这是一篇来自已证抗体库的有关人类 p27的综述,是根据208篇发表使用所有方法的文章归纳的。这综述旨在帮助来邦网的访客找到最适合p27 抗体。
p27 同义词: CDKN4; KIP1; MEN1B; MEN4; P27KIP1

圣克鲁斯生物技术
小鼠 单克隆(F-8)
  • 免疫印迹; 人类; 图 2b
圣克鲁斯生物技术 p27抗体(Santa Cruz, sc-1641)被用于被用于免疫印迹在人类样本上 (图 2b). Int J Mol Sci (2021) ncbi
小鼠 单克隆(F-8)
  • 免疫印迹; 人类; 1:1000; 图 1g
圣克鲁斯生物技术 p27抗体(Santa, sc1641)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 1g). Adv Sci (Weinh) (2021) ncbi
小鼠 单克隆(F-8)
圣克鲁斯生物技术 p27抗体(Santa Cruz Biotechnology, sc-1641)被用于. Cell Death Dis (2021) ncbi
小鼠 单克隆(F-8)
  • 免疫组化; 小鼠; 1:600
圣克鲁斯生物技术 p27抗体(Santa Cruz, sc1641)被用于被用于免疫组化在小鼠样本上浓度为1:600. Nat Commun (2021) ncbi
小鼠 单克隆(DCS-72)
  • 免疫印迹; 人类; 图 1f
圣克鲁斯生物技术 p27抗体(Santa Cruz, sc-56338)被用于被用于免疫印迹在人类样本上 (图 1f). Oncogene (2019) ncbi
小鼠 单克隆(F-8)
  • 免疫印迹; 小鼠; 图 2e
圣克鲁斯生物技术 p27抗体(Santa Cruz Biotechnology, sc-1641)被用于被用于免疫印迹在小鼠样本上 (图 2e). Cell (2018) ncbi
小鼠 单克隆(F-8)
  • 免疫印迹; 人类; 图 5c
圣克鲁斯生物技术 p27抗体(SantaCruz, sc-1641)被用于被用于免疫印迹在人类样本上 (图 5c). Oncogene (2017) ncbi
小鼠 单克隆(F-8)
  • 免疫印迹; 小鼠; 图 6b
圣克鲁斯生物技术 p27抗体(Santa Cruz Biotechnology, sc-1641)被用于被用于免疫印迹在小鼠样本上 (图 6b). Stem Cells Int (2017) ncbi
小鼠 单克隆(F-8)
  • 免疫印迹; 人类; 图 1B
  • 免疫印迹; 小鼠; 图 1B
圣克鲁斯生物技术 p27抗体(Santa Cruz, sc-1641)被用于被用于免疫印迹在人类样本上 (图 1B) 和 被用于免疫印迹在小鼠样本上 (图 1B). elife (2017) ncbi
小鼠 单克隆(SX53G8.5)
  • 免疫细胞化学; 人类; 图 2S1A
  • 免疫细胞化学; 小鼠; 图 2A
圣克鲁斯生物技术 p27抗体(Santa Cruz, sc-53871)被用于被用于免疫细胞化学在人类样本上 (图 2S1A) 和 被用于免疫细胞化学在小鼠样本上 (图 2A). elife (2017) ncbi
小鼠 单克隆(F-8)
  • 免疫印迹; 人类; 图 2c
圣克鲁斯生物技术 p27抗体(Santa Cruz, sc-1641)被用于被用于免疫印迹在人类样本上 (图 2c). Oncotarget (2017) ncbi
小鼠 单克隆(F-8)
  • 免疫印迹; 人类; 图 s2c
圣克鲁斯生物技术 p27抗体(Santa Cruz, sc-1641)被用于被用于免疫印迹在人类样本上 (图 s2c). J Mol Med (Berl) (2016) ncbi
小鼠 单克隆(DCS-72)
  • 免疫印迹; 大鼠; 1:250; 图 4
圣克鲁斯生物技术 p27抗体(Santa Cruz, sc--56338)被用于被用于免疫印迹在大鼠样本上浓度为1:250 (图 4). Biofactors (2016) ncbi
小鼠 单克隆(F-8)
  • 免疫印迹; 人类; 1:100; 图 7
  • 免疫印迹; 小鼠; 1:100; 图 7
圣克鲁斯生物技术 p27抗体(Santa Cruz, sc-1641)被用于被用于免疫印迹在人类样本上浓度为1:100 (图 7) 和 被用于免疫印迹在小鼠样本上浓度为1:100 (图 7). Oncotarget (2016) ncbi
小鼠 单克隆(F-8)
  • 免疫印迹; 大鼠; 1:500; 图 3
圣克鲁斯生物技术 p27抗体(Santa Cruz, SC1641)被用于被用于免疫印迹在大鼠样本上浓度为1:500 (图 3). Int J Mol Med (2015) ncbi
小鼠 单克隆(F-8)
  • 免疫印迹; 人类; 图 s4g
圣克鲁斯生物技术 p27抗体(Santa, sc-1641)被用于被用于免疫印迹在人类样本上 (图 s4g). Nature (2015) ncbi
小鼠 单克隆(DCS-72)
  • 免疫细胞化学; 人类
  • 免疫印迹; 人类; 1:500
圣克鲁斯生物技术 p27抗体(Santa Cruz, sc-56338)被用于被用于免疫细胞化学在人类样本上 和 被用于免疫印迹在人类样本上浓度为1:500. Asian Pac J Cancer Prev (2014) ncbi
小鼠 单克隆(SX53G8.5)
  • 免疫印迹; 人类; 图 4f
圣克鲁斯生物技术 p27抗体(Santa, sc-53871)被用于被用于免疫印迹在人类样本上 (图 4f). Hum Mol Genet (2015) ncbi
小鼠 单克隆(F-8)
  • 免疫印迹; 人类; 图 5
圣克鲁斯生物技术 p27抗体(Santa Cruz, sc-1641)被用于被用于免疫印迹在人类样本上 (图 5). Oncotarget (2014) ncbi
小鼠 单克隆(F-8)
  • 免疫组化-石蜡切片; 小鼠; 1:50
圣克鲁斯生物技术 p27抗体(Santa Cruz, sc-1641)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:50. Oncogene (2008) ncbi
艾博抗(上海)贸易有限公司
domestic rabbit 单克隆(Y236)
  • 免疫印迹; 大鼠; 图 s4b
艾博抗(上海)贸易有限公司 p27抗体(Abcam, ab32034)被用于被用于免疫印迹在大鼠样本上 (图 s4b). J Cell Biol (2021) ncbi
domestic rabbit 单克隆(Y236)
  • 免疫组化-石蜡切片; 人类; 1:200; 图 5d
艾博抗(上海)贸易有限公司 p27抗体(Abcam, ab32034)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:200 (图 5d). Oncol Rep (2020) ncbi
domestic rabbit 单克隆(Y236)
  • 免疫组化; 人类; 1:200; 图 6d
  • 免疫印迹; 人类; 1:1000; 图 2g
艾博抗(上海)贸易有限公司 p27抗体(Abcam, ab32034)被用于被用于免疫组化在人类样本上浓度为1:200 (图 6d) 和 被用于免疫印迹在人类样本上浓度为1:1000 (图 2g). Nat Commun (2020) ncbi
domestic rabbit 单克隆(Y236)
  • 免疫组化-冰冻切片; 人类; 图 3a, s6f, s6g, 5a
  • 免疫组化-石蜡切片; 人类; 1:2400; 图 s10c
艾博抗(上海)贸易有限公司 p27抗体(Abcam, ab32034)被用于被用于免疫组化-冰冻切片在人类样本上 (图 3a, s6f, s6g, 5a) 和 被用于免疫组化-石蜡切片在人类样本上浓度为1:2400 (图 s10c). Sci Adv (2019) ncbi
domestic rabbit 单克隆(EP233(2)Y)
  • 免疫组化; 小鼠; 图 s4c
艾博抗(上海)贸易有限公司 p27抗体(Abcam, ab62364)被用于被用于免疫组化在小鼠样本上 (图 s4c). Nature (2019) ncbi
小鼠 单克隆(SX53G8)
  • 免疫印迹; 人类; 图 5a
艾博抗(上海)贸易有限公司 p27抗体(Abcam, ab193379)被用于被用于免疫印迹在人类样本上 (图 5a). J Mol Neurosci (2018) ncbi
domestic rabbit 单克隆(Y236)
  • 其他; 人类; 图 4c
艾博抗(上海)贸易有限公司 p27抗体(Abcam, ab32034)被用于被用于其他在人类样本上 (图 4c). Cancer Cell (2018) ncbi
  • 其他; 人类; 图 4c
艾博抗(上海)贸易有限公司 p27抗体(Abcam, ab64949)被用于被用于其他在人类样本上 (图 4c). Cancer Cell (2018) ncbi
domestic rabbit 单克隆(Y236)
  • 免疫印迹; 人类; 图 7b
艾博抗(上海)贸易有限公司 p27抗体(Abcam, AB32034)被用于被用于免疫印迹在人类样本上 (图 7b). Cell (2018) ncbi
  • reverse phase protein lysate microarray; 人类; 图 st6
艾博抗(上海)贸易有限公司 p27抗体(Abcam, ab64949)被用于被用于reverse phase protein lysate microarray在人类样本上 (图 st6). Cancer Cell (2017) ncbi
  • 免疫印迹; 人类
艾博抗(上海)贸易有限公司 p27抗体(Abcam, ab64949)被用于被用于免疫印迹在人类样本上. Cell Syst (2017) ncbi
domestic rabbit 单克隆(Y236)
  • 免疫印迹; 人类; 图 6e
艾博抗(上海)贸易有限公司 p27抗体(Abcam, ab32034)被用于被用于免疫印迹在人类样本上 (图 6e). Nat Genet (2016) ncbi
domestic rabbit 单克隆
  • 免疫印迹; 人类; 1:500; 图 4
艾博抗(上海)贸易有限公司 p27抗体(Abcam, ab92741)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 4). Biol Open (2016) ncbi
domestic rabbit 单克隆(Y236)
  • 免疫印迹; 人类; 图 5
艾博抗(上海)贸易有限公司 p27抗体(Abcam, ab32034)被用于被用于免疫印迹在人类样本上 (图 5). Oncotarget (2016) ncbi
domestic rabbit 单克隆(Y236)
  • 免疫印迹; 人类; 1:1000; 图 3
艾博抗(上海)贸易有限公司 p27抗体(Abcam, ab32034)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3). J Hematol Oncol (2015) ncbi
domestic rabbit 单克隆(EP233(2)Y)
  • 免疫印迹; 人类; 图 4
艾博抗(上海)贸易有限公司 p27抗体(Abcam, ab62364)被用于被用于免疫印迹在人类样本上 (图 4). Oncotarget (2015) ncbi
domestic rabbit 单克隆(EP233(2)Y)
  • 免疫印迹; 人类; 1:1000; 图 1
艾博抗(上海)贸易有限公司 p27抗体(Abcam, ab62364)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 1). Cell Commun Signal (2015) ncbi
  • 免疫印迹; 人类; 1:1000
艾博抗(上海)贸易有限公司 p27抗体(Abcam, ab64949)被用于被用于免疫印迹在人类样本上浓度为1:1000. Cell Signal (2014) ncbi
  • 免疫印迹; 人类; 1:1000
艾博抗(上海)贸易有限公司 p27抗体(Abcam, ab85047)被用于被用于免疫印迹在人类样本上浓度为1:1000. Cell Signal (2014) ncbi
domestic rabbit 单克隆(Y236)
  • 免疫组化-石蜡切片; 人类; 0.3 ug/ml
  • 免疫印迹; 人类; 1:1000
艾博抗(上海)贸易有限公司 p27抗体(Abcam, Y236)被用于被用于免疫组化-石蜡切片在人类样本上浓度为0.3 ug/ml 和 被用于免疫印迹在人类样本上浓度为1:1000. Am J Pathol (2012) ncbi
domestic rabbit 单克隆(Y236)
  • 免疫印迹; 人类
艾博抗(上海)贸易有限公司 p27抗体(Abcam, Ab32034)被用于被用于免疫印迹在人类样本上. Cell Death Differ (2011) ncbi
赛默飞世尔
小鼠 单克隆(DCS-72.F6)
  • 免疫组化; 小鼠; 1:100; 图 5b
赛默飞世尔 p27抗体(NeoMarkers, MS-256-P1)被用于被用于免疫组化在小鼠样本上浓度为1:100 (图 5b). Nat Commun (2017) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 图 5f
  • 免疫印迹; 人类; 图 5a
赛默飞世尔 p27抗体(Thermo Fischer Scientific, PA5-13254)被用于被用于免疫细胞化学在人类样本上 (图 5f) 和 被用于免疫印迹在人类样本上 (图 5a). Toxicol In Vitro (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 3e
赛默飞世尔 p27抗体(Thermo Scientific, PA5-13254)被用于被用于免疫印迹在人类样本上 (图 3e). Exp Cell Res (2017) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 图 2m
赛默飞世尔 p27抗体(Neo Markers, RB-9019-P0)被用于被用于免疫组化在小鼠样本上 (图 2m). Stem Cell Reports (2016) ncbi
小鼠 单克隆(DCS-72.F6)
  • 免疫印迹; 人类; 1:500; 图 2
赛默飞世尔 p27抗体(BioSource, AHZ0452)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 2). Int J Mol Sci (2016) ncbi
小鼠 单克隆(DCS-72.F6)
  • 免疫细胞化学; 小鼠; 1:200; 图 5
赛默飞世尔 p27抗体(Biosource, AHZ0452)被用于被用于免疫细胞化学在小鼠样本上浓度为1:200 (图 5). Methods Mol Biol (2016) ncbi
domestic rabbit 多克隆
赛默飞世尔 p27抗体(Invitrogen, 346300)被用于. PLoS ONE (2015) ncbi
小鼠 单克隆(DCS-72.F6)
  • 免疫组化; 小鼠; 1:200
赛默飞世尔 p27抗体(NeoMarkers/Thermo, MS-256-P1)被用于被用于免疫组化在小鼠样本上浓度为1:200. Proc Natl Acad Sci U S A (2015) ncbi
domestic rabbit 多克隆
赛默飞世尔 p27抗体(NeoMarkers, PA5-27188)被用于. PLoS Genet (2015) ncbi
小鼠 单克隆(DCS-72.F6)
  • 免疫印迹; 人类; 1:200
赛默飞世尔 p27抗体(Invitrogen, AHZ0452)被用于被用于免疫印迹在人类样本上浓度为1:200. Cell Mol Life Sci (2015) ncbi
小鼠 单克隆(2B10B7)
  • 免疫印迹; 人类; 图 s1
赛默飞世尔 p27抗体(生活技术, 2B10B7)被用于被用于免疫印迹在人类样本上 (图 s1). Oncotarget (2015) ncbi
小鼠 单克隆(2B10B7)
  • 免疫印迹; 人类
赛默飞世尔 p27抗体(Invitrogen, 37-9700)被用于被用于免疫印迹在人类样本上. Cancer Res (2014) ncbi
小鼠 单克隆(DCS-72.F6)
  • 免疫印迹; 小鼠; 图 1
赛默飞世尔 p27抗体(Thermo Fisher Scientific, DCS-72.F6)被用于被用于免疫印迹在小鼠样本上 (图 1). Int J Endocrinol (2012) ncbi
小鼠 单克隆(DCS-72.F6)
  • 免疫组化-石蜡切片; 人类; 1:40
赛默飞世尔 p27抗体(Lab Vision, MS-256)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:40. Int J Oncol (2012) ncbi
小鼠 单克隆(DCS-72.F6)
  • 免疫组化-石蜡切片; 小鼠; 图 2
赛默飞世尔 p27抗体(Biosource, AHZ0452)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 2). Dev Biol (2009) ncbi
小鼠 单克隆(DCS-72.F6)
赛默飞世尔 p27抗体(NeoMarkers, DCS-72.F6)被用于. Mol Cell Biol (2008) ncbi
小鼠 单克隆(DCS-72.F6)
  • 免疫印迹; 人类; 图 7
赛默飞世尔 p27抗体(Biosource, DCS-72.F6)被用于被用于免疫印迹在人类样本上 (图 7). Oncogene (2003) ncbi
赛信通(上海)生物试剂有限公司
domestic rabbit 单克隆(D69C12)
  • 免疫印迹; 人类; 1:3000; 图 5d
赛信通(上海)生物试剂有限公司 p27抗体(Cell Signaling, 3686)被用于被用于免疫印迹在人类样本上浓度为1:3000 (图 5d). NPJ Precis Oncol (2021) ncbi
domestic rabbit 单克隆(D69C12)
  • 免疫印迹; 人类; 1:1000; 图 3b
赛信通(上海)生物试剂有限公司 p27抗体(Cell Signaling Technology, 3686)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3b). Clin Transl Med (2021) ncbi
domestic rabbit 单克隆(D69C12)
  • 免疫印迹; 人类; 1:1000; 图 s3f
赛信通(上海)生物试剂有限公司 p27抗体(Cell Signaling Technology, 3686)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 s3f). Oncogene (2021) ncbi
domestic rabbit 单克隆(D69C12)
  • 免疫印迹; 人类; 图 6c
赛信通(上海)生物试剂有限公司 p27抗体(Cell Signaling, D69C12)被用于被用于免疫印迹在人类样本上 (图 6c). Int J Mol Sci (2021) ncbi
domestic rabbit 单克隆(D69C12)
  • 免疫印迹; 人类; 图 3c
赛信通(上海)生物试剂有限公司 p27抗体(CST, 3686S)被用于被用于免疫印迹在人类样本上 (图 3c). Antioxidants (Basel) (2021) ncbi
小鼠 单克隆(SX53G8.5)
  • 免疫印迹; 小鼠; 1:1000; 图 3f
赛信通(上海)生物试剂有限公司 p27抗体(Cell Signaling Technology, 3698)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 3f). PLoS ONE (2021) ncbi
domestic rabbit 单克隆(D69C12)
  • 免疫组化; 小鼠; 1:500
赛信通(上海)生物试剂有限公司 p27抗体(Cell Signaling Technology, 3686)被用于被用于免疫组化在小鼠样本上浓度为1:500. Cell Rep (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹基因敲除验证; 人类; 图 s1a
赛信通(上海)生物试剂有限公司 p27抗体(CST, 2552)被用于被用于免疫印迹基因敲除验证在人类样本上 (图 s1a). Nat Cell Biol (2021) ncbi
domestic rabbit 单克隆(D69C12)
  • 免疫印迹; 人类; 图 4a
赛信通(上海)生物试剂有限公司 p27抗体(Cell Signaling Technology, 3686)被用于被用于免疫印迹在人类样本上 (图 4a). Cell Death Dis (2021) ncbi
domestic rabbit 单克隆(D69C12)
  • 免疫印迹; 人类; 图 2e
赛信通(上海)生物试剂有限公司 p27抗体(Cell Signaling Technology, 3686)被用于被用于免疫印迹在人类样本上 (图 2e). Cell Death Dis (2021) ncbi
domestic rabbit 单克隆(D69C12)
  • 免疫印迹; 人类; 1:1000; 图 3s1b
赛信通(上海)生物试剂有限公司 p27抗体(Cell Signaling Technology, 3686)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3s1b). elife (2020) ncbi
domestic rabbit 单克隆(D69C12)
  • 免疫印迹; 人类; 图 1e
赛信通(上海)生物试剂有限公司 p27抗体(Cell Signaling, 3686)被用于被用于免疫印迹在人类样本上 (图 1e). elife (2020) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 3e
赛信通(上海)生物试剂有限公司 p27抗体(Cell Signaling Technology, #2552)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 3e). EBioMedicine (2020) ncbi
domestic rabbit 单克隆(D37H1)
  • 免疫印迹; 小鼠; 图 3b
赛信通(上海)生物试剂有限公司 p27抗体(Cell Signaling Technology, 3688)被用于被用于免疫印迹在小鼠样本上 (图 3b). Aging (Albany NY) (2020) ncbi
domestic rabbit 单克隆(D69C12)
  • 免疫印迹; 人类; 图 3d
赛信通(上海)生物试剂有限公司 p27抗体(Cell Signaling, 3686)被用于被用于免疫印迹在人类样本上 (图 3d). J Cancer (2020) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 1h
赛信通(上海)生物试剂有限公司 p27抗体(Cell Signaling Technology, 2552)被用于被用于免疫印迹在人类样本上 (图 1h). Nature (2020) ncbi
domestic rabbit 单克隆(D69C12)
  • 免疫印迹; 人类; 图 4g
赛信通(上海)生物试剂有限公司 p27抗体(Cell Signaling, 3686)被用于被用于免疫印迹在人类样本上 (图 4g). Mol Oncol (2020) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 6d
赛信通(上海)生物试剂有限公司 p27抗体(Cell Signaling, 2552S)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 6d). Science (2019) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 鸡; 1:500; 图 2k
赛信通(上海)生物试剂有限公司 p27抗体(Cell Signalling Technology, 2552)被用于被用于免疫组化-冰冻切片在鸡样本上浓度为1:500 (图 2k). elife (2019) ncbi
domestic rabbit 单克隆(D69C12)
  • 免疫印迹; 人类; 图 5e, s3b
赛信通(上海)生物试剂有限公司 p27抗体(Cell Signaling, 3686)被用于被用于免疫印迹在人类样本上 (图 5e, s3b). Cell Death Dis (2019) ncbi
domestic rabbit 单克隆(D69C12)
  • 免疫印迹; 人类; 1:1000; 图 4a
赛信通(上海)生物试剂有限公司 p27抗体(Cell Signaling, 3686)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 4a). Biosci Rep (2019) ncbi
小鼠 单克隆(SX53G8.5)
  • 免疫印迹; 人类; 图 5c
赛信通(上海)生物试剂有限公司 p27抗体(cell signaling technologies, 3698)被用于被用于免疫印迹在人类样本上 (图 5c). Front Genet (2019) ncbi
domestic rabbit 单克隆(D69C12)
  • 免疫印迹; 人类; 1:1000; 图 s2d
赛信通(上海)生物试剂有限公司 p27抗体(Cell Signaling, 3686S)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 s2d). Nat Commun (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 1e
赛信通(上海)生物试剂有限公司 p27抗体(CST, 2552)被用于被用于免疫印迹在人类样本上 (图 1e). Cell Rep (2019) ncbi
domestic rabbit 单克隆(D69C12)
  • 免疫印迹; 小鼠; 1:1000; 图 4b
赛信通(上海)生物试剂有限公司 p27抗体(CST, 3686)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 4b). Theranostics (2019) ncbi
domestic rabbit 单克隆(D69C12)
  • 免疫印迹; 人类; 1:1000; 图 2d
赛信通(上海)生物试剂有限公司 p27抗体(Cell Signaling Technology, 3686)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 2d). J Exp Clin Cancer Res (2019) ncbi
domestic rabbit 单克隆(D69C12)
  • 免疫印迹; 人类; 图 1f
赛信通(上海)生物试剂有限公司 p27抗体(Cell Signaling, 3686)被用于被用于免疫印迹在人类样本上 (图 1f). J Exp Med (2019) ncbi
domestic rabbit 单克隆(D37H1)
  • 免疫印迹; 小鼠; 1:100; 图 4m
赛信通(上海)生物试剂有限公司 p27抗体(Cell Signaling, 3688)被用于被用于免疫印迹在小鼠样本上浓度为1:100 (图 4m). Mol Psychiatry (2018) ncbi
domestic rabbit 单克隆(D69C12)
  • 免疫印迹; 人类; 图 s9e
赛信通(上海)生物试剂有限公司 p27抗体(Cell signaling, 3686)被用于被用于免疫印迹在人类样本上 (图 s9e). Genes Dev (2018) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 2b
赛信通(上海)生物试剂有限公司 p27抗体(Cell Signaling, 2552)被用于被用于免疫印迹在人类样本上 (图 2b). Cancer Chemother Pharmacol (2018) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 4a
  • 免疫组化; 小鼠; 图 2a
赛信通(上海)生物试剂有限公司 p27抗体(Cell Signaling Technology, 2552)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 4a) 和 被用于免疫组化在小鼠样本上 (图 2a). Oncogene (2018) ncbi
domestic rabbit 单克隆(D69C12)
  • 免疫印迹; 人类; 1:3000; 图 5c
赛信通(上海)生物试剂有限公司 p27抗体(Cell Signaling, 3686)被用于被用于免疫印迹在人类样本上浓度为1:3000 (图 5c). Nat Commun (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 3b
赛信通(上海)生物试剂有限公司 p27抗体(Cell Signaling Technology, 2552)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 3b). Cancer Discov (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 2g
赛信通(上海)生物试剂有限公司 p27抗体(Cell Signaling, 2552)被用于被用于免疫印迹在人类样本上 (图 2g). Oncogene (2017) ncbi
domestic rabbit 单克隆(D69C12)
  • 免疫印迹; 人类; 图 3e
赛信通(上海)生物试剂有限公司 p27抗体(Cell signaling, 3686)被用于被用于免疫印迹在人类样本上 (图 3e). Leuk Lymphoma (2018) ncbi
domestic rabbit 单克隆(D37H1)
  • 免疫印迹; 人类; 1:1000; 图 4a
赛信通(上海)生物试剂有限公司 p27抗体(Cell Signaling Technology, D37H1)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 4a). Immun Inflamm Dis (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 4b
赛信通(上海)生物试剂有限公司 p27抗体(Cell Signaling, 2552)被用于被用于免疫印迹在小鼠样本上 (图 4b). Basic Res Cardiol (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 4b
赛信通(上海)生物试剂有限公司 p27抗体(CST, 2552)被用于被用于免疫印迹在小鼠样本上 (图 4b). PLoS ONE (2017) ncbi
小鼠 单克隆(SX53G8.5)
  • 免疫印迹; 人类; 1:1000; 图 5a
赛信通(上海)生物试剂有限公司 p27抗体(Cell Signaling, 3698)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 5a). Oncotarget (2017) ncbi
domestic rabbit 单克隆(D69C12)
  • 免疫印迹; 人类; 图 8a
赛信通(上海)生物试剂有限公司 p27抗体(Cell Signaling, 3686)被用于被用于免疫印迹在人类样本上 (图 8a). J Cell Physiol (2017) ncbi
domestic rabbit 单克隆(D69C12)
  • 免疫组化-冰冻切片; 小鼠; 1:500; 图 12c
  • 免疫印迹; 小鼠; 1:500
赛信通(上海)生物试剂有限公司 p27抗体(Cell Signaling, mAb3686)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:500 (图 12c) 和 被用于免疫印迹在小鼠样本上浓度为1:500. J Neurosci (2017) ncbi
domestic rabbit 单克隆(D69C12)
  • 免疫细胞化学; 人类; 图 s2
赛信通(上海)生物试剂有限公司 p27抗体(Cell Signaling, 3686)被用于被用于免疫细胞化学在人类样本上 (图 s2). Oncotarget (2017) ncbi
domestic rabbit 单克隆(D69C12)
  • 免疫印迹; 人类; 图 4c
赛信通(上海)生物试剂有限公司 p27抗体(Cell Signaling, 3686)被用于被用于免疫印迹在人类样本上 (图 4c). Sci Rep (2016) ncbi
domestic rabbit 单克隆(D37H1)
  • 免疫印迹; 人类; 1:1000; 图 2c
赛信通(上海)生物试剂有限公司 p27抗体(Cell Signaling, 3688)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 2c). Nat Commun (2016) ncbi
domestic rabbit 单克隆(D69C12)
  • 免疫印迹; 人类; 图 2
赛信通(上海)生物试剂有限公司 p27抗体(Cell Signaling, 3686)被用于被用于免疫印迹在人类样本上 (图 2). BMC Cancer (2016) ncbi
domestic rabbit 单克隆(D69C12)
  • 免疫印迹; 人类; 图 4
赛信通(上海)生物试剂有限公司 p27抗体(Cell Signaling, 3686)被用于被用于免疫印迹在人类样本上 (图 4). Oncotarget (2016) ncbi
小鼠 单克隆(SX53G8.5)
  • 免疫印迹; 人类; 1:200; 图 st1
赛信通(上海)生物试剂有限公司 p27抗体(Cell Signaling, 3698)被用于被用于免疫印迹在人类样本上浓度为1:200 (图 st1). Nat Commun (2016) ncbi
domestic rabbit 单克隆(D69C12)
  • 免疫印迹; 人类; 1:1000; 图 1e
赛信通(上海)生物试剂有限公司 p27抗体(cell signalling, 3686)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 1e). Oncotarget (2016) ncbi
domestic rabbit 单克隆(D37H1)
  • 免疫印迹; 人类; 1:1000; 图 1
  • 免疫印迹; 小鼠; 1:1000; 图 s1
赛信通(上海)生物试剂有限公司 p27抗体(Cell Signaling, 3688)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 1) 和 被用于免疫印迹在小鼠样本上浓度为1:1000 (图 s1). Sci Rep (2016) ncbi
domestic rabbit 单克隆(D37H1)
  • 免疫印迹; 人类; 1:1000; 图 s3b
赛信通(上海)生物试剂有限公司 p27抗体(Cell Signaling, 3688)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 s3b). Oncogene (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 6h
赛信通(上海)生物试剂有限公司 p27抗体(Cell Signaling, 2552)被用于被用于免疫印迹在人类样本上 (图 6h). Cell Death Discov (2016) ncbi
domestic rabbit 单克隆(D69C12)
  • 免疫印迹; 人类; 1:1000; 图 6
赛信通(上海)生物试剂有限公司 p27抗体(Cell Signaling, 3686)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 6). Stem Cell Reports (2016) ncbi
小鼠 单克隆(SX53G8.5)
  • 免疫印迹; 人类; 图 4b
赛信通(上海)生物试剂有限公司 p27抗体(Cell Signaling, 3698)被用于被用于免疫印迹在人类样本上 (图 4b). Nat Struct Mol Biol (2016) ncbi
domestic rabbit 单克隆(D69C12)
  • 免疫印迹; 人类; 1:1000; 图 3e
赛信通(上海)生物试剂有限公司 p27抗体(CST, 3686)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3e). Aging (Albany NY) (2016) ncbi
domestic rabbit 单克隆(D69C12)
  • 免疫细胞化学; 人类; 1:100; 图 2a
赛信通(上海)生物试剂有限公司 p27抗体(cell signalling, 3686)被用于被用于免疫细胞化学在人类样本上浓度为1:100 (图 2a). Oncotarget (2016) ncbi
domestic rabbit 单克隆(D37H1)
  • 免疫印迹; 人类; 1:1000; 图 s1
赛信通(上海)生物试剂有限公司 p27抗体(Cell signaling, 3688)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 s1). EMBO Mol Med (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 1d
赛信通(上海)生物试剂有限公司 p27抗体(Cell Signaling, 2552)被用于被用于免疫印迹在人类样本上 (图 1d). Oncol Rep (2016) ncbi
小鼠 单克隆(SX53G8.5)
  • 免疫印迹; 小鼠; 1:1000; 图 s10a
赛信通(上海)生物试剂有限公司 p27抗体(CST, 3,698)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 s10a). Nat Commun (2016) ncbi
小鼠 单克隆(SX53G8.5)
  • 免疫细胞化学; 小鼠; 1:200; 图 3
  • 免疫印迹; 小鼠; 1:1000; 图 3
赛信通(上海)生物试剂有限公司 p27抗体(Cell Signaling, 3698)被用于被用于免疫细胞化学在小鼠样本上浓度为1:200 (图 3) 和 被用于免疫印迹在小鼠样本上浓度为1:1000 (图 3). Sci Rep (2016) ncbi
domestic rabbit 单克隆(D37H1)
  • 免疫印迹; 人类; 图 s1
赛信通(上海)生物试剂有限公司 p27抗体(Cell Signaling, 3688)被用于被用于免疫印迹在人类样本上 (图 s1). Cell Death Dis (2016) ncbi
domestic rabbit 单克隆(D69C12)
  • 免疫印迹; 人类; 图 7
赛信通(上海)生物试剂有限公司 p27抗体(Cell Signaling Technology, 3686)被用于被用于免疫印迹在人类样本上 (图 7). Cell Death Dis (2016) ncbi
domestic rabbit 单克隆(D37H1)
  • 免疫印迹; 小鼠; 1:1000; 图 5
赛信通(上海)生物试剂有限公司 p27抗体(CST, 3688)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 5). Nat Commun (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 人类; 1:100; 图 s1
赛信通(上海)生物试剂有限公司 p27抗体(Cell Signaling, 2552)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100 (图 s1). BMC Cancer (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 3b
赛信通(上海)生物试剂有限公司 p27抗体(Cell Signaling, 2552)被用于被用于免疫印迹在人类样本上 (图 3b). PLoS ONE (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 7a
赛信通(上海)生物试剂有限公司 p27抗体(Cell Signaling, 2552)被用于被用于免疫印迹在人类样本上 (图 7a). Oncotarget (2016) ncbi
domestic rabbit 单克隆(D69C12)
  • 免疫印迹; 人类; 图 3
赛信通(上海)生物试剂有限公司 p27抗体(Cell Signaling Technology, 3686)被用于被用于免疫印迹在人类样本上 (图 3). Oncotarget (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 p27抗体(Cell Signaling, 2552)被用于被用于免疫印迹在人类样本上. Neoplasia (2016) ncbi
小鼠 单克隆(SX53G8.5)
  • 免疫印迹; 小鼠; 1:2000; 图 s4b
赛信通(上海)生物试剂有限公司 p27抗体(Cell Signaling, SX53G8.5)被用于被用于免疫印迹在小鼠样本上浓度为1:2000 (图 s4b). Nat Commun (2016) ncbi
小鼠 单克隆(SX53G8.5)
  • 免疫印迹; 人类; 图 2b
赛信通(上海)生物试剂有限公司 p27抗体(Cell signaling, SX53G8.5)被用于被用于免疫印迹在人类样本上 (图 2b). Immunol Res (2016) ncbi
domestic rabbit 单克隆(D69C12)
  • 免疫印迹; 人类; 1:1000; 图 1
赛信通(上海)生物试剂有限公司 p27抗体(Cell Signaling Technology, 3686)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 1). Nat Cell Biol (2016) ncbi
domestic rabbit 单克隆(D69C12)
  • 免疫印迹; 人类; 图 4
赛信通(上海)生物试剂有限公司 p27抗体(Cell Signaling, 3686)被用于被用于免疫印迹在人类样本上 (图 4). Cell Cycle (2015) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 4f
赛信通(上海)生物试剂有限公司 p27抗体(Cell Signalling Technology, 2552S)被用于被用于免疫印迹在人类样本上 (图 4f). Oncotarget (2016) ncbi
domestic rabbit 单克隆(D69C12)
  • 免疫印迹; 人类; 1:1000; 图 4c, d
赛信通(上海)生物试剂有限公司 p27抗体(Cell Signaling, 3686)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 4c, d). Oncotarget (2015) ncbi
小鼠 单克隆(SX53G8.5)
  • 免疫印迹; 人类; 图 4
赛信通(上海)生物试剂有限公司 p27抗体(Cell Signaling, 3698)被用于被用于免疫印迹在人类样本上 (图 4). Drug Des Devel Ther (2015) ncbi
domestic rabbit 单克隆(D69C12)
  • 免疫印迹; 人类; 1:1000; 图 4a
赛信通(上海)生物试剂有限公司 p27抗体(Cell Signaling Technology, D69C12)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 4a). PLoS ONE (2015) ncbi
domestic rabbit 单克隆(D69C12)
  • 免疫组化; 人类; 1:200; 图 1c
  • 免疫印迹; 人类; 1:1000; 图 1a
赛信通(上海)生物试剂有限公司 p27抗体(Cell Signaling, 3686)被用于被用于免疫组化在人类样本上浓度为1:200 (图 1c) 和 被用于免疫印迹在人类样本上浓度为1:1000 (图 1a). Eur J Histochem (2015) ncbi
domestic rabbit 单克隆(D69C12)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 p27抗体(Cell Signaling, 3686)被用于被用于免疫印迹在人类样本上. Int J Oncol (2015) ncbi
domestic rabbit 单克隆(D69C12)
  • 免疫印迹; 人类; 1:1000; 图 s8
赛信通(上海)生物试剂有限公司 p27抗体(Cell signaling, D69C12)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 s8). Nat Cell Biol (2015) ncbi
domestic rabbit 单克隆(D69C12)
  • reverse phase protein lysate microarray; 人类; 表 s2
赛信通(上海)生物试剂有限公司 p27抗体(Cell Signaling Technology, 3686S)被用于被用于reverse phase protein lysate microarray在人类样本上 (表 s2). Mol Syst Biol (2015) ncbi
domestic rabbit 单克隆(D69C12)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 p27抗体(Cell Signaling Technology, 3686)被用于被用于免疫印迹在人类样本上. Int J Oncol (2015) ncbi
domestic rabbit 单克隆(D37H1)
  • 免疫印迹; 人类; 1:1000; 图 4A
赛信通(上海)生物试剂有限公司 p27抗体(Cell Signaling, 3688)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 4A). Mol Med Rep (2015) ncbi
小鼠 单克隆(SX53G8.5)
  • 免疫印迹; 人类; 图 3c
赛信通(上海)生物试剂有限公司 p27抗体(Cell signaling, SX53G8.5)被用于被用于免疫印迹在人类样本上 (图 3c). Mol Pharm (2015) ncbi
domestic rabbit 单克隆(D69C12)
  • 免疫印迹; 人类; 1:1000
赛信通(上海)生物试剂有限公司 p27抗体(Cell Signaling Technology, 3686)被用于被用于免疫印迹在人类样本上浓度为1:1000. Biochem Biophys Res Commun (2014) ncbi
domestic rabbit 单克隆(D69C12)
  • 免疫印迹; 人类; 1:1000; 图 3
赛信通(上海)生物试剂有限公司 p27抗体(Cell Signaling, 3686)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3). Cancer Res (2014) ncbi
domestic rabbit 单克隆(D69C12)
  • 免疫细胞化学; 人类
  • 免疫印迹; 人类; 1:1000
赛信通(上海)生物试剂有限公司 p27抗体(Cell Signalling Technology, 3686)被用于被用于免疫细胞化学在人类样本上 和 被用于免疫印迹在人类样本上浓度为1:1000. Cell Signal (2014) ncbi
domestic rabbit 单克隆(D69C12)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 p27抗体(Cell Signaling Technology, 3686)被用于被用于免疫印迹在人类样本上. Mol Cell Biol (2014) ncbi
小鼠 单克隆(SX53G8.5)
  • 免疫细胞化学; 人类; 1:1000
赛信通(上海)生物试剂有限公司 p27抗体(Cell Signaling, 3698)被用于被用于免疫细胞化学在人类样本上浓度为1:1000. J Cell Physiol (2014) ncbi
domestic rabbit 单克隆(D69C12)
  • 免疫细胞化学; 小鼠
赛信通(上海)生物试剂有限公司 p27抗体(Cell Signaling, 3686)被用于被用于免疫细胞化学在小鼠样本上. Respir Res (2013) ncbi
domestic rabbit 单克隆(D69C12)
  • 免疫印迹; 人类; 1:1000
赛信通(上海)生物试剂有限公司 p27抗体(Cell Signaling, 3686)被用于被用于免疫印迹在人类样本上浓度为1:1000. Lab Invest (2013) ncbi
丹科医疗器械技术服务(上海)有限公司
小鼠 单克隆(SX53G8)
  • 免疫组化-石蜡切片; 人类; 1:100; 图 3e
丹科医疗器械技术服务(上海)有限公司 p27抗体(Dako, SX53G8)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100 (图 3e). Oncotarget (2016) ncbi
小鼠 单克隆(SX53G8)
  • 免疫印迹; 人类; 图 3
丹科医疗器械技术服务(上海)有限公司 p27抗体(DakoCytomation, M 7203)被用于被用于免疫印迹在人类样本上 (图 3). Oncotarget (2016) ncbi
小鼠 单克隆(SX53G8)
  • 免疫组化; 人类
丹科医疗器械技术服务(上海)有限公司 p27抗体(Dako, SX53G8)被用于被用于免疫组化在人类样本上. Oncotarget (2014) ncbi
小鼠 单克隆(SX53G8)
  • 免疫组化-石蜡切片; 人类; 1:1000; 图 1
丹科医疗器械技术服务(上海)有限公司 p27抗体(Dako, SX53G8)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:1000 (图 1). Am J Surg (2014) ncbi
小鼠 单克隆(SX53G8)
  • 免疫印迹; 人类; 1:1000
丹科医疗器械技术服务(上海)有限公司 p27抗体(DAKO, M7203)被用于被用于免疫印迹在人类样本上浓度为1:1000. PLoS Pathog (2013) ncbi
小鼠 单克隆(SX53G8)
  • 免疫组化-石蜡切片; 人类; 1:50; 图 1
丹科医疗器械技术服务(上海)有限公司 p27抗体(Dako, SX53G8)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:50 (图 1). Br J Cancer (2012) ncbi
碧迪BD
小鼠 单克隆(57/Kip1/p27)
  • 免疫组化; 小鼠; 1:200
碧迪BD p27抗体(BD, 610242)被用于被用于免疫组化在小鼠样本上浓度为1:200. Nat Commun (2021) ncbi
小鼠 单克隆(57/Kip1/p27)
  • 免疫印迹; 小鼠; 图 3d
碧迪BD p27抗体(BD Biosciences, 610242)被用于被用于免疫印迹在小鼠样本上 (图 3d). Cell Death Discov (2021) ncbi
小鼠 单克隆(57/Kip1/p27)
  • 流式细胞仪; 人类; 1:250; 图 s5d
碧迪BD p27抗体(BD Biosciences, 610242)被用于被用于流式细胞仪在人类样本上浓度为1:250 (图 s5d). Science (2020) ncbi
小鼠 单克隆(57/Kip1/p27)
  • 免疫组化; 人类; 图 2g
  • 免疫印迹; 人类; 图 2e
碧迪BD p27抗体(BD Biosciences, 610242)被用于被用于免疫组化在人类样本上 (图 2g) 和 被用于免疫印迹在人类样本上 (图 2e). Cancer Cell (2019) ncbi
小鼠 单克隆(57/Kip1/p27)
  • 免疫组化; 小鼠; 图 s4c
碧迪BD p27抗体(BD Biosciences, 610241)被用于被用于免疫组化在小鼠样本上 (图 s4c). Nature (2019) ncbi
小鼠 单克隆(57/Kip1/p27)
  • 免疫组化; 小鼠; 1:500; 图 3b
碧迪BD p27抗体(BD Pharmingen, 610241)被用于被用于免疫组化在小鼠样本上浓度为1:500 (图 3b). elife (2019) ncbi
小鼠 单克隆(57/Kip1/p27)
  • 免疫印迹基因敲除验证; 大鼠; 1:1000; 图 s1d
  • 免疫印迹; 大鼠; 1:1000; 图 s1d
碧迪BD p27抗体(BD, 610241)被用于被用于免疫印迹基因敲除验证在大鼠样本上浓度为1:1000 (图 s1d) 和 被用于免疫印迹在大鼠样本上浓度为1:1000 (图 s1d). PLoS Genet (2019) ncbi
小鼠 单克隆(57/Kip1/p27)
  • 免疫组化; 小鼠; 图 2c
碧迪BD p27抗体(BD Biosciences, 610241)被用于被用于免疫组化在小鼠样本上 (图 2c). J Neurosci (2019) ncbi
小鼠 单克隆(57/Kip1/p27)
  • 免疫印迹; 人类; 图 2c
碧迪BD p27抗体(BD, 610241)被用于被用于免疫印迹在人类样本上 (图 2c). J Biol Chem (2017) ncbi
小鼠 单克隆(57/Kip1/p27)
  • 免疫组化-石蜡切片; 小鼠; 1:500; 图 1d
  • 免疫细胞化学; 小鼠; 1:500; 图 s8b
碧迪BD p27抗体(BD bioscience, 610241)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:500 (图 1d) 和 被用于免疫细胞化学在小鼠样本上浓度为1:500 (图 s8b). Nat Commun (2017) ncbi
小鼠 单克隆(G173-524)
  • 免疫印迹; 人类; 1:2000; 图 3g
碧迪BD p27抗体(BD Pharmingen, 554069)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 3g). Nat Commun (2017) ncbi
小鼠 单克隆(57/Kip1/p27)
  • 免疫印迹; 人类; 图 1d
碧迪BD p27抗体(BD Biosciences, 616242)被用于被用于免疫印迹在人类样本上 (图 1d). Mol Cancer Ther (2017) ncbi
小鼠 单克隆(57/Kip1/p27)
  • 免疫印迹; 人类; 图 2h
碧迪BD p27抗体(BD Biosciences, 610242)被用于被用于免疫印迹在人类样本上 (图 2h). Nat Med (2017) ncbi
小鼠 单克隆(57/Kip1/p27)
  • 免疫组化-石蜡切片; 小鼠; 1:50
碧迪BD p27抗体(Becton Dickinson, 57)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:50. FASEB J (2017) ncbi
小鼠 单克隆(57/Kip1/p27)
  • 免疫印迹; 小鼠; 1:500; 图 9a
碧迪BD p27抗体(Becton Dickinson, 610241)被用于被用于免疫印迹在小鼠样本上浓度为1:500 (图 9a). J Neurosci (2016) ncbi
小鼠 单克隆(57/Kip1/p27)
  • 免疫印迹; 人类; 1:1000; 图 3d
碧迪BD p27抗体(Becton Dickenson, 610241)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3d). Oncogene (2017) ncbi
小鼠 单克隆(57/Kip1/p27)
  • 免疫印迹; 人类; 0.5 ug/ml; 图 3B
碧迪BD p27抗体(BD, 610242)被用于被用于免疫印迹在人类样本上浓度为0.5 ug/ml (图 3B). J Cell Biol (2016) ncbi
小鼠 单克隆(57/Kip1/p27)
  • 免疫印迹; 小鼠; 图 2k
碧迪BD p27抗体(BD Transduction, 610242)被用于被用于免疫印迹在小鼠样本上 (图 2k). Cell Cycle (2016) ncbi
小鼠 单克隆(57/Kip1/p27)
  • 免疫印迹; 人类; 1:2000; 图 2c
碧迪BD p27抗体(BD Biosciences, 610241)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 2c). Oncotarget (2016) ncbi
小鼠 单克隆(57/Kip1/p27)
  • 免疫组化-石蜡切片; 人类; 1:1000; 表 3
碧迪BD p27抗体(BD TL, 610241)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:1000 (表 3). Oncol Lett (2016) ncbi
小鼠 单克隆(57/Kip1/p27)
  • 免疫印迹; 人类; 图 5
碧迪BD p27抗体(BD Transduction Laboratories, 610242)被用于被用于免疫印迹在人类样本上 (图 5). Sci Rep (2016) ncbi
小鼠 单克隆(57/Kip1/p27)
  • 免疫印迹; 人类; 图 5
碧迪BD p27抗体(BD, 610242)被用于被用于免疫印迹在人类样本上 (图 5). Sci Rep (2016) ncbi
小鼠 单克隆(57/Kip1/p27)
  • 免疫印迹; 小鼠; 1:1000; 图 6e
碧迪BD p27抗体(BD Transduction Lab, 610242)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 6e). J Biol Chem (2016) ncbi
小鼠 单克隆(57/Kip1/p27)
  • 免疫印迹; 人类; 1:1000; 图 1
碧迪BD p27抗体(BD Biosciences, BDB610242)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 1). Cell Cycle (2016) ncbi
小鼠 单克隆(57/Kip1/p27)
  • 免疫印迹; 人类; 图 6
碧迪BD p27抗体(BD Biosciences, 610242)被用于被用于免疫印迹在人类样本上 (图 6). Mol Cancer Ther (2016) ncbi
小鼠 单克隆(57/Kip1/p27)
  • 免疫印迹; 人类; 图 1
碧迪BD p27抗体(BD Transduction Laboratories, 610242)被用于被用于免疫印迹在人类样本上 (图 1). Oncogene (2016) ncbi
小鼠 单克隆(57/Kip1/p27)
  • 免疫印迹; 人类; 图 S1B
碧迪BD p27抗体(BD, 610241)被用于被用于免疫印迹在人类样本上 (图 S1B). PLoS ONE (2015) ncbi
小鼠 单克隆(57/Kip1/p27)
  • 免疫组化-冰冻切片; 小鼠; 图 1
  • 免疫印迹; 小鼠; 1:2000; 图 1
  • 免疫印迹; 人类; 1:2000; 图 4
碧迪BD p27抗体(BD Biosciences, 610241)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 1), 被用于免疫印迹在小鼠样本上浓度为1:2000 (图 1) 和 被用于免疫印迹在人类样本上浓度为1:2000 (图 4). FASEB J (2016) ncbi
小鼠 单克隆(57/Kip1/p27)
  • 免疫印迹; 人类; 1:1000; 图 1
碧迪BD p27抗体(BD Biosciences, 610241)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 1). Nat Commun (2015) ncbi
小鼠 单克隆(57/Kip1/p27)
  • 免疫印迹; 人类
碧迪BD p27抗体(BD Transduction Laboratories, 610242)被用于被用于免疫印迹在人类样本上. Cell Div (2015) ncbi
  • 免疫印迹; 人类; 图 4b
碧迪BD p27抗体(BD Biosciences, K25020)被用于被用于免疫印迹在人类样本上 (图 4b). Oncotarget (2015) ncbi
小鼠 单克隆(57/Kip1/p27)
  • 免疫印迹; 人类; 1:500; 图 1
碧迪BD p27抗体(BD Transduction Laboratories, 610241)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 1). Oncotarget (2015) ncbi
小鼠 单克隆(57/Kip1/p27)
  • 免疫印迹基因敲除验证; 小鼠; 图 2
碧迪BD p27抗体(BD Transduction Laboratories, 610242)被用于被用于免疫印迹基因敲除验证在小鼠样本上 (图 2). Nucleic Acids Res (2015) ncbi
小鼠 单克隆(57/Kip1/p27)
  • 免疫组化-冰冻切片; 小鼠; 1:1000; 图 1
碧迪BD p27抗体(BD Biosciences, 610242)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:1000 (图 1). Nat Commun (2015) ncbi
小鼠 单克隆(G173-524)
  • 免疫印迹; 小鼠; 图 9a
碧迪BD p27抗体(BD, 554069)被用于被用于免疫印迹在小鼠样本上 (图 9a). J Cell Biol (2015) ncbi
小鼠 单克隆(57/Kip1/p27)
  • 免疫印迹; 人类; 图 1
碧迪BD p27抗体(BD bioscience, 610241)被用于被用于免疫印迹在人类样本上 (图 1). Oncotarget (2015) ncbi
小鼠 单克隆(57/Kip1/p27)
  • 免疫印迹; 人类; 1:1000
碧迪BD p27抗体(InBD Transduction Lab, 610241)被用于被用于免疫印迹在人类样本上浓度为1:1000. Nat Commun (2015) ncbi
小鼠 单克隆(G173-524)
  • 免疫印迹; 人类
碧迪BD p27抗体(BD Pharmagen, G173-524)被用于被用于免疫印迹在人类样本上. PLoS ONE (2015) ncbi
小鼠 单克隆(57/Kip1/p27)
  • 免疫印迹; 人类; 图 2
碧迪BD p27抗体(BD Transduction Laboratories, 610241)被用于被用于免疫印迹在人类样本上 (图 2). Pigment Cell Melanoma Res (2015) ncbi
小鼠 单克隆(57/Kip1/p27)
  • 免疫组化; 小鼠; 1:300
碧迪BD p27抗体(BD Biosciences, 610241)被用于被用于免疫组化在小鼠样本上浓度为1:300. Dev Biol (2015) ncbi
小鼠 单克隆(57/Kip1/p27)
  • 免疫印迹; 小鼠
碧迪BD p27抗体(BD Transduction Laboratories, 610241)被用于被用于免疫印迹在小鼠样本上. Nat Commun (2014) ncbi
小鼠 单克隆(G173-524)
  • 免疫印迹; 人类; 图 s6
碧迪BD p27抗体(BD Biosciences, 554069)被用于被用于免疫印迹在人类样本上 (图 s6). Nat Commun (2014) ncbi
小鼠 单克隆(57/Kip1/p27)
  • 免疫印迹; 小鼠
碧迪BD p27抗体(BD Transduction Laboratories, 610241)被用于被用于免疫印迹在小鼠样本上. Mol Cell Biol (2014) ncbi
小鼠 单克隆(G173-524)
  • 免疫细胞化学; 人类
  • 免疫印迹; 人类
碧迪BD p27抗体(BD, G173-524)被用于被用于免疫细胞化学在人类样本上 和 被用于免疫印迹在人类样本上. Cancer Res (2014) ncbi
小鼠 单克隆(57/Kip1/p27)
  • 免疫印迹; 小鼠; 1:1000; 图 8
碧迪BD p27抗体(BD Biosciences, 610241)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 8). Development (2014) ncbi
小鼠 单克隆(57/Kip1/p27)
  • 免疫印迹; 人类
碧迪BD p27抗体(BD Transduction Laboratories, 610242)被用于被用于免疫印迹在人类样本上. BMC Cancer (2014) ncbi
  • 免疫印迹; 人类
碧迪BD p27抗体(Transduction Labs, K-25020)被用于被用于免疫印迹在人类样本上. Oncotarget (2014) ncbi
小鼠 单克隆(57/Kip1/p27)
  • 免疫印迹; 人类
碧迪BD p27抗体(BD Transduction Laboratories, 610241)被用于被用于免疫印迹在人类样本上. Biochem Biophys Res Commun (2014) ncbi
小鼠 单克隆(57/Kip1/p27)
  • 免疫印迹; 人类; 1:1000
碧迪BD p27抗体(BD Biosciences, 610241)被用于被用于免疫印迹在人类样本上浓度为1:1000. World J Gastroenterol (2014) ncbi
小鼠 单克隆(57/Kip1/p27)
  • 免疫印迹; 人类
碧迪BD p27抗体(BD Biosciences, 610241)被用于被用于免疫印迹在人类样本上. Cell Death Differ (2014) ncbi
小鼠 单克隆(57/Kip1/p27)
  • 免疫印迹; 小鼠; 1:1000
碧迪BD p27抗体(Becton Dickinson, 610242)被用于被用于免疫印迹在小鼠样本上浓度为1:1000. Genes Dev (2013) ncbi
小鼠 单克隆(57/Kip1/p27)
  • 免疫印迹; 小鼠
碧迪BD p27抗体(BD Biosciences, 610241)被用于被用于免疫印迹在小鼠样本上. Cell Death Differ (2013) ncbi
小鼠 单克隆(G173-524)
  • 免疫印迹; 人类; 图 s2
碧迪BD p27抗体(BD, 554069)被用于被用于免疫印迹在人类样本上 (图 s2). Oncogene (2014) ncbi
小鼠 单克隆(57/Kip1/p27)
  • 免疫组化-冰冻切片; 鸡; 1:200
碧迪BD p27抗体(BD Transduction Labs, 610241)被用于被用于免疫组化-冰冻切片在鸡样本上浓度为1:200. PLoS ONE (2013) ncbi
小鼠 单克隆(57/Kip1/p27)
  • 免疫印迹; 人类
碧迪BD p27抗体(BD Transduction Laboratories, 610241)被用于被用于免疫印迹在人类样本上. Cell Cycle (2013) ncbi
小鼠 单克隆(57/Kip1/p27)
  • 免疫组化-石蜡切片; 小鼠; 0.5 ug/mL
碧迪BD p27抗体(BD Transduction, 610242)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为0.5 ug/mL. Hum Reprod (2013) ncbi
小鼠 单克隆(57/Kip1/p27)
  • 免疫印迹; 小鼠; 图 4
碧迪BD p27抗体(BD Transduction, 610242)被用于被用于免疫印迹在小鼠样本上 (图 4). Proc Natl Acad Sci U S A (2012) ncbi
小鼠 单克隆(57/Kip1/p27)
  • 免疫印迹; 人类; 图 7
碧迪BD p27抗体(BD Biosciences, 61041)被用于被用于免疫印迹在人类样本上 (图 7). Oncogene (2012) ncbi
小鼠 单克隆(57/Kip1/p27)
  • 免疫印迹; 小鼠
碧迪BD p27抗体(BD Transduction Laboratories, 610241)被用于被用于免疫印迹在小鼠样本上. Genes Cells (2011) ncbi
小鼠 单克隆(57/Kip1/p27)
  • 免疫印迹; 小鼠; 1:500
碧迪BD p27抗体(BD Biosciences, 610241)被用于被用于免疫印迹在小鼠样本上浓度为1:500. J Comp Neurol (2010) ncbi
小鼠 单克隆(57/Kip1/p27)
  • 免疫组化-冰冻切片; 小鼠; 1:100
碧迪BD p27抗体(BD Transduction Labs, 610241)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:100. J Comp Neurol (2008) ncbi
小鼠 单克隆(57/Kip1/p27)
  • 免疫组化; 小鼠; 1:200
碧迪BD p27抗体(BD Transduction, 610241)被用于被用于免疫组化在小鼠样本上浓度为1:200. J Comp Neurol (2007) ncbi
徕卡显微系统(上海)贸易有限公司
小鼠 单克隆
  • 免疫组化; 小鼠; 图 s2
徕卡显微系统(上海)贸易有限公司 p27抗体(Novacastra, NCL-p27)被用于被用于免疫组化在小鼠样本上 (图 s2). FASEB J (2015) ncbi
小鼠 单克隆
  • 免疫组化-石蜡切片; 人类; 1:40
徕卡显微系统(上海)贸易有限公司 p27抗体(Novocastra, NCL-P27)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:40. Virchows Arch (2014) ncbi
文章列表
  1. Hsu H, Chen H, Tsai C, Liao P, Chan Y, Lee Y, et al. Aryl Hydrocarbon Receptor Defect Attenuates Mitogen-Activated Signaling through Leucine-Rich Repeats and Immunoglobulin-like Domains 1 (LRIG1)-Dependent EGFR Degradation. Int J Mol Sci. 2021;22: pubmed 出版商
  2. Sánchez Fdez A, Re Louhau M, Rodríguez Núñez P, Ludeña D, Matilla Almazán S, Pandiella A, et al. Clinical, genetic and pharmacological data support targeting the MEK5/ERK5 module in lung cancer. NPJ Precis Oncol. 2021;5:78 pubmed 出版商
  3. Song L, Tian X, Schekman R. Extracellular vesicles from neurons promote neural induction of stem cells through cyclin D1. J Cell Biol. 2021;220: pubmed 出版商
  4. Sakai H, Kawakami H, Teramura T, Onodera Y, Somers E, Furuuchi K, et al. Folate receptor α increases chemotherapy resistance through stabilizing MDM2 in cooperation with PHB2 that is overcome by MORAb-202 in gastric cancer. Clin Transl Med. 2021;11:e454 pubmed 出版商
  5. Wu Y, Guo Q, Ju X, Hu Z, Xia L, Deng Y, et al. HNRNPH1-stabilized LINC00662 promotes ovarian cancer progression by activating the GRP78/p38 pathway. Oncogene. 2021;40:4770-4782 pubmed 出版商
  6. Schwiebs A, Faqar Uz Zaman F, Herrero San Juan M, Radeke H. S1P Lyase Regulates Intestinal Stem Cell Quiescence via Ki-67 and FOXO3. Int J Mol Sci. 2021;22: pubmed 出版商
  7. Su S, Chen J, Jiang Y, Wang Y, Vital T, Zhang J, et al. SPOP and OTUD7A Control EWS-FLI1 Protein Stability to Govern Ewing Sarcoma Growth. Adv Sci (Weinh). 2021;8:e2004846 pubmed 出版商
  8. Nowosad A, Creff J, Jeannot P, Culerrier R, Codogno P, Manenti S, et al. p27 controls autophagic vesicle trafficking in glucose-deprived cells via the regulation of ATAT1-mediated microtubule acetylation. Cell Death Dis. 2021;12:481 pubmed 出版商
  9. Dahou H, Minati M, Jacquemin P, Assi M. Genetic Inactivation of Peroxiredoxin-I Impairs the Growth of Human Pancreatic Cancer Cells. Antioxidants (Basel). 2021;10: pubmed 出版商
  10. Morimune T, Tano A, Tanaka Y, Yukiue H, Yamamoto T, Tooyama I, et al. Gm14230 controls Tbc1d24 cytoophidia and neuronal cellular juvenescence. PLoS ONE. 2021;16:e0248517 pubmed 出版商
  11. Swahari V, Nakamura A, Hollville E, Stroud H, Simon J, Ptacek T, et al. MicroRNA-29 is an essential regulator of brain maturation through regulation of CH methylation. Cell Rep. 2021;35:108946 pubmed 出版商
  12. Andrade J, Shi C, Costa A, Choi J, Kim J, Doddaballapur A, et al. Control of endothelial quiescence by FOXO-regulated metabolites. Nat Cell Biol. 2021;23:413-423 pubmed 出版商
  13. Gualtieri A, Kyprianou N, Gregory L, Vignola M, Nicholson J, Tan R, et al. Activating mutations in BRAF disrupt the hypothalamo-pituitary axis leading to hypopituitarism in mice and humans. Nat Commun. 2021;12:2028 pubmed 出版商
  14. Dong C, Jiang T, Yin H, Song H, Zhang Y, Geng H, et al. LMNB2 promotes the progression of colorectal cancer by silencing p21 expression. Cell Death Dis. 2021;12:331 pubmed 出版商
  15. Xia X, Huang C, Liao Y, Liu Y, He J, Shao Z, et al. The deubiquitinating enzyme USP15 stabilizes ERα and promotes breast cancer progression. Cell Death Dis. 2021;12:329 pubmed 出版商
  16. Lee J, Park I, Kwak M, Rhee W, Kim S, Shin J. HMGB1 orchestrates STING-mediated senescence via TRIM30α modulation in cancer cells. Cell Death Discov. 2021;7:28 pubmed 出版商
  17. Zatulovskiy E, Zhang S, Berenson D, Topacio B, Skotheim J. Cell growth dilutes the cell cycle inhibitor Rb to trigger cell division. Science. 2020;369:466-471 pubmed 出版商
  18. Wang W, Wang H, Xiang L, Ni T, Jin F, Deng J, et al. DJ‑1 is a new prognostic marker and predicts chemotherapy efficacy in colorectal cancer. Oncol Rep. 2020;44:77-90 pubmed 出版商
  19. Arai S, Varkaris A, Nouri M, Chen S, Xie L, Balk S. MARCH5 mediates NOXA-dependent MCL1 degradation driven by kinase inhibitors and integrated stress response activation. elife. 2020;9: pubmed 出版商
  20. Alessio N, Squillaro T, Di Bernardo G, Galano G, De Rosa R, Melone M, et al. Increase of circulating IGFBP-4 following genotoxic stress and its implication for senescence. elife. 2020;9: pubmed 出版商
  21. Liu J, Liu Z, Wu Q, Lu Y, Wong C, Miao L, et al. Long noncoding RNA AGPG regulates PFKFB3-mediated tumor glycolytic reprogramming. Nat Commun. 2020;11:1507 pubmed 出版商
  22. Zhang J, Huang J, Zhang Y, Zhang X, Zhao L, Li C, et al. Microtubule associated protein 9 inhibits liver tumorigenesis by suppressing ERCC3. EBioMedicine. 2020;53:102701 pubmed 出版商
  23. Cui J, Duan J, Chu J, Guo C, Xi M, Li Y, et al. Chikusetsu saponin IVa protects pancreatic β cell against intermittent high glucose-induced injury by activating Wnt/β-catenin/TCF7L2 pathway. Aging (Albany NY). 2020;12:1591-1609 pubmed 出版商
  24. Qiao H, Tan X, Lv D, Xing R, Shu F, Zhong C, et al. Phosphoribosyl pyrophosphate synthetases 2 knockdown inhibits prostate cancer progression by suppressing cell cycle and inducing cell apoptosis. J Cancer. 2020;11:1027-1037 pubmed 出版商
  25. Xue J, Zhao Y, Aronowitz J, Mai T, Vides A, Qeriqi B, et al. Rapid non-uniform adaptation to conformation-specific KRAS(G12C) inhibition. Nature. 2020;577:421-425 pubmed 出版商
  26. Wang H, Chen Z, Wang S, Gao X, Qian M, Qiu W, et al. TGFβ1-induced beta-site APP-cleaving enzyme 2 upregulation promotes tumorigenesis through the NF-κB signalling pathway in human gliomas. Mol Oncol. 2020;14:407-425 pubmed 出版商
  27. Guiley K, Stevenson J, Lou K, Barkovich K, Kumarasamy V, Wijeratne T, et al. p27 allosterically activates cyclin-dependent kinase 4 and antagonizes palbociclib inhibition. Science. 2019;366: pubmed 出版商
  28. Pickering J, Chinnaiya K, Towers M. An autoregulatory cell cycle timer integrates growth and specification in chick wing digit development. elife. 2019;8: pubmed 出版商
  29. Liu G, Zhang Q, Xia L, Shi M, Cai J, Zhang H, et al. RNA-binding protein CELF6 is cell cycle regulated and controls cancer cell proliferation by stabilizing p21. Cell Death Dis. 2019;10:688 pubmed 出版商
  30. Nam S, Gupta V, Lee H, Lee J, Wisdom K, Varma S, et al. Cell cycle progression in confining microenvironments is regulated by a growth-responsive TRPV4-PI3K/Akt-p27Kip1 signaling axis. Sci Adv. 2019;5:eaaw6171 pubmed 出版商
  31. Ji M, Wang Z, Chen J, Gu L, Chen M, Ding Y, et al. Up-regulated ENO1 promotes the bladder cancer cell growth and proliferation via regulating β-catenin. Biosci Rep. 2019;39: pubmed 出版商
  32. Sin Chan P, Mumal I, Suwal T, Ho B, Fan X, Singh I, et al. A C19MC-LIN28A-MYCN Oncogenic Circuit Driven by Hijacked Super-enhancers Is a Distinct Therapeutic Vulnerability in ETMRs: A Lethal Brain Tumor. Cancer Cell. 2019;36:51-67.e7 pubmed 出版商
  33. Kaur S, Nag A, Gangenahalli G, Sharma K. Peroxisome Proliferator Activated Receptor Gamma Sensitizes Non-small Cell Lung Carcinoma to Gamma Irradiation Induced Apoptosis. Front Genet. 2019;10:554 pubmed 出版商
  34. Walter D, Yates T, Ruiz Torres M, Kim Kiselak C, Gudiel A, Deshpande C, et al. RB constrains lineage fidelity and multiple stages of tumour progression and metastasis. Nature. 2019;569:423-427 pubmed 出版商
  35. Lawton A, Engstrom T, Rohrbach D, Omura M, Turnbull D, Mamou J, et al. Cerebellar folding is initiated by mechanical constraints on a fluid-like layer without a cellular pre-pattern. elife. 2019;8: pubmed 出版商
  36. Gao L, Hu Y, Tian Y, Fan Z, Wang K, Li H, et al. Lung cancer deficient in the tumor suppressor GATA4 is sensitive to TGFBR1 inhibition. Nat Commun. 2019;10:1665 pubmed 出版商
  37. Ding L, Shunkwiler L, Harper N, Zhao Y, Hinohara K, Huh S, et al. Deletion of Cdkn1b in ACI rats leads to increased proliferation and pregnancy-associated changes in the mammary gland due to perturbed systemic endocrine environment. PLoS Genet. 2019;15:e1008002 pubmed 出版商
  38. Cornell L, Wander S, Visal T, Wagle N, Shapiro G. MicroRNA-Mediated Suppression of the TGF-β Pathway Confers Transmissible and Reversible CDK4/6 Inhibitor Resistance. Cell Rep. 2019;26:2667-2680.e7 pubmed 出版商
  39. Jia Q, Yang F, Huang W, Zhang Y, Bao B, Li K, et al. Low Levels of Sox2 are required for Melanoma Tumor-Repopulating Cell Dormancy. Theranostics. 2019;9:424-435 pubmed 出版商
  40. Tuo L, Xiang J, Pan X, Hu J, Tang H, Liang L, et al. PCK1 negatively regulates cell cycle progression and hepatoma cell proliferation via the AMPK/p27Kip1 axis. J Exp Clin Cancer Res. 2019;38:50 pubmed 出版商
  41. Wang D, Xu Q, Yuan Q, Jia M, Niu H, Liu X, et al. Proteasome inhibition boosts autophagic degradation of ubiquitinated-AGR2 and enhances the antitumor efficiency of bevacizumab. Oncogene. 2019;38:3458-3474 pubmed 出版商
  42. Ren D, Dai Y, Yang Q, Zhang X, Guo W, Ye L, et al. Wnt5a induces and maintains prostate cancer cells dormancy in bone. J Exp Med. 2019;216:428-449 pubmed 出版商
  43. Wang M, Tang C, Xing R, Liu X, Han X, Liu Y, et al. WDR81 regulates adult hippocampal neurogenesis through endosomal SARA-TGFβ signaling. Mol Psychiatry. 2018;: pubmed 出版商
  44. Chen X, Chanda A, Ikeuchi Y, Zhang X, Goodman J, Reddy N, et al. The Transcriptional Regulator SnoN Promotes the Proliferation of Cerebellar Granule Neuron Precursors in the Postnatal Mouse Brain. J Neurosci. 2019;39:44-62 pubmed 出版商
  45. Lafita Navarro M, Kim M, Borenstein Auerbach N, Venkateswaran N, Hao Y, Ray R, et al. The aryl hydrocarbon receptor regulates nucleolar activity and protein synthesis in MYC-expressing cells. Genes Dev. 2018;32:1303-1308 pubmed 出版商
  46. Wang J, Wang F, Zhu J, Song M, An J, Li W. Transcriptome Profiling Reveals PHLDA1 as a Novel Molecular Marker for Ischemic Cardiomyopathy. J Mol Neurosci. 2018;65:102-109 pubmed 出版商
  47. Xu B, Deng Y, Bi R, Guo H, Shu C, Shah N, et al. A first-in-class inhibitor, MLN4924 (pevonedistat), induces cell-cycle arrest, senescence, and apoptosis in human renal cell carcinoma by suppressing UBE2M-dependent neddylation modification. Cancer Chemother Pharmacol. 2018;81:1083-1093 pubmed 出版商
  48. Xiao G, Chan L, Klemm L, Braas D, Chen Z, Geng H, et al. B-Cell-Specific Diversion of Glucose Carbon Utilization Reveals a Unique Vulnerability in B Cell Malignancies. Cell. 2018;173:470-484.e18 pubmed 出版商
  49. Ng P, Li J, Jeong K, Shao S, Chen H, Tsang Y, et al. Systematic Functional Annotation of Somatic Mutations in Cancer. Cancer Cell. 2018;33:450-462.e10 pubmed 出版商
  50. Mohamed T, Ang Y, Radzinsky E, Zhou P, Huang Y, Elfenbein A, et al. Regulation of Cell Cycle to Stimulate Adult Cardiomyocyte Proliferation and Cardiac Regeneration. Cell. 2018;173:104-116.e12 pubmed 出版商
  51. Shen L, Qu X, Li H, Xu C, Wei M, Wang Q, et al. NDRG2 facilitates colorectal cancer differentiation through the regulation of Skp2-p21/p27 axis. Oncogene. 2018;37:1759-1774 pubmed 出版商
  52. Fang J, Coon B, Gillis N, Chen Z, Qiu J, Chittenden T, et al. Shear-induced Notch-Cx37-p27 axis arrests endothelial cell cycle to enable arterial specification. Nat Commun. 2017;8:2149 pubmed 出版商
  53. Haricharan S, Punturi N, Singh P, Holloway K, Anurag M, Schmelz J, et al. Loss of MutL Disrupts CHK2-Dependent Cell-Cycle Control through CDK4/6 to Promote Intrinsic Endocrine Therapy Resistance in Primary Breast Cancer. Cancer Discov. 2017;7:1168-1183 pubmed 出版商
  54. Zhou Y, Huang T, Zhang J, Wong C, Zhang B, Dong Y, et al. TEAD1/4 exerts oncogenic role and is negatively regulated by miR-4269 in gastric tumorigenesis. Oncogene. 2017;36:6518-6530 pubmed 出版商
  55. Xu L, Zhang M, Li H, Guan W, Liu B, Liu F, et al. SH3BGRL as a novel prognostic biomarker is down-regulated in acute myeloid leukemia. Leuk Lymphoma. 2018;59:918-930 pubmed 出版商
  56. Lang M, Jenkins S, Balzano P, Owoyele A, Patel A, Bamezai A. Engaging Ly-6A/Sca-1 triggers lipid raft-dependent and -independent responses in CD4+ T-cell lines. Immun Inflamm Dis. 2017;5:448-460 pubmed 出版商
  57. Wang Q, Yu Y, Zhang P, Chen Y, Li C, Chen J, et al. The crucial role of activin A/ALK4 pathway in the pathogenesis of Ang-II-induced atrial fibrosis and vulnerability to atrial fibrillation. Basic Res Cardiol. 2017;112:47 pubmed 出版商
  58. He D, Ren B, Liu S, Tan L, Cieply K, Tseng G, et al. Oncogenic activity of amplified miniature chromosome maintenance 8 in human malignancies. Oncogene. 2017;36:3629-3639 pubmed 出版商
  59. Mytych J, Romerowicz Misielak M, Koziorowski M. Long-term culture with lipopolysaccharide induces dose-dependent cytostatic and cytotoxic effects in THP-1 monocytes. Toxicol In Vitro. 2017;42:1-9 pubmed 出版商
  60. Juhasz A, Markel S, Gaur S, Liu H, Lu J, Jiang G, et al. NADPH oxidase 1 supports proliferation of colon cancer cells by modulating reactive oxygen species-dependent signal transduction. J Biol Chem. 2017;292:7866-7887 pubmed 出版商
  61. Feng W, Kawauchi D, Körkel Qu H, Deng H, Serger E, Sieber L, et al. Chd7 is indispensable for mammalian brain development through activation of a neuronal differentiation programme. Nat Commun. 2017;8:14758 pubmed 出版商
  62. Po A, Begalli F, Abballe L, Alfano V, Besharat Z, Catanzaro G, et al. ?-Arrestin1/miR-326 Transcription Unit Is Epigenetically Regulated in Neural Stem Cells Where It Controls Stemness and Growth Arrest. Stem Cells Int. 2017;2017:5274171 pubmed 出版商
  63. Cherniack A, Shen H, Walter V, Stewart C, Murray B, Bowlby R, et al. Integrated Molecular Characterization of Uterine Carcinosarcoma. Cancer Cell. 2017;31:411-423 pubmed 出版商
  64. Jeannot P, Nowosad A, Perchey R, Callot C, Bennana E, Katsube T, et al. p27Kip1 promotes invadopodia turnover and invasion through the regulation of the PAK1/Cortactin pathway. elife. 2017;6: pubmed 出版商
  65. Tormos A, Rius Pérez S, Jorques M, Rada P, Ramírez L, Valverde A, et al. p38α regulates actin cytoskeleton and cytokinesis in hepatocytes during development and aging. PLoS ONE. 2017;12:e0171738 pubmed 出版商
  66. Graziano A, Cardile V, Avola R, Vicario N, Parenti C, Salvatorelli L, et al. Wilms' tumor gene 1 silencing inhibits proliferation of human osteosarcoma MG-63 cell line by cell cycle arrest and apoptosis activation. Oncotarget. 2017;8:13917-13931 pubmed 出版商
  67. Squillaro T, Antonucci I, Alessio N, Esposito A, Cipollaro M, Melone M, et al. Impact of lysosomal storage disorders on biology of mesenchymal stem cells: Evidences from in vitro silencing of glucocerebrosidase (GBA) and alpha-galactosidase A (GLA) enzymes. J Cell Physiol. 2017;232:3454-3467 pubmed 出版商
  68. Xu J, Zhou W, Yang F, Chen G, Li H, Zhao Y, et al. The β-TrCP-FBXW2-SKP2 axis regulates lung cancer cell growth with FBXW2 acting as a tumour suppressor. Nat Commun. 2017;8:14002 pubmed 出版商
  69. Hussain R, Macklin W. Integrin-Linked Kinase (ILK) Deletion Disrupts Oligodendrocyte Development by Altering Cell Cycle. J Neurosci. 2017;37:397-412 pubmed 出版商
  70. Kim H, Lee S, Kim C, Kim Y, Ju W, Kim S. Subcellular localization of FOXO3a as a potential biomarker of response to combined treatment with inhibitors of PI3K and autophagy in PIK3CA-mutant cancer cells. Oncotarget. 2017;8:6608-6622 pubmed 出版商
  71. Hill S, Nesser N, Johnson Camacho K, Jeffress M, Johnson A, Boniface C, et al. Context Specificity in Causal Signaling Networks Revealed by Phosphoprotein Profiling. Cell Syst. 2017;4:73-83.e10 pubmed 出版商
  72. Mytych J, Wos I, Solek P, Koziorowski M. Protective role of klotho protein on epithelial cells upon co-culture with activated or senescent monocytes. Exp Cell Res. 2017;350:358-367 pubmed 出版商
  73. Vakana E, Pratt S, Blosser W, Dowless M, Simpson N, Yuan X, et al. LY3009120, a panRAF inhibitor, has significant anti-tumor activity in BRAF and KRAS mutant preclinical models of colorectal cancer. Oncotarget. 2017;8:9251-9266 pubmed 出版商
  74. Ishikawa Y, Gamo K, Yabuki M, Takagi S, Toyoshima K, Nakayama K, et al. A Novel LSD1 Inhibitor T-3775440 Disrupts GFI1B-Containing Complex Leading to Transdifferentiation and Impaired Growth of AML Cells. Mol Cancer Ther. 2017;16:273-284 pubmed 出版商
  75. Cramer S, Saha A, Liu J, Tadi S, Tiziani S, Yan W, et al. Systemic depletion of L-cyst(e)ine with cyst(e)inase increases reactive oxygen species and suppresses tumor growth. Nat Med. 2017;23:120-127 pubmed 出版商
  76. Fukunaga I, Fujimoto A, Hatakeyama K, Aoki T, Nishikawa A, Noda T, et al. In Vitro Models of GJB2-Related Hearing Loss Recapitulate Ca2+ Transients via a Gap Junction Characteristic of Developing Cochlea. Stem Cell Reports. 2016;7:1023-1036 pubmed 出版商
  77. Brocks T, Fedorchenko O, Schliermann N, Stein A, Moll U, Seegobin S, et al. Macrophage migration inhibitory factor protects from nonmelanoma epidermal tumors by regulating the number of antigen-presenting cells in skin. FASEB J. 2017;31:526-543 pubmed 出版商
  78. Sikander M, Hafeez B, Malik S, Alsayari A, Halaweish F, Yallapu M, et al. Cucurbitacin D exhibits potent anti-cancer activity in cervical cancer. Sci Rep. 2016;6:36594 pubmed 出版商
  79. Fujimura K, Mitsuhashi T, Shibata S, Shimozato S, Takahashi T. In Utero Exposure to Valproic Acid Induces Neocortical Dysgenesis via Dysregulation of Neural Progenitor Cell Proliferation/Differentiation. J Neurosci. 2016;36:10908-10919 pubmed
  80. Schlierf A, Altmann E, Quancard J, Jefferson A, Assenberg R, Renatus M, et al. Targeted inhibition of the COP9 signalosome for treatment of cancer. Nat Commun. 2016;7:13166 pubmed 出版商
  81. Qi D, Cobrinik D. MDM2 but not MDM4 promotes retinoblastoma cell proliferation through p53-independent regulation of MYCN translation. Oncogene. 2017;36:1760-1769 pubmed 出版商
  82. Hrgovic I, Doll M, Kleemann J, Wang X, Zoeller N, Pinter A, et al. The histone deacetylase inhibitor trichostatin a decreases lymphangiogenesis by inducing apoptosis and cell cycle arrest via p21-dependent pathways. BMC Cancer. 2016;16:763 pubmed
  83. He M, Yuan H, Tan B, Bai R, Kim H, Bae S, et al. SIRT1-mediated downregulation of p27Kip1 is essential for overcoming contact inhibition of Kaposi's sarcoma-associated herpesvirus transformed cells. Oncotarget. 2016;7:75698-75711 pubmed 出版商
  84. Uematsu K, Okumura F, Tonogai S, Joo Okumura A, Alemayehu D, Nishikimi A, et al. ASB7 regulates spindle dynamics and genome integrity by targeting DDA3 for proteasomal degradation. J Cell Biol. 2016;215:95-106 pubmed
  85. Treindl F, Ruprecht B, Beiter Y, Schultz S, Döttinger A, Staebler A, et al. A bead-based western for high-throughput cellular signal transduction analyses. Nat Commun. 2016;7:12852 pubmed 出版商
  86. Jayapal S, Ang H, Wang C, Bisteau X, Caldez M, Xuan G, et al. Cyclin A2 regulates erythrocyte morphology and numbers. Cell Cycle. 2016;15:3070-3081 pubmed
  87. Krepler C, Xiao M, Samanta M, Vultur A, Chen H, Brafford P, et al. Targeting Notch enhances the efficacy of ERK inhibitors in BRAF-V600E melanoma. Oncotarget. 2016;7:71211-71222 pubmed 出版商
  88. Chen P, Qin L, Li G, Tellides G, Simons M. Fibroblast growth factor (FGF) signaling regulates transforming growth factor beta (TGF?)-dependent smooth muscle cell phenotype modulation. Sci Rep. 2016;6:33407 pubmed 出版商
  89. Queisser A, Hagedorn S, Wang H, Schaefer T, Konantz M, Alavi S, et al. Ecotropic viral integration site 1, a novel oncogene in prostate cancer. Oncogene. 2017;36:1573-1584 pubmed 出版商
  90. Jinesh G, Molina J, Huang L, Laing N, Mills G, Bar Eli M, et al. Mitochondrial oligomers boost glycolysis in cancer stem cells to facilitate blebbishield-mediated transformation after apoptosis. Cell Death Discov. 2016;2:16003 pubmed 出版商
  91. Fan C, Jia L, Zheng Y, Jin C, Liu Y, Liu H, et al. MiR-34a Promotes Osteogenic Differentiation of Human Adipose-Derived Stem Cells via the RBP2/NOTCH1/CYCLIN D1 Coregulatory Network. Stem Cell Reports. 2016;7:236-48 pubmed 出版商
  92. Xue C, Yu D, Gherardi S, Koach J, Milazzo G, Gamble L, et al. MYCN promotes neuroblastoma malignancy by establishing a regulatory circuit with transcription factor AP4. Oncotarget. 2016;7:54937-54951 pubmed 出版商
  93. Mo Z, Zhang Q, Liu Z, Lauer J, Shi Y, Sun L, et al. Neddylation requires glycyl-tRNA synthetase to protect activated E2. Nat Struct Mol Biol. 2016;23:730-7 pubmed 出版商
  94. Frohwitter G, Buerger H, van Diest P, Korsching E, Kleinheinz J, Fillies T. Cytokeratin and protein expression patterns in squamous cell carcinoma of the oral cavity provide evidence for two distinct pathogenetic pathways. Oncol Lett. 2016;12:107-113 pubmed
  95. Esmaeili M, Pungsrinont T, Schaefer A, Baniahmad A. A novel crosstalk between the tumor suppressors ING1 and ING2 regulates androgen receptor signaling. J Mol Med (Berl). 2016;94:1167-1179 pubmed
  96. Zeng L, Yang X, Wen Y, Mail S, Wang M, Zhang M, et al. Overexpressed HDAC4 is associated with poor survival and promotes tumor progression in esophageal carcinoma. Aging (Albany NY). 2016;8:1236-49 pubmed 出版商
  97. Adams O, Dislich B, Berezowska S, Schläfli A, Seiler C, Kröll D, et al. Prognostic relevance of autophagy markers LC3B and p62 in esophageal adenocarcinomas. Oncotarget. 2016;7:39241-39255 pubmed 出版商
  98. Zheng J, Huang X, Tan W, Yu D, Du Z, Chang J, et al. Pancreatic cancer risk variant in LINC00673 creates a miR-1231 binding site and interferes with PTPN11 degradation. Nat Genet. 2016;48:747-57 pubmed 出版商
  99. Chen P, Qin L, Li G, Tellides G, Simons M. Smooth muscle FGF/TGFβ cross talk regulates atherosclerosis progression. EMBO Mol Med. 2016;8:712-28 pubmed 出版商
  100. Chen R, Liu H, Cheng Q, Jiang B, Peng R, Zou Q, et al. MicroRNA-93 promotes the malignant phenotypes of human glioma cells and induces their chemoresistance to temozolomide. Biol Open. 2016;5:669-77 pubmed 出版商
  101. Ferrán B, Martí Pàmies I, Alonso J, Rodríguez Calvo R, Aguiló S, Vidal F, et al. The nuclear receptor NOR-1 regulates the small muscle protein, X-linked (SMPX) and myotube differentiation. Sci Rep. 2016;6:25944 pubmed 出版商
  102. Yang Y, Lu Y, Wang L, Mizokami A, Keller E, Zhang J, et al. Skp2 is associated with paclitaxel resistance in prostate cancer cells. Oncol Rep. 2016;36:559-66 pubmed 出版商
  103. Miyawaki S, Kawamura Y, Oiwa Y, Shimizu A, Hachiya T, Bono H, et al. Tumour resistance in induced pluripotent stem cells derived from naked mole-rats. Nat Commun. 2016;7:11471 pubmed 出版商
  104. Moshfegh C, Aires L, Kisielow M, Vogel V. A gonogenic stimulated transition of mouse embryonic stem cells with enhanced control of diverse differentiation pathways. Sci Rep. 2016;6:25104 pubmed 出版商
  105. Zhuang L, Yang Y, Ma X, Han B, Wang Z, Zhao Q, et al. MicroRNA-92b promotes hepatocellular carcinoma progression by targeting Smad7 and is mediated by long non-coding RNA XIST. Cell Death Dis. 2016;7:e2203 pubmed 出版商
  106. Martínez M, Ubeda A, Moreno J, Trillo M. Power Frequency Magnetic Fields Affect the p38 MAPK-Mediated Regulation of NB69 Cell Proliferation Implication of Free Radicals. Int J Mol Sci. 2016;17:510 pubmed 出版商
  107. Hall A, Lu W, Godfrey J, Antonov A, Paicu C, Moxon S, et al. The cytoskeleton adaptor protein ankyrin-1 is upregulated by p53 following DNA damage and alters cell migration. Cell Death Dis. 2016;7:e2184 pubmed 出版商
  108. Negis Y, Karabay A. Expression of cell cycle proteins in cortical neurons-Correlation with glutamate-induced neurotoxicity. Biofactors. 2016;42:358-67 pubmed 出版商
  109. Yan B, Zhang Z, Jin D, Cai C, Jia C, Liu W, et al. mTORC1 regulates PTHrP to coordinate chondrocyte growth, proliferation and differentiation. Nat Commun. 2016;7:11151 pubmed 出版商
  110. Yoshikawa M, Ouji Y. Induction of Inner Ear Hair Cells from Mouse Embryonic Stem Cells In Vitro. Methods Mol Biol. 2016;1516:257-267 pubmed 出版商
  111. Cao C, Wang Z, Huang L, Bai L, Wang Y, Liang Y, et al. Down-regulation of tumor endothelial marker 8 suppresses cell proliferation mediated by ERK1/2 activity. Sci Rep. 2016;6:23419 pubmed 出版商
  112. Zhao H, Wang H, Bauzon F, Lu Z, Fu H, Cui J, et al. Deletions of Retinoblastoma 1 (Rb1) and Its Repressing Target S Phase Kinase-associated protein 2 (Skp2) Are Synthetic Lethal in Mouse Embryogenesis. J Biol Chem. 2016;291:10201-9 pubmed 出版商
  113. Koussounadis A, Langdon S, Um I, Kay C, Francis K, Harrison D, et al. Dynamic modulation of phosphoprotein expression in ovarian cancer xenograft models. BMC Cancer. 2016;16:205 pubmed 出版商
  114. Pavlides S, Lecanda J, Daubriac J, Pandya U, Gama P, Blank S, et al. TGF-β activates APC through Cdh1 binding for Cks1 and Skp2 proteasomal destruction stabilizing p27kip1 for normal endometrial growth. Cell Cycle. 2016;15:931-47 pubmed 出版商
  115. Dhar S, Kumar A, Zhang L, Rimando A, Lage J, Lewin J, et al. Dietary pterostilbene is a novel MTA1-targeted chemopreventive and therapeutic agent in prostate cancer. Oncotarget. 2016;7:18469-84 pubmed 出版商
  116. Ardini E, Menichincheri M, Banfi P, Bosotti R, De Ponti C, Pulci R, et al. Entrectinib, a Pan-TRK, ROS1, and ALK Inhibitor with Activity in Multiple Molecularly Defined Cancer Indications. Mol Cancer Ther. 2016;15:628-39 pubmed 出版商
  117. Singh A, Joshi S, Zulcic M, Alcaraz M, GARLICH J, Morales G, et al. PI-3K Inhibitors Preferentially Target CD15+ Cancer Stem Cell Population in SHH Driven Medulloblastoma. PLoS ONE. 2016;11:e0150836 pubmed 出版商
  118. Tang Y, Huang L, Lin W, Wang L, Tian Y, Shi D, et al. Butein inhibits cell proliferation and induces cell cycle arrest in acute lymphoblastic leukemia via FOXO3a/p27kip1 pathway. Oncotarget. 2016;7:18651-64 pubmed 出版商
  119. Cho C, Lee K, Chen W, Wang C, Chang Y, Huang H, et al. MST3 promotes proliferation and tumorigenicity through the VAV2/Rac1 signal axis in breast cancer. Oncotarget. 2016;7:14586-604 pubmed 出版商
  120. Kan H, Huang Y, Li X, Liu D, Chen J, Shu M. Zinc finger protein ZBTB20 is an independent prognostic marker and promotes tumor growth of human hepatocellular carcinoma by repressing FoxO1. Oncotarget. 2016;7:14336-49 pubmed 出版商
  121. Podmirseg S, Jäkel H, Ranches G, Kullmann M, Sohm B, Villunger A, et al. Caspases uncouple p27(Kip1) from cell cycle regulated degradation and abolish its ability to stimulate cell migration and invasion. Oncogene. 2016;35:4580-90 pubmed 出版商
  122. Couderc C, Boin A, Fuhrmann L, Vincent Salomon A, Mandati V, Kieffer Y, et al. AMOTL1 Promotes Breast Cancer Progression and Is Antagonized by Merlin. Neoplasia. 2016;18:10-24 pubmed 出版商
  123. Guo Z, Kong Q, Liu C, Zhang S, Zou L, Yan F, et al. DCAF1 controls T-cell function via p53-dependent and -independent mechanisms. Nat Commun. 2016;7:10307 pubmed 出版商
  124. Berges C, Chatterjee M, Topp M, Einsele H. Targeting polo-like kinase 1 suppresses essential functions of alloreactive T cells. Immunol Res. 2016;64:687-98 pubmed 出版商
  125. Ding X, Jiang W, Zhou P, Liu L, Wan X, Yuan X, et al. Mixed Lineage Leukemia 5 (MLL5) Protein Stability Is Cooperatively Regulated by O-GlcNac Transferase (OGT) and Ubiquitin Specific Protease 7 (USP7). PLoS ONE. 2015;10:e0145023 pubmed 出版商
  126. Guo X, Wang X, Wang Z, Banerjee S, Yang J, Huang L, et al. Site-specific proteasome phosphorylation controls cell proliferation and tumorigenesis. Nat Cell Biol. 2016;18:202-12 pubmed 出版商
  127. Adam M, Matt S, Christian S, Hess Stumpp H, Haegebarth A, Hofmann T, et al. SIAH ubiquitin ligases regulate breast cancer cell migration and invasion independent of the oxygen status. Cell Cycle. 2015;14:3734-47 pubmed 出版商
  128. Mayr C, Wagner A, Loeffelberger M, Brückner D, Jakab M, Berr F, et al. The BMI1 inhibitor PTC-209 is a potential compound to halt cellular growth in biliary tract cancer cells. Oncotarget. 2016;7:745-58 pubmed 出版商
  129. Lyu L, Whitcomb E, Jiang S, Chang M, Gu Y, Duncan M, et al. Unfolded-protein response-associated stabilization of p27(Cdkn1b) interferes with lens fiber cell denucleation, leading to cataract. FASEB J. 2016;30:1087-95 pubmed 出版商
  130. Yu D, Makkar G, Dong T, Strickland D, Sarkar R, Monahan T. MARCKS Signaling Differentially Regulates Vascular Smooth Muscle and Endothelial Cell Proliferation through a KIS-, p27kip1- Dependent Mechanism. PLoS ONE. 2015;10:e0141397 pubmed 出版商
  131. Knoll M, Macher Goeppinger S, Kopitz J, Duensing S, Pahernik S, Hohenfellner M, et al. The ribosomal protein S6 in renal cell carcinoma: functional relevance and potential as biomarker. Oncotarget. 2016;7:418-32 pubmed 出版商
  132. Kapoor I, Kanaujiya J, Kumar Y, Thota J, Bhatt M, Chattopadhyay N, et al. Proteomic discovery of MNT as a novel interacting partner of E3 ubiquitin ligase E6AP and a key mediator of myeloid differentiation. Oncotarget. 2016;7:7640-56 pubmed 出版商
  133. Suwei D, Liang Z, Zhimin L, Ruilei L, Yingying Z, Zhen L, et al. NLK functions to maintain proliferation and stemness of NSCLC and is a target of metformin. J Hematol Oncol. 2015;8:120 pubmed 出版商
  134. Xiong Y, Su H, Lv P, Ma Y, Wang S, Miao H, et al. A newly identified berberine derivative induces cancer cell senescence by stabilizing endogenous G-quadruplexes and sparking a DNA damage response at the telomere region. Oncotarget. 2015;6:35625-35 pubmed 出版商
  135. Qin J, Zhou Z, Chen W, Wang C, Zhang H, Ge G, et al. BAP1 promotes breast cancer cell proliferation and metastasis by deubiquitinating KLF5. Nat Commun. 2015;6:8471 pubmed 出版商
  136. Chiang K, Chen H, Hsu S, Pang J, Wang S, Hsu J, et al. PTEN insufficiency modulates ER+ breast cancer cell cycle progression and increases cell growth in vitro and in vivo. Drug Des Devel Ther. 2015;9:4631-8 pubmed 出版商
  137. Yan G, Wang Q, Hu S, Wang D, Qiao Y, Ma G, et al. Digoxin inhibits PDGF-BB-induced VSMC proliferation and migration through an increase in ILK signaling and attenuates neointima formation following carotid injury. Int J Mol Med. 2015;36:1001-11 pubmed 出版商
  138. Zhou N, Yuan S, Wang R, Zhang W, Chen J. Role of dual specificity tyrosine-phosphorylation-regulated kinase 1B (Dyrk1B) in S-phase entry of HPV E7 expressing cells from quiescence. Oncotarget. 2015;6:30745-61 pubmed 出版商
  139. Bornstein G, Grossman C. COP9-Signalosome deneddylase activity is enhanced by simultaneous neddylation: insights into the regulation of an enzymatic protein complex. Cell Div. 2015;10:5 pubmed 出版商
  140. Marzagalli M, Casati L, Moretti R, Montagnani Marelli M, Limonta P. Estrogen Receptor β Agonists Differentially Affect the Growth of Human Melanoma Cell Lines. PLoS ONE. 2015;10:e0134396 pubmed 出版商
  141. Schipany K, Rosner M, Ionce L, Hengstschläger M, Kovacic B. eIF3 controls cell size independently of S6K1-activity. Oncotarget. 2015;6:24361-75 pubmed
  142. Schläfli A, Berezowska S, Adams O, Langer R, Tschan M. Reliable LC3 and p62 autophagy marker detection in formalin fixed paraffin embedded human tissue by immunohistochemistry. Eur J Histochem. 2015;59:2481 pubmed 出版商
  143. Golden E, Benito Gonzalez A, Doetzlhofer A. The RNA-binding protein LIN28B regulates developmental timing in the mammalian cochlea. Proc Natl Acad Sci U S A. 2015;112:E3864-73 pubmed 出版商
  144. Preuße K, Tveriakhina L, Schuster Gossler K, Gaspar C, Rosa A, Henrique D, et al. Context-Dependent Functional Divergence of the Notch Ligands DLL1 and DLL4 In Vivo. PLoS Genet. 2015;11:e1005328 pubmed 出版商
  145. Galoian K, Qureshi A, D Ippolito G, Schiller P, Molinari M, Johnstone A, et al. Epigenetic regulation of embryonic stem cell marker miR302C in human chondrosarcoma as determinant of antiproliferative activity of proline-rich polypeptide 1. Int J Oncol. 2015;47:465-72 pubmed 出版商
  146. Ge F, Chen W, Qin J, Zhou Z, Liu R, Liu L, et al. Ataxin-3 like (ATXN3L), a member of the Josephin family of deubiquitinating enzymes, promotes breast cancer proliferation by deubiquitinating Krüppel-like factor 5 (KLF5). Oncotarget. 2015;6:21369-78 pubmed
  147. Orlando S, Gallastegui E, Besson A, Abril G, Aligué R, Pujol M, et al. p27Kip1 and p21Cip1 collaborate in the regulation of transcription by recruiting cyclin-Cdk complexes on the promoters of target genes. Nucleic Acids Res. 2015;43:6860-73 pubmed 出版商
  148. Zuckermann M, Hovestadt V, Knobbe Thomsen C, Zapatka M, Northcott P, Schramm K, et al. Somatic CRISPR/Cas9-mediated tumour suppressor disruption enables versatile brain tumour modelling. Nat Commun. 2015;6:7391 pubmed 出版商
  149. Xie C, Wei D, Zhao L, Marchetto S, Mei L, Borg J, et al. Erbin is a novel substrate of the Sag-βTrCP E3 ligase that regulates KrasG12D-induced skin tumorigenesis. J Cell Biol. 2015;209:721-37 pubmed 出版商
  150. Wang C, Nie Z, Zhou Z, Zhang H, Liu R, Wu J, et al. The interplay between TEAD4 and KLF5 promotes breast cancer partially through inhibiting the transcription of p27Kip1. Oncotarget. 2015;6:17685-97 pubmed
  151. Benzina S, Pitaval A, Lemercier C, Lustremant C, Frouin V, Wu N, et al. A kinome-targeted RNAi-based screen links FGF signaling to H2AX phosphorylation in response to radiation. Cell Mol Life Sci. 2015;72:3559-73 pubmed 出版商
  152. Ross J, Huh D, Noble L, Tavazoie S. Identification of molecular determinants of primary and metastatic tumour re-initiation in breast cancer. Nat Cell Biol. 2015;17:651-64 pubmed 出版商
  153. Xu D, Li C, Zhang X, Gong Z, Chan C, Lee S, et al. Skp2-macroH2A1-CDK8 axis orchestrates G2/M transition and tumorigenesis. Nat Commun. 2015;6:6641 pubmed 出版商
  154. Fallahi Sichani M, Moerke N, Niepel M, Zhang T, Gray N, Sorger P. Systematic analysis of BRAF(V600E) melanomas reveals a role for JNK/c-Jun pathway in adaptive resistance to drug-induced apoptosis. Mol Syst Biol. 2015;11:797 pubmed 出版商
  155. Chen Z, Shojaee S, Buchner M, Geng H, Lee J, Klemm L, et al. Signalling thresholds and negative B-cell selection in acute lymphoblastic leukaemia. Nature. 2015;521:357-61 pubmed 出版商
  156. Yanagi T, Shi R, Aza Blanc P, Reed J, Matsuzawa S. PCTAIRE1-knockdown sensitizes cancer cells to TNF family cytokines. PLoS ONE. 2015;10:e0119404 pubmed 出版商
  157. Wang Y, Han A, Chen E, Singh R, Chichester C, Moore R, et al. The cranberry flavonoids PAC DP-9 and quercetin aglycone induce cytotoxicity and cell cycle arrest and increase cisplatin sensitivity in ovarian cancer cells. Int J Oncol. 2015;46:1924-34 pubmed 出版商
  158. Vogel C, Smit M, Maddalo G, Possik P, Sparidans R, van der Burg S, et al. Cooperative induction of apoptosis in NRAS mutant melanoma by inhibition of MEK and ROCK. Pigment Cell Melanoma Res. 2015;28:307-17 pubmed 出版商
  159. van der Laden J, Soppa U, Becker W. Effect of tyrosine autophosphorylation on catalytic activity and subcellular localisation of homeodomain-interacting protein kinases (HIPK). Cell Commun Signal. 2015;13:3 pubmed 出版商
  160. Urness L, Wang X, Shibata S, Ohyama T, Mansour S. Fgf10 is required for specification of non-sensory regions of the cochlear epithelium. Dev Biol. 2015;400:59-71 pubmed 出版商
  161. Vosper J, Masuccio A, Kullmann M, Ploner C, Geley S, Hengst L. Statin-induced depletion of geranylgeranyl pyrophosphate inhibits cell proliferation by a novel pathway of Skp2 degradation. Oncotarget. 2015;6:2889-902 pubmed
  162. Xia J, Chen S, Lv Y, Lu L, Hu W, Zhou Y. ZGDHu-1 induces Gâ‚‚/M phase arrest and apoptosis in Kasumi-1 cells. Mol Med Rep. 2015;11:3398-404 pubmed 出版商
  163. Li P, Wu J, Zheng J, Pei D. A sphingosine kinase-1 inhibitor, SKI-II, induces growth inhibition and apoptosis in human gastric cancer cells. Asian Pac J Cancer Prev. 2014;15:10381-5 pubmed
  164. Myklebust L, Van Damme P, Støve S, Dörfel M, Abboud A, Kalvik T, et al. Biochemical and cellular analysis of Ogden syndrome reveals downstream Nt-acetylation defects. Hum Mol Genet. 2015;24:1956-76 pubmed 出版商
  165. Pickholtz I, Saadyan S, Keshet G, Wang V, Cohen R, Bouwman P, et al. Cooperation between BRCA1 and vitamin D is critical for histone acetylation of the p21waf1 promoter and growth inhibition of breast cancer cells and cancer stem-like cells. Oncotarget. 2014;5:11827-46 pubmed
  166. Peterson E, Menon V, Gatti L, Kipping R, Dewasinghe D, Perego P, et al. Nucleolar targeting by platinum: p53-independent apoptosis follows rRNA inhibition, cell-cycle arrest, and DNA compaction. Mol Pharm. 2015;12:287-97 pubmed 出版商
  167. O Hara L, McInnes K, Simitsidellis I, Morgan S, Atanassova N, Slowikowska Hilczer J, et al. Autocrine androgen action is essential for Leydig cell maturation and function, and protects against late-onset Leydig cell apoptosis in both mice and men. FASEB J. 2015;29:894-910 pubmed 出版商
  168. Chen J, Shin J, Zhao R, Phan L, Wang H, Xue Y, et al. CSN6 drives carcinogenesis by positively regulating Myc stability. Nat Commun. 2014;5:5384 pubmed 出版商
  169. Kim M, Kim M, Lee M, Kim C, Lim D. The MST1/2-SAV1 complex of the Hippo pathway promotes ciliogenesis. Nat Commun. 2014;5:5370 pubmed 出版商
  170. Perry M, Dufour C, Eichner L, Tsang D, Deblois G, Muller W, et al. ERBB2 deficiency alters an E2F-1-dependent adaptive stress response and leads to cardiac dysfunction. Mol Cell Biol. 2014;34:4232-43 pubmed 出版商
  171. Yanagi T, Krajewska M, Matsuzawa S, Reed J. PCTAIRE1 phosphorylates p27 and regulates mitosis in cancer cells. Cancer Res. 2014;74:5795-807 pubmed 出版商
  172. Nishimura Y, Shikanai M, Hoshino M, Ohshima T, Nabeshima Y, Mizutani K, et al. Cdk5 and its substrates, Dcx and p27kip1, regulate cytoplasmic dilation formation and nuclear elongation in migrating neurons. Development. 2014;141:3540-50 pubmed 出版商
  173. Oliveira C, de Bock C, Molloy T, Sadeqzadeh E, Geng X, Hersey P, et al. Macrophage migration inhibitory factor engages PI3K/Akt signalling and is a prognostic factor in metastatic melanoma. BMC Cancer. 2014;14:630 pubmed 出版商
  174. Qiu M, Liu L, Chen L, Tan G, Liang Z, Wang K, et al. microRNA-183 plays as oncogenes by increasing cell proliferation, migration and invasion via targeting protein phosphatase 2A in renal cancer cells. Biochem Biophys Res Commun. 2014;452:163-9 pubmed 出版商
  175. Van Brocklyn J, Wojton J, Meisen W, Kellough D, Ecsedy J, Kaur B, et al. Aurora-A inhibition offers a novel therapy effective against intracranial glioblastoma. Cancer Res. 2014;74:5364-70 pubmed 出版商
  176. Seipel A, Samaratunga H, Delahunt B, Wiklund F, Wiklund P, Lindberg J, et al. Immunohistochemical profile of ductal adenocarcinoma of the prostate. Virchows Arch. 2014;465:559-65 pubmed 出版商
  177. Caraballo J, Acosta J, Cortés M, Albajar M, Gomez Casares M, Batlle López A, et al. High p27 protein levels in chronic lymphocytic leukemia are associated to low Myc and Skp2 expression, confer resistance to apoptosis and antagonize Myc effects on cell cycle. Oncotarget. 2014;5:4694-708 pubmed
  178. Tanaka T, Iino M. Sec6 regulated cytoplasmic translocation and degradation of p27 via interactions with Jab1 and Siah1. Cell Signal. 2014;26:2071-85 pubmed 出版商
  179. Leibold T, Hui V, Shia J, Ruby J, Riedel E, Guillem J. p27 expression in post-treatment rectal cancer: a potential novel approach for predicting residual nodal disease. Am J Surg. 2014;208:228-34 pubmed 出版商
  180. Ram R, Mendiratta S, Bodemann B, Torres M, Eskiocak U, White M. RASSF1A inactivation unleashes a tumor suppressor/oncogene cascade with context-dependent consequences on cell cycle progression. Mol Cell Biol. 2014;34:2350-8 pubmed 出版商
  181. Wojdyla L, Stone A, Sethakorn N, Uppada S, Devito J, Bissonnette M, et al. T-oligo as an anticancer agent in colorectal cancer. Biochem Biophys Res Commun. 2014;446:596-601 pubmed 出版商
  182. Kim J, Kim H, Park J, Park D, Cho Y, Sohn C, et al. Epidermal growth factor upregulates Skp2/Cks1 and p27(kip1) in human extrahepatic cholangiocarcinoma cells. World J Gastroenterol. 2014;20:755-73 pubmed 出版商
  183. Douthwright S, Sluder G. Link between DNA damage and centriole disengagement/reduplication in untransformed human cells. J Cell Physiol. 2014;229:1427-36 pubmed 出版商
  184. Fiori M, Barbini C, Haas T, Marroncelli N, Patrizii M, Biffoni M, et al. Antitumor effect of miR-197 targeting in p53 wild-type lung cancer. Cell Death Differ. 2014;21:774-82 pubmed 出版商
  185. Nakayama A, Nakayama M, Turner C, Höing S, Lepore J, Adams R. Ephrin-B2 controls PDGFR? internalization and signaling. Genes Dev. 2013;27:2576-89 pubmed 出版商
  186. Gastaldello S, Chen X, Callegari S, Masucci M. Caspase-1 promotes Epstein-Barr virus replication by targeting the large tegument protein deneddylase to the nucleus of productively infected cells. PLoS Pathog. 2013;9:e1003664 pubmed 出版商
  187. van Boxtel R, Gomez Puerto C, Mokry M, Eijkelenboom A, van der Vos K, Nieuwenhuis E, et al. FOXP1 acts through a negative feedback loop to suppress FOXO-induced apoptosis. Cell Death Differ. 2013;20:1219-29 pubmed 出版商
  188. McGowan S, McCoy D. Platelet-derived growth factor-A regulates lung fibroblast S-phase entry through p27(kip1) and FoxO3a. Respir Res. 2013;14:68 pubmed 出版商
  189. Miyake M, Goodison S, Urquidi V, Gomes Giacoia E, Rosser C. Expression of CXCL1 in human endothelial cells induces angiogenesis through the CXCR2 receptor and the ERK1/2 and EGF pathways. Lab Invest. 2013;93:768-78 pubmed 出版商
  190. Moreno A, Soleto I, García Sanz P, Moreno Bueno G, Palmero I. ING4 regulates a secretory phenotype in primary fibroblasts with dual effects on cell proliferation and tumor growth. Oncogene. 2014;33:1945-53 pubmed 出版商
  191. Shirazi Fard S, Jarrin M, Boije H, Fillon V, All Eriksson C, Hallböök F. Heterogenic final cell cycle by chicken retinal Lim1 horizontal progenitor cells leads to heteroploid cells with a remaining replicated genome. PLoS ONE. 2013;8:e59133 pubmed 出版商
  192. Caldon C, Sergio C, Burgess A, Deans A, Sutherland R, Musgrove E. Cyclin E2 induces genomic instability by mechanisms distinct from cyclin E1. Cell Cycle. 2013;12:606-17 pubmed 出版商
  193. Perez Sanz J, Arluzea J, Matorras R, González Santiago N, Bilbao J, Yeh N, et al. Increased number of multi-oocyte follicles (MOFs) in juvenile p27Kip1 mutant mice: potential role of granulosa cells. Hum Reprod. 2013;28:1023-30 pubmed 出版商
  194. Sundlisaeter E, Edelmann R, Hol J, Sponheim J, Küchler A, WEISS M, et al. The alarmin IL-33 is a notch target in quiescent endothelial cells. Am J Pathol. 2012;181:1099-111 pubmed 出版商
  195. Chen S, Fu S, Hsu S, Huang Y, Hsu B. Synergistic Effect of Hyperglycemia and p27(kip1) Suppression on Adult Mouse Islet Beta Cell Replication. Int J Endocrinol. 2012;2012:417390 pubmed 出版商
  196. Gallardo A, Lerma E, Escuin D, Tibau A, Munoz J, Ojeda B, et al. Increased signalling of EGFR and IGF1R, and deregulation of PTEN/PI3K/Akt pathway are related with trastuzumab resistance in HER2 breast carcinomas. Br J Cancer. 2012;106:1367-73 pubmed 出版商
  197. Diril M, Ratnacaram C, Padmakumar V, Du T, Wasser M, Coppola V, et al. Cyclin-dependent kinase 1 (Cdk1) is essential for cell division and suppression of DNA re-replication but not for liver regeneration. Proc Natl Acad Sci U S A. 2012;109:3826-31 pubmed 出版商
  198. Jung Y, Joo K, Seong D, Choi Y, Kong D, Kim Y, et al. Identification of prognostic biomarkers for glioblastomas using protein expression profiling. Int J Oncol. 2012;40:1122-32 pubmed 出版商
  199. Macia A, Gallel P, Vaquero M, Gou Fabregas M, Santacana M, Maliszewska A, et al. Sprouty1 is a candidate tumor-suppressor gene in medullary thyroid carcinoma. Oncogene. 2012;31:3961-72 pubmed 出版商
  200. Huang Y, Chuang A, Hao H, Talbot C, Sen T, Trink B, et al. Phospho-?Np63? is a key regulator of the cisplatin-induced microRNAome in cancer cells. Cell Death Differ. 2011;18:1220-30 pubmed 出版商
  201. Inaki M, Kato D, Utsugi T, Onoda F, Hanaoka F, Murakami Y. Genetic analyses using a mouse cell cycle mutant identifies magoh as a novel gene involved in Cdk regulation. Genes Cells. 2011;16:166-78 pubmed 出版商
  202. Martín Ibáñez R, Crespo E, Urbán N, Sergent Tanguy S, Herranz C, Jaumot M, et al. Ikaros-1 couples cell cycle arrest of late striatal precursors with neurogenesis of enkephalinergic neurons. J Comp Neurol. 2010;518:329-51 pubmed 出版商
  203. Hagihara K, Zhang E, Ke Y, Liu G, Liu J, Rao Y, et al. Shp2 acts downstream of SDF-1alpha/CXCR4 in guiding granule cell migration during cerebellar development. Dev Biol. 2009;334:276-84 pubmed 出版商
  204. Poche R, Furuta Y, Chaboissier M, Schedl A, Behringer R. Sox9 is expressed in mouse multipotent retinal progenitor cells and functions in Müller glial cell development. J Comp Neurol. 2008;510:237-50 pubmed 出版商
  205. James M, Ray A, Leznova D, Blain S. Differential modification of p27Kip1 controls its cyclin D-cdk4 inhibitory activity. Mol Cell Biol. 2008;28:498-510 pubmed
  206. Jones L, Tilli M, Assefnia S, Torre K, Halama E, Parrish A, et al. Activation of estrogen signaling pathways collaborates with loss of Brca1 to promote development of ERalpha-negative and ERalpha-positive mammary preneoplasia and cancer. Oncogene. 2008;27:794-802 pubmed
  207. Elshatory Y, Deng M, Xie X, Gan L. Expression of the LIM-homeodomain protein Isl1 in the developing and mature mouse retina. J Comp Neurol. 2007;503:182-97 pubmed
  208. Seminario M, Precht P, Wersto R, Gorospe M, Wange R. PTEN expression in PTEN-null leukaemic T cell lines leads to reduced proliferation via slowed cell cycle progression. Oncogene. 2003;22:8195-204 pubmed