这是一篇来自已证抗体库的有关人类 转铁蛋白受体 (transferrin receptor) 的综述,是根据546篇发表使用所有方法的文章归纳的。这综述旨在帮助来邦网的访客找到最适合转铁蛋白受体 抗体。
转铁蛋白受体 同义词: CD71; IMD46; T9; TFR; TFR1; TR; TRFR; p90

赛默飞世尔
小鼠 单克隆(H68.4)
  • 免疫印迹; 人类; 1:1000; 图 1a
赛默飞世尔转铁蛋白受体抗体(Invitrogen, 13-6800)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 1a). Antioxidants (Basel) (2021) ncbi
小鼠 单克隆(H68.4)
  • 免疫印迹; 人类; 1:3000; 图 3a
赛默飞世尔转铁蛋白受体抗体(Invitrogen, 13-6800)被用于被用于免疫印迹在人类样本上浓度为1:3000 (图 3a). Oxid Med Cell Longev (2021) ncbi
小鼠 单克隆(H68.4)
  • 免疫印迹; 小鼠; 图 3d
赛默飞世尔转铁蛋白受体抗体(Zymed, 13-6800)被用于被用于免疫印迹在小鼠样本上 (图 3d). PLoS Pathog (2021) ncbi
小鼠 单克隆(OKT9 (OKT-9))
  • 流式细胞仪; 人类; 图 6d, 6e
赛默飞世尔转铁蛋白受体抗体(ThermoFisher, OKT9)被用于被用于流式细胞仪在人类样本上 (图 6d, 6e). Front Immunol (2020) ncbi
小鼠 单克隆(H68.4)
  • 免疫印迹; 人类; 图 6c
赛默飞世尔转铁蛋白受体抗体(Thermo Fisher Scientific, H68.4)被用于被用于免疫印迹在人类样本上 (图 6c). EMBO J (2020) ncbi
小鼠 单克隆(H68.4)
  • 免疫组化-冰冻切片; pigs ; 图 5b
赛默飞世尔转铁蛋白受体抗体(Thermo Fisher, 136800)被用于被用于免疫组化-冰冻切片在pigs 样本上 (图 5b). Animals (Basel) (2020) ncbi
小鼠 单克隆(OKT9 (OKT-9))
  • 流式细胞仪; 人类; 1:400; 图 10b
赛默飞世尔转铁蛋白受体抗体(Invitrogen, 17-0719-42)被用于被用于流式细胞仪在人类样本上浓度为1:400 (图 10b). JCI Insight (2020) ncbi
小鼠 单克隆(H68.4)
  • 免疫印迹; 小鼠; 图 s3b
赛默飞世尔转铁蛋白受体抗体(Invitrogen, H68.4)被用于被用于免疫印迹在小鼠样本上 (图 s3b). Nat Chem Biol (2020) ncbi
小鼠 单克隆(H68.4)
  • 免疫印迹; 人类; 1:1000; 图 3d
赛默飞世尔转铁蛋白受体抗体(Thermo Fisher Scientific, 13-C6800)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3d). Nat Commun (2020) ncbi
小鼠 单克隆(OKT9 (OKT-9))
  • 流式细胞仪; 人类; 图 2b
赛默飞世尔转铁蛋白受体抗体(eBioscience, 25-0719-42)被用于被用于流式细胞仪在人类样本上 (图 2b). Development (2019) ncbi
小鼠 单克隆(H68.4)
  • 免疫印迹; 小鼠; 1:2000; 图 1d
  • 免疫印迹; 人类; 1:2000; 图 5c
赛默飞世尔转铁蛋白受体抗体(Thermo Fisher, 13-6800)被用于被用于免疫印迹在小鼠样本上浓度为1:2000 (图 1d) 和 被用于免疫印迹在人类样本上浓度为1:2000 (图 5c). elife (2019) ncbi
小鼠 单克隆(H68.4)
  • 免疫印迹; 人类; 1:1000; 图 3a
赛默飞世尔转铁蛋白受体抗体(Thermo Fischer Scientific, H68.4)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3a). Nature (2019) ncbi
小鼠 单克隆(OKT9 (OKT-9))
  • 流式细胞仪; 人类; 1:50; 图 3a, 3b
赛默飞世尔转铁蛋白受体抗体(eBioscience/Thermo, 17-0719-42)被用于被用于流式细胞仪在人类样本上浓度为1:50 (图 3a, 3b). Stem Cells (2019) ncbi
小鼠 单克隆(H68.4)
  • 免疫细胞化学; 人类; 图 2c
  • 免疫印迹; 人类; 1:5000; 图 s2c
赛默飞世尔转铁蛋白受体抗体(Thermo Fisher, 13-6800)被用于被用于免疫细胞化学在人类样本上 (图 2c) 和 被用于免疫印迹在人类样本上浓度为1:5000 (图 s2c). Dev Cell (2019) ncbi
小鼠 单克隆(OKT9 (OKT-9))
  • 流式细胞仪; 人类; 1:50; 图 1b
赛默飞世尔转铁蛋白受体抗体(eBioscience, 14-0719-82)被用于被用于流式细胞仪在人类样本上浓度为1:50 (图 1b). Cell Rep (2019) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 图 1b
赛默飞世尔转铁蛋白受体抗体(Sigma, PA5-27739)被用于被用于免疫细胞化学在人类样本上 (图 1b). Am J Respir Crit Care Med (2019) ncbi
小鼠 单克隆(OKT9 (OKT-9))
  • 流式细胞仪; 人类; 图 5a
赛默飞世尔转铁蛋白受体抗体(Thermo Fisher, 13-0719-82)被用于被用于流式细胞仪在人类样本上 (图 5a). Cell Rep (2019) ncbi
小鼠 单克隆(H68.4)
  • 免疫印迹; 小鼠; 图 1e
赛默飞世尔转铁蛋白受体抗体(Invitrogen, 136800)被用于被用于免疫印迹在小鼠样本上 (图 1e). Cell Rep (2018) ncbi
小鼠 单克隆(H68.4)
  • 免疫印迹; 小鼠; 图 1h
赛默飞世尔转铁蛋白受体抗体(Thermo Fisher, 13-6800)被用于被用于免疫印迹在小鼠样本上 (图 1h). J Clin Invest (2019) ncbi
小鼠 单克隆(H68.4)
  • 免疫细胞化学; 人类; 图 s13a
赛默飞世尔转铁蛋白受体抗体(ThermoFisher, H68.4)被用于被用于免疫细胞化学在人类样本上 (图 s13a). Science (2018) ncbi
小鼠 单克隆(H68.4)
  • 免疫细胞化学; 人类; 1:200; 图 s4i
赛默飞世尔转铁蛋白受体抗体(ThermoFischer Scientific, 13-6800 )被用于被用于免疫细胞化学在人类样本上浓度为1:200 (图 s4i). Science (2018) ncbi
小鼠 单克隆(H68.4)
  • 免疫印迹; 人类; 图 s1c
赛默飞世尔转铁蛋白受体抗体(Thermo Fisher Scientific, 13-6800)被用于被用于免疫印迹在人类样本上 (图 s1c). Cell (2018) ncbi
小鼠 单克隆(H68.4)
  • 免疫组化; 牛; 图 1a
  • 免疫印迹; 牛; 1:1000; 图 3a
赛默飞世尔转铁蛋白受体抗体(Invitrogen, 136800)被用于被用于免疫组化在牛样本上 (图 1a) 和 被用于免疫印迹在牛样本上浓度为1:1000 (图 3a). Exp Eye Res (2018) ncbi
小鼠 单克隆(H68.4)
  • 免疫细胞化学; 大鼠; 1:100; 图 1b
  • 免疫印迹; 大鼠; 1:1000; 图 s1b
赛默飞世尔转铁蛋白受体抗体(Innovative Research, 13-6800)被用于被用于免疫细胞化学在大鼠样本上浓度为1:100 (图 1b) 和 被用于免疫印迹在大鼠样本上浓度为1:1000 (图 s1b). Neuron (2018) ncbi
小鼠 单克隆(OKT9 (OKT-9))
  • 流式细胞仪; 人类; 图 7a
赛默飞世尔转铁蛋白受体抗体(eBioscience, 12-0719-42)被用于被用于流式细胞仪在人类样本上 (图 7a). Cell (2018) ncbi
小鼠 单克隆(H68.4)
  • 免疫印迹; 人类; 图 5b
赛默飞世尔转铁蛋白受体抗体(Invitrogen, 13-6800)被用于被用于免疫印迹在人类样本上 (图 5b). Cell Mol Life Sci (2018) ncbi
小鼠 单克隆(H68.4)
  • 免疫组化; 人类; 图 1b
赛默飞世尔转铁蛋白受体抗体(Invitrogen, 136800)被用于被用于免疫组化在人类样本上 (图 1b). Biol Open (2017) ncbi
小鼠 单克隆(H68.4)
赛默飞世尔转铁蛋白受体抗体(生活技术, 136800)被用于. Nat Commun (2017) ncbi
小鼠 单克隆(OKT9 (OKT-9))
  • 流式细胞仪; 人类; 图 5b
赛默飞世尔转铁蛋白受体抗体(Affymetrix, 25-0719-42)被用于被用于流式细胞仪在人类样本上 (图 5b). Nat Commun (2017) ncbi
小鼠 单克隆(236-15375)
  • 免疫细胞化学; 人类; 图 3f
赛默飞世尔转铁蛋白受体抗体(Thermo Fisher Scientific, 236-15375)被用于被用于免疫细胞化学在人类样本上 (图 3f). Nature (2017) ncbi
小鼠 单克隆(H68.4)
  • 免疫印迹; 人类; 1:200
赛默飞世尔转铁蛋白受体抗体(Thermo fisher scientific, H68-41)被用于被用于免疫印迹在人类样本上浓度为1:200. Nat Commun (2017) ncbi
小鼠 单克隆(H68.4)
  • 免疫印迹; 人类; 1:500; 图 3a
赛默飞世尔转铁蛋白受体抗体(Invitrogen, 136800)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 3a). Biochim Biophys Acta Gen Subj (2017) ncbi
小鼠 单克隆(H68.4)
  • 免疫印迹; 仓鼠; 图 2F
赛默飞世尔转铁蛋白受体抗体(Thermo Fisher, 13-6890)被用于被用于免疫印迹在仓鼠样本上 (图 2F). J Neurosci (2017) ncbi
小鼠 单克隆(H68.4)
  • 免疫细胞化学; 人类; 图 s2c
赛默飞世尔转铁蛋白受体抗体(Invitrogen, 13-6800)被用于被用于免疫细胞化学在人类样本上 (图 s2c). J Cell Biol (2017) ncbi
小鼠 单克隆(H68.4)
  • 免疫细胞化学; 人类; 1:500; 图 5a
赛默飞世尔转铁蛋白受体抗体(生活技术, H68.4)被用于被用于免疫细胞化学在人类样本上浓度为1:500 (图 5a). J Cell Sci (2017) ncbi
小鼠 单克隆(236-15375)
  • 免疫细胞化学; 人类; 1:250; 图 3c
赛默飞世尔转铁蛋白受体抗体(ThermoFisher, A11130)被用于被用于免疫细胞化学在人类样本上浓度为1:250 (图 3c). Front Cell Infect Microbiol (2017) ncbi
小鼠 单克隆(H68.4)
  • 免疫细胞化学; 人类; 图 4a
赛默飞世尔转铁蛋白受体抗体(ThermoFisher, 136800)被用于被用于免疫细胞化学在人类样本上 (图 4a). Front Cell Infect Microbiol (2017) ncbi
小鼠 单克隆(H68.4)
  • 免疫印迹; 人类; 图 7a
赛默飞世尔转铁蛋白受体抗体(Thermo Fisher, 13-6890)被用于被用于免疫印迹在人类样本上 (图 7a). Breast Cancer Res (2017) ncbi
小鼠 单克隆(H68.4)
  • 免疫印迹; 人类; 图 1a
赛默飞世尔转铁蛋白受体抗体(Invitrogen, 13-6800)被用于被用于免疫印迹在人类样本上 (图 1a). Front Genet (2017) ncbi
小鼠 单克隆(OKT9 (OKT-9))
  • 流式细胞仪; 人类; 图 s11d
赛默飞世尔转铁蛋白受体抗体(eBiosciences, OKT9)被用于被用于流式细胞仪在人类样本上 (图 s11d). Nat Genet (2017) ncbi
小鼠 单克隆(OKT9 (OKT-9))
  • 流式细胞仪; 人类
赛默飞世尔转铁蛋白受体抗体(ebioscience, 11-0719-42)被用于被用于流式细胞仪在人类样本上. PLoS ONE (2017) ncbi
小鼠 单克隆(H68.4)
  • 免疫印迹; 大鼠; 图 1b
赛默飞世尔转铁蛋白受体抗体(thermo fisher scientific, 13-6800)被用于被用于免疫印迹在大鼠样本上 (图 1b). J Lipid Res (2017) ncbi
小鼠 单克隆(H68.4)
  • 免疫印迹; 人类; 图 5d
  • 免疫印迹; 小鼠; 图 6d
赛默飞世尔转铁蛋白受体抗体(Invitrogen, 136800)被用于被用于免疫印迹在人类样本上 (图 5d) 和 被用于免疫印迹在小鼠样本上 (图 6d). Arterioscler Thromb Vasc Biol (2017) ncbi
小鼠 单克隆(H68.4)
  • 免疫印迹; 人类; 图 7f
赛默飞世尔转铁蛋白受体抗体(Zymed, 13-6800)被用于被用于免疫印迹在人类样本上 (图 7f). J Virol (2017) ncbi
小鼠 单克隆(H68.4)
  • 免疫组化; 人类; 1:1000; 图 4d
赛默飞世尔转铁蛋白受体抗体(生活技术, H68.4)被用于被用于免疫组化在人类样本上浓度为1:1000 (图 4d). Mol Cell Biol (2017) ncbi
小鼠 单克隆(H68.4)
  • 免疫印迹; 小鼠; 图 1c
赛默飞世尔转铁蛋白受体抗体(Invitrogen, 13-6800)被用于被用于免疫印迹在小鼠样本上 (图 1c). Mol Cell Biol (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:2000; 图 4c
赛默飞世尔转铁蛋白受体抗体(Invitrogin, PA5-27739)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 4c). Front Aging Neurosci (2016) ncbi
小鼠 单克隆(H68.4)
  • 免疫印迹; 人类; 1:2500; 图 2d
赛默飞世尔转铁蛋白受体抗体(ThermoScientific, 13-6800)被用于被用于免疫印迹在人类样本上浓度为1:2500 (图 2d). Oncotarget (2017) ncbi
小鼠 单克隆(H68.4)
  • 免疫细胞化学; 人类; 1:300; 图 4d
  • 免疫印迹; 人类; 1:500; 图 3a
赛默飞世尔转铁蛋白受体抗体(生活技术, 13-6800)被用于被用于免疫细胞化学在人类样本上浓度为1:300 (图 4d) 和 被用于免疫印迹在人类样本上浓度为1:500 (图 3a). J Cancer (2016) ncbi
小鼠 单克隆(H68.4)
  • 免疫印迹; 小鼠; 1:1000; 图 3a
赛默飞世尔转铁蛋白受体抗体(生活技术, 136890)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 3a). Sci Rep (2016) ncbi
小鼠 单克隆(H68.4)
  • 免疫细胞化学; 小鼠; 1:100; 图 4a
赛默飞世尔转铁蛋白受体抗体(Invitrogen, 13-6800)被用于被用于免疫细胞化学在小鼠样本上浓度为1:100 (图 4a). Opt Express (2016) ncbi
小鼠 单克隆(H68.4)
  • 免疫印迹; 人类; 1:1000; 图 5
赛默飞世尔转铁蛋白受体抗体(Invitrogen, H68.4)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 5). Mol Nutr Food Res (2017) ncbi
小鼠 单克隆(H68.4)
  • 免疫印迹; 小鼠; 图 2a
赛默飞世尔转铁蛋白受体抗体(生活技术, H68.4)被用于被用于免疫印迹在小鼠样本上 (图 2a). Development (2016) ncbi
小鼠 单克隆(H68.4)
  • 免疫细胞化学; 人类; 图 1
  • 免疫印迹; 人类; 图 5d
赛默飞世尔转铁蛋白受体抗体(Zymed, H68.4)被用于被用于免疫细胞化学在人类样本上 (图 1) 和 被用于免疫印迹在人类样本上 (图 5d). Mol Biol Cell (2016) ncbi
小鼠 单克隆(H68.4)
  • 免疫印迹; 人类; 1:1000; 图 3b
赛默飞世尔转铁蛋白受体抗体(Invitrogen, 13-6800)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3b). Sci Rep (2016) ncbi
小鼠 单克隆(H68.4)
  • 免疫印迹; 小鼠; 1:500; 图 2
赛默飞世尔转铁蛋白受体抗体(Invitrogen, 13-6800)被用于被用于免疫印迹在小鼠样本上浓度为1:500 (图 2). Front Neurosci (2016) ncbi
小鼠 单克隆(H68.4)
  • 免疫组化; 人类; 1:200; 图 1b
赛默飞世尔转铁蛋白受体抗体(ThermoFisher Scientific, 13-6800)被用于被用于免疫组化在人类样本上浓度为1:200 (图 1b). Wien Med Wochenschr (2016) ncbi
小鼠 单克隆(H68.4)
  • 免疫细胞化学; 牛; 1:100; 图 1c
赛默飞世尔转铁蛋白受体抗体(Thermo Fisher, 13-6800)被用于被用于免疫细胞化学在牛样本上浓度为1:100 (图 1c). Mol Cell Neurosci (2016) ncbi
小鼠 单克隆(236-15375)
  • 免疫细胞化学; 人类; 图 8a
赛默飞世尔转铁蛋白受体抗体(分子探针, 236-15375)被用于被用于免疫细胞化学在人类样本上 (图 8a). J Cell Physiol (2017) ncbi
小鼠 单克隆(H68.4)
  • 免疫印迹; 大鼠; 图 3a
赛默飞世尔转铁蛋白受体抗体(生活技术, H68.4)被用于被用于免疫印迹在大鼠样本上 (图 3a). Biochim Biophys Acta (2016) ncbi
小鼠 单克隆(H68.4)
  • 免疫印迹; 小鼠; 图 4c
赛默飞世尔转铁蛋白受体抗体(Invitrogen, 13-6800)被用于被用于免疫印迹在小鼠样本上 (图 4c). Ann N Y Acad Sci (2016) ncbi
小鼠 单克隆(10F11)
  • 免疫印迹; 人类; 1:200; 图 1
赛默飞世尔转铁蛋白受体抗体(Thermo Fisher, MA5-11441)被用于被用于免疫印迹在人类样本上浓度为1:200 (图 1). Mol Med Rep (2016) ncbi
小鼠 单克隆(H68.4)
  • 免疫细胞化学; 人类; 10 ug/ml; 图 6a
赛默飞世尔转铁蛋白受体抗体(生活技术, 13-6800)被用于被用于免疫细胞化学在人类样本上浓度为10 ug/ml (图 6a). Nat Commun (2016) ncbi
小鼠 单克隆(H68.4)
  • 免疫组化; 小鼠; 1:400; 图 1a
  • 免疫印迹; 小鼠; 图 6b
赛默飞世尔转铁蛋白受体抗体(Invitrogen, 136800)被用于被用于免疫组化在小鼠样本上浓度为1:400 (图 1a) 和 被用于免疫印迹在小鼠样本上 (图 6b). Cell Death Dis (2016) ncbi
小鼠 单克隆(H68.4)
  • 免疫组化-石蜡切片; 小鼠; 图 1
  • 免疫印迹; 小鼠; 1:2000; 图 2
  • 免疫细胞化学; 人类; 图 1
  • 免疫印迹; 人类; 1:2000; 图 5
赛默飞世尔转铁蛋白受体抗体(Invitrogen, 13-6800)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 1), 被用于免疫印迹在小鼠样本上浓度为1:2000 (图 2), 被用于免疫细胞化学在人类样本上 (图 1) 和 被用于免疫印迹在人类样本上浓度为1:2000 (图 5). Free Radic Biol Med (2016) ncbi
小鼠 单克隆(H68.4)
  • 免疫印迹; 小鼠; 1:2000; 图 s9
赛默飞世尔转铁蛋白受体抗体(Invitrogen, 13-6890)被用于被用于免疫印迹在小鼠样本上浓度为1:2000 (图 s9). Nat Neurosci (2016) ncbi
小鼠 单克隆(H68.4)
  • 免疫印迹; 大鼠; 1:1000; 图 3
  • 免疫印迹; 人类; 1:1000; 图 3
赛默飞世尔转铁蛋白受体抗体(Thermo Fisher Scientific, 13-C6800)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 3) 和 被用于免疫印迹在人类样本上浓度为1:1000 (图 3). Biochem Biophys Res Commun (2016) ncbi
小鼠 单克隆(OKT9 (OKT-9))
  • 流式细胞仪; 人类; 图 9h
赛默飞世尔转铁蛋白受体抗体(eBiosciences, OKT9)被用于被用于流式细胞仪在人类样本上 (图 9h). J Immunol (2016) ncbi
小鼠 单克隆(H68.4)
  • 免疫印迹; 大鼠; 1:1000; 图 6
赛默飞世尔转铁蛋白受体抗体(Invitrogen, 13-6800)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 6). J Neurosci (2016) ncbi
小鼠 单克隆(H68.4)
  • 免疫印迹; 小鼠; 图 1
赛默飞世尔转铁蛋白受体抗体(Invitrogen, 13-6800)被用于被用于免疫印迹在小鼠样本上 (图 1). Metab Brain Dis (2016) ncbi
小鼠 单克隆(H68.4)
  • 免疫细胞化学; 小鼠; 1:200; 图 s4
  • 免疫印迹; 小鼠; 1:1000; 图 s7
赛默飞世尔转铁蛋白受体抗体(Invitrogen, 13-6800)被用于被用于免疫细胞化学在小鼠样本上浓度为1:200 (图 s4) 和 被用于免疫印迹在小鼠样本上浓度为1:1000 (图 s7). Nat Commun (2016) ncbi
小鼠 单克隆(H68.4)
  • 免疫印迹; 大鼠; 1:2000; 图 1
赛默飞世尔转铁蛋白受体抗体(生活技术, 13-6890)被用于被用于免疫印迹在大鼠样本上浓度为1:2000 (图 1). J Nutr (2016) ncbi
小鼠 单克隆(H68.4)
  • 免疫细胞化学; pigs ; 1:25; 图 4c
赛默飞世尔转铁蛋白受体抗体(生活技术, H68.4)被用于被用于免疫细胞化学在pigs 样本上浓度为1:25 (图 4c). PLoS Pathog (2016) ncbi
小鼠 单克隆(H68.4)
  • 免疫细胞化学; 人类; 1:200; 图 6
  • 免疫印迹; 人类; 1:1000; 图 5
赛默飞世尔转铁蛋白受体抗体(Zymed, 13- 6800)被用于被用于免疫细胞化学在人类样本上浓度为1:200 (图 6) 和 被用于免疫印迹在人类样本上浓度为1:1000 (图 5). J Cell Sci (2016) ncbi
小鼠 单克隆(H68.4)
  • 免疫细胞化学; 人类; 图 6
  • 免疫印迹; 人类; 图 5
赛默飞世尔转铁蛋白受体抗体(生活技术, 13?C6800)被用于被用于免疫细胞化学在人类样本上 (图 6) 和 被用于免疫印迹在人类样本上 (图 5). Autophagy (2016) ncbi
小鼠 单克隆(H68.4)
  • 免疫印迹; 人类; 图 4
赛默飞世尔转铁蛋白受体抗体(Life Tech, 13-6800)被用于被用于免疫印迹在人类样本上 (图 4). Osteoarthritis Cartilage (2016) ncbi
小鼠 单克隆(H68.4)
  • 免疫印迹; 小鼠; 1:1000; 图 2
赛默飞世尔转铁蛋白受体抗体(Invitrogen, 13-6800)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 2). Exp Neurol (2016) ncbi
小鼠 单克隆(H68.4)
  • 免疫印迹; 人类; 图 3
赛默飞世尔转铁蛋白受体抗体(生活技术, 136800)被用于被用于免疫印迹在人类样本上 (图 3). World J Surg Oncol (2016) ncbi
小鼠 单克隆(H68.4)
  • 免疫印迹; 小鼠; 1:500; 图 5
赛默飞世尔转铁蛋白受体抗体(ThermoFisher Scientific, 13-6890)被用于被用于免疫印迹在小鼠样本上浓度为1:500 (图 5). Channels (Austin) (2016) ncbi
小鼠 单克隆(H68.4)
  • 免疫组化-石蜡切片; 人类; 1:2000; 图 3a
赛默飞世尔转铁蛋白受体抗体(Invitrogen, H68.4)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:2000 (图 3a). Cancer Immunol Res (2016) ncbi
小鼠 单克隆(H68.4)
  • 免疫印迹; 人类; 1:1000; 图 5
赛默飞世尔转铁蛋白受体抗体(Invitrogen, 13-6890)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 5). J Cell Biol (2016) ncbi
小鼠 单克隆(H68.4)
  • 免疫印迹; 小鼠; 1:2000; 图 3
赛默飞世尔转铁蛋白受体抗体(Invitrogen, 13-6800)被用于被用于免疫印迹在小鼠样本上浓度为1:2000 (图 3). J Neurochem (2016) ncbi
小鼠 单克隆(H68.4)
  • 流式细胞仪; 人类; 1:200
  • 免疫细胞化学; 人类; 1:200
赛默飞世尔转铁蛋白受体抗体(生活技术, H68.4)被用于被用于流式细胞仪在人类样本上浓度为1:200 和 被用于免疫细胞化学在人类样本上浓度为1:200. Nature (2016) ncbi
小鼠 单克隆(H68.4)
  • 免疫细胞化学; 人类; 图 7
  • 免疫印迹; 人类; 图 1
赛默飞世尔转铁蛋白受体抗体(生活技术, H68.4)被用于被用于免疫细胞化学在人类样本上 (图 7) 和 被用于免疫印迹在人类样本上 (图 1). Traffic (2016) ncbi
小鼠 单克隆(H68.4)
  • 免疫印迹; 人类; 1:50; 图 3a
赛默飞世尔转铁蛋白受体抗体(Invitrogen, 13-6,800)被用于被用于免疫印迹在人类样本上浓度为1:50 (图 3a). Nat Commun (2016) ncbi
小鼠 单克隆(H68.4)
  • 免疫印迹; 人类; 1:1000; 图 2
赛默飞世尔转铁蛋白受体抗体(Invitrogen, H68.4)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 2). J Biol Chem (2016) ncbi
小鼠 单克隆(H68.4)
  • 免疫细胞化学; 大鼠; 图 1
赛默飞世尔转铁蛋白受体抗体(Invitrogen, 13-6800)被用于被用于免疫细胞化学在大鼠样本上 (图 1). Mol Biol Cell (2016) ncbi
小鼠 单克隆(H68.4)
  • 免疫细胞化学; 仓鼠; 1:200; 图 6
  • 免疫印迹; 仓鼠; 图 8
赛默飞世尔转铁蛋白受体抗体(Invitrogen, H68.4)被用于被用于免疫细胞化学在仓鼠样本上浓度为1:200 (图 6) 和 被用于免疫印迹在仓鼠样本上 (图 8). J Cell Biol (2015) ncbi
小鼠 单克隆(H68.4)
  • 免疫印迹; cabbage looper; 图 5
赛默飞世尔转铁蛋白受体抗体(Thermo Fischer Scientific, H68.4)被用于被用于免疫印迹在cabbage looper样本上 (图 5). J Biol Chem (2016) ncbi
小鼠 单克隆(T56/14)
  • 流式细胞仪; 人类; 图 3
赛默飞世尔转铁蛋白受体抗体(Invitrogen, T56/14)被用于被用于流式细胞仪在人类样本上 (图 3). PLoS ONE (2015) ncbi
小鼠 单克隆(H68.4)
  • 免疫印迹; 人类; 图 2d
赛默飞世尔转铁蛋白受体抗体(Invitrogen, H68.4)被用于被用于免疫印迹在人类样本上 (图 2d). Nat Genet (2016) ncbi
小鼠 单克隆(H68.4)
  • 免疫印迹; 人类; 1:1000; 图 9
赛默飞世尔转铁蛋白受体抗体(Zymed, 13-6800)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 9). Neurobiol Dis (2016) ncbi
小鼠 单克隆(OKT9 (OKT-9))
  • 流式细胞仪; 人类; 图 s1a, s1b, s1c
赛默飞世尔转铁蛋白受体抗体(eBioscience, OKT9)被用于被用于流式细胞仪在人类样本上 (图 s1a, s1b, s1c). Science (2016) ncbi
小鼠 单克隆(H68.4)
  • 免疫细胞化学; African green monkey; 图 2
赛默飞世尔转铁蛋白受体抗体(Zymed, H68.4)被用于被用于免疫细胞化学在African green monkey样本上 (图 2). Mol Biol Cell (2016) ncbi
小鼠 单克隆(H68.4)
  • 免疫组化-石蜡切片; 人类; 1:500; 图 3
  • 免疫印迹; 人类; 1:2000; 图 4
赛默飞世尔转铁蛋白受体抗体(Zymed, 13-6800)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:500 (图 3) 和 被用于免疫印迹在人类样本上浓度为1:2000 (图 4). Redox Biol (2015) ncbi
小鼠 单克隆(H68.4)
  • 免疫细胞化学; 小鼠; 1:100; 图 3
赛默飞世尔转铁蛋白受体抗体(Invitrogen, 136800)被用于被用于免疫细胞化学在小鼠样本上浓度为1:100 (图 3). Free Radic Biol Med (2015) ncbi
小鼠 单克隆(H68.4)
  • 免疫组化; 小鼠; 1:1000; 图 s1
赛默飞世尔转铁蛋白受体抗体(生活技术, H68.4)被用于被用于免疫组化在小鼠样本上浓度为1:1000 (图 s1). J Cell Biol (2015) ncbi
小鼠 单克隆(10F11)
  • 免疫细胞化学; 人类; 1:40; 图 5
赛默飞世尔转铁蛋白受体抗体(Thermo Scientific, 10F11)被用于被用于免疫细胞化学在人类样本上浓度为1:40 (图 5). Phytomedicine (2015) ncbi
小鼠 单克隆(H68.4)
  • 免疫印迹; 人类
赛默飞世尔转铁蛋白受体抗体(Zymed, 136800)被用于被用于免疫印迹在人类样本上. PLoS ONE (2015) ncbi
小鼠 单克隆(H68.4)
  • 免疫印迹基因敲除验证; 小鼠; 1:1000; 图 1
赛默飞世尔转铁蛋白受体抗体(生活技术, 13-6890)被用于被用于免疫印迹基因敲除验证在小鼠样本上浓度为1:1000 (图 1). Proc Natl Acad Sci U S A (2015) ncbi
小鼠 单克隆(H68.4)
  • 免疫印迹; 大鼠
赛默飞世尔转铁蛋白受体抗体(生活技术, 13-6800)被用于被用于免疫印迹在大鼠样本上. PLoS ONE (2015) ncbi
小鼠 单克隆(H68.4)
  • 免疫印迹; 大鼠; 1:200
赛默飞世尔转铁蛋白受体抗体(Invitrogen, 13-6800)被用于被用于免疫印迹在大鼠样本上浓度为1:200. Mol Neurodegener (2015) ncbi
小鼠 单克隆(H68.4)
  • 免疫细胞化学; 人类; 1:100; 图 s5
赛默飞世尔转铁蛋白受体抗体(Invitrogen, H68.4)被用于被用于免疫细胞化学在人类样本上浓度为1:100 (图 s5). Sci Rep (2015) ncbi
小鼠 单克隆(H68.4)
  • 免疫印迹; 小鼠; 图 11
赛默飞世尔转铁蛋白受体抗体(Invitrogen, 13C6800)被用于被用于免疫印迹在小鼠样本上 (图 11). elife (2015) ncbi
小鼠 单克隆(OKT9 (OKT-9))
  • 流式细胞仪; 人类; 图 1e
赛默飞世尔转铁蛋白受体抗体(eBioscience, OKT-9)被用于被用于流式细胞仪在人类样本上 (图 1e). Cytotherapy (2015) ncbi
小鼠 单克隆(3B82A1)
  • 免疫印迹; 人类; 1:2000; 图 1a
赛默飞世尔转铁蛋白受体抗体(Thermo Scientific, 3B82A1)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 1a). Blood Cells Mol Dis (2015) ncbi
小鼠 单克隆(H68.4)
  • 免疫印迹; 小鼠; 1:1000
赛默飞世尔转铁蛋白受体抗体(Invitrogen, 13-6800)被用于被用于免疫印迹在小鼠样本上浓度为1:1000. J Neurosci (2015) ncbi
小鼠 单克隆(H68.4)
  • 免疫印迹; 人类
赛默飞世尔转铁蛋白受体抗体(Invitrogen, 13-6890)被用于被用于免疫印迹在人类样本上. J Virol (2015) ncbi
小鼠 单克隆(H68.4)
  • 免疫印迹; 人类; 1:1000
赛默飞世尔转铁蛋白受体抗体(Invitrogen, 13-6800)被用于被用于免疫印迹在人类样本上浓度为1:1000. PLoS ONE (2015) ncbi
小鼠 单克隆(T56/14)
  • 流式细胞仪; 人类
赛默飞世尔转铁蛋白受体抗体(Invitrogen, MHCD7104)被用于被用于流式细胞仪在人类样本上. Blood (2015) ncbi
小鼠 单克隆(H68.4)
  • 免疫细胞化学; 大鼠; 1:300; 图 3
赛默飞世尔转铁蛋白受体抗体(Zymed, Thermo Scientific Pierce, 13-6800)被用于被用于免疫细胞化学在大鼠样本上浓度为1:300 (图 3). elife (2015) ncbi
小鼠 单克隆(H68.4)
  • 免疫印迹; 小鼠; 图 1
赛默飞世尔转铁蛋白受体抗体(Invitrogen, 136800)被用于被用于免疫印迹在小鼠样本上 (图 1). Autophagy (2015) ncbi
小鼠 单克隆(H68.4)
  • 免疫细胞化学; 人类
  • 免疫印迹; 人类
赛默飞世尔转铁蛋白受体抗体(Invitrogen, 13-6800)被用于被用于免疫细胞化学在人类样本上 和 被用于免疫印迹在人类样本上. J Cell Sci (2015) ncbi
小鼠 单克隆(OKT9 (OKT-9))
  • 免疫印迹; 人类
赛默飞世尔转铁蛋白受体抗体(eBioscience, OKT39)被用于被用于免疫印迹在人类样本上. Cytometry B Clin Cytom (2015) ncbi
小鼠 单克隆(H68.4)
  • 免疫印迹; 小鼠; 图 f6
赛默飞世尔转铁蛋白受体抗体(Invitrogen, TFRC)被用于被用于免疫印迹在小鼠样本上 (图 f6). Sci Signal (2015) ncbi
小鼠 单克隆(H68.4)
  • 免疫细胞化学; 小鼠; 图 s6
赛默飞世尔转铁蛋白受体抗体(Invitrogen, H68.4)被用于被用于免疫细胞化学在小鼠样本上 (图 s6). EMBO J (2015) ncbi
小鼠 单克隆(H68.4)
  • 免疫印迹; 人类; 1:1000
赛默飞世尔转铁蛋白受体抗体(Invitrogen, 13-6800)被用于被用于免疫印迹在人类样本上浓度为1:1000. J Biol Chem (2015) ncbi
小鼠 单克隆(H68.4)
  • 免疫印迹; 人类
赛默飞世尔转铁蛋白受体抗体(Zymed Laboratories, H68.4)被用于被用于免疫印迹在人类样本上. PLoS ONE (2015) ncbi
小鼠 单克隆(OKT9 (OKT-9))
  • 流式细胞仪; 人类; 图 1b
赛默飞世尔转铁蛋白受体抗体(eBiosciences, OKT9)被用于被用于流式细胞仪在人类样本上 (图 1b). Am J Physiol Cell Physiol (2015) ncbi
小鼠 单克隆(H68.4)
  • 免疫细胞化学; 小鼠
  • 免疫印迹; 小鼠
赛默飞世尔转铁蛋白受体抗体(Invitrogen, 13-6800)被用于被用于免疫细胞化学在小鼠样本上 和 被用于免疫印迹在小鼠样本上. J Biol Chem (2015) ncbi
小鼠 单克隆(H68.4)
  • 免疫细胞化学; 大鼠; 图 1
赛默飞世尔转铁蛋白受体抗体(Invitrogen, 136800)被用于被用于免疫细胞化学在大鼠样本上 (图 1). Autophagy (2015) ncbi
小鼠 单克隆(H68.4)
  • 免疫印迹; 人类
赛默飞世尔转铁蛋白受体抗体(生活技术, 13-6800)被用于被用于免疫印迹在人类样本上. J Biol Chem (2015) ncbi
小鼠 单克隆(H68.4)
  • 免疫印迹; 人类
赛默飞世尔转铁蛋白受体抗体(Invitrogen, #13-6800)被用于被用于免疫印迹在人类样本上. Eur J Med Chem (2015) ncbi
小鼠 单克隆(H68.4)
  • 免疫印迹; 小鼠; 1:1000; 图 1
赛默飞世尔转铁蛋白受体抗体(Invitrogen, 13?C6890)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 1). Nat Commun (2015) ncbi
小鼠 单克隆(H68.4)
  • 免疫印迹; 大鼠
赛默飞世尔转铁蛋白受体抗体(Zymed, 13-6800)被用于被用于免疫印迹在大鼠样本上. PLoS ONE (2015) ncbi
小鼠 单克隆(H68.4)
  • 免疫印迹; 人类; 图 3
赛默飞世尔转铁蛋白受体抗体(Invitrogen, 13-6800)被用于被用于免疫印迹在人类样本上 (图 3). Neurology (2015) ncbi
小鼠 单克隆(H68.4)
  • 免疫细胞化学; African green monkey; 图 1
赛默飞世尔转铁蛋白受体抗体(Zymed Laboratories, H68.4)被用于被用于免疫细胞化学在African green monkey样本上 (图 1). EMBO J (2015) ncbi
小鼠 单克隆(H68.4)
  • 免疫印迹; 小鼠
赛默飞世尔转铁蛋白受体抗体(Invitrogen, #13-6890)被用于被用于免疫印迹在小鼠样本上. J Lipid Res (2015) ncbi
小鼠 单克隆(H68.4)
  • 免疫组化; 人类
赛默飞世尔转铁蛋白受体抗体(Zymed, 13-6800)被用于被用于免疫组化在人类样本上. Respir Res (2014) ncbi
小鼠 单克隆(H68.4)
  • 免疫细胞化学; 人类; 1:500
赛默飞世尔转铁蛋白受体抗体(Invitrogen, 13-6800)被用于被用于免疫细胞化学在人类样本上浓度为1:500. J Biol Chem (2015) ncbi
小鼠 单克隆(H68.4)
  • 免疫印迹; 人类
赛默飞世尔转铁蛋白受体抗体(生活技术, H68.4)被用于被用于免疫印迹在人类样本上. PLoS ONE (2014) ncbi
小鼠 单克隆(H68.4)
  • 免疫印迹; 小鼠; 1:500
赛默飞世尔转铁蛋白受体抗体(Invitrogen, 136800)被用于被用于免疫印迹在小鼠样本上浓度为1:500. Am J Physiol Regul Integr Comp Physiol (2015) ncbi
小鼠 单克隆(H68.4)
  • 免疫细胞化学; 人类; 图 4, 5
赛默飞世尔转铁蛋白受体抗体(Invitrogen, 13-6800)被用于被用于免疫细胞化学在人类样本上 (图 4, 5). MAbs (2014) ncbi
小鼠 单克隆(H68.4)
  • 免疫组化-石蜡切片; 人类; 1:1000
  • 免疫印迹; 人类; 1:1000
赛默飞世尔转铁蛋白受体抗体(Invitrogen, H68.4)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:1000 和 被用于免疫印迹在人类样本上浓度为1:1000. Exp Eye Res (2014) ncbi
小鼠 单克隆(H68.4)
  • 免疫细胞化学; 人类
赛默飞世尔转铁蛋白受体抗体(生活技术, H68.4)被用于被用于免疫细胞化学在人类样本上. PLoS ONE (2014) ncbi
小鼠 单克隆(H68.4)
  • 免疫印迹; 人类; 1:10000
赛默飞世尔转铁蛋白受体抗体(Invitrogen, 13-6800)被用于被用于免疫印迹在人类样本上浓度为1:10000. J Proteomics Bioinform (2014) ncbi
小鼠 单克隆(H68.4)
  • 免疫印迹; 人类; 1:2500; 图 s2
赛默飞世尔转铁蛋白受体抗体(Invitrogen, 13-6890)被用于被用于免疫印迹在人类样本上浓度为1:2500 (图 s2). Nat Cell Biol (2014) ncbi
小鼠 单克隆(H68.4)
  • 免疫印迹; 小鼠; 1:1000
赛默飞世尔转铁蛋白受体抗体(Invitrogen, 13-6800)被用于被用于免疫印迹在小鼠样本上浓度为1:1000. Biol Open (2014) ncbi
小鼠 单克隆(OKT9 (OKT-9))
  • 流式细胞仪; 人类
赛默飞世尔转铁蛋白受体抗体(eBioscience, OKT9)被用于被用于流式细胞仪在人类样本上. J Biol Chem (2015) ncbi
小鼠 单克隆(H68.4)
  • 免疫印迹; 大鼠; 1:5000
赛默飞世尔转铁蛋白受体抗体(生活技术, 136800)被用于被用于免疫印迹在大鼠样本上浓度为1:5000. J Nutr (2014) ncbi
小鼠 单克隆(H68.4)
  • 免疫细胞化学; 人类
赛默飞世尔转铁蛋白受体抗体(Zymed Laboratories Inc, H68. 4)被用于被用于免疫细胞化学在人类样本上. J Biol Chem (2014) ncbi
小鼠 单克隆(H68.4)
  • 免疫印迹; 小鼠; 图 2
赛默飞世尔转铁蛋白受体抗体(Invitrogen, 136800)被用于被用于免疫印迹在小鼠样本上 (图 2). Neurosci Bull (2014) ncbi
小鼠 单克隆(H68.4)
  • 免疫印迹; 人类
赛默飞世尔转铁蛋白受体抗体(Invitrogen, 13-6800)被用于被用于免疫印迹在人类样本上. BMC Cancer (2014) ncbi
小鼠 单克隆(H68.4)
  • 免疫印迹; 人类
赛默飞世尔转铁蛋白受体抗体(Invitrogen, 13-6890)被用于被用于免疫印迹在人类样本上. J Cell Sci (2014) ncbi
小鼠 单克隆(H68.4)
  • 免疫印迹; 人类; 1:2000; 图 1
赛默飞世尔转铁蛋白受体抗体(Invitrogen, 1348053A)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 1). Cell Mol Life Sci (2015) ncbi
小鼠 单克隆(H68.4)
  • 免疫印迹; 仓鼠; 1:500
赛默飞世尔转铁蛋白受体抗体(Invitrogen, 13-6800)被用于被用于免疫印迹在仓鼠样本上浓度为1:500. Ann Neurol (2014) ncbi
小鼠 单克隆(H68.4)
  • 免疫印迹; 鸡
赛默飞世尔转铁蛋白受体抗体(Invitrogen, H68.4)被用于被用于免疫印迹在鸡样本上. PLoS ONE (2014) ncbi
小鼠 单克隆(H68.4)
  • 免疫沉淀; 人类
  • 免疫印迹; 人类
赛默飞世尔转铁蛋白受体抗体(Invitrogen, 1368xx)被用于被用于免疫沉淀在人类样本上 和 被用于免疫印迹在人类样本上. J Immunol (2014) ncbi
小鼠 单克隆(H68.4)
  • 免疫细胞化学; 人类; 图 6
  • 免疫印迹; 小鼠; 图 3
赛默飞世尔转铁蛋白受体抗体(Invitrogen, 13-6800)被用于被用于免疫细胞化学在人类样本上 (图 6) 和 被用于免疫印迹在小鼠样本上 (图 3). J Mol Biol (2014) ncbi
小鼠 单克隆(H68.4)
  • 免疫印迹; 人类
赛默飞世尔转铁蛋白受体抗体(Invitrogen, 13-6890)被用于被用于免疫印迹在人类样本上. Curr Biol (2014) ncbi
小鼠 单克隆(H68.4)
  • 免疫印迹; 人类; 1:200
赛默飞世尔转铁蛋白受体抗体(Zymed Laboratories, 13-6890)被用于被用于免疫印迹在人类样本上浓度为1:200. Nat Cell Biol (2014) ncbi
小鼠 单克隆(H68.4)
  • 免疫印迹; 人类
赛默飞世尔转铁蛋白受体抗体(生活技术, 13-6800)被用于被用于免疫印迹在人类样本上. J Lipid Res (2014) ncbi
小鼠 单克隆(H68.4)
  • 免疫印迹; 人类
赛默飞世尔转铁蛋白受体抗体(Invitrogen, 13-6800)被用于被用于免疫印迹在人类样本上. J Biol Chem (2014) ncbi
小鼠 单克隆(H68.4)
  • 免疫印迹; 鸡; 1:1000
赛默飞世尔转铁蛋白受体抗体(Invitrogen, 13-6800)被用于被用于免疫印迹在鸡样本上浓度为1:1000. J Proteomics (2014) ncbi
小鼠 单克隆(H68.4)
  • 免疫印迹; 小鼠; 1:2000
赛默飞世尔转铁蛋白受体抗体(Zymed Laboratories, 13-6800)被用于被用于免疫印迹在小鼠样本上浓度为1:2000. Nat Med (2014) ncbi
小鼠 单克隆(H68.4)
  • 免疫印迹; 人类
赛默飞世尔转铁蛋白受体抗体(生活技术, H68.4)被用于被用于免疫印迹在人类样本上. J Biochem (2014) ncbi
小鼠 单克隆(H68.4)
  • 免疫印迹; 小鼠
赛默飞世尔转铁蛋白受体抗体(Invitrogen, H68.4)被用于被用于免疫印迹在小鼠样本上. J Cell Sci (2014) ncbi
小鼠 单克隆(H68.4)
  • 免疫印迹; 小鼠
赛默飞世尔转铁蛋白受体抗体(Invitrogen, 13-6800)被用于被用于免疫印迹在小鼠样本上. Chem Biol Interact (2014) ncbi
小鼠 单克隆(H68.4)
  • 免疫组化; 小鼠; 1:200
  • 免疫印迹; 小鼠
赛默飞世尔转铁蛋白受体抗体(生活技术, 13-6800)被用于被用于免疫组化在小鼠样本上浓度为1:200 和 被用于免疫印迹在小鼠样本上. PLoS ONE (2014) ncbi
小鼠 单克隆(H68.4)
  • 免疫细胞化学; 小鼠
赛默飞世尔转铁蛋白受体抗体(Invitrogen, H68.4)被用于被用于免疫细胞化学在小鼠样本上. PLoS Genet (2014) ncbi
小鼠 单克隆(H68.4)
  • 免疫印迹; 人类
赛默飞世尔转铁蛋白受体抗体(生活技术, 13-6800)被用于被用于免疫印迹在人类样本上. PLoS Pathog (2014) ncbi
小鼠 单克隆(H68.4)
  • 免疫细胞化学; 小鼠
赛默飞世尔转铁蛋白受体抗体(Zymed, 13-6800)被用于被用于免疫细胞化学在小鼠样本上. Exp Dermatol (2014) ncbi
小鼠 单克隆(H68.4)
  • 免疫细胞化学; 人类; 1:250
赛默飞世尔转铁蛋白受体抗体(Invitrogen, 13-6890)被用于被用于免疫细胞化学在人类样本上浓度为1:250. J Biol Chem (2014) ncbi
小鼠 单克隆(H68.4)
  • 免疫印迹; 小鼠; 图 7a
赛默飞世尔转铁蛋白受体抗体(Invitrogen, H68.4)被用于被用于免疫印迹在小鼠样本上 (图 7a). Mol Cell Biol (2014) ncbi
小鼠 单克隆(H68.4)
  • 免疫印迹; 小鼠; 1:2000; 图 1a
赛默飞世尔转铁蛋白受体抗体(生活技术, H68.4)被用于被用于免疫印迹在小鼠样本上浓度为1:2000 (图 1a). J Exp Med (2014) ncbi
小鼠 单克隆(H68.4)
  • 免疫印迹; 人类; 图 1
赛默飞世尔转铁蛋白受体抗体(Invitrogen, H68.4)被用于被用于免疫印迹在人类样本上 (图 1). Mol Pharmacol (2014) ncbi
小鼠 单克隆(H68.4)
  • 免疫印迹; 人类
赛默飞世尔转铁蛋白受体抗体(Invitrogen, 13-6800)被用于被用于免疫印迹在人类样本上. Neuropsychopharmacology (2014) ncbi
小鼠 单克隆(H68.4)
  • 免疫印迹; 人类; 图 6
赛默飞世尔转铁蛋白受体抗体(Zymed, H68.4)被用于被用于免疫印迹在人类样本上 (图 6). Mol Cell Proteomics (2014) ncbi
小鼠 单克隆(H68.4)
  • 免疫印迹; African green monkey; 图 11.2
  • 免疫细胞化学; 小鼠; 1:300; 图 11.1
  • 免疫印迹; 小鼠; 1:5000; 图 11.2
赛默飞世尔转铁蛋白受体抗体(Zymed, 13-6800)被用于被用于免疫印迹在African green monkey样本上 (图 11.2), 被用于免疫细胞化学在小鼠样本上浓度为1:300 (图 11.1) 和 被用于免疫印迹在小鼠样本上浓度为1:5000 (图 11.2). Methods Enzymol (2014) ncbi
小鼠 单克隆(H68.4)
  • 免疫细胞化学; 人类; 1:500
赛默飞世尔转铁蛋白受体抗体(Zymed, 13-6890)被用于被用于免疫细胞化学在人类样本上浓度为1:500. Traffic (2014) ncbi
小鼠 单克隆(H68.4)
  • 免疫印迹; 人类; 图 5
赛默飞世尔转铁蛋白受体抗体(Thermo Fisher Scientific, H68.4)被用于被用于免疫印迹在人类样本上 (图 5). J Biol Chem (2014) ncbi
小鼠 单克隆(H68.4)
  • 免疫印迹; 大鼠; 1:500
赛默飞世尔转铁蛋白受体抗体(Invitrogen, 13?C6800)被用于被用于免疫印迹在大鼠样本上浓度为1:500. Am J Physiol Renal Physiol (2014) ncbi
小鼠 单克隆(H68.4)
  • 免疫印迹; 小鼠; 图 9
赛默飞世尔转铁蛋白受体抗体(Invitrogen, clone H68.4)被用于被用于免疫印迹在小鼠样本上 (图 9). J Neurosci (2013) ncbi
小鼠 单克隆(H68.4)
  • 免疫细胞化学; 大鼠; 1:200; 图 3
  • 免疫印迹; 大鼠; 1:1000
赛默飞世尔转铁蛋白受体抗体(Invitrogen, 13-6800)被用于被用于免疫细胞化学在大鼠样本上浓度为1:200 (图 3) 和 被用于免疫印迹在大鼠样本上浓度为1:1000. Exp Neurol (2013) ncbi
小鼠 单克隆(H68.4)
  • 免疫印迹; 小鼠; 图 s3
赛默飞世尔转铁蛋白受体抗体(Invitrogen, H68.4)被用于被用于免疫印迹在小鼠样本上 (图 s3). Neuron (2013) ncbi
小鼠 单克隆(H68.4)
  • 免疫印迹; 人类; 图 3, 4
赛默飞世尔转铁蛋白受体抗体(Zymed, 13-6800)被用于被用于免疫印迹在人类样本上 (图 3, 4). Hum Mol Genet (2013) ncbi
小鼠 单克隆(H68.4)
  • 免疫印迹; 大鼠; 1:1000
赛默飞世尔转铁蛋白受体抗体(Invitrogen, 136800)被用于被用于免疫印迹在大鼠样本上浓度为1:1000. Blood Cells Mol Dis (2014) ncbi
小鼠 单克隆(H68.4)
  • 免疫印迹; 人类; 图 1
赛默飞世尔转铁蛋白受体抗体(Invitrogen, H68.4)被用于被用于免疫印迹在人类样本上 (图 1). PLoS ONE (2013) ncbi
小鼠 单克隆(H68.4)
  • 免疫印迹; 小鼠
赛默飞世尔转铁蛋白受体抗体(生活技术, 13-6890)被用于被用于免疫印迹在小鼠样本上. Am J Pathol (2013) ncbi
小鼠 单克隆(H68.4)
  • 免疫细胞化学; 大鼠; 1:500; 图 1
赛默飞世尔转铁蛋白受体抗体(Zymed, 13-6800)被用于被用于免疫细胞化学在大鼠样本上浓度为1:500 (图 1). Nat Med (2013) ncbi
小鼠 单克隆(H68.4)
  • 免疫印迹; 人类; 图 4
赛默飞世尔转铁蛋白受体抗体(Zymed Laboratories, Clone H68.4)被用于被用于免疫印迹在人类样本上 (图 4). Histochem Cell Biol (2013) ncbi
小鼠 单克隆(H68.4)
  • 免疫印迹; 人类; 图 2
赛默飞世尔转铁蛋白受体抗体(生活技术, 13-6800)被用于被用于免疫印迹在人类样本上 (图 2). PLoS ONE (2013) ncbi
小鼠 单克隆(H68.4)
  • 免疫印迹; 人类; 1:1000; 图 2
赛默飞世尔转铁蛋白受体抗体(Invitrogen, H68.4)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 2). Mol Cancer Res (2013) ncbi
小鼠 单克隆(H68.4)
  • 免疫印迹; 人类; 图 2
赛默飞世尔转铁蛋白受体抗体(生活技术, clone H68.4)被用于被用于免疫印迹在人类样本上 (图 2). Carcinogenesis (2013) ncbi
小鼠 单克隆(H68.4)
  • 免疫组化-石蜡切片; 人类; 1:300; 表 2
赛默飞世尔转铁蛋白受体抗体(Invitrogen, 13-6800)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:300 (表 2). PLoS ONE (2013) ncbi
小鼠 单克隆(H68.4)
  • 免疫印迹; 人类; 1:1500; 图 3
赛默飞世尔转铁蛋白受体抗体(Invitrogen, clone H68.4)被用于被用于免疫印迹在人类样本上浓度为1:1500 (图 3). Circ Cardiovasc Genet (2013) ncbi
小鼠 单克隆(H68.4)
  • 免疫细胞化学; 小鼠; 图 1
赛默飞世尔转铁蛋白受体抗体(Invitrogen, 13-6800)被用于被用于免疫细胞化学在小鼠样本上 (图 1). Biochim Biophys Acta (2013) ncbi
小鼠 单克隆(H68.4)
  • 免疫印迹; 人类; 1:1000; 图 1
赛默飞世尔转铁蛋白受体抗体(Zymed, 13-6800)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 1). Biochemistry (2013) ncbi
小鼠 单克隆(H68.4)
  • 免疫印迹; 犬; 图 3a
赛默飞世尔转铁蛋白受体抗体(Invitrogen, 13-6800)被用于被用于免疫印迹在犬样本上 (图 3a). Mol Biol Cell (2013) ncbi
小鼠 单克隆(H68.4)
  • 免疫细胞化学; 人类; 图 s1a
赛默飞世尔转铁蛋白受体抗体(Invitrogen, H68.4)被用于被用于免疫细胞化学在人类样本上 (图 s1a). Mol Biol Cell (2013) ncbi
小鼠 单克隆(H68.4)
  • 免疫细胞化学; 大鼠; 图 1
赛默飞世尔转铁蛋白受体抗体(Zymed, 13-6800)被用于被用于免疫细胞化学在大鼠样本上 (图 1). J Neurosci (2013) ncbi
小鼠 单克隆(H68.4)
  • 免疫细胞化学; 人类; 1:1000; 图 5
赛默飞世尔转铁蛋白受体抗体(Zymed, 136800)被用于被用于免疫细胞化学在人类样本上浓度为1:1000 (图 5). J Biol Chem (2013) ncbi
小鼠 单克隆(H68.4)
  • 免疫印迹; 人类; 1:1000; 图 2
赛默飞世尔转铁蛋白受体抗体(Invitrogen, 13-6890)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 2). Nat Cell Biol (2013) ncbi
小鼠 单克隆(H68.4)
赛默飞世尔转铁蛋白受体抗体(Zymed, 13-689)被用于. J Neurosci (2013) ncbi
小鼠 单克隆(H68.4)
  • 免疫印迹; 大鼠; 1:1000; 图 5
赛默飞世尔转铁蛋白受体抗体(Invitrogen, 13-6800)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 5). PLoS ONE (2013) ncbi
小鼠 单克隆(H68.4)
  • 免疫印迹; 大鼠
赛默飞世尔转铁蛋白受体抗体(Invitrogen, 13-6800)被用于被用于免疫印迹在大鼠样本上. J Neurosci (2013) ncbi
小鼠 单克隆(H68.4)
  • 免疫印迹; 人类; 图 3
赛默飞世尔转铁蛋白受体抗体(Invitrogen, 13-6800)被用于被用于免疫印迹在人类样本上 (图 3). Biochim Biophys Acta (2013) ncbi
小鼠 单克隆(H68.4)
  • 免疫印迹; 大鼠; 图 2
赛默飞世尔转铁蛋白受体抗体(Invitrogen, H68.4)被用于被用于免疫印迹在大鼠样本上 (图 2). J Neurosci (2013) ncbi
小鼠 单克隆(H68.4)
  • 免疫印迹; 小鼠; 图 4
赛默飞世尔转铁蛋白受体抗体(生活技术, 13-6890)被用于被用于免疫印迹在小鼠样本上 (图 4). PLoS ONE (2013) ncbi
小鼠 单克隆(H68.4)
  • 免疫印迹; 人类; 1:3000; 图 10
赛默飞世尔转铁蛋白受体抗体(Invitrogen, 13-6800)被用于被用于免疫印迹在人类样本上浓度为1:3000 (图 10). Mol Cell Biol (2013) ncbi
小鼠 单克隆(H68.4)
  • 免疫印迹; 大鼠; 图 2
赛默飞世尔转铁蛋白受体抗体(Invitrogen, 13-6800)被用于被用于免疫印迹在大鼠样本上 (图 2). Pflugers Arch (2013) ncbi
小鼠 单克隆(H68.4)
  • 免疫印迹; 人类
赛默飞世尔转铁蛋白受体抗体(Invitrogen, H68.4)被用于被用于免疫印迹在人类样本上. J Biol Chem (2013) ncbi
小鼠 单克隆(H68.4)
  • 免疫细胞化学; 小鼠; 图 5
赛默飞世尔转铁蛋白受体抗体(Invitrogen, H68.4)被用于被用于免疫细胞化学在小鼠样本上 (图 5). BMC Immunol (2012) ncbi
小鼠 单克隆(H68.4)
  • 免疫组化; 大鼠; 1:100
赛默飞世尔转铁蛋白受体抗体(Invitrogen, 13-6800)被用于被用于免疫组化在大鼠样本上浓度为1:100. PLoS ONE (2012) ncbi
小鼠 单克隆(H68.4)
  • 免疫组化; 人类; 图 1
赛默飞世尔转铁蛋白受体抗体(Zymed, H68.4)被用于被用于免疫组化在人类样本上 (图 1). Vet J (2013) ncbi
小鼠 单克隆(H68.4)
  • 免疫印迹; 人类; 图 7f
赛默飞世尔转铁蛋白受体抗体(Zymed Laboratories, H68.4)被用于被用于免疫印迹在人类样本上 (图 7f). Mol Biol Cell (2013) ncbi
小鼠 单克隆(H68.4)
  • 免疫印迹; 人类; 图 3c
赛默飞世尔转铁蛋白受体抗体(Invitrogen, 13-6800)被用于被用于免疫印迹在人类样本上 (图 3c). J Biol Chem (2012) ncbi
小鼠 单克隆(H68.4)
  • 免疫印迹; 人类; 1:1000; 图 3
赛默飞世尔转铁蛋白受体抗体(Invitrogen, H68.4)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3). Protein Eng Des Sel (2013) ncbi
小鼠 单克隆(H68.4)
  • 免疫印迹; 人类; 图 5
赛默飞世尔转铁蛋白受体抗体(生活技术, 136800)被用于被用于免疫印迹在人类样本上 (图 5). Mol Pharmacol (2013) ncbi
小鼠 单克隆(236-15375)
  • 免疫沉淀; 人类; 图 6a
赛默飞世尔转铁蛋白受体抗体(Invitrogen, A11130)被用于被用于免疫沉淀在人类样本上 (图 6a). PLoS ONE (2012) ncbi
小鼠 单克隆(H68.4)
  • 免疫组化-石蜡切片; 人类; 1:1600; 图 1
赛默飞世尔转铁蛋白受体抗体(Invitrogen, H68.4)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:1600 (图 1). Am J Surg Pathol (2012) ncbi
小鼠 单克隆(H68.4)
  • 免疫印迹; 人类; 1:2000; 图 s5
赛默飞世尔转铁蛋白受体抗体(Invitrogen, 13-6800)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 s5). J Cell Sci (2012) ncbi
小鼠 单克隆(H68.4)
  • 免疫印迹; African green monkey
赛默飞世尔转铁蛋白受体抗体(生活技术, 13-6800)被用于被用于免疫印迹在African green monkey样本上. J Virol (2012) ncbi
小鼠 单克隆(H68.4)
  • 免疫印迹; 人类; 1:2000
赛默飞世尔转铁蛋白受体抗体(Zymed/Invitrogen, 13-6800)被用于被用于免疫印迹在人类样本上浓度为1:2000. J Neurosci (2012) ncbi
小鼠 单克隆(H68.4)
  • 酶联免疫吸附测定; 人类; 图 4
赛默飞世尔转铁蛋白受体抗体(Invitrogen, 13-6800)被用于被用于酶联免疫吸附测定在人类样本上 (图 4). J Biol Chem (2012) ncbi
小鼠 单克隆(H68.4)
  • 免疫组化-石蜡切片; 人类; 1:300; 图 1
赛默飞世尔转铁蛋白受体抗体(Invitrogen, 13-6800)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:300 (图 1). BMC Cancer (2012) ncbi
小鼠 单克隆(H68.4)
  • 免疫印迹; 人类; 图 4
赛默飞世尔转铁蛋白受体抗体(Invitrogen, H68.4)被用于被用于免疫印迹在人类样本上 (图 4). PLoS ONE (2012) ncbi
小鼠 单克隆(H68.4)
  • 免疫印迹; 人类; 图 1
赛默飞世尔转铁蛋白受体抗体(Invitrogen, 13-6800)被用于被用于免疫印迹在人类样本上 (图 1). Cell Biol Int (2012) ncbi
小鼠 单克隆(H68.4)
  • 免疫印迹; 大鼠; 图 3
赛默飞世尔转铁蛋白受体抗体(Zymed Laboratories, 13-6800)被用于被用于免疫印迹在大鼠样本上 (图 3). Genes Nutr (2012) ncbi
小鼠 单克隆(H68.4)
  • 免疫细胞化学; 人类; 图 6
  • 免疫印迹; 人类; 图 5
赛默飞世尔转铁蛋白受体抗体(Invitrogen, 13-6800)被用于被用于免疫细胞化学在人类样本上 (图 6) 和 被用于免疫印迹在人类样本上 (图 5). Mol Biol Cell (2012) ncbi
小鼠 单克隆(H68.4)
  • 免疫印迹; 小鼠; 图 3
赛默飞世尔转铁蛋白受体抗体(生活技术, clone H68.4)被用于被用于免疫印迹在小鼠样本上 (图 3). Cell Mol Life Sci (2012) ncbi
小鼠 单克隆(H68.4)
  • 免疫印迹; 小鼠; 图 2
  • 免疫细胞化学; 人类; 图 4
赛默飞世尔转铁蛋白受体抗体(Zymed Laboratories, 13-6800)被用于被用于免疫印迹在小鼠样本上 (图 2) 和 被用于免疫细胞化学在人类样本上 (图 4). J Nat Prod (2012) ncbi
小鼠 单克隆(H68.4)
  • 免疫印迹; 人类; 图 5
赛默飞世尔转铁蛋白受体抗体(Invitrogen, H68.4)被用于被用于免疫印迹在人类样本上 (图 5). PLoS ONE (2012) ncbi
小鼠 单克隆(H68.4)
  • 免疫印迹; 小鼠; 图 6
赛默飞世尔转铁蛋白受体抗体(Zymed, 13-6800)被用于被用于免疫印迹在小鼠样本上 (图 6). Mar Drugs (2012) ncbi
小鼠 单克隆(H68.4)
  • 免疫印迹; 人类; 图 2
赛默飞世尔转铁蛋白受体抗体(Zymed, H68.4)被用于被用于免疫印迹在人类样本上 (图 2). J Membr Biol (2012) ncbi
小鼠 单克隆(H68.4)
  • 免疫印迹; 人类
赛默飞世尔转铁蛋白受体抗体(Zymed, H68.4)被用于被用于免疫印迹在人类样本上. Mol Cell Biol (2012) ncbi
小鼠 单克隆(H68.4)
  • 免疫印迹; 小鼠; 1:500; 图 4
赛默飞世尔转铁蛋白受体抗体(Invitrogen, H68.4)被用于被用于免疫印迹在小鼠样本上浓度为1:500 (图 4). Int J Biochem Cell Biol (2012) ncbi
小鼠 单克隆(H68.4)
  • 流式细胞仪; 人类
  • 免疫印迹; 人类
赛默飞世尔转铁蛋白受体抗体(Zymed Laboratories, H68.4)被用于被用于流式细胞仪在人类样本上 和 被用于免疫印迹在人类样本上. PLoS Pathog (2011) ncbi
小鼠 单克隆(H68.4)
  • 免疫印迹; 人类; 1:1000; 图 2
赛默飞世尔转铁蛋白受体抗体(Zymed, 13-6800)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 2). PLoS ONE (2011) ncbi
小鼠 单克隆(H68.4)
  • 免疫印迹; 人类
赛默飞世尔转铁蛋白受体抗体(Invitrogen, 13-6800)被用于被用于免疫印迹在人类样本上. J Virol (2012) ncbi
小鼠 单克隆(H68.4)
  • 免疫印迹; 人类; 图 5
赛默飞世尔转铁蛋白受体抗体(Zymed, H68.4)被用于被用于免疫印迹在人类样本上 (图 5). J Virol (2012) ncbi
小鼠 单克隆(H68.4)
  • 免疫细胞化学; 仓鼠
  • 免疫印迹; 仓鼠
赛默飞世尔转铁蛋白受体抗体(Zymed Laboratories, H68.4)被用于被用于免疫细胞化学在仓鼠样本上 和 被用于免疫印迹在仓鼠样本上. PLoS ONE (2011) ncbi
小鼠 单克隆(H68.4)
  • 免疫印迹; 人类; 图 5
赛默飞世尔转铁蛋白受体抗体(Invitrogen, clone H68.4)被用于被用于免疫印迹在人类样本上 (图 5). Dev Cell (2011) ncbi
小鼠 单克隆(H68.4)
  • 免疫印迹; 人类; 图 4
赛默飞世尔转铁蛋白受体抗体(Zymed, H68.4)被用于被用于免疫印迹在人类样本上 (图 4). Mol Pharm (2011) ncbi
小鼠 单克隆(H68.4)
  • 免疫沉淀; 人类; 图 3
赛默飞世尔转铁蛋白受体抗体(Invitrogen, 13-6800)被用于被用于免疫沉淀在人类样本上 (图 3). Nat Genet (2011) ncbi
小鼠 单克隆(H68.4)
  • 免疫印迹; 小鼠; 1:500; 图 4
赛默飞世尔转铁蛋白受体抗体(Invitrogen, 13-6800)被用于被用于免疫印迹在小鼠样本上浓度为1:500 (图 4). Free Radic Biol Med (2011) ncbi
小鼠 单克隆(H68.4)
  • 免疫印迹; 人类; 图 4
赛默飞世尔转铁蛋白受体抗体(Zymed, H68.4)被用于被用于免疫印迹在人类样本上 (图 4). J Biol Chem (2011) ncbi
小鼠 单克隆(H68.4)
  • 免疫印迹; 小鼠; 图 5
赛默飞世尔转铁蛋白受体抗体(Invitrogen, 13-6800)被用于被用于免疫印迹在小鼠样本上 (图 5). J Neurosci (2011) ncbi
小鼠 单克隆(H68.4)
  • 免疫印迹; 人类; 图 2
赛默飞世尔转铁蛋白受体抗体(Zymed, H68.4)被用于被用于免疫印迹在人类样本上 (图 2). Am J Physiol Cell Physiol (2011) ncbi
小鼠 单克隆(H68.4)
  • 免疫印迹; 仓鼠; 图 1
赛默飞世尔转铁蛋白受体抗体(Invitrogen, clone H68.4)被用于被用于免疫印迹在仓鼠样本上 (图 1). Mol Cell Biol (2011) ncbi
小鼠 单克隆(236-15375)
  • 免疫细胞化学; 人类; 图 5
赛默飞世尔转铁蛋白受体抗体(Invitrogen Molecular Probes, 236-15375)被用于被用于免疫细胞化学在人类样本上 (图 5). Mol Biol Cell (2011) ncbi
小鼠 单克隆(H68.4)
  • 免疫细胞化学; 犬; 1:25; 图 3
赛默飞世尔转铁蛋白受体抗体(Zymed, 13-6800)被用于被用于免疫细胞化学在犬样本上浓度为1:25 (图 3). Mol Biol Cell (2011) ncbi
小鼠 单克隆(H68.4)
  • 免疫印迹; 小鼠; 图 1
赛默飞世尔转铁蛋白受体抗体(Zymed, H68.4)被用于被用于免疫印迹在小鼠样本上 (图 1). J Biol Chem (2011) ncbi
小鼠 单克隆(H68.4)
  • 免疫印迹; 小鼠; 图 7
  • 免疫印迹; 人类; 图 7
赛默飞世尔转铁蛋白受体抗体(Invitrogen, 136800)被用于被用于免疫印迹在小鼠样本上 (图 7) 和 被用于免疫印迹在人类样本上 (图 7). Br J Pharmacol (2012) ncbi
小鼠 单克隆(H68.4)
  • 流式细胞仪; 仓鼠; 图 4
赛默飞世尔转铁蛋白受体抗体(Zymed, H68.4)被用于被用于流式细胞仪在仓鼠样本上 (图 4). PLoS ONE (2011) ncbi
小鼠 单克隆(H68.4)
  • 免疫印迹; 人类; 1:500; 图 3
赛默飞世尔转铁蛋白受体抗体(Invitrogen, 13-6800)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 3). Nat Cell Biol (2011) ncbi
小鼠 单克隆(H68.4)
  • 免疫印迹; 人类; 1:500; 图 1
赛默飞世尔转铁蛋白受体抗体(Zymed, clone H68.4)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 1). J Membr Biol (2011) ncbi
小鼠 单克隆(H68.4)
  • 免疫印迹; 人类; 图 1
赛默飞世尔转铁蛋白受体抗体(Zymed Laboratories, clone H68.4)被用于被用于免疫印迹在人类样本上 (图 1). Hum Mol Genet (2011) ncbi
小鼠 单克隆(H68.4)
  • 免疫印迹; 人类; 1 ug/ml; 图 7
赛默飞世尔转铁蛋白受体抗体(Invitrogen, clone H68.4)被用于被用于免疫印迹在人类样本上浓度为1 ug/ml (图 7). FASEB J (2011) ncbi
小鼠 单克隆(H68.4)
  • 免疫细胞化学; 小鼠; 图 1
赛默飞世尔转铁蛋白受体抗体(Zymed, H68.4)被用于被用于免疫细胞化学在小鼠样本上 (图 1). J Neurosci (2011) ncbi
小鼠 单克隆(H68.4)
  • 免疫细胞化学; 人类; 1:200; 图 3
赛默飞世尔转铁蛋白受体抗体(Zymed, H68.4)被用于被用于免疫细胞化学在人类样本上浓度为1:200 (图 3). PLoS ONE (2011) ncbi
小鼠 单克隆(H68.4)
  • 免疫细胞化学; 人类; 1:200; 图 8
赛默飞世尔转铁蛋白受体抗体(Zymed, 13-6800)被用于被用于免疫细胞化学在人类样本上浓度为1:200 (图 8). Mol Cell Biol (2011) ncbi
小鼠 单克隆(H68.4)
  • 免疫组化; 大鼠; 图 2
  • 免疫印迹; 大鼠; 图 10
赛默飞世尔转铁蛋白受体抗体(Invitrogen, 13-6800)被用于被用于免疫组化在大鼠样本上 (图 2) 和 被用于免疫印迹在大鼠样本上 (图 10). Cell Tissue Res (2011) ncbi
小鼠 单克隆(H68.4)
  • 免疫印迹; 人类; 图 2f
赛默飞世尔转铁蛋白受体抗体(Zymed Laboratorie, 136800)被用于被用于免疫印迹在人类样本上 (图 2f). Mol Biol Cell (2011) ncbi
小鼠 单克隆(H68.4)
  • 免疫印迹; 人类; 1:1000
赛默飞世尔转铁蛋白受体抗体(Invitrogen, 136800)被用于被用于免疫印迹在人类样本上浓度为1:1000. J Biol Chem (2011) ncbi
小鼠 单克隆(H68.4)
  • 免疫印迹; 大鼠; 图 7
赛默飞世尔转铁蛋白受体抗体(Zymed, 13-6800)被用于被用于免疫印迹在大鼠样本上 (图 7). Exp Biol Med (Maywood) (2011) ncbi
小鼠 单克隆(H68.4)
  • 免疫印迹; 人类; 1:500; 图 1
赛默飞世尔转铁蛋白受体抗体(Zymed, H68.4)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 1). J Biol Chem (2011) ncbi
小鼠 单克隆(H68.4)
  • 免疫组化-石蜡切片; 人类; 1:100; 图 2
  • 免疫印迹; 人类; 1:500; 图 1
赛默飞世尔转铁蛋白受体抗体(Zymed, H68.4)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100 (图 2) 和 被用于免疫印迹在人类样本上浓度为1:500 (图 1). Thyroid (2011) ncbi
小鼠 单克隆(H68.4)
  • 免疫印迹; 人类; 图 5
赛默飞世尔转铁蛋白受体抗体(Invitrogen, H68.4)被用于被用于免疫印迹在人类样本上 (图 5). Am J Physiol Cell Physiol (2011) ncbi
小鼠 单克隆(H68.4)
  • 免疫印迹; 大鼠; 图 1
赛默飞世尔转铁蛋白受体抗体(Zymed, H68.4)被用于被用于免疫印迹在大鼠样本上 (图 1). FEBS Lett (2011) ncbi
小鼠 单克隆(H68.4)
  • 免疫细胞化学; 小鼠; 1:500; 图 6
赛默飞世尔转铁蛋白受体抗体(Zymed, 136800)被用于被用于免疫细胞化学在小鼠样本上浓度为1:500 (图 6). J Neurosci Methods (2011) ncbi
小鼠 单克隆(H68.4)
  • 免疫组化-石蜡切片; 国内马; 1:25; 图 3
赛默飞世尔转铁蛋白受体抗体(Zymed, H68.4)被用于被用于免疫组化-石蜡切片在国内马样本上浓度为1:25 (图 3). Vet Clin Pathol (2010) ncbi
小鼠 单克隆(H68.4)
  • 免疫组化-石蜡切片; 人类; 1:500; 图 7
赛默飞世尔转铁蛋白受体抗体(Invitrogen, 13-6800)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:500 (图 7). Blood (2011) ncbi
小鼠 单克隆(H68.4)
  • 免疫组化-冰冻切片; 大鼠; 1:1000; 图 1
  • 免疫印迹; 大鼠; 图 3
赛默飞世尔转铁蛋白受体抗体(Zymed, 13-6800)被用于被用于免疫组化-冰冻切片在大鼠样本上浓度为1:1000 (图 1) 和 被用于免疫印迹在大鼠样本上 (图 3). Cell Mol Neurobiol (2011) ncbi
小鼠 单克隆(H68.4)
  • 免疫印迹; 人类; 图 3
赛默飞世尔转铁蛋白受体抗体(Invitrogen, 13-6800)被用于被用于免疫印迹在人类样本上 (图 3). J Cell Biol (2010) ncbi
小鼠 单克隆(H68.4)
  • 免疫组化-石蜡切片; 人类; 图 5
赛默飞世尔转铁蛋白受体抗体(Zymed, H68.4)被用于被用于免疫组化-石蜡切片在人类样本上 (图 5). Placenta (2011) ncbi
小鼠 单克隆(T56/14)
  • 流式细胞仪; 人类; 图 3
赛默飞世尔转铁蛋白受体抗体(Invitrogen, T56/14)被用于被用于流式细胞仪在人类样本上 (图 3). J Biomed Biotechnol (2010) ncbi
小鼠 单克隆(H68.4)
  • 免疫印迹; 人类; 1:500; 图 4
赛默飞世尔转铁蛋白受体抗体(Zymed, H68.4)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 4). Int J Biochem Cell Biol (2011) ncbi
小鼠 单克隆(H68.4)
  • 免疫细胞化学; 小鼠; 图 4
  • 免疫印迹; 小鼠; 图 2
赛默飞世尔转铁蛋白受体抗体(Invitrogen, 13-6800)被用于被用于免疫细胞化学在小鼠样本上 (图 4) 和 被用于免疫印迹在小鼠样本上 (图 2). Proteomics (2010) ncbi
小鼠 单克隆(H68.4)
  • 免疫沉淀; 人类; 图 1
  • 免疫印迹; 人类; 图 1
赛默飞世尔转铁蛋白受体抗体(Zymed, 13-6800)被用于被用于免疫沉淀在人类样本上 (图 1) 和 被用于免疫印迹在人类样本上 (图 1). Microbiology (2011) ncbi
小鼠 单克隆(H68.4)
  • 免疫印迹; 大鼠; 1:200; 图 2
赛默飞世尔转铁蛋白受体抗体(目录, 13-6800)被用于被用于免疫印迹在大鼠样本上浓度为1:200 (图 2). J Neurosci (2010) ncbi
小鼠 单克隆(H68.4)
  • 免疫组化-石蜡切片; 人类; 1:1000; 图 1
赛默飞世尔转铁蛋白受体抗体(Invitrogen, H68.4)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:1000 (图 1). Am J Clin Pathol (2010) ncbi
小鼠 单克隆(H68.4)
  • 免疫印迹; 人类; 1:1000
赛默飞世尔转铁蛋白受体抗体(Zymed, H68.4)被用于被用于免疫印迹在人类样本上浓度为1:1000. Blood (2010) ncbi
小鼠 单克隆(H68.4)
  • 免疫组化-石蜡切片; 人类; 1:50; 图 3
  • 免疫印迹; 人类; 图 4
赛默飞世尔转铁蛋白受体抗体(Zymed, H68.4)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:50 (图 3) 和 被用于免疫印迹在人类样本上 (图 4). Vet Pathol (2011) ncbi
小鼠 单克隆(H68.4)
  • 免疫细胞化学; 人类; 图 5
赛默飞世尔转铁蛋白受体抗体(Zymed, H68.4)被用于被用于免疫细胞化学在人类样本上 (图 5). Mol Biol Cell (2010) ncbi
小鼠 单克隆(H68.4)
  • 流式细胞仪; brewer's yeast; 1:100; 图 3
赛默飞世尔转铁蛋白受体抗体(Zymed, H68.4)被用于被用于流式细胞仪在brewer's yeast样本上浓度为1:100 (图 3). Protein Eng Des Sel (2010) ncbi
小鼠 单克隆(H68.4)
  • 免疫印迹; 小鼠; 图 4
赛默飞世尔转铁蛋白受体抗体(Invitrogen, 13-6800)被用于被用于免疫印迹在小鼠样本上 (图 4). Lipids (2010) ncbi
小鼠 单克隆(H68.4)
  • 免疫印迹; 人类; 图 1
赛默飞世尔转铁蛋白受体抗体(Zymed, H68.4)被用于被用于免疫印迹在人类样本上 (图 1). J Biol Chem (2010) ncbi
小鼠 单克隆(H68.4)
  • 免疫印迹; 犬; 1:1000; 图 2
赛默飞世尔转铁蛋白受体抗体(Zymed, H68.4)被用于被用于免疫印迹在犬样本上浓度为1:1000 (图 2). Biochim Biophys Acta (2010) ncbi
小鼠 单克隆(H68.4)
  • 免疫细胞化学; African green monkey; 图 1
赛默飞世尔转铁蛋白受体抗体(Zymed, H68.4)被用于被用于免疫细胞化学在African green monkey样本上 (图 1). J Membr Biol (2010) ncbi
小鼠 单克隆(H68.4)
  • 免疫组化-石蜡切片; 人类; 1:1000; 图 3
赛默飞世尔转铁蛋白受体抗体(Invitrogen, 13-6800)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:1000 (图 3). Nature (2010) ncbi
小鼠 单克隆(H68.4)
  • 免疫组化-石蜡切片; 大鼠; 1:200; 图 2
赛默飞世尔转铁蛋白受体抗体(Invitrogen, H68.4)被用于被用于免疫组化-石蜡切片在大鼠样本上浓度为1:200 (图 2). Chem Biol Interact (2010) ncbi
小鼠 单克隆(H68.4)
  • 免疫细胞化学; 人类; 图 2
赛默飞世尔转铁蛋白受体抗体(Zymed, 13-6800)被用于被用于免疫细胞化学在人类样本上 (图 2). Virology (2010) ncbi
小鼠 单克隆(H68.4)
  • 免疫印迹; 人类; 图 6
赛默飞世尔转铁蛋白受体抗体(Zymed, 13-6800)被用于被用于免疫印迹在人类样本上 (图 6). Mar Drugs (2010) ncbi
小鼠 单克隆(H68.4)
  • 免疫印迹; 人类
赛默飞世尔转铁蛋白受体抗体(Zymed, H68.4)被用于被用于免疫印迹在人类样本上. J Virol (2010) ncbi
小鼠 单克隆(H68.4)
  • 免疫印迹; 人类
赛默飞世尔转铁蛋白受体抗体(Zymed Laboratories, 13-6800)被用于被用于免疫印迹在人类样本上. J Biol Chem (2010) ncbi
小鼠 单克隆(H68.4)
  • 免疫组化-石蜡切片; 大鼠; 1:200; 图 1
赛默飞世尔转铁蛋白受体抗体(Invitrogen, H68.4)被用于被用于免疫组化-石蜡切片在大鼠样本上浓度为1:200 (图 1). Arch Toxicol (2010) ncbi
小鼠 单克隆(H68.4)
  • 免疫印迹; 大鼠
赛默飞世尔转铁蛋白受体抗体(Zymed Laboratories/Invitrogen, H68.4)被用于被用于免疫印迹在大鼠样本上. J Neurosci (2010) ncbi
小鼠 单克隆(H68.4)
  • 免疫印迹; 人类; 图 4b
赛默飞世尔转铁蛋白受体抗体(Zymed, H68.4)被用于被用于免疫印迹在人类样本上 (图 4b). Cell Microbiol (2010) ncbi
小鼠 单克隆(H68.4)
  • 免疫细胞化学; 小鼠; 图 s4
赛默飞世尔转铁蛋白受体抗体(Zymed Laboratories, H68.4)被用于被用于免疫细胞化学在小鼠样本上 (图 s4). Proc Natl Acad Sci U S A (2010) ncbi
小鼠 单克隆(H68.4)
  • 免疫沉淀; 人类; 1 ug; 图 3
赛默飞世尔转铁蛋白受体抗体(Invitrogen-Zymed, clone H68.4)被用于被用于免疫沉淀在人类样本上浓度为1 ug (图 3). J Neurochem (2010) ncbi
小鼠 单克隆(H68.4)
  • 免疫印迹; 大鼠; 图 2a
赛默飞世尔转铁蛋白受体抗体(Zymed Laboratories, H68.4)被用于被用于免疫印迹在大鼠样本上 (图 2a). Blood (2010) ncbi
小鼠 单克隆(H68.4)
  • 免疫细胞化学; 人类; 1:200
赛默飞世尔转铁蛋白受体抗体(Zymed Laboratories, 13-6800)被用于被用于免疫细胞化学在人类样本上浓度为1:200. J Biol Chem (2009) ncbi
小鼠 单克隆(H68.4)
  • 酶联免疫吸附测定; 小鼠; 图 4
赛默飞世尔转铁蛋白受体抗体(Invitrogen, H68.4)被用于被用于酶联免疫吸附测定在小鼠样本上 (图 4). Nature (2009) ncbi
小鼠 单克隆(H68.4)
  • 免疫印迹; 人类; 图 1
赛默飞世尔转铁蛋白受体抗体(Invitrogen, H68.4)被用于被用于免疫印迹在人类样本上 (图 1). Sci Signal (2009) ncbi
小鼠 单克隆(H68.4)
  • 免疫印迹; 小鼠; 图 6b
赛默飞世尔转铁蛋白受体抗体(Invitrogen, 13-6800)被用于被用于免疫印迹在小鼠样本上 (图 6b). Dev Cell (2009) ncbi
小鼠 单克隆(H68.4)
  • 免疫细胞化学; 人类; 图 s2
赛默飞世尔转铁蛋白受体抗体(Zymed, H68.4)被用于被用于免疫细胞化学在人类样本上 (图 s2). PLoS ONE (2009) ncbi
小鼠 单克隆(H68.4)
  • 免疫印迹; 人类; 图 8
赛默飞世尔转铁蛋白受体抗体(Zymed, H68.4)被用于被用于免疫印迹在人类样本上 (图 8). Traffic (2009) ncbi
小鼠 单克隆(H68.4)
  • 免疫印迹; 大鼠; 图 2
赛默飞世尔转铁蛋白受体抗体(Zymed Laboratories/Invitrogen, H68.4)被用于被用于免疫印迹在大鼠样本上 (图 2). PLoS ONE (2009) ncbi
小鼠 单克隆(H68.4)
  • 免疫印迹; 人类; 图 2
赛默飞世尔转铁蛋白受体抗体(Zymed, H68.4)被用于被用于免疫印迹在人类样本上 (图 2). Virol J (2009) ncbi
小鼠 单克隆(H68.4)
  • 免疫印迹; 小鼠; 1:500; 图 1
赛默飞世尔转铁蛋白受体抗体(Zymed, 13-6800)被用于被用于免疫印迹在小鼠样本上浓度为1:500 (图 1). In Vitro Cell Dev Biol Anim (2009) ncbi
小鼠 单克隆(H68.4)
  • 免疫印迹; 大鼠; 图 3
赛默飞世尔转铁蛋白受体抗体(Zymed Laboratories, 13-6800)被用于被用于免疫印迹在大鼠样本上 (图 3). J Cell Biochem (2009) ncbi
小鼠 单克隆(236-15375)
  • 免疫印迹; 小鼠; 1:1000
赛默飞世尔转铁蛋白受体抗体(Invitrogen, noca)被用于被用于免疫印迹在小鼠样本上浓度为1:1000. J Immunol (2009) ncbi
小鼠 单克隆(H68.4)
  • 免疫印迹; 小鼠
赛默飞世尔转铁蛋白受体抗体(Invitrogen, H68.4)被用于被用于免疫印迹在小鼠样本上. Infect Immun (2009) ncbi
小鼠 单克隆(H68.4)
  • 免疫印迹; 小鼠
赛默飞世尔转铁蛋白受体抗体(Zymed Laboratories, H68.4)被用于被用于免疫印迹在小鼠样本上. J Neurosci Res (2009) ncbi
小鼠 单克隆(H68.4)
  • 免疫印迹; 小鼠; 1:1000; 图 6d
赛默飞世尔转铁蛋白受体抗体(Zymed, 13-6800)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 6d). Toxicol Lett (2009) ncbi
小鼠 单克隆(H68.4)
  • 免疫印迹; 小鼠; 1:500; 图 3
赛默飞世尔转铁蛋白受体抗体(Zymed, 13-6800)被用于被用于免疫印迹在小鼠样本上浓度为1:500 (图 3). J Lipid Res (2009) ncbi
小鼠 单克隆(H68.4)
  • 免疫印迹; 人类; 图 4
赛默飞世尔转铁蛋白受体抗体(Zymed, H68.4)被用于被用于免疫印迹在人类样本上 (图 4). J Immunol (2008) ncbi
小鼠 单克隆(H68.4)
  • 免疫印迹; 人类
赛默飞世尔转铁蛋白受体抗体(Invitrogen, 13-6800)被用于被用于免疫印迹在人类样本上. Cancer Res (2008) ncbi
小鼠 单克隆(H68.4)
  • 免疫印迹; 人类
赛默飞世尔转铁蛋白受体抗体(Zymed Laboratories, H68.4)被用于被用于免疫印迹在人类样本上. Cell Biol Int (2009) ncbi
小鼠 单克隆(H68.4)
  • 免疫印迹; 人类; 1:500; 图 6
赛默飞世尔转铁蛋白受体抗体(Zymed, 13-6800)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 6). Lab Invest (2008) ncbi
小鼠 单克隆(H68.4)
  • 免疫印迹; 小鼠; 1:500
赛默飞世尔转铁蛋白受体抗体(Zymed, 13-6800)被用于被用于免疫印迹在小鼠样本上浓度为1:500. Glia (2009) ncbi
小鼠 单克隆(H68.4)
  • 免疫印迹; 人类
赛默飞世尔转铁蛋白受体抗体(Zymed Laboratories, H68.4)被用于被用于免疫印迹在人类样本上. J Biol Chem (2008) ncbi
小鼠 单克隆(H68.4)
  • 免疫印迹; 人类; 图 2
赛默飞世尔转铁蛋白受体抗体(Invitrogen, 13-6800)被用于被用于免疫印迹在人类样本上 (图 2). J Biol Chem (2008) ncbi
小鼠 单克隆(H68.4)
  • 免疫细胞化学; 人类; 图 7
赛默飞世尔转铁蛋白受体抗体(Zymed, H68.4)被用于被用于免疫细胞化学在人类样本上 (图 7). Mol Biol Cell (2008) ncbi
小鼠 单克隆(H68.4)
  • 免疫印迹; 大鼠; 图 1h
赛默飞世尔转铁蛋白受体抗体(Invitrogen, H68.4)被用于被用于免疫印迹在大鼠样本上 (图 1h). Neuroscience (2008) ncbi
小鼠 单克隆(H68.4)
  • 流式细胞仪; 小鼠; 图 3a
  • 免疫细胞化学; 小鼠; 1:50; 图 1f
  • 免疫印迹; 小鼠; 1:1000; 图 1h
赛默飞世尔转铁蛋白受体抗体(Zymed, H68.4)被用于被用于流式细胞仪在小鼠样本上 (图 3a), 被用于免疫细胞化学在小鼠样本上浓度为1:50 (图 1f) 和 被用于免疫印迹在小鼠样本上浓度为1:1000 (图 1h). Cell Death Differ (2008) ncbi
小鼠 单克隆(H68.4)
  • 免疫印迹; 人类; 图 2
赛默飞世尔转铁蛋白受体抗体(Zymed, H68.4)被用于被用于免疫印迹在人类样本上 (图 2). Biochem Biophys Res Commun (2008) ncbi
小鼠 单克隆(H68.4)
  • 免疫组化-石蜡切片; 大鼠; 1:200; 图 1
赛默飞世尔转铁蛋白受体抗体(Zymed, 13-6800)被用于被用于免疫组化-石蜡切片在大鼠样本上浓度为1:200 (图 1). Carcinogenesis (2008) ncbi
小鼠 单克隆(H68.4)
  • 免疫印迹; 人类; 图 6
赛默飞世尔转铁蛋白受体抗体(Zymed, H68.4)被用于被用于免疫印迹在人类样本上 (图 6). Mol Cell Biol (2008) ncbi
小鼠 单克隆(H68.4)
  • 免疫印迹; 小鼠; 1:2000
赛默飞世尔转铁蛋白受体抗体(Zymed Laboratories, 13-6800)被用于被用于免疫印迹在小鼠样本上浓度为1:2000. J Biol Chem (2008) ncbi
小鼠 单克隆(H68.4)
  • 免疫印迹; 大鼠; 1 ug/ml
赛默飞世尔转铁蛋白受体抗体(Zymed Laboratories, 13-6800)被用于被用于免疫印迹在大鼠样本上浓度为1 ug/ml. J Neurosci (2008) ncbi
小鼠 单克隆(H68.4)
  • 免疫细胞化学; 大鼠; 1:10,000
赛默飞世尔转铁蛋白受体抗体(Zymed Laboratories, 13-6800)被用于被用于免疫细胞化学在大鼠样本上浓度为1:10,000. J Neurosci (2008) ncbi
小鼠 单克隆(H68.4)
  • 免疫印迹; 人类
赛默飞世尔转铁蛋白受体抗体(Zymed Laboratories, H68.4)被用于被用于免疫印迹在人类样本上. Arch Histol Cytol (2007) ncbi
小鼠 单克隆(H68.4)
  • 免疫印迹; 人类
赛默飞世尔转铁蛋白受体抗体(Zymed Laboratories, Invitrogen, H68.4)被用于被用于免疫印迹在人类样本上. Oncogene (2008) ncbi
小鼠 单克隆(H68.4)
  • 免疫印迹; 小鼠; 1:500; 图 2
赛默飞世尔转铁蛋白受体抗体(Zymed, H68.4)被用于被用于免疫印迹在小鼠样本上浓度为1:500 (图 2). Int J Biochem Cell Biol (2008) ncbi
小鼠 单克隆(H68.4)
  • 免疫印迹; 人类; 图 1
赛默飞世尔转铁蛋白受体抗体(Zymed, H68.4)被用于被用于免疫印迹在人类样本上 (图 1). Neurobiol Dis (2008) ncbi
小鼠 单克隆(H68.4)
  • 免疫印迹; 人类
赛默飞世尔转铁蛋白受体抗体(Zymed, H68.4)被用于被用于免疫印迹在人类样本上. Methods Mol Biol (2008) ncbi
小鼠 单克隆(H68.4)
  • 免疫印迹; 人类; 图 3
赛默飞世尔转铁蛋白受体抗体(Zymed, H68.4)被用于被用于免疫印迹在人类样本上 (图 3). J Biol Chem (2008) ncbi
小鼠 单克隆(H68.4)
  • 免疫细胞化学; 大鼠
赛默飞世尔转铁蛋白受体抗体(Zymed Laboratories, 13-6800)被用于被用于免疫细胞化学在大鼠样本上. Traffic (2008) ncbi
小鼠 单克隆(H68.4)
  • 免疫细胞化学; 人类; 图 4
赛默飞世尔转铁蛋白受体抗体(Zymed Laboratories, H68.4)被用于被用于免疫细胞化学在人类样本上 (图 4). Cell Struct Funct (2008) ncbi
小鼠 单克隆(H68.4)
  • 免疫细胞化学; 大鼠
  • 免疫印迹; 大鼠
赛默飞世尔转铁蛋白受体抗体(Zymed Laboratories, H68.4)被用于被用于免疫细胞化学在大鼠样本上 和 被用于免疫印迹在大鼠样本上. Mol Biol Cell (2008) ncbi
小鼠 单克隆(H68.4)
  • 免疫印迹; 大鼠; 图 3
赛默飞世尔转铁蛋白受体抗体(Invitrogen, H68.4)被用于被用于免疫印迹在大鼠样本上 (图 3). Neuropharmacology (2008) ncbi
小鼠 单克隆(H68.4)
  • 免疫印迹; 人类; 图 1
赛默飞世尔转铁蛋白受体抗体(Zymed, H68.4)被用于被用于免疫印迹在人类样本上 (图 1). J Virol (2008) ncbi
小鼠 单克隆(H68.4)
  • 免疫印迹; 人类; 图 4
赛默飞世尔转铁蛋白受体抗体(Zymed, H68.4)被用于被用于免疫印迹在人类样本上 (图 4). J Biol Chem (2008) ncbi
小鼠 单克隆(H68.4)
  • 免疫印迹; 猫; 1:500; 图 5A
  • 免疫印迹; 仓鼠; 1:500; 图 5A
  • 免疫印迹; 犬; 1:500; 图 5A
  • 免疫印迹; 小鼠; 1:500; 图 3B
  • 免疫印迹; 人类; 1:500; 图 2C
赛默飞世尔转铁蛋白受体抗体(Invitrogen, H68.4)被用于被用于免疫印迹在猫样本上浓度为1:500 (图 5A), 被用于免疫印迹在仓鼠样本上浓度为1:500 (图 5A), 被用于免疫印迹在犬样本上浓度为1:500 (图 5A), 被用于免疫印迹在小鼠样本上浓度为1:500 (图 3B) 和 被用于免疫印迹在人类样本上浓度为1:500 (图 2C). J Virol (2008) ncbi
小鼠 单克隆(H68.4)
  • 免疫印迹; 仓鼠; 1:500
赛默飞世尔转铁蛋白受体抗体(Invitrogen, H68.4)被用于被用于免疫印迹在仓鼠样本上浓度为1:500. Virology (2008) ncbi
小鼠 单克隆(H68.4)
  • 免疫印迹; 小鼠; 1:2000
赛默飞世尔转铁蛋白受体抗体(Zymed, 13-6800)被用于被用于免疫印迹在小鼠样本上浓度为1:2000. Am J Physiol Renal Physiol (2008) ncbi
小鼠 单克隆(H68.4)
  • 免疫印迹; 小鼠
赛默飞世尔转铁蛋白受体抗体(Zymed, H68.4)被用于被用于免疫印迹在小鼠样本上. Neurosci Res (2007) ncbi
小鼠 单克隆(H68.4)
  • 免疫印迹; 小鼠
赛默飞世尔转铁蛋白受体抗体(Zymed, 13-6800)被用于被用于免疫印迹在小鼠样本上. BMC Biochem (2007) ncbi
小鼠 单克隆(H68.4)
  • 免疫细胞化学; 犬; 图 2
  • 免疫印迹; 犬
赛默飞世尔转铁蛋白受体抗体(Invitrogen, H68.4)被用于被用于免疫细胞化学在犬样本上 (图 2) 和 被用于免疫印迹在犬样本上. Mol Biol Cell (2007) ncbi
小鼠 单克隆(H68.4)
  • 免疫印迹; 人类; 1:500; 图 3
赛默飞世尔转铁蛋白受体抗体(Zymed Laboratories, H68.4)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 3). Histochem Cell Biol (2007) ncbi
小鼠 单克隆(H68.4)
  • 免疫印迹; 大鼠; 图 2
赛默飞世尔转铁蛋白受体抗体(Zymed Laboratories, clone H68.4)被用于被用于免疫印迹在大鼠样本上 (图 2). J Neurochem (2007) ncbi
小鼠 单克隆(H68.4)
  • 免疫细胞化学; 人类; 1:200
赛默飞世尔转铁蛋白受体抗体(Zymed Laboratories, H68.4)被用于被用于免疫细胞化学在人类样本上浓度为1:200. J Control Release (2007) ncbi
小鼠 单克隆(H68.4)
  • 免疫印迹; 犬
赛默飞世尔转铁蛋白受体抗体(Zymed Laboratories, H68.4)被用于被用于免疫印迹在犬样本上. J Pharmacol Exp Ther (2007) ncbi
小鼠 单克隆(H68.4)
  • 免疫印迹; African green monkey
赛默飞世尔转铁蛋白受体抗体(Zymed Laboratories, 13-6800)被用于被用于免疫印迹在African green monkey样本上. J Biol Chem (2007) ncbi
小鼠 单克隆(H68.4)
  • 免疫细胞化学; 犬; 1:200
赛默飞世尔转铁蛋白受体抗体(Zymed, H68.4)被用于被用于免疫细胞化学在犬样本上浓度为1:200. Am J Physiol Cell Physiol (2007) ncbi
小鼠 单克隆(H68.4)
  • 免疫细胞化学; 人类; 1:100; 图 4
  • 免疫印迹; African green monkey; 1 ug/ml; 图 8
赛默飞世尔转铁蛋白受体抗体(Invitrogen, H68.4)被用于被用于免疫细胞化学在人类样本上浓度为1:100 (图 4) 和 被用于免疫印迹在African green monkey样本上浓度为1 ug/ml (图 8). PLoS ONE (2007) ncbi
小鼠 单克隆(H68.4)
  • 免疫细胞化学; 人类
赛默飞世尔转铁蛋白受体抗体(Zymed, H68.4)被用于被用于免疫细胞化学在人类样本上. Biochim Biophys Acta (2007) ncbi
小鼠 单克隆(H68.4)
  • 免疫印迹; 人类
赛默飞世尔转铁蛋白受体抗体(Zymed, H68.4)被用于被用于免疫印迹在人类样本上. Mol Immunol (2007) ncbi
小鼠 单克隆(OKT9 (OKT-9))
  • 免疫细胞化学; 犬; 图 3A
赛默飞世尔转铁蛋白受体抗体(eBioscience, OKT9)被用于被用于免疫细胞化学在犬样本上 (图 3A). J Cell Biol (2007) ncbi
小鼠 单克隆(H68.4)
  • 免疫印迹; 大鼠
赛默飞世尔转铁蛋白受体抗体(Zymed, H68.4)被用于被用于免疫印迹在大鼠样本上. FEBS Lett (2007) ncbi
小鼠 单克隆(236-15375)
  • 免疫细胞化学; 人类; 图 6
赛默飞世尔转铁蛋白受体抗体(分子探针, A11130)被用于被用于免疫细胞化学在人类样本上 (图 6). J Biol Chem (2007) ncbi
小鼠 单克隆(H68.4)
  • 免疫细胞化学; 人类; 图 2
  • 免疫印迹; 人类; 图 5
赛默飞世尔转铁蛋白受体抗体(Zymed, H68.4)被用于被用于免疫细胞化学在人类样本上 (图 2) 和 被用于免疫印迹在人类样本上 (图 5). J Cell Biochem (2007) ncbi
小鼠 单克隆(H68.4)
  • 免疫细胞化学; 人类; 1:200
  • 免疫印迹; 人类
赛默飞世尔转铁蛋白受体抗体(Zymed, H68.4)被用于被用于免疫细胞化学在人类样本上浓度为1:200 和 被用于免疫印迹在人类样本上. Exp Cell Res (2007) ncbi
小鼠 单克隆(236-15375)
  • 免疫细胞化学; 人类; 图 4C
赛默飞世尔转铁蛋白受体抗体(分子探针, noca)被用于被用于免疫细胞化学在人类样本上 (图 4C). Proc Natl Acad Sci U S A (2006) ncbi
小鼠 单克隆(H68.4)
  • 免疫印迹; 人类; 图 3
赛默飞世尔转铁蛋白受体抗体(Zymed, 13-6800)被用于被用于免疫印迹在人类样本上 (图 3). Am J Physiol Regul Integr Comp Physiol (2006) ncbi
小鼠 单克隆(H68.4)
  • 免疫印迹; 人类; 图 3
赛默飞世尔转铁蛋白受体抗体(Zymed, H68.4)被用于被用于免疫印迹在人类样本上 (图 3). J Invest Dermatol (2007) ncbi
小鼠 单克隆(H68.4)
  • 免疫印迹; 小鼠; 1:500; 图 3
赛默飞世尔转铁蛋白受体抗体(Zymed, 13-6800)被用于被用于免疫印迹在小鼠样本上浓度为1:500 (图 3). DNA Repair (Amst) (2006) ncbi
小鼠 单克隆(H68.4)
  • 免疫细胞化学; 人类; 图 3
赛默飞世尔转铁蛋白受体抗体(Zymed, 13-6800)被用于被用于免疫细胞化学在人类样本上 (图 3). J Cell Sci (2006) ncbi
小鼠 单克隆(236-15375)
  • 免疫印迹; African green monkey; 图 1
赛默飞世尔转铁蛋白受体抗体(Invitrogen, 236-15375)被用于被用于免疫印迹在African green monkey样本上 (图 1). J Biol Chem (2006) ncbi
小鼠 单克隆(H68.4)
  • 免疫细胞化学; 人类; 图 6
  • 免疫印迹; 人类; 图 4
赛默飞世尔转铁蛋白受体抗体(Zymed, H68.4)被用于被用于免疫细胞化学在人类样本上 (图 6) 和 被用于免疫印迹在人类样本上 (图 4). Blood (2006) ncbi
小鼠 单克隆(H68.4)
  • 免疫印迹; 大鼠; 图 5
赛默飞世尔转铁蛋白受体抗体(Zymed, H68.4)被用于被用于免疫印迹在大鼠样本上 (图 5). Mol Biol Cell (2006) ncbi
小鼠 单克隆(H68.4)
  • 免疫印迹; 人类
  • 免疫印迹; 大鼠
赛默飞世尔转铁蛋白受体抗体(Zymed, H68.4)被用于被用于免疫印迹在人类样本上 和 被用于免疫印迹在大鼠样本上. Mol Cell Biol (2006) ncbi
小鼠 单克隆(H68.4)
  • 免疫印迹; 仓鼠
赛默飞世尔转铁蛋白受体抗体(Zymed, H68.4)被用于被用于免疫印迹在仓鼠样本上. Methods Enzymol (2005) ncbi
小鼠 单克隆(H68.4)
  • 免疫印迹; 人类; 图 3
赛默飞世尔转铁蛋白受体抗体(Zymed, H68.4)被用于被用于免疫印迹在人类样本上 (图 3). Neurobiol Aging (2007) ncbi
小鼠 单克隆(H68.4)
  • 流式细胞仪; African green monkey; 图 4
  • 流式细胞仪; 人类; 图 4
  • 免疫印迹; 人类; 图 3
赛默飞世尔转铁蛋白受体抗体(Zymed, H68.4)被用于被用于流式细胞仪在African green monkey样本上 (图 4), 被用于流式细胞仪在人类样本上 (图 4) 和 被用于免疫印迹在人类样本上 (图 3). J Radiat Res (2005) ncbi
小鼠 单克隆(H68.4)
  • 流式细胞仪; 小鼠; 图 2
赛默飞世尔转铁蛋白受体抗体(Zymed, H68.4)被用于被用于流式细胞仪在小鼠样本上 (图 2). Int Immunol (2006) ncbi
小鼠 单克隆(H68.4)
  • 免疫印迹; 人类; 1:1000; 图 5
赛默飞世尔转铁蛋白受体抗体(Zymed, 13-6800)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 5). J Cell Sci (2006) ncbi
小鼠 单克隆(H68.4)
  • 免疫印迹; 人类; 图 4
赛默飞世尔转铁蛋白受体抗体(Zymed, 13-6800)被用于被用于免疫印迹在人类样本上 (图 4). Nature (2005) ncbi
小鼠 单克隆(H68.4)
  • 免疫细胞化学; 大鼠; 图 3
赛默飞世尔转铁蛋白受体抗体(Zymed, H68.4)被用于被用于免疫细胞化学在大鼠样本上 (图 3). Mol Biol Cell (2006) ncbi
小鼠 单克隆(H68.4)
  • 免疫印迹; 人类
赛默飞世尔转铁蛋白受体抗体(Zymed, H68.4)被用于被用于免疫印迹在人类样本上. Mol Biol Cell (2005) ncbi
小鼠 单克隆(H68.4)
  • 免疫细胞化学; 人类; 图 1
赛默飞世尔转铁蛋白受体抗体(Zymed, H68.4)被用于被用于免疫细胞化学在人类样本上 (图 1). Mol Biol Cell (2005) ncbi
小鼠 单克隆(H68.4)
  • 免疫印迹; 小鼠; 图 4
赛默飞世尔转铁蛋白受体抗体(Zymed, 13-6800)被用于被用于免疫印迹在小鼠样本上 (图 4). J Clin Invest (2005) ncbi
小鼠 单克隆(H68.4)
  • 免疫印迹; 人类; 图 2
赛默飞世尔转铁蛋白受体抗体(Zymed, H68.4)被用于被用于免疫印迹在人类样本上 (图 2). Mol Immunol (2006) ncbi
小鼠 单克隆(H68.4)
  • 免疫细胞化学; 猫; 1:200; 图 2
赛默飞世尔转铁蛋白受体抗体(Zymed, H68.4)被用于被用于免疫细胞化学在猫样本上浓度为1:200 (图 2). Virology (2005) ncbi
小鼠 单克隆(H68.4)
  • 免疫细胞化学; 人类
赛默飞世尔转铁蛋白受体抗体(Zymed, H68.4)被用于被用于免疫细胞化学在人类样本上. J Cell Sci (2005) ncbi
小鼠 单克隆(H68.4)
  • 免疫细胞化学; 人类
  • 免疫细胞化学; 仓鼠
赛默飞世尔转铁蛋白受体抗体(Zymed, H68.4)被用于被用于免疫细胞化学在人类样本上 和 被用于免疫细胞化学在仓鼠样本上. J Virol (2005) ncbi
小鼠 单克隆(H68.4)
  • 免疫印迹; 大鼠
赛默飞世尔转铁蛋白受体抗体(Zymed, H68.4)被用于被用于免疫印迹在大鼠样本上. Mol Biol Cell (2005) ncbi
小鼠 单克隆(H68.4)
  • 免疫组化-石蜡切片; 人类; 1:20
赛默飞世尔转铁蛋白受体抗体(Zymed, 13-6800)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:20. World J Gastroenterol (2005) ncbi
小鼠 单克隆(H68.4)
  • 免疫细胞化学; 人类; 图 2
赛默飞世尔转铁蛋白受体抗体(Zymed, H68.4)被用于被用于免疫细胞化学在人类样本上 (图 2). Mol Biol Cell (2005) ncbi
小鼠 单克隆(H68.4)
  • 免疫印迹; 大鼠; 图 3D
赛默飞世尔转铁蛋白受体抗体(Zymed, H68.4)被用于被用于免疫印迹在大鼠样本上 (图 3D). J Cell Sci (2005) ncbi
小鼠 单克隆(H68.4)
  • 免疫印迹; 大鼠; 图 4
赛默飞世尔转铁蛋白受体抗体(Zymed Laboratories, 13-6800)被用于被用于免疫印迹在大鼠样本上 (图 4). J Neurochem (2005) ncbi
小鼠 单克隆(H68.4)
  • 免疫细胞化学; 人类; 1:100; 图 5
赛默飞世尔转铁蛋白受体抗体(Zymed Laboratories, noca)被用于被用于免疫细胞化学在人类样本上浓度为1:100 (图 5). J Cell Sci (2004) ncbi
小鼠 单克隆(H68.4)
  • 免疫细胞化学; 人类; 图 4
赛默飞世尔转铁蛋白受体抗体(Zymed, H68.4)被用于被用于免疫细胞化学在人类样本上 (图 4). Mol Biol Cell (2004) ncbi
小鼠 单克隆(H68.4)
  • 免疫细胞化学; 人类; 图 1E
赛默飞世尔转铁蛋白受体抗体(Zymed, H68.4)被用于被用于免疫细胞化学在人类样本上 (图 1E). Mol Biol Cell (2004) ncbi
小鼠 单克隆(H68.4)
  • 免疫印迹; 人类
赛默飞世尔转铁蛋白受体抗体(Zymed, H68.4)被用于被用于免疫印迹在人类样本上. Exp Cell Res (2004) ncbi
小鼠 单克隆(H68.4)
  • 免疫组化-石蜡切片; 人类; 10 ug/ml; 图 5
  • 免疫印迹; 人类; 图 6
赛默飞世尔转铁蛋白受体抗体(Zymed, 13-6800)被用于被用于免疫组化-石蜡切片在人类样本上浓度为10 ug/ml (图 5) 和 被用于免疫印迹在人类样本上 (图 6). J Dermatol Sci (2004) ncbi
小鼠 单克隆(H68.4)
  • 免疫细胞化学; 人类
赛默飞世尔转铁蛋白受体抗体(Zymed, H68.4)被用于被用于免疫细胞化学在人类样本上. J Clin Invest (2004) ncbi
小鼠 单克隆(H68.4)
  • 免疫组化-冰冻切片; 人类; 图 3
  • 免疫细胞化学; 人类; 图 2
赛默飞世尔转铁蛋白受体抗体(Zymed, H68.4)被用于被用于免疫组化-冰冻切片在人类样本上 (图 3) 和 被用于免疫细胞化学在人类样本上 (图 2). Mol Biol Cell (2004) ncbi
小鼠 单克隆(H68.4)
  • 免疫细胞化学; 人类; 1:200; 图 2
赛默飞世尔转铁蛋白受体抗体(Zymed, H68.4)被用于被用于免疫细胞化学在人类样本上浓度为1:200 (图 2). J Control Release (2004) ncbi
小鼠 单克隆(H68.4)
  • 免疫印迹; 小鼠; 图 2
赛默飞世尔转铁蛋白受体抗体(Zymed, H68.4)被用于被用于免疫印迹在小鼠样本上 (图 2). Biochem Biophys Res Commun (2004) ncbi
小鼠 单克隆(H68.4)
  • 免疫印迹; 人类; 图 4
赛默飞世尔转铁蛋白受体抗体(Zymed, H68.4)被用于被用于免疫印迹在人类样本上 (图 4). J Immunol (2004) ncbi
小鼠 单克隆(H68.4)
  • 流式细胞仪; 猫
赛默飞世尔转铁蛋白受体抗体(Zymed, H68.4)被用于被用于流式细胞仪在猫样本上. J Virol (2004) ncbi
小鼠 单克隆(H68.4)
  • 免疫细胞化学; 人类; 图 2
赛默飞世尔转铁蛋白受体抗体(Zymed Laboratories, H68.4)被用于被用于免疫细胞化学在人类样本上 (图 2). Mol Biol Cell (2004) ncbi
小鼠 单克隆(H68.4)
  • 免疫印迹; 小鼠
赛默飞世尔转铁蛋白受体抗体(Zymed, 13-6800)被用于被用于免疫印迹在小鼠样本上. J Clin Invest (2004) ncbi
小鼠 单克隆(H68.4)
  • 免疫细胞化学; 人类
赛默飞世尔转铁蛋白受体抗体(Zymed, H68.4)被用于被用于免疫细胞化学在人类样本上. J Cell Biol (2004) ncbi
小鼠 单克隆(H68.4)
  • 免疫印迹; 大鼠; 图 3
赛默飞世尔转铁蛋白受体抗体(Zymed, H68.4)被用于被用于免疫印迹在大鼠样本上 (图 3). J Biol Chem (2004) ncbi
小鼠 单克隆(H68.4)
  • 免疫细胞化学; 人类; 10 ug/ml
  • 免疫印迹; 人类; 1 ug/ml
赛默飞世尔转铁蛋白受体抗体(Zymed, H68.4)被用于被用于免疫细胞化学在人类样本上浓度为10 ug/ml 和 被用于免疫印迹在人类样本上浓度为1 ug/ml. J Exp Med (2004) ncbi
小鼠 单克隆(H68.4)
  • 免疫沉淀; 小鼠
  • 免疫印迹; 小鼠
  • 免疫沉淀; 人类
  • 免疫印迹; 人类
赛默飞世尔转铁蛋白受体抗体(Zymed, H68.4)被用于被用于免疫沉淀在小鼠样本上, 被用于免疫印迹在小鼠样本上, 被用于免疫沉淀在人类样本上 和 被用于免疫印迹在人类样本上. J Cell Biochem (2004) ncbi
小鼠 单克隆(H68.4)
  • 免疫细胞化学; 人类; 1:200; 图 3Aa
赛默飞世尔转铁蛋白受体抗体(Zymed, H68.4)被用于被用于免疫细胞化学在人类样本上浓度为1:200 (图 3Aa). J Gene Med (2004) ncbi
小鼠 单克隆(H68.4)
  • 免疫印迹; 人类; 图 5
赛默飞世尔转铁蛋白受体抗体(Zymed, H68.4)被用于被用于免疫印迹在人类样本上 (图 5). FEBS Lett (2004) ncbi
小鼠 单克隆(H68.4)
  • 免疫细胞化学; 小鼠
赛默飞世尔转铁蛋白受体抗体(Zymed, H68.4)被用于被用于免疫细胞化学在小鼠样本上. J Biol Chem (2004) ncbi
小鼠 单克隆(H68.4)
  • 免疫印迹; 犬; 图 7d
赛默飞世尔转铁蛋白受体抗体(Zymed, H68.4)被用于被用于免疫印迹在犬样本上 (图 7d). Mol Biol Cell (2004) ncbi
小鼠 单克隆(H68.4)
  • 免疫沉淀; 小鼠; 图 4
赛默飞世尔转铁蛋白受体抗体(Zymed, H68.4)被用于被用于免疫沉淀在小鼠样本上 (图 4). J Immunol (2003) ncbi
小鼠 单克隆(H68.4)
  • 免疫印迹; 大鼠; 图 3
赛默飞世尔转铁蛋白受体抗体(Zymed, H68.4)被用于被用于免疫印迹在大鼠样本上 (图 3). Mol Biol Cell (2004) ncbi
小鼠 单克隆(H68.4)
  • 免疫印迹; 小鼠; 1:2000; 图 1
赛默飞世尔转铁蛋白受体抗体(Zymed Laboratories, 13-6800)被用于被用于免疫印迹在小鼠样本上浓度为1:2000 (图 1). Exp Cell Res (2003) ncbi
小鼠 单克隆(H68.4)
  • 免疫沉淀; 人类; 图 1
赛默飞世尔转铁蛋白受体抗体(Zymed, H68.4)被用于被用于免疫沉淀在人类样本上 (图 1). J Biol Chem (2004) ncbi
小鼠 单克隆(236-15375)
  • 免疫细胞化学; 小鼠
赛默飞世尔转铁蛋白受体抗体(分子探针, noca)被用于被用于免疫细胞化学在小鼠样本上. J Neurochem (2003) ncbi
小鼠 单克隆(H68.4)
  • 免疫印迹; 人类; 图 2
赛默飞世尔转铁蛋白受体抗体(Zymed, H68.4)被用于被用于免疫印迹在人类样本上 (图 2). Biochem Biophys Res Commun (2003) ncbi
小鼠 单克隆(H68.4)
  • 免疫印迹; 仓鼠; 1 ug/ml; 图 2
赛默飞世尔转铁蛋白受体抗体(Zymed, clone H68.4)被用于被用于免疫印迹在仓鼠样本上浓度为1 ug/ml (图 2). J Neurochem (2003) ncbi
小鼠 单克隆(H68.4)
  • 免疫印迹; 大鼠; 图 1
赛默飞世尔转铁蛋白受体抗体(Zymed, H68.4)被用于被用于免疫印迹在大鼠样本上 (图 1). Blood (2003) ncbi
小鼠 单克隆(H68.4)
  • 免疫印迹; 人类; 图 2
赛默飞世尔转铁蛋白受体抗体(Zymed Laboratories, 13-6890)被用于被用于免疫印迹在人类样本上 (图 2). Carcinogenesis (2003) ncbi
小鼠 单克隆(H68.4)
  • 免疫沉淀; 人类; 图 4
赛默飞世尔转铁蛋白受体抗体(Zymed, H68.4)被用于被用于免疫沉淀在人类样本上 (图 4). Eur J Immunol (2003) ncbi
小鼠 单克隆(H68.4)
  • 免疫印迹; 大鼠; 图 1
赛默飞世尔转铁蛋白受体抗体(Zymed, H68.4)被用于被用于免疫印迹在大鼠样本上 (图 1). J Neurosci (2003) ncbi
小鼠 单克隆(H68.4)
  • 免疫印迹; 人类; 图 3
赛默飞世尔转铁蛋白受体抗体(Zymed, H68.4)被用于被用于免疫印迹在人类样本上 (图 3). J Immunol (2003) ncbi
小鼠 单克隆(236-15375)
  • 免疫印迹; 猕猴; 图 3
赛默飞世尔转铁蛋白受体抗体(分子探针, A11130)被用于被用于免疫印迹在猕猴样本上 (图 3). J Virol (2003) ncbi
小鼠 单克隆(H68.4)
  • 免疫细胞化学; 人类
赛默飞世尔转铁蛋白受体抗体(Zymed, H68.4)被用于被用于免疫细胞化学在人类样本上. J Cell Sci (2002) ncbi
小鼠 单克隆(H68.4)
  • 免疫印迹; 小鼠; 图 2
赛默飞世尔转铁蛋白受体抗体(Zymed, H68.4)被用于被用于免疫印迹在小鼠样本上 (图 2). Anal Biochem (2002) ncbi
小鼠 单克隆(H68.4)
  • 免疫印迹; 人类; 图 4
赛默飞世尔转铁蛋白受体抗体(Zymed, H68.4)被用于被用于免疫印迹在人类样本上 (图 4). J Biol Chem (2002) ncbi
小鼠 单克隆(H68.4)
  • 免疫印迹; 人类
赛默飞世尔转铁蛋白受体抗体(Zymed, h68.4)被用于被用于免疫印迹在人类样本上. FEBS Lett (2002) ncbi
小鼠 单克隆(H68.4)
  • 免疫印迹; 仓鼠; 图 3
赛默飞世尔转铁蛋白受体抗体(Zymed, H68.4)被用于被用于免疫印迹在仓鼠样本上 (图 3). Eur J Neurosci (2001) ncbi
小鼠 单克隆(H68.4)
  • 免疫细胞化学; 人类
赛默飞世尔转铁蛋白受体抗体(Zymed, H68.4)被用于被用于免疫细胞化学在人类样本上. Mol Biol Cell (2001) ncbi
小鼠 单克隆(H68.4)
  • 免疫细胞化学; 人类
赛默飞世尔转铁蛋白受体抗体(Zymed, H68.4)被用于被用于免疫细胞化学在人类样本上. Mol Biol Cell (2001) ncbi
小鼠 单克隆(H68.4)
  • 免疫细胞化学; 小鼠
赛默飞世尔转铁蛋白受体抗体(Zymed, H68.4)被用于被用于免疫细胞化学在小鼠样本上. Proc Natl Acad Sci U S A (2001) ncbi
小鼠 单克隆(H68.4)
  • 流式细胞仪; 人类
赛默飞世尔转铁蛋白受体抗体(Zymed, H68.4)被用于被用于流式细胞仪在人类样本上. Blood (2001) ncbi
小鼠 单克隆(H68.4)
  • 抑制或激活实验; 猫
赛默飞世尔转铁蛋白受体抗体(Zymed, H68.4)被用于被用于抑制或激活实验在猫样本上. J Virol (2001) ncbi
小鼠 单克隆(H68.4)
  • 免疫印迹; 小鼠; 图 7
赛默飞世尔转铁蛋白受体抗体(Zymed Lab, clone H68.4)被用于被用于免疫印迹在小鼠样本上 (图 7). Traffic (2001) ncbi
小鼠 单克隆(H68.4)
  • 免疫印迹; 小鼠; 图 3
赛默飞世尔转铁蛋白受体抗体(Zymed, H68.4)被用于被用于免疫印迹在小鼠样本上 (图 3). Mol Biol Cell (2000) ncbi
小鼠 单克隆(H68.4)
  • 免疫细胞化学; 人类
赛默飞世尔转铁蛋白受体抗体(Zymed, H68.4)被用于被用于免疫细胞化学在人类样本上. Mol Biol Cell (2000) ncbi
小鼠 单克隆(H68.4)
  • 免疫沉淀; 人类; 图 2
  • 免疫印迹; 人类; 图 2
赛默飞世尔转铁蛋白受体抗体(Zymed, H68.4)被用于被用于免疫沉淀在人类样本上 (图 2) 和 被用于免疫印迹在人类样本上 (图 2). J Biol Chem (2000) ncbi
小鼠 单克隆(H68.4)
  • 免疫细胞化学; 小鼠; 图 6
赛默飞世尔转铁蛋白受体抗体(Zymed, clone H68.4)被用于被用于免疫细胞化学在小鼠样本上 (图 6). Hum Mol Genet (2000) ncbi
小鼠 单克隆(H68.4)
  • 免疫细胞化学; 人类
赛默飞世尔转铁蛋白受体抗体(Zymed, H68.4)被用于被用于免疫细胞化学在人类样本上. J Cell Biol (2000) ncbi
小鼠 单克隆(H68.4)
  • 免疫细胞化学; 大鼠
赛默飞世尔转铁蛋白受体抗体(Zymed, H68.4)被用于被用于免疫细胞化学在大鼠样本上. Mol Biol Cell (2000) ncbi
小鼠 单克隆(H68.4)
  • 免疫印迹; 人类; 图 1
赛默飞世尔转铁蛋白受体抗体(ZYMED, H68.4)被用于被用于免疫印迹在人类样本上 (图 1). Cancer Res (2000) ncbi
小鼠 单克隆(H68.4)
  • 免疫印迹; 大鼠; 图 6
赛默飞世尔转铁蛋白受体抗体(Zymed, 13-6800)被用于被用于免疫印迹在大鼠样本上 (图 6). J Biol Chem (1999) ncbi
小鼠 单克隆(H68.4)
  • 免疫细胞化学; 小鼠
  • 免疫细胞化学; 大鼠
赛默飞世尔转铁蛋白受体抗体(Zymed, H68.4)被用于被用于免疫细胞化学在小鼠样本上 和 被用于免疫细胞化学在大鼠样本上. J Cell Biol (1999) ncbi
小鼠 单克隆(H68.4)
  • 免疫印迹; 小鼠; 图 6
赛默飞世尔转铁蛋白受体抗体(Zymed, H68.4)被用于被用于免疫印迹在小鼠样本上 (图 6). J Neurosci (1999) ncbi
小鼠 单克隆(H68.4)
  • 免疫印迹; 人类; 图 2
赛默飞世尔转铁蛋白受体抗体(Zymed, H68.4)被用于被用于免疫印迹在人类样本上 (图 2). Clin Chem (1999) ncbi
小鼠 单克隆(H68.4)
  • 免疫细胞化学; 人类; 图 3
  • 免疫印迹; 人类; 图 1
赛默飞世尔转铁蛋白受体抗体(Zymed, H68.4)被用于被用于免疫细胞化学在人类样本上 (图 3) 和 被用于免疫印迹在人类样本上 (图 1). J Biol Chem (1999) ncbi
小鼠 单克隆(H68.4)
  • 免疫印迹; 人类
赛默飞世尔转铁蛋白受体抗体(Zymed, H68.4)被用于被用于免疫印迹在人类样本上. J Biol Chem (1999) ncbi
小鼠 单克隆(H68.4)
  • 抑制或激活实验; 人类
赛默飞世尔转铁蛋白受体抗体(Zymed, H68.4)被用于被用于抑制或激活实验在人类样本上. J Biol Chem (1999) ncbi
小鼠 单克隆(H68.4)
  • 免疫细胞化学; 小鼠; 1:50
赛默飞世尔转铁蛋白受体抗体(Zymed, H68.4)被用于被用于免疫细胞化学在小鼠样本上浓度为1:50. EMBO J (1998) ncbi
小鼠 单克隆(H68.4)
  • 免疫印迹; 人类
赛默飞世尔转铁蛋白受体抗体(Zymed, H68.4)被用于被用于免疫印迹在人类样本上. J Biol Chem (1998) ncbi
小鼠 单克隆(H68.4)
  • 免疫细胞化学; 小鼠
赛默飞世尔转铁蛋白受体抗体(Zymed, H68.4)被用于被用于免疫细胞化学在小鼠样本上. J Neurosci (1998) ncbi
小鼠 单克隆(T56/14)
  • 流式细胞仪; 人类; 图 5
赛默飞世尔转铁蛋白受体抗体(Caltag, T56/14)被用于被用于流式细胞仪在人类样本上 (图 5). Photochem Photobiol (1998) ncbi
小鼠 单克隆(H68.4)
  • 免疫组化-石蜡切片; 人类; 1:300
赛默飞世尔转铁蛋白受体抗体(Zymed, 13-6800)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:300. Am J Pathol (1998) ncbi
小鼠 单克隆(H68.4)
  • 免疫印迹; 小鼠; 图 3c
赛默飞世尔转铁蛋白受体抗体(Zymed, H68-4)被用于被用于免疫印迹在小鼠样本上 (图 3c). J Cell Biol (1997) ncbi
BioLegend
小鼠 单克隆(CY1G4)
  • 流式细胞仪; 人类; 1:400
BioLegend转铁蛋白受体抗体(BioLegend, 334104)被用于被用于流式细胞仪在人类样本上浓度为1:400. Cell (2021) ncbi
小鼠 单克隆(CY1G4)
  • 流式细胞仪; 人类; 1:400
BioLegend转铁蛋白受体抗体(BioLegend, CY1G4)被用于被用于流式细胞仪在人类样本上浓度为1:400. Nature (2021) ncbi
小鼠 单克隆(CY1G4)
  • 流式细胞仪; 人类; 图 4a
BioLegend转铁蛋白受体抗体(BioLegend, CY1G4)被用于被用于流式细胞仪在人类样本上 (图 4a). Sci Rep (2021) ncbi
小鼠 单克隆(CY1G4)
  • 流式细胞仪; 人类; 图 6d, 6e
BioLegend转铁蛋白受体抗体(Biolegend, CY1G4)被用于被用于流式细胞仪在人类样本上 (图 6d, 6e). Front Immunol (2020) ncbi
小鼠 单克隆(CY1G4)
  • 流式细胞仪; 人类; 1:1000; 图 s2c
BioLegend转铁蛋白受体抗体(Biolegend, 334111)被用于被用于流式细胞仪在人类样本上浓度为1:1000 (图 s2c). Cell (2021) ncbi
小鼠 单克隆(CY1G4)
  • 流式细胞仪; 人类; 图 s1a
BioLegend转铁蛋白受体抗体(BioLegend, CY1G4)被用于被用于流式细胞仪在人类样本上 (图 s1a). Sci Adv (2020) ncbi
小鼠 单克隆(CY1G4)
  • 流式细胞仪; 人类; 3:100; 图 1a, 2e, 2f
BioLegend转铁蛋白受体抗体(BioLegend, CY1G4)被用于被用于流式细胞仪在人类样本上浓度为3:100 (图 1a, 2e, 2f). Am J Cancer Res (2020) ncbi
小鼠 单克隆(CY1G4)
  • 流式细胞仪; 人类; 图 s6d
BioLegend转铁蛋白受体抗体(BioLegend, 334104)被用于被用于流式细胞仪在人类样本上 (图 s6d). Nat Commun (2019) ncbi
小鼠 单克隆(CY1G4)
  • 流式细胞仪; 人类; 1:20; 图 2a
BioLegend转铁蛋白受体抗体(Biolegend, 334114)被用于被用于流式细胞仪在人类样本上浓度为1:20 (图 2a). Nat Commun (2019) ncbi
小鼠 单克隆(CY1G4)
  • 流式细胞仪; 人类; 图 s3c
BioLegend转铁蛋白受体抗体(BioLegend, 334106)被用于被用于流式细胞仪在人类样本上 (图 s3c). Cell (2019) ncbi
小鼠 单克隆(CY1G4)
  • 流式细胞仪; 人类; 图 1a
BioLegend转铁蛋白受体抗体(BioLegend, CY1G4)被用于被用于流式细胞仪在人类样本上 (图 1a). Am J Respir Crit Care Med (2019) ncbi
小鼠 单克隆(CY1G4)
  • 流式细胞仪; 人类; 图 s3a
BioLegend转铁蛋白受体抗体(BioLegend, CY1G4)被用于被用于流式细胞仪在人类样本上 (图 s3a). J Nucl Med (2018) ncbi
小鼠 单克隆(CY1G4)
  • 流式细胞仪; 人类; 图 2a
BioLegend转铁蛋白受体抗体(BioLegend, CY1G4)被用于被用于流式细胞仪在人类样本上 (图 2a). Leuk Lymphoma (2018) ncbi
小鼠 单克隆(CY1G4)
  • 流式细胞仪; 人类; 图 4a
BioLegend转铁蛋白受体抗体(Biolegend, 334108)被用于被用于流式细胞仪在人类样本上 (图 4a). J Virol (2016) ncbi
小鼠 单克隆(CY1G4)
  • 流式细胞仪; 人类; 图 s5d
BioLegend转铁蛋白受体抗体(BioLegend, CY1G4)被用于被用于流式细胞仪在人类样本上 (图 s5d). Science (2016) ncbi
小鼠 单克隆(CY1G4)
  • 流式细胞仪; 人类; 图 5
BioLegend转铁蛋白受体抗体(biolegend, CY1G4)被用于被用于流式细胞仪在人类样本上 (图 5). Leuk Res (2015) ncbi
小鼠 单克隆(CY1G4)
  • 流式细胞仪; 人类
BioLegend转铁蛋白受体抗体(BioLegend, 334104)被用于被用于流式细胞仪在人类样本上. J Inflamm (Lond) (2014) ncbi
艾博抗(上海)贸易有限公司
domestic rabbit 单克隆(EPR20584)
  • 免疫印迹; 人类; 1:1000; 图 5d, s5d
艾博抗(上海)贸易有限公司转铁蛋白受体抗体(Abcam, ab214039)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 5d, s5d). Oncol Lett (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 4d
艾博抗(上海)贸易有限公司转铁蛋白受体抗体(Abcam, ab84036)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 4d). Antioxidants (Basel) (2021) ncbi
domestic rabbit 单克隆(EPR20584)
  • 免疫印迹; 人类
艾博抗(上海)贸易有限公司转铁蛋白受体抗体(Abcam, ab214039)被用于被用于免疫印迹在人类样本上. Theranostics (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 5a, 5e
艾博抗(上海)贸易有限公司转铁蛋白受体抗体(Abcam, ab84036)被用于被用于免疫印迹在小鼠样本上 (图 5a, 5e). Cell Death Discov (2020) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 1d
艾博抗(上海)贸易有限公司转铁蛋白受体抗体(Abcam, AB84036)被用于被用于免疫印迹在小鼠样本上 (图 1d). Cell Death Dis (2020) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 人类; 1:200; 图 5i
艾博抗(上海)贸易有限公司转铁蛋白受体抗体(Abcam, ab84036)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:200 (图 5i). Am J Cancer Res (2020) ncbi
小鼠 单克隆(B349)
  • 免疫组化-冰冻切片; 人类; 1:200; 图 1b
  • 免疫印迹; 人类; 1:100; 图 2d
艾博抗(上海)贸易有限公司转铁蛋白受体抗体(Abcam, ab8598)被用于被用于免疫组化-冰冻切片在人类样本上浓度为1:200 (图 1b) 和 被用于免疫印迹在人类样本上浓度为1:100 (图 2d). Am J Cancer Res (2020) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 1e
艾博抗(上海)贸易有限公司转铁蛋白受体抗体(Abcam, ab84036)被用于被用于免疫印迹在小鼠样本上 (图 1e). Nat Commun (2020) ncbi
小鼠 单克隆(B349)
  • 免疫印迹; 人类; 1:1000; 图 s3a
艾博抗(上海)贸易有限公司转铁蛋白受体抗体(abcam, Ab8598)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 s3a). Sci Adv (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 1h
艾博抗(上海)贸易有限公司转铁蛋白受体抗体(Abcam, ab84036)被用于被用于免疫印迹在人类样本上 (图 1h). Sci China Life Sci (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 s1c
艾博抗(上海)贸易有限公司转铁蛋白受体抗体(Abcam, ab84036)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 s1c). J Cell Sci (2019) ncbi
小鼠 单克隆(MEM-189)
  • 免疫印迹; 人类; 图 1c
艾博抗(上海)贸易有限公司转铁蛋白受体抗体(Abcam, ab1086)被用于被用于免疫印迹在人类样本上 (图 1c). Proc Natl Acad Sci U S A (2018) ncbi
小鼠 单克隆(MEM-189)
  • 免疫印迹; 人类; 图 2e
  • 免疫印迹; 大鼠; 图 2e
艾博抗(上海)贸易有限公司转铁蛋白受体抗体(Abcam, ab1086)被用于被用于免疫印迹在人类样本上 (图 2e) 和 被用于免疫印迹在大鼠样本上 (图 2e). Cancer Lett (2018) ncbi
小鼠 单克隆(MEM-75)
  • 流式细胞仪; 人类; 图 s11
艾博抗(上海)贸易有限公司转铁蛋白受体抗体(Abcam, MEM-75)被用于被用于流式细胞仪在人类样本上 (图 s11). Science (2018) ncbi
小鼠 单克隆(13E4)
  • 流式细胞仪; 人类; 图 s11
艾博抗(上海)贸易有限公司转铁蛋白受体抗体(Abcam, 13E4)被用于被用于流式细胞仪在人类样本上 (图 s11). Science (2018) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 人类; 图 s8c
  • 免疫组化-石蜡切片; 人类; 图 s8b
艾博抗(上海)贸易有限公司转铁蛋白受体抗体(Abcam, ab84036)被用于被用于免疫组化-冰冻切片在人类样本上 (图 s8c) 和 被用于免疫组化-石蜡切片在人类样本上 (图 s8b). J Nucl Med (2018) ncbi
小鼠 单克隆(B349)
  • 免疫细胞化学; 人类; 图 1a
艾博抗(上海)贸易有限公司转铁蛋白受体抗体(Abcam, DF1513)被用于被用于免疫细胞化学在人类样本上 (图 1a). Nat Med (2017) ncbi
domestic rabbit 多克隆
艾博抗(上海)贸易有限公司转铁蛋白受体抗体(Abcam, ab84036)被用于. BMC Biol (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 4a
艾博抗(上海)贸易有限公司转铁蛋白受体抗体(abcam, ab84036)被用于被用于免疫印迹在小鼠样本上 (图 4a). Neuropharmacology (2017) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 图 3b
艾博抗(上海)贸易有限公司转铁蛋白受体抗体(Abcam, ab84036)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 3b). Mol Cell Biol (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 3
艾博抗(上海)贸易有限公司转铁蛋白受体抗体(Abcam, ab84036)被用于被用于免疫印迹在人类样本上 (图 3). Sci Rep (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 s4
艾博抗(上海)贸易有限公司转铁蛋白受体抗体(Abcam, ab84036)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 s4). Sci Rep (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 大鼠; 图 3
艾博抗(上海)贸易有限公司转铁蛋白受体抗体(Abcam, ab84036)被用于被用于免疫印迹在大鼠样本上 (图 3). J Neurosci (2016) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 1:1000; 图 1
艾博抗(上海)贸易有限公司转铁蛋白受体抗体(Abcam, ab84036)被用于被用于免疫细胞化学在人类样本上浓度为1:1000 (图 1). J Cell Sci (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:2000; 图 6c
艾博抗(上海)贸易有限公司转铁蛋白受体抗体(Abcam, ab84036)被用于被用于免疫印迹在小鼠样本上浓度为1:2000 (图 6c). Mol Med Rep (2016) ncbi
domestic rabbit 多克隆
艾博抗(上海)贸易有限公司转铁蛋白受体抗体(Abcam, ab84036)被用于. J Cell Biol (2015) ncbi
小鼠 单克隆(MEM-189)
  • 免疫细胞化学; 人类; 图 3a
艾博抗(上海)贸易有限公司转铁蛋白受体抗体(Abcam, ab1086)被用于被用于免疫细胞化学在人类样本上 (图 3a). Nat Commun (2015) ncbi
小鼠 单克隆(13E4)
  • 免疫印迹; 人类; 1:250; 图 5
艾博抗(上海)贸易有限公司转铁蛋白受体抗体(Abcam, ab38171)被用于被用于免疫印迹在人类样本上浓度为1:250 (图 5). Nat Commun (2015) ncbi
小鼠 单克隆(13E4)
  • 免疫细胞化学; African green monkey; 图 s11
艾博抗(上海)贸易有限公司转铁蛋白受体抗体(Abcam, 13E4)被用于被用于免疫细胞化学在African green monkey样本上 (图 s11). EMBO J (2015) ncbi
小鼠 单克隆(MEM-189)
  • 其他; 小鼠; 图 3b,4,5c,5d,6b
艾博抗(上海)贸易有限公司转铁蛋白受体抗体(Abcam, Ab1086)被用于被用于其他在小鼠样本上 (图 3b,4,5c,5d,6b). Lasers Surg Med (2015) ncbi
圣克鲁斯生物技术
小鼠 单克隆(3B8 2A1)
  • 免疫印迹; 人类; 1:500; 图 s3g
圣克鲁斯生物技术转铁蛋白受体抗体(santa cruz, sc-32272)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 s3g). Sci Adv (2021) ncbi
小鼠 单克隆(H68.4)
  • 免疫印迹; 大鼠; 1:1000; 图 3e
圣克鲁斯生物技术转铁蛋白受体抗体(Santa Cruz, Sc-65882)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 3e). elife (2021) ncbi
小鼠 单克隆(H68.4)
  • 免疫印迹; 大鼠; 1:1000; 图 3e
圣克鲁斯生物技术转铁蛋白受体抗体(Santa Cruz, Sc-65882)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 3e). Science (2021) ncbi
小鼠 单克隆(H68.4)
  • 免疫印迹; 小鼠; 1:2000; 图 s1d
圣克鲁斯生物技术转铁蛋白受体抗体(Santa Cruz, sc-65882)被用于被用于免疫印迹在小鼠样本上浓度为1:2000 (图 s1d). Nat Commun (2021) ncbi
小鼠 单克隆(H68.4)
  • 免疫组化; 人类; 图 3c
圣克鲁斯生物技术转铁蛋白受体抗体(Santa Cruz Biotechnology, sc-65882)被用于被用于免疫组化在人类样本上 (图 3c). Eur J Histochem (2020) ncbi
小鼠 单克隆(2B6)
  • 免疫印迹; 小鼠; 图 1h, 1i
圣克鲁斯生物技术转铁蛋白受体抗体(SCBT, 2B6)被用于被用于免疫印迹在小鼠样本上 (图 1h, 1i). Cell Commun Signal (2020) ncbi
小鼠 单克隆(DF1513)
  • 流式细胞仪; 人类; 1:100; 图 e3d
圣克鲁斯生物技术转铁蛋白受体抗体(Santa Cruz, DF1513)被用于被用于流式细胞仪在人类样本上浓度为1:100 (图 e3d). Nature (2019) ncbi
小鼠 单克隆(DF1513)
  • 免疫细胞化学; 人类; 1:50; 图 5f, s4c-f
圣克鲁斯生物技术转铁蛋白受体抗体(Santa Cruz, SC-7327)被用于被用于免疫细胞化学在人类样本上浓度为1:50 (图 5f, s4c-f). Stem Cells (2019) ncbi
小鼠 单克隆(3B8 2A1)
  • 免疫印迹; 人类; 图 s3e
圣克鲁斯生物技术转铁蛋白受体抗体(Santa Cruz Biotechnology, sc-32272)被用于被用于免疫印迹在人类样本上 (图 s3e). Autophagy (2019) ncbi
小鼠 单克隆(3B8 2A1)
  • 免疫沉淀; 人类; 图 4e
圣克鲁斯生物技术转铁蛋白受体抗体(Santa Cruz, sc-32272)被用于被用于免疫沉淀在人类样本上 (图 4e). J Exp Med (2018) ncbi
小鼠 单克隆(3B8 2A1)
  • 免疫沉淀; 人类; 图 5d
  • 免疫印迹; 人类; 图 5d
圣克鲁斯生物技术转铁蛋白受体抗体(Santa Cruz, sc-32272)被用于被用于免疫沉淀在人类样本上 (图 5d) 和 被用于免疫印迹在人类样本上 (图 5d). Biol Open (2017) ncbi
小鼠 单克隆(H68.4)
  • 免疫印迹; 人类; 图 1c
圣克鲁斯生物技术转铁蛋白受体抗体(Santa Cruz, H68.4)被用于被用于免疫印迹在人类样本上 (图 1c). J Biol Chem (2016) ncbi
小鼠 单克隆(OX26)
  • 免疫细胞化学; 人类; 图 2
圣克鲁斯生物技术转铁蛋白受体抗体(Santa Cruz, sc-53059)被用于被用于免疫细胞化学在人类样本上 (图 2). Autophagy (2017) ncbi
小鼠 单克隆(H68.4)
  • 免疫印迹; African green monkey; 图 2
圣克鲁斯生物技术转铁蛋白受体抗体(Santa Cruz Biotechnology, sc-65882)被用于被用于免疫印迹在African green monkey样本上 (图 2). J Cell Sci (2016) ncbi
小鼠 单克隆(H68.4)
  • 免疫印迹; 人类; 图 5
圣克鲁斯生物技术转铁蛋白受体抗体(Santa Cruz, sc-65882)被用于被用于免疫印迹在人类样本上 (图 5). Sci Rep (2015) ncbi
小鼠 单克隆(3B8 2A1)
  • 免疫印迹; 人类; 1:50
圣克鲁斯生物技术转铁蛋白受体抗体(Santa Cruz, sc-32272)被用于被用于免疫印迹在人类样本上浓度为1:50. Neuroscience (2015) ncbi
小鼠 单克隆(2B6)
  • 免疫印迹; 人类; 1:100; 图 2
圣克鲁斯生物技术转铁蛋白受体抗体(Santa Cruz Biotechnology, sc-51829)被用于被用于免疫印迹在人类样本上浓度为1:100 (图 2). Biochem J (2015) ncbi
小鼠 单克隆(3B8 2A1)
  • 免疫印迹; 人类
圣克鲁斯生物技术转铁蛋白受体抗体(Santa Cruz Biotechnology, 3B82A1)被用于被用于免疫印迹在人类样本上. Mol Oncol (2014) ncbi
小鼠 单克隆(2B6)
  • 免疫印迹; 人类; 1:1000; 图 6
圣克鲁斯生物技术转铁蛋白受体抗体(Santa Cruz Biotechnology, sc-51829)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 6). Cell Death Dis (2013) ncbi
伯乐(Bio-Rad)公司
小鼠 单克隆(13E4)
  • 免疫印迹; 人类; 1:1000; 图 4k
伯乐(Bio-Rad)公司转铁蛋白受体抗体(Bio-Rad, VMA00037)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 4k). Nature (2020) ncbi
小鼠 单克隆(DF1513)
  • 流式细胞仪; 人类; 5.7 ug/ml; 图 s3a
伯乐(Bio-Rad)公司转铁蛋白受体抗体(Bio-Rad, MCA1148GA)被用于被用于流式细胞仪在人类样本上浓度为5.7 ug/ml (图 s3a). Nat Commun (2017) ncbi
小鼠 单克隆(DF1513)
  • 流式细胞仪; 人类; 表 2
伯乐(Bio-Rad)公司转铁蛋白受体抗体(AbD Serotec, MCA1148FT)被用于被用于流式细胞仪在人类样本上 (表 2). Exp Cell Res (2015) ncbi
Bio X Cell
小鼠 单克隆(OKT9)
  • 免疫印迹; 人类; 图 e8g
Bio X Cell转铁蛋白受体抗体(BioXCell, BE0023)被用于被用于免疫印迹在人类样本上 (图 e8g). Nature (2020) ncbi
赛信通(上海)生物试剂有限公司
domestic rabbit 单克隆(D7S5Z)
  • 免疫细胞化学; 人类; 1:500
  • 免疫印迹; 人类; 1:500; 图 4c, 4h
赛信通(上海)生物试剂有限公司转铁蛋白受体抗体(Cell Signalling, 13208)被用于被用于免疫细胞化学在人类样本上浓度为1:500 和 被用于免疫印迹在人类样本上浓度为1:500 (图 4c, 4h). Stem Cells (2019) ncbi
domestic rabbit 单克隆(D7S5Z)
  • 免疫印迹; 人类; 图 4h
赛信通(上海)生物试剂有限公司转铁蛋白受体抗体(Cell Signaling, 13208)被用于被用于免疫印迹在人类样本上 (图 4h). Cell (2019) ncbi
domestic rabbit 单克隆(D7S5Z)
  • 免疫印迹; 人类; 1:1000; 图 s3c
赛信通(上海)生物试剂有限公司转铁蛋白受体抗体(Cell Signaling, D7S5Z)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 s3c). J Nucl Med (2018) ncbi
Fitzgerald Industries
  • 免疫细胞化学; 犬; 图 3
Fitzgerald Industries转铁蛋白受体抗体(Fitzgerald, 10R-CD71aHU)被用于被用于免疫细胞化学在犬样本上 (图 3). Nat Commun (2016) ncbi
  • 免疫细胞化学; 犬; 图 5
  • 免疫印迹; 犬; 图 4
Fitzgerald Industries转铁蛋白受体抗体(Fitzgerald, 10R-CD71aHU)被用于被用于免疫细胞化学在犬样本上 (图 5) 和 被用于免疫印迹在犬样本上 (图 4). J Cell Sci (2014) ncbi
贝克曼库尔特实验系统(苏州)有限公司
小鼠 单克隆(YDJ1.2.2)
  • 流式细胞仪; 人类; 图 3
贝克曼库尔特实验系统(苏州)有限公司转铁蛋白受体抗体(Beckman Coulter, YDJ.1.2.2)被用于被用于流式细胞仪在人类样本上 (图 3). Cytometry B Clin Cytom (2015) ncbi
Stemcell Technologies
小鼠 单克隆(OKT9)
  • 流式细胞仪; 人类; 图 s11
干细胞技术转铁蛋白受体抗体(干细胞技术, OKT9)被用于被用于流式细胞仪在人类样本上 (图 s11). Science (2018) ncbi
碧迪BD
小鼠 单克隆(M-A712)
  • 流式细胞仪; 人类
碧迪BD转铁蛋白受体抗体(BD Biosciences, M-A712)被用于被用于流式细胞仪在人类样本上. Theranostics (2021) ncbi
小鼠 单克隆(M-A712)
  • 流式细胞仪; 人类; 图 e1
碧迪BD转铁蛋白受体抗体(BD, 555534)被用于被用于流式细胞仪在人类样本上 (图 e1). Nat Microbiol (2021) ncbi
小鼠 单克隆(M-A712)
  • 流式细胞仪; 人类; 图 6d, 6e
碧迪BD转铁蛋白受体抗体(BD, M-A712)被用于被用于流式细胞仪在人类样本上 (图 6d, 6e). Front Immunol (2020) ncbi
小鼠 单克隆(L01.1)
  • 流式细胞仪; 人类; 图 6d, 6e
碧迪BD转铁蛋白受体抗体(BD, L01.1)被用于被用于流式细胞仪在人类样本上 (图 6d, 6e). Front Immunol (2020) ncbi
小鼠 单克隆(M-A712)
  • 流式细胞仪; 人类; 图 2a
碧迪BD转铁蛋白受体抗体(Becton Dickinson, 555534)被用于被用于流式细胞仪在人类样本上 (图 2a). BMC Cancer (2019) ncbi
小鼠 单克隆(M-A712)
  • 流式细胞仪; 人类; 图 1h
碧迪BD转铁蛋白受体抗体(BD Biosciences, 555537)被用于被用于流式细胞仪在人类样本上 (图 1h). Nature (2018) ncbi
小鼠 单克隆(M-A712)
  • 流式细胞仪; 人类; 图 s11
碧迪BD转铁蛋白受体抗体(BD Biosciences, M-A712)被用于被用于流式细胞仪在人类样本上 (图 s11). Science (2018) ncbi
小鼠 单克隆(L01.1)
  • 流式细胞仪; 人类; 图 s11
碧迪BD转铁蛋白受体抗体(BD Biosciences, 347510)被用于被用于流式细胞仪在人类样本上 (图 s11). Science (2018) ncbi
小鼠 单克隆(M-A712)
  • 流式细胞仪; 人类; 1:500; 图 10F
碧迪BD转铁蛋白受体抗体(BD Pharmigen, 555534)被用于被用于流式细胞仪在人类样本上浓度为1:500 (图 10F). elife (2017) ncbi
小鼠 单克隆(M-A712)
  • 流式细胞仪; 人类
碧迪BD转铁蛋白受体抗体(Becton, Dickinson, and Company, MA-712)被用于被用于流式细胞仪在人类样本上. Cytotherapy (2017) ncbi
小鼠 单克隆(M-A712)
  • 流式细胞仪; 人类; 表 3
碧迪BD转铁蛋白受体抗体(Becton Dickinson, M-A712)被用于被用于流式细胞仪在人类样本上 (表 3). N Biotechnol (2017) ncbi
小鼠 单克隆(M-A712)
  • 流式细胞仪; 人类; 表 3
碧迪BD转铁蛋白受体抗体(BD Pharmingen, M-A712)被用于被用于流式细胞仪在人类样本上 (表 3). Brain Behav (2016) ncbi
小鼠 单克隆(M-A712)
  • 流式细胞仪; 人类; 图 1
碧迪BD转铁蛋白受体抗体(BD Pharmingen, M-A712)被用于被用于流式细胞仪在人类样本上 (图 1). PLoS Pathog (2016) ncbi
小鼠 单克隆(L01.1)
  • 流式细胞仪; 人类; 图 3c
碧迪BD转铁蛋白受体抗体(BD, LO1.1)被用于被用于流式细胞仪在人类样本上 (图 3c). Angiogenesis (2016) ncbi
小鼠 单克隆(M-A712)
  • 流式细胞仪; 人类; 图 5
碧迪BD转铁蛋白受体抗体(BD Biosciences, 555537)被用于被用于流式细胞仪在人类样本上 (图 5). Autophagy (2016) ncbi
小鼠 单克隆(M-A712)
  • 流式细胞仪; 人类; 图 e1c
碧迪BD转铁蛋白受体抗体(BD biosciences, M-A712)被用于被用于流式细胞仪在人类样本上 (图 e1c). Nature (2016) ncbi
小鼠 单克隆(2/Transferrin)
  • 免疫印迹; 人类; 图 7a
碧迪BD转铁蛋白受体抗体(BD Bioscience, 612125)被用于被用于免疫印迹在人类样本上 (图 7a). EMBO Rep (2016) ncbi
小鼠 单克隆(M-A712)
  • 其他; 人类; 500 ug/ml; 图 1
碧迪BD转铁蛋白受体抗体(Becton Dickinson, 555534)被用于被用于其他在人类样本上浓度为500 ug/ml (图 1). J Extracell Vesicles (2016) ncbi
小鼠 单克隆(M-A712)
  • 流式细胞仪; 人类; 图 4
碧迪BD转铁蛋白受体抗体(BD Biosciences, 555537)被用于被用于流式细胞仪在人类样本上 (图 4). PLoS ONE (2016) ncbi
小鼠 单克隆(M-A712)
  • 流式细胞仪; 人类; 图 st1
碧迪BD转铁蛋白受体抗体(BD, 555537)被用于被用于流式细胞仪在人类样本上 (图 st1). Exp Cell Res (2016) ncbi
小鼠 单克隆(M-A712)
  • 流式细胞仪; 人类; 图 7
碧迪BD转铁蛋白受体抗体(BD PharMingen, 551374)被用于被用于流式细胞仪在人类样本上 (图 7). Immunity (2016) ncbi
小鼠 单克隆(M-A712)
  • 流式细胞仪; 人类; 图 5
碧迪BD转铁蛋白受体抗体(BD Pharmingen, 551374)被用于被用于流式细胞仪在人类样本上 (图 5). Stem Cell Reports (2016) ncbi
小鼠 单克隆(L01.1)
  • 流式细胞仪; 人类; 图 1
碧迪BD转铁蛋白受体抗体(BD Pharmingen, 347513)被用于被用于流式细胞仪在人类样本上 (图 1). Mol Med Rep (2016) ncbi
小鼠 单克隆(M-A712)
  • 流式细胞仪; 人类; 图 2e
碧迪BD转铁蛋白受体抗体(BD Biosciences, M-A712)被用于被用于流式细胞仪在人类样本上 (图 2e). Nat Genet (2016) ncbi
小鼠 单克隆(M-A712)
  • 流式细胞仪; 小鼠; 图 4
碧迪BD转铁蛋白受体抗体(BD Bioscience, 555535)被用于被用于流式细胞仪在小鼠样本上 (图 4). Nat Med (2015) ncbi
小鼠 单克隆(M-A712)
  • 流式细胞仪; 人类; 图 4a
碧迪BD转铁蛋白受体抗体(BD, 551374)被用于被用于流式细胞仪在人类样本上 (图 4a). Science (2016) ncbi
小鼠 单克隆(M-A712)
  • 流式细胞仪; 人类; 图 1
碧迪BD转铁蛋白受体抗体(BD Biosciences, 555537)被用于被用于流式细胞仪在人类样本上 (图 1). Stem Cell Reports (2015) ncbi
小鼠 单克隆(L01.1)
  • 流式细胞仪; 人类; 图 3
碧迪BD转铁蛋白受体抗体(BD Biosciences, 341029)被用于被用于流式细胞仪在人类样本上 (图 3). Blood (2015) ncbi
小鼠 单克隆(M-A712)
  • 流式细胞仪; 人类; 图 3
碧迪BD转铁蛋白受体抗体(BD Biosciences, 551374)被用于被用于流式细胞仪在人类样本上 (图 3). Stem Cell Rev (2015) ncbi
小鼠 单克隆(M-A712)
  • 流式细胞仪; 人类
碧迪BD转铁蛋白受体抗体(BD Biosciences, M-A712)被用于被用于流式细胞仪在人类样本上. J Immunol (2014) ncbi
小鼠 单克隆(2/Transferrin)
  • 免疫印迹; 人类; 1:500; 图 4a
碧迪BD转铁蛋白受体抗体(BD Biosciences, 612124)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 4a). Nat Commun (2014) ncbi
小鼠 单克隆(2/Transferrin)
  • 免疫印迹; 人类
碧迪BD转铁蛋白受体抗体(BD Biosciences, 612124)被用于被用于免疫印迹在人类样本上. Biomed Res Int (2014) ncbi
小鼠 单克隆(M-A712)
  • 免疫细胞化学; 人类; 1:100
碧迪BD转铁蛋白受体抗体(Transduction Laboratories, 555534)被用于被用于免疫细胞化学在人类样本上浓度为1:100. Traffic (2014) ncbi
小鼠 单克隆(2/Transferrin)
  • 免疫印迹; 人类; 1:2000
碧迪BD转铁蛋白受体抗体(BD, 612124)被用于被用于免疫印迹在人类样本上浓度为1:2000. Nature (2014) ncbi
小鼠 单克隆(M-A712)
  • 流式细胞仪; 人类
碧迪BD转铁蛋白受体抗体(BD, M-A712)被用于被用于流式细胞仪在人类样本上. Retrovirology (2014) ncbi
小鼠 单克隆(M-A712)
  • 流式细胞仪; 人类; 1:100
碧迪BD转铁蛋白受体抗体(BD Biosciences, 551374)被用于被用于流式细胞仪在人类样本上浓度为1:100. J Neurosci Res (2013) ncbi
小鼠 单克隆(M-A712)
  • 流式细胞仪; 人类; 1:5
碧迪BD转铁蛋白受体抗体(BD Pharmingen, 551374)被用于被用于流式细胞仪在人类样本上浓度为1:5. Stem Cells (2013) ncbi
小鼠 单克隆(M-A712)
  • 流式细胞仪; 人类
碧迪BD转铁蛋白受体抗体(BD Biosciences, M-A712)被用于被用于流式细胞仪在人类样本上. Blood (2013) ncbi
小鼠 单克隆(2/Transferrin)
  • 免疫印迹; 人类; 1:1000
碧迪BD转铁蛋白受体抗体(BD Biosciences, 612124)被用于被用于免疫印迹在人类样本上浓度为1:1000. PLoS ONE (2010) ncbi
小鼠 单克隆(M-A712)
  • 流式细胞仪; 人类
碧迪BD转铁蛋白受体抗体(BD Pharmingen, M-A712)被用于被用于流式细胞仪在人类样本上. Genes Dev (2009) ncbi
Developmental Studies Hybridoma Bank
小鼠 单克隆(G1/221/12)
  • 流式细胞仪; 人类; 图 4d
Developmental Studies Hybridoma Bank转铁蛋白受体抗体(DSHB, G1/221/12)被用于被用于流式细胞仪在人类样本上 (图 4d). Dev Cell (2019) ncbi
文章列表
  1. Chafe S, Vizeacoumar F, Venkateswaran G, Nemirovsky O, Awrey S, Brown W, et al. Genome-wide synthetic lethal screen unveils novel CAIX-NFS1/xCT axis as a targetable vulnerability in hypoxic solid tumors. Sci Adv. 2021;7: pubmed 出版商
  2. Ashok A, Chaudhary S, Wise A, Rana N, McDonald D, Kritikos A, et al. Release of Iron-Loaded Ferritin in Sodium Iodate-Induced Model of Age Related Macular Degeneration: An In-Vitro and In-Vivo Study. Antioxidants (Basel). 2021;10: pubmed 出版商
  3. Zuo Y, Xie J, Li X, Li Y, Thirupathi A, Zhang J, et al. Ferritinophagy-Mediated Ferroptosis Involved in Paraquat-Induced Neurotoxicity of Dopaminergic Neurons: Implication for Neurotoxicity in PD. Oxid Med Cell Longev. 2021;2021:9961628 pubmed 出版商
  4. Yao F, Cui X, Zhang Y, Bei Z, Wang H, Zhao D, et al. Iron regulatory protein 1 promotes ferroptosis by sustaining cellular iron homeostasis in melanoma. Oncol Lett. 2021;22:657 pubmed 出版商
  5. Zheleznyak A, Mixdorf M, Marsala L, Prior J, Yang X, Cui G, et al. Orthogonal targeting of osteoclasts and myeloma cells for radionuclide stimulated dynamic therapy induces multidimensional cell death pathways. Theranostics. 2021;11:7735-7754 pubmed 出版商
  6. Cerny O, Godlee C, Tocci R, Cross N, Shi H, Williamson J, et al. CD97 stabilises the immunological synapse between dendritic cells and T cells and is targeted for degradation by the Salmonella effector SteD. PLoS Pathog. 2021;17:e1009771 pubmed 出版商
  7. Malleret B, El Sahili A, Tay M, Carissimo G, Ong A, Novera W, et al. Plasmodium vivax binds host CD98hc (SLC3A2) to enter immature red blood cells. Nat Microbiol. 2021;6:991-999 pubmed 出版商
  8. McMillan K, Banks P, Hellel F, Carmichael R, Clairfeuille T, Evans A, et al. Sorting nexin-27 regulates AMPA receptor trafficking through the synaptic adhesion protein LRFN2. elife. 2021;10: pubmed 出版商
  9. Wagenblast E, Araújo J, Gan O, Cutting S, Murison A, Krivdova G, et al. Mapping the cellular origin and early evolution of leukemia in Down syndrome. Science. 2021;373: pubmed 出版商
  10. Amanat F, Thapa M, Lei T, Ahmed S, Adelsberg D, Carreño J, et al. SARS-CoV-2 mRNA vaccination induces functionally diverse antibodies to NTD, RBD, and S2. Cell. 2021;184:3936-3948.e10 pubmed 出版商
  11. Choi E, Jeong J, Jang H, Ahn Y, Kim K, An H, et al. Skeletal Lipocalin-2 Is Associated with Iron-Related Oxidative Stress in ob/ob Mice with Sarcopenia. Antioxidants (Basel). 2021;10: pubmed 出版商
  12. Turner J, Kim W, Kalaidina E, Goss C, Rauseo A, Schmitz A, et al. SARS-CoV-2 infection induces long-lived bone marrow plasma cells in humans. Nature. 2021;595:421-425 pubmed 出版商
  13. Zhang X, Yu K, Ma L, Qian Z, Tian X, Miao Y, et al. Endogenous glutamate determines ferroptosis sensitivity via ADCY10-dependent YAP suppression in lung adenocarcinoma. Theranostics. 2021;11:5650-5674 pubmed 出版商
  14. Bebber C, Thomas E, Stroh J, Chen Z, Androulidaki A, Schmitt A, et al. Ferroptosis response segregates small cell lung cancer (SCLC) neuroendocrine subtypes. Nat Commun. 2021;12:2048 pubmed 出版商
  15. Nilsri N, Jangprasert P, Pawinwongchai J, Israsena N, Rojnuckarin P. Distinct effects of V617F and exon12-mutated JAK2 expressions on erythropoiesis in a human induced pluripotent stem cell (iPSC)-based model. Sci Rep. 2021;11:5255 pubmed 出版商
  16. Chen J, Cao X, Li B, Zhao Z, Chen S, Lai S, et al. Warburg Effect Is a Cancer Immune Evasion Mechanism Against Macrophage Immunosurveillance. Front Immunol. 2020;11:621757 pubmed 出版商
  17. Sokal A, Chappert P, Barba Spaeth G, Roeser A, Fourati S, Azzaoui I, et al. Maturation and persistence of the anti-SARS-CoV-2 memory B cell response. Cell. 2021;184:1201-1213.e14 pubmed 出版商
  18. Zhang X, Gou Y, Zhang Y, Li J, Han K, Xu Y, et al. Hepcidin overexpression in astrocytes alters brain iron metabolism and protects against amyloid-β induced brain damage in mice. Cell Death Discov. 2020;6:113 pubmed 出版商
  19. Mancinelli R, Cutone A, Rosa L, Lepanto M, Onori P, Pannarale L, et al. Different iron-handling in inflamed small and large cholangiocytes and in small and large-duct type intrahepatic cholangiocarcinoma. Eur J Histochem. 2020;64: pubmed 出版商
  20. Moissoglu K, Stueland M, Gasparski A, Wang T, Jenkins L, Hastings M, et al. RNA localization and co-translational interactions control RAB13 GTPase function and cell migration. EMBO J. 2020;39:e104958 pubmed 出版商
  21. Banik S, Pedram K, Wisnovsky S, Ahn G, Riley N, Bertozzi C. Lysosome-targeting chimaeras for degradation of extracellular proteins. Nature. 2020;584:291-297 pubmed 出版商
  22. Mazgaj R, Szudzik M, Lipiński P, Jończy A, Smuda E, Kamyczek M, et al. Effect of Oral Supplementation of Healthy Pregnant Sows with Sucrosomial Ferric Pyrophosphate on Maternal Iron Status and Hepatic Iron Stores in Newborn Piglets. Animals (Basel). 2020;10: pubmed 出版商
  23. de Cubas A, Dunker W, Zaninovich A, Hongo R, Bhatia A, Panda A, et al. DNA hypomethylation promotes transposable element expression and activation of immune signaling in renal cell cancer. JCI Insight. 2020;5: pubmed 出版商
  24. Sabbir M. CAMKK2-CAMK4 signaling regulates transferrin trafficking, turnover, and iron homeostasis. Cell Commun Signal. 2020;18:80 pubmed 出版商
  25. Lee D, Kam M, Lee S, Lee H, Lee D. Peroxiredoxin 5 deficiency exacerbates iron overload-induced neuronal death via ER-mediated mitochondrial fission in mouse hippocampus. Cell Death Dis. 2020;11:204 pubmed 出版商
  26. Kapralov A, Yang Q, Dar H, Tyurina Y, Anthonymuthu T, Kim R, et al. Redox lipid reprogramming commands susceptibility of macrophages and microglia to ferroptotic death. Nat Chem Biol. 2020;16:278-290 pubmed 出版商
  27. Chen H, Cong X, Wu C, Wu X, Wang J, Mao K, et al. Intratumoral delivery of CCL25 enhances immunotherapy against triple-negative breast cancer by recruiting CCR9+ T cells. Sci Adv. 2020;6:eaax4690 pubmed 出版商
  28. Huang Y, Huang J, Huang Y, Gan L, Long L, Pu A, et al. TFRC promotes epithelial ovarian cancer cell proliferation and metastasis via up-regulation of AXIN2 expression. Am J Cancer Res. 2020;10:131-147 pubmed
  29. Wang Y, Maeda Y, Liu Y, Takada Y, Ninomiya A, Hirata T, et al. Cross-talks of glycosylphosphatidylinositol biosynthesis with glycosphingolipid biosynthesis and ER-associated degradation. Nat Commun. 2020;11:860 pubmed 出版商
  30. Singh K, Leu J, Barnoud T, Vonteddu P, Gnanapradeepan K, Lin C, et al. African-centric TP53 variant increases iron accumulation and bacterial pathogenesis but improves response to malaria toxin. Nat Commun. 2020;11:473 pubmed 出版商
  31. Lehmann M, Lukonin I, Noe F, Schmoranzer J, Clementi C, Loerke D, et al. Nanoscale coupling of endocytic pit growth and stability. Sci Adv. 2019;5:eaax5775 pubmed 出版商
  32. Creed M, Baldeosingh R, Eberly C, Schlee C, Kim M, Cutler J, et al. PAX-SIX-EYA-DACH Network modulates GATA-FOG function in fly hematopoiesis and human erythropoiesis. Development. 2019;: pubmed 出版商
  33. Bendriem R, Singh S, Aleem A, Antonetti D, Ross M. Tight junction protein occludin regulates progenitor Self-Renewal and survival in developing cortex. elife. 2019;8: pubmed 出版商
  34. Calvanese V, Nguyen A, Bolan T, Vavilina A, Su T, Lee L, et al. MLLT3 governs human haematopoietic stem-cell self-renewal and engraftment. Nature. 2019;576:281-286 pubmed 出版商
  35. Luteijn R, Zaver S, Gowen B, Wyman S, Garelis N, Onia L, et al. SLC19A1 transports immunoreactive cyclic dinucleotides. Nature. 2019;573:434-438 pubmed 出版商
  36. Menon V, Thomas R, Elgueta C, Horl M, Osborn T, Hallett P, et al. Comprehensive Cell Surface Antigen Analysis Identifies Transferrin Receptor Protein-1 (CD71) as a Negative Selection Marker for Human Neuronal Cells. Stem Cells. 2019;37:1293-1306 pubmed 出版商
  37. Wang N, Fan Y, Yuan C, Song J, Yao Y, Liu W, et al. Selective ERK1/2 agonists isolated from Melia azedarach with potent anti-leukemic activity. BMC Cancer. 2019;19:764 pubmed 出版商
  38. Gulbranson D, Crisman L, Lee M, Ouyang Y, Menasche B, Demmitt B, et al. AAGAB Controls AP2 Adaptor Assembly in Clathrin-Mediated Endocytosis. Dev Cell. 2019;50:436-446.e5 pubmed 出版商
  39. Marques P, Nyegaard S, Collins R, Troise F, Freeman S, Trimble W, et al. Multimerization and Retention of the Scavenger Receptor SR-B1 in the Plasma Membrane. Dev Cell. 2019;: pubmed 出版商
  40. Minuesa G, Albanese S, Xie W, Kazansky Y, Worroll D, Chow A, et al. Small-molecule targeting of MUSASHI RNA-binding activity in acute myeloid leukemia. Nat Commun. 2019;10:2691 pubmed 出版商
  41. Ludwig L, Lareau C, Bao E, Nandakumar S, Muus C, Ulirsch J, et al. Transcriptional States and Chromatin Accessibility Underlying Human Erythropoiesis. Cell Rep. 2019;27:3228-3240.e7 pubmed 出版商
  42. Pellin D, Loperfido M, Baricordi C, Wolock S, Montepeloso A, Weinberg O, et al. A comprehensive single cell transcriptional landscape of human hematopoietic progenitors. Nat Commun. 2019;10:2395 pubmed 出版商
  43. Xiao J, Luo J, Hu A, Xiao T, Li M, Kong Z, et al. Cholesterol transport through the peroxisome-ER membrane contacts tethered by PI(4,5)P2 and extended synaptotagmins. Sci China Life Sci. 2019;: pubmed 出版商
  44. Davis C, Jackson K, McElroy A, Halfmann P, Huang J, Chennareddy C, et al. Longitudinal Analysis of the Human B Cell Response to Ebola Virus Infection. Cell. 2019;: pubmed 出版商
  45. Sahgal P, Alanko J, Icha J, Paatero I, Hamidi H, Arjonen A, et al. GGA2 and RAB13 promote activity-dependent β1-integrin recycling. J Cell Sci. 2019;132: pubmed 出版商
  46. Allden S, Ogger P, Ghai P, McErlean P, Hewitt R, Toshner R, et al. The Transferrin Receptor CD71 Delineates Functionally Distinct Airway Macrophage Subsets during Idiopathic Pulmonary Fibrosis. Am J Respir Crit Care Med. 2019;: pubmed 出版商
  47. Ding X, Jiang X, Tian R, Zhao P, Li L, Wang X, et al. RAB2 regulates the formation of autophagosome and autolysosome in mammalian cells. Autophagy. 2019;:1-13 pubmed 出版商
  48. Hancock M, Meyer R, Mistry M, Khetani R, Wagschal A, Shin T, et al. Insulin Receptor Associates with Promoters Genome-wide and Regulates Gene Expression. Cell. 2019;177:722-736.e22 pubmed 出版商
  49. Zaborowski M, Lee K, Na Y, Sammarco A, Zhang X, Iwanicki M, et al. Methods for Systematic Identification of Membrane Proteins for Specific Capture of Cancer-Derived Extracellular Vesicles. Cell Rep. 2019;27:255-268.e6 pubmed 出版商
  50. Schaffer T, Smith J, Cook E, Phan T, Margolis S. PKCε Inhibits Neuronal Dendritic Spine Development through Dual Phosphorylation of Ephexin5. Cell Rep. 2018;25:2470-2483.e8 pubmed 出版商
  51. Schwartz A, Das N, Ramakrishnan S, Jain C, Jurkovic M, Wu J, et al. Hepatic hepcidin/intestinal HIF-2α axis maintains iron absorption during iron deficiency and overload. J Clin Invest. 2019;129:336-348 pubmed 出版商
  52. Shi G, OZOG S, Torbett B, Compton A. mTOR inhibitors lower an intrinsic barrier to virus infection mediated by IFITM3. Proc Natl Acad Sci U S A. 2018;115:E10069-E10078 pubmed 出版商
  53. Gerber T, Murawala P, Knapp D, Masselink W, Schuez M, Hermann S, et al. Single-cell analysis uncovers convergence of cell identities during axolotl limb regeneration. Science. 2018;362: pubmed 出版商
  54. Gut G, Herrmann M, Pelkmans L. Multiplexed protein maps link subcellular organization to cellular states. Science. 2018;361: pubmed 出版商
  55. Almeida Souza L, Frank R, García Nafría J, Colussi A, Gunawardana N, Johnson C, et al. A Flat BAR Protein Promotes Actin Polymerization at the Base of Clathrin-Coated Pits. Cell. 2018;174:325-337.e14 pubmed 出版商
  56. Ashok A, Karmakar S, Chandel R, Ravikumar R, Dalal S, Kong Q, et al. Prion protein modulates iron transport in the anterior segment: Implications for ocular iron homeostasis and prion transmission. Exp Eye Res. 2018;175:1-13 pubmed 出版商
  57. Zhang L, Zhang P, Wang G, Zhang H, Zhang Y, Yu Y, et al. Ras and Rap Signal Bidirectional Synaptic Plasticity via Distinct Subcellular Microdomains. Neuron. 2018;98:783-800.e4 pubmed 出版商
  58. Wang Z, Ding Y, Wang X, Lu S, Wang C, He C, et al. Pseudolaric acid B triggers ferroptosis in glioma cells via activation of Nox4 and inhibition of xCT. Cancer Lett. 2018;428:21-33 pubmed 出版商
  59. Khajuria R, Munschauer M, Ulirsch J, Fiorini C, Ludwig L, McFarland S, et al. Ribosome Levels Selectively Regulate Translation and Lineage Commitment in Human Hematopoiesis. Cell. 2018;173:90-103.e19 pubmed 出版商
  60. Mukadam A, Breusegem S, Seaman M. Analysis of novel endosome-to-Golgi retrieval genes reveals a role for PLD3 in regulating endosomal protein sorting and amyloid precursor protein processing. Cell Mol Life Sci. 2018;75:2613-2625 pubmed 出版商
  61. Vo L, Kinney M, Liu X, Zhang Y, Barragan J, Sousa P, et al. Regulation of embryonic haematopoietic multipotency by EZH1. Nature. 2018;553:506-510 pubmed 出版商
  62. Gruszczyk J, Kanjee U, Chan L, Menant S, Malleret B, Lim N, et al. Transferrin receptor 1 is a reticulocyte-specific receptor for Plasmodium vivax. Science. 2018;359:48-55 pubmed 出版商
  63. Khalil S, Delehanty L, Grado S, Holy M, White Z, Freeman K, et al. Iron modulation of erythropoiesis is associated with Scribble-mediated control of the erythropoietin receptor. J Exp Med. 2018;215:661-679 pubmed 出版商
  64. Licon Munoz Y, Michel V, Fordyce C, Parra K. F-actin reorganization by V-ATPase inhibition in prostate cancer. Biol Open. 2017;6:1734-1744 pubmed 出版商
  65. Huet Calderwood C, Rivera Molina F, Iwamoto D, Kromann E, Toomre D, Calderwood D. Novel ecto-tagged integrins reveal their trafficking in live cells. Nat Commun. 2017;8:570 pubmed 出版商
  66. Huang N, Pishesha N, Mukherjee J, Zhang S, Deshycka R, Sudaryo V, et al. Genetically engineered red cells expressing single domain camelid antibodies confer long-term protection against botulinum neurotoxin. Nat Commun. 2017;8:423 pubmed 出版商
  67. Henry K, Dilling T, Abdel Atti D, Edwards K, Evans M, Lewis J. Noninvasive 89Zr-Transferrin PET Shows Improved Tumor Targeting Compared with 18F-FDG PET in MYC-Overexpressing Human Triple-Negative Breast Cancer. J Nucl Med. 2018;59:51-57 pubmed 出版商
  68. Burr M, Sparbier C, Chan Y, Williamson J, Woods K, Beavis P, et al. CMTM6 maintains the expression of PD-L1 and regulates anti-tumour immunity. Nature. 2017;549:101-105 pubmed 出版商
  69. Ichii M, Oritani K, Murase M, Komatsu K, Yamazaki M, Kyoden R, et al. Molecular targeting of inosine-5'-monophosphate dehydrogenase by FF-10501 promotes erythropoiesis via ROS/MAPK pathway. Leuk Lymphoma. 2018;59:448-459 pubmed 出版商
  70. Patwardhan A, Bardin S, Miserey Lenkei S, Larue L, Goud B, Raposo G, et al. Routing of the RAB6 secretory pathway towards the lysosome related organelle of melanocytes. Nat Commun. 2017;8:15835 pubmed 出版商
  71. Mrowczynski O, Madhankumar A, Slagle Webb B, Lee S, Zacharia B, Connor J. HFE genotype affects exosome phenotype in cancer. Biochim Biophys Acta Gen Subj. 2017;1861:1921-1928 pubmed 出版商
  72. Wright R, Newey S, Ilie A, Wefelmeyer W, Raimondo J, Ginham R, et al. Neuronal Chloride Regulation via KCC2 Is Modulated through a GABAB Receptor Protein Complex. J Neurosci. 2017;37:5447-5462 pubmed 出版商
  73. Romani L, Oikonomou V, Moretti S, Iannitti R, D Adamo M, Villella V, et al. Thymosin α1 represents a potential potent single-molecule-based therapy for cystic fibrosis. Nat Med. 2017;23:590-600 pubmed 出版商
  74. Allison R, Edgar J, Pearson G, Rizo T, Newton T, Günther S, et al. Defects in ER-endosome contacts impact lysosome function in hereditary spastic paraplegia. J Cell Biol. 2017;216:1337-1355 pubmed 出版商
  75. Roy N, Pacini G, Berlioz Torrent C, Janvier K. Characterization of E3 ligases involved in lysosomal sorting of the HIV-1 restriction factor BST2. J Cell Sci. 2017;130:1596-1611 pubmed 出版商
  76. Marcassa E, Raimondi M, Anwar T, Eskelinen E, Myers M, Triolo G, et al. Calpain mobilizes Atg9/Bif-1 vesicles from Golgi stacks upon autophagy induction by thapsigargin. Biol Open. 2017;6:551-562 pubmed 出版商
  77. Miles A, Burr S, Grice G, Nathan J. The vacuolar-ATPase complex and assembly factors, TMEM199 and CCDC115, control HIF1? prolyl hydroxylation by regulating cellular iron levels. elife. 2017;6: pubmed 出版商
  78. Larson C, Heinzen R. High-Content Imaging Reveals Expansion of the Endosomal Compartment during Coxiella burnetii Parasitophorous Vacuole Maturation. Front Cell Infect Microbiol. 2017;7:48 pubmed 出版商
  79. Trakarnsanga K, Griffiths R, Wilson M, Blair A, Satchwell T, Meinders M, et al. An immortalized adult human erythroid line facilitates sustainable and scalable generation of functional red cells. Nat Commun. 2017;8:14750 pubmed 出版商
  80. Lemler D, Lynch M, Tesfay L, Deng Z, Paul B, Wang X, et al. DCYTB is a predictor of outcome in breast cancer that functions via iron-independent mechanisms. Breast Cancer Res. 2017;19:25 pubmed 出版商
  81. Ingrassia R, Memo M, Garavaglia B. Ferrous Iron Up-regulation in Fibroblasts of Patients with Beta Propeller Protein-Associated Neurodegeneration (BPAN). Front Genet. 2017;8:18 pubmed 出版商
  82. Canver M, Lessard S, Pinello L, Wu Y, Ilboudo Y, Stern E, et al. Variant-aware saturating mutagenesis using multiple Cas9 nucleases identifies regulatory elements at trait-associated loci. Nat Genet. 2017;49:625-634 pubmed 出版商
  83. Ripa R, Dolfi L, Terrigno M, Pandolfini L, Savino A, Arcucci V, et al. MicroRNA miR-29 controls a compensatory response to limit neuronal iron accumulation during adult life and aging. BMC Biol. 2017;15:9 pubmed 出版商
  84. Liu T, Krysiak K, Shirai C, Kim S, Shao J, Ndonwi M, et al. Knockdown of HSPA9 induces TP53-dependent apoptosis in human hematopoietic progenitor cells. PLoS ONE. 2017;12:e0170470 pubmed 出版商
  85. Santiago Valtierra F, Mateos M, Aveldaño M, Oresti G. Sphingomyelins and ceramides with VLCPUFAs are excluded from low-density raft-like domains in differentiating spermatogenic cells. J Lipid Res. 2017;58:529-542 pubmed 出版商
  86. Nelson J, Koenis D, Scheij S, Cook E, Moeton M, Santos A, et al. EEPD1 Is a Novel LXR Target Gene in Macrophages Which Regulates ABCA1 Abundance and Cholesterol Efflux. Arterioscler Thromb Vasc Biol. 2017;37:423-432 pubmed 出版商
  87. Cianciola N, Chung S, Manor D, Carlin C. Adenovirus Modulates Toll-Like Receptor 4 Signaling by Reprogramming ORP1L-VAP Protein Contacts for Cholesterol Transport from Endosomes to the Endoplasmic Reticulum. J Virol. 2017;91: pubmed 出版商
  88. Bruurs L, Zwakenberg S, van der Net M, Zwartkruis F, Bos J. A Two-Tiered Mechanism Enables Localized Cdc42 Signaling during Enterocyte Polarization. Mol Cell Biol. 2017;37: pubmed 出版商
  89. Yamauchi T, Nishiyama M, Moroishi T, Kawamura A, Nakayama K. FBXL5 Inactivation in Mouse Brain Induces Aberrant Proliferation of Neural Stem Progenitor Cells. Mol Cell Biol. 2017;37: pubmed 出版商
  90. Wang Y, Chang S, Wu Q, Gou Y, Jia L, Cui Y, et al. The Protective Role of Mitochondrial Ferritin on Erastin-Induced Ferroptosis. Front Aging Neurosci. 2016;8:308 pubmed 出版商
  91. Rychtarčíková Z, Lettlova S, Tomkova V, Korenkova V, Langerova L, Simonova E, et al. Tumor-initiating cells of breast and prostate origin show alterations in the expression of genes related to iron metabolism. Oncotarget. 2017;8:6376-6398 pubmed 出版商
  92. Sabanov V, Braat S, D Andrea L, Willemsen R, Zeidler S, Rooms L, et al. Impaired GABAergic inhibition in the hippocampus of Fmr1 knockout mice. Neuropharmacology. 2017;116:71-81 pubmed 出版商
  93. Wymant J, Hiscox S, Westwell A, Urbé S, Clague M, Jones A. The Role of BCA2 in the Endocytic Trafficking of EGFR and Significance as a Prognostic Biomarker in Cancer. J Cancer. 2016;7:2388-2407 pubmed
  94. Jiang B, Liu G, Zheng J, Chen M, Maimaitiming Z, Chen M, et al. Hephaestin and ceruloplasmin facilitate iron metabolism in the mouse kidney. Sci Rep. 2016;6:39470 pubmed 出版商
  95. Parag Sharma K, Leyme A, DiGiacomo V, Marivin A, Broselid S, Garcia Marcos M. Membrane Recruitment of the Non-receptor Protein GIV/Girdin (G?-interacting, Vesicle-associated Protein/Girdin) Is Sufficient for Activating Heterotrimeric G Protein Signaling. J Biol Chem. 2016;291:27098-27111 pubmed 出版商
  96. Leibacher J, Dauber K, Ehser S, Brixner V, Kollar K, Vogel A, et al. Human mesenchymal stromal cells undergo apoptosis and fragmentation after intravenous application in immune-competent mice. Cytotherapy. 2017;19:61-74 pubmed 出版商
  97. Tafteh R, Abraham L, Seo D, Lu H, Gold M, Chou K. Real-time 3D stabilization of a super-resolution microscope using an electrically tunable lens. Opt Express. 2016;24:22959-22970 pubmed 出版商
  98. Myllymäki M, Määttä J, Dimova E, Izzi V, Väisänen T, Myllyharju J, et al. Notch Downregulation and Extramedullary Erythrocytosis in Hypoxia-Inducible Factor Prolyl 4-Hydroxylase 2-Deficient Mice. Mol Cell Biol. 2017;37: pubmed 出版商
  99. Casamayor Genescà A, Pla A, Oliver Vila I, Pujals Fonts N, Marín Gallén S, Caminal M, et al. Clinical-scale expansion of CD34+ cord blood cells amplifies committed progenitors and rapid scid repopulation cells. N Biotechnol. 2017;35:19-29 pubmed 出版商
  100. Horniblow R, Henesy D, Iqbal T, Tselepis C. Modulation of iron transport, metabolism and reactive oxygen status by quercetin-iron complexes in vitro. Mol Nutr Food Res. 2017;61: pubmed 出版商
  101. Nozawa T, Minowa Nozawa A, Aikawa C, Nakagawa I. The STX6-VTI1B-VAMP3 complex facilitates xenophagy by regulating the fusion between recycling endosomes and autophagosomes. Autophagy. 2017;13:57-69 pubmed 出版商
  102. Lian G, Dettenhofer M, Lu J, Downing M, Chenn A, Wong T, et al. Filamin A- and formin 2-dependent endocytosis regulates proliferation via the canonical Wnt pathway. Development. 2016;143:4509-4520 pubmed
  103. Dyer W, Tan J, Day T, Kiers L, Kiernan M, Yiannikas C, et al. Immunomodulation of inflammatory leukocyte markers during intravenous immunoglobulin treatment associated with clinical efficacy in chronic inflammatory demyelinating polyradiculoneuropathy. Brain Behav. 2016;6:e00516 pubmed
  104. Tanaka Y, Ono N, Shima T, Tanaka G, Katoh Y, Nakayama K, et al. The phospholipid flippase ATP9A is required for the recycling pathway from the endosomes to the plasma membrane. Mol Biol Cell. 2016;27:3883-3893 pubmed
  105. Hu Z, Wang J, Yu D, Soon J, de Kleijn D, Foo R, et al. Aberrant Splicing Promotes Proteasomal Degradation of L-type CaV1.2 Calcium Channels by Competitive Binding for CaVβ Subunits in Cardiac Hypertrophy. Sci Rep. 2016;6:35247 pubmed 出版商
  106. Lorenzen I, Lokau J, Korpys Y, Oldefest M, Flynn C, Künzel U, et al. Control of ADAM17 activity by regulation of its cellular localisation. Sci Rep. 2016;6:35067 pubmed 出版商
  107. Gasperini L, Meneghetti E, Legname G, Benetti F. In Absence of the Cellular Prion Protein, Alterations in Copper Metabolism and Copper-Dependent Oxidase Activity Affect Iron Distribution. Front Neurosci. 2016;10:437 pubmed
  108. Chandele A, Sewatanon J, Gunisetty S, Singla M, Onlamoon N, Akondy R, et al. Characterization of Human CD8 T Cell Responses in Dengue Virus-Infected Patients from India. J Virol. 2016;90:11259-11278 pubmed
  109. Sturgill E, Malouli D, Hansen S, Burwitz B, Seo S, Schneider C, et al. Natural Killer Cell Evasion Is Essential for Infection by Rhesus Cytomegalovirus. PLoS Pathog. 2016;12:e1005868 pubmed 出版商
  110. Ng O. Iron, microbiota and colorectal cancer. Wien Med Wochenschr. 2016;166:431-436 pubmed
  111. Hersom M, Helms H, Pretzer N, Goldeman C, Jensen A, Severin G, et al. Transferrin receptor expression and role in transendothelial transport of transferrin in cultured brain endothelial monolayers. Mol Cell Neurosci. 2016;76:59-67 pubmed 出版商
  112. Blagojević Zagorac G, Mahmutefendić H, Macesic S, Karleuša L, Lucin P. Quantitative Analysis of Endocytic Recycling of Membrane Proteins by Monoclonal Antibody-Based Recycling Assays. J Cell Physiol. 2017;232:463-476 pubmed 出版商
  113. Sierra Valdez F, Ruiz Suárez J, Delint Ramirez I. Pentobarbital modifies the lipid raft-protein interaction: A first clue about the anesthesia mechanism on NMDA and GABAA receptors. Biochim Biophys Acta. 2016;1858:2603-2610 pubmed 出版商
  114. Xue H, Chen D, Zhong Y, Zhou Z, Fang S, Li M, et al. Deferoxamine ameliorates hepatosteatosis via several mechanisms in ob/ob mice. Ann N Y Acad Sci. 2016;1375:52-65 pubmed 出版商
  115. Geng J, Li J, Huang T, Zhao K, Chen Q, Guo W, et al. A novel manganese complex selectively induces malignant glioma cell death by targeting mitochondria. Mol Med Rep. 2016;14:1970-8 pubmed 出版商
  116. Egea Jimenez A, Gallardo R, Garcia Pino A, Ivarsson Y, Wawrzyniak A, Kashyap R, et al. Frizzled 7 and PIP2 binding by syntenin PDZ2 domain supports Frizzled 7 trafficking and signalling. Nat Commun. 2016;7:12101 pubmed 出版商
  117. Lei R, Zhang K, Liu K, Shao X, Ding Z, Wang F, et al. Transferrin receptor facilitates TGF-β and BMP signaling activation to control craniofacial morphogenesis. Cell Death Dis. 2016;7:e2282 pubmed 出版商
  118. Baksi S, Tripathi A, Singh N. Alpha-synuclein modulates retinal iron homeostasis by facilitating the uptake of transferrin-bound iron: Implications for visual manifestations of Parkinson's disease. Free Radic Biol Med. 2016;97:292-306 pubmed 出版商
  119. Ebert L, Tan L, Johan M, Min K, Cockshell M, Parham K, et al. A non-canonical role for desmoglein-2 in endothelial cells: implications for neoangiogenesis. Angiogenesis. 2016;19:463-86 pubmed 出版商
  120. Nakashima H, Ohkawara B, Ishigaki S, Fukudome T, Ito K, Tsushima M, et al. R-spondin 2 promotes acetylcholine receptor clustering at the neuromuscular junction via Lgr5. Sci Rep. 2016;6:28512 pubmed 出版商
  121. Yokoi N, Fukata Y, Sekiya A, Murakami T, Kobayashi K, Fukata M. Identification of PSD-95 Depalmitoylating Enzymes. J Neurosci. 2016;36:6431-44 pubmed 出版商
  122. Sun X, Li L, Liu F, Huang Z, Bean J, Jiao H, et al. Lrp4 in astrocytes modulates glutamatergic transmission. Nat Neurosci. 2016;19:1010-8 pubmed 出版商
  123. Ito F, Nishiyama T, Shi L, Mori M, Hirayama T, Nagasawa H, et al. Contrasting intra- and extracellular distribution of catalytic ferrous iron in ovalbumin-induced peritonitis. Biochem Biophys Res Commun. 2016;476:600-606 pubmed 出版商
  124. Goodier M, Rodríguez Galán A, Lusa C, Nielsen C, Darboe A, Moldoveanu A, et al. Influenza Vaccination Generates Cytokine-Induced Memory-like NK Cells: Impact of Human Cytomegalovirus Infection. J Immunol. 2016;197:313-25 pubmed 出版商
  125. Russell S, Puttick D, Sawyer A, Potter D, Mague S, Carlezon W, et al. Nucleus Accumbens AMPA Receptors Are Necessary for Morphine-Withdrawal-Induced Negative-Affective States in Rats. J Neurosci. 2016;36:5748-62 pubmed 出版商
  126. Chamberland J, Antonow L, Dias Santos M, Ritter B. NECAP2 controls clathrin coat recruitment to early endosomes for fast endocytic recycling. J Cell Sci. 2016;129:2625-37 pubmed 出版商
  127. Stroh M, Winter M, Swerdlow R, McCarson K, Zhu H. Loss of NCB5OR in the cerebellum disturbs iron pathways, potentiates behavioral abnormalities, and exacerbates harmaline-induced tremor in mice. Metab Brain Dis. 2016;31:951-64 pubmed 出版商
  128. Fusté N, Fernández Hernández R, Cemeli T, Mirantes C, Pedraza N, Rafel M, et al. Cytoplasmic cyclin D1 regulates cell invasion and metastasis through the phosphorylation of paxillin. Nat Commun. 2016;7:11581 pubmed 出版商
  129. Perez Bay A, Schreiner R, Benedicto I, Paz Marzolo M, Banfelder J, Weinstein A, et al. The fast-recycling receptor Megalin defines the apical recycling pathway of epithelial cells. Nat Commun. 2016;7:11550 pubmed 出版商
  130. Karvela M, Baquero P, Kuntz E, Mukhopadhyay A, Mitchell R, Allan E, et al. ATG7 regulates energy metabolism, differentiation and survival of Philadelphia-chromosome-positive cells. Autophagy. 2016;12:936-48 pubmed 出版商
  131. Huebner S, Blohowiak S, Kling P, Smith S. Prenatal Alcohol Exposure Alters Fetal Iron Distribution and Elevates Hepatic Hepcidin in a Rat Model of Fetal Alcohol Spectrum Disorders. J Nutr. 2016;146:1180-8 pubmed 出版商
  132. Rentas S, Holzapfel N, Belew M, Pratt G, Voisin V, Wilhelm B, et al. Musashi-2 attenuates AHR signalling to expand human haematopoietic stem cells. Nature. 2016;532:508-511 pubmed 出版商
  133. Sánchez A, Urrego D, Pardo L. Cyclic expression of the voltage-gated potassium channel KV10.1 promotes disassembly of the primary cilium. EMBO Rep. 2016;17:708-23 pubmed 出版商
  134. Hernaez B, Guerra M, Salas M, Andres G. African Swine Fever Virus Undergoes Outer Envelope Disruption, Capsid Disassembly and Inner Envelope Fusion before Core Release from Multivesicular Endosomes. PLoS Pathog. 2016;12:e1005595 pubmed 出版商
  135. Belov L, Matic K, Hallal S, Best O, Mulligan S, Christopherson R. Extensive surface protein profiles of extracellular vesicles from cancer cells may provide diagnostic signatures from blood samples. J Extracell Vesicles. 2016;5:25355 pubmed 出版商
  136. Kurkinen K, Marttinen M, Turner L, Natunen T, Mäkinen P, Haapalinna F, et al. SEPT8 modulates ?-amyloidogenic processing of APP by affecting the sorting and accumulation of BACE1. J Cell Sci. 2016;129:2224-38 pubmed 出版商
  137. Shearstone J, Golonzhka O, Chonkar A, Tamang D, Van Duzer J, Jones S, et al. Chemical Inhibition of Histone Deacetylases 1 and 2 Induces Fetal Hemoglobin through Activation of GATA2. PLoS ONE. 2016;11:e0153767 pubmed 出版商
  138. Corcelle Termeau E, Vindeløv S, Hämälistö S, Mograbi B, Keldsbo A, Bräsen J, et al. Excess sphingomyelin disturbs ATG9A trafficking and autophagosome closure. Autophagy. 2016;12:833-49 pubmed 出版商
  139. Gandolfi B, Alamri S, Darby W, Adhikari B, Lattimer J, Malik R, et al. A dominant TRPV4 variant underlies osteochondrodysplasia in Scottish fold cats. Osteoarthritis Cartilage. 2016;24:1441-50 pubmed 出版商
  140. Guo C, Hao L, Yang Z, Chai R, Zhang S, Gu Y, et al. Deferoxamine-mediated up-regulation of HIF-1α prevents dopaminergic neuronal death via the activation of MAPK family proteins in MPTP-treated mice. Exp Neurol. 2016;280:13-23 pubmed 出版商
  141. Lakschevitz F, Hassanpour S, Rubin A, Fine N, Sun C, Glogauer M. Identification of neutrophil surface marker changes in health and inflammation using high-throughput screening flow cytometry. Exp Cell Res. 2016;342:200-9 pubmed 出版商
  142. Choi J, Kim J, Won Y, Uhm J, Park B, Lee Y. The potential of deferasirox as a novel therapeutic modality in gastric cancer. World J Surg Oncol. 2016;14:77 pubmed 出版商
  143. Clifford R, Maryon E, Kaplan J. Dynamic internalization and recycling of a metal ion transporter: Cu homeostasis and CTR1, the human Cu⁺ uptake system. J Cell Sci. 2016;129:1711-21 pubmed 出版商
  144. Bosch M, Nerbonne J, Townsend R, Miyazaki H, Nukina N, Ornitz D, et al. Proteomic analysis of native cerebellar iFGF14 complexes. Channels (Austin). 2016;10:297-312 pubmed 出版商
  145. Procaccini C, Carbone F, Di Silvestre D, Brambilla F, De Rosa V, Galgani M, et al. The Proteomic Landscape of Human Ex Vivo Regulatory and Conventional T Cells Reveals Specific Metabolic Requirements. Immunity. 2016;44:406-21 pubmed 出版商
  146. Jhaveri D, Kim M, Thompson E, Huang L, Sharma R, Klein A, et al. Using Quantitative Seroproteomics to Identify Antibody Biomarkers in Pancreatic Cancer. Cancer Immunol Res. 2016;4:225-33 pubmed 出版商
  147. Horton E, Humphries J, Stutchbury B, Jacquemet G, Ballestrem C, Barry S, et al. Modulation of FAK and Src adhesion signaling occurs independently of adhesion complex composition. J Cell Biol. 2016;212:349-64 pubmed 出版商
  148. Lyons M, Chen L, Deng J, Finn C, Pfenning A, Sabhlok A, et al. The transcription factor calcium-response factor limits NMDA receptor-dependent transcription in the developing brain. J Neurochem. 2016;137:164-76 pubmed 出版商
  149. Masuda T, Wang X, Maeda M, Canver M, Sher F, Funnell A, et al. Transcription factors LRF and BCL11A independently repress expression of fetal hemoglobin. Science. 2016;351:285-9 pubmed 出版商
  150. Song J, Ping L, Duong D, Gao X, He C, Wei L, et al. Native low density lipoprotein promotes lipid raft formation in macrophages. Mol Med Rep. 2016;13:2087-93 pubmed 出版商
  151. Kyttälä A, Moraghebi R, Valensisi C, Kettunen J, Andrus C, Pasumarthy K, et al. Genetic Variability Overrides the Impact of Parental Cell Type and Determines iPSC Differentiation Potential. Stem Cell Reports. 2016;6:200-12 pubmed 出版商
  152. Ketel K, Krauss M, Nicot A, Puchkov D, Wieffer M, Müller R, et al. A phosphoinositide conversion mechanism for exit from endosomes. Nature. 2016;529:408-12 pubmed 出版商
  153. Zhao Y, Feresin R, Falcon Perez J, Salazar G. Differential Targeting of SLC30A10/ZnT10 Heterodimers to Endolysosomal Compartments Modulates EGF-Induced MEK/ERK1/2 Activity. Traffic. 2016;17:267-88 pubmed 出版商
  154. Yamaguchi T, Lu C, Ida L, Yanagisawa K, Usukura J, Cheng J, et al. ROR1 sustains caveolae and survival signalling as a scaffold of cavin-1 and caveolin-1. Nat Commun. 2016;7:10060 pubmed 出版商
  155. Nelson J, Cook E, Loregger A, Hoeksema M, Scheij S, Kovacevic I, et al. Deubiquitylase Inhibition Reveals Liver X Receptor-independent Transcriptional Regulation of the E3 Ubiquitin Ligase IDOL and Lipoprotein Uptake. J Biol Chem. 2016;291:4813-25 pubmed 出版商
  156. Guan X, Wang N, Cui F, Liu Y, Liu P, Zhao J, et al. Caveolin-1 is essential in the differentiation of human adipose-derived stem cells into hepatocyte-like cells via an MAPK pathway-dependent mechanism. Mol Med Rep. 2016;13:1487-94 pubmed 出版商
  157. Fan S, Numata Y, Numata M. Endosomal Na+/H+ exchanger NHE5 influences MET recycling and cell migration. Mol Biol Cell. 2016;27:702-15 pubmed 出版商
  158. Chen A, Kim S, Shepardson N, Patel S, Hong S, Selkoe D. Physical and functional interaction between the α- and γ-secretases: A new model of regulated intramembrane proteolysis. J Cell Biol. 2015;211:1157-76 pubmed 出版商
  159. Patrone M, Coroadinha A, Teixeira A, Alves P. Palmitoylation Strengthens Cholesterol-dependent Multimerization and Fusion Activity of Human Cytomegalovirus Glycoprotein B (gB). J Biol Chem. 2016;291:4711-22 pubmed 出版商
  160. Lee Y, de Vasconcellos J, Byrnes C, Kaushal M, Rabel A, Tumburu L, et al. Erythroid-Specific Expression of LIN28A Is Sufficient for Robust Gamma-Globin Gene and Protein Expression in Adult Erythroblasts. PLoS ONE. 2015;10:e0144977 pubmed 出版商
  161. Jabara H, Boyden S, Chou J, Ramesh N, Massaad M, Benson H, et al. A missense mutation in TFRC, encoding transferrin receptor 1, causes combined immunodeficiency. Nat Genet. 2016;48:74-8 pubmed 出版商
  162. Wen Q, Yang Q, Goldenson B, Malinge S, Lasho T, Schneider R, et al. Targeting megakaryocytic-induced fibrosis in myeloproliferative neoplasms by AURKA inhibition. Nat Med. 2015;21:1473-80 pubmed 出版商
  163. Natunen T, Takalo M, Kemppainen S, Leskelä S, Marttinen M, Kurkinen K, et al. Relationship between ubiquilin-1 and BACE1 in human Alzheimer's disease and APdE9 transgenic mouse brain and cell-based models. Neurobiol Dis. 2016;85:187-205 pubmed 出版商
  164. Funauchi Y, Tanikawa C, Yi Lo P, Mori J, Daigo Y, Takano A, et al. Regulation of iron homeostasis by the p53-ISCU pathway. Sci Rep. 2015;5:16497 pubmed 出版商
  165. Notta F, Zandi S, Takayama N, Dobson S, Gan O, Wilson G, et al. Distinct routes of lineage development reshape the human blood hierarchy across ontogeny. Science. 2016;351:aab2116 pubmed 出版商
  166. Billcliff P, Noakes C, Mehta Z, Yan G, Mak L, Woscholski R, et al. OCRL1 engages with the F-BAR protein pacsin 2 to promote biogenesis of membrane-trafficking intermediates. Mol Biol Cell. 2016;27:90-107 pubmed 出版商
  167. Mori M, Ito F, Shi L, Wang Y, Ishida C, Hattori Y, et al. Ovarian endometriosis-associated stromal cells reveal persistently high affinity for iron. Redox Biol. 2015;6:578-586 pubmed 出版商
  168. Covarrubias Pinto A, Moll P, Solís Maldonado M, Acuña A, Riveros A, Miró M, et al. Beyond the redox imbalance: Oxidative stress contributes to an impaired GLUT3 modulation in Huntington's disease. Free Radic Biol Med. 2015;89:1085-96 pubmed 出版商
  169. Bruurs L, Donker L, Zwakenberg S, Zwartkruis F, Begthel H, Knisely A, et al. ATP8B1-mediated spatial organization of Cdc42 signaling maintains singularity during enterocyte polarization. J Cell Biol. 2015;210:1055-63 pubmed 出版商
  170. Ooko E, Saeed M, Kadioglu O, Sarvi S, Colak M, Elmasaoudi K, et al. Artemisinin derivatives induce iron-dependent cell death (ferroptosis) in tumor cells. Phytomedicine. 2015;22:1045-54 pubmed 出版商
  171. Agu C, Soares F, Alderton A, Patel M, Ansari R, Patel S, et al. Successful Generation of Human Induced Pluripotent Stem Cell Lines from Blood Samples Held at Room Temperature for up to 48 hr. Stem Cell Reports. 2015;5:660-71 pubmed 出版商
  172. Sirohi K, Kumari A, Radha V, Swarup G. A Glaucoma-Associated Variant of Optineurin, M98K, Activates Tbk1 to Enhance Autophagosome Formation and Retinal Cell Death Dependent on Ser177 Phosphorylation of Optineurin. PLoS ONE. 2015;10:e0138289 pubmed 出版商
  173. Chen A, Donovan A, Ned Sykes R, Andrews N. Noncanonical role of transferrin receptor 1 is essential for intestinal homeostasis. Proc Natl Acad Sci U S A. 2015;112:11714-9 pubmed 出版商
  174. Renneville A, van Galen P, Canver M, McConkey M, Krill Burger J, Dorfman D, et al. EHMT1 and EHMT2 inhibition induces fetal hemoglobin expression. Blood. 2015;126:1930-9 pubmed 出版商
  175. Vanderwerf S, Buck D, Wilmarth P, Sears L, David L, Morton D, et al. Role for Rab10 in Methamphetamine-Induced Behavior. PLoS ONE. 2015;10:e0136167 pubmed 出版商
  176. Ta H, Keller J, Haltmeier M, Saka S, Schmied J, Opazo F, et al. Mapping molecules in scanning far-field fluorescence nanoscopy. Nat Commun. 2015;6:7977 pubmed 出版商
  177. Sun L, Yan M, Hu X, Peng L, Che H, Bao Y, et al. MicroRNA-9 induces defective trafficking of Nav1.1 and Nav1.2 by targeting Navβ2 protein coding region in rat with chronic brain hypoperfusion. Mol Neurodegener. 2015;10:36 pubmed 出版商
  178. Liu J, Brzeszczynska J, Samuel K, Black J, Palakkan A, Anderson R, et al. Efficient episomal reprogramming of blood mononuclear cells and differentiation to hepatocytes with functional drug metabolism. Exp Cell Res. 2015;338:203-13 pubmed 出版商
  179. David J, Stas J, Schmitt N, Bocksteins E. Auxiliary KCNE subunits modulate both homotetrameric Kv2.1 and heterotetrameric Kv2.1/Kv6.4 channels. Sci Rep. 2015;5:12813 pubmed 出版商
  180. Ito A, Hong C, Rong X, Zhu X, Tarling E, Hedde P, et al. LXRs link metabolism to inflammation through Abca1-dependent regulation of membrane composition and TLR signaling. elife. 2015;4:e08009 pubmed 出版商
  181. Jobin C, Cloutier M, Simard C, Néron S. Heterogeneity of in vitro-cultured CD34+ cells isolated from peripheral blood. Cytotherapy. 2015;17:1472-84 pubmed 出版商
  182. Mehta K, Greenwell P, Renshaw D, Busbridge M, Garcia M, Farnaud S, et al. Characterisation of hepcidin response to holotransferrin treatment in CHO TRVb-1 cells. Blood Cells Mol Dis. 2015;55:110-8 pubmed 出版商
  183. Ferreira J, Schmidt J, Rio P, Águas R, Rooyakkers A, Li K, et al. GluN2B-Containing NMDA Receptors Regulate AMPA Receptor Traffic through Anchoring of the Synaptic Proteasome. J Neurosci. 2015;35:8462-79 pubmed 出版商
  184. de Wilde A, Wannee K, Scholte F, Goeman J, Ten Dijke P, Snijder E, et al. A Kinome-Wide Small Interfering RNA Screen Identifies Proviral and Antiviral Host Factors in Severe Acute Respiratory Syndrome Coronavirus Replication, Including Double-Stranded RNA-Activated Protein Kinase and Early Secretory Pathway Proteins. J Virol. 2015;89:8318-33 pubmed 出版商
  185. Stanton B, Coutermarsh B, Barnaby R, Hogan D. Pseudomonas aeruginosa Reduces VX-809 Stimulated F508del-CFTR Chloride Secretion by Airway Epithelial Cells. PLoS ONE. 2015;10:e0127742 pubmed 出版商
  186. Krivega I, Byrnes C, de Vasconcellos J, Lee Y, Kaushal M, Dean A, et al. Inhibition of G9a methyltransferase stimulates fetal hemoglobin production by facilitating LCR/γ-globin looping. Blood. 2015;126:665-72 pubmed 出版商
  187. Zheng N, Jeyifous O, Munro C, Montgomery J, Green W. Synaptic activity regulates AMPA receptor trafficking through different recycling pathways. elife. 2015;4: pubmed 出版商
  188. Zhou H, Martínez H, Sun B, Li A, Zimmer M, Katsanis N, et al. Rapid and Efficient Generation of Transgene-Free iPSC from a Small Volume of Cryopreserved Blood. Stem Cell Rev. 2015;11:652-65 pubmed 出版商
  189. Shi Y, Tan S, Ng S, Zhou J, Yang N, Koo G, et al. Critical role of CAV1/caveolin-1 in cell stress responses in human breast cancer cells via modulation of lysosomal function and autophagy. Autophagy. 2015;11:769-84 pubmed 出版商
  190. Jang D, Kwon H, Jeong K, Lee J, Pak Y. Essential role of flotillin-1 palmitoylation in the intracellular localization and signaling function of IGF-1 receptor. J Cell Sci. 2015;128:2179-90 pubmed 出版商
  191. Fromm J, Tagliente D, Shaver A, Neppalli V, Craig F. Case study interpretation: Report from the ICCS Annual Meeting, Seattle, 2014. Cytometry B Clin Cytom. 2015;88:413-24 pubmed 出版商
  192. Chung J, Bauer D, Ghamari A, Nizzi C, Deck K, Kingsley P, et al. The mTORC1/4E-BP pathway coordinates hemoglobin production with L-leucine availability. Sci Signal. 2015;8:ra34 pubmed 出版商
  193. Ruas M, Davis L, Chen C, Morgan A, Chuang K, Walseth T, et al. Expression of Ca²⁺-permeable two-pore channels rescues NAADP signalling in TPC-deficient cells. EMBO J. 2015;34:1743-58 pubmed 出版商
  194. Difranco K, Johnson Farley N, Bertino J, Elson D, Vega B, Belinka B, et al. LFA-1-targeting Leukotoxin (LtxA; Leukothera®) causes lymphoma tumor regression in a humanized mouse model and requires caspase-8 and Fas to kill malignant lymphocytes. Leuk Res. 2015;39:649-56 pubmed 出版商
  195. Dayer C, Stamenkovic I. Recruitment of Matrix Metalloproteinase-9 (MMP-9) to the Fibroblast Cell Surface by Lysyl Hydroxylase 3 (LH3) Triggers Transforming Growth Factor-β (TGF-β) Activation and Fibroblast Differentiation. J Biol Chem. 2015;290:13763-78 pubmed 出版商
  196. Chen J, Tibroni N, Sauter D, Galaski J, Miura T, Alter G, et al. Modest attenuation of HIV-1 Vpu alleles derived from elite controller plasma. PLoS ONE. 2015;10:e0120434 pubmed 出版商
  197. Hänggi P, Telezhkin V, Kemp P, Schmugge M, Gassmann M, Goede J, et al. Functional plasticity of the N-methyl-d-aspartate receptor in differentiating human erythroid precursor cells. Am J Physiol Cell Physiol. 2015;308:C993-C1007 pubmed 出版商
  198. Liu C, Tan F, Xiao Z, Dawe G. Amyloid precursor protein enhances Nav1.6 sodium channel cell surface expression. J Biol Chem. 2015;290:12048-57 pubmed 出版商
  199. Å talekar M, Yin X, Rebolj K, Darovic S, Troakes C, Mayr M, et al. Proteomic analyses reveal that loss of TDP-43 affects RNA processing and intracellular transport. Neuroscience. 2015;293:157-70 pubmed 出版商
  200. Biazik J, Ylä Anttila P, Vihinen H, Jokitalo E, Eskelinen E. Ultrastructural relationship of the phagophore with surrounding organelles. Autophagy. 2015;11:439-51 pubmed 出版商
  201. Bauckman K, Haller E, Taran N, Rockfield S, Ruiz Rivera A, Nanjundan M. Iron alters cell survival in a mitochondria-dependent pathway in ovarian cancer cells. Biochem J. 2015;466:401-13 pubmed 出版商
  202. Haakenson J, Khokhlatchev A, Choi Y, Linton S, Zhang P, Zaki P, et al. Lysosomal degradation of CD44 mediates ceramide nanoliposome-induced anoikis and diminished extravasation in metastatic carcinoma cells. J Biol Chem. 2015;290:8632-43 pubmed 出版商
  203. Alghamdi R, O Reilly P, Lu C, Gomes J, Lagace T, Basak A. LDL-R promoting activity of peptides derived from human PCSK9 catalytic domain (153-421): design, synthesis and biochemical evaluation. Eur J Med Chem. 2015;92:890-907 pubmed 出版商
  204. Robertson J, Jacquemet G, Byron A, Jones M, Warwood S, Selley J, et al. Defining the phospho-adhesome through the phosphoproteomic analysis of integrin signalling. Nat Commun. 2015;6:6265 pubmed 出版商
  205. Kondapalli K, Llongueras J, Capilla González V, Prasad H, Hack A, Smith C, et al. A leak pathway for luminal protons in endosomes drives oncogenic signalling in glioblastoma. Nat Commun. 2015;6:6289 pubmed 出版商
  206. Dongiovanni P, Lanti C, Gatti S, Rametta R, Recalcati S, Maggioni M, et al. High fat diet subverts hepatocellular iron uptake determining dysmetabolic iron overload. PLoS ONE. 2015;10:e0116855 pubmed 出版商
  207. Pettingill P, Kramer H, Coebergh J, Pettingill R, Maxwell S, Nibber A, et al. Antibodies to GABAA receptor α1 and γ2 subunits: clinical and serologic characterization. Neurology. 2015;84:1233-41 pubmed 出版商
  208. Lee S, Uchida Y, Wang J, Matsudaira T, Nakagawa T, Kishimoto T, et al. Transport through recycling endosomes requires EHD1 recruitment by a phosphatidylserine translocase. EMBO J. 2015;34:669-88 pubmed 出版商
  209. Burhans M, Flowers M, Harrington K, Bond L, Guo C, Anderson R, et al. Hepatic oleate regulates adipose tissue lipogenesis and fatty acid oxidation. J Lipid Res. 2015;56:304-18 pubmed 出版商
  210. Van de Laar E, Clifford M, Hasenoeder S, Kim B, Wang D, Lee S, et al. Cell surface marker profiling of human tracheal basal cells reveals distinct subpopulations, identifies MST1/MSP as a mitogenic signal, and identifies new biomarkers for lung squamous cell carcinomas. Respir Res. 2014;15:160 pubmed 出版商
  211. Zacherl S, La Venuta G, Muller H, Wegehingel S, Dimou E, Sehr P, et al. A direct role for ATP1A1 in unconventional secretion of fibroblast growth factor 2. J Biol Chem. 2015;290:3654-65 pubmed 出版商
  212. Ng D, Humphries J, Byron A, Millon Frémillon A, Humphries M. Microtubule-dependent modulation of adhesion complex composition. PLoS ONE. 2014;9:e115213 pubmed 出版商
  213. Gammella E, Díaz V, Recalcati S, Buratti P, Samaja M, Dey S, et al. Erythropoietin's inhibiting impact on hepcidin expression occurs indirectly. Am J Physiol Regul Integr Comp Physiol. 2015;308:R330-5 pubmed 出版商
  214. Ram S, Kim D, Ober R, Ward E. The level of HER2 expression is a predictor of antibody-HER2 trafficking behavior in cancer cells. MAbs. 2014;6:1211-9 pubmed 出版商
  215. Leung S, Rice P, Barton J. In vivo molecular mapping of the tumor microenvironment in an azoxymethane-treated mouse model of colon carcinogenesis. Lasers Surg Med. 2015;47:40-9 pubmed 出版商
  216. Guo L, Alekseev O, Li Y, Song Y, Dunaief J. Iron increases APP translation and amyloid-beta production in the retina. Exp Eye Res. 2014;129:31-7 pubmed 出版商
  217. de Carvalho J, de Castro R, da Silva E, Silveira P, da Silva Januário M, Arruda E, et al. Nef neutralizes the ability of exosomes from CD4+ T cells to act as decoys during HIV-1 infection. PLoS ONE. 2014;9:e113691 pubmed 出版商
  218. Udensi U, Tackett A, Byrum S, Avaritt N, Sengupta D, Moreland L, et al. Proteomics-Based Identification of Differentially Abundant Proteins from Human Keratinocytes Exposed to Arsenic Trioxide. J Proteomics Bioinform. 2014;7:166-178 pubmed
  219. Nijenhuis W, Vallardi G, Teixeira A, Kops G, Saurin A. Negative feedback at kinetochores underlies a responsive spindle checkpoint signal. Nat Cell Biol. 2014;16:1257-64 pubmed 出版商
  220. Siggs O, Grieve A, Xu H, Bambrough P, Christova Y, Freeman M. Genetic interaction implicates iRhom2 in the regulation of EGF receptor signalling in mice. Biol Open. 2014;3:1151-7 pubmed 出版商
  221. Badarau A, Rouha H, Malafa S, Logan D, HÃ¥kansson M, Stulik L, et al. Structure-function analysis of heterodimer formation, oligomerization, and receptor binding of the Staphylococcus aureus bi-component toxin LukGH. J Biol Chem. 2015;290:142-56 pubmed 出版商
  222. Cao C, Thomas C, Insogna K, O Brien K. Duodenal absorption and tissue utilization of dietary heme and nonheme iron differ in rats. J Nutr. 2014;144:1710-7 pubmed 出版商
  223. Takatsu H, Tanaka G, Segawa K, Suzuki J, Nagata S, Nakayama K, et al. Phospholipid flippase activities and substrate specificities of human type IV P-type ATPases localized to the plasma membrane. J Biol Chem. 2014;289:33543-56 pubmed 出版商
  224. Zhang Y, Wang N, Su P, Lu J, Wang Y. Disruption of dopamine D1 receptor phosphorylation at serine 421 attenuates cocaine-induced behaviors in mice. Neurosci Bull. 2014;30:1025-35 pubmed 出版商
  225. Orchard Webb D, Lee T, Cook G, Blair G. CUB domain containing protein 1 (CDCP1) modulates adhesion and motility in colon cancer cells. BMC Cancer. 2014;14:754 pubmed 出版商
  226. McGough I, Steinberg F, Gallon M, Yatsu A, Ohbayashi N, Heesom K, et al. Identification of molecular heterogeneity in SNX27-retromer-mediated endosome-to-plasma-membrane recycling. J Cell Sci. 2014;127:4940-53 pubmed 出版商
  227. Shi Z, Shi F, Wang Y, Sheftel A, Nie G, Zhao Y, et al. Mitochondrial ferritin, a new target for inhibiting neuronal tumor cell proliferation. Cell Mol Life Sci. 2015;72:983-97 pubmed 出版商
  228. Perez Bay A, Schreiner R, Benedicto I, RODRIGUEZ BOULAN E. Galectin-4-mediated transcytosis of transferrin receptor. J Cell Sci. 2014;127:4457-69 pubmed 出版商
  229. Davey M, Morgan M, Liuzzi A, Tyler C, Khan M, Szakmany T, et al. Microbe-specific unconventional T cells induce human neutrophil differentiation into antigen cross-presenting cells. J Immunol. 2014;193:3704-3716 pubmed 出版商
  230. Torkamani A, Bersell K, Jorge B, Bjork R, Friedman J, Bloss C, et al. De novo KCNB1 mutations in epileptic encephalopathy. Ann Neurol. 2014;76:529-540 pubmed 出版商
  231. Pance A, Morrissey Wettey F, Craig H, Downing A, Talbot R, Jackson A. SDF-1 chemokine signalling modulates the apoptotic responses to iron deprivation of clathrin-depleted DT40 cells. PLoS ONE. 2014;9:e106278 pubmed 出版商
  232. Wu D, Allen C, Fromm J. Flow cytometry of ALK-negative anaplastic large cell lymphoma of breast implant-associated effusion and capsular tissue. Cytometry B Clin Cytom. 2015;88:58-63 pubmed 出版商
  233. Luteijn R, Hoelen H, Kruse E, van Leeuwen W, Grootens J, Horst D, et al. Cowpox virus protein CPXV012 eludes CTLs by blocking ATP binding to TAP. J Immunol. 2014;193:1578-89 pubmed 出版商
  234. Tseng H, Thorausch N, Ziegler T, Meves A, Fassler R, Böttcher R. Sorting nexin 31 binds multiple ? integrin cytoplasmic domains and regulates ?1 integrin surface levels and stability. J Mol Biol. 2014;426:3180-3194 pubmed 出版商
  235. McGough I, Steinberg F, Jia D, Barbuti P, McMillan K, Heesom K, et al. Retromer binding to FAM21 and the WASH complex is perturbed by the Parkinson disease-linked VPS35(D620N) mutation. Curr Biol. 2014;24:1670-1676 pubmed 出版商
  236. Majeed S, Vasudevan L, Chen C, Luo Y, Torres J, Evans T, et al. Clathrin light chains are required for the gyrating-clathrin recycling pathway and thereby promote cell migration. Nat Commun. 2014;5:3891 pubmed 出版商
  237. Lakshminarayan R, Wunder C, Becken U, Howes M, Benzing C, Arumugam S, et al. Galectin-3 drives glycosphingolipid-dependent biogenesis of clathrin-independent carriers. Nat Cell Biol. 2014;16:595-606 pubmed 出版商
  238. Singh A, Kan C, Shende V, Dong B, Liu J. A novel posttranscriptional mechanism for dietary cholesterol-mediated suppression of liver LDL receptor expression. J Lipid Res. 2014;55:1397-407 pubmed 出版商
  239. Moroishi T, Yamauchi T, Nishiyama M, Nakayama K. HERC2 targets the iron regulator FBXL5 for degradation and modulates iron metabolism. J Biol Chem. 2014;289:16430-41 pubmed 出版商
  240. Caliceti C, Zambonin L, Rizzo B, Fiorentini D, Vieceli Dalla Sega F, Hrelia S, et al. Role of plasma membrane caveolae/lipid rafts in VEGF-induced redox signaling in human leukemia cells. Biomed Res Int. 2014;2014:857504 pubmed 出版商
  241. Thomas P, Cheng A, Colby C, Liu L, Patel C, Josephs L, et al. Localization and proteomic characterization of cholesterol-rich membrane microdomains in the inner ear. J Proteomics. 2014;103:178-93 pubmed 出版商
  242. Perdomini M, Belbellaa B, Monassier L, Reutenauer L, Messaddeq N, Cartier N, et al. Prevention and reversal of severe mitochondrial cardiomyopathy by gene therapy in a mouse model of Friedreich's ataxia. Nat Med. 2014;20:542-7 pubmed 出版商
  243. Rydell G, Renard H, Garcia Castillo M, Dingli F, Loew D, Lamaze C, et al. Rab12 localizes to Shiga toxin-induced plasma membrane invaginations and controls toxin transport. Traffic. 2014;15:772-87 pubmed 出版商
  244. Satoh D, Hirose T, Harita Y, Daimon C, Harada T, Kurihara H, et al. aPKC? maintains the integrity of the glomerular slit diaphragm through trafficking of nephrin to the cell surface. J Biochem. 2014;156:115-28 pubmed 出版商
  245. Moissoglu K, Kiessling V, Wan C, Hoffman B, Norambuena A, Tamm L, et al. Regulation of Rac1 translocation and activation by membrane domains and their boundaries. J Cell Sci. 2014;127:2565-76 pubmed 出版商
  246. Mancias J, Wang X, Gygi S, Harper J, Kimmelman A. Quantitative proteomics identifies NCOA4 as the cargo receptor mediating ferritinophagy. Nature. 2014;509:105-9 pubmed 出版商
  247. Brittan M, Barr L, Anderson N, Morris A, Duffin R, Marwick J, et al. Functional characterisation of human pulmonary monocyte-like cells in lipopolysaccharide-mediated acute lung inflammation. J Inflamm (Lond). 2014;11:9 pubmed 出版商
  248. Montenegro M, Moral Naranjo M, Campoy F, Muñoz Delgado E, Vidal C. The lipid raft-bound alkaline phosphatase activity increases and the level of transcripts remains unaffected in liver of merosin-deficient LAMA2dy mouse. Chem Biol Interact. 2014;216:1-8 pubmed 出版商
  249. Ikeda Y, Ozono I, Tajima S, Imao M, Horinouchi Y, Izawa Ishizawa Y, et al. Iron chelation by deferoxamine prevents renal interstitial fibrosis in mice with unilateral ureteral obstruction. PLoS ONE. 2014;9:e89355 pubmed 出版商
  250. Follit J, San Agustin J, Jonassen J, Huang T, Rivera Perez J, Tremblay K, et al. Arf4 is required for Mammalian development but dispensable for ciliary assembly. PLoS Genet. 2014;10:e1004170 pubmed 出版商
  251. van Gent M, Braem S, de Jong A, Delagic N, Peeters J, Boer I, et al. Epstein-Barr virus large tegument protein BPLF1 contributes to innate immune evasion through interference with toll-like receptor signaling. PLoS Pathog. 2014;10:e1003960 pubmed 出版商
  252. Baumann T, Bergmann S, Schmidt Rose T, Max H, Martin A, Enthaler B, et al. Glutathione-conjugated sulfanylalkanols are substrates for ABCC11 and ?-glutamyl transferase 1: a potential new pathway for the formation of odorant precursors in the apocrine sweat gland. Exp Dermatol. 2014;23:247-52 pubmed 出版商
  253. DeBosch B, Chen Z, Saben J, Finck B, Moley K. Glucose transporter 8 (GLUT8) mediates fructose-induced de novo lipogenesis and macrosteatosis. J Biol Chem. 2014;289:10989-98 pubmed 出版商
  254. Schneppenheim J, Hüttl S, Mentrup T, Lüllmann Rauch R, Rothaug M, Engelke M, et al. The intramembrane proteases signal Peptide peptidase-like 2a and 2b have distinct functions in vivo. Mol Cell Biol. 2014;34:1398-411 pubmed 出版商
  255. Bien Ly N, Yu Y, Bumbaca D, Elstrott J, Boswell C, Zhang Y, et al. Transferrin receptor (TfR) trafficking determines brain uptake of TfR antibody affinity variants. J Exp Med. 2014;211:233-44 pubmed 出版商
  256. Facciuto F, Bugnon Valdano M, Marziali F, Massimi P, Banks L, Cavatorta A, et al. Human papillomavirus (HPV)-18 E6 oncoprotein interferes with the epithelial cell polarity Par3 protein. Mol Oncol. 2014;8:533-43 pubmed 出版商
  257. Koppensteiner H, H hne K, Gondim M, Gobert F, Widder M, Gundlach S, et al. Lentiviral Nef suppresses iron uptake in a strain specific manner through inhibition of Transferrin endocytosis. Retrovirology. 2014;11:1 pubmed 出版商
  258. Aida K, Hayashi H, Inamura K, Mizuno T, Sugiyama Y. Differential roles of ubiquitination in the degradation mechanism of cell surface-resident bile salt export pump and multidrug resistance-associated protein 2. Mol Pharmacol. 2014;85:482-91 pubmed 出版商
  259. Wang N, Su P, Zhang Y, Lu J, Xing B, Kang K, et al. Protein kinase D1-dependent phosphorylation of dopamine D1 receptor regulates cocaine-induced behavioral responses. Neuropsychopharmacology. 2014;39:1290-301 pubmed 出版商
  260. Even Desrumeaux K, Nevoltris D, Lavaut M, Alim K, Borg J, Audebert S, et al. Masked selection: a straightforward and flexible approach for the selection of binders against specific epitopes and differentially expressed proteins by phage display. Mol Cell Proteomics. 2014;13:653-65 pubmed 出版商
  261. Matsui T, Fukuda M. Methods of analysis of the membrane trafficking pathway from recycling endosomes to lysosomes. Methods Enzymol. 2014;534:195-206 pubmed 出版商
  262. Ingle G, Scales S. DropArray™, a wall-less 96-well plate for uptake and immunofluorescence microscopy, confirms CD22 recycles. Traffic. 2014;15:255-72 pubmed 出版商
  263. Landry M, Champagne C, Boulanger M, Jetté A, Fuchs M, Dziengelewski C, et al. A functional interplay between the small GTPase Rab11a and mitochondria-shaping proteins regulates mitochondrial positioning and polarization of the actin cytoskeleton downstream of Src family kinases. J Biol Chem. 2014;289:2230-49 pubmed 出版商
  264. Veuthey T, Hoffmann D, Vaidya V, Wessling Resnick M. Impaired renal function and development in Belgrade rats. Am J Physiol Renal Physiol. 2014;306:F333-43 pubmed 出版商
  265. Gabriel L, Wu S, Kearney P, Bellve K, Standley C, Fogarty K, et al. Dopamine transporter endocytic trafficking in striatal dopaminergic neurons: differential dependence on dynamin and the actin cytoskeleton. J Neurosci. 2013;33:17836-46 pubmed 出版商
  266. Garrido Gil P, Rodriguez Pallares J, Dominguez Meijide A, Guerra M, Labandeira Garcia J. Brain angiotensin regulates iron homeostasis in dopaminergic neurons and microglial cells. Exp Neurol. 2013;250:384-96 pubmed 出版商
  267. Das U, Scott D, Ganguly A, Koo E, Tang Y, Roy S. Activity-induced convergence of APP and BACE-1 in acidic microdomains via an endocytosis-dependent pathway. Neuron. 2013;79:447-60 pubmed 出版商
  268. Tornieri K, Zlatic S, Mullin A, Werner E, Harrison R, L hernault S, et al. Vps33b pathogenic mutations preferentially affect VIPAS39/SPE-39-positive endosomes. Hum Mol Genet. 2013;22:5215-28 pubmed 出版商
  269. Bloomer S, Han O, Kregel K, Brown K. Altered expression of iron regulatory proteins with aging is associated with transient hepatic iron accumulation after environmental heat stress. Blood Cells Mol Dis. 2014;52:19-26 pubmed 出版商
  270. Byrne S, Buckett P, Kim J, Luo F, Sanford J, Chen J, et al. Ferristatin II promotes degradation of transferrin receptor-1 in vitro and in vivo. PLoS ONE. 2013;8:e70199 pubmed 出版商
  271. Stover A, Brick D, Nethercott H, Banuelos M, Sun L, O Dowd D, et al. Process-based expansion and neural differentiation of human pluripotent stem cells for transplantation and disease modeling. J Neurosci Res. 2013;91:1247-62 pubmed 出版商
  272. Huang M, Sivagurunathan S, Ting S, Jansson P, Austin C, Kelly M, et al. Molecular and functional alterations in a mouse cardiac model of Friedreich ataxia: activation of the integrated stress response, eIF2? phosphorylation, and the induction of downstream targets. Am J Pathol. 2013;183:745-57 pubmed 出版商
  273. Marco S, Giralt A, Petrovic M, Pouladi M, Mart nez Turrillas R, Mart nez Hern ndez J, et al. Suppressing aberrant GluN3A expression rescues synaptic and behavioral impairments in Huntington's disease models. Nat Med. 2013;19:1030-8 pubmed 出版商
  274. von Germar A, Barth K, Schwab W. Immunocytochemical and biochemical detection of the urokinase-type plasminogen activator receptor (uPAR) in the rat tooth germ and in lipid rafts of PMA-stimulated dental epithelial cells. Histochem Cell Biol. 2013;140:649-58 pubmed 出版商
  275. Mueller W, Schütz D, Nagel F, Schulz S, Stumm R. Hierarchical organization of multi-site phosphorylation at the CXCR4 C terminus. PLoS ONE. 2013;8:e64975 pubmed 出版商
  276. Ahn J, Truesdell P, Meens J, Kadish C, Yang X, Boag A, et al. Fer protein-tyrosine kinase promotes lung adenocarcinoma cell invasion and tumor metastasis. Mol Cancer Res. 2013;11:952-63 pubmed 出版商
  277. Sak M, Szymanska M, Bertelsen V, Hasmann M, Madshus I, Stang E. Pertuzumab counteracts the inhibitory effect of ErbB2 on degradation of ErbB3. Carcinogenesis. 2013;34:2031-8 pubmed 出版商
  278. Bol G, Raman V, van der Groep P, Vermeulen J, Patel A, van der Wall E, et al. Expression of the RNA helicase DDX3 and the hypoxia response in breast cancer. PLoS ONE. 2013;8:e63548 pubmed 出版商
  279. Boczek N, Best J, Tester D, Giudicessi J, Middha S, Evans J, et al. Exome sequencing and systems biology converge to identify novel mutations in the L-type calcium channel, CACNA1C, linked to autosomal dominant long QT syndrome. Circ Cardiovasc Genet. 2013;6:279-89 pubmed
  280. Kwon H, Lee J, Jeong K, Jang D, Pak Y. A novel actin cytoskeleton-dependent noncaveolar microdomain composed of homo-oligomeric caveolin-2 for activation of insulin signaling. Biochim Biophys Acta. 2013;1833:2176-89 pubmed 出版商
  281. Viswanathan J, Haapasalo A, Kurkinen K, Natunen T, Mäkinen P, Bertram L, et al. Ubiquilin-1 modulates ?-secretase-mediated ?-site cleavage in neuronal cells. Biochemistry. 2013;52:3899-912 pubmed 出版商
  282. Castillon G, Michon L, Watanabe R. Apical sorting of lysoGPI-anchored proteins occurs independent of association with detergent-resistant membranes but dependent on their N-glycosylation. Mol Biol Cell. 2013;24:2021-33 pubmed 出版商
  283. Bauckman K, Haller E, Flores I, Nanjundan M. Iron modulates cell survival in a Ras- and MAPK-dependent manner in ovarian cells. Cell Death Dis. 2013;4:e592 pubmed 出版商
  284. Holloway Z, Velayos Baeza A, Howell G, Levecque C, Ponnambalam S, Sztul E, et al. Trafficking of the Menkes copper transporter ATP7A is regulated by clathrin-, AP-2-, AP-1-, and Rab22-dependent steps. Mol Biol Cell. 2013;24:1735-48, S1-8 pubmed 出版商
  285. Duman J, Tzeng C, Tu Y, Munjal T, Schwechter B, Ho T, et al. The adhesion-GPCR BAI1 regulates synaptogenesis by controlling the recruitment of the Par3/Tiam1 polarity complex to synaptic sites. J Neurosci. 2013;33:6964-78 pubmed 出版商
  286. Caster A, Sztul E, Kahn R. A role for cargo in Arf-dependent adaptor recruitment. J Biol Chem. 2013;288:14788-804 pubmed 出版商
  287. Steinberg F, Gallon M, Winfield M, Thomas E, Bell A, Heesom K, et al. A global analysis of SNX27-retromer assembly and cargo specificity reveals a function in glucose and metal ion transport. Nat Cell Biol. 2013;15:461-71 pubmed 出版商
  288. Xu W, Tse Y, Dobie F, Baudry M, Craig A, Wong T, et al. Simultaneous monitoring of presynaptic transmitter release and postsynaptic receptor trafficking reveals an enhancement of presynaptic activity in metabotropic glutamate receptor-mediated long-term depression. J Neurosci. 2013;33:5867-5877 pubmed 出版商
  289. Cone J, Chartoff E, Potter D, Ebner S, Roitman M. Prolonged high fat diet reduces dopamine reuptake without altering DAT gene expression. PLoS ONE. 2013;8:e58251 pubmed 出版商
  290. Murata Y, Constantine Paton M. Postsynaptic density scaffold SAP102 regulates cortical synapse development through EphB and PAK signaling pathway. J Neurosci. 2013;33:5040-52 pubmed 出版商
  291. Lane D, Chikhani S, Richardson V, Richardson D. Transferrin iron uptake is stimulated by ascorbate via an intracellular reductive mechanism. Biochim Biophys Acta. 2013;1833:1527-41 pubmed 出版商
  292. Martineau M, Shi T, Puyal J, Knolhoff A, Dulong J, Gasnier B, et al. Storage and uptake of D-serine into astrocytic synaptic-like vesicles specify gliotransmission. J Neurosci. 2013;33:3413-23 pubmed 出版商
  293. Kota K, Eaton B, Lane D, Ulrich M, Ulrich R, Peyser B, et al. Integrating high-content imaging and chemical genetics to probe host cellular pathways critical for Yersinia pestis infection. PLoS ONE. 2013;8:e55167 pubmed 出版商
  294. Scotti E, Calamai M, Goulbourne C, Zhang L, Hong C, Lin R, et al. IDOL stimulates clathrin-independent endocytosis and multivesicular body-mediated lysosomal degradation of the low-density lipoprotein receptor. Mol Cell Biol. 2013;33:1503-14 pubmed 出版商
  295. Matsuoka H, Harada K, Nakamura J, Inoue M. Nerve growth factor-induced endocytosis of TWIK-related acid-sensitive K? 1 channels in adrenal medullary cells and PC12 cells. Pflugers Arch. 2013;465:1051-64 pubmed 出版商
  296. Szabo A, Fong S, Yue L, Zhang K, Strachan L, Scalapino K, et al. The CD44+ ALDH+ population of human keratinocytes is enriched for epidermal stem cells with long-term repopulating ability. Stem Cells. 2013;31:786-99 pubmed 出版商
  297. Dettmer U, Newman A, Luth E, Bartels T, Selkoe D. In vivo cross-linking reveals principally oligomeric forms of ?-synuclein and ?-synuclein in neurons and non-neural cells. J Biol Chem. 2013;288:6371-85 pubmed 出版商
  298. Hitomi Y, Adachi T, Tsuchiya N, Honda Z, Tokunaga K, Tsubata T. Human CD72 splicing isoform responsible for resistance to systemic lupus erythematosus regulates serum immunoglobulin level and is localized in endoplasmic reticulum. BMC Immunol. 2012;13:72 pubmed 出版商
  299. Macari E, Schaeffer E, West R, Lowrey C. Simvastatin and t-butylhydroquinone suppress KLF1 and BCL11A gene expression and additively increase fetal hemoglobin in primary human erythroid cells. Blood. 2013;121:830-9 pubmed 出版商
  300. Robison G, Zakharova T, Fu S, Jiang W, Fulper R, BARREA R, et al. X-ray fluorescence imaging: a new tool for studying manganese neurotoxicity. PLoS ONE. 2012;7:e48899 pubmed 出版商
  301. Poncelet L, Springinsfeld M, Ando K, Héraud C, Kabova A, Brion J. Expression of transferrin receptor 1, proliferating cell nuclear antigen, p27(Kip1) and calbindin in the fetal and neonatal feline cerebellar cortex. Vet J. 2013;196:388-93 pubmed 出版商
  302. Cortese K, Howes M, Lundmark R, Tagliatti E, Bagnato P, Petrelli A, et al. The HSP90 inhibitor geldanamycin perturbs endosomal structure and drives recycling ErbB2 and transferrin to modified MVBs/lysosomal compartments. Mol Biol Cell. 2013;24:129-44 pubmed 出版商
  303. de Kreuk B, Anthony E, Geerts D, Hordijk P. The F-BAR protein PACSIN2 regulates epidermal growth factor receptor internalization. J Biol Chem. 2012;287:43438-53 pubmed 出版商
  304. Tillotson B, de Larrinoa I, Skinner C, Klavas D, Shusta E. Antibody affinity maturation using yeast display with detergent-solubilized membrane proteins as antigen sources. Protein Eng Des Sel. 2013;26:101-12 pubmed 出版商
  305. Lui G, Obeidy P, Ford S, Tselepis C, Sharp D, Jansson P, et al. The iron chelator, deferasirox, as a novel strategy for cancer treatment: oral activity against human lung tumor xenografts and molecular mechanism of action. Mol Pharmacol. 2013;83:179-90 pubmed 出版商
  306. Fennessey C, Sheng J, Rubin D, McClain M. Oligomerization of Clostridium perfringens epsilon toxin is dependent upon caveolins 1 and 2. PLoS ONE. 2012;7:e46866 pubmed 出版商
  307. Raess P, Paessler M, Bagg A, Weiss M, Choi J. ?-Hemoglobin-stabilizing protein is a sensitive and specific marker of erythroid precursors. Am J Surg Pathol. 2012;36:1538-47 pubmed 出版商
  308. Balaji K, Mooser C, Janson C, Bliss J, Hojjat H, Colicelli J. RIN1 orchestrates the activation of RAB5 GTPases and ABL tyrosine kinases to determine the fate of EGFR. J Cell Sci. 2012;125:5887-96 pubmed 出版商
  309. Baird N, York J, Nunberg J. Arenavirus infection induces discrete cytosolic structures for RNA replication. J Virol. 2012;86:11301-10 pubmed
  310. Gleichman A, Spruce L, Dalmau J, Seeholzer S, Lynch D. Anti-NMDA receptor encephalitis antibody binding is dependent on amino acid identity of a small region within the GluN1 amino terminal domain. J Neurosci. 2012;32:11082-94 pubmed 出版商
  311. Hoffmann F, Müller W, Schütz D, Penfold M, Wong Y, Schulz S, et al. Rapid uptake and degradation of CXCL12 depend on CXCR7 carboxyl-terminal serine/threonine residues. J Biol Chem. 2012;287:28362-77 pubmed 出版商
  312. Vermeulen J, van Brussel A, van der Groep P, Morsink F, Bult P, van der Wall E, et al. Immunophenotyping invasive breast cancer: paving the road for molecular imaging. BMC Cancer. 2012;12:240 pubmed 出版商
  313. Kiss K, Brozik A, Kucsma N, Toth A, Gera M, Berry L, et al. Shifting the paradigm: the putative mitochondrial protein ABCB6 resides in the lysosomes of cells and in the plasma membrane of erythrocytes. PLoS ONE. 2012;7:e37378 pubmed 出版商
  314. Banadakoppa M, Goluszko P, Liebenthal D, Yallampalli C. Nitric oxide induces segregation of decay accelerating factor (DAF or CD55) from the membrane lipid-rafts and its internalization in human endometrial cells. Cell Biol Int. 2012;36:901-7 pubmed 出版商
  315. Broderius M, Mostad E, Prohaska J. Suppressed hepcidin expression correlates with hypotransferrinemia in copper-deficient rat pups but not dams. Genes Nutr. 2012;7:405-14 pubmed 出版商
  316. Orsi A, Razi M, Dooley H, Robinson D, Weston A, Collinson L, et al. Dynamic and transient interactions of Atg9 with autophagosomes, but not membrane integration, are required for autophagy. Mol Biol Cell. 2012;23:1860-73 pubmed 出版商
  317. Prox J, Willenbrock M, Weber S, Lehmann T, Schmidt Arras D, Schwanbeck R, et al. Tetraspanin15 regulates cellular trafficking and activity of the ectodomain sheddase ADAM10. Cell Mol Life Sci. 2012;69:2919-32 pubmed 出版商
  318. Liu W, Ling Y, Cheung F, Che C. Stellettin A induces endoplasmic reticulum stress in murine B16 melanoma cells. J Nat Prod. 2012;75:586-90 pubmed 出版商
  319. Patrushev N, Seidel Rogol B, Salazar G. Angiotensin II requires zinc and downregulation of the zinc transporters ZnT3 and ZnT10 to induce senescence of vascular smooth muscle cells. PLoS ONE. 2012;7:e33211 pubmed 出版商
  320. Cheung F, Guo J, Ling Y, Che C, Liu W. Anti-melanogenic property of geoditin A in murine B16 melanoma cells. Mar Drugs. 2012;10:465-76 pubmed 出版商
  321. Riquelme G, de Gregorio N, Vallejos C, Berrios M, Morales B. Differential expression of potassium channels in placentas from normal and pathological pregnancies: targeting of the K(ir) 2.1 channel to lipid rafts. J Membr Biol. 2012;245:141-50 pubmed 出版商
  322. Huang Y, Chiang N, Hu C, Hsiao C, Cheng K, Tsai W, et al. Activation of myeloid cell-specific adhesion class G protein-coupled receptor EMR2 via ligation-induced translocation and interaction of receptor subunits in lipid raft microdomains. Mol Cell Biol. 2012;32:1408-20 pubmed 出版商
  323. Bläsche R, Ebeling G, Perike S, Weinhold K, Kasper M, Barth K. Activation of P2X7R and downstream effects in bleomycin treated lung epithelial cells. Int J Biochem Cell Biol. 2012;44:514-24 pubmed 出版商
  324. Schneider C, Hudson A. The human herpesvirus-7 (HHV-7) U21 immunoevasin subverts NK-mediated cytoxicity through modulation of MICA and MICB. PLoS Pathog. 2011;7:e1002362 pubmed 出版商
  325. Milkereit R, Rotin D. A role for the ubiquitin ligase Nedd4 in membrane sorting of LAPTM4 proteins. PLoS ONE. 2011;6:e27478 pubmed 出版商
  326. Chen Z, Kolokoltsov A, Wang J, Adhikary S, Lorinczi M, Elferink L, et al. GRB2 interaction with the ecotropic murine leukemia virus receptor, mCAT-1, controls virus entry and is stimulated by virus binding. J Virol. 2012;86:1421-32 pubmed 出版商
  327. Magadán J, Bonifacino J. Transmembrane domain determinants of CD4 Downregulation by HIV-1 Vpu. J Virol. 2012;86:757-72 pubmed 出版商
  328. Sugiyama H, Kashimoto T, Ueno S, Ehara H, Kodama T, Iida T, et al. Relationship between localization on cellular membranes and cytotoxicity of Vibrio vulnificus hemolysin. PLoS ONE. 2011;6:e26018 pubmed 出版商
  329. Bass M, Williamson R, Nunan R, Humphries J, Byron A, Morgan M, et al. A syndecan-4 hair trigger initiates wound healing through caveolin- and RhoG-regulated integrin endocytosis. Dev Cell. 2011;21:681-93 pubmed 出版商
  330. Bachran D, Schneider S, Bachran C, Weng A, Melzig M, Fuchs H. The endocytic uptake pathways of targeted toxins are influenced by synergistically acting Gypsophila saponins. Mol Pharm. 2011;8:2262-72 pubmed 出版商
  331. Lamande S, Yuan Y, Gresshoff I, Rowley L, Belluoccio D, Kaluarachchi K, et al. Mutations in TRPV4 cause an inherited arthropathy of hands and feet. Nat Genet. 2011;43:1142-6 pubmed 出版商
  332. Chen Roetling J, Liu W, Regan R. Iron accumulation and neurotoxicity in cortical cultures treated with holotransferrin. Free Radic Biol Med. 2011;51:1966-74 pubmed 出版商
  333. Takatsu H, Baba K, Shima T, Umino H, Kato U, Umeda M, et al. ATP9B, a P4-ATPase (a putative aminophospholipid translocase), localizes to the trans-Golgi network in a CDC50 protein-independent manner. J Biol Chem. 2011;286:38159-67 pubmed 出版商
  334. Chorin E, Vinograd O, Fleidervish I, Gilad D, Herrmann S, Sekler I, et al. Upregulation of KCC2 activity by zinc-mediated neurotransmission via the mZnR/GPR39 receptor. J Neurosci. 2011;31:12916-26 pubmed 出版商
  335. Xinhan L, Matsushita M, Numaza M, Taguchi A, Mitsui K, Kanazawa H. Na+/H+ exchanger isoform 6 (NHE6/SLC9A6) is involved in clathrin-dependent endocytosis of transferrin. Am J Physiol Cell Physiol. 2011;301:C1431-44 pubmed 出版商
  336. Mendes A, Matos P, Moniz S, Luz S, Amaral M, Farinha C, et al. Antagonistic regulation of cystic fibrosis transmembrane conductance regulator cell surface expression by protein kinases WNK4 and spleen tyrosine kinase. Mol Cell Biol. 2011;31:4076-86 pubmed 出版商
  337. Eyster C, Cole N, Petersen S, Viswanathan K, Fruh K, Donaldson J. MARCH ubiquitin ligases alter the itinerary of clathrin-independent cargo from recycling to degradation. Mol Biol Cell. 2011;22:3218-30 pubmed 出版商
  338. Dukes J, Fish L, Richardson J, Blaikley E, Burns S, Caunt C, et al. Functional ESCRT machinery is required for constitutive recycling of claudin-1 and maintenance of polarity in vertebrate epithelial cells. Mol Biol Cell. 2011;22:3192-205 pubmed 出版商
  339. Valapala M, Vishwanatha J. Lipid raft endocytosis and exosomal transport facilitate extracellular trafficking of annexin A2. J Biol Chem. 2011;286:30911-25 pubmed 出版商
  340. Yu Y, Suryo Rahmanto Y, Richardson D. Bp44mT: an orally active iron chelator of the thiosemicarbazone class with potent anti-tumour efficacy. Br J Pharmacol. 2012;165:148-66 pubmed 出版商
  341. Breuer S, Schievink S, Schulte A, Blankenfeldt W, Fackler O, Geyer M. Molecular design, functional characterization and structural basis of a protein inhibitor against the HIV-1 pathogenicity factor Nef. PLoS ONE. 2011;6:e20033 pubmed 出版商
  342. Temkin P, Lauffer B, Jäger S, Cimermancic P, Krogan N, von Zastrow M. SNX27 mediates retromer tubule entry and endosome-to-plasma membrane trafficking of signalling receptors. Nat Cell Biol. 2011;13:715-21 pubmed 出版商
  343. Riquelme G, Vallejos C, de Gregorio N, Morales B, Godoy V, Berrios M, et al. Lipid rafts and cytoskeletal proteins in placental microvilli membranes from preeclamptic and IUGR pregnancies. J Membr Biol. 2011;241:127-40 pubmed 出版商
  344. Bijlmakers M, Kanneganti S, Barker J, Trembath R, Capon F. Functional analysis of the RNF114 psoriasis susceptibility gene implicates innate immune responses to double-stranded RNA in disease pathogenesis. Hum Mol Genet. 2011;20:3129-37 pubmed 出版商
  345. Selvais C, D Auria L, Tyteca D, Perrot G, Lemoine P, Troeberg L, et al. Cell cholesterol modulates metalloproteinase-dependent shedding of low-density lipoprotein receptor-related protein-1 (LRP-1) and clearance function. FASEB J. 2011;25:2770-81 pubmed 出版商
  346. Feldmann A, Amphornrat J, Sch nherr M, Winterstein C, M bius W, Ruhwedel T, et al. Transport of the major myelin proteolipid protein is directed by VAMP3 and VAMP7. J Neurosci. 2011;31:5659-72 pubmed 出版商
  347. Drévillon L, Tanguy G, Hinzpeter A, Arous N, de Becdelievre A, Aissat A, et al. COMMD1-mediated ubiquitination regulates CFTR trafficking. PLoS ONE. 2011;6:e18334 pubmed 出版商
  348. Sarajärvi T, Tuusa J, Haapasalo A, Lackman J, Sormunen R, Helisalmi S, et al. Cysteine 27 variant of the delta-opioid receptor affects amyloid precursor protein processing through altered endocytic trafficking. Mol Cell Biol. 2011;31:2326-40 pubmed 出版商
  349. Malik I, Naz N, Sheikh N, Khan S, Moriconi F, Blaschke M, et al. Comparison of changes in gene expression of transferrin receptor-1 and other iron-regulatory proteins in rat liver and brain during acute-phase response. Cell Tissue Res. 2011;344:299-312 pubmed 出版商
  350. Zlatic S, Tornieri K, L hernault S, Faundez V. Clathrin-dependent mechanisms modulate the subcellular distribution of class C Vps/HOPS tether subunits in polarized and nonpolarized cells. Mol Biol Cell. 2011;22:1699-715 pubmed 出版商
  351. Yu Y, Richardson D. Cellular iron depletion stimulates the JNK and p38 MAPK signaling transduction pathways, dissociation of ASK1-thioredoxin, and activation of ASK1. J Biol Chem. 2011;286:15413-27 pubmed 出版商
  352. Mostad E, Prohaska J. Glycosylphosphatidylinositol-linked ceruloplasmin is expressed in multiple rodent organs and is lower following dietary copper deficiency. Exp Biol Med (Maywood). 2011;236:298-308 pubmed 出版商
  353. Chiang N, Hsiao C, Huang Y, Chen H, Hsieh I, Chang G, et al. Disease-associated GPR56 mutations cause bilateral frontoparietal polymicrogyria via multiple mechanisms. J Biol Chem. 2011;286:14215-25 pubmed 出版商
  354. Magro G, Cataldo I, Amico P, Torrisi A, Vecchio G, Parenti R, et al. Aberrant expression of TfR1/CD71 in thyroid carcinomas identifies a novel potential diagnostic marker and therapeutic target. Thyroid. 2011;21:267-77 pubmed 出版商
  355. Best J, Foell J, Buss C, Delisle B, Balijepalli R, January C, et al. Small GTPase Rab11b regulates degradation of surface membrane L-type Cav1.2 channels. Am J Physiol Cell Physiol. 2011;300:C1023-33 pubmed 出版商
  356. Gil C, Falqués A, Sarró E, Cubi R, Blasi J, Aguilera J, et al. Protein kinase CK2 associates to lipid rafts and its pharmacological inhibition enhances neurotransmitter release. FEBS Lett. 2011;585:414-20 pubmed 出版商
  357. Schmitz S, Hjorth J, Joemai R, Wijntjes R, Eijgenraam S, de Bruijn P, et al. Automated analysis of neuronal morphology, synapse number and synaptic recruitment. J Neurosci Methods. 2011;195:185-93 pubmed 出版商
  358. Webb T, Burnett R, Avery A, Olver C. Cloning and tissue expression of the equine transferrin receptor. Vet Clin Pathol. 2010;39:424-32 pubmed 出版商
  359. Dutt S, Narla A, Lin K, Mullally A, Abayasekara N, Megerdichian C, et al. Haploinsufficiency for ribosomal protein genes causes selective activation of p53 in human erythroid progenitor cells. Blood. 2011;117:2567-76 pubmed 出版商
  360. Yang W, Jung K, Lee M, Lee Y, Lee Y, Nakagawa S, et al. Transient expression of iron transport proteins in the capillary of the developing rat brain. Cell Mol Neurobiol. 2011;31:93-9 pubmed 出版商
  361. Ludwig A, Otto G, Riento K, Hams E, Fallon P, Nichols B. Flotillin microdomains interact with the cortical cytoskeleton to control uropod formation and neutrophil recruitment. J Cell Biol. 2010;191:771-81 pubmed 出版商
  362. Mandò C, Tabano S, Colapietro P, Pileri P, Colleoni F, Avagliano L, et al. Transferrin receptor gene and protein expression and localization in human IUGR and normal term placentas. Placenta. 2011;32:44-50 pubmed 出版商
  363. Mokry J, Soukup T, Micuda S, Karbanova J, Visek B, Brcakova E, et al. Telomere attrition occurs during ex vivo expansion of human dental pulp stem cells. J Biomed Biotechnol. 2010;2010:673513 pubmed 出版商
  364. Linge A, Meleady P, Henry M, Clynes M, Kasper M, Barth K. Bleomycin treatment of A549 human lung cancer cells results in association of MGr1-Ag and caveolin-1 in lipid rafts. Int J Biochem Cell Biol. 2011;43:98-105 pubmed 出版商
  365. Steuble M, Gerrits B, Ludwig A, Mateos J, Diep T, Tagaya M, et al. Molecular characterization of a trafficking organelle: dissecting the axonal paths of calsyntenin-1 transport vesicles. Proteomics. 2010;10:3775-88 pubmed 出版商
  366. Reyes Lopez M, Bermúdez Cruz R, Avila E, de la Garza M. Acetaldehyde/alcohol dehydrogenase-2 (EhADH2) and clathrin are involved in internalization of human transferrin by Entamoeba histolytica. Microbiology. 2011;157:209-19 pubmed 出版商
  367. Khirug S, Ahmad F, Puskarjov M, Afzalov R, Kaila K, Blaesse P. A single seizure episode leads to rapid functional activation of KCC2 in the neonatal rat hippocampus. J Neurosci. 2010;30:12028-35 pubmed 出版商
  368. Marsee D, Pinkus G, Yu H. CD71 (transferrin receptor): an effective marker for erythroid precursors in bone marrow biopsy specimens. Am J Clin Pathol. 2010;134:429-35 pubmed 出版商
  369. Skorokhod O, Caione L, Marrocco T, Migliardi G, Barrera V, Arese P, et al. Inhibition of erythropoiesis in malaria anemia: role of hemozoin and hemozoin-generated 4-hydroxynonenal. Blood. 2010;116:4328-37 pubmed 出版商
  370. Priest H, McDonough S, Erb H, Daddona J, Stokol T. Transferrin receptor expression in canine lymphoma. Vet Pathol. 2011;48:466-74 pubmed 出版商
  371. Straud S, Zubovych I, De Brabander J, Roth M. Inhibition of iron uptake is responsible for differential sensitivity to V-ATPase inhibitors in several cancer cell lines. PLoS ONE. 2010;5:e11629 pubmed 出版商
  372. Yamamoto H, Koga H, Katoh Y, Takahashi S, Nakayama K, Shin H. Functional cross-talk between Rab14 and Rab4 through a dual effector, RUFY1/Rabip4. Mol Biol Cell. 2010;21:2746-55 pubmed 出版商
  373. Cho Y, Shusta E. Antibody library screens using detergent-solubilized mammalian cell lysates as antigen sources. Protein Eng Des Sel. 2010;23:567-77 pubmed 出版商
  374. McIntosh A, Storey S, Atshaves B. Intracellular lipid droplets contain dynamic pools of sphingomyelin: ADRP binds phospholipids with high affinity. Lipids. 2010;45:465-77 pubmed 出版商
  375. Nagano M, Hoshino D, Sakamoto T, Kawasaki N, Koshikawa N, Seiki M. ZF21 protein regulates cell adhesion and motility. J Biol Chem. 2010;285:21013-22 pubmed 出版商
  376. Kato T, Hayashi H, Sugiyama Y. Short- and medium-chain fatty acids enhance the cell surface expression and transport capacity of the bile salt export pump (BSEP/ABCB11). Biochim Biophys Acta. 2010;1801:1005-12 pubmed 出版商
  377. Fukura N, Ohgaki R, Matsushita M, Nakamura N, Mitsui K, Kanazawa H. A membrane-proximal region in the C-terminal tail of NHE7 is required for its distribution in the trans-Golgi network, distinct from NHE6 localization at endosomes. J Membr Biol. 2010;234:149-58 pubmed 出版商
  378. Davis M, Zuckerman J, Choi C, Seligson D, Tolcher A, Alabi C, et al. Evidence of RNAi in humans from systemically administered siRNA via targeted nanoparticles. Nature. 2010;464:1067-70 pubmed 出版商
  379. Mizukami S, Ichimura R, Kemmochi S, Wang L, Taniai E, Mitsumori K, et al. Tumor promotion by copper-overloading and its enhancement by excess iron accumulation involving oxidative stress responses in the early stage of a rat two-stage hepatocarcinogenesis model. Chem Biol Interact. 2010;185:189-201 pubmed 出版商
  380. Bhattacharyya S, Warfield K, Ruthel G, Bavari S, Aman M, Hope T. Ebola virus uses clathrin-mediated endocytosis as an entry pathway. Virology. 2010;401:18-28 pubmed 出版商
  381. Cheung F, Li C, Che C, Liu B, Wang L, Liu W. Geoditin A induces oxidative stress and apoptosis on human colon HT29 cells. Mar Drugs. 2010;8:80-90 pubmed 出版商
  382. Stolp B, Abraham L, Rudolph J, Fackler O. Lentiviral Nef proteins utilize PAK2-mediated deregulation of cofilin as a general strategy to interfere with actin remodeling. J Virol. 2010;84:3935-48 pubmed 出版商
  383. Methner D, Mayfield R. Ethanol alters endosomal recycling of human dopamine transporters. J Biol Chem. 2010;285:10310-7 pubmed 出版商
  384. Mizukami S, Ichimura R, Kemmochi S, Taniai E, Shimamoto K, Ohishi T, et al. Induction of GST-P-positive proliferative lesions facilitating lipid peroxidation with possible involvement of transferrin receptor up-regulation and ceruloplasmin down-regulation from the early stage of liver tumor promotion in rats. Arch Toxicol. 2010;84:319-31 pubmed 出版商
  385. Newell Litwa K, Chintala S, Jenkins S, Pare J, McGaha L, Smith Y, et al. Hermansky-Pudlak protein complexes, AP-3 and BLOC-1, differentially regulate presynaptic composition in the striatum and hippocampus. J Neurosci. 2010;30:820-31 pubmed 出版商
  386. Rolando M, Stefani C, Flatau G, Auberger P, Mettouchi A, Mhlanga M, et al. Transcriptome dysregulation by anthrax lethal toxin plays a key role in induction of human endothelial cell cytotoxicity. Cell Microbiol. 2010;12:891-905 pubmed 出版商
  387. Nitta T, Kuznetsov Y, McPherson A, Fan H. Murine leukemia virus glycosylated Gag (gPr80gag) facilitates interferon-sensitive virus release through lipid rafts. Proc Natl Acad Sci U S A. 2010;107:1190-5 pubmed 出版商
  388. Kerr M, Gasperini R, Gibbs M, Hou X, Shepherd C, Strickland D, et al. Inhibition of Abeta aggregation and neurotoxicity by the 39-kDa receptor-associated protein. J Neurochem. 2010;112:1199-209 pubmed 出版商
  389. Barrès C, Blanc L, Bette Bobillo P, Andre S, Mamoun R, Gabius H, et al. Galectin-5 is bound onto the surface of rat reticulocyte exosomes and modulates vesicle uptake by macrophages. Blood. 2010;115:696-705 pubmed 出版商
  390. Sarajärvi T, Haapasalo A, Viswanathan J, Mäkinen P, Laitinen M, Soininen H, et al. Down-regulation of seladin-1 increases BACE1 levels and activity through enhanced GGA3 depletion during apoptosis. J Biol Chem. 2009;284:34433-43 pubmed 出版商
  391. Ishikawa H, Ma Z, Barber G. STING regulates intracellular DNA-mediated, type I interferon-dependent innate immunity. Nature. 2009;461:788-92 pubmed 出版商
  392. Humphries J, Byron A, Bass M, Craig S, Pinney J, Knight D, et al. Proteomic analysis of integrin-associated complexes identifies RCC2 as a dual regulator of Rac1 and Arf6. Sci Signal. 2009;2:ra51 pubmed 出版商
  393. Doulatov S, Notta F, Rice K, Howell L, Zelent A, Licht J, et al. PLZF is a regulator of homeostatic and cytokine-induced myeloid development. Genes Dev. 2009;23:2076-87 pubmed 出版商
  394. Wu L, Derynck R. Essential role of TGF-beta signaling in glucose-induced cell hypertrophy. Dev Cell. 2009;17:35-48 pubmed 出版商
  395. Skinner A, O Neill S, Kurre P. Cellular microvesicle pathways can be targeted to transfer genetic information between non-immune cells. PLoS ONE. 2009;4:e6219 pubmed 出版商
  396. Roepstorff K, Grandal M, Henriksen L, Knudsen S, Lerdrup M, Grøvdal L, et al. Differential effects of EGFR ligands on endocytic sorting of the receptor. Traffic. 2009;10:1115-27 pubmed 出版商
  397. Salazar G, Falcon Perez J, Harrison R, Faundez V. SLC30A3 (ZnT3) oligomerization by dityrosine bonds regulates its subcellular localization and metal transport capacity. PLoS ONE. 2009;4:e5896 pubmed 出版商
  398. Liefhebber J, Brandt B, Broer R, Spaan W, van Leeuwen H. Hepatitis C virus NS4B carboxy terminal domain is a membrane binding domain. Virol J. 2009;6:62 pubmed 出版商
  399. Duan W, Zhang R, Guo Y, Jiang Y, Huang Y, Jiang H, et al. Nrf2 activity is lost in the spinal cord and its astrocytes of aged mice. In Vitro Cell Dev Biol Anim. 2009;45:388-97 pubmed 出版商
  400. Wang Y, Posner B, Balbis A. Compartmentalization of epidermal growth factor receptor in liver plasma membrane. J Cell Biochem. 2009;107:96-103 pubmed 出版商
  401. Takenouchi T, Nakai M, Iwamaru Y, Sugama S, Tsukimoto M, Fujita M, et al. The activation of P2X7 receptor impairs lysosomal functions and stimulates the release of autophagolysosomes in microglial cells. J Immunol. 2009;182:2051-62 pubmed 出版商
  402. Rhee K, Wu S, Wu X, Huso D, Karim B, Franco A, et al. Induction of persistent colitis by a human commensal, enterotoxigenic Bacteroides fragilis, in wild-type C57BL/6 mice. Infect Immun. 2009;77:1708-18 pubmed 出版商
  403. Feldmann A, Winterstein C, White R, Trotter J, Krämer Albers E. Comprehensive analysis of expression, subcellular localization, and cognate pairing of SNARE proteins in oligodendrocytes. J Neurosci Res. 2009;87:1760-72 pubmed 出版商
  404. Youn P, Kim S, Ahn J, Kim Y, Park J, Ryu D. Regulation of iron metabolism-related genes in diethylnitrosamine-induced mouse liver tumors. Toxicol Lett. 2009;184:151-8 pubmed 出版商
  405. Persaud Sawin D, Lightcap S, Harry G. Isolation of rafts from mouse brain tissue by a detergent-free method. J Lipid Res. 2009;50:759-67 pubmed 出版商
  406. Witte V, Laffert B, Gintschel P, Krautkrämer E, Blume K, Fackler O, et al. Induction of HIV transcription by Nef involves Lck activation and protein kinase C theta raft recruitment leading to activation of ERK1/2 but not NF kappa B. J Immunol. 2008;181:8425-32 pubmed
  407. Kongkham P, Northcott P, Ra Y, Nakahara Y, Mainprize T, Croul S, et al. An epigenetic genome-wide screen identifies SPINT2 as a novel tumor suppressor gene in pediatric medulloblastoma. Cancer Res. 2008;68:9945-53 pubmed 出版商
  408. de Gassart A, Trentin B, Martin M, Hocquellet A, Bette Bobillo P, Mamoun R, et al. Exosomal sorting of the cytoplasmic domain of bovine leukemia virus TM Env protein. Cell Biol Int. 2009;33:36-48 pubmed 出版商
  409. Bergmann O, Mathahs M, Broadhurst K, Weydert J, Wilkinson N, Howe J, et al. Altered expression of iron regulatory genes in cirrhotic human livers: clues to the cause of hemosiderosis?. Lab Invest. 2008;88:1349-57 pubmed 出版商
  410. Persaud Sawin D, Banach L, Harry G. Raft aggregation with specific receptor recruitment is required for microglial phagocytosis of Abeta42. Glia. 2009;57:320-35 pubmed 出版商
  411. Lineberry N, Su L, Soares L, Fathman C. The single subunit transmembrane E3 ligase gene related to anergy in lymphocytes (GRAIL) captures and then ubiquitinates transmembrane proteins across the cell membrane. J Biol Chem. 2008;283:28497-505 pubmed 出版商
  412. Grimsey N, Han G, O Hara L, Rochford J, Carman G, Siniossoglou S. Temporal and spatial regulation of the phosphatidate phosphatases lipin 1 and 2. J Biol Chem. 2008;283:29166-74 pubmed 出版商
  413. Inoue H, Ha V, Prekeris R, Randazzo P. Arf GTPase-activating protein ASAP1 interacts with Rab11 effector FIP3 and regulates pericentrosomal localization of transferrin receptor-positive recycling endosome. Mol Biol Cell. 2008;19:4224-37 pubmed 出版商
  414. Roberts L, Black D, Raman C, Woodford K, Zhou M, Haggerty J, et al. Subcellular localization of transporters along the rat blood-brain barrier and blood-cerebral-spinal fluid barrier by in vivo biotinylation. Neuroscience. 2008;155:423-38 pubmed 出版商
  415. Lespagnol A, Duflaut D, Beekman C, Blanc L, Fiucci G, Marine J, et al. Exosome secretion, including the DNA damage-induced p53-dependent secretory pathway, is severely compromised in TSAP6/Steap3-null mice. Cell Death Differ. 2008;15:1723-33 pubmed 出版商
  416. Kamemura K, Ito A, Shimazu T, Matsuyama A, Maeda S, Yao T, et al. Effects of downregulated HDAC6 expression on the proliferation of lung cancer cells. Biochem Biophys Res Commun. 2008;374:84-9 pubmed 出版商
  417. Takahashi M, Shibutani M, Woo G, Inoue K, Fujimoto H, Igarashi K, et al. Cellular distributions of molecules with altered expression specific to the tumor promotion process from the early stage in a rat two-stage hepatocarcinogenesis model. Carcinogenesis. 2008;29:2218-26 pubmed 出版商
  418. Stehling O, Netz D, Niggemeyer B, Rösser R, Eisenstein R, Puccio H, et al. Human Nbp35 is essential for both cytosolic iron-sulfur protein assembly and iron homeostasis. Mol Cell Biol. 2008;28:5517-28 pubmed 出版商
  419. Zhang L, Lee J, Wilusz J, Wilusz C. The RNA-binding protein CUGBP1 regulates stability of tumor necrosis factor mRNA in muscle cells: implications for myotonic dystrophy. J Biol Chem. 2008;283:22457-63 pubmed 出版商
  420. Kolodziej A, Schulz S, Guyon A, Wu D, Pfeiffer M, Odemis V, et al. Tonic activation of CXC chemokine receptor 4 in immature granule cells supports neurogenesis in the adult dentate gyrus. J Neurosci. 2008;28:4488-500 pubmed 出版商
  421. Lelouvier B, Tamagno G, Kaindl A, Roland A, Lelievre V, Le Verche V, et al. Dynamics of somatostatin type 2A receptor cargoes in living hippocampal neurons. J Neurosci. 2008;28:4336-49 pubmed 出版商
  422. Hida T, Ikeda H, Kametaka S, Akazawa C, Kohsaka S, Ebisu S, et al. Specific depletion of GGA2 causes cathepsin D missorting in HeLa cells. Arch Histol Cytol. 2007;70:303-12 pubmed
  423. Koch A, Scherr M, Breyer B, Mancini A, Kardinal C, Battmer K, et al. Inhibition of Abl tyrosine kinase enhances nerve growth factor-mediated signaling in Bcr-Abl transformed cells via the alteration of signaling complex and the receptor turnover. Oncogene. 2008;27:4678-89 pubmed 出版商
  424. Barth K, Weinhold K, Guenther A, Linge A, Gereke M, Kasper M. Characterization of the molecular interaction between caveolin-1 and the P2X receptors 4 and 7 in E10 mouse lung alveolar epithelial cells. Int J Biochem Cell Biol. 2008;40:2230-9 pubmed 出版商
  425. Parisiadou L, Bethani I, Michaki V, Krousti K, Rapti G, Efthimiopoulos S. Homer2 and Homer3 interact with amyloid precursor protein and inhibit Abeta production. Neurobiol Dis. 2008;30:353-64 pubmed 出版商
  426. Nishimura N, Sasaki T. Cell-surface biotinylation to study endocytosis and recycling of occludin. Methods Mol Biol. 2008;440:89-96 pubmed 出版商
  427. Jansen M, Pietiäinen V, Pölönen H, Rasilainen L, Koivusalo M, Ruotsalainen U, et al. Cholesterol substitution increases the structural heterogeneity of caveolae. J Biol Chem. 2008;283:14610-8 pubmed 出版商
  428. Murray J, Sarkar S, Wolkoff A. Single vesicle analysis of endocytic fission on microtubules in vitro. Traffic. 2008;9:833-847 pubmed 出版商
  429. Fujibayashi A, Taguchi T, Misaki R, Ohtani M, Dohmae N, Takio K, et al. Human RME-8 is involved in membrane trafficking through early endosomes. Cell Struct Funct. 2008;33:35-50 pubmed
  430. Craige B, Salazar G, Faundez V. Phosphatidylinositol-4-kinase type II alpha contains an AP-3-sorting motif and a kinase domain that are both required for endosome traffic. Mol Biol Cell. 2008;19:1415-26 pubmed 出版商
  431. Boudanova E, Navaroli D, Melikian H. Amphetamine-induced decreases in dopamine transporter surface expression are protein kinase C-independent. Neuropharmacology. 2008;54:605-12 pubmed 出版商
  432. Rauch S, Pulkkinen K, Saksela K, Fackler O. Human immunodeficiency virus type 1 Nef recruits the guanine exchange factor Vav1 via an unexpected interface into plasma membrane microdomains for association with p21-activated kinase 2 activity. J Virol. 2008;82:2918-29 pubmed
  433. van de Graaf S, Rescher U, Hoenderop J, Verkaart S, Bindels R, Gerke V. TRPV5 is internalized via clathrin-dependent endocytosis to enter a Ca2+-controlled recycling pathway. J Biol Chem. 2008;283:4077-86 pubmed
  434. Flanagan M, Oldenburg J, Reignier T, Holt N, Hamilton G, Martin V, et al. New world clade B arenaviruses can use transferrin receptor 1 (TfR1)-dependent and -independent entry pathways, and glycoproteins from human pathogenic strains are associated with the use of TfR1. J Virol. 2008;82:938-48 pubmed 出版商
  435. Reignier T, Oldenburg J, Flanagan M, Hamilton G, Martin V, Cannon P. Receptor use by the Whitewater Arroyo virus glycoprotein. Virology. 2008;371:439-46 pubmed
  436. Singh R, Wangemann P. Free radical stress-mediated loss of Kcnj10 protein expression in stria vascularis contributes to deafness in Pendred syndrome mouse model. Am J Physiol Renal Physiol. 2008;294:F139-48 pubmed
  437. Imai Y, Inoue H, Kataoka A, Hua Qin W, Masuda M, Ikeda T, et al. Pael receptor is involved in dopamine metabolism in the nigrostriatal system. Neurosci Res. 2007;59:413-25 pubmed
  438. Nini L, Waheed A, Panicker L, Czapiga M, Zhang J, Simonds W. R7-binding protein targets the G protein beta 5/R7-regulator of G protein signaling complex to lipid rafts in neuronal cells and brain. BMC Biochem. 2007;8:18 pubmed
  439. Oztan A, Silvis M, Weisz O, Bradbury N, Hsu S, Goldenring J, et al. Exocyst requirement for endocytic traffic directed toward the apical and basolateral poles of polarized MDCK cells. Mol Biol Cell. 2007;18:3978-92 pubmed
  440. Schwab W, Harada H, Goetz W, Nowicki M, Witt M, Kasper M, et al. Immunocytochemical and biochemical detection of EMMPRIN in the rat tooth germ: differentiation-dependent co-expression with MMPs and co-localization with caveolin-1 in membrane rafts of dental epithelial cells. Histochem Cell Biol. 2007;128:195-203 pubmed
  441. Li X, Serwanski D, Miralles C, Bahr B, De Blas A. Two pools of Triton X-100-insoluble GABA(A) receptors are present in the brain, one associated to lipid rafts and another one to the post-synaptic GABAergic complex. J Neurochem. 2007;102:1329-45 pubmed
  442. Grosse S, Aron Y, Thévenot G, Monsigny M, Fajac I. Cytoskeletal involvement in the cellular trafficking of plasmid/PEI derivative complexes. J Control Release. 2007;122:111-7 pubmed
  443. Storch C, Ehehalt R, Haefeli W, Weiss J. Localization of the human breast cancer resistance protein (BCRP/ABCG2) in lipid rafts/caveolae and modulation of its activity by cholesterol in vitro. J Pharmacol Exp Ther. 2007;323:257-64 pubmed
  444. Zhao Z, Li X, Hao J, Winston J, Weinman S. The ClC-3 chloride transport protein traffics through the plasma membrane via interaction of an N-terminal dileucine cluster with clathrin. J Biol Chem. 2007;282:29022-31 pubmed
  445. Ducharme N, Williams J, Oztan A, Apodaca G, Lapierre L, Goldenring J. Rab11-FIP2 regulates differentiable steps in transcytosis. Am J Physiol Cell Physiol. 2007;293:C1059-72 pubmed
  446. Ignoul S, Simaels J, Hermans D, Annaert W, Eggermont J. Human ClC-6 is a late endosomal glycoprotein that associates with detergent-resistant lipid domains. PLoS ONE. 2007;2:e474 pubmed
  447. Fu D, van Dam E, Brymora A, Duggin I, Robinson P, Roufogalis B. The small GTPases Rab5 and RalA regulate intracellular traffic of P-glycoprotein. Biochim Biophys Acta. 2007;1773:1062-72 pubmed
  448. Goenaga A, Zhou Y, Legay C, Bougherara H, Huang L, Liu B, et al. Identification and characterization of tumor antigens by using antibody phage display and intrabody strategies. Mol Immunol. 2007;44:3777-88 pubmed
  449. Fields I, Shteyn E, Pypaert M, Proux Gillardeaux V, Kang R, Galli T, et al. v-SNARE cellubrevin is required for basolateral sorting of AP-1B-dependent cargo in polarized epithelial cells. J Cell Biol. 2007;177:477-88 pubmed
  450. Gil C, Cubi R, Aguilera J. Shedding of the p75NTR neurotrophin receptor is modulated by lipid rafts. FEBS Lett. 2007;581:1851-8 pubmed
  451. Kunita R, Otomo A, Mizumura H, Suzuki Utsunomiya K, Hadano S, Ikeda J. The Rab5 activator ALS2/alsin acts as a novel Rac1 effector through Rac1-activated endocytosis. J Biol Chem. 2007;282:16599-611 pubmed
  452. Abache T, Le Naour F, Planchon S, Harper F, Boucheix C, Rubinstein E. The transferrin receptor and the tetraspanin web molecules CD9, CD81, and CD9P-1 are differentially sorted into exosomes after TPA treatment of K562 cells. J Cell Biochem. 2007;102:650-64 pubmed
  453. Lakkaraju A, Luyet P, Parone P, Falguières T, Strub K. Inefficient targeting to the endoplasmic reticulum by the signal recognition particle elicits selective defects in post-ER membrane trafficking. Exp Cell Res. 2007;313:834-47 pubmed
  454. Fili N, Calleja V, Woscholski R, Parker P, Larijani B. Compartmental signal modulation: Endosomal phosphatidylinositol 3-phosphate controls endosome morphology and selective cargo sorting. Proc Natl Acad Sci U S A. 2006;103:15473-8 pubmed
  455. Reversi A, Rimoldi V, Brambillasca S, Chini B. Effects of cholesterol manipulation on the signaling of the human oxytocin receptor. Am J Physiol Regul Integr Comp Physiol. 2006;291:R861-9 pubmed
  456. Gaggioli C, Robert G, Bertolotto C, Bailet O, Abbe P, Spadafora A, et al. Tumor-derived fibronectin is involved in melanoma cell invasion and regulated by V600E B-Raf signaling pathway. J Invest Dermatol. 2007;127:400-10 pubmed
  457. Shackelford R, Fu Y, Manuszak R, Brooks T, Sequeira A, Wang S, et al. Iron chelators reduce chromosomal breaks in ataxia-telangiectasia cells. DNA Repair (Amst). 2006;5:1327-36 pubmed
  458. Rutherford A, Traer C, Wassmer T, Pattni K, Bujny M, Carlton J, et al. The mammalian phosphatidylinositol 3-phosphate 5-kinase (PIKfyve) regulates endosome-to-TGN retrograde transport. J Cell Sci. 2006;119:3944-57 pubmed
  459. Tanos B, Pendergast A. Abl tyrosine kinase regulates endocytosis of the epidermal growth factor receptor. J Biol Chem. 2006;281:32714-23 pubmed
  460. Ng P, Helguera G, Daniels T, Lomas S, Rodriguez J, Schiller G, et al. Molecular events contributing to cell death in malignant human hematopoietic cells elicited by an IgG3-avidin fusion protein targeting the transferrin receptor. Blood. 2006;108:2745-54 pubmed
  461. Salazar G, Craige B, Styers M, Newell Litwa K, Doucette M, Wainer B, et al. BLOC-1 complex deficiency alters the targeting of adaptor protein complex-3 cargoes. Mol Biol Cell. 2006;17:4014-26 pubmed
  462. O Donnell K, Yu D, Zeller K, Kim J, Racke F, Thomas Tikhonenko A, et al. Activation of transferrin receptor 1 by c-Myc enhances cellular proliferation and tumorigenesis. Mol Cell Biol. 2006;26:2373-86 pubmed
  463. Monzo P, Mari M, Kaddai V, Gonzalez T, Le Marchand Brustel Y, Cormont M. CD2AP, Rabip4, and Rabip4': analysis of interaction with Rab4a and regulation of endosomes morphology. Methods Enzymol. 2005;403:107-18 pubmed
  464. Parisiadou L, Efthimiopoulos S. Expression of mDab1 promotes the stability and processing of amyloid precursor protein and this effect is counteracted by X11alpha. Neurobiol Aging. 2007;28:377-88 pubmed
  465. Chen Z, Nomura J, Suzuki T, Suzuki N. Enhanced expression of transferrin receptor confers UV-resistance in human and monkey cells. J Radiat Res. 2005;46:443-51 pubmed
  466. Barel M, Pizzato N, Le Bouteiller P, Wiertz E, Lenfant F. Subtle sequence variation among MHC class I locus products greatly influences sensitivity to HCMV US2- and US11-mediated degradation. Int Immunol. 2006;18:173-82 pubmed
  467. Lerdrup M, Hommelgaard A, Grandal M, van Deurs B. Geldanamycin stimulates internalization of ErbB2 in a proteasome-dependent way. J Cell Sci. 2006;119:85-95 pubmed
  468. Zeng X, Tamai K, Doble B, Li S, Huang H, Habas R, et al. A dual-kinase mechanism for Wnt co-receptor phosphorylation and activation. Nature. 2005;438:873-7 pubmed
  469. Snyder C, Mardones G, Ladinsky M, Howell K. GMx33 associates with the trans-Golgi matrix in a dynamic manner and sorts within tubules exiting the Golgi. Mol Biol Cell. 2006;17:511-24 pubmed
  470. Strick D, Elferink L. Rab15 effector protein: a novel protein for receptor recycling from the endocytic recycling compartment. Mol Biol Cell. 2005;16:5699-709 pubmed
  471. Theos A, Tenza D, Martina J, Hurbain I, Peden A, Sviderskaya E, et al. Functions of adaptor protein (AP)-3 and AP-1 in tyrosinase sorting from endosomes to melanosomes. Mol Biol Cell. 2005;16:5356-72 pubmed
  472. Engelking L, Liang G, Hammer R, Takaishi K, Kuriyama H, Evers B, et al. Schoenheimer effect explained--feedback regulation of cholesterol synthesis in mice mediated by Insig proteins. J Clin Invest. 2005;115:2489-98 pubmed
  473. Barel M, Hassink G, van Voorden S, Wiertz E. Human cytomegalovirus-encoded US2 and US11 target unassembled MHC class I heavy chains for degradation. Mol Immunol. 2006;43:1258-66 pubmed
  474. Park G, Best S, Bloom M. Two mink parvoviruses use different cellular receptors for entry into CRFK cells. Virology. 2005;340:1-9 pubmed
  475. Doyotte A, Russell M, Hopkins C, Woodman P. Depletion of TSG101 forms a mammalian "Class E" compartment: a multicisternal early endosome with multiple sorting defects. J Cell Sci. 2005;118:3003-17 pubmed
  476. Berryman S, Clark S, Monaghan P, Jackson T. Early events in integrin alphavbeta6-mediated cell entry of foot-and-mouth disease virus. J Virol. 2005;79:8519-34 pubmed
  477. Salazar G, Craige B, Wainer B, Guo J, De Camilli P, Faundez V. Phosphatidylinositol-4-kinase type II alpha is a component of adaptor protein-3-derived vesicles. Mol Biol Cell. 2005;16:3692-704 pubmed
  478. Geier A, Gartung C, Theurl I, Weiss G, Lammert F, Dietrich C, et al. Occult celiac disease prevents penetrance of hemochromatosis. World J Gastroenterol. 2005;11:3323-6 pubmed
  479. Choudhury R, Diao A, Zhang F, Eisenberg E, Saint Pol A, Williams C, et al. Lowe syndrome protein OCRL1 interacts with clathrin and regulates protein trafficking between endosomes and the trans-Golgi network. Mol Biol Cell. 2005;16:3467-79 pubmed
  480. Salazar G, Craige B, Love R, Kalman D, Faundez V. Vglut1 and ZnT3 co-targeting mechanisms regulate vesicular zinc stores in PC12 cells. J Cell Sci. 2005;118:1911-21 pubmed
  481. Prohaska J, Gybina A. Rat brain iron concentration is lower following perinatal copper deficiency. J Neurochem. 2005;93:698-705 pubmed
  482. Ali B, Wasmeier C, Lamoreux L, Strom M, Seabra M. Multiple regions contribute to membrane targeting of Rab GTPases. J Cell Sci. 2004;117:6401-12 pubmed
  483. Styers M, Salazar G, Love R, Peden A, Kowalczyk A, Faundez V. The endo-lysosomal sorting machinery interacts with the intermediate filament cytoskeleton. Mol Biol Cell. 2004;15:5369-82 pubmed
  484. Shin H, Morinaga N, Noda M, Nakayama K. BIG2, a guanine nucleotide exchange factor for ADP-ribosylation factors: its localization to recycling endosomes and implication in the endosome integrity. Mol Biol Cell. 2004;15:5283-94 pubmed
  485. Burgueno J, Canela E, Mallol J, Lluis C, Franco R, Ciruela F. Mutual regulation between metabotropic glutamate type 1alpha receptor and caveolin proteins: from traffick to constitutive activity. Exp Cell Res. 2004;300:23-34 pubmed
  486. Youn S, Kim D, Cho H, Jeon S, Bae I, Yoon H, et al. Cellular senescence induced loss of stem cell proportion in the skin in vitro. J Dermatol Sci. 2004;35:113-23 pubmed
  487. Chuang J, Vega C, Jun W, Sung C. Structural and functional impairment of endocytic pathways by retinitis pigmentosa mutant rhodopsin-arrestin complexes. J Clin Invest. 2004;114:131-40 pubmed
  488. Coumailleau F, Das V, Alcover A, Raposo G, Vandormael Pournin S, Le Bras S, et al. Over-expression of Rififylin, a new RING finger and FYVE-like domain-containing protein, inhibits recycling from the endocytic recycling compartment. Mol Biol Cell. 2004;15:4444-56 pubmed
  489. Fajac I, Grosse S, Collombet J, Thevenot G, Goussard S, Danel C, et al. Recombinant Escherichia coli as a gene delivery vector into airway epithelial cells. J Control Release. 2004;97:371-81 pubmed
  490. Katsumata O, Kimura T, Nagatsuka Y, Hirabayashi Y, Sugiya H, Furuyama S, et al. Charge-based separation of detergent-resistant membranes of mouse splenic B cells. Biochem Biophys Res Commun. 2004;319:826-31 pubmed
  491. Batista A, Millan J, Mittelbrunn M, Sanchez Madrid F, Alonso M. Recruitment of transferrin receptor to immunological synapse in response to TCR engagement. J Immunol. 2004;172:6709-14 pubmed
  492. Hueffer K, Palermo L, Parrish C. Parvovirus infection of cells by using variants of the feline transferrin receptor altering clathrin-mediated endocytosis, membrane domain localization, and capsid-binding domains. J Virol. 2004;78:5601-11 pubmed
  493. Williams R, Schlüter T, Roberts M, Knauth P, Bohnensack R, Cutler D. Sorting nexin 17 accelerates internalization yet retards degradation of P-selectin. Mol Biol Cell. 2004;15:3095-105 pubmed
  494. Engelking L, Kuriyama H, Hammer R, Horton J, Brown M, Goldstein J, et al. Overexpression of Insig-1 in the livers of transgenic mice inhibits SREBP processing and reduces insulin-stimulated lipogenesis. J Clin Invest. 2004;113:1168-75 pubmed
  495. Arighi C, Hartnell L, Aguilar R, Haft C, Bonifacino J. Role of the mammalian retromer in sorting of the cation-independent mannose 6-phosphate receptor. J Cell Biol. 2004;165:123-33 pubmed
  496. Salazar G, Love R, Styers M, Werner E, Peden A, Rodriguez S, et al. AP-3-dependent mechanisms control the targeting of a chloride channel (ClC-3) in neuronal and non-neuronal cells. J Biol Chem. 2004;279:25430-9 pubmed
  497. Eleme K, Taner S, Önfelt B, Collinson L, McCann F, Chalupny N, et al. Cell surface organization of stress-inducible proteins ULBP and MICA that stimulate human NK cells and T cells via NKG2D. J Exp Med. 2004;199:1005-10 pubmed
  498. Laham N, Rotem Yehudar R, Shechter C, Coligan J, Ehrlich R. Transferrin [corrected] receptor association and endosomal localization of soluble HFE are not sufficient for regulation of cellular iron homeostasis. J Cell Biochem. 2004;91:1130-45 pubmed
  499. Grosse S, Aron Y, Honoré I, Thévenot G, Danel C, Roche A, et al. Lactosylated polyethylenimine for gene transfer into airway epithelial cells: role of the sugar moiety in cell delivery and intracellular trafficking of the complexes. J Gene Med. 2004;6:345-56 pubmed
  500. Dudognon P, Maeder Garavaglia C, Carpentier J, Paccaud J. Regulation of a COPII component by cytosolic O-glycosylation during mitosis. FEBS Lett. 2004;561:44-50 pubmed
  501. Stoorvogel W, Kerstens S, Fritzsche I, den Hartigh J, Oud R, van der Heyden M, et al. Sorting of ligand-activated epidermal growth factor receptor to lysosomes requires its actin-binding domain. J Biol Chem. 2004;279:11562-9 pubmed
  502. Luton F, Klein S, Chauvin J, Le Bivic A, Bourgoin S, Franco M, et al. EFA6, exchange factor for ARF6, regulates the actin cytoskeleton and associated tight junction in response to E-cadherin engagement. Mol Biol Cell. 2004;15:1134-45 pubmed
  503. Barel M, Ressing M, Pizzato N, van Leeuwen D, Le Bouteiller P, Lenfant F, et al. Human cytomegalovirus-encoded US2 differentially affects surface expression of MHC class I locus products and targets membrane-bound, but not soluble HLA-G1 for degradation. J Immunol. 2003;171:6757-65 pubmed
  504. Salazar G, Love R, Werner E, Doucette M, Cheng S, Levey A, et al. The zinc transporter ZnT3 interacts with AP-3 and it is preferentially targeted to a distinct synaptic vesicle subpopulation. Mol Biol Cell. 2004;15:575-87 pubmed
  505. Avrov K, Kazlauskas A. The role of c-Src in platelet-derived growth factor alpha receptor internalization. Exp Cell Res. 2003;291:426-34 pubmed
  506. Kikkert M, Doolman R, Dai M, Avner R, Hassink G, van Voorden S, et al. Human HRD1 is an E3 ubiquitin ligase involved in degradation of proteins from the endoplasmic reticulum. J Biol Chem. 2004;279:3525-34 pubmed
  507. Brown L, Harris D. Copper and zinc cause delivery of the prion protein from the plasma membrane to a subset of early endosomes and the Golgi. J Neurochem. 2003;87:353-63 pubmed
  508. Yamamoto Y, Nishimura N, Morimoto S, Kitamura H, Manabe S, Kanayama H, et al. Distinct roles of Rab3B and Rab13 in the polarized transport of apical, basolateral, and tight junctional membrane proteins to the plasma membrane. Biochem Biophys Res Commun. 2003;308:270-5 pubmed
  509. Burgueno J, Enrich C, Canela E, Mallol J, Lluis C, Franco R, et al. Metabotropic glutamate type 1alpha receptor localizes in low-density caveolin-rich plasma membrane fractions. J Neurochem. 2003;86:785-91 pubmed
  510. de Gassart A, Geminard C, Fevrier B, Raposo G, Vidal M. Lipid raft-associated protein sorting in exosomes. Blood. 2003;102:4336-44 pubmed
  511. Le N, Richardson D. Potent iron chelators increase the mRNA levels of the universal cyclin-dependent kinase inhibitor p21(CIP1/WAF1), but paradoxically inhibit its translation: a potential mechanism of cell cycle dysregulation. Carcinogenesis. 2003;24:1045-58 pubmed
  512. Barel M, Pizzato N, van Leeuwen D, Bouteiller P, Wiertz E, Lenfant F. Amino acid composition of alpha1/alpha2 domains and cytoplasmic tail of MHC class I molecules determine their susceptibility to human cytomegalovirus US11-mediated down-regulation. Eur J Immunol. 2003;33:1707-16 pubmed
  513. Hering H, Lin C, Sheng M. Lipid rafts in the maintenance of synapses, dendritic spines, and surface AMPA receptor stability. J Neurosci. 2003;23:3262-71 pubmed
  514. Sanjuan M, Pradet Balade B, Jones D, Martinez A C, Stone J, Garcia Sanz J, et al. T cell activation in vivo targets diacylglycerol kinase alpha to the membrane: a novel mechanism for Ras attenuation. J Immunol. 2003;170:2877-83 pubmed
  515. Ashbourne Excoffon K, Moninger T, Zabner J. The coxsackie B virus and adenovirus receptor resides in a distinct membrane microdomain. J Virol. 2003;77:2559-67 pubmed
  516. Hu Y, Chuang J, Xu K, McGraw T, Sung C. SARA, a FYVE domain protein, affects Rab5-mediated endocytosis. J Cell Sci. 2002;115:4755-63 pubmed
  517. Vettermann C, Jack H, Mielenz D. A colloidal silver staining--destaining method for precise assignment of immunoreactive spots in two-dimensional protein patterns. Anal Biochem. 2002;308:381-7 pubmed
  518. Strick D, Francescutti D, Zhao Y, Elferink L. Mammalian suppressor of Sec4 modulates the inhibitory effect of Rab15 during early endocytosis. J Biol Chem. 2002;277:32722-9 pubmed
  519. Green F, O Hare T, Blackwell A, Enns C. Association of human transferrin receptor with GABARAP. FEBS Lett. 2002;518:101-6 pubmed
  520. Traiffort E, Moya K, Faure H, Hassig R, Ruat M. High expression and anterograde axonal transport of aminoterminal sonic hedgehog in the adult hamster brain. Eur J Neurosci. 2001;14:839-50 pubmed
  521. Bennett E, Lin S, Towler M, Maxfield F, Brodsky F. Clathrin hub expression affects early endosome distribution with minimal impact on receptor sorting and recycling. Mol Biol Cell. 2001;12:2790-9 pubmed
  522. Fraile Ramos A, Kledal T, Pelchen Matthews A, Bowers K, Schwartz T, Marsh M. The human cytomegalovirus US28 protein is located in endocytic vesicles and undergoes constitutive endocytosis and recycling. Mol Biol Cell. 2001;12:1737-49 pubmed
  523. Luhrmann A, Streker K, Schüttfort A, Daniels J, Haas A. Afipia felis induces uptake by macrophages directly into a nonendocytic compartment. Proc Natl Acad Sci U S A. 2001;98:7271-6 pubmed
  524. Fonseca A, Porto G, Uchida K, Arosa F. Red blood cells inhibit activation-induced cell death and oxidative stress in human peripheral blood T lymphocytes. Blood. 2001;97:3152-60 pubmed
  525. Parker J, Murphy W, Wang D, O Brien S, Parrish C. Canine and feline parvoviruses can use human or feline transferrin receptors to bind, enter, and infect cells. J Virol. 2001;75:3896-902 pubmed
  526. Kleijmeer M, Escola J, Uytdehaag F, Jakobson E, Griffith J, Osterhaus A, et al. Antigen loading of MHC class I molecules in the endocytic tract. Traffic. 2001;2:124-37 pubmed
  527. Crooks D, Kil S, McCaffery J, Carlin C. E3-13.7 integral membrane proteins encoded by human adenoviruses alter epidermal growth factor receptor trafficking by interacting directly with receptors in early endosomes. Mol Biol Cell. 2000;11:3559-72 pubmed
  528. Gagescu R, Demaurex N, Parton R, Hunziker W, Huber L, Gruenberg J. The recycling endosome of Madin-Darby canine kidney cells is a mildly acidic compartment rich in raft components. Mol Biol Cell. 2000;11:2775-91 pubmed
  529. Zuk P, Elferink L. Rab15 differentially regulates early endocytic trafficking. J Biol Chem. 2000;275:26754-64 pubmed
  530. Hewett J, Gonzalez Agosti C, Slater D, Ziefer P, Li S, Bergeron D, et al. Mutant torsinA, responsible for early-onset torsion dystonia, forms membrane inclusions in cultured neural cells. Hum Mol Genet. 2000;9:1403-13 pubmed
  531. Sönnichsen B, De Renzis S, Nielsen E, Rietdorf J, Zerial M. Distinct membrane domains on endosomes in the recycling pathway visualized by multicolor imaging of Rab4, Rab5, and Rab11. J Cell Biol. 2000;149:901-14 pubmed
  532. Robertson A, Allan V. Brefeldin A-dependent membrane tubule formation reconstituted in vitro is driven by a cell cycle-regulated microtubule motor. Mol Biol Cell. 2000;11:941-55 pubmed
  533. Hagihara N, Walbridge S, Olson A, Oldfield E, Youle R. Vascular protection by chloroquine during brain tumor therapy with Tf-CRM107. Cancer Res. 2000;60:230-4 pubmed
  534. Lee W, Ryu J, Souto R, Pilch P, Jung C. Separation and partial characterization of three distinct intracellular GLUT4 compartments in rat adipocytes. Subcellular fractionation without homogenization. J Biol Chem. 1999;274:37755-62 pubmed
  535. Wang X, Kibschull M, Laue M, Lichte B, Petrasch Parwez E, Kilimann M. Aczonin, a 550-kD putative scaffolding protein of presynaptic active zones, shares homology regions with Rim and Bassoon and binds profilin. J Cell Biol. 1999;147:151-62 pubmed
  536. Melikian H, Buckley K. Membrane trafficking regulates the activity of the human dopamine transporter. J Neurosci. 1999;19:7699-710 pubmed
  537. Alvarez F, Olander J, Crimmins D, Prieto B, Paz A, Alonso R, et al. Development, characterization, and use of monoclonal antibodies made to antigens expressed on the surface of fetal nucleated red blood cells. Clin Chem. 1999;45:1614-20 pubmed
  538. Zuk P, Elferink L. Rab15 mediates an early endocytic event in Chinese hamster ovary cells. J Biol Chem. 1999;274:22303-12 pubmed
  539. Gaschet J, Hsu V. Distribution of ARF6 between membrane and cytosol is regulated by its GTPase cycle. J Biol Chem. 1999;274:20040-5 pubmed
  540. Attieh Z, Mukhopadhyay C, Seshadri V, Tripoulas N, Fox P. Ceruloplasmin ferroxidase activity stimulates cellular iron uptake by a trivalent cation-specific transport mechanism. J Biol Chem. 1999;274:1116-23 pubmed
  541. Santama N, Krijnse Locker J, Griffiths G, Noda Y, Hirokawa N, Dotti C. KIF2beta, a new kinesin superfamily protein in non-neuronal cells, is associated with lysosomes and may be implicated in their centrifugal translocation. EMBO J. 1998;17:5855-67 pubmed
  542. Gross C, Irrinki A, Feder J, Enns C. Co-trafficking of HFE, a nonclassical major histocompatibility complex class I protein, with the transferrin receptor implies a role in intracellular iron regulation. J Biol Chem. 1998;273:22068-74 pubmed
  543. Kamiguchi H, Long K, Pendergast M, Schaefer A, Rapoport I, Kirchhausen T, et al. The neural cell adhesion molecule L1 interacts with the AP-2 adaptor and is endocytosed via the clathrin-mediated pathway. J Neurosci. 1998;18:5311-21 pubmed
  544. Hryhorenko E, Rittenhouse Diakun K, Harvey N, Morgan J, Stewart C, Oseroff A. Characterization of endogenous protoporphyrin IX induced by delta-aminolevulinic acid in resting and activated peripheral blood lymphocytes by four-color flow cytometry. Photochem Photobiol. 1998;67:565-72 pubmed
  545. Tampanaru Sarmesiu A, Stefaneanu L, Thapar K, Kontogeorgos G, Sumi T, Kovacs K. Transferrin and transferrin receptor in human hypophysis and pituitary adenomas. Am J Pathol. 1998;152:413-22 pubmed
  546. Le Borgne R, Hoflack B. Mannose 6-phosphate receptors regulate the formation of clathrin-coated vesicles in the TGN. J Cell Biol. 1997;137:335-45 pubmed