这是一篇来自已证抗体库的有关人类 phospholamban的综述,是根据33篇发表使用所有方法的文章归纳的。这综述旨在帮助来邦网的访客找到最适合phospholamban 抗体。
phospholamban 同义词: CMD1P; CMH18; PLB; cardiac phospholamban

赛默飞世尔
小鼠 单克隆(2D12)
  • 免疫印迹; 兔; 1:2000; 图 5
赛默飞世尔 phospholamban抗体(Thermo Fisher, MA3-922)被用于被用于免疫印迹在兔样品上浓度为1:2000 (图 5). Exp Ther Med (2017) ncbi
小鼠 单克隆(2D12)
  • 免疫印迹; 小鼠; 图 1b
赛默飞世尔 phospholamban抗体(Pierce Antibodies, 2D12)被用于被用于免疫印迹在小鼠样品上 (图 1b). PLoS ONE (2017) ncbi
小鼠 单克隆(2D12)
  • 免疫印迹; 大鼠; 图 8b
赛默飞世尔 phospholamban抗体(Millipore, MA3-922)被用于被用于免疫印迹在大鼠样品上 (图 8b). PLoS ONE (2016) ncbi
小鼠 单克隆(2D12)
  • 免疫印迹; 小鼠; 1:1000; 图 2c
赛默飞世尔 phospholamban抗体(Affinity Bioreagent, MA3-922)被用于被用于免疫印迹在小鼠样品上浓度为1:1000 (图 2c). J Physiol (2017) ncbi
小鼠 单克隆(2D12)
  • 免疫印迹; 小鼠; 1:2000; 图 1
赛默飞世尔 phospholamban抗体(Pierce Antibodies, 2D12)被用于被用于免疫印迹在小鼠样品上浓度为1:2000 (图 1). Brain Behav (2016) ncbi
小鼠 单克隆(2D12)
  • 免疫印迹; 大鼠; 1:5000; 图 s1
赛默飞世尔 phospholamban抗体(Thermo Fisher Scientific, MA3-922)被用于被用于免疫印迹在大鼠样品上浓度为1:5000 (图 s1). PLoS ONE (2016) ncbi
小鼠 单克隆(2D12)
  • 免疫印迹; 小鼠; 1:5000; 图 s9a
赛默飞世尔 phospholamban抗体(Pierce, 2D12)被用于被用于免疫印迹在小鼠样品上浓度为1:5000 (图 s9a). Science (2016) ncbi
山羊 多克隆
  • 免疫印迹; 人类; 图 2
赛默飞世尔 phospholamban抗体(Pierce-ThermoScientific, PA5-19351)被用于被用于免疫印迹在人类样品上 (图 2). Am J Physiol Regul Integr Comp Physiol (2016) ncbi
小鼠 单克隆(2D12)
  • 免疫印迹; 小鼠
  • 免疫印迹; 人类
赛默飞世尔 phospholamban抗体(Pierce Antibodies, 2D12)被用于被用于免疫印迹在小鼠样品上 和 被用于免疫印迹在人类样品上. Dis Model Mech (2015) ncbi
小鼠 单克隆(2D12)
  • 免疫印迹; 大鼠; 图 5
赛默飞世尔 phospholamban抗体(Affinity BioReagents, MA3-922)被用于被用于免疫印迹在大鼠样品上 (图 5). PLoS ONE (2015) ncbi
小鼠 单克隆(2D12)
  • 免疫印迹; 小鼠; 1:20000
赛默飞世尔 phospholamban抗体(Affinity Bioreagents, MA3-922)被用于被用于免疫印迹在小鼠样品上浓度为1:20000. J Mol Cell Cardiol (2015) ncbi
小鼠 单克隆(2D12)
  • 免疫印迹; 兔
赛默飞世尔 phospholamban抗体(Thermo Scientific, MA3-922)被用于被用于免疫印迹在兔样品上. Am J Physiol Cell Physiol (2014) ncbi
小鼠 单克隆(2D12)
  • 免疫印迹; 大鼠; 1:5000; 图 5
赛默飞世尔 phospholamban抗体(Thermo Scientific, MA3-922)被用于被用于免疫印迹在大鼠样品上浓度为1:5000 (图 5). Arq Bras Cardiol (2014) ncbi
小鼠 单克隆(2D12)
  • 免疫印迹; 小鼠
赛默飞世尔 phospholamban抗体(Affinity BioReagents, MA3-922)被用于被用于免疫印迹在小鼠样品上. Cold Spring Harb Protoc (2014) ncbi
小鼠 单克隆(2D12)
  • 免疫组化-冰冻切片; 人类; 1:250; 图 4
  • 免疫沉淀; 人类; 图 6
  • 免疫印迹; 人类; 1:2000; 图 3
赛默飞世尔 phospholamban抗体(Pierce, 2D12)被用于被用于免疫组化-冰冻切片在人类样品上浓度为1:250 (图 4), 被用于免疫沉淀在人类样品上 (图 6) 和 被用于免疫印迹在人类样品上浓度为1:2000 (图 3). PLoS ONE (2013) ncbi
小鼠 单克隆(2D12)
  • 免疫印迹; 人类
赛默飞世尔 phospholamban抗体(Pierce, 2D12)被用于被用于免疫印迹在人类样品上. J Card Fail (2012) ncbi
Badrilla
兔 多克隆
  • 免疫印迹; 小鼠; 1:5000; 图 5a
Badrilla phospholamban抗体(Badrilla, A010-13)被用于被用于免疫印迹在小鼠样品上浓度为1:5000 (图 5a). elife (2019) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 1:5000; 图 5a
Badrilla phospholamban抗体(Badrilla, A010-12)被用于被用于免疫印迹在小鼠样品上浓度为1:5000 (图 5a). elife (2019) ncbi
兔 多克隆
  • 免疫印迹; 兔; 1:5000; 图 5
Badrilla phospholamban抗体(Badrilla, A010-13)被用于被用于免疫印迹在兔样品上浓度为1:5000 (图 5). Exp Ther Med (2017) ncbi
兔 多克隆
  • 免疫印迹; 大鼠; 1:5000; 图 2c
Badrilla phospholamban抗体(Badrilla, A010-12)被用于被用于免疫印迹在大鼠样品上浓度为1:5000 (图 2c). Nat Commun (2016) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 图 6c
Badrilla phospholamban抗体(Badrilla, AO10-13)被用于被用于免疫印迹在小鼠样品上 (图 6c). Am J Pathol (2016) ncbi
兔 多克隆
  • 免疫印迹; 大鼠; 1:5000; 图 s1
Badrilla phospholamban抗体(Badrilla, A010-12)被用于被用于免疫印迹在大鼠样品上浓度为1:5000 (图 s1). PLoS ONE (2016) ncbi
兔 多克隆
  • 免疫印迹; 大鼠; 1:5000; 图 s1
Badrilla phospholamban抗体(Badrilla, A010-13)被用于被用于免疫印迹在大鼠样品上浓度为1:5000 (图 s1). PLoS ONE (2016) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 图 7d
Badrilla phospholamban抗体(Badrilla, A010-12)被用于被用于免疫印迹在小鼠样品上 (图 7d). Cardiovasc Res (2016) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 图 3
Badrilla phospholamban抗体(Badrilla, A010-13)被用于被用于免疫印迹在小鼠样品上 (图 3). Am J Physiol Heart Circ Physiol (2016) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 图 3
Badrilla phospholamban抗体(Badrilla, A010-12)被用于被用于免疫印迹在小鼠样品上 (图 3). Am J Physiol Heart Circ Physiol (2016) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 图 1d
Badrilla phospholamban抗体(Badrilla, A010-13AP)被用于被用于免疫印迹在小鼠样品上 (图 1d). J Clin Invest (2015) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 1:10000
Badrilla phospholamban抗体(Badrilla, A010-12)被用于被用于免疫印迹在小鼠样品上浓度为1:10000. J Mol Cell Cardiol (2015) ncbi
兔 多克隆
  • 免疫印迹; 大鼠; 1:5000; 图 5
Badrilla phospholamban抗体(Badrilla, A010-12)被用于被用于免疫印迹在大鼠样品上浓度为1:5000 (图 5). Arq Bras Cardiol (2014) ncbi
兔 多克隆
  • 免疫印迹; 小鼠
Badrilla phospholamban抗体(Badrilla, A010-12)被用于被用于免疫印迹在小鼠样品上. PLoS ONE (2014) ncbi
兔 多克隆
  • 免疫印迹; 小鼠
Badrilla phospholamban抗体(Badrilla, A010-13)被用于被用于免疫印迹在小鼠样品上. PLoS ONE (2014) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 图 6
Badrilla phospholamban抗体(Badrilla, A010-13)被用于被用于免疫印迹在小鼠样品上 (图 6). J Biol Chem (2014) ncbi
赛信通(上海)生物试剂有限公司
兔 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图  4
赛信通(上海)生物试剂有限公司 phospholamban抗体(Cell Signalling Technology, 8496)被用于被用于免疫印迹在小鼠样品上浓度为1:1000 (图  4). J Mol Cell Cardiol (2015) ncbi
兔 多克隆
  • 免疫印迹; 小鼠
赛信通(上海)生物试剂有限公司 phospholamban抗体(Cell Signaling, 8496)被用于被用于免疫印迹在小鼠样品上. Am J Physiol Heart Circ Physiol (2013) ncbi
默克密理博中国
兔 多克隆
  • 免疫印迹; 小鼠; 1:1500; 图 8a
默克密理博中国 phospholamban抗体(Upstate Biotechnology, 07-052)被用于被用于免疫印迹在小鼠样品上浓度为1:1500 (图 8a). J Physiol (2017) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 图 10
默克密理博中国 phospholamban抗体(Upstate, 07-052)被用于被用于免疫印迹在小鼠样品上 (图 10). PLoS ONE (2016) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 图 6b
默克密理博中国 phospholamban抗体(Upstate, 07-052)被用于被用于免疫印迹在小鼠样品上 (图 6b). Am J Pathol (2016) ncbi
兔 多克隆
  • 免疫印迹; 大鼠; 1:1000; 图 4c
默克密理博中国 phospholamban抗体(Millipore, 07-052)被用于被用于免疫印迹在大鼠样品上浓度为1:1000 (图 4c). Am J Physiol Heart Circ Physiol (2016) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 图 5
默克密理博中国 phospholamban抗体(millipore, 07-052)被用于被用于免疫印迹在小鼠样品上 (图 5). Cardiovasc Res (2016) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 图 6
默克密理博中国 phospholamban抗体(Millipore, 07 -052)被用于被用于免疫印迹在小鼠样品上 (图 6). Cardiovasc Res (2015) ncbi
兔 多克隆
  • 免疫印迹; 猪
默克密理博中国 phospholamban抗体(Upstate Merck Millipore, 07-052)被用于被用于免疫印迹在猪样品上. PLoS ONE (2015) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 图 6
默克密理博中国 phospholamban抗体(Millipore, 07-052)被用于被用于免疫印迹在小鼠样品上 (图 6). J Biol Chem (2014) ncbi
兔 多克隆
  • 免疫印迹; 小鼠
默克密理博中国 phospholamban抗体(Millipore, 07-052)被用于被用于免疫印迹在小鼠样品上. PLoS ONE (2013) ncbi
文章列表
  1. Dai W, Laforest B, Tyan L, Shen K, Nadadur R, Alvarado F, et al. A calcium transport mechanism for atrial fibrillation in Tbx5-mutant mice. elife. 2019;8: pubmed 出版商
  2. Chang S, Chuang H, Chen Y, Kao Y, Lin Y, Yeh Y, et al. Heart failure modulates electropharmacological characteristics of sinoatrial nodes. Exp Ther Med. 2017;13:771-779 pubmed 出版商
  3. García Castañeda M, Vega A, Rodríguez R, Montiel Jaen M, Cisneros B, Zarain Herzberg A, et al. Functional impact of an oculopharyngeal muscular dystrophy mutation in PABPN1. J Physiol. 2017;595:4167-4187 pubmed 出版商
  4. Fajardo V, Gamu D, Mitchell A, Bloemberg D, Bombardier E, Chambers P, et al. Sarcolipin deletion exacerbates soleus muscle atrophy and weakness in phospholamban overexpressing mice. PLoS ONE. 2017;12:e0173708 pubmed 出版商
  5. Kirschmer N, Bandleon S, von Ehrlich Treuenstätt V, Hartmann S, Schaaf A, Lamprecht A, et al. TRPC4? and TRPC4? Similarly Affect Neonatal Cardiomyocyte Survival during Chronic GPCR Stimulation. PLoS ONE. 2016;11:e0168446 pubmed 出版商
  6. Fu Q, Hu Y, Wang Q, Liu Y, Li N, Xu B, et al. High-fat diet induces protein kinase A and G-protein receptor kinase phosphorylation of β2 -adrenergic receptor and impairs cardiac adrenergic reserve in animal hearts. J Physiol. 2017;595:1973-1986 pubmed 出版商
  7. Ramratnam M, Salama G, Sharma R, Wang D, Smith S, Banerjee S, et al. Gene-Targeted Mice with the Human Troponin T R141W Mutation Develop Dilated Cardiomyopathy with Calcium Desensitization. PLoS ONE. 2016;11:e0167681 pubmed 出版商
  8. Scotcher J, Prysyazhna O, Boguslavskyi A, Kistamás K, Hadgraft N, Martin E, et al. Disulfide-activated protein kinase G I? regulates cardiac diastolic relaxation and fine-tunes the Frank-Starling response. Nat Commun. 2016;7:13187 pubmed 出版商
  9. Kennedy T, Swiderski K, Murphy K, Gehrig S, Curl C, Chandramouli C, et al. BGP-15 Improves Aspects of the Dystrophic Pathology in mdx and dko Mice with Differing Efficacies in Heart and Skeletal Muscle. Am J Pathol. 2016;186:3246-3260 pubmed 出版商
  10. Reil J, Tauchnitz M, Tian Q, Hohl M, Linz D, Oberhofer M, et al. Hyperaldosteronism induces left atrial systolic and diastolic dysfunction. Am J Physiol Heart Circ Physiol. 2016;311:H1014-H1023 pubmed 出版商
  11. Fajardo V, Smith I, Bombardier E, Chambers P, Quadrilatero J, Tupling A. Diaphragm assessment in mice overexpressing phospholamban in slow-twitch type I muscle fibers. Brain Behav. 2016;6:e00470 pubmed 出版商
  12. Sadredini M, Danielsen T, Aronsen J, Manotheepan R, Hougen K, Sjaastad I, et al. Beta-Adrenoceptor Stimulation Reveals Ca2+ Waves and Sarcoplasmic Reticulum Ca2+ Depletion in Left Ventricular Cardiomyocytes from Post-Infarction Rats with and without Heart Failure. PLoS ONE. 2016;11:e0153887 pubmed 出版商
  13. Massengill M, Ashraf H, Chowdhury R, Chrzanowski S, Kar J, Warren S, et al. Acute heart failure with cardiomyocyte atrophy induced in adult mice by ablation of cardiac myosin light chain kinase. Cardiovasc Res. 2016;111:34-43 pubmed 出版商
  14. Mederle K, Gess B, Pluteanu F, Plackic J, Tiefenbach K, Grill A, et al. The angiotensin receptor-associated protein Atrap is a stimulator of the cardiac Ca2+-ATPase SERCA2a. Cardiovasc Res. 2016;110:359-70 pubmed 出版商
  15. Nelson B, Makarewich C, Anderson D, Winders B, Troupes C, Wu F, et al. A peptide encoded by a transcript annotated as long noncoding RNA enhances SERCA activity in muscle. Science. 2016;351:271-5 pubmed 出版商
  16. Thomassen M, Gunnarsson T, Christensen P, Pavlovic D, Shattock M, Bangsbo J. Intensive training and reduced volume increases muscle FXYD1 expression and phosphorylation at rest and during exercise in athletes. Am J Physiol Regul Integr Comp Physiol. 2016;310:R659-69 pubmed 出版商
  17. Shimura D, Kusakari Y, Sasano T, Nakashima Y, Nakai G, Jiao Q, et al. Heterozygous deletion of sarcolipin maintains normal cardiac function. Am J Physiol Heart Circ Physiol. 2016;310:H92-103 pubmed 出版商
  18. Davis R, Simon J, Utter M, Mungai P, Alvarez M, Chowdhury S, et al. Knockout of p21-activated kinase-1 attenuates exercise-induced cardiac remodelling through altered calcineurin signalling. Cardiovasc Res. 2015;108:335-47 pubmed 出版商
  19. Xie L, Pi X, Townley Tilson W, Li N, Wehrens X, Entman M, et al. PHD2/3-dependent hydroxylation tunes cardiac response to β-adrenergic stress via phospholamban. J Clin Invest. 2015;125:2759-71 pubmed 出版商
  20. Fajardo V, Bombardier E, McMillan E, TRAN K, Wadsworth B, Gamu D, et al. Phospholamban overexpression in mice causes a centronuclear myopathy-like phenotype. Dis Model Mech. 2015;8:999-1009 pubmed 出版商
  21. Dalpiaz P, Lamas A, Caliman I, Ribeiro R, Abreu G, Moyses M, et al. Sex Hormones Promote Opposite Effects on ACE and ACE2 Activity, Hypertrophy and Cardiac Contractility in Spontaneously Hypertensive Rats. PLoS ONE. 2015;10:e0127515 pubmed 出版商
  22. Revuelta López E, Cal R, Herraiz Martínez A, De Gonzalo Calvo D, Nasarre L, Roura S, et al. Hypoxia-driven sarcoplasmic/endoplasmic reticulum calcium ATPase 2 (SERCA2) downregulation depends on low-density lipoprotein receptor-related protein 1 (LRP1)-signalling in cardiomyocytes. J Mol Cell Cardiol. 2015;85:25-36 pubmed 出版商
  23. Major J, Salih M, Tuana B. Interplay between the E2F pathway and β-adrenergic signaling in the pathological hypertrophic response of myocardium. J Mol Cell Cardiol. 2015;84:179-90 pubmed 出版商
  24. Lugenbiel P, Wenz F, Govorov K, Schweizer P, Katus H, Thomas D. Atrial fibrillation complicated by heart failure induces distinct remodeling of calcium cycling proteins. PLoS ONE. 2015;10:e0116395 pubmed 出版商
  25. Moshal K, Zhang Z, Roder K, Kim T, Cooper L, Patedakis Litvinov B, et al. Progesterone modulates SERCA2a expression and function in rabbit cardiomyocytes. Am J Physiol Cell Physiol. 2014;307:C1050-7 pubmed 出版商
  26. Freire P, Alves C, Deus A, Leopoldo A, Leopoldo A, Silva D, et al. Obesity does not lead to imbalance between myocardial phospholamban phosphorylation and dephosphorylation. Arq Bras Cardiol. 2014;103:41-50 pubmed
  27. Chakraborty A, Pasek D, Huang T, Gomez A, Yamaguchi N, Anderson M, et al. Inhibition of CaMKII does not attenuate cardiac hypertrophy in mice with dysfunctional ryanodine receptor. PLoS ONE. 2014;9:e104338 pubmed 出版商
  28. Holemans T, Vandecaetsbeek I, Wuytack F, Vangheluwe P. Measuring Ca2+-dependent Ca2+-uptake activity in the mouse heart. Cold Spring Harb Protoc. 2014;2014:876-86 pubmed 出版商
  29. Dweck D, Sanchez Gonzalez M, Chang A, Dulce R, Badger C, Koutnik A, et al. Long term ablation of protein kinase A (PKA)-mediated cardiac troponin I phosphorylation leads to excitation-contraction uncoupling and diastolic dysfunction in a knock-in mouse model of hypertrophic cardiomyopathy. J Biol Chem. 2014;289:23097-111 pubmed 出版商
  30. Fajardo V, Bombardier E, Vigna C, Devji T, Bloemberg D, Gamu D, et al. Co-expression of SERCA isoforms, phospholamban and sarcolipin in human skeletal muscle fibers. PLoS ONE. 2013;8:e84304 pubmed 出版商
  31. Yi T, Vick J, Vecchio M, Begin K, Bell S, Delay R, et al. Identifying cellular mechanisms of zinc-induced relaxation in isolated cardiomyocytes. Am J Physiol Heart Circ Physiol. 2013;305:H706-15 pubmed 出版商
  32. Chang A, Huang J, Battiprolu P, Hill J, Kamm K, Stull J. The effects of neuregulin on cardiac Myosin light chain kinase gene-ablated hearts. PLoS ONE. 2013;8:e66720 pubmed 出版商
  33. Middlekauff H, Vigna C, Verity M, Fonarow G, Horwich T, Hamilton M, et al. Abnormalities of calcium handling proteins in skeletal muscle mirror those of the heart in humans with heart failure: a shared mechanism?. J Card Fail. 2012;18:724-33 pubmed 出版商