这是一篇来自已证抗体库的有关人类 tau的综述,是根据332篇发表使用所有方法的文章归纳的。这综述旨在帮助来邦网的访客找到最适合tau 抗体。
tau 同义词: DDPAC; FTDP-17; MAPTL; MSTD; MTBT1; MTBT2; PPND; PPP1R103; TAU; microtubule-associated protein tau; G protein beta1/gamma2 subunit-interacting factor 1; PHF-tau; neurofibrillary tangle protein; paired helical filament-tau; protein phosphatase 1, regulatory subunit 103

基因敲除验证
赛默飞世尔小鼠 单克隆(TAU-5)
  • 细胞化学 (基因敲除); 小鼠; 图3
  • 细胞化学; 人类; 图3
赛默飞世尔tau抗体(Biosource, AHB0042)被用于免疫细胞化学 (基因敲除)在小鼠样品上 (图3) 和 免疫细胞化学在人类样品上 (图3). Sci Rep (2016) ncbi
赛默飞世尔小鼠 单克隆(HT7)
  • 免疫组化-P; 人类; 图2
  • 免疫组化 (基因敲除); 人类; 图2
赛默飞世尔tau抗体(Thermo Scientific, MN1000)被用于免疫组化-石蜡切片在人类样品上 (图2) 和 免疫组化 (基因敲除)在人类样品上 (图2). Brain Pathol (2016) ncbi
赛默飞世尔兔 多克隆
  • 免疫印迹 (基因敲除); 人类; 1:2000; 图2d
赛默飞世尔tau抗体(生活技术, 44764G)被用于免疫印迹 (基因敲除)在人类样品上浓度为1:2000 (图2d). Nat Commun (2015) ncbi
赛默飞世尔兔 多克隆
  • 免疫印迹 (基因敲除); 人类; 1:2000; 图2d
赛默飞世尔tau抗体(生活技术, 44750G)被用于免疫印迹 (基因敲除)在人类样品上浓度为1:2000 (图2d). Nat Commun (2015) ncbi
赛默飞世尔兔 多克隆
  • 免疫印迹 (基因敲除); 人类; 1:2000; 图2d
赛默飞世尔tau抗体(生活技术, 44758G)被用于免疫印迹 (基因敲除)在人类样品上浓度为1:2000 (图2d). Nat Commun (2015) ncbi
赛默飞世尔兔 多克隆
  • 免疫印迹 (基因敲除); 人类; 1:2000; 图2d
赛默飞世尔tau抗体(生活技术, 44752G)被用于免疫印迹 (基因敲除)在人类样品上浓度为1:2000 (图2d). Nat Commun (2015) ncbi
赛默飞世尔兔 多克隆
  • 免疫印迹 (基因敲除); 人类; 1:2000; 图2d
赛默飞世尔tau抗体(生活技术, 44734G)被用于免疫印迹 (基因敲除)在人类样品上浓度为1:2000 (图2d). Nat Commun (2015) ncbi
赛默飞世尔兔 多克隆
  • 免疫印迹 (基因敲除); 人类; 1:2000; 图2d
赛默飞世尔tau抗体(生活技术, 44738G)被用于免疫印迹 (基因敲除)在人类样品上浓度为1:2000 (图2d). Nat Commun (2015) ncbi
赛默飞世尔兔 多克隆
  • 免疫印迹 (基因敲除); 人类; 1:2000; 图2d
赛默飞世尔tau抗体(生活技术, 44760G)被用于免疫印迹 (基因敲除)在人类样品上浓度为1:2000 (图2d). Nat Commun (2015) ncbi
默克密理博中国小鼠 单克隆
  • IHC-Free; 人类; 图2
  • 免疫组化 (基因敲除); 人类; 图2
  • 免疫印迹; 人类; 图1
默克密理博中国tau抗体(Calbiochem, 577801)被用于immunohistochemistry - free floating section在人类样品上 (图2), 免疫组化 (基因敲除)在人类样品上 (图2), 和 免疫印迹在人类样品上 (图1). Brain Pathol (2016) ncbi
赛默飞世尔
小鼠 单克隆(AT8)
  • 免疫组化; 人类; 图4
赛默飞世尔tau抗体(Pierce, MN1020)被用于免疫组化在人类样品上 (图4). Sci Rep (2016) ncbi
小鼠 单克隆(TAU-5)
  • 细胞化学 (基因敲除); 小鼠; 图3
  • 细胞化学; 人类; 图3
赛默飞世尔tau抗体(Biosource, AHB0042)被用于免疫细胞化学 (基因敲除)在小鼠样品上 (图3) 和 免疫细胞化学在人类样品上 (图3). Sci Rep (2016) ncbi
小鼠 单克隆(AT100)
  • 免疫组化-P; 大鼠; 1:500; 图6
赛默飞世尔tau抗体(Thermo Fisher, AT100)被用于免疫组化-石蜡切片在大鼠样品上浓度为1:500 (图6). Acta Neuropathol Commun (2016) ncbi
小鼠 单克隆(AT180)
  • 免疫组化-P; 大鼠; 1:50; 图6
赛默飞世尔tau抗体(Thermo Fisher, MN1040)被用于免疫组化-石蜡切片在大鼠样品上浓度为1:50 (图6). Acta Neuropathol Commun (2016) ncbi
小鼠 单克隆(HT7)
  • 免疫印迹; 大鼠; 1:1000; 图7
赛默飞世尔tau抗体(Thermo Fisher, MN1000)被用于免疫印迹在大鼠样品上浓度为1:1000 (图7). Acta Neuropathol Commun (2016) ncbi
小鼠 单克隆(AT8)
  • 免疫组化-P; 大鼠; 1:50; 图6
赛默飞世尔tau抗体(Thermo Fisher, MN1020)被用于免疫组化-石蜡切片在大鼠样品上浓度为1:50 (图6). Acta Neuropathol Commun (2016) ncbi
小鼠 单克隆(S.125.0)
  • 免疫组化-P; 人类; 1:2000; 图2d
赛默飞世尔tau抗体(Thermo Fisher, MA5-15108)被用于免疫组化-石蜡切片在人类样品上浓度为1:2000 (图2d). Sci Rep (2016) ncbi
小鼠 单克隆(AT180)
  • 免疫组化-P; 大鼠; 1:1000; 图5
赛默飞世尔tau抗体(Thermo Fisher, MN1040)被用于免疫组化-石蜡切片在大鼠样品上浓度为1:1000 (图5). PLoS ONE (2016) ncbi
小鼠 单克隆(HT7)
  • 免疫印迹; 人类; 1:1000; 图3
赛默飞世尔tau抗体(Thermo Scientific, MN1000)被用于免疫印迹在人类样品上浓度为1:1000 (图3). Dis Model Mech (2016) ncbi
兔 多克隆
  • 免疫印迹; 人类; 1:1000; 图3
赛默飞世尔tau抗体(Invitrogen, 44740G)被用于免疫印迹在人类样品上浓度为1:1000 (图3). Dis Model Mech (2016) ncbi
小鼠 单克隆(HT7)
  • 免疫印迹; 小鼠; 1:3000; 图6
赛默飞世尔tau抗体(Thermo Fisher, MN1000)被用于免疫印迹在小鼠样品上浓度为1:3000 (图6). Mol Neurodegener (2016) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图3
赛默飞世尔tau抗体(Invitrogen, 44750G)被用于免疫印迹在小鼠样品上浓度为1:1000 (图3). Aging Cell (2016) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图3
赛默飞世尔tau抗体(Invitrogen, 44764G)被用于免疫印迹在小鼠样品上浓度为1:1000 (图3). Aging Cell (2016) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图3
赛默飞世尔tau抗体(Invitrogen, 44752G)被用于免疫印迹在小鼠样品上浓度为1:1000 (图3). Aging Cell (2016) ncbi
小鼠 单克隆(AT8)
  • 免疫组化-P; 小鼠; 1:25; 图2
赛默飞世尔tau抗体(Thermo Fisher, MN1020)被用于免疫组化-石蜡切片在小鼠样品上浓度为1:25 (图2). Aging Cell (2016) ncbi
小鼠 单克隆(AT8)
  • 免疫印迹; 兔; 1:1000; 图3
赛默飞世尔tau抗体(Pierce, MN1020)被用于免疫印迹在兔样品上浓度为1:1000 (图3). Front Aging Neurosci (2016) ncbi
兔 多克隆
  • 免疫组化-P; 小鼠; 1:2000; 图1
赛默飞世尔tau抗体(Invitrogen, 44764G)被用于免疫组化-石蜡切片在小鼠样品上浓度为1:2000 (图1). Nat Commun (2016) ncbi
兔 多克隆
  • 免疫组化-P; 小鼠; 1:1000; 图1
赛默飞世尔tau抗体(Invitrogen, 44746G)被用于免疫组化-石蜡切片在小鼠样品上浓度为1:1000 (图1). Nat Commun (2016) ncbi
兔 多克隆
  • 免疫组化-P; 小鼠; 1:1000; 图1
赛默飞世尔tau抗体(Invitrogen, 44752)被用于免疫组化-石蜡切片在小鼠样品上浓度为1:1000 (图1). Nat Commun (2016) ncbi
小鼠 单克隆(HT7)
  • 中和/激活的; 人类; 图3
赛默飞世尔tau抗体(Thermo Scientific, MN1000)被用于抑制或激活实验在人类样品上 (图3). Ann Neurol (2016) ncbi
兔 多克隆
  • 中和/激活的; 人类; 图3
赛默飞世尔tau抗体(生活技术, 44752)被用于抑制或激活实验在人类样品上 (图3). Ann Neurol (2016) ncbi
小鼠 单克隆(AT8)
  • 免疫组化-P; 人类; 1:2000; 图7
赛默飞世尔tau抗体(Pierce, MN1020)被用于免疫组化-石蜡切片在人类样品上浓度为1:2000 (图7). J Neuropathol Exp Neurol (2016) ncbi
小鼠 单克隆(HT7)
  • 免疫组化-P; 人类; 图2
  • 免疫组化 (基因敲除); 人类; 图2
赛默飞世尔tau抗体(Thermo Scientific, MN1000)被用于免疫组化-石蜡切片在人类样品上 (图2) 和 免疫组化 (基因敲除)在人类样品上 (图2). Brain Pathol (2016) ncbi
小鼠 单克隆(AT8)
  • IHC-Free; 人类; 图2
赛默飞世尔tau抗体(Thermo Scientific, MN1020)被用于immunohistochemistry - free floating section在人类样品上 (图2). Brain Pathol (2016) ncbi
小鼠 单克隆(AT100)
  • 免疫印迹; 小鼠; 1:500; 图6
赛默飞世尔tau抗体(Thermo Scientific, MN1060)被用于免疫印迹在小鼠样品上浓度为1:500 (图6). Alzheimers Dement (2016) ncbi
小鼠 单克隆(AT8)
  • 免疫印迹; 小鼠; 1:500; 图6
赛默飞世尔tau抗体(Thermo Scientific, MN1020)被用于免疫印迹在小鼠样品上浓度为1:500 (图6). Alzheimers Dement (2016) ncbi
小鼠 单克隆(AT180)
  • 免疫组化; 小鼠; 1:1000; 图3
赛默飞世尔tau抗体(Thermo Fisher Scientific, EN-MN1040)被用于免疫组化在小鼠样品上浓度为1:1000 (图3). Cereb Cortex (2016) ncbi
小鼠 单克隆(AT8)
  • 免疫印迹; 小鼠; 1:500
  • 免疫组化; 小鼠; 1:80
赛默飞世尔tau抗体(Thermo Scientific, MN1020)被用于免疫印迹在小鼠样品上浓度为1:500 和 免疫组化在小鼠样品上浓度为1:80. Neurobiol Dis (2016) ncbi
小鼠 单克隆(HT7)
  • 免疫印迹; 人类; 1:1000; 图1
赛默飞世尔tau抗体(Thermo Fisher, MN1000)被用于免疫印迹在人类样品上浓度为1:1000 (图1). Proc Natl Acad Sci U S A (2016) ncbi
小鼠 单克隆(AT8)
  • 免疫组化-P; 人类; 1:2000; 图1
赛默飞世尔tau抗体(Thermo Scientific, MN1020)被用于免疫组化-石蜡切片在人类样品上浓度为1:2000 (图1). Lancet Neurol (2016) ncbi
小鼠 单克隆(HT7)
  • 免疫印迹; 大鼠; 1:1000; 图1
赛默飞世尔tau抗体(Thermo Fisher, MN1000)被用于免疫印迹在大鼠样品上浓度为1:1000 (图1). Sci Rep (2016) ncbi
小鼠 单克隆(AT8)
  • 免疫组化-P; 人类; 图2
赛默飞世尔tau抗体(Pierce, MN1020)被用于免疫组化-石蜡切片在人类样品上 (图2). Neurobiol Dis (2016) ncbi
小鼠 单克隆(AT8)
  • 免疫印迹; 小鼠; 图6
赛默飞世尔tau抗体(Thermo, MN1020)被用于免疫印迹在小鼠样品上 (图6). Eneuro (2016) ncbi
小鼠 单克隆(AT8)
  • 免疫组化; 大鼠; 1:100; 图6
赛默飞世尔tau抗体(生活技术, MN1020B)被用于免疫组化在大鼠样品上浓度为1:100 (图6). Cell Death Dis (2016) ncbi
小鼠 单克隆(AT8)
  • IHC-Free; 人类; 图4
  • IHC-Free; 小鼠; 图4
  • 免疫印迹; 果蝇; 图3
赛默飞世尔tau抗体(Thermo Scientific, MN1020)被用于immunohistochemistry - free floating section在人类样品上 (图4) 和 在小鼠样品上 (图4) 和 免疫印迹在果蝇样品上 (图3). Mol Psychiatry (2016) ncbi
兔 多克隆
  • 免疫印迹; 果蝇; 图3
赛默飞世尔tau抗体(生活技术, 44764G)被用于免疫印迹在果蝇样品上 (图3). Mol Psychiatry (2016) ncbi
小鼠 单克隆(AT270)
  • 免疫印迹; 果蝇; 图3
赛默飞世尔tau抗体(Thermo (Pierce), MN1050)被用于免疫印迹在果蝇样品上 (图3). Mol Psychiatry (2016) ncbi
兔 多克隆
  • 免疫印迹; 人类; 1:3000; 图1
赛默飞世尔tau抗体(生活技术, 44740G)被用于免疫印迹在人类样品上浓度为1:3000 (图1). Nat Commun (2016) ncbi
小鼠 单克隆(HT7)
  • 免疫组化-P; 人类; 1:100; 图5
赛默飞世尔tau抗体(Thermo Fisher, MN1000)被用于免疫组化-石蜡切片在人类样品上浓度为1:100 (图5). Brain Pathol (2016) ncbi
小鼠 单克隆(AT8)
  • IHC-Free; 人类; 1:250; 图2
赛默飞世尔tau抗体(Thermo Scientific, MN1020)被用于immunohistochemistry - free floating section在人类样品上浓度为1:250 (图2). Sci Rep (2016) ncbi
兔 多克隆
  • IHC-Free; 小鼠; 1:250; 图5
赛默飞世尔tau抗体(Invitrogen, 44-764G)被用于immunohistochemistry - free floating section在小鼠样品上浓度为1:250 (图5). Sci Rep (2016) ncbi
小鼠 单克隆(AT8)
  • 免疫组化-F; 人类; 1:500; 图6
  • 免疫印迹; 人类; 1:2500; 图5
赛默飞世尔tau抗体(Pierce, MN-1020)被用于免疫组化-冰冻切片在人类样品上浓度为1:500 (图6) 和 免疫印迹在人类样品上浓度为1:2500 (图5). PLoS ONE (2016) ncbi
小鼠 单克隆(AT270)
  • 免疫印迹; 人类; 1:500; 图5
赛默飞世尔tau抗体(Pierce, MN-1050)被用于免疫印迹在人类样品上浓度为1:500 (图5). PLoS ONE (2016) ncbi
小鼠 单克隆(TAU-5)
  • 细胞化学; 人类; 1:600; 图4
  • 免疫印迹; 人类; 1:1000; 图2
赛默飞世尔tau抗体(Invitrogen, AHB0042)被用于免疫细胞化学在人类样品上浓度为1:600 (图4) 和 免疫印迹在人类样品上浓度为1:1000 (图2). J Cell Sci (2016) ncbi
小鼠 单克隆(AT8)
  • 免疫组化-P; 人类; 1:1000
赛默飞世尔tau抗体(Thermo Scientific, AT8)被用于免疫组化-石蜡切片在人类样品上浓度为1:1000. Acta Neuropathol Commun (2016) ncbi
小鼠 单克隆(AT180)
  • 免疫组化-P; 小鼠; 图3
  • 免疫印迹; 小鼠; 1:500; 图6
赛默飞世尔tau抗体(Thermo Fisher, AT180)被用于免疫组化-石蜡切片在小鼠样品上 (图3) 和 免疫印迹在小鼠样品上浓度为1:500 (图6). Acta Neuropathol Commun (2016) ncbi
小鼠 单克隆(TAU-5)
  • 免疫组化-F; 小鼠; 1:500; 表1
  • 免疫印迹; 小鼠; 1:500; 表1
赛默飞世尔tau抗体(Biosource International, AHB0042)被用于免疫组化-冰冻切片在小鼠样品上浓度为1:500 (表1) 和 免疫印迹在小鼠样品上浓度为1:500 (表1). J Neuropathol Exp Neurol (2016) ncbi
小鼠 单克隆(AT100)
  • 免疫印迹; 小鼠; 1:1000; 图3
赛默飞世尔tau抗体(Thermo Scientific, MN1060)被用于免疫印迹在小鼠样品上浓度为1:1000 (图3). J Biol Chem (2016) ncbi
小鼠 单克隆(AT180)
  • 免疫印迹; 小鼠; 1:1000; 图3
赛默飞世尔tau抗体(Thermo Scientific, MN1040)被用于免疫印迹在小鼠样品上浓度为1:1000 (图3). J Biol Chem (2016) ncbi
小鼠 单克隆(AT8)
  • 免疫印迹; 小鼠; 1:1000; 图3
赛默飞世尔tau抗体(Thermo Scientific, MN1020)被用于免疫印迹在小鼠样品上浓度为1:1000 (图3). J Biol Chem (2016) ncbi
小鼠 单克隆(AT270)
  • 免疫印迹; 小鼠; 1:1000; 图3
赛默飞世尔tau抗体(Thermo Scientific, MN1050)被用于免疫印迹在小鼠样品上浓度为1:1000 (图3). J Biol Chem (2016) ncbi
小鼠 单克隆(Tau46)
  • 免疫印迹; 果蝇; 图2
赛默飞世尔tau抗体(Zymed, Tau46)被用于免疫印迹在果蝇样品上 (图2). PLoS Genet (2016) ncbi
小鼠 单克隆(AT180)
  • 免疫印迹; 果蝇; 图2
赛默飞世尔tau抗体(Thermo, AT180)被用于免疫印迹在果蝇样品上 (图2). PLoS Genet (2016) ncbi
小鼠 单克隆(AT100)
  • 免疫组化-P; 人类; 图1
赛默飞世尔tau抗体(Thermo Scientific, AT100)被用于免疫组化-石蜡切片在人类样品上 (图1). Front Neurosci (2016) ncbi
小鼠 单克隆(AT180)
  • 免疫组化-P; 果蝇; 1:1000; 图4
  • 免疫印迹; 果蝇; 1:2000; 图4
赛默飞世尔tau抗体(Thermo Scientific, AT180)被用于免疫组化-石蜡切片在果蝇样品上浓度为1:1000 (图4) 和 免疫印迹在果蝇样品上浓度为1:2000 (图4). Mol Neurobiol (2016) ncbi
小鼠 单克隆(AT8)
  • 免疫组化-P; 果蝇; 1:1000; 图4
  • 免疫印迹; 果蝇; 1:2000; 图4
赛默飞世尔tau抗体(Thermo Scientific, AT8)被用于免疫组化-石蜡切片在果蝇样品上浓度为1:1000 (图4) 和 免疫印迹在果蝇样品上浓度为1:2000 (图4). Mol Neurobiol (2016) ncbi
小鼠 单克隆(AT270)
  • 免疫组化-P; 果蝇; 1:1000; 图4
  • 免疫印迹; 果蝇; 1:2000; 图4
赛默飞世尔tau抗体(Thermo Scientific, AT270)被用于免疫组化-石蜡切片在果蝇样品上浓度为1:1000 (图4) 和 免疫印迹在果蝇样品上浓度为1:2000 (图4). Mol Neurobiol (2016) ncbi
小鼠 单克隆(TAU-5)
  • 免疫印迹; 人类; 图2
赛默飞世尔tau抗体(Invitrogen, AHB0042)被用于免疫印迹在人类样品上 (图2). F1000Res (2016) ncbi
小鼠 单克隆(AT8)
  • 免疫组化-P; 人类; 图4
赛默飞世尔tau抗体(ThermoFisher Scientific, MN1020)被用于免疫组化-石蜡切片在人类样品上 (图4). Acta Neuropathol (2016) ncbi
小鼠 单克隆(TAU-5)
  • 免疫印迹; 人类; 1:10,000; 图3f
赛默飞世尔tau抗体(Invitrogen, Tau-5)被用于免疫印迹在人类样品上浓度为1:10,000 (图3f). Nat Commun (2016) ncbi
小鼠 单克隆(AT8)
  • 免疫印迹; 人类; 1:2000; 图4
赛默飞世尔tau抗体(Thermo Scientific, AT8)被用于免疫印迹在人类样品上浓度为1:2000 (图4). Sci Rep (2016) ncbi
小鼠 单克隆(HT7)
  • 免疫印迹; 人类; 1:2000; 图4
赛默飞世尔tau抗体(Thermo Scientific, HT7)被用于免疫印迹在人类样品上浓度为1:2000 (图4). Sci Rep (2016) ncbi
小鼠 单克隆(AT100)
  • 免疫印迹; 人类; 1:2000; 图4
赛默飞世尔tau抗体(Thermo Scientific, AT100)被用于免疫印迹在人类样品上浓度为1:2000 (图4). Sci Rep (2016) ncbi
小鼠 单克隆(AT8)
  • 免疫印迹; 小鼠; 图11
赛默飞世尔tau抗体(Thermo Scientific, MN1020B)被用于免疫印迹在小鼠样品上 (图11). PLoS ONE (2016) ncbi
小鼠 单克隆(AT8)
  • 免疫组化-P; 人类; 1:1000; 表2
赛默飞世尔tau抗体(Thermo Scientific, MN1020)被用于免疫组化-石蜡切片在人类样品上浓度为1:1000 (表2). Acta Neuropathol Commun (2016) ncbi
小鼠 单克隆(AT8)
  • 免疫组化-F; 人类; 图3
赛默飞世尔tau抗体(Thermo Scientific, MN1020)被用于免疫组化-冰冻切片在人类样品上 (图3). EMBO Rep (2016) ncbi
小鼠 单克隆(HT7)
  • 免疫印迹; 人类; 1:2000; 图1
赛默飞世尔tau抗体(Thermo Scientific, MN1000)被用于免疫印迹在人类样品上浓度为1:2000 (图1). Dev Dyn (2016) ncbi
小鼠 单克隆(AT8)
  • IHC-Free; 人类; 1:800; 表2
赛默飞世尔tau抗体(Therno Fisher, MN1020)被用于immunohistochemistry - free floating section在人类样品上浓度为1:800 (表2). Neurobiol Aging (2016) ncbi
小鼠 单克隆(AT8)
  • 免疫印迹; 小鼠; 1:1000; 表1
赛默飞世尔tau抗体(Thermo, MN1020)被用于免疫印迹在小鼠样品上浓度为1:1000 (表1). J Alzheimers Dis (2016) ncbi
小鼠 单克隆(TAU-5)
  • 免疫印迹; 人类; 图1
赛默飞世尔tau抗体(Invitrogen, AHB0042)被用于免疫印迹在人类样品上 (图1). Life Sci (2016) ncbi
小鼠 单克隆(AT8)
  • 免疫印迹; 大鼠; 1:1000; 图2
赛默飞世尔tau抗体(ThermoFisher Scientific, MN1020)被用于免疫印迹在大鼠样品上浓度为1:1000 (图2). Neuropharmacology (2016) ncbi
小鼠 单克隆(AT180)
  • 免疫印迹; 小鼠; 图8
赛默飞世尔tau抗体(Thermo Fisher, MN1040)被用于免疫印迹在小鼠样品上 (图8). Am J Pathol (2016) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 图8
赛默飞世尔tau抗体(Thermo Fisher, 44738G)被用于免疫印迹在小鼠样品上 (图8). Am J Pathol (2016) ncbi
小鼠 单克隆(AT270)
  • 免疫印迹; 小鼠; 图8
赛默飞世尔tau抗体(Thermo Fisher, MN1050)被用于免疫印迹在小鼠样品上 (图8). Am J Pathol (2016) ncbi
小鼠 单克隆(AT8)
  • 免疫印迹; 小鼠; 图8
赛默飞世尔tau抗体(Thermo Fisher, MN1020)被用于免疫印迹在小鼠样品上 (图8). Am J Pathol (2016) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 图8
赛默飞世尔tau抗体(Thermo Fisher, 44734G)被用于免疫印迹在小鼠样品上 (图8). Am J Pathol (2016) ncbi
小鼠 单克隆(AT8)
  • 免疫组化; 人类; 1:100; 图5
赛默飞世尔tau抗体(Thermo Scientific, MN1020)被用于免疫组化在人类样品上浓度为1:100 (图5). J Neuropathol Exp Neurol (2016) ncbi
小鼠 单克隆(HT7)
  • 免疫组化-P; 小鼠; 1:500; 图1
赛默飞世尔tau抗体(Thermo Scientifi, HT7)被用于免疫组化-石蜡切片在小鼠样品上浓度为1:500 (图1). Neurobiol Learn Mem (2016) ncbi
小鼠 单克隆(AT180)
  • 免疫组化-P; 小鼠; 1:500; 图1
赛默飞世尔tau抗体(Thermo Scientifi, AT180)被用于免疫组化-石蜡切片在小鼠样品上浓度为1:500 (图1). Neurobiol Learn Mem (2016) ncbi
小鼠 单克隆(AT100)
  • 免疫组化-P; 小鼠; 1:500; 图1
赛默飞世尔tau抗体(Thermo Scientifi, AT100)被用于免疫组化-石蜡切片在小鼠样品上浓度为1:500 (图1). Neurobiol Learn Mem (2016) ncbi
小鼠 单克隆(AT8)
  • 免疫组化-P; 小鼠; 1:500; 图1
赛默飞世尔tau抗体(Thermo Scientifi, AT8)被用于免疫组化-石蜡切片在小鼠样品上浓度为1:500 (图1). Neurobiol Learn Mem (2016) ncbi
小鼠 单克隆(AT8)
  • 免疫印迹; 人类; 1:1000; 图3
  • 免疫印迹; 小鼠; 1:1000; 图3
  • 免疫组化; 人类; 图3
  • 免疫组化; 小鼠; 图3
赛默飞世尔tau抗体(Pierce, MN1020)被用于免疫印迹在人类样品上浓度为1:1000 (图3) 和 在小鼠样品上浓度为1:1000 (图3) 和 免疫组化在人类样品上 (图3) 和 在小鼠样品上 (图3). Neuropharmacology (2016) ncbi
小鼠 单克隆(AT100)
  • 免疫印迹; 人类; 1:1000; 图3
  • 免疫印迹; 小鼠; 1:1000; 图3
赛默飞世尔tau抗体(Pierce, MN1060)被用于免疫印迹在人类样品上浓度为1:1000 (图3) 和 在小鼠样品上浓度为1:1000 (图3). Neuropharmacology (2016) ncbi
小鼠 单克隆(AT180)
  • 免疫印迹; 人类; 1:1000; 图3
  • 免疫印迹; 小鼠; 1:1000; 图3
  • 免疫组化; 人类; 图3
  • 免疫组化; 小鼠; 图3
赛默飞世尔tau抗体(Pierce, MN1040)被用于免疫印迹在人类样品上浓度为1:1000 (图3) 和 在小鼠样品上浓度为1:1000 (图3) 和 免疫组化在人类样品上 (图3) 和 在小鼠样品上 (图3). Neuropharmacology (2016) ncbi
小鼠 单克隆(T46)
  • 免疫印迹; 小鼠; 1:1000; 图7
赛默飞世尔tau抗体(Invitrogen, T46)被用于免疫印迹在小鼠样品上浓度为1:1000 (图7). Brain (2016) ncbi
小鼠 单克隆(AT8)
  • 免疫组化; 小鼠; 1:100; 图7
  • 免疫印迹; 小鼠; 1:750; 图7
赛默飞世尔tau抗体(Thermo Scientific, AT8)被用于免疫组化在小鼠样品上浓度为1:100 (图7) 和 免疫印迹在小鼠样品上浓度为1:750 (图7). Brain (2016) ncbi
小鼠 单克隆(TAU-5)
  • 免疫印迹; 人类; 1:1000; 表1
  • 免疫印迹; 小鼠; 1:1000; 表1
赛默飞世尔tau抗体(Thermo Fisher, TAU-5)被用于免疫印迹在人类样品上浓度为1:1000 (表1) 和 在小鼠样品上浓度为1:1000 (表1). Front Cell Neurosci (2015) ncbi
小鼠 单克隆(AT8)
  • 免疫印迹; 人类; 1:1000; 表1
  • 免疫印迹; 小鼠; 1:1000; 表1
赛默飞世尔tau抗体(Thermo Fisher, AT8)被用于免疫印迹在人类样品上浓度为1:1000 (表1) 和 在小鼠样品上浓度为1:1000 (表1). Front Cell Neurosci (2015) ncbi
小鼠 单克隆(AT180)
  • 免疫印迹; 人类; 1:1000; 表1
  • 免疫印迹; 小鼠; 1:1000; 表1
赛默飞世尔tau抗体(Thermo Fisher, AT180)被用于免疫印迹在人类样品上浓度为1:1000 (表1) 和 在小鼠样品上浓度为1:1000 (表1). Front Cell Neurosci (2015) ncbi
小鼠 单克隆(AT8)
  • 免疫印迹; 小鼠; 1:1000; 图3
赛默飞世尔tau抗体(Thermo Scientific, AT8)被用于免疫印迹在小鼠样品上浓度为1:1000 (图3). Neurobiol Dis (2016) ncbi
小鼠 单克隆(AT180)
  • 免疫印迹; 小鼠; 1:1000; 图3
赛默飞世尔tau抗体(Thermo Scientific, AT180)被用于免疫印迹在小鼠样品上浓度为1:1000 (图3). Neurobiol Dis (2016) ncbi
小鼠 单克隆(AT8)
  • 免疫印迹; 小鼠; 图3e
赛默飞世尔tau抗体(Pierce, MN1020)被用于免疫印迹在小鼠样品上 (图3e). Sci Rep (2016) ncbi
小鼠 单克隆(HT7)
  • 免疫印迹; 人类; 图s2
赛默飞世尔tau抗体(ThermoFisher, HT7)被用于免疫印迹在人类样品上 (图s2). Mol Neurobiol (2016) ncbi
小鼠 单克隆(AT100)
  • 免疫印迹; 人类; 图s2
赛默飞世尔tau抗体(Thermo Scientific, AT100)被用于免疫印迹在人类样品上 (图s2). Mol Neurobiol (2016) ncbi
小鼠 单克隆(AT8)
  • 免疫组化; 人类; 1:800; 表2
赛默飞世尔tau抗体(Pierce, AT8)被用于免疫组化在人类样品上浓度为1:800 (表2). J Neuroinflammation (2016) ncbi
小鼠 单克隆(AT8)
  • 免疫印迹; 人类; 1:500; 图2
赛默飞世尔tau抗体(Pierce, AT8)被用于免疫印迹在人类样品上浓度为1:500 (图2). Neuroscience (2016) ncbi
小鼠 单克隆(AT180)
  • 免疫印迹; 人类; 1:100; 图2
赛默飞世尔tau抗体(Pierce, AT180)被用于免疫印迹在人类样品上浓度为1:100 (图2). Neuroscience (2016) ncbi
小鼠 单克隆(HT7)
  • 免疫印迹; 小鼠; 1:1000; 图1
赛默飞世尔tau抗体(Pierce, HT7)被用于免疫印迹在小鼠样品上浓度为1:1000 (图1). Neuroscience (2016) ncbi
兔 多克隆
  • 免疫印迹; 人类; 1:3000; 图3
赛默飞世尔tau抗体(生活技术, 44-742G)被用于免疫印迹在人类样品上浓度为1:3000 (图3). Nat Med (2016) ncbi
小鼠 单克隆(TAU-5)
  • 免疫印迹; 人类; 图3
赛默飞世尔tau抗体(Invitrogen, AHB0042)被用于免疫印迹在人类样品上 (图3). Pharmacol Res (2016) ncbi
小鼠 单克隆(AT8)
  • 免疫组化-P; 人类; 1:1000; 图1
赛默飞世尔tau抗体(Thermo Fisher, MN1020)被用于免疫组化-石蜡切片在人类样品上浓度为1:1000 (图1). Neuropathology (2015) ncbi
小鼠 单克隆(AT8)
  • 免疫印迹; 小鼠; 1:1000; 图3
赛默飞世尔tau抗体(Thermo Scientific, MN1020)被用于免疫印迹在小鼠样品上浓度为1:1000 (图3). Brain (2016) ncbi
小鼠 单克隆(HT7)
  • 免疫印迹; 小鼠; 1:1000; 图3
赛默飞世尔tau抗体(Thermo Scientific, MN1000)被用于免疫印迹在小鼠样品上浓度为1:1000 (图3). Brain (2016) ncbi
小鼠 单克隆(AT180)
  • 免疫印迹; 小鼠; 1:1000; 图3
赛默飞世尔tau抗体(Thermo Scientific, MN1040)被用于免疫印迹在小鼠样品上浓度为1:1000 (图3). Brain (2016) ncbi
小鼠 单克隆(AT8)
  • 免疫组化-P; 猫; 1:100; 图6
赛默飞世尔tau抗体(Thermo Scientific, AT8)被用于免疫组化-石蜡切片在猫样品上浓度为1:100 (图6). Acta Neuropathol Commun (2015) ncbi
小鼠 单克隆(TAU-5)
  • 免疫印迹; 猫; 1:1000; 图4
赛默飞世尔tau抗体(生活技术, TAU-5)被用于免疫印迹在猫样品上浓度为1:1000 (图4). Acta Neuropathol Commun (2015) ncbi
小鼠 单克隆(AT100)
  • 免疫组化-P; 猫; 1:100; 图6
赛默飞世尔tau抗体(Thermo Scientific, AT100)被用于免疫组化-石蜡切片在猫样品上浓度为1:100 (图6). Acta Neuropathol Commun (2015) ncbi
小鼠 单克隆(AT8)
  • 免疫印迹; 人类; 图3
赛默飞世尔tau抗体(Thermo, MN1020)被用于免疫印迹在人类样品上 (图3). Stem Cell Reports (2015) ncbi
小鼠 单克隆(AT8)
  • 免疫印迹; 人类; 图7
赛默飞世尔tau抗体(Thermo Scientific, AT8)被用于免疫印迹在人类样品上 (图7). Mol Brain (2015) ncbi
小鼠 单克隆(AT180)
  • 免疫印迹; 人类; 图7
赛默飞世尔tau抗体(Thermo Scientific, AT180)被用于免疫印迹在人类样品上 (图7). Mol Brain (2015) ncbi
小鼠 单克隆(TAU-5)
  • 免疫印迹; 小鼠; 1:5000; 图5
赛默飞世尔tau抗体(Invitrogen, ahb0042)被用于免疫印迹在小鼠样品上浓度为1:5000 (图5). J Neuroinflammation (2015) ncbi
小鼠 单克隆(AT180)
  • 免疫印迹; 人类; 图3
赛默飞世尔tau抗体(Thermo Scientific, AT180)被用于免疫印迹在人类样品上 (图3). J Neuroimmunol (2015) ncbi
小鼠 单克隆(AT8)
  • 免疫印迹; 人类; 图3
赛默飞世尔tau抗体(Thermo Scientific, AT8)被用于免疫印迹在人类样品上 (图3). J Neuroimmunol (2015) ncbi
小鼠 单克隆(AT8)
  • 免疫组化; 人类; 图1c
赛默飞世尔tau抗体(Thermo Fisher Scientific, MN1020)被用于免疫组化在人类样品上 (图1c). Biometals (2016) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 1:3000; 图1
赛默飞世尔tau抗体(Invitrogen, 44-752G)被用于免疫印迹在小鼠样品上浓度为1:3000 (图1). Neurosci Lett (2016) ncbi
小鼠 单克隆(AT100)
  • 免疫印迹; 小鼠; 1:200; 图1
赛默飞世尔tau抗体(Thermo, AT100)被用于免疫印迹在小鼠样品上浓度为1:200 (图1). Neurosci Lett (2016) ncbi
小鼠 单克隆(AT8)
  • 免疫组化; 人类; 图1
赛默飞世尔tau抗体(Thermo Scientific, MN1020-B)被用于免疫组化在人类样品上 (图1). Brain Res (2016) ncbi
小鼠 单克隆(TAU-5)
  • 免疫印迹; 人类; 1 mg/ml; 图10
赛默飞世尔tau抗体(生活技术, AHB0042)被用于免疫印迹在人类样品上浓度为1 mg/ml (图10). Brain Res (2016) ncbi
兔 多克隆
  • 细胞化学; 大鼠; 1:50; 图3
赛默飞世尔tau抗体(Invitrogen, 44-738G)被用于免疫细胞化学在大鼠样品上浓度为1:50 (图3). BMC Cancer (2015) ncbi
小鼠 单克隆(AT8)
  • 免疫组化; 小鼠; 1:500; 图5
赛默飞世尔tau抗体(Thermo Scientific, MN1020)被用于免疫组化在小鼠样品上浓度为1:500 (图5). Neuropharmacology (2016) ncbi
小鼠 单克隆(T46)
  • 免疫印迹; 人类; 图2
  • 免疫组化; 人类; 1:500; 图6
赛默飞世尔tau抗体(Thermo Scientific, T46)被用于免疫印迹在人类样品上 (图2) 和 免疫组化在人类样品上浓度为1:500 (图6). Acta Neuropathol (2016) ncbi
小鼠 单克隆(AT180)
  • 免疫印迹; 人类; 图2
赛默飞世尔tau抗体(Thermo Scientific, AT180)被用于免疫印迹在人类样品上 (图2). Acta Neuropathol (2016) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 图1
赛默飞世尔tau抗体(Invitrogen, 44740G)被用于免疫印迹在小鼠样品上 (图1). Sci Rep (2015) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 图1
赛默飞世尔tau抗体(Invitrogen, 44738G)被用于免疫印迹在小鼠样品上 (图1). Sci Rep (2015) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 图1
赛默飞世尔tau抗体(Invitrogen, 44742G)被用于免疫印迹在小鼠样品上 (图1). Sci Rep (2015) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 图1
赛默飞世尔tau抗体(Invitrogen, 44758G)被用于免疫印迹在小鼠样品上 (图1). Sci Rep (2015) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 图1
赛默飞世尔tau抗体(Invitrogen, 44734G)被用于免疫印迹在小鼠样品上 (图1). Sci Rep (2015) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 图1
赛默飞世尔tau抗体(Invitrogen, 44752G)被用于免疫印迹在小鼠样品上 (图1). Sci Rep (2015) ncbi
小鼠 单克隆(AT8)
  • 酶联免疫吸附测定; 人类; 图2
  • 酶联免疫吸附测定; 小鼠; 图2
赛默飞世尔tau抗体(Pierce, AT8)被用于酶联免疫吸附测定在人类样品上 (图2) 和 在小鼠样品上 (图2). Mol Neurodegener (2015) ncbi
小鼠 单克隆(AT180)
  • 酶联免疫吸附测定; 人类; 图2
  • 酶联免疫吸附测定; 小鼠; 图2
赛默飞世尔tau抗体(Pierce, AT180)被用于酶联免疫吸附测定在人类样品上 (图2) 和 在小鼠样品上 (图2). Mol Neurodegener (2015) ncbi
小鼠 单克隆(AT100)
  • 免疫组化-P; 人类; 1:100; 图3
赛默飞世尔tau抗体(Thermo Scientific Pierce, AT100)被用于免疫组化-石蜡切片在人类样品上浓度为1:100 (图3). Neuropathol Appl Neurobiol (2015) ncbi
小鼠 单克隆(AT270)
  • 免疫组化-P; 人类; 1:200; 图3
赛默飞世尔tau抗体(Thermo Scientific Pierce, AT270)被用于免疫组化-石蜡切片在人类样品上浓度为1:200 (图3). Neuropathol Appl Neurobiol (2015) ncbi
小鼠 单克隆(TauC3)
  • 免疫组化-P; 人类; 1:200; 图3
赛默飞世尔tau抗体(Invitrogen, Tau-C3)被用于免疫组化-石蜡切片在人类样品上浓度为1:200 (图3). Neuropathol Appl Neurobiol (2015) ncbi
小鼠 单克隆(AT100)
  • 免疫组化-P; 人类; 1:50; 图1
赛默飞世尔tau抗体(Thermo Scientific, AT100)被用于免疫组化-石蜡切片在人类样品上浓度为1:50 (图1). Sci Rep (2015) ncbi
小鼠 单克隆(HT7)
  • 免疫印迹; 人类; 1:3000; 图5
赛默飞世尔tau抗体(Thermo Fisher Scientific, MN1000)被用于免疫印迹在人类样品上浓度为1:3000 (图5). J Neurosci (2015) ncbi
兔 多克隆
  • 免疫印迹 (基因敲除); 人类; 1:2000; 图2d
赛默飞世尔tau抗体(生活技术, 44734G)被用于免疫印迹 (基因敲除)在人类样品上浓度为1:2000 (图2d). Nat Commun (2015) ncbi
兔 多克隆
  • 免疫印迹 (基因敲除); 人类; 1:2000; 图2d
赛默飞世尔tau抗体(生活技术, 44752G)被用于免疫印迹 (基因敲除)在人类样品上浓度为1:2000 (图2d). Nat Commun (2015) ncbi
兔 多克隆
  • 免疫印迹 (基因敲除); 人类; 1:2000; 图2d
赛默飞世尔tau抗体(生活技术, 44764G)被用于免疫印迹 (基因敲除)在人类样品上浓度为1:2000 (图2d). Nat Commun (2015) ncbi
兔 多克隆
  • 免疫印迹 (基因敲除); 人类; 1:2000; 图2d
赛默飞世尔tau抗体(生活技术, 44750G)被用于免疫印迹 (基因敲除)在人类样品上浓度为1:2000 (图2d). Nat Commun (2015) ncbi
兔 多克隆
  • 免疫印迹 (基因敲除); 人类; 1:2000; 图2d
赛默飞世尔tau抗体(生活技术, 44758G)被用于免疫印迹 (基因敲除)在人类样品上浓度为1:2000 (图2d). Nat Commun (2015) ncbi
兔 多克隆
  • 免疫印迹 (基因敲除); 人类; 1:2000; 图2d
赛默飞世尔tau抗体(生活技术, 44760G)被用于免疫印迹 (基因敲除)在人类样品上浓度为1:2000 (图2d). Nat Commun (2015) ncbi
兔 多克隆
  • 免疫印迹 (基因敲除); 人类; 1:2000; 图2d
赛默飞世尔tau抗体(生活技术, 44738G)被用于免疫印迹 (基因敲除)在人类样品上浓度为1:2000 (图2d). Nat Commun (2015) ncbi
小鼠 单克隆(AT8)
  • 免疫组化-P; 小鼠; 1:100
赛默飞世尔tau抗体(Thermo Scientific, MN1020)被用于免疫组化-石蜡切片在小鼠样品上浓度为1:100. Acta Neuropathol (2015) ncbi
小鼠 单克隆(AT8)
  • 免疫组化; 人类; 0.3 ug/ml; 图1
  • 免疫印迹; 人类; 1:1000; 图3
赛默飞世尔tau抗体(ThermoScientific, AT8)被用于免疫组化在人类样品上浓度为0.3 ug/ml (图1) 和 免疫印迹在人类样品上浓度为1:1000 (图3). Acta Neuropathol (2015) ncbi
小鼠 单克隆(AT180)
  • 免疫印迹; 人类; 1:1000; 图3
赛默飞世尔tau抗体(ThermoScientific, AT180)被用于免疫印迹在人类样品上浓度为1:1000 (图3). Acta Neuropathol (2015) ncbi
小鼠 单克隆(HT7)
  • 免疫印迹; 人类; 1:5000; 图3
赛默飞世尔tau抗体(ThermoScientific, HT7)被用于免疫印迹在人类样品上浓度为1:5000 (图3). Acta Neuropathol (2015) ncbi
小鼠 单克隆(AT100)
  • 免疫印迹; 人类; 1:1000; 图3
  • 免疫组化; 人类; 1 ug/ml
赛默飞世尔tau抗体(ThermoScientific, AT100)被用于免疫印迹在人类样品上浓度为1:1000 (图3) 和 免疫组化在人类样品上浓度为1 ug/ml. Acta Neuropathol (2015) ncbi
小鼠 单克隆(AT8)
  • 免疫组化; 小鼠; 1:500; 图1
  • 免疫印迹; 小鼠; 1:500; 图5
赛默飞世尔tau抗体(Thermo Fisher Scientific, MN1020)被用于免疫组化在小鼠样品上浓度为1:500 (图1) 和 免疫印迹在小鼠样品上浓度为1:500 (图5). Nat Neurosci (2015) ncbi
小鼠 单克隆(HT7)
  • 免疫印迹; 小鼠; 1:500; 图5
  • 免疫组化; 小鼠; 1:500; 图1
赛默飞世尔tau抗体(Thermo Fisher Scientific, MN1000)被用于免疫印迹在小鼠样品上浓度为1:500 (图5) 和 免疫组化在小鼠样品上浓度为1:500 (图1). Nat Neurosci (2015) ncbi
小鼠 单克隆(AT8)
  • 免疫组化-F; 小鼠; 图2
  • 免疫印迹; 小鼠; 图2
赛默飞世尔tau抗体(ThermoFisher Scientific, MN1020)被用于免疫组化-冰冻切片在小鼠样品上 (图2) 和 免疫印迹在小鼠样品上 (图2). J Neurosci Res (2016) ncbi
小鼠 单克隆(HT7)
  • IHC-Free; 小鼠; 图2
赛默飞世尔tau抗体(Thermo Scientific, MN1000)被用于immunohistochemistry - free floating section在小鼠样品上 (图2). Nat Med (2015) ncbi
小鼠 单克隆(TAU-5)
  • 免疫印迹; 人类; 图1
  • 免疫沉淀; 人类; 图1
赛默飞世尔tau抗体(生活技术, AHB0042)被用于免疫印迹在人类样品上 (图1) 和 免疫沉淀在人类样品上 (图1). Nat Med (2015) ncbi
小鼠 单克隆(AT8)
  • 免疫印迹; 小鼠; 图4
赛默飞世尔tau抗体(Thermo Scientific, MN1020)被用于免疫印迹在小鼠样品上 (图4). Nat Med (2015) ncbi
小鼠 单克隆(AT100)
  • 免疫组化-P; 小鼠; 图1
赛默飞世尔tau抗体(Thermo Scientific, AT100)被用于免疫组化-石蜡切片在小鼠样品上 (图1). Neurobiol Dis (2015) ncbi
小鼠 单克隆(AT8)
  • 免疫组化-P; 小鼠; 图1
赛默飞世尔tau抗体(Thermo Scientific, AT8)被用于免疫组化-石蜡切片在小鼠样品上 (图1). Neurobiol Dis (2015) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 图3
赛默飞世尔tau抗体(ThermoScientific, OPA-03151)被用于免疫印迹在小鼠样品上 (图3). Hum Mol Genet (2015) ncbi
小鼠 单克隆(AT8)
  • 免疫印迹; 小鼠; 图3
赛默飞世尔tau抗体(ThermoFisher, Ser202/Thr205)被用于免疫印迹在小鼠样品上 (图3). Hum Mol Genet (2015) ncbi
小鼠 单克隆(AT100)
  • 免疫印迹; 人类; 图s2
赛默飞世尔tau抗体(Thermo Scientific, AT100)被用于免疫印迹在人类样品上 (图s2). Vaccines (Basel) (2014) ncbi
小鼠 单克隆(AT180)
  • 免疫印迹; 人类; 图s2
赛默飞世尔tau抗体(Thermo Scientific, AT180)被用于免疫印迹在人类样品上 (图s2). Vaccines (Basel) (2014) ncbi
小鼠 单克隆(AT8)
  • 免疫组化; 人类; 图s1
  • 免疫印迹; 人类; 图s2
赛默飞世尔tau抗体(Thermo Scientific, AT8)被用于免疫组化在人类样品上 (图s1) 和 免疫印迹在人类样品上 (图s2). Vaccines (Basel) (2014) ncbi
小鼠 单克隆(AT8)
  • 免疫组化-P; 人类; 1:2500
赛默飞世尔tau抗体(Thermo, MN1020)被用于免疫组化-石蜡切片在人类样品上浓度为1:2500. Acta Neuropathol Commun (2015) ncbi
小鼠 单克隆(AT180)
  • 免疫组化; 仓鼠; 1:10,000; 图2
赛默飞世尔tau抗体(Pierce, MN1040)被用于免疫组化在仓鼠样品上浓度为1:10,000 (图2). Hippocampus (2016) ncbi
小鼠 单克隆(AT100)
  • 免疫组化; 仓鼠; 1:10,000; 图2
赛默飞世尔tau抗体(Pierce, MN1060)被用于免疫组化在仓鼠样品上浓度为1:10,000 (图2). Hippocampus (2016) ncbi
小鼠 单克隆(AT8)
  • 免疫组化; 人类; 表1
赛默飞世尔tau抗体(Thermo Scientific, MN1020)被用于免疫组化在人类样品上 (表1). Alzheimers Dement (2016) ncbi
小鼠 单克隆(AT180)
  • 免疫印迹; 小鼠; 1:1000; 图3
赛默飞世尔tau抗体(Thermo Fisher Scientific, MN1040)被用于免疫印迹在小鼠样品上浓度为1:1000 (图3). Mol Neurodegener (2015) ncbi
小鼠 单克隆(AT8)
  • 免疫印迹; 小鼠; 1:1000; 图3
赛默飞世尔tau抗体(Thermo Fisher Scientific, MN1020)被用于免疫印迹在小鼠样品上浓度为1:1000 (图3). Mol Neurodegener (2015) ncbi
小鼠 单克隆(AT8)
  • 免疫组化; degu; 1:200; 图5
  • 免疫印迹; degu; 图5n
赛默飞世尔tau抗体(Thermo Scientific, MN1020)被用于免疫组化在degu样品上浓度为1:200 (图5) 和 免疫印迹在degu样品上 (图5n). PLoS ONE (2015) ncbi
兔 多克隆
  • 免疫组化-P; 狗; 1:1000
  • 免疫印迹; African green monkey
  • 免疫印迹; baboons
  • 免疫印迹; 牛
  • 免疫印迹; 羊
  • 免疫印迹; 小鼠
  • 免疫印迹; 大鼠
  • 免疫组化; 大鼠
赛默飞世尔tau抗体(生活技术, 44-744)被用于免疫组化-石蜡切片在狗样品上浓度为1:1000, 免疫印迹在African green monkey样品上, 在baboons样品上, 在牛样品上, 在羊样品上, 在小鼠样品上, 和 在大鼠样品上, 和 免疫组化在大鼠样品上. J Comp Neurol (2016) ncbi
兔 多克隆
  • 免疫组化-P; 狗; 图3
  • 免疫印迹; 人类
  • 免疫印迹; 狗; 1:1000; 图7
赛默飞世尔tau抗体(生活技术, 44742G)被用于免疫组化-石蜡切片在狗样品上 (图3) 和 免疫印迹在人类样品上 和 在狗样品上浓度为1:1000 (图7). J Comp Neurol (2016) ncbi
小鼠 单克隆(PHF13.6)
  • 免疫组化-P; 狗; 1:1000
  • 免疫印迹; 小鼠
  • 免疫印迹; 大鼠
赛默飞世尔tau抗体(生活技术, 355300)被用于免疫组化-石蜡切片在狗样品上浓度为1:1000 和 免疫印迹在小鼠样品上 和 在大鼠样品上. J Comp Neurol (2016) ncbi
小鼠 单克隆(AT8)
  • 免疫组化-P; 狗; 1:1000; 图3
赛默飞世尔tau抗体(生活技术, MN1020)被用于免疫组化-石蜡切片在狗样品上浓度为1:1000 (图3). J Comp Neurol (2016) ncbi
兔 多克隆
  • 免疫组化-P; 狗
  • 免疫印迹; African green monkey
  • 免疫印迹; baboons
  • 免疫印迹; 人类
  • 免疫印迹; 狗; 1:1000; 图7
  • 免疫印迹; 牛
  • 免疫印迹; 羊
  • 免疫印迹; 小鼠
  • 免疫印迹; 大鼠
赛默飞世尔tau抗体(生活技术, 44740G)被用于免疫组化-石蜡切片在狗样品上 和 免疫印迹在African green monkey样品上, 在baboons样品上, 在人类样品上, 在狗样品上浓度为1:1000 (图7), 在牛样品上, 在羊样品上, 在小鼠样品上, 和 在大鼠样品上. J Comp Neurol (2016) ncbi
兔 多克隆
  • 免疫印迹; 狗; 1:1000; 图7
  • 免疫印迹; 小鼠
  • 免疫印迹; 大鼠
赛默飞世尔tau抗体(生活技术, 44758G)被用于免疫印迹在狗样品上浓度为1:1000 (图7), 在小鼠样品上, 和 在大鼠样品上. J Comp Neurol (2016) ncbi
兔 多克隆
  • 免疫组化-P; 狗; 1:1000
  • 免疫印迹; 小鼠
  • 免疫印迹; 大鼠
赛默飞世尔tau抗体(生活技术, 44750G)被用于免疫组化-石蜡切片在狗样品上浓度为1:1000 和 免疫印迹在小鼠样品上 和 在大鼠样品上. J Comp Neurol (2016) ncbi
兔 多克隆
  • 免疫印迹; 人类
  • 免疫印迹; 狗; 1:1000; 图7
  • 免疫印迹; 小鼠
  • 免疫印迹; 大鼠
赛默飞世尔tau抗体(生活技术, 44734G)被用于免疫印迹在人类样品上, 在狗样品上浓度为1:1000 (图7), 在小鼠样品上, 和 在大鼠样品上. J Comp Neurol (2016) ncbi
兔 多克隆
  • 免疫组化-P; 狗
  • 免疫印迹; 人类
  • 免疫印迹; 狗; 1:1000; 图7
  • 免疫印迹; 小鼠
  • 免疫印迹; 大鼠
赛默飞世尔tau抗体(生活技术, 44738G)被用于免疫组化-石蜡切片在狗样品上 和 免疫印迹在人类样品上, 在狗样品上浓度为1:1000 (图7), 在小鼠样品上, 和 在大鼠样品上. J Comp Neurol (2016) ncbi
小鼠 单克隆(AT180)
  • 免疫组化-P; 狗; 1:1000; 图3
  • 免疫组化; 人类
赛默飞世尔tau抗体(生活技术, MN1040)被用于免疫组化-石蜡切片在狗样品上浓度为1:1000 (图3) 和 免疫组化在人类样品上. J Comp Neurol (2016) ncbi
小鼠 单克隆(AT8)
  • 免疫组化-P; 人类; 1:2000; 图2
  • 免疫印迹; 人类; 图5
赛默飞世尔tau抗体(Thermo Scientific, MN1020)被用于免疫组化-石蜡切片在人类样品上浓度为1:2000 (图2) 和 免疫印迹在人类样品上 (图5). Methods Mol Biol (2016) ncbi
小鼠 单克隆(AT8)
  • 免疫组化; 人类; 1:250; 图6
赛默飞世尔tau抗体(生活技术, MN1020B)被用于免疫组化在人类样品上浓度为1:250 (图6). J Neuropathol Exp Neurol (2015) ncbi
兔 多克隆
  • 免疫印迹; 大鼠; 1:1000; 图5e
赛默飞世尔tau抗体(Invitrogen, 44752G)被用于免疫印迹在大鼠样品上浓度为1:1000 (图5e). Proc Natl Acad Sci U S A (2015) ncbi
小鼠 单克隆(AT8)
  • 免疫印迹; 小鼠; 图1
赛默飞世尔tau抗体(Thermo Scientific, MN1020)被用于免疫印迹在小鼠样品上 (图1). Aging Cell (2015) ncbi
小鼠 单克隆(AT270)
  • 免疫印迹; 小鼠; 图1
赛默飞世尔tau抗体(Thermo Scientific, MN1050)被用于免疫印迹在小鼠样品上 (图1). Aging Cell (2015) ncbi
小鼠 单克隆(AT180)
  • 免疫印迹; 小鼠; 图1
赛默飞世尔tau抗体(Thermo Scientific, MN1040)被用于免疫印迹在小鼠样品上 (图1). Aging Cell (2015) ncbi
小鼠 单克隆(TAU-5)
  • 免疫印迹; 人类
赛默飞世尔tau抗体(生活技术, AHB0042)被用于免疫印迹在人类样品上. Cell Mol Neurobiol (2015) ncbi
小鼠 单克隆(AT180)
  • 免疫印迹; 大鼠; 图3
赛默飞世尔tau抗体(Waltham, MN1040)被用于免疫印迹在大鼠样品上 (图3). Nutr Neurosci (2016) ncbi
兔 多克隆
  • 免疫印迹; 人类
赛默飞世尔tau抗体(Invitrogen, 44740G)被用于免疫印迹在人类样品上. PLoS ONE (2015) ncbi
小鼠 单克隆(AT8)
  • 免疫组化-P; 人类; 10 ug/ml; 图2
赛默飞世尔tau抗体(Pierce Biotechnology, MN1020)被用于免疫组化-石蜡切片在人类样品上浓度为10 ug/ml (图2). Neurobiol Aging (2015) ncbi
小鼠 单克隆(AT180)
  • 免疫组化-P; 小鼠; 图1
赛默飞世尔tau抗体(Thermo Fisher, AT180)被用于免疫组化-石蜡切片在小鼠样品上 (图1). Neuroreport (2015) ncbi
小鼠 单克隆(AT8)
  • 免疫组化-P; 小鼠; 图1
赛默飞世尔tau抗体(Thermo Fisher, AT8)被用于免疫组化-石蜡切片在小鼠样品上 (图1). Neuroreport (2015) ncbi
小鼠 单克隆(AT8)
  • 免疫组化; 人类; 1:2000; 图3
赛默飞世尔tau抗体(Thermo Scientific, MN1020)被用于免疫组化在人类样品上浓度为1:2000 (图3). Acta Neuropathol Commun (2015) ncbi
小鼠 单克隆(AT8)
  • 免疫印迹; 人类; 1:3000
赛默飞世尔tau抗体(生活技术, MN1020)被用于免疫印迹在人类样品上浓度为1:3000. J Neurosci Res (2015) ncbi
小鼠 单克隆(AT270)
  • 免疫印迹; 人类; 1:2000
赛默飞世尔tau抗体(生活技术, MN1050)被用于免疫印迹在人类样品上浓度为1:2000. J Neurosci Res (2015) ncbi
兔 多克隆
  • 免疫印迹; 大鼠; 1:1000
赛默飞世尔tau抗体(Invitrogen, 44746G)被用于免疫印迹在大鼠样品上浓度为1:1000. J Neurochem (2015) ncbi
小鼠 单克隆(TAU-5)
  • 免疫印迹; 大鼠; 1:1000
赛默飞世尔tau抗体(Invitrogen, AHB0042)被用于免疫印迹在大鼠样品上浓度为1:1000. J Neurochem (2015) ncbi
小鼠 单克隆(AT8)
  • 免疫印迹; 大鼠; 1:1000
赛默飞世尔tau抗体(ThermoFisher, MN1020)被用于免疫印迹在大鼠样品上浓度为1:1000. J Neurochem (2015) ncbi
小鼠 单克隆(AT8)
  • 免疫印迹; 小鼠; 1:200; 图3
赛默飞世尔tau抗体(Thermo, AT8)被用于免疫印迹在小鼠样品上浓度为1:200 (图3). Mol Psychiatry (2016) ncbi
小鼠 单克隆(HT7)
  • 免疫印迹; 小鼠; 1:200; 图3
赛默飞世尔tau抗体(Thermo, HT-7)被用于免疫印迹在小鼠样品上浓度为1:200 (图3). Mol Psychiatry (2016) ncbi
小鼠 单克隆(AT180)
  • 免疫印迹; 小鼠; 1:200; 图3
赛默飞世尔tau抗体(Thermo, AT180)被用于免疫印迹在小鼠样品上浓度为1:200 (图3). Mol Psychiatry (2016) ncbi
小鼠 单克隆(HT7)
  • 细胞化学; 小鼠; 1:500
赛默飞世尔tau抗体(Thermo Scientific, MN1000)被用于免疫细胞化学在小鼠样品上浓度为1:500. Front Neurosci (2015) ncbi
小鼠 单克隆(AT100)
  • 细胞化学; 小鼠; 1:1000; 图1
赛默飞世尔tau抗体(Thermo Scientific, MN1060)被用于免疫细胞化学在小鼠样品上浓度为1:1000 (图1). Front Neurosci (2015) ncbi
小鼠 单克隆(AT8)
  • 免疫组化; 人类; 1:500
赛默飞世尔tau抗体(Thermo Fisher Scientific, MN1020)被用于免疫组化在人类样品上浓度为1:500. Tremor Other Hyperkinet Mov (N Y) (2015) ncbi
兔 多克隆
  • 免疫组化; 小鼠; 图1
  • 免疫印迹; 小鼠; 图1
赛默飞世尔tau抗体(Thermo Scientific, pThr231)被用于免疫组化在小鼠样品上 (图1) 和 免疫印迹在小鼠样品上 (图1). Acta Neuropathol Commun (2015) ncbi
小鼠 单克隆(TAU-5)
  • 免疫印迹; 人类; 1:5000; 图1
赛默飞世尔tau抗体(Biosource, AHB0042)被用于免疫印迹在人类样品上浓度为1:5000 (图1). Sci Rep (2015) ncbi
小鼠 单克隆(HT7)
  • 免疫印迹; 人类; 1:3000
赛默飞世尔tau抗体(Thermo Scientific, HT7)被用于免疫印迹在人类样品上浓度为1:3000. Mol Neurobiol (2015) ncbi
小鼠 单克隆(TAU-5)
  • 免疫印迹; 小鼠; 图4
赛默飞世尔tau抗体(Biosource, AHB0042)被用于免疫印迹在小鼠样品上 (图4). Biochim Biophys Acta (2015) ncbi
小鼠 单克隆(AT8)
  • 免疫印迹; 小鼠; 1:1000
赛默飞世尔tau抗体(Pierce, AT8)被用于免疫印迹在小鼠样品上浓度为1:1000. Brain (2015) ncbi
小鼠 单克隆(TAU-5)
  • 免疫印迹; 人类
赛默飞世尔tau抗体(生活技术, AHB0042)被用于免疫印迹在人类样品上. Cell Mol Life Sci (2015) ncbi
小鼠 单克隆(AT8)
  • 免疫组化; 小鼠; 1:400; 图10
赛默飞世尔tau抗体(Thermo Scientific, MN1020B)被用于免疫组化在小鼠样品上浓度为1:400 (图10). PLoS ONE (2015) ncbi
小鼠 单克隆(AT270)
  • 酶联免疫吸附测定; 人类
赛默飞世尔tau抗体(Thermo Scientific, clone AT270)被用于酶联免疫吸附测定在人类样品上. PLoS ONE (2015) ncbi
小鼠 单克隆(AT8)
  • 酶联免疫吸附测定; 人类
  • 免疫组化; 人类; 1:1000
赛默飞世尔tau抗体(Thermo Scientific, clone AT8)被用于酶联免疫吸附测定在人类样品上 和 免疫组化在人类样品上浓度为1:1000. PLoS ONE (2015) ncbi
小鼠 单克隆(BT2)
  • 酶联免疫吸附测定; 人类
赛默飞世尔tau抗体(Thermo Scientific, BT2)被用于酶联免疫吸附测定在人类样品上. PLoS ONE (2015) ncbi
小鼠 单克隆(HT7)
  • 酶联免疫吸附测定; 人类; 1-2.5 ug/ml
赛默飞世尔tau抗体(Thermo Scientific, HT7)被用于酶联免疫吸附测定在人类样品上浓度为1-2.5 ug/ml. PLoS ONE (2015) ncbi
兔 单克隆(2H23L4)
  • 免疫印迹; 人类; 1:1000
赛默飞世尔tau抗体(Invitrogen/Life Technologies, 2H23L4)被用于免疫印迹在人类样品上浓度为1:1000. Exp Gerontol (2015) ncbi
小鼠 单克隆(PHF13.6)
  • 免疫印迹; 人类; 1:1000
赛默飞世尔tau抗体(Invitrogen/Life Technologies, 35-5300)被用于免疫印迹在人类样品上浓度为1:1000. Exp Gerontol (2015) ncbi
兔 单克隆(1H6L6)
  • 免疫印迹; 人类; 1:1000
赛默飞世尔tau抗体(Invitrogen/Life Technologies, 701056)被用于免疫印迹在人类样品上浓度为1:1000. Exp Gerontol (2015) ncbi
小鼠 单克隆(AT270)
  • 免疫印迹; 人类; 图1c
赛默飞世尔tau抗体(Thermo Scientific, AT270)被用于免疫印迹在人类样品上 (图1c). Mol Neurodegener (2015) ncbi
小鼠 单克隆(AT8)
  • 免疫印迹; 人类; 图1b
赛默飞世尔tau抗体(Thermo Scientific, AT8)被用于免疫印迹在人类样品上 (图1b). Mol Neurodegener (2015) ncbi
小鼠 单克隆(BT2)
  • 酶联免疫吸附测定; 人类; 图7
赛默飞世尔tau抗体(Thermo Scientific, BT2)被用于酶联免疫吸附测定在人类样品上 (图7). Mol Neurodegener (2015) ncbi
小鼠 单克隆(AT100)
  • 酶联免疫吸附测定; 人类; 图s1e
赛默飞世尔tau抗体(Thermo Scientific, AT100)被用于酶联免疫吸附测定在人类样品上 (图s1e). Mol Neurodegener (2015) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图1c
赛默飞世尔tau抗体(Thermo Scientific, PA1-26693)被用于免疫印迹在人类样品上 (图1c). Mol Neurodegener (2015) ncbi
小鼠 单克隆(HT7)
  • 免疫印迹; 人类; 图1a
赛默飞世尔tau抗体(Thermo Scientific, HT7)被用于免疫印迹在人类样品上 (图1a). Mol Neurodegener (2015) ncbi
小鼠 单克隆(AT180)
  • 免疫印迹; 人类; 图1b
赛默飞世尔tau抗体(Thermo Scientific, AT180)被用于免疫印迹在人类样品上 (图1b). Mol Neurodegener (2015) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图7
赛默飞世尔tau抗体(Invitrogen, 44752G)被用于免疫印迹在人类样品上 (图7). Cell Death Dis (2015) ncbi
小鼠 单克隆(AT100)
  • 免疫组化; 小鼠; 1:100
赛默飞世尔tau抗体(Pierce, MN1060)被用于免疫组化在小鼠样品上浓度为1:100. J Neurosci (2015) ncbi
小鼠 单克隆(AT8)
  • 免疫组化-F; 小鼠
赛默飞世尔tau抗体(Thermo Scientific, AT8)被用于免疫组化-冰冻切片在小鼠样品上. J Neurosci (2015) ncbi
小鼠 单克隆(AT100)
  • 免疫组化-P; 小鼠; 1:300; 图6
赛默飞世尔tau抗体(Thermo Fisher Scientific, MN1060)被用于免疫组化-石蜡切片在小鼠样品上浓度为1:300 (图6). J Alzheimers Dis (2015) ncbi
小鼠 单克隆(T46)
  • 免疫印迹; 人类
赛默飞世尔tau抗体(Invitrogen, 13-6400)被用于免疫印迹在人类样品上. Chem Biol (2015) ncbi
小鼠 单克隆(AT8)
  • 免疫印迹; 人类; 图3, 4
赛默飞世尔tau抗体(Pierce, AT8)被用于免疫印迹在人类样品上 (图3, 4). Brain (2015) ncbi
小鼠 单克隆(PHF13.6)
  • 免疫印迹; 人类; 图3, 4
赛默飞世尔tau抗体(Pierce, PHF1)被用于免疫印迹在人类样品上 (图3, 4). Brain (2015) ncbi
小鼠 单克隆(AT270)
  • 免疫印迹; 人类; 图3, 4
赛默飞世尔tau抗体(Pierce, AT270)被用于免疫印迹在人类样品上 (图3, 4). Brain (2015) ncbi
小鼠 单克隆(AT180)
  • 免疫印迹; 人类; 图3, 4
赛默飞世尔tau抗体(Pierce, AT180)被用于免疫印迹在人类样品上 (图3, 4). Brain (2015) ncbi
小鼠 单克隆(AT100)
  • 免疫印迹; 人类; 图3, 4
赛默飞世尔tau抗体(Pierce, AT100)被用于免疫印迹在人类样品上 (图3, 4). Brain (2015) ncbi
小鼠 单克隆(AT180)
  • 免疫印迹; 人类; 1:2500; 图1a
赛默飞世尔tau抗体(Pierce, AT180)被用于免疫印迹在人类样品上浓度为1:2500 (图1a). Brain (2015) ncbi
小鼠 单克隆(AT8)
  • 免疫印迹; 人类; 1:5000; 图1a
赛默飞世尔tau抗体(Pierce, AT8)被用于免疫印迹在人类样品上浓度为1:5000 (图1a). Brain (2015) ncbi
小鼠 单克隆(AT8)
  • 免疫组化-P; 人类
赛默飞世尔tau抗体(Thermo Scientific, clone AT-8)被用于免疫组化-石蜡切片在人类样品上. Front Neuroanat (2015) ncbi
小鼠 单克隆(T46)
  • 免疫印迹; 人类; 1:1000
赛默飞世尔tau抗体(Zymed, T46)被用于免疫印迹在人类样品上浓度为1:1000. Brain Pathol (2016) ncbi
小鼠 单克隆(AT100)
  • 免疫组化-P; 人类; 1:200
赛默飞世尔tau抗体(Thermo, AT100)被用于免疫组化-石蜡切片在人类样品上浓度为1:200. Brain Pathol (2016) ncbi
小鼠 单克隆(AT8)
  • IHC-Free; 大鼠; 1:1000
赛默飞世尔tau抗体(Thermo Scientific, MN1020)被用于immunohistochemistry - free floating section在大鼠样品上浓度为1:1000. Biochim Biophys Acta (2015) ncbi
小鼠 单克隆(AT8)
  • 免疫印迹; 大鼠; 1:1000; 图 1
赛默飞世尔tau抗体(Pierce, AT8)被用于免疫印迹在大鼠样品上浓度为1:1000 (图 1). Neuroscience (2015) ncbi
小鼠 单克隆(PHF13.6)
  • 免疫印迹; 大鼠; 1:1000; 图 1
赛默飞世尔tau抗体(Biosource, PHF-1)被用于免疫印迹在大鼠样品上浓度为1:1000 (图 1). Neuroscience (2015) ncbi
小鼠 单克隆(AT100)
  • 免疫印迹; 大鼠; 1:1000; 图 1
赛默飞世尔tau抗体(Pierce, AT100)被用于免疫印迹在大鼠样品上浓度为1:1000 (图 1). Neuroscience (2015) ncbi
小鼠 单克隆(AT180)
  • 免疫印迹; 大鼠; 1:1000; 图 1
赛默飞世尔tau抗体(Pierce, AT180)被用于免疫印迹在大鼠样品上浓度为1:1000 (图 1). Neuroscience (2015) ncbi
小鼠 单克隆(AT8)
  • 免疫组化; 人类
赛默飞世尔tau抗体(Thermo Scientific, MN1020)被用于免疫组化在人类样品上. Brain Pathol (2016) ncbi
小鼠 单克隆(AT8)
  • 免疫印迹; 小鼠
赛默飞世尔tau抗体(Pierce Thermo Fisher, MN1020)被用于免疫印迹在小鼠样品上. Sci Transl Med (2015) ncbi
小鼠 单克隆(AT8)
  • IHC-Free; 小鼠; 1:1000
赛默飞世尔tau抗体(Thermo Fisher, MN1020)被用于immunohistochemistry - free floating section在小鼠样品上浓度为1:1000. Exp Neurol (2015) ncbi
小鼠 单克隆(AT8)
  • IHC-Free; 小鼠; 1:500
赛默飞世尔tau抗体(Pierce, MN1020)被用于immunohistochemistry - free floating section在小鼠样品上浓度为1:500. Front Cell Neurosci (2015) ncbi
小鼠 单克隆(AT8)
  • IHC-Free; 人类; 1:500
赛默飞世尔tau抗体(Thermo, AT8)被用于immunohistochemistry - free floating section在人类样品上浓度为1:500. J Exp Med (2015) ncbi
小鼠 单克隆(AT180)
  • IHC-Free; 人类; 1:500
赛默飞世尔tau抗体(Thermo, AT180)被用于immunohistochemistry - free floating section在人类样品上浓度为1:500. J Exp Med (2015) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图2
赛默飞世尔tau抗体(Invitrogen, 44740G)被用于免疫印迹在人类样品上 (图2). J Med Chem (2015) ncbi
小鼠 单克隆(AT8)
  • 免疫组化-P; 小鼠
赛默飞世尔tau抗体(Thermo Scientific, AT8)被用于免疫组化-石蜡切片在小鼠样品上. Neuropathol Appl Neurobiol (2015) ncbi
小鼠 单克隆(AT180)
  • IHC-Free; 小鼠; 1:1000
赛默飞世尔tau抗体(Thermo Scientific, MN1040)被用于immunohistochemistry - free floating section在小鼠样品上浓度为1:1000. Ann Neurol (2015) ncbi
小鼠 单克隆(AT180)
  • 免疫印迹; 小鼠; 图s4
赛默飞世尔tau抗体(Thermo Scientific, AT180)被用于免疫印迹在小鼠样品上 (图s4). Sci Rep (2015) ncbi
小鼠 单克隆(AT8)
  • 免疫组化; 小鼠; 1:50; 图9
赛默飞世尔tau抗体(Pierce, MN-1020)被用于免疫组化在小鼠样品上浓度为1:50 (图9). J Neurosci Methods (2015) ncbi
小鼠 单克隆(AT180)
  • IHC-Free; 小鼠; 1:500
赛默飞世尔tau抗体(Thermo, MN1040)被用于immunohistochemistry - free floating section在小鼠样品上浓度为1:500. Curr Gene Ther (2014) ncbi
小鼠 单克隆(HT7)
  • 免疫印迹; 小鼠; 1:1000
赛默飞世尔tau抗体(Thermo, MN1000)被用于免疫印迹在小鼠样品上浓度为1:1000. Curr Gene Ther (2014) ncbi
小鼠 单克隆(AT270)
  • 免疫印迹; 人类; 1:200; 图6b
赛默飞世尔tau抗体(Thermo Scientific, AT270)被用于免疫印迹在人类样品上浓度为1:200 (图6b). J Neural Transm (Vienna) (2015) ncbi
小鼠 单克隆(PHF-6)
  • 免疫印迹; 人类; 1:200; 图6b
赛默飞世尔tau抗体(在vitrogenTM, PHF6)被用于免疫印迹在人类样品上浓度为1:200 (图6b). J Neural Transm (Vienna) (2015) ncbi
小鼠 单克隆(AT8)
  • 免疫组化; 小鼠; 1:500
  • 免疫印迹; 小鼠; 1:500
赛默飞世尔tau抗体(Thermo Scientific, MN1020)被用于免疫组化在小鼠样品上浓度为1:500 和 免疫印迹在小鼠样品上浓度为1:500. Neuropharmacology (2015) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图9
赛默飞世尔tau抗体(Invitrogen, 44738G)被用于免疫印迹在小鼠样品上浓度为1:1000 (图9). Age (Dordr) (2015) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图9
赛默飞世尔tau抗体(Invitrogen, 44758G)被用于免疫印迹在小鼠样品上浓度为1:1000 (图9). Age (Dordr) (2015) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图9
赛默飞世尔tau抗体(Invitrogen, 44752G)被用于免疫印迹在小鼠样品上浓度为1:1000 (图9). Age (Dordr) (2015) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图9
赛默飞世尔tau抗体(Invitrogen, 44734G)被用于免疫印迹在小鼠样品上浓度为1:1000 (图9). Age (Dordr) (2015) ncbi
小鼠 单克隆(AT180)
  • 免疫组化-P; 小鼠; 1:400
赛默飞世尔tau抗体(Thermo Scientific, AT180)被用于免疫组化-石蜡切片在小鼠样品上浓度为1:400. Alzheimer Dis Assoc Disord (2015) ncbi
兔 多克隆
  • 免疫印迹; 大鼠; 1:1500; 图7
赛默飞世尔tau抗体(Invitrogen Corporation, 44752G)被用于免疫印迹在大鼠样品上浓度为1:1500 (图7). J Neuroimmune Pharmacol (2015) ncbi
兔 多克隆
  • 免疫印迹; 大鼠; 1:1500; 图7
赛默飞世尔tau抗体(Invitrogen Corporation, 44768G)被用于免疫印迹在大鼠样品上浓度为1:1500 (图7). J Neuroimmune Pharmacol (2015) ncbi
小鼠 单克隆(AT8)
  • 免疫组化-P; 人类; 1:500; 图5
  • 细胞化学; 小鼠; 1:500; 图8
赛默飞世尔tau抗体(Thermo, MN1020)被用于免疫组化-石蜡切片在人类样品上浓度为1:500 (图5) 和 免疫细胞化学在小鼠样品上浓度为1:500 (图8). J Neurosci (2015) ncbi
小鼠 单克隆(AT8)
  • 免疫组化-P; 人类
赛默飞世尔tau抗体(Thermo Fisher Scientific, MN1020)被用于免疫组化-石蜡切片在人类样品上. Alzheimers Dement (2015) ncbi
兔 多克隆
  • 细胞化学; 人类; 1:400; 图4
赛默飞世尔tau抗体(Thermo Scientific, PA1-18272)被用于免疫细胞化学在人类样品上浓度为1:400 (图4). Neurobiol Aging (2015) ncbi
小鼠 单克隆(AT8)
  • 酶联免疫吸附测定; 小鼠; 图5
赛默飞世尔tau抗体(Thermo Scientific, AT8)被用于酶联免疫吸附测定在小鼠样品上 (图5). Neurobiol Aging (2015) ncbi
小鼠 单克隆(AT8)
  • 免疫组化-P; 人类; 1:2500
赛默飞世尔tau抗体(Thermo Scientific, MN1020)被用于免疫组化-石蜡切片在人类样品上浓度为1:2500. Neurobiol Aging (2015) ncbi
小鼠 单克隆(AT8)
  • 免疫组化; 小鼠; 1:100
赛默飞世尔tau抗体(Thermo Scientific, MN1020)被用于免疫组化在小鼠样品上浓度为1:100. Surg Neurol Int (2014) ncbi
小鼠 单克隆(AT180)
  • 免疫印迹; 小鼠
赛默飞世尔tau抗体(Thermo, AT180)被用于免疫印迹在小鼠样品上. Cell Death Dis (2015) ncbi
小鼠 单克隆(AT100)
  • 免疫印迹; 小鼠
赛默飞世尔tau抗体(Thermo, AT100)被用于免疫印迹在小鼠样品上. Cell Death Dis (2015) ncbi
小鼠 单克隆(AT8)
  • 免疫组化-P; 人类; 图4
赛默飞世尔tau抗体(Thermo Scientific, MN1020)被用于免疫组化-石蜡切片在人类样品上 (图4). J Neuropathol Exp Neurol (2015) ncbi
小鼠 单克隆(AT180)
  • 免疫印迹; 小鼠; 图s2
赛默飞世尔tau抗体(Pierce Endogen, MN1040B)被用于免疫印迹在小鼠样品上 (图s2). Nucleic Acids Res (2015) ncbi
小鼠 单克隆(AT8)
  • 免疫印迹; 小鼠; 图2
赛默飞世尔tau抗体(Thermo Scientific, MN1020)被用于免疫印迹在小鼠样品上 (图2). Mol Neurodegener (2014) ncbi
小鼠 单克隆(T46)
  • 免疫印迹; 人类; 图1
赛默飞世尔tau抗体(Invitrogen, 13-6400)被用于免疫印迹在人类样品上 (图1). Cell Mol Life Sci (2015) ncbi
小鼠 单克隆(AT8)
  • 细胞化学; 小鼠; 1:40
赛默飞世尔tau抗体(Pierce, AT8)被用于免疫细胞化学在小鼠样品上浓度为1:40. J Neurosci (2014) ncbi
兔 多克隆
  • 免疫印迹; 小鼠
赛默飞世尔tau抗体(生活技术, 44-C752G)被用于免疫印迹在小鼠样品上. J Neurosci (2014) ncbi
小鼠 单克隆(AT180)
  • 免疫印迹; 小鼠
赛默飞世尔tau抗体(Thermo Scientific, MN1040)被用于免疫印迹在小鼠样品上. J Neurosci (2014) ncbi
小鼠 单克隆(HT7)
  • 免疫组化-P; 小鼠; 1:100
  • 免疫印迹; 小鼠; 1:200
赛默飞世尔tau抗体(Thermo Scientific, MN1000)被用于免疫组化-石蜡切片在小鼠样品上浓度为1:100 和 免疫印迹在小鼠样品上浓度为1:200. Neurobiol Aging (2015) ncbi
小鼠 单克隆(AT180)
  • 免疫组化-P; 小鼠; 1:50
  • 免疫印迹; 小鼠; 1:100
赛默飞世尔tau抗体(Thermo Scientific, MN1040)被用于免疫组化-石蜡切片在小鼠样品上浓度为1:50 和 免疫印迹在小鼠样品上浓度为1:100. Neurobiol Aging (2015) ncbi
小鼠 单克隆(AT8)
  • 免疫组化-P; 小鼠; 1:30
  • 免疫印迹; 小鼠; 1:100
赛默飞世尔tau抗体(Thermo Scientific, MN1020)被用于免疫组化-石蜡切片在小鼠样品上浓度为1:30 和 免疫印迹在小鼠样品上浓度为1:100. Neurobiol Aging (2015) ncbi
小鼠 单克隆(AT270)
  • 免疫组化-P; 小鼠; 1:100
  • 免疫印迹; 小鼠; 1:200
赛默飞世尔tau抗体(Thermo Scientific, MN1050)被用于免疫组化-石蜡切片在小鼠样品上浓度为1:100 和 免疫印迹在小鼠样品上浓度为1:200. Neurobiol Aging (2015) ncbi
小鼠 单克隆(AT8)
  • 免疫组化; 小鼠; 1:1000
赛默飞世尔tau抗体(Thermo, MN1020)被用于免疫组化在小鼠样品上浓度为1:1000. Mol Cell Neurosci (2014) ncbi
小鼠 单克隆(AT8)
  • 免疫组化-F; 小鼠; 1:100
  • 免疫印迹; 小鼠; 1:1000
赛默飞世尔tau抗体(Thermo Scientific, MN1020)被用于免疫组化-冰冻切片在小鼠样品上浓度为1:100 和 免疫印迹在小鼠样品上浓度为1:1000. PLoS ONE (2014) ncbi
小鼠 单克隆(AT100)
  • 免疫组化-F; 小鼠; 1:100
  • 免疫印迹; 小鼠; 1:1000
赛默飞世尔tau抗体(Thermo Scientific, MN1060)被用于免疫组化-冰冻切片在小鼠样品上浓度为1:100 和 免疫印迹在小鼠样品上浓度为1:1000. PLoS ONE (2014) ncbi
小鼠 单克隆(AT180)
  • 免疫组化-F; 小鼠; 1:1000
  • 免疫印迹; 小鼠; 1:500
赛默飞世尔tau抗体(Thermo Scientific, MN1040)被用于免疫组化-冰冻切片在小鼠样品上浓度为1:1000 和 免疫印迹在小鼠样品上浓度为1:500. PLoS ONE (2014) ncbi
小鼠 单克隆(HT7)
  • 免疫印迹; 小鼠; 1:1000
赛默飞世尔tau抗体(Thermo Scientific Pierce, MN1000)被用于免疫印迹在小鼠样品上浓度为1:1000. PLoS ONE (2014) ncbi
小鼠 单克隆(AT8)
  • 免疫组化-P; 人类; 1:500; 图2
  • 免疫印迹; 人类; 1:1000; 图4
赛默飞世尔tau抗体(Thermo Scientific, AT8)被用于免疫组化-石蜡切片在人类样品上浓度为1:500 (图2) 和 免疫印迹在人类样品上浓度为1:1000 (图4). Mol Neurodegener (2014) ncbi
小鼠 单克隆(TAU-5)
  • 免疫组化-P; 人类; 1:500; 图2
  • 免疫印迹; 人类; 1:1000; 图4
赛默飞世尔tau抗体(Invitrogen, TAU5)被用于免疫组化-石蜡切片在人类样品上浓度为1:500 (图2) 和 免疫印迹在人类样品上浓度为1:1000 (图4). Mol Neurodegener (2014) ncbi
小鼠 单克隆(AT180)
  • 免疫组化-P; 人类; 1:500; 图2
  • 免疫印迹; 人类; 1:250; 图4
赛默飞世尔tau抗体(Thermo Scientific, AT180)被用于免疫组化-石蜡切片在人类样品上浓度为1:500 (图2) 和 免疫印迹在人类样品上浓度为1:250 (图4). Mol Neurodegener (2014) ncbi
小鼠 单克隆(AT100)
  • 免疫组化-P; 人类; 1:500; 图2
  • 免疫印迹; 人类; 1:1000; 图4
赛默飞世尔tau抗体(Thermo Scientific, AT100)被用于免疫组化-石蜡切片在人类样品上浓度为1:500 (图2) 和 免疫印迹在人类样品上浓度为1:1000 (图4). Mol Neurodegener (2014) ncbi
小鼠 单克隆(AT8)
  • 免疫组化-P; 人类; 1:200
赛默飞世尔tau抗体(Thermo Scientific, MN1020)被用于免疫组化-石蜡切片在人类样品上浓度为1:200. Acta Neuropathol Commun (2014) ncbi
小鼠 单克隆(HT7)
  • 免疫印迹; 小鼠
赛默飞世尔tau抗体(Pierce, MN1000)被用于免疫印迹在小鼠样品上. Mol Neurodegener (2014) ncbi
小鼠 单克隆(AT180)
  • 免疫印迹; 小鼠
  • 免疫组化; 果蝇
赛默飞世尔tau抗体(Pierce, MN1040)被用于免疫印迹在小鼠样品上 和 免疫组化在果蝇样品上. Mol Neurodegener (2014) ncbi
兔 多克隆
  • 免疫印迹; 小鼠
赛默飞世尔tau抗体(Invitrogen, 44-750G)被用于免疫印迹在小鼠样品上. Mol Neurodegener (2014) ncbi
小鼠 单克隆(AT8)
  • 免疫印迹; 人类; 1:1000; 图1
赛默飞世尔tau抗体(Thermo (Pierce), AT8)被用于免疫印迹在人类样品上浓度为1:1000 (图1). J Biol Chem (2015) ncbi
小鼠 单克隆(AT100)
  • 细胞化学; 人类; 1:1000; 图5
赛默飞世尔tau抗体(Thermo (Pierce), AT100)被用于免疫细胞化学在人类样品上浓度为1:1000 (图5). J Biol Chem (2015) ncbi
小鼠 单克隆(HT7)
  • 免疫印迹; 人类; 1:2500; 图4
  • 细胞化学; 人类; 1:500; 图6
赛默飞世尔tau抗体(Thermo (Pierce), HT7)被用于免疫印迹在人类样品上浓度为1:2500 (图4) 和 免疫细胞化学在人类样品上浓度为1:500 (图6). J Biol Chem (2015) ncbi
小鼠 单克隆(AT180)
  • 免疫组化-P; 大鼠; 图2
  • 免疫印迹; 大鼠; 图1
赛默飞世尔tau抗体(Thermo Fisher, AT180)被用于免疫组化-石蜡切片在大鼠样品上 (图2) 和 免疫印迹在大鼠样品上 (图1). J Alzheimers Dis (2015) ncbi
小鼠 单克隆(AT8)
  • 免疫组化-P; 大鼠; 图2
  • 免疫印迹; 大鼠; 图1
赛默飞世尔tau抗体(Thermo Fisher, AT8)被用于免疫组化-石蜡切片在大鼠样品上 (图2) 和 免疫印迹在大鼠样品上 (图1). J Alzheimers Dis (2015) ncbi
小鼠 单克隆(HT7)
  • 细胞化学; 人类; 1:1000
  • 免疫印迹; 人类; 1:5000
赛默飞世尔tau抗体(Thermo, HT7)被用于免疫细胞化学在人类样品上浓度为1:1000 和 免疫印迹在人类样品上浓度为1:5000. J Alzheimers Dis (2015) ncbi
小鼠 单克隆(TauC3)
  • 免疫印迹; 人类; 1:500
赛默飞世尔tau抗体(Thermo, tauC3)被用于免疫印迹在人类样品上浓度为1:500. J Alzheimers Dis (2015) ncbi
小鼠 单克隆(AT8)
  • 免疫印迹; 人类; 1:500
赛默飞世尔tau抗体(Thermo Scientific, MN1020)被用于免疫印迹在人类样品上浓度为1:500. Acta Neuropathol Commun (2014) ncbi
兔 多克隆
  • 免疫印迹; 人类
赛默飞世尔tau抗体(Invitrogen, 44758G)被用于免疫印迹在人类样品上. Proteomics (2015) ncbi
小鼠 单克隆(AT8)
  • 免疫印迹; 小鼠; 图2
赛默飞世尔tau抗体(Pierce Biotechnology, AT8)被用于免疫印迹在小鼠样品上 (图2). Front Aging Neurosci (2014) ncbi
小鼠 单克隆(TAU-5)
  • 免疫印迹; 小鼠; 图2
赛默飞世尔tau抗体(Invitrogen, Tau5)被用于免疫印迹在小鼠样品上 (图2). Front Aging Neurosci (2014) ncbi
小鼠 单克隆(AT180)
  • 免疫印迹; 小鼠; 图2
赛默飞世尔tau抗体(Pierce Biotechnology, AT180)被用于免疫印迹在小鼠样品上 (图2). Front Aging Neurosci (2014) ncbi
小鼠 单克隆(AT100)
  • 免疫印迹; 小鼠; 图2
赛默飞世尔tau抗体(Pierce Biotechnology, AT100)被用于免疫印迹在小鼠样品上 (图2). Front Aging Neurosci (2014) ncbi
小鼠 单克隆(AT100)
  • IHC-Free; 大鼠; 1:70
赛默飞世尔tau抗体(Thermo Scientific Pierce, MN1060)被用于immunohistochemistry - free floating section在大鼠样品上浓度为1:70. J Neurosci (2014) ncbi
小鼠 单克隆(AT8)
  • IHC-Free; 大鼠; 1:200
赛默飞世尔tau抗体(Thermo Scientific Pierce, MN1020)被用于immunohistochemistry - free floating section在大鼠样品上浓度为1:200. J Neurosci (2014) ncbi
小鼠 单克隆(PHF-6)
  • 免疫印迹; 大鼠; 图3
赛默飞世尔tau抗体(Invitrogen, PHF-6)被用于免疫印迹在大鼠样品上 (图3). BMC Neurosci (2014) ncbi
小鼠 单克隆(PHF13.6)
  • 免疫印迹; 大鼠; 图3
赛默飞世尔tau抗体(Invitrogen, PHF13.6)被用于免疫印迹在大鼠样品上 (图3). BMC Neurosci (2014) ncbi
兔 多克隆
  • 细胞化学; 小鼠; 图5
赛默飞世尔tau抗体(Invitrogen, 44746G)被用于免疫细胞化学在小鼠样品上 (图5). Acta Neuropathol Commun (2014) ncbi
小鼠 单克隆(AT8)
  • 细胞化学; 人类; 1:200; 图2
赛默飞世尔tau抗体(Thermo, MN1020)被用于免疫细胞化学在人类样品上浓度为1:200 (图2). Nat Commun (2014) ncbi
兔 多克隆
  • 免疫印迹; 人类
赛默飞世尔tau抗体(Invitrogen, 44738G)被用于免疫印迹在人类样品上. Neurobiol Aging (2015) ncbi
兔 多克隆
  • 免疫印迹; 人类
赛默飞世尔tau抗体(Invitrogen, 44734G)被用于免疫印迹在人类样品上. Neurobiol Aging (2015) ncbi
兔 多克隆
  • 免疫印迹; 人类
赛默飞世尔tau抗体(Invitrogen, 44752G)被用于免疫印迹在人类样品上. Neurobiol Aging (2015) ncbi
小鼠 单克隆(TAU-5)
  • 免疫印迹; 小鼠; 1:20000
赛默飞世尔tau抗体(Invitrogen, AHB0042)被用于免疫印迹在小鼠样品上浓度为1:20000. J Neurosci (2014) ncbi
小鼠 单克隆(AT8)
  • IHC-Free; 小鼠; 1:250
  • 免疫印迹; 小鼠; 1:2000
赛默飞世尔tau抗体(Pierce, MN1020)被用于immunohistochemistry - free floating section在小鼠样品上浓度为1:250 和 免疫印迹在小鼠样品上浓度为1:2000. J Neurosci (2014) ncbi
小鼠 单克隆(AT8)
  • IHC-Free; 人类; 1:1000
  • 免疫印迹; 人类; 1:1000
赛默飞世尔tau抗体(Thermo Scientific, MN1020)被用于immunohistochemistry - free floating section在人类样品上浓度为1:1000 和 免疫印迹在人类样品上浓度为1:1000. Brain Pathol (2015) ncbi
小鼠 单克隆(AT8)
  • 细胞化学; 人类; 1:800
赛默飞世尔tau抗体(Thermo Scientific, MN1020B)被用于免疫细胞化学在人类样品上浓度为1:800. Hum Mol Genet (2015) ncbi
小鼠 单克隆(HT7)
  • 免疫印迹; 人类; 图4
赛默飞世尔tau抗体(Thermo Scientific, HT7)被用于免疫印迹在人类样品上 (图4). J Alzheimers Dis (2015) ncbi
小鼠 单克隆(AT180)
  • 免疫印迹; 人类; 图4
赛默飞世尔tau抗体(Thermo Scientific, AT180)被用于免疫印迹在人类样品上 (图4). J Alzheimers Dis (2015) ncbi
小鼠 单克隆(AT100)
  • 免疫印迹; 人类; 图4
赛默飞世尔tau抗体(Thermo Scientific, AT100)被用于免疫印迹在人类样品上 (图4). J Alzheimers Dis (2015) ncbi
小鼠 单克隆(AT8)
  • 免疫印迹; 人类; 图4
赛默飞世尔tau抗体(Thermo Scientific, AT8)被用于免疫印迹在人类样品上 (图4). J Alzheimers Dis (2015) ncbi
小鼠 单克隆(AT270)
  • 免疫印迹; 人类; 图4
赛默飞世尔tau抗体(Thermo Scientific, AT270)被用于免疫印迹在人类样品上 (图4). J Alzheimers Dis (2015) ncbi
小鼠 单克隆(AT8)
  • 免疫组化-P; 人类; 1:800
赛默飞世尔tau抗体(Thermo Scientific, AT8)被用于免疫组化-石蜡切片在人类样品上浓度为1:800. Acta Neuropathol (2014) ncbi
小鼠 单克隆(AT8)
  • IHC-Free; 小鼠
赛默飞世尔tau抗体(Pierce, MN1020)被用于immunohistochemistry - free floating section在小鼠样品上. Brain (2014) ncbi
小鼠 单克隆(AT8)
  • 细胞化学; 人类; 1:50
赛默飞世尔tau抗体(Thermo Scientific, AT8)被用于免疫细胞化学在人类样品上浓度为1:50. Neurobiol Dis (2014) ncbi
小鼠 单克隆(AT100)
  • 细胞化学; 人类; 1:250
赛默飞世尔tau抗体(Thermo Scientific, AT100)被用于免疫细胞化学在人类样品上浓度为1:250. Neurobiol Dis (2014) ncbi
小鼠 单克隆(AT8)
  • 免疫印迹; 人类; 图1
  • 细胞化学; 人类; 图3
赛默飞世尔tau抗体(Pierce, AT8)被用于免疫印迹在人类样品上 (图1) 和 免疫细胞化学在人类样品上 (图3). EMBO Mol Med (2014) ncbi
小鼠 单克隆(HT7)
  • 免疫印迹; 人类
赛默飞世尔tau抗体(Thermo Scientific Pierce, MN1000)被用于免疫印迹在人类样品上. PLoS ONE (2014) ncbi
小鼠 单克隆(AT8)
  • 免疫印迹; 人类
赛默飞世尔tau抗体(Thermo Scientific Pierce, MN1020)被用于免疫印迹在人类样品上. PLoS ONE (2014) ncbi
小鼠 单克隆(AT8)
  • 免疫组化; 小鼠; 1:80
赛默飞世尔tau抗体(Thermo Scientific, AT8)被用于免疫组化在小鼠样品上浓度为1:80. Ann Neurol (2014) ncbi
小鼠 单克隆(TAU-5)
  • 免疫组化; 小鼠; 1:3000
赛默飞世尔tau抗体(生活技术, tau-5)被用于免疫组化在小鼠样品上浓度为1:3000. Ann Neurol (2014) ncbi
小鼠 单克隆(AT100)
  • 免疫组化-P; 小鼠; 图1
  • 免疫印迹; 小鼠; 图1
赛默飞世尔tau抗体(Invitrogen, AT100)被用于免疫组化-石蜡切片在小鼠样品上 (图1) 和 免疫印迹在小鼠样品上 (图1). J Neurochem (2015) ncbi
小鼠 单克隆(AT180)
  • 免疫组化-P; 小鼠; 图1
  • 免疫印迹; 小鼠; 图1
赛默飞世尔tau抗体(Invitrogen, AT180)被用于免疫组化-石蜡切片在小鼠样品上 (图1) 和 免疫印迹在小鼠样品上 (图1). J Neurochem (2015) ncbi
小鼠 单克隆(AT270)
  • 免疫组化-P; 小鼠; 图1
  • 免疫印迹; 小鼠; 图1
赛默飞世尔tau抗体(Invitrogen, AT270)被用于免疫组化-石蜡切片在小鼠样品上 (图1) 和 免疫印迹在小鼠样品上 (图1). J Neurochem (2015) ncbi
小鼠 单克隆(AT8)
  • 免疫组化-P; 小鼠; 图1
  • 免疫印迹; 小鼠; 图1
赛默飞世尔tau抗体(Invitrogen, AT8)被用于免疫组化-石蜡切片在小鼠样品上 (图1) 和 免疫印迹在小鼠样品上 (图1). J Neurochem (2015) ncbi
小鼠 单克隆(HT7)
  • 免疫组化-P; 人类; 1:200
赛默飞世尔tau抗体(Thermo Scientific, MN1000)被用于免疫组化-石蜡切片在人类样品上浓度为1:200. Nat Med (2014) ncbi
小鼠 单克隆(AT8)
  • 免疫印迹; 人类; 1:1,000
赛默飞世尔tau抗体(Thermo Scientific, MN1020)被用于免疫印迹在人类样品上浓度为1:1,000. Nat Med (2014) ncbi
小鼠 单克隆(AT100)
  • 免疫印迹; 小鼠
赛默飞世尔tau抗体(Thermo Scientific, AT-100)被用于免疫印迹在小鼠样品上. J Neurosci (2014) ncbi
小鼠 单克隆(AT8)
  • 免疫印迹; 小鼠
赛默飞世尔tau抗体(Thermo Scientific, AT-8)被用于免疫印迹在小鼠样品上. J Neurosci (2014) ncbi
兔 多克隆
  • 免疫印迹; 人类
赛默飞世尔tau抗体(Invitrogen, 44752G)被用于免疫印迹在人类样品上. Neuroscience (2014) ncbi
小鼠 单克隆(TAU-5)
  • 免疫印迹; 小鼠
赛默飞世尔tau抗体(Biosource, AHB0042)被用于免疫印迹在小鼠样品上. Biochim Biophys Acta (2014) ncbi
小鼠 单克隆(AT8)
  • 免疫组化; 小鼠; 1:100
  • 免疫印迹; 小鼠; 1:500
赛默飞世尔tau抗体(Thermo Scientific, AT8)被用于免疫组化在小鼠样品上浓度为1:100 和 免疫印迹在小鼠样品上浓度为1:500. J Neurosci (2014) ncbi
小鼠 单克隆(HT7)
  • 免疫印迹; 小鼠; 1:500
赛默飞世尔tau抗体(Thermo Scientific, HT7)被用于免疫印迹在小鼠样品上浓度为1:500. J Neurosci (2014) ncbi
小鼠 单克隆(AT180)
  • 免疫印迹; 小鼠; 1:500
  • 免疫组化; 小鼠; 1:250
赛默飞世尔tau抗体(Thermo Scientific, AT180)被用于免疫印迹在小鼠样品上浓度为1:500 和 免疫组化在小鼠样品上浓度为1:250. J Neurosci (2014) ncbi
小鼠 单克隆(AT270)
  • 免疫印迹; 大鼠; 1:200
赛默飞世尔tau抗体(Thermo Fisher Scientific, AT270)被用于免疫印迹在大鼠样品上浓度为1:200. Cell Death Dis (2014) ncbi
小鼠 单克隆(HT7)
  • 免疫印迹; 人类
赛默飞世尔tau抗体(Thermo Scientific, MN1000)被用于免疫印迹在人类样品上. Eur J Neurosci (2014) ncbi
小鼠 单克隆(AT180)
  • 免疫印迹; 人类
  • 免疫印迹; 小鼠
赛默飞世尔tau抗体(Thermo Scientific, MN1040)被用于免疫印迹在人类样品上 和 在小鼠样品上. Eur J Neurosci (2014) ncbi
小鼠 单克隆(AT8)
  • 免疫印迹; 人类
赛默飞世尔tau抗体(Thermo Scientific, MN1020)被用于免疫印迹在人类样品上. Eur J Neurosci (2014) ncbi
兔 多克隆
  • 免疫印迹; 小鼠
赛默飞世尔tau抗体(Invitrogen, 44734G)被用于免疫印迹在小鼠样品上. Eur J Neurosci (2014) ncbi
兔 多克隆
  • 免疫印迹; 小鼠
赛默飞世尔tau抗体(Invitrogen, 44752G)被用于免疫印迹在小鼠样品上. Eur J Neurosci (2014) ncbi
兔 多克隆
  • 免疫印迹; 小鼠
赛默飞世尔tau抗体(Invitrogen, 44746G)被用于免疫印迹在小鼠样品上. Eur J Neurosci (2014) ncbi
小鼠 单克隆(TAU-5)
  • 免疫印迹; 小鼠; 1:500
赛默飞世尔tau抗体(NeoMarkers, tau-5)被用于免疫印迹在小鼠样品上浓度为1:500. PLoS ONE (2014) ncbi
小鼠 单克隆(AT8)
  • 免疫印迹; 人类; 1:150; 图s3b
赛默飞世尔tau抗体(Thermo, MN1020)被用于免疫印迹在人类样品上浓度为1:150 (图s3b). Nature (2014) ncbi
小鼠 单克隆(AT100)
  • IHC-Free; 人类; 图1
赛默飞世尔tau抗体(Pierce, AT-100)被用于immunohistochemistry - free floating section在人类样品上 (图1). FASEB J (2014) ncbi
小鼠 单克隆(AT8)
  • IHC-Free; 人类; 图1
赛默飞世尔tau抗体(Pierce, AT-8)被用于immunohistochemistry - free floating section在人类样品上 (图1). FASEB J (2014) ncbi
小鼠 单克隆(AT8)
  • 免疫印迹; 小鼠
赛默飞世尔tau抗体(Pierce, NM1020)被用于免疫印迹在小鼠样品上. PLoS ONE (2014) ncbi
小鼠 单克隆(AT100)
  • 免疫组化; 大鼠; 1:400
赛默飞世尔tau抗体(Thermo Scientific, MN1060)被用于免疫组化在大鼠样品上浓度为1:400. Acta Neuropathol Commun (2014) ncbi
小鼠 单克隆(AT8)
  • 免疫组化; 大鼠; 1:400
赛默飞世尔tau抗体(Thermo Scientific, MN1020)被用于免疫组化在大鼠样品上浓度为1:400. Acta Neuropathol Commun (2014) ncbi
小鼠 单克隆(AT8)
  • 免疫组化-P; 人类; 1:500; 图 4
赛默飞世尔tau抗体(Innogenetics, MN1020)被用于免疫组化-石蜡切片在人类样品上浓度为1:500 (图 4). Acta Neuropathol Commun (2014) ncbi
小鼠 单克隆(AT8)
  • 免疫组化; 人类; 100 ng/ml
赛默飞世尔tau抗体(Thermo Scientific, AT8)被用于免疫组化在人类样品上浓度为100 ng/ml. J Alzheimers Dis (2014) ncbi
小鼠 单克隆(AT8)
  • 免疫组化; 人类; 1:1000
赛默飞世尔tau抗体(Pierce Biotechnology, AT8)被用于免疫组化在人类样品上浓度为1:1000. J Anat (2014) ncbi
小鼠 单克隆(TAU-5)
  • 免疫印迹; 小鼠; 1:1000
赛默飞世尔tau抗体(Invitrogen, AHB0042)被用于免疫印迹在小鼠样品上浓度为1:1000. PLoS ONE (2013) ncbi
小鼠 单克隆(HT7)
  • 免疫印迹; 小鼠
  • 免疫组化; 小鼠
  • 免疫沉淀; 小鼠
赛默飞世尔tau抗体(Thermo Scientific, HT7)被用于免疫印迹在小鼠样品上, 免疫组化在小鼠样品上, 和 免疫沉淀在小鼠样品上. PLoS ONE (2013) ncbi
小鼠 单克隆(TAU-5)
  • 免疫印迹; 小鼠; 1:4000
赛默飞世尔tau抗体(Thermo Fisher Scientific, Tau-5)被用于免疫印迹在小鼠样品上浓度为1:4000. Eur J Neurosci (2014) ncbi
小鼠 单克隆(AT270)
  • 免疫印迹; 小鼠
赛默飞世尔tau抗体(Thermo Fisher Scientific, AT270)被用于免疫印迹在小鼠样品上. Am J Pathol (2014) ncbi
小鼠 单克隆(AT8)
  • IHC-Free; 小鼠
  • 免疫印迹; 小鼠
赛默飞世尔tau抗体(Thermo Fisher Scientific, AT8)被用于immunohistochemistry - free floating section在小鼠样品上 和 免疫印迹在小鼠样品上. Am J Pathol (2014) ncbi
小鼠 单克隆(HT7)
  • IHC-Free; 小鼠
  • 免疫印迹; 小鼠
赛默飞世尔tau抗体(Thermo Fisher Scientific, HT7)被用于immunohistochemistry - free floating section在小鼠样品上 和 免疫印迹在小鼠样品上. Am J Pathol (2014) ncbi
小鼠 单克隆(AT180)
  • 免疫印迹; 小鼠
赛默飞世尔tau抗体(Thermo Fisher Scientific, AT180)被用于免疫印迹在小鼠样品上. Am J Pathol (2014) ncbi
小鼠 单克隆(AT8)
  • 免疫组化-P; 人类; 1:25
赛默飞世尔tau抗体(Thermo Scientific, AT8)被用于免疫组化-石蜡切片在人类样品上浓度为1:25. Acta Neuropathol (2014) ncbi
小鼠 单克隆(AT8)
  • IHC-Free; 小鼠; 1:10000
赛默飞世尔tau抗体(Thermo Scientific, AT8)被用于immunohistochemistry - free floating section在小鼠样品上浓度为1:10000. J Alzheimers Dis (2014) ncbi
小鼠 单克隆(AT8)
  • 免疫组化; 人类; 1:2000
赛默飞世尔tau抗体(Thermo Scientific, clone AT8)被用于免疫组化在人类样品上浓度为1:2000. JAMA Psychiatry (2013) ncbi
小鼠 单克隆(AT8)
  • IHC-Free; lowland gorilla; 1:1000
赛默飞世尔tau抗体(ThermoFisher, MN1020)被用于immunohistochemistry - free floating section在lowland gorilla样品上浓度为1:1000. J Comp Neurol (2013) ncbi
小鼠 单克隆(TAU-5)
  • 免疫组化-F; 小鼠
赛默飞世尔tau抗体(Biosource, AHB0042)被用于免疫组化-冰冻切片在小鼠样品上. Age (Dordr) (2014) ncbi
小鼠 单克隆(TAU-5)
  • 免疫印迹; 小鼠; 图6
赛默飞世尔tau抗体(Invitrogen, #AHB0042)被用于免疫印迹在小鼠样品上 (图6). Neurobiol Aging (2013) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 图6
赛默飞世尔tau抗体(Invitrogen, #44-768G)被用于免疫印迹在小鼠样品上 (图6). Neurobiol Aging (2013) ncbi
小鼠 单克隆(HT7)
  • 免疫组化-F; 小鼠; 1:300
赛默飞世尔tau抗体(Thermo-Fisher Pierce, MN-100)被用于免疫组化-冰冻切片在小鼠样品上浓度为1:300. Neurobiol Aging (2013) ncbi
兔 多克隆
  • 免疫印迹; 牛; 图4
赛默飞世尔tau抗体(Biosource, 44752G)被用于免疫印迹在牛样品上 (图4). Biochim Biophys Acta (2013) ncbi
兔 多克隆
  • 免疫印迹; 牛; 图4
赛默飞世尔tau抗体(Biosource, 44758G)被用于免疫印迹在牛样品上 (图4). Biochim Biophys Acta (2013) ncbi
兔 多克隆
  • 免疫印迹; 牛; 图4
赛默飞世尔tau抗体(Biosource, 44750G)被用于免疫印迹在牛样品上 (图4). Biochim Biophys Acta (2013) ncbi
小鼠 单克隆(PHF-6)
  • 免疫印迹; 小鼠; 图10
赛默飞世尔tau抗体(Invitrogen, 355200)被用于免疫印迹在小鼠样品上 (图10). Mol Brain (2013) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 图10
赛默飞世尔tau抗体(Invitrogen, 44734G)被用于免疫印迹在小鼠样品上 (图10). Mol Brain (2013) ncbi
小鼠 单克隆(HT7)
  • 免疫组化; 小鼠
赛默飞世尔tau抗体(Thermo, MN1000)被用于免疫组化在小鼠样品上. PLoS ONE (2013) ncbi
小鼠 单克隆(AT180)
  • 免疫组化; 小鼠
赛默飞世尔tau抗体(Thermo, MN1040)被用于免疫组化在小鼠样品上. PLoS ONE (2013) ncbi
小鼠 单克隆(AT100)
  • 免疫组化-P; 小鼠; 图4
赛默飞世尔tau抗体(Thermo-Fisher, AT100)被用于免疫组化-石蜡切片在小鼠样品上 (图4). Acta Neuropathol (2013) ncbi
小鼠 单克隆(AT8)
  • 免疫组化-P; 小鼠; 图2
赛默飞世尔tau抗体(Thermo-Fisher, AT8)被用于免疫组化-石蜡切片在小鼠样品上 (图2). Acta Neuropathol (2013) ncbi
小鼠 单克隆(TAU-5)
  • 免疫印迹; 人类; 1:200
赛默飞世尔tau抗体(Lab Vision, MS-247-P0)被用于免疫印迹在人类样品上浓度为1:200. Neurochem Res (2013) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 1:500; 图6
赛默飞世尔tau抗体(Invitrogen, 44734G)被用于免疫印迹在小鼠样品上浓度为1:500 (图6). PLoS ONE (2013) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 1:500; 图6
赛默飞世尔tau抗体(Invitrogen, 44742G)被用于免疫印迹在小鼠样品上浓度为1:500 (图6). PLoS ONE (2013) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图6
赛默飞世尔tau抗体(Invitrogen, 44-750G)被用于免疫印迹在小鼠样品上浓度为1:1000 (图6). PLoS ONE (2013) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 1:500; 图6
赛默飞世尔tau抗体(Invitrogen, 44744)被用于免疫印迹在小鼠样品上浓度为1:500 (图6). PLoS ONE (2013) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 1:500; 图6
赛默飞世尔tau抗体(Invitrogen, 44746G)被用于免疫印迹在小鼠样品上浓度为1:500 (图6). PLoS ONE (2013) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 1:500; 图6
赛默飞世尔tau抗体(Invitrogen, 44740G)被用于免疫印迹在小鼠样品上浓度为1:500 (图6). PLoS ONE (2013) ncbi
小鼠 单克隆(AT8)
  • 细胞化学; 果蝇; 图s4
赛默飞世尔tau抗体(Thermo Fisher, AT8)被用于免疫细胞化学在果蝇样品上 (图s4). Acta Neuropathol (2013) ncbi
小鼠 单克隆(AT100)
  • 细胞化学; 果蝇; 图s4
赛默飞世尔tau抗体(Thermo Fisher, AT100)被用于免疫细胞化学在果蝇样品上 (图s4). Acta Neuropathol (2013) ncbi
小鼠 单克隆(AT180)
  • 细胞化学; 果蝇; 图s4
赛默飞世尔tau抗体(Thermo Fisher, AT180)被用于免疫细胞化学在果蝇样品上 (图s4). Acta Neuropathol (2013) ncbi
小鼠 单克隆(AT8)
  • 免疫印迹; 大鼠; 1:1000
赛默飞世尔tau抗体(Pierce Biotechnology, MN1020)被用于免疫印迹在大鼠样品上浓度为1:1000. Biochim Biophys Acta (2013) ncbi
小鼠 单克隆(AT180)
  • 免疫组化; 人类; 1:1000
赛默飞世尔tau抗体(Biosource, AT180)被用于免疫组化在人类样品上浓度为1:1000. Exp Neurol (2014) ncbi
小鼠 单克隆(TAU-5)
  • 免疫印迹; 人类; 1:1000
  • 免疫组化; 人类; 1:1000
赛默飞世尔tau抗体(Thermo Scientific, Tau-5)被用于免疫印迹在人类样品上浓度为1:1000 和 免疫组化在人类样品上浓度为1:1000. Exp Neurol (2014) ncbi
小鼠 单克隆(AT8)
  • 免疫组化; 人类; 1:1000
赛默飞世尔tau抗体(Biosource, AT8)被用于免疫组化在人类样品上浓度为1:1000. Exp Neurol (2014) ncbi
小鼠 单克隆(AT180)
  • 免疫印迹; 小鼠
赛默飞世尔tau抗体(Pierce, AT180)被用于免疫印迹在小鼠样品上. Diabetes (2013) ncbi
小鼠 单克隆(AT100)
  • 免疫印迹; 小鼠
赛默飞世尔tau抗体(Pierce, AT100)被用于免疫印迹在小鼠样品上. Diabetes (2013) ncbi
小鼠 单克隆(AT8)
  • IHC-Free; 小鼠
赛默飞世尔tau抗体(Pierce, AT8)被用于immunohistochemistry - free floating section在小鼠样品上. Diabetes (2013) ncbi
小鼠 单克隆(AT270)
  • 免疫印迹; 小鼠
赛默飞世尔tau抗体(Pierce, AT270)被用于免疫印迹在小鼠样品上. Diabetes (2013) ncbi
小鼠 单克隆(TAU-5)
  • 免疫印迹; 小鼠; 1:1000; 图6
赛默飞世尔tau抗体(BioSource, AHB0042)被用于免疫印迹在小鼠样品上浓度为1:1000 (图6). Age (Dordr) (2013) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图6
赛默飞世尔tau抗体(Invitrogen, 44752G)被用于免疫印迹在小鼠样品上浓度为1:1000 (图6). Age (Dordr) (2013) ncbi
小鼠 单克隆(AT8)
  • 免疫组化-P; leopard cat; 1:100; 图5
赛默飞世尔tau抗体(Thermo Scientific, AT8)被用于免疫组化-石蜡切片在leopard cat样品上浓度为1:100 (图5). PLoS ONE (2012) ncbi
小鼠 单克隆(AT100)
  • 免疫组化-P; leopard cat; 1:100; 图6
赛默飞世尔tau抗体(Thermo Scientific, AT100)被用于免疫组化-石蜡切片在leopard cat样品上浓度为1:100 (图6). PLoS ONE (2012) ncbi
小鼠 单克隆(HT7)
  • 免疫组化; 小鼠
赛默飞世尔tau抗体(ThermoScientific, MN1000)被用于免疫组化在小鼠样品上. J Comp Neurol (2013) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 图2
赛默飞世尔tau抗体(Invitrogen Life Technologies, 44740G)被用于免疫印迹在小鼠样品上 (图2). J Neurochem (2012) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 图2
赛默飞世尔tau抗体(Invitrogen Life Technologies, 44746G)被用于免疫印迹在小鼠样品上 (图2). J Neurochem (2012) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 图2
赛默飞世尔tau抗体(Invitrogen Life Technologies, 4750G)被用于免疫印迹在小鼠样品上 (图2). J Neurochem (2012) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 图2
赛默飞世尔tau抗体(Invitrogen Life Technologies, 44734G)被用于免疫印迹在小鼠样品上 (图2). J Neurochem (2012) ncbi
小鼠 单克隆(TAU-5)
  • 免疫印迹; 小鼠; 图3
赛默飞世尔tau抗体(Invitrogen, Tau-5)被用于免疫印迹在小鼠样品上 (图3). FEBS Lett (2012) ncbi
小鼠 单克隆(Tau46)
  • 免疫印迹; 果蝇; 图3
赛默飞世尔tau抗体(Zymed, Tau46)被用于免疫印迹在果蝇样品上 (图3). PLoS Genet (2012) ncbi
小鼠 单克隆(AT180)
  • 免疫印迹; 果蝇; 图3
赛默飞世尔tau抗体(Thermo, AT180)被用于免疫印迹在果蝇样品上 (图3). PLoS Genet (2012) ncbi
小鼠 单克隆(Tau46)
  • 免疫印迹; 小鼠; 1:50; 图3
赛默飞世尔tau抗体(Zymed, Tau46)被用于免疫印迹在小鼠样品上浓度为1:50 (图3). J Alzheimers Dis (2013) ncbi
小鼠 单克隆(AT8)
  • 免疫组化-P; 人类; 0.25 ug/ml; 图8
赛默飞世尔tau抗体(Thermo Scientific, MN1020)被用于免疫组化-石蜡切片在人类样品上浓度为0.25 ug/ml (图8). Alzheimers Res Ther (2012) ncbi
小鼠 单克隆(AT8)
  • 免疫印迹; 大鼠; 1:1000; 图1
赛默飞世尔tau抗体(Pierce, AT-8)被用于免疫印迹在大鼠样品上浓度为1:1000 (图1). Neurobiol Aging (2013) ncbi
小鼠 单克隆(TAU-5)
  • 免疫组化; 大鼠; 1:2000
赛默飞世尔tau抗体(Invitrogen, AHB0042)被用于免疫组化在大鼠样品上浓度为1:2000. Toxicol Sci (2012) ncbi
小鼠 单克隆(AT270)
  • 免疫印迹; 人类; 1:1000
赛默飞世尔tau抗体(Pierce, AT270)被用于免疫印迹在人类样品上浓度为1:1000. Sci Rep (2012) ncbi
小鼠 单克隆(AT8)
  • 免疫印迹; 人类; 1:1000
赛默飞世尔tau抗体(Pierce, AT8)被用于免疫印迹在人类样品上浓度为1:1000. Sci Rep (2012) ncbi
小鼠 单克隆(AT100)
  • 免疫印迹; 人类; 1:1000
赛默飞世尔tau抗体(Pierce, AT100)被用于免疫印迹在人类样品上浓度为1:1000. Sci Rep (2012) ncbi
小鼠 单克隆(AT180)
  • 免疫印迹; 人类; 1:1000
赛默飞世尔tau抗体(Pierce, AT180)被用于免疫印迹在人类样品上浓度为1:1000. Sci Rep (2012) ncbi
兔 多克隆
  • 免疫沉淀; 大鼠; 图3
  • 免疫印迹; 大鼠; 1:500; 图3
赛默飞世尔tau抗体(Invitrogen, 44-742G)被用于免疫沉淀在大鼠样品上 (图3) 和 免疫印迹在大鼠样品上浓度为1:500 (图3). J Biol Chem (2012) ncbi
小鼠 单克隆(TAU-5)
  • 免疫印迹; 小鼠; 图1
赛默飞世尔tau抗体(BIOSOURCE, Tau-5)被用于免疫印迹在小鼠样品上 (图1). J Biol Chem (2012) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 图1
赛默飞世尔tau抗体(生活技术, 44734G)被用于免疫印迹在小鼠样品上 (图1). Autophagy (2012) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 图1
赛默飞世尔tau抗体(生活技术, 44764G)被用于免疫印迹在小鼠样品上 (图1). Autophagy (2012) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 图1
赛默飞世尔tau抗体(生活技术, 44750G)被用于免疫印迹在小鼠样品上 (图1). Autophagy (2012) ncbi
小鼠 单克隆(AT8)
  • 免疫组化-P; 人类; 图1
赛默飞世尔tau抗体(Thermoscientific, AT8)被用于免疫组化-石蜡切片在人类样品上 (图1). Acta Neuropathol (2012) ncbi
小鼠 单克隆(AT8)
  • 免疫印迹; 人类
赛默飞世尔tau抗体(Pierce, MN1020)被用于免疫印迹在人类样品上. PLoS ONE (2011) ncbi
小鼠 单克隆(HT7)
  • 免疫印迹; 人类
赛默飞世尔tau抗体(Pierce, MN1000)被用于免疫印迹在人类样品上. PLoS ONE (2011) ncbi
小鼠 单克隆(AT180)
  • 免疫印迹; 人类
赛默飞世尔tau抗体(Pierce, MN1040)被用于免疫印迹在人类样品上. PLoS ONE (2011) ncbi
兔 多克隆
  • IHC-Free; 大鼠; 1:200; 图2
  • 免疫印迹; 大鼠; 1:1000; 图2
赛默飞世尔tau抗体(Biosource, 44752G)被用于immunohistochemistry - free floating section在大鼠样品上浓度为1:200 (图2) 和 免疫印迹在大鼠样品上浓度为1:1000 (图2). Acta Neuropathol (2012) ncbi
兔 多克隆
  • IHC-Free; 大鼠; 1:200; 图2
  • 免疫印迹; 大鼠; 1:1000; 图2
赛默飞世尔tau抗体(Biosource, 44734G)被用于immunohistochemistry - free floating section在大鼠样品上浓度为1:200 (图2) 和 免疫印迹在大鼠样品上浓度为1:1000 (图2). Acta Neuropathol (2012) ncbi
兔 多克隆
  • IHC-Free; 大鼠; 1:200; 图2
  • 免疫印迹; 大鼠; 1:1000; 图2
赛默飞世尔tau抗体(Biosource, 44750G)被用于immunohistochemistry - free floating section在大鼠样品上浓度为1:200 (图2) 和 免疫印迹在大鼠样品上浓度为1:1000 (图2). Acta Neuropathol (2012) ncbi
兔 多克隆
  • IHC-Free; 大鼠; 1:200; 图2
  • 免疫印迹; 大鼠; 1:1000; 图2
赛默飞世尔tau抗体(Biosource, 44738G)被用于immunohistochemistry - free floating section在大鼠样品上浓度为1:200 (图2) 和 免疫印迹在大鼠样品上浓度为1:1000 (图2). Acta Neuropathol (2012) ncbi
兔 多克隆
  • 免疫组化-P; 小鼠; 图5
赛默飞世尔tau抗体(Thermo Fisher Scientific, OPA1-03156)被用于免疫组化-石蜡切片在小鼠样品上 (图5). PLoS ONE (2011) ncbi
小鼠 单克隆(TAU-5)
  • 免疫组化; 小鼠; 图3
赛默飞世尔tau抗体(Biosource, AHB0042)被用于免疫组化在小鼠样品上 (图3). BMC Neurosci (2011) ncbi
小鼠 单克隆(TAU-5)
  • 免疫印迹; 人类; 1:1000; 图2
赛默飞世尔tau抗体(BioSource, AHB0042)被用于免疫印迹在人类样品上浓度为1:1000 (图2). J Neurosci Res (2011) ncbi
小鼠 单克隆(AT8)
  • 细胞化学; 人类; 1:100; 图3
  • 免疫印迹; 人类; 图4
赛默飞世尔tau抗体(Thermo, MN1020)被用于免疫细胞化学在人类样品上浓度为1:100 (图3) 和 免疫印迹在人类样品上 (图4). J Alzheimers Dis (2011) ncbi
小鼠 单克隆(TAU-5)
  • 免疫印迹; 人类; 1:500; 图2
赛默飞世尔tau抗体(Invitrogen, AHB0042)被用于免疫印迹在人类样品上浓度为1:500 (图2). Eur J Neurosci (2011) ncbi
小鼠 单克隆(TAU-5)
  • 免疫印迹; 小鼠; 1:500; 图3
赛默飞世尔tau抗体(Biosource, AHB0042)被用于免疫印迹在小鼠样品上浓度为1:500 (图3). PLoS ONE (2011) ncbi
小鼠 单克隆(AT180)
  • 免疫印迹; 小鼠; 1:1000; 图4
赛默飞世尔tau抗体(Pierce, AT180)被用于免疫印迹在小鼠样品上浓度为1:1000 (图4). PLoS ONE (2011) ncbi
小鼠 单克隆(AT8)
  • 免疫印迹; 小鼠; 1:1000; 图4
赛默飞世尔tau抗体(Pierce, AT8)被用于免疫印迹在小鼠样品上浓度为1:1000 (图4). PLoS ONE (2011) ncbi
小鼠 单克隆(AT8)
  • 免疫组化; 人类; 图4
赛默飞世尔tau抗体(Pierce, AT8)被用于免疫组化在人类样品上 (图4). J Neurosci (2011) ncbi
小鼠 单克隆(AT8)
  • 免疫组化-P; 小鼠; 1:20; 图4
赛默飞世尔tau抗体(Pierce, MN1020)被用于免疫组化-石蜡切片在小鼠样品上浓度为1:20 (图4). J Neuroinflammation (2010) ncbi
兔 多克隆
  • 免疫印迹; 人类
赛默飞世尔tau抗体(Biosource, 44-768G)被用于免疫印迹在人类样品上. Methods Mol Biol (2010) ncbi
小鼠 单克隆(TAU-5)
  • 免疫组化-P; 大鼠; 1:1000; 图5
  • 免疫印迹; 大鼠; 1:2000; 图4
赛默飞世尔tau抗体(Biosource, AHB0042)被用于免疫组化-石蜡切片在大鼠样品上浓度为1:1000 (图5) 和 免疫印迹在大鼠样品上浓度为1:2000 (图4). Neurol Sci (2011) ncbi
小鼠 单克隆(AT8)
  • 免疫印迹; 小鼠; 1:2000; 图4
赛默飞世尔tau抗体(Pierce, MN1020)被用于免疫印迹在小鼠样品上浓度为1:2000 (图4). J Biol Chem (2010) ncbi
小鼠 单克隆(AT180)
  • 免疫印迹; 人类; 图5
赛默飞世尔tau抗体(Biosource, AT180)被用于免疫印迹在人类样品上 (图5). J Neurosci Res (2010) ncbi
兔 多克隆
  • 酶联免疫吸附测定; 人类; 1:16,000; 图1
赛默飞世尔tau抗体(Invitrogen, 44-740G)被用于酶联免疫吸附测定在人类样品上浓度为1:16,000 (图1). BMC Biochem (2010) ncbi
小鼠 单克隆(AT8)
  • 免疫组化; 果蝇; 1:100; 图2
赛默飞世尔tau抗体(Endogen, MN1020)被用于免疫组化在果蝇样品上浓度为1:100 (图2). Nat Protoc (2010) ncbi
兔 多克隆
  • 免疫印迹; 人类; 1:1000
赛默飞世尔tau抗体(Invitrogen, 44768G)被用于免疫印迹在人类样品上浓度为1:1000. J Neurosci Res (2010) ncbi
兔 多克隆
  • 免疫印迹; 人类; 1:500
赛默飞世尔tau抗体(Invitrogen, 44750G)被用于免疫印迹在人类样品上浓度为1:500. J Neurosci Res (2010) ncbi
小鼠 单克隆(TAU-5)
  • 免疫印迹; 人类; 1:1000
赛默飞世尔tau抗体(Biosource, AHB0042)被用于免疫印迹在人类样品上浓度为1:1000. J Neurosci Res (2010) ncbi
小鼠 单克隆(PHF13.6)
  • 免疫印迹; 人类; 1:500
赛默飞世尔tau抗体(Invitrogen, 355300)被用于免疫印迹在人类样品上浓度为1:500. J Neurosci Res (2010) ncbi
兔 多克隆
  • 免疫组化; 小鼠; 图2
  • 免疫印迹; 小鼠; 图1
赛默飞世尔tau抗体(Biosource, 44752G)被用于免疫组化在小鼠样品上 (图2) 和 免疫印迹在小鼠样品上 (图1). Endocrinology (2009) ncbi
兔 多克隆
  • 免疫组化; 小鼠; 图2
  • 免疫印迹; 小鼠; 图1
赛默飞世尔tau抗体(Biosource, 44746G)被用于免疫组化在小鼠样品上 (图2) 和 免疫印迹在小鼠样品上 (图1). Endocrinology (2009) ncbi
兔 多克隆
  • 免疫组化; 小鼠; 图2
  • 免疫印迹; 小鼠; 图1
赛默飞世尔tau抗体(Biosource, 44764G)被用于免疫组化在小鼠样品上 (图2) 和 免疫印迹在小鼠样品上 (图1). Endocrinology (2009) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 图1
  • 免疫组化; 小鼠; 图2
赛默飞世尔tau抗体(Biosource, 44768G)被用于免疫印迹在小鼠样品上 (图1) 和 免疫组化在小鼠样品上 (图2). Endocrinology (2009) ncbi
小鼠 单克隆(AT8)
  • 免疫印迹; 人类; 图1c
赛默飞世尔tau抗体(Pierce Biotechnology, AT8)被用于免疫印迹在人类样品上 (图1c). Neurobiol Aging (2011) ncbi
小鼠 单克隆(TAU-5)
  • 酶联免疫吸附测定; 人类; 图1a
赛默飞世尔tau抗体(Biosource International, Tau-5)被用于酶联免疫吸附测定在人类样品上 (图1a). Neurobiol Aging (2011) ncbi
兔 多克隆
  • IHC-Free; 人类; 1:1000
赛默飞世尔tau抗体(Invitrogen, 44-752G)被用于immunohistochemistry - free floating section在人类样品上浓度为1:1000. PLoS ONE (2009) ncbi
小鼠 单克隆(TAU-5)
  • 免疫印迹; 大鼠; 1:1000; 图3
赛默飞世尔tau抗体(Biosource, tau-5)被用于免疫印迹在大鼠样品上浓度为1:1000 (图3). Biosci Biotechnol Biochem (2009) ncbi
小鼠 单克隆(AT8)
  • 免疫印迹; 大鼠; 1:1000; 图3
赛默飞世尔tau抗体(Biosource, AT8)被用于免疫印迹在大鼠样品上浓度为1:1000 (图3). Biosci Biotechnol Biochem (2009) ncbi
小鼠 单克隆(AT8)
  • 免疫印迹; 大鼠; 1:1000
赛默飞世尔tau抗体(Biosource, AT8)被用于免疫印迹在大鼠样品上浓度为1:1000. Life Sci (2009) ncbi
小鼠 单克隆(TAU-5)
  • 免疫印迹; 大鼠; 1:1000
赛默飞世尔tau抗体(Biosource, tau-5)被用于免疫印迹在大鼠样品上浓度为1:1000. Life Sci (2009) ncbi
未注明
  • 免疫印迹; 人类
为了证实mGluR2的活化对信号转导途径和神经细胞的存活都起着重要作用,使用了Pierce公司的抗phospho-tau抗体来进行蛋白印迹分析。Brain Res (2009) ncbi
小鼠 单克隆(TAU-5)
  • 免疫印迹; 小鼠; 1:1000
赛默飞世尔tau抗体(Biosource, tau-5)被用于免疫印迹在小鼠样品上浓度为1:1000. Toxicology (2009) ncbi
小鼠 单克隆(AT8)
  • 免疫印迹; 小鼠; 1:1000
赛默飞世尔tau抗体(Biosource, AT8)被用于免疫印迹在小鼠样品上浓度为1:1000. Toxicology (2009) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图3
赛默飞世尔tau抗体(BioSource, 44-750G)被用于免疫印迹在人类样品上 (图3). J Neuroimmunol (2008) ncbi
小鼠 单克隆(AT180)
  • 免疫印迹; 人类; 图4
赛默飞世尔tau抗体(Endogen, AT180)被用于免疫印迹在人类样品上 (图4). J Neuroimmunol (2008) ncbi
兔 多克隆
  • 免疫组化; 人类; 1:400; 图8-13
赛默飞世尔tau抗体(BioSource, 44-734G)被用于免疫组化在人类样品上浓度为1:400 (图8-13). Biogerontology (2009) ncbi
未注明
  • 免疫组化; 人类
运用Pierce Biotechnology公司的抗AT8抗体(1:200,pS202/pT205),进行免疫组织化学实验以研究白质tau样蛋白病在额颞(骨)小叶退化中的作用。J Neuropathol Exp Neurol (2008) ncbi
未注明
  • 细胞化学; 人类
为了研究成视网膜细胞瘤(Rb)蛋白质多位点的磷酸化在阿尔兹海默氏症神经纤维缠结病变中的关键作用,采用了Pierce Endogen的单抗磷酸化tau抗体以1:1000稀释进行免疫细胞化学实验。Int J Clin Exp Pathol (2008) ncbi
小鼠 单克隆(TAU-5)
  • 细胞化学; 大鼠; 1:200
赛默飞世尔tau抗体(NeoMarkers, MS247P)被用于免疫细胞化学在大鼠样品上浓度为1:200. J Neural Eng (2008) ncbi
小鼠 单克隆(AT8)
  • 免疫印迹; 大鼠; 1:500; 图3
  • 细胞化学; 大鼠; 1:500; 图3
赛默飞世尔tau抗体(BioSource International, clone AT8)被用于免疫印迹在大鼠样品上浓度为1:500 (图3) 和 免疫细胞化学在大鼠样品上浓度为1:500 (图3). J Neurochem (2008) ncbi
小鼠 单克隆(AT8)
  • 免疫印迹; 大鼠; 1:1000; 图6
赛默飞世尔tau抗体(Biosource, AT8)被用于免疫印迹在大鼠样品上浓度为1:1000 (图6). Food Chem Toxicol (2008) ncbi
小鼠 单克隆(TAU-5)
  • 免疫印迹; 大鼠; 1:1000; 图6
赛默飞世尔tau抗体(Biosource, tau-5)被用于免疫印迹在大鼠样品上浓度为1:1000 (图6). Food Chem Toxicol (2008) ncbi
小鼠 单克隆(TAU-5)
  • 免疫印迹; 小鼠; 1:1000; 图3
赛默飞世尔tau抗体(Invitrogen, TAU- 5)被用于免疫印迹在小鼠样品上浓度为1:1000 (图3). Neurosci Lett (2008) ncbi
小鼠 单克隆(TAU-5)
  • 免疫印迹; 小鼠; 1:1000; 图5
赛默飞世尔tau抗体(Biosource, Tau-5)被用于免疫印迹在小鼠样品上浓度为1:1000 (图5). J Cell Mol Med (2008) ncbi
小鼠 单克隆(AT8)
  • 免疫组化; 小鼠; 1:1000; 图4
赛默飞世尔tau抗体(Pierce, AT8)被用于免疫组化在小鼠样品上浓度为1:1000 (图4). J Neurosci (2007) ncbi
小鼠 单克隆(TAU-5)
  • 免疫印迹; 大鼠; 1:5000
赛默飞世尔tau抗体(BioSource/Invitrogen, tau-5)被用于免疫印迹在大鼠样品上浓度为1:5000. Br J Pharmacol (2007) ncbi
小鼠 单克隆(AT270)
  • 免疫印迹; 大鼠; 1:4000
赛默飞世尔tau抗体(Pierce Biotechnology, AT270)被用于免疫印迹在大鼠样品上浓度为1:4000. Br J Pharmacol (2007) ncbi
小鼠 单克隆(TAU-5)
  • 免疫组化-F; 人类; 1:500
  • 免疫印迹; 人类; 1:500
赛默飞世尔tau抗体(Biosource, AHB0042)被用于免疫组化-冰冻切片在人类样品上浓度为1:500 和 免疫印迹在人类样品上浓度为1:500. Nucleic Acids Res (2007) ncbi
小鼠 单克隆(TAU-5)
  • 免疫印迹; 小鼠; 图4
赛默飞世尔tau抗体(Biosource, AHB0042)被用于免疫印迹在小鼠样品上 (图4). Mol Cell Biol (2007) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 图4
赛默飞世尔tau抗体(Biosource, 44752G)被用于免疫印迹在小鼠样品上 (图4). Mol Cell Biol (2007) ncbi
小鼠 单克隆(T14)
  • 免疫印迹; 人类; 图3
赛默飞世尔tau抗体(Zymed, T14)被用于免疫印迹在人类样品上 (图3). Neurobiol Aging (2009) ncbi
小鼠 单克隆(AT180)
  • 免疫组化; 人类; 图2B
赛默飞世尔tau抗体(Zymed, AT180)被用于免疫组化在人类样品上 (图2B). Neurobiol Aging (2009) ncbi
小鼠 单克隆(AT100)
  • 免疫印迹; 人类; 图1
  • 免疫组化; 人类; 图4A
赛默飞世尔tau抗体(Zymed, AT100)被用于免疫印迹在人类样品上 (图1) 和 免疫组化在人类样品上 (图4A). Neurobiol Aging (2009) ncbi
小鼠 单克隆(TAU-5)
  • 免疫印迹; 大鼠; 1:1000; 图3
赛默飞世尔tau抗体(Biosource, tau-5)被用于免疫印迹在大鼠样品上浓度为1:1000 (图3). Neuroscience (2007) ncbi
小鼠 单克隆(TAU-5)
  • 免疫组化-P; 人类; 1:10,000; 表1
  • 免疫印迹; 人类; 1:10,000; 表1
赛默飞世尔tau抗体(Biosource, Tau-5)被用于免疫组化-石蜡切片在人类样品上浓度为1:10,000 (表1) 和 免疫印迹在人类样品上浓度为1:10,000 (表1). Am J Pathol (2006) ncbi
小鼠 单克隆(AT100)
  • 免疫印迹; 果蝇; 1:250; 图2
赛默飞世尔tau抗体(Pierce, AT100)被用于免疫印迹在果蝇样品上浓度为1:250 (图2). FEBS Lett (2006) ncbi
小鼠 单克隆(TAU-5)
  • 免疫印迹; 小鼠
赛默飞世尔tau抗体(Biosource, TAU-5)被用于免疫印迹在小鼠样品上. J Neural Transm (Vienna) (2006) ncbi
小鼠 单克隆(AT270)
  • 免疫印迹; 小鼠; 图7
赛默飞世尔tau抗体(Pierce, AT270)被用于免疫印迹在小鼠样品上 (图7). J Neurosci (2006) ncbi
兔 多克隆
  • 免疫印迹; African green monkey; 1:200; 图1
  • 免疫组化; 人类; 1:200; 图5
赛默飞世尔tau抗体(Biosource, noca)被用于免疫印迹在African green monkey样品上浓度为1:200 (图1) 和 免疫组化在人类样品上浓度为1:200 (图5). FASEB J (2006) ncbi
小鼠 单克隆(TAU-5)
  • 免疫印迹; 小鼠; 1:1000
赛默飞世尔tau抗体(BioSource, Tau-5)被用于免疫印迹在小鼠样品上浓度为1:1000. Proc Natl Acad Sci U S A (2005) ncbi
小鼠 单克隆(AT8)
  • 免疫印迹; 小鼠; 图2
赛默飞世尔tau抗体(Endogen, clone AT-8)被用于免疫印迹在小鼠样品上 (图2). J Neurochem (2004) ncbi
小鼠 单克隆(AT8)
  • 免疫印迹; 小鼠; 5 ug/ml; 图1
赛默飞世尔tau抗体(Endogen, AT-8)被用于免疫印迹在小鼠样品上浓度为5 ug/ml (图1). J Biol Chem (2003) ncbi
小鼠 单克隆(TAU-5)
  • 免疫印迹; 大鼠
赛默飞世尔tau抗体(BioSource, tau-5)被用于免疫印迹在大鼠样品上. Biochem Biophys Res Commun (2002) ncbi
小鼠 单克隆(Tau46)
  • 免疫组化-P; 人类; 1:100
赛默飞世尔tau抗体(Zymed, Tau46)被用于免疫组化-石蜡切片在人类样品上浓度为1:100. Acta Neuropathol (2002) ncbi
小鼠 单克隆(PHF13.6)
  • 免疫组化-P; 人类; 1:200
赛默飞世尔tau抗体(Biosource, PHF-1)被用于免疫组化-石蜡切片在人类样品上浓度为1:200. Acta Neuropathol (2002) ncbi
小鼠 单克隆(AT8)
  • 免疫组化-P; 人类; 1:200
赛默飞世尔tau抗体(Biosource, AT8)被用于免疫组化-石蜡切片在人类样品上浓度为1:200. Acta Neuropathol (2002) ncbi
兔 多克隆
  • 免疫组化-P; 人类; 1:50
赛默飞世尔tau抗体(Biosource, noca)被用于免疫组化-石蜡切片在人类样品上浓度为1:50. Science (2001) ncbi
小鼠 单克隆(AT8)
  • 免疫印迹; 大鼠; 1:500
赛默飞世尔tau抗体(Biosource, AT8)被用于免疫印迹在大鼠样品上浓度为1:500. J Neurochem (2000) ncbi
艾博抗(上海)贸易有限公司
兔 单克隆(E178)
  • 免疫组化-P; 猕猴; 1:500; 图4
艾博抗(上海)贸易有限公司tau抗体(Abcam, 32057)被用于免疫组化-石蜡切片在猕猴样品上浓度为1:500 (图4). J Neuroinflammation (2016) ncbi
小鼠 单克隆(TAU-5)
  • 免疫组化; 人类; 图3
艾博抗(上海)贸易有限公司tau抗体(Abcam, ab80579)被用于免疫组化在人类样品上 (图3). Aging Cell (2016) ncbi
小鼠 单克隆(TAU-5)
  • 细胞化学; 人类; 1:100; 图4
艾博抗(上海)贸易有限公司tau抗体(Abcam, ab80579)被用于免疫细胞化学在人类样品上浓度为1:100 (图4). Sci Rep (2016) ncbi
小鼠 单克隆(TAU-5)
  • 免疫印迹; 人类; 1:800; 图3
  • 免疫印迹; 小鼠; 1:800; 图3
艾博抗(上海)贸易有限公司tau抗体(Abcam, ab80579)被用于免疫印迹在人类样品上浓度为1:800 (图3) 和 在小鼠样品上浓度为1:800 (图3). Neuropharmacology (2016) ncbi
兔 单克隆(E178)
  • 免疫印迹; 人类; 1:5000; 图3
艾博抗(上海)贸易有限公司tau抗体(Abcam, E178)被用于免疫印迹在人类样品上浓度为1:5000 (图3). Acta Neuropathol (2015) ncbi
兔 单克隆(E178)
  • 免疫印迹; 人类; 图7
艾博抗(上海)贸易有限公司tau抗体(Abcam, ab 32057)被用于免疫印迹在人类样品上 (图7). Cell Death Dis (2015) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 1:500; 图9
艾博抗(上海)贸易有限公司tau抗体(Abcam, ab39524)被用于免疫印迹在小鼠样品上浓度为1:500 (图9). Age (Dordr) (2015) ncbi
兔 单克隆(E178)
  • 免疫组化-F; 大鼠; 1:1000
艾博抗(上海)贸易有限公司tau抗体(Abcam, ab32057)被用于免疫组化-冰冻切片在大鼠样品上浓度为1:1000. PLoS ONE (2014) ncbi
兔 单克隆(E178)
  • 免疫印迹; 小鼠; 1:200; 图2
艾博抗(上海)贸易有限公司tau抗体(Abcam, ab32057)被用于免疫印迹在小鼠样品上浓度为1:200 (图2). Neuroreport (2014) ncbi
小鼠 单克隆(TAU-5)
  • 免疫印迹; 小鼠; 1:800; 图1
艾博抗(上海)贸易有限公司tau抗体(Abcam, ab80579)被用于免疫印迹在小鼠样品上浓度为1:800 (图1). J Alzheimers Dis (2014) ncbi
小鼠 单克隆(TAU-5)
  • 免疫印迹; 小鼠; 1:2000
艾博抗(上海)贸易有限公司tau抗体(Abcam, ab80579)被用于免疫印迹在小鼠样品上浓度为1:2000. J Biol Chem (2013) ncbi
小鼠 单克隆(TAU-5)
  • 免疫印迹; 人类
  • 免疫沉淀; 人类
艾博抗(上海)贸易有限公司tau抗体(Abcam, Tau5)被用于免疫印迹在人类样品上 和 免疫沉淀在人类样品上. Mol Psychiatry (2013) ncbi
兔 多克隆
  • 免疫组化-P; 小鼠; 图6
艾博抗(上海)贸易有限公司tau抗体(Abcam, ab38505)被用于免疫组化-石蜡切片在小鼠样品上 (图6). PLoS ONE (2011) ncbi
圣克鲁斯生物技术
小鼠 单克隆(D-8)
  • 其他; 人类; 5000 ng/ml
圣克鲁斯生物技术tau抗体(Santa Cruz, SC-166060)被用于其他在人类样品上浓度为5000 ng/ml. J Alzheimers Dis (2016) ncbi
小鼠 单克隆(Tau-13)
  • 细胞化学; 人类; 1:1000; 图8
圣克鲁斯生物技术tau抗体(Santa Cruz Biotechnology, sc-21796)被用于免疫细胞化学在人类样品上浓度为1:1000 (图8). PLoS ONE (2015) ncbi
小鼠 单克隆(TAU-5)
  • 免疫印迹; 小鼠
  • 免疫组化; 小鼠
圣克鲁斯生物技术tau抗体(Santa Cruz, sc-58860)被用于免疫印迹在小鼠样品上 和 免疫组化在小鼠样品上. Mol Neurodegener (2015) ncbi
小鼠 单克隆(A-10)
  • 免疫印迹; 人类; 1:1000
圣克鲁斯生物技术tau抗体(Santa Cruz Biotechnology, sc-390476)被用于免疫印迹在人类样品上浓度为1:1000. Exp Gerontol (2015) ncbi
小鼠 单克隆(D-8)
  • 免疫印迹; 人类; 1:1000
圣克鲁斯生物技术tau抗体(Santa Cruz Biotechnology, sc-166060)被用于免疫印迹在人类样品上浓度为1:1000. Exp Gerontol (2015) ncbi
小鼠 单克隆(TAU-5)
  • 免疫组化; 小鼠; 1:100
  • 免疫印迹; 小鼠; 1:100
圣克鲁斯生物技术tau抗体(Santa Cruz Biotechnology, Tau-5)被用于免疫组化在小鼠样品上浓度为1:100 和 免疫印迹在小鼠样品上浓度为1:100. J Neurosci (2015) ncbi
小鼠 单克隆(PHF-6)
  • 免疫印迹; 人类; 1:200; 图5
圣克鲁斯生物技术tau抗体(Santa Cruz, sc-32276)被用于免疫印迹在人类样品上浓度为1:200 (图5). BMC Genomics (2015) ncbi
小鼠 单克隆(Tau-13)
  • 免疫印迹; 人类; 图3
圣克鲁斯生物技术tau抗体(Santa Cruz, sc-21796)被用于免疫印迹在人类样品上 (图3). Mol Biosyst (2014) ncbi
未注明
  • 免疫印迹; 人类
为了研究GSK3β的功能调控,采用了Santa Cruz Biotech.公司的Tau抗体进行蛋白印迹实验。Open Biochem J (2008) ncbi
未注明
  • 免疫印迹; 人类
为了阐明GSK 3β的K292残基的SUMO化是其功能性调节的一个新的机制,采用了Santa Cruz Biotech公司的Tau抗体,进行了蛋白质印迹实验.Mol Biol Cell (2008) ncbi
BioLegend
小鼠 单克隆(77G7)
  • 免疫印迹; 小鼠; 1:1000; 图5
BioLegendtau抗体(BioLegend, 77G7)被用于免疫印迹在小鼠样品上浓度为1:1000 (图5). Nat Commun (2016) ncbi
小鼠 单克隆(TAU-13)
  • 免疫印迹; 人类; 1:2000; 图3
BioLegendtau抗体(Covance, MMS-520R)被用于免疫印迹在人类样品上浓度为1:2000 (图3). Ann Neurol (2016) ncbi
武汉三鹰
未注明
  • 免疫印迹; 人类
为了说明YB-1、GST、ABCB5和ERK3能够成为乳腺癌细胞耐药性治疗的潜在靶点,使用了Proteintech Group公司的MAPT抗体(1:1500)来进行免疫印记实验。BMC Cancer (2010) ncbi
默克密理博中国
小鼠 单克隆(8E6/C11)
  • 免疫印迹; 小鼠; 1:1000; 图2
默克密理博中国tau抗体(Millipore, 05-803)被用于免疫印迹在小鼠样品上浓度为1:1000 (图2). Aging Cell (2016) ncbi
小鼠 单克隆
  • 免疫印迹; 小鼠; 1:500; 图1
默克密理博中国tau抗体(Millipore, 577801)被用于免疫印迹在小鼠样品上浓度为1:500 (图1). Aging Cell (2016) ncbi
小鼠 单克隆(1E1/A6)
  • 免疫印迹; 小鼠; 1:1000; 图2
默克密理博中国tau抗体(Millipore, 05-804)被用于免疫印迹在小鼠样品上浓度为1:1000 (图2). Aging Cell (2016) ncbi
小鼠 单克隆
  • 免疫印迹; 兔; 1:1000; 图3
默克密理博中国tau抗体(Calbiochem, 577801)被用于免疫印迹在兔样品上浓度为1:1000 (图3). Front Aging Neurosci (2016) ncbi
小鼠 单克隆
  • IHC-Free; 人类; 图2
  • 免疫组化 (基因敲除); 人类; 图2
  • 免疫印迹; 人类; 图1
默克密理博中国tau抗体(Calbiochem, 577801)被用于immunohistochemistry - free floating section在人类样品上 (图2), 免疫组化 (基因敲除)在人类样品上 (图2), 和 免疫印迹在人类样品上 (图1). Brain Pathol (2016) ncbi
小鼠 单克隆(Tau-5)
  • 免疫印迹; 小鼠; 1:500; 图6
默克密理博中国tau抗体(Millipore, MAB361)被用于免疫印迹在小鼠样品上浓度为1:500 (图6). Alzheimers Dement (2016) ncbi
小鼠 单克隆(8E6/C11)
  • 免疫组化-P; 人类; 图3
默克密理博中国tau抗体(Millipore, 05-803)被用于免疫组化-石蜡切片在人类样品上 (图3). Neurobiol Dis (2016) ncbi
小鼠 单克隆(1E1/A6)
  • 免疫组化-P; 人类; 图3
默克密理博中国tau抗体(Millipore, 05-804)被用于免疫组化-石蜡切片在人类样品上 (图3). Neurobiol Dis (2016) ncbi
小鼠 单克隆(PC1C6)
  • 免疫组化-P; 狗; 1:1000; 图4
默克密理博中国tau抗体(Millipore, IHCR1015-6)被用于免疫组化-石蜡切片在狗样品上浓度为1:1000 (图4). Brain Behav (2016) ncbi
小鼠 单克隆(1E1/A6)
  • 免疫印迹; 小鼠; 1:1000; 图12
默克密理博中国tau抗体(Millipore, 05-804)被用于免疫印迹在小鼠样品上浓度为1:1000 (图12). J Biol Chem (2016) ncbi
小鼠 单克隆(Tau-5)
  • 免疫印迹; 小鼠; 1:1000; 图2
默克密理博中国tau抗体(Millipore, MAB361)被用于免疫印迹在小鼠样品上浓度为1:1000 (图2). J Biol Chem (2016) ncbi
兔 单克隆(EP2456Y)
  • 免疫印迹; 人类; 1:2000; 图1
  • 免疫印迹; 小鼠; 1:2000; 图1
默克密理博中国tau抗体(Millipore, MAB10417)被用于免疫印迹在人类样品上浓度为1:2000 (图1) 和 在小鼠样品上浓度为1:2000 (图1). Dev Dyn (2016) ncbi
小鼠 单克隆(Tau-5)
  • 免疫印迹; 人类; 1:2000; 图1
  • 免疫印迹; 小鼠; 1:2000; 图1
默克密理博中国tau抗体(Millipore, MAB361)被用于免疫印迹在人类样品上浓度为1:2000 (图1) 和 在小鼠样品上浓度为1:2000 (图1). Dev Dyn (2016) ncbi
小鼠 单克隆(Tau 12)
  • 免疫印迹; 人类; 1:2000; 图1
默克密理博中国tau抗体(Millipore, MAB2241)被用于免疫印迹在人类样品上浓度为1:2000 (图1). Dev Dyn (2016) ncbi
小鼠 单克隆(8E6/C11)
  • 免疫印迹; 小鼠; 1:500; 图7
默克密理博中国tau抗体(Millipore, 8E6/C11)被用于免疫印迹在小鼠样品上浓度为1:500 (图7). Brain (2016) ncbi
小鼠 单克隆(PC1C6)
  • 免疫印迹; 小鼠; 1:1000; 表1
默克密理博中国tau抗体(Millipore, PC1C6)被用于免疫印迹在小鼠样品上浓度为1:1000 (表1). Neurobiol Dis (2016) ncbi
小鼠 单克隆(1E1/A6)
  • 免疫组化-P; 人类; 1:100; 图3
默克密理博中国tau抗体(Merck Millipore, 1E1/A6)被用于免疫组化-石蜡切片在人类样品上浓度为1:100 (图3). Neuropathol Appl Neurobiol (2015) ncbi
小鼠 单克隆(8E6/C11)
  • 免疫组化-P; 人类; 1:300; 图3
默克密理博中国tau抗体(Merck Millipore, 8E6/C11)被用于免疫组化-石蜡切片在人类样品上浓度为1:300 (图3). Neuropathol Appl Neurobiol (2015) ncbi
兔 多克隆
  • 酶联免疫吸附测定; 人类; 1:1000; 图2h
默克密理博中国tau抗体(EMD Millipore, ABN454)被用于酶联免疫吸附测定在人类样品上浓度为1:1000 (图2h). Nat Commun (2015) ncbi
小鼠 单克隆(Tau-5)
  • 免疫印迹; 小鼠; 图2
默克密理博中国tau抗体(Chemicon, MAB361)被用于免疫印迹在小鼠样品上 (图2). J Neurosci Res (2016) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图4
默克密理博中国tau抗体(Millipore, ABN454)被用于免疫印迹在小鼠样品上浓度为1:1000 (图4). J Neuropathol Exp Neurol (2015) ncbi
小鼠 单克隆
  • 免疫印迹; 大鼠; 1:1000; 图5e
默克密理博中国tau抗体(Millipore, 577801)被用于免疫印迹在大鼠样品上浓度为1:1000 (图5e). Proc Natl Acad Sci U S A (2015) ncbi
小鼠 单克隆(Tau 7)
  • 免疫印迹; 大鼠; 1:1000; 图5e
默克密理博中国tau抗体(Merck Millipore, MAB2239)被用于免疫印迹在大鼠样品上浓度为1:1000 (图5e). Proc Natl Acad Sci U S A (2015) ncbi
小鼠 单克隆(1E1/A6)
  • 免疫组化; 人类; 1:250; 图s4
默克密理博中国tau抗体(Millipore, 05-804)被用于免疫组化在人类样品上浓度为1:250 (图s4). Acta Neuropathol Commun (2015) ncbi
小鼠 单克隆(8E6/C11)
  • 免疫组化; 人类; 1:250; 图s4
默克密理博中国tau抗体(Millipore, 05-803)被用于免疫组化在人类样品上浓度为1:250 (图s4). Acta Neuropathol Commun (2015) ncbi
小鼠 单克隆(Tau-5)
  • 细胞化学; 大鼠; 1:500
默克密理博中国tau抗体(Calbiochem, Tau-5)被用于免疫细胞化学在大鼠样品上浓度为1:500. Biochim Biophys Acta (2015) ncbi
小鼠 单克隆(Tau-2)
  • 免疫印迹; 人类
默克密理博中国tau抗体(Chemicon/Millipore, MAB375)被用于免疫印迹在人类样品上. PLoS Pathog (2015) ncbi
小鼠 单克隆(Tau-5)
  • 免疫组化-F; 小鼠; 1:1000
  • 免疫沉淀; 小鼠; 1:1000
默克密理博中国tau抗体(Millipore, MAB361)被用于免疫组化-冰冻切片在小鼠样品上浓度为1:1000 和 免疫沉淀在小鼠样品上浓度为1:1000. Cereb Cortex (2015) ncbi
兔 多克隆
  • 免疫印迹; 人类
默克密理博中国tau抗体(Chemicon, ab9664)被用于免疫印迹在人类样品上. Cell Mol Life Sci (2015) ncbi
小鼠 单克隆(Tau-5)
  • 免疫印迹; 小鼠; 1:1000
默克密理博中国tau抗体(Chemicon International, MAB361)被用于免疫印迹在小鼠样品上浓度为1:1000. Neuropharmacology (2015) ncbi
小鼠 单克隆(tau-C3)
  • 免疫印迹; 小鼠
默克密理博中国tau抗体(Millipore, MAB5430)被用于免疫印迹在小鼠样品上. Mol Neurodegener (2014) ncbi
小鼠 单克隆(PC1C6)
  • 细胞化学; 大鼠; 1:1000; 图s4
默克密理博中国tau抗体(Chemicon, PC1C6)被用于免疫细胞化学在大鼠样品上浓度为1:1000 (图s4). PLoS ONE (2014) ncbi
小鼠 单克隆(Tau 7)
  • 免疫印迹; 人类; 1:500
默克密理博中国tau抗体(Merck Millipore, MAB2239)被用于免疫印迹在人类样品上浓度为1:500. Acta Neuropathol Commun (2014) ncbi
兔 单克隆(EP2456Y)
  • 免疫组化; 小鼠; 1:1000
默克密理博中国tau抗体(Millipore, EP2456Y)被用于免疫组化在小鼠样品上浓度为1:1000. Ann Neurol (2014) ncbi
小鼠 单克隆(5E2)
  • 免疫印迹; 人类; 1:1,000
默克密理博中国tau抗体(Millipore, 05-348)被用于免疫印迹在人类样品上浓度为1:1,000. Nat Med (2014) ncbi
小鼠 单克隆(1E1/A6)
  • 免疫组化-P; 小鼠; 1:80
  • 免疫印迹; 人类; 1:1,000
  • 免疫印迹; 小鼠; 1:1,000
默克密理博中国tau抗体(Millipore, 05-804)被用于免疫组化-石蜡切片在小鼠样品上浓度为1:80 和 免疫印迹在人类样品上浓度为1:1,000 和 在小鼠样品上浓度为1:1,000. Nat Med (2014) ncbi
小鼠 单克隆(8E6/C11)
  • 免疫组化-P; 小鼠; 1:4,000
  • 免疫印迹; 人类; 1:1,000
  • 免疫印迹; 小鼠; 1:1,000
默克密理博中国tau抗体(Millipore, 05-803)被用于免疫组化-石蜡切片在小鼠样品上浓度为1:4,000 和 免疫印迹在人类样品上浓度为1:1,000 和 在小鼠样品上浓度为1:1,000. Nat Med (2014) ncbi
兔 多克隆
  • 免疫印迹; 人类; 1:1,000
默克密理博中国tau抗体(Calbiochem, AB9664)被用于免疫印迹在人类样品上浓度为1:1,000. Nat Med (2014) ncbi
小鼠 单克隆(Tau-5)
  • 免疫印迹; 小鼠; 图6
默克密理博中国tau抗体(Millipore, MAB361)被用于免疫印迹在小鼠样品上 (图6). Proc Natl Acad Sci U S A (2014) ncbi
小鼠 单克隆(8E6/C11)
  • 免疫印迹; 小鼠; 1:1000
默克密理博中国tau抗体(Millipore, 05-803)被用于免疫印迹在小鼠样品上浓度为1:1000. PLoS ONE (2013) ncbi
小鼠 单克隆(1E1/A6)
  • 免疫印迹; 小鼠; 1:1000
默克密理博中国tau抗体(Millipore, 05-804)被用于免疫印迹在小鼠样品上浓度为1:1000. PLoS ONE (2013) ncbi
小鼠 单克隆(46.1)
  • 免疫组化-P; 人类; 1:500
默克密理博中国tau抗体(Upstate, 05-838)被用于免疫组化-石蜡切片在人类样品上浓度为1:500. Neuroscience (2013) ncbi
小鼠 单克隆(8E6/C11)
  • IHC-Free; 大鼠; 1:100
  • 免疫印迹; 大鼠; 1:100
默克密理博中国tau抗体(Millipore, 05-803)被用于immunohistochemistry - free floating section在大鼠样品上浓度为1:100 和 免疫印迹在大鼠样品上浓度为1:100. J Comp Neurol (2010) ncbi
未注明
  • 免疫印迹; 人类
为了阐明GSK 3β的K292残基的SUMO化是其功能性调节的一个新的机制,采用了Calbiochem公司的磷酸化的Tau抗体,进行了蛋白质印迹实验.Open Biochem J (2008) ncbi
未注明
  • 免疫印迹; 人类
为了研究GSK3β的功能调控,采用了Calbiochem公司的Tau 422丝氨酸磷酸化抗体进行蛋白印迹实验。Open Biochem J (2008) ncbi
小鼠 单克隆(1E1/A6)
  • 免疫组化-P; 人类; 1:80
  • 免疫印迹; 小鼠; 1:1000
默克密理博中国tau抗体(Upstate Cell Signaling, 05-804)被用于免疫组化-石蜡切片在人类样品上浓度为1:80 和 免疫印迹在小鼠样品上浓度为1:1000. J Comp Neurol (2008) ncbi
小鼠 单克隆(8E6/C11)
  • 免疫组化-P; 人类; 1:800
  • 免疫印迹; 小鼠; 1:3000
默克密理博中国tau抗体(Upstate Cell Signaling, 05-803)被用于免疫组化-石蜡切片在人类样品上浓度为1:800 和 免疫印迹在小鼠样品上浓度为1:3000. J Comp Neurol (2008) ncbi
未注明
  • 免疫组化; 人类
运用Upstate公司的抗4R tau (RD4, 1:200)抗体进行免疫组织化学实验以研究白质tau样蛋白病在额颞(骨)小叶退化中的作用。J Neuropathol Exp Neurol (2008) ncbi
丹科医疗器械技术服务(上海)有限公司
兔 多克隆
  • 免疫印迹; 人类; 1:5000; 图5
丹科医疗器械技术服务(上海)有限公司tau抗体(Dako Cooperation, A0024)被用于免疫印迹在人类样品上浓度为1:5000 (图5). Nat Commun (2016) ncbi
兔 多克隆
  • 免疫组化-P; 人类; 1:3200; 图5
丹科医疗器械技术服务(上海)有限公司tau抗体(Dako, A0024)被用于免疫组化-石蜡切片在人类样品上浓度为1:3200 (图5). J Neuropathol Exp Neurol (2016) ncbi
兔 多克隆
  • 免疫印迹; 人类; 1:10,000; 图4
  • 免疫印迹; 小鼠; 1:10,000; 图4
丹科医疗器械技术服务(上海)有限公司tau抗体(DAKO, A0024)被用于免疫印迹在人类样品上浓度为1:10,000 (图4) 和 在小鼠样品上浓度为1:10,000 (图4). Nat Neurosci (2016) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 图1
  • 免疫印迹; 大鼠; 图1
丹科医疗器械技术服务(上海)有限公司tau抗体(Dako, A0024)被用于免疫印迹在小鼠样品上 (图1) 和 在大鼠样品上 (图1). Sci Rep (2016) ncbi
兔 多克隆
  • 免疫印迹; 人类; 1:1000; 图5
丹科医疗器械技术服务(上海)有限公司tau抗体(DAKO, A0024)被用于免疫印迹在人类样品上浓度为1:1000 (图5). PLoS ONE (2016) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 图4
丹科医疗器械技术服务(上海)有限公司tau抗体(Dako, A0024)被用于免疫印迹在小鼠样品上 (图4). J Neurochem (2016) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 图8
丹科医疗器械技术服务(上海)有限公司tau抗体(Dako, A0024)被用于免疫印迹在小鼠样品上 (图8). Am J Pathol (2016) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 1:10,000; 图1
丹科医疗器械技术服务(上海)有限公司tau抗体(Dako, A0024)被用于免疫印迹在小鼠样品上浓度为1:10,000 (图1). Nat Commun (2016) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图2
丹科医疗器械技术服务(上海)有限公司tau抗体(Dako, A0024)被用于免疫印迹在人类样品上 (图2). J Neurosci (2016) ncbi
兔 多克隆
  • 细胞化学; 人类; 1:1000; 图1a
  • 细胞化学; 小鼠; 1:1000; 图1a
丹科医疗器械技术服务(上海)有限公司tau抗体(DAKO, A0024)被用于免疫细胞化学在人类样品上浓度为1:1000 (图1a) 和 在小鼠样品上浓度为1:1000 (图1a). Nat Commun (2015) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 图2a
丹科医疗器械技术服务(上海)有限公司tau抗体(Dako, A0024)被用于免疫印迹在小鼠样品上 (图2a). Mol Ther Nucleic Acids (2015) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图3
丹科医疗器械技术服务(上海)有限公司tau抗体(Dako Cytomation, A0024)被用于免疫印迹在人类样品上 (图3). Hum Mol Genet (2015) ncbi
兔 多克隆
  • 免疫印迹; 大鼠; 图3
丹科医疗器械技术服务(上海)有限公司tau抗体(Dako, A0024)被用于免疫印迹在大鼠样品上 (图3). Nutr Neurosci (2016) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 1:20000
丹科医疗器械技术服务(上海)有限公司tau抗体(Dako, A0024)被用于免疫印迹在小鼠样品上浓度为1:20000. Brain (2015) ncbi
兔 多克隆
  • IHC-Free; 人类; 1:200
丹科医疗器械技术服务(上海)有限公司tau抗体(Dako-Sigma, A0024)被用于immunohistochemistry - free floating section在人类样品上浓度为1:200. Front Neuroanat (2015) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 1:5000
丹科医疗器械技术服务(上海)有限公司tau抗体(Dako, A0024)被用于免疫印迹在小鼠样品上浓度为1:5000. Ann Neurol (2015) ncbi
兔 多克隆
  • 细胞化学; 小鼠; 1:1000; 图4
丹科医疗器械技术服务(上海)有限公司tau抗体(Dako, A0024)被用于免疫细胞化学在小鼠样品上浓度为1:1000 (图4). Sci Rep (2015) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图1
丹科医疗器械技术服务(上海)有限公司tau抗体(Dako, A0024)被用于免疫印迹在人类样品上 (图1). Cell Mol Life Sci (2015) ncbi
兔 多克隆
  • 免疫印迹; 人类
丹科医疗器械技术服务(上海)有限公司tau抗体(Dako, A0024)被用于免疫印迹在人类样品上. PLoS ONE (2014) ncbi
兔 多克隆
  • 免疫印迹; 人类
丹科医疗器械技术服务(上海)有限公司tau抗体(DAKO, A0024)被用于免疫印迹在人类样品上. Neuroscience (2014) ncbi
兔 多克隆
  • 免疫组化; 人类
丹科医疗器械技术服务(上海)有限公司tau抗体(Dako Cytomation, A 0024)被用于免疫组化在人类样品上. Int J Oncol (2014) ncbi
兔 多克隆
  • 免疫组化; 人类; 1:1,000
丹科医疗器械技术服务(上海)有限公司tau抗体(Dako, A0024)被用于免疫组化在人类样品上浓度为1:1,000. Neurobiol Aging (2014) ncbi
兔 多克隆
  • 免疫组化; 人类
丹科医疗器械技术服务(上海)有限公司tau抗体(Dako Cytomation, A0024)被用于免疫组化在人类样品上. Acta Neurobiol Exp (Wars) (2013) ncbi
兔 多克隆
  • 细胞化学; 大鼠; 1:20000
丹科医疗器械技术服务(上海)有限公司tau抗体(Dako, A0024)被用于免疫细胞化学在大鼠样品上浓度为1:20000. J Comp Neurol (2006) ncbi
西格玛奥德里奇
兔 多克隆
  • 细胞化学; 小鼠; 图7
西格玛奥德里奇tau抗体(Sigma, T-6402)被用于免疫细胞化学在小鼠样品上 (图7). Acta Neuropathol (2016) ncbi
兔 多克隆
  • 免疫印迹; African green monkey; 图3d
西格玛奥德里奇tau抗体(Sigma, T1700-1VL)被用于免疫印迹在African green monkey样品上 (图3d). J Biol Chem (2015) ncbi
兔 多克隆
  • 免疫组化-F; 小鼠; 图4
西格玛奥德里奇tau抗体(Sigma, SAB4501821)被用于免疫组化-冰冻切片在小鼠样品上 (图4). J Neurosci Res (2016) ncbi
小鼠 单克隆(TAU-2)
  • 免疫印迹; 小鼠; 1:1000; 图3
西格玛奥德里奇tau抗体(Sigma-Aldrich, T5530)被用于免疫印迹在小鼠样品上浓度为1:1000 (图3). Mol Neurodegener (2015) ncbi
兔 多克隆
  • 免疫印迹; 人类
西格玛奥德里奇tau抗体(Sigma, T6819)被用于免疫印迹在人类样品上. Cell Mol Neurobiol (2015) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图6
西格玛奥德里奇tau抗体(Sigma, T6694)被用于免疫印迹在人类样品上 (图6). Oncotarget (2015) ncbi
兔 多克隆
  • 细胞化学; 人类; 1:100
西格玛奥德里奇tau抗体(Sigma-Aldrich, T6402)被用于免疫细胞化学在人类样品上浓度为1:100. Methods Mol Biol (2016) ncbi
小鼠 单克隆(Tau46)
  • 免疫印迹; 小鼠
西格玛奥德里奇tau抗体(Sigma, T9450)被用于免疫印迹在小鼠样品上. J Neurosci (2014) ncbi
兔 多克隆
  • 细胞化学; 小鼠; 1:1000
西格玛奥德里奇tau抗体(Sigma, T-6402)被用于免疫细胞化学在小鼠样品上浓度为1:1000. Acta Biomater (2014) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图1
西格玛奥德里奇tau抗体(SigmaAldrich, T7319)被用于免疫印迹在小鼠样品上浓度为1:1000 (图1). J Alzheimers Dis (2014) ncbi
未注明
  • 免疫印迹; 人类
为了研究stathmin1在调控引起异常行为的神经环路中的作用,采用了Sigma公司的抗Tau 抗体产品,进行了免疫印迹实验。PLoS ONE (2010) ncbi
赛信通(上海)生物试剂有限公司
小鼠 单克隆(PHF13)
  • 免疫印迹; 人类; 图3
赛信通(上海)生物试剂有限公司tau抗体(Cell Signaling, 9632)被用于免疫印迹在人类样品上 (图3). J Neurosci (2016) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图3
赛信通(上海)生物试剂有限公司tau抗体(Cell Signaling, 11834)被用于免疫印迹在人类样品上 (图3). J Neurosci (2016) ncbi
小鼠 单克隆(PHF13)
  • 免疫印迹; 小鼠; 图1
赛信通(上海)生物试剂有限公司tau抗体(Cell signaling, 9632)被用于免疫印迹在小鼠样品上 (图1). Aging Cell (2015) ncbi
小鼠 单克隆(Tau46)
  • 免疫印迹; 大鼠; 1:1000
赛信通(上海)生物试剂有限公司tau抗体(Cell Signaling Technology, 4019S)被用于免疫印迹在大鼠样品上浓度为1:1000. Mol Neurobiol (2016) ncbi
小鼠 单克隆(PHF13)
  • 免疫印迹; 小鼠; 1:200
赛信通(上海)生物试剂有限公司tau抗体(Cell Signaling, 9632)被用于免疫印迹在小鼠样品上浓度为1:200. Neurobiol Aging (2015) ncbi
Developmental Studies Hybridoma Bank
小鼠 单克隆(5A6)
  • 免疫组化; degu; 1:100; 图5
Developmental Studies Hybridoma Banktau抗体(DSHB, 5A6)被用于免疫组化在degu样品上浓度为1:100 (图5). PLoS ONE (2015) ncbi
小鼠 单克隆(5A6)
  • 免疫印迹; 人类; 1:150; 图3e
Developmental Studies Hybridoma Banktau抗体(DSHB, 5a6)被用于免疫印迹在人类样品上浓度为1:150 (图3e). Hum Mol Genet (2015) ncbi
Innogenetics
未注明
  • 免疫组化; 人类
运用Innogenetics公司的抗AT100抗体(pT212/pS214/pT217)进行免疫组织化学实验以研究白质tau样蛋白病在额颞(骨)小叶退化中的作用。J Neuropathol Exp Neurol (2008) ncbi
Autogenbioclear
未注明
  • 免疫印迹; 人类
为了研究E3连接酶lister在神经退行性病变中的功能,使用了Autogenbioclear公司的小鼠抗人PHF-tau抗体来进行免疫印迹分析。Proc Natl Acad Sci U S A (2009) ncbi
其他
未注明
  • 免疫组化; 人类
运用Elan Pharmaceuticals公司的抗12E8 抗体(1:500, pS262/S356)进行免疫组织化学实验以研究白质tau样蛋白病在额颞(骨)小叶退化中的作用。J Neuropathol Exp Neurol (2008) ncbi
文章列表
  1. Zeyni Mansuroglu et al. (2016). "Loss of Tau protein affects the structure, transcription and repair of neuronal pericentromeric heterochromatin".PMID 27605042
  2. Augusto F Schmidt et al. (2016). "Intra-amniotic LPS causes acute neuroinflammation in preterm rhesus macaques".PMID 27596440
  3. Johannes Steffen et al. (2016). "Revisiting rodent models: Octodon degus as Alzheimer's disease model?".PMID 27566602
  4. Kyota Fujita et al. (2016). "HMGB1, a pathogenic molecule that induces neurite degeneration via TLR4-MARCKS, is a potential therapeutic target for Alzheimer's disease".PMID 27557632
  5. Kelly M McAteer et al. (2016). "Short and Long Term Behavioral and Pathological Changes in a Novel Rodent Model of Repetitive Mild Traumatic Brain Injury".PMID 27505027
  6. Hyeongki Kim et al. (2016). "A chemical with proven clinical safety rescues Down-syndrome-related phenotypes in through DYRK1A inhibition".PMID 27483355
  7. Srinivas Ayyadevara et al. (2016). "Proteins that mediate protein aggregation and cytotoxicity distinguish Alzheimer's hippocampus from normal controls".PMID 27448508
  8. Yu Che Cheng et al. (2016). "Knocking down of heat-shock protein 27 directs differentiation of functional glutamatergic neurons from placenta-derived multipotent cells".PMID 27444754
  9. Ramón Velázquez et al. (2016). "Pim1 inhibition as a novel therapeutic strategy for Alzheimer's disease".PMID 27412291
  10. Giusi Manassero et al. (2016). "Beta-amyloid 1-42 monomers, but not oligomers, produce PHF-like conformation of Tau protein".PMID 27406053
  11. Xuesong Chen et al. (2016). "Role of Endolysosomes in Skeletal Muscle Pathology Observed in a Cholesterol-Fed Rabbit Model of Alzheimer's Disease".PMID 27375475
  12. Tong Li et al. (2016). "The neuritic plaque facilitates pathological conversion of tau in an Alzheimer's disease mouse model".PMID 27373369
  13. Shuko Takeda et al. (2016). "Seed-competent HMW tau species accumulates in the cerebrospinal fluid of Alzheimer's disease mouse model and human patients".PMID 27351289
  14. Stephanie L Adams et al. (2016). "Subcellular Changes in Bridging Integrator 1 Protein Expression in the Cerebral Cortex During the Progression of Alzheimer Disease Pathology".PMID 27346750
  15. Marta Fernández-Nogales et al. (2016). "Tau-positive nuclear indentations in P301S tauopathy mice".PMID 27338164
  16. Arne Herring et al. (2016). "Kallikrein-8 inhibition attenuates Alzheimer's pathology in mice".PMID 27327541
  17. Jessica W Wu et al. (2016). "Neuronal activity enhances tau propagation and tau pathology in vivo".PMID 27322420
  18. Benjamin Kolisnyk et al. (2016). "Cholinergic Surveillance over Hippocampal RNA Metabolism and Alzheimer's-Like Pathology".PMID 27312991
  19. Arne Herring et al. (2016). "Late running is not too late against Alzheimer's pathology".PMID 27312772
  20. Yaling Yin et al. (2016). "Tau accumulation induces synaptic impairment and memory deficit by calcineurin-mediated inactivation of nuclear CaMKIV/CREB signaling".PMID 27298345
  21. Sharon Baughman Shively et al. (2016). "Characterisation of interface astroglial scarring in the human brain after blast exposure: a post-mortem case series".PMID 27291520
  22. Yaling Yin et al. (2016). "Accumulation of human full-length tau induces degradation of nicotinic acetylcholine receptor α4 via activating calpain-2".PMID 27277673
  23. Kunie Ando et al. (2016). "Level of PICALM, a key component of clathrin-mediated endocytosis, is correlated with levels of phosphotau and autophagy-related proteins and is associated with tau inclusions in AD, PSP and Pick disease".PMID 27260836
  24. Hongjie Wang et al. (2016). "TFEB Overexpression in the P301S Model of Tauopathy Mitigates Increased PHF1 Levels and Lipofuscin Puncta and Rescues Memory Deficits".PMID 27257626
  25. Ingo Spitzbarth et al. (2016). "Immunohistochemical and transcriptome analyses indicate complex breakdown of axonal transport mechanisms in canine distemper leukoencephalitis".PMID 27247850
  26. R Foxton et al. (2016). "Distal retinal ganglion cell axon transport loss and activation of p38 MAPK stress pathway following VEGF-A antagonism".PMID 27148685
  27. P Dourlen et al. (2016). "Functional screening of Alzheimer risk loci identifies PTK2B as an in vivo modulator and early marker of Tau pathology".PMID 27113998
  28. Sunhyo Kim et al. (2016). "Fisetin stimulates autophagic degradation of phosphorylated tau via the activation of TFEB and Nrf2 transcription factors".PMID 27112200
  29. Isao Kii et al. (2016). "Selective inhibition of the kinase DYRK1A by targeting its folding process".PMID 27102360
  30. Jorge Rub n Cabrera et al. (2016). "MAP2 splicing is altered in Huntington's disease".PMID 27098187
  31. David S Bouvier et al. (2016). "High Resolution Dissection of Reactive Glial Nets in Alzheimer's Disease".PMID 27090093
  32. Michael J Yetman et al. (2016). "Humanized Tau Mice with Regionalized Amyloid Exhibit Behavioral Deficits but No Pathological Interaction".PMID 27070146
  33. Xu Yan et al. (2016). "FRMD4A-cytohesin signaling modulates the cellular release of tau".PMID 27044754
  34. Ito Kawakami et al. (2016). "Chorea as a clinical feature of the basophilic inclusion body disease subtype of fused-in-sarcoma-associated frontotemporal lobar degeneration".PMID 27044537
  35. Si n Baker et al. (2016). "A local insult of okadaic acid in wild-type mice induces tau phosphorylation and protein aggregation in anatomically distinct brain regions".PMID 27037086
  36. Vidya S Krishnan et al. (2016). "A Neurogenic Perspective of Sarcopenia: Time Course Study of Sciatic Nerves From Aging Mice".PMID 27030741
  37. Juan Carlos Polanco et al. (2016). "Extracellular Vesicles Isolated from the Brains of rTg4510 Mice Seed Tau Protein Aggregation in a Threshold-dependent Manner".PMID 27030011
  38. Kanae Ando et al. (2016). "Stabilization of Microtubule-Unbound Tau via Tau Phosphorylation at Ser262/356 by Par-1/MARK Contributes to Augmentation of AD-Related Phosphorylation and Aβ42-Induced Tau Toxicity".PMID 27023670
  39. Preeti Yadav et al. (2016). "Neurofilament depletion improves microtubule dynamics via modulation of Stat3/stathmin signaling".PMID 27021905
  40. Diana Pisa et al. (2016). "Corpora Amylacea of Brain Tissue from Neurodegenerative Diseases Are Stained with Specific Antifungal Antibodies".PMID 27013948
  41. Soram Idiyasan Chanu et al. (2016). "Targeted Downregulation of dMyc Suppresses Pathogenesis of Human Neuronal Tauopathies in Drosophila by Limiting Heterochromatin Relaxation and Tau Hyperphosphorylation".PMID 27000837
  42. Mohammad A Yousuf et al. (2016). "Involvement of aberrant Cdk5/p25 activity in experimental traumatic brain injury".PMID 26998748
  43. Daniel Ortuno et al. (2016). "Does inactivation of USP14 enhance degradation of proteasomal substrates that are associated with neurodegenerative diseases?".PMID 26998235
  44. Mario Merlini et al. (2016). "Tau pathology-dependent remodelling of cerebral arteries precedes Alzheimer's disease-related microvascular cerebral amyloid angiopathy".PMID 26988843
  45. Won Hoon Choi et al. (2016). "Open-gate mutants of the mammalian proteasome show enhanced ubiquitin-conjugate degradation".PMID 26957043
  46. Marianna Karina Gorsky et al. (2016). "Acetylation mimic of lysine 280 exacerbates human Tau neurotoxicity in vivo".PMID 26940749
  47. Vishruti Makani et al. (2016). "BBB-Permeable, Neuroprotective, and Neurotrophic Polysaccharide, Midi-GAGR".PMID 26939023
  48. Antonio Piras et al. (2016). "Autophagic and lysosomal defects in human tauopathies: analysis of post-mortem brain from patients with familial Alzheimer disease, corticobasal degeneration and progressive supranuclear palsy".PMID 26936765
  49. Sumihiro Maeda et al. (2016). "Expression of A152T human tau causes age-dependent neuronal dysfunction and loss in transgenic mice".PMID 26931567
  50. Katherine Gurdziel et al. (2016). "Transcriptome of the inner circular smooth muscle of the developing mouse intestine: Evidence for regulation of visceral smooth muscle genes by the hedgehog target gene, cJun".PMID 26930384
  51. Sylvia E Perez et al. (2016). "Early Alzheimer's disease-type pathology in the frontal cortex of wild mountain gorillas (Gorilla beringei beringei)".PMID 26923416
  52. Florence Guillot et al. (2016). "Brain-Specific Basal and Novelty-Induced Alternations in PI3K-Akt and MAPK/ERK Signaling in a Middle-Aged AβPP/PS1 Mouse Model of Alzheimer's Disease".PMID 26923018
  53. Enerelt Urnukhsaikhan et al. (2016). "Pulsed electromagnetic fields promote survival and neuronal differentiation of human BM-MSCs".PMID 26898125
  54. Robert A Stern et al. (2016). "Preliminary Study of Plasma Exosomal Tau as a Potential Biomarker for Chronic Traumatic Encephalopathy".PMID 26890775
  55. Sara Garcia-Ratés et al. (2016). "(I) Pharmacological profiling of a novel modulator of the α7 nicotinic receptor: Blockade of a toxic acetylcholinesterase-derived peptide increased in Alzheimer brains".PMID 26867503
  56. Charisse N Winston et al. (2016). "Dendritic Spine Loss and Chronic White Matter Inflammation in a Mouse Model of Highly Repetitive Head Trauma".PMID 26857506
  57. Misol Ahn et al. (2016). "Brain Aggregates: An Effective In Vitro Cell Culture System Modeling Neurodegenerative Diseases".PMID 26851378
  58. Aarti Sharma et al. (2016). "ALS-associated mutant FUS induces selective motor neuron degeneration through toxic gain of function".PMID 26842965
  59. Ann Van der Jeugd et al. (2016). "Impulsivity, decreased social exploration, and executive dysfunction in a mouse model of frontotemporal dementia".PMID 26827932
  60. Erik G Gentry et al. (2016). "Rho Kinase Inhibition as a Therapeutic for Progressive Supranuclear Palsy and Corticobasal Degeneration".PMID 26818518
  61. Teng Jiang et al. (2016). "TREM2 modifies microglial phenotype and provides neuroprotection in P301S tau transgenic mice".PMID 26802771
  62. Yajing Peng et al. (2016). "Improved proteostasis in the secretory pathway rescues Alzheimer's disease in the mouse".PMID 26787453
  63. Diego Piedrahita et al. (2015). "β-Secretase 1's Targeting Reduces Hyperphosphorilated Tau, Implying Autophagy Actors in 3xTg-AD Mice".PMID 26778963
  64. Noura B El Khoury et al. (2016). "Hypothermia mediates age-dependent increase of tau phosphorylation in db/db mice".PMID 26777665
  65. Hong Shuai Liu et al. (2016). "Astragaloside IV inhibits microglia activation via glucocorticoid receptor mediated signaling pathway".PMID 26750705
  66. Mar a Salud García-Ayllón et al. (2016). "HNK-1 Carrier Glycoproteins Are Decreased in the Alzheimer's Disease Brain".PMID 26738850
  67. Andrea F N Rosenberger et al. (2016). "Increased occurrence of protein kinase CK2 in astrocytes in Alzheimer's disease pathology".PMID 26732432
  68. T L Platt et al. (2016). "Obesity, diabetes, and leptin resistance promote tau pathology in a mouse model of disease".PMID 26701291
  69. Natura Myeku et al. (2016). "Tau-driven 26S proteasome impairment and cognitive dysfunction can be prevented early in disease by activating cAMP-PKA signaling".PMID 26692334
  70. Sumangali Kailainathan et al. (2016). "Activation of a synapse weakening pathway by human Val66 but not Met66 pro-brain-derived neurotrophic factor (proBDNF)".PMID 26687096
  71. Shun Nagamine et al. (2015). "Hypersialylation is a common feature of neurofibrillary tangles and granulovacuolar degenerations in Alzheimer's disease and tauopathy brains".PMID 26685795
  72. Andreas Müller-Schiffmann et al. (2016). "Amyloid-β dimers in the absence of plaque pathology impair learning and synaptic plasticity".PMID 26657517
  73. James K Chambers et al. (2015). "The domestic cat as a natural animal model of Alzheimer's disease".PMID 26651821
  74. Andrew J Schwab et al. (2015). "Neurite Aggregation and Calcium Dysfunction in iPSC-Derived Sensory Neurons with Parkinson's Disease-Related LRRK2 G2019S Mutation".PMID 26651604
  75. Kiwamu Watanabe et al. (2015). "The participation of insulin-like growth factor-binding protein 3 released by astrocytes in the pathology of Alzheimer's disease".PMID 26637371
  76. Stefka Gyoneva et al. (2015). "Ccr2 deletion dissociates cavity size and tau pathology after mild traumatic brain injury".PMID 26634348
  77. Lenka Hromadkova et al. (2015). "Identification and characterization of natural antibodies against tau protein in an intravenous immunoglobulin product".PMID 26616881
  78. Roger Pamphlett et al. (2016). "Locus ceruleus neurons in people with autism contain no histochemically-detectable mercury".PMID 26613607
  79. Montasir Elahi et al. (2016). "Short-term treadmill exercise increased tau insolubility and neuroinflammation in tauopathy model mice".PMID 26592481
  80. Vikram Puvenna et al. (2016). "Is phosphorylated tau unique to chronic traumatic encephalopathy? Phosphorylated tau in epileptic brain and chronic traumatic encephalopathy".PMID 26556772
  81. Nicola J Grant et al. (2015). "Phosphorylation of a splice variant of collapsin response mediator protein 2 in the nucleus of tumour cells links cyclin dependent kinase-5 to oncogenesis".PMID 26555036
  82. Angélica Maria Sabogal-Guáqueta et al. (2016). "Linalool reverses neuropathological and behavioral impairments in old triple transgenic Alzheimer's mice".PMID 26549854
  83. Sayuri Taniguchi-Watanabe et al. (2016). "Biochemical classification of tauopathies by immunoblot, protein sequence and mass spectrometric analyses of sarkosyl-insoluble and trypsin-resistant tau".PMID 26538150
  84. Marta Winiecka-Klimek et al. (2015). "SOX2 and SOX2-MYC Reprogramming Process of Fibroblasts to the Neural Stem Cells Compromised by Senescence".PMID 26535892
  85. Yifan Wang et al. (2015). "Rapid alteration of protein phosphorylation during postmortem: implication in the study of protein phosphorylation".PMID 26511732
  86. Kaoru Yamada et al. (2015). "Analysis of in vivo turnover of tau in a mouse model of tauopathy".PMID 26502977
  87. Tomokazu Nishikawa et al. (2015). "The identification of raft-derived tau-associated vesicles that are incorporated into immature tangles and paired helical filaments".PMID 26501932
  88. Sosuke Yagishita et al. (2015). "Glycogen Synthase Kinase 3β-mediated Phosphorylation in the Most C-terminal Region of Protein Interacting with C Kinase 1 (PICK1) Regulates the Binding of PICK1 to Glutamate Receptor Subunit GluA2".PMID 26472923
  89. Diana Pisa et al. (2015). "Different Brain Regions are Infected with Fungi in Alzheimer's Disease".PMID 26468932
  90. Antonella Caccamo et al. (2015). "Reducing Ribosomal Protein S6 Kinase 1 Expression Improves Spatial Memory and Synaptic Plasticity in a Mouse Model of Alzheimer's Disease".PMID 26468204
  91. Shuko Takeda et al. (2015). "Neuronal uptake and propagation of a rare phosphorylated high-molecular-weight tau derived from Alzheimer's disease brain".PMID 26458742
  92. Helois Radford et al. (2015). "PERK inhibition prevents tau-mediated neurodegeneration in a mouse model of frontotemporal dementia".PMID 26450683
  93. Sepideh Parsi et al. (2015). "Preclinical Evaluation of miR-15/107 Family Members as Multifactorial Drug Targets for Alzheimer's Disease".PMID 26440600
  94. Jens Wagner et al. (2015). "Reducing tau aggregates with anle138b delays disease progression in a mouse model of tauopathies".PMID 26439832
  95. Hirohide Asai et al. (2015). "Depletion of microglia and inhibition of exosome synthesis halt tau propagation".PMID 26436904
  96. Naoto Watamura et al. (2016). "Colocalization of phosphorylated forms of WAVE1, CRMP2, and tau in Alzheimer's disease model mice: Involvement of Cdk5 phosphorylation and the effect of ATRA treatment".PMID 26400044
  97. Sang Won Min et al. (2015). "Critical role of acetylation in tau-mediated neurodegeneration and cognitive deficits".PMID 26390242
  98. Marie Violet et al. (2015). "Prefibrillar Tau oligomers alter the nucleic acid protective function of Tau in hippocampal neurons in vivo".PMID 26385829
  99. Pascal Y Smith et al. (2015). "miR-132/212 deficiency impairs tau metabolism and promotes pathological aggregation in vivo".PMID 26362250
  100. Monique Richter et al. (2014). "Doubly Phosphorylated Peptide Vaccines to Protect Transgenic P301S Mice against Alzheimer's Disease Like Tau Aggregation".PMID 26344748
  101. Christopher M Henstridge et al. (2015). "Post-mortem brain analyses of the Lothian Birth Cohort 1936: extending lifetime cognitive and brain phenotyping to the level of the synapse".PMID 26335101
  102. Torsten Bullmann et al. (2016). "Tau phosphorylation-associated spine regression does not impair hippocampal-dependent memory in hibernating golden hamsters".PMID 26332578
  103. Thomas J Montine et al. (2016). "Multisite assessment of NIA-AA guidelines for the neuropathologic evaluation of Alzheimer's disease".PMID 26327235
  104. Il Shin Lee et al. (2015). "Human neural stem cells alleviate Alzheimer-like pathology in a mouse model".PMID 26293123
  105. Lucia Y Du et al. (2015). "Alzheimer's Disease-Related Protein Expression in the Retina of Octodon degus".PMID 26267479
  106. Tomas Smolek et al. (2016). "Tau hyperphosphorylation in synaptosomes and neuroinflammation are associated with canine cognitive impairment".PMID 26239295
  107. Alberto Rabano et al. (2016). "Protocols for Monitoring the Development of Tau Pathology in Alzheimer's Disease".PMID 26235064
  108. Thomas Tousseyn et al. (2015). "Prion Disease Induces Alzheimer Disease-Like Neuropathologic Changes".PMID 26226132
  109. Takayuki Ohnishi et al. (2015). "Na, K-ATPase α3 is a death target of Alzheimer patient amyloid-β assembly".PMID 26224839
  110. Elisabetta Lauretti et al. (2015). "Glucose deprivation increases tau phosphorylation via P38 mitogen-activated protein kinase".PMID 26219917
  111. Cesar Augusto Dias de Paula et al. (2015). "The Co-chaperone BAG2 Mediates Cold-Induced Accumulation of Phosphorylated Tau in SH-SY5Y Cells".PMID 26208804
  112. Adrianne S Chesser et al. (2016). "Epigallocatechin-3-gallate enhances clearance of phosphorylated tau in primary neurons".PMID 26207957
  113. Katharina Rüben et al. (2015). "Selectivity Profiling and Biological Activity of Novel β-Carbolines as Potent and Selective DYRK1 Kinase Inhibitors".PMID 26192590
  114. Michael M Zeineh et al. (2015). "Activated iron-containing microglia in the human hippocampus identified by magnetic resonance imaging in Alzheimer disease".PMID 26190634
  115. Jong Mu Kim et al. (2015). "Fas-associated factor 1 promotes in neurofibrillary tangle-mediated cell death of basal forebrain cholinergic neurons in P301L transgenic mice".PMID 26164610
  116. Jennifer L Ziskin et al. (2015). "Neuropathologic analysis of Tyr69His TTR variant meningovascular amyloidosis with dementia".PMID 26156087
  117. Tomasz Zajkowski et al. (2015). "Stabilization of microtubular cytoskeleton protects neurons from toxicity of N-terminal fragment of cytosolic prion protein".PMID 26149502
  118. Matthew Hamm et al. (2015). "Physiologically relevant factors influence tau phosphorylation by leucine-rich repeat kinase 2".PMID 26123245
  119. Li hua Sun et al. (2015). "Activation of Cdk5/p25 and tau phosphorylation following chronic brain hypoperfusion in rats involves microRNA-195 down-regulation".PMID 26118667
  120. Xing Lin Tan et al. (2015). "Partial eNOS deficiency causes spontaneous thrombotic cerebral infarction, amyloid angiopathy and cognitive impairment".PMID 26104027
  121. A Di Meco et al. (2016). "Maternal dexamethasone exposure ameliorates cognition and tau pathology in the offspring of triple transgenic AD mice".PMID 26077691
  122. Jack Brelstaff et al. (2015). "The fluorescent pentameric oligothiophene pFTAA identifies filamentous tau in live neurons cultured from adult P301S tau mice".PMID 26074756
  123. Diego Iacono et al. (2015). "Reduced Number of Pigmented Neurons in the Substantia Nigra of Dystonia Patients? Findings from Extensive Neuropathologic, Immunohistochemistry, and Quantitative Analyses".PMID 26069855
  124. Jeanna M Wheeler et al. (2015). "High copy wildtype human 1N4R tau expression promotes early pathological tauopathy accompanied by cognitive deficits without progressive neurofibrillary degeneration".PMID 26041339
  125. Sahabudeen Sheik Mohideen et al. (2015). "Nontoxic singlet oxygen generator as a therapeutic candidate for treating tauopathies".PMID 26027742
  126. Patr cia Silva Guerreiro et al. (2015). "LRRK2 Promotes Tau Accumulation, Aggregation and Release".PMID 26014385
  127. Dmitry Petrov et al. (2015). "High-fat diet-induced deregulation of hippocampal insulin signaling and mitochondrial homeostasis deficiences contribute to Alzheimer disease pathology in rodents".PMID 26003667
  128. Hannah Greenfeld et al. (2015). "TRAF1 Coordinates Polyubiquitin Signaling to Enhance Epstein-Barr Virus LMP1-Mediated Growth and Survival Pathway Activation".PMID 25996949
  129. Lei Pei et al. (2015). "A Novel Mechanism of Spine Damages in Stroke via DAPK1 and Tau".PMID 25995053
  130. David B Wang et al. (2015). "Loss of endophilin-B1 exacerbates Alzheimer's disease pathology".PMID 25981964
  131. Daniela De Zio et al. (2015). "Apaf1-deficient cortical neurons exhibit defects in axonal outgrowth".PMID 25975226
  132. Peng Liu et al. (2015). "Characterization of a Novel Mouse Model of Alzheimer's Disease--Amyloid Pathology and Unique β-Amyloid Oligomer Profile".PMID 25946042
  133. Sethu Sankaranarayanan et al. (2015). "Passive immunization with phospho-tau antibodies reduces tau pathology and functional deficits in two distinct mouse tauopathy models".PMID 25933020
  134. David A Loeffler et al. (2015). "Effects of antibodies to phosphorylated and non-phosphorylated tau on in vitro tau phosphorylation at Serine-199: Preliminary report".PMID 25914109
  135. Karine Pozo et al. (2015). "Differential expression of cell cycle regulators in CDK5-dependent medullary thyroid carcinoma tumorigenesis".PMID 25900242
  136. Lixin Song et al. (2015). "Analysis of tau post-translational modifications in rTg4510 mice, a model of tau pathology".PMID 25881209
  137. Y Hotokezaka et al. (2015). "GSK-3β-dependent downregulation of γ-taxilin and αNAC merge to regulate ER stress responses".PMID 25880086
  138. Nimrod Miller et al. (2015). "Non-aggregating tau phosphorylation by cyclin-dependent kinase 5 contributes to motor neuron degeneration in spinal muscular atrophy".PMID 25878277
  139. Matthew J Kan et al. (2015). "Arginine deprivation and immune suppression in a mouse model of Alzheimer's disease".PMID 25878270
  140. Henrik H Hansen et al. (2015). "The GLP-1 Receptor Agonist Liraglutide Improves Memory Function and Increases Hippocampal CA1 Neuronal Numbers in a Senescence-Accelerated Mouse Model of Alzheimer's Disease".PMID 25869785
  141. Caroline Corbel et al. (2015). "Tamoxifen inhibits CDK5 kinase activity by interacting with p35/p25 and modulates the pattern of tau phosphorylation".PMID 25865311
  142. Julia Elisa Sepulveda-Diaz et al. (2015). "HS3ST2 expression is critical for the abnormal phosphorylation of tau in Alzheimer's disease-related tau pathology".PMID 25842390
  143. Nicole Maphis et al. (2015). "Reactive microglia drive tau pathology and contribute to the spreading of pathological tau in the brain".PMID 25833819
  144. Mar a Elena Erro Aguirre et al. (2015). "Midbrain catecholaminergic neurons co-express α-synuclein and tau in progressive supranuclear palsy".PMID 25814937
  145. Ryoko Takeuchi et al. (2016). "Globular Glial Mixed Four Repeat Tau and TDP-43 Proteinopathy with Motor Neuron Disease and Frontotemporal Dementia".PMID 25787090
  146. Peter Filipcik et al. (2015). "Intraneuronal accumulation of misfolded tau protein induces overexpression of Hsp27 in activated astrocytes".PMID 25772164
  147. R Li et al. (2015). "Lovastatin suppresses the aberrant tau phosphorylation from FTDP-17 mutation and okadaic acid-induction in rat primary neurons".PMID 25770969
  148. Amir M Hossini et al. (2015). "Induced pluripotent stem cell-derived neuronal cells from a sporadic Alzheimer's disease donor as a model for investigating AD-associated gene regulatory networks".PMID 25765079
  149. Cheril Tapia-Rojas et al. (2016). "Voluntary Running Attenuates Memory Loss, Decreases Neuropathological Changes and Induces Neurogenesis in a Mouse Model of Alzheimer's Disease".PMID 25763997
  150. Gerhard Leinenga et al. (2015). "Scanning ultrasound removes amyloid-β and restores memory in an Alzheimer's disease mouse model".PMID 25761889
  151. Jessica M Collins et al. (2015). "The effect of focal brain injury on beta-amyloid plaque deposition, inflammation and synapses in the APP/PS1 mouse model of Alzheimer's disease".PMID 25747037
  152. Sylvia Garza-Manero et al. (2015). "Identification of age- and disease-related alterations in circulating miRNAs in a mouse model of Alzheimer's disease".PMID 25745387
  153. Taylor R Jay et al. (2015). "TREM2 deficiency eliminates TREM2+ inflammatory macrophages and ameliorates pathology in Alzheimer's disease mouse models".PMID 25732305
  154. Hannes Falke et al. (2015). "10-iodo-11H-indolo[3,2-c]quinoline-6-carboxylic acids are selective inhibitors of DYRK1A".PMID 25730262
  155. Renata Reis et al. (2015). "At the centre of neuronal, synaptic and axonal pathology in murine prion disease: degeneration of neuroanatomically linked thalamic and brainstem nuclei".PMID 25727649
  156. Adam C Kaufman et al. (2015). "Fyn inhibition rescues established memory and synapse loss in Alzheimer mice".PMID 25707991
  157. Anne Sophie Carret-Rebillat et al. (2015). "Neuroinflammation and Aβ accumulation linked to systemic inflammation are decreased by genetic PKR down-regulation".PMID 25687824
  158. Rachel E Bennett et al. (2015). "Array tomography for the detection of non-dilated, injured axons in traumatic brain injury".PMID 25687633
  159. Hong Xu et al. (2014). "Tau silencing by siRNA in the P301S mouse model of tauopathy".PMID 25687501
  160. Jesper Riise et al. (2015). "Aberrant Wnt signaling pathway in medial temporal lobe structures of Alzheimer's disease".PMID 25680440
  161. Angélica Maria Sabogal-Guáqueta et al. (2015). "The flavonoid quercetin ameliorates Alzheimer's disease pathology and protects cognitive and emotional function in aged triple transgenic Alzheimer's disease model mice".PMID 25666032
  162. D Porquet et al. (2015). "Amyloid and tau pathology of familial Alzheimer's disease APP/PS1 mouse model in a senescence phenotype background (SAMP8)".PMID 25663420
  163. Zhen Wu et al. (2015). "Long-term dantrolene treatment reduced intraneuronal amyloid in aged Alzheimer triple transgenic mice".PMID 25650693
  164. Junfeng Zhang et al. (2015). "The choice of general anesthetics may not affect neuroinflammation and impairment of learning and memory after surgery in elderly rats".PMID 25649847
  165. Alison Spilsbury et al. (2015). "The role of telomerase protein TERT in Alzheimer's disease and in tau-related pathology in vitro".PMID 25632141
  166. Liana G Apostolova et al. (2015). "Relationship between hippocampal atrophy and neuropathology markers: a 7T MRI validation study of the EADC-ADNI Harmonized Hippocampal Segmentation Protocol".PMID 25620800
  167. Paolo Piatti et al. (2015). "Embryonic stem cell differentiation requires full length Chd1".PMID 25620209
  168. Huilai Tian et al. (2015). "Isolation and characterization of antibody fragments selective for toxic oligomeric tau".PMID 25616912
  169. Yue Yang et al. (2015). "Aneuploidy in Lewy body diseases".PMID 25595497
  170. Anthony L Petraglia et al. (2014). "The pathophysiology underlying repetitive mild traumatic brain injury in a novel mouse model of chronic traumatic encephalopathy".PMID 25593768
  171. F Mouton-Liger et al. (2015). "PKR downregulation prevents neurodegeneration and β-amyloid production in a thiamine-deficient model".PMID 25590804
  172. Shailendra Kumar Maurya et al. (2016). "Cypermethrin Stimulates GSK3β-Dependent Aβ and p-tau Proteins and Cognitive Loss in Young Rats: Reduced HB-EGF Signaling and Downstream Neuroinflammation as Critical Regulators".PMID 25575682
  173. Nadia Postupna et al. (2015). "Cerebral cortical Aβ42 and PHF-τ in 325 consecutive brain autopsies stratified by diagnosis, location, and APOE".PMID 25575135
  174. Peter Sykora et al. (2015). "DNA polymerase β deficiency leads to neurodegeneration and exacerbates Alzheimer disease phenotypes".PMID 25552414
  175. Felipe G Serrano et al. (2014). "Andrographolide reduces cognitive impairment in young and mature AβPPswe/PS-1 mice".PMID 25524173
  176. V Melis et al. (2015). "Different pathways of molecular pathophysiology underlie cognitive and motor tauopathy phenotypes in transgenic models for Alzheimer's disease and frontotemporal lobar degeneration".PMID 25523019
  177. Kyle R Denton et al. (2016). "Modeling Axonal Phenotypes with Human Pluripotent Stem Cells".PMID 25520289
  178. Jeffrey J Iliff et al. (2014). "Impairment of glymphatic pathway function promotes tau pathology after traumatic brain injury".PMID 25471560
  179. Elisabetta Lauretti et al. (2015). "Modulation of AD neuropathology and memory impairments by the isoprostane F2α is mediated by the thromboxane receptor".PMID 25457549
  180. Lindsay A Hohsfield et al. (2014). "Vascular pathology of 20-month-old hypercholesterolemia mice in comparison to triple-transgenic and APPSwDI Alzheimer's disease mouse models".PMID 25447943
  181. Matthias Höllerhage et al. (2014). "Piericidin A aggravates Tau pathology in P301S transgenic mice".PMID 25437199
  182. Odochi Ohia-Nwoko et al. (2014). "Long-term treadmill exercise attenuates tau pathology in P301S tau transgenic mice".PMID 25432085
  183. Jiwon Ryu et al. (2014). "The problem of axonal injury in the brains of veterans with histories of blast exposure".PMID 25422066
  184. Xiaoyan Hu et al. (2014). "Tau pathogenesis is promoted by Aβ1-42 but not Aβ1-40".PMID 25417177
  185. Benjamin Falcon et al. (2015). "Conformation determines the seeding potencies of native and recombinant Tau aggregates".PMID 25406315
  186. Bethany L Johnson-Kerner et al. (2015). "Intermediate filament protein accumulation in motor neurons derived from giant axonal neuropathy iPSCs rescued by restoration of gigaxonin".PMID 25398950
  187. Uma Goyal et al. (2014). "Spastin-interacting protein NA14/SSNA1 functions in cytokinesis and axon development".PMID 25390646
  188. Chunxia Huang et al. (2015). "Dexmedetomidine directly increases tau phosphorylation".PMID 25374108
  189. Laiq Jan Saidi et al. (2015). "Carboxy terminus heat shock protein 70 interacting protein reduces tau-associated degenerative changes".PMID 25374103
  190. Achim Thomzig et al. (2014). "Decontamination of medical devices from pathological amyloid-β-, tau- and α-synuclein aggregates".PMID 25344093
  191. Eric B Dammer et al. (2015). "Quantitative phosphoproteomics of Alzheimer's disease reveals cross-talk between kinases and small heat shock proteins".PMID 25332170
  192. John F Castro-Alvarez et al. (2014). "Long- and short-term CDK5 knockdown prevents spatial memory dysfunction and tau pathology of triple transgenic Alzheimer's mice".PMID 25309427
  193. Ting Ting Chu et al. (2014). "Clearance of the intracellular high level of the tau protein directed by an artificial synthetic hydrolase".PMID 25308803
  194. Leticia Forny-Germano et al. (2014). "Alzheimer's disease-like pathology induced by amyloid-β oligomers in nonhuman primates".PMID 25297091
  195. Andrea Špolcová et al. (2014). "Deficient hippocampal insulin signaling and augmented Tau phosphorylation is related to obesity- and age-induced peripheral insulin resistance: a study in Zucker rats".PMID 25257559
  196. B rang re Deleglise et al. (2014). "β-amyloid induces a dying-back process and remote trans-synaptic alterations in a microfluidic-based reconstructed neuronal network".PMID 25253021
  197. Kevin Moreau et al. (2014). "PICALM modulates autophagy activity and tau accumulation".PMID 25241929
  198. Yixuan Wang et al. (2015). "Cross talk between PI3K-AKT-GSK-3β and PP2A pathways determines tau hyperphosphorylation".PMID 25219467
  199. Sungho Lee et al. (2014). "Opposing effects of membrane-anchored CX3CL1 on amyloid and tau pathologies via the p38 MAPK pathway".PMID 25209291
  200. Lih Fen Lue et al. (2015). "TREM2 Protein Expression Changes Correlate with Alzheimer's Disease Neurodegenerative Pathologies in Post-Mortem Temporal Cortices".PMID 25186950
  201. David Blum et al. (2015). "Mutant huntingtin alters Tau phosphorylation and subcellular distribution".PMID 25143394
  202. Haley C Dunn et al. (2015). "Restoration of lipoxin A4 signaling reduces Alzheimer's disease-like pathology in the 3xTg-AD mouse model".PMID 25125468
  203. Mark Yarchoan et al. (2014). "Abnormal serine phosphorylation of insulin receptor substrate 1 is associated with tau pathology in Alzheimer's disease and tauopathies".PMID 25107476
  204. Ludovic Collin et al. (2014). "Neuronal uptake of tau/pS422 antibody and reduced progression of tau pathology in a mouse model of Alzheimer's disease".PMID 25085375
  205. Christoph Kohler et al. (2014). "Granulovacuolar degeneration and unfolded protein response in mouse models of tauopathy and Aβ amyloidosis".PMID 25073087
  206. Vinicia A Polito et al. (2014). "Selective clearance of aberrant tau proteins and rescue of neurotoxicity by transcription factor EB".PMID 25069841
  207. Yuan Zhou et al. (2014). "Intracellular clusterin interacts with brain isoforms of the bridging integrator 1 and with the microtubule-associated protein Tau in Alzheimer's disease".PMID 25051234
  208. Ania L Gheyara et al. (2014). "Tau reduction prevents disease in a mouse model of Dravet syndrome".PMID 25042160
  209. Arne Ittner et al. (2015). "Tau-targeting passive immunization modulates aspects of pathology in tau transgenic mice".PMID 25041093
  210. Marta Fernández-Nogales et al. (2014). "Huntington's disease is a four-repeat tauopathy with tau nuclear rods".PMID 25038828
  211. Mala V Rao et al. (2014). "Specific calpain inhibition by calpastatin prevents tauopathy and neurodegeneration and restores normal lifespan in tau P301L mice".PMID 25009256
  212. Patrick Aldrin-Kirk et al. (2014). "Novel AAV-based rat model of forebrain synucleinopathy shows extensive pathologies and progressive loss of cholinergic interneurons".PMID 24999658
  213. Nina M Carretero et al. (2014). "IrOx-carbon nanotube hybrids: a nanostructured material for electrodes with increased charge capacity in neural systems".PMID 24952073
  214. Z B Zhao et al. (2014). "MicroRNA-922 promotes tau phosphorylation by downregulating ubiquitin carboxy-terminal hydrolase L1 (UCHL1) expression in the pathogenesis of Alzheimer's disease".PMID 24950120
  215. Sang Hun Lee et al. (2014). "Synaptic function of nicastrin in hippocampal neurons".PMID 24889619
  216. Ignacio Pedrós et al. (2014). "Early alterations in energy metabolism in the hippocampus of APPswe/PS1dE9 mouse model of Alzheimer's disease".PMID 24887203
  217. Dustin Shilling et al. (2014). "Suppression of InsP3 receptor-mediated Ca2+ signaling alleviates mutant presenilin-linked familial Alzheimer's disease pathogenesis".PMID 24828645
  218. S Yang et al. (2014). "Mitochondrial dysfunction driven by the LRRK2-mediated pathway is associated with loss of Purkinje cells and motor coordination deficits in diabetic rat model".PMID 24810053
  219. Hervé Maurin et al. (2014). "Terminal hypothermic Tau.P301L mice have increased Tau phosphorylation independently of glycogen synthase kinase 3α/β".PMID 24754737
  220. Xiaofeng Liu et al. (2014). "Berberine attenuates axonal transport impairment and axonopathy induced by Calyculin A in N2a cells".PMID 24713870
  221. Tao Lu et al. (2014). "REST and stress resistance in ageing and Alzheimer's disease".PMID 24670762
  222. Ilie Cosmin Stancu et al. (2014). "Tauopathy contributes to synaptic and cognitive deficits in a murine model for Alzheimer's disease".PMID 24604080
  223. Yun Zhang et al. (2014). "GRK5 dysfunction accelerates tau hyperphosphorylation in APP (swe) mice through impaired cholinergic activity".PMID 24598771
  224. Hee Jin Kim et al. (2014). "S100A9 knockout decreases the memory impairment and neuropathology in crossbreed mice of Tg2576 and S100A9 knockout mice model".PMID 24586443
  225. Karina Dahl Steffensen et al. (2014). "Resistance to first line platinum paclitaxel chemotherapy in serous epithelial ovarian cancer: the prediction value of ERCC1 and Tau expression".PMID 24585004
  226. Simon Dujardin et al. (2014). "Neuron-to-neuron wild-type Tau protein transfer through a trans-synaptic mechanism: relevance to sporadic tauopathies".PMID 24479894
  227. Istvan Bodi et al. (2014). "Two cases of multinodular and vacuolating neuronal tumour".PMID 24444358
  228. Zhi Xiong et al. (2014). "Alzheimer's disease: evidence for the expression of interleukin-33 and its receptor ST2 in the brain".PMID 24413615
  229. Natacha Coppieters et al. (2014). "Global changes in DNA methylation and hydroxymethylation in Alzheimer's disease human brain".PMID 24387984
  230. Sami Ridwan et al. (2014). "Distribution of the hematopoietic growth factor G-CSF and its receptor in the adult human brain with specific reference to Alzheimer's disease".PMID 24387791
  231. Chang Liu et al. (2013). "Profiling murine tau with 0N, 1N and 2N isoform-specific antibodies in brain and peripheral organs reveals distinct subcellular localization, with the 1N isoform being enriched in the nucleus".PMID 24386422
  232. Peter Borghgraef et al. (2013). "Increasing brain protein O-GlcNAc-ylation mitigates breathing defects and mortality of Tau.P301L mice".PMID 24376810
  233. Tina Notter et al. (2014). "A protocol for concurrent high-quality immunohistochemical and biochemical analyses in adult mouse central nervous system".PMID 24325300
  234. Rodrigo Medeiros et al. (2014). "α7 Nicotinic receptor agonist enhances cognition in aged 3xTg-AD mice with robust plaques and tangles".PMID 24269557
  235. Chao Wang et al. (2014). "The role of pro-inflammatory S100A9 in Alzheimer's disease amyloid-neuroinflammatory cascade".PMID 24240735
  236. Monica Marchese et al. (2014). "Autoimmune manifestations in the 3xTg-AD model of Alzheimer's disease".PMID 24150111
  237. Robert S Wilson et al. (2013). "Brainstem aminergic nuclei and late-life depressive symptoms".PMID 24132763
  238. Meng Shan Tan et al. (2014). "IL12/23 p40 inhibition ameliorates Alzheimer's disease-associated neuropathology and spatial memory in SAMP8 mice".PMID 24047617
  239. Sylvia E Perez et al. (2013). "Alzheimer's disease pathology in the neocortex and hippocampus of the western lowland gorilla (Gorilla gorilla gorilla)".PMID 23881733
  240. Gemma Manich et al. (2014). "Presence of a neo-epitope and absence of amyloid beta and tau protein in degenerative hippocampal granules of aged mice".PMID 23867972
  241. Lara Ordóñez-Gutiérrez et al. (2013). "Cellular prion protein modulates β-amyloid deposition in aged APP/PS1 transgenic mice".PMID 23831375
  242. Andrea Pristerà et al. (2013). "Impact of N-tau on adult hippocampal neurogenesis, anxiety, and memory".PMID 23769395
  243. Xuemei Zhang et al. (2013). "Diaminothiazoles modify Tau phosphorylation and improve the tauopathy in mouse models".PMID 23737518
  244. Akio Yamazaki et al. (2013). "Microtubule-associated protein tau in bovine retinal photoreceptor rod outer segments: comparison with brain tau".PMID 23712071
  245. Hervé Maurin et al. (2013). "Neurological characterization of mice deficient in GSK3α highlight pleiotropic physiological functions in cognition and pathological activity as Tau kinase".PMID 23705847
  246. Hervé Maurin et al. (2013). "Tauopathy differentially affects cell adhesion molecules in mouse brain: early down-regulation of nectin-3 in stratum lacunosum moleculare".PMID 23704923
  247. Amy K Clippinger et al. (2013). "Robust cytoplasmic accumulation of phosphorylated TDP-43 in transgenic models of tauopathy".PMID 23666556
  248. Youn Jin Park et al. (2013). "Activation of AMP-activated protein kinase alleviates homocysteine-mediated neurotoxicity in SH-SY5Y cells".PMID 23624826
  249. Jiri Ruzicka et al. (2013). "Treating spinal cord injury in rats with a combination of human fetal neural stem cells and hydrogels modified with serotonin".PMID 23595287
  250. M J Hannula et al. (2013). "Prolyl oligopeptidase colocalizes with α-synuclein, β-amyloid, tau protein and astroglia in the post-mortem brain samples with Parkinson's and Alzheimer's diseases".PMID 23562579
  251. Adam W Oaks et al. (2013). "Age-dependent effects of A53T alpha-synuclein on behavior and dopaminergic function".PMID 23560093
  252. Ting Han Wu et al. (2013). "Loss of vesicular dopamine release precedes tauopathy in degenerative dopaminergic neurons in a Drosophila model expressing human tau".PMID 23494099
  253. Lucía Barros-Miñones et al. (2013). "Inhibition of calpain-regulated p35/cdk5 plays a central role in sildenafil-induced protection against chemical hypoxia produced by malonate".PMID 23415811
  254. J Chapuis et al. (2013). "Increased expression of BIN1 mediates Alzheimer genetic risk by modulating tau pathology".PMID 23399914
  255. Michaeline L Hebron et al. (2014). "Fractalkine signaling and Tau hyper-phosphorylation are associated with autophagic alterations in lentiviral Tau and Aβ1-42 gene transfer models".PMID 23333589
  256. Antoine Leboucher et al. (2013). "Detrimental effects of diet-induced obesity on τ pathology are independent of insulin resistance in τ transgenic mice".PMID 23250356
  257. David Porquet et al. (2013). "Dietary resveratrol prevents Alzheimer's markers and increases life span in SAMP8".PMID 23129026
  258. James K Chambers et al. (2012). "Neurofibrillary tangles and the deposition of a beta amyloid peptide with a novel N-terminal epitope in the brains of wild Tsushima leopard cats".PMID 23056312
  259. Katherine J Kopeikina et al. (2013). "Synaptic alterations in the rTg4510 mouse model of tauopathy".PMID 23047530
  260. Seok Soon Park et al. (2012). "Asp664 cleavage of amyloid precursor protein induces tau phosphorylation by decreasing protein phosphatase 2A activity".PMID 23020770
  261. Minjie Tian et al. (2012). "Central angiotensin II-induced Alzheimer-like tau phosphorylation in normal rat brains".PMID 22982863
  262. Kanae Iijima-Ando et al. (2012). "Loss of axonal mitochondria promotes tau-mediated neurodegeneration and Alzheimer's disease-related tau phosphorylation via PAR-1".PMID 22952452
  263. Naruhiko Sahara et al. (2013). "Characteristics of TBS-extractable hyperphosphorylated tau species: aggregation intermediates in rTg4510 mouse brain".PMID 22941973
  264. Jun ichi Satoh et al. (2012). "Dystrophic neurites express C9orf72 in Alzheimer's disease brains".PMID 22898310
  265. Amandine Magnaudeix et al. (2013). "PP2A blockade inhibits autophagy and causes intraneuronal accumulation of ubiquitinated proteins".PMID 22892312
  266. Oskar Karlsson et al. (2012). "Neonatal exposure to the cyanobacterial toxin BMAA induces changes in protein expression and neurodegeneration in adult hippocampus".PMID 22872059
  267. Alexis Bretteville et al. (2012). "Hypothermia-induced hyperphosphorylation: a new model to study tau kinase inhibitors".PMID 22761989
  268. Cristhiaan D Ochoa et al. (2012). "Pseudomonas aeruginosa exotoxin Y is a promiscuous cyclase that increases endothelial tau phosphorylation and permeability".PMID 22637478
  269. Jean Marie Sontag et al. (2012). "The protein phosphatase PP2A/Bα binds to the microtubule-associated proteins Tau and MAP2 at a motif also recognized by the kinase Fyn: implications for tauopathies".PMID 22403409
  270. Erin E Congdon et al. (2012). "Methylthioninium chloride (methylene blue) induces autophagy and attenuates tauopathy in vitro and in vivo".PMID 22361619
  271. Adila Elobeid et al. (2012). "Hyperphosphorylated tau in young and middle-aged subjects".PMID 22160320
  272. Chera L Maarouf et al. (2011). "Alzheimer's disease and non-demented high pathology control nonagenarians: comparing and contrasting the biochemistry of cognitively successful aging".PMID 22087282
  273. Silvia Bolognin et al. (2012). "An experimental rat model of sporadic Alzheimer's disease and rescue of cognitive impairment with a neurotrophic peptide".PMID 22083255
  274. Maryla Krajewska et al. (2011). "Neuronal deletion of caspase 8 protects against brain injury in mouse models of controlled cortical impact and kainic acid-induced excitotoxicity".PMID 21957448
  275. Tiffany Kaul et al. (2011). "Region-specific tauopathy and synucleinopathy in brain of the alpha-synuclein overexpressing mouse model of Parkinson's disease".PMID 21812967
  276. Horacio Maldonado et al. (2011). "Inhibition of cyclin-dependent kinase 5 but not of glycogen synthase kinase 3-β prevents neurite retraction and tau hyperphosphorylation caused by secretable products of human T-cell leukemia virus type I-infected lymphocytes".PMID 21671254
  277. Cristina Ploia et al. (2011). "JNK plays a key role in tau hyperphosphorylation in Alzheimer's disease models".PMID 21628793
  278. Thomas Haggerty et al. (2011). "Hyperphosphorylated Tau in an α-synuclein-overexpressing transgenic model of Parkinson's disease".PMID 21453448
  279. Jonathan Wills et al. (2011). "Tauopathic changes in the striatum of A53T α-synuclein mutant mouse model of Parkinson's disease".PMID 21445308
  280. Alvina W M To et al. (2011). "The ε3 and ε4 alleles of human APOE differentially affect tau phosphorylation in hyperinsulinemic and pioglitazone treated mice".PMID 21347323
  281. Julien Dusonchet et al. (2011). "A rat model of progressive nigral neurodegeneration induced by the Parkinson's disease-associated G2019S mutation in LRRK2".PMID 21248115
  282. Emily Roltsch et al. (2010). "PSAPP mice exhibit regionally selective reductions in gliosis and plaque deposition in response to S100B ablation".PMID 21080947
  283. Kimberly Burkhard et al. (2010). "Use of inhibitors in the study of MAP kinases".PMID 20811979
  284. Ji Yeon Yang et al. (2010). "p-Glycoprotein ABCB5 and YB-1 expression plays a role in increased heterogeneity of breast cancer cells: correlations with cell fusion and doxorubicin resistance".PMID 20649952
  285. Takayuki Nakajima et al. (2011). "Ischemic preconditioning attenuates of ischemia-induced degradation of spectrin and tau: implications for ischemic tolerance".PMID 20596741
  286. Bin Liang et al. (2010). "Calpain activation promotes BACE1 expression, amyloid precursor protein processing, and amyloid plaque formation in a transgenic mouse model of Alzheimer disease".PMID 20595388
  287. Natalia Shiryaev et al. (2010). "3R tau expression modifies behavior in transgenic mice".PMID 20544828
  288. Torsten Bullmann et al. (2010). "Expression of the embryonal isoform (0N/3R) of the microtubule-associated protein tau in the adult rat central nervous system".PMID 20503426
  289. Eva Lilienthal et al. (2010). "Development of a sensitive non-radioactive protein kinase assay and its application for detecting DYRK activity in Xenopus laevis oocytes".PMID 20487523
  290. Ina Berg et al. (2010). "Efficient imaging of amyloid deposits in Drosophila models of human amyloidoses".PMID 20431539
  291. M L Spatara et al. (2010). "Transgenic mouse and cell culture models demonstrate a lack of mechanistic connection between endoplasmic reticulum stress and tau dysfunction".PMID 20143409
  292. Kohei Yamada et al. (2010). "Increased stathmin1 expression in the dentate gyrus of mice causes abnormal axonal arborizations".PMID 20062533
  293. Bhumsoo Kim et al. (2009). "Increased tau phosphorylation and cleavage in mouse models of type 1 and type 2 diabetes".PMID 19819959
  294. Eric C Hall et al. (2011). "Expression of the HFE allelic variant H63D in SH-SY5Y cells affects tau phosphorylation at serine residues".PMID 19775775
  295. Diego Mastroeni et al. (2009). "Epigenetic differences in cortical neurons from a pair of monozygotic twins discordant for Alzheimer's disease".PMID 19672297
  296. Hyo Shin Kim et al. (2009). "Delphinidin ameliorates beta-amyloid-induced neurotoxicity by inhibiting calcium influx and tau hyperphosphorylation".PMID 19584523
  297. Jessie Chu et al. (2009). "A mouse forward genetics screen identifies LISTERIN as an E3 ubiquitin ligase involved in neurodegeneration".PMID 19196968
  298. Donggeun Sul et al. (2009). "Protective effect of caffeic acid against beta-amyloid-induced neurotoxicity by the inhibition of calcium influx and tau phosphorylation".PMID 19101570
  299. Hyoung gon Lee et al. (2009). "The effect of mGluR2 activation on signal transduction pathways and neuronal cell survival".PMID 19026996
  300. Donggun Sul et al. (2009). "2,3,7,8-TCDD neurotoxicity in neuroblastoma cells is caused by increased oxidative stress, intracellular calcium levels, and tau phosphorylation".PMID 18996433
  301. Lee Eun Jeoung et al. (2008). "Regulation of glycogen synthase kinase 3beta functions by modification of the small ubiquitin-like modifier".PMID 18949077
  302. Johanna O Ojala et al. (2008). "Interleukin-18 increases expression of kinases involved in tau phosphorylation in SH-SY5Y neuroblastoma cells".PMID 18947885
  303. Maria Sen Mun Wai et al. (2009). "Co-localization of hyperphosphorylated tau and caspases in the brainstem of Alzheimer's disease patients".PMID 18946722
  304. Pamela McMillan et al. (2008). "Tau isoform regulation is region- and cell-specific in mouse brain".PMID 18925637
  305. Jemima Barrowman et al. (2008). "Analysis of prelamin A biogenesis reveals the nucleus to be a CaaX processing compartment".PMID 18923140
  306. Gabor G Kovacs et al. (2008). "White matter tauopathy with globular glial inclusions: a distinct sporadic frontotemporal lobar degeneration".PMID 18800011
  307. Akanksha Thakur et al. (2008). "Retinoblastoma Protein Phosphorylation at Multiple Sites is Associated with Neurofibrillary Pathology in Alzheimer Disease".PMID 18784806
  308. Hillary R Irons et al. (2008). "Three-dimensional neural constructs: a novel platform for neurophysiological investigation".PMID 18756031
  309. Jyotshnabala Kanungo et al. (2008). "The Notch signaling inhibitor DAPT down-regulates cdk5 activity and modulates the distribution of neuronal cytoskeletal proteins".PMID 18662245
  310. So Young Park et al. (2008). "Curcumin protected PC12 cells against beta-amyloid-induced toxicity through the inhibition of oxidative damage and tau hyperphosphorylation".PMID 18573304
  311. Emiko Fukuzaki et al. (2008). "Enhanced activity of hippocampal BACE1 in a mouse model of postmenopausal memory deficits".PMID 18243555
  312. R Liu et al. (2008). "Phosphorylated PP2A (tyrosine 307) is associated with Alzheimer neurofibrillary pathology".PMID 18208556
  313. Jenna C Carroll et al. (2007). "Progesterone and estrogen regulate Alzheimer-like neuropathology in female 3xTg-AD mice".PMID 18045930
  314. M L Selenica et al. (2007). "Efficacy of small-molecule glycogen synthase kinase-3 inhibitors in the postnatal rat model of tau hyperphosphorylation".PMID 17906685
  315. Qing Bai et al. (2007). "Generation of a transgenic zebrafish model of Tauopathy using a novel promoter element derived from the zebrafish eno2 gene".PMID 17897967
  316. Yves Jossin et al. (2007). "Reelin signals through phosphatidylinositol 3-kinase and Akt to control cortical development and through mTor to regulate dendritic growth".PMID 17698586
  317. Martina Wiedau-Pazos et al. (2009). "Wnt-pathway activation during the early stage of neurodegeneration in FTDP-17 mice".PMID 17604878
  318. S Y Park et al. (2007). "Caspase-3- and calpain-mediated tau cleavage are differentially prevented by estrogen and testosterone in beta-amyloid-treated hippocampal neurons".PMID 17055174
  319. Katharina Schindowski et al. (2006). "Alzheimer's disease-like tau neuropathology leads to memory deficits and loss of functional synapses in a novel mutated tau transgenic mouse without any motor deficits".PMID 16877359
  320. Sofia Grammenoudi et al. (2006). "Cell type-specific processing of human Tau proteins in Drosophila".PMID 16875690
  321. A E King et al. (2006). "Localization of glutamate receptors in developing cortical neurons in culture and relationship to susceptibility to excitotoxicity".PMID 16856139
  322. S Yoshida et al. (2006). "Lithium inhibits stress-induced changes in tau phosphorylation in the mouse hippocampus".PMID 16855914
  323. Neelam Shahani et al. (2006). "Tau aggregation and progressive neuronal degeneration in the absence of changes in spine density and morphology after targeted expression of Alzheimer's disease-relevant tau constructs in organotypic hippocampal slices".PMID 16738255
  324. Xue Zhang et al. (2006). "Tumor-suppressor PTEN affects tau phosphorylation, aggregation, and binding to microtubules".PMID 16645045
  325. Christian S Lobsiger et al. (2005). "Altered axonal architecture by removal of the heavily phosphorylated neurofilament tail domains strongly slows superoxide dismutase 1 mutant-mediated ALS".PMID 16002469
  326. Satoru Takahashi et al. (2004). "Mutant superoxide dismutase 1 causes motor neuron degeneration independent of cyclin-dependent kinase 5 activation by p35 or p25".PMID 15009685
  327. Satoru Takahashi et al. (2003). "Tau phosphorylation by cyclin-dependent kinase 5/p39 during brain development reduces its affinity for microtubules".PMID 12536148
  328. Petri Kerokoski et al. (2002). "Cleavage of the cyclin-dependent kinase 5 activator p35 to p25 does not induce tau hyperphosphorylation".PMID 12419309
  329. Osamu Yokota et al. (2002). "NACP/alpha-synuclein immunoreactivity in diffuse neurofibrillary tangles with calcification (DNTC)".PMID 12200618
  330. Lysia S Forno et al. (2002). "Ubiquitin-positive neuronal and tau 2-positive glial inclusions in frontotemporal dementia of motor neuron type".PMID 12012092
  331. J Gotz et al. (2001). "Formation of neurofibrillary tangles in P301l tau transgenic mice induced by Abeta 42 fibrils".PMID 11520988
  332. M Rapoport et al. (2000). "PD98059 prevents neurite degeneration induced by fibrillar beta-amyloid in mature hippocampal neurons".PMID 10617113