这是一篇来自已证抗体库的有关人类 p21的综述,是根据433篇发表使用所有方法的文章归纳的。这综述旨在帮助来邦网的访客找到最适合p21 抗体。
p21 同义词: CAP20; CDKN1; CIP1; MDA-6; P21; SDI1; WAF1; p21CIP1

圣克鲁斯生物技术
小鼠 单克隆(F-5)
  • 免疫组化-石蜡切片; 小鼠; 1:500; 图 3d
  • 免疫印迹; 小鼠; 1:1000; 图 3a, 3b, 3c, s6c
圣克鲁斯生物技术 p21抗体(Santa Cruz, SC-6246)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:500 (图 3d) 和 被用于免疫印迹在小鼠样本上浓度为1:1000 (图 3a, 3b, 3c, s6c). Nat Commun (2020) ncbi
小鼠 单克隆(F-5)
  • 免疫印迹; 小鼠; 1:250; 图 2h
圣克鲁斯生物技术 p21抗体(Santa Cruz, sc-6246)被用于被用于免疫印迹在小鼠样本上浓度为1:250 (图 2h). elife (2019) ncbi
小鼠 单克隆(F-5)
  • 免疫印迹; 小鼠; 666 ng/ml; 图 4c
圣克鲁斯生物技术 p21抗体(Santa, F-5)被用于被用于免疫印迹在小鼠样本上浓度为666 ng/ml (图 4c). Science (2019) ncbi
小鼠 单克隆(F-5)
  • 免疫细胞化学; 人类; 1:100; 图 e5c, e5e
圣克鲁斯生物技术 p21抗体(Santa Cruz, sc-6246)被用于被用于免疫细胞化学在人类样本上浓度为1:100 (图 e5c, e5e). Nature (2019) ncbi
小鼠 单克隆(F-5)
  • 免疫印迹; 人类; 图 s6c
圣克鲁斯生物技术 p21抗体(Santa Cruz, sc-6246)被用于被用于免疫印迹在人类样本上 (图 s6c). Sci Adv (2019) ncbi
小鼠 单克隆(F-5)
  • 免疫印迹; 人类; 1:100; 图 s8a
圣克鲁斯生物技术 p21抗体(Santa Cruz, sc-6246)被用于被用于免疫印迹在人类样本上浓度为1:100 (图 s8a). Cancer Cell (2019) ncbi
小鼠 单克隆(F-5)
  • 免疫印迹; 人类; 图 7c
圣克鲁斯生物技术 p21抗体(Santa Cruz Biotechnology, F-5)被用于被用于免疫印迹在人类样本上 (图 7c). EMBO J (2019) ncbi
小鼠 单克隆(F-5)
  • 免疫印迹; 小鼠; 图 s7b
圣克鲁斯生物技术 p21抗体(Santa, sc-6246)被用于被用于免疫印迹在小鼠样本上 (图 s7b). Nature (2019) ncbi
小鼠 单克隆(F-5)
  • 免疫印迹; 人类; 图 4d
圣克鲁斯生物技术 p21抗体(Santa Cruz, sc-6246)被用于被用于免疫印迹在人类样本上 (图 4d). Cell Death Differ (2019) ncbi
小鼠 单克隆(F-5)
  • 免疫组化基因敲除验证; 人类; 1:200; 图 5a
圣克鲁斯生物技术 p21抗体(Santa Cruz, sc-6246)被用于被用于免疫组化基因敲除验证在人类样本上浓度为1:200 (图 5a). Genome Biol (2018) ncbi
小鼠 单克隆(187)
  • 免疫印迹; 人类; 图 2e
圣克鲁斯生物技术 p21抗体(SantaCruz, sc-817)被用于被用于免疫印迹在人类样本上 (图 2e). Oncotarget (2017) ncbi
小鼠 单克隆(F-5)
  • 免疫印迹; 小鼠; 1:200; 图 4o
圣克鲁斯生物技术 p21抗体(SantaCruz, F-5)被用于被用于免疫印迹在小鼠样本上浓度为1:200 (图 4o). Genes Dev (2017) ncbi
小鼠 单克隆(F-5)
  • 免疫沉淀; 小鼠; 图 5b
圣克鲁斯生物技术 p21抗体(Sana Cruz Biotechnology, Inc, sc-6246)被用于被用于免疫沉淀在小鼠样本上 (图 5b). Cancer Res (2017) ncbi
小鼠 单克隆(F-5)
  • 免疫印迹; 人类; 图 5c
圣克鲁斯生物技术 p21抗体(SantaCruz, sc-6246)被用于被用于免疫印迹在人类样本上 (图 5c). Oncogene (2017) ncbi
小鼠 单克隆(187)
  • 免疫印迹; 人类; 图 3f
圣克鲁斯生物技术 p21抗体(Santa Cruz, sc-817)被用于被用于免疫印迹在人类样本上 (图 3f). Life Sci (2017) ncbi
小鼠 单克隆(187)
  • 免疫印迹; 小鼠; 1:1000; 图 2g
圣克鲁斯生物技术 p21抗体(Santa Cruz, sc-817)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 2g). Sci Rep (2017) ncbi
小鼠 单克隆(F-5)
  • 免疫印迹; 人类; 图 3d
圣克鲁斯生物技术 p21抗体(Santa Cruz, sc-6246)被用于被用于免疫印迹在人类样本上 (图 3d). J Clin Invest (2017) ncbi
小鼠 单克隆(F-5)
  • 免疫印迹; 小鼠; 1:500; 图 7a
圣克鲁斯生物技术 p21抗体(Santa Cruz, SC-6246)被用于被用于免疫印迹在小鼠样本上浓度为1:500 (图 7a). Cell Rep (2017) ncbi
小鼠 单克隆(F-5)
  • 免疫印迹; 小鼠; 图 4b
圣克鲁斯生物技术 p21抗体(Santa Cruz, sc-6246)被用于被用于免疫印迹在小鼠样本上 (图 4b). PLoS ONE (2017) ncbi
小鼠 单克隆(F-5)
  • 免疫组化-石蜡切片; 小鼠; 1:100; 图 5d
圣克鲁斯生物技术 p21抗体(Santa Cruz, sc-6246)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:100 (图 5d). Sci Rep (2017) ncbi
小鼠 单克隆(187)
  • 免疫印迹; 人类; 图 5d
圣克鲁斯生物技术 p21抗体(Santa Cruz, SC-817)被用于被用于免疫印迹在人类样本上 (图 5d). Cancer Med (2017) ncbi
小鼠 单克隆(F-5)
  • 免疫印迹基因敲除验证; 小鼠; 图 3d
圣克鲁斯生物技术 p21抗体(Santa Cruz, sc-6246)被用于被用于免疫印迹基因敲除验证在小鼠样本上 (图 3d). Mol Pharmacol (2017) ncbi
小鼠 单克隆(F-5)
  • 免疫印迹; 人类; 1:1000; 图 5a
圣克鲁斯生物技术 p21抗体(Santa Cruz, sc-6246)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 5a). Mol Med Rep (2017) ncbi
小鼠 单克隆(F-5)
  • 免疫印迹; 大鼠; 1:250; 图 3a
圣克鲁斯生物技术 p21抗体(Santa Cruz, Sc-6246)被用于被用于免疫印迹在大鼠样本上浓度为1:250 (图 3a). Alcohol (2016) ncbi
小鼠 单克隆(187)
  • 免疫印迹; 人类; 图 7d
圣克鲁斯生物技术 p21抗体(SantaCruz, 187)被用于被用于免疫印迹在人类样本上 (图 7d). Proc Natl Acad Sci U S A (2016) ncbi
小鼠 单克隆(F-5)
  • 免疫印迹; 人类; 1:200; 图 6c
圣克鲁斯生物技术 p21抗体(Santa Cruz, sc-6246)被用于被用于免疫印迹在人类样本上浓度为1:200 (图 6c). Mol Cell Endocrinol (2016) ncbi
小鼠 单克隆(F-5)
  • 免疫印迹基因敲除验证; 小鼠; 图 3h
圣克鲁斯生物技术 p21抗体(Santa Cruz, sc-6246)被用于被用于免疫印迹基因敲除验证在小鼠样本上 (图 3h). Peptides (2016) ncbi
小鼠 单克隆(SX118)
  • 免疫印迹; 人类; 图 1f
圣克鲁斯生物技术 p21抗体(Santa Cruz, sc-53870)被用于被用于免疫印迹在人类样本上 (图 1f). Oncogene (2017) ncbi
小鼠 单克隆(F-5)
  • 免疫印迹; 人类; 1:500; 图 4a
圣克鲁斯生物技术 p21抗体(Santa Cruz, sc-6246)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 4a). Oncotarget (2016) ncbi
小鼠 单克隆(F-5)
  • 免疫印迹; 人类; 图 3b
圣克鲁斯生物技术 p21抗体(Santa-Cruz, sc-6246)被用于被用于免疫印迹在人类样本上 (图 3b). Oncotarget (2016) ncbi
小鼠 单克隆(F-5)
  • 免疫细胞化学; 人类; 图 1f
  • 免疫印迹; 人类; 图 1b
圣克鲁斯生物技术 p21抗体(Santa Cruz Biotechnology, SC-6246)被用于被用于免疫细胞化学在人类样本上 (图 1f) 和 被用于免疫印迹在人类样本上 (图 1b). Sci Rep (2016) ncbi
小鼠 单克隆(F-5)
  • 免疫印迹; 人类; 图 1c
圣克鲁斯生物技术 p21抗体(Santa Cruz, F-5)被用于被用于免疫印迹在人类样本上 (图 1c). Oncotarget (2016) ncbi
小鼠 单克隆(F-5)
  • 免疫印迹; 人类; 图 s4
圣克鲁斯生物技术 p21抗体(Santa Cruz Biotechnology, F-5)被用于被用于免疫印迹在人类样本上 (图 s4). Nucleic Acids Res (2016) ncbi
小鼠 单克隆(F-5)
  • 免疫印迹; 人类; 图 s1
圣克鲁斯生物技术 p21抗体(Santa Cruz, sc-6246)被用于被用于免疫印迹在人类样本上 (图 s1). Cell Death Dis (2016) ncbi
小鼠 单克隆(F-5)
  • 免疫组化-冰冻切片; 小鼠; 图 3
圣克鲁斯生物技术 p21抗体(Santa Cruz, sc-6246)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 3). Oncotarget (2016) ncbi
小鼠 单克隆(F-5)
  • 免疫印迹; 人类; 图 5
圣克鲁斯生物技术 p21抗体(Santa Cruz, sc-6246)被用于被用于免疫印迹在人类样本上 (图 5). Sci Rep (2016) ncbi
小鼠 单克隆(F-5)
  • 免疫印迹; 小鼠; 1:1000; 图 3a
圣克鲁斯生物技术 p21抗体(Santa Cruz, sc-6246)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 3a). Oncotarget (2016) ncbi
小鼠 单克隆(F-5)
  • 免疫印迹; 人类; 1:500; 图 8
圣克鲁斯生物技术 p21抗体(Santa Cruz, sc-6246)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 8). PLoS ONE (2016) ncbi
小鼠 单克隆(187)
  • 免疫印迹; 人类; 图 3a
圣克鲁斯生物技术 p21抗体(Santa Cruz Biotechnology, 817)被用于被用于免疫印迹在人类样本上 (图 3a). EMBO Rep (2016) ncbi
小鼠 单克隆(F-5)
  • 免疫印迹; 人类; 图 5c
圣克鲁斯生物技术 p21抗体(Santa Cruz, sc-6246)被用于被用于免疫印迹在人类样本上 (图 5c). Oncogene (2016) ncbi
小鼠 单克隆(F-5)
  • 免疫印迹; 小鼠; 图 s2
圣克鲁斯生物技术 p21抗体(Santa Cruz, sc-6246)被用于被用于免疫印迹在小鼠样本上 (图 s2). Sci Rep (2016) ncbi
小鼠 单克隆(F-5)
  • 免疫印迹; 人类; 1:500; 图 st3
圣克鲁斯生物技术 p21抗体(Santa Cruz, sc-6246)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 st3). Nat Commun (2016) ncbi
小鼠 单克隆(F-5)
  • 免疫印迹; 人类; 1:200; 图 3
圣克鲁斯生物技术 p21抗体(Santa Cruz, sc-6246)被用于被用于免疫印迹在人类样本上浓度为1:200 (图 3). Cell Death Dis (2016) ncbi
小鼠 单克隆(F-5)
  • 免疫印迹; 人类; 图 5
圣克鲁斯生物技术 p21抗体(Santa Cruz, sc-6246)被用于被用于免疫印迹在人类样本上 (图 5). Oncotarget (2016) ncbi
小鼠 单克隆(SX118)
  • 免疫印迹; 人类; 图 6
圣克鲁斯生物技术 p21抗体(Santa Cruz, sc53870)被用于被用于免疫印迹在人类样本上 (图 6). Oncotarget (2016) ncbi
小鼠 单克隆(F-5)
  • 免疫印迹; 小鼠; 1:500; 图 7a
圣克鲁斯生物技术 p21抗体(SantaCruz, F-5)被用于被用于免疫印迹在小鼠样本上浓度为1:500 (图 7a). Nat Commun (2016) ncbi
小鼠 单克隆(F-5)
  • 免疫印迹; 小鼠; 1:50; 图 1d
圣克鲁斯生物技术 p21抗体(Santa Cruz, sc-6246)被用于被用于免疫印迹在小鼠样本上浓度为1:50 (图 1d). Aging Cell (2016) ncbi
小鼠 单克隆(187)
  • 免疫印迹; 人类; 图 9
圣克鲁斯生物技术 p21抗体(Santa Cruz, sc-817)被用于被用于免疫印迹在人类样本上 (图 9). Genes Cancer (2015) ncbi
小鼠 单克隆(B-2)
  • 免疫印迹; 小鼠; 1:400; 图 5
圣克鲁斯生物技术 p21抗体(Santa Cruz Biotechnology, sc-271532)被用于被用于免疫印迹在小鼠样本上浓度为1:400 (图 5). Exp Ther Med (2015) ncbi
小鼠 单克隆(F-5)
  • 免疫印迹; 大鼠; 图 5
圣克鲁斯生物技术 p21抗体(Santacruz, sc-6246)被用于被用于免疫印迹在大鼠样本上 (图 5). Physiol Rep (2015) ncbi
小鼠 单克隆(F-5)
  • 免疫印迹; 人类; 1:500; 图 3
圣克鲁斯生物技术 p21抗体(Santa Cruz Biotechnology, sc-6246)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 3). J Clin Invest (2016) ncbi
小鼠 单克隆(F-5)
  • 免疫印迹; 小鼠; 图 8
圣克鲁斯生物技术 p21抗体(Santa Cruz, sc-6246)被用于被用于免疫印迹在小鼠样本上 (图 8). PLoS ONE (2015) ncbi
小鼠 单克隆(SPM306)
  • 免疫印迹; 人类; 图 2
圣克鲁斯生物技术 p21抗体(Santa Cruz, sc-65595)被用于被用于免疫印迹在人类样本上 (图 2). Mol Cancer (2015) ncbi
小鼠 单克隆(187)
  • 免疫组化; 人类; 图 1
圣克鲁斯生物技术 p21抗体(Santa Cruz, sc-817)被用于被用于免疫组化在人类样本上 (图 1). Mol Cancer (2015) ncbi
小鼠 单克隆(SPM306)
  • 免疫印迹; 人类; 图 3
圣克鲁斯生物技术 p21抗体(Santa Cruz, sc-65595)被用于被用于免疫印迹在人类样本上 (图 3). Oncotarget (2015) ncbi
小鼠 单克隆(187)
  • 免疫印迹; 人类; 图 4
圣克鲁斯生物技术 p21抗体(Santa Cruz, sc-817)被用于被用于免疫印迹在人类样本上 (图 4). Oncogene (2016) ncbi
小鼠 单克隆(F-5)
  • 免疫印迹; 人类; 图 6
圣克鲁斯生物技术 p21抗体(santa Cruz, sc-6246)被用于被用于免疫印迹在人类样本上 (图 6). Oncotarget (2015) ncbi
小鼠 单克隆(187)
  • 免疫印迹; 人类; 1:500; 图 7
圣克鲁斯生物技术 p21抗体(Santa cruz, sc-817)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 7). PLoS ONE (2015) ncbi
小鼠 单克隆(F-5)
  • 免疫印迹; 人类; 图 2
圣克鲁斯生物技术 p21抗体(santa Cruz, sc-6246)被用于被用于免疫印迹在人类样本上 (图 2). Sci Rep (2015) ncbi
小鼠 单克隆(F-5)
  • 免疫印迹; 人类
圣克鲁斯生物技术 p21抗体(Santa Cruz, sc-6246)被用于被用于免疫印迹在人类样本上. J Proteomics (2015) ncbi
小鼠 单克隆(F-5)
  • 免疫印迹; 人类
圣克鲁斯生物技术 p21抗体(Santa Cruz, sc-6246)被用于被用于免疫印迹在人类样本上. Int J Oncol (2015) ncbi
小鼠 单克隆(F-5)
  • 免疫印迹; 小鼠; 1:500; 图 1
圣克鲁斯生物技术 p21抗体(Santa Cruz Biotechnology, sc-6246)被用于被用于免疫印迹在小鼠样本上浓度为1:500 (图 1). Oncotarget (2015) ncbi
小鼠 单克隆(F-5)
  • 免疫印迹; 人类; 图 4a
圣克鲁斯生物技术 p21抗体(Santa Cruz Biotechnology, sc-6246)被用于被用于免疫印迹在人类样本上 (图 4a). Oncotarget (2015) ncbi
小鼠 单克隆(F-5)
  • 免疫印迹基因敲除验证; 小鼠; 1:1000
圣克鲁斯生物技术 p21抗体(Santa, sc-6246)被用于被用于免疫印迹基因敲除验证在小鼠样本上浓度为1:1000. PLoS ONE (2015) ncbi
小鼠 单克隆(F-5)
  • 免疫印迹; 人类; 图 1
圣克鲁斯生物技术 p21抗体(Santa Cruz, sc-6246)被用于被用于免疫印迹在人类样本上 (图 1). Oncotarget (2015) ncbi
小鼠 单克隆(F-5)
  • 免疫沉淀; 人类
  • 免疫印迹; 人类
圣克鲁斯生物技术 p21抗体(Santa Cruz Biotechnology, sc-6246)被用于被用于免疫沉淀在人类样本上 和 被用于免疫印迹在人类样本上. J Biol Chem (2015) ncbi
小鼠 单克隆(F-5)
  • 免疫细胞化学; 人类; 图 1
圣克鲁斯生物技术 p21抗体(Santa Cruz, sc-6246)被用于被用于免疫细胞化学在人类样本上 (图 1). EMBO J (2015) ncbi
小鼠 单克隆(F-5)
  • 免疫印迹; 小鼠; 图 6
圣克鲁斯生物技术 p21抗体(santa Cruz, sc-6246)被用于被用于免疫印迹在小鼠样本上 (图 6). PLoS Genet (2015) ncbi
小鼠 单克隆(F-5)
  • 免疫印迹; 小鼠
圣克鲁斯生物技术 p21抗体(Santa Cruz Biotechnology, sc-6246)被用于被用于免疫印迹在小鼠样本上. J Clin Invest (2015) ncbi
小鼠 单克隆(F-5)
  • 免疫印迹; 小鼠
圣克鲁斯生物技术 p21抗体(Santa Cruz Biotechnology, sc-6246)被用于被用于免疫印迹在小鼠样本上. J Clin Invest (2015) ncbi
小鼠 单克隆(DCS-60)
  • 免疫印迹; 人类; 图 2
圣克鲁斯生物技术 p21抗体(Santa Cruz, sc-56335)被用于被用于免疫印迹在人类样本上 (图 2). Cell Cycle (2015) ncbi
小鼠 单克隆(F-5)
圣克鲁斯生物技术 p21抗体(Santa Cruz, sc-6246)被用于. Aging Cell (2015) ncbi
小鼠 单克隆(F-5)
  • 免疫印迹; 人类; 图 s2
圣克鲁斯生物技术 p21抗体(Santa Cruz, sc-6246)被用于被用于免疫印迹在人类样本上 (图 s2). Sci Rep (2015) ncbi
小鼠 单克隆(DCS-60)
  • 免疫印迹; 人类; 1:200; 图 4
圣克鲁斯生物技术 p21抗体(Santa Cruz, sc-56335)被用于被用于免疫印迹在人类样本上浓度为1:200 (图 4). Oncol Lett (2015) ncbi
小鼠 单克隆(F-5)
  • 免疫印迹; 人类; 图 4
圣克鲁斯生物技术 p21抗体(Santa Cruz, F-5)被用于被用于免疫印迹在人类样本上 (图 4). Mol Cancer (2015) ncbi
小鼠 单克隆(F-5)
  • 免疫印迹; 小鼠; 1:300; 图 5
圣克鲁斯生物技术 p21抗体(Santa Cruz, F-5)被用于被用于免疫印迹在小鼠样本上浓度为1:300 (图 5). Development (2015) ncbi
小鼠 单克隆(SX118)
  • 免疫印迹; 人类; 图 4f
圣克鲁斯生物技术 p21抗体(Santa, sc-53870)被用于被用于免疫印迹在人类样本上 (图 4f). Hum Mol Genet (2015) ncbi
小鼠 单克隆(F-5)
  • 免疫印迹; 人类; 1:500
圣克鲁斯生物技术 p21抗体(Santa Cruz, sc-6246)被用于被用于免疫印迹在人类样本上浓度为1:500. Free Radic Biol Med (2015) ncbi
小鼠 单克隆(F-5)
  • 免疫印迹; 人类; 1:1000
圣克鲁斯生物技术 p21抗体(Santa Cruz Biotechnology, sc-6246)被用于被用于免疫印迹在人类样本上浓度为1:1000. Biochim Biophys Acta (2015) ncbi
小鼠 单克隆(F-5)
  • 免疫印迹; 人类; 图 3c
圣克鲁斯生物技术 p21抗体(Santa Cruz, F-5)被用于被用于免疫印迹在人类样本上 (图 3c). Mol Pharm (2015) ncbi
小鼠 单克隆(F-5)
  • 免疫印迹; 小鼠; 1:1000
圣克鲁斯生物技术 p21抗体(Santa Cruz Biotechnology, SC-6246)被用于被用于免疫印迹在小鼠样本上浓度为1:1000. Am J Physiol Endocrinol Metab (2015) ncbi
小鼠 单克隆(F-5)
  • 免疫印迹; 小鼠
圣克鲁斯生物技术 p21抗体(Santa Cruz Biotechnology, sc-6246)被用于被用于免疫印迹在小鼠样本上. Nat Commun (2014) ncbi
小鼠 单克隆(F-5)
  • 免疫组化-石蜡切片; 人类; 1:50
  • 免疫印迹; 人类; 1:500
圣克鲁斯生物技术 p21抗体(Santa Cruz Biotechnology, sc-6246)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:50 和 被用于免疫印迹在人类样本上浓度为1:500. Oncotarget (2014) ncbi
小鼠 单克隆(F-5)
  • 免疫细胞化学; 小鼠
  • 免疫印迹; 小鼠
圣克鲁斯生物技术 p21抗体(Santa Cruz Biotechnology, sc-6246)被用于被用于免疫细胞化学在小鼠样本上 和 被用于免疫印迹在小鼠样本上. Biochim Biophys Acta (2015) ncbi
小鼠 单克隆(F-5)
  • 免疫组化-石蜡切片; 小鼠
圣克鲁斯生物技术 p21抗体(Santa cruz, SC-6246)被用于被用于免疫组化-石蜡切片在小鼠样本上. Oncotarget (2014) ncbi
小鼠 单克隆(SX118)
  • 免疫印迹; 小鼠; 1:200
圣克鲁斯生物技术 p21抗体(Santa Cruz, sc-53870)被用于被用于免疫印迹在小鼠样本上浓度为1:200. Cell Physiol Biochem (2014) ncbi
小鼠 单克隆(SPM306)
  • 免疫印迹; 人类
圣克鲁斯生物技术 p21抗体(Santa Cruz, sc-65595)被用于被用于免疫印迹在人类样本上. PLoS ONE (2014) ncbi
小鼠 单克隆(F-5)
  • 免疫印迹; 人类; 图 1
圣克鲁斯生物技术 p21抗体(Santa Cruz, sc-6246)被用于被用于免疫印迹在人类样本上 (图 1). Biochim Biophys Acta (2014) ncbi
小鼠 单克隆(F-5)
  • 免疫印迹; 人类; 0.2 ug/ml
圣克鲁斯生物技术 p21抗体(Santa, sc-6246)被用于被用于免疫印迹在人类样本上浓度为0.2 ug/ml. PLoS ONE (2014) ncbi
小鼠 单克隆(F-5)
  • 免疫印迹; 人类
  • 免疫印迹; 小鼠
圣克鲁斯生物技术 p21抗体(Santa Cruz Biotechnology, F-5)被用于被用于免疫印迹在人类样本上 和 被用于免疫印迹在小鼠样本上. Oncogene (2015) ncbi
小鼠 单克隆(F-5)
  • 免疫印迹; 人类; 图 6d
圣克鲁斯生物技术 p21抗体(Santa, sc6246)被用于被用于免疫印迹在人类样本上 (图 6d). Oncotarget (2014) ncbi
小鼠 单克隆(187)
  • 免疫印迹; 人类; 图 2
圣克鲁斯生物技术 p21抗体(santa Cruz, sc-817)被用于被用于免疫印迹在人类样本上 (图 2). Oncogene (2015) ncbi
小鼠 单克隆(F-5)
  • 免疫印迹; 小鼠
圣克鲁斯生物技术 p21抗体(Santa Cruz Biotechnology, sc-6246)被用于被用于免疫印迹在小鼠样本上. Cancer Res (2014) ncbi
小鼠 单克隆(F-5)
  • 免疫印迹; 人类; 图 6
圣克鲁斯生物技术 p21抗体(Santa Cruz Biotechnology, sc-6246)被用于被用于免疫印迹在人类样本上 (图 6). J Pathol (2014) ncbi
小鼠 单克隆(F-5)
  • 免疫印迹; 小鼠; 1:1000
圣克鲁斯生物技术 p21抗体(Santa Cruz Biotech, sc-6246)被用于被用于免疫印迹在小鼠样本上浓度为1:1000. J Neural Transm (Vienna) (2015) ncbi
小鼠 单克隆(F-5)
  • 免疫印迹; 小鼠; 图 1
圣克鲁斯生物技术 p21抗体(Santa Cruz, sc-6246)被用于被用于免疫印迹在小鼠样本上 (图 1). J Am Soc Nephrol (2014) ncbi
小鼠 单克隆(187)
  • 免疫印迹; 人类
圣克鲁斯生物技术 p21抗体(Santa Cruz, sc-817X)被用于被用于免疫印迹在人类样本上. Cell Death Dis (2014) ncbi
小鼠 单克隆(F-5)
  • 免疫印迹; 人类
圣克鲁斯生物技术 p21抗体(Santa Cruz, sc-6246)被用于被用于免疫印迹在人类样本上. Exp Cell Res (2014) ncbi
小鼠 单克隆(SX118)
  • 免疫印迹; 人类
圣克鲁斯生物技术 p21抗体(Santa Cruz, sc-53870)被用于被用于免疫印迹在人类样本上. Cell Death Dis (2014) ncbi
小鼠 单克隆(F-5)
  • 免疫印迹; 人类; 1:100; 图 3c
圣克鲁斯生物技术 p21抗体(Santa, sc-6246)被用于被用于免疫印迹在人类样本上浓度为1:100 (图 3c). Genes Dev (2014) ncbi
小鼠 单克隆(F-5)
  • 免疫组化-石蜡切片; 小鼠
圣克鲁斯生物技术 p21抗体(Santa Cruz Biotechnology, sc6246)被用于被用于免疫组化-石蜡切片在小鼠样本上. Exp Toxicol Pathol (2014) ncbi
小鼠 单克隆(F-5)
  • 免疫印迹; 小鼠; 图 5
圣克鲁斯生物技术 p21抗体(Santa Cruz Biotechnology, sc-6246)被用于被用于免疫印迹在小鼠样本上 (图 5). Mol Pharmacol (2014) ncbi
小鼠 单克隆(F-5)
  • 免疫印迹; 人类; 图 6
圣克鲁斯生物技术 p21抗体(Santa Cruz Biotechnology, F-5)被用于被用于免疫印迹在人类样本上 (图 6). Blood (2014) ncbi
小鼠 单克隆(F-5)
  • 免疫组化-石蜡切片; 小鼠
圣克鲁斯生物技术 p21抗体(Santa Cruz, sc6246)被用于被用于免疫组化-石蜡切片在小鼠样本上. Exp Toxicol Pathol (2013) ncbi
小鼠 单克隆(F-5)
  • 免疫印迹; 人类
圣克鲁斯生物技术 p21抗体(Santa Cruz Biotechnology, sc-6246)被用于被用于免疫印迹在人类样本上. Cancer Cell Int (2013) ncbi
小鼠 单克隆(F-5)
  • 免疫印迹; 小鼠
圣克鲁斯生物技术 p21抗体(Santa Cruz Biotechnology, sc6246)被用于被用于免疫印迹在小鼠样本上. Oncogene (2014) ncbi
小鼠 单克隆(F-5)
  • 免疫印迹; 小鼠; 1:1000
圣克鲁斯生物技术 p21抗体(Santa Cruz Biotechnology, sc-6246)被用于被用于免疫印迹在小鼠样本上浓度为1:1000. Mol Cancer Res (2012) ncbi
小鼠 单克隆(F-5)
  • 免疫印迹; 小鼠; 图 4
圣克鲁斯生物技术 p21抗体(Santa Cruz, sc-6246)被用于被用于免疫印迹在小鼠样本上 (图 4). Proc Natl Acad Sci U S A (2012) ncbi
小鼠 单克隆(F-5)
  • 免疫印迹; 小鼠; 图 1
圣克鲁斯生物技术 p21抗体(Santa, sc-6246)被用于被用于免疫印迹在小鼠样本上 (图 1). Cell Cycle (2011) ncbi
小鼠 单克隆(187)
  • 免疫印迹; 人类; 图 3
圣克鲁斯生物技术 p21抗体(Santa Cruz, sc-817)被用于被用于免疫印迹在人类样本上 (图 3). Clin Cancer Res (2010) ncbi
小鼠 单克隆(F-5)
  • 免疫印迹; 小鼠
圣克鲁斯生物技术 p21抗体(Santa Cruz Biotechnology, sc-6246)被用于被用于免疫印迹在小鼠样本上. Mol Cell Biol (2010) ncbi
小鼠 单克隆(187)
  • 免疫沉淀; 人类; 1 ug/time
  • 免疫印迹; 人类
圣克鲁斯生物技术 p21抗体(Santa Cruz Biotechnology, sc-817)被用于被用于免疫沉淀在人类样本上浓度为1 ug/time 和 被用于免疫印迹在人类样本上. Oncogene (2007) ncbi
小鼠 单克隆(F-5)
  • 免疫印迹; 人类
圣克鲁斯生物技术 p21抗体(Santa Cruz, sc-6246)被用于被用于免疫印迹在人类样本上. FEBS Lett (2006) ncbi
艾博抗(上海)贸易有限公司
domestic rabbit 单克隆(EPR3993)
  • 免疫印迹; 小鼠; 1:1000; 图 3c
艾博抗(上海)贸易有限公司 p21抗体(Abcam, ab109199)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 3c). Biosci Rep (2019) ncbi
domestic rabbit 单克隆(EPR3993)
  • 免疫印迹; 大鼠; 图 1b
艾博抗(上海)贸易有限公司 p21抗体(Abcam, ab109199)被用于被用于免疫印迹在大鼠样本上 (图 1b). Braz J Med Biol Res (2019) ncbi
domestic rabbit 单克隆(EPR362)
  • 免疫印迹; 人类; 图 2d
艾博抗(上海)贸易有限公司 p21抗体(Abcam, ab109520)被用于被用于免疫印迹在人类样本上 (图 2d). Biochem Biophys Res Commun (2018) ncbi
domestic rabbit 单克隆(EPR3993)
  • 免疫印迹; 大鼠; 1:1000; 图 6c
艾博抗(上海)贸易有限公司 p21抗体(Abcam, ab109199)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 6c). Biosci Rep (2018) ncbi
domestic rabbit 单克隆(EPR3993)
  • 免疫印迹; 小鼠; 图 6c
艾博抗(上海)贸易有限公司 p21抗体(Abcam, ab109199)被用于被用于免疫印迹在小鼠样本上 (图 6c). Cell Signal (2018) ncbi
domestic rabbit 单克隆(EPR3993)
  • 免疫组化; 小鼠; 1:500; 图 8f
艾博抗(上海)贸易有限公司 p21抗体(Abcam, ab109199)被用于被用于免疫组化在小鼠样本上浓度为1:500 (图 8f). Cell Death Dis (2018) ncbi
domestic rabbit 单克隆(EPR3993)
  • 免疫印迹; 人类; 图 3g
艾博抗(上海)贸易有限公司 p21抗体(Abcam, ab109199)被用于被用于免疫印迹在人类样本上 (图 3g). Science (2017) ncbi
domestic rabbit 单克隆(EPR3993)
  • 免疫印迹; 小鼠; 1:1000; 图 4f
艾博抗(上海)贸易有限公司 p21抗体(Abcam, ab109199)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 4f). Redox Biol (2017) ncbi
domestic rabbit 单克隆(EPR362)
  • 免疫印迹; 人类; 1:1000; 图 5a
艾博抗(上海)贸易有限公司 p21抗体(Abcam, ab109520)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 5a). Int J Mol Sci (2016) ncbi
domestic rabbit 单克隆(EPR3993)
  • 免疫印迹; 小鼠; 1:1000; 图 s1
艾博抗(上海)贸易有限公司 p21抗体(abcam, ab109199)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 s1). Sci Rep (2016) ncbi
domestic rabbit 单克隆(EPR362)
  • 免疫印迹基因敲除验证; 人类; 1:2000; 图 4
  • 免疫细胞化学; 人类; 1:200; 图 4
艾博抗(上海)贸易有限公司 p21抗体(Abcam, ab109520)被用于被用于免疫印迹基因敲除验证在人类样本上浓度为1:2000 (图 4) 和 被用于免疫细胞化学在人类样本上浓度为1:200 (图 4). Nat Commun (2016) ncbi
domestic rabbit 单克隆(EPR362)
  • 免疫印迹; 人类; 1:500; 图 5
艾博抗(上海)贸易有限公司 p21抗体(Abcam, ab109520)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 5). Biol Open (2016) ncbi
domestic rabbit 单克隆(EPR362)
  • 免疫印迹; 人类; 图 5d
艾博抗(上海)贸易有限公司 p21抗体(Abcam, ab109520)被用于被用于免疫印迹在人类样本上 (图 5d). Stem Cells Int (2016) ncbi
domestic rabbit 单克隆(EPR3993)
  • 免疫印迹; 小鼠; 1:1000; 图 3b
艾博抗(上海)贸易有限公司 p21抗体(Abcam, ab109199)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 3b). FEBS Open Bio (2015) ncbi
domestic rabbit 单克隆(EPR362)
  • 免疫印迹; 人类; 图 2
艾博抗(上海)贸易有限公司 p21抗体(Abcam, ab109520)被用于被用于免疫印迹在人类样本上 (图 2). Int J Mol Sci (2015) ncbi
domestic rabbit 单克隆(EPR3993)
  • 免疫印迹; 人类; 1:2000; 图 1b
艾博抗(上海)贸易有限公司 p21抗体(Abcam, ab109199)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 1b). Oncotarget (2015) ncbi
domestic rabbit 单克隆(EPR3993)
  • 免疫印迹; 小鼠
艾博抗(上海)贸易有限公司 p21抗体(Abcam, ab109199)被用于被用于免疫印迹在小鼠样本上. PLoS ONE (2015) ncbi
domestic rabbit 单克隆(EPR362)
  • 免疫印迹; 人类; 1:1000; 图 5
艾博抗(上海)贸易有限公司 p21抗体(Abcam, ab109520)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 5). Cell Mol Life Sci (2015) ncbi
赛默飞世尔
domestic rabbit 重组(2H2L13)
  • 免疫细胞化学; 人类; 图 5a
  • 免疫印迹; 人类; 图 5a
赛默飞世尔 p21抗体(Thermo Fischer Scientific, PA5-701151)被用于被用于免疫细胞化学在人类样本上 (图 5a) 和 被用于免疫印迹在人类样本上 (图 5a). Toxicol In Vitro (2017) ncbi
domestic rabbit 重组(2H2L13)
  • 免疫细胞化学; 人类; 图 3f
  • 免疫印迹; 人类; 图 3e
赛默飞世尔 p21抗体(Thermo Scientific, PA5-701151)被用于被用于免疫细胞化学在人类样本上 (图 3f) 和 被用于免疫印迹在人类样本上 (图 3e). Exp Cell Res (2017) ncbi
domestic rabbit 单克隆(R.229.6)
  • 免疫细胞化学; 人类; 1:300; 图 3
赛默飞世尔 p21抗体(Pierce, R.229.6)被用于被用于免疫细胞化学在人类样本上浓度为1:300 (图 3). Springerplus (2016) ncbi
小鼠 单克隆(EA10)
  • 免疫印迹; 人类; 1:1000; 图 4
赛默飞世尔 p21抗体(Invitrogen, 33-7000)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 4). Nat Chem Biol (2016) ncbi
domestic rabbit 单克隆(R.229.6)
  • 免疫组化; 人类; 1:50
赛默飞世尔 p21抗体(Pierce, MA5-14949)被用于被用于免疫组化在人类样本上浓度为1:50. Histochem Cell Biol (2016) ncbi
小鼠 单克隆(HJ21)
  • 免疫印迹; 小鼠; 图 5
赛默飞世尔 p21抗体(Invitrogen, AHZ0422)被用于被用于免疫印迹在小鼠样本上 (图 5). Cell Cycle (2016) ncbi
domestic rabbit 单克隆(R.229.6)
  • 免疫印迹; 人类; 图 3a
赛默飞世尔 p21抗体(Pierce, MA5-14949)被用于被用于免疫印迹在人类样本上 (图 3a). Cell Cycle (2015) ncbi
小鼠 单克隆(EA10)
  • 免疫细胞化学; 人类
赛默飞世尔 p21抗体(Invitrogen, EA10)被用于被用于免疫细胞化学在人类样本上. World J Gastroenterol (2014) ncbi
小鼠 单克隆(HJ21)
  • 免疫细胞化学; 人类; 1:100; 图 6
  • 免疫印迹; 人类; 1:5000; 图 4
赛默飞世尔 p21抗体(Invitrogen, AHZ0422)被用于被用于免疫细胞化学在人类样本上浓度为1:100 (图 6) 和 被用于免疫印迹在人类样本上浓度为1:5000 (图 4). Cell Cycle (2013) ncbi
小鼠 单克隆(EA10)
  • 免疫印迹; 人类; 图 6
赛默飞世尔 p21抗体(Zymed, EA10)被用于被用于免疫印迹在人类样本上 (图 6). J Plast Reconstr Aesthet Surg (2013) ncbi
小鼠 单克隆(EA10)
  • 免疫印迹; 人类; 图 5
赛默飞世尔 p21抗体(Zymed, 33-7000)被用于被用于免疫印迹在人类样本上 (图 5). PLoS ONE (2013) ncbi
小鼠 单克隆(EA10)
  • 免疫印迹; 人类; 图 5
赛默飞世尔 p21抗体(Invitrogen, 337000)被用于被用于免疫印迹在人类样本上 (图 5). Inflamm Bowel Dis (2013) ncbi
小鼠 单克隆(EA10)
  • 免疫组化; 人类; 1:200
赛默飞世尔 p21抗体(Zymed, 33-7000)被用于被用于免疫组化在人类样本上浓度为1:200. Mol Vis (2011) ncbi
小鼠 单克隆(HJ21)
  • 免疫印迹; 小鼠; 1:50; 图 1
赛默飞世尔 p21抗体(Invitrogen, AHZ0422)被用于被用于免疫印迹在小鼠样本上浓度为1:50 (图 1). Biochimie (2011) ncbi
小鼠 单克隆(EA10)
  • 免疫细胞化学; 人类; 1:100; 图 4
  • 免疫印迹; 人类; 1:250; 图 4
赛默飞世尔 p21抗体(Zymed, EA10)被用于被用于免疫细胞化学在人类样本上浓度为1:100 (图 4) 和 被用于免疫印迹在人类样本上浓度为1:250 (图 4). Cancer (2010) ncbi
小鼠 单克隆(EA10)
  • 免疫印迹; 人类; 1:1000; 图 2
赛默飞世尔 p21抗体(Zymed, mouse clone EA10)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 2). Br J Dermatol (2010) ncbi
小鼠 单克隆(EA10)
  • 免疫组化-石蜡切片; 人类; 图 1
赛默飞世尔 p21抗体(Zymed, EA10)被用于被用于免疫组化-石蜡切片在人类样本上 (图 1). Clin Cancer Res (2009) ncbi
小鼠 单克隆(EA10)
  • 免疫组化-石蜡切片; 人类; 图 1
赛默飞世尔 p21抗体(Zymed, EA10)被用于被用于免疫组化-石蜡切片在人类样本上 (图 1). J Surg Oncol (2008) ncbi
小鼠 单克隆(EA10)
  • 免疫组化-石蜡切片; 人类; 1:100; 表 1
赛默飞世尔 p21抗体(Zymed, EA10)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100 (表 1). Oncol Rep (2008) ncbi
小鼠 单克隆(EA10)
  • 免疫组化-石蜡切片; 人类
赛默飞世尔 p21抗体(Zymed, EA10)被用于被用于免疫组化-石蜡切片在人类样本上. J Korean Med Sci (2007) ncbi
小鼠 单克隆(EA10)
  • 免疫印迹; 人类; 图 2
赛默飞世尔 p21抗体(Zymed, EA10)被用于被用于免疫印迹在人类样本上 (图 2). Mol Cell Biol (2007) ncbi
小鼠 单克隆(EA10)
  • 免疫印迹; 人类; 图 4
赛默飞世尔 p21抗体(Zymed, 33-7000)被用于被用于免疫印迹在人类样本上 (图 4). Exp Mol Med (2002) ncbi
武汉三鹰
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 5b
武汉三鹰 p21抗体(Proteintech, 10355-1-AP)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 5b). Cancer Cell Int (2020) ncbi
小鼠 单克隆(5F2F3)
  • 免疫印迹; 人类; 图 2c
武汉三鹰 p21抗体(Proteintech, 60214)被用于被用于免疫印迹在人类样本上 (图 2c). Tumour Biol (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 2
武汉三鹰 p21抗体(Proteintech, 10355-1-AP)被用于被用于免疫印迹在人类样本上 (图 2). Oncotarget (2016) ncbi
GeneTex
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 5
GeneTex p21抗体(GeneTex, GTX27960)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 5). Int J Mol Sci (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:800; 图 s1
GeneTex p21抗体(GeneTex, GTX100444)被用于被用于免疫印迹在人类样本上浓度为1:800 (图 s1). Oncotarget (2016) ncbi
Novus Biologicals
小鼠 单克隆(WA-1)
  • 免疫印迹; 小鼠; 1:50; 图 7a
Novus Biologicals p21抗体(Novus, NBP2-29463)被用于被用于免疫印迹在小鼠样本上浓度为1:50 (图 7a). Proc Natl Acad Sci U S A (2017) ncbi
赛信通(上海)生物试剂有限公司
domestic rabbit 单克隆(12D1)
  • 免疫印迹; 人类; 图 7d
赛信通(上海)生物试剂有限公司 p21抗体(Cell signaling Technology, 2947)被用于被用于免疫印迹在人类样本上 (图 7d). Mol Cancer (2020) ncbi
domestic rabbit 单克隆(12D1)
  • 免疫印迹; 小鼠; 图 3b
赛信通(上海)生物试剂有限公司 p21抗体(Cell Signaling Technology, 2947)被用于被用于免疫印迹在小鼠样本上 (图 3b). Aging (Albany NY) (2020) ncbi
domestic rabbit 单克隆(12D1)
  • 免疫印迹; 人类; 1:1000; 图 7c
赛信通(上海)生物试剂有限公司 p21抗体(Cell Signaling, 2947S)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 7c). Science (2019) ncbi
小鼠 单克隆(DCS60)
  • 免疫印迹; 人类; 1:2000; 图 5
赛信通(上海)生物试剂有限公司 p21抗体(Cell Signaling Technology, 2946S)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 5). Biomolecules (2019) ncbi
domestic rabbit 单克隆(12D1)
  • 免疫印迹; 人类; 图 3a, s2g
赛信通(上海)生物试剂有限公司 p21抗体(Cell Signaling, 2947)被用于被用于免疫印迹在人类样本上 (图 3a, s2g). Science (2019) ncbi
domestic rabbit 单克隆(12D1)
  • 免疫印迹; 人类; 图 5b
赛信通(上海)生物试剂有限公司 p21抗体(cell signaling technologies, 2947)被用于被用于免疫印迹在人类样本上 (图 5b). Front Genet (2019) ncbi
domestic rabbit 单克隆(12D1)
  • 免疫印迹; 人类; 1:750; 图 5e
赛信通(上海)生物试剂有限公司 p21抗体(Cell Signaling Technology, 2947 S)被用于被用于免疫印迹在人类样本上浓度为1:750 (图 5e). Nat Commun (2019) ncbi
domestic rabbit 单克隆(12D1)
  • 免疫细胞化学; 人类; 图 1c
赛信通(上海)生物试剂有限公司 p21抗体(Cell Signaling, 2947S)被用于被用于免疫细胞化学在人类样本上 (图 1c). Cell (2019) ncbi
domestic rabbit 单克隆(12D1)
  • 免疫细胞化学; 人类; 1:100; 图 5g
赛信通(上海)生物试剂有限公司 p21抗体(Cell Signaling, 2947)被用于被用于免疫细胞化学在人类样本上浓度为1:100 (图 5g). elife (2019) ncbi
domestic rabbit 单克隆(12D1)
  • 免疫印迹; 人类; 1:1000; 图 s2c
赛信通(上海)生物试剂有限公司 p21抗体(Cell Signaling, 2947S)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 s2c). Nat Commun (2019) ncbi
domestic rabbit 单克隆(12D1)
  • 免疫印迹; 人类; 图 2d
赛信通(上海)生物试剂有限公司 p21抗体(Cell Signaling Technology, 2947s)被用于被用于免疫印迹在人类样本上 (图 2d). PLoS Biol (2019) ncbi
domestic rabbit 单克隆(12D1)
  • 免疫印迹; 人类; 图 1e
赛信通(上海)生物试剂有限公司 p21抗体(CST, 2947)被用于被用于免疫印迹在人类样本上 (图 1e). Cell Rep (2019) ncbi
domestic rabbit 单克隆(12D1)
  • 流式细胞仪; 人类; 图 8d
  • 免疫印迹; 人类; 图 6e, 7b
赛信通(上海)生物试剂有限公司 p21抗体(CST, 2947S)被用于被用于流式细胞仪在人类样本上 (图 8d) 和 被用于免疫印迹在人类样本上 (图 6e, 7b). Cell Death Dis (2019) ncbi
domestic rabbit 单克隆(12D1)
  • 免疫印迹; 人类; 图 3d
赛信通(上海)生物试剂有限公司 p21抗体(Cell Signalling Technologies, 2947S)被用于被用于免疫印迹在人类样本上 (图 3d). Cell Death Dis (2019) ncbi
小鼠 单克隆(DCS60)
  • 免疫印迹; 人类; 图 e1b, e1d
赛信通(上海)生物试剂有限公司 p21抗体(Cell Signalling, DCS60)被用于被用于免疫印迹在人类样本上 (图 e1b, e1d). Nature (2019) ncbi
domestic rabbit 单克隆(12D1)
  • 免疫印迹; 人类; 图 s2a
赛信通(上海)生物试剂有限公司 p21抗体(Cell Signaling, 2947)被用于被用于免疫印迹在人类样本上 (图 s2a). Genes Dev (2019) ncbi
小鼠 单克隆(DCS60)
  • 免疫印迹; 人类; 图 s3f
赛信通(上海)生物试剂有限公司 p21抗体(Cell Signaling Technology, 2946)被用于被用于免疫印迹在人类样本上 (图 s3f). Cell (2019) ncbi
domestic rabbit 单克隆(12D1)
  • 免疫组化-石蜡切片; 小鼠; 图 s8a
  • 免疫印迹; 小鼠; 图 s8b
  • 免疫印迹; 人类; 图 s8c, s8d
赛信通(上海)生物试剂有限公司 p21抗体(Cell Signaling, 2947)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 s8a), 被用于免疫印迹在小鼠样本上 (图 s8b) 和 被用于免疫印迹在人类样本上 (图 s8c, s8d). Hepatology (2018) ncbi
domestic rabbit 单克隆(12D1)
  • 免疫印迹; 人类; 1:1000; 图 5d
赛信通(上海)生物试剂有限公司 p21抗体(Cell Signaling, 2947)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 5d). Oncol Rep (2019) ncbi
小鼠 单克隆(DCS60)
  • 免疫印迹; 人类; 图 2b
赛信通(上海)生物试剂有限公司 p21抗体(Cell Signaling, 2946)被用于被用于免疫印迹在人类样本上 (图 2b). Nat Chem Biol (2018) ncbi
domestic rabbit 单克隆(12D1)
  • 免疫印迹; 人类; 1:1000; 图 s1h
赛信通(上海)生物试剂有限公司 p21抗体(Cell Signaling, 2947s)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 s1h). Nat Commun (2018) ncbi
domestic rabbit 单克隆(12D1)
  • 免疫印迹; 人类; 1:1000; 图 s5e
赛信通(上海)生物试剂有限公司 p21抗体(Cell Signaling, 12D1)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 s5e). J Clin Invest (2018) ncbi
domestic rabbit 单克隆(12D1)
  • 免疫印迹; 人类; 图 1c
赛信通(上海)生物试剂有限公司 p21抗体(Cell Signaling, 12D1)被用于被用于免疫印迹在人类样本上 (图 1c). Oncotarget (2018) ncbi
domestic rabbit 单克隆(12D1)
  • 免疫组化-石蜡切片; 人类; 图 s6i
赛信通(上海)生物试剂有限公司 p21抗体(Cell Signaling Technology, 2947)被用于被用于免疫组化-石蜡切片在人类样本上 (图 s6i). Nat Commun (2018) ncbi
domestic rabbit 单克隆(12D1)
  • 免疫印迹; 人类; 图 2b
赛信通(上海)生物试剂有限公司 p21抗体(Cell Signaling, 2947)被用于被用于免疫印迹在人类样本上 (图 2b). Cancer Chemother Pharmacol (2018) ncbi
domestic rabbit 单克隆(12D1)
  • 免疫印迹; 人类; 图 7a
赛信通(上海)生物试剂有限公司 p21抗体(CST, 2947)被用于被用于免疫印迹在人类样本上 (图 7a). PLoS Pathog (2018) ncbi
domestic rabbit 单克隆(12D1)
  • 免疫印迹; 人类; 图 1l
赛信通(上海)生物试剂有限公司 p21抗体(Cell Signaling, 12D1)被用于被用于免疫印迹在人类样本上 (图 1l). PLoS ONE (2018) ncbi
domestic rabbit 单克隆(12D1)
  • 免疫印迹基因敲除验证; 人类; 1:1000; 图 7b
赛信通(上海)生物试剂有限公司 p21抗体(Cell Signaling, 2947)被用于被用于免疫印迹基因敲除验证在人类样本上浓度为1:1000 (图 7b). Cell Death Dis (2018) ncbi
domestic rabbit 单克隆(12D1)
  • 免疫印迹; 人类; 1:1000; 图 4a
  • 免疫组化; 小鼠; 图 2a
赛信通(上海)生物试剂有限公司 p21抗体(Cell Signaling Technology, 2947)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 4a) 和 被用于免疫组化在小鼠样本上 (图 2a). Oncogene (2018) ncbi
domestic rabbit 单克隆(12D1)
  • 免疫印迹; 人类; 图 5i
赛信通(上海)生物试剂有限公司 p21抗体(Cell Signaling, 2947S)被用于被用于免疫印迹在人类样本上 (图 5i). Cell (2018) ncbi
小鼠 单克隆(DCS60)
  • 免疫印迹; 人类; 图 1c
赛信通(上海)生物试剂有限公司 p21抗体(Cell Signaling, 2946)被用于被用于免疫印迹在人类样本上 (图 1c). Sci Rep (2017) ncbi
domestic rabbit 单克隆(12D1)
  • 免疫印迹; 人类; 1:500; 图 2f
赛信通(上海)生物试剂有限公司 p21抗体(Cell Signaling, 2947T)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 2f). Oncotarget (2017) ncbi
domestic rabbit 单克隆(12D1)
  • 免疫印迹; 人类; 图 2c
赛信通(上海)生物试剂有限公司 p21抗体(Cell Signaling, 2947)被用于被用于免疫印迹在人类样本上 (图 2c). Clin Cancer Res (2018) ncbi
domestic rabbit 单克隆(12D1)
  • 免疫印迹; 小鼠; 1:1000; 图 3b
赛信通(上海)生物试剂有限公司 p21抗体(Cell Signaling Technology, 2947)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 3b). Cancer Discov (2017) ncbi
小鼠 单克隆(DCS60)
  • 免疫印迹; 人类; 图 2g
赛信通(上海)生物试剂有限公司 p21抗体(Cell Signaling, 2946)被用于被用于免疫印迹在人类样本上 (图 2g). Oncogene (2017) ncbi
domestic rabbit 单克隆(12D1)
  • 免疫印迹; 人类; 图 4d
赛信通(上海)生物试剂有限公司 p21抗体(Cell Signaling, 2947)被用于被用于免疫印迹在人类样本上 (图 4d). Int J Radiat Biol (2017) ncbi
domestic rabbit 单克隆(12D1)
  • 免疫印迹; 人类; 1:1000; 图 6e
赛信通(上海)生物试剂有限公司 p21抗体(Cell Signaling Technology, 2947s)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 6e). Sci Rep (2017) ncbi
domestic rabbit 单克隆(12D1)
  • 免疫印迹; 人类; 1:1000; 图 7a
赛信通(上海)生物试剂有限公司 p21抗体(Cell Signaling Technology, 2947S)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 7a). Mol Med Rep (2017) ncbi
domestic rabbit 单克隆(12D1)
  • 免疫印迹; 人类; 图 3c
赛信通(上海)生物试剂有限公司 p21抗体(cell signalling, 2947p)被用于被用于免疫印迹在人类样本上 (图 3c). PLoS Pathog (2017) ncbi
小鼠 单克隆(DCS60)
  • 免疫印迹; 人类; 图 5e
赛信通(上海)生物试剂有限公司 p21抗体(Cell signaling, 2946)被用于被用于免疫印迹在人类样本上 (图 5e). Redox Biol (2017) ncbi
小鼠 单克隆(DCS60)
  • 免疫印迹; 小鼠; 图 1a
赛信通(上海)生物试剂有限公司 p21抗体(Cell Signaling, 2946)被用于被用于免疫印迹在小鼠样本上 (图 1a). EMBO J (2017) ncbi
domestic rabbit 单克隆(12D1)
  • 免疫印迹; 人类; 1:1000
赛信通(上海)生物试剂有限公司 p21抗体(cell signalling, 2947P)被用于被用于免疫印迹在人类样本上浓度为1:1000. Oncoscience (2016) ncbi
小鼠 单克隆(DCS60)
  • 免疫印迹; 人类; 图 2f
赛信通(上海)生物试剂有限公司 p21抗体(Cell signaling, 2946)被用于被用于免疫印迹在人类样本上 (图 2f). Oncotarget (2017) ncbi
小鼠 单克隆(DCS60)
  • 免疫印迹; 人类; 图 4a
赛信通(上海)生物试剂有限公司 p21抗体(Cell Signaling Technology, 2946)被用于被用于免疫印迹在人类样本上 (图 4a). Int J Mol Sci (2016) ncbi
domestic rabbit 单克隆(12D1)
  • 免疫印迹; 人类; 图 7c
赛信通(上海)生物试剂有限公司 p21抗体(Cell signaling, 2947)被用于被用于免疫印迹在人类样本上 (图 7c). Oncotarget (2017) ncbi
domestic rabbit 单克隆(12D1)
  • 免疫印迹; 人类; 1:1000; 图 1a
赛信通(上海)生物试剂有限公司 p21抗体(Cell Signaling, 2947)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 1a). Arch Biochem Biophys (2017) ncbi
domestic rabbit 单克隆(12D1)
  • 免疫印迹; 人类; 图 2a
赛信通(上海)生物试剂有限公司 p21抗体(Cell Signaling, 2947)被用于被用于免疫印迹在人类样本上 (图 2a). Sci Rep (2016) ncbi
domestic rabbit 单克隆(12D1)
  • 免疫印迹; 人类; 图 4c
赛信通(上海)生物试剂有限公司 p21抗体(Cell Signaling, 2947)被用于被用于免疫印迹在人类样本上 (图 4c). Sci Rep (2016) ncbi
小鼠 单克隆(DCS60)
  • 免疫印迹; 人类; 图 4d
赛信通(上海)生物试剂有限公司 p21抗体(Cell Signaling, DCS60)被用于被用于免疫印迹在人类样本上 (图 4d). Clin Cancer Res (2017) ncbi
domestic rabbit 单克隆(12D1)
  • 免疫印迹; 人类; 图 7g
赛信通(上海)生物试剂有限公司 p21抗体(Cell Signaling, 2947)被用于被用于免疫印迹在人类样本上 (图 7g). Sci Rep (2016) ncbi
domestic rabbit 单克隆(12D1)
  • 免疫印迹; 人类; 图 4c
赛信通(上海)生物试剂有限公司 p21抗体(Cell Signaling, 2947)被用于被用于免疫印迹在人类样本上 (图 4c). Sci Rep (2016) ncbi
小鼠 单克隆(DCS60)
  • 免疫印迹; 人类; 1:2000; 图 7d
赛信通(上海)生物试剂有限公司 p21抗体(Cell Signaling, 2946)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 7d). EMBO Mol Med (2017) ncbi
domestic rabbit 单克隆(12D1)
  • 免疫组化-石蜡切片; 人类; 1:50; 图 6b
  • 免疫印迹; 人类; 图 6c
赛信通(上海)生物试剂有限公司 p21抗体(Cell Signaling, 2947)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:50 (图 6b) 和 被用于免疫印迹在人类样本上 (图 6c). Cancer Lett (2017) ncbi
domestic rabbit 单克隆(12D1)
  • 免疫细胞化学; 人类; 图 4
赛信通(上海)生物试剂有限公司 p21抗体(Cell signaling, 2947)被用于被用于免疫细胞化学在人类样本上 (图 4). Sci Rep (2016) ncbi
domestic rabbit 单克隆(12D1)
  • 免疫细胞化学; 人类; 图 4
  • 免疫印迹; 人类; 图 2
赛信通(上海)生物试剂有限公司 p21抗体(Cell Signaling, 2947)被用于被用于免疫细胞化学在人类样本上 (图 4) 和 被用于免疫印迹在人类样本上 (图 2). BMC Cancer (2016) ncbi
domestic rabbit 单克隆(12D1)
  • 免疫印迹; 人类; 图 2b
赛信通(上海)生物试剂有限公司 p21抗体(Cell signaling, 2947)被用于被用于免疫印迹在人类样本上 (图 2b). Eur J Cancer (2016) ncbi
domestic rabbit 单克隆(12D1)
  • 免疫印迹; 人类; 图 4
赛信通(上海)生物试剂有限公司 p21抗体(Cell Signaling Tech, 2947)被用于被用于免疫印迹在人类样本上 (图 4). Sci Rep (2016) ncbi
domestic rabbit 单克隆(12D1)
  • 免疫印迹; 人类; 1:200; 图 st1
赛信通(上海)生物试剂有限公司 p21抗体(Cell Signaling, 2947)被用于被用于免疫印迹在人类样本上浓度为1:200 (图 st1). Nat Commun (2016) ncbi
domestic rabbit 单克隆(12D1)
  • 免疫印迹; 人类; 图 5f
赛信通(上海)生物试剂有限公司 p21抗体(Cell Signaling, 2947)被用于被用于免疫印迹在人类样本上 (图 5f). Cancer Res (2016) ncbi
小鼠 单克隆(DCS60)
  • 免疫印迹; 人类; 图 6b
赛信通(上海)生物试剂有限公司 p21抗体(cell signalling, 2946)被用于被用于免疫印迹在人类样本上 (图 6b). Breast Cancer Res (2016) ncbi
domestic rabbit 单克隆(12D1)
  • 免疫印迹; 人类; 图 6i
赛信通(上海)生物试剂有限公司 p21抗体(Cell Signaling, 2947)被用于被用于免疫印迹在人类样本上 (图 6i). Oncotarget (2016) ncbi
domestic rabbit 单克隆(12D1)
  • 免疫印迹; 人类; 1:1000; 图 1
赛信通(上海)生物试剂有限公司 p21抗体(Cell Signaling, 2947)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 1). Sci Rep (2016) ncbi
domestic rabbit 单克隆(12D1)
  • 免疫印迹; 人类; 1:1000; 图 s3b
赛信通(上海)生物试剂有限公司 p21抗体(Cell Signaling, 2947)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 s3b). Oncogene (2017) ncbi
domestic rabbit 单克隆(12D1)
  • 免疫印迹; 人类; 图 4a
赛信通(上海)生物试剂有限公司 p21抗体(Cell Signaling, 12D1)被用于被用于免疫印迹在人类样本上 (图 4a). Oncogene (2017) ncbi
domestic rabbit 单克隆(12D1)
  • 免疫印迹; 人类; 图 6a
赛信通(上海)生物试剂有限公司 p21抗体(Cell Signaling, 2947)被用于被用于免疫印迹在人类样本上 (图 6a). Oncotarget (2016) ncbi
domestic rabbit 单克隆(12D1)
  • 免疫印迹; 人类; 1:2000; 图 2B
赛信通(上海)生物试剂有限公司 p21抗体(Cell Signaling, 2947)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 2B). PLoS ONE (2016) ncbi
domestic rabbit 单克隆(12D1)
  • 免疫印迹; 人类; 1:1000; 图 5e
赛信通(上海)生物试剂有限公司 p21抗体(CST, 2947S)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 5e). Oncotarget (2016) ncbi
domestic rabbit 单克隆(12D1)
  • 免疫印迹; 人类; 1:1000; 图 2
赛信通(上海)生物试剂有限公司 p21抗体(Cell Signaling Tech, 2947)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 2). J Cell Biol (2016) ncbi
domestic rabbit 单克隆(12D1)
  • 免疫印迹; 人类; 图 5b
赛信通(上海)生物试剂有限公司 p21抗体(Cell Signaling, 2947)被用于被用于免疫印迹在人类样本上 (图 5b). J Proteomics (2017) ncbi
小鼠 单克隆(DCS60)
  • 免疫印迹; 人类; 图 7e
赛信通(上海)生物试剂有限公司 p21抗体(cell signalling, 2946)被用于被用于免疫印迹在人类样本上 (图 7e). EMBO Mol Med (2016) ncbi
domestic rabbit 单克隆(12D1)
  • 免疫印迹; 人类; 1:2000; 图 s5
赛信通(上海)生物试剂有限公司 p21抗体(Cell Signaling, 2947)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 s5). Nat Commun (2016) ncbi
小鼠 单克隆(DCS60)
  • 免疫印迹; 人类; 图 s2a
赛信通(上海)生物试剂有限公司 p21抗体(Cell Signaling, 2946)被用于被用于免疫印迹在人类样本上 (图 s2a). J Mol Med (Berl) (2016) ncbi
domestic rabbit 单克隆(12D1)
  • 免疫印迹; 人类; 1:1000; 图 3e
赛信通(上海)生物试剂有限公司 p21抗体(CST, 2947)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3e). Aging (Albany NY) (2016) ncbi
小鼠 单克隆(DCS60)
  • 免疫印迹; 人类; 图 5
赛信通(上海)生物试剂有限公司 p21抗体(Cell Signaling, 2946)被用于被用于免疫印迹在人类样本上 (图 5). Sci Rep (2016) ncbi
domestic rabbit 单克隆(12D1)
  • 免疫印迹; 人类; 图 s9
赛信通(上海)生物试剂有限公司 p21抗体(Cell Signaling Tech, 2947S)被用于被用于免疫印迹在人类样本上 (图 s9). Nat Commun (2016) ncbi
domestic rabbit 单克隆(12D1)
  • 免疫印迹; 人类; 1:1000; 图 s2
赛信通(上海)生物试剂有限公司 p21抗体(Cell Signaling, 2947P)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 s2). PLoS ONE (2016) ncbi
domestic rabbit 单克隆(12D1)
  • 免疫印迹; 人类; 图 1a
赛信通(上海)生物试剂有限公司 p21抗体(Cell Signaling, 2947)被用于被用于免疫印迹在人类样本上 (图 1a). Proc Natl Acad Sci U S A (2016) ncbi
domestic rabbit 单克隆(12D1)
  • 免疫印迹; 人类; 1:1000; 图 s1
赛信通(上海)生物试剂有限公司 p21抗体(Cell signaling, 2947)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 s1). EMBO Mol Med (2016) ncbi
domestic rabbit 单克隆(12D1)
  • 免疫印迹; 人类; 图 1d
赛信通(上海)生物试剂有限公司 p21抗体(Cell Signaling, 2947)被用于被用于免疫印迹在人类样本上 (图 1d). Oncol Rep (2016) ncbi
小鼠 单克隆(DCS60)
  • 免疫印迹; 人类; 1:1000; 图 6
赛信通(上海)生物试剂有限公司 p21抗体(Cell Signaling Tech, 2946)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 6). PLoS ONE (2016) ncbi
domestic rabbit 单克隆(12D1)
  • 免疫印迹; 人类; 图 8
赛信通(上海)生物试剂有限公司 p21抗体(Cell signaling, 2947)被用于被用于免疫印迹在人类样本上 (图 8). Oncogenesis (2016) ncbi
domestic rabbit 单克隆(12D1)
  • 免疫印迹; 人类; 图 s2
赛信通(上海)生物试剂有限公司 p21抗体(Cell Signaling Technology, 2947)被用于被用于免疫印迹在人类样本上 (图 s2). Autophagy (2016) ncbi
domestic rabbit 单克隆(12D1)
  • 免疫组化-石蜡切片; 人类; 0.5 ug/ml; 图 st1
赛信通(上海)生物试剂有限公司 p21抗体(Cell signaling, 2947S)被用于被用于免疫组化-石蜡切片在人类样本上浓度为0.5 ug/ml (图 st1). Nature (2016) ncbi
domestic rabbit 单克隆(12D1)
  • 免疫印迹; 小鼠; 1:1000; 图 5
赛信通(上海)生物试剂有限公司 p21抗体(CST, 2947)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 5). Nat Commun (2016) ncbi
domestic rabbit 单克隆(12D1)
  • 免疫印迹; 人类; 1:1000; 图 3
赛信通(上海)生物试剂有限公司 p21抗体(Cell Signalng, 2947)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3). Oncotarget (2016) ncbi
domestic rabbit 单克隆(12D1)
  • 免疫印迹; 人类; 图 3
赛信通(上海)生物试剂有限公司 p21抗体(Cell Signaling Tech, 2947)被用于被用于免疫印迹在人类样本上 (图 3). Cancer Sci (2016) ncbi
domestic rabbit 单克隆(12D1)
  • 免疫组化-石蜡切片; 人类; 1:100; 图 3
赛信通(上海)生物试剂有限公司 p21抗体(Cell Signaling, 2947)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100 (图 3). Sci Rep (2016) ncbi
小鼠 单克隆(DCS60)
  • 免疫组化-石蜡切片; 人类; 1:100; 图 s1
赛信通(上海)生物试剂有限公司 p21抗体(Cell Signaling, 2946)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100 (图 s1). BMC Cancer (2016) ncbi
小鼠 单克隆(DCS60)
  • 免疫印迹; 人类; 图 1e
赛信通(上海)生物试剂有限公司 p21抗体(Cell Signaling, 2946)被用于被用于免疫印迹在人类样本上 (图 1e). Oncotarget (2016) ncbi
domestic rabbit 单克隆(12D1)
赛信通(上海)生物试剂有限公司 p21抗体(Cell Signaling, 2947)被用于. elife (2016) ncbi
domestic rabbit 单克隆(12D1)
  • 免疫印迹; 人类; 1:1000; 图 s11e
赛信通(上海)生物试剂有限公司 p21抗体(Cell Signaling Technology, 2947)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 s11e). Nat Commun (2016) ncbi
domestic rabbit 单克隆(12D1)
  • 免疫印迹; 人类; 图 4a
赛信通(上海)生物试剂有限公司 p21抗体(New England Biolabs, 2947)被用于被用于免疫印迹在人类样本上 (图 4a). Oncotarget (2016) ncbi
domestic rabbit 单克隆(12D1)
  • 免疫印迹; 人类; 图 5
赛信通(上海)生物试剂有限公司 p21抗体(Cell signaling, 2947)被用于被用于免疫印迹在人类样本上 (图 5). Oncotarget (2016) ncbi
domestic rabbit 单克隆(12D1)
  • 免疫印迹; 人类; 图 1c
赛信通(上海)生物试剂有限公司 p21抗体(Cell Signaling, 2947)被用于被用于免疫印迹在人类样本上 (图 1c). J Biol Chem (2016) ncbi
domestic rabbit 单克隆(12D1)
  • 免疫印迹; 人类; 图 3
赛信通(上海)生物试剂有限公司 p21抗体(Cell Signaling Technology, 2947)被用于被用于免疫印迹在人类样本上 (图 3). Oncotarget (2016) ncbi
domestic rabbit 单克隆(12D1)
  • 免疫印迹; 人类; 图 6f
赛信通(上海)生物试剂有限公司 p21抗体(Cell Signaling, 2947)被用于被用于免疫印迹在人类样本上 (图 6f). Stem Cells Dev (2016) ncbi
domestic rabbit 单克隆(12D1)
  • 免疫印迹; 人类; 图 1
赛信通(上海)生物试剂有限公司 p21抗体(Cell Signalling, 2947)被用于被用于免疫印迹在人类样本上 (图 1). Cell Death Dis (2016) ncbi
domestic rabbit 单克隆(12D1)
  • 免疫印迹; 人类; 1:1000; 图 5d
赛信通(上海)生物试剂有限公司 p21抗体(Cell Signaling, 2947)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 5d). Mol Med Rep (2016) ncbi
domestic rabbit 单克隆(12D1)
  • 免疫印迹; 人类; 图 2b
赛信通(上海)生物试剂有限公司 p21抗体(Cell signaling, 12D1)被用于被用于免疫印迹在人类样本上 (图 2b). Immunol Res (2016) ncbi
domestic rabbit 单克隆(12D1)
  • 免疫印迹; 人类; 图 5
赛信通(上海)生物试剂有限公司 p21抗体(Cell Signaling Technology, 2947)被用于被用于免疫印迹在人类样本上 (图 5). Mol Cell Proteomics (2016) ncbi
domestic rabbit 单克隆(12D1)
  • 免疫印迹; 人类; 图 5a
赛信通(上海)生物试剂有限公司 p21抗体(Cell Signaling, 2947)被用于被用于免疫印迹在人类样本上 (图 5a). Oncotarget (2016) ncbi
domestic rabbit 单克隆(12D1)
  • 免疫印迹; 人类; 图 S1B
赛信通(上海)生物试剂有限公司 p21抗体(CST, 2947)被用于被用于免疫印迹在人类样本上 (图 S1B). PLoS ONE (2015) ncbi
domestic rabbit 单克隆(12D1)
  • 免疫印迹; 人类; 1:1000; 图 1
赛信通(上海)生物试剂有限公司 p21抗体(Cell Signaling Technology, 2947)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 1). Nat Cell Biol (2016) ncbi
domestic rabbit 单克隆(12D1)
  • 免疫印迹; 人类; 图 2
赛信通(上海)生物试剂有限公司 p21抗体(Cell Signalling, 2947)被用于被用于免疫印迹在人类样本上 (图 2). Oncotarget (2016) ncbi
domestic rabbit 单克隆(12D1)
  • 免疫印迹; 人类; 图 2
赛信通(上海)生物试剂有限公司 p21抗体(Cell signaling, 2947)被用于被用于免疫印迹在人类样本上 (图 2). Oncogene (2016) ncbi
domestic rabbit 单克隆(12D1)
  • 免疫印迹; 人类; 图 6a
赛信通(上海)生物试剂有限公司 p21抗体(Cell Signaling, 2947P)被用于被用于免疫印迹在人类样本上 (图 6a). Oncotarget (2015) ncbi
domestic rabbit 单克隆(12D1)
  • 免疫细胞化学; 人类; 1:100; 图 s3
赛信通(上海)生物试剂有限公司 p21抗体(Cell Signaling, 2947)被用于被用于免疫细胞化学在人类样本上浓度为1:100 (图 s3). Oncotarget (2015) ncbi
小鼠 单克隆(DCS60)
  • 免疫印迹; 人类; 图 3
赛信通(上海)生物试剂有限公司 p21抗体(Cell Signaling, DCS60)被用于被用于免疫印迹在人类样本上 (图 3). Mol Cancer Ther (2015) ncbi
domestic rabbit 单克隆(12D1)
  • 免疫印迹基因敲除验证; 人类; 1:1000; 图 6
赛信通(上海)生物试剂有限公司 p21抗体(Cell Signaling, 2947S)被用于被用于免疫印迹基因敲除验证在人类样本上浓度为1:1000 (图 6). Oncotarget (2015) ncbi
domestic rabbit 单克隆(12D1)
  • 免疫印迹; 人类; 1:1000; 图 4c, d
赛信通(上海)生物试剂有限公司 p21抗体(Cell Signaling, 2947)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 4c, d). Oncotarget (2015) ncbi
小鼠 单克隆(DCS60)
  • 免疫沉淀; 人类; 1:50; 图 2
赛信通(上海)生物试剂有限公司 p21抗体(Cell Signaling Technology, DCS60)被用于被用于免疫沉淀在人类样本上浓度为1:50 (图 2). Oncotarget (2015) ncbi
domestic rabbit 单克隆(12D1)
  • 免疫印迹; 人类; 1:1000; 图 2
赛信通(上海)生物试剂有限公司 p21抗体(Cell Signaling Technology, 12D1)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 2). Oncotarget (2015) ncbi
domestic rabbit 单克隆(12D1)
  • 免疫印迹; 人类; 1:1000; 图 2
赛信通(上海)生物试剂有限公司 p21抗体(Cell Signaling Technologies, 2947)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 2). Oncotarget (2015) ncbi
domestic rabbit 单克隆(12D1)
  • 免疫印迹; 人类; 图 3d
赛信通(上海)生物试剂有限公司 p21抗体(Cell Signaling, 2947)被用于被用于免疫印迹在人类样本上 (图 3d). PLoS ONE (2015) ncbi
小鼠 单克隆(DCS60)
  • 免疫印迹; 人类; 图 6
赛信通(上海)生物试剂有限公司 p21抗体(Cell Signaling, 2946)被用于被用于免疫印迹在人类样本上 (图 6). J Virol (2015) ncbi
domestic rabbit 单克隆(12D1)
  • 免疫细胞化学; 人类; 图 6a
  • 免疫印迹; 人类; 1:1000; 图 3b
赛信通(上海)生物试剂有限公司 p21抗体(Cell signaling, 2947S)被用于被用于免疫细胞化学在人类样本上 (图 6a) 和 被用于免疫印迹在人类样本上浓度为1:1000 (图 3b). Oncotarget (2015) ncbi
domestic rabbit 单克隆(12D1)
  • 免疫印迹; 人类; 图 4
赛信通(上海)生物试剂有限公司 p21抗体(Cell Signaling, 2947)被用于被用于免疫印迹在人类样本上 (图 4). Drug Des Devel Ther (2015) ncbi
domestic rabbit 单克隆(12D1)
  • 免疫印迹; 人类; 1:1000; 图 3
赛信通(上海)生物试剂有限公司 p21抗体(Cell Signaling, 2947)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3). Nat Chem (2015) ncbi
domestic rabbit 单克隆(12D1)
  • 免疫印迹; 人类; 1:1000; 图 5b
赛信通(上海)生物试剂有限公司 p21抗体(Cell signaling, 2947)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 5b). Mol Med Rep (2015) ncbi
domestic rabbit 单克隆(12D1)
  • 免疫印迹; 人类; 1:1000; 图 4a
赛信通(上海)生物试剂有限公司 p21抗体(Cell Signaling Technology, 12D1)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 4a). PLoS ONE (2015) ncbi
小鼠 单克隆(DCS60)
  • 免疫印迹; 人类; 图 6
赛信通(上海)生物试剂有限公司 p21抗体(Cell Signaling, 2946)被用于被用于免疫印迹在人类样本上 (图 6). PLoS ONE (2015) ncbi
domestic rabbit 单克隆(12D1)
  • 免疫印迹; 人类; 1:1000; 图 s8
赛信通(上海)生物试剂有限公司 p21抗体(Cell signaling, 2947)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 s8). Nat Commun (2015) ncbi
domestic rabbit 单克隆(12D1)
  • 免疫印迹; 人类; 图 1
赛信通(上海)生物试剂有限公司 p21抗体(Cell Signaling, 2947)被用于被用于免疫印迹在人类样本上 (图 1). J Biomed Sci (2015) ncbi
domestic rabbit 单克隆(12D1)
  • 免疫印迹; 人类; 1:500; 图 1
赛信通(上海)生物试剂有限公司 p21抗体(Cell Signaling, 2947)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 1). Oncotarget (2015) ncbi
domestic rabbit 单克隆(12D1)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 p21抗体(Cell Signaling Technology, 2947P)被用于被用于免疫印迹在人类样本上. Nucleic Acids Res (2015) ncbi
domestic rabbit 单克隆(12D1)
  • 免疫细胞化学; 人类; 图 1
  • 免疫印迹; 人类; 图 1
赛信通(上海)生物试剂有限公司 p21抗体(Cell Signaling Tech, 2947)被用于被用于免疫细胞化学在人类样本上 (图 1) 和 被用于免疫印迹在人类样本上 (图 1). BMC Cancer (2015) ncbi
domestic rabbit 单克隆(12D1)
  • 免疫印迹; 人类; 1:1000; 图 s5
赛信通(上海)生物试剂有限公司 p21抗体(Cell Signaling, 2947)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 s5). Sci Rep (2015) ncbi
domestic rabbit 单克隆(12D1)
  • 免疫印迹; 人类; 1:1000
赛信通(上海)生物试剂有限公司 p21抗体(Cell Signaling Technology, 12D1)被用于被用于免疫印迹在人类样本上浓度为1:1000. BMC Cancer (2015) ncbi
domestic rabbit 单克隆(12D1)
  • 免疫印迹; 人类; 图 5
赛信通(上海)生物试剂有限公司 p21抗体(Cell Signaling, CS2947)被用于被用于免疫印迹在人类样本上 (图 5). PLoS ONE (2015) ncbi
小鼠 单克隆(DCS60)
  • 免疫印迹; 人类; 图 3
赛信通(上海)生物试剂有限公司 p21抗体(CST, 2946)被用于被用于免疫印迹在人类样本上 (图 3). Oncotarget (2015) ncbi
domestic rabbit 单克隆(12D1)
  • 免疫印迹; 人类; 1:1000; 图 s8
赛信通(上海)生物试剂有限公司 p21抗体(Cell signaling, 12D1)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 s8). Nat Cell Biol (2015) ncbi
domestic rabbit 单克隆(12D1)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 p21抗体(Cell Signaling, 2947)被用于被用于免疫印迹在人类样本上. Oxid Med Cell Longev (2015) ncbi
domestic rabbit 单克隆(12D1)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 p21抗体(Cell Signaling Technology, 2947)被用于被用于免疫印迹在人类样本上. J Biol Chem (2015) ncbi
小鼠 单克隆(DCS60)
  • 免疫组化-石蜡切片; 人类; 1:50; 图 1a
赛信通(上海)生物试剂有限公司 p21抗体(Cell Signaling, 2946)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:50 (图 1a). Int J Oral Sci (2015) ncbi
domestic rabbit 单克隆(12D1)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 p21抗体(Cell signaling, 12D1)被用于被用于免疫印迹在人类样本上. Nucleic Acids Res (2015) ncbi
domestic rabbit 单克隆(12D1)
  • 免疫印迹; 人类; 1:1000
赛信通(上海)生物试剂有限公司 p21抗体(Cell Signaling Technology, 1185)被用于被用于免疫印迹在人类样本上浓度为1:1000. PLoS ONE (2015) ncbi
domestic rabbit 单克隆(12D1)
  • 免疫细胞化学; 人类
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 p21抗体(Cell Signaling Technology, 2947)被用于被用于免疫细胞化学在人类样本上 和 被用于免疫印迹在人类样本上. Int J Oncol (2015) ncbi
domestic rabbit 单克隆(12D1)
  • 免疫印迹; 人类; 图 1
赛信通(上海)生物试剂有限公司 p21抗体(Cell Signaling, 2947)被用于被用于免疫印迹在人类样本上 (图 1). Proc Natl Acad Sci U S A (2015) ncbi
小鼠 单克隆(DCS60)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 p21抗体(Cell Signaling, #2946)被用于被用于免疫印迹在人类样本上. Mutat Res (2015) ncbi
domestic rabbit 单克隆(12D1)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 p21抗体(CellSignaling Technology, 2947)被用于被用于免疫印迹在人类样本上. Peerj (2015) ncbi
domestic rabbit 单克隆(12D1)
  • 免疫细胞化学; 人类; 1:400; 图 3
赛信通(上海)生物试剂有限公司 p21抗体(Cell Signaling, 2947)被用于被用于免疫细胞化学在人类样本上浓度为1:400 (图 3). Oncotarget (2015) ncbi
domestic rabbit 单克隆(12D1)
  • 免疫印迹; 人类; 1:1000
赛信通(上海)生物试剂有限公司 p21抗体(Cell Signaling Technology, 2947 s)被用于被用于免疫印迹在人类样本上浓度为1:1000. J Exp Clin Cancer Res (2015) ncbi
domestic rabbit 单克隆(12D1)
  • 免疫印迹; 人类; 图 6A
赛信通(上海)生物试剂有限公司 p21抗体(Cell Signaling, 12D1)被用于被用于免疫印迹在人类样本上 (图 6A). Cell Cycle (2015) ncbi
小鼠 单克隆(DCS60)
  • 免疫印迹; 人类; 1:1000; 图 4c
  • 免疫组化-石蜡切片; 小鼠; 图 9c
赛信通(上海)生物试剂有限公司 p21抗体(Cell Signaling, 2946)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 4c) 和 被用于免疫组化-石蜡切片在小鼠样本上 (图 9c). Nat Commun (2015) ncbi
小鼠 单克隆(DCS60)
  • 免疫印迹; 人类; 1:500; 图 5
赛信通(上海)生物试剂有限公司 p21抗体(Cell signaling, 2946)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 5). Cancer Biol Ther (2015) ncbi
domestic rabbit 单克隆(12D1)
  • 免疫印迹; 小鼠
赛信通(上海)生物试剂有限公司 p21抗体(Cst, 2947)被用于被用于免疫印迹在小鼠样本上. J Proteome Res (2015) ncbi
domestic rabbit 单克隆(12D1)
  • 免疫印迹; 人类; 1:1000; 图 1
赛信通(上海)生物试剂有限公司 p21抗体(Cell signaling, 2947)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 1). Oncotarget (2015) ncbi
小鼠 单克隆(DCS60)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 p21抗体(Cell Signaling, 2946)被用于被用于免疫印迹在人类样本上. Cell Death Differ (2015) ncbi
domestic rabbit 单克隆(12D1)
  • 免疫组化-石蜡切片; 猕猴; 1:50; 图 s2a
赛信通(上海)生物试剂有限公司 p21抗体(Cell signaling, 12D1)被用于被用于免疫组化-石蜡切片在猕猴样本上浓度为1:50 (图 s2a). J Immunol (2015) ncbi
domestic rabbit 单克隆(12D1)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 p21抗体(Cell Signaling Technology, 2947)被用于被用于免疫印迹在人类样本上. FEBS Lett (2014) ncbi
domestic rabbit 单克隆(12D1)
  • 免疫印迹; 人类; 1:500; 图 5a
赛信通(上海)生物试剂有限公司 p21抗体(CST, 2947s)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 5a). Int J Clin Exp Med (2014) ncbi
domestic rabbit 单克隆(12D1)
  • 免疫印迹; 大鼠; 1:1000; 图 9b
赛信通(上海)生物试剂有限公司 p21抗体(Cell Signaling Technology, 2947)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 9b). Int J Mol Med (2015) ncbi
小鼠 单克隆(DCS60)
  • 免疫印迹基因敲除验证; 人类; 图 1
赛信通(上海)生物试剂有限公司 p21抗体(Cell Signaling Technology, 2946)被用于被用于免疫印迹基因敲除验证在人类样本上 (图 1). Proc Natl Acad Sci U S A (2014) ncbi
domestic rabbit 单克隆(12D1)
  • 免疫组化; 人类; 1:50
赛信通(上海)生物试剂有限公司 p21抗体(Cell Signaling, 2947)被用于被用于免疫组化在人类样本上浓度为1:50. J Clin Endocrinol Metab (2015) ncbi
domestic rabbit 单克隆(12D1)
  • 免疫印迹; 人类; 1:2000
赛信通(上海)生物试剂有限公司 p21抗体(Cell Signaling Technology, 2947)被用于被用于免疫印迹在人类样本上浓度为1:2000. Oncotarget (2014) ncbi
domestic rabbit 单克隆(12D1)
  • 免疫印迹; 人类; 图 5e
赛信通(上海)生物试剂有限公司 p21抗体(Cell Signaling, 2947)被用于被用于免疫印迹在人类样本上 (图 5e). Mol Cancer (2014) ncbi
domestic rabbit 单克隆(12D1)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 p21抗体(Cell Signaling Technology, 2947S)被用于被用于免疫印迹在人类样本上. F1000Res (2014) ncbi
domestic rabbit 单克隆(12D1)
  • 免疫印迹; 人类; 1:1000
赛信通(上海)生物试剂有限公司 p21抗体(Cell Signaling Technology, 2947)被用于被用于免疫印迹在人类样本上浓度为1:1000. Biochem Biophys Res Commun (2014) ncbi
domestic rabbit 单克隆(12D1)
  • 免疫印迹; 人类; 1:1000; 图 3
赛信通(上海)生物试剂有限公司 p21抗体(Cell Signaling, 2947)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3). Cancer Res (2014) ncbi
小鼠 单克隆(DCS60)
  • 免疫印迹; 人类; 图 6
赛信通(上海)生物试剂有限公司 p21抗体(Cell Signaling Technology, 2946)被用于被用于免疫印迹在人类样本上 (图 6). Oncogene (2015) ncbi
domestic rabbit 单克隆(12D1)
  • 免疫印迹; 人类; 图 s3
赛信通(上海)生物试剂有限公司 p21抗体(Cell Signaling, 12D1)被用于被用于免疫印迹在人类样本上 (图 s3). Proc Natl Acad Sci U S A (2014) ncbi
小鼠 单克隆(DCS60)
  • 免疫印迹; 人类; 图 5
赛信通(上海)生物试剂有限公司 p21抗体(Cell Signaling, DCS60)被用于被用于免疫印迹在人类样本上 (图 5). PLoS Genet (2014) ncbi
domestic rabbit 单克隆(12D1)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 p21抗体(Cell Signaling Technology, 2947S)被用于被用于免疫印迹在人类样本上. Arch Pharm Res (2015) ncbi
domestic rabbit 单克隆(12D1)
  • 免疫印迹; 人类; 图 2
赛信通(上海)生物试剂有限公司 p21抗体(Cell Signaling, 2947)被用于被用于免疫印迹在人类样本上 (图 2). Cancer Biol Ther (2014) ncbi
domestic rabbit 单克隆(12D1)
  • 流式细胞仪; 人类; 图 4
赛信通(上海)生物试剂有限公司 p21抗体(Cell Signaling Technology, clone 12D1)被用于被用于流式细胞仪在人类样本上 (图 4). J Neurooncol (2014) ncbi
domestic rabbit 单克隆(12D1)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 p21抗体(Cell Signaling Technology, 2947)被用于被用于免疫印迹在人类样本上. Mol Cell Biol (2014) ncbi
domestic rabbit 单克隆(12D1)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 p21抗体(Cell Signaling Technology, 2947)被用于被用于免疫印迹在人类样本上. Oncogenesis (2014) ncbi
domestic rabbit 单克隆(12D1)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 p21抗体(Cell Signaling Technology, 2947)被用于被用于免疫印迹在人类样本上. Cell Death Differ (2014) ncbi
domestic rabbit 单克隆(12D1)
  • 免疫沉淀; 人类
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 p21抗体(Cell Signaling Technology, 2947)被用于被用于免疫沉淀在人类样本上 和 被用于免疫印迹在人类样本上. J Biol Chem (2014) ncbi
domestic rabbit 单克隆(12D1)
  • 免疫细胞化学; 人类
  • 免疫印迹; 人类; 1:1000
赛信通(上海)生物试剂有限公司 p21抗体(Cell Signaling Technology, 2947)被用于被用于免疫细胞化学在人类样本上 和 被用于免疫印迹在人类样本上浓度为1:1000. FEBS J (2014) ncbi
domestic rabbit 单克隆(12D1)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 p21抗体(Cell Signaling Technology, 2947)被用于被用于免疫印迹在人类样本上. Redox Biol (2013) ncbi
domestic rabbit 单克隆(12D1)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 p21抗体(Cell Signaling, 2947)被用于被用于免疫印迹在人类样本上. World J Gastroenterol (2013) ncbi
domestic rabbit 单克隆(12D1)
  • 免疫印迹; 小鼠; 1:1000; 图 3
赛信通(上海)生物试剂有限公司 p21抗体(Cell Signaling Technology, 2947)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 3). Nat Cell Biol (2013) ncbi
domestic rabbit 单克隆(12D1)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 p21抗体(Cell Signaling, 2947)被用于被用于免疫印迹在人类样本上. Epigenetics (2013) ncbi
domestic rabbit 单克隆(12D1)
  • 免疫印迹; 人类; 1:1000
赛信通(上海)生物试剂有限公司 p21抗体(Cell Signaling, 2947)被用于被用于免疫印迹在人类样本上浓度为1:1000. Lab Invest (2013) ncbi
domestic rabbit 单克隆(12D1)
  • 免疫印迹; 小鼠
赛信通(上海)生物试剂有限公司 p21抗体(Cell Signaling, 12D1)被用于被用于免疫印迹在小鼠样本上. Mol Cancer Ther (2013) ncbi
domestic rabbit 单克隆(12D1)
  • 免疫印迹; 人类; 图 5
赛信通(上海)生物试剂有限公司 p21抗体(Cell Signaling Technology, 12D1)被用于被用于免疫印迹在人类样本上 (图 5). Biochem J (2013) ncbi
domestic rabbit 单克隆(12D1)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 p21抗体(Cell Signaling Technology, 2947)被用于被用于免疫印迹在人类样本上. Mol Oncol (2013) ncbi
domestic rabbit 单克隆(12D1)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 p21抗体(Cell Signaling, 2947)被用于被用于免疫印迹在人类样本上. PLoS ONE (2013) ncbi
domestic rabbit 单克隆(12D1)
  • 免疫组化-石蜡切片; 人类; 0.1 ug/ml
  • 免疫印迹; 人类; 1:1000
赛信通(上海)生物试剂有限公司 p21抗体(Cell Signaling Technology, 12D1)被用于被用于免疫组化-石蜡切片在人类样本上浓度为0.1 ug/ml 和 被用于免疫印迹在人类样本上浓度为1:1000. Am J Pathol (2012) ncbi
丹科医疗器械技术服务(上海)有限公司
小鼠 单克隆(SX118)
  • 免疫组化-石蜡切片; 人类; 1:50; 图 3
丹科医疗器械技术服务(上海)有限公司 p21抗体(DAKO, SX118)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:50 (图 3). Endocr Pathol (2016) ncbi
小鼠 单克隆(SX118)
  • 免疫组化; 人类; 1:150
丹科医疗器械技术服务(上海)有限公司 p21抗体(DAKO, SX118)被用于被用于免疫组化在人类样本上浓度为1:150. Int Urol Nephrol (2015) ncbi
小鼠 单克隆(SX118)
  • 免疫组化-石蜡切片; 小鼠; 1:50; 图 1d
丹科医疗器械技术服务(上海)有限公司 p21抗体(DAKO, M7202)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:50 (图 1d). Clin Sci (Lond) (2015) ncbi
小鼠 单克隆(SX118)
  • 免疫印迹; 人类
丹科医疗器械技术服务(上海)有限公司 p21抗体(Dako, SX118)被用于被用于免疫印迹在人类样本上. Oncotarget (2014) ncbi
小鼠 单克隆(SX118)
  • 免疫组化-石蜡切片; 人类; 1:1000; 表 3
丹科医疗器械技术服务(上海)有限公司 p21抗体(Dako, SX118)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:1000 (表 3). Am J Surg (2014) ncbi
小鼠 单克隆(SX118)
  • 免疫组化-石蜡切片; 人类; 1:25
丹科医疗器械技术服务(上海)有限公司 p21抗体(Dako, clone SX118)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:25. Oral Dis (2014) ncbi
小鼠 单克隆(SX118)
  • 免疫印迹; 人类; 图 5
丹科医疗器械技术服务(上海)有限公司 p21抗体(Dako, M7202)被用于被用于免疫印迹在人类样本上 (图 5). Oncogenesis (2012) ncbi
碧迪BD
小鼠 单克隆(SXM30)
  • 免疫组化-冰冻切片; 小鼠; 1:50; 图 1d
碧迪BD p21抗体(BD Biosciences, 556431)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:50 (图 1d). elife (2019) ncbi
小鼠 单克隆(SXM30)
  • 免疫组化-石蜡切片; 人类; 1:50; 图 1e
  • 免疫印迹; 人类; 1:1000; 图 1g
碧迪BD p21抗体(BD Pharmingen, PMG556431)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:50 (图 1e) 和 被用于免疫印迹在人类样本上浓度为1:1000 (图 1g). EMBO J (2019) ncbi
小鼠 单克隆(SXM30)
  • 免疫组化-石蜡切片; 小鼠; 1:50; 图 6c, s2d
碧迪BD p21抗体(BD Pharmingene, 556431)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:50 (图 6c, s2d). Sci Adv (2019) ncbi
小鼠 单克隆(SXM30)
  • 免疫印迹; 人类; 图 s1a
碧迪BD p21抗体(BD Biosciences, 556431)被用于被用于免疫印迹在人类样本上 (图 s1a). Cell (2019) ncbi
小鼠 单克隆(SX118)
  • 免疫印迹; 小鼠; 图 3e
碧迪BD p21抗体(BD Pharmingen, 556430)被用于被用于免疫印迹在小鼠样本上 (图 3e). Cell Death Dis (2018) ncbi
小鼠 单克隆(SX118)
  • 免疫印迹; 人类; 图 6
碧迪BD p21抗体(BD, 556430)被用于被用于免疫印迹在人类样本上 (图 6). Oncotarget (2017) ncbi
小鼠 单克隆(SX118)
  • 免疫印迹; 人类; 图 6a
碧迪BD p21抗体(BD Biosciences, 556430)被用于被用于免疫印迹在人类样本上 (图 6a). Cell Death Dis (2017) ncbi
小鼠 单克隆(SXM30)
  • 免疫组化-冰冻切片; 小鼠; 1:200; 图 3i
碧迪BD p21抗体(BD Pharmingen, SXM30)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:200 (图 3i). Genes Dev (2017) ncbi
小鼠 单克隆(SX118)
  • 免疫印迹; 人类; 1:2000; 图 3g
  • 免疫组化; 小鼠; 1:1000; 图 7h
碧迪BD p21抗体(BD Pharmingen, 556430)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 3g) 和 被用于免疫组化在小鼠样本上浓度为1:1000 (图 7h). Nat Commun (2017) ncbi
小鼠 单克隆(70/Cip1/WAF1)
  • 免疫印迹; 人类; 图 1
碧迪BD p21抗体(BD Transduction Laboratories, 610233)被用于被用于免疫印迹在人类样本上 (图 1). Neuroendocrinology (2018) ncbi
小鼠 单克隆(SXM30)
  • 免疫印迹; 小鼠; 1:2000; 图 2a
碧迪BD p21抗体(BD Pharmingen, 556431)被用于被用于免疫印迹在小鼠样本上浓度为1:2000 (图 2a). Int J Cancer (2017) ncbi
小鼠 单克隆(SXM30)
  • 免疫印迹; 人类; 1:500; 图 2c
碧迪BD p21抗体(BD Biosciences, 556431)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 2c). Nat Commun (2016) ncbi
小鼠 单克隆(SXM30)
  • 免疫组化-石蜡切片; 小鼠; 图 6c
碧迪BD p21抗体(BD, 556431)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 6c). Nat Cell Biol (2016) ncbi
小鼠 单克隆(SX118)
  • 免疫印迹; 人类; 1:500; 图 6,7d
碧迪BD p21抗体(BD Pharmingen, 556430)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 6,7d). Oncotarget (2016) ncbi
小鼠 单克隆(SX118)
  • 免疫印迹; 人类; 图 1
碧迪BD p21抗体(bD Bioscience, SX118)被用于被用于免疫印迹在人类样本上 (图 1). Proc Natl Acad Sci U S A (2016) ncbi
小鼠 单克隆(SXM30)
  • 免疫组化; 小鼠; 1:10; 图 s1
碧迪BD p21抗体(BD Bioscience, 556431)被用于被用于免疫组化在小鼠样本上浓度为1:10 (图 s1). Science (2016) ncbi
小鼠 单克隆(SXM30)
  • 免疫印迹; 小鼠; 图 1e
碧迪BD p21抗体(BD Pharmigen, 556431)被用于被用于免疫印迹在小鼠样本上 (图 1e). Proc Natl Acad Sci U S A (2016) ncbi
小鼠 单克隆(SX118)
  • 免疫印迹; 小鼠; 图 3
碧迪BD p21抗体(BD Pharmingen, 556430)被用于被用于免疫印迹在小鼠样本上 (图 3). Cell Rep (2016) ncbi
小鼠 单克隆(SX118)
  • 免疫印迹; 小鼠; 图 3
碧迪BD p21抗体(BD Bioscience, 556430)被用于被用于免疫印迹在小鼠样本上 (图 3). Sci Rep (2016) ncbi
小鼠 单克隆(SXM30)
  • 免疫印迹; 小鼠; 图 1
  • 免疫印迹; 人类; 图 1
碧迪BD p21抗体(BD Bioscience, 556431)被用于被用于免疫印迹在小鼠样本上 (图 1) 和 被用于免疫印迹在人类样本上 (图 1). Nat Commun (2016) ncbi
小鼠 单克隆(SX118)
  • 免疫印迹; 人类; 图 3a
碧迪BD p21抗体(BD Pharmingen, 556430)被用于被用于免疫印迹在人类样本上 (图 3a). PLoS ONE (2016) ncbi
小鼠 单克隆(SX118)
  • 免疫印迹; 小鼠; 图 s1
碧迪BD p21抗体(BD Pharmingen, 556430)被用于被用于免疫印迹在小鼠样本上 (图 s1). Cell Death Differ (2016) ncbi
小鼠 单克隆(SXM30)
  • 免疫印迹; 人类; 图 6
碧迪BD p21抗体(BD Biosciences, 556431)被用于被用于免疫印迹在人类样本上 (图 6). Mol Cancer Ther (2016) ncbi
小鼠 单克隆(SX118)
  • 免疫印迹; 人类; 图 4e
碧迪BD p21抗体(BD Pharmingen, 556430)被用于被用于免疫印迹在人类样本上 (图 4e). Nat Commun (2016) ncbi
小鼠 单克隆(70/Cip1/WAF1)
  • 免疫印迹; 人类; 图 1
碧迪BD p21抗体(BD, 610234)被用于被用于免疫印迹在人类样本上 (图 1). Oncogene (2016) ncbi
小鼠 单克隆(SX118)
  • 其他; 人类; 图 st1
碧迪BD p21抗体(BD, SX118)被用于被用于其他在人类样本上 (图 st1). Mol Cell Proteomics (2016) ncbi
小鼠 单克隆(SXM30)
  • 免疫印迹; 小鼠; 1:2000; 图 s4
碧迪BD p21抗体(BD Bioscience, 556431)被用于被用于免疫印迹在小鼠样本上浓度为1:2000 (图 s4). DNA Repair (Amst) (2016) ncbi
小鼠 单克隆(SX118)
  • 免疫印迹; 人类; 图 2
碧迪BD p21抗体(BD Biosciences, 556430)被用于被用于免疫印迹在人类样本上 (图 2). Redox Biol (2016) ncbi
小鼠 单克隆(SX118)
  • 免疫印迹; 人类; 1:1000; 图 4b
碧迪BD p21抗体(BD Bioscience, 556430)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 4b). Nat Commun (2015) ncbi
小鼠 单克隆(SX118)
  • 免疫印迹; 人类; 图 11
碧迪BD p21抗体(Pharmingen, 55643)被用于被用于免疫印迹在人类样本上 (图 11). J Biol Chem (2015) ncbi
小鼠 单克隆(SXM30)
  • 免疫印迹; 人类; 图 11
碧迪BD p21抗体(Pharmingen, 55643)被用于被用于免疫印迹在人类样本上 (图 11). J Biol Chem (2015) ncbi
小鼠 单克隆(SXM30)
  • 免疫印迹; 人类; 图 3d
碧迪BD p21抗体(BD Biosciences, 556431)被用于被用于免疫印迹在人类样本上 (图 3d). Oncotarget (2015) ncbi
  • 免疫印迹; 人类; 图 1
碧迪BD p21抗体(BD Biosciences, 550827)被用于被用于免疫印迹在人类样本上 (图 1). Autophagy (2015) ncbi
小鼠 单克隆(SXM30)
  • 免疫印迹; 人类; 1:500
碧迪BD p21抗体(Pharmingen, 556431)被用于被用于免疫印迹在人类样本上浓度为1:500. Stem Cell Res (2015) ncbi
小鼠 单克隆(2G12)
  • 免疫印迹; 人类; 图 1
碧迪BD p21抗体(BD Pharmingen, 554262)被用于被用于免疫印迹在人类样本上 (图 1). Sci Rep (2015) ncbi
小鼠 单克隆(SX118)
  • 免疫印迹; 小鼠; 图 s3
碧迪BD p21抗体(BD, 556430)被用于被用于免疫印迹在小鼠样本上 (图 s3). J Cell Biol (2015) ncbi
小鼠 单克隆(SX118)
  • 免疫印迹; 小鼠; 1:2000; 图 3
碧迪BD p21抗体(BD, 556430)被用于被用于免疫印迹在小鼠样本上浓度为1:2000 (图 3). Nucleic Acids Res (2015) ncbi
小鼠 单克隆(SXM30)
  • 免疫印迹; 人类; 1:1000; 图 1
碧迪BD p21抗体(BD PharMingen, 556431)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 1). Cell Cycle (2015) ncbi
小鼠 单克隆(SXM30)
  • 免疫印迹; 人类
碧迪BD p21抗体(BD Pharmingen, 556431)被用于被用于免疫印迹在人类样本上. Oncogene (2016) ncbi
小鼠 单克隆(2G12)
  • 免疫印迹; 人类; 图 2
碧迪BD p21抗体(BD Biosciences, 554262)被用于被用于免疫印迹在人类样本上 (图 2). Oncotarget (2015) ncbi
小鼠 单克隆(2G12)
  • 免疫印迹; 人类; 1:1000
碧迪BD p21抗体(BD Biosciences, 2G12)被用于被用于免疫印迹在人类样本上浓度为1:1000. J Surg Res (2015) ncbi
小鼠 单克隆(70/Cip1/WAF1)
  • 免疫印迹; 人类; 图 5
碧迪BD p21抗体(BD Biosciences, 610233)被用于被用于免疫印迹在人类样本上 (图 5). PLoS ONE (2015) ncbi
小鼠 单克隆(70/Cip1/WAF1)
  • 免疫印迹; 人类; 1:1000; 图 1
碧迪BD p21抗体(BD Biosciences, 610234)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 1). Int J Oncol (2015) ncbi
小鼠 单克隆(SXM30)
  • 免疫组化-石蜡切片; 小鼠; 1:200; 图 1
碧迪BD p21抗体(BD Pharmingen, 556431)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:200 (图 1). Mol Endocrinol (2015) ncbi
小鼠 单克隆(SXM30)
  • 免疫印迹; 小鼠
碧迪BD p21抗体(BD Bioscience, SXM30)被用于被用于免疫印迹在小鼠样本上. Neoplasia (2015) ncbi
小鼠 单克隆(SXM30)
  • 免疫组化-石蜡切片; 小鼠; 1:50
碧迪BD p21抗体(BD Pharmingen, 556431)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:50. elife (2015) ncbi
小鼠 单克隆(70/Cip1/WAF1)
  • 免疫印迹; 小鼠; 1:250; 图 1
  • 免疫印迹; 人类; 1:250; 图 1
碧迪BD p21抗体(BD Transduction laboratories, 610234)被用于被用于免疫印迹在小鼠样本上浓度为1:250 (图 1) 和 被用于免疫印迹在人类样本上浓度为1:250 (图 1). Oncotarget (2015) ncbi
小鼠 单克隆(SXM30)
  • 免疫印迹; 人类; 1:2000; 图 1
碧迪BD p21抗体(BD Pharmingen, 556431)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 1). Arch Toxicol (2016) ncbi
小鼠 单克隆(70/Cip1/WAF1)
  • 免疫印迹; 人类; 1:100
碧迪BD p21抗体(BD Biosciences, 610234)被用于被用于免疫印迹在人类样本上浓度为1:100. J Radiat Res (2015) ncbi
小鼠 单克隆(6B6)
  • 免疫印迹; 人类; 1:500
碧迪BD p21抗体(BD Biosciences, 554228)被用于被用于免疫印迹在人类样本上浓度为1:500. J Endocrinol (2014) ncbi
小鼠 单克隆(SXM30)
  • 免疫印迹; 人类
碧迪BD p21抗体(BD, 556431)被用于被用于免疫印迹在人类样本上. Oncogene (2015) ncbi
小鼠 单克隆(SX118)
  • 免疫印迹; 人类
碧迪BD p21抗体(BD Biosciences, 556430)被用于被用于免疫印迹在人类样本上. Mol Cell Biol (2014) ncbi
小鼠 单克隆(SX118)
  • 免疫印迹; 人类; 图 2
碧迪BD p21抗体(BD Pharmingen, 556430)被用于被用于免疫印迹在人类样本上 (图 2). Methods Mol Biol (2014) ncbi
小鼠 单克隆(70/Cip1/WAF1)
  • 免疫印迹; 人类
碧迪BD p21抗体(BD Transduction Laboratories, 610233)被用于被用于免疫印迹在人类样本上. Biochem Biophys Res Commun (2014) ncbi
小鼠 单克隆(SXM30)
  • 免疫印迹; 小鼠; 图 6a
碧迪BD p21抗体(BD, 556431)被用于被用于免疫印迹在小鼠样本上 (图 6a). PLoS ONE (2014) ncbi
小鼠 单克隆(SX118)
  • 免疫印迹; 大鼠; 1:1000
碧迪BD p21抗体(BD Pharmingen, 556430)被用于被用于免疫印迹在大鼠样本上浓度为1:1000. Biochim Biophys Acta (2014) ncbi
小鼠 单克隆(70/Cip1/WAF1)
  • 免疫印迹; 人类; 1:1000
碧迪BD p21抗体(BD, 610233)被用于被用于免疫印迹在人类样本上浓度为1:1000. PLoS Pathog (2013) ncbi
小鼠 单克隆(SX118)
  • 免疫印迹; 小鼠
碧迪BD p21抗体(BD Pharmingen, 556430)被用于被用于免疫印迹在小鼠样本上. J Neurosci (2013) ncbi
小鼠 单克隆(SXM30)
  • 免疫印迹; 小鼠
碧迪BD p21抗体(BD Biosciences, SXM30)被用于被用于免疫印迹在小鼠样本上. Cell Death Differ (2013) ncbi
小鼠 单克隆(70/Cip1/WAF1)
  • 免疫印迹; 人类; 图 6
碧迪BD p21抗体(BD Transduction Laboratories, 610233)被用于被用于免疫印迹在人类样本上 (图 6). Cell Cycle (2013) ncbi
小鼠 单克隆(70/Cip1/WAF1)
  • 免疫印迹; 人类
碧迪BD p21抗体(BD Biosciences, 610233)被用于被用于免疫印迹在人类样本上. Int J Cancer (2011) ncbi
小鼠 单克隆(SXM30)
  • 免疫印迹; 人类
碧迪BD p21抗体(BD Biosciences, SXM30)被用于被用于免疫印迹在人类样本上. Cell Death Differ (2008) ncbi
默克密理博中国
小鼠 单克隆
  • 免疫印迹; 人类; 图 1c
默克密理博中国 p21抗体(Merck Millipore, OP64)被用于被用于免疫印迹在人类样本上 (图 1c). Sci Adv (2017) ncbi
小鼠 单克隆
  • 免疫印迹; 人类; 图 1c
默克密理博中国 p21抗体(Merck Millipore, OP64)被用于被用于免疫印迹在人类样本上 (图 1c). Sci Adv (2017) ncbi
小鼠 单克隆
  • 免疫印迹; 人类; 图 5a
默克密理博中国 p21抗体(EMD Millipore, OP64)被用于被用于免疫印迹在人类样本上 (图 5a). Oncotarget (2017) ncbi
小鼠 单克隆
  • 免疫印迹; 人类; 图 3a
默克密理博中国 p21抗体(Merck-Millipore, OP64)被用于被用于免疫印迹在人类样本上 (图 3a). Neoplasia (2017) ncbi
小鼠 单克隆(CP36, CP74)
  • 免疫印迹; 小鼠; 1:4000; 图 10a
默克密理博中国 p21抗体(Millipore, 05-345)被用于被用于免疫印迹在小鼠样本上浓度为1:4000 (图 10a). PLoS ONE (2016) ncbi
小鼠 单克隆
  • 免疫印迹; 小鼠; 图 1b
默克密理博中国 p21抗体(Calbiochem, OP76)被用于被用于免疫印迹在小鼠样本上 (图 1b). J Biol Chem (2016) ncbi
小鼠 单克隆(CP74)
  • 免疫组化-石蜡切片; 人类; 1:500; 表 3
默克密理博中国 p21抗体(Merck Millipore, 05-C655)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:500 (表 3). Oncol Lett (2016) ncbi
小鼠 单克隆
  • 免疫印迹; 人类; 1:1000; 图 1
默克密理博中国 p21抗体(Millipore, OP64)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 1). Nat Med (2016) ncbi
小鼠 单克隆
  • 免疫印迹; 人类; 1:1000; 图 1
默克密理博中国 p21抗体(Millipore, OP64)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 1). Nat Med (2016) ncbi
小鼠 单克隆
  • 免疫印迹; 人类; 1:200; 图 6
默克密理博中国 p21抗体(Calbiochem, OP64)被用于被用于免疫印迹在人类样本上浓度为1:200 (图 6). PLoS ONE (2016) ncbi
小鼠 单克隆
  • 免疫印迹; 人类; 1:200; 图 6
默克密理博中国 p21抗体(Calbiochem, OP64)被用于被用于免疫印迹在人类样本上浓度为1:200 (图 6). PLoS ONE (2016) ncbi
小鼠 单克隆(HZ52)
  • 免疫印迹; 人类; 1:3000; 图 8e
默克密理博中国 p21抗体(Millipore, MAB88058)被用于被用于免疫印迹在人类样本上浓度为1:3000 (图 8e). J Biol Chem (2016) ncbi
小鼠 单克隆
  • 免疫印迹; 人类; 图 2
默克密理博中国 p21抗体(癌基因研究产品, OP64)被用于被用于免疫印迹在人类样本上 (图 2). Sci Rep (2016) ncbi
小鼠 单克隆
  • 免疫印迹; 人类; 图 2
默克密理博中国 p21抗体(癌基因研究产品, OP64)被用于被用于免疫印迹在人类样本上 (图 2). Sci Rep (2016) ncbi
小鼠 单克隆
  • 免疫印迹; 人类; 图 1c
默克密理博中国 p21抗体(Merck Millipore, OP64)被用于被用于免疫印迹在人类样本上 (图 1c). Int J Oncol (2016) ncbi
小鼠 单克隆
  • 免疫印迹; 人类; 图 1c
默克密理博中国 p21抗体(Merck Millipore, OP64)被用于被用于免疫印迹在人类样本上 (图 1c). Int J Oncol (2016) ncbi
小鼠 单克隆
  • 免疫印迹; 人类; 1:1000; 图 4
默克密理博中国 p21抗体(Millipore, OP64)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 4). Nucleic Acids Res (2016) ncbi
小鼠 单克隆
  • 免疫印迹; 人类; 1:1000; 图 4
默克密理博中国 p21抗体(Millipore, OP64)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 4). Nucleic Acids Res (2016) ncbi
小鼠 单克隆
  • 免疫印迹; 人类; 图 4
默克密理博中国 p21抗体(Calbiochem, OP64)被用于被用于免疫印迹在人类样本上 (图 4). Genes Dev (2016) ncbi
小鼠 单克隆
  • 免疫印迹; 人类; 图 4
默克密理博中国 p21抗体(Calbiochem, OP64)被用于被用于免疫印迹在人类样本上 (图 4). Genes Dev (2016) ncbi
小鼠 单克隆(CP74)
  • 免疫印迹; 人类; 1:1000; 图 6
默克密理博中国 p21抗体(Millipore, 05-C655)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 6). Sci Rep (2016) ncbi
小鼠 单克隆(CP36, CP74)
  • 免疫印迹; 人类; 图 4
默克密理博中国 p21抗体(Millipore, 05-345)被用于被用于免疫印迹在人类样本上 (图 4). Sci Rep (2015) ncbi
小鼠 单克隆
  • 免疫印迹; 人类; 1:1000; 图 8
默克密理博中国 p21抗体(Millipore, OP64)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 8). Oncotarget (2015) ncbi
小鼠 单克隆
  • 免疫印迹; 人类; 1:1000; 图 8
默克密理博中国 p21抗体(Millipore, OP64)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 8). Oncotarget (2015) ncbi
小鼠 单克隆
  • 免疫印迹; 人类
默克密理博中国 p21抗体(Calbiochem, OP64)被用于被用于免疫印迹在人类样本上. PLoS ONE (2015) ncbi
小鼠 单克隆
  • 免疫印迹; 人类
默克密理博中国 p21抗体(Calbiochem, OP64)被用于被用于免疫印迹在人类样本上. PLoS ONE (2015) ncbi
小鼠 单克隆(CP36, CP74)
  • 免疫印迹; 人类
默克密理博中国 p21抗体(Upstate Biotechnology, 05-345)被用于被用于免疫印迹在人类样本上. J Biomed Sci (2015) ncbi
小鼠 单克隆(CP36, CP74)
  • 免疫印迹; 人类
默克密理博中国 p21抗体(Millipore, 05-345)被用于被用于免疫印迹在人类样本上. Nucleic Acids Res (2015) ncbi
小鼠 单克隆
  • 免疫印迹; 人类; 1:200; 图 1
默克密理博中国 p21抗体(Merck, OP64)被用于被用于免疫印迹在人类样本上浓度为1:200 (图 1). Oncotarget (2015) ncbi
小鼠 单克隆
  • 免疫印迹; 人类; 1:200; 图 1
默克密理博中国 p21抗体(Merck, OP64)被用于被用于免疫印迹在人类样本上浓度为1:200 (图 1). Oncotarget (2015) ncbi
小鼠 单克隆(EA10)
  • 流式细胞仪; 人类
默克密理博中国 p21抗体(Calbiochem, EA10)被用于被用于流式细胞仪在人类样本上. PLoS Med (2015) ncbi
小鼠 单克隆
  • 免疫印迹; 人类; 图 1
默克密理博中国 p21抗体(Millipore, OP64)被用于被用于免疫印迹在人类样本上 (图 1). Nucleic Acids Res (2015) ncbi
小鼠 单克隆
  • 免疫印迹; 人类; 图 1
默克密理博中国 p21抗体(Millipore, OP64)被用于被用于免疫印迹在人类样本上 (图 1). Nucleic Acids Res (2015) ncbi
小鼠 单克隆
  • 免疫组化; 人类; 1:100; 表 1
默克密理博中国 p21抗体(癌基因, OP64)被用于被用于免疫组化在人类样本上浓度为1:100 (表 1). PLoS ONE (2014) ncbi
小鼠 单克隆
  • 免疫印迹; 人类; 图 6
默克密理博中国 p21抗体(癌基因科学, OP79)被用于被用于免疫印迹在人类样本上 (图 6). Oncotarget (2014) ncbi
小鼠 单克隆(EA10)
  • 免疫印迹; 人类
默克密理博中国 p21抗体(Calbiochem, EA10)被用于被用于免疫印迹在人类样本上. Biochem Biophys Res Commun (2014) ncbi
小鼠 单克隆(CP36, CP74)
  • 免疫印迹; 人类; 1:2000
默克密理博中国 p21抗体(Upstate Biotechnology, 05-345)被用于被用于免疫印迹在人类样本上浓度为1:2000. Front Endocrinol (Lausanne) (2014) ncbi
小鼠 单克隆(CP36, CP74)
  • 免疫印迹; 人类
默克密理博中国 p21抗体(Upstate, #05-345)被用于被用于免疫印迹在人类样本上. Cancer Res (2011) ncbi
MBL International
单克隆
  • 免疫印迹; 人类; 图 2a
MBL International p21抗体(Medical and Biological Laboratories, K0081-3)被用于被用于免疫印迹在人类样本上 (图 2a). Sci Rep (2016) ncbi
单克隆
  • 免疫印迹; 人类; 图 1
MBL International p21抗体(MBL, K0081-3)被用于被用于免疫印迹在人类样本上 (图 1). J Biol Chem (2016) ncbi
徕卡显微系统(上海)贸易有限公司
  • 免疫组化-石蜡切片; 人类; 1:10; 图 5b
徕卡显微系统(上海)贸易有限公司 p21抗体(Leica Biosystems, NCL-L-WAF-1)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:10 (图 5b). Nat Commun (2016) ncbi
文章列表
  1. Pothuraju R, Rachagani S, Krishn S, Chaudhary S, Nimmakayala R, Siddiqui J, et al. Molecular implications of MUC5AC-CD44 axis in colorectal cancer progression and chemoresistance. Mol Cancer. 2020;19:37 pubmed 出版商
  2. Li K, Zhao S, Long J, Su J, Wu L, Tao J, et al. A novel chalcone derivative has antitumor activity in melanoma by inducing DNA damage through the upregulation of ROS products. Cancer Cell Int. 2020;20:36 pubmed 出版商
  3. Cui J, Duan J, Chu J, Guo C, Xi M, Li Y, et al. Chikusetsu saponin IVa protects pancreatic β cell against intermittent high glucose-induced injury by activating Wnt/β-catenin/TCF7L2 pathway. Aging (Albany NY). 2020;12:1591-1609 pubmed 出版商
  4. Cassidy L, Young A, Young C, Soilleux E, Fielder E, Weigand B, et al. Temporal inhibition of autophagy reveals segmental reversal of ageing with increased cancer risk. Nat Commun. 2020;11:307 pubmed 出版商
  5. Guiley K, Stevenson J, Lou K, Barkovich K, Kumarasamy V, Wijeratne T, et al. p27 allosterically activates cyclin-dependent kinase 4 and antagonizes palbociclib inhibition. Science. 2019;366: pubmed 出版商
  6. McMahon M, Contreras A, Holm M, Uechi T, Forester C, Pang X, et al. A single H/ACA small nucleolar RNA mediates tumor suppression downstream of oncogenic RAS. elife. 2019;8: pubmed 出版商
  7. Diaz Osterman C, Ozmadenci D, Kleinschmidt E, Taylor K, Barrie A, Jiang S, et al. FAK activity sustains intrinsic and acquired ovarian cancer resistance to platinum chemotherapy. elife. 2019;8: pubmed 出版商
  8. Thangaraj K, Balasubramanian B, Park S, Natesan K, Liu W, Manju V. Orientin Induces G0/G1 Cell Cycle Arrest and Mitochondria Mediated Intrinsic Apoptosis in Human Colorectal Carcinoma HT29 Cells. Biomolecules. 2019;9: pubmed 出版商
  9. Gal H, Lysenko M, Stroganov S, Vadai E, Youssef S, Tzadikevitch Geffen K, et al. Molecular pathways of senescence regulate placental structure and function. EMBO J. 2019;38:e100849 pubmed 出版商
  10. Boettcher S, Miller P, Sharma R, McConkey M, Leventhal M, Krivtsov A, et al. A dominant-negative effect drives selection of TP53 missense mutations in myeloid malignancies. Science. 2019;365:599-604 pubmed 出版商
  11. Xie X, Wang Y, Xia Y, Mao Y. Overexpressed vascular endothelial growth factor in adipose derived stem cells attenuates fibroblasts and skin injuries by ultraviolet radiation. Biosci Rep. 2019;39: pubmed 出版商
  12. Kaur S, Nag A, Gangenahalli G, Sharma K. Peroxisome Proliferator Activated Receptor Gamma Sensitizes Non-small Cell Lung Carcinoma to Gamma Irradiation Induced Apoptosis. Front Genet. 2019;10:554 pubmed 出版商
  13. Minuesa G, Albanese S, Xie W, Kazansky Y, Worroll D, Chow A, et al. Small-molecule targeting of MUSASHI RNA-binding activity in acute myeloid leukemia. Nat Commun. 2019;10:2691 pubmed 出版商
  14. Hsu C, Altschuler S, Wu L. Patterns of Early p21 Dynamics Determine Proliferation-Senescence Cell Fate after Chemotherapy. Cell. 2019;: pubmed 出版商
  15. Hari P, Millar F, Tarrats N, Birch J, Quintanilla A, Rink C, et al. The innate immune sensor Toll-like receptor 2 controls the senescence-associated secretory phenotype. Sci Adv. 2019;5:eaaw0254 pubmed 出版商
  16. Bigot N, Day M, Baldock R, Watts F, Oliver A, Pearl L. Phosphorylation-mediated interactions with TOPBP1 couple 53BP1 and 9-1-1 to control the G1 DNA damage checkpoint. elife. 2019;8: pubmed 出版商
  17. Choi J, Zhong X, McAlpine W, Liao T, Zhang D, Fang B, et al. LMBR1L regulates lymphopoiesis through Wnt/β-catenin signaling. Science. 2019;364: pubmed 出版商
  18. Kucab J, Zou X, Morganella S, Joel M, Nanda A, Nagy E, et al. A Compendium of Mutational Signatures of Environmental Agents. Cell. 2019;177:821-836.e16 pubmed 出版商
  19. Chan E, Shibue T, McFarland J, Gaeta B, Ghandi M, Dumont N, et al. WRN helicase is a synthetic lethal target in microsatellite unstable cancers. Nature. 2019;568:551-556 pubmed 出版商
  20. Gao L, Hu Y, Tian Y, Fan Z, Wang K, Li H, et al. Lung cancer deficient in the tumor suppressor GATA4 is sensitive to TGFBR1 inhibition. Nat Commun. 2019;10:1665 pubmed 出版商
  21. Fu L, Hu Y, Song M, Liu Z, Zhang W, Yu F, et al. Up-regulation of FOXD1 by YAP alleviates senescence and osteoarthritis. PLoS Biol. 2019;17:e3000201 pubmed 出版商
  22. Ao Y, Zhang J, Liu Z, Qian M, Li Y, Wu Z, et al. Lamin A buffers CK2 kinase activity to modulate aging in a progeria mouse model. Sci Adv. 2019;5:eaav5078 pubmed 出版商
  23. Pillay N, Tighe A, Nelson L, Littler S, Coulson Gilmer C, Bah N, et al. DNA Replication Vulnerabilities Render Ovarian Cancer Cells Sensitive to Poly(ADP-Ribose) Glycohydrolase Inhibitors. Cancer Cell. 2019;35:519-533.e8 pubmed 出版商
  24. Cornell L, Wander S, Visal T, Wagle N, Shapiro G. MicroRNA-Mediated Suppression of the TGF-β Pathway Confers Transmissible and Reversible CDK4/6 Inhibitor Resistance. Cell Rep. 2019;26:2667-2680.e7 pubmed 出版商
  25. Guillon J, Petit C, Moreau M, Toutain B, Henry C, Roche H, et al. Regulation of senescence escape by TSP1 and CD47 following chemotherapy treatment. Cell Death Dis. 2019;10:199 pubmed 出版商
  26. Zhang X, Qin Q, Dai H, Cai S, Zhou C, Guan J. Emodin protects H9c2 cells from hypoxia-induced injury by up-regulating miR-138 expression. Braz J Med Biol Res. 2019;52:e7994 pubmed 出版商
  27. Zhao Y, Ding L, Wang D, Ye Z, He Y, Ma L, et al. EZH2 cooperates with gain-of-function p53 mutants to promote cancer growth and metastasis. EMBO J. 2019;38: pubmed 出版商
  28. Gronke K, Hernandez P, Zimmermann J, Klose C, Kofoed Branzk M, Guendel F, et al. Interleukin-22 protects intestinal stem cells against genotoxic stress. Nature. 2019;566:249-253 pubmed 出版商
  29. Wu Y, Li X, Yu J, Bjorkholm M, Xu D. ASF1a inhibition induces p53-dependent growth arrest and senescence of cancer cells. Cell Death Dis. 2019;10:76 pubmed 出版商
  30. Nassour J, Radford R, Correia A, Fusté J, Schoell B, Jauch A, et al. Autophagic cell death restricts chromosomal instability during replicative crisis. Nature. 2019;565:659-663 pubmed 出版商
  31. Zhao Z, Wang L, Volk A, Birch N, Stoltz K, Bartom E, et al. Regulation of MLL/COMPASS stability through its proteolytic cleavage by taspase1 as a possible approach for clinical therapy of leukemia. Genes Dev. 2019;33:61-74 pubmed 出版商
  32. Mohni K, Wessel S, Zhao R, Wojciechowski A, Luzwick J, Layden H, et al. HMCES Maintains Genome Integrity by Shielding Abasic Sites in Single-Strand DNA. Cell. 2019;176:144-153.e13 pubmed 出版商
  33. Wang Y, Du L, Liang X, Meng P, Bi L, Wang Y, et al. Sirtuin 4 Depletion Promotes Hepatocellular Carcinoma Tumorigenesis Through Regulating Adenosine-Monophosphate-Activated Protein Kinase Alpha/Mammalian Target of Rapamycin Axis in Mice. Hepatology. 2018;: pubmed 出版商
  34. Peng J, Liang S, Li L. sFRP1 exerts effects on gastric cancer cells through GSK3β/Rac1‑mediated restraint of TGFβ/Smad3 signaling. Oncol Rep. 2019;41:224-234 pubmed 出版商
  35. Matyskiela M, Couto S, Zheng X, Lu G, Hui J, Stamp K, et al. SALL4 mediates teratogenicity as a thalidomide-dependent cereblon substrate. Nat Chem Biol. 2018;14:981-987 pubmed 出版商
  36. Zhang Y, Wang J, Huang W, Cai J, Ba J, Wang Y, et al. Nuclear Nestin deficiency drives tumor senescence via lamin A/C-dependent nuclear deformation. Nat Commun. 2018;9:3613 pubmed 出版商
  37. Wang L, Wang J, Jin T, Zhou Y, Chen Q. FoxG1 facilitates proliferation and inhibits differentiation by downregulating FoxO/Smad signaling in glioblastoma. Biochem Biophys Res Commun. 2018;504:46-53 pubmed 出版商
  38. Taparra K, Wang H, Malek R, Lafargue A, Barbhuiya M, Wang X, et al. O-GlcNAcylation is required for mutant KRAS-induced lung tumorigenesis. J Clin Invest. 2018;128:4924-4937 pubmed 出版商
  39. Kim S, Jin H, Seo H, Lee H, Lee Y. Regulating BRCA1 protein stability by cathepsin S-mediated ubiquitin degradation. Cell Death Differ. 2019;26:812-825 pubmed 出版商
  40. Bernal A, Moltó Abad M, Dominguez D, Tusell L. Acute telomere deprotection prevents ongoing BFB cycles and rampant instability in p16INK4a-deficient epithelial cells. Oncotarget. 2018;9:27151-27170 pubmed 出版商
  41. Ng S, Yoshida N, Christie A, Ghandi M, Dharia N, Dempster J, et al. Targetable vulnerabilities in T- and NK-cell lymphomas identified through preclinical models. Nat Commun. 2018;9:2024 pubmed 出版商
  42. Jin L, Lu J, Gao J. Silencing SUMO2 promotes protection against degradation and apoptosis of nucleus pulposus cells through p53 signaling pathway in intervertebral disc degeneration. Biosci Rep. 2018;38: pubmed 出版商
  43. Xu B, Deng Y, Bi R, Guo H, Shu C, Shah N, et al. A first-in-class inhibitor, MLN4924 (pevonedistat), induces cell-cycle arrest, senescence, and apoptosis in human renal cell carcinoma by suppressing UBE2M-dependent neddylation modification. Cancer Chemother Pharmacol. 2018;81:1083-1093 pubmed 出版商
  44. Morgan E, Wasson C, Hanson L, Kealy D, Pentland I, McGuire V, et al. STAT3 activation by E6 is essential for the differentiation-dependent HPV18 life cycle. PLoS Pathog. 2018;14:e1006975 pubmed 出版商
  45. Ghosh R, Roy S, Franco S. PARP1 depletion induces RIG-I-dependent signaling in human cancer cells. PLoS ONE. 2018;13:e0194611 pubmed 出版商
  46. Lee C, Hsieh T. Wuho/WDR4 deficiency inhibits cell proliferation and induces apoptosis via DNA damage in mouse embryonic fibroblasts. Cell Signal. 2018;47:16-26 pubmed 出版商
  47. Galanos P, Pappas G, Polyzos A, Kotsinas A, Svolaki I, Giakoumakis N, et al. Mutational signatures reveal the role of RAD52 in p53-independent p21-driven genomic instability. Genome Biol. 2018;19:37 pubmed 出版商
  48. Le Duff M, Gouju J, Jonchère B, Guillon J, Toutain B, Boissard A, et al. Regulation of senescence escape by the cdk4-EZH2-AP2M1 pathway in response to chemotherapy. Cell Death Dis. 2018;9:199 pubmed 出版商
  49. Zhao Y, Tan M, Liu X, Xiong X, Sun Y. Inactivation of ribosomal protein S27-like confers radiosensitivity via the Mdm2-p53 and Mdm2-MRN-ATM axes. Cell Death Dis. 2018;9:145 pubmed 出版商
  50. Chen K, Dai H, Yuan J, Chen J, Lin L, Zhang W, et al. Optineurin-mediated mitophagy protects renal tubular epithelial cells against accelerated senescence in diabetic nephropathy. Cell Death Dis. 2018;9:105 pubmed 出版商
  51. Shen L, Qu X, Li H, Xu C, Wei M, Wang Q, et al. NDRG2 facilitates colorectal cancer differentiation through the regulation of Skp2-p21/p27 axis. Oncogene. 2018;37:1759-1774 pubmed 出版商
  52. Wu X, Dao Thi V, Huang Y, Billerbeck E, Saha D, Hoffmann H, et al. Intrinsic Immunity Shapes Viral Resistance of Stem Cells. Cell. 2018;172:423-438.e25 pubmed 出版商
  53. Sorokina I, Denisenko T, Imreh G, Tyurin Kuzmin P, Kaminskyy V, Gogvadze V, et al. Involvement of autophagy in the outcome of mitotic catastrophe. Sci Rep. 2017;7:14571 pubmed 出版商
  54. Zheng X, Dong Q, Zhang X, Han Q, Han X, Han Y, et al. The coiled-coil domain of oncogene RASSF 7 inhibits hippo signaling and promotes non-small cell lung cancer. Oncotarget. 2017;8:78734-78748 pubmed 出版商
  55. Zhao X, Huang L, Xu W, Chen X, Shen Y, Zeng W, et al. Physapubescin B inhibits tumorgenesis and circumvents taxol resistance of ovarian cancer cells through STAT3 signaling. Oncotarget. 2017;8:70130-70141 pubmed 出版商
  56. Zhao Z, Jia Q, Wu M, Xie X, Wang Y, Song G, et al. Degalactotigonin, a Natural Compound from Solanum nigrum L., Inhibits Growth and Metastasis of Osteosarcoma through GSK3β Inactivation-Mediated Repression of the Hedgehog/Gli1 Pathway. Clin Cancer Res. 2018;24:130-144 pubmed 出版商
  57. Nakagawa N, Li J, Yabuno Nakagawa K, Eom T, Cowles M, Mapp T, et al. APC sets the Wnt tone necessary for cerebral cortical progenitor development. Genes Dev. 2017;31:1679-1692 pubmed 出版商
  58. Haricharan S, Punturi N, Singh P, Holloway K, Anurag M, Schmelz J, et al. Loss of MutL Disrupts CHK2-Dependent Cell-Cycle Control through CDK4/6 to Promote Intrinsic Endocrine Therapy Resistance in Primary Breast Cancer. Cancer Discov. 2017;7:1168-1183 pubmed 出版商
  59. Zhou Y, Huang T, Zhang J, Wong C, Zhang B, Dong Y, et al. TEAD1/4 exerts oncogenic role and is negatively regulated by miR-4269 in gastric tumorigenesis. Oncogene. 2017;36:6518-6530 pubmed 出版商
  60. Azimzadeh O, Subramanian V, Ständer S, Merl Pham J, Lowe D, Barjaktarovic Z, et al. Proteome analysis of irradiated endothelial cells reveals persistent alteration in protein degradation and the RhoGDI and NO signalling pathways. Int J Radiat Biol. 2017;93:920-928 pubmed 出版商
  61. Patel N, Garikapati K, Pandita R, Singh D, Pandita T, Bhadra U, et al. miR-15a/miR-16 down-regulates BMI1, impacting Ub-H2A mediated DNA repair and breast cancer cell sensitivity to doxorubicin. Sci Rep. 2017;7:4263 pubmed 出版商
  62. Hsu J, Hubbell Engler B, Adelmant G, Huang J, Joyce C, Vazquez F, et al. PRMT1-Mediated Translation Regulation Is a Crucial Vulnerability of Cancer. Cancer Res. 2017;77:4613-4625 pubmed 出版商
  63. Chavali P, Stojic L, Meredith L, Joseph N, Nahorski M, Sanford T, et al. Neurodevelopmental protein Musashi-1 interacts with the Zika genome and promotes viral replication. Science. 2017;357:83-88 pubmed 出版商
  64. Miyamoto T, Lo P, Saichi N, Ueda K, Hirata M, Tanikawa C, et al. Argininosuccinate synthase 1 is an intrinsic Akt repressor transactivated by p53. Sci Adv. 2017;3:e1603204 pubmed 出版商
  65. He D, Ren B, Liu S, Tan L, Cieply K, Tseng G, et al. Oncogenic activity of amplified miniature chromosome maintenance 8 in human malignancies. Oncogene. 2017;36:3629-3639 pubmed 出版商
  66. Lee T, Pelletier J. Dependence of p53-deficient cells on the DHX9 DExH-box helicase. Oncotarget. 2017;8:30908-30921 pubmed 出版商
  67. Sun J, Zhang X, Sun Y, Tang Z, Guo D. Effects of Hylomecon vernalis ethanol extracts on cell cycle and apoptosis of colon cancer cells. Mol Med Rep. 2017;15:3485-3492 pubmed 出版商
  68. Mytych J, Romerowicz Misielak M, Koziorowski M. Long-term culture with lipopolysaccharide induces dose-dependent cytostatic and cytotoxic effects in THP-1 monocytes. Toxicol In Vitro. 2017;42:1-9 pubmed 出版商
  69. Yu G, Zhang T, Jing Y, Bao Q, Tang Q, Zhang Y. miR-519 suppresses nasopharyngeal carcinoma cell proliferation by targeting oncogene URG4/URGCP. Life Sci. 2017;175:47-51 pubmed 出版商
  70. Coni S, Mancuso A, Di Magno L, Sdruscia G, Manni S, Serrao S, et al. Selective targeting of HDAC1/2 elicits anticancer effects through Gli1 acetylation in preclinical models of SHH Medulloblastoma. Sci Rep. 2017;7:44079 pubmed 出版商
  71. Xu P, Zhou Z, Xiong M, Zou W, Deng X, Ganaie S, et al. Parvovirus B19 NS1 protein induces cell cycle arrest at G2-phase by activating the ATR-CDC25C-CDK1 pathway. PLoS Pathog. 2017;13:e1006266 pubmed 出版商
  72. Teveroni E, Pellegrino M, Sacconi S, Calandra P, Cascino I, Farioli Vecchioli S, et al. Estrogens enhance myoblast differentiation in facioscapulohumeral muscular dystrophy by antagonizing DUX4 activity. J Clin Invest. 2017;127:1531-1545 pubmed 出版商
  73. Xu J, Wu Y, Lu G, Xie S, Ma Z, Chen Z, et al. Importance of ROS-mediated autophagy in determining apoptotic cell death induced by physapubescin B. Redox Biol. 2017;12:198-207 pubmed 出版商
  74. Barilari M, Bonfils G, Treins C, Koka V, De Villeneuve D, Fabrega S, et al. ZRF1 is a novel S6 kinase substrate that drives the senescence programme. EMBO J. 2017;36:736-750 pubmed 出版商
  75. Yuan H, Tan B, Gao S. Tenovin-6 impairs autophagy by inhibiting autophagic flux. Cell Death Dis. 2017;8:e2608 pubmed 出版商
  76. Li G, Ji T, Chen J, Fu Y, Hou L, Feng Y, et al. CRL4DCAF8 Ubiquitin Ligase Targets Histone H3K79 and Promotes H3K9 Methylation in the Liver. Cell Rep. 2017;18:1499-1511 pubmed 出版商
  77. Tormos A, Rius Pérez S, Jorques M, Rada P, Ramírez L, Valverde A, et al. p38α regulates actin cytoskeleton and cytokinesis in hepatocytes during development and aging. PLoS ONE. 2017;12:e0171738 pubmed 出版商
  78. Coaxum S, Tiedeken J, Garrett Mayer E, Myers J, Rosenzweig S, Neskey D. The tumor suppressor capability of p53 is dependent on non-muscle myosin IIA function in head and neck cancer. Oncotarget. 2017;8:22991-23007 pubmed 出版商
  79. Mori J, Tanikawa C, Ohnishi N, Funauchi Y, Toyoshima O, Ueda K, et al. EPSIN 3, A Novel p53 Target, Regulates the Apoptotic Pathway and Gastric Carcinogenesis. Neoplasia. 2017;19:185-195 pubmed 出版商
  80. Vendetti F, Leibowitz B, Barnes J, Schamus S, Kiesel B, Abberbock S, et al. Pharmacologic ATM but not ATR kinase inhibition abrogates p21-dependent G1 arrest and promotes gastrointestinal syndrome after total body irradiation. Sci Rep. 2017;7:41892 pubmed 出版商
  81. Ritschka B, Storer M, Mas A, Heinzmann F, Ortells M, Morton J, et al. The senescence-associated secretory phenotype induces cellular plasticity and tissue regeneration. Genes Dev. 2017;31:172-183 pubmed 出版商
  82. Xiang J, Yang S, Xin N, Gaertig M, Reeves R, Li S, et al. DYRK1A regulates Hap1-Dcaf7/WDR68 binding with implication for delayed growth in Down syndrome. Proc Natl Acad Sci U S A. 2017;114:E1224-E1233 pubmed 出版商
  83. Marquez Vilendrer S, Rai S, Gramling S, Lu L, Reisman D. BRG1 and BRM loss selectively impacts RB and P53, respectively: BRG1 and BRM have differential functions in vivo. Oncoscience. 2016;3:337-350 pubmed 出版商
  84. Xu J, Zhou W, Yang F, Chen G, Li H, Zhao Y, et al. The β-TrCP-FBXW2-SKP2 axis regulates lung cancer cell growth with FBXW2 acting as a tumour suppressor. Nat Commun. 2017;8:14002 pubmed 出版商
  85. Shiina M, Hashimoto Y, Kato T, Yamamura S, Tanaka Y, Majid S, et al. Differential expression of miR-34b and androgen receptor pathway regulate prostate cancer aggressiveness between African-Americans and Caucasians. Oncotarget. 2017;8:8356-8368 pubmed 出版商
  86. Kalita B, Ranjan R, Singh A, Yashavarddhan M, Bajaj S, Gupta M. A Combination of Podophyllotoxin and Rutin Attenuates Radiation Induced Gastrointestinal Injury by Negatively Regulating NF-?B/p53 Signaling in Lethally Irradiated Mice. PLoS ONE. 2016;11:e0168525 pubmed 出版商
  87. Ramos P, Guerra A, Guerreiro O, Santos S, Oliveira H, Freire C, et al. Antiproliferative Effects of Cynara cardunculus L. var. altilis (DC) Lipophilic Extracts. Int J Mol Sci. 2016;18: pubmed 出版商
  88. Jin X, Wu N, Dai J, Li Q, Xiao X. TXNIP mediates the differential responses of A549 cells to sodium butyrate and sodium 4-phenylbutyrate treatment. Cancer Med. 2017;6:424-438 pubmed 出版商
  89. Song X, Narzt M, Nagelreiter I, Hohensinner P, Terlecki Zaniewicz L, Tschachler E, et al. Autophagy deficient keratinocytes display increased DNA damage, senescence and aberrant lipid composition after oxidative stress in vitro and in vivo. Redox Biol. 2017;11:219-230 pubmed 出版商
  90. Mytych J, Wos I, Solek P, Koziorowski M. Protective role of klotho protein on epithelial cells upon co-culture with activated or senescent monocytes. Exp Cell Res. 2017;350:358-367 pubmed 出版商
  91. Sun J, Liu X, Gao H, Zhang L, Ji Q, Wang Z, et al. Overexpression of colorectal cancer oncogene CHRDL2 predicts a poor prognosis. Oncotarget. 2017;8:11489-11506 pubmed 出版商
  92. Choiniere J, Wu J, Wang L. Pyruvate Dehydrogenase Kinase 4 Deficiency Results in Expedited Cellular Proliferation through E2F1-Mediated Increase of Cyclins. Mol Pharmacol. 2017;91:189-196 pubmed 出版商
  93. Marmisolle I, Martínez J, Liu J, Mastrogiovanni M, Fergusson M, Rovira I, et al. Reciprocal regulation of acetyl-CoA carboxylase 1 and senescence in human fibroblasts involves oxidant mediated p38 MAPK activation. Arch Biochem Biophys. 2017;613:12-22 pubmed 出版商
  94. Yu G, Dou Z, Jia Z. 5?bromo?3?(3?hydroxyprop?1?ynyl)?2H?pyran?2?one induces apoptosis in T24 human bladder cancer cells through mitochondria-dependent signaling pathways. Mol Med Rep. 2017;15:153-159 pubmed 出版商
  95. Tsai C, Lin Y, Huang C, Shih C, Tsai Y, Tsao N, et al. Thrombomodulin regulates monocye differentiation via PKC? and ERK1/2 pathway in vitro and in atherosclerotic artery. Sci Rep. 2016;6:38421 pubmed 出版商
  96. Huang Z, Zhou X, He Y, Ke X, Wen Y, Zou F, et al. Hyperthermia enhances 17-DMAG efficacy in hepatocellular carcinoma cells with aggravated DNA damage and impaired G2/M transition. Sci Rep. 2016;6:38072 pubmed 出版商
  97. Van Roosbroeck K, Fanini F, Setoyama T, Ivan C, Rodriguez Aguayo C, Fuentes Mattei E, et al. Combining Anti-Mir-155 with Chemotherapy for the Treatment of Lung Cancers. Clin Cancer Res. 2017;23:2891-2904 pubmed 出版商
  98. Zhu X, Wang K, Zhang K, Zhang T, Yin Y, Xu F. Ziyuglycoside I Inhibits the Proliferation of MDA-MB-231 Breast Carcinoma Cells through Inducing p53-Mediated G2/M Cell Cycle Arrest and Intrinsic/Extrinsic Apoptosis. Int J Mol Sci. 2016;17: pubmed
  99. Reuther C, Heinzle V, Nölting S, Herterich S, Hahner S, Halilovic E, et al. The HDM2 (MDM2) Inhibitor NVP-CGM097 Inhibits Tumor Cell Proliferation and Shows Additive Effects with 5-Fluorouracil on the p53-p21-Rb-E2F1 Cascade in the p53wild type Neuroendocrine Tumor Cell Line GOT1. Neuroendocrinology. 2018;106:1-19 pubmed 出版商
  100. Hong Y, Liang H, Uzair Ur Rehman -, Wang Y, Zhang W, Zhou Y, et al. miR-96 promotes cell proliferation, migration and invasion by targeting PTPN9 in breast cancer. Sci Rep. 2016;6:37421 pubmed 出版商
  101. Sikander M, Hafeez B, Malik S, Alsayari A, Halaweish F, Yallapu M, et al. Cucurbitacin D exhibits potent anti-cancer activity in cervical cancer. Sci Rep. 2016;6:36594 pubmed 出版商
  102. Kucab J, Hollstein M, Arlt V, Phillips D. Nutlin-3a selects for cells harbouring TP53 mutations. Int J Cancer. 2017;140:877-887 pubmed 出版商
  103. Benkafadar N, Menardo J, Bourien J, Nouvian R, François F, Decaudin D, et al. Reversible p53 inhibition prevents cisplatin ototoxicity without blocking chemotherapeutic efficacy. EMBO Mol Med. 2017;9:7-26 pubmed 出版商
  104. Cholewa B, Ndiaye M, Huang W, Liu X, Ahmad N. Small molecule inhibition of polo-like kinase 1 by volasertib (BI 6727) causes significant melanoma growth delay and regression in vivo. Cancer Lett. 2017;385:179-187 pubmed 出版商
  105. Schlierf A, Altmann E, Quancard J, Jefferson A, Assenberg R, Renatus M, et al. Targeted inhibition of the COP9 signalosome for treatment of cancer. Nat Commun. 2016;7:13166 pubmed 出版商
  106. Andriani G, Almeida V, Faggioli F, Mauro M, Tsai W, Santambrogio L, et al. Whole Chromosome Instability induces senescence and promotes SASP. Sci Rep. 2016;6:35218 pubmed 出版商
  107. Hrgovic I, Doll M, Kleemann J, Wang X, Zoeller N, Pinter A, et al. The histone deacetylase inhibitor trichostatin a decreases lymphangiogenesis by inducing apoptosis and cell cycle arrest via p21-dependent pathways. BMC Cancer. 2016;16:763 pubmed
  108. Zhao Y, Fan D, Ru B, Cheng K, Hu S, Zhang J, et al. 6-C-(E-phenylethenyl)naringenin induces cell growth inhibition and cytoprotective autophagy in colon cancer cells. Eur J Cancer. 2016;68:38-50 pubmed 出版商
  109. Zhang Y, Zhang Y, Zhong C, Xiao F. Cr(VI) induces premature senescence through ROS-mediated p53 pathway in L-02 hepatocytes. Sci Rep. 2016;6:34578 pubmed 出版商
  110. Zhuang J, Kamp W, Li J, Liu C, Kang J, Wang P, et al. Forkhead Box O3A (FOXO3) and the Mitochondrial Disulfide Relay Carrier (CHCHD4) Regulate p53 Protein Nuclear Activity in Response to Exercise. J Biol Chem. 2016;291:24819-24827 pubmed
  111. Treindl F, Ruprecht B, Beiter Y, Schultz S, Döttinger A, Staebler A, et al. A bead-based western for high-throughput cellular signal transduction analyses. Nat Commun. 2016;7:12852 pubmed 出版商
  112. Horn T, Ferretti S, Ebel N, Tam A, Ho S, Harbinski F, et al. High-Order Drug Combinations Are Required to Effectively Kill Colorectal Cancer Cells. Cancer Res. 2016;76:6950-6963 pubmed
  113. Sikora M, Jacobsen B, Levine K, Chen J, Davidson N, Lee A, et al. WNT4 mediates estrogen receptor signaling and endocrine resistance in invasive lobular carcinoma cell lines. Breast Cancer Res. 2016;18:92 pubmed 出版商
  114. Nip H, Dar A, Saini S, Colden M, Varahram S, Chowdhary H, et al. Oncogenic microRNA-4534 regulates PTEN pathway in prostate cancer. Oncotarget. 2016;7:68371-68384 pubmed 出版商
  115. Chen P, Qin L, Li G, Tellides G, Simons M. Fibroblast growth factor (FGF) signaling regulates transforming growth factor beta (TGF?)-dependent smooth muscle cell phenotype modulation. Sci Rep. 2016;6:33407 pubmed 出版商
  116. Bellotti C, Capanni C, Lattanzi G, Donati D, Lucarelli E, Duchi S. Detection of mesenchymal stem cells senescence by prelamin A accumulation at the nuclear level. Springerplus. 2016;5:1427 pubmed 出版商
  117. Queisser A, Hagedorn S, Wang H, Schaefer T, Konantz M, Alavi S, et al. Ecotropic viral integration site 1, a novel oncogene in prostate cancer. Oncogene. 2017;36:1573-1584 pubmed 出版商
  118. Liu T, Xiong J, Yi S, Zhang H, Zhou S, Gu L, et al. FKBP12 enhances sensitivity to chemotherapy-induced cancer cell apoptosis by inhibiting MDM2. Oncogene. 2017;36:1678-1686 pubmed 出版商
  119. Suman S, Kumar S, N GOUEMO P, Datta K. Increased DNA double-strand break was associated with downregulation of repair and upregulation of apoptotic factors in rat hippocampus after alcohol exposure. Alcohol. 2016;54:45-50 pubmed 出版商
  120. Cunningham C, Li S, Vizeacoumar F, Bhanumathy K, Lee J, Parameswaran S, et al. Therapeutic relevance of the protein phosphatase 2A in cancer. Oncotarget. 2016;7:61544-61561 pubmed 出版商
  121. Bauer M, Joerger A, Fersht A. 2-Sulfonylpyrimidines: Mild alkylating agents with anticancer activity toward p53-compromised cells. Proc Natl Acad Sci U S A. 2016;113:E5271-80 pubmed 出版商
  122. Nagano T, Nakano M, Nakashima A, Onishi K, Yamao S, Enari M, et al. Identification of cellular senescence-specific genes by comparative transcriptomics. Sci Rep. 2016;6:31758 pubmed 出版商
  123. Hoare M, Ito Y, Kang T, Weekes M, Matheson N, Patten D, et al. NOTCH1 mediates a switch between two distinct secretomes during senescence. Nat Cell Biol. 2016;18:979-92 pubmed 出版商
  124. Kang M, Park K, Yang J, Lee C, Oh S, Yun J, et al. miR-6734 Up-Regulates p21 Gene Expression and Induces Cell Cycle Arrest and Apoptosis in Colon Cancer Cells. PLoS ONE. 2016;11:e0160961 pubmed 出版商
  125. Mihailidou C, Panagiotou C, Kiaris H, Kassi E, Moutsatsou P. Crosstalk between C/EBP homologous protein (CHOP) and glucocorticoid receptor in lung cancer. Mol Cell Endocrinol. 2016;436:211-23 pubmed 出版商
  126. Marquez Vilendrer S, Thompson K, Lu L, Reisman D. Mechanism of BRG1 silencing in primary cancers. Oncotarget. 2016;7:56153-56169 pubmed 出版商
  127. Hauck L, Grothe D, Billia F. p21(CIP1/WAF1)-dependent inhibition of cardiac hypertrophy in response to Angiotensin II involves Akt/Myc and pRb signaling. Peptides. 2016;83:38-48 pubmed 出版商
  128. Zhao Y, Zhang B, Lei Y, Sun J, Zhang Y, Yang S, et al. Knockdown of USP39 induces cell cycle arrest and apoptosis in melanoma. Tumour Biol. 2016;37:13167-13176 pubmed
  129. Rada M, Vasileva E, Lezina L, Marouco D, Antonov A, Macip S, et al. Human EHMT2/G9a activates p53 through methylation-independent mechanism. Oncogene. 2017;36:922-932 pubmed 出版商
  130. Grinshtein N, Rioseco C, Marcellus R, UEHLING D, Aman A, Lun X, et al. Small molecule epigenetic screen identifies novel EZH2 and HDAC inhibitors that target glioblastoma brain tumor-initiating cells. Oncotarget. 2016;7:59360-59376 pubmed 出版商
  131. Lu H, Yang X, Tian X, Tang S, Li L, Zhao S, et al. The in vitro and vivo anti-tumor effects and molecular mechanisms of suberoylanilide hydroxamic acid (SAHA) and MG132 on the aggressive phenotypes of gastric cancer cells. Oncotarget. 2016;7:56508-56525 pubmed 出版商
  132. Meitinger F, Anzola J, Kaulich M, Richardson A, Stender J, Benner C, et al. 53BP1 and USP28 mediate p53 activation and G1 arrest after centrosome loss or extended mitotic duration. J Cell Biol. 2016;214:155-66 pubmed 出版商
  133. Hampp S, Kiessling T, Buechle K, Mansilla S, Thomale J, Rall M, et al. DNA damage tolerance pathway involving DNA polymerase ? and the tumor suppressor p53 regulates DNA replication fork progression. Proc Natl Acad Sci U S A. 2016;113:E4311-9 pubmed 出版商
  134. Grassi M, Palma C, Thomé C, Lanfredi G, Poersch A, Faça V. Proteomic analysis of ovarian cancer cells during epithelial-mesenchymal transition (EMT) induced by epidermal growth factor (EGF) reveals mechanisms of cell cycle control. J Proteomics. 2017;151:2-11 pubmed 出版商
  135. Janer A, Prudent J, Paupe V, Fahiminiya S, Majewski J, Sgarioto N, et al. SLC25A46 is required for mitochondrial lipid homeostasis and cristae maintenance and is responsible for Leigh syndrome. EMBO Mol Med. 2016;8:1019-38 pubmed 出版商
  136. Lefort K, Ostano P, Mello Grand M, Calpini V, Scatolini M, Farsetti A, et al. Dual tumor suppressing and promoting function of Notch1 signaling in human prostate cancer. Oncotarget. 2016;7:48011-48026 pubmed 出版商
  137. Janjanam J, Rao G. Novel role of cortactin in G protein-coupled receptor agonist-induced nuclear export and degradation of p21Cip1. Sci Rep. 2016;6:28687 pubmed 出版商
  138. Frohwitter G, Buerger H, van Diest P, Korsching E, Kleinheinz J, Fillies T. Cytokeratin and protein expression patterns in squamous cell carcinoma of the oral cavity provide evidence for two distinct pathogenetic pathways. Oncol Lett. 2016;12:107-113 pubmed
  139. Dutta A, Le Magnen C, Mitrofanova A, Ouyang X, Califano A, Abate Shen C. Identification of an NKX3.1-G9a-UTY transcriptional regulatory network that controls prostate differentiation. Science. 2016;352:1576-80 pubmed 出版商
  140. Hong A, Tseng Y, Cowley G, Jonas O, Cheah J, Kynnap B, et al. Integrated genetic and pharmacologic interrogation of rare cancers. Nat Commun. 2016;7:11987 pubmed 出版商
  141. Lee W, Jo S, Lee M, Won C, Lee M, Choi J, et al. The Effect of MCP-1/CCR2 on the Proliferation and Senescence of Epidermal Constituent Cells in Solar Lentigo. Int J Mol Sci. 2016;17: pubmed 出版商
  142. Esmaeili M, Pungsrinont T, Schaefer A, Baniahmad A. A novel crosstalk between the tumor suppressors ING1 and ING2 regulates androgen receptor signaling. J Mol Med (Berl). 2016;94:1167-1179 pubmed
  143. Zeng L, Yang X, Wen Y, Mail S, Wang M, Zhang M, et al. Overexpressed HDAC4 is associated with poor survival and promotes tumor progression in esophageal carcinoma. Aging (Albany NY). 2016;8:1236-49 pubmed 出版商
  144. Eichner R, Heider M, Fernández Sáiz V, van Bebber F, Garz A, Lemeer S, et al. Immunomodulatory drugs disrupt the cereblon-CD147-MCT1 axis to exert antitumor activity and teratogenicity. Nat Med. 2016;22:735-43 pubmed 出版商
  145. Jeong A, Han S, Lee S, Su Park J, Lu Y, Yu S, et al. Patient derived mutation W257G of PPP2R1A enhances cancer cell migration through SRC-JNK-c-Jun pathway. Sci Rep. 2016;6:27391 pubmed 出版商
  146. Nicolas E, Parisot P, Pinto Monteiro C, de Walque R, De Vleeschouwer C, Lafontaine D. Involvement of human ribosomal proteins in nucleolar structure and p53-dependent nucleolar stress. Nat Commun. 2016;7:11390 pubmed 出版商
  147. Penterling C, Drexler G, Böhland C, Stamp R, Wilke C, Braselmann H, et al. Depletion of Histone Demethylase Jarid1A Resulting in Histone Hyperacetylation and Radiation Sensitivity Does Not Affect DNA Double-Strand Break Repair. PLoS ONE. 2016;11:e0156599 pubmed 出版商
  148. Hendrayani S, Al Harbi B, Al Ansari M, Silva G, Aboussekhra A. The inflammatory/cancer-related IL-6/STAT3/NF-?B positive feedback loop includes AUF1 and maintains the active state of breast myofibroblasts. Oncotarget. 2016;7:41974-41985 pubmed 出版商
  149. Chesnokova V, Zonis S, Zhou C, Recouvreux M, Ben Shlomo A, Araki T, et al. Growth hormone is permissive for neoplastic colon growth. Proc Natl Acad Sci U S A. 2016;113:E3250-9 pubmed 出版商
  150. Wang J, Hu K, Guo J, Cheng F, Lv J, Jiang W, et al. Suppression of KRas-mutant cancer through the combined inhibition of KRAS with PLK1 and ROCK. Nat Commun. 2016;7:11363 pubmed 出版商
  151. Chen P, Qin L, Li G, Tellides G, Simons M. Smooth muscle FGF/TGFβ cross talk regulates atherosclerosis progression. EMBO Mol Med. 2016;8:712-28 pubmed 出版商
  152. Chen R, Liu H, Cheng Q, Jiang B, Peng R, Zou Q, et al. MicroRNA-93 promotes the malignant phenotypes of human glioma cells and induces their chemoresistance to temozolomide. Biol Open. 2016;5:669-77 pubmed 出版商
  153. Yang Y, Lu Y, Wang L, Mizokami A, Keller E, Zhang J, et al. Skp2 is associated with paclitaxel resistance in prostate cancer cells. Oncol Rep. 2016;36:559-66 pubmed 出版商
  154. Ho T, Guilbaud G, Blow J, Sale J, Watson C. The KRAB Zinc Finger Protein Roma/Zfp157 Is a Critical Regulator of Cell-Cycle Progression and Genomic Stability. Cell Rep. 2016;15:724-734 pubmed 出版商
  155. O Santos A, Parrini M, Camonis J. RalGPS2 Is Essential for Survival and Cell Cycle Progression of Lung Cancer Cells Independently of Its Established Substrates Ral GTPases. PLoS ONE. 2016;11:e0154840 pubmed 出版商
  156. Marthandan S, Baumgart M, Priebe S, Groth M, Schaer J, Kaether C, et al. Conserved Senescence Associated Genes and Pathways in Primary Human Fibroblasts Detected by RNA-Seq. PLoS ONE. 2016;11:e0154531 pubmed 出版商
  157. Avila A, Illing A, Becker F, Maerz L, Morita Y, Philipp M, et al. Xpg limits the expansion of haematopoietic stem and progenitor cells after ionising radiation. Nucleic Acids Res. 2016;44:6252-61 pubmed 出版商
  158. Welk V, Coux O, Kleene V, Abeza C, Trumbach D, Eickelberg O, et al. Inhibition of Proteasome Activity Induces Formation of Alternative Proteasome Complexes. J Biol Chem. 2016;291:13147-59 pubmed 出版商
  159. Chen Y, Pan K, Wang P, Cao Z, Wang W, Wang S, et al. HBP1-mediated Regulation of p21 Protein through the Mdm2/p53 and TCF4/EZH2 Pathways and Its Impact on Cell Senescence and Tumorigenesis. J Biol Chem. 2016;291:12688-705 pubmed 出版商
  160. Beard J, Tenga A, Hills J, Hoyer J, Cherian M, Wang Y, et al. The orphan nuclear receptor NR4A2 is part of a p53-microRNA-34 network. Sci Rep. 2016;6:25108 pubmed 出版商
  161. Zhuang L, Yang Y, Ma X, Han B, Wang Z, Zhao Q, et al. MicroRNA-92b promotes hepatocellular carcinoma progression by targeting Smad7 and is mediated by long non-coding RNA XIST. Cell Death Dis. 2016;7:e2203 pubmed 出版商
  162. Chaudhary S, Madhukrishna B, Adhya A, Keshari S, Mishra S. Overexpression of caspase 7 is ER? dependent to affect proliferation and cell growth in breast cancer cells by targeting p21(Cip). Oncogenesis. 2016;5:e219 pubmed 出版商
  163. He D, Xiang J, Li B, Liu H. The dynamic behavior of Ect2 in response to DNA damage. Sci Rep. 2016;6:24504 pubmed 出版商
  164. Dey A, Mustafi S, Saha S, Kumar Dhar Dwivedi S, Mukherjee P, Bhattacharya R. Inhibition of BMI1 induces autophagy-mediated necroptosis. Autophagy. 2016;12:659-70 pubmed 出版商
  165. Seidel P, Remus M, Delacher M, Grigaravicius P, Reuss D, Frappart L, et al. Epidermal Nbn deletion causes premature hair loss and a phenotype resembling psoriasiform dermatitis. Oncotarget. 2016;7:23006-18 pubmed 出版商
  166. Yosef R, Pilpel N, Tokarsky Amiel R, Biran A, Ovadya Y, Cohen S, et al. Directed elimination of senescent cells by inhibition of BCL-W and BCL-XL. Nat Commun. 2016;7:11190 pubmed 出版商
  167. Kaur A, Webster M, Marchbank K, Behera R, Ndoye A, Kugel C, et al. sFRP2 in the aged microenvironment drives melanoma metastasis and therapy resistance. Nature. 2016;532:250-4 pubmed 出版商
  168. Yan B, Zhang Z, Jin D, Cai C, Jia C, Liu W, et al. mTORC1 regulates PTHrP to coordinate chondrocyte growth, proliferation and differentiation. Nat Commun. 2016;7:11151 pubmed 出版商
  169. Koguchi T, Tanikawa C, Mori J, Kojima Y, Matsuda K. Regulation of myo-inositol biosynthesis by p53-ISYNA1 pathway. Int J Oncol. 2016;48:2415-24 pubmed 出版商
  170. Garcia C, Videla Richardson G, Dimopoulos N, Fernandez Espinosa D, Miriuka S, Sevlever G, et al. Human Pluripotent Stem Cells and Derived Neuroprogenitors Display Differential Degrees of Susceptibility to BH3 Mimetics ABT-263, WEHI-539 and ABT-199. PLoS ONE. 2016;11:e0152607 pubmed 出版商
  171. Jung Y, Decker A, Wang J, Lee E, Kana L, Yumoto K, et al. Endogenous GAS6 and Mer receptor signaling regulate prostate cancer stem cells in bone marrow. Oncotarget. 2016;7:25698-711 pubmed 出版商
  172. Dai Y, Wang L, Tang J, Cao P, Luo Z, Sun J, et al. Activation of anaphase-promoting complex by p53 induces a state of dormancy in cancer cells against chemotherapeutic stress. Oncotarget. 2016;7:25478-92 pubmed 出版商
  173. Ezawa I, Sawai Y, Kawase T, Okabe A, Tsutsumi S, Ichikawa H, et al. Novel p53 target gene FUCA1 encodes a fucosidase and regulates growth and survival of cancer cells. Cancer Sci. 2016;107:734-45 pubmed 出版商
  174. Cao C, Wang Z, Huang L, Bai L, Wang Y, Liang Y, et al. Down-regulation of tumor endothelial marker 8 suppresses cell proliferation mediated by ERK1/2 activity. Sci Rep. 2016;6:23419 pubmed 出版商
  175. Lee H, Dai F, Zhuang L, Xiao Z, Kim J, Zhang Y, et al. BAF180 regulates cellular senescence and hematopoietic stem cell homeostasis through p21. Oncotarget. 2016;7:19134-46 pubmed 出版商
  176. Weeks R, Ludgate J, LeMée G, Morison I. TESTIN Induces Rapid Death and Suppresses Proliferation in Childhood B Acute Lymphoblastic Leukaemia Cells. PLoS ONE. 2016;11:e0151341 pubmed 出版商
  177. Guo X, Hollander L, MacPherson D, Wang L, Velazquez H, Chang J, et al. Inhibition of renalase expression and signaling has antitumor activity in pancreatic cancer. Sci Rep. 2016;6:22996 pubmed 出版商
  178. Koussounadis A, Langdon S, Um I, Kay C, Francis K, Harrison D, et al. Dynamic modulation of phosphoprotein expression in ovarian cancer xenograft models. BMC Cancer. 2016;16:205 pubmed 出版商
  179. Atiq R, Hertz R, Eldad S, Smeir E, Bar Tana J. Suppression of B-Raf(V600E) cancers by MAPK hyper-activation. Oncotarget. 2016;7:18694-704 pubmed 出版商
  180. Yeo S, Itahana Y, Guo A, Han R, Iwamoto K, Nguyen H, et al. Transglutaminase 2 contributes to a TP53-induced autophagy program to prevent oncogenic transformation. elife. 2016;5:e07101 pubmed 出版商
  181. Shao Z, Zhang R, Khodadadi Jamayran A, Chen B, Crowley M, Festok M, et al. The acetyllysine reader BRD3R promotes human nuclear reprogramming and regulates mitosis. Nat Commun. 2016;7:10869 pubmed 出版商
  182. Barroso González J, Auclair S, Luan S, Thomas L, Atkins K, Aslan J, et al. PACS-2 mediates the ATM and NF-κB-dependent induction of anti-apoptotic Bcl-xL in response to DNA damage. Cell Death Differ. 2016;23:1448-57 pubmed 出版商
  183. Ercilla A, Llopis A, Feu S, Aranda S, Ernfors P, Freire R, et al. New origin firing is inhibited by APC/CCdh1 activation in S-phase after severe replication stress. Nucleic Acids Res. 2016;44:4745-62 pubmed 出版商
  184. Ardini E, Menichincheri M, Banfi P, Bosotti R, De Ponti C, Pulci R, et al. Entrectinib, a Pan-TRK, ROS1, and ALK Inhibitor with Activity in Multiple Molecularly Defined Cancer Indications. Mol Cancer Ther. 2016;15:628-39 pubmed 出版商
  185. McNaughton M, Pitman M, Pitson S, Pyne N, Pyne S. Proteasomal degradation of sphingosine kinase 1 and inhibition of dihydroceramide desaturase by the sphingosine kinase inhibitors, SKi or ABC294640, induces growth arrest in androgen-independent LNCaP-AI prostate cancer cells. Oncotarget. 2016;7:16663-75 pubmed 出版商
  186. Nakayama R, Zhang Y, Czaplinski J, Anatone A, Sicinska E, Fletcher J, et al. Preclinical activity of selinexor, an inhibitor of XPO1, in sarcoma. Oncotarget. 2016;7:16581-92 pubmed 出版商
  187. Randles L, Anchoori R, Roden R, Walters K. The Proteasome Ubiquitin Receptor hRpn13 and Its Interacting Deubiquitinating Enzyme Uch37 Are Required for Proper Cell Cycle Progression. J Biol Chem. 2016;291:8773-83 pubmed 出版商
  188. Nim S, Jeon J, Corbi Verge C, Seo M, Ivarsson Y, Moffat J, et al. Pooled screening for antiproliferative inhibitors of protein-protein interactions. Nat Chem Biol. 2016;12:275-81 pubmed 出版商
  189. Kan H, Huang Y, Li X, Liu D, Chen J, Shu M. Zinc finger protein ZBTB20 is an independent prognostic marker and promotes tumor growth of human hepatocellular carcinoma by repressing FoxO1. Oncotarget. 2016;7:14336-49 pubmed 出版商
  190. Kang L, Yao C, Khodadadi Jamayran A, Xu W, Zhang R, Banerjee N, et al. The Universal 3D3 Antibody of Human PODXL Is Pluripotent Cytotoxic, and Identifies a Residual Population After Extended Differentiation of Pluripotent Stem Cells. Stem Cells Dev. 2016;25:556-68 pubmed 出版商
  191. Liu X, Tan Y, Zhang C, Zhang Y, Zhang L, Ren P, et al. NAT10 regulates p53 activation through acetylating p53 at K120 and ubiquitinating Mdm2. EMBO Rep. 2016;17:349-66 pubmed 出版商
  192. Xie X, Lozano G, Siddik Z. Heterozygous p53(V172F) mutation in cisplatin-resistant human tumor cells promotes MDM4 recruitment and decreases stability and transactivity of p53. Oncogene. 2016;35:4798-806 pubmed 出版商
  193. Gerashchenko B, Salmina K, Eglitis J, Huna A, Grjunberga V, Erenpreisa J. Disentangling the aneuploidy and senescence paradoxes: a study of triploid breast cancers non-responsive to neoadjuvant therapy. Histochem Cell Biol. 2016;145:497-508 pubmed 出版商
  194. Niopek D, Wehler P, Roensch J, Eils R, Di Ventura B. Optogenetic control of nuclear protein export. Nat Commun. 2016;7:10624 pubmed 出版商
  195. Le Pen J, Maillet L, Sarosiek K, Vuillier C, Gautier F, Montessuit S, et al. Constitutive p53 heightens mitochondrial apoptotic priming and favors cell death induction by BH3 mimetic inhibitors of BCL-xL. Cell Death Dis. 2016;7:e2083 pubmed 出版商
  196. Wang Y, Xu Q, Sack L, Kang C, Elledge S. A gain-of-function senescence bypass screen identifies the homeobox transcription factor DLX2 as a regulator of ATM-p53 signaling. Genes Dev. 2016;30:293-306 pubmed 出版商
  197. Llanos S, García Pedrero J, Morgado Palacin L, Rodrigo J, Serrano M. Stabilization of p21 by mTORC1/4E-BP1 predicts clinical outcome of head and neck cancers. Nat Commun. 2016;7:10438 pubmed 出版商
  198. Le Trilling V, Megger D, Katschinski B, Landsberg C, Rückborn M, Tao S, et al. Broad and potent antiviral activity of the NAE inhibitor MLN4924. Sci Rep. 2016;6:19977 pubmed 出版商
  199. Podmirseg S, Jäkel H, Ranches G, Kullmann M, Sohm B, Villunger A, et al. Caspases uncouple p27(Kip1) from cell cycle regulated degradation and abolish its ability to stimulate cell migration and invasion. Oncogene. 2016;35:4580-90 pubmed 出版商
  200. Nassour J, Martien S, Martin N, Deruy E, Tomellini E, Malaquin N, et al. Defective DNA single-strand break repair is responsible for senescence and neoplastic escape of epithelial cells. Nat Commun. 2016;7:10399 pubmed 出版商
  201. Qiu L, Wu J, Pan C, Tan X, Lin J, Liu R, et al. Downregulation of CDC27 inhibits the proliferation of colorectal cancer cells via the accumulation of p21Cip1/Waf1. Cell Death Dis. 2016;7:e2074 pubmed 出版商
  202. Ã…kerström T, Maharjan R, Sven Willenberg H, Cupisti K, Ip J, Moser A, et al. Activating mutations in CTNNB1 in aldosterone producing adenomas. Sci Rep. 2016;6:19546 pubmed 出版商
  203. Kanderová V, Kuzilkova D, Stuchly J, Vaskova M, Brdicka T, Fiser K, et al. High-resolution Antibody Array Analysis of Childhood Acute Leukemia Cells. Mol Cell Proteomics. 2016;15:1246-61 pubmed 出版商
  204. Zhu N, Wang H, Wang B, Wei J, Shan W, Feng J, et al. A Member of the Nuclear Receptor Superfamily, Designated as NR2F2, Supports the Self-Renewal Capacity and Pluripotency of Human Bone Marrow-Derived Mesenchymal Stem Cells. Stem Cells Int. 2016;2016:5687589 pubmed 出版商
  205. Mo X, Cao Q, Liang H, Liu J, Li H, Liu F. MicroRNA-610 suppresses the proliferation of human glioblastoma cells by repressing CCND2 and AKT3. Mol Med Rep. 2016;13:1961-6 pubmed 出版商
  206. Cousin F, Jouan Lanhouet S, Théret N, Brenner C, Jouan E, Le Moigne Muller G, et al. The probiotic Propionibacterium freudenreichii as a new adjuvant for TRAIL-based therapy in colorectal cancer. Oncotarget. 2016;7:7161-78 pubmed 出版商
  207. Wu B, Chen H, Cai C, Fang J, Wu C, Huang L, et al. Epigenetic silencing of JMJD5 promotes the proliferation of hepatocellular carcinoma cells by down-regulating the transcription of CDKN1A 686. Oncotarget. 2016;7:6847-63 pubmed 出版商
  208. Guo Z, Kong Q, Liu C, Zhang S, Zou L, Yan F, et al. DCAF1 controls T-cell function via p53-dependent and -independent mechanisms. Nat Commun. 2016;7:10307 pubmed 出版商
  209. Berges C, Chatterjee M, Topp M, Einsele H. Targeting polo-like kinase 1 suppresses essential functions of alloreactive T cells. Immunol Res. 2016;64:687-98 pubmed 出版商
  210. Kucab J, Zwart E, van Steeg H, Luijten M, Schmeiser H, Phillips D, et al. TP53 and lacZ mutagenesis induced by 3-nitrobenzanthrone in Xpa-deficient human TP53 knock-in mouse embryo fibroblasts. DNA Repair (Amst). 2016;39:21-33 pubmed 出版商
  211. Xu Y, Wu D, Zheng W, Yu F, Yang F, Yao Y, et al. Proteome profiling of cadmium-induced apoptosis by antibody array analyses in human bronchial epithelial cells. Oncotarget. 2016;7:6146-58 pubmed 出版商
  212. Vartanian S, Ma T, Lee J, Haverty P, Kirkpatrick D, Yu K, et al. Application of Mass Spectrometry Profiling to Establish Brusatol as an Inhibitor of Global Protein Synthesis. Mol Cell Proteomics. 2016;15:1220-31 pubmed 出版商
  213. García V, Lara Chica M, Cantarero I, Sterner O, Calzado M, Muñoz E. Galiellalactone induces cell cycle arrest and apoptosis through the ATM/ATR pathway in prostate cancer cells. Oncotarget. 2016;7:4490-506 pubmed 出版商
  214. Ding X, Jiang W, Zhou P, Liu L, Wan X, Yuan X, et al. Mixed Lineage Leukemia 5 (MLL5) Protein Stability Is Cooperatively Regulated by O-GlcNac Transferase (OGT) and Ubiquitin Specific Protease 7 (USP7). PLoS ONE. 2015;10:e0145023 pubmed 出版商
  215. Guo X, Wang X, Wang Z, Banerjee S, Yang J, Huang L, et al. Site-specific proteasome phosphorylation controls cell proliferation and tumorigenesis. Nat Cell Biol. 2016;18:202-12 pubmed 出版商
  216. Marazita M, Dugour A, Marquioni Ramella M, Figueroa J, Suburo A. Oxidative stress-induced premature senescence dysregulates VEGF and CFH expression in retinal pigment epithelial cells: Implications for Age-related Macular Degeneration. Redox Biol. 2016;7:78-87 pubmed 出版商
  217. Kondo H, Kim H, Wang L, Okada M, Paul C, Millard R, et al. Blockade of senescence-associated microRNA-195 in aged skeletal muscle cells facilitates reprogramming to produce induced pluripotent stem cells. Aging Cell. 2016;15:56-66 pubmed 出版商
  218. Trzeciecka A, Klossowski S, Bajor M, Zagozdzon R, Gaj P, Muchowicz A, et al. Dimeric peroxiredoxins are druggable targets in human Burkitt lymphoma. Oncotarget. 2016;7:1717-31 pubmed 出版商
  219. Suvorova I, Grigorash B, Chuykin I, Pospelova T, Pospelov V. G1 checkpoint is compromised in mouse ESCs due to functional uncoupling of p53-p21Waf1 signaling. Cell Cycle. 2016;15:52-63 pubmed 出版商
  220. Mehraein Ghomi F, Church D, Schreiber C, Weichmann A, Basu H, Wilding G. Inhibitor of p52 NF-κB subunit and androgen receptor (AR) interaction reduces growth of human prostate cancer cells by abrogating nuclear translocation of p52 and phosphorylated AR(ser81). Genes Cancer. 2015;6:428-44 pubmed
  221. Huang Y, Chen N, Miao D. Biological effects of pyrroloquinoline quinone on liver damage in Bmi-1 knockout mice. Exp Ther Med. 2015;10:451-458 pubmed
  222. Wang G, Yu Y, Sun C, Liu T, Liang T, Zhan L, et al. STAT3 selectively interacts with Smad3 to antagonize TGF-β signalling. Oncogene. 2016;35:4388-98 pubmed 出版商
  223. Martín Pardillos A, Sorribas V. Effects of donor age and proliferative aging on the phenotype stability of rat aortic smooth muscle cells. Physiol Rep. 2015;3: pubmed 出版商
  224. Dewaele M, Tabaglio T, Willekens K, Bezzi M, Teo S, Low D, et al. Antisense oligonucleotide-mediated MDM4 exon 6 skipping impairs tumor growth. J Clin Invest. 2016;126:68-84 pubmed 出版商
  225. Manojlović Gacić E, Skender Gazibara M, Popovic V, Soldatovic I, Boricic N, Raičević S, et al. Oncogene-Induced Senescence in Pituitary Adenomas--an Immunohistochemical Study. Endocr Pathol. 2016;27:1-11 pubmed 出版商
  226. Funauchi Y, Tanikawa C, Yi Lo P, Mori J, Daigo Y, Takano A, et al. Regulation of iron homeostasis by the p53-ISCU pathway. Sci Rep. 2015;5:16497 pubmed 出版商
  227. Zhu J, Wang S, Zhang W, Qiu J, Shan Y, Yang D, et al. Screening key microRNAs for castration-resistant prostate cancer based on miRNA/mRNA functional synergistic network. Oncotarget. 2015;6:43819-30 pubmed 出版商
  228. Kraut B, Maier H, Kókai E, Fiedler K, Boettger T, Illing A, et al. Cardiac-Specific Activation of IKK2 Leads to Defects in Heart Development and Embryonic Lethality. PLoS ONE. 2015;10:e0141591 pubmed 出版商
  229. Rohnalter V, Roth K, Finkernagel F, Adhikary T, Obert J, Dorzweiler K, et al. A multi-stage process including transient polyploidization and EMT precedes the emergence of chemoresistent ovarian carcinoma cells with a dedifferentiated and pro-inflammatory secretory phenotype. Oncotarget. 2015;6:40005-25 pubmed 出版商
  230. Bauer J, Ozden O, Akagi N, Carroll T, Principe D, Staudacher J, et al. Activin and TGFβ use diverging mitogenic signaling in advanced colon cancer. Mol Cancer. 2015;14:182 pubmed 出版商
  231. Tonsing Carter E, Bailey B, Saadatzadeh M, Ding J, Wang H, Sinn A, et al. Potentiation of Carboplatin-Mediated DNA Damage by the Mdm2 Modulator Nutlin-3a in a Humanized Orthotopic Breast-to-Lung Metastatic Model. Mol Cancer Ther. 2015;14:2850-63 pubmed 出版商
  232. Wang Y, Kuramitsu Y, Baron B, Kitagawa T, Tokuda K, Akada J, et al. CGK733-induced LC3 II formation is positively associated with the expression of cyclin-dependent kinase inhibitor p21Waf1/Cip1 through modulation of the AMPK and PERK/CHOP signaling pathways. Oncotarget. 2015;6:39692-701 pubmed 出版商
  233. Vétillard A, Jonchère B, Moreau M, Toutain B, Henry C, Fontanel S, et al. Akt inhibition improves irinotecan treatment and prevents cell emergence by switching the senescence response to apoptosis. Oncotarget. 2015;6:43342-62 pubmed 出版商
  234. Xiong Y, Su H, Lv P, Ma Y, Wang S, Miao H, et al. A newly identified berberine derivative induces cancer cell senescence by stabilizing endogenous G-quadruplexes and sparking a DNA damage response at the telomere region. Oncotarget. 2015;6:35625-35 pubmed 出版商
  235. Nakakido M, Deng Z, Suzuki T, Dohmae N, Nakamura Y, Hamamoto R. PRMT6 increases cytoplasmic localization of p21CDKN1A in cancer cells through arginine methylation and makes more resistant to cytotoxic agents. Oncotarget. 2015;6:30957-67 pubmed 出版商
  236. Felli N, Errico M, Pedini F, Petrini M, Puglisi R, Bellenghi M, et al. AP2α controls the dynamic balance between miR-126&126* and miR-221&222 during melanoma progression. Oncogene. 2016;35:3016-26 pubmed 出版商
  237. Hu D, Gur M, Zhou Z, Gamper A, Hung M, Fujita N, et al. Interplay between arginine methylation and ubiquitylation regulates KLF4-mediated genome stability and carcinogenesis. Nat Commun. 2015;6:8419 pubmed 出版商
  238. Daou S, Hammond Martel I, Mashtalir N, Barbour H, Gagnon J, Iannantuono N, et al. The BAP1/ASXL2 Histone H2A Deubiquitinase Complex Regulates Cell Proliferation and Is Disrupted in Cancer. J Biol Chem. 2015;290:28643-63 pubmed 出版商
  239. Xing M, Wang X, Palmai Pallag T, Shen H, Helleday T, Hickson I, et al. Acute MUS81 depletion leads to replication fork slowing and a constitutive DNA damage response. Oncotarget. 2015;6:37638-46 pubmed 出版商
  240. Anderson K, Russell A, Foletta V. NDRG2 promotes myoblast proliferation and caspase 3/7 activities during differentiation, and attenuates hydrogen peroxide - But not palmitate-induced toxicity. FEBS Open Bio. 2015;5:668-81 pubmed 出版商
  241. Lee N, Kwon J, Kim Y, Kim S, Park S, Xu W, et al. Vaccinia-related kinase 1 promotes hepatocellular carcinoma by controlling the levels of cell cycle regulators associated with G1/S transition. Oncotarget. 2015;6:30130-48 pubmed 出版商
  242. Kim Y, Chen C, Bolton E. Androgen Receptor-Mediated Growth Suppression of HPr-1AR and PC3-Lenti-AR Prostate Epithelial Cells. PLoS ONE. 2015;10:e0138286 pubmed 出版商
  243. Pacini L, Savini C, Ghittoni R, Saidj D, Lamartine J, Hasan U, et al. Downregulation of Toll-Like Receptor 9 Expression by Beta Human Papillomavirus 38 and Implications for Cell Cycle Control. J Virol. 2015;89:11396-405 pubmed 出版商
  244. Moussa R, Kovacevic Z, Richardson D. Differential targeting of the cyclin-dependent kinase inhibitor, p21CIP1/WAF1, by chelators with anti-proliferative activity in a range of tumor cell-types. Oncotarget. 2015;6:29694-711 pubmed 出版商
  245. Wang J, Hua W, Huang S, Fan K, Takeshima L, Mao Y, et al. RASSF8 regulates progression of cutaneous melanoma through nuclear factor-κb. Oncotarget. 2015;6:30165-77 pubmed 出版商
  246. Mansara P, Deshpande R, Vaidya M, Kaul Ghanekar R. Differential Ratios of Omega Fatty Acids (AA/EPA+DHA) Modulate Growth, Lipid Peroxidation and Expression of Tumor Regulatory MARBPs in Breast Cancer Cell Lines MCF7 and MDA-MB-231. PLoS ONE. 2015;10:e0136542 pubmed 出版商
  247. Domínguez D, Feijoo P, Bernal A, Ercilla A, Agell N, Genescà A, et al. Centrosome aberrations in human mammary epithelial cells driven by cooperative interactions between p16INK4a deficiency and telomere-dependent genotoxic stress. Oncotarget. 2015;6:28238-56 pubmed 出版商
  248. Chiang K, Chen H, Hsu S, Pang J, Wang S, Hsu J, et al. PTEN insufficiency modulates ER+ breast cancer cell cycle progression and increases cell growth in vitro and in vivo. Drug Des Devel Ther. 2015;9:4631-8 pubmed 出版商
  249. Cañeque T, Gomes F, Mai T, Maestri G, Malacria M, Rodriguez R. Synthesis of marmycin A and investigation into its cellular activity. Nat Chem. 2015;7:744-51 pubmed 出版商
  250. Kim J, Sato M, Choi J, Kim H, Yeh B, Larsen J, et al. Nuclear Receptor Expression and Function in Human Lung Cancer Pathogenesis. PLoS ONE. 2015;10:e0134842 pubmed 出版商
  251. Zhuo W, Ge W, Meng G, Jia S, Zhou X, Liu J. MicroRNA‑20a promotes the proliferation and cell cycle of human osteosarcoma cells by suppressing early growth response 2 expression. Mol Med Rep. 2015;12:4989-94 pubmed 出版商
  252. Marzagalli M, Casati L, Moretti R, Montagnani Marelli M, Limonta P. Estrogen Receptor β Agonists Differentially Affect the Growth of Human Melanoma Cell Lines. PLoS ONE. 2015;10:e0134396 pubmed 出版商
  253. Zhang X, Wang X, Wu T, Li B, Liu T, Wang R, et al. Isoliensinine induces apoptosis in triple-negative human breast cancer cells through ROS generation and p38 MAPK/JNK activation. Sci Rep. 2015;5:12579 pubmed 出版商
  254. Xie W, Zhang L, Jiao H, Guan L, Zha J, Li X, et al. Chaperone-mediated autophagy prevents apoptosis by degrading BBC3/PUMA. Autophagy. 2015;11:1623-35 pubmed 出版商
  255. Succoio M, Comegna M, D Ambrosio C, Scaloni A, Cimino F, Faraonio R. Proteomic analysis reveals novel common genes modulated in both replicative and stress-induced senescence. J Proteomics. 2015;128:18-29 pubmed 出版商
  256. Navarro F, Lieberman J. miR-34 and p53: New Insights into a Complex Functional Relationship. PLoS ONE. 2015;10:e0132767 pubmed 出版商
  257. Ohashi A, Ohori M, Iwai K, Nakayama Y, Nambu T, Morishita D, et al. Aneuploidy generates proteotoxic stress and DNA damage concurrently with p53-mediated post-mitotic apoptosis in SAC-impaired cells. Nat Commun. 2015;6:7668 pubmed 出版商
  258. Dong L, Yu D, Wu N, Wang H, Niu J, Wang Y, et al. Echinacoside Induces Apoptosis in Human SW480 Colorectal Cancer Cells by Induction of Oxidative DNA Damages. Int J Mol Sci. 2015;16:14655-68 pubmed 出版商
  259. Seo G, Ho M, Bui N, Kim Y, Koh D, Lim Y, et al. Novel naphthochalcone derivative accelerate dermal wound healing through induction of epithelial-mesenchymal transition of keratinocyte. J Biomed Sci. 2015;22:47 pubmed 出版商
  260. Deben C, Wouters A, Op de Beeck K, Van den Bossche J, Jacobs J, Zwaenepoel K, et al. The MDM2-inhibitor Nutlin-3 synergizes with cisplatin to induce p53 dependent tumor cell apoptosis in non-small cell lung cancer. Oncotarget. 2015;6:22666-79 pubmed
  261. Huna A, Salmina K, Erenpreisa J, Vazquez Martin A, Krigerts J, Inashkina I, et al. Role of stress-activated OCT4A in the cell fate decisions of embryonal carcinoma cells treated with etoposide. Cell Cycle. 2015;14:2969-84 pubmed 出版商
  262. Trokovic R, Weltner J, Noisa P, Raivio T, Otonkoski T. Combined negative effect of donor age and time in culture on the reprogramming efficiency into induced pluripotent stem cells. Stem Cell Res. 2015;15:254-62 pubmed 出版商
  263. Galoian K, Qureshi A, D Ippolito G, Schiller P, Molinari M, Johnstone A, et al. Epigenetic regulation of embryonic stem cell marker miR302C in human chondrosarcoma as determinant of antiproliferative activity of proline-rich polypeptide 1. Int J Oncol. 2015;47:465-72 pubmed 出版商
  264. Ge F, Chen W, Qin J, Zhou Z, Liu R, Liu L, et al. Ataxin-3 like (ATXN3L), a member of the Josephin family of deubiquitinating enzymes, promotes breast cancer proliferation by deubiquitinating Krüppel-like factor 5 (KLF5). Oncotarget. 2015;6:21369-78 pubmed
  265. Bock F, Tanzer M, Haschka M, Krumschnabel G, Sohm B, Goetsch K, et al. The p53 binding protein PDCD5 is not rate-limiting in DNA damage induced cell death. Sci Rep. 2015;5:11268 pubmed 出版商
  266. Rueda Rincon N, Bloch K, Derua R, Vyas R, Harms A, Hankemeier T, et al. p53 attenuates AKT signaling by modulating membrane phospholipid composition. Oncotarget. 2015;6:21240-54 pubmed
  267. Xie C, Wei D, Zhao L, Marchetto S, Mei L, Borg J, et al. Erbin is a novel substrate of the Sag-βTrCP E3 ligase that regulates KrasG12D-induced skin tumorigenesis. J Cell Biol. 2015;209:721-37 pubmed 出版商
  268. Kotipatruni R, Ren X, Thotala D, Jaboin J. NDRG4 is a novel oncogenic protein and p53 associated regulator of apoptosis in malignant meningioma cells. Oncotarget. 2015;6:17594-604 pubmed
  269. Cheedipudi S, Puri D, Saleh A, Gala H, Rumman M, Pillai M, et al. A fine balance: epigenetic control of cellular quiescence by the tumor suppressor PRDM2/RIZ at a bivalent domain in the cyclin a gene. Nucleic Acids Res. 2015;43:6236-56 pubmed 出版商
  270. Velichko A, Petrova N, Razin S, Kantidze O. Mechanism of heat stress-induced cellular senescence elucidates the exclusive vulnerability of early S-phase cells to mild genotoxic stress. Nucleic Acids Res. 2015;43:6309-20 pubmed 出版商
  271. Moiseeva O, Lessard F, Acevedo Aquino M, Vernier M, Tsantrizos Y, Ferbeyre G. Mutant lamin A links prophase to a p53 independent senescence program. Cell Cycle. 2015;14:2408-21 pubmed 出版商
  272. Adomako A, Calvo V, Biran N, Osman K, Chari A, Paton J, et al. Identification of markers that functionally define a quiescent multiple myeloma cell sub-population surviving bortezomib treatment. BMC Cancer. 2015;15:444 pubmed 出版商
  273. Yang K, Kohler R, Landon M, Giedt R, Weissleder R. Single cell resolution in vivo imaging of DNA damage following PARP inhibition. Sci Rep. 2015;5:10129 pubmed 出版商
  274. Yang C, Chiang C, Chen C, Lee Y, Wu M, Tsou Y, et al. Identification and characterization of nuclear and nucleolar localization signals in 58-kDa microspherule protein (MSP58). J Biomed Sci. 2015;22:33 pubmed 出版商
  275. Scala F, Brighenti E, Govoni M, Imbrogno E, Fornari F, Treré D, et al. Direct relationship between the level of p53 stabilization induced by rRNA synthesis-inhibiting drugs and the cell ribosome biogenesis rate. Oncogene. 2016;35:977-89 pubmed 出版商
  276. Andries V, Vandepoele K, Staes K, Berx G, Bogaert P, Van Isterdael G, et al. NBPF1, a tumor suppressor candidate in neuroblastoma, exerts growth inhibitory effects by inducing a G1 cell cycle arrest. BMC Cancer. 2015;15:391 pubmed 出版商
  277. Bánfi G, Teleki I, Nyirády P, Keszthelyi A, Romics I, Fintha A, et al. Changes of protein expression in prostate cancer having lost its androgen sensitivity. Int Urol Nephrol. 2015;47:1149-54 pubmed 出版商
  278. Guha G, Lu W, Li S, Liang X, Kulesz Martin M, Mahmud T, et al. Novel Pactamycin Analogs Induce p53 Dependent Cell-Cycle Arrest at S-Phase in Human Head and Neck Squamous Cell Carcinoma (HNSCC) Cells. PLoS ONE. 2015;10:e0125322 pubmed 出版商
  279. Sokka M, Rilla K, Miinalainen I, Pospiech H, Syväoja J. High levels of TopBP1 induce ATR-dependent shut-down of rRNA transcription and nucleolar segregation. Nucleic Acids Res. 2015;43:4975-89 pubmed 出版商
  280. Qiu J, Zhang Y, Li Y, Zhao J, Zhang W, Jiang Q, et al. Trametinib modulates cancer multidrug resistance by targeting ABCB1 transporter. Oncotarget. 2015;6:15494-509 pubmed
  281. Pozo K, Hillmann A, Augustyn A, Plattner F, Hai T, Singh T, et al. Differential expression of cell cycle regulators in CDK5-dependent medullary thyroid carcinoma tumorigenesis. Oncotarget. 2015;6:12080-93 pubmed
  282. Ahronian L, Driscoll D, Klimstra D, Lewis B. The p53R172H mutant does not enhance hepatocellular carcinoma development and progression. PLoS ONE. 2015;10:e0123816 pubmed 出版商
  283. Chen P, Wu T, Cheng Y, Chen C, Lee H. NKX2-1-mediated p53 expression modulates lung adenocarcinoma progression via modulating IKKβ/NF-κB activation. Oncotarget. 2015;6:14274-89 pubmed
  284. Ross J, Huh D, Noble L, Tavazoie S. Identification of molecular determinants of primary and metastatic tumour re-initiation in breast cancer. Nat Cell Biol. 2015;17:651-64 pubmed 出版商
  285. Gillory L, Stewart J, Megison M, Waters A, Beierle E. Focal adhesion kinase and p53 synergistically decrease neuroblastoma cell survival. J Surg Res. 2015;196:339-49 pubmed 出版商
  286. Rodríguez Sureda V, Vilches Ã, Sánchez O, Audí L, Domínguez C. Intracellular oxidant activity, antioxidant enzyme defense system, and cell senescence in fibroblasts with trisomy 21. Oxid Med Cell Longev. 2015;2015:509241 pubmed 出版商
  287. Saha K, Eckert R. Methylosome Protein 50 and PKC?/p38? Protein Signaling Control Keratinocyte Proliferation via Opposing Effects on p21Cip1 Gene Expression. J Biol Chem. 2015;290:13521-30 pubmed 出版商
  288. Chen L, Rousseau R, Middleton S, Nichols G, Newell D, Lunec J, et al. Pre-clinical evaluation of the MDM2-p53 antagonist RG7388 alone and in combination with chemotherapy in neuroblastoma. Oncotarget. 2015;6:10207-21 pubmed
  289. Li Y, Li B, Xu B, Han B, Xia H, Chen Q, et al. Expression of p53, p21(CIP1/WAF1) and eIF4E in the adjacent tissues of oral squamous cell carcinoma: establishing the molecular boundary and a cancer progression model. Int J Oral Sci. 2015;7:161-8 pubmed 出版商
  290. Scialpi F, Mellis D, Ditzel M. EDD, a ubiquitin-protein ligase of the N-end rule pathway, associates with spindle assembly checkpoint components and regulates the mitotic response to nocodazole. J Biol Chem. 2015;290:12585-94 pubmed 出版商
  291. Beier J, Jokinen J, Holz G, Whang P, Martin A, Warner N, et al. Novel mechanism of arenavirus-induced liver pathology. PLoS ONE. 2015;10:e0122839 pubmed 出版商
  292. Meena J, Cerutti A, Beichler C, Morita Y, Bruhn C, Kumar M, et al. Telomerase abrogates aneuploidy-induced telomere replication stress, senescence and cell depletion. EMBO J. 2015;34:1371-84 pubmed 出版商
  293. Markkanen E, Fischer R, Ledentcova M, Kessler B, Dianov G. Cells deficient in base-excision repair reveal cancer hallmarks originating from adjustments to genetic instability. Nucleic Acids Res. 2015;43:3667-79 pubmed 出版商
  294. Kirschner K, Samarajiwa S, Cairns J, Menon S, Perez Mancera P, Tomimatsu K, et al. Phenotype specific analyses reveal distinct regulatory mechanism for chronically activated p53. PLoS Genet. 2015;11:e1005053 pubmed 出版商
  295. Xie W, Pariollaud M, Wixted W, Chitnis N, Fornwald J, Truong M, et al. Identification and characterization of PERK activators by phenotypic screening and their effects on NRF2 activation. PLoS ONE. 2015;10:e0119738 pubmed 出版商
  296. Wang Y, Han A, Chen E, Singh R, Chichester C, Moore R, et al. The cranberry flavonoids PAC DP-9 and quercetin aglycone induce cytotoxicity and cell cycle arrest and increase cisplatin sensitivity in ovarian cancer cells. Int J Oncol. 2015;46:1924-34 pubmed 出版商
  297. Khoronenkova S, Dianov G. ATM prevents DSB formation by coordinating SSB repair and cell cycle progression. Proc Natl Acad Sci U S A. 2015;112:3997-4002 pubmed 出版商
  298. Wang B, Wu S, Tang S, Lai C, Ou C, Wu M, et al. Benzo[a]pyrene-induced cell cycle progression occurs via ERK-induced Chk1 pathway activation in human lung cancer cells. Mutat Res. 2015;773:1-8 pubmed 出版商
  299. Howlin J, Cirenajwis H, Lettiero B, Staaf J, Lauss M, Saal L, et al. Loss of CITED1, an MITF regulator, drives a phenotype switch in vitro and can predict clinical outcome in primary melanoma tumours. Peerj. 2015;3:e788 pubmed 出版商
  300. Albers J, Danzer C, Rechsteiner M, Lehmann H, Brandt L, Hejhal T, et al. A versatile modular vector system for rapid combinatorial mammalian genetics. J Clin Invest. 2015;125:1603-19 pubmed 出版商
  301. Hallett R, Huang C, Motazedian A, Auf der Mauer S, Pond G, Hassell J, et al. Treatment-induced cell cycle kinetics dictate tumor response to chemotherapy. Oncotarget. 2015;6:7040-52 pubmed
  302. Martínez Torres A, Quiney C, Attout T, Boullet H, Herbi L, Vela L, et al. CD47 agonist peptides induce programmed cell death in refractory chronic lymphocytic leukemia B cells via PLCγ1 activation: evidence from mice and humans. PLoS Med. 2015;12:e1001796 pubmed 出版商
  303. Ungefroren H, Hyder A, Hinz H, Groth S, Lange H, El Sayed K, et al. Pluripotency gene expression and growth control in cultures of peripheral blood monocytes during their conversion into programmable cells of monocytic origin (PCMO): evidence for a regulatory role of autocrine activin and TGF-β. PLoS ONE. 2015;10:e0118097 pubmed 出版商
  304. Susanto J, Colvin E, Pinese M, Chang D, Pajic M, Mawson A, et al. The epigenetic agents suberoylanilide hydroxamic acid and 5‑AZA‑2' deoxycytidine decrease cell proliferation, induce cell death and delay the growth of MiaPaCa2 pancreatic cancer cells in vivo. Int J Oncol. 2015;46:2223-30 pubmed 出版商
  305. Gergics P, Brinkmeier M, Camper S. Lhx4 deficiency: increased cyclin-dependent kinase inhibitor expression and pituitary hypoplasia. Mol Endocrinol. 2015;29:597-612 pubmed 出版商
  306. Chen Y, Terajima M, Yang Y, Sun L, Ahn Y, Panková D, et al. Lysyl hydroxylase 2 induces a collagen cross-link switch in tumor stroma. J Clin Invest. 2015;125:1147-62 pubmed 出版商
  307. Brazina J, Svadlenka J, Macurek L, Andera L, Hodny Z, Bartek J, et al. DNA damage-induced regulatory interplay between DAXX, p53, ATM kinase and Wip1 phosphatase. Cell Cycle. 2015;14:375-87 pubmed 出版商
  308. Guerrero A, Iglesias C, Raguz S, Floridia E, Gil J, Pombo C, et al. The cerebral cavernous malformation 3 gene is necessary for senescence induction. Aging Cell. 2015;14:274-83 pubmed 出版商
  309. Rao R, Dhele N, Cheemadan S, Ketkar A, Jayandharan G, Palakodeti D, et al. Ezh2 mediated H3K27me3 activity facilitates somatic transition during human pluripotent reprogramming. Sci Rep. 2015;5:8229 pubmed 出版商
  310. Suo H, Song J, Zhou Y, Liu Z, Yi R, Zhu K, et al. Induction of apoptosis in HCT-116 colon cancer cells by polysaccharide of Larimichthys crocea swim bladder. Oncol Lett. 2015;9:972-978 pubmed
  311. Iglesias Gato D, Chuan Y, Jiang N, Svensson C, Bao J, Paul I, et al. OTUB1 de-ubiquitinating enzyme promotes prostate cancer cell invasion in vitro and tumorigenesis in vivo. Mol Cancer. 2015;14:8 pubmed 出版商
  312. Cai K, Wang Y, Smith E, Smedberg J, Yang D, Yang W, et al. Global deletion of Trp53 reverts ovarian tumor phenotype of the germ cell-deficient white spotting variant (Wv) mice. Neoplasia. 2015;17:89-100 pubmed 出版商
  313. Raouf S, Weston C, Yucel N. Registered report: senescence surveillance of pre-malignant hepatocytes limits liver cancer development. elife. 2015;4: pubmed 出版商
  314. Tao Y, Xu L, Lu J, Hu S, Fang F, Cao L, et al. Early B-cell factor 3 (EBF3) is a novel tumor suppressor gene with promoter hypermethylation in pediatric acute myeloid leukemia. J Exp Clin Cancer Res. 2015;34:4 pubmed 出版商
  315. Vosper J, Masuccio A, Kullmann M, Ploner C, Geley S, Hengst L. Statin-induced depletion of geranylgeranyl pyrophosphate inhibits cell proliferation by a novel pathway of Skp2 degradation. Oncotarget. 2015;6:2889-902 pubmed
  316. Feng T, Dzieran J, Gu X, Marhenke S, Vogel A, Machida K, et al. Smad7 regulates compensatory hepatocyte proliferation in damaged mouse liver and positively relates to better clinical outcome in human hepatocellular carcinoma. Clin Sci (Lond). 2015;128:761-74 pubmed 出版商
  317. Silva V, Plooster M, Leung J, Cassimeris L. A delay prior to mitotic entry triggers caspase 8-dependent cell death in p53-deficient Hela and HCT-116 cells. Cell Cycle. 2015;14:1070-81 pubmed 出版商
  318. Wang L, Liu R, Ye P, Wong C, Chen G, Zhou P, et al. Intracellular CD24 disrupts the ARF-NPM interaction and enables mutational and viral oncogene-mediated p53 inactivation. Nat Commun. 2015;6:5909 pubmed 出版商
  319. Chong K, Hsu C, Hung T, Hu H, Huang T, Wang T, et al. Wnt pathway activation and ABCB1 expression account for attenuation of proteasome inhibitor-mediated apoptosis in multidrug-resistant cancer cells. Cancer Biol Ther. 2015;16:149-59 pubmed 出版商
  320. Azimzadeh O, Sievert W, Sarioglu H, Merl Pham J, Yentrapalli R, Bakshi M, et al. Integrative proteomics and targeted transcriptomics analyses in cardiac endothelial cells unravel mechanisms of long-term radiation-induced vascular dysfunction. J Proteome Res. 2015;14:1203-19 pubmed 出版商
  321. Jonchère B, Vétillard A, Toutain B, Lam D, Bernard A, Henry C, et al. Irinotecan treatment and senescence failure promote the emergence of more transformed and invasive cells that depend on anti-apoptotic Mcl-1. Oncotarget. 2015;6:409-26 pubmed
  322. Toropainen S, Malinen M, Kaikkonen S, Rytinki M, Jääskeläinen T, Sahu B, et al. SUMO ligase PIAS1 functions as a target gene selective androgen receptor coregulator on prostate cancer cell chromatin. Nucleic Acids Res. 2015;43:848-61 pubmed 出版商
  323. Irvine K, Skoien R, Bokil N, Melino M, Thomas G, Loo D, et al. Senescent human hepatocytes express a unique secretory phenotype and promote macrophage migration. World J Gastroenterol. 2014;20:17851-62 pubmed 出版商
  324. Suzuki D, Sahu R, Leu N, Senoo M. The carboxy-terminus of p63 links cell cycle control and the proliferative potential of epidermal progenitor cells. Development. 2015;142:282-90 pubmed 出版商
  325. Yang Z, Broz D, Noderer W, Ferreira J, Overton K, Spencer S, et al. p53 suppresses muscle differentiation at the myogenin step in response to genotoxic stress. Cell Death Differ. 2015;22:560-73 pubmed 出版商
  326. Myklebust L, Van Damme P, Støve S, Dörfel M, Abboud A, Kalvik T, et al. Biochemical and cellular analysis of Ogden syndrome reveals downstream Nt-acetylation defects. Hum Mol Genet. 2015;24:1956-76 pubmed 出版商
  327. Wei Z, Guo H, Liu Z, Zhang X, Liu Q, Qian Y, et al. CUL4B impedes stress-induced cellular senescence by dampening a p53-reactive oxygen species positive feedback loop. Free Radic Biol Med. 2015;79:1-13 pubmed 出版商
  328. Mohan M, Kumar V, Lackner A, Alvarez X. Dysregulated miR-34a-SIRT1-acetyl p65 axis is a potential mediator of immune activation in the colon during chronic simian immunodeficiency virus infection of rhesus macaques. J Immunol. 2015;194:291-306 pubmed 出版商
  329. Kim H, Jung G. Reactive oxygen species increase HEPN1 expression via activation of the XBP1 transcription factor. FEBS Lett. 2014;588:4413-21 pubmed 出版商
  330. Kim T, Kim H, Kang Y, Yoon S, Lee J, Choi W, et al. Psammaplin A induces Sirtuin 1-dependent autophagic cell death in doxorubicin-resistant MCF-7/adr human breast cancer cells and xenografts. Biochim Biophys Acta. 2015;1850:401-10 pubmed 出版商
  331. Giovannini C, Minguzzi M, Baglioni M, Fornari F, Giannone F, Ravaioli M, et al. Suppression of p53 by Notch3 is mediated by Cyclin G1 and sustained by MDM2 and miR-221 axis in hepatocellular carcinoma. Oncotarget. 2014;5:10607-20 pubmed
  332. Peterson E, Menon V, Gatti L, Kipping R, Dewasinghe D, Perego P, et al. Nucleolar targeting by platinum: p53-independent apoptosis follows rRNA inhibition, cell-cycle arrest, and DNA compaction. Mol Pharm. 2015;12:287-97 pubmed 出版商
  333. Bongers K, Fox D, Kunkel S, Stebounova L, Murry D, Pufall M, et al. Spermine oxidase maintains basal skeletal muscle gene expression and fiber size and is strongly repressed by conditions that cause skeletal muscle atrophy. Am J Physiol Endocrinol Metab. 2015;308:E144-58 pubmed 出版商
  334. Wohak L, Krais A, Kucab J, Stertmann J, Øvrebø S, Seidel A, et al. Carcinogenic polycyclic aromatic hydrocarbons induce CYP1A1 in human cells via a p53-dependent mechanism. Arch Toxicol. 2016;90:291-304 pubmed 出版商
  335. Chen J, Shin J, Zhao R, Phan L, Wang H, Xue Y, et al. CSN6 drives carcinogenesis by positively regulating Myc stability. Nat Commun. 2014;5:5384 pubmed 出版商
  336. Liu X, Yang W, Zheng P. Msi1 promotes tumor growth and cell proliferation by targeting cell cycle checkpoint proteins p21, p27 and p53 in cervical carcinomas. Oncotarget. 2014;5:10870-85 pubmed
  337. Gao L, Fang Y, Zhang T, Ge B, Xu B, Huang J, et al. GSTP1 arrests bladder cancer T24 cells in G0/G1 phase and up-regulates p21 expression. Int J Clin Exp Med. 2014;7:2984-91 pubmed
  338. Xu J, Huang Z, Lin L, Fu M, Song Y, Shen Y, et al. miRNA-130b is required for the ERK/FOXM1 pathway activation-mediated protective effects of isosorbide dinitrate against mesenchymal stem cell senescence induced by high glucose. Int J Mol Med. 2015;35:59-71 pubmed 出版商
  339. Xu H, Zhou Y, Coughlan K, Ding Y, Wang S, Wu Y, et al. AMPKα1 deficiency promotes cellular proliferation and DNA damage via p21 reduction in mouse embryonic fibroblasts. Biochim Biophys Acta. 2015;1853:65-73 pubmed 出版商
  340. Dettmering T, Zahnreich S, Colindres Rojas M, Durante M, Taucher Scholz G, Fournier C. Increased effectiveness of carbon ions in the production of reactive oxygen species in normal human fibroblasts. J Radiat Res. 2015;56:67-76 pubmed 出版商
  341. Wang T, Guo S, Liu Z, Wu L, Li M, Yang J, et al. CAMK2N1 inhibits prostate cancer progression through androgen receptor-dependent signaling. Oncotarget. 2014;5:10293-306 pubmed
  342. Brun C, Périé L, Baraige F, Vernus B, Bonnieu A, Blanquet V. Absence of hyperplasia in Gasp-1 overexpressing mice is dependent on myostatin up-regulation. Cell Physiol Biochem. 2014;34:1241-59 pubmed 出版商
  343. Wang Y, Kuramitsu Y, Tokuda K, Baron B, Kitagawa T, Akada J, et al. Gemcitabine induces poly (ADP-ribose) polymerase-1 (PARP-1) degradation through autophagy in pancreatic cancer. PLoS ONE. 2014;9:e109076 pubmed 出版商
  344. Overton K, Spencer S, Noderer W, Meyer T, Wang C. Basal p21 controls population heterogeneity in cycling and quiescent cell cycle states. Proc Natl Acad Sci U S A. 2014;111:E4386-93 pubmed 出版商
  345. Cuevas Ramos D, Carmichael J, Cooper O, Bonert V, Gertych A, Mamelak A, et al. A structural and functional acromegaly classification. J Clin Endocrinol Metab. 2015;100:122-31 pubmed 出版商
  346. Ono Y, Terai Y, Tanabe A, Hayashi A, Hayashi M, Yamashita Y, et al. Decorin induced by progesterone plays a crucial role in suppressing endometriosis. J Endocrinol. 2014;223:203-16 pubmed 出版商
  347. Wei H, Nickoloff J, Chen W, Liu H, Lo W, Chang Y, et al. FOXF1 mediates mesenchymal stem cell fusion-induced reprogramming of lung cancer cells. Oncotarget. 2014;5:9514-29 pubmed
  348. Harashima N, Minami T, Uemura H, Harada M. Transfection of poly(I:C) can induce reactive oxygen species-triggered apoptosis and interferon-β-mediated growth arrest in human renal cell carcinoma cells via innate adjuvant receptors and the 2-5A system. Mol Cancer. 2014;13:217 pubmed 出版商
  349. Shi Z, Shi F, Wang Y, Sheftel A, Nie G, Zhao Y, et al. Mitochondrial ferritin, a new target for inhibiting neuronal tumor cell proliferation. Cell Mol Life Sci. 2015;72:983-97 pubmed 出版商
  350. Sevcenco S, Haitel A, Ponhold L, Susani M, Fajkovic H, Shariat S, et al. Quantitative apparent diffusion coefficient measurements obtained by 3-Tesla MRI are correlated with biomarkers of bladder cancer proliferative activity. PLoS ONE. 2014;9:e106866 pubmed 出版商
  351. Patwardhan G, Hosain S, Liu D, Khiste S, Zhao Y, Bielawski J, et al. Ceramide modulates pre-mRNA splicing to restore the expression of wild-type tumor suppressor p53 in deletion-mutant cancer cells. Biochim Biophys Acta. 2014;1841:1571-80 pubmed 出版商
  352. Yang C, Chung A, Ku C, Brill L, Williams R, Wolf D. Systems analysis of the prostate tumor suppressor NKX3.1 supports roles in DNA repair and luminal cell differentiation. F1000Res. 2014;3:115 pubmed 出版商
  353. Qiu M, Liu L, Chen L, Tan G, Liang Z, Wang K, et al. microRNA-183 plays as oncogenes by increasing cell proliferation, migration and invasion via targeting protein phosphatase 2A in renal cancer cells. Biochem Biophys Res Commun. 2014;452:163-9 pubmed 出版商
  354. Van Brocklyn J, Wojton J, Meisen W, Kellough D, Ecsedy J, Kaur B, et al. Aurora-A inhibition offers a novel therapy effective against intracranial glioblastoma. Cancer Res. 2014;74:5364-70 pubmed 出版商
  355. Jacob A, Singh R, Comiskey D, Rouhier M, Mohammad F, Bebee T, et al. Stress-induced alternative splice forms of MDM2 and MDMX modulate the p53-pathway in distinct ways. PLoS ONE. 2014;9:e104444 pubmed 出版商
  356. Vassilopoulos A, Tominaga Y, Kim H, Lahusen T, Li B, Yu H, et al. WEE1 murine deficiency induces hyper-activation of APC/C and results in genomic instability and carcinogenesis. Oncogene. 2015;34:3023-35 pubmed 出版商
  357. Zhang X, Ma W, Cui J, Yao H, Zhou H, Ge Y, et al. Regulation of p21 by TWIST2 contributes to its tumor-suppressor function in human acute myeloid leukemia. Oncogene. 2015;34:3000-10 pubmed 出版商
  358. Senturk S, Yao Z, Camiolo M, Stiles B, Rathod T, Walsh A, et al. p53? is a transcriptionally inactive p53 isoform able to reprogram cells toward a metastatic-like state. Proc Natl Acad Sci U S A. 2014;111:E3287-96 pubmed 出版商
  359. Huang Y, Bulavin D. Oncogene-mediated regulation of p53 ISGylation and functions. Oncotarget. 2014;5:5808-18 pubmed
  360. Hamilton G, Abraham A, Morton J, Sampson O, Pefani D, Khoronenkova S, et al. AKT regulates NPM dependent ARF localization and p53mut stability in tumors. Oncotarget. 2014;5:6142-67 pubmed
  361. Morita A, Ariyasu S, Wang B, Asanuma T, Onoda T, Sawa A, et al. AS-2, a novel inhibitor of p53-dependent apoptosis, prevents apoptotic mitochondrial dysfunction in a transcription-independent manner and protects mice from a lethal dose of ionizing radiation. Biochem Biophys Res Commun. 2014;450:1498-504 pubmed 出版商
  362. Mungamuri S, Wang S, Manfredi J, Gu W, Aaronson S. Ash2L enables P53-dependent apoptosis by favoring stable transcription pre-initiation complex formation on its pro-apoptotic target promoters. Oncogene. 2015;34:2461-70 pubmed 出版商
  363. Patel A, Burton D, Halvorsen K, Balkan W, Reiner T, Perez Stable C, et al. MutT Homolog 1 (MTH1) maintains multiple KRAS-driven pro-malignant pathways. Oncogene. 2015;34:2586-96 pubmed 出版商
  364. Brohl A, Solomon D, Chang W, Wang J, Song Y, Sindiri S, et al. The genomic landscape of the Ewing Sarcoma family of tumors reveals recurrent STAG2 mutation. PLoS Genet. 2014;10:e1004475 pubmed 出版商
  365. Yang H, Hwangbo K, Zheng M, Cho J, Son J, Kim H, et al. Inhibitory effects of (-)-loliolide on cellular senescence in human dermal fibroblasts. Arch Pharm Res. 2015;38:876-84 pubmed 出版商
  366. Yamauchi T, Nishiyama M, Moroishi T, Yumimoto K, Nakayama K. MDM2 mediates nonproteolytic polyubiquitylation of the DEAD-Box RNA helicase DDX24. Mol Cell Biol. 2014;34:3321-40 pubmed 出版商
  367. Lau H, Ramanujulu P, Guo D, Yang T, Wirawan M, Casey P, et al. An improved isoprenylcysteine carboxylmethyltransferase inhibitor induces cancer cell death and attenuates tumor growth in vivo. Cancer Biol Ther. 2014;15:1280-91 pubmed 出版商
  368. Tabor V, Bocci M, Alikhani N, Kuiper R, Larsson L. MYC synergizes with activated BRAFV600E in mouse lung tumor development by suppressing senescence. Cancer Res. 2014;74:4222-9 pubmed 出版商
  369. Otani K, Dong Y, Li X, Lu J, Zhang N, Xu L, et al. Odd-skipped related 1 is a novel tumour suppressor gene and a potential prognostic biomarker in gastric cancer. J Pathol. 2014;234:302-15 pubmed 出版商
  370. Kaneko Y, Ota A, Nakashima A, Nagasaki H, Kodani Y, Mori K, et al. Lipopolysaccharide treatment arrests the cell cycle of BV-2 microglial cells in G? phase and protects them from UV light-induced apoptosis. J Neural Transm (Vienna). 2015;122:187-99 pubmed 出版商
  371. Hayashi A, Suenaga N, Shiomi Y, Nishitani H. PCNA-dependent ubiquitination of Cdt1 and p21 in mammalian cells. Methods Mol Biol. 2014;1170:367-82 pubmed 出版商
  372. Ying Y, Kim J, Westphal S, Long K, Padanilam B. Targeted deletion of p53 in the proximal tubule prevents ischemic renal injury. J Am Soc Nephrol. 2014;25:2707-16 pubmed 出版商
  373. Zeng L, Holly J, Perks C. Effects of physiological levels of the green tea extract epigallocatechin-3-gallate on breast cancer cells. Front Endocrinol (Lausanne). 2014;5:61 pubmed 出版商
  374. Lu H, Fang E, Sykora P, Kulikowicz T, Zhang Y, Becker K, et al. Senescence induced by RECQL4 dysfunction contributes to Rothmund-Thomson syndrome features in mice. Cell Death Dis. 2014;5:e1226 pubmed 出版商
  375. Leibold T, Hui V, Shia J, Ruby J, Riedel E, Guillem J. p27 expression in post-treatment rectal cancer: a potential novel approach for predicting residual nodal disease. Am J Surg. 2014;208:228-34 pubmed 出版商
  376. Farooqi A, Dagg R, Choi L, Shay J, Reynolds C, Lau L. Alternative lengthening of telomeres in neuroblastoma cell lines is associated with a lack of MYCN genomic amplification and with p53 pathway aberrations. J Neurooncol. 2014;119:17-26 pubmed 出版商
  377. Ram R, Mendiratta S, Bodemann B, Torres M, Eskiocak U, White M. RASSF1A inactivation unleashes a tumor suppressor/oncogene cascade with context-dependent consequences on cell cycle progression. Mol Cell Biol. 2014;34:2350-8 pubmed 出版商
  378. Machado Neto J, Lazarini M, Favaro P, Franchi G, Nowill A, Saad S, et al. ANKHD1, a novel component of the Hippo signaling pathway, promotes YAP1 activation and cell cycle progression in prostate cancer cells. Exp Cell Res. 2014;324:137-45 pubmed 出版商
  379. Wojdyla L, Stone A, Sethakorn N, Uppada S, Devito J, Bissonnette M, et al. T-oligo as an anticancer agent in colorectal cancer. Biochem Biophys Res Commun. 2014;446:596-601 pubmed 出版商
  380. Cheng J, Fan Y, Xu X, Dou J, Tang Y, Zhong X, et al. A small-molecule inhibitor of UBE2N induces neuroblastoma cell death via activation of p53 and JNK pathways. Cell Death Dis. 2014;5:e1079 pubmed 出版商
  381. Okada N, Lin C, Ribeiro M, Biton A, Lai G, He X, et al. A positive feedback between p53 and miR-34 miRNAs mediates tumor suppression. Genes Dev. 2014;28:438-50 pubmed 出版商
  382. Berkenkamp B, Susnik N, Baisantry A, Kuznetsova I, Jacobi C, Sörensen Zender I, et al. In vivo and in vitro analysis of age-associated changes and somatic cellular senescence in renal epithelial cells. PLoS ONE. 2014;9:e88071 pubmed 出版商
  383. Shen L, Qu X, Ma Y, Zheng J, Chu D, Liu B, et al. Tumor suppressor NDRG2 tips the balance of oncogenic TGF-? via EMT inhibition in colorectal cancer. Oncogenesis. 2014;3:e86 pubmed 出版商
  384. Fiori M, Barbini C, Haas T, Marroncelli N, Patrizii M, Biffoni M, et al. Antitumor effect of miR-197 targeting in p53 wild-type lung cancer. Cell Death Differ. 2014;21:774-82 pubmed 出版商
  385. Borkham Kamphorst E, Schaffrath C, Van De Leur E, Haas U, Tihaa L, Meurer S, et al. The anti-fibrotic effects of CCN1/CYR61 in primary portal myofibroblasts are mediated through induction of reactive oxygen species resulting in cellular senescence, apoptosis and attenuated TGF-? signaling. Biochim Biophys Acta. 2014;1843:902-14 pubmed 出版商
  386. Aoshiba K, Tsuji T, Itoh M, Semba S, Yamaguchi K, Nakamura H, et al. A murine model of airway fibrosis induced by repeated naphthalene exposure. Exp Toxicol Pathol. 2014;66:169-77 pubmed 出版商
  387. Jackson D, Li H, Mitchell K, Joshi A, Elferink C. Ah receptor-mediated suppression of liver regeneration through NC-XRE-driven p21Cip1 expression. Mol Pharmacol. 2014;85:533-41 pubmed 出版商
  388. Bots M, Verbrugge I, Martin B, Salmon J, Ghisi M, Baker A, et al. Differentiation therapy for the treatment of t(8;21) acute myeloid leukemia using histone deacetylase inhibitors. Blood. 2014;123:1341-52 pubmed 出版商
  389. Feng Y, Wu H, Xu Y, Zhang Z, Liu T, Lin X, et al. Zinc finger protein 451 is a novel Smad corepressor in transforming growth factor-? signaling. J Biol Chem. 2014;289:2072-83 pubmed 出版商
  390. Tanaka T, Iino M. Knockdown of Sec8 promotes cell-cycle arrest at G1/S phase by inducing p21 via control of FOXO proteins. FEBS J. 2014;281:1068-84 pubmed 出版商
  391. Pospelova T, Bykova T, Zubova S, Katolikova N, Yartzeva N, Pospelov V. Rapamycin induces pluripotent genes associated with avoidance of replicative senescence. Cell Cycle. 2013;12:3841-51 pubmed 出版商
  392. Gastaldello S, Chen X, Callegari S, Masucci M. Caspase-1 promotes Epstein-Barr virus replication by targeting the large tegument protein deneddylase to the nucleus of productively infected cells. PLoS Pathog. 2013;9:e1003664 pubmed 出版商
  393. Sanders Y, Liu H, Zhang X, Hecker L, Bernard K, Desai L, et al. Histone modifications in senescence-associated resistance to apoptosis by oxidative stress. Redox Biol. 2013;1:8-16 pubmed 出版商
  394. Song J, Peng X, Ji M, Ai M, Zhang J, Dong W. Hugl-1 induces apoptosis in esophageal carcinoma cells both in vitro and in vivo. World J Gastroenterol. 2013;19:4127-36 pubmed 出版商
  395. Du W, Jiang P, Mancuso A, Stonestrom A, Brewer M, Minn A, et al. TAp73 enhances the pentose phosphate pathway and supports cell proliferation. Nat Cell Biol. 2013;15:991-1000 pubmed 出版商
  396. Huang L, Cai Y, Lung I, Leung B, Burd A. A study of the combination of triamcinolone and 5-fluorouracil in modulating keloid fibroblasts in vitro. J Plast Reconstr Aesthet Surg. 2013;66:e251-9 pubmed 出版商
  397. Rajendran P, Kidane A, Yu T, Dashwood W, Bisson W, LOHR C, et al. HDAC turnover, CtIP acetylation and dysregulated DNA damage signaling in colon cancer cells treated with sulforaphane and related dietary isothiocyanates. Epigenetics. 2013;8:612-23 pubmed 出版商
  398. Lauxen I, Oliveira M, Rados P, Lingen M, Nor J, Sant Ana Filho M. Immunoprofiling of oral squamous cell carcinomas reveals high p63 and survivin expression. Oral Dis. 2014;20:e76-80 pubmed 出版商
  399. Miyake M, Goodison S, Urquidi V, Gomes Giacoia E, Rosser C. Expression of CXCL1 in human endothelial cells induces angiogenesis through the CXCR2 receptor and the ERK1/2 and EGF pathways. Lab Invest. 2013;93:768-78 pubmed 出版商
  400. Aoshiba K, Tsuji T, Kameyama S, Itoh M, Semba S, Yamaguchi K, et al. Senescence-associated secretory phenotype in a mouse model of bleomycin-induced lung injury. Exp Toxicol Pathol. 2013;65:1053-62 pubmed 出版商
  401. Ma T, Galimberti F, Erkmen C, Memoli V, Chinyengetere F, SEMPERE L, et al. Comparing histone deacetylase inhibitor responses in genetically engineered mouse lung cancer models and a window of opportunity trial in patients with lung cancer. Mol Cancer Ther. 2013;12:1545-55 pubmed 出版商
  402. Brochier C, Dennis G, Rivieccio M, McLaughlin K, Coppola G, Ratan R, et al. Specific acetylation of p53 by HDAC inhibition prevents DNA damage-induced apoptosis in neurons. J Neurosci. 2013;33:8621-32 pubmed 出版商
  403. Jelinek M, Balusikova K, Kopperová D, Němcová Fürstová V, Srámek J, Fidlerova J, et al. Caspase-2 is involved in cell death induction by taxanes in breast cancer cells. Cancer Cell Int. 2013;13:42 pubmed 出版商
  404. Parsons M, McCormick L, Janke L, Howard A, Bouchier Hayes L, Green D. Genetic deletion of caspase-2 accelerates MMTV/c-neu-driven mammary carcinogenesis in mice. Cell Death Differ. 2013;20:1174-82 pubmed 出版商
  405. Qiu H, Zhang L, Ren C, Zeng Z, Wu W, Luo H, et al. Targeting CDH17 suppresses tumor progression in gastric cancer by downregulating Wnt/β-catenin signaling. PLoS ONE. 2013;8:e56959 pubmed 出版商
  406. Sappino A, Buser R, Seguin Q, Fernet M, Lesne L, Gumy Pause F, et al. The CEACAM1 tumor suppressor is an ATM and p53-regulated gene required for the induction of cellular senescence by DNA damage. Oncogenesis. 2012;1:e7 pubmed 出版商
  407. Andrews P, He Z, Tzenov Y, Popadiuk C, Kao K. Evidence of a novel role for Pygopus in rRNA transcription. Biochem J. 2013;453:61-70 pubmed 出版商
  408. Olaru A, Yamanaka S, Vazquez C, Mori Y, Cheng Y, Abraham J, et al. MicroRNA-224 negatively regulates p21 expression during late neoplastic progression in inflammatory bowel disease. Inflamm Bowel Dis. 2013;19:471-80 pubmed 出版商
  409. Li L, Yang G, Ren C, Tanimoto R, Hirayama T, Wang J, et al. Glioma pathogenesis-related protein 1 induces prostate cancer cell death through Hsc70-mediated suppression of AURKA and TPX2. Mol Oncol. 2013;7:484-96 pubmed 出版商
  410. Caldon C, Sergio C, Burgess A, Deans A, Sutherland R, Musgrove E. Cyclin E2 induces genomic instability by mechanisms distinct from cyclin E1. Cell Cycle. 2013;12:606-17 pubmed 出版商
  411. Nakamura K, Aizawa K, Nakabayashi K, Kato N, Yamauchi J, Hata K, et al. DNA methyltransferase inhibitor zebularine inhibits human hepatic carcinoma cells proliferation and induces apoptosis. PLoS ONE. 2013;8:e54036 pubmed 出版商
  412. Kuchenreuther M, Weber J. The ARF tumor-suppressor controls Drosha translation to prevent Ras-driven transformation. Oncogene. 2014;33:300-7 pubmed 出版商
  413. Kohn E, Yang Y, Du Z, Nagano Y, Van Schyndle C, Herrmann M, et al. Biological responses to TGF-β in the mammary epithelium show a complex dependency on Smad3 gene dosage with important implications for tumor progression. Mol Cancer Res. 2012;10:1389-99 pubmed 出版商
  414. Sundlisaeter E, Edelmann R, Hol J, Sponheim J, Küchler A, WEISS M, et al. The alarmin IL-33 is a notch target in quiescent endothelial cells. Am J Pathol. 2012;181:1099-111 pubmed 出版商
  415. Diril M, Ratnacaram C, Padmakumar V, Du T, Wasser M, Coppola V, et al. Cyclin-dependent kinase 1 (Cdk1) is essential for cell division and suppression of DNA re-replication but not for liver regeneration. Proc Natl Acad Sci U S A. 2012;109:3826-31 pubmed 出版商
  416. He Z, Campolmi N, Ha Thi B, Dumollard J, Peoc h M, Garraud O, et al. Optimization of immunolocalization of cell cycle proteins in human corneal endothelial cells. Mol Vis. 2011;17:3494-511 pubmed
  417. Romanov V, Bardin A, Zubova S, Bykova T, Pospelov V, Pospelova T. p21Waf1 is required for complete oncogenic transformation of mouse embryo fibroblasts by E1Aad5 and c-Ha-ras oncogenes. Biochimie. 2011;93:1408-14 pubmed 出版商
  418. Pinho A, Rooman I, Real F. p53-dependent regulation of growth, epithelial-mesenchymal transition and stemness in normal pancreatic epithelial cells. Cell Cycle. 2011;10:1312-21 pubmed
  419. Anderson V, Walton M, Eve P, Boxall K, Antoni L, Caldwell J, et al. CCT241533 is a potent and selective inhibitor of CHK2 that potentiates the cytotoxicity of PARP inhibitors. Cancer Res. 2011;71:463-72 pubmed 出版商
  420. Seubwai W, Wongkham C, Puapairoj A, Okada S, Wongkham S. 22-oxa-1,25-dihydroxyvitamin D3 efficiently inhibits tumor growth in inoculated mice and primary histoculture of cholangiocarcinoma. Cancer. 2010;116:5535-43 pubmed 出版商
  421. Huang L, Wong Y, Cai Y, Lung I, Leung C, Burd A. Low-dose 5-fluorouracil induces cell cycle G2 arrest and apoptosis in keloid fibroblasts. Br J Dermatol. 2010;163:1181-5 pubmed 出版商
  422. Hirata H, Hinoda Y, Nakajima K, Kawamoto K, Kikuno N, Ueno K, et al. Wnt antagonist DKK1 acts as a tumor suppressor gene that induces apoptosis and inhibits proliferation in human renal cell carcinoma. Int J Cancer. 2011;128:1793-803 pubmed 出版商
  423. Yang G, Chang B, Yang F, Guo X, Cai K, Xiao X, et al. Aurora kinase A promotes ovarian tumorigenesis through dysregulation of the cell cycle and suppression of BRCA2. Clin Cancer Res. 2010;16:3171-81 pubmed 出版商
  424. Siatecka M, Lohmann F, Bao S, Bieker J. EKLF directly activates the p21WAF1/CIP1 gene by proximal promoter and novel intronic regulatory regions during erythroid differentiation. Mol Cell Biol. 2010;30:2811-22 pubmed 出版商
  425. Dawson M, Opat S, Taouk Y, Donovan M, Zammit M, Monaghan K, et al. Clinical and immunohistochemical features associated with a response to bortezomib in patients with multiple myeloma. Clin Cancer Res. 2009;15:714-22 pubmed 出版商
  426. Hu T, Tai M, Chuah S, Chen H, Lin J, Huang H, et al. Elevated p21 expression is associated with poor prognosis of rectal stromal tumors after resection. J Surg Oncol. 2008;98:117-23 pubmed 出版商
  427. Chou Y, Lin J, Wang C, Chiu Y, Huang C, Chuah S, et al. The abnormalities in the p53/p21WAF1 pathway have a significant role in the pathogenesis and progression of gastrointestinal stromal tumors. Oncol Rep. 2008;19:49-56 pubmed
  428. Strauss G, Westhoff M, Fischer Posovszky P, Fulda S, Schanbacher M, Eckhoff S, et al. 4-hydroperoxy-cyclophosphamide mediates caspase-independent T-cell apoptosis involving oxidative stress-induced nuclear relocation of mitochondrial apoptogenic factors AIF and EndoG. Cell Death Differ. 2008;15:332-43 pubmed
  429. Yoo J, Jung J, Lee M, Seo K, Shim B, Kim S, et al. Immunohistochemical analysis of non-small cell lung cancer: correlation with clinical parameters and prognosis. J Korean Med Sci. 2007;22:318-25 pubmed
  430. Meng L, Kohn K, Pommier Y. Dose-response transition from cell cycle arrest to apoptosis with selective degradation of Mdm2 and p21WAF1/CIP1 in response to the novel anticancer agent, aminoflavone (NSC 686,288). Oncogene. 2007;26:4806-16 pubmed
  431. Chen J, Ozanne S. Deep senescent human fibroblasts show diminished DNA damage foci but retain checkpoint capacity to oxidative stress. FEBS Lett. 2006;580:6669-73 pubmed
  432. Kim J, Lee C, Bonifant C, Ressom H, Waldman T. Activation of p53-dependent growth suppression in human cells by mutations in PTEN or PIK3CA. Mol Cell Biol. 2007;27:662-77 pubmed
  433. Park G, Choe J, Choo H, Park Y, Sohn J, Kim M. Genome-wide expression profiling of 8-chloroadenosine- and 8-chloro-cAMP-treated human neuroblastoma cells using radioactive human cDNA microarray. Exp Mol Med. 2002;34:184-93 pubmed