这是一篇来自已证抗体库的有关人类 p85的综述,是根据81篇发表使用所有方法的文章归纳的。这综述旨在帮助来邦网的访客找到最适合p85 抗体。
p85 同义词: AGM7; GRB1; IMD36; p85; p85-ALPHA; phosphatidylinositol 3-kinase regulatory subunit alpha; PI3-kinase subunit p85-alpha; PI3K regulatory subunit alpha; phosphatidylinositol 3-kinase 85 kDa regulatory subunit alpha; phosphatidylinositol 3-kinase, regulatory subunit, polypeptide 1 (p85 alpha); phosphatidylinositol 3-kinase-associated p-85 alpha; phosphoinositide-3-kinase regulatory subunit alpha; phosphoinositide-3-kinase, regulatory subunit 1 (alpha); ptdIns-3-kinase regulatory subunit alpha

艾博抗(上海)贸易有限公司
兔 单克隆(EPR18702)
  • 免疫印迹; 人类; 图 7a
艾博抗(上海)贸易有限公司 p85抗体(Abcam, ab191606)被用于被用于免疫印迹在人类样本上 (图 7a). Cell Physiol Biochem (2018) ncbi
兔 单克隆(EPR18702)
  • 免疫组化-石蜡切片; 小鼠; 1:100; 图 2a
  • 免疫印迹; 小鼠; 1:1000; 图 10a
艾博抗(上海)贸易有限公司 p85抗体(BIOSS, ab191606)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:100 (图 2a) 和 被用于免疫印迹在小鼠样本上浓度为1:1000 (图 10a). Oncol Rep (2018) ncbi
小鼠 单克隆(M253)
  • 免疫组化-石蜡切片; 小鼠
  • 免疫印迹; 小鼠; 1:1000; 图 2e
艾博抗(上海)贸易有限公司 p85抗体(Abcam, ab86714)被用于被用于免疫组化-石蜡切片在小鼠样本上 和 被用于免疫印迹在小鼠样本上浓度为1:1000 (图 2e). Biochem Biophys Res Commun (2018) ncbi
小鼠 单克隆(M253)
  • 免疫印迹; 大鼠; 1:1000; 图 5f
艾博抗(上海)贸易有限公司 p85抗体(Abcam, ab86714)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 5f). Brain Behav Immun (2017) ncbi
小鼠 单克隆(M253)
  • 免疫印迹; 人类; 1:1000; 图 7
艾博抗(上海)贸易有限公司 p85抗体(Abcam, ab86714)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 7). Oncotarget (2016) ncbi
兔 单克隆(EPR5513)
  • 免疫印迹; 小鼠; 图 8
艾博抗(上海)贸易有限公司 p85抗体(CST, 5405-1)被用于被用于免疫印迹在小鼠样本上 (图 8). Sci Rep (2016) ncbi
兔 单克隆(ep380y)
  • 免疫印迹; 大鼠; 图 4
艾博抗(上海)贸易有限公司 p85抗体(abcam, ab40755)被用于被用于免疫印迹在大鼠样本上 (图 4). Int J Mol Sci (2016) ncbi
兔 单克隆(ep380y)
  • 免疫组化-石蜡切片; 人类; 表 4
艾博抗(上海)贸易有限公司 p85抗体(Abcam, Ab 40755)被用于被用于免疫组化-石蜡切片在人类样本上 (表 4). Chin J Cancer (2016) ncbi
兔 单克隆(ep380y)
  • 免疫组化-石蜡切片; 人类; 图 5a, b
艾博抗(上海)贸易有限公司 p85抗体(Abcam, ab40755)被用于被用于免疫组化-石蜡切片在人类样本上 (图 5a, b). Int J Oncol (2016) ncbi
圣克鲁斯生物技术
小鼠 单克隆(2B2.79)
  • 免疫印迹; 人类; 图 5a
圣克鲁斯生物技术 p85抗体(SantaCruz, sc-71891)被用于被用于免疫印迹在人类样本上 (图 5a). Lab Invest (2017) ncbi
小鼠 单克隆(B-9)
  • 免疫印迹; 人类; 图 6A
圣克鲁斯生物技术 p85抗体(Santa Cruz, sc-1637)被用于被用于免疫印迹在人类样本上 (图 6A). Sci Rep (2017) ncbi
小鼠 单克隆(B-9)
  • 免疫印迹; 小鼠; 图 1e
圣克鲁斯生物技术 p85抗体(Santa Cruz, sc-1637)被用于被用于免疫印迹在小鼠样本上 (图 1e). Oncogenesis (2016) ncbi
小鼠 单克隆(B-9)
  • 免疫印迹; 小鼠; 图 1a
圣克鲁斯生物技术 p85抗体(Santa Cruz, B-9)被用于被用于免疫印迹在小鼠样本上 (图 1a). Diabetes (2016) ncbi
小鼠 单克隆(2B2.79)
  • 免疫印迹; 小鼠; 图 2a
圣克鲁斯生物技术 p85抗体(Santa Cruz, 71891)被用于被用于免疫印迹在小鼠样本上 (图 2a). Int J Mol Med (2016) ncbi
小鼠 单克隆(B-9)
  • 免疫印迹; 人类; 1:200; 图 4
圣克鲁斯生物技术 p85抗体(Santa Cruz, sc-1637)被用于被用于免疫印迹在人类样本上浓度为1:200 (图 4). Mol Med Rep (2015) ncbi
小鼠 单克隆(C-1)
  • 免疫沉淀; 人类; 图 5
  • 免疫组化; 人类; 图 1
  • 免疫印迹; 人类; 图 2
圣克鲁斯生物技术 p85抗体(Santa Cruz, sc-376112)被用于被用于免疫沉淀在人类样本上 (图 5), 被用于免疫组化在人类样本上 (图 1) 和 被用于免疫印迹在人类样本上 (图 2). Sci Rep (2015) ncbi
小鼠 单克隆(B-9)
  • 免疫印迹; 鸡
圣克鲁斯生物技术 p85抗体(Santa Cruz, SC-1637)被用于被用于免疫印迹在鸡样本上. Proc Natl Acad Sci U S A (2014) ncbi
小鼠 单克隆(B-9)
  • 免疫印迹; 小鼠
圣克鲁斯生物技术 p85抗体(Santa Cruz Biotechnology, Sc-1637)被用于被用于免疫印迹在小鼠样本上. Amino Acids (2014) ncbi
小鼠 单克隆(B-9)
  • 免疫印迹; 人类
圣克鲁斯生物技术 p85抗体(Santa cruz, sc-1637)被用于被用于免疫印迹在人类样本上. Biochem Biophys Res Commun (2014) ncbi
小鼠 单克隆(B-9)
  • 免疫印迹; 小鼠; 图 9
圣克鲁斯生物技术 p85抗体(Santa Cruz Biotechnology, sc-1637)被用于被用于免疫印迹在小鼠样本上 (图 9). Biochemistry (2013) ncbi
小鼠 单克隆(B-9)
  • 免疫印迹; 人类
圣克鲁斯生物技术 p85抗体(Santa Cruz Biotechnology, SC-1637)被用于被用于免疫印迹在人类样本上. Int J Biochem Cell Biol (2013) ncbi
小鼠 单克隆(B-9)
  • 免疫印迹; 人类
圣克鲁斯生物技术 p85抗体(Santa Cruz Biotechnology, sc-1637)被用于被用于免疫印迹在人类样本上. Cell Signal (2014) ncbi
小鼠 单克隆(B-9)
  • 免疫印迹; 人类; 图 3
圣克鲁斯生物技术 p85抗体(Santa Cruz Biotechnology, sc-1637)被用于被用于免疫印迹在人类样本上 (图 3). Evid Based Complement Alternat Med (2013) ncbi
赛默飞世尔
兔 单克隆(6HCLC)
  • 免疫印迹; 小鼠; 1:2000; 图 5a
赛默飞世尔 p85抗体(Invitrogen, 710400)被用于被用于免疫印迹在小鼠样本上浓度为1:2000 (图 5a). J Mol Neurosci (2017) ncbi
亚诺法生技股份有限公司
小鼠 单克隆(1C10)
  • 免疫印迹; 人类
亚诺法生技股份有限公司 p85抗体(Abnova, 1C10)被用于被用于免疫印迹在人类样本上. Clin Exp Immunol (2014) ncbi
赛信通(上海)生物试剂有限公司
兔 单克隆(19H8)
  • 免疫印迹; 人类; 图 5a
赛信通(上海)生物试剂有限公司 p85抗体(Cell Signaling, 19H8)被用于被用于免疫印迹在人类样本上 (图 5a). J Exp Med (2019) ncbi
兔 多克隆
  • 免疫印迹; 人类; 1:500; 图 1d
赛信通(上海)生物试剂有限公司 p85抗体(Cell Signaling, 4292)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 1d). J Huntingtons Dis (2019) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图 6f
赛信通(上海)生物试剂有限公司 p85抗体(Cell Signaling, 4292)被用于被用于免疫印迹在人类样本上 (图 6f). Cell Rep (2018) ncbi
兔 多克隆
  • 免疫印迹; 人类; 1:2000; 图 7a
赛信通(上海)生物试剂有限公司 p85抗体(Cell signaling, 4292)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 7a). J Exp Clin Cancer Res (2017) ncbi
兔 单克隆(19H8)
  • 免疫印迹; 小鼠; 1:1000; 图 3c
赛信通(上海)生物试剂有限公司 p85抗体(cell signaling, 4257)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 3c). Oncogene (2017) ncbi
兔 单克隆(19H8)
  • 免疫印迹; 人类; 图 4a
赛信通(上海)生物试剂有限公司 p85抗体(Cell Signalling Technology, 4257)被用于被用于免疫印迹在人类样本上 (图 4a). DNA Cell Biol (2017) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 图 1a
赛信通(上海)生物试剂有限公司 p85抗体(Cell Signaling Technology, 4292s)被用于被用于免疫印迹在小鼠样本上 (图 1a). Diabetes (2017) ncbi
兔 单克隆(19H8)
  • 免疫印迹; 人类; 图 5a
赛信通(上海)生物试剂有限公司 p85抗体(Cell Signaling Technology, 4257)被用于被用于免疫印迹在人类样本上 (图 5a). FEBS Open Bio (2017) ncbi
兔 单克隆(19H8)
  • 免疫印迹; 小鼠; 1:1000; 图 s9a
赛信通(上海)生物试剂有限公司 p85抗体(Cell Signaling, 4257)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 s9a). Nature (2016) ncbi
兔 多克隆
  • 免疫组化-石蜡切片; 小鼠
赛信通(上海)生物试剂有限公司 p85抗体(Cell Signaling, 4292)被用于被用于免疫组化-石蜡切片在小鼠样本上. Acta Histochem (2017) ncbi
兔 单克隆(19H8)
  • 免疫印迹; 人类; 图 6d
赛信通(上海)生物试剂有限公司 p85抗体(Cell signaling, 4257)被用于被用于免疫印迹在人类样本上 (图 6d). J Exp Clin Cancer Res (2016) ncbi
兔 单克隆(19H8)
  • 免疫印迹; 小鼠; 图 7a
赛信通(上海)生物试剂有限公司 p85抗体(Cell Signaling, 4257)被用于被用于免疫印迹在小鼠样本上 (图 7a). Int J Mol Med (2016) ncbi
兔 单克隆(19H8)
  • 免疫印迹; 大鼠; 1:1000; 图 2
赛信通(上海)生物试剂有限公司 p85抗体(Cell Signaling, 4257)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 2). Mol Neurobiol (2017) ncbi
兔 单克隆(19H8)
  • 免疫印迹; Spodoptera litura; 图 3a
赛信通(上海)生物试剂有限公司 p85抗体(Cell Signaling, 4257)被用于被用于免疫印迹在Spodoptera litura样本上 (图 3a). Sci Rep (2016) ncbi
兔 单克隆(19H8)
  • 免疫印迹; 人类; 1:1000; 图 4f
赛信通(上海)生物试剂有限公司 p85抗体(Cell Signaling, 4257)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 4f). Oncotarget (2016) ncbi
兔 多克隆
  • 免疫印迹; scFv; 1:1000; 图 6a
赛信通(上海)生物试剂有限公司 p85抗体(Cell Signaling, 4292)被用于被用于免疫印迹在scFv样本上浓度为1:1000 (图 6a). Mol Nutr Food Res (2017) ncbi
兔 单克隆(19H8)
  • 免疫印迹; 大鼠; 图 2
赛信通(上海)生物试剂有限公司 p85抗体(Cell Signaling, 4257)被用于被用于免疫印迹在大鼠样本上 (图 2). Int J Mol Med (2016) ncbi
兔 多克隆
  • 免疫沉淀; 小鼠; 图 5
  • 免疫印迹; 小鼠; 图 5
赛信通(上海)生物试剂有限公司 p85抗体(Cell Signaling Tech, 4292)被用于被用于免疫沉淀在小鼠样本上 (图 5) 和 被用于免疫印迹在小鼠样本上 (图 5). Mol Syst Biol (2016) ncbi
兔 单克隆(19H8)
  • 免疫印迹; 小鼠; 1:500; 图 6
赛信通(上海)生物试剂有限公司 p85抗体(Cell Signaling Technology, 4257)被用于被用于免疫印迹在小鼠样本上浓度为1:500 (图 6). Alzheimers Dement (2016) ncbi
兔 单克隆(19H8)
  • 免疫印迹; 人类; 图 1a
赛信通(上海)生物试剂有限公司 p85抗体(Cell Signaling, 4257)被用于被用于免疫印迹在人类样本上 (图 1a). Oncotarget (2016) ncbi
兔 单克隆(19H8)
  • 免疫印迹; 人类; 图 1
赛信通(上海)生物试剂有限公司 p85抗体(Cell Signaling, 4257)被用于被用于免疫印迹在人类样本上 (图 1). J Immunol (2016) ncbi
兔 单克隆(19H8)
  • 免疫印迹; 小鼠; 1:1000; 图 6
赛信通(上海)生物试剂有限公司 p85抗体(Cell Signaling, 4257)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 6). Sci Rep (2016) ncbi
兔 单克隆(19H8)
  • 免疫印迹; 人类; 图 6
赛信通(上海)生物试剂有限公司 p85抗体(Cell Signaling Technology, 4257)被用于被用于免疫印迹在人类样本上 (图 6). Neuroscience (2016) ncbi
兔 单克隆(19H8)
  • 免疫印迹; 小鼠; 图 6
赛信通(上海)生物试剂有限公司 p85抗体(Cell Signaling, 4257)被用于被用于免疫印迹在小鼠样本上 (图 6). Oncotarget (2016) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图 1
赛信通(上海)生物试剂有限公司 p85抗体(Cell Signaling, 4292S)被用于被用于免疫印迹在人类样本上 (图 1). Sci Rep (2016) ncbi
兔 单克隆(19H8)
  • 免疫印迹; 人类; 图 5
赛信通(上海)生物试剂有限公司 p85抗体(Cell Signaling Tech, 4257)被用于被用于免疫印迹在人类样本上 (图 5). PLoS Pathog (2016) ncbi
兔 单克隆(19H8)
  • 免疫印迹; 人类; 图 6
赛信通(上海)生物试剂有限公司 p85抗体(Cell Signaling, 4257)被用于被用于免疫印迹在人类样本上 (图 6). Sci Rep (2016) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图 6
赛信通(上海)生物试剂有限公司 p85抗体(Cell Signaling Technology, 4292)被用于被用于免疫印迹在人类样本上 (图 6). Sci Rep (2016) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 图 4
赛信通(上海)生物试剂有限公司 p85抗体(CST, 4292)被用于被用于免疫印迹在小鼠样本上 (图 4). Stem Cell Reports (2016) ncbi
兔 单克隆(19H8)
  • 免疫印迹; 人类; 图 4b
赛信通(上海)生物试剂有限公司 p85抗体(Cell Signaling Technology, 4257)被用于被用于免疫印迹在人类样本上 (图 4b). Oncogene (2016) ncbi
兔 多克隆
  • 免疫印迹; 人类; 1:500; 图 5
赛信通(上海)生物试剂有限公司 p85抗体(Cell signaling, 4292S)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 5). Oncol Lett (2015) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图 2
赛信通(上海)生物试剂有限公司 p85抗体(Cell Signaling, 4292)被用于被用于免疫印迹在人类样本上 (图 2). Mol Cancer (2015) ncbi
兔 单克隆(19H8)
  • 免疫印迹; 人类; 图 5e
赛信通(上海)生物试剂有限公司 p85抗体(Cell Signaling, 4257)被用于被用于免疫印迹在人类样本上 (图 5e). BMC Cancer (2015) ncbi
兔 多克隆
  • 免疫印迹; 小鼠
赛信通(上海)生物试剂有限公司 p85抗体(Cell Signaling, 4292)被用于被用于免疫印迹在小鼠样本上. Biochem Biophys Res Commun (2015) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 1:1000
赛信通(上海)生物试剂有限公司 p85抗体(Cell Signaling Technology, 4292)被用于被用于免疫印迹在小鼠样本上浓度为1:1000. J Neurochem (2015) ncbi
兔 单克隆(19H8)
  • 免疫印迹; 人类; 图 3
赛信通(上海)生物试剂有限公司 p85抗体(Cell Signaling, 4257)被用于被用于免疫印迹在人类样本上 (图 3). EBioMedicine (2015) ncbi
兔 单克隆(19H8)
  • 免疫印迹; 人类; 1:1000
赛信通(上海)生物试剂有限公司 p85抗体(Cell Signaling, 4257s)被用于被用于免疫印迹在人类样本上浓度为1:1000. Am J Physiol Endocrinol Metab (2015) ncbi
兔 多克隆
  • 免疫印迹; 人类; 1:1000; 图 8
赛信通(上海)生物试剂有限公司 p85抗体(Cell Signaling Technology, 4292)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 8). Mol Med Rep (2015) ncbi
兔 单克隆(19H8)
  • 免疫印迹; 人类; 1:800; 图 5
赛信通(上海)生物试剂有限公司 p85抗体(Cell Signaling, 4257)被用于被用于免疫印迹在人类样本上浓度为1:800 (图 5). PLoS ONE (2015) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 1:500; 图 4
赛信通(上海)生物试剂有限公司 p85抗体(Cell Signaling Tech, 4292S)被用于被用于免疫印迹在小鼠样本上浓度为1:500 (图 4). Int J Biol Sci (2015) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 1:500
赛信通(上海)生物试剂有限公司 p85抗体(Cell Signaling, 4292s)被用于被用于免疫印迹在小鼠样本上浓度为1:500. Int J Biochem Cell Biol (2014) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图 5d
赛信通(上海)生物试剂有限公司 p85抗体(Cell Signaling Technology, 4292)被用于被用于免疫印迹在人类样本上 (图 5d). FASEB J (2015) ncbi
兔 多克隆
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 p85抗体(Cell Signaling Technology, 4292)被用于被用于免疫印迹在人类样本上. PLoS ONE (2014) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 图 5, 7
赛信通(上海)生物试剂有限公司 p85抗体(Cell Signaling, 4292)被用于被用于免疫印迹在小鼠样本上 (图 5, 7). J Cell Sci (2014) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 1:1000
赛信通(上海)生物试剂有限公司 p85抗体(Cell Signaling Technology, 4292s)被用于被用于免疫印迹在小鼠样本上浓度为1:1000. Food Chem (2013) ncbi
默克密理博中国
兔 多克隆
  • 免疫印迹; 人类; 图 4c
默克密理博中国 p85抗体(Millipore, ABS233)被用于被用于免疫印迹在人类样本上 (图 4c). Front Immunol (2019) ncbi
兔 多克隆
  • 免疫沉淀; 小鼠; 图 6a
  • 免疫印迹; 小鼠; 图 6a
默克密理博中国 p85抗体(Millipore, ABS234)被用于被用于免疫沉淀在小鼠样本上 (图 6a) 和 被用于免疫印迹在小鼠样本上 (图 6a). Sci Signal (2018) ncbi
小鼠 单克隆(UB93-3)
  • 免疫印迹; African green monkey; 图 1c
默克密理博中国 p85抗体(Millipore, 05-217)被用于被用于免疫印迹在African green monkey样本上 (图 1c). Sci Rep (2017) ncbi
兔 多克隆
  • 免疫沉淀; 小鼠; 图 6
  • 免疫印迹; 小鼠; 图 5
默克密理博中国 p85抗体(Millipore, ABS233)被用于被用于免疫沉淀在小鼠样本上 (图 6) 和 被用于免疫印迹在小鼠样本上 (图 5). J Clin Invest (2016) ncbi
小鼠 单克隆(AB6)
  • 免疫印迹; 人类; 图 s13a
默克密理博中国 p85抗体(Millipore, 05-212)被用于被用于免疫印迹在人类样本上 (图 s13a). Nat Commun (2015) ncbi
兔 多克隆
  • 免疫印迹; 小鼠
默克密理博中国 p85抗体(Millipore, ABS233)被用于被用于免疫印迹在小鼠样本上. Nucleic Acids Res (2015) ncbi
兔 多克隆
  • 免疫印迹; 小鼠
默克密理博中国 p85抗体(Millipore, ABS233)被用于被用于免疫印迹在小鼠样本上. J Cell Physiol (2015) ncbi
小鼠 单克隆(AB6)
  • 免疫印迹; 人类; 表 s3
默克密理博中国 p85抗体(Millipore, AB6)被用于被用于免疫印迹在人类样本上 (表 s3). Cell Death Dis (2015) ncbi
小鼠 单克隆(UB93-3)
  • 免疫印迹; 人类; 表 s3
默克密理博中国 p85抗体(Millipore, UB93-3)被用于被用于免疫印迹在人类样本上 (表 s3). Cell Death Dis (2015) ncbi
兔 多克隆
  • 免疫印迹; 大鼠
默克密理博中国 p85抗体(Millipore, ABS234)被用于被用于免疫印迹在大鼠样本上. Peptides (2015) ncbi
兔 单克隆
  • 免疫细胞化学; 小鼠
  • 免疫印迹; 小鼠
默克密理博中国 p85抗体(Millipore, 04-403)被用于被用于免疫细胞化学在小鼠样本上 和 被用于免疫印迹在小鼠样本上. Mol Cell Endocrinol (2015) ncbi
小鼠 单克隆(AB6)
  • 免疫印迹; 人类; 1:1000
默克密理博中国 p85抗体(Millipore, 05-212)被用于被用于免疫印迹在人类样本上浓度为1:1000. PLoS ONE (2014) ncbi
文章列表
  1. Fenwick C, Loredo Varela J, Joo V, Pellaton C, Farina A, Rajah N, et al. Tumor suppression of novel anti-PD-1 antibodies mediated through CD28 costimulatory pathway. J Exp Med. 2019;: pubmed 出版商
  2. Thauland T, Pellerin L, Ohgami R, Bacchetta R, Butte M. Case Study: Mechanism for Increased Follicular Helper T Cell Development in Activated PI3K Delta Syndrome. Front Immunol. 2019;10:753 pubmed 出版商
  3. Tousley A, Iuliano M, Weisman E, Sapp E, Zhang N, Vodicka P, et al. Rac1 Activity Is Modulated by Huntingtin and Dysregulated in Models of Huntington's Disease. J Huntingtons Dis. 2019;8:53-69 pubmed 出版商
  4. Roy N, MacKay J, Robertson T, Hammer D, Burkhardt J. Crk adaptor proteins mediate actin-dependent T cell migration and mechanosensing induced by the integrin LFA-1. Sci Signal. 2018;11: pubmed 出版商
  5. Yin D, Li Y, Fu C, Feng Y. Pro-Angiogenic Role of LncRNA HULC in Microvascular Endothelial Cells via Sequestrating miR-124. Cell Physiol Biochem. 2018;50:2188-2202 pubmed 出版商
  6. Chen Y, Huang Y, Lu X, Wang G, Chi P. Antitumor effects of the silencing of programmed cell death ligand 1 in colorectal cancer via immunoregulation. Oncol Rep. 2018;40:3370-3380 pubmed 出版商
  7. Zhao Y, Harrison D, Song Y, Ji J, Huang J, Hui E. Antigen-Presenting Cell-Intrinsic PD-1 Neutralizes PD-L1 in cis to Attenuate PD-1 Signaling in T Cells. Cell Rep. 2018;24:379-390.e6 pubmed 出版商
  8. Chang J, Tang N, Fang Q, Zhu K, Liu L, Xiong X, et al. TEMPORARY REMOVAL: Inhibition of COX-2 and 5-LOX regulates the progression of colorectal cancer by promoting PTEN and suppressing PI3K/AKT pathway. Biochem Biophys Res Commun. 2018;: pubmed 出版商
  9. Whitecross D, Anderson D. Identification of the Binding Sites on Rab5 and p110beta Phosphatidylinositol 3-kinase. Sci Rep. 2017;7:16194 pubmed 出版商
  10. Yu L, Sun Y, Li J, Wang Y, Zhu Y, Shi Y, et al. Silencing the Girdin gene enhances radio-sensitivity of hepatocellular carcinoma via suppression of glycolytic metabolism. J Exp Clin Cancer Res. 2017;36:110 pubmed 出版商
  11. Simond A, Rao T, Zuo D, Zhao J, Muller W. ErbB2-positive mammary tumors can escape PI3K-p110α loss through downregulation of the Pten tumor suppressor. Oncogene. 2017;36:6059-6066 pubmed 出版商
  12. Liu X, Zhou X, Xu H, He Z, Shi X, Wu S. SLC34A2 Regulates the Proliferation, Migration, and Invasion of Human Osteosarcoma Cells Through PTEN/PI3K/AKT Signaling. DNA Cell Biol. 2017;36:775-780 pubmed 出版商
  13. Wang K, Liu W, Song Y, Wu X, Zhang Y, Li S, et al. The role of angiopoietin-2 in nucleus pulposus cells during human intervertebral disc degeneration. Lab Invest. 2017;97:971-982 pubmed 出版商
  14. Rong H, Zhao Z, Feng J, Lei Y, Wu H, Sun R, et al. The effects of dexmedetomidine pretreatment on the pro- and anti-inflammation systems after spinal cord injury in rats. Brain Behav Immun. 2017;64:195-207 pubmed 出版商
  15. Kuo T, Chen T, Lee R, Nguyen N, Broughton A, Zhang D, et al. Pik3r1 Is Required for Glucocorticoid-Induced Perilipin 1 Phosphorylation in Lipid Droplet for Adipocyte Lipolysis. Diabetes. 2017;66:1601-1610 pubmed 出版商
  16. Chung C, Chang C, Hsu C, Lin K, Peng H, Huang T. Aggretin Venom Polypeptide as a Novel Anti-angiogenesis Agent by Targeting Integrin alpha2beta1. Sci Rep. 2017;7:43612 pubmed 出版商
  17. Yang X, Huo F, Liu B, Liu J, Chen T, Li J, et al. Crocin Inhibits Oxidative Stress and Pro-inflammatory Response of Microglial Cells Associated with Diabetic Retinopathy Through the Activation of PI3K/Akt Signaling Pathway. J Mol Neurosci. 2017;61:581-589 pubmed 出版商
  18. Cao H, Yu S, Chen D, Jing C, Wang Z, Ma R, et al. Liver X receptor agonist T0901317 reverses resistance of A549 human lung cancer cells to EGFR-TKI treatment. FEBS Open Bio. 2017;7:35-43 pubmed 出版商
  19. Karki R, Man S, Malireddi R, Kesavardhana S, Zhu Q, Burton A, et al. NLRC3 is an inhibitory sensor of PI3K-mTOR pathways in cancer. Nature. 2016;540:583-587 pubmed 出版商
  20. Jung J, Jung H, Neupane S, Kim K, Kim J, Yamamoto H, et al. Involvement of PI3K and PKA pathways in mouse tongue epithelial differentiation. Acta Histochem. 2017;119:92-98 pubmed 出版商
  21. Tanouchi A, Taniuchi K, Furihata M, Naganuma S, Dabanaka K, Kimura M, et al. CCDC88A, a prognostic factor for human pancreatic cancers, promotes the motility and invasiveness of pancreatic cancer cells. J Exp Clin Cancer Res. 2016;35:190 pubmed
  22. Kong Q, Zhang H, Zhao T, Zhang W, Yan M, Dong X, et al. Tangshen formula attenuates hepatic steatosis by inhibiting hepatic lipogenesis and augmenting fatty acid oxidation in db/db mice. Int J Mol Med. 2016;38:1715-1726 pubmed 出版商
  23. Chruvattil R, Banerjee S, Nath S, Machhi J, Kharkwal G, Yadav M, et al. Dexamethasone Alters the Appetite Regulation via Induction of Hypothalamic Insulin Resistance in Rat Brain. Mol Neurobiol. 2017;54:7483-7496 pubmed 出版商
  24. Sheen M, Marotti J, Allegrezza M, Rutkowski M, Conejo Garcia J, Fiering S. Constitutively activated PI3K accelerates tumor initiation and modifies histopathology of breast cancer. Oncogenesis. 2016;5:e267 pubmed 出版商
  25. Shao X, Lai D, Zhang L, Xu H. Induction of Autophagy and Apoptosis via PI3K/AKT/TOR Pathways by Azadirachtin A in Spodoptera litura Cells. Sci Rep. 2016;6:35482 pubmed 出版商
  26. Song C, Liu B, Shi Y, Liu N, Yan Y, Zhang J, et al. MicroRNA-130a alleviates human coronary artery endothelial cell injury and inflammatory responses by targeting PTEN via activating PI3K/Akt/eNOS signaling pathway. Oncotarget. 2016;7:71922-71936 pubmed 出版商
  27. Cao R, Meng Z, Liu T, Wang G, Qian G, Cao T, et al. Decreased TRPM7 inhibits activities and induces apoptosis of bladder cancer cells via ERK1/2 pathway. Oncotarget. 2016;7:72941-72960 pubmed 出版商
  28. De Los Santos S, García Pérez V, Hernández Reséndiz S, Palma Flores C, González Gutiérrez C, Zazueta C, et al. (-)-Epicatechin induces physiological cardiac growth by activation of the PI3K/Akt pathway in mice. Mol Nutr Food Res. 2017;61: pubmed 出版商
  29. Zhang Y, Hu S, Chen Y, Guo M, Wang S. Hepatocyte growth factor inhibits hypoxia/reoxygenation-induced activation of xanthine oxidase in endothelial cells through the JAK2 signaling pathway. Int J Mol Med. 2016;38:1055-62 pubmed 出版商
  30. Voisinne G, García Blesa A, Chaoui K, Fiore F, Bergot E, Girard L, et al. Co-recruitment analysis of the CBL and CBLB signalosomes in primary T cells identifies CD5 as a key regulator of TCR-induced ubiquitylation. Mol Syst Biol. 2016;12:876 pubmed 出版商
  31. Herring A, Münster Y, Akkaya T, Moghaddam S, Deinsberger K, Meyer J, et al. Kallikrein-8 inhibition attenuates Alzheimer's disease pathology in mice. Alzheimers Dement. 2016;12:1273-1287 pubmed 出版商
  32. Shriver M, Marimuthu S, Paul C, Geist J, Seale T, Konstantopoulos K, et al. Giant obscurins regulate the PI3K cascade in breast epithelial cells via direct binding to the PI3K/p85 regulatory subunit. Oncotarget. 2016;7:45414-45428 pubmed 出版商
  33. Kobayashi K, Araya J, Minagawa S, Hara H, Saito N, Kadota T, et al. Involvement of PARK2-Mediated Mitophagy in Idiopathic Pulmonary Fibrosis Pathogenesis. J Immunol. 2016;197:504-16 pubmed 出版商
  34. Lu J, Ji W, Zhao M, Wang M, Yan W, Chen M, et al. Protamine zinc insulin combined with sodium selenite improves glycometabolism in the diabetic KKAy mice. Sci Rep. 2016;6:26563 pubmed 出版商
  35. Wang K, Cao P, Wang H, Tang Z, Wang N, Wang J, et al. Chronic administration of Angelica sinensis polysaccharide effectively improves fatty liver and glucose homeostasis in high-fat diet-fed mice. Sci Rep. 2016;6:26229 pubmed 出版商
  36. Huang Y, Lin C, Liao H, Liu C, Chen Y, Chiu W, et al. Cholesterol overload induces apoptosis in SH-SY5Y human neuroblastoma cells through the up regulation of flotillin-2 in the lipid raft and the activation of BDNF/Trkb signaling. Neuroscience. 2016;328:201-9 pubmed 出版商
  37. Qiu X, Wei R, Li Y, Zhu Q, Xiong C, Chen Y, et al. NEDL2 regulates enteric nervous system and kidney development in its Nedd8 ligase activity-dependent manner. Oncotarget. 2016;7:31440-53 pubmed 出版商
  38. Kumar A, Abbas W, Colin L, Khan K, Bouchat S, Varin A, et al. Tuning of AKT-pathway by Nef and its blockade by protease inhibitors results in limited recovery in latently HIV infected T-cell line. Sci Rep. 2016;6:24090 pubmed 出版商
  39. Cornick S, Moreau F, Chadee K. Entamoeba histolytica Cysteine Proteinase 5 Evokes Mucin Exocytosis from Colonic Goblet Cells via αvβ3 Integrin. PLoS Pathog. 2016;12:e1005579 pubmed 出版商
  40. Osinalde N, Sánchez Quiles V, Blagoev B, Kratchmarova I. Changes in Gab2 phosphorylation and interaction partners in response to interleukin (IL)-2 stimulation in T-lymphocytes. Sci Rep. 2016;6:23530 pubmed 出版商
  41. Huang Y, Chen C, Tang K, Sheen J, Tiao M, Tain Y, et al. Postnatal High-Fat Diet Increases Liver Steatosis and Apoptosis Threatened by Prenatal Dexamethasone through the Oxidative Effect. Int J Mol Sci. 2016;17:369 pubmed 出版商
  42. Afsar T, Trembley J, Salomon C, Razak S, Khan M, Ahmed K. Growth inhibition and apoptosis in cancer cells induced by polyphenolic compounds of Acacia hydaspica: Involvement of multiple signal transduction pathways. Sci Rep. 2016;6:23077 pubmed 出版商
  43. Winnay J, Solheim M, Dirice E, Sakaguchi M, Noh H, Kang H, et al. PI3-kinase mutation linked to insulin and growth factor resistance in vivo. J Clin Invest. 2016;126:1401-12 pubmed 出版商
  44. Li M, Lu G, Hu J, Shen X, Ju J, Gao Y, et al. EVA1A/TMEM166 Regulates Embryonic Neurogenesis by Autophagy. Stem Cell Reports. 2016;6:396-410 pubmed 出版商
  45. Hung M, Chen Y, Chu P, Shih C, Yu H, Tai W, et al. Upregulation of the oncoprotein SET determines poor clinical outcomes in hepatocellular carcinoma and shows therapeutic potential. Oncogene. 2016;35:4891-902 pubmed 出版商
  46. Adighibe O, Leek R, Fernandez Mercado M, Hu J, Snell C, Gatter K, et al. Why some tumours trigger neovascularisation and others don't: the story thus far. Chin J Cancer. 2016;35:18 pubmed 出版商
  47. Lakshmipathi J, Alvarez Perez J, Rosselot C, Casinelli G, Stamateris R, Rausell Palamos F, et al. PKCζ Is Essential for Pancreatic β-Cell Replication During Insulin Resistance by Regulating mTOR and Cyclin-D2. Diabetes. 2016;65:1283-96 pubmed 出版商
  48. Chen C, Lee T, Kwok C, Hsu Y, Shih K, Lin Y, et al. Cannabinoid receptor type 1 mediates high-fat diet-induced insulin resistance by increasing forkhead box O1 activity in a mouse model of obesity. Int J Mol Med. 2016;37:743-54 pubmed 出版商
  49. Yan L, Liu Y, Xiang J, Wu Q, Xu L, Luo X, et al. PIK3R1 targeting by miR-21 suppresses tumor cell migration and invasion by reducing PI3K/AKT signaling and reversing EMT, and predicts clinical outcome of breast cancer. Int J Oncol. 2016;48:471-84 pubmed 出版商
  50. Bo Q, Sun X, Liu J, Sui X, Li G. Antitumor action of the peroxisome proliferator-activated receptor-γ agonist rosiglitazone in hepatocellular carcinoma. Oncol Lett. 2015;10:1979-1984 pubmed
  51. Bauer J, Ozden O, Akagi N, Carroll T, Principe D, Staudacher J, et al. Activin and TGFβ use diverging mitogenic signaling in advanced colon cancer. Mol Cancer. 2015;14:182 pubmed 出版商
  52. Song G, Li Y, Lin L, Cao Y. Anti-autophagic and anti-apoptotic effects of memantine in a SH-SY5Y cell model of Alzheimer's disease via mammalian target of rapamycin-dependent and -independent pathways. Mol Med Rep. 2015;12:7615-22 pubmed 出版商
  53. Salim H, Zong D, Hååg P, Novak M, Mörk B, Lewensohn R, et al. DKK1 is a potential novel mediator of cisplatin-refractoriness in non-small cell lung cancer cell lines. BMC Cancer. 2015;15:628 pubmed 出版商
  54. Miao L, Okoro E, Cao Z, Yang H, Motley Johnson E, Guo Z. High-density lipoprotein-mediated transcellular cholesterol transport in mouse aortic endothelial cells. Biochem Biophys Res Commun. 2015;465:256-61 pubmed 出版商
  55. Rodríguez Seoane C, Ramos A, Korth C, Requena J. DISC1 regulates expression of the neurotrophin VGF through the PI3K/AKT/CREB pathway. J Neurochem. 2015;135:598-605 pubmed 出版商
  56. Cao X, Kaneko T, Li J, Liu A, Voss C, Li S. A phosphorylation switch controls the spatiotemporal activation of Rho GTPases in directional cell migration. Nat Commun. 2015;6:7721 pubmed 出版商
  57. Hu Y, Belaghzal H, Hsiao W, Qi J, Bradner J, Guertin D, et al. Transcriptional and post-transcriptional control of adipocyte differentiation by Jumonji domain-containing protein 6. Nucleic Acids Res. 2015;43:7790-804 pubmed 出版商
  58. Yang L, Li Y, Bhattacharya A, Zhang Y. Inhibition of ERBB2-overexpressing Tumors by Recombinant Human Prolidase and Its Enzymatically Inactive Mutant. EBioMedicine. 2015;2:396-405 pubmed
  59. Li C, Siragy H. (Pro)renin receptor regulates autophagy and apoptosis in podocytes exposed to high glucose. Am J Physiol Endocrinol Metab. 2015;309:E302-10 pubmed 出版商
  60. Padilla Benavides T, Nasipak B, Imbalzano A. Brg1 Controls the Expression of Pax7 to Promote Viability and Proliferation of Mouse Primary Myoblasts. J Cell Physiol. 2015;230:2990-7 pubmed 出版商
  61. Cheng H, Liang Y, Kuo Y, Chuu C, Lin C, Lee M, et al. Identification of thioridazine, an antipsychotic drug, as an antiglioblastoma and anticancer stem cell agent using public gene expression data. Cell Death Dis. 2015;6:e1753 pubmed 出版商
  62. Chuang W, Su C, Lin P, Lin C, Chen Y. Sann-Joong-Kuey-Jian-Tang induces autophagy in HepG2 cells via regulation of the phosphoinositide-3 kinase/Akt/mammalian target of rapamycin and p38 mitogen-activated protein kinase pathways. Mol Med Rep. 2015;12:1677-84 pubmed 出版商
  63. Carnesecchi J, Malbouyres M, de Mets R, Balland M, Beauchef G, Vié K, et al. Estrogens induce rapid cytoskeleton re-organization in human dermal fibroblasts via the non-classical receptor GPR30. PLoS ONE. 2015;10:e0120672 pubmed 出版商
  64. Lin Y, Yang Z, Xu A, Dong P, Huang Y, Liu H, et al. PIK3R1 negatively regulates the epithelial-mesenchymal transition and stem-like phenotype of renal cancer cells through the AKT/GSK3β/CTNNB1 signaling pathway. Sci Rep. 2015;5:8997 pubmed 出版商
  65. Suman S, Kallakury B, Fornace A, Datta K. Protracted upregulation of leptin and IGF1 is associated with activation of PI3K/Akt and JAK2 pathway in mouse intestine after ionizing radiation exposure. Int J Biol Sci. 2015;11:274-83 pubmed 出版商
  66. Park B, Cha S, Han B, Kim S. Angiotensin IV stimulates high atrial stretch-induced ANP secretion via insulin regulated aminopeptidase. Peptides. 2015;63:30-7 pubmed 出版商
  67. Datta K, Suman S, Fornace A. Radiation persistently promoted oxidative stress, activated mTOR via PI3K/Akt, and downregulated autophagy pathway in mouse intestine. Int J Biochem Cell Biol. 2014;57:167-76 pubmed 出版商
  68. Kapodistria K, Tsilibary E, Politis P, Moustardas P, Charonis A, Kitsiou P. Nephrin, a transmembrane protein, is involved in pancreatic beta-cell survival signaling. Mol Cell Endocrinol. 2015;400:112-28 pubmed 出版商
  69. Ito Y, Hart J, Ueno L, Vogt P. Oncogenic activity of the regulatory subunit p85β of phosphatidylinositol 3-kinase (PI3K). Proc Natl Acad Sci U S A. 2014;111:16826-9 pubmed 出版商
  70. Niu G, Ye T, Qin L, Bourbon P, Chang C, Zhao S, et al. Orphan nuclear receptor TR3/Nur77 improves wound healing by upregulating the expression of integrin β4. FASEB J. 2015;29:131-40 pubmed 出版商
  71. Kyriakidis N, Kapsogeorgou E, Gourzi V, Konsta O, Baltatzis G, Tzioufas A. Toll-like receptor 3 stimulation promotes Ro52/TRIM21 synthesis and nuclear redistribution in salivary gland epithelial cells, partially via type I interferon pathway. Clin Exp Immunol. 2014;178:548-60 pubmed 出版商
  72. Ren W, Duan J, Yin J, Liu G, Cao Z, Xiong X, et al. Dietary L-glutamine supplementation modulates microbial community and activates innate immunity in the mouse intestine. Amino Acids. 2014;46:2403-13 pubmed 出版商
  73. Elliott V, Rychahou P, Zaytseva Y, Evers B. Activation of c-Met and upregulation of CD44 expression are associated with the metastatic phenotype in the colorectal cancer liver metastasis model. PLoS ONE. 2014;9:e97432 pubmed 出版商
  74. Subramani R, Lopez Valdez R, Arumugam A, Nandy S, Boopalan T, Lakshmanaswamy R. Targeting insulin-like growth factor 1 receptor inhibits pancreatic cancer growth and metastasis. PLoS ONE. 2014;9:e97016 pubmed 出版商
  75. Kim K, Lee S, Ryu S, Han D. Efficient isolation and elution of cellular proteins using aptamer-mediated protein precipitation assay. Biochem Biophys Res Commun. 2014;448:114-9 pubmed 出版商
  76. Zemljic Harpf A, Godoy J, Platoshyn O, Asfaw E, Busija A, Domenighetti A, et al. Vinculin directly binds zonula occludens-1 and is essential for stabilizing connexin-43-containing gap junctions in cardiac myocytes. J Cell Sci. 2014;127:1104-16 pubmed 出版商
  77. Wu J, Akkuratov E, Bai Y, Gaskill C, Askari A, Liu L. Cell signaling associated with Na(+)/K(+)-ATPase: activation of phosphatidylinositide 3-kinase IA/Akt by ouabain is independent of Src. Biochemistry. 2013;52:9059-67 pubmed 出版商
  78. Luo J, Xu T, Li C, Ba X, Wang X, Jiang Y, et al. p85-RhoGDI2, a novel complex, is required for PSGL-1-induced ?1 integrin-mediated lymphocyte adhesion to VCAM-1. Int J Biochem Cell Biol. 2013;45:2764-73 pubmed 出版商
  79. Sollome J, Thavathiru E, Camenisch T, Vaillancourt R. HER2/HER3 regulates extracellular acidification and cell migration through MTK1 (MEKK4). Cell Signal. 2014;26:70-82 pubmed 出版商
  80. Zhang Y, Liu X, Han L, Gao X, Liu E, Wang T. Regulation of lipid and glucose homeostasis by mango tree leaf extract is mediated by AMPK and PI3K/AKT signaling pathways. Food Chem. 2013;141:2896-905 pubmed 出版商
  81. Chang C, Chen C, Wu M, Chen Y, Chen C, Sheu S, et al. Active Component of Antrodia cinnamomea Mycelia Targeting Head and Neck Cancer Initiating Cells through Exaggerated Autophagic Cell Death. Evid Based Complement Alternat Med. 2013;2013:946451 pubmed 出版商