这是一篇来自已证抗体库的有关人类 蛋白质二硫键异构酶 (protein disulfide isomerase) 的综述,是根据65篇发表使用所有方法的文章归纳的。这综述旨在帮助来邦网的访客找到最适合蛋白质二硫键异构酶 抗体。
蛋白质二硫键异构酶 同义词: CLCRP1; DSI; ERBA2L; GIT; P4Hbeta; PDI; PDIA1; PHDB; PO4DB; PO4HB; PROHB

赛默飞世尔
小鼠 单克隆(RL90)
  • 免疫组化-石蜡切片; 人类; 1:500; 图 3a, 5c
赛默飞世尔蛋白质二硫键异构酶 抗体(Thermo, MA3-019-A647)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:500 (图 3a, 5c). Stem Cell Reports (2021) ncbi
小鼠 单克隆(RL90)
  • 免疫细胞化学; 人类; 图 7c
赛默飞世尔蛋白质二硫键异构酶 抗体(Thermo, MA3-019)被用于被用于免疫细胞化学在人类样本上 (图 7c). elife (2020) ncbi
小鼠 单克隆(RL90)
  • 免疫细胞化学; 小鼠; 图 6a
赛默飞世尔蛋白质二硫键异构酶 抗体(Thermo Fisher, MA3019)被用于被用于免疫细胞化学在小鼠样本上 (图 6a). J Biol Chem (2018) ncbi
小鼠 单克隆(RL90)
  • 免疫印迹; 小鼠; 图 6a
赛默飞世尔蛋白质二硫键异构酶 抗体(Thermo, RL90- MA3019)被用于被用于免疫印迹在小鼠样本上 (图 6a). Sci Rep (2017) ncbi
小鼠 单克隆(RL90)
  • 免疫细胞化学; 人类; 1:300; 图 6b
赛默飞世尔蛋白质二硫键异构酶 抗体(Invitrogen, MA3-019)被用于被用于免疫细胞化学在人类样本上浓度为1:300 (图 6b). Sci Signal (2017) ncbi
小鼠 单克隆(RL90)
  • 免疫细胞化学; 人类; 1:500; 图 4a
赛默飞世尔蛋白质二硫键异构酶 抗体(Thermo Scientific, MA3-019)被用于被用于免疫细胞化学在人类样本上浓度为1:500 (图 4a). Nat Commun (2017) ncbi
小鼠 单克隆(RL77)
  • 免疫印迹; 人类; 图 2d
赛默飞世尔蛋白质二硫键异构酶 抗体(生活技术, RL77)被用于被用于免疫印迹在人类样本上 (图 2d). J Biol Chem (2017) ncbi
小鼠 单克隆(RL77)
  • 免疫细胞化学; 小鼠; 1:100; 图 s3b
赛默飞世尔蛋白质二硫键异构酶 抗体(Affinity BioReagents, MA3-018)被用于被用于免疫细胞化学在小鼠样本上浓度为1:100 (图 s3b). J Cell Sci (2017) ncbi
小鼠 单克隆(RL77)
  • 免疫印迹; 人类; 图 s4
赛默飞世尔蛋白质二硫键异构酶 抗体(Thermo Scientific, MA3-018)被用于被用于免疫印迹在人类样本上 (图 s4). Mol Cell Proteomics (2016) ncbi
小鼠 单克隆(RL90)
  • 免疫印迹; 大鼠; 图 2c
赛默飞世尔蛋白质二硫键异构酶 抗体(Thermo Scientific, MA3-019)被用于被用于免疫印迹在大鼠样本上 (图 2c). J Cereb Blood Flow Metab (2017) ncbi
小鼠 单克隆(RL90)
  • 免疫细胞化学; 人类; 50 ug/ml; 图 4
赛默飞世尔蛋白质二硫键异构酶 抗体(Thermo scientific, RL90)被用于被用于免疫细胞化学在人类样本上浓度为50 ug/ml (图 4). Sci Rep (2016) ncbi
小鼠 单克隆(RL90)
  • 免疫细胞化学; 人类; 图 s9
赛默飞世尔蛋白质二硫键异构酶 抗体(Affinity BioReagents, MA 3-019)被用于被用于免疫细胞化学在人类样本上 (图 s9). Nat Neurosci (2015) ncbi
小鼠 单克隆(RL90)
  • 免疫细胞化学; 大鼠
赛默飞世尔蛋白质二硫键异构酶 抗体(Pierce, MA3-019)被用于被用于免疫细胞化学在大鼠样本上. J Lipid Res (2015) ncbi
小鼠 单克隆(RL90)
  • 免疫印迹; 人类; 1:2000; 图 1b
赛默飞世尔蛋白质二硫键异构酶 抗体(ThermoFisher SCIENTIFIC, MA3-019)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 1b). Sci Signal (2015) ncbi
小鼠 单克隆(RL90)
  • 免疫细胞化学; 猕猴; 图 2
赛默飞世尔蛋白质二硫键异构酶 抗体(Affinity BioReagents, MA3-019)被用于被用于免疫细胞化学在猕猴样本上 (图 2). Nature (2015) ncbi
小鼠 单克隆(RL90)
  • 免疫印迹; 人类; 图 1,2,3,4,5,6
赛默飞世尔蛋白质二硫键异构酶 抗体(Thermo fisher, MA3-019)被用于被用于免疫印迹在人类样本上 (图 1,2,3,4,5,6). J Cell Biol (2014) ncbi
小鼠 单克隆(RL77)
  • 免疫细胞化学; African green monkey; 1:200; 图 4
赛默飞世尔蛋白质二硫键异构酶 抗体(Affinity BioReagents, RL77)被用于被用于免疫细胞化学在African green monkey样本上浓度为1:200 (图 4). Nat Commun (2014) ncbi
小鼠 单克隆(RL90)
  • 免疫组化-冰冻切片; 大鼠; 1:200
  • 免疫组化; 大鼠; 1:200
赛默飞世尔蛋白质二硫键异构酶 抗体(Thermo Scientific, MA3-019)被用于被用于免疫组化-冰冻切片在大鼠样本上浓度为1:200 和 被用于免疫组化在大鼠样本上浓度为1:200. Transl Stroke Res (2013) ncbi
小鼠 单克隆(RL90)
  • 免疫组化-冰冻切片; 大鼠; 1:200
  • 免疫组化; 大鼠; 1:200
  • 免疫印迹; 大鼠; 1:1000
赛默飞世尔蛋白质二硫键异构酶 抗体(Thermo Scientific, MA3-019)被用于被用于免疫组化-冰冻切片在大鼠样本上浓度为1:200, 被用于免疫组化在大鼠样本上浓度为1:200 和 被用于免疫印迹在大鼠样本上浓度为1:1000. Neuroscience (2011) ncbi
小鼠 单克隆(RL77)
  • 免疫细胞化学; 人类
赛默飞世尔蛋白质二硫键异构酶 抗体(Affinity BioReagents, RL77)被用于被用于免疫细胞化学在人类样本上. J Lipid Res (2008) ncbi
圣克鲁斯生物技术
小鼠 单克隆(C-2)
  • 免疫细胞化学; 人类; 图 3e
圣克鲁斯生物技术蛋白质二硫键异构酶 抗体(Santa-Cruz, sc-74551)被用于被用于免疫细胞化学在人类样本上 (图 3e). Toxins (Basel) (2017) ncbi
小鼠 单克隆(C-2)
  • 免疫印迹; 小鼠; 图 3b
圣克鲁斯生物技术蛋白质二硫键异构酶 抗体(Santa Cruz, sc-74551)被用于被用于免疫印迹在小鼠样本上 (图 3b). Lab Invest (2017) ncbi
小鼠 单克隆(A-1)
  • 免疫组化; 大鼠; 1:50; 图 3
圣克鲁斯生物技术蛋白质二硫键异构酶 抗体(Santa Cruz Biotechnology, sc-376370)被用于被用于免疫组化在大鼠样本上浓度为1:50 (图 3). Nutr Diabetes (2015) ncbi
小鼠 单克隆(F-11)
  • 免疫细胞化学; 人类; 1:200; 图 1d
  • 免疫印迹; 人类; 1:200; 图 1e
圣克鲁斯生物技术蛋白质二硫键异构酶 抗体(Santa Cruz, sc-166474)被用于被用于免疫细胞化学在人类样本上浓度为1:200 (图 1d) 和 被用于免疫印迹在人类样本上浓度为1:200 (图 1e). Mol Med Rep (2015) ncbi
Novus Biologicals
小鼠 单克隆(RL90)
  • 流式细胞仪; 人类; 图 1b
  • 免疫细胞化学; 人类; 图 1d
Novus Biologicals蛋白质二硫键异构酶 抗体(Novus, NB300-517)被用于被用于流式细胞仪在人类样本上 (图 1b) 和 被用于免疫细胞化学在人类样本上 (图 1d). Cell Cycle (2017) ncbi
小鼠 单克隆(RL90)
  • 免疫印迹; African green monkey; 1:2000; 图 2k
Novus Biologicals蛋白质二硫键异构酶 抗体(Novus Biologicals, NB300-517)被用于被用于免疫印迹在African green monkey样本上浓度为1:2000 (图 2k). Biochim Biophys Acta (2016) ncbi
艾博抗(上海)贸易有限公司
domestic rabbit 单克隆(EPR9499)
  • 免疫细胞化学; 人类; 1:50; 图 s1
艾博抗(上海)贸易有限公司蛋白质二硫键异构酶 抗体(Abcam, ab137110)被用于被用于免疫细胞化学在人类样本上浓度为1:50 (图 s1). Nat Med (2016) ncbi
赛信通(上海)生物试剂有限公司
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 s4c
赛信通(上海)生物试剂有限公司蛋白质二硫键异构酶 抗体(Cell signaling, 2446S)被用于被用于免疫印迹在小鼠样本上 (图 s4c). Redox Biol (2021) ncbi
domestic rabbit 单克隆(C81H6)
  • 免疫印迹; 小鼠; 1:1000; 图 4b
赛信通(上海)生物试剂有限公司蛋白质二硫键异构酶 抗体(Cell Signaling, 3501)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 4b). Aging Cell (2021) ncbi
domestic rabbit 单克隆(C81H6)
  • 免疫印迹; 人类; 1:50; 图 4h
赛信通(上海)生物试剂有限公司蛋白质二硫键异构酶 抗体(CST, 3501T)被用于被用于免疫印迹在人类样本上浓度为1:50 (图 4h). Stem Cell Reports (2021) ncbi
domestic rabbit 单克隆(C81H6)
  • 免疫印迹; 人类; 图 1a
赛信通(上海)生物试剂有限公司蛋白质二硫键异构酶 抗体(Cell Signaling, 3501P)被用于被用于免疫印迹在人类样本上 (图 1a). Oncogene (2021) ncbi
domestic rabbit 单克隆(C81H6)
  • 免疫印迹; 人类; 1:1000; 图 3d, 3f
赛信通(上海)生物试剂有限公司蛋白质二硫键异构酶 抗体(CST, 3501)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3d, 3f). Nat Commun (2020) ncbi
domestic rabbit 单克隆(C81H6)
  • 免疫组化-石蜡切片; 小鼠; 1:1000; 图 4d
赛信通(上海)生物试剂有限公司蛋白质二硫键异构酶 抗体(Cell Signaling, 3501)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:1000 (图 4d). Cell Death Dis (2020) ncbi
domestic rabbit 单克隆(C81H6)
  • 免疫印迹; 小鼠; 1:1000; 图 3b
赛信通(上海)生物试剂有限公司蛋白质二硫键异构酶 抗体(Cell Signaling, 3501)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 3b). elife (2019) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 1:1000; 图 3g
赛信通(上海)生物试剂有限公司蛋白质二硫键异构酶 抗体(Cell Signaling Technology, 2446S)被用于被用于免疫细胞化学在人类样本上浓度为1:1000 (图 3g). Antioxid Redox Signal (2019) ncbi
domestic rabbit 单克隆(C81H6)
  • 免疫细胞化学; 人类; 1:500; 图 s6e
赛信通(上海)生物试剂有限公司蛋白质二硫键异构酶 抗体(Cell Signaling, 3501)被用于被用于免疫细胞化学在人类样本上浓度为1:500 (图 s6e). Cell (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:500; 图 3c
赛信通(上海)生物试剂有限公司蛋白质二硫键异构酶 抗体(Cell Signaling Technology, 2446S)被用于被用于免疫印迹在小鼠样本上浓度为1:500 (图 3c). J Biol Chem (2019) ncbi
domestic rabbit 单克隆(C81H6)
  • 免疫细胞化学; 小鼠; 1:100; 图 1a
赛信通(上海)生物试剂有限公司蛋白质二硫键异构酶 抗体(Cell Signaling, 3501S)被用于被用于免疫细胞化学在小鼠样本上浓度为1:100 (图 1a). Oncoimmunology (2018) ncbi
domestic rabbit 单克隆(C81H6)
  • 免疫印迹; 人类; 图 8d
赛信通(上海)生物试剂有限公司蛋白质二硫键异构酶 抗体(Cell Signaling, 3501)被用于被用于免疫印迹在人类样本上 (图 8d). Mol Cell Biol (2018) ncbi
domestic rabbit 单克隆(C81H6)
  • 免疫组化; 人类; 1:1500; 图 s2c
赛信通(上海)生物试剂有限公司蛋白质二硫键异构酶 抗体(CST, 3501S)被用于被用于免疫组化在人类样本上浓度为1:1500 (图 s2c). Sci Adv (2018) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:2000; 图 s1a
赛信通(上海)生物试剂有限公司蛋白质二硫键异构酶 抗体(Cell Signaling, 2446)被用于被用于免疫印迹在小鼠样本上浓度为1:2000 (图 s1a). NPJ Parkinsons Dis (2018) ncbi
domestic rabbit 单克隆(C81H6)
  • 免疫细胞化学; 人类; 1:100; 图 s7
赛信通(上海)生物试剂有限公司蛋白质二硫键异构酶 抗体(Cell Signaling, 3501)被用于被用于免疫细胞化学在人类样本上浓度为1:100 (图 s7). Biochemistry (2018) ncbi
domestic rabbit 单克隆(C81H6)
  • 免疫印迹; 小鼠; 1:1000; 图 3d
赛信通(上海)生物试剂有限公司蛋白质二硫键异构酶 抗体(Cell Signaling, 3501)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 3d). J Clin Invest (2017) ncbi
domestic rabbit 单克隆(C81H6)
  • 免疫印迹; 小鼠; 图 5j
赛信通(上海)生物试剂有限公司蛋白质二硫键异构酶 抗体(Cell Signaling, 3501)被用于被用于免疫印迹在小鼠样本上 (图 5j). Mol Cell (2017) ncbi
domestic rabbit 单克隆(C81H6)
  • 免疫细胞化学; 人类; 1:200; 图 5H
赛信通(上海)生物试剂有限公司蛋白质二硫键异构酶 抗体(Cell signaling, 3501)被用于被用于免疫细胞化学在人类样本上浓度为1:200 (图 5H). Placenta (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 2f
  • 免疫组化; 小鼠; 1:1000; 图 EV3a
  • 免疫印迹; 小鼠; 1:1000; 图 4b
赛信通(上海)生物试剂有限公司蛋白质二硫键异构酶 抗体(Cell Signaling, 2446)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 2f), 被用于免疫组化在小鼠样本上浓度为1:1000 (图 EV3a) 和 被用于免疫印迹在小鼠样本上浓度为1:1000 (图 4b). EMBO Mol Med (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 1
赛信通(上海)生物试剂有限公司蛋白质二硫键异构酶 抗体(Cell Signaling, 2446)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 1). elife (2016) ncbi
domestic rabbit 单克隆(C81H6)
  • 免疫细胞化学; African green monkey; 1:4000
赛信通(上海)生物试剂有限公司蛋白质二硫键异构酶 抗体(Cell Signaling, C81H6)被用于被用于免疫细胞化学在African green monkey样本上浓度为1:4000. J Biol Chem (2016) ncbi
domestic rabbit 单克隆(C81H6)
  • 免疫印迹; 小鼠; 1:1000; 图 4b
赛信通(上海)生物试剂有限公司蛋白质二硫键异构酶 抗体(Cell Signaling, 3501)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 4b). Int J Biochem Cell Biol (2016) ncbi
domestic rabbit 单克隆(C81H6)
  • 免疫印迹; 小鼠; 图 3g
  • 免疫印迹; 大鼠; 图 3e
赛信通(上海)生物试剂有限公司蛋白质二硫键异构酶 抗体(Cell signaling Technology, 3501)被用于被用于免疫印迹在小鼠样本上 (图 3g) 和 被用于免疫印迹在大鼠样本上 (图 3e). Sci Rep (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:5000; 图 s7
赛信通(上海)生物试剂有限公司蛋白质二硫键异构酶 抗体(Cell Signaling, 2446)被用于被用于免疫印迹在人类样本上浓度为1:5000 (图 s7). Nat Commun (2016) ncbi
domestic rabbit 单克隆(C81H6)
  • 免疫组化; 小鼠; 1:1000; 图 2
赛信通(上海)生物试剂有限公司蛋白质二硫键异构酶 抗体(Cell Signaling, C81H6)被用于被用于免疫组化在小鼠样本上浓度为1:1000 (图 2). Ann Clin Transl Neurol (2016) ncbi
domestic rabbit 单克隆(C81H6)
  • 免疫印迹; 小鼠; 图 4a
赛信通(上海)生物试剂有限公司蛋白质二硫键异构酶 抗体(CST, 3501)被用于被用于免疫印迹在小鼠样本上 (图 4a). J Gerontol A Biol Sci Med Sci (2017) ncbi
domestic rabbit 单克隆(C81H6)
  • 免疫细胞化学; 人类; 图 8
赛信通(上海)生物试剂有限公司蛋白质二硫键异构酶 抗体(Cell Signaling Technologies, C81H6)被用于被用于免疫细胞化学在人类样本上 (图 8). PLoS ONE (2016) ncbi
domestic rabbit 单克隆(C81H6)
  • 免疫细胞化学; 人类; 图 4
赛信通(上海)生物试剂有限公司蛋白质二硫键异构酶 抗体(Cell Signaling, 3501S)被用于被用于免疫细胞化学在人类样本上 (图 4). Nature (2015) ncbi
domestic rabbit 单克隆(C81H6)
  • 免疫印迹; 小鼠; 1:1000; 图 1c
赛信通(上海)生物试剂有限公司蛋白质二硫键异构酶 抗体(Cell Signaling Technology, 3501)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 1c). J Neurosci (2015) ncbi
domestic rabbit 单克隆(C81H6)
  • 免疫印迹; 小鼠; 1:1000; 图 3
  • 免疫印迹; 人类; 1:1000; 图 1
赛信通(上海)生物试剂有限公司蛋白质二硫键异构酶 抗体(Cell Signaling Technology, 3501)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 3) 和 被用于免疫印迹在人类样本上浓度为1:1000 (图 1). Proc Natl Acad Sci U S A (2015) ncbi
domestic rabbit 单克隆(C81H6)
  • 免疫印迹; 大鼠; 1:1000; 图 3
赛信通(上海)生物试剂有限公司蛋白质二硫键异构酶 抗体(Cell Signaling, 3501)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 3). PLoS ONE (2015) ncbi
domestic rabbit 单克隆(C81H6)
  • 免疫细胞化学; 小鼠; 图 s6
赛信通(上海)生物试剂有限公司蛋白质二硫键异构酶 抗体(Cell Signalling Technology, C81H6)被用于被用于免疫细胞化学在小鼠样本上 (图 s6). EMBO J (2015) ncbi
domestic rabbit 单克隆(C81H6)
  • 免疫印迹; 大鼠; 1:1000; 图 5
赛信通(上海)生物试剂有限公司蛋白质二硫键异构酶 抗体(Cell Signaling, 3501)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 5). PLoS ONE (2015) ncbi
domestic rabbit 单克隆(C81H6)
  • 免疫印迹; 小鼠; 1:1000
赛信通(上海)生物试剂有限公司蛋白质二硫键异构酶 抗体(Cell Signaling Technology, 3501)被用于被用于免疫印迹在小鼠样本上浓度为1:1000. J Cell Biol (2015) ncbi
domestic rabbit 单克隆(C81H6)
  • 免疫印迹; 小鼠; 图 s1
  • 免疫印迹; 大鼠; 图 1
赛信通(上海)生物试剂有限公司蛋白质二硫键异构酶 抗体(Cell Signaling, 3501)被用于被用于免疫印迹在小鼠样本上 (图 s1) 和 被用于免疫印迹在大鼠样本上 (图 1). Mol Biol Cell (2015) ncbi
domestic rabbit 单克隆(C81H6)
  • 免疫印迹; 人类; 1:500
赛信通(上海)生物试剂有限公司蛋白质二硫键异构酶 抗体(Cell Signaling Technologies, 3501)被用于被用于免疫印迹在人类样本上浓度为1:500. Endocrinology (2013) ncbi
domestic rabbit 单克隆(C81H6)
  • 免疫印迹; 小鼠; 1:1000
赛信通(上海)生物试剂有限公司蛋白质二硫键异构酶 抗体(Cell signaling, 3501)被用于被用于免疫印迹在小鼠样本上浓度为1:1000. Apoptosis (2013) ncbi
domestic rabbit 单克隆(C81H6)
  • 免疫印迹; 人类; 1:1000; 图 s1
赛信通(上海)生物试剂有限公司蛋白质二硫键异构酶 抗体(Cell Signaling, 3501)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 s1). Nat Commun (2013) ncbi
碧迪BD
小鼠 单克隆(34/PDI)
  • 免疫印迹; 小鼠; 1:1000; 图 4a
碧迪BD蛋白质二硫键异构酶 抗体(BD Biosciences, 610946)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 4a). Nat Commun (2019) ncbi
文章列表
  1. Bhattarai K, Kim H, Chaudhary M, Ur Rashid M, Kim J, Kim H, et al. TMBIM6 regulates redox-associated posttranslational modifications of IRE1α and ER stress response failure in aging mice and humans. Redox Biol. 2021;47:102128 pubmed 出版商
  2. Wallace M, Aguirre N, Marcotte G, Marshall A, Baehr L, Hughes D, et al. The ketogenic diet preserves skeletal muscle with aging in mice. Aging Cell. 2021;20:e13322 pubmed 出版商
  3. Pretemer Y, Kawai S, Nagata S, Nishio M, Watanabe M, Tamaki S, et al. Differentiation of Hypertrophic Chondrocytes from Human iPSCs for the In Vitro Modeling of Chondrodysplasias. Stem Cell Reports. 2021;16:610-625 pubmed 出版商
  4. Fletcher R, Tong J, Risnik D, Leibowitz B, Wang Y, Concha Benavente F, et al. Non-steroidal anti-inflammatory drugs induce immunogenic cell death in suppressing colorectal tumorigenesis. Oncogene. 2021;40:2035-2050 pubmed 出版商
  5. Mahameed M, Boukeileh S, Obiedat A, Darawshi O, Dipta P, Rimon A, et al. Pharmacological induction of selective endoplasmic reticulum retention as a strategy for cancer therapy. Nat Commun. 2020;11:1304 pubmed 出版商
  6. Haag A, Walser M, Henggeler A, Hajnal A. The CHORD protein CHP-1 regulates EGF receptor trafficking and signaling in C. elegans and in human cells. elife. 2020;9: pubmed 出版商
  7. Herranen A, Ikäheimo K, Lankinen T, Pakarinen E, Fritzsch B, Saarma M, et al. Deficiency of the ER-stress-regulator MANF triggers progressive outer hair cell death and hearing loss. Cell Death Dis. 2020;11:100 pubmed 出版商
  8. Nakamura Y, Dryanovski D, Kimura Y, Jackson S, Woods A, Yasui Y, et al. Cocaine-induced endocannabinoid signaling mediated by sigma-1 receptors and extracellular vesicle secretion. elife. 2019;8: pubmed 出版商
  9. Grossmann D, Berenguer Escuder C, Bellet M, Scheibner D, Bohler J, Massart F, et al. Mutations in RHOT1 Disrupt Endoplasmic Reticulum-Mitochondria Contact Sites Interfering with Calcium Homeostasis and Mitochondrial Dynamics in Parkinson's Disease. Antioxid Redox Signal. 2019;31:1213-1234 pubmed 出版商
  10. van Heesch S, Witte F, Schneider Lunitz V, Schulz J, Adami E, Faber A, et al. The Translational Landscape of the Human Heart. Cell. 2019;: pubmed 出版商
  11. Brody M, Vanhoutte D, Bakshi C, Liu R, Correll R, Sargent M, et al. Disruption of valosin-containing protein activity causes cardiomyopathy and reveals pleiotropic functions in cardiac homeostasis. J Biol Chem. 2019;294:8918-8929 pubmed 出版商
  12. Zhu H, Bhatt B, Sivaprakasam S, Cai Y, Liu S, Kodeboyina S, et al. Ufbp1 promotes plasma cell development and ER expansion by modulating distinct branches of UPR. Nat Commun. 2019;10:1084 pubmed 出版商
  13. Almeida F, Tognarelli S, Marcais A, Kueh A, Friede M, Liao Y, et al. A point mutation in the Ncr1 signal peptide impairs the development of innate lymphoid cell subsets. Oncoimmunology. 2018;7:e1475875 pubmed 出版商
  14. Fukushima M, Dasgupta D, Mauer A, Kakazu E, Nakao K, Malhi H. StAR-related lipid transfer domain 11 (STARD11)-mediated ceramide transport mediates extracellular vesicle biogenesis. J Biol Chem. 2018;293:15277-15289 pubmed 出版商
  15. Bagashev A, Sotillo E, Tang C, Black K, Perazzelli J, Seeholzer S, et al. CD19 Alterations Emerging after CD19-Directed Immunotherapy Cause Retention of the Misfolded Protein in the Endoplasmic Reticulum. Mol Cell Biol. 2018;38: pubmed 出版商
  16. NGUYEN J, Ray C, Fox A, Mendonça D, Kim J, Krebsbach P. Mammalian EAK-7 activates alternative mTOR signaling to regulate cell proliferation and migration. Sci Adv. 2018;4:eaao5838 pubmed 出版商
  17. Kluss J, Conti M, Kaganovich A, Beilina A, Melrose H, Cookson M, et al. Detection of endogenous S1292 LRRK2 autophosphorylation in mouse tissue as a readout for kinase activity. NPJ Parkinsons Dis. 2018;4:13 pubmed 出版商
  18. Moretti A, Pavanelli J, Nolasco P, Leisegang M, Tanaka L, Fernandes C, et al. Conserved Gene Microsynteny Unveils Functional Interaction Between Protein Disulfide Isomerase and Rho Guanine-Dissociation Inhibitor Families. Sci Rep. 2017;7:17262 pubmed 出版商
  19. Cox N, Unlu G, Bisnett B, Meister T, Condon B, Luo P, et al. Dynamic Glycosylation Governs the Vertebrate COPII Protein Trafficking Pathway. Biochemistry. 2018;57:91-107 pubmed 出版商
  20. Waters A, Ozkan Dagliyan I, Vaseva A, Fer N, Strathern L, Hobbs G, et al. Evaluation of the selectivity and sensitivity of isoform- and mutation-specific RAS antibodies. Sci Signal. 2017;10: pubmed 出版商
  21. Tarling E, Clifford B, Cheng J, Morand P, Cheng A, Lester E, et al. RNA-binding protein ZFP36L1 maintains posttranscriptional regulation of bile acid metabolism. J Clin Invest. 2017;127:3741-3754 pubmed 出版商
  22. Zhao Y, Chen Y, Miao G, Zhao H, Qu W, Li D, et al. The ER-Localized Transmembrane Protein EPG-3/VMP1 Regulates SERCA Activity to Control ER-Isolation Membrane Contacts for Autophagosome Formation. Mol Cell. 2017;67:974-989.e6 pubmed 出版商
  23. Yamashita Y, Anczurowski M, Nakatsugawa M, Tanaka M, Kagoya Y, Sinha A, et al. HLA-DP84Gly constitutively presents endogenous peptides generated by the class I antigen processing pathway. Nat Commun. 2017;8:15244 pubmed 出版商
  24. Winship A, Sorby K, Correia J, Rainczuk A, Yap J, Dimitriadis E. Interleukin-11 up-regulates endoplasmic reticulum stress induced target, PDIA4 in human first trimester placenta and in vivo in mice. Placenta. 2017;53:92-100 pubmed 出版商
  25. Zorin V, Pulin A, Eremin I, Korsakov I, Zorina A, Khromova N, et al. Myogenic potential of human alveolar mucosa derived cells. Cell Cycle. 2017;16:545-555 pubmed 出版商
  26. Zimmermann Meisse G, Prevost G, Jover E. Above and beyond C5a Receptor Targeting by Staphylococcal Leucotoxins: Retrograde Transport of Panton-Valentine Leucocidin and ?-Hemolysin. Toxins (Basel). 2017;9: pubmed 出版商
  27. Braganza A, Li J, Zeng X, Yates N, Dey N, Andrews J, et al. UBE3B Is a Calmodulin-regulated, Mitochondrion-associated E3 Ubiquitin Ligase. J Biol Chem. 2017;292:2470-2484 pubmed 出版商
  28. Xiao F, Zhang J, Zhang C, An W. Hepatic stimulator substance inhibits calcium overflow through the mitochondria-associated membrane compartment during nonalcoholic steatohepatitis. Lab Invest. 2017;97:289-301 pubmed 出版商
  29. Matsunaga K, Taoka M, Isobe T, Izumi T. Rab2a and Rab27a cooperatively regulate the transition from granule maturation to exocytosis through the dual effector Noc2. J Cell Sci. 2017;130:541-550 pubmed 出版商
  30. Watanabe S, Ilieva H, Tamada H, Nomura H, Komine O, Endo F, et al. Mitochondria-associated membrane collapse is a common pathomechanism in SIGMAR1- and SOD1-linked ALS. EMBO Mol Med. 2016;8:1421-1437 pubmed 出版商
  31. Van Damme P, Kalvik T, Starheim K, Jonckheere V, Myklebust L, Menschaert G, et al. A Role for Human N-alpha Acetyltransferase 30 (Naa30) in Maintaining Mitochondrial Integrity. Mol Cell Proteomics. 2016;15:3361-3372 pubmed
  32. Vanhoutte D, Schips T, Kwong J, Davis J, Tjondrokoesoemo A, Brody M, et al. Thrombospondin expression in myofibers stabilizes muscle membranes. elife. 2016;5: pubmed 出版商
  33. Makita N, Sato T, Yajima Shoji Y, Sato J, Manaka K, Eda Hashimoto M, et al. Analysis of the V2 Vasopressin Receptor (V2R) Mutations Causing Partial Nephrogenic Diabetes Insipidus Highlights a Sustainable Signaling by a Non-peptide V2R Agonist. J Biol Chem. 2016;291:22460-22471 pubmed
  34. Bettaieb A, Cremonini E, Kang H, Kang J, Haj F, Oteiza P. Anti-inflammatory actions of (-)-epicatechin in the adipose tissue of obese mice. Int J Biochem Cell Biol. 2016;81:383-392 pubmed 出版商
  35. Krawczyk K, Ekman M, Rippe C, Grossi M, Nilsson B, Albinsson S, et al. Assessing the contribution of thrombospondin-4 induction and ATF6? activation to endoplasmic reticulum expansion and phenotypic modulation in bladder outlet obstruction. Sci Rep. 2016;6:32449 pubmed 出版商
  36. Walsh M, Di Leo E, Okur I, Tarugi P, Hussain M. Structure-function analyses of microsomal triglyceride transfer protein missense mutations in abetalipoproteinemia and hypobetalipoproteinemia subjects. Biochim Biophys Acta. 2016;1861:1623-1633 pubmed 出版商
  37. Wang H, Tri Anggraini F, Chen X, DeGracia D. Embryonic lethal abnormal vision proteins and adenine and uridine-rich element mRNAs after global cerebral ischemia and reperfusion in the rat. J Cereb Blood Flow Metab. 2017;37:1494-1507 pubmed 出版商
  38. Timms R, Menzies S, Tchasovnikarova I, Christensen L, Williamson J, Antrobus R, et al. Genetic dissection of mammalian ERAD through comparative haploid and CRISPR forward genetic screens. Nat Commun. 2016;7:11786 pubmed 出版商
  39. Genç B, Jara J, Schultz M, Manuel M, Stanford M, Gautam M, et al. Absence of UCHL 1 function leads to selective motor neuropathy. Ann Clin Transl Neurol. 2016;3:331-45 pubmed 出版商
  40. Burridge P, Li Y, Matsa E, Wu H, Ong S, Sharma A, et al. Human induced pluripotent stem cell-derived cardiomyocytes recapitulate the predilection of breast cancer patients to doxorubicin-induced cardiotoxicity. Nat Med. 2016;22:547-56 pubmed 出版商
  41. Tamura Y, Matsunaga Y, Kitaoka Y, Hatta H. Effects of Heat Stress Treatment on Age-dependent Unfolded Protein Response in Different Types of Skeletal Muscle. J Gerontol A Biol Sci Med Sci. 2017;72:299-308 pubmed 出版商
  42. Laura R, Dong D, Reynolds W, Maki R. T47D Cells Expressing Myeloperoxidase Are Able to Process, Traffic and Store the Mature Protein in Lysosomes: Studies in T47D Cells Reveal a Role for Cys319 in MPO Biosynthesis that Precedes Its Known Role in Inter-Molecular Disulfide Bond Formation. PLoS ONE. 2016;11:e0149391 pubmed 出版商
  43. Pacello F, D Orazio M, Battistoni A. An ERp57-mediated disulphide exchange promotes the interaction between Burkholderia cenocepacia and epithelial respiratory cells. Sci Rep. 2016;6:21140 pubmed 出版商
  44. Olivares García V, Torre Villalvazo I, Velázquez Villegas L, Alemán G, Lara N, López Romero P, et al. Fasting and postprandial regulation of the intracellular localization of adiponectin and of adipokines secretion by dietary fat in rats. Nutr Diabetes. 2015;5:e184 pubmed 出版商
  45. Pankow S, Bamberger C, Calzolari D, Martínez Bartolomé S, Lavallée Adam M, Balch W, et al. ∆F508 CFTR interactome remodelling promotes rescue of cystic fibrosis. Nature. 2015;528:510-6 pubmed 出版商
  46. Ostapchenko V, Chen M, Guzman M, Xie Y, Lavine N, Fan J, et al. The Transient Receptor Potential Melastatin 2 (TRPM2) Channel Contributes to β-Amyloid Oligomer-Related Neurotoxicity and Memory Impairment. J Neurosci. 2015;35:15157-69 pubmed 出版商
  47. Rost B, Schneider F, Grauel M, Wozny C, Bentz C, Blessing A, et al. Optogenetic acidification of synaptic vesicles and lysosomes. Nat Neurosci. 2015;18:1845-1852 pubmed 出版商
  48. Kyathanahalli C, Organ K, Moreci R, Anamthathmakula P, Hassan S, Caritis S, et al. Uterine endoplasmic reticulum stress-unfolded protein response regulation of gestational length is caspase-3 and -7-dependent. Proc Natl Acad Sci U S A. 2015;112:14090-5 pubmed 出版商
  49. Palao T, Swärd K, Jongejan A, Moerland P, de Vos J, van Weert A, et al. Gene Expression and MicroRNA Expression Analysis in Small Arteries of Spontaneously Hypertensive Rats. Evidence for ER Stress. PLoS ONE. 2015;10:e0137027 pubmed 出版商
  50. Cheng D, Weckerle A, Yu Y, Ma L, Zhu X, Murea M, et al. Biogenesis and cytotoxicity of APOL1 renal risk variant proteins in hepatocytes and hepatoma cells. J Lipid Res. 2015;56:1583-93 pubmed 出版商
  51. Ruas M, Davis L, Chen C, Morgan A, Chuang K, Walseth T, et al. Expression of Ca²⁺-permeable two-pore channels rescues NAADP signalling in TPC-deficient cells. EMBO J. 2015;34:1743-58 pubmed 出版商
  52. Janes K. An analysis of critical factors for quantitative immunoblotting. Sci Signal. 2015;8:rs2 pubmed 出版商
  53. Zhang R, Wang R, Chen Q, Chang H. Inhibition of autophagy using 3-methyladenine increases cisplatin-induced apoptosis by increasing endoplasmic reticulum stress in U251 human glioma cells. Mol Med Rep. 2015;12:1727-32 pubmed 出版商
  54. Wong M, Nicholson C, Holloway A, Hardy D. Maternal nicotine exposure leads to impaired disulfide bond formation and augmented endoplasmic reticulum stress in the rat placenta. PLoS ONE. 2015;10:e0122295 pubmed 出版商
  55. Gomez Cavazos J, Hetzer M. The nucleoporin gp210/Nup210 controls muscle differentiation by regulating nuclear envelope/ER homeostasis. J Cell Biol. 2015;208:671-81 pubmed 出版商
  56. van Bergeijk P, Adrian M, Hoogenraad C, Kapitein L. Optogenetic control of organelle transport and positioning. Nature. 2015;518:111-114 pubmed 出版商
  57. Wang S, Park S, Kodali V, Han J, Yip T, Chen Z, et al. Identification of protein disulfide isomerase 1 as a key isomerase for disulfide bond formation in apolipoprotein B100. Mol Biol Cell. 2015;26:594-604 pubmed 出版商
  58. Cherepanova N, Shrimal S, Gilmore R. Oxidoreductase activity is necessary for N-glycosylation of cysteine-proximal acceptor sites in glycoproteins. J Cell Biol. 2014;206:525-39 pubmed 出版商
  59. Stoica R, De Vos K, Paillusson S, Mueller S, Sancho R, Lau K, et al. ER-mitochondria associations are regulated by the VAPB-PTPIP51 interaction and are disrupted by ALS/FTD-associated TDP-43. Nat Commun. 2014;5:3996 pubmed 出版商
  60. Lewis M, Jamison J, Dunbar J, DeGracia D. mRNA redistribution during permanent focal cerebral ischemia. Transl Stroke Res. 2013;4:604-17 pubmed 出版商
  61. Kyathanahalli C, Marks J, Nye K, Lao B, Albrecht E, Aberdeen G, et al. Cross-species withdrawal of MCL1 facilitates postpartum uterine involution in both the mouse and baboon. Endocrinology. 2013;154:4873-84 pubmed 出版商
  62. Kang E, Kwon I, Koo J, Kim E, Kim C, Lee J, et al. Treadmill exercise represses neuronal cell death and inflammation during A?-induced ER stress by regulating unfolded protein response in aged presenilin 2 mutant mice. Apoptosis. 2013;18:1332-1347 pubmed 出版商
  63. Gurkar A, Chu K, Raj L, Bouley R, Lee S, Kim Y, et al. Identification of ROCK1 kinase as a critical regulator of Beclin1-mediated autophagy during metabolic stress. Nat Commun. 2013;4:2189 pubmed 出版商
  64. Jamison J, Szymanski J, DeGracia D. Organelles do not colocalize with mRNA granules in post-ischemic neurons. Neuroscience. 2011;199:394-400 pubmed 出版商
  65. Garver W, Jelinek D, Francis G, Murphy B. The Niemann-Pick C1 gene is downregulated by feedback inhibition of the SREBP pathway in human fibroblasts. J Lipid Res. 2008;49:1090-102 pubmed 出版商