人类样本上 (图 6b). Nat Commun (2018) ncbi
大鼠 单克隆(5-C3-1)
  • 免疫印迹; 小鼠; 图 s5d
Novus Biologicals p16抗体(Novus, NB-200-174)被用于被用于免疫印迹在小鼠样本上 (图 s5d). Oncotarget (2014) ncbi
Rockland Immunochemicals
大鼠 单克隆(5.C3.1)
  • 免疫印迹; 小鼠; 图 4
Rockland Immunochemicals p16抗体(Rockland Antibodies and Assays, 5.C3.1)被用于被用于免疫印迹在小鼠样本上 (图 4). Cell Rep (2015) ncbi
安迪生物R&D
domestic goat 多克隆
  • 免疫细胞化学; 人类; 图 2d
安迪生物R&D p16抗体(R&D, AF5779)被用于被用于免疫细胞化学在人类样本上 (图 2d). Cell Rep (2019) ncbi
赛信通(上海)生物试剂有限公司
domestic rabbit 单克隆(D7C1M)
  • 免疫印迹; 大鼠; 图 2h
赛信通(上海)生物试剂有限公司 p16抗体(Cell Signaling, 80772)被用于被用于免疫印迹在大鼠样本上 (图 2h). Aging (Albany NY) (2019) ncbi
小鼠 单克隆(4C6/4)
  • 免疫印迹; 人类; 1:1000; 图 s2d
赛信通(上海)生物试剂有限公司 p16抗体(Cell Signaling, 2407)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 s2d). Nat Commun (2019) ncbi
小鼠 单克隆(4C6/4)
  • 免疫组化; 人类; 1:50; 图 2h
赛信通(上海)生物试剂有限公司 p16抗体(Cell Signaling, 2407)被用于被用于免疫组化在人类样本上浓度为1:50 (图 2h). Oncogene (2019) ncbi
小鼠 单克隆(4C6/4)
  • 免疫印迹; 人类; 图 2c
赛信通(上海)生物试剂有限公司 p16抗体(Cell Signaling, 2407)被用于被用于免疫印迹在人类样本上 (图 2c). J Biol Chem (2017) ncbi
小鼠 单克隆(4C6/4)
  • 免疫印迹; 人类; 图 S1B
赛信通(上海)生物试剂有限公司 p16抗体(CST, 2407)被用于被用于免疫印迹在人类样本上 (图 S1B). PLoS ONE (2015) ncbi
小鼠 单克隆(4C6/4)
  • proximity ligation assay; 人类; 1:100; 图 7c
赛信通(上海)生物试剂有限公司 p16抗体(Cell Signaling, 2407)被用于被用于proximity ligation assay在人类样本上浓度为1:100 (图 7c). Nat Commun (2015) ncbi
Ventana
小鼠 单克隆(E6H4)
  • 免疫组化; 人类; 1:600; 表 1
Ventana p16抗体(Ventana, E6H4)被用于被用于免疫组化在人类样本上浓度为1:600 (表 1). Cancer (2017) ncbi
碧迪BD
小鼠 单克隆(G175-405)
  • 免疫印迹; 人类; 图 1m
碧迪BD p16抗体(BD Bioscience, 550834)被用于被用于免疫印迹在人类样本上 (图 1m). Nucleic Acids Res (2020) ncbi
小鼠 单克隆(G175-405)
  • 免疫组化-石蜡切片; 人类; 1:50; 表 2
碧迪BD p16抗体(BD, 551153)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:50 (表 2). Neurol Med Chir (Tokyo) (2020) ncbi
小鼠 单克隆(G175-405)
  • 免疫印迹; 人类; 图 2d
碧迪BD p16抗体(BD, 550834)被用于被用于免疫印迹在人类样本上 (图 2d). PLoS Biol (2019) ncbi
小鼠 单克隆(G175-1239)
  • 免疫印迹; 小鼠; 图 5h, 5i
  • 免疫印迹; 人类; 图 1c, s1c, s2b
碧迪BD p16抗体(BD, G175-1239)被用于被用于免疫印迹在小鼠样本上 (图 5h, 5i) 和 被用于免疫印迹在人类样本上 (图 1c, s1c, s2b). Nucleic Acids Res (2018) ncbi
小鼠 单克隆(G175-405)
  • 免疫印迹; 人类; 1:500; 图 1c
碧迪BD p16抗体(BD Biosciences, 551154)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 1c). Nat Chem Biol (2017) ncbi
小鼠 单克隆(G175-405)
  • 免疫印迹; 人类; 图 6
碧迪BD p16抗体(BD Biosciences, 551154)被用于被用于免疫印迹在人类样本上 (图 6). Genome Biol (2016) ncbi
小鼠 单克隆(G175-405)
  • 免疫印迹; 人类; 1:200; 图 6
碧迪BD p16抗体(BD Pharmingen, 550834)被用于被用于免疫印迹在人类样本上浓度为1:200 (图 6). PLoS ONE (2016) ncbi
小鼠 单克隆(G175-405)
  • 免疫印迹; 人类; 图 4
碧迪BD p16抗体(BD Biosciences, 550834)被用于被用于免疫印迹在人类样本上 (图 4). J Virol (2016) ncbi
小鼠 单克隆(G175-405)
  • 免疫组化-石蜡切片; 人类; 1:10; 图 4
  • 免疫印迹; 人类; 图 2
碧迪BD p16抗体(BD Bioscience, G175-405)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:10 (图 4) 和 被用于免疫印迹在人类样本上 (图 2). Cell Death Differ (2016) ncbi
小鼠 单克隆(G175-405)
  • 流式细胞仪; 人类; 1:50; 图 st3
  • 免疫印迹; 人类; 1:500; 图 1c
碧迪BD p16抗体(BD Pharmingen, 550834)被用于被用于流式细胞仪在人类样本上浓度为1:50 (图 st3) 和 被用于免疫印迹在人类样本上浓度为1:500 (图 1c). Nat Commun (2016) ncbi
小鼠 单克隆(G175-405)
  • 免疫印迹; 人类; 图 2
碧迪BD p16抗体(BD Biosciences, 551153)被用于被用于免疫印迹在人类样本上 (图 2). Redox Biol (2016) ncbi
小鼠 单克隆(G175-405)
  • 免疫组化; 人类; 1:50; 图 s4
碧迪BD p16抗体(BD Biosciences, G175?C405)被用于被用于免疫组化在人类样本上浓度为1:50 (图 s4). Oncotarget (2015) ncbi
小鼠 单克隆(G175-1239)
  • 免疫印迹; 人类; 图 1b
碧迪BD p16抗体(BD Pharmingen, 554079)被用于被用于免疫印迹在人类样本上 (图 1b). Mol Cancer (2015) ncbi
小鼠 单克隆(G175-1239)
  • 免疫组化; 人类; 1:200; 图 8
碧迪BD p16抗体((BD-Biosciences, 554079)被用于被用于免疫组化在人类样本上浓度为1:200 (图 8). PLoS Pathog (2015) ncbi
小鼠 单克隆(G175-405)
  • 免疫印迹; 人类; 1:1000
碧迪BD p16抗体(BD Pharmigen, 551154)被用于被用于免疫印迹在人类样本上浓度为1:1000. Front Cell Dev Biol (2015) ncbi
小鼠 单克隆(G175-1239)
  • 免疫印迹; 人类; 图 5
碧迪BD p16抗体(BD PharMingen, 554079)被用于被用于免疫印迹在人类样本上 (图 5). Aging Cell (2015) ncbi
小鼠 单克隆(G175-405)
  • 免疫组化; 人类; 图 S2
碧迪BD p16抗体(BD Bioscience, G175-405)被用于被用于免疫组化在人类样本上 (图 S2). Cell Cycle (2014) ncbi
小鼠 单克隆(G175-405)
  • 免疫组化; 人类; 1:200; 图 2
碧迪BD p16抗体(BD Pharmingen, G175-405)被用于被用于免疫组化在人类样本上浓度为1:200 (图 2). Clin Cancer Res (2014) ncbi
小鼠 单克隆(G175-1239)
  • 免疫印迹; 人类; 图 5
碧迪BD p16抗体(BD Pharmingen, 554079)被用于被用于免疫印迹在人类样本上 (图 5). PLoS Genet (2014) ncbi
小鼠 单克隆(G175-1239)
  • 免疫细胞化学; 人类
  • 免疫印迹; 人类
碧迪BD p16抗体(BD Pharmingen, BD554079)被用于被用于免疫细胞化学在人类样本上 和 被用于免疫印迹在人类样本上. Mol Cell Biol (2014) ncbi
小鼠 单克隆(G175-405)
  • 免疫组化-石蜡切片; 人类
碧迪BD p16抗体(BD Biosciences, G175-405)被用于被用于免疫组化-石蜡切片在人类样本上. PLoS ONE (2013) ncbi
小鼠 单克隆(G175-405)
  • 免疫印迹; 人类
碧迪BD p16抗体(Biosciences Pharmingen, G175-405)被用于被用于免疫印迹在人类样本上. Nucleic Acids Res (2013) ncbi
徕卡显微系统(上海)贸易有限公司
  • 免疫组化-石蜡切片; 人类; 1:100; 表 3
徕卡显微系统(上海)贸易有限公司 p16抗体(Novocastra, NCL-p16-432)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100 (表 3). Eur J Histochem (2014) ncbi
文章列表
  1. Hu H, Ji Q, Song M, Ren J, Liu Z, Wang Z, et al. ZKSCAN3 counteracts cellular senescence by stabilizing heterochromatin. Nucleic Acids Res. 2020;48:6001-6018 pubmed 出版商
  2. Alessio N, Squillaro T, Di Bernardo G, Galano G, De Rosa R, Melone M, et al. Increase of circulating IGFBP-4 following genotoxic stress and its implication for senescence. elife. 2020;9: pubmed 出版商
  3. Enomoto T, Aoki M, Hamasaki M, Abe H, Nonaka M, Inoue T, et al. Midline Glioma in Adults: Clinicopathological, Genetic, and Epigenetic Analysis. Neurol Med Chir (Tokyo). 2020;60:136-146 pubmed 出版商
  4. Huang X, Ni B, Xi Y, Chu X, Zhang R, You H. Protease-activated receptor 2 (PAR-2) antagonist AZ3451 as a novel therapeutic agent for osteoarthritis. Aging (Albany NY). 2019;11:12532-12545 pubmed 出版商
  5. Vijayaraj P, Minasyan A, Durra A, Karumbayaram S, Mehrabi M, Aros C, et al. Modeling Progressive Fibrosis with Pluripotent Stem Cells Identifies an Anti-fibrotic Small Molecule. Cell Rep. 2019;29:3488-3505.e9 pubmed 出版商
  6. Shao Q, Esseltine J, Huang T, Novielli Kuntz N, Ching J, SAMPSON J, et al. Connexin43 is Dispensable for Early Stage Human Mesenchymal Stem Cell Adipogenic Differentiation But is Protective against Cell Senescence. Biomolecules. 2019;9: pubmed 出版商
  7. Gal H, Lysenko M, Stroganov S, Vadai E, Youssef S, Tzadikevitch Geffen K, et al. Molecular pathways of senescence regulate placental structure and function. EMBO J. 2019;38:e100849 pubmed 出版商
  8. Wang J, Liu Y, Liu Y, Zheng S, Wang X, Zhao J, et al. Time-resolved protein activation by proximal decaging in living systems. Nature. 2019;569:509-513 pubmed 出版商
  9. He M, Chaurushiya M, Webster J, Kummerfeld S, Reja R, Chaudhuri S, et al. Intrinsic apoptosis shapes the tumor spectrum linked to inactivation of the deubiquitinase BAP1. Science. 2019;364:283-285 pubmed 出版商
  10. Gao L, Hu Y, Tian Y, Fan Z, Wang K, Li H, et al. Lung cancer deficient in the tumor suppressor GATA4 is sensitive to TGFBR1 inhibition. Nat Commun. 2019;10:1665 pubmed 出版商
  11. Zhang P, Kishimoto Y, Grammatikakis I, Gottimukkala K, Cutler R, Zhang S, et al. Senolytic therapy alleviates Aβ-associated oligodendrocyte progenitor cell senescence and cognitive deficits in an Alzheimer's disease model. Nat Neurosci. 2019;22:719-728 pubmed 出版商
  12. Fu L, Hu Y, Song M, Liu Z, Zhang W, Yu F, et al. Up-regulation of FOXD1 by YAP alleviates senescence and osteoarthritis. PLoS Biol. 2019;17:e3000201 pubmed 出版商
  13. Chen L, Yang R, Qiao W, Zhang W, Chen J, Mao L, et al. 1,25-Dihydroxyvitamin D exerts an antiaging role by activation of Nrf2-antioxidant signaling and inactivation of p16/p53-senescence signaling. Aging Cell. 2019;18:e12951 pubmed 出版商
  14. Carugo A, Minelli R, Sapio L, Soeung M, Carbone F, Robinson F, et al. p53 Is a Master Regulator of Proteostasis in SMARCB1-Deficient Malignant Rhabdoid Tumors. Cancer Cell. 2019;35:204-220.e9 pubmed 出版商
  15. Lin X, Zhan J, Zhong J, Wang Y, Wang Y, Li S, et al. lncRNA-ES3/miR-34c-5p/BMF axis is involved in regulating high-glucose-induced calcification/senescence of VSMCs. Aging (Albany NY). 2019;11:523-535 pubmed 出版商
  16. Li F, Zeng Z, Xing S, Gullicksrud J, Shan Q, Choi J, et al. Ezh2 programs TFH differentiation by integrating phosphorylation-dependent activation of Bcl6 and polycomb-dependent repression of p19Arf. Nat Commun. 2018;9:5452 pubmed 出版商
  17. Xie Y, Fan H, Lu W, Yang Q, Nurkesh A, Yeleussizov T, et al. Nuclear MET requires ARF and is inhibited by carbon nanodots through binding to phospho-tyrosine in prostate cancer. Oncogene. 2019;38:2967-2983 pubmed 出版商
  18. Liang C, Ma Y, Yong L, Yang C, Wang P, Liu X, et al. Y-box binding protein-1 promotes tumorigenesis and progression via the epidermal growth factor receptor/AKT pathway in spinal chordoma. Cancer Sci. 2019;110:166-179 pubmed 出版商
  19. Yang Y, Peng X. The silencing of long non-coding RNA ANRIL suppresses invasion, and promotes apoptosis of retinoblastoma cells through the ATM-E2F1 signaling pathway. Biosci Rep. 2018;38: pubmed 出版商
  20. Zhang Y, Wang J, Huang W, Cai J, Ba J, Wang Y, et al. Nuclear Nestin deficiency drives tumor senescence via lamin A/C-dependent nuclear deformation. Nat Commun. 2018;9:3613 pubmed 出版商
  21. Guo Y, Li H, Ke X, Deng M, Wu Z, Cai Y, et al. Degradation of Caytaxin Causes Learning and Memory Deficits via Activation of DAPK1 in Aging. Mol Neurobiol. 2019;56:3368-3379 pubmed 出版商
  22. Li M, Yang X, LU X, Dai N, Zhang S, Cheng Y, et al. APE1 deficiency promotes cellular senescence and premature aging features. Nucleic Acids Res. 2018;46:5664-5677 pubmed 出版商
  23. Ng P, Li J, Jeong K, Shao S, Chen H, Tsang Y, et al. Systematic Functional Annotation of Somatic Mutations in Cancer. Cancer Cell. 2018;33:450-462.e10 pubmed 出版商
  24. Chen K, Dai H, Yuan J, Chen J, Lin L, Zhang W, et al. Optineurin-mediated mitophagy protects renal tubular epithelial cells against accelerated senescence in diabetic nephropathy. Cell Death Dis. 2018;9:105 pubmed 出版商
  25. Hamada S, Shimosegawa T, Taguchi K, Nabeshima T, Yamamoto M, Masamune A. Simultaneous K-ras activation and Keap1 deletion cause atrophy of pancreatic parenchyma. Am J Physiol Gastrointest Liver Physiol. 2018;314:G65-G74 pubmed 出版商
  26. Xia L, Huang W, Bellani M, Seidman M, Wu K, Fan D, et al. CHD4 Has Oncogenic Functions in Initiating and Maintaining Epigenetic Suppression of Multiple Tumor Suppressor Genes. Cancer Cell. 2017;31:653-668.e7 pubmed 出版商
  27. Kang H, Park J, Choi K, Kim Y, Choi H, Jung C, et al. Chemical screening identifies ATM as a target for alleviating senescence. Nat Chem Biol. 2017;13:616-623 pubmed 出版商
  28. Juhasz A, Markel S, Gaur S, Liu H, Lu J, Jiang G, et al. NADPH oxidase 1 supports proliferation of colon cancer cells by modulating reactive oxygen species-dependent signal transduction. J Biol Chem. 2017;292:7866-7887 pubmed 出版商
  29. Ritschka B, Storer M, Mas A, Heinzmann F, Ortells M, Morton J, et al. The senescence-associated secretory phenotype induces cellular plasticity and tissue regeneration. Genes Dev. 2017;31:172-183 pubmed 出版商
  30. Squillaro T, Antonucci I, Alessio N, Esposito A, Cipollaro M, Melone M, et al. Impact of lysosomal storage disorders on biology of mesenchymal stem cells: Evidences from in vitro silencing of glucocerebrosidase (GBA) and alpha-galactosidase A (GLA) enzymes. J Cell Physiol. 2017;232:3454-3467 pubmed 出版商
  31. Laporte A, Barrott J, Yao R, Poulin N, Brodin B, Jones K, et al. HDAC and Proteasome Inhibitors Synergize to Activate Pro-Apoptotic Factors in Synovial Sarcoma. PLoS ONE. 2017;12:e0169407 pubmed 出版商
  32. Mytych J, Wos I, Solek P, Koziorowski M. Protective role of klotho protein on epithelial cells upon co-culture with activated or senescent monocytes. Exp Cell Res. 2017;350:358-367 pubmed 出版商
  33. Gohn C, Blue E, Sheehan B, Varberg K, Haneline L. Mesenchyme Homeobox 2 Enhances Migration of Endothelial Colony Forming Cells Exposed to Intrauterine Diabetes Mellitus. J Cell Physiol. 2017;232:1885-1892 pubmed 出版商
  34. Winder A, Maniar K, Wei J, Liu D, Scholtens D, Lurain J, et al. Synuclein-γ in uterine serous carcinoma impacts survival: An NRG Oncology/Gynecologic Oncology Group study. Cancer. 2017;123:1144-1155 pubmed 出版商
  35. Lui J, Garrison P, Nguyen Q, Ad M, Keembiyehetty C, Chen W, et al. EZH1 and EZH2 promote skeletal growth by repressing inhibitors of chondrocyte proliferation and hypertrophy. Nat Commun. 2016;7:13685 pubmed 出版商
  36. Kaneko Y, Pappas C, Tajiri N, Borlongan C. Oxytocin modulates GABAAR subunits to confer neuroprotection in stroke in vitro. Sci Rep. 2016;6:35659 pubmed 出版商
  37. Saia M, Termanini A, Rizzi N, Mazza M, Barbieri E, Valli D, et al. AML1/ETO accelerates cell migration and impairs cell-to-cell adhesion and homing of hematopoietic stem/progenitor cells. Sci Rep. 2016;6:34957 pubmed 出版商
  38. Treindl F, Ruprecht B, Beiter Y, Schultz S, Döttinger A, Staebler A, et al. A bead-based western for high-throughput cellular signal transduction analyses. Nat Commun. 2016;7:12852 pubmed 出版商
  39. Xie X, Tsai S, Tsai M. COUP-TFII regulates satellite cell function and muscular dystrophy. J Clin Invest. 2016;126:3929-3941 pubmed 出版商
  40. Muzumdar M, Dorans K, Chung K, Robbins R, Tammela T, Gocheva V, et al. Clonal dynamics following p53 loss of heterozygosity in Kras-driven cancers. Nat Commun. 2016;7:12685 pubmed 出版商
  41. Mirkheshti N, Park S, Jiang S, Cropper J, Werner S, Song C, et al. Dual targeting of androgen receptor and mTORC1 by salinomycin in prostate cancer. Oncotarget. 2016;7:62240-62254 pubmed 出版商
  42. Nelson D, Jaber Hijazi F, Cole J, Robertson N, Pawlikowski J, Norris K, et al. Mapping H4K20me3 onto the chromatin landscape of senescent cells indicates a function in control of cell senescence and tumor suppression through preservation of genetic and epigenetic stability. Genome Biol. 2016;17:158 pubmed 出版商
  43. Lee J, Yu K, Kim H, Kang I, Kim J, Lee B, et al. BMI1 inhibits senescence and enhances the immunomodulatory properties of human mesenchymal stem cells via the direct suppression of MKP-1/DUSP1. Aging (Albany NY). 2016;8:1670-89 pubmed 出版商
  44. Xie Y, Lu W, Liu S, Yang Q, Goodwin J, Sathyanarayana S, et al. MMP7 interacts with ARF in nucleus to potentiate tumor microenvironments for prostate cancer progression in vivo. Oncotarget. 2016;7:47609-47619 pubmed 出版商
  45. Marthandan S, Baumgart M, Priebe S, Groth M, Schaer J, Kaether C, et al. Conserved Senescence Associated Genes and Pathways in Primary Human Fibroblasts Detected by RNA-Seq. PLoS ONE. 2016;11:e0154531 pubmed 出版商
  46. Chen Y, Pan K, Wang P, Cao Z, Wang W, Wang S, et al. HBP1-mediated Regulation of p21 Protein through the Mdm2/p53 and TCF4/EZH2 Pathways and Its Impact on Cell Senescence and Tumorigenesis. J Biol Chem. 2016;291:12688-705 pubmed 出版商
  47. Dey A, Mustafi S, Saha S, Kumar Dhar Dwivedi S, Mukherjee P, Bhattacharya R. Inhibition of BMI1 induces autophagy-mediated necroptosis. Autophagy. 2016;12:659-70 pubmed 出版商
  48. Yosef R, Pilpel N, Tokarsky Amiel R, Biran A, Ovadya Y, Cohen S, et al. Directed elimination of senescent cells by inhibition of BCL-W and BCL-XL. Nat Commun. 2016;7:11190 pubmed 出版商
  49. Strickland S, Vande Pol S. The Human Papillomavirus 16 E7 Oncoprotein Attenuates AKT Signaling To Promote Internal Ribosome Entry Site-Dependent Translation and Expression of c-MYC. J Virol. 2016;90:5611-5621 pubmed 出版商
  50. Vermeer D, Coppock J, Zeng E, Lee K, Spanos W, Onken M, et al. Metastatic model of HPV+ oropharyngeal squamous cell carcinoma demonstrates heterogeneity in tumor metastasis. Oncotarget. 2016;7:24194-207 pubmed 出版商
  51. Chernova T, Sun X, Powley I, Galavotti S, Grosso S, Murphy F, et al. Molecular profiling reveals primary mesothelioma cell lines recapitulate human disease. Cell Death Differ. 2016;23:1152-64 pubmed 出版商
  52. Largeot A, Perez Campo F, Marinopoulou E, Lie A Ling M, Kouskoff V, Lacaud G. Expression of the MOZ-TIF2 oncoprotein in mice represses senescence. Exp Hematol. 2016;44:231-7.e4 pubmed 出版商
  53. Capell B, Drake A, Zhu J, Shah P, Dou Z, Dorsey J, et al. MLL1 is essential for the senescence-associated secretory phenotype. Genes Dev. 2016;30:321-36 pubmed 出版商
  54. Nassour J, Martien S, Martin N, Deruy E, Tomellini E, Malaquin N, et al. Defective DNA single-strand break repair is responsible for senescence and neoplastic escape of epithelial cells. Nat Commun. 2016;7:10399 pubmed 出版商
  55. Chung S, Moon H, Ju H, Kim D, Cho K, Ribback S, et al. Comparison of liver oncogenic potential among human RAS isoforms. Oncotarget. 2016;7:7354-66 pubmed 出版商
  56. Ding X, Jiang W, Zhou P, Liu L, Wan X, Yuan X, et al. Mixed Lineage Leukemia 5 (MLL5) Protein Stability Is Cooperatively Regulated by O-GlcNac Transferase (OGT) and Ubiquitin Specific Protease 7 (USP7). PLoS ONE. 2015;10:e0145023 pubmed 出版商
  57. Marazita M, Dugour A, Marquioni Ramella M, Figueroa J, Suburo A. Oxidative stress-induced premature senescence dysregulates VEGF and CFH expression in retinal pigment epithelial cells: Implications for Age-related Macular Degeneration. Redox Biol. 2016;7:78-87 pubmed 出版商
  58. Dou Z, Xu C, Donahue G, Shimi T, Pan J, Zhu J, et al. Autophagy mediates degradation of nuclear lamina. Nature. 2015;527:105-9 pubmed 出版商
  59. Huebbers C, Adam A, Preuss S, Schiffer T, Schilder S, Guntinas Lichius O, et al. High glucose uptake unexpectedly is accompanied by high levels of the mitochondrial ß-F1-ATPase subunit in head and neck squamous cell carcinoma. Oncotarget. 2015;6:36172-84 pubmed 出版商
  60. Grootaert M, da Costa Martins P, Bitsch N, Pintelon I, De Meyer G, Martinet W, et al. Defective autophagy in vascular smooth muscle cells accelerates senescence and promotes neointima formation and atherogenesis. Autophagy. 2015;11:2014-2032 pubmed 出版商
  61. Högel H, Miikkulainen P, Bino L, Jaakkola P. Hypoxia inducible prolyl hydroxylase PHD3 maintains carcinoma cell growth by decreasing the stability of p27. Mol Cancer. 2015;14:143 pubmed 出版商
  62. Lee C, Yang Y, Chen C, Liu J. Syk-mediated tyrosine phosphorylation of mule promotes TNF-induced JNK activation and cell death. Oncogene. 2016;35:1988-95 pubmed 出版商
  63. Zhao J, Li H, Zhou R, Ma G, Dekker J, Tucker H, et al. Foxp1 Regulates the Proliferation of Hair Follicle Stem Cells in Response to Oxidative Stress during Hair Cycling. PLoS ONE. 2015;10:e0131674 pubmed 出版商
  64. Pickard A, McDade S, McFarland M, McCluggage W, Wheeler C, McCance D. HPV16 Down-Regulates the Insulin-Like Growth Factor Binding Protein 2 to Promote Epithelial Invasion in Organotypic Cultures. PLoS Pathog. 2015;11:e1004988 pubmed 出版商
  65. Sedic M, Skibinski A, Brown N, Gallardo M, Mulligan P, Martinez P, et al. Haploinsufficiency for BRCA1 leads to cell-type-specific genomic instability and premature senescence. Nat Commun. 2015;6:7505 pubmed 出版商
  66. Neo S, Itahana Y, Alagu J, Kitagawa M, Guo A, Lee S, et al. TRIM28 Is an E3 Ligase for ARF-Mediated NPM1/B23 SUMOylation That Represses Centrosome Amplification. Mol Cell Biol. 2015;35:2851-63 pubmed 出版商
  67. Jäger W, Xue H, Hayashi T, Janssen C, Awrey S, Wyatt A, et al. Patient-derived bladder cancer xenografts in the preclinical development of novel targeted therapies. Oncotarget. 2015;6:21522-32 pubmed
  68. Vinue A, Andrés Blasco I, Herrero Cervera A, Piqueras L, Andres V, Burks D, et al. Ink4/Arf locus restores glucose tolerance and insulin sensitivity by reducing hepatic steatosis and inflammation in mice with impaired IRS2-dependent signalling. Biochim Biophys Acta. 2015;1852:1729-42 pubmed 出版商
  69. Pozo K, Hillmann A, Augustyn A, Plattner F, Hai T, Singh T, et al. Differential expression of cell cycle regulators in CDK5-dependent medullary thyroid carcinoma tumorigenesis. Oncotarget. 2015;6:12080-93 pubmed
  70. Yamakoshi K, Katano S, Iida M, Kimura H, Okuma A, Ikemoto Uezumi M, et al. Dysregulation of the Bmi-1/p16(Ink⁴a) pathway provokes an aging-associated decline of submandibular gland function. Aging Cell. 2015;14:616-24 pubmed 出版商
  71. Lee J, Garbe J, Vrba L, Miyano M, Futscher B, Stampfer M, et al. Age and the means of bypassing stasis influence the intrinsic subtype of immortalized human mammary epithelial cells. Front Cell Dev Biol. 2015;3:13 pubmed 出版商
  72. Zhang Q, Kuang H, Chen C, Yan J, Do Umehara H, Liu X, et al. The kinase Jnk2 promotes stress-induced mitophagy by targeting the small mitochondrial form of the tumor suppressor ARF for degradation. Nat Immunol. 2015;16:458-66 pubmed 出版商
  73. Luo Z, Feng X, Wang H, Xu W, Zhao Y, Ma W, et al. Mir-23a induces telomere dysfunction and cellular senescence by inhibiting TRF2 expression. Aging Cell. 2015;14:391-9 pubmed 出版商
  74. Albers J, Danzer C, Rechsteiner M, Lehmann H, Brandt L, Hejhal T, et al. A versatile modular vector system for rapid combinatorial mammalian genetics. J Clin Invest. 2015;125:1603-19 pubmed 出版商
  75. Aubrey B, Kelly G, Kueh A, Brennan M, O Connor L, Milla L, et al. An inducible lentiviral guide RNA platform enables the identification of tumor-essential genes and tumor-promoting mutations in vivo. Cell Rep. 2015;10:1422-32 pubmed 出版商
  76. Kato H, Izumi K, Uenoyama A, Shiomi A, Kuo S, Feinberg S. Hypoxia induces an undifferentiated phenotype of oral keratinocytes in vitro. Cells Tissues Organs. 2014;199:393-404 pubmed 出版商
  77. Simons M, Nagtegaal I, Overbeek L, Flucke U, Massuger L, Bulten J. A patient with a noninvasive mucinous ovarian borderline tumor presenting with late pleural metastases. Int J Gynecol Pathol. 2015;34:143-50 pubmed 出版商
  78. Wang L, Liu R, Ye P, Wong C, Chen G, Zhou P, et al. Intracellular CD24 disrupts the ARF-NPM interaction and enables mutational and viral oncogene-mediated p53 inactivation. Nat Commun. 2015;6:5909 pubmed 出版商
  79. Garbe J, Vrba L, Sputova K, Fuchs L, Novak P, Brothman A, et al. Immortalization of normal human mammary epithelial cells in two steps by direct targeting of senescence barriers does not require gross genomic alterations. Cell Cycle. 2014;13:3423-35 pubmed 出版商
  80. Davis H, Irshad S, Bansal M, Rafferty H, Boitsova T, Bardella C, et al. Aberrant epithelial GREM1 expression initiates colonic tumorigenesis from cells outside the stem cell niche. Nat Med. 2015;21:62-70 pubmed 出版商
  81. Hsu C, Chen Y, Yang W, Hsu K, Chao S, Lee J. Bowen's disease with features resembling myrmecia wart. J Dermatol. 2015;42:90-3 pubmed 出版商
  82. Egloff A, Lee J, Langer C, Quon H, Vaezi A, Grandis J, et al. Phase II study of cetuximab in combination with cisplatin and radiation in unresectable, locally advanced head and neck squamous cell carcinoma: Eastern cooperative oncology group trial E3303. Clin Cancer Res. 2014;20:5041-51 pubmed 出版商
  83. Hamilton G, Abraham A, Morton J, Sampson O, Pefani D, Khoronenkova S, et al. AKT regulates NPM dependent ARF localization and p53mut stability in tumors. Oncotarget. 2014;5:6142-67 pubmed
  84. Wang W, Catto J, Meuth M. Differential response of normal and malignant urothelial cells to CHK1 and ATM inhibitors. Oncogene. 2015;34:2887-96 pubmed 出版商
  85. Brohl A, Solomon D, Chang W, Wang J, Song Y, Sindiri S, et al. The genomic landscape of the Ewing Sarcoma family of tumors reveals recurrent STAG2 mutation. PLoS Genet. 2014;10:e1004475 pubmed 出版商
  86. Lindström A, Hellberg D. Immunohistochemical LRIG3 expression in cervical intraepithelial neoplasia and invasive squamous cell cervical cancer: association with expression of tumor markers, hormones, high-risk HPV-infection, smoking and patient outcome. Eur J Histochem. 2014;58:2227 pubmed 出版商
  87. Münch S, Weidtkamp Peters S, Klement K, Grigaravicius P, Monajembashi S, Salomoni P, et al. The tumor suppressor PML specifically accumulates at RPA/Rad51-containing DNA damage repair foci but is nonessential for DNA damage-induced fibroblast senescence. Mol Cell Biol. 2014;34:1733-46 pubmed 出版商
  88. Sabò A, Doni M, Amati B. SUMOylation of Myc-family proteins. PLoS ONE. 2014;9:e91072 pubmed 出版商
  89. Philipot D, Guérit D, Platano D, Chuchana P, Olivotto E, Espinoza F, et al. p16INK4a and its regulator miR-24 link senescence and chondrocyte terminal differentiation-associated matrix remodeling in osteoarthritis. Arthritis Res Ther. 2014;16:R58 pubmed 出版商
  90. Horiguchi M, Koyanagi S, Hamdan A, Kakimoto K, Matsunaga N, Yamashita C, et al. Rhythmic control of the ARF-MDM2 pathway by ATF4 underlies circadian accumulation of p53 in malignant cells. Cancer Res. 2013;73:2639-49 pubmed 出版商
  91. Zhang B, Cui S, Bai X, Zhuo L, Sun X, Hong Q, et al. SIRT3 overexpression antagonizes high glucose accelerated cellular senescence in human diploid fibroblasts via the SIRT3-FOXO1 signaling pathway. Age (Dordr). 2013;35:2237-53 pubmed 出版商
  92. Huebbers C, Preuss S, Kolligs J, Vent J, Stenner M, Wieland U, et al. Integration of HPV6 and downregulation of AKR1C3 expression mark malignant transformation in a patient with juvenile-onset laryngeal papillomatosis. PLoS ONE. 2013;8:e57207 pubmed 出版商
  93. Kuchenreuther M, Weber J. The ARF tumor-suppressor controls Drosha translation to prevent Ras-driven transformation. Oncogene. 2014;33:300-7 pubmed 出版商
  94. Vivo M, Ranieri M, Sansone F, Santoriello C, Calogero R, Calabrò V, et al. Mimicking p14ARF phosphorylation influences its ability to restrain cell proliferation. PLoS ONE. 2013;8:e53631 pubmed 出版商
  95. Jullien L, Mestre M, Roux P, Gire V. Eroded human telomeres are more prone to remain uncapped and to trigger a G2 checkpoint response. Nucleic Acids Res. 2013;41:900-11 pubmed 出版商
  96. Macia A, Gallel P, Vaquero M, Gou Fabregas M, Santacana M, Maliszewska A, et al. Sprouty1 is a candidate tumor-suppressor gene in medullary thyroid carcinoma. Oncogene. 2012;31:3961-72 pubmed 出版商