这是一篇来自已证抗体库的有关人类 催乳素受体 (prolactin receptor) 的综述,是根据33篇发表使用所有方法的文章归纳的。这综述旨在帮助来邦网的访客找到最适合催乳素受体 抗体。
催乳素受体 同义词: HPRL; MFAB; RI-PRLR; hPRLrI

赛默飞世尔
小鼠 单克隆(1A2B1)
  • 免疫组化; 人类; 图 4e
赛默飞世尔催乳素受体抗体(Invitrogen, 1A2B1)被用于被用于免疫组化在人类样本上 (图 4e). PLoS ONE (2021) ncbi
小鼠 单克隆(1A2B1)
  • 免疫印迹; 人类; 图 3a
赛默飞世尔催乳素受体抗体(生活技术, 35-9200)被用于被用于免疫印迹在人类样本上 (图 3a). Mol Cancer Ther (2017) ncbi
小鼠 单克隆(1A2B1)
  • 免疫组化; 人类; 图 1d
赛默飞世尔催乳素受体抗体(Invitrogen, 1A2B1)被用于被用于免疫组化在人类样本上 (图 1d). Rheumatology (Oxford) (2016) ncbi
小鼠 单克隆(1A2B1)
  • 免疫组化-石蜡切片; 人类; 图 1a
赛默飞世尔催乳素受体抗体(Invitrogen, 1A2B1)被用于被用于免疫组化-石蜡切片在人类样本上 (图 1a). J Clin Endocrinol Metab (2016) ncbi
小鼠 单克隆(1A2B1)
  • 免疫印迹; 人类; 图 1g
赛默飞世尔催乳素受体抗体(Invitrogen, 35-9200)被用于被用于免疫印迹在人类样本上 (图 1g). Oncotarget (2016) ncbi
小鼠 单克隆(B6.2)
  • 免疫组化; 人类; 1:200; 图 4
  • 免疫印迹; 人类; 1:2000; 图 4
赛默飞世尔催乳素受体抗体(Thermo Fisher Scientific, MA5-11955)被用于被用于免疫组化在人类样本上浓度为1:200 (图 4) 和 被用于免疫印迹在人类样本上浓度为1:2000 (图 4). Medicine (Baltimore) (2016) ncbi
小鼠 单克隆(1A2B1)
  • 流式细胞仪; 人类; 图 2d
赛默飞世尔催乳素受体抗体(Invitrogen, 1A2B1)被用于被用于流式细胞仪在人类样本上 (图 2d). Medicine (Baltimore) (2016) ncbi
小鼠 单克隆(1A2B1)
  • 免疫印迹; 小鼠; 图 1
  • 免疫组化-石蜡切片; 人类; 1:100; 图 4
  • 免疫细胞化学; 人类; 图 3
赛默飞世尔催乳素受体抗体(Invitrogen, 1A2B1)被用于被用于免疫印迹在小鼠样本上 (图 1), 被用于免疫组化-石蜡切片在人类样本上浓度为1:100 (图 4) 和 被用于免疫细胞化学在人类样本上 (图 3). PLoS ONE (2016) ncbi
小鼠 单克隆(1A2B1)
  • 免疫组化; 人类; 1:100; 图 1a
赛默飞世尔催乳素受体抗体(生活技术, 1A2B1)被用于被用于免疫组化在人类样本上浓度为1:100 (图 1a). J Natl Cancer Inst (2016) ncbi
小鼠 单克隆(U5)
  • 免疫细胞化学; 牛; 1:50; 图 5
赛默飞世尔催乳素受体抗体(Thermo Scientific, MA1-610)被用于被用于免疫细胞化学在牛样本上浓度为1:50 (图 5). Front Genet (2015) ncbi
小鼠 单克隆(1A2B1)
  • 免疫印迹; 人类; 1:1000; 图  3
赛默飞世尔催乳素受体抗体(Zymed Laboratories, 1A2B1)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图  3). J Biol Chem (2015) ncbi
小鼠 单克隆(1A2B1)
  • 免疫印迹; 人类
赛默飞世尔催乳素受体抗体(Invitrogen, 35-C9200)被用于被用于免疫印迹在人类样本上. PLoS ONE (2015) ncbi
小鼠 单克隆(1A2B1)
  • 免疫印迹; 人类; 1:1000
赛默飞世尔催乳素受体抗体(Zymed, 1A2B1)被用于被用于免疫印迹在人类样本上浓度为1:1000. Cancer Lett (2015) ncbi
小鼠 单克隆(U5)
  • 免疫细胞化学; 牛; 1:50
赛默飞世尔催乳素受体抗体(Thermo Scientific, MA1-610)被用于被用于免疫细胞化学在牛样本上浓度为1:50. Theriogenology (2014) ncbi
小鼠 单克隆(1A2B1)
  • 免疫印迹; 人类; 图 4
赛默飞世尔催乳素受体抗体(Zymed, 1A2B1)被用于被用于免疫印迹在人类样本上 (图 4). Breast Cancer Res Treat (2013) ncbi
小鼠 单克隆(1A2B1)
  • 免疫印迹; 人类
赛默飞世尔催乳素受体抗体(Invitrogen, 35-9200)被用于被用于免疫印迹在人类样本上. J Biol Chem (2013) ncbi
小鼠 单克隆(1A2B1)
  • 免疫组化; 人类; 图 6
赛默飞世尔催乳素受体抗体(Zymed, 1A2B1)被用于被用于免疫组化在人类样本上 (图 6). J Cell Mol Med (2012) ncbi
小鼠 单克隆(1A2B1)
  • 免疫印迹; 人类; 1:1000; 图 1
赛默飞世尔催乳素受体抗体(Zymed, 35-9200)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 1). Cancer Lett (2011) ncbi
小鼠 单克隆(1A2B1)
  • 免疫组化; 人类; 1:500; 图 2
赛默飞世尔催乳素受体抗体(Invitrogen, clone 1A2B1)被用于被用于免疫组化在人类样本上浓度为1:500 (图 2). Biochemistry (2011) ncbi
小鼠 单克隆(1A2B1)
  • 免疫组化-石蜡切片; 人类; 1:500; 图 2
赛默飞世尔催乳素受体抗体(Zymed, 1A2B1)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:500 (图 2). J Endocrinol (2011) ncbi
小鼠 单克隆(1A2B1)
  • 免疫印迹; 人类; 图 17.2
赛默飞世尔催乳素受体抗体(Zymed, 35- 9200)被用于被用于免疫印迹在人类样本上 (图 17.2). Methods Enzymol (2010) ncbi
小鼠 单克隆(1A2B1)
  • 免疫印迹; 人类; 图 1
赛默飞世尔催乳素受体抗体(Zymed, 1A2B1)被用于被用于免疫印迹在人类样本上 (图 1). Endocr Relat Cancer (2010) ncbi
小鼠 单克隆(1A2B1)
  • 免疫印迹; 人类
赛默飞世尔催乳素受体抗体(Zymed Laboratories, 35-9200)被用于被用于免疫印迹在人类样本上. J Biol Chem (2010) ncbi
小鼠 单克隆(1A2B1)
  • 免疫印迹; 人类; 图 3
赛默飞世尔催乳素受体抗体(Invitrogen, 1A2B1)被用于被用于免疫印迹在人类样本上 (图 3). Mol Cell Biol (2008) ncbi
小鼠 单克隆(1A2B1)
  • 免疫沉淀; 人类; 图 3
  • 免疫印迹; 人类; 图 3
赛默飞世尔催乳素受体抗体(Zymed, 35-9200)被用于被用于免疫沉淀在人类样本上 (图 3) 和 被用于免疫印迹在人类样本上 (图 3). Endocr Relat Cancer (2006) ncbi
小鼠 单克隆(1A2B1)
  • 免疫印迹; 人类; 1:2000; 图 5
赛默飞世尔催乳素受体抗体(Zymed, 35-9200)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 5). J Steroid Biochem Mol Biol (2004) ncbi
小鼠 单克隆(1A2B1)
  • 免疫印迹; 人类; 1:2000; 图 4
赛默飞世尔催乳素受体抗体(Zymed, 35-9200)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 4). Endocrinology (2003) ncbi
艾博抗(上海)贸易有限公司
小鼠 单克隆(T6)
  • 免疫组化-石蜡切片; 人类; 1:500; 图 3a
  • 免疫印迹; 人类; 1:500; 图 2g, s1c
艾博抗(上海)贸易有限公司催乳素受体抗体(Abcam, ab2773)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:500 (图 3a) 和 被用于免疫印迹在人类样本上浓度为1:500 (图 2g, s1c). Front Physiol (2022) ncbi
小鼠 单克隆(U5)
  • 免疫印迹; 人类; 1:100; 图 2c
艾博抗(上海)贸易有限公司催乳素受体抗体(abcam, ab2772)被用于被用于免疫印迹在人类样本上浓度为1:100 (图 2c). Am J Cancer Res (2022) ncbi
domestic rabbit 单克隆(EPR7184(2))
  • 免疫印迹; 人类; 图 2c
艾博抗(上海)贸易有限公司催乳素受体抗体(Abcam, ab170935)被用于被用于免疫印迹在人类样本上 (图 2c). PLoS ONE (2021) ncbi
domestic rabbit 单克隆(EPR7184(2))
  • 免疫组化-石蜡切片; 小鼠; 1:100; 图 3g
艾博抗(上海)贸易有限公司催乳素受体抗体(Abcam, ab170935)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:100 (图 3g). Front Cell Dev Biol (2021) ncbi
domestic rabbit 单克隆(EPR7184(2))
  • 免疫组化; 大鼠; 1:100; 图 3a
艾博抗(上海)贸易有限公司催乳素受体抗体(Abcam, ab170935)被用于被用于免疫组化在大鼠样本上浓度为1:100 (图 3a). J Reprod Dev (2020) ncbi
小鼠 单克隆(U5)
  • 免疫印迹; 人类; 1:1000
艾博抗(上海)贸易有限公司催乳素受体抗体(Abcam, U5)被用于被用于免疫印迹在人类样本上浓度为1:1000. J Biol Chem (2015) ncbi
小鼠 单克隆(U5)
  • 免疫组化-石蜡切片; 大鼠; 1:80; 图 2b
艾博抗(上海)贸易有限公司催乳素受体抗体(Abcam, ab2772)被用于被用于免疫组化-石蜡切片在大鼠样本上浓度为1:80 (图 2b). Chin J Integr Med (2015) ncbi
圣克鲁斯生物技术
小鼠 单克隆(D-7)
  • 免疫细胞化学基因敲除验证; 人类; 1:100; 图 2c
  • 免疫组化基因敲除验证; 人类; 图 5c, 6c
  • 免疫印迹基因敲除验证; 人类; 1:1000; 图 s2a, s2b
圣克鲁斯生物技术催乳素受体抗体(Santa-Cruz, sc-377098)被用于被用于免疫细胞化学基因敲除验证在人类样本上浓度为1:100 (图 2c), 被用于免疫组化基因敲除验证在人类样本上 (图 5c, 6c) 和 被用于免疫印迹基因敲除验证在人类样本上浓度为1:1000 (图 s2a, s2b). Oncogenesis (2021) ncbi
文章列表
  1. Su Y, Xu J, Gao R, Liu X, Liu T, Li C, et al. The Circ-CYP24A1-miR-224-PRLR Axis Impairs Cell Proliferation and Apoptosis in Recurrent Miscarriage. Front Physiol. 2022;13:778116 pubmed 出版商
  2. Castillo P, Aisagbonhi O, Saenz C, ElShamy W. Novel insights linking BRCA1-IRIS role in mammary gland development to formation of aggressive PABCs: the case for longer breastfeeding. Am J Cancer Res. 2022;12:396-426 pubmed
  3. Alkharusi A, AlMuslahi A, AlBalushi N, AlAjmi R, AlRawahi S, AlFarqani A, et al. Connections between prolactin and ovarian cancer. PLoS ONE. 2021;16:e0255701 pubmed 出版商
  4. Shao C, Lou P, Liu R, Bi X, Li G, Yang X, et al. Hormone-Responsive BMP Signaling Expands Myoepithelial Cell Lineages and Prevents Alveolar Precocity in Mammary Gland. Front Cell Dev Biol. 2021;9:691050 pubmed 出版商
  5. Shams A, Binothman N, Boudreault J, Wang N, Shams F, Hamam D, et al. Prolactin receptor-driven combined luminal and epithelial differentiation in breast cancer restricts plasticity, stemness, tumorigenesis and metastasis. Oncogenesis. 2021;10:10 pubmed 出版商
  6. Horiguchi K, Yoshida S, Tsukada T, Nakakura T, Fujiwara K, Hasegawa R, et al. Expression and functions of cluster of differentiation 9 and 81 in rat mammary epithelial cells. J Reprod Dev. 2020;66:515-522 pubmed 出版商
  7. Andreev J, Thambi N, Perez Bay A, Delfino F, Martin J, Kelly M, et al. Bispecific Antibodies and Antibody-Drug Conjugates (ADCs) Bridging HER2 and Prolactin Receptor Improve Efficacy of HER2 ADCs. Mol Cancer Ther. 2017;16:681-693 pubmed 出版商
  8. Tang M, Reedquist K, Garcia S, Fernandez B, Codullo V, Vieira Sousa E, et al. The prolactin receptor is expressed in rheumatoid arthritis and psoriatic arthritis synovial tissue and contributes to macrophage activation. Rheumatology (Oxford). 2016;55:2248-2259 pubmed
  9. Chakhtoura Z, Laki F, Bernadet M, Cherifi I, Chiche A, Pigat N, et al. Gain-of-function Prolactin Receptor Variants Are Not Associated With Breast Cancer and Multiple Fibroadenoma Risk. J Clin Endocrinol Metab. 2016;101:4449-4460 pubmed
  10. Barcus C, Keely P, Eliceiri K, Schuler L. Prolactin signaling through focal adhesion complexes is amplified by stiff extracellular matrices in breast cancer cells. Oncotarget. 2016;7:48093-48106 pubmed 出版商
  11. Kim Y, Kim H, Yang D, Jung S, Noh M, Lee J, et al. Pineal Diffuse Large B-Cell Lymphoma Concomitant With Pituitary Prolactinoma: Possible Correlation Between 2 Distinguished Pathologies: A Case Report. Medicine (Baltimore). 2016;95:e2923 pubmed 出版商
  12. Legorreta Haquet M, Chávez Rueda K, Chávez Sánchez L, Cervera Castillo H, Zenteno Galindo E, Barile Fabris L, et al. Function of Treg Cells Decreased in Patients With Systemic Lupus Erythematosus Due To the Effect of Prolactin. Medicine (Baltimore). 2016;95:e2384 pubmed 出版商
  13. Alkharusi A, Lesma E, Ancona S, Chiaramonte E, Nystrom T, Gorio A, et al. Role of Prolactin Receptors in Lymphangioleiomyomatosis. PLoS ONE. 2016;11:e0146653 pubmed 出版商
  14. Sutherland A, Forsyth A, Cong Y, Grant L, Juan T, Lee J, et al. The Role of Prolactin in Bone Metastasis and Breast Cancer Cell-Mediated Osteoclast Differentiation. J Natl Cancer Inst. 2016;108: pubmed 出版商
  15. Lebedeva I, Singina G, Lopukhov A, Shedova E, Zinovieva N. Prolactin and growth hormone affect metaphase-II chromosomes in aging oocytes via cumulus cells using similar signaling pathways. Front Genet. 2015;6:274 pubmed 出版商
  16. Zhang C, Nygaard M, Haxholm G, Boutillon F, Bernadet M, Hoos S, et al. A Residue Quartet in the Extracellular Domain of the Prolactin Receptor Selectively Controls Mitogen-activated Protein Kinase Signaling. J Biol Chem. 2015;290:11890-904 pubmed 出版商
  17. Barcus C, Holt E, Keely P, Eliceiri K, Schuler L. Dense collagen-I matrices enhance pro-tumorigenic estrogen-prolactin crosstalk in MCF-7 and T47D breast cancer cells. PLoS ONE. 2015;10:e0116891 pubmed 出版商
  18. Huang K, Tan D, Chen K, Walker A. Blockade of estrogen-stimulated proliferation by a constitutively-active prolactin receptor having lower expression in invasive ductal carcinoma. Cancer Lett. 2015;358:152-60 pubmed 出版商
  19. Lebedeva I, Singina G, Volkova N, Vejlsted M, Zinovieva N, Schmidt M. Prolactin affects bovine oocytes through direct and cumulus-mediated pathways. Theriogenology. 2014;82:1154-64 pubmed 出版商
  20. Xiong F, Gui J, Yang W, Li J, Huang G. Effects of acupuncture on progesterone and prolactin in rats of embryo implantation dysfunction. Chin J Integr Med. 2015;21:58-66 pubmed 出版商
  21. Nitze L, Galsgaard E, Din N, Lund V, Rasmussen B, Berchtold M, et al. Reevaluation of the proposed autocrine proliferative function of prolactin in breast cancer. Breast Cancer Res Treat. 2013;142:31-44 pubmed 出版商
  22. Barcus C, Keely P, Eliceiri K, Schuler L. Stiff collagen matrices increase tumorigenic prolactin signaling in breast cancer cells. J Biol Chem. 2013;288:12722-32 pubmed 出版商
  23. Reuwer A, Nowak Sliwinska P, Mans L, van der Loos C, von der Thüsen J, Twickler M, et al. Functional consequences of prolactin signalling in endothelial cells: a potential link with angiogenesis in pathophysiology?. J Cell Mol Med. 2012;16:2035-48 pubmed 出版商
  24. Tan D, Chen K, Khoo T, Walker A. Prolactin increases survival and migration of ovarian cancer cells: importance of prolactin receptor type and therapeutic potential of S179D and G129R receptor antagonists. Cancer Lett. 2011;310:101-8 pubmed 出版商
  25. Liu W, Brooks C. Functional impact of manipulation on the relative orientation of human prolactin receptor domains. Biochemistry. 2011;50:5333-44 pubmed 出版商
  26. Reuwer A, van Eijk M, Houttuijn Bloemendaal F, van der Loos C, Claessen N, Teeling P, et al. The prolactin receptor is expressed in macrophages within human carotid atherosclerotic plaques: a role for prolactin in atherogenesis?. J Endocrinol. 2011;208:107-17 pubmed 出版商
  27. Goffin V, Bogorad R, Touraine P. Identification of gain-of-function variants of the human prolactin receptor. Methods Enzymol. 2010;484:329-55 pubmed 出版商
  28. Rasmussen L, Frederiksen K, Din N, Galsgaard E, Christensen L, Berchtold M, et al. Prolactin and oestrogen synergistically regulate gene expression and proliferation of breast cancer cells. Endocr Relat Cancer. 2010;17:809-22 pubmed 出版商
  29. Carver K, Piazza T, Schuler L. Prolactin enhances insulin-like growth factor I receptor phosphorylation by decreasing its association with the tyrosine phosphatase SHP-2 in MCF-7 breast cancer cells. J Biol Chem. 2010;285:8003-12 pubmed 出版商
  30. Varghese B, Barriere H, Carbone C, Banerjee A, Swaminathan G, Plotnikov A, et al. Polyubiquitination of prolactin receptor stimulates its internalization, postinternalization sorting, and degradation via the lysosomal pathway. Mol Cell Biol. 2008;28:5275-87 pubmed 出版商
  31. Ueda E, Ozerdem U, Chen Y, Yao M, Huang K, Sun H, et al. A molecular mimic demonstrates that phosphorylated human prolactin is a potent anti-angiogenic hormone. Endocr Relat Cancer. 2006;13:95-111 pubmed
  32. Gutzman J, Miller K, Schuler L. Endogenous human prolactin and not exogenous human prolactin induces estrogen receptor alpha and prolactin receptor expression and increases estrogen responsiveness in breast cancer cells. J Steroid Biochem Mol Biol. 2004;88:69-77 pubmed
  33. Schroeder M, Brockman J, Walker A, Schuler L. Inhibition of prolactin (PRL)-induced proliferative signals in breast cancer cells by a molecular mimic of phosphorylated PRL, S179D-PRL. Endocrinology. 2003;144:5300-7 pubmed