这是一篇来自已证抗体库的有关人类 parvalbumin的综述,是根据241篇发表使用所有方法的文章归纳的。这综述旨在帮助来邦网的访客找到最适合parvalbumin 抗体。
parvalbumin 同义词: D22S749

艾博抗(上海)贸易有限公司
domestic rabbit 单克隆(EPR13091)
  • 免疫组化-石蜡切片; 小鼠; 图 2e
  • 免疫印迹; 小鼠; 图 2d
艾博抗(上海)贸易有限公司 parvalbumin抗体(Abcam, ab181086)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 2e) 和 被用于免疫印迹在小鼠样本上 (图 2d). Cells (2022) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:200
艾博抗(上海)贸易有限公司 parvalbumin抗体(Abcam, ab11427)被用于被用于免疫组化在小鼠样本上浓度为1:200. Nat Commun (2021) ncbi
domestic rabbit 单克隆(EPR13091)
  • 免疫组化; 小鼠; 1:250; 图 4c
艾博抗(上海)贸易有限公司 parvalbumin抗体(Abcam, ab181086)被用于被用于免疫组化在小鼠样本上浓度为1:250 (图 4c). Front Cell Neurosci (2021) ncbi
domestic rabbit 多克隆
  • 免疫组化-自由浮动切片; 小鼠; 1:1000; 图 4s2a
艾博抗(上海)贸易有限公司 parvalbumin抗体(Abcam, ab11427)被用于被用于免疫组化-自由浮动切片在小鼠样本上浓度为1:1000 (图 4s2a). elife (2020) ncbi
domestic goat 多克隆
  • 免疫组化; 小鼠; 1:500; 图 1a
艾博抗(上海)贸易有限公司 parvalbumin抗体(Abcam, 32895)被用于被用于免疫组化在小鼠样本上浓度为1:500 (图 1a). Theranostics (2020) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 小鼠; 图 s5b
艾博抗(上海)贸易有限公司 parvalbumin抗体(Abcam, b11427)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 s5b). Cell (2019) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 图 7e
艾博抗(上海)贸易有限公司 parvalbumin抗体(Abcam, ab11427)被用于被用于免疫组化在小鼠样本上 (图 7e). Cell (2019) ncbi
domestic rabbit 多克隆
  • 免疫组化; 人类; 1:2500; 图 s21b
艾博抗(上海)贸易有限公司 parvalbumin抗体(Abcam, b11427)被用于被用于免疫组化在人类样本上浓度为1:2500 (图 s21b). Science (2017) ncbi
domestic rabbit 多克隆
  • 免疫组化-自由浮动切片; 小鼠; 1:1000; 图 2a
艾博抗(上海)贸易有限公司 parvalbumin抗体(Abcam, ab11427)被用于被用于免疫组化-自由浮动切片在小鼠样本上浓度为1:1000 (图 2a). J Neurosci (2017) ncbi
domestic goat 多克隆
  • 免疫印迹; 小鼠; 图 5a
艾博抗(上海)贸易有限公司 parvalbumin抗体(Abcam, ab32895)被用于被用于免疫印迹在小鼠样本上 (图 5a). Physiol Rep (2017) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:3000; 图 4b
艾博抗(上海)贸易有限公司 parvalbumin抗体(Abcam, ab11427)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:3000 (图 4b). Transl Psychiatry (2017) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:500; 图 3Ac
艾博抗(上海)贸易有限公司 parvalbumin抗体(Abcam, AB11427)被用于被用于免疫组化在小鼠样本上浓度为1:500 (图 3Ac). Sci Rep (2017) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:400; 图 5a
艾博抗(上海)贸易有限公司 parvalbumin抗体(Abcam, ab11427)被用于被用于免疫组化在小鼠样本上浓度为1:400 (图 5a). Sci Rep (2017) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 小鼠; 图 s1B-1
艾博抗(上海)贸易有限公司 parvalbumin抗体(Abcam, ab11427)被用于被用于免疫细胞化学在小鼠样本上 (图 s1B-1). Proc Natl Acad Sci U S A (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:1000; 图 2
艾博抗(上海)贸易有限公司 parvalbumin抗体(Abcam, Ab11427)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:1000 (图 2). Front Cell Neurosci (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:1000; 图 1
艾博抗(上海)贸易有限公司 parvalbumin抗体(Abcam, ab11427)被用于被用于免疫组化在小鼠样本上浓度为1:1000 (图 1). Front Mol Neurosci (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 人类; 1:1000; 图 6
艾博抗(上海)贸易有限公司 parvalbumin抗体(Abcam, ab11427)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:1000 (图 6). J Neuroimmune Pharmacol (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:200; 图 3e
艾博抗(上海)贸易有限公司 parvalbumin抗体(Abcam, AB11427)被用于被用于免疫组化在小鼠样本上浓度为1:200 (图 3e). Am J Pathol (2016) ncbi
赛默飞世尔
domestic rabbit 多克隆
  • 免疫组化; 斑马鱼; 1:1000; 图 1b
赛默飞世尔 parvalbumin抗体(Thermo Fisher, PA1-933)被用于被用于免疫组化在斑马鱼样本上浓度为1:1000 (图 1b). Front Cell Neurosci (2020) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 图 1a
赛默飞世尔 parvalbumin抗体(ThermoFisher Scientific, PA1-933)被用于被用于免疫组化在小鼠样本上 (图 1a). Front Genet (2017) ncbi
domestic goat 多克隆
  • 免疫组化-自由浮动切片; 小鼠; 1:2000; 图 4e
赛默飞世尔 parvalbumin抗体(Thermo Fisher, PA5-18389)被用于被用于免疫组化-自由浮动切片在小鼠样本上浓度为1:2000 (图 4e). Neuron (2017) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:1000; 图 2b
赛默飞世尔 parvalbumin抗体(ThermoFisher, PA1-933)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:1000 (图 2b). Sci Rep (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化; Holothuria glaberrima; 图 3
赛默飞世尔 parvalbumin抗体(Affinity Bioreagents, PA1-933)被用于被用于免疫组化在Holothuria glaberrima样本上 (图 3). PLoS ONE (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化; 大鼠; 1:200; 图 1
赛默飞世尔 parvalbumin抗体(Pierce, PA1-933)被用于被用于免疫组化在大鼠样本上浓度为1:200 (图 1). Exp Eye Res (2016) ncbi
安迪生物R&D
家羊 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:3000; 图 1j
安迪生物R&D parvalbumin抗体(R&D systems, AF5058)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:3000 (图 1j). Mol Psychiatry (2022) ncbi
SWant
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:1000; 图 5a, 7c
SWant parvalbumin抗体(Swant, PV27)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:1000 (图 5a, 7c). iScience (2022) ncbi
  • 免疫组化-冰冻切片; 小鼠; 图 s2d
SWant parvalbumin抗体(Swant, PVG214)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 s2d). Neuron (2022) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 小鼠; 图 7d
SWant parvalbumin抗体(Swant, PV27)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 7d). Sci Adv (2022) ncbi
小鼠 单克隆(McAB235)
  • 免疫组化; 小鼠; 1:1000; 图 5b
SWant parvalbumin抗体(SWANT, 235)被用于被用于免疫组化在小鼠样本上浓度为1:1000 (图 5b). elife (2022) ncbi
豚鼠 多克隆
  • 免疫组化-自由浮动切片; African green monkey; 1:2000; 图 4c
SWant parvalbumin抗体(Swant, GP72)被用于被用于免疫组化-自由浮动切片在African green monkey样本上浓度为1:2000 (图 4c). Front Neural Circuits (2021) ncbi
小鼠 单克隆(235)
  • 免疫组化; 斑马鱼; 1:2000; 图 1b
SWant parvalbumin抗体(Swant, 235)被用于被用于免疫组化在斑马鱼样本上浓度为1:2000 (图 1b). Sci Rep (2021) ncbi
domestic goat 多克隆
  • 免疫组化; 小鼠; 1:2000; 图 2a
SWant parvalbumin抗体(Swant, PVG-213)被用于被用于免疫组化在小鼠样本上浓度为1:2000 (图 2a). Neural Dev (2021) ncbi
小鼠 单克隆(McAB235)
  • 免疫组化-冰冻切片; 小鼠; 1:1000; 图 1e
SWant parvalbumin抗体(Swant, 235)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:1000 (图 1e). Cell Rep (2021) ncbi
小鼠 单克隆(McAB235)
  • 免疫组化-冰冻切片; 小鼠; 1:2000; 图 1a
SWant parvalbumin抗体(Swant, 235)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:2000 (图 1a). Front Cell Neurosci (2021) ncbi
豚鼠 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:2000; 图 2i
SWant parvalbumin抗体(Swant, GP-72)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:2000 (图 2i). Biol Open (2021) ncbi
小鼠 单克隆(235)
  • 免疫组化; 小鼠
SWant parvalbumin抗体(Swant, 235)被用于被用于免疫组化在小鼠样本上. elife (2021) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:500
SWant parvalbumin抗体(Swant, PV27)被用于被用于免疫组化在小鼠样本上浓度为1:500. elife (2021) ncbi
小鼠 单克隆(235)
  • 免疫组化; 人类
SWant parvalbumin抗体(Swant, PV235)被用于被用于免疫组化在人类样本上. Front Aging Neurosci (2021) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 小鼠; 图 5e, 5f
SWant parvalbumin抗体(Swant, PV27)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 5e, 5f). Nat Commun (2021) ncbi
domestic goat 多克隆
  • 免疫组化-冰冻切片; 小鼠; 图 2c
SWant parvalbumin抗体(Swant, PVG-213)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 2c). Nat Commun (2021) ncbi
小鼠 单克隆(235)
  • 免疫组化; 小鼠; 1:500; 图 3j
SWant parvalbumin抗体(Swant, PV235)被用于被用于免疫组化在小鼠样本上浓度为1:500 (图 3j). BMC Biol (2021) ncbi
domestic rabbit 多克隆
  • 免疫组化-自由浮动切片; 小鼠; 1:500; 图 s1g
SWant parvalbumin抗体(Swant, PV27)被用于被用于免疫组化-自由浮动切片在小鼠样本上浓度为1:500 (图 s1g). Science (2020) ncbi
小鼠 单克隆(235)
  • 免疫组化; 小鼠; 1:5000
SWant parvalbumin抗体(Swant, PV235)被用于被用于免疫组化在小鼠样本上浓度为1:5000. elife (2020) ncbi
domestic rabbit 多克隆
SWant parvalbumin抗体(Swant, PV27)被用于. Science (2020) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:500; 图 6f
SWant parvalbumin抗体(Swant, PV27)被用于被用于免疫印迹在小鼠样本上浓度为1:500 (图 6f). elife (2020) ncbi
domestic rabbit 多克隆
  • 免疫组化-自由浮动切片; 小鼠; 1:1000; 图 3s1a
SWant parvalbumin抗体(Swant, PV27)被用于被用于免疫组化-自由浮动切片在小鼠样本上浓度为1:1000 (图 3s1a). elife (2020) ncbi
小鼠 单克隆(235)
  • 免疫组化; 小鼠; 1:1000; 图 3i
SWant parvalbumin抗体(Swant, PV235)被用于被用于免疫组化在小鼠样本上浓度为1:1000 (图 3i). elife (2020) ncbi
小鼠 单克隆(McAB235)
  • 免疫组化; 猕猴; 1:2000; 图 11
SWant parvalbumin抗体(Swiss Antibodies, 235)被用于被用于免疫组化在猕猴样本上浓度为1:2000 (图 11). PLoS Biol (2020) ncbi
小鼠 单克隆(McAB235)
  • 免疫组化-冰冻切片; 小鼠; 1:500; 图 6b
SWant parvalbumin抗体(Swant, 235)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:500 (图 6b). Nat Commun (2020) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:1000; 图 6b
SWant parvalbumin抗体(Swant, PV27)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:1000 (图 6b). Nat Commun (2020) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 小鼠; 图 s3a
SWant parvalbumin抗体(Swant, PV27)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 s3a). Nat Commun (2020) ncbi
小鼠 单克隆(235)
  • 免疫组化-冰冻切片; 小鼠; 1:1000; 图 3a
SWant parvalbumin抗体(SWANT, PV235)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:1000 (图 3a). Transl Psychiatry (2020) ncbi
小鼠 单克隆(McAB235)
  • 免疫组化-自由浮动切片; 小鼠; 1:1000; 图 2c
SWant parvalbumin抗体(Swant, 235)被用于被用于免疫组化-自由浮动切片在小鼠样本上浓度为1:1000 (图 2c). Eneuro (2020) ncbi
小鼠 单克隆(McAB235)
  • 免疫组化-自由浮动切片; 小鼠; 1:5000; 图 3c
SWant parvalbumin抗体(Swant, 235)被用于被用于免疫组化-自由浮动切片在小鼠样本上浓度为1:5000 (图 3c). Acta Neuropathol Commun (2020) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:500; 图 5b
  • 免疫组化; 大鼠; 1:500; 图 2e
SWant parvalbumin抗体(Swant, PV27)被用于被用于免疫组化在小鼠样本上浓度为1:500 (图 5b) 和 被用于免疫组化在大鼠样本上浓度为1:500 (图 2e). Brain Struct Funct (2020) ncbi
小鼠 单克隆(McAB235)
  • 免疫组化; 大鼠; 1:5000; 图 2e
SWant parvalbumin抗体(Swant, 235)被用于被用于免疫组化在大鼠样本上浓度为1:5000 (图 2e). Brain Struct Funct (2020) ncbi
domestic goat 多克隆
  • 免疫组化; 小鼠; 1:3000; 图 2a
SWant parvalbumin抗体(Swant, PVG213)被用于被用于免疫组化在小鼠样本上浓度为1:3000 (图 2a). Int J Mol Sci (2020) ncbi
小鼠 单克隆(235)
  • 免疫组化; 小鼠; 1:5000; 图 2d
SWant parvalbumin抗体(Swant, pv235)被用于被用于免疫组化在小鼠样本上浓度为1:5000 (图 2d). Nat Commun (2020) ncbi
小鼠 单克隆(McAB235)
  • 免疫组化-自由浮动切片; 人类; 1:500; 图 1a
SWant parvalbumin抗体(Swant, 235)被用于被用于免疫组化-自由浮动切片在人类样本上浓度为1:500 (图 1a). elife (2020) ncbi
小鼠 单克隆(McAB235)
  • 免疫组化-冰冻切片; 小鼠; 1:1000; 图 1e
SWant parvalbumin抗体(Swant, 235)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:1000 (图 1e). Mol Neurodegener (2020) ncbi
小鼠 单克隆(McAB235)
  • 免疫组化-冰冻切片; 小鼠; 1:1000; 图 4b
SWant parvalbumin抗体(Swant, 235)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:1000 (图 4b). elife (2019) ncbi
小鼠 单克隆(McAB235)
  • 免疫组化; 小鼠; 1:7000; 图 1s1a
SWant parvalbumin抗体(Swant, 235)被用于被用于免疫组化在小鼠样本上浓度为1:7000 (图 1s1a). elife (2019) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 小鼠; 图 1c
SWant parvalbumin抗体(Swant Biotechnologies, PV27)被用于被用于免疫细胞化学在小鼠样本上 (图 1c). Cell (2019) ncbi
domestic goat 多克隆
  • 免疫组化-自由浮动切片; 小鼠; 1:1000; 图 1c
SWant parvalbumin抗体(Swant, PVG-213)被用于被用于免疫组化-自由浮动切片在小鼠样本上浓度为1:1000 (图 1c). J Comp Neurol (2020) ncbi
小鼠 单克隆(McAB235)
  • 免疫组化-石蜡切片; 大鼠; 1:2500; 图 5a, 8a, 11a
SWant parvalbumin抗体(Swant, 235)被用于被用于免疫组化-石蜡切片在大鼠样本上浓度为1:2500 (图 5a, 8a, 11a). J Comp Neurol (2020) ncbi
小鼠 单克隆(McAB235)
  • 免疫组化-冰冻切片; 小鼠; 1:5000; 图 1c1
SWant parvalbumin抗体(Swant, 235)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:5000 (图 1c1). J Neurosci (2019) ncbi
小鼠 单克隆(McAB235)
  • 免疫组化; 小鼠; 1:1000; 图 1b
SWant parvalbumin抗体(SWANT, 235)被用于被用于免疫组化在小鼠样本上浓度为1:1000 (图 1b). J Comp Neurol (2019) ncbi
小鼠 单克隆(McAB235)
  • 免疫组化-冰冻切片; 小鼠; 1:1000; 图 3a
SWant parvalbumin抗体(SWant, 235)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:1000 (图 3a). J Comp Neurol (2019) ncbi
  • 免疫组化; 小鼠; 1:5000; 图 3i
SWant parvalbumin抗体(Swant, PVG-214)被用于被用于免疫组化在小鼠样本上浓度为1:5000 (图 3i). Neuron (2019) ncbi
小鼠 单克隆(McAB235)
  • 免疫组化-冰冻切片; 大鼠; 1:1000; 图 4n
SWant parvalbumin抗体(Swant, 235)被用于被用于免疫组化-冰冻切片在大鼠样本上浓度为1:1000 (图 4n). J Comp Neurol (2019) ncbi
小鼠 单克隆(McAB235)
  • 免疫细胞化学; 人类; 1:1000; 图 s4c
SWant parvalbumin抗体(Swant, PV-235)被用于被用于免疫细胞化学在人类样本上浓度为1:1000 (图 s4c). Nat Neurosci (2018) ncbi
小鼠 单克隆(235)
  • 免疫组化-冰冻切片; 小鼠; 图 4g
SWant parvalbumin抗体(Swant, PV235)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 4g). Cell (2018) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 小鼠; 图 3e
SWant parvalbumin抗体(Swant, PV27)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 3e). Cell (2018) ncbi
小鼠 单克隆(235)
  • 免疫组化-冰冻切片; 小鼠; 图 1g
SWant parvalbumin抗体(Swant, PV235)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 1g). Cell (2018) ncbi
小鼠 单克隆(McAB235)
  • 免疫组化-冰冻切片; 斑马鱼; 1:250; 表 2
SWant parvalbumin抗体(Swant, 235)被用于被用于免疫组化-冰冻切片在斑马鱼样本上浓度为1:250 (表 2). Dev Biol (2017) ncbi
domestic rabbit 多克隆
  • 免疫组化; 人类; 1:6000; 图 s1
SWant parvalbumin抗体(Swant, PV27)被用于被用于免疫组化在人类样本上浓度为1:6000 (图 s1). Nature (2017) ncbi
domestic rabbit 多克隆
  • 免疫组化-自由浮动切片; 小鼠; 1:2000; 表 1
SWant parvalbumin抗体(Swant, Pv27)被用于被用于免疫组化-自由浮动切片在小鼠样本上浓度为1:2000 (表 1). Neuron (2017) ncbi
  • 免疫组化-自由浮动切片; 小鼠; 1:2000; 表 1
SWant parvalbumin抗体(Swant, Pvg214)被用于被用于免疫组化-自由浮动切片在小鼠样本上浓度为1:2000 (表 1). Neuron (2017) ncbi
小鼠 单克隆(McAB235)
  • 免疫组化; 大鼠; 1:5000; 图 2e
SWant parvalbumin抗体(Swant, 235)被用于被用于免疫组化在大鼠样本上浓度为1:5000 (图 2e). J Comp Neurol (2017) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 小鼠; 1:1000; 图 1d-f
SWant parvalbumin抗体(Swant, PV27)被用于被用于免疫细胞化学在小鼠样本上浓度为1:1000 (图 1d-f). J Neurosci Res (2017) ncbi
小鼠 单克隆(McAB235)
SWant parvalbumin抗体(SWANT, 235)被用于. J Comp Neurol (2017) ncbi
小鼠 单克隆(McAB235)
  • 免疫组化; 人类; 1:5000; 图 1
SWant parvalbumin抗体(swant, 235)被用于被用于免疫组化在人类样本上浓度为1:5000 (图 1). J Comp Neurol (2017) ncbi
  • 免疫组化-自由浮动切片; 小鼠; 图 1a
SWant parvalbumin抗体(Swant, PVG214)被用于被用于免疫组化-自由浮动切片在小鼠样本上 (图 1a). elife (2016) ncbi
  • 免疫组化-冰冻切片; 小鼠; 1:5000; 图 7a
SWant parvalbumin抗体(Swant, PVG-214)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:5000 (图 7a). J Comp Neurol (2017) ncbi
小鼠 单克隆(McAB235)
  • 免疫组化-冰冻切片; 小鼠; 1:1000; 图 s3
SWant parvalbumin抗体(Swant, 235)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:1000 (图 s3). Nat Commun (2016) ncbi
domestic goat 多克隆
  • 免疫组化-自由浮动切片; 小鼠; 1:1000; 图 1f
SWant parvalbumin抗体(Swant, PVG-213)被用于被用于免疫组化-自由浮动切片在小鼠样本上浓度为1:1000 (图 1f). Nat Neurosci (2016) ncbi
小鼠 单克隆(McAB235)
  • 免疫组化; 小鼠; 1:2000; 表 1
SWant parvalbumin抗体(Swant, 235)被用于被用于免疫组化在小鼠样本上浓度为1:2000 (表 1). Neuroscience (2016) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 小鼠; 1:1000; 图 4
SWant parvalbumin抗体(Swant, PV27)被用于被用于免疫细胞化学在小鼠样本上浓度为1:1000 (图 4). Front Neural Circuits (2016) ncbi
小鼠 单克隆(McAB235)
  • 免疫组化; 小鼠; 1:100; 图 2
SWant parvalbumin抗体(Swant, 235)被用于被用于免疫组化在小鼠样本上浓度为1:100 (图 2). Sci Rep (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:500; 图 3
SWant parvalbumin抗体(Swant, PV 27)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:500 (图 3). Sci Rep (2016) ncbi
  • 免疫组化; 小鼠; 1:5000; 图 2
SWant parvalbumin抗体(Swant, PVG-214)被用于被用于免疫组化在小鼠样本上浓度为1:5000 (图 2). Front Neuroanat (2016) ncbi
  • 免疫细胞化学; 人类; 1:3000; 图 4
  • 免疫组化; 大鼠; 1:3000; 图 4
SWant parvalbumin抗体(Swant, PVG-214)被用于被用于免疫细胞化学在人类样本上浓度为1:3000 (图 4) 和 被用于免疫组化在大鼠样本上浓度为1:3000 (图 4). Stem Cells Int (2016) ncbi
domestic goat 多克隆
  • 免疫细胞化学; 小鼠; 1:5000; 图 s5
SWant parvalbumin抗体(Swant, PVG-213)被用于被用于免疫细胞化学在小鼠样本上浓度为1:5000 (图 s5). Nat Neurosci (2016) ncbi
  • 免疫组化; 小鼠; 1:1000; 图 s7
SWant parvalbumin抗体(Swant, PVG-214)被用于被用于免疫组化在小鼠样本上浓度为1:1000 (图 s7). Neuron (2016) ncbi
小鼠 单克隆(McAB235)
  • 免疫组化-冰冻切片; 小鼠; 1:1000
SWant parvalbumin抗体(Swant, 235)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:1000. Neuroscience (2016) ncbi
  • 免疫组化-冰冻切片; 小鼠; 1:200; 图 8
SWant parvalbumin抗体(Swant, PVG-214)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:200 (图 8). Nat Commun (2015) ncbi
小鼠 单克隆(McAB235)
  • 免疫组化; 人类; 1:2500; 图 3
SWant parvalbumin抗体(Swant, 235)被用于被用于免疫组化在人类样本上浓度为1:2500 (图 3). PLoS ONE (2015) ncbi
小鼠 单克隆(McAB235)
  • 免疫组化-石蜡切片; 大鼠; 1:5000
  • 免疫组化; 大鼠; 1:5000
SWant parvalbumin抗体(Swant, 235)被用于被用于免疫组化-石蜡切片在大鼠样本上浓度为1:5000 和 被用于免疫组化在大鼠样本上浓度为1:5000. Cereb Cortex (2016) ncbi
  • 免疫细胞化学; 小鼠; 1:1000; 图 2
SWant parvalbumin抗体(Swant, PVG214)被用于被用于免疫细胞化学在小鼠样本上浓度为1:1000 (图 2). J Neurosci (2015) ncbi
小鼠 单克隆(McAB235)
  • 免疫组化-自由浮动切片; 大鼠; 1:1000
SWant parvalbumin抗体(Swant, 235)被用于被用于免疫组化-自由浮动切片在大鼠样本上浓度为1:1000. J Comp Neurol (2015) ncbi
小鼠 单克隆(McAB235)
  • 免疫组化-自由浮动切片; 大鼠; 1:5000
SWant parvalbumin抗体(Swant, 235)被用于被用于免疫组化-自由浮动切片在大鼠样本上浓度为1:5000. J Comp Neurol (2015) ncbi
小鼠 单克隆(McAB235)
  • 免疫组化-自由浮动切片; 猕猴; 1:20,000
SWant parvalbumin抗体(Swant, 235)被用于被用于免疫组化-自由浮动切片在猕猴样本上浓度为1:20,000. J Comp Neurol (2015) ncbi
小鼠 单克隆(McAB235)
  • 免疫组化-冰冻切片; 人类; 1:1,000
SWant parvalbumin抗体(SWANT, 235)被用于被用于免疫组化-冰冻切片在人类样本上浓度为1:1,000. J Comp Neurol (2015) ncbi
  • 免疫组化-石蜡切片; 人类; 1:2000
SWant parvalbumin抗体(Swant, #PVG-214)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:2000. Aging (Albany NY) (2014) ncbi
小鼠 单克隆(McAB235)
  • 免疫组化-自由浮动切片; 猕猴; 1:2000
SWant parvalbumin抗体(Swant, 235)被用于被用于免疫组化-自由浮动切片在猕猴样本上浓度为1:2000. J Neurosci (2014) ncbi
小鼠 单克隆(McAB235)
  • 免疫组化; 小鼠; 1:5000
SWant parvalbumin抗体(Swant, 235)被用于被用于免疫组化在小鼠样本上浓度为1:5000. Front Cell Neurosci (2014) ncbi
小鼠 单克隆(McAB235)
  • 免疫组化; 小鼠
SWant parvalbumin抗体(Swant, 235)被用于被用于免疫组化在小鼠样本上. J Neurosci (2014) ncbi
小鼠 单克隆(McAB235)
  • 免疫组化; 小鼠; 1:100
SWant parvalbumin抗体(Swant, 235)被用于被用于免疫组化在小鼠样本上浓度为1:100. J Neurosci (2014) ncbi
小鼠 单克隆(McAB235)
  • 免疫组化; 家羊; 1:1,000
SWant parvalbumin抗体(Swant, 235)被用于被用于免疫组化在家羊样本上浓度为1:1,000. Ann Neurol (2014) ncbi
小鼠 单克隆(McAB235)
  • 免疫组化; zebra finch; 1:1000
SWant parvalbumin抗体(Swant, 235)被用于被用于免疫组化在zebra finch样本上浓度为1:1000. J Comp Neurol (2014) ncbi
小鼠 单克隆(McAB235)
  • 免疫组化; 人类; 1:5,000
SWant parvalbumin抗体(SWANT, 235)被用于被用于免疫组化在人类样本上浓度为1:5,000. J Cereb Blood Flow Metab (2013) ncbi
小鼠 单克隆(McAB235)
  • 免疫组化; 大鼠; 1:5000
SWant parvalbumin抗体(Swant, 235)被用于被用于免疫组化在大鼠样本上浓度为1:5000. J Comp Neurol (2013) ncbi
小鼠 单克隆(McAB235)
  • 免疫组化; 小鼠
SWant parvalbumin抗体(Swant, 235)被用于被用于免疫组化在小鼠样本上. J Clin Invest (2013) ncbi
小鼠 单克隆(McAB235)
  • 免疫组化; 小鼠; 1:5000
SWant parvalbumin抗体(Swant, 235)被用于被用于免疫组化在小鼠样本上浓度为1:5000. Brain Struct Funct (2013) ncbi
小鼠 单克隆(McAB235)
  • 免疫组化-冰冻切片; 大鼠; 1:10000 or 1:5000
SWant parvalbumin抗体(Swant, 235)被用于被用于免疫组化-冰冻切片在大鼠样本上浓度为1:10000 or 1:5000. J Comp Neurol (2012) ncbi
小鼠 单克隆(McAB235)
  • 免疫组化-冰冻切片; 小鼠; 1:4000
SWant parvalbumin抗体(Swant, 235)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:4000. J Comp Neurol (2012) ncbi
小鼠 单克隆(McAB235)
  • 免疫组化-自由浮动切片; 小鼠; 1:1000
SWant parvalbumin抗体(Swant, 235)被用于被用于免疫组化-自由浮动切片在小鼠样本上浓度为1:1000. J Comp Neurol (2011) ncbi
小鼠 单克隆(McAB235)
  • 免疫组化-自由浮动切片; 人类; 1:4000
SWant parvalbumin抗体(Swant, 235)被用于被用于免疫组化-自由浮动切片在人类样本上浓度为1:4000. J Comp Neurol (2010) ncbi
小鼠 单克隆(McAB235)
  • 免疫组化-自由浮动切片; 人类; 1:4000
SWant parvalbumin抗体(SWant, 235)被用于被用于免疫组化-自由浮动切片在人类样本上浓度为1:4000. J Comp Neurol (2010) ncbi
小鼠 单克隆(McAB235)
  • 免疫组化; 小鼠; 1:5000
SWant parvalbumin抗体(Swant, 235)被用于被用于免疫组化在小鼠样本上浓度为1:5000. J Comp Neurol (2010) ncbi
小鼠 单克隆(McAB235)
  • 免疫组化-自由浮动切片; 大鼠; 1:5000
SWant parvalbumin抗体(Swant, 235)被用于被用于免疫组化-自由浮动切片在大鼠样本上浓度为1:5000. J Comp Neurol (2010) ncbi
小鼠 单克隆(McAB235)
  • 免疫组化-冰冻切片; 斑马鱼
SWant parvalbumin抗体(Swant, 235)被用于被用于免疫组化-冰冻切片在斑马鱼样本上. J Comp Neurol (2010) ncbi
小鼠 单克隆(McAB235)
  • 免疫组化-自由浮动切片; 小鼠; 1:10,000
SWant parvalbumin抗体(Swant, 235)被用于被用于免疫组化-自由浮动切片在小鼠样本上浓度为1:10,000. J Comp Neurol (2009) ncbi
小鼠 单克隆(McAB235)
  • 免疫组化-冰冻切片; 小鼠; 1:500
SWant parvalbumin抗体(Swant, 235)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:500. J Comp Neurol (2009) ncbi
小鼠 单克隆(McAB235)
  • 免疫组化-自由浮动切片; 猕猴; 1:5,000
SWant parvalbumin抗体(SWANT, 235)被用于被用于免疫组化-自由浮动切片在猕猴样本上浓度为1:5,000. J Comp Neurol (2009) ncbi
小鼠 单克隆(McAB235)
  • 免疫组化; 大鼠; 1:5000
SWant parvalbumin抗体(Swant, 235)被用于被用于免疫组化在大鼠样本上浓度为1:5000. J Comp Neurol (2008) ncbi
小鼠 单克隆(McAB235)
  • 免疫组化-冰冻切片; 斑马鱼
SWant parvalbumin抗体(SWant, 235)被用于被用于免疫组化-冰冻切片在斑马鱼样本上. J Comp Neurol (2008) ncbi
小鼠 单克隆(McAB235)
  • 免疫组化-自由浮动切片; 小鼠; 1:5000
SWant parvalbumin抗体(Swant, 235)被用于被用于免疫组化-自由浮动切片在小鼠样本上浓度为1:5000. J Comp Neurol (2007) ncbi
小鼠 单克隆(McAB235)
  • 免疫组化-冰冻切片; 猕猴; 1:5000
SWant parvalbumin抗体(Swant, 235)被用于被用于免疫组化-冰冻切片在猕猴样本上浓度为1:5000. J Comp Neurol (2006) ncbi
小鼠 单克隆(McAB235)
  • 免疫组化-自由浮动切片; 大鼠; 1:5000
SWant parvalbumin抗体(Swant, 235)被用于被用于免疫组化-自由浮动切片在大鼠样本上浓度为1:5000. J Comp Neurol (2005) ncbi
西格玛奥德里奇
小鼠 单克隆(PARV-19)
  • 免疫组化-冰冻切片; 大鼠; 1:300; 图 6m
西格玛奥德里奇 parvalbumin抗体(Sigma-Aldrich, P3088)被用于被用于免疫组化-冰冻切片在大鼠样本上浓度为1:300 (图 6m). ASN Neuro (2022) ncbi
小鼠 单克隆(PARV-19)
  • 免疫组化-自由浮动切片; 小鼠; 1:500; 图 1c
西格玛奥德里奇 parvalbumin抗体(Sigma-Aldrich, P3088)被用于被用于免疫组化-自由浮动切片在小鼠样本上浓度为1:500 (图 1c). Front Behav Neurosci (2021) ncbi
小鼠 单克隆(PARV-19)
  • 免疫组化; 小鼠; 1:2000; 图 2j
西格玛奥德里奇 parvalbumin抗体(Sigma, P3088)被用于被用于免疫组化在小鼠样本上浓度为1:2000 (图 2j). Nat Commun (2021) ncbi
小鼠 单克隆(PARV-19)
  • 免疫组化; 小鼠; 1:1000; 图 s4a
西格玛奥德里奇 parvalbumin抗体(Sigma, P3088)被用于被用于免疫组化在小鼠样本上浓度为1:1000 (图 s4a). Nat Commun (2021) ncbi
小鼠 单克隆(PARV-19)
  • 免疫组化-自由浮动切片; 大鼠; 1:3000; 图 2b
西格玛奥德里奇 parvalbumin抗体(Sigma-Aldrich, P3088)被用于被用于免疫组化-自由浮动切片在大鼠样本上浓度为1:3000 (图 2b). Int J Mol Sci (2021) ncbi
小鼠 单克隆(PARV-19)
  • 免疫组化-自由浮动切片; 小鼠; 1:1000; 图 4b
西格玛奥德里奇 parvalbumin抗体(Sigma-Aldrich, P3088)被用于被用于免疫组化-自由浮动切片在小鼠样本上浓度为1:1000 (图 4b). Sci Rep (2021) ncbi
小鼠 单克隆(PARV-19)
  • 免疫组化-冰冻切片; 小鼠; 1:1000; 图 2
西格玛奥德里奇 parvalbumin抗体(Sigma, P3088)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:1000 (图 2). Front Neuroanat (2021) ncbi
小鼠 单克隆(PARV-19)
  • 免疫组化; 小鼠; 1:2000; 图 8b
西格玛奥德里奇 parvalbumin抗体(Sigma-Aldrich, P3088)被用于被用于免疫组化在小鼠样本上浓度为1:2000 (图 8b). elife (2021) ncbi
小鼠 单克隆(PARV-19)
  • 免疫组化; 小鼠; 1:2000; 图 8b
西格玛奥德里奇 parvalbumin抗体(Sigma-Aldrich, P3088)被用于被用于免疫组化在小鼠样本上浓度为1:2000 (图 8b). elife (2021) ncbi
小鼠 单克隆(PARV-19)
  • 免疫组化; 小鼠; 1:2500
西格玛奥德里奇 parvalbumin抗体(Sigma-Aldrich, P3088)被用于被用于免疫组化在小鼠样本上浓度为1:2500. elife (2020) ncbi
小鼠 单克隆(PARV-19)
  • 免疫组化-石蜡切片; 小鼠; 1:500; 图 1c
西格玛奥德里奇 parvalbumin抗体(Sigma Aldrich, P3088)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:500 (图 1c). elife (2020) ncbi
小鼠 单克隆(PARV-19)
  • 免疫组化; 小鼠; 1:1000; 图 2
西格玛奥德里奇 parvalbumin抗体(Sigma-Aldrich, PARV-19)被用于被用于免疫组化在小鼠样本上浓度为1:1000 (图 2). IBRO Rep (2020) ncbi
小鼠 单克隆(PARV-19)
  • 免疫组化; 小鼠; 图 1c
西格玛奥德里奇 parvalbumin抗体(Sigma-Aldrich, P3088)被用于被用于免疫组化在小鼠样本上 (图 1c). elife (2020) ncbi
小鼠 单克隆(PARV-19)
  • 免疫组化; 小鼠; 1:500; 图 1c
西格玛奥德里奇 parvalbumin抗体(Sigma-Aldrich, P3088-.2ML)被用于被用于免疫组化在小鼠样本上浓度为1:500 (图 1c). elife (2020) ncbi
小鼠 单克隆(PARV-19)
  • 免疫组化; 小鼠; 1:1000; 图 1a
西格玛奥德里奇 parvalbumin抗体(Sigma, P3088)被用于被用于免疫组化在小鼠样本上浓度为1:1000 (图 1a). elife (2020) ncbi
小鼠 单克隆(PARV-19)
  • 免疫组化; 小鼠; 1:2000; 图 3a, 3b
西格玛奥德里奇 parvalbumin抗体(Sigma-Aldrich, P3088)被用于被用于免疫组化在小鼠样本上浓度为1:2000 (图 3a, 3b). Genes (Basel) (2020) ncbi
小鼠 单克隆(PARV-19)
  • 免疫组化; 小鼠; 1:5000; 图 2g
西格玛奥德里奇 parvalbumin抗体(Sigma, P3088)被用于被用于免疫组化在小鼠样本上浓度为1:5000 (图 2g). Nat Commun (2020) ncbi
小鼠 单克隆(PARV-19)
  • 免疫组化-冰冻切片; 小鼠; 1:1000; 图 2b
西格玛奥德里奇 parvalbumin抗体(Sigma, P3088)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:1000 (图 2b). elife (2020) ncbi
小鼠 单克隆(PARV-19)
  • 免疫组化-自由浮动切片; 大鼠; 1:4000; 图 2a
西格玛奥德里奇 parvalbumin抗体(Sigma, P3088)被用于被用于免疫组化-自由浮动切片在大鼠样本上浓度为1:4000 (图 2a). Front Aging Neurosci (2019) ncbi
小鼠 单克隆(PARV-19)
  • 免疫组化-冰冻切片; 大鼠; 1:2000; 图 7a
西格玛奥德里奇 parvalbumin抗体(Sigma, P3088)被用于被用于免疫组化-冰冻切片在大鼠样本上浓度为1:2000 (图 7a). Aging Dis (2019) ncbi
小鼠 单克隆(PARV-19)
  • 免疫组化-自由浮动切片; 大鼠; 图 5e
西格玛奥德里奇 parvalbumin抗体(Sigma-Aldrich, P3088)被用于被用于免疫组化-自由浮动切片在大鼠样本上 (图 5e). Cell Rep (2019) ncbi
小鼠 单克隆(PARV-19)
  • 免疫组化; 小鼠; 图 4e
西格玛奥德里奇 parvalbumin抗体(Sigma-Aldrich, P3088)被用于被用于免疫组化在小鼠样本上 (图 4e). Cell Rep (2019) ncbi
小鼠 单克隆(PARV-19)
  • 免疫组化; 小鼠; 图 1i
西格玛奥德里奇 parvalbumin抗体(Sigma, P3088)被用于被用于免疫组化在小鼠样本上 (图 1i). J Comp Neurol (2020) ncbi
小鼠 单克隆(PARV-19)
  • 免疫组化-冰冻切片; 小鼠; 1:200; 图 1g
西格玛奥德里奇 parvalbumin抗体(Sigma-Aldrich, P3088)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:200 (图 1g). Mol Brain (2019) ncbi
小鼠 单克隆(PARV-19)
  • 免疫组化-冰冻切片; grey mouse lemur; 1:2000
西格玛奥德里奇 parvalbumin抗体(Sigma, P3088)被用于被用于免疫组化-冰冻切片在grey mouse lemur样本上浓度为1:2000. J Comp Neurol (2019) ncbi
小鼠 单克隆(PARV-19)
  • 免疫组化; 小鼠; 1:500; 图 8c
西格玛奥德里奇 parvalbumin抗体(Sigma, P3088)被用于被用于免疫组化在小鼠样本上浓度为1:500 (图 8c). J Comp Neurol (2019) ncbi
小鼠 单克隆(PARV-19)
  • 免疫组化; 大鼠; 1:500; 图 3m
西格玛奥德里奇 parvalbumin抗体(Sigma, P3088)被用于被用于免疫组化在大鼠样本上浓度为1:500 (图 3m). Brain Struct Funct (2019) ncbi
小鼠 单克隆(PARV-19)
  • 免疫组化-冰冻切片; 小鼠; 1:1000; 图 3a'
西格玛奥德里奇 parvalbumin抗体(Sigma, P3088)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:1000 (图 3a'). Development (2018) ncbi
小鼠 单克隆(PARV-19)
  • 免疫组化-冰冻切片; 婴猴属; 1:2000; 图 2b
西格玛奥德里奇 parvalbumin抗体(Sigma-Aldrich, P3088)被用于被用于免疫组化-冰冻切片在婴猴属样本上浓度为1:2000 (图 2b). J Comp Neurol (2019) ncbi
小鼠 单克隆(PARV-19)
  • 免疫组化; grey mouse lemur; 1:2000; 图 3b
西格玛奥德里奇 parvalbumin抗体(Sigma, P3088)被用于被用于免疫组化在grey mouse lemur样本上浓度为1:2000 (图 3b). J Comp Neurol (2019) ncbi
小鼠 单克隆(PARV-19)
  • 免疫组化-冰冻切片; 小鼠; 1:500; 表 1
西格玛奥德里奇 parvalbumin抗体(Sigma, P3088)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:500 (表 1). J Comp Neurol (2017) ncbi
小鼠 单克隆(PARV-19)
  • 免疫组化-冰冻切片; African green monkey; 1:2000; 图 2d
西格玛奥德里奇 parvalbumin抗体(Sigma-Aldrich, P3088)被用于被用于免疫组化-冰冻切片在African green monkey样本上浓度为1:2000 (图 2d). J Comp Neurol (2017) ncbi
小鼠 单克隆(PARV-19)
  • 免疫组化; 鸡; 1:10,000; 图 8h
西格玛奥德里奇 parvalbumin抗体(Sigma, P3088)被用于被用于免疫组化在鸡样本上浓度为1:10,000 (图 8h). J Comp Neurol (2017) ncbi
小鼠 单克隆(PARV-19)
  • 免疫组化; jirds; 1:300; 表 1
西格玛奥德里奇 parvalbumin抗体(Sigma, P-3088)被用于被用于免疫组化在jirds样本上浓度为1:300 (表 1). J Comp Neurol (2017) ncbi
小鼠 单克隆(PARV-19)
  • 免疫组化; 小鼠; 1:500; 图 1b
西格玛奥德里奇 parvalbumin抗体(Sigma, Parv-19)被用于被用于免疫组化在小鼠样本上浓度为1:500 (图 1b). Front Neural Circuits (2017) ncbi
小鼠 单克隆(PARV-19)
  • 免疫组化-冰冻切片; 小鼠; 1:3000; 图 5a
西格玛奥德里奇 parvalbumin抗体(Sigma-Aldrich, P3088)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:3000 (图 5a). Transl Psychiatry (2017) ncbi
小鼠 单克隆(PARV-19)
  • 免疫组化; 小鼠; 1:300; 图 s4a
西格玛奥德里奇 parvalbumin抗体(sigma, P3088)被用于被用于免疫组化在小鼠样本上浓度为1:300 (图 s4a). J Neuroinflammation (2017) ncbi
小鼠 单克隆(PARV-19)
  • 免疫组化; Nothoprocta perdicaria; 图 8d
西格玛奥德里奇 parvalbumin抗体(Sigma-Aldrich, P3088)被用于被用于免疫组化在Nothoprocta perdicaria样本上 (图 8d). J Comp Neurol (2017) ncbi
小鼠 单克隆(PARV-19)
  • 免疫组化; 人类; 1:10,000; 图 1
西格玛奥德里奇 parvalbumin抗体(Sigma, P3088)被用于被用于免疫组化在人类样本上浓度为1:10,000 (图 1). J Comp Neurol (2017) ncbi
小鼠 单克隆(PARV-19)
  • 免疫组化-冰冻切片; 小鼠; 1:1000; 图 1a
西格玛奥德里奇 parvalbumin抗体(Sigma, P3088)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:1000 (图 1a). Neuroscience (2017) ncbi
小鼠 单克隆(PARV-19)
  • 免疫组化; 小鼠; 1:200; 表 1
西格玛奥德里奇 parvalbumin抗体(SIGMA, P3088)被用于被用于免疫组化在小鼠样本上浓度为1:200 (表 1). Brain Struct Funct (2017) ncbi
小鼠 单克隆(PARV-19)
  • 免疫细胞化学; 大鼠; 1:500; 图 s1b
西格玛奥德里奇 parvalbumin抗体(Sigma, P3088)被用于被用于免疫细胞化学在大鼠样本上浓度为1:500 (图 s1b). Nat Commun (2016) ncbi
小鼠 单克隆(PARV-19)
  • 免疫组化-冰冻切片; 小鼠; 1:10,000; 图 3a
西格玛奥德里奇 parvalbumin抗体(Sigma-Aldrich, P-3088)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:10,000 (图 3a). J Comp Neurol (2017) ncbi
小鼠 单克隆(PARV-19)
  • 免疫组化; 小鼠; 1:500; 表 1
西格玛奥德里奇 parvalbumin抗体(Sigma, P3088)被用于被用于免疫组化在小鼠样本上浓度为1:500 (表 1). J Comp Neurol (2017) ncbi
小鼠 单克隆(PARV-19)
  • 免疫组化; 小鼠; 1:500; 图 s1d
西格玛奥德里奇 parvalbumin抗体(Sigma, P3088)被用于被用于免疫组化在小鼠样本上浓度为1:500 (图 s1d). Science (2016) ncbi
小鼠 单克隆(PARV-19)
  • 免疫组化-自由浮动切片; 大鼠; 1:1000; 图 4a
西格玛奥德里奇 parvalbumin抗体(Sigma Aldrich, P3088)被用于被用于免疫组化-自由浮动切片在大鼠样本上浓度为1:1000 (图 4a). J Comp Neurol (2017) ncbi
小鼠 单克隆(PARV-19)
  • 免疫组化; 大鼠; 1:250; 图 1a
西格玛奥德里奇 parvalbumin抗体(Sigma, P3088)被用于被用于免疫组化在大鼠样本上浓度为1:250 (图 1a). Neurotherapeutics (2016) ncbi
小鼠 单克隆(PARV-19)
  • 免疫组化-冰冻切片; 大鼠; 1:1000; 图 2
西格玛奥德里奇 parvalbumin抗体(Sigma-Aldrich, P3088)被用于被用于免疫组化-冰冻切片在大鼠样本上浓度为1:1000 (图 2). J Comp Neurol (2016) ncbi
小鼠 单克隆(PARV-19)
  • 免疫组化; 大鼠; 1:1000; 图 s1
西格玛奥德里奇 parvalbumin抗体(Sigma, P3088)被用于被用于免疫组化在大鼠样本上浓度为1:1000 (图 s1). Hippocampus (2016) ncbi
小鼠 单克隆(PARV-19)
  • 免疫印迹; Spanish mackerel ; 图 2b
西格玛奥德里奇 parvalbumin抗体(Sigma, P3088)被用于被用于免疫印迹在Spanish mackerel 样本上 (图 2b). Food Chem (2016) ncbi
小鼠 单克隆(PARV-19)
  • 免疫组化; common tree shrew ; 1:5000; 图 3c
西格玛奥德里奇 parvalbumin抗体(Sigma-Aldrich, P3088)被用于被用于免疫组化在common tree shrew 样本上浓度为1:5000 (图 3c). J Comp Neurol (2017) ncbi
小鼠 单克隆(PARV-19)
  • 免疫组化-冰冻切片; 小鼠; 1:100; 图 5b
西格玛奥德里奇 parvalbumin抗体(Sigma-Aldrich, PARV-19)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:100 (图 5b). Cereb Cortex (2016) ncbi
小鼠 单克隆(PARV-19)
  • 免疫组化; 猕猴; 1:500
西格玛奥德里奇 parvalbumin抗体(Sigma, P3088)被用于被用于免疫组化在猕猴样本上浓度为1:500. Neural Plast (2016) ncbi
小鼠 单克隆(PARV-19)
  • 免疫组化-冰冻切片; 大鼠; 1:500; 图 8
西格玛奥德里奇 parvalbumin抗体(Sigma, P3088)被用于被用于免疫组化-冰冻切片在大鼠样本上浓度为1:500 (图 8). Sci Rep (2016) ncbi
小鼠 单克隆(PARV-19)
  • 免疫组化; 小鼠; 1:2000; 图 2
西格玛奥德里奇 parvalbumin抗体(Sigma, P3088)被用于被用于免疫组化在小鼠样本上浓度为1:2000 (图 2). Mol Psychiatry (2016) ncbi
小鼠 单克隆(PARV-19)
  • 免疫组化-自由浮动切片; 小鼠; 1:1000; 图 2b
西格玛奥德里奇 parvalbumin抗体(Sigma, P3088)被用于被用于免疫组化-自由浮动切片在小鼠样本上浓度为1:1000 (图 2b). Cereb Cortex (2016) ncbi
小鼠 单克隆(PARV-19)
  • 免疫组化-冰冻切片; 小鼠; 1:1000; 图 7
西格玛奥德里奇 parvalbumin抗体(Sigma, P3088)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:1000 (图 7). J Comp Neurol (2016) ncbi
小鼠 单克隆(PARV-19)
  • 免疫组化-冰冻切片; 大鼠; 1:2000; 图 5
西格玛奥德里奇 parvalbumin抗体(Sigma-Aldrich, P3088)被用于被用于免疫组化-冰冻切片在大鼠样本上浓度为1:2000 (图 5). Front Neurosci (2015) ncbi
小鼠 单克隆(PARV-19)
  • 免疫细胞化学; 人类; 1:1000; 表 1
西格玛奥德里奇 parvalbumin抗体(Sigma, P3088)被用于被用于免疫细胞化学在人类样本上浓度为1:1000 (表 1). Exp Eye Res (2016) ncbi
小鼠 单克隆(PARV-19)
  • 免疫组化; 小鼠; 图 7b
西格玛奥德里奇 parvalbumin抗体(Sigma, P-3088)被用于被用于免疫组化在小鼠样本上 (图 7b). Cereb Cortex (2016) ncbi
小鼠 单克隆(PARV-19)
  • 免疫组化-石蜡切片; 大鼠; 1:400
西格玛奥德里奇 parvalbumin抗体(Sigma, PARV-19)被用于被用于免疫组化-石蜡切片在大鼠样本上浓度为1:400. Brain Struct Funct (2016) ncbi
小鼠 单克隆(PARV-19)
  • 免疫组化; 大鼠; 1:2000; 表 1
西格玛奥德里奇 parvalbumin抗体(Sigma, P3088)被用于被用于免疫组化在大鼠样本上浓度为1:2000 (表 1). Sci Rep (2015) ncbi
小鼠 单克隆(PARV-19)
  • 免疫细胞化学; 小鼠; 1:400; 表 1
西格玛奥德里奇 parvalbumin抗体(Sigma, P3088)被用于被用于免疫细胞化学在小鼠样本上浓度为1:400 (表 1). J Neurosci Res (2016) ncbi
小鼠 单克隆(PARV-19)
  • 免疫组化; 小鼠; 1:2000
西格玛奥德里奇 parvalbumin抗体(Sigma, P3088)被用于被用于免疫组化在小鼠样本上浓度为1:2000. J Neurosci (2015) ncbi
小鼠 单克隆(PARV-19)
  • 免疫组化-自由浮动切片; 小鼠; 1:2000
西格玛奥德里奇 parvalbumin抗体(Sigma, P3088)被用于被用于免疫组化-自由浮动切片在小鼠样本上浓度为1:2000. PLoS ONE (2015) ncbi
小鼠 单克隆(PARV-19)
  • 免疫组化; 小鼠; 1:1000; 图 2
西格玛奥德里奇 parvalbumin抗体(Sigma, P3088)被用于被用于免疫组化在小鼠样本上浓度为1:1000 (图 2). Hippocampus (2016) ncbi
小鼠 单克隆(PARV-19)
  • 免疫组化-石蜡切片; 小鼠; 1:1000; 图 s3c
西格玛奥德里奇 parvalbumin抗体(Sigma, P3088)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:1000 (图 s3c). Stem Cell Reports (2015) ncbi
小鼠 单克隆(PARV-19)
  • 免疫组化-石蜡切片; 小鼠; 1:1000; 图 2d
西格玛奥德里奇 parvalbumin抗体(Sigma, PARV-19)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:1000 (图 2d). J Neurosci (2015) ncbi
小鼠 单克隆(PARV-19)
  • 免疫细胞化学; 大鼠; 1:2000
  • 免疫组化; 大鼠; 1:2000
西格玛奥德里奇 parvalbumin抗体(Sigma Aldrich, P3088)被用于被用于免疫细胞化学在大鼠样本上浓度为1:2000 和 被用于免疫组化在大鼠样本上浓度为1:2000. J Comp Neurol (2015) ncbi
小鼠 单克隆(PARV-19)
  • 免疫细胞化学; 小鼠; 1:2000
  • 免疫组化; 小鼠; 1:2000
西格玛奥德里奇 parvalbumin抗体(Sigma- Aldrich, P3088)被用于被用于免疫细胞化学在小鼠样本上浓度为1:2000 和 被用于免疫组化在小鼠样本上浓度为1:2000. F1000Res (2014) ncbi
小鼠 单克隆(PARV-19)
  • 免疫组化; 大鼠; 1:1000
西格玛奥德里奇 parvalbumin抗体(Sigma, P3088)被用于被用于免疫组化在大鼠样本上浓度为1:1000. Psychopharmacology (Berl) (2015) ncbi
小鼠 单克隆(PARV-19)
  • 免疫组化; 大鼠; 1:200
西格玛奥德里奇 parvalbumin抗体(Sigma-Aldrich, P3088)被用于被用于免疫组化在大鼠样本上浓度为1:200. PLoS ONE (2014) ncbi
小鼠 单克隆(PARV-19)
  • 免疫组化; 猕猴
西格玛奥德里奇 parvalbumin抗体(Sigma-Aldrich, P-3088)被用于被用于免疫组化在猕猴样本上. J Comp Neurol (2013) ncbi
小鼠 单克隆(PARV-19)
  • 免疫细胞化学; 人类
西格玛奥德里奇 parvalbumin抗体(Sigma-Aldrich, P3088)被用于被用于免疫细胞化学在人类样本上. Cereb Cortex (2016) ncbi
小鼠 单克隆(PARV-19)
  • 免疫组化-冰冻切片; 猕猴; 1:2000
西格玛奥德里奇 parvalbumin抗体(Sigma-Aldrich, p3088)被用于被用于免疫组化-冰冻切片在猕猴样本上浓度为1:2000. J Comp Neurol (2014) ncbi
小鼠 单克隆(PARV-19)
  • 免疫细胞化学; 人类; 1:1000
  • 免疫细胞化学; 大鼠; 1:1000
西格玛奥德里奇 parvalbumin抗体(Sigma, P3088)被用于被用于免疫细胞化学在人类样本上浓度为1:1000 和 被用于免疫细胞化学在大鼠样本上浓度为1:1000. Arch Biochem Biophys (2014) ncbi
小鼠 单克隆(PARV-19)
  • 免疫组化; 大鼠; 1:1,000
西格玛奥德里奇 parvalbumin抗体(Sigma Immunochemicals, P3088)被用于被用于免疫组化在大鼠样本上浓度为1:1,000. Brain Struct Funct (2014) ncbi
小鼠 单克隆(PARV-19)
  • 免疫组化-自由浮动切片; black ferret; 1:6000
西格玛奥德里奇 parvalbumin抗体(Sigma-Aldrich, P3088)被用于被用于免疫组化-自由浮动切片在black ferret样本上浓度为1:6000. Eur J Neurosci (2014) ncbi
小鼠 单克隆(PARV-19)
  • 免疫组化-自由浮动切片; 小鼠; 1:500
西格玛奥德里奇 parvalbumin抗体(Sigma-Aldrich, P3088)被用于被用于免疫组化-自由浮动切片在小鼠样本上浓度为1:500. J Physiol (2014) ncbi
小鼠 单克隆(PARV-19)
  • 免疫细胞化学; 大鼠; 1:40,000
西格玛奥德里奇 parvalbumin抗体(Sigma-Aldrich, P3088)被用于被用于免疫细胞化学在大鼠样本上浓度为1:40,000. J Neurosci (2014) ncbi
小鼠 单克隆(PARV-19)
  • 免疫组化; 小鼠; 1:1000; 图 e4
西格玛奥德里奇 parvalbumin抗体(Sigma, P3088)被用于被用于免疫组化在小鼠样本上浓度为1:1000 (图 e4). Nature (2014) ncbi
小鼠 单克隆(PARV-19)
  • 免疫组化; 大鼠; 1:200
  • 免疫组化; gerbils; 1:200
西格玛奥德里奇 parvalbumin抗体(Sigma-Aldrich, P3088)被用于被用于免疫组化在大鼠样本上浓度为1:200 和 被用于免疫组化在gerbils样本上浓度为1:200. J Comp Neurol (2014) ncbi
小鼠 单克隆(PARV-19)
  • 免疫组化-冰冻切片; 大鼠; 1:8,000
西格玛奥德里奇 parvalbumin抗体(Sigma-Aldrich, P-3088)被用于被用于免疫组化-冰冻切片在大鼠样本上浓度为1:8,000. J Comp Neurol (2014) ncbi
小鼠 单克隆(PARV-19)
  • 免疫组化; 小鼠; 1:2000
西格玛奥德里奇 parvalbumin抗体(Sigma, P3088)被用于被用于免疫组化在小鼠样本上浓度为1:2000. PLoS ONE (2014) ncbi
小鼠 单克隆(PARV-19)
  • 免疫细胞化学; 小鼠; 1:10,000
  • 免疫细胞化学; 人类; 1:5000
西格玛奥德里奇 parvalbumin抗体(Sigma, P3088)被用于被用于免疫细胞化学在小鼠样本上浓度为1:10,000 和 被用于免疫细胞化学在人类样本上浓度为1:5000. Cell Mol Neurobiol (2014) ncbi
小鼠 单克隆(PARV-19)
  • 免疫组化; 小鼠; 1:300; 图 2, 3
西格玛奥德里奇 parvalbumin抗体(Sigma, P3088)被用于被用于免疫组化在小鼠样本上浓度为1:300 (图 2, 3). Development (2014) ncbi
小鼠 单克隆(PARV-19)
  • 免疫组化-冰冻切片; 小鼠; 1:2000
西格玛奥德里奇 parvalbumin抗体(Sigma, P3088)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:2000. Brain Struct Funct (2015) ncbi
小鼠 单克隆(PARV-19)
  • 免疫组化; 小鼠; 1:2000
西格玛奥德里奇 parvalbumin抗体(Sigma, P3088)被用于被用于免疫组化在小鼠样本上浓度为1:2000. Dev Biol (2014) ncbi
小鼠 单克隆(PARV-19)
  • 免疫细胞化学; 小鼠
西格玛奥德里奇 parvalbumin抗体(Sigma-Aldrich, P 3088)被用于被用于免疫细胞化学在小鼠样本上. J Comp Neurol (2014) ncbi
小鼠 单克隆(PARV-19)
  • 免疫组化-石蜡切片; pigs ; 1:50
西格玛奥德里奇 parvalbumin抗体(Sigma-Aldrich, PARV19)被用于被用于免疫组化-石蜡切片在pigs 样本上浓度为1:50. Toxicon (2013) ncbi
小鼠 单克隆(PARV-19)
  • 免疫组化-石蜡切片; 小鼠; 1:100
西格玛奥德里奇 parvalbumin抗体(Sigma, P3088)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:100. Exp Neurol (2013) ncbi
小鼠 单克隆(PARV-19)
  • 免疫组化; 猕猴; 1:2,000
西格玛奥德里奇 parvalbumin抗体(Sigma-Aldrich, P3088)被用于被用于免疫组化在猕猴样本上浓度为1:2,000. J Comp Neurol (2013) ncbi
小鼠 单克隆(PARV-19)
  • 免疫组化-冰冻切片; 小鼠; 1:500
西格玛奥德里奇 parvalbumin抗体(Sigma-aldrich, P3088)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:500. PLoS ONE (2013) ncbi
小鼠 单克隆(PARV-19)
  • 免疫组化-石蜡切片; elephantnose fish; 1:1,000
西格玛奥德里奇 parvalbumin抗体(Sigma, P3088)被用于被用于免疫组化-石蜡切片在elephantnose fish样本上浓度为1:1,000. J Comp Neurol (2013) ncbi
小鼠 单克隆(PARV-19)
  • 免疫组化; 小鼠; 1:1000
西格玛奥德里奇 parvalbumin抗体(Sigma, P3088)被用于被用于免疫组化在小鼠样本上浓度为1:1000. J Neurosci (2013) ncbi
小鼠 单克隆(PARV-19)
  • 免疫细胞化学; 小鼠; 1:1000
西格玛奥德里奇 parvalbumin抗体(Sigma, P3088)被用于被用于免疫细胞化学在小鼠样本上浓度为1:1000. Genesis (2013) ncbi
小鼠 单克隆(PARV-19)
  • 免疫组化-石蜡切片; 大鼠; 1:500
西格玛奥德里奇 parvalbumin抗体(Sigma, P3088)被用于被用于免疫组化-石蜡切片在大鼠样本上浓度为1:500. J Comp Neurol (2013) ncbi
小鼠 单克隆(PARV-19)
  • 免疫组化; 小鼠; 1:4000
西格玛奥德里奇 parvalbumin抗体(Sigma, P3088)被用于被用于免疫组化在小鼠样本上浓度为1:4000. Neurotox Res (2013) ncbi
小鼠 单克隆(PARV-19)
  • 免疫组化-冰冻切片; African green monkey; 1:1000
西格玛奥德里奇 parvalbumin抗体(Sigma-Aldrich, P3088)被用于被用于免疫组化-冰冻切片在African green monkey样本上浓度为1:1000. J Comp Neurol (2013) ncbi
小鼠 单克隆(PARV-19)
  • 免疫组化-冰冻切片; 小鼠; 1:1000
西格玛奥德里奇 parvalbumin抗体(Sigma, PARV19)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:1000. J Comp Neurol (2011) ncbi
小鼠 单克隆(PARV-19)
  • 免疫组化; 大鼠
  • 免疫组化; 小鼠
西格玛奥德里奇 parvalbumin抗体(Sigma-Aldrich, P3088)被用于被用于免疫组化在大鼠样本上 和 被用于免疫组化在小鼠样本上. J Comp Neurol (2011) ncbi
小鼠 单克隆(PARV-19)
  • 免疫组化-冰冻切片; 猕猴; 1:2000
西格玛奥德里奇 parvalbumin抗体(Sigma, P3088)被用于被用于免疫组化-冰冻切片在猕猴样本上浓度为1:2000. J Comp Neurol (2011) ncbi
小鼠 单克隆(PARV-19)
  • 免疫组化-自由浮动切片; 人类; 1:2500
西格玛奥德里奇 parvalbumin抗体(Sigma, P3088)被用于被用于免疫组化-自由浮动切片在人类样本上浓度为1:2500. J Comp Neurol (2010) ncbi
小鼠 单克隆(PARV-19)
  • 免疫组化-冰冻切片; 小鼠; 1:1000
西格玛奥德里奇 parvalbumin抗体(Sigma, P3088)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:1000. J Comp Neurol (2010) ncbi
小鼠 单克隆(PARV-19)
  • 免疫组化-冰冻切片; 小鼠; 1:10,000
西格玛奥德里奇 parvalbumin抗体(Sigma, P3088)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:10,000. J Comp Neurol (2009) ncbi
小鼠 单克隆(PARV-19)
  • 免疫组化; 小鼠; 1:1000
西格玛奥德里奇 parvalbumin抗体(Sigma, PARV19)被用于被用于免疫组化在小鼠样本上浓度为1:1000. J Comp Neurol (2009) ncbi
小鼠 单克隆(PARV-19)
  • 免疫组化-冰冻切片; eastern gray squirrel; 1:2000
西格玛奥德里奇 parvalbumin抗体(Sigma-Aldrich, P3088)被用于被用于免疫组化-冰冻切片在eastern gray squirrel样本上浓度为1:2000. J Comp Neurol (2008) ncbi
小鼠 单克隆(PARV-19)
  • 免疫组化-自由浮动切片; 小鼠; 1:2000
  • 免疫组化-冰冻切片; 小鼠; 1:2000
西格玛奥德里奇 parvalbumin抗体(Sigma, P3088)被用于被用于免疫组化-自由浮动切片在小鼠样本上浓度为1:2000 和 被用于免疫组化-冰冻切片在小鼠样本上浓度为1:2000. J Comp Neurol (2008) ncbi
小鼠 单克隆(PARV-19)
  • 免疫组化; 大鼠; 1:2000
西格玛奥德里奇 parvalbumin抗体(Sigma Aldrich, P3088)被用于被用于免疫组化在大鼠样本上浓度为1:2000. J Comp Neurol (2008) ncbi
小鼠 单克隆(PARV-19)
  • 免疫组化-自由浮动切片; 大鼠; 1:8000
西格玛奥德里奇 parvalbumin抗体(Sigma, P3088)被用于被用于免疫组化-自由浮动切片在大鼠样本上浓度为1:8000. J Comp Neurol (2008) ncbi
小鼠 单克隆(PARV-19)
  • 免疫组化-冰冻切片; 大鼠; 1:500
西格玛奥德里奇 parvalbumin抗体(Sigma, P3088)被用于被用于免疫组化-冰冻切片在大鼠样本上浓度为1:500. J Comp Neurol (2007) ncbi
小鼠 单克隆(PARV-19)
  • 免疫组化-自由浮动切片; 大鼠; 1:500
西格玛奥德里奇 parvalbumin抗体(Sigma, P 3088)被用于被用于免疫组化-自由浮动切片在大鼠样本上浓度为1:500. J Comp Neurol (2007) ncbi
小鼠 单克隆(PARV-19)
  • 免疫组化-自由浮动切片; 大鼠; 1:1000
西格玛奥德里奇 parvalbumin抗体(Sigma, P3088)被用于被用于免疫组化-自由浮动切片在大鼠样本上浓度为1:1000. J Comp Neurol (2007) ncbi
小鼠 单克隆(PARV-19)
  • 免疫组化; zebra finch; 1:1000
西格玛奥德里奇 parvalbumin抗体(Sigma, P3088)被用于被用于免疫组化在zebra finch样本上浓度为1:1000. J Comp Neurol (2007) ncbi
小鼠 单克隆(PARV-19)
  • 免疫组化; 大鼠; 1:4000
西格玛奥德里奇 parvalbumin抗体(Sigma, P3088)被用于被用于免疫组化在大鼠样本上浓度为1:4000. J Comp Neurol (2007) ncbi
小鼠 单克隆(PARV-19)
  • 免疫组化-自由浮动切片; 大鼠; 1:500
西格玛奥德里奇 parvalbumin抗体(Sigma, P3088)被用于被用于免疫组化-自由浮动切片在大鼠样本上浓度为1:500. J Comp Neurol (2007) ncbi
小鼠 单克隆(PARV-19)
  • 免疫组化; 小鼠
西格玛奥德里奇 parvalbumin抗体(Sigma, P3088)被用于被用于免疫组化在小鼠样本上. J Comp Neurol (2007) ncbi
小鼠 单克隆(PARV-19)
  • 免疫组化-冰冻切片; 大鼠; 1:500
西格玛奥德里奇 parvalbumin抗体(Sigma, P3088)被用于被用于免疫组化-冰冻切片在大鼠样本上浓度为1:500. J Comp Neurol (2006) ncbi
小鼠 单克隆(PARV-19)
  • 免疫组化; 猕猴; 1:1000
西格玛奥德里奇 parvalbumin抗体(Sigma, PARV19)被用于被用于免疫组化在猕猴样本上浓度为1:1000. J Comp Neurol (2006) ncbi
小鼠 单克隆(PARV-19)
  • 免疫组化-自由浮动切片; 大鼠
西格玛奥德里奇 parvalbumin抗体(Sigma, P3088)被用于被用于免疫组化-自由浮动切片在大鼠样本上. J Comp Neurol (2006) ncbi
小鼠 单克隆(PARV-19)
  • 免疫组化; 小鼠; 1:2000
西格玛奥德里奇 parvalbumin抗体(Sigma, P3088)被用于被用于免疫组化在小鼠样本上浓度为1:2000. J Comp Neurol (2005) ncbi
文章列表
  1. Turcato F, Wegman E, Lu T, Ferguson N, Luo Y. Dopaminergic neurons are not a major Sonic hedgehog ligand source for striatal cholinergic or PV interneurons. iScience. 2022;25:105278 pubmed 出版商
  2. Dragić M, Mihajlovic K, Adzic M, Jakovljevic M, Kontic M, Mitrovi x107 N, et al. Expression of Ectonucleoside Triphosphate Diphosphohydrolase 2 (NTPDase2) Is Negatively Regulated Under Neuroinflammatory Conditions In Vivo and In Vitro. ASN Neuro. 2022;14:17590914221102068 pubmed 出版商
  3. Hauser D, Behr K, Konno K, Schreiner D, Schmidt A, Watanabe M, et al. Targeted proteoform mapping uncovers specific Neurexin-3 variants required for dendritic inhibition. Neuron. 2022;: pubmed 出版商
  4. Yu D, Li T, Delpech J, Zhu B, Kishore P, Koshi T, et al. Microglial GPR56 is the molecular target of maternal immune activation-induced parvalbumin-positive interneuron deficits. Sci Adv. 2022;8:eabm2545 pubmed 出版商
  5. Tayyeb A, Dihazi G, Tampe B, Zeisberg M, Tampe D, Hakroush S, et al. Calreticulin Shortage Results in Disturbance of Calcium Storage, Mitochondrial Disease, and Kidney Injury. Cells. 2022;11: pubmed 出版商
  6. Daswani R, Gilardi C, Soutschek M, Nanda P, Weiss K, Bicker S, et al. MicroRNA-138 controls hippocampal interneuron function and short-term memory in mice. elife. 2022;11: pubmed 出版商
  7. Lee G, Graham D, Noble B, Trammell T, McCarthy D, Anderson L, et al. Behavioral and Neuroanatomical Consequences of Cell-Type Specific Loss of Dopamine D2 Receptors in the Mouse Cerebral Cortex. Front Behav Neurosci. 2021;15:815713 pubmed 出版商
  8. Tsolias A, Medalla M. Muscarinic Acetylcholine Receptor Localization on Distinct Excitatory and Inhibitory Neurons Within the ACC and LPFC of the Rhesus Monkey. Front Neural Circuits. 2021;15:795325 pubmed 出版商
  9. El Khoueiry C, Cabungcal J, Rov xf3 Z, Fournier M, Do K, Steullet P. Developmental oxidative stress leads to T-type Ca2+ channel hypofunction in thalamic reticular nucleus of mouse models pertinent to schizophrenia. Mol Psychiatry. 2022;27:2042-2051 pubmed 出版商
  10. Zhang X, Liu Y, Hong X, Li X, Meshul C, Moore C, et al. NG2 glia-derived GABA release tunes inhibitory synapses and contributes to stress-induced anxiety. Nat Commun. 2021;12:5740 pubmed 出版商
  11. Chang W, Pedroni A, Köster R, Giacomello S, Ampatzis K. Purkinje cells located in the adult zebrafish valvula cerebelli exhibit variable functional responses. Sci Rep. 2021;11:18408 pubmed 出版商
  12. Zhang M, Wang J, Zhang K, Lu G, Liu Y, Ren K, et al. Ten-eleven translocation 1 mediated-DNA hydroxymethylation is required for myelination and remyelination in the mouse brain. Nat Commun. 2021;12:5091 pubmed 出版商
  13. Miller D, Wright K. Neuronal Dystroglycan regulates postnatal development of CCK/cannabinoid receptor-1 interneurons. Neural Dev. 2021;16:4 pubmed 出版商
  14. Magno L, Asgarian Z, Pendolino V, Velona T, Mackintosh A, Lee F, et al. Transient developmental imbalance of cortical interneuron subtypes presages long-term changes in behavior. Cell Rep. 2021;35:109249 pubmed 出版商
  15. Panthi S, Leitch B. Chemogenetic Activation of Feed-Forward Inhibitory Parvalbumin-Expressing Interneurons in the Cortico-Thalamocortical Network During Absence Seizures. Front Cell Neurosci. 2021;15:688905 pubmed 出版商
  16. Frei J, Brandenburg C, Nestor J, Hodzic D, Plachez C, McNeill H, et al. Postnatal expression profiles of atypical cadherin FAT1 suggest its role in autism. Biol Open. 2021;10: pubmed 出版商
  17. Scekic Zahirovic J, Sanjuan Ruiz I, Kan V, Megat S, de Rossi P, Dieterlé S, et al. Cytoplasmic FUS triggers early behavioral alterations linked to cortical neuronal hyperactivity and inhibitory synaptic defects. Nat Commun. 2021;12:3028 pubmed 出版商
  18. Hoseini M, Higashikubo B, Cho F, Chang A, Clemente Perez A, Lew I, et al. Gamma rhythms and visual information in mouse V1 specifically modulated by somatostatin+ neurons in reticular thalamus. elife. 2021;10: pubmed 出版商
  19. Vojtechova I, Maleninska K, Kútna V, Klovrza O, Tuckova K, Petrasek T, et al. Behavioral Alterations and Decreased Number of Parvalbumin-Positive Interneurons in Wistar Rats after Maternal Immune Activation by Lipopolysaccharide: Sex Matters. Int J Mol Sci. 2021;22: pubmed 出版商
  20. Chang L, Soomro S, Zhang H, Fu H. Ankfy1 Is Involved in the Maintenance of Cerebellar Purkinje Cells. Front Cell Neurosci. 2021;15:648801 pubmed 出版商
  21. Miguel J, Perez S, Malek Ahmadi M, Mufson E. Cerebellar Calcium-Binding Protein and Neurotrophin Receptor Defects in Down Syndrome and Alzheimer's Disease. Front Aging Neurosci. 2021;13:645334 pubmed 出版商
  22. Uchida K, Hasuoka K, Fuse T, Kobayashi K, Moriya T, Suzuki M, et al. Thyroid hormone insufficiency alters the expression of psychiatric disorder-related molecules in the hypothyroid mouse brain during the early postnatal period. Sci Rep. 2021;11:6723 pubmed 出版商
  23. Kement D, Reumann R, Schostak K, Vo xdf H, Douceau S, Dottermusch M, et al. Neuroserpin Is Strongly Expressed in the Developing and Adult Mouse Neocortex but Its Absence Does Not Perturb Cortical Lamination and Synaptic Proteome. Front Neuroanat. 2021;15:627896 pubmed 出版商
  24. Wu H, Petitpré C, Fontanet P, Sharma A, Bellardita C, Quadros R, et al. Distinct subtypes of proprioceptive dorsal root ganglion neurons regulate adaptive proprioception in mice. Nat Commun. 2021;12:1026 pubmed 出版商
  25. Affortit C, Casas F, Ladrech S, Ceccato J, Bourien J, Coyat C, et al. Exacerbated age-related hearing loss in mice lacking the p43 mitochondrial T3 receptor. BMC Biol. 2021;19:18 pubmed 出版商
  26. Jager P, Moore G, Calpin P, Durmishi X, Salgarella I, Menage L, et al. Dual midbrain and forebrain origins of thalamic inhibitory interneurons. elife. 2021;10: pubmed 出版商
  27. Young H, Belbut B, Baeta M, Petreanu L. Laminar-specific cortico-cortical loops in mouse visual cortex. elife. 2021;10: pubmed 出版商
  28. Yang S, Michel K, Jokhi V, Nedivi E, Arlotta P. Neuron class-specific responses govern adaptive myelin remodeling in the neocortex. Science. 2020;370: pubmed 出版商
  29. Segebarth D, Griebel M, Stein N, von Collenberg C, Martin C, Fiedler D, et al. On the objectivity, reliability, and validity of deep learning enabled bioimage analyses. elife. 2020;9: pubmed 出版商
  30. Hoang T, Wang J, Boyd P, Wang F, Santiago C, Jiang L, et al. Gene regulatory networks controlling vertebrate retinal regeneration. Science. 2020;370: pubmed 出版商
  31. Scheckel C, Imeri M, Schwarz P, Aguzzi A. Ribosomal profiling during prion disease uncovers progressive translational derangement in glia but not in neurons. elife. 2020;9: pubmed 出版商
  32. Ueno H, Shimada A, Suemitsu S, Murakami S, Kitamura N, Wani K, et al. Alpha-pinene and dizocilpine (MK-801) attenuate kindling development and astrocytosis in an experimental mouse model of epilepsy. IBRO Rep. 2020;9:102-114 pubmed 出版商
  33. Mancia Leon W, Spatazza J, Rakela B, Chatterjee A, Pande V, Maniatis T, et al. Clustered gamma-protocadherins regulate cortical interneuron programmed cell death. elife. 2020;9: pubmed 出版商
  34. Vaden R, González J, Tsai M, Niver A, Fusilier A, Griffith C, et al. Parvalbumin interneurons provide spillover to newborn and mature dentate granule cells. elife. 2020;9: pubmed 出版商
  35. Menendez L, Trecek T, Gopalakrishnan S, Tao L, Markowitz A, Yu H, et al. Generation of inner ear hair cells by direct lineage conversion of primary somatic cells. elife. 2020;9: pubmed 出版商
  36. Zhang Y, Zhu Y, Cao S, Sun P, Yang J, Xia Y, et al. MeCP2 in cholinergic interneurons of nucleus accumbens regulates fear learning. elife. 2020;9: pubmed 出版商
  37. Khan M, Regehr W. Loss of Doc2b does not influence transmission at Purkinje cell to deep nuclei synapses under physiological conditions. elife. 2020;9: pubmed 出版商
  38. Mossner J, Batista Brito R, Pant R, Cardin J. Developmental loss of MeCP2 from VIP interneurons impairs cortical function and behavior. elife. 2020;9: pubmed 出版商
  39. Provenzano G, Gilardoni A, Maggia M, Pernigo M, Sgadò P, Casarosa S, et al. Altered Expression of GABAergic Markers in the Forebrain of Young and Adult Engrailed-2 Knockout Mice. Genes (Basel). 2020;11: pubmed 出版商
  40. Schmid C, Alampi I, Briggs J, Tarcza K, Stawicki T. Mechanotransduction Activity Facilitates Hair Cell Toxicity Caused by the Heavy Metal Cadmium. Front Cell Neurosci. 2020;14:37 pubmed 出版商
  41. Wu Z, Parry M, Hou X, Liu M, Wang H, Cain R, et al. Gene therapy conversion of striatal astrocytes into GABAergic neurons in mouse models of Huntington's disease. Nat Commun. 2020;11:1105 pubmed 出版商
  42. TIMBIE C, García Cabezas M, Zikopoulos B, Barbas H. Organization of primate amygdalar-thalamic pathways for emotions. PLoS Biol. 2020;18:e3000639 pubmed 出版商
  43. Bicks L, Yamamuro K, Flanigan M, Kim J, Kato D, Lucas E, et al. Prefrontal parvalbumin interneurons require juvenile social experience to establish adult social behavior. Nat Commun. 2020;11:1003 pubmed 出版商
  44. Chen B, Xu C, Wang Y, Lin W, Wang Y, Chen L, et al. A disinhibitory nigra-parafascicular pathway amplifies seizure in temporal lobe epilepsy. Nat Commun. 2020;11:923 pubmed 出版商
  45. Garrett L, Chang Y, Niedermeier K, Heermann T, Enard W, Fuchs H, et al. A truncating Aspm allele leads to a complex cognitive phenotype and region-specific reductions in parvalbuminergic neurons. Transl Psychiatry. 2020;10:66 pubmed 出版商
  46. Pelkey K, Calvigioni D, Fang C, Vargish G, Ekins T, Auville K, et al. Paradoxical network excitation by glutamate release from VGluT3+ GABAergic interneurons. elife. 2020;9: pubmed 出版商
  47. Agoglia A, Zhu M, Ying R, Sidhu H, Natividad L, Wolfe S, et al. Corticotropin-Releasing Factor Receptor-1 Neurons in the Lateral Amygdala Display Selective Sensitivity to Acute and Chronic Ethanol Exposure. Eneuro. 2020;7: pubmed 出版商
  48. Calva C, Fayyaz H, Fadel J. Effects of Intranasal Orexin-A (Hypocretin-1) Administration on Neuronal Activation, Neurochemistry, and Attention in Aged Rats. Front Aging Neurosci. 2019;11:362 pubmed 出版商
  49. Crevier Sorbo G, Rymar V, Crevier Sorbo R, Sadikot A. Thalamostriatal degeneration contributes to dystonia and cholinergic interneuron dysfunction in a mouse model of Huntington's disease. Acta Neuropathol Commun. 2020;8:14 pubmed 出版商
  50. Katona L, Hartwich K, Tomioka R, Somogyi J, Roberts J, Wagner K, et al. Synaptic organisation and behaviour-dependent activity of mGluR8a-innervated GABAergic trilaminar cells projecting from the hippocampus to the subiculum. Brain Struct Funct. 2020;225:705-734 pubmed 出版商
  51. Ozen I, Ruscher K, Nilsson R, Flygt J, Clausen F, Marklund N. Interleukin-1 Beta Neutralization Attenuates Traumatic Brain Injury-Induced Microglia Activation and Neuronal Changes in the Globus Pallidus. Int J Mol Sci. 2020;21: pubmed 出版商
  52. Berdugo Vega G, Arias Gil G, López Fernández A, Artegiani B, Wasielewska J, Lee C, et al. Increasing neurogenesis refines hippocampal activity rejuvenating navigational learning strategies and contextual memory throughout life. Nat Commun. 2020;11:135 pubmed 出版商
  53. Szegedi V, Paizs M, Baka J, Barzo P, Molnár G, Tamas G, et al. Robust perisomatic GABAergic self-innervation inhibits basket cells in the human and mouse supragranular neocortex. elife. 2020;9: pubmed 出版商
  54. Rice H, Marcassa G, Chrysidou I, Horré K, Young Pearse T, Müller U, et al. Contribution of GABAergic interneurons to amyloid-β plaque pathology in an APP knock-in mouse model. Mol Neurodegener. 2020;15:3 pubmed 出版商
  55. He Y, Li W, Zheng Z, Zhao L, Li W, Wang Y, et al. Inhibition of Protein arginine methyltransferase 6 reduces reactive oxygen species production and attenuates aminoglycoside- and cisplatin-induced hair cell death. Theranostics. 2020;10:133-150 pubmed 出版商
  56. Stedehouder J, Brizee D, Slotman J, Pascual Garcia M, Leyrer M, Bouwen B, et al. Local axonal morphology guides the topography of interneuron myelination in mouse and human neocortex. elife. 2019;8: pubmed 出版商
  57. Wong A, Borst J. Tonotopic and non-auditory organization of the mouse dorsal inferior colliculus revealed by two-photon imaging. elife. 2019;8: pubmed 出版商
  58. Upadhya D, Kodali M, Gitaí D, Castro O, Zanirati G, Upadhya R, et al. A Model of Chronic Temporal Lobe Epilepsy Presenting Constantly Rhythmic and Robust Spontaneous Seizures, Co-morbidities and Hippocampal Neuropathology. Aging Dis. 2019;10:915-936 pubmed 出版商
  59. Adler A, Cardoso T, Nolbrant S, Mattsson B, Hoban D, Jarl U, et al. hESC-Derived Dopaminergic Transplants Integrate into Basal Ganglia Circuitry in a Preclinical Model of Parkinson's Disease. Cell Rep. 2019;28:3462-3473.e5 pubmed 出版商
  60. Park H, Kim T, Kim J, Yamamoto Y, Tanaka Yamamoto K. Inputs from Sequentially Developed Parallel Fibers Are Required for Cerebellar Organization. Cell Rep. 2019;28:2939-2954.e5 pubmed 出版商
  61. Mukherjee A, Carvalho F, Eliez S, Caroni P. Long-Lasting Rescue of Network and Cognitive Dysfunction in a Genetic Schizophrenia Model. Cell. 2019;178:1387-1402.e14 pubmed 出版商
  62. Grieco S, Wang G, Mahapatra A, Lai C, Holmes T, Xu X. Neuregulin and ErbB expression is regulated by development and sensory experience in mouse visual cortex. J Comp Neurol. 2020;528:419-432 pubmed 出版商
  63. Whyland K, Slusarczyk A, Bickford M. GABAergic cell types in the superficial layers of the mouse superior colliculus. J Comp Neurol. 2020;528:308-320 pubmed 出版商
  64. Carron S, Sun M, Shultz S, Rajan R. Inhibitory neuronal changes following a mixed diffuse-focal model of traumatic brain injury. J Comp Neurol. 2020;528:175-198 pubmed 出版商
  65. Lee F, Lai T, Su P, Liu F. Altered cortical Cytoarchitecture in the Fmr1 knockout mouse. Mol Brain. 2019;12:56 pubmed 出版商
  66. Inoue M, Takeuchi A, Manita S, Horigane S, Sakamoto M, Kawakami R, et al. Rational Engineering of XCaMPs, a Multicolor GECI Suite for In Vivo Imaging of Complex Brain Circuit Dynamics. Cell. 2019;: pubmed 出版商
  67. Ast T, Meisel J, Patra S, Wang H, Grange R, Kim S, et al. Hypoxia Rescues Frataxin Loss by Restoring Iron Sulfur Cluster Biogenesis. Cell. 2019;: pubmed 出版商
  68. Baho E, Chattopadhyaya B, Lavertu Jolin M, Mazziotti R, Awad P, Chehrazi P, et al. p75 Neurotrophin Receptor Activation Regulates the Timing of the Maturation of Cortical Parvalbumin Interneuron Connectivity and Promotes Juvenile-like Plasticity in Adult Visual Cortex. J Neurosci. 2019;39:4489-4510 pubmed 出版商
  69. Saraf M, Balaram P, Pifferi F, Kennedy H, Kaas J. The sensory thalamus and visual midbrain in mouse lemurs. J Comp Neurol. 2019;527:2599-2611 pubmed 出版商
  70. Riedemann S, Sutor B, Bergami M, Riedemann T. Gad1-promotor-driven GFP expression in non-GABAergic neurons of the nucleus endopiriformis in a transgenic mouse line. J Comp Neurol. 2019;: pubmed 出版商
  71. Boccalaro I, Cristiá Lara L, Schwerdel C, Fritschy J, Rubi L. Cell type-specific distribution of GABAA receptor subtypes in the mouse dorsal striatum. J Comp Neurol. 2019;527:2030-2046 pubmed 出版商
  72. Bienkowski M, Benavidez N, Wu K, Gou L, Becerra M, Dong H. Extrastriate connectivity of the mouse dorsal lateral geniculate thalamic nucleus. J Comp Neurol. 2019;527:1419-1442 pubmed 出版商
  73. Yu Q, Liu Y, Zhu Y, Wang Y, Li Q, Yin D. Genetic labeling reveals temporal and spatial expression pattern of D2 dopamine receptor in rat forebrain. Brain Struct Funct. 2019;224:1035-1049 pubmed 出版商
  74. Williams L, Holtmaat A. Higher-Order Thalamocortical Inputs Gate Synaptic Long-Term Potentiation via Disinhibition. Neuron. 2019;101:91-102.e4 pubmed 出版商
  75. Rahman A, Weber J, Labin E, Lai C, Prieto A. Developmental expression of Neuregulin-3 in the rat central nervous system. J Comp Neurol. 2019;527:797-817 pubmed 出版商
  76. Zhang H, Pan H, Zhou C, Wei Y, Ying W, Li S, et al. Simultaneous zygotic inactivation of multiple genes in mouse through CRISPR/Cas9-mediated base editing. Development. 2018;145: pubmed 出版商
  77. Moore B, Li K, Kaas J, Liao C, Boal A, Mavity Hudson J, et al. Cortical projections to the two retinotopic maps of primate pulvinar are distinct. J Comp Neurol. 2019;527:577-588 pubmed 出版商
  78. Karow M, Camp J, Falk S, Gerber T, Pataskar A, Gac Santel M, et al. Direct pericyte-to-neuron reprogramming via unfolding of a neural stem cell-like program. Nat Neurosci. 2018;21:932-940 pubmed 出版商
  79. Saraf M, Balaram P, Pifferi F, Gămănuţ R, Kennedy H, Kaas J. Architectonic features and relative locations of primary sensory and related areas of neocortex in mouse lemurs. J Comp Neurol. 2019;527:625-639 pubmed 出版商
  80. Silva C, Peyre E, Adhikari M, Tielens S, Tanco S, Van Damme P, et al. Cell-Intrinsic Control of Interneuron Migration Drives Cortical Morphogenesis. Cell. 2018;172:1063-1078.e19 pubmed 出版商
  81. Owen S, Berke J, Kreitzer A. Fast-Spiking Interneurons Supply Feedforward Control of Bursting, Calcium, and Plasticity for Efficient Learning. Cell. 2018;172:683-695.e15 pubmed 出版商
  82. Ingold I, Berndt C, Schmitt S, Doll S, Poschmann G, Buday K, et al. Selenium Utilization by GPX4 Is Required to Prevent Hydroperoxide-Induced Ferroptosis. Cell. 2018;172:409-422.e21 pubmed 出版商
  83. Sousa A, Zhu Y, Raghanti M, Kitchen R, Onorati M, Tebbenkamp A, et al. Molecular and cellular reorganization of neural circuits in the human lineage. Science. 2017;358:1027-1032 pubmed 出版商
  84. Bayguinov P, Ma Y, Gao Y, Zhao X, Jackson M. Imaging Voltage in Genetically Defined Neuronal Subpopulations with a Cre Recombinase-Targeted Hybrid Voltage Sensor. J Neurosci. 2017;37:9305-9319 pubmed 出版商
  85. Seigneur E, Südhof T. Cerebellins are differentially expressed in selective subsets of neurons throughout the brain. J Comp Neurol. 2017;525:3286-3311 pubmed 出版商
  86. Scott B, Saleem K, Kikuchi Y, Fukushima M, Mishkin M, Saunders R. Thalamic connections of the core auditory cortex and rostral supratemporal plane in the macaque monkey. J Comp Neurol. 2017;525:3488-3513 pubmed 出版商
  87. Wang Y, Zorio D, Karten H. Heterogeneous organization and connectivity of the chicken auditory thalamus (Gallus gallus). J Comp Neurol. 2017;525:3044-3071 pubmed 出版商
  88. Hammoum I, Benlarbi M, Dellaa A, Szabó K, Dékány B, Csaba D, et al. Study of retinal neurodegeneration and maculopathy in diabetic Meriones shawi: A particular animal model with human-like macula. J Comp Neurol. 2017;525:2890-2914 pubmed 出版商
  89. Solek C, Feng S, Perin S, Weinschutz Mendes H, Ekker M. Lineage tracing of dlx1a/2a and dlx5a/6a expressing cells in the developing zebrafish brain. Dev Biol. 2017;427:131-147 pubmed 出版商
  90. Birey F, Andersen J, Makinson C, Islam S, Wei W, Huber N, et al. Assembly of functionally integrated human forebrain spheroids. Nature. 2017;545:54-59 pubmed 出版商
  91. Eshima H, Tamura Y, Kakehi S, Kurebayashi N, Murayama T, Nakamura K, et al. Long-term, but not short-term high-fat diet induces fiber composition changes and impaired contractile force in mouse fast-twitch skeletal muscle. Physiol Rep. 2017;5: pubmed 出版商
  92. Zhang X, Sullivan C, Kratz M, Kasten M, Maness P, Manis P. NCAM Regulates Inhibition and Excitability in Layer 2/3 Pyramidal Cells of Anterior Cingulate Cortex. Front Neural Circuits. 2017;11:19 pubmed 出版商
  93. Wallace M, Saunders A, Huang K, Philson A, Goldman M, Macosko E, et al. Genetically Distinct Parallel Pathways in the Entopeduncular Nucleus for Limbic and Sensorimotor Output of the Basal Ganglia. Neuron. 2017;94:138-152.e5 pubmed 出版商
  94. Larimore J, Zlatic S, Arnold M, Singleton K, Cross R, Rudolph H, et al. Dysbindin Deficiency Modifies the Expression of GABA Neuron and Ion Permeation Transcripts in the Developing Hippocampus. Front Genet. 2017;8:28 pubmed 出版商
  95. Kawata M, Morikawa S, Shiosaka S, Tamura H. Ablation of neuropsin-neuregulin 1 signaling imbalances ErbB4 inhibitory networks and disrupts hippocampal gamma oscillation. Transl Psychiatry. 2017;7:e1052 pubmed 出版商
  96. Fonseca M, Chu S, Hernandez M, Fang M, Modarresi L, Selvan P, et al. Cell-specific deletion of C1qa identifies microglia as the dominant source of C1q in mouse brain. J Neuroinflammation. 2017;14:48 pubmed 出版商
  97. Krabichler Q, Vega Zuniga T, Carrasco D, Fernández M, Gutiérrez Ibáñez C, Marín G, et al. The centrifugal visual system of a palaeognathous bird, the Chilean Tinamou (Nothoprocta perdicaria). J Comp Neurol. 2017;525:2514-2534 pubmed 出版商
  98. Soares D, Goldrick I, Lemon R, Kraskov A, Greensmith L, Kalmar B. Expression of Kv3.1b potassium channel is widespread in macaque motor cortex pyramidal cells: A histological comparison between rat and macaque. J Comp Neurol. 2017;525:2164-2174 pubmed 出版商
  99. Subashini C, Dhanesh S, Chen C, Riya P, Meera V, Divya T, et al. Wnt5a is a crucial regulator of neurogenesis during cerebellum development. Sci Rep. 2017;7:42523 pubmed 出版商
  100. Christenson Wick Z, Leintz C, Xamonthiene C, Huang B, Krook Magnuson E. Axonal sprouting in commissurally projecting parvalbumin-expressing interneurons. J Neurosci Res. 2017;95:2336-2344 pubmed 出版商
  101. Yu T, Qi Y, Zhu J, Xu J, Gong H, Luo Q, et al. Elevated-temperature-induced acceleration of PACT clearing process of mouse brain tissue. Sci Rep. 2017;7:38848 pubmed 出版商
  102. Fu H, Rodriguez G, Herman M, Emrani S, Nahmani E, Barrett G, et al. Tau Pathology Induces Excitatory Neuron Loss, Grid Cell Dysfunction, and Spatial Memory Deficits Reminiscent of Early Alzheimer's Disease. Neuron. 2017;93:533-541.e5 pubmed 出版商
  103. Wild J. Dorsal pallidal neurons directly link the nidopallium and midbrain in the zebra finch (Taeniopygia guttata). J Comp Neurol. 2017;525:1731-1742 pubmed 出版商
  104. Glausier J, Roberts R, Lewis D. Ultrastructural analysis of parvalbumin synapses in human dorsolateral prefrontal cortex. J Comp Neurol. 2017;525:2075-2089 pubmed 出版商
  105. Nguyen T, Schreiner D, Xiao L, Traunmüller L, Bornmann C, Scheiffele P. An alternative splicing switch shapes neurexin repertoires in principal neurons versus interneurons in the mouse hippocampus. elife. 2016;5: pubmed 出版商
  106. Ueno H, Suemitsu S, Okamoto M, Matsumoto Y, Ishihara T. Parvalbumin neurons and perineuronal nets in the mouse prefrontal cortex. Neuroscience. 2017;343:115-127 pubmed 出版商
  107. Fraser J, Essebier A, Gronostajski R, Boden M, Wainwright B, Harvey T, et al. Cell-type-specific expression of NFIX in the developing and adult cerebellum. Brain Struct Funct. 2017;222:2251-2270 pubmed 出版商
  108. Matsuno T, Kiyokage E, Toida K. Synaptic distribution of individually labeled mitral cells in the external plexiform layer of the mouse olfactory bulb. J Comp Neurol. 2017;525:1633-1648 pubmed 出版商
  109. Berryer M, Chattopadhyaya B, Xing P, Riebe I, Bosoi C, Sanon N, et al. Decrease of SYNGAP1 in GABAergic cells impairs inhibitory synapse connectivity, synaptic inhibition and cognitive function. Nat Commun. 2016;7:13340 pubmed 出版商
  110. Dimidschstein J, Chen Q, Tremblay R, Rogers S, Saldi G, Guo L, et al. A viral strategy for targeting and manipulating interneurons across vertebrate species. Nat Neurosci. 2016;19:1743-1749 pubmed 出版商
  111. Yamada J, Jinno S. Molecular heterogeneity of aggrecan-based perineuronal nets around five subclasses of parvalbumin-expressing neurons in the mouse hippocampus. J Comp Neurol. 2017;525:1234-1249 pubmed 出版商
  112. Adotevi N, Leitch B. Alterations in AMPA receptor subunit expression in cortical inhibitory interneurons in the epileptic stargazer mutant mouse. Neuroscience. 2016;339:124-138 pubmed 出版商
  113. Large A, Kunz N, Mielo S, Oswald A. Inhibition by Somatostatin Interneurons in Olfactory Cortex. Front Neural Circuits. 2016;10:62 pubmed 出版商
  114. Patel M, Sons S, Yudintsev G, Lesicko A, Yang L, Taha G, et al. Anatomical characterization of subcortical descending projections to the inferior colliculus in mouse. J Comp Neurol. 2017;525:885-900 pubmed 出版商
  115. Habib N, Li Y, Heidenreich M, Swiech L, Avraham Davidi I, Trombetta J, et al. Div-Seq: Single-nucleus RNA-Seq reveals dynamics of rare adult newborn neurons. Science. 2016;353:925-8 pubmed 出版商
  116. Huh S, Baek S, Lee K, Whitcomb D, Jo J, Choi S, et al. The reemergence of long-term potentiation in aged Alzheimer's disease mouse model. Sci Rep. 2016;6:29152 pubmed 出版商
  117. Botterill J, Nogovitsyn N, Caruncho H, Kalynchuk L. Selective plasticity of hippocampal GABAergic interneuron populations following kindling of different brain regions. J Comp Neurol. 2017;525:389-406 pubmed 出版商
  118. Antyborzec I, O Leary V, Dolly J, Ovsepian S. Low-Affinity Neurotrophin Receptor p75 Promotes the Transduction of Targeted Lentiviral Vectors to Cholinergic Neurons of Rat Basal Forebrain. Neurotherapeutics. 2016;13:859-870 pubmed 出版商
  119. Phillips J, Laude A, Lightowlers R, Morris C, Turnbull D, Lax N. Development of passive CLARITY and immunofluorescent labelling of multiple proteins in human cerebellum: understanding mechanisms of neurodegeneration in mitochondrial disease. Sci Rep. 2016;6:26013 pubmed 出版商
  120. He J, Zhou R, Wu Z, Carrasco M, Kurshan P, Farley J, et al. Prevalent presence of periodic actin-spectrin-based membrane skeleton in a broad range of neuronal cell types and animal species. Proc Natl Acad Sci U S A. 2016;113:6029-34 pubmed 出版商
  121. Olsen G, Witter M. Posterior parietal cortex of the rat: Architectural delineation and thalamic differentiation. J Comp Neurol. 2016;524:3774-3809 pubmed 出版商
  122. Liput D, Lu V, Davis M, Puhl H, Ikeda S. Rem2, a member of the RGK family of small GTPases, is enriched in nuclei of the basal ganglia. Sci Rep. 2016;6:25137 pubmed 出版商
  123. Harden S, Frazier C. Oxytocin depolarizes fast-spiking hilar interneurons and induces GABA release onto mossy cells of the rat dentate gyrus. Hippocampus. 2016;26:1124-39 pubmed 出版商
  124. Kubota H, Kobayashi A, Kobayashi Y, Shiomi K, Hamada Sato N. Reduction in IgE reactivity of Pacific mackerel parvalbumin by heat treatment. Food Chem. 2016;206:78-84 pubmed 出版商
  125. Vereczki V, Veres J, Müller K, Nagy G, Rácz B, Barsy B, et al. Synaptic Organization of Perisomatic GABAergic Inputs onto the Principal Cells of the Mouse Basolateral Amygdala. Front Neuroanat. 2016;10:20 pubmed 出版商
  126. Díaz Balzac C, Lázaro Peña M, Vázquez Figueroa L, Díaz Balzac R, Garcia Arraras J. Holothurian Nervous System Diversity Revealed by Neuroanatomical Analysis. PLoS ONE. 2016;11:e0151129 pubmed 出版商
  127. Day Brown J, Slusarczyk A, Zhou N, Quiggins R, Petry H, Bickford M. Synaptic organization of striate cortex projections in the tree shrew: A comparison of the claustrum and dorsal thalamus. J Comp Neurol. 2017;525:1403-1420 pubmed 出版商
  128. Gunewardene N, Crombie D, Dottori M, Nayagam B. Innervation of Cochlear Hair Cells by Human Induced Pluripotent Stem Cell-Derived Neurons In Vitro. Stem Cells Int. 2016;2016:1781202 pubmed 出版商
  129. Bonini S, Mastinu A, Maccarinelli G, Mitola S, Premoli M, La Rosa L, et al. Cortical Structure Alterations and Social Behavior Impairment in p50-Deficient Mice. Cereb Cortex. 2016;26:2832-49 pubmed 出版商
  130. Alshammari M, Alshammari T, Laezza F. Improved Methods for Fluorescence Microscopy Detection of Macromolecules at the Axon Initial Segment. Front Cell Neurosci. 2016;10:5 pubmed 出版商
  131. McNally A, Poplawski S, Mayweather B, White K, Abel T. Characterization of a Novel Chromatin Sorting Tool Reveals Importance of Histone Variant H3.3 in Contextual Fear Memory and Motor Learning. Front Mol Neurosci. 2016;9:11 pubmed 出版商
  132. Mueller A, Davis A, Sovich S, Carlson S, Robinson F. Distribution of N-Acetylgalactosamine-Positive Perineuronal Nets in the Macaque Brain: Anatomy and Implications. Neural Plast. 2016;2016:6021428 pubmed 出版商
  133. Kinjo E, Higa G, Santos B, de Sousa E, Damico M, Walter L, et al. Pilocarpine-induced seizures trigger differential regulation of microRNA-stability related genes in rat hippocampal neurons. Sci Rep. 2016;6:20969 pubmed 出版商
  134. Canetta S, Bolkan S, Padilla Coreano N, Song L, Sahn R, Harrison N, et al. Maternal immune activation leads to selective functional deficits in offspring parvalbumin interneurons. Mol Psychiatry. 2016;21:956-68 pubmed 出版商
  135. Buzhdygan T, Lisinicchia J, Patel V, Johnson K, Neugebauer V, Paessler S, et al. Neuropsychological, Neurovirological and Neuroimmune Aspects of Abnormal GABAergic Transmission in HIV Infection. J Neuroimmune Pharmacol. 2016;11:279-93 pubmed 出版商
  136. De Stasi A, Farisello P, Marcon I, Cavallari S, Forli A, Vecchia D, et al. Unaltered Network Activity and Interneuronal Firing During Spontaneous Cortical Dynamics In Vivo in a Mouse Model of Severe Myoclonic Epilepsy of Infancy. Cereb Cortex. 2016;26:1778-94 pubmed 出版商
  137. Karunakaran S, Chowdhury A, Donato F, Quairiaux C, Michel C, Caroni P. PV plasticity sustained through D1/5 dopamine signaling required for long-term memory consolidation. Nat Neurosci. 2016;19:454-64 pubmed 出版商
  138. Villette V, Guigue P, Picardo M, Sousa V, Leprince E, Lachamp P, et al. Development of early-born ?-Aminobutyric acid hub neurons in mouse hippocampus from embryogenesis to adulthood. J Comp Neurol. 2016;524:2440-61 pubmed 出版商
  139. Lee S, Kang B, Shin M, Min J, Heo C, Lee Y, et al. Chronic Stress Decreases Cerebrovascular Responses During Rat Hindlimb Electrical Stimulation. Front Neurosci. 2015;9:462 pubmed 出版商
  140. de Souza C, Nivison Smith L, Christie D, Polkinghorne P, McGhee C, Kalloniatis M, et al. Macromolecular markers in normal human retina and applications to human retinal disease. Exp Eye Res. 2016;150:135-48 pubmed 出版商
  141. Ruegsegger C, Stucki D, Steiner S, Angliker N, Radecke J, Keller E, et al. Impaired mTORC1-Dependent Expression of Homer-3 Influences SCA1 Pathophysiology. Neuron. 2016;89:129-46 pubmed 出版商
  142. Grishchuk Y, Stember K, Matsunaga A, Olivares A, CRUZ N, King V, et al. Retinal Dystrophy and Optic Nerve Pathology in the Mouse Model of Mucolipidosis IV. Am J Pathol. 2016;186:199-209 pubmed 出版商
  143. Hong C, Siddiqui A, Sabljic T, Ball A. Changes in parvalbumin immunoreactive retinal ganglion cells and amacrine cells after optic nerve injury. Exp Eye Res. 2016;145:363-372 pubmed 出版商
  144. Wagener R, Witte M, Guy J, Mingo Moreno N, Kügler S, Staiger J. Thalamocortical Connections Drive Intracortical Activation of Functional Columns in the Mislaminated Reeler Somatosensory Cortex. Cereb Cortex. 2016;26:820-37 pubmed 出版商
  145. Chidlow G, Wood J, Knoops B, Casson R. Expression and distribution of peroxiredoxins in the retina and optic nerve. Brain Struct Funct. 2016;221:3903-3925 pubmed
  146. Ang S, Lee A, Foo F, Ng L, Low C, Khanna S. GABAergic neurons of the medial septum play a nodal role in facilitation of nociception-induced affect. Sci Rep. 2015;5:15419 pubmed 出版商
  147. Erbs E, Faget L, Ceredig R, Matifas A, Vonesch J, Kieffer B, et al. Impact of chronic morphine on delta opioid receptor-expressing neurons in the mouse hippocampus. Neuroscience. 2016;313:46-56 pubmed 出版商
  148. Burns J, Kelly M, Hoa M, Morell R, Kelley M. Single-cell RNA-Seq resolves cellular complexity in sensory organs from the neonatal inner ear. Nat Commun. 2015;6:8557 pubmed 出版商
  149. Hirata H, Umemori J, Yoshioka H, Koide T, Watanabe K, Shimoda Y. Cell adhesion molecule contactin-associated protein 3 is expressed in the mouse basal ganglia during early postnatal stages. J Neurosci Res. 2016;94:74-89 pubmed 出版商
  150. Miyoshi G, Young A, PETROS T, Karayannis T, McKenzie Chang M, Lavado A, et al. Prox1 Regulates the Subtype-Specific Development of Caudal Ganglionic Eminence-Derived GABAergic Cortical Interneurons. J Neurosci. 2015;35:12869-89 pubmed 出版商
  151. Chugh D, Ali I, Bakochi A, Bahonjic E, Etholm L, Ekdahl C. Alterations in Brain Inflammation, Synaptic Proteins, and Adult Hippocampal Neurogenesis during Epileptogenesis in Mice Lacking Synapsin2. PLoS ONE. 2015;10:e0132366 pubmed 出版商
  152. Eggers S, Horn A, Roeber S, Härtig W, Nair G, Reich D, et al. Saccadic Palsy following Cardiac Surgery: Possible Role of Perineuronal Nets. PLoS ONE. 2015;10:e0132075 pubmed 出版商
  153. Hooper A, Maguire J. Characterization of a novel subtype of hippocampal interneurons that express corticotropin-releasing hormone. Hippocampus. 2016;26:41-53 pubmed 出版商
  154. Shigematsu N, Ueta Y, Mohamed A, Hatada S, Fukuda T, Kubota Y, et al. Selective Thalamic Innervation of Rat Frontal Cortical Neurons. Cereb Cortex. 2016;26:2689-2704 pubmed 出版商
  155. Alfonsa H, Merricks E, Codadu N, Cunningham M, Deisseroth K, Racca C, et al. The contribution of raised intraneuronal chloride to epileptic network activity. J Neurosci. 2015;35:7715-26 pubmed 出版商
  156. Niu W, Zang T, Smith D, Vue T, Zou Y, Bachoo R, et al. SOX2 reprograms resident astrocytes into neural progenitors in the adult brain. Stem Cell Reports. 2015;4:780-94 pubmed 出版商
  157. Zhang N, Zhong P, Shin S, Metallo J, Danielson E, Olsen C, et al. S-SCAM, a rare copy number variation gene, induces schizophrenia-related endophenotypes in transgenic mouse model. J Neurosci. 2015;35:1892-904 pubmed 出版商
  158. Fekete C, Chiou T, Miralles C, Harris R, Fiondella C, LoTurco J, et al. In vivo clonal overexpression of neuroligin 3 and neuroligin 2 in neurons of the rat cerebral cortex: Differential effects on GABAergic synapses and neuronal migration. J Comp Neurol. 2015;523:1359-78 pubmed 出版商
  159. Molgaard S, Ulrichsen M, Boggild S, Holm M, Vaegter C, Nyengaard J, et al. Immunohistochemical visualization of mouse interneuron subtypes. F1000Res. 2014;3:242 pubmed 出版商
  160. Zohar I, Dosoretz Abittan L, Shoham S, Weinstock M. Sex dependent reduction by prenatal stress of the expression of 5HT1A receptors in the prefrontal cortex and CRF type 2 receptors in the raphe nucleus in rats: reversal by citalopram. Psychopharmacology (Berl). 2015;232:1643-53 pubmed 出版商
  161. Wang W, Cheng C, Tsaur M. Immunohistochemical localization of DPP10 in rat brain supports the existence of a Kv4/KChIP/DPPL ternary complex in neurons. J Comp Neurol. 2015;523:608-28 pubmed 出版商
  162. Kinjo E, Higa G, Morya E, Valle A, Kihara A, Britto L. Reciprocal regulation of epileptiform neuronal oscillations and electrical synapses in the rat hippocampus. PLoS ONE. 2014;9:e109149 pubmed 出版商
  163. Sánchez Pérez A, Arnal Vicente I, Santos F, Pereira C, ElMlili N, Sanjuan J, et al. Septal projections to nucleus incertus in the rat: bidirectional pathways for modulation of hippocampal function. J Comp Neurol. 2015;523:565-88 pubmed 出版商
  164. Weltzien F, Percival K, Martin P, Grünert U. Analysis of bipolar and amacrine populations in marmoset retina. J Comp Neurol. 2015;523:313-34 pubmed 出版商
  165. Gray D, Engle J, Recanzone G. Age-related neurochemical changes in the rhesus macaque superior olivary complex. J Comp Neurol. 2013;522:573-91 pubmed 出版商
  166. Lowe M, Faull R, Christie D, Waldvogel H. Distribution of the creatine transporter throughout the human brain reveals a spectrum of creatine transporter immunoreactivity. J Comp Neurol. 2015;523:699-725 pubmed 出版商
  167. Radonjić N, Memi F, Ortega J, Glidden N, Zhan H, Zecevic N. The Role of Sonic Hedgehog in the Specification of Human Cortical Progenitors In Vitro. Cereb Cortex. 2016;26:131-43 pubmed 出版商
  168. Gray D, Engle J, Rudolph M, Recanzone G. Regional and age-related differences in GAD67 expression of parvalbumin- and calbindin-expressing neurons in the rhesus macaque auditory midbrain and brainstem. J Comp Neurol. 2014;522:4074-84 pubmed 出版商
  169. Laos M, Anttonen T, Kirjavainen A, af Hällström T, Laiho M, Pirvola U. DNA damage signaling regulates age-dependent proliferative capacity of quiescent inner ear supporting cells. Aging (Albany NY). 2014;6:496-510 pubmed
  170. Oenarto J, Gorg B, Moos M, Bidmon H, Haussinger D. Expression of organic osmolyte transporters in cultured rat astrocytes and rat and human cerebral cortex. Arch Biochem Biophys. 2014;560:59-72 pubmed 出版商
  171. Roland J, Janke K, Servatius R, Pang K. GABAergic neurons in the medial septum-diagonal band of Broca (MSDB) are important for acquisition of the classically conditioned eyeblink response. Brain Struct Funct. 2014;219:1231-7 pubmed 出版商
  172. Bajo V, Leach N, Cordery P, Nodal F, King A. The cholinergic basal forebrain in the ferret and its inputs to the auditory cortex. Eur J Neurosci. 2014;40:2922-40 pubmed 出版商
  173. TIMBIE C, Barbas H. Specialized pathways from the primate amygdala to posterior orbitofrontal cortex. J Neurosci. 2014;34:8106-18 pubmed 出版商
  174. Yi F, Ball J, Stoll K, Satpute V, Mitchell S, Pauli J, et al. Direct excitation of parvalbumin-positive interneurons by M1 muscarinic acetylcholine receptors: roles in cellular excitability, inhibitory transmission and cognition. J Physiol. 2014;592:3463-94 pubmed 出版商
  175. Cruz F, Babin K, Leão R, Goldart E, Bossert J, Shaham Y, et al. Role of nucleus accumbens shell neuronal ensembles in context-induced reinstatement of cocaine-seeking. J Neurosci. 2014;34:7437-46 pubmed 出版商
  176. Karayannis T, Au E, Patel J, Kruglikov I, Markx S, Delorme R, et al. Cntnap4 differentially contributes to GABAergic and dopaminergic synaptic transmission. Nature. 2014;511:236-40 pubmed
  177. Pujol R, Pickett S, Nguyen T, Stone J. Large basolateral processes on type II hair cells are novel processing units in mammalian vestibular organs. J Comp Neurol. 2014;522:3141-59 pubmed 出版商
  178. Kay R, Brunjes P. Diversity among principal and GABAergic neurons of the anterior olfactory nucleus. Front Cell Neurosci. 2014;8:111 pubmed 出版商
  179. Mishra A, Traut M, Becker L, Klopstock T, Stein V, Klein R. Genetic evidence for the adhesion protein IgSF9/Dasm1 to regulate inhibitory synapse development independent of its intracellular domain. J Neurosci. 2014;34:4187-99 pubmed 出版商
  180. Oda S, Funato H, Sato F, Adachi Akahane S, Ito M, Takase K, et al. A subset of thalamocortical projections to the retrosplenial cortex possesses two vesicular glutamate transporter isoforms, VGluT1 and VGluT2, in axon terminals and somata. J Comp Neurol. 2014;522:2089-106 pubmed 出版商
  181. Deboer E, Azevedo R, Vega T, Brodkin J, Akamatsu W, Okano H, et al. Prenatal deletion of the RNA-binding protein HuD disrupts postnatal cortical circuit maturation and behavior. J Neurosci. 2014;34:3674-86 pubmed 出版商
  182. Liu Z, Fang J, Dearman J, Zhang L, Zuo J. In vivo generation of immature inner hair cells in neonatal mouse cochleae by ectopic Atoh1 expression. PLoS ONE. 2014;9:e89377 pubmed 出版商
  183. Balu D, Takagi S, Puhl M, Benneyworth M, Coyle J. D-serine and serine racemase are localized to neurons in the adult mouse and human forebrain. Cell Mol Neurobiol. 2014;34:419-35 pubmed 出版商
  184. McClendon E, Chen K, Gong X, Sharifnia E, Hagen M, Cai V, et al. Prenatal cerebral ischemia triggers dysmaturation of caudate projection neurons. Ann Neurol. 2014;75:508-24 pubmed 出版商
  185. Di Giovannantonio L, Di Salvio M, Omodei D, Prakash N, Wurst W, Pierani A, et al. Otx2 cell-autonomously determines dorsal mesencephalon versus cerebellum fate independently of isthmic organizing activity. Development. 2014;141:377-88 pubmed 出版商
  186. Kao F, Su S, Carlson G, Liao W. MeCP2-mediated alterations of striatal features accompany psychomotor deficits in a mouse model of Rett syndrome. Brain Struct Funct. 2015;220:419-34 pubmed 出版商
  187. Zhao Y, Flandin P, Vogt D, Blood A, Hermesz E, Westphal H, et al. Ldb1 is essential for development of Nkx2.1 lineage derived GABAergic and cholinergic neurons in the telencephalon. Dev Biol. 2014;385:94-106 pubmed 出版商
  188. Sohn J, Hioki H, Okamoto S, Kaneko T. Preprodynorphin-expressing neurons constitute a large subgroup of somatostatin-expressing GABAergic interneurons in the mouse neocortex. J Comp Neurol. 2014;522:1506-26 pubmed 出版商
  189. Cholich L, Marquez M, Pumarola I Batlle M, Gimeno E, Teibler G, Rios E, et al. Experimental intoxication of guinea pigs with Ipomoea carnea: behavioural and neuropathological alterations. Toxicon. 2013;76:28-36 pubmed 出版商
  190. Cops E, Sashindranath M, Daglas M, Short K, da Fonseca Pereira C, Pang T, et al. Tissue-type plasminogen activator is an extracellular mediator of Purkinje cell damage and altered gait. Exp Neurol. 2013;249:8-19 pubmed 出版商
  191. Cerkevich C, Qi H, Kaas J. Thalamic input to representations of the teeth, tongue, and face in somatosensory area 3b of macaque monkeys. J Comp Neurol. 2013;521:3954-71 pubmed 出版商
  192. Puglisi F, Vanni V, Ponterio G, Tassone A, Sciamanna G, Bonsi P, et al. Torsin A Localization in the Mouse Cerebellar Synaptic Circuitry. PLoS ONE. 2013;8:e68063 pubmed 出版商
  193. Condro M, White S. Distribution of language-related Cntnap2 protein in neural circuits critical for vocal learning. J Comp Neurol. 2014;522:169-85 pubmed 出版商
  194. Pusch R, Wagner H, von der Emde G, Engelmann J. Spatial resolution of an eye containing a grouped retina: ganglion cell morphology and tectal physiology in the weakly electric fish Gnathonemus petersii. J Comp Neurol. 2013;521:4075-93 pubmed 出版商
  195. Edwards I, Bruce G, Lawrenson C, Howe L, Clapcote S, Deuchars S, et al. Na+/K+ ATPase α1 and α3 isoforms are differentially expressed in α- and γ-motoneurons. J Neurosci. 2013;33:9913-9 pubmed 出版商
  196. Lowe M, Kim E, Faull R, Christie D, Waldvogel H. Dissociated expression of mitochondrial and cytosolic creatine kinases in the human brain: a new perspective on the role of creatine in brain energy metabolism. J Cereb Blood Flow Metab. 2013;33:1295-306 pubmed 出版商
  197. Ohtsuka N, Badurek S, Busslinger M, Benes F, Minichiello L, Rudolph U. GABAergic neurons regulate lateral ventricular development via transcription factor Pax5. Genesis. 2013;51:234-45 pubmed 出版商
  198. Nivison Smith L, Sun D, Fletcher E, Marc R, Kalloniatis M. Mapping kainate activation of inner neurons in the rat retina. J Comp Neurol. 2013;521:2416-38 pubmed 出版商
  199. Cox D, Racca C. Differential dendritic targeting of AMPA receptor subunit mRNAs in adult rat hippocampal principal neurons and interneurons. J Comp Neurol. 2013;521:1954-2007 pubmed 出版商
  200. Mittag J, Lyons D, Sällström J, Vujovic M, Dudazy Gralla S, Warner A, et al. Thyroid hormone is required for hypothalamic neurons regulating cardiovascular functions. J Clin Invest. 2013;123:509-16 pubmed 出版商
  201. Li J, Xue Z, Deng S, Luo X, Patrylo P, Rose G, et al. Amyloid plaque pathogenesis in 5XFAD mouse spinal cord: retrograde transneuronal modulation after peripheral nerve injury. Neurotox Res. 2013;24:1-14 pubmed 出版商
  202. Marion R, Li K, Purushothaman G, Jiang Y, Casagrande V. Morphological and neurochemical comparisons between pulvinar and V1 projections to V2. J Comp Neurol. 2013;521:813-32 pubmed 出版商
  203. Chapman R, Lall V, Maxeiner S, Willecke K, Deuchars J, King A. Localization of neurones expressing the gap junction protein Connexin45 within the adult spinal dorsal horn: a study using Cx45-eGFP reporter mice. Brain Struct Funct. 2013;218:751-65 pubmed 出版商
  204. Olucha Bordonau F, Otero García M, Sánchez Pérez A, Nunez A, Ma S, Gundlach A. Distribution and targets of the relaxin-3 innervation of the septal area in the rat. J Comp Neurol. 2012;520:1903-39 pubmed 出版商
  205. Arellano J, Guadiana S, Breunig J, Rakic P, Sarkisian M. Development and distribution of neuronal cilia in mouse neocortex. J Comp Neurol. 2012;520:848-73 pubmed 出版商
  206. Brunjes P, Kay R, Arrivillaga J. The mouse olfactory peduncle. J Comp Neurol. 2011;519:2870-86 pubmed 出版商
  207. Tereshchenko Y, Morellini F, Dityatev A, Schachner M, Irintchev A. Neural cell adhesion molecule ablation in mice causes hippocampal dysplasia and loss of septal cholinergic neurons. J Comp Neurol. 2011;519:2475-92 pubmed 出版商
  208. Liu X, Murray K, Jones E. Low-threshold calcium channel subunit Ca(v) 3.3 is specifically localized in GABAergic neurons of rodent thalamus and cerebral cortex. J Comp Neurol. 2011;519:1181-95 pubmed 出版商
  209. Qi H, Gharbawie O, Wong P, Kaas J. Cell-poor septa separate representations of digits in the ventroposterior nucleus of the thalamus in monkeys and prosimian galagos. J Comp Neurol. 2011;519:738-58 pubmed 出版商
  210. Blazquez Llorca L, Garcia Marin V, DeFelipe J. GABAergic complex basket formations in the human neocortex. J Comp Neurol. 2010;518:4917-37 pubmed 出版商
  211. Garcia Marin V, Blazquez Llorca L, Rodriguez J, Gonzalez Soriano J, Defelipe J. Differential distribution of neurons in the gyral white matter of the human cerebral cortex. J Comp Neurol. 2010;518:4740-59 pubmed 出版商
  212. Suzuki N, Bekkers J. Inhibitory neurons in the anterior piriform cortex of the mouse: classification using molecular markers. J Comp Neurol. 2010;518:1670-87 pubmed 出版商
  213. Gavrilovici C, D Alfonso S, Poulter M. Diverse interneuron populations have highly specific interconnectivity in the rat piriform cortex. J Comp Neurol. 2010;518:1570-88 pubmed 出版商
  214. Ampatzis K, Dermon C. Regional distribution and cellular localization of beta2-adrenoceptors in the adult zebrafish brain (Danio rerio). J Comp Neurol. 2010;518:1418-41 pubmed 出版商
  215. Kataoka Y, Kalanithi P, Grantz H, Schwartz M, Saper C, Leckman J, et al. Decreased number of parvalbumin and cholinergic interneurons in the striatum of individuals with Tourette syndrome. J Comp Neurol. 2010;518:277-91 pubmed 出版商
  216. Kotani T, Murata Y, Ohnishi H, Mori M, Kusakari S, Saito Y, et al. Expression of PTPRO in the interneurons of adult mouse olfactory bulb. J Comp Neurol. 2010;518:119-36 pubmed 出版商
  217. Liguz Lecznar M, Waleszczyk W, Zakrzewska R, Skangiel Kramska J, Kossut M. Associative pairing involving monocular stimulation selectively mobilizes a subclass of GABAergic interneurons in the mouse visual cortex. J Comp Neurol. 2009;516:482-92 pubmed 出版商
  218. Jakovcevski I, Siering J, Hargus G, Karl N, Hoelters L, Djogo N, et al. Close homologue of adhesion molecule L1 promotes survival of Purkinje and granule cells and granule cell migration during murine cerebellar development. J Comp Neurol. 2009;513:496-510 pubmed 出版商
  219. Muzzi P, Camera P, Di Cunto F, Vercelli A. Deletion of the citron kinase gene selectively affects the number and distribution of interneurons in barrelfield cortex. J Comp Neurol. 2009;513:249-64 pubmed 出版商
  220. Stillman A, Krsnik Z, Sun J, Rasin M, State M, Sestan N, et al. Developmentally regulated and evolutionarily conserved expression of SLITRK1 in brain circuits implicated in Tourette syndrome. J Comp Neurol. 2009;513:21-37 pubmed 出版商
  221. Lavenex P, Lavenex P, Bennett J, Amaral D. Postmortem changes in the neuroanatomical characteristics of the primate brain: hippocampal formation. J Comp Neurol. 2009;512:27-51 pubmed 出版商
  222. Wong P, Gharbawie O, Luethke L, Kaas J. Thalamic connections of architectonic subdivisions of temporal cortex in grey squirrels (Sciurus carolinensis). J Comp Neurol. 2008;510:440-61 pubmed 出版商
  223. Zhao Y, Flandin P, Long J, Cuesta M, Westphal H, Rubenstein J. Distinct molecular pathways for development of telencephalic interneuron subtypes revealed through analysis of Lhx6 mutants. J Comp Neurol. 2008;510:79-99 pubmed 出版商
  224. Cox D, Racca C, LeBeau F. Beta-adrenergic receptors are differentially expressed in distinct interneuron subtypes in the rat hippocampus. J Comp Neurol. 2008;509:551-65 pubmed 出版商
  225. Wee K, Zhang Y, Khanna S, Low C. Immunolocalization of NMDA receptor subunit NR3B in selected structures in the rat forebrain, cerebellum, and lumbar spinal cord. J Comp Neurol. 2008;509:118-35 pubmed 出版商
  226. Reznikov L, Reagan L, Fadel J. Activation of phenotypically distinct neuronal subpopulations in the anterior subdivision of the rat basolateral amygdala following acute and repeated stress. J Comp Neurol. 2008;508:458-72 pubmed 出版商
  227. Ampatzis K, Kentouri M, Dermon C. Neuronal and glial localization of alpha(2A)-adrenoceptors in the adult zebrafish (Danio rerio) brain. J Comp Neurol. 2008;508:72-93 pubmed 出版商
  228. Sun D, Vingrys A, Kalloniatis M. Metabolic and functional profiling of the normal rat retina. J Comp Neurol. 2007;505:92-113 pubmed
  229. Ding J, Weinberg R. Distribution of soluble guanylyl cyclase in rat retina. J Comp Neurol. 2007;502:734-45 pubmed
  230. Wolansky T, Pagliardini S, Greer J, Dickson C. Immunohistochemical characterization of substance P receptor (NK(1)R)-expressing interneurons in the entorhinal cortex. J Comp Neurol. 2007;502:427-41 pubmed
  231. Scott B, Lois C. Developmental origin and identity of song system neurons born during vocal learning in songbirds. J Comp Neurol. 2007;502:202-14 pubmed
  232. Parrish Aungst S, Shipley M, Erdelyi F, Szabo G, Puche A. Quantitative analysis of neuronal diversity in the mouse olfactory bulb. J Comp Neurol. 2007;501:825-36 pubmed
  233. Kuramoto E, Fujiyama F, Unzai T, Nakamura K, Hioki H, Furuta T, et al. Metabotropic glutamate receptor 4-immunopositive terminals of medium-sized spiny neurons selectively form synapses with cholinergic interneurons in the rat neostriatum. J Comp Neurol. 2007;500:908-22 pubmed
  234. Ding J, Weinberg R. Distribution of soluble guanylyl cyclase in rat retina. J Comp Neurol. 2007;500:734-45 pubmed
  235. Martin L, Liu Z, Chen K, Price A, Pan Y, Swaby J, et al. Motor neuron degeneration in amyotrophic lateral sclerosis mutant superoxide dismutase-1 transgenic mice: mechanisms of mitochondriopathy and cell death. J Comp Neurol. 2007;500:20-46 pubmed
  236. Meyer E, Illig K, Brunjes P. Differences in chemo- and cytoarchitectural features within pars principalis of the rat anterior olfactory nucleus suggest functional specialization. J Comp Neurol. 2006;498:786-95 pubmed
  237. Imura K, Rockland K. Long-range interneurons within the medial pulvinar nucleus of macaque monkeys. J Comp Neurol. 2006;498:649-66 pubmed
  238. Bordt A, Hoshi H, Yamada E, Perryman Stout W, Marshak D. Synaptic input to OFF parasol ganglion cells in macaque retina. J Comp Neurol. 2006;498:46-57 pubmed
  239. Rainnie D, Mania I, Mascagni F, McDonald A. Physiological and morphological characterization of parvalbumin-containing interneurons of the rat basolateral amygdala. J Comp Neurol. 2006;498:142-61 pubmed
  240. Kiyokage E, Toida K, Suzuki Yamamoto T, Ishimura K. Localization of 5alpha-reductase in the rat main olfactory bulb. J Comp Neurol. 2005;493:381-95 pubmed
  241. Treloar H, Uboha U, Jeromin A, Greer C. Expression of the neuronal calcium sensor protein NCS-1 in the developing mouse olfactory pathway. J Comp Neurol. 2005;482:201-16 pubmed