这是一篇来自已证抗体库的有关人类 孕激素受体 (progesterone receptor) 的综述,是根据126篇发表使用所有方法的文章归纳的。这综述旨在帮助来邦网的访客找到最适合孕激素受体 抗体。
孕激素受体 同义词: NR3C3; progesterone receptor; nuclear receptor subfamily 3 group C member 3

赛默飞世尔
小鼠 单克隆(PgR636)
  • 免疫组化-石蜡切片; 人类; 1:50
赛默飞世尔孕激素受体抗体(Thermo-Scientific, PGR636)被用于被用于免疫组化-石蜡切片在人类样品上浓度为1:50. J Immunother Cancer (2017) ncbi
兔 单克隆(SP2)
  • 免疫组化-石蜡切片; 小鼠; 图 1b
赛默飞世尔孕激素受体抗体(Thermo Scientific, RM-9102)被用于被用于免疫组化-石蜡切片在小鼠样品上 (图 1b). Oncogenesis (2016) ncbi
兔 单克隆(SP2)
  • 免疫组化-石蜡切片; 人类; 1:250; 表 1
赛默飞世尔孕激素受体抗体(Neomarkers, SP2)被用于被用于免疫组化-石蜡切片在人类样品上浓度为1:250 (表 1). Oncol Lett (2016) ncbi
兔 单克隆(SP2)
  • 免疫组化-石蜡切片; 人类; 1:200; 图 4a
赛默飞世尔孕激素受体抗体(Thermo Fisher, PM-9102-S)被用于被用于免疫组化-石蜡切片在人类样品上浓度为1:200 (图 4a). PLoS ONE (2016) ncbi
小鼠 单克隆(hPRa2 + hPRa3)
  • 免疫细胞化学; 山羊; 1:70; 图 6
赛默飞世尔孕激素受体抗体(ThermoFisher Scientific, MA1-12626)被用于被用于免疫细胞化学在山羊样品上浓度为1:70 (图 6). Anim Sci J (2016) ncbi
兔 单克隆(SP2)
  • 免疫组化; 人类; 1:300
赛默飞世尔孕激素受体抗体(Thermoscientific, SP2)被用于被用于免疫组化在人类样品上浓度为1:300. Breast Cancer Res Treat (2016) ncbi
小鼠 单克隆(Alpha PR6)
  • 免疫组化-石蜡切片; 小鼠; 表 2
赛默飞世尔孕激素受体抗体(Thermo Scientific, MA1-411)被用于被用于免疫组化-石蜡切片在小鼠样品上 (表 2). Breast Cancer Res (2016) ncbi
兔 单克隆(SP2)
  • 免疫组化-石蜡切片; 人类; 1:200; 表 1
赛默飞世尔孕激素受体抗体(Thermo Scientific, SP2)被用于被用于免疫组化-石蜡切片在人类样品上浓度为1:200 (表 1). Pathol Oncol Res (2016) ncbi
兔 单克隆(SP2)
  • 免疫细胞化学; 人类; 1:10; 图 1b
赛默飞世尔孕激素受体抗体(Labvision, RM-9102-S)被用于被用于免疫细胞化学在人类样品上浓度为1:10 (图 1b). Nat Commun (2015) ncbi
小鼠 单克隆(hPRa 6)
  • 免疫组化-石蜡切片; 鸡; 4 ug/ml; 图 2
赛默飞世尔孕激素受体抗体(NeoMarkers, hPRa6)被用于被用于免疫组化-石蜡切片在鸡样品上浓度为4 ug/ml (图 2). Acta Histochem (2015) ncbi
小鼠 单克隆(hPRa2 + hPRa3)
  • 免疫组化-石蜡切片; 鸡; 4 ug/ml; 图 2
赛默飞世尔孕激素受体抗体(NeoMarkers, hPRa2+hPRa3)被用于被用于免疫组化-石蜡切片在鸡样品上浓度为4 ug/ml (图 2). Acta Histochem (2015) ncbi
小鼠 单克隆(hPRa 2)
  • 免疫组化; 牛; 1:50; 图 1
赛默飞世尔孕激素受体抗体(Thermo Fisher Scientific, hPRa 2)被用于被用于免疫组化在牛样品上浓度为1:50 (图 1). Food Addit Contam Part A Chem Anal Control Expo Risk Assess (2016) ncbi
兔 单克隆(SP2)
  • 免疫组化; 人类; 1:1000; 图 6
赛默飞世尔孕激素受体抗体(Thermo, SP2)被用于被用于免疫组化在人类样品上浓度为1:1000 (图 6). Diagn Pathol (2015) ncbi
小鼠 单克隆(PgR636)
  • 免疫组化-石蜡切片; 人类
赛默飞世尔孕激素受体抗体(Thermo Scientific, PgR636)被用于被用于免疫组化-石蜡切片在人类样品上. Oncotarget (2015) ncbi
兔 单克隆(SP2)
  • 免疫组化; 人类; 1:100
赛默飞世尔孕激素受体抗体(Thermo Scientific, RM-9102-S1)被用于被用于免疫组化在人类样品上浓度为1:100. Pathol Res Pract (2015) ncbi
兔 单克隆(SP2)
  • 免疫印迹; 小鼠; 1:200
赛默飞世尔孕激素受体抗体(Thermo Scientific, Rm9102)被用于被用于免疫印迹在小鼠样品上浓度为1:200. Nature (2015) ncbi
兔 单克隆(SP2)
  • 免疫组化-石蜡切片; 人类; 1:200; 表 2
赛默飞世尔孕激素受体抗体(Thermo Lab Vision, RM-9102-S)被用于被用于免疫组化-石蜡切片在人类样品上浓度为1:200 (表 2). Breast Cancer Res Treat (2015) ncbi
小鼠 单克隆(hPRa 7)
  • 免疫组化-石蜡切片; 小鼠; 图 4
赛默飞世尔孕激素受体抗体(Thermo Scientific, MA5-12658)被用于被用于免疫组化-石蜡切片在小鼠样品上 (图 4). Stem Cell Reports (2015) ncbi
小鼠 单克隆(hPRa 2)
  • 免疫组化-石蜡切片; equine; 图 8q
赛默飞世尔孕激素受体抗体(Perbio Science, MA5-12642)被用于被用于免疫组化-石蜡切片在equine样品上 (图 8q). Reprod Fertil Dev (2016) ncbi
兔 单克隆(SP2)
  • 免疫组化-石蜡切片; 人类; 1:200
赛默飞世尔孕激素受体抗体(Thermo Scientific Lab Vision, RM-9102-S)被用于被用于免疫组化-石蜡切片在人类样品上浓度为1:200. Breast Cancer Res Treat (2015) ncbi
小鼠 单克隆(PgR636)
  • 免疫组化; 人类; 1:1000
赛默飞世尔孕激素受体抗体(Thermo Scientific, PgR636)被用于被用于免疫组化在人类样品上浓度为1:1000. Breast (2015) ncbi
兔 单克隆(SP2)
  • 免疫组化-石蜡切片; 人类
赛默飞世尔孕激素受体抗体(Thermo Scientific Lab Vision, SP2)被用于被用于免疫组化-石蜡切片在人类样品上. Niger J Clin Pract (2015) ncbi
小鼠 单克隆(hPRa 2)
  • 免疫组化; 人类; 1:100
  • 免疫细胞化学; 仓鼠
赛默飞世尔孕激素受体抗体(Thermo Scientific, MA5-12642)被用于被用于免疫组化在人类样品上浓度为1:100 和 被用于免疫细胞化学在仓鼠样品上. Reprod Fertil Dev (2015) ncbi
兔 单克隆(SP2)
  • 免疫组化; 人类; 1:200
赛默飞世尔孕激素受体抗体(Neomarker, RM-9102-S)被用于被用于免疫组化在人类样品上浓度为1:200. Breast Cancer Res Treat (2015) ncbi
兔 单克隆(SP2)
  • 免疫印迹; 人类; 图 3
赛默飞世尔孕激素受体抗体(Neomarkers, RM-9102)被用于被用于免疫印迹在人类样品上 (图 3). Int J Oncol (2015) ncbi
小鼠 单克隆(Alpha PR6)
  • 免疫组化-石蜡切片; 小鼠; 1:500
赛默飞世尔孕激素受体抗体(Thermo Fisher Scientific, MA1-411)被用于被用于免疫组化-石蜡切片在小鼠样品上浓度为1:500. EMBO J (2015) ncbi
兔 单克隆(SP2)
  • 免疫组化; 人类; 1:200
赛默飞世尔孕激素受体抗体(Zymed, SP2)被用于被用于免疫组化在人类样品上浓度为1:200. Breast Cancer Res Treat (2015) ncbi
小鼠 单克隆(PgR636)
  • 免疫组化-石蜡切片; 人类; 1:300
赛默飞世尔孕激素受体抗体(Lab Vision, PGR636)被用于被用于免疫组化-石蜡切片在人类样品上浓度为1:300. Int J Cosmet Sci (2015) ncbi
兔 单克隆(SP2)
赛默飞世尔孕激素受体抗体(Fisher Scientific, RM-9102-S0)被用于. Cancer Res (2014) ncbi
小鼠 单克隆(hPRa 7)
  • 免疫组化-石蜡切片; 小鼠; 1:50
赛默飞世尔孕激素受体抗体(Labvision, hPRa7)被用于被用于免疫组化-石蜡切片在小鼠样品上浓度为1:50. Cell Death Dis (2014) ncbi
兔 单克隆(SP2)
  • 免疫细胞化学; 人类; 1:25
  • 免疫组化; 人类; 1:25
赛默飞世尔孕激素受体抗体(Thermo Scientific, Sp2)被用于被用于免疫细胞化学在人类样品上浓度为1:25 和 被用于免疫组化在人类样品上浓度为1:25. Am J Pathol (2014) ncbi
小鼠 单克隆(hPRa 7)
  • 免疫细胞化学; 小鼠
赛默飞世尔孕激素受体抗体(ThermoScientific, hPRa7)被用于被用于免疫细胞化学在小鼠样品上. J Pathol (2014) ncbi
兔 单克隆(SP2)
  • 免疫组化-石蜡切片; 人类; 1:2000
赛默飞世尔孕激素受体抗体(LabVision, SP2)被用于被用于免疫组化-石蜡切片在人类样品上浓度为1:2000. Br J Cancer (2014) ncbi
兔 单克隆(SP2)
  • 免疫组化-石蜡切片; 人类
  • 免疫细胞化学; 人类
赛默飞世尔孕激素受体抗体(Lab Vision, SP2)被用于被用于免疫组化-石蜡切片在人类样品上 和 被用于免疫细胞化学在人类样品上. Carcinogenesis (2014) ncbi
小鼠 单克隆(608)
  • 免疫印迹; 人类; 图 3
赛默飞世尔孕激素受体抗体(Lab Vision, MS-1332)被用于被用于免疫印迹在人类样品上 (图 3). Nucleic Acids Res (2013) ncbi
小鼠 单克隆(hPRa2 + hPRa3)
  • 染色质免疫沉淀 ; 人类; 图 7
  • 免疫印迹; 人类; 图 3
赛默飞世尔孕激素受体抗体(ThermoScientific, MS-298-P)被用于被用于染色质免疫沉淀 在人类样品上 (图 7) 和 被用于免疫印迹在人类样品上 (图 3). Nucleic Acids Res (2013) ncbi
兔 单克隆(SP2)
  • 免疫组化-石蜡切片; 人类; 1:200; 图 2
赛默飞世尔孕激素受体抗体(Zymed, clone SP2)被用于被用于免疫组化-石蜡切片在人类样品上浓度为1:200 (图 2). Int J Clin Exp Pathol (2013) ncbi
兔 单克隆(SP2)
  • 免疫组化; 人类
赛默飞世尔孕激素受体抗体(Zymed, SP2)被用于被用于免疫组化在人类样品上. Cancer Biol Med (2012) ncbi
兔 单克隆(SP2)
  • 免疫组化-石蜡切片; 人类; 1:100; 表 2
赛默飞世尔孕激素受体抗体(Neomarkers, SP2)被用于被用于免疫组化-石蜡切片在人类样品上浓度为1:100 (表 2). Breast Cancer (Auckl) (2013) ncbi
兔 单克隆(SP2)
  • 免疫组化; 人类; 1:500; 表 1
赛默飞世尔孕激素受体抗体(Thermo Scientific, SP2)被用于被用于免疫组化在人类样品上浓度为1:500 (表 1). Gynecol Oncol (2013) ncbi
小鼠 单克隆(hPRa 2)
  • 免疫组化; 人类; 1:250; 图 4
赛默飞世尔孕激素受体抗体(Thermo Scientific, MS-192-P1)被用于被用于免疫组化在人类样品上浓度为1:250 (图 4). PLoS ONE (2012) ncbi
兔 单克隆(SP2)
  • 免疫组化-石蜡切片; 狗; 1:200
赛默飞世尔孕激素受体抗体(Thermo Scientific, SP2)被用于被用于免疫组化-石蜡切片在狗样品上浓度为1:200. BMC Vet Res (2011) ncbi
小鼠 单克隆(hPRa 7)
  • 免疫印迹; 人类; 4 ug/ml; 图 5
赛默飞世尔孕激素受体抗体(Thermo Fisher, hPRa7)被用于被用于免疫印迹在人类样品上浓度为4 ug/ml (图 5). BMC Cancer (2011) ncbi
兔 单克隆(SP2)
  • 免疫组化; 小鼠; 1:200; 图 1
赛默飞世尔孕激素受体抗体(Thermo, RM-9102)被用于被用于免疫组化在小鼠样品上浓度为1:200 (图 1). Cancer Res (2011) ncbi
兔 单克隆(SP2)
  • 免疫组化-石蜡切片; 人类; 1:200
赛默飞世尔孕激素受体抗体(Neomarker, RM9102-S)被用于被用于免疫组化-石蜡切片在人类样品上浓度为1:200. Breast Cancer Res (2011) ncbi
小鼠 单克隆(hPRa 2)
  • 免疫组化-石蜡切片; 人类; 1:20; 表 4
  • 免疫组化; 狗; 1:20
赛默飞世尔孕激素受体抗体(Neomarkers;, clone hPRa2)被用于被用于免疫组化-石蜡切片在人类样品上浓度为1:20 (表 4) 和 被用于免疫组化在狗样品上浓度为1:20. Vet Pathol (2012) ncbi
兔 单克隆(SP2)
  • 免疫组化-石蜡切片; 人类; 1:250; 图 2, 3, 4
  • 免疫组化; 人类; 1:250
赛默飞世尔孕激素受体抗体(NeoMarkers, SP2)被用于被用于免疫组化-石蜡切片在人类样品上浓度为1:250 (图 2, 3, 4) 和 被用于免疫组化在人类样品上浓度为1:250. Int J Surg Pathol (2011) ncbi
小鼠 单克隆(hPRa 2)
  • 免疫组化-石蜡切片; 人类; 1:20
  • 免疫组化; 小鼠; 1:20
赛默飞世尔孕激素受体抗体(Neomarkers, hPRa2)被用于被用于免疫组化-石蜡切片在人类样品上浓度为1:20 和 被用于免疫组化在小鼠样品上浓度为1:20. BMC Cancer (2010) ncbi
艾博抗(上海)贸易有限公司
兔 单克隆(YR85)
  • 其他; 人类; 图 4c
艾博抗(上海)贸易有限公司孕激素受体抗体(Abcam, ab32085)被用于被用于其他在人类样品上 (图 4c). Cancer Cell (2018) ncbi
兔 单克隆(YR85)
  • 免疫组化-石蜡切片; 大鼠; 1:100; 图 st13
艾博抗(上海)贸易有限公司孕激素受体抗体(Abcam, ab32085)被用于被用于免疫组化-石蜡切片在大鼠样品上浓度为1:100 (图 st13). J Toxicol Pathol (2017) ncbi
圣克鲁斯生物技术
小鼠 单克隆(AB-52)
  • 免疫组化-石蜡切片; 人类; 1:100; 图 1
圣克鲁斯生物技术孕激素受体抗体(Santa Cruz, sc-810)被用于被用于免疫组化-石蜡切片在人类样品上浓度为1:100 (图 1). Arch Med Sci (2017) ncbi
亚诺法生技股份有限公司
兔 单克隆(A21-W)
  • 免疫组化-石蜡切片; 小鼠; 1:400
亚诺法生技股份有限公司孕激素受体抗体(Abnova, MAB9785)被用于被用于免疫组化-石蜡切片在小鼠样品上浓度为1:400. PLoS ONE (2014) ncbi
兔 单克隆(A21-W)
  • 免疫组化-石蜡切片; 小鼠; 1:400
亚诺法生技股份有限公司孕激素受体抗体(Abnova, MAB9785)被用于被用于免疫组化-石蜡切片在小鼠样品上浓度为1:400. Breast Cancer Res (2014) ncbi
丹科医疗器械技术服务(上海)有限公司
小鼠 单克隆(PgR 1294)
  • 免疫组化-石蜡切片; 人类; 图 1a
丹科医疗器械技术服务(上海)有限公司孕激素受体抗体(DAKO, 1294)被用于被用于免疫组化-石蜡切片在人类样品上 (图 1a). J Histochem Cytochem (2019) ncbi
小鼠 单克隆(PgR 636)
  • 免疫组化-石蜡切片; 人类; 1:150; 图 2a
丹科医疗器械技术服务(上海)有限公司孕激素受体抗体(Dako, M3569)被用于被用于免疫组化-石蜡切片在人类样品上浓度为1:150 (图 2a). Cell (2018) ncbi
小鼠 单克隆(1294)
  • 免疫细胞化学; 人类; 1:500; 图 2e
  • 免疫印迹; 人类; 图 2c
丹科医疗器械技术服务(上海)有限公司孕激素受体抗体(Dako, 1294)被用于被用于免疫细胞化学在人类样品上浓度为1:500 (图 2e) 和 被用于免疫印迹在人类样品上 (图 2c). Oncogene (2017) ncbi
兔 多克隆
  • 免疫组化; 小鼠; 图 4d
丹科医疗器械技术服务(上海)有限公司孕激素受体抗体(DAKO, A0098)被用于被用于免疫组化在小鼠样品上 (图 4d). Proc Natl Acad Sci U S A (2017) ncbi
兔 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:500; 图 af4b
丹科医疗器械技术服务(上海)有限公司孕激素受体抗体(Dako, A0098)被用于被用于免疫组化-石蜡切片在小鼠样品上浓度为1:500 (图 af4b). Breast Cancer Res (2017) ncbi
小鼠 单克隆(PgR 636)
  • 免疫组化; 人类; 1:10; 表 1
丹科医疗器械技术服务(上海)有限公司孕激素受体抗体(Dako, PgR 636)被用于被用于免疫组化在人类样品上浓度为1:10 (表 1). Cancer (2017) ncbi
兔 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:50; 图 1d
丹科医疗器械技术服务(上海)有限公司孕激素受体抗体(DAKO, A0098)被用于被用于免疫组化-石蜡切片在小鼠样品上浓度为1:50 (图 1d). Nat Commun (2016) ncbi
兔 多克隆
  • 免疫组化-石蜡切片; 小鼠; 图 s11
丹科医疗器械技术服务(上海)有限公司孕激素受体抗体(Dako, A0098)被用于被用于免疫组化-石蜡切片在小鼠样品上 (图 s11). Cell Res (2016) ncbi
小鼠 单克隆(PgR 636)
  • 免疫组化-石蜡切片; 人类; 1:200; 表 1
丹科医疗器械技术服务(上海)有限公司孕激素受体抗体(Dako, PgR 636)被用于被用于免疫组化-石蜡切片在人类样品上浓度为1:200 (表 1). Medicine (Baltimore) (2016) ncbi
小鼠 单克隆(PgR 636)
  • 免疫组化-石蜡切片; 人类; 1:800; 表 1
丹科医疗器械技术服务(上海)有限公司孕激素受体抗体(DAKO, M3569)被用于被用于免疫组化-石蜡切片在人类样品上浓度为1:800 (表 1). Br J Cancer (2016) ncbi
小鼠 单克隆(PgR 636)
  • 免疫组化-石蜡切片; 人类; 1:150
丹科医疗器械技术服务(上海)有限公司孕激素受体抗体(Dako, PgR 636)被用于被用于免疫组化-石蜡切片在人类样品上浓度为1:150. J Exp Clin Cancer Res (2016) ncbi
小鼠 单克隆(PgR 636)
  • 免疫组化-石蜡切片; 人类; 1:50; 表 1
丹科医疗器械技术服务(上海)有限公司孕激素受体抗体(Dako, M3569)被用于被用于免疫组化-石蜡切片在人类样品上浓度为1:50 (表 1). Oncol Lett (2016) ncbi
小鼠 单克隆(PgR 1294)
  • 免疫组化; 人类; 1:200; 表 2
丹科医疗器械技术服务(上海)有限公司孕激素受体抗体(Dako, PgR1294)被用于被用于免疫组化在人类样品上浓度为1:200 (表 2). Am J Surg Pathol (2016) ncbi
小鼠 单克隆(PgR 636)
  • 免疫组化-石蜡切片; 人类; 1:50; 图 s1
丹科医疗器械技术服务(上海)有限公司孕激素受体抗体(Dako, 3569)被用于被用于免疫组化-石蜡切片在人类样品上浓度为1:50 (图 s1). BMC Cancer (2016) ncbi
小鼠 单克隆(PgR 636)
  • 免疫组化; 人类; 表 1
丹科医疗器械技术服务(上海)有限公司孕激素受体抗体(Dako, M3569)被用于被用于免疫组化在人类样品上 (表 1). PLoS ONE (2016) ncbi
小鼠 单克隆(PgR 636)
  • 免疫组化-石蜡切片; 人类; 1:50; 表 s5
丹科医疗器械技术服务(上海)有限公司孕激素受体抗体(Dako, PgR636)被用于被用于免疫组化-石蜡切片在人类样品上浓度为1:50 (表 s5). Oncotarget (2016) ncbi
兔 多克隆
  • 免疫组化-石蜡切片; 小鼠; 图 3
丹科医疗器械技术服务(上海)有限公司孕激素受体抗体(Dako, A0098)被用于被用于免疫组化-石蜡切片在小鼠样品上 (图 3). Proc Natl Acad Sci U S A (2016) ncbi
小鼠 单克隆(PgR 636)
  • 免疫组化-石蜡切片; 人类; 1:150
丹科医疗器械技术服务(上海)有限公司孕激素受体抗体(Dako, M3569)被用于被用于免疫组化-石蜡切片在人类样品上浓度为1:150. PLoS ONE (2016) ncbi
小鼠 单克隆(PgR 636)
  • 免疫细胞化学; 人类; 1:10; 图 s13b
丹科医疗器械技术服务(上海)有限公司孕激素受体抗体(Dako, M356901-2)被用于被用于免疫细胞化学在人类样品上浓度为1:10 (图 s13b). Nat Commun (2015) ncbi
兔 多克隆
  • immunohistochemistry - free floating section; 大鼠; 1:400; 图 3
丹科医疗器械技术服务(上海)有限公司孕激素受体抗体(Dako, A0098)被用于被用于immunohistochemistry - free floating section在大鼠样品上浓度为1:400 (图 3). J Neuroendocrinol (2016) ncbi
小鼠 单克隆(PgR 636)
  • 免疫组化-石蜡切片; 人类; 1:50; 图 2
丹科医疗器械技术服务(上海)有限公司孕激素受体抗体(DAKO, M3569)被用于被用于免疫组化-石蜡切片在人类样品上浓度为1:50 (图 2). PLoS ONE (2015) ncbi
小鼠 单克隆(PgR 636)
  • 免疫组化; 人类; 1:200; 图 1
丹科医疗器械技术服务(上海)有限公司孕激素受体抗体(DAKO, PgR636)被用于被用于免疫组化在人类样品上浓度为1:200 (图 1). Virchows Arch (2015) ncbi
小鼠 单克隆(PgR 1294)
  • 免疫组化-石蜡切片; 人类
丹科医疗器械技术服务(上海)有限公司孕激素受体抗体(Dako, PgR 1294)被用于被用于免疫组化-石蜡切片在人类样品上. Appl Immunohistochem Mol Morphol (2016) ncbi
小鼠 单克隆(PgR 636)
  • 免疫组化; 人类; 1:400
丹科医疗器械技术服务(上海)有限公司孕激素受体抗体(DakoCytomation, M3569)被用于被用于免疫组化在人类样品上浓度为1:400. Mol Clin Oncol (2015) ncbi
小鼠 单克隆(PgR 1294)
  • 免疫组化-石蜡切片; 人类; 1:1000; 表 1
丹科医疗器械技术服务(上海)有限公司孕激素受体抗体(DAKO, PgR1294)被用于被用于免疫组化-石蜡切片在人类样品上浓度为1:1000 (表 1). BMC Cancer (2015) ncbi
小鼠 单克隆(PgR 636)
  • 免疫组化; 人类
丹科医疗器械技术服务(上海)有限公司孕激素受体抗体(Dako, M3569)被用于被用于免疫组化在人类样品上. BMC Clin Pathol (2015) ncbi
兔 多克隆
  • 免疫组化; 小鼠; 1:200; 图 1j
丹科医疗器械技术服务(上海)有限公司孕激素受体抗体(Dako, A0098)被用于被用于免疫组化在小鼠样品上浓度为1:200 (图 1j). Endocrinology (2015) ncbi
小鼠 单克隆(PgR 636)
  • 免疫组化; 人类
丹科医疗器械技术服务(上海)有限公司孕激素受体抗体(Dako, PgR636)被用于被用于免疫组化在人类样品上. Breast Cancer Res Treat (2015) ncbi
小鼠 单克隆(PgR 636)
  • 免疫组化; 人类
丹科医疗器械技术服务(上海)有限公司孕激素受体抗体(Dako, clone PgR636)被用于被用于免疫组化在人类样品上. Brain Tumor Pathol (2015) ncbi
小鼠 单克隆(PgR 636)
  • 免疫组化; 人类; 1:250
丹科医疗器械技术服务(上海)有限公司孕激素受体抗体(Dako, PgR 636)被用于被用于免疫组化在人类样品上浓度为1:250. Gynecol Oncol (2015) ncbi
小鼠 单克隆(PgR 636)
  • 免疫组化-石蜡切片; 人类; 1:70
丹科医疗器械技术服务(上海)有限公司孕激素受体抗体(Dako, PgR 636)被用于被用于免疫组化-石蜡切片在人类样品上浓度为1:70. Cancer Res Treat (2016) ncbi
小鼠 单克隆(PgR 636)
  • 免疫组化-石蜡切片; 人类
丹科医疗器械技术服务(上海)有限公司孕激素受体抗体(Dako, PgR636)被用于被用于免疫组化-石蜡切片在人类样品上. Pathol Oncol Res (2015) ncbi
小鼠 单克隆(PgR 636)
  • 免疫组化-石蜡切片; 人类; 1:50; 表 4
丹科医疗器械技术服务(上海)有限公司孕激素受体抗体(DAKO, M3569)被用于被用于免疫组化-石蜡切片在人类样品上浓度为1:50 (表 4). PLoS ONE (2015) ncbi
小鼠 单克隆(PgR 636)
  • 免疫组化-石蜡切片; 人类; 1:250
丹科医疗器械技术服务(上海)有限公司孕激素受体抗体(DAKO, PgR636)被用于被用于免疫组化-石蜡切片在人类样品上浓度为1:250. Int J Gynecol Pathol (2015) ncbi
小鼠 单克隆(PgR 636)
  • 免疫组化; 人类; 1:150
丹科医疗器械技术服务(上海)有限公司孕激素受体抗体(Dako, PgR636)被用于被用于免疫组化在人类样品上浓度为1:150. Balkan Med J (2014) ncbi
小鼠 单克隆(PgR 636)
  • 免疫组化; 人类; 1:100
丹科医疗器械技术服务(上海)有限公司孕激素受体抗体(DAKO, M3569)被用于被用于免疫组化在人类样品上浓度为1:100. Breast Cancer Res Treat (2015) ncbi
小鼠 单克隆(PgR 636)
  • 免疫组化; 人类; 1:50
丹科医疗器械技术服务(上海)有限公司孕激素受体抗体(DakoCytomation, PgR 636)被用于被用于免疫组化在人类样品上浓度为1:50. BMC Cancer (2014) ncbi
小鼠 单克隆(PgR 636)
  • 免疫组化-石蜡切片; 人类; 1:500
丹科医疗器械技术服务(上海)有限公司孕激素受体抗体(Dako, PGR 636)被用于被用于免疫组化-石蜡切片在人类样品上浓度为1:500. Cancer Lett (2015) ncbi
小鼠 单克隆(PgR 636)
  • 免疫组化-石蜡切片; 人类; 53.8 mg/l
丹科医疗器械技术服务(上海)有限公司孕激素受体抗体(DAKO, PgR 636)被用于被用于免疫组化-石蜡切片在人类样品上浓度为53.8 mg/l. Oncotarget (2014) ncbi
小鼠 单克隆(PgR 636)
  • 免疫组化-石蜡切片; 人类; ready-to-use
丹科医疗器械技术服务(上海)有限公司孕激素受体抗体(DAKO, PgR636)被用于被用于免疫组化-石蜡切片在人类样品上浓度为ready-to-use. Malays J Pathol (2014) ncbi
小鼠 单克隆(PgR 636)
  • 免疫组化; 人类; 1:1000
丹科医疗器械技术服务(上海)有限公司孕激素受体抗体(Dako, PgR636)被用于被用于免疫组化在人类样品上浓度为1:1000. BMC Womens Health (2014) ncbi
小鼠 单克隆(PgR 636)
  • 免疫组化; 人类; 1:100
丹科医疗器械技术服务(上海)有限公司孕激素受体抗体(Dako, 636)被用于被用于免疫组化在人类样品上浓度为1:100. Anticancer Res (2014) ncbi
小鼠 单克隆(PgR 636)
  • 免疫组化-石蜡切片; 人类; 1:500
丹科医疗器械技术服务(上海)有限公司孕激素受体抗体(DAKO, PgR636)被用于被用于免疫组化-石蜡切片在人类样品上浓度为1:500. Am J Clin Pathol (2014) ncbi
小鼠 单克隆(PgR 636)
  • 免疫组化-石蜡切片; 人类; 1:800; 表 2
丹科医疗器械技术服务(上海)有限公司孕激素受体抗体(Dako, PgR636)被用于被用于免疫组化-石蜡切片在人类样品上浓度为1:800 (表 2). Oncotarget (2014) ncbi
小鼠 单克隆(PgR 636)
  • 免疫组化-石蜡切片; 人类; 1:200; 图 2
丹科医疗器械技术服务(上海)有限公司孕激素受体抗体(Dako, PgR 636)被用于被用于免疫组化-石蜡切片在人类样品上浓度为1:200 (图 2). PLoS ONE (2014) ncbi
小鼠 单克隆(PgR 636)
  • 免疫组化; 人类; 1:250
丹科医疗器械技术服务(上海)有限公司孕激素受体抗体(Dako, PgR636)被用于被用于免疫组化在人类样品上浓度为1:250. Virchows Arch (2014) ncbi
小鼠 单克隆(PgR 636)
  • 免疫细胞化学; 人类; 1:100
  • 免疫组化; 人类; 1:100
丹科医疗器械技术服务(上海)有限公司孕激素受体抗体(Dako, Pgr636)被用于被用于免疫细胞化学在人类样品上浓度为1:100 和 被用于免疫组化在人类样品上浓度为1:100. Am J Pathol (2014) ncbi
小鼠 单克隆(PgR 636)
  • 免疫组化-石蜡切片; 人类; 1:70
丹科医疗器械技术服务(上海)有限公司孕激素受体抗体(Dako, PgR 636)被用于被用于免疫组化-石蜡切片在人类样品上浓度为1:70. Mod Pathol (2014) ncbi
小鼠 单克隆(PgR 636)
  • 免疫组化; 人类; 1:50
丹科医疗器械技术服务(上海)有限公司孕激素受体抗体(DAKO, PgR636)被用于被用于免疫组化在人类样品上浓度为1:50. Cancer Discov (2014) ncbi
小鼠 单克隆(PgR 636)
  • 免疫组化; 人类; 1:1000
丹科医疗器械技术服务(上海)有限公司孕激素受体抗体(Dako, PgR636)被用于被用于免疫组化在人类样品上浓度为1:1000. Horm Cancer (2014) ncbi
小鼠 单克隆(PgR 636)
  • 免疫组化-石蜡切片; 人类; 1:200
丹科医疗器械技术服务(上海)有限公司孕激素受体抗体(Dako, M3569)被用于被用于免疫组化-石蜡切片在人类样品上浓度为1:200. Prostate Cancer Prostatic Dis (2013) ncbi
小鼠 单克隆(PgR 636)
  • 免疫组化-石蜡切片; 人类; 1:2000
丹科医疗器械技术服务(上海)有限公司孕激素受体抗体(DAKO, PGR636)被用于被用于免疫组化-石蜡切片在人类样品上浓度为1:2000. Int J Cancer (2014) ncbi
小鼠 单克隆(PgR 1294)
  • 免疫细胞化学; 人类
丹科医疗器械技术服务(上海)有限公司孕激素受体抗体(Dako, M3568)被用于被用于免疫细胞化学在人类样品上. Endocrinology (2013) ncbi
小鼠 单克隆(PgR 1294)
  • 免疫组化; 人类; 表 1
丹科医疗器械技术服务(上海)有限公司孕激素受体抗体(DAKO, PGR1294)被用于被用于免疫组化在人类样品上 (表 1). Gynecol Oncol (2013) ncbi
小鼠 单克隆(PgR 636)
  • 免疫组化; 人类; 1:6
丹科医疗器械技术服务(上海)有限公司孕激素受体抗体(Dako Cytomation, PgR 636)被用于被用于免疫组化在人类样品上浓度为1:6. Pathol Int (2011) ncbi
赛信通(上海)生物试剂有限公司
兔 单克隆(C1A2)
  • 免疫组化-石蜡切片; 人类; 1:200; 图 4g
赛信通(上海)生物试剂有限公司孕激素受体抗体(Cell signaling, 3157S)被用于被用于免疫组化-石蜡切片在人类样品上浓度为1:200 (图 4g). Reprod Biol Endocrinol (2017) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图 2a
赛信通(上海)生物试剂有限公司孕激素受体抗体(Cell Signaling, 3171)被用于被用于免疫印迹在人类样品上 (图 2a). Oncotarget (2016) ncbi
兔 多克隆
  • 免疫组化-石蜡切片; 人类; 1:25; 图 s1
赛信通(上海)生物试剂有限公司孕激素受体抗体(Cell Signaling, 3176)被用于被用于免疫组化-石蜡切片在人类样品上浓度为1:25 (图 s1). BMC Cancer (2016) ncbi
兔 单克隆(C1A2)
  • 免疫印迹; 人类; 图 1
赛信通(上海)生物试剂有限公司孕激素受体抗体(Cell Signaling, 3157)被用于被用于免疫印迹在人类样品上 (图 1). PLoS ONE (2016) ncbi
兔 单克隆(C89F7)
  • 免疫印迹; 人类; 图 1
赛信通(上海)生物试剂有限公司孕激素受体抗体(Cell Signaling, 3153)被用于被用于免疫印迹在人类样品上 (图 1). PLoS ONE (2016) ncbi
兔 单克隆(C1A2)
  • 免疫细胞化学; 人类; 图 3b
赛信通(上海)生物试剂有限公司孕激素受体抗体(Cell Signaling, 3157)被用于被用于免疫细胞化学在人类样品上 (图 3b). Reprod Sci (2016) ncbi
兔 多克隆
  • 免疫印迹; 人类; 1:1000; 图 5c
赛信通(上海)生物试剂有限公司孕激素受体抗体(Cell Signaling, 3176)被用于被用于免疫印迹在人类样品上浓度为1:1000 (图 5c). Mol Med Rep (2016) ncbi
兔 单克隆(C89F7)
  • 免疫组化-石蜡切片; 人类; 1:100; 图 2
赛信通(上海)生物试剂有限公司孕激素受体抗体(Cell signaling, C89F7)被用于被用于免疫组化-石蜡切片在人类样品上浓度为1:100 (图 2). Mol Cell Endocrinol (2016) ncbi
兔 单克隆(D8Q2J)
  • 免疫印迹; 小鼠; 1:500; 图 s6
赛信通(上海)生物试剂有限公司孕激素受体抗体(Cell Signaling Technology, 8757)被用于被用于免疫印迹在小鼠样品上浓度为1:500 (图 s6). Proc Natl Acad Sci U S A (2015) ncbi
兔 单克隆(C1A2)
  • 免疫细胞化学; 人类; 图 3
赛信通(上海)生物试剂有限公司孕激素受体抗体(Cell signaling, 3157S)被用于被用于免疫细胞化学在人类样品上 (图 3). Oncogene (2016) ncbi
兔 单克隆(C1A2)
  • 免疫印迹; 人类; 图 1a
赛信通(上海)生物试剂有限公司孕激素受体抗体(Cell Signaling, 3157)被用于被用于免疫印迹在人类样品上 (图 1a). Oncotarget (2015) ncbi
兔 多克隆
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司孕激素受体抗体(Cell signaling, 3176)被用于被用于免疫印迹在人类样品上. Nucleic Acids Res (2014) ncbi
Ventana
兔 单克隆(1E2)
  • 免疫组化; 人类; 1:50; 图 3b
Ventana孕激素受体抗体(Ventana, 790-2223)被用于被用于免疫组化在人类样品上浓度为1:50 (图 3b). Oncogene (2018) ncbi
兔 单克隆(1E2)
  • 免疫组化-石蜡切片; 人类; 图 2b
Ventana孕激素受体抗体(Ventana, 1E2)被用于被用于免疫组化-石蜡切片在人类样品上 (图 2b). Clin Cancer Res (2017) ncbi
兔 单克隆(1E2)
  • 免疫组化; 人类; 图 1a
Ventana孕激素受体抗体(Ventana, 790-2223)被用于被用于免疫组化在人类样品上 (图 1a). Oncotarget (2016) ncbi
兔 单克隆(1E2)
  • 免疫组化-石蜡切片; 人类; 1:1; 表 3
Ventana孕激素受体抗体(Ventana, 1E2)被用于被用于免疫组化-石蜡切片在人类样品上浓度为1:1 (表 3). Virchows Arch (2016) ncbi
兔 单克隆(1E2)
  • 免疫组化-石蜡切片; 猫; 表 4
Ventana孕激素受体抗体(Ventana, 1E2)被用于被用于免疫组化-石蜡切片在猫样品上 (表 4). Oncotarget (2016) ncbi
兔 单克隆(1E2)
  • 免疫组化; 猫; 图 1b
Ventana孕激素受体抗体(Ventana, 1E2)被用于被用于免疫组化在猫样品上 (图 1b). Tumour Biol (2016) ncbi
徕卡显微系统(上海)贸易有限公司
小鼠 单克隆
  • 免疫组化; 人类; 1:150; 图 2c
徕卡显微系统(上海)贸易有限公司孕激素受体抗体(Novocastra, NCL-L-PGR-312)被用于被用于免疫组化在人类样品上浓度为1:150 (图 2c). Kaohsiung J Med Sci (2016) ncbi
小鼠 单克隆
  • 免疫组化; 人类; 1:400
徕卡显微系统(上海)贸易有限公司孕激素受体抗体(Novocastra, NCL-L-PGR-312)被用于被用于免疫组化在人类样品上浓度为1:400. Pathol Oncol Res (2015) ncbi
默克密理博中国
小鼠 单克隆(1A6)
  • 免疫组化; 人类; 1:50
默克密理博中国孕激素受体抗体(Chemicon, MAB429)被用于被用于免疫组化在人类样品上浓度为1:50. Hum Pathol (2015) ncbi
小鼠 单克隆(1A6)
  • 免疫组化; 人类; 1:40
默克密理博中国孕激素受体抗体(DAKO, MAB429)被用于被用于免疫组化在人类样品上浓度为1:40. Mol Cell Endocrinol (2015) ncbi
兔 单克隆(YR85)
  • 免疫印迹; 人类; 图 5a
默克密理博中国孕激素受体抗体(Millipore, 04-1018)被用于被用于免疫印迹在人类样品上 (图 5a). J Biol Chem (2012) ncbi
西格玛奥德里奇
兔 多克隆
  • 免疫组化; 人类; 表 1
西格玛奥德里奇孕激素受体抗体(Sigma, HPA004751)被用于被用于免疫组化在人类样品上 (表 1). Clin Breast Cancer (2017) ncbi
兔 多克隆
  • 免疫组化-石蜡切片; 牛; 图 2b
西格玛奥德里奇孕激素受体抗体(Sigma-Aldrich, SAB4502185)被用于被用于免疫组化-石蜡切片在牛样品上 (图 2b). Reproduction (2016) ncbi
文章列表
  1. Sompuram S, Vani K, Schaedle A, Balasubramanian A, Bogen S. Selecting an Optimal Positive IHC Control for Verifying Antigen Retrieval. J Histochem Cytochem. 2019;67:275-289 pubmed 出版商
  2. Ng P, Li J, Jeong K, Shao S, Chen H, Tsang Y, et al. Systematic Functional Annotation of Somatic Mutations in Cancer. Cancer Cell. 2018;33:450-462.e10 pubmed 出版商
  3. Browne A, Charmsaz S, Varešlija D, Fagan A, Cosgrove N, Cocchiglia S, et al. Network analysis of SRC-1 reveals a novel transcription factor hub which regulates endocrine resistant breast cancer. Oncogene. 2018;37:2008-2021 pubmed 出版商
  4. Sachs N, de Ligt J, Kopper O, Gogola E, Bounova G, Weeber F, et al. A Living Biobank of Breast Cancer Organoids Captures Disease Heterogeneity. Cell. 2018;172:373-386.e10 pubmed 出版商
  5. Carvajal Hausdorf D, Mani N, Velcheti V, Schalper K, Rimm D. Objective measurement and clinical significance of IDO1 protein in hormone receptor-positive breast cancer. J Immunother Cancer. 2017;5:81 pubmed 出版商
  6. Fettig L, McGinn O, Finlay Schultz J, LaBarbera D, Nordeen S, Sartorius C. Cross talk between progesterone receptors and retinoic acid receptors in regulation of cytokeratin 5-positive breast cancer cells. Oncogene. 2017;36:6074-6084 pubmed 出版商
  7. Ran H, Kong S, Zhang S, Cheng J, Zhou C, He B, et al. Nuclear Shp2 directs normal embryo implantation via facilitating the ERα tyrosine phosphorylation by the Src kinase. Proc Natl Acad Sci U S A. 2017;114:4816-4821 pubmed 出版商
  8. Wu D, Kimura F, Zheng L, Ishida M, Niwa Y, Hirata K, et al. Chronic endometritis modifies decidualization in human endometrial stromal cells. Reprod Biol Endocrinol. 2017;15:16 pubmed 出版商
  9. Furukawa S, Nagaike M, Ozaki K. Databases for technical aspects of immunohistochemistry. J Toxicol Pathol. 2017;30:79-107 pubmed 出版商
  10. Méndez López L, Zavala Pompa A, Cortés Gutiérrez E, Cerda Flores R, Dávila Rodríguez M. Leptin receptor expression during the progression of endometrial carcinoma is correlated with estrogen and progesterone receptors. Arch Med Sci. 2017;13:228-235 pubmed 出版商
  11. Barcus C, O Leary K, Brockman J, Rugowski D, Liu Y, Garcia N, et al. Elevated collagen-I augments tumor progressive signals, intravasation and metastasis of prolactin-induced estrogen receptor alpha positive mammary tumor cells. Breast Cancer Res. 2017;19:9 pubmed 出版商
  12. Pereira C, Leal M, Abdelhay E, Demachki S, Assumpcao P, de Souza M, et al. MYC Amplification as a Predictive Factor of Complete Pathologic Response to Docetaxel-based Neoadjuvant Chemotherapy for Breast Cancer. Clin Breast Cancer. 2017;17:188-194 pubmed 出版商
  13. Winder A, Maniar K, Wei J, Liu D, Scholtens D, Lurain J, et al. Synuclein-γ in uterine serous carcinoma impacts survival: An NRG Oncology/Gynecologic Oncology Group study. Cancer. 2017;123:1144-1155 pubmed 出版商
  14. Piasecka D, Kitowska K, Czaplinska D, Mieczkowski K, Mieszkowska M, Turczyk L, et al. Fibroblast growth factor signalling induces loss of progesterone receptor in breast cancer cells. Oncotarget. 2016;7:86011-86025 pubmed 出版商
  15. Sheen M, Marotti J, Allegrezza M, Rutkowski M, Conejo Garcia J, Fiering S. Constitutively activated PI3K accelerates tumor initiation and modifies histopathology of breast cancer. Oncogenesis. 2016;5:e267 pubmed 出版商
  16. Davis F, Lloyd Lewis B, Harris O, Kozar S, Winton D, Muresan L, et al. Single-cell lineage tracing in the mammary gland reveals stochastic clonal dispersion of stem/progenitor cell progeny. Nat Commun. 2016;7:13053 pubmed 出版商
  17. Nielsen T, Jensen M, Burugu S, Gao D, Jørgensen C, Balslev E, et al. High-Risk Premenopausal Luminal A Breast Cancer Patients Derive no Benefit from Adjuvant Cyclophosphamide-based Chemotherapy: Results from the DBCG77B Clinical Trial. Clin Cancer Res. 2017;23:946-953 pubmed 出版商
  18. Ladd B, Mazzola A, Bihani T, Lai Z, BRADFORD J, Collins M, et al. Effective combination therapies in preclinical endocrine resistant breast cancer models harboring ER mutations. Oncotarget. 2016;7:54120-54136 pubmed 出版商
  19. Ugras N, Yerci O, Coşkun S, Ocakoglu G, Sarkut P, Dündar H. Retrospective analysis of clinicopathological features of solid pseudopapillary neoplasm of the pancreas. Kaohsiung J Med Sci. 2016;32:356-61 pubmed 出版商
  20. Liu Y, Wang K, Xing H, Zhai X, Wang L, Wang W. Attempt towards a novel classification of triple-negative breast cancer using immunohistochemical markers. Oncol Lett. 2016;12:1240-1256 pubmed
  21. Choi Y, Kim H, Lim E, Park M, Yoon J, Kim Y, et al. Integrative Analyses of Uterine Transcriptome and MicroRNAome Reveal Compromised LIF-STAT3 Signaling and Progesterone Response in the Endometrium of Patients with Recurrent/Repeated Implantation Failure (RIF). PLoS ONE. 2016;11:e0157696 pubmed 出版商
  22. Sigl V, Owusu Boaitey K, Joshi P, Kavirayani A, Wirnsberger G, Novatchkova M, et al. RANKL/RANK control Brca1 mutation- . Cell Res. 2016;26:761-74 pubmed 出版商
  23. Leo F, Bartels S, Mägel L, Framke T, Büsche G, Jonigk D, et al. Prognostic factors in the myoepithelial-like spindle cell type of metaplastic breast cancer. Virchows Arch. 2016;469:191-201 pubmed 出版商
  24. Chung M, Lee J, Kim S, Suh Y, Choi H. Simple Prediction Model of Axillary Lymph Node Positivity After Analyzing Molecular and Clinical Factors in Early Breast Cancer. Medicine (Baltimore). 2016;95:e3689 pubmed 出版商
  25. Ogorevc J, Dovc P. Expression of estrogen receptor 1 and progesterone receptor in primary goat mammary epithelial cells. Anim Sci J. 2016;87:1464-1471 pubmed 出版商
  26. Sugihara T, Nakagawa S, Sasajima Y, Ichinose T, Hiraike H, Kondo F, et al. Loss of the cell polarity determinant human Discs-large is a novel molecular marker of nodal involvement and poor prognosis in endometrial cancer. Br J Cancer. 2016;114:1012-8 pubmed 出版商
  27. Carbognin L, Sperduti I, Brunelli M, Marcolini L, Nortilli R, Pilotto S, et al. Subpopulation Treatment Effect Pattern Plot (STEPP) analysis of Ki67 assay according to histology: prognostic relevance for resected early stage 'pure' and 'mixed' lobular breast cancer. J Exp Clin Cancer Res. 2016;35:50 pubmed 出版商
  28. Al Harras M, Houssen M, Shaker M, Farag K, Farouk O, Monir R, et al. Polymorphisms of glutathione S-transferase ? 1 and toll-like receptors 2 and 9: Association with breast cancer susceptibility. Oncol Lett. 2016;11:2182-2188 pubmed
  29. Liang L, Olar A, Niu N, Jiang Y, Cheng W, Bian X, et al. Primary Glial and Neuronal Tumors of the Ovary or Peritoneum: A Clinicopathologic Study of 11 Cases. Am J Surg Pathol. 2016;40:847-56 pubmed 出版商
  30. Koussounadis A, Langdon S, Um I, Kay C, Francis K, Harrison D, et al. Dynamic modulation of phosphoprotein expression in ovarian cancer xenograft models. BMC Cancer. 2016;16:205 pubmed 出版商
  31. Matsumoto H, Thike A, Li H, Yeong J, Koo S, Dent R, et al. Increased CD4 and CD8-positive T cell infiltrate signifies good prognosis in a subset of triple-negative breast cancer. Breast Cancer Res Treat. 2016;156:237-47 pubmed 出版商
  32. Alkner S, Bendahl P, Ehinger A, Lövgren K, Rydén L, Fernö M. Prior Adjuvant Tamoxifen Treatment in Breast Cancer Is Linked to Increased AIB1 and HER2 Expression in Metachronous Contralateral Breast Cancer. PLoS ONE. 2016;11:e0150977 pubmed 出版商
  33. Luque R, Villa Osaba A, L López F, Pozo Salas A, Sánchez Sánchez R, Ortega Salas R, et al. Lack of cortistatin or somatostatin differentially influences DMBA-induced mammary gland tumorigenesis in mice in an obesity-dependent mode. Breast Cancer Res. 2016;18:29 pubmed 出版商
  34. Kobayashi Y, Yamamoto Y, Kageyama S, Hirayama H, Kimura K, Okuda K. Regulation of bovine oviductal NO synthesis by follicular steroids and prostaglandins. Reproduction. 2016;151:577-87 pubmed 出版商
  35. Cammas A, Lacroix Triki M, Pierredon S, Le Bras M, Iacovoni J, Teulade Fichou M, et al. hnRNP A1-mediated translational regulation of the G quadruplex-containing RON receptor tyrosine kinase mRNA linked to tumor progression. Oncotarget. 2016;7:16793-805 pubmed 出版商
  36. Soares M, Ribeiro R, Najmudin S, Gameiro A, Rodrigues R, Cardoso F, et al. Serum HER2 levels are increased in cats with mammary carcinomas and predict tissue HER2 status. Oncotarget. 2016;7:17314-26 pubmed 出版商
  37. Kavlashvili T, Jia Y, Dai D, Meng X, Thiel K, Leslie K, et al. Inverse Relationship between Progesterone Receptor and Myc in Endometrial Cancer. PLoS ONE. 2016;11:e0148912 pubmed 出版商
  38. Su R, Strug M, Jeong J, Miele L, Fazleabas A. Aberrant activation of canonical Notch1 signaling in the mouse uterus decreases progesterone receptor by hypermethylation and leads to infertility. Proc Natl Acad Sci U S A. 2016;113:2300-5 pubmed 出版商
  39. Nalwoga H, Ahmed L, Arnes J, Wabinga H, Akslen L. Strong Expression of Hypoxia-Inducible Factor-1α (HIF-1α) Is Associated with Axl Expression and Features of Aggressive Tumors in African Breast Cancer. PLoS ONE. 2016;11:e0146823 pubmed 出版商
  40. Ke W, Chen C, Luo H, Tang J, Zhang Y, Gao W, et al. Histone Deacetylase 1 Regulates the Expression of Progesterone Receptor A During Human Parturition by Occupying the Progesterone Receptor A Promoter. Reprod Sci. 2016;23:955-64 pubmed 出版商
  41. Chen X, Dong X, Gao H, Jiang Y, Jin Y, Chang Y, et al. Suppression of HSP27 increases the anti‑tumor effects of quercetin in human leukemia U937 cells. Mol Med Rep. 2016;13:689-96 pubmed 出版商
  42. El Gendi S, Mostafa M. Runx2 Expression as a Potential Prognostic Marker in Invasive Ductal Breast Carcinoma. Pathol Oncol Res. 2016;22:461-70 pubmed 出版商
  43. Hagberg Thulin M, Nilsson M, Thulin P, Céraline J, Ohlsson C, Damber J, et al. Osteoblasts promote castration-resistant prostate cancer by altering intratumoral steroidogenesis. Mol Cell Endocrinol. 2016;422:182-191 pubmed 出版商
  44. Fridriksdottir A, Kim J, Villadsen R, Klitgaard M, Hopkinson B, Petersen O, et al. Propagation of oestrogen receptor-positive and oestrogen-responsive normal human breast cells in culture. Nat Commun. 2015;6:8786 pubmed 出版商
  45. Aquino N, Araujo Lopes R, Batista I, Henriques P, Poletini M, Franci C, et al. Hypothalamic Effects of Tamoxifen on Oestrogen Regulation of Luteinising Hormone and Prolactin Secretion in Female Rats. J Neuroendocrinol. 2016;28: pubmed 出版商
  46. González Morán M. Immunohistochemical localization of progesterone receptor isoforms and estrogen receptor alpha in the chicken oviduct magnum during development. Acta Histochem. 2015;117:681-7 pubmed 出版商
  47. Kyathanahalli C, Organ K, Moreci R, Anamthathmakula P, Hassan S, Caritis S, et al. Uterine endoplasmic reticulum stress-unfolded protein response regulation of gestational length is caspase-3 and -7-dependent. Proc Natl Acad Sci U S A. 2015;112:14090-5 pubmed 出版商
  48. Soares M, Correia J, Peleteiro M, Ferreira F. St Gallen molecular subtypes in feline mammary carcinoma and paired metastases-disease progression and clinical implications from a 3-year follow-up study. Tumour Biol. 2016;37:4053-64 pubmed 出版商
  49. Pezzolato M, Botta M, Baioni E, Richelmi G, Pitardi D, Varello K, et al. Confirmation of the progesterone receptor as an efficient marker of treatment with 17β-estradiol in veal calves. Food Addit Contam Part A Chem Anal Control Expo Risk Assess. 2016;33:60-5 pubmed 出版商
  50. Ertoy Baydar D, Kosemehmetoglu K, Aydin O, Bridge J, Buyukeren B, Aki F. Primary sclerosing epithelioid fibrosarcoma of kidney with variant histomorphologic features: report of 2 cases and review of the literature. Diagn Pathol. 2015;10:186 pubmed 出版商
  51. Jung Y, Kim H, Koo J. Expression of Lipid Metabolism-Related Proteins in Metastatic Breast Cancer. PLoS ONE. 2015;10:e0137204 pubmed 出版商
  52. Coelho R, Calaça I, Celestrini D, Correia Carneiro A, Costa M, Zancan P, et al. Hexokinase and phosphofructokinase activity and intracellular distribution correlate with aggressiveness and invasiveness of human breast carcinoma. Oncotarget. 2015;6:29375-87 pubmed 出版商
  53. KapucuoÄŸlu N, Bozkurt K, BaÅŸpınar Å, Koçer M, EroÄŸlu H, Akdeniz R, et al. The clinicopathological and prognostic significance of CD24, CD44, CD133, ALDH1 expressions in invasive ductal carcinoma of the breast: CD44/CD24 expression in breast cancer. Pathol Res Pract. 2015;211:740-7 pubmed 出版商
  54. Adachi K, Miki Y, Saito R, Hata S, Yamauchi M, Mikami Y, et al. Intracrine steroid production and mammalian target of rapamycin pathways in pulmonary lymphangioleiomyomatosis. Hum Pathol. 2015;46:1685-93 pubmed 出版商
  55. Kim H, Lee K, Park I, Chung Y, Im S, Noh D, et al. Expression of SIRT1 and apoptosis-related proteins is predictive for lymph node metastasis and disease-free survival in luminal A breast cancer. Virchows Arch. 2015;467:563-70 pubmed 出版商
  56. Koren S, Reavie L, Couto J, De Silva D, Stadler M, Roloff T, et al. PIK3CA(H1047R) induces multipotency and multi-lineage mammary tumours. Nature. 2015;525:114-8 pubmed 出版商
  57. Wang D, Pang Z, Clarke G, Nofech Mozes S, Liu K, Cheung A, et al. Ki-67 Membranous Staining: Biologically Relevant or an Artifact of Multiplexed Immunofluorescent Staining. Appl Immunohistochem Mol Morphol. 2016;24:447-52 pubmed 出版商
  58. Mundim F, Pasini F, Brentani M, Soares F, Nonogaki S, Waitzberg A. MYC is expressed in the stromal and epithelial cells of primary breast carcinoma and paired nodal metastases. Mol Clin Oncol. 2015;3:506-514 pubmed
  59. Cheung S, Boey Y, Koh V, Thike A, Lim J, Iqbal J, et al. Role of epithelial-mesenchymal transition markers in triple-negative breast cancer. Breast Cancer Res Treat. 2015;152:489-98 pubmed 出版商
  60. Forse C, Agarwal S, Pinnaduwage D, Gertler F, Condeelis J, Lin J, et al. Menacalc, a quantitative method of metastasis assessment, as a prognostic marker for axillary node-negative breast cancer. BMC Cancer. 2015;15:483 pubmed 出版商
  61. Gustbée E, Tryggvadottir H, Markkula A, Simonsson M, Nodin B, Jirström K, et al. Tumor-specific expression of HMG-CoA reductase in a population-based cohort of breast cancer patients. BMC Clin Pathol. 2015;15:8 pubmed 出版商
  62. Li R, Diao H, Zhao F, Xiao S, El Zowalaty A, Dudley E, et al. Olfactomedin 1 Deficiency Leads to Defective Olfaction and Impaired Female Fertility. Endocrinology. 2015;156:3344-57 pubmed 出版商
  63. Michaelidou K, Ardavanis A, Scorilas A. Clinical relevance of the deregulated kallikrein-related peptidase 8 mRNA expression in breast cancer: a novel independent indicator of disease-free survival. Breast Cancer Res Treat. 2015;152:323-36 pubmed 出版商
  64. Goodman C, Sato T, Peck A, Girondo M, Yang N, Liu C, et al. Steroid induction of therapy-resistant cytokeratin-5-positive cells in estrogen receptor-positive breast cancer through a BCL6-dependent mechanism. Oncogene. 2016;35:1373-85 pubmed 出版商
  65. Joshi P, Waterhouse P, Kannan N, Narala S, Fang H, Di Grappa M, et al. RANK Signaling Amplifies WNT-Responsive Mammary Progenitors through R-SPONDIN1. Stem Cell Reports. 2015;5:31-44 pubmed 出版商
  66. Nelis H, Wojciechowicz B, Franczak A, Leemans B, D Herde K, Goossens K, et al. Steroids affect gene expression, ciliary activity, glucose uptake, progesterone receptor expression and immunoreactive steroidogenic protein expression in equine oviduct explants in vitro. Reprod Fertil Dev. 2016;28:1926-1944 pubmed 出版商
  67. Koh V, Lim J, Thike A, Cheok P, Thu M, Tan V, et al. Characteristics and behaviour of screen-detected ductal carcinoma in situ of the breast: comparison with symptomatic patients. Breast Cancer Res Treat. 2015;152:293-304 pubmed 出版商
  68. Winczura P, SosiÅ„ska Mielcarek K, Duchnowska R, Badzio A, Lakomy J, Majewska H, et al. Immunohistochemical Predictors of Bone Metastases in Breast Cancer Patients. Pathol Oncol Res. 2015;21:1229-36 pubmed 出版商
  69. de Deus Moura R, Carvalho F, Bacchi C. Breast cancer in very young women: Clinicopathological study of 149 patients ≤25 years old. Breast. 2015;24:461-7 pubmed 出版商
  70. Nwafor C, Keshinro S. Pattern of hormone receptors and human epidermal growth factor receptor 2 status in sub-Saharan breast cancer cases: Private practice experience. Niger J Clin Pract. 2015;18:553-8 pubmed 出版商
  71. Nakada S, Minato H, Takegami T, Kurose N, Ikeda H, Kobayashi M, et al. NAB2-STAT6 fusion gene analysis in two cases of meningeal solitary fibrous tumor/hemangiopericytoma with late distant metastases. Brain Tumor Pathol. 2015;32:268-74 pubmed 出版商
  72. Falkenberg N, Anastasov N, Schaub A, Radulovic V, Schmitt M, Magdolen V, et al. Secreted uPAR isoform 2 (uPAR7b) is a novel direct target of miR-221. Oncotarget. 2015;6:8103-14 pubmed
  73. Geels Y, van der Putten L, van Tilborg A, Lurkin I, Zwarthoff E, Pijnenborg J, et al. Immunohistochemical and genetic profiles of endometrioid endometrial carcinoma arising from atrophic endometrium. Gynecol Oncol. 2015;137:245-51 pubmed 出版商
  74. Eom K, Jang M, Park S, Kang E, Kim S, Kim J, et al. The Expression of Carbonic Anhydrase (CA) IX/XII and Lymph Node Metastasis in Early Breast Cancer. Cancer Res Treat. 2016;48:125-32 pubmed 出版商
  75. Rusz O, Vörös A, Varga Z, Kelemen G, Uhercsák G, Nikolényi A, et al. One-Year Neoadjuvant Endocrine Therapy in Breast Cancer. Pathol Oncol Res. 2015;21:977-84 pubmed 出版商
  76. Nelis H, Vanden Bussche J, Wojciechowicz B, Franczak A, Vanhaecke L, Leemans B, et al. Steroids in the equine oviduct: synthesis, local concentrations and receptor expression. Reprod Fertil Dev. 2015;: pubmed 出版商
  77. Kim S, Lee Y, Koo J. Differential expression of lipid metabolism-related proteins in different breast cancer subtypes. PLoS ONE. 2015;10:e0119473 pubmed 出版商
  78. Oon M, Thike A, Tan S, Tan P. Cancer stem cell and epithelial-mesenchymal transition markers predict worse outcome in metaplastic carcinoma of the breast. Breast Cancer Res Treat. 2015;150:31-41 pubmed 出版商
  79. Simons M, Nagtegaal I, Overbeek L, Flucke U, Massuger L, Bulten J. A patient with a noninvasive mucinous ovarian borderline tumor presenting with late pleural metastases. Int J Gynecol Pathol. 2015;34:143-50 pubmed 出版商
  80. Argon A, Åžener A, ZekioÄŸlu O, Kapkaç M, Özdemir N. The effect of freezing on the immunoprofile of breast carcinoma cells. Balkan Med J. 2014;31:335-9 pubmed 出版商
  81. Park S, Kim H, Koo J. Differential expression of cancer-associated fibroblast-related proteins according to molecular subtype and stromal histology in breast cancer. Breast Cancer Res Treat. 2015;149:727-41 pubmed 出版商
  82. Hole S, Pedersen A, Hansen S, Lundqvist J, Yde C, Lykkesfeldt A. New cell culture model for aromatase inhibitor-resistant breast cancer shows sensitivity to fulvestrant treatment and cross-resistance between letrozole and exemestane. Int J Oncol. 2015;46:1481-90 pubmed 出版商
  83. Rajaram R, Buric D, Caikovski M, Ayyanan A, Rougemont J, Shan J, et al. Progesterone and Wnt4 control mammary stem cells via myoepithelial crosstalk. EMBO J. 2015;34:641-52 pubmed 出版商
  84. Kim G, Lee J, Choi Y, Lee K, Lee J, Nam J, et al. Expression of matrix metalloproteinases and their inhibitors in different immunohistochemical-based molecular subtypes of breast cancer. BMC Cancer. 2014;14:959 pubmed 出版商
  85. Liu J, Yu Y, Sun J, He S, Wang X, Yin J, et al. Clinicopathologic characteristics and prognosis of primary squamous cell carcinoma of the breast. Breast Cancer Res Treat. 2015;149:133-40 pubmed 出版商
  86. Tanaka S, Miki Y, Hashimoto C, Takagi K, Doe Z, Li B, et al. The role of 5α-reductase type 1 associated with intratumoral dihydrotestosterone concentrations in human endometrial carcinoma. Mol Cell Endocrinol. 2015;401:56-64 pubmed 出版商
  87. Tamega A, Miot H, Moço N, Silva M, Marques M, Miot L. Gene and protein expression of oestrogen-β and progesterone receptors in facial melasma and adjacent healthy skin in women. Int J Cosmet Sci. 2015;37:222-8 pubmed 出版商
  88. Panis C, Pizzatti L, Corrêa S, Binato R, Lemos G, Herrera A, et al. The positive is inside the negative: HER2-negative tumors can express the HER2 intracellular domain and present a HER2-positive phenotype. Cancer Lett. 2015;357:186-95 pubmed 出版商
  89. Kunasegaran K, Ho V, Chang T, De Silva D, Bakker M, Christoffels V, et al. Transcriptional repressor Tbx3 is required for the hormone-sensing cell lineage in mammary epithelium. PLoS ONE. 2014;9:e110191 pubmed 出版商
  90. Nguyen D, Ouyang H, Mao J, Hlatky L, Barcellos Hoff M. Distinct luminal-type mammary carcinomas arise from orthotopic Trp53-null mammary transplantation of juvenile versus adult mice. Cancer Res. 2014;74:7149-58 pubmed 出版商
  91. Baccelli I, Stenzinger A, Vogel V, Pfitzner B, Klein C, Wallwiener M, et al. Co-expression of MET and CD47 is a novel prognosticator for survival of luminal breast cancer patients. Oncotarget. 2014;5:8147-60 pubmed
  92. Kuroda N, Fujishima N, Hayes M, Moritani S, Ichihara S. Encapsulated papillary carcinoma, apocrine type, of the breast. Malays J Pathol. 2014;36:139-43 pubmed
  93. Cho S, Park J, Kang Y. AGO2 and SETDB1 cooperate in promoter-targeted transcriptional silencing of the androgen receptor gene. Nucleic Acids Res. 2014;42:13545-56 pubmed 出版商
  94. Carvalho F, Bacchi L, Pincerato K, van de Rijn M, Bacchi C. Geographic differences in the distribution of molecular subtypes of breast cancer in Brazil. BMC Womens Health. 2014;14:102 pubmed 出版商
  95. Cha Y, Han S, Seol H, Oh D, Im S, Bang Y, et al. Immunohistochemical features associated with sensitivity to lapatinib-plus-capecitabine and resistance to trastuzumab in HER2-positive breast cancer. Anticancer Res. 2014;34:4275-80 pubmed
  96. Mingels M, Masadah R, Geels Y, Otte Holler I, de Kievit I, van der Laak J, et al. High prevalence of atypical hyperplasia in the endometrium of patients with epithelial ovarian cancer. Am J Clin Pathol. 2014;142:213-21 pubmed 出版商
  97. Fujiwara S, Hung M, Yamamoto Ibusuk C, Yamamoto Y, Yamamoto S, Tomiguchi M, et al. The localization of HER4 intracellular domain and expression of its alternately-spliced isoforms have prognostic significance in ER+ HER2- breast cancer. Oncotarget. 2014;5:3919-30 pubmed
  98. Syed B, Green A, Nolan C, Morgan D, Ellis I, Cheung K. Biological characteristics and clinical outcome of triple negative primary breast cancer in older women - comparison with their younger counterparts. PLoS ONE. 2014;9:e100573 pubmed 出版商
  99. Chen F, Li A, Gao S, Hollern D, Williams M, Liu F, et al. Tip30 controls differentiation of murine mammary luminal progenitor to estrogen receptor-positive luminal cell through regulating FoxA1 expression. Cell Death Dis. 2014;5:e1242 pubmed 出版商
  100. van der Post R, Bult P, Vogelaar I, Ligtenberg M, Hoogerbrugge N, van Krieken J. HNF4A immunohistochemistry facilitates distinction between primary and metastatic breast and gastric carcinoma. Virchows Arch. 2014;464:673-9 pubmed 出版商
  101. Balk Møller E, Kim J, Hopkinson B, Timmermans Wielenga V, Petersen O, Villadsen R. A marker of endocrine receptor-positive cells, CEACAM6, is shared by two major classes of breast cancer: luminal and HER2-enriched. Am J Pathol. 2014;184:1198-208 pubmed 出版商
  102. Melchor L, Molyneux G, Mackay A, Magnay F, Atienza M, Kendrick H, et al. Identification of cellular and genetic drivers of breast cancer heterogeneity in genetically engineered mouse tumour models. J Pathol. 2014;233:124-37 pubmed 出版商
  103. Liu Y, Nenutil R, Appleyard M, Murray K, Boylan M, Thompson A, et al. Lack of correlation of stem cell markers in breast cancer stem cells. Br J Cancer. 2014;110:2063-71 pubmed 出版商
  104. Park H, Jang M, Kim E, Kim H, Lee H, Kim Y, et al. High EGFR gene copy number predicts poor outcome in triple-negative breast cancer. Mod Pathol. 2014;27:1212-22 pubmed 出版商
  105. Chang T, Kunasegaran K, Tarulli G, De Silva D, Voorhoeve P, Pietersen A. New insights into lineage restriction of mammary gland epithelium using parity-identified mammary epithelial cells. Breast Cancer Res. 2014;16:R1 pubmed 出版商
  106. Balko J, Giltnane J, Wang K, Schwarz L, Young C, Cook R, et al. Molecular profiling of the residual disease of triple-negative breast cancers after neoadjuvant chemotherapy identifies actionable therapeutic targets. Cancer Discov. 2014;4:232-45 pubmed 出版商
  107. Faupel Badger J, Duggan M, Sherman M, Garcia Closas M, Yang X, Lissowska J, et al. Prolactin receptor expression and breast cancer: relationships with tumor characteristics among pre- and post-menopausal women in a population-based case-control study from Poland. Horm Cancer. 2014;5:42-50 pubmed 出版商
  108. Dong P, Kaneuchi M, Xiong Y, Cao L, Cai M, Liu X, et al. Identification of KLF17 as a novel epithelial to mesenchymal transition inducer via direct activation of TWIST1 in endometrioid endometrial cancer. Carcinogenesis. 2014;35:760-8 pubmed 出版商
  109. Li Q, Coulson H, Klaassen Z, Sharma S, Ramalingam P, Moses K, et al. Emerging association between androgen deprivation therapy and male meningioma: significant expression of luteinizing hormone-releasing hormone receptor in male meningioma. Prostate Cancer Prostatic Dis. 2013;16:387-90 pubmed 出版商
  110. Dewaele B, Przybyl J, Quattrone A, Finalet Ferreiro J, Vanspauwen V, Geerdens E, et al. Identification of a novel, recurrent MBTD1-CXorf67 fusion in low-grade endometrial stromal sarcoma. Int J Cancer. 2014;134:1112-22 pubmed 出版商
  111. Hagan C, Knutson T, Lange C. A Common Docking Domain in Progesterone Receptor-B links DUSP6 and CK2 signaling to proliferative transcriptional programs in breast cancer cells. Nucleic Acids Res. 2013;41:8926-42 pubmed 出版商
  112. Zhang J, Wang Y, Yin Q, Zhang W, Zhang T, Niu Y. An associated classification of triple negative breast cancer: the risk of relapse and the response to chemotherapy. Int J Clin Exp Pathol. 2013;6:1380-91 pubmed
  113. Hao J, Yang C, Liu F, Yang Y, Li S, Li W, et al. Accessory breast cancer occurring concurrently with bilateral primary invasive breast carcinomas: a report of two cases and literature review. Cancer Biol Med. 2012;9:197-201 pubmed 出版商
  114. Joensuu K, Leidenius M, Kero M, Andersson L, Horwitz K, Heikkila P. ER, PR, HER2, Ki-67 and CK5 in Early and Late Relapsing Breast Cancer-Reduced CK5 Expression in Metastases. Breast Cancer (Auckl). 2013;7:23-34 pubmed 出版商
  115. Zhao Y, Park S, Bagchi M, Taylor R, Katzenellenbogen B. The coregulator, repressor of estrogen receptor activity (REA), is a crucial regulator of the timing and magnitude of uterine decidualization. Endocrinology. 2013;154:1349-60 pubmed 出版商
  116. Escobar J, Klimowicz A, Dean M, Chu P, Nation J, Nelson G, et al. Quantification of ER/PR expression in ovarian low-grade serous carcinoma. Gynecol Oncol. 2013;128:371-6 pubmed 出版商
  117. Blackford J, Guo C, Zhu R, Dougherty E, Chow C, Simons S. Identification of location and kinetically defined mechanism of cofactors and reporter genes in the cascade of steroid-regulated transactivation. J Biol Chem. 2012;287:40982-95 pubmed 出版商
  118. Wang N, Geng L, Zhang S, He B, Wang J. Expression of PRB, FKBP52 and HB-EGF relating with ultrasonic evaluation of endometrial receptivity. PLoS ONE. 2012;7:e34010 pubmed 出版商
  119. Yamada Y, Yamamoto H, Ohishi Y, Nishiyama K, Fukuhara M, Saitou T, et al. Sclerosing variant of perivascular epithelioid cell tumor in the female genital organs. Pathol Int. 2011;61:768-72 pubmed 出版商
  120. Chu P, Hsu N, Liao A, Shih N, Hou M, Liu C. Overexpression of ?-enolase correlates with poor survival in canine mammary carcinoma. BMC Vet Res. 2011;7:62 pubmed 出版商
  121. Tieszen C, Goyeneche A, Brandhagen B, Ortbahn C, Telleria C. Antiprogestin mifepristone inhibits the growth of cancer cells of reproductive and non-reproductive origin regardless of progesterone receptor expression. BMC Cancer. 2011;11:207 pubmed 出版商
  122. Meyer D, Brinkhaus H, Müller U, Muller M, Cardiff R, Bentires Alj M. Luminal expression of PIK3CA mutant H1047R in the mammary gland induces heterogeneous tumors. Cancer Res. 2011;71:4344-51 pubmed 出版商
  123. Teng Y, Tan W, Thike A, Cheok P, Tse G, Wong N, et al. Mutations in the epidermal growth factor receptor (EGFR) gene in triple negative breast cancer: possible implications for targeted therapy. Breast Cancer Res. 2011;13:R35 pubmed 出版商
  124. Ferreira E, Gobbi H, Saraiva B, Cassali G. Histological and immunohistochemical identification of atypical ductal mammary hyperplasia as a preneoplastic marker in dogs. Vet Pathol. 2012;49:322-9 pubmed 出版商
  125. Baydar D, Kulac I, Gurel B, De Marzo A. A case of prostatic adenocarcinoma with aberrant p63 expression: presentation with detailed immunohistochemical study and FISH analysis. Int J Surg Pathol. 2011;19:131-6 pubmed 出版商
  126. Ferreira E, Gobbi H, Saraiva B, Cassali G. Columnar cell lesions of the canine mammary gland: pathological features and immunophenotypic analysis. BMC Cancer. 2010;10:61 pubmed 出版商