这是一篇来自已证抗体库的有关人类 p38的综述,是根据546篇发表使用所有方法的文章归纳的。这综述旨在帮助来邦网的访客找到最适合p38 抗体。
p38 同义词: CSBP; CSBP1; CSBP2; CSPB1; EXIP; Mxi2; PRKM14; PRKM15; SAPK2A; p38; p38ALPHA; mitogen-activated protein kinase 14; CSAID-binding protein; Csaids binding protein; MAP kinase 14; MAP kinase Mxi2; MAP kinase p38 alpha; MAX-interacting protein 2; cytokine suppressive anti-inflammatory drug binding protein; mitogen-activated protein kinase p38 alpha; p38 MAP kinase; p38 mitogen activated protein kinase; p38alpha Exip; stress-activated protein kinase 2A

圣克鲁斯生物技术
小鼠 单克隆(A-12)
  • 免疫印迹; 人类; 图 1b
圣克鲁斯生物技术 p38抗体(Santa, sc-7972)被用于被用于免疫印迹在人类样本上 (图 1b). Cell Mol Immunol (2018) ncbi
小鼠 单克隆(A-12)
  • 免疫印迹; 人类; 图 5a
圣克鲁斯生物技术 p38抗体(Santa Cruz, sc-7972)被用于被用于免疫印迹在人类样本上 (图 5a). Oncogenesis (2017) ncbi
小鼠 单克隆(D-8)
  • 免疫印迹; 人类; 图 6a
圣克鲁斯生物技术 p38抗体(Santa Cruz, sc-7973)被用于被用于免疫印迹在人类样本上 (图 6a). Mol Med Rep (2018) ncbi
小鼠 单克隆(A-12)
  • 免疫印迹; 人类; 图 3e
圣克鲁斯生物技术 p38抗体(Santa Cruz, A-12)被用于被用于免疫印迹在人类样本上 (图 3e). Biochem Biophys Res Commun (2017) ncbi
小鼠 单克隆(9F12)
  • 免疫印迹; 人类; 图 3b
圣克鲁斯生物技术 p38抗体(SantaCruz, sc-81621)被用于被用于免疫印迹在人类样本上 (图 3b). Mol Cancer Res (2017) ncbi
小鼠 单克隆
  • 免疫印迹; 小鼠; 图 6
圣克鲁斯生物技术 p38抗体(SantaCruz, sc-398305)被用于被用于免疫印迹在小鼠样本上 (图 6). J Ethnopharmacol (2017) ncbi
小鼠 单克隆(A-12)
  • 其他; 大鼠; 图 1
圣克鲁斯生物技术 p38抗体(Santa Cruz, sc-7972)被用于被用于其他在大鼠样本上 (图 1). Sci Rep (2017) ncbi
小鼠 单克隆(D-8)
  • 免疫印迹; 人类; 1:1500; 图 4a
圣克鲁斯生物技术 p38抗体(Santa Cruz, sc-7973)被用于被用于免疫印迹在人类样本上浓度为1:1500 (图 4a). Oncol Lett (2016) ncbi
小鼠 单克隆(9F12)
  • 免疫印迹; 人类; 1:1500; 图 4a
圣克鲁斯生物技术 p38抗体(Santa Cruz, sc-81621)被用于被用于免疫印迹在人类样本上浓度为1:1500 (图 4a). Oncol Lett (2016) ncbi
小鼠 单克隆(E-1)
  • 免疫印迹; 大鼠; 1:500; 图 8a
圣克鲁斯生物技术 p38抗体(Santa Cruz Biotechnology, sc-166182)被用于被用于免疫印迹在大鼠样本上浓度为1:500 (图 8a). Exp Ther Med (2016) ncbi
小鼠 单克隆(9F12)
  • 免疫印迹; 人类; 图 3
圣克鲁斯生物技术 p38抗体(Santa Cruz, sc-81621)被用于被用于免疫印迹在人类样本上 (图 3). Mol Med Rep (2016) ncbi
小鼠 单克隆(9F12)
  • 免疫印迹; 人类; 1:1000; 图 4
圣克鲁斯生物技术 p38抗体(Santa Cruz, sc-81621)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 4). Mol Med Rep (2016) ncbi
小鼠 单克隆(9F12)
  • 免疫印迹; 人类; 1:500; 图 s6
圣克鲁斯生物技术 p38抗体(santa Cruz, SC-81621)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 s6). Nat Commun (2016) ncbi
小鼠 单克隆(D-8)
  • 免疫印迹; 人类; 1:1000; 图 3
圣克鲁斯生物技术 p38抗体(Santa Cruz, Sc-7973)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3). Cell Div (2016) ncbi
小鼠 单克隆(D-8)
  • 免疫印迹; 小鼠; 1:200; 图 3
圣克鲁斯生物技术 p38抗体(Santa Cruz, sc-7973)被用于被用于免疫印迹在小鼠样本上浓度为1:200 (图 3). Exp Ther Med (2016) ncbi
小鼠 单克隆(D-8)
  • 免疫印迹; 大鼠; 1:500; 图 5a
圣克鲁斯生物技术 p38抗体(Santa Cruz, 7973)被用于被用于免疫印迹在大鼠样本上浓度为1:500 (图 5a). Int J Endocrinol (2016) ncbi
小鼠 单克隆(A-12)
  • 免疫印迹; 人类; 图 5
圣克鲁斯生物技术 p38抗体(Santa Cruz, sc-7972)被用于被用于免疫印迹在人类样本上 (图 5). Oxid Med Cell Longev (2016) ncbi
小鼠 单克隆(D-8)
  • 免疫印迹; 人类
圣克鲁斯生物技术 p38抗体(Santa Cruz, sc-7973)被用于被用于免疫印迹在人类样本上. Oxid Med Cell Longev (2016) ncbi
小鼠 单克隆(D-8)
  • 免疫印迹; 人类; 图 4
圣克鲁斯生物技术 p38抗体(Santa Cruz, sc7973)被用于被用于免疫印迹在人类样本上 (图 4). BMC Complement Altern Med (2016) ncbi
小鼠 单克隆(A-12)
  • 免疫印迹; 人类; 图 s1c
圣克鲁斯生物技术 p38抗体(Santa Cruz, sc-7972)被用于被用于免疫印迹在人类样本上 (图 s1c). Nat Cell Biol (2016) ncbi
小鼠 单克隆(D-8)
  • 免疫印迹; 大鼠; 图 9a
圣克鲁斯生物技术 p38抗体(Santa Cruz, sc-7973)被用于被用于免疫印迹在大鼠样本上 (图 9a). Int J Mol Med (2016) ncbi
小鼠 单克隆(D-8)
  • 免疫印迹; 大鼠; 1:1000; 图 3
圣克鲁斯生物技术 p38抗体(Santa Cruz, sc-7973)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 3). Mol Med Rep (2016) ncbi
小鼠 单克隆(D-8)
  • 免疫印迹; 大鼠; 1:200; 图 4
圣克鲁斯生物技术 p38抗体(Santa Cruz, SC-7973)被用于被用于免疫印迹在大鼠样本上浓度为1:200 (图 4). J Am Heart Assoc (2016) ncbi
小鼠 单克隆(A-12)
  • 免疫印迹基因敲除验证; 小鼠; 图 2
圣克鲁斯生物技术 p38抗体(anta Cruz Biotechnology, SC-7972)被用于被用于免疫印迹基因敲除验证在小鼠样本上 (图 2). Nat Commun (2016) ncbi
小鼠 单克隆(A-12)
  • 免疫印迹; 小鼠; 图 5
圣克鲁斯生物技术 p38抗体(Santa Cruz, sc-7972)被用于被用于免疫印迹在小鼠样本上 (图 5). J Biol Chem (2016) ncbi
小鼠 单克隆(D-8)
  • 免疫组化-石蜡切片; 小鼠; 1:200; 图 10
圣克鲁斯生物技术 p38抗体(Santa Cruz, sc-7973)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:200 (图 10). Cell Mol Gastroenterol Hepatol (2015) ncbi
小鼠 单克隆(D-8)
  • 免疫印迹; 人类; 图 5c
圣克鲁斯生物技术 p38抗体(Santa Cruz, sc-7973)被用于被用于免疫印迹在人类样本上 (图 5c). Mol Cells (2015) ncbi
小鼠 单克隆(D-8)
  • 免疫印迹; 人类; 1:1000; 图 3
圣克鲁斯生物技术 p38抗体(Santa Cruz Biotechnology, SC-7973)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3). J Cell Mol Med (2016) ncbi
小鼠 单克隆(D-8)
  • 免疫印迹; 人类; 1:500; 图 4
圣克鲁斯生物技术 p38抗体(Santa Cruz Biotechnology, sc-7973)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 4). J Cell Biochem (2016) ncbi
小鼠 单克隆(A-12)
  • 免疫印迹; 人类
圣克鲁斯生物技术 p38抗体(Santa Cruz Biotechnology, sc-7972)被用于被用于免疫印迹在人类样本上. Int J Cancer (2016) ncbi
小鼠 单克隆(D-8)
  • 免疫细胞化学; 大鼠; 图 3
  • 免疫印迹; 大鼠; 图 3
圣克鲁斯生物技术 p38抗体(Santa Cruz, sc-7973)被用于被用于免疫细胞化学在大鼠样本上 (图 3) 和 被用于免疫印迹在大鼠样本上 (图 3). PLoS ONE (2015) ncbi
小鼠 单克隆(A-12)
  • 免疫印迹; 小鼠; 图 5
圣克鲁斯生物技术 p38抗体(Santa Cruz, sc-7972)被用于被用于免疫印迹在小鼠样本上 (图 5). Cancer Res (2015) ncbi
小鼠 单克隆(A-12)
  • 免疫印迹; 人类
圣克鲁斯生物技术 p38抗体(Santa Cruz Biotechnology, SC-7972)被用于被用于免疫印迹在人类样本上. Toxicol Appl Pharmacol (2015) ncbi
小鼠 单克隆(A-12)
  • 免疫印迹; 人类; 1:500
圣克鲁斯生物技术 p38抗体(Santa Cruz Biotechnology, sc-7972)被用于被用于免疫印迹在人类样本上浓度为1:500. Cell Signal (2015) ncbi
小鼠 单克隆(9F12)
  • 免疫印迹; 大鼠; 图 7b
圣克鲁斯生物技术 p38抗体(Santa Cruz, 9F12)被用于被用于免疫印迹在大鼠样本上 (图 7b). Free Radic Biol Med (2015) ncbi
小鼠 单克隆(F-9)
  • 免疫印迹; 人类; 图 3
圣克鲁斯生物技术 p38抗体(Santa Cruz, sc-271120)被用于被用于免疫印迹在人类样本上 (图 3). Mol Med Rep (2015) ncbi
小鼠 单克隆(D-8)
  • 免疫印迹; 人类; 图 3
圣克鲁斯生物技术 p38抗体(Santa Cruz, sc-7973)被用于被用于免疫印迹在人类样本上 (图 3). Mol Med Rep (2015) ncbi
小鼠 单克隆(D-8)
  • 免疫印迹; 小鼠; 图 9
圣克鲁斯生物技术 p38抗体(Santa Cruz, sc-7973)被用于被用于免疫印迹在小鼠样本上 (图 9). Int J Nanomedicine (2015) ncbi
小鼠 单克隆(D-8)
  • 免疫印迹; 小鼠; 图 4a
圣克鲁斯生物技术 p38抗体(Santa Cruz, sc-7973)被用于被用于免疫印迹在小鼠样本上 (图 4a). PLoS ONE (2015) ncbi
小鼠 单克隆(D-8)
  • 免疫印迹; 大鼠
圣克鲁斯生物技术 p38抗体(Santa Cruz, SC-7973)被用于被用于免疫印迹在大鼠样本上. Apoptosis (2015) ncbi
小鼠 单克隆(D-8)
  • 免疫印迹; 人类; 1:1.000
圣克鲁斯生物技术 p38抗体(Santa Cruz Biotechnology, Sc-7973)被用于被用于免疫印迹在人类样本上浓度为1:1.000. Cancer Lett (2015) ncbi
小鼠 单克隆(A-12)
  • 染色质免疫沉淀 ; 人类
  • 免疫印迹; 人类
圣克鲁斯生物技术 p38抗体(Santa Cruz, sc-7972)被用于被用于染色质免疫沉淀 在人类样本上 和 被用于免疫印迹在人类样本上. Mol Biol Cell (2015) ncbi
小鼠 单克隆(A-12)
  • 免疫印迹; 小鼠; 图 s3
圣克鲁斯生物技术 p38抗体(Santa Cruz Biotechnology, sc-7972)被用于被用于免疫印迹在小鼠样本上 (图 s3). Cell Death Dis (2014) ncbi
小鼠 单克隆(D-8)
  • 免疫细胞化学; 小鼠
圣克鲁斯生物技术 p38抗体(Santa Cruz, SC-7973)被用于被用于免疫细胞化学在小鼠样本上. Cell Mol Life Sci (2015) ncbi
小鼠 单克隆(A-12)
  • 免疫印迹; 人类
圣克鲁斯生物技术 p38抗体(Santa Cruz Biotechnology, sc-7972)被用于被用于免疫印迹在人类样本上. BMC Complement Altern Med (2014) ncbi
小鼠 单克隆(A-12)
  • 免疫印迹基因敲除验证; 小鼠; 1:2000; 图 1
圣克鲁斯生物技术 p38抗体(Santa Cruz, sc-7972)被用于被用于免疫印迹基因敲除验证在小鼠样本上浓度为1:2000 (图 1). Proc Natl Acad Sci U S A (2014) ncbi
小鼠 单克隆(A-12)
  • 免疫印迹; 人类; 1:500; 图 8a
圣克鲁斯生物技术 p38抗体(Santa Cruz Biotechnology, sc-7972)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 8a). PLoS ONE (2014) ncbi
小鼠 单克隆(D-8)
  • 免疫印迹; 人类; 1:500; 图 8a
圣克鲁斯生物技术 p38抗体(Santa Cruz Biotechnology, sc-7973)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 8a). PLoS ONE (2014) ncbi
小鼠 单克隆(A-12)
  • 免疫印迹; 小鼠; 1:200
圣克鲁斯生物技术 p38抗体(Santa Cruz Biotechnology, sc-7972)被用于被用于免疫印迹在小鼠样本上浓度为1:200. J Neurochem (2014) ncbi
小鼠 单克隆(D-8)
  • 免疫印迹; 小鼠
圣克鲁斯生物技术 p38抗体(Santa Cruz Biotechnology, sc-7973)被用于被用于免疫印迹在小鼠样本上. Exp Mol Med (2014) ncbi
小鼠 单克隆(D-8)
  • 免疫印迹; 番茄
圣克鲁斯生物技术 p38抗体(Santa Cruz Biotechnology, 7973)被用于被用于免疫印迹在番茄样本上. J Agric Food Chem (2014) ncbi
小鼠 单克隆(27)
  • 免疫印迹; 小鼠; 1:1000
圣克鲁斯生物技术 p38抗体(Santa Cruz, sc-136210)被用于被用于免疫印迹在小鼠样本上浓度为1:1000. Eur J Pharmacol (2014) ncbi
小鼠 单克隆(D-8)
  • 免疫印迹; 小鼠; 1:1000
圣克鲁斯生物技术 p38抗体(Santa Cruz, sc-7973)被用于被用于免疫印迹在小鼠样本上浓度为1:1000. Eur J Pharmacol (2014) ncbi
小鼠 单克隆(D-8)
  • 免疫印迹; 小鼠; 图 5
圣克鲁斯生物技术 p38抗体(Santa Cruz, sc-7973)被用于被用于免疫印迹在小鼠样本上 (图 5). J Bone Miner Res (2014) ncbi
小鼠 单克隆(A-12)
  • 免疫印迹; 小鼠
圣克鲁斯生物技术 p38抗体(Santa Cruz, sc-7972)被用于被用于免疫印迹在小鼠样本上. J Lipid Res (2013) ncbi
艾博抗(上海)贸易有限公司
小鼠 单克隆(M138)
  • 免疫印迹; 大鼠; 1:1000; 图 4b
艾博抗(上海)贸易有限公司 p38抗体(Abcam, ab31828)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 4b). Braz J Med Biol Res (2017) ncbi
兔 单克隆(EPR18120)
  • 免疫印迹; 人类; 图 4
艾博抗(上海)贸易有限公司 p38抗体(Abcam, ab195049)被用于被用于免疫印迹在人类样本上 (图 4). Sci Rep (2016) ncbi
兔 单克隆(EPR18120)
  • 免疫印迹; 小鼠; 图 6
艾博抗(上海)贸易有限公司 p38抗体(Abcam, ab195049)被用于被用于免疫印迹在小鼠样本上 (图 6). Cell (2016) ncbi
小鼠 单克隆(M138)
  • 免疫印迹; 小鼠; 图 6
艾博抗(上海)贸易有限公司 p38抗体(Abcam, ab31828)被用于被用于免疫印迹在小鼠样本上 (图 6). Cell (2016) ncbi
小鼠 单克隆(M138)
  • 免疫印迹; 大鼠; 图 3a
艾博抗(上海)贸易有限公司 p38抗体(Abcam, Ab31828)被用于被用于免疫印迹在大鼠样本上 (图 3a). PLoS ONE (2016) ncbi
兔 多克隆
  • 免疫印迹; 人类; 1:1000; 图 3c
艾博抗(上海)贸易有限公司 p38抗体(Abcam, ab4822)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3c). Onco Targets Ther (2016) ncbi
兔 多克隆
  • 免疫细胞化学; 人类; 1:80; 图 11
  • 免疫印迹; 人类; 1:800; 图 9
艾博抗(上海)贸易有限公司 p38抗体(Abcam, ab38238)被用于被用于免疫细胞化学在人类样本上浓度为1:80 (图 11) 和 被用于免疫印迹在人类样本上浓度为1:800 (图 9). Drug Des Devel Ther (2016) ncbi
小鼠 单克隆(M138)
  • 免疫印迹; 人类; 图 2c
艾博抗(上海)贸易有限公司 p38抗体(Abcam, ab31828)被用于被用于免疫印迹在人类样本上 (图 2c). Oncotarget (2016) ncbi
小鼠 单克隆(M138)
  • 免疫细胞化学; 人类; 2.5 ug/ml; 图 6
  • 免疫印迹; 人类; 图 6
艾博抗(上海)贸易有限公司 p38抗体(Abcam, M138)被用于被用于免疫细胞化学在人类样本上浓度为2.5 ug/ml (图 6) 和 被用于免疫印迹在人类样本上 (图 6). Hum Mol Genet (2015) ncbi
小鼠 单克隆(M138)
  • 免疫印迹; 人类; 图 6
艾博抗(上海)贸易有限公司 p38抗体(Abcam, ab31828)被用于被用于免疫印迹在人类样本上 (图 6). Oncotarget (2015) ncbi
兔 单克隆(Y122)
  • 免疫印迹; 人类; 1:1000; 图 6d
艾博抗(上海)贸易有限公司 p38抗体(Abcam, ab32142)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 6d). Cell Death Dis (2014) ncbi
兔 多克隆
  • 免疫印迹; 大鼠; 1:1000
艾博抗(上海)贸易有限公司 p38抗体(Abcam, ab27986)被用于被用于免疫印迹在大鼠样本上浓度为1:1000. PLoS ONE (2014) ncbi
兔 多克隆
  • 免疫印迹; 大鼠; 1:1000
艾博抗(上海)贸易有限公司 p38抗体(Abcam, ab4822)被用于被用于免疫印迹在大鼠样本上浓度为1:1000. PLoS ONE (2014) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 1:1000
艾博抗(上海)贸易有限公司 p38抗体(Abcam, ab47363)被用于被用于免疫印迹在小鼠样本上浓度为1:1000. PLoS ONE (2014) ncbi
兔 多克隆
  • 免疫印迹; 小鼠
艾博抗(上海)贸易有限公司 p38抗体(Abcam, ab27986)被用于被用于免疫印迹在小鼠样本上. Br J Pharmacol (2013) ncbi
小鼠 单克隆(M138)
  • 免疫印迹; 大鼠; 1:1,000
艾博抗(上海)贸易有限公司 p38抗体(Abcam, ab31828)被用于被用于免疫印迹在大鼠样本上浓度为1:1,000. Inflammopharmacology (2014) ncbi
兔 多克隆
  • 免疫印迹; 大鼠; 1:1000
艾博抗(上海)贸易有限公司 p38抗体(Abcam, ab4822)被用于被用于免疫印迹在大鼠样本上浓度为1:1000. Purinergic Signal (2013) ncbi
兔 多克隆
  • 免疫印迹; 大鼠; 1:1000
艾博抗(上海)贸易有限公司 p38抗体(Abcam, ab27986)被用于被用于免疫印迹在大鼠样本上浓度为1:1000. Purinergic Signal (2013) ncbi
赛默飞世尔
兔 多克隆
  • 免疫印迹; 人类; 图 4b, 4d
赛默飞世尔 p38抗体(Biosource, 44-6846)被用于被用于免疫印迹在人类样本上 (图 4b, 4d). J Gerontol A Biol Sci Med Sci (2017) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图 7
赛默飞世尔 p38抗体(Thermo, PA1-41321)被用于被用于免疫印迹在人类样本上 (图 7). Biochem J (2017) ncbi
兔 多克隆
  • 免疫印迹; 大鼠; 图 4a
赛默飞世尔 p38抗体(生活技术, 36-8500)被用于被用于免疫印迹在大鼠样本上 (图 4a). Toxicol Sci (2016) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图 6
赛默飞世尔 p38抗体(Invitrogen, 44-684G)被用于被用于免疫印迹在人类样本上 (图 6). Sci Rep (2016) ncbi
小鼠 单克隆(p38-3F11)
  • 免疫细胞化学; 大鼠; 1:500; 图 9
  • 免疫印迹; 大鼠; 图 s6
赛默飞世尔 p38抗体(Invitrogen, p38-3F11)被用于被用于免疫细胞化学在大鼠样本上浓度为1:500 (图 9) 和 被用于免疫印迹在大鼠样本上 (图 s6). Stem Cells Dev (2016) ncbi
兔 多克隆
  • 免疫印迹; 鸡; 1:100; 图 2b
赛默飞世尔 p38抗体(Thermo, PA1-84807)被用于被用于免疫印迹在鸡样本上浓度为1:100 (图 2b). Biometals (2016) ncbi
兔 重组(B10H8L5)
  • 免疫印迹; 人类; 1:1000; 图 3
赛默飞世尔 p38抗体(生活技术, 701057)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3). Int J Mol Sci (2015) ncbi
兔 单克隆(F.52.8)
  • 免疫组化-石蜡切片; 斑马鱼; 1:200
赛默飞世尔 p38抗体(Thermo Scientific, MA5-15177)被用于被用于免疫组化-石蜡切片在斑马鱼样本上浓度为1:200. J Immunol (2015) ncbi
兔 多克隆
  • 免疫细胞化学; 人类; 图 1
  • 免疫印迹; 人类; 图 1
赛默飞世尔 p38抗体(生活技术, 44-684G)被用于被用于免疫细胞化学在人类样本上 (图 1) 和 被用于免疫印迹在人类样本上 (图 1). Autophagy (2014) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 1:1000
赛默飞世尔 p38抗体(Invitrogen, 44-684G)被用于被用于免疫印迹在小鼠样本上浓度为1:1000. Nat Genet (2014) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 1:1000
赛默飞世尔 p38抗体(Invitrogen, 36-8500)被用于被用于免疫印迹在小鼠样本上浓度为1:1000. Neurobiol Dis (2014) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 图 8
赛默飞世尔 p38抗体(Biosource, 44-684G)被用于被用于免疫印迹在小鼠样本上 (图 8). Nat Cell Biol (2013) ncbi
小鼠 单克隆(p38-3F11)
  • 免疫印迹; 小鼠; 图 4
赛默飞世尔 p38抗体(Invitrogen, 331300)被用于被用于免疫印迹在小鼠样本上 (图 4). Mol Endocrinol (2013) ncbi
兔 多克隆
  • 免疫印迹; 小鼠
赛默飞世尔 p38抗体(Invitrogen, 44-684G)被用于被用于免疫印迹在小鼠样本上. J Immunol (2010) ncbi
兔 多克隆
  • 免疫印迹; 人类; 1:500; 图 2
赛默飞世尔 p38抗体(Biosource, 44-684G)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 2). Biochem Pharmacol (2009) ncbi
兔 多克隆
赛默飞世尔 p38抗体(Zymed, 36-8500)被用于. J Biol Chem (2008) ncbi
兔 多克隆
赛默飞世尔 p38抗体(Biosource, 44-684G)被用于. Cancer Res (2007) ncbi
兔 多克隆
赛默飞世尔 p38抗体(Biosource, 44-684G)被用于. Arthritis Rheum (2007) ncbi
兔 多克隆
赛默飞世尔 p38抗体(BioSource, 44-684G)被用于. Arthritis Rheum (2005) ncbi
Enzo Life Sciences
兔 多克隆
  • 免疫印迹; 人类; 1:500; 图 3
Enzo Life Sciences p38抗体(Enzo Life Sciences, ADI-KAS-MA009-E)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 3). J Oncol (2016) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 1c
Enzo Life Sciences p38抗体(Assay designs, KAP-MA001)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 1c). Exp Neurol (2016) ncbi
安迪生物R&D
兔 多克隆
  • 免疫印迹; 大鼠; 图 3
安迪生物R&D p38抗体(R&D, AF8691)被用于被用于免疫印迹在大鼠样本上 (图 3). PLoS ONE (2015) ncbi
西格玛奥德里奇
兔 多克隆
  • 免疫印迹; 人类; 图 4a
西格玛奥德里奇 p38抗体(Sigma, P1491)被用于被用于免疫印迹在人类样本上 (图 4a). Mol Cell Biochem (2016) ncbi
兔 多克隆
  • 免疫印迹; 大鼠; 1:10,000; 图 s2b
西格玛奥德里奇 p38抗体(Sigma, P1491)被用于被用于免疫印迹在大鼠样本上浓度为1:10,000 (图 s2b). Metallomics (2016) ncbi
兔 多克隆
  • 免疫印迹; 大鼠; 图 6
西格玛奥德里奇 p38抗体(Sigma, P1491)被用于被用于免疫印迹在大鼠样本上 (图 6). Physiol Rep (2015) ncbi
兔 多克隆
  • 免疫组化; 小鼠; 1:1000
西格玛奥德里奇 p38抗体(Sigma, P 1491)被用于被用于免疫组化在小鼠样本上浓度为1:1000. Eur Neuropsychopharmacol (2015) ncbi
赛信通(上海)生物试剂有限公司
兔 多克隆
  • 免疫印迹; 小鼠; 图 4f
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling, 9211)被用于被用于免疫印迹在小鼠样本上 (图 4f). J Exp Med (2019) ncbi
兔 单克隆(3D7)
  • 免疫印迹; 小鼠; 1:1000; 图 4d
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling, 9215)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 4d). elife (2019) ncbi
兔 单克隆(3D7)
  • 免疫印迹; 小鼠; 1:1000; 图 5b
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling, 9215)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 5b). Nat Commun (2019) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 5b
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling, 9212)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 5b). Nat Commun (2019) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 1:2000; 图 6d
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling, 9212)被用于被用于免疫印迹在小鼠样本上浓度为1:2000 (图 6d). Neurobiol Dis (2019) ncbi
兔 单克隆(12F8)
  • 流式细胞仪; 人类; 图 2e
赛信通(上海)生物试剂有限公司 p38抗体(CST, 12F8)被用于被用于流式细胞仪在人类样本上 (图 2e). Front Immunol (2018) ncbi
小鼠 单克隆(28B10)
  • 免疫印迹; 小鼠; 图 s4b
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling, 9216)被用于被用于免疫印迹在小鼠样本上 (图 s4b). Cell (2018) ncbi
兔 单克隆(12F8)
  • 免疫印迹; 小鼠; 1:1000; 图 3e
赛信通(上海)生物试剂有限公司 p38抗体(Cell signaling technology, 4631)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 3e). Nat Commun (2018) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 3e
赛信通(上海)生物试剂有限公司 p38抗体(Cell signaling technology, 9212)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 3e). Nat Commun (2018) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 2d
赛信通(上海)生物试剂有限公司 p38抗体(cell signaling, 9212)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 2d). Nat Commun (2018) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图 7f
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling Technology, 9211s)被用于被用于免疫印迹在人类样本上 (图 7f). J Clin Invest (2018) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图 7f
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling Technology, 9212)被用于被用于免疫印迹在人类样本上 (图 7f). J Clin Invest (2018) ncbi
兔 单克隆(3D7)
  • 免疫印迹; 人类; 图 7c
赛信通(上海)生物试剂有限公司 p38抗体(CST, 9215)被用于被用于免疫印迹在人类样本上 (图 7c). Cell Death Differ (2019) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 图 8a
赛信通(上海)生物试剂有限公司 p38抗体(cst, 9211S)被用于被用于免疫印迹在小鼠样本上 (图 8a). J Exp Med (2018) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 7a
赛信通(上海)生物试剂有限公司 p38抗体(cell signaling technology, 9212s)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 7a). J Mol Cell Cardiol (2018) ncbi
小鼠 单克隆(28B10)
  • 免疫印迹; 小鼠; 1:2500; 图 s4a
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling, 9216)被用于被用于免疫印迹在小鼠样本上浓度为1:2500 (图 s4a). Nat Commun (2018) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 图 8a
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling, 9211s)被用于被用于免疫印迹在小鼠样本上 (图 8a). J Cell Mol Med (2018) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 图 6a
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling Technology, 9211s)被用于被用于免疫印迹在小鼠样本上 (图 6a). PLoS Biol (2018) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 1:500; 图 s2
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling Technology, 9212)被用于被用于免疫印迹在小鼠样本上浓度为1:500 (图 s2). Nat Commun (2018) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 图 4d
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling Technology, 9211s)被用于被用于免疫印迹在小鼠样本上 (图 4d). J Clin Invest (2018) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 图 4d
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling Technology, 9212s)被用于被用于免疫印迹在小鼠样本上 (图 4d). J Clin Invest (2018) ncbi
兔 单克隆(3D7)
  • 免疫印迹; 小鼠; 图 2i
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling Technology, 9215)被用于被用于免疫印迹在小鼠样本上 (图 2i). Nat Med (2018) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 图 2i
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling Technology, 9212)被用于被用于免疫印迹在小鼠样本上 (图 2i). Nat Med (2018) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 图 6d
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling Technology, 9212S)被用于被用于免疫印迹在小鼠样本上 (图 6d). Neurotherapeutics (2018) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 图 6d
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling Technology, 9211S)被用于被用于免疫印迹在小鼠样本上 (图 6d). Neurotherapeutics (2018) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 图 3a
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling, 9211S)被用于被用于免疫印迹在小鼠样本上 (图 3a). J Clin Invest (2018) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图 5a
赛信通(上海)生物试剂有限公司 p38抗体(CST, 9211)被用于被用于免疫印迹在人类样本上 (图 5a). PLoS Pathog (2018) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 5b
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling, MAB9211)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 5b). Cell Signal (2018) ncbi
兔 单克隆(3D7)
  • 免疫印迹; 人类; 图 6f
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling Technology, 9215)被用于被用于免疫印迹在人类样本上 (图 6f). Cell (2018) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图 6f
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling Technology, 9212)被用于被用于免疫印迹在人类样本上 (图 6f). Cell (2018) ncbi
兔 多克隆
  • 其他; 人类; 图 4c
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling, 9211)被用于被用于其他在人类样本上 (图 4c). Cancer Cell (2018) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 图 6a
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling, 9211)被用于被用于免疫印迹在小鼠样本上 (图 6a). Sci Rep (2018) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 图 6a
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling, 9212)被用于被用于免疫印迹在小鼠样本上 (图 6a). Sci Rep (2018) ncbi
兔 多克隆
  • 免疫印迹; 人类; 1:1000; 图 8b
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling, 9211)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 8b). Br J Pharmacol (2018) ncbi
兔 多克隆
  • 免疫印迹; 人类; 1:1000; 图 8b
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling, 9212)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 8b). Br J Pharmacol (2018) ncbi
兔 多克隆
  • 免疫印迹; 人类; 1:1000; 图 2a
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling, 9211)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 2a). Mol Med Rep (2018) ncbi
兔 多克隆
  • 免疫印迹; 人类; 1:1000; 图 2a
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling, 9212)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 2a). Mol Med Rep (2018) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图 5a
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signalling, 9211)被用于被用于免疫印迹在人类样本上 (图 5a). Oncogenesis (2017) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图 s5c
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling, 9211)被用于被用于免疫印迹在人类样本上 (图 s5c). Immunity (2017) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 图 4a
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling, 9212)被用于被用于免疫印迹在小鼠样本上 (图 4a). J Biol Chem (2018) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 图 5a
赛信通(上海)生物试剂有限公司 p38抗体(CST, 9212)被用于被用于免疫印迹在小鼠样本上 (图 5a). Mol Neurobiol (2018) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 1:500; 图 3a
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling, S9211)被用于被用于免疫印迹在小鼠样本上浓度为1:500 (图 3a). Neuropharmacology (2018) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 1:500; 图 3
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling, 9212)被用于被用于免疫印迹在小鼠样本上浓度为1:500 (图 3). Exp Neurol (2018) ncbi
兔 单克隆(3D7)
  • 免疫印迹; 小鼠; 图 1f
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling, 9215)被用于被用于免疫印迹在小鼠样本上 (图 1f). Proc Natl Acad Sci U S A (2017) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 图 6d
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling, 9212)被用于被用于免疫印迹在小鼠样本上 (图 6d). Infect Immun (2017) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 图 4g
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling Technology, 9211)被用于被用于免疫印迹在小鼠样本上 (图 4g). Sci Rep (2017) ncbi
兔 单克隆(12F8)
  • 免疫组化; 小鼠; 1:500; 图 3
赛信通(上海)生物试剂有限公司 p38抗体(cell signalling, 4631)被用于被用于免疫组化在小鼠样本上浓度为1:500 (图 3). Hum Mol Genet (2017) ncbi
兔 单克隆(3D7)
  • 免疫印迹; 小鼠; 图 s5b
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling, 9215)被用于被用于免疫印迹在小鼠样本上 (图 s5b). J Clin Invest (2017) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图 1d
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling, 9212)被用于被用于免疫印迹在人类样本上 (图 1d). Biochem J (2017) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图 1c
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling, 9211)被用于被用于免疫印迹在人类样本上 (图 1c). Biochem J (2017) ncbi
兔 单克隆(3D7)
  • 免疫印迹; 小鼠; 1:200; 图 3d
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling, 9215)被用于被用于免疫印迹在小鼠样本上浓度为1:200 (图 3d). Proc Natl Acad Sci U S A (2017) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图 1e
赛信通(上海)生物试剂有限公司 p38抗体(CST, 9211)被用于被用于免疫印迹在人类样本上 (图 1e). J Immunol (2017) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图 1e
赛信通(上海)生物试剂有限公司 p38抗体(CST, 9212)被用于被用于免疫印迹在人类样本上 (图 1e). J Immunol (2017) ncbi
兔 多克隆
  • 免疫印迹; 人类; 1:2000; 图 s5f
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling, 9212)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 s5f). Arterioscler Thromb Vasc Biol (2017) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 图 3g
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling, 9211)被用于被用于免疫印迹在小鼠样本上 (图 3g). J Exp Med (2017) ncbi
兔 多克隆
  • 免疫印迹; 人类; 1:1000; 图 6a
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling Technology, 9211)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 6a). Exp Ther Med (2017) ncbi
兔 多克隆
  • 免疫印迹; 人类; 1:1000; 图 6a
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling Technology, 9212)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 6a). Exp Ther Med (2017) ncbi
兔 单克隆(3D7)
  • 免疫印迹; 小鼠; 图 s7e
  • 免疫印迹; 人类; 图 s7f
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling, 9215)被用于被用于免疫印迹在小鼠样本上 (图 s7e) 和 被用于免疫印迹在人类样本上 (图 s7f). Cell (2017) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 图 1a
赛信通(上海)生物试剂有限公司 p38抗体(cell signalling, 9212)被用于被用于免疫印迹在小鼠样本上 (图 1a). Cell Death Dis (2017) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 图 2e
赛信通(上海)生物试剂有限公司 p38抗体(cell signalling, 9211)被用于被用于免疫印迹在小鼠样本上 (图 2e). Sci Rep (2017) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 图 1a
赛信通(上海)生物试剂有限公司 p38抗体(cell signalling, 9212)被用于被用于免疫印迹在小鼠样本上 (图 1a). Sci Rep (2017) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图 4c
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling, 9212)被用于被用于免疫印迹在人类样本上 (图 4c). GeroScience (2017) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 1:500; 图 7b
赛信通(上海)生物试剂有限公司 p38抗体(Cell signaling, 9212)被用于被用于免疫印迹在小鼠样本上浓度为1:500 (图 7b). elife (2017) ncbi
兔 多克隆
  • 免疫印迹; 大鼠; 图 1c
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling, 9212)被用于被用于免疫印迹在大鼠样本上 (图 1c). Toxicology (2017) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 图 3
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling, 9211S)被用于被用于免疫印迹在小鼠样本上 (图 3). Front Aging Neurosci (2017) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 图 3
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling, 9212)被用于被用于免疫印迹在小鼠样本上 (图 3). Front Aging Neurosci (2017) ncbi
兔 多克隆
  • reverse phase protein lysate microarray; 人类; 图 st6
赛信通(上海)生物试剂有限公司 p38抗体(CST, 9212)被用于被用于reverse phase protein lysate microarray在人类样本上 (图 st6). Cancer Cell (2017) ncbi
兔 多克隆
  • reverse phase protein lysate microarray; 人类; 图 st6
赛信通(上海)生物试剂有限公司 p38抗体(CST, 9211)被用于被用于reverse phase protein lysate microarray在人类样本上 (图 st6). Cancer Cell (2017) ncbi
兔 单克隆(3D7)
  • 免疫印迹; 小鼠; 1:3000; 图 3a
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling, 9215)被用于被用于免疫印迹在小鼠样本上浓度为1:3000 (图 3a). Nat Commun (2017) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 3a
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling, 9212)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 3a). Nat Commun (2017) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 图 EV4a
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling, 9212)被用于被用于免疫印迹在小鼠样本上 (图 EV4a). EMBO Mol Med (2017) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 图 EV4a
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling, 9211)被用于被用于免疫印迹在小鼠样本上 (图 EV4a). EMBO Mol Med (2017) ncbi
兔 单克隆(3D7)
  • 免疫印迹; 人类; 图 1g
赛信通(上海)生物试剂有限公司 p38抗体(cst, 9215s)被用于被用于免疫印迹在人类样本上 (图 1g). J Cell Sci (2017) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图 1g
赛信通(上海)生物试剂有限公司 p38抗体(CST, 9212S)被用于被用于免疫印迹在人类样本上 (图 1g). J Cell Sci (2017) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图 4a
  • 免疫印迹; 小鼠; 图 3a
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling, 9212)被用于被用于免疫印迹在人类样本上 (图 4a) 和 被用于免疫印迹在小鼠样本上 (图 3a). J Biol Chem (2017) ncbi
兔 单克隆(3D7)
  • 免疫印迹; 小鼠; 图 EV3d
  • 免疫印迹; 人类; 图 7a
赛信通(上海)生物试剂有限公司 p38抗体(cell signalling, 9215)被用于被用于免疫印迹在小鼠样本上 (图 EV3d) 和 被用于免疫印迹在人类样本上 (图 7a). EMBO J (2017) ncbi
兔 多克隆
  • 免疫印迹; 人类; 1:1000; 图 5a
赛信通(上海)生物试剂有限公司 p38抗体(cell signalling, 9211)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 5a). Sci Rep (2017) ncbi
兔 多克隆
  • 免疫印迹; 猪; 图 4a
赛信通(上海)生物试剂有限公司 p38抗体(CST, 9218)被用于被用于免疫印迹在猪样本上 (图 4a). BMC Biotechnol (2017) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 图 4e
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling, 9212)被用于被用于免疫印迹在小鼠样本上 (图 4e). J Endocrinol (2017) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 图 s5e
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling, 9218)被用于被用于免疫印迹在小鼠样本上 (图 s5e). Nature (2017) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 1:1000
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling, 9212)被用于被用于免疫印迹在小鼠样本上浓度为1:1000. Stem Cell Res Ther (2017) ncbi
小鼠 单克隆(28B10)
  • 免疫印迹; 小鼠; 1:1000
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling, 9216)被用于被用于免疫印迹在小鼠样本上浓度为1:1000. Stem Cell Res Ther (2017) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图 3a
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling, 9212S)被用于被用于免疫印迹在人类样本上 (图 3a). PLoS ONE (2017) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图 3a
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling, 9211S)被用于被用于免疫印迹在人类样本上 (图 3a). PLoS ONE (2017) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图 5g
赛信通(上海)生物试剂有限公司 p38抗体(cell signalling, 9212)被用于被用于免疫印迹在人类样本上 (图 5g). Nucleic Acids Res (2017) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图 5B
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling, 9212)被用于被用于免疫印迹在人类样本上 (图 5B). Biochem J (2017) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 图 2A
  • 免疫印迹; 人类; 图 5A
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling, 9211)被用于被用于免疫印迹在小鼠样本上 (图 2A) 和 被用于免疫印迹在人类样本上 (图 5A). Biochem J (2017) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图 1b
赛信通(上海)生物试剂有限公司 p38抗体(CST, 9211)被用于被用于免疫印迹在人类样本上 (图 1b). Sci Rep (2017) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图 1b
赛信通(上海)生物试剂有限公司 p38抗体(CST, 9212)被用于被用于免疫印迹在人类样本上 (图 1b). Sci Rep (2017) ncbi
小鼠 单克隆(28B10)
  • 流式细胞仪; 人类; 图 1d
赛信通(上海)生物试剂有限公司 p38抗体(CST, 4552)被用于被用于流式细胞仪在人类样本上 (图 1d). Sci Rep (2017) ncbi
兔 单克隆(3D7)
  • 免疫印迹; 小鼠; 1:1000; 图 S17A
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling, 3D7)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 S17A). Nat Commun (2017) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 s3
赛信通(上海)生物试剂有限公司 p38抗体(cell signalling, 9212)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 s3). Proc Natl Acad Sci U S A (2017) ncbi
小鼠 单克隆(28B10)
  • 免疫印迹; 小鼠; 1:2000; 图 s3
赛信通(上海)生物试剂有限公司 p38抗体(cell signalling, 9216)被用于被用于免疫印迹在小鼠样本上浓度为1:2000 (图 s3). Proc Natl Acad Sci U S A (2017) ncbi
兔 单克隆(12F8)
  • 免疫印迹; 小鼠; 1:500; 图 6c
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling Technology, 4631)被用于被用于免疫印迹在小鼠样本上浓度为1:500 (图 6c). J Cell Biol (2017) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图 4a
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling, 9212)被用于被用于免疫印迹在人类样本上 (图 4a). Sci Rep (2017) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图 s7d
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling, 9211)被用于被用于免疫印迹在人类样本上 (图 s7d). Sci Rep (2017) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图 5a
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling, 9211)被用于被用于免疫印迹在人类样本上 (图 5a). Peerj (2017) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 图 5b
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling, 9212)被用于被用于免疫印迹在小鼠样本上 (图 5b). Autophagy (2017) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图 3b
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling, 9211)被用于被用于免疫印迹在人类样本上 (图 3b). Mol Immunol (2017) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图 3b
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling, 9212)被用于被用于免疫印迹在人类样本上 (图 3b). Mol Immunol (2017) ncbi
兔 多克隆
  • 免疫印迹; 人类; 1:1000; 图 8c
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling, 9212)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 8c). Nat Commun (2017) ncbi
兔 多克隆
  • 免疫印迹; 人类; 1:1000; 图 4a
赛信通(上海)生物试剂有限公司 p38抗体(Abcam, 9212)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 4a). Exp Ther Med (2016) ncbi
兔 单克隆(12F8)
  • 免疫印迹; 小鼠; 1:1000; 图 s5
赛信通(上海)生物试剂有限公司 p38抗体(cell signalling, 4631)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 s5). Nat Commun (2017) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 s5
赛信通(上海)生物试剂有限公司 p38抗体(cell signalling, 9212)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 s5). Nat Commun (2017) ncbi
小鼠 单克隆(28B10)
  • 免疫印迹; 小鼠; 图 4c
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling, 9216)被用于被用于免疫印迹在小鼠样本上 (图 4c). EMBO J (2017) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图 7i
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling, 9212S)被用于被用于免疫印迹在人类样本上 (图 7i). J Cell Biochem (2017) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 s7a
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling, 9211)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 s7a). J Clin Invest (2017) ncbi
兔 单克隆(3D7)
  • 免疫印迹; 人类; 1:2000; 图 5E
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling, 9215)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 5E). PLoS ONE (2017) ncbi
小鼠 单克隆(28B10)
  • 免疫印迹; 人类; 图 2c
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling, 9216)被用于被用于免疫印迹在人类样本上 (图 2c). Cell Cycle (2017) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图 2c
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling, 9218)被用于被用于免疫印迹在人类样本上 (图 2c). Cell Cycle (2017) ncbi
兔 多克隆
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling Technology, 9211)被用于被用于免疫印迹在人类样本上. Cell Syst (2017) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 图 2a
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling Technology, 9211)被用于被用于免疫印迹在小鼠样本上 (图 2a). J Biol Chem (2017) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 图 7a
赛信通(上海)生物试剂有限公司 p38抗体(CST, 9212)被用于被用于免疫印迹在小鼠样本上 (图 7a). J Am Heart Assoc (2016) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图 8a
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling, 9211)被用于被用于免疫印迹在人类样本上 (图 8a). J Cell Mol Med (2017) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图 2g
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling, 9211)被用于被用于免疫印迹在人类样本上 (图 2g). Biochim Biophys Acta Mol Cell Res (2017) ncbi
兔 单克隆(3D7)
  • 免疫印迹; 人类; 1:1000; 图 5a
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling, 9215)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 5a). Arch Biochem Biophys (2017) ncbi
小鼠 单克隆(L53F8)
  • 免疫印迹; 人类; 1:1000; 图 5a
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling, 9228)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 5a). Arch Biochem Biophys (2017) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 图 4
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling, 9212)被用于被用于免疫印迹在小鼠样本上 (图 4). PLoS ONE (2016) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 图 4
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling, 9211S)被用于被用于免疫印迹在小鼠样本上 (图 4). PLoS ONE (2016) ncbi
小鼠 单克隆(28B10)
  • 免疫印迹; 小鼠; 图 8b
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling, 28B10)被用于被用于免疫印迹在小鼠样本上 (图 8b). J Biol Chem (2017) ncbi
小鼠 单克隆(L53F8)
  • 免疫印迹; 人类; 1:1000; 图 5a
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling, 9228)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 5a). Oncotarget (2017) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图 2a
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling, 9211)被用于被用于免疫印迹在人类样本上 (图 2a). Oncotarget (2016) ncbi
兔 多克隆
  • 免疫印迹; 大鼠; 图 5b
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling, 9211)被用于被用于免疫印迹在大鼠样本上 (图 5b). PLoS ONE (2016) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 图 1e
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling, 9211)被用于被用于免疫印迹在小鼠样本上 (图 1e). FASEB J (2017) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图 2a
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling, 9211)被用于被用于免疫印迹在人类样本上 (图 2a). Oncotarget (2016) ncbi
兔 单克隆(12F8)
  • 免疫印迹; 人类; 1:1000; 图 7
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling, 4631)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 7). Respir Res (2016) ncbi
兔 多克隆
  • 免疫印迹; 人类; 1:1000; 图 7
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling, 9212)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 7). Respir Res (2016) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 图 s3h, s4a
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling, 9211)被用于被用于免疫印迹在小鼠样本上 (图 s3h, s4a). Nature (2016) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图 6a
赛信通(上海)生物试剂有限公司 p38抗体(Cell signaling, 9211)被用于被用于免疫印迹在人类样本上 (图 6a). Redox Biol (2016) ncbi
小鼠 单克隆(28B10)
  • 免疫印迹; 小鼠; 图 s7b
赛信通(上海)生物试剂有限公司 p38抗体(Cell signaling, 9216)被用于被用于免疫印迹在小鼠样本上 (图 s7b). Autophagy (2016) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 图 3d
赛信通(上海)生物试剂有限公司 p38抗体(Cell signaling, 9218)被用于被用于免疫印迹在小鼠样本上 (图 3d). Autophagy (2016) ncbi
兔 多克隆
  • 免疫印迹; 猪; 图 1b
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling, 9211S)被用于被用于免疫印迹在猪样本上 (图 1b). Arthritis Rheumatol (2017) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图 7a
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling, 9212)被用于被用于免疫印迹在人类样本上 (图 7a). Cancer Gene Ther (2016) ncbi
兔 多克隆
  • 免疫印迹; 大鼠; 图 4a
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling Technology, 9212)被用于被用于免疫印迹在大鼠样本上 (图 4a). PLoS ONE (2016) ncbi
兔 多克隆
  • 免疫印迹; 大鼠; 图 4a
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling Technology, 9211)被用于被用于免疫印迹在大鼠样本上 (图 4a). PLoS ONE (2016) ncbi
兔 单克隆(3D7)
  • 免疫印迹; 人类; 图 2a
赛信通(上海)生物试剂有限公司 p38抗体(Cell signaling, 9215)被用于被用于免疫印迹在人类样本上 (图 2a). Sci Rep (2016) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图 5
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signalling, 9212)被用于被用于免疫印迹在人类样本上 (图 5). Oncotarget (2016) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图 5
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signalling, 9211)被用于被用于免疫印迹在人类样本上 (图 5). Oncotarget (2016) ncbi
兔 多克隆
  • 免疫印迹; 大鼠; 1:1000; 图 5a
赛信通(上海)生物试剂有限公司 p38抗体(cell signalling, 9212)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 5a). Oncotarget (2016) ncbi
兔 多克隆
  • 免疫印迹; 大鼠; 1:1000; 图 5a
赛信通(上海)生物试剂有限公司 p38抗体(cell signalling, 9211)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 5a). Oncotarget (2016) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 图 3c
  • 免疫印迹; 人类; 1:2000; 图 6c
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling, 9211)被用于被用于免疫印迹在小鼠样本上 (图 3c) 和 被用于免疫印迹在人类样本上浓度为1:2000 (图 6c). J Exp Med (2016) ncbi
兔 多克隆
  • 免疫印迹; 大鼠; 1:1000; 图 6a
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling, 9211)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 6a). Oxid Med Cell Longev (2016) ncbi
兔 多克隆
  • 免疫印迹; 大鼠; 1:1000; 图 6a
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling, 9212)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 6a). Oxid Med Cell Longev (2016) ncbi
兔 单克隆(12F8)
  • 免疫组化-石蜡切片; 大鼠; 1:25; 图 4b
  • 免疫印迹; 大鼠; 1:1000; 图 4c
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling, 4631)被用于被用于免疫组化-石蜡切片在大鼠样本上浓度为1:25 (图 4b) 和 被用于免疫印迹在大鼠样本上浓度为1:1000 (图 4c). Evid Based Complement Alternat Med (2016) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 1:2000; 图 6d
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling, 9212)被用于被用于免疫印迹在小鼠样本上浓度为1:2000 (图 6d). Nat Commun (2016) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 1:2000; 图 6d
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling, 9211)被用于被用于免疫印迹在小鼠样本上浓度为1:2000 (图 6d). Nat Commun (2016) ncbi
兔 多克隆
  • 免疫印迹; 人类; 1:200; 图 st1
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling, 9211)被用于被用于免疫印迹在人类样本上浓度为1:200 (图 st1). Nat Commun (2016) ncbi
兔 多克隆
  • 免疫印迹; 人类; 1:200; 图 st1
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling, 9212)被用于被用于免疫印迹在人类样本上浓度为1:200 (图 st1). Nat Commun (2016) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图 6a
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling, 9211)被用于被用于免疫印迹在人类样本上 (图 6a). Oncotarget (2016) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图 2
赛信通(上海)生物试剂有限公司 p38抗体(Cell signaling, 9211)被用于被用于免疫印迹在人类样本上 (图 2). Lipids Health Dis (2016) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图 2
赛信通(上海)生物试剂有限公司 p38抗体(Cell signaling, 9212)被用于被用于免疫印迹在人类样本上 (图 2). Lipids Health Dis (2016) ncbi
兔 单克隆(3D7)
  • 免疫印迹; 猪; 1:1000; 图 2A
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling, 3D7)被用于被用于免疫印迹在猪样本上浓度为1:1000 (图 2A). Toxins (Basel) (2016) ncbi
小鼠 单克隆(28B10)
  • 免疫组化; 小鼠; 图 s10b
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signalling Technologies, 9216)被用于被用于免疫组化在小鼠样本上 (图 s10b). Open Biol (2016) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 图 7a
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling, 9211)被用于被用于免疫印迹在小鼠样本上 (图 7a). J Immunol (2016) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 图 7a
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling, 9212)被用于被用于免疫印迹在小鼠样本上 (图 7a). J Immunol (2016) ncbi
兔 多克隆
  • 免疫印迹; 大鼠; 图 5
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling Tech, 9212)被用于被用于免疫印迹在大鼠样本上 (图 5). Carcinogenesis (2016) ncbi
兔 多克隆
  • 免疫印迹; 大鼠; 图 5
赛信通(上海)生物试剂有限公司 p38抗体(Cell signaling, 9212)被用于被用于免疫印迹在大鼠样本上 (图 5). PLoS ONE (2016) ncbi
兔 单克隆(12F8)
  • 免疫印迹; 大鼠; 图 2
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling, 4631)被用于被用于免疫印迹在大鼠样本上 (图 2). Int J Mol Med (2016) ncbi
兔 单克隆(12F8)
  • 免疫印迹; 人类; 图 4a
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling, 4631)被用于被用于免疫印迹在人类样本上 (图 4a). Mol Med Rep (2016) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 1:500; 图 3a
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling Technology, 9211)被用于被用于免疫印迹在小鼠样本上浓度为1:500 (图 3a). Mol Med Rep (2016) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 3a
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling Technology, 9212)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 3a). Mol Med Rep (2016) ncbi
兔 多克隆
  • 免疫组化; 小鼠; 图 s8
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling, 9218)被用于被用于免疫组化在小鼠样本上 (图 s8). Neoplasia (2016) ncbi
兔 单克隆(3D7)
  • 免疫组化; 斑马鱼; 1:500; 图 5a
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling, 9215)被用于被用于免疫组化在斑马鱼样本上浓度为1:500 (图 5a). Neurotox Res (2016) ncbi
小鼠 单克隆(28B10)
  • 流式细胞仪; 人类; 图 s18a
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling, 28B10)被用于被用于流式细胞仪在人类样本上 (图 s18a). J Clin Invest (2016) ncbi
兔 单克隆(3D7)
  • 流式细胞仪; 人类; 图 5b
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling Technology, 3D7)被用于被用于流式细胞仪在人类样本上 (图 5b). Cell Rep (2016) ncbi
兔 多克隆
  • 免疫印迹; 人类; 1:500; 图 4b
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling, 9211)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 4b). Oncotarget (2016) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图 2c
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling, 9211s)被用于被用于免疫印迹在人类样本上 (图 2c). Autophagy (2016) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图 2c
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling, 9212)被用于被用于免疫印迹在人类样本上 (图 2c). Autophagy (2016) ncbi
兔 多克隆
  • 免疫印迹; 人类; 1:750; 图 5
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling Tech, 9211)被用于被用于免疫印迹在人类样本上浓度为1:750 (图 5). Nat Commun (2016) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 图 s4a
赛信通(上海)生物试剂有限公司 p38抗体(Cell signaling, 9212)被用于被用于免疫印迹在小鼠样本上 (图 s4a). Biol Reprod (2016) ncbi
兔 多克隆
  • 免疫印迹; 大鼠; 图 s2
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling, 9211)被用于被用于免疫印迹在大鼠样本上 (图 s2). Sci Rep (2016) ncbi
兔 多克隆
  • 免疫印迹; 大鼠; 图 s2
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling, 9212)被用于被用于免疫印迹在大鼠样本上 (图 s2). Sci Rep (2016) ncbi
小鼠 单克隆(5F11)
  • 免疫印迹; 人类; 图 4a
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling, 5F11)被用于被用于免疫印迹在人类样本上 (图 4a). Cell Signal (2016) ncbi
兔 单克隆(12F8)
  • 免疫印迹; 小鼠; 图 4c
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling, 4631S)被用于被用于免疫印迹在小鼠样本上 (图 4c). BMC Complement Altern Med (2016) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 图 4c
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling, 9212)被用于被用于免疫印迹在小鼠样本上 (图 4c). BMC Complement Altern Med (2016) ncbi
兔 多克隆
  • 免疫印迹; 大鼠; 图 4
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling, 9212)被用于被用于免疫印迹在大鼠样本上 (图 4). Physiol Rep (2016) ncbi
小鼠 单克隆(28B10)
  • 免疫印迹; 大鼠; 图 4
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling, 9216)被用于被用于免疫印迹在大鼠样本上 (图 4). Physiol Rep (2016) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 2
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signalling, 9212S)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 2). Nat Commun (2016) ncbi
兔 单克隆(3D7)
  • 免疫印迹; 小鼠; 图 3
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling, 9215)被用于被用于免疫印迹在小鼠样本上 (图 3). PLoS ONE (2016) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图 4a
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling, 9212)被用于被用于免疫印迹在人类样本上 (图 4a). Autophagy (2016) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图 4a
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling, 9211)被用于被用于免疫印迹在人类样本上 (图 4a). Autophagy (2016) ncbi
兔 多克隆
  • 免疫印迹; 人类; 1:1000; 图 3g
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling, 9211s)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3g). Aging (Albany NY) (2016) ncbi
小鼠 单克隆(28B10)
  • 免疫印迹; 人类; 图 4a
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling, 9216)被用于被用于免疫印迹在人类样本上 (图 4a). PLoS ONE (2016) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图 4a
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling, 9212)被用于被用于免疫印迹在人类样本上 (图 4a). PLoS ONE (2016) ncbi
兔 多克隆
  • 免疫印迹; 大鼠; 1:1000; 图 6
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signalling, 9212)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 6). Sci Rep (2016) ncbi
小鼠 单克隆(28B10)
  • 免疫印迹; 人类; 1:2000; 图 3c
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling, 9216)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 3c). Leukemia (2017) ncbi
兔 单克隆(3D7)
  • 免疫印迹; 人类; 1:1000; 图 3
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling Tech, 9215S)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3). Oncol Lett (2016) ncbi
兔 多克隆
  • 免疫印迹; 人类; 1:1000; 图 3
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling Tech, 9212)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3). Oncol Lett (2016) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 s6c
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling, 9212)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 s6c). Nature (2016) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 6
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling Technology, 9212)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 6). elife (2016) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 6
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling Technology, 9211)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 6). elife (2016) ncbi
兔 多克隆
  • 免疫印迹; 大鼠; 图 4a
赛信通(上海)生物试剂有限公司 p38抗体(Cell signaling, 9212)被用于被用于免疫印迹在大鼠样本上 (图 4a). Toxicol Sci (2016) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图 6
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling, 9212)被用于被用于免疫印迹在人类样本上 (图 6). Sci Rep (2016) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图 6a
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling Technology, 9212)被用于被用于免疫印迹在人类样本上 (图 6a). Oncotarget (2016) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图 6a
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling Technology, 9211)被用于被用于免疫印迹在人类样本上 (图 6a). Oncotarget (2016) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 3a
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling, 9211)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 3a). Nat Med (2016) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 3a
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling, 9212)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 3a). Nat Med (2016) ncbi
小鼠 单克隆(28B10)
  • 免疫细胞化学; 小鼠; 1:50; 图 3g
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling, 9216)被用于被用于免疫细胞化学在小鼠样本上浓度为1:50 (图 3g). Nat Med (2016) ncbi
兔 单克隆(3D7)
  • 免疫印迹; 小鼠; 1:1000; 图 s3e
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling, 9215)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 s3e). Sci Rep (2016) ncbi
兔 多克隆
  • 免疫印迹; 人类; 1:500; 图 6a
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling, 9212)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 6a). Oncotarget (2016) ncbi
小鼠 单克隆(28B10)
  • 免疫印迹; 人类; 1:250; 图 6a
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling, 9216)被用于被用于免疫印迹在人类样本上浓度为1:250 (图 6a). Oncotarget (2016) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图 1
赛信通(上海)生物试剂有限公司 p38抗体(Cell signaling, 9212)被用于被用于免疫印迹在人类样本上 (图 1). FASEB J (2016) ncbi
兔 单克隆(12F8)
  • 免疫组化-石蜡切片; 小鼠; 1:200; 图 5d
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling Technology, 4631)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:200 (图 5d). Oncol Lett (2016) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图 5
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling, 9211)被用于被用于免疫印迹在人类样本上 (图 5). EMBO J (2016) ncbi
兔 多克隆
  • 免疫印迹; 人类; 1:1000; 图 3
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling, 9212)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3). Nat Commun (2016) ncbi
兔 多克隆
  • 免疫印迹; 人类; 1:1000; 图 3
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling, 9211)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3). Nat Commun (2016) ncbi
兔 多克隆
  • 免疫印迹; 空肠弯曲杆菌; 1:1000; 图 4
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signalling Technology, 92115)被用于被用于免疫印迹在空肠弯曲杆菌样本上浓度为1:1000 (图 4). mSphere (2016) ncbi
兔 多克隆
  • 免疫印迹; 空肠弯曲杆菌; 图 4
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signalling Technology, 92125)被用于被用于免疫印迹在空肠弯曲杆菌样本上 (图 4). mSphere (2016) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图 6a
赛信通(上海)生物试剂有限公司 p38抗体(cell signaling, 9211s)被用于被用于免疫印迹在人类样本上 (图 6a). Cancer Res (2016) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图 3b
  • 免疫印迹; 小鼠; 图 s1
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling, 9211)被用于被用于免疫印迹在人类样本上 (图 3b) 和 被用于免疫印迹在小鼠样本上 (图 s1). Oncotarget (2016) ncbi
兔 单克隆(12F8)
  • 免疫印迹; 小鼠; 图 5
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling, 4631)被用于被用于免疫印迹在小鼠样本上 (图 5). PLoS Pathog (2016) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 图 5
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling, 9212)被用于被用于免疫印迹在小鼠样本上 (图 5). PLoS Pathog (2016) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图 2
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling Technology, 9212)被用于被用于免疫印迹在人类样本上 (图 2). Sci Rep (2016) ncbi
兔 多克隆
  • 免疫印迹; 人类; 1:1000; 图 7
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling Tech, 9212)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 7). Front Cell Infect Microbiol (2016) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 图 3
赛信通(上海)生物试剂有限公司 p38抗体(Cell signaling, 9212)被用于被用于免疫印迹在小鼠样本上 (图 3). Nat Commun (2016) ncbi
兔 多克隆
  • 免疫印迹; 人类; 1:1000; 图 5
赛信通(上海)生物试剂有限公司 p38抗体(Cell signaling, 9212)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 5). J Ovarian Res (2016) ncbi
兔 单克隆(3D7)
  • 免疫印迹; 人类; 1:1000; 图 5
赛信通(上海)生物试剂有限公司 p38抗体(Cell signaling, 9215)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 5). J Ovarian Res (2016) ncbi
兔 单克隆(3D7)
  • 免疫印迹; 小鼠; 1:1000; 图 2C
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling, 9215)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 2C). PLoS ONE (2016) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图 s2b
赛信通(上海)生物试剂有限公司 p38抗体(Cell signaling, 9211)被用于被用于免疫印迹在人类样本上 (图 s2b). Oncotarget (2016) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图 s2b
赛信通(上海)生物试剂有限公司 p38抗体(Cell signaling, 9212)被用于被用于免疫印迹在人类样本上 (图 s2b). Oncotarget (2016) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 s10b
赛信通(上海)生物试剂有限公司 p38抗体(CST, 9,212)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 s10b). Nat Commun (2016) ncbi
小鼠 单克隆(28B10)
  • 免疫印迹; 小鼠; 图 1
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling, 9216)被用于被用于免疫印迹在小鼠样本上 (图 1). Cell Rep (2016) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 图 4
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling, 9212)被用于被用于免疫印迹在小鼠样本上 (图 4). Nat Commun (2016) ncbi
兔 单克隆(12F8)
  • 免疫印迹; 小鼠; 图 4
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling, 4631)被用于被用于免疫印迹在小鼠样本上 (图 4). Nat Commun (2016) ncbi
小鼠 单克隆(28B10)
  • 免疫组化; 大鼠; 1:100; 图 6
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling, 9216S)被用于被用于免疫组化在大鼠样本上浓度为1:100 (图 6). Cell Death Dis (2016) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 6a
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling, 9212)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 6a). J Am Heart Assoc (2016) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 4
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling Tech, 9211)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 4). Evid Based Complement Alternat Med (2016) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 4
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling Tech, 9212)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 4). Evid Based Complement Alternat Med (2016) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图 9e
  • 免疫印迹; 牛; 图 9f
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling, 9212)被用于被用于免疫印迹在人类样本上 (图 9e) 和 被用于免疫印迹在牛样本上 (图 9f). J Biol Chem (2016) ncbi
兔 单克隆(3D7)
  • 免疫印迹; 牛; 图 9f
  • 免疫印迹; 人类; 图 9e
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling, 9215)被用于被用于免疫印迹在牛样本上 (图 9f) 和 被用于免疫印迹在人类样本上 (图 9e). J Biol Chem (2016) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图 4
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling, 9212)被用于被用于免疫印迹在人类样本上 (图 4). BMC Complement Altern Med (2016) ncbi
兔 单克隆(3D7)
  • 免疫印迹; 人类; 图 1c
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling, 9215)被用于被用于免疫印迹在人类样本上 (图 1c). EMBO Rep (2016) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图 1c
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling, 9212)被用于被用于免疫印迹在人类样本上 (图 1c). EMBO Rep (2016) ncbi
兔 单克隆(3D7)
  • 免疫细胞化学; 狗; 1:50; 图 4
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling, 9215)被用于被用于免疫细胞化学在狗样本上浓度为1:50 (图 4). Nat Commun (2016) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 4
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling, 9212)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 4). PLoS ONE (2016) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 4
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling, 9211)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 4). PLoS ONE (2016) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 1
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling, 9211)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 1). Nat Commun (2016) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 1
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling, 9212)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 1). Nat Commun (2016) ncbi
兔 单克隆(12F8)
  • 免疫细胞化学; 小鼠; 图 s1a,s1b
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling Technology, 4631)被用于被用于免疫细胞化学在小鼠样本上 (图 s1a,s1b). Sci Rep (2016) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 图 4b
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling Technology, 9211)被用于被用于免疫印迹在小鼠样本上 (图 4b). Sci Rep (2016) ncbi
兔 单克隆(12F8)
  • 免疫印迹; 小鼠; 图 4a
赛信通(上海)生物试剂有限公司 p38抗体(Cell signaling, 4631)被用于被用于免疫印迹在小鼠样本上 (图 4a). elife (2016) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图 1b
赛信通(上海)生物试剂有限公司 p38抗体(Cell signaling, 9211)被用于被用于免疫印迹在人类样本上 (图 1b). Cell Signal (2016) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 3a
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling Technology, 9212)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 3a). Sci Rep (2016) ncbi
兔 单克隆(12F8)
  • 免疫印迹; 小鼠; 1:1000; 图 3a
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling Technology, 4631)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 3a). Sci Rep (2016) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 1:5000; 图 2
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signalling, 9211)被用于被用于免疫印迹在小鼠样本上浓度为1:5000 (图 2). Nat Commun (2016) ncbi
小鼠 单克隆(L53F8)
  • 免疫印迹; 小鼠; 1:5000; 图 1
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signalling, 9228)被用于被用于免疫印迹在小鼠样本上浓度为1:5000 (图 1). Nat Commun (2016) ncbi
兔 多克隆
  • 免疫印迹; 人类; 1:1000; 图 3
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling Technology, 9212)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3). PLoS ONE (2016) ncbi
兔 多克隆
  • 免疫印迹; 人类; 1:750; 图 s4
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling, 9211S)被用于被用于免疫印迹在人类样本上浓度为1:750 (图 s4). Mol Cell Proteomics (2016) ncbi
兔 多克隆
  • 免疫印迹; 人类; 1:1000; 图 s4
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling, 9212S)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 s4). Mol Cell Proteomics (2016) ncbi
兔 多克隆
  • 染色质免疫沉淀 ; 小鼠; 图 7
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling Tech, 9218)被用于被用于染色质免疫沉淀 在小鼠样本上 (图 7). Skelet Muscle (2016) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 图 1
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling Tech, 9211)被用于被用于免疫印迹在小鼠样本上 (图 1). Skelet Muscle (2016) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图 1
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling, 9212)被用于被用于免疫印迹在人类样本上 (图 1). Oncotarget (2016) ncbi
兔 单克隆(12F8)
  • 免疫印迹; 小鼠; 1:1000; 图 s6
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling Technology, 12F8)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 s6). Nat Commun (2016) ncbi
小鼠 单克隆(5F11)
  • 免疫印迹; 人类; 1:2000; 图 5
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling, 5F11)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 5). PLoS Pathog (2016) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 s2
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signal, 9212S)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 s2). Proc Natl Acad Sci U S A (2016) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图 4
赛信通(上海)生物试剂有限公司 p38抗体(Cell signaling, 9212)被用于被用于免疫印迹在人类样本上 (图 4). Sci Rep (2016) ncbi
兔 单克隆(3D7)
  • 免疫印迹; 人类; 图 4
赛信通(上海)生物试剂有限公司 p38抗体(Cell signaling, 9215)被用于被用于免疫印迹在人类样本上 (图 4). Sci Rep (2016) ncbi
兔 多克隆
  • 免疫细胞化学; 人类; 1:200; 图 4
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling Tech, 9212)被用于被用于免疫细胞化学在人类样本上浓度为1:200 (图 4). Aging (Albany NY) (2016) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 图 5
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling, 9211)被用于被用于免疫印迹在小鼠样本上 (图 5). J Exp Med (2016) ncbi
兔 单克隆(12F8)
  • 免疫印迹; 小鼠; 图 8a, 8b
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling, 4631)被用于被用于免疫印迹在小鼠样本上 (图 8a, 8b). J Mol Cell Cardiol (2016) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 图 8a, 8b
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling, 9212)被用于被用于免疫印迹在小鼠样本上 (图 8a, 8b). J Mol Cell Cardiol (2016) ncbi
兔 多克隆
  • 免疫印迹; 大鼠; 1:1000; 图 5
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling Technology, 9212)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 5). J Am Heart Assoc (2016) ncbi
兔 多克隆
  • 免疫印迹; 人类; 1:1000; 图 6
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signalling, 9212)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 6). Sci Rep (2016) ncbi
兔 多克隆
  • 免疫印迹; 人类; 1:1000; 图 6
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signalling, 9211)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 6). Sci Rep (2016) ncbi
兔 多克隆
  • 免疫印迹; 面包酵母; 图 5
赛信通(上海)生物试剂有限公司 p38抗体(New England Biolabs, 9211S)被用于被用于免疫印迹在面包酵母样本上 (图 5). Nucleic Acids Res (2016) ncbi
小鼠 单克隆(28B10)
  • 免疫印迹; 人类; 图 5
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling, 9216S)被用于被用于免疫印迹在人类样本上 (图 5). Oncotarget (2016) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图 5
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling, 9212)被用于被用于免疫印迹在人类样本上 (图 5). Oncotarget (2016) ncbi
小鼠 单克隆(28B10)
  • 免疫印迹; 大鼠; 图 3
赛信通(上海)生物试剂有限公司 p38抗体(Cell signaling, 9216)被用于被用于免疫印迹在大鼠样本上 (图 3). Cell Stress Chaperones (2016) ncbi
兔 多克隆
  • 免疫印迹; 人类; 1:1000; 图 5
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling Technologies, 9212P)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 5). Oncol Lett (2016) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 1:2000; 图 s10f
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling, 9212)被用于被用于免疫印迹在小鼠样本上浓度为1:2000 (图 s10f). Nat Commun (2016) ncbi
小鼠 单克隆(28B10)
  • 免疫印迹; 小鼠; 1:1000; 图 s10f
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling, 9216)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 s10f). Nat Commun (2016) ncbi
兔 多克隆
  • 免疫印迹; 小鼠
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling Technology, 9212)被用于被用于免疫印迹在小鼠样本上. Sci Rep (2016) ncbi
兔 多克隆
  • 免疫细胞化学; 人类; 图 7
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling, 9211)被用于被用于免疫细胞化学在人类样本上 (图 7). MBio (2016) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图 3
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling Technology, 9212)被用于被用于免疫印迹在人类样本上 (图 3). J Cell Sci (2016) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图 3
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling Technology, 9211)被用于被用于免疫印迹在人类样本上 (图 3). J Cell Sci (2016) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图 6a
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling, 9212)被用于被用于免疫印迹在人类样本上 (图 6a). Cancer Res (2016) ncbi
兔 多克隆
  • 免疫印迹; 人类; 1:1000; 图 st3
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling, 9211)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 st3). Nat Commun (2016) ncbi
兔 多克隆
  • 免疫印迹; 人类; 1:1000; 图 st3
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling, 9218)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 st3). Nat Commun (2016) ncbi
兔 单克隆(3D7)
  • 免疫印迹; 小鼠; 图 1
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling, 9215)被用于被用于免疫印迹在小鼠样本上 (图 1). Nat Commun (2016) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 图 8
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling Technology, 9212)被用于被用于免疫印迹在小鼠样本上 (图 8). Sci Rep (2016) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图 3
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling, 9212)被用于被用于免疫印迹在人类样本上 (图 3). Int J Cancer (2016) ncbi
兔 单克隆(12F8)
  • 免疫印迹; 人类; 图 3
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling, 4631)被用于被用于免疫印迹在人类样本上 (图 3). Int J Cancer (2016) ncbi
兔 多克隆
  • 免疫印迹; 人类; 1:1000; 图 1
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling, 9211)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 1). Biochem Pharmacol (2016) ncbi
小鼠 单克隆(28B10)
  • 免疫印迹; 小鼠; 图 7d
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling, 9216)被用于被用于免疫印迹在小鼠样本上 (图 7d). J Immunol (2016) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 图 6
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling, 9211)被用于被用于免疫印迹在小鼠样本上 (图 6). J Biol Chem (2016) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 图 2c
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling, 9211)被用于被用于免疫印迹在小鼠样本上 (图 2c). Exp Hematol (2016) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 图 2c
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling, 9212)被用于被用于免疫印迹在小鼠样本上 (图 2c). Exp Hematol (2016) ncbi
兔 单克隆(12F8)
  • 免疫印迹; 人类; 1:1000; 图 s2a
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling Technology, 4631)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 s2a). Nat Commun (2015) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 图 6
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling Technology, 9211)被用于被用于免疫印迹在小鼠样本上 (图 6). Mol Biol Cell (2016) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 图 6
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling Technology, 9212)被用于被用于免疫印迹在小鼠样本上 (图 6). Mol Biol Cell (2016) ncbi
兔 单克隆(3D7)
  • 免疫印迹; 小鼠; 1:1000; 图 s7
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling Technology, 9215)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 s7). Brain Behav (2015) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 s7
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling Technology, 9212)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 s7). Brain Behav (2015) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 1:500; 图 9
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling, 9211)被用于被用于免疫印迹在小鼠样本上浓度为1:500 (图 9). Nat Commun (2015) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 9
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling, 9212)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 9). Nat Commun (2015) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 图 3
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling Technology, 9211S)被用于被用于免疫印迹在小鼠样本上 (图 3). Stem Cell Reports (2015) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 图 3
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling Technology, 9212S)被用于被用于免疫印迹在小鼠样本上 (图 3). Stem Cell Reports (2015) ncbi
兔 多克隆
  • 免疫印迹; 人类; 1:1000; 图 5
赛信通(上海)生物试剂有限公司 p38抗体(CellSignaling, 9212S)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 5). Nat Commun (2015) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 图 4C
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling Technology, 9211)被用于被用于免疫印迹在小鼠样本上 (图 4C). Sci Rep (2015) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 图 4C
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling Technology, 9212)被用于被用于免疫印迹在小鼠样本上 (图 4C). Sci Rep (2015) ncbi
兔 单克隆(12F8)
  • 免疫印迹; 人类; 图 2
赛信通(上海)生物试剂有限公司 p38抗体(Cell signaling, 4631)被用于被用于免疫印迹在人类样本上 (图 2). J Cell Biol (2015) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图 2
赛信通(上海)生物试剂有限公司 p38抗体(Cell signaling, 9212)被用于被用于免疫印迹在人类样本上 (图 2). J Cell Biol (2015) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 图 6
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signalling, 9211)被用于被用于免疫印迹在小鼠样本上 (图 6). Biochem Pharmacol (2016) ncbi
兔 多克隆
  • 免疫印迹; 人类; 1:1000; 图 8
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling Technology, 9212)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 8). Biochem Pharmacol (2016) ncbi
兔 多克隆
  • 免疫印迹; 人类; 1:400; 图 3e
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling, 9211)被用于被用于免疫印迹在人类样本上浓度为1:400 (图 3e). Am J Physiol Lung Cell Mol Physiol (2016) ncbi
兔 多克隆
  • 免疫印迹; 人类; 1:800; 图 3e
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling, 9212)被用于被用于免疫印迹在人类样本上浓度为1:800 (图 3e). Am J Physiol Lung Cell Mol Physiol (2016) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图 4
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling, 9212)被用于被用于免疫印迹在人类样本上 (图 4). BMC Cancer (2015) ncbi
兔 单克隆(3D7)
  • 免疫印迹; 小鼠; 1:1000; 图 8
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling, 9215)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 8). Neuropharmacology (2016) ncbi
小鼠 单克隆(28B10)
  • 免疫印迹; 人类; 图 2
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling, 9216S)被用于被用于免疫印迹在人类样本上 (图 2). Aging (Albany NY) (2015) ncbi
小鼠 单克隆(28B10)
  • 免疫印迹; 大鼠; 1:1000; 图 5a
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling, 9216S)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 5a). Int J Mol Med (2016) ncbi
兔 多克隆
赛信通(上海)生物试剂有限公司 p38抗体(Cell signaling, 9212)被用于. Nature (2015) ncbi
兔 多克隆
  • 免疫印迹; 人类; 1:100; 图 s7
赛信通(上海)生物试剂有限公司 p38抗体(Cell signaling, 9211)被用于被用于免疫印迹在人类样本上浓度为1:100 (图 s7). Nature (2015) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图 3d
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling, 9211)被用于被用于免疫印迹在人类样本上 (图 3d). Cell Death Differ (2016) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图 3d
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling, 9212)被用于被用于免疫印迹在人类样本上 (图 3d). Cell Death Differ (2016) ncbi
兔 多克隆
  • 免疫印迹; common platanna; 图 1
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling, 9211)被用于被用于免疫印迹在common platanna样本上 (图 1). J Biol Chem (2015) ncbi
兔 单克隆(3D7)
  • 免疫印迹; 人类; 图 1
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling Tech, 9215)被用于被用于免疫印迹在人类样本上 (图 1). J Cell Biol (2015) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图 1
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling Tech, 9212)被用于被用于免疫印迹在人类样本上 (图 1). J Cell Biol (2015) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 图 4
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling Technology, 9212)被用于被用于免疫印迹在小鼠样本上 (图 4). Oncogene (2016) ncbi
兔 多克隆
  • 免疫印迹; 人类; 1:1000; 图 2
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling, 9212)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 2). Proc Natl Acad Sci U S A (2015) ncbi
兔 多克隆
  • 免疫印迹; 人类; 1:1000; 图 2
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling, 9211)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 2). Proc Natl Acad Sci U S A (2015) ncbi
兔 多克隆
  • 免疫印迹; 人类; 1:2000; 图 s4a
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signalling, 9218)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 s4a). Nat Commun (2015) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图 5
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling, 9211)被用于被用于免疫印迹在人类样本上 (图 5). Oncotarget (2015) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 1
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling Technology, 9211)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 1). Nat Immunol (2015) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图 2
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling, 9212)被用于被用于免疫印迹在人类样本上 (图 2). PLoS ONE (2015) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图 2
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling, 9211S)被用于被用于免疫印迹在人类样本上 (图 2). PLoS ONE (2015) ncbi
兔 多克隆
  • 免疫细胞化学; 人类; 1:100; 图 4e
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling Technology, 9212)被用于被用于免疫细胞化学在人类样本上浓度为1:100 (图 4e). BMC Cancer (2015) ncbi
兔 多克隆
  • 免疫印迹; 大鼠; 图 7
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling, 9212)被用于被用于免疫印迹在大鼠样本上 (图 7). Int J Mol Sci (2015) ncbi
小鼠 单克隆(28B10)
  • 免疫印迹; 大鼠; 图 7
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling, 9216)被用于被用于免疫印迹在大鼠样本上 (图 7). Int J Mol Sci (2015) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图 s5
赛信通(上海)生物试剂有限公司 p38抗体(Cell signaling, 9211)被用于被用于免疫印迹在人类样本上 (图 s5). Cell Mol Life Sci (2016) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图 s5
赛信通(上海)生物试剂有限公司 p38抗体(Cell signaling, 9212)被用于被用于免疫印迹在人类样本上 (图 s5). Cell Mol Life Sci (2016) ncbi
兔 多克隆
  • 免疫细胞化学; 小鼠; 图 5
  • 免疫印迹; 小鼠; 图 5
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling Technology, 9211)被用于被用于免疫细胞化学在小鼠样本上 (图 5) 和 被用于免疫印迹在小鼠样本上 (图 5). Skelet Muscle (2015) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 图 5
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling Technology, 9212)被用于被用于免疫印迹在小鼠样本上 (图 5). Skelet Muscle (2015) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图 4
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling, 9211)被用于被用于免疫印迹在人类样本上 (图 4). Cell Mol Life Sci (2016) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图 3b
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling, 9212)被用于被用于免疫印迹在人类样本上 (图 3b). Cancer Cell Int (2015) ncbi
小鼠 单克隆(28B10)
  • 免疫印迹; 小鼠; 1:1000; 图 4
赛信通(上海)生物试剂有限公司 p38抗体(Cell signaling, 9216)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 4). Sci Rep (2015) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 1:2000; 图 4
赛信通(上海)生物试剂有限公司 p38抗体(Cell signaling, 9212)被用于被用于免疫印迹在小鼠样本上浓度为1:2000 (图 4). Sci Rep (2015) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图 7
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling, 9212)被用于被用于免疫印迹在人类样本上 (图 7). J Virol (2015) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图 7
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling, 9211)被用于被用于免疫印迹在人类样本上 (图 7). J Virol (2015) ncbi
兔 单克隆(12F8)
  • 免疫印迹; 人类; 图 6
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling, 4631)被用于被用于免疫印迹在人类样本上 (图 6). Oncotarget (2015) ncbi
小鼠 单克隆(L53F8)
  • 免疫印迹; 大鼠; 1:1000; 图 5
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling, 9228)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 5). Int J Mol Med (2015) ncbi
兔 单克隆(3D7)
  • 免疫印迹; 大鼠; 1:1000; 图 5
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling, 4092)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 5). Int J Mol Med (2015) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 5
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling, 9211)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 5). Stem Cell Reports (2015) ncbi
兔 多克隆
  • 免疫印迹; 大鼠; 1:1000
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling, CST-9212)被用于被用于免疫印迹在大鼠样本上浓度为1:1000. PLoS ONE (2015) ncbi
小鼠 单克隆(L53F8)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling, 9228)被用于被用于免疫印迹在人类样本上. PLoS ONE (2015) ncbi
小鼠 单克隆(28B10)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling, 9216)被用于被用于免疫印迹在人类样本上. PLoS ONE (2015) ncbi
小鼠 单克隆(28B10)
  • 免疫印迹; 小鼠; 图 s5
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling Technology, 28B10)被用于被用于免疫印迹在小鼠样本上 (图 s5). Nature (2015) ncbi
兔 单克隆(3D7)
  • 免疫印迹; 兔; 1:1000; 图 3
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signalling Technology, 9215)被用于被用于免疫印迹在兔样本上浓度为1:1000 (图 3). Sci Rep (2015) ncbi
兔 多克隆
  • 其他; 小鼠; 1:1000
  • 免疫印迹; 小鼠; 图 5b
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling, 9211)被用于被用于其他在小鼠样本上浓度为1:1000 和 被用于免疫印迹在小鼠样本上 (图 5b). Front Microbiol (2015) ncbi
兔 多克隆
  • 其他; 小鼠; 1:1000; 图 s1
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling, 9212)被用于被用于其他在小鼠样本上浓度为1:1000 (图 s1). Front Microbiol (2015) ncbi
兔 单克隆(3D7)
  • 免疫印迹; 大鼠; 1:1000
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling, 9215S)被用于被用于免疫印迹在大鼠样本上浓度为1:1000. Am J Physiol Lung Cell Mol Physiol (2015) ncbi
兔 多克隆
  • 免疫印迹; 大鼠; 1:1000
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling, 9212S)被用于被用于免疫印迹在大鼠样本上浓度为1:1000. Am J Physiol Lung Cell Mol Physiol (2015) ncbi
兔 多克隆
  • 免疫印迹; 大鼠; 图 S3
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling, 9212)被用于被用于免疫印迹在大鼠样本上 (图 S3). PLoS ONE (2015) ncbi
兔 单克隆(12F8)
  • 免疫印迹; 大鼠; 图 S3
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling, 4631)被用于被用于免疫印迹在大鼠样本上 (图 S3). PLoS ONE (2015) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 3
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling, 9211)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 3). Nat Commun (2015) ncbi
兔 多克隆
  • 免疫印迹; 大鼠; 图 5
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling, 9211)被用于被用于免疫印迹在大鼠样本上 (图 5). PLoS ONE (2015) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图 4a
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling Technology, 9212)被用于被用于免疫印迹在人类样本上 (图 4a). Oncotarget (2015) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图 4a
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling Technology, 9211)被用于被用于免疫印迹在人类样本上 (图 4a). Oncotarget (2015) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 图 1
赛信通(上海)生物试剂有限公司 p38抗体(Cell signaling, 9212)被用于被用于免疫印迹在小鼠样本上 (图 1). Aging Cell (2015) ncbi
兔 单克隆(3D7)
  • 免疫印迹; 人类; 图 5
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling Tech, 9215)被用于被用于免疫印迹在人类样本上 (图 5). Sci Rep (2015) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图 5
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling Tech, 9212)被用于被用于免疫印迹在人类样本上 (图 5). Sci Rep (2015) ncbi
兔 多克隆
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling, 9212)被用于被用于免疫印迹在人类样本上. Mol Carcinog (2016) ncbi
小鼠 单克隆(28B10)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling, 9216)被用于被用于免疫印迹在人类样本上. Mol Carcinog (2016) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 图 2,3,4,5
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling Technology, 9212s)被用于被用于免疫印迹在小鼠样本上 (图 2,3,4,5). Cell Res (2015) ncbi
兔 单克隆(3D7)
  • 免疫印迹; 小鼠; 1:2000
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling, 9215)被用于被用于免疫印迹在小鼠样本上浓度为1:2000. Mol Oncol (2015) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 1:2000
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling, 9212)被用于被用于免疫印迹在小鼠样本上浓度为1:2000. Mol Oncol (2015) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图 s1
  • 免疫印迹; 小鼠; 图 1
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling, 9211)被用于被用于免疫印迹在人类样本上 (图 s1) 和 被用于免疫印迹在小鼠样本上 (图 1). Sci Rep (2015) ncbi
兔 多克隆
  • 免疫印迹; 大鼠; 1:1000; 图 3a
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling, 9212)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 3a). BMC Complement Altern Med (2015) ncbi
兔 多克隆
  • 免疫印迹; 大鼠; 1:1000; 图 3a
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling, 9211)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 3a). BMC Complement Altern Med (2015) ncbi
小鼠 单克隆(28B10)
  • 免疫印迹; 小鼠; 图 6
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling, 9216)被用于被用于免疫印迹在小鼠样本上 (图 6). elife (2015) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 图 6
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling, 9212)被用于被用于免疫印迹在小鼠样本上 (图 6). elife (2015) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 5
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling, 9,212)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 5). Nat Commun (2015) ncbi
小鼠 单克隆(28B10)
  • 免疫印迹; 小鼠; 1:1000; 图 5
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling, 9,216)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 5). Nat Commun (2015) ncbi
兔 单克隆(3D7)
  • 免疫印迹; 人类; 图 2
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling, 9215)被用于被用于免疫印迹在人类样本上 (图 2). Nat Immunol (2015) ncbi
小鼠 单克隆(28B10)
  • 免疫印迹; 人类; 图 5
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signalling, 9216)被用于被用于免疫印迹在人类样本上 (图 5). Int J Mol Med (2015) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图 5
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signalling, 9218)被用于被用于免疫印迹在人类样本上 (图 5). Int J Mol Med (2015) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图 5
赛信通(上海)生物试剂有限公司 p38抗体(Cell signaling, 9212)被用于被用于免疫印迹在人类样本上 (图 5). BMC Genomics (2015) ncbi
兔 单克隆(12F8)
  • 免疫印迹; 人类; 1:1000
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling, 4631)被用于被用于免疫印迹在人类样本上浓度为1:1000. J Biol Chem (2015) ncbi
兔 多克隆
  • 免疫印迹; 人类; 1:1000
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling, 9212)被用于被用于免疫印迹在人类样本上浓度为1:1000. J Biol Chem (2015) ncbi
兔 多克隆
  • 免疫印迹; 人类; 1:1000
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling, 9211)被用于被用于免疫印迹在人类样本上浓度为1:1000. J Cell Physiol (2015) ncbi
兔 多克隆
  • 免疫印迹; 大鼠; 1:1000; 图 6
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling, 9212)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 6). PLoS ONE (2015) ncbi
兔 单克隆(3D7)
  • 免疫印迹; 大鼠; 1:1000; 图 6
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling, 9215)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 6). PLoS ONE (2015) ncbi
兔 多克隆
  • 免疫印迹; 小鼠
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling, 9211)被用于被用于免疫印迹在小鼠样本上. J Biol Chem (2015) ncbi
兔 多克隆
  • 免疫印迹; 小鼠
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling, 9212)被用于被用于免疫印迹在小鼠样本上. J Biol Chem (2015) ncbi
兔 单克隆(3D7)
  • 免疫印迹; 人类; 图 7
赛信通(上海)生物试剂有限公司 p38抗体(Cell signaling, 9215)被用于被用于免疫印迹在人类样本上 (图 7). Oncotarget (2015) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图 s8
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling Technology, 9212)被用于被用于免疫印迹在人类样本上 (图 s8). Autophagy (2015) ncbi
小鼠 单克隆(28B10)
  • 免疫印迹; 人类; 图 s8
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling Technology, 9216)被用于被用于免疫印迹在人类样本上 (图 s8). Autophagy (2015) ncbi
小鼠 单克隆(28B10)
  • 免疫印迹; 人类; 图 4
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling, 9216)被用于被用于免疫印迹在人类样本上 (图 4). Int J Biol Sci (2015) ncbi
兔 多克隆
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling Technologies, 9211)被用于被用于免疫印迹在人类样本上. PLoS Pathog (2015) ncbi
兔 多克隆
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling Technologies, 9212)被用于被用于免疫印迹在人类样本上. PLoS Pathog (2015) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图 6b
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling Technology, 9211)被用于被用于免疫印迹在人类样本上 (图 6b). Int J Mol Med (2015) ncbi
兔 单克隆(7D6)
  • 免疫印迹; 人类; 图 s1
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling, 2371)被用于被用于免疫印迹在人类样本上 (图 s1). Cell Death Dis (2015) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 图 s1
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling Technology, 9211)被用于被用于免疫印迹在小鼠样本上 (图 s1). Mol Biol Cell (2015) ncbi
兔 单克隆(3D7)
  • 免疫印迹; 大鼠
  • 免疫细胞化学; 人类
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling, 9215)被用于被用于免疫印迹在大鼠样本上 和 被用于免疫细胞化学在人类样本上. Toxicol Lett (2015) ncbi
兔 多克隆
  • 免疫印迹; 大鼠
  • 免疫细胞化学; 人类
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling, 9212)被用于被用于免疫印迹在大鼠样本上 和 被用于免疫细胞化学在人类样本上. Toxicol Lett (2015) ncbi
小鼠 单克隆(28B10)
  • 免疫印迹; 小鼠; 图 1
赛信通(上海)生物试剂有限公司 p38抗体(Cell signaling, 9216)被用于被用于免疫印迹在小鼠样本上 (图 1). FASEB J (2015) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 图 1
赛信通(上海)生物试剂有限公司 p38抗体(Cell signaling, 9212)被用于被用于免疫印迹在小鼠样本上 (图 1). FASEB J (2015) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 图 s2
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling Technologies, 92122)被用于被用于免疫印迹在小鼠样本上 (图 s2). PLoS Pathog (2015) ncbi
兔 多克隆
  • 免疫印迹; 大鼠; 图 5
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling Tech, 9212)被用于被用于免疫印迹在大鼠样本上 (图 5). J Immunol (2015) ncbi
兔 多克隆
  • 免疫印迹; 大鼠; 图 5
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling Tech, 9211)被用于被用于免疫印迹在大鼠样本上 (图 5). J Immunol (2015) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 图 1
赛信通(上海)生物试剂有限公司 p38抗体(Cell signaling, 9212)被用于被用于免疫印迹在小鼠样本上 (图 1). J Immunol (2015) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 图 1
赛信通(上海)生物试剂有限公司 p38抗体(Cell signaling, 9211)被用于被用于免疫印迹在小鼠样本上 (图 1). J Immunol (2015) ncbi
兔 单克隆(3D7)
  • 免疫印迹; 小鼠; 1:1000
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling Technology, 9215)被用于被用于免疫印迹在小鼠样本上浓度为1:1000. Int J Mol Sci (2015) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 1:1000
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling Technology, 9212)被用于被用于免疫印迹在小鼠样本上浓度为1:1000. Int J Mol Sci (2015) ncbi
兔 多克隆
  • 免疫印迹; 大鼠
赛信通(上海)生物试剂有限公司 p38抗体(cell Signaling Technology, 9211S)被用于被用于免疫印迹在大鼠样本上. IUBMB Life (2015) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 1:500; 图 4a
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling Technology, 9212)被用于被用于免疫印迹在小鼠样本上浓度为1:500 (图 4a). Biochim Biophys Acta (2015) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图 s4b
赛信通(上海)生物试剂有限公司 p38抗体(cst, 9211)被用于被用于免疫印迹在人类样本上 (图 s4b). Oncotarget (2015) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图 S4
赛信通(上海)生物试剂有限公司 p38抗体(cst, 9218)被用于被用于免疫印迹在人类样本上 (图 S4). Oncotarget (2015) ncbi
兔 多克隆
  • 免疫组化-石蜡切片; 人类; 1 ug/ml; 表 1
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling, 9211)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1 ug/ml (表 1). Endocrinology (2015) ncbi
小鼠 单克隆(28B10)
  • 免疫印迹; 小鼠; 1:1000; 图 s2
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling, 9216)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 s2). Nat Commun (2015) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 s2
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling, 9218)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 s2). Nat Commun (2015) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 图 6c
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling Technology, 9212)被用于被用于免疫印迹在小鼠样本上 (图 6c). Int J Mol Med (2015) ncbi
兔 多克隆
  • 免疫印迹; common platanna; 图 4
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling, 9211)被用于被用于免疫印迹在common platanna样本上 (图 4). PLoS ONE (2015) ncbi
兔 多克隆
  • 免疫印迹; 人类; 1:1000; 图 9
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling Technology, 9212)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 9). Mol Med Rep (2015) ncbi
兔 单克隆(3D7)
  • 免疫印迹; 小鼠; 1:500; 图 4
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling Technology, 9215)被用于被用于免疫印迹在小鼠样本上浓度为1:500 (图 4). J Physiol (2015) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图 1b
  • 免疫印迹; 大鼠; 图 7b
  • 免疫印迹; 小鼠; 图 3d
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling Technology, 9211)被用于被用于免疫印迹在人类样本上 (图 1b), 被用于免疫印迹在大鼠样本上 (图 7b) 和 被用于免疫印迹在小鼠样本上 (图 3d). Free Radic Biol Med (2015) ncbi
兔 单克隆(3D7)
  • 免疫印迹; 小鼠; 1:1000; 图 2
赛信通(上海)生物试剂有限公司 p38抗体(Cell signaling, 9215)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 2). Nat Commun (2015) ncbi
兔 多克隆
  • 免疫印迹; 大鼠; 1:1000
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling Technology, 9211S)被用于被用于免疫印迹在大鼠样本上浓度为1:1000. Mol Med (2015) ncbi
兔 多克隆
  • 免疫印迹; 大鼠; 1:1000
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling Technology, 9212S)被用于被用于免疫印迹在大鼠样本上浓度为1:1000. Mol Med (2015) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 图 S4a
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling Technology, 9212)被用于被用于免疫印迹在小鼠样本上 (图 S4a). PLoS ONE (2015) ncbi
兔 单克隆(12F8)
  • 免疫印迹; 人类; 图 1
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling, 4631)被用于被用于免疫印迹在人类样本上 (图 1). EMBO J (2015) ncbi
兔 多克隆
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling, 9211)被用于被用于免疫印迹在人类样本上. Biomaterials (2015) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图 1
赛信通(上海)生物试剂有限公司 p38抗体(CST, 9212)被用于被用于免疫印迹在人类样本上 (图 1). PLoS ONE (2015) ncbi
兔 多克隆
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 p38抗体(CST, 9211)被用于被用于免疫印迹在人类样本上. PLoS ONE (2015) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图 6
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling, 9211)被用于被用于免疫印迹在人类样本上 (图 6). Acta Neuropathol (2015) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 图 2
赛信通(上海)生物试剂有限公司 p38抗体(Cell signaling, 9211)被用于被用于免疫印迹在小鼠样本上 (图 2). Mol Biol Cell (2015) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 图 2
赛信通(上海)生物试剂有限公司 p38抗体(Cell signaling, 9212)被用于被用于免疫印迹在小鼠样本上 (图 2). Mol Biol Cell (2015) ncbi
兔 多克隆
  • 免疫印迹; 人类; 1:200; 表 3
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling, 9211)被用于被用于免疫印迹在人类样本上浓度为1:200 (表 3). PLoS ONE (2015) ncbi
兔 多克隆
  • 免疫印迹; 人类; 1:200; 表 3
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling, 9212)被用于被用于免疫印迹在人类样本上浓度为1:200 (表 3). PLoS ONE (2015) ncbi
兔 单克隆(12F8)
  • 免疫印迹; 小鼠; 图 s7a
赛信通(上海)生物试剂有限公司 p38抗体(Cell signaling, 4631)被用于被用于免疫印迹在小鼠样本上 (图 s7a). Nat Immunol (2015) ncbi
兔 多克隆
  • 免疫印迹; 人类; 1:1000
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling Technology, 9212)被用于被用于免疫印迹在人类样本上浓度为1:1000. Biochem Pharmacol (2015) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 1:1000
赛信通(上海)生物试剂有限公司 p38抗体(CST, 9211)被用于被用于免疫印迹在小鼠样本上浓度为1:1000. PLoS ONE (2015) ncbi
兔 多克隆
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling Technology, 9211S)被用于被用于免疫印迹在人类样本上. Arthritis Rheumatol (2015) ncbi
小鼠 单克隆(28B10)
  • 免疫印迹; 小鼠; 图 6a
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling Technology, 4551)被用于被用于免疫印迹在小鼠样本上 (图 6a). Oncotarget (2015) ncbi
小鼠 单克隆(28B10)
  • 免疫印迹; 小鼠; 1:1000; 图 s4
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling Technology, 9216S)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 s4). Nat Cell Biol (2015) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 1:200; 图 s4
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling Technology, 9212s)被用于被用于免疫印迹在小鼠样本上浓度为1:200 (图 s4). Nat Cell Biol (2015) ncbi
兔 多克隆
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling Technology, 9212)被用于被用于免疫印迹在人类样本上. J Invest Dermatol (2015) ncbi
兔 多克隆
  • 免疫印迹; 人类; 0.5 ug/ml; 图 4b
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling, 9211)被用于被用于免疫印迹在人类样本上浓度为0.5 ug/ml (图 4b). Sci Rep (2015) ncbi
兔 单克隆(3D7)
  • 免疫印迹; 人类; 图 5
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling, 9215S)被用于被用于免疫印迹在人类样本上 (图 5). Evid Based Complement Alternat Med (2015) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图 5
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling, 9212)被用于被用于免疫印迹在人类样本上 (图 5). Evid Based Complement Alternat Med (2015) ncbi
兔 多克隆
  • 免疫印迹; budding yeasts
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling Technology, 9211)被用于被用于免疫印迹在budding yeasts样本上. Cold Spring Harb Protoc (2015) ncbi
兔 多克隆
  • 免疫印迹; 人类; 1:1000; 图  3
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signalling Technology, 9212)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图  3). Cell Signal (2015) ncbi
兔 多克隆
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling Technology, 9212)被用于被用于免疫印迹在人类样本上. J Virol (2015) ncbi
兔 多克隆
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling Technology, 9211)被用于被用于免疫印迹在人类样本上. J Virol (2015) ncbi
兔 多克隆
  • 免疫印迹; 人类; 1:1000
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling, 9212)被用于被用于免疫印迹在人类样本上浓度为1:1000. J Immunol (2015) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图 s2b
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling Technology, 9211)被用于被用于免疫印迹在人类样本上 (图 s2b). Autophagy (2015) ncbi
兔 单克隆(12F8)
  • 免疫印迹; 小鼠
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling Technology, 4631)被用于被用于免疫印迹在小鼠样本上. PLoS ONE (2015) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 图 4a
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling Technology, 9211)被用于被用于免疫印迹在小鼠样本上 (图 4a). J Immunol (2015) ncbi
兔 多克隆
  • 免疫印迹; 大鼠
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling, 9211)被用于被用于免疫印迹在大鼠样本上. World J Gastroenterol (2015) ncbi
兔 单克隆(3D7)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signalling, 9215)被用于被用于免疫印迹在人类样本上. Mol Carcinog (2016) ncbi
兔 多克隆
  • 免疫印迹; 小鼠
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling, 9211)被用于被用于免疫印迹在小鼠样本上. PLoS ONE (2015) ncbi
兔 多克隆
  • 免疫印迹; 人类; 1:1000; 图 2c
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling, 9212)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 2c). Nat Commun (2015) ncbi
兔 多克隆
  • 免疫印迹; 人类; 1:1000; 图 2c
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling, 9211)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 2c). Nat Commun (2015) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 10
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling, 9212)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 10). Mol Cell Biol (2015) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 7
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling, 9212)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 7). Mol Cell Biol (2015) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 7
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling, 9211)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 7). Mol Cell Biol (2015) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 s16a
赛信通(上海)生物试剂有限公司 p38抗体(CellSignaling Technology, 9218)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 s16a). Nat Commun (2015) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 图 6
赛信通(上海)生物试剂有限公司 p38抗体(Cell signaling, 9212)被用于被用于免疫印迹在小鼠样本上 (图 6). Cell Death Dis (2015) ncbi
兔 多克隆
  • 免疫印迹; 小鼠
赛信通(上海)生物试剂有限公司 p38抗体(Cst, 9211)被用于被用于免疫印迹在小鼠样本上. J Proteome Res (2015) ncbi
兔 多克隆
  • 免疫印迹; 小鼠
赛信通(上海)生物试剂有限公司 p38抗体(Cst, 9212)被用于被用于免疫印迹在小鼠样本上. J Proteome Res (2015) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 图 2
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling, 9211)被用于被用于免疫印迹在小鼠样本上 (图 2). Mol Cell Biol (2015) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 图 2
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling, 9212)被用于被用于免疫印迹在小鼠样本上 (图 2). Mol Cell Biol (2015) ncbi
兔 多克隆
  • 免疫印迹; 大鼠; 1:1000; 图 2D
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling, 9212S)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 2D). Arch Biochem Biophys (2015) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图 5
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling, 9211)被用于被用于免疫印迹在人类样本上 (图 5). ACS Chem Neurosci (2015) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图 5
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling, 9212)被用于被用于免疫印迹在人类样本上 (图 5). ACS Chem Neurosci (2015) ncbi
兔 单克隆(3D7)
  • 免疫印迹; 人类; 1:1000
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling Technology, 9215)被用于被用于免疫印迹在人类样本上浓度为1:1000. Cancer Lett (2015) ncbi
兔 多克隆
  • 免疫印迹; African green monkey
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling, 9212S)被用于被用于免疫印迹在African green monkey样本上. J Virol (2015) ncbi
兔 多克隆
  • 免疫印迹; African green monkey
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling, 9211S)被用于被用于免疫印迹在African green monkey样本上. J Virol (2015) ncbi
兔 单克隆(12F8)
  • 免疫印迹; 小鼠
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling, 4631)被用于被用于免疫印迹在小鼠样本上 和 被用于免疫印迹在人类样本上. Oncotarget (2014) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 1f
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling, 9211)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 1f). Nat Commun (2014) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图 s6
赛信通(上海)生物试剂有限公司 p38抗体(cell signaling, 9211)被用于被用于免疫印迹在人类样本上 (图 s6). J Mol Cell Biol (2015) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图 s6
赛信通(上海)生物试剂有限公司 p38抗体(cell signaling, 9212)被用于被用于免疫印迹在人类样本上 (图 s6). J Mol Cell Biol (2015) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 图 5
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling Technology, 9212)被用于被用于免疫印迹在小鼠样本上 (图 5). Int J Mol Med (2015) ncbi
兔 多克隆
  • 免疫印迹; 大鼠; 图 3
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling Technology, 9212)被用于被用于免疫印迹在大鼠样本上 (图 3). Biochem Pharmacol (2015) ncbi
兔 多克隆
  • 免疫印迹; 大鼠; 图 3
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling Technology, 9211)被用于被用于免疫印迹在大鼠样本上 (图 3). Biochem Pharmacol (2015) ncbi
兔 多克隆
  • 免疫组化; 小鼠; 1:100; 图 3
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling Technology, 9211)被用于被用于免疫组化在小鼠样本上浓度为1:100 (图 3). J Bone Miner Res (2015) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 图 s3
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling Technology, 9212)被用于被用于免疫印迹在小鼠样本上 (图 s3). Nature (2015) ncbi
兔 单克隆(3D7)
  • 免疫印迹; 人类; 图 3a
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling, 9215)被用于被用于免疫印迹在人类样本上 (图 3a). Int J Oncol (2015) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 1:500; 图 2
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling, 9211)被用于被用于免疫印迹在小鼠样本上浓度为1:500 (图 2). PLoS ONE (2014) ncbi
兔 多克隆
  • 免疫印迹; 面包酵母; 图 2
赛信通(上海)生物试剂有限公司 p38抗体(Cell signaling, 9211)被用于被用于免疫印迹在面包酵母样本上 (图 2). PLoS Genet (2014) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 图 5
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling, 9211)被用于被用于免疫印迹在小鼠样本上 (图 5). Cell Death Dis (2014) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 图 5
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling, 9212)被用于被用于免疫印迹在小鼠样本上 (图 5). Cell Death Dis (2014) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 图 5
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling, 9211)被用于被用于免疫印迹在小鼠样本上 (图 5). Mol Cell Biol (2015) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图 5d
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling Technology, 9211)被用于被用于免疫印迹在人类样本上 (图 5d). FASEB J (2015) ncbi
兔 多克隆
  • 免疫印迹; 大鼠
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling Technology, 9212)被用于被用于免疫印迹在大鼠样本上. Br J Pharmacol (2015) ncbi
兔 单克隆(12F8)
  • 免疫印迹; 大鼠
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling Technology, 4631S)被用于被用于免疫印迹在大鼠样本上. Br J Pharmacol (2015) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 图 1
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling Technology, 9212)被用于被用于免疫印迹在小鼠样本上 (图 1). Sci Signal (2014) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 图 2
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling, 9211)被用于被用于免疫印迹在小鼠样本上 (图 2). EMBO J (2014) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 图 2
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling, 9212)被用于被用于免疫印迹在小鼠样本上 (图 2). EMBO J (2014) ncbi
兔 多克隆
  • 免疫组化-自由浮动切片; 小鼠; 1:100
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling Technology, 9211L)被用于被用于免疫组化-自由浮动切片在小鼠样本上浓度为1:100. J Neurosci (2014) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 1:10000
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling Technology, 9212L)被用于被用于免疫印迹在小鼠样本上浓度为1:10000. J Neurosci (2014) ncbi
兔 多克隆
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling Technology, 9211)被用于被用于免疫印迹在人类样本上. J Invest Dermatol (2015) ncbi
兔 多克隆
  • 免疫印迹; 小鼠
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling Technology, 9212)被用于被用于免疫印迹在小鼠样本上. J Biol Chem (2014) ncbi
兔 单克隆(12F8)
  • 免疫印迹; 小鼠
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling Technology, 4631)被用于被用于免疫印迹在小鼠样本上. J Biol Chem (2014) ncbi
兔 单克隆(3D7)
  • 免疫印迹; 小鼠; 1:1000
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling Technology, 9215)被用于被用于免疫印迹在小鼠样本上浓度为1:1000. Int Immunopharmacol (2014) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 图 s2
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling Technology, 9211)被用于被用于免疫印迹在小鼠样本上 (图 s2). Nature (2014) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 图 s2
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling Technology, 9212)被用于被用于免疫印迹在小鼠样本上 (图 s2). Nature (2014) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 1:1000
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling Technology, 9211S)被用于被用于免疫印迹在小鼠样本上浓度为1:1000. J Neurosci (2014) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 1:1000
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling Technology, 9212S)被用于被用于免疫印迹在小鼠样本上浓度为1:1000. J Neurosci (2014) ncbi
兔 单克隆(3D7)
  • 免疫印迹; 小鼠
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling Technology, 9215S)被用于被用于免疫印迹在小鼠样本上. J Agric Food Chem (2014) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 图 s8
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling, 9211)被用于被用于免疫印迹在小鼠样本上 (图 s8). Nature (2014) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 图 6
赛信通(上海)生物试剂有限公司 p38抗体(Cell signaling, 9212)被用于被用于免疫印迹在小鼠样本上 (图 6). Nat Commun (2014) ncbi
兔 单克隆(3D7)
  • 免疫印迹; 小鼠; 图 6
赛信通(上海)生物试剂有限公司 p38抗体(Cell signaling, 9215)被用于被用于免疫印迹在小鼠样本上 (图 6). Nat Commun (2014) ncbi
兔 单克隆(3D7)
  • 免疫印迹; 小鼠; 1:1000
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling, 9215)被用于被用于免疫印迹在小鼠样本上浓度为1:1000. Nat Med (2014) ncbi
兔 多克隆
  • 免疫印迹; 小鼠
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling Technology, 9211)被用于被用于免疫印迹在小鼠样本上. Molecules (2014) ncbi
兔 多克隆
  • 免疫印迹; 小鼠
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling Technology, 9212)被用于被用于免疫印迹在小鼠样本上. Molecules (2014) ncbi
兔 多克隆
  • 免疫组化-石蜡切片; 小鼠
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling, 9211)被用于被用于免疫组化-石蜡切片在小鼠样本上. PLoS ONE (2014) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图 6b
赛信通(上海)生物试剂有限公司 p38抗体(cell signalling, 9212)被用于被用于免疫印迹在人类样本上 (图 6b). Oncotarget (2014) ncbi
兔 单克隆(3D7)
  • 免疫印迹; 猪; 1:500
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling Technology, 9215)被用于被用于免疫印迹在猪样本上浓度为1:500. Amino Acids (2014) ncbi
兔 多克隆
  • 免疫印迹; 小鼠
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling, 92125)被用于被用于免疫印迹在小鼠样本上. Mol Metab (2014) ncbi
小鼠 单克隆(28B10)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signalling, 9216S)被用于被用于免疫印迹在人类样本上. Mech Ageing Dev (2014) ncbi
兔 多克隆
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling Technology, 9211)被用于被用于免疫印迹在人类样本上. Biochim Biophys Acta (2014) ncbi
兔 多克隆
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling Technology, 9212)被用于被用于免疫印迹在人类样本上. Biochim Biophys Acta (2014) ncbi
兔 单克隆(12F8)
  • 免疫印迹; 人类; 图 8
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling, 4631)被用于被用于免疫印迹在人类样本上 (图 8). J Biol Chem (2014) ncbi
兔 单克隆(3D7)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 p38抗体(cell Signaling, 9215)被用于被用于免疫印迹在人类样本上. Mol Oncol (2014) ncbi
兔 多克隆
  • 免疫印迹; 小鼠
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling Technology, 9211)被用于被用于免疫印迹在小鼠样本上. PLoS ONE (2014) ncbi
兔 多克隆
  • 免疫印迹; 人类; 1:1000; 图 7
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling Technology, 9211)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 7). Oncotarget (2014) ncbi
兔 多克隆
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling Technology, 9212)被用于被用于免疫印迹在人类样本上. Eur J Cancer (2014) ncbi
兔 单克隆(12F8)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling Technology, 4631)被用于被用于免疫印迹在人类样本上. Eur J Cancer (2014) ncbi
兔 多克隆
  • 免疫印迹; 小鼠
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling Technology, 9211)被用于被用于免疫印迹在小鼠样本上. Dis Model Mech (2014) ncbi
小鼠 单克隆(28B10)
  • 免疫印迹; 人类; 1:200
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling, 9216S)被用于被用于免疫印迹在人类样本上浓度为1:200. Biomed Res Int (2014) ncbi
兔 多克隆
  • 免疫印迹; 大鼠; 1:1000
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling Technology, 9212S)被用于被用于免疫印迹在大鼠样本上浓度为1:1000. Arch Biochem Biophys (2014) ncbi
兔 多克隆
  • 免疫印迹; 大鼠; 1:1000
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling Technology, 9211S)被用于被用于免疫印迹在大鼠样本上浓度为1:1000. Arch Biochem Biophys (2014) ncbi
兔 单克隆(12F8)
  • 免疫组化; 鸡; 1:400
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling Technologies, 12F8)被用于被用于免疫组化在鸡样本上浓度为1:400. Glia (2014) ncbi
兔 多克隆
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling, 9211)被用于被用于免疫印迹在人类样本上. Br J Pharmacol (2014) ncbi
小鼠 单克隆(28B10)
  • 免疫印迹; 狗
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling Technology, 9216)被用于被用于免疫印迹在狗样本上. J Vet Med Sci (2014) ncbi
兔 多克隆
  • 免疫印迹; 小鼠
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling, 9212)被用于被用于免疫印迹在小鼠样本上. Nucleus (2014) ncbi
兔 多克隆
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling Technology, 9212)被用于被用于免疫印迹在人类样本上. Cell Death Differ (2014) ncbi
兔 单克隆(12F8)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling Technology, 4631)被用于被用于免疫印迹在人类样本上. Cell Death Differ (2014) ncbi
兔 多克隆
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling , #9212)被用于被用于免疫印迹在人类样本上. J Invest Dermatol (2014) ncbi
兔 多克隆
  • 免疫印迹; 小鼠
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling Technology, 9211)被用于被用于免疫印迹在小鼠样本上. J Immunol (2014) ncbi
兔 多克隆
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling, #9212)被用于被用于免疫印迹在人类样本上. PLoS ONE (2014) ncbi
兔 多克隆
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling, 9211)被用于被用于免疫印迹在人类样本上. Oncotarget (2014) ncbi
兔 单克隆(3D7)
  • 免疫印迹; 大鼠
赛信通(上海)生物试剂有限公司 p38抗体(CST, 9215)被用于被用于免疫印迹在大鼠样本上. FASEB J (2014) ncbi
兔 多克隆
  • 免疫印迹; 小鼠
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling, 9211)被用于被用于免疫印迹在小鼠样本上. PLoS Pathog (2014) ncbi
小鼠 单克隆(28B10)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling, 9216)被用于被用于免疫印迹在人类样本上. Oncogene (2015) ncbi
兔 多克隆
  • 免疫印迹; 大鼠; 1:1000
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling Technology, 9211)被用于被用于免疫印迹在大鼠样本上浓度为1:1000. PLoS ONE (2014) ncbi
兔 多克隆
  • 免疫印迹; 小鼠
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling Technology, 9211)被用于被用于免疫印迹在小鼠样本上. PLoS ONE (2014) ncbi
兔 多克隆
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling Biotechnology, 9212S)被用于被用于免疫印迹在人类样本上. Biochem Pharmacol (2014) ncbi
兔 多克隆
  • 免疫印迹; 人类; 1:1000
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling Technology, 9212)被用于被用于免疫印迹在人类样本上浓度为1:1000. Arch Oral Biol (2014) ncbi
兔 单克隆(3D7)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling, 9215)被用于被用于免疫印迹在人类样本上. Mol Cell Biol (2014) ncbi
兔 多克隆
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling Technology, 9211)被用于被用于免疫印迹在人类样本上. Cell Death Dis (2014) ncbi
小鼠 单克隆(28B10)
  • 流式细胞仪; 小鼠
  • 免疫细胞化学; 小鼠; 1:50
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling, 9216S)被用于被用于流式细胞仪在小鼠样本上 和 被用于免疫细胞化学在小鼠样本上浓度为1:50. Nat Med (2014) ncbi
兔 单克隆(3D7)
  • 免疫印迹; 人类; 图 5
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling, 9215)被用于被用于免疫印迹在人类样本上 (图 5). Biochem J (2014) ncbi
兔 多克隆
  • 免疫印迹; 小鼠
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling Technology, 9212)被用于被用于免疫印迹在小鼠样本上. J Biol Chem (2014) ncbi
小鼠 单克隆(28B10)
  • 免疫印迹; 小鼠
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling Technology, 9216)被用于被用于免疫印迹在小鼠样本上. J Biol Chem (2014) ncbi
兔 多克隆
  • 免疫印迹; 小鼠
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling Technology, 9211)被用于被用于免疫印迹在小鼠样本上. Clin Cancer Res (2014) ncbi
小鼠 单克隆(28B10)
  • 免疫印迹; 小鼠; 图 1e
赛信通(上海)生物试剂有限公司 p38抗体(cell signalling technology, 9216)被用于被用于免疫印迹在小鼠样本上 (图 1e). Arthritis Res Ther (2014) ncbi
兔 多克隆
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling, 9212)被用于被用于免疫印迹在人类样本上. J Biol Chem (2014) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 图 1, 2
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling Technology, 9211)被用于被用于免疫印迹在小鼠样本上 (图 1, 2). Cell Commun Signal (2014) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 图 1, 2
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling Technology, 9212)被用于被用于免疫印迹在小鼠样本上 (图 1, 2). Cell Commun Signal (2014) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 3
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling Technology, 9211)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 3). PLoS ONE (2014) ncbi
兔 多克隆
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling, 9212S)被用于被用于免疫印迹在人类样本上. PLoS ONE (2013) ncbi
兔 单克隆(12F8)
  • 免疫印迹; 人类; 1:500
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling, 4631S)被用于被用于免疫印迹在人类样本上浓度为1:500. PLoS ONE (2013) ncbi
兔 多克隆
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling Technology, 9211)被用于被用于免疫印迹在人类样本上. Autophagy (2014) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 图 2b
赛信通(上海)生物试剂有限公司 p38抗体(Cell signalling technology, 9211)被用于被用于免疫印迹在小鼠样本上 (图 2b). J Immunol (2014) ncbi
兔 多克隆
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 p38抗体(Cell signaling Technology, 9211)被用于被用于免疫印迹在人类样本上. J Invest Dermatol (2014) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 1:1000
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling Technology, 9212)被用于被用于免疫印迹在小鼠样本上浓度为1:1000. Biochim Biophys Acta (2014) ncbi
兔 多克隆
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling Technologies, 9212)被用于被用于免疫印迹在人类样本上. Int J Biochem Cell Biol (2014) ncbi
兔 多克隆
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling Technologies, 9211)被用于被用于免疫印迹在人类样本上. Int J Biochem Cell Biol (2014) ncbi
兔 单克隆(3D7)
  • 免疫印迹; 小鼠; 1:1000; 图 8
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling Technology, 4092)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 8). Am J Physiol Renal Physiol (2014) ncbi
兔 单克隆(12F8)
  • 免疫印迹; 人类
  • 免疫印迹; 小鼠
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling Technology, 4631)被用于被用于免疫印迹在人类样本上 和 被用于免疫印迹在小鼠样本上. J Dermatol Sci (2014) ncbi
兔 单克隆(12F8)
  • 免疫印迹; 大鼠
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling, 4631S)被用于被用于免疫印迹在大鼠样本上. PLoS ONE (2013) ncbi
兔 多克隆
  • 免疫印迹; 大鼠
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling, 9212S)被用于被用于免疫印迹在大鼠样本上. PLoS ONE (2013) ncbi
小鼠 单克隆(28B10)
  • 免疫印迹; 小鼠; 1:200
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling Technology, 9216)被用于被用于免疫印迹在小鼠样本上浓度为1:200. Nat Med (2013) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 1:1000
赛信通(上海)生物试剂有限公司 p38抗体(Cell signaling, 9211)被用于被用于免疫印迹在小鼠样本上浓度为1:1000. Apoptosis (2013) ncbi
兔 多克隆
  • 免疫印迹; 人类; 1:1000
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling Technology, 9211)被用于被用于免疫印迹在人类样本上浓度为1:1000. Arch Dermatol Res (2014) ncbi
兔 多克隆
  • 免疫印迹; 小鼠
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling Technology Inc, 9211)被用于被用于免疫印迹在小鼠样本上. Br J Pharmacol (2013) ncbi
兔 多克隆
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling Technology, 9211)被用于被用于免疫印迹在人类样本上. Evid Based Complement Alternat Med (2013) ncbi
兔 单克隆(12F8)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling Technologies, 4631)被用于被用于免疫印迹在人类样本上. PLoS ONE (2013) ncbi
小鼠 单克隆(L53F8)
  • 免疫印迹; 小鼠; 图 5
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling, 9228)被用于被用于免疫印迹在小鼠样本上 (图 5). Cell Res (2013) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 图 5
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling, #9212)被用于被用于免疫印迹在小鼠样本上 (图 5). J Bone Miner Res (2014) ncbi
兔 多克隆
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling, 9211)被用于被用于免疫印迹在人类样本上. Oncogene (2014) ncbi
小鼠 单克隆(28B10)
  • 免疫印迹; 猪
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling, 9216)被用于被用于免疫印迹在猪样本上. Basic Res Cardiol (2013) ncbi
小鼠 单克隆(28B10)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling, 9216)被用于被用于免疫印迹在人类样本上. Am J Physiol Renal Physiol (2013) ncbi
兔 单克隆(12F8)
  • 免疫组化-石蜡切片; 小鼠
赛信通(上海)生物试剂有限公司 p38抗体(Cell signaling, 4631)被用于被用于免疫组化-石蜡切片在小鼠样本上. Exp Toxicol Pathol (2013) ncbi
兔 多克隆
  • 免疫印迹; 大鼠
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling Technology, 9211)被用于被用于免疫印迹在大鼠样本上. J Mol Endocrinol (2013) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 图 7
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling, 9211)被用于被用于免疫印迹在小鼠样本上 (图 7). J Lipid Res (2013) ncbi
兔 多克隆
  • 免疫印迹; 小鼠
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling Technology, 9211)被用于被用于免疫印迹在小鼠样本上. Cell Death Dis (2013) ncbi
小鼠 单克隆(L53F8)
  • 免疫印迹; 大鼠
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling, L53F8)被用于被用于免疫印迹在大鼠样本上. J Neurosci (2013) ncbi
兔 多克隆
  • 免疫印迹; 大鼠
赛信通(上海)生物试剂有限公司 p38抗体(CST, 9211)被用于被用于免疫印迹在大鼠样本上. Diabetes (2013) ncbi
兔 单克隆(12F8)
  • 免疫组化-石蜡切片; 小鼠; 1:50
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling, 4631S)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:50. PLoS ONE (2013) ncbi
兔 单克隆(3D7)
  • 免疫组化-自由浮动切片; 大鼠; 1:100
  • 免疫印迹; 大鼠; 1:1000
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling, 9215S)被用于被用于免疫组化-自由浮动切片在大鼠样本上浓度为1:100 和 被用于免疫印迹在大鼠样本上浓度为1:1000. J Neurosci (2013) ncbi
兔 多克隆
  • 免疫组化-自由浮动切片; 大鼠; 1:100
  • 免疫印迹; 大鼠; 1:1000
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling, 9212S)被用于被用于免疫组化-自由浮动切片在大鼠样本上浓度为1:100 和 被用于免疫印迹在大鼠样本上浓度为1:1000. J Neurosci (2013) ncbi
兔 多克隆
  • 免疫印迹; 大鼠
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling Technology, 9211)被用于被用于免疫印迹在大鼠样本上. Lab Anim Res (2012) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 1:1 000
赛信通(上海)生物试剂有限公司 p38抗体(CST, 9211)被用于被用于免疫印迹在小鼠样本上浓度为1:1 000. Cell Res (2013) ncbi
兔 单克隆(3D7)
  • 免疫印迹; 人类; 图 7d
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling, 3D7)被用于被用于免疫印迹在人类样本上 (图 7d). EMBO J (2012) ncbi
兔 多克隆
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling, 9212)被用于被用于免疫印迹在人类样本上. J Appl Physiol (1985) (2012) ncbi
兔 多克隆
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling Technology, 9211)被用于被用于免疫印迹在人类样本上. Cell Death Differ (2010) ncbi
碧迪BD
小鼠 单克隆(36/p38)
  • 免疫印迹; 小鼠; 图 1i
碧迪BD p38抗体(BD, 612288)被用于被用于免疫印迹在小鼠样本上 (图 1i). Cell (2019) ncbi
小鼠 单克隆(20A)
  • 流式细胞仪; 人类; 图 5c
碧迪BD p38抗体(BD Biosciences, 612593)被用于被用于流式细胞仪在人类样本上 (图 5c). Cell Rep (2018) ncbi
小鼠 单克隆(36/p38)
  • 免疫印迹; 小鼠; 1:250; 图 s3
碧迪BD p38抗体(BDTransduction实验室, 612289)被用于被用于免疫印迹在小鼠样本上浓度为1:250 (图 s3). Nat Commun (2018) ncbi
小鼠 单克隆(20A)
  • 流式细胞仪; 人类; 图 4c
碧迪BD p38抗体(BD Biosciences, 20A)被用于被用于流式细胞仪在人类样本上 (图 4c). Sci Rep (2018) ncbi
小鼠 单克隆(20A)
  • 流式细胞仪; 人类; 图 1c
碧迪BD p38抗体(BD, 612592)被用于被用于流式细胞仪在人类样本上 (图 1c). J Exp Med (2018) ncbi
小鼠 单克隆(20A)
  • 免疫印迹; 小鼠; 图 4c
碧迪BD p38抗体(BD Biosciences, 612358)被用于被用于免疫印迹在小鼠样本上 (图 4c). EMBO J (2017) ncbi
小鼠 单克隆(30/p38 MAPK)
  • 免疫印迹; 小鼠; 图 e2c
  • 免疫组化-石蜡切片; 人类; 图 e2g
碧迪BD p38抗体(BD Biosciences, 612281)被用于被用于免疫印迹在小鼠样本上 (图 e2c) 和 被用于免疫组化-石蜡切片在人类样本上 (图 e2g). Nature (2016) ncbi
小鼠 单克隆(20A)
  • 流式细胞仪; 人类; 图 s1a
碧迪BD p38抗体(BD Biosciences, 20A)被用于被用于流式细胞仪在人类样本上 (图 s1a). J Immunol (2016) ncbi
小鼠 单克隆(30/p38 MAPK)
  • 免疫印迹; 狗; 图 2b
碧迪BD p38抗体(BD Biosciences, 612280)被用于被用于免疫印迹在狗样本上 (图 2b). J Biol Chem (2016) ncbi
小鼠 单克隆(20A)
  • 流式细胞仪; 人类
碧迪BD p38抗体(BD, 20A)被用于被用于流式细胞仪在人类样本上. J Exp Med (2016) ncbi
小鼠 单克隆(36/p38)
  • 流式细胞仪; 人类; 图 1a
碧迪BD p38抗体(BD Biosciences, 36)被用于被用于流式细胞仪在人类样本上 (图 1a). Immunology (2017) ncbi
小鼠 单克隆(30/p38 MAPK)
  • 免疫印迹; 人类; 图 2
碧迪BD p38抗体(BD Biosciences, 612280)被用于被用于免疫印迹在人类样本上 (图 2). Int J Oncol (2016) ncbi
小鼠 单克隆(30/p38 MAPK)
  • 免疫印迹; 小鼠; 图 5
碧迪BD p38抗体(BD Biosciences, 612281)被用于被用于免疫印迹在小鼠样本上 (图 5). Sci Rep (2016) ncbi
小鼠 单克隆(20A)
  • 免疫印迹; 小鼠; 图 5
碧迪BD p38抗体(BD Biosciences, 612359)被用于被用于免疫印迹在小鼠样本上 (图 5). Sci Rep (2016) ncbi
小鼠 单克隆(20A)
  • 流式细胞仪; 人类; 图 3b
碧迪BD p38抗体(BD Biosciences, 20A)被用于被用于流式细胞仪在人类样本上 (图 3b). Cytotherapy (2016) ncbi
小鼠 单克隆(20A)
  • 免疫印迹; 人类; 图 4b
碧迪BD p38抗体(BD Bioscience, 612358)被用于被用于免疫印迹在人类样本上 (图 4b). Oncotarget (2016) ncbi
小鼠 单克隆(20A)
  • 流式细胞仪; 人类; 图 6b
碧迪BD p38抗体(BD, 20A)被用于被用于流式细胞仪在人类样本上 (图 6b). Am J Transplant (2016) ncbi
小鼠 单克隆(36/p38)
  • 流式细胞仪; 小鼠; 图 2
碧迪BD p38抗体(BD, 612595)被用于被用于流式细胞仪在小鼠样本上 (图 2). PLoS ONE (2015) ncbi
小鼠 单克隆(20A)
  • 流式细胞仪; 小鼠; 图 6
碧迪BD p38抗体(BD Biosciences, 20A)被用于被用于流式细胞仪在小鼠样本上 (图 6). J Immunol (2015) ncbi
小鼠 单克隆(20A)
  • 免疫印迹; 人类
碧迪BD p38抗体(BD Transduction Laboratories, 612358)被用于被用于免疫印迹在人类样本上. PLoS ONE (2014) ncbi
小鼠 单克隆(20A)
  • 免疫印迹; 人类
碧迪BD p38抗体(BD Biosciences, 612359)被用于被用于免疫印迹在人类样本上. Biochem Biophys Res Commun (2014) ncbi
小鼠 单克隆(36/p38)
  • 流式细胞仪; 人类
碧迪BD p38抗体(BD Biosciences, 560406)被用于被用于流式细胞仪在人类样本上. Allergy (2014) ncbi
小鼠 单克隆(20A)
  • 流式细胞仪; 人类
碧迪BD p38抗体(BD Biosciences, 20A)被用于被用于流式细胞仪在人类样本上. J Immunol (2014) ncbi
小鼠 单克隆(20A)
  • 流式细胞仪; 人类
碧迪BD p38抗体(BD Biosciences, clone 612566)被用于被用于流式细胞仪在人类样本上. PLoS ONE (2014) ncbi
小鼠 单克隆(20A)
  • 流式细胞仪; 人类; 图 1
碧迪BD p38抗体(BD, 20A)被用于被用于流式细胞仪在人类样本上 (图 1). Cancer Immunol Immunother (2014) ncbi
小鼠 单克隆(36/p38)
  • 免疫印迹; 大鼠; 1:2500
碧迪BD p38抗体(BD Biosciences, 612288)被用于被用于免疫印迹在大鼠样本上浓度为1:2500. Biochim Biophys Acta (2014) ncbi
小鼠 单克隆(20A)
  • 流式细胞仪; 人类
碧迪BD p38抗体(BD, 20A)被用于被用于流式细胞仪在人类样本上. Cytometry A (2014) ncbi
小鼠 单克隆(20A)
  • 免疫印迹; 人类
碧迪BD p38抗体(BD Biosciences, 612359)被用于被用于免疫印迹在人类样本上. Eur J Cancer (2014) ncbi
小鼠 单克隆(20A)
  • 免疫细胞化学; 人类
碧迪BD p38抗体(BD Biosciences, 612593)被用于被用于免疫细胞化学在人类样本上. Blood Cancer J (2011) ncbi
小鼠 单克隆(20A)
  • 流式细胞仪; 人类; 图 3
碧迪BD p38抗体(BD Biosciences, 612593)被用于被用于流式细胞仪在人类样本上 (图 3). Eur J Haematol (2012) ncbi
默克密理博中国
小鼠 单克隆(6E5.2)
  • 免疫组化; 人类; 1:400; 图 2e
  • 免疫印迹; 人类; 1:400; 图 1b
默克密理博中国 p38抗体(Millipore, MABS64)被用于被用于免疫组化在人类样本上浓度为1:400 (图 2e) 和 被用于免疫印迹在人类样本上浓度为1:400 (图 1b). J Cell Sci (2017) ncbi
兔 单克隆(8.78.8)
  • 免疫印迹; 人类; 表 4
默克密理博中国 p38抗体(Merck Millipore, 05-1059)被用于被用于免疫印迹在人类样本上 (表 4). Transl Psychiatry (2016) ncbi
兔 单克隆(8.78.8)
  • 免疫印迹; 人类; 图 s1
默克密理博中国 p38抗体(Millipore, 05-1059)被用于被用于免疫印迹在人类样本上 (图 s1). PLoS ONE (2016) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 4
默克密理博中国 p38抗体(Calbiochem, 06123)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 4). Aging Cell (2016) ncbi
兔 多克隆
  • 免疫印迹; 大鼠; 1:1000; 图 8a
默克密理博中国 p38抗体(Millipore, 09-272)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 8a). Mol Med Rep (2016) ncbi
小鼠 单克隆(6E5.2)
  • 免疫印迹; 小鼠
默克密理博中国 p38抗体(Millipore, MABS64)被用于被用于免疫印迹在小鼠样本上. J Lipid Res (2015) ncbi
小鼠 单克隆(6E5.2)
  • 免疫印迹; 人类; 1:500
默克密理博中国 p38抗体(Merck Millipore, MABS64)被用于被用于免疫印迹在人类样本上浓度为1:500. Cell Signal (2015) ncbi
兔 单克隆(8.78.8)
  • 免疫组化-冰冻切片; 人类
默克密理博中国 p38抗体(EMD Millipore, 05-1059)被用于被用于免疫组化-冰冻切片在人类样本上. Exp Eye Res (2014) ncbi
文章列表
  1. Nakai A, Fujimoto J, Miyata H, Stumm R, Narazaki M, Schulz S, et al. The COMMD3/8 complex determines GRK6 specificity for chemoattractant receptors. J Exp Med. 2019;: pubmed 出版商
  2. Udden S, Kwak Y, Godfrey V, Khan M, Khan S, Loof N, et al. NLRP12 suppresses hepatocellular carcinoma via downregulation of cJun N-terminal kinase activation in the hepatocyte. elife. 2019;8: pubmed 出版商
  3. Araiz C, Yan A, Bettedi L, Samuelson I, Virtue S, McGavigan A, et al. Enhanced β-adrenergic signalling underlies an age-dependent beneficial metabolic effect of PI3K p110α inactivation in adipose tissue. Nat Commun. 2019;10:1546 pubmed 出版商
  4. Chang H, Di T, Wang Y, Zeng X, Li G, Wan Q, et al. Seipin deletion in mice enhances phosphorylation and aggregation of tau protein through reduced neuronal PPARγ and insulin resistance. Neurobiol Dis. 2019;127:350-361 pubmed 出版商
  5. Tan Y, Kagan J. Innate Immune Signaling Organelles Display Natural and Programmable Signaling Flexibility. Cell. 2019;: pubmed 出版商
  6. Richardson J, Armbruster N, Günter M, Henes J, Autenrieth S. Staphylococcus aureus PSM Peptides Modulate Human Monocyte-Derived Dendritic Cells to Prime Regulatory T Cells. Front Immunol. 2018;9:2603 pubmed 出版商
  7. Kim C, Hu B, Jadhav R, Jin J, Zhang H, Cavanagh M, et al. Activation of miR-21-Regulated Pathways in Immune Aging Selects against Signatures Characteristic of Memory T Cells. Cell Rep. 2018;25:2148-2162.e5 pubmed 出版商
  8. Grohmann M, Wiede F, Dodd G, Gurzov E, Ooi G, Butt T, et al. Obesity Drives STAT-1-Dependent NASH and STAT-3-Dependent HCC. Cell. 2018;175:1289-1306.e20 pubmed 出版商
  9. Panda S, Gekara N. The deubiquitinase MYSM1 dampens NOD2-mediated inflammation and tissue damage by inactivating the RIP2 complex. Nat Commun. 2018;9:4654 pubmed 出版商
  10. Mu L, Tu Z, Miao L, Ruan H, Kang N, Hei Y, et al. A phosphatidylinositol 4,5-bisphosphate redistribution-based sensing mechanism initiates a phagocytosis programing. Nat Commun. 2018;9:4259 pubmed 出版商
  11. Luo H, Winkelmann E, Zhu S, Ru W, Mays E, Silvas J, et al. Peli1 facilitates virus replication and promotes neuroinflammation during West Nile virus infection. J Clin Invest. 2018;128:4980-4991 pubmed 出版商
  12. Fauster A, Rebsamen M, Willmann K, César Razquin A, Girardi E, Bigenzahn J, et al. Systematic genetic mapping of necroptosis identifies SLC39A7 as modulator of death receptor trafficking. Cell Death Differ. 2019;26:1138-1155 pubmed 出版商
  13. Chen S, Yun F, Yao Y, Cao M, Zhang Y, Wang J, et al. USP38 critically promotes asthmatic pathogenesis by stabilizing JunB protein. J Exp Med. 2018;215:2850-2867 pubmed 出版商
  14. Cao Y, Xu Y, Auchoybur M, Chen W, He S, Qin W, et al. Regulatory role of IKKɑ in myocardial ischemia/reperfusion injury by the determination of M1 versus M2 polarization of macrophages. J Mol Cell Cardiol. 2018;123:1-12 pubmed 出版商
  15. Liu Z, Qin Q, Wu C, Li H, Shou J, Yang Y, et al. Downregulated NDR1 protein kinase inhibits innate immune response by initiating an miR146a-STAT1 feedback loop. Nat Commun. 2018;9:2789 pubmed 出版商
  16. Xie H, Wang Y, Zhang H, Fan Q, Dai D, Zhuang L, et al. Tubular epithelial C1orf54 mediates protection and recovery from acute kidney injury. J Cell Mol Med. 2018;22:4985-4996 pubmed 出版商
  17. Matesanz N, Nikolic I, Leiva M, Pulgarín Alfaro M, Santamans A, Bernardo E, et al. p38α blocks brown adipose tissue thermogenesis through p38δ inhibition. PLoS Biol. 2018;16:e2004455 pubmed 出版商
  18. Lam J, van den Bosch M, Wegrzyn J, Parker J, Ibrahim R, Slowski K, et al. miR-143/145 differentially regulate hematopoietic stem and progenitor activity through suppression of canonical TGFβ signaling. Nat Commun. 2018;9:2418 pubmed 出版商
  19. Li F, Li Y, Liang H, Xu T, Kong Y, Huang M, et al. HECTD3 mediates TRAF3 polyubiquitination and type I interferon induction during bacterial infection. J Clin Invest. 2018;128:4148-4162 pubmed 出版商
  20. Jun H, Yu H, Gong J, Jiang J, Qiao X, Perkey E, et al. An immune-beige adipocyte communication via nicotinic acetylcholine receptor signaling. Nat Med. 2018;24:814-822 pubmed 出版商
  21. Huang M, Qi W, Fang S, Jiang P, Yang C, Mo Y, et al. Pigment Epithelium-Derived Factor Plays a Role in Alzheimer's Disease by Negatively Regulating Aβ42. Neurotherapeutics. 2018;15:728-741 pubmed 出版商
  22. Hyrenius Wittsten A, Pilheden M, Sturesson H, Hansson J, Walsh M, Song G, et al. De novo activating mutations drive clonal evolution and enhance clonal fitness in KMT2A-rearranged leukemia. Nat Commun. 2018;9:1770 pubmed 出版商
  23. Ubil E, Caskey L, Holtzhausen A, Hunter D, Story C, Earp H. Tumor-secreted Pros1 inhibits macrophage M1 polarization to reduce antitumor immune response. J Clin Invest. 2018;128:2356-2369 pubmed 出版商
  24. Morgan E, Wasson C, Hanson L, Kealy D, Pentland I, McGuire V, et al. STAT3 activation by E6 is essential for the differentiation-dependent HPV18 life cycle. PLoS Pathog. 2018;14:e1006975 pubmed 出版商
  25. Schönrogge M, Kerndl H, Zhang X, Kumstel S, Vollmar B, Zechner D. α-cyano-4-hydroxycinnamate impairs pancreatic cancer cells by stimulating the p38 signaling pathway. Cell Signal. 2018;47:101-108 pubmed 出版商
  26. Han Y, Liu Q, Hou J, Gu Y, Zhang Y, Chen Z, et al. Tumor-Induced Generation of Splenic Erythroblast-like Ter-Cells Promotes Tumor Progression. Cell. 2018;173:634-648.e12 pubmed 出版商
  27. Qiang L, Wang J, Zhang Y, Ge P, Chai Q, Li B, et al. Mycobacterium tuberculosis Mce2E suppresses the macrophage innate immune response and promotes epithelial cell proliferation. Cell Mol Immunol. 2018;: pubmed 出版商
  28. Ng P, Li J, Jeong K, Shao S, Chen H, Tsang Y, et al. Systematic Functional Annotation of Somatic Mutations in Cancer. Cancer Cell. 2018;33:450-462.e10 pubmed 出版商
  29. Vanshylla K, Bartsch C, Hitzing C, Krümpelmann L, Wienands J, Engels N. Grb2 and GRAP connect the B cell antigen receptor to Erk MAP kinase activation in human B cells. Sci Rep. 2018;8:4244 pubmed 出版商
  30. Markussen L, Winther S, Wicksteed B, Hansen J. GSK3 is a negative regulator of the thermogenic program in brown adipocytes. Sci Rep. 2018;8:3469 pubmed 出版商
  31. Lu Y, Kim N, Jiang Y, Zhang H, Zheng D, Zhu F, et al. Cambogin suppresses dextran sulphate sodium-induced colitis by enhancing Treg cell stability and function. Br J Pharmacol. 2018;175:1085-1099 pubmed 出版商
  32. Tissino E, Benedetti D, Herman S, ten Hacken E, Ahn I, Chaffee K, et al. Functional and clinical relevance of VLA-4 (CD49d/CD29) in ibrutinib-treated chronic lymphocytic leukemia. J Exp Med. 2018;215:681-697 pubmed 出版商
  33. Park G, Kim D. Cigarette smoke-induced EGFR activation promotes epithelial mesenchymal migration of human retinal pigment epithelial cells through regulation of the FAK-mediated Syk/Src pathway. Mol Med Rep. 2018;17:3563-3574 pubmed 出版商
  34. Arrizabalaga O, Moreno Cugnon L, Auzmendi Iriarte J, Aldaz P, Ibanez de Caceres I, Garros Regulez L, et al. High expression of MKP1/DUSP1 counteracts glioma stem cell activity and mediates HDAC inhibitor response. Oncogenesis. 2017;6:401 pubmed 出版商
  35. Qian Z, Ryu B, Kang K, Heo S, Kang D, Bae S, et al. Cellular properties of the fermented microalgae Pavlova lutheri and its isolated active peptide in osteoblastic differentiation of MG?63 cells. Mol Med Rep. 2018;17:2044-2050 pubmed 出版商
  36. Coelho M, de Carné Trécesson S, Rana S, Zecchin D, Moore C, Molina Arcas M, et al. Oncogenic RAS Signaling Promotes Tumor Immunoresistance by Stabilizing PD-L1 mRNA. Immunity. 2017;47:1083-1099.e6 pubmed 出版商
  37. Sutavani R, Phair I, Barker R, McFarlane A, Shpiro N, Lang S, et al. Differential control of Toll-like receptor 4-induced interleukin-10 induction in macrophages and B cells reveals a role for p90 ribosomal S6 kinases. J Biol Chem. 2018;293:2302-2317 pubmed 出版商
  38. Urbanska M, Gozdz A, Macias M, Cymerman I, Liszewska E, Kondratiuk I, et al. GSK3β Controls mTOR and Prosurvival Signaling in Neurons. Mol Neurobiol. 2018;55:6050-6062 pubmed 出版商
  39. Sanna M, Mello T, Masini E, Galeotti N. Activation of ERK/CREB pathway in noradrenergic neurons contributes to hypernociceptive phenotype in H4 receptor knockout mice after nerve injury. Neuropharmacology. 2018;128:340-350 pubmed 出版商
  40. Lu F, Shao G, Wang Y, Guan S, Burlingame A, Liu X, et al. Hypoxia-ischemia modifies postsynaptic GluN2B-containing NMDA receptor complexes in the neonatal mouse brain. Exp Neurol. 2018;299:65-74 pubmed 出版商
  41. Magilnick N, Reyes E, Wang W, Vonderfecht S, Gohda J, Inoue J, et al. miR-146a-Traf6 regulatory axis controls autoimmunity and myelopoiesis, but is dispensable for hematopoietic stem cell homeostasis and tumor suppression. Proc Natl Acad Sci U S A. 2017;114:E7140-E7149 pubmed 出版商
  42. Naik S, Padhi A, Ganguli G, Sengupta S, Pati S, Das D, et al. Mouse Bone Marrow Sca-1+ CD44+ Mesenchymal Stem Cells Kill Avirulent Mycobacteria but Not Mycobacterium tuberculosis through Modulation of Cathelicidin Expression via the p38 Mitogen-Activated Protein Kinase-Dependent Pathway. Infect Immun. 2017;85: pubmed 出版商
  43. Moua P, Checketts M, Xu L, Shu H, Reyland M, Cusick J. RELT family members activate p38 and induce apoptosis by a mechanism distinct from TNFR1. Biochem Biophys Res Commun. 2017;491:25-32 pubmed 出版商
  44. Tang T, Scambler T, Smallie T, Cunliffe H, Ross E, Rosner D, et al. Macrophage responses to lipopolysaccharide are modulated by a feedback loop involving prostaglandin E2, dual specificity phosphatase 1 and tristetraprolin. Sci Rep. 2017;7:4350 pubmed 出版商
  45. Mamo T, Wittern A, Kleppa M, Bohnenpoll T, Weiss A, Kispert A. BMP4 uses several different effector pathways to regulate proliferation and differentiation in the epithelial and mesenchymal tissue compartments of the developing mouse ureter. Hum Mol Genet. 2017;26:3553-3563 pubmed 出版商
  46. Bae S, Lee M, Mun S, Giannopoulou E, Yong Gonzalez V, Cross J, et al. MYC-dependent oxidative metabolism regulates osteoclastogenesis via nuclear receptor ERR?. J Clin Invest. 2017;127:2555-2568 pubmed 出版商
  47. Zhang J, MacArtney T, Peggie M, Cohen P. Interleukin-1 and TRAF6-dependent activation of TAK1 in the absence of TAB2 and TAB3. Biochem J. 2017;474:2235-2248 pubmed 出版商
  48. Nishimura S, Mishra Gorur K, Park J, Surovtseva Y, Sebti S, Levchenko A, et al. Combined HMG-COA reductase and prenylation inhibition in treatment of CCM. Proc Natl Acad Sci U S A. 2017;114:5503-5508 pubmed 出版商
  49. Ventura E, Weller M, Burghardt I. Cutting Edge: ERK1 Mediates the Autocrine Positive Feedback Loop of TGF-? and Furin in Glioma-Initiating Cells. J Immunol. 2017;198:4569-4574 pubmed 出版商
  50. Yoon C, Cho S, Chang K, Park D, Ryeom S, Yoon S. Role of Rac1 Pathway in Epithelial-to-Mesenchymal Transition and Cancer Stem-like Cell Phenotypes in Gastric Adenocarcinoma. Mol Cancer Res. 2017;15:1106-1116 pubmed 出版商
  51. Tian H, Ketova T, Hardy D, Xu X, Gao X, Zijlstra A, et al. Endoglin Mediates Vascular Maturation by Promoting Vascular Smooth Muscle Cell Migration and Spreading. Arterioscler Thromb Vasc Biol. 2017;37:1115-1126 pubmed 出版商
  52. Frank S, Berger P, Ljungman M, Miranti C. Human prostate luminal cell differentiation requires NOTCH3 induction by p38-MAPK and MYC. J Cell Sci. 2017;130:1952-1964 pubmed 出版商
  53. Ma S, Wan X, Deng Z, Shi L, Hao C, Zhou Z, et al. Epigenetic regulator CXXC5 recruits DNA demethylase Tet2 to regulate TLR7/9-elicited IFN response in pDCs. J Exp Med. 2017;214:1471-1491 pubmed 出版商
  54. Kim D, Ko H, Park G, Hur D, Kim Y, Yang J. Vandetanib and ADAM inhibitors synergistically attenuate the pathological migration of EBV-infected retinal pigment epithelial cells by regulating the VEGF-mediated MAPK pathway. Exp Ther Med. 2017;13:1415-1425 pubmed 出版商
  55. Yang Y, Liu B, Xu J, Wang J, Wu J, Shi C, et al. Derivation of Pluripotent Stem Cells with In Vivo Embryonic and Extraembryonic Potency. Cell. 2017;169:243-257.e25 pubmed 出版商
  56. Wassermann Dozorets R, Rubinstein M. C/EBPβ LIP augments cell death by inducing osteoglycin. Cell Death Dis. 2017;8:e2733 pubmed 出版商
  57. Cong Q, Jia H, Li P, Qiu S, Yeh J, Wang Y, et al. p38α MAPK regulates proliferation and differentiation of osteoclast progenitors and bone remodeling in an aging-dependent manner. Sci Rep. 2017;7:45964 pubmed 出版商
  58. Perrott K, Wiley C, Desprez P, Campisi J. Apigenin suppresses the senescence-associated secretory phenotype and paracrine effects on breast cancer cells. GeroScience. 2017;39:161-173 pubmed 出版商
  59. Xiong G, Hindi S, Mann A, Gallot Y, Bohnert K, Cavener D, et al. The PERK arm of the unfolded protein response regulates satellite cell-mediated skeletal muscle regeneration. elife. 2017;6: pubmed 出版商
  60. Menicacci B, Laurenzana A, Chillà A, Margheri F, Peppicelli S, Tanganelli E, et al. Chronic Resveratrol Treatment Inhibits MRC5 Fibroblast SASP-Related Protumoral Effects on Melanoma Cells. J Gerontol A Biol Sci Med Sci. 2017;72:1187-1195 pubmed 出版商
  61. Chambers T, Santiesteban L, Gomez D, Chambers J. Sab mediates mitochondrial dysfunction involved in imatinib mesylate-induced cardiotoxicity. Toxicology. 2017;382:24-35 pubmed 出版商
  62. Balmer D, Bapst Wicht L, Pyakurel A, Emery M, Nanchen N, Bochet C, et al. Bis-Retinoid A2E Induces an Increase of Basic Fibroblast Growth Factor via Inhibition of Extracellular Signal-Regulated Kinases 1/2 Pathway in Retinal Pigment Epithelium Cells and Facilitates Phagocytosis. Front Aging Neurosci. 2017;9:43 pubmed 出版商
  63. Cherniack A, Shen H, Walter V, Stewart C, Murray B, Bowlby R, et al. Integrated Molecular Characterization of Uterine Carcinosarcoma. Cancer Cell. 2017;31:411-423 pubmed 出版商
  64. Song Y, Lai L, Chong Z, He J, Zhang Y, Xue Y, et al. E3 ligase FBXW7 is critical for RIG-I stabilization during antiviral responses. Nat Commun. 2017;8:14654 pubmed 出版商
  65. Hammers D, Merscham Banda M, Hsiao J, ENGST S, Hartman J, Sweeney H. Supraphysiological levels of GDF11 induce striated muscle atrophy. EMBO Mol Med. 2017;9:531-544 pubmed 出版商
  66. Li L, Baxter S, Gu N, Ji M, Zhan X. Missing-in-metastasis protein downregulates CXCR4 by promoting ubiquitylation and interaction with small Rab GTPases. J Cell Sci. 2017;130:1475-1485 pubmed 出版商
  67. Obeid S, Wankell M, Charrez B, Sternberg J, Kreuter R, Esmaili S, et al. Adiponectin confers protection from acute colitis and restricts a B cell immune response. J Biol Chem. 2017;292:6569-6582 pubmed 出版商
  68. Lafont E, Kantari Mimoun C, Dráber P, De Miguel D, Hartwig T, Reichert M, et al. The linear ubiquitin chain assembly complex regulates TRAIL-induced gene activation and cell death. EMBO J. 2017;36:1147-1166 pubmed 出版商
  69. Fu S, Xu H, Gu M, Liu C, Wang Q, Wan X, et al. Adiponectin deficiency contributes to the development and progression of benign prostatic hyperplasia in obesity. Sci Rep. 2017;7:43771 pubmed 出版商
  70. Frank S, Schulz V, Miranti C. A streamlined method for the design and cloning of shRNAs into an optimized Dox-inducible lentiviral vector. BMC Biotechnol. 2017;17:24 pubmed 出版商
  71. de Oliveira R, de Campos Castilho G, da Cunha A, Miyajima F, de Oliveira Martins D. Dilodendron bipinnatum Radlk. inhibits pro-inflammatory mediators through the induction of MKP-1 and the down-regulation of MAPKp38/JNK/NF-?B pathways and COX-2 in LPS-activated RAW 264.7 cells. J Ethnopharmacol. 2017;202:127-137 pubmed 出版商
  72. Wang H, Shan X, Qiao Y. PDK2 promotes chondrogenic differentiation of mesenchymal stem cells by upregulation of Sox6 and activation of JNK/MAPK/ERK pathway. Braz J Med Biol Res. 2017;50:e5988 pubmed 出版商
  73. Kang S, Yi H, Choi M, Ryu M, Jung S, Chung H, et al. ANGPTL6 expression is coupled with mitochondrial OXPHOS function to regulate adipose FGF21. J Endocrinol. 2017;233:105-118 pubmed 出版商
  74. Genovese G, Carugo A, TEPPER J, Robinson F, Li L, Svelto M, et al. Synthetic vulnerabilities of mesenchymal subpopulations in pancreatic cancer. Nature. 2017;542:362-366 pubmed 出版商
  75. Kocic G, Veljkovic A, Kocic H, Colic M, Mihajlović D, Tomovic K, et al. Depurinized milk downregulates rat thymus MyD88/Akt/p38 function, NF-κB-mediated inflammation, caspase-1 activity but not the endonuclease pathway: in vitro/in vivo study. Sci Rep. 2017;7:41971 pubmed 出版商
  76. Gautam J, Nirwane A, Yao Y. Laminin differentially regulates the stemness of type I and type II pericytes. Stem Cell Res Ther. 2017;8:28 pubmed 出版商
  77. Ni Y, Teng T, Li R, Simonyi A, Sun G, Lee J. TNFα alters occludin and cerebral endothelial permeability: Role of p38MAPK. PLoS ONE. 2017;12:e0170346 pubmed 出版商
  78. Nyati K, Masuda K, Zaman M, Dubey P, Millrine D, Chalise J, et al. TLR4-induced NF-?B and MAPK signaling regulate the IL-6 mRNA stabilizing protein Arid5a. Nucleic Acids Res. 2017;45:2687-2703 pubmed 出版商
  79. Bakshi S, Taylor J, Strickson S, McCartney T, Cohen P. Identification of TBK1 complexes required for the phosphorylation of IRF3 and the production of interferon ?. Biochem J. 2017;474:1163-1174 pubmed 出版商
  80. Neganova I, Chichagova V, Armstrong L, Lako M. A critical role for p38MAPK signalling pathway during reprogramming of human fibroblasts to iPSCs. Sci Rep. 2017;7:41693 pubmed 出版商
  81. Li C, Bi Y, Li Y, Yang H, Yu Q, Wang J, et al. Dendritic cell MST1 inhibits Th17 differentiation. Nat Commun. 2017;8:14275 pubmed 出版商
  82. Lim E, Nakanishi S, Hoghooghi V, Eaton S, Palmer A, Frederick A, et al. AlphaB-crystallin regulates remyelination after peripheral nerve injury. Proc Natl Acad Sci U S A. 2017;114:E1707-E1716 pubmed 出版商
  83. Mindos T, Dun X, North K, Doddrell R, Schulz A, Edwards P, et al. Merlin controls the repair capacity of Schwann cells after injury by regulating Hippo/YAP activity. J Cell Biol. 2017;216:495-510 pubmed 出版商
  84. Yang H, Ju F, Guo X, Ma S, Wang L, Cheng B, et al. RNA-binding protein RBM3 prevents NO-induced apoptosis in human neuroblastoma cells by modulating p38 signaling and miR-143. Sci Rep. 2017;7:41738 pubmed 出版商
  85. Pergola C, Schubert K, Pace S, Ziereisen J, Nikels F, Scherer O, et al. Modulation of actin dynamics as potential macrophage subtype-targeting anti-tumour strategy. Sci Rep. 2017;7:41434 pubmed 出版商
  86. Ha S, Jin F, Kwak C, Abekura F, Park J, Park N, et al. Jellyfish extract induces apoptotic cell death through the p38 pathway and cell cycle arrest in chronic myelogenous leukemia K562 cells. Peerj. 2017;5:e2895 pubmed 出版商
  87. Liu J, Wang H, Gu J, Deng T, Yuan Z, Hu B, et al. BECN1-dependent CASP2 incomplete autophagy induction by binding to rabies virus phosphoprotein. Autophagy. 2017;13:739-753 pubmed 出版商
  88. Lin Y, Lin Y, Huang M, Kuo P, Wu C, Lee M, et al. Tumor necrosis factor-alpha inhibitors suppress CCL2 chemokine in monocytes via epigenetic modification. Mol Immunol. 2017;83:82-91 pubmed 出版商
  89. Schober T, Magg T, Laschinger M, Rohlfs M, Linhares N, Puchalka J, et al. A human immunodeficiency syndrome caused by mutations in CARMIL2. Nat Commun. 2017;8:14209 pubmed 出版商
  90. Feng L, Xue D, Chen E, Zhang W, Gao X, Yu J, et al. HMGB1 promotes the secretion of multiple cytokines and potentiates the osteogenic differentiation of mesenchymal stem cells through the Ras/MAPK signaling pathway. Exp Ther Med. 2016;12:3941-3947 pubmed 出版商
  91. Wu M, Chen W, Lu Y, Zhu G, Hao L, Li Y. Gα13 negatively controls osteoclastogenesis through inhibition of the Akt-GSK3β-NFATc1 signalling pathway. Nat Commun. 2017;8:13700 pubmed 出版商
  92. Schwarz F, Landig C, Siddiqui S, Secundino I, Olson J, Varki N, et al. Paired Siglec receptors generate opposite inflammatory responses to a human-specific pathogen. EMBO J. 2017;36:751-760 pubmed 出版商
  93. Chandravanshi B, Bhonde R. Shielding Engineered Islets With Mesenchymal Stem Cells Enhance Survival Under Hypoxia. J Cell Biochem. 2017;118:2672-2683 pubmed 出版商
  94. Kechele D, Blue R, Zwarycz B, Espenschied S, Mah A, Siegel M, et al. Orphan Gpr182 suppresses ERK-mediated intestinal proliferation during regeneration and adenoma formation. J Clin Invest. 2017;127:593-607 pubmed 出版商
  95. Pyle C, Akhter S, Bao S, Dodd C, Schlesinger L, Knoell D. Zinc Modulates Endotoxin-Induced Human Macrophage Inflammation through ZIP8 Induction and C/EBP? Inhibition. PLoS ONE. 2017;12:e0169531 pubmed 出版商
  96. Wamsley J, Issaeva N, An H, Lu X, Donehower L, Yarbrough W. LZAP is a novel Wip1 binding partner and positive regulator of its phosphatase activity in vitro. Cell Cycle. 2017;16:213-223 pubmed 出版商
  97. Hill S, Nesser N, Johnson Camacho K, Jeffress M, Johnson A, Boniface C, et al. Context Specificity in Causal Signaling Networks Revealed by Phosphoprotein Profiling. Cell Syst. 2017;4:73-83.e10 pubmed 出版商
  98. Hayakawa M, Hayakawa H, Petrova T, Ritprajak P, Sutavani R, Jiménez Andrade G, et al. Loss of Functionally Redundant p38 Isoforms in T Cells Enhances Regulatory T Cell Induction. J Biol Chem. 2017;292:1762-1772 pubmed 出版商
  99. Said A, Hu S, Abutaleb A, Watkins T, Cheng K, Chahdi A, et al. Interacting post-muscarinic receptor signaling pathways potentiate matrix metalloproteinase-1 expression and invasion of human colon cancer cells. Biochem J. 2017;474:647-665 pubmed 出版商
  100. Chao M, Guo J, Cheng W, Zhu X, She Z, Huang Z, et al. Loss of Caspase-Activated DNase Protects Against Atherosclerosis in Apolipoprotein E-Deficient Mice. J Am Heart Assoc. 2016;5: pubmed 出版商
  101. Su J, Zhou H, Liu X, Nilsson J, Fredrikson G, Zhao M. oxLDL antibody inhibits MCP-1 release in monocytes/macrophages by regulating Ca2+ /K+ channel flow. J Cell Mol Med. 2017;21:929-940 pubmed 出版商
  102. Fettweis G, Di Valentin E, L homme L, Lassence C, Dequiedt F, Fillet M, et al. RIP3 antagonizes a TSC2-mediated pro-survival pathway in glioblastoma cell death. Biochim Biophys Acta Mol Cell Res. 2017;1864:113-124 pubmed 出版商
  103. Marmisolle I, Martínez J, Liu J, Mastrogiovanni M, Fergusson M, Rovira I, et al. Reciprocal regulation of acetyl-CoA carboxylase 1 and senescence in human fibroblasts involves oxidant mediated p38 MAPK activation. Arch Biochem Biophys. 2017;613:12-22 pubmed 出版商
  104. Harper K, Sosa M, Entenberg D, Hosseini H, Cheung J, Nobre R, et al. Mechanism of early dissemination and metastasis in Her2+ mammary cancer. Nature. 2016;540:588-592 pubmed 出版商
  105. Lopes M, Leal R, Guarnieri R, Schwarzbold M, Hoeller A, Diaz A, et al. A single high dose of dexamethasone affects the phosphorylation state of glutamate AMPA receptors in the human limbic system. Transl Psychiatry. 2016;6:e986 pubmed 出版商
  106. Ramratnam M, Salama G, Sharma R, Wang D, Smith S, Banerjee S, et al. Gene-Targeted Mice with the Human Troponin T R141W Mutation Develop Dilated Cardiomyopathy with Calcium Desensitization. PLoS ONE. 2016;11:e0167681 pubmed 出版商
  107. Lee H, Khan S, Khaliqdina S, Altintas M, Grahammer F, Zhao J, et al. Absence of miR-146a in Podocytes Increases Risk of Diabetic Glomerulopathy via Up-regulation of ErbB4 and Notch-1. J Biol Chem. 2017;292:732-747 pubmed 出版商
  108. He X, Liu Z, Xia Y, Xu J, Lv G, Wang L, et al. HOXB7 overexpression promotes cell proliferation and correlates with poor prognosis in gastric cancer patients by inducing expression of both AKT and MARKs. Oncotarget. 2017;8:1247-1261 pubmed 出版商
  109. Torgersen M, Klokk T, Kavaliauskiene S, Klose C, Simons K, Skotland T, et al. The anti-tumor drug 2-hydroxyoleic acid (Minerval) stimulates signaling and retrograde transport. Oncotarget. 2016;7:86871-86888 pubmed 出版商
  110. Gong J, Tu W, Han J, He J, Liu J, Han P, et al. Hepatic SATB1 induces paracrine activation of hepatic stellate cells and is upregulated by HBx. Sci Rep. 2016;6:37717 pubmed 出版商
  111. Mandel E, Dunford E, Trifonova A, Abdifarkosh G, Teich T, Riddell M, et al. Prazosin Can Prevent Glucocorticoid Mediated Capillary Rarefaction. PLoS ONE. 2016;11:e0166899 pubmed 出版商
  112. Fernández Verdejo R, Vanwynsberghe A, Essaghir A, Demoulin J, Hai T, Deldicque L, et al. Activating transcription factor 3 attenuates chemokine and cytokine expression in mouse skeletal muscle after exercise and facilitates molecular adaptation to endurance training. FASEB J. 2017;31:840-851 pubmed 出版商
  113. Piasecka D, Kitowska K, Czaplinska D, Mieczkowski K, Mieszkowska M, Turczyk L, et al. Fibroblast growth factor signalling induces loss of progesterone receptor in breast cancer cells. Oncotarget. 2016;7:86011-86025 pubmed 出版商
  114. Milara J, Cervera A, de Diego A, Sanz C, Juan G, Gavaldá A, et al. Non-neuronal cholinergic system contributes to corticosteroid resistance in chronic obstructive pulmonary disease patients. Respir Res. 2016;17:145 pubmed
  115. Newton K, Wickliffe K, Maltzman A, Dugger D, Strasser A, Pham V, et al. RIPK1 inhibits ZBP1-driven necroptosis during development. Nature. 2016;540:129-133 pubmed 出版商
  116. Kitsati N, Mantzaris M, Galaris D. Hydroxytyrosol inhibits hydrogen peroxide-induced apoptotic signaling via labile iron chelation. Redox Biol. 2016;10:233-242 pubmed 出版商
  117. Chen D, Ireland S, Remington G, Alvarez E, Racke M, Greenberg B, et al. CD40-Mediated NF-?B Activation in B Cells Is Increased in Multiple Sclerosis and Modulated by Therapeutics. J Immunol. 2016;197:4257-4265 pubmed
  118. Han J, Bae J, Choi C, Choi S, Kang H, Jo E, et al. Autophagy induced by AXL receptor tyrosine kinase alleviates acute liver injury via inhibition of NLRP3 inflammasome activation in mice. Autophagy. 2016;12:2326-2343 pubmed
  119. Ismail H, Didangelos A, Vincent T, Saklatvala J. Rapid Activation of Transforming Growth Factor ?-Activated Kinase 1 in Chondrocytes by Phosphorylation and K63 -Linked Polyubiquitination Upon Injury to Animal Articular Cartilage. Arthritis Rheumatol. 2017;69:565-575 pubmed 出版商
  120. Dey K, Bharti R, Dey G, Pal I, Rajesh Y, Chavan S, et al. S100A7 has an oncogenic role in oral squamous cell carcinoma by activating p38/MAPK and RAB2A signaling pathway. Cancer Gene Ther. 2016;23:382-391 pubmed 出版商
  121. Ulbrich F, Kaufmann K, Meske A, Lagrèze W, Augustynik M, Buerkle H, et al. The CORM ALF-186 Mediates Anti-Apoptotic Signaling via an Activation of the p38 MAPK after Ischemia and Reperfusion Injury in Retinal Ganglion Cells. PLoS ONE. 2016;11:e0165182 pubmed 出版商
  122. Fujii N, Matsuo Y, Matsunaga T, Endo S, Sakai H, Yamaguchi M, et al. Hypotonic Stress-induced Down-regulation of Claudin-1 and -2 Mediated by Dephosphorylation and Clathrin-dependent Endocytosis in Renal Tubular Epithelial Cells. J Biol Chem. 2016;291:24787-24799 pubmed
  123. Yue G, Xie S, Lee J, Kwok H, Gao S, Nian Y, et al. New potential beneficial effects of actein, a triterpene glycoside isolated from Cimicifuga species, in breast cancer treatment. Sci Rep. 2016;6:35263 pubmed 出版商
  124. Guan S, Zhao Y, Lu J, Yu Y, Sun W, Mao X, et al. Second-generation proteasome inhibitor carfilzomib sensitizes neuroblastoma cells to doxorubicin-induced apoptosis. Oncotarget. 2016;7:75914-75925 pubmed 出版商
  125. Gupta S, Zeglinski M, Rattan S, Landry N, Ghavami S, Wigle J, et al. Inhibition of autophagy inhibits the conversion of cardiac fibroblasts to cardiac myofibroblasts. Oncotarget. 2016;7:78516-78531 pubmed 出版商
  126. Zhong W, Wang X, Pan B, Li F, Kuang L, Su Z. Eupatilin induces human renal cancer cell apoptosis via ROS-mediated MAPK and PI3K/AKT signaling pathways. Oncol Lett. 2016;12:2894-2899 pubmed
  127. Xu Y, Ding G, Huang J, Xiong Y. Tanshinone IIA pretreatment attenuates ischemia/reperfusion-induced renal injury. Exp Ther Med. 2016;12:2741-2746 pubmed
  128. Napier B, Brubaker S, Sweeney T, Monette P, Rothmeier G, Gertsvolf N, et al. Complement pathway amplifies caspase-11-dependent cell death and endotoxin-induced sepsis severity. J Exp Med. 2016;213:2365-2382 pubmed
  129. Wu X, Gu W, Lu H, Liu C, Yu B, Xu H, et al. Soluble Receptor for Advanced Glycation End Product Ameliorates Chronic Intermittent Hypoxia Induced Renal Injury, Inflammation, and Apoptosis via P38/JNK Signaling Pathways. Oxid Med Cell Longev. 2016;2016:1015390 pubmed
  130. Yan S, Wang Y, Liu P, Chen A, Chen M, Yao D, et al. Baicalin Attenuates Hypoxia-Induced Pulmonary Arterial Hypertension to Improve Hypoxic Cor Pulmonale by Reducing the Activity of the p38 MAPK Signaling Pathway and MMP-9. Evid Based Complement Alternat Med. 2016;2016:2546402 pubmed 出版商
  131. Doan K, Kinyua A, Yang D, Ko C, Moh S, Shong K, et al. FoxO1 in dopaminergic neurons regulates energy homeostasis and targets tyrosine hydroxylase. Nat Commun. 2016;7:12733 pubmed 出版商
  132. Bhaskar S, Helen A. Quercetin modulates toll-like receptor-mediated protein kinase signaling pathways in oxLDL-challenged human PBMCs and regulates TLR-activated atherosclerotic inflammation in hypercholesterolemic rats. Mol Cell Biochem. 2016;423:53-65 pubmed
  133. Treindl F, Ruprecht B, Beiter Y, Schultz S, Döttinger A, Staebler A, et al. A bead-based western for high-throughput cellular signal transduction analyses. Nat Commun. 2016;7:12852 pubmed 出版商
  134. Tai Y, Tung L, Lin Y, Lu P, Chu P, Wang M, et al. Grb7 Protein Stability Modulated by Pin1 in Association with Cell Cycle Progression. PLoS ONE. 2016;11:e0163617 pubmed 出版商
  135. Shi Y, Yu Y, Wang Z, Wang H, Bieerkehazhi S, Zhao Y, et al. Second-generation proteasome inhibitor carfilzomib enhances doxorubicin-induced cytotoxicity and apoptosis in breast cancer cells. Oncotarget. 2016;7:73697-73710 pubmed 出版商
  136. Wang Y, Ma C, Ling Y, Bousfiha A, Camcioglu Y, Jacquot S, et al. Dual T cell- and B cell-intrinsic deficiency in humans with biallelic RLTPR mutations. J Exp Med. 2016;213:2413-2435 pubmed
  137. Christensen B, Nellemann B, Jørgensen J, Pedersen S, Jessen N. Erythropoietin does not activate erythropoietin receptor signaling or lipolytic pathways in human subcutaneous white adipose tissue in vivo. Lipids Health Dis. 2016;15:160 pubmed 出版商
  138. Bingula R, Dupuis C, Pichon C, Berthon J, Filaire M, Pigeon L, et al. Study of the Effects of Betaine and/or C-Phycocyanin on the Growth of Lung Cancer A549 Cells In Vitro and In Vivo. J Oncol. 2016;2016:8162952 pubmed 出版商
  139. Springler A, Hessenberger S, Schatzmayr G, Mayer E. Early Activation of MAPK p44/42 Is Partially Involved in DON-Induced Disruption of the Intestinal Barrier Function and Tight Junction Network. Toxins (Basel). 2016;8: pubmed 出版商
  140. Kundu R, Theodoraki A, Haas C, Zhang Y, Chain B, Kriston Vizi J, et al. Cell-type-specific modulation of innate immune signalling by vitamin D in human mononuclear phagocytes. Immunology. 2017;150:55-63 pubmed 出版商
  141. Thamodaran V, Bruce A. p38 (Mapk14/11) occupies a regulatory node governing entry into primitive endoderm differentiation during preimplantation mouse embryo development. Open Biol. 2016;6: pubmed 出版商
  142. Qin Y, Liu Y, Hao W, Decker Y, Tomic I, Menger M, et al. Stimulation of TLR4 Attenuates Alzheimer's Disease-Related Symptoms and Pathology in Tau-Transgenic Mice. J Immunol. 2016;197:3281-3292 pubmed
  143. Hesler R, Huang J, Starr M, Treboschi V, Bernanke A, Nixon A, et al. TGF-?-induced stromal CYR61 promotes resistance to gemcitabine in pancreatic ductal adenocarcinoma through downregulation of the nucleoside transporters hENT1 and hCNT3. Carcinogenesis. 2016;37:1041-1051 pubmed 出版商
  144. Lee J, Jung H, Han Y, Yoon Y, Yun C, Sun H, et al. Antioxidant effects of Cirsium setidens extract on oxidative stress in human mesenchymal stem cells. Mol Med Rep. 2016;14:3777-84 pubmed 出版商
  145. Ji M, Lu Y, Zhao C, Gao W, He F, Zhang J, et al. C5a Induces the Synthesis of IL-6 and TNF-? in Rat Glomerular Mesangial Cells through MAPK Signaling Pathways. PLoS ONE. 2016;11:e0161867 pubmed 出版商
  146. Zhang Y, Hu S, Chen Y, Guo M, Wang S. Hepatocyte growth factor inhibits hypoxia/reoxygenation-induced activation of xanthine oxidase in endothelial cells through the JAK2 signaling pathway. Int J Mol Med. 2016;38:1055-62 pubmed 出版商
  147. Cheng G, Gao F, Sun X, Bi H, Zhu Y. Paris saponin VII suppresses osteosarcoma cell migration and invasion by inhibiting MMP?2/9 production via the p38 MAPK signaling pathway. Mol Med Rep. 2016;14:3199-205 pubmed 出版商
  148. Shang W, Zhao L, Dong X, Zhao Z, Li J, Zhang B, et al. Curcumin inhibits osteoclastogenic potential in PBMCs from rheumatoid arthritis patients via the suppression of MAPK/RANK/c-Fos/NFATc1 signaling pathways. Mol Med Rep. 2016;14:3620-6 pubmed 出版商
  149. Jiao Z, Wu J, Liu C, Wen B, Zhao W, Du X. Nicotinic ?7 receptor inhibits the acylation stimulating protein?induced production of monocyte chemoattractant protein?1 and keratinocyte?derived chemokine in adipocytes by modulating the p38 kinase and nuclear factor??B signaling pathways. Mol Med Rep. 2016;14:2959-66 pubmed 出版商
  150. Hinsenkamp I, Schulz S, Roscher M, Suhr A, Meyer B, Munteanu B, et al. Inhibition of Rho-Associated Kinase 1/2 Attenuates Tumor Growth in Murine Gastric Cancer. Neoplasia. 2016;18:500-11 pubmed 出版商
  151. Kasica N, Podlasz P, Sundvik M, Tamas A, Reglodi D, Kaleczyc J. Protective Effects of Pituitary Adenylate Cyclase-Activating Polypeptide (PACAP) Against Oxidative Stress in Zebrafish Hair Cells. Neurotox Res. 2016;30:633-647 pubmed
  152. Kagoya Y, Nakatsugawa M, Yamashita Y, Ochi T, Guo T, Anczurowski M, et al. BET bromodomain inhibition enhances T cell persistence and function in adoptive immunotherapy models. J Clin Invest. 2016;126:3479-94 pubmed 出版商
  153. Hedl M, Yan J, Abraham C. IRF5 and IRF5 Disease-Risk Variants Increase Glycolysis and Human M1 Macrophage Polarization by Regulating Proximal Signaling and Akt2 Activation. Cell Rep. 2016;16:2442-55 pubmed 出版商
  154. Efazat G, Novak M, Kaminskyy V, De Petris L, Kanter L, Juntti T, et al. Ephrin B3 interacts with multiple EphA receptors and drives migration and invasion in non-small cell lung cancer. Oncotarget. 2016;7:60332-60347 pubmed 出版商
  155. Gómez Puerto M, Verhagen L, Braat A, Lam E, Coffer P, Lorenowicz M. Activation of autophagy by FOXO3 regulates redox homeostasis during osteogenic differentiation. Autophagy. 2016;12:1804-1816 pubmed
  156. Rasmussen M, Lyskjær I, Jersie Christensen R, Tarpgaard L, Primdal Bengtson B, Nielsen M, et al. miR-625-3p regulates oxaliplatin resistance by targeting MAP2K6-p38 signalling in human colorectal adenocarcinoma cells. Nat Commun. 2016;7:12436 pubmed 出版商
  157. Damgaard R, Walker J, Marco Casanova P, Morgan N, Titheradge H, Elliott P, et al. The Deubiquitinase OTULIN Is an Essential Negative Regulator of Inflammation and Autoimmunity. Cell. 2016;166:1215-1230.e20 pubmed 出版商
  158. Kariya Y, Tatsuta T, Sugawara S, Kariya Y, Nitta K, Hosono M. RNase activity of sialic acid-binding lectin from bullfrog eggs drives antitumor effect via the activation of p38 MAPK to caspase-3/7 signaling pathway in human breast cancer cells. Int J Oncol. 2016;49:1334-42 pubmed 出版商
  159. Ruess D, Probst M, Marjanovic G, Wittel U, Hopt U, Keck T, et al. HDACi Valproic Acid (VPA) and Suberoylanilide Hydroxamic Acid (SAHA) Delay but Fail to Protect against Warm Hepatic Ischemia-Reperfusion Injury. PLoS ONE. 2016;11:e0161233 pubmed 出版商
  160. Nadeau Vallée M, Boudreault A, Leimert K, Hou X, Obari D, Madaan A, et al. Uterotonic Neuromedin U Receptor 2 and Its Ligands Are Upregulated by Inflammation in Mice and Humans, and Elicit Preterm Birth. Biol Reprod. 2016;95:72 pubmed
  161. Ogasawara R, Fujita S, Hornberger T, Kitaoka Y, Makanae Y, Nakazato K, et al. The role of mTOR signalling in the regulation of skeletal muscle mass in a rodent model of resistance exercise. Sci Rep. 2016;6:31142 pubmed 出版商
  162. Radke D, Ungefroren H, Helm O, Voigt S, Alp G, Braun H, et al. Negative control of TRAIL-R1 signaling by transforming growth factor ?1 in pancreatic tumor cells involves Smad-dependent down regulation of TRAIL-R1. Cell Signal. 2016;28:1652-62 pubmed 出版商
  163. El Jamal S, Taylor E, Abd Elmageed Z, Alamodi A, Selimovic D, Alkhateeb A, et al. Interferon gamma-induced apoptosis of head and neck squamous cell carcinoma is connected to indoleamine-2,3-dioxygenase via mitochondrial and ER stress-associated pathways. Cell Div. 2016;11:11 pubmed 出版商
  164. Kim J, Weeratunga P, Kim M, Nikapitiya C, Lee B, Uddin M, et al. Inhibitory effects of an aqueous extract from Cortex Phellodendri on the growth and replication of broad-spectrum of viruses in vitro and in vivo. BMC Complement Altern Med. 2016;16:265 pubmed 出版商
  165. Kawamoto E, Koshinaka K, Yoshimura T, Masuda H, Kawanaka K. Immobilization rapidly induces muscle insulin resistance together with the activation of MAPKs (JNK and p38) and impairment of AS160 phosphorylation. Physiol Rep. 2016;4: pubmed 出版商
  166. Lie E, Ko J, Choi S, Roh J, Cho Y, Noh R, et al. SALM4 suppresses excitatory synapse development by cis-inhibiting trans-synaptic SALM3-LAR adhesion. Nat Commun. 2016;7:12328 pubmed 出版商
  167. Møller C, Kjøbsted R, Enriori P, Jensen T, Garcia Rudaz C, Litwak S, et al. ?-MSH Stimulates Glucose Uptake in Mouse Muscle and Phosphorylates Rab-GTPase-Activating Protein TBC1D1 Independently of AMPK. PLoS ONE. 2016;11:e0157027 pubmed 出版商
  168. Wang J, Zhou J, Kho D, Reiners J, Wu G. Role for DUSP1 (dual-specificity protein phosphatase 1) in the regulation of autophagy. Autophagy. 2016;12:1791-1803 pubmed
  169. Lee J, Yu K, Kim H, Kang I, Kim J, Lee B, et al. BMI1 inhibits senescence and enhances the immunomodulatory properties of human mesenchymal stem cells via the direct suppression of MKP-1/DUSP1. Aging (Albany NY). 2016;8:1670-89 pubmed 出版商
  170. Ciaraldi T, Ryan A, Mudaliar S, Henry R. Altered Myokine Secretion Is an Intrinsic Property of Skeletal Muscle in Type 2 Diabetes. PLoS ONE. 2016;11:e0158209 pubmed 出版商
  171. Jiao K, Zeng G, Niu L, Yang H, Ren G, Xu X, et al. Activation of ?2A-adrenergic signal transduction in chondrocytes promotes degenerative remodelling of temporomandibular joint. Sci Rep. 2016;6:30085 pubmed 出版商
  172. Abdelbaset Ismail A, Borkowska Rzeszotek S, Kubis E, Bujko K, Brzeźniakiewicz Janus K, Bolkun L, et al. Activation of the complement cascade enhances motility of leukemic cells by downregulating expression of HO-1. Leukemia. 2017;31:446-458 pubmed 出版商
  173. Bao H, Liu P, Jiang K, Zhang X, Xie L, Wang Z, et al. Huaier polysaccharide induces apoptosis in hepatocellular carcinoma cells through p38 MAPK. Oncol Lett. 2016;12:1058-1066 pubmed
  174. Wang J, Li H, Li B, Gong Q, Chen X, Wang Q. Co-culture of bone marrow stem cells and macrophages indicates intermediate mechanism between local inflammation and innate immune system in diabetic periodontitis. Exp Ther Med. 2016;12:567-572 pubmed
  175. Kojima Y, Volkmer J, McKenna K, Civelek M, Lusis A, Miller C, et al. CD47-blocking antibodies restore phagocytosis and prevent atherosclerosis. Nature. 2016;536:86-90 pubmed
  176. Raguz J, Jerić I, Niault T, Nowacka J, Kuzet S, Rupp C, et al. Epidermal RAF prevents allergic skin disease. elife. 2016;5: pubmed 出版商
  177. Babica P, Zurabian R, Kumar E, Chopra R, Mianecki M, Park J, et al. Methoxychlor and Vinclozolin Induce Rapid Changes in Intercellular and Intracellular Signaling in Liver Progenitor Cells. Toxicol Sci. 2016;153:174-85 pubmed 出版商
  178. Manassero G, Guglielmotto M, Zamfir R, Borghi R, Colombo L, Salmona M, et al. Beta-amyloid 1-42 monomers, but not oligomers, produce PHF-like conformation of Tau protein. Aging Cell. 2016;15:914-23 pubmed 出版商
  179. Huang C, Lee C, Lin H, Chang J. Cathepsin S attenuates endosomal EGFR signalling: A mechanical rationale for the combination of cathepsin S and EGFR tyrosine kinase inhibitors. Sci Rep. 2016;6:29256 pubmed 出版商
  180. Shen P, Chen M, He M, Chen L, Song Y, Xiao P, et al. Inhibition of ER?/ERK/P62 cascades induces "autophagic switch" in the estrogen receptor-positive breast cancer cells exposed to gemcitabine. Oncotarget. 2016;7:48501-48516 pubmed 出版商
  181. Lukjanenko L, Jung M, Hegde N, Perruisseau Carrier C, Migliavacca E, Rozo M, et al. Loss of fibronectin from the aged stem cell niche affects the regenerative capacity of skeletal muscle in mice. Nat Med. 2016;22:897-905 pubmed 出版商
  182. Rozo M, Li L, Fan C. Targeting ?1-integrin signaling enhances regeneration in aged and dystrophic muscle in mice. Nat Med. 2016;22:889-96 pubmed 出版商
  183. Xiang N, Liu J, Liao Y, Huang Y, Wu Z, Bai Z, et al. Abrogating ClC-3 Inhibits LPS-induced Inflammation via Blocking the TLR4/NF-κB Pathway. Sci Rep. 2016;6:27583 pubmed 出版商
  184. Heckler M, Zeleke T, Divekar S, Fernandez A, Tiek D, Woodrick J, et al. Antimitotic activity of DY131 and the estrogen-related receptor beta 2 (ERRβ2) splice variant in breast cancer. Oncotarget. 2016;7:47201-47220 pubmed 出版商
  185. Subramaniam S, Ozdener M, Abdoul Azize S, Saito K, Malik B, Maquart G, et al. ERK1/2 activation in human taste bud cells regulates fatty acid signaling and gustatory perception of fat in mice and humans. FASEB J. 2016;30:3489-3500 pubmed
  186. Zhang J, Jing X, Niu W, Zhang M, Ge L, Miao C, et al. Peroxiredoxin 1 has an anti-apoptotic role via apoptosis signal-regulating kinase 1 and p38 activation in mouse models with oral precancerous lesions. Oncol Lett. 2016;12:413-420 pubmed
  187. Ahmad F, Chung Y, Tang Y, Hockman S, Liu S, Khan Y, et al. Phosphodiesterase 3B (PDE3B) regulates NLRP3 inflammasome in adipose tissue. Sci Rep. 2016;6:28056 pubmed 出版商
  188. Wagner S, Satpathy S, Beli P, Choudhary C. SPATA2 links CYLD to the TNF-? receptor signaling complex and modulates the receptor signaling outcomes. EMBO J. 2016;35:1868-84 pubmed 出版商
  189. Liu C, Lin S, Hsu H, Yang S, Lin C, Yang M, et al. Suspension survival mediated by PP2A-STAT3-Col XVII determines tumour initiation and metastasis in cancer stem cells. Nat Commun. 2016;7:11798 pubmed 出版商
  190. Faber E, Gripp E, Maurischat S, Kaspers B, Tedin K, Menz S, et al. Novel Immunomodulatory Flagellin-Like Protein FlaC in Campylobacter jejuni and Other Campylobacterales. mSphere. 2016;1: pubmed 出版商
  191. Bachegowda L, Morrone K, Winski S, Mantzaris I, Bartenstein M, Ramachandra N, et al. Pexmetinib: A Novel Dual Inhibitor of Tie2 and p38 MAPK with Efficacy in Preclinical Models of Myelodysplastic Syndromes and Acute Myeloid Leukemia. Cancer Res. 2016;76:4841-4849 pubmed 出版商
  192. Priego N, Arechederra M, Sequera C, Bragado P, Vázquez Carballo A, Gutierrez Uzquiza A, et al. C3G knock-down enhances migration and invasion by increasing Rap1-mediated p38? activation, while it impairs tumor growth through p38?-independent mechanisms. Oncotarget. 2016;7:45060-45078 pubmed 出版商
  193. Wang T, Pan D, Zhou Z, You Y, Jiang C, Zhao X, et al. Dectin-3 Deficiency Promotes Colitis Development due to Impaired Antifungal Innate Immune Responses in the Gut. PLoS Pathog. 2016;12:e1005662 pubmed 出版商
  194. Lin S, Gou G, Hsia C, Ho C, Huang K, Wu Y, et al. Simulated Microgravity Disrupts Cytoskeleton Organization and Increases Apoptosis of Rat Neural Crest Stem Cells Via Upregulating CXCR4 Expression and RhoA-ROCK1-p38 MAPK-p53 Signaling. Stem Cells Dev. 2016;25:1172-93 pubmed 出版商
  195. Leonard S, Kinsella G, Benetti E, Findlay J. Regulating the effects of GPR21, a novel target for type 2 diabetes. Sci Rep. 2016;6:27002 pubmed 出版商
  196. Kolanowski S, van Schijndel G, Van Ham S, ten Brinke A. Adaptation to replating of dendritic cells synergizes with Toll-like receptor stimuli and enhances the pro-inflammatory cytokine profile. Cytotherapy. 2016;18:902-10 pubmed 出版商
  197. Kohler T, Scholz A, Kiachludis D, Hammerschmidt S. Induction of Central Host Signaling Kinases during Pneumococcal Infection of Human THP-1 Cells. Front Cell Infect Microbiol. 2016;6:48 pubmed 出版商
  198. Zhang C, Li L, Zhao B, Jiao A, Li X, Sun N, et al. Ghrelin Protects against Dexamethasone-Induced INS-1 Cell Apoptosis via ERK and p38MAPK Signaling. Int J Endocrinol. 2016;2016:4513051 pubmed 出版商
  199. de Jong P, Taniguchi K, Harris A, Bertin S, Takahashi N, Duong J, et al. ERK5 signalling rescues intestinal epithelial turnover and tumour cell proliferation upon ERK1/2 abrogation. Nat Commun. 2016;7:11551 pubmed 出版商
  200. Ribeiro J, Schorl C, Yano N, Romano N, Kim K, Singh R, et al. HE4 promotes collateral resistance to cisplatin and paclitaxel in ovarian cancer cells. J Ovarian Res. 2016;9:28 pubmed 出版商
  201. Chen L, DeWispelaere A, Dastvan F, Osborne W, Blechner C, Windhorst S, et al. Smooth Muscle-Alpha Actin Inhibits Vascular Smooth Muscle Cell Proliferation and Migration by Inhibiting Rac1 Activity. PLoS ONE. 2016;11:e0155726 pubmed 出版商
  202. Park S, Yi H, Suh N, Park Y, Koh J, Jeong S, et al. Inhibition of EHMT2/G9a epigenetically increases the transcription of Beclin-1 via an increase in ROS and activation of NF-?B. Oncotarget. 2016;7:39796-39808 pubmed 出版商
  203. Lee Y, Kim S, Song S, Hong H, Lee Y, Oh B, et al. Crosstalk between CCL7 and CCR3 promotes metastasis of colon cancer cells via ERK-JNK signaling pathways. Oncotarget. 2016;7:36842-36853 pubmed 出版商
  204. Miyawaki S, Kawamura Y, Oiwa Y, Shimizu A, Hachiya T, Bono H, et al. Tumour resistance in induced pluripotent stem cells derived from naked mole-rats. Nat Commun. 2016;7:11471 pubmed 出版商
  205. Tortola L, Nitsch R, Bertrand M, Kogler M, Redouane Y, Kozieradzki I, et al. The Tumor Suppressor Hace1 Is a Critical Regulator of TNFR1-Mediated Cell Fate. Cell Rep. 2016;15:1481-1492 pubmed 出版商
  206. Yang Y, Andersson P, Hosaka K, Zhang Y, Cao R, Iwamoto H, et al. The PDGF-BB-SOX7 axis-modulated IL-33 in pericytes and stromal cells promotes metastasis through tumour-associated macrophages. Nat Commun. 2016;7:11385 pubmed 出版商
  207. Foxton R, Osborne A, Martin K, Ng Y, Shima D. Distal retinal ganglion cell axon transport loss and activation of p38 MAPK stress pathway following VEGF-A antagonism. Cell Death Dis. 2016;7:e2212 pubmed 出版商
  208. Xu Z, Mei F, Liu H, Sun C, Zheng Z. C-C Motif Chemokine Receptor 9 Exacerbates Pressure Overload-Induced Cardiac Hypertrophy and Dysfunction. J Am Heart Assoc. 2016;5: pubmed 出版商
  209. Hu L, Tan J, Yang X, Tan H, Xu X, You M, et al. Polysaccharide Extracted from Laminaria japonica Delays Intrinsic Skin Aging in Mice. Evid Based Complement Alternat Med. 2016;2016:5137386 pubmed 出版商
  210. Ishizuka S, Askew E, Ishizuka N, Knudson C, Knudson W. 4-Methylumbelliferone Diminishes Catabolically Activated Articular Chondrocytes and Cartilage Explants via a Mechanism Independent of Hyaluronan Inhibition. J Biol Chem. 2016;291:12087-104 pubmed 出版商
  211. Matias A, Manieri T, Cerchiaro G. Zinc Chelation Mediates the Lysosomal Disruption without Intracellular ROS Generation. Oxid Med Cell Longev. 2016;2016:6724585 pubmed 出版商
  212. Choi H, Kim M, Choi Y, Shin Y, Cho S, Ko S. Rhus verniciflua Stokes (RVS) and butein induce apoptosis of paclitaxel-resistant SKOV-3/PAX ovarian cancer cells through inhibition of AKT phosphorylation. BMC Complement Altern Med. 2016;16:122 pubmed 出版商
  213. Afonina I, Van Nuffel E, Baudelet G, Driege Y, Kreike M, Staal J, et al. The paracaspase MALT1 mediates CARD14-induced signaling in keratinocytes. EMBO Rep. 2016;17:914-27 pubmed 出版商
  214. Wagstaff L, Goschorska M, Kozyrska K, Duclos G, Kucinski I, Chessel A, et al. Mechanical cell competition kills cells via induction of lethal p53 levels. Nat Commun. 2016;7:11373 pubmed 出版商
  215. Bianchi E, Boekelheide K, Sigman M, Lamb D, Hall S, Hwang K. Ghrelin Inhibits Post-Operative Adhesions via Blockage of the TGF-β Signaling Pathway. PLoS ONE. 2016;11:e0153968 pubmed 出版商
  216. Uto T, Fukaya T, Takagi H, Arimura K, Nakamura T, Kojima N, et al. Clec4A4 is a regulatory receptor for dendritic cells that impairs inflammation and T-cell immunity. Nat Commun. 2016;7:11273 pubmed 出版商
  217. Hamanoue M, Morioka K, Ohsawa I, Ohsawa K, Kobayashi M, Tsuburaya K, et al. Cell-permeable p38?MAP kinase promotes migration of adult neural stem/progenitor cells. Sci Rep. 2016;6:24279 pubmed 出版商
  218. Yu Z, Chen T, Li X, Yang M, Tang S, Zhu X, et al. Lys29-linkage of ASK1 by Skp1-Cullin 1-Fbxo21 ubiquitin ligase complex is required for antiviral innate response. elife. 2016;5: pubmed 出版商
  219. Macritchie N, Volpert G, Al Washih M, Watson D, Futerman A, Kennedy S, et al. Effect of the sphingosine kinase 1 selective inhibitor, PF-543 on arterial and cardiac remodelling in a hypoxic model of pulmonary arterial hypertension. Cell Signal. 2016;28:946-55 pubmed 出版商
  220. Shi C, Iura A, Terajima M, Liu F, Lyons K, Pan H, et al. Deletion of BMP receptor type IB decreased bone mass in association with compromised osteoblastic differentiation of bone marrow mesenchymal progenitors. Sci Rep. 2016;6:24256 pubmed 出版商
  221. Hattori K, Naguro I, Okabe K, Funatsu T, Furutani S, Takeda K, et al. ASK1 signalling regulates brown and beige adipocyte function. Nat Commun. 2016;7:11158 pubmed 出版商
  222. Su K, Cao J, Tang Z, Dai S, He Y, Sampson S, et al. HSF1 critically attunes proteotoxic stress sensing by mTORC1 to combat stress and promote growth. Nat Cell Biol. 2016;18:527-39 pubmed 出版商
  223. Yan Q, Lou G, Qian Y, Qin B, Xu X, Wang Y, et al. SPAG9 is involved in hepatocarcinoma cell migration and invasion via modulation of ELK1 expression. Onco Targets Ther. 2016;9:1067-75 pubmed 出版商
  224. Elisia I, Nakamura H, Lam V, Hofs E, Cederberg R, Cait J, et al. DMSO Represses Inflammatory Cytokine Production from Human Blood Cells and Reduces Autoimmune Arthritis. PLoS ONE. 2016;11:e0152538 pubmed 出版商
  225. Zwang N, Zhang R, Germana S, Fan M, Hastings W, Cao A, et al. Selective Sparing of Human Tregs by Pharmacologic Inhibitors of the Phosphatidylinositol 3-Kinase and MEK Pathways. Am J Transplant. 2016;16:2624-38 pubmed 出版商
  226. Federspiel J, Codreanu S, Palubinsky A, Winland A, Betanzos C, McLaughlin B, et al. Assembly Dynamics and Stoichiometry of the Apoptosis Signal-regulating Kinase (ASK) Signalosome in Response to Electrophile Stress. Mol Cell Proteomics. 2016;15:1947-61 pubmed 出版商
  227. Segalés J, Islam A, Kumar R, Liu Q, Sousa Victor P, Dilworth F, et al. Chromatin-wide and transcriptome profiling integration uncovers p38α MAPK as a global regulator of skeletal muscle differentiation. Skelet Muscle. 2016;6:9 pubmed 出版商
  228. Mori F, Ferraiuolo M, Santoro R, Sacconi A, Goeman F, Pallocca M, et al. Multitargeting activity of miR-24 inhibits long-term melatonin anticancer effects. Oncotarget. 2016;7:20532-48 pubmed 出版商
  229. Acharya M, Sokolovska A, Tam J, Conway K, Stefani C, Raso F, et al. αv Integrins combine with LC3 and atg5 to regulate Toll-like receptor signalling in B cells. Nat Commun. 2016;7:10917 pubmed 出版商
  230. Yang P, Leu D, Ye K, Srinivasan C, Fike J, Huang T. Cognitive impairments following cranial irradiation can be mitigated by treatment with a tropomyosin receptor kinase B agonist. Exp Neurol. 2016;279:178-186 pubmed 出版商
  231. Pham A, Santa Maria F, Lahiri T, Friedman E, Marié I, Levy D. PKR Transduces MDA5-Dependent Signals for Type I IFN Induction. PLoS Pathog. 2016;12:e1005489 pubmed 出版商
  232. Yang W, Yang Y, Yang J, Liang M, Song J. Treatment with bone marrow mesenchymal stem cells combined with plumbagin alleviates spinal cord injury by affecting oxidative stress, inflammation, apoptotis and the activation of the Nrf2 pathway. Int J Mol Med. 2016;37:1075-82 pubmed 出版商
  233. Shu M, Hu X, Hung Z, Huang D, Zhang S. Effects of tanshinone IIA on fibrosis in a rat model of cirrhosis through heme oxygenase-1, inflammation, oxidative stress and apoptosis. Mol Med Rep. 2016;13:3036-42 pubmed 出版商
  234. Choi J, Kim I, Kim Y, Lee M, Nam T. Pyropia yezoensis glycoprotein regulates antioxidant status and prevents hepatotoxicity in a rat model of D-galactosamine/lipopolysaccharide-induced acute liver failure. Mol Med Rep. 2016;13:3110-4 pubmed 出版商
  235. Woo J, Srikanth S, Nishi M, Ping P, Takeshima H, Gwack Y. Junctophilin-4, a component of the endoplasmic reticulum-plasma membrane junctions, regulates Ca2+ dynamics in T cells. Proc Natl Acad Sci U S A. 2016;113:2762-7 pubmed 出版商
  236. Chusri P, Kumthip K, Hong J, Zhu C, Duan X, Jilg N, et al. HCV induces transforming growth factor β1 through activation of endoplasmic reticulum stress and the unfolded protein response. Sci Rep. 2016;6:22487 pubmed 出版商
  237. Moiseeva O, Lopes Paciencia S, Huot G, Lessard F, Ferbeyre G. Permanent farnesylation of lamin A mutants linked to progeria impairs its phosphorylation at serine 22 during interphase. Aging (Albany NY). 2016;8:366-81 pubmed
  238. Hu H, Wang H, Xiao Y, Jin J, Chang J, Zou Q, et al. Otud7b facilitates T cell activation and inflammatory responses by regulating Zap70 ubiquitination. J Exp Med. 2016;213:399-414 pubmed 出版商
  239. Cao L, Qin X, Peterson M, Haller S, Wilson K, Hu N, et al. CARD9 knockout ameliorates myocardial dysfunction associated with high fat diet-induced obesity. J Mol Cell Cardiol. 2016;92:185-95 pubmed 出版商
  240. Yu C, Tang L, Liang C, Chen X, Song S, Ding X, et al. Angiotensin-Converting Enzyme 3 (ACE3) Protects Against Pressure Overload-Induced Cardiac Hypertrophy. J Am Heart Assoc. 2016;5: pubmed 出版商
  241. Rubattu S, Di Castro S, Schulz H, Geurts A, Cotugno M, Bianchi F, et al. Ndufc2 Gene Inhibition Is Associated With Mitochondrial Dysfunction and Increased Stroke Susceptibility in an Animal Model of Complex Human Disease. J Am Heart Assoc. 2016;5: pubmed 出版商
  242. Lee M, Goralczyk A, Kriszt R, Ang X, Badowski C, Li Y, et al. ECM microenvironment unlocks brown adipogenic potential of adult human bone marrow-derived MSCs. Sci Rep. 2016;6:21173 pubmed 出版商
  243. Ivanova I, Maringele L. Polymerases ε and ∂ repair dysfunctional telomeres facilitated by salt. Nucleic Acids Res. 2016;44:3728-38 pubmed 出版商
  244. Pecháčková S, Burdova K, Benada J, Kleiblova P, Jenikova G, Macurek L. Inhibition of WIP1 phosphatase sensitizes breast cancer cells to genotoxic stress and to MDM2 antagonist nutlin-3. Oncotarget. 2016;7:14458-75 pubmed 出版商
  245. Hong M, Nam K, Kim K, Kim S, Kim I. The small molecule '1-(4-biphenylylcarbonyl)-4-(5-bromo-2-methoxybenzyl) piperazine oxalate' and its derivatives regulate global protein synthesis by inactivating eukaryotic translation initiation factor 2-alpha. Cell Stress Chaperones. 2016;21:485-97 pubmed 出版商
  246. Liu T, Fang Z, Wang G, Shi M, Wang X, Jiang K, et al. Anti-tumor activity of the TRPM8 inhibitor BCTC in prostate cancer DU145 cells. Oncol Lett. 2016;11:182-188 pubmed
  247. Demetriades C, Plescher M, Teleman A. Lysosomal recruitment of TSC2 is a universal response to cellular stress. Nat Commun. 2016;7:10662 pubmed 出版商
  248. Khalid S, Drasche A, Thurner M, Hermann M, Ashraf M, Fresser F, et al. cJun N-terminal kinase (JNK) phosphorylation of serine 36 is critical for p66Shc activation. Sci Rep. 2016;6:20930 pubmed 出版商
  249. Li S, Lu L, Liao X, Gao T, Wang F, Zhang L, et al. Manganese elevates manganese superoxide dismutase protein level through protein kinase C and protein tyrosine kinase. Biometals. 2016;29:265-74 pubmed 出版商
  250. Guo Y, Sun J, Ye J, Ma W, Yan H, Wang G. Saussurea tridactyla Sch. Bip.-derived polysaccharides and flavones reduce oxidative damage in ultraviolet B-irradiated HaCaT cells via a p38MAPK-independent mechanism. Drug Des Devel Ther. 2016;10:389-403 pubmed 出版商
  251. Franco M, Panas M, Marino N, Lee M, Buchholz K, Kelly F, et al. A Novel Secreted Protein, MYR1, Is Central to Toxoplasma's Manipulation of Host Cells. MBio. 2016;7:e02231-15 pubmed 出版商
  252. Hayashi H, Al Mamun A, Sakima M, Sato M. Activator of G-protein signaling 8 is involved in VEGF-mediated signal processing during angiogenesis. J Cell Sci. 2016;129:1210-22 pubmed 出版商
  253. Regan Anderson T, Ma S, Raj G, Cidlowski J, Helle T, Knutson T, et al. Breast Tumor Kinase (Brk/PTK6) Is Induced by HIF, Glucocorticoid Receptor, and PELP1-Mediated Stress Signaling in Triple-Negative Breast Cancer. Cancer Res. 2016;76:1653-63 pubmed 出版商
  254. Wang Y, Cui R, Zhang X, Qiao Y, Liu X, Chang Y, et al. SIRT1 increases YAP- and MKK3-dependent p38 phosphorylation in mouse liver and human hepatocellular carcinoma. Oncotarget. 2016;7:11284-98 pubmed 出版商
  255. Nassour J, Martien S, Martin N, Deruy E, Tomellini E, Malaquin N, et al. Defective DNA single-strand break repair is responsible for senescence and neoplastic escape of epithelial cells. Nat Commun. 2016;7:10399 pubmed 出版商
  256. Thornton T, Delgado P, Chen L, Salas B, Krementsov D, Fernández M, et al. Inactivation of nuclear GSK3β by Ser(389) phosphorylation promotes lymphocyte fitness during DNA double-strand break response. Nat Commun. 2016;7:10553 pubmed 出版商
  257. Abbey M, Hakim C, Anand R, Lafera J, Schambach A, Kispert A, et al. GTPase domain driven dimerization of SEPT7 is dispensable for the critical role of septins in fibroblast cytokinesis. Sci Rep. 2016;6:20007 pubmed 出版商
  258. van der Mijn J, Broxterman H, Knol J, Piersma S, de Haas R, Dekker H, et al. Sunitinib activates Axl signaling in renal cell cancer. Int J Cancer. 2016;138:3002-10 pubmed 出版商
  259. Koyani C, Kitz K, Rossmann C, Bernhart E, Huber E, Trummer C, et al. Activation of the MAPK/Akt/Nrf2-Egr1/HO-1-GCLc axis protects MG-63 osteosarcoma cells against 15d-PGJ2-mediated cell death. Biochem Pharmacol. 2016;104:29-41 pubmed 出版商
  260. Peres T, Ong L, Costa A, Eyng H, Venske D, Colle D, et al. Tyrosine hydroxylase regulation in adult rat striatum following short-term neonatal exposure to manganese. Metallomics. 2016;8:597-604 pubmed 出版商
  261. Chen Y, Zheng Y, You X, Yu M, Fu G, Su X, et al. Kras Is Critical for B Cell Lymphopoiesis. J Immunol. 2016;196:1678-85 pubmed 出版商
  262. Chhibber Goel J, Coleman Vaughan C, Agrawal V, Sawhney N, Hickey E, Powell J, et al. γ-Secretase Activity Is Required for Regulated Intramembrane Proteolysis of Tumor Necrosis Factor (TNF) Receptor 1 and TNF-mediated Pro-apoptotic Signaling. J Biol Chem. 2016;291:5971-85 pubmed 出版商
  263. Ferreira M, McKenna L, Zhang J, Reichert M, Bakir B, Buza E, et al. Spontaneous Pancreatitis Caused by Tissue-Specific Gene Ablation of Hhex in Mice. Cell Mol Gastroenterol Hepatol. 2015;1:550-569 pubmed 出版商
  264. Ishibashi T, Yaguchi A, Terada K, Ueno Yokohata H, Tomita O, Iijima K, et al. Ph-like ALL-related novel fusion kinase ATF7IP-PDGFRB exhibits high sensitivity to tyrosine kinase inhibitors in murine cells. Exp Hematol. 2016;44:177-88.e5 pubmed 出版商
  265. Shih M, Pan K, Cherng J. Possible Mechanisms of Di(2-ethylhexyl) Phthalate-Induced MMP-2 and MMP-9 Expression in A7r5 Rat Vascular Smooth Muscle Cells. Int J Mol Sci. 2015;16:28800-11 pubmed 出版商
  266. Roth Flach R, Skoura A, Matevossian A, Danai L, Zheng W, Cortes C, et al. Endothelial protein kinase MAP4K4 promotes vascular inflammation and atherosclerosis. Nat Commun. 2015;6:8995 pubmed 出版商
  267. He J, Johnson J, Monfregola J, Ramadass M, Pestonjamasp K, Napolitano G, et al. Munc13-4 interacts with syntaxin 7 and regulates late endosomal maturation, endosomal signaling, and TLR9-initiated cellular responses. Mol Biol Cell. 2016;27:572-87 pubmed 出版商
  268. Franco Villanueva A, Wandosell F, Antón I. Neuritic complexity of hippocampal neurons depends on WIP-mediated mTORC1 and Abl family kinases activities. Brain Behav. 2015;5:e00359 pubmed 出版商
  269. Ogura Y, Hindi S, Sato S, Xiong G, Akira S, Kumar A. TAK1 modulates satellite stem cell homeostasis and skeletal muscle repair. Nat Commun. 2015;6:10123 pubmed 出版商
  270. Yamakawa H, Muraoka N, Miyamoto K, Sadahiro T, Isomi M, Haginiwa S, et al. Fibroblast Growth Factors and Vascular Endothelial Growth Factor Promote Cardiac Reprogramming under Defined Conditions. Stem Cell Reports. 2015;5:1128-1142 pubmed 出版商
  271. Tollenaere M, Villumsen B, Blasius M, Nielsen J, Wagner S, Bartek J, et al. p38- and MK2-dependent signalling promotes stress-induced centriolar satellite remodelling via 14-3-3-dependent sequestration of CEP131/AZI1. Nat Commun. 2015;6:10075 pubmed 出版商
  272. Lim J, Nguyen K, Han J, Jang I, Fabian C, Cho K. Direct Regulation of TLR5 Expression by Caveolin-1. Mol Cells. 2015;38:1111-7 pubmed 出版商
  273. Ni Y, Nagashimada M, Zhuge F, Zhan L, Nagata N, Tsutsui A, et al. Astaxanthin prevents and reverses diet-induced insulin resistance and steatohepatitis in mice: A comparison with vitamin E. Sci Rep. 2015;5:17192 pubmed 出版商
  274. Martín Pardillos A, Sorribas V. Effects of donor age and proliferative aging on the phenotype stability of rat aortic smooth muscle cells. Physiol Rep. 2015;3: pubmed 出版商
  275. Ittig S, Schmutz C, Kasper C, Amstutz M, Schmidt A, Sauteur L, et al. A bacterial type III secretion-based protein delivery tool for broad applications in cell biology. J Cell Biol. 2015;211:913-31 pubmed 出版商
  276. McIlroy G, Tammireddy S, Maskrey B, Grant L, Doherty M, Watson D, et al. Fenretinide mediated retinoic acid receptor signalling and inhibition of ceramide biosynthesis regulates adipogenesis, lipid accumulation, mitochondrial function and nutrient stress signalling in adipocytes and adipose tissue. Biochem Pharmacol. 2016;100:86-97 pubmed 出版商
  277. E L, Swerdlow R. Lactate's effect on human neuroblastoma cell bioenergetic fluxes. Biochem Pharmacol. 2016;99:88-100 pubmed 出版商
  278. Awad K, Elinoff J, Wang S, Gairhe S, Ferreyra G, Cai R, et al. Raf/ERK drives the proliferative and invasive phenotype of BMPR2-silenced pulmonary artery endothelial cells. Am J Physiol Lung Cell Mol Physiol. 2016;310:L187-201 pubmed 出版商
  279. El Khattouti A, Selimovic D, Hannig M, Taylor E, Abd Elmageed Z, Hassan S, et al. Imiquimod-induced apoptosis of melanoma cells is mediated by ER stress-dependent Noxa induction and enhanced by NF-κB inhibition. J Cell Mol Med. 2016;20:266-86 pubmed 出版商
  280. Lohberger B, Leithner A, Stuendl N, Kaltenegger H, Kullich W, Steinecker Frohnwieser B. Diacerein retards cell growth of chondrosarcoma cells at the G2/M cell cycle checkpoint via cyclin B1/CDK1 and CDK2 downregulation. BMC Cancer. 2015;15:891 pubmed 出版商
  281. Sabogal Guáqueta A, Osorio E, Cardona Gómez G. Linalool reverses neuropathological and behavioral impairments in old triple transgenic Alzheimer's mice. Neuropharmacology. 2016;102:111-20 pubmed 出版商
  282. Waye S, Naeem A, Choudhry M, Parasido E, Tricoli L, Sivakumar A, et al. The p53 tumor suppressor protein protects against chemotherapeutic stress and apoptosis in human medulloblastoma cells. Aging (Albany NY). 2015;7:854-68 pubmed
  283. Li W, Wei S, Liu C, Song M, Wu H, Yang Y. Regulation of the osteogenic and adipogenic differentiation of bone marrow-derived stromal cells by extracellular uridine triphosphate: The role of P2Y2 receptor and ERK1/2 signaling. Int J Mol Med. 2016;37:63-73 pubmed 出版商
  284. Hoshino A, Costa Silva B, Shen T, Rodrigues G, Hashimoto A, Tesic Mark M, et al. Tumour exosome integrins determine organotropic metastasis. Nature. 2015;527:329-35 pubmed 出版商
  285. Wu R, Chen H, Ma J, He Q, Huang Q, Liu Q, et al. c-Abl-p38α signaling plays an important role in MPTP-induced neuronal death. Cell Death Differ. 2016;23:542-52 pubmed 出版商
  286. Yue J, Ben Messaoud N, López J. Hyperosmotic Shock Engages Two Positive Feedback Loops through Caspase-3-dependent Proteolysis of JNK1-2 and Bid. J Biol Chem. 2015;290:30375-89 pubmed 出版商
  287. Hassan M, El Khattouti A, Ejaeidi A, Ma T, Day W, Espinoza I, et al. Elevated Expression of Hepatoma Up-Regulated Protein Inhibits γ-Irradiation-Induced Apoptosis of Prostate Cancer Cells. J Cell Biochem. 2016;117:1308-18 pubmed 出版商
  288. Dumas A, Lê Bury G, Marie Anaïs F, Herit F, Mazzolini J, Guilbert T, et al. The HIV-1 protein Vpr impairs phagosome maturation by controlling microtubule-dependent trafficking. J Cell Biol. 2015;211:359-72 pubmed 出版商
  289. Park Y, Kim S, Kwon T, Kim J, Song I, Shin H, et al. Peroxiredoxin II promotes hepatic tumorigenesis through cooperation with Ras/Forkhead box M1 signaling pathway. Oncogene. 2016;35:3503-13 pubmed 出版商
  290. Popov L, Marceau C, Starkl P, Lumb J, Shah J, Guerrera D, et al. The adherens junctions control susceptibility to Staphylococcus aureus α-toxin. Proc Natl Acad Sci U S A. 2015;112:14337-42 pubmed 出版商
  291. Gruosso T, Garnier C, Abélanet S, Kieffer Y, Lemesre V, Bellanger D, et al. MAP3K8/TPL-2/COT is a potential predictive marker for MEK inhibitor treatment in high-grade serous ovarian carcinomas. Nat Commun. 2015;6:8583 pubmed 出版商
  292. Ambroise G, Portier A, Roders N, Arnoult D, Vazquez A. Subcellular localization of PUMA regulates its pro-apoptotic activity in Burkitt's lymphoma B cells. Oncotarget. 2015;6:38181-94 pubmed 出版商
  293. Kim H, Lim J, Kim J, Kim Y, Park S, Sohn J. Panaxydol, a component of Panax ginseng, induces apoptosis in cancer cells through EGFR activation and ER stress and inhibits tumor growth in mouse models. Int J Cancer. 2016;138:1432-41 pubmed 出版商
  294. Geng J, Sun X, Wang P, Zhang S, Wang X, Wu H, et al. Kinases Mst1 and Mst2 positively regulate phagocytic induction of reactive oxygen species and bactericidal activity. Nat Immunol. 2015;16:1142-52 pubmed 出版商
  295. Polettini J, Behnia F, Taylor B, Saade G, Taylor R, Menon R. Telomere Fragment Induced Amnion Cell Senescence: A Contributor to Parturition?. PLoS ONE. 2015;10:e0137188 pubmed 出版商
  296. Zoppi N, Chiarelli N, Cinquina V, Ritelli M, Colombi M. GLUT10 deficiency leads to oxidative stress and non-canonical αvβ3 integrin-mediated TGFβ signalling associated with extracellular matrix disarray in arterial tortuosity syndrome skin fibroblasts. Hum Mol Genet. 2015;24:6769-87 pubmed 出版商
  297. Rastetter R, Blömacher M, Drebber U, Marko M, Behrens J, Solga R, et al. Coronin 2A (CRN5) expression is associated with colorectal adenoma-adenocarcinoma sequence and oncogenic signalling. BMC Cancer. 2015;15:638 pubmed 出版商
  298. Zhu X, Wang K, Zhang K, Tan X, Wu Z, Sun S, et al. Tetramethylpyrazine Protects Retinal Capillary Endothelial Cells (TR-iBRB2) against IL-1β-Induced Nitrative/Oxidative Stress. Int J Mol Sci. 2015;16:21775-90 pubmed 出版商
  299. Suzuki M, Watanabe M, Nakamaru Y, Takagi D, Takahashi H, Fukuda S, et al. TRIM39 negatively regulates the NFκB-mediated signaling pathway through stabilization of Cactin. Cell Mol Life Sci. 2016;73:1085-101 pubmed 出版商
  300. Yoo M, Kim B, Lee S, Jeong H, Park J, Seo D, et al. Syntaxin 4 regulates the surface localization of a promyogenic receptor Cdo thereby promoting myogenic differentiation. Skelet Muscle. 2015;5:28 pubmed 出版商
  301. Ashford A, Dunkley T, Cockerill M, Rowlinson R, Baak L, Gallo R, et al. Identification of DYRK1B as a substrate of ERK1/2 and characterisation of the kinase activity of DYRK1B mutants from cancer and metabolic syndrome. Cell Mol Life Sci. 2016;73:883-900 pubmed 出版商
  302. Ramírez de Arellano A, Lopez Pulido E, Martínez Neri P, Estrada Chávez C, González Lucano R, Fafutis Morris M, et al. STAT3 activation is required for the antiapoptotic effects of prolactin in cervical cancer cells. Cancer Cell Int. 2015;15:83 pubmed 出版商
  303. Plescher M, Teleman A, Demetriades C. TSC2 mediates hyperosmotic stress-induced inactivation of mTORC1. Sci Rep. 2015;5:13828 pubmed 出版商
  304. Pacini L, Savini C, Ghittoni R, Saidj D, Lamartine J, Hasan U, et al. Downregulation of Toll-Like Receptor 9 Expression by Beta Human Papillomavirus 38 and Implications for Cell Cycle Control. J Virol. 2015;89:11396-405 pubmed 出版商
  305. Gong Y, Qiu W, Ning X, Yang X, Liu L, Wang Z, et al. CCDC34 is up-regulated in bladder cancer and regulates bladder cancer cell proliferation, apoptosis and migration. Oncotarget. 2015;6:25856-67 pubmed 出版商
  306. Yan G, Wang Q, Hu S, Wang D, Qiao Y, Ma G, et al. Digoxin inhibits PDGF-BB-induced VSMC proliferation and migration through an increase in ILK signaling and attenuates neointima formation following carotid injury. Int J Mol Med. 2015;36:1001-11 pubmed 出版商
  307. Chang C, Zhang M, Rajapakshe K, Coarfa C, Edwards D, Huang S, et al. Mammary Stem Cells and Tumor-Initiating Cells Are More Resistant to Apoptosis and Exhibit Increased DNA Repair Activity in Response to DNA Damage. Stem Cell Reports. 2015;5:378-91 pubmed 出版商
  308. Jeong M, Kim S, Kang H, Park K, Park W, Yang S, et al. Cucurbitacin I Attenuates Cardiomyocyte Hypertrophy via Inhibition of Connective Tissue Growth Factor (CCN2) and TGF- β/Smads Signalings. PLoS ONE. 2015;10:e0136236 pubmed 出版商
  309. Bunaciu R, Jensen H, Macdonald R, Latocha D, Varner J, Yen A. 6-Formylindolo(3,2-b)Carbazole (FICZ) Modulates the Signalsome Responsible for RA-Induced Differentiation of HL-60 Myeloblastic Leukemia Cells. PLoS ONE. 2015;10:e0135668 pubmed 出版商
  310. Zhang Q, Zhao K, Shen Q, Han Y, Gu Y, Li X, et al. Tet2 is required to resolve inflammation by recruiting Hdac2 to specifically repress IL-6. Nature. 2015;525:389-393 pubmed 出版商
  311. Varela A, Piperi C, Sigala F, Agrogiannis G, Davos C, Andri M, et al. Elevated expression of mechanosensory polycystins in human carotid atherosclerotic plaques: association with p53 activation and disease severity. Sci Rep. 2015;5:13461 pubmed 出版商
  312. Chiang C, Uzoma I, Lane D, MemiÅ¡ević V, Alem F, Yao K, et al. A reverse-phase protein microarray-based screen identifies host signaling dynamics upon Burkholderia spp. infection. Front Microbiol. 2015;6:683 pubmed 出版商
  313. Chichger H, Braza J, Duong H, Stark M, Harrington E. Neovascularization in the pulmonary endothelium is regulated by the endosome: Rab4-mediated trafficking and p18-dependent signaling. Am J Physiol Lung Cell Mol Physiol. 2015;309:L700-9 pubmed 出版商
  314. Simard E, Söllradl T, Maltais J, Boucher J, D Orléans Juste P, Grandbois M. Receptor for Advanced Glycation End-Products Signaling Interferes with the Vascular Smooth Muscle Cell Contractile Phenotype and Function. PLoS ONE. 2015;10:e0128881 pubmed 出版商
  315. Fisher O, Deng H, Liu D, Zhang Y, Wei R, Deng Y, et al. Structure and vascular function of MEKK3-cerebral cavernous malformations 2 complex. Nat Commun. 2015;6:7937 pubmed 出版商
  316. Bejaoui M, Pantazi E, De Luca V, Panisello A, Folch Puy E, Hotter G, et al. Carbonic Anhydrase Protects Fatty Liver Grafts against Ischemic Reperfusion Damage. PLoS ONE. 2015;10:e0134499 pubmed 出版商
  317. Namachivayam K, Mohankumar K, Arbach D, Jagadeeswaran R, Jain S, Natarajan V, et al. All-Trans Retinoic Acid Induces TGF-β2 in Intestinal Epithelial Cells via RhoA- and p38α MAPK-Mediated Activation of the Transcription Factor ATF2. PLoS ONE. 2015;10:e0134003 pubmed 出版商
  318. Shatz M, Shats I, Menendez D, Resnick M. p53 amplifies Toll-like receptor 5 response in human primary and cancer cells through interaction with multiple signal transduction pathways. Oncotarget. 2015;6:16963-80 pubmed
  319. Lauretti E, Praticò D. Glucose deprivation increases tau phosphorylation via P38 mitogen-activated protein kinase. Aging Cell. 2015;14:1067-74 pubmed 出版商
  320. Zhang X, Wang X, Wu T, Li B, Liu T, Wang R, et al. Isoliensinine induces apoptosis in triple-negative human breast cancer cells through ROS generation and p38 MAPK/JNK activation. Sci Rep. 2015;5:12579 pubmed 出版商
  321. Picot N, Guerrette R, Beauregard A, Jean S, Michaud P, Harquail J, et al. Mammaglobin 1 promotes breast cancer malignancy and confers sensitivity to anticancer drugs. Mol Carcinog. 2016;55:1150-62 pubmed 出版商
  322. Zhang W, Zheng X, Du L, Sun J, Shen Z, Shi C, et al. High salt primes a specific activation state of macrophages, M(Na). Cell Res. 2015;25:893-910 pubmed 出版商
  323. Dahlhoff M, Schäfer M, Muzumdar S, Rose C, Schneider M. ERBB3 is required for tumor promotion in a mouse model of skin carcinogenesis. Mol Oncol. 2015;9:1825-33 pubmed 出版商
  324. Chen I, Hsu P, Hsu W, Chen N, Tseng P. Polyubiquitination of Transforming Growth Factor β-activated Kinase 1 (TAK1) at Lysine 562 Residue Regulates TLR4-mediated JNK and p38 MAPK Activation. Sci Rep. 2015;5:12300 pubmed 出版商
  325. Cheng C, Lin J, Tang N, Kao S, Hsieh C. Electroacupuncture at different frequencies (5Hz and 25Hz) ameliorates cerebral ischemia-reperfusion injury in rats: possible involvement of p38 MAPK-mediated anti-apoptotic signaling pathways. BMC Complement Altern Med. 2015;15:241 pubmed 出版商
  326. Silva O, Crocetti J, Humphries L, Burkhardt J, Miceli M. Discs Large Homolog 1 Splice Variants Regulate p38-Dependent and -Independent Effector Functions in CD8+ T Cells. PLoS ONE. 2015;10:e0133353 pubmed 出版商
  327. Kratochvill F, Gratz N, Qualls J, Van De Velde L, Chi H, Kovarik P, et al. Tristetraprolin Limits Inflammatory Cytokine Production in Tumor-Associated Macrophages in an mRNA Decay-Independent Manner. Cancer Res. 2015;75:3054-64 pubmed 出版商
  328. Ito A, Hong C, Rong X, Zhu X, Tarling E, Hedde P, et al. LXRs link metabolism to inflammation through Abca1-dependent regulation of membrane composition and TLR signaling. elife. 2015;4:e08009 pubmed 出版商
  329. Wu C, Jiao H, Lai Y, Zheng W, Chen K, Qu H, et al. Kindlin-2 controls TGF-β signalling and Sox9 expression to regulate chondrogenesis. Nat Commun. 2015;6:7531 pubmed 出版商
  330. Su X, Yu Y, Zhong Y, Giannopoulou E, Hu X, Liu H, et al. Interferon-γ regulates cellular metabolism and mRNA translation to potentiate macrophage activation. Nat Immunol. 2015;16:838-849 pubmed 出版商
  331. Zhao L, Liu S, Che X, Hou K, Ma Y, Li C, et al. Bufalin inhibits TGF-β-induced epithelial-to-mesenchymal transition and migration in human lung cancer A549 cells by downregulating TGF-β receptors. Int J Mol Med. 2015;36:645-52 pubmed 出版商
  332. Ogiso H, Taniguchi M, Okazaki T. Analysis of lipid-composition changes in plasma membrane microdomains. J Lipid Res. 2015;56:1594-605 pubmed 出版商
  333. Masotti A, Donninelli G, Da Sacco L, Varano B, Del Cornò M, Gessani S. HIV-1 gp120 influences the expression of microRNAs in human monocyte-derived dendritic cells via STAT3 activation. BMC Genomics. 2015;16:480 pubmed 出版商
  334. Wang S, Awad K, Elinoff J, Dougherty E, Ferreyra G, Wang J, et al. G Protein-coupled Receptor 40 (GPR40) and Peroxisome Proliferator-activated Receptor γ (PPARγ): AN INTEGRATED TWO-RECEPTOR SIGNALING PATHWAY. J Biol Chem. 2015;290:19544-57 pubmed 出版商
  335. Carthy J, Sundqvist A, Heldin A, van Dam H, Kletsas D, Heldin C, et al. Tamoxifen Inhibits TGF-β-Mediated Activation of Myofibroblasts by Blocking Non-Smad Signaling Through ERK1/2. J Cell Physiol. 2015;230:3084-92 pubmed 出版商
  336. Wu P, Yen J, Kou M, Wu M. Luteolin and Apigenin Attenuate 4-Hydroxy-2-Nonenal-Mediated Cell Death through Modulation of UPR, Nrf2-ARE and MAPK Pathways in PC12 Cells. PLoS ONE. 2015;10:e0130599 pubmed 出版商
  337. Arana M, Tocchetti G, Domizi P, Arias A, Rigalli J, Ruiz M, et al. Coordinated induction of GST and MRP2 by cAMP in Caco-2 cells: Role of protein kinase A signaling pathway and toxicological relevance. Toxicol Appl Pharmacol. 2015;287:178-90 pubmed 出版商
  338. Krokowski D, Jobava R, Guan B, Farabaugh K, Wu J, Majumder M, et al. Coordinated Regulation of the Neutral Amino Acid Transporter SNAT2 and the Protein Phosphatase Subunit GADD34 Promotes Adaptation to Increased Extracellular Osmolarity. J Biol Chem. 2015;290:17822-37 pubmed 出版商
  339. García Cano J, Ambroise G, Pascual Serra R, Carrión M, Serrano Oviedo L, Ortega Muelas M, et al. Exploiting the potential of autophagy in cisplatin therapy: A new strategy to overcome resistance. Oncotarget. 2015;6:15551-65 pubmed
  340. Luan Q, Jin L, Jiang C, Tay K, Lai F, Liu X, et al. RIPK1 regulates survival of human melanoma cells upon endoplasmic reticulum stress through autophagy. Autophagy. 2015;11:975-94 pubmed 出版商
  341. Sun L, Xu C, Chen G, Yu M, Yang S, Qiu Y, et al. A Novel Role of OS-9 in the Maintenance of Intestinal Barrier Function from Hypoxia-induced Injury via p38-dependent Pathway. Int J Biol Sci. 2015;11:664-71 pubmed 出版商
  342. Greenfeld H, Takasaki K, Walsh M, Ersing I, Bernhardt K, Ma Y, et al. TRAF1 Coordinates Polyubiquitin Signaling to Enhance Epstein-Barr Virus LMP1-Mediated Growth and Survival Pathway Activation. PLoS Pathog. 2015;11:e1004890 pubmed 出版商
  343. Park H, Lee D, Yim M, Choi Y, Park S, Seo S, et al. 3,3'-Diindolylmethane inhibits VEGF expression through the HIF-1α and NF-κB pathways in human retinal pigment epithelial cells under chemical hypoxic conditions. Int J Mol Med. 2015;36:301-8 pubmed 出版商
  344. Cheng H, Liang Y, Kuo Y, Chuu C, Lin C, Lee M, et al. Identification of thioridazine, an antipsychotic drug, as an antiglioblastoma and anticancer stem cell agent using public gene expression data. Cell Death Dis. 2015;6:e1753 pubmed 出版商
  345. Boswell B, Musil L. Synergistic interaction between the fibroblast growth factor and bone morphogenetic protein signaling pathways in lens cells. Mol Biol Cell. 2015;26:2561-72 pubmed 出版商
  346. Zhang L, Wang H, Ding K, Xu J. FTY720 induces autophagy-related apoptosis and necroptosis in human glioblastoma cells. Toxicol Lett. 2015;236:43-59 pubmed 出版商
  347. Lee E, Park E, Mun H, Chang E, Ko J, Kim D, et al. Soluble receptor for advanced glycation end products inhibits disease progression in autosomal dominant polycystic kidney disease by down-regulating cell proliferation. FASEB J. 2015;29:3506-14 pubmed 出版商
  348. Lin A, Beasley F, Olson J, Keller N, Shalwitz R, Hannan T, et al. Role of Hypoxia Inducible Factor-1α (HIF-1α) in Innate Defense against Uropathogenic Escherichia coli Infection. PLoS Pathog. 2015;11:e1004818 pubmed 出版商
  349. Bhushan S, Tchatalbachev S, Lu Y, Fröhlich S, Fijak M, Vijayan V, et al. Differential activation of inflammatory pathways in testicular macrophages provides a rationale for their subdued inflammatory capacity. J Immunol. 2015;194:5455-64 pubmed 出版商
  350. Kimura T, Endo S, Inui M, Saitoh S, Miyake K, Takai T. Endoplasmic Protein Nogo-B (RTN4-B) Interacts with GRAMD4 and Regulates TLR9-Mediated Innate Immune Responses. J Immunol. 2015;194:5426-36 pubmed 出版商
  351. Daniele S, Da Pozzo E, Zappelli E, Martini C. Trazodone treatment protects neuronal-like cells from inflammatory insult by inhibiting NF-?B, p38 and JNK. Cell Signal. 2015;27:1609-29 pubmed 出版商
  352. Kim H, Kim I, Dong Y, Lee I, Kim J, Kim J, et al. Melanogenesis-inducing effect of cirsimaritin through increases in microphthalmia-associated transcription factor and tyrosinase expression. Int J Mol Sci. 2015;16:8772-88 pubmed 出版商
  353. Reddy V, Jakhotia S, Reddy P, Reddy G. Hyperglycemia induced expression, phosphorylation, and translocation of αB-crystallin in rat skeletal muscle. IUBMB Life. 2015;67:291-9 pubmed 出版商
  354. Yang Z, Zheng B, Zhang Y, He M, Zhang X, Ma D, et al. miR-155-dependent regulation of mammalian sterile 20-like kinase 2 (MST2) coordinates inflammation, oxidative stress and proliferation in vascular smooth muscle cells. Biochim Biophys Acta. 2015;1852:1477-89 pubmed 出版商
  355. Gupta J, Igea A, Papaioannou M, López Casas P, Llonch E, Hidalgo M, et al. Pharmacological inhibition of p38 MAPK reduces tumor growth in patient-derived xenografts from colon tumors. Oncotarget. 2015;6:8539-51 pubmed
  356. Cookman C, Belcher S. Estrogen Receptor-β Up-Regulates IGF1R Expression and Activity to Inhibit Apoptosis and Increase Growth of Medulloblastoma. Endocrinology. 2015;156:2395-408 pubmed 出版商
  357. Wilson C, Jurk D, Fullard N, Banks P, Page A, Luli S, et al. NFκB1 is a suppressor of neutrophil-driven hepatocellular carcinoma. Nat Commun. 2015;6:6818 pubmed 出版商
  358. Li L, Dong Q, Wang Y, Feng Q, Zhou P, Ou X, et al. Hedgehog signaling is involved in the BMP9-induced osteogenic differentiation of mesenchymal stem cells. Int J Mol Med. 2015;35:1641-50 pubmed 出版商
  359. Ben Messaoud N, Yue J, Valent D, Katzarova I, López J. Osmostress-induced apoptosis in Xenopus oocytes: role of stress protein kinases, calpains and Smac/DIABLO. PLoS ONE. 2015;10:e0124482 pubmed 出版商
  360. Chuang W, Su C, Lin P, Lin C, Chen Y. Sann-Joong-Kuey-Jian-Tang induces autophagy in HepG2 cells via regulation of the phosphoinositide-3 kinase/Akt/mammalian target of rapamycin and p38 mitogen-activated protein kinase pathways. Mol Med Rep. 2015;12:1677-84 pubmed 出版商
  361. Boncompagni S, Arthurton L, Akujuru E, Pearson T, Steverding D, Protasi F, et al. Membrane glucocorticoid receptors are localised in the extracellular matrix and signal through the MAPK pathway in mammalian skeletal muscle fibres. J Physiol. 2015;593:2679-92 pubmed 出版商
  362. Pilar Valdecantos M, Prieto Hontoria P, Pardo V, Módol T, Santamaría B, Weber M, et al. Essential role of Nrf2 in the protective effect of lipoic acid against lipoapoptosis in hepatocytes. Free Radic Biol Med. 2015;84:263-278 pubmed 出版商
  363. Moretti M, Budni J, Freitas A, Neis V, Ribeiro C, de Oliveira Balen G, et al. TNF-α-induced depressive-like phenotype and p38(MAPK) activation are abolished by ascorbic acid treatment. Eur Neuropsychopharmacol. 2015;25:902-12 pubmed 出版商
  364. Ko R, Park J, Ha H, Choi Y, Lee S. Glycogen synthase kinase 3β ubiquitination by TRAF6 regulates TLR3-mediated pro-inflammatory cytokine production. Nat Commun. 2015;6:6765 pubmed 出版商
  365. Ding Y, Xu Y, Shuai X, Shi X, Chen X, Huang W, et al. Reg3? Overexpression Protects Pancreatic ? Cells from Cytokine-Induced Damage and Improves Islet Transplant Outcome. Mol Med. 2015;20:548-558 pubmed 出版商
  366. Jia D, Duan F, Peng P, Sun L, Ruan Y, Gu J. Pyrroloquinoline-quinone suppresses liver fibrogenesis in mice. PLoS ONE. 2015;10:e0121939 pubmed 出版商
  367. Meena J, Cerutti A, Beichler C, Morita Y, Bruhn C, Kumar M, et al. Telomerase abrogates aneuploidy-induced telomere replication stress, senescence and cell depletion. EMBO J. 2015;34:1371-84 pubmed 出版商
  368. Mulens Arias V, Rojas J, Pérez Yagüe S, Morales M, Barber D. Polyethylenimine-coated SPIONs trigger macrophage activation through TLR-4 signaling and ROS production and modulate podosome dynamics. Biomaterials. 2015;52:494-506 pubmed 出版商
  369. Richter E, Harms M, Ventz K, Gierok P, Chilukoti R, Hildebrandt J, et al. A multi-omics approach identifies key hubs associated with cell type-specific responses of airway epithelial cells to staphylococcal alpha-toxin. PLoS ONE. 2015;10:e0122089 pubmed 出版商
  370. Zhang Z, Fang Y, Wang Q, Sun Y, Xiong C, Cao L, et al. Tumor necrosis factor-like weak inducer of apoptosis regulates particle-induced inflammatory osteolysis via the p38 mitogen-activated protein kinase signaling pathway. Mol Med Rep. 2015;12:1499-505 pubmed 出版商
  371. Haarmann A, Nowak E, Deiß A, van der Pol S, Monoranu C, Kooij G, et al. Soluble VCAM-1 impairs human brain endothelial barrier integrity via integrin α-4-transduced outside-in signalling. Acta Neuropathol. 2015;129:639-52 pubmed 出版商
  372. Yazlovitskaya E, Tseng H, Viquez O, Tu T, Mernaugh G, McKee K, et al. Integrin α3β1 regulates kidney collecting duct development via TRAF6-dependent K63-linked polyubiquitination of Akt. Mol Biol Cell. 2015;26:1857-74 pubmed 出版商
  373. Chan N, He S, Spee C, Ishikawa K, Hinton D. Attenuation of choroidal neovascularization by histone deacetylase inhibitor. PLoS ONE. 2015;10:e0120587 pubmed 出版商
  374. Wong E, Soni C, Chan A, Domeier P, Shwetank -, Abraham T, et al. B cell-intrinsic CD84 and Ly108 maintain germinal center B cell tolerance. J Immunol. 2015;194:4130-43 pubmed 出版商
  375. Zhang Q, Kuang H, Chen C, Yan J, Do Umehara H, Liu X, et al. The kinase Jnk2 promotes stress-induced mitophagy by targeting the small mitochondrial form of the tumor suppressor ARF for degradation. Nat Immunol. 2015;16:458-66 pubmed 出版商
  376. Graziani G, Artuso S, De Luca A, Muzi A, Rotili D, Scimeca M, et al. A new water soluble MAPK activator exerts antitumor activity in melanoma cells resistant to the BRAF inhibitor vemurafenib. Biochem Pharmacol. 2015;95:16-27 pubmed 出版商
  377. Tapia O, Fong L, Huber M, Young S, Gerace L. Nuclear envelope protein Lem2 is required for mouse development and regulates MAP and AKT kinases. PLoS ONE. 2015;10:e0116196 pubmed 出版商
  378. Ismail H, Yamamoto K, Vincent T, Nagase H, Troeberg L, Saklatvala J. Interleukin-1 Acts via the JNK-2 Signaling Pathway to Induce Aggrecan Degradation by Human Chondrocytes. Arthritis Rheumatol. 2015;67:1826-36 pubmed 出版商
  379. Rao E, Zhang Y, Zhu G, Hao J, Persson X, Egilmez N, et al. Deficiency of AMPK in CD8+ T cells suppresses their anti-tumor function by inducing protein phosphatase-mediated cell death. Oncotarget. 2015;6:7944-58 pubmed
  380. Chen W, Wu J, Li L, Zhang Z, Ren J, Liang Y, et al. Ppm1b negatively regulates necroptosis through dephosphorylating Rip3. Nat Cell Biol. 2015;17:434-44 pubmed 出版商
  381. Kim S, Kim W, Yoon J, Ji J, Morgan M, Cho H, et al. Upregulated RIP3 Expression Potentiates MLKL Phosphorylation-Mediated Programmed Necrosis in Toxic Epidermal Necrolysis. J Invest Dermatol. 2015;135:2021-2030 pubmed 出版商
  382. McKee C, Sigala B, Soeda J, Mouralidarane A, Morgan M, Mazzoccoli G, et al. Amphiregulin activates human hepatic stellate cells and is upregulated in non alcoholic steatohepatitis. Sci Rep. 2015;5:8812 pubmed 出版商
  383. Kollar P, Bárta T, KeltoÅ¡ová S, Trnová P, Müller Závalová V, Å mejkal K, et al. Flavonoid 4'-O-Methylkuwanon E from Morus alba Induces the Differentiation of THP-1 Human Leukemia Cells. Evid Based Complement Alternat Med. 2015;2015:251895 pubmed 出版商
  384. Cullen P. Evaluating the activity of the filamentous growth mitogen-activated protein kinase pathway in yeast. Cold Spring Harb Protoc. 2015;2015:276-83 pubmed 出版商
  385. Zhang X, Choi Y, Han J, Kim E, Park J, Gurunathan S, et al. Differential nanoreprotoxicity of silver nanoparticles in male somatic cells and spermatogonial stem cells. Int J Nanomedicine. 2015;10:1335-57 pubmed 出版商
  386. Tanaka T, Iino M. Sec8 regulates cytokeratin8 phosphorylation and cell migration by controlling the ERK and p38 MAPK signalling pathways. Cell Signal. 2015;27:1110-9 pubmed 出版商
  387. Nakahara T, Tanaka K, Ohno S, Egawa N, Yugawa T, Kiyono T. Activation of NF-κB by human papillomavirus 16 E1 limits E1-dependent viral replication through degradation of E1. J Virol. 2015;89:5040-59 pubmed 出版商
  388. Carvallo L, Lopez L, Che F, Lim J, Eugenin E, Williams D, et al. Buprenorphine decreases the CCL2-mediated chemotactic response of monocytes. J Immunol. 2015;194:3246-58 pubmed 出版商
  389. Sanjurjo L, Amézaga N, Aran G, Naranjo Gómez M, Arias L, Armengol C, et al. The human CD5L/AIM-CD36 axis: A novel autophagy inducer in macrophages that modulates inflammatory responses. Autophagy. 2015;11:487-502 pubmed 出版商
  390. Kim S, Ka S, Lee Y, Park B, Fei X, Jung J, et al. The new 4-O-methylhonokiol analog GS12021 inhibits inflammation and macrophage chemotaxis: role of AMP-activated protein kinase α activation. PLoS ONE. 2015;10:e0117120 pubmed 出版商
  391. Liu Y, Zhang Q, Ding Y, Li X, Zhao D, Zhao K, et al. Histone lysine methyltransferase Ezh1 promotes TLR-triggered inflammatory cytokine production by suppressing Tollip. J Immunol. 2015;194:2838-46 pubmed 出版商
  392. Pantazi E, Zaouali M, Bejaoui M, Folch Puy E, Ben Abdennebi H, Varela A, et al. Sirtuin 1 in rat orthotopic liver transplantation: an IGL-1 preservation solution approach. World J Gastroenterol. 2015;21:1765-74 pubmed 出版商
  393. Huang P, Chen C, Hsu I, Salim S, Kao S, Cheng C, et al. Huntingtin-associated protein 1 interacts with breakpoint cluster region protein to regulate neuronal differentiation. PLoS ONE. 2015;10:e0116372 pubmed 出版商
  394. Kozlova N, Samoylenko A, Drobot L, Kietzmann T. Urokinase is a negative modulator of Egf-dependent proliferation and motility in the two breast cancer cell lines MCF-7 and MDA-MB-231. Mol Carcinog. 2016;55:170-81 pubmed 出版商
  395. Shaw A, Pickup M, Chytil A, Aakre M, Owens P, Moses H, et al. TGFβ signaling in myeloid cells regulates mammary carcinoma cell invasion through fibroblast interactions. PLoS ONE. 2015;10:e0117908 pubmed 出版商
  396. Zimmermann M, Aguilera F, Castellucci M, Rossato M, Costa S, Lunardi C, et al. Chromatin remodelling and autocrine TNFα are required for optimal interleukin-6 expression in activated human neutrophils. Nat Commun. 2015;6:6061 pubmed 出版商
  397. Seaberg B, Henslee G, Wang S, Paez Colasante X, Landreth G, Rimer M. Muscle-derived extracellular signal-regulated kinases 1 and 2 are required for the maintenance of adult myofibers and their neuromuscular junctions. Mol Cell Biol. 2015;35:1238-53 pubmed 出版商
  398. Tontonoz P, Cortez Toledo O, Wroblewski K, Hong C, Lim L, Carranza R, et al. The orphan nuclear receptor Nur77 is a determinant of myofiber size and muscle mass in mice. Mol Cell Biol. 2015;35:1125-38 pubmed 出版商
  399. Aschar Sobbi R, Izaddoustdar F, Korogyi A, Wang Q, Farman G, Yang F, et al. Increased atrial arrhythmia susceptibility induced by intense endurance exercise in mice requires TNFα. Nat Commun. 2015;6:6018 pubmed 出版商
  400. Pajaud J, Ribault C, Ben Mosbah I, Rauch C, Henderson C, Bellaud P, et al. Glutathione transferases P1/P2 regulate the timing of signaling pathway activations and cell cycle progression during mouse liver regeneration. Cell Death Dis. 2015;6:e1598 pubmed 出版商
  401. Azimzadeh O, Sievert W, Sarioglu H, Merl Pham J, Yentrapalli R, Bakshi M, et al. Integrative proteomics and targeted transcriptomics analyses in cardiac endothelial cells unravel mechanisms of long-term radiation-induced vascular dysfunction. J Proteome Res. 2015;14:1203-19 pubmed 出版商
  402. de Oliveira S, Boudinot P, Calado Ã, Mulero V. Duox1-derived H2O2 modulates Cxcl8 expression and neutrophil recruitment via JNK/c-JUN/AP-1 signaling and chromatin modifications. J Immunol. 2015;194:1523-33 pubmed 出版商
  403. Wang S, Amato K, Song W, Youngblood V, Lee K, Boothby M, et al. Regulation of endothelial cell proliferation and vascular assembly through distinct mTORC2 signaling pathways. Mol Cell Biol. 2015;35:1299-313 pubmed 出版商
  404. Padrão A, Moreira Gonçalves D, Oliveira P, Teixeira C, Faustino Rocha A, Helguero L, et al. Endurance training prevents TWEAK but not myostatin-mediated cardiac remodelling in cancer cachexia. Arch Biochem Biophys. 2015;567:13-21 pubmed 出版商
  405. Bharti S, Rani N, Bhatia J, Arya D. 5-HT2B receptor blockade attenuates β-adrenergic receptor-stimulated myocardial remodeling in rats via inhibiting apoptosis: role of MAPKs and HSPs. Apoptosis. 2015;20:455-65 pubmed 出版商
  406. Zou H, Limpert A, Zou J, Dembo A, Lee P, Grant D, et al. Benzodiazepinone derivatives protect against endoplasmic reticulum stress-mediated cell death in human neuronal cell lines. ACS Chem Neurosci. 2015;6:464-75 pubmed 出版商
  407. Zanotto Filho A, Braganhol E, Klafke K, Figueiró F, Terra S, Paludo F, et al. Autophagy inhibition improves the efficacy of curcumin/temozolomide combination therapy in glioblastomas. Cancer Lett. 2015;358:220-31 pubmed 出版商
  408. Park D, Lalli J, Sedlackova Slavikova L, Rice S. Functional comparison of herpes simplex virus 1 (HSV-1) and HSV-2 ICP27 homologs reveals a role for ICP27 in virion release. J Virol. 2015;89:2892-905 pubmed 出版商
  409. Jilg C, Ketscher A, Metzger E, Hummel B, Willmann D, Rüsseler V, et al. PRK1/PKN1 controls migration and metastasis of androgen-independent prostate cancer cells. Oncotarget. 2014;5:12646-64 pubmed
  410. Zhang H, Hu H, Greeley N, Jin J, Matthews A, Ohashi E, et al. STAT3 restrains RANK- and TLR4-mediated signalling by suppressing expression of the E2 ubiquitin-conjugating enzyme Ubc13. Nat Commun. 2014;5:5798 pubmed 出版商
  411. Menck K, Scharf C, Bleckmann A, Dyck L, Rost U, Wenzel D, et al. Tumor-derived microvesicles mediate human breast cancer invasion through differentially glycosylated EMMPRIN. J Mol Cell Biol. 2015;7:143-53 pubmed 出版商
  412. Chuang C, Guh J, Lu C, Chen H, Chuang L. S100B is required for high glucose-induced pro-fibrotic gene expression and hypertrophy in mesangial cells. Int J Mol Med. 2015;35:546-52 pubmed 出版商
  413. El Khattouti A, Sheehan N, Monico J, Drummond H, Haikel Y, Brodell R, et al. CD133⁺ melanoma subpopulation acquired resistance to caffeic acid phenethyl ester-induced apoptosis is attributed to the elevated expression of ABCB5: significance for melanoma treatment. Cancer Lett. 2015;357:83-104 pubmed 出版商
  414. Xu T, Pan Z, Dong M, Yu C, Niu Y. Ferulic acid suppresses activation of hepatic stellate cells through ERK1/2 and Smad signaling pathways in vitro. Biochem Pharmacol. 2015;93:49-58 pubmed 出版商
  415. Saghizadeh M, Dib C, Brunken W, Ljubimov A. Normalization of wound healing and stem cell marker patterns in organ-cultured human diabetic corneas by gene therapy of limbal cells. Exp Eye Res. 2014;129:66-73 pubmed 出版商
  416. Rigueur D, Brugger S, Anbarchian T, Kim J, Lee Y, Lyons K. The type I BMP receptor ACVR1/ALK2 is required for chondrogenesis during development. J Bone Miner Res. 2015;30:733-41 pubmed 出版商
  417. Banks A, McAllister F, Camporez J, Zushin P, Jurczak M, Laznik Bogoslavski D, et al. An ERK/Cdk5 axis controls the diabetogenic actions of PPARγ. Nature. 2015;517:391-5 pubmed 出版商
  418. Li Y, Kim B, Cho S, Bang M, Kim S, Park D. 6,7-di-O-acetylsinococuline (FK-3000) induces G2/M phase arrest in breast carcinomas through p38 MAPK phosphorylation and CDC25B dephosphorylation. Int J Oncol. 2015;46:578-86 pubmed 出版商
  419. Yi P, Chew L, Zhang Z, Ren H, Wang F, Cong X, et al. KIF5B transports BNIP-2 to regulate p38 mitogen-activated protein kinase activation and myoblast differentiation. Mol Biol Cell. 2015;26:29-42 pubmed 出版商
  420. Tello Velasquez J, Watts M, Todorovic M, Nazareth L, Pastrana E, Diaz Nido J, et al. Low-dose curcumin stimulates proliferation, migration and phagocytic activity of olfactory ensheathing cells. PLoS ONE. 2014;9:e111787 pubmed 出版商
  421. Adhikari H, Cullen P. Metabolic respiration induces AMPK- and Ire1p-dependent activation of the p38-Type HOG MAPK pathway. PLoS Genet. 2014;10:e1004734 pubmed 出版商
  422. Lin H, Lin S, Chung Y, Vonderfecht S, Camden J, Flodby P, et al. Dynamic involvement of ATG5 in cellular stress responses. Cell Death Dis. 2014;5:e1478 pubmed 出版商
  423. Zaru R, Edgar A, Hanauer A, Watts C. Structural and functional basis for p38-MK2-activated Rsk signaling in toll-like receptor-stimulated dendritic cells. Mol Cell Biol. 2015;35:132-40 pubmed 出版商
  424. Niu G, Ye T, Qin L, Bourbon P, Chang C, Zhao S, et al. Orphan nuclear receptor TR3/Nur77 improves wound healing by upregulating the expression of integrin β4. FASEB J. 2015;29:131-40 pubmed 出版商
  425. Wang Y, Xiao X, Li N, Yang D, Xing Y, Huo R, et al. Oestrogen inhibits BMP4-induced BMP4 expression in cardiomyocytes: a potential mechanism of oestrogen-mediated protection against cardiac hypertrophy. Br J Pharmacol. 2015;172:5586-95 pubmed 出版商
  426. Fos C, Bécart S, Canonigo Balancio A, Boehning D, Altman A. Association of the EF-hand and PH domains of the guanine nucleotide exchange factor SLAT with IP₃ receptor 1 promotes Ca²⁺ signaling in T cells. Sci Signal. 2014;7:ra93 pubmed 出版商
  427. Charlaftis N, Suddason T, Wu X, Anwar S, Karin M, Gallagher E. The MEKK1 PHD ubiquitinates TAB1 to activate MAPKs in response to cytokines. EMBO J. 2014;33:2581-96 pubmed 出版商
  428. Cao J, Lu Y, Qi J, An G, Mao Z, Jia H, et al. MiR-630 inhibits proliferation by targeting CDC7 kinase, but maintains the apoptotic balance by targeting multiple modulators in human lung cancer A549 cells. Cell Death Dis. 2014;5:e1426 pubmed 出版商
  429. Lee S, Xu G, Jay T, Bhatta S, Kim K, Jung S, et al. Opposing effects of membrane-anchored CX3CL1 on amyloid and tau pathologies via the p38 MAPK pathway. J Neurosci. 2014;34:12538-46 pubmed 出版商
  430. Wu N, Huang D, Tsou H, Lin Y, Lin W. Syk mediates IL-17-induced CCL20 expression by targeting Act1-dependent K63-linked ubiquitination of TRAF6. J Invest Dermatol. 2015;135:490-498 pubmed 出版商
  431. Zhao X, Zhu L, Chang Q, Jiang C, You Y, Luo T, et al. C-type lectin receptor dectin-3 mediates trehalose 6,6'-dimycolate (TDM)-induced Mincle expression through CARD9/Bcl10/MALT1-dependent nuclear factor (NF)-κB activation. J Biol Chem. 2014;289:30052-62 pubmed 出版商
  432. Dou W, Zhang J, Ren G, Ding L, Sun A, Deng C, et al. Mangiferin attenuates the symptoms of dextran sulfate sodium-induced colitis in mice via NF-κB and MAPK signaling inactivation. Int Immunopharmacol. 2014;23:170-8 pubmed 出版商
  433. Takahashi N, Vereecke L, Bertrand M, Duprez L, Berger S, Divert T, et al. RIPK1 ensures intestinal homeostasis by protecting the epithelium against apoptosis. Nature. 2014;513:95-9 pubmed 出版商
  434. Niu F, Yao H, Zhang W, Sutliff R, Buch S. Tat 101-mediated enhancement of brain pericyte migration involves platelet-derived growth factor subunit B homodimer: implications for human immunodeficiency virus-associated neurocognitive disorders. J Neurosci. 2014;34:11812-25 pubmed 出版商
  435. Huang S, Lee C, Wang H, Chang Y, Lin C, Chen C, et al. 6-Dehydrogingerdione restrains lipopolysaccharide-induced inflammatory responses in RAW 264.7 macrophages. J Agric Food Chem. 2014;62:9171-9 pubmed 出版商
  436. Dannappel M, Vlantis K, Kumari S, Polykratis A, Kim C, Wachsmuth L, et al. RIPK1 maintains epithelial homeostasis by inhibiting apoptosis and necroptosis. Nature. 2014;513:90-4 pubmed 出版商
  437. Xu R, Hu Q, Ma Q, Liu C, Wang G. The protease Omi regulates mitochondrial biogenesis through the GSK3β/PGC-1α pathway. Cell Death Dis. 2014;5:e1373 pubmed 出版商
  438. Tang S, Chen T, Yu Z, Zhu X, Yang M, Xie B, et al. RasGRP3 limits Toll-like receptor-triggered inflammatory response in macrophages by activating Rap1 small GTPase. Nat Commun. 2014;5:4657 pubmed 出版商
  439. Yu B, Chang J, Liu Y, Li J, Kevork K, Al Hezaimi K, et al. Wnt4 signaling prevents skeletal aging and inflammation by inhibiting nuclear factor-?B. Nat Med. 2014;20:1009-17 pubmed 出版商
  440. Li L, Wu P, Lee J, Li P, Hsieh W, Ho C, et al. Hinokitiol induces DNA damage and autophagy followed by cell cycle arrest and senescence in gefitinib-resistant lung adenocarcinoma cells. PLoS ONE. 2014;9:e104203 pubmed 出版商
  441. Baek J, Kim J, Cheon Y, Park S, Ahn S, Yoon K, et al. Aconitum pseudo-laeve var. erectum inhibits receptor activator of nuclear factor kappa-B ligand-induced osteoclastogenesis via the c-Fos/nuclear factor of activated T-cells, cytoplasmic 1 signaling pathway and prevents lipopolysaccharide-induced bone. Molecules. 2014;19:11628-44 pubmed 出版商
  442. Gu S, Wu W, Liu C, Yang L, Sun C, Ye W, et al. BMPRIA mediated signaling is essential for temporomandibular joint development in mice. PLoS ONE. 2014;9:e101000 pubmed 出版商
  443. Rais Y, Reich A, Simsa Maziel S, Moshe M, Idelevich A, Kfir T, et al. The growth plate's response to load is partially mediated by mechano-sensing via the chondrocytic primary cilium. Cell Mol Life Sci. 2015;72:597-615 pubmed 出版商
  444. Wang F, Cai M, Mai S, Chen J, Bai H, Li Y, et al. Ablation of EIF5A2 induces tumor vasculature remodeling and improves tumor response to chemotherapy via regulation of matrix metalloproteinase 2 expression. Oncotarget. 2014;5:6716-33 pubmed
  445. Zhang S, Ren M, Zeng X, He P, Ma X, Qiao S. Leucine stimulates ASCT2 amino acid transporter expression in porcine jejunal epithelial cell line (IPEC-J2) through PI3K/Akt/mTOR and ERK signaling pathways. Amino Acids. 2014;46:2633-42 pubmed 出版商
  446. Watanabe T, Nakamura S, Ono T, Ui S, Yagi S, Kagawa H, et al. Pyrrolidinium fullerene induces apoptosis by activation of procaspase-9 via suppression of Akt in primary effusion lymphoma. Biochem Biophys Res Commun. 2014;451:93-100 pubmed 出版商
  447. Abdul Wahed A, Gautier Stein A, Casteras S, Soty M, Roussel D, Romestaing C, et al. A link between hepatic glucose production and peripheral energy metabolism via hepatokines. Mol Metab. 2014;3:531-43 pubmed 出版商
  448. Desideri E, Vegliante R, Cardaci S, Nepravishta R, Paci M, Ciriolo M. MAPK14/p38?-dependent modulation of glucose metabolism affects ROS levels and autophagy during starvation. Autophagy. 2014;10:1652-65 pubmed 出版商
  449. Witting Christensen S, Kortekaas Krohn I, Thuraiaiyah J, Skjold T, Schmid J, Hoffmann H. Sequential allergen desensitization of basophils is non-specific and may involve p38 MAPK. Allergy. 2014;69:1343-9 pubmed 出版商
  450. Kurz D, Payeli S, Greutert H, Briand Schumacher S, Luscher T, Tanner F. Epigenetic regulation of tissue factor inducibility in endothelial cell senescence. Mech Ageing Dev. 2014;140:1-9 pubmed 出版商
  451. Czaplinska D, Turczyk L, Grudowska A, Mieszkowska M, Lipinska A, Skladanowski A, et al. Phosphorylation of RSK2 at Tyr529 by FGFR2-p38 enhances human mammary epithelial cells migration. Biochim Biophys Acta. 2014;1843:2461-70 pubmed 出版商
  452. Kim T, Kim J, Kim Z, Huang R, Chae Y, Wang R. Khz-cp (crude polysaccharide extract obtained from the fusion of Ganoderma lucidum and Polyporus umbellatus mycelia) induces apoptosis by increasing intracellular calcium levels and activating P38 and NADPH oxidase-dependent generation of reactive ox. BMC Complement Altern Med. 2014;14:236 pubmed 出版商
  453. Maeda S, Wada H, Naito Y, Nagano H, Simmons S, Kagawa Y, et al. Interferon-? acts on the S/G2/M phases to induce apoptosis in the G1 phase of an IFNAR2-expressing hepatocellular carcinoma cell line. J Biol Chem. 2014;289:23786-95 pubmed 出版商
  454. Martin V, Corso S, Comoglio P, Giordano S. Increase of MET gene copy number confers resistance to a monovalent MET antibody and establishes drug dependence. Mol Oncol. 2014;8:1561-74 pubmed 出版商
  455. Yokota M, Kobayashi Y, Morita J, Suzuki H, Hashimoto Y, Sasaki Y, et al. Therapeutic effect of nanogel-based delivery of soluble FGFR2 with S252W mutation on craniosynostosis. PLoS ONE. 2014;9:e101693 pubmed 出版商
  456. Wang Y, Li W, Patel S, Cong J, Zhang N, Sabbatino F, et al. Blocking the formation of radiation-induced breast cancer stem cells. Oncotarget. 2014;5:3743-55 pubmed
  457. Hu J, Cheng Y, Li Y, Jin Z, Pan Y, Liu G, et al. microRNA-128 plays a critical role in human non-small cell lung cancer tumourigenesis, angiogenesis and lymphangiogenesis by directly targeting vascular endothelial growth factor-C. Eur J Cancer. 2014;50:2336-50 pubmed 出版商
  458. Gonzalez Rodriguez A, Reibert B, Amann T, Constien R, Rondinone C, Valverde A. In vivo siRNA delivery of Keap1 modulates death and survival signaling pathways and attenuates concanavalin-A-induced acute liver injury in mice. Dis Model Mech. 2014;7:1093-100 pubmed 出版商
  459. Chondrogiannis G, Kastamoulas M, Kanavaros P, Vartholomatos G, Bai M, Baltogiannis D, et al. Cytokine effects on cell viability and death of prostate carcinoma cells. Biomed Res Int. 2014;2014:536049 pubmed 出版商
  460. Jamaladdin S, Kelly R, O Regan L, Dovey O, Hodson G, Millard C, et al. Histone deacetylase (HDAC) 1 and 2 are essential for accurate cell division and the pluripotency of embryonic stem cells. Proc Natl Acad Sci U S A. 2014;111:9840-5 pubmed 出版商
  461. Reddy V, Kumar C, Raghu G, Reddy G. Expression and induction of small heat shock proteins in rat heart under chronic hyperglycemic conditions. Arch Biochem Biophys. 2014;558:1-9 pubmed 出版商
  462. Fischer A, Zelinka C, Gallina D, Scott M, Todd L. Reactive microglia and macrophage facilitate the formation of Müller glia-derived retinal progenitors. Glia. 2014;62:1608-28 pubmed 出版商
  463. Lamarca A, Gella A, Martiáñez T, Segura M, Figueiro Silva J, Grijota Martinez C, et al. Uridine 5'-triphosphate promotes in vitro Schwannoma cell migration through matrix metalloproteinase-2 activation. PLoS ONE. 2014;9:e98998 pubmed 出版商
  464. Chien P, Hsieh H, Chi P, Yang C. PAR1-dependent COX-2/PGE2 production contributes to cell proliferation via EP2 receptors in primary human cardiomyocytes. Br J Pharmacol. 2014;171:4504-19 pubmed 出版商
  465. Clauzure M, Valdivieso A, Massip Copiz M, Schulman G, Teiber M, Santa Coloma T. Disruption of interleukin-1? autocrine signaling rescues complex I activity and improves ROS levels in immortalized epithelial cells with impaired cystic fibrosis transmembrane conductance regulator (CFTR) function. PLoS ONE. 2014;9:e99257 pubmed 出版商
  466. Enjoji S, Ohama T, Sato K. Regulation of epithelial cell tight junctions by protease-activated receptor 2. J Vet Med Sci. 2014;76:1225-9 pubmed
  467. Shin J, Le Dour C, Sera F, Iwata S, Homma S, Joseph L, et al. Depletion of lamina-associated polypeptide 1 from cardiomyocytes causes cardiac dysfunction in mice. Nucleus. 2014;5:260-459 pubmed 出版商
  468. Cazanave S, Wang X, Zhou H, Rahmani M, Grant S, Durrant D, et al. Degradation of Keap1 activates BH3-only proteins Bim and PUMA during hepatocyte lipoapoptosis. Cell Death Differ. 2014;21:1303-12 pubmed 出版商
  469. Prickett T, Zerlanko B, Hill V, Gartner J, Qutob N, Jiang J, et al. Somatic mutation of GRIN2A in malignant melanoma results in loss of tumor suppressor activity via aberrant NMDAR complex formation. J Invest Dermatol. 2014;134:2390-2398 pubmed 出版商
  470. Shey M, Nemes E, Whatney W, de Kock M, Africa H, Barnard C, et al. Maturation of innate responses to mycobacteria over the first nine months of life. J Immunol. 2014;192:4833-43 pubmed 出版商
  471. Gürtler C, Carty M, Kearney J, Schattgen S, Ding A, Fitzgerald K, et al. SARM regulates CCL5 production in macrophages by promoting the recruitment of transcription factors and RNA polymerase II to the Ccl5 promoter. J Immunol. 2014;192:4821-32 pubmed 出版商
  472. Wu G, Diaz A, Paugh B, Rankin S, Ju B, Li Y, et al. The genomic landscape of diffuse intrinsic pontine glioma and pediatric non-brainstem high-grade glioma. Nat Genet. 2014;46:444-450 pubmed 出版商
  473. Hamada K, Osaka M, Yoshida M. Cell density impacts epigenetic regulation of cytokine-induced E-selectin gene expression in vascular endothelium. PLoS ONE. 2014;9:e90502 pubmed 出版商
  474. Glinskii O, Li F, Wilson L, Barnes S, Rittenhouse Olson K, Barchi J, et al. Endothelial integrin ?3?1 stabilizes carbohydrate-mediated tumor/endothelial cell adhesion and induces macromolecular signaling complex formation at the endothelial cell membrane. Oncotarget. 2014;5:1382-9 pubmed
  475. Smith I, Godinez G, Singh B, McCaughey K, Alcantara R, Gururaja T, et al. Inhibition of Janus kinase signaling during controlled mechanical ventilation prevents ventilation-induced diaphragm dysfunction. FASEB J. 2014;28:2790-803 pubmed 出版商
  476. Huang Y, Liu H, Li S, Tang Y, Wei B, Yu H, et al. MAVS-MKK7-JNK2 defines a novel apoptotic signaling pathway during viral infection. PLoS Pathog. 2014;10:e1004020 pubmed 出版商
  477. Wang Q, Shen B, Chen L, Zheng P, Feng H, Hao Q, et al. Extracellular calumenin suppresses ERK1/2 signaling and cell migration by protecting fibulin-1 from MMP-13-mediated proteolysis. Oncogene. 2015;34:1006-18 pubmed 出版商
  478. Gong G, Xiang L, Yuan L, Hu L, Wu W, Cai L, et al. Protective effect of glycyrrhizin, a direct HMGB1 inhibitor, on focal cerebral ischemia/reperfusion-induced inflammation, oxidative stress, and apoptosis in rats. PLoS ONE. 2014;9:e89450 pubmed 出版商
  479. Gladding C, Fan J, Zhang L, Wang L, Xu J, Li E, et al. Alterations in STriatal-Enriched protein tyrosine Phosphatase expression, activation, and downstream signaling in early and late stages of the YAC128 Huntington's disease mouse model. J Neurochem. 2014;130:145-59 pubmed 出版商
  480. Bhattacharyya S, Ghosh S, Sil P. Amelioration of aspirin induced oxidative impairment and apoptotic cell death by a novel antioxidant protein molecule isolated from the herb Phyllanthus niruri. PLoS ONE. 2014;9:e89026 pubmed 出版商
  481. Son J, Jeong H, Kim H, Kim Y, Lee E, Lee H, et al. Pelargonidin attenuates PDGF-BB-induced aortic smooth muscle cell proliferation and migration by direct inhibition of focal adhesion kinase. Biochem Pharmacol. 2014;89:236-45 pubmed 出版商
  482. Zhong X, Wang H, Huang S. Endothelin-1 induces interleukin-18 expression in human osteoblasts. Arch Oral Biol. 2014;59:289-96 pubmed 出版商
  483. Ihunnah C, Wada T, Philips B, Ravuri S, Gibbs R, Kirisci L, et al. Estrogen sulfotransferase/SULT1E1 promotes human adipogenesis. Mol Cell Biol. 2014;34:1682-94 pubmed 出版商
  484. Cheng J, Fan Y, Xu X, Dou J, Tang Y, Zhong X, et al. A small-molecule inhibitor of UBE2N induces neuroblastoma cell death via activation of p53 and JNK pathways. Cell Death Dis. 2014;5:e1079 pubmed 出版商
  485. Bernet J, Doles J, Hall J, Kelly Tanaka K, Carter T, Olwin B. p38 MAPK signaling underlies a cell-autonomous loss of stem cell self-renewal in skeletal muscle of aged mice. Nat Med. 2014;20:265-71 pubmed 出版商
  486. Poonia B, Pauza C. Levels of CD56+TIM-3- effector CD8 T cells distinguish HIV natural virus suppressors from patients receiving antiretroviral therapy. PLoS ONE. 2014;9:e88884 pubmed 出版商
  487. Willemen H, Campos P, Lucas E, Morreale A, Gil Redondo R, Agut J, et al. A novel p38 MAPK docking-groove-targeted compound is a potent inhibitor of inflammatory hyperalgesia. Biochem J. 2014;459:427-39 pubmed 出版商
  488. Park E, Kim B, Lee E, Chang E, Kim D, Choi S, et al. Targeting of receptor for advanced glycation end products suppresses cyst growth in polycystic kidney disease. J Biol Chem. 2014;289:9254-62 pubmed 出版商
  489. Chang S, Kohrt H, Maecker H. Monitoring the immune competence of cancer patients to predict outcome. Cancer Immunol Immunother. 2014;63:713-9 pubmed 出版商
  490. Borkham Kamphorst E, Schaffrath C, Van De Leur E, Haas U, Tihaa L, Meurer S, et al. The anti-fibrotic effects of CCN1/CYR61 in primary portal myofibroblasts are mediated through induction of reactive oxygen species resulting in cellular senescence, apoptosis and attenuated TGF-? signaling. Biochim Biophys Acta. 2014;1843:902-14 pubmed 出版商
  491. Delgado O, Batten K, Richardson J, Xie X, Gazdar A, Kaisani A, et al. Radiation-enhanced lung cancer progression in a transgenic mouse model of lung cancer is predictive of outcomes in human lung and breast cancer. Clin Cancer Res. 2014;20:1610-22 pubmed 出版商
  492. Jin Y, Wi H, Choi M, Hong S, Bae Y. Regulation of anti-inflammatory cytokines IL-10 and TGF-? in mouse dendritic cells through treatment with Clonorchis sinensis crude antigen. Exp Mol Med. 2014;46:e74 pubmed 出版商
  493. Shin Y, Huh Y, Kim K, Kim S, Park K, Koh J, et al. Low-density lipoprotein receptor-related protein 5 governs Wnt-mediated osteoarthritic cartilage destruction. Arthritis Res Ther. 2014;16:R37 pubmed 出版商
  494. Gámez M, Calvo M, Selgas M, García M, Erler K, Böhm V, et al. Effect of E-beam treatment on the chemistry and on the antioxidant activity of lycopene from dry tomato peel and tomato powder. J Agric Food Chem. 2014;62:1557-63 pubmed 出版商
  495. Crawford T, Jalbert E, Ndhlovu L, Barbour J. Concomitant evaluation of PMA+ionomycin-induced kinase phosphorylation and cytokine production in T cell subsets by flow cytometry. Cytometry A. 2014;85:268-76 pubmed 出版商
  496. Cao M, Hou D, Liang H, Gong F, Wang Y, Yan X, et al. miR-150 promotes the proliferation and migration of lung cancer cells by targeting SRC kinase signalling inhibitor 1. Eur J Cancer. 2014;50:1013-24 pubmed 出版商
  497. Grünberg J, Hammarstedt A, Hedjazifar S, Smith U. The Novel Secreted Adipokine WNT1-inducible Signaling Pathway Protein 2 (WISP2) Is a Mesenchymal Cell Activator of Canonical WNT. J Biol Chem. 2014;289:6899-907 pubmed 出版商
  498. Ashraf M, Ebner M, Wallner C, Haller M, Khalid S, Schwelberger H, et al. A p38MAPK/MK2 signaling pathway leading to redox stress, cell death and ischemia/reperfusion injury. Cell Commun Signal. 2014;12:6 pubmed 出版商
  499. Gorman J, Liu S, Slopack D, Shariati K, Hasanee A, Olenich S, et al. Angiotensin II evokes angiogenic signals within skeletal muscle through co-ordinated effects on skeletal myocytes and endothelial cells. PLoS ONE. 2014;9:e85537 pubmed 出版商
  500. Chen H, Sohn J, Zhang L, Tian J, Chen S, Bjeldanes L. Anti-inflammatory effects of chicanine on murine macrophage by down-regulating LPS-induced inflammatory cytokines in I?B?/MAPK/ERK signaling pathways. Eur J Pharmacol. 2014;724:168-74 pubmed 出版商
  501. Krishna S, Luan C, Mishra R, Xu L, Scheidt K, Anderson W, et al. A fluorescence-based thermal shift assay identifies inhibitors of mitogen activated protein kinase kinase 4. PLoS ONE. 2013;8:e81504 pubmed 出版商
  502. Zhan Z, Xie X, Cao H, Zhou X, Zhang X, Fan H, et al. Autophagy facilitates TLR4- and TLR3-triggered migration and invasion of lung cancer cells through the promotion of TRAF6 ubiquitination. Autophagy. 2014;10:257-68 pubmed 出版商
  503. Sato S, Sakurai T, Ogasawara J, Takahashi M, Izawa T, Imaizumi K, et al. A circadian clock gene, Rev-erb?, modulates the inflammatory function of macrophages through the negative regulation of Ccl2 expression. J Immunol. 2014;192:407-17 pubmed 出版商
  504. Zhu J, Lin F, Brown D, Clark R. A fibronectin peptide redirects PDGF-BB/PDGFR complexes to macropinocytosis-like internalization and augments PDGF-BB survival signals. J Invest Dermatol. 2014;134:921-929 pubmed 出版商
  505. Zhang Y, Zhang X, Gao L, Liu Y, Jiang D, Chen K, et al. Growth/differentiation factor 1 alleviates pressure overload-induced cardiac hypertrophy and dysfunction. Biochim Biophys Acta. 2014;1842:232-44 pubmed 出版商
  506. Ashlin T, Buckley M, Salter R, Johnson J, Kwan A, Ramji D. The anti-atherogenic cytokine interleukin-33 inhibits the expression of a disintegrin and metalloproteinase with thrombospondin motifs-1, -4 and -5 in human macrophages: Requirement of extracellular signal-regulated kinase, c-Jun N-terminal kinase an. Int J Biochem Cell Biol. 2014;46:113-23 pubmed 出版商
  507. Das R, Xu S, Quan X, Nguyen T, Kong I, Chung C, et al. Upregulation of mitochondrial Nox4 mediates TGF-?-induced apoptosis in cultured mouse podocytes. Am J Physiol Renal Physiol. 2014;306:F155-67 pubmed 出版商
  508. Bhaskar K, Maphis N, Xu G, Varvel N, Kokiko Cochran O, Weick J, et al. Microglial derived tumor necrosis factor-? drives Alzheimer's disease-related neuronal cell cycle events. Neurobiol Dis. 2014;62:273-85 pubmed 出版商
  509. Lee J, Park J, Kwon O, Kim H, Fornace A, Cha H. Off-target response of a Wip1 chemical inhibitor in skin keratinocytes. J Dermatol Sci. 2014;73:125-34 pubmed 出版商
  510. Lu Q, Harris V, Sun X, Hou Y, Black S. Ca²?/calmodulin-dependent protein kinase II contributes to hypoxic ischemic cell death in neonatal hippocampal slice cultures. PLoS ONE. 2013;8:e70750 pubmed 出版商
  511. Bittner S, Ruck T, Schuhmann M, Herrmann A, Moha Ou Maati H, Bobak N, et al. Endothelial TWIK-related potassium channel-1 (TREK1) regulates immune-cell trafficking into the CNS. Nat Med. 2013;19:1161-5 pubmed 出版商
  512. Kang E, Kwon I, Koo J, Kim E, Kim C, Lee J, et al. Treadmill exercise represses neuronal cell death and inflammation during A?-induced ER stress by regulating unfolded protein response in aged presenilin 2 mutant mice. Apoptosis. 2013;18:1332-1347 pubmed 出版商
  513. Siljamäki E, Raiko L, Toriseva M, Nissinen L, Näreoja T, Peltonen J, et al. p38? mitogen-activated protein kinase regulates the expression of tight junction protein ZO-1 in differentiating human epidermal keratinocytes. Arch Dermatol Res. 2014;306:131-41 pubmed 出版商
  514. Korhonen R, Hömmö T, Keränen T, Laavola M, Hamalainen M, Vuolteenaho K, et al. Attenuation of TNF production and experimentally induced inflammation by PDE4 inhibitor rolipram is mediated by MAPK phosphatase-1. Br J Pharmacol. 2013;169:1525-36 pubmed 出版商
  515. Chang C, Chen C, Wu M, Chen Y, Chen C, Sheu S, et al. Active Component of Antrodia cinnamomea Mycelia Targeting Head and Neck Cancer Initiating Cells through Exaggerated Autophagic Cell Death. Evid Based Complement Alternat Med. 2013;2013:946451 pubmed 出版商
  516. Hauerslev S, Sveen M, Vissing J, Krag T. Protein turnover and cellular stress in mildly and severely affected muscles from patients with limb girdle muscular dystrophy type 2I. PLoS ONE. 2013;8:e66929 pubmed 出版商
  517. Wu J, Huang Z, Ren J, Zhang Z, He P, Li Y, et al. Mlkl knockout mice demonstrate the indispensable role of Mlkl in necroptosis. Cell Res. 2013;23:994-1006 pubmed 出版商
  518. Chen J, Lazarenko O, Zhang J, Blackburn M, Ronis M, Badger T. Diet-derived phenolic acids regulate osteoblast and adipocyte lineage commitment and differentiation in young mice. J Bone Miner Res. 2014;29:1043-53 pubmed 出版商
  519. He W, Wang Q, Srinivasan B, Xu J, Padilla M, Li Z, et al. A JNK-mediated autophagy pathway that triggers c-IAP degradation and necroptosis for anticancer chemotherapy. Oncogene. 2014;33:3004-13 pubmed 出版商
  520. Zaringhalam J, Akhtari Z, Eidi A, Ruhani A, Tekieh E. Relationship between serum IL10 level and p38MAPK enzyme activity on behavioral and cellular aspects of variation of hyperalgesia during different stages of arthritis in rats. Inflammopharmacology. 2014;22:37-44 pubmed 出版商
  521. Moberly S, Mather K, Berwick Z, Owen M, Goodwill A, Casalini E, et al. Impaired cardiometabolic responses to glucagon-like peptide 1 in obesity and type 2 diabetes mellitus. Basic Res Cardiol. 2013;108:365 pubmed 出版商
  522. Zhou X, Wang H, Burg M, Ferraris J. High NaCl-induced inhibition of PTG contributes to activation of NFAT5 through attenuation of the negative effect of SHP-1. Am J Physiol Renal Physiol. 2013;305:F362-9 pubmed 出版商
  523. Aoshiba K, Tsuji T, Kameyama S, Itoh M, Semba S, Yamaguchi K, et al. Senescence-associated secretory phenotype in a mouse model of bleomycin-induced lung injury. Exp Toxicol Pathol. 2013;65:1053-62 pubmed 出版商
  524. Barbuto R, Mitchell J. Regulation of the osterix (Osx, Sp7) promoter by osterix and its inhibition by parathyroid hormone. J Mol Endocrinol. 2013;51:99-108 pubmed 出版商
  525. De Sousa Coelho A, Relat J, Hondares E, Pérez Martí A, Ribas F, Villarroya F, et al. FGF21 mediates the lipid metabolism response to amino acid starvation. J Lipid Res. 2013;54:1786-97 pubmed 出版商
  526. Mobasher M, Gonzalez Rodriguez A, Santamaria B, Ramos S, Martin M, Goya L, et al. Protein tyrosine phosphatase 1B modulates GSK3?/Nrf2 and IGFIR signaling pathways in acetaminophen-induced hepatotoxicity. Cell Death Dis. 2013;4:e626 pubmed 出版商
  527. Li L, Ginet V, Liu X, Vergun O, Tuittila M, Mathieu M, et al. The nNOS-p38MAPK pathway is mediated by NOS1AP during neuronal death. J Neurosci. 2013;33:8185-201 pubmed 出版商
  528. Rafalski V, Ho P, Brett J, Ucar D, Dugas J, Pollina E, et al. Expansion of oligodendrocyte progenitor cells following SIRT1 inactivation in the adult brain. Nat Cell Biol. 2013;15:614-24 pubmed 出版商
  529. Lessard S, Rivas D, Alves Wagner A, Hirshman M, Gallagher I, Constantin Teodosiu D, et al. Resistance to aerobic exercise training causes metabolic dysfunction and reveals novel exercise-regulated signaling networks. Diabetes. 2013;62:2717-27 pubmed 出版商
  530. Maeda Y, Fukushima K, Omichi R, Kariya S, Nishizaki K. Time courses of changes in phospho- and total- MAP kinases in the cochlea after intense noise exposure. PLoS ONE. 2013;8:e58775 pubmed 出版商
  531. Taylor D, Moser R, Regulier E, Breuillaud L, Dixon M, Beesen A, et al. MAP kinase phosphatase 1 (MKP-1/DUSP1) is neuroprotective in Huntington's disease via additive effects of JNK and p38 inhibition. J Neurosci. 2013;33:2313-25 pubmed 出版商
  532. Martiáñez T, Lamarca A, Casals N, Gella A. N-cadherin expression is regulated by UTP in schwannoma cells. Purinergic Signal. 2013;9:259-70 pubmed 出版商
  533. Nishiki Y, Adewola A, Hatanaka M, Templin A, Maier B, Mirmira R. Translational control of inducible nitric oxide synthase by p38 MAPK in islet β-cells. Mol Endocrinol. 2013;27:336-49 pubmed 出版商
  534. Kim J, Hwang I, Choi S, Lee H, Lee Y, Goo J, et al. Aqueous extract of Liriope platyphylla, a traditional Chinese medicine, significantly inhibits abdominal fat accumulation and improves glucose regulation in OLETF type II diabetes model rats. Lab Anim Res. 2012;28:181-91 pubmed 出版商
  535. Xu X, Wang Q, Long Y, Zhang R, Wei X, Xing M, et al. Stress-mediated p38 activation promotes somatic cell reprogramming. Cell Res. 2013;23:131-41 pubmed 出版商
  536. Kaiser M, Kühnl A, Reins J, Fischer S, Ortiz Tánchez J, Schlee C, et al. Antileukemic activity of the HSP70 inhibitor pifithrin-? in acute leukemia. Blood Cancer J. 2011;1:e28 pubmed 出版商
  537. Joaquin M, Gubern A, Gonzalez Nunez D, Josué Ruiz E, Ferreiro I, de Nadal E, et al. The p57 CDKi integrates stress signals into cell-cycle progression to promote cell survival upon stress. EMBO J. 2012;31:2952-64 pubmed 出版商
  538. Lemire B, Debigare R, Dubé A, Thériault M, Cote C, Maltais F. MAPK signaling in the quadriceps of patients with chronic obstructive pulmonary disease. J Appl Physiol (1985). 2012;113:159-66 pubmed 出版商
  539. Lamottke B, Kaiser M, Mieth M, Heider U, Gao Z, Nikolova Z, et al. The novel, orally bioavailable HSP90 inhibitor NVP-HSP990 induces cell cycle arrest and apoptosis in multiple myeloma cells and acts synergistically with melphalan by increased cleavage of caspases. Eur J Haematol. 2012;88:406-15 pubmed 出版商
  540. Jones L, Kreem S, Shweash M, Paul A, Alexander J, Roberts C. Differential modulation of TLR3- and TLR4-mediated dendritic cell maturation and function by progesterone. J Immunol. 2010;185:4525-34 pubmed 出版商
  541. Son J, Varadarajan S, Bratton S. TRAIL-activated stress kinases suppress apoptosis through transcriptional upregulation of MCL-1. Cell Death Differ. 2010;17:1288-301 pubmed 出版商
  542. Serrati S, Margheri F, Pucci M, Cantelmo A, Cammarota R, Dotor J, et al. TGFbeta1 antagonistic peptides inhibit TGFbeta1-dependent angiogenesis. Biochem Pharmacol. 2009;77:813-25 pubmed 出版商
  543. Ho T, Merajver S, Lapiere C, Nusgens B, Deroanne C. RhoA-GDP regulates RhoB protein stability. Potential involvement of RhoGDIalpha. J Biol Chem. 2008;283:21588-98 pubmed 出版商
  544. Svensson R, Barnes J, Rokhlin O, Cohen M, Henry M. Chemotherapeutic agents up-regulate the cytomegalovirus promoter: implications for bioluminescence imaging of tumor response to therapy. Cancer Res. 2007;67:10445-54 pubmed
  545. Boileau C, Martel Pelletier J, Fahmi H, Mineau F, Boily M, Pelletier J. The peroxisome proliferator-activated receptor gamma agonist pioglitazone reduces the development of cartilage lesions in an experimental dog model of osteoarthritis: in vivo protective effects mediated through the inhibition of key signaling and cat. Arthritis Rheum. 2007;56:2288-98 pubmed
  546. Carulli M, Ong V, Ponticos M, Shiwen X, Abraham D, Black C, et al. Chemokine receptor CCR2 expression by systemic sclerosis fibroblasts: evidence for autocrine regulation of myofibroblast differentiation. Arthritis Rheum. 2005;52:3772-82 pubmed