这是一篇来自已证抗体库的有关人类 synaptopodin的综述,是根据9篇发表使用所有方法的文章归纳的。这综述旨在帮助来邦网的访客找到最适合synaptopodin 抗体。
圣克鲁斯生物技术
单克隆(D-9)
  • 免疫组化; 人类; 1:300; 图 1g
圣克鲁斯生物技术 synaptopodin抗体(Santa Cruz, sc-515842)被用于被用于免疫组化在人类样本上浓度为1:300 (图 1g). J Clin Invest (2019) ncbi
Synaptic Systems
domestic rabbit 多克隆
  • 免疫印迹; 大鼠; 1:2000; 图 2s1
Synaptic Systems synaptopodin抗体(Synaptic Systems, 163002)被用于被用于免疫印迹在大鼠样本上浓度为1:2000 (图 2s1). elife (2020) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 小鼠; 1:750; 图 1
Synaptic Systems synaptopodin抗体(Synaptic Systems, 163002)被用于被用于免疫细胞化学在小鼠样本上浓度为1:750 (图 1). Am J Physiol Renal Physiol (2016) ncbi
西格玛奥德里奇
domestic rabbit 多克隆
  • 免疫组化; 大鼠; 1:200; 图 3
  • 免疫印迹; 大鼠; 1:1000; 图 3
西格玛奥德里奇 synaptopodin抗体(Sigma, S9567)被用于被用于免疫组化在大鼠样本上浓度为1:200 (图 3) 和 被用于免疫印迹在大鼠样本上浓度为1:1000 (图 3). Front Neurosci (2016) ncbi
艾博抗(上海)贸易有限公司
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 人类; 1:200; 图 2d
艾博抗(上海)贸易有限公司 synaptopodin抗体(Abcam, ab117702)被用于被用于免疫组化-冰冻切片在人类样本上浓度为1:200 (图 2d). Nat Commun (2019) ncbi
Progen
小鼠 单克隆(G1D4)
Progen synaptopodin抗体(Progen, 61094)被用于. Sci Rep (2019) ncbi
小鼠 单克隆(G1D4)
  • 免疫细胞化学; 小鼠; 图 1l
Progen synaptopodin抗体(Progene, 65194)被用于被用于免疫细胞化学在小鼠样本上 (图 1l). Dev Cell (2018) ncbi
小鼠 单克隆(G1D4)
  • 免疫组化-冰冻切片; 小鼠; 图 2c
  • 免疫印迹; 小鼠; 图 6f
Progen synaptopodin抗体(Progen Biotechnik, 65194)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 2c) 和 被用于免疫印迹在小鼠样本上 (图 6f). J Clin Invest (2015) ncbi
小鼠 单克隆(G1D4)
  • 免疫组化-冰冻切片; 小鼠
Progen synaptopodin抗体(Progene, 65194)被用于被用于免疫组化-冰冻切片在小鼠样本上. J Am Soc Nephrol (2013) ncbi
文章列表
  1. Dörrbaum A, Alvarez Castelao B, Nassim Assir B, Langer J, Schuman E. Proteome dynamics during homeostatic scaling in cultured neurons. elife. 2020;9: pubmed 出版商
  2. Subramanian A, Sidhom E, Emani M, Vernon K, Sahakian N, Zhou Y, et al. Single cell census of human kidney organoids shows reproducibility and diminished off-target cells after transplantation. Nat Commun. 2019;10:5462 pubmed 出版商
  3. Schwarz A, Möller Hackbarth K, Ebarasi L, Unnersjö Jess D, Zambrano S, Blom H, et al. Coro2b, a podocyte protein downregulated in human diabetic nephropathy, is involved in the development of protamine sulphate-induced foot process effacement. Sci Rep. 2019;9:8888 pubmed 出版商
  4. Koh K, Cao Y, Mangos S, Tardi N, Dande R, Lee H, et al. Nonimmune cell-derived ICOS ligand functions as a renoprotective αvβ3 integrin-selective antagonist. J Clin Invest. 2019;129:1713-1726 pubmed 出版商
  5. Schell C, Sabass B, Helmstaedter M, Geist F, Abed A, Yasuda Yamahara M, et al. ARP3 Controls the Podocyte Architecture at the Kidney Filtration Barrier. Dev Cell. 2018;47:741-757.e8 pubmed 出版商
  6. Vasilev D, Dubrovskaya N, Tumanova N, Zhuravin I. Prenatal Hypoxia in Different Periods of Embryogenesis Differentially Affects Cell Migration, Neuronal Plasticity, and Rat Behavior in Postnatal Ontogenesis. Front Neurosci. 2016;10:126 pubmed 出版商
  7. Sugar T, Wassenhove McCarthy D, Orr A, Green J, van Kuppevelt T, McCarthy K. N-sulfation of heparan sulfate is critical for syndecan-4-mediated podocyte cell-matrix interactions. Am J Physiol Renal Physiol. 2016;310:F1123-35 pubmed 出版商
  8. Wang L, Jirka G, Rosenberg P, Buckley A, Gomez J, Fields T, et al. Gq signaling causes glomerular injury by activating TRPC6. J Clin Invest. 2015;125:1913-26 pubmed 出版商
  9. Schell C, Baumhakl L, Salou S, Conzelmann A, Meyer C, Helmstädter M, et al. N-wasp is required for stabilization of podocyte foot processes. J Am Soc Nephrol. 2013;24:713-21 pubmed 出版商