这是一篇来自已证抗体库的有关人类 存活素 (survivin) 的综述,是根据106篇发表使用所有方法的文章归纳的。这综述旨在帮助来邦网的访客找到最适合存活素 抗体。
存活素 同义词: API4; EPR-1

圣克鲁斯生物技术
小鼠 单克隆(D-8)
  • 免疫印迹; 人类; 图 10
圣克鲁斯生物技术存活素抗体(Santa Cruz Biotechnology, sc-17779)被用于被用于免疫印迹在人类样本上 (图 10). Biomolecules (2019) ncbi
小鼠 单克隆(D-8)
  • 免疫印迹; 人类; 图 3d
圣克鲁斯生物技术存活素抗体(Santa Cruz Biotechnology, sc-17779)被用于被用于免疫印迹在人类样本上 (图 3d). Int J Oncol (2019) ncbi
小鼠 单克隆(D-8)
  • 免疫印迹; 人类; 图 5f
圣克鲁斯生物技术存活素抗体(Santa, sc-17779)被用于被用于免疫印迹在人类样本上 (图 5f). Oncogene (2019) ncbi
小鼠 单克隆(D-8)
  • 免疫印迹; 人类; 1:200; 图 s3
圣克鲁斯生物技术存活素抗体(SantaCruz, SC-17779)被用于被用于免疫印迹在人类样本上浓度为1:200 (图 s3). Nat Commun (2017) ncbi
小鼠 单克隆(D-8)
  • 免疫印迹; 人类; 图 2b
圣克鲁斯生物技术存活素抗体(SantaCruz, sc17779)被用于被用于免疫印迹在人类样本上 (图 2b). Nucleic Acids Res (2017) ncbi
小鼠 单克隆(D-8)
  • 免疫印迹; 人类; 图 2b
圣克鲁斯生物技术存活素抗体(Santa Cruz, sc-17779)被用于被用于免疫印迹在人类样本上 (图 2b). Oncol Lett (2017) ncbi
小鼠 单克隆(D-8)
  • 免疫组化; 小鼠; 1:100; 图 6b
圣克鲁斯生物技术存活素抗体(Santa Cruz, sc-17779)被用于被用于免疫组化在小鼠样本上浓度为1:100 (图 6b). Sci Rep (2017) ncbi
小鼠 单克隆(D-8)
  • 免疫组化; 人类; 1:100; 图 s3
圣克鲁斯生物技术存活素抗体(Santa Cruz, sc-17779)被用于被用于免疫组化在人类样本上浓度为1:100 (图 s3). Sci Rep (2017) ncbi
小鼠 单克隆(D-8)
  • 免疫印迹; 人类; 图 2b
圣克鲁斯生物技术存活素抗体(Santa Cruz, sc-17779)被用于被用于免疫印迹在人类样本上 (图 2b). Int J Biochem Cell Biol (2017) ncbi
小鼠 单克隆(C-6)
  • 免疫印迹; 人类; 1:1000; 图 1g
圣克鲁斯生物技术存活素抗体(Santa Cruz, sc-374616)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 1g). Mol Med Rep (2016) ncbi
小鼠 单克隆(D-8)
  • 免疫组化; 人类; 1:50; 图 4
  • 免疫印迹; 人类; 1:200
圣克鲁斯生物技术存活素抗体(Santa Cruz, BIRC5 D-8)被用于被用于免疫组化在人类样本上浓度为1:50 (图 4) 和 被用于免疫印迹在人类样本上浓度为1:200. J Clin Endocrinol Metab (2016) ncbi
小鼠 单克隆(D-8)
  • 免疫组化-石蜡切片; 人类; 1:50; 图 1
圣克鲁斯生物技术存活素抗体(Santa Cruz, sc-17779)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:50 (图 1). Mol Clin Oncol (2016) ncbi
小鼠 单克隆(D-8)
  • 免疫细胞化学; 人类; 1:300; 图 1
  • 免疫印迹; 人类; 图 2
圣克鲁斯生物技术存活素抗体(Santa Cruz, sc-17779)被用于被用于免疫细胞化学在人类样本上浓度为1:300 (图 1) 和 被用于免疫印迹在人类样本上 (图 2). PLoS ONE (2016) ncbi
小鼠 单克隆(D-8)
  • 流式细胞仪; 人类; 1:25; 图 1b
  • 免疫组化; 人类; 图 1a
  • 免疫印迹; 人类; 1:50; 图 1d
圣克鲁斯生物技术存活素抗体(Santacruz, sc-17779)被用于被用于流式细胞仪在人类样本上浓度为1:25 (图 1b), 被用于免疫组化在人类样本上 (图 1a) 和 被用于免疫印迹在人类样本上浓度为1:50 (图 1d). Chem Biol Interact (2016) ncbi
小鼠 单克隆(D-8)
  • 免疫组化-石蜡切片; 人类; 图 5
圣克鲁斯生物技术存活素抗体(Santa Cruz, sc-17779)被用于被用于免疫组化-石蜡切片在人类样本上 (图 5). Mod Pathol (2016) ncbi
小鼠 单克隆(D-8)
  • 免疫印迹; 人类; 图 1
圣克鲁斯生物技术存活素抗体(Santa Cruz, sc-17779)被用于被用于免疫印迹在人类样本上 (图 1). Oncotarget (2016) ncbi
小鼠 单克隆(D-8)
  • 免疫印迹; 人类; 图 5
圣克鲁斯生物技术存活素抗体(Santa Cruz Biotechnology, sc-17779)被用于被用于免疫印迹在人类样本上 (图 5). Mol Cell Proteomics (2016) ncbi
小鼠 单克隆(D-8)
  • 免疫印迹; 人类; 图 1
圣克鲁斯生物技术存活素抗体(Santa Cruz, sc-17779)被用于被用于免疫印迹在人类样本上 (图 1). Oncogene (2016) ncbi
小鼠 单克隆(D-8)
  • 免疫印迹; 小鼠; 图 7d
圣克鲁斯生物技术存活素抗体(Santa Cruz, 17779)被用于被用于免疫印迹在小鼠样本上 (图 7d). Oncotarget (2015) ncbi
小鼠 单克隆(D-8)
  • 免疫印迹; 人类; 1:75
圣克鲁斯生物技术存活素抗体(Santa Cruz, sc-17779)被用于被用于免疫印迹在人类样本上浓度为1:75. J Cancer Res Clin Oncol (2015) ncbi
小鼠 单克隆(D-8)
  • 免疫印迹; 人类
圣克鲁斯生物技术存活素抗体(Santa Cruz, sc-17779)被用于被用于免疫印迹在人类样本上. Cell Oncol (Dordr) (2015) ncbi
小鼠 单克隆(D-8)
  • 免疫印迹; 小鼠; 图 6
圣克鲁斯生物技术存活素抗体(Santa Cruz Biotechnology, sc-17779)被用于被用于免疫印迹在小鼠样本上 (图 6). Free Radic Biol Med (2015) ncbi
小鼠 单克隆(D-8)
  • 免疫印迹; 人类
圣克鲁斯生物技术存活素抗体(Santa Cruz Biotechnology, sc-17779)被用于被用于免疫印迹在人类样本上. Cell Signal (2014) ncbi
小鼠 单克隆(D-8)
  • 免疫印迹; 人类
圣克鲁斯生物技术存活素抗体(Santa Cruz Biotechnology, D-8)被用于被用于免疫印迹在人类样本上. Mol Cancer Ther (2014) ncbi
小鼠 单克隆(D-8)
  • 免疫组化-石蜡切片; 人类; 1:50
圣克鲁斯生物技术存活素抗体(Santa Cruz Biotechnology, clone D8)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:50. Oral Dis (2014) ncbi
小鼠 单克隆(D-8)
  • 免疫组化-石蜡切片; 人类; 1:50
圣克鲁斯生物技术存活素抗体(Santa Cruz, sc17779)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:50. Exp Ther Med (2012) ncbi
小鼠 单克隆(D-8)
  • 免疫印迹; 人类; 1:100
圣克鲁斯生物技术存活素抗体(Santa Cruz Biotechnology, sc17779)被用于被用于免疫印迹在人类样本上浓度为1:100. Eur J Cancer (2012) ncbi
艾博抗(上海)贸易有限公司
domestic rabbit 单克隆(EP2880Y)
  • 免疫印迹; 人类; 图 6b
艾博抗(上海)贸易有限公司存活素抗体(Abcam, ab76424)被用于被用于免疫印迹在人类样本上 (图 6b). Biomed Pharmacother (2018) ncbi
domestic rabbit 多克隆
  • 免疫组化; 人类; 1:400; 图 4
艾博抗(上海)贸易有限公司存活素抗体(Abcam, Ab469)被用于被用于免疫组化在人类样本上浓度为1:400 (图 4). J Clin Endocrinol Metab (2016) ncbi
domestic rabbit 单克隆(EP2880Y)
  • 免疫印迹; 人类; 图 5
艾博抗(上海)贸易有限公司存活素抗体(Abcam, ab76424)被用于被用于免疫印迹在人类样本上 (图 5). J Cancer (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 1
艾博抗(上海)贸易有限公司存活素抗体(Abcam, ab469)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 1). Mol Med Rep (2016) ncbi
domestic goat 多克隆
  • 免疫细胞化学; 人类; 图 1
艾博抗(上海)贸易有限公司存活素抗体(Abcam, ab27468)被用于被用于免疫细胞化学在人类样本上 (图 1). Mol Med Rep (2016) ncbi
domestic rabbit 单克隆(EP2880Y)
  • 免疫印迹; 人类; 图 2d
艾博抗(上海)贸易有限公司存活素抗体(Abcam, ab76424)被用于被用于免疫印迹在人类样本上 (图 2d). Cell Death Dis (2015) ncbi
domestic rabbit 单克隆(EPR2675)
  • 免疫组化-石蜡切片; 人类; 图 1a
艾博抗(上海)贸易有限公司存活素抗体(Abcam, ab134170)被用于被用于免疫组化-石蜡切片在人类样本上 (图 1a). Onco Targets Ther (2015) ncbi
domestic rabbit 单克隆(EP2880Y)
  • 免疫组化-石蜡切片; 人类; 图 4
  • 免疫印迹; 人类; 图 5
艾博抗(上海)贸易有限公司存活素抗体(Abcam, ab76424)被用于被用于免疫组化-石蜡切片在人类样本上 (图 4) 和 被用于免疫印迹在人类样本上 (图 5). Phytother Res (2015) ncbi
domestic rabbit 单克隆(EP2880Y)
  • 免疫印迹; 人类
艾博抗(上海)贸易有限公司存活素抗体(Abcam, ab76424)被用于被用于免疫印迹在人类样本上. World J Gastroenterol (2014) ncbi
domestic rabbit 单克隆(EP2880Y)
  • 免疫组化-石蜡切片; 人类
艾博抗(上海)贸易有限公司存活素抗体(Abcam, ab76424)被用于被用于免疫组化-石蜡切片在人类样本上. PLoS ONE (2014) ncbi
domestic rabbit 单克隆(EP2880Y)
  • 免疫印迹; 人类
艾博抗(上海)贸易有限公司存活素抗体(Abcam, ab76424)被用于被用于免疫印迹在人类样本上. Eur J Cell Biol (2014) ncbi
安迪生物R&D
domestic rabbit 多克隆
  • 免疫组化; 人类; 图 2b
  • 免疫印迹; 人类; 图 1a
  • 免疫印迹; 小鼠; 图 s1a
安迪生物R&D存活素抗体(R&D Systems, AF886)被用于被用于免疫组化在人类样本上 (图 2b), 被用于免疫印迹在人类样本上 (图 1a) 和 被用于免疫印迹在小鼠样本上 (图 s1a). Autophagy (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 2b
安迪生物R&D存活素抗体(R&D Systems, AF886)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 2b). Oncotarget (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:3000; 图 1
安迪生物R&D存活素抗体(R&D Systems, AF886)被用于被用于免疫印迹在人类样本上浓度为1:3000 (图 1). EMBO Mol Med (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 3
安迪生物R&D存活素抗体(R&D systems, AF886)被用于被用于免疫印迹在人类样本上 (图 3). Onco Targets Ther (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 5b
安迪生物R&D存活素抗体(R&D, AF886)被用于被用于免疫印迹在人类样本上 (图 5b). Virology (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 2
安迪生物R&D存活素抗体(R&D, AF886)被用于被用于免疫印迹在人类样本上 (图 2). Front Pharmacol (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 5
安迪生物R&D存活素抗体(R&D Systems, AF886)被用于被用于免疫印迹在人类样本上 (图 5). Sci Rep (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:250; 图 4b
  • 免疫印迹; 小鼠; 1:400; 图 4a
安迪生物R&D存活素抗体(R&D Systems, AF886)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:250 (图 4b) 和 被用于免疫印迹在小鼠样本上浓度为1:400 (图 4a). PLoS ONE (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 4
安迪生物R&D存活素抗体(R&D System, AF886)被用于被用于免疫印迹在人类样本上 (图 4). Sci Rep (2016) ncbi
Novus Biologicals
domestic rabbit 多克隆(OTI2B3)
  • 免疫细胞化学; 人类; 图 3d
  • 免疫印迹; 人类; 图 4b
Novus Biologicals存活素抗体(Novus Biologicals, NB500-201)被用于被用于免疫细胞化学在人类样本上 (图 3d) 和 被用于免疫印迹在人类样本上 (图 4b). Cancers (Basel) (2016) ncbi
domestic rabbit 多克隆(OTI2B3)
  • 免疫印迹; 人类; 图 1c
Novus Biologicals存活素抗体(Novus, 500-201L)被用于被用于免疫印迹在人类样本上 (图 1c). Cell Signal (2017) ncbi
domestic rabbit 多克隆(OTI2B3)
  • 免疫细胞化学; 人类; 1:300; 图 3
Novus Biologicals存活素抗体(Novus Biologicals, NB500-201)被用于被用于免疫细胞化学在人类样本上浓度为1:300 (图 3). Methods Mol Biol (2017) ncbi
domestic rabbit 多克隆(OTI2B3)
  • 免疫印迹; 人类; 1:1000; 图 3
Novus Biologicals存活素抗体(Novus Biologicals, NB500-201)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3). Nat Commun (2016) ncbi
domestic rabbit 多克隆(OTI2B3)
Novus Biologicals存活素抗体(Novusbio, NB500-201)被用于. Oncotarget (2015) ncbi
domestic rabbit 多克隆(OTI2B3)
Novus Biologicals存活素抗体(Novus, NB500-201)被用于. EMBO Mol Med (2015) ncbi
赛默飞世尔
domestic rabbit 多克隆
  • 免疫沉淀; 人类; 图 5a
赛默飞世尔存活素抗体(Thermo scientific, PA1-16836)被用于被用于免疫沉淀在人类样本上 (图 5a). Autophagy (2019) ncbi
小鼠 单克隆(STLALYV)
  • 流式细胞仪; 人类; 1:50; 图 4
赛默飞世尔存活素抗体(eBioscience, 129176)被用于被用于流式细胞仪在人类样本上浓度为1:50 (图 4). Mol Med Rep (2016) ncbi
domestic goat 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 5d
赛默飞世尔存活素抗体(Thermo Fisher, 9106)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 5d). J Biol Chem (2016) ncbi
小鼠 单克隆(3F5H5)
  • 免疫细胞化学; 人类; 图 4c
赛默飞世尔存活素抗体(Zymed, 37-2000)被用于被用于免疫细胞化学在人类样本上 (图 4c). J Biol Chem (2016) ncbi
武汉三鹰
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 5c, 6e
武汉三鹰存活素抗体(Proteintech, 10508?\1?\AP)被用于被用于免疫印迹在小鼠样本上 (图 5c, 6e). Cancer Med (2020) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:2000; 图 3a
武汉三鹰存活素抗体(Proteintech, 10508-1-AP)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 3a). Exp Ther Med (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 s3
武汉三鹰存活素抗体(Proteintech, 10508-1-AP)被用于被用于免疫印迹在人类样本上 (图 s3). Oncotarget (2016) ncbi
赛信通(上海)生物试剂有限公司
domestic rabbit 单克隆(71G4B7)
  • 免疫印迹; 人类; 图 4b
赛信通(上海)生物试剂有限公司存活素抗体(CST, 2808)被用于被用于免疫印迹在人类样本上 (图 4b). FASEB Bioadv (2020) ncbi
domestic rabbit 单克隆(71G4B7)
  • 免疫印迹; 人类; 图 1e
赛信通(上海)生物试剂有限公司存活素抗体(Cell Signaling, 2808)被用于被用于免疫印迹在人类样本上 (图 1e). Thorac Cancer (2020) ncbi
domestic rabbit 单克隆(71G4B7)
  • 免疫印迹; 人类; 1:1000; 图 3e
赛信通(上海)生物试剂有限公司存活素抗体(Cell Signaling, 2808S)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3e). J Cancer (2020) ncbi
domestic rabbit 单克隆(71G4B7)
  • 免疫组化-冰冻切片; 小鼠; 图 1a
赛信通(上海)生物试剂有限公司存活素抗体(Cell Signaling, 2808)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 1a). elife (2019) ncbi
domestic rabbit 单克隆(71G4B7)
  • 免疫印迹; 小鼠; 图 5a
赛信通(上海)生物试剂有限公司存活素抗体(Cell Signaling, 2808)被用于被用于免疫印迹在小鼠样本上 (图 5a). Biomed Pharmacother (2020) ncbi
domestic rabbit 单克隆(71G4B7)
  • proximity ligation assay; 人类; 图 5e, 7b
赛信通(上海)生物试剂有限公司存活素抗体(Cell Signaling, 2808)被用于被用于proximity ligation assay在人类样本上 (图 5e, 7b). Autophagy (2019) ncbi
domestic rabbit 单克隆(71G4B7)
  • 免疫细胞化学; 小鼠; 1:500; 图 s1a
赛信通(上海)生物试剂有限公司存活素抗体(Cell Signaling, 71G4B7)被用于被用于免疫细胞化学在小鼠样本上浓度为1:500 (图 s1a). Cell (2019) ncbi
domestic rabbit 单克隆(71G4B7)
  • 免疫印迹; 人类; 1:2000; 图 7e
赛信通(上海)生物试剂有限公司存活素抗体(Cell signaling, 2808)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 7e). Biomolecules (2019) ncbi
domestic rabbit 单克隆(71G4B7)
  • 免疫印迹; 人类; 1:1000; 图 s2b
赛信通(上海)生物试剂有限公司存活素抗体(Cell Signaling, 2808)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 s2b). Int J Biol Sci (2019) ncbi
domestic rabbit 单克隆(71G4B7)
  • mass cytometry; 人类; 图 3a
赛信通(上海)生物试剂有限公司存活素抗体(Cell Signaling Technologies, 2808)被用于被用于mass cytometry在人类样本上 (图 3a). Cell (2019) ncbi
domestic rabbit 单克隆(71G4B7)
  • 免疫印迹; 人类; 1:1000; 图 4a
赛信通(上海)生物试剂有限公司存活素抗体(Cell Signaling, 2808)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 4a). Int J Oncol (2019) ncbi
domestic rabbit 单克隆(71G4B7)
  • 免疫印迹; 人类; 图 4b
赛信通(上海)生物试剂有限公司存活素抗体(Cell Signaling, 2808)被用于被用于免疫印迹在人类样本上 (图 4b). Br J Cancer (2019) ncbi
domestic rabbit 单克隆(71G4B7)
  • 免疫组化-石蜡切片; 小鼠; 图 2e
赛信通(上海)生物试剂有限公司存活素抗体(Cell Signaling Technology, 2808)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 2e). Cancer Res (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 4a
赛信通(上海)生物试剂有限公司存活素抗体(Cell Signaling, 2803)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 4a). Am J Transl Res (2018) ncbi
domestic rabbit 单克隆(71G4B7)
  • 免疫印迹; 人类; 图 2b
赛信通(上海)生物试剂有限公司存活素抗体(cell signalling, 2808)被用于被用于免疫印迹在人类样本上 (图 2b). Cell Death Dis (2017) ncbi
domestic rabbit 单克隆(71G4B7)
  • 免疫印迹; 人类; 图 4a
  • 免疫印迹; 小鼠; 图 2a
赛信通(上海)生物试剂有限公司存活素抗体(Cell Signaling, 71G4B7)被用于被用于免疫印迹在人类样本上 (图 4a) 和 被用于免疫印迹在小鼠样本上 (图 2a). Sci Signal (2017) ncbi
domestic rabbit 单克隆(71G4B7)
  • 免疫组化; 小鼠; 图 5a
赛信通(上海)生物试剂有限公司存活素抗体(Cell Signaling, 71G4b7)被用于被用于免疫组化在小鼠样本上 (图 5a). Stem Cell Reports (2017) ncbi
domestic rabbit 单克隆(71G4B7)
  • 免疫印迹; 人类; 1:1000; 图 3a
赛信通(上海)生物试剂有限公司存活素抗体(Cell Signaling, 2808)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3a). Oncol Lett (2017) ncbi
domestic rabbit 单克隆(71G4B7)
  • 免疫印迹; 人类; 图 5a
赛信通(上海)生物试剂有限公司存活素抗体(Cell Signaling, 2808)被用于被用于免疫印迹在人类样本上 (图 5a). PLoS ONE (2016) ncbi
domestic rabbit 单克隆(71G4B7)
  • 免疫印迹; 人类; 图 5a
赛信通(上海)生物试剂有限公司存活素抗体(Cell Signaling, 2808)被用于被用于免疫印迹在人类样本上 (图 5a). Int J Mol Sci (2016) ncbi
domestic rabbit 单克隆(71G4B7)
  • 免疫印迹; 人类; 图 s4b
赛信通(上海)生物试剂有限公司存活素抗体(Cell Signaling, 2808)被用于被用于免疫印迹在人类样本上 (图 s4b). Cell Death Dis (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 4b
赛信通(上海)生物试剂有限公司存活素抗体(Cell Signaling Technology, 2803)被用于被用于免疫印迹在人类样本上 (图 4b). Oncotarget (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 4
赛信通(上海)生物试剂有限公司存活素抗体(Cell Signaling, 2803)被用于被用于免疫印迹在人类样本上 (图 4). PLoS ONE (2016) ncbi
domestic rabbit 单克隆(71G4B7)
  • 免疫细胞化学; 小鼠; 1:500; 图 s4
赛信通(上海)生物试剂有限公司存活素抗体(Cell Signaling, 2808S)被用于被用于免疫细胞化学在小鼠样本上浓度为1:500 (图 s4). J Cell Sci (2016) ncbi
小鼠 单克隆(6E4)
  • 免疫印迹; 人类; 1:1000; 图 5
赛信通(上海)生物试剂有限公司存活素抗体(Cell Signaling Tech, 2802S)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 5). Oncol Lett (2016) ncbi
domestic rabbit 单克隆(71G4B7)
  • 免疫组化; 人类; 图 2
赛信通(上海)生物试剂有限公司存活素抗体(Cell Signaling, 71G4B7)被用于被用于免疫组化在人类样本上 (图 2). J Clin Pathol (2016) ncbi
domestic rabbit 单克隆(71G4B7)
  • 免疫印迹; 人类; 图 5
赛信通(上海)生物试剂有限公司存活素抗体(Cell Signaling, 2808)被用于被用于免疫印迹在人类样本上 (图 5). Cell Mol Life Sci (2016) ncbi
domestic rabbit 单克隆(71G4B7)
  • 免疫印迹; 人类; 图 4
赛信通(上海)生物试剂有限公司存活素抗体(Cell Signaling Technology, 2808S)被用于被用于免疫印迹在人类样本上 (图 4). Sci Rep (2016) ncbi
domestic rabbit 单克隆(71G4B7)
  • 免疫组化-冰冻切片; 小鼠; 图 5
赛信通(上海)生物试剂有限公司存活素抗体(Cell signaling, 28085)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 5). Cell Rep (2016) ncbi
domestic rabbit 单克隆(71G4B7)
  • 免疫印迹; 人类; 图 7b
赛信通(上海)生物试剂有限公司存活素抗体(CST, 2808)被用于被用于免疫印迹在人类样本上 (图 7b). J Biol Chem (2016) ncbi
domestic rabbit 单克隆(71G4B7)
  • 免疫组化-石蜡切片; 人类; 1:200; 图 7c
  • 免疫印迹; 人类; 1:1000; 图 3a
赛信通(上海)生物试剂有限公司存活素抗体(Cell Signaling, 2808)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:200 (图 7c) 和 被用于免疫印迹在人类样本上浓度为1:1000 (图 3a). Oncotarget (2016) ncbi
domestic rabbit 单克隆(71G4B7)
  • 免疫印迹; 人类; 图 5
赛信通(上海)生物试剂有限公司存活素抗体(Cell Signaling, 2808)被用于被用于免疫印迹在人类样本上 (图 5). Int J Mol Med (2016) ncbi
小鼠 单克隆(6E4)
  • 免疫印迹; 人类; 1:1000; 图 3a
赛信通(上海)生物试剂有限公司存活素抗体(Cell Signaling, 2802)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3a). Oncotarget (2016) ncbi
domestic rabbit 单克隆(71G4B7)
  • 免疫印迹; 人类; 1:1000; 图 5
赛信通(上海)生物试剂有限公司存活素抗体(Cell Signaling Technology, 2808)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 5). Nat Commun (2015) ncbi
domestic rabbit 单克隆(71G4B7)
  • 免疫印迹; 人类; 1:1000; 图 s3
赛信通(上海)生物试剂有限公司存活素抗体(Cell Signaling Technology, 2808)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 s3). PLoS ONE (2015) ncbi
domestic rabbit 单克隆(71G4B7)
  • 免疫印迹; 人类; 1:1000; 图 3b
赛信通(上海)生物试剂有限公司存活素抗体(Cell Signaling Technology, 2808)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3b). Int J Radiat Oncol Biol Phys (2015) ncbi
domestic rabbit 单克隆(71G4B7)
  • 免疫印迹; 人类; 图 3
赛信通(上海)生物试剂有限公司存活素抗体(CST, 2808)被用于被用于免疫印迹在人类样本上 (图 3). Oncotarget (2015) ncbi
domestic rabbit 单克隆(71G4B7)
  • 免疫细胞化学; 小鼠; 1:400; 图 3
  • 免疫组化; 小鼠; 1:400; 图 6
赛信通(上海)生物试剂有限公司存活素抗体(Cell Signaling Technology, 2808)被用于被用于免疫细胞化学在小鼠样本上浓度为1:400 (图 3) 和 被用于免疫组化在小鼠样本上浓度为1:400 (图 6). Lab Invest (2015) ncbi
domestic rabbit 单克隆(71G4B7)
  • 免疫印迹; 人类; 1:1000; 图 2e
赛信通(上海)生物试剂有限公司存活素抗体(Cell Signaling Technology, 2808)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 2e). Oncotarget (2015) ncbi
domestic rabbit 单克隆(71G4B7)
  • 免疫细胞化学; 小鼠; 1:500; 图 5
赛信通(上海)生物试剂有限公司存活素抗体(Cell Signaling Technology, 2808S)被用于被用于免疫细胞化学在小鼠样本上浓度为1:500 (图 5). Biol Reprod (2015) ncbi
domestic rabbit 单克隆(71G4B7)
  • 免疫印迹; 人类; 图 1c
赛信通(上海)生物试剂有限公司存活素抗体(Cell Signaling, 2808)被用于被用于免疫印迹在人类样本上 (图 1c). Oncotarget (2015) ncbi
domestic rabbit 单克隆(71G4B7)
  • 免疫印迹; 小鼠
赛信通(上海)生物试剂有限公司存活素抗体(Cell Signaling Technology, 2808S)被用于被用于免疫印迹在小鼠样本上. J Agric Food Chem (2015) ncbi
domestic rabbit 单克隆(71G4B7)
  • 免疫组化; 人类; 图 7
  • 免疫印迹; 人类; 图 1
赛信通(上海)生物试剂有限公司存活素抗体(Abcam, 2808)被用于被用于免疫组化在人类样本上 (图 7) 和 被用于免疫印迹在人类样本上 (图 1). Breast Cancer Res (2015) ncbi
domestic rabbit 单克隆(71G4B7)
  • 免疫印迹; 人类; 图 3e
赛信通(上海)生物试剂有限公司存活素抗体(Cell signaling, 71G4B7)被用于被用于免疫印迹在人类样本上 (图 3e). J Cell Biochem (2015) ncbi
domestic rabbit 单克隆(71G4B7)
  • 免疫细胞化学; 小鼠; 1:500; 图 5
赛信通(上海)生物试剂有限公司存活素抗体(Cell Signaling Technology, 2808S)被用于被用于免疫细胞化学在小鼠样本上浓度为1:500 (图 5). J Cell Sci (2014) ncbi
domestic rabbit 单克隆(71G4B7)
  • 免疫组化-石蜡切片; 小鼠; 图 1c
  • 免疫印迹; 小鼠; 图 1b
赛信通(上海)生物试剂有限公司存活素抗体(Cell Signaling Technology, 2808S)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 1c) 和 被用于免疫印迹在小鼠样本上 (图 1b). Oncogene (2015) ncbi
domestic rabbit 单克隆(71G4B7)
  • 免疫组化-石蜡切片; 人类; 1:50
  • 免疫印迹; 人类; 1:500
赛信通(上海)生物试剂有限公司存活素抗体(Cell Signaling, #2808)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:50 和 被用于免疫印迹在人类样本上浓度为1:500. Oncotarget (2014) ncbi
domestic rabbit 单克隆(71G4B7)
  • 免疫印迹; 人类; 1:1000
赛信通(上海)生物试剂有限公司存活素抗体(Cell Signaling, #2808)被用于被用于免疫印迹在人类样本上浓度为1:1000. Int J Cancer (2015) ncbi
domestic rabbit 单克隆(71G4B7)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司存活素抗体(Cell Signalling Technology, 71G4B7)被用于被用于免疫印迹在人类样本上. PLoS ONE (2014) ncbi
domestic rabbit 单克隆(71G4B7)
  • 免疫组化-石蜡切片; 小鼠; 1:400
  • 免疫印迹; 小鼠
赛信通(上海)生物试剂有限公司存活素抗体(Cell Signaling, 71G4B7)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:400 和 被用于免疫印迹在小鼠样本上. Int J Cancer (2014) ncbi
domestic rabbit 单克隆(71G4B7)
  • 免疫印迹; 人类; 图 5
赛信通(上海)生物试剂有限公司存活素抗体(Cell Signaling, 2808)被用于被用于免疫印迹在人类样本上 (图 5). Mol Carcinog (2014) ncbi
文章列表
  1. Howell M, Green R, Khalil R, Foran E, Quarni W, Nair R, et al. Lung cancer cells survive epidermal growth factor receptor tyrosine kinase inhibitor exposure through upregulation of cholesterol synthesis. FASEB Bioadv. 2020;2:90-105 pubmed 出版商
  2. Zuo J, Zhao M, Fan Z, Liu B, Wang Y, Li Y, et al. MicroRNA-153-3p regulates cell proliferation and cisplatin resistance via Nrf-2 in esophageal squamous cell carcinoma. Thorac Cancer. 2020;11:738-747 pubmed 出版商
  3. Ju L, Shan L, Yin B, Song Y. δ-Catenin regulates proliferation and apoptosis in renal cell carcinoma via promoting β-catenin nuclear localization and activating its downstream target genes. Cancer Med. 2020;9:2201-2212 pubmed 出版商
  4. Shen S, Dean D, Yu Z, Hornicek F, Kan Q, Duan Z. Aberrant CDK9 expression within chordoma tissues and the therapeutic potential of a selective CDK9 inhibitor LDC000067. J Cancer. 2020;11:132-141 pubmed 出版商
  5. Lough K, Byrd K, Descovich C, Spitzer D, Bergman A, BEAUDOIN G, et al. Telophase correction refines division orientation in stratified epithelia. elife. 2019;8: pubmed 出版商
  6. Zhan Y, Li R, Feng C, Li X, Huang S, Wang L, et al. Chlorogenic acid inhibits esophageal squamous cell carcinoma growth in vitro and in vivo by downregulating the expression of BMI1 and SOX2. Biomed Pharmacother. 2020;121:109602 pubmed 出版商
  7. Lin T, Chan H, Chen S, Sarvagalla S, Chen P, Coumar M, et al. BIRC5/Survivin is a novel ATG12-ATG5 conjugate interactor and an autophagy-induced DNA damage suppressor in human cancer and mouse embryonic fibroblast cells. Autophagy. 2019;:1-18 pubmed 出版商
  8. Thangaraj K, Balasubramanian B, Park S, Natesan K, Liu W, Manju V. Orientin Induces G0/G1 Cell Cycle Arrest and Mitochondria Mediated Intrinsic Apoptosis in Human Colorectal Carcinoma HT29 Cells. Biomolecules. 2019;9: pubmed 出版商
  9. Akera T, Trimm E, Lampson M. Molecular Strategies of Meiotic Cheating by Selfish Centromeres. Cell. 2019;178:1132-1144.e10 pubmed 出版商
  10. Roy N, Monisha J, Padmavathi G, Lalhruaitluanga H, Kumar N, Singh A, et al. Isoform-Specific Role of Akt in Oral Squamous Cell Carcinoma. Biomolecules. 2019;9: pubmed 出版商
  11. Wang H, Huang F, Zhang Z, Wang P, Luo Y, Li H, et al. Feedback Activation of SGK3 and AKT Contributes to Rapamycin Resistance by Reactivating mTORC1/4EBP1 Axis via TSC2 in Breast Cancer. Int J Biol Sci. 2019;15:929-941 pubmed 出版商
  12. Forte I, Indovina P, Iannuzzi C, Cirillo D, Di Marzo D, Barone D, et al. Targeted therapy based on p53 reactivation reduces both glioblastoma cell growth and resistance to temozolomide. Int J Oncol. 2019;54:2189-2199 pubmed 出版商
  13. Wagner J, Rapsomaniki M, Chevrier S, Anzeneder T, Langwieder C, Dykgers A, et al. A Single-Cell Atlas of the Tumor and Immune Ecosystem of Human Breast Cancer. Cell. 2019;177:1330-1345.e18 pubmed 出版商
  14. Liu X, Chen H, Hou Y, Ma X, Ye M, Huang R, et al. Adaptive EGF expression sensitizes pancreatic cancer cells to ionizing radiation through activation of the cyclin D1/P53/PARP pathway. Int J Oncol. 2019;54:1466-1480 pubmed 出版商
  15. Dufour F, Silina L, Neyret Kahn H, Moreno Vega A, Krucker C, Karboul N, et al. TYRO3 as a molecular target for growth inhibition and apoptosis induction in bladder cancer. Br J Cancer. 2019;120:555-564 pubmed 出版商
  16. Bishnupuri K, Alvarado D, Khouri A, Shabsovich M, Chen B, Dieckgraefe B, et al. IDO1 and kynurenine pathway metabolites activate PI3K-Akt signaling in the neoplastic colon epithelium to promote cancer cell proliferation and inhibit apoptosis. Cancer Res. 2019;: pubmed 出版商
  17. Urtishak K, Wang L, Culjkovic Kraljacic B, Davenport J, Porazzi P, Vincent T, et al. Targeting EIF4E signaling with ribavirin in infant acute lymphoblastic leukemia. Oncogene. 2019;38:2241-2262 pubmed 出版商
  18. Yang R, Tao Z, Huang M, Zheng Y, Dai M, Zou Y, et al. Knockout of the placenta specific 8 gene radiosensitizes nasopharyngeal carcinoma cells by activating the PI3K/AKT/GSK3β pathway. Am J Transl Res. 2018;10:455-464 pubmed
  19. Yu Y, Shang R, Chen Y, Li J, Liang Z, Hu J, et al. Tumor suppressive ZBTB4 inhibits cell growth by regulating cell cycle progression and apoptosis in Ewing sarcoma. Biomed Pharmacother. 2018;100:108-115 pubmed 出版商
  20. Oldrini B, Hsieh W, Erdjument Bromage H, Codega P, Carro M, Curiel García A, et al. EGFR feedback-inhibition by Ran-binding protein 6 is disrupted in cancer. Nat Commun. 2017;8:2035 pubmed 出版商
  21. Periyasamy M, Singh A, Gemma C, Kranjec C, Farzan R, Leach D, et al. p53 controls expression of the DNA deaminase APOBEC3B to limit its potential mutagenic activity in cancer cells. Nucleic Acids Res. 2017;45:11056-11069 pubmed 出版商
  22. Liu Z, Li H, Liu J, Wu M, Chen X, Liu L, et al. Inactivated Wnt signaling in resveratrol-treated epidermal squamous cancer cells and its biological implication. Oncol Lett. 2017;14:2239-2243 pubmed 出版商
  23. Xu X, Cui Y, Cao L, Zhang Y, Yin Y, Hu X. PCSK9 regulates apoptosis in human lung adenocarcinoma A549 cells via endoplasmic reticulum stress and mitochondrial signaling pathways. Exp Ther Med. 2017;13:1993-1999 pubmed 出版商
  24. Sahu U, Choudhury A, Parvez S, Biswas S, Kar S. Induction of intestinal stemness and tumorigenicity by aberrant internalization of commensal non-pathogenic E. coli. Cell Death Dis. 2017;8:e2667 pubmed 出版商
  25. CAROMILE L, Dortche K, Rahman M, Grant C, Stoddard C, Ferrer F, et al. PSMA redirects cell survival signaling from the MAPK to the PI3K-AKT pathways to promote the progression of prostate cancer. Sci Signal. 2017;10: pubmed 出版商
  26. Sgourdou P, Mishra Gorur K, Saotome I, Henagariu O, Tuysuz B, Campos C, et al. Disruptions in asymmetric centrosome inheritance and WDR62-Aurora kinase B interactions in primary microcephaly. Sci Rep. 2017;7:43708 pubmed 出版商
  27. Yamada M, Egli D. Genome Transfer Prevents Fragmentation and Restores Developmental Potential of Developmentally Compromised Postovulatory Aged Mouse Oocytes. Stem Cell Reports. 2017;8:576-588 pubmed 出版商
  28. Cai L, Wang H, Yang Q. CRKL overexpression promotes cell proliferation and inhibits apoptosis in endometrial carcinoma. Oncol Lett. 2017;13:51-56 pubmed 出版商
  29. Reich T, Switzeny O, Renovanz M, Sommer C, Kaina B, Christmann M, et al. Epigenetic silencing of XAF1 in high-grade gliomas is associated with IDH1 status and improved clinical outcome. Oncotarget. 2017;8:15071-15084 pubmed 出版商
  30. Abadía Molina F, Morón Calvente V, Baird S, Shamim F, Martin F, MacKenzie A. Neuronal apoptosis inhibitory protein (NAIP) localizes to the cytokinetic machinery during cell division. Sci Rep. 2017;7:39981 pubmed 出版商
  31. Kreger B, Johansen E, Cerione R, Antonyak M. The Enrichment of Survivin in Exosomes from Breast Cancer Cells Treated with Paclitaxel Promotes Cell Survival and Chemoresistance. Cancers (Basel). 2016;8: pubmed
  32. Park S, Jwa E, Shin S, Ju E, Park I, Pak J, et al. Ibulocydine sensitizes human hepatocellular carcinoma cells to TRAIL-induced apoptosis via calpain-mediated Bax cleavage. Int J Biochem Cell Biol. 2017;83:47-55 pubmed 出版商
  33. Schafer C, Göder A, Beyer M, Kiweler N, Mahendrarajah N, Rauch A, et al. Class I histone deacetylases regulate p53/NF-?B crosstalk in cancer cells. Cell Signal. 2017;29:218-225 pubmed 出版商
  34. Martínez Castillo M, Bonilla Moreno R, Alemán Lazarini L, Meraz Rios M, Orozco L, Cedillo Barron L, et al. A Subpopulation of the K562 Cells Are Killed by Curcumin Treatment after G2/M Arrest and Mitotic Catastrophe. PLoS ONE. 2016;11:e0165971 pubmed 出版商
  35. Unruhe Knauf B, Knauer S. Analysis of HDACi-Induced Changes in Chromosomal Passenger Complex Localization. Methods Mol Biol. 2017;1510:47-59 pubmed
  36. Lu W, Shi J, Zhang J, Lv Z, Guo F, Huang H, et al. CXCL12/CXCR4 Axis Regulates Aggrecanase Activation and Cartilage Degradation in a Post-Traumatic Osteoarthritis Rat Model. Int J Mol Sci. 2016;17: pubmed
  37. Klingbeil O, Lesche R, Gelato K, Haendler B, Lejeune P. Inhibition of BET bromodomain-dependent XIAP and FLIP expression sensitizes KRAS-mutated NSCLC to pro-apoptotic agents. Cell Death Dis. 2016;7:e2365 pubmed 出版商
  38. Park S, Jo D, Jo S, Shin D, Shim S, Jo Y, et al. Inhibition of never in mitosis A (NIMA)-related kinase-4 reduces survivin expression and sensitizes cancer cells to TRAIL-induced cell death. Oncotarget. 2016;7:65957-65967 pubmed 出版商
  39. Twardziok M, Kleinsimon S, Rolff J, Jäger S, Eggert A, Seifert G, et al. Multiple Active Compounds from Viscum album L. Synergistically Converge to Promote Apoptosis in Ewing Sarcoma. PLoS ONE. 2016;11:e0159749 pubmed 出版商
  40. Balboula A, Nguyen A, Gentilello A, Quartuccio S, Drutovic D, Solc P, et al. Haspin kinase regulates microtubule-organizing center clustering and stability through Aurora kinase C in mouse oocytes. J Cell Sci. 2016;129:3648-3660 pubmed
  41. Shi Y, He Z, Jia Z, Xu C. Inhibitory effect of metformin combined with gemcitabine on pancreatic cancer cells in vitro and in vivo. Mol Med Rep. 2016;14:2921-8 pubmed 出版商
  42. Tang Y, Bao W, Yang J, Ma L, Yang J, Xu Y, et al. Umbilical cord-derived mesenchymal stem cells inhibit growth and promote apoptosis of HepG2 cells. Mol Med Rep. 2016;14:2717-24 pubmed 出版商
  43. Fotouhi O, Kjellin H, Larsson C, Hashemi J, Barriuso J, Juhlin C, et al. Proteomics Suggests a Role for APC-Survivin in Response to Somatostatin Analog Treatment of Neuroendocrine Tumors. J Clin Endocrinol Metab. 2016;101:3616-3627 pubmed
  44. Takasaki C, Kobayashi M, Ishibashi H, Akashi T, Okubo K. Expression of hypoxia-inducible factor-1? affects tumor proliferation and antiapoptosis in surgically resected lung cancer. Mol Clin Oncol. 2016;5:295-300 pubmed
  45. Bao H, Liu P, Jiang K, Zhang X, Xie L, Wang Z, et al. Huaier polysaccharide induces apoptosis in hepatocellular carcinoma cells through p38 MAPK. Oncol Lett. 2016;12:1058-1066 pubmed
  46. Kreger B, Dougherty A, Greene K, Cerione R, Antonyak M. Microvesicle Cargo and Function Changes upon Induction of Cellular Transformation. J Biol Chem. 2016;291:19774-85 pubmed 出版商
  47. Gholkar A, Cheung K, Williams K, Lo Y, Hamideh S, Nnebe C, et al. Fatostatin Inhibits Cancer Cell Proliferation by Affecting Mitotic Microtubule Spindle Assembly and Cell Division. J Biol Chem. 2016;291:17001-8 pubmed 出版商
  48. Sasai K, Katayama H, Hawke D, Sen S. Aurora-C Interactions with Survivin and INCENP Reveal Shared and Distinct Features Compared with Aurora-B Chromosome Passenger Protein Complex. PLoS ONE. 2016;11:e0157305 pubmed 出版商
  49. Engel K, Rudelius M, Slawska J, Jacobs L, Ahangarian Abhari B, Altmann B, et al. USP9X stabilizes XIAP to regulate mitotic cell death and chemoresistance in aggressive B-cell lymphoma. EMBO Mol Med. 2016;8:851-62 pubmed 出版商
  50. Lin K, Cheng S, Tsai S, Tsai J, Lin C, Cheung C. Delivery of a survivin promoter-driven antisense survivin-expressing plasmid DNA as a cancer therapeutic: a proof-of-concept study. Onco Targets Ther. 2016;9:2601-13 pubmed 出版商
  51. Murphy J, Hall W, Ratner L, Sheehy N. Novel interactions between the HTLV antisense proteins HBZ and APH-2 and the NFAR protein family: Implications for the HTLV lifecycles. Virology. 2016;494:129-42 pubmed 出版商
  52. Zeng W, Liu Q, Chen Z, Wu X, Zhong Y, Wu J. Silencing of hERG1 Gene Inhibits Proliferation and Invasion, and Induces Apoptosis in Human Osteosarcoma Cells by Targeting the NF-?B Pathway. J Cancer. 2016;7:746-57 pubmed 出版商
  53. Lee J, Kuo C, Tsai S, Cheng S, Chen S, Chan H, et al. Inhibition of HDAC3- and HDAC6-Promoted Survivin Expression Plays an Important Role in SAHA-Induced Autophagy and Viability Reduction in Breast Cancer Cells. Front Pharmacol. 2016;7:81 pubmed 出版商
  54. Venkatesan N, Kanwar J, Deepa P, Navaneethakrishnan S, Joseph C, Krishnakumar S. Targeting HSP90/Survivin using a cell permeable structure based peptido-mimetic shepherdin in retinoblastoma. Chem Biol Interact. 2016;252:141-9 pubmed 出版商
  55. Malherbe J, Fuller K, Mirzai B, Kavanagh S, So C, Ip H, et al. Dysregulation of the intrinsic apoptotic pathway mediates megakaryocytic hyperplasia in myeloproliferative neoplasms. J Clin Pathol. 2016;: pubmed 出版商
  56. Iimori M, Watanabe S, Kiyonari S, Matsuoka K, Sakasai R, Saeki H, et al. Phosphorylation of EB2 by Aurora B and CDK1 ensures mitotic progression and genome stability. Nat Commun. 2016;7:11117 pubmed 出版商
  57. Afsar T, Trembley J, Salomon C, Razak S, Khan M, Ahmed K. Growth inhibition and apoptosis in cancer cells induced by polyphenolic compounds of Acacia hydaspica: Involvement of multiple signal transduction pathways. Sci Rep. 2016;6:23077 pubmed 出版商
  58. Andersson E, Arvidsson Y, Swärd C, Hofving T, Wängberg B, Kristiansson E, et al. Expression profiling of small intestinal neuroendocrine tumors identifies subgroups with clinical relevance, prognostic markers and therapeutic targets. Mod Pathol. 2016;29:616-29 pubmed 出版商
  59. Zhang S, Liu B, Fan Z, Wang D, Liu Y, Li J, et al. Targeted inhibition of survivin with YM155 promotes apoptosis of hypoxic human pulmonary arterial smooth muscle cells via the upregulation of voltage-dependent K⁺ channels. Mol Med Rep. 2016;13:3415-22 pubmed 出版商
  60. Marek I, Lichtneger T, Cordasic N, Hilgers K, Volkert G, Fahlbusch F, et al. Alpha8 Integrin (Itga8) Signalling Attenuates Chronic Renal Interstitial Fibrosis by Reducing Fibroblast Activation, Not by Interfering with Regulation of Cell Turnover. PLoS ONE. 2016;11:e0150471 pubmed 出版商
  61. Lee S, Jeong A, Park J, Han S, Jang C, Kim K, et al. IK-guided PP2A suppresses Aurora B activity in the interphase of tumor cells. Cell Mol Life Sci. 2016;73:3375-86 pubmed 出版商
  62. Shukla S, Sinha S, Khan S, Kumar S, Singh K, Mitra K, et al. Cucurbitacin B inhibits the stemness and metastatic abilities of NSCLC via downregulation of canonical Wnt/β-catenin signaling axis. Sci Rep. 2016;6:21860 pubmed 出版商
  63. Fu Z, Wang L, Cui H, Peng J, Wang S, Geng J, et al. A novel small-molecule compound targeting CD147 inhibits the motility and invasion of hepatocellular carcinoma cells. Oncotarget. 2016;7:9429-47 pubmed 出版商
  64. Passer D, van de Vrugt A, Atmanli A, Domian I. Atypical Protein Kinase C-Dependent Polarized Cell Division Is Required for Myocardial Trabeculation. Cell Rep. 2016;14:1662-1672 pubmed 出版商
  65. Ghosh S, Shinogle H, Galeva N, Dobrowsky R, Blagg B. Endoplasmic Reticulum-resident Heat Shock Protein 90 (HSP90) Isoform Glucose-regulated Protein 94 (GRP94) Regulates Cell Polarity and Cancer Cell Migration by Affecting Intracellular Transport. J Biol Chem. 2016;291:8309-23 pubmed 出版商
  66. Li Y, Lu W, Saini S, Moukha Chafiq O, Pathak V, Ananthan S. Identification of quinazoline compounds as novel potent inhibitors of Wnt/?-catenin signaling in colorectal cancer cells. Oncotarget. 2016;7:11263-70 pubmed 出版商
  67. Park K, Yun H, Quang T, Oh H, Lee D, Auh Q, et al. 4-Methoxydalbergione suppresses growth and induces apoptosis in human osteosarcoma cells in vitro and in vivo xenograft model through down-regulation of the JAK2/STAT3 pathway. Oncotarget. 2016;7:6960-71 pubmed 出版商
  68. Han M, Lee D, Woo S, Seo B, Min K, Kim S, et al. Galangin sensitizes TRAIL-induced apoptosis through down-regulation of anti-apoptotic proteins in renal carcinoma Caki cells. Sci Rep. 2016;6:18642 pubmed 出版商
  69. Vartanian S, Ma T, Lee J, Haverty P, Kirkpatrick D, Yu K, et al. Application of Mass Spectrometry Profiling to Establish Brusatol as an Inhibitor of Global Protein Synthesis. Mol Cell Proteomics. 2016;15:1220-31 pubmed 出版商
  70. Hu Y, Guo R, Wei J, Zhou Y, Ji W, Liu J, et al. Effects of PI3K inhibitor NVP-BKM120 on overcoming drug resistance and eliminating cancer stem cells in human breast cancer cells. Cell Death Dis. 2015;6:e2020 pubmed 出版商
  71. Huang Y, Chen Y, Lai Y, Cheng C, Lin T, Su Y, et al. Resveratrol alleviates the cytotoxicity induced by the radiocontrast agent, ioxitalamate, by reducing the production of reactive oxygen species in HK-2 human renal proximal tubule epithelial cells in vitro. Int J Mol Med. 2016;37:83-91 pubmed 出版商
  72. Ko T, Chin H, Chuah C, Huang J, Ng K, Khaw S, et al. The BIM deletion polymorphism: A paradigm of a permissive interaction between germline and acquired TKI resistance factors in chronic myeloid leukemia. Oncotarget. 2016;7:2721-33 pubmed 出版商
  73. Wang B, Ma A, Zhang L, Jin W, Qian Y, Xu G, et al. POH1 deubiquitylates and stabilizes E2F1 to promote tumour formation. Nat Commun. 2015;6:8704 pubmed 出版商
  74. Lauková J, Kozubík A, Hofmanová J, Nekvindová J, Sova P, Moyer M, et al. Loss of PTEN Facilitates Rosiglitazone-Mediated Enhancement of Platinum(IV) Complex LA-12-Induced Apoptosis in Colon Cancer Cells. PLoS ONE. 2015;10:e0141020 pubmed 出版商
  75. Lim T, Lee I, Kim J, Kang W. Synergistic Effect of Simvastatin Plus Radiation in Gastric Cancer and Colorectal Cancer: Implications of BIRC5 and Connective Tissue Growth Factor. Int J Radiat Oncol Biol Phys. 2015;93:316-25 pubmed 出版商
  76. Wang J, Ma L, Tang X, Zhang X, Qiao Y, Shi Y, et al. Doxorubicin induces apoptosis by targeting Madcam1 and AKT and inhibiting protein translation initiation in hepatocellular carcinoma cells. Oncotarget. 2015;6:24075-91 pubmed
  77. Ciamporcero E, Shen H, Ramakrishnan S, Yu Ku S, Chintala S, Shen L, et al. YAP activation protects urothelial cell carcinoma from treatment-induced DNA damage. Oncogene. 2016;35:1541-53 pubmed 出版商
  78. Li C, Wang L, Zheng L, Zhan X, Xu B, Jiang J, et al. SIRT1 expression is associated with poor prognosis of lung adenocarcinoma. Onco Targets Ther. 2015;8:977-84 pubmed 出版商
  79. Tsuneki M, Hardee S, Michaud M, Morotti R, Lavik E, Madri J. A hydrogel-endothelial cell implant mimics infantile hemangioma: modulation by survivin and the Hippo pathway. Lab Invest. 2015;95:765-80 pubmed 出版商
  80. Sadowski S, Boufraqech M, Zhang L, Mehta A, Kapur P, Zhang Y, et al. Torin2 targets dysregulated pathways in anaplastic thyroid cancer and inhibits tumor growth and metastasis. Oncotarget. 2015;6:18038-49 pubmed
  81. Raimondi L, De Luca A, Amodio N, Manno M, Raccosta S, Taverna S, et al. Involvement of multiple myeloma cell-derived exosomes in osteoclast differentiation. Oncotarget. 2015;6:13772-89 pubmed
  82. Meidhof S, Brabletz S, Lehmann W, Preca B, Mock K, Ruh M, et al. ZEB1-associated drug resistance in cancer cells is reversed by the class I HDAC inhibitor mocetinostat. EMBO Mol Med. 2015;7:831-47 pubmed 出版商
  83. Balboula A, Stein P, Schultz R, Schindler K. RBBP4 regulates histone deacetylation and bipolar spindle assembly during oocyte maturation in the mouse. Biol Reprod. 2015;92:105 pubmed 出版商
  84. Ulasov I, Shah N, Kaverina N, Lee H, Lin B, Lieber A, et al. Tamoxifen improves cytopathic effect of oncolytic adenovirus in primary glioblastoma cells mediated through autophagy. Oncotarget. 2015;6:3977-87 pubmed
  85. Rogler A, Kendziorra E, Giedl J, Stoehr C, Taubert H, Goebell P, et al. Functional analyses and prognostic significance of SFRP1 expression in bladder cancer. J Cancer Res Clin Oncol. 2015;141:1779-90 pubmed 出版商
  86. Kim S, Nam S, Friedman M. The Tomato Glycoalkaloid α-Tomatine Induces Caspase-Independent Cell Death in Mouse Colon Cancer CT-26 Cells and Transplanted Tumors in Mice. J Agric Food Chem. 2015;63:1142-1150 pubmed 出版商
  87. Blanchard Z, Paul B, Craft B, ElShamy W. BRCA1-IRIS inactivation overcomes paclitaxel resistance in triple negative breast cancers. Breast Cancer Res. 2015;17:5 pubmed 出版商
  88. Papanikolaou V, Stefanou N, Dubos S, Papathanasiou I, Palianopoulou M, Valiakou V, et al. Synergy of leptin/STAT3 with HER2 receptor induces tamoxifen resistance in breast cancer cells through regulation of apoptosis-related genes. Cell Oncol (Dordr). 2015;38:155-64 pubmed 出版商
  89. Olayanju A, Copple I, Bryan H, Edge G, Sison R, Wong M, et al. Brusatol provokes a rapid and transient inhibition of Nrf2 signaling and sensitizes mammalian cells to chemical toxicity-implications for therapeutic targeting of Nrf2. Free Radic Biol Med. 2015;78:202-12 pubmed 出版商
  90. Guo L, Shen Y, Zhao X, Guo L, Yu Z, Wang D, et al. Curcumin combined with oxaliplatin effectively suppress colorectal carcinoma in vivo through inducing apoptosis. Phytother Res. 2015;29:357-65 pubmed 出版商
  91. Chen R, Xu B, Chen S, Chen S, Zhang T, Ren J, et al. Effect of oridonin-mediated hallmark changes on inflammatory pathways in human pancreatic cancer (BxPC-3) cells. World J Gastroenterol. 2014;20:14895-903 pubmed 出版商
  92. Alayev A, Berger S, Kramer M, Schwartz N, Holz M. The combination of rapamycin and resveratrol blocks autophagy and induces apoptosis in breast cancer cells. J Cell Biochem. 2015;116:450-7 pubmed 出版商
  93. Nguyen A, Gentilello A, Balboula A, Shrivastava V, Ohring J, Schindler K. Phosphorylation of threonine 3 on histone H3 by haspin kinase is required for meiosis I in mouse oocytes. J Cell Sci. 2014;127:5066-78 pubmed 出版商
  94. Brun S, Markant S, Esparza L, Garcia G, Terry D, Huang J, et al. Survivin as a therapeutic target in Sonic hedgehog-driven medulloblastoma. Oncogene. 2015;34:3770-9 pubmed 出版商
  95. Luk S, Xue H, Cheng H, Lin D, Gout P, Fazli L, et al. The BIRC6 gene as a novel target for therapy of prostate cancer: dual targeting of inhibitors of apoptosis. Oncotarget. 2014;5:6896-908 pubmed
  96. Kusner L, Ciesielski M, Marx A, Kaminski H, Fenstermaker R. Survivin as a potential mediator to support autoreactive cell survival in myasthenia gravis: a human and animal model study. PLoS ONE. 2014;9:e102231 pubmed 出版商
  97. Althoff K, Lindner S, Odersky A, Mestdagh P, Beckers A, Karczewski S, et al. miR-542-3p exerts tumor suppressive functions in neuroblastoma by downregulating Survivin. Int J Cancer. 2015;136:1308-20 pubmed 出版商
  98. Liu Z, Zhang X, Xu X, Chen L, Li W, Yu H, et al. RUNX3 inhibits survivin expression and induces cell apoptosis in gastric cancer. Eur J Cell Biol. 2014;93:118-26 pubmed 出版商
  99. Herod M, Salim O, Skilton R, Prince C, Ward V, Lambden P, et al. Expression of the murine norovirus (MNV) ORF1 polyprotein is sufficient to induce apoptosis in a virus-free cell model. PLoS ONE. 2014;9:e90679 pubmed 出版商
  100. Leiphrakpam P, Rajput A, Mathiesen M, Agarwal E, Lazenby A, Are C, et al. Ezrin expression and cell survival regulation in colorectal cancer. Cell Signal. 2014;26:868-79 pubmed 出版商
  101. Cheng Y, Holloway M, Nguyen K, McCauley D, Landesman Y, Kauffman M, et al. XPO1 (CRM1) inhibition represses STAT3 activation to drive a survivin-dependent oncogenic switch in triple-negative breast cancer. Mol Cancer Ther. 2014;13:675-86 pubmed 出版商
  102. Battle M, Gillespie C, Quarshie A, Lanier V, Harmon T, Wilson K, et al. Obesity induced a leptin-Notch signaling axis in breast cancer. Int J Cancer. 2014;134:1605-16 pubmed 出版商
  103. Brouxhon S, Kyrkanides S, Teng X, O Banion M, Clarke R, Byers S, et al. Soluble-E-cadherin activates HER and IAP family members in HER2+ and TNBC human breast cancers. Mol Carcinog. 2014;53:893-906 pubmed 出版商
  104. Lauxen I, Oliveira M, Rados P, Lingen M, Nor J, Sant Ana Filho M. Immunoprofiling of oral squamous cell carcinomas reveals high p63 and survivin expression. Oral Dis. 2014;20:e76-80 pubmed 出版商
  105. Kobayashi M, Huang C, Sonobe M, Kikuchi R, Ishikawa M, Kitamura J, et al. Intratumoral Wnt2B expression affects tumor proliferation and survival in malignant pleural mesothelioma patients. Exp Ther Med. 2012;3:952-958 pubmed
  106. Liu D, Kadota K, Ueno M, Nakashima N, Yokomise H, Huang C. Adenoviral vector expressing short hairpin RNA targeting Wnt2B has an effective antitumour activity against Wnt2B2-overexpressing tumours. Eur J Cancer. 2012;48:1208-18 pubmed 出版商