这是一篇来自已证抗体库的有关人类 凝血酶敏感素1 (thrombospondin 1) 的综述,是根据39篇发表使用所有方法的文章归纳的。这综述旨在帮助来邦网的访客找到最适合凝血酶敏感素1 抗体。
凝血酶敏感素1 同义词: THBS; THBS-1; TSP; TSP-1; TSP1

赛默飞世尔
小鼠 单克隆(A6.1)
  • 免疫组化-冰冻切片; 小鼠; 1:200; 图 5f
赛默飞世尔凝血酶敏感素1抗体(Thermo Fisher Scientific, MA5-13395)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:200 (图 5f). elife (2020) ncbi
小鼠 单克隆(A6.1)
  • 免疫印迹; 人类; 1:1000; 图 6b
赛默飞世尔凝血酶敏感素1抗体(Invitrogen, 39-9300)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 6b). Transl Res (2017) ncbi
小鼠 单克隆(A6.1)
  • 免疫印迹; 大鼠; 图 9a
赛默飞世尔凝血酶敏感素1抗体(Invitrogen, MS-421-P0)被用于被用于免疫印迹在大鼠样本上 (图 9a). J Appl Physiol (1985) (2017) ncbi
小鼠 单克隆(A6.1)
  • 免疫印迹; 大鼠; 图 3f
赛默飞世尔凝血酶敏感素1抗体(Thermo Scientific, MA5-13398)被用于被用于免疫印迹在大鼠样本上 (图 3f). PLoS ONE (2016) ncbi
小鼠 单克隆(A6.1)
  • 免疫组化-冰冻切片; 小鼠; 1:50; 图 4
赛默飞世尔凝血酶敏感素1抗体(Thermo Fisher Scientific, MA5-13398)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:50 (图 4). J Clin Invest (2016) ncbi
小鼠 单克隆(A6.1)
  • 免疫印迹; 人类; 图 5
赛默飞世尔凝血酶敏感素1抗体(Thermo Scientific, MA5-13398)被用于被用于免疫印迹在人类样本上 (图 5). J Biol Chem (2016) ncbi
小鼠 单克隆(A6.1)
  • 免疫细胞化学; 小鼠; 图 2
  • 免疫印迹; 小鼠; 图 1
赛默飞世尔凝血酶敏感素1抗体(Pierce, A6.1)被用于被用于免疫细胞化学在小鼠样本上 (图 2) 和 被用于免疫印迹在小鼠样本上 (图 1). Cardiovasc Res (2016) ncbi
小鼠 单克隆(D4.6 + A6.1 + MBC 200.1)
  • 免疫组化-冰冻切片; 人类; 图 6
赛默飞世尔凝血酶敏感素1抗体(ThermoScientific, Ab-11)被用于被用于免疫组化-冰冻切片在人类样本上 (图 6). PLoS ONE (2015) ncbi
小鼠 单克隆(A6.1)
  • 免疫组化-石蜡切片; 小鼠; 1:100; 图 2
赛默飞世尔凝血酶敏感素1抗体(Thermo Scientific, A6.1)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:100 (图 2). Br J Surg (2015) ncbi
小鼠 单克隆(C6.7)
  • 免疫印迹; 大鼠; 1:500
赛默飞世尔凝血酶敏感素1抗体(Thermo, C6.7)被用于被用于免疫印迹在大鼠样本上浓度为1:500. Exp Gerontol (2015) ncbi
小鼠 单克隆(A6.1)
  • 免疫印迹; 人类; 图 3
赛默飞世尔凝血酶敏感素1抗体(Thermo Fisher Scientific, MA5-13398)被用于被用于免疫印迹在人类样本上 (图 3). Genome Biol (2015) ncbi
小鼠 单克隆(A6.1)
  • 免疫印迹; 小鼠
赛默飞世尔凝血酶敏感素1抗体(Neo Markers, A6.1)被用于被用于免疫印迹在小鼠样本上. PLoS ONE (2014) ncbi
小鼠 单克隆(D4.6 + A6.1 + MBC 200.1)
  • 免疫细胞化学; 人类
  • 免疫印迹; 人类; 1:5000
赛默飞世尔凝血酶敏感素1抗体(Thermo, TSP-1)被用于被用于免疫细胞化学在人类样本上 和 被用于免疫印迹在人类样本上浓度为1:5000. Am J Physiol Cell Physiol (2015) ncbi
小鼠 单克隆(A6.1)
  • 免疫印迹; 小鼠
赛默飞世尔凝血酶敏感素1抗体(Neo Markers, A6.1)被用于被用于免疫印迹在小鼠样本上. PLoS ONE (2014) ncbi
小鼠 单克隆(A6.1)
  • 免疫印迹; 小鼠
赛默飞世尔凝血酶敏感素1抗体(Neo Markers, A6.1)被用于被用于免疫印迹在小鼠样本上. Am J Physiol Lung Cell Mol Physiol (2014) ncbi
小鼠 单克隆(A6.1)
  • 免疫印迹; 小鼠
赛默飞世尔凝血酶敏感素1抗体(Neo Marker, A6.1)被用于被用于免疫印迹在小鼠样本上. Int J Cell Biol (2013) ncbi
小鼠 单克隆(A6.1)
  • 免疫印迹; 小鼠; 1:1,000
赛默飞世尔凝血酶敏感素1抗体(Neo Markers, A6.1)被用于被用于免疫印迹在小鼠样本上浓度为1:1,000. Mol Cell Biol (2013) ncbi
小鼠 单克隆(A6.1)
  • 免疫印迹; 小鼠; 1:1000
赛默飞世尔凝血酶敏感素1抗体(Invitrogen, 399300)被用于被用于免疫印迹在小鼠样本上浓度为1:1000. PLoS ONE (2013) ncbi
小鼠 单克隆(A6.1)
赛默飞世尔凝血酶敏感素1抗体(Thermo Scientific, MS-421-P0)被用于. Mol Cell Biol (2013) ncbi
小鼠 单克隆(A6.1)
  • 免疫印迹; 小鼠; 图 4
赛默飞世尔凝血酶敏感素1抗体(Neo Marker, A6.1)被用于被用于免疫印迹在小鼠样本上 (图 4). Am J Physiol Renal Physiol (2013) ncbi
小鼠 单克隆(A6.1)
  • 免疫印迹; 人类; 图 4
赛默飞世尔凝血酶敏感素1抗体(Invitrogen, 399300)被用于被用于免疫印迹在人类样本上 (图 4). Eur Respir J (2013) ncbi
小鼠 单克隆(A6.1)
  • 免疫印迹; 大鼠; 1:500; 图 4
赛默飞世尔凝血酶敏感素1抗体(Invitrogen, 399300)被用于被用于免疫印迹在大鼠样本上浓度为1:500 (图 4). J Physiol (2010) ncbi
圣克鲁斯生物技术
小鼠 单克隆(A6.1)
  • 免疫印迹; 大鼠; 1:100; 图 2c
圣克鲁斯生物技术凝血酶敏感素1抗体(Santa cruz, sc-59887)被用于被用于免疫印迹在大鼠样本上浓度为1:100 (图 2c). Physiol Rep (2017) ncbi
小鼠 单克隆(A4.1)
  • 免疫印迹; 人类; 图 4
圣克鲁斯生物技术凝血酶敏感素1抗体(Santa Cruz, sc-59886)被用于被用于免疫印迹在人类样本上 (图 4). Endocr Relat Cancer (2016) ncbi
小鼠 单克隆(3F357)
  • 免疫印迹; 人类; 图 1b
圣克鲁斯生物技术凝血酶敏感素1抗体(Santa Cruz, sc-73158)被用于被用于免疫印迹在人类样本上 (图 1b). Oncotarget (2016) ncbi
小鼠 单克隆(A6.1)
  • 免疫印迹; 人类; 1:100; 图 5
圣克鲁斯生物技术凝血酶敏感素1抗体(Santa Cruz Biotechnology, sc-59887)被用于被用于免疫印迹在人类样本上浓度为1:100 (图 5). Exp Ther Med (2016) ncbi
小鼠 单克隆(A6.1)
  • 免疫印迹; 人类; 1:250; 图 6
圣克鲁斯生物技术凝血酶敏感素1抗体(Santa Cruz, sc-59887)被用于被用于免疫印迹在人类样本上浓度为1:250 (图 6). BMC Cancer (2015) ncbi
小鼠 单克隆(A4.1)
  • 免疫印迹; 小鼠; 1:500; 图 2
圣克鲁斯生物技术凝血酶敏感素1抗体(Santa Cruz, sc-59886)被用于被用于免疫印迹在小鼠样本上浓度为1:500 (图 2). Front Pharmacol (2015) ncbi
小鼠 单克隆(A6.1)
  • 免疫组化-石蜡切片; 大鼠; 1:200; 图 3
圣克鲁斯生物技术凝血酶敏感素1抗体(Santa Cruz, sc-59887)被用于被用于免疫组化-石蜡切片在大鼠样本上浓度为1:200 (图 3). Exp Ther Med (2015) ncbi
小鼠 单克隆(3F357)
  • 免疫印迹; 人类; 1:1200; 图 2
圣克鲁斯生物技术凝血酶敏感素1抗体(Santa Cruz, sc-73158)被用于被用于免疫印迹在人类样本上浓度为1:1200 (图 2). Int J Biol Sci (2015) ncbi
小鼠 单克隆(A6.1)
  • 免疫印迹; 小鼠; 1:2000
圣克鲁斯生物技术凝血酶敏感素1抗体(Santa Cruz, sc-59887)被用于被用于免疫印迹在小鼠样本上浓度为1:2000. J Physiol (2014) ncbi
小鼠 单克隆(A6.1)
  • 免疫印迹; 小鼠
圣克鲁斯生物技术凝血酶敏感素1抗体(Santa Cruz Biotechnology, sc-59887)被用于被用于免疫印迹在小鼠样本上. Am J Pathol (2014) ncbi
艾博抗(上海)贸易有限公司
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:100; 图 5i
艾博抗(上海)贸易有限公司凝血酶敏感素1抗体(Abcam, ab85762)被用于被用于免疫组化在小鼠样本上浓度为1:100 (图 5i). Nat Commun (2019) ncbi
小鼠 单克隆(A6.1)
  • 免疫组化; 大鼠; 1:100; 图 1b
艾博抗(上海)贸易有限公司凝血酶敏感素1抗体(Abcam, ab1823)被用于被用于免疫组化在大鼠样本上浓度为1:100 (图 1b). J Histochem Cytochem (2018) ncbi
小鼠 多克隆
  • 免疫印迹; 小鼠; 1:500; 图 s4
艾博抗(上海)贸易有限公司凝血酶敏感素1抗体(Abcam, ab88529)被用于被用于免疫印迹在小鼠样本上浓度为1:500 (图 s4). J Bone Miner Res (2016) ncbi
小鼠 单克隆(A6.1)
  • 免疫印迹; 人类; 1:1000; 图 5
艾博抗(上海)贸易有限公司凝血酶敏感素1抗体(Abcam, 1823)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 5). Environ Health Perspect (2016) ncbi
小鼠 单克隆(A6.1)
  • 免疫细胞化学; 人类; 图 2
  • 免疫印迹; 人类; 图 7
艾博抗(上海)贸易有限公司凝血酶敏感素1抗体(Abcam, ab1823)被用于被用于免疫细胞化学在人类样本上 (图 2) 和 被用于免疫印迹在人类样本上 (图 7). Cardiovasc Res (2016) ncbi
小鼠 单克隆(A6.1)
  • 免疫组化; 大鼠; 1:50
艾博抗(上海)贸易有限公司凝血酶敏感素1抗体(Abcam, A6.1)被用于被用于免疫组化在大鼠样本上浓度为1:50. J Leukoc Biol (2015) ncbi
小鼠 单克隆(A6.1)
  • 免疫组化-石蜡切片; 人类; 1:400
艾博抗(上海)贸易有限公司凝血酶敏感素1抗体(Abcam, ab1823)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:400. Anticancer Res (2014) ncbi
赛信通(上海)生物试剂有限公司
domestic rabbit 单克隆(D7E5F)
  • 免疫细胞化学; 人类; 1:100; 图 s7a
赛信通(上海)生物试剂有限公司凝血酶敏感素1抗体(CST, 37879)被用于被用于免疫细胞化学在人类样本上浓度为1:100 (图 s7a). Cell Death Dis (2019) ncbi
文章列表
  1. Engelbrecht E, Lévesque M, He L, Vanlandewijck M, Nitzsche A, Niazi H, et al. Sphingosine 1-phosphate-regulated transcriptomes in heterogenous arterial and lymphatic endothelium of the aorta. elife. 2020;9: pubmed 出版商
  2. Diéguez Hurtado R, Kato K, Giaimo B, Nieminen Kelhä M, Arf H, Ferrante F, et al. Loss of the transcription factor RBPJ induces disease-promoting properties in brain pericytes. Nat Commun. 2019;10:2817 pubmed 出版商
  3. Guillon J, Petit C, Moreau M, Toutain B, Henry C, Roche H, et al. Regulation of senescence escape by TSP1 and CD47 following chemotherapy treatment. Cell Death Dis. 2019;10:199 pubmed 出版商
  4. Liu J, Modo M. Quantification of the Extracellular Matrix Molecule Thrombospondin 1 and Its Pericellular Association in the Brain Using a Semiautomated Computerized Approach. J Histochem Cytochem. 2018;66:643-662 pubmed 出版商
  5. Hirayama Y, Nakanishi R, Maeshige N, Fujino H. Preventive effects of nucleoprotein supplementation combined with intermittent loading on capillary regression induced by hindlimb unloading in rat soleus muscle. Physiol Rep. 2017;5: pubmed 出版商
  6. Lee I, Koo K, Jung K, Kim M, Kim I, Hwang K, et al. Neurogenin-2-transduced human neural progenitor cells attenuate neonatal hypoxic-ischemic brain injury. Transl Res. 2017;183:121-136.e9 pubmed 出版商
  7. Dunford E, Leclair E, Aiken J, Mandel E, Haas T, Birot O, et al. The effects of voluntary exercise and prazosin on capillary rarefaction and metabolism in streptozotocin-induced diabetic male rats. J Appl Physiol (1985). 2017;122:492-502 pubmed 出版商
  8. Mandel E, Dunford E, Trifonova A, Abdifarkosh G, Teich T, Riddell M, et al. Prazosin Can Prevent Glucocorticoid Mediated Capillary Rarefaction. PLoS ONE. 2016;11:e0166899 pubmed 出版商
  9. Han H, Kim B, Lee J, Kang S, Kim J, Cho N. Angiopoietin-2 promotes ER+ breast cancer cell survival in bone marrow niche. Endocr Relat Cancer. 2016;23:609-23 pubmed 出版商
  10. Giovannini C, Minguzzi M, Genovese F, Baglioni M, Gualandi A, Ravaioli M, et al. Molecular and proteomic insight into Notch1 characterization in hepatocellular carcinoma. Oncotarget. 2016;7:39609-39626 pubmed 出版商
  11. Kim S, Hayashi H, Ishikawa T, Shibata K, Shigetomi E, Shinozaki Y, et al. Cortical astrocytes rewire somatosensory cortical circuits for peripheral neuropathic pain. J Clin Invest. 2016;126:1983-97 pubmed 出版商
  12. Liu L, Bai Z, Ma X, Wang T, Yang Y, Zhang Z. Effects of taxol resistance gene 1 expression on the chemosensitivity of SGC-7901 cells to oxaliplatin. Exp Ther Med. 2016;11:846-852 pubmed
  13. Xu C, Ochi H, Fukuda T, Sato S, Sunamura S, Takarada T, et al. Circadian Clock Regulates Bone Resorption in Mice. J Bone Miner Res. 2016;31:1344-55 pubmed 出版商
  14. Posner M, Upadhyay A, Abubaker A, Fortunato T, Vara D, Canobbio I, et al. Extracellular Fibrinogen-binding Protein (Efb) from Staphylococcus aureus Inhibits the Formation of Platelet-Leukocyte Complexes. J Biol Chem. 2016;291:2764-76 pubmed 出版商
  15. Shearer J, Wold E, Umbaugh C, Lichti C, Nilsson C, Figueiredo M. Inorganic Arsenic-Related Changes in the Stromal Tumor Microenvironment in a Prostate Cancer Cell-Conditioned Media Model. Environ Health Perspect. 2016;124:1009-15 pubmed 出版商
  16. Labrousse Arias D, Castillo González R, Rogers N, Torres Capelli M, Barreira B, Aragonés J, et al. HIF-2α-mediated induction of pulmonary thrombospondin-1 contributes to hypoxia-driven vascular remodelling and vasoconstriction. Cardiovasc Res. 2016;109:115-30 pubmed 出版商
  17. Durrans A, Gao D, Gupta R, Fischer K, Choi H, El Rayes T, et al. Identification of Reprogrammed Myeloid Cell Transcriptomes in NSCLC. PLoS ONE. 2015;10:e0129123 pubmed 出版商
  18. Fullár A, Dudás J, Oláh L, Hollósi P, Papp Z, Sobel G, et al. Remodeling of extracellular matrix by normal and tumor-associated fibroblasts promotes cervical cancer progression. BMC Cancer. 2015;15:256 pubmed 出版商
  19. Kuroki H, Hayashi H, Nakagawa S, Sakamoto K, Higashi T, Nitta H, et al. Effect of LSKL peptide on thrombospondin 1-mediated transforming growth factor β signal activation and liver regeneration after hepatectomy in an experimental model. Br J Surg. 2015;102:813-25 pubmed 出版商
  20. Lee I, Hüttemann M, Kruger A, Bollig Fischer A, Malek M. (-)-Epicatechin combined with 8 weeks of treadmill exercise is associated with increased angiogenic and mitochondrial signaling in mice. Front Pharmacol. 2015;6:43 pubmed 出版商
  21. Aird A, Nevitt C, Christian K, Williams S, Hoying J, LeBlanc A. Adipose-derived stromal vascular fraction cells isolated from old animals exhibit reduced capacity to support the formation of microvascular networks. Exp Gerontol. 2015;63:18-26 pubmed 出版商
  22. de la Rica L, García Gómez A, Comet N, Rodríguez Ubreva J, Ciudad L, Vento Tormo R, et al. NF-κB-direct activation of microRNAs with repressive effects on monocyte-specific genes is critical for osteoclast differentiation. Genome Biol. 2015;16:2 pubmed 出版商
  23. Lu W, Jiang J, Hu J, Wang J, Zheng M. Curcumin protects against lipopolysaccharide-induced vasoconstriction dysfunction via inhibition of thrombospondin-1 and transforming growth factor-β1. Exp Ther Med. 2015;9:377-383 pubmed
  24. Tao W, Liang X, Liu Y, Wang C, Pang D. Decrease of let-7f in low-dose metronomic Paclitaxel chemotherapy contributed to upregulation of thrombospondin-1 in breast cancer. Int J Biol Sci. 2015;11:48-58 pubmed 出版商
  25. Fei P, Zaitoun I, Farnoodian M, Fisk D, Wang S, Sorenson C, et al. Expression of thrombospondin-1 modulates the angioinflammatory phenotype of choroidal endothelial cells. PLoS ONE. 2014;9:e116423 pubmed 出版商
  26. Ernens I, Bousquenaud M, Lenoir B, Devaux Y, Wagner D. Adenosine stimulates angiogenesis by up-regulating production of thrombospondin-1 by macrophages. J Leukoc Biol. 2015;97:9-18 pubmed 出版商
  27. Ganguly R, Sahu S, Chavez R, Raman P. Trivalent chromium inhibits TSP-1 expression, proliferation, and O-GlcNAc signaling in vascular smooth muscle cells in response to high glucose in vitro. Am J Physiol Cell Physiol. 2015;308:C111-22 pubmed 出版商
  28. Waisberg J, de Souza Viana L, Affonso Junior R, Silva S, Denadai M, Margeotto F, et al. Overexpression of the ITGAV gene is associated with progression and spread of colorectal cancer. Anticancer Res. 2014;34:5599-607 pubmed
  29. Shin E, Huang Q, Gurel Z, Sorenson C, Sheibani N. High glucose alters retinal astrocytes phenotype through increased production of inflammatory cytokines and oxidative stress. PLoS ONE. 2014;9:e103148 pubmed 出版商
  30. Olenich S, Audet G, Roberts K, Olfert I. Effects of detraining on the temporal expression of positive and negative angioregulatory proteins in skeletal muscle of mice. J Physiol. 2014;592:3325-38 pubmed 出版商
  31. Shin E, Sorenson C, Sheibani N. PEDF expression regulates the proangiogenic and proinflammatory phenotype of the lung endothelium. Am J Physiol Lung Cell Mol Physiol. 2014;306:L620-34 pubmed 出版商
  32. Li J, Tan H, Wang X, Li Y, Samuelson L, Li X, et al. Circulating fibrocytes stabilize blood vessels during angiogenesis in a paracrine manner. Am J Pathol. 2014;184:556-71 pubmed 出版商
  33. Morrison M, Palenski T, Jamali N, Sheibani N, Sorenson C. Modulation of vascular cell function by bim expression. Int J Cell Biol. 2013;2013:297537 pubmed 出版商
  34. Zhao Y, Wang S, Sorenson C, Teixeira L, Dubielzig R, Peters D, et al. Cyp1b1 mediates periostin regulation of trabecular meshwork development by suppression of oxidative stress. Mol Cell Biol. 2013;33:4225-40 pubmed 出版商
  35. Audet G, Fulks D, Stricker J, Olfert I. Chronic delivery of a thrombospondin-1 mimetic decreases skeletal muscle capillarity in mice. PLoS ONE. 2013;8:e55953 pubmed 出版商
  36. Chandler R, Brennan J, Schisler J, Serber D, Patterson C, Magnuson T. ARID1a-DNA interactions are required for promoter occupancy by SWI/SNF. Mol Cell Biol. 2013;33:265-80 pubmed 出版商
  37. Grutzmacher C, Park S, Zhao Y, Morrison M, Sheibani N, Sorenson C. Aberrant production of extracellular matrix proteins and dysfunction in kidney endothelial cells with a short duration of diabetes. Am J Physiol Renal Physiol. 2013;304:F19-30 pubmed 出版商
  38. Gouzi F, Prefaut C, Abdellaoui A, Roudier E, de Rigal P, Molinari N, et al. Blunted muscle angiogenic training-response in COPD patients versus sedentary controls. Eur Respir J. 2013;41:806-14 pubmed 出版商
  39. Roudier E, Gineste C, Wazna A, Dehghan K, Desplanches D, Birot O. Angio-adaptation in unloaded skeletal muscle: new insights into an early and muscle type-specific dynamic process. J Physiol. 2010;588:4579-91 pubmed 出版商