这是一篇来自已证抗体库的有关人类 Ⅰ型胶原 (type I collagen) 的综述,是根据176篇发表使用所有方法的文章归纳的。这综述旨在帮助来邦网的访客找到最适合Ⅰ型胶原 抗体。
Ⅰ型胶原 同义词: EDSARTH1; EDSC; OI1; OI2; OI3; OI4

艾博抗(上海)贸易有限公司
小鼠 单克隆(COL-1)
  • 免疫细胞化学; 人类; 1:200; 图 2a
艾博抗(上海)贸易有限公司Ⅰ型胶原抗体(Abcam, ab6308)被用于被用于免疫细胞化学在人类样本上浓度为1:200 (图 2a). Sci Adv (2020) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 大鼠; 图 7a
艾博抗(上海)贸易有限公司Ⅰ型胶原抗体(Abcam, ab34710)被用于被用于免疫印迹在大鼠样本上 (图 7a). JACC Basic Transl Sci (2020) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 1:300; 图 4a
  • 免疫印迹; 人类; 1:1000; 图 4c
艾博抗(上海)贸易有限公司Ⅰ型胶原抗体(Abcam, ab34710)被用于被用于免疫细胞化学在人类样本上浓度为1:300 (图 4a) 和 被用于免疫印迹在人类样本上浓度为1:1000 (图 4c). Proc Natl Acad Sci U S A (2020) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 小鼠; 图 s2b
  • 免疫组化-冰冻切片; 人类; 图 1d
艾博抗(上海)贸易有限公司Ⅰ型胶原抗体(Abcam, ab34710)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 s2b) 和 被用于免疫组化-冰冻切片在人类样本上 (图 1d). Sci Adv (2019) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:300; 图 4c
艾博抗(上海)贸易有限公司Ⅰ型胶原抗体(Abcam, ab34710)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:300 (图 4c). Cells (2019) ncbi
小鼠 单克隆(COL-1)
  • 免疫组化-石蜡切片; domestic rabbit; 1:200; 图 5
艾博抗(上海)贸易有限公司Ⅰ型胶原抗体(Abcam, ab90395)被用于被用于免疫组化-石蜡切片在domestic rabbit样本上浓度为1:200 (图 5). FEBS Open Bio (2020) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 2c
艾博抗(上海)贸易有限公司Ⅰ型胶原抗体(Abcam, ab34710)被用于被用于免疫印迹在人类样本上 (图 2c). Biol Res (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 5c
艾博抗(上海)贸易有限公司Ⅰ型胶原抗体(Abcam, ab34710)被用于被用于免疫印迹在人类样本上 (图 5c). Breast Cancer Res (2019) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 图 5c
艾博抗(上海)贸易有限公司Ⅰ型胶原抗体(Abcam, ab21286)被用于被用于免疫组化在小鼠样本上 (图 5c). elife (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 3d
艾博抗(上海)贸易有限公司Ⅰ型胶原抗体(Abcam, ab34710)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3d). BMC Mol Biol (2019) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:500; 图 4d
艾博抗(上海)贸易有限公司Ⅰ型胶原抗体(Abcam, ab34710)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:500 (图 4d). Am J Transl Res (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 3c
艾博抗(上海)贸易有限公司Ⅰ型胶原抗体(Abcam, ab34710)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 3c). Biosci Rep (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:50; 图 7a
艾博抗(上海)贸易有限公司Ⅰ型胶原抗体(abcam, ab21286)被用于被用于免疫印迹在小鼠样本上浓度为1:50 (图 7a). Kidney Int (2019) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 大鼠; 图 1c
  • 免疫印迹; 大鼠; 图 1d
艾博抗(上海)贸易有限公司Ⅰ型胶原抗体(Abcam, ab34710)被用于被用于免疫组化-石蜡切片在大鼠样本上 (图 1c) 和 被用于免疫印迹在大鼠样本上 (图 1d). Am J Physiol Renal Physiol (2019) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 小鼠; 1:500; 图 e2b
  • 免疫细胞化学; 人类; 1:500; 图 e2b
艾博抗(上海)贸易有限公司Ⅰ型胶原抗体(Abcam, ab34710)被用于被用于免疫细胞化学在小鼠样本上浓度为1:500 (图 e2b) 和 被用于免疫细胞化学在人类样本上浓度为1:500 (图 e2b). Nature (2019) ncbi
小鼠 单克隆(COL-1)
  • 免疫印迹; 小鼠; 1:500; 图 5c
艾博抗(上海)贸易有限公司Ⅰ型胶原抗体(Abcam, ab90395)被用于被用于免疫印迹在小鼠样本上浓度为1:500 (图 5c). Biosci Rep (2019) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:100; 图 3a
艾博抗(上海)贸易有限公司Ⅰ型胶原抗体(Abcam, ab34710)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:100 (图 3a). Cell Death Dis (2018) ncbi
小鼠 单克隆(COL-1)
  • 免疫印迹; 小鼠; 1:1000; 图 3a, 4c
艾博抗(上海)贸易有限公司Ⅰ型胶原抗体(Abcam, ab90395)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 3a, 4c). Biochem Biophys Res Commun (2018) ncbi
小鼠 单克隆(COL-1)
  • 免疫组化-冰冻切片; 小鼠; 图 3a
  • 免疫印迹; 小鼠; 图 3e
艾博抗(上海)贸易有限公司Ⅰ型胶原抗体(Abcam, ab6308)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 3a) 和 被用于免疫印迹在小鼠样本上 (图 3e). Cell Death Dis (2018) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 人类; 1:150; 图 4m
艾博抗(上海)贸易有限公司Ⅰ型胶原抗体(Abcam, ab21286)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:150 (图 4m). elife (2018) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:100; 图 s4a
艾博抗(上海)贸易有限公司Ⅰ型胶原抗体(Abcam, ab34710)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:100 (图 s4a). Nat Commun (2018) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 4f
艾博抗(上海)贸易有限公司Ⅰ型胶原抗体(Abcam, ab34710)被用于被用于免疫印迹在小鼠样本上 (图 4f). J Biol Chem (2018) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:200; 图 s4d
艾博抗(上海)贸易有限公司Ⅰ型胶原抗体(Abcam, ab34710)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:200 (图 s4d). J Clin Invest (2018) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:300; 图 1h
艾博抗(上海)贸易有限公司Ⅰ型胶原抗体(Abcam, ab21286)被用于被用于免疫组化在小鼠样本上浓度为1:300 (图 1h). Cell Death Differ (2018) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:200; 图 s2f
艾博抗(上海)贸易有限公司Ⅰ型胶原抗体(Abcam, ab21286)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:200 (图 s2f). Cell (2018) ncbi
小鼠 单克隆(COL-1)
  • 免疫组化; 大鼠; 1:100; 图 s1i
艾博抗(上海)贸易有限公司Ⅰ型胶原抗体(Abcam, ab90395)被用于被用于免疫组化在大鼠样本上浓度为1:100 (图 s1i). Cell Death Differ (2018) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 2b
艾博抗(上海)贸易有限公司Ⅰ型胶原抗体(Abcam, ab34710)被用于被用于免疫印迹在人类样本上 (图 2b). Cell (2018) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 小鼠; 图 6a
艾博抗(上海)贸易有限公司Ⅰ型胶原抗体(Abcam, ab34710)被用于被用于免疫细胞化学在小鼠样本上 (图 6a). Wound Repair Regen (2018) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 人类; 1:100; 图 1b
  • 免疫组化-石蜡切片; 小鼠; 1:100; 图 1b
艾博抗(上海)贸易有限公司Ⅰ型胶原抗体(Abcam, ab34710)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100 (图 1b) 和 被用于免疫组化-石蜡切片在小鼠样本上浓度为1:100 (图 1b). Nat Commun (2017) ncbi
大鼠 单克隆(M-58)
  • 免疫组化-石蜡切片; 人类; 1:500; 图 s8b
艾博抗(上海)贸易有限公司Ⅰ型胶原抗体(Abcam, ab64409)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:500 (图 s8b). J Clin Invest (2017) ncbi
domestic rabbit 单克隆(EPR7785)
  • 免疫印迹; 大鼠; 图 2c
艾博抗(上海)贸易有限公司Ⅰ型胶原抗体(Abcam, ab138492)被用于被用于免疫印迹在大鼠样本上 (图 2c). Int J Mol Sci (2017) ncbi
小鼠 单克隆(COL-1)
  • 免疫印迹; 大鼠; 1:1000; 图 1b
艾博抗(上海)贸易有限公司Ⅰ型胶原抗体(Abcam, ab6308)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 1b). Mol Med Rep (2017) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:100; 图 5e
艾博抗(上海)贸易有限公司Ⅰ型胶原抗体(Abcam, ab34710)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:100 (图 5e). JCI Insight (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 5d
艾博抗(上海)贸易有限公司Ⅰ型胶原抗体(Abcam, ab34710)被用于被用于免疫印迹在小鼠样本上 (图 5d). Front Aging Neurosci (2017) ncbi
小鼠 单克隆(COL-1)
  • 免疫印迹; domestic rabbit; 2 ug/ml; 图 6b
艾博抗(上海)贸易有限公司Ⅰ型胶原抗体(Abcam, ab6308)被用于被用于免疫印迹在domestic rabbit样本上浓度为2 ug/ml (图 6b). Int J Mol Med (2017) ncbi
小鼠 单克隆(COL-1)
  • 免疫细胞化学; 人类; 1:500; 图 7a
艾博抗(上海)贸易有限公司Ⅰ型胶原抗体(Abcam, ab90395)被用于被用于免疫细胞化学在人类样本上浓度为1:500 (图 7a). PLoS ONE (2017) ncbi
domestic rabbit 单克隆(EPR7785)
  • 免疫细胞化学; 国内马; 1:100; 图 1
艾博抗(上海)贸易有限公司Ⅰ型胶原抗体(Abcam, ab138492)被用于被用于免疫细胞化学在国内马样本上浓度为1:100 (图 1). Biofabrication (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 3c
艾博抗(上海)贸易有限公司Ⅰ型胶原抗体(Abcam, AB34710)被用于被用于免疫印迹在人类样本上 (图 3c). Cell Rep (2017) ncbi
小鼠 单克隆(COL-1)
  • 免疫组化; 人类; 1:1000; 图 2e
艾博抗(上海)贸易有限公司Ⅰ型胶原抗体(Abcam, ab6308)被用于被用于免疫组化在人类样本上浓度为1:1000 (图 2e). Nat Commun (2017) ncbi
domestic rabbit 多克隆
  • 免疫组化; 人类; 1:500; 图 1b
艾博抗(上海)贸易有限公司Ⅰ型胶原抗体(Abcam, Ab34710)被用于被用于免疫组化在人类样本上浓度为1:500 (图 1b). Toxicol Sci (2017) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 小鼠; 图 6a
艾博抗(上海)贸易有限公司Ⅰ型胶原抗体(Abcam, ab21286)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 6a). EMBO Mol Med (2017) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 1:500; 图 7f
  • 免疫印迹; 人类; 图 1a
艾博抗(上海)贸易有限公司Ⅰ型胶原抗体(Abcam, ab34710)被用于被用于免疫细胞化学在人类样本上浓度为1:500 (图 7f) 和 被用于免疫印迹在人类样本上 (图 1a). Pharmacol Res (2017) ncbi
domestic rabbit 多克隆
  • 免疫组化; 大鼠; 1:200; 图 s5
艾博抗(上海)贸易有限公司Ⅰ型胶原抗体(Abcam, ab34710)被用于被用于免疫组化在大鼠样本上浓度为1:200 (图 s5). Sci Rep (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:100; 图 5b
  • 免疫印迹; 小鼠; 1:1000; 图 2a
艾博抗(上海)贸易有限公司Ⅰ型胶原抗体(Abcam, ab34710)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:100 (图 5b) 和 被用于免疫印迹在小鼠样本上浓度为1:1000 (图 2a). PLoS ONE (2016) ncbi
domestic rabbit 单克隆(EPR7785)
  • 免疫印迹; 人类; 1:1000; 图 3c
艾博抗(上海)贸易有限公司Ⅰ型胶原抗体(Abcam, ab138492)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3c). Nat Commun (2016) ncbi
小鼠 单克隆(COL-1)
  • 免疫组化-石蜡切片; 人类; 1:400; 图 3a
艾博抗(上海)贸易有限公司Ⅰ型胶原抗体(Abcam, Ab6308)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:400 (图 3a). Tissue Eng Part C Methods (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 小鼠; 图 1
  • 免疫印迹; 小鼠; 图 4
艾博抗(上海)贸易有限公司Ⅰ型胶原抗体(Abcam, ab34710)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 1) 和 被用于免疫印迹在小鼠样本上 (图 4). Mol Med Rep (2016) ncbi
小鼠 单克隆(COL-1)
  • 免疫细胞化学; domestic rabbit; 1:350; 图 5a
艾博抗(上海)贸易有限公司Ⅰ型胶原抗体(Abcam, ab90395)被用于被用于免疫细胞化学在domestic rabbit样本上浓度为1:350 (图 5a). Stem Cells Int (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 人类; 图 7a
  • 免疫组化-石蜡切片; 小鼠; 图 2a
艾博抗(上海)贸易有限公司Ⅰ型胶原抗体(Abcam, ab34710)被用于被用于免疫组化-石蜡切片在人类样本上 (图 7a) 和 被用于免疫组化-石蜡切片在小鼠样本上 (图 2a). Oncogene (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:500; 图 s1b
艾博抗(上海)贸易有限公司Ⅰ型胶原抗体(Abcam, ab34710)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 s1b). Oncogenesis (2016) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 图 7a
艾博抗(上海)贸易有限公司Ⅰ型胶原抗体(Abcam, ab34710)被用于被用于免疫细胞化学在人类样本上 (图 7a). J Tissue Eng Regen Med (2018) ncbi
domestic rabbit 单克隆(EPR7785)
  • 免疫印迹; 人类; 图 3b
艾博抗(上海)贸易有限公司Ⅰ型胶原抗体(Abcam, ab138492)被用于被用于免疫印迹在人类样本上 (图 3b). Sci Rep (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:300; 图 1
艾博抗(上海)贸易有限公司Ⅰ型胶原抗体(Abcam, ab34710)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:300 (图 1). elife (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 2
艾博抗(上海)贸易有限公司Ⅰ型胶原抗体(Abcam, ab34710)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 2). Exp Ther Med (2016) ncbi
小鼠 单克隆(COL-1)
  • 免疫细胞化学; 人类; 图 1a
艾博抗(上海)贸易有限公司Ⅰ型胶原抗体(Abcam, ab6308)被用于被用于免疫细胞化学在人类样本上 (图 1a). J Vis Exp (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 大鼠; 图 3b
艾博抗(上海)贸易有限公司Ⅰ型胶原抗体(Abcam, ab34710)被用于被用于免疫印迹在大鼠样本上 (图 3b). Sci Rep (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:250; 图 5
艾博抗(上海)贸易有限公司Ⅰ型胶原抗体(Abcam, ab21286)被用于被用于免疫印迹在小鼠样本上浓度为1:250 (图 5). Nat Commun (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:500
艾博抗(上海)贸易有限公司Ⅰ型胶原抗体(Abcam, ab34710)被用于被用于免疫组化在小鼠样本上浓度为1:500. Nat Commun (2016) ncbi
小鼠 单克隆(COL-1)
  • 免疫组化; 人类; 图 1
  • 免疫印迹; 人类; 图 1
艾博抗(上海)贸易有限公司Ⅰ型胶原抗体(Abcam, ab90395)被用于被用于免疫组化在人类样本上 (图 1) 和 被用于免疫印迹在人类样本上 (图 1). Stem Cell Reports (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:200; 图 4b
艾博抗(上海)贸易有限公司Ⅰ型胶原抗体(Abcam, ab34710)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:200 (图 4b). Nat Commun (2016) ncbi
小鼠 单克隆(COL-1)
  • 免疫组化-石蜡切片; 人类; 图 3
艾博抗(上海)贸易有限公司Ⅰ型胶原抗体(Abcam, ab6308)被用于被用于免疫组化-石蜡切片在人类样本上 (图 3). Mol Med Rep (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 图 2b
艾博抗(上海)贸易有限公司Ⅰ型胶原抗体(Abcam, ab21286)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 2b). PLoS ONE (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; domestic rabbit; 1:1000; 图 10
艾博抗(上海)贸易有限公司Ⅰ型胶原抗体(abcam, ab34710)被用于被用于免疫印迹在domestic rabbit样本上浓度为1:1000 (图 10). BMC Musculoskelet Disord (2016) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 图 5b
艾博抗(上海)贸易有限公司Ⅰ型胶原抗体(Abcam, ab34710)被用于被用于免疫细胞化学在人类样本上 (图 5b). J Biol Chem (2016) ncbi
domestic rabbit 单克隆(EPR7785)
  • 免疫印迹; 人类; 1:10,000; 图 4c
艾博抗(上海)贸易有限公司Ⅰ型胶原抗体(Abcam, ab138492)被用于被用于免疫印迹在人类样本上浓度为1:10,000 (图 4c). J Biol Chem (2016) ncbi
小鼠 单克隆(COL-1)
  • 免疫细胞化学; 人类; 图 5b
艾博抗(上海)贸易有限公司Ⅰ型胶原抗体(Abcam, ab6308)被用于被用于免疫细胞化学在人类样本上 (图 5b). J Biol Chem (2016) ncbi
小鼠 单克隆(COL-1)
  • 免疫组化-冰冻切片; 人类; 1:1000; 图 7f
艾博抗(上海)贸易有限公司Ⅰ型胶原抗体(Abcam, AB90395)被用于被用于免疫组化-冰冻切片在人类样本上浓度为1:1000 (图 7f). Stem Cells Transl Med (2016) ncbi
小鼠 单克隆(COL-1)
  • 免疫组化-石蜡切片; 大鼠; 1:100; 图 5b
  • 免疫细胞化学; 大鼠; 1:100; 图 1i
艾博抗(上海)贸易有限公司Ⅰ型胶原抗体(Abcam, ab90395)被用于被用于免疫组化-石蜡切片在大鼠样本上浓度为1:100 (图 5b) 和 被用于免疫细胞化学在大鼠样本上浓度为1:100 (图 1i). Acta Biomater (2016) ncbi
domestic rabbit 单克隆(EPR7785)
  • 免疫印迹; 人类; 图 7
艾博抗(上海)贸易有限公司Ⅰ型胶原抗体(Abcam, ab138492)被用于被用于免疫印迹在人类样本上 (图 7). PLoS ONE (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:50; 图 2d
艾博抗(上海)贸易有限公司Ⅰ型胶原抗体(Abcam, ab21286)被用于被用于免疫组化在小鼠样本上浓度为1:50 (图 2d). Science (2016) ncbi
小鼠 单克隆(COL-1)
  • 免疫细胞化学; 人类; 图 5c
  • 免疫印迹; 人类; 图 5a
艾博抗(上海)贸易有限公司Ⅰ型胶原抗体(Abcam, Ab6308)被用于被用于免疫细胞化学在人类样本上 (图 5c) 和 被用于免疫印迹在人类样本上 (图 5a). J Cell Sci (2016) ncbi
大鼠 单克隆(M-58)
  • 免疫细胞化学; 人类; 图 5
艾博抗(上海)贸易有限公司Ⅰ型胶原抗体(abcam, ab64409)被用于被用于免疫细胞化学在人类样本上 (图 5). Eur Cell Mater (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 图 2
艾博抗(上海)贸易有限公司Ⅰ型胶原抗体(Abcam, ab21286)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 2). Arthritis Res Ther (2016) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 小鼠; 1:200; 图 6b
艾博抗(上海)贸易有限公司Ⅰ型胶原抗体(Abcam, ab21286)被用于被用于免疫细胞化学在小鼠样本上浓度为1:200 (图 6b). Nat Commun (2016) ncbi
domestic rabbit 单克隆(EPR7785)
  • 免疫组化-石蜡切片; 小鼠; 1:1000; 图 s4
  • 免疫细胞化学; 小鼠; 1:1000; 图 s3d
艾博抗(上海)贸易有限公司Ⅰ型胶原抗体(Abcam, ab 138492)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:1000 (图 s4) 和 被用于免疫细胞化学在小鼠样本上浓度为1:1000 (图 s3d). Circ Res (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:500; 图 s4
  • 免疫细胞化学; 小鼠; 1:500; 图 s3d
艾博抗(上海)贸易有限公司Ⅰ型胶原抗体(Abcam, ab 21286)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:500 (图 s4) 和 被用于免疫细胞化学在小鼠样本上浓度为1:500 (图 s3d). Circ Res (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:500; 图 7
艾博抗(上海)贸易有限公司Ⅰ型胶原抗体(Abcam, ab34710)被用于被用于免疫印迹在小鼠样本上浓度为1:500 (图 7). Sci Rep (2016) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 图 4e
艾博抗(上海)贸易有限公司Ⅰ型胶原抗体(Abcam, ab34710)被用于被用于免疫细胞化学在人类样本上 (图 4e). Exp Cell Res (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 3
艾博抗(上海)贸易有限公司Ⅰ型胶原抗体(Abcam, ab21286)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 3). PLoS Negl Trop Dis (2016) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 1:100; 图 4
  • 免疫印迹; 人类; 1:1000; 图 2
艾博抗(上海)贸易有限公司Ⅰ型胶原抗体(Abcam, ab34710)被用于被用于免疫细胞化学在人类样本上浓度为1:100 (图 4) 和 被用于免疫印迹在人类样本上浓度为1:1000 (图 2). Mol Med Rep (2016) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 1:500; 图 5
艾博抗(上海)贸易有限公司Ⅰ型胶原抗体(abcam, ab34710)被用于被用于免疫细胞化学在人类样本上浓度为1:500 (图 5). Mol Med Rep (2016) ncbi
domestic rabbit 单克隆(EPR7785)
  • 免疫印迹; 人类; 图 s20
艾博抗(上海)贸易有限公司Ⅰ型胶原抗体(abcam, EPR7785)被用于被用于免疫印迹在人类样本上 (图 s20). Nat Commun (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 3
艾博抗(上海)贸易有限公司Ⅰ型胶原抗体(Abcam, ab34710)被用于被用于免疫印迹在小鼠样本上 (图 3). Oncotarget (2016) ncbi
小鼠 单克隆(COL-1)
  • 免疫组化-石蜡切片; 犬; 0.07 ug/ml; 图 7
  • 免疫组化-石蜡切片; 人类; 图 7
艾博抗(上海)贸易有限公司Ⅰ型胶原抗体(Abcam, ab6308)被用于被用于免疫组化-石蜡切片在犬样本上浓度为0.07 ug/ml (图 7) 和 被用于免疫组化-石蜡切片在人类样本上 (图 7). Arthritis Res Ther (2016) ncbi
小鼠 单克隆(COL-1)
  • 免疫组化-石蜡切片; 大鼠; 1:200; 图 2a
艾博抗(上海)贸易有限公司Ⅰ型胶原抗体(Abcam, ab90395)被用于被用于免疫组化-石蜡切片在大鼠样本上浓度为1:200 (图 2a). J Cell Mol Med (2016) ncbi
小鼠 单克隆(COL-1)
  • 免疫组化-石蜡切片; 人类; 3 ug/ml; 图 4
艾博抗(上海)贸易有限公司Ⅰ型胶原抗体(Abcam, ab90395)被用于被用于免疫组化-石蜡切片在人类样本上浓度为3 ug/ml (图 4). Orphanet J Rare Dis (2015) ncbi
小鼠 单克隆(COL-1)
  • 免疫细胞化学; 人类; 1:300; 图 1
艾博抗(上海)贸易有限公司Ⅰ型胶原抗体(Abcam, ab90395)被用于被用于免疫细胞化学在人类样本上浓度为1:300 (图 1). Cell Tissue Res (2016) ncbi
小鼠 单克隆(COL-1)
  • 免疫组化; 人类; 图 6
艾博抗(上海)贸易有限公司Ⅰ型胶原抗体(Abcam, ab90395)被用于被用于免疫组化在人类样本上 (图 6). PLoS ONE (2015) ncbi
小鼠 单克隆(COL-1)
  • 免疫细胞化学; 人类; 1:300; 图 5c
艾博抗(上海)贸易有限公司Ⅰ型胶原抗体(Abcam, ab90395)被用于被用于免疫细胞化学在人类样本上浓度为1:300 (图 5c). J Cell Mol Med (2015) ncbi
小鼠 单克隆(COL-1)
  • 免疫组化-石蜡切片; 人类; 1:200
艾博抗(上海)贸易有限公司Ⅰ型胶原抗体(Abcam, ab6308)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:200. Exp Cell Res (2015) ncbi
小鼠 单克隆(COL-1)
  • 免疫细胞化学; 犬; 1:100; 图 4
艾博抗(上海)贸易有限公司Ⅰ型胶原抗体(Abcam, ab6308)被用于被用于免疫细胞化学在犬样本上浓度为1:100 (图 4). J Biol Chem (2015) ncbi
大鼠 单克隆(M-58)
  • 免疫组化-石蜡切片; 人类; 图 3
艾博抗(上海)贸易有限公司Ⅰ型胶原抗体(Abcam, ab64409)被用于被用于免疫组化-石蜡切片在人类样本上 (图 3). PLoS ONE (2015) ncbi
小鼠 单克隆(COL-1)
  • 免疫组化; 小鼠
艾博抗(上海)贸易有限公司Ⅰ型胶原抗体(Abcam, ab90395)被用于被用于免疫组化在小鼠样本上. Int J Nanomedicine (2015) ncbi
domestic rabbit 单克隆(EPR7785)
  • 免疫印迹; 人类; 1:1000; 图 2c
艾博抗(上海)贸易有限公司Ⅰ型胶原抗体(Abcam, ab138492)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 2c). Eur J Cell Biol (2015) ncbi
小鼠 单克隆(COL-1)
  • 免疫印迹; 大鼠; 图 6b
艾博抗(上海)贸易有限公司Ⅰ型胶原抗体(Abcam, ab6308)被用于被用于免疫印迹在大鼠样本上 (图 6b). Mol Med Rep (2015) ncbi
小鼠 单克隆(COL-1)
  • 免疫组化; 大鼠
艾博抗(上海)贸易有限公司Ⅰ型胶原抗体(Abcam, ab6308)被用于被用于免疫组化在大鼠样本上. Andrology (2014) ncbi
小鼠 单克隆(COL-1)
  • 免疫印迹; 人类; 图 2a
艾博抗(上海)贸易有限公司Ⅰ型胶原抗体(Abcam, ab6308)被用于被用于免疫印迹在人类样本上 (图 2a). Connect Tissue Res (2015) ncbi
小鼠 单克隆(COL-1)
  • 免疫细胞化学; 人类
艾博抗(上海)贸易有限公司Ⅰ型胶原抗体(abcam, ab90395)被用于被用于免疫细胞化学在人类样本上. Int J Med Sci (2014) ncbi
小鼠 单克隆(COL-1)
  • 免疫组化-石蜡切片; 小鼠; 1:100
艾博抗(上海)贸易有限公司Ⅰ型胶原抗体(Abcam, ab6308)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:100. Metabolism (2014) ncbi
小鼠 单克隆(COL-1)
  • 免疫细胞化学; 人类; 1:500
艾博抗(上海)贸易有限公司Ⅰ型胶原抗体(Abcam, ab6308)被用于被用于免疫细胞化学在人类样本上浓度为1:500. Prep Biochem Biotechnol (2015) ncbi
小鼠 单克隆(COL-1)
  • 免疫印迹; 大鼠
艾博抗(上海)贸易有限公司Ⅰ型胶原抗体(Abcam, ab6308)被用于被用于免疫印迹在大鼠样本上. World J Gastroenterol (2014) ncbi
小鼠 单克隆(COL-1)
  • 免疫组化-石蜡切片; domestic rabbit; 1:100
艾博抗(上海)贸易有限公司Ⅰ型胶原抗体(Abcam, ab90395)被用于被用于免疫组化-石蜡切片在domestic rabbit样本上浓度为1:100. Tissue Eng Part A (2014) ncbi
小鼠 单克隆(COL-1)
  • 免疫组化-冰冻切片; 马; 1:200
艾博抗(上海)贸易有限公司Ⅰ型胶原抗体(Abcam, ab6308)被用于被用于免疫组化-冰冻切片在马样本上浓度为1:200. J Vet Intern Med (2014) ncbi
小鼠 单克隆(COL-1)
  • 免疫印迹; 人类
艾博抗(上海)贸易有限公司Ⅰ型胶原抗体(Abcam, ab90395)被用于被用于免疫印迹在人类样本上. J Dermatol Sci (2014) ncbi
小鼠 单克隆(COL-1)
  • 免疫组化-石蜡切片; domestic rabbit; 1:100
艾博抗(上海)贸易有限公司Ⅰ型胶原抗体(Abcam, ab90395)被用于被用于免疫组化-石蜡切片在domestic rabbit样本上浓度为1:100. Biomaterials (2013) ncbi
小鼠 单克隆(COL-1)
  • 免疫组化-石蜡切片; 人类
艾博抗(上海)贸易有限公司Ⅰ型胶原抗体(Abcam, ab6308)被用于被用于免疫组化-石蜡切片在人类样本上. Int J Clin Oncol (2014) ncbi
小鼠 单克隆(COL-1)
  • 免疫印迹; 猪
艾博抗(上海)贸易有限公司Ⅰ型胶原抗体(Abcam, AB6308)被用于被用于免疫印迹在猪样本上. Microsc Microanal (2013) ncbi
小鼠 单克隆(COL-1)
  • 免疫组化-石蜡切片; 小鼠
艾博抗(上海)贸易有限公司Ⅰ型胶原抗体(Abcam, ab90395)被用于被用于免疫组化-石蜡切片在小鼠样本上. Arthritis Rheum (2013) ncbi
大鼠 单克隆(M-58)
  • 免疫组化; 猪; 1:100
艾博抗(上海)贸易有限公司Ⅰ型胶原抗体(Abcam, ab64409)被用于被用于免疫组化在猪样本上浓度为1:100. J Mater Sci Mater Med (2013) ncbi
小鼠 单克隆(COL-1)
  • 免疫组化-石蜡切片; 大鼠; 1:1000
艾博抗(上海)贸易有限公司Ⅰ型胶原抗体(Abcam, ab90395)被用于被用于免疫组化-石蜡切片在大鼠样本上浓度为1:1000. PLoS ONE (2013) ncbi
小鼠 单克隆(COL-1)
  • 免疫组化-石蜡切片; 人类
艾博抗(上海)贸易有限公司Ⅰ型胶原抗体(Abcam, ab90395)被用于被用于免疫组化-石蜡切片在人类样本上. Colloids Surf B Biointerfaces (2013) ncbi
小鼠 单克隆(COL-1)
  • 免疫细胞化学; 人类
艾博抗(上海)贸易有限公司Ⅰ型胶原抗体(Abcam, ab6308-100)被用于被用于免疫细胞化学在人类样本上. J Biomed Mater Res A (2014) ncbi
小鼠 单克隆(COL-1)
  • 免疫细胞化学; domestic rabbit; 1:500
艾博抗(上海)贸易有限公司Ⅰ型胶原抗体(Abcam, ab6308)被用于被用于免疫细胞化学在domestic rabbit样本上浓度为1:500. Lasers Med Sci (2014) ncbi
小鼠 单克隆(COL-1)
  • 免疫组化-石蜡切片; 大鼠
艾博抗(上海)贸易有限公司Ⅰ型胶原抗体(Abcam, ab6308)被用于被用于免疫组化-石蜡切片在大鼠样本上. Biomed Eng Online (2013) ncbi
小鼠 单克隆(COL-1)
  • 免疫组化-石蜡切片; 家羊; 1:100
  • 免疫印迹; 家羊; 1:1500
艾博抗(上海)贸易有限公司Ⅰ型胶原抗体(Abcam, AB6308)被用于被用于免疫组化-石蜡切片在家羊样本上浓度为1:100 和 被用于免疫印迹在家羊样本上浓度为1:1500. Vet Res (2013) ncbi
小鼠 单克隆(COL-1)
  • 免疫印迹; 大鼠; 1:1000
艾博抗(上海)贸易有限公司Ⅰ型胶原抗体(Abcam plc, ab6308)被用于被用于免疫印迹在大鼠样本上浓度为1:1000. PLoS ONE (2013) ncbi
小鼠 单克隆(COL-1)
  • 免疫组化-石蜡切片; 人类
艾博抗(上海)贸易有限公司Ⅰ型胶原抗体(Abcam, ab6308)被用于被用于免疫组化-石蜡切片在人类样本上. PLoS ONE (2012) ncbi
小鼠 单克隆(COL-1)
  • 免疫组化-石蜡切片; 人类
艾博抗(上海)贸易有限公司Ⅰ型胶原抗体(Abcam, ab6308)被用于被用于免疫组化-石蜡切片在人类样本上. Tissue Eng Part A (2013) ncbi
小鼠 单克隆(COL-1)
  • 免疫细胞化学; 人类; 1:200
艾博抗(上海)贸易有限公司Ⅰ型胶原抗体(Abcam, ab6308)被用于被用于免疫细胞化学在人类样本上浓度为1:200. Invest Ophthalmol Vis Sci (2012) ncbi
小鼠 单克隆(COL-1)
  • 免疫组化; 人类; 1:100
艾博抗(上海)贸易有限公司Ⅰ型胶原抗体(Abcam, ab6308)被用于被用于免疫组化在人类样本上浓度为1:100. Tissue Eng Part A (2013) ncbi
圣克鲁斯生物技术
小鼠 单克隆(COL-1)
  • 免疫组化-石蜡切片; 人类; 1:200; 图 4c
圣克鲁斯生物技术Ⅰ型胶原抗体(Santa, sc-59772)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:200 (图 4c). Sci Adv (2019) ncbi
小鼠 单克隆
  • 免疫印迹; 人类; 图 6a
圣克鲁斯生物技术Ⅰ型胶原抗体(Santa Cruz, sc-293182)被用于被用于免疫印迹在人类样本上 (图 6a). Biol Res (2019) ncbi
小鼠 单克隆(COL-1)
  • 免疫细胞化学; 人类; 图 1a
圣克鲁斯生物技术Ⅰ型胶原抗体(Santa Cruz, SC-59772)被用于被用于免疫细胞化学在人类样本上 (图 1a). Arthritis Res Ther (2019) ncbi
小鼠 单克隆
  • 免疫印迹; 大鼠; 1:1000; 图 2b
圣克鲁斯生物技术Ⅰ型胶原抗体(Santa Cruz, sc-293182)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 2b). BMC Nephrol (2019) ncbi
小鼠 单克隆(COL-1)
  • 免疫印迹; 大鼠; 1:400; 图 8a
圣克鲁斯生物技术Ⅰ型胶原抗体(Santa Cruz, sc-59772)被用于被用于免疫印迹在大鼠样本上浓度为1:400 (图 8a). Exp Ther Med (2017) ncbi
小鼠 单克隆(COL-1)
  • 免疫细胞化学; 人类; 1:500; 图 7a
圣克鲁斯生物技术Ⅰ型胶原抗体(Santa Cruz, sc-59772)被用于被用于免疫细胞化学在人类样本上浓度为1:500 (图 7a). PLoS ONE (2017) ncbi
小鼠 单克隆(COL-1)
  • 免疫印迹; 大鼠; 1:2000; 图 2
圣克鲁斯生物技术Ⅰ型胶原抗体(Santa Cruz, sc-59772)被用于被用于免疫印迹在大鼠样本上浓度为1:2000 (图 2). Exp Ther Med (2016) ncbi
小鼠 单克隆(COL-1)
  • 免疫印迹; 人类; 1:200; 图 2
圣克鲁斯生物技术Ⅰ型胶原抗体(Santa Cruz, sc-59772)被用于被用于免疫印迹在人类样本上浓度为1:200 (图 2). Mol Med Rep (2015) ncbi
小鼠 单克隆(COL-1)
  • 免疫组化-石蜡切片; 人类; 1:100
圣克鲁斯生物技术Ⅰ型胶原抗体(Santa Cruz, sc-59772)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100. J Mol Histol (2015) ncbi
赛默飞世尔
小鼠 单克隆(5D8-G9)
  • 免疫印迹; 人类; 图 1c
赛默飞世尔Ⅰ型胶原抗体(Thermo Fisher, MA1-141)被用于被用于免疫印迹在人类样本上 (图 1c). Biol Res (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 1d
赛默飞世尔Ⅰ型胶原抗体(Invitrogen, PA5-29569)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 1d). Biochem Biophys Res Commun (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 1h
赛默飞世尔Ⅰ型胶原抗体(Invitrogen, PA5-29569)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 1h). Biochem Biophys Res Commun (2016) ncbi
小鼠 单克隆(COL-1)
  • 酶联免疫吸附测定; 人类; 1:2000; 图 9
赛默飞世尔Ⅰ型胶原抗体(Thermo Scientific, MA1-26771)被用于被用于酶联免疫吸附测定在人类样本上浓度为1:2000 (图 9). J Mech Behav Biomed Mater (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 1b
赛默飞世尔Ⅰ型胶原抗体(Thermo Scientific, PA5-35380)被用于被用于免疫印迹在人类样本上 (图 1b). Biochim Biophys Acta (2016) ncbi
小鼠 单克隆(COL-1)
  • 免疫印迹; 人类
赛默飞世尔Ⅰ型胶原抗体(Invitrogen, COL-1)被用于被用于免疫印迹在人类样本上. Infect Immun (2010) ncbi
伯乐(Bio-Rad)公司
domestic goat 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:100; 图 3d
  • 免疫印迹; 小鼠; 1:1000; 图 3e
伯乐(Bio-Rad)公司Ⅰ型胶原抗体(Southern Tech, 1310-01)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:100 (图 3d) 和 被用于免疫印迹在小鼠样本上浓度为1:1000 (图 3e). Cardiovasc Res (2018) ncbi
domestic goat 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:100; 图 6e
伯乐(Bio-Rad)公司Ⅰ型胶原抗体(Southern Biotech, 131008)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:100 (图 6e). J Immunol (2018) ncbi
domestic goat 多克隆
  • 免疫组化; 小鼠; 图 3j
伯乐(Bio-Rad)公司Ⅰ型胶原抗体(Southern Biotech, 1310-01)被用于被用于免疫组化在小鼠样本上 (图 3j). Stem Cells (2018) ncbi
小鼠 单克隆(NFI/20)
  • 流式细胞仪; 人类; 图 1b
  • 免疫细胞化学; 人类
伯乐(Bio-Rad)公司Ⅰ型胶原抗体(Bio-Rad, 2150-0001)被用于被用于流式细胞仪在人类样本上 (图 1b) 和 被用于免疫细胞化学在人类样本上. Cell Cycle (2017) ncbi
domestic goat 多克隆
  • 免疫细胞化学; 大鼠; 1:20; 图 2c
  • 免疫印迹; 大鼠; 1:400; 图 2b
伯乐(Bio-Rad)公司Ⅰ型胶原抗体(Southern Biotechnology, 1310-01)被用于被用于免疫细胞化学在大鼠样本上浓度为1:20 (图 2c) 和 被用于免疫印迹在大鼠样本上浓度为1:400 (图 2b). Lab Invest (2016) ncbi
小鼠 单克隆(NFI/20)
  • 流式细胞仪; 人类
伯乐(Bio-Rad)公司Ⅰ型胶原抗体(Serotec, 2150-0001)被用于被用于流式细胞仪在人类样本上. J Tissue Eng Regen Med (2017) ncbi
小鼠 单克隆(NFI/20)
  • 流式细胞仪; 人类
伯乐(Bio-Rad)公司Ⅰ型胶原抗体(Serotec, 2150-0001)被用于被用于流式细胞仪在人类样本上. Biomed Mater (2014) ncbi
Rockland Immunochemicals
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 图 2a
Rockland ImmunochemicalsⅠ型胶原抗体(Rockland, 600-401-103-0.1)被用于被用于免疫细胞化学在人类样本上 (图 2a). Cell (2018) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:100; 图 2a
Rockland ImmunochemicalsⅠ型胶原抗体(Rockland, 600-401-103-01)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:100 (图 2a). Am J Pathol (2017) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:500
Rockland ImmunochemicalsⅠ型胶原抗体(Rockland, 600-401-103-0.1)被用于被用于免疫组化在小鼠样本上浓度为1:500. Dis Model Mech (2017) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 小鼠; 1:50; 图 2a
Rockland ImmunochemicalsⅠ型胶原抗体(Rockland, 600-401-103-0.1)被用于被用于免疫细胞化学在小鼠样本上浓度为1:50 (图 2a). Biochim Biophys Acta Mol Basis Dis (2017) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 人类; 1:1000; 图 5d
Rockland ImmunochemicalsⅠ型胶原抗体(Rockland, 600-401-103-0.5)被用于被用于免疫组化-冰冻切片在人类样本上浓度为1:1000 (图 5d). Adv Healthc Mater (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 2c
Rockland ImmunochemicalsⅠ型胶原抗体(Rockland, 600-406-103)被用于被用于免疫印迹在人类样本上 (图 2c). J Cell Biol (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 4
Rockland ImmunochemicalsⅠ型胶原抗体(Rockland, 600-401-103)被用于被用于免疫印迹在人类样本上 (图 4). Sci Rep (2016) ncbi
domestic rabbit 多克隆
  • 流式细胞仪; 小鼠; 图 6
Rockland ImmunochemicalsⅠ型胶原抗体(Rockland, 600406103)被用于被用于流式细胞仪在小鼠样本上 (图 6). Cardiovasc Res (2016) ncbi
GeneTex
小鼠 单克隆(BDI314)
  • 其他; 人类; 图 s1
GeneTexⅠ型胶原抗体(GeneTex, GTX44081)被用于被用于其他在人类样本上 (图 s1). Cell Chem Biol (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 大鼠; 1:1000; 图 3
GeneTexⅠ型胶原抗体(Genetex, GTX20292)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 3). Front Pharmacol (2016) ncbi
小鼠 单克隆(COL-1)
  • 免疫组化-石蜡切片; 猪; 1:1000; 图 3
GeneTexⅠ型胶原抗体(GeneTex, GTX26308)被用于被用于免疫组化-石蜡切片在猪样本上浓度为1:1000 (图 3). Biomed Res Int (2015) ncbi
亚诺法生技股份有限公司
小鼠 单克隆(3G3)
  • 免疫组化; 小鼠; 图 5b
亚诺法生技股份有限公司Ⅰ型胶原抗体(Abnova, H00001277-M01)被用于被用于免疫组化在小鼠样本上 (图 5b). Br J Ophthalmol (2018) ncbi
LifeSpan Biosciences
domestic rabbit 多克隆
  • 免疫组化; 人类; 1:400; 图 4c
LifeSpan BiosciencesⅠ型胶原抗体(LS Bio, LS-C343921)被用于被用于免疫组化在人类样本上浓度为1:400 (图 4c). Breast Cancer Res (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 4b
LifeSpan BiosciencesⅠ型胶原抗体(LifeSpan, LS-C-150353)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 4b). Sci Rep (2016) ncbi
Novus Biologicals
小鼠 单克隆(COL-1)
  • 免疫组化-石蜡切片; domestic rabbit; 图 7b
Novus BiologicalsⅠ型胶原抗体(Novus Biologicals, NB600-450)被用于被用于免疫组化-石蜡切片在domestic rabbit样本上 (图 7b). Sci Rep (2016) ncbi
西格玛奥德里奇
小鼠 单克隆(3G3)
  • 免疫组化; 人类; 1:1000; 图 1c
  • 免疫印迹; 人类; 图 2d
西格玛奥德里奇Ⅰ型胶原抗体(Sigma, SAB1402151)被用于被用于免疫组化在人类样本上浓度为1:1000 (图 1c) 和 被用于免疫印迹在人类样本上 (图 2d). BMC Cancer (2014) ncbi
SouthernBiotech
domestic goat 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:100; 图 6h
SouthernBiotechⅠ型胶原抗体(Southern Biotech, 131001)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:100 (图 6h). J Immunol (2018) ncbi
domestic goat 多克隆
  • 免疫印迹; 人类; 图 1
SouthernBiotechⅠ型胶原抗体(Southern Biotech, 1310-01)被用于被用于免疫印迹在人类样本上 (图 1). Respir Res (2016) ncbi
domestic goat 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 1
SouthernBiotechⅠ型胶原抗体(Southern Biotech, 1310-01)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 1). Nat Commun (2016) ncbi
domestic goat 多克隆
  • 免疫印迹; 人类; 图 2
SouthernBiotechⅠ型胶原抗体(SouthernBiotech, 1310-0)被用于被用于免疫印迹在人类样本上 (图 2). J Immunol (2016) ncbi
MP Biochemicals
小鼠 单克隆(I-8H5)
  • 免疫组化-石蜡切片; 人类; 图 4c
MP生化试剂Ⅰ型胶原抗体(MP Biomedicals, I-8H5)被用于被用于免疫组化-石蜡切片在人类样本上 (图 4c). Arthritis Res Ther (2016) ncbi
小鼠 单克隆(I-8H5)
  • 免疫组化; 鸡; 1:1000; 图 5e
MP生化试剂Ⅰ型胶原抗体(MP Biomedicals, I-8H5)被用于被用于免疫组化在鸡样本上浓度为1:1000 (图 5e). Development (2016) ncbi
Developmental Studies Hybridoma Bank
小鼠 单克隆(SP1.D8)
  • 免疫组化-冰冻切片; 小鼠; 1:20; 图 1a
Developmental Studies Hybridoma BankⅠ型胶原抗体(DSHB, SP1.D8)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:20 (图 1a). elife (2019) ncbi
小鼠 单克隆(SP1.D8)
  • 免疫细胞化学; 小鼠; 图 6h
  • 免疫印迹; 小鼠; 图 6i
  • 免疫细胞化学; 人类; 图 1b
  • 免疫印迹; 人类; 图 s1j
Developmental Studies Hybridoma BankⅠ型胶原抗体(Developmental Studies Hybridoma Bank, SP1.D8)被用于被用于免疫细胞化学在小鼠样本上 (图 6h), 被用于免疫印迹在小鼠样本上 (图 6i), 被用于免疫细胞化学在人类样本上 (图 1b) 和 被用于免疫印迹在人类样本上 (图 s1j). Cell (2019) ncbi
小鼠 单克隆(SP1.D8)
  • 免疫细胞化学; 鸡; 图 1
Developmental Studies Hybridoma BankⅠ型胶原抗体(DSHB, SP1.D8)被用于被用于免疫细胞化学在鸡样本上 (图 1). Mol Biol Cell (2017) ncbi
小鼠 单克隆(SP1.D8)
  • 免疫组化-石蜡切片; 人类; 图 s2
Developmental Studies Hybridoma BankⅠ型胶原抗体(Developmental Studies Hybridoma Bank, SP1.D8)被用于被用于免疫组化-石蜡切片在人类样本上 (图 s2). Am J Pathol (2016) ncbi
小鼠 单克隆(SP1.D8)
  • 免疫细胞化学; 小鼠; 1:10; 表 2
Developmental Studies Hybridoma BankⅠ型胶原抗体(Developmental studies hybridoma bank, SP1.D8)被用于被用于免疫细胞化学在小鼠样本上浓度为1:10 (表 2). J Cell Physiol (2016) ncbi
小鼠 单克隆(SP1.D8)
  • 免疫印迹; 小鼠
Developmental Studies Hybridoma BankⅠ型胶原抗体(Developmental Studies Hybridoma Bank, SP1.D8)被用于被用于免疫印迹在小鼠样本上. FASEB J (2013) ncbi
小鼠 单克隆(M-38)
  • 免疫细胞化学; 人类; 1:5
Developmental Studies Hybridoma BankⅠ型胶原抗体(DSHB, M-38)被用于被用于免疫细胞化学在人类样本上浓度为1:5. Anticancer Res (2004) ncbi
默克密理博中国
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 1:300; 图 6h
默克密理博中国Ⅰ型胶原抗体(Millipore, AB745)被用于被用于免疫细胞化学在人类样本上浓度为1:300 (图 6h). Mol Biol Cell (2019) ncbi
大鼠 单克隆(M-58)
  • 免疫组化-冰冻切片; 人类; 1:100; 图 5a
默克密理博中国Ⅰ型胶原抗体(Chemicon, MAB1912)被用于被用于免疫组化-冰冻切片在人类样本上浓度为1:100 (图 5a). PLoS ONE (2017) ncbi
小鼠 单克隆(5D8-G9)
  • 流式细胞仪; 人类
默克密理博中国Ⅰ型胶原抗体(Millipore, FCMAB412F)被用于被用于流式细胞仪在人类样本上. PLoS ONE (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 家羊; 1:1000; 图 5d
默克密理博中国Ⅰ型胶原抗体(EMD Millipore, 234167)被用于被用于免疫印迹在家羊样本上浓度为1:1000 (图 5d). Physiol Rep (2016) ncbi
大鼠 单克隆(M-58)
  • 免疫组化; 小鼠; 图 5
  • 免疫组化; 人类; 图 4
默克密理博中国Ⅰ型胶原抗体(Millipore, MAB1912)被用于被用于免疫组化在小鼠样本上 (图 5) 和 被用于免疫组化在人类样本上 (图 4). J Invest Dermatol (2016) ncbi
大鼠 单克隆(M-58)
  • 免疫细胞化学; 人类
默克密理博中国Ⅰ型胶原抗体(EMD Millipore, MAB1912)被用于被用于免疫细胞化学在人类样本上. J Burn Care Res (2015) ncbi
大鼠 单克隆(M-58)
  • 免疫组化-石蜡切片; 人类
默克密理博中国Ⅰ型胶原抗体(Merck Millipore, MAB1912)被用于被用于免疫组化-石蜡切片在人类样本上. Arch Dermatol Res (2014) ncbi
小鼠 单克隆(5D8-G9)
  • 流式细胞仪; 人类; 1:1000
默克密理博中国Ⅰ型胶原抗体(EMD Millipore, 5D8-G9)被用于被用于流式细胞仪在人类样本上浓度为1:1000. PLoS ONE (2014) ncbi
小鼠 单克隆(5D8-G9)
  • 免疫组化; 牛; 10 ug/ml
默克密理博中国Ⅰ型胶原抗体(Millipore, 5D8-G9)被用于被用于免疫组化在牛样本上浓度为10 ug/ml. J Biomech (2014) ncbi
小鼠 单克隆(5D8-G9)
  • 流式细胞仪; 人类; 1:100
  • 免疫细胞化学; 人类; 1:100
默克密理博中国Ⅰ型胶原抗体(Millipore, MAB3391)被用于被用于流式细胞仪在人类样本上浓度为1:100 和 被用于免疫细胞化学在人类样本上浓度为1:100. Int Endod J (2014) ncbi
小鼠 单克隆(C11)
  • 免疫组化-冰冻切片; 人类; 1:100
默克密理博中国Ⅰ型胶原抗体(Millipore, MAB1340)被用于被用于免疫组化-冰冻切片在人类样本上浓度为1:100. PLoS ONE (2013) ncbi
小鼠 单克隆(5D8-G9)
  • 免疫组化; 人类
  • 免疫印迹; 人类
默克密理博中国Ⅰ型胶原抗体(Chemicon, MAB3391)被用于被用于免疫组化在人类样本上 和 被用于免疫印迹在人类样本上. Stem Cells Dev (2013) ncbi
文章列表
  1. Barney L, Hall C, Schwartz A, Parks A, Sparages C, Galarza S, et al. Tumor cell-organized fibronectin maintenance of a dormant breast cancer population. Sci Adv. 2020;6:eaaz4157 pubmed 出版商
  2. Guo X, Kolpakov M, Hooshdaran B, Schappell W, Wang T, Eguchi S, et al. Cardiac Expression of Factor X Mediates Cardiac Hypertrophy and Fibrosis in Pressure Overload. JACC Basic Transl Sci. 2020;5:69-83 pubmed 出版商
  3. Xiong G, Chen J, Zhang G, Wang S, Kawasaki K, Zhu J, et al. Hsp47 promotes cancer metastasis by enhancing collagen-dependent cancer cell-platelet interaction. Proc Natl Acad Sci U S A. 2020;117:3748-3758 pubmed 出版商
  4. Williford J, Ishihara J, Ishihara A, Mansurov A, Hosseinchi P, Marchell T, et al. Recruitment of CD103+ dendritic cells via tumor-targeted chemokine delivery enhances efficacy of checkpoint inhibitor immunotherapy. Sci Adv. 2019;5:eaay1357 pubmed 出版商
  5. Piprek R, Kolasa M, Podkowa D, Kloc M, Kubiak J. N-Cadherin Is Critical for the Survival of Germ Cells, the Formation of Steroidogenic Cells, and the Architecture of Developing Mouse Gonads. Cells. 2019;8: pubmed 出版商
  6. Davaadelger B, Choi M, Singhal H, Clare S, Khan S, Kim J. BRCA1 mutation influences progesterone response in human benign mammary organoids. Breast Cancer Res. 2019;21:124 pubmed 出版商
  7. Li R, Lin S, Zhu M, Deng Y, Chen X, Wei K, et al. Synthetic presentation of noncanonical Wnt5a motif promotes mechanosensing-dependent differentiation of stem cells and regeneration. Sci Adv. 2019;5:eaaw3896 pubmed 出版商
  8. Tran M, Tsutsumi R, Erberich J, Chen K, Flores M, Cooper K. Evolutionary loss of foot muscle during development with characteristics of atrophy and no evidence of cell death. elife. 2019;8: pubmed 出版商
  9. Meier Bürgisser G, Evrova O, Calcagni M, Scalera C, Giovanoli P, Buschmann J. Impact of PDGF-BB on cellular distribution and extracellular matrix in the healing rabbit Achilles tendon three weeks post-operation. FEBS Open Bio. 2020;10:327-337 pubmed 出版商
  10. Cao W, Feng Y. LncRNA XIST promotes extracellular matrix synthesis, proliferation and migration by targeting miR-29b-3p/COL1A1 in human skin fibroblasts after thermal injury. Biol Res. 2019;52:52 pubmed 出版商
  11. Ren J, Smid M, Iaria J, Salvatori D, van Dam H, Zhu H, et al. Cancer-associated fibroblast-derived Gremlin 1 promotes breast cancer progression. Breast Cancer Res. 2019;21:109 pubmed 出版商
  12. Deng Q, Li P, Che M, Liu J, Biswas S, Ma G, et al. Activation of hedgehog signaling in mesenchymal stem cells induces cartilage and bone tumor formation via Wnt/β-Catenin. elife. 2019;8: pubmed 出版商
  13. Shen J, Xing W, Liu R, Zhang Y, Xie C, Gong F. MiR-32-5p influences high glucose-induced cardiac fibroblast proliferation and phenotypic alteration by inhibiting DUSP1. BMC Mol Biol. 2019;20:21 pubmed 出版商
  14. Zhang J, Qu B, Yu W, Zhu Y, Yan X, Shen H, et al. Role of surface ectoderm-specific mitofusin 2 in the corneal morphologic development of mice. Am J Transl Res. 2019;11:3620-3628 pubmed
  15. Xie X, Wang Y, Xia Y, Mao Y. Overexpressed vascular endothelial growth factor in adipose derived stem cells attenuates fibroblasts and skin injuries by ultraviolet radiation. Biosci Rep. 2019;39: pubmed 出版商
  16. Guo L, Wei X, Zhang Z, Wang X, Wang C, Li P, et al. Ipriflavone attenuates the degeneration of cartilage by blocking the Indian hedgehog pathway. Arthritis Res Ther. 2019;21:109 pubmed 出版商
  17. HASAN A, von Websky K, Reichetzeder C, Tsuprykov O, Gaballa M, Guo J, et al. Mechanisms of GLP-1 receptor-independent renoprotective effects of the dipeptidyl peptidase type 4 inhibitor linagliptin in GLP-1 receptor knockout mice with 5/6 nephrectomy. Kidney Int. 2019;95:1373-1388 pubmed 出版商
  18. Li W, Yu X, Zhu C, Wang Z, Zhao Z, Li Y, et al. Notum attenuates HBV-related liver fibrosis through inhibiting Wnt 5a mediated non-canonical pathways. Biol Res. 2019;52:10 pubmed 出版商
  19. Subramanian A, Capalbo A, Iyengar N, Rizzo R, Di Campli A, Di Martino R, et al. Auto-regulation of Secretory Flux by Sensing and Responding to the Folded Cargo Protein Load in the Endoplasmic Reticulum. Cell. 2019;176:1461-1476.e23 pubmed 出版商
  20. Wu M, Feng Y, Ye G, Han Y, Wang S, Ni H, et al. Calcium-sensing receptor activation attenuates collagen expression in renal proximal tubular epithelial cells. Am J Physiol Renal Physiol. 2019;316:F1006-F1015 pubmed 出版商
  21. Elia I, Rossi M, Stegen S, Broekaert D, Doglioni G, Van Gorsel M, et al. Breast cancer cells rely on environmental pyruvate to shape the metastatic niche. Nature. 2019;568:117-121 pubmed 出版商
  22. Lin P, Wu M, Qin J, Yang J, Ye C, Wang C. Magnesium lithospermate B improves renal hemodynamics and reduces renal oxygen consumption in 5/6th renal ablation/infarction rats. BMC Nephrol. 2019;20:49 pubmed 出版商
  23. Novielli Kuntz N, Jelen M, Barr K, DeLalio L, Feng Q, Isakson B, et al. Ablation of both Cx40 and Panx1 results in similar cardiovascular phenotypes exhibited in Cx40 knockout mice. Biosci Rep. 2019;39: pubmed 出版商
  24. Zhang J, Sheng J, Dong L, Xu Y, Yu L, Liu Y, et al. Cardiomyocyte-specific loss of RMP causes myocardial dysfunction and heart failure. Cardiovasc Res. 2018;: pubmed 出版商
  25. Gorth D, Shapiro I, Risbud M. Transgenic mice overexpressing human TNF-α experience early onset spontaneous intervertebral disc herniation in the absence of overt degeneration. Cell Death Dis. 2018;10:7 pubmed 出版商
  26. Melville D, Gorur A, Schekman R. Fatty-acid binding protein 5 modulates the SAR1 GTPase cycle and enhances budding of large COPII cargoes. Mol Biol Cell. 2019;30:387-399 pubmed 出版商
  27. Zhang X, Zhang M, Wang C. Loss of LRRC25 accelerates pathological cardiac hypertrophy through promoting fibrosis and inflammation regulated by TGF-β1. Biochem Biophys Res Commun. 2018;506:137-144 pubmed 出版商
  28. Yin J, Wang Y, Chang J, Li B, Zhang J, Liu Y, et al. Apelin inhibited epithelial-mesenchymal transition of podocytes in diabetic mice through downregulating immunoproteasome subunits β5i. Cell Death Dis. 2018;9:1031 pubmed 出版商
  29. Seet L, Tan Y, Toh L, Chu S, Lee Y, Venkatraman S, et al. Targeted therapy for the post-operative conjunctiva: SPARC silencing reduces collagen deposition. Br J Ophthalmol. 2018;102:1460-1470 pubmed 出版商
  30. Eley L, Alqahtani A, MacGrogan D, Richardson R, Murphy L, Salguero Jimenez A, et al. A novel source of arterial valve cells linked to bicuspid aortic valve without raphe in mice. elife. 2018;7: pubmed 出版商
  31. García Nores G, Ly C, Cuzzone D, Kataru R, Hespe G, Torrisi J, et al. CD4+ T cells are activated in regional lymph nodes and migrate to skin to initiate lymphedema. Nat Commun. 2018;9:1970 pubmed 出版商
  32. Ge J, Burnier L, Adamopoulou M, Kwa M, Schaks M, Rottner K, et al. RhoA, Rac1, and Cdc42 differentially regulate αSMA and collagen I expression in mesenchymal stem cells. J Biol Chem. 2018;293:9358-9369 pubmed 出版商
  33. Fu X, Khalil H, Kanisicak O, Boyer J, Vagnozzi R, Maliken B, et al. Specialized fibroblast differentiated states underlie scar formation in the infarcted mouse heart. J Clin Invest. 2018;128:2127-2143 pubmed 出版商
  34. Guo S, Zhang Y, Zhou T, Wang D, Weng Y, Chen Q, et al. GATA4 as a novel regulator involved in the development of the neural crest and craniofacial skeleton via Barx1. Cell Death Differ. 2018;25:1996-2009 pubmed 出版商
  35. Dias D, Kim H, Holl D, Werne Solnestam B, Lundeberg J, Carlen M, et al. Reducing Pericyte-Derived Scarring Promotes Recovery after Spinal Cord Injury. Cell. 2018;173:153-165.e22 pubmed 出版商
  36. Zhang R, Wu Y, Xie F, Zhong Y, Wang Y, Xu M, et al. RGMa mediates reactive astrogliosis and glial scar formation through TGF?1/Smad2/3 signaling after stroke. Cell Death Differ. 2018;25:1503-1516 pubmed 出版商
  37. Su S, Chen J, Yao H, Liu J, Yu S, Lao L, et al. CD10+GPR77+ Cancer-Associated Fibroblasts Promote Cancer Formation and Chemoresistance by Sustaining Cancer Stemness. Cell. 2018;172:841-856.e16 pubmed 出版商
  38. Xu K, Pan X, Qiu X, Wang D, Dong N, Yang L, et al. Neural crest-derived cells migrate from nerve to participate in Achilles tendon remodeling. Wound Repair Regen. 2018;26:54-63 pubmed 出版商
  39. Campana L, Starkey Lewis P, Pellicoro A, Aucott R, Man J, O Duibhir E, et al. The STAT3-IL-10-IL-6 Pathway Is a Novel Regulator of Macrophage Efferocytosis and Phenotypic Conversion in Sterile Liver Injury. J Immunol. 2018;200:1169-1187 pubmed 出版商
  40. Wu X, Dao Thi V, Huang Y, Billerbeck E, Saha D, Hoffmann H, et al. Intrinsic Immunity Shapes Viral Resistance of Stem Cells. Cell. 2018;172:423-438.e25 pubmed 出版商
  41. Fujimaki S, Seko D, Kitajima Y, Yoshioka K, Tsuchiya Y, Masuda S, et al. Notch1 and Notch2 Coordinately Regulate Stem Cell Function in the Quiescent and Activated States of Muscle Satellite Cells. Stem Cells. 2018;36:278-285 pubmed 出版商
  42. Olivares O, Mayers J, Gouirand V, Torrence M, Gicquel T, Borge L, et al. Collagen-derived proline promotes pancreatic ductal adenocarcinoma cell survival under nutrient limited conditions. Nat Commun. 2017;8:16031 pubmed 出版商
  43. Shah F, Stepan A, O Mahony A, Velichko S, Folias A, Houle C, et al. Mechanisms of Skin Toxicity Associated with Metabotropic Glutamate Receptor 5 Negative Allosteric Modulators. Cell Chem Biol. 2017;24:858-869.e5 pubmed 出版商
  44. Xia H, Gilbertsen A, Herrera J, Racila E, Smith K, Peterson M, et al. Calcium-binding protein S100A4 confers mesenchymal progenitor cell fibrogenicity in idiopathic pulmonary fibrosis. J Clin Invest. 2017;127:2586-2597 pubmed 出版商
  45. Wu Y, Wang L, Deng D, Zhang Q, Liu W. Renalase Protects against Renal Fibrosis by Inhibiting the Activation of the ERK Signaling Pathways. Int J Mol Sci. 2017;18: pubmed 出版商
  46. Wang X, Huang J, Huang F, Zong J, Tang X, Liu Y, et al. Bone morphogenetic protein 9 stimulates callus formation in osteoporotic rats during fracture healing. Mol Med Rep. 2017;15:2537-2545 pubmed 出版商
  47. Guo Q, Minnier J, Burchard J, Chiotti K, Spellman P, Schedin P. Physiologically activated mammary fibroblasts promote postpartum mammary cancer. JCI Insight. 2017;2:e89206 pubmed 出版商
  48. Li S, Wang J. Salvianolic acid B prevents steroid-induced osteonecrosis of the femoral head via PPAR? expression in rats. Exp Ther Med. 2017;13:651-656 pubmed 出版商
  49. Balmer D, Bapst Wicht L, Pyakurel A, Emery M, Nanchen N, Bochet C, et al. Bis-Retinoid A2E Induces an Increase of Basic Fibroblast Growth Factor via Inhibition of Extracellular Signal-Regulated Kinases 1/2 Pathway in Retinal Pigment Epithelium Cells and Facilitates Phagocytosis. Front Aging Neurosci. 2017;9:43 pubmed 出版商
  50. Liu J, Hu F, Tang J, Tang S, Xia K, Wu S, et al. Homemade-device-induced negative pressure promotes wound healing more efficiently than VSD-induced positive pressure by regulating inflammation, proliferation and remodeling. Int J Mol Med. 2017;39:879-888 pubmed 出版商
  51. Caberlotto E, Ruiz L, Miller Z, Poletti M, Tadlock L. Effects of a skin-massaging device on the ex-vivo expression of human dermis proteins and in-vivo facial wrinkles. PLoS ONE. 2017;12:e0172624 pubmed 出版商
  52. Stahnke T, Kowtharapu B, Stachs O, Schmitz K, Wurm J, Wree A, et al. Suppression of TGF-β pathway by pirfenidone decreases extracellular matrix deposition in ocular fibroblasts in vitro. PLoS ONE. 2017;12:e0172592 pubmed 出版商
  53. Mouser V, Abbadessa A, Levato R, Hennink W, Vermonden T, Gawlitta D, et al. Development of a thermosensitive HAMA-containing bio-ink for the fabrication of composite cartilage repair constructs. Biofabrication. 2017;9:015026 pubmed 出版商
  54. Boswell B, Korol A, West Mays J, Musil L. Dual function of TGF? in lens epithelial cell fate: implications for secondary cataract. Mol Biol Cell. 2017;28:907-921 pubmed 出版商
  55. Gonzalez M, Martin E, Anwar T, Arellano Garcia C, Medhora N, Lama A, et al. Mesenchymal Stem Cell-Induced DDR2 Mediates Stromal-Breast Cancer Interactions and Metastasis Growth. Cell Rep. 2017;18:1215-1228 pubmed 出版商
  56. Zorin V, Pulin A, Eremin I, Korsakov I, Zorina A, Khromova N, et al. Myogenic potential of human alveolar mucosa derived cells. Cell Cycle. 2017;16:545-555 pubmed 出版商
  57. Gopal S, Veracini L, Grall D, Butori C, Schaub S, Audebert S, et al. Fibronectin-guided migration of carcinoma collectives. Nat Commun. 2017;8:14105 pubmed 出版商
  58. Pointon A, Pilling J, Dorval T, Wang Y, Archer C, Pollard C. From the Cover: High-Throughput Imaging of Cardiac Microtissues for the Assessment of Cardiac Contraction during Drug Discovery. Toxicol Sci. 2017;155:444-457 pubmed 出版商
  59. Guiraud S, Migeon T, Ferry A, Chen Z, Ouchelouche S, Verpont M, et al. HANAC Col4a1 Mutation in Mice Leads to Skeletal Muscle Alterations due to a Primary Vascular Defect. Am J Pathol. 2017;187:505-516 pubmed 出版商
  60. Comunanza V, Cora D, Orso F, Consonni F, Middonti E, Di Nicolantonio F, et al. VEGF blockade enhances the antitumor effect of BRAFV600E inhibition. EMBO Mol Med. 2017;9:219-237 pubmed 出版商
  61. Jiang S, Zhang Y, Zheng J, Li X, Yao Y, Wu Y, et al. Potentiation of hepatic stellate cell activation by extracellular ATP is dependent on P2X7R-mediated NLRP3 inflammasome activation. Pharmacol Res. 2017;117:82-93 pubmed 出版商
  62. Yang Z, Peng Y, Gopalan A, Gao D, Chen Y, Joyner A. Stromal hedgehog signaling maintains smooth muscle and hampers micro-invasive prostate cancer. Dis Model Mech. 2017;10:39-52 pubmed 出版商
  63. Hofmann K, Fiedler S, Vierkotten S, Weber J, Klee S, Jia J, et al. Classical transient receptor potential 6 (TRPC6) channels support myofibroblast differentiation and development of experimental pulmonary fibrosis. Biochim Biophys Acta Mol Basis Dis. 2017;1863:560-568 pubmed 出版商
  64. Kim J, Ko I, Atala A, Yoo J. Progressive Muscle Cell Delivery as a Solution for Volumetric Muscle Defect Repair. Sci Rep. 2016;6:38754 pubmed 出版商
  65. Choi S, Piao Z, Jin L, Kim J, Kim G, Ryu Y, et al. Piceatannol Attenuates Renal Fibrosis Induced by Unilateral Ureteral Obstruction via Downregulation of Histone Deacetylase 4/5 or p38-MAPK Signaling. PLoS ONE. 2016;11:e0167340 pubmed 出版商
  66. Stratmann B, Engelbrecht B, Espelage B, Klusmeier N, Tiemann J, Gawlowski T, et al. Glyoxalase 1-knockdown in human aortic endothelial cells - effect on the proteome and endothelial function estimates. Sci Rep. 2016;6:37737 pubmed 出版商
  67. Formica F, Öztürk E, Hess S, Stark W, Maniura Weber K, Rottmar M, et al. A Bioinspired Ultraporous Nanofiber-Hydrogel Mimic of the Cartilage Extracellular Matrix. Adv Healthc Mater. 2016;5:3129-3138 pubmed 出版商
  68. Wu X, Wu X, Ma Y, Shao F, Tan Y, Tan T, et al. CUG-binding protein 1 regulates HSC activation and liver fibrogenesis. Nat Commun. 2016;7:13498 pubmed 出版商
  69. Akbari P, Waldman S, Propst E, Cushing S, Weber J, Yeger H, et al. Generating Mechanically Stable, Pediatric, and Scaffold-Free Nasal Cartilage Constructs In Vitro. Tissue Eng Part C Methods. 2016;22:1077-1084 pubmed
  70. Yang T, Wang J, Pang Y, Dang X, Ren H, Liu Y, et al. Emodin suppresses silica-induced lung fibrosis by promoting Sirt1 signaling via direct contact. Mol Med Rep. 2016;14:4643-4649 pubmed 出版商
  71. Sang C, Cao X, Chen F, Yang X, Zhang Y. Differential Characterization of Two Kinds of Stem Cells Isolated from Rabbit Nucleus Pulposus and Annulus Fibrosus. Stem Cells Int. 2016;2016:8283257 pubmed
  72. Liao F, Li G, Yuan W, Chen Y, Zuo Y, Rashid K, et al. LSKL peptide alleviates subarachnoid fibrosis and hydrocephalus by inhibiting TSP1-mediated TGF-?1 signaling activity following subarachnoid hemorrhage in rats. Exp Ther Med. 2016;12:2537-2543 pubmed
  73. Peng D, Ungewiss C, Tong P, Byers L, Wang J, Canales J, et al. ZEB1 induces LOXL2-mediated collagen stabilization and deposition in the extracellular matrix to drive lung cancer invasion and metastasis. Oncogene. 2017;36:1925-1938 pubmed 出版商
  74. Little A, Sham D, Hristova M, Danyal K, Heppner D, Bauer R, et al. DUOX1 silencing in lung cancer promotes EMT, cancer stem cell characteristics and invasive properties. Oncogenesis. 2016;5:e261 pubmed 出版商
  75. Sidney L, Hopkinson A. Corneal keratocyte transition to mesenchymal stem cell phenotype and reversal using serum-free medium supplemented with fibroblast growth factor-2, transforming growth factor-β3 and retinoic acid. J Tissue Eng Regen Med. 2018;12:e203-e215 pubmed 出版商
  76. Wang C, Zhang F, Cao Y, Zhang M, Wang A, Xu M, et al. Etoposide Induces Apoptosis in Activated Human Hepatic Stellate Cells via ER Stress. Sci Rep. 2016;6:34330 pubmed 出版商
  77. Vanhoutte D, Schips T, Kwong J, Davis J, Tjondrokoesoemo A, Brody M, et al. Thrombospondin expression in myofibers stabilizes muscle membranes. elife. 2016;5: pubmed 出版商
  78. Mester T, Raychaudhuri N, Gillespie E, Chen H, Smith T, Douglas R. CD40 Expression in Fibrocytes Is Induced by TSH: Potential Synergistic Immune Activation. PLoS ONE. 2016;11:e0162994 pubmed 出版商
  79. Klatt N, Scherschel K, Schad C, Lau D, Reitmeier A, Kuklik P, et al. Development of nonfibrotic left ventricular hypertrophy in an ANG II-induced chronic ovine hypertension model. Physiol Rep. 2016;4: pubmed 出版商
  80. Jiang M, Qiu J, Zhang L, Lu D, Long M, Chen L, et al. Changes in tension regulates proliferation and migration of fibroblasts by remodeling expression of ECM proteins. Exp Ther Med. 2016;12:1542-1550 pubmed
  81. Benny P, Badowski C, Lane E, Raghunath M. Improving 2D and 3D Skin In Vitro Models Using Macromolecular Crowding. J Vis Exp. 2016;: pubmed 出版商
  82. Xiaojun W, Yan L, Hong X, Xianghong Z, Shifeng L, Dingjie X, et al. Acetylated ?-Tubulin Regulated by N-Acetyl-Seryl-Aspartyl-Lysyl-Proline(Ac-SDKP) Exerts the Anti-fibrotic Effect in Rat Lung Fibrosis Induced by Silica. Sci Rep. 2016;6:32257 pubmed 出版商
  83. Sato N, Takasaka N, Yoshida M, Tsubouchi K, Minagawa S, Araya J, et al. Metformin attenuates lung fibrosis development via NOX4 suppression. Respir Res. 2016;17:107 pubmed 出版商
  84. Nazari B, Rice L, Stifano G, Barron A, Wang Y, Korndorf T, et al. Altered Dermal Fibroblasts in Systemic Sclerosis Display Podoplanin and CD90. Am J Pathol. 2016;186:2650-64 pubmed 出版商
  85. Martin K, Pritchett J, Llewellyn J, Mullan A, Athwal V, Dobie R, et al. PAK proteins and YAP-1 signalling downstream of integrin beta-1 in myofibroblasts promote liver fibrosis. Nat Commun. 2016;7:12502 pubmed 出版商
  86. Nakamichi R, Ito Y, Inui M, Onizuka N, Kayama T, Kataoka K, et al. Mohawk promotes the maintenance and regeneration of the outer annulus fibrosus of intervertebral discs. Nat Commun. 2016;7:12503 pubmed 出版商
  87. Yao Y, Deng Q, Song W, Zhang H, Li Y, Yang Y, et al. MIF Plays a Key Role in Regulating Tissue-Specific Chondro-Osteogenic Differentiation Fate of Human Cartilage Endplate Stem Cells under Hypoxia. Stem Cell Reports. 2016;7:249-62 pubmed 出版商
  88. Gerling M, Büller N, Kirn L, Joost S, Frings O, Englert B, et al. Stromal Hedgehog signalling is downregulated in colon cancer and its restoration restrains tumour growth. Nat Commun. 2016;7:12321 pubmed 出版商
  89. Huang C, Liu H, Gong X, Wen B, Chen D, Liu J, et al. Analysis of different components in the peritumoral tissue microenvironment of colorectal cancer: A potential prospect in tumorigenesis. Mol Med Rep. 2016;14:2555-65 pubmed 出版商
  90. Fransén Pettersson N, Duarte N, Nilsson J, Lundholm M, Mayans S, Larefalk A, et al. A New Mouse Model That Spontaneously Develops Chronic Liver Inflammation and Fibrosis. PLoS ONE. 2016;11:e0159850 pubmed 出版商
  91. Gong K, Qu B, Liao D, Liu D, Wang C, Zhou J, et al. MiR-132 regulates osteogenic differentiation via downregulating Sirtuin1 in a peroxisome proliferator-activated receptor ?/?-dependent manner. Biochem Biophys Res Commun. 2016;478:260-267 pubmed 出版商
  92. Peng K, Hsieh M, Lin C, Chen C, Lee M, Huang Y, et al. Treatment of critically sized femoral defects with recombinant BMP-2 delivered by a modified mPEG-PLGA biodegradable thermosensitive hydrogel. BMC Musculoskelet Disord. 2016;17:286 pubmed 出版商
  93. Sinha S, Hoshino D, Hong N, Kirkbride K, Grega Larson N, Seiki M, et al. Cortactin promotes exosome secretion by controlling branched actin dynamics. J Cell Biol. 2016;214:197-213 pubmed 出版商
  94. Baumann S, Hennet T. Collagen Accumulation in Osteosarcoma Cells lacking GLT25D1 Collagen Galactosyltransferase. J Biol Chem. 2016;291:18514-24 pubmed 出版商
  95. Qu B, Ma Y, Yan M, Gong K, Liang F, Deng S, et al. Sirtuin1 promotes osteogenic differentiation through downregulation of peroxisome proliferator-activated receptor ? in MC3T3-E1 cells. Biochem Biophys Res Commun. 2016;478:439-445 pubmed 出版商
  96. Murphy K, Hoch A, Harvestine J, Zhou D, Leach J. Mesenchymal Stem Cell Spheroids Retain Osteogenic Phenotype Through ?2?1 Signaling. Stem Cells Transl Med. 2016;5:1229-37 pubmed 出版商
  97. Komatsu I, Wang J, Iwasaki K, Shimizu T, Okano T. The effect of tendon stem/progenitor cell (TSC) sheet on the early tendon healing in a rat Achilles tendon injury model. Acta Biomater. 2016;42:136-146 pubmed 出版商
  98. Recha Sancho L, Semino C. Chondroitin Sulfate- and Decorin-Based Self-Assembling Scaffolds for Cartilage Tissue Engineering. PLoS ONE. 2016;11:e0157603 pubmed 出版商
  99. Marques S, Zeisel A, Codeluppi S, van Bruggen D, Mendanha Falcão A, Xiao L, et al. Oligodendrocyte heterogeneity in the mouse juvenile and adult central nervous system. Science. 2016;352:1326-1329 pubmed 出版商
  100. Kobayashi K, Araya J, Minagawa S, Hara H, Saito N, Kadota T, et al. Involvement of PARK2-Mediated Mitophagy in Idiopathic Pulmonary Fibrosis Pathogenesis. J Immunol. 2016;197:504-16 pubmed 出版商
  101. Müller S, Acevedo L, Wang X, Karim M, Matta A, Mehrkens A, et al. Notochordal cell conditioned medium (NCCM) regenerates end-stage human osteoarthritic articular chondrocytes and promotes a healthy phenotype. Arthritis Res Ther. 2016;18:125 pubmed 出版商
  102. Daubon T, Spuul P, Alonso F, Fremaux I, Genot E. VEGF-A stimulates podosome-mediated collagen-IV proteolysis in microvascular endothelial cells. J Cell Sci. 2016;129:2586-98 pubmed 出版商
  103. Lehner C, Gehwolf R, Ek J, Korntner S, Bauer H, Bauer H, et al. The blood-tendon barrier: identification and characterisation of a novel tissue barrier in tendon blood vessels. Eur Cell Mater. 2016;31:296-311 pubmed
  104. Akashi K, Saegusa J, Sendo S, Nishimura K, Okano T, Yagi K, et al. Knockout of endothelin type B receptor signaling attenuates bleomycin-induced skin sclerosis in mice. Arthritis Res Ther. 2016;18:113 pubmed 出版商
  105. Chuang H, Su H, Li C, Lin S, Yen S, Huang M, et al. The Role of Butylidenephthalide in Targeting the Microenvironment Which Contributes to Liver Fibrosis Amelioration. Front Pharmacol. 2016;7:112 pubmed 出版商
  106. Kobielarz M, Szotek S, GÅ‚owacki M, Dawidowicz J, Pezowicz C. Qualitative and quantitative assessment of collagen and elastin in annulus fibrosus of the physiologic and scoliotic intervertebral discs. J Mech Behav Biomed Mater. 2016;62:45-56 pubmed 出版商
  107. Li C, Zhen G, Chai Y, Xie L, Crane J, Farber E, et al. RhoA determines lineage fate of mesenchymal stem cells by modulating CTGF-VEGF complex in extracellular matrix. Nat Commun. 2016;7:11455 pubmed 出版商
  108. Lombardi R, Chen S, Ruggiero A, Gurha P, Czernuszewicz G, Willerson J, et al. Cardiac Fibro-Adipocyte Progenitors Express Desmosome Proteins and Preferentially Differentiate to Adipocytes Upon Deletion of the Desmoplakin Gene. Circ Res. 2016;119:41-54 pubmed 出版商
  109. Kishimoto Y, Kishimoto A, Ye S, Kendziorski C, Welham N. Modeling fibrosis using fibroblasts isolated from scarred rat vocal folds. Lab Invest. 2016;96:807-16 pubmed 出版商
  110. Dinger K, Kasper P, Hucklenbruch Rother E, Vohlen C, Jobst E, Janoschek R, et al. Early-onset obesity dysregulates pulmonary adipocytokine/insulin signaling and induces asthma-like disease in mice. Sci Rep. 2016;6:24168 pubmed 出版商
  111. Timraz S, Farhat I, Alhussein G, Christoforou N, Teo J. In-depth evaluation of commercially available human vascular smooth muscle cells phenotype: Implications for vascular tissue engineering. Exp Cell Res. 2016;343:168-176 pubmed 出版商
  112. Cheng M, Wahafu T, Jiang G, Liu W, Qiao Y, Peng X, et al. A novel open-porous magnesium scaffold with controllable microstructures and properties for bone regeneration. Sci Rep. 2016;6:24134 pubmed 出版商
  113. Butoi E, Gan A, Tucureanu M, Stan D, Macarie R, Constantinescu C, et al. Cross-talk between macrophages and smooth muscle cells impairs collagen and metalloprotease synthesis and promotes angiogenesis. Biochim Biophys Acta. 2016;1863:1568-78 pubmed 出版商
  114. Herrera C, Macêdo J, Feoli A, Escalante T, Rucavado A, Gutierrez J, et al. Muscle Tissue Damage Induced by the Venom of Bothrops asper: Identification of Early and Late Pathological Events through Proteomic Analysis. PLoS Negl Trop Dis. 2016;10:e0004599 pubmed 出版商
  115. Li J, Cen B, Chen S, He Y. MicroRNA-29b inhibits TGF-?1-induced fibrosis via regulation of the TGF-?1/Smad pathway in primary human endometrial stromal cells. Mol Med Rep. 2016;13:4229-37 pubmed 出版商
  116. Jiang Y, Wang X, Li Y, Mu S, Zhou S, Liu Y, et al. GGsTOP increases migration of human periodontal ligament cells in vitro via reactive oxygen species pathway. Mol Med Rep. 2016;13:3813-20 pubmed 出版商
  117. Weigel C, Veldwijk M, Oakes C, Seibold P, Slynko A, Liesenfeld D, et al. Epigenetic regulation of diacylglycerol kinase alpha promotes radiation-induced fibrosis. Nat Commun. 2016;7:10893 pubmed 出版商
  118. Liu S, Wu C, Huang K, Wang C, Guan S, Chen L, et al. C/EBP homologous protein (CHOP) deficiency ameliorates renal fibrosis in unilateral ureteral obstructive kidney disease. Oncotarget. 2016;7:21900-12 pubmed 出版商
  119. Bach F, Zhang Y, Miranda Bedate A, Verdonschot L, Bergknut N, Creemers L, et al. Increased caveolin-1 in intervertebral disc degeneration facilitates repair. Arthritis Res Ther. 2016;18:59 pubmed 出版商
  120. Zhang Y, Stefanovic B. Akt mediated phosphorylation of LARP6; critical step in biosynthesis of type I collagen. Sci Rep. 2016;6:22597 pubmed 出版商
  121. Hanhan S, Ejzenberg A, Goren K, Saba F, Suki Y, Sharon S, et al. Skeletal ligament healing using the recombinant human amelogenin protein. J Cell Mol Med. 2016;20:815-24 pubmed 出版商
  122. Gupta S, Itagaki R, Zheng X, Batkai S, Thum S, Ahmad F, et al. miR-21 promotes fibrosis in an acute cardiac allograft transplantation model. Cardiovasc Res. 2016;110:215-26 pubmed 出版商
  123. Shin J, Kim S, Kim H, Noh J, Jin S, Park C, et al. TSLP Is a Potential Initiator of Collagen Synthesis and an Activator of CXCR4/SDF-1 Axis in Keloid Pathogenesis. J Invest Dermatol. 2016;136:507-515 pubmed 出版商
  124. Nagy N, Barad C, Graham H, Hotta R, Cheng L, Fejszak N, et al. Sonic hedgehog controls enteric nervous system development by patterning the extracellular matrix. Development. 2016;143:264-75 pubmed 出版商
  125. Porter L, Gallego Pinazo R, Keeling C, Kamieniorz M, Zoppi N, Colombi M, et al. Bruch's membrane abnormalities in PRDM5-related brittle cornea syndrome. Orphanet J Rare Dis. 2015;10:145 pubmed 出版商
  126. Li Y, Adomat H, Guns E, Hojabrpour P, Duronio V, Curran T, et al. Identification of a Hematopoietic Cell Dedifferentiation-Inducing Factor. J Cell Physiol. 2016;231:1350-63 pubmed 出版商
  127. Mia M, Bank R. The pro-fibrotic properties of transforming growth factor on human fibroblasts are counteracted by caffeic acid by inhibiting myofibroblast formation and collagen synthesis. Cell Tissue Res. 2016;363:775-89 pubmed 出版商
  128. Fontes R, Baptista J, Rabbani S, Traynelis V, Liberti E. Structural and Ultrastructural Analysis of the Cervical Discs of Young and Elderly Humans. PLoS ONE. 2015;10:e0139283 pubmed 出版商
  129. Mia M, Bank R. The IκB kinase inhibitor ACHP strongly attenuates TGFβ1-induced myofibroblast formation and collagen synthesis. J Cell Mol Med. 2015;19:2780-92 pubmed 出版商
  130. Kim S, Lee E, Kuh H. Co-culture of 3D tumor spheroids with fibroblasts as a model for epithelial-mesenchymal transition in vitro. Exp Cell Res. 2015;335:187-96 pubmed 出版商
  131. Lindert U, Weis M, Rai J, Seeliger F, Hausser I, Leeb T, et al. Molecular Consequences of the SERPINH1/HSP47 Mutation in the Dachshund Natural Model of Osteogenesis Imperfecta. J Biol Chem. 2015;290:17679-89 pubmed 出版商
  132. Shiwen X, Stratton R, Nikitorowicz Buniak J, Ahmed Abdi B, Ponticos M, Denton C, et al. A Role of Myocardin Related Transcription Factor-A (MRTF-A) in Scleroderma Related Fibrosis. PLoS ONE. 2015;10:e0126015 pubmed 出版商
  133. Wu Q, Bao J, Zhou Y, Wang Y, Du Z, Shi Y, et al. Optimizing perfusion-decellularization methods of porcine livers for clinical-scale whole-organ bioengineering. Biomed Res Int. 2015;2015:785474 pubmed 出版商
  134. Lai G, Shalumon K, Chen J. Response of human mesenchymal stem cells to intrafibrillar nanohydroxyapatite content and extrafibrillar nanohydroxyapatite in biomimetic chitosan/silk fibroin/nanohydroxyapatite nanofibrous membrane scaffolds. Int J Nanomedicine. 2015;10:567-84 pubmed 出版商
  135. Zorin V, Zorina A, Cherkasov V, Deev R, Kopnin P, Isaev A. Clinical-instrumental and morphological evaluation of the effect of autologous dermal fibroblasts administration. J Tissue Eng Regen Med. 2017;11:778-786 pubmed 出版商
  136. Ren Y, Deng C, Wan W, Zheng J, Mao G, Yang S. Suppressive effects of induced pluripotent stem cell-conditioned medium on in vitro hypertrophic scarring fibroblast activation. Mol Med Rep. 2015;11:2471-6 pubmed 出版商
  137. Park S, Bae H, Park J. Osteogenic differentiation and gene expression profile of human dental follicle cells induced by human dental pulp cells. J Mol Histol. 2015;46:93-106 pubmed 出版商
  138. Ã…gren M, Schnabel R, Christensen L, Mirastschijski U. Tumor necrosis factor-α-accelerated degradation of type I collagen in human skin is associated with elevated matrix metalloproteinase (MMP)-1 and MMP-3 ex vivo. Eur J Cell Biol. 2015;94:12-21 pubmed 出版商
  139. Huang W, Li L, Tian X, Yan J, Yang X, Wang X, et al. Astragalus and Paeoniae radix rubra extract inhibits liver fibrosis by modulating the transforming growth factor‑β/Smad pathway in rats. Mol Med Rep. 2015;11:805-14 pubmed 出版商
  140. Medeiros J, Costa W, Felix Patrício B, Sampaio F, Cardoso L. Protective effects of nutritional supplementation with arginine and glutamine on the penis of rats submitted to pelvic radiation. Andrology. 2014;2:943-50 pubmed 出版商
  141. Zhang X, Ma Y, You T, Tian X, Zhang H, Zhu Q, et al. Roles of TGF-β/Smad signaling pathway in pathogenesis and development of gluteal muscle contracture. Connect Tissue Res. 2015;56:9-17 pubmed 出版商
  142. Zorin V, Komlev V, Zorina A, Khromova N, Solovieva E, Fedotov A, et al. Octacalcium phosphate ceramics combined with gingiva-derived stromal cells for engineered functional bone grafts. Biomed Mater. 2014;9:055005 pubmed 出版商
  143. Rothan H, Djordjevic I, Bahrani H, Paydar M, Ibrahim F, Abd Rahmanh N, et al. Three-dimensional culture environment increases the efficacy of platelet rich plasma releasate in prompting skin fibroblast differentiation and extracellular matrix formation. Int J Med Sci. 2014;11:1029-38 pubmed 出版商
  144. Medina A, Ma Z, Varkey M, Liu H, Iwashina T, Ding J, et al. Fibrocytes participate in the development of heterotopic ossification. J Burn Care Res. 2015;36:394-404 pubmed 出版商
  145. Norsgaard H, Kurdykowski S, Descargues P, Gonzalez T, Marstrand T, Dünstl G, et al. Calcipotriol counteracts betamethasone-induced decrease in extracellular matrix components related to skin atrophy. Arch Dermatol Res. 2014;306:719-29 pubmed 出版商
  146. Bostick B, Habibi J, Ma L, Aroor A, Rehmer N, Hayden M, et al. Dipeptidyl peptidase inhibition prevents diastolic dysfunction and reduces myocardial fibrosis in a mouse model of Western diet induced obesity. Metabolism. 2014;63:1000-11 pubmed 出版商
  147. Jiang Y, Park J, Yoon H, Choi H, Kim C, Seo Y. Enhancing proliferation and ECM expression of human ACL fibroblasts by sonic vibration. Prep Biochem Biotechnol. 2015;45:476-90 pubmed 出版商
  148. Qian H, Shi J, Fan T, Lv J, Chen S, Song C, et al. Sophocarpine attenuates liver fibrosis by inhibiting the TLR4 signaling pathway in rats. World J Gastroenterol. 2014;20:1822-32 pubmed 出版商
  149. Hayashi M, Nomoto S, Hishida M, Inokawa Y, Kanda M, Okamura Y, et al. Identification of the collagen type 1 ? 1 gene (COL1A1) as a candidate survival-related factor associated with hepatocellular carcinoma. BMC Cancer. 2014;14:108 pubmed 出版商
  150. Patel P, Khan N, Rani M, Gupta D, Jameel S. The expression of HIV-1 Vpu in monocytes causes increased secretion of TGF-? that activates profibrogenic genes in hepatic stellate cells. PLoS ONE. 2014;9:e88934 pubmed 出版商
  151. Nguyen T, Lee B. A combination of biphasic calcium phosphate scaffold with hyaluronic acid-gelatin hydrogel as a new tool for bone regeneration. Tissue Eng Part A. 2014;20:1993-2004 pubmed 出版商
  152. Wang L, Pawlak E, Johnson P, Belknap J, Alfandari D, Black S. Expression and activity of collagenases in the digital laminae of horses with carbohydrate overload-induced acute laminitis. J Vet Intern Med. 2014;28:215-22 pubmed 出版商
  153. Farrell M, Fisher M, HUANG A, Shin J, Farrell K, Mauck R. Functional properties of bone marrow-derived MSC-based engineered cartilage are unstable with very long-term in vitro culture. J Biomech. 2014;47:2173-82 pubmed 出版商
  154. Egbert M, Ruetze M, Sattler M, Wenck H, Gallinat S, Lucius R, et al. The matricellular protein periostin contributes to proper collagen function and is downregulated during skin aging. J Dermatol Sci. 2014;73:40-8 pubmed 出版商
  155. Kidwai F, Movahednia M, Iqbal K, Jokhun D, Cao T, Fawzy A. Human embryonic stem cell differentiation into odontoblastic lineage: an in vitro study. Int Endod J. 2014;47:346-55 pubmed 出版商
  156. Zhang X, Xu M, Song L, Wei Y, Lin Y, Liu W, et al. Effects of compatibility of deproteinized antler cancellous bone with various bioactive factors on their osteogenic potential. Biomaterials. 2013;34:9103-14 pubmed 出版商
  157. Hirano H, Yokoyama S, Yunoue S, Yonezawa H, Yatsushiro K, Yoshioka T, et al. MRI T2 hypointensity of metastatic brain tumors from gastric and colonic cancers. Int J Clin Oncol. 2014;19:643-8 pubmed 出版商
  158. Whittington C, Brandner E, Teo K, Han B, Nauman E, Voytik Harbin S. Oligomers modulate interfibril branching and mass transport properties of collagen matrices. Microsc Microanal. 2013;19:1323-33 pubmed 出版商
  159. Mirando A, Liu Z, Moore T, Lang A, Kohn A, Osinski A, et al. RBP-J?-dependent Notch signaling is required for murine articular cartilage and joint maintenance. Arthritis Rheum. 2013;65:2623-33 pubmed 出版商
  160. Holt B, Betz D, Ford T, Beck J, BLOEBAUM R, Jeyapalina S. Pig dorsum model for examining impaired wound healing at the skin-implant interface of percutaneous devices. J Mater Sci Mater Med. 2013;24:2181-93 pubmed 出版商
  161. Song Z, Yang Z, Yang J, Liu Z, Peng Z, Tang R, et al. Repair of abdominal wall defects in vitro and in vivo using VEGF sustained-release multi-walled carbon nanotubes (MWNT) composite scaffolds. PLoS ONE. 2013;8:e64358 pubmed 出版商
  162. Chen J, Tsai M, Liao H. Incorporation of biphasic calcium phosphate microparticles in injectable thermoresponsive hydrogel modulates bone cell proliferation and differentiation. Colloids Surf B Biointerfaces. 2013;110:120-9 pubmed 出版商
  163. Silva A, Paula A, Martins T, Goes A, Pereria M. Synergistic effect between bioactive glass foam and a perfusion bioreactor on osteogenic differentiation of human adipose stem cells. J Biomed Mater Res A. 2014;102:818-27 pubmed 出版商
  164. Seo Y, Park J, Song C, Kwon S. Comparison of light-emitting diode wavelength on activity and migration of rabbit ACL cells. Lasers Med Sci. 2014;29:245-55 pubmed 出版商
  165. Zhang J, Wang J. Human tendon stem cells better maintain their stemness in hypoxic culture conditions. PLoS ONE. 2013;8:e61424 pubmed 出版商
  166. Chomchalao P, Pongcharoen S, Sutheerawattananonda M, Tiyaboonchai W. Fibroin and fibroin blended three-dimensional scaffolds for rat chondrocyte culture. Biomed Eng Online. 2013;12:28 pubmed 出版商
  167. Choi W, Jeon H, Chung Y, Lim J, Shin D, Kim J, et al. Isolation and characterization of novel, highly proliferative human CD34/CD73-double-positive testis-derived stem cells for cell therapy. Stem Cells Dev. 2013;22:2158-73 pubmed 出版商
  168. Filali H, Vidal E, Bolea R, Marquez M, Marco P, Vargas A, et al. Gene and protein patterns of potential prion-related markers in the central nervous system of clinical and preclinical infected sheep. Vet Res. 2013;44:14 pubmed 出版商
  169. Gay Jordi G, Guash E, Benito B, Brugada J, Nattel S, Mont L, et al. Losartan prevents heart fibrosis induced by long-term intensive exercise in an animal model. PLoS ONE. 2013;8:e55427 pubmed 出版商
  170. Cieslik K, Trial J, Carlson S, Taffet G, Entman M. Aberrant differentiation of fibroblast progenitors contributes to fibrosis in the aged murine heart: role of elevated circulating insulin levels. FASEB J. 2013;27:1761-71 pubmed 出版商
  171. Campbell D, Somaratne J, Jenkins A, Prior D, Yii M, Kenny J, et al. Diastolic dysfunction of aging is independent of myocardial structure but associated with plasma advanced glycation end-product levels. PLoS ONE. 2012;7:e49813 pubmed 出版商
  172. Cheng N, Estes B, Young T, Guilak F. Genipin-crosslinked cartilage-derived matrix as a scaffold for human adipose-derived stem cell chondrogenesis. Tissue Eng Part A. 2013;19:484-96 pubmed 出版商
  173. Kimoto M, Shima N, Yamaguchi M, Amano S, Yamagami S. Role of hepatocyte growth factor in promoting the growth of human corneal endothelial cells stimulated by L-ascorbic acid 2-phosphate. Invest Ophthalmol Vis Sci. 2012;53:7583-9 pubmed 出版商
  174. El Gendy R, Yang X, Newby P, Boccaccini A, Kirkham J. Osteogenic differentiation of human dental pulp stromal cells on 45S5 Bioglass® based scaffolds in vitro and in vivo. Tissue Eng Part A. 2013;19:707-15 pubmed 出版商
  175. Sémiramoth N, Gleizes A, Turbica I, Sandré C, Marin Esteban V, Gorges R, et al. Afa/Dr-expressing, diffusely adhering Escherichia coli strain C1845 triggers F1845 fimbria-dependent phosphatidylserine externalization on neutrophil-like differentiated PLB-985 cells through an apoptosis-independent mechanism. Infect Immun. 2010;78:2974-83 pubmed 出版商
  176. Pautke C, Schieker M, Tischer T, Kolk A, Neth P, Mutschler W, et al. Characterization of osteosarcoma cell lines MG-63, Saos-2 and U-2 OS in comparison to human osteoblasts. Anticancer Res. 2004;24:3743-8 pubmed