这是一篇来自已证抗体库的有关人类 平滑肌肌动蛋白 (smooth muscle actin) 的综述,是根据634篇发表使用所有方法的文章归纳的。这综述旨在帮助来邦网的访客找到最适合平滑肌肌动蛋白 抗体。
平滑肌肌动蛋白 同义词: ACTSA

艾博抗(上海)贸易有限公司
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:200; 图 3a, 3b
艾博抗(上海)贸易有限公司平滑肌肌动蛋白抗体(Abcam, ab5694)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:200 (图 3a, 3b). Sci Rep (2020) ncbi
domestic rabbit 单克隆
  • 免疫组化-石蜡切片; 人类; 1:1000; 图 1c
艾博抗(上海)贸易有限公司平滑肌肌动蛋白抗体(Abcam, ab202509)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:1000 (图 1c). Nat Cell Biol (2020) ncbi
domestic rabbit 多克隆
  • 免疫组化; 人类; 1:100; 图 6d
艾博抗(上海)贸易有限公司平滑肌肌动蛋白抗体(Abcam, ab5694)被用于被用于免疫组化在人类样本上浓度为1:100 (图 6d). Sci Adv (2020) ncbi
domestic rabbit 单克隆(EPR5368)
  • 免疫印迹; 人类; 1:2000; 图 8d
艾博抗(上海)贸易有限公司平滑肌肌动蛋白抗体(Abcam, ab124964)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 8d). Aging (Albany NY) (2020) ncbi
domestic rabbit 单克隆(EPR5368)
  • 免疫组化-石蜡切片; 小鼠; 1:2000; 图 s28a, 4i
艾博抗(上海)贸易有限公司平滑肌肌动蛋白抗体(Abcam, ab124964)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:2000 (图 s28a, 4i). Nat Commun (2020) ncbi
domestic rabbit 单克隆(EPR5368)
  • 免疫细胞化学; 大鼠; 1:400; 图 3a
艾博抗(上海)贸易有限公司平滑肌肌动蛋白抗体(Abcam, ab124964)被用于被用于免疫细胞化学在大鼠样本上浓度为1:400 (图 3a). J Inflamm (Lond) (2020) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 4b
艾博抗(上海)贸易有限公司平滑肌肌动蛋白抗体(Abcam, ab5694)被用于被用于免疫印迹在人类样本上 (图 4b). Sci Adv (2019) ncbi
domestic rabbit 单克隆(EPR5368)
  • 免疫印迹; 人类; 1:1000; 图 3b
艾博抗(上海)贸易有限公司平滑肌肌动蛋白抗体(Abcam, ab124964)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3b). BMC Ophthalmol (2019) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 小鼠; 1:100; 图 3e
艾博抗(上海)贸易有限公司平滑肌肌动蛋白抗体(Abcam, ab5694)被用于被用于免疫细胞化学在小鼠样本上浓度为1:100 (图 3e). Biosci Rep (2019) ncbi
domestic rabbit 单克隆(E184)
  • 免疫印迹; 人类; 图 2c
艾博抗(上海)贸易有限公司平滑肌肌动蛋白抗体(Abcam, ab32575)被用于被用于免疫印迹在人类样本上 (图 2c). Biol Res (2019) ncbi
domestic rabbit 多克隆
  • 流式细胞仪; 人类; 1:200; 图 1c
  • 免疫细胞化学; 人类; 1:200; 图 2f
艾博抗(上海)贸易有限公司平滑肌肌动蛋白抗体(Abcam, ab5694)被用于被用于流式细胞仪在人类样本上浓度为1:200 (图 1c) 和 被用于免疫细胞化学在人类样本上浓度为1:200 (图 2f). BMC Mol Biol (2019) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 图 3a
  • 免疫印迹; 小鼠; 图 3d
艾博抗(上海)贸易有限公司平滑肌肌动蛋白抗体(abcam, ab5694)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 3a) 和 被用于免疫印迹在小鼠样本上 (图 3d). Cell Death Dis (2019) ncbi
小鼠 单克隆(1A4)
  • 免疫印迹; 人类; 1:1000; 图 2f, e4f
艾博抗(上海)贸易有限公司平滑肌肌动蛋白抗体(Abcam, ab7817)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 2f, e4f). Nature (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 1c
艾博抗(上海)贸易有限公司平滑肌肌动蛋白抗体(Abcam, ab5694)被用于被用于免疫印迹在人类样本上 (图 1c). Biol Res (2019) ncbi
domestic rabbit 单克隆(E184)
  • 免疫印迹; 大鼠; 图 4b
艾博抗(上海)贸易有限公司平滑肌肌动蛋白抗体(Abcam, ab32575)被用于被用于免疫印迹在大鼠样本上 (图 4b). Biosci Rep (2019) ncbi
domestic goat 多克隆
  • 免疫组化-石蜡切片; 大鼠; 1:250; 图 3
艾博抗(上海)贸易有限公司平滑肌肌动蛋白抗体(Abcam, ab21027)被用于被用于免疫组化-石蜡切片在大鼠样本上浓度为1:250 (图 3). Biosci Rep (2019) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 图 s4c
艾博抗(上海)贸易有限公司平滑肌肌动蛋白抗体(Abcam, Ab5694)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 s4c). Cell (2019) ncbi
小鼠 单克隆(4A4)
  • 免疫印迹; 人类; 1:1000; 图 1a
艾博抗(上海)贸易有限公司平滑肌肌动蛋白抗体(Abcam, ab119952)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 1a). J Clin Invest (2019) ncbi
domestic rabbit 单克隆
  • 免疫细胞化学; 人类; 1:200; 图 1d
艾博抗(上海)贸易有限公司平滑肌肌动蛋白抗体(Abcam, ab202510)被用于被用于免疫细胞化学在人类样本上浓度为1:200 (图 1d). J Clin Invest (2019) ncbi
小鼠 单克隆(1A4)
  • 免疫组化-石蜡切片; 人类; 图 1c
艾博抗(上海)贸易有限公司平滑肌肌动蛋白抗体(Abcam, ab7817)被用于被用于免疫组化-石蜡切片在人类样本上 (图 1c). J Clin Invest (2019) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 图 7f
艾博抗(上海)贸易有限公司平滑肌肌动蛋白抗体(Abcam, ab5694)被用于被用于免疫组化在小鼠样本上 (图 7f). Cancer Discov (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 5a
艾博抗(上海)贸易有限公司平滑肌肌动蛋白抗体(Abcam, 5694)被用于被用于免疫印迹在小鼠样本上 (图 5a). J Mol Med (Berl) (2018) ncbi
domestic goat 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:100; 图 3b
  • 免疫印迹; 小鼠; 1:1000; 图 3a, 4c
艾博抗(上海)贸易有限公司平滑肌肌动蛋白抗体(Abcam, ab21027)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:100 (图 3b) 和 被用于免疫印迹在小鼠样本上浓度为1:1000 (图 3a, 4c). Biochem Biophys Res Commun (2018) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 3e
艾博抗(上海)贸易有限公司平滑肌肌动蛋白抗体(Abcam, ab5694)被用于被用于免疫印迹在小鼠样本上 (图 3e). Cell Death Dis (2018) ncbi
domestic goat 多克隆
  • 免疫组化; 小鼠; 1:1000; 图 3a
艾博抗(上海)贸易有限公司平滑肌肌动蛋白抗体(Abcam, ab21027)被用于被用于免疫组化在小鼠样本上浓度为1:1000 (图 3a). PLoS ONE (2018) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 图 2c
艾博抗(上海)贸易有限公司平滑肌肌动蛋白抗体(Abcam, ab5694)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 2c). Stem Cell Reports (2018) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:500; 图 3d
艾博抗(上海)贸易有限公司平滑肌肌动蛋白抗体(Abcam, ab5694)被用于被用于免疫组化在小鼠样本上浓度为1:500 (图 3d). Breast Cancer Res (2018) ncbi
小鼠 单克隆(1A4)
  • 免疫组化-冰冻切片; 小鼠; 1:200; 图 s3b
艾博抗(上海)贸易有限公司平滑肌肌动蛋白抗体(Abcam, 1A4)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:200 (图 s3b). Science (2018) ncbi
小鼠 单克隆(1A4)
  • 免疫组化-石蜡切片; 小鼠; 1:50; 图 3f
艾博抗(上海)贸易有限公司平滑肌肌动蛋白抗体(Abcam, ab7817)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:50 (图 3f). Theranostics (2018) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 小鼠; 1:100; 图 2b
艾博抗(上海)贸易有限公司平滑肌肌动蛋白抗体(Abcam, ab5694)被用于被用于免疫细胞化学在小鼠样本上浓度为1:100 (图 2b). Proc Natl Acad Sci U S A (2018) ncbi
domestic rabbit 多克隆
  • 免疫组化; 人类; 1:100; 图 2g
艾博抗(上海)贸易有限公司平滑肌肌动蛋白抗体(Abcam, ab5694)被用于被用于免疫组化在人类样本上浓度为1:100 (图 2g). Nat Commun (2018) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:100; 图 2b
艾博抗(上海)贸易有限公司平滑肌肌动蛋白抗体(Abcam, ab5694)被用于被用于免疫印迹在人类样本上浓度为1:100 (图 2b). Nat Commun (2018) ncbi
小鼠 单克隆(1A4)
  • 免疫细胞化学; 人类; 1:200; 图 1j
艾博抗(上海)贸易有限公司平滑肌肌动蛋白抗体(Abcam, ab7817)被用于被用于免疫细胞化学在人类样本上浓度为1:200 (图 1j). Stem Cell Res (2018) ncbi
domestic rabbit 单克隆(E184)
  • 免疫组化-冰冻切片; 小鼠; 1:200; 图 6a
艾博抗(上海)贸易有限公司平滑肌肌动蛋白抗体(Abcam, ab32575)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:200 (图 6a). Sci Rep (2018) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 图 4i
艾博抗(上海)贸易有限公司平滑肌肌动蛋白抗体(Abcam, ab5694-100)被用于被用于免疫组化在小鼠样本上 (图 4i). Nucleic Acids Res (2018) ncbi
domestic goat 多克隆
  • 免疫组化; 大鼠; 1:50; 图 s1g
艾博抗(上海)贸易有限公司平滑肌肌动蛋白抗体(Abcam, ab21027)被用于被用于免疫组化在大鼠样本上浓度为1:50 (图 s1g). Cell Death Differ (2018) ncbi
domestic goat 多克隆
  • 免疫组化-石蜡切片; 人类; 图 1f
艾博抗(上海)贸易有限公司平滑肌肌动蛋白抗体(Abcam, ab21027)被用于被用于免疫组化-石蜡切片在人类样本上 (图 1f). Cell (2018) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 小鼠; 图 6a
艾博抗(上海)贸易有限公司平滑肌肌动蛋白抗体(Abcam, ab5694)被用于被用于免疫细胞化学在小鼠样本上 (图 6a). Wound Repair Regen (2018) ncbi
小鼠 单克隆(1A4)
  • 免疫组化-石蜡切片; 小鼠; 1:100; 图 3e
艾博抗(上海)贸易有限公司平滑肌肌动蛋白抗体(Abcam, ab7817)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:100 (图 3e). Oncogene (2018) ncbi
domestic rabbit 单克隆(E184)
  • 免疫印迹; 人类; 1:5000; 图 1c
艾博抗(上海)贸易有限公司平滑肌肌动蛋白抗体(Abcam, ab32575)被用于被用于免疫印迹在人类样本上浓度为1:5000 (图 1c). Biosci Rep (2018) ncbi
小鼠 单克隆(1A4)
  • 免疫细胞化学; 人类; 图 4a
艾博抗(上海)贸易有限公司平滑肌肌动蛋白抗体(Abcam, ab7817)被用于被用于免疫细胞化学在人类样本上 (图 4a). Methods Mol Biol (2018) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:200; 图 7e
艾博抗(上海)贸易有限公司平滑肌肌动蛋白抗体(Abcam, Ab5694)被用于被用于免疫组化在小鼠样本上浓度为1:200 (图 7e). Oncotarget (2017) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 人类; 图 3j
艾博抗(上海)贸易有限公司平滑肌肌动蛋白抗体(Abcam, ab5694)被用于被用于免疫组化-石蜡切片在人类样本上 (图 3j). Nature (2017) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 图 5i
艾博抗(上海)贸易有限公司平滑肌肌动蛋白抗体(Abcam, ab5694)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 5i). Am J Physiol Gastrointest Liver Physiol (2018) ncbi
小鼠 单克隆(1A4)
  • 免疫组化-石蜡切片; 小鼠; 1:200; 图 5b
艾博抗(上海)贸易有限公司平滑肌肌动蛋白抗体(Abcam, ab7817)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:200 (图 5b). Clin Chim Acta (2017) ncbi
小鼠 单克隆(1A4)
  • 免疫组化-石蜡切片; 小鼠; 1:100; 图 3e
艾博抗(上海)贸易有限公司平滑肌肌动蛋白抗体(Abcam, ab7817)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:100 (图 3e). PLoS Genet (2017) ncbi
domestic rabbit 单克隆(E184)
  • 免疫印迹; 人类
艾博抗(上海)贸易有限公司平滑肌肌动蛋白抗体(Abcam, ab32575)被用于被用于免疫印迹在人类样本上. Sci Rep (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 4d
艾博抗(上海)贸易有限公司平滑肌肌动蛋白抗体(Abcam, ab5694)被用于被用于免疫印迹在小鼠样本上 (图 4d). Basic Res Cardiol (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:5000; 图 1d
艾博抗(上海)贸易有限公司平滑肌肌动蛋白抗体(Abcam, ab5694)被用于被用于免疫印迹在小鼠样本上浓度为1:5000 (图 1d). Arterioscler Thromb Vasc Biol (2017) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 国内马; 图 1e
艾博抗(上海)贸易有限公司平滑肌肌动蛋白抗体(AbCam, ab5694)被用于被用于免疫组化-冰冻切片在国内马样本上 (图 1e). Stem Cell Res Ther (2017) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 1:100; 图 1g
艾博抗(上海)贸易有限公司平滑肌肌动蛋白抗体(Abcam, ab5694)被用于被用于免疫细胞化学在人类样本上浓度为1:100 (图 1g). Stem Cell Res (2017) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 图 s3b
艾博抗(上海)贸易有限公司平滑肌肌动蛋白抗体(Abcam, ab5694)被用于被用于免疫组化在小鼠样本上 (图 s3b). J Clin Invest (2017) ncbi
小鼠 单克隆(1A4)
  • 免疫细胞化学; 人类; 1:50; 图 1b
  • 免疫印迹; 人类; 图 1c
艾博抗(上海)贸易有限公司平滑肌肌动蛋白抗体(Abcam, ab7817)被用于被用于免疫细胞化学在人类样本上浓度为1:50 (图 1b) 和 被用于免疫印迹在人类样本上 (图 1c). Biosci Rep (2017) ncbi
domestic rabbit 单克隆(EPR5368)
  • 免疫组化; 人类; 1:500; 图 3d
艾博抗(上海)贸易有限公司平滑肌肌动蛋白抗体(Abcam, ab124964)被用于被用于免疫组化在人类样本上浓度为1:500 (图 3d). J Clin Invest (2017) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 图 3e
艾博抗(上海)贸易有限公司平滑肌肌动蛋白抗体(Abcam, ab5694)被用于被用于免疫组化在小鼠样本上 (图 3e). J Exp Med (2017) ncbi
小鼠 单克隆(1A4)
  • 免疫细胞化学; 人类; 1:500; 图 7a
艾博抗(上海)贸易有限公司平滑肌肌动蛋白抗体(Abcam, ab7817)被用于被用于免疫细胞化学在人类样本上浓度为1:500 (图 7a). PLoS ONE (2017) ncbi
小鼠 单克隆(1A4)
  • 免疫组化; 小鼠; 图 1i
艾博抗(上海)贸易有限公司平滑肌肌动蛋白抗体(Abcam, ab7817)被用于被用于免疫组化在小鼠样本上 (图 1i). Front Immunol (2017) ncbi
domestic rabbit 单克隆(E184)
  • 免疫组化-石蜡切片; 大鼠; 1:500; 图 st1
艾博抗(上海)贸易有限公司平滑肌肌动蛋白抗体(Abcam, ab32575)被用于被用于免疫组化-石蜡切片在大鼠样本上浓度为1:500 (图 st1). J Toxicol Pathol (2017) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:500
艾博抗(上海)贸易有限公司平滑肌肌动蛋白抗体(Abcam, ab5694)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:500. PLoS ONE (2017) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 图 s8d
艾博抗(上海)贸易有限公司平滑肌肌动蛋白抗体(Abcam, ab5694)被用于被用于免疫组化在小鼠样本上 (图 s8d). Proc Natl Acad Sci U S A (2017) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 小鼠; 图 5b
艾博抗(上海)贸易有限公司平滑肌肌动蛋白抗体(Abcam, ab5694)被用于被用于免疫细胞化学在小鼠样本上 (图 5b). Stem Cell Res Ther (2017) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:100; 图 5b
  • 免疫组化-石蜡切片; 人类; 1:100; 图 3c
艾博抗(上海)贸易有限公司平滑肌肌动蛋白抗体(Abcam, Ab5694)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:100 (图 5b) 和 被用于免疫组化-石蜡切片在人类样本上浓度为1:100 (图 3c). Arterioscler Thromb Vasc Biol (2017) ncbi
domestic rabbit 单克隆(EPR5368)
  • 流式细胞仪; 人类; 图 2e
艾博抗(上海)贸易有限公司平滑肌肌动蛋白抗体(Abcam, ab124964)被用于被用于流式细胞仪在人类样本上 (图 2e). Stem Cell Res Ther (2017) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 图 2b
艾博抗(上海)贸易有限公司平滑肌肌动蛋白抗体(Abcam, ab5694)被用于被用于免疫组化在小鼠样本上 (图 2b). Cell Stem Cell (2017) ncbi
小鼠 单克隆(1A4)
  • 免疫组化-石蜡切片; 大鼠; 图 2b
艾博抗(上海)贸易有限公司平滑肌肌动蛋白抗体(Abcam, ab7817)被用于被用于免疫组化-石蜡切片在大鼠样本上 (图 2b). Sci Rep (2017) ncbi
小鼠 单克隆(1A4)
  • 免疫组化-石蜡切片; 人类; 图 3a
艾博抗(上海)贸易有限公司平滑肌肌动蛋白抗体(Abcam, Ab7817)被用于被用于免疫组化-石蜡切片在人类样本上 (图 3a). Lab Invest (2017) ncbi
domestic rabbit 多克隆
  • 免疫组化; 人类; 1:200; 图 1a
艾博抗(上海)贸易有限公司平滑肌肌动蛋白抗体(Abcam, ab5694)被用于被用于免疫组化在人类样本上浓度为1:200 (图 1a). PLoS ONE (2017) ncbi
小鼠 单克隆(1A4)
  • 免疫细胞化学; 人类; 图 2i
艾博抗(上海)贸易有限公司平滑肌肌动蛋白抗体(Abcam, ab7817)被用于被用于免疫细胞化学在人类样本上 (图 2i). Sci Rep (2017) ncbi
domestic rabbit 单克隆(E184)
  • 免疫组化-冰冻切片; 大鼠; 图 s1b
艾博抗(上海)贸易有限公司平滑肌肌动蛋白抗体(Abcam, ab32575)被用于被用于免疫组化-冰冻切片在大鼠样本上 (图 s1b). Sci Rep (2017) ncbi
domestic goat 多克隆
  • 免疫组化-石蜡切片; 小鼠; 图 2a
艾博抗(上海)贸易有限公司平滑肌肌动蛋白抗体(Abcam, ab21027)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 2a). Arterioscler Thromb Vasc Biol (2017) ncbi
小鼠 单克隆(1A4)
  • 免疫细胞化学; 猪; 图 5a
艾博抗(上海)贸易有限公司平滑肌肌动蛋白抗体(Abcam, ab7817)被用于被用于免疫细胞化学在猪样本上 (图 5a). J Cell Physiol (2017) ncbi
domestic rabbit 单克隆(E184)
  • 免疫组化-石蜡切片; 小鼠; 1:500; 图 7b
艾博抗(上海)贸易有限公司平滑肌肌动蛋白抗体(Abcam, ab32575)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:500 (图 7b). Cell Death Dis (2017) ncbi
小鼠 单克隆(1A4)
  • 免疫组化; 人类; 1:100; 图 1e
  • 免疫组化; 小鼠; 1:100; 图 1f
艾博抗(上海)贸易有限公司平滑肌肌动蛋白抗体(Abcam, ab7817)被用于被用于免疫组化在人类样本上浓度为1:100 (图 1e) 和 被用于免疫组化在小鼠样本上浓度为1:100 (图 1f). J Am Heart Assoc (2016) ncbi
domestic rabbit 单克隆(EPR5368)
  • 免疫组化-冰冻切片; 小鼠; 图 3a
  • 免疫组化; 人类; 图 1a
艾博抗(上海)贸易有限公司平滑肌肌动蛋白抗体(Abcam, ab124964)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 3a) 和 被用于免疫组化在人类样本上 (图 1a). J Am Heart Assoc (2016) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 图 s1g
艾博抗(上海)贸易有限公司平滑肌肌动蛋白抗体(Abcam, ab5694)被用于被用于免疫细胞化学在人类样本上 (图 s1g). Cell (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 图 3c
艾博抗(上海)贸易有限公司平滑肌肌动蛋白抗体(Abcam, ab5694)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 3c). Breast Cancer Res (2016) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 1:100; 图 6d
  • 免疫印迹; 人类; 图 1a
艾博抗(上海)贸易有限公司平滑肌肌动蛋白抗体(Abcam, ab5694)被用于被用于免疫细胞化学在人类样本上浓度为1:100 (图 6d) 和 被用于免疫印迹在人类样本上 (图 1a). Pharmacol Res (2017) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 1:100; 图 1f
艾博抗(上海)贸易有限公司平滑肌肌动蛋白抗体(Abcam, ab5694)被用于被用于免疫细胞化学在人类样本上浓度为1:100 (图 1f). Stem Cell Res (2016) ncbi
小鼠 单克隆(1A4)
  • 免疫组化-石蜡切片; 人类; 图 1b
艾博抗(上海)贸易有限公司平滑肌肌动蛋白抗体(Abcam, ab7817)被用于被用于免疫组化-石蜡切片在人类样本上 (图 1b). Arterioscler Thromb Vasc Biol (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 5a
  • 免疫组化-石蜡切片; 小鼠; 图 4c
艾博抗(上海)贸易有限公司平滑肌肌动蛋白抗体(Abcam, ab5694)被用于被用于免疫印迹在人类样本上 (图 5a) 和 被用于免疫组化-石蜡切片在小鼠样本上 (图 4c). Respir Res (2016) ncbi
小鼠 单克隆(1A4)
  • 免疫细胞化学; 人类; 1:200; 图 5
艾博抗(上海)贸易有限公司平滑肌肌动蛋白抗体(Abcam, ab7817)被用于被用于免疫细胞化学在人类样本上浓度为1:200 (图 5). Int J Med Sci (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 大鼠; 图 1c
艾博抗(上海)贸易有限公司平滑肌肌动蛋白抗体(abcam, ab5694)被用于被用于免疫印迹在大鼠样本上 (图 1c). Exp Cell Res (2017) ncbi
domestic rabbit 多克隆
  • 免疫组化; 大鼠; 1:125; 图 5a
艾博抗(上海)贸易有限公司平滑肌肌动蛋白抗体(AbCam, ab5694)被用于被用于免疫组化在大鼠样本上浓度为1:125 (图 5a). J Physiol (2017) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 图 1h
艾博抗(上海)贸易有限公司平滑肌肌动蛋白抗体(Abcam, ab5694)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 1h). Stem Cell Reports (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化; 人类; 图 2a
艾博抗(上海)贸易有限公司平滑肌肌动蛋白抗体(Abcam, ab5694)被用于被用于免疫组化在人类样本上 (图 2a). Am J Pathol (2017) ncbi
小鼠 单克隆(1A4)
  • 流式细胞仪; 大鼠; 图 7d
  • 免疫印迹; 大鼠; 图 3d
艾博抗(上海)贸易有限公司平滑肌肌动蛋白抗体(Abcam, ab8211)被用于被用于流式细胞仪在大鼠样本上 (图 7d) 和 被用于免疫印迹在大鼠样本上 (图 3d). Oncotarget (2016) ncbi
小鼠 单克隆(1A4)
  • 免疫组化; 小鼠; 图 3
艾博抗(上海)贸易有限公司平滑肌肌动蛋白抗体(Abcam, ab7817)被用于被用于免疫组化在小鼠样本上 (图 3). Mol Cell Endocrinol (2017) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:300; 图 1c
艾博抗(上海)贸易有限公司平滑肌肌动蛋白抗体(Abcam, ab5694)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:300 (图 1c). Nat Commun (2016) ncbi
domestic goat 多克隆
  • 免疫组化-冰冻切片; 小鼠; 图 6a
艾博抗(上海)贸易有限公司平滑肌肌动蛋白抗体(Abcam, ab21027)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 6a). Am J Physiol Heart Circ Physiol (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 小鼠; 图 1
艾博抗(上海)贸易有限公司平滑肌肌动蛋白抗体(Abcam, ab5694)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 1). Mol Med Rep (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化; 人类; 1:500; 图 5
艾博抗(上海)贸易有限公司平滑肌肌动蛋白抗体(Abcam, ab5694)被用于被用于免疫组化在人类样本上浓度为1:500 (图 5). Nat Med (2016) ncbi
小鼠 单克隆(1A4)
  • 免疫组化-冰冻切片; 人类; 1:500; 图 1e
艾博抗(上海)贸易有限公司平滑肌肌动蛋白抗体(Abcam, 1A4)被用于被用于免疫组化-冰冻切片在人类样本上浓度为1:500 (图 1e). JCI Insight (2016) ncbi
小鼠 单克隆(1A4)
  • 免疫细胞化学; 人类; 图 1
艾博抗(上海)贸易有限公司平滑肌肌动蛋白抗体(Abcam, ab7817)被用于被用于免疫细胞化学在人类样本上 (图 1). J Tissue Eng Regen Med (2018) ncbi
domestic rabbit 单克隆(EPR5368)
  • 免疫印迹; 人类; 图 3b
艾博抗(上海)贸易有限公司平滑肌肌动蛋白抗体(Abcam, ab124964)被用于被用于免疫印迹在人类样本上 (图 3b). Sci Rep (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 图 2h
  • 免疫细胞化学; 小鼠; 图 4c
艾博抗(上海)贸易有限公司平滑肌肌动蛋白抗体(Abcam, ab5694)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 2h) 和 被用于免疫细胞化学在小鼠样本上 (图 4c). J Exp Med (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 5
艾博抗(上海)贸易有限公司平滑肌肌动蛋白抗体(Abcam, ab5694)被用于被用于免疫印迹在人类样本上 (图 5). Cancer Cell Int (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 6a,6e
艾博抗(上海)贸易有限公司平滑肌肌动蛋白抗体(Abcam, ab5694)被用于被用于免疫印迹在人类样本上 (图 6a,6e). Acta Pharmacol Sin (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化; 猪; 图 11a
艾博抗(上海)贸易有限公司平滑肌肌动蛋白抗体(Abcam, AB 5694)被用于被用于免疫组化在猪样本上 (图 11a). Biomaterials (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化; 人类; 图 1e
  • 免疫印迹; 人类; 图 2h
  • 免疫印迹; 小鼠; 图 4b
艾博抗(上海)贸易有限公司平滑肌肌动蛋白抗体(Abcam, ab5694)被用于被用于免疫组化在人类样本上 (图 1e), 被用于免疫印迹在人类样本上 (图 2h) 和 被用于免疫印迹在小鼠样本上 (图 4b). Oncotarget (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:100; 图 s4
艾博抗(上海)贸易有限公司平滑肌肌动蛋白抗体(Abcam, ab5694)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:100 (图 s4). J Clin Invest (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:250; 图 8B
艾博抗(上海)贸易有限公司平滑肌肌动蛋白抗体(Abcam, ab5694)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:250 (图 8B). PLoS ONE (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:500; 图 4a
艾博抗(上海)贸易有限公司平滑肌肌动蛋白抗体(Abcam, ab5694)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:500 (图 4a). Int J Cancer (2016) ncbi
小鼠 单克隆(1A4)
  • 免疫组化-石蜡切片; 人类; 图 9a
艾博抗(上海)贸易有限公司平滑肌肌动蛋白抗体(Abcam, ab7817)被用于被用于免疫组化-石蜡切片在人类样本上 (图 9a). Oncotarget (2016) ncbi
小鼠 单克隆(1A4)
  • 免疫组化-石蜡切片; 猪; 1:200; 图 5b
艾博抗(上海)贸易有限公司平滑肌肌动蛋白抗体(Abcam, ab7817)被用于被用于免疫组化-石蜡切片在猪样本上浓度为1:200 (图 5b). Biotechnol J (2017) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:500; 图 1a
艾博抗(上海)贸易有限公司平滑肌肌动蛋白抗体(Abcam, ab5694)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:500 (图 1a). Nat Commun (2016) ncbi
domestic rabbit 单克隆(EPR5368)
  • 免疫组化-石蜡切片; 人类; 图 3
艾博抗(上海)贸易有限公司平滑肌肌动蛋白抗体(Abcam, 124964)被用于被用于免疫组化-石蜡切片在人类样本上 (图 3). Mol Med Rep (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 2
艾博抗(上海)贸易有限公司平滑肌肌动蛋白抗体(Abcam, ab5694)被用于被用于免疫印迹在人类样本上 (图 2). Physiol Rep (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 3
  • 免疫印迹; 牛; 1:1000; 图 1
艾博抗(上海)贸易有限公司平滑肌肌动蛋白抗体(Abcam, ab5694)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3) 和 被用于免疫印迹在牛样本上浓度为1:1000 (图 1). Sci Rep (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:100; 图 5
艾博抗(上海)贸易有限公司平滑肌肌动蛋白抗体(Abcam, ab5694)被用于被用于免疫组化在小鼠样本上浓度为1:100 (图 5). Cell Death Dis (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 图 2d
艾博抗(上海)贸易有限公司平滑肌肌动蛋白抗体(Abcam, ab5694)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 2d). PLoS ONE (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 人类; 1:300; 图 s1g
  • 免疫组化-冰冻切片; 小鼠; 1:300
艾博抗(上海)贸易有限公司平滑肌肌动蛋白抗体(Abcam, ab5694)被用于被用于免疫组化-冰冻切片在人类样本上浓度为1:300 (图 s1g) 和 被用于免疫组化-冰冻切片在小鼠样本上浓度为1:300. Nature (2016) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 图 s3a
  • 免疫组化; 人类; 图 2b
艾博抗(上海)贸易有限公司平滑肌肌动蛋白抗体(Abcam, ab5694)被用于被用于免疫细胞化学在人类样本上 (图 s3a) 和 被用于免疫组化在人类样本上 (图 2b). Nat Biotechnol (2016) ncbi
domestic goat 多克隆
  • 免疫组化-石蜡切片; 人类; 1:200; 图 6c
艾博抗(上海)贸易有限公司平滑肌肌动蛋白抗体(Abcam, ab21027)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:200 (图 6c). Oncotarget (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 大鼠; 1:100; 图 2
  • 免疫细胞化学; 大鼠; 1:100; 图 2
  • 免疫印迹; 大鼠; 1:1000; 图 2
艾博抗(上海)贸易有限公司平滑肌肌动蛋白抗体(Abcam, ab5694)被用于被用于免疫组化-石蜡切片在大鼠样本上浓度为1:100 (图 2), 被用于免疫细胞化学在大鼠样本上浓度为1:100 (图 2) 和 被用于免疫印迹在大鼠样本上浓度为1:1000 (图 2). Physiol Rep (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 人类; 1:100; 图 s14
  • 免疫组化-冰冻切片; 小鼠; 1:200; 图 s3
艾博抗(上海)贸易有限公司平滑肌肌动蛋白抗体(Abcam, ab5694)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100 (图 s14) 和 被用于免疫组化-冰冻切片在小鼠样本上浓度为1:200 (图 s3). Nat Commun (2016) ncbi
小鼠 单克隆(1A4)
  • 免疫组化-冰冻切片; 小鼠; 图 1
艾博抗(上海)贸易有限公司平滑肌肌动蛋白抗体(Abcam, ab7817)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 1). Sci Rep (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:1000
艾博抗(上海)贸易有限公司平滑肌肌动蛋白抗体(abcam, ab5694)被用于被用于免疫组化在小鼠样本上浓度为1:1000. PLoS ONE (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:100; 图 1
艾博抗(上海)贸易有限公司平滑肌肌动蛋白抗体(abcam, ab5694)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:100 (图 1). Mol Med Rep (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化; 人类; 1:500; 图 3
艾博抗(上海)贸易有限公司平滑肌肌动蛋白抗体(Abcam, ab5694)被用于被用于免疫组化在人类样本上浓度为1:500 (图 3). Oncol Lett (2016) ncbi
小鼠 单克隆(1A4)
  • 免疫细胞化学; 家羊; 图 s1
艾博抗(上海)贸易有限公司平滑肌肌动蛋白抗体(Abcam, MA ab7817)被用于被用于免疫细胞化学在家羊样本上 (图 s1). Stem Cell Reports (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 3b
艾博抗(上海)贸易有限公司平滑肌肌动蛋白抗体(Abcam, ab5694)被用于被用于免疫印迹在小鼠样本上 (图 3b). Aging (Albany NY) (2016) ncbi
小鼠 单克隆(1A4)
  • 免疫细胞化学; 小鼠; 1:200; 图 3d
艾博抗(上海)贸易有限公司平滑肌肌动蛋白抗体(Abcam, ab7817)被用于被用于免疫细胞化学在小鼠样本上浓度为1:200 (图 3d). PLoS ONE (2016) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 大鼠; 1:100; 图 4
  • 免疫印迹; 大鼠; 1:1000; 图 4
艾博抗(上海)贸易有限公司平滑肌肌动蛋白抗体(Abcam, ab5694)被用于被用于免疫细胞化学在大鼠样本上浓度为1:100 (图 4) 和 被用于免疫印迹在大鼠样本上浓度为1:1000 (图 4). Mol Med Rep (2016) ncbi
domestic rabbit 单克隆(E184)
  • 免疫组化-石蜡切片; 小鼠; 图 3
艾博抗(上海)贸易有限公司平滑肌肌动蛋白抗体(Abcam, ab32575)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 3). Arthritis Res Ther (2016) ncbi
domestic goat 多克隆
  • 免疫细胞化学; 人类; 1:50; 图 2
艾博抗(上海)贸易有限公司平滑肌肌动蛋白抗体(Abcam, ab21027)被用于被用于免疫细胞化学在人类样本上浓度为1:50 (图 2). Mol Vis (2016) ncbi
小鼠 单克隆(1A4)
  • 免疫印迹; 人类; 1:1000; 图 5
艾博抗(上海)贸易有限公司平滑肌肌动蛋白抗体(Abcam, ab7817)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 5). Sci Rep (2016) ncbi
小鼠 单克隆(1A4)
  • 免疫组化-冰冻切片; 小鼠; 图 2
艾博抗(上海)贸易有限公司平滑肌肌动蛋白抗体(Abcam, ab7817)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 2). Mol Med Rep (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 大鼠; 图 4
艾博抗(上海)贸易有限公司平滑肌肌动蛋白抗体(Abcam, ab5694)被用于被用于免疫组化-冰冻切片在大鼠样本上 (图 4). Sci Rep (2016) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 小鼠; 1:500; 图 1b
艾博抗(上海)贸易有限公司平滑肌肌动蛋白抗体(Abcam, ab5694)被用于被用于免疫细胞化学在小鼠样本上浓度为1:500 (图 1b). Stem Cell Res (2016) ncbi
小鼠 单克隆(1A4)
  • 免疫组化-石蜡切片; 人类; 1:200; 图 3
艾博抗(上海)贸易有限公司平滑肌肌动蛋白抗体(abcam, ab7817)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:200 (图 3). PLoS ONE (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:200; 图 1g
  • 免疫印迹; 小鼠; 图 3c
艾博抗(上海)贸易有限公司平滑肌肌动蛋白抗体(Abcam, ab5694)被用于被用于免疫组化在小鼠样本上浓度为1:200 (图 1g) 和 被用于免疫印迹在小鼠样本上 (图 3c). Nat Commun (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 鸡; 1:400; 图 1
艾博抗(上海)贸易有限公司平滑肌肌动蛋白抗体(Abcam, ab5694)被用于被用于免疫组化-石蜡切片在鸡样本上浓度为1:400 (图 1). BMC Biol (2016) ncbi
domestic rabbit 单克隆(E184)
  • 免疫印迹; 人类
艾博抗(上海)贸易有限公司平滑肌肌动蛋白抗体(Abcam, ab32575)被用于被用于免疫印迹在人类样本上. PLoS ONE (2016) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 大鼠; 1:100; 图 3c
  • 免疫印迹; 大鼠; 1:500; 图 3b
艾博抗(上海)贸易有限公司平滑肌肌动蛋白抗体(Abcam, ab5694)被用于被用于免疫细胞化学在大鼠样本上浓度为1:100 (图 3c) 和 被用于免疫印迹在大鼠样本上浓度为1:500 (图 3b). Lab Invest (2016) ncbi
小鼠 单克隆(1A4)
  • 流式细胞仪; 人类; 图 s1
  • 免疫细胞化学; 人类; 图 4e
艾博抗(上海)贸易有限公司平滑肌肌动蛋白抗体(Abcam, ab7817)被用于被用于流式细胞仪在人类样本上 (图 s1) 和 被用于免疫细胞化学在人类样本上 (图 4e). Exp Cell Res (2016) ncbi
小鼠 单克隆(1A4)
  • 免疫组化-石蜡切片; 人类; 1:200; 图 5
  • 免疫细胞化学; 人类; 1:200; 图 5
  • 免疫印迹; 人类; 1:150; 图 6
艾博抗(上海)贸易有限公司平滑肌肌动蛋白抗体(Abcam, ab7817)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:200 (图 5), 被用于免疫细胞化学在人类样本上浓度为1:200 (图 5) 和 被用于免疫印迹在人类样本上浓度为1:150 (图 6). PLoS ONE (2016) ncbi
domestic rabbit 单克隆(EPR5368)
  • 免疫细胞化学; 人类; 1:400; 图 3
  • 免疫组化; 人类; 1:400; 图 1
艾博抗(上海)贸易有限公司平滑肌肌动蛋白抗体(Abcam, ab124964)被用于被用于免疫细胞化学在人类样本上浓度为1:400 (图 3) 和 被用于免疫组化在人类样本上浓度为1:400 (图 1). Exp Ther Med (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 大鼠; 1:300; 图 3
艾博抗(上海)贸易有限公司平滑肌肌动蛋白抗体(Abcam, ab5694)被用于被用于免疫组化-冰冻切片在大鼠样本上浓度为1:300 (图 3). Fertil Steril (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:100; 图 5c
艾博抗(上海)贸易有限公司平滑肌肌动蛋白抗体(Abcam, ab5694)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:100 (图 5c). Mol Med Rep (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:400; 图 3
艾博抗(上海)贸易有限公司平滑肌肌动蛋白抗体(Abcam, ab5694)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:400 (图 3). Sci Rep (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 1a
艾博抗(上海)贸易有限公司平滑肌肌动蛋白抗体(Abcam, ab5694)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 1a). J Clin Invest (2016) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 1:100; 图 4
艾博抗(上海)贸易有限公司平滑肌肌动蛋白抗体(Abcam, ab5694)被用于被用于免疫细胞化学在人类样本上浓度为1:100 (图 4). Mol Med Rep (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 5
艾博抗(上海)贸易有限公司平滑肌肌动蛋白抗体(abcam, ab5694)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 5). Mol Med Rep (2016) ncbi
小鼠 单克隆(1A4)
  • 免疫细胞化学; 小鼠; 1:100; 图 s5e
艾博抗(上海)贸易有限公司平滑肌肌动蛋白抗体(Abcam, ab7817)被用于被用于免疫细胞化学在小鼠样本上浓度为1:100 (图 s5e). Nat Commun (2016) ncbi
小鼠 单克隆(4A4)
  • 流式细胞仪; 人类; 图 2
艾博抗(上海)贸易有限公司平滑肌肌动蛋白抗体(abcam, ab119952)被用于被用于流式细胞仪在人类样本上 (图 2). Int J Biol Sci (2016) ncbi
domestic rabbit 单克隆(E184)
  • 免疫细胞化学; 人类; 1:1000; 图 1
  • 免疫印迹; 人类; 1:1000; 图 1
艾博抗(上海)贸易有限公司平滑肌肌动蛋白抗体(Abcam, Ab32575)被用于被用于免疫细胞化学在人类样本上浓度为1:1000 (图 1) 和 被用于免疫印迹在人类样本上浓度为1:1000 (图 1). FEBS Lett (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:1000; 图 6
艾博抗(上海)贸易有限公司平滑肌肌动蛋白抗体(abcam, ab5694)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:1000 (图 6). Breast Cancer Res (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 人类; 图 3
艾博抗(上海)贸易有限公司平滑肌肌动蛋白抗体(Abcam, ab5694)被用于被用于免疫组化-石蜡切片在人类样本上 (图 3). Dis Model Mech (2016) ncbi
domestic goat 多克隆
  • 免疫组化-石蜡切片; 人类; 图 1
艾博抗(上海)贸易有限公司平滑肌肌动蛋白抗体(Abcam, ab21027)被用于被用于免疫组化-石蜡切片在人类样本上 (图 1). Acta Neuropathol (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 6
艾博抗(上海)贸易有限公司平滑肌肌动蛋白抗体(Abcam, ab-5694)被用于被用于免疫印迹在人类样本上 (图 6). Cardiovasc Diabetol (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:800; 图 4
艾博抗(上海)贸易有限公司平滑肌肌动蛋白抗体(Abcam, ab5694)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:800 (图 4). Oncotarget (2016) ncbi
小鼠 单克隆(1A4)
  • 免疫细胞化学; 小鼠; 1:200; 表 1
艾博抗(上海)贸易有限公司平滑肌肌动蛋白抗体(Abcam, ab7817)被用于被用于免疫细胞化学在小鼠样本上浓度为1:200 (表 1). Eur J Pharm Sci (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 图 s4
艾博抗(上海)贸易有限公司平滑肌肌动蛋白抗体(Abcam, 5694)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 s4). Cell Stem Cell (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 图 2
艾博抗(上海)贸易有限公司平滑肌肌动蛋白抗体(Abcam, ab5694)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 2). J Forensic Leg Med (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:100; 图 6d
  • 免疫印迹; 小鼠; 1:1000; 图 6f
艾博抗(上海)贸易有限公司平滑肌肌动蛋白抗体(Abcam, ab5694)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:100 (图 6d) 和 被用于免疫印迹在小鼠样本上浓度为1:1000 (图 6f). Oncotarget (2016) ncbi
小鼠 单克隆(1A4)
  • 免疫细胞化学; 人类; 图 2c
艾博抗(上海)贸易有限公司平滑肌肌动蛋白抗体(Abcam, ab7817)被用于被用于免疫细胞化学在人类样本上 (图 2c). Biomaterials (2016) ncbi
小鼠 单克隆(1A4)
  • 免疫组化-冰冻切片; 人类; 1:100; 表 1
艾博抗(上海)贸易有限公司平滑肌肌动蛋白抗体(Abcam, 1A4)被用于被用于免疫组化-冰冻切片在人类样本上浓度为1:100 (表 1). Wound Repair Regen (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 猪; 图 7
艾博抗(上海)贸易有限公司平滑肌肌动蛋白抗体(Abcam, ab5694)被用于被用于免疫组化-石蜡切片在猪样本上 (图 7). J Am Heart Assoc (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化; 人类; 图 3
艾博抗(上海)贸易有限公司平滑肌肌动蛋白抗体(Abcam, ab5694)被用于被用于免疫组化在人类样本上 (图 3). J Invest Dermatol (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:400; 图 s5
艾博抗(上海)贸易有限公司平滑肌肌动蛋白抗体(AbCam, ab5694)被用于被用于免疫印迹在人类样本上浓度为1:400 (图 s5). Nat Med (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:400; 图 s2
艾博抗(上海)贸易有限公司平滑肌肌动蛋白抗体(AbCam, ab5694)被用于被用于免疫印迹在小鼠样本上浓度为1:400 (图 s2). Nat Biotechnol (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 家羊; 图 3
艾博抗(上海)贸易有限公司平滑肌肌动蛋白抗体(Abcam, ab5694)被用于被用于免疫印迹在家羊样本上 (图 3). J Thorac Cardiovasc Surg (2016) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 图 2b
  • 免疫印迹; 人类; 图 2c
艾博抗(上海)贸易有限公司平滑肌肌动蛋白抗体(Abcam, ab5694)被用于被用于免疫细胞化学在人类样本上 (图 2b) 和 被用于免疫印迹在人类样本上 (图 2c). Reprod Sci (2016) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 1:200; 图 s1
艾博抗(上海)贸易有限公司平滑肌肌动蛋白抗体(Abcam, ab5694)被用于被用于免疫细胞化学在人类样本上浓度为1:200 (图 s1). Oncotarget (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 3
艾博抗(上海)贸易有限公司平滑肌肌动蛋白抗体(abcam, ab-5694)被用于被用于免疫印迹在小鼠样本上 (图 3). Aging Cell (2016) ncbi
domestic rabbit 单克隆(E184)
  • 免疫组化-冰冻切片; 小鼠; 图 8
艾博抗(上海)贸易有限公司平滑肌肌动蛋白抗体(abcam, ab32575)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 8). PLoS Genet (2015) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 图 1d
  • 免疫印迹; 人类; 图 1c
艾博抗(上海)贸易有限公司平滑肌肌动蛋白抗体(Abcam, ab5694)被用于被用于免疫细胞化学在人类样本上 (图 1d) 和 被用于免疫印迹在人类样本上 (图 1c). Wound Repair Regen (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:500; 图 4
艾博抗(上海)贸易有限公司平滑肌肌动蛋白抗体(Abcam, ab5694)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:500 (图 4). J Gastrointest Surg (2016) ncbi
domestic rabbit 单克隆(E184)
  • 免疫细胞化学; 小鼠; 1:500; 表 2
艾博抗(上海)贸易有限公司平滑肌肌动蛋白抗体(Abcam, ab32575)被用于被用于免疫细胞化学在小鼠样本上浓度为1:500 (表 2). J Cell Physiol (2016) ncbi
小鼠 单克隆(1A4)
  • 免疫细胞化学; 人类; 1:100; 图 2g
艾博抗(上海)贸易有限公司平滑肌肌动蛋白抗体(Abcam, ab7817)被用于被用于免疫细胞化学在人类样本上浓度为1:100 (图 2g). Biomed Res Int (2015) ncbi
domestic rabbit 单克隆(E184)
  • 免疫细胞化学; 小鼠; 1:100
艾博抗(上海)贸易有限公司平滑肌肌动蛋白抗体(Abcam, AB32575)被用于被用于免疫细胞化学在小鼠样本上浓度为1:100. PLoS ONE (2015) ncbi
小鼠 单克隆(1A4)
  • 免疫细胞化学; 人类; 图 8
艾博抗(上海)贸易有限公司平滑肌肌动蛋白抗体(Abcam, ab7817)被用于被用于免疫细胞化学在人类样本上 (图 8). Cytotherapy (2015) ncbi
domestic rabbit 单克隆(E184)
  • 免疫印迹; 人类; 1:2000; 图 3
艾博抗(上海)贸易有限公司平滑肌肌动蛋白抗体(Abcam, ab32575)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 3). Nat Commun (2015) ncbi
小鼠 单克隆(1A4)
  • 免疫印迹; 人类; 1:1000; 图 1
艾博抗(上海)贸易有限公司平滑肌肌动蛋白抗体(Abcam, ab7817)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 1). Int J Cancer (2016) ncbi
小鼠 单克隆(1A4)
  • 免疫组化; giant panda; 1:100; 图 5
艾博抗(上海)贸易有限公司平滑肌肌动蛋白抗体(Abcam, ab7817)被用于被用于免疫组化在giant panda样本上浓度为1:100 (图 5). PLoS ONE (2015) ncbi
domestic rabbit 单克隆(E184)
  • 免疫细胞化学; 小鼠; 图 2
艾博抗(上海)贸易有限公司平滑肌肌动蛋白抗体(Abcam, E184)被用于被用于免疫细胞化学在小鼠样本上 (图 2). J Cell Biol (2015) ncbi
小鼠 单克隆(1A4)
  • 免疫细胞化学; 小鼠; 1:200; 图 2e
艾博抗(上海)贸易有限公司平滑肌肌动蛋白抗体(Abcam, ab7817)被用于被用于免疫细胞化学在小鼠样本上浓度为1:200 (图 2e). Sci Rep (2015) ncbi
小鼠 单克隆(1A4)
  • 免疫细胞化学; domestic rabbit; 1:200; 图 6a
艾博抗(上海)贸易有限公司平滑肌肌动蛋白抗体(Abcam, ab-7817)被用于被用于免疫细胞化学在domestic rabbit样本上浓度为1:200 (图 6a). J Orthop Res (2016) ncbi
小鼠 单克隆(1A4)
  • 免疫组化-石蜡切片; 小鼠
艾博抗(上海)贸易有限公司平滑肌肌动蛋白抗体(Abcam, ab7817)被用于被用于免疫组化-石蜡切片在小鼠样本上. PLoS ONE (2015) ncbi
domestic rabbit 单克隆(E184)
  • 免疫组化-石蜡切片; 小鼠; 1:2000; 图 s1
艾博抗(上海)贸易有限公司平滑肌肌动蛋白抗体(Abcam, AB32575)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:2000 (图 s1). elife (2015) ncbi
小鼠 单克隆(1A4)
  • 免疫组化-石蜡切片; 大鼠; 1:200; 图 5
艾博抗(上海)贸易有限公司平滑肌肌动蛋白抗体(Abcam, Ab7817)被用于被用于免疫组化-石蜡切片在大鼠样本上浓度为1:200 (图 5). Int J Clin Exp Pathol (2015) ncbi
小鼠 单克隆(1A4)
  • 免疫细胞化学; 小鼠; 1:100
艾博抗(上海)贸易有限公司平滑肌肌动蛋白抗体(abcam, ab8211)被用于被用于免疫细胞化学在小鼠样本上浓度为1:100. Cancer Res (2015) ncbi
小鼠 单克隆(1A4)
艾博抗(上海)贸易有限公司平滑肌肌动蛋白抗体(Abcam, ab8211)被用于. Front Oncol (2015) ncbi
小鼠 单克隆(1A4)
  • 免疫印迹; 人类
艾博抗(上海)贸易有限公司平滑肌肌动蛋白抗体(Abcam, ab8211)被用于被用于免疫印迹在人类样本上. Nat Genet (2015) ncbi
小鼠 单克隆(1A4)
  • 免疫组化; 小鼠; 图 4
艾博抗(上海)贸易有限公司平滑肌肌动蛋白抗体(Abcam, Ab7817)被用于被用于免疫组化在小鼠样本上 (图 4). Gastroenterology (2015) ncbi
domestic rabbit 单克隆(E184)
  • 免疫组化-石蜡切片; 大鼠; 图 7
艾博抗(上海)贸易有限公司平滑肌肌动蛋白抗体(Abcam, ab32575)被用于被用于免疫组化-石蜡切片在大鼠样本上 (图 7). EMBO Mol Med (2015) ncbi
小鼠 单克隆(1A4)
  • 免疫组化-石蜡切片; 小鼠
艾博抗(上海)贸易有限公司平滑肌肌动蛋白抗体(Abcam, ab8211)被用于被用于免疫组化-石蜡切片在小鼠样本上. Cardiovasc Res (2015) ncbi
domestic rabbit 单克隆(EPR5368)
  • 免疫组化-石蜡切片; 人类; 1:1000
艾博抗(上海)贸易有限公司平滑肌肌动蛋白抗体(abcam, ab124964)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:1000. Dis Esophagus (2016) ncbi
小鼠 单克隆(1A4)
  • 免疫细胞化学; 人类; 1:500
  • 免疫组化-石蜡切片; 大鼠; 1:100
  • 免疫印迹; 大鼠
艾博抗(上海)贸易有限公司平滑肌肌动蛋白抗体(Abcam, ab7817)被用于被用于免疫细胞化学在人类样本上浓度为1:500, 被用于免疫组化-石蜡切片在大鼠样本上浓度为1:100 和 被用于免疫印迹在大鼠样本上. Mol Med Rep (2015) ncbi
小鼠 单克隆(1A4)
  • 免疫组化; 人类; 1:200
艾博抗(上海)贸易有限公司平滑肌肌动蛋白抗体(Abcam, ab7817)被用于被用于免疫组化在人类样本上浓度为1:200. Tumour Biol (2015) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 图 3
  • 免疫印迹; 人类; 图 4
艾博抗(上海)贸易有限公司平滑肌肌动蛋白抗体(Abcam, ab5694)被用于被用于免疫细胞化学在人类样本上 (图 3) 和 被用于免疫印迹在人类样本上 (图 4). Cytotechnology (2016) ncbi
小鼠 单克隆(1A4)
  • 免疫组化-冰冻切片; 小鼠; 图 3
艾博抗(上海)贸易有限公司平滑肌肌动蛋白抗体(Abcam, Ab7817)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 3). J Am Heart Assoc (2015) ncbi
domestic rabbit 单克隆(E184)
  • 免疫组化-石蜡切片; 小鼠
艾博抗(上海)贸易有限公司平滑肌肌动蛋白抗体(Abcam, ab32575)被用于被用于免疫组化-石蜡切片在小鼠样本上. Am J Physiol Gastrointest Liver Physiol (2015) ncbi
小鼠 单克隆(1A4)
  • 免疫细胞化学; 猪; 1:100
艾博抗(上海)贸易有限公司平滑肌肌动蛋白抗体(Abcam, ab7817)被用于被用于免疫细胞化学在猪样本上浓度为1:100. PLoS ONE (2014) ncbi
小鼠 单克隆(1A4)
  • 流式细胞仪; 人类
艾博抗(上海)贸易有限公司平滑肌肌动蛋白抗体(Abcam, ab8211)被用于被用于流式细胞仪在人类样本上. Am J Pathol (2015) ncbi
domestic rabbit 单克隆(E184)
  • 免疫组化-石蜡切片; 人类; 1:500
艾博抗(上海)贸易有限公司平滑肌肌动蛋白抗体(Abcam, E184)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:500. Proc Natl Acad Sci U S A (2014) ncbi
小鼠 单克隆(1A4)
  • 免疫细胞化学; 小鼠; 1:100
艾博抗(上海)贸易有限公司平滑肌肌动蛋白抗体(Abcam, ab7817)被用于被用于免疫细胞化学在小鼠样本上浓度为1:100. J Am Heart Assoc (2014) ncbi
小鼠 单克隆(1A4)
  • 免疫组化; 大鼠; 1:2000
艾博抗(上海)贸易有限公司平滑肌肌动蛋白抗体(Abcam, ab7817)被用于被用于免疫组化在大鼠样本上浓度为1:2000. PLoS ONE (2014) ncbi
小鼠 单克隆(1A4)
  • 免疫细胞化学; 人类
  • 免疫印迹; 人类
艾博抗(上海)贸易有限公司平滑肌肌动蛋白抗体(Abcam, ab7817)被用于被用于免疫细胞化学在人类样本上 和 被用于免疫印迹在人类样本上. BMC Cancer (2014) ncbi
小鼠 单克隆(1A4)
  • 免疫组化-石蜡切片; 人类
艾博抗(上海)贸易有限公司平滑肌肌动蛋白抗体(Abcam, ab7817)被用于被用于免疫组化-石蜡切片在人类样本上. J Control Release (2014) ncbi
小鼠 单克隆(1A4)
  • 免疫细胞化学; 人类
艾博抗(上海)贸易有限公司平滑肌肌动蛋白抗体(Abcam, Ab7817)被用于被用于免疫细胞化学在人类样本上. Int J Clin Exp Pathol (2014) ncbi
小鼠 单克隆(1A4)
  • 免疫细胞化学; 猪; 1:100
  • 免疫印迹; 猪
艾博抗(上海)贸易有限公司平滑肌肌动蛋白抗体(Abcam, ab7817)被用于被用于免疫细胞化学在猪样本上浓度为1:100 和 被用于免疫印迹在猪样本上. FASEB J (2014) ncbi
小鼠 单克隆(1A4)
  • 免疫组化-石蜡切片; 小鼠; 1:500
  • 免疫细胞化学; 人类; 1:300
艾博抗(上海)贸易有限公司平滑肌肌动蛋白抗体(Abcam, ab7817)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:500 和 被用于免疫细胞化学在人类样本上浓度为1:300. J Biol Chem (2014) ncbi
小鼠 单克隆(1A4)
  • 免疫细胞化学; 大鼠
  • 免疫印迹; 大鼠
艾博抗(上海)贸易有限公司平滑肌肌动蛋白抗体(Abcam, ab7817)被用于被用于免疫细胞化学在大鼠样本上 和 被用于免疫印迹在大鼠样本上. Int J Mol Med (2014) ncbi
小鼠 单克隆(1A4)
  • 免疫细胞化学; 鸡
艾博抗(上海)贸易有限公司平滑肌肌动蛋白抗体(Abcam, ab7817-500)被用于被用于免疫细胞化学在鸡样本上. Stem Cells Dev (2014) ncbi
domestic rabbit 单克隆(E184)
  • 免疫组化-冰冻切片; 小鼠
艾博抗(上海)贸易有限公司平滑肌肌动蛋白抗体(Abcam, ab32575)被用于被用于免疫组化-冰冻切片在小鼠样本上. PLoS ONE (2014) ncbi
小鼠 单克隆(1A4)
  • 免疫细胞化学; 小鼠; 1:250
艾博抗(上海)贸易有限公司平滑肌肌动蛋白抗体(Abcam, AB7817)被用于被用于免疫细胞化学在小鼠样本上浓度为1:250. PLoS ONE (2013) ncbi
小鼠 单克隆(1A4)
  • 免疫组化; 小鼠; 1:100
  • 免疫印迹; 小鼠; 1:1,000
艾博抗(上海)贸易有限公司平滑肌肌动蛋白抗体(Abcam, ab7817)被用于被用于免疫组化在小鼠样本上浓度为1:100 和 被用于免疫印迹在小鼠样本上浓度为1:1,000. Mol Cell Biol (2014) ncbi
小鼠 单克隆(1A4)
  • 免疫印迹; 大鼠; 1:200
艾博抗(上海)贸易有限公司平滑肌肌动蛋白抗体(Abcam, ab7817)被用于被用于免疫印迹在大鼠样本上浓度为1:200. Life Sci (2014) ncbi
小鼠 单克隆(1A4)
  • 免疫组化; 人类
  • 免疫印迹; 人类
艾博抗(上海)贸易有限公司平滑肌肌动蛋白抗体(Abcam, ab7817)被用于被用于免疫组化在人类样本上 和 被用于免疫印迹在人类样本上. PLoS ONE (2013) ncbi
domestic rabbit 单克隆(E184)
  • 免疫印迹; 人类; 1:500
艾博抗(上海)贸易有限公司平滑肌肌动蛋白抗体(Abcam, ab32575)被用于被用于免疫印迹在人类样本上浓度为1:500. Autophagy (2013) ncbi
小鼠 单克隆(1A4)
  • 免疫组化; 小鼠; 图 5
艾博抗(上海)贸易有限公司平滑肌肌动蛋白抗体(Abcam, ab7817)被用于被用于免疫组化在小鼠样本上 (图 5). BMC Biol (2013) ncbi
domestic rabbit 单克隆(E184)
  • 免疫组化-石蜡切片; 小鼠
艾博抗(上海)贸易有限公司平滑肌肌动蛋白抗体(Abcam, ab32575)被用于被用于免疫组化-石蜡切片在小鼠样本上. Endocrinology (2013) ncbi
小鼠 单克隆(1A4)
  • 免疫细胞化学; 人类; 1:100
艾博抗(上海)贸易有限公司平滑肌肌动蛋白抗体(Abcam, ab7817)被用于被用于免疫细胞化学在人类样本上浓度为1:100. Malays J Med Sci (2013) ncbi
小鼠 单克隆(1A4)
  • 免疫组化-冰冻切片; 小鼠
艾博抗(上海)贸易有限公司平滑肌肌动蛋白抗体(Abcam, ab7817)被用于被用于免疫组化-冰冻切片在小鼠样本上. J Am Heart Assoc (2013) ncbi
domestic rabbit 单克隆(E184)
  • 免疫组化-石蜡切片; 小鼠; 1:100
艾博抗(上海)贸易有限公司平滑肌肌动蛋白抗体(Abcam, ab32575)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:100. J Am Heart Assoc (2013) ncbi
小鼠 单克隆(1A4)
  • 免疫组化-石蜡切片; 小鼠; 1:50
  • 免疫印迹; 小鼠; 1:200
艾博抗(上海)贸易有限公司平滑肌肌动蛋白抗体(Abcam, ab7817)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:50 和 被用于免疫印迹在小鼠样本上浓度为1:200. PLoS ONE (2013) ncbi
小鼠 单克隆(1A4)
  • 免疫组化-冰冻切片; 大鼠; 0.002 mg/ml
  • 免疫细胞化学; 大鼠; 0.002 mg/ml
艾博抗(上海)贸易有限公司平滑肌肌动蛋白抗体(Abcam, ab7817)被用于被用于免疫组化-冰冻切片在大鼠样本上浓度为0.002 mg/ml 和 被用于免疫细胞化学在大鼠样本上浓度为0.002 mg/ml. Biol Reprod (2013) ncbi
小鼠 单克隆(1A4)
  • 免疫细胞化学; 大鼠; 1:200
艾博抗(上海)贸易有限公司平滑肌肌动蛋白抗体(Abcam, ab7817)被用于被用于免疫细胞化学在大鼠样本上浓度为1:200. Cell Tissue Res (2013) ncbi
domestic rabbit 单克隆(E184)
  • 免疫细胞化学; 小鼠; 1:400
艾博抗(上海)贸易有限公司平滑肌肌动蛋白抗体(Abcam, ab32575)被用于被用于免疫细胞化学在小鼠样本上浓度为1:400. Lipids (2012) ncbi
小鼠 单克隆(1A4)
  • 免疫组化-石蜡切片; 人类
  • 免疫细胞化学; 人类
艾博抗(上海)贸易有限公司平滑肌肌动蛋白抗体(Abcam, Ab7817)被用于被用于免疫组化-石蜡切片在人类样本上 和 被用于免疫细胞化学在人类样本上. Pediatr Dev Pathol (2012) ncbi
圣克鲁斯生物技术
小鼠 单克隆(C-2)
  • 免疫印迹; 人类; 图 4g
圣克鲁斯生物技术平滑肌肌动蛋白抗体(Santa, sc-8432)被用于被用于免疫印迹在人类样本上 (图 4g). Cell Cycle (2020) ncbi
小鼠 单克隆(CGA7)
  • 免疫组化; 人类; 1:200; 图 1c
圣克鲁斯生物技术平滑肌肌动蛋白抗体(Santa, CGA7)被用于被用于免疫组化在人类样本上浓度为1:200 (图 1c). Science (2019) ncbi
小鼠 单克隆(1A4)
  • 免疫组化-石蜡切片; 人类; 1:1500; 图 e2j
  • 免疫组化-石蜡切片; 小鼠; 1:1500; 图 e2i
  • 免疫印迹; 小鼠; 1:5000; 图 e2h
圣克鲁斯生物技术平滑肌肌动蛋白抗体(Santa Cruz, sc-32251)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:1500 (图 e2j), 被用于免疫组化-石蜡切片在小鼠样本上浓度为1:1500 (图 e2i) 和 被用于免疫印迹在小鼠样本上浓度为1:5000 (图 e2h). Nature (2019) ncbi
小鼠 单克隆(C-2)
  • 免疫印迹; 小鼠; 图 2e
圣克鲁斯生物技术平滑肌肌动蛋白抗体(Santa, sc-8432)被用于被用于免疫印迹在小鼠样本上 (图 2e). Sci Rep (2018) ncbi
小鼠 单克隆(C-2)
  • 免疫印迹; 小鼠; 1:1000; 图 1d
  • 免疫印迹; 人类; 1:1000; 图 1d
圣克鲁斯生物技术平滑肌肌动蛋白抗体(Santa, C-2)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 1d) 和 被用于免疫印迹在人类样本上浓度为1:1000 (图 1d). Nat Commun (2018) ncbi
小鼠 单克隆(1A4)
  • 免疫组化-冰冻切片; 小鼠; 图 2d
圣克鲁斯生物技术平滑肌肌动蛋白抗体(Santa Cruz Biotechnology, 1A4)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 2d). Genes Dev (2018) ncbi
小鼠 单克隆(B4)
  • 免疫印迹; 人类; 1:2500; 图 3a
圣克鲁斯生物技术平滑肌肌动蛋白抗体(Santa Cruz Biotechnology, Inc, sc-53142)被用于被用于免疫印迹在人类样本上浓度为1:2500 (图 3a). Mol Med Rep (2018) ncbi
小鼠 单克隆(1A4)
  • 免疫组化-石蜡切片; 大鼠; 1:100; 图 5c
圣克鲁斯生物技术平滑肌肌动蛋白抗体(Santa Cruz Biotechnology, sc-32251)被用于被用于免疫组化-石蜡切片在大鼠样本上浓度为1:100 (图 5c). PLoS ONE (2017) ncbi
小鼠 单克隆(B4)
  • 免疫印迹; 人类; 1:1000; 图 3a
圣克鲁斯生物技术平滑肌肌动蛋白抗体(Santa Cruz, sc-53142)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3a). Mol Med Rep (2017) ncbi
小鼠 单克隆(1A4)
  • 免疫细胞化学; 小鼠; 图 S4
圣克鲁斯生物技术平滑肌肌动蛋白抗体(Santa Cruz Biotechnology, sc-32251)被用于被用于免疫细胞化学在小鼠样本上 (图 S4). PLoS ONE (2017) ncbi
小鼠 单克隆(1A4)
  • 免疫组化-石蜡切片; 人类; 图 4b
圣克鲁斯生物技术平滑肌肌动蛋白抗体(Santa Cruz, sc-32251)被用于被用于免疫组化-石蜡切片在人类样本上 (图 4b). PLoS ONE (2016) ncbi
小鼠 单克隆(1A4)
  • 免疫组化; 大鼠; 1:50; 图 3a
圣克鲁斯生物技术平滑肌肌动蛋白抗体(Santa Cruz, sc-32251)被用于被用于免疫组化在大鼠样本上浓度为1:50 (图 3a). Sci Rep (2016) ncbi
小鼠 单克隆(alpha-SM1)
  • 免疫印迹; 小鼠; 1:1000; 图 2a
圣克鲁斯生物技术平滑肌肌动蛋白抗体(Santa Cruz, sc-130617)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 2a). PLoS ONE (2016) ncbi
小鼠 单克隆(1A4)
  • 免疫组化-石蜡切片; 人类; 1:50; 图 1b
  • 免疫印迹; 人类; 1:1000; 图 3c
  • 免疫组化-冰冻切片; 小鼠; 1:50; 图 7c
  • 免疫细胞化学; 小鼠; 1:50; 图 3e
  • 免疫印迹; 小鼠; 1:1000; 图 7a
圣克鲁斯生物技术平滑肌肌动蛋白抗体(Santa Cruz, SC-32251)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:50 (图 1b), 被用于免疫印迹在人类样本上浓度为1:1000 (图 3c), 被用于免疫组化-冰冻切片在小鼠样本上浓度为1:50 (图 7c), 被用于免疫细胞化学在小鼠样本上浓度为1:50 (图 3e) 和 被用于免疫印迹在小鼠样本上浓度为1:1000 (图 7a). Nat Commun (2016) ncbi
小鼠 单克隆(C-2)
  • 免疫印迹; 人类; 图 4
圣克鲁斯生物技术平滑肌肌动蛋白抗体(Santa Cruz, sc8432)被用于被用于免疫印迹在人类样本上 (图 4). Oncotarget (2016) ncbi
小鼠 单克隆(CGA7)
  • 免疫组化; 人类; 1:500
圣克鲁斯生物技术平滑肌肌动蛋白抗体(Santa Cruz, sc-53015)被用于被用于免疫组化在人类样本上浓度为1:500. Oncol Lett (2016) ncbi
小鼠 单克隆(C-2)
  • 免疫印迹; 人类; 1:1000; 图 1
圣克鲁斯生物技术平滑肌肌动蛋白抗体(Santa Cruz, sc-8432)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 1). Oncol Lett (2016) ncbi
小鼠 单克隆(1A4)
  • 免疫细胞化学; 家羊; 1:450
圣克鲁斯生物技术平滑肌肌动蛋白抗体(Santa Cruz, sc-32251)被用于被用于免疫细胞化学在家羊样本上浓度为1:450. Int J Trichology (2016) ncbi
小鼠 单克隆(1A4)
  • 免疫组化-石蜡切片; 小鼠; 1:200; 图 3
  • 免疫印迹; 小鼠; 1:1000; 图 s2
圣克鲁斯生物技术平滑肌肌动蛋白抗体(Santa Cruz, sc-32251)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:200 (图 3) 和 被用于免疫印迹在小鼠样本上浓度为1:1000 (图 s2). Sci Rep (2016) ncbi
小鼠 单克隆(C-2)
  • 免疫印迹; 人类; 1:5000; 图 1
圣克鲁斯生物技术平滑肌肌动蛋白抗体(Santa Cruz, sc-8432)被用于被用于免疫印迹在人类样本上浓度为1:5000 (图 1). Oncol Lett (2016) ncbi
小鼠 单克隆(C-2)
  • 免疫印迹; 人类; 1:1000; 图 1
圣克鲁斯生物技术平滑肌肌动蛋白抗体(Santa Cruz, sc-8432)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 1). Oncol Lett (2016) ncbi
小鼠 单克隆(C-2)
  • 免疫印迹; 人类; 1:500; 图 6
圣克鲁斯生物技术平滑肌肌动蛋白抗体(Santa Cruz Biotechnology, sc-8432)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 6). Oncol Lett (2016) ncbi
小鼠 单克隆(0.N.5)
  • 免疫组化-石蜡切片; 豚鼠; 图 7
圣克鲁斯生物技术平滑肌肌动蛋白抗体(Santa Cruz, sc-58669)被用于被用于免疫组化-石蜡切片在豚鼠样本上 (图 7). Mediators Inflamm (2016) ncbi
小鼠 单克隆(C-2)
  • 免疫印迹; 人类; 1:200; 图 1
圣克鲁斯生物技术平滑肌肌动蛋白抗体(Santa Cruz, SC-8432)被用于被用于免疫印迹在人类样本上浓度为1:200 (图 1). Mol Med Rep (2016) ncbi
小鼠 单克隆(alpha-SM1)
  • 免疫印迹; 人类; 图 1a
圣克鲁斯生物技术平滑肌肌动蛋白抗体(Santa Cruz, sc-130617)被用于被用于免疫印迹在人类样本上 (图 1a). J Cell Mol Med (2016) ncbi
小鼠 单克隆(a-SM1)
  • 免疫组化; 大鼠; 1:100; 图 4B
圣克鲁斯生物技术平滑肌肌动蛋白抗体(Santa Cruz, sc-130616)被用于被用于免疫组化在大鼠样本上浓度为1:100 (图 4B). Am J Transl Res (2016) ncbi
小鼠 单克隆(C-2)
  • 免疫印迹; 人类; 1:5000; 图 6
圣克鲁斯生物技术平滑肌肌动蛋白抗体(Santa Cruz, Sc-8432)被用于被用于免疫印迹在人类样本上浓度为1:5000 (图 6). Front Oncol (2016) ncbi
小鼠 单克隆(C-2)
  • 免疫印迹; 小鼠; 图 5
圣克鲁斯生物技术平滑肌肌动蛋白抗体(Santa Cruz, sc-8432)被用于被用于免疫印迹在小鼠样本上 (图 5). PLoS Pathog (2016) ncbi
小鼠 单克隆(0.N.5)
圣克鲁斯生物技术平滑肌肌动蛋白抗体(Santa Cruz, Sc-58669)被用于. PLoS ONE (2016) ncbi
小鼠 单克隆(CGA7)
  • 免疫印迹; 人类; 1:1500; 图 2B
圣克鲁斯生物技术平滑肌肌动蛋白抗体(Santa Cruz, sc-53015)被用于被用于免疫印迹在人类样本上浓度为1:1500 (图 2B). Mol Med Rep (2016) ncbi
小鼠 单克隆(B4)
  • 免疫组化-石蜡切片; 小鼠; 图 8
圣克鲁斯生物技术平滑肌肌动蛋白抗体(Santa Cruz, sc53142)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 8). Sci Rep (2016) ncbi
小鼠 单克隆(a-SM1)
  • 免疫细胞化学; 人类; 1:2000; 图 1
  • 免疫印迹; 人类; 1:2000; 图 4
圣克鲁斯生物技术平滑肌肌动蛋白抗体(Santa Cruz, sc-130616)被用于被用于免疫细胞化学在人类样本上浓度为1:2000 (图 1) 和 被用于免疫印迹在人类样本上浓度为1:2000 (图 4). Exp Ther Med (2016) ncbi
小鼠 单克隆(C-2)
  • 免疫印迹; 大鼠; 1:500; 图 3
圣克鲁斯生物技术平滑肌肌动蛋白抗体(Santa Cruz, sc-8432)被用于被用于免疫印迹在大鼠样本上浓度为1:500 (图 3). Biofactors (2016) ncbi
小鼠 单克隆(C-2)
  • 免疫印迹; 人类; 1:1000; 图 5
圣克鲁斯生物技术平滑肌肌动蛋白抗体(Santa Cruz Biotechnology, sc-8432)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 5). Exp Ther Med (2016) ncbi
小鼠 单克隆(B4)
  • 免疫组化-石蜡切片; 大鼠; 1:100; 图 2
圣克鲁斯生物技术平滑肌肌动蛋白抗体(Santa Cruz Biotechnology, sc-53142)被用于被用于免疫组化-石蜡切片在大鼠样本上浓度为1:100 (图 2). Mol Med Rep (2016) ncbi
小鼠 单克隆(1A4)
  • 免疫印迹; 小鼠; 1:500; 图 3
圣克鲁斯生物技术平滑肌肌动蛋白抗体(Santa Cruz, sc-32251)被用于被用于免疫印迹在小鼠样本上浓度为1:500 (图 3). Sci Rep (2016) ncbi
小鼠 单克隆(C-2)
  • 免疫印迹; 小鼠; 图 2b
圣克鲁斯生物技术平滑肌肌动蛋白抗体(Santa Cruz Biotechnology, sc-8432)被用于被用于免疫印迹在小鼠样本上 (图 2b). elife (2016) ncbi
小鼠 单克隆(C-2)
  • 免疫印迹; 小鼠; 图 4
圣克鲁斯生物技术平滑肌肌动蛋白抗体(Santa Cruz, sc-8432)被用于被用于免疫印迹在小鼠样本上 (图 4). Int J Mol Med (2016) ncbi
小鼠 单克隆(alpha-SM1)
  • 免疫组化-石蜡切片; 人类; 图 8
  • 免疫印迹; 人类; 图 3
  • 免疫组化-石蜡切片; 大鼠; 图 2
圣克鲁斯生物技术平滑肌肌动蛋白抗体(Santa Cruz, SC-130617)被用于被用于免疫组化-石蜡切片在人类样本上 (图 8), 被用于免疫印迹在人类样本上 (图 3) 和 被用于免疫组化-石蜡切片在大鼠样本上 (图 2). PLoS ONE (2016) ncbi
小鼠 单克隆(1A4)
  • 免疫组化-石蜡切片; 人类; 图 3
圣克鲁斯生物技术平滑肌肌动蛋白抗体(Santa Cruz, SC-32251)被用于被用于免疫组化-石蜡切片在人类样本上 (图 3). Peerj (2015) ncbi
小鼠 单克隆(1A4)
  • 免疫组化; 人类; 图 2
圣克鲁斯生物技术平滑肌肌动蛋白抗体(Santa Cruz, Biotechnology, sc-32251)被用于被用于免疫组化在人类样本上 (图 2). Int Braz J Urol (2015) ncbi
小鼠 单克隆(C-2)
  • 免疫印迹; 人类; 1:1000; 图 4
圣克鲁斯生物技术平滑肌肌动蛋白抗体(Santa Cruz Biotechnology, sc-8432)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 4). Mol Med Rep (2016) ncbi
小鼠 单克隆(C-2)
  • 免疫印迹; 小鼠; 1:2000; 图 3
圣克鲁斯生物技术平滑肌肌动蛋白抗体(Santa Cruz, sc-8432)被用于被用于免疫印迹在小鼠样本上浓度为1:2000 (图 3). Front Cell Neurosci (2015) ncbi
小鼠 单克隆(C-2)
  • 免疫印迹; 人类; 1000 ng/ml; 图 1
圣克鲁斯生物技术平滑肌肌动蛋白抗体(Santa Cruz, sc-8432)被用于被用于免疫印迹在人类样本上浓度为1000 ng/ml (图 1). Nat Commun (2015) ncbi
小鼠 单克隆(C-2)
  • 免疫印迹; 小鼠; 图 1
圣克鲁斯生物技术平滑肌肌动蛋白抗体(santa Cruz, sc-8432)被用于被用于免疫印迹在小鼠样本上 (图 1). Cell Death Dis (2015) ncbi
小鼠 单克隆(C-2)
  • 免疫印迹; 人类; 图 2A
圣克鲁斯生物技术平滑肌肌动蛋白抗体(Santa Cruz, sc-8432)被用于被用于免疫印迹在人类样本上 (图 2A). Sci Rep (2015) ncbi
小鼠 单克隆(C-2)
  • 免疫印迹; 大鼠; 1:5000; 图 1
  • 免疫印迹; 小鼠; 1:5000; 图 2
圣克鲁斯生物技术平滑肌肌动蛋白抗体(Santa Cruz Biotechnology, sc-8432)被用于被用于免疫印迹在大鼠样本上浓度为1:5000 (图 1) 和 被用于免疫印迹在小鼠样本上浓度为1:5000 (图 2). Biochemistry (2015) ncbi
小鼠 单克隆(1A4)
  • 免疫细胞化学; 小鼠; 1:800; 图 3
  • 免疫印迹; 小鼠; 1:10,000; 图 1
圣克鲁斯生物技术平滑肌肌动蛋白抗体(Santa Cruz, SC-32251)被用于被用于免疫细胞化学在小鼠样本上浓度为1:800 (图 3) 和 被用于免疫印迹在小鼠样本上浓度为1:10,000 (图 1). Nat Commun (2015) ncbi
小鼠 单克隆(H-6)
  • 免疫印迹; 大鼠; 1:500; 图 4
圣克鲁斯生物技术平滑肌肌动蛋白抗体(Santa Cruz Biotechnology, sc-376421)被用于被用于免疫印迹在大鼠样本上浓度为1:500 (图 4). Mol Med Rep (2015) ncbi
小鼠 单克隆(C-2)
  • 免疫细胞化学; 犬; 图 1b
  • 免疫印迹; 犬; 1:1000; 图 s1d
圣克鲁斯生物技术平滑肌肌动蛋白抗体(Santa Cruz Biotechnology, sc-8432)被用于被用于免疫细胞化学在犬样本上 (图 1b) 和 被用于免疫印迹在犬样本上浓度为1:1000 (图 s1d). Mol Biol Cell (2015) ncbi
小鼠 单克隆(C-2)
  • 免疫印迹; 人类; 图 2
圣克鲁斯生物技术平滑肌肌动蛋白抗体(Santa Cruz, sc-8432)被用于被用于免疫印迹在人类样本上 (图 2). J Transl Med (2015) ncbi
小鼠 单克隆(alpha-SM1)
  • 免疫印迹; 大鼠; 1:200; 图 6
圣克鲁斯生物技术平滑肌肌动蛋白抗体(Santa-Cruz, sc-130617)被用于被用于免疫印迹在大鼠样本上浓度为1:200 (图 6). PLoS ONE (2015) ncbi
小鼠 单克隆(C-2)
  • 免疫印迹; 人类; 图 5
圣克鲁斯生物技术平滑肌肌动蛋白抗体(Santa Cruz, sc-8432)被用于被用于免疫印迹在人类样本上 (图 5). Oncotarget (2015) ncbi
小鼠 单克隆(1A4)
  • 免疫印迹; 人类; 图 s1
圣克鲁斯生物技术平滑肌肌动蛋白抗体(santa Cruz, sc32251)被用于被用于免疫印迹在人类样本上 (图 s1). Cancer Biol Ther (2015) ncbi
小鼠 单克隆(C-2)
  • 免疫印迹; 人类; 图 3a
圣克鲁斯生物技术平滑肌肌动蛋白抗体(Santa Cruz, sc-8432)被用于被用于免疫印迹在人类样本上 (图 3a). PLoS ONE (2015) ncbi
小鼠 单克隆(1A4)
  • 免疫细胞化学; 小鼠; 1:100; 图 4c
  • 免疫印迹; 小鼠; 图 4b
圣克鲁斯生物技术平滑肌肌动蛋白抗体(Santa Cruz Biotechnology, sc-32251)被用于被用于免疫细胞化学在小鼠样本上浓度为1:100 (图 4c) 和 被用于免疫印迹在小鼠样本上 (图 4b). PLoS ONE (2015) ncbi
小鼠 单克隆(C-2)
  • 免疫印迹; 人类; 图 6a
圣克鲁斯生物技术平滑肌肌动蛋白抗体(Santa Cruz, sc-8432)被用于被用于免疫印迹在人类样本上 (图 6a). Mol Cancer Ther (2015) ncbi
小鼠 单克隆(C-2)
  • 免疫印迹; 犬; 1:50,000; 图 1
圣克鲁斯生物技术平滑肌肌动蛋白抗体(Santa Cruz, sc-8432)被用于被用于免疫印迹在犬样本上浓度为1:50,000 (图 1). BMC Cancer (2015) ncbi
小鼠 单克隆(1A4)
  • 免疫细胞化学; 人类; 1:500
  • 免疫印迹; 人类; 1:5000
圣克鲁斯生物技术平滑肌肌动蛋白抗体(Santa Cruz Biotechnology, sc-32251)被用于被用于免疫细胞化学在人类样本上浓度为1:500 和 被用于免疫印迹在人类样本上浓度为1:5000. J Cell Physiol (2015) ncbi
小鼠 单克隆(C-2)
  • 免疫细胞化学; 人类
  • 免疫印迹; 人类
圣克鲁斯生物技术平滑肌肌动蛋白抗体(Santa Cruz Biotechnology, sc-8432)被用于被用于免疫细胞化学在人类样本上 和 被用于免疫印迹在人类样本上. Biochim Biophys Acta (2015) ncbi
小鼠 单克隆(C-2)
  • 免疫细胞化学; 小鼠; 图 3d
圣克鲁斯生物技术平滑肌肌动蛋白抗体(Santa Cruz, SC-8432)被用于被用于免疫细胞化学在小鼠样本上 (图 3d). Cell Cycle (2015) ncbi
小鼠 单克隆(C-2)
  • 免疫印迹; 人类; 图 1
圣克鲁斯生物技术平滑肌肌动蛋白抗体(Santa Cruz, sc-8432)被用于被用于免疫印迹在人类样本上 (图 1). Oncogene (2016) ncbi
小鼠 单克隆(C-2)
  • 染色质免疫沉淀 ; 人类; 图 5
圣克鲁斯生物技术平滑肌肌动蛋白抗体(Santa Cruz, sc8432)被用于被用于染色质免疫沉淀 在人类样本上 (图 5). PLoS ONE (2015) ncbi
小鼠 单克隆(1A4)
  • 免疫组化; 人类; 图 3
圣克鲁斯生物技术平滑肌肌动蛋白抗体(Santa Cruz Biotechnology, sc-32251)被用于被用于免疫组化在人类样本上 (图 3). Oncotarget (2015) ncbi
小鼠 单克隆(B4)
  • 免疫印迹; 人类; 图 6
圣克鲁斯生物技术平滑肌肌动蛋白抗体(Santa Cruz, sc-53142)被用于被用于免疫印迹在人类样本上 (图 6). Oncotarget (2015) ncbi
小鼠 单克隆(alpha-SM1)
  • 免疫印迹; 人类; 1:200; 图 5
圣克鲁斯生物技术平滑肌肌动蛋白抗体(Santa-Cruz, sc-130617)被用于被用于免疫印迹在人类样本上浓度为1:200 (图 5). PLoS ONE (2015) ncbi
小鼠 单克隆(C-2)
  • 免疫印迹; 小鼠; 图 f6
圣克鲁斯生物技术平滑肌肌动蛋白抗体(Santa Cruz, C-2)被用于被用于免疫印迹在小鼠样本上 (图 f6). Sci Signal (2015) ncbi
小鼠 单克隆(C-2)
  • 免疫印迹; 大鼠; 1:4000
圣克鲁斯生物技术平滑肌肌动蛋白抗体(Santa Cruz Biotechnology, sc-8432)被用于被用于免疫印迹在大鼠样本上浓度为1:4000. Int J Mol Med (2015) ncbi
小鼠 单克隆(C-2)
  • 免疫印迹; 人类; 1:5000; 图 1g
圣克鲁斯生物技术平滑肌肌动蛋白抗体(Santa Cruz Biotechnology, sc-8432)被用于被用于免疫印迹在人类样本上浓度为1:5000 (图 1g). Int J Obes (Lond) (2015) ncbi
小鼠 单克隆(B4)
  • 免疫印迹; 人类
圣克鲁斯生物技术平滑肌肌动蛋白抗体(Santa Cruz, sc-53142)被用于被用于免疫印迹在人类样本上. Mol Cell Endocrinol (2015) ncbi
小鼠 单克隆(C-2)
  • 免疫印迹; 人类; 图 5
圣克鲁斯生物技术平滑肌肌动蛋白抗体(Santa Cruz, sc-8432)被用于被用于免疫印迹在人类样本上 (图 5). Cell Death Dis (2015) ncbi
小鼠 单克隆(1A4)
  • 免疫细胞化学; 小鼠; 1:100
圣克鲁斯生物技术平滑肌肌动蛋白抗体(Cell Signaling Technology, sc-32251)被用于被用于免疫细胞化学在小鼠样本上浓度为1:100. Ups J Med Sci (2015) ncbi
小鼠 单克隆(C-2)
  • 免疫印迹; 小鼠
圣克鲁斯生物技术平滑肌肌动蛋白抗体(Santa Cruz Biotechnology, sc-8432)被用于被用于免疫印迹在小鼠样本上. Diabetes (2015) ncbi
小鼠 单克隆(1A4)
  • 免疫组化-石蜡切片; 犬; 1:600; 图  2
圣克鲁斯生物技术平滑肌肌动蛋白抗体(Santa Cruz Biotechnology, sc-32251)被用于被用于免疫组化-石蜡切片在犬样本上浓度为1:600 (图  2). Res Vet Sci (2015) ncbi
小鼠 单克隆(1A4)
  • 免疫组化-冰冻切片; 大鼠; 1:100; 图 2
圣克鲁斯生物技术平滑肌肌动蛋白抗体(santa Cruz, sc-32251)被用于被用于免疫组化-冰冻切片在大鼠样本上浓度为1:100 (图 2). PLoS ONE (2015) ncbi
小鼠 单克隆(C-2)
  • 免疫印迹; 小鼠; 图 1
  • 免疫印迹; 人类; 图 1
圣克鲁斯生物技术平滑肌肌动蛋白抗体(Santa Cruz, sc-8432)被用于被用于免疫印迹在小鼠样本上 (图 1) 和 被用于免疫印迹在人类样本上 (图 1). PLoS Pathog (2015) ncbi
小鼠 单克隆(C-2)
  • 免疫印迹; 人类; 1:1000
圣克鲁斯生物技术平滑肌肌动蛋白抗体(Santa Cruz Biotechnology, sc-8432)被用于被用于免疫印迹在人类样本上浓度为1:1000. Mol Med Rep (2015) ncbi
小鼠 单克隆(1A4)
  • 免疫细胞化学; 人类; 1:400; 图 2
圣克鲁斯生物技术平滑肌肌动蛋白抗体(Santa, sc-32251)被用于被用于免疫细胞化学在人类样本上浓度为1:400 (图 2). Sci Rep (2015) ncbi
小鼠 单克隆(C-2)
  • 免疫印迹; 小鼠; 1:3000; 图 6
  • 免疫印迹; 人类; 1:3000; 图 2
圣克鲁斯生物技术平滑肌肌动蛋白抗体(Santa Cruz, sc-8432)被用于被用于免疫印迹在小鼠样本上浓度为1:3000 (图 6) 和 被用于免疫印迹在人类样本上浓度为1:3000 (图 2). Mol Med Rep (2015) ncbi
小鼠 单克隆(C-2)
  • 免疫印迹; 小鼠; 1:2000; 图 2
  • 免疫印迹; 人类; 1:2000; 图 1
圣克鲁斯生物技术平滑肌肌动蛋白抗体(Santa Cruz, sc-8432HRP)被用于被用于免疫印迹在小鼠样本上浓度为1:2000 (图 2) 和 被用于免疫印迹在人类样本上浓度为1:2000 (图 1). Autophagy (2015) ncbi
小鼠 单克隆(C-2)
  • 免疫印迹; 人类; 图 3
圣克鲁斯生物技术平滑肌肌动蛋白抗体(Santa Cruz, sc-8432)被用于被用于免疫印迹在人类样本上 (图 3). Oncotarget (2015) ncbi
小鼠 单克隆(C-2)
  • 免疫印迹; 人类; 图 1
  • 免疫印迹; 小鼠; 图 1
圣克鲁斯生物技术平滑肌肌动蛋白抗体(santa Cruz, sc-8432)被用于被用于免疫印迹在人类样本上 (图 1) 和 被用于免疫印迹在小鼠样本上 (图 1). Autophagy (2015) ncbi
小鼠 单克隆(C-2)
  • 免疫印迹; 人类; 1:5000; 图 5
圣克鲁斯生物技术平滑肌肌动蛋白抗体(Santa Cruz, SC-8432)被用于被用于免疫印迹在人类样本上浓度为1:5000 (图 5). Mar Drugs (2015) ncbi
小鼠 单克隆(1A4)
  • 免疫细胞化学; 大鼠; 图 4
圣克鲁斯生物技术平滑肌肌动蛋白抗体(santa cruz, sc-32251)被用于被用于免疫细胞化学在大鼠样本上 (图 4). Int J Mol Med (2015) ncbi
小鼠 单克隆(C-2)
  • 免疫印迹; 小鼠
圣克鲁斯生物技术平滑肌肌动蛋白抗体(Santa Cruz Biotechnology, sc-8432)被用于被用于免疫印迹在小鼠样本上. FASEB J (2015) ncbi
小鼠 单克隆(C-2)
  • 免疫印迹; 大鼠; 图 7
圣克鲁斯生物技术平滑肌肌动蛋白抗体(santa Cruz, sc-8432)被用于被用于免疫印迹在大鼠样本上 (图 7). Int J Mol Med (2015) ncbi
小鼠 单克隆(C-2)
  • 免疫印迹; 人类; 1:2000
圣克鲁斯生物技术平滑肌肌动蛋白抗体(Santa Cruz Biotechnology, sc-8432)被用于被用于免疫印迹在人类样本上浓度为1:2000. Nat Commun (2015) ncbi
小鼠 单克隆(C-2)
  • 免疫印迹; 人类; 图 4
圣克鲁斯生物技术平滑肌肌动蛋白抗体(SantaCruz, sc-8432)被用于被用于免疫印迹在人类样本上 (图 4). Sci Rep (2015) ncbi
小鼠 单克隆(CGA7)
  • 免疫组化; 小鼠; 1:100; 图 4
圣克鲁斯生物技术平滑肌肌动蛋白抗体(Santa Cruz Biotechnology, sc-53015)被用于被用于免疫组化在小鼠样本上浓度为1:100 (图 4). Mol Med Rep (2015) ncbi
小鼠 单克隆(C-2)
  • 免疫印迹; 人类; 图 1c
圣克鲁斯生物技术平滑肌肌动蛋白抗体(santa cruz, sc-8432)被用于被用于免疫印迹在人类样本上 (图 1c). Mol Med Rep (2015) ncbi
小鼠 单克隆(1A4)
  • 免疫印迹; 小鼠
圣克鲁斯生物技术平滑肌肌动蛋白抗体(Santa Cruz, sc-32251)被用于被用于免疫印迹在小鼠样本上. Mol Cell Endocrinol (2015) ncbi
小鼠 单克隆(C-2)
  • 免疫印迹; 人类
圣克鲁斯生物技术平滑肌肌动蛋白抗体(Santa Cruz Biotechnology, sc-8432)被用于被用于免疫印迹在人类样本上. Sci Rep (2014) ncbi
小鼠 单克隆(1A4)
  • 免疫组化; 小鼠; 1:100
  • 免疫印迹; 小鼠; 1:600
圣克鲁斯生物技术平滑肌肌动蛋白抗体(Santa Cruz Biotechnology, sc-32251)被用于被用于免疫组化在小鼠样本上浓度为1:100 和 被用于免疫印迹在小鼠样本上浓度为1:600. J Sex Med (2015) ncbi
小鼠 单克隆(C-2)
  • 免疫印迹; 人类; 1:1000
圣克鲁斯生物技术平滑肌肌动蛋白抗体(Santa Cruz Biotechnology, sc-8432)被用于被用于免疫印迹在人类样本上浓度为1:1000. PLoS ONE (2014) ncbi
小鼠 单克隆(C-2)
  • 免疫印迹; 小鼠
圣克鲁斯生物技术平滑肌肌动蛋白抗体(Santa Cruz Biotechnology, sc-8432)被用于被用于免疫印迹在小鼠样本上. Am J Respir Cell Mol Biol (2015) ncbi
小鼠 单克隆(C-2)
  • 免疫印迹; 人类
圣克鲁斯生物技术平滑肌肌动蛋白抗体(Santa Cruz Biotech, sc-8432)被用于被用于免疫印迹在人类样本上. Proteomics (2015) ncbi
小鼠 单克隆(C-2)
  • 免疫印迹; 人类
圣克鲁斯生物技术平滑肌肌动蛋白抗体(Santa Cruz, sc-8432)被用于被用于免疫印迹在人类样本上. J Biol Chem (2014) ncbi
小鼠 单克隆(C-2)
  • 免疫印迹; 大鼠; 1:1000
圣克鲁斯生物技术平滑肌肌动蛋白抗体(Santa Cruz, sc8432)被用于被用于免疫印迹在大鼠样本上浓度为1:1000. PLoS ONE (2014) ncbi
小鼠 单克隆(C-2)
  • 免疫印迹; 小鼠
圣克鲁斯生物技术平滑肌肌动蛋白抗体(Santa Cruz Biotechnology, sc-8432)被用于被用于免疫印迹在小鼠样本上. Mol Cell Endocrinol (2014) ncbi
小鼠 单克隆(C-2)
  • 免疫印迹; 人类
圣克鲁斯生物技术平滑肌肌动蛋白抗体(Santa Cruz Biotechnology, sc-8432)被用于被用于免疫印迹在人类样本上. J Biol Chem (2014) ncbi
小鼠 单克隆(1A4)
  • 免疫组化-冰冻切片; 大鼠; 图 3
圣克鲁斯生物技术平滑肌肌动蛋白抗体(Santa, sc-32251)被用于被用于免疫组化-冰冻切片在大鼠样本上 (图 3). J Tissue Eng Regen Med (2017) ncbi
小鼠 单克隆(alpha-SM1)
  • 免疫印迹; 小鼠
圣克鲁斯生物技术平滑肌肌动蛋白抗体(Santa Cruz, sc-130617)被用于被用于免疫印迹在小鼠样本上. Mol Ther (2014) ncbi
小鼠 单克隆(1A4)
  • 免疫组化; 人类; 1:400
圣克鲁斯生物技术平滑肌肌动蛋白抗体(Santa Cruz Biotechnology, 1A4)被用于被用于免疫组化在人类样本上浓度为1:400. Biol Reprod (2014) ncbi
小鼠 单克隆(CGA7)
  • 免疫组化-石蜡切片; 豚鼠
  • 免疫组化-石蜡切片; 小鼠
圣克鲁斯生物技术平滑肌肌动蛋白抗体(Santa Cruz Biotechnology, sc-53015)被用于被用于免疫组化-石蜡切片在豚鼠样本上 和 被用于免疫组化-石蜡切片在小鼠样本上. Am J Respir Cell Mol Biol (2014) ncbi
小鼠 单克隆(C-2)
  • 免疫印迹; 人类; 1:5000
圣克鲁斯生物技术平滑肌肌动蛋白抗体(Santa Cruz, sc-8432)被用于被用于免疫印迹在人类样本上浓度为1:5000. Mol Cell Biol (2014) ncbi
小鼠 单克隆(C-2)
  • 免疫印迹; 大鼠; 1:4000
圣克鲁斯生物技术平滑肌肌动蛋白抗体(Santa Cruz Biotechnology, sc-8432)被用于被用于免疫印迹在大鼠样本上浓度为1:4000. Exp Neurol (2014) ncbi
小鼠 单克隆(C-2)
  • 免疫印迹; 小鼠
圣克鲁斯生物技术平滑肌肌动蛋白抗体(Santa Cruz, sc-8432)被用于被用于免疫印迹在小鼠样本上. J Immunol (2014) ncbi
小鼠 单克隆(1A4)
  • 免疫印迹; 人类
圣克鲁斯生物技术平滑肌肌动蛋白抗体(Santa Cruz Biotechnology, sc-32251)被用于被用于免疫印迹在人类样本上. J Biol Chem (2014) ncbi
小鼠 单克隆(1A4)
  • 免疫组化-冰冻切片; 大鼠
圣克鲁斯生物技术平滑肌肌动蛋白抗体(Santa Cruz Biotechnology, sc-32251)被用于被用于免疫组化-冰冻切片在大鼠样本上. Tissue Eng Part A (2014) ncbi
小鼠 单克隆(1A4)
  • 免疫细胞化学; 大鼠; 1:100
圣克鲁斯生物技术平滑肌肌动蛋白抗体(Santa Cruz Biotechnology, sc-32251)被用于被用于免疫细胞化学在大鼠样本上浓度为1:100. Am J Respir Cell Mol Biol (2014) ncbi
小鼠 单克隆(alpha-SM1)
  • 免疫印迹; 小鼠; 图 2
圣克鲁斯生物技术平滑肌肌动蛋白抗体(Santa Cruz Biotechnology, sc-130617)被用于被用于免疫印迹在小鼠样本上 (图 2). J Urol (2014) ncbi
小鼠 单克隆(a-SM1)
  • 免疫组化; 人类; 1:150
  • 免疫印迹; 人类; 1:2000
圣克鲁斯生物技术平滑肌肌动蛋白抗体(Santa Cruz Biotechnology, SC-130616)被用于被用于免疫组化在人类样本上浓度为1:150 和 被用于免疫印迹在人类样本上浓度为1:2000. FASEB J (2014) ncbi
小鼠 单克隆(C-2)
  • 免疫印迹; 人类
圣克鲁斯生物技术平滑肌肌动蛋白抗体(Santa Cruz, sc-8432)被用于被用于免疫印迹在人类样本上. J Cell Sci (2013) ncbi
小鼠 单克隆(C-2)
  • 免疫印迹; 人类; 1:500
圣克鲁斯生物技术平滑肌肌动蛋白抗体(Santa Cruz, sc-8432)被用于被用于免疫印迹在人类样本上浓度为1:500. Eur J Hum Genet (2014) ncbi
小鼠 单克隆(C-2)
  • 免疫印迹; 人类; 图 1
圣克鲁斯生物技术平滑肌肌动蛋白抗体(Santa Cruz, sc-8432)被用于被用于免疫印迹在人类样本上 (图 1). PLoS ONE (2013) ncbi
小鼠 单克隆(B4)
  • 免疫细胞化学; 人类
  • 免疫印迹; 人类
圣克鲁斯生物技术平滑肌肌动蛋白抗体(Santa Cruz, sc-53142)被用于被用于免疫细胞化学在人类样本上 和 被用于免疫印迹在人类样本上. Cell Cycle (2013) ncbi
小鼠 单克隆(C-2)
  • 免疫印迹; 人类
圣克鲁斯生物技术平滑肌肌动蛋白抗体(Santa Cruz, sc8432)被用于被用于免疫印迹在人类样本上. Nucleic Acids Res (2013) ncbi
赛默飞世尔
小鼠 单克隆(1A4)
  • mass cytometry; 小鼠; 1:500; 图 s32a, s32c
赛默飞世尔平滑肌肌动蛋白抗体(Invitrogen, 14-9760-82)被用于被用于mass cytometry在小鼠样本上浓度为1:500 (图 s32a, s32c). Nat Commun (2020) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 人类; 图 1b
赛默飞世尔平滑肌肌动蛋白抗体(Thermo Fisher, PA5-16697)被用于被用于免疫组化-石蜡切片在人类样本上 (图 1b). Sci Adv (2019) ncbi
domestic rabbit 多克隆
  • 免疫组化; 人类; 图 3c
赛默飞世尔平滑肌肌动蛋白抗体(Thermo Fisher Scientific, PA5-16697)被用于被用于免疫组化在人类样本上 (图 3c). Cell (2019) ncbi
小鼠 单克隆(1A4)
  • 免疫组化; 小鼠; 1:300; 图 s3g
赛默飞世尔平滑肌肌动蛋白抗体(eBioscience, 50-9760-82)被用于被用于免疫组化在小鼠样本上浓度为1:300 (图 s3g). Nat Commun (2019) ncbi
小鼠 单克隆(ACTN05 (C4))
  • 免疫印迹; 人类; 1:4000; 图 1b
赛默飞世尔平滑肌肌动蛋白抗体(Thermo fisher, MA5-11869)被用于被用于免疫印迹在人类样本上浓度为1:4000 (图 1b). Nature (2019) ncbi
小鼠 单克隆(1A4 (asm-1))
  • 免疫组化-冰冻切片; 小鼠; 图 3a
赛默飞世尔平滑肌肌动蛋白抗体(Thermofisher, MS-113-P)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 3a). Cell Death Dis (2018) ncbi
小鼠 单克隆(1A4)
  • 流式细胞仪; 小鼠; 1:50; 图 s1e
赛默飞世尔平滑肌肌动蛋白抗体(eBioscience, 41-9760-82)被用于被用于流式细胞仪在小鼠样本上浓度为1:50 (图 s1e). J Clin Invest (2018) ncbi
小鼠 单克隆(ACTN05 (C4))
  • 免疫印迹; 人类; 1:50; 图 2d
赛默飞世尔平滑肌肌动蛋白抗体(Thermo, MA5-11869)被用于被用于免疫印迹在人类样本上浓度为1:50 (图 2d). Nat Commun (2018) ncbi
小鼠 单克隆(1A4 (asm-1))
  • 免疫组化; 小鼠; 图 6b
  • 免疫印迹; 小鼠; 图 8d
赛默飞世尔平滑肌肌动蛋白抗体(Thermo Fisher, MA5-11547)被用于被用于免疫组化在小鼠样本上 (图 6b) 和 被用于免疫印迹在小鼠样本上 (图 8d). FASEB J (2018) ncbi
小鼠 单克隆(ACTN05 (C4))
  • 免疫印迹; 人类; 1:1000; 图 2e
赛默飞世尔平滑肌肌动蛋白抗体(Thermo Fisher, MS-1295-P)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 2e). Nature (2017) ncbi
小鼠 单克隆(1A4)
  • 免疫组化; 人类; 图 11a
赛默飞世尔平滑肌肌动蛋白抗体(Thermo Fisher Scientific, 1A4)被用于被用于免疫组化在人类样本上 (图 11a). Front Immunol (2017) ncbi
小鼠 单克隆(1A4 (asm-1))
  • 免疫细胞化学; 人类; 图 3
赛默飞世尔平滑肌肌动蛋白抗体(Thermo Fisher Scientific, MA5-11547)被用于被用于免疫细胞化学在人类样本上 (图 3). J Vis Exp (2017) ncbi
domestic rabbit 重组(17H19L35)
  • 免疫组化; 小鼠; 1:200; 图 2a
赛默飞世尔平滑肌肌动蛋白抗体(Thermofisher, 701457)被用于被用于免疫组化在小鼠样本上浓度为1:200 (图 2a). Biol Sex Differ (2017) ncbi
小鼠 单克隆(5C5.F8.C7 (alpha-Sr-1))
  • 免疫细胞化学; 小鼠; 1:500; 图 s1c
  • 免疫印迹; 小鼠; 1:2500; 图 3a
赛默飞世尔平滑肌肌动蛋白抗体(Thermo Fisher Scientific, MA5-12542)被用于被用于免疫细胞化学在小鼠样本上浓度为1:500 (图 s1c) 和 被用于免疫印迹在小鼠样本上浓度为1:2500 (图 3a). J Cell Biol (2017) ncbi
小鼠 单克隆(ACTN05 (C4))
  • 免疫印迹; S. cerevisiae; 图 2c
赛默飞世尔平滑肌肌动蛋白抗体(ThermoFisher, MA511866)被用于被用于免疫印迹在S. cerevisiae样本上 (图 2c). Mol Biol Cell (2017) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 人类; 1:100; 图 1a
  • 免疫组化-石蜡切片; 小鼠; 1:100; 图 4c
赛默飞世尔平滑肌肌动蛋白抗体(Thermo Scientific, PA5-19465)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100 (图 1a) 和 被用于免疫组化-石蜡切片在小鼠样本上浓度为1:100 (图 4c). Sci Rep (2017) ncbi
小鼠 单克隆(1A4)
  • 免疫印迹; 人类; 图 3e
赛默飞世尔平滑肌肌动蛋白抗体(Lab Vision, 1A4)被用于被用于免疫印迹在人类样本上 (图 3e). Wound Repair Regen (2017) ncbi
domestic rabbit 重组(17H19L35)
  • 免疫组化; 小鼠; 图 4d
赛默飞世尔平滑肌肌动蛋白抗体(Thermo Fisher, 17H19L35)被用于被用于免疫组化在小鼠样本上 (图 4d). Atherosclerosis (2017) ncbi
小鼠 单克隆(ACTN05 (C4))
  • 免疫印迹; 斑马鱼; 1:5000; 图 s2e
赛默飞世尔平滑肌肌动蛋白抗体(Neomarkers, ACTN05)被用于被用于免疫印迹在斑马鱼样本上浓度为1:5000 (图 s2e). Dis Model Mech (2017) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 人类; 1:50; 图 1b
赛默飞世尔平滑肌肌动蛋白抗体(Thermo, PA5-16697)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:50 (图 1b). J Hepatol (2017) ncbi
小鼠 单克隆(ACTN05 (C4))
  • 免疫印迹; 人类; 1:100; 图 1b
赛默飞世尔平滑肌肌动蛋白抗体(Invitrogen, MA5-11869)被用于被用于免疫印迹在人类样本上浓度为1:100 (图 1b). Clin Sci (Lond) (2017) ncbi
小鼠 单克隆(1A4)
  • 免疫印迹; 小鼠; 5 ug/ml; 图 7
赛默飞世尔平滑肌肌动蛋白抗体(e bioscience, 14-9760)被用于被用于免疫印迹在小鼠样本上浓度为5 ug/ml (图 7). Inflammation (2017) ncbi
小鼠 单克隆(ACTN05 (C4))
  • 免疫印迹; 人类; 图 5g
赛默飞世尔平滑肌肌动蛋白抗体(Neomarkers, ACTN05)被用于被用于免疫印迹在人类样本上 (图 5g). J Cell Physiol (2017) ncbi
小鼠 单克隆(1A4 (asm-1))
  • 免疫组化-石蜡切片; 小鼠; 1:600; 图 5a
赛默飞世尔平滑肌肌动蛋白抗体(Thermo Scientific, MS-113-P)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:600 (图 5a). Lab Invest (2016) ncbi
小鼠 单克隆(ACTN05 (C4))
  • 免疫印迹; 人类; 1:300; 图 2
赛默飞世尔平滑肌肌动蛋白抗体(Thermo Fisher Scientific, Ab-5)被用于被用于免疫印迹在人类样本上浓度为1:300 (图 2). Oncol Lett (2016) ncbi
小鼠 单克隆(mAbGEa)
  • 免疫印迹; S. cerevisiae; 图 2
赛默飞世尔平滑肌肌动蛋白抗体(Thermo Scientific, MA1-744)被用于被用于免疫印迹在S. cerevisiae样本上 (图 2). Nucleic Acids Res (2016) ncbi
小鼠 单克隆(1A4)
  • 免疫组化-石蜡切片; 人类; 图 3b
赛默飞世尔平滑肌肌动蛋白抗体(Thermo Scientific, 1A4)被用于被用于免疫组化-石蜡切片在人类样本上 (图 3b). Am J Pathol (2016) ncbi
小鼠 单克隆(1A4)
  • 免疫组化-冰冻切片; 小鼠; 1:100; 图 2
赛默飞世尔平滑肌肌动蛋白抗体(eBioscience, 50-9760-82)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:100 (图 2). Nat Commun (2016) ncbi
小鼠 单克隆(mAbGEa)
  • 免疫印迹; 人类; 1:500; 图 1a
赛默飞世尔平滑肌肌动蛋白抗体(Pierce, MA1-744)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 1a). DNA Repair (Amst) (2016) ncbi
小鼠 单克隆(ACTN05 (C4))
  • 免疫印迹; 人类; 图 1
赛默飞世尔平滑肌肌动蛋白抗体(Neo Markers, ACTN05)被用于被用于免疫印迹在人类样本上 (图 1). Nucleic Acids Res (2016) ncbi
小鼠 单克隆(mAbGEa)
  • 免疫沉淀; 大鼠; 图 2
赛默飞世尔平滑肌肌动蛋白抗体(Thermo scientific, MA1-744)被用于被用于免疫沉淀在大鼠样本上 (图 2). PLoS ONE (2016) ncbi
小鼠 单克隆(mAbGEa)
  • 免疫印迹; 拟南芥; 图 1
赛默飞世尔平滑肌肌动蛋白抗体(Thermo Scientific, MA1-744)被用于被用于免疫印迹在拟南芥样本上 (图 1). Plant Physiol (2016) ncbi
小鼠 单克隆(mAbGEa)
  • 免疫印迹; 猪; 图 2c
赛默飞世尔平滑肌肌动蛋白抗体(Thermo Scientific, mAbGEa)被用于被用于免疫印迹在猪样本上 (图 2c). PLoS ONE (2016) ncbi
小鼠 单克隆(ACTN05 (C4))
  • 免疫印迹; 小鼠; 图 3b
赛默飞世尔平滑肌肌动蛋白抗体(Thermo Scientific, ACTN05)被用于被用于免疫印迹在小鼠样本上 (图 3b). Antimicrob Agents Chemother (2016) ncbi
小鼠 单克隆(HHF35)
  • 免疫组化-石蜡切片; domestic rabbit; 1:4; 图 1
赛默飞世尔平滑肌肌动蛋白抗体(ThermoFisher Scientific, MA5-14084)被用于被用于免疫组化-石蜡切片在domestic rabbit样本上浓度为1:4 (图 1). Acta Histochem (2016) ncbi
小鼠 单克隆(ACTN05 (C4))
  • 免疫印迹; 人类; 1:3000; 图 3
  • 免疫印迹; 小鼠; 1:3000; 图 1
赛默飞世尔平滑肌肌动蛋白抗体(Thermo Scientific, Ab-5)被用于被用于免疫印迹在人类样本上浓度为1:3000 (图 3) 和 被用于免疫印迹在小鼠样本上浓度为1:3000 (图 1). elife (2016) ncbi
小鼠 单克隆(mAbGEa)
  • 免疫印迹; S. cerevisiae; 1:1000; 图 3
赛默飞世尔平滑肌肌动蛋白抗体(Thermo Fisher scientific, mAbGEa)被用于被用于免疫印迹在S. cerevisiae样本上浓度为1:1000 (图 3). Nat Commun (2016) ncbi
小鼠 单克隆(ACTN05 (C4))
  • 免疫印迹; 人类; 图 1
赛默飞世尔平滑肌肌动蛋白抗体(Thermo Scientific, MS-1295-P1)被用于被用于免疫印迹在人类样本上 (图 1). J Virol (2016) ncbi
小鼠 单克隆(ACTN05 (C4))
  • 免疫印迹; 犬; 图 8
赛默飞世尔平滑肌肌动蛋白抗体(Neomarkers, pan Ab-5)被用于被用于免疫印迹在犬样本上 (图 8). Arthritis Res Ther (2016) ncbi
小鼠 单克隆(1A4 (asm-1))
  • 免疫组化-石蜡切片; 人类; 图 2
赛默飞世尔平滑肌肌动蛋白抗体(Thermo Scientific, MS-113-P0)被用于被用于免疫组化-石蜡切片在人类样本上 (图 2). PLoS ONE (2016) ncbi
小鼠 单克隆(1A4)
  • 免疫组化-石蜡切片; 人类; 图 2
赛默飞世尔平滑肌肌动蛋白抗体(Thermo Scientific, MS-113-P0)被用于被用于免疫组化-石蜡切片在人类样本上 (图 2). PLoS ONE (2016) ncbi
小鼠 单克隆(mAbGEa)
  • 免疫印迹; 小鼠; 图 2
赛默飞世尔平滑肌肌动蛋白抗体(Thermo Scientific, mAbGEa)被用于被用于免疫印迹在小鼠样本上 (图 2). Invest Ophthalmol Vis Sci (2015) ncbi
小鼠 单克隆(ACTN05 (C4))
  • 免疫印迹; 人类; 1:10,000; 图 3
赛默飞世尔平滑肌肌动蛋白抗体(Pierce Biotechnology, MA5-11869)被用于被用于免疫印迹在人类样本上浓度为1:10,000 (图 3). Mol Med Rep (2015) ncbi
小鼠 单克隆(1A4)
  • 免疫组化; 人类; 1:1000; 图 6
赛默飞世尔平滑肌肌动蛋白抗体(NeoMarkers, 1A4)被用于被用于免疫组化在人类样本上浓度为1:1000 (图 6). Diagn Pathol (2015) ncbi
小鼠 单克隆(1A4 (asm-1))
  • 免疫组化; 牛; 1:100; 图 6
赛默飞世尔平滑肌肌动蛋白抗体(Thermo, MS-113-P0)被用于被用于免疫组化在牛样本上浓度为1:100 (图 6). PLoS ONE (2015) ncbi
小鼠 单克隆(ACTN05 (C4))
  • 免疫印迹; 人类
赛默飞世尔平滑肌肌动蛋白抗体(Thermo Scientific, MA5-11869)被用于被用于免疫印迹在人类样本上. Breast Cancer Res (2015) ncbi
小鼠 单克隆(ACTN05 (C4))
  • 免疫印迹; 黑腹果蝇; 1:4000; 图 9
赛默飞世尔平滑肌肌动蛋白抗体(Thermo Scientific, MA5-11869))被用于被用于免疫印迹在黑腹果蝇样本上浓度为1:4000 (图 9). PLoS Biol (2015) ncbi
小鼠 单克隆(mAbGEa)
  • 免疫印迹; S. cerevisiae; 1:1000; 图 2, 4
赛默飞世尔平滑肌肌动蛋白抗体(Fisher, MA1-744)被用于被用于免疫印迹在S. cerevisiae样本上浓度为1:1000 (图 2, 4). Nat Commun (2015) ncbi
小鼠 单克隆(mAbGEa)
  • 免疫印迹; 拟南芥; 1:1000; 图 1
赛默飞世尔平滑肌肌动蛋白抗体(Thermo Scientific, MA1-744)被用于被用于免疫印迹在拟南芥样本上浓度为1:1000 (图 1). Plant Physiol (2015) ncbi
小鼠 单克隆(ACTN05 (C4))
  • 免疫印迹; 小鼠; 1:500; 图 5a
赛默飞世尔平滑肌肌动蛋白抗体(Thermo Fisher, MA5-11869)被用于被用于免疫印迹在小鼠样本上浓度为1:500 (图 5a). Eur J Pharmacol (2015) ncbi
小鼠 单克隆(ACTN05 (C4))
  • 免疫印迹; 人类
赛默飞世尔平滑肌肌动蛋白抗体(Lab Vision, Ab-5)被用于被用于免疫印迹在人类样本上. J Transl Med (2015) ncbi
小鼠 单克隆(1A4)
  • 免疫组化-石蜡切片; 大鼠; 1:5000
赛默飞世尔平滑肌肌动蛋白抗体(Lab Vision Corporation, alpha-Actin)被用于被用于免疫组化-石蜡切片在大鼠样本上浓度为1:5000. Tissue Cell (2015) ncbi
小鼠 单克隆(0.N.5)
  • 免疫印迹; 人类
赛默飞世尔平滑肌肌动蛋白抗体(Thermo Scientific, MA1-26017)被用于被用于免疫印迹在人类样本上. BMC Cancer (2015) ncbi
小鼠 单克隆(ACTN05 (C4))
  • 免疫印迹; 小鼠; 1:500
赛默飞世尔平滑肌肌动蛋白抗体(Thermo Fisher, MA5-11869)被用于被用于免疫印迹在小鼠样本上浓度为1:500. J Ethnopharmacol (2015) ncbi
小鼠 单克隆(ACTN05 (C4))
  • 免疫印迹; 小鼠
赛默飞世尔平滑肌肌动蛋白抗体(Thermo Scientific, ACTN05)被用于被用于免疫印迹在小鼠样本上. Eur J Nutr (2016) ncbi
小鼠 单克隆(mAbGEa)
  • 免疫印迹; 人类; 1:1000; 图 6
赛默飞世尔平滑肌肌动蛋白抗体(Thermo Fisher, MA1-744)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 6). Mol Med Rep (2015) ncbi
小鼠 单克隆(1A4)
  • 免疫组化-石蜡切片; 人类; 1:300
赛默飞世尔平滑肌肌动蛋白抗体(生活技术, 1A4)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:300. Hepatology (2015) ncbi
小鼠 单克隆(mAbGEa)
赛默飞世尔平滑肌肌动蛋白抗体(Fisher, MA1-744)被用于. Traffic (2015) ncbi
小鼠 单克隆(1A4)
  • 免疫组化-石蜡切片; 大鼠; 1:200
赛默飞世尔平滑肌肌动蛋白抗体(Lab Vision, MS-113)被用于被用于免疫组化-石蜡切片在大鼠样本上浓度为1:200. Histol Histopathol (2015) ncbi
小鼠 单克隆(ACTN05 (C4))
  • 免疫印迹; 人类; 1:10,000; 图 5
赛默飞世尔平滑肌肌动蛋白抗体(分子探针, C4)被用于被用于免疫印迹在人类样本上浓度为1:10,000 (图 5). Nat Commun (2015) ncbi
小鼠 单克隆(ACTN05 (C4))
  • 免疫印迹; 小鼠; 图 1,2,3,4,5,6
赛默飞世尔平滑肌肌动蛋白抗体(neomarkers, ACTN05)被用于被用于免疫印迹在小鼠样本上 (图 1,2,3,4,5,6). Breast Cancer Res (2014) ncbi
小鼠 单克隆(ACTN05 (C4))
  • 免疫印迹; 人类
赛默飞世尔平滑肌肌动蛋白抗体(NeoMarkers, ACTN05)被用于被用于免疫印迹在人类样本上. Cell Death Dis (2014) ncbi
小鼠 单克隆(MSA06 (HUC1-1))
  • 免疫组化-石蜡切片; 大西洋鲑鱼; 图 5a
赛默飞世尔平滑肌肌动蛋白抗体(Thermo Fisher Scientific, MS-1296-P)被用于被用于免疫组化-石蜡切片在大西洋鲑鱼样本上 (图 5a). J Fish Dis (2016) ncbi
小鼠 单克隆(1A4)
赛默飞世尔平滑肌肌动蛋白抗体(Thermo Scientific, MS113)被用于. J Pharmacol Sci (2014) ncbi
小鼠 单克隆(1A4)
  • 免疫组化; 人类; 1:600
赛默飞世尔平滑肌肌动蛋白抗体(LabVision, 1A4)被用于被用于免疫组化在人类样本上浓度为1:600. Arch Dermatol Res (2015) ncbi
小鼠 单克隆(1A4 (asm-1))
  • 免疫组化-冰冻切片; 小鼠; 1:100; 图 1
赛默飞世尔平滑肌肌动蛋白抗体(NeoMarkers, 1A4)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:100 (图 1). PLoS ONE (2014) ncbi
小鼠 单克隆(1A4)
  • 免疫组化-冰冻切片; 小鼠; 1:100; 图 1
赛默飞世尔平滑肌肌动蛋白抗体(NeoMarkers, 1A4)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:100 (图 1). PLoS ONE (2014) ncbi
小鼠 单克隆(1H8)
  • 流式细胞仪; 小鼠
赛默飞世尔平滑肌肌动蛋白抗体(Thermo Scientific, MA5-15805)被用于被用于流式细胞仪在小鼠样本上. Am J Physiol Lung Cell Mol Physiol (2014) ncbi
小鼠 单克隆(ACTN05 (C4))
  • 免疫印迹; 黑腹果蝇; 1:4000
赛默飞世尔平滑肌肌动蛋白抗体(Thermo Scientific, MA5-11869)被用于被用于免疫印迹在黑腹果蝇样本上浓度为1:4000. Mech Dev (2014) ncbi
小鼠 单克隆(ACTN05 (C4))
  • 免疫印迹; 犬; 1:2000
赛默飞世尔平滑肌肌动蛋白抗体(Thermo, MS-1295-P1)被用于被用于免疫印迹在犬样本上浓度为1:2000. PLoS ONE (2014) ncbi
小鼠 单克隆(ACTN05 (C4))
赛默飞世尔平滑肌肌动蛋白抗体(Thermo Fisher Scientific, MS-1295-P1ABX)被用于. Am J Pathol (2014) ncbi
小鼠 单克隆(1A4)
  • 免疫组化-石蜡切片; 人类
赛默飞世尔平滑肌肌动蛋白抗体(Fisher/Thermo Scientific, 1A4)被用于被用于免疫组化-石蜡切片在人类样本上. PLoS ONE (2014) ncbi
小鼠 单克隆(ACTN05 (C4))
  • 免疫印迹; 小鼠; 1:1000; 图 5
赛默飞世尔平滑肌肌动蛋白抗体(NeoMarkers, MS-1295-P1)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 5). J Cell Physiol (2014) ncbi
小鼠 单克隆(ACTN05 (C4))
  • 免疫印迹; 小鼠; 图 1
赛默飞世尔平滑肌肌动蛋白抗体(Thermo Scientific, MS1295P1)被用于被用于免疫印迹在小鼠样本上 (图 1). Front Cell Infect Microbiol (2013) ncbi
小鼠 单克隆(ACTN05 (C4))
  • 免疫印迹; 小鼠
赛默飞世尔平滑肌肌动蛋白抗体(Thermo Fisher, ACTN05)被用于被用于免疫印迹在小鼠样本上. Cancer Prev Res (Phila) (2014) ncbi
小鼠 单克隆(mAbGEa)
  • 免疫印迹; 人类
赛默飞世尔平滑肌肌动蛋白抗体(Thermo Scientific, MA1-744)被用于被用于免疫印迹在人类样本上. Cell Signal (2014) ncbi
小鼠 单克隆(1A4 (asm-1))
  • 免疫组化; 人类; 1:100; 表 1
赛默飞世尔平滑肌肌动蛋白抗体(Invitrogen, IA4)被用于被用于免疫组化在人类样本上浓度为1:100 (表 1). Int J Surg Pathol (2014) ncbi
小鼠 单克隆(HHF35)
  • 免疫组化; 人类; 1:100; 表 1
赛默飞世尔平滑肌肌动蛋白抗体(Neomarker, HHF-35)被用于被用于免疫组化在人类样本上浓度为1:100 (表 1). Int J Surg Pathol (2014) ncbi
小鼠 单克隆(1A4 (asm-1))
  • 免疫细胞化学; 人类; 1:100; 图 7a
赛默飞世尔平滑肌肌动蛋白抗体(LabVision, MS-113-P0)被用于被用于免疫细胞化学在人类样本上浓度为1:100 (图 7a). Nat Protoc (2013) ncbi
小鼠 单克隆(mAbGEa)
  • 免疫印迹; 非洲爪蛙
赛默飞世尔平滑肌肌动蛋白抗体(Thermo Scientific, MA1-744)被用于被用于免疫印迹在非洲爪蛙样本上. J Biol Chem (2013) ncbi
小鼠 单克隆(1A4)
  • 免疫组化; 小鼠
赛默飞世尔平滑肌肌动蛋白抗体(NeoMarkers, MS-113-P0)被用于被用于免疫组化在小鼠样本上. Am J Pathol (2012) ncbi
小鼠 单克隆(1A4 (asm-1))
  • 免疫组化-石蜡切片; 人类; 1:1000; 图 2, 3, 4
赛默飞世尔平滑肌肌动蛋白抗体(NeoMarkers, IA4)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:1000 (图 2, 3, 4). Int J Surg Pathol (2011) ncbi
小鼠 单克隆(ACTN05 (C4))
  • 免疫印迹; 人类; 图 3
赛默飞世尔平滑肌肌动蛋白抗体(Lab Vision, Ab-5)被用于被用于免疫印迹在人类样本上 (图 3). Exp Cell Res (2010) ncbi
小鼠 单克隆(ACTN05 (C4))
  • 免疫印迹; 小鼠; 图 6
赛默飞世尔平滑肌肌动蛋白抗体(Neomarkers, ACTN05)被用于被用于免疫印迹在小鼠样本上 (图 6). PLoS ONE (2010) ncbi
小鼠 单克隆(ACTN05 (C4))
  • 免疫印迹; 人类; 图 8
赛默飞世尔平滑肌肌动蛋白抗体(Neomarkers, ACTN05)被用于被用于免疫印迹在人类样本上 (图 8). Neuropathology (2009) ncbi
小鼠 单克隆(ACTN05 (C4))
  • 免疫印迹; 人类; 图 4
赛默飞世尔平滑肌肌动蛋白抗体(Neomarkers, ACTN05)被用于被用于免疫印迹在人类样本上 (图 4). Mol Hum Reprod (2008) ncbi
小鼠 单克隆(1A4 (asm-1))
  • 免疫组化; 猪; 图 3
赛默飞世尔平滑肌肌动蛋白抗体(LabVision, 1A4)被用于被用于免疫组化在猪样本上 (图 3). Acta Biomater (2008) ncbi
小鼠 单克隆(1A4)
  • 免疫组化; 人类
  • 免疫组化; 猪; 图 3
赛默飞世尔平滑肌肌动蛋白抗体(LabVision, 1A4)被用于被用于免疫组化在人类样本上 和 被用于免疫组化在猪样本上 (图 3). Acta Biomater (2008) ncbi
小鼠 单克隆(ACTN05 (C4))
  • 免疫印迹; 人类; 1:1000
  • 免疫印迹; 大鼠; 1:1000
赛默飞世尔平滑肌肌动蛋白抗体(LabVision, ACTN05)被用于被用于免疫印迹在人类样本上浓度为1:1000 和 被用于免疫印迹在大鼠样本上浓度为1:1000. Brain (2007) ncbi
小鼠 单克隆(1A4)
  • 免疫组化-石蜡切片; 小鼠; 34 ng/ml
赛默飞世尔平滑肌肌动蛋白抗体(Zymed, 1A4)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为34 ng/ml. Development (2006) ncbi
小鼠 单克隆(1A4 (asm-1))
  • 免疫组化-石蜡切片; 小鼠; 34 ng/ml
赛默飞世尔平滑肌肌动蛋白抗体(Zymed, 1A4)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为34 ng/ml. Development (2006) ncbi
安迪生物R&D
小鼠 单克隆(1A4)
  • mass cytometry; 人类; 图 6a
安迪生物R&D平滑肌肌动蛋白抗体(Bio-Techne, MAB1420)被用于被用于mass cytometry在人类样本上 (图 6a). Cell (2018) ncbi
小鼠 单克隆(1A4)
  • 免疫组化-冰冻切片; 小鼠; 1:50; 图 8a
安迪生物R&D平滑肌肌动蛋白抗体(Novus, MAB1420)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:50 (图 8a). Int J Biol Macromol (2018) ncbi
小鼠 单克隆(1A4)
  • 免疫组化-石蜡切片; 人类; 图 1a
安迪生物R&D平滑肌肌动蛋白抗体(R&D Systems, MAB1420)被用于被用于免疫组化-石蜡切片在人类样本上 (图 1a). Cell (2018) ncbi
小鼠 单克隆(1A4)
  • 免疫组化-石蜡切片; 小鼠; 1:50; 图 6
安迪生物R&D平滑肌肌动蛋白抗体(R&D Systems, IC1420A)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:50 (图 6). EMBO Mol Med (2016) ncbi
小鼠 单克隆(1A4)
  • 免疫组化-石蜡切片; 人类; 1:100; 图 2
安迪生物R&D平滑肌肌动蛋白抗体(R&D Systems, MAB1420)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100 (图 2). Sci Rep (2016) ncbi
小鼠 单克隆(1A4)
  • 免疫细胞化学; 人类; 1:400; 表 1
安迪生物R&D平滑肌肌动蛋白抗体(R&D, MAB1420)被用于被用于免疫细胞化学在人类样本上浓度为1:400 (表 1). Exp Eye Res (2016) ncbi
小鼠 单克隆(1A4)
  • 免疫细胞化学; 人类; 1:250; 图 2
安迪生物R&D平滑肌肌动蛋白抗体(RD Systems, Mab1420)被用于被用于免疫细胞化学在人类样本上浓度为1:250 (图 2). PLoS ONE (2015) ncbi
小鼠 单克隆(1A4)
  • 流式细胞仪; 小鼠; 图 4c
安迪生物R&D平滑肌肌动蛋白抗体(R&D Systems, 1A4)被用于被用于流式细胞仪在小鼠样本上 (图 4c). Am J Pathol (2015) ncbi
小鼠 单克隆(1A4)
  • 免疫组化-石蜡切片; 小鼠; 1:100; 图 9
安迪生物R&D平滑肌肌动蛋白抗体(R&D Systems, MAB1420)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:100 (图 9). Nat Commun (2015) ncbi
小鼠 单克隆(1A4)
  • 免疫组化-石蜡切片; 小鼠; 图 2a
  • 流式细胞仪; 小鼠
  • 免疫细胞化学; 小鼠
安迪生物R&D平滑肌肌动蛋白抗体(R&D Systems, 1A4)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 2a), 被用于流式细胞仪在小鼠样本上 和 被用于免疫细胞化学在小鼠样本上. Hepatology (2016) ncbi
小鼠 单克隆(1A4)
  • 免疫组化-石蜡切片; 人类; 图 1a
安迪生物R&D平滑肌肌动蛋白抗体(R&D Systems, MAB1420)被用于被用于免疫组化-石蜡切片在人类样本上 (图 1a). PLoS ONE (2015) ncbi
小鼠 单克隆(1A4)
  • 免疫组化-石蜡切片; 人类; 图 1
安迪生物R&D平滑肌肌动蛋白抗体(R&D, MAB1420)被用于被用于免疫组化-石蜡切片在人类样本上 (图 1). PLoS ONE (2015) ncbi
小鼠 单克隆(1A4)
  • 免疫细胞化学; 大鼠
安迪生物R&D平滑肌肌动蛋白抗体(R & D Systems, MAB1420)被用于被用于免疫细胞化学在大鼠样本上. BMC Neurosci (2013) ncbi
小鼠 单克隆(1A4)
  • 流式细胞仪; 小鼠
安迪生物R&D平滑肌肌动蛋白抗体(R&D Systems, MAB1420)被用于被用于流式细胞仪在小鼠样本上. J Pharmacol Exp Ther (2013) ncbi
武汉三鹰
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 3
武汉三鹰平滑肌肌动蛋白抗体(Proteintech, 14395-1-AP)被用于被用于免疫印迹在小鼠样本上 (图 3). PLoS ONE (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 2
武汉三鹰平滑肌肌动蛋白抗体(Proteintech, 14395-1-AP)被用于被用于免疫印迹在人类样本上 (图 2). Int J Mol Med (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 2
武汉三鹰平滑肌肌动蛋白抗体(Proteintech, 14395-1-AP)被用于被用于免疫印迹在小鼠样本上 (图 2). Sci Rep (2016) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 大鼠; 1:100; 图 1g
武汉三鹰平滑肌肌动蛋白抗体(Proteintech, 14395-1-AP)被用于被用于免疫细胞化学在大鼠样本上浓度为1:100 (图 1g). Exp Ther Med (2016) ncbi
domestic rabbit 多克隆
武汉三鹰平滑肌肌动蛋白抗体(Proteintech, 14395-1-AP)被用于. Mol Med Rep (2015) ncbi
伯乐(Bio-Rad)公司
小鼠 单克隆(1A4)
  • 免疫组化; 小鼠; 1:100; 图 6
伯乐(Bio-Rad)公司平滑肌肌动蛋白抗体(AbD Serotec, MCA5781GA)被用于被用于免疫组化在小鼠样本上浓度为1:100 (图 6). Oncol Rep (2016) ncbi
小鼠 单克隆(1A4)
  • 免疫组化-冰冻切片; 人类; 1:20
伯乐(Bio-Rad)公司平滑肌肌动蛋白抗体(Serotec, MCA5781GA)被用于被用于免疫组化-冰冻切片在人类样本上浓度为1:20. F1000Res (2014) ncbi
Novus Biologicals
domestic goat 多克隆
  • 免疫印迹; domestic rabbit; 1:100; 图 4a
Novus Biologicals平滑肌肌动蛋白抗体(Novus Biologicals, NB300-978)被用于被用于免疫印迹在domestic rabbit样本上浓度为1:100 (图 4a). Invest Ophthalmol Vis Sci (2018) ncbi
BioLegend
小鼠 单克隆(1A4)
  • 流式细胞仪; 小鼠; 图 7
BioLegend平滑肌肌动蛋白抗体(Biolegend, 1A4)被用于被用于流式细胞仪在小鼠样本上 (图 7). Nat Immunol (2014) ncbi
GeneTex
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 4b
GeneTex平滑肌肌动蛋白抗体(GeneTex, GTX100034)被用于被用于免疫印迹在小鼠样本上 (图 4b). J Biol Chem (2018) ncbi
西格玛奥德里奇
小鼠 单克隆(1A4)
  • 免疫组化-石蜡切片; 小鼠; 1:250; 图 8a
西格玛奥德里奇平滑肌肌动蛋白抗体(Sigma, C6198)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:250 (图 8a). Theranostics (2020) ncbi
小鼠 单克隆(1A4)
  • 免疫组化-冰冻切片; 小鼠; 1:300; 图 8c
西格玛奥德里奇平滑肌肌动蛋白抗体(Sigma, C6198)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:300 (图 8c). elife (2020) ncbi
小鼠 单克隆(1A4)
  • 免疫组化-石蜡切片; 小鼠; 图 2b, 2f
西格玛奥德里奇平滑肌肌动蛋白抗体(Sigma-Aldrich, C6198)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 2b, 2f). Sci Adv (2020) ncbi
小鼠 单克隆(1A4)
  • 免疫组化-冰冻切片; 小鼠; 1:100; 图 4c
西格玛奥德里奇平滑肌肌动蛋白抗体(Sigma, C6198)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:100 (图 4c). elife (2019) ncbi
小鼠 单克隆(1A4)
  • 免疫组化; 小鼠; 1:100; 图 2f
西格玛奥德里奇平滑肌肌动蛋白抗体(Sigma, F3777)被用于被用于免疫组化在小鼠样本上浓度为1:100 (图 2f). Sci Adv (2019) ncbi
小鼠 单克隆(1A4)
  • 免疫组化; 小鼠; 1:300; 图 4a
西格玛奥德里奇平滑肌肌动蛋白抗体(Sigma, C6198)被用于被用于免疫组化在小鼠样本上浓度为1:300 (图 4a). Nat Commun (2019) ncbi
小鼠 单克隆(1A4)
  • 免疫组化; 小鼠; 1:200; 图 s1f
西格玛奥德里奇平滑肌肌动蛋白抗体(Sigma, C6198)被用于被用于免疫组化在小鼠样本上浓度为1:200 (图 s1f). Nat Commun (2019) ncbi
小鼠 单克隆(1A4)
  • 免疫组化-冰冻切片; 小鼠; 1:250; 图 3f
西格玛奥德里奇平滑肌肌动蛋白抗体(Sigma-Aldrich, C6198)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:250 (图 3f). elife (2019) ncbi
小鼠 单克隆(1A4)
  • 免疫组化-冰冻切片; 小鼠; 1:200; 图 2a
西格玛奥德里奇平滑肌肌动蛋白抗体(Sigma-Aldrich, C6198)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:200 (图 2a). J Clin Invest (2019) ncbi
小鼠 单克隆(1A4)
  • 免疫组化; 小鼠; 1:300; 图 1j
西格玛奥德里奇平滑肌肌动蛋白抗体(Sigma, F3777)被用于被用于免疫组化在小鼠样本上浓度为1:300 (图 1j). Cell (2019) ncbi
小鼠 单克隆(1A4)
  • 免疫组化-石蜡切片; 小鼠; 1:200; 图 1b
西格玛奥德里奇平滑肌肌动蛋白抗体(Sigma, F3777)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:200 (图 1b). Anat Rec (Hoboken) (2018) ncbi
小鼠 单克隆(1A4)
  • 免疫组化; 小鼠; 1:200; 图 s5f
西格玛奥德里奇平滑肌肌动蛋白抗体(Sigma-Aldrich, C6198)被用于被用于免疫组化在小鼠样本上浓度为1:200 (图 s5f). Nat Neurosci (2018) ncbi
小鼠 单克隆(1A4)
  • 免疫组化-冰冻切片; 小鼠; 1:200; 图 s13a
西格玛奥德里奇平滑肌肌动蛋白抗体(Sigma, C6198)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:200 (图 s13a). Science (2018) ncbi
小鼠 单克隆(1A4)
  • 免疫组化-石蜡切片; 人类; 1:200; 图 1a
西格玛奥德里奇平滑肌肌动蛋白抗体(Sigma, 6198)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:200 (图 1a). J Histochem Cytochem (2018) ncbi
小鼠 单克隆(1A4)
  • 免疫组化-石蜡切片; 小鼠; 1:250; 图 1a
西格玛奥德里奇平滑肌肌动蛋白抗体(Sigma, C6198)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:250 (图 1a). Genes Dev (2018) ncbi
小鼠 单克隆(1A4)
  • 免疫组化-冰冻切片; 小鼠; 图 2d
西格玛奥德里奇平滑肌肌动蛋白抗体(MilliporeSigma, C6198)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 2d). J Clin Invest (2018) ncbi
小鼠 单克隆(1A4)
  • 免疫组化-石蜡切片; 人类; 1:500; 图 7c
  • 免疫印迹; 人类; 1:500; 图 1c
  • 免疫组化-石蜡切片; 小鼠; 1:500; 图 4h
西格玛奥德里奇平滑肌肌动蛋白抗体(Sigma, C6198)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:500 (图 7c), 被用于免疫印迹在人类样本上浓度为1:500 (图 1c) 和 被用于免疫组化-石蜡切片在小鼠样本上浓度为1:500 (图 4h). Nat Commun (2017) ncbi
小鼠 单克隆(1A4)
  • 免疫组化-冰冻切片; 小鼠; 图 7c
西格玛奥德里奇平滑肌肌动蛋白抗体(Sigma-Aldrich, F3777)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 7c). J Clin Invest (2017) ncbi
小鼠 单克隆(1A4)
  • 免疫组化; 小鼠; 1:400; 图 2f
西格玛奥德里奇平滑肌肌动蛋白抗体(Sigma Aldrich, F3777)被用于被用于免疫组化在小鼠样本上浓度为1:400 (图 2f). Nat Commun (2017) ncbi
小鼠 单克隆(1A4)
  • 免疫组化; 小鼠; 1:1000; 图 10
西格玛奥德里奇平滑肌肌动蛋白抗体(Sigma, F3777)被用于被用于免疫组化在小鼠样本上浓度为1:1000 (图 10). Invest Ophthalmol Vis Sci (2017) ncbi
小鼠 单克隆(1A4)
  • 免疫组化-石蜡切片; 人类; 1:500; 图 1e
  • 免疫组化-冰冻切片; 小鼠; 1:500; 图 1a
西格玛奥德里奇平滑肌肌动蛋白抗体(Sigma, F3777)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:500 (图 1e) 和 被用于免疫组化-冰冻切片在小鼠样本上浓度为1:500 (图 1a). JCI Insight (2017) ncbi
小鼠 单克隆(1A4)
  • 免疫组化; 小鼠; 1:200; 图 5a
西格玛奥德里奇平滑肌肌动蛋白抗体(Sigma, F3777)被用于被用于免疫组化在小鼠样本上浓度为1:200 (图 5a). elife (2017) ncbi
  • 免疫组化-石蜡切片; 人类; 图 1E
西格玛奥德里奇平滑肌肌动蛋白抗体(Ventana Medical Systems, 760-2833)被用于被用于免疫组化-石蜡切片在人类样本上 (图 1E). Oncol Lett (2017) ncbi
小鼠 单克隆(1A4)
  • 免疫组化; 小鼠; 1:100; 图 3c
西格玛奥德里奇平滑肌肌动蛋白抗体(Sigma, C6198)被用于被用于免疫组化在小鼠样本上浓度为1:100 (图 3c). Proc Natl Acad Sci U S A (2017) ncbi
小鼠 单克隆(1A4)
  • 免疫组化-石蜡切片; 人类; 1:1000; 图 s1e
  • 免疫组化-石蜡切片; 小鼠; 1:1000; 图 6
西格玛奥德里奇平滑肌肌动蛋白抗体(Sigma, F3777)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:1000 (图 s1e) 和 被用于免疫组化-石蜡切片在小鼠样本上浓度为1:1000 (图 6). Sci Rep (2017) ncbi
小鼠 单克隆(1A4)
  • 免疫组化-石蜡切片; 小鼠; 1:500; 图 3h
西格玛奥德里奇平滑肌肌动蛋白抗体(Sigma, C6198)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:500 (图 3h). Nat Med (2017) ncbi
小鼠 单克隆(1A4)
  • 免疫组化-冰冻切片; 小鼠; 1:200; 图 s4f
西格玛奥德里奇平滑肌肌动蛋白抗体(Sigma, C6198)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:200 (图 s4f). EMBO Mol Med (2017) ncbi
小鼠 单克隆(1A4)
  • 免疫组化-冰冻切片; 小鼠; 1:200; 图 e1a
西格玛奥德里奇平滑肌肌动蛋白抗体(Sigma, C6198)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:200 (图 e1a). Nature (2017) ncbi
小鼠 单克隆(1A4)
  • 免疫组化-冰冻切片; 小鼠; 图 s14a
西格玛奥德里奇平滑肌肌动蛋白抗体(Sigma, F3777)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 s14a). J Clin Invest (2017) ncbi
小鼠 单克隆(1A4)
  • 免疫细胞化学; 人类; 图 e5m
西格玛奥德里奇平滑肌肌动蛋白抗体(Sigma-Aldrich, C6198)被用于被用于免疫细胞化学在人类样本上 (图 e5m). Nature (2016) ncbi
小鼠 单克隆(1A4)
  • 免疫组化-冰冻切片; 小鼠; 图 6b
西格玛奥德里奇平滑肌肌动蛋白抗体(Sigma, C6198)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 6b). EMBO Mol Med (2017) ncbi
小鼠 单克隆(1A4)
  • 免疫组化; 小鼠; 1:500; 图 2f
西格玛奥德里奇平滑肌肌动蛋白抗体(Sigma-Aldrich, F3777)被用于被用于免疫组化在小鼠样本上浓度为1:500 (图 2f). Dis Model Mech (2017) ncbi
小鼠 单克隆(1A4)
  • 免疫组化-冰冻切片; 小鼠; 1:100; 图 s6f
西格玛奥德里奇平滑肌肌动蛋白抗体(Sigma, F3777)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:100 (图 s6f). Nat Commun (2016) ncbi
小鼠 单克隆(1A4)
  • 免疫组化-石蜡切片; 小鼠; 图 3o
西格玛奥德里奇平滑肌肌动蛋白抗体(Sigma, C6198)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 3o). Exp Cell Res (2016) ncbi
小鼠 单克隆(1A4)
  • 免疫组化; 小鼠; 1:1000; 图 3c
西格玛奥德里奇平滑肌肌动蛋白抗体(Sigma, F3777)被用于被用于免疫组化在小鼠样本上浓度为1:1000 (图 3c). Sci Rep (2016) ncbi
小鼠 单克隆(1A4)
  • 免疫组化; 小鼠; 1:400; 图 5b
西格玛奥德里奇平滑肌肌动蛋白抗体(Sigma-Aldrich, C6198)被用于被用于免疫组化在小鼠样本上浓度为1:400 (图 5b). Development (2016) ncbi
小鼠 单克隆(1A4)
  • 免疫组化-冰冻切片; 猪; 1:200; 图 3d
  • 流式细胞仪; 猪
西格玛奥德里奇平滑肌肌动蛋白抗体(Sigma, C6198)被用于被用于免疫组化-冰冻切片在猪样本上浓度为1:200 (图 3d) 和 被用于流式细胞仪在猪样本上. Tissue Eng Part A (2017) ncbi
小鼠 单克隆(1A4)
  • 免疫组化-石蜡切片; 人类; 1:250; 图 s5c
西格玛奥德里奇平滑肌肌动蛋白抗体(Sigma, C6198)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:250 (图 s5c). Oncotarget (2016) ncbi
小鼠 单克隆(1A4)
  • 免疫组化-冰冻切片; 小鼠; 1:100; 图 6c
西格玛奥德里奇平滑肌肌动蛋白抗体(Sigma, C6198)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:100 (图 6c). Oncotarget (2016) ncbi
小鼠 单克隆(1A4)
  • 免疫组化-石蜡切片; 小鼠; 1:200; 图 5
西格玛奥德里奇平滑肌肌动蛋白抗体(Sigma, C6198)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:200 (图 5). Sci Rep (2016) ncbi
小鼠 单克隆(1A4)
  • 免疫组化; 小鼠; 1:400; 图 4A
西格玛奥德里奇平滑肌肌动蛋白抗体(Sigma, C6198)被用于被用于免疫组化在小鼠样本上浓度为1:400 (图 4A). elife (2016) ncbi
小鼠 单克隆(1A4)
  • 免疫组化; 人类; 图 8
西格玛奥德里奇平滑肌肌动蛋白抗体(Sigma, C6198)被用于被用于免疫组化在人类样本上 (图 8). PLoS ONE (2016) ncbi
小鼠 单克隆(1D11-2B9)
  • 免疫印迹; 人类; 1:10,000; 图 2a
  • 免疫组化-石蜡切片; 小鼠; 1:200; 图 1c
西格玛奥德里奇平滑肌肌动蛋白抗体(SIGMA, SAB1403519)被用于被用于免疫印迹在人类样本上浓度为1:10,000 (图 2a) 和 被用于免疫组化-石蜡切片在小鼠样本上浓度为1:200 (图 1c). Physiol Rep (2016) ncbi
小鼠 单克隆(1A4)
  • 免疫组化-冰冻切片; 小鼠; 图 7b
西格玛奥德里奇平滑肌肌动蛋白抗体(Sigma, C6198)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 7b). PLoS ONE (2016) ncbi
小鼠 单克隆(1A4)
  • 免疫组化-冰冻切片; 小鼠; 1:500
  • 免疫组化; 小鼠; 1:500; 图 3
西格玛奥德里奇平滑肌肌动蛋白抗体(Sigma-Aldrich, F3777)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:500 和 被用于免疫组化在小鼠样本上浓度为1:500 (图 3). elife (2016) ncbi
小鼠 单克隆(1A4)
  • 免疫细胞化学; 人类; 图 2
西格玛奥德里奇平滑肌肌动蛋白抗体(Sigma, C6198)被用于被用于免疫细胞化学在人类样本上 (图 2). Physiol Rep (2016) ncbi
小鼠 单克隆(1A4)
  • 免疫组化; 大鼠; 图 8c
  • 免疫细胞化学; 人类; 图 2g
  • 免疫组化; 人类; 图 s2
  • 免疫细胞化学; 小鼠; 图 1a
西格玛奥德里奇平滑肌肌动蛋白抗体(Sigma, 6198)被用于被用于免疫组化在大鼠样本上 (图 8c), 被用于免疫细胞化学在人类样本上 (图 2g), 被用于免疫组化在人类样本上 (图 s2) 和 被用于免疫细胞化学在小鼠样本上 (图 1a). Arterioscler Thromb Vasc Biol (2016) ncbi
小鼠 单克隆(1A4)
  • 免疫组化-石蜡切片; 人类; 1:200; 图 s14
西格玛奥德里奇平滑肌肌动蛋白抗体(Sigma, F3777)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:200 (图 s14). Nat Commun (2016) ncbi
小鼠 单克隆(1A4)
  • 免疫组化; 小鼠; 图 3b
西格玛奥德里奇平滑肌肌动蛋白抗体(Sigma-Aldrich, C6198)被用于被用于免疫组化在小鼠样本上 (图 3b). Sci Rep (2016) ncbi
小鼠 单克隆(1A4)
  • 免疫组化-石蜡切片; 小鼠; 1:200; 图 4
西格玛奥德里奇平滑肌肌动蛋白抗体(Sigma, F3777)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:200 (图 4). PLoS ONE (2016) ncbi
小鼠 单克隆(1A4)
  • 免疫组化; 小鼠; 图 2
西格玛奥德里奇平滑肌肌动蛋白抗体(Sigma, C6198)被用于被用于免疫组化在小鼠样本上 (图 2). Cancer Discov (2016) ncbi
小鼠 单克隆(1A4)
  • 免疫组化; 小鼠; 1:300; 图 5
西格玛奥德里奇平滑肌肌动蛋白抗体(Sigma, C6198)被用于被用于免疫组化在小鼠样本上浓度为1:300 (图 5). FASEB J (2016) ncbi
小鼠 单克隆(1A4)
  • 免疫细胞化学; 人类; 1:1000; 图 3
西格玛奥德里奇平滑肌肌动蛋白抗体(Sigma, C6198)被用于被用于免疫细胞化学在人类样本上浓度为1:1000 (图 3). EMBO Mol Med (2016) ncbi
小鼠 单克隆(1A4)
  • 免疫组化; 人类; 1:1000; 图 1
西格玛奥德里奇平滑肌肌动蛋白抗体(Sigma-Aldrich, C6198)被用于被用于免疫组化在人类样本上浓度为1:1000 (图 1). Nat Med (2016) ncbi
小鼠 单克隆(1A4)
  • 免疫细胞化学; 小鼠; 图 st1
西格玛奥德里奇平滑肌肌动蛋白抗体(Sigma, C6198)被用于被用于免疫细胞化学在小鼠样本上 (图 st1). Nature (2016) ncbi
小鼠 单克隆(1A4)
  • 免疫细胞化学; 人类; 图 2
西格玛奥德里奇平滑肌肌动蛋白抗体(Sigma, C6198)被用于被用于免疫细胞化学在人类样本上 (图 2). Stem Cells Int (2016) ncbi
小鼠 单克隆(1A4)
  • 免疫细胞化学; 小鼠; 图 2
西格玛奥德里奇平滑肌肌动蛋白抗体(Sigma, C6198)被用于被用于免疫细胞化学在小鼠样本上 (图 2). J Vis Exp (2016) ncbi
小鼠 单克隆(1A4)
  • 免疫组化; 小鼠; 图 3a
西格玛奥德里奇平滑肌肌动蛋白抗体(Sigma, C6198)被用于被用于免疫组化在小鼠样本上 (图 3a). JCI Insight (2016) ncbi
小鼠 单克隆(1A4)
  • 免疫组化-石蜡切片; 人类; 图 1
西格玛奥德里奇平滑肌肌动蛋白抗体(Sigma, C6198)被用于被用于免疫组化-石蜡切片在人类样本上 (图 1). PLoS ONE (2016) ncbi
小鼠 单克隆(1A4)
西格玛奥德里奇平滑肌肌动蛋白抗体(Sigma, C6198)被用于. Dis Model Mech (2016) ncbi
小鼠 单克隆(1A4)
  • 免疫组化; 小鼠; 图 8
西格玛奥德里奇平滑肌肌动蛋白抗体(Sigma, 1A4)被用于被用于免疫组化在小鼠样本上 (图 8). EMBO Mol Med (2016) ncbi
小鼠 单克隆(1A4)
  • 免疫组化; 小鼠; 1:100; 图 5c
西格玛奥德里奇平滑肌肌动蛋白抗体(Sigma, F3777)被用于被用于免疫组化在小鼠样本上浓度为1:100 (图 5c). Development (2016) ncbi
小鼠 单克隆(1A4)
  • 免疫组化; 人类; 1:500; 图 1
西格玛奥德里奇平滑肌肌动蛋白抗体(Sigma, F3777)被用于被用于免疫组化在人类样本上浓度为1:500 (图 1). Mucosal Immunol (2016) ncbi
小鼠 单克隆(1A4)
  • 免疫组化-石蜡切片; 小鼠; 图 7
西格玛奥德里奇平滑肌肌动蛋白抗体(Sigma, 1A4)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 7). J Biol Chem (2016) ncbi
小鼠 单克隆(1A4)
  • 免疫细胞化学; 小鼠; 1:200; 图 2
西格玛奥德里奇平滑肌肌动蛋白抗体(Sigma, C6198)被用于被用于免疫细胞化学在小鼠样本上浓度为1:200 (图 2). Nat Biotechnol (2016) ncbi
小鼠 单克隆(1A4)
  • 免疫细胞化学; 小鼠; 1:1000; 图 4a
西格玛奥德里奇平滑肌肌动蛋白抗体(Sigma, F3777)被用于被用于免疫细胞化学在小鼠样本上浓度为1:1000 (图 4a). Nat Commun (2016) ncbi
小鼠 单克隆(1A4)
  • 免疫组化-冰冻切片; 小鼠; 1:100; 图 3
  • 免疫细胞化学; 小鼠; 1:100; 图 6
西格玛奥德里奇平滑肌肌动蛋白抗体(Sigma-Aldrich, C6198)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:100 (图 3) 和 被用于免疫细胞化学在小鼠样本上浓度为1:100 (图 6). Sci Rep (2016) ncbi
小鼠 单克隆(1A4)
  • 免疫组化-石蜡切片; 大鼠; 图 5
西格玛奥德里奇平滑肌肌动蛋白抗体(Sigma, C6198)被用于被用于免疫组化-石蜡切片在大鼠样本上 (图 5). Am J Respir Crit Care Med (2016) ncbi
小鼠 单克隆(1A4)
  • 免疫细胞化学; 小鼠; 图 5
西格玛奥德里奇平滑肌肌动蛋白抗体(Sigma, F3777)被用于被用于免疫细胞化学在小鼠样本上 (图 5). J Biol Chem (2016) ncbi
小鼠 单克隆(1A4)
  • 免疫组化; 小鼠; 图 2
西格玛奥德里奇平滑肌肌动蛋白抗体(Sigma, C6198)被用于被用于免疫组化在小鼠样本上 (图 2). Oncotarget (2016) ncbi
小鼠 单克隆(1A4)
  • 免疫组化; 小鼠; 图 s7
西格玛奥德里奇平滑肌肌动蛋白抗体(Sigma-Aldrich, C6198)被用于被用于免疫组化在小鼠样本上 (图 s7). J Clin Invest (2016) ncbi
小鼠 单克隆(1A4)
  • 免疫组化; 人类; 1:200; 图 1p
西格玛奥德里奇平滑肌肌动蛋白抗体(Sigma, F3777)被用于被用于免疫组化在人类样本上浓度为1:200 (图 1p). Nat Commun (2015) ncbi
小鼠 单克隆(1A4)
  • 免疫组化-自由浮动切片; 小鼠; 图 3
西格玛奥德里奇平滑肌肌动蛋白抗体(Sigma, C6198)被用于被用于免疫组化-自由浮动切片在小鼠样本上 (图 3). Front Cell Neurosci (2015) ncbi
小鼠 单克隆(1A4)
  • 免疫组化; 小鼠; 图 1
西格玛奥德里奇平滑肌肌动蛋白抗体(Sigma-Aldrich, C6198)被用于被用于免疫组化在小鼠样本上 (图 1). PLoS ONE (2015) ncbi
小鼠 单克隆(1A4)
  • 免疫组化-石蜡切片; 小鼠; 图 4
西格玛奥德里奇平滑肌肌动蛋白抗体(Sigma, c6198)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 4). Sci Rep (2015) ncbi
小鼠 单克隆(1A4)
  • 免疫组化; 小鼠; 1:100-1:200; 图 5
西格玛奥德里奇平滑肌肌动蛋白抗体(Sigma, F3777)被用于被用于免疫组化在小鼠样本上浓度为1:100-1:200 (图 5). PLoS ONE (2015) ncbi
小鼠 单克隆(1A4)
  • 流式细胞仪; 人类; 图 7b
西格玛奥德里奇平滑肌肌动蛋白抗体(Sigma, F3777)被用于被用于流式细胞仪在人类样本上 (图 7b). Oncotarget (2015) ncbi
小鼠 单克隆(1A4)
  • 免疫组化-冰冻切片; 小鼠; 1:500; 图 2
西格玛奥德里奇平滑肌肌动蛋白抗体(Sigma, F3777)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:500 (图 2). PLoS ONE (2015) ncbi
小鼠 单克隆(1A4)
  • 免疫组化-石蜡切片; 小鼠; 1:250; 图 1
西格玛奥德里奇平滑肌肌动蛋白抗体(sigma, F3777)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:250 (图 1). Sci Rep (2015) ncbi
小鼠 单克隆(1A4)
  • 免疫组化; 小鼠; 0.001 mg/ml; 图 1
西格玛奥德里奇平滑肌肌动蛋白抗体(Sigma, C6198)被用于被用于免疫组化在小鼠样本上浓度为0.001 mg/ml (图 1). PLoS ONE (2015) ncbi
小鼠 单克隆(1A4)
  • 免疫组化-石蜡切片; 人类; 1:200; 图 s1b
  • 免疫组化-石蜡切片; 小鼠; 1:200; 图 1a
西格玛奥德里奇平滑肌肌动蛋白抗体(Sigma, C6198)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:200 (图 s1b) 和 被用于免疫组化-石蜡切片在小鼠样本上浓度为1:200 (图 1a). J Cell Biol (2015) ncbi
小鼠 单克隆(1A4)
  • 免疫组化; 小鼠
西格玛奥德里奇平滑肌肌动蛋白抗体(Sigma Aldrich, F3777)被用于被用于免疫组化在小鼠样本上. Autophagy (2015) ncbi
小鼠 单克隆(1A4)
  • 免疫组化-石蜡切片; 人类; 1:200; 表 3
西格玛奥德里奇平滑肌肌动蛋白抗体(Sigma, F3777)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:200 (表 3). Biochim Biophys Acta (2016) ncbi
小鼠 单克隆(1A4)
  • 免疫组化-石蜡切片; 小鼠; 图 5
西格玛奥德里奇平滑肌肌动蛋白抗体(Sigma, F3777)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 5). Oncotarget (2015) ncbi
小鼠 单克隆(1A4)
  • 免疫组化-冰冻切片; 小鼠; 1:500; 图 1c
西格玛奥德里奇平滑肌肌动蛋白抗体(Sigma, 1A4)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:500 (图 1c). J Clin Invest (2015) ncbi
小鼠 单克隆(1A4)
  • 免疫组化-冰冻切片; 小鼠; 1:300
西格玛奥德里奇平滑肌肌动蛋白抗体(Sigma-Aldrich, C6198)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:300. Ann Clin Transl Neurol (2015) ncbi
小鼠 单克隆(1A4)
西格玛奥德里奇平滑肌肌动蛋白抗体(Sigma-Aldrich, C6198)被用于. J Clin Invest (2015) ncbi
小鼠 单克隆(1A4)
  • 免疫组化; 小鼠; 1:250; 图 3
西格玛奥德里奇平滑肌肌动蛋白抗体(Sigma, F3777)被用于被用于免疫组化在小鼠样本上浓度为1:250 (图 3). Nat Commun (2015) ncbi
小鼠 单克隆(1A4)
  • 免疫组化-冰冻切片; 小鼠; 图 s1p
西格玛奥德里奇平滑肌肌动蛋白抗体(Sigma, C6198)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 s1p). Development (2015) ncbi
小鼠 单克隆(1A4)
  • 流式细胞仪; 大鼠; 图 4
西格玛奥德里奇平滑肌肌动蛋白抗体(Sigma-Aldrich, F3777)被用于被用于流式细胞仪在大鼠样本上 (图 4). PLoS ONE (2015) ncbi
小鼠 单克隆(1A4)
  • 免疫组化; 小鼠; 1:500
  • 免疫组化; 大鼠; 1:500
西格玛奥德里奇平滑肌肌动蛋白抗体(Sigma, C6198)被用于被用于免疫组化在小鼠样本上浓度为1:500 和 被用于免疫组化在大鼠样本上浓度为1:500. Cancer Res (2015) ncbi
小鼠 单克隆(1A4)
  • 免疫组化-石蜡切片; 小鼠; 1:200; 图 s1
西格玛奥德里奇平滑肌肌动蛋白抗体(Sigma, 1A4)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:200 (图 s1). Nat Commun (2015) ncbi
小鼠 单克隆(1A4)
  • 免疫组化; 小鼠; 图 8
西格玛奥德里奇平滑肌肌动蛋白抗体(Sigma, C6198)被用于被用于免疫组化在小鼠样本上 (图 8). Nat Commun (2015) ncbi
小鼠 单克隆(1A4)
  • 免疫组化; 小鼠; 1:200; 图 1
西格玛奥德里奇平滑肌肌动蛋白抗体(Sigma, C6198)被用于被用于免疫组化在小鼠样本上浓度为1:200 (图 1). Nature (2015) ncbi
小鼠 单克隆(1A4)
  • 免疫组化-石蜡切片; 人类; 图 3
  • 免疫组化-石蜡切片; 小鼠; 图 1
西格玛奥德里奇平滑肌肌动蛋白抗体(Sigma, F3777)被用于被用于免疫组化-石蜡切片在人类样本上 (图 3) 和 被用于免疫组化-石蜡切片在小鼠样本上 (图 1). Nat Med (2015) ncbi
小鼠 单克隆(1A4)
  • 流式细胞仪; 小鼠; 图 1
西格玛奥德里奇平滑肌肌动蛋白抗体(Sigma, 1A4)被用于被用于流式细胞仪在小鼠样本上 (图 1). J Exp Med (2015) ncbi
小鼠 单克隆(1A4)
  • 免疫组化; 小鼠; 1:100
西格玛奥德里奇平滑肌肌动蛋白抗体(Sigma Chemical, C6198)被用于被用于免疫组化在小鼠样本上浓度为1:100. Am J Pathol (2015) ncbi
小鼠 单克隆(1A4)
  • 免疫组化; 小鼠; 1:400; 图  S2
西格玛奥德里奇平滑肌肌动蛋白抗体(Sigma-Aldrich, F3777)被用于被用于免疫组化在小鼠样本上浓度为1:400 (图  S2). J Cell Mol Med (2015) ncbi
小鼠 单克隆(1A4)
  • 免疫组化; 小鼠; 1:2000; 图 3d
西格玛奥德里奇平滑肌肌动蛋白抗体(Sigma, C6198)被用于被用于免疫组化在小鼠样本上浓度为1:2000 (图 3d). Gastroenterology (2015) ncbi
小鼠 单克隆(1A4)
  • 免疫印迹; 大鼠; 1:1000; 图 1
西格玛奥德里奇平滑肌肌动蛋白抗体(Sigma-Aldrich, 1A4)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 1). J Ethnopharmacol (2015) ncbi
小鼠 单克隆(1A4)
  • 免疫组化-石蜡切片; 小鼠; 1:1000; 图 s2
西格玛奥德里奇平滑肌肌动蛋白抗体(Sigma, F3777)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:1000 (图 s2). Nat Commun (2015) ncbi
小鼠 单克隆(1A4)
  • 免疫组化; 小鼠; 1:200; 图 7
西格玛奥德里奇平滑肌肌动蛋白抗体(Sigma-Aldrich, F3777)被用于被用于免疫组化在小鼠样本上浓度为1:200 (图 7). J Am Heart Assoc (2015) ncbi
小鼠 单克隆(1A4)
  • 免疫细胞化学; 人类; 1:100
西格玛奥德里奇平滑肌肌动蛋白抗体(Sigma, 1A4)被用于被用于免疫细胞化学在人类样本上浓度为1:100. Brain Pathol (2016) ncbi
小鼠 单克隆(1A4)
  • 免疫印迹; 人类; 1:1000; 表 2
西格玛奥德里奇平滑肌肌动蛋白抗体(Sigma, F3777)被用于被用于免疫印迹在人类样本上浓度为1:1000 (表 2). PLoS ONE (2015) ncbi
小鼠 单克隆(1A4)
  • 免疫印迹; 小鼠; 1:2000
西格玛奥德里奇平滑肌肌动蛋白抗体(Sigma, C6198)被用于被用于免疫印迹在小鼠样本上浓度为1:2000. Am J Pathol (2015) ncbi
小鼠 单克隆(1A4)
  • 免疫组化; 小鼠; 1:15000; 图 s3
西格玛奥德里奇平滑肌肌动蛋白抗体(Sigma-Aldrich, 1A4)被用于被用于免疫组化在小鼠样本上浓度为1:15000 (图 s3). PLoS ONE (2015) ncbi
小鼠 单克隆(1A4)
  • 免疫组化-石蜡切片; 大鼠
西格玛奥德里奇平滑肌肌动蛋白抗体(Sigma, 1A4)被用于被用于免疫组化-石蜡切片在大鼠样本上. PLoS ONE (2015) ncbi
小鼠 单克隆(1A4)
  • 免疫组化; 小鼠; 1:500; 图 7
西格玛奥德里奇平滑肌肌动蛋白抗体(Sigma-Aldrich, F3777)被用于被用于免疫组化在小鼠样本上浓度为1:500 (图 7). Am J Physiol Lung Cell Mol Physiol (2015) ncbi
小鼠 单克隆(1A4)
  • 免疫组化-冰冻切片; 小鼠; 1:200
西格玛奥德里奇平滑肌肌动蛋白抗体(Sigma-Aldrich, C6198)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:200. Transpl Int (2015) ncbi
小鼠 单克隆(1A4)
  • 免疫组化-冰冻切片; 小鼠; 1:200; 图 4
西格玛奥德里奇平滑肌肌动蛋白抗体(Sigma, F3777)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:200 (图 4). Nat Commun (2015) ncbi
小鼠 单克隆(1A4)
  • 流式细胞仪; 小鼠
西格玛奥德里奇平滑肌肌动蛋白抗体(SIGMA, C6198)被用于被用于流式细胞仪在小鼠样本上. Stem Cells (2015) ncbi
小鼠 单克隆(1A4)
  • 免疫组化-冰冻切片; 小鼠; 图 1
西格玛奥德里奇平滑肌肌动蛋白抗体(Sigma, clone 1A4)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 1). Eur J Immunol (2015) ncbi
小鼠 单克隆(CGA7)
  • 免疫细胞化学; 人类; 1:100; 表 1
西格玛奥德里奇平滑肌肌动蛋白抗体(Sigma, A7607)被用于被用于免疫细胞化学在人类样本上浓度为1:100 (表 1). Acta Biomater (2015) ncbi
小鼠 单克隆(1A4)
  • 免疫组化-石蜡切片; 人类; 1:30000
西格玛奥德里奇平滑肌肌动蛋白抗体(Sigma, 1A4)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:30000. Diagn Pathol (2014) ncbi
小鼠 单克隆(1A4)
  • 免疫组化; 小鼠
西格玛奥德里奇平滑肌肌动蛋白抗体(Sigma-Aldrich, C6198)被用于被用于免疫组化在小鼠样本上. Invest Ophthalmol Vis Sci (2014) ncbi
小鼠 单克隆(1A4)
  • 免疫组化-石蜡切片; 小鼠
西格玛奥德里奇平滑肌肌动蛋白抗体(Sigma-Aldrich, 1A4)被用于被用于免疫组化-石蜡切片在小鼠样本上. Arthritis Rheumatol (2015) ncbi
小鼠 单克隆(1A4)
  • 免疫组化-冰冻切片; 小鼠; 1:100
西格玛奥德里奇平滑肌肌动蛋白抗体(Sigma-Aldrich, F3777)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:100. Biochemistry (Mosc) (2014) ncbi
小鼠 单克隆(1A4)
  • 免疫细胞化学; 小鼠; 1:1000; 图 3
西格玛奥德里奇平滑肌肌动蛋白抗体(Sigma, 1A4)被用于被用于免疫细胞化学在小鼠样本上浓度为1:1000 (图 3). Nat Cell Biol (2014) ncbi
小鼠 单克隆(1A4)
  • 免疫细胞化学; 人类; 1:400
西格玛奥德里奇平滑肌肌动蛋白抗体(Sigma, 1A4)被用于被用于免疫细胞化学在人类样本上浓度为1:400. Proc Natl Acad Sci U S A (2014) ncbi
小鼠 单克隆(1A4)
  • 免疫组化-石蜡切片; 小鼠; 1:500
西格玛奥德里奇平滑肌肌动蛋白抗体(sigma, C6198)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:500. PLoS ONE (2014) ncbi
小鼠 单克隆(1A4)
  • 免疫组化-石蜡切片; 小鼠; 1:200
西格玛奥德里奇平滑肌肌动蛋白抗体(Sigma, 1A4)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:200. PLoS ONE (2014) ncbi
小鼠 单克隆(1A4)
  • 免疫组化; 小鼠; 图 1
西格玛奥德里奇平滑肌肌动蛋白抗体(Sigma, C6198)被用于被用于免疫组化在小鼠样本上 (图 1). J Clin Invest (2014) ncbi
小鼠 单克隆(1A4)
  • 免疫组化-冰冻切片; 人类; 图 2
西格玛奥德里奇平滑肌肌动蛋白抗体(Sigma, 1A4)被用于被用于免疫组化-冰冻切片在人类样本上 (图 2). PLoS ONE (2014) ncbi
小鼠 单克隆(1A4)
  • 免疫细胞化学; 人类
西格玛奥德里奇平滑肌肌动蛋白抗体(Sigma, 1A4)被用于被用于免疫细胞化学在人类样本上. Cell Death Dis (2014) ncbi
小鼠 单克隆(1A4)
  • 免疫组化-石蜡切片; 小鼠; 1:500
西格玛奥德里奇平滑肌肌动蛋白抗体(Sigma-Aldrich, C6198)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:500. Am J Physiol Gastrointest Liver Physiol (2014) ncbi
小鼠 单克隆(1A4)
  • 免疫组化-冰冻切片; 小鼠; 1:100
西格玛奥德里奇平滑肌肌动蛋白抗体(Sigma Aldrich, C6198)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:100. Nature (2014) ncbi
小鼠 单克隆(1A4)
  • 免疫细胞化学; 人类
西格玛奥德里奇平滑肌肌动蛋白抗体(Sigma-Aldrich, C6198)被用于被用于免疫细胞化学在人类样本上. Cell Tissue Res (2014) ncbi
小鼠 单克隆(1D11-2B9)
  • 免疫组化-冰冻切片; 人类; 图 7a
西格玛奥德里奇平滑肌肌动蛋白抗体(Sigma, SAB1403519)被用于被用于免疫组化-冰冻切片在人类样本上 (图 7a). PLoS Genet (2014) ncbi
小鼠 单克隆(1A4)
  • 免疫细胞化学; 人类; 1:250
  • 免疫组化; 人类; 1:250
西格玛奥德里奇平滑肌肌动蛋白抗体(Sigma-Aldrich, 1A4)被用于被用于免疫细胞化学在人类样本上浓度为1:250 和 被用于免疫组化在人类样本上浓度为1:250. Am J Pathol (2014) ncbi
小鼠 单克隆(1A4)
  • 免疫组化; 小鼠
西格玛奥德里奇平滑肌肌动蛋白抗体(Sigma Aldrich, 1A4)被用于被用于免疫组化在小鼠样本上. Dev Growth Differ (2014) ncbi
小鼠 单克隆(1A4)
  • 免疫组化-冰冻切片; 小鼠
西格玛奥德里奇平滑肌肌动蛋白抗体(Sigma Aldrich, C6198)被用于被用于免疫组化-冰冻切片在小鼠样本上. J Thromb Haemost (2014) ncbi
小鼠 单克隆(1A4)
  • 免疫组化; 小鼠
西格玛奥德里奇平滑肌肌动蛋白抗体(Sigma-Aldrich, 1A4)被用于被用于免疫组化在小鼠样本上. PLoS ONE (2014) ncbi
小鼠 单克隆(1A4)
  • 免疫细胞化学; 小鼠; 1:1000
西格玛奥德里奇平滑肌肌动蛋白抗体(Sigma, C6198)被用于被用于免疫细胞化学在小鼠样本上浓度为1:1000. Cilia (2014) ncbi
小鼠 单克隆(1A4)
  • 免疫印迹; 小鼠; 1:1000; 图 2
西格玛奥德里奇平滑肌肌动蛋白抗体(Sigma, F3777)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 2). Nat Commun (2014) ncbi
小鼠 单克隆(1A4)
  • 免疫组化-冰冻切片; 小鼠; 1:250
西格玛奥德里奇平滑肌肌动蛋白抗体(Sigma-Aldrich, F3777)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:250. J Cell Mol Med (2014) ncbi
小鼠 单克隆(1A4)
  • 免疫组化; 小鼠
西格玛奥德里奇平滑肌肌动蛋白抗体(Sigma-Aldrich, 1A4)被用于被用于免疫组化在小鼠样本上. J Cell Mol Med (2014) ncbi
小鼠 单克隆(1A4)
  • 免疫组化; 小鼠
西格玛奥德里奇平滑肌肌动蛋白抗体(Sigma, 1A4)被用于被用于免疫组化在小鼠样本上. J Am Heart Assoc (2014) ncbi
小鼠 单克隆(1A4)
  • 免疫组化-冰冻切片; 小鼠; 1:200
西格玛奥德里奇平滑肌肌动蛋白抗体(Sigma-Aldrich, F3777)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:200. J Sex Med (2014) ncbi
小鼠 单克隆(1A4)
  • 免疫组化; 大鼠
西格玛奥德里奇平滑肌肌动蛋白抗体(Sigma, C6198)被用于被用于免疫组化在大鼠样本上. J Control Release (2014) ncbi
小鼠 单克隆(1A4)
  • 免疫组化-冰冻切片; 人类
西格玛奥德里奇平滑肌肌动蛋白抗体(Sigma-Aldrich, F3777)被用于被用于免疫组化-冰冻切片在人类样本上. FASEB J (2014) ncbi
小鼠 单克隆(1A4)
  • 免疫组化-冰冻切片; 小鼠; 1:200
西格玛奥德里奇平滑肌肌动蛋白抗体(Sigma-Aldrich, C-6198)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:200. J Exp Med (2013) ncbi
小鼠 单克隆(1A4)
  • 免疫组化; 小鼠
西格玛奥德里奇平滑肌肌动蛋白抗体(Sigma, C6198)被用于被用于免疫组化在小鼠样本上. PLoS ONE (2013) ncbi
小鼠 单克隆(1A4)
  • 免疫组化-石蜡切片; 人类; 1:250
西格玛奥德里奇平滑肌肌动蛋白抗体(Sigma-Aldrich, F3777)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:250. FASEB J (2014) ncbi
小鼠 单克隆(1A4)
  • 免疫组化; 人类; 1:4000
  • 免疫组化; 小鼠; 1:4000
西格玛奥德里奇平滑肌肌动蛋白抗体(Sigma-Aldrich, 1A4)被用于被用于免疫组化在人类样本上浓度为1:4000 和 被用于免疫组化在小鼠样本上浓度为1:4000. Early Hum Dev (2013) ncbi
小鼠 单克隆(1A4)
  • 免疫组化-石蜡切片; 人类; 1:1000
西格玛奥德里奇平滑肌肌动蛋白抗体(Sigma-Aldrich, 1A4)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:1000. Cancer Res (2013) ncbi
小鼠 单克隆(1A4)
  • 免疫组化-冰冻切片; 小鼠
西格玛奥德里奇平滑肌肌动蛋白抗体(Sigma, F3777)被用于被用于免疫组化-冰冻切片在小鼠样本上. Nature (2013) ncbi
小鼠 单克隆(1A4)
  • 免疫细胞化学; 人类; 1:250
西格玛奥德里奇平滑肌肌动蛋白抗体(Sigma-Aldrich, F3777)被用于被用于免疫细胞化学在人类样本上浓度为1:250. PLoS ONE (2013) ncbi
小鼠 单克隆(1A4)
  • 免疫组化-石蜡切片; 小鼠; 1:200
西格玛奥德里奇平滑肌肌动蛋白抗体(Sigma, F3777)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:200. Dev Biol (2013) ncbi
小鼠 单克隆(1A4)
  • 免疫组化-冰冻切片; 小鼠
西格玛奥德里奇平滑肌肌动蛋白抗体(Sigma, F3777)被用于被用于免疫组化-冰冻切片在小鼠样本上. PLoS ONE (2013) ncbi
小鼠 单克隆(1A4)
  • 免疫组化-石蜡切片; 人类
西格玛奥德里奇平滑肌肌动蛋白抗体(Sigma, C6198)被用于被用于免疫组化-石蜡切片在人类样本上. Am J Hum Genet (2013) ncbi
小鼠 单克隆(1A4)
  • 免疫组化-冰冻切片; 小鼠; 1:200
西格玛奥德里奇平滑肌肌动蛋白抗体(Sigma, C6198)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:200. Development (2013) ncbi
小鼠 单克隆(1A4)
  • 免疫组化; 小鼠; 图 5b
西格玛奥德里奇平滑肌肌动蛋白抗体(Sigma, F3777)被用于被用于免疫组化在小鼠样本上 (图 5b). FASEB J (2013) ncbi
小鼠 单克隆(CGA7)
  • 免疫印迹基因敲除验证; 小鼠; 图 5b
  • 免疫细胞化学; 小鼠; 图 7c
  • 免疫印迹; 小鼠; 图 5b
西格玛奥德里奇平滑肌肌动蛋白抗体(Sigma-Aldrich, A7607)被用于被用于免疫印迹基因敲除验证在小鼠样本上 (图 5b), 被用于免疫细胞化学在小鼠样本上 (图 7c) 和 被用于免疫印迹在小鼠样本上 (图 5b). Wound Repair Regen (2013) ncbi
小鼠 单克隆(1A4)
  • 免疫组化-冰冻切片; 人类; 1:100
西格玛奥德里奇平滑肌肌动蛋白抗体(Sigma, F3777)被用于被用于免疫组化-冰冻切片在人类样本上浓度为1:100. Cytometry A (2013) ncbi
小鼠 单克隆(1A4)
  • 流式细胞仪; 人类
西格玛奥德里奇平滑肌肌动蛋白抗体(Sigma-Aldrich, 1A4)被用于被用于流式细胞仪在人类样本上. PLoS ONE (2012) ncbi
小鼠 单克隆(1A4)
  • 免疫印迹; 鸡; 1:10000
西格玛奥德里奇平滑肌肌动蛋白抗体(Sigma, 1A4)被用于被用于免疫印迹在鸡样本上浓度为1:10000. Gene (2013) ncbi
小鼠 单克隆(1A4)
  • 免疫细胞化学; 大鼠; 1:1000
西格玛奥德里奇平滑肌肌动蛋白抗体(Sigma, F3777)被用于被用于免疫细胞化学在大鼠样本上浓度为1:1000. Am J Physiol Heart Circ Physiol (2012) ncbi
小鼠 单克隆(1A4)
  • 免疫组化; 人类; 1:5000
西格玛奥德里奇平滑肌肌动蛋白抗体(Sigma BioSciences, 1A4)被用于被用于免疫组化在人类样本上浓度为1:5000. Pathol Int (2011) ncbi
小鼠 单克隆(1A4)
  • 免疫组化-石蜡切片; 小鼠; 1:100
西格玛奥德里奇平滑肌肌动蛋白抗体(Sigma, F3777)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:100. FEBS Lett (2010) ncbi
小鼠 单克隆(1A4)
  • 免疫组化-石蜡切片; 小鼠; 1:600
西格玛奥德里奇平滑肌肌动蛋白抗体(Sigma, 1A4)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:600. Hypertension (2009) ncbi
赛信通(上海)生物试剂有限公司
domestic rabbit 单克隆(D4K9N)
  • 免疫印迹; 人类; 图 4c
  • 免疫组化; 小鼠; 图 1c
赛信通(上海)生物试剂有限公司平滑肌肌动蛋白抗体(CST, 19245)被用于被用于免疫印迹在人类样本上 (图 4c) 和 被用于免疫组化在小鼠样本上 (图 1c). Front Oncol (2020) ncbi
domestic rabbit 单克隆(D4K9N)
  • 免疫印迹; 人类; 1:2000; 图 3e, 3f
赛信通(上海)生物试剂有限公司平滑肌肌动蛋白抗体(Cell Signaling, 19245)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 3e, 3f). Biosci Rep (2019) ncbi
Vector Laboratories
  • 免疫组化; domestic rabbit; 1:200; 图 12a
  • 免疫组化; 人类; 1:500; 图 5d
载体实验室平滑肌肌动蛋白抗体(载体实验室, VPS281)被用于被用于免疫组化在domestic rabbit样本上浓度为1:200 (图 12a) 和 被用于免疫组化在人类样本上浓度为1:500 (图 5d). Biomaterials (2017) ncbi
  • 免疫印迹; 人类; 1:500; 图 5
载体实验室平滑肌肌动蛋白抗体(Vector Labs, VP-S281)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 5). Sci Rep (2015) ncbi
  • 免疫组化; 人类; 图 1
载体实验室平滑肌肌动蛋白抗体(载体, VP-S281)被用于被用于免疫组化在人类样本上 (图 1). Cell (2014) ncbi
Biogenex
  • 免疫细胞化学; 人类
Biogenex平滑肌肌动蛋白抗体(BioGenex Laboratories, MU128-UC)被用于被用于免疫细胞化学在人类样本上. Stem Cells (2015) ncbi
  • 免疫组化-石蜡切片; 人类; 1:200; 图 3, 4
Biogenex平滑肌肌动蛋白抗体(Biogenex, MU128-UC)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:200 (图 3, 4). Methods Mol Biol (2014) ncbi
Progen
小鼠 单克隆(1A4/ ASM-1)
  • 免疫组化-石蜡切片; 大鼠; 图 st1
  • 免疫组化-石蜡切片; 小鼠; 图 st1
Progen平滑肌肌动蛋白抗体(Progen, 61001)被用于被用于免疫组化-石蜡切片在大鼠样本上 (图 st1) 和 被用于免疫组化-石蜡切片在小鼠样本上 (图 st1). J Toxicol Pathol (2017) ncbi
Fitzgerald Industries
小鼠 单克隆(1A4)
  • 免疫组化; 大鼠; 1:100; 图 6a
Fitzgerald Industries平滑肌肌动蛋白抗体(Research Diagnostics, 1A4)被用于被用于免疫组化在大鼠样本上浓度为1:100 (图 6a). Cardiovasc Pathol (2015) ncbi
Developmental Studies Hybridoma Bank
小鼠 单克隆(JLA20)
  • 免疫组化-石蜡切片; 人类; 1:200; 图 2n
Developmental Studies Hybridoma Bank平滑肌肌动蛋白抗体(Developmental Studies Hybridoma Bank, JLA20)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:200 (图 2n). Neuron (2018) ncbi
小鼠 单克隆(JLA20)
  • 免疫细胞化学; 小鼠; 图 3a
  • 免疫印迹; 小鼠; 1:2000; 图 2a
Developmental Studies Hybridoma Bank平滑肌肌动蛋白抗体(Developmental Studies Hybridoma Bank, JLA20)被用于被用于免疫细胞化学在小鼠样本上 (图 3a) 和 被用于免疫印迹在小鼠样本上浓度为1:2000 (图 2a). J Neurosci (2018) ncbi
小鼠 单克隆(JLA20)
  • 免疫组化-冰冻切片; 小鼠; 图 4a
Developmental Studies Hybridoma Bank平滑肌肌动蛋白抗体(DSHB, JLA-20)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 4a). J Cell Biol (2016) ncbi
小鼠 单克隆(JLA20)
  • 免疫印迹; 小鼠; 图 1
Developmental Studies Hybridoma Bank平滑肌肌动蛋白抗体(DSHB, JLA20)被用于被用于免疫印迹在小鼠样本上 (图 1). Eneuro (2016) ncbi
小鼠 单克隆(JLA20)
  • 免疫印迹; 小鼠; 图 2e
Developmental Studies Hybridoma Bank平滑肌肌动蛋白抗体(Developmental Studies Hybridoma Bank, JLA20)被用于被用于免疫印迹在小鼠样本上 (图 2e). elife (2016) ncbi
小鼠 单克隆(JLA20)
  • 免疫印迹; 人类; 图 3
Developmental Studies Hybridoma Bank平滑肌肌动蛋白抗体(DSHB, JLA20)被用于被用于免疫印迹在人类样本上 (图 3). elife (2016) ncbi
小鼠 单克隆(JLA20)
  • 免疫印迹; 黑腹果蝇; 1:2000; 图 1F
Developmental Studies Hybridoma Bank平滑肌肌动蛋白抗体(DSHB, JLA20)被用于被用于免疫印迹在黑腹果蝇样本上浓度为1:2000 (图 1F). Dis Model Mech (2016) ncbi
小鼠 单克隆(JLA20)
  • 免疫印迹; 黑腹果蝇; 1:50
Developmental Studies Hybridoma Bank平滑肌肌动蛋白抗体(DSHB, JLA20)被用于被用于免疫印迹在黑腹果蝇样本上浓度为1:50. Nat Commun (2015) ncbi
小鼠 单克隆(JLA20)
  • 免疫印迹; 人类; 1:4000; 图 1, 2
Developmental Studies Hybridoma Bank平滑肌肌动蛋白抗体(Developmental Studies Hybridoma Bank, JLA20)被用于被用于免疫印迹在人类样本上浓度为1:4000 (图 1, 2). J Immunol (2015) ncbi
小鼠 单克隆(JLA20)
  • 免疫印迹; 黑腹果蝇; 1:1000; 图 1
Developmental Studies Hybridoma Bank平滑肌肌动蛋白抗体(Developmental Studies Hybridoma Bank, JLA20)被用于被用于免疫印迹在黑腹果蝇样本上浓度为1:1000 (图 1). Proc Natl Acad Sci U S A (2014) ncbi
小鼠 单克隆(JLA20)
  • 免疫印迹; 非洲爪蛙; 1:300; 图 3
Developmental Studies Hybridoma Bank平滑肌肌动蛋白抗体(Developmental Studies Hybridoma Bank, JLA20)被用于被用于免疫印迹在非洲爪蛙样本上浓度为1:300 (图 3). J Cell Biol (2014) ncbi
小鼠 单克隆(JLA20)
  • 免疫印迹; 黑腹果蝇; 1:5000
Developmental Studies Hybridoma Bank平滑肌肌动蛋白抗体(Developmental Studies Hybridoma Bank, JLA20)被用于被用于免疫印迹在黑腹果蝇样本上浓度为1:5000. Hum Mol Genet (2014) ncbi
小鼠 单克隆(JLA20)
  • 免疫印迹; 小鼠; 图 5c
Developmental Studies Hybridoma Bank平滑肌肌动蛋白抗体(Developmental Studies Hybridoma Bank, JLA20)被用于被用于免疫印迹在小鼠样本上 (图 5c). Hum Mol Genet (2014) ncbi
小鼠 单克隆(JLA20)
  • 免疫印迹; 人类
Developmental Studies Hybridoma Bank平滑肌肌动蛋白抗体(DSHB, JLA20)被用于被用于免疫印迹在人类样本上. PLoS ONE (2013) ncbi
小鼠 单克隆(JLA20)
  • 免疫印迹; 黑腹果蝇; 1:10
Developmental Studies Hybridoma Bank平滑肌肌动蛋白抗体(Developmental Studies Hybridoma Bank, JLA20)被用于被用于免疫印迹在黑腹果蝇样本上浓度为1:10. Proteomics (2011) ncbi
默克密理博中国
小鼠 单克隆(ASM-1)
  • 免疫细胞化学; 人类; 1:50; 图 3b
默克密理博中国平滑肌肌动蛋白抗体(EMD Millipore, CBL171)被用于被用于免疫细胞化学在人类样本上浓度为1:50 (图 3b). Stem Cell Res (2018) ncbi
小鼠 单克隆(ASM-1)
  • 免疫细胞化学; 人类; 1:50; 表 1
默克密理博中国平滑肌肌动蛋白抗体(Millipore, CBL171)被用于被用于免疫细胞化学在人类样本上浓度为1:50 (表 1). Stem Cell Res (2017) ncbi
小鼠 单克隆(ASM-1)
  • 免疫细胞化学; 人类; 图 s1e
默克密理博中国平滑肌肌动蛋白抗体(Millipore, CBL171)被用于被用于免疫细胞化学在人类样本上 (图 s1e). Cell (2017) ncbi
小鼠 单克隆(ASM-1)
  • 免疫细胞化学; 小鼠; 1:200; 图 2
默克密理博中国平滑肌肌动蛋白抗体(Chemicon, CBL171)被用于被用于免疫细胞化学在小鼠样本上浓度为1:200 (图 2). Nat Commun (2016) ncbi
小鼠 单克隆(ASM-1)
  • 免疫细胞化学; 人类; 图 6
默克密理博中国平滑肌肌动蛋白抗体(Millipore, CBL171)被用于被用于免疫细胞化学在人类样本上 (图 6). Nat Commun (2016) ncbi
小鼠 单克隆(ASM-1)
  • 免疫细胞化学; 人类; 1:1000; 图 1d
默克密理博中国平滑肌肌动蛋白抗体(Millipore, CBL171)被用于被用于免疫细胞化学在人类样本上浓度为1:1000 (图 1d). Cell Physiol Biochem (2016) ncbi
小鼠 单克隆(ASM-1)
  • 免疫组化-石蜡切片; 人类; 1:100; 图 3
默克密理博中国平滑肌肌动蛋白抗体(Millipore, CBL171)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100 (图 3). PLoS ONE (2015) ncbi
小鼠 单克隆(ASM-1)
  • 免疫印迹; 小鼠; 1:1000; 图 s5
默克密理博中国平滑肌肌动蛋白抗体(Chemicon, CBL171)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 s5). Proc Natl Acad Sci U S A (2015) ncbi
小鼠 单克隆(ASM-1)
  • 免疫细胞化学; African green monkey; 1:1500; 图 2s1
默克密理博中国平滑肌肌动蛋白抗体(EMD Millipore, CBL171)被用于被用于免疫细胞化学在African green monkey样本上浓度为1:1500 (图 2s1). elife (2015) ncbi
小鼠 单克隆(ASM-1)
  • 免疫细胞化学; 人类; 1:1500
默克密理博中国平滑肌肌动蛋白抗体(Millipore, CBL171)被用于被用于免疫细胞化学在人类样本上浓度为1:1500. PLoS Genet (2015) ncbi
小鼠 单克隆(ASM-1)
  • 免疫细胞化学; 大鼠; 1:1000; 图 1
  • 免疫印迹; 大鼠; 图 2
默克密理博中国平滑肌肌动蛋白抗体(Millipore, CBL171)被用于被用于免疫细胞化学在大鼠样本上浓度为1:1000 (图 1) 和 被用于免疫印迹在大鼠样本上 (图 2). Cell Physiol Biochem (2015) ncbi
小鼠 单克隆(ASM-1)
  • 免疫细胞化学; 人类; 1:400
默克密理博中国平滑肌肌动蛋白抗体(Millipore, CBL171)被用于被用于免疫细胞化学在人类样本上浓度为1:400. PLoS ONE (2015) ncbi
小鼠 单克隆(CGA7)
  • 免疫组化; 大鼠; 1:6000
默克密理博中国平滑肌肌动蛋白抗体(Millipore, Mab1522)被用于被用于免疫组化在大鼠样本上浓度为1:6000. Microcirculation (2014) ncbi
小鼠 单克隆(ASM-1)
  • 免疫细胞化学; 人类; 1:1500
默克密理博中国平滑肌肌动蛋白抗体(EMD Millipore, ASM-1)被用于被用于免疫细胞化学在人类样本上浓度为1:1500. PLoS ONE (2014) ncbi
徕卡显微系统(上海)贸易有限公司
小鼠 单克隆(??sm-1)
  • 免疫组化; Japanese lancelet; 1:200; 图 5
徕卡显微系统(上海)贸易有限公司平滑肌肌动蛋白抗体(Leica, NCL-SMA)被用于被用于免疫组化在Japanese lancelet样本上浓度为1:200 (图 5). Zoological Lett (2016) ncbi
单克隆(ASM-1)
  • 免疫组化; 人类; 1:200
徕卡显微系统(上海)贸易有限公司平滑肌肌动蛋白抗体(Leica, asm-1)被用于被用于免疫组化在人类样本上浓度为1:200. Head Neck Pathol (2015) ncbi
文章列表
  1. Facchin C, Pérez Liva M, Garofalakis A, Viel T, Certain A, Balvay D, et al. Concurrent imaging of vascularization and metabolism in a mouse model of paraganglioma under anti-angiogenic treatment. Theranostics. 2020;10:3518-3532 pubmed 出版商
  2. Fu X, Qie J, Fu Q, Chen J, Jin Y, Ding Z. miR-20a-5p/TGFBR2 Axis Affects Pro-inflammatory Macrophages and Aggravates Liver Fibrosis. Front Oncol. 2020;10:107 pubmed 出版商
  3. Engelbrecht E, Lévesque M, He L, Vanlandewijck M, Nitzsche A, Niazi H, et al. Sphingosine 1-phosphate-regulated transcriptomes in heterogenous arterial and lymphatic endothelium of the aorta. elife. 2020;9: pubmed 出版商
  4. Ichikawa K, Watanabe Miyano S, Minoshima Y, Matsui J, Funahashi Y. Activated FGF2 signaling pathway in tumor vasculature is essential for acquired resistance to anti-VEGF therapy. Sci Rep. 2020;10:2939 pubmed 出版商
  5. Gaglia G, Rashid R, Yapp C, Joshi G, Li C, Lindquist S, et al. HSF1 phase transition mediates stress adaptation and cell fate decisions. Nat Cell Biol. 2020;22:151-158 pubmed 出版商
  6. Brill Karniely Y, Dror D, Duanis Assaf T, Goldstein Y, Schwob O, Millo T, et al. Triangular correlation (TrC) between cancer aggressiveness, cell uptake capability, and cell deformability. Sci Adv. 2020;6:eaax2861 pubmed 出版商
  7. Liao S, Chen H, Liu M, Gan L, Li C, Zhang W, et al. Aquaporin 9 inhibits growth and metastasis of hepatocellular carcinoma cells via Wnt/β-catenin pathway. Aging (Albany NY). 2020;12:1527-1544 pubmed 出版商
  8. Kim J, Fei L, Yin W, Coquenlorge S, Rao Bhatia A, Zhang X, et al. Single cell and genetic analyses reveal conserved populations and signaling mechanisms of gastrointestinal stromal niches. Nat Commun. 2020;11:334 pubmed 出版商
  9. Singh V, Khalil M, De Benedetti A. The TLK1/Nek1 axis contributes to mitochondrial integrity and apoptosis prevention via phosphorylation of VDAC1. Cell Cycle. 2020;19:363-375 pubmed 出版商
  10. Liu H, Mei F, Yang W, Wang H, Wong E, Cai J, et al. Epac1 inhibition ameliorates pathological angiogenesis through coordinated activation of Notch and suppression of VEGF signaling. Sci Adv. 2020;6:eaay3566 pubmed 出版商
  11. Wang G, Huang T, Hu Y, Wang K, Shi H, Yin L, et al. Corpus cavernosum smooth muscle cell dysfunction and phenotype transformation are related to erectile dysfunction in prostatitis rats with chronic prostatitis/chronic pelvic pain syndrome. J Inflamm (Lond). 2020;17:2 pubmed 出版商
  12. Izadi D, Layton T, Williams L, McCann F, Cabrita M, Espirito Santo A, et al. Identification of TNFR2 and IL-33 as therapeutic targets in localized fibrosis. Sci Adv. 2019;5:eaay0370 pubmed 出版商
  13. Luxan G, Stewen J, Díaz N, Kato K, Maney S, Aravamudhan A, et al. Endothelial EphB4 maintains vascular integrity and transport function in adult heart. elife. 2019;8: pubmed 出版商
  14. Li X, Wang F, Ren M, Du M, Zhou J. The effects of c-Src kinase on EMT signaling pathway in human lens epithelial cells associated with lens diseases. BMC Ophthalmol. 2019;19:219 pubmed 出版商
  15. Xue M, Li G, Li D, Wang Z, Mi L, Da J, et al. Up-regulated MCPIP1 in abdominal aortic aneurysm is associated with vascular smooth muscle cell apoptosis and MMPs production. Biosci Rep. 2019;39: pubmed 出版商
  16. Cao W, Feng Y. LncRNA XIST promotes extracellular matrix synthesis, proliferation and migration by targeting miR-29b-3p/COL1A1 in human skin fibroblasts after thermal injury. Biol Res. 2019;52:52 pubmed 出版商
  17. Kuninty P, Bansal R, de Geus S, Mardhian D, Schnittert J, van Baarlen J, et al. ITGA5 inhibition in pancreatic stellate cells attenuates desmoplasia and potentiates efficacy of chemotherapy in pancreatic cancer. Sci Adv. 2019;5:eaax2770 pubmed 出版商
  18. Shen J, Xing W, Liu R, Zhang Y, Xie C, Gong F. MiR-32-5p influences high glucose-induced cardiac fibroblast proliferation and phenotypic alteration by inhibiting DUSP1. BMC Mol Biol. 2019;20:21 pubmed 出版商
  19. Riquelme E, Zhang Y, Zhang L, Montiel M, Zoltan M, Dong W, et al. Tumor Microbiome Diversity and Composition Influence Pancreatic Cancer Outcomes. Cell. 2019;178:795-806.e12 pubmed 出版商
  20. van de Vlekkert D, Demmers J, Nguyen X, Campos Y, Machado E, Annunziata I, et al. Excessive exosome release is the pathogenic pathway linking a lysosomal deficiency to generalized fibrosis. Sci Adv. 2019;5:eaav3270 pubmed 出版商
  21. Diéguez Hurtado R, Kato K, Giaimo B, Nieminen Kelhä M, Arf H, Ferrante F, et al. Loss of the transcription factor RBPJ induces disease-promoting properties in brain pericytes. Nat Commun. 2019;10:2817 pubmed 出版商
  22. Nortley R, Korte N, Izquierdo P, Hirunpattarasilp C, Mishra A, Jaunmuktane Z, et al. Amyloid β oligomers constrict human capillaries in Alzheimer's disease via signaling to pericytes. Science. 2019;: pubmed 出版商
  23. Liu F, Fan D, Yang Z, Tang N, Guo Z, Ma S, et al. TLR9 is essential for HMGB1-mediated post-myocardial infarction tissue repair through affecting apoptosis, cardiac healing, and angiogenesis. Cell Death Dis. 2019;10:480 pubmed 出版商
  24. Genet G, Boyé K, Mathivet T, Ola R, Zhang F, Dubrac A, et al. Endophilin-A2 dependent VEGFR2 endocytosis promotes sprouting angiogenesis. Nat Commun. 2019;10:2350 pubmed 出版商
  25. Ackerman J, Nichols A, Studentsova V, Best K, Knapp E, Loiselle A. Cell non-autonomous functions of S100a4 drive fibrotic tendon healing. elife. 2019;8: pubmed 出版商
  26. Zhao B, Du F, Xu P, Shu C, Sankaran B, Bell S, et al. A conserved PLPLRT/SD motif of STING mediates the recruitment and activation of TBK1. Nature. 2019;: pubmed 出版商
  27. Eckert M, Coscia F, Chryplewicz A, Chang J, Hernandez K, Pan S, et al. Proteomics reveals NNMT as a master metabolic regulator of cancer-associated fibroblasts. Nature. 2019;: pubmed 出版商
  28. Shi Y, Gao W, Lytle N, Huang P, Yuan X, Dann A, et al. Targeting LIF-mediated paracrine interaction for pancreatic cancer therapy and monitoring. Nature. 2019;569:131-135 pubmed 出版商
  29. Li Y, Lu Y, Chen Y. Long non-coding RNA SNHG16 affects cell proliferation and predicts a poor prognosis in patients with colorectal cancer via sponging miR-200a-3p. Biosci Rep. 2019;39: pubmed 出版商
  30. Li W, Yu X, Zhu C, Wang Z, Zhao Z, Li Y, et al. Notum attenuates HBV-related liver fibrosis through inhibiting Wnt 5a mediated non-canonical pathways. Biol Res. 2019;52:10 pubmed 出版商
  31. Fang G, Qi J, Huang L, Zhao X. LncRNA MRAK048635_P1 is critical for vascular smooth muscle cell function and phenotypic switching in essential hypertension. Biosci Rep. 2019;: pubmed 出版商
  32. Chen X, He Y, Xu A, Deng Z, Feng J, Lu F, et al. Increase of glandular epithelial cell clusters by an external volume expansion device promotes adipose tissue regeneration by recruiting macrophages. Biosci Rep. 2019;39: pubmed 出版商
  33. Li Y, Hu Q, Li C, Liang K, Xiang Y, Hsiao H, et al. PTEN-induced partial epithelial-mesenchymal transition drives diabetic kidney disease. J Clin Invest. 2019;129:1129-1151 pubmed 出版商
  34. Das S, Goldstone A, Wang H, Farry J, D Amato G, Paulsen M, et al. A Unique Collateral Artery Development Program Promotes Neonatal Heart Regeneration. Cell. 2019;176:1128-1142.e18 pubmed 出版商
  35. Sharon N, Chawla R, Mueller J, Vanderhooft J, Whitehorn L, Rosenthal B, et al. A Peninsular Structure Coordinates Asynchronous Differentiation with Morphogenesis to Generate Pancreatic Islets. Cell. 2019;176:790-804.e13 pubmed 出版商
  36. Zeng Z, Xia L, Fan X, Ostriker A, Yarovinsky T, Su M, et al. Platelet-derived miR-223 promotes a phenotypic switch in arterial injury repair. J Clin Invest. 2019;129:1372-1386 pubmed 出版商
  37. Muraoka D, Seo N, Hayashi T, Tahara Y, Fujii K, Tawara I, et al. Antigen delivery targeted to tumor-associated macrophages overcomes tumor immune resistance. J Clin Invest. 2019;129:1278-1294 pubmed 出版商
  38. Hu Y, Guo F, Xu Y, Li P, Lu Z, McVey D, et al. Long noncoding RNA NEXN-AS1 mitigates atherosclerosis by regulating the actin-binding protein NEXN. J Clin Invest. 2019;129:1115-1128 pubmed 出版商
  39. Saikia P, Thangavadivel S, Medeiros C, Lassance L, de Oliveira R, Wilson S. IL-1 and TGF-β Modulation of Epithelial Basement Membrane Components Perlecan and Nidogen Production by Corneal Stromal Cells. Invest Ophthalmol Vis Sci. 2018;59:5589-5598 pubmed 出版商
  40. Qin L, Min W, Xin S. AIP1 suppresses transplant arteriosclerosis through inhibition of vascular smooth muscle cell inflammatory response to IFNγ. Anat Rec (Hoboken). 2018;: pubmed 出版商
  41. Biffi G, Oni T, Spielman B, Hao Y, Elyada E, Park Y, et al. IL1-Induced JAK/STAT Signaling Is Antagonized by TGFβ to Shape CAF Heterogeneity in Pancreatic Ductal Adenocarcinoma. Cancer Discov. 2019;9:282-301 pubmed 出版商
  42. Zhang N, Wei W, Liao H, Yang Z, Hu C, Wang S, et al. AdipoRon, an adiponectin receptor agonist, attenuates cardiac remodeling induced by pressure overload. J Mol Med (Berl). 2018;96:1345-1357 pubmed 出版商
  43. Zhang X, Zhang M, Wang C. Loss of LRRC25 accelerates pathological cardiac hypertrophy through promoting fibrosis and inflammation regulated by TGF-β1. Biochem Biophys Res Commun. 2018;506:137-144 pubmed 出版商
  44. Yin J, Wang Y, Chang J, Li B, Zhang J, Liu Y, et al. Apelin inhibited epithelial-mesenchymal transition of podocytes in diabetic mice through downregulating immunoproteasome subunits β5i. Cell Death Dis. 2018;9:1031 pubmed 出版商
  45. Finsterwalder R, Ganesan M, Leb H, Habertheuer A, Basílio J, Lang I, et al. Hypoxia/reperfusion predisposes to atherosclerosis. PLoS ONE. 2018;13:e0205067 pubmed 出版商
  46. Kinchen J, Chen H, Parikh K, Antanaviciute A, Jagielowicz M, Fawkner Corbett D, et al. Structural Remodeling of the Human Colonic Mesenchyme in Inflammatory Bowel Disease. Cell. 2018;175:372-386.e17 pubmed 出版商
  47. Hamanaka S, Umino A, Sato H, Hayama T, Yanagida A, Mizuno N, et al. Generation of Vascular Endothelial Cells and Hematopoietic Cells by Blastocyst Complementation. Stem Cell Reports. 2018;11:988-997 pubmed 出版商
  48. Louveau A, Herz J, Alme M, Salvador A, Dong M, Viar K, et al. CNS lymphatic drainage and neuroinflammation are regulated by meningeal lymphatic vasculature. Nat Neurosci. 2018;21:1380-1391 pubmed 出版商
  49. Rodríguez Baena F, Redondo García S, Peris Torres C, Martino Echarri E, Fernández Rodríguez R, Plaza Calonge M, et al. ADAMTS1 protease is required for a balanced immune cell repertoire and tumour inflammatory response. Sci Rep. 2018;8:13103 pubmed 出版商
  50. Zhang F, Zarkada G, Han J, Li J, Dubrac A, Ola R, et al. Lacteal junction zippering protects against diet-induced obesity. Science. 2018;361:599-603 pubmed 出版商
  51. Zhang C, Wang C, Jiang M, Gu C, Xiao J, Chen X, et al. Act1 is a negative regulator in T and B cells via direct inhibition of STAT3. Nat Commun. 2018;9:2745 pubmed 出版商
  52. Chute C, Yang X, Meyer K, Yang N, O Neil K, Kasza I, et al. Syndecan-1 induction in lung microenvironment supports the establishment of breast tumor metastases. Breast Cancer Res. 2018;20:66 pubmed 出版商
  53. Xu Y, Xu J, Ge K, Tian Q, Zhao P, Guo Y. Anti-inflammatory effect of low molecular weight fucoidan from Saccharina japonica on atherosclerosis in apoE-knockout mice. Int J Biol Macromol. 2018;118:365-374 pubmed 出版商
  54. Pommier A, Anaparthy N, Memos N, Kelley Z, Gouronnec A, Yan R, et al. Unresolved endoplasmic reticulum stress engenders immune-resistant, latent pancreatic cancer metastases. Science. 2018;360: pubmed 出版商
  55. Canzano J, Nasif L, Butterworth E, Fu D, Atkinson M, Campbell Thompson M. Islet Microvasculature Alterations With Loss of Beta-cells in Patients With Type 1 Diabetes. J Histochem Cytochem. 2018;:22155418778546 pubmed 出版商
  56. Li H, Liao Y, Gao L, Zhuang T, Huang Z, Zhu H, et al. Coronary Serum Exosomes Derived from Patients with Myocardial Ischemia Regulate Angiogenesis through the miR-939-mediated Nitric Oxide Signaling Pathway. Theranostics. 2018;8:2079-2093 pubmed 出版商
  57. Ge J, Burnier L, Adamopoulou M, Kwa M, Schaks M, Rottner K, et al. RhoA, Rac1, and Cdc42 differentially regulate αSMA and collagen I expression in mesenchymal stem cells. J Biol Chem. 2018;293:9358-9369 pubmed 出版商
  58. Fu X, Khalil H, Kanisicak O, Boyer J, Vagnozzi R, Maliken B, et al. Specialized fibroblast differentiated states underlie scar formation in the infarcted mouse heart. J Clin Invest. 2018;128:2127-2143 pubmed 出版商
  59. Seike M, Omatsu Y, Watanabe H, Kondoh G, Nagasawa T. Stem cell niche-specific Ebf3 maintains the bone marrow cavity. Genes Dev. 2018;32:359-372 pubmed 出版商
  60. Greicius G, Kabiri Z, Sigmundsson K, Liang C, Bunte R, Singh M, et al. PDGFR?+ pericryptal stromal cells are the critical source of Wnts and RSPO3 for murine intestinal stem cells in vivo. Proc Natl Acad Sci U S A. 2018;115:E3173-E3181 pubmed 出版商
  61. Wu M, Liu S, Gao Y, Bai H, Machairaki V, Li G, et al. Conditional gene knockout and reconstitution in human iPSCs with an inducible Cas9 system. Stem Cell Res. 2018;29:6-14 pubmed 出版商
  62. Poli V, Fagnocchi L, Fasciani A, Cherubini A, Mazzoleni S, Ferrillo S, et al. MYC-driven epigenetic reprogramming favors the onset of tumorigenesis by inducing a stem cell-like state. Nat Commun. 2018;9:1024 pubmed 出版商
  63. Lino Cardenas C, Kessinger C, Cheng Y, MacDonald C, Macgillivray T, Ghoshhajra B, et al. An HDAC9-MALAT1-BRG1 complex mediates smooth muscle dysfunction in thoracic aortic aneurysm. Nat Commun. 2018;9:1009 pubmed 出版商
  64. Takai K, Drain A, Lawson D, Littlepage L, Karpuj M, Kessenbrock K, et al. Discoidin domain receptor 1 (DDR1) ablation promotes tissue fibrosis and hypoxia to induce aggressive basal-like breast cancers. Genes Dev. 2018;32:244-257 pubmed 出版商
  65. Jansch C, Günther K, Waider J, Ziegler G, Forero A, Kollert S, et al. Generation of a human induced pluripotent stem cell (iPSC) line from a 51-year-old female with attention-deficit/hyperactivity disorder (ADHD) carrying a duplication of SLC2A3. Stem Cell Res. 2018;28:136-140 pubmed 出版商
  66. Nguyen H, Noguchi S, Sugie K, Matsuo Y, Nguyen C, Koito H, et al. Small-Vessel Vasculopathy Due to Aberrant Autophagy in LAMP-2 Deficiency. Sci Rep. 2018;8:3326 pubmed 出版商
  67. Zhou Z, Wang L, Ge F, Gong P, Wang H, Wang F, et al. Pold3 is required for genomic stability and telomere integrity in embryonic stem cells and meiosis. Nucleic Acids Res. 2018;46:3468-3486 pubmed 出版商
  68. Zhang R, Wu Y, Xie F, Zhong Y, Wang Y, Xu M, et al. RGMa mediates reactive astrogliosis and glial scar formation through TGF?1/Smad2/3 signaling after stroke. Cell Death Differ. 2018;25:1503-1516 pubmed 出版商
  69. Su S, Chen J, Yao H, Liu J, Yu S, Lao L, et al. CD10+GPR77+ Cancer-Associated Fibroblasts Promote Cancer Formation and Chemoresistance by Sustaining Cancer Stemness. Cell. 2018;172:841-856.e16 pubmed 出版商
  70. Xu K, Pan X, Qiu X, Wang D, Dong N, Yang L, et al. Neural crest-derived cells migrate from nerve to participate in Achilles tendon remodeling. Wound Repair Regen. 2018;26:54-63 pubmed 出版商
  71. Ireland L, Santos A, Campbell F, Figueiredo C, Hammond D, Ellies L, et al. Blockade of insulin-like growth factors increases efficacy of paclitaxel in metastatic breast cancer. Oncogene. 2018;37:2022-2036 pubmed 出版商
  72. Xue C, Hong L, Lin J, Yao X, Wu D, Lin X, et al. β-Elemene inhibits the proliferation of primary human airway granulation fibroblasts by down-regulating canonical Wnt/β-catenin pathway. Biosci Rep. 2018;38: pubmed 出版商
  73. La Porta S, Roth L, Singhal M, Mogler C, Spegg C, Schieb B, et al. Endothelial Tie1-mediated angiogenesis and vascular abnormalization promote tumor progression and metastasis. J Clin Invest. 2018;128:834-845 pubmed 出版商
  74. Li T, Zhao J. Knockdown of elF3a inhibits TGF??1?induced extracellular matrix protein expression in keloid fibroblasts. Mol Med Rep. 2018;17:4057-4061 pubmed 出版商
  75. He J, Weng Z, Wu S, Boheler K. Generation of Induced Pluripotent Stem Cells from Patients with COL3A1 Mutations and Differentiation to Smooth Muscle Cells for ECM-Surfaceome Analyses. Methods Mol Biol. 2018;1722:261-302 pubmed 出版商
  76. Ordonez D, Lee M, Feany M. α-synuclein Induces Mitochondrial Dysfunction through Spectrin and the Actin Cytoskeleton. Neuron. 2018;97:108-124.e6 pubmed 出版商
  77. Krey J, Dumont R, Wilmarth P, David L, Johnson K, Barr Gillespie P. ELMOD1 Stimulates ARF6-GTP Hydrolysis to Stabilize Apical Structures in Developing Vestibular Hair Cells. J Neurosci. 2018;38:843-857 pubmed 出版商
  78. Yang L, Shen L, Gao P, Li G, He Y, Wang M, et al. Effect of AMPK signal pathway on pathogenesis of abdominal aortic aneurysms. Oncotarget. 2017;8:92827-92840 pubmed 出版商
  79. Schafer S, Viswanathan S, Widjaja A, Lim W, Moreno Moral A, Delaughter D, et al. IL-11 is a crucial determinant of cardiovascular fibrosis. Nature. 2017;552:110-115 pubmed 出版商
  80. Xie X, Almuzzaini B, Drou N, Kremb S, Yousif A, Farrants A, et al. β-Actin-dependent global chromatin organization and gene expression programs control cellular identity. FASEB J. 2018;32:1296-1314 pubmed 出版商
  81. Dufton N, Peghaire C, Osuna Almagro L, Raimondi C, Kalna V, Chuahan A, et al. Dynamic regulation of canonical TGFβ signalling by endothelial transcription factor ERG protects from liver fibrogenesis. Nat Commun. 2017;8:895 pubmed 出版商
  82. Hamada S, Shimosegawa T, Taguchi K, Nabeshima T, Yamamoto M, Masamune A. Simultaneous K-ras activation and Keap1 deletion cause atrophy of pancreatic parenchyma. Am J Physiol Gastrointest Liver Physiol. 2018;314:G65-G74 pubmed 出版商
  83. Qiao S, Wang F, Chen H, Jiang S. Inducible knockout of Syncytin-A gene leads to an extensive placental vasculature deficiency, implications for preeclampsia. Clin Chim Acta. 2017;474:137-146 pubmed 出版商
  84. Kim J, Park D, Bae H, Park D, Kim D, Lee C, et al. Impaired angiopoietin/Tie2 signaling compromises Schlemm's canal integrity and induces glaucoma. J Clin Invest. 2017;127:3877-3896 pubmed 出版商
  85. He H, Huang M, Sun S, Wu Y, Lin X. Epithelial heparan sulfate regulates Sonic Hedgehog signaling in lung development. PLoS Genet. 2017;13:e1006992 pubmed 出版商
  86. Abu Jhaisha S, Widowati E, Kii I, Sonamoto R, Knapp S, Papadopoulos C, et al. DYRK1B mutations associated with metabolic syndrome impair the chaperone-dependent maturation of the kinase domain. Sci Rep. 2017;7:6420 pubmed 出版商
  87. Aguado L, Schmid S, May J, Sabin L, Panis M, Blanco Melo D, et al. RNase III nucleases from diverse kingdoms serve as antiviral effectors. Nature. 2017;547:114-117 pubmed 出版商
  88. Wang Q, Yu Y, Zhang P, Chen Y, Li C, Chen J, et al. The crucial role of activin A/ALK4 pathway in the pathogenesis of Ang-II-induced atrial fibrosis and vulnerability to atrial fibrillation. Basic Res Cardiol. 2017;112:47 pubmed 出版商
  89. Qiu C, Wang Y, Zhao H, Qin L, Shi Y, Zhu X, et al. The critical role of SENP1-mediated GATA2 deSUMOylation in promoting endothelial activation in graft arteriosclerosis. Nat Commun. 2017;8:15426 pubmed 出版商
  90. Garcia Hernandez M, Uribe Uribe N, Espinosa González R, Kast W, Khader S, Rangel Moreno J. A Unique Cellular and Molecular Microenvironment Is Present in Tertiary Lymphoid Organs of Patients with Spontaneous Prostate Cancer Regression. Front Immunol. 2017;8:563 pubmed 出版商
  91. Whitson J, Zhang X, Medvedovic M, Chen J, Wei Z, Monnier V, et al. Transcriptome of the GSH-Depleted Lens Reveals Changes in Detoxification and EMT Signaling Genes, Transport Systems, and Lipid Homeostasis. Invest Ophthalmol Vis Sci. 2017;58:2666-2684 pubmed 出版商
  92. Tian H, Ketova T, Hardy D, Xu X, Gao X, Zijlstra A, et al. Endoglin Mediates Vascular Maturation by Promoting Vascular Smooth Muscle Cell Migration and Spreading. Arterioscler Thromb Vasc Biol. 2017;37:1115-1126 pubmed 出版商
  93. Pinnock C, Xu Z, Lam M. Scaling of Engineered Vascular Grafts Using 3D Printed Guides and the Ring Stacking Method. J Vis Exp. 2017;: pubmed 出版商
  94. Gerarduzzi C, Kumar R, Trivedi P, Ajay A, Iyer A, Boswell S, et al. Silencing SMOC2 ameliorates kidney fibrosis by inhibiting fibroblast to myofibroblast transformation. JCI Insight. 2017;2: pubmed 出版商
  95. Esteves C, Sheldrake T, Mesquita S, Pesántez J, Menghini T, Dawson L, et al. Isolation and characterization of equine native MSC populations. Stem Cell Res Ther. 2017;8:80 pubmed 出版商
  96. Liu S, Ye Z, Gao Y, He C, Williams D, MOLITERNO A, et al. Generation of human iPSCs from an essential thrombocythemia patient carrying a V501L mutation in the MPL gene. Stem Cell Res. 2017;18:57-59 pubmed 出版商
  97. Jung Klawitter S, Ebersold J, Göhring G, Blau N, Opladen T. Generation of an iPSC line from a patient with GTP cyclohydrolase 1 (GCH1) deficiency: HDMC0061i-GCH1. Stem Cell Res. 2017;20:38-41 pubmed 出版商
  98. Sawaguchi S, Varshney S, Ogawa M, Sakaidani Y, Yagi H, Takeshita K, et al. O-GlcNAc on NOTCH1 EGF repeats regulates ligand-induced Notch signaling and vascular development in mammals. elife. 2017;6: pubmed 出版商
  99. Yang Y, Liu B, Xu J, Wang J, Wu J, Shi C, et al. Derivation of Pluripotent Stem Cells with In Vivo Embryonic and Extraembryonic Potency. Cell. 2017;169:243-257.e25 pubmed 出版商
  100. Connolly N, Stokum J, Schneider C, Ozawa T, Xu S, Galisteo R, et al. Genetically engineered rat gliomas: PDGF-driven tumor initiation and progression in tv-a transgenic rats recreate key features of human brain cancer. PLoS ONE. 2017;12:e0174557 pubmed 出版商
  101. Muscarella L, Rossi G, Trombetta D, la Torre A, Di Candia L, Mengoli M, et al. A malignant inflammatory myofibroblastic tumor of the hypopharynx harboring the 3a/b variants of the EML4-ALK fusion gene. Oncol Lett. 2017;13:593-598 pubmed 出版商
  102. Umar S, Partow Navid R, Ruffenach G, Iorga A, Moazeni S, Eghbali M. Severe pulmonary hypertension in aging female apolipoprotein E-deficient mice is rescued by estrogen replacement therapy. Biol Sex Differ. 2017;8:9 pubmed 出版商
  103. Halim D, Wilson M, Oliver D, Brosens E, Verheij J, Han Y, et al. Loss of LMOD1 impairs smooth muscle cytocontractility and causes megacystis microcolon intestinal hypoperistalsis syndrome in humans and mice. Proc Natl Acad Sci U S A. 2017;114:E2739-E2747 pubmed 出版商
  104. Koyama Y, Wang P, Liang S, Iwaisako K, Liu X, Xu J, et al. Mesothelin/mucin 16 signaling in activated portal fibroblasts regulates cholestatic liver fibrosis. J Clin Invest. 2017;127:1254-1270 pubmed 出版商
  105. Chen S, Wang Y, Zhang W, Dong M, Zhang J. Sclareolide enhances gemcitabine?induced cell death through mediating the NICD and Gli1 pathways in gemcitabine?resistant human pancreatic cancer. Mol Med Rep. 2017;15:1461-1470 pubmed 出版商
  106. Deying W, Feng G, Shumei L, Hui Z, Ming L, Hongqing W. CAF-derived HGF promotes cell proliferation and drug resistance by up-regulating the c-Met/PI3K/Akt and GRP78 signalling in ovarian cancer cells. Biosci Rep. 2017;37: pubmed 出版商
  107. Moradi M, Sivadasan R, Saal L, Lüningschrör P, Dombert B, Rathod R, et al. Differential roles of α-, β-, and γ-actin in axon growth and collateral branch formation in motoneurons. J Cell Biol. 2017;216:793-814 pubmed 出版商
  108. Cao P, Aoki Y, Badri L, Walker N, Manning C, Lagstein A, et al. Autocrine lysophosphatidic acid signaling activates ?-catenin and promotes lung allograft fibrosis. J Clin Invest. 2017;127:1517-1530 pubmed 出版商
  109. Pan X, Wang Y, Lübke T, Hinek A, Pshezhetsky A. Mice, double deficient in lysosomal serine carboxypeptidases Scpep1 and Cathepsin A develop the hyperproliferative vesicular corneal dystrophy and hypertrophic skin thickenings. PLoS ONE. 2017;12:e0172854 pubmed 出版商
  110. Takahashi T, Asano Y, Sugawara K, Yamashita T, Nakamura K, Saigusa R, et al. Epithelial Fli1 deficiency drives systemic autoimmunity and fibrosis: Possible roles in scleroderma. J Exp Med. 2017;214:1129-1151 pubmed 出版商
  111. Stahnke T, Kowtharapu B, Stachs O, Schmitz K, Wurm J, Wree A, et al. Suppression of TGF-β pathway by pirfenidone decreases extracellular matrix deposition in ocular fibroblasts in vitro. PLoS ONE. 2017;12:e0172592 pubmed 出版商
  112. Sanges S, Jendoubi M, Kavian N, Hauspie C, Speca S, Crave J, et al. B Cell Homeostasis and Functional Properties Are Altered in an Hypochlorous Acid-Induced Murine Model of Systemic Sclerosis. Front Immunol. 2017;8:53 pubmed 出版商
  113. Nicolas N, Michel V, Bhushan S, Wahle E, Hayward S, Ludlow H, et al. Testicular activin and follistatin levels are elevated during the course of experimental autoimmune epididymo-orchitis in mice. Sci Rep. 2017;7:42391 pubmed 出版商
  114. Furukawa S, Nagaike M, Ozaki K. Databases for technical aspects of immunohistochemistry. J Toxicol Pathol. 2017;30:79-107 pubmed 出版商
  115. Loomis Z, Eigenberger P, Redinius K, Lisk C, Karoor V, Nozik Grayck E, et al. Hemoglobin induced cell trauma indirectly influences endothelial TLR9 activity resulting in pulmonary vascular smooth muscle cell activation. PLoS ONE. 2017;12:e0171219 pubmed 出版商
  116. Tufanlı Ö, Telkoparan Akillilar P, Acosta Alvear D, Kocatürk B, Onat U, Hamid S, et al. Targeting IRE1 with small molecules counteracts progression of atherosclerosis. Proc Natl Acad Sci U S A. 2017;114:E1395-E1404 pubmed 出版商
  117. Ezquer F, Bahamonde J, Huang Y, Ezquer M. Administration of multipotent mesenchymal stromal cells restores liver regeneration and improves liver function in obese mice with hepatic steatosis after partial hepatectomy. Stem Cell Res Ther. 2017;8:20 pubmed 出版商
  118. Hasanov Z, Ruckdeschel T, König C, Mogler C, Kapel S, Korn C, et al. Endosialin Promotes Atherosclerosis Through Phenotypic Remodeling of Vascular Smooth Muscle Cells. Arterioscler Thromb Vasc Biol. 2017;37:495-505 pubmed 出版商
  119. Xu J, Zhu S, Heng B, Dissanayaka W, Zhang C. TGF-?1-induced differentiation of SHED into functional smooth muscle cells. Stem Cell Res Ther. 2017;8:10 pubmed 出版商
  120. Guimarães Camboa N, Cattaneo P, Sun Y, Moore Morris T, Gu Y, Dalton N, et al. Pericytes of Multiple Organs Do Not Behave as Mesenchymal Stem Cells In Vivo. Cell Stem Cell. 2017;20:345-359.e5 pubmed 出版商
  121. Conde E, Giménez Moyano S, Martín Gómez L, Rodriguez M, Ramos M, Aguado Fraile E, et al. HIF-1α induction during reperfusion avoids maladaptive repair after renal ischemia/reperfusion involving miR127-3p. Sci Rep. 2017;7:41099 pubmed 出版商
  122. Weisshaar N, Welsch H, Guerra Moreno A, Hanna J. Phospholipase Lpl1 links lipid droplet function with quality control protein degradation. Mol Biol Cell. 2017;28:716-725 pubmed 出版商
  123. Gouveia R, González Andrades E, Cardona J, González Gallardo C, Ionescu A, Garzon I, et al. Controlling the 3D architecture of Self-Lifting Auto-generated Tissue Equivalents (SLATEs) for optimized corneal graft composition and stability. Biomaterials. 2017;121:205-219 pubmed 出版商
  124. Roy I, Boyle K, Vonderhaar E, Zimmerman N, Gorse E, Mackinnon A, et al. Cancer cell chemokines direct chemotaxis of activated stellate cells in pancreatic ductal adenocarcinoma. Lab Invest. 2017;97:302-317 pubmed 出版商
  125. He N, van Iperen L, de Jong D, Szuhai K, Helmerhorst F, van der Westerlaken L, et al. Human Extravillous Trophoblasts Penetrate Decidual Veins and Lymphatics before Remodeling Spiral Arteries during Early Pregnancy. PLoS ONE. 2017;12:e0169849 pubmed 出版商
  126. Christoforou N, Chakraborty S, Kirkton R, Adler A, Addis R, Leong K. Core Transcription Factors, MicroRNAs, and Small Molecules Drive Transdifferentiation of Human Fibroblasts Towards The Cardiac Cell Lineage. Sci Rep. 2017;7:40285 pubmed 出版商
  127. Wang D, Wang A, Wu F, Qiu X, Li Y, Chu J, et al. Sox10+ adult stem cells contribute to biomaterial encapsulation and microvascularization. Sci Rep. 2017;7:40295 pubmed 出版商
  128. Oller J, Méndez Barbero N, Ruiz E, Villahoz S, Renard M, Canelas L, et al. Nitric oxide mediates aortic disease in mice deficient in the metalloprotease Adamts1 and in a mouse model of Marfan syndrome. Nat Med. 2017;23:200-212 pubmed 出版商
  129. Niu X, Pi S, Baral S, Xia Y, He Q, Li Y, et al. P2Y12 Promotes Migration of Vascular Smooth Muscle Cells Through Cofilin Dephosphorylation During Atherogenesis. Arterioscler Thromb Vasc Biol. 2017;37:515-524 pubmed 出版商
  130. Beigi F, Patel M, Morales Garza M, Winebrenner C, Gobin A, Chau E, et al. Optimized method for isolating highly purified and functional porcine aortic endothelial and smooth muscle cells. J Cell Physiol. 2017;232:3139-3145 pubmed 出版商
  131. Biasin V, Wygrecka M, Marsh L, Becker Pauly C, Brcic L, Ghanim B, et al. Meprin β contributes to collagen deposition in lung fibrosis. Sci Rep. 2017;7:39969 pubmed 出版商
  132. Guicciardi M, Krishnan A, Bronk S, Hirsova P, Griffith T, Gores G. Biliary tract instillation of a SMAC mimetic induces TRAIL-dependent acute sclerosing cholangitis-like injury in mice. Cell Death Dis. 2017;8:e2535 pubmed 出版商
  133. Malek Mohammadi M, Kattih B, Grund A, Froese N, Korf Klingebiel M, Gigina A, et al. The transcription factor GATA4 promotes myocardial regeneration in neonatal mice. EMBO Mol Med. 2017;9:265-279 pubmed 出版商
  134. Kimura M, Hashimoto N, Kusunose M, Aoyama D, Sakamoto K, Miyazaki S, et al. Exogenous induction of unphosphorylated PTEN reduces TGFβ-induced extracellular matrix expressions in lung fibroblasts. Wound Repair Regen. 2017;25:86-97 pubmed 出版商
  135. Baumer Y, McCurdy S, Alcala M, Mehta N, Lee B, Ginsberg M, et al. CD98 regulates vascular smooth muscle cell proliferation in atherosclerosis. Atherosclerosis. 2017;256:105-114 pubmed 出版商
  136. Chao M, Guo J, Cheng W, Zhu X, She Z, Huang Z, et al. Loss of Caspase-Activated DNase Protects Against Atherosclerosis in Apolipoprotein E-Deficient Mice. J Am Heart Assoc. 2016;5: pubmed 出版商
  137. Nonomura K, Woo S, Chang R, Gillich A, Qiu Z, Francisco A, et al. Piezo2 senses airway stretch and mediates lung inflation-induced apnoea. Nature. 2017;541:176-181 pubmed 出版商
  138. Du M, Wang X, Tan X, Li X, Huang D, Huang K, et al. Nkx2-5 Is Expressed in Atherosclerotic Plaques and Attenuates Development of Atherosclerosis in Apolipoprotein E-Deficient Mice. J Am Heart Assoc. 2016;5: pubmed
  139. Lee S, Rho S, Park H, Park J, Kim J, Lee I, et al. Carbohydrate-binding protein CLEC14A regulates VEGFR-2- and VEGFR-3-dependent signals during angiogenesis and lymphangiogenesis. J Clin Invest. 2017;127:457-471 pubmed 出版商
  140. Ang Y, Rivas R, Ribeiro A, Srivas R, Rivera J, Stone N, et al. Disease Model of GATA4 Mutation Reveals Transcription Factor Cooperativity in Human Cardiogenesis. Cell. 2016;167:1734-1749.e22 pubmed 出版商
  141. Harper K, Sosa M, Entenberg D, Hosseini H, Cheung J, Nobre R, et al. Mechanism of early dissemination and metastasis in Her2+ mammary cancer. Nature. 2016;540:588-592 pubmed 出版商
  142. Comunanza V, Cora D, Orso F, Consonni F, Middonti E, Di Nicolantonio F, et al. VEGF blockade enhances the antitumor effect of BRAFV600E inhibition. EMBO Mol Med. 2017;9:219-237 pubmed 出版商
  143. Lloyd Lewis B, Davis F, Harris O, Hitchcock J, Lourenco F, Pasche M, et al. Imaging the mammary gland and mammary tumours in 3D: optical tissue clearing and immunofluorescence methods. Breast Cancer Res. 2016;18:127 pubmed
  144. Bhagirath D, Zhao X, Mirza S, West W, Band H, Band V. Mutant PIK3CA Induces EMT in a Cell Type Specific Manner. PLoS ONE. 2016;11:e0167064 pubmed 出版商
  145. Jiang S, Zhang Y, Zheng J, Li X, Yao Y, Wu Y, et al. Potentiation of hepatic stellate cell activation by extracellular ATP is dependent on P2X7R-mediated NLRP3 inflammasome activation. Pharmacol Res. 2017;117:82-93 pubmed 出版商
  146. Yang Z, Peng Y, Gopalan A, Gao D, Chen Y, Joyner A. Stromal hedgehog signaling maintains smooth muscle and hampers micro-invasive prostate cancer. Dis Model Mech. 2017;10:39-52 pubmed 出版商
  147. Mayrhofer M, Gourain V, Reischl M, Affaticati P, Jenett A, Joly J, et al. A novel brain tumour model in zebrafish reveals the role of YAP activation in MAPK- and PI3K-induced malignant growth. Dis Model Mech. 2017;10:15-28 pubmed 出版商
  148. Jung Klawitter S, Blau N, Sebe A, Ebersold J, Göhring G, Opladen T. Generation of an iPSC line from a patient with tyrosine hydroxylase (TH) deficiency: TH-1 iPSC. Stem Cell Res. 2016;17:580-583 pubmed 出版商
  149. Endorf E, Qing H, Aono J, Terami N, Doyon G, Hyzny E, et al. Telomerase Reverse Transcriptase Deficiency Prevents Neointima Formation Through Chromatin Silencing of E2F1 Target Genes. Arterioscler Thromb Vasc Biol. 2017;37:301-311 pubmed 出版商
  150. Kim J, Ko I, Atala A, Yoo J. Progressive Muscle Cell Delivery as a Solution for Volumetric Muscle Defect Repair. Sci Rep. 2016;6:38754 pubmed 出版商
  151. Dezso K, Rókusz A, Bugyik E, Szücs A, Szuák A, Dorogi B, et al. Human liver regeneration in advanced cirrhosis is organized by the portal tree. J Hepatol. 2017;66:778-786 pubmed 出版商
  152. Choi S, Piao Z, Jin L, Kim J, Kim G, Ryu Y, et al. Piceatannol Attenuates Renal Fibrosis Induced by Unilateral Ureteral Obstruction via Downregulation of Histone Deacetylase 4/5 or p38-MAPK Signaling. PLoS ONE. 2016;11:e0167340 pubmed 出版商
  153. Chen Z, Tang C, Zhu Y, Xie M, He D, Pan Q, et al. TrpC5 regulates differentiation through the Ca2+/Wnt5a signalling pathway in colorectal cancer. Clin Sci (Lond). 2017;131:227-237 pubmed 出版商
  154. Burgy O, Bellaye P, Causse S, Beltramo G, Wettstein G, Boutanquoi P, et al. Pleural inhibition of the caspase-1/IL-1? pathway diminishes profibrotic lung toxicity of bleomycin. Respir Res. 2016;17:162 pubmed
  155. Sung I, Son H, Ullah I, Bharti D, Park J, Cho Y, et al. Cardiomyogenic Differentiation of Human Dental Follicle-derived Stem Cells by Suberoylanilide Hydroxamic Acid and Their In Vivo Homing Property. Int J Med Sci. 2016;13:841-852 pubmed
  156. Liao X, Li J, Dong X, Wang X, Xiang Y, Li H, et al. ER? inhibited myocardin-induced differentiation in uterine fibroids. Exp Cell Res. 2017;350:73-82 pubmed 出版商
  157. Stone O, Carter J, Lin P, Paleolog E, Machado M, Bates D. Differential regulation of blood flow-induced neovascularization and mural cell recruitment by vascular endothelial growth factor and angiopoietin signalling. J Physiol. 2017;595:1575-1591 pubmed 出版商
  158. Okashita N, Suwa Y, Nishimura O, Sakashita N, Kadota M, Nagamatsu G, et al. PRDM14 Drives OCT3/4 Recruitment via Active Demethylation in the Transition from Primed to Naive Pluripotency. Stem Cell Reports. 2016;7:1072-1086 pubmed 出版商
  159. Chauhan P, Dash D, Singh R. Intranasal Curcumin Inhibits Pulmonary Fibrosis by Modulating Matrix Metalloproteinase-9 (MMP-9) in Ovalbumin-Induced Chronic Asthma. Inflammation. 2017;40:248-258 pubmed 出版商
  160. Pu W, Zhang H, Huang X, Tian X, He L, Wang Y, et al. Mfsd2a+ hepatocytes repopulate the liver during injury and regeneration. Nat Commun. 2016;7:13369 pubmed 出版商
  161. Birtolo C, Pham H, Morvaridi S, Chheda C, Go V, Ptasznik A, et al. Cadherin-11 Is a Cell Surface Marker Up-Regulated in Activated Pancreatic Stellate Cells and Is Involved in Pancreatic Cancer Cell Migration. Am J Pathol. 2017;187:146-155 pubmed 出版商
  162. Wu X, Wu X, Ma Y, Shao F, Tan Y, Tan T, et al. CUG-binding protein 1 regulates HSC activation and liver fibrogenesis. Nat Commun. 2016;7:13498 pubmed 出版商
  163. Feng W, Zhang K, Liu Y, Chen J, Cai Q, Zhang Y, et al. Apocynin attenuates angiotensin II-induced vascular smooth muscle cells osteogenic switching via suppressing extracellular signal-regulated kinase 1/2. Oncotarget. 2016;7:83588-83600 pubmed 出版商
  164. Gallini R, Lindblom P, Bondjers C, Betsholtz C, Andrae J. PDGF-A and PDGF-B induces cardiac fibrosis in transgenic mice. Exp Cell Res. 2016;349:282-290 pubmed 出版商
  165. Krey J, Krystofiak E, Dumont R, Vijayakumar S, Choi D, Rivero F, et al. Plastin 1 widens stereocilia by transforming actin filament packing from hexagonal to liquid. J Cell Biol. 2016;215:467-482 pubmed
  166. Gautam J, Zhang X, Yao Y. The role of pericytic laminin in blood brain barrier integrity maintenance. Sci Rep. 2016;6:36450 pubmed 出版商
  167. Wang Y, Baeyens N, Corti F, Tanaka K, Fang J, Zhang J, et al. Syndecan 4 controls lymphatic vasculature remodeling during mouse embryonic development. Development. 2016;143:4441-4451 pubmed
  168. Dahan N, Sarig U, Bronshtein T, Baruch L, Karram T, Hoffman A, et al. Dynamic Autologous Reendothelialization of Small-Caliber Arterial Extracellular Matrix: A Preclinical Large Animal Study. Tissue Eng Part A. 2017;23:69-79 pubmed 出版商
  169. Graus Nunes F, Marinho T, Barbosa da Silva S, Aguila M, Mandarim de Lacerda C, Souza Mello V. Differential effects of angiotensin receptor blockers on pancreatic islet remodelling and glucose homeostasis in diet-induced obese mice. Mol Cell Endocrinol. 2017;439:54-64 pubmed 出版商
  170. Davis F, Lloyd Lewis B, Harris O, Kozar S, Winton D, Muresan L, et al. Single-cell lineage tracing in the mammary gland reveals stochastic clonal dispersion of stem/progenitor cell progeny. Nat Commun. 2016;7:13053 pubmed 出版商
  171. Omiya S, Omori Y, Taneike M, Protti A, Yamaguchi O, Akira S, et al. Toll-like receptor 9 prevents cardiac rupture after myocardial infarction in mice independently of inflammation. Am J Physiol Heart Circ Physiol. 2016;311:H1485-H1497 pubmed 出版商
  172. Takai K, Le A, Weaver V, Werb Z. Targeting the cancer-associated fibroblasts as a treatment in triple-negative breast cancer. Oncotarget. 2016;7:82889-82901 pubmed 出版商
  173. Yang T, Wang J, Pang Y, Dang X, Ren H, Liu Y, et al. Emodin suppresses silica-induced lung fibrosis by promoting Sirt1 signaling via direct contact. Mol Med Rep. 2016;14:4643-4649 pubmed 出版商
  174. Frentzas S, Simoneau E, Bridgeman V, Vermeulen P, Foo S, Kostaras E, et al. Vessel co-option mediates resistance to anti-angiogenic therapy in liver metastases. Nat Med. 2016;22:1294-1302 pubmed 出版商
  175. Eleftheriou N, Sjölund J, Bocci M, Cortez E, Lee S, Cunha S, et al. Compound genetically engineered mouse models of cancer reveal dual targeting of ALK1 and endoglin as a synergistic opportunity to impinge on angiogenic TGF-β signaling. Oncotarget. 2016;7:84314-84325 pubmed 出版商
  176. Osterburg A, Nelson R, Yaniv B, Foot R, Donica W, Nashu M, et al. NK cell activating receptor ligand expression in lymphangioleiomyomatosis is associated with lung function decline. JCI Insight. 2016;1:e87270 pubmed 出版商
  177. He M, Yuan H, Tan B, Bai R, Kim H, Bae S, et al. SIRT1-mediated downregulation of p27Kip1 is essential for overcoming contact inhibition of Kaposi's sarcoma-associated herpesvirus transformed cells. Oncotarget. 2016;7:75698-75711 pubmed 出版商
  178. Sun K, Xu S, Chen J, Liu G, Shen X, Wu X. Atypical presentation of a gastric stromal tumor masquerading as a giant intraabdominal cyst: A case report. Oncol Lett. 2016;12:3018-3020 pubmed
  179. Romeo S, Conti A, Polito F, Tomasello C, Barresi V, La Torre D, et al. miRNA regulation of Sirtuin-1 expression in human astrocytoma. Oncol Lett. 2016;12:2992-2998 pubmed
  180. Dubail J, Vasudevan D, Wang L, Earp S, Jenkins M, Haltiwanger R, et al. Impaired ADAMTS9 secretion: A potential mechanism for eye defects in Peters Plus Syndrome. Sci Rep. 2016;6:33974 pubmed 出版商
  181. Sidney L, Hopkinson A. Corneal keratocyte transition to mesenchymal stem cell phenotype and reversal using serum-free medium supplemented with fibroblast growth factor-2, transforming growth factor-β3 and retinoic acid. J Tissue Eng Regen Med. 2018;12:e203-e215 pubmed 出版商
  182. Matos M, Lapyckyj L, Rosso M, Besso M, Mencucci M, Briggiler C, et al. Identification of a Novel Human E-Cadherin Splice Variant and Assessment of Its Effects Upon EMT-Related Events. J Cell Physiol. 2017;232:1368-1386 pubmed 出版商
  183. Wang C, Zhang F, Cao Y, Zhang M, Wang A, Xu M, et al. Etoposide Induces Apoptosis in Activated Human Hepatic Stellate Cells via ER Stress. Sci Rep. 2016;6:34330 pubmed 出版商
  184. Dye B, Dedhia P, Miller A, Nagy M, White E, Shea L, et al. A bioengineered niche promotes in vivo engraftment and maturation of pluripotent stem cell derived human lung organoids. elife. 2016;5: pubmed 出版商
  185. Liu Y, Wang T, Zhang R, Fu W, Wang X, Wang F, et al. Calorie restriction protects against experimental abdominal aortic aneurysms in mice. J Exp Med. 2016;213:2473-2488 pubmed
  186. Sun X, Yang L, Yan X, Sun Y, Zhao D, Ji Y, et al. DCE-MRI-Derived Parameters in Evaluating Abraxane-Induced Early Vascular Response and the Effectiveness of Its Synergistic Interaction with Cisplatin. PLoS ONE. 2016;11:e0162601 pubmed 出版商
  187. Sari A, Rufaut N, Jones L, Sinclair R. Characterization of Ovine Dermal Papilla Cell Aggregation. Int J Trichology. 2016;8:121-9 pubmed 出版商
  188. Waasdorp M, Duitman J, Florquin S, Spek C. Protease-activated receptor-1 deficiency protects against streptozotocin-induced diabetic nephropathy in mice. Sci Rep. 2016;6:33030 pubmed 出版商
  189. Suzuki Y, Katagiri H, Wang T, Kakisaka K, Kume K, Nishizuka S, et al. Ductular reactions in the liver regeneration process with local inflammation after physical partial hepatectomy. Lab Invest. 2016;96:1211-1222 pubmed 出版商
  190. Zhou S, Han Q, Wang R, Li X, Wang Q, Wang H, et al. PRDX2 protects hepatocellular carcinoma SMMC-7721 cells from oxidative stress. Oncol Lett. 2016;12:2217-2221 pubmed
  191. Sousa A, Rei M, Freitas R, Ricardo S, Caffrey T, David L, et al. Effect of MUC1/?-catenin interaction on the tumorigenic capacity of pancreatic CD133+ cells. Oncol Lett. 2016;12:1811-1817 pubmed
  192. Liu P, Wang C, Ma C, Wu Q, Zhang W, Lao G. MicroRNA-23a regulates epithelial-to-mesenchymal transition in endometrial endometrioid adenocarcinoma by targeting SMAD3. Cancer Cell Int. 2016;16:67 pubmed 出版商
  193. Wu M, Tang R, Liu H, Pan M, Liu B. Cinacalcet ameliorates aortic calcification in uremic rats via suppression of endothelial-to-mesenchymal transition. Acta Pharmacol Sin. 2016;37:1423-1431 pubmed 出版商
  194. Xiao X, Senavirathna L, Gou X, Huang C, Liang Y, Liu L. EZH2 enhances the differentiation of fibroblasts into myofibroblasts in idiopathic pulmonary fibrosis. Physiol Rep. 2016;4: pubmed 出版商
  195. D Amore A, Yoshizumi T, Luketich S, Wolf M, Gu X, Cammarata M, et al. Bi-layered polyurethane - Extracellular matrix cardiac patch improves ischemic ventricular wall remodeling in a rat model. Biomaterials. 2016;107:1-14 pubmed 出版商
  196. Abraham K, Chan J, Salvi J, Ho B, Hall A, Vidya E, et al. Intersection of calorie restriction and magnesium in the suppression of genome-destabilizing RNA-DNA hybrids. Nucleic Acids Res. 2016;44:8870-8884 pubmed
  197. Nazari B, Rice L, Stifano G, Barron A, Wang Y, Korndorf T, et al. Altered Dermal Fibroblasts in Systemic Sclerosis Display Podoplanin and CD90. Am J Pathol. 2016;186:2650-64 pubmed 出版商
  198. Matkar P, Singh K, Rudenko D, Kim Y, Kuliszewski M, Prud homme G, et al. Novel regulatory role of neuropilin-1 in endothelial-to-mesenchymal transition and fibrosis in pancreatic ductal adenocarcinoma. Oncotarget. 2016;7:69489-69506 pubmed 出版商
  199. Klose R, Krzywinska E, Castells M, Gotthardt D, Putz E, Kantari Mimoun C, et al. Targeting VEGF-A in myeloid cells enhances natural killer cell responses to chemotherapy and ameliorates cachexia. Nat Commun. 2016;7:12528 pubmed 出版商
  200. Lund A, Wagner M, Fankhauser M, Steinskog E, Broggi M, Spranger S, et al. Lymphatic vessels regulate immune microenvironments in human and murine melanoma. J Clin Invest. 2016;126:3389-402 pubmed 出版商
  201. Navarro Villarán E, Tinoco J, Jiménez G, Pereira S, Wang J, Aliseda S, et al. Differential Antitumoral Properties and Renal-Associated Tissue Damage Induced by Tacrolimus and Mammalian Target of Rapamycin Inhibitors in Hepatocarcinoma: In Vitro and In Vivo Studies. PLoS ONE. 2016;11:e0160979 pubmed 出版商
  202. Chen Q, Zhang H, Liu Y, Adams S, Eilken H, Stehling M, et al. Endothelial cells are progenitors of cardiac pericytes and vascular smooth muscle cells. Nat Commun. 2016;7:12422 pubmed 出版商
  203. Giannuzzo A, Saccomano M, Napp J, Ellegaard M, Alves F, Novak I. Targeting of the P2X7 receptor in pancreatic cancer and stellate cells. Int J Cancer. 2016;139:2540-52 pubmed 出版商
  204. Gallini R, Huusko J, Yla Herttuala S, Betsholtz C, Andrae J. Isoform-Specific Modulation of Inflammation Induced by Adenoviral Mediated Delivery of Platelet-Derived Growth Factors in the Adult Mouse Heart. PLoS ONE. 2016;11:e0160930 pubmed 出版商
  205. Ramo K, Sugamura K, Craige S, Keaney J, Davis R. Suppression of ischemia in arterial occlusive disease by JNK-promoted native collateral artery development. elife. 2016;5: pubmed 出版商
  206. You Y, Tan J, Dai H, Chen H, Xu X, Yang A, et al. MiRNA-22 inhibits oncogene galectin-1 in hepatocellular carcinoma. Oncotarget. 2016;7:57099-57116 pubmed 出版商
  207. Schuerlein S, Schwarz T, Krziminski S, Gätzner S, Hoppensack A, Schwedhelm I, et al. A versatile modular bioreactor platform for Tissue Engineering. Biotechnol J. 2017;12: pubmed 出版商
  208. Gerling M, Büller N, Kirn L, Joost S, Frings O, Englert B, et al. Stromal Hedgehog signalling is downregulated in colon cancer and its restoration restrains tumour growth. Nat Commun. 2016;7:12321 pubmed 出版商
  209. Huang C, Liu H, Gong X, Wen B, Chen D, Liu J, et al. Analysis of different components in the peritumoral tissue microenvironment of colorectal cancer: A potential prospect in tumorigenesis. Mol Med Rep. 2016;14:2555-65 pubmed 出版商
  210. Löfdahl A, Rydell Törmänen K, Müller C, Martina Holst C, Thiman L, Ekström G, et al. 5-HT2B receptor antagonists attenuate myofibroblast differentiation and subsequent fibrotic responses in vitro and in vivo. Physiol Rep. 2016;4: pubmed 出版商
  211. Fritzen R, Delbos F, De Smet A, Palancade B, Canman C, Aoufouchi S, et al. A single aspartate mutation in the conserved catalytic site of Rev3L generates a hypomorphic phenotype in vivo and in vitro. DNA Repair (Amst). 2016;46:37-46 pubmed 出版商
  212. Song S, Kim K, Jo E, Kim Y, Kwon J, Bae S, et al. Fibroblast Growth Factor 12 Is a Novel Regulator of Vascular Smooth Muscle Cell Plasticity and Fate. Arterioscler Thromb Vasc Biol. 2016;36:1928-36 pubmed 出版商
  213. Koopmans T, Kumawat K, Halayko A, Gosens R. Regulation of actin dynamics by WNT-5A: implications for human airway smooth muscle contraction. Sci Rep. 2016;6:30676 pubmed 出版商
  214. Di Siena S, Gimmelli R, Nori S, Barbagallo F, Campolo F, Dolci S, et al. Activated c-Kit receptor in the heart promotes cardiac repair and regeneration after injury. Cell Death Dis. 2016;7:e2317 pubmed 出版商
  215. Das S, Rehman I, Ghosh A, Sengupta S, Majumdar P, Jana B, et al. Poly(ADP-ribose) polymers regulate DNA topoisomerase I (Top1) nuclear dynamics and camptothecin sensitivity in living cells. Nucleic Acids Res. 2016;44:8363-75 pubmed 出版商
  216. Yang X, Zhou X, Tone P, Durkin M, Popescu N. Cooperative antiproliferative effect of coordinated ectopic expression of DLC1 tumor suppressor protein and silencing of MYC oncogene expression in liver cancer cells: Therapeutic implications. Oncol Lett. 2016;12:1591-1596 pubmed
  217. Jin Z, Yan W, Jin H, Ge C, Xu Y. Psoralidin inhibits proliferation and enhances apoptosis of human esophageal carcinoma cells via NF-?B and PI3K/Akt signaling pathways. Oncol Lett. 2016;12:971-976 pubmed
  218. Reyes García J, Flores Soto E, Solís Chagoyán H, Sommer B, Díaz Hernández V, García Hernández L, et al. Tumor Necrosis Factor Alpha Inhibits L-Type Ca(2+) Channels in Sensitized Guinea Pig Airway Smooth Muscle through ERK 1/2 Pathway. Mediators Inflamm. 2016;2016:5972302 pubmed 出版商
  219. Fransén Pettersson N, Duarte N, Nilsson J, Lundholm M, Mayans S, Larefalk A, et al. A New Mouse Model That Spontaneously Develops Chronic Liver Inflammation and Fibrosis. PLoS ONE. 2016;11:e0159850 pubmed 出版商
  220. Kojima Y, Volkmer J, McKenna K, Civelek M, Lusis A, Miller C, et al. CD47-blocking antibodies restore phagocytosis and prevent atherosclerosis. Nature. 2016;536:86-90 pubmed
  221. Geng J, Li J, Huang T, Zhao K, Chen Q, Guo W, et al. A novel manganese complex selectively induces malignant glioma cell death by targeting mitochondria. Mol Med Rep. 2016;14:1970-8 pubmed 出版商
  222. Wu W, Zhao L, Yang P, Zhou W, Li B, Moorhead J, et al. Inflammatory Stress Sensitizes the Liver to Atorvastatin-Induced Injury in ApoE-/- Mice. PLoS ONE. 2016;11:e0159512 pubmed 出版商
  223. Choi S, Kee H, Kurz T, Hansen F, Ryu Y, Kim G, et al. Class I HDACs specifically regulate E-cadherin expression in human renal epithelial cells. J Cell Mol Med. 2016;20:2289-2298 pubmed 出版商
  224. Pijuan Galitó S, Tamm C, Schuster J, Sobol M, Forsberg L, Merry C, et al. Human serum-derived protein removes the need for coating in defined human pluripotent stem cell culture. Nat Commun. 2016;7:12170 pubmed 出版商
  225. Chen H, Wei Z, Sun J, Bhattacharya A, Savage D, Serda R, et al. A recellularized human colon model identifies cancer driver genes. Nat Biotechnol. 2016;34:845-51 pubmed 出版商
  226. Fang J, Jia C, Zheng Z, Ye X, Wei B, Huang L, et al. Periprostatic implantation of neural differentiated mesenchymal stem cells restores cavernous nerve injury-mediated erectile dysfunction. Am J Transl Res. 2016;8:2549-61 pubmed
  227. Zhang Z, Chen Y, Zhang T, Guo L, Yang W, Zhang J, et al. Role of Myoendothelial Gap Junctions in the Regulation of Human Coronary Artery Smooth Muscle Cell Differentiation by Laminar Shear Stress. Cell Physiol Biochem. 2016;39:423-37 pubmed 出版商
  228. Espinoza I, Sakiyama M, Ma T, Fair L, Zhou X, Hassan M, et al. Hypoxia on the Expression of Hepatoma Upregulated Protein in Prostate Cancer Cells. Front Oncol. 2016;6:144 pubmed 出版商
  229. Costa H, Xu X, Overbeek G, Vasaikar S, Patro C, Kostopoulou O, et al. Human cytomegalovirus may promote tumour progression by upregulating arginase-2. Oncotarget. 2016;7:47221-47231 pubmed 出版商
  230. Bai H, Wang M, Foster T, Hu H, He H, Hashimoto T, et al. Pericardial patch venoplasty heals via attraction of venous progenitor cells. Physiol Rep. 2016;4: pubmed 出版商
  231. Evrard S, Lecce L, Michelis K, Nomura Kitabayashi A, Pandey G, Purushothaman K, et al. Endothelial to mesenchymal transition is common in atherosclerotic lesions and is associated with plaque instability. Nat Commun. 2016;7:11853 pubmed 出版商
  232. Zhao Y, Li Y, Luo P, Gao Y, Yang J, Lao K, et al. XBP1 splicing triggers miR-150 transfer from smooth muscle cells to endothelial cells via extracellular vesicles. Sci Rep. 2016;6:28627 pubmed 出版商
  233. Ueno K, Takeuchi Y, Samura M, Tanaka Y, Nakamura T, Nishimoto A, et al. Treatment of refractory cutaneous ulcers with mixed sheets consisting of peripheral blood mononuclear cells and fibroblasts. Sci Rep. 2016;6:28538 pubmed 出版商
  234. Modulevsky D, Cuerrier C, Pelling A. Biocompatibility of Subcutaneously Implanted Plant-Derived Cellulose Biomaterials. PLoS ONE. 2016;11:e0157894 pubmed 出版商
  235. Gu L, Deng W, Sun X, Zhou H, Xu Q. Rapamycin ameliorates CCl4-induced liver fibrosis in mice through reciprocal regulation of the Th17/Treg cell balance. Mol Med Rep. 2016;14:1153-61 pubmed 出版商
  236. Liu W, Meng Z, Liu H, Li W, Wu Q, Zhang X, et al. Hepatic epithelioid angiomyolipoma is a rare and potentially severe but treatable tumor: A report of three cases and review of the literature. Oncol Lett. 2016;11:3669-3675 pubmed
  237. Mokhtari S, Colletti E, Atala A, Zanjani E, Porada C, Almeida Porada G. Boosting Hematopoietic Engraftment after in Utero Transplantation through Vascular Niche Manipulation. Stem Cell Reports. 2016;6:957-969 pubmed 出版商
  238. Ambrosi C, Ren C, Spagnol G, Cavin G, CONE A, Grintsevich E, et al. Connexin43 Forms Supramolecular Complexes through Non-Overlapping Binding Sites for Drebrin, Tubulin, and ZO-1. PLoS ONE. 2016;11:e0157073 pubmed 出版商
  239. Wang T, Pan D, Zhou Z, You Y, Jiang C, Zhao X, et al. Dectin-3 Deficiency Promotes Colitis Development due to Impaired Antifungal Innate Immune Responses in the Gut. PLoS Pathog. 2016;12:e1005662 pubmed 出版商
  240. Gupta G, Agrawal T, Rai V, Del Core M, Hunter W, Agrawal D. Vitamin D Supplementation Reduces Intimal Hyperplasia and Restenosis following Coronary Intervention in Atherosclerotic Swine. PLoS ONE. 2016;11:e0156857 pubmed 出版商
  241. Wang H, Wang R, Carrera I, Xu S, Lakshmana M. TFEB Overexpression in the P301S Model of Tauopathy Mitigates Increased PHF1 Levels and Lipofuscin Puncta and Rescues Memory Deficits. Eneuro. 2016;3: pubmed 出版商
  242. Greulich F, Rudat C, Farin H, Christoffels V, Kispert A. Lack of Genetic Interaction between Tbx18 and Tbx2/Tbx20 in Mouse Epicardial Development. PLoS ONE. 2016;11:e0156787 pubmed 出版商
  243. Incio J, Liu H, Suboj P, Chin S, Chen I, Pinter M, et al. Obesity-Induced Inflammation and Desmoplasia Promote Pancreatic Cancer Progression and Resistance to Chemotherapy. Cancer Discov. 2016;6:852-69 pubmed 出版商
  244. Xu G, Yue F, Huang H, He Y, Li X, Zhao H, et al. Defects in MAP1S-mediated autophagy turnover of fibronectin cause renal fibrosis. Aging (Albany NY). 2016;8:977-85 pubmed 出版商
  245. Nwadozi E, Roudier E, Rullman E, Tharmalingam S, Liu H, Gustafsson T, et al. Endothelial FoxO proteins impair insulin sensitivity and restrain muscle angiogenesis in response to a high-fat diet. FASEB J. 2016;30:3039-52 pubmed 出版商
  246. Jang H, Hong Y, Choi H, Song H, Byun S, Uhm S, et al. Changes in Parthenogenetic Imprinting Patterns during Reprogramming by Cell Fusion. PLoS ONE. 2016;11:e0156491 pubmed 出版商
  247. Chen X, Kong X, Liu D, Gao P, Zhang Y, Li P, et al. In vitro differentiation of endometrial regenerative cells into smooth muscle cells: ? potential approach for the management of pelvic organ prolapse. Int J Mol Med. 2016;38:95-104 pubmed 出版商
  248. Wu H, Chen L, Xie J, Li R, Li G, Chen Q, et al. Periostin expression induced by oxidative stress contributes to myocardial fibrosis in a rat model of high salt-induced hypertension. Mol Med Rep. 2016;14:776-82 pubmed 出版商
  249. Akashi K, Saegusa J, Sendo S, Nishimura K, Okano T, Yagi K, et al. Knockout of endothelin type B receptor signaling attenuates bleomycin-induced skin sclerosis in mice. Arthritis Res Ther. 2016;18:113 pubmed 出版商
  250. Stampfl H, Fritz M, Dal Santo S, Jonak C. The GSK3/Shaggy-Like Kinase ASKα Contributes to Pattern-Triggered Immunity. Plant Physiol. 2016;171:1366-77 pubmed 出版商
  251. Chen P, Qin L, Li G, Tellides G, Simons M. Smooth muscle FGF/TGFβ cross talk regulates atherosclerosis progression. EMBO Mol Med. 2016;8:712-28 pubmed 出版商
  252. Kobayashi Y, Yoshida S, Zhou Y, Nakama T, Ishikawa K, Arima M, et al. Tenascin-C promotes angiogenesis in fibrovascular membranes in eyes with proliferative diabetic retinopathy. Mol Vis. 2016;22:436-45 pubmed
  253. Su L, Li X, Wu X, Hui B, Han S, Gao J, et al. Simultaneous deactivation of FAK and Src improves the pathology of hypertrophic scar. Sci Rep. 2016;6:26023 pubmed 出版商
  254. Wang X, Wan H, Wei X, Zhang Y, Qu P. CLI-095 decreases atherosclerosis by modulating foam cell formation in apolipoprotein E-deficient mice. Mol Med Rep. 2016;14:49-56 pubmed 出版商
  255. Chen Z, Mei Y, Lei H, Tian R, Ni N, Han F, et al. LYTAK1, a TAK1 inhibitor, suppresses proliferation and epithelial?mesenchymal transition in retinal pigment epithelium cells. Mol Med Rep. 2016;14:145-50 pubmed 出版商
  256. Yu P, Ji L, Lee K, Yu M, He C, Ambati S, et al. Subsets of Visceral Adipose Tissue Nuclei with Distinct Levels of 5-Hydroxymethylcytosine. PLoS ONE. 2016;11:e0154949 pubmed 出版商
  257. Holditch S, Schreiber C, Burnett J, Ikeda Y. Arterial Remodeling in B-Type Natriuretic Peptide Knock-Out Females. Sci Rep. 2016;6:25623 pubmed 出版商
  258. Shi H, Drummond C, Fan X, Haller S, Liu J, Malhotra D, et al. Hiding inside? Intracellular expression of non-glycosylated c-kit protein in cardiac progenitor cells. Stem Cell Res. 2016;16:795-806 pubmed 出版商
  259. Rai V, Rao V, Shao Z, Agrawal D. Dendritic Cells Expressing Triggering Receptor Expressed on Myeloid Cells-1 Correlate with Plaque Stability in Symptomatic and Asymptomatic Patients with Carotid Stenosis. PLoS ONE. 2016;11:e0154802 pubmed 出版商
  260. Passalacqua K, Charbonneau M, Donato N, Showalter H, Sun D, Wen B, et al. Anti-infective Activity of 2-Cyano-3-Acrylamide Inhibitors with Improved Drug-Like Properties against Two Intracellular Pathogens. Antimicrob Agents Chemother. 2016;60:4183-96 pubmed 出版商
  261. Li C, Zhen G, Chai Y, Xie L, Crane J, Farber E, et al. RhoA determines lineage fate of mesenchymal stem cells by modulating CTGF-VEGF complex in extracellular matrix. Nat Commun. 2016;7:11455 pubmed 出版商
  262. McKey J, Martire D, de Santa Barbara P, Faure S. LIX1 regulates YAP1 activity and controls the proliferation and differentiation of stomach mesenchymal progenitors. BMC Biol. 2016;14:34 pubmed 出版商
  263. Kayamori K, Katsube K, Sakamoto K, Ohyama Y, Hirai H, Yukimori A, et al. NOTCH3 Is Induced in Cancer-Associated Fibroblasts and Promotes Angiogenesis in Oral Squamous Cell Carcinoma. PLoS ONE. 2016;11:e0154112 pubmed 出版商
  264. Kishimoto Y, Kishimoto A, Ye S, Kendziorski C, Welham N. Modeling fibrosis using fibroblasts isolated from scarred rat vocal folds. Lab Invest. 2016;96:807-16 pubmed 出版商
  265. Zhang Q, Gao M, Zhang Y, Song Y, Cheng H, Zhou R. The germline-enriched Ppp1r36 promotes autophagy. Sci Rep. 2016;6:24609 pubmed 出版商
  266. Laklai H, Miroshnikova Y, Pickup M, Collisson E, Kim G, Barrett A, et al. Genotype tunes pancreatic ductal adenocarcinoma tissue tension to induce matricellular fibrosis and tumor progression. Nat Med. 2016;22:497-505 pubmed 出版商
  267. Dinger K, Kasper P, Hucklenbruch Rother E, Vohlen C, Jobst E, Janoschek R, et al. Early-onset obesity dysregulates pulmonary adipocytokine/insulin signaling and induces asthma-like disease in mice. Sci Rep. 2016;6:24168 pubmed 出版商
  268. Kruzliak P, Hare D, Sabaka P, Delev D, Gaspar L, Rodrigo L, et al. Evidence for CD34/SMA positive cells in the left main coronary artery in atherogenesis. Acta Histochem. 2016;118:413-7 pubmed 出版商
  269. Timraz S, Farhat I, Alhussein G, Christoforou N, Teo J. In-depth evaluation of commercially available human vascular smooth muscle cells phenotype: Implications for vascular tissue engineering. Exp Cell Res. 2016;343:168-176 pubmed 出版商
  270. Itkin T, Gur Cohen S, Spencer J, Schajnovitz A, Ramasamy S, Kusumbe A, et al. Distinct bone marrow blood vessels differentially regulate haematopoiesis. Nature. 2016;532:323-8 pubmed 出版商
  271. Montalbano M, Curcurù G, Shirafkan A, Vento R, Rastellini C, Cicalese L. Modeling of Hepatocytes Proliferation Isolated from Proximal and Distal Zones from Human Hepatocellular Carcinoma Lesion. PLoS ONE. 2016;11:e0153613 pubmed 出版商
  272. Ma Z, Shou K, Li Z, Jian C, Qi B, Yu A. Negative pressure wound therapy promotes vessel destabilization and maturation at various stages of wound healing and thus influences wound prognosis. Exp Ther Med. 2016;11:1307-1317 pubmed
  273. Walia M, Ho P, Taylor S, Ng A, Gupte A, Chalk A, et al. Activation of PTHrP-cAMP-CREB1 signaling following p53 loss is essential for osteosarcoma initiation and maintenance. elife. 2016;5: pubmed 出版商
  274. Hellstrom M, Moreno Moya J, Bandstein S, Bom E, Akouri R, Miyazaki K, et al. Bioengineered uterine tissue supports pregnancy in a rat model. Fertil Steril. 2016;106:487-496.e1 pubmed 出版商
  275. Miao Y, Han X, Zheng L, Xie Y, Mu Y, Yates J, et al. Fimbrin phosphorylation by metaphase Cdk1 regulates actin cable dynamics in budding yeast. Nat Commun. 2016;7:11265 pubmed 出版商
  276. El Kehdy H, Pourcher G, Zhang W, Hamidouche Z, Goulinet Mainot S, Sokal E, et al. Hepatocytic Differentiation Potential of Human Fetal Liver Mesenchymal Stem Cells: In Vitro and In Vivo Evaluation. Stem Cells Int. 2016;2016:6323486 pubmed 出版商
  277. Choi S, Kim M, Lee H, Kim E, Kim C, Lee Y. Effects of NOX1 on fibroblastic changes of endothelial cells in radiation?induced pulmonary fibrosis. Mol Med Rep. 2016;13:4135-42 pubmed 出版商
  278. Zhang Z, Ren S, Tan Y, Li Z, Tang X, Wang T, et al. Epigenetic regulation of NKG2D ligands is involved in exacerbated atherosclerosis development in Sirt6 heterozygous mice. Sci Rep. 2016;6:23912 pubmed 出版商
  279. Huang M, Liu T, Ma P, Mitteer R, Zhang Z, Kim H, et al. c-Met-mediated endothelial plasticity drives aberrant vascularization and chemoresistance in glioblastoma. J Clin Invest. 2016;126:1801-14 pubmed 出版商
  280. Negis Y, Karabay A. Expression of cell cycle proteins in cortical neurons-Correlation with glutamate-induced neurotoxicity. Biofactors. 2016;42:358-67 pubmed 出版商
  281. Li J, Cen B, Chen S, He Y. MicroRNA-29b inhibits TGF-?1-induced fibrosis via regulation of the TGF-?1/Smad pathway in primary human endometrial stromal cells. Mol Med Rep. 2016;13:4229-37 pubmed 出版商
  282. Jiang Y, Wang X, Li Y, Mu S, Zhou S, Liu Y, et al. GGsTOP increases migration of human periodontal ligament cells in vitro via reactive oxygen species pathway. Mol Med Rep. 2016;13:3813-20 pubmed 出版商
  283. Prieto J, León M, Ponsoda X, Sendra R, Bort R, Ferrer Lorente R, et al. Early ERK1/2 activation promotes DRP1-dependent mitochondrial fission necessary for cell reprogramming. Nat Commun. 2016;7:11124 pubmed 出版商
  284. Strickland S, Vande Pol S. The Human Papillomavirus 16 E7 Oncoprotein Attenuates AKT Signaling To Promote Internal Ribosome Entry Site-Dependent Translation and Expression of c-MYC. J Virol. 2016;90:5611-5621 pubmed 出版商
  285. Trembley M, Velasquez L, Small E. Epicardial Outgrowth Culture Assay and Ex Vivo Assessment of Epicardial-derived Cell Migration. J Vis Exp. 2016;: pubmed 出版商
  286. Zhu H, Guo S, Zhang Y, Yin J, Yin W, Tao S, et al. Proton-sensing GPCR-YAP Signalling Promotes Cancer-associated Fibroblast Activation of Mesenchymal Stem Cells. Int J Biol Sci. 2016;12:389-96 pubmed 出版商
  287. Xu X, Tan X, Hulshoff M, Wilhelmi T, Zeisberg M, Zeisberg E. Hypoxia-induced endothelial-mesenchymal transition is associated with RASAL1 promoter hypermethylation in human coronary endothelial cells. FEBS Lett. 2016;590:1222-33 pubmed 出版商
  288. Esbona K, Inman D, Saha S, Jeffery J, Schedin P, Wilke L, et al. COX-2 modulates mammary tumor progression in response to collagen density. Breast Cancer Res. 2016;18:35 pubmed 出版商
  289. Liu L, Bai Z, Ma X, Wang T, Yang Y, Zhang Z. Effects of taxol resistance gene 1 expression on the chemosensitivity of SGC-7901 cells to oxaliplatin. Exp Ther Med. 2016;11:846-852 pubmed
  290. Galán M, Varona S, Orriols M, Rodríguez J, Aguiló S, Dilmé J, et al. Induction of histone deacetylases (HDACs) in human abdominal aortic aneurysm: therapeutic potential of HDAC inhibitors. Dis Model Mech. 2016;9:541-52 pubmed 出版商
  291. Merlini M, Wanner D, Nitsch R. Tau pathology-dependent remodelling of cerebral arteries precedes Alzheimer's disease-related microvascular cerebral amyloid angiopathy. Acta Neuropathol. 2016;131:737-52 pubmed 出版商
  292. Escobedo N, Proulx S, Karaman S, Dillard M, Johnson N, Detmar M, et al. Restoration of lymphatic function rescues obesity in Prox1-haploinsufficient mice. JCI Insight. 2016;1: pubmed
  293. Wang X, Chen L, Liu J, Yan T, Wu G, Xia Y, et al. In vivo treatment of rat arterial adventitia with interleukin‑1β induces intimal proliferation via the JAK2/STAT3 signaling pathway. Mol Med Rep. 2016;13:3451-8 pubmed 出版商
  294. Regan E, Sibley R, Cenik B, Silva A, Girard L, Minna J, et al. Identification of Gene Expression Differences between Lymphangiogenic and Non-Lymphangiogenic Non-Small Cell Lung Cancer Cell Lines. PLoS ONE. 2016;11:e0150963 pubmed 出版商
  295. Zhu D, Tang R, Lv L, Wen Y, Liu H, Zhang X, et al. Interleukin-1β mediates high glucose induced phenotypic transition in human aortic endothelial cells. Cardiovasc Diabetol. 2016;15:42 pubmed 出版商
  296. Dhar S, Kumar A, Zhang L, Rimando A, Lage J, Lewin J, et al. Dietary pterostilbene is a novel MTA1-targeted chemopreventive and therapeutic agent in prostate cancer. Oncotarget. 2016;7:18469-84 pubmed 出版商
  297. Bach F, Zhang Y, Miranda Bedate A, Verdonschot L, Bergknut N, Creemers L, et al. Increased caveolin-1 in intervertebral disc degeneration facilitates repair. Arthritis Res Ther. 2016;18:59 pubmed 出版商
  298. Valenzuela N, Fan Q, Fa ak F, Soibam B, Nagandla H, Liu Y, et al. Cardiomyocyte-specific conditional knockout of the histone chaperone HIRA in mice results in hypertrophy, sarcolemmal damage and focal replacement fibrosis. Dis Model Mech. 2016;9:335-45 pubmed 出版商
  299. Li M, Corbelli A, Watanabe S, Armelloni S, Ikehata M, Parazzi V, et al. Three-dimensional podocyte-endothelial cell co-cultures: Assembly, validation, and application to drug testing and intercellular signaling studies. Eur J Pharm Sci. 2016;86:1-12 pubmed 出版商
  300. Song G, Pacher M, Balakrishnan A, Yuan Q, Tsay H, Yang D, et al. Direct Reprogramming of Hepatic Myofibroblasts into Hepatocytes In Vivo Attenuates Liver Fibrosis. Cell Stem Cell. 2016;18:797-808 pubmed 出版商
  301. Ro S, Xue X, Ramakrishnan S, Cho C, Namkoong S, Jang I, et al. Tumor suppressive role of sestrin2 during colitis and colon carcinogenesis. elife. 2016;5:e12204 pubmed 出版商
  302. Marneros A. Increased VEGF-A promotes multiple distinct aging diseases of the eye through shared pathomechanisms. EMBO Mol Med. 2016;8:208-31 pubmed 出版商
  303. Vance M, Llanga T, Bennett W, Woodard K, Murlidharan G, Chungfat N, et al. AAV Gene Therapy for MPS1-associated Corneal Blindness. Sci Rep. 2016;6:22131 pubmed 出版商
  304. Liu J, Han Z, Han Z, He Z. Mesenchymal stem cell-conditioned media suppresses inflammation-associated overproliferation of pulmonary artery smooth muscle cells in a rat model of pulmonary hypertension. Exp Ther Med. 2016;11:467-475 pubmed
  305. Yu W, Huang X, Tian X, Zhang H, He L, Wang Y, et al. GATA4 regulates Fgf16 to promote heart repair after injury. Development. 2016;143:936-49 pubmed 出版商
  306. Wang L, Zhao R, Liu C, Liu M, Li S, Li J, et al. A fundamental study on the dynamics of multiple biomarkers in mouse excisional wounds for wound age estimation. J Forensic Leg Med. 2016;39:138-46 pubmed 出版商
  307. del Río C, Navarrete C, Collado J, Bellido M, Gómez Cañas M, Pazos M, et al. The cannabinoid quinol VCE-004.8 alleviates bleomycin-induced scleroderma and exerts potent antifibrotic effects through peroxisome proliferator-activated receptor-γ and CB2 pathways. Sci Rep. 2016;6:21703 pubmed 出版商
  308. Alonso F, Domingos Pereira S, Le Gal L, Derré L, Meda P, Jichlinski P, et al. Targeting endothelial connexin40 inhibits tumor growth by reducing angiogenesis and improving vessel perfusion. Oncotarget. 2016;7:14015-28 pubmed 出版商
  309. Malecova B, Dall Agnese A, Madaro L, Gatto S, Coutinho Toto P, Albini S, et al. TBP/TFIID-dependent activation of MyoD target genes in skeletal muscle cells. elife. 2016;5: pubmed 出版商
  310. Ji H, Atchison L, Chen Z, Chakraborty S, Jung Y, Truskey G, et al. Transdifferentiation of human endothelial progenitors into smooth muscle cells. Biomaterials. 2016;85:180-194 pubmed 出版商
  311. Walraven M, Talhout W, Beelen R, van Egmond M, Ulrich M. Healthy human second-trimester fetal skin is deficient in leukocytes and associated homing chemokines. Wound Repair Regen. 2016;24:533-41 pubmed 出版商
  312. Patel K, AVEN L, Shao F, Krishnamoorthy N, Duvall M, Levy B, et al. Mast cell-derived neurotrophin 4 mediates allergen-induced airway hyperinnervation in early life. Mucosal Immunol. 2016;9:1466-1476 pubmed 出版商
  313. Kanazawa H, Tseliou E, Dawkins J, de Couto G, Gallet R, Malliaras K, et al. Durable Benefits of Cellular Postconditioning: Long-Term Effects of Allogeneic Cardiosphere-Derived Cells Infused After Reperfusion in Pigs with Acute Myocardial Infarction. J Am Heart Assoc. 2016;5: pubmed 出版商
  314. Kaji T, Reimer J, Morov A, Kuratani S, Yasui K. Amphioxus mouth after dorso-ventral inversion. Zoological Lett. 2016;2:2 pubmed 出版商
  315. Kim J, Kim E, Lee B, Min J, Song D, Lim J, et al. The effects of Lycii Radicis Cortex on RANKL-induced osteoclast differentiation and activation in RAW 264.7 cells. Int J Mol Med. 2016;37:649-58 pubmed 出版商
  316. Jean Charles P, Zhang L, Wu J, Han S, Brian L, Freedman N, et al. Ubiquitin-specific Protease 20 Regulates the Reciprocal Functions of β-Arrestin2 in Toll-like Receptor 4-promoted Nuclear Factor κB (NFκB) Activation. J Biol Chem. 2016;291:7450-64 pubmed 出版商
  317. Shah D, Ali M, Pasha Z, Jaboori A, Jassim S, Jain S, et al. Histatin-1 Expression in Human Lacrimal Epithelium. PLoS ONE. 2016;11:e0148018 pubmed 出版商
  318. Shin J, Kim S, Kim H, Noh J, Jin S, Park C, et al. TSLP Is a Potential Initiator of Collagen Synthesis and an Activator of CXCR4/SDF-1 Axis in Keloid Pathogenesis. J Invest Dermatol. 2016;136:507-515 pubmed 出版商
  319. Kim M, Sandford E, Gatica D, Qiu Y, Liu X, Zheng Y, et al. Mutation in ATG5 reduces autophagy and leads to ataxia with developmental delay. elife. 2016;5: pubmed 出版商
  320. Kretschmar C, Oyarzun C, Villablanca C, Jaramillo C, Alarcón S, Perez G, et al. Reduced Adenosine Uptake and Its Contribution to Signaling that Mediates Profibrotic Activation in Renal Tubular Epithelial Cells: Implication in Diabetic Nephropathy. PLoS ONE. 2016;11:e0147430 pubmed 出版商
  321. Vegas A, Veiseh O, Gürtler M, Millman J, Pagliuca F, Bader A, et al. Long-term glycemic control using polymer-encapsulated human stem cell-derived beta cells in immune-competent mice. Nat Med. 2016;22:306-11 pubmed 出版商
  322. Vegas A, Veiseh O, Doloff J, Ma M, Tam H, Bratlie K, et al. Combinatorial hydrogel library enables identification of materials that mitigate the foreign body response in primates. Nat Biotechnol. 2016;34:345-52 pubmed 出版商
  323. Avgustinova A, Iravani M, Robertson D, Fearns A, Gao Q, Klingbeil P, et al. Tumour cell-derived Wnt7a recruits and activates fibroblasts to promote tumour aggressiveness. Nat Commun. 2016;7:10305 pubmed 出版商
  324. Katz M, Brandon Warner E, Fargnoli A, Williams R, Kendle A, Hajjar R, et al. Mitigation of myocardial fibrosis by molecular cardiac surgery-mediated gene overexpression. J Thorac Cardiovasc Surg. 2016;151:1191-200.e3 pubmed 出版商
  325. Samura M, Morikage N, Suehiro K, Tanaka Y, Nakamura T, Nishimoto A, et al. Combinatorial Treatment with Apelin-13 Enhances the Therapeutic Efficacy of a Preconditioned Cell-Based Therapy for Peripheral Ischemia. Sci Rep. 2016;6:19379 pubmed 出版商
  326. Szulcek R, Happé C, Rol N, Fontijn R, Dickhoff C, Hartemink K, et al. Delayed Microvascular Shear Adaptation in Pulmonary Arterial Hypertension. Role of Platelet Endothelial Cell Adhesion Molecule-1 Cleavage. Am J Respir Crit Care Med. 2016;193:1410-20 pubmed 出版商
  327. Ke W, Chen C, Luo H, Tang J, Zhang Y, Gao W, et al. Histone Deacetylase 1 Regulates the Expression of Progesterone Receptor A During Human Parturition by Occupying the Progesterone Receptor A Promoter. Reprod Sci. 2016;23:955-64 pubmed 出版商
  328. Kitayama M, Mizutani K, Maruoka M, Mandai K, Sakakibara S, Ueda Y, et al. A Novel Nectin-mediated Cell Adhesion Apparatus That Is Implicated in Prolactin Receptor Signaling for Mammary Gland Development. J Biol Chem. 2016;291:5817-31 pubmed 出版商
  329. Merk H, Zhang S, Lehr T, Müller C, Ulrich M, Bibb J, et al. Inhibition of endothelial Cdk5 reduces tumor growth by promoting non-productive angiogenesis. Oncotarget. 2016;7:6088-104 pubmed 出版商
  330. Yao C, Sun M, Yuan Q, Niu M, Chen Z, Hou J, et al. MiRNA-133b promotes the proliferation of human Sertoli cells through targeting GLI3. Oncotarget. 2016;7:2201-19 pubmed 出版商
  331. Li W, Zou J, Yue F, Song K, Chen Q, McKeehan W, et al. Defects in MAP1S-mediated autophagy cause reduction in mouse lifespans especially when fibronectin is overexpressed. Aging Cell. 2016;15:370-9 pubmed 出版商
  332. Umazume T, Thomas W, Campbell S, Aluri H, Thotakura S, Zoukhri D, et al. Lacrimal Gland Inflammation Deregulates Extracellular Matrix Remodeling and Alters Molecular Signature of Epithelial Stem/Progenitor Cells. Invest Ophthalmol Vis Sci. 2015;56:8392-402 pubmed 出版商
  333. Chang Y, Yang C, Pan S, Chou Y, Chang F, Lai C, et al. DNA methyltransferase inhibition restores erythropoietin production in fibrotic murine kidneys. J Clin Invest. 2016;126:721-31 pubmed 出版商
  334. Chen P, Li J, Huo Y, Lu J, Wan L, Li B, et al. Orphan nuclear receptor NR4A2 inhibits hepatic stellate cell proliferation through MAPK pathway in liver fibrosis. Peerj. 2015;3:e1518 pubmed 出版商
  335. Bennett B, Davis R, Civelek M, Orozco L, Wu J, Qi H, et al. Genetic Architecture of Atherosclerosis in Mice: A Systems Genetics Analysis of Common Inbred Strains. PLoS Genet. 2015;11:e1005711 pubmed 出版商
  336. Silva M, Matheus W, Garcia P, Stopiglia R, Billis A, Ferreira U, et al. Characterization of reactive stroma in prostate cancer: involvement of growth factors, metalloproteinase matrix, sexual hormones receptors and prostatic stem cells. Int Braz J Urol. 2015;41:849-58 pubmed 出版商
  337. Márquez J, Mena J, Hernandez Unzueta I, Benedicto A, Sanz E, Arteta B, et al. Ocoxin® oral solution slows down tumor growth in an experimental model of colorectal cancer metastasis to the liver in Balb/c mice. Oncol Rep. 2016;35:1265-72 pubmed 出版商
  338. Wang Y, Hou H, Li M, Yang Y, Sun L. Anticancer effect of eupatilin on glioma cells through inhibition of the Notch-1 signaling pathway. Mol Med Rep. 2016;13:1141-6 pubmed 出版商
  339. Noizet M, Lagoutte E, Gratigny M, Bouschbacher M, Lazareth I, Roest Crollius H, et al. Master regulators in primary skin fibroblast fate reprogramming in a human ex vivo model of chronic wounds. Wound Repair Regen. 2016;24:247-62 pubmed 出版商
  340. Lee S, Bang S, Hong Y, Lee J, Jeong H, Park S, et al. The calcineurin inhibitor Sarah (Nebula) exacerbates Aβ42 phenotypes in a Drosophila model of Alzheimer's disease. Dis Model Mech. 2016;9:295-306 pubmed 出版商
  341. Mikhailova A, Ilmarinen T, Ratnayake A, Petrovski G, Uusitalo H, Skottman H, et al. Human pluripotent stem cell-derived limbal epithelial stem cells on bioengineered matrices for corneal reconstruction. Exp Eye Res. 2016;146:26-34 pubmed 出版商
  342. Patel A, Yamashita N, Ascano M, Bodmer D, Boehm E, Bodkin Clarke C, et al. RCAN1 links impaired neurotrophin trafficking to aberrant development of the sympathetic nervous system in Down syndrome. Nat Commun. 2015;6:10119 pubmed 出版商
  343. Stefanitsch C, Lawrence A, Olverling A, Nilsson I, Fredriksson L. tPA Deficiency in Mice Leads to Rearrangement in the Cerebrovascular Tree and Cerebroventricular Malformations. Front Cell Neurosci. 2015;9:456 pubmed 出版商
  344. Batchelder C, Martinez M, Tarantal A. Natural Scaffolds for Renal Differentiation of Human Embryonic Stem Cells for Kidney Tissue Engineering. PLoS ONE. 2015;10:e0143849 pubmed 出版商
  345. Brai E, Marathe S, Astori S, Fredj N, Perry E, Lamy C, et al. Notch1 Regulates Hippocampal Plasticity Through Interaction with the Reelin Pathway, Glutamatergic Transmission and CREB Signaling. Front Cell Neurosci. 2015;9:447 pubmed 出版商
  346. Zhou Y, Williams J, Smallwood P, Nathans J. Sox7, Sox17, and Sox18 Cooperatively Regulate Vascular Development in the Mouse Retina. PLoS ONE. 2015;10:e0143650 pubmed 出版商
  347. Leshchyns ka I, Liew H, Shepherd C, Halliday G, Stevens C, Ke Y, et al. Aβ-dependent reduction of NCAM2-mediated synaptic adhesion contributes to synapse loss in Alzheimer's disease. Nat Commun. 2015;6:8836 pubmed 出版商
  348. Cao J, Zhang X, Wang Q, Qiu G, Hou C, Wang J, et al. Smad4 represses the generation of memory-precursor effector T cells but is required for the differentiation of central memory T cells. Cell Death Dis. 2015;6:e1984 pubmed 出版商
  349. Majumder K, Arora N, Modi S, Chugh R, Nomura A, Giri B, et al. A Novel Immunocompetent Mouse Model of Pancreatic Cancer with Robust Stroma: a Valuable Tool for Preclinical Evaluation of New Therapies. J Gastrointest Surg. 2016;20:53-65; discussion 65 pubmed 出版商
  350. Wang W, Liu H, Dai X, Fang S, Wang X, Zhang Y, et al. p53/PUMA expression in human pulmonary fibroblasts mediates cell activation and migration in silicosis. Sci Rep. 2015;5:16900 pubmed 出版商
  351. Gao L, Jiang Y, Mu L, Liu Y, Wang F, Wang P, et al. Efficient Generation of Mice with Consistent Transgene Expression by FEEST. Sci Rep. 2015;5:16284 pubmed 出版商
  352. Hu Z, Hu J, Shen W, Kraemer F, Azhar S. A Novel Role of Salt-Inducible Kinase 1 (SIK1) in the Post-Translational Regulation of Scavenger Receptor Class B Type 1 Activity. Biochemistry. 2015;54:6917-30 pubmed 出版商
  353. Kraut B, Maier H, Kókai E, Fiedler K, Boettger T, Illing A, et al. Cardiac-Specific Activation of IKK2 Leads to Defects in Heart Development and Embryonic Lethality. PLoS ONE. 2015;10:e0141591 pubmed 出版商
  354. Winiecka Klimek M, Smolarz M, Walczak M, Zieba J, Hulas Bigoszewska K, Kmieciak B, et al. SOX2 and SOX2-MYC Reprogramming Process of Fibroblasts to the Neural Stem Cells Compromised by Senescence. PLoS ONE. 2015;10:e0141688 pubmed 出版商
  355. Li Y, Adomat H, Guns E, Hojabrpour P, Duronio V, Curran T, et al. Identification of a Hematopoietic Cell Dedifferentiation-Inducing Factor. J Cell Physiol. 2016;231:1350-63 pubmed 出版商
  356. Kyathanahalli C, Organ K, Moreci R, Anamthathmakula P, Hassan S, Caritis S, et al. Uterine endoplasmic reticulum stress-unfolded protein response regulation of gestational length is caspase-3 and -7-dependent. Proc Natl Acad Sci U S A. 2015;112:14090-5 pubmed 出版商
  357. Rohnalter V, Roth K, Finkernagel F, Adhikary T, Obert J, Dorzweiler K, et al. A multi-stage process including transient polyploidization and EMT precedes the emergence of chemoresistent ovarian carcinoma cells with a dedifferentiated and pro-inflammatory secretory phenotype. Oncotarget. 2015;6:40005-25 pubmed 出版商
  358. Baba I, Egi Y, Utsumi H, Kakimoto T, Suzuki K. Inhibitory effects of fasudil on renal interstitial fibrosis induced by unilateral ureteral obstruction. Mol Med Rep. 2015;12:8010-20 pubmed 出版商
  359. Siciliano C, Chimenti I, Bordin A, Ponti D, Iudicone P, Peruzzi M, et al. The potential of GMP-compliant platelet lysate to induce a permissive state for cardiovascular transdifferentiation in human mediastinal adipose tissue-derived mesenchymal stem cells. Biomed Res Int. 2015;2015:162439 pubmed 出版商
  360. Kokkinopoulos I, Ishida H, Saba R, Ruchaya P, Cabrera C, Struebig M, et al. Single-Cell Expression Profiling Reveals a Dynamic State of Cardiac Precursor Cells in the Early Mouse Embryo. PLoS ONE. 2015;10:e0140831 pubmed 出版商
  361. Zhang W, Pelicano H, Yin R, Zeng J, Wen T, Ding L, et al. Effective elimination of chronic lymphocytic leukemia cells in the stromal microenvironment by a novel drug combination strategy using redox-mediated mechanisms. Mol Med Rep. 2015;12:7374-88 pubmed 出版商
  362. Tsukui T, Ueha S, Shichino S, Inagaki Y, Matsushima K. Intratracheal cell transfer demonstrates the profibrotic potential of resident fibroblasts in pulmonary fibrosis. Am J Pathol. 2015;185:2939-48 pubmed 出版商
  363. Sidney L, Branch M, Dua H, Hopkinson A. Effect of culture medium on propagation and phenotype of corneal stroma-derived stem cells. Cytotherapy. 2015;17:1706-22 pubmed 出版商
  364. Ertoy Baydar D, Kosemehmetoglu K, Aydin O, Bridge J, Buyukeren B, Aki F. Primary sclerosing epithelioid fibrosarcoma of kidney with variant histomorphologic features: report of 2 cases and review of the literature. Diagn Pathol. 2015;10:186 pubmed 出版商
  365. Zaitoun I, Johnson R, Jamali N, Almomani R, Wang S, Sheibani N, et al. Endothelium Expression of Bcl-2 Is Essential for Normal and Pathological Ocular Vascularization. PLoS ONE. 2015;10:e0139994 pubmed 出版商
  366. Huan C, Yang T, Liang J, Xie T, Cheng L, Liu N, et al. Methylation-mediated BMPER expression in fibroblast activation in vitro and lung fibrosis in mice in vivo. Sci Rep. 2015;5:14910 pubmed 出版商
  367. Su S, Zhao Q, He C, Huang D, Liu J, Chen F, et al. miR-142-5p and miR-130a-3p are regulated by IL-4 and IL-13 and control profibrogenic macrophage program. Nat Commun. 2015;6:8523 pubmed 出版商
  368. Izumi D, Ishimoto T, Miyake K, Sugihara H, Eto K, Sawayama H, et al. CXCL12/CXCR4 activation by cancer-associated fibroblasts promotes integrin β1 clustering and invasiveness in gastric cancer. Int J Cancer. 2016;138:1207-19 pubmed 出版商
  369. Deckx S, Carai P, Bateman J, Heymans S, Papageorgiou A. Breeding Strategy Determines Rupture Incidence in Post-Infarct Healing WARPing Cardiovascular Research. PLoS ONE. 2015;10:e0139199 pubmed 出版商
  370. Prescott H, Manning C, Gardner A, Ritchie W, Pizzi R, Girling S, et al. Giant Panda (Ailuropoda melanoleuca) Buccal Mucosa Tissue as a Source of Multipotent Progenitor Cells. PLoS ONE. 2015;10:e0138840 pubmed 出版商
  371. Vandersmissen I, Craps S, Depypere M, Coppiello G, van Gastel N, Maes F, et al. Endothelial Msx1 transduces hemodynamic changes into an arteriogenic remodeling response. J Cell Biol. 2015;210:1239-56 pubmed 出版商
  372. Gopal S, Søgaard P, Multhaupt H, Pataki C, Okina E, Xian X, et al. Transmembrane proteoglycans control stretch-activated channels to set cytosolic calcium levels. J Cell Biol. 2015;210:1199-211 pubmed 出版商
  373. Grootaert M, da Costa Martins P, Bitsch N, Pintelon I, De Meyer G, Martinet W, et al. Defective autophagy in vascular smooth muscle cells accelerates senescence and promotes neointima formation and atherogenesis. Autophagy. 2015;11:2014-2032 pubmed 出版商
  374. Zhao Y, Londono P, Cao Y, Sharpe E, Proenza C, O Rourke R, et al. High-efficiency reprogramming of fibroblasts into cardiomyocytes requires suppression of pro-fibrotic signalling. Nat Commun. 2015;6:8243 pubmed 出版商
  375. Yao J, Zheng K, Zhang X. Rosiglitazone exerts neuroprotective effects via the suppression of neuronal autophagy and apoptosis in the cortex following traumatic brain injury. Mol Med Rep. 2015;12:6591-7 pubmed 出版商
  376. Keable A, Fenna K, Yuen H, Johnston D, Smyth N, Smith C, et al. Deposition of amyloid β in the walls of human leptomeningeal arteries in relation to perivascular drainage pathways in cerebral amyloid angiopathy. Biochim Biophys Acta. 2016;1862:1037-46 pubmed 出版商
  377. Rybinski K, Imtiyaz H, Mittica B, Drozdowski B, Fulmer J, Furuuchi K, et al. Targeting endosialin/CD248 through antibody-mediated internalization results in impaired pericyte maturation and dysfunctional tumor microvasculature. Oncotarget. 2015;6:25429-40 pubmed 出版商
  378. Choi H, Kim J, Hong Y, Song H, Seo H, Do J. In vivo reprogrammed pluripotent stem cells from teratomas share analogous properties with their in vitro counterparts. Sci Rep. 2015;5:13559 pubmed 出版商
  379. Khadem F, Gao X, Mou Z, Jia P, Movassagh H, Onyilagha C, et al. Hepatic stellate cells regulate liver immunity to visceral leishmaniasis through P110δ-dependent induction and expansion of regulatory T cells in mice. Hepatology. 2016;63:620-32 pubmed 出版商
  380. Kawaguchi T, Tsukiyama T, Kimura K, Matsuyama S, Minami N, Yamada M, et al. Generation of Naïve Bovine Induced Pluripotent Stem Cells Using PiggyBac Transposition of Doxycycline-Inducible Transcription Factors. PLoS ONE. 2015;10:e0135403 pubmed 出版商
  381. Manieri N, Mack M, Himmelrich M, Worthley D, Hanson E, Eckmann L, et al. Mucosally transplanted mesenchymal stem cells stimulate intestinal healing by promoting angiogenesis. J Clin Invest. 2015;125:3606-18 pubmed 出版商
  382. Fredriksson L, Stevenson T, Su E, Ragsdale M, Moore S, Craciun S, et al. Identification of a neurovascular signaling pathway regulating seizures in mice. Ann Clin Transl Neurol. 2015;2:722-38 pubmed 出版商
  383. Archibald A, Al Masri M, Liew Spilger A, McCaffrey L. Atypical protein kinase C induces cell transformation by disrupting Hippo/Yap signaling. Mol Biol Cell. 2015;26:3578-95 pubmed 出版商
  384. Morancho B, Martínez Barriocanal Ã, Villanueva J, Arribas J. Role of ADAM17 in the non-cell autonomous effects of oncogene-induced senescence. Breast Cancer Res. 2015;17:106 pubmed 出版商
  385. Khan I, Zakaria M, Kumar M, Mani P, Chattopadhyay P, Sarkar D, et al. A novel placental like alkaline phosphatase promoter driven transcriptional silencing combined with single chain variable fragment antibody based virosomal delivery for neoplastic cell targeting [corrected]. J Transl Med. 2015;13:254 pubmed 出版商
  386. Steplewski A, Fertala J, Beredjiklian P, Abboud J, Wang M, Namdari S, et al. Auxiliary proteins that facilitate formation of collagen-rich deposits in the posterior knee capsule in a rabbit-based joint contracture model. J Orthop Res. 2016;34:489-501 pubmed 出版商
  387. Xie X, Hsu F, Gao X, Xu W, Ni J, Xing Y, et al. CDK8-Cyclin C Mediates Nutritional Regulation of Developmental Transitions through the Ecdysone Receptor in Drosophila. PLoS Biol. 2015;13:e1002207 pubmed 出版商
  388. Jovicic N, Jeftic I, Jovanovic I, Radosavljevic G, Arsenijevic N, Lukic M, et al. Differential Immunometabolic Phenotype in Th1 and Th2 Dominant Mouse Strains in Response to High-Fat Feeding. PLoS ONE. 2015;10:e0134089 pubmed 出版商
  389. Nishimatsu H, Suzuki E, Saito Y, Niimi A, Nomiya A, Yamada D, et al. Neuromedin B Restores Erectile Function by Protecting the Cavernous Body and the Nitrergic Nerves from Injury in a Diabetic Rat Model. PLoS ONE. 2015;10:e0133874 pubmed 出版商
  390. Chung D, Chan J, Strecker J, Zhang W, Ebrahimi Ardebili S, Lu T, et al. Perinuclear tethers license telomeric DSBs for a broad kinesin- and NPC-dependent DNA repair process. Nat Commun. 2015;6:7742 pubmed 出版商
  391. Zhao L, Tang M, Hu Z, Yan B, Pi W, Li Z, et al. miR-504 mediated down-regulation of nuclear respiratory factor 1 leads to radio-resistance in nasopharyngeal carcinoma. Oncotarget. 2015;6:15995-6018 pubmed
  392. Kramann R, Fleig S, Schneider R, Fabian S, DiRocco D, Maarouf O, et al. Pharmacological GLI2 inhibition prevents myofibroblast cell-cycle progression and reduces kidney fibrosis. J Clin Invest. 2015;125:2935-51 pubmed 出版商
  393. Shah S, Miller P, Garcia Contreras M, Ao Z, Machlin L, Issa E, et al. Hierarchical paracrine interaction of breast cancer associated fibroblasts with cancer cells via hMAPK-microRNAs to drive ER-negative breast cancer phenotype. Cancer Biol Ther. 2015;16:1671-81 pubmed 出版商
  394. He C, Medley S, Hu T, Hinsdale M, Lupu F, Virmani R, et al. PDGFRβ signalling regulates local inflammation and synergizes with hypercholesterolaemia to promote atherosclerosis. Nat Commun. 2015;6:7770 pubmed 出版商
  395. Li W, Qiu Y, Zhang H, Tian X, Fang W. P2Y2 Receptor and EGFR Cooperate to Promote Prostate Cancer Cell Invasion via ERK1/2 Pathway. PLoS ONE. 2015;10:e0133165 pubmed 出版商
  396. Carthy J, Meredith A, Boroomand S, Abraham T, Luo Z, Knight D, et al. Versican V1 Overexpression Induces a Myofibroblast-Like Phenotype in Cultured Fibroblasts. PLoS ONE. 2015;10:e0133056 pubmed 出版商
  397. Riordan D, Varma S, West R, Brown P. Automated Analysis and Classification of Histological Tissue Features by Multi-Dimensional Microscopic Molecular Profiling. PLoS ONE. 2015;10:e0128975 pubmed 出版商
  398. Jones M, Hu W, Litthauer S, Lagarias J, Harmer S. A Constitutively Active Allele of Phytochrome B Maintains Circadian Robustness in the Absence of Light. Plant Physiol. 2015;169:814-25 pubmed 出版商
  399. Krah N, De La O J, Swift G, Hoang C, Willet S, Chen Pan F, et al. The acinar differentiation determinant PTF1A inhibits initiation of pancreatic ductal adenocarcinoma. elife. 2015;4: pubmed 出版商
  400. Lee J, Kim H, Han J, Kim Y, Son C. Anti-fatigue effect of Myelophil in a chronic forced exercise mouse model. Eur J Pharmacol. 2015;764:100-8 pubmed 出版商
  401. Liu R, Fan M, Candas D, Qin L, Zhang X, Eldridge A, et al. CDK1-Mediated SIRT3 Activation Enhances Mitochondrial Function and Tumor Radioresistance. Mol Cancer Ther. 2015;14:2090-102 pubmed 出版商
  402. Hurtado R, Zewdu R, Mtui J, Liang C, Aho R, Kurylo C, et al. Pbx1-dependent control of VMC differentiation kinetics underlies gross renal vascular patterning. Development. 2015;142:2653-64 pubmed 出版商
  403. Niehues S, Bussmann J, Steffes G, Erdmann I, Köhrer C, Sun L, et al. Impaired protein translation in Drosophila models for Charcot-Marie-Tooth neuropathy caused by mutant tRNA synthetases. Nat Commun. 2015;6:7520 pubmed 出版商
  404. Jacquin S, Rincheval V, Mignotte B, Richard S, Humbert M, Mercier O, et al. Inactivation of p53 Is Sufficient to Induce Development of Pulmonary Hypertension in Rats. PLoS ONE. 2015;10:e0131940 pubmed 出版商
  405. Nadeau M, Rico C, Tsoi M, Vivancos M, Filimon S, Paquet M, et al. Pharmacological targeting of valosin containing protein (VCP) induces DNA damage and selectively kills canine lymphoma cells. BMC Cancer. 2015;15:479 pubmed 出版商
  406. Gallego Romero I, Pavlovic B, Hernando Herraez I, Zhou X, WARD M, Banovich N, et al. A panel of induced pluripotent stem cells from chimpanzees: a resource for comparative functional genomics. elife. 2015;4:e07103 pubmed 出版商
  407. Zhang M, Jiang S, Tian Z, Wang M, Zhao R, Wang L, et al. CB2R orchestrates fibrogenesis through regulation of inflammatory response during the repair of skeletal muscle contusion. Int J Clin Exp Pathol. 2015;8:3491-502 pubmed
  408. Carthy J, Sundqvist A, Heldin A, van Dam H, Kletsas D, Heldin C, et al. Tamoxifen Inhibits TGF-β-Mediated Activation of Myofibroblasts by Blocking Non-Smad Signaling Through ERK1/2. J Cell Physiol. 2015;230:3084-92 pubmed 出版商
  409. Gopinathan G, Milagre C, Pearce O, Reynolds L, Hodivala Dilke K, Leinster D, et al. Interleukin-6 Stimulates Defective Angiogenesis. Cancer Res. 2015;75:3098-107 pubmed 出版商
  410. Masuda Y, Takahashi H, Hatakeyama S. TRIM29 regulates the p63-mediated pathway in cervical cancer cells. Biochim Biophys Acta. 2015;1853:2296-305 pubmed 出版商
  411. Lee W, Shen S, Shih Y, Chou C, Tseng J, Chin S, et al. Early decline in serum phospho-CSE1L levels in vemurafenib/sunitinib-treated melanoma and sorafenib/lapatinib-treated colorectal tumor xenografts. J Transl Med. 2015;13:191 pubmed 出版商
  412. Ruozi G, Bortolotti F, Falcione A, Dal Ferro M, Ukovich L, Macedo A, et al. AAV-mediated in vivo functional selection of tissue-protective factors against ischaemia. Nat Commun. 2015;6:7388 pubmed 出版商
  413. Zhang T, Zhou Y, Qi S, Wang Z, Qian W, Ouyang Y, et al. Nuf2 is required for chromosome segregation during mouse oocyte meiotic maturation. Cell Cycle. 2015;14:2701-10 pubmed 出版商
  414. Foster J, Gouveia R, Connon C. Low-glucose enhances keratocyte-characteristic phenotype from corneal stromal cells in serum-free conditions. Sci Rep. 2015;5:10839 pubmed 出版商
  415. Gorchs L, Hellevik T, Bruun J, Camilio K, Al Saad S, Stuge T, et al. Cancer-associated fibroblasts from lung tumors maintain their immunosuppressive abilities after high-dose irradiation. Front Oncol. 2015;5:87 pubmed 出版商
  416. Liebl J, Zhang S, Moser M, Agalarov Y, Demir C, Hager B, et al. Cdk5 controls lymphatic vessel development and function by phosphorylation of Foxc2. Nat Commun. 2015;6:7274 pubmed 出版商
  417. Klotz L, Norman S, Vieira J, Masters M, Rohling M, Dubé K, et al. Cardiac lymphatics are heterogeneous in origin and respond to injury. Nature. 2015;522:62-7 pubmed
  418. Hashem H, Abd El Haleem M, Abass M. Epithelial and stromal alterations in prostate after cypermethrin administration in adult albino rats (histological and biochemical study). Tissue Cell. 2015;47:366-72 pubmed 出版商
  419. Shankman L, Gomez D, Cherepanova O, Salmon M, Alencar G, Haskins R, et al. KLF4-dependent phenotypic modulation of smooth muscle cells has a key role in atherosclerotic plaque pathogenesis. Nat Med. 2015;21:628-37 pubmed 出版商
  420. Pan D, Jiang C, Ma Z, Blonska M, You M, Lin X. MALT1 is required for EGFR-induced NF-?B activation and contributes to EGFR-driven lung cancer progression. Oncogene. 2016;35:919-28 pubmed 出版商
  421. Kumar P, Gullberg U, Olsson I, Ajore R. Myeloid translocation gene-16 co-repressor promotes degradation of hypoxia-inducible factor 1. PLoS ONE. 2015;10:e0123725 pubmed 出版商
  422. Doni A, Musso T, Morone D, Bastone A, Zambelli V, Sironi M, et al. An acidic microenvironment sets the humoral pattern recognition molecule PTX3 in a tissue repair mode. J Exp Med. 2015;212:905-25 pubmed 出版商
  423. Maass P, Aydin A, Luft F, Schächterle C, Weise A, Stricker S, et al. PDE3A mutations cause autosomal dominant hypertension with brachydactyly. Nat Genet. 2015;47:647-53 pubmed 出版商
  424. Good R, Gilbane A, Trinder S, Denton C, Coghlan G, Abraham D, et al. Endothelial to Mesenchymal Transition Contributes to Endothelial Dysfunction in Pulmonary Arterial Hypertension. Am J Pathol. 2015;185:1850-8 pubmed 出版商
  425. Thomas S, Kagan C, Pavlovic B, Burnett J, Patterson K, Pritchard J, et al. Reprogramming LCLs to iPSCs Results in Recovery of Donor-Specific Gene Expression Signature. PLoS Genet. 2015;11:e1005216 pubmed 出版商
  426. Lei Z, van Mil A, Brandt M, Grundmann S, Hoefer I, Smits M, et al. MicroRNA-132/212 family enhances arteriogenesis after hindlimb ischaemia through modulation of the Ras-MAPK pathway. J Cell Mol Med. 2015;19:1994-2005 pubmed 出版商
  427. Bhagirath D, Zhao X, West W, Qiu F, Band H, Band V. Cell type of origin as well as genetic alterations contribute to breast cancer phenotypes. Oncotarget. 2015;6:9018-30 pubmed
  428. Kondo J, Powell A, Wang Y, Musser M, Southard Smith E, Franklin J, et al. LRIG1 Regulates Ontogeny of Smooth Muscle-Derived Subsets of Interstitial Cells of Cajal in Mice. Gastroenterology. 2015;149:407-19.e8 pubmed 出版商
  429. Yongping M, Zhang X, Xuewei L, Fan W, Chen J, Zhang H, et al. Astragaloside prevents BDL-induced liver fibrosis through inhibition of notch signaling activation. J Ethnopharmacol. 2015;169:200-9 pubmed 出版商
  430. Peiris Pagès M, Sotgia F, Lisanti M. Chemotherapy induces the cancer-associated fibroblast phenotype, activating paracrine Hedgehog-GLI signalling in breast cancer cells. Oncotarget. 2015;6:10728-45 pubmed
  431. Nishimatsu H, Suzuki E, Saito Y, Niimi A, Nomiya A, Fukuhara H, et al. Senescent Cells Impair Erectile Function through Induction of Endothelial Dysfunction and Nerve Injury in Mice. PLoS ONE. 2015;10:e0124129 pubmed 出版商
  432. Bettaieb A, Jiang J, Sasaki Y, Chao T, Kiss Z, Chen X, et al. Hepatocyte Nicotinamide Adenine Dinucleotide Phosphate Reduced Oxidase 4 Regulates Stress Signaling, Fibrosis, and Insulin Sensitivity During Development of Steatohepatitis in Mice. Gastroenterology. 2015;149:468-80.e10 pubmed 出版商
  433. Zhao H, Agazie Y. Inhibition of SHP2 in basal-like and triple-negative breast cells induces basal-to-luminal transition, hormone dependency, and sensitivity to anti-hormone treatment. BMC Cancer. 2015;15:109 pubmed 出版商
  434. Wilson C, Jurk D, Fullard N, Banks P, Page A, Luli S, et al. NFκB1 is a suppressor of neutrophil-driven hepatocellular carcinoma. Nat Commun. 2015;6:6818 pubmed 出版商
  435. Chung J, Bauer D, Ghamari A, Nizzi C, Deck K, Kingsley P, et al. The mTORC1/4E-BP pathway coordinates hemoglobin production with L-leucine availability. Sci Signal. 2015;8:ra34 pubmed 出版商
  436. Zhang X, Liang D, Chi Z, Chu Q, Zhao C, Ma R, et al. Effect of zinc on high glucose-induced epithelial-to-mesenchymal transition in renal tubular epithelial cells. Int J Mol Med. 2015;35:1747-54 pubmed 出版商
  437. Pardo F, Silva L, Sáez T, Salsoso R, Gutiérrez J, Sanhueza C, et al. Human supraphysiological gestational weight gain and fetoplacental vascular dysfunction. Int J Obes (Lond). 2015;39:1264-73 pubmed 出版商
  438. Chien P, Lin C, Hsiao L, Yang C. c-Src/Pyk2/EGFR/PI3K/Akt/CREB-activated pathway contributes to human cardiomyocyte hypertrophy: Role of COX-2 induction. Mol Cell Endocrinol. 2015;409:59-72 pubmed 出版商
  439. Hong S, Lee J, Lee J, Lee H, Kim H, Lee S, et al. The traditional drug Gongjin-Dan ameliorates chronic fatigue in a forced-stress mouse exercise model. J Ethnopharmacol. 2015;168:268-78 pubmed 出版商
  440. Lee H, Jeong H, Park S, Yoo W, Choi S, Choi K, et al. Fusion protein of retinol-binding protein and albumin domain III reduces liver fibrosis. EMBO Mol Med. 2015;7:819-30 pubmed 出版商
  441. Wan W, Liu Q, Lionakis M, Marino A, Anderson S, Swamydas M, et al. Atypical chemokine receptor 1 deficiency reduces atherogenesis in ApoE-knockout mice. Cardiovasc Res. 2015;106:478-87 pubmed 出版商
  442. Simões A, Pereira D, Gomes S, Brito H, Carvalho T, French A, et al. Aberrant MEK5/ERK5 signalling contributes to human colon cancer progression via NF-κB activation. Cell Death Dis. 2015;6:e1718 pubmed 出版商
  443. Zang G, Sandberg M, Carlsson P, Welsh N, Jansson L, Barbu A. Activated pancreatic stellate cells can impair pancreatic islet function in mice. Ups J Med Sci. 2015;120:169-80 pubmed 出版商
  444. Li X, Ballantyne L, Che X, Mewburn J, Kang J, Barkley R, et al. Endogenously generated omega-3 fatty acids attenuate vascular inflammation and neointimal hyperplasia by interaction with free fatty acid receptor 4 in mice. J Am Heart Assoc. 2015;4: pubmed 出版商
  445. Amrutkar M, Cansby E, Chursa U, Nuñez Durán E, Chanclón B, StÃ¥hlman M, et al. Genetic Disruption of Protein Kinase STK25 Ameliorates Metabolic Defects in a Diet-Induced Type 2 Diabetes Model. Diabetes. 2015;64:2791-804 pubmed 出版商
  446. Cremer S, Moesgaard S, Rasmussen C, Zois N, Falk T, Reimann M, et al. Alpha-smooth muscle actin and serotonin receptors 2A and 2B in dogs with myxomatous mitral valve disease. Res Vet Sci. 2015;100:197-206 pubmed 出版商
  447. Bergamo P, Palmieri G, Cocca E, Ferrandino I, Gogliettino M, Monaco A, et al. Adaptive response activated by dietary cis9, trans11 conjugated linoleic acid prevents distinct signs of gliadin-induced enteropathy in mice. Eur J Nutr. 2016;55:729-740 pubmed 出版商
  448. Zhao J, Song Q, Wang L, Dong X, Yang X, Bai X, et al. Detrusor myocyte autophagy protects the bladder function via inhibiting the inflammation in cyclophosphamide-induced cystitis in rats. PLoS ONE. 2015;10:e0122597 pubmed 出版商
  449. Zhang Z, Zhang T, Zhou Y, Wei X, Zhu J, Zhang J, et al. Activated phosphatidylinositol 3-kinase/Akt inhibits the transition of endothelial progenitor cells to mesenchymal cells by regulating the forkhead box subgroup O-3a signaling. Cell Physiol Biochem. 2015;35:1643-53 pubmed 出版商
  450. Lee S, Chang J, Wu J, Sheu D. Antineoplastic effect of a novel chemopreventive agent, neokestose, on the Caco-2 cell line via inhibition of expression of nuclear factor-κB and cyclooxygenase-2. Mol Med Rep. 2015;12:1114-8 pubmed 出版商
  451. Majumdar T, Chattopadhyay S, Ozhegov E, Dhar J, Goswami R, Sen G, et al. Induction of interferon-stimulated genes by IRF3 promotes replication of Toxoplasma gondii. PLoS Pathog. 2015;11:e1004779 pubmed 出版商
  452. Yokobori T, Suzuki S, Miyazaki T, Sohda M, Sakai M, Tanaka N, et al. Intestinal epithelial culture under an air-liquid interface: a tool for studying human and mouse esophagi. Dis Esophagus. 2016;29:843-847 pubmed 出版商
  453. Videla Richardson G, Garcia C, Roisman A, Slavutsky I, Fernandez Espinosa D, Romorini L, et al. Specific Preferences in Lineage Choice and Phenotypic Plasticity of Glioma Stem Cells Under BMP4 and Noggin Influence. Brain Pathol. 2016;26:43-61 pubmed 出版商
  454. Chan N, He S, Spee C, Ishikawa K, Hinton D. Attenuation of choroidal neovascularization by histone deacetylase inhibitor. PLoS ONE. 2015;10:e0120587 pubmed 出版商
  455. Martinez L, Labovsky V, Calcagno M, Davies K, Garcia Rivello H, Rivello H, et al. CD105 expression on CD34-negative spindle-shaped stromal cells of primary tumor is an unfavorable prognostic marker in early breast cancer patients. PLoS ONE. 2015;10:e0121421 pubmed 出版商
  456. Wang Y, Shi C, Lu Y, Poulin E, Franklin J, Coffey R. Loss of Lrig1 leads to expansion of Brunner glands followed by duodenal adenomas with gastric metaplasia. Am J Pathol. 2015;185:1123-34 pubmed 出版商
  457. Seo H, Woo J, Shin Y, Ko S. Identification of biomarkers regulated by rexinoids (LGD1069, LG100268 and Ro25-7386) in human breast cells using Affymetrix microarray. Mol Med Rep. 2015;12:800-18 pubmed 出版商
  458. Cuadrado E, Michailidou I, van Bodegraven E, Jansen M, Sluijs J, Geerts D, et al. Phenotypic variation in Aicardi-Goutières syndrome explained by cell-specific IFN-stimulated gene response and cytokine release. J Immunol. 2015;194:3623-33 pubmed 出版商
  459. McKee C, Sigala B, Soeda J, Mouralidarane A, Morgan M, Mazzoccoli G, et al. Amphiregulin activates human hepatic stellate cells and is upregulated in non alcoholic steatohepatitis. Sci Rep. 2015;5:8812 pubmed 出版商
  460. Kijani S, Yrlid U, Heyden M, Levin M, Borén J, Fogelstrand P. Filter-Dense Multicolor Microscopy. PLoS ONE. 2015;10:e0119499 pubmed 出版商
  461. Yang Y, Deng Q, Feng X, Sun J. Use of the disulfiram/copper complex for breast cancer chemoprevention in MMTV-erbB2 transgenic mice. Mol Med Rep. 2015;12:746-52 pubmed 出版商
  462. Ma T, Wang Z, Yang Z, Chen J. Cluster of differentiation 147 is a key molecule during hepatocellular carcinoma cell-hepatic stellate cell cross-talk in the rat liver. Mol Med Rep. 2015;12:111-8 pubmed 出版商
  463. Pedro J, Wei Y, Sica V, Maiuri M, Zou Z, Kroemer G, et al. BAX and BAK1 are dispensable for ABT-737-induced dissociation of the BCL2-BECN1 complex and autophagy. Autophagy. 2015;11:452-9 pubmed 出版商
  464. Otsuki S, Sawada H, Yodoya N, Shinohara T, Kato T, Ohashi H, et al. Potential contribution of phenotypically modulated smooth muscle cells and related inflammation in the development of experimental obstructive pulmonary vasculopathy in rats. PLoS ONE. 2015;10:e0118655 pubmed 出版商
  465. Yang L, Liu L, Xu Z, Liao W, Feng D, Dong X, et al. EBV-LMP1 targeted DNAzyme enhances radiosensitivity by inhibiting tumor angiogenesis via the JNKs/HIF-1 pathway in nasopharyngeal carcinoma. Oncotarget. 2015;6:5804-17 pubmed
  466. Trylcova J, Busek P, Smetana K, Balaziova E, Dvořánková B, Mifková A, et al. Effect of cancer-associated fibroblasts on the migration of glioma cells in vitro. Tumour Biol. 2015;36:5873-9 pubmed 出版商
  467. Fang J, Zhou H, Zhang C, Shang L, Zhang L, Xu J, et al. A novel vascular pattern promotes metastasis of hepatocellular carcinoma in an epithelial-mesenchymal transition-independent manner. Hepatology. 2015;62:452-65 pubmed 出版商
  468. Polletta L, Vernucci E, Carnevale I, Arcangeli T, Rotili D, Palmerio S, et al. SIRT5 regulation of ammonia-induced autophagy and mitophagy. Autophagy. 2015;11:253-70 pubmed 出版商
  469. TaÅŸlı P, DoÄŸan A, Demirci S, Åžahin F. Myogenic and neurogenic differentiation of human tooth germ stem cells (hTGSCs) are regulated by pluronic block copolymers. Cytotechnology. 2016;68:319-29 pubmed 出版商
  470. Lin S, Huang S, Kuo H, Chen C, Ma Y, Chu T, et al. Coral-derived compound WA-25 inhibits angiogenesis by attenuating the VEGF/VEGFR2 signaling pathway. Mar Drugs. 2015;13:861-78 pubmed 出版商
  471. Yang L, Hu J, Hao H, Yin Z, Liu G, Zou X. Sodium tanshinone IIA sulfonate attenuates the transforming growth factor-β1-induced differentiation of atrial fibroblasts into myofibroblasts in vitro. Int J Mol Med. 2015;35:1026-32 pubmed 出版商
  472. Johnson J, Folestad E, Rowley J, Noll E, Walker S, Lloyd C, et al. Pericytes contribute to airway remodeling in a mouse model of chronic allergic asthma. Am J Physiol Lung Cell Mol Physiol. 2015;308:L658-71 pubmed 出版商
  473. Feliciano D, Tolsma T, Farrell K, Aradi A, Di Pietro S. A second Las17 monomeric actin-binding motif functions in Arp2/3-dependent actin polymerization during endocytosis. Traffic. 2015;16:379-97 pubmed 出版商
  474. Amrutkar M, Cansby E, Nuñez Durán E, Pirazzi C, StÃ¥hlman M, Stenfeldt E, et al. Protein kinase STK25 regulates hepatic lipid partitioning and progression of liver steatosis and NASH. FASEB J. 2015;29:1564-76 pubmed 出版商
  475. Xue T, Wei L, Zha D, Qiao L, Lu L, Chen F, et al. Exposure to acoustic stimuli promotes the development and differentiation of neural stem cells from the cochlear nuclei through the clusterin pathway. Int J Mol Med. 2015;35:637-44 pubmed 出版商
  476. Konoeda C, Nakajima J, Murakawa T. Fibroblasts of recipient origin contribute to airway fibrosis in murine tracheal transplantations. Transpl Int. 2015;28:761-3 pubmed 出版商
  477. Liu Q, Hu T, He L, Huang X, Tian X, Zhang H, et al. Genetic targeting of sprouting angiogenesis using Apln-CreER. Nat Commun. 2015;6:6020 pubmed 出版商
  478. Yu T, Wang X, Zhao R, Zheng J, Li L, Ma W, et al. Beneficial effects of cannabinoid receptor type 2 (CB2R) in injured skeletal muscle post-contusion. Histol Histopathol. 2015;30:737-49 pubmed 出版商
  479. Cerbini T, Funahashi R, Luo Y, Liu C, Park K, Rao M, et al. Transcription activator-like effector nuclease (TALEN)-mediated CLYBL targeting enables enhanced transgene expression and one-step generation of dual reporter human induced pluripotent stem cell (iPSC) and neural stem cell (NSC) lines. PLoS ONE. 2015;10:e0116032 pubmed 出版商
  480. Miyata M, Lee J, Susuki Miyata S, Wang W, Xu H, Kai H, et al. Glucocorticoids suppress inflammation via the upregulation of negative regulator IRAK-M. Nat Commun. 2015;6:6062 pubmed 出版商
  481. Matsuda Y, Kobayashi Ishihara M, Fujikawa D, Ishida T, Watanabe T, Yamagishi M. Epigenetic heterogeneity in HIV-1 latency establishment. Sci Rep. 2015;5:7701 pubmed 出版商
  482. Xue C, Zhang J, Lv Z, Liu H, Huang C, Yang J, et al. Angiotensin II promotes differentiation of mouse c-kit-positive cardiac stem cells into pacemaker-like cells. Mol Med Rep. 2015;11:3249-58 pubmed 出版商
  483. Goossens S, Radaelli E, Blanchet O, Durinck K, Van der Meulen J, Peirs S, et al. ZEB2 drives immature T-cell lymphoblastic leukaemia development via enhanced tumour-initiating potential and IL-7 receptor signalling. Nat Commun. 2015;6:5794 pubmed 出版商
  484. Gravez B, Tarjus A, Pelloux V, Ouvrard Pascaud A, Delcayre C, Samuel J, et al. Aldosterone promotes cardiac endothelial cell proliferation in vivo. J Am Heart Assoc. 2015;4:e001266 pubmed 出版商
  485. Chen T, Margariti A, Kelaini S, Cochrane A, Guha S, Hu Y, et al. MicroRNA-199b Modulates Vascular Cell Fate During iPS Cell Differentiation by Targeting the Notch Ligand Jagged1 and Enhancing VEGF Signaling. Stem Cells. 2015;33:1405-18 pubmed 出版商
  486. Karaca G, Xie G, Moylan C, Swiderska Syn M, Guy C, Krüger L, et al. Role of Fn14 in acute alcoholic steatohepatitis in mice. Am J Physiol Gastrointest Liver Physiol. 2015;308:G325-34 pubmed 出版商
  487. LUCAS B, White A, Ulvmar M, Nibbs R, Sitnik K, Agace W, et al. CCRL1/ACKR4 is expressed in key thymic microenvironments but is dispensable for T lymphopoiesis at steady state in adult mice. Eur J Immunol. 2015;45:574-83 pubmed 出版商
  488. Chen J, Wang Z, Xu D, Liu Y, Gao Y. Aquaporin 3 promotes prostate cancer cell motility and invasion via extracellular signal-regulated kinase 1/2-mediated matrix metalloproteinase-3 secretion. Mol Med Rep. 2015;11:2882-8 pubmed 出版商
  489. Huang Y, Bertrand V, Bozukova D, Pagnoulle C, Labrugère C, De Pauw E, et al. RGD surface functionalization of the hydrophilic acrylic intraocular lens material to control posterior capsular opacification. PLoS ONE. 2014;9:e114973 pubmed 出版商
  490. Da Ros M, Hirvonen N, Olotu O, Toppari J, Kotaja N. Retromer vesicles interact with RNA granules in haploid male germ cells. Mol Cell Endocrinol. 2015;401:73-83 pubmed 出版商
  491. Izzo F, Mercogliano F, Venturutti L, Tkach M, Inurrigarro G, Schillaci R, et al. Progesterone receptor activation downregulates GATA3 by transcriptional repression and increased protein turnover promoting breast tumor growth. Breast Cancer Res. 2014;16:491 pubmed 出版商
  492. Kim H, Li A, Ahn S, Song H, Zhang W. Inositol Polyphosphate-5-Phosphatase F (INPP5F) inhibits STAT3 activity and suppresses gliomas tumorigenicity. Sci Rep. 2014;4:7330 pubmed 出版商
  493. Mata K, Tefé Silva C, Floriano E, Fernandes C, Rizzi E, Gerlach R, et al. Interference of doxycycline pretreatment in a model of abdominal aortic aneurysms. Cardiovasc Pathol. 2015;24:110-20 pubmed 出版商
  494. Johnstone S, Liley M, Dalby M, Barnett S. Comparison of human olfactory and skeletal MSCs using osteogenic nanotopography to demonstrate bone-specific bioactivity of the surfaces. Acta Biomater. 2015;13:266-76 pubmed 出版商
  495. Merlo P, Frost B, Peng S, Yang Y, Park P, Feany M. p53 prevents neurodegeneration by regulating synaptic genes. Proc Natl Acad Sci U S A. 2014;111:18055-60 pubmed 出版商
  496. Yuan K, Orcholski M, Panaroni C, Shuffle E, Huang N, Jiang X, et al. Activation of the Wnt/planar cell polarity pathway is required for pericyte recruitment during pulmonary angiogenesis. Am J Pathol. 2015;185:69-84 pubmed 出版商
  497. Vogels R, Vlenterie M, Versleijen Jonkers Y, Ruijter E, Bekers E, Verdijk M, et al. Solitary fibrous tumor - clinicopathologic, immunohistochemical and molecular analysis of 28 cases. Diagn Pathol. 2014;9:224 pubmed 出版商
  498. Roufayel R, Johnston D, Mosser D. The elimination of miR-23a in heat-stressed cells promotes NOXA-induced cell death and is prevented by HSP70. Cell Death Dis. 2014;5:e1546 pubmed 出版商
  499. Rattner A, Wang Y, Zhou Y, Williams J, Nathans J. The role of the hypoxia response in shaping retinal vascular development in the absence of Norrin/Frizzled4 signaling. Invest Ophthalmol Vis Sci. 2014;55:8614-25 pubmed 出版商
  500. Dalum A, Tangen R, Falk K, Hordvik I, Rosenlund G, Torstensen B, et al. Coronary changes in the Atlantic salmon Salmo salar L: characterization and impact of dietary fatty acid compositions. J Fish Dis. 2016;39:41-54 pubmed 出版商
  501. Fraga Silva R, Costa Fraga F, Montecucco F, Sturny M, Faye Y, Mach F, et al. Diminazene protects corpus cavernosum against hypercholesterolemia-induced injury. J Sex Med. 2015;12:289-302 pubmed 出版商
  502. Lan N, Luo G, Yang X, Cheng Y, Zhang Y, Wang X, et al. 25-Hydroxyvitamin D3-deficiency enhances oxidative stress and corticosteroid resistance in severe asthma exacerbation. PLoS ONE. 2014;9:e111599 pubmed 出版商
  503. Venalis P, Kumánovics G, Schulze Koops H, Distler A, Dees C, Zerr P, et al. Cardiomyopathy in murine models of systemic sclerosis. Arthritis Rheumatol. 2015;67:508-16 pubmed 出版商
  504. Kuznetsova N, Vodovozova E. Differential binding of plasma proteins by liposomes loaded with lipophilic prodrugs of methotrexate and melphalan in the bilayer. Biochemistry (Mosc). 2014;79:797-804 pubmed 出版商
  505. Lim A, Shin K, Zhao C, Kawano S, Beachy P. Spatially restricted Hedgehog signalling regulates HGF-induced branching of the adult prostate. Nat Cell Biol. 2014;16:1135-45 pubmed 出版商
  506. Bantikassegn A, Song X, Politi K. Isolation of epithelial, endothelial, and immune cells from lungs of transgenic mice with oncogene-induced lung adenocarcinomas. Am J Respir Cell Mol Biol. 2015;52:409-17 pubmed 出版商
  507. Kim K, Ossipova O, Sokol S. Neural crest specification by inhibition of the ROCK/Myosin II pathway. Stem Cells. 2015;33:674-85 pubmed 出版商
  508. Fukuda M, Aoki T, Manabe T, Maekawa A, Shirakawa T, Kataoka H, et al. Exacerbation of intracranial aneurysm and aortic dissection in hypertensive rat treated with the prostaglandin F-receptor antagonist AS604872. J Pharmacol Sci. 2014;126:230-42 pubmed
  509. Dammer E, Lee A, Duong D, Gearing M, Lah J, Levey A, et al. Quantitative phosphoproteomics of Alzheimer's disease reveals cross-talk between kinases and small heat shock proteins. Proteomics. 2015;15:508-519 pubmed 出版商
  510. Kim W, Barron D, San Martin R, Chan K, Tran L, Yang F, et al. RUNX1 is essential for mesenchymal stem cell proliferation and myofibroblast differentiation. Proc Natl Acad Sci U S A. 2014;111:16389-94 pubmed 出版商
  511. Huang L, Zhang S, Zhang P, Zhang X, Zhu L, Chen K, et al. Interferon regulatory factor 7 protects against vascular smooth muscle cell proliferation and neointima formation. J Am Heart Assoc. 2014;3:e001309 pubmed 出版商
  512. Gurzu S, Ciortea D, Tamasi A, Golea M, Bodi A, Sahlean D, et al. The immunohistochemical profile of granular cell (Abrikossoff) tumor suggests an endomesenchymal origin. Arch Dermatol Res. 2015;307:151-7 pubmed 出版商
  513. Naylor A, McGettrick H, Maynard W, May P, Barone F, Croft A, et al. A differential role for CD248 (Endosialin) in PDGF-mediated skeletal muscle angiogenesis. PLoS ONE. 2014;9:e107146 pubmed 出版商
  514. Chibly A, Querin L, Harris Z, Limesand K. Label-retaining cells in the adult murine salivary glands possess characteristics of adult progenitor cells. PLoS ONE. 2014;9:e107893 pubmed 出版商
  515. Kouroupis D, Churchman S, McGonagle D, Jones E. The assessment of CD146-based cell sorting and telomere length analysis for establishing the identity of mesenchymal stem cells in human umbilical cord. F1000Res. 2014;3:126 pubmed 出版商
  516. Sempere L. Fully automated fluorescence-based four-color multiplex assay for co-detection of microRNA and protein biomarkers in clinical tissue specimens. Methods Mol Biol. 2014;1211:151-70 pubmed 出版商
  517. Pál G, Lovas G, Dobolyi A. Induction of transforming growth factor beta receptors following focal ischemia in the rat brain. PLoS ONE. 2014;9:e106544 pubmed 出版商
  518. Tobar N, Toyos M, Urra C, Méndez N, Arancibia R, Smith P, et al. c-Jun N terminal kinase modulates NOX-4 derived ROS production and myofibroblasts differentiation in human breast stromal cells. BMC Cancer. 2014;14:640 pubmed 出版商
  519. Torsvik J, Johansson B, Dalva M, Marie M, Fjeld K, Johansson S, et al. Endocytosis of secreted carboxyl ester lipase in a syndrome of diabetes and pancreatic exocrine dysfunction. J Biol Chem. 2014;289:29097-111 pubmed 出版商
  520. Cremasco V, Woodruff M, Onder L, Cupovic J, Nieves Bonilla J, Schildberg F, et al. B cell homeostasis and follicle confines are governed by fibroblastic reticular cells. Nat Immunol. 2014;15:973-81 pubmed 出版商
  521. McGowan S, McCoy D. Regulation of fibroblast lipid storage and myofibroblast phenotypes during alveolar septation in mice. Am J Physiol Lung Cell Mol Physiol. 2014;307:L618-31 pubmed 出版商
  522. Thompson L, Bauer J, Chiosea S, McHugh J, Seethala R, Miettinen M, et al. Canalicular adenoma: a clinicopathologic and immunohistochemical analysis of 67 cases with a review of the literature. Head Neck Pathol. 2015;9:181-95 pubmed 出版商
  523. Luo B, Li B, Wang W, Liu X, Xia Y, Zhang C, et al. NLRP3 gene silencing ameliorates diabetic cardiomyopathy in a type 2 diabetes rat model. PLoS ONE. 2014;9:e104771 pubmed 出版商
  524. Viceconte N, McKenna T, Eriksson M. Low levels of the reverse transactivator fail to induce target transgene expression in vascular smooth muscle cells. PLoS ONE. 2014;9:e104098 pubmed 出版商
  525. Zhou Y, Wang Y, TISCHFIELD M, Williams J, Smallwood P, Rattner A, et al. Canonical WNT signaling components in vascular development and barrier formation. J Clin Invest. 2014;124:3825-46 pubmed 出版商
  526. Scherz Shouval R, Santagata S, Mendillo M, Sholl L, Ben Aharon I, Beck A, et al. The reprogramming of tumor stroma by HSF1 is a potent enabler of malignancy. Cell. 2014;158:564-78 pubmed 出版商
  527. Calabro S, Maczurek A, Morgan A, Tu T, Wen V, Yee C, et al. Hepatocyte produced matrix metalloproteinases are regulated by CD147 in liver fibrogenesis. PLoS ONE. 2014;9:e90571 pubmed 出版商
  528. Werner M, Mitchell J, Putzbach W, Bacon E, Kim S, Mitchell B. Radial intercalation is regulated by the Par complex and the microtubule-stabilizing protein CLAMP/Spef1. J Cell Biol. 2014;206:367-76 pubmed 出版商
  529. José A, Rovira Rigau M, Luna J, Gimenez Alejandre M, Vaquero E, García de la Torre B, et al. A genetic fiber modification to achieve matrix-metalloprotease-activated infectivity of oncolytic adenovirus. J Control Release. 2014;192:148-56 pubmed 出版商
  530. Carlessi L, Fusar Poli E, Bechi G, Mantegazza M, Pascucci B, Narciso L, et al. Functional and molecular defects of hiPSC-derived neurons from patients with ATM deficiency. Cell Death Dis. 2014;5:e1342 pubmed 出版商
  531. Yuan S, Guo Y, Zhou X, Shen W, Chen H. PDGFR-? (+) perivascular cells from infantile hemangioma display the features of mesenchymal stem cells and show stronger adipogenic potential in vitro and in vivo. Int J Clin Exp Pathol. 2014;7:2861-70 pubmed
  532. Zheng Y, Hsu F, Xu W, Xie X, Ren X, Gao X, et al. A developmental genetic analysis of the lysine demethylase KDM2 mutations in Drosophila melanogaster. Mech Dev. 2014;133:36-53 pubmed 出版商
  533. Wang H, Leinwand L, Anseth K. Roles of transforming growth factor-?1 and OB-cadherin in porcine cardiac valve myofibroblast differentiation. FASEB J. 2014;28:4551-62 pubmed 出版商
  534. Cansby E, Nerstedt A, Amrutkar M, Durán E, Smith U, Mahlapuu M. Partial hepatic resistance to IL-6-induced inflammation develops in type 2 diabetic mice, while the anti-inflammatory effect of AMPK is maintained. Mol Cell Endocrinol. 2014;393:143-51 pubmed 出版商
  535. Rizvi S, Mertens J, Bronk S, Hirsova P, Dai H, Roberts L, et al. Platelet-derived growth factor primes cancer-associated fibroblasts for apoptosis. J Biol Chem. 2014;289:22835-49 pubmed 出版商
  536. Prakash A, Udager A, Saenz D, Gumucio D. Roles for Nkx2-5 and Gata3 in the ontogeny of the murine smooth muscle gastric ligaments. Am J Physiol Gastrointest Liver Physiol. 2014;307:G430-6 pubmed 出版商
  537. Hu Q, Dong J, DU H, Zhang D, Ren H, Ma M, et al. Constitutive G?i coupling activity of very large G protein-coupled receptor 1 (VLGR1) and its regulation by PDZD7 protein. J Biol Chem. 2014;289:24215-25 pubmed 出版商
  538. Morgan K, Black L. Investigation into the effects of varying frequency of mechanical stimulation in a cycle-by-cycle manner on engineered cardiac construct function. J Tissue Eng Regen Med. 2017;11:342-353 pubmed 出版商
  539. Chong H, Chan J, Goh C, Gounko N, Luo B, Wang X, et al. Angiopoietin-like 4 stimulates STAT3-mediated iNOS expression and enhances angiogenesis to accelerate wound healing in diabetic mice. Mol Ther. 2014;22:1593-604 pubmed 出版商
  540. Gracanin A, Timmermans Sprang E, van Wolferen M, Rao N, Grizelj J, Vince S, et al. Ligand-independent canonical Wnt activity in canine mammary tumor cell lines associated with aberrant LEF1 expression. PLoS ONE. 2014;9:e98698 pubmed 出版商
  541. Yi X, Li X, Zhou Y, Ren S, Wan W, Feng G, et al. Hepatocyte growth factor regulates the TGF-?1-induced proliferation, differentiation and secretory function of cardiac fibroblasts. Int J Mol Med. 2014;34:381-90 pubmed 出版商
  542. Yuan B, Wan P, Chu D, Nie J, Cao Y, Luo W, et al. A cardiomyocyte-specific Wdr1 knockout demonstrates essential functional roles for actin disassembly during myocardial growth and maintenance in mice. Am J Pathol. 2014;184:1967-80 pubmed 出版商
  543. Srikhajon K, Shynlova O, Preechapornprasert A, Chanrachakul B, Lye S. A new role for monocytes in modulating myometrial inflammation during human labor. Biol Reprod. 2014;91:10 pubmed 出版商
  544. Ben Zvi A, Lacoste B, Kur E, Andreone B, Mayshar Y, Yan H, et al. Mfsd2a is critical for the formation and function of the blood-brain barrier. Nature. 2014;509:507-11 pubmed 出版商
  545. Cheng Y, Cao A, Zheng J, Wang H, Sun Y, Liu C, et al. Airway hyperresponsiveness induced by repeated esophageal infusion of HCl in guinea pigs. Am J Respir Cell Mol Biol. 2014;51:701-8 pubmed 出版商
  546. Mrosewski I, Jork N, Gorte K, Conrad C, Wiegand E, Kohl B, et al. Regulation of osteoarthritis-associated key mediators by TNF? and IL-10: effects of IL-10 overexpression in human synovial fibroblasts and a synovial cell line. Cell Tissue Res. 2014;357:207-23 pubmed 出版商
  547. Helm O, Mennrich R, Petrick D, Goebel L, Freitag Wolf S, Roder C, et al. Comparative characterization of stroma cells and ductal epithelium in chronic pancreatitis and pancreatic ductal adenocarcinoma. PLoS ONE. 2014;9:e94357 pubmed 出版商
  548. Bach F, Rutten K, Hendriks K, Riemers F, Cornelissen P, de Bruin A, et al. The paracrine feedback loop between vitamin D? (1,25(OH)?D?) and PTHrP in prehypertrophic chondrocytes. J Cell Physiol. 2014;229:1999-2014 pubmed 出版商
  549. Hegde V, Vogel R, Feany M. Glia are critical for the neuropathology of complex I deficiency in Drosophila. Hum Mol Genet. 2014;23:4686-92 pubmed 出版商
  550. Quintin J, Le Péron C, Palierne G, Bizot M, Cunha S, Sérandour A, et al. Dynamic estrogen receptor interactomes control estrogen-responsive trefoil Factor (TFF) locus cell-specific activities. Mol Cell Biol. 2014;34:2418-36 pubmed 出版商
  551. Lu Y, West F, Jordan B, Jordan E, West R, Yu P, et al. Induced pluripotency in chicken embryonic fibroblast results in a germ cell fate. Stem Cells Dev. 2014;23:1755-64 pubmed 出版商
  552. Kurtz K, Moor A, Souza Smith F, Breslin J. Involvement of H1 and H2 receptors and soluble guanylate cyclase in histamine-induced relaxation of rat mesenteric collecting lymphatics. Microcirculation. 2014;21:593-605 pubmed 出版商
  553. Miller C, Haas U, DIAZ R, Leeper N, Kundu R, Patlolla B, et al. Coronary heart disease-associated variation in TCF21 disrupts a miR-224 binding site and miRNA-mediated regulation. PLoS Genet. 2014;10:e1004263 pubmed 出版商
  554. Balk Møller E, Kim J, Hopkinson B, Timmermans Wielenga V, Petersen O, Villadsen R. A marker of endocrine receptor-positive cells, CEACAM6, is shared by two major classes of breast cancer: luminal and HER2-enriched. Am J Pathol. 2014;184:1198-208 pubmed 出版商
  555. Kaenel P, Hahnewald S, Wotzkow C, Strange R, Andres A. Overexpression of EphB4 in the mammary epithelium shifts the differentiation pathway of progenitor cells and promotes branching activity and vascularization. Dev Growth Differ. 2014;56:255-75 pubmed 出版商
  556. Carloni S, Albertini M, Galluzzi L, Buonocore G, Proietti F, Balduini W. Increased autophagy reduces endoplasmic reticulum stress after neonatal hypoxia-ischemia: role of protein synthesis and autophagic pathways. Exp Neurol. 2014;255:103-12 pubmed 出版商
  557. Hultman K, Cortes Canteli M, Bounoutas A, Richards A, Strickland S, Norris E. Plasmin deficiency leads to fibrin accumulation and a compromised inflammatory response in the mouse brain. J Thromb Haemost. 2014;12:701-12 pubmed 出版商
  558. Namba F, Go H, Murphy J, La P, Yang G, Sengupta S, et al. Expression level and subcellular localization of heme oxygenase-1 modulates its cytoprotective properties in response to lung injury: a mouse model. PLoS ONE. 2014;9:e90936 pubmed 出版商
  559. Mitchell E, Serra R. Normal mammary development and function in mice with Ift88 deleted in MMTV- and K14-Cre expressing cells. Cilia. 2014;3:4 pubmed 出版商
  560. Yao Y, Chen Z, Norris E, Strickland S. Astrocytic laminin regulates pericyte differentiation and maintains blood brain barrier integrity. Nat Commun. 2014;5:3413 pubmed 出版商
  561. Ohshima J, Lee Y, Sasai M, Saitoh T, Su Ma J, Kamiyama N, et al. Role of mouse and human autophagy proteins in IFN-?-induced cell-autonomous responses against Toxoplasma gondii. J Immunol. 2014;192:3328-35 pubmed 出版商
  562. Patel P, Khan N, Rani M, Gupta D, Jameel S. The expression of HIV-1 Vpu in monocytes causes increased secretion of TGF-? that activates profibrogenic genes in hepatic stellate cells. PLoS ONE. 2014;9:e88934 pubmed 出版商
  563. Mamuya F, Wang Y, Roop V, Scheiblin D, Zajac J, Duncan M. The roles of ?V integrins in lens EMT and posterior capsular opacification. J Cell Mol Med. 2014;18:656-70 pubmed 出版商
  564. Sastre C, Fernández Laso V, Madrigal Matute J, Munoz Garcia B, Moreno J, Pastor Vargas C, et al. Genetic deletion or TWEAK blocking antibody administration reduce atherosclerosis and enhance plaque stability in mice. J Cell Mol Med. 2014;18:721-34 pubmed 出版商
  565. Yoshida T, Yamashita M, Horimai C, Hayashi M. Deletion of Krüppel-like factor 4 in endothelial and hematopoietic cells enhances neointimal formation following vascular injury. J Am Heart Assoc. 2014;3:e000622 pubmed 出版商
  566. Hagiwara K, Obayashi T, Sakayori N, Yamanishi E, Hayashi R, Osumi N, et al. Molecular and cellular features of murine craniofacial and trunk neural crest cells as stem cell-like cells. PLoS ONE. 2014;9:e84072 pubmed 出版商
  567. Grünberg J, Hammarstedt A, Hedjazifar S, Smith U. The Novel Secreted Adipokine WNT1-inducible Signaling Pathway Protein 2 (WISP2) Is a Mesenchymal Cell Activator of Canonical WNT. J Biol Chem. 2014;289:6899-907 pubmed 出版商
  568. Song K, Chung J, Choi M, Jin H, Yin G, Kwon M, et al. Effectiveness of intracavernous delivery of adenovirus encoding Smad7 gene on erectile function in a mouse model of cavernous nerve injury. J Sex Med. 2014;11:51-63 pubmed 出版商
  569. Morgan K, Black L. Mimicking isovolumic contraction with combined electromechanical stimulation improves the development of engineered cardiac constructs. Tissue Eng Part A. 2014;20:1654-67 pubmed 出版商
  570. Zhao L, Sullivan M, Chase M, Gonzales A, Earley S. Calcineurin/nuclear factor of activated T cells-coupled vanilliod transient receptor potential channel 4 ca2+ sparklets stimulate airway smooth muscle cell proliferation. Am J Respir Cell Mol Biol. 2014;50:1064-75 pubmed 出版商
  571. Bronner D, O Riordan M, He Y. Caspase-2 mediates a Brucella abortus RB51-induced hybrid cell death having features of apoptosis and pyroptosis. Front Cell Infect Microbiol. 2013;3:83 pubmed 出版商
  572. Okumu L, Braden T, Vail K, Simon L, GOYAL H. Low androgen induced penile maldevelopment involves altered gene expression of biomarkers of smooth muscle differentiation and a key enzyme regulating cavernous smooth muscle cell tone. J Urol. 2014;192:267-73 pubmed 出版商
  573. Hasty P, Livi C, Dodds S, Jones D, Strong R, Javors M, et al. eRapa restores a normal life span in a FAP mouse model. Cancer Prev Res (Phila). 2014;7:169-78 pubmed 出版商
  574. Karki S, Surolia R, Hock T, Guroji P, Zolak J, Duggal R, et al. Wilms' tumor 1 (Wt1) regulates pleural mesothelial cell plasticity and transition into myofibroblasts in idiopathic pulmonary fibrosis. FASEB J. 2014;28:1122-31 pubmed 出版商
  575. Yang C, Gu L, Deng D. Bone marrow-derived cells may not be the original cells for carcinogen-induced mouse gastrointestinal carcinomas. PLoS ONE. 2013;8:e79615 pubmed 出版商
  576. Zhang S, Gao L, Zhang X, Zhang R, Zhu L, Wang P, et al. Interferon regulatory factor 8 modulates phenotypic switching of smooth muscle cells by regulating the activity of myocardin. Mol Cell Biol. 2014;34:400-14 pubmed 出版商
  577. Zhu Y, Men R, Wen M, Hu X, Liu X, Yang L. Blockage of TRPM7 channel induces hepatic stellate cell death through endoplasmic reticulum stress-mediated apoptosis. Life Sci. 2014;94:37-44 pubmed 出版商
  578. Formiga F, Pelacho B, Garbayo E, Imbuluzqueta I, Díaz Herráez P, Abizanda G, et al. Controlled delivery of fibroblast growth factor-1 and neuregulin-1 from biodegradable microparticles promotes cardiac repair in a rat myocardial infarction model through activation of endogenous regeneration. J Control Release. 2014;173:132-9 pubmed 出版商
  579. Turnbull I, Karakikes I, Serrao G, Backeris P, Lee J, Xie C, et al. Advancing functional engineered cardiac tissues toward a preclinical model of human myocardium. FASEB J. 2014;28:644-54 pubmed 出版商
  580. Wu J, Dong F, Wang R, Wang J, Zhao J, Yang M, et al. Central role of cellular senescence in TSLP-induced airway remodeling in asthma. PLoS ONE. 2013;8:e77795 pubmed 出版商
  581. Peng Y, Shi Y, Ding Z, Ke A, Gu C, Hui B, et al. Autophagy inhibition suppresses pulmonary metastasis of HCC in mice via impairing anoikis resistance and colonization of HCC cells. Autophagy. 2013;9:2056-68 pubmed 出版商
  582. Dai X, Jiang W, Zhang Q, Xu L, Geng P, Zhuang S, et al. Requirement for integrin-linked kinase in neural crest migration and differentiation and outflow tract morphogenesis. BMC Biol. 2013;11:107 pubmed 出版商
  583. Wang H, Yang B, Qiu L, Yang C, Kramer J, Su Q, et al. Widespread spinal cord transduction by intrathecal injection of rAAV delivers efficacious RNAi therapy for amyotrophic lateral sclerosis. Hum Mol Genet. 2014;23:668-81 pubmed 出版商
  584. Dowman J, Hopkins L, Reynolds G, Armstrong M, Nasiri M, Nikolaou N, et al. Loss of 5?-reductase type 1 accelerates the development of hepatic steatosis but protects against hepatocellular carcinoma in male mice. Endocrinology. 2013;154:4536-47 pubmed 出版商
  585. Salem S, Hwie A, Saim A, Chee Kong C, Sagap I, Singh R, et al. Human adipose tissue derived stem cells as a source of smooth muscle cells in the regeneration of muscular layer of urinary bladder wall. Malays J Med Sci. 2013;20:80-7 pubmed
  586. Soler A, Serra H, Pearce W, Angulo A, Guillermet Guibert J, Friedman L, et al. Inhibition of the p110? isoform of PI 3-kinase stimulates nonfunctional tumor angiogenesis. J Exp Med. 2013;210:1937-45 pubmed 出版商
  587. Sollome J, Thavathiru E, Camenisch T, Vaillancourt R. HER2/HER3 regulates extracellular acidification and cell migration through MTK1 (MEKK4). Cell Signal. 2014;26:70-82 pubmed 出版商
  588. Dellinger M, Meadows S, Wynne K, Cleaver O, Brekken R. Vascular endothelial growth factor receptor-2 promotes the development of the lymphatic vasculature. PLoS ONE. 2013;8:e74686 pubmed 出版商
  589. Ishikawa K, Yoshida S, Nakao S, Nakama T, Kita T, Asato R, et al. Periostin promotes the generation of fibrous membranes in proliferative vitreoretinopathy. FASEB J. 2014;28:131-42 pubmed 出版商
  590. Burger N, Haak M, de Bakker B, Al Shaibani Z, de Groot C, Christoffels V, et al. Systematic analysis of the development of the ductus venosus in wild type mouse and human embryos. Early Hum Dev. 2013;89:1067-73 pubmed 出版商
  591. Orecchioni S, Gregato G, Martin Padura I, Reggiani F, Braidotti P, Mancuso P, et al. Complementary populations of human adipose CD34+ progenitor cells promote growth, angiogenesis, and metastasis of breast cancer. Cancer Res. 2013;73:5880-91 pubmed 出版商
  592. Xiong Y, Yu Y, Montani J, Yang Z, Ming X. Arginase-II induces vascular smooth muscle cell senescence and apoptosis through p66Shc and p53 independently of its l-arginine ureahydrolase activity: implications for atherosclerotic plaque vulnerability. J Am Heart Assoc. 2013;2:e000096 pubmed 出版商
  593. Lee P, Yau D, Lau P, Chan J. Plexiform fibromyxoma (plexiform angiomyxoid myofibroblastic tumor) of stomach: an unusual presentation as a fistulating abscess. Int J Surg Pathol. 2014;22:286-90 pubmed 出版商
  594. Kuroda Y, Wakao S, Kitada M, Murakami T, Nojima M, Dezawa M. Isolation, culture and evaluation of multilineage-differentiating stress-enduring (Muse) cells. Nat Protoc. 2013;8:1391-415 pubmed 出版商
  595. Watson P, Paterson J, Thom G, Ginman U, Lundquist S, Webster C. Modelling the endothelial blood-CNS barriers: a method for the production of robust in vitro models of the rat blood-brain barrier and blood-spinal cord barrier. BMC Neurosci. 2013;14:59 pubmed 出版商
  596. Chandra S, Priyadarshini R, Madhavan V, Tikoo S, Hussain M, Mudgal R, et al. Enhancement of c-Myc degradation by BLM helicase leads to delayed tumor initiation. J Cell Sci. 2013;126:3782-95 pubmed 出版商
  597. Maddaluno L, Rudini N, Cuttano R, Bravi L, Giampietro C, Corada M, et al. EndMT contributes to the onset and progression of cerebral cavernous malformations. Nature. 2013;498:492-6 pubmed 出版商
  598. Mendel T, Clabough E, Kao D, Demidova Rice T, Durham J, Zotter B, et al. Pericytes derived from adipose-derived stem cells protect against retinal vasculopathy. PLoS ONE. 2013;8:e65691 pubmed 出版商
  599. Weyers J, Schwartz S, Minami E, Carlson D, Dupras S, Weitz K, et al. Effects of cell grafting on coronary remodeling after myocardial infarction. J Am Heart Assoc. 2013;2:e000202 pubmed 出版商
  600. Bohnenpoll T, Bettenhausen E, Weiss A, Foik A, Trowe M, Blank P, et al. Tbx18 expression demarcates multipotent precursor populations in the developing urogenital system but is exclusively required within the ureteric mesenchymal lineage to suppress a renal stromal fate. Dev Biol. 2013;380:25-36 pubmed 出版商
  601. Chatterjee S, Wang Y, Duncan M, Naik U. Junctional adhesion molecule-A regulates vascular endothelial growth factor receptor-2 signaling-dependent mouse corneal wound healing. PLoS ONE. 2013;8:e63674 pubmed 出版商
  602. Pantaleo M, Astolfi A, Urbini M, Nannini M, Paterini P, Indio V, et al. Analysis of all subunits, SDHA, SDHB, SDHC, SDHD, of the succinate dehydrogenase complex in KIT/PDGFRA wild-type GIST. Eur J Hum Genet. 2014;22:32-9 pubmed 出版商
  603. Xiao H, Shen H, Liu W, Xiong R, Li P, Meng G, et al. Adenosine A2A receptor: a target for regulating renal interstitial fibrosis in obstructive nephropathy. PLoS ONE. 2013;8:e60173 pubmed 出版商
  604. Xu J, Deng X, Tang M, Li L, Xiao L, Yang L, et al. Tyrosylprotein sulfotransferase-1 and tyrosine sulfation of chemokine receptor 4 are induced by Epstein-Barr virus encoded latent membrane protein 1 and associated with the metastatic potential of human nasopharyngeal carcinoma. PLoS ONE. 2013;8:e56114 pubmed 出版商
  605. Pe er T, Lahmi R, Sharaby Y, Chorni E, Noach M, Vecsler M, et al. Gas2l3, a novel constriction site-associated protein whose regulation is mediated by the APC/C Cdh1 complex. PLoS ONE. 2013;8:e57532 pubmed 出版商
  606. Pu X, Xiao Q, Kiechl S, Chan K, Ng F, Gor S, et al. ADAMTS7 cleavage and vascular smooth muscle cell migration is affected by a coronary-artery-disease-associated variant. Am J Hum Genet. 2013;92:366-74 pubmed 出版商
  607. Davis R, Curtis C, Griffin C. BRG1 promotes COUP-TFII expression and venous specification during embryonic vascular development. Development. 2013;140:1272-81 pubmed 出版商
  608. McCoy F, Darbandi R, Chen S, Eckard L, Dodd K, Jones K, et al. Metabolic regulation of CaMKII protein and caspases in Xenopus laevis egg extracts. J Biol Chem. 2013;288:8838-48 pubmed 出版商
  609. Du M, Young J, De Asis M, Cipollone J, Roskelley C, Takai Y, et al. A novel subcellular machine contributes to basal junction remodeling in the seminiferous epithelium. Biol Reprod. 2013;88:60 pubmed 出版商
  610. Cieslik K, Trial J, Carlson S, Taffet G, Entman M. Aberrant differentiation of fibroblast progenitors contributes to fibrosis in the aged murine heart: role of elevated circulating insulin levels. FASEB J. 2013;27:1761-71 pubmed 出版商
  611. Huggins C, Povstyan O, Harhun M. Characterization of transcriptional and posttranscriptional properties of native and cultured phenotypically modulated vascular smooth muscle cells. Cell Tissue Res. 2013;352:265-75 pubmed 出版商
  612. Sánchez Alvarez R, Martinez Outschoorn U, Lin Z, Lamb R, Hulit J, Howell A, et al. Ethanol exposure induces the cancer-associated fibroblast phenotype and lethal tumor metabolism: implications for breast cancer prevention. Cell Cycle. 2013;12:289-301 pubmed 出版商
  613. Tomasek J, Haaksma C, Schwartz R, Howard E. Whole animal knockout of smooth muscle alpha-actin does not alter excisional wound healing or the fibroblast-to-myofibroblast transition. Wound Repair Regen. 2013;21:166-76 pubmed 出版商
  614. Shah G, Price T, Banks W, Morofuji Y, Kovac A, Ercal N, et al. Pharmacological inhibition of mitochondrial carbonic anhydrases protects mouse cerebral pericytes from high glucose-induced oxidative stress and apoptosis. J Pharmacol Exp Ther. 2013;344:637-45 pubmed 出版商
  615. Zimmerlin L, Donnenberg V, Rubin J, Donnenberg A. Mesenchymal markers on human adipose stem/progenitor cells. Cytometry A. 2013;83:134-40 pubmed 出版商
  616. Peddigari S, Li P, Rabe J, Martin S. hnRNPL and nucleolin bind LINE-1 RNA and function as host factors to modulate retrotransposition. Nucleic Acids Res. 2013;41:575-85 pubmed 出版商
  617. Bouacida A, Rosset P, Trichet V, Guilloton F, Espagnolle N, Cordonier T, et al. Pericyte-like progenitors show high immaturity and engraftment potential as compared with mesenchymal stem cells. PLoS ONE. 2012;7:e48648 pubmed 出版商
  618. Kosla J, Dvorak M, Cermák V. Molecular analysis of the TGF-beta controlled gene expression program in chicken embryo dermal myofibroblasts. Gene. 2013;513:90-100 pubmed 出版商
  619. St Denis C, Cloutier I, Tanguay J. Key fatty acid combinations define vascular smooth muscle cell proliferation and viability. Lipids. 2012;47:1073-84 pubmed 出版商
  620. Syu L, El Zaatari M, Eaton K, Liu Z, Tetarbe M, Keeley T, et al. Transgenic expression of interferon-? in mouse stomach leads to inflammation, metaplasia, and dysplasia. Am J Pathol. 2012;181:2114-25 pubmed 出版商
  621. Johnson K, Petersen Jones H, Thompson J, Hitomi K, Itoh M, Bakker E, et al. Vena cava and aortic smooth muscle cells express transglutaminases 1 and 4 in addition to transglutaminase 2. Am J Physiol Heart Circ Physiol. 2012;302:H1355-66 pubmed 出版商
  622. Yamada Y, Yamamoto H, Ohishi Y, Nishiyama K, Fukuhara M, Saitou T, et al. Sclerosing variant of perivascular epithelioid cell tumor in the female genital organs. Pathol Int. 2011;61:768-72 pubmed 出版商
  623. Koppen T, Weckmann A, Muller S, Staubach S, Bloch W, Dohmen R, et al. Proteomics analyses of microvesicles released by Drosophila Kc167 and S2 cells. Proteomics. 2011;11:4397-410 pubmed 出版商
  624. Yuan S, Chen R, Shen W, Chen H, Zhou X. Mesenchymal stem cells in infantile hemangioma reside in the perivascular region. Pediatr Dev Pathol. 2012;15:5-12 pubmed 出版商
  625. Baydar D, Kulac I, Gurel B, De Marzo A. A case of prostatic adenocarcinoma with aberrant p63 expression: presentation with detailed immunohistochemical study and FISH analysis. Int J Surg Pathol. 2011;19:131-6 pubmed 出版商
  626. Tai C, Shen S, Lee W, Liao C, Deng W, Chiou H, et al. Increased cellular apoptosis susceptibility (CSE1L/CAS) protein expression promotes protrusion extension and enhances migration of MCF-7 breast cancer cells. Exp Cell Res. 2010;316:2969-81 pubmed 出版商
  627. Qi Y, Liang J, She Z, Cai Y, Wang J, Lei T, et al. MCP-induced protein 1 suppresses TNFalpha-induced VCAM-1 expression in human endothelial cells. FEBS Lett. 2010;584:3065-72 pubmed 出版商
  628. Polo M, Arnoni M, Riggio M, Wargon V, Lanari C, Novaro V. Responsiveness to PI3K and MEK inhibitors in breast cancer. Use of a 3D culture system to study pathways related to hormone independence in mice. PLoS ONE. 2010;5:e10786 pubmed 出版商
  629. Yamazato Y, Ferreira A, Hong K, Sriramula S, Francis J, Yamazato M, et al. Prevention of pulmonary hypertension by Angiotensin-converting enzyme 2 gene transfer. Hypertension. 2009;54:365-71 pubmed 出版商
  630. Holthouse D, Dallas P, Ford J, Fabian V, Murch A, Watson M, et al. Classic and desmoplastic medulloblastoma: complete case reports and characterizations of two new cell lines. Neuropathology. 2009;29:398-409 pubmed 出版商
  631. Marín Briggiler C, Veiga M, Matos M, Echeverría M, Furlong L, Vazquez Levin M. Expression of epithelial cadherin in the human male reproductive tract and gametes and evidence of its participation in fertilization. Mol Hum Reprod. 2008;14:561-71 pubmed 出版商
  632. Liao H, Munoz Pinto D, Qu X, Hou Y, Grunlan M, Hahn M. Influence of hydrogel mechanical properties and mesh size on vocal fold fibroblast extracellular matrix production and phenotype. Acta Biomater. 2008;4:1161-71 pubmed 出版商
  633. Rigau V, Morin M, Rousset M, de Bock F, Lebrun A, Coubes P, et al. Angiogenesis is associated with blood-brain barrier permeability in temporal lobe epilepsy. Brain. 2007;130:1942-56 pubmed
  634. Hirose T, Karasawa M, Sugitani Y, Fujisawa M, Akimoto K, Ohno S, et al. PAR3 is essential for cyst-mediated epicardial development by establishing apical cortical domains. Development. 2006;133:1389-98 pubmed