这是一篇来自已证抗体库的有关人类 p300的综述,是根据38篇发表使用所有方法的文章归纳的。这综述旨在帮助来邦网的访客找到最适合p300 抗体。
p300 同义词: KAT3B; RSTS2; p300; histone acetyltransferase p300; E1A-associated protein p300; E1A-binding protein, 300kD; histone butyryltransferase p300; histone crotonyltransferase p300; p300 HAT; protein propionyltransferase p300

赛默飞世尔
小鼠 单克隆(RW105)
  • 染色质免疫沉淀 ; 人类; 图 5e
赛默飞世尔 p300抗体(Thermo Fisher, MA1-16622)被用于被用于染色质免疫沉淀 在人类样品上 (图 5e). Mol Immunol (2017) ncbi
小鼠 单克隆
  • 免疫沉淀; 人类; 2 ug
赛默飞世尔 p300抗体(life tech, 730044)被用于被用于免疫沉淀在人类样品上浓度为2 ug. Nat Methods (2015) ncbi
小鼠 单克隆(2033)
  • 免疫沉淀; 人类; 2 ug
赛默飞世尔 p300抗体(life tech, 730005)被用于被用于免疫沉淀在人类样品上浓度为2 ug. Nat Methods (2015) ncbi
兔 多克隆
  • 染色质免疫沉淀 ; 人类
赛默飞世尔 p300抗体(Thermo Scientific, PA1-848)被用于被用于染色质免疫沉淀 在人类样品上. J Biol Chem (2015) ncbi
小鼠 单克隆(NM-11)
  • 流式细胞仪; 小鼠; 图 5
  • 免疫细胞化学; 小鼠; 图 5
赛默飞世尔 p300抗体(生活技术, 33-7600)被用于被用于流式细胞仪在小鼠样品上 (图 5) 和 被用于免疫细胞化学在小鼠样品上 (图 5). Stem Cell Reports (2014) ncbi
小鼠 单克隆(RW105)
  • 免疫印迹; 人类
赛默飞世尔 p300抗体(Pierce Biotechnology, MA1-16622)被用于被用于免疫印迹在人类样品上. J Biol Chem (2014) ncbi
小鼠 单克隆(NM-11)
  • 免疫印迹; African green monkey; 图 s4
赛默飞世尔 p300抗体(Zymed, 33-7600)被用于被用于免疫印迹在African green monkey样品上 (图 s4). Nucleic Acids Res (2010) ncbi
小鼠 单克隆(NM-11)
  • 免疫印迹; 人类
赛默飞世尔 p300抗体(Zymed, 33-7600)被用于被用于免疫印迹在人类样品上. J Biol Chem (2007) ncbi
Bethyl
兔 多克隆
  • 免疫印迹; 人类; 图 s4
Bethyl p300抗体(Bethyl, A300-358A)被用于被用于免疫印迹在人类样品上 (图 s4). Cancer Res (2018) ncbi
兔 多克隆
  • ChIP-Seq; 人类; 图 5a
Bethyl p300抗体(Bethyl, A300-358A)被用于被用于ChIP-Seq在人类样品上 (图 5a). Exp Hematol (2017) ncbi
兔 多克隆
  • ChIP-Seq; 人类; 图 2
Bethyl p300抗体(Bethyl Laboratories, A300-358A)被用于被用于ChIP-Seq在人类样品上 (图 2). Genes Dev (2015) ncbi
兔 多克隆
  • 免疫组化-石蜡切片; 人类; 图 1,2
Bethyl p300抗体(Bethyl, IHC-00028)被用于被用于免疫组化-石蜡切片在人类样品上 (图 1,2). Biophys J (2015) ncbi
圣克鲁斯生物技术
小鼠 单克隆(F-4)
  • 染色质免疫沉淀 ; 人类; 图 2h
圣克鲁斯生物技术 p300抗体(Santa Cruz, sc-48343X)被用于被用于染色质免疫沉淀 在人类样品上 (图 2h). Cancer Res (2018) ncbi
小鼠 单克隆(F-4)
  • proximity ligation assay; 小鼠; 图 3f
圣克鲁斯生物技术 p300抗体(Santa Cruz, sc-48343)被用于被用于proximity ligation assay在小鼠样品上 (图 3f). Nat Commun (2015) ncbi
小鼠 单克隆(F-4)
  • 染色质免疫沉淀 ; 大鼠; 图  6
  • 免疫印迹; 大鼠; 1:1000; 图 8
圣克鲁斯生物技术 p300抗体(Santa Cruz Biotechnology, sc-48343)被用于被用于染色质免疫沉淀 在大鼠样品上 (图  6) 和 被用于免疫印迹在大鼠样品上浓度为1:1000 (图 8). J Neurosci (2015) ncbi
小鼠 单克隆(NM11)
  • 染色质免疫沉淀 ; African green monkey
  • 免疫印迹; African green monkey
圣克鲁斯生物技术 p300抗体(Santa Cruz Biotechnology, sc-32244)被用于被用于染色质免疫沉淀 在African green monkey样品上 和 被用于免疫印迹在African green monkey样品上. J Biol Chem (2014) ncbi
小鼠 单克隆(F-4)
  • 免疫印迹; 人类
圣克鲁斯生物技术 p300抗体(Santa Cruz Biotechnology, sc-48343)被用于被用于免疫印迹在人类样品上. PLoS ONE (2012) ncbi
小鼠 单克隆(NM11)
  • 免疫组化-石蜡切片; 大鼠; 1:300
圣克鲁斯生物技术 p300抗体(Santa Cruz, sc-32244)被用于被用于免疫组化-石蜡切片在大鼠样品上浓度为1:300. Cell Mol Neurobiol (2013) ncbi
艾博抗(上海)贸易有限公司
小鼠 单克隆(3G230 / NM-11)
  • 染色质免疫沉淀 ; 人类; 图 5g
艾博抗(上海)贸易有限公司 p300抗体(Abcam, ab14984)被用于被用于染色质免疫沉淀 在人类样品上 (图 5g). PLoS Genet (2015) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图 1
艾博抗(上海)贸易有限公司 p300抗体(Abcam, ab10485)被用于被用于免疫印迹在人类样品上 (图 1). Cancer Prev Res (Phila) (2015) ncbi
小鼠 单克隆(3G230 / NM-11)
  • 染色质免疫沉淀 ; 人类
艾博抗(上海)贸易有限公司 p300抗体(Abcam, ab-14984)被用于被用于染色质免疫沉淀 在人类样品上. Nucleic Acids Res (2014) ncbi
小鼠 单克隆
  • 免疫组化; 人类; 1:1500-1:3000; 图 2, 3
艾博抗(上海)贸易有限公司 p300抗体(Abcam, ab54984)被用于被用于免疫组化在人类样品上浓度为1:1500-1:3000 (图 2, 3). Cell Rep (2014) ncbi
小鼠 单克隆(3G230 / NM-11)
  • 染色质免疫沉淀 ; 人类
艾博抗(上海)贸易有限公司 p300抗体(Abcam, ab14984)被用于被用于染色质免疫沉淀 在人类样品上. BMC Cancer (2013) ncbi
安迪生物R&D
山羊 多克隆
  • 免疫印迹; 人类; 图 5i
安迪生物R&D p300抗体(R&D Systems, AF3789)被用于被用于免疫印迹在人类样品上 (图 5i). Cell (2018) ncbi
Novus Biologicals
兔 多克隆
  • 免疫沉淀; 人类; 图 12
  • 免疫印迹; 人类; 图 12
Novus Biologicals p300抗体(Novus Biologicals, NB500-161)被用于被用于免疫沉淀在人类样品上 (图 12) 和 被用于免疫印迹在人类样品上 (图 12). Oncotarget (2016) ncbi
默克密理博中国
小鼠 单克隆(RW128)
  • 免疫细胞化学; 人类; 1:300; 图 4a
默克密理博中国 p300抗体(Millipore, 05-257)被用于被用于免疫细胞化学在人类样品上浓度为1:300 (图 4a). Proc Natl Acad Sci U S A (2017) ncbi
小鼠 单克隆(RW128)
  • 染色质免疫沉淀 ; 小鼠; 图 4e
默克密理博中国 p300抗体(Millipore, 05-257)被用于被用于染色质免疫沉淀 在小鼠样品上 (图 4e). elife (2016) ncbi
小鼠 单克隆(RW128)
  • 染色质免疫沉淀 ; 人类; 图 3g
  • 免疫沉淀; 人类; 图 2b
  • 免疫印迹; 人类; 1:500; 图 2b
默克密理博中国 p300抗体(Merck Millipore, 05-257)被用于被用于染色质免疫沉淀 在人类样品上 (图 3g), 被用于免疫沉淀在人类样品上 (图 2b) 和 被用于免疫印迹在人类样品上浓度为1:500 (图 2b). Mol Cell Biol (2017) ncbi
小鼠 单克隆(RW128)
  • 免疫细胞化学; 小鼠; 1:500
默克密理博中国 p300抗体(Millipore, 05-257)被用于被用于免疫细胞化学在小鼠样品上浓度为1:500. DNA Res (2015) ncbi
小鼠 单克隆(RW128)
  • 免疫印迹; 人类; 1:2000; 图 5
默克密理博中国 p300抗体(Millipore, 05-257)被用于被用于免疫印迹在人类样品上浓度为1:2000 (图 5). Nat Commun (2015) ncbi
小鼠 单克隆(RW128)
  • 染色质免疫沉淀 ; 人类; 图 5c
默克密理博中国 p300抗体(Millipore, 05-257)被用于被用于染色质免疫沉淀 在人类样品上 (图 5c). elife (2015) ncbi
小鼠 单克隆(RW128)
  • 免疫细胞化学; 人类
默克密理博中国 p300抗体(Millipore, 05-257)被用于被用于免疫细胞化学在人类样品上. J Biol Chem (2015) ncbi
小鼠 单克隆(RW128)
  • 染色质免疫沉淀 ; 人类; 图 4b
默克密理博中国 p300抗体(Millipore, 05-257)被用于被用于染色质免疫沉淀 在人类样品上 (图 4b). FASEB J (2015) ncbi
小鼠 单克隆(RW128)
  • 免疫印迹; 小鼠; 图 3
默克密理博中国 p300抗体(Millipore, 05-257)被用于被用于免疫印迹在小鼠样品上 (图 3). J Neurosci (2014) ncbi
小鼠 单克隆(RW128)
  • 免疫沉淀; 人类
默克密理博中国 p300抗体(Millipore, RW128)被用于被用于免疫沉淀在人类样品上. Nucleic Acids Res (2013) ncbi
小鼠 单克隆(RW128)
  • 染色质免疫沉淀 ; 大鼠
  • 免疫沉淀; 大鼠
  • 免疫印迹; 大鼠; 图 2
默克密理博中国 p300抗体(Millipore, 05-257)被用于被用于染色质免疫沉淀 在大鼠样品上, 被用于免疫沉淀在大鼠样品上 和 被用于免疫印迹在大鼠样品上 (图 2). Am J Physiol Renal Physiol (2013) ncbi
小鼠 单克隆(RW128)
  • 染色质免疫沉淀 ; 人类
  • 免疫印迹; 人类
默克密理博中国 p300抗体(Upstate, 05-257)被用于被用于染色质免疫沉淀 在人类样品上 和 被用于免疫印迹在人类样品上. Biochem Pharmacol (2011) ncbi
小鼠 单克隆(RW128)
  • 免疫印迹; 大鼠
默克密理博中国 p300抗体(Upstate Biotechnology, 05-257)被用于被用于免疫印迹在大鼠样品上. Neuropsychopharmacology (2010) ncbi
小鼠 单克隆(RW128)
  • 染色质免疫沉淀 ; 小鼠
默克密理博中国 p300抗体(Upstate, 05-257)被用于被用于染色质免疫沉淀 在小鼠样品上. Mol Cell Biol (2007) ncbi
小鼠 单克隆(RW128)
  • 免疫印迹; 仓鼠
默克密理博中国 p300抗体(Upstate Biotechnology, RW128)被用于被用于免疫印迹在仓鼠样品上. Proc Natl Acad Sci U S A (1996) ncbi
文章列表
  1. Su S, Chen J, Yao H, Liu J, Yu S, Lao L, et al. CD10+GPR77+ Cancer-Associated Fibroblasts Promote Cancer Formation and Chemoresistance by Sustaining Cancer Stemness. Cell. 2018;172:841-856.e16 pubmed 出版商
  2. Wu Y, Zhang Z, Cenciarini M, Proietti C, Amasino M, Hong T, et al. Tamoxifen Resistance in Breast Cancer Is Regulated by the EZH2-ER?-GREB1 Transcriptional Axis. Cancer Res. 2018;78:671-684 pubmed 出版商
  3. Wang R, Cao X, Kulej K, Liu W, Ma T, MacDonald M, et al. Uncovering BRD4 hyperphosphorylation associated with cellular transformation in NUT midline carcinoma. Proc Natl Acad Sci U S A. 2017;114:E5352-E5361 pubmed 出版商
  4. Lin Y, Lin Y, Huang M, Kuo P, Wu C, Lee M, et al. Tumor necrosis factor-alpha inhibitors suppress CCL2 chemokine in monocytes via epigenetic modification. Mol Immunol. 2017;83:82-91 pubmed 出版商
  5. Mathew R, Tatarakis A, Rudenko A, Johnson Venkatesh E, Yang Y, Murphy E, et al. A microRNA negative feedback loop downregulates vesicle transport and inhibits fear memory. elife. 2016;5: pubmed 出版商
  6. Liu L, Guan H, Li Y, Ying Z, Wu J, Zhu X, et al. Astrocyte Elevated Gene 1 Interacts with Acetyltransferase p300 and c-Jun To Promote Tumor Aggressiveness. Mol Cell Biol. 2017;37: pubmed 出版商
  7. Godfrey L, Kerry J, Thorne R, Repapi E, Davies J, Tapia M, et al. MLL-AF4 binds directly to a BCL-2 specific enhancer and modulates H3K27 acetylation. Exp Hematol. 2017;47:64-75 pubmed 出版商
  8. Luo W, Chen I, Chen Y, Alkam D, Wang Y, Semenza G. PRDX2 and PRDX4 are negative regulators of hypoxia-inducible factors under conditions of prolonged hypoxia. Oncotarget. 2016;7:6379-97 pubmed 出版商
  9. Akiyama T, Xin L, Oda M, Sharov A, Amano M, Piao Y, et al. Transient bursts of Zscan4 expression are accompanied by the rapid derepression of heterochromatin in mouse embryonic stem cells. DNA Res. 2015;22:307-18 pubmed 出版商
  10. Stein C, Bardet A, Roma G, Bergling S, Clay I, Ruchti A, et al. YAP1 Exerts Its Transcriptional Control via TEAD-Mediated Activation of Enhancers. PLoS Genet. 2015;11:e1005465 pubmed 出版商
  11. Alekseyenko A, Walsh E, Wang X, Grayson A, Hsi P, Kharchenko P, et al. The oncogenic BRD4-NUT chromatin regulator drives aberrant transcription within large topological domains. Genes Dev. 2015;29:1507-23 pubmed 出版商
  12. McLane J, Ligon L. Palladin mediates stiffness-induced fibroblast activation in the tumor microenvironment. Biophys J. 2015;109:249-64 pubmed 出版商
  13. Cho M, Park J, Choi H, Park M, Won H, Park Y, et al. DOT1L cooperates with the c-Myc-p300 complex to epigenetically derepress CDH1 transcription factors in breast cancer progression. Nat Commun. 2015;6:7821 pubmed 出版商
  14. Yoon J, Sudo K, Kuroda M, Kato M, Lee I, Han J, et al. Phosphorylation status determines the opposing functions of Smad2/Smad3 as STAT3 cofactors in TH17 differentiation. Nat Commun. 2015;6:7600 pubmed 出版商
  15. Marcon E, Jain H, Bhattacharya A, Guo H, Phanse S, Pu S, et al. Assessment of a method to characterize antibody selectivity and specificity for use in immunoprecipitation. Nat Methods. 2015;12:725-31 pubmed 出版商
  16. Wang S, Awad K, Elinoff J, Dougherty E, Ferreyra G, Wang J, et al. G Protein-coupled Receptor 40 (GPR40) and Peroxisome Proliferator-activated Receptor γ (PPARγ): AN INTEGRATED TWO-RECEPTOR SIGNALING PATHWAY. J Biol Chem. 2015;290:19544-57 pubmed 出版商
  17. Lee Y, Li Y, Su C, Chiao C, Lin I, Hsu M. MAF1 represses CDKN1A through a Pol III-dependent mechanism. elife. 2015;4:e06283 pubmed 出版商
  18. Formisano L, Guida N, Valsecchi V, Cantile M, Cuomo O, Vinciguerra A, et al. Sp3/REST/HDAC1/HDAC2 Complex Represses and Sp1/HIF-1/p300 Complex Activates ncx1 Gene Transcription, in Brain Ischemia and in Ischemic Brain Preconditioning, by Epigenetic Mechanism. J Neurosci. 2015;35:7332-48 pubmed 出版商
  19. Shukla S, Khan S, Kumar S, Sinha S, Farhan M, Bora H, et al. Cucurbitacin B Alters the Expression of Tumor-Related Genes by Epigenetic Modifications in NSCLC and Inhibits NNK-Induced Lung Tumorigenesis. Cancer Prev Res (Phila). 2015;8:552-62 pubmed 出版商
  20. Wang R, You J. Mechanistic analysis of the role of bromodomain-containing protein 4 (BRD4) in BRD4-NUT oncoprotein-induced transcriptional activation. J Biol Chem. 2015;290:2744-58 pubmed 出版商
  21. Kim H, Park J, Won H, Lee J, Kong G. CBX7 inhibits breast tumorigenicity through DKK-1-mediated suppression of the Wnt/β-catenin pathway. FASEB J. 2015;29:300-13 pubmed 出版商
  22. Moquet Torcy G, Tolza C, Piechaczyk M, Jariel Encontre I. Transcriptional complexity and roles of Fra-1/AP-1 at the uPA/Plau locus in aggressive breast cancer. Nucleic Acids Res. 2014;42:11011-24 pubmed 出版商
  23. Onishi K, Tonge P, Nagy A, Zandstra P. Local BMP-SMAD1 signaling increases LIF receptor-dependent STAT3 responsiveness and primed-to-naive mouse pluripotent stem cell conversion frequency. Stem Cell Reports. 2014;3:156-68 pubmed 出版商
  24. Meijer D, Sun Y, Liu T, Kane M, Alberta J, Adelmant G, et al. An amino terminal phosphorylation motif regulates intranuclear compartmentalization of Olig2 in neural progenitor cells. J Neurosci. 2014;34:8507-18 pubmed 出版商
  25. Nordentoft I, Lamy P, Birkenkamp Demtroder K, Shumansky K, Vang S, Hornshøj H, et al. Mutational context and diverse clonal development in early and late bladder cancer. Cell Rep. 2014;7:1649-1663 pubmed 出版商
  26. Mackeh R, Lorin S, Ratier A, Mejdoubi Charef N, Baillet A, Bruneel A, et al. Reactive oxygen species, AMP-activated protein kinase, and the transcription cofactor p300 regulate ?-tubulin acetyltransferase-1 (?TAT-1/MEC-17)-dependent microtubule hyperacetylation during cell stress. J Biol Chem. 2014;289:11816-28 pubmed 出版商
  27. Wehmeyer L, Du Toit A, Lang D, Hapgood J. Lipid raft- and protein kinase C-mediated synergism between glucocorticoid- and gonadotropin-releasing hormone signaling results in decreased cell proliferation. J Biol Chem. 2014;289:10235-51 pubmed 出版商
  28. Wagner M, Koslowski M, Paret C, Schmidt M, Tureci O, Sahin U. NCOA3 is a selective co-activator of estrogen receptor ?-mediated transactivation of PLAC1 in MCF-7 breast cancer cells. BMC Cancer. 2013;13:570 pubmed 出版商
  29. Ogiwara H, Kohno T. CBP and p300 histone acetyltransferases contribute to homologous recombination by transcriptionally activating the BRCA1 and RAD51 genes. PLoS ONE. 2012;7:e52810 pubmed 出版商
  30. Wang Q, Han C, Zhao R, Wani G, Zhu Q, Gong L, et al. p38 MAPK- and Akt-mediated p300 phosphorylation regulates its degradation to facilitate nucleotide excision repair. Nucleic Acids Res. 2013;41:1722-33 pubmed 出版商
  31. Yuan H, Reddy M, Sun G, Lanting L, Wang M, Kato M, et al. Involvement of p300/CBP and epigenetic histone acetylation in TGF-?1-mediated gene transcription in mesangial cells. Am J Physiol Renal Physiol. 2013;304:F601-13 pubmed 出版商
  32. Zhu X, Huang C, Li Q, Guo Q, Wang Y, He X, et al. Temporal distribution of p300/CBP immunoreactivity in the adult rat spinal dorsal horn following chronic constriction injury (CCI). Cell Mol Neurobiol. 2013;33:197-204 pubmed 出版商
  33. Karius T, Schnekenburger M, Ghelfi J, Walter J, Dicato M, Diederich M. Reversible epigenetic fingerprint-mediated glutathione-S-transferase P1 gene silencing in human leukemia cell lines. Biochem Pharmacol. 2011;81:1329-42 pubmed 出版商
  34. Bousiges O, Vasconcelos A, Neidl R, Cosquer B, Herbeaux K, Panteleeva I, et al. Spatial memory consolidation is associated with induction of several lysine-acetyltransferase (histone acetyltransferase) expression levels and H2B/H4 acetylation-dependent transcriptional events in the rat hippocampus. Neuropsychopharmacology. 2010;35:2521-37 pubmed 出版商
  35. Molvaersmyr A, Saether T, Gilfillan S, Lorenzo P, Kvaløy H, Matre V, et al. A SUMO-regulated activation function controls synergy of c-Myb through a repressor-activator switch leading to differential p300 recruitment. Nucleic Acids Res. 2010;38:4970-84 pubmed 出版商
  36. Schnekenburger M, Talaska G, Puga A. Chromium cross-links histone deacetylase 1-DNA methyltransferase 1 complexes to chromatin, inhibiting histone-remodeling marks critical for transcriptional activation. Mol Cell Biol. 2007;27:7089-101 pubmed
  37. Saether T, Berge T, Ledsaak M, Matre V, Alm Kristiansen A, Dahle O, et al. The chromatin remodeling factor Mi-2alpha acts as a novel co-activator for human c-Myb. J Biol Chem. 2007;282:13994-4005 pubmed
  38. Cook J, Krantz C, Routes B. Role of p300-family proteins in E1A oncogene induction of cytolytic susceptibility and tumor cell rejection. Proc Natl Acad Sci U S A. 1996;93:13985-90 pubmed