这是一篇来自已证抗体库的有关人类 tyrosinase的综述,是根据29篇发表使用所有方法的文章归纳的。这综述旨在帮助来邦网的访客找到最适合tyrosinase 抗体。
tyrosinase 同义词: ATN; CMM8; OCA1; OCA1A; OCAIA; SHEP3

艾博抗(上海)贸易有限公司
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:100; 图 8
  • 免疫印迹; 小鼠; 1:500; 图 5a
艾博抗(上海)贸易有限公司 tyrosinase抗体(Abcam, ab180753)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:100 (图 8) 和 被用于免疫印迹在小鼠样本上浓度为1:500 (图 5a). Clin Cosmet Investig Dermatol (2021) ncbi
单克隆
  • 免疫细胞化学; 人类; 图 3g
艾博抗(上海)贸易有限公司 tyrosinase抗体(Abcam, ab738)被用于被用于免疫细胞化学在人类样本上 (图 3g). Stem Cell Res Ther (2021) ncbi
domestic rabbit 单克隆(EPR10141)
  • 免疫印迹; 人类; 图 4h
艾博抗(上海)贸易有限公司 tyrosinase抗体(Abcam, ab170905)被用于被用于免疫印迹在人类样本上 (图 4h). Aging (Albany NY) (2019) ncbi
小鼠 单克隆(HMB45 + M2-7C10 + M2-9E3 + T311)
  • 免疫组化-石蜡切片; 人类; 图 5a
艾博抗(上海)贸易有限公司 tyrosinase抗体(Abcam, ab733)被用于被用于免疫组化-石蜡切片在人类样本上 (图 5a). J Clin Invest (2018) ncbi
小鼠 单克隆(PNL2)
  • 免疫组化-石蜡切片; 大鼠; 1:25; 图 st11
艾博抗(上海)贸易有限公司 tyrosinase抗体(Abcam, ab12502)被用于被用于免疫组化-石蜡切片在大鼠样本上浓度为1:25 (图 st11). J Toxicol Pathol (2017) ncbi
小鼠 单克隆(SPM360)
  • 免疫组化; 小鼠; 1:1000; 图 8e
  • 免疫印迹; 小鼠; 图 7a
艾博抗(上海)贸易有限公司 tyrosinase抗体(Abcam, ab54447)被用于被用于免疫组化在小鼠样本上浓度为1:1000 (图 8e) 和 被用于免疫印迹在小鼠样本上 (图 7a). Mol Cell Proteomics (2017) ncbi
单克隆
  • 免疫印迹; 人类; 图 4
艾博抗(上海)贸易有限公司 tyrosinase抗体(Abcam, ab738)被用于被用于免疫印迹在人类样本上 (图 4). Int J Mol Sci (2016) ncbi
小鼠 单克隆(HMB45 + M2-7C10 + M2-9E3 + T311)
  • 免疫组化-石蜡切片; 人类; 图 2
艾博抗(上海)贸易有限公司 tyrosinase抗体(Abcam, ab733)被用于被用于免疫组化-石蜡切片在人类样本上 (图 2). J Immunother Cancer (2015) ncbi
单克隆
  • 免疫印迹; 小鼠; 图 4
艾博抗(上海)贸易有限公司 tyrosinase抗体(Abcam, ab738)被用于被用于免疫印迹在小鼠样本上 (图 4). Oncoimmunology (2014) ncbi
圣克鲁斯生物技术
小鼠 单克隆(T311)
  • 免疫印迹; 人类; 1:200
圣克鲁斯生物技术 tyrosinase抗体(Santa Cruz Biotechnology, sc-20035)被用于被用于免疫印迹在人类样本上浓度为1:200. Nat Commun (2017) ncbi
小鼠 单克隆(T311)
  • 免疫印迹; 人类; 1:1000; 图 6b
圣克鲁斯生物技术 tyrosinase抗体(Santa Cruz, SC-20035)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 6b). Mol Vis (2017) ncbi
小鼠 单克隆(T311)
  • 免疫组化-石蜡切片; 人类; 1:200; 图 2c
圣克鲁斯生物技术 tyrosinase抗体(Santa Cruz, T311)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:200 (图 2c). Nat Commun (2016) ncbi
小鼠 单克隆(T311)
  • 免疫印迹; 人类; 图 1
圣克鲁斯生物技术 tyrosinase抗体(Santa Cruz, sc-20035)被用于被用于免疫印迹在人类样本上 (图 1). Biomed Rep (2016) ncbi
小鼠 单克隆(T311)
  • 免疫印迹; 人类; 1:1000; 图 3c
圣克鲁斯生物技术 tyrosinase抗体(Santa Cruz, 20035)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3c). PLoS ONE (2015) ncbi
小鼠 单克隆(0.N.596)
  • 免疫印迹; 犬; 图 3
  • 免疫印迹; 人类; 图 3
圣克鲁斯生物技术 tyrosinase抗体(Santa Cruz Biotechnology, sc-73243)被用于被用于免疫印迹在犬样本上 (图 3) 和 被用于免疫印迹在人类样本上 (图 3). Vet Comp Oncol (2016) ncbi
小鼠 单克隆(T311)
  • 免疫印迹; 人类
圣克鲁斯生物技术 tyrosinase抗体(Santa Cruz, SC-20035)被用于被用于免疫印迹在人类样本上. Mol Vis (2014) ncbi
小鼠 单克隆(T311)
  • 免疫印迹; 人类
圣克鲁斯生物技术 tyrosinase抗体(Santa Cruz Biotechnology, sc-20035)被用于被用于免疫印迹在人类样本上. PLoS ONE (2012) ncbi
赛默飞世尔
小鼠 单克隆(T311)
  • 免疫组化-石蜡切片; 人类; 1:500; 图 1b
  • 免疫印迹; 人类; 1:2000; 图 8a
赛默飞世尔 tyrosinase抗体(Thermo Fisher, MS-800-P1)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:500 (图 1b) 和 被用于免疫印迹在人类样本上浓度为1:2000 (图 8a). Nat Commun (2019) ncbi
小鼠 单克隆(T311)
  • 流式细胞仪; 人类; 图 1d
赛默飞世尔 tyrosinase抗体(生活技术, MA5-14177)被用于被用于流式细胞仪在人类样本上 (图 1d). Oncogene (2016) ncbi
小鼠 单克隆(T311)
  • 免疫印迹; 人类
赛默飞世尔 tyrosinase抗体(Thermo Scientific, MS800P1)被用于被用于免疫印迹在人类样本上. Mol Vis (2014) ncbi
小鼠 单克隆(T311)
  • 免疫细胞化学; 小鼠; 1:50
  • 免疫印迹; 小鼠; 1:1000
赛默飞世尔 tyrosinase抗体(Invitrogen, 35-600)被用于被用于免疫细胞化学在小鼠样本上浓度为1:50 和 被用于免疫印迹在小鼠样本上浓度为1:1000. Arch Dermatol Res (2014) ncbi
小鼠 单克隆(T311)
  • 流式细胞仪; 人类; 1:50; 图 2
赛默飞世尔 tyrosinase抗体(Invitrogen, 35-6000)被用于被用于流式细胞仪在人类样本上浓度为1:50 (图 2). Cytometry A (2012) ncbi
小鼠 单克隆(T311)
  • 免疫组化-石蜡切片; 人类; 表 4
赛默飞世尔 tyrosinase抗体(Zymed, clone T311)被用于被用于免疫组化-石蜡切片在人类样本上 (表 4). Clin Cancer Res (2011) ncbi
小鼠 单克隆(T311)
  • 免疫印迹; 人类; 1:500; 图 2
赛默飞世尔 tyrosinase抗体(Zymed, 35-6000)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 2). Invest Ophthalmol Vis Sci (2008) ncbi
Cell Marque
小鼠 单克隆(T311)
  • 流式细胞仪; 人类; 图 s3b
Cell Marque tyrosinase抗体(Cell Marque, T311)被用于被用于流式细胞仪在人类样本上 (图 s3b). Cancer Immunol Immunother (2020) ncbi
丹科医疗器械技术服务(上海)有限公司
小鼠 单克隆(T311)
  • 免疫组化-石蜡切片; 小鼠; 1:100; 图 4d
丹科医疗器械技术服务(上海)有限公司 tyrosinase抗体(Dako, T311)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:100 (图 4d). Nat Commun (2018) ncbi
赛信通(上海)生物试剂有限公司
小鼠 单克隆(T311)
  • 免疫组化-石蜡切片; 人类; 图 1c
赛信通(上海)生物试剂有限公司 tyrosinase抗体(CST, 9319)被用于被用于免疫组化-石蜡切片在人类样本上 (图 1c). Cell Rep (2016) ncbi
徕卡显微系统(上海)贸易有限公司
小鼠 单克隆(T311)
  • 免疫组化-石蜡切片; 人类; 图 s1
徕卡显微系统(上海)贸易有限公司 tyrosinase抗体(Leica Biosystems, T311)被用于被用于免疫组化-石蜡切片在人类样本上 (图 s1). J Dermatol Sci (2017) ncbi
小鼠 单克隆(T311)
  • 免疫组化-石蜡切片; 人类; 1:20; 图 2a
徕卡显微系统(上海)贸易有限公司 tyrosinase抗体(Novocastra Division, NCL-TYROS)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:20 (图 2a). Clin Cancer Res (2016) ncbi
文章列表
  1. Zhai X, Gong M, Peng Y, Yang D. Effects of UV Induced-Photoaging on the Hair Follicle Cycle of C57BL6/J Mice. Clin Cosmet Investig Dermatol. 2021;14:527-539 pubmed 出版商
  2. Surendran H, Nandakumar S, Reddy K V, Stoddard J, Mohan K V, Upadhyay P, et al. Transplantation of retinal pigment epithelium and photoreceptors generated concomitantly via small molecule-mediated differentiation rescues visual function in rodent models of retinal degeneration. Stem Cell Res Ther. 2021;12:70 pubmed 出版商
  3. Boudewijns S, Bloemendal M, de Haas N, Westdorp H, Bol K, Schreibelt G, et al. Autologous monocyte-derived DC vaccination combined with cisplatin in stage III and IV melanoma patients: a prospective, randomized phase 2 trial. Cancer Immunol Immunother. 2020;69:477-488 pubmed 出版商
  4. Tang L, Li J, Fu W, Wu W, Xu J. Suppression of FADS1 induces ROS generation, cell cycle arrest, and apoptosis in melanocytes: implications for vitiligo. Aging (Albany NY). 2019;11:11829-11843 pubmed 出版商
  5. Carballo Carbajal I, Laguna A, Romero Gimenez J, Cuadros T, Bove J, Martinez Vicente M, et al. Brain tyrosinase overexpression implicates age-dependent neuromelanin production in Parkinson's disease pathogenesis. Nat Commun. 2019;10:973 pubmed 出版商
  6. Zhu B, Chen S, Wang H, Yin C, Han C, Peng C, et al. The protective role of DOT1L in UV-induced melanomagenesis. Nat Commun. 2018;9:259 pubmed 出版商
  7. Lin H, Wei S, Hurt E, Green M, Zhao L, Vatan L, et al. Host expression of PD-L1 determines efficacy of PD-L1 pathway blockade-mediated tumor regression. J Clin Invest. 2018;128:805-815 pubmed 出版商
  8. Patwardhan A, Bardin S, Miserey Lenkei S, Larue L, Goud B, Raposo G, et al. Routing of the RAB6 secretory pathway towards the lysosome related organelle of melanocytes. Nat Commun. 2017;8:15835 pubmed 出版商
  9. Samuel W, Jaworski C, Postnikova O, Kutty R, Duncan T, Tan L, et al. Appropriately differentiated ARPE-19 cells regain phenotype and gene expression profiles similar to those of native RPE cells. Mol Vis. 2017;23:60-89 pubmed
  10. Furukawa S, Nagaike M, Ozaki K. Databases for technical aspects of immunohistochemistry. J Toxicol Pathol. 2017;30:79-107 pubmed 出版商
  11. Clotet S, Soler M, Riera M, Pascual J, Fang F, Zhou J, et al. Stable Isotope Labeling with Amino Acids (SILAC)-Based Proteomics of Primary Human Kidney Cells Reveals a Novel Link between Male Sex Hormones and Impaired Energy Metabolism in Diabetic Kidney Disease. Mol Cell Proteomics. 2017;16:368-385 pubmed 出版商
  12. Bassani Sternberg M, Bräunlein E, Klar R, Engleitner T, Sinitcyn P, Audehm S, et al. Direct identification of clinically relevant neoepitopes presented on native human melanoma tissue by mass spectrometry. Nat Commun. 2016;7:13404 pubmed 出版商
  13. Kaji T, Yamasaki O, Takata M, Otsuka M, Hamada T, Morizane S, et al. Comparative study on driver mutations in primary and metastatic melanomas at a single Japanese institute: A clue for intra- and inter-tumor heterogeneity. J Dermatol Sci. 2017;85:51-57 pubmed 出版商
  14. Wang J, Pei Y, Xu H, Li L, Wang Y, Liu G, et al. Effects of bavachin and its regulation of melanin synthesis in A375 cells. Biomed Rep. 2016;5:87-92 pubmed
  15. Kemper K, Krijgsman O, Kong X, Cornelissen Steijger P, Shahrabi A, Weeber F, et al. BRAF(V600E) Kinase Domain Duplication Identified in Therapy-Refractory Melanoma Patient-Derived Xenografts. Cell Rep. 2016;16:263-277 pubmed 出版商
  16. Margaryan N, Gilgur A, Seftor E, Purnell C, Arva N, Gosain A, et al. Melanocytes Affect Nodal Expression and Signaling in Melanoma Cells: A Lesson from Pediatric Large Congenital Melanocytic Nevi. Int J Mol Sci. 2016;17:418 pubmed 出版商
  17. Rothermel L, Sabesan A, Stephens D, Chandran S, Paria B, Srivastava A, et al. Identification of an Immunogenic Subset of Metastatic Uveal Melanoma. Clin Cancer Res. 2016;22:2237-49 pubmed 出版商
  18. Feng Z, Puri S, Moudgil T, Wood W, Hoyt C, Wang C, et al. Multispectral imaging of formalin-fixed tissue predicts ability to generate tumor-infiltrating lymphocytes from melanoma. J Immunother Cancer. 2015;3:47 pubmed 出版商
  19. Perotti V, Baldassari P, Molla A, Vegetti C, Bersani I, Maurichi A, et al. NFATc2 is an intrinsic regulator of melanoma dedifferentiation. Oncogene. 2016;35:2862-72 pubmed 出版商
  20. Liechtenstein T, Perez Janices N, Blanco Luquin I, Goyvaerts C, Schwarze J, Dufait I, et al. Anti-melanoma vaccines engineered to simultaneously modulate cytokine priming and silence PD-L1 characterized using ex vivo myeloid-derived suppressor cells as a readout of therapeutic efficacy. Oncoimmunology. 2014;3:e945378 pubmed
  21. Arts N, Cané S, Hennequart M, Lamy J, Bommer G, Van den Eynde B, et al. microRNA-155, induced by interleukin-1ß, represses the expression of microphthalmia-associated transcription factor (MITF-M) in melanoma cells. PLoS ONE. 2015;10:e0122517 pubmed 出版商
  22. Noguchi S, Kumazaki M, Mori T, Baba K, Okuda M, Mizuno T, et al. Analysis of microRNA-203 function in CREB/MITF/RAB27a pathway: comparison between canine and human melanoma cells. Vet Comp Oncol. 2016;14:384-394 pubmed 出版商
  23. Abad S, Wieërs G, Colau D, Wildmann C, Delair E, Dhote R, et al. Absence of recognition of common melanocytic antigens by T cells isolated from the cerebrospinal fluid of a Vogt-Koyanagi-Harada patient. Mol Vis. 2014;20:956-69 pubmed
  24. Poliakov E, Strunnikova N, Jiang J, Martinez B, Parikh T, Lakkaraju A, et al. Multiple A2E treatments lead to melanization of rod outer segment-challenged ARPE-19 cells. Mol Vis. 2014;20:285-300 pubmed
  25. Nakajima H, Nagata T, Koga S, Imokawa G. Reduced glutathione disrupts the intracellular trafficking of tyrosinase and tyrosinase-related protein-1 but not dopachrome tautomerase and Pmel17 to melanosomes, which results in the attenuation of melanization. Arch Dermatol Res. 2014;306:37-49 pubmed 出版商
  26. Marin M, Ghenea S, Spiridon L, Chiritoiu G, Petrescu A, Petrescu S. Tyrosinase degradation is prevented when EDEM1 lacks the intrinsically disordered region. PLoS ONE. 2012;7:e42998 pubmed 出版商
  27. Richards J, Treisman J, Garlie N, Hanson J, Oaks M. Flow cytometry assessment of residual melanoma cells in tumor-infiltrating lymphocyte cultures. Cytometry A. 2012;81:374-81 pubmed 出版商
  28. Tjin E, Konijnenberg D, Krebbers G, Mallo H, Drijfhout J, Franken K, et al. T-cell immune function in tumor, skin, and peripheral blood of advanced stage melanoma patients: implications for immunotherapy. Clin Cancer Res. 2011;17:5736-47 pubmed 出版商
  29. Nordgaard C, Karunadharma P, Feng X, Olsen T, Ferrington D. Mitochondrial proteomics of the retinal pigment epithelium at progressive stages of age-related macular degeneration. Invest Ophthalmol Vis Sci. 2008;49:2848-55 pubmed 出版商