这是一篇来自已证抗体库的有关人类 突触素 (synaptophysin) 的综述,是根据235篇发表使用所有方法的文章归纳的。这综述旨在帮助来邦网的访客找到最适合突触素 抗体。
突触素 同义词: MRX96; MRXSYP

艾博抗(上海)贸易有限公司
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:2000; 图 1d
艾博抗(上海)贸易有限公司突触素抗体(Abcam, ab14692)被用于被用于免疫印迹在小鼠样本上浓度为1:2000 (图 1d). Aging Cell (2020) ncbi
domestic rabbit 单克隆(YE269)
  • 免疫印迹; 大鼠; 1:1000; 图 2f
艾博抗(上海)贸易有限公司突触素抗体(Abcam, ab32127)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 2f). Aging Cell (2020) ncbi
domestic rabbit 单克隆(EP1098Y)
  • 免疫组化-石蜡切片; 小鼠; 图 4c
艾博抗(上海)贸易有限公司突触素抗体(Abcam, ab52636)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 4c). Acta Neuropathol Commun (2019) ncbi
domestic rabbit 单克隆(YE269)
  • 免疫组化; 小鼠; 1:100; 图 2h
艾博抗(上海)贸易有限公司突触素抗体(Abcam, 32127)被用于被用于免疫组化在小鼠样本上浓度为1:100 (图 2h). Nat Commun (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:2000; 图 2e
艾博抗(上海)贸易有限公司突触素抗体(Abcam, Ab14692)被用于被用于免疫印迹在小鼠样本上浓度为1:2000 (图 2e). Aging Cell (2018) ncbi
domestic rabbit 单克隆(EP1098Y)
  • 免疫组化; 小鼠; 1:500; 图 6c
艾博抗(上海)贸易有限公司突触素抗体(Abcam, ab52636)被用于被用于免疫组化在小鼠样本上浓度为1:500 (图 6c). Sci Rep (2018) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:250; 图 5a
艾博抗(上海)贸易有限公司突触素抗体(Abcam, ab14692)被用于被用于免疫组化在小鼠样本上浓度为1:250 (图 5a). J Exp Med (2018) ncbi
小鼠 单克隆(SY38)
  • 免疫组化-冰冻切片; 小鼠; 1:200; 图 s7j
艾博抗(上海)贸易有限公司突触素抗体(Abcam, ab8049)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:200 (图 s7j). Cell (2018) ncbi
domestic rabbit 单克隆(YE269)
  • 免疫组化-石蜡切片; 人类; 1:400; 图 3c
艾博抗(上海)贸易有限公司突触素抗体(Abcam, ab32127)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:400 (图 3c). Oncol Lett (2017) ncbi
domestic rabbit 单克隆(YE269)
  • 免疫组化; 人类; 1:2000; 图 1b
艾博抗(上海)贸易有限公司突触素抗体(Abcam, ab32127)被用于被用于免疫组化在人类样本上浓度为1:2000 (图 1b). Am J Physiol Gastrointest Liver Physiol (2018) ncbi
domestic rabbit 单克隆(EP1098Y)
  • 免疫印迹; 小鼠; 1:2000; 图 1c
艾博抗(上海)贸易有限公司突触素抗体(Abcam, ab52636)被用于被用于免疫印迹在小鼠样本上浓度为1:2000 (图 1c). Sci Rep (2017) ncbi
小鼠 单克隆(SY38)
  • 免疫细胞化学; 大鼠; 图 2
艾博抗(上海)贸易有限公司突触素抗体(Abcam, ab8049)被用于被用于免疫细胞化学在大鼠样本上 (图 2). Mol Cell Neurosci (2017) ncbi
小鼠 单克隆(SY38)
  • 免疫组化; 大鼠; 1:200; 表 2
艾博抗(上海)贸易有限公司突触素抗体(Abcam, ab8049)被用于被用于免疫组化在大鼠样本上浓度为1:200 (表 2). J Neuroinflammation (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 大鼠; 1:200; 表 2
艾博抗(上海)贸易有限公司突触素抗体(Abcam, ab14692)被用于被用于免疫印迹在大鼠样本上浓度为1:200 (表 2). J Neuroinflammation (2017) ncbi
domestic rabbit 单克隆(EP1098Y)
  • 免疫组化; 小鼠; 1:500; 图 7k
艾博抗(上海)贸易有限公司突触素抗体(Abcam, EP1098Y)被用于被用于免疫组化在小鼠样本上浓度为1:500 (图 7k). Theranostics (2017) ncbi
小鼠 单克隆(SY38)
  • 免疫组化-冰冻切片; 大鼠; 1:500; 图 5a
  • 免疫印迹; 大鼠; 图 5b
艾博抗(上海)贸易有限公司突触素抗体(Abcam, ab8049)被用于被用于免疫组化-冰冻切片在大鼠样本上浓度为1:500 (图 5a) 和 被用于免疫印迹在大鼠样本上 (图 5b). Sci Rep (2017) ncbi
小鼠 单克隆(SY38)
  • 免疫组化-石蜡切片; 小鼠; 1:50; 图 s3b
艾博抗(上海)贸易有限公司突触素抗体(Abcam, ab8049)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:50 (图 s3b). Science (2017) ncbi
小鼠 单克隆(SY38)
  • 免疫印迹; 小鼠; 图 4a
艾博抗(上海)贸易有限公司突触素抗体(abcam, ab8049)被用于被用于免疫印迹在小鼠样本上 (图 4a). Neuropharmacology (2017) ncbi
小鼠 单克隆(SY38)
  • 免疫细胞化学; 小鼠; 图 3d
艾博抗(上海)贸易有限公司突触素抗体(Abcam, ab8049)被用于被用于免疫细胞化学在小鼠样本上 (图 3d). Exp Neurol (2017) ncbi
小鼠 单克隆(SY38)
  • 免疫细胞化学; 小鼠; 1:200; 图 8b
艾博抗(上海)贸易有限公司突触素抗体(Abcam, Ab8049)被用于被用于免疫细胞化学在小鼠样本上浓度为1:200 (图 8b). J Mol Neurosci (2017) ncbi
domestic rabbit 单克隆(YE269)
  • 免疫组化-石蜡切片; 人类; 1:600; 图 1e
艾博抗(上海)贸易有限公司突触素抗体(Abcam, ab32127)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:600 (图 1e). Front Neuroanat (2016) ncbi
domestic rabbit 单克隆(YE269)
  • 免疫印迹; 小鼠; 图 3f
艾博抗(上海)贸易有限公司突触素抗体(Abcam, ab32127)被用于被用于免疫印迹在小鼠样本上 (图 3f). Mol Neurobiol (2017) ncbi
domestic rabbit 单克隆(YE269)
  • 免疫组化-冰冻切片; 小鼠; 1:1000; 图 7c
艾博抗(上海)贸易有限公司突触素抗体(Abcam, ab32127)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:1000 (图 7c). Sci Rep (2016) ncbi
小鼠 单克隆(SY38)
  • 免疫细胞化学; 小鼠; 1:200; 图 3b
  • 免疫印迹; 小鼠; 1:8000; 图 3c
艾博抗(上海)贸易有限公司突触素抗体(Abcam, ab8049)被用于被用于免疫细胞化学在小鼠样本上浓度为1:200 (图 3b) 和 被用于免疫印迹在小鼠样本上浓度为1:8000 (图 3c). Neurobiol Dis (2017) ncbi
小鼠 单克隆(SY38)
  • 免疫印迹; 小鼠; 1:15,000; 图 4f
艾博抗(上海)贸易有限公司突触素抗体(Abcam, ab8049)被用于被用于免疫印迹在小鼠样本上浓度为1:15,000 (图 4f). Acta Neuropathol (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:500; 图 3a
艾博抗(上海)贸易有限公司突触素抗体(Abcam, ab14692)被用于被用于免疫组化在小鼠样本上浓度为1:500 (图 3a). Nat Commun (2016) ncbi
domestic rabbit 单克隆(YE269)
  • 免疫印迹; 小鼠; 1:20,000; 图 2b
艾博抗(上海)贸易有限公司突触素抗体(Abcam, 32127)被用于被用于免疫印迹在小鼠样本上浓度为1:20,000 (图 2b). J Neurosci Res (2017) ncbi
小鼠 单克隆(SY38)
  • 免疫组化-冰冻切片; 小鼠; 1:25; 图 1b
艾博抗(上海)贸易有限公司突触素抗体(Abcam, ab8049)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:25 (图 1b). J Physiol (2016) ncbi
domestic rabbit 单克隆(YE269)
  • 免疫组化-冰冻切片; 大鼠; 1:1000; 图 3
艾博抗(上海)贸易有限公司突触素抗体(Abcam, ab32127)被用于被用于免疫组化-冰冻切片在大鼠样本上浓度为1:1000 (图 3). Acta Neuropathol Commun (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:250; 图 3
艾博抗(上海)贸易有限公司突触素抗体(Abcam, ab32594)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:250 (图 3). Mol Neurodegener (2016) ncbi
domestic rabbit 单克隆(EP1098Y)
  • 免疫组化; 小鼠; 图 st1
艾博抗(上海)贸易有限公司突触素抗体(Abcam, ab52636)被用于被用于免疫组化在小鼠样本上 (图 st1). Nat Biotechnol (2016) ncbi
小鼠 单克隆(SY38)
  • 免疫印迹; 大鼠; 1:100; 图 s1
艾博抗(上海)贸易有限公司突触素抗体(Abcam, Ab8049)被用于被用于免疫印迹在大鼠样本上浓度为1:100 (图 s1). J Neuroimmunol (2016) ncbi
小鼠 单克隆(SY38)
  • 免疫印迹; 小鼠; 1:1000; 图 5
艾博抗(上海)贸易有限公司突触素抗体(Abcam, AB8049)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 5). Nat Commun (2016) ncbi
小鼠 单克隆(SY38)
  • 免疫组化-冰冻切片; 小鼠; 1:50; 图 3
艾博抗(上海)贸易有限公司突触素抗体(Abcam, ab8049)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:50 (图 3). Nature (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化; 人类; 1:500
艾博抗(上海)贸易有限公司突触素抗体(Abcam, ab14692)被用于被用于免疫组化在人类样本上浓度为1:500. Oncol Lett (2016) ncbi
domestic rabbit 单克隆(YE269)
  • 免疫印迹; 小鼠; 1:5000; 图 s2
艾博抗(上海)贸易有限公司突触素抗体(Abcam, ab32127)被用于被用于免疫印迹在小鼠样本上浓度为1:5000 (图 s2). Nat Neurosci (2016) ncbi
domestic rabbit 单克隆(EP1098Y)
  • 免疫组化-石蜡切片; 小鼠; 1:200; 图 3
艾博抗(上海)贸易有限公司突触素抗体(Abcam, ab52636)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:200 (图 3). PLoS ONE (2016) ncbi
domestic rabbit 单克隆(YE269)
  • 免疫印迹; 小鼠; 1:2000; 图 9a
艾博抗(上海)贸易有限公司突触素抗体(Abcam, ab32127)被用于被用于免疫印迹在小鼠样本上浓度为1:2000 (图 9a). Sci Rep (2016) ncbi
小鼠 单克隆(SY38)
  • 免疫组化-石蜡切片; 大鼠; 1:1000; 图 7g
  • 免疫印迹; 大鼠; 1:1000; 图 6e
艾博抗(上海)贸易有限公司突触素抗体(Abcam, ab8049)被用于被用于免疫组化-石蜡切片在大鼠样本上浓度为1:1000 (图 7g) 和 被用于免疫印迹在大鼠样本上浓度为1:1000 (图 6e). Sci Rep (2016) ncbi
小鼠 单克隆(SY38)
  • 免疫组化; 大鼠; 1:25; 图 5
艾博抗(上海)贸易有限公司突触素抗体(abcam, ab8049)被用于被用于免疫组化在大鼠样本上浓度为1:25 (图 5). Sci Rep (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:250; 图 s1c
艾博抗(上海)贸易有限公司突触素抗体(Abcam, ab14692)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:250 (图 s1c). Sci Rep (2016) ncbi
domestic rabbit 单克隆(YE269)
  • 免疫组化-石蜡切片; 小鼠; 图 2
艾博抗(上海)贸易有限公司突触素抗体(Abcam, ab32127)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 2). Sci Rep (2016) ncbi
小鼠 单克隆(SY38)
  • 免疫组化-石蜡切片; 小鼠; 1:100; 图 2
  • 免疫印迹; 小鼠; 1:1000; 图 2
艾博抗(上海)贸易有限公司突触素抗体(Abcam, ab8049)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:100 (图 2) 和 被用于免疫印迹在小鼠样本上浓度为1:1000 (图 2). Sci Rep (2016) ncbi
domestic rabbit 单克隆(YE269)
  • 免疫印迹; 小鼠; 1:40,000; 图 6a
艾博抗(上海)贸易有限公司突触素抗体(Abcam, ab32127)被用于被用于免疫印迹在小鼠样本上浓度为1:40,000 (图 6a). PLoS ONE (2016) ncbi
domestic rabbit 单克隆(YE269)
  • 免疫印迹; 小鼠; 1:1000; 图 2
艾博抗(上海)贸易有限公司突触素抗体(Abcam, ab32127)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 2). Neuropharmacology (2016) ncbi
小鼠 单克隆(SY38)
  • 免疫组化; 小鼠; 1:100; 图 6
艾博抗(上海)贸易有限公司突触素抗体(Abcam, ab8049)被用于被用于免疫组化在小鼠样本上浓度为1:100 (图 6). Cereb Cortex (2016) ncbi
小鼠 单克隆(SY38)
  • 免疫印迹; 人类; 1:5000; 图 6B
艾博抗(上海)贸易有限公司突触素抗体(Abcam, ab8049)被用于被用于免疫印迹在人类样本上浓度为1:5000 (图 6B). Acta Neuropathol Commun (2015) ncbi
小鼠 单克隆(SY38)
  • 免疫印迹; 小鼠; 1:1000; 图 8
艾博抗(上海)贸易有限公司突触素抗体(Abcam, ab8049)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 8). J Neurosci (2015) ncbi
domestic rabbit 单克隆(EP1098Y)
  • 免疫组化; 人类
艾博抗(上海)贸易有限公司突触素抗体(Abcam, ab52636)被用于被用于免疫组化在人类样本上. Hum Pathol (2015) ncbi
domestic rabbit 单克隆(EP1098Y)
  • 免疫印迹; 大鼠; 1:1000; 图 4
艾博抗(上海)贸易有限公司突触素抗体(Abcam, ab52636)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 4). Int J Neuropsychopharmacol (2015) ncbi
小鼠 单克隆(SY38)
  • 免疫组化; 人类; 1:50
  • 免疫印迹; 人类; 1:5000
艾博抗(上海)贸易有限公司突触素抗体(Abcam, Ab8049)被用于被用于免疫组化在人类样本上浓度为1:50 和 被用于免疫印迹在人类样本上浓度为1:5000. Acta Neuropathol Commun (2015) ncbi
domestic rabbit 单克隆(EP1098Y)
  • 免疫组化-自由浮动切片; 小鼠; 图 1
艾博抗(上海)贸易有限公司突触素抗体(Abcam, EP1098Y)被用于被用于免疫组化-自由浮动切片在小鼠样本上 (图 1). J Neurodegener Dis (2013) ncbi
domestic rabbit 单克隆(EP1098Y)
  • 免疫印迹; 小鼠; 1:1000
艾博抗(上海)贸易有限公司突触素抗体(Abcam, ab52636)被用于被用于免疫印迹在小鼠样本上浓度为1:1000. Psychiatry Res (2015) ncbi
domestic rabbit 单克隆(EP1098Y)
  • 免疫印迹; 大鼠; 1:20000
艾博抗(上海)贸易有限公司突触素抗体(Abcam, ab52636)被用于被用于免疫印迹在大鼠样本上浓度为1:20000. Cell Death Dis (2015) ncbi
小鼠 单克隆(SY38)
  • 免疫沉淀; 猪; 图 3
  • 免疫印迹; 猪; 图 1d,3
  • 免疫沉淀; 人类; 图 3
  • 免疫印迹; 人类; 图 1c
艾博抗(上海)贸易有限公司突触素抗体(Abcam, ab8049)被用于被用于免疫沉淀在猪样本上 (图 3), 被用于免疫印迹在猪样本上 (图 1d,3), 被用于免疫沉淀在人类样本上 (图 3) 和 被用于免疫印迹在人类样本上 (图 1c). PLoS ONE (2015) ncbi
domestic rabbit 单克隆(YE269)
  • 免疫组化-石蜡切片; 人类; 1:600
艾博抗(上海)贸易有限公司突触素抗体(Abcam, ab 32127)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:600. Dev Neurobiol (2015) ncbi
domestic rabbit 单克隆(EP1098Y)
  • 免疫印迹; 大鼠; 1:1000
艾博抗(上海)贸易有限公司突触素抗体(Abcam, ab52636)被用于被用于免疫印迹在大鼠样本上浓度为1:1000. Bipolar Disord (2015) ncbi
小鼠 单克隆(SY38)
  • 免疫组化-冰冻切片; 大鼠; 1:1000; 图 1a
艾博抗(上海)贸易有限公司突触素抗体(Abcam, ab8049)被用于被用于免疫组化-冰冻切片在大鼠样本上浓度为1:1000 (图 1a). Brain Struct Funct (2016) ncbi
domestic rabbit 单克隆(EP1098Y)
  • 免疫印迹; 人类; 1:1000
艾博抗(上海)贸易有限公司突触素抗体(Abcam, ab52636)被用于被用于免疫印迹在人类样本上浓度为1:1000. J Biol Chem (2014) ncbi
小鼠 单克隆(SY38)
  • 免疫印迹; 大鼠; 1:500
艾博抗(上海)贸易有限公司突触素抗体(Abcam, ab8049)被用于被用于免疫印迹在大鼠样本上浓度为1:500. Neurosci Lett (2014) ncbi
domestic rabbit 单克隆(EP1098Y)
  • 免疫印迹; 小鼠
艾博抗(上海)贸易有限公司突触素抗体(Abcam, ab52636)被用于被用于免疫印迹在小鼠样本上. Cell Death Dis (2014) ncbi
小鼠 单克隆(SY38)
  • 免疫组化-石蜡切片; 小鼠; 1:100
艾博抗(上海)贸易有限公司突触素抗体(Abcam, ab8049)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:100. Cancer Res (2013) ncbi
小鼠 单克隆(SY38)
  • 免疫印迹; 小鼠; 1:500; 图 1
艾博抗(上海)贸易有限公司突触素抗体(Abcam, ab8049)被用于被用于免疫印迹在小鼠样本上浓度为1:500 (图 1). J Alzheimers Dis (2014) ncbi
小鼠 单克隆(SY38)
  • 免疫细胞化学; 小鼠; 1:10
艾博抗(上海)贸易有限公司突触素抗体(Abcam, ab8049)被用于被用于免疫细胞化学在小鼠样本上浓度为1:10. PLoS Comput Biol (2013) ncbi
小鼠 单克隆(SY38)
  • 免疫组化-冰冻切片; 大鼠; 1:200
  • 免疫印迹; 大鼠
艾博抗(上海)贸易有限公司突触素抗体(Abcam, ab8049)被用于被用于免疫组化-冰冻切片在大鼠样本上浓度为1:200 和 被用于免疫印迹在大鼠样本上. PLoS ONE (2012) ncbi
圣克鲁斯生物技术
小鼠 单克隆(SVP38)
  • 免疫组化-石蜡切片; 小鼠; 图 5c
  • 免疫印迹; 小鼠; 图 5a
圣克鲁斯生物技术突触素抗体(Santa, sc-12,737)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 5c) 和 被用于免疫印迹在小鼠样本上 (图 5a). Mol Neurodegener (2020) ncbi
小鼠 单克隆(D-4)
  • 免疫印迹; 小鼠; 1:500; 图 5a
圣克鲁斯生物技术突触素抗体(SCB, sc-17750)被用于被用于免疫印迹在小鼠样本上浓度为1:500 (图 5a). Aging Cell (2019) ncbi
小鼠 单克隆(D-4)
  • 免疫组化; 小鼠; 1:500; 图 5f
圣克鲁斯生物技术突触素抗体(Santa Cruz, sc-17750)被用于被用于免疫组化在小鼠样本上浓度为1:500 (图 5f). elife (2019) ncbi
小鼠 单克隆(SVP38)
  • 免疫印迹; 小鼠; 图 4d
圣克鲁斯生物技术突触素抗体(Santa Cruz, sc-12737)被用于被用于免疫印迹在小鼠样本上 (图 4d). J Biol Chem (2019) ncbi
小鼠 单克隆(H-8)
  • 免疫组化; 小鼠; 图 5c
  • 免疫印迹; 小鼠; 图 5a
圣克鲁斯生物技术突触素抗体(Santa Cruz, sc-55507)被用于被用于免疫组化在小鼠样本上 (图 5c) 和 被用于免疫印迹在小鼠样本上 (图 5a). Sci Rep (2017) ncbi
小鼠 单克隆(D-4)
  • 免疫印迹; 大鼠; 图 5c
圣克鲁斯生物技术突触素抗体(Santa Cruz, sc-17750)被用于被用于免疫印迹在大鼠样本上 (图 5c). Front Cell Neurosci (2017) ncbi
小鼠 单克隆(D-4)
  • 免疫组化; 小鼠; 图 s1f
圣克鲁斯生物技术突触素抗体(Santa Cruz, sc-17750)被用于被用于免疫组化在小鼠样本上 (图 s1f). elife (2017) ncbi
小鼠 单克隆(D-4)
  • 免疫印迹; 小鼠; 1:1000; 图 1
圣克鲁斯生物技术突触素抗体(santa Cruz, Sc-17750)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 1). Nat Commun (2016) ncbi
小鼠 单克隆(H-8)
  • 免疫印迹; 大鼠; 1:100; 图 1
圣克鲁斯生物技术突触素抗体(Santa Cruz, sc-55507)被用于被用于免疫印迹在大鼠样本上浓度为1:100 (图 1). Brain Behav Immun (2016) ncbi
小鼠 单克隆(A-9)
  • 免疫印迹; 人类; 图 4
圣克鲁斯生物技术突触素抗体(Santa Cruz Biotechnology, A-9)被用于被用于免疫印迹在人类样本上 (图 4). PLoS Genet (2016) ncbi
小鼠 单克隆(D-4)
  • 其他; 人类; 1:100; 图 1d
  • 免疫印迹; 人类; 图 6f
圣克鲁斯生物技术突触素抗体(Santa Cruz, sc-17750)被用于被用于其他在人类样本上浓度为1:100 (图 1d) 和 被用于免疫印迹在人类样本上 (图 6f). Oncotarget (2015) ncbi
小鼠 单克隆(D-4)
  • 免疫组化; 大鼠; 1:300
圣克鲁斯生物技术突触素抗体(Santa Cruz Biotechnology, sc-17750)被用于被用于免疫组化在大鼠样本上浓度为1:300. Neurosci Lett (2015) ncbi
小鼠 单克隆(D-4)
  • 免疫细胞化学; 大鼠; 1:1000; 图 6
圣克鲁斯生物技术突触素抗体(Santa Cruz, sc-17750)被用于被用于免疫细胞化学在大鼠样本上浓度为1:1000 (图 6). J Cell Biol (2015) ncbi
小鼠 单克隆(D-4)
  • 免疫组化; 大鼠
圣克鲁斯生物技术突触素抗体(Santa Cruz Biotechnology, sc 17750)被用于被用于免疫组化在大鼠样本上. Brain Struct Funct (2016) ncbi
小鼠 单克隆(D-4)
  • 免疫印迹; 小鼠; 图 4c
圣克鲁斯生物技术突触素抗体(Santa Cruz Biotechnology, sc-17750)被用于被用于免疫印迹在小鼠样本上 (图 4c). Hum Mol Genet (2015) ncbi
小鼠 单克隆(D-4)
  • 酶联免疫吸附测定; 人类; 表 4
圣克鲁斯生物技术突触素抗体(Santa Cruz, sc17750)被用于被用于酶联免疫吸附测定在人类样本上 (表 4). Neuropathol Appl Neurobiol (2015) ncbi
小鼠 单克隆(H-8)
  • 免疫印迹; 小鼠; 图 2c
圣克鲁斯生物技术突触素抗体(Santa, sc-55507)被用于被用于免疫印迹在小鼠样本上 (图 2c). Hum Mol Genet (2014) ncbi
Synaptic Systems
豚鼠 多克隆(/)
Synaptic Systems突触素抗体(Synaptic Systems, 101 004)被用于. Sci Adv (2019) ncbi
小鼠 单克隆(07. Feb)
  • 免疫细胞化学; 人类; 图 1a
  • 免疫印迹; 人类; 图 s1j
Synaptic Systems突触素抗体(Synaptic Systems, 101 011)被用于被用于免疫细胞化学在人类样本上 (图 1a) 和 被用于免疫印迹在人类样本上 (图 s1j). Cell (2019) ncbi
豚鼠 多克隆(/)
  • 免疫组化-冰冻切片; 小鼠; 图 1b
  • 免疫组化-冰冻切片; 大鼠; 图 1g
Synaptic Systems突触素抗体(Synaptic Systems, 101004)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 1b) 和 被用于免疫组化-冰冻切片在大鼠样本上 (图 1g). PLoS Biol (2019) ncbi
小鼠 单克隆(07. Feb)
Synaptic Systems突触素抗体(Synaptic Systems, 101011)被用于. Science (2019) ncbi
小鼠 单克隆(07. Feb)
  • 免疫组化-冰冻切片; 小鼠; 1:500; 图 3s1a
Synaptic Systems突触素抗体(Synaptic Systems, 101011)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:500 (图 3s1a). elife (2018) ncbi
小鼠 单克隆(07. Feb)
  • 免疫印迹; 小鼠; 图 s1c
Synaptic Systems突触素抗体(Synaptic Systems, 101011)被用于被用于免疫印迹在小鼠样本上 (图 s1c). Cell (2018) ncbi
豚鼠 多克隆(/)
  • 免疫组化; 小鼠; 1:500; 图 6c
  • 免疫印迹; 小鼠; 1:2000; 图 3i
Synaptic Systems突触素抗体(Synaptic Systems, 101 004)被用于被用于免疫组化在小鼠样本上浓度为1:500 (图 6c) 和 被用于免疫印迹在小鼠样本上浓度为1:2000 (图 3i). Nat Commun (2017) ncbi
豚鼠 多克隆(/)
  • 免疫细胞化学; 小鼠; 1:2000; 图 2c
Synaptic Systems突触素抗体(Synaptic Systems, 101004)被用于被用于免疫细胞化学在小鼠样本上浓度为1:2000 (图 2c). Eneuro (2017) ncbi
豚鼠 多克隆(/)
  • 免疫组化-石蜡切片; 人类; 1:1000; 图 s6c
Synaptic Systems突触素抗体(Synaptic Systems, 101004)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:1000 (图 s6c). Nature (2017) ncbi
豚鼠 多克隆(/)
  • 免疫印迹; 大鼠; 1:1000; 图 1c
Synaptic Systems突触素抗体(Synaptic Systems, 101004)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 1c). J Gen Physiol (2017) ncbi
domestic rabbit 多克隆(/)
  • 免疫印迹; 小鼠; 图 6
Synaptic Systems突触素抗体(Synaptic Systems, 101 002)被用于被用于免疫印迹在小鼠样本上 (图 6). elife (2016) ncbi
小鼠 单克隆(07. Feb)
  • 免疫细胞化学; 小鼠; 图 1
  • 免疫印迹; 小鼠; 图 1
Synaptic Systems突触素抗体(Synaptic Systems, 101011)被用于被用于免疫细胞化学在小鼠样本上 (图 1) 和 被用于免疫印迹在小鼠样本上 (图 1). Sci Rep (2016) ncbi
domestic rabbit 多克隆(/)
  • 免疫组化; 非洲爪蛙; 1:500; 表 1
Synaptic Systems突触素抗体(Synaptic System, 101 002)被用于被用于免疫组化在非洲爪蛙样本上浓度为1:500 (表 1). Int J Dev Biol (2016) ncbi
小鼠 单克隆(07. Feb)
  • 免疫印迹; 小鼠; 1:1000; 图 3a
Synaptic Systems突触素抗体(Synaptic systems, 7.2)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 3a). PLoS ONE (2016) ncbi
小鼠 单克隆(07. Feb)
  • 免疫组化; 小鼠; 图 4a
  • 免疫印迹; 小鼠; 图 2b
Synaptic Systems突触素抗体(Synaptic Systems, 101011)被用于被用于免疫组化在小鼠样本上 (图 4a) 和 被用于免疫印迹在小鼠样本上 (图 2b). EBioMedicine (2016) ncbi
小鼠 单克隆(07. Feb)
  • 免疫印迹; 人类
Synaptic Systems突触素抗体(Synaptic Systems, 7.2)被用于被用于免疫印迹在人类样本上. J Exp Med (2016) ncbi
豚鼠 多克隆(/)
  • 免疫组化-冰冻切片; 小鼠; 1:500; 图 4
Synaptic Systems突触素抗体(SySy, 101004)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:500 (图 4). Nat Commun (2016) ncbi
小鼠 单克隆(07. Feb)
  • 免疫组化; 小鼠; 图 1
Synaptic Systems突触素抗体(Synaptic Systems, 101 011)被用于被用于免疫组化在小鼠样本上 (图 1). Neuron (2016) ncbi
小鼠 单克隆(07. Feb)
  • 免疫印迹; 大鼠
  • 免疫印迹; 犬; 1:3000; 图 7
  • 免疫印迹; 人类
Synaptic Systems突触素抗体(Synaptic Systems, 101 011C3)被用于被用于免疫印迹在大鼠样本上, 被用于免疫印迹在犬样本上浓度为1:3000 (图 7) 和 被用于免疫印迹在人类样本上. J Comp Neurol (2016) ncbi
小鼠 单克隆(07. Feb)
  • 免疫印迹; 小鼠; 1:10000
Synaptic Systems突触素抗体(Synaptic Systems, 101 011)被用于被用于免疫印迹在小鼠样本上浓度为1:10000. J Neurosci (2015) ncbi
小鼠 单克隆(07. Feb)
  • 免疫组化; 小鼠
Synaptic Systems突触素抗体(Synaptic Systems, 101 011)被用于被用于免疫组化在小鼠样本上. J Clin Invest (2015) ncbi
小鼠 单克隆(07. Feb)
  • 免疫印迹; 大鼠
Synaptic Systems突触素抗体(Synaptic Systems, 101 011)被用于被用于免疫印迹在大鼠样本上. J Neurosci (2014) ncbi
小鼠 单克隆(07. Feb)
  • 免疫细胞化学; 小鼠; 1:1000; 图 1
Synaptic Systems突触素抗体(Synaptic Systems, 101011)被用于被用于免疫细胞化学在小鼠样本上浓度为1:1000 (图 1). Neuroscience (2013) ncbi
赛默飞世尔
domestic rabbit 单克隆(SP11)
  • 免疫组化; 大鼠; 1:500; 图 6d
赛默飞世尔突触素抗体(Invitrogen, MA5-14532,)被用于被用于免疫组化在大鼠样本上浓度为1:500 (图 6d). J Comp Neurol (2019) ncbi
小鼠 单克隆(EP10)
  • 免疫组化-冰冻切片; 人类; 1:200; 图 6g
赛默飞世尔突触素抗体(Thermo Fisher Scientific, 14-6525-80)被用于被用于免疫组化-冰冻切片在人类样本上浓度为1:200 (图 6g). Nat Neurosci (2019) ncbi
domestic rabbit 重组(8H2L12)
  • 免疫印迹; 小鼠; 1:1000; 图 s1a
赛默飞世尔突触素抗体(生活技术, 701503)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 s1a). Sci Rep (2017) ncbi
domestic rabbit 单克隆(SP11)
  • 免疫印迹; 人类; 图 2a
赛默飞世尔突触素抗体(pierce, MA5-16402)被用于被用于免疫印迹在人类样本上 (图 2a). Science (2017) ncbi
domestic rabbit 单克隆(SP11)
  • 免疫组化; 人类; 图 4d
赛默飞世尔突触素抗体(Thermo Scientific, SP11)被用于被用于免疫组化在人类样本上 (图 4d). Case Rep Pathol (2016) ncbi
domestic rabbit 单克隆(SP11)
  • 免疫组化-石蜡切片; 人类; 1:50
赛默飞世尔突触素抗体(Thermo Scientific, SP11)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:50. Clin Cancer Res (2017) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:500; 图 6d'
赛默飞世尔突触素抗体(Pierce, PA5-27286)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:500 (图 6d'). Cell Rep (2016) ncbi
domestic rabbit 单克隆(SP11)
  • 免疫组化-冰冻切片; 人类; 1:50; 表 3
  • 免疫组化-冰冻切片; 小鼠; 1:50; 表 3
赛默飞世尔突触素抗体(Thermo Scientific, RM-9111-S)被用于被用于免疫组化-冰冻切片在人类样本上浓度为1:50 (表 3) 和 被用于免疫组化-冰冻切片在小鼠样本上浓度为1:50 (表 3). J Neuroinflammation (2016) ncbi
domestic rabbit 单克隆(SP11)
  • 免疫印迹; 大鼠; 表 2
赛默飞世尔突触素抗体(ThermoScientific, RM-9111S0)被用于被用于免疫印迹在大鼠样本上 (表 2). Sci Rep (2016) ncbi
domestic rabbit 单克隆(SP11)
  • 免疫组化-石蜡切片; 小鼠; 1:100; 图 3
赛默飞世尔突触素抗体(Neomarker, RM-9111)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:100 (图 3). Nat Commun (2016) ncbi
domestic rabbit 单克隆(SP11)
  • 免疫组化-石蜡切片; 小鼠; 1:150; 表 1
  • 免疫组化-石蜡切片; 人类; 1:150; 表 1
赛默飞世尔突触素抗体(Thermo Scientific, MA1-39558)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:150 (表 1) 和 被用于免疫组化-石蜡切片在人类样本上浓度为1:150 (表 1). Biochim Biophys Acta (2016) ncbi
domestic rabbit 单克隆(SP11)
  • 免疫组化-石蜡切片; 人类; 1:50; 图 1
赛默飞世尔突触素抗体(NeoMarkers, SP11)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:50 (图 1). Pathol Res Pract (2016) ncbi
domestic rabbit 单克隆(SP11)
  • 免疫组化-石蜡切片; 人类; 1:200
赛默飞世尔突触素抗体(Thermo Fisher Scientific, SP11)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:200. J Clin Pathol (2015) ncbi
domestic rabbit 单克隆(SP11)
  • 免疫组化; 人类; 1:100; 图 s1
赛默飞世尔突触素抗体(Neo Markers, SP11)被用于被用于免疫组化在人类样本上浓度为1:100 (图 s1). J Gastroenterol (2015) ncbi
domestic rabbit 单克隆(SP11)
  • 免疫组化; 人类; 1:200
赛默飞世尔突触素抗体(Thermo Scientific, 15-RM-9111-S)被用于被用于免疫组化在人类样本上浓度为1:200. Histopathology (2014) ncbi
domestic rabbit 单克隆(SP11)
  • 免疫组化; 人类; 1:100
赛默飞世尔突触素抗体(Thermo, SP11)被用于被用于免疫组化在人类样本上浓度为1:100. J Pak Med Assoc (2014) ncbi
domestic rabbit 单克隆(SP11)
  • 免疫组化-石蜡切片; 人类
  • 免疫组化; 人类
赛默飞世尔突触素抗体(Lab Vision / Thermo Fisher Scientific, SP11)被用于被用于免疫组化-石蜡切片在人类样本上 和 被用于免疫组化在人类样本上. Neoplasia (2013) ncbi
domestic rabbit 单克隆(SP11)
  • 免疫组化-石蜡切片; 人类; 1:500; 图 2, 3, 4
赛默飞世尔突触素抗体(NeoMarkers, SP11)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:500 (图 2, 3, 4). Int J Surg Pathol (2011) ncbi
domestic rabbit 单克隆(SP11)
  • 免疫组化-石蜡切片; 人类; 1:100; 表 1
  • 免疫组化; 人类; 1:100
赛默飞世尔突触素抗体(Lab Vision, 9111-S0)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100 (表 1) 和 被用于免疫组化在人类样本上浓度为1:100. Pathol Res Pract (2008) ncbi
武汉三鹰
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 7a
武汉三鹰突触素抗体(Proteintech, 17785- 1-AP)被用于被用于免疫印迹在小鼠样本上 (图 7a). Aging (Albany NY) (2019) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 图 5f
武汉三鹰突触素抗体(ProteinTech Group, 17785-1-AP)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 5f). Cell (2019) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 小鼠; 图 s17b
武汉三鹰突触素抗体(Proteintech Group, 17785-1-AP)被用于被用于免疫细胞化学在小鼠样本上 (图 s17b). Nat Genet (2016) ncbi
Enzo Life Sciences
小鼠 单克隆(EP10)
  • 免疫细胞化学; 人类; 1:1000; 图 st4
  • 免疫组化; 人类; 1:1000
Enzo Life Sciences突触素抗体(Enzo Life Sciences, ADI-905- 782-100)被用于被用于免疫细胞化学在人类样本上浓度为1:1000 (图 st4) 和 被用于免疫组化在人类样本上浓度为1:1000. Nat Biotechnol (2017) ncbi
小鼠 单克隆(EP10)
  • 免疫组化; 人类; 1:1000; 图 s5
Enzo Life Sciences突触素抗体(ENZO, ADI-905-782-100)被用于被用于免疫组化在人类样本上浓度为1:1000 (图 s5). Nature (2016) ncbi
GeneTex
domestic rabbit 多克隆
GeneTex突触素抗体(GeneTex, GTX100865)被用于. Eur J Neurosci (2015) ncbi
LifeSpan Biosciences
小鼠 单克隆(7H12)
  • 免疫印迹; 人类; 图 5
LifeSpan Biosciences突触素抗体(LifeSpan Biosciences, LS-B4158)被用于被用于免疫印迹在人类样本上 (图 5). Biomaterials (2015) ncbi
西格玛奥德里奇
domestic rabbit 多克隆
  • 免疫印迹; 大鼠; 图 1a
西格玛奥德里奇突触素抗体(Sigma, SAB4502906)被用于被用于免疫印迹在大鼠样本上 (图 1a). Sci Rep (2017) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 1:100; 图 3e
西格玛奥德里奇突触素抗体(Sigma, SAB4502906)被用于被用于免疫细胞化学在人类样本上浓度为1:100 (图 3e). Nat Med (2016) ncbi
  • 免疫组化; 人类; 图 5
西格玛奥德里奇突触素抗体(Ventana, 790-4407)被用于被用于免疫组化在人类样本上 (图 5). Histopathology (2015) ncbi
丹科医疗器械技术服务(上海)有限公司
小鼠 单克隆(DAK-SYNAP)
  • 免疫组化-石蜡切片; 人类; 图 1j
丹科医疗器械技术服务(上海)有限公司突触素抗体(Dako, DAK-synapt)被用于被用于免疫组化-石蜡切片在人类样本上 (图 1j). BMC Cancer (2020) ncbi
小鼠 单克隆(DAK-SYNAP)
  • 免疫组化-石蜡切片; 人类; 1:100; 图 2
丹科医疗器械技术服务(上海)有限公司突触素抗体(Dako, DAK-SYNAP)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100 (图 2). BMC Cancer (2019) ncbi
小鼠 单克隆(DAK-SYNAP)
  • 免疫组化-石蜡切片; 小鼠; 1:2; 图 3s1f
丹科医疗器械技术服务(上海)有限公司突触素抗体(Dako, M731529)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:2 (图 3s1f). elife (2019) ncbi
小鼠 单克隆(DAK-SYNAP)
  • 免疫组化-石蜡切片; 人类; 图 3c
丹科医疗器械技术服务(上海)有限公司突触素抗体(Dako, M7315)被用于被用于免疫组化-石蜡切片在人类样本上 (图 3c). Science (2018) ncbi
小鼠 单克隆(DAK-SYNAP)
  • 免疫组化-石蜡切片; 小鼠; 图 s4
丹科医疗器械技术服务(上海)有限公司突触素抗体(Dako, M7315)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 s4). Cell Mol Life Sci (2018) ncbi
小鼠 单克隆(DAK-SYNAP)
  • 免疫组化-石蜡切片; 犬; 1:50; 图 st14
丹科医疗器械技术服务(上海)有限公司突触素抗体(Dako, M7315)被用于被用于免疫组化-石蜡切片在犬样本上浓度为1:50 (图 st14). J Toxicol Pathol (2017) ncbi
  • 免疫细胞化学; 人类; 1:2000
丹科医疗器械技术服务(上海)有限公司突触素抗体(Dako, A0010)被用于被用于免疫细胞化学在人类样本上浓度为1:2000. Sci Rep (2016) ncbi
小鼠 单克隆(DAK-SYNAP)
  • 免疫印迹; 小鼠; 1:10,000; 图 3
丹科医疗器械技术服务(上海)有限公司突触素抗体(DAKO, M7315)被用于被用于免疫印迹在小鼠样本上浓度为1:10,000 (图 3). Alzheimers Dement (2016) ncbi
小鼠 单克隆(DAK-SYNAP)
  • 免疫印迹; 小鼠; 1:10,000
丹科医疗器械技术服务(上海)有限公司突触素抗体(DAKO, M7315)被用于被用于免疫印迹在小鼠样本上浓度为1:10,000. Neurobiol Dis (2016) ncbi
小鼠 单克隆(DAK-SYNAP)
  • 免疫组化; 人类; 1:50; 图 1
丹科医疗器械技术服务(上海)有限公司突触素抗体(Dako, DAK-SYNAP)被用于被用于免疫组化在人类样本上浓度为1:50 (图 1). Diabetes (2016) ncbi
  • 免疫组化; African green monkey; 1:2000; 图 3e
丹科医疗器械技术服务(上海)有限公司突触素抗体(Dako, A0010)被用于被用于免疫组化在African green monkey样本上浓度为1:2000 (图 3e). Nature (2015) ncbi
  • 免疫组化; 小鼠; 1:100; 图 1,2
丹科医疗器械技术服务(上海)有限公司突触素抗体(Dako, A0010)被用于被用于免疫组化在小鼠样本上浓度为1:100 (图 1,2). PLoS Pathog (2015) ncbi
  • 免疫组化-石蜡切片; 小鼠; 图 s2
丹科医疗器械技术服务(上海)有限公司突触素抗体(Dako, A0010)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 s2). Cancer Res (2015) ncbi
  • 免疫组化-石蜡切片; 人类; 1:50; 图 2b
丹科医疗器械技术服务(上海)有限公司突触素抗体(Dako, A0010)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:50 (图 2b). J Neurosurg Pediatr (2014) ncbi
小鼠 单克隆(DAK-SYNAP)
  • 免疫组化; 人类; 1:50; 图 4
丹科医疗器械技术服务(上海)有限公司突触素抗体(DacoCytomation, M7315)被用于被用于免疫组化在人类样本上浓度为1:50 (图 4). PLoS ONE (2014) ncbi
  • 免疫组化-石蜡切片; 人类; 1:200; 图 3
丹科医疗器械技术服务(上海)有限公司突触素抗体(Dako, A0010)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:200 (图 3). Int J Clin Exp Pathol (2014) ncbi
小鼠 单克隆(DAK-SYNAP)
  • 免疫组化-石蜡切片; 人类; 1:50
丹科医疗器械技术服务(上海)有限公司突触素抗体(DAKO, M7315)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:50. Pathol Res Pract (2014) ncbi
  • 免疫组化; 小鼠
丹科医疗器械技术服务(上海)有限公司突触素抗体(DakoCytomation, A0010)被用于被用于免疫组化在小鼠样本上. Dis Model Mech (2014) ncbi
  • 免疫印迹; 小鼠; 1:500; 图 s2a
丹科医疗器械技术服务(上海)有限公司突触素抗体(Dakocytomation, A0010)被用于被用于免疫印迹在小鼠样本上浓度为1:500 (图 s2a). Nat Neurosci (2014) ncbi
赛信通(上海)生物试剂有限公司
小鼠 单克隆(7H12)
  • 免疫细胞化学; 人类; 图 1b
赛信通(上海)生物试剂有限公司突触素抗体(Cell Signaling Technology, 7H12)被用于被用于免疫细胞化学在人类样本上 (图 1b). Cell Death Dis (2019) ncbi
domestic rabbit 单克隆(D40C4)
  • 免疫组化; 大鼠; 1:200; 图 5a
  • 免疫印迹; 大鼠; 1:1000; 图 5d
赛信通(上海)生物试剂有限公司突触素抗体(Cell Signaling, 5467)被用于被用于免疫组化在大鼠样本上浓度为1:200 (图 5a) 和 被用于免疫印迹在大鼠样本上浓度为1:1000 (图 5d). Sci Rep (2018) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 3b
赛信通(上海)生物试剂有限公司突触素抗体(Cell Signaling, 4329)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3b). Cancer Res (2018) ncbi
domestic rabbit 单克隆(D35E4)
  • 免疫印迹; 大鼠; 1:1000; 图 2b
赛信通(上海)生物试剂有限公司突触素抗体(Cell Signaling, 5461)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 2b). Brain Res (2017) ncbi
domestic rabbit 单克隆(D35E4)
  • 免疫印迹; 小鼠; 1:2000; 图 3b
赛信通(上海)生物试剂有限公司突触素抗体(Cell Signaling, D35E4)被用于被用于免疫印迹在小鼠样本上浓度为1:2000 (图 3b). Sci Rep (2017) ncbi
domestic rabbit 单克隆(D35E4)
  • 免疫细胞化学; 人类; 1:100; 图 s5d
赛信通(上海)生物试剂有限公司突触素抗体(Cell Signaling Technology, 5461)被用于被用于免疫细胞化学在人类样本上浓度为1:100 (图 s5d). Science (2017) ncbi
domestic rabbit 单克隆(D35E4)
  • 免疫细胞化学; 人类; 1:200; 表 1
赛信通(上海)生物试剂有限公司突触素抗体(Cell Signaling, D35E4)被用于被用于免疫细胞化学在人类样本上浓度为1:200 (表 1). PLoS ONE (2016) ncbi
domestic rabbit 单克隆(D35E4)
  • 免疫印迹; 大鼠; 图 4d
赛信通(上海)生物试剂有限公司突触素抗体(Cell Signaling, 5461)被用于被用于免疫印迹在大鼠样本上 (图 4d). PLoS ONE (2016) ncbi
domestic rabbit 单克隆(D35E4)
  • 免疫组化; 小鼠; 图 st1
赛信通(上海)生物试剂有限公司突触素抗体(Cell Signalling, 5461)被用于被用于免疫组化在小鼠样本上 (图 st1). Nat Biotechnol (2016) ncbi
domestic rabbit 单克隆(D35E4)
  • 免疫组化-冰冻切片; 小鼠; 1:250; 图 6
赛信通(上海)生物试剂有限公司突触素抗体(Cell Signaling Technology, 5461)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:250 (图 6). elife (2016) ncbi
domestic rabbit 单克隆(D35E4)
  • 免疫组化; 小鼠; 图 9
赛信通(上海)生物试剂有限公司突触素抗体(Cell Signaling Technology, D35E4)被用于被用于免疫组化在小鼠样本上 (图 9). PLoS ONE (2016) ncbi
domestic rabbit 单克隆(D35E4)
  • 免疫细胞化学; 人类; 1:100; 图 5
赛信通(上海)生物试剂有限公司突触素抗体(Cell signaling, 5461)被用于被用于免疫细胞化学在人类样本上浓度为1:100 (图 5). Sci Rep (2015) ncbi
domestic rabbit 单克隆(D35E4)
  • 免疫细胞化学; 小鼠; 1:400
  • 免疫印迹; 小鼠
赛信通(上海)生物试剂有限公司突触素抗体(Cell Signaling Technology, 5461)被用于被用于免疫细胞化学在小鼠样本上浓度为1:400 和 被用于免疫印迹在小鼠样本上. J Neurosci (2013) ncbi
默克密理博中国
  • 免疫印迹基因敲除验证; 小鼠; 1:1000; 图 1
默克密理博中国突触素抗体(Millipore, MAB5258)被用于被用于免疫印迹基因敲除验证在小鼠样本上浓度为1:1000 (图 1). elife (2019) ncbi
  • 免疫组化-自由浮动切片; 小鼠; 图 5b
默克密理博中国突触素抗体(Millipore, MAB5258)被用于被用于免疫组化-自由浮动切片在小鼠样本上 (图 5b). Sci Transl Med (2018) ncbi
小鼠 单克隆(SY38)
  • 免疫印迹; 小鼠; 1:1000; 图 9e
默克密理博中国突触素抗体(Millipore, MAB5258-I)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 9e). J Neuroinflammation (2018) ncbi
  • 免疫印迹; 小鼠; 1:1000; 图 9e
默克密理博中国突触素抗体(Millipore, MAB5258-I)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 9e). J Neuroinflammation (2018) ncbi
小鼠 单克隆(SY38)
  • 免疫组化; 小鼠; 1:1000; 图 6c
默克密理博中国突触素抗体(Millipore, SY38)被用于被用于免疫组化在小鼠样本上浓度为1:1000 (图 6c). Eur J Neurosci (2018) ncbi
小鼠 单克隆(SY38)
  • 免疫组化; 大鼠; 1:10,000; 图 s4a
默克密理博中国突触素抗体(Millipore, MAB5258-50UG)被用于被用于免疫组化在大鼠样本上浓度为1:10,000 (图 s4a). Nat Commun (2017) ncbi
  • 免疫组化; 大鼠; 1:10,000; 图 s4a
默克密理博中国突触素抗体(Millipore, MAB5258-50UG)被用于被用于免疫组化在大鼠样本上浓度为1:10,000 (图 s4a). Nat Commun (2017) ncbi
  • 免疫印迹; 小鼠; 1:10,000; 图 4c
默克密理博中国突触素抗体(Millipore, MAB5258)被用于被用于免疫印迹在小鼠样本上浓度为1:10,000 (图 4c). Nat Commun (2017) ncbi
domestic rabbit 单克隆(YE269)
  • 免疫组化; 小鼠; 图 8e
默克密理博中国突触素抗体(Millipore, 04-1019)被用于被用于免疫组化在小鼠样本上 (图 8e). Proc Natl Acad Sci U S A (2017) ncbi
  • 免疫细胞化学; 小鼠; 1:3000; 图 s3d
默克密理博中国突触素抗体(EMD Millipore, MAB5258)被用于被用于免疫细胞化学在小鼠样本上浓度为1:3000 (图 s3d). Proc Natl Acad Sci U S A (2017) ncbi
  • 免疫组化; 大鼠; 1:2000; 图 8a
默克密理博中国突触素抗体(Millipore, MAB5258)被用于被用于免疫组化在大鼠样本上浓度为1:2000 (图 8a). J Comp Neurol (2017) ncbi
  • 免疫组化-自由浮动切片; 小鼠; 1:1000; 图 s7
默克密理博中国突触素抗体(Millipore, MAB5258)被用于被用于免疫组化-自由浮动切片在小鼠样本上浓度为1:1000 (图 s7). Nat Commun (2017) ncbi
  • 免疫印迹; 小鼠; 1:2000; 图 4a
默克密理博中国突触素抗体(Millipore, MAB5258)被用于被用于免疫印迹在小鼠样本上浓度为1:2000 (图 4a). Mol Neurobiol (2017) ncbi
  • 免疫组化-冰冻切片; 大鼠; 1:500; 图 2
默克密理博中国突触素抗体(Millipore, MAB5258)被用于被用于免疫组化-冰冻切片在大鼠样本上浓度为1:500 (图 2). Neural Plast (2016) ncbi
  • 免疫组化-自由浮动切片; 小鼠; 图 s5a
  • 免疫印迹; 小鼠; 图 5h
默克密理博中国突触素抗体(Chemicon, MAB5258)被用于被用于免疫组化-自由浮动切片在小鼠样本上 (图 s5a) 和 被用于免疫印迹在小鼠样本上 (图 5h). Diabetes (2016) ncbi
  • 免疫组化-冰冻切片; 大鼠; 图 4a
默克密理博中国突触素抗体(Millipore, MAB5258)被用于被用于免疫组化-冰冻切片在大鼠样本上 (图 4a). Eneuro (2016) ncbi
  • 免疫细胞化学; 大鼠; 图 3
默克密理博中国突触素抗体(Millipore, MAB5258)被用于被用于免疫细胞化学在大鼠样本上 (图 3). J Alzheimers Dis (2016) ncbi
  • 免疫印迹; 人类; 1:500; 图 3d
默克密理博中国突触素抗体(Millipore, MAB5258)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 3d). J Neurosci (2016) ncbi
  • 免疫组化-自由浮动切片; 小鼠; 1:100; 图 11
默克密理博中国突触素抗体(Millipore, MAB5258)被用于被用于免疫组化-自由浮动切片在小鼠样本上浓度为1:100 (图 11). Hum Mol Genet (2016) ncbi
小鼠 单克隆(SP15)
  • 免疫细胞化学; 人类; 图 2a
默克密理博中国突触素抗体(MILLIPORE, MAB329)被用于被用于免疫细胞化学在人类样本上 (图 2a). Sci Rep (2016) ncbi
  • 免疫组化-冰冻切片; 小鼠; 图 1
  • 免疫细胞化学; 小鼠; 图 3
  • 免疫印迹; 小鼠; 图 2
默克密理博中国突触素抗体(Chemicon, MAB5258)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 1), 被用于免疫细胞化学在小鼠样本上 (图 3) 和 被用于免疫印迹在小鼠样本上 (图 2). Sci Rep (2016) ncbi
  • 免疫组化; 小鼠; 1:300; 图 6a
默克密理博中国突触素抗体(Millipore, MAB5258)被用于被用于免疫组化在小鼠样本上浓度为1:300 (图 6a). Acta Neuropathol (2016) ncbi
  • 免疫细胞化学; 人类; 1:100; 表 1
默克密理博中国突触素抗体(Chemicon, MAB5258)被用于被用于免疫细胞化学在人类样本上浓度为1:100 (表 1). Exp Eye Res (2016) ncbi
  • 免疫细胞化学; 大鼠; 图 2
默克密理博中国突触素抗体(Millipore, Mab5258)被用于被用于免疫细胞化学在大鼠样本上 (图 2). elife (2016) ncbi
小鼠 单克隆
  • 免疫细胞化学; 大鼠; 1:500; 图 S4
默克密理博中国突触素抗体(Calbiochem, 573822)被用于被用于免疫细胞化学在大鼠样本上浓度为1:500 (图 S4). Sci Rep (2015) ncbi
小鼠 单克隆(SY38)
  • 免疫印迹; 大鼠
  • 免疫印迹; 小鼠; 1:10,000
默克密理博中国突触素抗体(Chemicon, MAB5258)被用于被用于免疫印迹在大鼠样本上 和 被用于免疫印迹在小鼠样本上浓度为1:10,000. Nat Commun (2015) ncbi
domestic rabbit 单克隆(YE269)
  • 免疫组化; 小鼠
默克密理博中国突触素抗体(Millipore, 04-1019)被用于被用于免疫组化在小鼠样本上. Sci Rep (2015) ncbi
  • 免疫组化; 小鼠; 1:1000; 图 3
默克密理博中国突触素抗体(Millipore, MAB5258)被用于被用于免疫组化在小鼠样本上浓度为1:1000 (图 3). J Neurosci (2015) ncbi
  • 免疫细胞化学; 大鼠; 1:200; 图 2
默克密理博中国突触素抗体(Millipore, MAB5258)被用于被用于免疫细胞化学在大鼠样本上浓度为1:200 (图 2). Nat Commun (2015) ncbi
  • 免疫组化; 小鼠; 图 5c
  • 免疫印迹; 小鼠; 1:1000; 图 5a
默克密理博中国突触素抗体(EMD Millipore, MAB5258)被用于被用于免疫组化在小鼠样本上 (图 5c) 和 被用于免疫印迹在小鼠样本上浓度为1:1000 (图 5a). PLoS ONE (2015) ncbi
小鼠 单克隆(SY38)
  • 免疫组化-自由浮动切片; 小鼠; 1:200
  • 免疫印迹; 小鼠; 1:5000
默克密理博中国突触素抗体(Millipore, SY38)被用于被用于免疫组化-自由浮动切片在小鼠样本上浓度为1:200 和 被用于免疫印迹在小鼠样本上浓度为1:5000. Brain (2015) ncbi
小鼠 单克隆(SY38)
  • 免疫组化; 人类; 1:1000
默克密理博中国突触素抗体(Millipore, SY38)被用于被用于免疫组化在人类样本上浓度为1:1000. Brain Res (2015) ncbi
  • 免疫细胞化学; 小鼠; 1:500; 图 s3a
默克密理博中国突触素抗体(Millipore, MAB5258)被用于被用于免疫细胞化学在小鼠样本上浓度为1:500 (图 s3a). Nat Neurosci (2015) ncbi
小鼠 单克隆(SY38)
  • 免疫细胞化学; 人类; 1:100; 图 1
默克密理博中国突触素抗体(Millipore, MAB5258)被用于被用于免疫细胞化学在人类样本上浓度为1:100 (图 1). PLoS ONE (2015) ncbi
小鼠 单克隆(SY38)
  • 免疫印迹; 大鼠
默克密理博中国突触素抗体(Millipore, MAB5258)被用于被用于免疫印迹在大鼠样本上. Exp Neurol (2015) ncbi
小鼠 单克隆(SY38)
  • 免疫组化-石蜡切片; 小鼠; 1:1000; 图 4a
默克密理博中国突触素抗体(EMD Millipore, SY38)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:1000 (图 4a). Mol Neurodegener (2014) ncbi
小鼠 单克隆(SY38)
  • 免疫组化-冰冻切片; 小鼠; 1:2000
默克密理博中国突触素抗体(EMD Millipore, MAB5258)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:2000. PLoS ONE (2014) ncbi
小鼠 单克隆(SP15)
  • 免疫组化-冰冻切片; 大鼠; 1:4000
默克密理博中国突触素抗体(EMD Millipore, MAB329)被用于被用于免疫组化-冰冻切片在大鼠样本上浓度为1:4000. Adv Alzheimer Dis (2014) ncbi
小鼠 单克隆(SY38)
  • 免疫细胞化学; 人类
默克密理博中国突触素抗体(Millipore, MAB5258)被用于被用于免疫细胞化学在人类样本上. Neuroscience (2014) ncbi
domestic rabbit 单克隆(YE269)
  • 免疫组化-冰冻切片; 大鼠; 1:500
默克密理博中国突触素抗体(Chemicon, 04-1019)被用于被用于免疫组化-冰冻切片在大鼠样本上浓度为1:500. Neuropeptides (2014) ncbi
小鼠 单克隆(SY38)
  • 免疫组化-石蜡切片; 大鼠; 1:150
默克密理博中国突触素抗体(Millipore, MAB5258)被用于被用于免疫组化-石蜡切片在大鼠样本上浓度为1:150. J Tissue Eng Regen Med (2017) ncbi
小鼠 单克隆(SY38)
  • 免疫印迹; Pacific electric ray
默克密理博中国突触素抗体(Millipore, MAB5258)被用于被用于免疫印迹在Pacific electric ray样本上. Physiol Rep (2014) ncbi
小鼠 单克隆(SY38)
  • 免疫组化-冰冻切片; 猫; 1:1000
默克密理博中国突触素抗体(Millipore, SY38)被用于被用于免疫组化-冰冻切片在猫样本上浓度为1:1000. J Neurosci (2014) ncbi
小鼠 单克隆(SY38)
  • 免疫组化-冰冻切片; 大鼠; 1:2,000
默克密理博中国突触素抗体(Millipore, MAB5258)被用于被用于免疫组化-冰冻切片在大鼠样本上浓度为1:2,000. J Comp Neurol (2014) ncbi
小鼠 单克隆(SY38)
  • 免疫印迹; 大鼠; 1 ug/ml
默克密理博中国突触素抗体(Millipore, MAB5258)被用于被用于免疫印迹在大鼠样本上浓度为1 ug/ml. Neuroscience (2014) ncbi
  • 免疫组化-冰冻切片; 小鼠; 图 8
默克密理博中国突触素抗体(MILLIPORE, MAB5258)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 8). PLoS ONE (2013) ncbi
小鼠 单克隆(SP15)
  • 免疫印迹; 大鼠
默克密理博中国突触素抗体(Chemicon, MAB329)被用于被用于免疫印迹在大鼠样本上. J Biol Chem (2013) ncbi
小鼠 单克隆(SY38)
  • 免疫印迹; 小鼠; 1:1,000,000
默克密理博中国突触素抗体(Millipore, MAB5258)被用于被用于免疫印迹在小鼠样本上浓度为1:1,000,000. J Comp Neurol (2013) ncbi
小鼠 单克隆(SY38)
  • 免疫细胞化学; 人类
默克密理博中国突触素抗体(Chemicon, MAB5258)被用于被用于免疫细胞化学在人类样本上. Acta Neurobiol Exp (Wars) (2013) ncbi
小鼠 单克隆(SP15)
  • 免疫组化; 小鼠; 1:4000
默克密理博中国突触素抗体(Millipore, MAB329)被用于被用于免疫组化在小鼠样本上浓度为1:4000. Neurotox Res (2013) ncbi
小鼠 单克隆(SY38)
  • 免疫印迹; 小鼠
默克密理博中国突触素抗体(Millipore, MAB5258)被用于被用于免疫印迹在小鼠样本上. Nucleic Acids Res (2012) ncbi
小鼠 单克隆(SP15)
  • 免疫组化; 大鼠; 1:500
默克密理博中国突触素抗体(Millipore, MAB329)被用于被用于免疫组化在大鼠样本上浓度为1:500. J Comp Neurol (2010) ncbi
小鼠 单克隆(SY38)
  • 免疫组化-冰冻切片; 大鼠; 1:400
默克密理博中国突触素抗体(Chemicon, MAB 5258)被用于被用于免疫组化-冰冻切片在大鼠样本上浓度为1:400. J Comp Neurol (2010) ncbi
小鼠 单克隆(SY38)
  • 免疫印迹; 小鼠; 图 5
默克密理博中国突触素抗体(Chemicon, MAB5258)被用于被用于免疫印迹在小鼠样本上 (图 5). Mol Cell Proteomics (2010) ncbi
小鼠 单克隆(SP15)
  • 免疫组化-冰冻切片; 大鼠; 1:5000
默克密理博中国突触素抗体(Chemicon, MAB329)被用于被用于免疫组化-冰冻切片在大鼠样本上浓度为1:5000. J Comp Neurol (2007) ncbi
小鼠 单克隆(SP15)
  • 免疫组化-冰冻切片; 小鼠; 1:500
默克密理博中国突触素抗体(Chemicon, MAB329)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:500. J Comp Neurol (2006) ncbi
徕卡显微系统(上海)贸易有限公司
  • 免疫组化-石蜡切片; 小鼠; 1:50; 图 st14
  • 免疫组化-石蜡切片; 大鼠; 1:500; 图 st14
徕卡显微系统(上海)贸易有限公司突触素抗体(Leica, NCL-LSYNAP- 299)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:50 (图 st14) 和 被用于免疫组化-石蜡切片在大鼠样本上浓度为1:500 (图 st14). J Toxicol Pathol (2017) ncbi
小鼠 单克隆(27G12)
  • 免疫组化-石蜡切片; 人类; 1:100; 表 2
徕卡显微系统(上海)贸易有限公司突触素抗体(Novacastra, NCL-SYNAP-299)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100 (表 2). Hum Pathol (2017) ncbi
单克隆(27G12)
  • 免疫组化-石蜡切片; 人类; 1:400; 图 1f
徕卡显微系统(上海)贸易有限公司突触素抗体(Leica, 27G12)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:400 (图 1f). Gynecol Oncol (2017) ncbi
  • 免疫组化-石蜡切片; 人类; 1:200; 图 3a
徕卡显微系统(上海)贸易有限公司突触素抗体(Novocastra, NCL-L-SYNAP-299)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:200 (图 3a). Nat Commun (2016) ncbi
单克隆(27G12)
  • 免疫组化; 人类; 1:100; 图 3c
徕卡显微系统(上海)贸易有限公司突触素抗体(Leica, 27G12)被用于被用于免疫组化在人类样本上浓度为1:100 (图 3c). Balkan Med J (2016) ncbi
  • 免疫组化; 人类; 1:200
徕卡显微系统(上海)贸易有限公司突触素抗体(Novocastra, NCL-L-SYNAP-299)被用于被用于免疫组化在人类样本上浓度为1:200. Kaohsiung J Med Sci (2016) ncbi
单克隆(27G12)
  • 免疫组化; 人类; 1:600; 表 2
徕卡显微系统(上海)贸易有限公司突触素抗体(Novocastra, 27G12)被用于被用于免疫组化在人类样本上浓度为1:600 (表 2). Am J Surg Pathol (2016) ncbi
单克隆(27G12)
  • 免疫组化-石蜡切片; 人类; 1:100
徕卡显微系统(上海)贸易有限公司突触素抗体(Novocastra, 27G12)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100. Endocr J (2016) ncbi
小鼠 单克隆(27G12)
  • 免疫细胞化学; 人类; 1:50; 图 3D
  • 免疫印迹; 人类; 1:1000; 图 1B
  • 免疫组化-石蜡切片; 小鼠; 1:50; 图 4A
徕卡显微系统(上海)贸易有限公司突触素抗体(Novocastra, NCL-SYNAP-299)被用于被用于免疫细胞化学在人类样本上浓度为1:50 (图 3D), 被用于免疫印迹在人类样本上浓度为1:1000 (图 1B) 和 被用于免疫组化-石蜡切片在小鼠样本上浓度为1:50 (图 4A). Am J Pathol (2015) ncbi
单克隆(27G12)
  • 免疫组化-石蜡切片; 人类; 图 1
徕卡显微系统(上海)贸易有限公司突触素抗体(Leica, 27G12)被用于被用于免疫组化-石蜡切片在人类样本上 (图 1). Endocr Pathol (2015) ncbi
单克隆(27G12)
  • 免疫组化-石蜡切片; 人类; 图 2.e
徕卡显微系统(上海)贸易有限公司突触素抗体(Novocastra, 27G12)被用于被用于免疫组化-石蜡切片在人类样本上 (图 2.e). Pathol Res Pract (2015) ncbi
单克隆(27G12)
  • 免疫组化-石蜡切片; 人类
徕卡显微系统(上海)贸易有限公司突触素抗体(Novocastra, 27 g12)被用于被用于免疫组化-石蜡切片在人类样本上. Hum Pathol (2015) ncbi
小鼠 单克隆(27G12)
  • 免疫组化-石蜡切片; 人类; 1:400
徕卡显微系统(上海)贸易有限公司突触素抗体(Leica, NCL-SYNAP-299)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:400. BMC Cancer (2014) ncbi
单克隆(27G12)
  • 免疫组化-石蜡切片; 人类; 1:50; 图 1
徕卡显微系统(上海)贸易有限公司突触素抗体(Novocastra, 27G12)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:50 (图 1). Neuropathology (2014) ncbi
单克隆(27G12)
  • 免疫组化-石蜡切片; 人类
徕卡显微系统(上海)贸易有限公司突触素抗体(Leica, 27G12)被用于被用于免疫组化-石蜡切片在人类样本上. Int J Gynecol Pathol (2014) ncbi
单克隆(27G12)
  • 免疫组化-石蜡切片; 人类; 1:50
徕卡显微系统(上海)贸易有限公司突触素抗体(Novocastra, 27G12)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:50. Appl Immunohistochem Mol Morphol (2014) ncbi
碧迪BD
小鼠 单克隆(2/Synaptophysin)
  • 免疫印迹; 小鼠; 1:500; 图 3a
碧迪BD突触素抗体(BD Biosciences, 611880)被用于被用于免疫印迹在小鼠样本上浓度为1:500 (图 3a). J Neurosci (2018) ncbi
小鼠 单克隆(2/Synaptophysin)
  • 免疫组化; 大鼠; 1:2000; 图 4
碧迪BD突触素抗体(BD Biosciences, 611880)被用于被用于免疫组化在大鼠样本上浓度为1:2000 (图 4). Alzheimers Res Ther (2016) ncbi
小鼠 单克隆(2/Synaptophysin)
  • 免疫组化; 小鼠; 图 s5a
碧迪BD突触素抗体(BD Biosciences, 611880)被用于被用于免疫组化在小鼠样本上 (图 s5a). Carcinogenesis (2016) ncbi
文章列表
  1. Rodriguez Ortiz C, Prieto G, Martini A, Forner S, Trujillo Estrada L, LaFerla F, et al. miR-181a negatively modulates synaptic plasticity in hippocampal cultures and its inhibition rescues memory deficits in a mouse model of Alzheimer's disease. Aging Cell. 2020;19:e13118 pubmed 出版商
  2. Li J, Chiu J, Ramanjulu M, Blass B, Pratico D. A pharmacological chaperone improves memory by reducing Aβ and tau neuropathology in a mouse model with plaques and tangles. Mol Neurodegener. 2020;15:1 pubmed 出版商
  3. Nielsen K, Binderup T, Langer S, Kjaer A, Knigge P, Grøndahl V, et al. P53, Somatostatin receptor 2a and Chromogranin A immunostaining as prognostic markers in high grade gastroenteropancreatic neuroendocrine neoplasms. BMC Cancer. 2020;20:27 pubmed 出版商
  4. Even A, Morelli G, Broix L, Scaramuzzino C, Turchetto S, Gladwyn Ng I, et al. ATAT1-enriched vesicles promote microtubule acetylation via axonal transport. Sci Adv. 2019;5:eaax2705 pubmed 出版商
  5. McCann M, Fisher K, Ahloy Dallaire J, Darian Smith C. Somatosensory corticospinal tract axons sprout within the cervical cord following a dorsal root/dorsal column spinal injury in the rat. J Comp Neurol. 2019;: pubmed 出版商
  6. Ye J, Yin Y, Liu H, Fang L, Tao X, Wei L, et al. Tau inhibits PKA by nuclear proteasome-dependent PKAR2α elevation with suppressed CREB/GluA1 phosphorylation. Aging Cell. 2020;19:e13055 pubmed 出版商
  7. Fusco P, Parisatto B, Rampazzo E, Persano L, Frasson C, Di Meglio A, et al. Patient-derived organoids (PDOs) as a novel in vitro model for neuroblastoma tumours. BMC Cancer. 2019;19:970 pubmed 出版商
  8. Patzke C, Brockmann M, Dai J, Gan K, Grauel M, Fenske P, et al. Neuromodulator Signaling Bidirectionally Controls Vesicle Numbers in Human Synapses. Cell. 2019;179:498-513.e22 pubmed 出版商
  9. di Meco A, Pratico D. Early-life exposure to high-fat diet influences brain health in aging mice. Aging Cell. 2019;18:e13040 pubmed 出版商
  10. Zhou C, Sun X, Hu Y, Song J, Dong S, Kong D, et al. Genomic deletion of TLR2 induces aggravated white matter damage and deteriorated neurobehavioral functions in mouse models of Alzheimer's disease. Aging (Albany NY). 2019;11:7257-7273 pubmed 出版商
  11. Donadoni M, Cicalese S, Sarkar D, Chang S, Sariyer I. Alcohol exposure alters pre-mRNA splicing of antiapoptotic Mcl-1L isoform and induces apoptosis in neural progenitors and immature neurons. Cell Death Dis. 2019;10:447 pubmed 出版商
  12. Raja M, Preobraschenski J, Del Olmo Cabrera S, Martínez Turrillas R, Jahn R, Pérez Otaño I, et al. Elevated synaptic vesicle release probability in synaptophysin/gyrin family quadruple knockouts. elife. 2019;8: pubmed 出版商
  13. Smith A, Duan T, Verkman A. Aquaporin-4 reduces neuropathology in a mouse model of Alzheimer's disease by remodeling peri-plaque astrocyte structure. Acta Neuropathol Commun. 2019;7:74 pubmed 出版商
  14. Rojek K, Krzemien J, Dolezyczek H, Boguszewski P, Kaczmarek L, Konopka W, et al. Amot and Yap1 regulate neuronal dendritic tree complexity and locomotor coordination in mice. PLoS Biol. 2019;17:e3000253 pubmed 出版商
  15. Lodge E, Santambrogio A, Russell J, Xekouki P, Jacques T, Johnson R, et al. Homeostatic and tumourigenic activity of SOX2+ pituitary stem cells is controlled by the LATS/YAP/TAZ cascade. elife. 2019;8: pubmed 出版商
  16. Giandomenico S, Mierau S, Gibbons G, Wenger L, Masullo L, Sit T, et al. Cerebral organoids at the air-liquid interface generate diverse nerve tracts with functional output. Nat Neurosci. 2019;22:669-679 pubmed 出版商
  17. Poltavski D, Colombier P, Hu J, Duron A, Black B, Makita T. Venous endothelin modulates responsiveness of cardiac sympathetic axons to arterial semaphorin. elife. 2019;8: pubmed 出版商
  18. Rosenzweig N, Dvir Szternfeld R, Tsitsou Kampeli A, Keren Shaul H, Ben Yehuda H, Weill Raynal P, et al. PD-1/PD-L1 checkpoint blockade harnesses monocyte-derived macrophages to combat cognitive impairment in a tauopathy mouse model. Nat Commun. 2019;10:465 pubmed 出版商
  19. Andrew R, de Rossi P, Nguyen P, Kowalski H, Recupero A, Guerbette T, et al. Reduction of the expression of the late-onset Alzheimer's disease (AD) risk-factor BIN1 does not affect amyloid pathology in an AD mouse model. J Biol Chem. 2019;294:4477-4487 pubmed 出版商
  20. Sharon N, Chawla R, Mueller J, Vanderhooft J, Whitehorn L, Rosenthal B, et al. A Peninsular Structure Coordinates Asynchronous Differentiation with Morphogenesis to Generate Pancreatic Islets. Cell. 2019;176:790-804.e13 pubmed 出版商
  21. Awasthi A, Ramachandran B, Ahmed S, Benito E, Shinoda Y, Nitzan N, et al. Synaptotagmin-3 drives AMPA receptor endocytosis, depression of synapse strength, and forgetting. Science. 2019;363: pubmed 出版商
  22. Park J, Lee J, Sheu K, Wang L, Balanis N, Nguyen K, et al. Reprogramming normal human epithelial tissues to a common, lethal neuroendocrine cancer lineage. Science. 2018;362:91-95 pubmed 出版商
  23. Ou Yang M, Kurz J, Nomura T, Popovic J, Rajapaksha T, Dong H, et al. Axonal organization defects in the hippocampus of adult conditional BACE1 knockout mice. Sci Transl Med. 2018;10: pubmed 出版商
  24. Han L, Wang L, Tang S, Yuan L, Wu S, Du X, et al. ITGB4 deficiency in bronchial epithelial cells directs airway inflammation and bipolar disorder-related behavior. J Neuroinflammation. 2018;15:246 pubmed 出版商
  25. Kaczmarek Hájek K, Zhang J, Kopp R, Grosche A, Rissiek B, Saul A, et al. Re-evaluation of neuronal P2X7 expression using novel mouse models and a P2X7-specific nanobody. elife. 2018;7: pubmed 出版商
  26. Baglietto Vargas D, Prieto G, Limon A, Forner S, Rodriguez Ortiz C, Ikemura K, et al. Impaired AMPA signaling and cytoskeletal alterations induce early synaptic dysfunction in a mouse model of Alzheimer's disease. Aging Cell. 2018;17:e12791 pubmed 出版商
  27. Rubio Fernández M, Uribe M, Vicente Tejedor J, Germain F, Susín Lara C, Quereda C, et al. Impairment of photoreceptor ribbon synapses in a novel Pomt1 conditional knockout mouse model of dystroglycanopathy. Sci Rep. 2018;8:8543 pubmed 出版商
  28. Wang W, Rein B, Zhang F, Tan T, Zhong P, Qin L, et al. Chemogenetic Activation of Prefrontal Cortex Rescues Synaptic and Behavioral Deficits in a Mouse Model of 16p11.2 Deletion Syndrome. J Neurosci. 2018;38:5939-5948 pubmed 出版商
  29. Reichenbach N, Delekate A, Breithausen B, Keppler K, Poll S, Schulte T, et al. P2Y1 receptor blockade normalizes network dysfunction and cognition in an Alzheimer's disease model. J Exp Med. 2018;215:1649-1663 pubmed 出版商
  30. Zhao X, Peng Z, Long L, Chen N, Zheng H, Deng D, et al. Lentiviral vector delivery of short hairpin RNA to NgR1 promotes nerve regeneration and locomotor recovery in injured rat spinal cord. Sci Rep. 2018;8:5447 pubmed 出版商
  31. Fuchs C, Fustini N, Trazzi S, Gennaccaro L, Rimondini R, Ciani E. Treatment with the GSK3-beta inhibitor Tideglusib improves hippocampal development and memory performance in juvenile, but not adult, Cdkl5 knockout mice. Eur J Neurosci. 2018;47:1054-1066 pubmed 出版商
  32. Seipold L, Altmeppen H, Koudelka T, Tholey A, Kaspárek P, Sedlacek R, et al. In vivo regulation of the A disintegrin and metalloproteinase 10 (ADAM10) by the tetraspanin 15. Cell Mol Life Sci. 2018;75:3251-3267 pubmed 出版商
  33. Dias D, Kim H, Holl D, Werne Solnestam B, Lundeberg J, Carlen M, et al. Reducing Pericyte-Derived Scarring Promotes Recovery after Spinal Cord Injury. Cell. 2018;173:153-165.e22 pubmed 出版商
  34. Jung Y, Cackowski F, Yumoto K, Decker A, Wang J, Kim J, et al. CXCL12γ Promotes Metastatic Castration-Resistant Prostate Cancer by Inducing Cancer Stem Cell and Neuroendocrine Phenotypes. Cancer Res. 2018;78:2026-2039 pubmed 出版商
  35. Liu C, Kershberg L, Wang J, Schneeberger S, Kaeser P. Dopamine Secretion Is Mediated by Sparse Active Zone-like Release Sites. Cell. 2018;172:706-718.e15 pubmed 出版商
  36. Sun Q, Xie C, Niu Z, Su L, Wang X, Fang Z, et al. Diagnosis and treatment of a carotid body tumor: A case report of a rare bilateral tumor. Oncol Lett. 2017;14:6417-6420 pubmed 出版商
  37. Pocratsky A, Burke D, Morehouse J, Beare J, Riegler A, Tsoulfas P, et al. Reversible silencing of lumbar spinal interneurons unmasks a task-specific network for securing hindlimb alternation. Nat Commun. 2017;8:1963 pubmed 出版商
  38. Lüningschrör P, Binotti B, Dombert B, Heimann P, Pérez Lara A, Slotta C, et al. Plekhg5-regulated autophagy of synaptic vesicles reveals a pathogenic mechanism in motoneuron disease. Nat Commun. 2017;8:678 pubmed 出版商
  39. Brown I, Gulbransen B. The antioxidant glutathione protects against enteric neuron death in situ, but its depletion is protective during colitis. Am J Physiol Gastrointest Liver Physiol. 2018;314:G39-G52 pubmed 出版商
  40. Tanabe Y, Naito Y, Vasuta C, Lee A, Soumounou Y, Linhoff M, et al. IgSF21 promotes differentiation of inhibitory synapses via binding to neurexin2?. Nat Commun. 2017;8:408 pubmed 出版商
  41. Zhao T, Hong Y, Yin P, Li S, Li X. Differential HspBP1 expression accounts for the greater vulnerability of neurons than astrocytes to misfolded proteins. Proc Natl Acad Sci U S A. 2017;114:E7803-E7811 pubmed 出版商
  42. Huang H, Lin X, Liang Z, Zhao T, Du S, Loy M, et al. Cdk5-dependent phosphorylation of liprin?1 mediates neuronal activity-dependent synapse development. Proc Natl Acad Sci U S A. 2017;114:E6992-E7001 pubmed 出版商
  43. Orav E, Atanasova T, Shintyapina A, Kesaf S, Kokko M, Partanen J, et al. NETO1 Guides Development of Glutamatergic Connectivity in the Hippocampus by Regulating Axonal Kainate Receptors. Eneuro. 2017;4: pubmed 出版商
  44. Sodero A, Rodríguez Silva M, Salio C, Sassoè Pognetto M, Chambers J. Sab is differentially expressed in the brain and affects neuronal activity. Brain Res. 2017;1670:76-85 pubmed 出版商
  45. Getz A, Xu F, Visser F, Persson R, Syed N. Tumor suppressor menin is required for subunit-specific nAChR α5 transcription and nAChR-dependent presynaptic facilitation in cultured mouse hippocampal neurons. Sci Rep. 2017;7:1768 pubmed 出版商
  46. Li J, Barrero C, Merali S, Pratico D. Five lipoxygenase hypomethylation mediates the homocysteine effect on Alzheimer's phenotype. Sci Rep. 2017;7:46002 pubmed 出版商
  47. Latina V, Caioli S, Zona C, Ciotti M, Amadoro G, Calissano P. Impaired NGF/TrkA Signaling Causes Early AD-Linked Presynaptic Dysfunction in Cholinergic Primary Neurons. Front Cell Neurosci. 2017;11:68 pubmed 出版商
  48. Loss O, Stephenson F. Developmental changes in trak-mediated mitochondrial transport in neurons. Mol Cell Neurosci. 2017;80:134-147 pubmed 出版商
  49. Lee H, White J, Chung J, Tansey K. Peripheral and central anatomical organization of cutaneous afferent subtypes in a rat nociceptive intersegmental spinal reflex. J Comp Neurol. 2017;525:2216-2234 pubmed 出版商
  50. Han Q, Lin Q, Huang P, Chen M, Hu X, Fu H, et al. Microglia-derived IL-1? contributes to axon development disorders and synaptic deficit through p38-MAPK signal pathway in septic neonatal rats. J Neuroinflammation. 2017;14:52 pubmed 出版商
  51. Klementieva O, Willén K, Martinsson I, Israelsson B, Engdahl A, Cladera J, et al. Pre-plaque conformational changes in Alzheimer's disease-linked Aβ and APP. Nat Commun. 2017;8:14726 pubmed 出版商
  52. Wiesmann M, Zinnhardt B, Reinhardt D, Eligehausen S, Wachsmuth L, Hermann S, et al. A specific dietary intervention to restore brain structure and function after ischemic stroke. Theranostics. 2017;7:493-512 pubmed 出版商
  53. Zhu Y, Zhang Q, Zhang W, Li N, Dai Y, Tu J, et al. Protective Effect of 17β-Estradiol Upon Hippocampal Spine Density and Cognitive Function in an Animal Model of Vascular Dementia. Sci Rep. 2017;7:42660 pubmed 出版商
  54. Zhang Q, Esrafilzadeh D, Crook J, Kapsa R, Stewart E, Tomaskovic Crook E, et al. Electrical Stimulation Using Conductive Polymer Polypyrrole Counters Reduced Neurite Outgrowth of Primary Prefrontal Cortical Neurons from NRG1-KO and DISC1-LI Mice. Sci Rep. 2017;7:42525 pubmed 出版商
  55. Furukawa S, Nagaike M, Ozaki K. Databases for technical aspects of immunohistochemistry. J Toxicol Pathol. 2017;30:79-107 pubmed 出版商
  56. König H, Schwamborn R, Andresen S, Kinsella S, Watters O, Fenner B, et al. NF-κB regulates neuronal ankyrin-G via a negative feedback loop. Sci Rep. 2017;7:42006 pubmed 出版商
  57. Niu Y, Dai Z, Liu W, Zhang C, Yang Y, Guo Z, et al. Ablation of SNX6 leads to defects in synaptic function of CA1 pyramidal neurons and spatial memory. elife. 2017;6: pubmed 出版商
  58. Qi Y, Zhang X, Renier N, Wu Z, Atkin T, Sun Z, et al. Combined small-molecule inhibition accelerates the derivation of functional cortical neurons from human pluripotent stem cells. Nat Biotechnol. 2017;35:154-163 pubmed 出版商
  59. Liu H, Ho P, Leung G, Lam C, Pang S, Li L, et al. Combined LRRK2 mutation, aging and chronic low dose oral rotenone as a model of Parkinson's disease. Sci Rep. 2017;7:40887 pubmed 出版商
  60. Mu P, Zhang Z, Benelli M, Karthaus W, Hoover E, Chen C, et al. SOX2 promotes lineage plasticity and antiandrogen resistance in TP53- and RB1-deficient prostate cancer. Science. 2017;355:84-88 pubmed 出版商
  61. Ku S, Rosario S, Wang Y, Mu P, Seshadri M, Goodrich Z, et al. Rb1 and Trp53 cooperate to suppress prostate cancer lineage plasticity, metastasis, and antiandrogen resistance. Science. 2017;355:78-83 pubmed 出版商
  62. McCracken K, Aihara E, Martin B, Crawford C, Broda T, Treguier J, et al. Wnt/β-catenin promotes gastric fundus specification in mice and humans. Nature. 2017;541:182-187 pubmed 出版商
  63. Sabanov V, Braat S, D Andrea L, Willemsen R, Zeidler S, Rooms L, et al. Impaired GABAergic inhibition in the hippocampus of Fmr1 knockout mice. Neuropharmacology. 2017;116:71-81 pubmed 出版商
  64. Bodrikov V, Pauschert A, Kochlamazashvili G, Stuermer C. Reggie-1 and reggie-2 (flotillins) participate in Rab11a-dependent cargo trafficking, spine synapse formation and LTP-related AMPA receptor (GluA1) surface exposure in mouse hippocampal neurons. Exp Neurol. 2017;289:31-45 pubmed 出版商
  65. Perland E, Hellsten S, Lekholm E, Eriksson M, Arapi V, Fredriksson R. The Novel Membrane-Bound Proteins MFSD1 and MFSD3 are Putative SLC Transporters Affected by Altered Nutrient Intake. J Mol Neurosci. 2017;61:199-214 pubmed 出版商
  66. De Luca Johnson J, Zenali M. A Previously Undescribed Presentation of Mixed Adenoneuroendocrine Carcinoma. Case Rep Pathol. 2016;2016:9063634 pubmed
  67. Mesa H, Gilles S, Datta M, Murugan P, Larson W, Dachel S, et al. Comparative immunomorphology of testicular Sertoli and sertoliform tumors. Hum Pathol. 2017;61:181-189 pubmed 出版商
  68. Wolfes A, Ahmed S, Awasthi A, Stahlberg M, Rajput A, Magruder D, et al. A novel method for culturing stellate astrocytes reveals spatially distinct Ca2+ signaling and vesicle recycling in astrocytic processes. J Gen Physiol. 2017;149:149-170 pubmed 出版商
  69. Kuji S, Watanabe R, Sato Y, Iwata T, Hirashima Y, Takekuma M, et al. A new marker, insulinoma-associated protein 1 (INSM1), for high-grade neuroendocrine carcinoma of the uterine cervix: Analysis of 37 cases. Gynecol Oncol. 2017;144:384-390 pubmed 出版商
  70. Johnson Chacko L, Pechriggl E, Fritsch H, Rask Andersen H, Blumer M, Schrott Fischer A, et al. Neurosensory Differentiation and Innervation Patterning in the Human Fetal Vestibular End Organs between the Gestational Weeks 8-12. Front Neuroanat. 2016;10:111 pubmed
  71. Park J, Kim S, Yoo J, Jang J, Lee A, Oh J, et al. Novel Neuroprotective Effects of Melanin-Concentrating Hormone in Parkinson's Disease. Mol Neurobiol. 2017;54:7706-7721 pubmed 出版商
  72. Williamson S, Metcalf R, Trapani F, Mohan S, Antonello J, Abbott B, et al. Vasculogenic mimicry in small cell lung cancer. Nat Commun. 2016;7:13322 pubmed 出版商
  73. Zha J, Liu X, Zhu J, Liu S, Lu S, Xu P, et al. A scFv antibody targeting common oligomeric epitope has potential for treating several amyloidoses. Sci Rep. 2016;6:36631 pubmed 出版商
  74. Fröhlich D, Suchowerska A, Spencer Z, von Jonquieres G, Klugmann C, Bongers A, et al. In vivocharacterization of the aspartyl-tRNA synthetase DARS: Homing in on the leukodystrophy HBSL. Neurobiol Dis. 2017;97:24-35 pubmed 出版商
  75. Le H, Ahn B, Lee H, Shin A, Chae S, Lee S, et al. Disruption of Ninjurin1 Leads to Repetitive and Anxiety-Like Behaviors in Mice. Mol Neurobiol. 2017;54:7353-7368 pubmed 出版商
  76. Laclair K, Donde A, Ling J, Jeong Y, Chhabra R, Martin L, et al. Depletion of TDP-43 decreases fibril and plaque β-amyloid and exacerbates neurodegeneration in an Alzheimer's mouse model. Acta Neuropathol. 2016;132:859-873 pubmed
  77. Hinckelmann M, Virlogeux A, Niehage C, Poujol C, Choquet D, Hoflack B, et al. Self-propelling vesicles define glycolysis as the minimal energy machinery for neuronal transport. Nat Commun. 2016;7:13233 pubmed 出版商
  78. Massumi M, Pourasgari F, Nalla A, Batchuluun B, Nagy K, Neely E, et al. An Abbreviated Protocol for In Vitro Generation of Functional Human Embryonic Stem Cell-Derived Beta-Like Cells. PLoS ONE. 2016;11:e0164457 pubmed 出版商
  79. Shapiro L, Parsons R, Koleske A, Gourley S. Differential expression of cytoskeletal regulatory factors in the adolescent prefrontal cortex: Implications for cortical development. J Neurosci Res. 2017;95:1123-1143 pubmed 出版商
  80. Dragich J, Kuwajima T, Hirose Ikeda M, Yoon M, Eenjes E, Bosco J, et al. Autophagy linked FYVE (Alfy/WDFY3) is required for establishing neuronal connectivity in the mammalian brain. elife. 2016;5: pubmed 出版商
  81. Vidigal de Castro M, Barbizan R, Seabra Ferreira R, Barraviera B, Leite Rodrigues de Oliveira A. Direct Spinal Ventral Root Repair following Avulsion: Effectiveness of a New Heterologous Fibrin Sealant on Motoneuron Survival and Regeneration. Neural Plast. 2016;2016:2932784 pubmed 出版商
  82. Zhang S, Wang P, Ren L, Hu C, Bi J. Protective effect of melatonin on soluble A?1-42-induced memory impairment, astrogliosis, and synaptic dysfunction via the Musashi1/Notch1/Hes1 signaling pathway in the rat hippocampus. Alzheimers Res Ther. 2016;8:40 pubmed 出版商
  83. George J, Saito M, Tsuta K, Iwakawa R, Shiraishi K, Scheel A, et al. Genomic Amplification of CD274 (PD-L1) in Small-Cell Lung Cancer. Clin Cancer Res. 2017;23:1220-1226 pubmed 出版商
  84. Spendiff S, Vuda M, Gouspillou G, Aare S, Pérez A, Morais J, et al. Denervation drives mitochondrial dysfunction in skeletal muscle of octogenarians. J Physiol. 2016;594:7361-7379 pubmed 出版商
  85. Tonyali S, Yazici S, Yeşilırmak A, Ergen A. The Ewing's Sarcoma Family of Tumors of Urinary Bladder: A Case Report and Review of the Literature. Balkan Med J. 2016;33:462-6 pubmed 出版商
  86. Yan S, Du F, Wu L, Zhang Z, Zhong C, Yu Q, et al. F1F0 ATP Synthase-Cyclophilin D Interaction Contributes to Diabetes-Induced Synaptic Dysfunction and Cognitive Decline. Diabetes. 2016;65:3482-3494 pubmed
  87. Dhillon R, Parker J, Syed Y, Edgley S, Young A, Fawcett J, et al. Axonal plasticity underpins the functional recovery following surgical decompression in a rat model of cervical spondylotic myelopathy. Acta Neuropathol Commun. 2016;4:89 pubmed 出版商
  88. Wang Y, Zhao Z, Rege S, Wang M, Si G, Zhou Y, et al. 3K3A-activated protein C stimulates postischemic neuronal repair by human neural stem cells in mice. Nat Med. 2016;22:1050-5 pubmed 出版商
  89. Fang D, Yan S, Yu Q, Chen D, Yan S. Mfn2 is Required for Mitochondrial Development and Synapse Formation in Human Induced Pluripotent Stem Cells/hiPSC Derived Cortical Neurons. Sci Rep. 2016;6:31462 pubmed 出版商
  90. Wang D, Mitchell E. Cognition and Synaptic-Plasticity Related Changes in Aged Rats Supplemented with 8- and 10-Carbon Medium Chain Triglycerides. PLoS ONE. 2016;11:e0160159 pubmed 出版商
  91. Wang W, Trieu B, Palmer L, Jia Y, Pham D, Jung K, et al. A Primary Cortical Input to Hippocampus Expresses a Pathway-Specific and Endocannabinoid-Dependent Form of Long-Term Potentiation. Eneuro. 2016;3: pubmed 出版商
  92. Li Y, Chang L, Song Y, Gao X, Roselli F, Liu J, et al. Astrocytic GluN2A and GluN2B Oppose the Synaptotoxic Effects of Amyloid-?1-40 in Hippocampal Cells. J Alzheimers Dis. 2016;54:135-48 pubmed 出版商
  93. Alves S, Marais T, Biferi M, Furling D, Marinello M, El Hachimi K, et al. Lentiviral vector-mediated overexpression of mutant ataxin-7 recapitulates SCA7 pathology and promotes accumulation of the FUS/TLS and MBNL1 RNA-binding proteins. Mol Neurodegener. 2016;11:58 pubmed 出版商
  94. Ku T, Swaney J, Park J, Albanese A, Murray E, Cho J, et al. Multiplexed and scalable super-resolution imaging of three-dimensional protein localization in size-adjustable tissues. Nat Biotechnol. 2016;34:973-81 pubmed 出版商
  95. Borromeo M, Savage T, Kollipara R, He M, Augustyn A, Osborne J, et al. ASCL1 and NEUROD1 Reveal Heterogeneity in Pulmonary Neuroendocrine Tumors and Regulate Distinct Genetic Programs. Cell Rep. 2016;16:1259-1272 pubmed 出版商
  96. Ugras N, Yerci O, Coşkun S, Ocakoglu G, Sarkut P, Dündar H. Retrospective analysis of clinicopathological features of solid pseudopapillary neoplasm of the pancreas. Kaohsiung J Med Sci. 2016;32:356-61 pubmed 出版商
  97. Mazzulli J, Zunke F, Tsunemi T, Toker N, Jeon S, Burbulla L, et al. Activation of β-Glucocerebrosidase Reduces Pathological α-Synuclein and Restores Lysosomal Function in Parkinson's Patient Midbrain Neurons. J Neurosci. 2016;36:7693-706 pubmed 出版商
  98. Bodaleo F, Montenegro Venegas C, Henríquez D, Court F, Gonzalez Billault C. Microtubule-associated protein 1B (MAP1B)-deficient neurons show structural presynaptic deficiencies in vitro and altered presynaptic physiology. Sci Rep. 2016;6:30069 pubmed 出版商
  99. Torres Vega E, Duran Moreno M, Sánchez del Pino M, Yañez Y, Canete A, Castel V, et al. Immunoproteomic studies on paediatric opsoclonus-myoclonus associated with neuroblastoma. J Neuroimmunol. 2016;297:98-102 pubmed 出版商
  100. Messina A, Bridi S, Bozza A, Bozzi Y, Baudet M, Casarosa S. Noggin 1 overexpression in retinal progenitors affects bipolar cell generation. Int J Dev Biol. 2016;60:151-7 pubmed 出版商
  101. Li T, Braunstein K, Zhang J, Lau A, Sibener L, Deeble C, et al. The neuritic plaque facilitates pathological conversion of tau in an Alzheimer's disease mouse model. Nat Commun. 2016;7:12082 pubmed 出版商
  102. Sclip A, Bacaj T, Giam L, Sudhof T. Extended Synaptotagmin (ESyt) Triple Knock-Out Mice Are Viable and Fertile without Obvious Endoplasmic Reticulum Dysfunction. PLoS ONE. 2016;11:e0158295 pubmed 出版商
  103. Vasek M, Garber C, Dorsey D, Durrant D, Bollman B, Soung A, et al. A complement-microglial axis drives synapse loss during virus-induced memory impairment. Nature. 2016;534:538-43 pubmed 出版商
  104. Vernay A, Therreau L, Blot B, Risson V, Dirrig Grosch S, Waegaert R, et al. A transgenic mouse expressing CHMP2Bintron5 mutant in neurons develops histological and behavioural features of amyotrophic lateral sclerosis and frontotemporal dementia. Hum Mol Genet. 2016;25:3341-3360 pubmed 出版商
  105. Herring A, Münster Y, Akkaya T, Moghaddam S, Deinsberger K, Meyer J, et al. Kallikrein-8 inhibition attenuates Alzheimer's disease pathology in mice. Alzheimers Dement. 2016;12:1273-1287 pubmed 出版商
  106. Emanuele M, Esposito A, Camerini S, Antonucci F, Ferrara S, Seghezza S, et al. Exogenous Alpha-Synuclein Alters Pre- and Post-Synaptic Activity by Fragmenting Lipid Rafts. EBioMedicine. 2016;7:191-204 pubmed 出版商
  107. Liu W, Meng Z, Liu H, Li W, Wu Q, Zhang X, et al. Hepatic epithelioid angiomyolipoma is a rare and potentially severe but treatable tumor: A report of three cases and review of the literature. Oncol Lett. 2016;11:3669-3675 pubmed
  108. Herring A, Münster Y, Metzdorf J, Bolczek B, Krüssel S, Krieter D, et al. Late running is not too late against Alzheimer's pathology. Neurobiol Dis. 2016;94:44-54 pubmed 出版商
  109. Sun X, Li L, Liu F, Huang Z, Bean J, Jiao H, et al. Lrp4 in astrocytes modulates glutamatergic transmission. Nat Neurosci. 2016;19:1010-8 pubmed 出版商
  110. Hey F, Giblett S, Forrest S, Herbert C, Pritchard C. Phosphorylations of Serines 21/9 in Glycogen Synthase Kinase 3α/β Are Not Required for Cell Lineage Commitment or WNT Signaling in the Normal Mouse Intestine. PLoS ONE. 2016;11:e0156877 pubmed 出版商
  111. Deng H, Shi Y, Yang Y, Ahmeti K, Miller N, Huang C, et al. Identification of TMEM230 mutations in familial Parkinson's disease. Nat Genet. 2016;48:733-9 pubmed 出版商
  112. Zhang H, Kang E, Wang Y, Yang C, Yu H, Wang Q, et al. Brain-specific Crmp2 deletion leads to neuronal development deficits and behavioural impairments in mice. Nat Commun. 2016;7: pubmed 出版商
  113. Lazarczyk M, Kemmler J, Eyford B, Short J, Varghese M, Sowa A, et al. Major Histocompatibility Complex class I proteins are critical for maintaining neuronal structural complexity in the aging brain. Sci Rep. 2016;6:26199 pubmed 出版商
  114. Zhao T, Li C, Wei W, Zhang H, Ma D, Song X, et al. Prenatal ketamine exposure causes abnormal development of prefrontal cortex in rat. Sci Rep. 2016;6:26865 pubmed 出版商
  115. Sun F, Zhang Z, Tan E, Lim Z, Li Y, Wang X, et al. Icaritin suppresses development of neuroendocrine differentiation of prostate cancer through inhibition of IL-6/STAT3 and Aurora kinase A pathways in TRAMP mice. Carcinogenesis. 2016;37:701-711 pubmed 出版商
  116. Odawara A, Katoh H, Matsuda N, Suzuki I. Physiological maturation and drug responses of human induced pluripotent stem cell-derived cortical neuronal networks in long-term culture. Sci Rep. 2016;6:26181 pubmed 出版商
  117. Ren M, Du C, Herrero Acero E, Tang Schomer M, Ozkucur N. A biofidelic 3D culture model to study the development of brain cellular systems. Sci Rep. 2016;6:24953 pubmed 出版商
  118. Broadhead M, Horrocks M, Zhu F, Muresan L, Benavides Piccione R, DeFelipe J, et al. PSD95 nanoclusters are postsynaptic building blocks in hippocampus circuits. Sci Rep. 2016;6:24626 pubmed 出版商
  119. Györffy B, Gulyassy P, Gellén B, Völgyi K, Madarasi D, Kis V, et al. Widespread alterations in the synaptic proteome of the adolescent cerebral cortex following prenatal immune activation in rats. Brain Behav Immun. 2016;56:289-309 pubmed 出版商
  120. Bahia El Idrissi N, Bosch S, Ramaglia V, Aronica E, Baas F, Troost D. Complement activation at the motor end-plates in amyotrophic lateral sclerosis. J Neuroinflammation. 2016;13:72 pubmed 出版商
  121. Hayashi Y, Nishimune H, Hozumi K, Saga Y, Harada A, Yuzaki M, et al. A novel non-canonical Notch signaling regulates expression of synaptic vesicle proteins in excitatory neurons. Sci Rep. 2016;6:23969 pubmed 出版商
  122. Fuente Martín E, García Cáceres C, Argente Arizón P, Diaz F, Granado M, Freire Regatillo A, et al. Ghrelin Regulates Glucose and Glutamate Transporters in Hypothalamic Astrocytes. Sci Rep. 2016;6:23673 pubmed 出版商
  123. Patzke C, Acuna C, Giam L, Wernig M, Südhof T. Conditional deletion of L1CAM in human neurons impairs both axonal and dendritic arborization and action potential generation. J Exp Med. 2016;213:499-515 pubmed 出版商
  124. Sadleir K, Kandalepas P, Buggia Prevot V, Nicholson D, Thinakaran G, Vassar R. Presynaptic dystrophic neurites surrounding amyloid plaques are sites of microtubule disruption, BACE1 elevation, and increased Aβ generation in Alzheimer's disease. Acta Neuropathol. 2016;132:235-56 pubmed 出版商
  125. Liang L, Olar A, Niu N, Jiang Y, Cheng W, Bian X, et al. Primary Glial and Neuronal Tumors of the Ovary or Peritoneum: A Clinicopathologic Study of 11 Cases. Am J Surg Pathol. 2016;40:847-56 pubmed 出版商
  126. Kim J, He X, Orr B, Wutz G, Hill V, Peters J, et al. Intact Cohesion, Anaphase, and Chromosome Segregation in Human Cells Harboring Tumor-Derived Mutations in STAG2. PLoS Genet. 2016;12:e1005865 pubmed 出版商
  127. Fattahi F, Steinbeck J, Kriks S, Tchieu J, Zimmer B, Kishinevsky S, et al. Deriving human ENS lineages for cell therapy and drug discovery in Hirschsprung disease. Nature. 2016;531:105-9 pubmed 出版商
  128. Bouilloux F, Thireau J, Ventéo S, Farah C, Karam S, Dauvilliers Y, et al. Loss of the transcription factor Meis1 prevents sympathetic neurons target-field innervation and increases susceptibility to sudden cardiac death. elife. 2016;5: pubmed 出版商
  129. Nakagawa A, Adams C, Huang Y, Hamarneh S, Liu W, Von Alt K, et al. Selective and reversible suppression of intestinal stem cell differentiation by pharmacological inhibition of BET bromodomains. Sci Rep. 2016;6:20390 pubmed 出版商
  130. Venugopalan P, Wang Y, Nguyen T, Huang A, Muller K, Goldberg J. Transplanted neurons integrate into adult retinas and respond to light. Nat Commun. 2016;7:10472 pubmed 出版商
  131. Liu L, Zhu J, Zhou L, Wan L. RACK1 promotes maintenance of morphine-associated memory via activation of an ERK-CREB dependent pathway in hippocampus. Sci Rep. 2016;6:20183 pubmed 出版商
  132. Kayser E, Sedensky M, Morgan P. Region-Specific Defects of Respiratory Capacities in the Ndufs4(KO) Mouse Brain. PLoS ONE. 2016;11:e0148219 pubmed 出版商
  133. Korsgren E, Korsgren O. An Apparent Deficiency of Lymphatic Capillaries in the Islets of Langerhans in the Human Pancreas. Diabetes. 2016;65:1004-8 pubmed 出版商
  134. Gazit N, Vertkin I, Shapira I, Helm M, Slomowitz E, Sheiba M, et al. IGF-1 Receptor Differentially Regulates Spontaneous and Evoked Transmission via Mitochondria at Hippocampal Synapses. Neuron. 2016;89:583-97 pubmed 出版商
  135. Jiang T, Zhang Y, Chen Q, Gao Q, Zhu X, Zhou J, et al. TREM2 modifies microglial phenotype and provides neuroprotection in P301S tau transgenic mice. Neuropharmacology. 2016;105:196-206 pubmed 出版商
  136. Choi S, Chen Z, Tang L, Fang Y, Shin S, Panarelli N, et al. Bcl-xL promotes metastasis independent of its anti-apoptotic activity. Nat Commun. 2016;7:10384 pubmed 出版商
  137. Bolier R, Tolenaars D, Kremer A, Saris J, Pares A, Verheij J, et al. Enteroendocrine cells are a potential source of serum autotaxin in men. Biochim Biophys Acta. 2016;1862:696-704 pubmed 出版商
  138. de Souza C, Nivison Smith L, Christie D, Polkinghorne P, McGhee C, Kalloniatis M, et al. Macromolecular markers in normal human retina and applications to human retinal disease. Exp Eye Res. 2016;150:135-48 pubmed 出版商
  139. Foltz S, Modi J, Melick G, Abousaud M, Luan J, Fortunato M, et al. Abnormal Skeletal Muscle Regeneration plus Mild Alterations in Mature Fiber Type Specification in Fktn-Deficient Dystroglycanopathy Muscular Dystrophy Mice. PLoS ONE. 2016;11:e0147049 pubmed 出版商
  140. Grant E, Hoerder Suabedissen A, Molnár Z. The Regulation of Corticofugal Fiber Targeting by Retinal Inputs. Cereb Cortex. 2016;26:1336-1348 pubmed 出版商
  141. Tagliatti E, Fadda M, Falace A, Benfenati F, Fassio A. Arf6 regulates the cycling and the readily releasable pool of synaptic vesicles at hippocampal synapse. elife. 2016;5: pubmed 出版商
  142. Böger C, Haag J, Egberts J, Röcken C. Complex APC germline mutation associated metaplasia and intraepithelial neoplasia (CAM-IEN) of the gallbladder. Pathol Res Pract. 2016;212:54-8 pubmed 出版商
  143. Craig T, Anderson D, Evans A, Girach F, Henley J. SUMOylation of Syntaxin1A regulates presynaptic endocytosis. Sci Rep. 2015;5:17669 pubmed 出版商
  144. Gururajan M, Cavassani K, Sievert M, Duan P, Lichterman J, Huang J, et al. SRC family kinase FYN promotes the neuroendocrine phenotype and visceral metastasis in advanced prostate cancer. Oncotarget. 2015;6:44072-83 pubmed 出版商
  145. Benítez B, Cairns N, Schmidt R, Morris J, Norton J, Cruchaga C, et al. Clinically early-stage CSPα mutation carrier exhibits remarkable terminal stage neuronal pathology with minimal evidence of synaptic loss. Acta Neuropathol Commun. 2015;3:73 pubmed 出版商
  146. Nakamura A, Mitsuhashi T, Takano Y, Miyoshi H, Kameda H, Nomoto H, et al. Usefulness of the octreotide test in Japanese patients for predicting the presence/absence of somatostatin receptor 2 expression in insulinomas. Endocr J. 2016;63:135-42 pubmed 出版商
  147. Kim E, Woo M, Qin L, Ma T, Beltran C, Bao Y, et al. Daidzein Augments Cholesterol Homeostasis via ApoE to Promote Functional Recovery in Chronic Stroke. J Neurosci. 2015;35:15113-26 pubmed 出版商
  148. Zhang P, Fu W, Fu A, Ip N. S-nitrosylation-dependent proteasomal degradation restrains Cdk5 activity to regulate hippocampal synaptic strength. Nat Commun. 2015;6:8665 pubmed 出版商
  149. He W, Bai G, Zhou H, Wei N, White N, Lauer J, et al. CMT2D neuropathy is linked to the neomorphic binding activity of glycyl-tRNA synthetase. Nature. 2015;526:710-4 pubmed 出版商
  150. Fujino K, Motooka Y, Hassan W, Ali Abdalla M, Sato Y, Kudoh S, et al. Insulinoma-Associated Protein 1 Is a Crucial Regulator of Neuroendocrine Differentiation in Lung Cancer. Am J Pathol. 2015;185:3164-77 pubmed 出版商
  151. Chang W, Chen M, Cheng I. Antroquinonol Lowers Brain Amyloid-β Levels and Improves Spatial Learning and Memory in a Transgenic Mouse Model of Alzheimer's Disease. Sci Rep. 2015;5:15067 pubmed 出版商
  152. Caccamo A, Branca C, Talboom J, Shaw D, Turner D, Ma L, et al. Reducing Ribosomal Protein S6 Kinase 1 Expression Improves Spatial Memory and Synaptic Plasticity in a Mouse Model of Alzheimer's Disease. J Neurosci. 2015;35:14042-56 pubmed 出版商
  153. Takahashi N, Sawada W, Noguchi J, Watanabe S, Ucar H, Hayashi Takagi A, et al. Two-photon fluorescence lifetime imaging of primed SNARE complexes in presynaptic terminals and β cells. Nat Commun. 2015;6:8531 pubmed 出版商
  154. Adesina A, Veo B, Courteau G, Mehta V, Wu X, Pang K, et al. FOXG1 expression shows correlation with neuronal differentiation in cerebellar development, aggressive phenotype in medulloblastomas, and survival in a xenograft model of medulloblastoma. Hum Pathol. 2015;46:1859-71 pubmed 出版商
  155. Pellett S, Schwartz M, Tepp W, Josephson R, Scherf J, Pier C, et al. Human Induced Pluripotent Stem Cell Derived Neuronal Cells Cultured on Chemically-Defined Hydrogels for Sensitive In Vitro Detection of Botulinum Neurotoxin. Sci Rep. 2015;5:14566 pubmed 出版商
  156. Zhou J, Liu Z, Yu J, Han X, Fan S, Shao W, et al. Quantitative Proteomic Analysis Reveals Molecular Adaptations in the Hippocampal Synaptic Active Zone of Chronic Mild Stress-Unsusceptible Rats. Int J Neuropsychopharmacol. 2015;19: pubmed 出版商
  157. Henstridge C, Jackson R, Kim J, Herrmann A, Wright A, Harris S, et al. Post-mortem brain analyses of the Lothian Birth Cohort 1936: extending lifetime cognitive and brain phenotyping to the level of the synapse. Acta Neuropathol Commun. 2015;3:53 pubmed 出版商
  158. Tadavarty R, Hwang J, Rajput P, Soja P, Kumar U, Sastry B. Are presynaptic GABA-Cρ2 receptors involved in anti-nociception?. Neurosci Lett. 2015;606:145-50 pubmed 出版商
  159. Rijpma A, Jansen D, Arnoldussen I, Fang X, Wiesmann M, Mutsaers M, et al. Sex Differences in Presynaptic Density and Neurogenesis in Middle-Aged ApoE4 and ApoE Knockout Mice. J Neurodegener Dis. 2013;2013:531326 pubmed 出版商
  160. Angliker N, Burri M, Zaichuk M, Fritschy J, Rüegg M. mTORC1 and mTORC2 have largely distinct functions in Purkinje cells. Eur J Neurosci. 2015;42:2595-612 pubmed 出版商
  161. Seo M, Lee C, Cho H, You Y, Lee B, Lee J, et al. Effects of antipsychotic drugs on the expression of synapse-associated proteins in the frontal cortex of rats subjected to immobilization stress. Psychiatry Res. 2015;229:968-74 pubmed 出版商
  162. Smolek T, Madari A, Farbáková J, Kandrac O, Jadhav S, Cente M, et al. Tau hyperphosphorylation in synaptosomes and neuroinflammation are associated with canine cognitive impairment. J Comp Neurol. 2016;524:874-95 pubmed 出版商
  163. Lu J, Adam B, Jack A, Lam A, Broad R, Chik C. Immune Cell Infiltrates in Pituitary Adenomas: More Macrophages in Larger Adenomas and More T Cells in Growth Hormone Adenomas. Endocr Pathol. 2015;26:263-72 pubmed 出版商
  164. Newell Litwa K, Badoual M, Asmussen H, Patel H, Whitmore L, Horwitz A. ROCK1 and 2 differentially regulate actomyosin organization to drive cell and synaptic polarity. J Cell Biol. 2015;210:225-42 pubmed 出版商
  165. Bartosch C, Mendes N, Rios E, Rodrigues M, Eloy C, Reis C, et al. Morphological features and mucin expression profile of breast carcinomas with signet-ring cell differentiation. Pathol Res Pract. 2015;211:588-95 pubmed 出版商
  166. Zerboni L, Arvin A. Neuronal Subtype and Satellite Cell Tropism Are Determinants of Varicella-Zoster Virus Virulence in Human Dorsal Root Ganglia Xenografts In Vivo. PLoS Pathog. 2015;11:e1004989 pubmed 出版商
  167. Ferreira J, Schmidt J, Rio P, Águas R, Rooyakkers A, Li K, et al. GluN2B-Containing NMDA Receptors Regulate AMPA Receptor Traffic through Anchoring of the Synaptic Proteasome. J Neurosci. 2015;35:8462-79 pubmed 出版商
  168. Bhatt D, Puig K, Gorr M, Wold L, Combs C. A pilot study to assess effects of long-term inhalation of airborne particulate matter on early Alzheimer-like changes in the mouse brain. PLoS ONE. 2015;10:e0127102 pubmed 出版商
  169. Wang D, Kinoshita Y, Kinoshita C, Uo T, Sopher B, Cudaback E, et al. Loss of endophilin-B1 exacerbates Alzheimer's disease pathology. Brain. 2015;138:2005-19 pubmed 出版商
  170. Ruscetti M, Quach B, Dadashian E, Mulholland D, Wu H. Tracking and Functional Characterization of Epithelial-Mesenchymal Transition and Mesenchymal Tumor Cells during Prostate Cancer Metastasis. Cancer Res. 2015;75:2749-59 pubmed 出版商
  171. Bhang S, Han J, Jang H, Noh M, La W, Yi M, et al. pH-triggered release of manganese from MnAu nanoparticles that enables cellular neuronal differentiation without cellular toxicity. Biomaterials. 2015;55:33-43 pubmed 出版商
  172. Usui Y, Westenskow P, Kurihara T, Aguilar E, Sakimoto S, Paris L, et al. Neurovascular crosstalk between interneurons and capillaries is required for vision. J Clin Invest. 2015;125:2335-46 pubmed 出版商
  173. Miracco C, Toscano M, Butorano M, Baldino G, Tacchini D, Barone A, et al. Unusual clear cell, lymphoplasmacyte-rich, dural-based tumor with divergent differentiation: a tricky case mimicking a meningioma. Hum Pathol. 2015;46:1050-6 pubmed 出版商
  174. Böttner M, Fricke T, Muller M, Barrenschee M, Deuschl G, Schneider S, et al. Alpha-synuclein is associated with the synaptic vesicle apparatus in the human and rat enteric nervous system. Brain Res. 2015;1614:51-9 pubmed 出版商
  175. Samhan Arias A, López Sánchez C, Marques da Silva D, Lagoa R, García López V, García Martínez V, et al. High expression of cytochrome b 5 reductase isoform 3/cytochrome b 5 system in the cerebellum and pyramidal neurons of adult rat brain. Brain Struct Funct. 2016;221:2147-62 pubmed 出版商
  176. Frank C, Liu F, Wijayatunge R, Song L, Biegler M, Yang M, et al. Regulation of chromatin accessibility and Zic binding at enhancers in the developing cerebellum. Nat Neurosci. 2015;18:647-56 pubmed 出版商
  177. Sun Y, Florer J, Mayhew C, Jia Z, Zhao Z, Xu K, et al. Properties of neurons derived from induced pluripotent stem cells of Gaucher disease type 2 patient fibroblasts: potential role in neuropathology. PLoS ONE. 2015;10:e0118771 pubmed 出版商
  178. Chen L, Wang Y, Chen J, Tseng G. NMDA receptor triggered molecular cascade underlies compression-induced rapid dendritic spine plasticity in cortical neurons. Exp Neurol. 2015;266:86-98 pubmed 出版商
  179. Corsetti V, Florenzano F, Atlante A, Bobba A, Ciotti M, Natale F, et al. NH2-truncated human tau induces deregulated mitophagy in neurons by aberrant recruitment of Parkin and UCHL-1: implications in Alzheimer's disease. Hum Mol Genet. 2015;24:3058-81 pubmed 出版商
  180. Curcio M, Salazar I, Inácio A, Duarte E, Canzoniero L, Duarte C. Brain ischemia downregulates the neuroprotective GDNF-Ret signaling by a calpain-dependent mechanism in cultured hippocampal neurons. Cell Death Dis. 2015;6:e1645 pubmed 出版商
  181. Betzer C, Movius A, Shi M, Gai W, Zhang J, Jensen P. Identification of synaptosomal proteins binding to monomeric and oligomeric α-synuclein. PLoS ONE. 2015;10:e0116473 pubmed 出版商
  182. Kap M, Lam K, Ewing Graham P, Riegman P. A reference image-based method for optimization of clinical immunohistochemistry. Histopathology. 2015;67:193-205 pubmed 出版商
  183. Sinclair L, Tayler H, Love S. Synaptic protein levels altered in vascular dementia. Neuropathol Appl Neurobiol. 2015;41:533-43 pubmed 出版商
  184. Boska M, Dash P, Knibbe J, Epstein A, Akhter S, Fields N, et al. Associations between brain microstructures, metabolites, and cognitive deficits during chronic HIV-1 infection of humanized mice. Mol Neurodegener. 2014;9:58 pubmed 出版商
  185. Höllerhage M, Deck R, de Andrade A, Respondek G, Xu H, Rösler T, et al. Piericidin A aggravates Tau pathology in P301S transgenic mice. PLoS ONE. 2014;9:e113557 pubmed 出版商
  186. Pechriggl E, Bitsche M, Glueckert R, Rask Andersen H, Blumer M, Schrott Fischer A, et al. Development of the innervation of the human inner ear. Dev Neurobiol. 2015;75:683-702 pubmed 出版商
  187. Deng X, Li M, Ai W, He L, Lu D, Patrylo P, et al. Lipolysaccharide-Induced Neuroinflammation Is Associated with Alzheimer-Like Amyloidogenic Axonal Pathology and Dendritic Degeneration in Rats. Adv Alzheimer Dis. 2014;3:78-93 pubmed
  188. Park S, Lee J, Seo M, Cho H, Lee C, Lee J, et al. Effects of mood-stabilizing drugs on dendritic outgrowth and synaptic protein levels in primary hippocampal neurons. Bipolar Disord. 2015;17:278-90 pubmed 出版商
  189. Shinojima N, Nakamura H, Tasaki M, Kameno K, Anai S, Iyama K, et al. A patient with medulloblastoma in its early developmental stage. J Neurosurg Pediatr. 2014;14:615-20 pubmed 出版商
  190. Projetti F, Serrano E, Vergez S, Bissainthe A, Delisle M, Uro Coste E. Is neuroendocrine differentiation useful to discriminate primary sinonasal intestinal-type adenocarcinomas from metastatic colorectal adenocarcinomas?. J Clin Pathol. 2015;68:79-82 pubmed 出版商
  191. Wang X, Wu Y, Yang X, Miao Y, Zhang C, Dong L, et al. Cannabinoid CB1 receptor signaling dichotomously modulates inhibitory and excitatory synaptic transmission in rat inner retina. Brain Struct Funct. 2016;221:301-16 pubmed 出版商
  192. Modi H, Cornu M, Thorens B. Glutamine stimulates biosynthesis and secretion of insulin-like growth factor 2 (IGF2), an autocrine regulator of beta cell mass and function. J Biol Chem. 2014;289:31972-82 pubmed 出版商
  193. Libard S, Popova S, Amini R, Kärjä V, Pietiläinen T, Hämäläinen K, et al. Human cytomegalovirus tegument protein pp65 is detected in all intra- and extra-axial brain tumours independent of the tumour type or grade. PLoS ONE. 2014;9:e108861 pubmed 出版商
  194. Pamies D, Bal Price A, Fabbri M, Gribaldo L, Scelfo B, Harris G, et al. Silencing of PNPLA6, the neuropathy target esterase (NTE) codifying gene, alters neurodifferentiation of human embryonal carcinoma stem cells (NT2). Neuroscience. 2014;281:54-67 pubmed 出版商
  195. Jebelli J, Hooper C, Pocock J. Microglial p53 activation is detrimental to neuronal synapses during activation-induced inflammation: Implications for neurodegeneration. Neurosci Lett. 2014;583:92-7 pubmed 出版商
  196. Hijioka S, Hosoda W, Mizuno N, Hara K, Imaoka H, Bhatia V, et al. Does the WHO 2010 classification of pancreatic neuroendocrine neoplasms accurately characterize pancreatic neuroendocrine carcinomas?. J Gastroenterol. 2015;50:564-72 pubmed 出版商
  197. Kurisaki Arakawa A, Saito T, Takahashi M, Mitani K, Yao T. A case of (123)I-MIBG scintigram-negative functioning pheochromocytoma: immunohistochemical and molecular analysis with review of literature. Int J Clin Exp Pathol. 2014;7:4438-47 pubmed
  198. Ronzitti G, Bucci G, Emanuele M, Leo D, Sotnikova T, Mus L, et al. Exogenous ?-synuclein decreases raft partitioning of Cav2.2 channels inducing dopamine release. J Neurosci. 2014;34:10603-15 pubmed 出版商
  199. Aligny C, Roux C, Dourmap N, Ramdani Y, do Rego J, Jegou S, et al. Ketamine alters cortical integration of GABAergic interneurons and induces long-term sex-dependent impairments in transgenic Gad67-GFP mice. Cell Death Dis. 2014;5:e1311 pubmed 出版商
  200. Milione M, Gasparini P, Sozzi G, Mazzaferro V, Ferrari A, Casali P, et al. Ewing sarcoma of the small bowel: a study of seven cases, including one with the uncommonly reported EWSR1-FEV translocation. Histopathology. 2014;64:1014-26 pubmed 出版商
  201. Altinay S, Kusaslan R. Gastrointestinal autonomic nerve tumour of jejunum presenting as a perforated mass. J Pak Med Assoc. 2014;64:461-4 pubmed
  202. Changchien Y, Bocskai P, Kovacs I, Hargitai Z, Kollár S, Torok M. Pleomorphic hyalinizing angiectatic tumor of soft parts: case report with unusual ganglion-like cells and review of the literature. Pathol Res Pract. 2014;210:1146-51 pubmed 出版商
  203. Liu S, Zheng S, Dan Q, Liu J, Wang T. Effects of Governor Vessel electroacupuncture on the systematic expressions of NTFs in spinal cord transected rats. Neuropeptides. 2014;48:239-47 pubmed 出版商
  204. Carpanini S, McKie L, Thomson D, Wright A, Gordon S, Roche S, et al. A novel mouse model of Warburg Micro syndrome reveals roles for RAB18 in eye development and organisation of the neuronal cytoskeleton. Dis Model Mech. 2014;7:711-22 pubmed 出版商
  205. König N, Trolle C, Kapuralin K, Adameyko I, Mitrecic D, Aldskogius H, et al. Murine neural crest stem cells and embryonic stem cell-derived neuron precursors survive and differentiate after transplantation in a model of dorsal root avulsion. J Tissue Eng Regen Med. 2017;11:129-137 pubmed 出版商
  206. Li H, Harlow M. Individual synaptic vesicles from the electroplaque of Torpedo californica, a classic cholinergic synapse, also contain transporters for glutamate and ATP. Physiol Rep. 2014;2:e00206 pubmed 出版商
  207. Rizzardi A, Rosener N, Koopmeiners J, Isaksson Vogel R, Metzger G, Forster C, et al. Evaluation of protein biomarkers of prostate cancer aggressiveness. BMC Cancer. 2014;14:244 pubmed 出版商
  208. Williams P, Kim S, Martin J. Postnatal maturation of the red nucleus motor map depends on rubrospinal connections with forelimb motor pools. J Neurosci. 2014;34:4432-41 pubmed 出版商
  209. Oda S, Funato H, Sato F, Adachi Akahane S, Ito M, Takase K, et al. A subset of thalamocortical projections to the retrosplenial cortex possesses two vesicular glutamate transporter isoforms, VGluT1 and VGluT2, in axon terminals and somata. J Comp Neurol. 2014;522:2089-106 pubmed 出版商
  210. Shenton F, Pyner S. Expression of transient receptor potential channels TRPC1 and TRPV4 in venoatrial endocardium of the rat heart. Neuroscience. 2014;267:195-204 pubmed 出版商
  211. Kuga Y, Ohnishi H, Kodama Y, Takakura S, Hayashi M, Yagi R, et al. Cerebral and spinal cord tanycytic ependymomas in a young adult with a mutation in the NF2 gene. Neuropathology. 2014;34:406-13 pubmed 出版商
  212. Pannasch U, Freche D, Dallérac G, Ghezali G, Escartin C, Ezan P, et al. Connexin 30 sets synaptic strength by controlling astroglial synapse invasion. Nat Neurosci. 2014;17:549-58 pubmed 出版商
  213. Yamanaka T, Tosaki A, Kurosawa M, Akimoto K, Hirose T, Ohno S, et al. Loss of aPKC? in differentiated neurons disrupts the polarity complex but does not induce obvious neuronal loss or disorientation in mouse brains. PLoS ONE. 2013;8:e84036 pubmed 出版商
  214. Jones H, Gold M, Giannico G, Troutman A, Vnencak Jones C, Schultenover S, et al. Lymphoepithelioma-like carcinoma of the endometrium: immunophenotypic characterization of a rare tumor with microsatellite instability testing. Int J Gynecol Pathol. 2014;33:64-73 pubmed 出版商
  215. Huang Y, Dai L, Gaines D, Droz Rosario R, Lu H, Liu J, et al. BCCIP suppresses tumor initiation but is required for tumor progression. Cancer Res. 2013;73:7122-33 pubmed 出版商
  216. Trotter J, Lee G, Kazdoba T, Crowell B, Domogauer J, Mahoney H, et al. Dab1 is required for synaptic plasticity and associative learning. J Neurosci. 2013;33:15652-68 pubmed 出版商
  217. Tan M, Yu J, Jiang T, Zhu X, Guan H, Tan L. IL12/23 p40 inhibition ameliorates Alzheimer's disease-associated neuropathology and spatial memory in SAMP8 mice. J Alzheimers Dis. 2014;38:633-46 pubmed 出版商
  218. Koh J, Iwabuchi S, Harata N. Dystonia-associated protein torsinA is not detectable at the nerve terminals of central neurons. Neuroscience. 2013;253:316-29 pubmed 出版商
  219. Zhang Y, Seo S, Bhattarai S, Bugge K, Searby C, Zhang Q, et al. BBS mutations modify phenotypic expression of CEP290-related ciliopathies. Hum Mol Genet. 2014;23:40-51 pubmed 出版商
  220. Belzil C, Neumayer G, Vassilev A, Yap K, Konishi H, Rivest S, et al. A Ca2+-dependent mechanism of neuronal survival mediated by the microtubule-associated protein p600. J Biol Chem. 2013;288:24452-64 pubmed 出版商
  221. Eagleson K, Milner T, Xie Z, Levitt P. Synaptic and extrasynaptic location of the receptor tyrosine kinase met during postnatal development in the mouse neocortex and hippocampus. J Comp Neurol. 2013;521:3241-59 pubmed 出版商
  222. Ruzicka J, Romanyuk N, Hejcl A, Vetrik M, Hruby M, Cocks G, et al. Treating spinal cord injury in rats with a combination of human fetal neural stem cells and hydrogels modified with serotonin. Acta Neurobiol Exp (Wars). 2013;73:102-15 pubmed
  223. Busse B, Smith S. Automated analysis of a diverse synapse population. PLoS Comput Biol. 2013;9:e1002976 pubmed 出版商
  224. Mosquera J, Beltran H, Park K, MacDonald T, Robinson B, Tagawa S, et al. Concurrent AURKA and MYCN gene amplifications are harbingers of lethal treatment-related neuroendocrine prostate cancer. Neoplasia. 2013;15:1-10 pubmed
  225. Zhang H, Zhang X, Wang W, Xue Q, Lu H, Huang J, et al. Increased synaptophysin is involved in inflammation-induced heat hyperalgesia mediated by cyclin-dependent kinase 5 in rats. PLoS ONE. 2012;7:e46666 pubmed 出版商
  226. Li J, Xue Z, Deng S, Luo X, Patrylo P, Rose G, et al. Amyloid plaque pathogenesis in 5XFAD mouse spinal cord: retrograde transneuronal modulation after peripheral nerve injury. Neurotox Res. 2013;24:1-14 pubmed 出版商
  227. Rotondo F, Bernardo M, Scheithauer B, Latif S, Bogaev C, Sav A, et al. Atypical pituitary adenoma with neurocytic transformation. Appl Immunohistochem Mol Morphol. 2014;22:72-6 pubmed 出版商
  228. Chao H, Lai Y, Lu Y, Lin C, Mai W, Huang Y. NMDAR signaling facilitates the IPO5-mediated nuclear import of CPEB3. Nucleic Acids Res. 2012;40:8484-98 pubmed
  229. Griffin G, Ferri Kolwicz S, Reyes B, Van Bockstaele E, Flanagan Cato L. Ovarian hormone-induced reorganization of oxytocin-labeled dendrites and synapses lateral to the hypothalamic ventromedial nucleus in female rats. J Comp Neurol. 2010;518:4531-45 pubmed 出版商
  230. Issa A, Zhan W, Sieck G, Mantilla C. Neuregulin-1 at synapses on phrenic motoneurons. J Comp Neurol. 2010;518:4213-25 pubmed 出版商
  231. Baydar D, Kulac I, Gurel B, De Marzo A. A case of prostatic adenocarcinoma with aberrant p63 expression: presentation with detailed immunohistochemical study and FISH analysis. Int J Surg Pathol. 2011;19:131-6 pubmed 出版商
  232. Han M, Lin C, Meng S, Wang X. Proteomics analysis reveals overlapping functions of clustered protocadherins. Mol Cell Proteomics. 2010;9:71-83 pubmed 出版商
  233. Eisenthal A, Trejo L, Shtabsky A, Bedny F, Brazowski E. A novel assessment of the quality of immunohistostaining overcomes the limitations of current methods. Pathol Res Pract. 2008;204:323-8 pubmed 出版商
  234. Yan X, Xiong K, Luo X, Struble R, Clough R. beta-Secretase expression in normal and functionally deprived rat olfactory bulbs: inverse correlation with oxidative metabolic activity. J Comp Neurol. 2007;501:52-69 pubmed
  235. Navarro Quiroga I, Hernandez Valdes M, Lin S, Naegele J. Postnatal cellular contributions of the hippocampus subventricular zone to the dentate gyrus, corpus callosum, fimbria, and cerebral cortex. J Comp Neurol. 2006;497:833-45 pubmed