这是一篇来自已证抗体库的有关人类 p85的综述,是根据90篇发表使用所有方法的文章归纳的。这综述旨在帮助来邦网的访客找到最适合p85 抗体。
p85 同义词: AGM7; GRB1; IMD36; p85; p85-ALPHA

艾博抗(上海)贸易有限公司
小鼠 单克隆(M253)
  • 免疫印迹; 人类; 1:1000; 图 5g, 5h
艾博抗(上海)贸易有限公司 p85抗体(Abcam, ab86714)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 5g, 5h). Br J Cancer (2022) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:500; 图 5g, 5h
艾博抗(上海)贸易有限公司 p85抗体(Abcam, ab182651)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 5g, 5h). Br J Cancer (2022) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:500; 图 7a
艾博抗(上海)贸易有限公司 p85抗体(Abcam, ab182651)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 7a). Int J Oncol (2021) ncbi
小鼠 单克隆(M253)
  • 免疫印迹; 小鼠; 1:1000; 图 4d
艾博抗(上海)贸易有限公司 p85抗体(Abcam, ab86714)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 4d). Cell Prolif (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 4a
艾博抗(上海)贸易有限公司 p85抗体(Abcam, ab182651)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 4a). Aging (Albany NY) (2021) ncbi
domestic rabbit 单克隆(EPR18702)
  • 免疫印迹; 人类; 1:1000; 图 4a
艾博抗(上海)贸易有限公司 p85抗体(Abcam, ab191606)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 4a). Aging (Albany NY) (2021) ncbi
小鼠 单克隆(M253)
  • 免疫印迹; 小鼠; 图 7a
艾博抗(上海)贸易有限公司 p85抗体(Abcam, ab86714)被用于被用于免疫印迹在小鼠样本上 (图 7a). Biosci Rep (2020) ncbi
小鼠 单克隆(M253)
  • 免疫印迹; 人类; 图 1a
艾博抗(上海)贸易有限公司 p85抗体(Abcam, ab86714)被用于被用于免疫印迹在人类样本上 (图 1a). Cells (2019) ncbi
domestic rabbit 单克隆(EPR18702)
  • 免疫印迹; 人类; 1:1000; 图 5b
  • 免疫印迹; 小鼠; 1:1000; 图 5a
艾博抗(上海)贸易有限公司 p85抗体(Abcam, ab191606)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 5b) 和 被用于免疫印迹在小鼠样本上浓度为1:1000 (图 5a). Aging (Albany NY) (2019) ncbi
小鼠 单克隆(M253)
  • 免疫印迹; 人类; 图 4a
艾博抗(上海)贸易有限公司 p85抗体(Abcam, ab86714)被用于被用于免疫印迹在人类样本上 (图 4a). BMC Cancer (2019) ncbi
domestic rabbit 单克隆(EPR18702)
  • 免疫印迹; 人类; 图 7a
艾博抗(上海)贸易有限公司 p85抗体(Abcam, ab191606)被用于被用于免疫印迹在人类样本上 (图 7a). Cell Physiol Biochem (2018) ncbi
domestic rabbit 单克隆(EPR18702)
  • 免疫组化-石蜡切片; 小鼠; 1:100; 图 2a
  • 免疫印迹; 小鼠; 1:1000; 图 10a
艾博抗(上海)贸易有限公司 p85抗体(BIOSS, ab191606)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:100 (图 2a) 和 被用于免疫印迹在小鼠样本上浓度为1:1000 (图 10a). Oncol Rep (2018) ncbi
小鼠 单克隆(M253)
  • 免疫组化-石蜡切片; 小鼠
  • 免疫印迹; 小鼠; 1:1000; 图 2e
艾博抗(上海)贸易有限公司 p85抗体(Abcam, ab86714)被用于被用于免疫组化-石蜡切片在小鼠样本上 和 被用于免疫印迹在小鼠样本上浓度为1:1000 (图 2e). Biochem Biophys Res Commun (2018) ncbi
小鼠 单克隆(M253)
  • 免疫印迹; 大鼠; 1:1000; 图 5f
艾博抗(上海)贸易有限公司 p85抗体(Abcam, ab86714)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 5f). Brain Behav Immun (2017) ncbi
小鼠 单克隆(M253)
  • 免疫印迹; 人类; 1:1000; 图 7
艾博抗(上海)贸易有限公司 p85抗体(Abcam, ab86714)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 7). Oncotarget (2016) ncbi
domestic rabbit 单克隆(EPR5513)
  • 免疫印迹; 小鼠; 图 8
艾博抗(上海)贸易有限公司 p85抗体(CST, 5405-1)被用于被用于免疫印迹在小鼠样本上 (图 8). Sci Rep (2016) ncbi
domestic rabbit 单克隆(ep380y)
  • 免疫印迹; 大鼠; 图 4
艾博抗(上海)贸易有限公司 p85抗体(abcam, ab40755)被用于被用于免疫印迹在大鼠样本上 (图 4). Int J Mol Sci (2016) ncbi
domestic rabbit 单克隆(ep380y)
  • 免疫组化-石蜡切片; 人类; 表 4
艾博抗(上海)贸易有限公司 p85抗体(Abcam, Ab 40755)被用于被用于免疫组化-石蜡切片在人类样本上 (表 4). Chin J Cancer (2016) ncbi
domestic rabbit 单克隆(ep380y)
  • 免疫组化-石蜡切片; 人类; 图 5a, b
艾博抗(上海)贸易有限公司 p85抗体(Abcam, ab40755)被用于被用于免疫组化-石蜡切片在人类样本上 (图 5a, b). Int J Oncol (2016) ncbi
圣克鲁斯生物技术
小鼠 单克隆(B-9)
  • 免疫印迹; 人类; 1:1000; 图 3b
圣克鲁斯生物技术 p85抗体(Santa Cruz Biotechnology, sc-1637)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3b). Anal Cell Pathol (Amst) (2019) ncbi
小鼠 单克隆(2B2.79)
  • 免疫印迹; 人类; 图 5a
圣克鲁斯生物技术 p85抗体(SantaCruz, sc-71891)被用于被用于免疫印迹在人类样本上 (图 5a). Lab Invest (2017) ncbi
小鼠 单克隆(B-9)
  • 免疫印迹; 人类; 图 6A
圣克鲁斯生物技术 p85抗体(Santa Cruz, sc-1637)被用于被用于免疫印迹在人类样本上 (图 6A). Sci Rep (2017) ncbi
小鼠 单克隆(B-9)
  • 免疫印迹; 小鼠; 图 1e
圣克鲁斯生物技术 p85抗体(Santa Cruz, sc-1637)被用于被用于免疫印迹在小鼠样本上 (图 1e). Oncogenesis (2016) ncbi
小鼠 单克隆(B-9)
  • 免疫印迹; 小鼠; 图 1a
圣克鲁斯生物技术 p85抗体(Santa Cruz, B-9)被用于被用于免疫印迹在小鼠样本上 (图 1a). Diabetes (2016) ncbi
小鼠 单克隆(2B2.79)
  • 免疫印迹; 小鼠; 图 2a
圣克鲁斯生物技术 p85抗体(Santa Cruz, 71891)被用于被用于免疫印迹在小鼠样本上 (图 2a). Int J Mol Med (2016) ncbi
小鼠 单克隆(B-9)
  • 免疫印迹; 人类; 1:200; 图 4
圣克鲁斯生物技术 p85抗体(Santa Cruz, sc-1637)被用于被用于免疫印迹在人类样本上浓度为1:200 (图 4). Mol Med Rep (2015) ncbi
小鼠 单克隆(C-1)
  • 免疫沉淀; 人类; 图 5
  • 免疫组化; 人类; 图 1
  • 免疫印迹; 人类; 图 2
圣克鲁斯生物技术 p85抗体(Santa Cruz, sc-376112)被用于被用于免疫沉淀在人类样本上 (图 5), 被用于免疫组化在人类样本上 (图 1) 和 被用于免疫印迹在人类样本上 (图 2). Sci Rep (2015) ncbi
小鼠 单克隆(B-9)
  • 免疫印迹; 鸡
圣克鲁斯生物技术 p85抗体(Santa Cruz, SC-1637)被用于被用于免疫印迹在鸡样本上. Proc Natl Acad Sci U S A (2014) ncbi
小鼠 单克隆(B-9)
  • 免疫印迹; 小鼠
圣克鲁斯生物技术 p85抗体(Santa Cruz Biotechnology, Sc-1637)被用于被用于免疫印迹在小鼠样本上. Amino Acids (2014) ncbi
小鼠 单克隆(B-9)
  • 免疫印迹; 人类
圣克鲁斯生物技术 p85抗体(Santa cruz, sc-1637)被用于被用于免疫印迹在人类样本上. Biochem Biophys Res Commun (2014) ncbi
小鼠 单克隆(B-9)
  • 免疫印迹; 小鼠; 图 9
圣克鲁斯生物技术 p85抗体(Santa Cruz Biotechnology, sc-1637)被用于被用于免疫印迹在小鼠样本上 (图 9). Biochemistry (2013) ncbi
小鼠 单克隆(B-9)
  • 免疫印迹; 人类
圣克鲁斯生物技术 p85抗体(Santa Cruz Biotechnology, SC-1637)被用于被用于免疫印迹在人类样本上. Int J Biochem Cell Biol (2013) ncbi
小鼠 单克隆(B-9)
  • 免疫印迹; 人类
圣克鲁斯生物技术 p85抗体(Santa Cruz Biotechnology, sc-1637)被用于被用于免疫印迹在人类样本上. Cell Signal (2014) ncbi
小鼠 单克隆(B-9)
  • 免疫印迹; 人类; 图 3
圣克鲁斯生物技术 p85抗体(Santa Cruz Biotechnology, sc-1637)被用于被用于免疫印迹在人类样本上 (图 3). Evid Based Complement Alternat Med (2013) ncbi
亚诺法生技股份有限公司
小鼠 单克隆(1C10)
  • 免疫印迹; 人类
亚诺法生技股份有限公司 p85抗体(Abnova, 1C10)被用于被用于免疫印迹在人类样本上. Clin Exp Immunol (2014) ncbi
赛默飞世尔
domestic rabbit 单克隆(6HCLC)
  • 免疫印迹; 小鼠; 1:2000; 图 5a
赛默飞世尔 p85抗体(Invitrogen, 710400)被用于被用于免疫印迹在小鼠样本上浓度为1:2000 (图 5a). J Mol Neurosci (2017) ncbi
赛信通(上海)生物试剂有限公司
domestic rabbit 单克隆(19H8)
  • 免疫印迹; 大鼠; 1:1000; 图 3a
赛信通(上海)生物试剂有限公司 p85抗体(Cell Signaling, 4257)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 3a). J Ovarian Res (2022) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 3a
赛信通(上海)生物试剂有限公司 p85抗体(Cell Signaling Technology, 4292S)被用于被用于免疫印迹在小鼠样本上 (图 3a). Clin Transl Med (2022) ncbi
domestic rabbit 单克隆(19H8)
  • 免疫印迹; 人类; 图 6a, 6b, 6c, 6d
赛信通(上海)生物试剂有限公司 p85抗体(CST, 4257)被用于被用于免疫印迹在人类样本上 (图 6a, 6b, 6c, 6d). Cell Oncol (Dordr) (2022) ncbi
domestic rabbit 单克隆(19H8)
  • 免疫印迹; 人类; 1:1000; 图 4c
赛信通(上海)生物试剂有限公司 p85抗体(CST, 4257)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 4c). BMC Cancer (2022) ncbi
domestic rabbit 单克隆(19H8)
  • 免疫印迹; 人类; 图 3a
赛信通(上海)生物试剂有限公司 p85抗体(Cell Signaling, 4257T)被用于被用于免疫印迹在人类样本上 (图 3a). Thorac Cancer (2022) ncbi
domestic rabbit 单克隆(19H8)
  • 免疫印迹; 小鼠; 图 4a
赛信通(上海)生物试剂有限公司 p85抗体(Cell Signaling Technology, 4257)被用于被用于免疫印迹在小鼠样本上 (图 4a). Front Cardiovasc Med (2021) ncbi
domestic rabbit 单克隆(19H8)
  • 免疫细胞化学; 小鼠; 1:100; 图 4g
  • 免疫印迹; 小鼠; 1:1000; 图 4f
赛信通(上海)生物试剂有限公司 p85抗体(Cell Signalling Technology, 4257)被用于被用于免疫细胞化学在小鼠样本上浓度为1:100 (图 4g) 和 被用于免疫印迹在小鼠样本上浓度为1:1000 (图 4f). elife (2021) ncbi
domestic rabbit 单克隆(19H8)
  • 免疫印迹; 人类; 图 6i
赛信通(上海)生物试剂有限公司 p85抗体(Cell Signaling, 4257)被用于被用于免疫印迹在人类样本上 (图 6i). iScience (2021) ncbi
domestic rabbit 单克隆(19H8)
  • 免疫印迹; 小鼠; 图 5h
赛信通(上海)生物试剂有限公司 p85抗体(Cell Signaling Technology, 4257)被用于被用于免疫印迹在小鼠样本上 (图 5h). Cell Death Dis (2021) ncbi
domestic rabbit 单克隆(19H8)
  • 免疫印迹; 小鼠; 图 6e, 6f
赛信通(上海)生物试剂有限公司 p85抗体(Cell Signaling, 4257)被用于被用于免疫印迹在小鼠样本上 (图 6e, 6f). Cell Death Dis (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹基因敲除验证; 小鼠; 图 2a
  • 免疫印迹; 小鼠; 图 2a
赛信通(上海)生物试剂有限公司 p85抗体(Cell Signaling, 4292s)被用于被用于免疫印迹基因敲除验证在小鼠样本上 (图 2a) 和 被用于免疫印迹在小鼠样本上 (图 2a). J Biol Chem (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 3e
赛信通(上海)生物试剂有限公司 p85抗体(Cell Signaling, 4292)被用于被用于免疫印迹在小鼠样本上 (图 3e). Front Cell Dev Biol (2020) ncbi
domestic rabbit 单克隆(19H8)
  • 免疫印迹; 小鼠; 1:1000; 图 5a
赛信通(上海)生物试剂有限公司 p85抗体(Cell Signaling Technology, 4257)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 5a). Cell Mol Gastroenterol Hepatol (2021) ncbi
domestic rabbit 单克隆(19H8)
  • 免疫印迹; 人类; 1:1000; 图 3b, 3c
赛信通(上海)生物试剂有限公司 p85抗体(Cell Signaling Technology, 4257S)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3b, 3c). Cell Biosci (2020) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 5d
赛信通(上海)生物试剂有限公司 p85抗体(CST, 4292)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 5d). Bosn J Basic Med Sci (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 4a
赛信通(上海)生物试剂有限公司 p85抗体(CST, 4292)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 4a). J Neuroinflammation (2020) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 8a
赛信通(上海)生物试剂有限公司 p85抗体(Cell Signaling, 4292S)被用于被用于免疫印迹在人类样本上 (图 8a). Molecules (2019) ncbi
domestic rabbit 单克隆(19H8)
  • 免疫印迹; 小鼠; 1:500; 图 5b
赛信通(上海)生物试剂有限公司 p85抗体(Cell Signaling, cs-4257)被用于被用于免疫印迹在小鼠样本上浓度为1:500 (图 5b). Am J Transl Res (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 2a
赛信通(上海)生物试剂有限公司 p85抗体(Cell Signaling, 4292S)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 2a). EBioMedicine (2019) ncbi
domestic rabbit 单克隆(19H8)
  • 免疫印迹; 人类; 图 s1f
赛信通(上海)生物试剂有限公司 p85抗体(Cell Signaling, 4257)被用于被用于免疫印迹在人类样本上 (图 s1f). Cell (2019) ncbi
domestic rabbit 单克隆(19H8)
  • 免疫印迹; 人类; 图 5a
赛信通(上海)生物试剂有限公司 p85抗体(Cell Signaling, 19H8)被用于被用于免疫印迹在人类样本上 (图 5a). J Exp Med (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 5a, 5b
赛信通(上海)生物试剂有限公司 p85抗体(CST, 4292)被用于被用于免疫印迹在人类样本上 (图 5a, 5b). Biosci Rep (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:500; 图 1d
赛信通(上海)生物试剂有限公司 p85抗体(Cell Signaling, 4292)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 1d). J Huntingtons Dis (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 6f
赛信通(上海)生物试剂有限公司 p85抗体(Cell Signaling, 4292)被用于被用于免疫印迹在人类样本上 (图 6f). Cell Rep (2018) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 2a
赛信通(上海)生物试剂有限公司 p85抗体(Cell Signaling, 4292)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 2a). Basic Clin Pharmacol Toxicol (2018) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:2000; 图 7a
赛信通(上海)生物试剂有限公司 p85抗体(Cell signaling, 4292)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 7a). J Exp Clin Cancer Res (2017) ncbi
domestic rabbit 单克隆(19H8)
  • 免疫印迹; 小鼠; 1:1000; 图 3c
赛信通(上海)生物试剂有限公司 p85抗体(cell signaling, 4257)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 3c). Oncogene (2017) ncbi
domestic rabbit 单克隆(19H8)
  • 免疫印迹; 人类; 图 4a
赛信通(上海)生物试剂有限公司 p85抗体(Cell Signalling Technology, 4257)被用于被用于免疫印迹在人类样本上 (图 4a). DNA Cell Biol (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 1a
赛信通(上海)生物试剂有限公司 p85抗体(Cell Signaling Technology, 4292s)被用于被用于免疫印迹在小鼠样本上 (图 1a). Diabetes (2017) ncbi
domestic rabbit 单克隆(19H8)
  • 免疫印迹; 人类; 图 5a
赛信通(上海)生物试剂有限公司 p85抗体(Cell Signaling Technology, 4257)被用于被用于免疫印迹在人类样本上 (图 5a). FEBS Open Bio (2017) ncbi
domestic rabbit 单克隆(19H8)
  • 免疫印迹; 小鼠; 1:1000; 图 s9a
赛信通(上海)生物试剂有限公司 p85抗体(Cell Signaling, 4257)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 s9a). Nature (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠
赛信通(上海)生物试剂有限公司 p85抗体(Cell Signaling, 4292)被用于被用于免疫组化-石蜡切片在小鼠样本上. Acta Histochem (2017) ncbi
domestic rabbit 单克隆(19H8)
  • 免疫印迹; 人类; 图 6d
赛信通(上海)生物试剂有限公司 p85抗体(Cell signaling, 4257)被用于被用于免疫印迹在人类样本上 (图 6d). J Exp Clin Cancer Res (2016) ncbi
domestic rabbit 单克隆(19H8)
  • 免疫印迹; 小鼠; 图 7a
赛信通(上海)生物试剂有限公司 p85抗体(Cell Signaling, 4257)被用于被用于免疫印迹在小鼠样本上 (图 7a). Int J Mol Med (2016) ncbi
domestic rabbit 单克隆(19H8)
  • 免疫印迹; 大鼠; 1:1000; 图 2
赛信通(上海)生物试剂有限公司 p85抗体(Cell Signaling, 4257)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 2). Mol Neurobiol (2017) ncbi
domestic rabbit 单克隆(19H8)
  • 免疫印迹; Spodoptera litura; 图 3a
赛信通(上海)生物试剂有限公司 p85抗体(Cell Signaling, 4257)被用于被用于免疫印迹在Spodoptera litura样本上 (图 3a). Sci Rep (2016) ncbi
domestic rabbit 单克隆(19H8)
  • 免疫印迹; 人类; 1:1000; 图 4f
赛信通(上海)生物试剂有限公司 p85抗体(Cell Signaling, 4257)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 4f). Oncotarget (2016) ncbi
domestic rabbit 多克隆
赛信通(上海)生物试剂有限公司 p85抗体(Cell Signaling, 4292)被用于. Mol Nutr Food Res (2017) ncbi
domestic rabbit 单克隆(19H8)
  • 免疫印迹; 大鼠; 图 2
赛信通(上海)生物试剂有限公司 p85抗体(Cell Signaling, 4257)被用于被用于免疫印迹在大鼠样本上 (图 2). Int J Mol Med (2016) ncbi
domestic rabbit 多克隆
  • 免疫沉淀; 小鼠; 图 5
  • 免疫印迹; 小鼠; 图 5
赛信通(上海)生物试剂有限公司 p85抗体(Cell Signaling Tech, 4292)被用于被用于免疫沉淀在小鼠样本上 (图 5) 和 被用于免疫印迹在小鼠样本上 (图 5). Mol Syst Biol (2016) ncbi
domestic rabbit 单克隆(19H8)
  • 免疫印迹; 小鼠; 1:500; 图 6
赛信通(上海)生物试剂有限公司 p85抗体(Cell Signaling Technology, 4257)被用于被用于免疫印迹在小鼠样本上浓度为1:500 (图 6). Alzheimers Dement (2016) ncbi
domestic rabbit 单克隆(19H8)
  • 免疫印迹; 人类; 图 1a
赛信通(上海)生物试剂有限公司 p85抗体(Cell Signaling, 4257)被用于被用于免疫印迹在人类样本上 (图 1a). Oncotarget (2016) ncbi
domestic rabbit 单克隆(19H8)
  • 免疫印迹; 人类; 图 1
赛信通(上海)生物试剂有限公司 p85抗体(Cell Signaling, 4257)被用于被用于免疫印迹在人类样本上 (图 1). J Immunol (2016) ncbi
domestic rabbit 单克隆(19H8)
  • 免疫印迹; 小鼠; 1:1000; 图 6
赛信通(上海)生物试剂有限公司 p85抗体(Cell Signaling, 4257)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 6). Sci Rep (2016) ncbi
domestic rabbit 单克隆(19H8)
  • 免疫印迹; 人类; 图 6
赛信通(上海)生物试剂有限公司 p85抗体(Cell Signaling Technology, 4257)被用于被用于免疫印迹在人类样本上 (图 6). Neuroscience (2016) ncbi
domestic rabbit 单克隆(19H8)
  • 免疫印迹; 小鼠; 图 6
赛信通(上海)生物试剂有限公司 p85抗体(Cell Signaling, 4257)被用于被用于免疫印迹在小鼠样本上 (图 6). Oncotarget (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 1
赛信通(上海)生物试剂有限公司 p85抗体(Cell Signaling, 4292S)被用于被用于免疫印迹在人类样本上 (图 1). Sci Rep (2016) ncbi
domestic rabbit 单克隆(19H8)
  • 免疫印迹; 人类; 图 5
赛信通(上海)生物试剂有限公司 p85抗体(Cell Signaling Tech, 4257)被用于被用于免疫印迹在人类样本上 (图 5). PLoS Pathog (2016) ncbi
domestic rabbit 单克隆(19H8)
  • 免疫印迹; 人类; 图 6
赛信通(上海)生物试剂有限公司 p85抗体(Cell Signaling, 4257)被用于被用于免疫印迹在人类样本上 (图 6). Sci Rep (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 6
赛信通(上海)生物试剂有限公司 p85抗体(Cell Signaling Technology, 4292)被用于被用于免疫印迹在人类样本上 (图 6). Sci Rep (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 4
赛信通(上海)生物试剂有限公司 p85抗体(CST, 4292)被用于被用于免疫印迹在小鼠样本上 (图 4). Stem Cell Reports (2016) ncbi
domestic rabbit 单克隆(19H8)
  • 免疫印迹; 人类; 图 4b
赛信通(上海)生物试剂有限公司 p85抗体(Cell Signaling Technology, 4257)被用于被用于免疫印迹在人类样本上 (图 4b). Oncogene (2016) ncbi
domestic rabbit 单克隆(19H8)
  • 免疫印迹; 人类; 图 5e
赛信通(上海)生物试剂有限公司 p85抗体(Cell Signaling, 4257)被用于被用于免疫印迹在人类样本上 (图 5e). BMC Cancer (2015) ncbi
domestic rabbit 单克隆(19H8)
  • 免疫印迹; 人类; 图 3
赛信通(上海)生物试剂有限公司 p85抗体(Cell Signaling, 4257)被用于被用于免疫印迹在人类样本上 (图 3). EBioMedicine (2015) ncbi
domestic rabbit 单克隆(19H8)
  • 免疫印迹; 人类; 1:1000
赛信通(上海)生物试剂有限公司 p85抗体(Cell Signaling, 4257s)被用于被用于免疫印迹在人类样本上浓度为1:1000. Am J Physiol Endocrinol Metab (2015) ncbi
domestic rabbit 单克隆(19H8)
  • 免疫印迹; 人类; 1:800; 图 5
赛信通(上海)生物试剂有限公司 p85抗体(Cell Signaling, 4257)被用于被用于免疫印迹在人类样本上浓度为1:800 (图 5). PLoS ONE (2015) ncbi
文章列表
  1. Banerjee S, Mishra S, Xu W, Thompson W, Chowdhury I. Neuregulin-1 signaling regulates cytokines and chemokines expression and secretion in granulosa cell. J Ovarian Res. 2022;15:86 pubmed 出版商
  2. Zhu Y, Gu H, Yang L, Li N, Chen Q, Kang D, et al. Involvement of MST1/mTORC1/STAT1 activity in the regulation of B-cell receptor signalling by chemokine receptor 2. Clin Transl Med. 2022;12:e887 pubmed 出版商
  3. Shu W, Zhu X, Wang K, Cherepanoff S, Conway R, Madigan M, et al. The multi-kinase inhibitor afatinib serves as a novel candidate for the treatment of human uveal melanoma. Cell Oncol (Dordr). 2022;45:601-619 pubmed 出版商
  4. Su W, Feng B, Hu L, Guo X, Yu M. MUC3A promotes the progression of colorectal cancer through the PI3K/Akt/mTOR pathway. BMC Cancer. 2022;22:602 pubmed 出版商
  5. Chen Y, Xu J, Pan W, Xu X, Ma X, Chu Y, et al. Galectin-3 enhances trastuzumab resistance by regulating cancer malignancy and stemness in HER2-positive breast cancer cells. Thorac Cancer. 2022;13:1961-1973 pubmed 出版商
  6. Yan W, Han Q, Gong L, Zhan X, Li W, Guo Z, et al. MBD3 promotes hepatocellular carcinoma progression and metastasis through negative regulation of tumour suppressor TFPI2. Br J Cancer. 2022;: pubmed 出版商
  7. Cao Y, Li Q, Yang Y, Ke Z, Chen S, Li M, et al. Cardioprotective Effect of Stem-Leaf Saponins From Panax notoginseng on Mice With Sleep Derivation by Inhibiting Abnormal Autophagy Through PI3K/Akt/mTOR Pathway. Front Cardiovasc Med. 2021;8:694219 pubmed 出版商
  8. Huang J, Xiao R, Wang X, Khadka B, Fang Z, Yu M, et al. MicroRNA‑93 knockdown inhibits acute myeloid leukemia cell growth via inactivating the PI3K/AKT pathway by upregulating DAB2. Int J Oncol. 2021;59: pubmed 出版商
  9. Kearney A, Norris D, Ghomlaghi M, Kin Lok Wong M, Humphrey S, Carroll L, et al. Akt phosphorylates insulin receptor substrate to limit PI3K-mediated PIP3 synthesis. elife. 2021;10: pubmed 出版商
  10. Getachew A, Abbas N, You K, Yang Z, Hussain M, Huang X, et al. SAA1/TLR2 axis directs chemotactic migration of hepatic stellate cells responding to injury. iScience. 2021;24:102483 pubmed 出版商
  11. Zheng H, Xu W, Zhou W, Yang R, Chen P, Liu T, et al. Beraprost ameliorates postmenopausal osteoporosis by regulating Nedd4-induced Runx2 ubiquitination. Cell Death Dis. 2021;12:497 pubmed 出版商
  12. Wang X, Zhao Y, Zhou D, Tian Y, Feng G, Lu Z. Gab2 deficiency suppresses high-fat diet-induced obesity by reducing adipose tissue inflammation and increasing brown adipose function in mice. Cell Death Dis. 2021;12:212 pubmed 出版商
  13. Xu Y, Li D, Wu J, Zhang M, Shao X, Xu L, et al. Farnesoid X receptor promotes renal ischaemia-reperfusion injury by inducing tubular epithelial cell apoptosis. Cell Prolif. 2021;54:e13005 pubmed 出版商
  14. Chen T, Kuo T, Dandan M, Lee R, Chang M, Villivalam S, et al. The role of striated muscle Pik3r1 in glucose and protein metabolism following chronic glucocorticoid exposure. J Biol Chem. 2021;296:100395 pubmed 出版商
  15. Li H, Xu W, Xia Z, Liu W, Pan G, Ding J, et al. Hsa_circ_0000199 facilitates chemo-tolerance of triple-negative breast cancer by interfering with miR-206/613-led PI3K/Akt/mTOR signaling. Aging (Albany NY). 2021;13:4522-4551 pubmed 出版商
  16. Lv J, Wang H, Cui H, Liu Z, Zhang R, Lu M, et al. Blockade of Macrophage CD147 Protects Against Foam Cell Formation in Atherosclerosis. Front Cell Dev Biol. 2020;8:609090 pubmed 出版商
  17. Kusakabe J, Hata K, Miyauchi H, Tajima T, Wang Y, Tamaki I, et al. Complement-5 Inhibition Deters Progression of Fulminant Hepatitis to Acute Liver Failure in Murine Models. Cell Mol Gastroenterol Hepatol. 2021;11:1351-1367 pubmed 出版商
  18. Jiang X, Xu Y, Ren H, Jiang J, Wudu M, Wang Q, et al. KLHL18 inhibits the proliferation, migration, and invasion of non-small cell lung cancer by inhibiting PI3K/PD-L1 axis activity. Cell Biosci. 2020;10:139 pubmed 出版商
  19. Liu J, Feng W, Liu M, Rao H, Li X, Teng Y, et al. Stomach-specific c-Myc overexpression drives gastric adenoma in mice through AKT/mammalian target of rapamycin signaling. Bosn J Basic Med Sci. 2021;21:434-446 pubmed 出版商
  20. Ye X, Zhu M, Che X, Wang H, Liang X, Wu C, et al. Lipopolysaccharide induces neuroinflammation in microglia by activating the MTOR pathway and downregulating Vps34 to inhibit autophagosome formation. J Neuroinflammation. 2020;17:18 pubmed 出版商
  21. Liu W, Yang L, Liu Y, Yuan D, Zhao Z, Wang Q, et al. Dynamic characterization of intestinal metaplasia in the gastric corpus mucosa of Atp4a-deficient mice. Biosci Rep. 2020;40: pubmed 出版商
  22. Li N, Men W, Zheng Y, Wang H, Meng X. Oroxin B Induces Apoptosis by Down-Regulating MicroRNA-221 Resulting in the Inactivation of the PTEN/PI3K/AKT Pathway in Liver Cancer. Molecules. 2019;24: pubmed 出版商
  23. Ali R, Alabdullah M, Miligy I, Normatova M, Babaei Jadidi R, Nateri A, et al. ATM Regulated PTEN Degradation Is XIAP E3 Ubiquitin Ligase Mediated in p85α Deficient Cancer Cells and Influence Platinum Sensitivity. Cells. 2019;8: pubmed 出版商
  24. Wu W, Piao H, Wu F, Han Y, An D, Wu Y, et al. Yu Jin Pulvis inhibits carbon tetrachloride-induced liver fibrosis by blocking the MAPK and PI3K/Akt signaling pathways. Am J Transl Res. 2019;11:5998-6006 pubmed
  25. Long R, Liu Z, Li J, Yu H. COL6A6 interacted with P4HA3 to suppress the growth and metastasis of pituitary adenoma via blocking PI3K-Akt pathway. Aging (Albany NY). 2019;11:8845-8859 pubmed 出版商
  26. Liu Y, Jiang Q, Liu X, Lin X, Tang Z, Liu C, et al. Cinobufotalin powerfully reversed EBV-miR-BART22-induced cisplatin resistance via stimulating MAP2K4 to antagonize non-muscle myosin heavy chain IIA/glycogen synthase 3β/β-catenin signaling pathway. EBioMedicine. 2019;48:386-404 pubmed 出版商
  27. Lundby A, Franciosa G, Emdal K, Refsgaard J, Gnosa S, Bekker Jensen D, et al. Oncogenic Mutations Rewire Signaling Pathways by Switching Protein Recruitment to Phosphotyrosine Sites. Cell. 2019;179:543-560.e26 pubmed 出版商
  28. Piao L, Yang Z, Feng Y, Zhang C, Cui C, Xuan Y. LETM1 is a potential biomarker of prognosis in lung non-small cell carcinoma. BMC Cancer. 2019;19:898 pubmed 出版商
  29. El Kott A, Shati A, Al Kahtani M, Alqahtani S. Acylated Ghrelin Renders Chemosensitive Ovarian Cancer Cells Resistant to Cisplatin Chemotherapy via Activation of the PI3K/Akt/mTOR Survival Pathway. Anal Cell Pathol (Amst). 2019;2019:9627810 pubmed 出版商
  30. Fenwick C, Loredo Varela J, Joo V, Pellaton C, Farina A, Rajah N, et al. Tumor suppression of novel anti-PD-1 antibodies mediated through CD28 costimulatory pathway. J Exp Med. 2019;: pubmed 出版商
  31. Kong L, Wu Z, Zhao Y, Lu X, Shi H, Liu S, et al. Qigesan reduces the motility of esophageal cancer cells via inhibiting Gas6/Axl and NF-κB expression. Biosci Rep. 2019;: pubmed 出版商
  32. Tousley A, Iuliano M, Weisman E, Sapp E, Zhang N, Vodicka P, et al. Rac1 Activity Is Modulated by Huntingtin and Dysregulated in Models of Huntington's Disease. J Huntingtons Dis. 2019;8:53-69 pubmed 出版商
  33. Yin D, Li Y, Fu C, Feng Y. Pro-Angiogenic Role of LncRNA HULC in Microvascular Endothelial Cells via Sequestrating miR-124. Cell Physiol Biochem. 2018;50:2188-2202 pubmed 出版商
  34. Chen Y, Huang Y, Lu X, Wang G, Chi P. Antitumor effects of the silencing of programmed cell death ligand 1 in colorectal cancer via immunoregulation. Oncol Rep. 2018;40:3370-3380 pubmed 出版商
  35. Zhao Y, Harrison D, Song Y, Ji J, Huang J, Hui E. Antigen-Presenting Cell-Intrinsic PD-1 Neutralizes PD-L1 in cis to Attenuate PD-1 Signaling in T Cells. Cell Rep. 2018;24:379-390.e6 pubmed 出版商
  36. Chang J, Tang N, Fang Q, Zhu K, Liu L, Xiong X, et al. TEMPORARY REMOVAL: Inhibition of COX-2 and 5-LOX regulates the progression of colorectal cancer by promoting PTEN and suppressing PI3K/AKT pathway. Biochem Biophys Res Commun. 2018;: pubmed 出版商
  37. Urbschat A, Baer P, Zacharowski K, Sprunck V, Scheller B, Raimann F, et al. Systemic TLR2 Antibody Application in Renal Ischaemia and Reperfusion Injury Decreases AKT Phosphorylation and Increases Apoptosis in the Mouse Kidney. Basic Clin Pharmacol Toxicol. 2018;122:223-232 pubmed 出版商
  38. Yu L, Sun Y, Li J, Wang Y, Zhu Y, Shi Y, et al. Silencing the Girdin gene enhances radio-sensitivity of hepatocellular carcinoma via suppression of glycolytic metabolism. J Exp Clin Cancer Res. 2017;36:110 pubmed 出版商
  39. Simond A, Rao T, Zuo D, Zhao J, Muller W. ErbB2-positive mammary tumors can escape PI3K-p110α loss through downregulation of the Pten tumor suppressor. Oncogene. 2017;36:6059-6066 pubmed 出版商
  40. Liu X, Zhou X, Xu H, He Z, Shi X, Wu S. SLC34A2 Regulates the Proliferation, Migration, and Invasion of Human Osteosarcoma Cells Through PTEN/PI3K/AKT Signaling. DNA Cell Biol. 2017;36:775-780 pubmed 出版商
  41. Wang K, Liu W, Song Y, Wu X, Zhang Y, Li S, et al. The role of angiopoietin-2 in nucleus pulposus cells during human intervertebral disc degeneration. Lab Invest. 2017;97:971-982 pubmed 出版商
  42. Rong H, Zhao Z, Feng J, Lei Y, Wu H, Sun R, et al. The effects of dexmedetomidine pretreatment on the pro- and anti-inflammation systems after spinal cord injury in rats. Brain Behav Immun. 2017;64:195-207 pubmed 出版商
  43. Kuo T, Chen T, Lee R, Nguyen N, Broughton A, Zhang D, et al. Pik3r1 Is Required for Glucocorticoid-Induced Perilipin 1 Phosphorylation in Lipid Droplet for Adipocyte Lipolysis. Diabetes. 2017;66:1601-1610 pubmed 出版商
  44. Chung C, Chang C, Hsu C, Lin K, Peng H, Huang T. Aggretin Venom Polypeptide as a Novel Anti-angiogenesis Agent by Targeting Integrin alpha2beta1. Sci Rep. 2017;7:43612 pubmed 出版商
  45. Yang X, Huo F, Liu B, Liu J, Chen T, Li J, et al. Crocin Inhibits Oxidative Stress and Pro-inflammatory Response of Microglial Cells Associated with Diabetic Retinopathy Through the Activation of PI3K/Akt Signaling Pathway. J Mol Neurosci. 2017;61:581-589 pubmed 出版商
  46. Cao H, Yu S, Chen D, Jing C, Wang Z, Ma R, et al. Liver X receptor agonist T0901317 reverses resistance of A549 human lung cancer cells to EGFR-TKI treatment. FEBS Open Bio. 2017;7:35-43 pubmed 出版商
  47. Karki R, Man S, Malireddi R, Kesavardhana S, Zhu Q, Burton A, et al. NLRC3 is an inhibitory sensor of PI3K-mTOR pathways in cancer. Nature. 2016;540:583-587 pubmed 出版商
  48. Jung J, Jung H, Neupane S, Kim K, Kim J, Yamamoto H, et al. Involvement of PI3K and PKA pathways in mouse tongue epithelial differentiation. Acta Histochem. 2017;119:92-98 pubmed 出版商
  49. Tanouchi A, Taniuchi K, Furihata M, Naganuma S, Dabanaka K, Kimura M, et al. CCDC88A, a prognostic factor for human pancreatic cancers, promotes the motility and invasiveness of pancreatic cancer cells. J Exp Clin Cancer Res. 2016;35:190 pubmed
  50. Kong Q, Zhang H, Zhao T, Zhang W, Yan M, Dong X, et al. Tangshen formula attenuates hepatic steatosis by inhibiting hepatic lipogenesis and augmenting fatty acid oxidation in db/db mice. Int J Mol Med. 2016;38:1715-1726 pubmed 出版商
  51. Chruvattil R, Banerjee S, Nath S, Machhi J, Kharkwal G, Yadav M, et al. Dexamethasone Alters the Appetite Regulation via Induction of Hypothalamic Insulin Resistance in Rat Brain. Mol Neurobiol. 2017;54:7483-7496 pubmed 出版商
  52. Sheen M, Marotti J, Allegrezza M, Rutkowski M, Conejo Garcia J, Fiering S. Constitutively activated PI3K accelerates tumor initiation and modifies histopathology of breast cancer. Oncogenesis. 2016;5:e267 pubmed 出版商
  53. Shao X, Lai D, Zhang L, Xu H. Induction of Autophagy and Apoptosis via PI3K/AKT/TOR Pathways by Azadirachtin A in Spodoptera litura Cells. Sci Rep. 2016;6:35482 pubmed 出版商
  54. Song C, Liu B, Shi Y, Liu N, Yan Y, Zhang J, et al. MicroRNA-130a alleviates human coronary artery endothelial cell injury and inflammatory responses by targeting PTEN via activating PI3K/Akt/eNOS signaling pathway. Oncotarget. 2016;7:71922-71936 pubmed 出版商
  55. Cao R, Meng Z, Liu T, Wang G, Qian G, Cao T, et al. Decreased TRPM7 inhibits activities and induces apoptosis of bladder cancer cells via ERK1/2 pathway. Oncotarget. 2016;7:72941-72960 pubmed 出版商
  56. De Los Santos S, García Pérez V, Hernández Reséndiz S, Palma Flores C, González Gutiérrez C, Zazueta C, et al. (-)-Epicatechin induces physiological cardiac growth by activation of the PI3K/Akt pathway in mice. Mol Nutr Food Res. 2017;61: pubmed 出版商
  57. Zhang Y, Hu S, Chen Y, Guo M, Wang S. Hepatocyte growth factor inhibits hypoxia/reoxygenation-induced activation of xanthine oxidase in endothelial cells through the JAK2 signaling pathway. Int J Mol Med. 2016;38:1055-62 pubmed 出版商
  58. Voisinne G, García Blesa A, Chaoui K, Fiore F, Bergot E, Girard L, et al. Co-recruitment analysis of the CBL and CBLB signalosomes in primary T cells identifies CD5 as a key regulator of TCR-induced ubiquitylation. Mol Syst Biol. 2016;12:876 pubmed 出版商
  59. Herring A, Münster Y, Akkaya T, Moghaddam S, Deinsberger K, Meyer J, et al. Kallikrein-8 inhibition attenuates Alzheimer's disease pathology in mice. Alzheimers Dement. 2016;12:1273-1287 pubmed 出版商
  60. Shriver M, Marimuthu S, Paul C, Geist J, Seale T, Konstantopoulos K, et al. Giant obscurins regulate the PI3K cascade in breast epithelial cells via direct binding to the PI3K/p85 regulatory subunit. Oncotarget. 2016;7:45414-45428 pubmed 出版商
  61. Kobayashi K, Araya J, Minagawa S, Hara H, Saito N, Kadota T, et al. Involvement of PARK2-Mediated Mitophagy in Idiopathic Pulmonary Fibrosis Pathogenesis. J Immunol. 2016;197:504-16 pubmed 出版商
  62. Lu J, Ji W, Zhao M, Wang M, Yan W, Chen M, et al. Protamine zinc insulin combined with sodium selenite improves glycometabolism in the diabetic KKAy mice. Sci Rep. 2016;6:26563 pubmed 出版商
  63. Wang K, Cao P, Wang H, Tang Z, Wang N, Wang J, et al. Chronic administration of Angelica sinensis polysaccharide effectively improves fatty liver and glucose homeostasis in high-fat diet-fed mice. Sci Rep. 2016;6:26229 pubmed 出版商
  64. Huang Y, Lin C, Liao H, Liu C, Chen Y, Chiu W, et al. Cholesterol overload induces apoptosis in SH-SY5Y human neuroblastoma cells through the up regulation of flotillin-2 in the lipid raft and the activation of BDNF/Trkb signaling. Neuroscience. 2016;328:201-9 pubmed 出版商
  65. Qiu X, Wei R, Li Y, Zhu Q, Xiong C, Chen Y, et al. NEDL2 regulates enteric nervous system and kidney development in its Nedd8 ligase activity-dependent manner. Oncotarget. 2016;7:31440-53 pubmed 出版商
  66. Kumar A, Abbas W, Colin L, Khan K, Bouchat S, Varin A, et al. Tuning of AKT-pathway by Nef and its blockade by protease inhibitors results in limited recovery in latently HIV infected T-cell line. Sci Rep. 2016;6:24090 pubmed 出版商
  67. Cornick S, Moreau F, Chadee K. Entamoeba histolytica Cysteine Proteinase 5 Evokes Mucin Exocytosis from Colonic Goblet Cells via αvβ3 Integrin. PLoS Pathog. 2016;12:e1005579 pubmed 出版商
  68. Osinalde N, Sánchez Quiles V, Blagoev B, Kratchmarova I. Changes in Gab2 phosphorylation and interaction partners in response to interleukin (IL)-2 stimulation in T-lymphocytes. Sci Rep. 2016;6:23530 pubmed 出版商
  69. Huang Y, Chen C, Tang K, Sheen J, Tiao M, Tain Y, et al. Postnatal High-Fat Diet Increases Liver Steatosis and Apoptosis Threatened by Prenatal Dexamethasone through the Oxidative Effect. Int J Mol Sci. 2016;17:369 pubmed 出版商
  70. Afsar T, Trembley J, Salomon C, Razak S, Khan M, Ahmed K. Growth inhibition and apoptosis in cancer cells induced by polyphenolic compounds of Acacia hydaspica: Involvement of multiple signal transduction pathways. Sci Rep. 2016;6:23077 pubmed 出版商
  71. Li M, Lu G, Hu J, Shen X, Ju J, Gao Y, et al. EVA1A/TMEM166 Regulates Embryonic Neurogenesis by Autophagy. Stem Cell Reports. 2016;6:396-410 pubmed 出版商
  72. Hung M, Chen Y, Chu P, Shih C, Yu H, Tai W, et al. Upregulation of the oncoprotein SET determines poor clinical outcomes in hepatocellular carcinoma and shows therapeutic potential. Oncogene. 2016;35:4891-902 pubmed 出版商
  73. Adighibe O, Leek R, Fernandez Mercado M, Hu J, Snell C, Gatter K, et al. Why some tumours trigger neovascularisation and others don't: the story thus far. Chin J Cancer. 2016;35:18 pubmed 出版商
  74. Lakshmipathi J, Alvarez Perez J, Rosselot C, Casinelli G, Stamateris R, Rausell Palamos F, et al. PKCζ Is Essential for Pancreatic β-Cell Replication During Insulin Resistance by Regulating mTOR and Cyclin-D2. Diabetes. 2016;65:1283-96 pubmed 出版商
  75. Chen C, Lee T, Kwok C, Hsu Y, Shih K, Lin Y, et al. Cannabinoid receptor type 1 mediates high-fat diet-induced insulin resistance by increasing forkhead box O1 activity in a mouse model of obesity. Int J Mol Med. 2016;37:743-54 pubmed 出版商
  76. Yan L, Liu Y, Xiang J, Wu Q, Xu L, Luo X, et al. PIK3R1 targeting by miR-21 suppresses tumor cell migration and invasion by reducing PI3K/AKT signaling and reversing EMT, and predicts clinical outcome of breast cancer. Int J Oncol. 2016;48:471-84 pubmed 出版商
  77. Song G, Li Y, Lin L, Cao Y. Anti-autophagic and anti-apoptotic effects of memantine in a SH-SY5Y cell model of Alzheimer's disease via mammalian target of rapamycin-dependent and -independent pathways. Mol Med Rep. 2015;12:7615-22 pubmed 出版商
  78. Salim H, Zong D, Hååg P, Novak M, Mörk B, Lewensohn R, et al. DKK1 is a potential novel mediator of cisplatin-refractoriness in non-small cell lung cancer cell lines. BMC Cancer. 2015;15:628 pubmed 出版商
  79. Yang L, Li Y, Bhattacharya A, Zhang Y. Inhibition of ERBB2-overexpressing Tumors by Recombinant Human Prolidase and Its Enzymatically Inactive Mutant. EBioMedicine. 2015;2:396-405 pubmed
  80. Li C, Siragy H. (Pro)renin receptor regulates autophagy and apoptosis in podocytes exposed to high glucose. Am J Physiol Endocrinol Metab. 2015;309:E302-10 pubmed 出版商
  81. Carnesecchi J, Malbouyres M, de Mets R, Balland M, Beauchef G, Vié K, et al. Estrogens induce rapid cytoskeleton re-organization in human dermal fibroblasts via the non-classical receptor GPR30. PLoS ONE. 2015;10:e0120672 pubmed 出版商
  82. Lin Y, Yang Z, Xu A, Dong P, Huang Y, Liu H, et al. PIK3R1 negatively regulates the epithelial-mesenchymal transition and stem-like phenotype of renal cancer cells through the AKT/GSK3β/CTNNB1 signaling pathway. Sci Rep. 2015;5:8997 pubmed 出版商
  83. Ito Y, Hart J, Ueno L, Vogt P. Oncogenic activity of the regulatory subunit p85β of phosphatidylinositol 3-kinase (PI3K). Proc Natl Acad Sci U S A. 2014;111:16826-9 pubmed 出版商
  84. Kyriakidis N, Kapsogeorgou E, Gourzi V, Konsta O, Baltatzis G, Tzioufas A. Toll-like receptor 3 stimulation promotes Ro52/TRIM21 synthesis and nuclear redistribution in salivary gland epithelial cells, partially via type I interferon pathway. Clin Exp Immunol. 2014;178:548-60 pubmed 出版商
  85. Ren W, Duan J, Yin J, Liu G, Cao Z, Xiong X, et al. Dietary L-glutamine supplementation modulates microbial community and activates innate immunity in the mouse intestine. Amino Acids. 2014;46:2403-13 pubmed 出版商
  86. Kim K, Lee S, Ryu S, Han D. Efficient isolation and elution of cellular proteins using aptamer-mediated protein precipitation assay. Biochem Biophys Res Commun. 2014;448:114-9 pubmed 出版商
  87. Wu J, Akkuratov E, Bai Y, Gaskill C, Askari A, Liu L. Cell signaling associated with Na(+)/K(+)-ATPase: activation of phosphatidylinositide 3-kinase IA/Akt by ouabain is independent of Src. Biochemistry. 2013;52:9059-67 pubmed 出版商
  88. Luo J, Xu T, Li C, Ba X, Wang X, Jiang Y, et al. p85-RhoGDI2, a novel complex, is required for PSGL-1-induced ?1 integrin-mediated lymphocyte adhesion to VCAM-1. Int J Biochem Cell Biol. 2013;45:2764-73 pubmed 出版商
  89. Sollome J, Thavathiru E, Camenisch T, Vaillancourt R. HER2/HER3 regulates extracellular acidification and cell migration through MTK1 (MEKK4). Cell Signal. 2014;26:70-82 pubmed 出版商
  90. Chang C, Chen C, Wu M, Chen Y, Chen C, Sheu S, et al. Active Component of Antrodia cinnamomea Mycelia Targeting Head and Neck Cancer Initiating Cells through Exaggerated Autophagic Cell Death. Evid Based Complement Alternat Med. 2013;2013:946451 pubmed 出版商