这是一篇来自已证抗体库的有关人类 phospholamban的综述,是根据24篇发表使用所有方法的文章归纳的。这综述旨在帮助来邦网的访客找到最适合phospholamban 抗体。
phospholamban 同义词: CMD1P; CMH18; PLB

赛默飞世尔
小鼠 单克隆(2D12)
  • 免疫印迹; domestic rabbit; 1:2000; 图 5
赛默飞世尔 phospholamban抗体(Thermo Fisher, MA3-922)被用于被用于免疫印迹在domestic rabbit样本上浓度为1:2000 (图 5). Exp Ther Med (2017) ncbi
小鼠 单克隆(2D12)
  • 免疫印迹; 小鼠; 图 1b
赛默飞世尔 phospholamban抗体(Pierce Antibodies, 2D12)被用于被用于免疫印迹在小鼠样本上 (图 1b). PLoS ONE (2017) ncbi
小鼠 单克隆(2D12)
  • 免疫印迹; 大鼠; 图 8b
赛默飞世尔 phospholamban抗体(Millipore, MA3-922)被用于被用于免疫印迹在大鼠样本上 (图 8b). PLoS ONE (2016) ncbi
小鼠 单克隆(2D12)
  • 免疫印迹; 小鼠; 1:1000; 图 2c
赛默飞世尔 phospholamban抗体(Affinity Bioreagent, MA3-922)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 2c). J Physiol (2017) ncbi
小鼠 单克隆(2D12)
  • 免疫印迹; 小鼠; 1:2000; 图 1
赛默飞世尔 phospholamban抗体(Pierce Antibodies, 2D12)被用于被用于免疫印迹在小鼠样本上浓度为1:2000 (图 1). Brain Behav (2016) ncbi
小鼠 单克隆(2D12)
  • 免疫印迹; 大鼠; 1:5000; 图 s1
赛默飞世尔 phospholamban抗体(Thermo Fisher Scientific, MA3-922)被用于被用于免疫印迹在大鼠样本上浓度为1:5000 (图 s1). PLoS ONE (2016) ncbi
小鼠 单克隆(2D12)
  • 免疫印迹; 小鼠; 1:5000; 图 s9a
赛默飞世尔 phospholamban抗体(Pierce, 2D12)被用于被用于免疫印迹在小鼠样本上浓度为1:5000 (图 s9a). Science (2016) ncbi
domestic goat 多克隆
  • 免疫印迹; 人类; 图 2
赛默飞世尔 phospholamban抗体(Pierce-ThermoScientific, PA5-19351)被用于被用于免疫印迹在人类样本上 (图 2). Am J Physiol Regul Integr Comp Physiol (2016) ncbi
小鼠 单克隆(2D12)
  • 免疫印迹; 小鼠
  • 免疫印迹; 人类
赛默飞世尔 phospholamban抗体(Pierce Antibodies, 2D12)被用于被用于免疫印迹在小鼠样本上 和 被用于免疫印迹在人类样本上. Dis Model Mech (2015) ncbi
小鼠 单克隆(2D12)
  • 免疫印迹; 大鼠; 图 5
赛默飞世尔 phospholamban抗体(Affinity BioReagents, MA3-922)被用于被用于免疫印迹在大鼠样本上 (图 5). PLoS ONE (2015) ncbi
小鼠 单克隆(2D12)
  • 免疫印迹; 小鼠; 1:20000
赛默飞世尔 phospholamban抗体(Affinity Bioreagents, MA3-922)被用于被用于免疫印迹在小鼠样本上浓度为1:20000. J Mol Cell Cardiol (2015) ncbi
小鼠 单克隆(2D12)
  • 免疫印迹; domestic rabbit
赛默飞世尔 phospholamban抗体(Thermo Scientific, MA3-922)被用于被用于免疫印迹在domestic rabbit样本上. Am J Physiol Cell Physiol (2014) ncbi
小鼠 单克隆(2D12)
  • 免疫印迹; 大鼠; 1:5000; 图 5
赛默飞世尔 phospholamban抗体(Thermo Scientific, MA3-922)被用于被用于免疫印迹在大鼠样本上浓度为1:5000 (图 5). Arq Bras Cardiol (2014) ncbi
小鼠 单克隆(2D12)
  • 免疫印迹; 小鼠
赛默飞世尔 phospholamban抗体(Affinity BioReagents, MA3-922)被用于被用于免疫印迹在小鼠样本上. Cold Spring Harb Protoc (2014) ncbi
小鼠 单克隆(2D12)
  • 免疫组化-冰冻切片; 人类; 1:250; 图 4
  • 免疫沉淀; 人类; 图 6
  • 免疫印迹; 人类; 1:2000; 图 3
赛默飞世尔 phospholamban抗体(Pierce, 2D12)被用于被用于免疫组化-冰冻切片在人类样本上浓度为1:250 (图 4), 被用于免疫沉淀在人类样本上 (图 6) 和 被用于免疫印迹在人类样本上浓度为1:2000 (图 3). PLoS ONE (2013) ncbi
小鼠 单克隆(2D12)
  • 免疫印迹; 人类
赛默飞世尔 phospholamban抗体(Pierce, 2D12)被用于被用于免疫印迹在人类样本上. J Card Fail (2012) ncbi
Novus Biologicals
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 1:100; 图 1e
Novus Biologicals phospholamban抗体(Novus Biologicals, NBP2-19807)被用于被用于免疫细胞化学在人类样本上浓度为1:100 (图 1e). EMBO Mol Med (2021) ncbi
Badrilla
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 3d
Badrilla phospholamban抗体(Badrilla, A010-12)被用于被用于免疫印迹在人类样本上 (图 3d). Front Pharmacol (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 3d
Badrilla phospholamban抗体(Badrilla, A010-13)被用于被用于免疫印迹在人类样本上 (图 3d). Front Pharmacol (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:5000; 图 5a
Badrilla phospholamban抗体(Badrilla, A010-12)被用于被用于免疫印迹在小鼠样本上浓度为1:5000 (图 5a). elife (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:5000; 图 5a
Badrilla phospholamban抗体(Badrilla, A010-13)被用于被用于免疫印迹在小鼠样本上浓度为1:5000 (图 5a). elife (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; domestic rabbit; 1:5000; 图 5
Badrilla phospholamban抗体(Badrilla, A010-13)被用于被用于免疫印迹在domestic rabbit样本上浓度为1:5000 (图 5). Exp Ther Med (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 大鼠; 1:5000; 图 2c
Badrilla phospholamban抗体(Badrilla, A010-12)被用于被用于免疫印迹在大鼠样本上浓度为1:5000 (图 2c). Nat Commun (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 6c
Badrilla phospholamban抗体(Badrilla, AO10-13)被用于被用于免疫印迹在小鼠样本上 (图 6c). Am J Pathol (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 大鼠; 1:5000; 图 s1
Badrilla phospholamban抗体(Badrilla, A010-13)被用于被用于免疫印迹在大鼠样本上浓度为1:5000 (图 s1). PLoS ONE (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 大鼠; 1:5000; 图 s1
Badrilla phospholamban抗体(Badrilla, A010-12)被用于被用于免疫印迹在大鼠样本上浓度为1:5000 (图 s1). PLoS ONE (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 7d
Badrilla phospholamban抗体(Badrilla, A010-12)被用于被用于免疫印迹在小鼠样本上 (图 7d). Cardiovasc Res (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 3
Badrilla phospholamban抗体(Badrilla, A010-13)被用于被用于免疫印迹在小鼠样本上 (图 3). Am J Physiol Heart Circ Physiol (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 3
Badrilla phospholamban抗体(Badrilla, A010-12)被用于被用于免疫印迹在小鼠样本上 (图 3). Am J Physiol Heart Circ Physiol (2016) ncbi
赛信通(上海)生物试剂有限公司
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:2000; 图 s2h-j
赛信通(上海)生物试剂有限公司 phospholamban抗体(Cell Signaling, 8496)被用于被用于免疫印迹在小鼠样本上浓度为1:2000 (图 s2h-j). Nature (2020) ncbi
文章列表
  1. Neumann J, Grobe J, Weisgut J, Schwelberger H, Fogel W, Marusakova M, et al. Histamine can be Formed and Degraded in the Human and Mouse Heart. Front Pharmacol. 2021;12:582916 pubmed 出版商
  2. Cuello F, Knaust A, Saleem U, Loos M, Raabe J, Mosqueira D, et al. Impairment of the ER/mitochondria compartment in human cardiomyocytes with PLN p.Arg14del mutation. EMBO Mol Med. 2021;13:e13074 pubmed 出版商
  3. Liu G, Papa A, Katchman A, Zakharov S, Roybal D, Hennessey J, et al. Mechanism of adrenergic CaV1.2 stimulation revealed by proximity proteomics. Nature. 2020;577:695-700 pubmed 出版商
  4. Dai W, Laforest B, Tyan L, Shen K, Nadadur R, Alvarado F, et al. A calcium transport mechanism for atrial fibrillation in Tbx5-mutant mice. elife. 2019;8: pubmed 出版商
  5. Chang S, Chuang H, Chen Y, Kao Y, Lin Y, Yeh Y, et al. Heart failure modulates electropharmacological characteristics of sinoatrial nodes. Exp Ther Med. 2017;13:771-779 pubmed 出版商
  6. Fajardo V, Gamu D, Mitchell A, Bloemberg D, Bombardier E, Chambers P, et al. Sarcolipin deletion exacerbates soleus muscle atrophy and weakness in phospholamban overexpressing mice. PLoS ONE. 2017;12:e0173708 pubmed 出版商
  7. Kirschmer N, Bandleon S, von Ehrlich Treuenstätt V, Hartmann S, Schaaf A, Lamprecht A, et al. TRPC4? and TRPC4? Similarly Affect Neonatal Cardiomyocyte Survival during Chronic GPCR Stimulation. PLoS ONE. 2016;11:e0168446 pubmed 出版商
  8. Fu Q, Hu Y, Wang Q, Liu Y, Li N, Xu B, et al. High-fat diet induces protein kinase A and G-protein receptor kinase phosphorylation of β2 -adrenergic receptor and impairs cardiac adrenergic reserve in animal hearts. J Physiol. 2017;595:1973-1986 pubmed 出版商
  9. Scotcher J, Prysyazhna O, Boguslavskyi A, Kistamás K, Hadgraft N, Martin E, et al. Disulfide-activated protein kinase G I? regulates cardiac diastolic relaxation and fine-tunes the Frank-Starling response. Nat Commun. 2016;7:13187 pubmed 出版商
  10. Kennedy T, Swiderski K, Murphy K, Gehrig S, Curl C, Chandramouli C, et al. BGP-15 Improves Aspects of the Dystrophic Pathology in mdx and dko Mice with Differing Efficacies in Heart and Skeletal Muscle. Am J Pathol. 2016;186:3246-3260 pubmed 出版商
  11. Fajardo V, Smith I, Bombardier E, Chambers P, Quadrilatero J, Tupling A. Diaphragm assessment in mice overexpressing phospholamban in slow-twitch type I muscle fibers. Brain Behav. 2016;6:e00470 pubmed 出版商
  12. Sadredini M, Danielsen T, Aronsen J, Manotheepan R, Hougen K, Sjaastad I, et al. Beta-Adrenoceptor Stimulation Reveals Ca2+ Waves and Sarcoplasmic Reticulum Ca2+ Depletion in Left Ventricular Cardiomyocytes from Post-Infarction Rats with and without Heart Failure. PLoS ONE. 2016;11:e0153887 pubmed 出版商
  13. Mederle K, Gess B, Pluteanu F, Plackic J, Tiefenbach K, Grill A, et al. The angiotensin receptor-associated protein Atrap is a stimulator of the cardiac Ca2+-ATPase SERCA2a. Cardiovasc Res. 2016;110:359-70 pubmed 出版商
  14. Nelson B, Makarewich C, Anderson D, Winders B, Troupes C, Wu F, et al. A peptide encoded by a transcript annotated as long noncoding RNA enhances SERCA activity in muscle. Science. 2016;351:271-5 pubmed 出版商
  15. Thomassen M, Gunnarsson T, Christensen P, Pavlovic D, Shattock M, Bangsbo J. Intensive training and reduced volume increases muscle FXYD1 expression and phosphorylation at rest and during exercise in athletes. Am J Physiol Regul Integr Comp Physiol. 2016;310:R659-69 pubmed 出版商
  16. Shimura D, Kusakari Y, Sasano T, Nakashima Y, Nakai G, Jiao Q, et al. Heterozygous deletion of sarcolipin maintains normal cardiac function. Am J Physiol Heart Circ Physiol. 2016;310:H92-103 pubmed 出版商
  17. Fajardo V, Bombardier E, McMillan E, TRAN K, Wadsworth B, Gamu D, et al. Phospholamban overexpression in mice causes a centronuclear myopathy-like phenotype. Dis Model Mech. 2015;8:999-1009 pubmed 出版商
  18. Dalpiaz P, Lamas A, Caliman I, Ribeiro R, Abreu G, Moyses M, et al. Sex Hormones Promote Opposite Effects on ACE and ACE2 Activity, Hypertrophy and Cardiac Contractility in Spontaneously Hypertensive Rats. PLoS ONE. 2015;10:e0127515 pubmed 出版商
  19. Major J, Salih M, Tuana B. Interplay between the E2F pathway and β-adrenergic signaling in the pathological hypertrophic response of myocardium. J Mol Cell Cardiol. 2015;84:179-90 pubmed 出版商
  20. Moshal K, Zhang Z, Roder K, Kim T, Cooper L, Patedakis Litvinov B, et al. Progesterone modulates SERCA2a expression and function in rabbit cardiomyocytes. Am J Physiol Cell Physiol. 2014;307:C1050-7 pubmed 出版商
  21. Freire P, Alves C, Deus A, Leopoldo A, Leopoldo A, Silva D, et al. Obesity does not lead to imbalance between myocardial phospholamban phosphorylation and dephosphorylation. Arq Bras Cardiol. 2014;103:41-50 pubmed
  22. Holemans T, Vandecaetsbeek I, Wuytack F, Vangheluwe P. Measuring Ca2+-dependent Ca2+-uptake activity in the mouse heart. Cold Spring Harb Protoc. 2014;2014:876-86 pubmed 出版商
  23. Fajardo V, Bombardier E, Vigna C, Devji T, Bloemberg D, Gamu D, et al. Co-expression of SERCA isoforms, phospholamban and sarcolipin in human skeletal muscle fibers. PLoS ONE. 2013;8:e84304 pubmed 出版商
  24. Middlekauff H, Vigna C, Verity M, Fonarow G, Horwich T, Hamilton M, et al. Abnormalities of calcium handling proteins in skeletal muscle mirror those of the heart in humans with heart failure: a shared mechanism?. J Card Fail. 2012;18:724-33 pubmed 出版商