这是一篇来自已证抗体库的有关人类 p38的综述,是根据664篇发表使用所有方法的文章归纳的。这综述旨在帮助来邦网的访客找到最适合p38 抗体。
p38 同义词: CSBP; CSBP1; CSBP2; CSPB1; EXIP; Mxi2; PRKM14; PRKM15; RK; SAPK2A; p38; p38ALPHA

圣克鲁斯生物技术
小鼠 单克隆(E-1)
  • 免疫组化; 小鼠; 图 7e
  • 免疫印迹; 小鼠; 图 7c
圣克鲁斯生物技术 p38抗体(Santa Cruz Biotechnology, SC-166182)被用于被用于免疫组化在小鼠样本上 (图 7e) 和 被用于免疫印迹在小鼠样本上 (图 7c). Int J Nanomedicine (2021) ncbi
小鼠 单克隆(E-1)
  • 免疫印迹; 人类; 1:1000; 图 5m
圣克鲁斯生物技术 p38抗体(Santa Cruz Biotech, sc-166182)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 5m). Oncogene (2021) ncbi
小鼠 单克隆(A-12)
  • 免疫印迹; 人类; 1:1000; 图 5m
圣克鲁斯生物技术 p38抗体(Santa Cruz Biotech, sc-7972)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 5m). Oncogene (2021) ncbi
小鼠 单克隆(E-1)
  • 免疫印迹; 小鼠; 1:2000; 图 s3d
圣克鲁斯生物技术 p38抗体(Santa Cruz Biotechnology, Sc-166182)被用于被用于免疫印迹在小鼠样本上浓度为1:2000 (图 s3d). J Exp Med (2021) ncbi
小鼠 单克隆(A-12)
  • 流式细胞仪; 人类; 图 6b
圣克鲁斯生物技术 p38抗体(Santa Cruz Biotechnology, A-12)被用于被用于流式细胞仪在人类样本上 (图 6b). Cell Mol Gastroenterol Hepatol (2021) ncbi
小鼠 单克隆(E-1)
  • 免疫印迹; 人类; 1:1000; 图 3a
圣克鲁斯生物技术 p38抗体(Santa, sc-166182)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3a). Nat Commun (2020) ncbi
小鼠 单克隆(A-12)
  • 免疫印迹; 人类; 1:1000; 图 3f
圣克鲁斯生物技术 p38抗体(Santa Cruz, sc7972)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3f). elife (2019) ncbi
小鼠 单克隆(D-8)
  • 免疫印迹; 小鼠; 图 4c
圣克鲁斯生物技术 p38抗体(Santa, D-8)被用于被用于免疫印迹在小鼠样本上 (图 4c). J Clin Invest (2019) ncbi
小鼠 单克隆(A-12)
  • 免疫印迹; 人类; 图 1b
圣克鲁斯生物技术 p38抗体(Santa, sc-7972)被用于被用于免疫印迹在人类样本上 (图 1b). Cell Mol Immunol (2018) ncbi
小鼠 单克隆(A-12)
  • 免疫印迹; 人类; 图 5a
圣克鲁斯生物技术 p38抗体(Santa Cruz, sc-7972)被用于被用于免疫印迹在人类样本上 (图 5a). Oncogenesis (2017) ncbi
小鼠 单克隆(D-8)
  • 免疫印迹; 人类; 图 6a
圣克鲁斯生物技术 p38抗体(Santa Cruz, sc-7973)被用于被用于免疫印迹在人类样本上 (图 6a). Mol Med Rep (2018) ncbi
小鼠 单克隆(A-12)
  • 免疫印迹; 人类; 图 3e
圣克鲁斯生物技术 p38抗体(Santa Cruz, A-12)被用于被用于免疫印迹在人类样本上 (图 3e). Biochem Biophys Res Commun (2017) ncbi
小鼠 单克隆(9F12)
  • 免疫印迹; 人类; 图 3b
圣克鲁斯生物技术 p38抗体(SantaCruz, sc-81621)被用于被用于免疫印迹在人类样本上 (图 3b). Mol Cancer Res (2017) ncbi
  • 免疫印迹; 人类; 图 6a
圣克鲁斯生物技术 p38抗体(Santa Cruz, sc-16982)被用于被用于免疫印迹在人类样本上 (图 6a). FEBS Open Bio (2016) ncbi
小鼠 单克隆
  • 免疫印迹; 小鼠; 图 6
圣克鲁斯生物技术 p38抗体(SantaCruz, sc-398305)被用于被用于免疫印迹在小鼠样本上 (图 6). J Ethnopharmacol (2017) ncbi
小鼠 单克隆(A-12)
  • 其他; 大鼠; 图 1
圣克鲁斯生物技术 p38抗体(Santa Cruz, sc-7972)被用于被用于其他在大鼠样本上 (图 1). Sci Rep (2017) ncbi
  • 免疫印迹; 人类; 1:1000; 图 4b
圣克鲁斯生物技术 p38抗体(Santa Cruz, sc-16,982)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 4b). Cell Oncol (Dordr) (2017) ncbi
小鼠 单克隆(9F12)
  • 免疫印迹; 人类; 1:1500; 图 4a
圣克鲁斯生物技术 p38抗体(Santa Cruz, sc-81621)被用于被用于免疫印迹在人类样本上浓度为1:1500 (图 4a). Oncol Lett (2016) ncbi
小鼠 单克隆(D-8)
  • 免疫印迹; 人类; 1:1500; 图 4a
圣克鲁斯生物技术 p38抗体(Santa Cruz, sc-7973)被用于被用于免疫印迹在人类样本上浓度为1:1500 (图 4a). Oncol Lett (2016) ncbi
小鼠 单克隆(E-1)
  • 免疫印迹; 大鼠; 1:500; 图 8a
圣克鲁斯生物技术 p38抗体(Santa Cruz Biotechnology, sc-166182)被用于被用于免疫印迹在大鼠样本上浓度为1:500 (图 8a). Exp Ther Med (2016) ncbi
小鼠 单克隆(9F12)
  • 免疫印迹; 人类; 图 3
圣克鲁斯生物技术 p38抗体(Santa Cruz, sc-81621)被用于被用于免疫印迹在人类样本上 (图 3). Mol Med Rep (2016) ncbi
小鼠 单克隆(9F12)
  • 免疫印迹; 人类; 1:1000; 图 4
圣克鲁斯生物技术 p38抗体(Santa Cruz, sc-81621)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 4). Mol Med Rep (2016) ncbi
小鼠 单克隆(9F12)
  • 免疫印迹; 人类; 1:500; 图 s6
圣克鲁斯生物技术 p38抗体(santa Cruz, SC-81621)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 s6). Nat Commun (2016) ncbi
小鼠 单克隆(D-8)
  • 免疫印迹; 人类; 1:1000; 图 3
圣克鲁斯生物技术 p38抗体(Santa Cruz, Sc-7973)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3). Cell Div (2016) ncbi
小鼠 单克隆(D-8)
  • 免疫印迹; 小鼠; 1:200; 图 3
圣克鲁斯生物技术 p38抗体(Santa Cruz, sc-7973)被用于被用于免疫印迹在小鼠样本上浓度为1:200 (图 3). Exp Ther Med (2016) ncbi
小鼠 单克隆(D-8)
  • 免疫印迹; 大鼠; 1:500; 图 5a
圣克鲁斯生物技术 p38抗体(Santa Cruz, 7973)被用于被用于免疫印迹在大鼠样本上浓度为1:500 (图 5a). Int J Endocrinol (2016) ncbi
小鼠 单克隆(A-12)
  • 免疫印迹; 人类; 图 5
圣克鲁斯生物技术 p38抗体(Santa Cruz, sc-7972)被用于被用于免疫印迹在人类样本上 (图 5). Oxid Med Cell Longev (2016) ncbi
小鼠 单克隆(D-8)
  • 免疫印迹; 人类
圣克鲁斯生物技术 p38抗体(Santa Cruz, sc-7973)被用于被用于免疫印迹在人类样本上. Oxid Med Cell Longev (2016) ncbi
小鼠 单克隆(D-8)
  • 免疫印迹; 人类; 图 4
圣克鲁斯生物技术 p38抗体(Santa Cruz, sc7973)被用于被用于免疫印迹在人类样本上 (图 4). BMC Complement Altern Med (2016) ncbi
小鼠 单克隆(A-12)
  • 免疫印迹; 人类; 图 s1c
圣克鲁斯生物技术 p38抗体(Santa Cruz, sc-7972)被用于被用于免疫印迹在人类样本上 (图 s1c). Nat Cell Biol (2016) ncbi
小鼠 单克隆(D-8)
  • 免疫印迹; 大鼠; 图 9a
圣克鲁斯生物技术 p38抗体(Santa Cruz, sc-7973)被用于被用于免疫印迹在大鼠样本上 (图 9a). Int J Mol Med (2016) ncbi
小鼠 单克隆(D-8)
  • 免疫印迹; 大鼠; 1:1000; 图 3
圣克鲁斯生物技术 p38抗体(Santa Cruz, sc-7973)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 3). Mol Med Rep (2016) ncbi
小鼠 单克隆(D-8)
  • 免疫印迹; 大鼠; 1:200; 图 4
圣克鲁斯生物技术 p38抗体(Santa Cruz, SC-7973)被用于被用于免疫印迹在大鼠样本上浓度为1:200 (图 4). J Am Heart Assoc (2016) ncbi
小鼠 单克隆(A-12)
  • 免疫印迹基因敲除验证; 小鼠; 图 2
圣克鲁斯生物技术 p38抗体(anta Cruz Biotechnology, SC-7972)被用于被用于免疫印迹基因敲除验证在小鼠样本上 (图 2). Nat Commun (2016) ncbi
小鼠 单克隆(A-12)
  • 免疫印迹; 小鼠; 图 5
圣克鲁斯生物技术 p38抗体(Santa Cruz, sc-7972)被用于被用于免疫印迹在小鼠样本上 (图 5). J Biol Chem (2016) ncbi
小鼠 单克隆(D-8)
  • 免疫组化-石蜡切片; 小鼠; 1:200; 图 10
圣克鲁斯生物技术 p38抗体(Santa Cruz, sc-7973)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:200 (图 10). Cell Mol Gastroenterol Hepatol (2015) ncbi
小鼠 单克隆(D-8)
  • 免疫印迹; 人类; 图 5c
圣克鲁斯生物技术 p38抗体(Santa Cruz, sc-7973)被用于被用于免疫印迹在人类样本上 (图 5c). Mol Cells (2015) ncbi
小鼠 单克隆(D-8)
  • 免疫印迹; 人类; 1:1000; 图 3
圣克鲁斯生物技术 p38抗体(Santa Cruz Biotechnology, SC-7973)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3). J Cell Mol Med (2016) ncbi
小鼠 单克隆(D-8)
  • 免疫印迹; 人类; 1:500; 图 4
圣克鲁斯生物技术 p38抗体(Santa Cruz Biotechnology, sc-7973)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 4). J Cell Biochem (2016) ncbi
小鼠 单克隆(A-12)
  • 免疫印迹; 人类
圣克鲁斯生物技术 p38抗体(Santa Cruz Biotechnology, sc-7972)被用于被用于免疫印迹在人类样本上. Int J Cancer (2016) ncbi
小鼠 单克隆(D-8)
  • 免疫细胞化学; 大鼠; 图 3
  • 免疫印迹; 大鼠; 图 3
圣克鲁斯生物技术 p38抗体(Santa Cruz, sc-7973)被用于被用于免疫细胞化学在大鼠样本上 (图 3) 和 被用于免疫印迹在大鼠样本上 (图 3). PLoS ONE (2015) ncbi
小鼠 单克隆(A-12)
  • 免疫印迹; 小鼠; 图 5
圣克鲁斯生物技术 p38抗体(Santa Cruz, sc-7972)被用于被用于免疫印迹在小鼠样本上 (图 5). Cancer Res (2015) ncbi
小鼠 单克隆(A-12)
  • 免疫印迹; 人类
圣克鲁斯生物技术 p38抗体(Santa Cruz Biotechnology, SC-7972)被用于被用于免疫印迹在人类样本上. Toxicol Appl Pharmacol (2015) ncbi
小鼠 单克隆(A-12)
  • 免疫印迹; 人类; 1:500
圣克鲁斯生物技术 p38抗体(Santa Cruz Biotechnology, sc-7972)被用于被用于免疫印迹在人类样本上浓度为1:500. Cell Signal (2015) ncbi
小鼠 单克隆(9F12)
  • 免疫印迹; 大鼠; 图 7b
圣克鲁斯生物技术 p38抗体(Santa Cruz, 9F12)被用于被用于免疫印迹在大鼠样本上 (图 7b). Free Radic Biol Med (2015) ncbi
小鼠 单克隆(F-9)
  • 免疫印迹; 人类; 图 3
圣克鲁斯生物技术 p38抗体(Santa Cruz, sc-271120)被用于被用于免疫印迹在人类样本上 (图 3). Mol Med Rep (2015) ncbi
小鼠 单克隆(D-8)
  • 免疫印迹; 人类; 图 3
圣克鲁斯生物技术 p38抗体(Santa Cruz, sc-7973)被用于被用于免疫印迹在人类样本上 (图 3). Mol Med Rep (2015) ncbi
小鼠 单克隆(D-8)
  • 免疫印迹; 小鼠; 图 9
圣克鲁斯生物技术 p38抗体(Santa Cruz, sc-7973)被用于被用于免疫印迹在小鼠样本上 (图 9). Int J Nanomedicine (2015) ncbi
小鼠 单克隆(D-8)
  • 免疫印迹; 小鼠; 图 4a
圣克鲁斯生物技术 p38抗体(Santa Cruz, sc-7973)被用于被用于免疫印迹在小鼠样本上 (图 4a). PLoS ONE (2015) ncbi
小鼠 单克隆(D-8)
  • 免疫印迹; 大鼠
圣克鲁斯生物技术 p38抗体(Santa Cruz, SC-7973)被用于被用于免疫印迹在大鼠样本上. Apoptosis (2015) ncbi
小鼠 单克隆(D-8)
  • 免疫印迹; 人类
圣克鲁斯生物技术 p38抗体(Santa Cruz Biotechnology, Sc-7973)被用于被用于免疫印迹在人类样本上. Cancer Lett (2015) ncbi
小鼠 单克隆(A-12)
  • 染色质免疫沉淀 ; 人类
  • 免疫印迹; 人类
圣克鲁斯生物技术 p38抗体(Santa Cruz, sc-7972)被用于被用于染色质免疫沉淀 在人类样本上 和 被用于免疫印迹在人类样本上. Mol Biol Cell (2015) ncbi
小鼠 单克隆(A-12)
  • 免疫印迹; 小鼠; 图 s3
圣克鲁斯生物技术 p38抗体(Santa Cruz Biotechnology, sc-7972)被用于被用于免疫印迹在小鼠样本上 (图 s3). Cell Death Dis (2014) ncbi
小鼠 单克隆(D-8)
  • 免疫细胞化学; 小鼠
圣克鲁斯生物技术 p38抗体(Santa Cruz, SC-7973)被用于被用于免疫细胞化学在小鼠样本上. Cell Mol Life Sci (2015) ncbi
小鼠 单克隆(A-12)
  • 免疫印迹; 人类
圣克鲁斯生物技术 p38抗体(Santa Cruz Biotechnology, sc-7972)被用于被用于免疫印迹在人类样本上. BMC Complement Altern Med (2014) ncbi
小鼠 单克隆(A-12)
  • 免疫印迹基因敲除验证; 小鼠; 1:2000; 图 1
圣克鲁斯生物技术 p38抗体(Santa Cruz, sc-7972)被用于被用于免疫印迹基因敲除验证在小鼠样本上浓度为1:2000 (图 1). Proc Natl Acad Sci U S A (2014) ncbi
小鼠 单克隆(A-12)
  • 免疫印迹; 人类; 1:500; 图 8a
圣克鲁斯生物技术 p38抗体(Santa Cruz Biotechnology, sc-7972)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 8a). PLoS ONE (2014) ncbi
小鼠 单克隆(D-8)
  • 免疫印迹; 人类; 1:500; 图 8a
圣克鲁斯生物技术 p38抗体(Santa Cruz Biotechnology, sc-7973)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 8a). PLoS ONE (2014) ncbi
小鼠 单克隆(A-12)
  • 免疫印迹; 小鼠; 1:200
圣克鲁斯生物技术 p38抗体(Santa Cruz Biotechnology, sc-7972)被用于被用于免疫印迹在小鼠样本上浓度为1:200. J Neurochem (2014) ncbi
小鼠 单克隆(D-8)
  • 免疫印迹; 小鼠
圣克鲁斯生物技术 p38抗体(Santa Cruz Biotechnology, sc-7973)被用于被用于免疫印迹在小鼠样本上. Exp Mol Med (2014) ncbi
小鼠 单克隆(D-8)
  • 免疫印迹; 番茄
圣克鲁斯生物技术 p38抗体(Santa Cruz Biotechnology, 7973)被用于被用于免疫印迹在番茄样本上. J Agric Food Chem (2014) ncbi
小鼠 单克隆(D-8)
  • 免疫印迹; 小鼠; 1:1000
圣克鲁斯生物技术 p38抗体(Santa Cruz, sc-7973)被用于被用于免疫印迹在小鼠样本上浓度为1:1000. Eur J Pharmacol (2014) ncbi
小鼠 单克隆(27)
  • 免疫印迹; 小鼠; 1:1000
圣克鲁斯生物技术 p38抗体(Santa Cruz, sc-136210)被用于被用于免疫印迹在小鼠样本上浓度为1:1000. Eur J Pharmacol (2014) ncbi
  • 免疫印迹; 人类; 图 6a
  • 免疫印迹; 小鼠; 图 2b
圣克鲁斯生物技术 p38抗体(Santa, Sc16982)被用于被用于免疫印迹在人类样本上 (图 6a) 和 被用于免疫印迹在小鼠样本上 (图 2b). J Immunol (2014) ncbi
小鼠 单克隆(D-8)
  • 免疫印迹; 小鼠; 图 5
圣克鲁斯生物技术 p38抗体(Santa Cruz, sc-7973)被用于被用于免疫印迹在小鼠样本上 (图 5). J Bone Miner Res (2014) ncbi
小鼠 单克隆(A-12)
  • 免疫印迹; 小鼠
圣克鲁斯生物技术 p38抗体(Santa Cruz, sc-7972)被用于被用于免疫印迹在小鼠样本上. J Lipid Res (2013) ncbi
艾博抗(上海)贸易有限公司
domestic rabbit 单克隆(E229)
  • 免疫印迹; 人类; 图 3b
艾博抗(上海)贸易有限公司 p38抗体(Abcam, ab170099)被用于被用于免疫印迹在人类样本上 (图 3b). Mol Oncol (2022) ncbi
domestic rabbit 单克隆(Y122)
  • 免疫印迹; 小鼠; 1:1000; 图 s7a
艾博抗(上海)贸易有限公司 p38抗体(Abcam, ab32142)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 s7a). J Immunother Cancer (2022) ncbi
domestic rabbit 单克隆(EPR18120)
  • 免疫印迹; 小鼠; 1:1000; 图 s7a
艾博抗(上海)贸易有限公司 p38抗体(Abcam, ab195049)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 s7a). J Immunother Cancer (2022) ncbi
domestic rabbit 单克隆(E229)
  • 免疫组化; 小鼠; 图 2e
艾博抗(上海)贸易有限公司 p38抗体(Abcam, ab170099)被用于被用于免疫组化在小鼠样本上 (图 2e). Front Cell Dev Biol (2021) ncbi
domestic rabbit 单克隆(EPR16587)
  • 免疫印迹; 小鼠; 图 6c
艾博抗(上海)贸易有限公司 p38抗体(Abcam, ab178867)被用于被用于免疫印迹在小鼠样本上 (图 6c). Antioxidants (Basel) (2021) ncbi
domestic rabbit 单克隆(E229)
  • 免疫印迹; 小鼠; 图 6c
艾博抗(上海)贸易有限公司 p38抗体(Abcam, ab170099)被用于被用于免疫印迹在小鼠样本上 (图 6c). Antioxidants (Basel) (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 大鼠; 图 5a
艾博抗(上海)贸易有限公司 p38抗体(Abcam, ab4822)被用于被用于免疫印迹在大鼠样本上 (图 5a). J Inflamm Res (2021) ncbi
小鼠 单克隆(M138)
  • 免疫印迹; 大鼠; 图 5a
艾博抗(上海)贸易有限公司 p38抗体(Abcam, ab31828)被用于被用于免疫印迹在大鼠样本上 (图 5a). J Inflamm Res (2021) ncbi
domestic rabbit 单克隆(EPR16878)
  • 免疫印迹; pigs ; 1:1000; 图 6
艾博抗(上海)贸易有限公司 p38抗体(Abcam, ab182453)被用于被用于免疫印迹在pigs 样本上浓度为1:1000 (图 6). Animals (Basel) (2021) ncbi
domestic rabbit 单克隆(E229)
  • 免疫组化; 小鼠; 1:1000; 图 9d
艾博抗(上海)贸易有限公司 p38抗体(Abcam, ab170099)被用于被用于免疫组化在小鼠样本上浓度为1:1000 (图 9d). Aging (Albany NY) (2020) ncbi
domestic rabbit 单克隆(E229)
  • 免疫印迹; 小鼠; 1:1000; 图 6e
艾博抗(上海)贸易有限公司 p38抗体(Abcam, ab170099)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 6e). Cell Death Dis (2020) ncbi
domestic rabbit 单克隆(E229)
  • 免疫印迹; 人类; 1:3000; 图 6c
艾博抗(上海)贸易有限公司 p38抗体(Abcam, ab170099)被用于被用于免疫印迹在人类样本上浓度为1:3000 (图 6c). Cell Death Dis (2020) ncbi
小鼠 单克隆(M138)
  • 免疫印迹; 人类; 1:1000; 图 3c
艾博抗(上海)贸易有限公司 p38抗体(Abcam, ab31828)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3c). Biosci Rep (2020) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 3c
艾博抗(上海)贸易有限公司 p38抗体(Abcam, ab4822)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3c). Biosci Rep (2020) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 4h
艾博抗(上海)贸易有限公司 p38抗体(Abcam, ab47363)被用于被用于免疫印迹在人类样本上 (图 4h). Aging (Albany NY) (2019) ncbi
domestic rabbit 单克隆(E229)
  • 免疫印迹; 人类; 图 4h
艾博抗(上海)贸易有限公司 p38抗体(Abcam, ab170099)被用于被用于免疫印迹在人类样本上 (图 4h). Aging (Albany NY) (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 大鼠; 1:1000; 图 5b
艾博抗(上海)贸易有限公司 p38抗体(Abcam, ab47363)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 5b). Biosci Rep (2019) ncbi
domestic rabbit 单克隆(E229)
  • 免疫印迹; 人类; 图 5f
艾博抗(上海)贸易有限公司 p38抗体(Abcam, ab170099)被用于被用于免疫印迹在人类样本上 (图 5f). Br J Cancer (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 大鼠; 1:1000; 图 5a
艾博抗(上海)贸易有限公司 p38抗体(Abcam, ab47363)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 5a). Biosci Rep (2019) ncbi
domestic rabbit 单克隆(Y122)
  • 免疫印迹; 大鼠; 1:1000; 图 5a
艾博抗(上海)贸易有限公司 p38抗体(Abcam, ab32142)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 5a). Biosci Rep (2019) ncbi
domestic rabbit 单克隆(EPR16587)
  • 免疫印迹; 人类; 1:1000; 图 6a
艾博抗(上海)贸易有限公司 p38抗体(Abcam, ab178867)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 6a). Cell Death Dis (2019) ncbi
domestic rabbit 单克隆(E229)
  • 免疫印迹; 人类; 1:1000; 图 6a
艾博抗(上海)贸易有限公司 p38抗体(Abcam, ab170099)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 6a). Cell Death Dis (2019) ncbi
小鼠 单克隆(M138)
  • 免疫印迹; 人类; 图 5e
艾博抗(上海)贸易有限公司 p38抗体(Abcam, ab31828)被用于被用于免疫印迹在人类样本上 (图 5e). Cell (2019) ncbi
domestic rabbit 单克隆(E229)
  • 免疫印迹; 人类; 1:5000; 图 6d
艾博抗(上海)贸易有限公司 p38抗体(Abcam, ab170099)被用于被用于免疫印迹在人类样本上浓度为1:5000 (图 6d). J Exp Clin Cancer Res (2019) ncbi
domestic rabbit 单克隆(EPR18120)
  • 免疫印迹; 人类; 1:1500; 图 6d
艾博抗(上海)贸易有限公司 p38抗体(Abcam, ab195049)被用于被用于免疫印迹在人类样本上浓度为1:1500 (图 6d). J Exp Clin Cancer Res (2019) ncbi
domestic rabbit 单克隆(EPR16587)
  • 免疫印迹; 大鼠; 1:1000; 图 5c
艾博抗(上海)贸易有限公司 p38抗体(Abcam, ab178867)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 5c). BMC Biotechnol (2019) ncbi
小鼠 单克隆(M138)
  • 免疫印迹; 大鼠; 1:1000; 图 5c
艾博抗(上海)贸易有限公司 p38抗体(Abcam, ab31828)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 5c). BMC Biotechnol (2019) ncbi
小鼠 单克隆(M138)
  • 免疫印迹; 大鼠; 1:1000; 图 4b
艾博抗(上海)贸易有限公司 p38抗体(Abcam, ab31828)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 4b). Braz J Med Biol Res (2017) ncbi
domestic rabbit 单克隆(EPR18120)
  • 免疫印迹; 人类; 图 4
艾博抗(上海)贸易有限公司 p38抗体(Abcam, ab195049)被用于被用于免疫印迹在人类样本上 (图 4). Sci Rep (2016) ncbi
小鼠 单克隆(M138)
  • 免疫印迹; 小鼠; 图 6
艾博抗(上海)贸易有限公司 p38抗体(Abcam, ab31828)被用于被用于免疫印迹在小鼠样本上 (图 6). Cell (2016) ncbi
domestic rabbit 单克隆(EPR18120)
  • 免疫印迹; 小鼠; 图 6
艾博抗(上海)贸易有限公司 p38抗体(Abcam, ab195049)被用于被用于免疫印迹在小鼠样本上 (图 6). Cell (2016) ncbi
小鼠 单克隆(M138)
  • 免疫印迹; 大鼠; 图 3a
艾博抗(上海)贸易有限公司 p38抗体(Abcam, Ab31828)被用于被用于免疫印迹在大鼠样本上 (图 3a). PLoS ONE (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 3c
艾博抗(上海)贸易有限公司 p38抗体(Abcam, ab4822)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3c). Onco Targets Ther (2016) ncbi
小鼠 单克隆(M138)
  • 免疫印迹; 人类; 图 2c
艾博抗(上海)贸易有限公司 p38抗体(Abcam, ab31828)被用于被用于免疫印迹在人类样本上 (图 2c). Oncotarget (2016) ncbi
小鼠 单克隆(M138)
  • 免疫细胞化学; 人类; 2.5 ug/ml; 图 6
  • 免疫印迹; 人类; 图 6
艾博抗(上海)贸易有限公司 p38抗体(Abcam, M138)被用于被用于免疫细胞化学在人类样本上浓度为2.5 ug/ml (图 6) 和 被用于免疫印迹在人类样本上 (图 6). Hum Mol Genet (2015) ncbi
小鼠 单克隆(M138)
  • 免疫印迹; 人类; 图 6
艾博抗(上海)贸易有限公司 p38抗体(Abcam, ab31828)被用于被用于免疫印迹在人类样本上 (图 6). Oncotarget (2015) ncbi
domestic rabbit 单克隆(Y122)
  • 免疫印迹; 人类; 1:1000; 图 6d
艾博抗(上海)贸易有限公司 p38抗体(Abcam, ab32142)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 6d). Cell Death Dis (2014) ncbi
小鼠 单克隆(M138)
  • 免疫印迹; 大鼠; 1:1,000
艾博抗(上海)贸易有限公司 p38抗体(Abcam, ab31828)被用于被用于免疫印迹在大鼠样本上浓度为1:1,000. Inflammopharmacology (2014) ncbi
赛默飞世尔
小鼠 单克隆(J.491.1)
  • 免疫印迹; 人类; 图 2a
赛默飞世尔 p38抗体(Invitrogen, MA5-15116)被用于被用于免疫印迹在人类样本上 (图 2a). iScience (2022) ncbi
小鼠 单克隆(p38-3F11)
  • 免疫组化-冰冻切片; 大鼠; 1:250; 图 5d
  • 免疫印迹; 大鼠; 图 5a
赛默飞世尔 p38抗体(Invitrogen, 33-1300)被用于被用于免疫组化-冰冻切片在大鼠样本上浓度为1:250 (图 5d) 和 被用于免疫印迹在大鼠样本上 (图 5a). Antioxidants (Basel) (2020) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 大鼠; 1:250; 图 2d
  • 免疫印迹; 大鼠; 图 5a
赛默飞世尔 p38抗体(Invitrogen, 36-8500)被用于被用于免疫组化-冰冻切片在大鼠样本上浓度为1:250 (图 2d) 和 被用于免疫印迹在大鼠样本上 (图 5a). Antioxidants (Basel) (2020) ncbi
小鼠 单克隆(4NIT4KK)
  • 流式细胞仪; 人类; 图 s5
赛默飞世尔 p38抗体(eBioscience, 4NIT4KK)被用于被用于流式细胞仪在人类样本上 (图 s5). Eur J Immunol (2018) ncbi
小鼠 单克隆(4NIT4KK)
  • 流式细胞仪; 小鼠; 图 5c
赛默飞世尔 p38抗体(eBioscience, 17-9078-41)被用于被用于流式细胞仪在小鼠样本上 (图 5c). Cell Death Dis (2018) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 4b, 4d
赛默飞世尔 p38抗体(Biosource, 44-6846)被用于被用于免疫印迹在人类样本上 (图 4b, 4d). J Gerontol A Biol Sci Med Sci (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 7
赛默飞世尔 p38抗体(Thermo, PA1-41321)被用于被用于免疫印迹在人类样本上 (图 7). Biochem J (2017) ncbi
小鼠 单克隆(4NIT4KK)
  • 流式细胞仪; 小鼠
  • 免疫细胞化学; 小鼠; 图 5c
赛默飞世尔 p38抗体(eBioscience, 17-9078-42)被用于被用于流式细胞仪在小鼠样本上 和 被用于免疫细胞化学在小鼠样本上 (图 5c). Stem Cell Reports (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 大鼠; 图 4a
赛默飞世尔 p38抗体(生活技术, 36-8500)被用于被用于免疫印迹在大鼠样本上 (图 4a). Toxicol Sci (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 6
赛默飞世尔 p38抗体(Invitrogen, 44-684G)被用于被用于免疫印迹在人类样本上 (图 6). Sci Rep (2016) ncbi
小鼠 单克隆(p38-3F11)
  • 免疫细胞化学; 大鼠; 1:500; 图 9
  • 免疫印迹; 大鼠; 图 s6
赛默飞世尔 p38抗体(Invitrogen, p38-3F11)被用于被用于免疫细胞化学在大鼠样本上浓度为1:500 (图 9) 和 被用于免疫印迹在大鼠样本上 (图 s6). Stem Cells Dev (2016) ncbi
小鼠 单克隆(4NIT4KK)
  • 流式细胞仪; 小鼠
赛默飞世尔 p38抗体(eBioscience, 4NIT4KK)被用于被用于流式细胞仪在小鼠样本上. Oncotarget (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 鸡; 1:100; 图 2b
赛默飞世尔 p38抗体(Thermo, PA1-84807)被用于被用于免疫印迹在鸡样本上浓度为1:100 (图 2b). Biometals (2016) ncbi
domestic rabbit 重组(B10H8L5)
  • 免疫印迹; 人类; 1:1000; 图 3
赛默飞世尔 p38抗体(生活技术, 701057)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3). Int J Mol Sci (2015) ncbi
domestic rabbit 单克隆(F.52.8)
  • 免疫组化-石蜡切片; 斑马鱼; 1:200
赛默飞世尔 p38抗体(Thermo Scientific, MA5-15177)被用于被用于免疫组化-石蜡切片在斑马鱼样本上浓度为1:200. J Immunol (2015) ncbi
小鼠 单克隆(p38-3F11)
  • 免疫印迹; 小鼠; 图 4
赛默飞世尔 p38抗体(Invitrogen, 331300)被用于被用于免疫印迹在小鼠样本上 (图 4). Mol Endocrinol (2013) ncbi
Novus Biologicals
domestic rabbit 多克隆(AP-MAB0806)
  • 免疫印迹; 小鼠; 1:1000; 图 9a
Novus Biologicals p38抗体(Novus, NB500-138)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 9a). Front Mol Biosci (2020) ncbi
赛信通(上海)生物试剂有限公司
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 3c
赛信通(上海)生物试剂有限公司 p38抗体(CST, 9211S)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3c). Cell Death Discov (2022) ncbi
domestic rabbit 单克隆(3D7)
  • 免疫印迹; 人类; 1:1000; 图 1f
赛信通(上海)生物试剂有限公司 p38抗体(CST, 9215)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 1f). Allergy Asthma Immunol Res (2022) ncbi
domestic rabbit 单克隆(3D7)
  • 免疫印迹; 小鼠; 1:1000; 图 s4a
赛信通(上海)生物试剂有限公司 p38抗体(CST, 9215)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 s4a). Nat Commun (2022) ncbi
domestic rabbit 单克隆(D13E1)
  • 免疫印迹; 小鼠; 图 8g, 8h
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling Technology, 8690)被用于被用于免疫印迹在小鼠样本上 (图 8g, 8h). PLoS Pathog (2022) ncbi
domestic rabbit 单克隆(D13E1)
  • 免疫印迹; 人类; 1:1000; 图 7a
赛信通(上海)生物试剂有限公司 p38抗体(ell Signaling, 8690)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 7a). elife (2022) ncbi
domestic rabbit 单克隆(D13E1)
  • 免疫印迹; 人类; 图 2a
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling, 8690)被用于被用于免疫印迹在人类样本上 (图 2a). iScience (2022) ncbi
domestic rabbit 单克隆(D13E1)
  • 免疫印迹; 小鼠; 1:1000; 图 6a
赛信通(上海)生物试剂有限公司 p38抗体(CST, 8690)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 6a). Front Cardiovasc Med (2022) ncbi
domestic rabbit 单克隆(D13E1)
  • 免疫印迹; 人类; 图 7c
赛信通(上海)生物试剂有限公司 p38抗体(CST, 8690)被用于被用于免疫印迹在人类样本上 (图 7c). Int J Med Sci (2022) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 5a
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling Technology, 9212)被用于被用于免疫印迹在人类样本上 (图 5a). Int J Mol Sci (2022) ncbi
domestic rabbit 单克隆(D13E1)
  • 免疫印迹; 小鼠; 1:1000; 图 5b
  • 免疫印迹; 人类; 1:1000; 图 5g
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling, 8690T)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 5b) 和 被用于免疫印迹在人类样本上浓度为1:1000 (图 5g). Nat Commun (2022) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 2c, 3f
赛信通(上海)生物试剂有限公司 p38抗体(CST, 9212)被用于被用于免疫印迹在人类样本上 (图 2c, 3f). J Immunother Cancer (2022) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 大鼠; 图 5b
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling, 9211)被用于被用于免疫印迹在大鼠样本上 (图 5b). J Neuroinflammation (2022) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 3b
赛信通(上海)生物试剂有限公司 p38抗体(CST, 9212)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3b). Leukemia (2022) ncbi
domestic rabbit 单克隆(12F8)
  • 免疫印迹; 小鼠; 1:1000; 图 2m
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling, 4631S)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 2m). Nat Commun (2022) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 5a
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling, 9211)被用于被用于免疫印迹在小鼠样本上 (图 5a). Front Immunol (2022) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 5a
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling, 9212)被用于被用于免疫印迹在小鼠样本上 (图 5a). Front Immunol (2022) ncbi
domestic rabbit 单克隆(12F8)
  • 其他; 小鼠; 图 6n, 7n
  • 免疫印迹; 小鼠; 1:1000; 图 s2b
  • 免疫印迹; 人类; 1:1000; 图 s2a
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling, 4631)被用于被用于其他在小鼠样本上 (图 6n, 7n), 被用于免疫印迹在小鼠样本上浓度为1:1000 (图 s2b) 和 被用于免疫印迹在人类样本上浓度为1:1000 (图 s2a). Autophagy (2022) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 5b
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling, 9211)被用于被用于免疫印迹在人类样本上 (图 5b). Clin Transl Med (2022) ncbi
小鼠 单克隆(28B10)
  • 免疫印迹; 小鼠; 图 2b
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling, 9216)被用于被用于免疫印迹在小鼠样本上 (图 2b). Signal Transduct Target Ther (2022) ncbi
domestic rabbit 单克隆(D13E1)
  • 免疫印迹; 小鼠; 图 2b
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling, 8690)被用于被用于免疫印迹在小鼠样本上 (图 2b). Signal Transduct Target Ther (2022) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:100; 图 7a
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling, 9211)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:100 (图 7a). Int J Mol Sci (2022) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 4d
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling, 9212)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 4d). J Cachexia Sarcopenia Muscle (2022) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 4d
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling, 9211)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 4d). J Cachexia Sarcopenia Muscle (2022) ncbi
domestic rabbit 单克隆(D13E1)
  • 免疫印迹; 人类; 1:1000; 图 5a
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling, 8690)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 5a). Commun Biol (2022) ncbi
domestic rabbit 单克隆(D13E1)
  • 免疫印迹; 小鼠; 1:1000; 图 6g
赛信通(上海)生物试剂有限公司 p38抗体(CST, 8690)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 6g). Front Immunol (2021) ncbi
domestic rabbit 单克隆(3D7)
  • 免疫印迹; 小鼠; 图 6a
赛信通(上海)生物试剂有限公司 p38抗体(CST, 4092S)被用于被用于免疫印迹在小鼠样本上 (图 6a). Theranostics (2021) ncbi
domestic rabbit 单克隆(D13E1)
  • 免疫印迹; 小鼠; 1:1000; 图 4c
赛信通(上海)生物试剂有限公司 p38抗体(CST, 8690)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 4c). Cancers (Basel) (2021) ncbi
domestic rabbit 单克隆(3D7)
  • 免疫印迹; 小鼠; 1:1000; 图 3f
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signalling Technology, CST9215)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 3f). Nat Commun (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 3f
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signalling Technology, CST9212)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 3f). Nat Commun (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 4e
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling Technology, 9211)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 4e). Antioxidants (Basel) (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 7b
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling Technology, 9212)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 7b). Cells (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 7b
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling Technology, 9211)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 7b). Cells (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 4a
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signalling, 9211)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 4a). NPJ Breast Cancer (2021) ncbi
domestic rabbit 单克隆(3D7)
  • 免疫印迹; 小鼠; 图 7a
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling, 9215)被用于被用于免疫印迹在小鼠样本上 (图 7a). Int J Mol Sci (2021) ncbi
domestic rabbit 单克隆(D13E1)
  • 免疫印迹; 小鼠; 1:1000; 图 4e
赛信通(上海)生物试剂有限公司 p38抗体(CST, 8690)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 4e). Front Cell Dev Biol (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 5b
赛信通(上海)生物试剂有限公司 p38抗体(CST, 9212)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 5b). J Inflamm Res (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 5b
赛信通(上海)生物试剂有限公司 p38抗体(CST, 9211)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 5b). J Inflamm Res (2021) ncbi
domestic rabbit 单克隆(D13E1)
  • 免疫印迹; 人类; 1:2000; 图 7d
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling, 8690S)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 7d). Oxid Med Cell Longev (2021) ncbi
domestic rabbit 单克隆(D13E1)
  • 免疫印迹; 人类; 图 s2
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling, 8690)被用于被用于免疫印迹在人类样本上 (图 s2). Cell Death Dis (2021) ncbi
domestic rabbit 单克隆(D13E1)
  • 免疫组化-石蜡切片; 人类; 图 5f
  • 免疫印迹; 人类; 1:1000; 图 3f, 5d
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling, 8690)被用于被用于免疫组化-石蜡切片在人类样本上 (图 5f) 和 被用于免疫印迹在人类样本上浓度为1:1000 (图 3f, 5d). Front Oncol (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 5a
赛信通(上海)生物试剂有限公司 p38抗体(CST, 9212)被用于被用于免疫印迹在小鼠样本上 (图 5a). Front Pharmacol (2021) ncbi
domestic rabbit 单克隆(3D7)
  • 免疫印迹; 小鼠; 图 5a
赛信通(上海)生物试剂有限公司 p38抗体(CST, 9215)被用于被用于免疫印迹在小鼠样本上 (图 5a). Front Pharmacol (2021) ncbi
domestic rabbit 单克隆(D13E1)
  • 免疫印迹; 大鼠; 1:1000; 图 3i
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling Technology, 8690)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 3i). Front Pharmacol (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 2a
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling, 9212)被用于被用于免疫印迹在人类样本上 (图 2a). NPJ Breast Cancer (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 4a
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling, 9212S)被用于被用于免疫印迹在小鼠样本上 (图 4a). Int J Mol Sci (2021) ncbi
小鼠 单克隆(28B10)
  • 免疫印迹; 小鼠; 图 4a
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling, 9216S)被用于被用于免疫印迹在小鼠样本上 (图 4a). Int J Mol Sci (2021) ncbi
小鼠 单克隆(28B10)
  • 免疫印迹; 小鼠; 1:200; 图 s3
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling, 9216S)被用于被用于免疫印迹在小鼠样本上浓度为1:200 (图 s3). Acta Neuropathol Commun (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:500; 图 s2
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling, 9212S)被用于被用于免疫印迹在小鼠样本上浓度为1:500 (图 s2). Acta Neuropathol Commun (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 3a
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling Technology, 9212)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3a). Clin Transl Med (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 5a
赛信通(上海)生物试剂有限公司 p38抗体(CST, 9211)被用于被用于免疫印迹在人类样本上 (图 5a). Sci Rep (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 s2a
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling, 9212)被用于被用于免疫印迹在小鼠样本上 (图 s2a). Front Pharmacol (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 7c
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling, 9212)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 7c). Skelet Muscle (2021) ncbi
domestic rabbit 单克隆(D13E1)
  • 免疫印迹; 人类; 1:1000; 图 3e
赛信通(上海)生物试剂有限公司 p38抗体(CST, 8690)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3e). J Biol Chem (2021) ncbi
domestic rabbit 单克隆(3D7)
  • 免疫印迹; 小鼠; 图 7e
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling, 9215S)被用于被用于免疫印迹在小鼠样本上 (图 7e). Nucleic Acids Res (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 7e
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling, 9212S)被用于被用于免疫印迹在小鼠样本上 (图 7e). Nucleic Acids Res (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:700; 图 6
赛信通(上海)生物试剂有限公司 p38抗体(CST, 9212)被用于被用于免疫印迹在人类样本上浓度为1:700 (图 6). Int J Endocrinol (2021) ncbi
小鼠 单克隆(28B10)
  • 免疫印迹; 人类; 1:700; 图 6
赛信通(上海)生物试剂有限公司 p38抗体(CST, 9216)被用于被用于免疫印迹在人类样本上浓度为1:700 (图 6). Int J Endocrinol (2021) ncbi
domestic rabbit 单克隆(D13E1)
  • 免疫印迹; 小鼠; 1:1000; 图 1a
赛信通(上海)生物试剂有限公司 p38抗体(CST, 8690)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 1a). JCI Insight (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 3a
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling Technology, 9211)被用于被用于免疫印迹在人类样本上 (图 3a). Sci Rep (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; pigs
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling Technology, 9211)被用于被用于免疫印迹在pigs 样本上. Nucleic Acids Res (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 4f
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling, 9211)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 4f). Cell Death Dis (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 4f
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling, 9212)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 4f). Cell Death Dis (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 4a
赛信通(上海)生物试剂有限公司 p38抗体(CST, 9212)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 4a). Diabetologia (2021) ncbi
domestic rabbit 单克隆(D13E1)
  • 免疫印迹; 大鼠; 1:1000; 图 7a
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling Technology, 8690)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 7a). J Cardiothorac Surg (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 3b
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signalling, 9212)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3b). Environ Health Perspect (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 3b
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signalling, 9211)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3b). Environ Health Perspect (2021) ncbi
domestic rabbit 单克隆(D13E1)
  • 免疫印迹; 小鼠; 图 6a
赛信通(上海)生物试剂有限公司 p38抗体(CST, 8690)被用于被用于免疫印迹在小鼠样本上 (图 6a). Front Immunol (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 6a
赛信通(上海)生物试剂有限公司 p38抗体(Cell signaling technology, 9212)被用于被用于免疫印迹在人类样本上 (图 6a). Cell Death Dis (2021) ncbi
domestic rabbit 单克隆(D13E1)
  • 免疫印迹; 小鼠; 1:1000; 图 6b
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling Technology, 8690S)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 6b). Aging (Albany NY) (2021) ncbi
domestic rabbit 单克隆(3D7)
  • 免疫印迹; 人类; 1:1000; 图 6d
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signalling, 9215)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 6d). Nat Commun (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 6d
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signalling, 9212)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 6d). Nat Commun (2021) ncbi
domestic rabbit 单克隆(D13E1)
  • 免疫印迹; 人类; 1:1000; 图 1f
赛信通(上海)生物试剂有限公司 p38抗体(Cell signaling, 8690)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 1f). Antioxidants (Basel) (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 3e
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling, 9212)被用于被用于免疫印迹在小鼠样本上 (图 3e). Aging (Albany NY) (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 3e
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling, 9211S)被用于被用于免疫印迹在小鼠样本上 (图 3e). Aging (Albany NY) (2021) ncbi
domestic rabbit 单克隆(D13E1)
  • 免疫印迹; 人类; 图 3a
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling, 8690)被用于被用于免疫印迹在人类样本上 (图 3a). Adv Sci (Weinh) (2021) ncbi
domestic rabbit 单克隆(D13E1)
  • 免疫印迹; 小鼠; 1:1000; 图 s7a
赛信通(上海)生物试剂有限公司 p38抗体(CST, 8690T)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 s7a). PLoS Biol (2021) ncbi
domestic rabbit 单克隆(3D7)
  • 免疫印迹; 小鼠; 图 7e
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling, 9215)被用于被用于免疫印迹在小鼠样本上 (图 7e). Sci Rep (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 7e
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling, 9212)被用于被用于免疫印迹在小鼠样本上 (图 7e). Sci Rep (2021) ncbi
domestic rabbit 单克隆(D13E1)
  • 免疫印迹; 人类; 图 6b
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling, 8690)被用于被用于免疫印迹在人类样本上 (图 6b). Oncogenesis (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 s1
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling, 9211)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 s1). Aging Cell (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 3c
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling, 9212)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 3c). Aging Cell (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 4b
赛信通(上海)生物试剂有限公司 p38抗体(CST, 9211)被用于被用于免疫印迹在小鼠样本上 (图 4b). Int J Mol Sci (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 4b, 5b
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling, 9212)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 4b, 5b). Mol Metab (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 4b, 5b
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling, 9211)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 4b, 5b). Mol Metab (2021) ncbi
domestic rabbit 单克隆(D13E1)
  • 免疫印迹; 小鼠; 图 3f
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling, 8690)被用于被用于免疫印迹在小鼠样本上 (图 3f). Signal Transduct Target Ther (2021) ncbi
domestic rabbit 单克隆(12F8)
  • 免疫印迹; 小鼠; 图 3f
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling, 4631)被用于被用于免疫印迹在小鼠样本上 (图 3f). Signal Transduct Target Ther (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 8a
赛信通(上海)生物试剂有限公司 p38抗体(CST, 9212s)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 8a). Oxid Med Cell Longev (2021) ncbi
domestic rabbit 单克隆(3D7)
  • 免疫印迹; 小鼠; 1:100; 图 4f
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling, 9215)被用于被用于免疫印迹在小鼠样本上浓度为1:100 (图 4f). Cell Death Dis (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 4a
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling, 9212)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 4a). Cancer Sci (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 4a
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling, 9211)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 4a). Cancer Sci (2021) ncbi
domestic rabbit 单克隆(D13E1)
  • 免疫印迹; 小鼠; 1:1000; 图 5b
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling Technology, 8690S)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 5b). Aging (Albany NY) (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:500; 图 1f
赛信通(上海)生物试剂有限公司 p38抗体(cst, 9212)被用于被用于免疫印迹在小鼠样本上浓度为1:500 (图 1f). Cell Mol Gastroenterol Hepatol (2021) ncbi
domestic rabbit 单克隆(D13E1)
  • 免疫印迹; 小鼠; 图 4d
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling Technology, 8690)被用于被用于免疫印迹在小鼠样本上 (图 4d). Redox Biol (2021) ncbi
domestic rabbit 单克隆(D13E1)
  • 免疫印迹; 小鼠; 1:1000; 图 5a
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling Technology, 8690)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 5a). Cell Mol Gastroenterol Hepatol (2021) ncbi
domestic rabbit 单克隆(D13E1)
  • 免疫印迹; 小鼠; 1:1000; 图 s4b, s5b
赛信通(上海)生物试剂有限公司 p38抗体(Cell signaling, 8690)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 s4b, s5b). Sci Signal (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 4d, 4e
  • 免疫印迹; 人类; 1:1000; 图 2e
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling, 9212)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 4d, 4e) 和 被用于免疫印迹在人类样本上浓度为1:1000 (图 2e). Proc Natl Acad Sci U S A (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 ev1i
赛信通(上海)生物试剂有限公司 p38抗体(cell signaling, 9211)被用于被用于免疫印迹在小鼠样本上 (图 ev1i). EMBO Mol Med (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 ev1i
赛信通(上海)生物试剂有限公司 p38抗体(cell signaling, 9212)被用于被用于免疫印迹在小鼠样本上 (图 ev1i). EMBO Mol Med (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 3m
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling Technology, 9211)被用于被用于免疫印迹在人类样本上 (图 3m). Cell Death Dis (2021) ncbi
domestic rabbit 单克隆(3D7)
  • 免疫印迹; 人类; 1:1000; 图 s1c
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling Technology, 9215)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 s1c). Nat Commun (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 s4a
赛信通(上海)生物试剂有限公司 p38抗体(CST, 9212)被用于被用于免疫印迹在小鼠样本上 (图 s4a). Nat Commun (2020) ncbi
小鼠 单克隆(28B10)
  • 免疫印迹; 小鼠; 图 s4a
赛信通(上海)生物试剂有限公司 p38抗体(CST, 9216)被用于被用于免疫印迹在小鼠样本上 (图 s4a). Nat Commun (2020) ncbi
domestic rabbit 单克隆(3D7)
  • 免疫印迹; 小鼠; 1:1000; 图 6c
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling, 9215)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 6c). Bone Res (2020) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 6c
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling, 9212)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 6c). Bone Res (2020) ncbi
domestic rabbit 单克隆(D13E1)
  • 免疫印迹; 小鼠; 图 s3
赛信通(上海)生物试剂有限公司 p38抗体(CST, 8690S)被用于被用于免疫印迹在小鼠样本上 (图 s3). Cell Death Discov (2020) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 5
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling Technology, 9211)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 5). Aging (Albany NY) (2020) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:2000; 图 5
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling Technology, 9212)被用于被用于免疫印迹在小鼠样本上浓度为1:2000 (图 5). Aging (Albany NY) (2020) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 s8d
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling, 9211)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 s8d). J Pathol (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 s8d
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling, 9212)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 s8d). J Pathol (2021) ncbi
domestic rabbit 单克隆(12F8)
  • 免疫印迹; 小鼠; 图 4b
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling Tech, 4631S)被用于被用于免疫印迹在小鼠样本上 (图 4b). Clin Transl Immunology (2020) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 4b
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling Tech, 9212S)被用于被用于免疫印迹在小鼠样本上 (图 4b). Clin Transl Immunology (2020) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling Technologies, 9212)被用于被用于免疫印迹在人类样本上. PLoS Pathog (2020) ncbi
domestic rabbit 单克隆(D13E1)
  • 免疫印迹; 大鼠; 图 6b
赛信通(上海)生物试剂有限公司 p38抗体(CST, 8690)被用于被用于免疫印迹在大鼠样本上 (图 6b). Aging (Albany NY) (2020) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 1a, 1b
赛信通(上海)生物试剂有限公司 p38抗体(CST, 9211)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 1a, 1b). Adipocyte (2020) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 1a, 1b
赛信通(上海)生物试剂有限公司 p38抗体(CST, 9212)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 1a, 1b). Adipocyte (2020) ncbi
domestic rabbit 单克隆(D13E1)
  • 免疫印迹; 小鼠; 1:1000; 图 6a, 6b
赛信通(上海)生物试剂有限公司 p38抗体(CST, 8690)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 6a, 6b). Theranostics (2020) ncbi
小鼠 单克隆(28B10)
  • 流式细胞仪; 人类; 图 6b
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling Technology, 28B10)被用于被用于流式细胞仪在人类样本上 (图 6b). Cell Mol Gastroenterol Hepatol (2021) ncbi
domestic rabbit 单克隆(D13E1)
  • 免疫印迹; 小鼠; 1:1000; 图 3c
赛信通(上海)生物试剂有限公司 p38抗体(Cell signaling technology, 8690)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 3c). Front Immunol (2020) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 s2h
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling Technology, 9212)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 s2h). elife (2020) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling, 9212)被用于被用于免疫印迹在小鼠样本上浓度为1:1000. Nat Metab (2020) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling, 9211)被用于被用于免疫印迹在小鼠样本上浓度为1:1000. Nat Metab (2020) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 6c
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling, 9211S)被用于被用于免疫印迹在人类样本上 (图 6c). Cell (2020) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 4h
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling Technology, 9212)被用于被用于免疫印迹在人类样本上 (图 4h). Cell (2020) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 4h
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling Technology, 9211)被用于被用于免疫印迹在人类样本上 (图 4h). Cell (2020) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 5f
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling, 9211s)被用于被用于免疫印迹在人类样本上 (图 5f). PLoS Pathog (2020) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 5f
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling, 9212)被用于被用于免疫印迹在人类样本上 (图 5f). PLoS Pathog (2020) ncbi
domestic rabbit 多克隆
  • 免疫印迹; roundworm ; 图 6h
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling, 9211)被用于被用于免疫印迹在roundworm 样本上 (图 6h). elife (2020) ncbi
domestic rabbit 单克隆(D13E1)
  • 免疫印迹; 小鼠; 图 7a
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling, 8690)被用于被用于免疫印迹在小鼠样本上 (图 7a). J Cardiovasc Dev Dis (2020) ncbi
domestic rabbit 单克隆(D13E1)
  • 免疫印迹; 小鼠; 图 4c
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling Technology, 8690)被用于被用于免疫印迹在小鼠样本上 (图 4c). Cell Death Dis (2020) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 4c
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling Technology, 9211)被用于被用于免疫印迹在小鼠样本上 (图 4c). Cell Death Dis (2020) ncbi
domestic rabbit 单克隆(D13E1)
  • 免疫印迹; 人类; 1:1000; 图 8f
赛信通(上海)生物试剂有限公司 p38抗体(CST Biological Reagents Co, 8690)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 8f). Int J Mol Med (2020) ncbi
domestic rabbit 单克隆(3D7)
  • 免疫组化; fruit fly ; 1:100; 图 5f
  • 免疫印迹; fruit fly ; 1:1000; 图 s5b
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling, 9215)被用于被用于免疫组化在fruit fly 样本上浓度为1:100 (图 5f) 和 被用于免疫印迹在fruit fly 样本上浓度为1:1000 (图 s5b). Commun Biol (2020) ncbi
小鼠 单克隆(28B10)
  • 免疫印迹; 小鼠; 1:2000; 图 3f
赛信通(上海)生物试剂有限公司 p38抗体(CST, 9216)被用于被用于免疫印迹在小鼠样本上浓度为1:2000 (图 3f). Nat Commun (2020) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 5d
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling Technology, 9211)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 5d). Cell Death Dis (2020) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 6h
  • 免疫印迹; 小鼠; 图 6d
赛信通(上海)生物试剂有限公司 p38抗体(CST, 9212)被用于被用于免疫印迹在人类样本上 (图 6h) 和 被用于免疫印迹在小鼠样本上 (图 6d). Hepatology (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 1a
赛信通(上海)生物试剂有限公司 p38抗体(CST, 9212)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 1a). Alzheimers Res Ther (2020) ncbi
domestic rabbit 单克隆(3D7)
  • 免疫印迹; 小鼠; 1:1000; 图 1a
赛信通(上海)生物试剂有限公司 p38抗体(CST, 9215)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 1a). Alzheimers Res Ther (2020) ncbi
domestic rabbit 单克隆(3D7)
  • 免疫印迹; 人类; 1:500; 图 2g, 2s1a, 2s3d
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling, 9215)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 2g, 2s1a, 2s3d). elife (2020) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:500; 图 2k
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling, 9212)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 2k). elife (2020) ncbi
domestic rabbit 单克隆(D13E1)
  • 免疫印迹; 人类; 图 s1d
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling, 8690)被用于被用于免疫印迹在人类样本上 (图 s1d). Nat Commun (2020) ncbi
小鼠 单克隆(28B10)
  • 免疫印迹; 人类; 图 s1d
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling, 9216)被用于被用于免疫印迹在人类样本上 (图 s1d). Nat Commun (2020) ncbi
domestic rabbit 单克隆(D13E1)
  • 免疫印迹; 大鼠; 1:1000; 图 5a
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling, 8690)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 5a). Biosci Rep (2020) ncbi
domestic rabbit 单克隆(D13E1)
  • 免疫印迹; 大鼠; 1:1000; 图 s2a
赛信通(上海)生物试剂有限公司 p38抗体(CST, 8690)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 s2a). Bone Res (2020) ncbi
domestic rabbit 单克隆(D13E1)
  • 免疫印迹; 小鼠; 图 4b
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling, 8690)被用于被用于免疫印迹在小鼠样本上 (图 4b). Drug Des Devel Ther (2020) ncbi
小鼠 单克隆(28B10)
  • 免疫印迹; 小鼠; 图 4b
  • 免疫组化-石蜡切片; 人类; 图 4d
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling, 9216)被用于被用于免疫印迹在小鼠样本上 (图 4b) 和 被用于免疫组化-石蜡切片在人类样本上 (图 4d). Drug Des Devel Ther (2020) ncbi
domestic rabbit 单克隆(3D7)
  • 免疫印迹; 人类; 图 6b
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling, 9215)被用于被用于免疫印迹在人类样本上 (图 6b). Cell Commun Signal (2020) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 6b
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling, 9212)被用于被用于免疫印迹在人类样本上 (图 6b). Cell Commun Signal (2020) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 大鼠; 1:1000; 图 10c
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling, 9212)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 10c). Aging (Albany NY) (2020) ncbi
domestic rabbit 单克隆(D13E1)
  • 免疫印迹; 人类; 图 4a
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling Technology, 8690)被用于被用于免疫印迹在人类样本上 (图 4a). Aging (Albany NY) (2020) ncbi
domestic rabbit 单克隆(D13E1)
  • 免疫印迹; 人类; 1:400; 图 4a
赛信通(上海)生物试剂有限公司 p38抗体(CST, 8690)被用于被用于免疫印迹在人类样本上浓度为1:400 (图 4a). Int J Oncol (2020) ncbi
小鼠 单克隆(28B10)
  • 免疫组化-石蜡切片; 人类; 图 9a
  • 免疫印迹; 人类; 1:400; 图 4a
赛信通(上海)生物试剂有限公司 p38抗体(CST, 4551)被用于被用于免疫组化-石蜡切片在人类样本上 (图 9a) 和 被用于免疫印迹在人类样本上浓度为1:400 (图 4a). Int J Oncol (2020) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 2a
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signalling, 9211)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 2a). Artif Cells Nanomed Biotechnol (2020) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 2a
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signalling, 9212)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 2a). Artif Cells Nanomed Biotechnol (2020) ncbi
domestic rabbit 单克隆(D13E1)
  • 免疫印迹; 人类; 1:1000; 图 4a
赛信通(上海)生物试剂有限公司 p38抗体(CST, 8690)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 4a). Cancer Lett (2020) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 7a, 7b
赛信通(上海)生物试剂有限公司 p38抗体(CST, 9212)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 7a, 7b). Mol Cells (2020) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 7a, 7b
赛信通(上海)生物试剂有限公司 p38抗体(CST, 9211)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 7a, 7b). Mol Cells (2020) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 s1f
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling, 9211)被用于被用于免疫印迹在小鼠样本上 (图 s1f). Cell (2020) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 s1f
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling, 9212)被用于被用于免疫印迹在小鼠样本上 (图 s1f). Cell (2020) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 5b
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling, 9211)被用于被用于免疫印迹在人类样本上 (图 5b). BMC Cardiovasc Disord (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 5b
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling, 9212)被用于被用于免疫印迹在人类样本上 (图 5b). BMC Cardiovasc Disord (2019) ncbi
domestic rabbit 单克隆(D13E1)
  • 免疫印迹; 大鼠; 图 6a
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling, 8690)被用于被用于免疫印迹在大鼠样本上 (图 6a). Aging (Albany NY) (2019) ncbi
domestic rabbit 单克隆(3D7)
  • 免疫印迹; 人类; 1:1000; 图 3b
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling, 3D7)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3b). Nat Immunol (2020) ncbi
domestic rabbit 单克隆(D13E1)
  • 免疫印迹; 人类; 1:1000; 图 4d
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling Technology, 8690)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 4d). Int J Oncol (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 s4i
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling Technology, 9211)被用于被用于免疫印迹在小鼠样本上 (图 s4i). Cell (2019) ncbi
domestic rabbit 单克隆(D13E1)
  • 免疫印迹; 小鼠; 图 s4i
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling Technology, 8690)被用于被用于免疫印迹在小鼠样本上 (图 s4i). Cell (2019) ncbi
domestic rabbit 单克隆(D13E1)
  • 免疫印迹; 小鼠; 图 s13h
赛信通(上海)生物试剂有限公司 p38抗体(CST, 8690T)被用于被用于免疫印迹在小鼠样本上 (图 s13h). Science (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 3e
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling Technology, 9212)被用于被用于免疫印迹在小鼠样本上 (图 3e). Mol Med Rep (2020) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 3e
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling Technology, 9211)被用于被用于免疫印迹在小鼠样本上 (图 3e). Mol Med Rep (2020) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 6d
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling, 9212)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 6d). Sci Rep (2019) ncbi
domestic rabbit 单克隆(12F8)
  • 免疫印迹; 人类; 1:1000; 图 6d
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling, 4631 S)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 6d). Sci Rep (2019) ncbi
domestic rabbit 单克隆(D13E1)
  • 免疫印迹; 小鼠; 1:1000; 图 3g, s1w
赛信通(上海)生物试剂有限公司 p38抗体(CST, 8690)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 3g, s1w). Science (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:500; 图 5b
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling, cs-9212)被用于被用于免疫印迹在小鼠样本上浓度为1:500 (图 5b). Am J Transl Res (2019) ncbi
小鼠 单克隆(28B10)
  • 免疫印迹; 大鼠; 1:500; 图 4f
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling Technology, 9216)被用于被用于免疫印迹在大鼠样本上浓度为1:500 (图 4f). Sci Signal (2019) ncbi
小鼠 单克隆(L53F8)
  • 免疫印迹; 大鼠; 1:500; 图 4f
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling Technology, 9228)被用于被用于免疫印迹在大鼠样本上浓度为1:500 (图 4f). Sci Signal (2019) ncbi
domestic rabbit 单克隆(12F8)
  • 免疫印迹; 人类; 图 4c
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling, 4631S)被用于被用于免疫印迹在人类样本上 (图 4c). Cells (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 4c
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling, 9212S)被用于被用于免疫印迹在人类样本上 (图 4c). Cells (2019) ncbi
domestic rabbit 单克隆(3D7)
  • 免疫细胞化学; 人类; 1:100; 图 2a
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling, 9215)被用于被用于免疫细胞化学在人类样本上浓度为1:100 (图 2a). FASEB J (2019) ncbi
domestic rabbit 单克隆(D13E1)
  • 免疫印迹; 人类; 图 6a
  • 免疫印迹; 小鼠; 图 6b
赛信通(上海)生物试剂有限公司 p38抗体(CST, 8690)被用于被用于免疫印迹在人类样本上 (图 6a) 和 被用于免疫印迹在小鼠样本上 (图 6b). Int J Chron Obstruct Pulmon Dis (2019) ncbi
domestic rabbit 单克隆(D13E1)
  • 免疫印迹; 小鼠; 1:1000; 图 11a
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling, 8690)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 11a). Biomolecules (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 3f
赛信通(上海)生物试剂有限公司 p38抗体(CST, 9211)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3f). elife (2019) ncbi
domestic rabbit 单克隆(D13E1)
  • 免疫印迹; 人类; 1:1000; 图 5a
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling Technology, 8690)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 5a). J Physiol Biochem (2019) ncbi
domestic rabbit 单克隆(D13E1)
  • 免疫印迹; 人类; 图 7f
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling Technology, 8690s)被用于被用于免疫印迹在人类样本上 (图 7f). Cell Rep (2019) ncbi
domestic rabbit 单克隆(D13E1)
  • 免疫印迹; 人类; 1:1000; 图 s2g
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling, 8690)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 s2g). Cell Metab (2019) ncbi
domestic rabbit 单克隆(D13E1)
  • 免疫印迹; 人类; 图 4d
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling, 8690)被用于被用于免疫印迹在人类样本上 (图 4d). Theranostics (2019) ncbi
domestic rabbit 单克隆(12F8)
  • 免疫印迹; 小鼠; 1:500; 图 6a
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling Technology, 4631)被用于被用于免疫印迹在小鼠样本上浓度为1:500 (图 6a). elife (2019) ncbi
domestic rabbit 单克隆(D13E1)
  • 免疫印迹; 人类; 1:5000; 图 2h
赛信通(上海)生物试剂有限公司 p38抗体(CST, 8690)被用于被用于免疫印迹在人类样本上浓度为1:5000 (图 2h). Sci Adv (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 2h
赛信通(上海)生物试剂有限公司 p38抗体(CST, 9211)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 2h). Sci Adv (2019) ncbi
domestic rabbit 单克隆(3D7)
  • 免疫印迹; 人类; 图 4a
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling, 9215S)被用于被用于免疫印迹在人类样本上 (图 4a). J Immunol (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 4a
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling, 9212S)被用于被用于免疫印迹在人类样本上 (图 4a). J Immunol (2019) ncbi
domestic rabbit 单克隆(D13E1)
  • 免疫印迹; 人类; 1:500; 图 s10d
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling, 8690T)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 s10d). Nat Commun (2019) ncbi
domestic rabbit 单克隆(3D7)
  • 免疫印迹; 人类; 图 4a
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling, 9215S)被用于被用于免疫印迹在人类样本上 (图 4a). Breast Cancer Res (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 4f
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling, 9211)被用于被用于免疫印迹在小鼠样本上 (图 4f). J Exp Med (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; pigs ; 图 1h
  • 免疫印迹; 小鼠; 图 5f
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling Technology, 9212)被用于被用于免疫印迹在pigs 样本上 (图 1h) 和 被用于免疫印迹在小鼠样本上 (图 5f). MBio (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 5f
  • 免疫印迹; pigs ; 图 1h
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling Technology, 9211)被用于被用于免疫印迹在小鼠样本上 (图 5f) 和 被用于免疫印迹在pigs 样本上 (图 1h). MBio (2019) ncbi
domestic rabbit 单克隆(D13E1)
  • 免疫印迹; 人类; 1:2000; 图 7c
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling, 8690)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 7c). Front Oncol (2019) ncbi
domestic rabbit 单克隆(3D7)
  • 免疫印迹; 小鼠; 1:1000; 图 4d
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling, 9215)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 4d). elife (2019) ncbi
domestic rabbit 单克隆(D13E1)
  • 免疫印迹; 小鼠; 1:1000; 图 4g
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling, 8690)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 4g). elife (2019) ncbi
domestic rabbit 单克隆(3D7)
  • 免疫印迹; 小鼠; 1:1000; 图 5b
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling, 9215)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 5b). Nat Commun (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 5b
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling, 9212)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 5b). Nat Commun (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:2000; 图 6d
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling, 9212)被用于被用于免疫印迹在小鼠样本上浓度为1:2000 (图 6d). Neurobiol Dis (2019) ncbi
domestic rabbit 单克隆(D13E1)
  • 免疫印迹; 小鼠; 1:1000; 图 6d
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling, 8690)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 6d). Neurobiol Dis (2019) ncbi
domestic rabbit 单克隆(D13E1)
  • 免疫印迹; 人类; 图 s6b
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling, 8690)被用于被用于免疫印迹在人类样本上 (图 s6b). Breast Cancer Res (2019) ncbi
domestic rabbit 单克隆(12F8)
  • 免疫组化-石蜡切片; 大鼠; 1:250; 图 8c, 9b
  • 免疫印迹; 大鼠; 1:250; 图 s1f
赛信通(上海)生物试剂有限公司 p38抗体(CST, 4631)被用于被用于免疫组化-石蜡切片在大鼠样本上浓度为1:250 (图 8c, 9b) 和 被用于免疫印迹在大鼠样本上浓度为1:250 (图 s1f). Histochem Cell Biol (2019) ncbi
domestic rabbit 单克隆(D13E1)
  • 免疫组化-石蜡切片; 大鼠; 1:3000; 图 s4c, s4h
赛信通(上海)生物试剂有限公司 p38抗体(CST, 8690)被用于被用于免疫组化-石蜡切片在大鼠样本上浓度为1:3000 (图 s4c, s4h). Histochem Cell Biol (2019) ncbi
domestic rabbit 单克隆(D13E1)
  • 免疫印迹; 大鼠; 图 s1
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling Technology, 8690)被用于被用于免疫印迹在大鼠样本上 (图 s1). Front Neurol (2019) ncbi
domestic rabbit 单克隆(D13E1)
  • 免疫印迹; 小鼠; 图 6a
  • 免疫印迹; 人类; 图 6f
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling, D13E1)被用于被用于免疫印迹在小鼠样本上 (图 6a) 和 被用于免疫印迹在人类样本上 (图 6f). J Exp Med (2019) ncbi
domestic rabbit 单克隆(3D7)
  • 免疫印迹; 小鼠; 图 6a
  • 免疫印迹; 人类; 图 6f
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling, 3D7)被用于被用于免疫印迹在小鼠样本上 (图 6a) 和 被用于免疫印迹在人类样本上 (图 6f). J Exp Med (2019) ncbi
domestic rabbit 单克隆(D13E1)
  • 免疫印迹; 人类; 1:2000; 图 8a
  • 免疫印迹; 小鼠; 1:2000; 图 8b
赛信通(上海)生物试剂有限公司 p38抗体(CST, 8690T)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 8a) 和 被用于免疫印迹在小鼠样本上浓度为1:2000 (图 8b). J Cell Sci (2019) ncbi
小鼠 单克隆(28B10)
  • 免疫印迹; 小鼠; 1:2500; 图 3a, 3c, s3d
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling, 9216)被用于被用于免疫印迹在小鼠样本上浓度为1:2500 (图 3a, 3c, s3d). Sci Adv (2019) ncbi
domestic rabbit 单克隆(D13E1)
  • 免疫印迹; 小鼠; 1:3000; 图 3a, 3c, s3d
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling, 8690)被用于被用于免疫印迹在小鼠样本上浓度为1:3000 (图 3a, 3c, s3d). Sci Adv (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 7f
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling, 9211)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 7f). Redox Biol (2019) ncbi
domestic rabbit 单克隆(D13E1)
  • 免疫印迹; 小鼠; 图 7a
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling, 8690)被用于被用于免疫印迹在小鼠样本上 (图 7a). Int J Biol Sci (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 猕猴; 图 1d
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling, 9212)被用于被用于免疫印迹在猕猴样本上 (图 1d). Sci Rep (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 猕猴; 图 1d
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling, 9211)被用于被用于免疫印迹在猕猴样本上 (图 1d). Sci Rep (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 2b
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling, 9212S)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 2b). Stem Cells (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 2b
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling, 9211)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 2b). Stem Cells (2019) ncbi
domestic rabbit 单克隆(D13E1)
  • 免疫印迹; 小鼠; 图 s3a
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling, 8690S)被用于被用于免疫印迹在小鼠样本上 (图 s3a). EBioMedicine (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:2000; 图 1c
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling, 9218)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 1c). Nat Commun (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 2b
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling, 9211S)被用于被用于免疫印迹在小鼠样本上 (图 2b). J Biol Chem (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 2b
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling, 9212S)被用于被用于免疫印迹在小鼠样本上 (图 2b). J Biol Chem (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 6a
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling Technology, 9212)被用于被用于免疫印迹在小鼠样本上 (图 6a). Hepatology (2019) ncbi
domestic rabbit 单克隆(3D7)
  • 免疫印迹; 人类; 图 s2
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling, 3D7)被用于被用于免疫印迹在人类样本上 (图 s2). Mol Oncol (2019) ncbi
domestic rabbit 单克隆(D13E1)
  • 免疫印迹; 人类; 图 s2
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling, D13E1)被用于被用于免疫印迹在人类样本上 (图 s2). Mol Oncol (2019) ncbi
domestic rabbit 单克隆(12F8)
  • 流式细胞仪; 人类; 图 2e
赛信通(上海)生物试剂有限公司 p38抗体(CST, 12F8)被用于被用于流式细胞仪在人类样本上 (图 2e). Front Immunol (2018) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 2c
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling Technology, 9212)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 2c). Int J Mol Med (2019) ncbi
domestic rabbit 单克隆(D13E1)
  • 免疫印迹; 人类; 1:1000; 图 5b
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling, 8690S)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 5b). Int J Mol Sci (2018) ncbi
小鼠 单克隆(28B10)
  • 免疫印迹; 小鼠; 图 s4b
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling, 9216)被用于被用于免疫印迹在小鼠样本上 (图 s4b). Cell (2018) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 3e
赛信通(上海)生物试剂有限公司 p38抗体(Cell signaling technology, 9212)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 3e). Nat Commun (2018) ncbi
domestic rabbit 单克隆(12F8)
  • 免疫印迹; 小鼠; 1:1000; 图 3e
赛信通(上海)生物试剂有限公司 p38抗体(Cell signaling technology, 4631)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 3e). Nat Commun (2018) ncbi
domestic rabbit 单克隆(3D7)
  • 免疫印迹; 小鼠; 图 4b
赛信通(上海)生物试剂有限公司 p38抗体(CST, 9215)被用于被用于免疫印迹在小鼠样本上 (图 4b). Infect Immun (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 2d
赛信通(上海)生物试剂有限公司 p38抗体(cell signaling, 9212)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 2d). Nat Commun (2018) ncbi
domestic rabbit 单克隆(D13E1)
  • 免疫印迹; 大鼠; 图 6
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling, 8690)被用于被用于免疫印迹在大鼠样本上 (图 6). Biosci Rep (2018) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 7f
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling Technology, 9212)被用于被用于免疫印迹在人类样本上 (图 7f). J Clin Invest (2018) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 7f
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling Technology, 9211s)被用于被用于免疫印迹在人类样本上 (图 7f). J Clin Invest (2018) ncbi
domestic rabbit 单克隆(3D7)
  • 免疫印迹; 人类; 图 7c
赛信通(上海)生物试剂有限公司 p38抗体(CST, 9215)被用于被用于免疫印迹在人类样本上 (图 7c). Cell Death Differ (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 8a
赛信通(上海)生物试剂有限公司 p38抗体(cst, 9211S)被用于被用于免疫印迹在小鼠样本上 (图 8a). J Exp Med (2018) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 7a
赛信通(上海)生物试剂有限公司 p38抗体(cell signaling technology, 9212s)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 7a). J Mol Cell Cardiol (2018) ncbi
domestic rabbit 单克隆(D13E1)
  • 免疫印迹; 小鼠; 1:3000; 图 s4a
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling, 8690)被用于被用于免疫印迹在小鼠样本上浓度为1:3000 (图 s4a). Nat Commun (2018) ncbi
小鼠 单克隆(28B10)
  • 免疫印迹; 小鼠; 1:2500; 图 s4a
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling, 9216)被用于被用于免疫印迹在小鼠样本上浓度为1:2500 (图 s4a). Nat Commun (2018) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 8a
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling, 9211s)被用于被用于免疫印迹在小鼠样本上 (图 8a). J Cell Mol Med (2018) ncbi
domestic rabbit 单克隆(D13E1)
  • 免疫印迹; 小鼠; 图 8a
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling, 8690s)被用于被用于免疫印迹在小鼠样本上 (图 8a). J Cell Mol Med (2018) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 6a
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling Technology, 9211s)被用于被用于免疫印迹在小鼠样本上 (图 6a). PLoS Biol (2018) ncbi
domestic rabbit 单克隆(D13E1)
  • 免疫印迹; 人类; 图 5d
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling Technology, 8690)被用于被用于免疫印迹在人类样本上 (图 5d). FASEB J (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:500; 图 s2
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling Technology, 9212)被用于被用于免疫印迹在小鼠样本上浓度为1:500 (图 s2). Nat Commun (2018) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 4d
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling Technology, 9212s)被用于被用于免疫印迹在小鼠样本上 (图 4d). J Clin Invest (2018) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 4d
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling Technology, 9211s)被用于被用于免疫印迹在小鼠样本上 (图 4d). J Clin Invest (2018) ncbi
domestic rabbit 单克隆(D13E1)
  • 免疫印迹; 人类; 图 4a
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling Technology, 8690)被用于被用于免疫印迹在人类样本上 (图 4a). Oncoimmunology (2018) ncbi
domestic rabbit 单克隆(D13E1)
  • 免疫印迹; 人类; 图 1b
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling Technology, D13E1)被用于被用于免疫印迹在人类样本上 (图 1b). Oncogene (2018) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 2i
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling Technology, 9212)被用于被用于免疫印迹在小鼠样本上 (图 2i). Nat Med (2018) ncbi
domestic rabbit 单克隆(3D7)
  • 免疫印迹; 小鼠; 图 2i
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling Technology, 9215)被用于被用于免疫印迹在小鼠样本上 (图 2i). Nat Med (2018) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 6d
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling Technology, 9211S)被用于被用于免疫印迹在小鼠样本上 (图 6d). Neurotherapeutics (2018) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 6d
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling Technology, 9212S)被用于被用于免疫印迹在小鼠样本上 (图 6d). Neurotherapeutics (2018) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 3a
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling, 9211S)被用于被用于免疫印迹在小鼠样本上 (图 3a). J Clin Invest (2018) ncbi
domestic rabbit 单克隆(D13E1)
  • 免疫印迹; 小鼠; 图 3b
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling Technologies, 8690)被用于被用于免疫印迹在小鼠样本上 (图 3b). Cell Death Dis (2018) ncbi
domestic rabbit 单克隆(D13E1)
  • 免疫印迹; 大鼠; 1:1000; 图 5
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling, 8690)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 5). Cell Physiol Biochem (2018) ncbi
  • 免疫印迹; 小鼠; 图 3a
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling, 9911)被用于被用于免疫印迹在小鼠样本上 (图 3a). Nat Commun (2018) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 5a
赛信通(上海)生物试剂有限公司 p38抗体(CST, 9211)被用于被用于免疫印迹在人类样本上 (图 5a). PLoS Pathog (2018) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 5b
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling, MAB9211)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 5b). Cell Signal (2018) ncbi
domestic rabbit 单克隆(3D7)
  • 免疫印迹; 人类; 图 6f
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling Technology, 9215)被用于被用于免疫印迹在人类样本上 (图 6f). Cell (2018) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 6f
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling Technology, 9212)被用于被用于免疫印迹在人类样本上 (图 6f). Cell (2018) ncbi
domestic rabbit 多克隆
  • 其他; 人类; 图 4c
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling, 9211)被用于被用于其他在人类样本上 (图 4c). Cancer Cell (2018) ncbi
domestic rabbit 单克隆(D13E1)
  • 免疫印迹; 小鼠; 1:1000; 图 4a
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling Technology, 8690)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 4a). Nat Commun (2018) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 6a
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling, 9211)被用于被用于免疫印迹在小鼠样本上 (图 6a). Sci Rep (2018) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 6a
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling, 9212)被用于被用于免疫印迹在小鼠样本上 (图 6a). Sci Rep (2018) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 8b
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling, 9212)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 8b). Br J Pharmacol (2018) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 8b
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling, 9211)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 8b). Br J Pharmacol (2018) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 2a
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling, 9212)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 2a). Mol Med Rep (2018) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 2a
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling, 9211)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 2a). Mol Med Rep (2018) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 5a
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signalling, 9211)被用于被用于免疫印迹在人类样本上 (图 5a). Oncogenesis (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 s5c
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling, 9211)被用于被用于免疫印迹在人类样本上 (图 s5c). Immunity (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 4a
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling, 9212)被用于被用于免疫印迹在小鼠样本上 (图 4a). J Biol Chem (2018) ncbi
domestic rabbit 单克隆(D13E1)
  • 免疫印迹; 人类; 图 s5s
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling, 8690)被用于被用于免疫印迹在人类样本上 (图 s5s). Nature (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 5a
赛信通(上海)生物试剂有限公司 p38抗体(CST, 9212)被用于被用于免疫印迹在小鼠样本上 (图 5a). Mol Neurobiol (2018) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:500; 图 3a
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling, S9211)被用于被用于免疫印迹在小鼠样本上浓度为1:500 (图 3a). Neuropharmacology (2018) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:500; 图 3
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling, 9212)被用于被用于免疫印迹在小鼠样本上浓度为1:500 (图 3). Exp Neurol (2018) ncbi
domestic rabbit 单克隆(D13E1)
  • 免疫印迹; 小鼠; 图 s6e
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling, D13E1)被用于被用于免疫印迹在小鼠样本上 (图 s6e). Eur J Immunol (2018) ncbi
domestic rabbit 单克隆(D13E1)
  • 免疫印迹; 小鼠; 图 s8d
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling, 8690)被用于被用于免疫印迹在小鼠样本上 (图 s8d). Proc Natl Acad Sci U S A (2017) ncbi
domestic rabbit 单克隆(3D7)
  • 免疫印迹; 小鼠; 图 1f
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling, 9215)被用于被用于免疫印迹在小鼠样本上 (图 1f). Proc Natl Acad Sci U S A (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 6d
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling, 9212)被用于被用于免疫印迹在小鼠样本上 (图 6d). Infect Immun (2017) ncbi
domestic rabbit 单克隆(D13E1)
  • 免疫印迹; 小鼠; 图 7d
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling Technology, D13E1)被用于被用于免疫印迹在小鼠样本上 (图 7d). Sci Rep (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 4g
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling Technology, 9211)被用于被用于免疫印迹在小鼠样本上 (图 4g). Sci Rep (2017) ncbi
domestic rabbit 单克隆(12F8)
  • 免疫组化; 小鼠; 1:500; 图 3
赛信通(上海)生物试剂有限公司 p38抗体(cell signalling, 4631)被用于被用于免疫组化在小鼠样本上浓度为1:500 (图 3). Hum Mol Genet (2017) ncbi
domestic rabbit 单克隆(D13E1)
  • 免疫印迹; 人类; 图 4a
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling, 8690S)被用于被用于免疫印迹在人类样本上 (图 4a). PLoS Pathog (2017) ncbi
domestic rabbit 单克隆(3D7)
  • 免疫印迹; 小鼠; 图 s5b
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling, 9215)被用于被用于免疫印迹在小鼠样本上 (图 s5b). J Clin Invest (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 1d
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling, 9212)被用于被用于免疫印迹在人类样本上 (图 1d). Biochem J (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 1c
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling, 9211)被用于被用于免疫印迹在人类样本上 (图 1c). Biochem J (2017) ncbi
domestic rabbit 单克隆(3D7)
  • 免疫印迹; 小鼠; 1:200; 图 3d
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling, 9215)被用于被用于免疫印迹在小鼠样本上浓度为1:200 (图 3d). Proc Natl Acad Sci U S A (2017) ncbi
domestic rabbit 单克隆(D13E1)
  • 免疫印迹; 小鼠; 1:1000; 图 4l
赛信通(上海)生物试剂有限公司 p38抗体(Cell signaling, 8690)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 4l). Cell Rep (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 1e
赛信通(上海)生物试剂有限公司 p38抗体(CST, 9211)被用于被用于免疫印迹在人类样本上 (图 1e). J Immunol (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 1e
赛信通(上海)生物试剂有限公司 p38抗体(CST, 9212)被用于被用于免疫印迹在人类样本上 (图 1e). J Immunol (2017) ncbi
domestic rabbit 单克隆(D13E1)
  • 免疫印迹; 小鼠; 1:1000; 图 6a
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling, 8690)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 6a). Cell Death Dis (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:2000; 图 s5f
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling, 9212)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 s5f). Arterioscler Thromb Vasc Biol (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 3g
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling, 9211)被用于被用于免疫印迹在小鼠样本上 (图 3g). J Exp Med (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 6a
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling Technology, 9211)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 6a). Exp Ther Med (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 6a
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling Technology, 9212)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 6a). Exp Ther Med (2017) ncbi
domestic rabbit 单克隆(D13E1)
  • 免疫印迹; 人类; 图 3a,3l
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling Technology, 8690)被用于被用于免疫印迹在人类样本上 (图 3a,3l). Mol Vis (2017) ncbi
domestic rabbit 单克隆(3D7)
  • 免疫印迹; 人类; 图 s7f
  • 免疫印迹; 小鼠; 图 s7e
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling, 9215)被用于被用于免疫印迹在人类样本上 (图 s7f) 和 被用于免疫印迹在小鼠样本上 (图 s7e). Cell (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 1a
赛信通(上海)生物试剂有限公司 p38抗体(cell signalling, 9212)被用于被用于免疫印迹在小鼠样本上 (图 1a). Cell Death Dis (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 2e
赛信通(上海)生物试剂有限公司 p38抗体(cell signalling, 9211)被用于被用于免疫印迹在小鼠样本上 (图 2e). Sci Rep (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 1a
赛信通(上海)生物试剂有限公司 p38抗体(cell signalling, 9212)被用于被用于免疫印迹在小鼠样本上 (图 1a). Sci Rep (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 4c
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling, 9212)被用于被用于免疫印迹在人类样本上 (图 4c). GeroScience (2017) ncbi
  • 免疫印迹; 人类; 1:500; 图 4E
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling, 9911S)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 4E). Oncol Lett (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:500; 图 7b
赛信通(上海)生物试剂有限公司 p38抗体(Cell signaling, 9212)被用于被用于免疫印迹在小鼠样本上浓度为1:500 (图 7b). elife (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 大鼠; 图 1c
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling, 9212)被用于被用于免疫印迹在大鼠样本上 (图 1c). Toxicology (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 3
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling, 9212)被用于被用于免疫印迹在小鼠样本上 (图 3). Front Aging Neurosci (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 3
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling, 9211S)被用于被用于免疫印迹在小鼠样本上 (图 3). Front Aging Neurosci (2017) ncbi
domestic rabbit 多克隆
  • reverse phase protein lysate microarray; 人类; 图 st6
赛信通(上海)生物试剂有限公司 p38抗体(CST, 9212)被用于被用于reverse phase protein lysate microarray在人类样本上 (图 st6). Cancer Cell (2017) ncbi
domestic rabbit 多克隆
  • reverse phase protein lysate microarray; 人类; 图 st6
赛信通(上海)生物试剂有限公司 p38抗体(CST, 9211)被用于被用于reverse phase protein lysate microarray在人类样本上 (图 st6). Cancer Cell (2017) ncbi
domestic rabbit 单克隆(D13E1)
  • 免疫印迹; 大鼠; 1:1000; 表 2
赛信通(上海)生物试剂有限公司 p38抗体(Cell Sigaling, 8690S)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (表 2). J Neuroinflammation (2017) ncbi
domestic rabbit 单克隆(3D7)
  • 免疫印迹; 小鼠; 1:3000; 图 3a
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling, 9215)被用于被用于免疫印迹在小鼠样本上浓度为1:3000 (图 3a). Nat Commun (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 3a
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling, 9212)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 3a). Nat Commun (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 EV4a
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling, 9212)被用于被用于免疫印迹在小鼠样本上 (图 EV4a). EMBO Mol Med (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 EV4a
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling, 9211)被用于被用于免疫印迹在小鼠样本上 (图 EV4a). EMBO Mol Med (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 1g
赛信通(上海)生物试剂有限公司 p38抗体(CST, 9212S)被用于被用于免疫印迹在人类样本上 (图 1g). J Cell Sci (2017) ncbi
domestic rabbit 单克隆(3D7)
  • 免疫印迹; 人类; 图 1g
赛信通(上海)生物试剂有限公司 p38抗体(cst, 9215s)被用于被用于免疫印迹在人类样本上 (图 1g). J Cell Sci (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 4a
  • 免疫印迹; 小鼠; 图 3a
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling, 9212)被用于被用于免疫印迹在人类样本上 (图 4a) 和 被用于免疫印迹在小鼠样本上 (图 3a). J Biol Chem (2017) ncbi
domestic rabbit 单克隆(3D7)
  • 免疫印迹; 小鼠; 图 EV3d
  • 免疫印迹; 人类; 图 7a
赛信通(上海)生物试剂有限公司 p38抗体(cell signalling, 9215)被用于被用于免疫印迹在小鼠样本上 (图 EV3d) 和 被用于免疫印迹在人类样本上 (图 7a). EMBO J (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 5a
赛信通(上海)生物试剂有限公司 p38抗体(cell signalling, 9211)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 5a). Sci Rep (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; pigs ; 图 4a
赛信通(上海)生物试剂有限公司 p38抗体(CST, 9218)被用于被用于免疫印迹在pigs 样本上 (图 4a). BMC Biotechnol (2017) ncbi
domestic rabbit 单克隆(D13E1)
  • 免疫印迹; 大鼠; 图 3c
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling, 8690S)被用于被用于免疫印迹在大鼠样本上 (图 3c). Cell Signal (2017) ncbi
domestic rabbit 单克隆(D13E1)
  • 免疫印迹; 人类; 图 5a
  • 免疫印迹; 小鼠; 图 5b
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling, 8690)被用于被用于免疫印迹在人类样本上 (图 5a) 和 被用于免疫印迹在小鼠样本上 (图 5b). EMBO Rep (2017) ncbi
domestic rabbit 单克隆(D13E1)
  • 免疫印迹; 大鼠; 1:1000; 图 4A
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling, 8690)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 4A). Int J Mol Med (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 4e
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling, 9212)被用于被用于免疫印迹在小鼠样本上 (图 4e). J Endocrinol (2017) ncbi
domestic rabbit 单克隆(D13E1)
  • 免疫印迹; 人类; 1:1000; 图 6a
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling Technology, 8690)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 6a). Oncotarget (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 s5e
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling, 9218)被用于被用于免疫印迹在小鼠样本上 (图 s5e). Nature (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling, 9212)被用于被用于免疫印迹在小鼠样本上浓度为1:1000. Stem Cell Res Ther (2017) ncbi
小鼠 单克隆(28B10)
  • 免疫印迹; 小鼠; 1:1000
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling, 9216)被用于被用于免疫印迹在小鼠样本上浓度为1:1000. Stem Cell Res Ther (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 3a
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling, 9212S)被用于被用于免疫印迹在人类样本上 (图 3a). PLoS ONE (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 3a
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling, 9211S)被用于被用于免疫印迹在人类样本上 (图 3a). PLoS ONE (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 5g
赛信通(上海)生物试剂有限公司 p38抗体(cell signalling, 9212)被用于被用于免疫印迹在人类样本上 (图 5g). Nucleic Acids Res (2017) ncbi
domestic rabbit 单克隆(D13E1)
  • 免疫印迹; 小鼠; 图 5d
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling, 8690)被用于被用于免疫印迹在小鼠样本上 (图 5d). Sci Rep (2017) ncbi
domestic rabbit 单克隆(D13E1)
  • 免疫印迹; 小鼠; 图 7a
赛信通(上海)生物试剂有限公司 p38抗体(CST, 8690P)被用于被用于免疫印迹在小鼠样本上 (图 7a). Sci Rep (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 5B
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling, 9212)被用于被用于免疫印迹在人类样本上 (图 5B). Biochem J (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 2A
  • 免疫印迹; 人类; 图 5A
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling, 9211)被用于被用于免疫印迹在小鼠样本上 (图 2A) 和 被用于免疫印迹在人类样本上 (图 5A). Biochem J (2017) ncbi
小鼠 单克隆(28B10)
  • 流式细胞仪; 人类; 图 1d
赛信通(上海)生物试剂有限公司 p38抗体(CST, 4552)被用于被用于流式细胞仪在人类样本上 (图 1d). Sci Rep (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 1b
赛信通(上海)生物试剂有限公司 p38抗体(CST, 9211)被用于被用于免疫印迹在人类样本上 (图 1b). Sci Rep (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 1b
赛信通(上海)生物试剂有限公司 p38抗体(CST, 9212)被用于被用于免疫印迹在人类样本上 (图 1b). Sci Rep (2017) ncbi
domestic rabbit 单克隆(3D7)
  • 免疫印迹; 小鼠; 1:1000; 图 S17A
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling, 3D7)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 S17A). Nat Commun (2017) ncbi
小鼠 单克隆(28B10)
  • 免疫印迹; 小鼠; 1:2000; 图 s3
赛信通(上海)生物试剂有限公司 p38抗体(cell signalling, 9216)被用于被用于免疫印迹在小鼠样本上浓度为1:2000 (图 s3). Proc Natl Acad Sci U S A (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 s3
赛信通(上海)生物试剂有限公司 p38抗体(cell signalling, 9212)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 s3). Proc Natl Acad Sci U S A (2017) ncbi
domestic rabbit 单克隆(12F8)
  • 免疫印迹; 小鼠; 1:500; 图 6c
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling Technology, 4631)被用于被用于免疫印迹在小鼠样本上浓度为1:500 (图 6c). J Cell Biol (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 4a
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling, 9212)被用于被用于免疫印迹在人类样本上 (图 4a). Sci Rep (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 s7d
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling, 9211)被用于被用于免疫印迹在人类样本上 (图 s7d). Sci Rep (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 5a
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling, 9211)被用于被用于免疫印迹在人类样本上 (图 5a). Peerj (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 5b
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling, 9212)被用于被用于免疫印迹在小鼠样本上 (图 5b). Autophagy (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 3b
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling, 9211)被用于被用于免疫印迹在人类样本上 (图 3b). Mol Immunol (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 3b
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling, 9212)被用于被用于免疫印迹在人类样本上 (图 3b). Mol Immunol (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 8c
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling, 9212)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 8c). Nat Commun (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 4a
赛信通(上海)生物试剂有限公司 p38抗体(Abcam, 9212)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 4a). Exp Ther Med (2016) ncbi
domestic rabbit 单克隆(12F8)
  • 免疫印迹; 小鼠; 1:1000; 图 s5
赛信通(上海)生物试剂有限公司 p38抗体(cell signalling, 4631)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 s5). Nat Commun (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 s5
赛信通(上海)生物试剂有限公司 p38抗体(cell signalling, 9212)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 s5). Nat Commun (2017) ncbi
小鼠 单克隆(28B10)
  • 免疫印迹; 小鼠; 图 4c
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling, 9216)被用于被用于免疫印迹在小鼠样本上 (图 4c). EMBO J (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 7i
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling, 9212S)被用于被用于免疫印迹在人类样本上 (图 7i). J Cell Biochem (2017) ncbi
domestic rabbit 单克隆(D13E1)
  • 免疫印迹; 小鼠; 1:1000; 图 s7a
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling, 8690)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 s7a). J Clin Invest (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 s7a
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling, 9211)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 s7a). J Clin Invest (2017) ncbi
domestic rabbit 单克隆(D13E1)
  • 免疫印迹; 小鼠; 1:1000; 图 10d
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling Technology, 8690)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 10d). J Cell Physiol (2017) ncbi
domestic rabbit 单克隆(3D7)
  • 免疫印迹; 人类; 1:2000; 图 5E
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling, 9215)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 5E). PLoS ONE (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 2c
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling, 9218)被用于被用于免疫印迹在人类样本上 (图 2c). Cell Cycle (2017) ncbi
小鼠 单克隆(28B10)
  • 免疫印迹; 人类; 图 2c
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling, 9216)被用于被用于免疫印迹在人类样本上 (图 2c). Cell Cycle (2017) ncbi
domestic rabbit 单克隆(D13E1)
  • 免疫印迹; 大鼠; 1:1000; 图 1b
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling, 8690)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 1b). J Cell Physiol (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling Technology, 9211)被用于被用于免疫印迹在人类样本上. Cell Syst (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 2a
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling Technology, 9211)被用于被用于免疫印迹在小鼠样本上 (图 2a). J Biol Chem (2017) ncbi
domestic rabbit 单克隆(D13E1)
  • 免疫印迹; 人类; 1:1000; 图 3d
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling, 8690)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3d). Biochim Biophys Acta Mol Cell Res (2017) ncbi
domestic rabbit 单克隆(D13E1)
  • 免疫印迹; 人类; 图 5
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling, 8690)被用于被用于免疫印迹在人类样本上 (图 5). Sci Rep (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 7a
赛信通(上海)生物试剂有限公司 p38抗体(CST, 9212)被用于被用于免疫印迹在小鼠样本上 (图 7a). J Am Heart Assoc (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 8a
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling, 9211)被用于被用于免疫印迹在人类样本上 (图 8a). J Cell Mol Med (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 2g
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling, 9211)被用于被用于免疫印迹在人类样本上 (图 2g). Biochim Biophys Acta Mol Cell Res (2017) ncbi
domestic rabbit 单克隆(3D7)
  • 免疫印迹; 人类; 1:1000; 图 5a
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling, 9215)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 5a). Arch Biochem Biophys (2017) ncbi
小鼠 单克隆(L53F8)
  • 免疫印迹; 人类; 1:1000; 图 5a
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling, 9228)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 5a). Arch Biochem Biophys (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 4
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling, 9211S)被用于被用于免疫印迹在小鼠样本上 (图 4). PLoS ONE (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 4
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling, 9212)被用于被用于免疫印迹在小鼠样本上 (图 4). PLoS ONE (2016) ncbi
domestic rabbit 单克隆(D13E1)
  • 免疫印迹; 小鼠; 1:1000; 图 2
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling, D13E1)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 2). Diabetes Obes Metab (2017) ncbi
小鼠 单克隆(28B10)
  • 免疫印迹; 小鼠; 图 8b
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling, 28B10)被用于被用于免疫印迹在小鼠样本上 (图 8b). J Biol Chem (2017) ncbi
domestic rabbit 单克隆(D13E1)
  • 免疫印迹; 人类; 1:2000; 图 6b
赛信通(上海)生物试剂有限公司 p38抗体(Cell signaling, 8690)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 6b). Oncotarget (2016) ncbi
domestic rabbit 单克隆(D13E1)
  • 免疫印迹; 小鼠; 1:1000; 图 9a
赛信通(上海)生物试剂有限公司 p38抗体(Cell signaling, 8690)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 9a). PLoS ONE (2016) ncbi
小鼠 单克隆(L53F8)
  • 免疫印迹; 人类; 1:1000; 图 5a
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling, 9228)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 5a). Oncotarget (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 2a
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling, 9211)被用于被用于免疫印迹在人类样本上 (图 2a). Oncotarget (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 大鼠; 图 5b
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling, 9211)被用于被用于免疫印迹在大鼠样本上 (图 5b). PLoS ONE (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 1e
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling, 9211)被用于被用于免疫印迹在小鼠样本上 (图 1e). FASEB J (2017) ncbi
domestic rabbit 单克隆(D13E1)
  • 免疫印迹; 小鼠; 图 1e
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling, 8690)被用于被用于免疫印迹在小鼠样本上 (图 1e). FASEB J (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 2a
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling, 9211)被用于被用于免疫印迹在人类样本上 (图 2a). Oncotarget (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 7
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling, 9212)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 7). Respir Res (2016) ncbi
domestic rabbit 单克隆(12F8)
  • 免疫印迹; 人类; 1:1000; 图 7
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling, 4631)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 7). Respir Res (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 s3h, s4a
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling, 9211)被用于被用于免疫印迹在小鼠样本上 (图 s3h, s4a). Nature (2016) ncbi
domestic rabbit 单克隆(D13E1)
  • 免疫印迹; 小鼠; 图 s3h, s4a
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling, 8690)被用于被用于免疫印迹在小鼠样本上 (图 s3h, s4a). Nature (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 6a
赛信通(上海)生物试剂有限公司 p38抗体(Cell signaling, 9211)被用于被用于免疫印迹在人类样本上 (图 6a). Redox Biol (2016) ncbi
小鼠 单克隆(28B10)
  • 免疫印迹; 小鼠; 图 s7b
赛信通(上海)生物试剂有限公司 p38抗体(Cell signaling, 9216)被用于被用于免疫印迹在小鼠样本上 (图 s7b). Autophagy (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 3d
赛信通(上海)生物试剂有限公司 p38抗体(Cell signaling, 9218)被用于被用于免疫印迹在小鼠样本上 (图 3d). Autophagy (2016) ncbi
domestic rabbit 单克隆(D13E1)
  • 免疫印迹; 小鼠; 1:1000; 图 s5d
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling, 8690)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 s5d). Nat Commun (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; pigs ; 图 1b
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling, 9211S)被用于被用于免疫印迹在pigs 样本上 (图 1b). Arthritis Rheumatol (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 7a
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling, 9212)被用于被用于免疫印迹在人类样本上 (图 7a). Cancer Gene Ther (2016) ncbi
domestic rabbit 单克隆(D13E1)
  • 免疫印迹; 人类; 图 3
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling, 8690)被用于被用于免疫印迹在人类样本上 (图 3). Am J Physiol Lung Cell Mol Physiol (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 大鼠; 图 4a
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling Technology, 9211)被用于被用于免疫印迹在大鼠样本上 (图 4a). PLoS ONE (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 大鼠; 图 4a
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling Technology, 9212)被用于被用于免疫印迹在大鼠样本上 (图 4a). PLoS ONE (2016) ncbi
domestic rabbit 单克隆(3D7)
  • 免疫印迹; 人类; 图 2a
赛信通(上海)生物试剂有限公司 p38抗体(Cell signaling, 9215)被用于被用于免疫印迹在人类样本上 (图 2a). Sci Rep (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 5
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signalling, 9211)被用于被用于免疫印迹在人类样本上 (图 5). Oncotarget (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 5
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signalling, 9212)被用于被用于免疫印迹在人类样本上 (图 5). Oncotarget (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 大鼠; 1:1000; 图 5a
赛信通(上海)生物试剂有限公司 p38抗体(cell signalling, 9211)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 5a). Oncotarget (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 大鼠; 1:1000; 图 5a
赛信通(上海)生物试剂有限公司 p38抗体(cell signalling, 9212)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 5a). Oncotarget (2016) ncbi
domestic rabbit 单克隆(D13E1)
  • 免疫印迹; 小鼠; 图 3d
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling, 8690)被用于被用于免疫印迹在小鼠样本上 (图 3d). Proc Natl Acad Sci U S A (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:2000; 图 6c
  • 免疫印迹; 小鼠; 图 3c
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling, 9211)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 6c) 和 被用于免疫印迹在小鼠样本上 (图 3c). J Exp Med (2016) ncbi
domestic rabbit 单克隆(D13E1)
  • 免疫印迹; 人类; 图 4a
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling, 8690)被用于被用于免疫印迹在人类样本上 (图 4a). Int J Mol Sci (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 大鼠; 1:1000; 图 6a
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling, 9212)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 6a). Oxid Med Cell Longev (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 大鼠; 1:1000; 图 6a
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling, 9211)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 6a). Oxid Med Cell Longev (2016) ncbi
domestic rabbit 单克隆(12F8)
  • 免疫组化-石蜡切片; 大鼠; 1:25; 图 4b
  • 免疫印迹; 大鼠; 1:1000; 图 4c
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling, 4631)被用于被用于免疫组化-石蜡切片在大鼠样本上浓度为1:25 (图 4b) 和 被用于免疫印迹在大鼠样本上浓度为1:1000 (图 4c). Evid Based Complement Alternat Med (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:2000; 图 6d
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling, 9212)被用于被用于免疫印迹在小鼠样本上浓度为1:2000 (图 6d). Nat Commun (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:2000; 图 6d
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling, 9211)被用于被用于免疫印迹在小鼠样本上浓度为1:2000 (图 6d). Nat Commun (2016) ncbi
domestic rabbit 单克隆(D13E1)
  • 免疫印迹; 人类; 图 4
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signalling, 8690)被用于被用于免疫印迹在人类样本上 (图 4). Sci Rep (2016) ncbi
domestic rabbit 单克隆(D13E1)
  • 免疫印迹; 人类; 1:2000; 图 6d
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling, 8690)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 6d). Oncotarget (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:200; 图 st1
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling, 9211)被用于被用于免疫印迹在人类样本上浓度为1:200 (图 st1). Nat Commun (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:200; 图 st1
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling, 9212)被用于被用于免疫印迹在人类样本上浓度为1:200 (图 st1). Nat Commun (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 6a
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling, 9211)被用于被用于免疫印迹在人类样本上 (图 6a). Oncotarget (2016) ncbi
domestic rabbit 单克隆(D13E1)
  • 免疫印迹; 人类; 图 6a
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling, 8690)被用于被用于免疫印迹在人类样本上 (图 6a). Oncotarget (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 2
赛信通(上海)生物试剂有限公司 p38抗体(Cell signaling, 9212)被用于被用于免疫印迹在人类样本上 (图 2). Lipids Health Dis (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 2
赛信通(上海)生物试剂有限公司 p38抗体(Cell signaling, 9211)被用于被用于免疫印迹在人类样本上 (图 2). Lipids Health Dis (2016) ncbi
domestic rabbit 单克隆(3D7)
  • 免疫印迹; pigs ; 1:1000; 图 2A
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling, 3D7)被用于被用于免疫印迹在pigs 样本上浓度为1:1000 (图 2A). Toxins (Basel) (2016) ncbi
domestic rabbit 单克隆(D13E1)
  • 免疫印迹; 小鼠; 图 6b, 6d
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling, 8690)被用于被用于免疫印迹在小鼠样本上 (图 6b, 6d). J Clin Invest (2016) ncbi
小鼠 单克隆(28B10)
  • 免疫组化; 小鼠; 图 s10b
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signalling Technologies, 9216)被用于被用于免疫组化在小鼠样本上 (图 s10b). Open Biol (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 7a
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling, 9211)被用于被用于免疫印迹在小鼠样本上 (图 7a). J Immunol (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 7a
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling, 9212)被用于被用于免疫印迹在小鼠样本上 (图 7a). J Immunol (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 大鼠; 图 5
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling Tech, 9212)被用于被用于免疫印迹在大鼠样本上 (图 5). Carcinogenesis (2016) ncbi
domestic rabbit 单克隆(D13E1)
  • 免疫印迹; 小鼠; 图 5a
赛信通(上海)生物试剂有限公司 p38抗体(Cell signaling, D13E1)被用于被用于免疫印迹在小鼠样本上 (图 5a). PLoS ONE (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 大鼠; 图 5
赛信通(上海)生物试剂有限公司 p38抗体(Cell signaling, 9212)被用于被用于免疫印迹在大鼠样本上 (图 5). PLoS ONE (2016) ncbi
domestic rabbit 单克隆(D13E1)
  • 免疫印迹; 大鼠; 图 2
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling, 8690)被用于被用于免疫印迹在大鼠样本上 (图 2). Int J Mol Med (2016) ncbi
domestic rabbit 单克隆(12F8)
  • 免疫印迹; 大鼠; 图 2
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling, 4631)被用于被用于免疫印迹在大鼠样本上 (图 2). Int J Mol Med (2016) ncbi
domestic rabbit 单克隆(D13E1)
  • 免疫印迹; 人类; 图 4a
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling, 8690)被用于被用于免疫印迹在人类样本上 (图 4a). Mol Med Rep (2016) ncbi
domestic rabbit 单克隆(12F8)
  • 免疫印迹; 人类; 图 4a
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling, 4631)被用于被用于免疫印迹在人类样本上 (图 4a). Mol Med Rep (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:500; 图 3a
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling Technology, 9211)被用于被用于免疫印迹在小鼠样本上浓度为1:500 (图 3a). Mol Med Rep (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 3a
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling Technology, 9212)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 3a). Mol Med Rep (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 图 s8
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling, 9218)被用于被用于免疫组化在小鼠样本上 (图 s8). Neoplasia (2016) ncbi
domestic rabbit 单克隆(D13E1)
  • 免疫印迹; 人类; 图 1
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling, 8690)被用于被用于免疫印迹在人类样本上 (图 1). Proc Natl Acad Sci U S A (2016) ncbi
domestic rabbit 单克隆(3D7)
  • 免疫组化; 斑马鱼; 1:500; 图 5a
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling, 9215)被用于被用于免疫组化在斑马鱼样本上浓度为1:500 (图 5a). Neurotox Res (2016) ncbi
小鼠 单克隆(28B10)
  • 流式细胞仪; 人类; 图 s18a
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling, 28B10)被用于被用于流式细胞仪在人类样本上 (图 s18a). J Clin Invest (2016) ncbi
domestic rabbit 单克隆(3D7)
  • 流式细胞仪; 人类; 图 5b
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling Technology, 3D7)被用于被用于流式细胞仪在人类样本上 (图 5b). Cell Rep (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:500; 图 4b
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling, 9211)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 4b). Oncotarget (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 2c
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling, 9211s)被用于被用于免疫印迹在人类样本上 (图 2c). Autophagy (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 2c
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling, 9212)被用于被用于免疫印迹在人类样本上 (图 2c). Autophagy (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:750; 图 5
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling Tech, 9211)被用于被用于免疫印迹在人类样本上浓度为1:750 (图 5). Nat Commun (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 s4a
赛信通(上海)生物试剂有限公司 p38抗体(Cell signaling, 9212)被用于被用于免疫印迹在小鼠样本上 (图 s4a). Biol Reprod (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 大鼠; 图 s2
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling, 9212)被用于被用于免疫印迹在大鼠样本上 (图 s2). Sci Rep (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 大鼠; 图 s2
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling, 9211)被用于被用于免疫印迹在大鼠样本上 (图 s2). Sci Rep (2016) ncbi
小鼠 单克隆(5F11)
  • 免疫印迹; 人类; 图 4a
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling, 5F11)被用于被用于免疫印迹在人类样本上 (图 4a). Cell Signal (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 4c
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling, 9212)被用于被用于免疫印迹在小鼠样本上 (图 4c). BMC Complement Altern Med (2016) ncbi
domestic rabbit 单克隆(12F8)
  • 免疫印迹; 小鼠; 图 4c
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling, 4631S)被用于被用于免疫印迹在小鼠样本上 (图 4c). BMC Complement Altern Med (2016) ncbi
小鼠 单克隆(28B10)
  • 免疫印迹; 大鼠; 图 4
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling, 9216)被用于被用于免疫印迹在大鼠样本上 (图 4). Physiol Rep (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 大鼠; 图 4
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling, 9212)被用于被用于免疫印迹在大鼠样本上 (图 4). Physiol Rep (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 2
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signalling, 9212S)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 2). Nat Commun (2016) ncbi
domestic rabbit 单克隆(3D7)
  • 免疫印迹; 小鼠; 图 3
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling, 9215)被用于被用于免疫印迹在小鼠样本上 (图 3). PLoS ONE (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 4a
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling, 9212)被用于被用于免疫印迹在人类样本上 (图 4a). Autophagy (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 4a
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling, 9211)被用于被用于免疫印迹在人类样本上 (图 4a). Autophagy (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 3g
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling, 9211s)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3g). Aging (Albany NY) (2016) ncbi
小鼠 单克隆(28B10)
  • 免疫印迹; 人类; 图 4a
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling, 9216)被用于被用于免疫印迹在人类样本上 (图 4a). PLoS ONE (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 4a
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling, 9212)被用于被用于免疫印迹在人类样本上 (图 4a). PLoS ONE (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 大鼠; 1:1000; 图 6
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signalling, 9212)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 6). Sci Rep (2016) ncbi
小鼠 单克隆(28B10)
  • 免疫印迹; 人类; 1:2000; 图 3c
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling, 9216)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 3c). Leukemia (2017) ncbi
domestic rabbit 单克隆(3D7)
  • 免疫印迹; 人类; 1:1000; 图 3
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling Tech, 9215S)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3). Oncol Lett (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 3
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling Tech, 9212)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3). Oncol Lett (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 s6c
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling, 9212)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 s6c). Nature (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 6
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling Technology, 9212)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 6). elife (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 6
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling Technology, 9211)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 6). elife (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 大鼠; 图 4a
赛信通(上海)生物试剂有限公司 p38抗体(Cell signaling, 9212)被用于被用于免疫印迹在大鼠样本上 (图 4a). Toxicol Sci (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 6
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling, 9212)被用于被用于免疫印迹在人类样本上 (图 6). Sci Rep (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 6a
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling Technology, 9211)被用于被用于免疫印迹在人类样本上 (图 6a). Oncotarget (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 6a
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling Technology, 9212)被用于被用于免疫印迹在人类样本上 (图 6a). Oncotarget (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 3a
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling, 9212)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 3a). Nat Med (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 3a
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling, 9211)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 3a). Nat Med (2016) ncbi
小鼠 单克隆(28B10)
  • 免疫细胞化学; 小鼠; 1:50; 图 3g
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling, 9216)被用于被用于免疫细胞化学在小鼠样本上浓度为1:50 (图 3g). Nat Med (2016) ncbi
domestic rabbit 单克隆(3D7)
  • 免疫印迹; 小鼠; 1:1000; 图 s3e
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling, 9215)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 s3e). Sci Rep (2016) ncbi
小鼠 单克隆(28B10)
  • 免疫印迹; 人类; 1:250; 图 6a
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling, 9216)被用于被用于免疫印迹在人类样本上浓度为1:250 (图 6a). Oncotarget (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:500; 图 6a
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling, 9212)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 6a). Oncotarget (2016) ncbi
domestic rabbit 单克隆(D13E1)
  • 免疫印迹; 小鼠; 图 4c
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling, D13E1)被用于被用于免疫印迹在小鼠样本上 (图 4c). J Biol Chem (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 1
赛信通(上海)生物试剂有限公司 p38抗体(Cell signaling, 9212)被用于被用于免疫印迹在人类样本上 (图 1). FASEB J (2016) ncbi
domestic rabbit 单克隆(12F8)
  • 免疫组化-石蜡切片; 小鼠; 1:200; 图 5d
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling Technology, 4631)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:200 (图 5d). Oncol Lett (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 5
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling, 9211)被用于被用于免疫印迹在人类样本上 (图 5). EMBO J (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 3
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling, 9212)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3). Nat Commun (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 3
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling, 9211)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3). Nat Commun (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 空肠弯曲杆菌; 1:1000; 图 4
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signalling Technology, 92115)被用于被用于免疫印迹在空肠弯曲杆菌样本上浓度为1:1000 (图 4). mSphere (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 空肠弯曲杆菌; 图 4
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signalling Technology, 92125)被用于被用于免疫印迹在空肠弯曲杆菌样本上 (图 4). mSphere (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 6a
赛信通(上海)生物试剂有限公司 p38抗体(cell signaling, 9211s)被用于被用于免疫印迹在人类样本上 (图 6a). Cancer Res (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 3b
  • 免疫印迹; 小鼠; 图 s1
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling, 9211)被用于被用于免疫印迹在人类样本上 (图 3b) 和 被用于免疫印迹在小鼠样本上 (图 s1). Oncotarget (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 5
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling, 9212)被用于被用于免疫印迹在小鼠样本上 (图 5). PLoS Pathog (2016) ncbi
domestic rabbit 单克隆(12F8)
  • 免疫印迹; 小鼠; 图 5
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling, 4631)被用于被用于免疫印迹在小鼠样本上 (图 5). PLoS Pathog (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 2
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling Technology, 9212)被用于被用于免疫印迹在人类样本上 (图 2). Sci Rep (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 7
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling Tech, 9212)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 7). Front Cell Infect Microbiol (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 3
赛信通(上海)生物试剂有限公司 p38抗体(Cell signaling, 9212)被用于被用于免疫印迹在小鼠样本上 (图 3). Nat Commun (2016) ncbi
domestic rabbit 单克隆(3D7)
  • 免疫印迹; 人类; 1:1000; 图 5
赛信通(上海)生物试剂有限公司 p38抗体(Cell signaling, 9215)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 5). J Ovarian Res (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 5
赛信通(上海)生物试剂有限公司 p38抗体(Cell signaling, 9212)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 5). J Ovarian Res (2016) ncbi
domestic rabbit 单克隆(3D7)
  • 免疫印迹; 小鼠; 1:1000; 图 2C
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling, 9215)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 2C). PLoS ONE (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 s2b
赛信通(上海)生物试剂有限公司 p38抗体(Cell signaling, 9212)被用于被用于免疫印迹在人类样本上 (图 s2b). Oncotarget (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 s2b
赛信通(上海)生物试剂有限公司 p38抗体(Cell signaling, 9211)被用于被用于免疫印迹在人类样本上 (图 s2b). Oncotarget (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 s10b
赛信通(上海)生物试剂有限公司 p38抗体(CST, 9,212)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 s10b). Nat Commun (2016) ncbi
domestic rabbit 单克隆(D13E1)
  • 免疫印迹; 小鼠; 图 1
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling, 8690)被用于被用于免疫印迹在小鼠样本上 (图 1). Cell Rep (2016) ncbi
小鼠 单克隆(28B10)
  • 免疫印迹; 小鼠; 图 1
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling, 9216)被用于被用于免疫印迹在小鼠样本上 (图 1). Cell Rep (2016) ncbi
domestic rabbit 单克隆(D13E1)
  • 免疫印迹; pigs ; 图 6
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling Tech, 8690)被用于被用于免疫印迹在pigs 样本上 (图 6). Sci Rep (2016) ncbi
domestic rabbit 单克隆(12F8)
  • 免疫印迹; 小鼠; 图 4
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling, 4631)被用于被用于免疫印迹在小鼠样本上 (图 4). Nat Commun (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 4
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling, 9212)被用于被用于免疫印迹在小鼠样本上 (图 4). Nat Commun (2016) ncbi
小鼠 单克隆(28B10)
  • 免疫组化; 大鼠; 1:100; 图 6
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling, 9216S)被用于被用于免疫组化在大鼠样本上浓度为1:100 (图 6). Cell Death Dis (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 6a
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling, 9212)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 6a). J Am Heart Assoc (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 4
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling Tech, 9211)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 4). Evid Based Complement Alternat Med (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 4
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling Tech, 9212)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 4). Evid Based Complement Alternat Med (2016) ncbi
domestic rabbit 单克隆(3D7)
  • 免疫印迹; 牛; 图 9f
  • 免疫印迹; 人类; 图 9e
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling, 9215)被用于被用于免疫印迹在牛样本上 (图 9f) 和 被用于免疫印迹在人类样本上 (图 9e). J Biol Chem (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 牛; 图 9f
  • 免疫印迹; 人类; 图 9e
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling, 9212)被用于被用于免疫印迹在牛样本上 (图 9f) 和 被用于免疫印迹在人类样本上 (图 9e). J Biol Chem (2016) ncbi
domestic rabbit 单克隆(D13E1)
  • 免疫印迹; 人类; 图 4g
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling, 8690)被用于被用于免疫印迹在人类样本上 (图 4g). Int J Mol Med (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 4
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling, 9212)被用于被用于免疫印迹在人类样本上 (图 4). BMC Complement Altern Med (2016) ncbi
domestic rabbit 单克隆(3D7)
  • 免疫印迹; 人类; 图 1c
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling, 9215)被用于被用于免疫印迹在人类样本上 (图 1c). EMBO Rep (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 1c
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling, 9212)被用于被用于免疫印迹在人类样本上 (图 1c). EMBO Rep (2016) ncbi
domestic rabbit 单克隆(3D7)
  • 免疫细胞化学; 犬; 1:50; 图 4
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling, 9215)被用于被用于免疫细胞化学在犬样本上浓度为1:50 (图 4). Nat Commun (2016) ncbi
domestic rabbit 单克隆(D13E1)
  • 免疫印迹; 人类; 图 6a
赛信通(上海)生物试剂有限公司 p38抗体(cell signalling, 8690)被用于被用于免疫印迹在人类样本上 (图 6a). Int J Mol Sci (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 4
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling, 9211)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 4). PLoS ONE (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 4
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling, 9212)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 4). PLoS ONE (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 1
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling, 9212)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 1). Nat Commun (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 1
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling, 9211)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 1). Nat Commun (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 4b
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling Technology, 9211)被用于被用于免疫印迹在小鼠样本上 (图 4b). Sci Rep (2016) ncbi
domestic rabbit 单克隆(12F8)
  • 免疫细胞化学; 小鼠; 图 s1a,s1b
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling Technology, 4631)被用于被用于免疫细胞化学在小鼠样本上 (图 s1a,s1b). Sci Rep (2016) ncbi
domestic rabbit 单克隆(D13E1)
  • 免疫印迹; 小鼠; 图 4a
赛信通(上海)生物试剂有限公司 p38抗体(Cell signaling, 8690)被用于被用于免疫印迹在小鼠样本上 (图 4a). elife (2016) ncbi
domestic rabbit 单克隆(12F8)
  • 免疫印迹; 小鼠; 图 4a
赛信通(上海)生物试剂有限公司 p38抗体(Cell signaling, 4631)被用于被用于免疫印迹在小鼠样本上 (图 4a). elife (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 1b
赛信通(上海)生物试剂有限公司 p38抗体(Cell signaling, 9211)被用于被用于免疫印迹在人类样本上 (图 1b). Cell Signal (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 3a
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling Technology, 9212)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 3a). Sci Rep (2016) ncbi
domestic rabbit 单克隆(12F8)
  • 免疫印迹; 小鼠; 1:1000; 图 3a
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling Technology, 4631)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 3a). Sci Rep (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:5000; 图 2
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signalling, 9211)被用于被用于免疫印迹在小鼠样本上浓度为1:5000 (图 2). Nat Commun (2016) ncbi
小鼠 单克隆(L53F8)
  • 免疫印迹; 小鼠; 1:5000; 图 1
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signalling, 9228)被用于被用于免疫印迹在小鼠样本上浓度为1:5000 (图 1). Nat Commun (2016) ncbi
domestic rabbit 单克隆(D13E1)
  • 免疫印迹; 人类; 图 3
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling, 8690)被用于被用于免疫印迹在人类样本上 (图 3). Int J Mol Med (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 3
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling Technology, 9212)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3). PLoS ONE (2016) ncbi
domestic rabbit 单克隆(D13E1)
  • 免疫印迹; 人类; 图 7
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling, 8690P)被用于被用于免疫印迹在人类样本上 (图 7). J Biol Chem (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 s4
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling, 9212S)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 s4). Mol Cell Proteomics (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:750; 图 s4
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling, 9211S)被用于被用于免疫印迹在人类样本上浓度为1:750 (图 s4). Mol Cell Proteomics (2016) ncbi
domestic rabbit 多克隆
  • 染色质免疫沉淀 ; 小鼠; 图 7
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling Tech, 9218)被用于被用于染色质免疫沉淀 在小鼠样本上 (图 7). Skelet Muscle (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 1
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling Tech, 9211)被用于被用于免疫印迹在小鼠样本上 (图 1). Skelet Muscle (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 1
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling, 9212)被用于被用于免疫印迹在人类样本上 (图 1). Oncotarget (2016) ncbi
domestic rabbit 单克隆(12F8)
  • 免疫印迹; 小鼠; 1:1000; 图 s6
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling Technology, 12F8)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 s6). Nat Commun (2016) ncbi
小鼠 单克隆(5F11)
  • 免疫印迹; 人类; 1:2000; 图 5
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling, 5F11)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 5). PLoS Pathog (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 s2
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signal, 9212S)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 s2). Proc Natl Acad Sci U S A (2016) ncbi
domestic rabbit 单克隆(3D7)
  • 免疫印迹; 人类; 图 4
赛信通(上海)生物试剂有限公司 p38抗体(Cell signaling, 9215)被用于被用于免疫印迹在人类样本上 (图 4). Sci Rep (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 4
赛信通(上海)生物试剂有限公司 p38抗体(Cell signaling, 9212)被用于被用于免疫印迹在人类样本上 (图 4). Sci Rep (2016) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 1:200; 图 4
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling Tech, 9212)被用于被用于免疫细胞化学在人类样本上浓度为1:200 (图 4). Aging (Albany NY) (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 5
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling, 9211)被用于被用于免疫印迹在小鼠样本上 (图 5). J Exp Med (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 8a, 8b
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling, 9212)被用于被用于免疫印迹在小鼠样本上 (图 8a, 8b). J Mol Cell Cardiol (2016) ncbi
domestic rabbit 单克隆(12F8)
  • 免疫印迹; 小鼠; 图 8a, 8b
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling, 4631)被用于被用于免疫印迹在小鼠样本上 (图 8a, 8b). J Mol Cell Cardiol (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 大鼠; 1:1000; 图 5
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling Technology, 9212)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 5). J Am Heart Assoc (2016) ncbi
domestic rabbit 单克隆(D13E1)
  • 免疫印迹; 大鼠; 1:1000; 图 6
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling, 8690)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 6). Exp Ther Med (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 6
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signalling, 9212)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 6). Sci Rep (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 6
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signalling, 9211)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 6). Sci Rep (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; brewer's yeast; 图 5
赛信通(上海)生物试剂有限公司 p38抗体(New England Biolabs, 9211S)被用于被用于免疫印迹在brewer's yeast样本上 (图 5). Nucleic Acids Res (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 5
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling, 9212)被用于被用于免疫印迹在人类样本上 (图 5). Oncotarget (2016) ncbi
小鼠 单克隆(28B10)
  • 免疫印迹; 人类; 图 5
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling, 9216S)被用于被用于免疫印迹在人类样本上 (图 5). Oncotarget (2016) ncbi
小鼠 单克隆(28B10)
  • 免疫印迹; 大鼠; 图 3
赛信通(上海)生物试剂有限公司 p38抗体(Cell signaling, 9216)被用于被用于免疫印迹在大鼠样本上 (图 3). Cell Stress Chaperones (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 5
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling Technologies, 9212P)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 5). Oncol Lett (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:2000; 图 s10f
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling, 9212)被用于被用于免疫印迹在小鼠样本上浓度为1:2000 (图 s10f). Nat Commun (2016) ncbi
小鼠 单克隆(28B10)
  • 免疫印迹; 小鼠; 1:1000; 图 s10f
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling, 9216)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 s10f). Nat Commun (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling Technology, 9212)被用于被用于免疫印迹在小鼠样本上. Sci Rep (2016) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 图 7
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling, 9211)被用于被用于免疫细胞化学在人类样本上 (图 7). MBio (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 3
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling Technology, 9211)被用于被用于免疫印迹在人类样本上 (图 3). J Cell Sci (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 3
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling Technology, 9212)被用于被用于免疫印迹在人类样本上 (图 3). J Cell Sci (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 6a
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling, 9212)被用于被用于免疫印迹在人类样本上 (图 6a). Cancer Res (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 st3
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling, 9211)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 st3). Nat Commun (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 st3
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling, 9218)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 st3). Nat Commun (2016) ncbi
domestic rabbit 单克隆(3D7)
  • 免疫印迹; 小鼠; 图 1
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling, 9215)被用于被用于免疫印迹在小鼠样本上 (图 1). Nat Commun (2016) ncbi
domestic rabbit 单克隆(D13E1)
  • 免疫印迹; 人类; 图 4
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling, 8690)被用于被用于免疫印迹在人类样本上 (图 4). Int J Mol Med (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 8
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling Technology, 9212)被用于被用于免疫印迹在小鼠样本上 (图 8). Sci Rep (2016) ncbi
domestic rabbit 单克隆(12F8)
  • 免疫印迹; 人类; 图 3
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling, 4631)被用于被用于免疫印迹在人类样本上 (图 3). Int J Cancer (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 3
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling, 9212)被用于被用于免疫印迹在人类样本上 (图 3). Int J Cancer (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 1
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling, 9211)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 1). Biochem Pharmacol (2016) ncbi
小鼠 单克隆(28B10)
  • 免疫印迹; 小鼠; 图 7d
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling, 9216)被用于被用于免疫印迹在小鼠样本上 (图 7d). J Immunol (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 6
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling, 9211)被用于被用于免疫印迹在小鼠样本上 (图 6). J Biol Chem (2016) ncbi
domestic rabbit 单克隆(D13E1)
  • 免疫印迹; 人类; 1:1000; 图 5
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling, 8690)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 5). Oncotarget (2016) ncbi
domestic rabbit 单克隆(D13E1)
  • 免疫印迹; 大鼠; 1:1000; 图 6
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling, 8690P)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 6). Peerj (2015) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 2c
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling, 9211)被用于被用于免疫印迹在小鼠样本上 (图 2c). Exp Hematol (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 2c
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling, 9212)被用于被用于免疫印迹在小鼠样本上 (图 2c). Exp Hematol (2016) ncbi
domestic rabbit 单克隆(12F8)
  • 免疫印迹; 人类; 1:1000; 图 s2a
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling Technology, 4631)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 s2a). Nat Commun (2015) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 6
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling Technology, 9211)被用于被用于免疫印迹在小鼠样本上 (图 6). Mol Biol Cell (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 6
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling Technology, 9212)被用于被用于免疫印迹在小鼠样本上 (图 6). Mol Biol Cell (2016) ncbi
domestic rabbit 单克隆(3D7)
  • 免疫印迹; 小鼠; 1:1000; 图 s7
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling Technology, 9215)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 s7). Brain Behav (2015) ncbi
domestic rabbit 单克隆(D13E1)
  • 免疫组化-石蜡切片; 小鼠; 1:200; 图 s4
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling Technology, 8690)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:200 (图 s4). Cancer Sci (2016) ncbi
domestic rabbit 单克隆(D13E1)
  • 免疫印迹; 人类; 1:1000; 图 5c
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling, 8690)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 5c). Mol Med Rep (2016) ncbi
domestic rabbit 单克隆(D13E1)
  • 免疫印迹; 人类; 图 2b, 2c
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling, 8690)被用于被用于免疫印迹在人类样本上 (图 2b, 2c). Nat Genet (2016) ncbi
domestic rabbit 单克隆(D13E1)
  • 免疫印迹; 人类; 图 5b
赛信通(上海)生物试剂有限公司 p38抗体(Santa Cruz, 8690)被用于被用于免疫印迹在人类样本上 (图 5b). Apoptosis (2016) ncbi
domestic rabbit 单克隆(12F8)
  • 免疫印迹; 人类; 图 2
赛信通(上海)生物试剂有限公司 p38抗体(Cell signaling, 4631)被用于被用于免疫印迹在人类样本上 (图 2). J Cell Biol (2015) ncbi
domestic rabbit 单克隆(D13E1)
  • 免疫印迹; 小鼠
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signalling, 8690S)被用于被用于免疫印迹在小鼠样本上. Biochem Pharmacol (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 6
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signalling, 9211)被用于被用于免疫印迹在小鼠样本上 (图 6). Biochem Pharmacol (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 8
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling Technology, 9212)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 8). Biochem Pharmacol (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:400; 图 3e
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling, 9211)被用于被用于免疫印迹在人类样本上浓度为1:400 (图 3e). Am J Physiol Lung Cell Mol Physiol (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:800; 图 3e
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling, 9212)被用于被用于免疫印迹在人类样本上浓度为1:800 (图 3e). Am J Physiol Lung Cell Mol Physiol (2016) ncbi
domestic rabbit 单克隆(D13E1)
  • 免疫印迹; 人类; 图 s1
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signalling, 8690)被用于被用于免疫印迹在人类样本上 (图 s1). Eur J Immunol (2016) ncbi
domestic rabbit 单克隆(3D7)
  • 免疫印迹; 小鼠; 1:1000; 图 8
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling, 9215)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 8). Neuropharmacology (2016) ncbi
小鼠 单克隆(28B10)
  • 免疫印迹; 人类; 图 2
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling, 9216S)被用于被用于免疫印迹在人类样本上 (图 2). Aging (Albany NY) (2015) ncbi
domestic rabbit 单克隆(D13E1)
  • 免疫印迹; 人类; 图 3
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling, 8690)被用于被用于免疫印迹在人类样本上 (图 3). Aging (Albany NY) (2015) ncbi
小鼠 单克隆(28B10)
  • 免疫印迹; 大鼠; 1:1000; 图 5a
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling, 9216S)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 5a). Int J Mol Med (2016) ncbi
domestic rabbit 单克隆(D13E1)
  • 免疫印迹; 大鼠; 1:1000; 图 5a
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling, 8690P)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 5a). Int J Mol Med (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 3d
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling, 9211)被用于被用于免疫印迹在人类样本上 (图 3d). Cell Death Differ (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 3d
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling, 9212)被用于被用于免疫印迹在人类样本上 (图 3d). Cell Death Differ (2016) ncbi
domestic rabbit 单克隆(3D7)
  • 免疫印迹; 人类; 图 1
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling Tech, 9215)被用于被用于免疫印迹在人类样本上 (图 1). J Cell Biol (2015) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 4
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling Technology, 9212)被用于被用于免疫印迹在小鼠样本上 (图 4). Oncogene (2016) ncbi
domestic rabbit 单克隆(D13E1)
  • 免疫印迹; 人类; 1:1000; 图 6
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling, 8690)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 6). Mol Cell Biochem (2016) ncbi
小鼠 单克隆(28B10)
  • 免疫印迹; 大鼠; 图 7
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling, 9216)被用于被用于免疫印迹在大鼠样本上 (图 7). Int J Mol Sci (2015) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 s5
赛信通(上海)生物试剂有限公司 p38抗体(Cell signaling, 9211)被用于被用于免疫印迹在人类样本上 (图 s5). Cell Mol Life Sci (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 s5
赛信通(上海)生物试剂有限公司 p38抗体(Cell signaling, 9212)被用于被用于免疫印迹在人类样本上 (图 s5). Cell Mol Life Sci (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 4
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling, 9211)被用于被用于免疫印迹在人类样本上 (图 4). Cell Mol Life Sci (2016) ncbi
小鼠 单克隆(28B10)
  • 免疫印迹; 小鼠; 1:1000; 图 4
赛信通(上海)生物试剂有限公司 p38抗体(Cell signaling, 9216)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 4). Sci Rep (2015) ncbi
domestic rabbit 单克隆(12F8)
  • 免疫印迹; 人类; 图 6
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling, 4631)被用于被用于免疫印迹在人类样本上 (图 6). Oncotarget (2015) ncbi
小鼠 单克隆(L53F8)
  • 免疫印迹; 大鼠; 1:1000; 图 5
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling, 9228)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 5). Int J Mol Med (2015) ncbi
domestic rabbit 单克隆(3D7)
  • 免疫印迹; 大鼠; 1:1000; 图 5
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling, 4092)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 5). Int J Mol Med (2015) ncbi
小鼠 单克隆(28B10)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling, 9216)被用于被用于免疫印迹在人类样本上. PLoS ONE (2015) ncbi
小鼠 单克隆(L53F8)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling, 9228)被用于被用于免疫印迹在人类样本上. PLoS ONE (2015) ncbi
小鼠 单克隆(28B10)
  • 免疫印迹; 小鼠; 图 s5
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling Technology, 28B10)被用于被用于免疫印迹在小鼠样本上 (图 s5). Nature (2015) ncbi
domestic rabbit 单克隆(3D7)
  • 免疫印迹; domestic rabbit; 1:1000; 图 3
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signalling Technology, 9215)被用于被用于免疫印迹在domestic rabbit样本上浓度为1:1000 (图 3). Sci Rep (2015) ncbi
domestic rabbit 单克隆(D13E1)
  • 免疫印迹; 小鼠; 图 5b
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling, 2387)被用于被用于免疫印迹在小鼠样本上 (图 5b). Front Microbiol (2015) ncbi
domestic rabbit 单克隆(3D7)
  • 免疫印迹; 大鼠; 1:1000
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling, 9215S)被用于被用于免疫印迹在大鼠样本上浓度为1:1000. Am J Physiol Lung Cell Mol Physiol (2015) ncbi
domestic rabbit 单克隆(12F8)
  • 免疫印迹; 大鼠; 图 S3
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling, 4631)被用于被用于免疫印迹在大鼠样本上 (图 S3). PLoS ONE (2015) ncbi
domestic rabbit 单克隆(3D7)
  • 免疫印迹; 人类; 图 5
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling Tech, 9215)被用于被用于免疫印迹在人类样本上 (图 5). Sci Rep (2015) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling, 9212)被用于被用于免疫印迹在人类样本上. Mol Carcinog (2016) ncbi
小鼠 单克隆(28B10)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling, 9216)被用于被用于免疫印迹在人类样本上. Mol Carcinog (2016) ncbi
domestic rabbit 单克隆(3D7)
  • 免疫印迹; 小鼠; 1:2000
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling, 9215)被用于被用于免疫印迹在小鼠样本上浓度为1:2000. Mol Oncol (2015) ncbi
小鼠 单克隆(28B10)
  • 免疫印迹; 小鼠; 图 6
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling, 9216)被用于被用于免疫印迹在小鼠样本上 (图 6). elife (2015) ncbi
小鼠 单克隆(28B10)
  • 免疫印迹; 小鼠; 1:1000; 图 5
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling, 9,216)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 5). Nat Commun (2015) ncbi
domestic rabbit 单克隆(3D7)
  • 免疫印迹; 人类; 图 2
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling, 9215)被用于被用于免疫印迹在人类样本上 (图 2). Nat Immunol (2015) ncbi
小鼠 单克隆(28B10)
  • 免疫印迹; 人类; 图 5
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signalling, 9216)被用于被用于免疫印迹在人类样本上 (图 5). Int J Mol Med (2015) ncbi
domestic rabbit 单克隆(12F8)
  • 免疫印迹; 人类; 1:1000
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling, 4631)被用于被用于免疫印迹在人类样本上浓度为1:1000. J Biol Chem (2015) ncbi
domestic rabbit 单克隆(3D7)
  • 免疫印迹; 大鼠; 1:1000; 图 6
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling, 9215)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 6). PLoS ONE (2015) ncbi
domestic rabbit 单克隆(D13E1)
  • 免疫印迹; 人类; 图 6
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling, 8690)被用于被用于免疫印迹在人类样本上 (图 6). elife (2015) ncbi
domestic rabbit 单克隆(3D7)
  • 免疫印迹; 人类; 图 7
赛信通(上海)生物试剂有限公司 p38抗体(Cell signaling, 9215)被用于被用于免疫印迹在人类样本上 (图 7). Oncotarget (2015) ncbi
小鼠 单克隆(28B10)
  • 免疫印迹; 人类; 图 s8
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling Technology, 9216)被用于被用于免疫印迹在人类样本上 (图 s8). Autophagy (2015) ncbi
小鼠 单克隆(28B10)
  • 免疫印迹; 人类; 图 4
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling, 9216)被用于被用于免疫印迹在人类样本上 (图 4). Int J Biol Sci (2015) ncbi
domestic rabbit 单克隆(D13E1)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling, 8690)被用于被用于免疫印迹在人类样本上. PLoS ONE (2015) ncbi
domestic rabbit 单克隆(7D6)
  • 免疫印迹; 人类; 图 s1
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling, 2371)被用于被用于免疫印迹在人类样本上 (图 s1). Cell Death Dis (2015) ncbi
domestic rabbit 单克隆(3D7)
  • 免疫印迹; 大鼠
  • 免疫细胞化学; 人类
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling, 9215)被用于被用于免疫印迹在大鼠样本上 和 被用于免疫细胞化学在人类样本上. Toxicol Lett (2015) ncbi
小鼠 单克隆(28B10)
  • 免疫印迹; 小鼠; 图 1
赛信通(上海)生物试剂有限公司 p38抗体(Cell signaling, 9216)被用于被用于免疫印迹在小鼠样本上 (图 1). FASEB J (2015) ncbi
domestic rabbit 单克隆(3D7)
  • 免疫印迹; 小鼠; 1:1000
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling Technology, 9215)被用于被用于免疫印迹在小鼠样本上浓度为1:1000. Int J Mol Sci (2015) ncbi
小鼠 单克隆(28B10)
  • 免疫印迹; 小鼠; 1:1000; 图 s2
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling, 9216)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 s2). Nat Commun (2015) ncbi
domestic rabbit 单克隆(3D7)
  • 免疫印迹; 小鼠; 1:500; 图 4
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling Technology, 9215)被用于被用于免疫印迹在小鼠样本上浓度为1:500 (图 4). J Physiol (2015) ncbi
domestic rabbit 单克隆(D13E1)
  • 免疫印迹; 小鼠; 1:1000; 图 2
赛信通(上海)生物试剂有限公司 p38抗体(Cell signaling, 8690)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 2). Nat Commun (2015) ncbi
domestic rabbit 单克隆(3D7)
  • 免疫印迹; 小鼠; 1:1000; 图 2
赛信通(上海)生物试剂有限公司 p38抗体(Cell signaling, 9215)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 2). Nat Commun (2015) ncbi
domestic rabbit 单克隆(12F8)
  • 免疫印迹; 人类; 图 1
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling, 4631)被用于被用于免疫印迹在人类样本上 (图 1). EMBO J (2015) ncbi
domestic rabbit 单克隆(12F8)
  • 免疫印迹; 小鼠; 图 s7a
赛信通(上海)生物试剂有限公司 p38抗体(Cell signaling, 4631)被用于被用于免疫印迹在小鼠样本上 (图 s7a). Nat Immunol (2015) ncbi
小鼠 单克隆(28B10)
  • 免疫印迹; 小鼠; 图 6a
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling Technology, 4551)被用于被用于免疫印迹在小鼠样本上 (图 6a). Oncotarget (2015) ncbi
小鼠 单克隆(28B10)
  • 免疫印迹; 小鼠; 1:1000; 图 s4
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling Technology, 9216S)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 s4). Nat Cell Biol (2015) ncbi
domestic rabbit 单克隆(D13E1)
  • 免疫印迹; 小鼠; 图 10B
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling, 8690)被用于被用于免疫印迹在小鼠样本上 (图 10B). J Immunol (2015) ncbi
domestic rabbit 单克隆(D13E1)
  • 免疫印迹; 小鼠; 1:1000; 图 5a
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling, D13E1)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 5a). Mol Med Rep (2015) ncbi
domestic rabbit 单克隆(3D7)
  • 免疫印迹; 人类; 图 5
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling, 9215S)被用于被用于免疫印迹在人类样本上 (图 5). Evid Based Complement Alternat Med (2015) ncbi
domestic rabbit 单克隆(D13E1)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling, D13E1)被用于被用于免疫印迹在人类样本上. Cancer Lett (2015) ncbi
domestic rabbit 单克隆(12F8)
  • 免疫印迹; 小鼠
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling Technology, 4631)被用于被用于免疫印迹在小鼠样本上. PLoS ONE (2015) ncbi
domestic rabbit 单克隆(3D7)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signalling, 9215)被用于被用于免疫印迹在人类样本上. Mol Carcinog (2016) ncbi
domestic rabbit 单克隆(D13E1)
  • 免疫印迹; 人类; 图 1
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling, 2387)被用于被用于免疫印迹在人类样本上 (图 1). Breast Cancer Res (2015) ncbi
domestic rabbit 单克隆(3D7)
  • 免疫印迹; 人类; 1:1000
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling Technology, 9215)被用于被用于免疫印迹在人类样本上浓度为1:1000. Cancer Lett (2015) ncbi
domestic rabbit 单克隆(12F8)
  • 免疫印迹; 小鼠
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling, 4631)被用于被用于免疫印迹在小鼠样本上 和 被用于免疫印迹在人类样本上. Oncotarget (2014) ncbi
domestic rabbit 单克隆(D13E1)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling, 8690)被用于被用于免疫印迹在人类样本上. Mucosal Immunol (2015) ncbi
domestic rabbit 单克隆(3D7)
  • 免疫印迹; 人类; 图 3a
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling, 9215)被用于被用于免疫印迹在人类样本上 (图 3a). Int J Oncol (2015) ncbi
domestic rabbit 单克隆(12F8)
  • 免疫印迹; 大鼠
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling Technology, 4631S)被用于被用于免疫印迹在大鼠样本上. Br J Pharmacol (2015) ncbi
domestic rabbit 单克隆(D13E1)
  • 免疫印迹; 小鼠
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling, 8690)被用于被用于免疫印迹在小鼠样本上. Genesis (2014) ncbi
domestic rabbit 单克隆(12F8)
  • 免疫印迹; 小鼠
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling Technology, 4631)被用于被用于免疫印迹在小鼠样本上. J Biol Chem (2014) ncbi
domestic rabbit 单克隆(3D7)
  • 免疫印迹; 小鼠; 1:1000
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling Technology, 9215)被用于被用于免疫印迹在小鼠样本上浓度为1:1000. Int Immunopharmacol (2014) ncbi
domestic rabbit 单克隆(D13E1)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling Technology, 8690)被用于被用于免疫印迹在人类样本上. Biochim Biophys Acta (2014) ncbi
domestic rabbit 单克隆(3D7)
  • 免疫印迹; 小鼠
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling Technology, 9215S)被用于被用于免疫印迹在小鼠样本上. J Agric Food Chem (2014) ncbi
domestic rabbit 单克隆(D13E1)
  • 免疫印迹; 小鼠; 图 s8
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling, 8690)被用于被用于免疫印迹在小鼠样本上 (图 s8). Nature (2014) ncbi
domestic rabbit 单克隆(3D7)
  • 免疫印迹; 小鼠; 图 6
赛信通(上海)生物试剂有限公司 p38抗体(Cell signaling, 9215)被用于被用于免疫印迹在小鼠样本上 (图 6). Nat Commun (2014) ncbi
domestic rabbit 单克隆(3D7)
  • 免疫印迹; 小鼠; 1:1000
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling, 9215)被用于被用于免疫印迹在小鼠样本上浓度为1:1000. Nat Med (2014) ncbi
domestic rabbit 单克隆(D13E1)
  • 免疫印迹; pigs ; 1:500
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling Technology, 8690)被用于被用于免疫印迹在pigs 样本上浓度为1:500. Amino Acids (2014) ncbi
domestic rabbit 单克隆(3D7)
  • 免疫印迹; pigs ; 1:500
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling Technology, 9215)被用于被用于免疫印迹在pigs 样本上浓度为1:500. Amino Acids (2014) ncbi
小鼠 单克隆(28B10)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signalling, 9216S)被用于被用于免疫印迹在人类样本上. Mech Ageing Dev (2014) ncbi
domestic rabbit 单克隆(D13E1)
  • 免疫印迹; 小鼠
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling Technology, 8690)被用于被用于免疫印迹在小鼠样本上. Amino Acids (2014) ncbi
domestic rabbit 单克隆(12F8)
  • 免疫印迹; 人类; 图 8
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling, 4631)被用于被用于免疫印迹在人类样本上 (图 8). J Biol Chem (2014) ncbi
domestic rabbit 单克隆(D13E1)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 p38抗体(cell Signaling, #8690)被用于被用于免疫印迹在人类样本上. Mol Oncol (2014) ncbi
domestic rabbit 单克隆(3D7)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 p38抗体(cell Signaling, 9215)被用于被用于免疫印迹在人类样本上. Mol Oncol (2014) ncbi
domestic rabbit 单克隆(12F8)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling Technology, 4631)被用于被用于免疫印迹在人类样本上. Eur J Cancer (2014) ncbi
小鼠 单克隆(28B10)
  • 免疫印迹; 人类; 1:200
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling, 9216S)被用于被用于免疫印迹在人类样本上浓度为1:200. Biomed Res Int (2014) ncbi
domestic rabbit 单克隆(D13E1)
  • 免疫印迹; 大鼠; 1:1000
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling Technology, 8690S)被用于被用于免疫印迹在大鼠样本上浓度为1:1000. J Neuroinflammation (2014) ncbi
domestic rabbit 单克隆(12F8)
  • 免疫组化; 鸡; 1:400
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling Technologies, 12F8)被用于被用于免疫组化在鸡样本上浓度为1:400. Glia (2014) ncbi
小鼠 单克隆(28B10)
  • 免疫印迹; 犬
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling Technology, 9216)被用于被用于免疫印迹在犬样本上. J Vet Med Sci (2014) ncbi
domestic rabbit 单克隆(12F8)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling Technology, 4631)被用于被用于免疫印迹在人类样本上. Cell Death Differ (2014) ncbi
domestic rabbit 单克隆(D13E1)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling Technology, 8690)被用于被用于免疫印迹在人类样本上. Eur J Immunol (2014) ncbi
domestic rabbit 单克隆(3D7)
  • 免疫印迹; 大鼠
赛信通(上海)生物试剂有限公司 p38抗体(CST, 9215)被用于被用于免疫印迹在大鼠样本上. FASEB J (2014) ncbi
domestic rabbit 单克隆(D13E1)
  • 免疫印迹; 大鼠
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling Technologies, 8690)被用于被用于免疫印迹在大鼠样本上. PLoS ONE (2014) ncbi
domestic rabbit 单克隆(D13E1)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling, 8690)被用于被用于免疫印迹在人类样本上. Breast Cancer Res (2014) ncbi
小鼠 单克隆(28B10)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling, 9216)被用于被用于免疫印迹在人类样本上. Oncogene (2015) ncbi
domestic rabbit 单克隆(D13E1)
  • 免疫印迹; 大鼠
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling, 8690)被用于被用于免疫印迹在大鼠样本上. World J Gastroenterol (2014) ncbi
domestic rabbit 单克隆(D13E1)
  • 免疫印迹; 人类; 1:1000
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling Technology, 8690)被用于被用于免疫印迹在人类样本上浓度为1:1000. Arch Oral Biol (2014) ncbi
domestic rabbit 单克隆(3D7)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling, 9215)被用于被用于免疫印迹在人类样本上. Mol Cell Biol (2014) ncbi
小鼠 单克隆(28B10)
  • 流式细胞仪; 小鼠
  • 免疫细胞化学; 小鼠; 1:50
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling, 9216S)被用于被用于流式细胞仪在小鼠样本上 和 被用于免疫细胞化学在小鼠样本上浓度为1:50. Nat Med (2014) ncbi
domestic rabbit 单克隆(3D7)
  • 免疫印迹; 人类; 图 5
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling, 9215)被用于被用于免疫印迹在人类样本上 (图 5). Biochem J (2014) ncbi
小鼠 单克隆(28B10)
  • 免疫印迹; 小鼠
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling Technology, 9216)被用于被用于免疫印迹在小鼠样本上. J Biol Chem (2014) ncbi
小鼠 单克隆(28B10)
  • 免疫印迹; 小鼠; 图 1e
赛信通(上海)生物试剂有限公司 p38抗体(cell signalling technology, 9216)被用于被用于免疫印迹在小鼠样本上 (图 1e). Arthritis Res Ther (2014) ncbi
domestic rabbit 单克隆(12F8)
  • 免疫印迹; 人类; 1:500
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling, 4631S)被用于被用于免疫印迹在人类样本上浓度为1:500. PLoS ONE (2013) ncbi
domestic rabbit 单克隆(D13E1)
  • 免疫印迹; 小鼠; 1:2000; 图 8
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling Technology, 8690)被用于被用于免疫印迹在小鼠样本上浓度为1:2000 (图 8). Am J Physiol Renal Physiol (2014) ncbi
domestic rabbit 单克隆(3D7)
  • 免疫印迹; 小鼠; 1:1000; 图 8
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling Technology, 4092)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 8). Am J Physiol Renal Physiol (2014) ncbi
domestic rabbit 单克隆(12F8)
  • 免疫印迹; 人类
  • 免疫印迹; 小鼠
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling Technology, 4631)被用于被用于免疫印迹在人类样本上 和 被用于免疫印迹在小鼠样本上. J Dermatol Sci (2014) ncbi
domestic rabbit 单克隆(12F8)
  • 免疫印迹; 大鼠
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling, 4631S)被用于被用于免疫印迹在大鼠样本上. PLoS ONE (2013) ncbi
小鼠 单克隆(28B10)
  • 免疫印迹; 小鼠; 1:200
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling Technology, 9216)被用于被用于免疫印迹在小鼠样本上浓度为1:200. Nat Med (2013) ncbi
domestic rabbit 单克隆(12F8)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling Technologies, 4631)被用于被用于免疫印迹在人类样本上. PLoS ONE (2013) ncbi
小鼠 单克隆(L53F8)
  • 免疫印迹; 小鼠; 图 5
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling, 9228)被用于被用于免疫印迹在小鼠样本上 (图 5). Cell Res (2013) ncbi
小鼠 单克隆(28B10)
  • 免疫印迹; pigs
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling, 9216)被用于被用于免疫印迹在pigs 样本上. Basic Res Cardiol (2013) ncbi
小鼠 单克隆(28B10)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling, 9216)被用于被用于免疫印迹在人类样本上. Am J Physiol Renal Physiol (2013) ncbi
domestic rabbit 单克隆(12F8)
  • 免疫组化-石蜡切片; 小鼠
赛信通(上海)生物试剂有限公司 p38抗体(Cell signaling, 4631)被用于被用于免疫组化-石蜡切片在小鼠样本上. Exp Toxicol Pathol (2013) ncbi
小鼠 单克隆(L53F8)
  • 免疫印迹; 大鼠
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling, L53F8)被用于被用于免疫印迹在大鼠样本上. J Neurosci (2013) ncbi
domestic rabbit 单克隆(D13E1)
  • 免疫印迹; 大鼠
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling, D13E1)被用于被用于免疫印迹在大鼠样本上. J Neurosci (2013) ncbi
domestic rabbit 单克隆(12F8)
  • 免疫组化-石蜡切片; 小鼠; 1:50
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling, 4631S)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:50. PLoS ONE (2013) ncbi
domestic rabbit 单克隆(3D7)
  • 免疫组化-自由浮动切片; 大鼠; 1:100
  • 免疫印迹; 大鼠; 1:1000
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling, 9215S)被用于被用于免疫组化-自由浮动切片在大鼠样本上浓度为1:100 和 被用于免疫印迹在大鼠样本上浓度为1:1000. J Neurosci (2013) ncbi
domestic rabbit 单克隆(3D7)
  • 免疫印迹; 人类; 图 7d
赛信通(上海)生物试剂有限公司 p38抗体(Cell Signaling, 3D7)被用于被用于免疫印迹在人类样本上 (图 7d). EMBO J (2012) ncbi
Bioworld
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:800; 图 7
Bioworld p38抗体(Bioworld, BS5016)被用于被用于免疫印迹在人类样本上浓度为1:800 (图 7). Sci Rep (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 5
Bioworld p38抗体(Bioworld Technology, BS4621)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 5). Oncol Lett (2016) ncbi
碧迪BD
小鼠 单克隆(30/p38 MAPK)
  • 免疫组化; 小鼠; 1:500; 图 s1c
碧迪BD p38抗体(BD Biosciences, 612280)被用于被用于免疫组化在小鼠样本上浓度为1:500 (图 s1c). Proc Natl Acad Sci U S A (2022) ncbi
小鼠 单克隆(20A)
  • 免疫印迹; 人类; 图 3b
碧迪BD p38抗体(BD Biosciences, 612359)被用于被用于免疫印迹在人类样本上 (图 3b). Mol Oncol (2021) ncbi
小鼠 单克隆(20A)
  • 流式细胞仪; 人类; 图 4
碧迪BD p38抗体(BD Bioscience, 20A)被用于被用于流式细胞仪在人类样本上 (图 4). Aging Cell (2021) ncbi
小鼠 单克隆(30/p38 MAPK)
  • 免疫印迹; 小鼠; 1:1000; 图 ev1c
碧迪BD p38抗体(BD Biosciences, 612281)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 ev1c). EMBO Mol Med (2020) ncbi
小鼠 单克隆(20A)
  • 免疫印迹; 人类; 图 2d
碧迪BD p38抗体(BD Biosciences, 612358)被用于被用于免疫印迹在人类样本上 (图 2d). Nat Commun (2019) ncbi
小鼠 单克隆(36/p38)
  • 流式细胞仪; 人类; 图 s5a
碧迪BD p38抗体(BD Biosciences, 36/p38 pT180/pY182)被用于被用于流式细胞仪在人类样本上 (图 s5a). J Clin Invest (2019) ncbi
小鼠 单克隆(36/p38)
  • 免疫印迹; 小鼠; 图 1i
碧迪BD p38抗体(BD, 612288)被用于被用于免疫印迹在小鼠样本上 (图 1i). Cell (2019) ncbi
小鼠 单克隆(20A)
  • 流式细胞仪; 小鼠; 图 6e
碧迪BD p38抗体(BD Biosciences, 612566)被用于被用于流式细胞仪在小鼠样本上 (图 6e). Cell Rep (2018) ncbi
小鼠 单克隆(20A)
  • 流式细胞仪; 人类; 图 5c
碧迪BD p38抗体(BD Biosciences, 612593)被用于被用于流式细胞仪在人类样本上 (图 5c). Cell Rep (2018) ncbi
小鼠 单克隆(36/p38)
  • 免疫印迹; 小鼠; 1:250; 图 s3
碧迪BD p38抗体(BDTransduction实验室, 612289)被用于被用于免疫印迹在小鼠样本上浓度为1:250 (图 s3). Nat Commun (2018) ncbi
小鼠 单克隆(20A)
  • 流式细胞仪; 人类; 图 4c
碧迪BD p38抗体(BD Biosciences, 20A)被用于被用于流式细胞仪在人类样本上 (图 4c). Sci Rep (2018) ncbi
小鼠 单克隆(20A)
  • 流式细胞仪; 人类; 图 1c
碧迪BD p38抗体(BD, 612592)被用于被用于流式细胞仪在人类样本上 (图 1c). J Exp Med (2018) ncbi
小鼠 单克隆(20A)
  • 免疫印迹; 小鼠; 图 4c
碧迪BD p38抗体(BD Biosciences, 612358)被用于被用于免疫印迹在小鼠样本上 (图 4c). EMBO J (2017) ncbi
小鼠 单克隆(30/p38 MAPK)
  • 免疫印迹; 小鼠; 图 e2c
  • 免疫组化-石蜡切片; 人类; 图 e2g
碧迪BD p38抗体(BD Biosciences, 612281)被用于被用于免疫印迹在小鼠样本上 (图 e2c) 和 被用于免疫组化-石蜡切片在人类样本上 (图 e2g). Nature (2016) ncbi
小鼠 单克隆(20A)
  • 流式细胞仪; 人类; 图 s1a
碧迪BD p38抗体(BD Biosciences, 20A)被用于被用于流式细胞仪在人类样本上 (图 s1a). J Immunol (2016) ncbi
小鼠 单克隆(30/p38 MAPK)
  • 免疫印迹; 犬; 图 2b
碧迪BD p38抗体(BD Biosciences, 612280)被用于被用于免疫印迹在犬样本上 (图 2b). J Biol Chem (2016) ncbi
小鼠 单克隆(20A)
  • 流式细胞仪; 人类
碧迪BD p38抗体(BD, 20A)被用于被用于流式细胞仪在人类样本上. J Exp Med (2016) ncbi
小鼠 单克隆(36/p38)
  • 流式细胞仪; 人类; 图 1a
碧迪BD p38抗体(BD Biosciences, 36)被用于被用于流式细胞仪在人类样本上 (图 1a). Immunology (2017) ncbi
小鼠 单克隆(30/p38 MAPK)
  • 免疫印迹; 人类; 图 2
碧迪BD p38抗体(BD Biosciences, 612280)被用于被用于免疫印迹在人类样本上 (图 2). Int J Oncol (2016) ncbi
小鼠 单克隆(30/p38 MAPK)
  • 免疫印迹; 小鼠; 图 5
碧迪BD p38抗体(BD Biosciences, 612281)被用于被用于免疫印迹在小鼠样本上 (图 5). Sci Rep (2016) ncbi
小鼠 单克隆(20A)
  • 免疫印迹; 小鼠; 图 5
碧迪BD p38抗体(BD Biosciences, 612359)被用于被用于免疫印迹在小鼠样本上 (图 5). Sci Rep (2016) ncbi
小鼠 单克隆(20A)
  • 流式细胞仪; 人类; 图 3b
碧迪BD p38抗体(BD Biosciences, 20A)被用于被用于流式细胞仪在人类样本上 (图 3b). Cytotherapy (2016) ncbi
小鼠 单克隆(20A)
  • 免疫印迹; 人类; 图 4b
碧迪BD p38抗体(BD Bioscience, 612358)被用于被用于免疫印迹在人类样本上 (图 4b). Oncotarget (2016) ncbi
小鼠 单克隆(20A)
  • 流式细胞仪; 人类; 图 6b
碧迪BD p38抗体(BD, 20A)被用于被用于流式细胞仪在人类样本上 (图 6b). Am J Transplant (2016) ncbi
小鼠 单克隆(36/p38)
  • 流式细胞仪; 小鼠; 图 2
碧迪BD p38抗体(BD, 612595)被用于被用于流式细胞仪在小鼠样本上 (图 2). PLoS ONE (2015) ncbi
小鼠 单克隆(20A)
  • 流式细胞仪; 小鼠; 图 6
碧迪BD p38抗体(BD Biosciences, 20A)被用于被用于流式细胞仪在小鼠样本上 (图 6). J Immunol (2015) ncbi
小鼠 单克隆(20A)
  • 免疫印迹; 人类
碧迪BD p38抗体(BD Transduction Laboratories, 612358)被用于被用于免疫印迹在人类样本上. PLoS ONE (2014) ncbi
小鼠 单克隆(20A)
  • 免疫印迹; 人类
碧迪BD p38抗体(BD Biosciences, 612359)被用于被用于免疫印迹在人类样本上. Biochem Biophys Res Commun (2014) ncbi
小鼠 单克隆(36/p38)
  • 流式细胞仪; 人类
碧迪BD p38抗体(BD Biosciences, 560406)被用于被用于流式细胞仪在人类样本上. Allergy (2014) ncbi
小鼠 单克隆(20A)
  • 流式细胞仪; 人类
碧迪BD p38抗体(BD Biosciences, 20A)被用于被用于流式细胞仪在人类样本上. J Immunol (2014) ncbi
小鼠 单克隆(20A)
  • 流式细胞仪; 人类
碧迪BD p38抗体(BD Biosciences, clone 612566)被用于被用于流式细胞仪在人类样本上. PLoS ONE (2014) ncbi
小鼠 单克隆(20A)
  • 流式细胞仪; 人类; 图 1
碧迪BD p38抗体(BD, 20A)被用于被用于流式细胞仪在人类样本上 (图 1). Cancer Immunol Immunother (2014) ncbi
小鼠 单克隆(36/p38)
  • 免疫印迹; 大鼠; 1:2500
碧迪BD p38抗体(BD Biosciences, 612288)被用于被用于免疫印迹在大鼠样本上浓度为1:2500. Biochim Biophys Acta (2014) ncbi
小鼠 单克隆(20A)
  • 流式细胞仪; 人类
碧迪BD p38抗体(BD, 20A)被用于被用于流式细胞仪在人类样本上. Cytometry A (2014) ncbi
小鼠 单克隆(20A)
  • 免疫印迹; 人类
碧迪BD p38抗体(BD Biosciences, 612359)被用于被用于免疫印迹在人类样本上. Eur J Cancer (2014) ncbi
小鼠 单克隆(20A)
  • 免疫细胞化学; 人类
碧迪BD p38抗体(BD Biosciences, 612593)被用于被用于免疫细胞化学在人类样本上. Blood Cancer J (2011) ncbi
小鼠 单克隆(20A)
  • 流式细胞仪; 人类; 图 3
碧迪BD p38抗体(BD Biosciences, 612593)被用于被用于流式细胞仪在人类样本上 (图 3). Eur J Haematol (2012) ncbi
文章列表
  1. Mukherjee B, Tiwari A, Palo A, Pattnaik N, Samantara S, Dixit M. Reduced expression of FRG1 facilitates breast cancer progression via GM-CSF/MEK-ERK axis by abating FRG1 mediated transcriptional repression of GM-CSF. Cell Death Discov. 2022;8:442 pubmed 出版商
  2. Feng K, Meng P, Zhang M, Zou X, Li S, Huang C, et al. IL-24 Contributes to Neutrophilic Asthma in an IL-17A-Dependent Manner and Is Suppressed by IL-37. Allergy Asthma Immunol Res. 2022;14:505-527 pubmed 出版商
  3. Zhang X, Xiong T, Gao L, Wang Y, Liu L, Tian T, et al. Extracellular fibrinogen-binding protein released by intracellular Staphylococcus aureus suppresses host immunity by targeting TRAF3. Nat Commun. 2022;13:5493 pubmed 出版商
  4. Liu J, Lai X, Yu R, Ding H, Bai H, Yang Z, et al. Progranulin aggravates lethal Candida albicans sepsis by regulating inflammatory response and antifungal immunity. PLoS Pathog. 2022;18:e1010873 pubmed 出版商
  5. Chen L, Song Z, Cao X, Fan M, Zhou Y, Zhang G. Interleukin-33 regulates the endoplasmic reticulum stress of human myometrium via an influx of calcium during initiation of labor. elife. 2022;11: pubmed 出版商
  6. Gonzalez M, Naimo G, Anwar T, Paol xec A, Tekula S, Kim S, et al. EZH2 T367 phosphorylation activates p38 signaling through lysine methylation to promote breast cancer progression. iScience. 2022;25:104827 pubmed 出版商
  7. Chakrabarti M, Bhattacharya A, Gebere M, Johnson J, Ayub Z, Chatzistamou I, et al. Increased TGFβ1 and SMAD3 Contribute to Age-Related Aortic Valve Calcification. Front Cardiovasc Med. 2022;9:770065 pubmed 出版商
  8. Mu R, Chen B, Bi B, Yu H, Liu J, Li J, et al. LIM Mineralization Protein-1 Enhances the Committed Differentiation of Dental Pulp Stem Cells through the ERK1/2 and p38 MAPK Pathways and BMP Signaling. Int J Med Sci. 2022;19:1307-1319 pubmed 出版商
  9. Gao H, Sun H, Yan N, Zhao P, Xu H, Zheng W, et al. ATP13A2 Declines Zinc-Induced Accumulation of α-Synuclein in a Parkinson's Disease Model. Int J Mol Sci. 2022;23: pubmed 出版商
  10. Yong L, Yu Y, Li B, Ge H, Zhen Q, Mao Y, et al. Calcium/calmodulin-dependent protein kinase IV promotes imiquimod-induced psoriatic inflammation via macrophages and keratinocytes in mice. Nat Commun. 2022;13:4255 pubmed 出版商
  11. Wang Q, Xu C, Cai R, An W, Yuan H, Xu M. Fbxo45-mediated NP-STEP46 degradation via K6-linked ubiquitination sustains ERK activity in lung cancer. Mol Oncol. 2022;16:3017-3033 pubmed 出版商
  12. Zhao S, Wang Y, Yang N, Mu M, Wu Z, Li H, et al. Genome-scale CRISPR-Cas9 screen reveals novel regulators of B7-H3 in tumor cells. J Immunother Cancer. 2022;10: pubmed 出版商
  13. Lan T, Wu Y, Zhang Y, Li S, Zhu Z, Wang L, et al. Agomelatine rescues lipopolysaccharide-induced neural injury and depression-like behaviors via suppression of the Gαi-2-PKA-ASK1 signaling pathway. J Neuroinflammation. 2022;19:117 pubmed 出版商
  14. Zhou W, Xu Y, Zhang J, Zhang P, Yao Z, Yan Z, et al. MiRNA-363-3p/DUSP10/JNK axis mediates chemoresistance by enhancing DNA damage repair in diffuse large B-cell lymphoma. Leukemia. 2022;36:1861-1869 pubmed 出版商
  15. Zhang Y, Huo F, Cao Q, Jia R, Huang Q, Wang Z, et al. FimH confers mannose-targeting ability to Bacillus Calmette-Guerin for improved immunotherapy in bladder cancer. J Immunother Cancer. 2022;10: pubmed 出版商
  16. Günes Günsel G, Conlon T, Jeridi A, Kim R, Ertuz Z, Lang N, et al. The arginine methyltransferase PRMT7 promotes extravasation of monocytes resulting in tissue injury in COPD. Nat Commun. 2022;13:1303 pubmed 出版商
  17. Peng Y, Zhu X, Gao L, Wang J, Liu H, Zhu T, et al. Mycobacterium tuberculosis Rv0309 Dampens the Inflammatory Response and Enhances Mycobacterial Survival. Front Immunol. 2022;13:829410 pubmed 出版商
  18. Vessey K, Jobling A, Tran M, Wang A, Greferath U, Fletcher E. Treatments targeting autophagy ameliorate the age-related macular degeneration phenotype in mice lacking APOE (apolipoprotein E). Autophagy. 2022;18:2368-2384 pubmed 出版商
  19. Guo X, Kimura A, Namekata K, Harada C, Arai N, Takeda K, et al. ASK1 signaling regulates phase-specific glial interactions during neuroinflammation. Proc Natl Acad Sci U S A. 2022;119: pubmed 出版商
  20. Hsiao Y, Chi J, Li C, Chen L, Chen Y, Liang H, et al. Disruption of the pentraxin 3/CD44 interaction as an efficient therapy for triple-negative breast cancers. Clin Transl Med. 2022;12:e724 pubmed 出版商
  21. Feng L, Li C, Zeng L, Gao D, Sun Y, Zhong L, et al. MARCH3 negatively regulates IL-3-triggered inflammatory response by mediating K48-linked polyubiquitination and degradation of IL-3Rα. Signal Transduct Target Ther. 2022;7:21 pubmed 出版商
  22. Andr xe9 s Benito P, Carmona M, Jord xe1 n M, Fern xe1 ndez Irigoyen J, Santamar xed a E, Del Rio J, et al. Host Tau Genotype Specifically Designs and Regulates Tau Seeding and Spreading and Host Tau Transformation Following Intrahippocampal Injection of Identical Tau AD Inoculum. Int J Mol Sci. 2022;23: pubmed 出版商
  23. Luan Y, Zhang Y, Yu S, You M, Xu P, Chung S, et al. Development of ovarian tumour causes significant loss of muscle and adipose tissue: a novel mouse model for cancer cachexia study. J Cachexia Sarcopenia Muscle. 2022;13:1289-1301 pubmed 出版商
  24. Machino H, Kaneko S, Komatsu M, Ikawa N, Asada K, Nakato R, et al. The metabolic stress-activated checkpoint LKB1-MARK3 axis acts as a tumor suppressor in high-grade serous ovarian carcinoma. Commun Biol. 2022;5:39 pubmed 出版商
  25. Wang Q, Shen Y, Pan Y, Chen K, Ding R, Zou T, et al. Tlr2/4 Double Knockout Attenuates the Degeneration of Primary Auditory Neurons: Potential Mechanisms From Transcriptomic Perspectives. Front Cell Dev Biol. 2021;9:750271 pubmed 出版商
  26. Hua X, Ge S, Zhang M, Mo F, Zhang L, Zhang J, et al. Pathogenic Roles of CXCL10 in Experimental Autoimmune Prostatitis by Modulating Macrophage Chemotaxis and Cytokine Secretion. Front Immunol. 2021;12:706027 pubmed 出版商
  27. Fang S, Sun S, Cai H, Zou X, Wang S, Hao X, et al. IRGM/Irgm1 facilitates macrophage apoptosis through ROS generation and MAPK signal transduction: Irgm1 +/- mice display increases atherosclerotic plaque stability. Theranostics. 2021;11:9358-9375 pubmed 出版商
  28. Correia de Sousa M, Calo N, Sobolewski C, Gjorgjieva M, Clement S, Maeder C, et al. Mir-21 Suppression Promotes Mouse Hepatocarcinogenesis. Cancers (Basel). 2021;13: pubmed 出版商
  29. Hoste E, Lecomte K, Annusver K, Vandamme N, Roels J, Maschalidi S, et al. OTULIN maintains skin homeostasis by controlling keratinocyte death and stem cell identity. Nat Commun. 2021;12:5913 pubmed 出版商
  30. Huang H, Liu Q, Zhang T, Zhang J, Zhou J, Jing X, et al. Farnesylthiosalicylic Acid-Loaded Albumin Nanoparticle Alleviates Renal Fibrosis by Inhibiting Ras/Raf1/p38 Signaling Pathway. Int J Nanomedicine. 2021;16:6441-6453 pubmed 出版商
  31. Bermúdez Muñoz J, Celaya A, García Mato Á, Muñoz Espín D, Rodriguez de la Rosa L, Serrano M, et al. Dual-Specificity Phosphatase 1 (DUSP1) Has a Central Role in Redox Homeostasis and Inflammation in the Mouse Cochlea. Antioxidants (Basel). 2021;10: pubmed 出版商
  32. Zhu W, Hibbert J, Lin K, Steinert N, Lemens J, Jorgenson K, et al. Weight Pulling: A Novel Mouse Model of Human Progressive Resistance Exercise. Cells. 2021;10: pubmed 出版商
  33. Gyamfi J, Yeo J, Kwon D, Min B, Cha Y, Koo J, et al. Interaction between CD36 and FABP4 modulates adipocyte-induced fatty acid import and metabolism in breast cancer. NPJ Breast Cancer. 2021;7:129 pubmed 出版商
  34. Rajendran R, Rajendran V, Giraldo Velasquez M, Megalofonou F, Gurski F, Stadelmann C, et al. Oligodendrocyte-Specific Deletion of FGFR1 Reduces Cerebellar Inflammation and Neurodegeneration in MOG35-55-Induced EAE. Int J Mol Sci. 2021;22: pubmed 出版商
  35. Hu Y, Li C, Wang X, Chen W, Qian Y, Dai X. TREM2, Driving the Microglial Polarization, Has a TLR4 Sensitivity Profile After Subarachnoid Hemorrhage. Front Cell Dev Biol. 2021;9:693342 pubmed 出版商
  36. Liu M, Shan M, Zhang Y, Guo Z. Progranulin Protects Against Airway Remodeling Through the Modulation of Autophagy via HMGB1 Suppression in House Dust Mite-Induced Chronic Asthma. J Inflamm Res. 2021;14:3891-3904 pubmed 出版商
  37. Zuo Y, Xie J, Li X, Li Y, Thirupathi A, Zhang J, et al. Ferritinophagy-Mediated Ferroptosis Involved in Paraquat-Induced Neurotoxicity of Dopaminergic Neurons: Implication for Neurotoxicity in PD. Oxid Med Cell Longev. 2021;2021:9961628 pubmed 出版商
  38. Chen X, Miao M, Zhou M, Chen J, Li D, Zhang L, et al. Poly-L-arginine promotes asthma angiogenesis through induction of FGFBP1 in airway epithelial cells via activation of the mTORC1-STAT3 pathway. Cell Death Dis. 2021;12:761 pubmed 出版商
  39. Fan M, Zhang G, Chen W, Qi L, Xie M, Zhang Y, et al. Siglec-15 Promotes Tumor Progression in Osteosarcoma via DUSP1/MAPK Pathway. Front Oncol. 2021;11:710689 pubmed 出版商
  40. Yang S, Qu Y, Chen J, Chen S, Sun L, Zhou Y, et al. Bee Pollen Polysaccharide From Rosa rugosa Thunb. (Rosaceae) Promotes Pancreatic β-Cell Proliferation and Insulin Secretion. Front Pharmacol. 2021;12:688073 pubmed 出版商
  41. Lin H, Guan L, Meng L, Uzui H, Guo H. SGLT1 Knockdown Attenuates Cardiac Fibroblast Activation in Diabetic Cardiac Fibrosis. Front Pharmacol. 2021;12:700366 pubmed 出版商
  42. Chen H, Padia R, Li T, Li Y, Li B, Jin L, et al. Signaling of MK2 sustains robust AP1 activity for triple negative breast cancer tumorigenesis through direct phosphorylation of JAB1. NPJ Breast Cancer. 2021;7:91 pubmed 出版商
  43. Fan H, Wang S, Wang H, Sun M, Wu S, Bao W. Melatonin Ameliorates the Toxicity Induced by Deoxynivalenol in Murine Ovary Granulosa Cells by Antioxidative and Anti-Inflammatory Effects. Antioxidants (Basel). 2021;10: pubmed 出版商
  44. Hering L, Katkeviciute E, Schwarzfischer M, Niechcial A, Riggs J, Wawrzyniak M, et al. Macrophages Compensate for Loss of Protein Tyrosine Phosphatase N2 in Dendritic Cells to Protect from Elevated Colitis. Int J Mol Sci. 2021;22: pubmed 出版商
  45. Emre C, Do K, Jun B, Hjorth E, Alcalde S, Kautzmann M, et al. Age-related changes in brain phospholipids and bioactive lipids in the APP knock-in mouse model of Alzheimer's disease. Acta Neuropathol Commun. 2021;9:116 pubmed 出版商
  46. Sakai H, Kawakami H, Teramura T, Onodera Y, Somers E, Furuuchi K, et al. Folate receptor α increases chemotherapy resistance through stabilizing MDM2 in cooperation with PHB2 that is overcome by MORAb-202 in gastric cancer. Clin Transl Med. 2021;11:e454 pubmed 出版商
  47. Jiang T, Xu S, Shen Y, Xu Y, Li Y. Genistein Attenuates Isoflurane-Induced Neuroinflammation by Inhibiting TLR4-Mediated Microglial-Polarization in vivo and in vitro. J Inflamm Res. 2021;14:2587-2600 pubmed 出版商
  48. Wu Y, Guo Q, Ju X, Hu Z, Xia L, Deng Y, et al. HNRNPH1-stabilized LINC00662 promotes ovarian cancer progression by activating the GRP78/p38 pathway. Oncogene. 2021;40:4770-4782 pubmed 出版商
  49. Garcia Garcia S, Rodrigo Faus M, Fonseca N, Manzano S, Gyorffy B, Ocana A, et al. HGK promotes metastatic dissemination in prostate cancer. Sci Rep. 2021;11:12287 pubmed 出版商
  50. Zhang W, Xiong L, Chen J, Tian Z, Liu J, Chen F, et al. Artemisinin Protects Porcine Mammary Epithelial Cells against Lipopolysaccharide-Induced Inflammatory Injury by Regulating the NF-κB and MAPK Signaling Pathways. Animals (Basel). 2021;11: pubmed 出版商
  51. Mou S, Zhou Z, Feng H, Zhang N, Lin Z, Aiyasiding X, et al. Liquiritin Attenuates Lipopolysaccharides-Induced Cardiomyocyte Injury via an AMP-Activated Protein Kinase-Dependent Signaling Pathway. Front Pharmacol. 2021;12:648688 pubmed 出版商
  52. Kurosaka M, Ogura Y, Sato S, Kohda K, Funabashi T. Transcription factor signal transducer and activator of transcription 6 (STAT6) is an inhibitory factor for adult myogenesis. Skelet Muscle. 2021;11:14 pubmed 出版商
  53. Kulkarni N, O Neill A, Dokoshi T, Luo E, Wong G, Gallo R. Sequence determinants in the cathelicidin LL-37 that promote inflammation via presentation of RNA to scavenger receptors. J Biol Chem. 2021;297:100828 pubmed 出版商
  54. Kim C, Park S, Lee S, Kim Y, Jang S, Woo S, et al. NSrp70 is a lymphocyte-essential splicing factor that controls thymocyte development. Nucleic Acids Res. 2021;49:5760-5778 pubmed 出版商
  55. Lee J, Hsu Y, Li Y, Cheng S. Galectin-3 Inhibitors Suppress Anoikis Resistance and Invasive Capacity in Thyroid Cancer Cells. Int J Endocrinol. 2021;2021:5583491 pubmed 出版商
  56. Xu L, Humphries F, Delagic N, Wang B, Holland A, Edgar K, et al. ECSIT is a critical limiting factor for cardiac function. JCI Insight. 2021;6: pubmed 出版商
  57. Lagosz Cwik K, Wielento A, Lipska W, Kantorowicz M, Darczuk D, Kaczmarzyk T, et al. hTERT-immortalized gingival fibroblasts respond to cytokines but fail to mimic primary cell responses to Porphyromonas gingivalis. Sci Rep. 2021;11:10770 pubmed 出版商
  58. Zong X, Xiao X, Shen B, Jiang Q, Wang H, Lu Z, et al. The N6-methyladenosine RNA-binding protein YTHDF1 modulates the translation of TRAF6 to mediate the intestinal immune response. Nucleic Acids Res. 2021;49:5537-5552 pubmed 出版商
  59. Teufel S, Köckemann P, Fabritius C, Wolff L, Bertrand J, Pap T, et al. Loss of the WNT9a ligand aggravates the rheumatoid arthritis-like symptoms in hTNF transgenic mice. Cell Death Dis. 2021;12:494 pubmed 出版商
  60. Lindfors S, Polianskyte Prause Z, Bouslama R, Lehtonen E, Mannerla M, Nisen H, et al. Adiponectin receptor agonist AdipoRon ameliorates renal inflammation in diet-induced obese mice and endotoxin-treated human glomeruli ex vivo. Diabetologia. 2021;64:1866-1879 pubmed 出版商
  61. Huang W, Liu H, Pan Y, Yang H, Lin J, Zhang H. Mechanical stretching of the pulmonary vein mediates pulmonary hypertension due to left heart disease by regulating SAC/MAPK pathway and the expression of IL-6 and TNF-α. J Cardiothorac Surg. 2021;16:127 pubmed 出版商
  62. Wang Y, Lee Y, Hsu Y, Chiu I, Huang C, Huang C, et al. The Kidney-Related Effects of Polystyrene Microplastics on Human Kidney Proximal Tubular Epithelial Cells HK-2 and Male C57BL/6 Mice. Environ Health Perspect. 2021;129:57003 pubmed 出版商
  63. Zheng H, Zhang Y, He J, Yang Z, Zhang R, Li L, et al. Hydroxychloroquine Inhibits Macrophage Activation and Attenuates Renal Fibrosis After Ischemia-Reperfusion Injury. Front Immunol. 2021;12:645100 pubmed 出版商
  64. Chen X, Ma W, Yao Y, Zhang Q, Li J, Wu X, et al. Serum deprivation-response protein induces apoptosis in hepatocellular carcinoma through ASK1-JNK/p38 MAPK pathways. Cell Death Dis. 2021;12:425 pubmed 出版商
  65. Shen K, Li R, Zhang X, Qu G, Li R, Wang Y, et al. Acetyl oxygen benzoate engeletin ester promotes KLF4 degradation leading to the attenuation of pulmonary fibrosis via inhibiting TGFβ1-smad/p38MAPK-lnc865/lnc556-miR-29b-2-5p-STAT3 signal pathway. Aging (Albany NY). 2021;13:13807-13821 pubmed 出版商
  66. Low H, Wong Z, Wu B, Kong L, Png C, Cho Y, et al. DUSP16 promotes cancer chemoresistance through regulation of mitochondria-mediated cell death. Nat Commun. 2021;12:2284 pubmed 出版商
  67. Wu T, Liu Q, Li Y, Li H, Chen L, Yang X, et al. Feeding-induced hepatokine, Manf, ameliorates diet-induced obesity by promoting adipose browning via p38 MAPK pathway. J Exp Med. 2021;218: pubmed 出版商
  68. Chang N, Yeh C, Lin Y, Kuo K, Fong I, Kounis N, et al. Garcinol Attenuates Lipoprotein(a)-Induced Oxidative Stress and Inflammatory Cytokine Production in Ventricular Cardiomyocyte through α7-Nicotinic Acetylcholine Receptor-Mediated Inhibition of the p38 MAPK and NF-κB Signaling Pathways. Antioxidants (Basel). 2021;10: pubmed 出版商
  69. Brea R, Valdecantos P, Rada P, Alen R, García Monzón C, Bosca L, et al. Chronic treatment with acetaminophen protects against liver aging by targeting inflammation and oxidative stress. Aging (Albany NY). 2021;13:7800-7827 pubmed 出版商
  70. Xue T, Liu X, Zhang M, E Q, Liu S, Zou M, et al. PADI2-Catalyzed MEK1 Citrullination Activates ERK1/2 and Promotes IGF2BP1-Mediated SOX2 mRNA Stability in Endometrial Cancer. Adv Sci (Weinh). 2021;8:2002831 pubmed 出版商
  71. Yi M, Liu Y, Umpierre A, Chen T, Ying Y, Zheng J, et al. Optogenetic activation of spinal microglia triggers chronic pain in mice. PLoS Biol. 2021;19:e3001154 pubmed 出版商
  72. Jacques S, Arjomand A, Per xe9 e H, Collins P, Mayer A, Lavergne A, et al. Dual-specificity phosphatase 3 deletion promotes obesity, non-alcoholic steatohepatitis and hepatocellular carcinoma. Sci Rep. 2021;11:5817 pubmed 出版商
  73. Nagamura Y, Miyazaki M, Nagano Y, Yuki M, Fukami K, Yanagihara K, et al. PLEKHA5 regulates the survival and peritoneal dissemination of diffuse-type gastric carcinoma cells with Met gene amplification. Oncogenesis. 2021;10:25 pubmed 出版商
  74. Wallace M, Aguirre N, Marcotte G, Marshall A, Baehr L, Hughes D, et al. The ketogenic diet preserves skeletal muscle with aging in mice. Aging Cell. 2021;20:e13322 pubmed 出版商
  75. Bakker W, Dingenouts C, Lodder K, Wiesmeijer K, de Jong A, Kurakula K, et al. BMP Receptor Inhibition Enhances Tissue Repair in Endoglin Heterozygous Mice. Int J Mol Sci. 2021;22: pubmed 出版商
  76. Bugler Lamb A, Hasib A, Weng X, Hennayake C, Lin C, McCrimmon R, et al. Adipocyte integrin-linked kinase plays a key role in the development of diet-induced adipose insulin resistance in male mice. Mol Metab. 2021;49:101197 pubmed 出版商
  77. Yu Z, Li X, Yang M, Huang J, Fang Q, Jia J, et al. TRIM41 is required to innate antiviral response by polyubiquitinating BCL10 and recruiting NEMO. Signal Transduct Target Ther. 2021;6:90 pubmed 出版商
  78. Cao Y, Li L, Liu Y, Chen G, Tao Z, Wang R, et al. I-κB Kinase-ε Deficiency Attenuates the Development of Angiotensin II-Induced Myocardial Hypertrophy in Mice. Oxid Med Cell Longev. 2021;2021:6429197 pubmed 出版商
  79. Fu C, Zhang Q, Wang A, Yang S, Jiang Y, Bai L, et al. EWI-2 controls nucleocytoplasmic shuttling of EGFR signaling molecules and miRNA sorting in exosomes to inhibit prostate cancer cell metastasis. Mol Oncol. 2021;15:1543-1565 pubmed 出版商
  80. Klemke L, De Oliveira T, Witt D, Winkler N, Bohnenberger H, Bucala R, et al. Hsp90-stabilized MIF supports tumor progression via macrophage recruitment and angiogenesis in colorectal cancer. Cell Death Dis. 2021;12:155 pubmed 出版商
  81. Isomura H, Taguchi A, Kajino T, Asai N, Nakatochi M, Kato S, et al. Conditional Ror1 knockout reveals crucial involvement in lung adenocarcinoma development and identifies novel HIF-1α regulator. Cancer Sci. 2021;: pubmed 出版商
  82. Huang S, You S, Qian J, Dai C, Shen S, Wang J, et al. Myeloid differentiation 2 deficiency attenuates AngII-induced arterial vascular oxidative stress, inflammation, and remodeling. Aging (Albany NY). 2021;13:4409-4427 pubmed 出版商
  83. Buitrago Molina L, Marhenke S, Becker D, Geffers R, Itzel T, Teufel A, et al. p53-Independent Induction of p21 Fails to Control Regeneration and Hepatocarcinogenesis in a Murine Liver Injury Model. Cell Mol Gastroenterol Hepatol. 2021;11:1387-1404 pubmed 出版商
  84. Li S, Zhu Z, Xue M, Pan X, Tong G, Yi X, et al. The protective effects of fibroblast growth factor 10 against hepatic ischemia-reperfusion injury in mice. Redox Biol. 2021;40:101859 pubmed 出版商
  85. Kusakabe J, Hata K, Miyauchi H, Tajima T, Wang Y, Tamaki I, et al. Complement-5 Inhibition Deters Progression of Fulminant Hepatitis to Acute Liver Failure in Murine Models. Cell Mol Gastroenterol Hepatol. 2021;11:1351-1367 pubmed 出版商
  86. Yang J, Kitami M, Pan H, Nakamura M, Zhang H, Liu F, et al. Augmented BMP signaling commits cranial neural crest cells to a chondrogenic fate by suppressing autophagic β-catenin degradation. Sci Signal. 2021;14: pubmed 出版商
  87. Hou P, Jia P, Yang K, Li Z, Tian T, Lin Y, et al. An unconventional role of an ASB family protein in NF-κB activation and inflammatory response during microbial infection and colitis. Proc Natl Acad Sci U S A. 2021;118: pubmed 出版商
  88. Bae M, Roh J, Kim Y, Kim S, Han H, Yang E, et al. SLC6A20 transporter: a novel regulator of brain glycine homeostasis and NMDAR function. EMBO Mol Med. 2021;13:e12632 pubmed 出版商
  89. Pan S, Zhao X, Shao C, Fu B, Huang Y, Zhang N, et al. STIM1 promotes angiogenesis by reducing exosomal miR-145 in breast cancer MDA-MB-231 cells. Cell Death Dis. 2021;12:38 pubmed 出版商
  90. Lei H, Xu H, Shan H, Liu M, Lu Y, Fang Z, et al. Targeting USP47 overcomes tyrosine kinase inhibitor resistance and eradicates leukemia stem/progenitor cells in chronic myelogenous leukemia. Nat Commun. 2021;12:51 pubmed 出版商
  91. Webb L, Fra Bido S, Innocentin S, Matheson L, Attaf N, Bignon A, et al. Ageing promotes early T follicular helper cell differentiation by modulating expression of RBPJ. Aging Cell. 2021;20:e13295 pubmed 出版商
  92. Li X, Zhang M, Huang X, Liang W, Li G, Lu X, et al. Ubiquitination of RIPK1 regulates its activation mediated by TNFR1 and TLRs signaling in distinct manners. Nat Commun. 2020;11:6364 pubmed 出版商
  93. Kushioka J, Kaito T, Okada R, Ishiguro H, Bal Z, Kodama J, et al. A novel negative regulatory mechanism of Smurf2 in BMP/Smad signaling in bone. Bone Res. 2020;8:41 pubmed 出版商
  94. Zhang X, Gou Y, Zhang Y, Li J, Han K, Xu Y, et al. Hepcidin overexpression in astrocytes alters brain iron metabolism and protects against amyloid-β induced brain damage in mice. Cell Death Discov. 2020;6:113 pubmed 出版商
  95. Gu Z, Xie D, Ding R, Huang C, Qiu Y. GPR173 agonist phoenixin 20 promotes osteoblastic differentiation of MC3T3-E1 cells. Aging (Albany NY). 2020;13:4976-4985 pubmed 出版商
  96. Xiao L, Zhong M, Huang Y, Zhu J, Tang W, Li D, et al. Puerarin alleviates osteoporosis in the ovariectomy-induced mice by suppressing osteoclastogenesis via inhibition of TRAF6/ROS-dependent MAPK/NF-κB signaling pathways. Aging (Albany NY). 2020;12:21706-21729 pubmed 出版商
  97. Chen K, Yoshimura T, Yao X, Gong W, Huang J, Dzutsev A, et al. Distinct contributions of cathelin-related antimicrobial peptide (CRAMP) derived from epithelial cells and macrophages to colon mucosal homeostasis. J Pathol. 2021;253:339-350 pubmed 出版商
  98. Fujiwara Y, Ohnishi K, Horlad H, Saito Y, Shiraishi D, Takeya H, et al. CD163 deficiency facilitates lipopolysaccharide-induced inflammatory responses and endotoxin shock in mice. Clin Transl Immunology. 2020;9:e1162 pubmed 出版商
  99. Robichon K, Maiwald T, Schilling M, Schneider A, Willemsen J, Salopiata F, et al. Identification of Interleukin1β as an Amplifier of Interferon alpha-induced Antiviral Responses. PLoS Pathog. 2020;16:e1008461 pubmed 出版商
  100. Chen Y, Li J, Ma B, Li N, Wang S, Sun Z, et al. MSC-derived exosomes promote recovery from traumatic brain injury via microglia/macrophages in rat. Aging (Albany NY). 2020;12:18274-18296 pubmed 出版商
  101. Wueest S, Lucchini F, Haim Y, Rudich A, Konrad D. Depletion of ASK1 blunts stress-induced senescence in adipocytes. Adipocyte. 2020;9:535-541 pubmed 出版商
  102. Hu J, Wang H, Li X, Liu Y, Mi Y, Kong H, et al. Fibrinogen-like protein 2 aggravates nonalcoholic steatohepatitis via interaction with TLR4, eliciting inflammation in macrophages and inducing hepatic lipid metabolism disorder. Theranostics. 2020;10:9702-9720 pubmed 出版商
  103. Sun R, Hedl M, Abraham C. TNFSF15 Promotes Antimicrobial Pathways in Human Macrophages and These Are Modulated by TNFSF15 Disease-Risk Variants. Cell Mol Gastroenterol Hepatol. 2021;11:249-272 pubmed 出版商
  104. Jing J, Ding N, Wang D, Ge X, Ma J, Ma R, et al. Oxidized-LDL inhibits testosterone biosynthesis by affecting mitochondrial function and the p38 MAPK/COX-2 signaling pathway in Leydig cells. Cell Death Dis. 2020;11:626 pubmed 出版商
  105. Sun Z, Ji N, Ma Q, Zhu R, Chen Z, Wang Z, et al. Epithelial-Mesenchymal Transition in Asthma Airway Remodeling Is Regulated by the IL-33/CD146 Axis. Front Immunol. 2020;11:1598 pubmed 出版商
  106. Sinha N, Ordureau A, Best K, Saba J, Zinshteyn B, Sundaramoorthy E, et al. EDF1 coordinates cellular responses to ribosome collisions. elife. 2020;9: pubmed 出版商
  107. Muraleva N, Stefanova N, Kolosova N. SkQ1 Suppresses the p38 MAPK Signaling Pathway Involved in Alzheimer's Disease-Like Pathology in OXYS Rats. Antioxidants (Basel). 2020;9: pubmed 出版商
  108. Reilly S, Hung C, Ahmadian M, Zhao P, Keinan O, Gomez A, et al. Catecholamines suppress fatty acid re-esterification and increase oxidation in white adipocytes via STAT3. Nat Metab. 2020;2:620-634 pubmed 出版商
  109. Bouhaddou M, Memon D, Meyer B, White K, Rezelj V, Correa Marrero M, et al. The Global Phosphorylation Landscape of SARS-CoV-2 Infection. Cell. 2020;182:685-712.e19 pubmed 出版商
  110. Koundouros N, Karali E, Tripp A, Valle A, Inglese P, Perry N, et al. Metabolic Fingerprinting Links Oncogenic PIK3CA with Enhanced Arachidonic Acid-Derived Eicosanoids. Cell. 2020;181:1596-1611.e27 pubmed 出版商
  111. Luo H, Li G, Wang B, Tian B, Gao J, Zou J, et al. Peli1 signaling blockade attenuates congenital zika syndrome. PLoS Pathog. 2020;16:e1008538 pubmed 出版商
  112. Kew C, Huang W, Fischer J, Ganesan R, Robinson N, Antebi A. Evolutionarily conserved regulation of immunity by the splicing factor RNP-6/PUF60. elife. 2020;9: pubmed 出版商
  113. Chakrabarti M, Al Sammarraie N, Gebere M, Bhattacharya A, Chopra S, Johnson J, et al. Transforming Growth Factor Beta3 is Required for Cardiovascular Development. J Cardiovasc Dev Dis. 2020;7: pubmed 出版商
  114. Du T, Yan Z, Zhu S, Chen G, Wang L, Ye Z, et al. QKI deficiency leads to osteoporosis by promoting RANKL-induced osteoclastogenesis and disrupting bone metabolism. Cell Death Dis. 2020;11:330 pubmed 出版商
  115. Kong Y, Xu S. Juglanin administration protects skin against UVB‑induced injury by reducing Nrf2‑dependent ROS generation. Int J Mol Med. 2020;46:67-82 pubmed 出版商
  116. Seong K, Ly N, Katou Y, Yokota N, Nakato R, Murakami S, et al. Paternal restraint stress affects offspring metabolism via ATF-2 dependent mechanisms in Drosophila melanogaster germ cells. Commun Biol. 2020;3:208 pubmed 出版商
  117. Deng M, Tam J, Wang L, Liang K, Li S, Zhang L, et al. TRAF3IP3 negatively regulates cytosolic RNA induced anti-viral signaling by promoting TBK1 K48 ubiquitination. Nat Commun. 2020;11:2193 pubmed 出版商
  118. Wu Y, Chou T, Young L, Hsieh F, Pan H, Mo S, et al. Tumor suppressor death-associated protein kinase 1 inhibits necroptosis by p38 MAPK activation. Cell Death Dis. 2020;11:305 pubmed 出版商
  119. Chen S, Zhang H, Li J, Shi J, Tang H, Zhang Y, et al. Tripartite Motif-Containing 27 Attenuates Liver Ischemia/Reperfusion Injury by Suppressing Transforming Growth Factor β-Activated Kinase 1 (TAK1) by TAK1 Binding Protein 2/3 Degradation. Hepatology. 2021;73:738-758 pubmed 出版商
  120. Bozic M, Caus M, Rodrigues Díez R, Pedraza N, Ruiz Ortega M, Garí E, et al. Protective role of renal proximal tubular alpha-synuclein in the pathogenesis of kidney fibrosis. Nat Commun. 2020;11:1943 pubmed 出版商
  121. Gee M, Son S, Jeon S, Do J, Kim N, Ju Y, et al. A selective p38α/β MAPK inhibitor alleviates neuropathology and cognitive impairment, and modulates microglia function in 5XFAD mouse. Alzheimers Res Ther. 2020;12:45 pubmed 出版商
  122. Bogucka K, Pompaiah M, Marini F, Binder H, Harms G, Kaulich M, et al. ERK3/MAPK6 controls IL-8 production and chemotaxis. elife. 2020;9: pubmed 出版商
  123. Zhang Y, Beketaev I, Segura A, Yu W, Xi Y, Chang J, et al. Contribution of Increased Expression of Yin Yang 2 to Development of Cardiomyopathy. Front Mol Biosci. 2020;7:35 pubmed 出版商
  124. Cao J, Chen X, Jiang L, Lu B, Yuan M, Zhu D, et al. DJ-1 suppresses ferroptosis through preserving the activity of S-adenosyl homocysteine hydrolase. Nat Commun. 2020;11:1251 pubmed 出版商
  125. Yan S, Ding H, Peng J, Wang X, Pang C, Wei J, et al. Down-regulation of protease-activated receptor 2 ameliorated osteoarthritis in rats through regulation of MAPK/NF-κB signaling pathway in vivo and in vitro. Biosci Rep. 2020;40: pubmed 出版商
  126. Chen F, Jiang G, Liu H, Li Z, Pei Y, Wang H, et al. Melatonin alleviates intervertebral disc degeneration by disrupting the IL-1β/NF-κB-NLRP3 inflammasome positive feedback loop. Bone Res. 2020;8:10 pubmed 出版商
  127. Hu D, Chen H, Lou L, Zhang H, Yang G. SKA3 promotes lung adenocarcinoma metastasis through the EGFR-PI3K-Akt axis. Biosci Rep. 2020;40: pubmed 出版商
  128. Xiang S, Chen K, Xu L, Wang T, Guo C. Bergenin Exerts Hepatoprotective Effects by Inhibiting the Release of Inflammatory Factors, Apoptosis and Autophagy via the PPAR-γ Pathway. Drug Des Devel Ther. 2020;14:129-143 pubmed 出版商
  129. Xu F, Liu Z, Liu R, Lu C, Wang L, Mao W, et al. Epigenetic induction of tumor stemness via the lipopolysaccharide-TET3-HOXB2 signaling axis in esophageal squamous cell carcinoma. Cell Commun Signal. 2020;18:17 pubmed 出版商
  130. Jiang L, Xu K, Li J, Zhou X, Xu L, Wu Z, et al. Nesfatin-1 suppresses interleukin-1β-induced inflammation, apoptosis, and cartilage matrix destruction in chondrocytes and ameliorates osteoarthritis in rats. Aging (Albany NY). 2020;12:1760-1777 pubmed 出版商
  131. Lin L, Li Y, Liu M, Li Q, Liu Q, Li R. The Interleukin-33/ST2 axis promotes glioma mesenchymal transition, stemness and TMZ resistance via JNK activation. Aging (Albany NY). 2020;12:1685-1703 pubmed 出版商
  132. Buhl E, Djudjaj S, Klinkhammer B, Ermert K, Puelles V, Lindenmeyer M, et al. Dysregulated mesenchymal PDGFR-β drives kidney fibrosis. EMBO Mol Med. 2020;12:e11021 pubmed 出版商
  133. Hong Z, Wang Z, Zhou B, Wang J, Tong H, Liao Y, et al. Effects of evodiamine on PI3K/Akt and MAPK/ERK signaling pathways in pancreatic cancer cells. Int J Oncol. 2020;56:783-793 pubmed 出版商
  134. Li Y, Xu S, Xu Q, Chen Y. Clostridium difficile toxin B induces colonic inflammation through the TRIM46/DUSP1/MAPKs and NF-κB signalling pathway. Artif Cells Nanomed Biotechnol. 2020;48:452-462 pubmed 出版商
  135. Zhou Z, Zhou Q, Wu X, Xu S, Hu X, Tao X, et al. VCAM-1 secreted from cancer-associated fibroblasts enhances the growth and invasion of lung cancer cells through AKT and MAPK signaling. Cancer Lett. 2020;473:62-73 pubmed 出版商
  136. Kim K, Kim J, Kim I, Seong S, Kim N. Rev-erbα Negatively Regulates Osteoclast and Osteoblast Differentiation through p38 MAPK Signaling Pathway. Mol Cells. 2020;43:34-47 pubmed 出版商
  137. Tang L, Li J, Fu W, Wu W, Xu J. Suppression of FADS1 induces ROS generation, cell cycle arrest, and apoptosis in melanocytes: implications for vitiligo. Aging (Albany NY). 2019;11:11829-11843 pubmed 出版商
  138. Lee J, Hall J, Kroehling L, Wu L, Najar T, Nguyen H, et al. Serum Amyloid A Proteins Induce Pathogenic Th17 Cells and Promote Inflammatory Disease. Cell. 2020;180:79-91.e16 pubmed 出版商
  139. Weisell J, Ohukainen P, Näpänkangas J, Ohlmeier S, Bergmann U, Peltonen T, et al. Heat shock protein 90 is downregulated in calcific aortic valve disease. BMC Cardiovasc Disord. 2019;19:306 pubmed 出版商
  140. Huang X, Ni B, Xi Y, Chu X, Zhang R, You H. Protease-activated receptor 2 (PAR-2) antagonist AZ3451 as a novel therapeutic agent for osteoarthritis. Aging (Albany NY). 2019;11:12532-12545 pubmed 出版商
  141. Zewinger S, Reiser J, Jankowski V, Alansary D, Hahm E, Triem S, et al. Apolipoprotein C3 induces inflammation and organ damage by alternative inflammasome activation. Nat Immunol. 2020;21:30-41 pubmed 出版商
  142. Yuan M, Xie F, Xia X, Zhong K, Lian L, Zhang S, et al. UNC5C‑knockdown enhances the growth and metastasis of breast cancer cells by potentiating the integrin α6/β4 signaling pathway. Int J Oncol. 2019;: pubmed 出版商
  143. Yu H, Rimbert A, Palmer A, Toyohara T, Xia Y, Xia F, et al. GPR146 Deficiency Protects against Hypercholesterolemia and Atherosclerosis. Cell. 2019;179:1276-1288.e14 pubmed 出版商
  144. Moya I, Castaldo S, Van den Mooter L, Soheily S, Sansores Garcia L, Jacobs J, et al. Peritumoral activation of the Hippo pathway effectors YAP and TAZ suppresses liver cancer in mice. Science. 2019;366:1029-1034 pubmed 出版商
  145. Kim D, Choi J, Jo I, Kim M, Lee H, Hong S, et al. Berberine ameliorates lipopolysaccharide‑induced inflammatory responses in mouse inner medullary collecting duct‑3 cells by downregulation of NF‑κB pathway. Mol Med Rep. 2020;21:258-266 pubmed 出版商
  146. Jiao W, Ji J, Xu W, Bu W, Zheng Y, Ma A, et al. Distinct downstream signaling and the roles of VEGF and PlGF in high glucose-mediated injuries of human retinal endothelial cells in culture. Sci Rep. 2019;9:15339 pubmed 出版商
  147. Li J, Liu Z, Wang L, Xu H, Wang Y. Thousand and one kinase 1 protects MCAO-induced cerebral ischemic stroke in rats by decreasing apoptosis and pro-inflammatory factors. Biosci Rep. 2019;39: pubmed 出版商
  148. Lu Y, Zheng Y, Coyaud E, Zhang C, Selvabaskaran A, Yu Y, et al. Palmitoylation of NOD1 and NOD2 is required for bacterial sensing. Science. 2019;366:460-467 pubmed 出版商
  149. Wu W, Piao H, Wu F, Han Y, An D, Wu Y, et al. Yu Jin Pulvis inhibits carbon tetrachloride-induced liver fibrosis by blocking the MAPK and PI3K/Akt signaling pathways. Am J Transl Res. 2019;11:5998-6006 pubmed
  150. Chen Q, Yang C, Chen L, Zhang J, Ge W, Yuan H, et al. YY1 targets tubulin polymerisation-promoting protein to inhibit migration, invasion and angiogenesis in pancreatic cancer via p38/MAPK and PI3K/AKT pathways. Br J Cancer. 2019;121:912-921 pubmed 出版商
  151. Wang H, Wei Y, Pu Y, Jiang D, Jiang X, Zhang Y, et al. Brain-derived neurotrophic factor stimulation of T-type Ca2+ channels in sensory neurons contributes to increased peripheral pain sensitivity. Sci Signal. 2019;12: pubmed 出版商
  152. Wang Q, Yang Q, Zhang A, Kang Z, Wang Y, Zhang Z. Silencing of SPARC represses heterotopic ossification via inhibition of the MAPK signaling pathway. Biosci Rep. 2019;39: pubmed 出版商
  153. Linnebacher A, Mayer P, Marnet N, Bergmann F, Herpel E, Revia S, et al. Interleukin 21 Receptor/Ligand Interaction Is Linked to Disease Progression in Pancreatic Cancer. Cells. 2019;8: pubmed 出版商
  154. Zhong B, Shi D, Wu F, Wang S, Hu H, Cheng C, et al. Dynasore suppresses cell proliferation, migration, and invasion and enhances the antitumor capacity of cisplatin via STAT3 pathway in osteosarcoma. Cell Death Dis. 2019;10:687 pubmed 出版商
  155. Managò A, Audrito V, Mazzola F, Sorci L, Gaudino F, Gizzi K, et al. Extracellular nicotinate phosphoribosyltransferase binds Toll like receptor 4 and mediates inflammation. Nat Commun. 2019;10:4116 pubmed 出版商
  156. Bailey K, Moreno E, Haj F, Simon S, Passerini A. Mechanoregulation of p38 activity enhances endoplasmic reticulum stress-mediated inflammation by arterial endothelium. FASEB J. 2019;33:12888-12899 pubmed 出版商
  157. Lai T, Wen X, Wu D, Su G, Gao Y, Chen C, et al. SIRT1 protects against urban particulate matter-induced airway inflammation. Int J Chron Obstruct Pulmon Dis. 2019;14:1741-1752 pubmed 出版商
  158. Xu B, Lang L, Li S, Guo J, Wang J, Yang H, et al. Microglia Activated by Excess Cortisol Induce HMGB1 Acetylation and Neuroinflammation in the Hippocampal DG Region of Mice Following Cold Exposure. Biomolecules. 2019;9: pubmed 出版商
  159. Xu M, Xu H, Lin Y, Sun X, Wang L, Fang Z, et al. LECT2, a Ligand for Tie1, Plays a Crucial Role in Liver Fibrogenesis. Cell. 2019;178:1478-1492.e20 pubmed 出版商
  160. Park M, Kim A, Manandhar S, Oh S, Jang G, Kang L, et al. CCN1 interlinks integrin and hippo pathway to autoregulate tip cell activity. elife. 2019;8: pubmed 出版商
  161. Zhao J, Peng W, Ran Y, Ge H, Zhang C, Zou H, et al. Dysregulated expression of ACTN4 contributes to endothelial cell injury via the activation of the p38-MAPK/p53 apoptosis pathway in preeclampsia. J Physiol Biochem. 2019;: pubmed 出版商
  162. Jiang C, Trudeau S, Cheong T, Guo R, Teng M, Wang L, et al. CRISPR/Cas9 Screens Reveal Multiple Layers of B cell CD40 Regulation. Cell Rep. 2019;28:1307-1322.e8 pubmed 出版商
  163. Bi J, Ichu T, Zanca C, Yang H, Zhang W, Gu Y, et al. Oncogene Amplification in Growth Factor Signaling Pathways Renders Cancers Dependent on Membrane Lipid Remodeling. Cell Metab. 2019;30:525-538.e8 pubmed 出版商
  164. Du F, Qiao C, Li X, Chen Z, Liu H, Wu S, et al. Forkhead box K2 promotes human colorectal cancer metastasis by upregulating ZEB1 and EGFR. Theranostics. 2019;9:3879-3902 pubmed 出版商
  165. Cibi D, Mia M, Guna Shekeran S, Yun L, Sandireddy R, Gupta P, et al. Neural crest-specific deletion of Rbfox2 in mice leads to craniofacial abnormalities including cleft palate. elife. 2019;8: pubmed 出版商
  166. Hari P, Millar F, Tarrats N, Birch J, Quintanilla A, Rink C, et al. The innate immune sensor Toll-like receptor 2 controls the senescence-associated secretory phenotype. Sci Adv. 2019;5:eaaw0254 pubmed 出版商
  167. Loh J, Xu S, Huo J, Kim S, Wang Y, Lam K. Dok3-protein phosphatase 1 interaction attenuates Card9 signaling and neutrophil-dependent antifungal immunity. J Clin Invest. 2019;129:2717-2729 pubmed 出版商
  168. Gu C, Wang L, Zurawski S, Oh S. Signaling Cascade through DC-ASGPR Induces Transcriptionally Active CREB for IL-10 Induction and Immune Regulation. J Immunol. 2019;: pubmed 出版商
  169. Genet G, Boyé K, Mathivet T, Ola R, Zhang F, Dubrac A, et al. Endophilin-A2 dependent VEGFR2 endocytosis promotes sprouting angiogenesis. Nat Commun. 2019;10:2350 pubmed 出版商
  170. Sabol R, Bowles A, Côté A, Wise R, O Donnell B, Matossian M, et al. Leptin produced by obesity-altered adipose stem cells promotes metastasis but not tumorigenesis of triple-negative breast cancer in orthotopic xenograft and patient-derived xenograft models. Breast Cancer Res. 2019;21:67 pubmed 出版商
  171. Capitano M, Mor Vaknin N, Saha A, Cooper S, Legendre M, Guo H, et al. Secreted nuclear protein DEK regulates hematopoiesis through CXCR2 signaling. J Clin Invest. 2019;129:2555-2570 pubmed 出版商
  172. Nakai A, Fujimoto J, Miyata H, Stumm R, Narazaki M, Schulz S, et al. The COMMD3/8 complex determines GRK6 specificity for chemoattractant receptors. J Exp Med. 2019;: pubmed 出版商
  173. Liu Y, Li R, Chen X, Zhi Y, Deng R, Zhou E, et al. Nonmuscle Myosin Heavy Chain IIA Recognizes Sialic Acids on Sialylated RNA Viruses To Suppress Proinflammatory Responses via the DAP12-Syk Pathway. MBio. 2019;10: pubmed 出版商
  174. Liu X, Zhao P, Wang X, Wang L, Zhu Y, Song Y, et al. Celastrol mediates autophagy and apoptosis via the ROS/JNK and Akt/mTOR signaling pathways in glioma cells. J Exp Clin Cancer Res. 2019;38:184 pubmed 出版商
  175. Liu X, Zhou Z, Li W, Zhang S, Li J, Zhou M, et al. Heparanase Promotes Tumor Growth and Liver Metastasis of Colorectal Cancer Cells by Activating the p38/MMP1 Axis. Front Oncol. 2019;9:216 pubmed 出版商
  176. Udden S, Kwak Y, Godfrey V, Khan M, Khan S, Loof N, et al. NLRP12 suppresses hepatocellular carcinoma via downregulation of cJun N-terminal kinase activation in the hepatocyte. elife. 2019;8: pubmed 出版商
  177. Araiz C, Yan A, Bettedi L, Samuelson I, Virtue S, McGavigan A, et al. Enhanced β-adrenergic signalling underlies an age-dependent beneficial metabolic effect of PI3K p110α inactivation in adipose tissue. Nat Commun. 2019;10:1546 pubmed 出版商
  178. Chang H, Di T, Wang Y, Zeng X, Li G, Wan Q, et al. Seipin deletion in mice enhances phosphorylation and aggregation of tau protein through reduced neuronal PPARγ and insulin resistance. Neurobiol Dis. 2019;127:350-361 pubmed 出版商
  179. Kennedy S, Han J, Portman N, Nobis M, Hastings J, Murphy K, et al. Targeting promiscuous heterodimerization overcomes innate resistance to ERBB2 dimerization inhibitors in breast cancer. Breast Cancer Res. 2019;21:43 pubmed 出版商
  180. Mammone T, Chidlow G, Casson R, Wood J. Improved immunohistochemical detection of phosphorylated mitogen-activated protein kinases in the injured rat optic nerve head. Histochem Cell Biol. 2019;151:435-456 pubmed 出版商
  181. Hlavac N, VandeVord P. Astrocyte Mechano-Activation by High-Rate Overpressure Involves Alterations in Structural and Junctional Proteins. Front Neurol. 2019;10:99 pubmed 出版商
  182. Tan Y, Kagan J. Innate Immune Signaling Organelles Display Natural and Programmable Signaling Flexibility. Cell. 2019;: pubmed 出版商
  183. Mentrup T, Theodorou K, Cabrera Cabrera F, Helbig A, Happ K, Gijbels M, et al. Atherogenic LOX-1 signaling is controlled by SPPL2-mediated intramembrane proteolysis. J Exp Med. 2019;: pubmed 出版商
  184. Zhang S, Liu W, Yang Y, Sun K, Li S, Xu H, et al. Tmem30a Deficiency in endothelial cells impairs cell proliferation and angiogenesis. J Cell Sci. 2019;: pubmed 出版商
  185. Liu Z, Wu C, Pan Y, Liu H, Wang X, Yang Y, et al. NDR2 promotes the antiviral immune response via facilitating TRIM25-mediated RIG-I activation in macrophages. Sci Adv. 2019;5:eaav0163 pubmed 出版商
  186. Wu W, Zhang W, Choi M, Zhao J, Gao P, Xue M, et al. Vascular smooth muscle-MAPK14 is required for neointimal hyperplasia by suppressing VSMC differentiation and inducing proliferation and inflammation. Redox Biol. 2019;22:101137 pubmed 出版商
  187. Liu J, Zhu G, Jia N, Wang W, Wang Y, Yin M, et al. CD9 regulates keratinocyte migration by negatively modulating the sheddase activity of ADAM17. Int J Biol Sci. 2019;15:493-506 pubmed 出版商
  188. Hayashi H, Mamun A, Takeyama M, Yamamura A, Zako M, Yagasaki R, et al. Activator of G-protein signaling 8 is involved in VEGF-induced choroidal neovascularization. Sci Rep. 2019;9:1560 pubmed 出版商
  189. Zhang G, Liu Y, Xu L, Sha C, Zhang H, Xu W. Resveratrol alleviates lipopolysaccharide-induced inflammation in PC-12 cells and in rat model. BMC Biotechnol. 2019;19:10 pubmed 出版商
  190. Su V, Yang K, Chiou S, Chen N, Mo M, Lin C, et al. Induced Pluripotent Stem Cells Regulate Triggering Receptor Expressed on Myeloid Cell-1 Expression and the p38 Mitogen-Activated Protein Kinase Pathway in Endotoxin-Induced Acute Lung Injury. Stem Cells. 2019;37:631-639 pubmed 出版商
  191. Li J, Wang Y, Ma M, Jiang S, Zhang X, Zhang Y, et al. Autocrine CTHRC1 activates hepatic stellate cells and promotes liver fibrosis by activating TGF-β signaling. EBioMedicine. 2019;40:43-55 pubmed 出版商
  192. Smith B, Wang S, Jaime Figueroa S, Harbin A, Wang J, Hamman B, et al. Differential PROTAC substrate specificity dictated by orientation of recruited E3 ligase. Nat Commun. 2019;10:131 pubmed 出版商
  193. Liu Z, Li C, Kang N, Malhi H, Shah V, Maiers J. Transforming growth factor β (TGFβ) cross-talk with the unfolded protein response is critical for hepatic stellate cell activation. J Biol Chem. 2019;294:3137-3151 pubmed 出版商
  194. Ye P, Liu J, Xu W, Liu D, Ding X, Le S, et al. Dual-Specificity Phosphatase 26 Protects Against Nonalcoholic Fatty Liver Disease in Mice Through Transforming Growth Factor Beta-Activated Kinase 1 Suppression. Hepatology. 2019;69:1946-1964 pubmed 出版商
  195. Zhang Z, Chen J, Huang W, Ning D, Liu Q, Wang C, et al. FAM134B induces tumorigenesis and epithelial-to-mesenchymal transition via Akt signaling in hepatocellular carcinoma. Mol Oncol. 2019;13:792-810 pubmed 出版商
  196. Richardson J, Armbruster N, Günter M, Henes J, Autenrieth S. Staphylococcus aureus PSM Peptides Modulate Human Monocyte-Derived Dendritic Cells to Prime Regulatory T Cells. Front Immunol. 2018;9:2603 pubmed 出版商
  197. Obino D, Fetler L, Soza A, Malbec O, Saez J, Labarca M, et al. Galectin-8 Favors the Presentation of Surface-Tethered Antigens by Stabilizing the B Cell Immune Synapse. Cell Rep. 2018;25:3110-3122.e6 pubmed 出版商
  198. Chen Q, Xiang J, Gong R, Fang H, Xu C, Zhang H, et al. Atorvastatin downregulates HSP22 expression in an atherosclerotic model in vitro and in vivo. Int J Mol Med. 2019;43:821-829 pubmed 出版商
  199. Liang N, Kitts D. Chlorogenic Acid (CGA) Isomers Alleviate Interleukin 8 (IL-8) Production in Caco-2 Cells by Decreasing Phosphorylation of p38 and Increasing Cell Integrity. Int J Mol Sci. 2018;19: pubmed 出版商
  200. Kim C, Hu B, Jadhav R, Jin J, Zhang H, Cavanagh M, et al. Activation of miR-21-Regulated Pathways in Immune Aging Selects against Signatures Characteristic of Memory T Cells. Cell Rep. 2018;25:2148-2162.e5 pubmed 出版商
  201. Grohmann M, Wiede F, Dodd G, Gurzov E, Ooi G, Butt T, et al. Obesity Drives STAT-1-Dependent NASH and STAT-3-Dependent HCC. Cell. 2018;175:1289-1306.e20 pubmed 出版商
  202. Panda S, Gekara N. The deubiquitinase MYSM1 dampens NOD2-mediated inflammation and tissue damage by inactivating the RIP2 complex. Nat Commun. 2018;9:4654 pubmed 出版商
  203. Hou M, Wang W, Hu F, Zhang Y, Yang D, Liu Q. Phosphothreonine Lyase Promotes p65 Degradation in a Mitogen-Activated Protein Kinase/Mitogen- and Stress-Activated Protein Kinase 1-Dependent Manner. Infect Immun. 2019;87: pubmed 出版商
  204. Mu L, Tu Z, Miao L, Ruan H, Kang N, Hei Y, et al. A phosphatidylinositol 4,5-bisphosphate redistribution-based sensing mechanism initiates a phagocytosis programing. Nat Commun. 2018;9:4259 pubmed 出版商
  205. Fu J, Yu W, Jiang D. Acidic pH promotes nucleus pulposus cell senescence through activating the p38 MAPK pathway. Biosci Rep. 2018;38: pubmed 出版商
  206. Luo H, Winkelmann E, Zhu S, Ru W, Mays E, Silvas J, et al. Peli1 facilitates virus replication and promotes neuroinflammation during West Nile virus infection. J Clin Invest. 2018;128:4980-4991 pubmed 出版商
  207. Fauster A, Rebsamen M, Willmann K, César Razquin A, Girardi E, Bigenzahn J, et al. Systematic genetic mapping of necroptosis identifies SLC39A7 as modulator of death receptor trafficking. Cell Death Differ. 2019;26:1138-1155 pubmed 出版商
  208. Chen S, Yun F, Yao Y, Cao M, Zhang Y, Wang J, et al. USP38 critically promotes asthmatic pathogenesis by stabilizing JunB protein. J Exp Med. 2018;215:2850-2867 pubmed 出版商
  209. Cao Y, Xu Y, Auchoybur M, Chen W, He S, Qin W, et al. Regulatory role of IKKɑ in myocardial ischemia/reperfusion injury by the determination of M1 versus M2 polarization of macrophages. J Mol Cell Cardiol. 2018;123:1-12 pubmed 出版商
  210. Liu Z, Qin Q, Wu C, Li H, Shou J, Yang Y, et al. Downregulated NDR1 protein kinase inhibits innate immune response by initiating an miR146a-STAT1 feedback loop. Nat Commun. 2018;9:2789 pubmed 出版商
  211. Imbrechts M, De Samblancx K, Fierens K, Brisse E, Vandenhaute J, Mitera T, et al. IFN-γ stimulates CpG-induced IL-10 production in B cells via p38 and JNK signalling pathways. Eur J Immunol. 2018;48:1506-1521 pubmed 出版商
  212. Xie H, Wang Y, Zhang H, Fan Q, Dai D, Zhuang L, et al. Tubular epithelial C1orf54 mediates protection and recovery from acute kidney injury. J Cell Mol Med. 2018;22:4985-4996 pubmed 出版商
  213. Matesanz N, Nikolic I, Leiva M, Pulgarín Alfaro M, Santamans A, Bernardo E, et al. p38α blocks brown adipose tissue thermogenesis through p38δ inhibition. PLoS Biol. 2018;16:e2004455 pubmed 出版商
  214. Xiao N, Li H, Yu W, Gu C, Fang H, Peng Y, et al. SUMO-specific protease 2 (SENP2) suppresses keratinocyte migration by targeting NDR1 for de-SUMOylation. FASEB J. 2019;33:163-174 pubmed 出版商
  215. Lam J, van den Bosch M, Wegrzyn J, Parker J, Ibrahim R, Slowski K, et al. miR-143/145 differentially regulate hematopoietic stem and progenitor activity through suppression of canonical TGFβ signaling. Nat Commun. 2018;9:2418 pubmed 出版商
  216. Li F, Li Y, Liang H, Xu T, Kong Y, Huang M, et al. HECTD3 mediates TRAF3 polyubiquitination and type I interferon induction during bacterial infection. J Clin Invest. 2018;128:4148-4162 pubmed 出版商
  217. Yang M, Li C, Zhu S, Cao L, Kroemer G, Zeh H, et al. TFAM is a novel mediator of immunogenic cancer cell death. Oncoimmunology. 2018;7:e1431086 pubmed 出版商
  218. Zhu B, Tang L, Chen S, Yin C, Peng S, Li X, et al. Targeting the upstream transcriptional activator of PD-L1 as an alternative strategy in melanoma therapy. Oncogene. 2018;37:4941-4954 pubmed 出版商
  219. Jun H, Yu H, Gong J, Jiang J, Qiao X, Perkey E, et al. An immune-beige adipocyte communication via nicotinic acetylcholine receptor signaling. Nat Med. 2018;24:814-822 pubmed 出版商
  220. Huang M, Qi W, Fang S, Jiang P, Yang C, Mo Y, et al. Pigment Epithelium-Derived Factor Plays a Role in Alzheimer's Disease by Negatively Regulating Aβ42. Neurotherapeutics. 2018;15:728-741 pubmed 出版商
  221. Hyrenius Wittsten A, Pilheden M, Sturesson H, Hansson J, Walsh M, Song G, et al. De novo activating mutations drive clonal evolution and enhance clonal fitness in KMT2A-rearranged leukemia. Nat Commun. 2018;9:1770 pubmed 出版商
  222. Ubil E, Caskey L, Holtzhausen A, Hunter D, Story C, Earp H. Tumor-secreted Pros1 inhibits macrophage M1 polarization to reduce antitumor immune response. J Clin Invest. 2018;128:2356-2369 pubmed 出版商
  223. Salomè M, Magee A, Yalla K, Chaudhury S, Sarrou E, Carmody R, et al. A Trib2-p38 axis controls myeloid leukaemia cell cycle and stress response signalling. Cell Death Dis. 2018;9:443 pubmed 出版商
  224. Sheng X, Wang J, Guo J, Xu Y, Jiang H, Zheng C, et al. Effects of Baicalin on Diabetic Cardiac Autonomic Neuropathy Mediated by the P2Y12 Receptor in Rat Stellate Ganglia. Cell Physiol Biochem. 2018;46:986-998 pubmed 出版商
  225. Mirzamohammadi F, Kozlova A, Papaioannou G, Paltrinieri E, Ayturk U, Kobayashi T. Distinct molecular pathways mediate Mycn and Myc-regulated miR-17-92 microRNA action in Feingold syndrome mouse models. Nat Commun. 2018;9:1352 pubmed 出版商
  226. Morgan E, Wasson C, Hanson L, Kealy D, Pentland I, McGuire V, et al. STAT3 activation by E6 is essential for the differentiation-dependent HPV18 life cycle. PLoS Pathog. 2018;14:e1006975 pubmed 出版商
  227. Schönrogge M, Kerndl H, Zhang X, Kumstel S, Vollmar B, Zechner D. α-cyano-4-hydroxycinnamate impairs pancreatic cancer cells by stimulating the p38 signaling pathway. Cell Signal. 2018;47:101-108 pubmed 出版商
  228. Han Y, Liu Q, Hou J, Gu Y, Zhang Y, Chen Z, et al. Tumor-Induced Generation of Splenic Erythroblast-like Ter-Cells Promotes Tumor Progression. Cell. 2018;173:634-648.e12 pubmed 出版商
  229. Qiang L, Wang J, Zhang Y, Ge P, Chai Q, Li B, et al. Mycobacterium tuberculosis Mce2E suppresses the macrophage innate immune response and promotes epithelial cell proliferation. Cell Mol Immunol. 2018;: pubmed 出版商
  230. Ng P, Li J, Jeong K, Shao S, Chen H, Tsang Y, et al. Systematic Functional Annotation of Somatic Mutations in Cancer. Cancer Cell. 2018;33:450-462.e10 pubmed 出版商
  231. Vanshylla K, Bartsch C, Hitzing C, Krümpelmann L, Wienands J, Engels N. Grb2 and GRAP connect the B cell antigen receptor to Erk MAP kinase activation in human B cells. Sci Rep. 2018;8:4244 pubmed 出版商
  232. Chen D, Xie J, Fiskesund R, Dong W, Liang X, Lv J, et al. Chloroquine modulates antitumor immune response by resetting tumor-associated macrophages toward M1 phenotype. Nat Commun. 2018;9:873 pubmed 出版商
  233. Markussen L, Winther S, Wicksteed B, Hansen J. GSK3 is a negative regulator of the thermogenic program in brown adipocytes. Sci Rep. 2018;8:3469 pubmed 出版商
  234. Lu Y, Kim N, Jiang Y, Zhang H, Zheng D, Zhu F, et al. Cambogin suppresses dextran sulphate sodium-induced colitis by enhancing Treg cell stability and function. Br J Pharmacol. 2018;175:1085-1099 pubmed 出版商
  235. Tissino E, Benedetti D, Herman S, ten Hacken E, Ahn I, Chaffee K, et al. Functional and clinical relevance of VLA-4 (CD49d/CD29) in ibrutinib-treated chronic lymphocytic leukemia. J Exp Med. 2018;215:681-697 pubmed 出版商
  236. Park G, Kim D. Cigarette smoke-induced EGFR activation promotes epithelial mesenchymal migration of human retinal pigment epithelial cells through regulation of the FAK-mediated Syk/Src pathway. Mol Med Rep. 2018;17:3563-3574 pubmed 出版商
  237. Arrizabalaga O, Moreno Cugnon L, Auzmendi Iriarte J, Aldaz P, Ibanez de Caceres I, Garros Regulez L, et al. High expression of MKP1/DUSP1 counteracts glioma stem cell activity and mediates HDAC inhibitor response. Oncogenesis. 2017;6:401 pubmed 出版商
  238. Qian Z, Ryu B, Kang K, Heo S, Kang D, Bae S, et al. Cellular properties of the fermented microalgae Pavlova lutheri and its isolated active peptide in osteoblastic differentiation of MG?63 cells. Mol Med Rep. 2018;17:2044-2050 pubmed 出版商
  239. Coelho M, de Carné Trécesson S, Rana S, Zecchin D, Moore C, Molina Arcas M, et al. Oncogenic RAS Signaling Promotes Tumor Immunoresistance by Stabilizing PD-L1 mRNA. Immunity. 2017;47:1083-1099.e6 pubmed 出版商
  240. Sutavani R, Phair I, Barker R, McFarlane A, Shpiro N, Lang S, et al. Differential control of Toll-like receptor 4-induced interleukin-10 induction in macrophages and B cells reveals a role for p90 ribosomal S6 kinases. J Biol Chem. 2018;293:2302-2317 pubmed 出版商
  241. Schafer S, Viswanathan S, Widjaja A, Lim W, Moreno Moral A, Delaughter D, et al. IL-11 is a crucial determinant of cardiovascular fibrosis. Nature. 2017;552:110-115 pubmed 出版商
  242. Urbanska M, Gozdz A, Macias M, Cymerman I, Liszewska E, Kondratiuk I, et al. GSK3β Controls mTOR and Prosurvival Signaling in Neurons. Mol Neurobiol. 2018;55:6050-6062 pubmed 出版商
  243. Sanna M, Mello T, Masini E, Galeotti N. Activation of ERK/CREB pathway in noradrenergic neurons contributes to hypernociceptive phenotype in H4 receptor knockout mice after nerve injury. Neuropharmacology. 2018;128:340-350 pubmed 出版商
  244. Lu F, Shao G, Wang Y, Guan S, Burlingame A, Liu X, et al. Hypoxia-ischemia modifies postsynaptic GluN2B-containing NMDA receptor complexes in the neonatal mouse brain. Exp Neurol. 2018;299:65-74 pubmed 出版商
  245. Purvis H, Clarke F, Jordan C, Blanco C, Cornish G, Dai X, et al. Protein tyrosine phosphatase PTPN22 regulates IL-1β dependent Th17 responses by modulating dectin-1 signaling in mice. Eur J Immunol. 2018;48:306-315 pubmed 出版商
  246. Jiang Y, Lin X, Tang Z, Lee C, Tian G, Du Y, et al. Critical role of caveolin-1 in ocular neovascularization and multitargeted antiangiogenic effects of cavtratin via JNK. Proc Natl Acad Sci U S A. 2017;114:10737-10742 pubmed 出版商
  247. Magilnick N, Reyes E, Wang W, Vonderfecht S, Gohda J, Inoue J, et al. miR-146a-Traf6 regulatory axis controls autoimmunity and myelopoiesis, but is dispensable for hematopoietic stem cell homeostasis and tumor suppression. Proc Natl Acad Sci U S A. 2017;114:E7140-E7149 pubmed 出版商
  248. Naik S, Padhi A, Ganguli G, Sengupta S, Pati S, Das D, et al. Mouse Bone Marrow Sca-1+ CD44+ Mesenchymal Stem Cells Kill Avirulent Mycobacteria but Not Mycobacterium tuberculosis through Modulation of Cathelicidin Expression via the p38 Mitogen-Activated Protein Kinase-Dependent Pathway. Infect Immun. 2017;85: pubmed 出版商
  249. Ogura H, Nagatake Kobayashi Y, Adachi J, Tomonaga T, Fujita N, Katayama R. TKI-addicted ROS1-rearranged cells are destined to survival or death by the intensity of ROS1 kinase activity. Sci Rep. 2017;7:5519 pubmed 出版商
  250. Moua P, Checketts M, Xu L, Shu H, Reyland M, Cusick J. RELT family members activate p38 and induce apoptosis by a mechanism distinct from TNFR1. Biochem Biophys Res Commun. 2017;491:25-32 pubmed 出版商
  251. Tang T, Scambler T, Smallie T, Cunliffe H, Ross E, Rosner D, et al. Macrophage responses to lipopolysaccharide are modulated by a feedback loop involving prostaglandin E2, dual specificity phosphatase 1 and tristetraprolin. Sci Rep. 2017;7:4350 pubmed 出版商
  252. Mamo T, Wittern A, Kleppa M, Bohnenpoll T, Weiss A, Kispert A. BMP4 uses several different effector pathways to regulate proliferation and differentiation in the epithelial and mesenchymal tissue compartments of the developing mouse ureter. Hum Mol Genet. 2017;26:3553-3563 pubmed 出版商
  253. Iampietro M, Younan P, Nishida A, Dutta M, Lubaki N, Santos R, et al. Ebola virus glycoprotein directly triggers T lymphocyte death despite of the lack of infection. PLoS Pathog. 2017;13:e1006397 pubmed 出版商
  254. Bae S, Lee M, Mun S, Giannopoulou E, Yong Gonzalez V, Cross J, et al. MYC-dependent oxidative metabolism regulates osteoclastogenesis via nuclear receptor ERR?. J Clin Invest. 2017;127:2555-2568 pubmed 出版商
  255. Zhang J, MacArtney T, Peggie M, Cohen P. Interleukin-1 and TRAF6-dependent activation of TAK1 in the absence of TAB2 and TAB3. Biochem J. 2017;474:2235-2248 pubmed 出版商
  256. Nishimura S, Mishra Gorur K, Park J, Surovtseva Y, Sebti S, Levchenko A, et al. Combined HMG-COA reductase and prenylation inhibition in treatment of CCM. Proc Natl Acad Sci U S A. 2017;114:5503-5508 pubmed 出版商
  257. Ng R, Hussain N, Zhang Q, Chang C, Li H, Fu Y, et al. miRNA-32 Drives Brown Fat Thermogenesis and Trans-activates Subcutaneous White Fat Browning in Mice. Cell Rep. 2017;19:1229-1246 pubmed 出版商
  258. Ventura E, Weller M, Burghardt I. Cutting Edge: ERK1 Mediates the Autocrine Positive Feedback Loop of TGF-? and Furin in Glioma-Initiating Cells. J Immunol. 2017;198:4569-4574 pubmed 出版商
  259. Zhong J, Wang H, Chen W, Sun Z, Chen J, Xu Y, et al. Ubiquitylation of MFHAS1 by the ubiquitin ligase praja2 promotes M1 macrophage polarization by activating JNK and p38 pathways. Cell Death Dis. 2017;8:e2763 pubmed 出版商
  260. Yoon C, Cho S, Chang K, Park D, Ryeom S, Yoon S. Role of Rac1 Pathway in Epithelial-to-Mesenchymal Transition and Cancer Stem-like Cell Phenotypes in Gastric Adenocarcinoma. Mol Cancer Res. 2017;15:1106-1116 pubmed 出版商
  261. Tian H, Ketova T, Hardy D, Xu X, Gao X, Zijlstra A, et al. Endoglin Mediates Vascular Maturation by Promoting Vascular Smooth Muscle Cell Migration and Spreading. Arterioscler Thromb Vasc Biol. 2017;37:1115-1126 pubmed 出版商
  262. Ma S, Wan X, Deng Z, Shi L, Hao C, Zhou Z, et al. Epigenetic regulator CXXC5 recruits DNA demethylase Tet2 to regulate TLR7/9-elicited IFN response in pDCs. J Exp Med. 2017;214:1471-1491 pubmed 出版商
  263. Kim D, Ko H, Park G, Hur D, Kim Y, Yang J. Vandetanib and ADAM inhibitors synergistically attenuate the pathological migration of EBV-infected retinal pigment epithelial cells by regulating the VEGF-mediated MAPK pathway. Exp Ther Med. 2017;13:1415-1425 pubmed 出版商
  264. Du M, Martin A, HAYS F, Johnson J, FARJO R, Farjo K. Serum retinol-binding protein-induced endothelial inflammation is mediated through the activation of toll-like receptor 4. Mol Vis. 2017;23:185-197 pubmed
  265. Yang Y, Liu B, Xu J, Wang J, Wu J, Shi C, et al. Derivation of Pluripotent Stem Cells with In Vivo Embryonic and Extraembryonic Potency. Cell. 2017;169:243-257.e25 pubmed 出版商
  266. Wassermann Dozorets R, Rubinstein M. C/EBPβ LIP augments cell death by inducing osteoglycin. Cell Death Dis. 2017;8:e2733 pubmed 出版商
  267. Cong Q, Jia H, Li P, Qiu S, Yeh J, Wang Y, et al. p38α MAPK regulates proliferation and differentiation of osteoclast progenitors and bone remodeling in an aging-dependent manner. Sci Rep. 2017;7:45964 pubmed 出版商
  268. Perrott K, Wiley C, Desprez P, Campisi J. Apigenin suppresses the senescence-associated secretory phenotype and paracrine effects on breast cancer cells. GeroScience. 2017;39:161-173 pubmed 出版商
  269. Hu X, Zhang Z, Liang Z, Xie D, Zhang T, Yu D, et al. Downregulation of feline sarcoma-related protein inhibits cell migration, invasion and epithelial-mesenchymal transition via the ERK/AP-1 pathway in bladder urothelial cell carcinoma. Oncol Lett. 2017;13:686-694 pubmed 出版商
  270. Xiong G, Hindi S, Mann A, Gallot Y, Bohnert K, Cavener D, et al. The PERK arm of the unfolded protein response regulates satellite cell-mediated skeletal muscle regeneration. elife. 2017;6: pubmed 出版商
  271. Menicacci B, Laurenzana A, Chillà A, Margheri F, Peppicelli S, Tanganelli E, et al. Chronic Resveratrol Treatment Inhibits MRC5 Fibroblast SASP-Related Protumoral Effects on Melanoma Cells. J Gerontol A Biol Sci Med Sci. 2017;72:1187-1195 pubmed 出版商
  272. Chambers T, Santiesteban L, Gomez D, Chambers J. Sab mediates mitochondrial dysfunction involved in imatinib mesylate-induced cardiotoxicity. Toxicology. 2017;382:24-35 pubmed 出版商
  273. Balmer D, Bapst Wicht L, Pyakurel A, Emery M, Nanchen N, Bochet C, et al. Bis-Retinoid A2E Induces an Increase of Basic Fibroblast Growth Factor via Inhibition of Extracellular Signal-Regulated Kinases 1/2 Pathway in Retinal Pigment Epithelium Cells and Facilitates Phagocytosis. Front Aging Neurosci. 2017;9:43 pubmed 出版商
  274. Cherniack A, Shen H, Walter V, Stewart C, Murray B, Bowlby R, et al. Integrated Molecular Characterization of Uterine Carcinosarcoma. Cancer Cell. 2017;31:411-423 pubmed 出版商
  275. Han Q, Lin Q, Huang P, Chen M, Hu X, Fu H, et al. Microglia-derived IL-1? contributes to axon development disorders and synaptic deficit through p38-MAPK signal pathway in septic neonatal rats. J Neuroinflammation. 2017;14:52 pubmed 出版商
  276. Song Y, Lai L, Chong Z, He J, Zhang Y, Xue Y, et al. E3 ligase FBXW7 is critical for RIG-I stabilization during antiviral responses. Nat Commun. 2017;8:14654 pubmed 出版商
  277. Hammers D, Merscham Banda M, Hsiao J, ENGST S, Hartman J, Sweeney H. Supraphysiological levels of GDF11 induce striated muscle atrophy. EMBO Mol Med. 2017;9:531-544 pubmed 出版商
  278. Li L, Baxter S, Gu N, Ji M, Zhan X. Missing-in-metastasis protein downregulates CXCR4 by promoting ubiquitylation and interaction with small Rab GTPases. J Cell Sci. 2017;130:1475-1485 pubmed 出版商
  279. Obeid S, Wankell M, Charrez B, Sternberg J, Kreuter R, Esmaili S, et al. Adiponectin confers protection from acute colitis and restricts a B cell immune response. J Biol Chem. 2017;292:6569-6582 pubmed 出版商
  280. Lafont E, Kantari Mimoun C, Dráber P, De Miguel D, Hartwig T, Reichert M, et al. The linear ubiquitin chain assembly complex regulates TRAIL-induced gene activation and cell death. EMBO J. 2017;36:1147-1166 pubmed 出版商
  281. Fu S, Xu H, Gu M, Liu C, Wang Q, Wan X, et al. Adiponectin deficiency contributes to the development and progression of benign prostatic hyperplasia in obesity. Sci Rep. 2017;7:43771 pubmed 出版商
  282. Zhang H, Wang Y, Liu Z, Yao B, Dou C, Xu M, et al. Lymphocyte-specific protein 1 inhibits the growth of hepatocellular carcinoma by suppressing ERK1/2 phosphorylation. FEBS Open Bio. 2016;6:1227-1237 pubmed 出版商
  283. Frank S, Schulz V, Miranti C. A streamlined method for the design and cloning of shRNAs into an optimized Dox-inducible lentiviral vector. BMC Biotechnol. 2017;17:24 pubmed 出版商
  284. de Oliveira R, de Campos Castilho G, da Cunha A, Miyajima F, de Oliveira Martins D. Dilodendron bipinnatum Radlk. inhibits pro-inflammatory mediators through the induction of MKP-1 and the down-regulation of MAPKp38/JNK/NF-?B pathways and COX-2 in LPS-activated RAW 264.7 cells. J Ethnopharmacol. 2017;202:127-137 pubmed 出版商
  285. Houddane A, Bultot L, Novellasdemunt L, Johanns M, Gueuning M, Vertommen D, et al. Role of Akt/PKB and PFKFB isoenzymes in the control of glycolysis, cell proliferation and protein synthesis in mitogen-stimulated thymocytes. Cell Signal. 2017;34:23-37 pubmed 出版商
  286. Wang H, Shan X, Qiao Y. PDK2 promotes chondrogenic differentiation of mesenchymal stem cells by upregulation of Sox6 and activation of JNK/MAPK/ERK pathway. Braz J Med Biol Res. 2017;50:e5988 pubmed 出版商
  287. Ma C, Lin W, Liu Z, Tang W, Gautam R, Li H, et al. NDR1 protein kinase promotes IL-17- and TNF-α-mediated inflammation by competitively binding TRAF3. EMBO Rep. 2017;18:586-602 pubmed 出版商
  288. Wang N, Yao F, Li K, Zhang L, Yin G, Du M, et al. Fisetin regulates astrocyte migration and proliferation in vitro. Int J Mol Med. 2017;39:783-790 pubmed 出版商
  289. Kang S, Yi H, Choi M, Ryu M, Jung S, Chung H, et al. ANGPTL6 expression is coupled with mitochondrial OXPHOS function to regulate adipose FGF21. J Endocrinol. 2017;233:105-118 pubmed 出版商
  290. Dong Q, Fu L, Zhao Y, Tan S, Wang E. Derlin-1 overexpression confers poor prognosis in muscle invasive bladder cancer and contributes to chemoresistance and invasion through PI3K/AKT and ERK/MMP signaling. Oncotarget. 2017;8:17059-17069 pubmed 出版商
  291. Genovese G, Carugo A, TEPPER J, Robinson F, Li L, Svelto M, et al. Synthetic vulnerabilities of mesenchymal subpopulations in pancreatic cancer. Nature. 2017;542:362-366 pubmed 出版商
  292. Kocic G, Veljkovic A, Kocic H, Colic M, Mihajlović D, Tomovic K, et al. Depurinized milk downregulates rat thymus MyD88/Akt/p38 function, NF-κB-mediated inflammation, caspase-1 activity but not the endonuclease pathway: in vitro/in vivo study. Sci Rep. 2017;7:41971 pubmed 出版商
  293. Gautam J, Nirwane A, Yao Y. Laminin differentially regulates the stemness of type I and type II pericytes. Stem Cell Res Ther. 2017;8:28 pubmed 出版商
  294. Ni Y, Teng T, Li R, Simonyi A, Sun G, Lee J. TNFα alters occludin and cerebral endothelial permeability: Role of p38MAPK. PLoS ONE. 2017;12:e0170346 pubmed 出版商
  295. Nyati K, Masuda K, Zaman M, Dubey P, Millrine D, Chalise J, et al. TLR4-induced NF-?B and MAPK signaling regulate the IL-6 mRNA stabilizing protein Arid5a. Nucleic Acids Res. 2017;45:2687-2703 pubmed 出版商
  296. Zhang H, Qi Y, Yuan Y, Cai L, Xu H, Zhang L, et al. Paeoniflorin Ameliorates Experimental Autoimmune Encephalomyelitis via Inhibition of Dendritic Cell Function and Th17 Cell Differentiation. Sci Rep. 2017;7:41887 pubmed 出版商
  297. Xiong X, Liu Y, Mei Y, Peng J, Wang Z, Kong B, et al. Novel Protective Role of Myeloid Differentiation 1 in Pathological Cardiac Remodelling. Sci Rep. 2017;7:41857 pubmed 出版商
  298. Bakshi S, Taylor J, Strickson S, McCartney T, Cohen P. Identification of TBK1 complexes required for the phosphorylation of IRF3 and the production of interferon ?. Biochem J. 2017;474:1163-1174 pubmed 出版商
  299. Neganova I, Chichagova V, Armstrong L, Lako M. A critical role for p38MAPK signalling pathway during reprogramming of human fibroblasts to iPSCs. Sci Rep. 2017;7:41693 pubmed 出版商
  300. Li C, Bi Y, Li Y, Yang H, Yu Q, Wang J, et al. Dendritic cell MST1 inhibits Th17 differentiation. Nat Commun. 2017;8:14275 pubmed 出版商
  301. Lim E, Nakanishi S, Hoghooghi V, Eaton S, Palmer A, Frederick A, et al. AlphaB-crystallin regulates remyelination after peripheral nerve injury. Proc Natl Acad Sci U S A. 2017;114:E1707-E1716 pubmed 出版商
  302. Mindos T, Dun X, North K, Doddrell R, Schulz A, Edwards P, et al. Merlin controls the repair capacity of Schwann cells after injury by regulating Hippo/YAP activity. J Cell Biol. 2017;216:495-510 pubmed 出版商
  303. Yang H, Ju F, Guo X, Ma S, Wang L, Cheng B, et al. RNA-binding protein RBM3 prevents NO-induced apoptosis in human neuroblastoma cells by modulating p38 signaling and miR-143. Sci Rep. 2017;7:41738 pubmed 出版商
  304. Pergola C, Schubert K, Pace S, Ziereisen J, Nikels F, Scherer O, et al. Modulation of actin dynamics as potential macrophage subtype-targeting anti-tumour strategy. Sci Rep. 2017;7:41434 pubmed 出版商
  305. Ha S, Jin F, Kwak C, Abekura F, Park J, Park N, et al. Jellyfish extract induces apoptotic cell death through the p38 pathway and cell cycle arrest in chronic myelogenous leukemia K562 cells. Peerj. 2017;5:e2895 pubmed 出版商
  306. Liu J, Wang H, Gu J, Deng T, Yuan Z, Hu B, et al. BECN1-dependent CASP2 incomplete autophagy induction by binding to rabies virus phosphoprotein. Autophagy. 2017;13:739-753 pubmed 出版商
  307. Lin Y, Lin Y, Huang M, Kuo P, Wu C, Lee M, et al. Tumor necrosis factor-alpha inhibitors suppress CCL2 chemokine in monocytes via epigenetic modification. Mol Immunol. 2017;83:82-91 pubmed 出版商
  308. Schober T, Magg T, Laschinger M, Rohlfs M, Linhares N, Puchalka J, et al. A human immunodeficiency syndrome caused by mutations in CARMIL2. Nat Commun. 2017;8:14209 pubmed 出版商
  309. Feng L, Xue D, Chen E, Zhang W, Gao X, Yu J, et al. HMGB1 promotes the secretion of multiple cytokines and potentiates the osteogenic differentiation of mesenchymal stem cells through the Ras/MAPK signaling pathway. Exp Ther Med. 2016;12:3941-3947 pubmed 出版商
  310. Wu M, Chen W, Lu Y, Zhu G, Hao L, Li Y. Gα13 negatively controls osteoclastogenesis through inhibition of the Akt-GSK3β-NFATc1 signalling pathway. Nat Commun. 2017;8:13700 pubmed 出版商
  311. Schwarz F, Landig C, Siddiqui S, Secundino I, Olson J, Varki N, et al. Paired Siglec receptors generate opposite inflammatory responses to a human-specific pathogen. EMBO J. 2017;36:751-760 pubmed 出版商
  312. Chandravanshi B, Bhonde R. Shielding Engineered Islets With Mesenchymal Stem Cells Enhance Survival Under Hypoxia. J Cell Biochem. 2017;118:2672-2683 pubmed 出版商
  313. Kechele D, Blue R, Zwarycz B, Espenschied S, Mah A, Siegel M, et al. Orphan Gpr182 suppresses ERK-mediated intestinal proliferation during regeneration and adenoma formation. J Clin Invest. 2017;127:593-607 pubmed 出版商
  314. Tamamura Y, Katsube K, Mera H, Itokazu M, Wakitani S. Irx3 and Bmp2 regulate mouse mesenchymal cell chondrogenic differentiation in both a Sox9-dependent and -independent manner. J Cell Physiol. 2017;232:3317-3336 pubmed 出版商
  315. Pyle C, Akhter S, Bao S, Dodd C, Schlesinger L, Knoell D. Zinc Modulates Endotoxin-Induced Human Macrophage Inflammation through ZIP8 Induction and C/EBP? Inhibition. PLoS ONE. 2017;12:e0169531 pubmed 出版商
  316. Wamsley J, Issaeva N, An H, Lu X, Donehower L, Yarbrough W. LZAP is a novel Wip1 binding partner and positive regulator of its phosphatase activity in vitro. Cell Cycle. 2017;16:213-223 pubmed 出版商
  317. Grossi M, Bhattachariya A, Nordström I, Turczynska K, Svensson D, Albinsson S, et al. Pyk2 inhibition promotes contractile differentiation in arterial smooth muscle. J Cell Physiol. 2017;232:3088-3102 pubmed 出版商
  318. Hill S, Nesser N, Johnson Camacho K, Jeffress M, Johnson A, Boniface C, et al. Context Specificity in Causal Signaling Networks Revealed by Phosphoprotein Profiling. Cell Syst. 2017;4:73-83.e10 pubmed 出版商
  319. Hayakawa M, Hayakawa H, Petrova T, Ritprajak P, Sutavani R, Jiménez Andrade G, et al. Loss of Functionally Redundant p38 Isoforms in T Cells Enhances Regulatory T Cell Induction. J Biol Chem. 2017;292:1762-1772 pubmed 出版商
  320. Su C, Gao X, Yang W, Zhao Y, Fu X, Cui X, et al. Phosphorylation of Tudor-SN, a novel substrate of JNK, is involved in the efficient recruitment of Tudor-SN into stress granules. Biochim Biophys Acta Mol Cell Res. 2017;1864:562-571 pubmed 出版商
  321. Ohtsuka T, Sakaguchi M, Yamamoto H, Tomida S, Takata K, Shien K, et al. Interaction of cytokeratin 19 head domain and HER2 in the cytoplasm leads to activation of HER2-Erk pathway. Sci Rep. 2016;6:39557 pubmed 出版商
  322. Said A, Hu S, Abutaleb A, Watkins T, Cheng K, Chahdi A, et al. Interacting post-muscarinic receptor signaling pathways potentiate matrix metalloproteinase-1 expression and invasion of human colon cancer cells. Biochem J. 2017;474:647-665 pubmed 出版商
  323. Chao M, Guo J, Cheng W, Zhu X, She Z, Huang Z, et al. Loss of Caspase-Activated DNase Protects Against Atherosclerosis in Apolipoprotein E-Deficient Mice. J Am Heart Assoc. 2016;5: pubmed 出版商
  324. Su J, Zhou H, Liu X, Nilsson J, Fredrikson G, Zhao M. oxLDL antibody inhibits MCP-1 release in monocytes/macrophages by regulating Ca2+ /K+ channel flow. J Cell Mol Med. 2017;21:929-940 pubmed 出版商
  325. Fettweis G, Di Valentin E, L homme L, Lassence C, Dequiedt F, Fillet M, et al. RIP3 antagonizes a TSC2-mediated pro-survival pathway in glioblastoma cell death. Biochim Biophys Acta Mol Cell Res. 2017;1864:113-124 pubmed 出版商
  326. Marmisolle I, Martínez J, Liu J, Mastrogiovanni M, Fergusson M, Rovira I, et al. Reciprocal regulation of acetyl-CoA carboxylase 1 and senescence in human fibroblasts involves oxidant mediated p38 MAPK activation. Arch Biochem Biophys. 2017;613:12-22 pubmed 出版商
  327. Harper K, Sosa M, Entenberg D, Hosseini H, Cheung J, Nobre R, et al. Mechanism of early dissemination and metastasis in Her2+ mammary cancer. Nature. 2016;540:588-592 pubmed 出版商
  328. Ramratnam M, Salama G, Sharma R, Wang D, Smith S, Banerjee S, et al. Gene-Targeted Mice with the Human Troponin T R141W Mutation Develop Dilated Cardiomyopathy with Calcium Desensitization. PLoS ONE. 2016;11:e0167681 pubmed 出版商
  329. Möllmann J, Kahles F, Lebherz C, Kappel B, Baeck C, Tacke F, et al. The PDE4 inhibitor roflumilast reduces weight gain by increasing energy expenditure and leads to improved glucose metabolism. Diabetes Obes Metab. 2017;19:496-508 pubmed 出版商
  330. Lee H, Khan S, Khaliqdina S, Altintas M, Grahammer F, Zhao J, et al. Absence of miR-146a in Podocytes Increases Risk of Diabetic Glomerulopathy via Up-regulation of ErbB4 and Notch-1. J Biol Chem. 2017;292:732-747 pubmed 出版商
  331. Farsam V, Basu A, Gatzka M, Treiber N, Schneider L, Mulaw M, et al. Senescent fibroblast-derived Chemerin promotes squamous cell carcinoma migration. Oncotarget. 2016;7:83554-83569 pubmed 出版商
  332. Choi S, Piao Z, Jin L, Kim J, Kim G, Ryu Y, et al. Piceatannol Attenuates Renal Fibrosis Induced by Unilateral Ureteral Obstruction via Downregulation of Histone Deacetylase 4/5 or p38-MAPK Signaling. PLoS ONE. 2016;11:e0167340 pubmed 出版商
  333. He X, Liu Z, Xia Y, Xu J, Lv G, Wang L, et al. HOXB7 overexpression promotes cell proliferation and correlates with poor prognosis in gastric cancer patients by inducing expression of both AKT and MARKs. Oncotarget. 2017;8:1247-1261 pubmed 出版商
  334. Torgersen M, Klokk T, Kavaliauskiene S, Klose C, Simons K, Skotland T, et al. The anti-tumor drug 2-hydroxyoleic acid (Minerval) stimulates signaling and retrograde transport. Oncotarget. 2016;7:86871-86888 pubmed 出版商
  335. Gong J, Tu W, Han J, He J, Liu J, Han P, et al. Hepatic SATB1 induces paracrine activation of hepatic stellate cells and is upregulated by HBx. Sci Rep. 2016;6:37717 pubmed 出版商
  336. Mandel E, Dunford E, Trifonova A, Abdifarkosh G, Teich T, Riddell M, et al. Prazosin Can Prevent Glucocorticoid Mediated Capillary Rarefaction. PLoS ONE. 2016;11:e0166899 pubmed 出版商
  337. Fernández Verdejo R, Vanwynsberghe A, Essaghir A, Demoulin J, Hai T, Deldicque L, et al. Activating transcription factor 3 attenuates chemokine and cytokine expression in mouse skeletal muscle after exercise and facilitates molecular adaptation to endurance training. FASEB J. 2017;31:840-851 pubmed 出版商
  338. Piasecka D, Kitowska K, Czaplinska D, Mieczkowski K, Mieszkowska M, Turczyk L, et al. Fibroblast growth factor signalling induces loss of progesterone receptor in breast cancer cells. Oncotarget. 2016;7:86011-86025 pubmed 出版商
  339. Milara J, Cervera A, de Diego A, Sanz C, Juan G, Gavaldá A, et al. Non-neuronal cholinergic system contributes to corticosteroid resistance in chronic obstructive pulmonary disease patients. Respir Res. 2016;17:145 pubmed
  340. Dragoj M, Milosević Z, Bankovic J, Tanic N, Pesic M, Stankovic T. Targeting CXCR4 and FAK reverses doxorubicin resistance and suppresses invasion in non-small cell lung carcinoma. Cell Oncol (Dordr). 2017;40:47-62 pubmed 出版商
  341. Newton K, Wickliffe K, Maltzman A, Dugger D, Strasser A, Pham V, et al. RIPK1 inhibits ZBP1-driven necroptosis during development. Nature. 2016;540:129-133 pubmed 出版商
  342. Kitsati N, Mantzaris M, Galaris D. Hydroxytyrosol inhibits hydrogen peroxide-induced apoptotic signaling via labile iron chelation. Redox Biol. 2016;10:233-242 pubmed 出版商
  343. Chen D, Ireland S, Remington G, Alvarez E, Racke M, Greenberg B, et al. CD40-Mediated NF-?B Activation in B Cells Is Increased in Multiple Sclerosis and Modulated by Therapeutics. J Immunol. 2016;197:4257-4265 pubmed
  344. Han J, Bae J, Choi C, Choi S, Kang H, Jo E, et al. Autophagy induced by AXL receptor tyrosine kinase alleviates acute liver injury via inhibition of NLRP3 inflammasome activation in mice. Autophagy. 2016;12:2326-2343 pubmed
  345. Ulland T, Jain N, Hornick E, Elliott E, Clay G, Sadler J, et al. Nlrp12 mutation causes C57BL/6J strain-specific defect in neutrophil recruitment. Nat Commun. 2016;7:13180 pubmed 出版商
  346. Ismail H, Didangelos A, Vincent T, Saklatvala J. Rapid Activation of Transforming Growth Factor ?-Activated Kinase 1 in Chondrocytes by Phosphorylation and K63 -Linked Polyubiquitination Upon Injury to Animal Articular Cartilage. Arthritis Rheumatol. 2017;69:565-575 pubmed 出版商
  347. Dey K, Bharti R, Dey G, Pal I, Rajesh Y, Chavan S, et al. S100A7 has an oncogenic role in oral squamous cell carcinoma by activating p38/MAPK and RAB2A signaling pathway. Cancer Gene Ther. 2016;23:382-391 pubmed 出版商
  348. Jiang Y, Zeng Y, Huang X, Qin Y, Luo W, Xiang S, et al. Nur77 attenuates endothelin-1 expression via downregulation of NF-κB and p38 MAPK in A549 cells and in an ARDS rat model. Am J Physiol Lung Cell Mol Physiol. 2016;311:L1023-L1035 pubmed 出版商
  349. Ulbrich F, Kaufmann K, Meske A, Lagrèze W, Augustynik M, Buerkle H, et al. The CORM ALF-186 Mediates Anti-Apoptotic Signaling via an Activation of the p38 MAPK after Ischemia and Reperfusion Injury in Retinal Ganglion Cells. PLoS ONE. 2016;11:e0165182 pubmed 出版商
  350. Fujii N, Matsuo Y, Matsunaga T, Endo S, Sakai H, Yamaguchi M, et al. Hypotonic Stress-induced Down-regulation of Claudin-1 and -2 Mediated by Dephosphorylation and Clathrin-dependent Endocytosis in Renal Tubular Epithelial Cells. J Biol Chem. 2016;291:24787-24799 pubmed
  351. Yue G, Xie S, Lee J, Kwok H, Gao S, Nian Y, et al. New potential beneficial effects of actein, a triterpene glycoside isolated from Cimicifuga species, in breast cancer treatment. Sci Rep. 2016;6:35263 pubmed 出版商
  352. Yoon Y, Storm K, Kamimae Lanning A, Goloviznina N, Kurre P. Endogenous DNA Damage Leads to p53-Independent Deficits in Replicative Fitness in Fetal Murine Fancd2-/- Hematopoietic Stem and Progenitor Cells. Stem Cell Reports. 2016;7:840-853 pubmed 出版商
  353. Guan S, Zhao Y, Lu J, Yu Y, Sun W, Mao X, et al. Second-generation proteasome inhibitor carfilzomib sensitizes neuroblastoma cells to doxorubicin-induced apoptosis. Oncotarget. 2016;7:75914-75925 pubmed 出版商
  354. Gupta S, Zeglinski M, Rattan S, Landry N, Ghavami S, Wigle J, et al. Inhibition of autophagy inhibits the conversion of cardiac fibroblasts to cardiac myofibroblasts. Oncotarget. 2016;7:78516-78531 pubmed 出版商
  355. Zhong W, Wang X, Pan B, Li F, Kuang L, Su Z. Eupatilin induces human renal cancer cell apoptosis via ROS-mediated MAPK and PI3K/AKT signaling pathways. Oncol Lett. 2016;12:2894-2899 pubmed
  356. Xu Y, Ding G, Huang J, Xiong Y. Tanshinone IIA pretreatment attenuates ischemia/reperfusion-induced renal injury. Exp Ther Med. 2016;12:2741-2746 pubmed
  357. Huai W, Song H, Yu Z, Wang W, Han L, Sakamoto T, et al. Mint3 potentiates TLR3/4- and RIG-I-induced IFN-? expression and antiviral immune responses. Proc Natl Acad Sci U S A. 2016;113:11925-11930 pubmed
  358. Napier B, Brubaker S, Sweeney T, Monette P, Rothmeier G, Gertsvolf N, et al. Complement pathway amplifies caspase-11-dependent cell death and endotoxin-induced sepsis severity. J Exp Med. 2016;213:2365-2382 pubmed
  359. Lu W, Shi J, Zhang J, Lv Z, Guo F, Huang H, et al. CXCL12/CXCR4 Axis Regulates Aggrecanase Activation and Cartilage Degradation in a Post-Traumatic Osteoarthritis Rat Model. Int J Mol Sci. 2016;17: pubmed
  360. Wu X, Gu W, Lu H, Liu C, Yu B, Xu H, et al. Soluble Receptor for Advanced Glycation End Product Ameliorates Chronic Intermittent Hypoxia Induced Renal Injury, Inflammation, and Apoptosis via P38/JNK Signaling Pathways. Oxid Med Cell Longev. 2016;2016:1015390 pubmed
  361. Yan S, Wang Y, Liu P, Chen A, Chen M, Yao D, et al. Baicalin Attenuates Hypoxia-Induced Pulmonary Arterial Hypertension to Improve Hypoxic Cor Pulmonale by Reducing the Activity of the p38 MAPK Signaling Pathway and MMP-9. Evid Based Complement Alternat Med. 2016;2016:2546402 pubmed 出版商
  362. Doan K, Kinyua A, Yang D, Ko C, Moh S, Shong K, et al. FoxO1 in dopaminergic neurons regulates energy homeostasis and targets tyrosine hydroxylase. Nat Commun. 2016;7:12733 pubmed 出版商
  363. Ang Z, Er J, Tan N, Lu J, Liou Y, Grosse J, et al. Human and mouse monocytes display distinct signalling and cytokine profiles upon stimulation with FFAR2/FFAR3 short-chain fatty acid receptor agonists. Sci Rep. 2016;6:34145 pubmed 出版商
  364. Cao R, Meng Z, Liu T, Wang G, Qian G, Cao T, et al. Decreased TRPM7 inhibits activities and induces apoptosis of bladder cancer cells via ERK1/2 pathway. Oncotarget. 2016;7:72941-72960 pubmed 出版商
  365. Treindl F, Ruprecht B, Beiter Y, Schultz S, Döttinger A, Staebler A, et al. A bead-based western for high-throughput cellular signal transduction analyses. Nat Commun. 2016;7:12852 pubmed 出版商
  366. Shi Y, Yu Y, Wang Z, Wang H, Bieerkehazhi S, Zhao Y, et al. Second-generation proteasome inhibitor carfilzomib enhances doxorubicin-induced cytotoxicity and apoptosis in breast cancer cells. Oncotarget. 2016;7:73697-73710 pubmed 出版商
  367. Wang Y, Ma C, Ling Y, Bousfiha A, Camcioglu Y, Jacquot S, et al. Dual T cell- and B cell-intrinsic deficiency in humans with biallelic RLTPR mutations. J Exp Med. 2016;213:2413-2435 pubmed
  368. Christensen B, Nellemann B, Jørgensen J, Pedersen S, Jessen N. Erythropoietin does not activate erythropoietin receptor signaling or lipolytic pathways in human subcutaneous white adipose tissue in vivo. Lipids Health Dis. 2016;15:160 pubmed 出版商
  369. Springler A, Hessenberger S, Schatzmayr G, Mayer E. Early Activation of MAPK p44/42 Is Partially Involved in DON-Induced Disruption of the Intestinal Barrier Function and Tight Junction Network. Toxins (Basel). 2016;8: pubmed 出版商
  370. Janowski A, Colegio O, Hornick E, McNiff J, Martin M, Badovinac V, et al. NLRC4 suppresses melanoma tumor progression independently of inflammasome activation. J Clin Invest. 2016;126:3917-3928 pubmed 出版商
  371. Kundu R, Theodoraki A, Haas C, Zhang Y, Chain B, Kriston Vizi J, et al. Cell-type-specific modulation of innate immune signalling by vitamin D in human mononuclear phagocytes. Immunology. 2017;150:55-63 pubmed 出版商
  372. Thamodaran V, Bruce A. p38 (Mapk14/11) occupies a regulatory node governing entry into primitive endoderm differentiation during preimplantation mouse embryo development. Open Biol. 2016;6: pubmed 出版商
  373. Qin Y, Liu Y, Hao W, Decker Y, Tomic I, Menger M, et al. Stimulation of TLR4 Attenuates Alzheimer's Disease-Related Symptoms and Pathology in Tau-Transgenic Mice. J Immunol. 2016;197:3281-3292 pubmed
  374. Hesler R, Huang J, Starr M, Treboschi V, Bernanke A, Nixon A, et al. TGF-?-induced stromal CYR61 promotes resistance to gemcitabine in pancreatic ductal adenocarcinoma through downregulation of the nucleoside transporters hENT1 and hCNT3. Carcinogenesis. 2016;37:1041-1051 pubmed 出版商
  375. Lee J, Jung H, Han Y, Yoon Y, Yun C, Sun H, et al. Antioxidant effects of Cirsium setidens extract on oxidative stress in human mesenchymal stem cells. Mol Med Rep. 2016;14:3777-84 pubmed 出版商
  376. Ando Y, Oku T, Tsuji T. Platelet Supernatant Suppresses LPS-Induced Nitric Oxide Production from Macrophages Accompanied by Inhibition of NF-?B Signaling and Increased Arginase-1 Expression. PLoS ONE. 2016;11:e0162208 pubmed 出版商
  377. Ji M, Lu Y, Zhao C, Gao W, He F, Zhang J, et al. C5a Induces the Synthesis of IL-6 and TNF-? in Rat Glomerular Mesangial Cells through MAPK Signaling Pathways. PLoS ONE. 2016;11:e0161867 pubmed 出版商
  378. Zhang Y, Hu S, Chen Y, Guo M, Wang S. Hepatocyte growth factor inhibits hypoxia/reoxygenation-induced activation of xanthine oxidase in endothelial cells through the JAK2 signaling pathway. Int J Mol Med. 2016;38:1055-62 pubmed 出版商
  379. Cheng G, Gao F, Sun X, Bi H, Zhu Y. Paris saponin VII suppresses osteosarcoma cell migration and invasion by inhibiting MMP?2/9 production via the p38 MAPK signaling pathway. Mol Med Rep. 2016;14:3199-205 pubmed 出版商
  380. Shang W, Zhao L, Dong X, Zhao Z, Li J, Zhang B, et al. Curcumin inhibits osteoclastogenic potential in PBMCs from rheumatoid arthritis patients via the suppression of MAPK/RANK/c-Fos/NFATc1 signaling pathways. Mol Med Rep. 2016;14:3620-6 pubmed 出版商
  381. Jiao Z, Wu J, Liu C, Wen B, Zhao W, Du X. Nicotinic ?7 receptor inhibits the acylation stimulating protein?induced production of monocyte chemoattractant protein?1 and keratinocyte?derived chemokine in adipocytes by modulating the p38 kinase and nuclear factor??B signaling pathways. Mol Med Rep. 2016;14:2959-66 pubmed 出版商
  382. Hinsenkamp I, Schulz S, Roscher M, Suhr A, Meyer B, Munteanu B, et al. Inhibition of Rho-Associated Kinase 1/2 Attenuates Tumor Growth in Murine Gastric Cancer. Neoplasia. 2016;18:500-11 pubmed 出版商
  383. Zhou Q, Yu X, Demirkaya E, Deuitch N, Stone D, Tsai W, et al. Biallelic hypomorphic mutations in a linear deubiquitinase define otulipenia, an early-onset autoinflammatory disease. Proc Natl Acad Sci U S A. 2016;113:10127-32 pubmed 出版商
  384. Kasica N, Podlasz P, Sundvik M, Tamas A, Reglodi D, Kaleczyc J. Protective Effects of Pituitary Adenylate Cyclase-Activating Polypeptide (PACAP) Against Oxidative Stress in Zebrafish Hair Cells. Neurotox Res. 2016;30:633-647 pubmed
  385. Kagoya Y, Nakatsugawa M, Yamashita Y, Ochi T, Guo T, Anczurowski M, et al. BET bromodomain inhibition enhances T cell persistence and function in adoptive immunotherapy models. J Clin Invest. 2016;126:3479-94 pubmed 出版商
  386. Hedl M, Yan J, Abraham C. IRF5 and IRF5 Disease-Risk Variants Increase Glycolysis and Human M1 Macrophage Polarization by Regulating Proximal Signaling and Akt2 Activation. Cell Rep. 2016;16:2442-55 pubmed 出版商
  387. Efazat G, Novak M, Kaminskyy V, De Petris L, Kanter L, Juntti T, et al. Ephrin B3 interacts with multiple EphA receptors and drives migration and invasion in non-small cell lung cancer. Oncotarget. 2016;7:60332-60347 pubmed 出版商
  388. Gómez Puerto M, Verhagen L, Braat A, Lam E, Coffer P, Lorenowicz M. Activation of autophagy by FOXO3 regulates redox homeostasis during osteogenic differentiation. Autophagy. 2016;12:1804-1816 pubmed
  389. Rasmussen M, Lyskjær I, Jersie Christensen R, Tarpgaard L, Primdal Bengtson B, Nielsen M, et al. miR-625-3p regulates oxaliplatin resistance by targeting MAP2K6-p38 signalling in human colorectal adenocarcinoma cells. Nat Commun. 2016;7:12436 pubmed 出版商
  390. Damgaard R, Walker J, Marco Casanova P, Morgan N, Titheradge H, Elliott P, et al. The Deubiquitinase OTULIN Is an Essential Negative Regulator of Inflammation and Autoimmunity. Cell. 2016;166:1215-1230.e20 pubmed 出版商
  391. Kariya Y, Tatsuta T, Sugawara S, Kariya Y, Nitta K, Hosono M. RNase activity of sialic acid-binding lectin from bullfrog eggs drives antitumor effect via the activation of p38 MAPK to caspase-3/7 signaling pathway in human breast cancer cells. Int J Oncol. 2016;49:1334-42 pubmed 出版商
  392. Ruess D, Probst M, Marjanovic G, Wittel U, Hopt U, Keck T, et al. HDACi Valproic Acid (VPA) and Suberoylanilide Hydroxamic Acid (SAHA) Delay but Fail to Protect against Warm Hepatic Ischemia-Reperfusion Injury. PLoS ONE. 2016;11:e0161233 pubmed 出版商
  393. Nadeau Vallée M, Boudreault A, Leimert K, Hou X, Obari D, Madaan A, et al. Uterotonic Neuromedin U Receptor 2 and Its Ligands Are Upregulated by Inflammation in Mice and Humans, and Elicit Preterm Birth. Biol Reprod. 2016;95:72 pubmed
  394. Ogasawara R, Fujita S, Hornberger T, Kitaoka Y, Makanae Y, Nakazato K, et al. The role of mTOR signalling in the regulation of skeletal muscle mass in a rodent model of resistance exercise. Sci Rep. 2016;6:31142 pubmed 出版商
  395. Radke D, Ungefroren H, Helm O, Voigt S, Alp G, Braun H, et al. Negative control of TRAIL-R1 signaling by transforming growth factor ?1 in pancreatic tumor cells involves Smad-dependent down regulation of TRAIL-R1. Cell Signal. 2016;28:1652-62 pubmed 出版商
  396. El Jamal S, Taylor E, Abd Elmageed Z, Alamodi A, Selimovic D, Alkhateeb A, et al. Interferon gamma-induced apoptosis of head and neck squamous cell carcinoma is connected to indoleamine-2,3-dioxygenase via mitochondrial and ER stress-associated pathways. Cell Div. 2016;11:11 pubmed 出版商
  397. Kim J, Weeratunga P, Kim M, Nikapitiya C, Lee B, Uddin M, et al. Inhibitory effects of an aqueous extract from Cortex Phellodendri on the growth and replication of broad-spectrum of viruses in vitro and in vivo. BMC Complement Altern Med. 2016;16:265 pubmed 出版商
  398. Kawamoto E, Koshinaka K, Yoshimura T, Masuda H, Kawanaka K. Immobilization rapidly induces muscle insulin resistance together with the activation of MAPKs (JNK and p38) and impairment of AS160 phosphorylation. Physiol Rep. 2016;4: pubmed 出版商
  399. Lie E, Ko J, Choi S, Roh J, Cho Y, Noh R, et al. SALM4 suppresses excitatory synapse development by cis-inhibiting trans-synaptic SALM3-LAR adhesion. Nat Commun. 2016;7:12328 pubmed 出版商
  400. Møller C, Kjøbsted R, Enriori P, Jensen T, Garcia Rudaz C, Litwak S, et al. ?-MSH Stimulates Glucose Uptake in Mouse Muscle and Phosphorylates Rab-GTPase-Activating Protein TBC1D1 Independently of AMPK. PLoS ONE. 2016;11:e0157027 pubmed 出版商
  401. Wu X, Liu W, Duan Z, Gao Y, Li S, Wang K, et al. The Involvement of Protease Nexin-1 (PN1) in the Pathogenesis of Intervertebral Disc (IVD) Degeneration. Sci Rep. 2016;6:30563 pubmed 出版商
  402. Wang J, Zhou J, Kho D, Reiners J, Wu G. Role for DUSP1 (dual-specificity protein phosphatase 1) in the regulation of autophagy. Autophagy. 2016;12:1791-1803 pubmed
  403. Lee J, Yu K, Kim H, Kang I, Kim J, Lee B, et al. BMI1 inhibits senescence and enhances the immunomodulatory properties of human mesenchymal stem cells via the direct suppression of MKP-1/DUSP1. Aging (Albany NY). 2016;8:1670-89 pubmed 出版商
  404. Ciaraldi T, Ryan A, Mudaliar S, Henry R. Altered Myokine Secretion Is an Intrinsic Property of Skeletal Muscle in Type 2 Diabetes. PLoS ONE. 2016;11:e0158209 pubmed 出版商
  405. Jiao K, Zeng G, Niu L, Yang H, Ren G, Xu X, et al. Activation of ?2A-adrenergic signal transduction in chondrocytes promotes degenerative remodelling of temporomandibular joint. Sci Rep. 2016;6:30085 pubmed 出版商
  406. Abdelbaset Ismail A, Borkowska Rzeszotek S, Kubis E, Bujko K, Brzeźniakiewicz Janus K, Bolkun L, et al. Activation of the complement cascade enhances motility of leukemic cells by downregulating expression of HO-1. Leukemia. 2017;31:446-458 pubmed 出版商
  407. Bao H, Liu P, Jiang K, Zhang X, Xie L, Wang Z, et al. Huaier polysaccharide induces apoptosis in hepatocellular carcinoma cells through p38 MAPK. Oncol Lett. 2016;12:1058-1066 pubmed
  408. Wang J, Li H, Li B, Gong Q, Chen X, Wang Q. Co-culture of bone marrow stem cells and macrophages indicates intermediate mechanism between local inflammation and innate immune system in diabetic periodontitis. Exp Ther Med. 2016;12:567-572 pubmed
  409. Kojima Y, Volkmer J, McKenna K, Civelek M, Lusis A, Miller C, et al. CD47-blocking antibodies restore phagocytosis and prevent atherosclerosis. Nature. 2016;536:86-90 pubmed
  410. Raguz J, Jerić I, Niault T, Nowacka J, Kuzet S, Rupp C, et al. Epidermal RAF prevents allergic skin disease. elife. 2016;5: pubmed 出版商
  411. Babica P, Zurabian R, Kumar E, Chopra R, Mianecki M, Park J, et al. Methoxychlor and Vinclozolin Induce Rapid Changes in Intercellular and Intracellular Signaling in Liver Progenitor Cells. Toxicol Sci. 2016;153:174-85 pubmed 出版商
  412. Huang C, Lee C, Lin H, Chang J. Cathepsin S attenuates endosomal EGFR signalling: A mechanical rationale for the combination of cathepsin S and EGFR tyrosine kinase inhibitors. Sci Rep. 2016;6:29256 pubmed 出版商
  413. Shen P, Chen M, He M, Chen L, Song Y, Xiao P, et al. Inhibition of ER?/ERK/P62 cascades induces "autophagic switch" in the estrogen receptor-positive breast cancer cells exposed to gemcitabine. Oncotarget. 2016;7:48501-48516 pubmed 出版商
  414. Lukjanenko L, Jung M, Hegde N, Perruisseau Carrier C, Migliavacca E, Rozo M, et al. Loss of fibronectin from the aged stem cell niche affects the regenerative capacity of skeletal muscle in mice. Nat Med. 2016;22:897-905 pubmed 出版商
  415. Rozo M, Li L, Fan C. Targeting ?1-integrin signaling enhances regeneration in aged and dystrophic muscle in mice. Nat Med. 2016;22:889-96 pubmed 出版商
  416. Xiang N, Liu J, Liao Y, Huang Y, Wu Z, Bai Z, et al. Abrogating ClC-3 Inhibits LPS-induced Inflammation via Blocking the TLR4/NF-κB Pathway. Sci Rep. 2016;6:27583 pubmed 出版商
  417. Heckler M, Zeleke T, Divekar S, Fernandez A, Tiek D, Woodrick J, et al. Antimitotic activity of DY131 and the estrogen-related receptor beta 2 (ERRβ2) splice variant in breast cancer. Oncotarget. 2016;7:47201-47220 pubmed 出版商
  418. Wittmann A, Lamprinaki D, Bowles K, Katzenellenbogen E, Knirel Y, Whitfield C, et al. Dectin-2 Recognizes Mannosylated O-antigens of Human Opportunistic Pathogens and Augments Lipopolysaccharide Activation of Myeloid Cells. J Biol Chem. 2016;291:17629-38 pubmed 出版商
  419. Subramaniam S, Ozdener M, Abdoul Azize S, Saito K, Malik B, Maquart G, et al. ERK1/2 activation in human taste bud cells regulates fatty acid signaling and gustatory perception of fat in mice and humans. FASEB J. 2016;30:3489-3500 pubmed
  420. Zhang J, Jing X, Niu W, Zhang M, Ge L, Miao C, et al. Peroxiredoxin 1 has an anti-apoptotic role via apoptosis signal-regulating kinase 1 and p38 activation in mouse models with oral precancerous lesions. Oncol Lett. 2016;12:413-420 pubmed
  421. Ahmad F, Chung Y, Tang Y, Hockman S, Liu S, Khan Y, et al. Phosphodiesterase 3B (PDE3B) regulates NLRP3 inflammasome in adipose tissue. Sci Rep. 2016;6:28056 pubmed 出版商
  422. Wagner S, Satpathy S, Beli P, Choudhary C. SPATA2 links CYLD to the TNF-? receptor signaling complex and modulates the receptor signaling outcomes. EMBO J. 2016;35:1868-84 pubmed 出版商
  423. Liu C, Lin S, Hsu H, Yang S, Lin C, Yang M, et al. Suspension survival mediated by PP2A-STAT3-Col XVII determines tumour initiation and metastasis in cancer stem cells. Nat Commun. 2016;7:11798 pubmed 出版商
  424. Faber E, Gripp E, Maurischat S, Kaspers B, Tedin K, Menz S, et al. Novel Immunomodulatory Flagellin-Like Protein FlaC in Campylobacter jejuni and Other Campylobacterales. mSphere. 2016;1: pubmed 出版商
  425. Bachegowda L, Morrone K, Winski S, Mantzaris I, Bartenstein M, Ramachandra N, et al. Pexmetinib: A Novel Dual Inhibitor of Tie2 and p38 MAPK with Efficacy in Preclinical Models of Myelodysplastic Syndromes and Acute Myeloid Leukemia. Cancer Res. 2016;76:4841-4849 pubmed 出版商
  426. Priego N, Arechederra M, Sequera C, Bragado P, Vázquez Carballo A, Gutierrez Uzquiza A, et al. C3G knock-down enhances migration and invasion by increasing Rap1-mediated p38? activation, while it impairs tumor growth through p38?-independent mechanisms. Oncotarget. 2016;7:45060-45078 pubmed 出版商
  427. Wang T, Pan D, Zhou Z, You Y, Jiang C, Zhao X, et al. Dectin-3 Deficiency Promotes Colitis Development due to Impaired Antifungal Innate Immune Responses in the Gut. PLoS Pathog. 2016;12:e1005662 pubmed 出版商
  428. Lin S, Gou G, Hsia C, Ho C, Huang K, Wu Y, et al. Simulated Microgravity Disrupts Cytoskeleton Organization and Increases Apoptosis of Rat Neural Crest Stem Cells Via Upregulating CXCR4 Expression and RhoA-ROCK1-p38 MAPK-p53 Signaling. Stem Cells Dev. 2016;25:1172-93 pubmed 出版商
  429. Leonard S, Kinsella G, Benetti E, Findlay J. Regulating the effects of GPR21, a novel target for type 2 diabetes. Sci Rep. 2016;6:27002 pubmed 出版商
  430. Kolanowski S, van Schijndel G, Van Ham S, ten Brinke A. Adaptation to replating of dendritic cells synergizes with Toll-like receptor stimuli and enhances the pro-inflammatory cytokine profile. Cytotherapy. 2016;18:902-10 pubmed 出版商
  431. Kohler T, Scholz A, Kiachludis D, Hammerschmidt S. Induction of Central Host Signaling Kinases during Pneumococcal Infection of Human THP-1 Cells. Front Cell Infect Microbiol. 2016;6:48 pubmed 出版商
  432. Zhang C, Li L, Zhao B, Jiao A, Li X, Sun N, et al. Ghrelin Protects against Dexamethasone-Induced INS-1 Cell Apoptosis via ERK and p38MAPK Signaling. Int J Endocrinol. 2016;2016:4513051 pubmed 出版商
  433. de Jong P, Taniguchi K, Harris A, Bertin S, Takahashi N, Duong J, et al. ERK5 signalling rescues intestinal epithelial turnover and tumour cell proliferation upon ERK1/2 abrogation. Nat Commun. 2016;7:11551 pubmed 出版商
  434. Ribeiro J, Schorl C, Yano N, Romano N, Kim K, Singh R, et al. HE4 promotes collateral resistance to cisplatin and paclitaxel in ovarian cancer cells. J Ovarian Res. 2016;9:28 pubmed 出版商
  435. Chen L, DeWispelaere A, Dastvan F, Osborne W, Blechner C, Windhorst S, et al. Smooth Muscle-Alpha Actin Inhibits Vascular Smooth Muscle Cell Proliferation and Migration by Inhibiting Rac1 Activity. PLoS ONE. 2016;11:e0155726 pubmed 出版商
  436. Park S, Yi H, Suh N, Park Y, Koh J, Jeong S, et al. Inhibition of EHMT2/G9a epigenetically increases the transcription of Beclin-1 via an increase in ROS and activation of NF-?B. Oncotarget. 2016;7:39796-39808 pubmed 出版商
  437. Lee Y, Kim S, Song S, Hong H, Lee Y, Oh B, et al. Crosstalk between CCL7 and CCR3 promotes metastasis of colon cancer cells via ERK-JNK signaling pathways. Oncotarget. 2016;7:36842-36853 pubmed 出版商
  438. Miyawaki S, Kawamura Y, Oiwa Y, Shimizu A, Hachiya T, Bono H, et al. Tumour resistance in induced pluripotent stem cells derived from naked mole-rats. Nat Commun. 2016;7:11471 pubmed 出版商
  439. Tortola L, Nitsch R, Bertrand M, Kogler M, Redouane Y, Kozieradzki I, et al. The Tumor Suppressor Hace1 Is a Critical Regulator of TNFR1-Mediated Cell Fate. Cell Rep. 2016;15:1481-1492 pubmed 出版商
  440. Ren W, Yin J, Chen S, Duan J, Liu G, Li T, et al. Proteome analysis for the global proteins in the jejunum tissues of enterotoxigenic Escherichia coli -infected piglets. Sci Rep. 2016;6:25640 pubmed 出版商
  441. Yang Y, Andersson P, Hosaka K, Zhang Y, Cao R, Iwamoto H, et al. The PDGF-BB-SOX7 axis-modulated IL-33 in pericytes and stromal cells promotes metastasis through tumour-associated macrophages. Nat Commun. 2016;7:11385 pubmed 出版商
  442. Foxton R, Osborne A, Martin K, Ng Y, Shima D. Distal retinal ganglion cell axon transport loss and activation of p38 MAPK stress pathway following VEGF-A antagonism. Cell Death Dis. 2016;7:e2212 pubmed 出版商
  443. Xu Z, Mei F, Liu H, Sun C, Zheng Z. C-C Motif Chemokine Receptor 9 Exacerbates Pressure Overload-Induced Cardiac Hypertrophy and Dysfunction. J Am Heart Assoc. 2016;5: pubmed 出版商
  444. Hu L, Tan J, Yang X, Tan H, Xu X, You M, et al. Polysaccharide Extracted from Laminaria japonica Delays Intrinsic Skin Aging in Mice. Evid Based Complement Alternat Med. 2016;2016:5137386 pubmed 出版商
  445. Ishizuka S, Askew E, Ishizuka N, Knudson C, Knudson W. 4-Methylumbelliferone Diminishes Catabolically Activated Articular Chondrocytes and Cartilage Explants via a Mechanism Independent of Hyaluronan Inhibition. J Biol Chem. 2016;291:12087-104 pubmed 出版商
  446. Matias A, Manieri T, Cerchiaro G. Zinc Chelation Mediates the Lysosomal Disruption without Intracellular ROS Generation. Oxid Med Cell Longev. 2016;2016:6724585 pubmed 出版商
  447. Wang Y, Cao J, Fan Y, Xie Y, Xu Z, Yin Z, et al. Artemisinin inhibits monocyte adhesion to HUVECs through the NF-?B and MAPK pathways in vitro. Int J Mol Med. 2016;37:1567-75 pubmed 出版商
  448. Choi H, Kim M, Choi Y, Shin Y, Cho S, Ko S. Rhus verniciflua Stokes (RVS) and butein induce apoptosis of paclitaxel-resistant SKOV-3/PAX ovarian cancer cells through inhibition of AKT phosphorylation. BMC Complement Altern Med. 2016;16:122 pubmed 出版商
  449. Afonina I, Van Nuffel E, Baudelet G, Driege Y, Kreike M, Staal J, et al. The paracaspase MALT1 mediates CARD14-induced signaling in keratinocytes. EMBO Rep. 2016;17:914-27 pubmed 出版商
  450. Wagstaff L, Goschorska M, Kozyrska K, Duclos G, Kucinski I, Chessel A, et al. Mechanical cell competition kills cells via induction of lethal p53 levels. Nat Commun. 2016;7:11373 pubmed 出版商
  451. Wang X, Wang N, Li H, Liu M, Cao F, Yu X, et al. Up-Regulation of PAI-1 and Down-Regulation of uPA Are Involved in Suppression of Invasiveness and Motility of Hepatocellular Carcinoma Cells by a Natural Compound Berberine. Int J Mol Sci. 2016;17:577 pubmed 出版商
  452. Bianchi E, Boekelheide K, Sigman M, Lamb D, Hall S, Hwang K. Ghrelin Inhibits Post-Operative Adhesions via Blockage of the TGF-β Signaling Pathway. PLoS ONE. 2016;11:e0153968 pubmed 出版商
  453. Uto T, Fukaya T, Takagi H, Arimura K, Nakamura T, Kojima N, et al. Clec4A4 is a regulatory receptor for dendritic cells that impairs inflammation and T-cell immunity. Nat Commun. 2016;7:11273 pubmed 出版商
  454. Hamanoue M, Morioka K, Ohsawa I, Ohsawa K, Kobayashi M, Tsuburaya K, et al. Cell-permeable p38?MAP kinase promotes migration of adult neural stem/progenitor cells. Sci Rep. 2016;6:24279 pubmed 出版商
  455. Yu Z, Chen T, Li X, Yang M, Tang S, Zhu X, et al. Lys29-linkage of ASK1 by Skp1-Cullin 1-Fbxo21 ubiquitin ligase complex is required for antiviral innate response. elife. 2016;5: pubmed 出版商
  456. Macritchie N, Volpert G, Al Washih M, Watson D, Futerman A, Kennedy S, et al. Effect of the sphingosine kinase 1 selective inhibitor, PF-543 on arterial and cardiac remodelling in a hypoxic model of pulmonary arterial hypertension. Cell Signal. 2016;28:946-55 pubmed 出版商
  457. Shi C, Iura A, Terajima M, Liu F, Lyons K, Pan H, et al. Deletion of BMP receptor type IB decreased bone mass in association with compromised osteoblastic differentiation of bone marrow mesenchymal progenitors. Sci Rep. 2016;6:24256 pubmed 出版商
  458. Hattori K, Naguro I, Okabe K, Funatsu T, Furutani S, Takeda K, et al. ASK1 signalling regulates brown and beige adipocyte function. Nat Commun. 2016;7:11158 pubmed 出版商
  459. Su K, Cao J, Tang Z, Dai S, He Y, Sampson S, et al. HSF1 critically attunes proteotoxic stress sensing by mTORC1 to combat stress and promote growth. Nat Cell Biol. 2016;18:527-39 pubmed 出版商
  460. Yan Q, Lou G, Qian Y, Qin B, Xu X, Wang Y, et al. SPAG9 is involved in hepatocarcinoma cell migration and invasion via modulation of ELK1 expression. Onco Targets Ther. 2016;9:1067-75 pubmed 出版商
  461. Huang W, Zhao H, Dong H, Wu Y, Yao L, Zou F, et al. High-mobility group box 1 impairs airway epithelial barrier function through the activation of the RAGE/ERK pathway. Int J Mol Med. 2016;37:1189-98 pubmed 出版商
  462. Elisia I, Nakamura H, Lam V, Hofs E, Cederberg R, Cait J, et al. DMSO Represses Inflammatory Cytokine Production from Human Blood Cells and Reduces Autoimmune Arthritis. PLoS ONE. 2016;11:e0152538 pubmed 出版商
  463. Braley A, Kwak T, Jules J, Harja E, Landgraf R, Hudson B. Regulation of Receptor for Advanced Glycation End Products (RAGE) Ectodomain Shedding and Its Role in Cell Function. J Biol Chem. 2016;291:12057-73 pubmed 出版商
  464. Zwang N, Zhang R, Germana S, Fan M, Hastings W, Cao A, et al. Selective Sparing of Human Tregs by Pharmacologic Inhibitors of the Phosphatidylinositol 3-Kinase and MEK Pathways. Am J Transplant. 2016;16:2624-38 pubmed 出版商
  465. Yang Y, Xu J, Chen H, Fei X, Tang Y, Yan Y, et al. MiR-128-2 inhibits common lymphoid progenitors from developing into progenitor B cells. Oncotarget. 2016;7:17520-31 pubmed 出版商
  466. Federspiel J, Codreanu S, Palubinsky A, Winland A, Betanzos C, McLaughlin B, et al. Assembly Dynamics and Stoichiometry of the Apoptosis Signal-regulating Kinase (ASK) Signalosome in Response to Electrophile Stress. Mol Cell Proteomics. 2016;15:1947-61 pubmed 出版商
  467. Segalés J, Islam A, Kumar R, Liu Q, Sousa Victor P, Dilworth F, et al. Chromatin-wide and transcriptome profiling integration uncovers p38α MAPK as a global regulator of skeletal muscle differentiation. Skelet Muscle. 2016;6:9 pubmed 出版商
  468. Mori F, Ferraiuolo M, Santoro R, Sacconi A, Goeman F, Pallocca M, et al. Multitargeting activity of miR-24 inhibits long-term melatonin anticancer effects. Oncotarget. 2016;7:20532-48 pubmed 出版商
  469. Acharya M, Sokolovska A, Tam J, Conway K, Stefani C, Raso F, et al. αv Integrins combine with LC3 and atg5 to regulate Toll-like receptor signalling in B cells. Nat Commun. 2016;7:10917 pubmed 出版商
  470. Pham A, Santa Maria F, Lahiri T, Friedman E, Marié I, Levy D. PKR Transduces MDA5-Dependent Signals for Type I IFN Induction. PLoS Pathog. 2016;12:e1005489 pubmed 出版商
  471. Yang W, Yang Y, Yang J, Liang M, Song J. Treatment with bone marrow mesenchymal stem cells combined with plumbagin alleviates spinal cord injury by affecting oxidative stress, inflammation, apoptotis and the activation of the Nrf2 pathway. Int J Mol Med. 2016;37:1075-82 pubmed 出版商
  472. Choi J, Kim I, Kim Y, Lee M, Nam T. Pyropia yezoensis glycoprotein regulates antioxidant status and prevents hepatotoxicity in a rat model of D-galactosamine/lipopolysaccharide-induced acute liver failure. Mol Med Rep. 2016;13:3110-4 pubmed 出版商
  473. Woo J, Srikanth S, Nishi M, Ping P, Takeshima H, Gwack Y. Junctophilin-4, a component of the endoplasmic reticulum-plasma membrane junctions, regulates Ca2+ dynamics in T cells. Proc Natl Acad Sci U S A. 2016;113:2762-7 pubmed 出版商
  474. Chusri P, Kumthip K, Hong J, Zhu C, Duan X, Jilg N, et al. HCV induces transforming growth factor β1 through activation of endoplasmic reticulum stress and the unfolded protein response. Sci Rep. 2016;6:22487 pubmed 出版商
  475. Moiseeva O, Lopes Paciencia S, Huot G, Lessard F, Ferbeyre G. Permanent farnesylation of lamin A mutants linked to progeria impairs its phosphorylation at serine 22 during interphase. Aging (Albany NY). 2016;8:366-81 pubmed
  476. Hu H, Wang H, Xiao Y, Jin J, Chang J, Zou Q, et al. Otud7b facilitates T cell activation and inflammatory responses by regulating Zap70 ubiquitination. J Exp Med. 2016;213:399-414 pubmed 出版商
  477. Cao L, Qin X, Peterson M, Haller S, Wilson K, Hu N, et al. CARD9 knockout ameliorates myocardial dysfunction associated with high fat diet-induced obesity. J Mol Cell Cardiol. 2016;92:185-95 pubmed 出版商
  478. Yang C, Cui X, Dai X, Liao W. Downregulation of Foxc2 enhances apoptosis induced by 5-fluorouracil through activation of MAPK and AKT pathways in colorectal cancer. Oncol Lett. 2016;11:1549-1554 pubmed
  479. Yu C, Tang L, Liang C, Chen X, Song S, Ding X, et al. Angiotensin-Converting Enzyme 3 (ACE3) Protects Against Pressure Overload-Induced Cardiac Hypertrophy. J Am Heart Assoc. 2016;5: pubmed 出版商
  480. Huo L, Shi W, Chong L, Wang J, Zhang K, Li Y. Asiatic acid inhibits left ventricular remodeling and improves cardiac function in a rat model of myocardial infarction. Exp Ther Med. 2016;11:57-64 pubmed
  481. Rubattu S, Di Castro S, Schulz H, Geurts A, Cotugno M, Bianchi F, et al. Ndufc2 Gene Inhibition Is Associated With Mitochondrial Dysfunction and Increased Stroke Susceptibility in an Animal Model of Complex Human Disease. J Am Heart Assoc. 2016;5: pubmed 出版商
  482. Lee M, Goralczyk A, Kriszt R, Ang X, Badowski C, Li Y, et al. ECM microenvironment unlocks brown adipogenic potential of adult human bone marrow-derived MSCs. Sci Rep. 2016;6:21173 pubmed 出版商
  483. Ivanova I, Maringele L. Polymerases ε and ∂ repair dysfunctional telomeres facilitated by salt. Nucleic Acids Res. 2016;44:3728-38 pubmed 出版商
  484. Pecháčková S, Burdova K, Benada J, Kleiblova P, Jenikova G, Macurek L. Inhibition of WIP1 phosphatase sensitizes breast cancer cells to genotoxic stress and to MDM2 antagonist nutlin-3. Oncotarget. 2016;7:14458-75 pubmed 出版商
  485. Hong M, Nam K, Kim K, Kim S, Kim I. The small molecule '1-(4-biphenylylcarbonyl)-4-(5-bromo-2-methoxybenzyl) piperazine oxalate' and its derivatives regulate global protein synthesis by inactivating eukaryotic translation initiation factor 2-alpha. Cell Stress Chaperones. 2016;21:485-97 pubmed 出版商
  486. Liu T, Fang Z, Wang G, Shi M, Wang X, Jiang K, et al. Anti-tumor activity of the TRPM8 inhibitor BCTC in prostate cancer DU145 cells. Oncol Lett. 2016;11:182-188 pubmed
  487. Demetriades C, Plescher M, Teleman A. Lysosomal recruitment of TSC2 is a universal response to cellular stress. Nat Commun. 2016;7:10662 pubmed 出版商
  488. Khalid S, Drasche A, Thurner M, Hermann M, Ashraf M, Fresser F, et al. cJun N-terminal kinase (JNK) phosphorylation of serine 36 is critical for p66Shc activation. Sci Rep. 2016;6:20930 pubmed 出版商
  489. Li S, Lu L, Liao X, Gao T, Wang F, Zhang L, et al. Manganese elevates manganese superoxide dismutase protein level through protein kinase C and protein tyrosine kinase. Biometals. 2016;29:265-74 pubmed 出版商
  490. Franco M, Panas M, Marino N, Lee M, Buchholz K, Kelly F, et al. A Novel Secreted Protein, MYR1, Is Central to Toxoplasma's Manipulation of Host Cells. MBio. 2016;7:e02231-15 pubmed 出版商
  491. Hayashi H, Al Mamun A, Sakima M, Sato M. Activator of G-protein signaling 8 is involved in VEGF-mediated signal processing during angiogenesis. J Cell Sci. 2016;129:1210-22 pubmed 出版商
  492. Regan Anderson T, Ma S, Raj G, Cidlowski J, Helle T, Knutson T, et al. Breast Tumor Kinase (Brk/PTK6) Is Induced by HIF, Glucocorticoid Receptor, and PELP1-Mediated Stress Signaling in Triple-Negative Breast Cancer. Cancer Res. 2016;76:1653-63 pubmed 出版商
  493. Wang Y, Cui R, Zhang X, Qiao Y, Liu X, Chang Y, et al. SIRT1 increases YAP- and MKK3-dependent p38 phosphorylation in mouse liver and human hepatocellular carcinoma. Oncotarget. 2016;7:11284-98 pubmed 出版商
  494. Nassour J, Martien S, Martin N, Deruy E, Tomellini E, Malaquin N, et al. Defective DNA single-strand break repair is responsible for senescence and neoplastic escape of epithelial cells. Nat Commun. 2016;7:10399 pubmed 出版商
  495. Thornton T, Delgado P, Chen L, Salas B, Krementsov D, Fernández M, et al. Inactivation of nuclear GSK3β by Ser(389) phosphorylation promotes lymphocyte fitness during DNA double-strand break response. Nat Commun. 2016;7:10553 pubmed 出版商
  496. Wu X, Yang L, Zheng Z, Li Z, Shi J, Li Y, et al. Src promotes cutaneous wound healing by regulating MMP-2 through the ERK pathway. Int J Mol Med. 2016;37:639-48 pubmed 出版商
  497. Abbey M, Hakim C, Anand R, Lafera J, Schambach A, Kispert A, et al. GTPase domain driven dimerization of SEPT7 is dispensable for the critical role of septins in fibroblast cytokinesis. Sci Rep. 2016;6:20007 pubmed 出版商
  498. van der Mijn J, Broxterman H, Knol J, Piersma S, de Haas R, Dekker H, et al. Sunitinib activates Axl signaling in renal cell cancer. Int J Cancer. 2016;138:3002-10 pubmed 出版商
  499. Koyani C, Kitz K, Rossmann C, Bernhart E, Huber E, Trummer C, et al. Activation of the MAPK/Akt/Nrf2-Egr1/HO-1-GCLc axis protects MG-63 osteosarcoma cells against 15d-PGJ2-mediated cell death. Biochem Pharmacol. 2016;104:29-41 pubmed 出版商
  500. Chen Y, Zheng Y, You X, Yu M, Fu G, Su X, et al. Kras Is Critical for B Cell Lymphopoiesis. J Immunol. 2016;196:1678-85 pubmed 出版商
  501. Chhibber Goel J, Coleman Vaughan C, Agrawal V, Sawhney N, Hickey E, Powell J, et al. γ-Secretase Activity Is Required for Regulated Intramembrane Proteolysis of Tumor Necrosis Factor (TNF) Receptor 1 and TNF-mediated Pro-apoptotic Signaling. J Biol Chem. 2016;291:5971-85 pubmed 出版商
  502. Ferreira M, McKenna L, Zhang J, Reichert M, Bakir B, Buza E, et al. Spontaneous Pancreatitis Caused by Tissue-Specific Gene Ablation of Hhex in Mice. Cell Mol Gastroenterol Hepatol. 2015;1:550-569 pubmed 出版商
  503. Xu Y, Wu D, Zheng W, Yu F, Yang F, Yao Y, et al. Proteome profiling of cadmium-induced apoptosis by antibody array analyses in human bronchial epithelial cells. Oncotarget. 2016;7:6146-58 pubmed 出版商
  504. Chen P, Li J, Huo Y, Lu J, Wan L, Li B, et al. Orphan nuclear receptor NR4A2 inhibits hepatic stellate cell proliferation through MAPK pathway in liver fibrosis. Peerj. 2015;3:e1518 pubmed 出版商
  505. Ishibashi T, Yaguchi A, Terada K, Ueno Yokohata H, Tomita O, Iijima K, et al. Ph-like ALL-related novel fusion kinase ATF7IP-PDGFRB exhibits high sensitivity to tyrosine kinase inhibitors in murine cells. Exp Hematol. 2016;44:177-88.e5 pubmed 出版商
  506. Shih M, Pan K, Cherng J. Possible Mechanisms of Di(2-ethylhexyl) Phthalate-Induced MMP-2 and MMP-9 Expression in A7r5 Rat Vascular Smooth Muscle Cells. Int J Mol Sci. 2015;16:28800-11 pubmed 出版商
  507. Roth Flach R, Skoura A, Matevossian A, Danai L, Zheng W, Cortes C, et al. Endothelial protein kinase MAP4K4 promotes vascular inflammation and atherosclerosis. Nat Commun. 2015;6:8995 pubmed 出版商
  508. He J, Johnson J, Monfregola J, Ramadass M, Pestonjamasp K, Napolitano G, et al. Munc13-4 interacts with syntaxin 7 and regulates late endosomal maturation, endosomal signaling, and TLR9-initiated cellular responses. Mol Biol Cell. 2016;27:572-87 pubmed 出版商
  509. Franco Villanueva A, Wandosell F, Antón I. Neuritic complexity of hippocampal neurons depends on WIP-mediated mTORC1 and Abl family kinases activities. Brain Behav. 2015;5:e00359 pubmed 出版商
  510. Yamano S, Gi M, Tago Y, Doi K, Okada S, Hirayama Y, et al. Role of deltaNp63(pos)CD44v(pos) cells in the development of N-nitroso-tris-chloroethylurea-induced peripheral-type mouse lung squamous cell carcinomas. Cancer Sci. 2016;107:123-32 pubmed 出版商
  511. Huang X, Huang S, Guo F, Xu F, Cheng P, Ye Y, et al. Dose-dependent inhibitory effects of zoledronic acid on osteoblast viability and function in vitro. Mol Med Rep. 2016;13:613-22 pubmed 出版商
  512. Zhou Q, Wang H, Schwartz D, Stoffels M, Park Y, Zhang Y, et al. Loss-of-function mutations in TNFAIP3 leading to A20 haploinsufficiency cause an early-onset autoinflammatory disease. Nat Genet. 2016;48:67-73 pubmed 出版商
  513. Lim J, Nguyen K, Han J, Jang I, Fabian C, Cho K. Direct Regulation of TLR5 Expression by Caveolin-1. Mol Cells. 2015;38:1111-7 pubmed 出版商
  514. Giri K, Pabelick C, Mukherjee P, Prakash Y. Hepatoma derived growth factor (HDGF) dynamics in ovarian cancer cells. Apoptosis. 2016;21:329-39 pubmed 出版商
  515. Ittig S, Schmutz C, Kasper C, Amstutz M, Schmidt A, Sauteur L, et al. A bacterial type III secretion-based protein delivery tool for broad applications in cell biology. J Cell Biol. 2015;211:913-31 pubmed 出版商
  516. McIlroy G, Tammireddy S, Maskrey B, Grant L, Doherty M, Watson D, et al. Fenretinide mediated retinoic acid receptor signalling and inhibition of ceramide biosynthesis regulates adipogenesis, lipid accumulation, mitochondrial function and nutrient stress signalling in adipocytes and adipose tissue. Biochem Pharmacol. 2016;100:86-97 pubmed 出版商
  517. E L, Swerdlow R. Lactate's effect on human neuroblastoma cell bioenergetic fluxes. Biochem Pharmacol. 2016;99:88-100 pubmed 出版商
  518. Awad K, Elinoff J, Wang S, Gairhe S, Ferreyra G, Cai R, et al. Raf/ERK drives the proliferative and invasive phenotype of BMPR2-silenced pulmonary artery endothelial cells. Am J Physiol Lung Cell Mol Physiol. 2016;310:L187-201 pubmed 出版商
  519. El Khattouti A, Selimovic D, Hannig M, Taylor E, Abd Elmageed Z, Hassan S, et al. Imiquimod-induced apoptosis of melanoma cells is mediated by ER stress-dependent Noxa induction and enhanced by NF-κB inhibition. J Cell Mol Med. 2016;20:266-86 pubmed 出版商
  520. Elder M, Webster S, Williams D, Gaston J, Goodall J. TSLP production by dendritic cells is modulated by IL-1β and components of the endoplasmic reticulum stress response. Eur J Immunol. 2016;46:455-63 pubmed 出版商
  521. Sabogal Guáqueta A, Osorio E, Cardona Gómez G. Linalool reverses neuropathological and behavioral impairments in old triple transgenic Alzheimer's mice. Neuropharmacology. 2016;102:111-20 pubmed 出版商
  522. Waye S, Naeem A, Choudhry M, Parasido E, Tricoli L, Sivakumar A, et al. The p53 tumor suppressor protein protects against chemotherapeutic stress and apoptosis in human medulloblastoma cells. Aging (Albany NY). 2015;7:854-68 pubmed
  523. Li W, Wei S, Liu C, Song M, Wu H, Yang Y. Regulation of the osteogenic and adipogenic differentiation of bone marrow-derived stromal cells by extracellular uridine triphosphate: The role of P2Y2 receptor and ERK1/2 signaling. Int J Mol Med. 2016;37:63-73 pubmed 出版商
  524. Wu R, Chen H, Ma J, He Q, Huang Q, Liu Q, et al. c-Abl-p38α signaling plays an important role in MPTP-induced neuronal death. Cell Death Differ. 2016;23:542-52 pubmed 出版商
  525. Hassan M, El Khattouti A, Ejaeidi A, Ma T, Day W, Espinoza I, et al. Elevated Expression of Hepatoma Up-Regulated Protein Inhibits γ-Irradiation-Induced Apoptosis of Prostate Cancer Cells. J Cell Biochem. 2016;117:1308-18 pubmed 出版商
  526. Dumas A, Lê Bury G, Marie Anaïs F, Herit F, Mazzolini J, Guilbert T, et al. The HIV-1 protein Vpr impairs phagosome maturation by controlling microtubule-dependent trafficking. J Cell Biol. 2015;211:359-72 pubmed 出版商
  527. Park Y, Kim S, Kwon T, Kim J, Song I, Shin H, et al. Peroxiredoxin II promotes hepatic tumorigenesis through cooperation with Ras/Forkhead box M1 signaling pathway. Oncogene. 2016;35:3503-13 pubmed 出版商
  528. Kim H, Lim J, Kim J, Kim Y, Park S, Sohn J. Panaxydol, a component of Panax ginseng, induces apoptosis in cancer cells through EGFR activation and ER stress and inhibits tumor growth in mouse models. Int J Cancer. 2016;138:1432-41 pubmed 出版商
  529. Qiu H, Liu B, Liu W, Liu S. Interleukin-27 enhances TNF-α-mediated activation of human coronary artery endothelial cells. Mol Cell Biochem. 2016;411:1-10 pubmed 出版商
  530. Zoppi N, Chiarelli N, Cinquina V, Ritelli M, Colombi M. GLUT10 deficiency leads to oxidative stress and non-canonical αvβ3 integrin-mediated TGFβ signalling associated with extracellular matrix disarray in arterial tortuosity syndrome skin fibroblasts. Hum Mol Genet. 2015;24:6769-87 pubmed 出版商
  531. Zhu X, Wang K, Zhang K, Tan X, Wu Z, Sun S, et al. Tetramethylpyrazine Protects Retinal Capillary Endothelial Cells (TR-iBRB2) against IL-1β-Induced Nitrative/Oxidative Stress. Int J Mol Sci. 2015;16:21775-90 pubmed 出版商
  532. Suzuki M, Watanabe M, Nakamaru Y, Takagi D, Takahashi H, Fukuda S, et al. TRIM39 negatively regulates the NFκB-mediated signaling pathway through stabilization of Cactin. Cell Mol Life Sci. 2016;73:1085-101 pubmed 出版商
  533. Ashford A, Dunkley T, Cockerill M, Rowlinson R, Baak L, Gallo R, et al. Identification of DYRK1B as a substrate of ERK1/2 and characterisation of the kinase activity of DYRK1B mutants from cancer and metabolic syndrome. Cell Mol Life Sci. 2016;73:883-900 pubmed 出版商
  534. Plescher M, Teleman A, Demetriades C. TSC2 mediates hyperosmotic stress-induced inactivation of mTORC1. Sci Rep. 2015;5:13828 pubmed 出版商
  535. Gong Y, Qiu W, Ning X, Yang X, Liu L, Wang Z, et al. CCDC34 is up-regulated in bladder cancer and regulates bladder cancer cell proliferation, apoptosis and migration. Oncotarget. 2015;6:25856-67 pubmed 出版商
  536. Yan G, Wang Q, Hu S, Wang D, Qiao Y, Ma G, et al. Digoxin inhibits PDGF-BB-induced VSMC proliferation and migration through an increase in ILK signaling and attenuates neointima formation following carotid injury. Int J Mol Med. 2015;36:1001-11 pubmed 出版商
  537. Bunaciu R, Jensen H, Macdonald R, Latocha D, Varner J, Yen A. 6-Formylindolo(3,2-b)Carbazole (FICZ) Modulates the Signalsome Responsible for RA-Induced Differentiation of HL-60 Myeloblastic Leukemia Cells. PLoS ONE. 2015;10:e0135668 pubmed 出版商
  538. Zhang Q, Zhao K, Shen Q, Han Y, Gu Y, Li X, et al. Tet2 is required to resolve inflammation by recruiting Hdac2 to specifically repress IL-6. Nature. 2015;525:389-393 pubmed 出版商
  539. Varela A, Piperi C, Sigala F, Agrogiannis G, Davos C, Andri M, et al. Elevated expression of mechanosensory polycystins in human carotid atherosclerotic plaques: association with p53 activation and disease severity. Sci Rep. 2015;5:13461 pubmed 出版商
  540. Chiang C, Uzoma I, Lane D, MemiÅ¡ević V, Alem F, Yao K, et al. A reverse-phase protein microarray-based screen identifies host signaling dynamics upon Burkholderia spp. infection. Front Microbiol. 2015;6:683 pubmed 出版商
  541. Chichger H, Braza J, Duong H, Stark M, Harrington E. Neovascularization in the pulmonary endothelium is regulated by the endosome: Rab4-mediated trafficking and p18-dependent signaling. Am J Physiol Lung Cell Mol Physiol. 2015;309:L700-9 pubmed 出版商
  542. Simard E, Söllradl T, Maltais J, Boucher J, D Orléans Juste P, Grandbois M. Receptor for Advanced Glycation End-Products Signaling Interferes with the Vascular Smooth Muscle Cell Contractile Phenotype and Function. PLoS ONE. 2015;10:e0128881 pubmed 出版商
  543. Namachivayam K, Mohankumar K, Arbach D, Jagadeeswaran R, Jain S, Natarajan V, et al. All-Trans Retinoic Acid Induces TGF-β2 in Intestinal Epithelial Cells via RhoA- and p38α MAPK-Mediated Activation of the Transcription Factor ATF2. PLoS ONE. 2015;10:e0134003 pubmed 出版商
  544. Zhang X, Wang X, Wu T, Li B, Liu T, Wang R, et al. Isoliensinine induces apoptosis in triple-negative human breast cancer cells through ROS generation and p38 MAPK/JNK activation. Sci Rep. 2015;5:12579 pubmed 出版商
  545. Picot N, Guerrette R, Beauregard A, Jean S, Michaud P, Harquail J, et al. Mammaglobin 1 promotes breast cancer malignancy and confers sensitivity to anticancer drugs. Mol Carcinog. 2016;55:1150-62 pubmed 出版商
  546. Dahlhoff M, Schäfer M, Muzumdar S, Rose C, Schneider M. ERBB3 is required for tumor promotion in a mouse model of skin carcinogenesis. Mol Oncol. 2015;9:1825-33 pubmed 出版商
  547. Silva O, Crocetti J, Humphries L, Burkhardt J, Miceli M. Discs Large Homolog 1 Splice Variants Regulate p38-Dependent and -Independent Effector Functions in CD8+ T Cells. PLoS ONE. 2015;10:e0133353 pubmed 出版商
  548. Kratochvill F, Gratz N, Qualls J, Van De Velde L, Chi H, Kovarik P, et al. Tristetraprolin Limits Inflammatory Cytokine Production in Tumor-Associated Macrophages in an mRNA Decay-Independent Manner. Cancer Res. 2015;75:3054-64 pubmed 出版商
  549. Ito A, Hong C, Rong X, Zhu X, Tarling E, Hedde P, et al. LXRs link metabolism to inflammation through Abca1-dependent regulation of membrane composition and TLR signaling. elife. 2015;4:e08009 pubmed 出版商
  550. Wu C, Jiao H, Lai Y, Zheng W, Chen K, Qu H, et al. Kindlin-2 controls TGF-β signalling and Sox9 expression to regulate chondrogenesis. Nat Commun. 2015;6:7531 pubmed 出版商
  551. Su X, Yu Y, Zhong Y, Giannopoulou E, Hu X, Liu H, et al. Interferon-γ regulates cellular metabolism and mRNA translation to potentiate macrophage activation. Nat Immunol. 2015;16:838-849 pubmed 出版商
  552. Zhao L, Liu S, Che X, Hou K, Ma Y, Li C, et al. Bufalin inhibits TGF-β-induced epithelial-to-mesenchymal transition and migration in human lung cancer A549 cells by downregulating TGF-β receptors. Int J Mol Med. 2015;36:645-52 pubmed 出版商
  553. Wang S, Awad K, Elinoff J, Dougherty E, Ferreyra G, Wang J, et al. G Protein-coupled Receptor 40 (GPR40) and Peroxisome Proliferator-activated Receptor γ (PPARγ): AN INTEGRATED TWO-RECEPTOR SIGNALING PATHWAY. J Biol Chem. 2015;290:19544-57 pubmed 出版商
  554. Wu P, Yen J, Kou M, Wu M. Luteolin and Apigenin Attenuate 4-Hydroxy-2-Nonenal-Mediated Cell Death through Modulation of UPR, Nrf2-ARE and MAPK Pathways in PC12 Cells. PLoS ONE. 2015;10:e0130599 pubmed 出版商
  555. Arana M, Tocchetti G, Domizi P, Arias A, Rigalli J, Ruiz M, et al. Coordinated induction of GST and MRP2 by cAMP in Caco-2 cells: Role of protein kinase A signaling pathway and toxicological relevance. Toxicol Appl Pharmacol. 2015;287:178-90 pubmed 出版商
  556. Unni A, Lockwood W, Zejnullahu K, Lee Lin S, Varmus H. Evidence that synthetic lethality underlies the mutual exclusivity of oncogenic KRAS and EGFR mutations in lung adenocarcinoma. elife. 2015;4:e06907 pubmed 出版商
  557. García Cano J, Ambroise G, Pascual Serra R, Carrión M, Serrano Oviedo L, Ortega Muelas M, et al. Exploiting the potential of autophagy in cisplatin therapy: A new strategy to overcome resistance. Oncotarget. 2015;6:15551-65 pubmed
  558. Luan Q, Jin L, Jiang C, Tay K, Lai F, Liu X, et al. RIPK1 regulates survival of human melanoma cells upon endoplasmic reticulum stress through autophagy. Autophagy. 2015;11:975-94 pubmed 出版商
  559. Sun L, Xu C, Chen G, Yu M, Yang S, Qiu Y, et al. A Novel Role of OS-9 in the Maintenance of Intestinal Barrier Function from Hypoxia-induced Injury via p38-dependent Pathway. Int J Biol Sci. 2015;11:664-71 pubmed 出版商
  560. Nishioka C, Ikezoe T, Yang J, Yokoyama A. Tetraspanin Family Member, CD82, Regulates Expression of EZH2 via Inactivation of p38 MAPK Signaling in Leukemia Cells. PLoS ONE. 2015;10:e0125017 pubmed 出版商
  561. Cheng H, Liang Y, Kuo Y, Chuu C, Lin C, Lee M, et al. Identification of thioridazine, an antipsychotic drug, as an antiglioblastoma and anticancer stem cell agent using public gene expression data. Cell Death Dis. 2015;6:e1753 pubmed 出版商
  562. Zhang L, Wang H, Ding K, Xu J. FTY720 induces autophagy-related apoptosis and necroptosis in human glioblastoma cells. Toxicol Lett. 2015;236:43-59 pubmed 出版商
  563. Lee E, Park E, Mun H, Chang E, Ko J, Kim D, et al. Soluble receptor for advanced glycation end products inhibits disease progression in autosomal dominant polycystic kidney disease by down-regulating cell proliferation. FASEB J. 2015;29:3506-14 pubmed 出版商
  564. Daniele S, Da Pozzo E, Zappelli E, Martini C. Trazodone treatment protects neuronal-like cells from inflammatory insult by inhibiting NF-?B, p38 and JNK. Cell Signal. 2015;27:1609-29 pubmed 出版商
  565. Kim H, Kim I, Dong Y, Lee I, Kim J, Kim J, et al. Melanogenesis-inducing effect of cirsimaritin through increases in microphthalmia-associated transcription factor and tyrosinase expression. Int J Mol Sci. 2015;16:8772-88 pubmed 出版商
  566. Wilson C, Jurk D, Fullard N, Banks P, Page A, Luli S, et al. NFκB1 is a suppressor of neutrophil-driven hepatocellular carcinoma. Nat Commun. 2015;6:6818 pubmed 出版商
  567. Boncompagni S, Arthurton L, Akujuru E, Pearson T, Steverding D, Protasi F, et al. Membrane glucocorticoid receptors are localised in the extracellular matrix and signal through the MAPK pathway in mammalian skeletal muscle fibres. J Physiol. 2015;593:2679-92 pubmed 出版商
  568. Pilar Valdecantos M, Prieto Hontoria P, Pardo V, Módol T, Santamaría B, Weber M, et al. Essential role of Nrf2 in the protective effect of lipoic acid against lipoapoptosis in hepatocytes. Free Radic Biol Med. 2015;84:263-278 pubmed 出版商
  569. Ko R, Park J, Ha H, Choi Y, Lee S. Glycogen synthase kinase 3β ubiquitination by TRAF6 regulates TLR3-mediated pro-inflammatory cytokine production. Nat Commun. 2015;6:6765 pubmed 出版商
  570. Meena J, Cerutti A, Beichler C, Morita Y, Bruhn C, Kumar M, et al. Telomerase abrogates aneuploidy-induced telomere replication stress, senescence and cell depletion. EMBO J. 2015;34:1371-84 pubmed 出版商
  571. Zhang Z, Fang Y, Wang Q, Sun Y, Xiong C, Cao L, et al. Tumor necrosis factor-like weak inducer of apoptosis regulates particle-induced inflammatory osteolysis via the p38 mitogen-activated protein kinase signaling pathway. Mol Med Rep. 2015;12:1499-505 pubmed 出版商
  572. Wong E, Soni C, Chan A, Domeier P, Shwetank -, Abraham T, et al. B cell-intrinsic CD84 and Ly108 maintain germinal center B cell tolerance. J Immunol. 2015;194:4130-43 pubmed 出版商
  573. Zhang Q, Kuang H, Chen C, Yan J, Do Umehara H, Liu X, et al. The kinase Jnk2 promotes stress-induced mitophagy by targeting the small mitochondrial form of the tumor suppressor ARF for degradation. Nat Immunol. 2015;16:458-66 pubmed 出版商
  574. Rao E, Zhang Y, Zhu G, Hao J, Persson X, Egilmez N, et al. Deficiency of AMPK in CD8+ T cells suppresses their anti-tumor function by inducing protein phosphatase-mediated cell death. Oncotarget. 2015;6:7944-58 pubmed
  575. Chen W, Wu J, Li L, Zhang Z, Ren J, Liang Y, et al. Ppm1b negatively regulates necroptosis through dephosphorylating Rip3. Nat Cell Biol. 2015;17:434-44 pubmed 出版商
  576. Pone E, Lam T, Lou Z, Wang R, Chen Y, Liu D, et al. B cell Rab7 mediates induction of activation-induced cytidine deaminase expression and class-switching in T-dependent and T-independent antibody responses. J Immunol. 2015;194:3065-78 pubmed 出版商
  577. Wei Z, Yu D, Bi Y, Cao Y. A disintegrin and metalloprotease 17 promotes microglial cell survival via epidermal growth factor receptor signalling following spinal cord injury. Mol Med Rep. 2015;12:63-70 pubmed 出版商
  578. Kollar P, Bárta T, KeltoÅ¡ová S, Trnová P, Müller Závalová V, Å mejkal K, et al. Flavonoid 4'-O-Methylkuwanon E from Morus alba Induces the Differentiation of THP-1 Human Leukemia Cells. Evid Based Complement Alternat Med. 2015;2015:251895 pubmed 出版商
  579. Zhang X, Choi Y, Han J, Kim E, Park J, Gurunathan S, et al. Differential nanoreprotoxicity of silver nanoparticles in male somatic cells and spermatogonial stem cells. Int J Nanomedicine. 2015;10:1335-57 pubmed 出版商
  580. Lee J, Chung L, Chen Y, Feng T, Chen W, Juang H. Upregulation of B-cell translocation gene 2 by epigallocatechin-3-gallate via p38 and ERK signaling blocks cell proliferation in human oral squamous cell carcinoma cells. Cancer Lett. 2015;360:310-8 pubmed 出版商
  581. Kim S, Ka S, Lee Y, Park B, Fei X, Jung J, et al. The new 4-O-methylhonokiol analog GS12021 inhibits inflammation and macrophage chemotaxis: role of AMP-activated protein kinase α activation. PLoS ONE. 2015;10:e0117120 pubmed 出版商
  582. Huang P, Chen C, Hsu I, Salim S, Kao S, Cheng C, et al. Huntingtin-associated protein 1 interacts with breakpoint cluster region protein to regulate neuronal differentiation. PLoS ONE. 2015;10:e0116372 pubmed 出版商
  583. Kozlova N, Samoylenko A, Drobot L, Kietzmann T. Urokinase is a negative modulator of Egf-dependent proliferation and motility in the two breast cancer cell lines MCF-7 and MDA-MB-231. Mol Carcinog. 2016;55:170-81 pubmed 出版商
  584. Blanchard Z, Paul B, Craft B, ElShamy W. BRCA1-IRIS inactivation overcomes paclitaxel resistance in triple negative breast cancers. Breast Cancer Res. 2015;17:5 pubmed 出版商
  585. de Oliveira S, Boudinot P, Calado Ã, Mulero V. Duox1-derived H2O2 modulates Cxcl8 expression and neutrophil recruitment via JNK/c-JUN/AP-1 signaling and chromatin modifications. J Immunol. 2015;194:1523-33 pubmed 出版商
  586. Bharti S, Rani N, Bhatia J, Arya D. 5-HT2B receptor blockade attenuates β-adrenergic receptor-stimulated myocardial remodeling in rats via inhibiting apoptosis: role of MAPKs and HSPs. Apoptosis. 2015;20:455-65 pubmed 出版商
  587. Zanotto Filho A, Braganhol E, Klafke K, Figueiró F, Terra S, Paludo F, et al. Autophagy inhibition improves the efficacy of curcumin/temozolomide combination therapy in glioblastomas. Cancer Lett. 2015;358:220-31 pubmed 出版商
  588. Jilg C, Ketscher A, Metzger E, Hummel B, Willmann D, Rüsseler V, et al. PRK1/PKN1 controls migration and metastasis of androgen-independent prostate cancer cells. Oncotarget. 2014;5:12646-64 pubmed
  589. El Khattouti A, Sheehan N, Monico J, Drummond H, Haikel Y, Brodell R, et al. CD133⁺ melanoma subpopulation acquired resistance to caffeic acid phenethyl ester-induced apoptosis is attributed to the elevated expression of ABCB5: significance for melanoma treatment. Cancer Lett. 2015;357:83-104 pubmed 出版商
  590. Rochman M, Kartashov A, Caldwell J, Collins M, Stucke E, Kc K, et al. Neurotrophic tyrosine kinase receptor 1 is a direct transcriptional and epigenetic target of IL-13 involved in allergic inflammation. Mucosal Immunol. 2015;8:785-98 pubmed 出版商
  591. Li Y, Kim B, Cho S, Bang M, Kim S, Park D. 6,7-di-O-acetylsinococuline (FK-3000) induces G2/M phase arrest in breast carcinomas through p38 MAPK phosphorylation and CDC25B dephosphorylation. Int J Oncol. 2015;46:578-86 pubmed 出版商
  592. Yi P, Chew L, Zhang Z, Ren H, Wang F, Cong X, et al. KIF5B transports BNIP-2 to regulate p38 mitogen-activated protein kinase activation and myoblast differentiation. Mol Biol Cell. 2015;26:29-42 pubmed 出版商
  593. Wang Y, Xiao X, Li N, Yang D, Xing Y, Huo R, et al. Oestrogen inhibits BMP4-induced BMP4 expression in cardiomyocytes: a potential mechanism of oestrogen-mediated protection against cardiac hypertrophy. Br J Pharmacol. 2015;172:5586-95 pubmed 出版商
  594. Morioka T, Sakabe M, Ioka T, Iguchi T, Mizuta K, Hattammaru M, et al. An important role of endothelial hairy-related transcription factors in mouse vascular development. Genesis. 2014;52:897-906 pubmed 出版商
  595. Cao J, Lu Y, Qi J, An G, Mao Z, Jia H, et al. MiR-630 inhibits proliferation by targeting CDC7 kinase, but maintains the apoptotic balance by targeting multiple modulators in human lung cancer A549 cells. Cell Death Dis. 2014;5:e1426 pubmed 出版商
  596. Zhao X, Zhu L, Chang Q, Jiang C, You Y, Luo T, et al. C-type lectin receptor dectin-3 mediates trehalose 6,6'-dimycolate (TDM)-induced Mincle expression through CARD9/Bcl10/MALT1-dependent nuclear factor (NF)-κB activation. J Biol Chem. 2014;289:30052-62 pubmed 出版商
  597. Dou W, Zhang J, Ren G, Ding L, Sun A, Deng C, et al. Mangiferin attenuates the symptoms of dextran sulfate sodium-induced colitis in mice via NF-κB and MAPK signaling inactivation. Int Immunopharmacol. 2014;23:170-8 pubmed 出版商
  598. Ishaq M, Evans M, Ostrikov K. Atmospheric pressure gas plasma-induced colorectal cancer cell death is mediated by Nox2-ASK1 apoptosis pathways and oxidative stress is mitigated by Srx-Nrf2 anti-oxidant system. Biochim Biophys Acta. 2014;1843:2827-37 pubmed 出版商
  599. Huang S, Lee C, Wang H, Chang Y, Lin C, Chen C, et al. 6-Dehydrogingerdione restrains lipopolysaccharide-induced inflammatory responses in RAW 264.7 macrophages. J Agric Food Chem. 2014;62:9171-9 pubmed 出版商
  600. Dannappel M, Vlantis K, Kumari S, Polykratis A, Kim C, Wachsmuth L, et al. RIPK1 maintains epithelial homeostasis by inhibiting apoptosis and necroptosis. Nature. 2014;513:90-4 pubmed 出版商
  601. Xu R, Hu Q, Ma Q, Liu C, Wang G. The protease Omi regulates mitochondrial biogenesis through the GSK3β/PGC-1α pathway. Cell Death Dis. 2014;5:e1373 pubmed 出版商
  602. Tang S, Chen T, Yu Z, Zhu X, Yang M, Xie B, et al. RasGRP3 limits Toll-like receptor-triggered inflammatory response in macrophages by activating Rap1 small GTPase. Nat Commun. 2014;5:4657 pubmed 出版商
  603. Yu B, Chang J, Liu Y, Li J, Kevork K, Al Hezaimi K, et al. Wnt4 signaling prevents skeletal aging and inflammation by inhibiting nuclear factor-?B. Nat Med. 2014;20:1009-17 pubmed 出版商
  604. Li L, Wu P, Lee J, Li P, Hsieh W, Ho C, et al. Hinokitiol induces DNA damage and autophagy followed by cell cycle arrest and senescence in gefitinib-resistant lung adenocarcinoma cells. PLoS ONE. 2014;9:e104203 pubmed 出版商
  605. Rais Y, Reich A, Simsa Maziel S, Moshe M, Idelevich A, Kfir T, et al. The growth plate's response to load is partially mediated by mechano-sensing via the chondrocytic primary cilium. Cell Mol Life Sci. 2015;72:597-615 pubmed 出版商
  606. Zhang S, Ren M, Zeng X, He P, Ma X, Qiao S. Leucine stimulates ASCT2 amino acid transporter expression in porcine jejunal epithelial cell line (IPEC-J2) through PI3K/Akt/mTOR and ERK signaling pathways. Amino Acids. 2014;46:2633-42 pubmed 出版商
  607. Watanabe T, Nakamura S, Ono T, Ui S, Yagi S, Kagawa H, et al. Pyrrolidinium fullerene induces apoptosis by activation of procaspase-9 via suppression of Akt in primary effusion lymphoma. Biochem Biophys Res Commun. 2014;451:93-100 pubmed 出版商
  608. Witting Christensen S, Kortekaas Krohn I, Thuraiaiyah J, Skjold T, Schmid J, Hoffmann H. Sequential allergen desensitization of basophils is non-specific and may involve p38 MAPK. Allergy. 2014;69:1343-9 pubmed 出版商
  609. Kurz D, Payeli S, Greutert H, Briand Schumacher S, Luscher T, Tanner F. Epigenetic regulation of tissue factor inducibility in endothelial cell senescence. Mech Ageing Dev. 2014;140:1-9 pubmed 出版商
  610. Ren W, Duan J, Yin J, Liu G, Cao Z, Xiong X, et al. Dietary L-glutamine supplementation modulates microbial community and activates innate immunity in the mouse intestine. Amino Acids. 2014;46:2403-13 pubmed 出版商
  611. Kim T, Kim J, Kim Z, Huang R, Chae Y, Wang R. Khz-cp (crude polysaccharide extract obtained from the fusion of Ganoderma lucidum and Polyporus umbellatus mycelia) induces apoptosis by increasing intracellular calcium levels and activating P38 and NADPH oxidase-dependent generation of reactive ox. BMC Complement Altern Med. 2014;14:236 pubmed 出版商
  612. Maeda S, Wada H, Naito Y, Nagano H, Simmons S, Kagawa Y, et al. Interferon-? acts on the S/G2/M phases to induce apoptosis in the G1 phase of an IFNAR2-expressing hepatocellular carcinoma cell line. J Biol Chem. 2014;289:23786-95 pubmed 出版商
  613. Martin V, Corso S, Comoglio P, Giordano S. Increase of MET gene copy number confers resistance to a monovalent MET antibody and establishes drug dependence. Mol Oncol. 2014;8:1561-74 pubmed 出版商
  614. Hu J, Cheng Y, Li Y, Jin Z, Pan Y, Liu G, et al. microRNA-128 plays a critical role in human non-small cell lung cancer tumourigenesis, angiogenesis and lymphangiogenesis by directly targeting vascular endothelial growth factor-C. Eur J Cancer. 2014;50:2336-50 pubmed 出版商
  615. Chondrogiannis G, Kastamoulas M, Kanavaros P, Vartholomatos G, Bai M, Baltogiannis D, et al. Cytokine effects on cell viability and death of prostate carcinoma cells. Biomed Res Int. 2014;2014:536049 pubmed 出版商
  616. Jamaladdin S, Kelly R, O Regan L, Dovey O, Hodson G, Millard C, et al. Histone deacetylase (HDAC) 1 and 2 are essential for accurate cell division and the pluripotency of embryonic stem cells. Proc Natl Acad Sci U S A. 2014;111:9840-5 pubmed 出版商
  617. Huang L, Zhu G, Deng Y, Jiang W, Fang M, Chen C, et al. Hypertonic saline alleviates cerebral edema by inhibiting microglia-derived TNF-? and IL-1?-induced Na-K-Cl Cotransporter up-regulation. J Neuroinflammation. 2014;11:102 pubmed 出版商
  618. Fischer A, Zelinka C, Gallina D, Scott M, Todd L. Reactive microglia and macrophage facilitate the formation of Müller glia-derived retinal progenitors. Glia. 2014;62:1608-28 pubmed 出版商
  619. Clauzure M, Valdivieso A, Massip Copiz M, Schulman G, Teiber M, Santa Coloma T. Disruption of interleukin-1? autocrine signaling rescues complex I activity and improves ROS levels in immortalized epithelial cells with impaired cystic fibrosis transmembrane conductance regulator (CFTR) function. PLoS ONE. 2014;9:e99257 pubmed 出版商
  620. Enjoji S, Ohama T, Sato K. Regulation of epithelial cell tight junctions by protease-activated receptor 2. J Vet Med Sci. 2014;76:1225-9 pubmed
  621. Cazanave S, Wang X, Zhou H, Rahmani M, Grant S, Durrant D, et al. Degradation of Keap1 activates BH3-only proteins Bim and PUMA during hepatocyte lipoapoptosis. Cell Death Differ. 2014;21:1303-12 pubmed 出版商
  622. Liu B, Cao Y, Huizinga T, Hafler D, Toes R. TLR-mediated STAT3 and ERK activation controls IL-10 secretion by human B cells. Eur J Immunol. 2014;44:2121-9 pubmed 出版商
  623. Shey M, Nemes E, Whatney W, de Kock M, Africa H, Barnard C, et al. Maturation of innate responses to mycobacteria over the first nine months of life. J Immunol. 2014;192:4833-43 pubmed 出版商
  624. Smith I, Godinez G, Singh B, McCaughey K, Alcantara R, Gururaja T, et al. Inhibition of Janus kinase signaling during controlled mechanical ventilation prevents ventilation-induced diaphragm dysfunction. FASEB J. 2014;28:2790-803 pubmed 出版商
  625. Codeluppi S, Fernández Zafra T, Sandor K, Kjell J, Liu Q, Abrams M, et al. Interleukin-6 secretion by astrocytes is dynamically regulated by PI3K-mTOR-calcium signaling. PLoS ONE. 2014;9:e92649 pubmed 出版商
  626. Singel S, Batten K, Cornelius C, Jia G, Fasciani G, Barron S, et al. Receptor-interacting protein kinase 2 promotes triple-negative breast cancer cell migration and invasion via activation of nuclear factor-kappaB and c-Jun N-terminal kinase pathways. Breast Cancer Res. 2014;16:R28 pubmed 出版商
  627. Wang Q, Shen B, Chen L, Zheng P, Feng H, Hao Q, et al. Extracellular calumenin suppresses ERK1/2 signaling and cell migration by protecting fibulin-1 from MMP-13-mediated proteolysis. Oncogene. 2015;34:1006-18 pubmed 出版商
  628. Gladding C, Fan J, Zhang L, Wang L, Xu J, Li E, et al. Alterations in STriatal-Enriched protein tyrosine Phosphatase expression, activation, and downstream signaling in early and late stages of the YAC128 Huntington's disease mouse model. J Neurochem. 2014;130:145-59 pubmed 出版商
  629. Qian H, Shi J, Fan T, Lv J, Chen S, Song C, et al. Sophocarpine attenuates liver fibrosis by inhibiting the TLR4 signaling pathway in rats. World J Gastroenterol. 2014;20:1822-32 pubmed 出版商
  630. Zhong X, Wang H, Huang S. Endothelin-1 induces interleukin-18 expression in human osteoblasts. Arch Oral Biol. 2014;59:289-96 pubmed 出版商
  631. Ihunnah C, Wada T, Philips B, Ravuri S, Gibbs R, Kirisci L, et al. Estrogen sulfotransferase/SULT1E1 promotes human adipogenesis. Mol Cell Biol. 2014;34:1682-94 pubmed 出版商
  632. Bernet J, Doles J, Hall J, Kelly Tanaka K, Carter T, Olwin B. p38 MAPK signaling underlies a cell-autonomous loss of stem cell self-renewal in skeletal muscle of aged mice. Nat Med. 2014;20:265-71 pubmed 出版商
  633. Poonia B, Pauza C. Levels of CD56+TIM-3- effector CD8 T cells distinguish HIV natural virus suppressors from patients receiving antiretroviral therapy. PLoS ONE. 2014;9:e88884 pubmed 出版商
  634. Willemen H, Campos P, Lucas E, Morreale A, Gil Redondo R, Agut J, et al. A novel p38 MAPK docking-groove-targeted compound is a potent inhibitor of inflammatory hyperalgesia. Biochem J. 2014;459:427-39 pubmed 出版商
  635. Park E, Kim B, Lee E, Chang E, Kim D, Choi S, et al. Targeting of receptor for advanced glycation end products suppresses cyst growth in polycystic kidney disease. J Biol Chem. 2014;289:9254-62 pubmed 出版商
  636. Chang S, Kohrt H, Maecker H. Monitoring the immune competence of cancer patients to predict outcome. Cancer Immunol Immunother. 2014;63:713-9 pubmed 出版商
  637. Borkham Kamphorst E, Schaffrath C, Van De Leur E, Haas U, Tihaa L, Meurer S, et al. The anti-fibrotic effects of CCN1/CYR61 in primary portal myofibroblasts are mediated through induction of reactive oxygen species resulting in cellular senescence, apoptosis and attenuated TGF-? signaling. Biochim Biophys Acta. 2014;1843:902-14 pubmed 出版商
  638. Jin Y, Wi H, Choi M, Hong S, Bae Y. Regulation of anti-inflammatory cytokines IL-10 and TGF-? in mouse dendritic cells through treatment with Clonorchis sinensis crude antigen. Exp Mol Med. 2014;46:e74 pubmed 出版商
  639. Shin Y, Huh Y, Kim K, Kim S, Park K, Koh J, et al. Low-density lipoprotein receptor-related protein 5 governs Wnt-mediated osteoarthritic cartilage destruction. Arthritis Res Ther. 2014;16:R37 pubmed 出版商
  640. Gámez M, Calvo M, Selgas M, García M, Erler K, Böhm V, et al. Effect of E-beam treatment on the chemistry and on the antioxidant activity of lycopene from dry tomato peel and tomato powder. J Agric Food Chem. 2014;62:1557-63 pubmed 出版商
  641. Crawford T, Jalbert E, Ndhlovu L, Barbour J. Concomitant evaluation of PMA+ionomycin-induced kinase phosphorylation and cytokine production in T cell subsets by flow cytometry. Cytometry A. 2014;85:268-76 pubmed 出版商
  642. Cao M, Hou D, Liang H, Gong F, Wang Y, Yan X, et al. miR-150 promotes the proliferation and migration of lung cancer cells by targeting SRC kinase signalling inhibitor 1. Eur J Cancer. 2014;50:1013-24 pubmed 出版商
  643. Chen H, Sohn J, Zhang L, Tian J, Chen S, Bjeldanes L. Anti-inflammatory effects of chicanine on murine macrophage by down-regulating LPS-induced inflammatory cytokines in I?B?/MAPK/ERK signaling pathways. Eur J Pharmacol. 2014;724:168-74 pubmed 出版商
  644. Krishna S, Luan C, Mishra R, Xu L, Scheidt K, Anderson W, et al. A fluorescence-based thermal shift assay identifies inhibitors of mitogen activated protein kinase kinase 4. PLoS ONE. 2013;8:e81504 pubmed 出版商
  645. Sato S, Sakurai T, Ogasawara J, Takahashi M, Izawa T, Imaizumi K, et al. A circadian clock gene, Rev-erb?, modulates the inflammatory function of macrophages through the negative regulation of Ccl2 expression. J Immunol. 2014;192:407-17 pubmed 出版商
  646. Das R, Xu S, Quan X, Nguyen T, Kong I, Chung C, et al. Upregulation of mitochondrial Nox4 mediates TGF-?-induced apoptosis in cultured mouse podocytes. Am J Physiol Renal Physiol. 2014;306:F155-67 pubmed 出版商
  647. Lee J, Park J, Kwon O, Kim H, Fornace A, Cha H. Off-target response of a Wip1 chemical inhibitor in skin keratinocytes. J Dermatol Sci. 2014;73:125-34 pubmed 出版商
  648. Lu Q, Harris V, Sun X, Hou Y, Black S. Ca²?/calmodulin-dependent protein kinase II contributes to hypoxic ischemic cell death in neonatal hippocampal slice cultures. PLoS ONE. 2013;8:e70750 pubmed 出版商
  649. Bittner S, Ruck T, Schuhmann M, Herrmann A, Moha Ou Maati H, Bobak N, et al. Endothelial TWIK-related potassium channel-1 (TREK1) regulates immune-cell trafficking into the CNS. Nat Med. 2013;19:1161-5 pubmed 出版商
  650. Hauerslev S, Sveen M, Vissing J, Krag T. Protein turnover and cellular stress in mildly and severely affected muscles from patients with limb girdle muscular dystrophy type 2I. PLoS ONE. 2013;8:e66929 pubmed 出版商
  651. Wu J, Huang Z, Ren J, Zhang Z, He P, Li Y, et al. Mlkl knockout mice demonstrate the indispensable role of Mlkl in necroptosis. Cell Res. 2013;23:994-1006 pubmed 出版商
  652. Chen J, Lazarenko O, Zhang J, Blackburn M, Ronis M, Badger T. Diet-derived phenolic acids regulate osteoblast and adipocyte lineage commitment and differentiation in young mice. J Bone Miner Res. 2014;29:1043-53 pubmed 出版商
  653. Zaringhalam J, Akhtari Z, Eidi A, Ruhani A, Tekieh E. Relationship between serum IL10 level and p38MAPK enzyme activity on behavioral and cellular aspects of variation of hyperalgesia during different stages of arthritis in rats. Inflammopharmacology. 2014;22:37-44 pubmed 出版商
  654. Moberly S, Mather K, Berwick Z, Owen M, Goodwill A, Casalini E, et al. Impaired cardiometabolic responses to glucagon-like peptide 1 in obesity and type 2 diabetes mellitus. Basic Res Cardiol. 2013;108:365 pubmed 出版商
  655. Zhou X, Wang H, Burg M, Ferraris J. High NaCl-induced inhibition of PTG contributes to activation of NFAT5 through attenuation of the negative effect of SHP-1. Am J Physiol Renal Physiol. 2013;305:F362-9 pubmed 出版商
  656. Aoshiba K, Tsuji T, Kameyama S, Itoh M, Semba S, Yamaguchi K, et al. Senescence-associated secretory phenotype in a mouse model of bleomycin-induced lung injury. Exp Toxicol Pathol. 2013;65:1053-62 pubmed 出版商
  657. De Sousa Coelho A, Relat J, Hondares E, Pérez Martí A, Ribas F, Villarroya F, et al. FGF21 mediates the lipid metabolism response to amino acid starvation. J Lipid Res. 2013;54:1786-97 pubmed 出版商
  658. Li L, Ginet V, Liu X, Vergun O, Tuittila M, Mathieu M, et al. The nNOS-p38MAPK pathway is mediated by NOS1AP during neuronal death. J Neurosci. 2013;33:8185-201 pubmed 出版商
  659. Maeda Y, Fukushima K, Omichi R, Kariya S, Nishizaki K. Time courses of changes in phospho- and total- MAP kinases in the cochlea after intense noise exposure. PLoS ONE. 2013;8:e58775 pubmed 出版商
  660. Taylor D, Moser R, Regulier E, Breuillaud L, Dixon M, Beesen A, et al. MAP kinase phosphatase 1 (MKP-1/DUSP1) is neuroprotective in Huntington's disease via additive effects of JNK and p38 inhibition. J Neurosci. 2013;33:2313-25 pubmed 出版商
  661. Nishiki Y, Adewola A, Hatanaka M, Templin A, Maier B, Mirmira R. Translational control of inducible nitric oxide synthase by p38 MAPK in islet β-cells. Mol Endocrinol. 2013;27:336-49 pubmed 出版商
  662. Kaiser M, Kühnl A, Reins J, Fischer S, Ortiz Tánchez J, Schlee C, et al. Antileukemic activity of the HSP70 inhibitor pifithrin-? in acute leukemia. Blood Cancer J. 2011;1:e28 pubmed 出版商
  663. Joaquin M, Gubern A, Gonzalez Nunez D, Josué Ruiz E, Ferreiro I, de Nadal E, et al. The p57 CDKi integrates stress signals into cell-cycle progression to promote cell survival upon stress. EMBO J. 2012;31:2952-64 pubmed 出版商
  664. Lamottke B, Kaiser M, Mieth M, Heider U, Gao Z, Nikolova Z, et al. The novel, orally bioavailable HSP90 inhibitor NVP-HSP990 induces cell cycle arrest and apoptosis in multiple myeloma cells and acts synergistically with melphalan by increased cleavage of caspases. Eur J Haematol. 2012;88:406-15 pubmed 出版商