这是一篇来自已证抗体库的有关人类 Ⅱ型胶原 (type II collagen) 的综述,是根据75篇发表使用所有方法的文章归纳的。这综述旨在帮助来邦网的访客找到最适合Ⅱ型胶原 抗体。
Ⅱ型胶原 同义词: ANFH; AOM; COL11A3; SEDC; STL1

艾博抗(上海)贸易有限公司
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 人类; 1:100; 图 1c
艾博抗(上海)贸易有限公司Ⅱ型胶原抗体(Abcam, ab34712)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100 (图 1c). Adv Sci (Weinh) (2022) ncbi
小鼠 单克隆(2B1.5)
  • 免疫组化-石蜡切片; 小鼠; 1:100; 图 2h
艾博抗(上海)贸易有限公司Ⅱ型胶原抗体(Abcam, ab185430)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:100 (图 2h). Adv Sci (Weinh) (2022) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 图 4b
艾博抗(上海)贸易有限公司Ⅱ型胶原抗体(Abcam, ab34712)被用于被用于免疫组化在小鼠样本上 (图 4b). Front Cell Dev Biol (2021) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:100
艾博抗(上海)贸易有限公司Ⅱ型胶原抗体(Abcam, ab34712)被用于被用于免疫组化在小鼠样本上浓度为1:100. Int J Mol Sci (2021) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:200; 图 3a
艾博抗(上海)贸易有限公司Ⅱ型胶原抗体(Abcam, ab34712)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:200 (图 3a). Front Pharmacol (2021) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 图 3e
艾博抗(上海)贸易有限公司Ⅱ型胶原抗体(Abcam, ab34712)被用于被用于免疫组化在小鼠样本上 (图 3e). Bone Res (2021) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 图 1c
  • 免疫印迹; 人类; 图 1e
艾博抗(上海)贸易有限公司Ⅱ型胶原抗体(Abcam, ab34712)被用于被用于免疫细胞化学在人类样本上 (图 1c) 和 被用于免疫印迹在人类样本上 (图 1e). Cell Death Dis (2021) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 大鼠; 1:200; 图 5e
  • 免疫印迹; 大鼠; 1:1000; 图 3b
艾博抗(上海)贸易有限公司Ⅱ型胶原抗体(Abcam, ab34712)被用于被用于免疫组化-石蜡切片在大鼠样本上浓度为1:200 (图 5e) 和 被用于免疫印迹在大鼠样本上浓度为1:1000 (图 3b). Front Cell Dev Biol (2021) ncbi
小鼠 单克隆(2B1.5)
  • 免疫细胞化学; 小鼠; 图 4g
艾博抗(上海)贸易有限公司Ⅱ型胶原抗体(Abcam, ab185430)被用于被用于免疫细胞化学在小鼠样本上 (图 4g). Aging (Albany NY) (2021) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 小鼠; 图 2d
  • 免疫组化; 大鼠; 1:400; 图 2f
艾博抗(上海)贸易有限公司Ⅱ型胶原抗体(Abcam, ab34712)被用于被用于免疫细胞化学在小鼠样本上 (图 2d) 和 被用于免疫组化在大鼠样本上浓度为1:400 (图 2f). Arthritis Res Ther (2021) ncbi
domestic rabbit 多克隆
  • 免疫组化; 人类; 1:200; 图 7
艾博抗(上海)贸易有限公司Ⅱ型胶原抗体(Abcam, ab34712)被用于被用于免疫组化在人类样本上浓度为1:200 (图 7). BMC Biotechnol (2020) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 4d
艾博抗(上海)贸易有限公司Ⅱ型胶原抗体(Abcam, ab34712)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 4d). elife (2020) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 2e
艾博抗(上海)贸易有限公司Ⅱ型胶原抗体(Abcam, ab34712)被用于被用于免疫印迹在人类样本上 (图 2e). EBioMedicine (2020) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 人类; 图 1c
  • 免疫印迹; 人类; 图 2d
艾博抗(上海)贸易有限公司Ⅱ型胶原抗体(Abcam, ab34712)被用于被用于免疫组化-石蜡切片在人类样本上 (图 1c) 和 被用于免疫印迹在人类样本上 (图 2d). Aging (Albany NY) (2020) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 大鼠; 1:200; 图 11b
  • 免疫印迹; 大鼠; 1:1000; 图 7a
艾博抗(上海)贸易有限公司Ⅱ型胶原抗体(Abcam, ab34712)被用于被用于免疫组化-石蜡切片在大鼠样本上浓度为1:200 (图 11b) 和 被用于免疫印迹在大鼠样本上浓度为1:1000 (图 7a). Aging (Albany NY) (2020) ncbi
domestic rabbit 单克隆(EPR12268)
  • 免疫印迹; 人类; 1:1000; 图 10f
艾博抗(上海)贸易有限公司Ⅱ型胶原抗体(Abcam, ab188570)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 10f). Aging (Albany NY) (2019) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 图 2e
艾博抗(上海)贸易有限公司Ⅱ型胶原抗体(Abcam, ab34712)被用于被用于免疫组化在小鼠样本上 (图 2e). elife (2019) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:400; 图 4a
艾博抗(上海)贸易有限公司Ⅱ型胶原抗体(Abcam, ab34712)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:400 (图 4a). Autophagy (2019) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:100; 图 2f, 3c
艾博抗(上海)贸易有限公司Ⅱ型胶原抗体(Abcam, ab34712)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:100 (图 2f, 3c). Nat Commun (2019) ncbi
小鼠 单克隆(2B1.5)
  • 免疫印迹; 大鼠; 图 5b
艾博抗(上海)贸易有限公司Ⅱ型胶原抗体(Abcam, ab185430)被用于被用于免疫印迹在大鼠样本上 (图 5b). Biosci Rep (2018) ncbi
domestic rabbit 多克隆
  • 免疫组化; pigs ; 1:200; 图 4b
艾博抗(上海)贸易有限公司Ⅱ型胶原抗体(Abcam, ab34712)被用于被用于免疫组化在pigs 样本上浓度为1:200 (图 4b). Biosci Rep (2017) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:2000; 图 1a
艾博抗(上海)贸易有限公司Ⅱ型胶原抗体(Abcam, ab34712)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:2000 (图 1a). J Cell Physiol (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 4g
艾博抗(上海)贸易有限公司Ⅱ型胶原抗体(Abcam, ab34712)被用于被用于免疫印迹在小鼠样本上 (图 4g). J Biol Chem (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化; 人类; 图 1
  • 免疫印迹; 人类; 图 1
艾博抗(上海)贸易有限公司Ⅱ型胶原抗体(Abcam, ab34712)被用于被用于免疫组化在人类样本上 (图 1) 和 被用于免疫印迹在人类样本上 (图 1). Stem Cell Reports (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化; 人类; 图 s1b
艾博抗(上海)贸易有限公司Ⅱ型胶原抗体(Abcam, ab34712)被用于被用于免疫组化在人类样本上 (图 s1b). Int J Mol Sci (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:200; 图 3
艾博抗(上海)贸易有限公司Ⅱ型胶原抗体(abcam, ab34712)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:200 (图 3). Sci Rep (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 大鼠; 1:200; 图 7
  • 免疫组化-石蜡切片; pigs ; 1:200; 图 7
艾博抗(上海)贸易有限公司Ⅱ型胶原抗体(Abcam, ab34712)被用于被用于免疫组化-石蜡切片在大鼠样本上浓度为1:200 (图 7) 和 被用于免疫组化-石蜡切片在pigs 样本上浓度为1:200 (图 7). Acta Biomater (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 人类; 1:100; 图 7
艾博抗(上海)贸易有限公司Ⅱ型胶原抗体(Abcam, ab34712)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100 (图 7). PLoS ONE (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; pigs ; 1:200; 图 8
艾博抗(上海)贸易有限公司Ⅱ型胶原抗体(Abcam, ab34712)被用于被用于免疫组化-冰冻切片在pigs 样本上浓度为1:200 (图 8). Tissue Eng Part A (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; pigs ; 1:200; 图 9
  • 免疫组化-冰冻切片; 大鼠; 1:200; 图 9
艾博抗(上海)贸易有限公司Ⅱ型胶原抗体(Abcam, ab34712)被用于被用于免疫组化-冰冻切片在pigs 样本上浓度为1:200 (图 9) 和 被用于免疫组化-冰冻切片在大鼠样本上浓度为1:200 (图 9). Ann Biomed Eng (2016) ncbi
赛默飞世尔
小鼠 单克隆(2B1.5)
  • 免疫组化-石蜡切片; 大鼠; 1:20; 图 4c
赛默飞世尔Ⅱ型胶原抗体(Lab Vision, 2B1.5)被用于被用于免疫组化-石蜡切片在大鼠样本上浓度为1:20 (图 4c). Redox Rep (2022) ncbi
小鼠 单克隆(2B1.5)
  • 免疫组化-石蜡切片; 人类; 1:1000; 图 1e
赛默飞世尔Ⅱ型胶原抗体(Thermo, MS235P0)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:1000 (图 1e). Stem Cell Reports (2021) ncbi
小鼠 单克隆(2B1.5)
  • 免疫组化; 人类; 图 1c
赛默飞世尔Ⅱ型胶原抗体(Invitrogen, Thermo Fisher Scientific, MA5-12789)被用于被用于免疫组化在人类样本上 (图 1c). Aging (Albany NY) (2020) ncbi
小鼠 单克隆(2B1.5)
  • 免疫组化; 马; 1:400; 表 1
赛默飞世尔Ⅱ型胶原抗体(Thermo Fisher, MS-235)被用于被用于免疫组化在马样本上浓度为1:400 (表 1). Tissue Eng Part A (2017) ncbi
小鼠 单克隆(2B1.5)
  • 免疫组化-石蜡切片; domestic rabbit; 图 5f
赛默飞世尔Ⅱ型胶原抗体(Invitrogen, MA1-37493)被用于被用于免疫组化-石蜡切片在domestic rabbit样本上 (图 5f). Iran J Med Sci (2016) ncbi
小鼠 单克隆(2B1.5)
  • 免疫组化-冰冻切片; domestic rabbit; 1:500; 图 10f
赛默飞世尔Ⅱ型胶原抗体(Thermo Scientific, MA1-37493)被用于被用于免疫组化-冰冻切片在domestic rabbit样本上浓度为1:500 (图 10f). Cytotechnology (2016) ncbi
小鼠 单克隆(6B3)
  • 免疫组化-石蜡切片; 人类; 1:100; 图 5c
赛默飞世尔Ⅱ型胶原抗体(Labvision, 6B3)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100 (图 5c). Stem Cell Res Ther (2015) ncbi
小鼠 单克隆(2B1.5)
  • 免疫组化; 小鼠; 1:200; 图 s4
赛默飞世尔Ⅱ型胶原抗体(Thermo Scientific, MS235-P)被用于被用于免疫组化在小鼠样本上浓度为1:200 (图 s4). J Bone Miner Res (2016) ncbi
小鼠 单克隆(2B1.5)
赛默飞世尔Ⅱ型胶原抗体(Thermo Scientific, MS235-P)被用于. Arthritis Rheum (2013) ncbi
小鼠 单克隆(2B1.5)
  • 免疫印迹; 人类; 1:200
赛默飞世尔Ⅱ型胶原抗体(Dianova, MA1-37493)被用于被用于免疫印迹在人类样本上浓度为1:200. J Tissue Eng Regen Med (2016) ncbi
小鼠 单克隆(2B1.5)
  • 免疫组化; 大鼠; 表 1
赛默飞世尔Ⅱ型胶原抗体(Thermo Scientific, 2B1.5)被用于被用于免疫组化在大鼠样本上 (表 1). Biomed Res Int (2013) ncbi
圣克鲁斯生物技术
小鼠 单克隆(M2139)
  • 免疫组化-石蜡切片; 人类; 1:1000; 图 1c, 4a
圣克鲁斯生物技术Ⅱ型胶原抗体(Santa Cruz, sc-52658)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:1000 (图 1c, 4a). J Clin Med (2019) ncbi
小鼠 单克隆(M2139)
  • 免疫组化-石蜡切片; 人类; 图 4b
  • 免疫细胞化学; 人类; 图 1a
  • 免疫印迹; 人类; 1:500; 图 2b
圣克鲁斯生物技术Ⅱ型胶原抗体(Santa Cruz, SC-52658)被用于被用于免疫组化-石蜡切片在人类样本上 (图 4b), 被用于免疫细胞化学在人类样本上 (图 1a) 和 被用于免疫印迹在人类样本上浓度为1:500 (图 2b). Arthritis Res Ther (2019) ncbi
小鼠 单克隆(M2139)
  • 免疫印迹; 大鼠; 图 4d
圣克鲁斯生物技术Ⅱ型胶原抗体(Santa Cruz, sc-52658)被用于被用于免疫印迹在大鼠样本上 (图 4d). Acta Pharmacol Sin (2016) ncbi
小鼠 单克隆(M2139)
  • 免疫组化-石蜡切片; 小鼠; 图 5
圣克鲁斯生物技术Ⅱ型胶原抗体(Santa Cruz, sc-52658)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 5). Sci Rep (2016) ncbi
小鼠 单克隆(M2139)
  • 免疫组化-石蜡切片; 牛; 1:50; 图 5
圣克鲁斯生物技术Ⅱ型胶原抗体(Santa Cruz, sc-52658)被用于被用于免疫组化-石蜡切片在牛样本上浓度为1:50 (图 5). BMC Musculoskelet Disord (2015) ncbi
小鼠 单克隆(M2139)
  • 免疫细胞化学; 大鼠; 图 5
  • 免疫印迹; 大鼠; 图 2
圣克鲁斯生物技术Ⅱ型胶原抗体(Santa Cruz, SC-52658)被用于被用于免疫细胞化学在大鼠样本上 (图 5) 和 被用于免疫印迹在大鼠样本上 (图 2). Int J Mol Sci (2015) ncbi
小鼠 单克隆(M2139)
  • 免疫印迹; 人类; 1:500
圣克鲁斯生物技术Ⅱ型胶原抗体(Santa Cruz, SC-52658)被用于被用于免疫印迹在人类样本上浓度为1:500. Growth Factors (2015) ncbi
小鼠 单克隆(M2139)
  • 免疫细胞化学; 小鼠
  • 免疫印迹; 小鼠
圣克鲁斯生物技术Ⅱ型胶原抗体(Santa Cruz Biotechnology, sc52658)被用于被用于免疫细胞化学在小鼠样本上 和 被用于免疫印迹在小鼠样本上. J Cereb Blood Flow Metab (2014) ncbi
小鼠 单克隆(M2139)
  • 免疫细胞化学; 人类
圣克鲁斯生物技术Ⅱ型胶原抗体(Santa Cruz, sc-52658)被用于被用于免疫细胞化学在人类样本上. Colloids Surf B Biointerfaces (2014) ncbi
小鼠 单克隆(M2139)
  • 免疫组化-石蜡切片; 大鼠
圣克鲁斯生物技术Ⅱ型胶原抗体(Santa Cruze Biotechnology, sc-52658)被用于被用于免疫组化-石蜡切片在大鼠样本上. Biomed Eng Online (2013) ncbi
Rockland Immunochemicals
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 人类; 1:200; 图 5d
Rockland ImmunochemicalsⅡ型胶原抗体(Rockland, 600-401-104-0.1)被用于被用于免疫组化-冰冻切片在人类样本上浓度为1:200 (图 5d). Adv Healthc Mater (2016) ncbi
Developmental Studies Hybridoma Bank
小鼠 单克隆(II-II6B3)
  • 免疫组化; 斑马鱼; 1:100; 图 3a
Developmental Studies Hybridoma BankⅡ型胶原抗体(DSHB, II-II6B3)被用于被用于免疫组化在斑马鱼样本上浓度为1:100 (图 3a). Mol Biol Cell (2021) ncbi
小鼠 单克隆(II-II6B3)
  • 免疫组化; 小鼠; 1:40; 图 4b
Developmental Studies Hybridoma BankⅡ型胶原抗体(DSHB, II-II6B3)被用于被用于免疫组化在小鼠样本上浓度为1:40 (图 4b). elife (2020) ncbi
小鼠 单克隆(II-II6B3)
  • 免疫组化-石蜡切片; 小鼠; 1:20; 图 8s4a
Developmental Studies Hybridoma BankⅡ型胶原抗体(Developmental Studies Hybridoma Bank, II.II6B3)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:20 (图 8s4a). elife (2020) ncbi
小鼠 单克隆(CIIC1)
  • 免疫组化-石蜡切片; 小鼠; 1:400; 图 5a
  • 免疫印迹; 小鼠; 1:1000; 图 5c
Developmental Studies Hybridoma BankⅡ型胶原抗体(DSHB, CIIC1)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:400 (图 5a) 和 被用于免疫印迹在小鼠样本上浓度为1:1000 (图 5c). Int J Mol Sci (2020) ncbi
小鼠 单克隆(II-II6B3)
  • 免疫组化-石蜡切片; 斑马鱼; 1:100; 图 2
Developmental Studies Hybridoma BankⅡ型胶原抗体(DSHB, II-II6B3)被用于被用于免疫组化-石蜡切片在斑马鱼样本上浓度为1:100 (图 2). J Histochem Cytochem (2019) ncbi
小鼠 单克隆(II-II6B3)
  • 免疫组化-石蜡切片; 小鼠; 图 4a
Developmental Studies Hybridoma BankⅡ型胶原抗体(Hybridoma Bank, II-II6B3)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 4a). J Clin Invest (2017) ncbi
小鼠 单克隆(II-II6B3)
  • 免疫组化-石蜡切片; 人类; 图 3b
Developmental Studies Hybridoma BankⅡ型胶原抗体(DSHB, II-II6B3)被用于被用于免疫组化-石蜡切片在人类样本上 (图 3b). J Cell Physiol (2017) ncbi
小鼠 单克隆(II-II6B3)
  • 免疫组化; 人类; 图 6
Developmental Studies Hybridoma BankⅡ型胶原抗体(Developmental Studies Hybridoma Bank, II-II6B3)被用于被用于免疫组化在人类样本上 (图 6). Stem Cell Res Ther (2016) ncbi
小鼠 单克隆(II-II6B3)
  • 免疫组化; 斑马鱼; 图 3r
Developmental Studies Hybridoma BankⅡ型胶原抗体(DSHB, II-II6B3)被用于被用于免疫组化在斑马鱼样本上 (图 3r). Nature (2016) ncbi
小鼠 单克隆(II-II6B3)
  • 免疫组化-石蜡切片; 犬; 0.02 ug/ml; 图 7
  • 免疫组化-石蜡切片; 人类; 0.4 ug/ml; 图 7
  • 免疫组化-石蜡切片; 小鼠; 0.02 ug/ml; 图 2
Developmental Studies Hybridoma BankⅡ型胶原抗体(Developmental Studies Hybridoma Bank, II-II6B3)被用于被用于免疫组化-石蜡切片在犬样本上浓度为0.02 ug/ml (图 7), 被用于免疫组化-石蜡切片在人类样本上浓度为0.4 ug/ml (图 7) 和 被用于免疫组化-石蜡切片在小鼠样本上浓度为0.02 ug/ml (图 2). Arthritis Res Ther (2016) ncbi
小鼠 单克隆(CIIC1)
  • 免疫细胞化学; 人类; 图 2c
Developmental Studies Hybridoma BankⅡ型胶原抗体(DSHB, CIIC1)被用于被用于免疫细胞化学在人类样本上 (图 2c). Eur J Immunol (2016) ncbi
小鼠 单克隆(II-II6B3)
  • 免疫组化-石蜡切片; 人类; 图 7
Developmental Studies Hybridoma BankⅡ型胶原抗体(Developmental Studies Hybridoma Bank, II-II6B3)被用于被用于免疫组化-石蜡切片在人类样本上 (图 7). Tissue Eng Part A (2015) ncbi
小鼠 单克隆(II-II6B3)
  • 免疫组化-石蜡切片; 人类; 图 4
Developmental Studies Hybridoma BankⅡ型胶原抗体(DSHB, II-II/II6B3)被用于被用于免疫组化-石蜡切片在人类样本上 (图 4). Stem Cell Reports (2015) ncbi
小鼠 单克隆(II-II6B3)
  • 免疫细胞化学; 人类; 1:200
Developmental Studies Hybridoma BankⅡ型胶原抗体(Developmental Studies Hybridoma Bank , II-II6B3)被用于被用于免疫细胞化学在人类样本上浓度为1:200. Tissue Eng Part A (2015) ncbi
小鼠 单克隆(II-II6B3)
  • 免疫组化-冰冻切片; 人类; 1:20
Developmental Studies Hybridoma BankⅡ型胶原抗体(DSHB, II-II6B3)被用于被用于免疫组化-冰冻切片在人类样本上浓度为1:20. Eur Cell Mater (2015) ncbi
小鼠 单克隆(II-II6B3)
  • 免疫组化; 牛; 1:200
Developmental Studies Hybridoma BankⅡ型胶原抗体(Developmental Studies Hybridoma Bank, II-II6B3)被用于被用于免疫组化在牛样本上浓度为1:200. Osteoarthritis Cartilage (2015) ncbi
小鼠 单克隆(II-II6B3)
  • 免疫组化-冰冻切片; 人类; 1:200
Developmental Studies Hybridoma BankⅡ型胶原抗体(Developmental Studies Hybridoma Bank, II-II6B3)被用于被用于免疫组化-冰冻切片在人类样本上浓度为1:200. PLoS ONE (2014) ncbi
小鼠 单克隆(II-II6B3)
  • 免疫组化; 人类; 1:40
  • 免疫印迹; 人类; 1:500
Developmental Studies Hybridoma BankⅡ型胶原抗体(DSHB, II-II6B3)被用于被用于免疫组化在人类样本上浓度为1:40 和 被用于免疫印迹在人类样本上浓度为1:500. Eur Cell Mater (2014) ncbi
小鼠 单克隆(II-II6B3)
  • 免疫组化-石蜡切片; 人类
Developmental Studies Hybridoma BankⅡ型胶原抗体(Developmental Studies Hybridoma Bank, II-II6B3)被用于被用于免疫组化-石蜡切片在人类样本上. Cell Tissue Res (2014) ncbi
小鼠 单克隆(II-II6B3)
  • 免疫组化; 人类; 1:200; 图 3s
Developmental Studies Hybridoma BankⅡ型胶原抗体(DSHB, II-II6B3)被用于被用于免疫组化在人类样本上浓度为1:200 (图 3s). Clin Exp Metastasis (2014) ncbi
小鼠 单克隆(II-II6B3)
  • 免疫组化-石蜡切片; 人类; 2 ug/ml
Developmental Studies Hybridoma BankⅡ型胶原抗体(Hybridoma Bank, II-II6B3)被用于被用于免疫组化-石蜡切片在人类样本上浓度为2 ug/ml. Arthritis Res Ther (2013) ncbi
小鼠 单克隆(CIIC1)
  • 免疫组化; 小鼠
Developmental Studies Hybridoma BankⅡ型胶原抗体(Developmental Studies Hybridoma Bank, CIIC1)被用于被用于免疫组化在小鼠样本上. Bone (2013) ncbi
小鼠 单克隆(II-II6B3)
  • 免疫组化-石蜡切片; 人类
Developmental Studies Hybridoma BankⅡ型胶原抗体(Developmental Studies Hybridoma Bank, II-II6B3)被用于被用于免疫组化-石蜡切片在人类样本上. Tissue Eng Part A (2013) ncbi
西格玛奥德里奇
小鼠 单克隆(10)
  • 免疫印迹; 人类; 1:1000; 图 3b
西格玛奥德里奇Ⅱ型胶原抗体(Sigma, SAB1403684)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3b). Arthritis Rheumatol (2016) ncbi
文章列表
  1. Wang X, Liu S, Yu T, An S, Deng R, Tan X, et al. Inhibition of Integrin αvβ6 Activation of TGF-β Attenuates Tendinopathy. Adv Sci (Weinh). 2022;9:e2104469 pubmed 出版商
  2. Raafat Ibrahim R, Shafik N, El Esawy R, El Sakaa M, Arakeeb H, El Sharaby R, et al. The emerging role of irisin in experimentally induced arthritis: a recent update involving HMGB1/MCP1/Chitotriosidase I-mediated necroptosis. Redox Rep. 2022;27:21-31 pubmed 出版商
  3. Li X, Zhu X, Wu H, Van Dyke T, Xu X, Morgan E, et al. Roles and Mechanisms of Irisin in Attenuating Pathological Features of Osteoarthritis. Front Cell Dev Biol. 2021;9:703670 pubmed 出版商
  4. Cha S, Lee S, Wang J, Zhao Q, Bai D. Enhanced Circadian Clock in MSCs-Based Cytotherapy Ameliorates Age-Related Temporomandibular Joint Condyle Degeneration. Int J Mol Sci. 2021;22: pubmed 出版商
  5. Ling H, Zeng Q, Ge Q, Chen J, Yuan W, Xu R, et al. Osteoking Decelerates Cartilage Degeneration in DMM-Induced Osteoarthritic Mice Model Through TGF-β/smad-dependent Manner. Front Pharmacol. 2021;12:678810 pubmed 出版商
  6. Shao R, Zhang Z, Xu Z, Ouyang H, Wang L, Ouyang H, et al. H3K36 methyltransferase NSD1 regulates chondrocyte differentiation for skeletal development and fracture repair. Bone Res. 2021;9:30 pubmed 出版商
  7. Hou M, Zhang Y, Zhou X, Liu T, Yang H, Chen X, et al. Kartogenin prevents cartilage degradation and alleviates osteoarthritis progression in mice via the miR-146a/NRF2 axis. Cell Death Dis. 2021;12:483 pubmed 出版商
  8. Cheng J, Duan X, Fu X, Jiang Y, Yang P, Cao C, et al. RIP1 Perturbation Induces Chondrocyte Necroptosis and Promotes Osteoarthritis Pathogenesis via Targeting BMP7. Front Cell Dev Biol. 2021;9:638382 pubmed 出版商
  9. Shen Z, Ji K, Cai Z, Huang C, He X, Xu H, et al. Inhibition of HDAC6 by Tubastatin A reduces chondrocyte oxidative stress in chondrocytes and ameliorates mouse osteoarthritis by activating autophagy. Aging (Albany NY). 2021;13:9820-9837 pubmed 出版商
  10. Wang W, Zhu Y, Sun Z, Jin C, Wang X. Positive feedback regulation between USP15 and ERK2 inhibits osteoarthritis progression through TGF-β/SMAD2 signaling. Arthritis Res Ther. 2021;23:84 pubmed 出版商
  11. Pretemer Y, Kawai S, Nagata S, Nishio M, Watanabe M, Tamaki S, et al. Differentiation of Hypertrophic Chondrocytes from Human iPSCs for the In Vitro Modeling of Chondrodysplasias. Stem Cell Reports. 2021;16:610-625 pubmed 出版商
  12. Clark E, Link B. Complementary and divergent functions of zebrafish Tango1 and Ctage5 in tissue development and homeostasis. Mol Biol Cell. 2021;32:391-401 pubmed 出版商
  13. Huang Y, Seitz D, Chevalier Y, Müller P, Jansson V, Klar R. Synergistic interaction of hTGF-β3 with hBMP-6 promotes articular cartilage formation in chitosan scaffolds with hADSCs: implications for regenerative medicine. BMC Biotechnol. 2020;20:48 pubmed 出版商
  14. Varela Eirin M, Carpintero Fernández P, Sánchez Temprano A, Varela Vazquez A, Paíno C, Casado Diaz A, et al. Senolytic activity of small molecular polyphenols from olive restores chondrocyte redifferentiation and promotes a pro-regenerative environment in osteoarthritis. Aging (Albany NY). 2020;12:15882-15905 pubmed 出版商
  15. Anthwal N, Fenelon J, Johnston S, Renfree M, Tucker A. Transient role of the middle ear as a lower jaw support across mammals. elife. 2020;9: pubmed 出版商
  16. Marconi A, Hancock Ronemus A, Gillis J. Adult chondrogenesis and spontaneous cartilage repair in the skate, Leucoraja erinacea. elife. 2020;9: pubmed 出版商
  17. Che H, Li J, Li Y, Ma C, Liu H, Qin J, et al. p16 deficiency attenuates intervertebral disc degeneration by adjusting oxidative stress and nucleus pulposus cell cycle. elife. 2020;9: pubmed 出版商
  18. Xiang Q, Kang L, Wang J, Liao Z, Song Y, Zhao K, et al. CircRNA-CIDN mitigated compression loading-induced damage in human nucleus pulposus cells via miR-34a-5p/SIRT1 axis. EBioMedicine. 2020;53:102679 pubmed 出版商
  19. Lu G, Li L, Wang B, Kuang L. LINC00623/miR-101/HRAS axis modulates IL-1β-mediated ECM degradation, apoptosis and senescence of osteoarthritis chondrocytes. Aging (Albany NY). 2020;12:3218-3237 pubmed 出版商
  20. Jiang L, Xu K, Li J, Zhou X, Xu L, Wu Z, et al. Nesfatin-1 suppresses interleukin-1β-induced inflammation, apoptosis, and cartilage matrix destruction in chondrocytes and ameliorates osteoarthritis in rats. Aging (Albany NY). 2020;12:1760-1777 pubmed 出版商
  21. Li P, Fleischhauer L, Nicolae C, Prein C, Farkas Z, Saller M, et al. Mice Lacking the Matrilin Family of Extracellular Matrix Proteins Develop Mild Skeletal Abnormalities and Are Susceptible to Age-Associated Osteoarthritis. Int J Mol Sci. 2020;21: pubmed 出版商
  22. Darrieutort Laffite C, Arnolfo P, Garraud T, Adrait A, Coute Y, Louarn G, et al. Rotator Cuff Tenocytes Differentiate into Hypertrophic Chondrocyte-Like Cells to Produce Calcium Deposits in an Alkaline Phosphatase-Dependent Manner. J Clin Med. 2019;8: pubmed 出版商
  23. Chen X, Zhang R, Zhang Q, Xu Z, Xu F, Li D, et al. Chondrocyte sheet in vivo cartilage regeneration technique using miR-193b-3p to target MMP16. Aging (Albany NY). 2019;11:7070-7082 pubmed 出版商
  24. Deng Q, Li P, Che M, Liu J, Biswas S, Ma G, et al. Activation of hedgehog signaling in mesenchymal stem cells induces cartilage and bone tumor formation via Wnt/β-Catenin. elife. 2019;8: pubmed 出版商
  25. Horigome Y, Ida Yonemochi H, Waguri S, Shibata S, Endo N, Komatsu M. Loss of autophagy in chondrocytes causes severe growth retardation. Autophagy. 2019;:1-11 pubmed 出版商
  26. Guo L, Wei X, Zhang Z, Wang X, Wang C, Li P, et al. Ipriflavone attenuates the degeneration of cartilage by blocking the Indian hedgehog pathway. Arthritis Res Ther. 2019;21:109 pubmed 出版商
  27. Ji Q, Xu X, Kang L, Xu Y, Xiao J, Goodman S, et al. Hematopoietic PBX-interacting protein mediates cartilage degeneration during the pathogenesis of osteoarthritis. Nat Commun. 2019;10:313 pubmed 出版商
  28. Schulz A, Brendler J, Blaschuk O, Landgraf K, Krueger M, Ricken A. Non-pathological Chondrogenic Features of Valve Interstitial Cells in Normal Adult Zebrafish. J Histochem Cytochem. 2019;67:361-373 pubmed 出版商
  29. Fu J, Yu W, Jiang D. Acidic pH promotes nucleus pulposus cell senescence through activating the p38 MAPK pathway. Biosci Rep. 2018;38: pubmed 出版商
  30. Bartolomeo R, Cinque L, De Leonibus C, Forrester A, Salzano A, Monfregola J, et al. mTORC1 hyperactivation arrests bone growth in lysosomal storage disorders by suppressing autophagy. J Clin Invest. 2017;127:3717-3729 pubmed 出版商
  31. Li P, Zhang R, Wang L, Gan Y, Xu Y, Song L, et al. Long-term load duration induces N-cadherin down-regulation and loss of cell phenotype of nucleus pulposus cells in a disc bioreactor culture. Biosci Rep. 2017;37: pubmed 出版商
  32. Kremer A, Ribitsch I, Reboredo J, Dürr J, Egerbacher M, Jenner F, et al. Three-Dimensional Coculture of Meniscal Cells and Mesenchymal Stem Cells in Collagen Type I Hydrogel on a Small Intestinal Matrix-A Pilot Study Toward Equine Meniscus Tissue Engineering. Tissue Eng Part A. 2017;23:390-402 pubmed 出版商
  33. Tamamura Y, Katsube K, Mera H, Itokazu M, Wakitani S. Irx3 and Bmp2 regulate mouse mesenchymal cell chondrogenic differentiation in both a Sox9-dependent and -independent manner. J Cell Physiol. 2017;232:3317-3336 pubmed 出版商
  34. Formica F, Öztürk E, Hess S, Stark W, Maniura Weber K, Rottmar M, et al. A Bioinspired Ultraporous Nanofiber-Hydrogel Mimic of the Cartilage Extracellular Matrix. Adv Healthc Mater. 2016;5:3129-3138 pubmed 出版商
  35. Diaz Romero J, Kürsener S, Kohl S, Nesic D. S100B?+?A1 CELISA: A Novel Potency Assay and Screening Tool for Redifferentiation Stimuli of Human Articular Chondrocytes. J Cell Physiol. 2017;232:1559-1570 pubmed 出版商
  36. Bahmanpour S, Ghasemi M, Sadeghi Naini M, Kashani I. Effects of Platelet-Rich Plasma & Platelet-Rich Fibrin with and without Stromal Cell-Derived Factor-1 on Repairing Full-Thickness Cartilage Defects in Knees of Rabbits. Iran J Med Sci. 2016;41:507-517 pubmed
  37. Niu N, Shao R, Yan G, Zou W. Bromodomain and Extra-terminal (BET) Protein Inhibitors Suppress Chondrocyte Differentiation and Restrain Bone Growth. J Biol Chem. 2016;291:26647-26657 pubmed 出版商
  38. Anderson D, Markway B, Bond D, McCarthy H, Johnstone B. Responses to altered oxygen tension are distinct between human stem cells of high and low chondrogenic capacity. Stem Cell Res Ther. 2016;7:154 pubmed
  39. Wu M, Tang R, Liu H, Pan M, Liu B. Cinacalcet ameliorates aortic calcification in uremic rats via suppression of endothelial-to-mesenchymal transition. Acta Pharmacol Sin. 2016;37:1423-1431 pubmed 出版商
  40. Yao Y, Deng Q, Song W, Zhang H, Li Y, Yang Y, et al. MIF Plays a Key Role in Regulating Tissue-Specific Chondro-Osteogenic Differentiation Fate of Human Cartilage Endplate Stem Cells under Hypoxia. Stem Cell Reports. 2016;7:249-62 pubmed 出版商
  41. Wang Y, Yu H, Zhou Z, Guo Q, Wang L, Zhang H. Leptin Receptor Metabolism Disorder in Primary Chondrocytes from Adolescent Idiopathic Scoliosis Girls. Int J Mol Sci. 2016;17: pubmed 出版商
  42. Masselink W, Cole N, Fényes F, Berger S, Sonntag C, Wood A, et al. A somitic contribution to the apical ectodermal ridge is essential for fin formation. Nature. 2016;535:542-6 pubmed
  43. Bian Q, Jain A, Xu X, Kebaish K, Crane J, Zhang Z, et al. Excessive Activation of TGFβ by Spinal Instability Causes Vertebral Endplate Sclerosis. Sci Rep. 2016;6:27093 pubmed 出版商
  44. Ma Y, Li J, Yao Y, Wei D, Wang R, Wu Q. A controlled double-duration inducible gene expression system for cartilage tissue engineering. Sci Rep. 2016;6:26617 pubmed 出版商
  45. Beck E, Barragan M, Tadros M, Gehrke S, Detamore M. Approaching the compressive modulus of articular cartilage with a decellularized cartilage-based hydrogel. Acta Biomater. 2016;38:94-105 pubmed 出版商
  46. Sonomoto K, Yamaoka K, Kaneko H, Yamagata K, Sakata K, Zhang X, et al. Spontaneous Differentiation of Human Mesenchymal Stem Cells on Poly-Lactic-Co-Glycolic Acid Nano-Fiber Scaffold. PLoS ONE. 2016;11:e0153231 pubmed 出版商
  47. Pearson M, Philp A, Heward J, Roux B, Walsh D, Davis E, et al. Long Intergenic Noncoding RNAs Mediate the Human Chondrocyte Inflammatory Response and Are Differentially Expressed in Osteoarthritis Cartilage. Arthritis Rheumatol. 2016;68:845-56 pubmed 出版商
  48. Beck E, Barragan M, Libeer T, Kieweg S, Converse G, Hopkins R, et al. Chondroinduction from Naturally Derived Cartilage Matrix: A Comparison Between Devitalized and Decellularized Cartilage Encapsulated in Hydrogel Pastes. Tissue Eng Part A. 2016;22:665-79 pubmed 出版商
  49. Bach F, Zhang Y, Miranda Bedate A, Verdonschot L, Bergknut N, Creemers L, et al. Increased caveolin-1 in intervertebral disc degeneration facilitates repair. Arthritis Res Ther. 2016;18:59 pubmed 出版商
  50. Huang H, Wang S, Gui J, Shen H. A study to identify and characterize the stem/progenitor cell in rabbit meniscus. Cytotechnology. 2016;68:2083-103 pubmed 出版商
  51. Beck E, Barragan M, Tadros M, Kiyotake E, Acosta F, Kieweg S, et al. Chondroinductive Hydrogel Pastes Composed of Naturally Derived Devitalized Cartilage. Ann Biomed Eng. 2016;44:1863-80 pubmed 出版商
  52. Reppel L, Schiavi J, Charif N, Leger L, Yu H, Pinzano A, et al. Chondrogenic induction of mesenchymal stromal/stem cells from Wharton's jelly embedded in alginate hydrogel and without added growth factor: an alternative stem cell source for cartilage tissue engineering. Stem Cell Res Ther. 2015;6:260 pubmed 出版商
  53. Schminke B, Trautmann S, Mai B, Miosge N, Blaschke S. Interleukin 17 inhibits progenitor cells in rheumatoid arthritis cartilage. Eur J Immunol. 2016;46:440-5 pubmed 出版商
  54. Veronesi F, Fini M, Giavaresi G, Ongaro A, De Mattei M, Pellati A, et al. Experimentally induced cartilage degeneration treated by pulsed electromagnetic field stimulation; an in vitro study on bovine cartilage. BMC Musculoskelet Disord. 2015;16:308 pubmed 出版商
  55. Zhang Y, Sheu T, Hoak D, Shen J, Hilton M, Zuscik M, et al. CCN1 Regulates Chondrocyte Maturation and Cartilage Development. J Bone Miner Res. 2016;31:549-59 pubmed 出版商
  56. He D, Lu Y, Hu H, Zhang J, Qin B, Wang Y, et al. The Wnt11 Signaling Pathway in Potential Cellular EMT and Osteochondral Differentiation Progression in Nephrolithiasis Formation. Int J Mol Sci. 2015;16:16313-29 pubmed 出版商
  57. Antunes J, Tsaryk R, Gonçalves R, Pereira C, Landes C, Brochhausen C, et al. Poly(γ-Glutamic Acid) as an Exogenous Promoter of Chondrogenic Differentiation of Human Mesenchymal Stem/Stromal Cells. Tissue Eng Part A. 2015;21:1869-85 pubmed 出版商
  58. Narcisi R, Cleary M, Brama P, Hoogduijn M, Tüysüz N, ten Berge D, et al. Long-term expansion, enhanced chondrogenic potential, and suppression of endochondral ossification of adult human MSCs via WNT signaling modulation. Stem Cell Reports. 2015;4:459-72 pubmed 出版商
  59. Schrobback K, Klein T, Woodfield T. The importance of connexin hemichannels during chondroprogenitor cell differentiation in hydrogel versus microtissue culture models. Tissue Eng Part A. 2015;21:1785-94 pubmed 出版商
  60. Bertolo A, Hafner S, Taddei A, Baur M, Pötzel T, Steffen F, et al. Injectable microcarriers as human mesenchymal stem cell support and their application for cartilage and degenerated intervertebral disc repair. Eur Cell Mater. 2015;29:70-80; discujssion 80-1 pubmed
  61. Neu C, Novak T, Gilliland K, Marshall P, Calve S. Optical clearing in collagen- and proteoglycan-rich osteochondral tissues. Osteoarthritis Cartilage. 2015;23:405-13 pubmed 出版商
  62. Levett P, Hutmacher D, Malda J, Klein T. Hyaluronic acid enhances the mechanical properties of tissue-engineered cartilage constructs. PLoS ONE. 2014;9:e113216 pubmed 出版商
  63. Zhou X, Tao Y, Wang J, Liang C, Wang J, Li H, et al. Roles of FGF-2 and TGF-beta/FGF-2 on differentiation of human mesenchymal stem cells towards nucleus pulposus-like phenotype. Growth Factors. 2015;33:23-30 pubmed 出版商
  64. Capossela S, Schlafli P, Bertolo A, Janner T, Stadler B, Pötzel T, et al. Degenerated human intervertebral discs contain autoantibodies against extracellular matrix proteins. Eur Cell Mater. 2014;27:251-63; discussion 263 pubmed
  65. Pei M, Li J, Zhang Y, Liu G, Wei L, Zhang Y. Expansion on a matrix deposited by nonchondrogenic urine stem cells strengthens the chondrogenic capacity of repeated-passage bone marrow stromal cells. Cell Tissue Res. 2014;356:391-403 pubmed 出版商
  66. Lecointre M, Hauchecorne M, Chaussivert A, Marret S, Leroux P, Jegou S, et al. The efficiency of glutamate uptake differs between neonatal and adult cortical microvascular endothelial cells. J Cereb Blood Flow Metab. 2014;34:764-7 pubmed 出版商
  67. Hesami P, Holzapfel B, Taubenberger A, Roudier M, Fazli L, Sieh S, et al. A humanized tissue-engineered in vivo model to dissect interactions between human prostate cancer cells and human bone. Clin Exp Metastasis. 2014;31:435-46 pubmed 出版商
  68. Du M, Liang H, Mou C, Li X, Sun J, Zhuang Y, et al. Regulation of human mesenchymal stem cells differentiation into chondrocytes in extracellular matrix-based hydrogel scaffolds. Colloids Surf B Biointerfaces. 2014;114:316-23 pubmed 出版商
  69. Mirando A, Liu Z, Moore T, Lang A, Kohn A, Osinski A, et al. RBP-J?-dependent Notch signaling is required for murine articular cartilage and joint maintenance. Arthritis Rheum. 2013;65:2623-33 pubmed 出版商
  70. Bussmann B, Reiche S, Marí Buyé N, Castells Sala C, Meisel H, Semino C. Chondrogenic potential of human dermal fibroblasts in a contractile, soft, self-assembling, peptide hydrogel. J Tissue Eng Regen Med. 2016;10:E54-62 pubmed 出版商
  71. Chomchalao P, Pongcharoen S, Sutheerawattananonda M, Tiyaboonchai W. Fibroin and fibroin blended three-dimensional scaffolds for rat chondrocyte culture. Biomed Eng Online. 2013;12:28 pubmed 出版商
  72. Cakici C, Buyrukcu B, Duruksu G, Haliloglu A, Aksoy A, Isik A, et al. Recovery of fertility in azoospermia rats after injection of adipose-tissue-derived mesenchymal stem cells: the sperm generation. Biomed Res Int. 2013;2013:529589 pubmed 出版商
  73. Hasegawa A, Nakahara H, Kinoshita M, Asahara H, Koziol J, Lotz M. Cellular and extracellular matrix changes in anterior cruciate ligaments during human knee aging and osteoarthritis. Arthritis Res Ther. 2013;15:R29 pubmed 出版商
  74. Kan L, Peng C, McGuire T, Kessler J. Glast-expressing progenitor cells contribute to heterotopic ossification. Bone. 2013;53:194-203 pubmed 出版商
  75. Cheng N, Estes B, Young T, Guilak F. Genipin-crosslinked cartilage-derived matrix as a scaffold for human adipose-derived stem cell chondrogenesis. Tissue Eng Part A. 2013;19:484-96 pubmed 出版商