这是一篇来自已证抗体库的有关人类 孕激素受体 (progesterone receptor) 的综述,是根据169篇发表使用所有方法的文章归纳的。这综述旨在帮助来邦网的访客找到最适合孕激素受体 抗体。
孕激素受体 同义词: NR3C3; PR

赛默飞世尔
domestic rabbit 单克隆(SP2)
  • 免疫组化; 大鼠; 图 4b
赛默飞世尔孕激素受体抗体(Thermo Fisher Scientific, MA5-14505)被用于被用于免疫组化在大鼠样本上 (图 4b). Int J Mol Sci (2021) ncbi
domestic rabbit 单克隆(SP2)
  • 免疫组化-石蜡切片; 小鼠; 1:400; 图 4c
赛默飞世尔孕激素受体抗体(Thermo, RM-9102-s0)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:400 (图 4c). Genes (Basel) (2021) ncbi
domestic rabbit 单克隆(SP2)
  • 免疫组化-冰冻切片; 小鼠; 1:200; 图 5c
赛默飞世尔孕激素受体抗体(Invitrogen, MA5-14505)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:200 (图 5c). Front Neurosci (2020) ncbi
小鼠 单克隆(hPRa 2)
  • 免疫组化-石蜡切片; 猫; 图 1b
赛默飞世尔孕激素受体抗体(Invitrogen, hPRa 2)被用于被用于免疫组化-石蜡切片在猫样本上 (图 1b). Sci Rep (2020) ncbi
小鼠 单克隆(PgR636)
  • 免疫组化-石蜡切片; 人类; 1:50
赛默飞世尔孕激素受体抗体(Thermo-Scientific, PGR636)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:50. J Immunother Cancer (2017) ncbi
domestic rabbit 单克隆(SP2)
  • 免疫组化-石蜡切片; 小鼠; 图 1b
赛默飞世尔孕激素受体抗体(Thermo Scientific, RM-9102)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 1b). Oncogenesis (2016) ncbi
domestic rabbit 单克隆(SP2)
  • 免疫组化-石蜡切片; 人类; 1:250; 表 1
赛默飞世尔孕激素受体抗体(Neomarkers, SP2)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:250 (表 1). Oncol Lett (2016) ncbi
domestic rabbit 单克隆(SP2)
  • 免疫组化-石蜡切片; 人类; 1:200; 图 4a
赛默飞世尔孕激素受体抗体(Thermo Fisher, PM-9102-S)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:200 (图 4a). PLoS ONE (2016) ncbi
小鼠 单克隆(hPRa2, hPRa3)
  • 免疫细胞化学; domestic goat; 1:70; 图 6
赛默飞世尔孕激素受体抗体(ThermoFisher Scientific, MA1-12626)被用于被用于免疫细胞化学在domestic goat样本上浓度为1:70 (图 6). Anim Sci J (2016) ncbi
domestic rabbit 单克隆(SP2)
  • 免疫组化; 人类; 1:300
赛默飞世尔孕激素受体抗体(Thermoscientific, SP2)被用于被用于免疫组化在人类样本上浓度为1:300. Breast Cancer Res Treat (2016) ncbi
小鼠 单克隆(Alpha PR6)
  • 免疫组化-石蜡切片; 小鼠; 表 2
赛默飞世尔孕激素受体抗体(Thermo Scientific, MA1-411)被用于被用于免疫组化-石蜡切片在小鼠样本上 (表 2). Breast Cancer Res (2016) ncbi
domestic rabbit 单克隆(SP2)
  • 免疫组化-石蜡切片; 人类; 1:200; 表 1
赛默飞世尔孕激素受体抗体(Thermo Scientific, SP2)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:200 (表 1). Pathol Oncol Res (2016) ncbi
domestic rabbit 单克隆(SP2)
  • 免疫细胞化学; 人类; 1:10; 图 1b
赛默飞世尔孕激素受体抗体(Labvision, RM-9102-S)被用于被用于免疫细胞化学在人类样本上浓度为1:10 (图 1b). Nat Commun (2015) ncbi
小鼠 单克隆(hPRa 6)
  • 免疫组化-石蜡切片; 鸡; 4 ug/ml; 图 2
赛默飞世尔孕激素受体抗体(NeoMarkers, hPRa6)被用于被用于免疫组化-石蜡切片在鸡样本上浓度为4 ug/ml (图 2). Acta Histochem (2015) ncbi
小鼠 单克隆(hPRa2, hPRa3)
  • 免疫组化-石蜡切片; 鸡; 4 ug/ml; 图 2
赛默飞世尔孕激素受体抗体(NeoMarkers, hPRa2+hPRa3)被用于被用于免疫组化-石蜡切片在鸡样本上浓度为4 ug/ml (图 2). Acta Histochem (2015) ncbi
domestic rabbit 单克隆(SP2)
  • 免疫组化; 人类; 1:1000; 图 6
赛默飞世尔孕激素受体抗体(Thermo, SP2)被用于被用于免疫组化在人类样本上浓度为1:1000 (图 6). Diagn Pathol (2015) ncbi
小鼠 单克隆(PgR636)
  • 免疫组化-石蜡切片; 人类
赛默飞世尔孕激素受体抗体(Thermo Scientific, PgR636)被用于被用于免疫组化-石蜡切片在人类样本上. Oncotarget (2015) ncbi
domestic rabbit 单克隆(SP2)
  • 免疫组化; 人类; 1:100
赛默飞世尔孕激素受体抗体(Thermo Scientific, RM-9102-S1)被用于被用于免疫组化在人类样本上浓度为1:100. Pathol Res Pract (2015) ncbi
domestic rabbit 单克隆(SP2)
  • 免疫印迹; 小鼠; 1:200
赛默飞世尔孕激素受体抗体(Thermo Scientific, Rm9102)被用于被用于免疫印迹在小鼠样本上浓度为1:200. Nature (2015) ncbi
domestic rabbit 单克隆(SP2)
  • 免疫组化-石蜡切片; 人类; 1:200; 表 2
赛默飞世尔孕激素受体抗体(Thermo Lab Vision, RM-9102-S)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:200 (表 2). Breast Cancer Res Treat (2015) ncbi
小鼠 单克隆(hPRa 7)
  • 免疫组化-石蜡切片; 小鼠; 图 4
赛默飞世尔孕激素受体抗体(Thermo Scientific, MA5-12658)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 4). Stem Cell Reports (2015) ncbi
domestic rabbit 单克隆(SP2)
  • 免疫组化-石蜡切片; 人类; 1:200
赛默飞世尔孕激素受体抗体(Thermo Scientific Lab Vision, RM-9102-S)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:200. Breast Cancer Res Treat (2015) ncbi
小鼠 单克隆(PgR636)
  • 免疫组化; 人类; 1:1000
赛默飞世尔孕激素受体抗体(Thermo Scientific, PgR636)被用于被用于免疫组化在人类样本上浓度为1:1000. Breast (2015) ncbi
domestic rabbit 单克隆(SP2)
  • 免疫组化-石蜡切片; 人类
赛默飞世尔孕激素受体抗体(Thermo Scientific Lab Vision, SP2)被用于被用于免疫组化-石蜡切片在人类样本上. Niger J Clin Pract (2015) ncbi
domestic rabbit 单克隆(SP2)
  • 免疫组化; 人类; 1:200
赛默飞世尔孕激素受体抗体(Neomarker, RM-9102-S)被用于被用于免疫组化在人类样本上浓度为1:200. Breast Cancer Res Treat (2015) ncbi
domestic rabbit 单克隆(SP2)
  • 免疫印迹; 人类; 图 3
赛默飞世尔孕激素受体抗体(Neomarkers, RM-9102)被用于被用于免疫印迹在人类样本上 (图 3). Int J Oncol (2015) ncbi
小鼠 单克隆(Alpha PR6)
  • 免疫组化-石蜡切片; 小鼠; 1:500
赛默飞世尔孕激素受体抗体(Thermo Fisher Scientific, MA1-411)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:500. EMBO J (2015) ncbi
domestic rabbit 单克隆(SP2)
  • 免疫组化; 人类; 1:200
赛默飞世尔孕激素受体抗体(Zymed, SP2)被用于被用于免疫组化在人类样本上浓度为1:200. Breast Cancer Res Treat (2015) ncbi
小鼠 单克隆(PgR636)
  • 免疫组化-石蜡切片; 人类; 1:300
赛默飞世尔孕激素受体抗体(Lab Vision, PGR636)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:300. Int J Cosmet Sci (2015) ncbi
domestic rabbit 单克隆(SP2)
赛默飞世尔孕激素受体抗体(Fisher Scientific, RM-9102-S0)被用于. Cancer Res (2014) ncbi
小鼠 单克隆(hPRa 7)
  • 免疫组化-石蜡切片; 小鼠; 1:50
赛默飞世尔孕激素受体抗体(Labvision, hPRa7)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:50. Cell Death Dis (2014) ncbi
domestic rabbit 单克隆(SP2)
  • 免疫细胞化学; 人类; 1:25
  • 免疫组化; 人类; 1:25
赛默飞世尔孕激素受体抗体(Thermo Scientific, Sp2)被用于被用于免疫细胞化学在人类样本上浓度为1:25 和 被用于免疫组化在人类样本上浓度为1:25. Am J Pathol (2014) ncbi
小鼠 单克隆(hPRa 7)
  • 免疫细胞化学; 小鼠
赛默飞世尔孕激素受体抗体(ThermoScientific, hPRa7)被用于被用于免疫细胞化学在小鼠样本上. J Pathol (2014) ncbi
domestic rabbit 单克隆(SP2)
  • 免疫组化-石蜡切片; 人类; 1:2000
赛默飞世尔孕激素受体抗体(LabVision, SP2)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:2000. Br J Cancer (2014) ncbi
domestic rabbit 单克隆(SP2)
  • 免疫组化-石蜡切片; 人类
  • 免疫细胞化学; 人类
赛默飞世尔孕激素受体抗体(Lab Vision, SP2)被用于被用于免疫组化-石蜡切片在人类样本上 和 被用于免疫细胞化学在人类样本上. Carcinogenesis (2014) ncbi
小鼠 单克隆(608)
  • 免疫印迹; 人类; 图 3
赛默飞世尔孕激素受体抗体(Lab Vision, MS-1332)被用于被用于免疫印迹在人类样本上 (图 3). Nucleic Acids Res (2013) ncbi
小鼠 单克隆(hPRa2, hPRa3)
  • 染色质免疫沉淀 ; 人类; 图 7
  • 免疫印迹; 人类; 图 3
赛默飞世尔孕激素受体抗体(ThermoScientific, MS-298-P)被用于被用于染色质免疫沉淀 在人类样本上 (图 7) 和 被用于免疫印迹在人类样本上 (图 3). Nucleic Acids Res (2013) ncbi
domestic rabbit 单克隆(SP2)
  • 免疫组化-石蜡切片; 人类; 1:200; 图 2
赛默飞世尔孕激素受体抗体(Zymed, clone SP2)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:200 (图 2). Int J Clin Exp Pathol (2013) ncbi
domestic rabbit 单克隆(SP2)
  • 免疫组化; 人类
赛默飞世尔孕激素受体抗体(Zymed, SP2)被用于被用于免疫组化在人类样本上. Cancer Biol Med (2012) ncbi
domestic rabbit 单克隆(SP2)
  • 免疫组化-石蜡切片; 人类; 1:100; 表 2
赛默飞世尔孕激素受体抗体(Neomarkers, SP2)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100 (表 2). Breast Cancer (Auckl) (2013) ncbi
domestic rabbit 单克隆(SP2)
  • 免疫组化; 人类; 1:500; 表 1
赛默飞世尔孕激素受体抗体(Thermo Scientific, SP2)被用于被用于免疫组化在人类样本上浓度为1:500 (表 1). Gynecol Oncol (2013) ncbi
domestic rabbit 单克隆(SP2)
  • 免疫组化-石蜡切片; 犬; 1:200
赛默飞世尔孕激素受体抗体(Thermo Scientific, SP2)被用于被用于免疫组化-石蜡切片在犬样本上浓度为1:200. BMC Vet Res (2011) ncbi
小鼠 单克隆(hPRa 7)
  • 免疫印迹; 人类; 4 ug/ml; 图 5
赛默飞世尔孕激素受体抗体(Thermo Fisher, hPRa7)被用于被用于免疫印迹在人类样本上浓度为4 ug/ml (图 5). BMC Cancer (2011) ncbi
domestic rabbit 单克隆(SP2)
  • 免疫组化; 小鼠; 1:200; 图 1
赛默飞世尔孕激素受体抗体(Thermo, RM-9102)被用于被用于免疫组化在小鼠样本上浓度为1:200 (图 1). Cancer Res (2011) ncbi
domestic rabbit 单克隆(SP2)
  • 免疫组化-石蜡切片; 人类; 1:200
赛默飞世尔孕激素受体抗体(Neomarker, RM9102-S)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:200. Breast Cancer Res (2011) ncbi
domestic rabbit 单克隆(SP2)
  • 免疫组化-石蜡切片; 人类; 1:250; 图 2, 3, 4
  • 免疫组化; 人类; 1:250
赛默飞世尔孕激素受体抗体(NeoMarkers, SP2)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:250 (图 2, 3, 4) 和 被用于免疫组化在人类样本上浓度为1:250. Int J Surg Pathol (2011) ncbi
艾博抗(上海)贸易有限公司
domestic rabbit 单克隆(YR85)
  • 免疫组化-石蜡切片; 人类; 1:50; 图 1d
艾博抗(上海)贸易有限公司孕激素受体抗体(Abcam, ab32085)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:50 (图 1d). Cell Death Dis (2021) ncbi
domestic rabbit 单克隆(SP2)
  • 免疫细胞化学; 人类; 1:100; 图 1h
艾博抗(上海)贸易有限公司孕激素受体抗体(abcam, ab16661)被用于被用于免疫细胞化学在人类样本上浓度为1:100 (图 1h). Stem Cell Res Ther (2021) ncbi
domestic rabbit 单克隆(YR85)
  • mass cytometry; 人类; 图 3a
艾博抗(上海)贸易有限公司孕激素受体抗体(Abcam, ab32085)被用于被用于mass cytometry在人类样本上 (图 3a). Cell (2019) ncbi
domestic rabbit 单克隆(SP2)
  • 免疫组化; 大鼠; 1:100; 图 3d
艾博抗(上海)贸易有限公司孕激素受体抗体(Abcam, ab16661)被用于被用于免疫组化在大鼠样本上浓度为1:100 (图 3d). PLoS Genet (2019) ncbi
domestic rabbit 单克隆(YR85)
  • 其他; 人类; 图 4c
艾博抗(上海)贸易有限公司孕激素受体抗体(Abcam, ab32085)被用于被用于其他在人类样本上 (图 4c). Cancer Cell (2018) ncbi
domestic rabbit 单克隆(YR85)
  • 免疫组化-石蜡切片; 大鼠; 1:100; 图 st13
艾博抗(上海)贸易有限公司孕激素受体抗体(Abcam, ab32085)被用于被用于免疫组化-石蜡切片在大鼠样本上浓度为1:100 (图 st13). J Toxicol Pathol (2017) ncbi
圣克鲁斯生物技术
小鼠 单克隆(AB-52)
  • 免疫组化-石蜡切片; 小鼠; 1:300; 图 9a
圣克鲁斯生物技术孕激素受体抗体(Santa Cruz, sc-810)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:300 (图 9a). Am J Transl Res (2021) ncbi
小鼠 单克隆(AB-52)
  • 免疫印迹; 人类; 图 8d
圣克鲁斯生物技术孕激素受体抗体(Santa Cruz, sc-810)被用于被用于免疫印迹在人类样本上 (图 8d). Stem Cell Res Ther (2019) ncbi
小鼠 单克隆(B-30)
  • 免疫印迹; 人类; 1:2000; 图 1b
圣克鲁斯生物技术孕激素受体抗体(Santa, sc-811)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 1b). Biosci Rep (2019) ncbi
小鼠 单克隆
  • 免疫印迹; 人类; 1:5000; 图 1b
圣克鲁斯生物技术孕激素受体抗体(Santa, sc-398898)被用于被用于免疫印迹在人类样本上浓度为1:5000 (图 1b). Biosci Rep (2019) ncbi
小鼠 单克隆(C262)
  • 免疫印迹; 人类; 1:1000; 图 1b
圣克鲁斯生物技术孕激素受体抗体(Santa, sc-53943)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 1b). Biosci Rep (2019) ncbi
小鼠 单克隆(AB-52)
  • 免疫组化-石蜡切片; 人类; 1:100; 图 1
圣克鲁斯生物技术孕激素受体抗体(Santa Cruz, sc-810)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100 (图 1). Arch Med Sci (2017) ncbi
亚诺法生技股份有限公司
domestic rabbit 单克隆(A21-W)
  • 免疫组化-石蜡切片; 小鼠; 1:400
亚诺法生技股份有限公司孕激素受体抗体(Abnova, MAB9785)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:400. PLoS ONE (2014) ncbi
domestic rabbit 单克隆(A21-W)
  • 免疫组化-石蜡切片; 小鼠; 1:400
亚诺法生技股份有限公司孕激素受体抗体(Abnova, MAB9785)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:400. Breast Cancer Res (2014) ncbi
丹科医疗器械技术服务(上海)有限公司
小鼠 单克隆(PgR 636)
  • 免疫组化; 人类; 1:100; 图 7b
丹科医疗器械技术服务(上海)有限公司孕激素受体抗体(Dako, PgR636)被用于被用于免疫组化在人类样本上浓度为1:100 (图 7b). Biomedicines (2021) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:2000; 图 s2a
丹科医疗器械技术服务(上海)有限公司孕激素受体抗体(Dako, A0098)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:2000 (图 s2a). Cancer Res (2021) ncbi
小鼠 单克隆(PgR 1294)
  • 免疫组化; 人类; 1:100; 图 1d
丹科医疗器械技术服务(上海)有限公司孕激素受体抗体(Dako, M3568)被用于被用于免疫组化在人类样本上浓度为1:100 (图 1d). Proc Natl Acad Sci U S A (2021) ncbi
小鼠 单克隆(PgR 636)
  • 免疫组化; 人类; 1:200
丹科医疗器械技术服务(上海)有限公司孕激素受体抗体(DAKO, pgR636)被用于被用于免疫组化在人类样本上浓度为1:200. Cancers (Basel) (2020) ncbi
小鼠 单克隆(PgR 636)
  • 免疫组化; 人类; 1:100; 表 1
丹科医疗器械技术服务(上海)有限公司孕激素受体抗体(Dako, PgR636)被用于被用于免疫组化在人类样本上浓度为1:100 (表 1). Mod Pathol (2020) ncbi
domestic rabbit 多克隆
  • 免疫组化基因敲除验证; 小鼠; 图 3c
丹科医疗器械技术服务(上海)有限公司孕激素受体抗体(Dako, A0098)被用于被用于免疫组化基因敲除验证在小鼠样本上 (图 3c). Cell Rep (2020) ncbi
小鼠 单克隆(PgR 636)
  • 免疫组化-石蜡切片; 人类; 1:70; 表 1
丹科医疗器械技术服务(上海)有限公司孕激素受体抗体(Dako, PgR 636)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:70 (表 1). Breast Cancer Res (2020) ncbi
小鼠 单克隆(PgR 1294)
  • 免疫组化; 人类; 1:200; 图 1b
丹科医疗器械技术服务(上海)有限公司孕激素受体抗体(DAKO, M3568)被用于被用于免疫组化在人类样本上浓度为1:200 (图 1b). Breast Cancer Res (2019) ncbi
小鼠 单克隆(PgR 1294)
  • 免疫组化-石蜡切片; 人类; 图 1a
丹科医疗器械技术服务(上海)有限公司孕激素受体抗体(DAKO, 1294)被用于被用于免疫组化-石蜡切片在人类样本上 (图 1a). J Histochem Cytochem (2019) ncbi
小鼠 单克隆(PgR 636)
  • 免疫组化-石蜡切片; 人类; 1:150; 图 2a
丹科医疗器械技术服务(上海)有限公司孕激素受体抗体(Dako, M3569)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:150 (图 2a). Cell (2018) ncbi
小鼠 单克隆(1294)
  • 免疫细胞化学; 人类; 1:500; 图 2e
  • 免疫印迹; 人类; 图 2c
丹科医疗器械技术服务(上海)有限公司孕激素受体抗体(Dako, 1294)被用于被用于免疫细胞化学在人类样本上浓度为1:500 (图 2e) 和 被用于免疫印迹在人类样本上 (图 2c). Oncogene (2017) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 图 4d
丹科医疗器械技术服务(上海)有限公司孕激素受体抗体(DAKO, A0098)被用于被用于免疫组化在小鼠样本上 (图 4d). Proc Natl Acad Sci U S A (2017) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:500; 图 af4b
丹科医疗器械技术服务(上海)有限公司孕激素受体抗体(Dako, A0098)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:500 (图 af4b). Breast Cancer Res (2017) ncbi
小鼠 单克隆(PgR 636)
  • 免疫组化; 人类; 1:10; 表 1
丹科医疗器械技术服务(上海)有限公司孕激素受体抗体(Dako, PgR 636)被用于被用于免疫组化在人类样本上浓度为1:10 (表 1). Cancer (2017) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:50; 图 1d
丹科医疗器械技术服务(上海)有限公司孕激素受体抗体(DAKO, A0098)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:50 (图 1d). Nat Commun (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 图 s11
丹科医疗器械技术服务(上海)有限公司孕激素受体抗体(Dako, A0098)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 s11). Cell Res (2016) ncbi
小鼠 单克隆(PgR 636)
  • 免疫组化-石蜡切片; 人类; 1:200; 表 1
丹科医疗器械技术服务(上海)有限公司孕激素受体抗体(Dako, PgR 636)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:200 (表 1). Medicine (Baltimore) (2016) ncbi
小鼠 单克隆(PgR 636)
  • 免疫组化-石蜡切片; 人类; 1:800; 表 1
丹科医疗器械技术服务(上海)有限公司孕激素受体抗体(DAKO, M3569)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:800 (表 1). Br J Cancer (2016) ncbi
小鼠 单克隆(PgR 636)
  • 免疫组化-石蜡切片; 人类; 1:150
丹科医疗器械技术服务(上海)有限公司孕激素受体抗体(Dako, PgR 636)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:150. J Exp Clin Cancer Res (2016) ncbi
小鼠 单克隆(PgR 636)
  • 免疫组化-石蜡切片; 人类; 1:50; 表 1
丹科医疗器械技术服务(上海)有限公司孕激素受体抗体(Dako, M3569)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:50 (表 1). Oncol Lett (2016) ncbi
小鼠 单克隆(PgR 1294)
  • 免疫组化; 人类; 1:200; 表 2
丹科医疗器械技术服务(上海)有限公司孕激素受体抗体(Dako, PgR1294)被用于被用于免疫组化在人类样本上浓度为1:200 (表 2). Am J Surg Pathol (2016) ncbi
小鼠 单克隆(PgR 636)
  • 免疫组化-石蜡切片; 人类; 1:50; 图 s1
丹科医疗器械技术服务(上海)有限公司孕激素受体抗体(Dako, 3569)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:50 (图 s1). BMC Cancer (2016) ncbi
小鼠 单克隆(PgR 636)
  • 免疫组化; 人类; 表 1
丹科医疗器械技术服务(上海)有限公司孕激素受体抗体(Dako, M3569)被用于被用于免疫组化在人类样本上 (表 1). PLoS ONE (2016) ncbi
小鼠 单克隆(PgR 636)
  • 免疫组化-石蜡切片; 人类; 1:50; 表 s5
丹科医疗器械技术服务(上海)有限公司孕激素受体抗体(Dako, PgR636)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:50 (表 s5). Oncotarget (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 图 3
丹科医疗器械技术服务(上海)有限公司孕激素受体抗体(Dako, A0098)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 3). Proc Natl Acad Sci U S A (2016) ncbi
小鼠 单克隆(PgR 636)
  • 免疫组化-石蜡切片; 人类; 1:150
丹科医疗器械技术服务(上海)有限公司孕激素受体抗体(Dako, M3569)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:150. PLoS ONE (2016) ncbi
小鼠 单克隆(PgR 636)
  • 免疫细胞化学; 人类; 1:10; 图 s13b
丹科医疗器械技术服务(上海)有限公司孕激素受体抗体(Dako, M356901-2)被用于被用于免疫细胞化学在人类样本上浓度为1:10 (图 s13b). Nat Commun (2015) ncbi
domestic rabbit 多克隆
  • 免疫组化-自由浮动切片; 大鼠; 1:400; 图 3
丹科医疗器械技术服务(上海)有限公司孕激素受体抗体(Dako, A0098)被用于被用于免疫组化-自由浮动切片在大鼠样本上浓度为1:400 (图 3). J Neuroendocrinol (2016) ncbi
小鼠 单克隆(PgR 636)
  • 免疫组化-石蜡切片; 人类; 1:50; 图 2
丹科医疗器械技术服务(上海)有限公司孕激素受体抗体(DAKO, M3569)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:50 (图 2). PLoS ONE (2015) ncbi
小鼠 单克隆(PgR 636)
  • 免疫组化; 人类; 1:200; 图 1
丹科医疗器械技术服务(上海)有限公司孕激素受体抗体(DAKO, PgR636)被用于被用于免疫组化在人类样本上浓度为1:200 (图 1). Virchows Arch (2015) ncbi
小鼠 单克隆(PgR 1294)
  • 免疫组化-石蜡切片; 人类
丹科医疗器械技术服务(上海)有限公司孕激素受体抗体(Dako, PgR 1294)被用于被用于免疫组化-石蜡切片在人类样本上. Appl Immunohistochem Mol Morphol (2016) ncbi
小鼠 单克隆(PgR 636)
  • 免疫组化; 人类; 1:400
丹科医疗器械技术服务(上海)有限公司孕激素受体抗体(DakoCytomation, M3569)被用于被用于免疫组化在人类样本上浓度为1:400. Mol Clin Oncol (2015) ncbi
小鼠 单克隆(PgR 1294)
  • 免疫组化-石蜡切片; 人类; 1:1000; 表 1
丹科医疗器械技术服务(上海)有限公司孕激素受体抗体(DAKO, PgR1294)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:1000 (表 1). BMC Cancer (2015) ncbi
小鼠 单克隆(PgR 636)
  • 免疫组化; 人类
丹科医疗器械技术服务(上海)有限公司孕激素受体抗体(Dako, M3569)被用于被用于免疫组化在人类样本上. BMC Clin Pathol (2015) ncbi
小鼠 单克隆(PgR 636)
  • 免疫组化; 人类
丹科医疗器械技术服务(上海)有限公司孕激素受体抗体(Dako, PgR636)被用于被用于免疫组化在人类样本上. Breast Cancer Res Treat (2015) ncbi
小鼠 单克隆(PgR 636)
  • 免疫组化; 人类
丹科医疗器械技术服务(上海)有限公司孕激素受体抗体(Dako, clone PgR636)被用于被用于免疫组化在人类样本上. Brain Tumor Pathol (2015) ncbi
小鼠 单克隆(PgR 636)
  • 免疫组化; 人类; 1:250
丹科医疗器械技术服务(上海)有限公司孕激素受体抗体(Dako, PgR 636)被用于被用于免疫组化在人类样本上浓度为1:250. Gynecol Oncol (2015) ncbi
小鼠 单克隆(PgR 636)
  • 免疫组化-石蜡切片; 人类; 1:70
丹科医疗器械技术服务(上海)有限公司孕激素受体抗体(Dako, PgR 636)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:70. Cancer Res Treat (2016) ncbi
小鼠 单克隆(PgR 636)
  • 免疫组化-石蜡切片; 人类
丹科医疗器械技术服务(上海)有限公司孕激素受体抗体(Dako, PgR636)被用于被用于免疫组化-石蜡切片在人类样本上. Pathol Oncol Res (2015) ncbi
小鼠 单克隆(PgR 636)
  • 免疫组化-石蜡切片; 人类; 1:50; 表 4
丹科医疗器械技术服务(上海)有限公司孕激素受体抗体(DAKO, M3569)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:50 (表 4). PLoS ONE (2015) ncbi
小鼠 单克隆(PgR 636)
  • 免疫组化-石蜡切片; 人类; 1:250
丹科医疗器械技术服务(上海)有限公司孕激素受体抗体(DAKO, PgR636)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:250. Int J Gynecol Pathol (2015) ncbi
小鼠 单克隆(PgR 636)
  • 免疫组化; 人类; 1:150
丹科医疗器械技术服务(上海)有限公司孕激素受体抗体(Dako, PgR636)被用于被用于免疫组化在人类样本上浓度为1:150. Balkan Med J (2014) ncbi
小鼠 单克隆(PgR 636)
  • 免疫组化; 人类; 1:100
丹科医疗器械技术服务(上海)有限公司孕激素受体抗体(DAKO, M3569)被用于被用于免疫组化在人类样本上浓度为1:100. Breast Cancer Res Treat (2015) ncbi
小鼠 单克隆(PgR 636)
  • 免疫组化; 人类; 1:50
丹科医疗器械技术服务(上海)有限公司孕激素受体抗体(DakoCytomation, PgR 636)被用于被用于免疫组化在人类样本上浓度为1:50. BMC Cancer (2014) ncbi
小鼠 单克隆(PgR 636)
  • 免疫组化-石蜡切片; 人类; 1:500
丹科医疗器械技术服务(上海)有限公司孕激素受体抗体(Dako, PGR 636)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:500. Cancer Lett (2015) ncbi
小鼠 单克隆(PgR 636)
  • 免疫组化-石蜡切片; 人类
丹科医疗器械技术服务(上海)有限公司孕激素受体抗体(DAKO, PgR 636)被用于被用于免疫组化-石蜡切片在人类样本上. Oncotarget (2014) ncbi
小鼠 单克隆(PgR 636)
  • 免疫组化-石蜡切片; 人类; ready-to-use
丹科医疗器械技术服务(上海)有限公司孕激素受体抗体(DAKO, PgR636)被用于被用于免疫组化-石蜡切片在人类样本上浓度为ready-to-use. Malays J Pathol (2014) ncbi
小鼠 单克隆(PgR 636)
  • 免疫组化; 人类; 1:1000
丹科医疗器械技术服务(上海)有限公司孕激素受体抗体(Dako, PgR636)被用于被用于免疫组化在人类样本上浓度为1:1000. BMC Womens Health (2014) ncbi
小鼠 单克隆(PgR 636)
  • 免疫组化; 人类; 1:100
丹科医疗器械技术服务(上海)有限公司孕激素受体抗体(Dako, 636)被用于被用于免疫组化在人类样本上浓度为1:100. Anticancer Res (2014) ncbi
小鼠 单克隆(PgR 636)
  • 免疫组化-石蜡切片; 人类; 1:500
丹科医疗器械技术服务(上海)有限公司孕激素受体抗体(DAKO, PgR636)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:500. Am J Clin Pathol (2014) ncbi
小鼠 单克隆(PgR 636)
  • 免疫组化-石蜡切片; 人类; 1:800; 表 2
丹科医疗器械技术服务(上海)有限公司孕激素受体抗体(Dako, PgR636)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:800 (表 2). Oncotarget (2014) ncbi
小鼠 单克隆(PgR 636)
  • 免疫组化-石蜡切片; 人类; 1:200; 图 2
丹科医疗器械技术服务(上海)有限公司孕激素受体抗体(Dako, PgR 636)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:200 (图 2). PLoS ONE (2014) ncbi
小鼠 单克隆(PgR 636)
  • 免疫组化; 人类; 1:250
丹科医疗器械技术服务(上海)有限公司孕激素受体抗体(Dako, PgR636)被用于被用于免疫组化在人类样本上浓度为1:250. Virchows Arch (2014) ncbi
小鼠 单克隆(PgR 636)
  • 免疫细胞化学; 人类; 1:100
  • 免疫组化; 人类; 1:100
丹科医疗器械技术服务(上海)有限公司孕激素受体抗体(Dako, Pgr636)被用于被用于免疫细胞化学在人类样本上浓度为1:100 和 被用于免疫组化在人类样本上浓度为1:100. Am J Pathol (2014) ncbi
小鼠 单克隆(PgR 636)
  • 免疫组化-石蜡切片; 人类; 1:70
丹科医疗器械技术服务(上海)有限公司孕激素受体抗体(Dako, PgR 636)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:70. Mod Pathol (2014) ncbi
小鼠 单克隆(PgR 636)
  • 免疫组化; 人类; 1:50
丹科医疗器械技术服务(上海)有限公司孕激素受体抗体(DAKO, PgR636)被用于被用于免疫组化在人类样本上浓度为1:50. Cancer Discov (2014) ncbi
小鼠 单克隆(PgR 636)
  • 免疫组化; 人类; 1:1000
丹科医疗器械技术服务(上海)有限公司孕激素受体抗体(Dako, PgR636)被用于被用于免疫组化在人类样本上浓度为1:1000. Horm Cancer (2014) ncbi
小鼠 单克隆(PgR 636)
  • 免疫组化-石蜡切片; 人类; 1:200
丹科医疗器械技术服务(上海)有限公司孕激素受体抗体(Dako, M3569)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:200. Prostate Cancer Prostatic Dis (2013) ncbi
小鼠 单克隆(PgR 636)
  • 免疫组化-石蜡切片; 人类; 1:2000
丹科医疗器械技术服务(上海)有限公司孕激素受体抗体(DAKO, PGR636)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:2000. Int J Cancer (2014) ncbi
小鼠 单克隆(PgR 1294)
  • 免疫细胞化学; 人类
丹科医疗器械技术服务(上海)有限公司孕激素受体抗体(Dako, M3568)被用于被用于免疫细胞化学在人类样本上. Endocrinology (2013) ncbi
小鼠 单克隆(PgR 1294)
  • 免疫组化; 人类; 表 1
丹科医疗器械技术服务(上海)有限公司孕激素受体抗体(DAKO, PGR1294)被用于被用于免疫组化在人类样本上 (表 1). Gynecol Oncol (2013) ncbi
小鼠 单克隆(PgR 636)
  • 免疫组化; 人类; 1:6
丹科医疗器械技术服务(上海)有限公司孕激素受体抗体(Dako Cytomation, PgR 636)被用于被用于免疫组化在人类样本上浓度为1:6. Pathol Int (2011) ncbi
赛信通(上海)生物试剂有限公司
domestic rabbit 单克隆(D8Q2J)
  • 免疫组化-石蜡切片; 小鼠; 1:500; 图 1a
赛信通(上海)生物试剂有限公司孕激素受体抗体(CST, 8757)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:500 (图 1a). Cells (2022) ncbi
domestic rabbit 单克隆(D8Q2J)
  • 其他; 人类; 1:100; 图 2a
赛信通(上海)生物试剂有限公司孕激素受体抗体(Cell Signaling, 8757)被用于被用于其他在人类样本上浓度为1:100 (图 2a). Proc Natl Acad Sci U S A (2021) ncbi
domestic rabbit 单克隆(D8Q2J)
  • 免疫印迹; 人类; 1:1000; 图 3c
赛信通(上海)生物试剂有限公司孕激素受体抗体(Cell Signaling, 8757S)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3c). Toxicol Sci (2021) ncbi
domestic rabbit 单克隆(D8Q2J)
  • 免疫组化-石蜡切片; 人类; 1:500; 图 1c
赛信通(上海)生物试剂有限公司孕激素受体抗体(Cell Signaling, 8757)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:500 (图 1c). Nat Commun (2021) ncbi
domestic rabbit 单克隆(D8Q2J)
  • 免疫组化; 人类
赛信通(上海)生物试剂有限公司孕激素受体抗体(Cell Signaling, D8Q2J)被用于被用于免疫组化在人类样本上. Oncogene (2020) ncbi
domestic rabbit 单克隆(D8Q2J)
  • 免疫印迹; 人类; 图 1a
赛信通(上海)生物试剂有限公司孕激素受体抗体(CST, 8757)被用于被用于免疫印迹在人类样本上 (图 1a). Cell Commun Signal (2019) ncbi
domestic rabbit 单克隆(D8Q2J)
  • 免疫组化; 人类; 1:200; 图 4c
  • 免疫印迹; 人类; 1:1000; 图 4b
赛信通(上海)生物试剂有限公司孕激素受体抗体(Cell Signaling, 8757S)被用于被用于免疫组化在人类样本上浓度为1:200 (图 4c) 和 被用于免疫印迹在人类样本上浓度为1:1000 (图 4b). Endocrinology (2019) ncbi
domestic rabbit 单克隆(C1A2)
  • 免疫组化-石蜡切片; 人类; 1:200; 图 4g
赛信通(上海)生物试剂有限公司孕激素受体抗体(Cell signaling, 3157S)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:200 (图 4g). Reprod Biol Endocrinol (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 2a
赛信通(上海)生物试剂有限公司孕激素受体抗体(Cell Signaling, 3171)被用于被用于免疫印迹在人类样本上 (图 2a). Oncotarget (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 人类; 1:25; 图 s1
赛信通(上海)生物试剂有限公司孕激素受体抗体(Cell Signaling, 3176)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:25 (图 s1). BMC Cancer (2016) ncbi
domestic rabbit 单克隆(C89F7)
  • 免疫印迹; 人类; 图 1
赛信通(上海)生物试剂有限公司孕激素受体抗体(Cell Signaling, 3153)被用于被用于免疫印迹在人类样本上 (图 1). PLoS ONE (2016) ncbi
domestic rabbit 单克隆(C1A2)
  • 免疫印迹; 人类; 图 1
赛信通(上海)生物试剂有限公司孕激素受体抗体(Cell Signaling, 3157)被用于被用于免疫印迹在人类样本上 (图 1). PLoS ONE (2016) ncbi
domestic rabbit 单克隆(C1A2)
  • 免疫细胞化学; 人类; 图 3b
赛信通(上海)生物试剂有限公司孕激素受体抗体(Cell Signaling, 3157)被用于被用于免疫细胞化学在人类样本上 (图 3b). Reprod Sci (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 5c
赛信通(上海)生物试剂有限公司孕激素受体抗体(Cell Signaling, 3176)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 5c). Mol Med Rep (2016) ncbi
domestic rabbit 单克隆(C89F7)
  • 免疫组化-石蜡切片; 人类; 1:100; 图 2
赛信通(上海)生物试剂有限公司孕激素受体抗体(Cell signaling, C89F7)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100 (图 2). Mol Cell Endocrinol (2016) ncbi
domestic rabbit 单克隆(D8Q2J)
  • 免疫印迹; 小鼠; 1:500; 图 s6
赛信通(上海)生物试剂有限公司孕激素受体抗体(Cell Signaling Technology, 8757)被用于被用于免疫印迹在小鼠样本上浓度为1:500 (图 s6). Proc Natl Acad Sci U S A (2015) ncbi
domestic rabbit 单克隆(C1A2)
  • 免疫细胞化学; 人类; 图 3
赛信通(上海)生物试剂有限公司孕激素受体抗体(Cell signaling, 3157S)被用于被用于免疫细胞化学在人类样本上 (图 3). Oncogene (2016) ncbi
domestic rabbit 单克隆(C1A2)
  • 免疫印迹; 人类; 图 1a
赛信通(上海)生物试剂有限公司孕激素受体抗体(Cell Signaling, 3157)被用于被用于免疫印迹在人类样本上 (图 1a). Oncotarget (2015) ncbi
Ventana
domestic rabbit 单克隆(1E2)
  • 免疫组化; 人类; 1:250
Ventana孕激素受体抗体(Ventana, 1E2)被用于被用于免疫组化在人类样本上浓度为1:250. Mod Pathol (2020) ncbi
domestic rabbit 单克隆(1E2)
  • 免疫组化; 人类; 1:50; 图 3b
Ventana孕激素受体抗体(Ventana, 790-2223)被用于被用于免疫组化在人类样本上浓度为1:50 (图 3b). Oncogene (2018) ncbi
domestic rabbit 单克隆(1E2)
  • 免疫组化-石蜡切片; 人类; 图 2b
Ventana孕激素受体抗体(Ventana, 1E2)被用于被用于免疫组化-石蜡切片在人类样本上 (图 2b). Clin Cancer Res (2017) ncbi
domestic rabbit 单克隆(1E2)
  • 免疫组化; 人类; 图 1a
Ventana孕激素受体抗体(Ventana, 790-2223)被用于被用于免疫组化在人类样本上 (图 1a). Oncotarget (2016) ncbi
domestic rabbit 单克隆(1E2)
  • 免疫组化-石蜡切片; 人类; 1:1; 表 3
Ventana孕激素受体抗体(Ventana, 1E2)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:1 (表 3). Virchows Arch (2016) ncbi
domestic rabbit 单克隆(1E2)
  • 免疫组化-石蜡切片; 猫; 表 4
Ventana孕激素受体抗体(Ventana, 1E2)被用于被用于免疫组化-石蜡切片在猫样本上 (表 4). Oncotarget (2016) ncbi
domestic rabbit 单克隆(1E2)
  • 免疫组化; 猫; 图 1b
Ventana孕激素受体抗体(Ventana, 1E2)被用于被用于免疫组化在猫样本上 (图 1b). Tumour Biol (2016) ncbi
Vector Laboratories
  • 免疫细胞化学; 人类; 1:25; 图 s13a
载体实验室孕激素受体抗体(载体实验室, VP-P987)被用于被用于免疫细胞化学在人类样本上浓度为1:25 (图 s13a). Nat Commun (2015) ncbi
徕卡显微系统(上海)贸易有限公司
小鼠 单克隆
  • 免疫组化-石蜡切片; 小鼠; 图 2a
徕卡显微系统(上海)贸易有限公司孕激素受体抗体(Dako, NCL-L-PGR-312)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 2a). Cancers (Basel) (2022) ncbi
小鼠 单克隆(6F11)
  • 免疫组化-石蜡切片; 小鼠; 1:50; 图 s4d
徕卡显微系统(上海)贸易有限公司孕激素受体抗体(Novocastra, NCL-ER-6F11)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:50 (图 s4d). Front Genet (2021) ncbi
小鼠 单克隆(6F11)
  • 免疫组化; 小鼠; 1:50; 图 2d
徕卡显微系统(上海)贸易有限公司孕激素受体抗体(Novocastra, NCL-ER-6F11)被用于被用于免疫组化在小鼠样本上浓度为1:50 (图 2d). Oncol Lett (2021) ncbi
小鼠 单克隆
  • 免疫组化-石蜡切片; 人类; 1:100; 图 st3
徕卡显微系统(上海)贸易有限公司孕激素受体抗体(Leica Biosystems, NCL-L-PGR-312)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100 (图 st3). J Nucl Med (2021) ncbi
小鼠 单克隆(6F11)
  • 免疫印迹; 人类; 图 3e
徕卡显微系统(上海)贸易有限公司孕激素受体抗体(Novocastra Leica Biosystems, NCL-ER-6F11)被用于被用于免疫印迹在人类样本上 (图 3e). Oncogene (2019) ncbi
小鼠 单克隆(16)
  • 免疫组化-石蜡切片; 小鼠; 1:400; 图 st13
  • 免疫组化-石蜡切片; 人类; 1:400; 图 st13
徕卡显微系统(上海)贸易有限公司孕激素受体抗体(Leica, NCL-PGR-312)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:400 (图 st13) 和 被用于免疫组化-石蜡切片在人类样本上浓度为1:400 (图 st13). J Toxicol Pathol (2017) ncbi
小鼠 单克隆(1A6)
  • 免疫组化-石蜡切片; 人类; 1:40; 图 6e
徕卡显微系统(上海)贸易有限公司孕激素受体抗体(Novocastra, 1A6)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:40 (图 6e). J Pathol (2017) ncbi
小鼠 单克隆(1A6)
  • 免疫组化-石蜡切片; 人类; 1:40; 图 4
徕卡显微系统(上海)贸易有限公司孕激素受体抗体(Novocastra, 1A6)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:40 (图 4). Taiwan J Obstet Gynecol (2016) ncbi
小鼠 单克隆(6F11)
  • 免疫沉淀; 人类; 图 5a
  • 免疫印迹; 人类; 1:1000; 图 4e
徕卡显微系统(上海)贸易有限公司孕激素受体抗体(Novacastra, NCL-ER-6F11)被用于被用于免疫沉淀在人类样本上 (图 5a) 和 被用于免疫印迹在人类样本上浓度为1:1000 (图 4e). Oncogene (2017) ncbi
小鼠 单克隆(6F11)
  • 免疫组化-石蜡切片; 大鼠; 图 1
徕卡显微系统(上海)贸易有限公司孕激素受体抗体(Leica Microsystems, 6F11)被用于被用于免疫组化-石蜡切片在大鼠样本上 (图 1). J Radiat Res (2017) ncbi
小鼠 单克隆(6F11)
  • 免疫组化-石蜡切片; 人类; 表 1
  • 免疫细胞化学; 人类; 图 S2G
徕卡显微系统(上海)贸易有限公司孕激素受体抗体(Leica, 6F11)被用于被用于免疫组化-石蜡切片在人类样本上 (表 1) 和 被用于免疫细胞化学在人类样本上 (图 S2G). Oncotarget (2016) ncbi
小鼠 单克隆
  • 免疫组化; 人类; 1:150; 图 2c
徕卡显微系统(上海)贸易有限公司孕激素受体抗体(Novocastra, NCL-L-PGR-312)被用于被用于免疫组化在人类样本上浓度为1:150 (图 2c). Kaohsiung J Med Sci (2016) ncbi
单克隆(16)
  • 免疫组化; 人类
徕卡显微系统(上海)贸易有限公司孕激素受体抗体(Novocastra, 16)被用于被用于免疫组化在人类样本上. Gut Liver (2016) ncbi
小鼠 单克隆(6F11)
  • 免疫组化; 人类
徕卡显微系统(上海)贸易有限公司孕激素受体抗体(Novocastra, 6F11)被用于被用于免疫组化在人类样本上. Gut Liver (2016) ncbi
小鼠 单克隆(6F11)
  • 免疫组化-石蜡切片; 人类; 1:35; 表 2
徕卡显微系统(上海)贸易有限公司孕激素受体抗体(Leica Biosystems, 6F11)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:35 (表 2). Hum Pathol (2016) ncbi
小鼠 单克隆(6F11)
  • 免疫组化; 人类; 1:35; 表 2
徕卡显微系统(上海)贸易有限公司孕激素受体抗体(Leica Microsystems, 6F11)被用于被用于免疫组化在人类样本上浓度为1:35 (表 2). Am J Surg Pathol (2016) ncbi
小鼠 单克隆(1A6)
  • 免疫组化-石蜡切片; 人类; 1:50; 图 1b
徕卡显微系统(上海)贸易有限公司孕激素受体抗体(Novocastra, 1A6)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:50 (图 1b). J Pathol (2016) ncbi
小鼠 单克隆(6F11)
  • 免疫组化-石蜡切片; 人类; 1:70; 图 1b
徕卡显微系统(上海)贸易有限公司孕激素受体抗体(Novocastra, 6F11)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:70 (图 1b). J Pathol (2016) ncbi
  • 免疫印迹; 人类; 1:10,000; 图 1b
徕卡显微系统(上海)贸易有限公司孕激素受体抗体(Novocastra, NCL-L-PGR-312/2)被用于被用于免疫印迹在人类样本上浓度为1:10,000 (图 1b). PLoS ONE (2015) ncbi
小鼠 单克隆(6F11)
  • 免疫印迹; 人类; 图 3
徕卡显微系统(上海)贸易有限公司孕激素受体抗体(Novocastra, 6F11)被用于被用于免疫印迹在人类样本上 (图 3). Oncotarget (2015) ncbi
单克隆(16)
  • 免疫印迹; 人类; 图 3
徕卡显微系统(上海)贸易有限公司孕激素受体抗体(Novocastra, 16)被用于被用于免疫印迹在人类样本上 (图 3). Oncotarget (2015) ncbi
单克隆(16)
  • 免疫组化; 人类
徕卡显微系统(上海)贸易有限公司孕激素受体抗体(Leica Biosystems, 16)被用于被用于免疫组化在人类样本上. Ecancermedicalscience (2015) ncbi
小鼠 单克隆(6F11)
  • 免疫组化-石蜡切片; 人类
徕卡显微系统(上海)贸易有限公司孕激素受体抗体(Leica, 6F11)被用于被用于免疫组化-石蜡切片在人类样本上. Appl Immunohistochem Mol Morphol (2016) ncbi
小鼠 单克隆(6F11)
  • 免疫组化-石蜡切片; 人类; 表 2
徕卡显微系统(上海)贸易有限公司孕激素受体抗体(Novocastra, 6F11)被用于被用于免疫组化-石蜡切片在人类样本上 (表 2). Int J Clin Exp Pathol (2015) ncbi
小鼠 单克隆(16)
  • 免疫组化; 人类; 1:1000; 图 s7
徕卡显微系统(上海)贸易有限公司孕激素受体抗体(Leica, NCL-PgR-AB)被用于被用于免疫组化在人类样本上浓度为1:1000 (图 s7). Nature (2015) ncbi
小鼠 单克隆
  • 免疫组化; 人类; 1:400
徕卡显微系统(上海)贸易有限公司孕激素受体抗体(Novocastra, NCL-L-PGR-312)被用于被用于免疫组化在人类样本上浓度为1:400. Pathol Oncol Res (2015) ncbi
小鼠 单克隆(SAN27)
  • 免疫组化-石蜡切片; 人类
徕卡显微系统(上海)贸易有限公司孕激素受体抗体(Novocastra, NCL-PGR-B)被用于被用于免疫组化-石蜡切片在人类样本上. Breast Cancer Res Treat (2015) ncbi
小鼠 单克隆(16)
  • 免疫组化-石蜡切片; 人类
徕卡显微系统(上海)贸易有限公司孕激素受体抗体(Novocastra, NCL-PGR-312)被用于被用于免疫组化-石蜡切片在人类样本上. Breast Cancer Res Treat (2015) ncbi
单克隆(16)
  • 免疫组化-石蜡切片; 人类; 1:100
徕卡显微系统(上海)贸易有限公司孕激素受体抗体(Novocastra, 16)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100. Hum Pathol (2015) ncbi
小鼠 单克隆(6F11)
  • 免疫组化-石蜡切片; 人类; 1:50
徕卡显微系统(上海)贸易有限公司孕激素受体抗体(Novocastra Lab, 6F11)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:50. Hum Pathol (2015) ncbi
小鼠 单克隆(6F11)
  • 免疫组化-石蜡切片; 猫; 1:40
徕卡显微系统(上海)贸易有限公司孕激素受体抗体(Novocastra, 6F11)被用于被用于免疫组化-石蜡切片在猫样本上浓度为1:40. J Comp Pathol (2015) ncbi
小鼠 单克隆(16)
  • 免疫组化-石蜡切片; 人类
徕卡显微系统(上海)贸易有限公司孕激素受体抗体(Novocastra, NCL-PGR-312)被用于被用于免疫组化-石蜡切片在人类样本上. J Clin Pathol (2015) ncbi
小鼠 单克隆(6F11)
  • 免疫组化-石蜡切片; 人类
徕卡显微系统(上海)贸易有限公司孕激素受体抗体(Novocastra, NCL-ER-6F11)被用于被用于免疫组化-石蜡切片在人类样本上. J Clin Pathol (2015) ncbi
小鼠 单克隆(6F11)
  • 免疫组化-石蜡切片; 人类; 1:100
徕卡显微系统(上海)贸易有限公司孕激素受体抗体(Leica Biosystems, NCL-ER-6F11)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100. Int J Gynecol Pathol (2015) ncbi
小鼠 单克隆(6F11)
  • 免疫组化-石蜡切片; 小鼠; 1:100
徕卡显微系统(上海)贸易有限公司孕激素受体抗体(Novocastra, NCL-ER-6F11)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:100. PLoS ONE (2014) ncbi
小鼠 单克隆(6F11)
  • 免疫组化-石蜡切片; 人类; 1:100; 图 1b
徕卡显微系统(上海)贸易有限公司孕激素受体抗体(Novocastra, NCL-ER-6F11)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100 (图 1b). Asian J Androl (2015) ncbi
小鼠 单克隆(6F11)
  • 免疫组化-冰冻切片; 人类; 1:100
徕卡显微系统(上海)贸易有限公司孕激素受体抗体(Leica Microsystems, 6F11)被用于被用于免疫组化-冰冻切片在人类样本上浓度为1:100. Hum Reprod (2014) ncbi
小鼠 单克隆(6F11)
  • 免疫组化; 人类
徕卡显微系统(上海)贸易有限公司孕激素受体抗体(Novocastra, 6F11)被用于被用于免疫组化在人类样本上. PLoS ONE (2014) ncbi
小鼠 单克隆(1A6)
  • 免疫组化; 人类
徕卡显微系统(上海)贸易有限公司孕激素受体抗体(Novocastra, 1A6)被用于被用于免疫组化在人类样本上. PLoS ONE (2014) ncbi
小鼠 单克隆(6F11)
  • 免疫组化-石蜡切片; 小鼠; 1:100
徕卡显微系统(上海)贸易有限公司孕激素受体抗体(Novocastra, NCL-ER-6 F11)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:100. Breast Cancer Res (2014) ncbi
小鼠 单克隆(1A6)
  • 免疫组化; 人类
徕卡显微系统(上海)贸易有限公司孕激素受体抗体(Novocastra Laboratories, 1A6)被用于被用于免疫组化在人类样本上. Head Neck (2014) ncbi
单克隆
  • 免疫组化-石蜡切片; 人类
徕卡显微系统(上海)贸易有限公司孕激素受体抗体(Leica Microsystems, RTU-PGR-312)被用于被用于免疫组化-石蜡切片在人类样本上. Eur J Cancer (2013) ncbi
小鼠 单克隆(6F11)
  • 免疫组化-石蜡切片; 人类; 1:40; 图 1
徕卡显微系统(上海)贸易有限公司孕激素受体抗体(Novocastra, 6F11)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:40 (图 1). Br J Cancer (2012) ncbi
单克隆(16)
  • 免疫组化-石蜡切片; 人类; 1:200; 图 1
徕卡显微系统(上海)贸易有限公司孕激素受体抗体(Novocastra, 16)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:200 (图 1). Br J Cancer (2012) ncbi
小鼠 单克隆(1A6)
  • 免疫组化; 人类; 1:200; 图 4
徕卡显微系统(上海)贸易有限公司孕激素受体抗体(Leica, 1A6)被用于被用于免疫组化在人类样本上浓度为1:200 (图 4). PLoS ONE (2012) ncbi
文章列表
  1. Malanga D, Laudanna C, Mirante T, Colelli F, Migliozzi S, Zoppoli P, et al. The AKT1E17K Allele Promotes Breast Cancer in Mice. Cancers (Basel). 2022;14: pubmed 出版商
  2. Smith K, Dinh D, Akison L, Nicholls M, Dunning K, Morimoto A, et al. Intraovarian, Isoform-Specific Transcriptional Roles of Progesterone Receptor in Ovulation. Cells. 2022;11: pubmed 出版商
  3. Naruse M, Ishigamori R, Imai T. The Unique Genetic and Histological Characteristics of DMBA-Induced Mammary Tumors in an Organoid-Based Carcinogenesis Model. Front Genet. 2021;12:765131 pubmed 出版商
  4. Hsu C, Hsu L, Hsueh Y, Lin C, Chang H, Hsu C. Ovarian Folliculogenesis and Uterine Endometrial Receptivity after Intermittent Vaginal Injection of Recombinant Human Follicle-Stimulating Hormone in Infertile Women Receiving In Vitro Fertilization and in Immature Female Rats. Int J Mol Sci. 2021;22: pubmed 出版商
  5. Machida Y, Imai T. Different properties of mammary carcinogenesis induced by two chemical carcinogens, DMBA and PhIP, in heterozygous BALB/c Trp53 knockout mice. Oncol Lett. 2021;22:738 pubmed 出版商
  6. Aleksandrovych V, Wrona A, Bereza T, Pitynski K, Gil K. Oviductal Telocytes in Patients with Uterine Myoma. Biomedicines. 2021;9: pubmed 出版商
  7. Noreldin A, Gewaily M, Saadeldin I, Abomughaid M, Khafaga A, Elewa Y. Osteoblast-activating peptide exhibits a specific distribution pattern in mouse ovary and may regulate ovarian steroids and local calcium levels. Am J Transl Res. 2021;13:5796-5814 pubmed
  8. Laine A, Nagelli S, Farrington C, Butt U, Cvrljevic A, Vainonen J, et al. CIP2A Interacts with TopBP1 and Drives Basal-Like Breast Cancer Tumorigenesis. Cancer Res. 2021;81:4319-4331 pubmed 出版商
  9. Ma X, Zhao T, Yan H, Guo K, Liu Z, Wei L, et al. Fatostatin reverses progesterone resistance by inhibiting the SREBP1-NF-κB pathway in endometrial carcinoma. Cell Death Dis. 2021;12:544 pubmed 出版商
  10. Guzeloglu Kayisli O, Semerci N, Guo X, Larsen K, Ozmen A, Arlier S, et al. Decidual cell FKBP51-progesterone receptor binding mediates maternal stress-induced preterm birth. Proc Natl Acad Sci U S A. 2021;118: pubmed 出版商
  11. Duijndam B, Goudriaan A, van den Hoorn T, van der Stel W, Le Dévédec S, Bouwman P, et al. Physiologically Relevant Estrogen Receptor Alpha Pathway Reporters for Single-Cell Imaging-Based Carcinogenic Hazard Assessment of Estrogenic Compounds. Toxicol Sci. 2021;181:187-198 pubmed 出版商
  12. Li W, Gu X, Liu C, Shi Y, Wang P, Zhang N, et al. A synergetic effect of BARD1 mutations on tumorigenesis. Nat Commun. 2021;12:1243 pubmed 出版商
  13. Yokomizo R, Fujiki Y, Kishigami H, Kishi H, Kiyono T, Nakayama S, et al. Endometrial regeneration with endometrial epithelium: homologous orchestration with endometrial stroma as a feeder. Stem Cell Res Ther. 2021;12:130 pubmed 出版商
  14. Burgess S, Gibbs H, Toomes C, Coletta P, Bell S. The Role of Csmd1 during Mammary Gland Development. Genes (Basel). 2021;12: pubmed 出版商
  15. Erber R, Meyer J, Taubert H, Fasching P, Wach S, Haberle L, et al. PIWI-Like 1 and PIWI-Like 2 Expression in Breast Cancer. Cancers (Basel). 2020;12: pubmed 出版商
  16. Kumar M, Salem K, Jeffery J, Yan Y, Mahajan A, Fowler A. Longitudinal Molecular Imaging of Progesterone Receptor Reveals Early Differential Response to Endocrine Therapy in Breast Cancer with an Activating ESR1 Mutation. J Nucl Med. 2021;62:500-506 pubmed 出版商
  17. Christgen M, Bartels S, van Luttikhuizen J, Bublitz J, Rieger L, Christgen H, et al. E-cadherin to P-cadherin switching in lobular breast cancer with tubular elements. Mod Pathol. 2020;33:2483-2498 pubmed 出版商
  18. Park C, Lin P, Zhou S, Barakat R, Bashir S, Choi J, et al. Progesterone Receptor Serves the Ovary as a Trigger of Ovulation and a Terminator of Inflammation. Cell Rep. 2020;31:107496 pubmed 出版商
  19. Kim M, Chung Y, Kim H, Woo J, Ahn S, Park S. Immune microenvironment in ductal carcinoma in situ: a comparison with invasive carcinoma of the breast. Breast Cancer Res. 2020;22:32 pubmed 出版商
  20. Lozzi B, Huang T, Sardar D, Huang A, Deneen B. Regionally Distinct Astrocytes Display Unique Transcription Factor Profiles in the Adult Brain. Front Neurosci. 2020;14:61 pubmed 出版商
  21. Kluz P, Kolb R, Xie Q, Borcherding N, Liu Q, Luo Y, et al. Cancer cell-intrinsic function of CD177 in attenuating β-catenin signaling. Oncogene. 2020;39:2877-2889 pubmed 出版商
  22. Granados Soler J, Bornemann Kolatzki K, Beck J, Brenig B, Schütz E, Betz D, et al. Analysis of Copy-Number Variations and Feline Mammary Carcinoma Survival. Sci Rep. 2020;10:1003 pubmed 出版商
  23. Davaadelger B, Choi M, Singhal H, Clare S, Khan S, Kim J. BRCA1 mutation influences progesterone response in human benign mammary organoids. Breast Cancer Res. 2019;21:124 pubmed 出版商
  24. Jiang S, Zhang M, Zhang Y, Zhou W, Zhu T, Ruan Q, et al. WNT5B governs the phenotype of basal-like breast cancer by activating WNT signaling. Cell Commun Signal. 2019;17:109 pubmed 出版商
  25. Li B, Zhang Q, Sun J, Lai D. Human amniotic epithelial cells improve fertility in an intrauterine adhesion mouse model. Stem Cell Res Ther. 2019;10:257 pubmed 出版商
  26. Haider S, Gamperl M, Burkard T, Kunihs V, Kaindl U, Junttila S, et al. Estrogen Signaling Drives Ciliogenesis in Human Endometrial Organoids. Endocrinology. 2019;160:2282-2297 pubmed 出版商
  27. Zhang L, Feng Q, Wang Z, Liu P, Cui S. Progesterone receptor antagonist provides palliative effects for uterine leiomyoma through a Bcl-2/Beclin1-dependent mechanism. Biosci Rep. 2019;39: pubmed 出版商
  28. Wagner J, Rapsomaniki M, Chevrier S, Anzeneder T, Langwieder C, Dykgers A, et al. A Single-Cell Atlas of the Tumor and Immune Ecosystem of Human Breast Cancer. Cell. 2019;177:1330-1345.e18 pubmed 出版商
  29. Ding L, Shunkwiler L, Harper N, Zhao Y, Hinohara K, Huh S, et al. Deletion of Cdkn1b in ACI rats leads to increased proliferation and pregnancy-associated changes in the mammary gland due to perturbed systemic endocrine environment. PLoS Genet. 2019;15:e1008002 pubmed 出版商
  30. Sompuram S, Vani K, Schaedle A, Balasubramanian A, Bogen S. Selecting an Optimal Positive IHC Control for Verifying Antigen Retrieval. J Histochem Cytochem. 2019;67:275-289 pubmed 出版商
  31. Domenici G, Aurrekoetxea Rodríguez I, Simões B, Rábano M, Lee S, Millán J, et al. A Sox2-Sox9 signalling axis maintains human breast luminal progenitor and breast cancer stem cells. Oncogene. 2019;38:3151-3169 pubmed 出版商
  32. Ng P, Li J, Jeong K, Shao S, Chen H, Tsang Y, et al. Systematic Functional Annotation of Somatic Mutations in Cancer. Cancer Cell. 2018;33:450-462.e10 pubmed 出版商
  33. Browne A, Charmsaz S, Varešlija D, Fagan A, Cosgrove N, Cocchiglia S, et al. Network analysis of SRC-1 reveals a novel transcription factor hub which regulates endocrine resistant breast cancer. Oncogene. 2018;37:2008-2021 pubmed 出版商
  34. Sachs N, de Ligt J, Kopper O, Gogola E, Bounova G, Weeber F, et al. A Living Biobank of Breast Cancer Organoids Captures Disease Heterogeneity. Cell. 2018;172:373-386.e10 pubmed 出版商
  35. Carvajal Hausdorf D, Mani N, Velcheti V, Schalper K, Rimm D. Objective measurement and clinical significance of IDO1 protein in hormone receptor-positive breast cancer. J Immunother Cancer. 2017;5:81 pubmed 出版商
  36. Fettig L, McGinn O, Finlay Schultz J, LaBarbera D, Nordeen S, Sartorius C. Cross talk between progesterone receptors and retinoic acid receptors in regulation of cytokeratin 5-positive breast cancer cells. Oncogene. 2017;36:6074-6084 pubmed 出版商
  37. Ran H, Kong S, Zhang S, Cheng J, Zhou C, He B, et al. Nuclear Shp2 directs normal embryo implantation via facilitating the ERα tyrosine phosphorylation by the Src kinase. Proc Natl Acad Sci U S A. 2017;114:4816-4821 pubmed 出版商
  38. Wu D, Kimura F, Zheng L, Ishida M, Niwa Y, Hirata K, et al. Chronic endometritis modifies decidualization in human endometrial stromal cells. Reprod Biol Endocrinol. 2017;15:16 pubmed 出版商
  39. Furukawa S, Nagaike M, Ozaki K. Databases for technical aspects of immunohistochemistry. J Toxicol Pathol. 2017;30:79-107 pubmed 出版商
  40. Méndez López L, Zavala Pompa A, Cortés Gutiérrez E, Cerda Flores R, Dávila Rodríguez M. Leptin receptor expression during the progression of endometrial carcinoma is correlated with estrogen and progesterone receptors. Arch Med Sci. 2017;13:228-235 pubmed 出版商
  41. Barcus C, O Leary K, Brockman J, Rugowski D, Liu Y, Garcia N, et al. Elevated collagen-I augments tumor progressive signals, intravasation and metastasis of prolactin-induced estrogen receptor alpha positive mammary tumor cells. Breast Cancer Res. 2017;19:9 pubmed 出版商
  42. Winder A, Maniar K, Wei J, Liu D, Scholtens D, Lurain J, et al. Synuclein-γ in uterine serous carcinoma impacts survival: An NRG Oncology/Gynecologic Oncology Group study. Cancer. 2017;123:1144-1155 pubmed 出版商
  43. Corda G, Sala G, Lattanzio R, Iezzi M, Sallese M, Fragassi G, et al. Functional and prognostic significance of the genomic amplification of frizzled 6 (FZD6) in breast cancer. J Pathol. 2017;241:350-361 pubmed 出版商
  44. Piasecka D, Kitowska K, Czaplinska D, Mieczkowski K, Mieszkowska M, Turczyk L, et al. Fibroblast growth factor signalling induces loss of progesterone receptor in breast cancer cells. Oncotarget. 2016;7:86011-86025 pubmed 出版商
  45. Sheen M, Marotti J, Allegrezza M, Rutkowski M, Conejo Garcia J, Fiering S. Constitutively activated PI3K accelerates tumor initiation and modifies histopathology of breast cancer. Oncogenesis. 2016;5:e267 pubmed 出版商
  46. Davis F, Lloyd Lewis B, Harris O, Kozar S, Winton D, Muresan L, et al. Single-cell lineage tracing in the mammary gland reveals stochastic clonal dispersion of stem/progenitor cell progeny. Nat Commun. 2016;7:13053 pubmed 出版商
  47. Loverro G, Resta L, Dellino M, Edoardo D, Cascarano M, Loverro M, et al. Uterine and ovarian changes during testosterone administration in young female-to-male transsexuals. Taiwan J Obstet Gynecol. 2016;55:686-691 pubmed 出版商
  48. Harrod A, Fulton J, Nguyen V, Periyasamy M, Ramos Garcia L, Lai C, et al. Genomic modelling of the ESR1 Y537S mutation for evaluating function and new therapeutic approaches for metastatic breast cancer. Oncogene. 2017;36:2286-2296 pubmed 出版商
  49. Showler K, Nishimura M, Daino K, Imaoka T, Nishimura Y, Morioka T, et al. Analysis of genes involved in the PI3K/Akt pathway in radiation- and MNU-induced rat mammary carcinomas. J Radiat Res. 2017;58:183-194 pubmed 出版商
  50. Nielsen T, Jensen M, Burugu S, Gao D, Jørgensen C, Balslev E, et al. High-Risk Premenopausal Luminal A Breast Cancer Patients Derive no Benefit from Adjuvant Cyclophosphamide-based Chemotherapy: Results from the DBCG77B Clinical Trial. Clin Cancer Res. 2017;23:946-953 pubmed 出版商
  51. Di Franco S, Turdo A, Benfante A, Colorito M, Gaggianesi M, Apuzzo T, et al. ?Np63 drives metastasis in breast cancer cells via PI3K/CD44v6 axis. Oncotarget. 2016;7:54157-54173 pubmed 出版商
  52. Ladd B, Mazzola A, Bihani T, Lai Z, BRADFORD J, Collins M, et al. Effective combination therapies in preclinical endocrine resistant breast cancer models harboring ER mutations. Oncotarget. 2016;7:54120-54136 pubmed 出版商
  53. Ugras N, Yerci O, Coşkun S, Ocakoglu G, Sarkut P, Dündar H. Retrospective analysis of clinicopathological features of solid pseudopapillary neoplasm of the pancreas. Kaohsiung J Med Sci. 2016;32:356-61 pubmed 出版商
  54. Liu Y, Wang K, Xing H, Zhai X, Wang L, Wang W. Attempt towards a novel classification of triple-negative breast cancer using immunohistochemical markers. Oncol Lett. 2016;12:1240-1256 pubmed
  55. Choi Y, Kim H, Lim E, Park M, Yoon J, Kim Y, et al. Integrative Analyses of Uterine Transcriptome and MicroRNAome Reveal Compromised LIF-STAT3 Signaling and Progesterone Response in the Endometrium of Patients with Recurrent/Repeated Implantation Failure (RIF). PLoS ONE. 2016;11:e0157696 pubmed 出版商
  56. Sigl V, Owusu Boaitey K, Joshi P, Kavirayani A, Wirnsberger G, Novatchkova M, et al. RANKL/RANK control Brca1 mutation- . Cell Res. 2016;26:761-74 pubmed 出版商
  57. Leo F, Bartels S, Mägel L, Framke T, Büsche G, Jonigk D, et al. Prognostic factors in the myoepithelial-like spindle cell type of metaplastic breast cancer. Virchows Arch. 2016;469:191-201 pubmed 出版商
  58. Chung M, Lee J, Kim S, Suh Y, Choi H. Simple Prediction Model of Axillary Lymph Node Positivity After Analyzing Molecular and Clinical Factors in Early Breast Cancer. Medicine (Baltimore). 2016;95:e3689 pubmed 出版商
  59. Song M, Park Y, Song H, Park S, Ahn J, Choi K, et al. Prognosis of Pregnancy-Associated Gastric Cancer: An Age-, Sex-, and Stage-Matched Case-Control Study. Gut Liver. 2016;10:731-8 pubmed 出版商
  60. Liang L, Huang H, Dadhania V, Zhang J, Zhang M, Liu J. Renal cell carcinoma metastatic to the ovary or fallopian tube: a clinicopathological study of 9 cases. Hum Pathol. 2016;51:96-102 pubmed 出版商
  61. Ogorevc J, Dovc P. Expression of estrogen receptor 1 and progesterone receptor in primary goat mammary epithelial cells. Anim Sci J. 2016;87:1464-1471 pubmed 出版商
  62. Sugihara T, Nakagawa S, Sasajima Y, Ichinose T, Hiraike H, Kondo F, et al. Loss of the cell polarity determinant human Discs-large is a novel molecular marker of nodal involvement and poor prognosis in endometrial cancer. Br J Cancer. 2016;114:1012-8 pubmed 出版商
  63. Carbognin L, Sperduti I, Brunelli M, Marcolini L, Nortilli R, Pilotto S, et al. Subpopulation Treatment Effect Pattern Plot (STEPP) analysis of Ki67 assay according to histology: prognostic relevance for resected early stage 'pure' and 'mixed' lobular breast cancer. J Exp Clin Cancer Res. 2016;35:50 pubmed 出版商
  64. Al Harras M, Houssen M, Shaker M, Farag K, Farouk O, Monir R, et al. Polymorphisms of glutathione S-transferase ? 1 and toll-like receptors 2 and 9: Association with breast cancer susceptibility. Oncol Lett. 2016;11:2182-2188 pubmed
  65. Liang L, Olar A, Niu N, Jiang Y, Cheng W, Bian X, et al. Primary Glial and Neuronal Tumors of the Ovary or Peritoneum: A Clinicopathologic Study of 11 Cases. Am J Surg Pathol. 2016;40:847-56 pubmed 出版商
  66. Koussounadis A, Langdon S, Um I, Kay C, Francis K, Harrison D, et al. Dynamic modulation of phosphoprotein expression in ovarian cancer xenograft models. BMC Cancer. 2016;16:205 pubmed 出版商
  67. Matsumoto H, Thike A, Li H, Yeong J, Koo S, Dent R, et al. Increased CD4 and CD8-positive T cell infiltrate signifies good prognosis in a subset of triple-negative breast cancer. Breast Cancer Res Treat. 2016;156:237-47 pubmed 出版商
  68. Alkner S, Bendahl P, Ehinger A, Lövgren K, Rydén L, Fernö M. Prior Adjuvant Tamoxifen Treatment in Breast Cancer Is Linked to Increased AIB1 and HER2 Expression in Metachronous Contralateral Breast Cancer. PLoS ONE. 2016;11:e0150977 pubmed 出版商
  69. Luque R, Villa Osaba A, L López F, Pozo Salas A, Sánchez Sánchez R, Ortega Salas R, et al. Lack of cortistatin or somatostatin differentially influences DMBA-induced mammary gland tumorigenesis in mice in an obesity-dependent mode. Breast Cancer Res. 2016;18:29 pubmed 出版商
  70. Cammas A, Lacroix Triki M, Pierredon S, Le Bras M, Iacovoni J, Teulade Fichou M, et al. hnRNP A1-mediated translational regulation of the G quadruplex-containing RON receptor tyrosine kinase mRNA linked to tumor progression. Oncotarget. 2016;7:16793-805 pubmed 出版商
  71. Soares M, Ribeiro R, Najmudin S, Gameiro A, Rodrigues R, Cardoso F, et al. Serum HER2 levels are increased in cats with mammary carcinomas and predict tissue HER2 status. Oncotarget. 2016;7:17314-26 pubmed 出版商
  72. Kavlashvili T, Jia Y, Dai D, Meng X, Thiel K, Leslie K, et al. Inverse Relationship between Progesterone Receptor and Myc in Endometrial Cancer. PLoS ONE. 2016;11:e0148912 pubmed 出版商
  73. Su R, Strug M, Jeong J, Miele L, Fazleabas A. Aberrant activation of canonical Notch1 signaling in the mouse uterus decreases progesterone receptor by hypermethylation and leads to infertility. Proc Natl Acad Sci U S A. 2016;113:2300-5 pubmed 出版商
  74. Nalwoga H, Ahmed L, Arnes J, Wabinga H, Akslen L. Strong Expression of Hypoxia-Inducible Factor-1α (HIF-1α) Is Associated with Axl Expression and Features of Aggressive Tumors in African Breast Cancer. PLoS ONE. 2016;11:e0146823 pubmed 出版商
  75. Ke W, Chen C, Luo H, Tang J, Zhang Y, Gao W, et al. Histone Deacetylase 1 Regulates the Expression of Progesterone Receptor A During Human Parturition by Occupying the Progesterone Receptor A Promoter. Reprod Sci. 2016;23:955-64 pubmed 出版商
  76. Chen X, Dong X, Gao H, Jiang Y, Jin Y, Chang Y, et al. Suppression of HSP27 increases the anti‑tumor effects of quercetin in human leukemia U937 cells. Mol Med Rep. 2016;13:689-96 pubmed 出版商
  77. El Gendi S, Mostafa M. Runx2 Expression as a Potential Prognostic Marker in Invasive Ductal Breast Carcinoma. Pathol Oncol Res. 2016;22:461-70 pubmed 出版商
  78. Hagberg Thulin M, Nilsson M, Thulin P, Céraline J, Ohlsson C, Damber J, et al. Osteoblasts promote castration-resistant prostate cancer by altering intratumoral steroidogenesis. Mol Cell Endocrinol. 2016;422:182-191 pubmed 出版商
  79. Fridriksdottir A, Kim J, Villadsen R, Klitgaard M, Hopkinson B, Petersen O, et al. Propagation of oestrogen receptor-positive and oestrogen-responsive normal human breast cells in culture. Nat Commun. 2015;6:8786 pubmed 出版商
  80. Aquino N, Araujo Lopes R, Batista I, Henriques P, Poletini M, Franci C, et al. Hypothalamic Effects of Tamoxifen on Oestrogen Regulation of Luteinising Hormone and Prolactin Secretion in Female Rats. J Neuroendocrinol. 2016;28: pubmed 出版商
  81. González Morán M. Immunohistochemical localization of progesterone receptor isoforms and estrogen receptor alpha in the chicken oviduct magnum during development. Acta Histochem. 2015;117:681-7 pubmed 出版商
  82. McCart Reed A, Kutasovic J, Vargas A, Jayanthan J, Al Murrani A, Reid L, et al. An epithelial to mesenchymal transition programme does not usually drive the phenotype of invasive lobular carcinomas. J Pathol. 2016;238:489-94 pubmed 出版商
  83. Kyathanahalli C, Organ K, Moreci R, Anamthathmakula P, Hassan S, Caritis S, et al. Uterine endoplasmic reticulum stress-unfolded protein response regulation of gestational length is caspase-3 and -7-dependent. Proc Natl Acad Sci U S A. 2015;112:14090-5 pubmed 出版商
  84. Soares M, Correia J, Peleteiro M, Ferreira F. St Gallen molecular subtypes in feline mammary carcinoma and paired metastases-disease progression and clinical implications from a 3-year follow-up study. Tumour Biol. 2016;37:4053-64 pubmed 出版商
  85. Esber N, Le Billan F, Resche Rigon M, Loosfelt H, Lombès M, Chabbert Buffet N. Ulipristal Acetate Inhibits Progesterone Receptor Isoform A-Mediated Human Breast Cancer Proliferation and BCl2-L1 Expression. PLoS ONE. 2015;10:e0140795 pubmed 出版商
  86. Ertoy Baydar D, Kosemehmetoglu K, Aydin O, Bridge J, Buyukeren B, Aki F. Primary sclerosing epithelioid fibrosarcoma of kidney with variant histomorphologic features: report of 2 cases and review of the literature. Diagn Pathol. 2015;10:186 pubmed 出版商
  87. Iriondo O, Rábano M, Domenici G, Carlevaris O, López Ruiz J, Zabalza I, et al. Distinct breast cancer stem/progenitor cell populations require either HIF1α or loss of PHD3 to expand under hypoxic conditions. Oncotarget. 2015;6:31721-39 pubmed 出版商
  88. Jung Y, Kim H, Koo J. Expression of Lipid Metabolism-Related Proteins in Metastatic Breast Cancer. PLoS ONE. 2015;10:e0137204 pubmed 出版商
  89. Coelho R, Calaça I, Celestrini D, Correia Carneiro A, Costa M, Zancan P, et al. Hexokinase and phosphofructokinase activity and intracellular distribution correlate with aggressiveness and invasiveness of human breast carcinoma. Oncotarget. 2015;6:29375-87 pubmed 出版商
  90. Gómez R, Ossa C, Montoya M, Echeverri C, Ángel G, Ascuntar J, et al. Impact of immunohistochemistry-based molecular subtype on chemosensitivity and survival in Hispanic breast cancer patients following neoadjuvant chemotherapy. Ecancermedicalscience. 2015;9:562 pubmed 出版商
  91. KapucuoÄŸlu N, Bozkurt K, BaÅŸpınar Å, Koçer M, EroÄŸlu H, Akdeniz R, et al. The clinicopathological and prognostic significance of CD24, CD44, CD133, ALDH1 expressions in invasive ductal carcinoma of the breast: CD44/CD24 expression in breast cancer. Pathol Res Pract. 2015;211:740-7 pubmed 出版商
  92. Kim H, Lee K, Park I, Chung Y, Im S, Noh D, et al. Expression of SIRT1 and apoptosis-related proteins is predictive for lymph node metastasis and disease-free survival in luminal A breast cancer. Virchows Arch. 2015;467:563-70 pubmed 出版商
  93. Koren S, Reavie L, Couto J, De Silva D, Stadler M, Roloff T, et al. PIK3CA(H1047R) induces multipotency and multi-lineage mammary tumours. Nature. 2015;525:114-8 pubmed 出版商
  94. Wang D, Pang Z, Clarke G, Nofech Mozes S, Liu K, Cheung A, et al. Ki-67 Membranous Staining: Biologically Relevant or an Artifact of Multiplexed Immunofluorescent Staining. Appl Immunohistochem Mol Morphol. 2016;24:447-52 pubmed 出版商
  95. Liew P, Hsu C, Liu W, Lee Y, Lee Y, Chen C. Prognostic and predictive values of Nrf2, Keap1, p16 and E-cadherin expression in ovarian epithelial carcinoma. Int J Clin Exp Pathol. 2015;8:5642-9 pubmed
  96. Mohammed H, Russell I, Stark R, Rueda O, Hickey T, Tarulli G, et al. Progesterone receptor modulates ERα action in breast cancer. Nature. 2015;523:313-7 pubmed 出版商
  97. Mundim F, Pasini F, Brentani M, Soares F, Nonogaki S, Waitzberg A. MYC is expressed in the stromal and epithelial cells of primary breast carcinoma and paired nodal metastases. Mol Clin Oncol. 2015;3:506-514 pubmed
  98. Cheung S, Boey Y, Koh V, Thike A, Lim J, Iqbal J, et al. Role of epithelial-mesenchymal transition markers in triple-negative breast cancer. Breast Cancer Res Treat. 2015;152:489-98 pubmed 出版商
  99. Forse C, Agarwal S, Pinnaduwage D, Gertler F, Condeelis J, Lin J, et al. Menacalc, a quantitative method of metastasis assessment, as a prognostic marker for axillary node-negative breast cancer. BMC Cancer. 2015;15:483 pubmed 出版商
  100. Gustbée E, Tryggvadottir H, Markkula A, Simonsson M, Nodin B, Jirström K, et al. Tumor-specific expression of HMG-CoA reductase in a population-based cohort of breast cancer patients. BMC Clin Pathol. 2015;15:8 pubmed 出版商
  101. Michaelidou K, Ardavanis A, Scorilas A. Clinical relevance of the deregulated kallikrein-related peptidase 8 mRNA expression in breast cancer: a novel independent indicator of disease-free survival. Breast Cancer Res Treat. 2015;152:323-36 pubmed 出版商
  102. Goodman C, Sato T, Peck A, Girondo M, Yang N, Liu C, et al. Steroid induction of therapy-resistant cytokeratin-5-positive cells in estrogen receptor-positive breast cancer through a BCL6-dependent mechanism. Oncogene. 2016;35:1373-85 pubmed 出版商
  103. Joshi P, Waterhouse P, Kannan N, Narala S, Fang H, Di Grappa M, et al. RANK Signaling Amplifies WNT-Responsive Mammary Progenitors through R-SPONDIN1. Stem Cell Reports. 2015;5:31-44 pubmed 出版商
  104. Koh V, Lim J, Thike A, Cheok P, Thu M, Tan V, et al. Characteristics and behaviour of screen-detected ductal carcinoma in situ of the breast: comparison with symptomatic patients. Breast Cancer Res Treat. 2015;152:293-304 pubmed 出版商
  105. Winczura P, SosiÅ„ska Mielcarek K, Duchnowska R, Badzio A, Lakomy J, Majewska H, et al. Immunohistochemical Predictors of Bone Metastases in Breast Cancer Patients. Pathol Oncol Res. 2015;21:1229-36 pubmed 出版商
  106. de Deus Moura R, Carvalho F, Bacchi C. Breast cancer in very young women: Clinicopathological study of 149 patients ≤25 years old. Breast. 2015;24:461-7 pubmed 出版商
  107. Nwafor C, Keshinro S. Pattern of hormone receptors and human epidermal growth factor receptor 2 status in sub-Saharan breast cancer cases: Private practice experience. Niger J Clin Pract. 2015;18:553-8 pubmed 出版商
  108. Mote P, Gompel A, Howe C, Hilton H, Sestak I, Cuzick J, et al. Progesterone receptor A predominance is a discriminator of benefit from endocrine therapy in the ATAC trial. Breast Cancer Res Treat. 2015;151:309-18 pubmed 出版商
  109. Miracco C, Toscano M, Butorano M, Baldino G, Tacchini D, Barone A, et al. Unusual clear cell, lymphoplasmacyte-rich, dural-based tumor with divergent differentiation: a tricky case mimicking a meningioma. Hum Pathol. 2015;46:1050-6 pubmed 出版商
  110. Nakada S, Minato H, Takegami T, Kurose N, Ikeda H, Kobayashi M, et al. NAB2-STAT6 fusion gene analysis in two cases of meningeal solitary fibrous tumor/hemangiopericytoma with late distant metastases. Brain Tumor Pathol. 2015;32:268-74 pubmed 出版商
  111. Falkenberg N, Anastasov N, Schaub A, Radulovic V, Schmitt M, Magdolen V, et al. Secreted uPAR isoform 2 (uPAR7b) is a novel direct target of miR-221. Oncotarget. 2015;6:8103-14 pubmed
  112. Geels Y, van der Putten L, van Tilborg A, Lurkin I, Zwarthoff E, Pijnenborg J, et al. Immunohistochemical and genetic profiles of endometrioid endometrial carcinoma arising from atrophic endometrium. Gynecol Oncol. 2015;137:245-51 pubmed 出版商
  113. Eom K, Jang M, Park S, Kang E, Kim S, Kim J, et al. The Expression of Carbonic Anhydrase (CA) IX/XII and Lymph Node Metastasis in Early Breast Cancer. Cancer Res Treat. 2016;48:125-32 pubmed 出版商
  114. Quiroga Garza G, Lee J, El Naggar A, Black J, Amrikachi M, Zhai Q, et al. Sclerosing mucoepidermoid carcinoma with eosinophilia of the thyroid: more aggressive than previously reported. Hum Pathol. 2015;46:725-31 pubmed 出版商
  115. Rusz O, Vörös A, Varga Z, Kelemen G, Uhercsák G, Nikolényi A, et al. One-Year Neoadjuvant Endocrine Therapy in Breast Cancer. Pathol Oncol Res. 2015;21:977-84 pubmed 出版商
  116. Kim S, Lee Y, Koo J. Differential expression of lipid metabolism-related proteins in different breast cancer subtypes. PLoS ONE. 2015;10:e0119473 pubmed 出版商
  117. Oon M, Thike A, Tan S, Tan P. Cancer stem cell and epithelial-mesenchymal transition markers predict worse outcome in metaplastic carcinoma of the breast. Breast Cancer Res Treat. 2015;150:31-41 pubmed 出版商
  118. Simons M, Nagtegaal I, Overbeek L, Flucke U, Massuger L, Bulten J. A patient with a noninvasive mucinous ovarian borderline tumor presenting with late pleural metastases. Int J Gynecol Pathol. 2015;34:143-50 pubmed 出版商
  119. Muscatello L, Sarli G, Beha G, Asproni P, Millanta F, Poli A, et al. Validation of tissue microarray for molecular profiling of canine and feline mammary tumours. J Comp Pathol. 2015;152:153-60 pubmed 出版商
  120. Argon A, Åžener A, ZekioÄŸlu O, Kapkaç M, Özdemir N. The effect of freezing on the immunoprofile of breast carcinoma cells. Balkan Med J. 2014;31:335-9 pubmed 出版商
  121. Park S, Kim H, Koo J. Differential expression of cancer-associated fibroblast-related proteins according to molecular subtype and stromal histology in breast cancer. Breast Cancer Res Treat. 2015;149:727-41 pubmed 出版商
  122. Hole S, Pedersen A, Hansen S, Lundqvist J, Yde C, Lykkesfeldt A. New cell culture model for aromatase inhibitor-resistant breast cancer shows sensitivity to fulvestrant treatment and cross-resistance between letrozole and exemestane. Int J Oncol. 2015;46:1481-90 pubmed 出版商
  123. Rajaram R, Buric D, Caikovski M, Ayyanan A, Rougemont J, Shan J, et al. Progesterone and Wnt4 control mammary stem cells via myoepithelial crosstalk. EMBO J. 2015;34:641-52 pubmed 出版商
  124. Tökés A, Szász A, Geszti F, Lukács L, Kenessey I, Turányi E, et al. Expression of proliferation markers Ki67, cyclin A, geminin and aurora-kinase A in primary breast carcinomas and corresponding distant metastases. J Clin Pathol. 2015;68:274-82 pubmed 出版商
  125. Kim G, Lee J, Choi Y, Lee K, Lee J, Nam J, et al. Expression of matrix metalloproteinases and their inhibitors in different immunohistochemical-based molecular subtypes of breast cancer. BMC Cancer. 2014;14:959 pubmed 出版商
  126. Liu J, Yu Y, Sun J, He S, Wang X, Yin J, et al. Clinicopathologic characteristics and prognosis of primary squamous cell carcinoma of the breast. Breast Cancer Res Treat. 2015;149:133-40 pubmed 出版商
  127. Buell Gutbrod R, Cavallo A, Lee N, Montag A, Gwin K. Heart and Neural Crest Derivatives Expressed Transcript 2 (HAND2): a novel biomarker for the identification of atypical hyperplasia and Type I endometrial carcinoma. Int J Gynecol Pathol. 2015;34:65-73 pubmed 出版商
  128. Tamega A, Miot H, Moço N, Silva M, Marques M, Miot L. Gene and protein expression of oestrogen-β and progesterone receptors in facial melasma and adjacent healthy skin in women. Int J Cosmet Sci. 2015;37:222-8 pubmed 出版商
  129. Panis C, Pizzatti L, Corrêa S, Binato R, Lemos G, Herrera A, et al. The positive is inside the negative: HER2-negative tumors can express the HER2 intracellular domain and present a HER2-positive phenotype. Cancer Lett. 2015;357:186-95 pubmed 出版商
  130. Kunasegaran K, Ho V, Chang T, De Silva D, Bakker M, Christoffels V, et al. Transcriptional repressor Tbx3 is required for the hormone-sensing cell lineage in mammary epithelium. PLoS ONE. 2014;9:e110191 pubmed 出版商
  131. Nguyen D, Ouyang H, Mao J, Hlatky L, Barcellos Hoff M. Distinct luminal-type mammary carcinomas arise from orthotopic Trp53-null mammary transplantation of juvenile versus adult mice. Cancer Res. 2014;74:7149-58 pubmed 出版商
  132. Baccelli I, Stenzinger A, Vogel V, Pfitzner B, Klein C, Wallwiener M, et al. Co-expression of MET and CD47 is a novel prognosticator for survival of luminal breast cancer patients. Oncotarget. 2014;5:8147-60 pubmed
  133. Megas G, Chrisofos M, Anastasiou I, Tsitlidou A, Choreftaki T, Deliveliotis C. Estrogen receptor (α and β) but not androgen receptor expression is correlated with recurrence, progression and survival in post prostatectomy T3N0M0 locally advanced prostate cancer in an urban Greek population. Asian J Androl. 2015;17:98-105 pubmed 出版商
  134. Kuroda N, Fujishima N, Hayes M, Moritani S, Ichihara S. Encapsulated papillary carcinoma, apocrine type, of the breast. Malays J Pathol. 2014;36:139-43 pubmed
  135. Carvalho F, Bacchi L, Pincerato K, van de Rijn M, Bacchi C. Geographic differences in the distribution of molecular subtypes of breast cancer in Brazil. BMC Womens Health. 2014;14:102 pubmed 出版商
  136. Cha Y, Han S, Seol H, Oh D, Im S, Bang Y, et al. Immunohistochemical features associated with sensitivity to lapatinib-plus-capecitabine and resistance to trastuzumab in HER2-positive breast cancer. Anticancer Res. 2014;34:4275-80 pubmed
  137. Mingels M, Masadah R, Geels Y, Otte Holler I, de Kievit I, van der Laak J, et al. High prevalence of atypical hyperplasia in the endometrium of patients with epithelial ovarian cancer. Am J Clin Pathol. 2014;142:213-21 pubmed 出版商
  138. Fujiwara S, Hung M, Yamamoto Ibusuk C, Yamamoto Y, Yamamoto S, Tomiguchi M, et al. The localization of HER4 intracellular domain and expression of its alternately-spliced isoforms have prognostic significance in ER+ HER2- breast cancer. Oncotarget. 2014;5:3919-30 pubmed
  139. Syed B, Green A, Nolan C, Morgan D, Ellis I, Cheung K. Biological characteristics and clinical outcome of triple negative primary breast cancer in older women - comparison with their younger counterparts. PLoS ONE. 2014;9:e100573 pubmed 出版商
  140. Ulrich D, Tan K, Deane J, Schwab K, Cheong A, Rosamilia A, et al. Mesenchymal stem/stromal cells in post-menopausal endometrium. Hum Reprod. 2014;29:1895-905 pubmed 出版商
  141. Chen F, Li A, Gao S, Hollern D, Williams M, Liu F, et al. Tip30 controls differentiation of murine mammary luminal progenitor to estrogen receptor-positive luminal cell through regulating FoxA1 expression. Cell Death Dis. 2014;5:e1242 pubmed 出版商
  142. van der Post R, Bult P, Vogelaar I, Ligtenberg M, Hoogerbrugge N, van Krieken J. HNF4A immunohistochemistry facilitates distinction between primary and metastatic breast and gastric carcinoma. Virchows Arch. 2014;464:673-9 pubmed 出版商
  143. Balk Møller E, Kim J, Hopkinson B, Timmermans Wielenga V, Petersen O, Villadsen R. A marker of endocrine receptor-positive cells, CEACAM6, is shared by two major classes of breast cancer: luminal and HER2-enriched. Am J Pathol. 2014;184:1198-208 pubmed 出版商
  144. Mountzios G, Aivazi D, Kostopoulos I, Kourea H, Kouvatseas G, Timotheadou E, et al. Differential expression of the insulin-like growth factor receptor among early breast cancer subtypes. PLoS ONE. 2014;9:e91407 pubmed 出版商
  145. Melchor L, Molyneux G, Mackay A, Magnay F, Atienza M, Kendrick H, et al. Identification of cellular and genetic drivers of breast cancer heterogeneity in genetically engineered mouse tumour models. J Pathol. 2014;233:124-37 pubmed 出版商
  146. Liu Y, Nenutil R, Appleyard M, Murray K, Boylan M, Thompson A, et al. Lack of correlation of stem cell markers in breast cancer stem cells. Br J Cancer. 2014;110:2063-71 pubmed 出版商
  147. Park H, Jang M, Kim E, Kim H, Lee H, Kim Y, et al. High EGFR gene copy number predicts poor outcome in triple-negative breast cancer. Mod Pathol. 2014;27:1212-22 pubmed 出版商
  148. Chang T, Kunasegaran K, Tarulli G, De Silva D, Voorhoeve P, Pietersen A. New insights into lineage restriction of mammary gland epithelium using parity-identified mammary epithelial cells. Breast Cancer Res. 2014;16:R1 pubmed 出版商
  149. Balko J, Giltnane J, Wang K, Schwarz L, Young C, Cook R, et al. Molecular profiling of the residual disease of triple-negative breast cancers after neoadjuvant chemotherapy identifies actionable therapeutic targets. Cancer Discov. 2014;4:232-45 pubmed 出版商
  150. Faupel Badger J, Duggan M, Sherman M, Garcia Closas M, Yang X, Lissowska J, et al. Prolactin receptor expression and breast cancer: relationships with tumor characteristics among pre- and post-menopausal women in a population-based case-control study from Poland. Horm Cancer. 2014;5:42-50 pubmed 出版商
  151. Dong P, Kaneuchi M, Xiong Y, Cao L, Cai M, Liu X, et al. Identification of KLF17 as a novel epithelial to mesenchymal transition inducer via direct activation of TWIST1 in endometrioid endometrial cancer. Carcinogenesis. 2014;35:760-8 pubmed 出版商
  152. Li Q, Coulson H, Klaassen Z, Sharma S, Ramalingam P, Moses K, et al. Emerging association between androgen deprivation therapy and male meningioma: significant expression of luteinizing hormone-releasing hormone receptor in male meningioma. Prostate Cancer Prostatic Dis. 2013;16:387-90 pubmed 出版商
  153. Kusafuka K, Onitsuka T, Muramatsu K, Miki T, Murai C, Suda T, et al. Salivary duct carcinoma with rhabdoid features: report of 2 cases with immunohistochemical and ultrastructural analyses. Head Neck. 2014;36:E28-35 pubmed 出版商
  154. Kuhn E, Ayhan A, Shih I, Seidman J, Kurman R. Ovarian Brenner tumour: a morphologic and immunohistochemical analysis suggesting an origin from fallopian tube epithelium. Eur J Cancer. 2013;49:3839-49 pubmed 出版商
  155. Dewaele B, Przybyl J, Quattrone A, Finalet Ferreiro J, Vanspauwen V, Geerdens E, et al. Identification of a novel, recurrent MBTD1-CXorf67 fusion in low-grade endometrial stromal sarcoma. Int J Cancer. 2014;134:1112-22 pubmed 出版商
  156. Hagan C, Knutson T, Lange C. A Common Docking Domain in Progesterone Receptor-B links DUSP6 and CK2 signaling to proliferative transcriptional programs in breast cancer cells. Nucleic Acids Res. 2013;41:8926-42 pubmed 出版商
  157. Zhang J, Wang Y, Yin Q, Zhang W, Zhang T, Niu Y. An associated classification of triple negative breast cancer: the risk of relapse and the response to chemotherapy. Int J Clin Exp Pathol. 2013;6:1380-91 pubmed
  158. Hao J, Yang C, Liu F, Yang Y, Li S, Li W, et al. Accessory breast cancer occurring concurrently with bilateral primary invasive breast carcinomas: a report of two cases and literature review. Cancer Biol Med. 2012;9:197-201 pubmed 出版商
  159. Joensuu K, Leidenius M, Kero M, Andersson L, Horwitz K, Heikkila P. ER, PR, HER2, Ki-67 and CK5 in Early and Late Relapsing Breast Cancer-Reduced CK5 Expression in Metastases. Breast Cancer (Auckl). 2013;7:23-34 pubmed 出版商
  160. Zhao Y, Park S, Bagchi M, Taylor R, Katzenellenbogen B. The coregulator, repressor of estrogen receptor activity (REA), is a crucial regulator of the timing and magnitude of uterine decidualization. Endocrinology. 2013;154:1349-60 pubmed 出版商
  161. Escobar J, Klimowicz A, Dean M, Chu P, Nation J, Nelson G, et al. Quantification of ER/PR expression in ovarian low-grade serous carcinoma. Gynecol Oncol. 2013;128:371-6 pubmed 出版商
  162. Gallardo A, Lerma E, Escuin D, Tibau A, Munoz J, Ojeda B, et al. Increased signalling of EGFR and IGF1R, and deregulation of PTEN/PI3K/Akt pathway are related with trastuzumab resistance in HER2 breast carcinomas. Br J Cancer. 2012;106:1367-73 pubmed 出版商
  163. Wang N, Geng L, Zhang S, He B, Wang J. Expression of PRB, FKBP52 and HB-EGF relating with ultrasonic evaluation of endometrial receptivity. PLoS ONE. 2012;7:e34010 pubmed 出版商
  164. Yamada Y, Yamamoto H, Ohishi Y, Nishiyama K, Fukuhara M, Saitou T, et al. Sclerosing variant of perivascular epithelioid cell tumor in the female genital organs. Pathol Int. 2011;61:768-72 pubmed 出版商
  165. Chu P, Hsu N, Liao A, Shih N, Hou M, Liu C. Overexpression of ?-enolase correlates with poor survival in canine mammary carcinoma. BMC Vet Res. 2011;7:62 pubmed 出版商
  166. Tieszen C, Goyeneche A, Brandhagen B, Ortbahn C, Telleria C. Antiprogestin mifepristone inhibits the growth of cancer cells of reproductive and non-reproductive origin regardless of progesterone receptor expression. BMC Cancer. 2011;11:207 pubmed 出版商
  167. Meyer D, Brinkhaus H, Müller U, Muller M, Cardiff R, Bentires Alj M. Luminal expression of PIK3CA mutant H1047R in the mammary gland induces heterogeneous tumors. Cancer Res. 2011;71:4344-51 pubmed 出版商
  168. Teng Y, Tan W, Thike A, Cheok P, Tse G, Wong N, et al. Mutations in the epidermal growth factor receptor (EGFR) gene in triple negative breast cancer: possible implications for targeted therapy. Breast Cancer Res. 2011;13:R35 pubmed 出版商
  169. Baydar D, Kulac I, Gurel B, De Marzo A. A case of prostatic adenocarcinoma with aberrant p63 expression: presentation with detailed immunohistochemical study and FISH analysis. Int J Surg Pathol. 2011;19:131-6 pubmed 出版商