这是一篇来自已证抗体库的有关人类 酪氨酸羟化酶 (tyrosine hydroxylase) 的综述,是根据285篇发表使用所有方法的文章归纳的。这综述旨在帮助来邦网的访客找到最适合酪氨酸羟化酶 抗体。
酪氨酸羟化酶 同义词: DYT14; DYT5b; TYH

ImmunoStar
小鼠 单克隆
  • 免疫组化; Neogonodactylus oerstedii; 1:250; 图 2a
ImmunoStar酪氨酸羟化酶抗体(ImmunoStar, 22941)被用于被用于免疫组化在Neogonodactylus oerstedii样本上浓度为1:250 (图 2a). J Comp Neurol (2019) ncbi
小鼠 单克隆
  • 免疫组化; Pagurus; 1:250; 图 1a
ImmunoStar酪氨酸羟化酶抗体(ImmunoStar, 22941)被用于被用于免疫组化在Pagurus样本上浓度为1:250 (图 1a). J Comp Neurol (2020) ncbi
小鼠 单克隆
  • 免疫组化-冰冻切片; 小鼠; 图 9a2
ImmunoStar酪氨酸羟化酶抗体(ImmunoStar Inc., 22941)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 9a2). J Comp Neurol (2019) ncbi
小鼠 单克隆
  • 免疫组化-冰冻切片; 小鼠; 1:2000; 图 s2j
ImmunoStar酪氨酸羟化酶抗体(ImmunoStar, 22941)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:2000 (图 s2j). Science (2019) ncbi
小鼠 单克隆
  • 免疫组化; 大鼠; 1:1000; 图 1c
ImmunoStar酪氨酸羟化酶抗体(Immunostar, 22941)被用于被用于免疫组化在大鼠样本上浓度为1:1000 (图 1c). elife (2019) ncbi
小鼠 单克隆
ImmunoStar酪氨酸羟化酶抗体(Immuno Star, 22941)被用于. J Comp Neurol (2019) ncbi
小鼠 单克隆
  • 免疫组化; 金鱼; 图 6b
ImmunoStar酪氨酸羟化酶抗体(ImmunoStar, 22941)被用于被用于免疫组化在金鱼样本上 (图 6b). J Comp Neurol (2018) ncbi
小鼠 单克隆
  • 免疫组化; 小鼠; 图 6a
ImmunoStar酪氨酸羟化酶抗体(Immunostar, 22941)被用于被用于免疫组化在小鼠样本上 (图 6a). Brain Behav Immun (2018) ncbi
小鼠 单克隆
  • 免疫印迹; 非洲爪蛙; 1:1000; 图 1
  • 免疫印迹; 大鼠; 1:1000; 图 1
ImmunoStar酪氨酸羟化酶抗体(ImmunoStar, 22941)被用于被用于免疫印迹在非洲爪蛙样本上浓度为1:1000 (图 1) 和 被用于免疫印迹在大鼠样本上浓度为1:1000 (图 1). J Comp Neurol (2017) ncbi
小鼠 单克隆
  • 免疫组化; 斑马鱼; 1:500; 图 2d
ImmunoStar酪氨酸羟化酶抗体(Immunostar, 22941)被用于被用于免疫组化在斑马鱼样本上浓度为1:500 (图 2d). PLoS ONE (2017) ncbi
小鼠 单克隆
  • 免疫组化; 人类; 1:10,000; 表 1
ImmunoStar酪氨酸羟化酶抗体(ImmunoStar, 22941)被用于被用于免疫组化在人类样本上浓度为1:10,000 (表 1). Ann Neurol (2017) ncbi
小鼠 单克隆
  • 免疫组化-石蜡切片; 小鼠; 1:400; 图 2
ImmunoStar酪氨酸羟化酶抗体(ImmunoStar, 22941)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:400 (图 2). Sci Rep (2016) ncbi
小鼠 单克隆
  • 免疫组化; 小鼠; 1:1000; 图 8
ImmunoStar酪氨酸羟化酶抗体(ImmunoStar, 22941)被用于被用于免疫组化在小鼠样本上浓度为1:1000 (图 8). Nat Commun (2016) ncbi
小鼠 单克隆
  • 免疫组化-自由浮动切片; 非洲爪蛙; 1:1000; 表 2
ImmunoStar酪氨酸羟化酶抗体(ImmunoStar, 22941)被用于被用于免疫组化-自由浮动切片在非洲爪蛙样本上浓度为1:1000 (表 2). J Comp Neurol (2017) ncbi
小鼠 单克隆
  • 免疫印迹; 小鼠; 1:5000; 图 3a
ImmunoStar酪氨酸羟化酶抗体(ImmunoStar, 22941)被用于被用于免疫印迹在小鼠样本上浓度为1:5000 (图 3a). J Neurosci (2016) ncbi
小鼠 单克隆
  • 免疫组化; African green monkey; 1:10,000; 图 4a
ImmunoStar酪氨酸羟化酶抗体(ImmunoStar, 22941)被用于被用于免疫组化在African green monkey样本上浓度为1:10,000 (图 4a). J Comp Neurol (2017) ncbi
小鼠 单克隆
  • 免疫组化-冰冻切片; 大鼠; 1:400; 图 4c
  • 免疫印迹; 大鼠; 1:1000; 图 4b
  • 免疫细胞化学; 小鼠; 1:400; 图 s4d
ImmunoStar酪氨酸羟化酶抗体(ImmunoStar, 22941)被用于被用于免疫组化-冰冻切片在大鼠样本上浓度为1:400 (图 4c), 被用于免疫印迹在大鼠样本上浓度为1:1000 (图 4b) 和 被用于免疫细胞化学在小鼠样本上浓度为1:400 (图 s4d). Diabetes (2016) ncbi
小鼠 单克隆
  • 免疫组化; 黑腹果蝇; 1:1000; 图 2
ImmunoStar酪氨酸羟化酶抗体(ImmunoStar, 22941)被用于被用于免疫组化在黑腹果蝇样本上浓度为1:1000 (图 2). Neuron (2016) ncbi
小鼠 单克隆
  • 免疫组化; 斑马鱼; 1:250; 图 8
ImmunoStar酪氨酸羟化酶抗体(ImmunoStar, 22941)被用于被用于免疫组化在斑马鱼样本上浓度为1:250 (图 8). J Comp Neurol (2016) ncbi
小鼠 单克隆
  • 免疫组化-冰冻切片; 大鼠; 1:2000; 图 3
ImmunoStar酪氨酸羟化酶抗体(Immunostar, 22941)被用于被用于免疫组化-冰冻切片在大鼠样本上浓度为1:2000 (图 3). Front Neurosci (2015) ncbi
小鼠 单克隆
  • 免疫组化; 人类; 1:1000; 图 3e
ImmunoStar酪氨酸羟化酶抗体(Immunostar, 22941)被用于被用于免疫组化在人类样本上浓度为1:1000 (图 3e). Methods (2016) ncbi
小鼠 单克隆
  • 免疫组化-冰冻切片; 鸡; 1:200
ImmunoStar酪氨酸羟化酶抗体(ImmunoStar, 22941)被用于被用于免疫组化-冰冻切片在鸡样本上浓度为1:200. Dev Neurobiol (2016) ncbi
小鼠 单克隆
  • 免疫组化; 黑腹果蝇; 1:50; 图 5
ImmunoStar酪氨酸羟化酶抗体(ImmunoStar, 22941)被用于被用于免疫组化在黑腹果蝇样本上浓度为1:50 (图 5). elife (2015) ncbi
小鼠 单克隆
  • 免疫组化; California sea hare; 1:100
ImmunoStar酪氨酸羟化酶抗体(Immunostar, 22941)被用于被用于免疫组化在California sea hare样本上浓度为1:100. J Comp Neurol (2015) ncbi
小鼠 单克隆
  • 免疫组化; 斑马鱼; 1:100
ImmunoStar酪氨酸羟化酶抗体(Immunostar, 22941)被用于被用于免疫组化在斑马鱼样本上浓度为1:100. J Comp Neurol (2015) ncbi
小鼠 单克隆
  • 免疫细胞化学; 大鼠; 1:10000
ImmunoStar酪氨酸羟化酶抗体(Immunostar, 22941)被用于被用于免疫细胞化学在大鼠样本上浓度为1:10000. Neuroscience (2015) ncbi
小鼠 单克隆
  • 免疫组化; 黑腹果蝇; 1:500; 图 3s1
ImmunoStar酪氨酸羟化酶抗体(Immunostar, 22,941)被用于被用于免疫组化在黑腹果蝇样本上浓度为1:500 (图 3s1). elife (2015) ncbi
小鼠 单克隆
  • 免疫组化; 大鼠; 1:10000
ImmunoStar酪氨酸羟化酶抗体(Immunostar, 22941)被用于被用于免疫组化在大鼠样本上浓度为1:10000. Brain Res Bull (2015) ncbi
小鼠 单克隆
  • 免疫组化; 小鼠; 1:2000
ImmunoStar酪氨酸羟化酶抗体(ImmunoStar, 22941)被用于被用于免疫组化在小鼠样本上浓度为1:2000. J Neurosci (2014) ncbi
小鼠 单克隆
  • 免疫细胞化学; 小鼠; 1:200
ImmunoStar酪氨酸羟化酶抗体(Immunostar, 22941)被用于被用于免疫细胞化学在小鼠样本上浓度为1:200. Dev Neurobiol (2015) ncbi
小鼠 单克隆
  • 免疫细胞化学; 小鼠; 1:25; 图 5
ImmunoStar酪氨酸羟化酶抗体(ImmunoStar, 22941)被用于被用于免疫细胞化学在小鼠样本上浓度为1:25 (图 5). Front Cell Neurosci (2014) ncbi
小鼠 单克隆
  • 免疫组化; 黑腹果蝇; 1:50
ImmunoStar酪氨酸羟化酶抗体(Immunostar, 22941)被用于被用于免疫组化在黑腹果蝇样本上浓度为1:50. PLoS Genet (2014) ncbi
小鼠 单克隆
  • 免疫组化-冰冻切片; 大鼠; 1:10000
ImmunoStar酪氨酸羟化酶抗体(Immunostar, 22941)被用于被用于免疫组化-冰冻切片在大鼠样本上浓度为1:10000. PLoS ONE (2014) ncbi
小鼠 单克隆
  • 免疫组化-冰冻切片; bullfrog
ImmunoStar酪氨酸羟化酶抗体(ImmunoStar, 22941)被用于被用于免疫组化-冰冻切片在bullfrog样本上. J Comp Neurol (2014) ncbi
小鼠 单克隆
  • 免疫组化; 鸡; 1:500
ImmunoStar酪氨酸羟化酶抗体(ImmunoStar, 22941)被用于被用于免疫组化在鸡样本上浓度为1:500. Dev Neurobiol (2014) ncbi
小鼠 单克隆
  • 免疫组化; 斑马鱼; 1:500
ImmunoStar酪氨酸羟化酶抗体(Immunostar, 22941)被用于被用于免疫组化在斑马鱼样本上浓度为1:500. J Morphol (2014) ncbi
小鼠 单克隆
  • 免疫组化-冰冻切片; African green monkey; 1:20000
ImmunoStar酪氨酸羟化酶抗体(Immunostar, 22941)被用于被用于免疫组化-冰冻切片在African green monkey样本上浓度为1:20000. Neurol Res (2014) ncbi
小鼠 单克隆
  • 免疫组化; 小鼠
ImmunoStar酪氨酸羟化酶抗体(Immunostar, 22941)被用于被用于免疫组化在小鼠样本上. Eur J Neurosci (2014) ncbi
小鼠 单克隆
  • 免疫组化-自由浮动切片; 小鼠; 1:1000; 图 2
ImmunoStar酪氨酸羟化酶抗体(ImmunoStar, 22941)被用于被用于免疫组化-自由浮动切片在小鼠样本上浓度为1:1000 (图 2). Neuroscience (2014) ncbi
小鼠 单克隆
  • 免疫组化-自由浮动切片; 非洲爪蛙; 1:1000
ImmunoStar酪氨酸羟化酶抗体(ImmunoStar, 22941)被用于被用于免疫组化-自由浮动切片在非洲爪蛙样本上浓度为1:1000. J Comp Neurol (2014) ncbi
小鼠 单克隆
  • 免疫组化; 金鱼; 1:100; 表 1
ImmunoStar酪氨酸羟化酶抗体(Immunostar, 22941)被用于被用于免疫组化在金鱼样本上浓度为1:100 (表 1). J Comp Neurol (2014) ncbi
小鼠 单克隆
  • 免疫组化-自由浮动切片; Spanish newt; 1:1,000
ImmunoStar酪氨酸羟化酶抗体(ImmunoStar, 22941)被用于被用于免疫组化-自由浮动切片在Spanish newt样本上浓度为1:1,000. J Comp Neurol (2013) ncbi
小鼠 单克隆
  • 免疫细胞化学; 人类; 1:500
ImmunoStar酪氨酸羟化酶抗体(ImmunoStar, 22941)被用于被用于免疫细胞化学在人类样本上浓度为1:500. Cytotherapy (2013) ncbi
小鼠 单克隆
  • 免疫组化-冰冻切片; 大鼠; 1:1000
ImmunoStar酪氨酸羟化酶抗体(Immunostar, 22941)被用于被用于免疫组化-冰冻切片在大鼠样本上浓度为1:1000. J Comp Neurol (2013) ncbi
小鼠 单克隆
  • 免疫组化; 猪; 1:600
ImmunoStar酪氨酸羟化酶抗体(Diasorin, 22941)被用于被用于免疫组化在猪样本上浓度为1:600. J Comp Neurol (2013) ncbi
小鼠 单克隆
  • 免疫印迹; 大鼠
  • 免疫组化-自由浮动切片; Spanish newt; 1:1,000
  • 免疫印迹; Spanish newt
ImmunoStar酪氨酸羟化酶抗体(ImmunoStar, 22941)被用于被用于免疫印迹在大鼠样本上, 被用于免疫组化-自由浮动切片在Spanish newt样本上浓度为1:1,000 和 被用于免疫印迹在Spanish newt样本上. J Comp Neurol (2013) ncbi
小鼠 单克隆
  • 免疫组化-冰冻切片; 非洲爪蛙; 1:1000
  • 免疫印迹; 非洲爪蛙
ImmunoStar酪氨酸羟化酶抗体(ImmunoStar, 22941)被用于被用于免疫组化-冰冻切片在非洲爪蛙样本上浓度为1:1000 和 被用于免疫印迹在非洲爪蛙样本上. J Comp Neurol (2013) ncbi
小鼠 单克隆
  • 免疫组化; 豚鼠; 1:600
  • 免疫组化; 人类; 1:600
ImmunoStar酪氨酸羟化酶抗体(Diasorin, 22941)被用于被用于免疫组化在豚鼠样本上浓度为1:600 和 被用于免疫组化在人类样本上浓度为1:600. J Comp Neurol (2013) ncbi
小鼠 单克隆
  • 免疫组化; 非洲爪蛙; 1:1000
ImmunoStar酪氨酸羟化酶抗体(ImmunoStar, 22941)被用于被用于免疫组化在非洲爪蛙样本上浓度为1:1000. J Comp Neurol (2013) ncbi
小鼠 单克隆
  • 免疫组化; dime-store turtle; 1:1000
ImmunoStar酪氨酸羟化酶抗体(ImmunoStar, 22941)被用于被用于免疫组化在dime-store turtle样本上浓度为1:1000. J Comp Neurol (2012) ncbi
小鼠 单克隆
  • 免疫组化-冰冻切片; 小鼠; 1:800
  • 免疫印迹; 小鼠; 1:1000
ImmunoStar酪氨酸羟化酶抗体(ImmunoStar, 22941)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:800 和 被用于免疫印迹在小鼠样本上浓度为1:1000. J Comp Neurol (2011) ncbi
小鼠 单克隆
  • 免疫组化-冰冻切片; 大鼠; 1:30000
ImmunoStar酪氨酸羟化酶抗体(Diasorin, 22941)被用于被用于免疫组化-冰冻切片在大鼠样本上浓度为1:30000. J Comp Neurol (2011) ncbi
小鼠 单克隆
  • 免疫组化-冰冻切片; dime-store turtle; 1:1000
ImmunoStar酪氨酸羟化酶抗体(ImmunoStar, 22941)被用于被用于免疫组化-冰冻切片在dime-store turtle样本上浓度为1:1000. J Comp Neurol (2010) ncbi
小鼠 单克隆
  • 免疫组化; 小鼠; 1:500
ImmunoStar酪氨酸羟化酶抗体(Immunostar, 22941)被用于被用于免疫组化在小鼠样本上浓度为1:500. J Comp Neurol (2010) ncbi
小鼠 单克隆
  • 免疫组化; 小鼠; 1:1000
ImmunoStar酪氨酸羟化酶抗体(ImmunoStar, 22941)被用于被用于免疫组化在小鼠样本上浓度为1:1000. J Comp Neurol (2010) ncbi
小鼠 单克隆
  • 免疫细胞化学; giant freshwater prawn; 1:200
ImmunoStar酪氨酸羟化酶抗体(ImmunoStar, 22941)被用于被用于免疫细胞化学在giant freshwater prawn样本上浓度为1:200. J Comp Neurol (2009) ncbi
小鼠 单克隆
  • 免疫组化-冰冻切片; 斑马鱼; 1:1200
ImmunoStar酪氨酸羟化酶抗体(Incstar, 22941)被用于被用于免疫组化-冰冻切片在斑马鱼样本上浓度为1:1200. J Comp Neurol (2008) ncbi
小鼠 单克隆
  • 免疫组化-自由浮动切片; 小鼠; 1:25,000
ImmunoStar酪氨酸羟化酶抗体(ImmunoStar, 22941)被用于被用于免疫组化-自由浮动切片在小鼠样本上浓度为1:25,000. J Comp Neurol (2007) ncbi
小鼠 单克隆
  • 免疫组化; 大鼠; 1:500
ImmunoStar酪氨酸羟化酶抗体(Immunostar Inc, 22941)被用于被用于免疫组化在大鼠样本上浓度为1:500. J Comp Neurol (2007) ncbi
小鼠 单克隆
  • 免疫组化-自由浮动切片; 鸡; 1:1000
ImmunoStar酪氨酸羟化酶抗体(INCSTAR, 22941)被用于被用于免疫组化-自由浮动切片在鸡样本上浓度为1:1000. J Comp Neurol (2006) ncbi
小鼠 单克隆
  • 免疫组化; 斑马鱼; 1:1000
ImmunoStar酪氨酸羟化酶抗体(ImmunoStar, 22941)被用于被用于免疫组化在斑马鱼样本上浓度为1:1000. J Comp Neurol (2006) ncbi
小鼠 单克隆
  • 免疫组化-冰冻切片; 斑马鱼; 1:500
ImmunoStar酪氨酸羟化酶抗体(ImmunoStar, 22941)被用于被用于免疫组化-冰冻切片在斑马鱼样本上浓度为1:500. J Comp Neurol (2006) ncbi
艾博抗(上海)贸易有限公司
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 大鼠; 0.3 ug/ml; 图 4b
艾博抗(上海)贸易有限公司酪氨酸羟化酶抗体(Abcam, ab112)被用于被用于免疫组化-冰冻切片在大鼠样本上浓度为0.3 ug/ml (图 4b). elife (2020) ncbi
domestic rabbit 单克隆(EP1532Y)
  • 免疫印迹; 小鼠; 1:5000; 图 5a
艾博抗(上海)贸易有限公司酪氨酸羟化酶抗体(Abcam, ab137869)被用于被用于免疫印迹在小鼠样本上浓度为1:5000 (图 5a). Am J Physiol Endocrinol Metab (2019) ncbi
鸡 多克隆
艾博抗(上海)贸易有限公司酪氨酸羟化酶抗体(Abcam, AB76442)被用于. J Comp Neurol (2019) ncbi
鸡 多克隆
  • 免疫细胞化学; 人类; 1:1000; 图 7b
艾博抗(上海)贸易有限公司酪氨酸羟化酶抗体(Abcam, ab76442)被用于被用于免疫细胞化学在人类样本上浓度为1:1000 (图 7b). Hum Mol Genet (2017) ncbi
鸡 多克隆
  • 免疫组化-自由浮动切片; 小鼠; 1:1000
艾博抗(上海)贸易有限公司酪氨酸羟化酶抗体(Abcam, AB76442)被用于被用于免疫组化-自由浮动切片在小鼠样本上浓度为1:1000. J Comp Neurol (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 4e
艾博抗(上海)贸易有限公司酪氨酸羟化酶抗体(Abcam, ab112)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 4e). Diabetes (2016) ncbi
鸡 多克隆
  • 免疫细胞化学; 小鼠; 1:500; 图 4
艾博抗(上海)贸易有限公司酪氨酸羟化酶抗体(Abcam, ab76442)被用于被用于免疫细胞化学在小鼠样本上浓度为1:500 (图 4). Histochem Cell Biol (2016) ncbi
家羊 多克隆
  • 免疫组化-自由浮动切片; 大鼠; 1:1000; 图 7a
  • 免疫印迹; 大鼠; 1:5000; 图 7d
艾博抗(上海)贸易有限公司酪氨酸羟化酶抗体(Abcam, ab113)被用于被用于免疫组化-自由浮动切片在大鼠样本上浓度为1:1000 (图 7a) 和 被用于免疫印迹在大鼠样本上浓度为1:5000 (图 7d). Prog Neuropsychopharmacol Biol Psychiatry (2016) ncbi
鸡 多克隆
  • 免疫组化; 小鼠; 1:1000; 图 4
艾博抗(上海)贸易有限公司酪氨酸羟化酶抗体(abcam, ab76442)被用于被用于免疫组化在小鼠样本上浓度为1:1000 (图 4). Sci Rep (2016) ncbi
鸡 多克隆
  • 免疫组化-自由浮动切片; 大鼠; 1:400; 图 1
艾博抗(上海)贸易有限公司酪氨酸羟化酶抗体(Abcam, ab76442)被用于被用于免疫组化-自由浮动切片在大鼠样本上浓度为1:400 (图 1). J Neurochem (2016) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 小鼠; 图 s5C-1
艾博抗(上海)贸易有限公司酪氨酸羟化酶抗体(Abcam, ab6211)被用于被用于免疫细胞化学在小鼠样本上 (图 s5C-1). Proc Natl Acad Sci U S A (2016) ncbi
domestic rabbit 单克隆(EP1532Y)
  • 免疫印迹; 人类; 图 3
艾博抗(上海)贸易有限公司酪氨酸羟化酶抗体(Abcam, ab137869)被用于被用于免疫印迹在人类样本上 (图 3). J Biol Chem (2016) ncbi
鸡 多克隆
  • 免疫组化-自由浮动切片; 小鼠; 图 s16
艾博抗(上海)贸易有限公司酪氨酸羟化酶抗体(Abcam, ab76442)被用于被用于免疫组化-自由浮动切片在小鼠样本上 (图 s16). Nat Commun (2016) ncbi
鸡 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:100
艾博抗(上海)贸易有限公司酪氨酸羟化酶抗体(Abcam, ab76442)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:100. Neuropharmacology (2016) ncbi
圣克鲁斯生物技术
小鼠 单克隆
  • 免疫组化; 小鼠; 图 2b
  • 免疫印迹; 小鼠; 图 2c
圣克鲁斯生物技术酪氨酸羟化酶抗体(Santa Cruz, F-11)被用于被用于免疫组化在小鼠样本上 (图 2b) 和 被用于免疫印迹在小鼠样本上 (图 2c). Br J Pharmacol (2018) ncbi
小鼠 单克隆(F-11)
  • 免疫组化; 小鼠; 图 2b
  • 免疫印迹; 小鼠; 图 2c
圣克鲁斯生物技术酪氨酸羟化酶抗体(Santa Cruz, F-11)被用于被用于免疫组化在小鼠样本上 (图 2b) 和 被用于免疫印迹在小鼠样本上 (图 2c). Br J Pharmacol (2018) ncbi
小鼠 单克隆(F-11)
  • 免疫组化-石蜡切片; 人类; 1:10,000; 图 s9d
圣克鲁斯生物技术酪氨酸羟化酶抗体(Santa Cruz, sc-25269)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:10,000 (图 s9d). Nat Genet (2017) ncbi
小鼠 单克隆(F-11)
  • 免疫组化; 小鼠; 图 5
  • 免疫印迹; 小鼠; 图 7a
圣克鲁斯生物技术酪氨酸羟化酶抗体(Santa Cruz, F11)被用于被用于免疫组化在小鼠样本上 (图 5) 和 被用于免疫印迹在小鼠样本上 (图 7a). Neuropharmacology (2016) ncbi
小鼠 单克隆
  • 免疫组化; 小鼠; 图 5
  • 免疫印迹; 小鼠; 图 7a
圣克鲁斯生物技术酪氨酸羟化酶抗体(Santa Cruz, F11)被用于被用于免疫组化在小鼠样本上 (图 5) 和 被用于免疫印迹在小鼠样本上 (图 7a). Neuropharmacology (2016) ncbi
小鼠 单克隆(A-6)
  • 免疫组化-冰冻切片; 人类; 图 2
圣克鲁斯生物技术酪氨酸羟化酶抗体(Santa Cruz, sc-374048)被用于被用于免疫组化-冰冻切片在人类样本上 (图 2). PLoS ONE (2016) ncbi
小鼠 单克隆(F-11)
  • 免疫细胞化学; 人类; 1:500; 图 7
圣克鲁斯生物技术酪氨酸羟化酶抗体(Santa Cruz Biotechnology, sc-25269)被用于被用于免疫细胞化学在人类样本上浓度为1:500 (图 7). PLoS ONE (2015) ncbi
小鼠 单克隆(F-11)
  • 免疫印迹; 小鼠; 图 1
圣克鲁斯生物技术酪氨酸羟化酶抗体(Santa Cruz, SC25269)被用于被用于免疫印迹在小鼠样本上 (图 1). Oxid Med Cell Longev (2015) ncbi
小鼠 单克隆(TOH A1.1)
  • 免疫组化-石蜡切片; 大鼠; 1:500; 图 5a
  • 免疫印迹; 大鼠; 1:2000; 图 5c
圣克鲁斯生物技术酪氨酸羟化酶抗体(Santa Cruz Biotechnology, sc-47708)被用于被用于免疫组化-石蜡切片在大鼠样本上浓度为1:500 (图 5a) 和 被用于免疫印迹在大鼠样本上浓度为1:2000 (图 5c). Neural Regen Res (2012) ncbi
Novus Biologicals
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 小鼠; 图 s3
Novus Biologicals酪氨酸羟化酶抗体(Novus Biologicals, NB300-109)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 s3). Proc Natl Acad Sci U S A (2018) ncbi
家羊 多克隆
  • 免疫组化; 小鼠; 1:2000; 图 6b
Novus Biologicals酪氨酸羟化酶抗体(Novus Biologicals, NB300-110)被用于被用于免疫组化在小鼠样本上浓度为1:2000 (图 6b). Science (2017) ncbi
家羊 多克隆
  • 免疫组化; 人类; 图 5
  • 免疫组化; 小鼠; 图 5
Novus Biologicals酪氨酸羟化酶抗体(Novus, NB300-110)被用于被用于免疫组化在人类样本上 (图 5) 和 被用于免疫组化在小鼠样本上 (图 5). Cell (2016) ncbi
家羊 多克隆
  • 免疫组化; 大鼠; 1:2000; 图 1a
Novus Biologicals酪氨酸羟化酶抗体(Novus Biologicals, NB 300-110)被用于被用于免疫组化在大鼠样本上浓度为1:2000 (图 1a). Am J Physiol Regul Integr Comp Physiol (2016) ncbi
家羊 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:1000; 图 1a
Novus Biologicals酪氨酸羟化酶抗体(Novus Biologicals, NB300-110)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:1000 (图 1a). Histochem Cell Biol (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:500-1:1000; 图 1a
Novus Biologicals酪氨酸羟化酶抗体(Novus Biologicals, NB300-109)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:500-1:1000 (图 1a). Histochem Cell Biol (2016) ncbi
赛默飞世尔
家羊 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:500; 图 5d
  • 免疫印迹; 小鼠; 1:1000; 图 5c
赛默飞世尔酪氨酸羟化酶抗体(ThermoFisher, PA1-4679)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:500 (图 5d) 和 被用于免疫印迹在小鼠样本上浓度为1:1000 (图 5c). Neurobiol Dis (2017) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:1000; 图 3
赛默飞世尔酪氨酸羟化酶抗体(生活技术, P21962)被用于被用于免疫组化在小鼠样本上浓度为1:1000 (图 3). Mol Neurobiol (2017) ncbi
家羊 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:2000; 图 2
赛默飞世尔酪氨酸羟化酶抗体(Thermo Scientific, PA1-4679)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:2000 (图 2). elife (2016) ncbi
安迪生物R&D
小鼠 单克隆(779427)
  • 免疫印迹; 大鼠; 0.5 ug/ml
安迪生物R&D酪氨酸羟化酶抗体(R&D Systems, MAB7566)被用于被用于免疫印迹在大鼠样本上浓度为0.5 ug/ml. Mediators Inflamm (2014) ncbi
BioLegend
小鼠 单克隆(2/40/15)
  • 免疫组化; 小鼠; 图 st1
BioLegend酪氨酸羟化酶抗体(BioLegend, 818001)被用于被用于免疫组化在小鼠样本上 (图 st1). Nat Biotechnol (2016) ncbi
Synaptic Systems
豚鼠 多克隆(/)
  • 免疫细胞化学; 大鼠; 1:1000; 图 3b
Synaptic Systems酪氨酸羟化酶抗体(Synaptic Systems, 213004)被用于被用于免疫细胞化学在大鼠样本上浓度为1:1000 (图 3b). Int J Neuropsychopharmacol (2017) ncbi
Pel-Freez
domestic rabbit
  • 免疫组化; 小鼠; 1:1000; 图 2d
Pel-Freez酪氨酸羟化酶抗体(Pel-Freez, P40101-0)被用于被用于免疫组化在小鼠样本上浓度为1:1000 (图 2d). J Neurosci (2017) ncbi
domestic rabbit
  • 免疫组化-自由浮动切片; African green monkey; 1:1000; 图 1A
Pel-Freez酪氨酸羟化酶抗体(Pel-Freez, 40101-0)被用于被用于免疫组化-自由浮动切片在African green monkey样本上浓度为1:1000 (图 1A). PLoS ONE (2016) ncbi
domestic rabbit
  • 免疫细胞化学; 人类; 1:700; 图 s8b
Pel-Freez酪氨酸羟化酶抗体(Pel-Freez, P40101-0)被用于被用于免疫细胞化学在人类样本上浓度为1:700 (图 s8b). Nat Med (2016) ncbi
domestic rabbit
  • 免疫组化-冰冻切片; 小鼠; 1:1000; 图 1b
  • 免疫印迹; 小鼠; 1:1000; 图 s4a
Pel-Freez酪氨酸羟化酶抗体(Pel-Freez Biologicals, P40101-0)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:1000 (图 1b) 和 被用于免疫印迹在小鼠样本上浓度为1:1000 (图 s4a). Proc Natl Acad Sci U S A (2016) ncbi
domestic rabbit
  • 免疫细胞化学; 人类; 1:500; 图 2
  • 免疫印迹; 人类; 图 5
Pel-Freez酪氨酸羟化酶抗体(Pel-Freez, P40101)被用于被用于免疫细胞化学在人类样本上浓度为1:500 (图 2) 和 被用于免疫印迹在人类样本上 (图 5). PLoS ONE (2016) ncbi
domestic rabbit
  • 免疫组化-石蜡切片; 斑马鱼; 1:500; 图 3
Pel-Freez酪氨酸羟化酶抗体(Pel-Freez, P40101)被用于被用于免疫组化-石蜡切片在斑马鱼样本上浓度为1:500 (图 3). elife (2016) ncbi
domestic rabbit
  • 免疫组化; 小鼠; 图 6
  • 免疫组化; 大鼠; 图 3
Pel-Freez酪氨酸羟化酶抗体(Pel-Freez, p40101)被用于被用于免疫组化在小鼠样本上 (图 6) 和 被用于免疫组化在大鼠样本上 (图 3). Sci Rep (2015) ncbi
domestic rabbit
  • 免疫组化; 人类; 1:100; 图 3
Pel-Freez酪氨酸羟化酶抗体(Pel-Freez, P40101)被用于被用于免疫组化在人类样本上浓度为1:100 (图 3). Sci Rep (2015) ncbi
domestic rabbit
  • 其他; 人类; 图 3c
Pel-Freez酪氨酸羟化酶抗体(Pel-Freeze Biologicals, P40101-0)被用于被用于其他在人类样本上 (图 3c). J Anat (2015) ncbi
domestic rabbit
  • 免疫组化-自由浮动切片; 小鼠; 1:1000; 图 4
  • 免疫组化-冰冻切片; 小鼠; 1:1000; 图 4
Pel-Freez酪氨酸羟化酶抗体(Pel-Freeze, P40101-0)被用于被用于免疫组化-自由浮动切片在小鼠样本上浓度为1:1000 (图 4) 和 被用于免疫组化-冰冻切片在小鼠样本上浓度为1:1000 (图 4). Nat Neurosci (2015) ncbi
domestic rabbit
  • 免疫组化-自由浮动切片; 大鼠; 1:1000
Pel-Freez酪氨酸羟化酶抗体(Pel-Freez, P40101-0)被用于被用于免疫组化-自由浮动切片在大鼠样本上浓度为1:1000. Neuroscience (2014) ncbi
domestic rabbit
  • 免疫组化-冰冻切片; 大鼠; 图 3
  • 免疫细胞化学; 大鼠; 图 8
  • 免疫组化; 大鼠; 图 2
  • 免疫组化-冰冻切片; 小鼠; 图 4
  • 免疫组化; 小鼠; 图 4
Pel-Freez酪氨酸羟化酶抗体(Pelfreez, P40101-0)被用于被用于免疫组化-冰冻切片在大鼠样本上 (图 3), 被用于免疫细胞化学在大鼠样本上 (图 8), 被用于免疫组化在大鼠样本上 (图 2), 被用于免疫组化-冰冻切片在小鼠样本上 (图 4) 和 被用于免疫组化在小鼠样本上 (图 4). Front Neuroanat (2014) ncbi
domestic rabbit
  • 染色质免疫沉淀 ; 人类
Pel-Freez酪氨酸羟化酶抗体(Pel-Freez, p40101)被用于被用于染色质免疫沉淀 在人类样本上. Neuroreport (2014) ncbi
domestic rabbit
  • 免疫组化-自由浮动切片; 小鼠; 1:500; 图 2
Pel-Freez酪氨酸羟化酶抗体(Pel-Freez, P40101-0)被用于被用于免疫组化-自由浮动切片在小鼠样本上浓度为1:500 (图 2). Neuroscience (2014) ncbi
domestic rabbit
  • 免疫印迹; 小鼠; 1:1000; 图 s1
Pel-Freez酪氨酸羟化酶抗体(Pel-Freez, P40101)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 s1). PLoS ONE (2010) ncbi
domestic rabbit
  • 免疫细胞化学; 小鼠; 1:200
Pel-Freez酪氨酸羟化酶抗体(Pel-Freez, P40101-0)被用于被用于免疫细胞化学在小鼠样本上浓度为1:200. J Comp Neurol (2009) ncbi
domestic rabbit
  • 免疫组化-自由浮动切片; 小鼠; 1:5000
Pel-Freez酪氨酸羟化酶抗体(Pel-Freez, P40101-0)被用于被用于免疫组化-自由浮动切片在小鼠样本上浓度为1:5000. J Comp Neurol (2007) ncbi
Neuromics
单克隆
  • 免疫组化; 小鼠; 图 s14f
Neuromics酪氨酸羟化酶抗体(Neuromics, MO20001)被用于被用于免疫组化在小鼠样本上 (图 s14f). Nat Genet (2016) ncbi
赛信通(上海)生物试剂有限公司
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 1a
赛信通(上海)生物试剂有限公司酪氨酸羟化酶抗体(Cell Signaling, 2792)被用于被用于免疫印迹在小鼠样本上 (图 1a). Cell Death Differ (2016) ncbi
默克密理博中国
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 图 1a, s10a
默克密理博中国酪氨酸羟化酶抗体(Millipore, AB152)被用于被用于免疫组化在小鼠样本上 (图 1a, s10a). Sci Adv (2020) ncbi
domestic rabbit 多克隆
  • 免疫组化-自由浮动切片; 小鼠; 1:500; 图 4b
默克密理博中国酪氨酸羟化酶抗体(Millipore, AB152)被用于被用于免疫组化-自由浮动切片在小鼠样本上浓度为1:500 (图 4b). Mol Brain (2020) ncbi
小鼠 单克隆(LNC1)
默克密理博中国酪氨酸羟化酶抗体(Millipore, MAB318)被用于. J Comp Neurol (2020) ncbi
小鼠 单克隆(LNC1)
  • 免疫组化-冰冻切片; 斑马鱼; 1:100; 图 1a3
默克密理博中国酪氨酸羟化酶抗体(Millipore, MAB318)被用于被用于免疫组化-冰冻切片在斑马鱼样本上浓度为1:100 (图 1a3). J Comp Neurol (2019) ncbi
小鼠 单克隆(LNC1)
  • 免疫组化; 小鼠; 1:1000; 图 2d
默克密理博中国酪氨酸羟化酶抗体(Millipore, MAB318)被用于被用于免疫组化在小鼠样本上浓度为1:1000 (图 2d). elife (2019) ncbi
小鼠 单克隆(LNC1)
  • 免疫组化; slender lungfish; 1:1000; 图 6a
默克密理博中国酪氨酸羟化酶抗体(Merk-Millipore, MAB318)被用于被用于免疫组化在slender lungfish样本上浓度为1:1000 (图 6a). J Comp Neurol (2020) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; marine lamprey; 1:400; 图 6b
默克密理博中国酪氨酸羟化酶抗体(Millipore, AB152)被用于被用于免疫组化-冰冻切片在marine lamprey样本上浓度为1:400 (图 6b). J Comp Neurol (2020) ncbi
小鼠 单克隆(LNC1)
  • 免疫组化-冰冻切片; 小鼠; 1:500; 图 5
默克密理博中国酪氨酸羟化酶抗体(Millipore, MAB318)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:500 (图 5). J Comp Neurol (2019) ncbi
小鼠 单克隆(LNC1)
  • 免疫组化-冰冻切片; 大鼠; 1:1000; 图 1b
默克密理博中国酪氨酸羟化酶抗体(EMD Millipore, MAB318)被用于被用于免疫组化-冰冻切片在大鼠样本上浓度为1:1000 (图 1b). J Comp Neurol (2019) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 图 ex5c
默克密理博中国酪氨酸羟化酶抗体(Millipore, AB152)被用于被用于免疫组化在小鼠样本上 (图 ex5c). Nature (2019) ncbi
小鼠 单克隆(LNC1)
  • 免疫组化-冰冻切片; 住房乌鸦; 1:200; 图 17a
  • 免疫组化; 住房乌鸦; 1:200; 图 18a
  • 免疫印迹; 住房乌鸦; 1:5000; 图 4
默克密理博中国酪氨酸羟化酶抗体(Millipore, MAB318)被用于被用于免疫组化-冰冻切片在住房乌鸦样本上浓度为1:200 (图 17a), 被用于免疫组化在住房乌鸦样本上浓度为1:200 (图 18a) 和 被用于免疫印迹在住房乌鸦样本上浓度为1:5000 (图 4). J Comp Neurol (2019) ncbi
鸡 多克隆
  • 免疫组化; 小鼠; 1:1000; 图 1a
默克密理博中国酪氨酸羟化酶抗体(Millipore, AB9702)被用于被用于免疫组化在小鼠样本上浓度为1:1000 (图 1a). Neuroscience (2019) ncbi
小鼠 单克隆(LNC1)
默克密理博中国酪氨酸羟化酶抗体(Millipore, MAB318)被用于. J Comp Neurol (2019) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:500; 图 1d
默克密理博中国酪氨酸羟化酶抗体(Millipore, AB152)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:500 (图 1d). elife (2018) ncbi
domestic rabbit 多克隆
  • 免疫组化; 大鼠; 1:200; 图 1d
默克密理博中国酪氨酸羟化酶抗体(EMD Millipore, AB152)被用于被用于免疫组化在大鼠样本上浓度为1:200 (图 1d). J Comp Neurol (2019) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:1000; 图 1b
默克密理博中国酪氨酸羟化酶抗体(Abcam, ab152)被用于被用于免疫组化在小鼠样本上浓度为1:1000 (图 1b). Science (2018) ncbi
小鼠 单克隆(LNC1)
  • 免疫组化; 大鼠; 图 1c
  • 免疫印迹; 大鼠; 图 1a
默克密理博中国酪氨酸羟化酶抗体(Millipore, MAB318)被用于被用于免疫组化在大鼠样本上 (图 1c) 和 被用于免疫印迹在大鼠样本上 (图 1a). Brain Sci (2018) ncbi
domestic rabbit 多克隆
  • 免疫组化-自由浮动切片; 小鼠; 图 2d
默克密理博中国酪氨酸羟化酶抗体(Calbiochem, 657012)被用于被用于免疫组化-自由浮动切片在小鼠样本上 (图 2d). Sci Rep (2018) ncbi
小鼠 单克隆(LNC1)
  • 免疫组化-冰冻切片; 小鼠; 1:200; 图 s3b
默克密理博中国酪氨酸羟化酶抗体(Millipore, MAB318)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:200 (图 s3b). PLoS ONE (2018) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:1000; 图 3
默克密理博中国酪氨酸羟化酶抗体(Millipore, AB152)被用于被用于免疫组化在小鼠样本上浓度为1:1000 (图 3). Brain Res (2019) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:200; 图 2d
默克密理博中国酪氨酸羟化酶抗体(Millipore, AB152)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:200 (图 2d). J Comp Neurol (2018) ncbi
domestic rabbit 多克隆
  • 免疫组化; 大鼠; 图 2d
默克密理博中国酪氨酸羟化酶抗体(EMD Millipore, AB152)被用于被用于免疫组化在大鼠样本上 (图 2d). Addict Biol (2018) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:2000; 图 6a
默克密理博中国酪氨酸羟化酶抗体(Millipore, AB152)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:2000 (图 6a). J Neurosci (2017) ncbi
小鼠 单克隆(LNC1)
  • 免疫组化-冰冻切片; marine lamprey; 1:1000; 图 7b
默克密理博中国酪氨酸羟化酶抗体(Millipore, MAB318)被用于被用于免疫组化-冰冻切片在marine lamprey样本上浓度为1:1000 (图 7b). J Comp Neurol (2017) ncbi
小鼠 单克隆(LNC1)
  • 免疫组化; 小鼠; 1:1000; 表 1
默克密理博中国酪氨酸羟化酶抗体(Millipore, MAB318)被用于被用于免疫组化在小鼠样本上浓度为1:1000 (表 1). J Comp Neurol (2017) ncbi
小鼠 单克隆(LNC1)
  • 免疫组化-冰冻切片; 小鼠; 1:500; 表 1
默克密理博中国酪氨酸羟化酶抗体(Millipore, MAB318)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:500 (表 1). J Comp Neurol (2017) ncbi
小鼠 单克隆(LNC1)
默克密理博中国酪氨酸羟化酶抗体(Millipore, AB318)被用于. J Comp Neurol (2017) ncbi
小鼠 单克隆(LNC1)
  • 免疫组化-自由浮动切片; 大鼠; 1:4000; 图 1b
默克密理博中国酪氨酸羟化酶抗体(Millipore, MAB318)被用于被用于免疫组化-自由浮动切片在大鼠样本上浓度为1:4000 (图 1b). J Neurosci (2017) ncbi
小鼠 单克隆(LNC1)
  • 免疫印迹; 人类; 1:1000; 图 4
  • 免疫细胞化学; 黑腹果蝇; 1:200; 图 2a
默克密理博中国酪氨酸羟化酶抗体(Millipore, LNC1)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 4) 和 被用于免疫细胞化学在黑腹果蝇样本上浓度为1:200 (图 2a). Hum Mol Genet (2017) ncbi
小鼠 单克隆(LNC1)
  • 免疫组化; 小鼠; 图 4c
默克密理博中国酪氨酸羟化酶抗体(Millipore, MAB318)被用于被用于免疫组化在小鼠样本上 (图 4c). J Comp Neurol (2017) ncbi
小鼠 单克隆(LNC1)
  • 免疫组化-冰冻切片; 斑马鱼; 1:500; 表 2
默克密理博中国酪氨酸羟化酶抗体(Millipore, MAB318)被用于被用于免疫组化-冰冻切片在斑马鱼样本上浓度为1:500 (表 2). Dev Biol (2017) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 图 3a
默克密理博中国酪氨酸羟化酶抗体(Cell Signaling, AB152)被用于被用于免疫细胞化学在人类样本上 (图 3a). Science (2017) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 人类; 1:5000
  • 免疫细胞化学; 人类; 1:5000; 图 e1b
默克密理博中国酪氨酸羟化酶抗体(Millipore, AB152)被用于被用于免疫组化-冰冻切片在人类样本上浓度为1:5000 和 被用于免疫细胞化学在人类样本上浓度为1:5000 (图 e1b). Nature (2017) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 图 8a
默克密理博中国酪氨酸羟化酶抗体(Millipore, AB152)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 8a). J Pineal Res (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 5b
默克密理博中国酪氨酸羟化酶抗体(Millipore, AB5935)被用于被用于免疫印迹在小鼠样本上 (图 5b). Evid Based Complement Alternat Med (2017) ncbi
小鼠 单克隆(LNC1)
  • 免疫组化; 非洲爪蛙; 1:500; 图 1c
默克密理博中国酪氨酸羟化酶抗体(Millipore, MAB318)被用于被用于免疫组化在非洲爪蛙样本上浓度为1:500 (图 1c). J Comp Neurol (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 2c
默克密理博中国酪氨酸羟化酶抗体(Millipore, AB152)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 2c). Acta Neuropathol Commun (2017) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:2000; 图 2a
  • 免疫印迹; 小鼠; 1:2000; 图 9a
默克密理博中国酪氨酸羟化酶抗体(Millipore, AB152)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:2000 (图 2a) 和 被用于免疫印迹在小鼠样本上浓度为1:2000 (图 9a). Front Cell Neurosci (2017) ncbi
小鼠 单克隆(LNC1)
  • 免疫组化-冰冻切片; 小鼠; 1:500; 图 6c
默克密理博中国酪氨酸羟化酶抗体(Millipore, MAB318)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:500 (图 6c). Mol Ther (2017) ncbi
小鼠 单克隆(LNC1)
  • 免疫组化-石蜡切片; 小鼠; 图 7a
默克密理博中国酪氨酸羟化酶抗体(Millipore, MAB318)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 7a). Biochim Biophys Acta Mol Basis Dis (2017) ncbi
小鼠 单克隆(LNC1)
  • 免疫组化-石蜡切片; 小鼠; 1:2000; 图 st15
默克密理博中国酪氨酸羟化酶抗体(Millipore, MAB318)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:2000 (图 st15). J Toxicol Pathol (2017) ncbi
domestic rabbit 多克隆
  • 免疫组化; 大鼠; 1:1000; 图 s6c
默克密理博中国酪氨酸羟化酶抗体(Millipore, AB152)被用于被用于免疫组化在大鼠样本上浓度为1:1000 (图 s6c). PLoS ONE (2017) ncbi
小鼠 单克隆(LNC1)
  • 免疫组化-冰冻切片; 斑马鱼; 1:1000; 表 1
默克密理博中国酪氨酸羟化酶抗体(Millipore, MAB318)被用于被用于免疫组化-冰冻切片在斑马鱼样本上浓度为1:1000 (表 1). J Comp Neurol (2017) ncbi
小鼠 单克隆(LNC1)
  • 免疫组化; 人类; 1:1000; 表 1
默克密理博中国酪氨酸羟化酶抗体(Millipore, MAB318)被用于被用于免疫组化在人类样本上浓度为1:1000 (表 1). J Comp Neurol (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 1a
默克密理博中国酪氨酸羟化酶抗体(Millipore, AB 152)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 1a). Proc Natl Acad Sci U S A (2017) ncbi
小鼠 单克隆(LNC1)
  • 免疫组化-自由浮动切片; Chondrichthyes; 1:1000; 图 2a
默克密理博中国酪氨酸羟化酶抗体(Millipore, MAB318)被用于被用于免疫组化-自由浮动切片在Chondrichthyes样本上浓度为1:1000 (图 2a). J Comp Neurol (2017) ncbi
小鼠 单克隆(LNC1)
  • 免疫组化-石蜡切片; 小鼠; 1:500; 图 5a
  • 免疫印迹; 小鼠; 1:2000
默克密理博中国酪氨酸羟化酶抗体(Millipore, AB318)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:500 (图 5a) 和 被用于免疫印迹在小鼠样本上浓度为1:2000. Sci Rep (2017) ncbi
小鼠 单克隆(LNC1)
  • 免疫细胞化学; 斑马鱼; 图 2-s2a
默克密理博中国酪氨酸羟化酶抗体(Milipore, MAB318)被用于被用于免疫细胞化学在斑马鱼样本上 (图 2-s2a). elife (2017) ncbi
小鼠 单克隆(LNC1)
  • 免疫组化; 大鼠; 1:1000; 图 1a
默克密理博中国酪氨酸羟化酶抗体(Chemicon, MAB318)被用于被用于免疫组化在大鼠样本上浓度为1:1000 (图 1a). J Comp Neurol (2017) ncbi
小鼠 单克隆(LNC1)
  • 免疫组化-冰冻切片; 大鼠; 1:2000; 图 5
默克密理博中国酪氨酸羟化酶抗体(Millipore, MAB318)被用于被用于免疫组化-冰冻切片在大鼠样本上浓度为1:2000 (图 5). Brain Struct Funct (2017) ncbi
domestic rabbit 多克隆
  • 免疫组化-自由浮动切片; 大鼠; 1:1000; 图 4a
默克密理博中国酪氨酸羟化酶抗体(Millipore, AB152)被用于被用于免疫组化-自由浮动切片在大鼠样本上浓度为1:1000 (图 4a). J Neuroendocrinol (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 st1
默克密理博中国酪氨酸羟化酶抗体(Millipore, AB152)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 st1). Mov Disord (2017) ncbi
domestic rabbit 多克隆
  • 免疫组化-自由浮动切片; African green monkey; 1:5000; 图 2A
默克密理博中国酪氨酸羟化酶抗体(Chemicon, AB152)被用于被用于免疫组化-自由浮动切片在African green monkey样本上浓度为1:5000 (图 2A). PLoS ONE (2016) ncbi
小鼠 单克隆(LNC1)
  • 免疫组化-自由浮动切片; 小鼠; 1:10,000; 图 1c
  • 免疫组化; 小鼠; 1:10,000
默克密理博中国酪氨酸羟化酶抗体(Chemicon, MAB318)被用于被用于免疫组化-自由浮动切片在小鼠样本上浓度为1:10,000 (图 1c) 和 被用于免疫组化在小鼠样本上浓度为1:10,000. J Comp Neurol (2017) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:100; 图 4b
默克密理博中国酪氨酸羟化酶抗体(Abcam, ab152)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:100 (图 4b). Sci Rep (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化; African green monkey; 1:400; 图 5
默克密理博中国酪氨酸羟化酶抗体(Millipore, AB152)被用于被用于免疫组化在African green monkey样本上浓度为1:400 (图 5). Sci Rep (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:500-1:1000; 图 1b
默克密理博中国酪氨酸羟化酶抗体(Millipore, 657012)被用于被用于免疫组化在小鼠样本上浓度为1:500-1:1000 (图 1b). J Assoc Res Otolaryngol (2017) ncbi
domestic rabbit 多克隆
  • 免疫组化-自由浮动切片; 小鼠; 1:1000; 图 s1a
  • 免疫印迹; 小鼠; 1:1000; 图 7b
默克密理博中国酪氨酸羟化酶抗体(Milipore, AB152)被用于被用于免疫组化-自由浮动切片在小鼠样本上浓度为1:1000 (图 s1a) 和 被用于免疫印迹在小鼠样本上浓度为1:1000 (图 7b). Nat Commun (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 7b
默克密理博中国酪氨酸羟化酶抗体(Milipore, AB5935)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 7b). Nat Commun (2016) ncbi
小鼠 单克隆(LNC1)
  • 免疫组化-冰冻切片; 小鼠; 1:500; 图 7t
默克密理博中国酪氨酸羟化酶抗体(Millipore, MAB318)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:500 (图 7t). J Comp Neurol (2017) ncbi
小鼠 单克隆(LNC1)
  • 免疫组化; 小鼠; 1:500; 图 4b
默克密理博中国酪氨酸羟化酶抗体(Millipore, MAB318)被用于被用于免疫组化在小鼠样本上浓度为1:500 (图 4b). Exp Neurol (2016) ncbi
小鼠 单克隆(LNC1)
  • 免疫组化; 小鼠; 1:100; 图 1b
默克密理博中国酪氨酸羟化酶抗体(Millipore, MAB318)被用于被用于免疫组化在小鼠样本上浓度为1:100 (图 1b). Cell (2016) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 1:1000; 表 s4
默克密理博中国酪氨酸羟化酶抗体(Millipore, AB152)被用于被用于免疫细胞化学在人类样本上浓度为1:1000 (表 s4). Stem Cell Res (2016) ncbi
小鼠 单克隆(LNC1)
  • 免疫组化; 小鼠; 1:1000; 图 2d
默克密理博中国酪氨酸羟化酶抗体(Millipore, MAB 318)被用于被用于免疫组化在小鼠样本上浓度为1:1000 (图 2d). J Neurosci (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:5000; 图 2d
默克密理博中国酪氨酸羟化酶抗体(Millipore, AB152)被用于被用于免疫组化在小鼠样本上浓度为1:5000 (图 2d). J Neurosci (2016) ncbi
小鼠 单克隆(LNC1)
  • 免疫组化; 小鼠; 1:1000; 图 1a
默克密理博中国酪氨酸羟化酶抗体(Millipore, MAB318)被用于被用于免疫组化在小鼠样本上浓度为1:1000 (图 1a). J Neurosci (2016) ncbi
小鼠 单克隆(LNC1)
  • 免疫组化; 小鼠; 1:5000; 图 5c
默克密理博中国酪氨酸羟化酶抗体(Millipore, AB318)被用于被用于免疫组化在小鼠样本上浓度为1:5000 (图 5c). J Comp Neurol (2017) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 1:100; 图 3e
默克密理博中国酪氨酸羟化酶抗体(Merck Millipore, 657012)被用于被用于免疫细胞化学在人类样本上浓度为1:100 (图 3e). J Neurosci (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:2000; 图 5d
  • 免疫印迹; 小鼠; 1:2000; 图 6a
默克密理博中国酪氨酸羟化酶抗体(EMD Millipore, AB 152)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:2000 (图 5d) 和 被用于免疫印迹在小鼠样本上浓度为1:2000 (图 6a). Toxicol Sci (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:500; 图 4
默克密理博中国酪氨酸羟化酶抗体(Millipore, AB152)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:500 (图 4). Mol Vis (2016) ncbi
小鼠 单克隆(LNC1)
  • 免疫细胞化学; 小鼠; 1:250; 图 1
默克密理博中国酪氨酸羟化酶抗体(Millipore, MAB318)被用于被用于免疫细胞化学在小鼠样本上浓度为1:250 (图 1). J Neuroinflammation (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化; 斑马鱼; 1:100; 图 5f
默克密理博中国酪氨酸羟化酶抗体(Chemicon, AB152)被用于被用于免疫组化在斑马鱼样本上浓度为1:100 (图 5f). J Neurosci Res (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-自由浮动切片; 小鼠; 1:500; 图 3e
默克密理博中国酪氨酸羟化酶抗体(Abcam, AB152)被用于被用于免疫组化-自由浮动切片在小鼠样本上浓度为1:500 (图 3e). Front Neurosci (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-自由浮动切片; 大鼠; 1:1000; 图 7
默克密理博中国酪氨酸羟化酶抗体(millipore, AB152)被用于被用于免疫组化-自由浮动切片在大鼠样本上浓度为1:1000 (图 7). Neuron (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 2
默克密理博中国酪氨酸羟化酶抗体(Millipore, AB152)被用于被用于免疫印迹在人类样本上 (图 2). Mol Brain (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:500; 图 s2b
默克密理博中国酪氨酸羟化酶抗体(Millipore, AB152)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:500 (图 s2b). Nat Neurosci (2016) ncbi
小鼠 单克隆(LNC1)
  • 免疫组化-冰冻切片; 大鼠; 1:500; 图 6c
默克密理博中国酪氨酸羟化酶抗体(Chemicon, MAB318)被用于被用于免疫组化-冰冻切片在大鼠样本上浓度为1:500 (图 6c). Mol Ther Methods Clin Dev (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:250; 图 2
默克密理博中国酪氨酸羟化酶抗体(Millipore, AB152)被用于被用于免疫组化在小鼠样本上浓度为1:250 (图 2). Sci Rep (2016) ncbi
小鼠 单克隆(LNC1)
  • 免疫组化-冰冻切片; 小鼠
默克密理博中国酪氨酸羟化酶抗体(Millipore, MAB318)被用于被用于免疫组化-冰冻切片在小鼠样本上. Nature (2016) ncbi
小鼠 单克隆(LNC1)
  • 免疫细胞化学; domestic rabbit; 1:400; 图 3
默克密理博中国酪氨酸羟化酶抗体(chemicon, MAB318)被用于被用于免疫细胞化学在domestic rabbit样本上浓度为1:400 (图 3). Ann Anat (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 人类; 图 2
  • 免疫印迹; 人类; 图 1
  • 免疫印迹; 大鼠; 图 1
默克密理博中国酪氨酸羟化酶抗体(Millipore, AB 152)被用于被用于免疫组化-石蜡切片在人类样本上 (图 2), 被用于免疫印迹在人类样本上 (图 1) 和 被用于免疫印迹在大鼠样本上 (图 1). J Biol Chem (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:1000; 图 4
默克密理博中国酪氨酸羟化酶抗体(Calbiochem, 657012)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:1000 (图 4). Nat Neurosci (2016) ncbi
小鼠 单克隆(LNC1)
  • 免疫组化-石蜡切片; 人类; 图 1
默克密理博中国酪氨酸羟化酶抗体(Millipore, MAB318)被用于被用于免疫组化-石蜡切片在人类样本上 (图 1). Oncotarget (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 4
默克密理博中国酪氨酸羟化酶抗体(Millipore, AB152)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 4). Stem Cell Res (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:500; 图 s3
默克密理博中国酪氨酸羟化酶抗体(EMD, AB152)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 s3). Cell Rep (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:250
默克密理博中国酪氨酸羟化酶抗体(Milipore, AB152)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:250. BMC Cell Biol (2016) ncbi
小鼠 单克隆(LNC1)
  • 免疫组化-自由浮动切片; 猕猴; 1:1000
默克密理博中国酪氨酸羟化酶抗体(Millipore, MAB318)被用于被用于免疫组化-自由浮动切片在猕猴样本上浓度为1:1000. Gene Ther (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 图 1k
默克密理博中国酪氨酸羟化酶抗体(EMD Millipore, AB152)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 1k). Sci Rep (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化; 人类; 图 1c
默克密理博中国酪氨酸羟化酶抗体(Chemicon, AB152)被用于被用于免疫组化在人类样本上 (图 1c). J Orthop Surg Res (2016) ncbi
小鼠 单克隆(LNC1)
  • 免疫组化-冰冻切片; 大鼠; 图 1
默克密理博中国酪氨酸羟化酶抗体(Millipore, LNC1)被用于被用于免疫组化-冰冻切片在大鼠样本上 (图 1). PLoS ONE (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:100; 图 3
  • 免疫印迹; 小鼠; 1:100; 图 3
默克密理博中国酪氨酸羟化酶抗体(Millipore, AB152)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:100 (图 3) 和 被用于免疫印迹在小鼠样本上浓度为1:100 (图 3). Transl Psychiatry (2016) ncbi
小鼠 单克隆(LNC1)
  • 免疫组化-自由浮动切片; 大鼠; 1:1000
默克密理博中国酪氨酸羟化酶抗体(Millipore, MAB318)被用于被用于免疫组化-自由浮动切片在大鼠样本上浓度为1:1000. Neuropsychopharmacology (2016) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 1:1000; 表 1
默克密理博中国酪氨酸羟化酶抗体(Chemicon, AB152)被用于被用于免疫细胞化学在人类样本上浓度为1:1000 (表 1). Exp Eye Res (2016) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 图 3a
默克密理博中国酪氨酸羟化酶抗体(Millipore, AB152)被用于被用于免疫细胞化学在人类样本上 (图 3a). Synapse (2016) ncbi
小鼠 单克隆(LNC1)
  • 免疫组化; 斑马鱼; 1:500; 图 1f
默克密理博中国酪氨酸羟化酶抗体(Millipore, MAB318)被用于被用于免疫组化在斑马鱼样本上浓度为1:500 (图 1f). Pharmacol Res (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:500; 图 5
默克密理博中国酪氨酸羟化酶抗体(Millipore, AB152)被用于被用于免疫组化在小鼠样本上浓度为1:500 (图 5). Dev Biol (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 大鼠; 1:2000; 图 2
默克密理博中国酪氨酸羟化酶抗体(Calbiochem, AB152)被用于被用于免疫印迹在大鼠样本上浓度为1:2000 (图 2). Dev Neurobiol (2016) ncbi
小鼠 单克隆(LNC1)
  • 免疫组化; 大鼠; 1:1000; 图 4
默克密理博中国酪氨酸羟化酶抗体(Millipore Corporation, MAB318)被用于被用于免疫组化在大鼠样本上浓度为1:1000 (图 4). Prog Neuropsychopharmacol Biol Psychiatry (2016) ncbi
小鼠 单克隆(LNC1)
  • 免疫组化; 大鼠; 1:500
默克密理博中国酪氨酸羟化酶抗体(Chemicon, MAB318)被用于被用于免疫组化在大鼠样本上浓度为1:500. Nat Commun (2015) ncbi
小鼠 单克隆(LNC1)
  • 免疫组化; 斑马鱼; 1:1000; 图 4
默克密理博中国酪氨酸羟化酶抗体(Millipore, MAB318)被用于被用于免疫组化在斑马鱼样本上浓度为1:1000 (图 4). Histochem Cell Biol (2016) ncbi
小鼠 单克隆(LNC1)
  • 免疫印迹; 大鼠; 1:1000
默克密理博中国酪氨酸羟化酶抗体(Merck, MAB318)被用于被用于免疫印迹在大鼠样本上浓度为1:1000. J Neurosci (2015) ncbi
小鼠 单克隆(LNC1)
  • 免疫组化-冰冻切片; 大鼠; 1:10,000; 图 3a
默克密理博中国酪氨酸羟化酶抗体(Chemicon, MAB 318)被用于被用于免疫组化-冰冻切片在大鼠样本上浓度为1:10,000 (图 3a). PLoS ONE (2015) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 小鼠; 1:1000; 表 1
  • 免疫组化; 小鼠; 1:1000; 表 1
  • 免疫印迹; 小鼠; 1:2000; 表 1
默克密理博中国酪氨酸羟化酶抗体(Millipore, AB152)被用于被用于免疫细胞化学在小鼠样本上浓度为1:1000 (表 1), 被用于免疫组化在小鼠样本上浓度为1:1000 (表 1) 和 被用于免疫印迹在小鼠样本上浓度为1:2000 (表 1). J Neurosci Res (2016) ncbi
小鼠 单克隆(LNC1)
  • 免疫印迹; 小鼠; 图 8b
默克密理博中国酪氨酸羟化酶抗体(Millipore, MAB318)被用于被用于免疫印迹在小鼠样本上 (图 8b). Sci Rep (2015) ncbi
小鼠 单克隆(LNC1)
  • 免疫组化-冰冻切片; 人类; 1:250; 图 6
默克密理博中国酪氨酸羟化酶抗体(Chemicon, MAB318)被用于被用于免疫组化-冰冻切片在人类样本上浓度为1:250 (图 6). Schizophr Res (2015) ncbi
小鼠 单克隆(LNC1)
  • 免疫细胞化学; 大鼠; 1:1000
默克密理博中国酪氨酸羟化酶抗体(Millipore, MAB318)被用于被用于免疫细胞化学在大鼠样本上浓度为1:1000. PLoS ONE (2015) ncbi
小鼠 单克隆(LNC1)
  • 免疫细胞化学; 人类; 图 3
默克密理博中国酪氨酸羟化酶抗体(Millipore, MAB318)被用于被用于免疫细胞化学在人类样本上 (图 3). J Neurosci (2015) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 1:500; 图 3
默克密理博中国酪氨酸羟化酶抗体(Millipore, AB152)被用于被用于免疫细胞化学在人类样本上浓度为1:500 (图 3). J Tissue Eng Regen Med (2017) ncbi
小鼠 单克隆(LNC1)
  • 免疫组化; 大鼠; 1:5000; 图 1
  • 免疫组化; 小鼠; 1:5000; 图 3
默克密理博中国酪氨酸羟化酶抗体(Millipore, MAB318)被用于被用于免疫组化在大鼠样本上浓度为1:5000 (图 1) 和 被用于免疫组化在小鼠样本上浓度为1:5000 (图 3). Acta Neuropathol Commun (2015) ncbi
小鼠 单克隆(LNC1)
  • 免疫印迹; 大鼠; 1:40000
默克密理博中国酪氨酸羟化酶抗体(Millipore, MAB318)被用于被用于免疫印迹在大鼠样本上浓度为1:40000. Neuropsychopharmacology (2016) ncbi
小鼠 单克隆(LNC1)
  • 免疫组化-自由浮动切片; 小鼠; 1:400
默克密理博中国酪氨酸羟化酶抗体(Millipore, MAB318)被用于被用于免疫组化-自由浮动切片在小鼠样本上浓度为1:400. J Biol Chem (2015) ncbi
小鼠 单克隆(LNC1)
  • 免疫组化-冰冻切片; 小鼠; 1:600
  • 免疫细胞化学; 小鼠; 1:600
默克密理博中国酪氨酸羟化酶抗体(MerckMillipore, MAB318)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:600 和 被用于免疫细胞化学在小鼠样本上浓度为1:600. Hum Gene Ther Methods (2015) ncbi
小鼠 单克隆(LNC1)
  • 免疫组化-自由浮动切片; 小鼠; 1:500; 图 2
默克密理博中国酪氨酸羟化酶抗体(Merck Millipore, MAB318)被用于被用于免疫组化-自由浮动切片在小鼠样本上浓度为1:500 (图 2). Mol Neurodegener (2015) ncbi
小鼠 单克隆(LNC1)
  • 免疫组化-自由浮动切片; 乙型肝炎病毒; 1:500
默克密理博中国酪氨酸羟化酶抗体(Millipore, MAB318)被用于被用于免疫组化-自由浮动切片在乙型肝炎病毒样本上浓度为1:500. Endocrinology (2015) ncbi
小鼠 单克隆(LNC1)
  • 免疫组化; 小鼠; 1:400; 图 5
默克密理博中国酪氨酸羟化酶抗体(Chemicon, MAB318)被用于被用于免疫组化在小鼠样本上浓度为1:400 (图 5). PLoS ONE (2015) ncbi
小鼠 单克隆(LNC1)
  • 免疫组化-冰冻切片; 小鼠; 1:1000
  • 免疫组化-冰冻切片; domestic rabbit; 1:1000
  • 免疫组化-冰冻切片; 大鼠; 1:1000
默克密理博中国酪氨酸羟化酶抗体(Merck Millipore Ltd, MAB318)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:1000, 被用于免疫组化-冰冻切片在domestic rabbit样本上浓度为1:1000 和 被用于免疫组化-冰冻切片在大鼠样本上浓度为1:1000. J Neurochem (2015) ncbi
小鼠 单克隆(LNC1)
  • 免疫细胞化学; 小鼠; 1:500; 图 S7
默克密理博中国酪氨酸羟化酶抗体(Millipore, MAB318)被用于被用于免疫细胞化学在小鼠样本上浓度为1:500 (图 S7). Nat Neurosci (2015) ncbi
小鼠 单克隆(LNC1)
  • 免疫组化-冰冻切片; 大鼠; 1:2000
默克密理博中国酪氨酸羟化酶抗体(Millipore, MAB318)被用于被用于免疫组化-冰冻切片在大鼠样本上浓度为1:2000. Neurobiol Aging (2015) ncbi
小鼠 单克隆(LNC1)
  • 免疫组化; 日本大米鱼; 1:1000; 图 2
默克密理博中国酪氨酸羟化酶抗体(Millipore, MAB318)被用于被用于免疫组化在日本大米鱼样本上浓度为1:1000 (图 2). PLoS Genet (2015) ncbi
小鼠 单克隆(LNC1)
  • 免疫组化; 大鼠; 1:500
默克密理博中国酪氨酸羟化酶抗体(Millipore, MAB318)被用于被用于免疫组化在大鼠样本上浓度为1:500. Brain Struct Funct (2016) ncbi
小鼠 单克隆(LNC1)
  • 免疫组化; 大鼠; 1:2000
默克密理博中国酪氨酸羟化酶抗体(Millipore, MAB318)被用于被用于免疫组化在大鼠样本上浓度为1:2000. J Neurosci (2015) ncbi
小鼠 单克隆(LNC1)
默克密理博中国酪氨酸羟化酶抗体(EMD Millipore, MAB318)被用于. Nat Neurosci (2015) ncbi
小鼠 单克隆(LNC1)
  • 免疫细胞化学; 大鼠; 1:500; 图 1
  • 免疫细胞化学; 小鼠; 1:500; 图 2
默克密理博中国酪氨酸羟化酶抗体(Millipore, MAB318)被用于被用于免疫细胞化学在大鼠样本上浓度为1:500 (图 1) 和 被用于免疫细胞化学在小鼠样本上浓度为1:500 (图 2). J Neurosci (2015) ncbi
小鼠 单克隆(LNC1)
  • 免疫组化-石蜡切片; 小鼠; 1:1000
默克密理博中国酪氨酸羟化酶抗体(Millipore, MAB318)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:1000. PLoS Genet (2014) ncbi
小鼠 单克隆(LNC1)
  • 免疫组化-冰冻切片; 大鼠; 1:4000
默克密理博中国酪氨酸羟化酶抗体(Millipore, MAB318)被用于被用于免疫组化-冰冻切片在大鼠样本上浓度为1:4000. Neurobiol Aging (2015) ncbi
小鼠 单克隆(LNC1)
  • 免疫组化-石蜡切片; 小鼠; 1:1000
默克密理博中国酪氨酸羟化酶抗体(Millipore, MAB318)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:1000. Cell Tissue Res (2015) ncbi
小鼠 单克隆(LNC1)
  • 免疫印迹; 小鼠; 图 7
默克密理博中国酪氨酸羟化酶抗体(Millipore, MAB318)被用于被用于免疫印迹在小鼠样本上 (图 7). FASEB J (2015) ncbi
domestic rabbit 多克隆
  • 免疫组化; 大鼠; 1:2000; 图 5a
默克密理博中国酪氨酸羟化酶抗体(EMD Millipore, AB152)被用于被用于免疫组化在大鼠样本上浓度为1:2000 (图 5a). Brain Struct Funct (2016) ncbi
小鼠 单克隆(LNC1)
  • 免疫细胞化学; 家羊; 1:500
默克密理博中国酪氨酸羟化酶抗体(Chemicon, MAB318)被用于被用于免疫细胞化学在家羊样本上浓度为1:500. Ann Anat (2014) ncbi
小鼠 单克隆(LNC1)
  • 免疫组化; 小鼠; 1:5,000
默克密理博中国酪氨酸羟化酶抗体(Chemicon, MAB318)被用于被用于免疫组化在小鼠样本上浓度为1:5,000. J Comp Neurol (2015) ncbi
小鼠 单克隆(LNC1)
  • 免疫细胞化学; 大鼠; 1:5000
默克密理博中国酪氨酸羟化酶抗体(Merck Millipore, MAB318)被用于被用于免疫细胞化学在大鼠样本上浓度为1:5000. Acta Histochem Cytochem (2014) ncbi
小鼠 单克隆(LNC1)
  • 免疫组化; 人类
默克密理博中国酪氨酸羟化酶抗体(Millipore, MAB318)被用于被用于免疫组化在人类样本上. PLoS ONE (2014) ncbi
小鼠 单克隆(LNC1)
  • 免疫细胞化学; 小鼠; 1:2000; 图 8
默克密理博中国酪氨酸羟化酶抗体(Millipore, MAB318)被用于被用于免疫细胞化学在小鼠样本上浓度为1:2000 (图 8). J Neurosci (2014) ncbi
小鼠 单克隆(LNC1)
  • 免疫组化; 斑马鱼; 1:400
默克密理博中国酪氨酸羟化酶抗体(Millipore, MAB318)被用于被用于免疫组化在斑马鱼样本上浓度为1:400. J Biol Chem (2014) ncbi
小鼠 单克隆(LNC1)
  • 免疫印迹; 大鼠; 1:1000
默克密理博中国酪氨酸羟化酶抗体(Millipore, MAB318)被用于被用于免疫印迹在大鼠样本上浓度为1:1000. PLoS ONE (2014) ncbi
小鼠 单克隆(LNC1)
  • 免疫组化-冰冻切片; 小鼠; 1:1000
默克密理博中国酪氨酸羟化酶抗体(Millipore, MAB318)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:1000. Biochim Biophys Acta (2014) ncbi
小鼠 单克隆(LNC1)
  • 免疫组化-冰冻切片; 七鳃鳗目; 1:600
默克密理博中国酪氨酸羟化酶抗体(Millipore, MAB318)被用于被用于免疫组化-冰冻切片在七鳃鳗目样本上浓度为1:600. J Comp Neurol (2014) ncbi
小鼠 单克隆(LNC1)
  • 免疫组化-自由浮动切片; 小鼠; 1:500; 图 1h
默克密理博中国酪氨酸羟化酶抗体(Millipore, MAB318)被用于被用于免疫组化-自由浮动切片在小鼠样本上浓度为1:500 (图 1h). Brain Struct Funct (2015) ncbi
小鼠 单克隆(LNC1)
默克密理博中国酪氨酸羟化酶抗体(Millipore / Chemicon, MAB318)被用于. J Comp Neurol (2014) ncbi
小鼠 单克隆(LNC1)
  • 免疫组化; African green monkey; 1:1000
默克密理博中国酪氨酸羟化酶抗体(Millipore, MAB318)被用于被用于免疫组化在African green monkey样本上浓度为1:1000. J Comp Neurol (2014) ncbi
小鼠 单克隆(LNC1)
  • 免疫组化; 小鼠; 1:5000
默克密理博中国酪氨酸羟化酶抗体(Millipore, MAB318)被用于被用于免疫组化在小鼠样本上浓度为1:5000. Endocrinology (2014) ncbi
小鼠 单克隆(LNC1)
  • 免疫组化; 小鼠; 1:1000
默克密理博中国酪氨酸羟化酶抗体(Millipore, MAB318)被用于被用于免疫组化在小鼠样本上浓度为1:1000. J Comp Neurol (2014) ncbi
小鼠 单克隆(LNC1)
  • 免疫组化-冰冻切片; 大鼠; 1:2000
默克密理博中国酪氨酸羟化酶抗体(Millipore, MAB318)被用于被用于免疫组化-冰冻切片在大鼠样本上浓度为1:2000. J Virol (2014) ncbi
小鼠 单克隆(LNC1)
  • 免疫组化; 大鼠; 1:2000
默克密理博中国酪氨酸羟化酶抗体(Millipore, MAB318)被用于被用于免疫组化在大鼠样本上浓度为1:2000. Neurobiol Aging (2014) ncbi
小鼠 单克隆(LNC1)
  • 免疫组化; 大鼠; 1:1000
默克密理博中国酪氨酸羟化酶抗体(Millipore, MAB318)被用于被用于免疫组化在大鼠样本上浓度为1:1000. CNS Neurosci Ther (2014) ncbi
小鼠 单克隆(LNC1)
  • 免疫组化-冰冻切片; 小鼠; 1:200
默克密理博中国酪氨酸羟化酶抗体(Millipore, MAB318)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:200. Genesis (2014) ncbi
小鼠 单克隆(LNC1)
  • 免疫组化-自由浮动切片; 小鼠; 1:1000
默克密理博中国酪氨酸羟化酶抗体(Millipore, MAB318)被用于被用于免疫组化-自由浮动切片在小鼠样本上浓度为1:1000. J Neurosci (2013) ncbi
小鼠 单克隆(LNC1)
  • 免疫组化; smaller spotted dogfish; 1:500
默克密理博中国酪氨酸羟化酶抗体(Millipore, MAB318)被用于被用于免疫组化在smaller spotted dogfish样本上浓度为1:500. J Comp Neurol (2014) ncbi
小鼠 单克隆(LNC1)
  • 免疫组化-石蜡切片; 小鼠; 1:200
默克密理博中国酪氨酸羟化酶抗体(Chemicon / Millipore, MAB318)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:200. J Comp Neurol (2013) ncbi
小鼠 单克隆(LNC1)
  • 免疫组化-冰冻切片; 猪; 1:80
默克密理博中国酪氨酸羟化酶抗体(Chemicon, MAB 318)被用于被用于免疫组化-冰冻切片在猪样本上浓度为1:80. J Mol Neurosci (2013) ncbi
小鼠 单克隆(LNC1)
  • 免疫组化-自由浮动切片; 大鼠; 1:2000
默克密理博中国酪氨酸羟化酶抗体(Millipore, MAB318)被用于被用于免疫组化-自由浮动切片在大鼠样本上浓度为1:2000. Brain Behav (2013) ncbi
小鼠 单克隆(LNC1)
  • 免疫细胞化学; 小鼠; 1:200
默克密理博中国酪氨酸羟化酶抗体(Chemicon, Mab318)被用于被用于免疫细胞化学在小鼠样本上浓度为1:200. Genesis (2013) ncbi
小鼠 单克隆(LNC1)
  • 免疫组化; 人类; 1:2000
默克密理博中国酪氨酸羟化酶抗体(Millipore, MAB318)被用于被用于免疫组化在人类样本上浓度为1:2000. Gene Ther (2013) ncbi
小鼠 单克隆(LNC1)
  • 免疫细胞化学; 人类
默克密理博中国酪氨酸羟化酶抗体(Millipore, MAB318)被用于被用于免疫细胞化学在人类样本上. Stem Cell Rev (2012) ncbi
小鼠 单克隆(LNC1)
  • 免疫组化; 斑马鱼; 1:1000
默克密理博中国酪氨酸羟化酶抗体(Chemicon, MAB318)被用于被用于免疫组化在斑马鱼样本上浓度为1:1000. Dev Biol (2012) ncbi
小鼠 单克隆(LNC1)
  • 免疫组化-冰冻切片; European river lamprey; 1:600
默克密理博中国酪氨酸羟化酶抗体(Millipore, MAB318)被用于被用于免疫组化-冰冻切片在European river lamprey样本上浓度为1:600. J Comp Neurol (2012) ncbi
小鼠 单克隆(LNC1)
  • 免疫组化-冰冻切片; 斑马鱼; 1:400
默克密理博中国酪氨酸羟化酶抗体(Millipore, MAB318)被用于被用于免疫组化-冰冻切片在斑马鱼样本上浓度为1:400. J Comp Neurol (2012) ncbi
小鼠 单克隆(LNC1)
  • 免疫组化-冰冻切片; 猕猴; 1:1000
默克密理博中国酪氨酸羟化酶抗体(Millipore, MAB318)被用于被用于免疫组化-冰冻切片在猕猴样本上浓度为1:1000. J Comp Neurol (2011) ncbi
小鼠 单克隆(LNC1)
  • 免疫组化-冰冻切片; 大鼠; 1:40000
默克密理博中国酪氨酸羟化酶抗体(Chemicon, MAB318)被用于被用于免疫组化-冰冻切片在大鼠样本上浓度为1:40000. J Comp Neurol (2012) ncbi
小鼠 单克隆(LNC1)
  • 免疫组化-冰冻切片; 小鼠; 1:2000
默克密理博中国酪氨酸羟化酶抗体(Millipore-Chemicon, MAB318)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:2000. J Comp Neurol (2011) ncbi
小鼠 单克隆(LNC1)
  • 免疫组化; 小鼠; 1:500
默克密理博中国酪氨酸羟化酶抗体(Millipore, MAB318)被用于被用于免疫组化在小鼠样本上浓度为1:500. J Comp Neurol (2012) ncbi
小鼠 单克隆(LNC1)
  • 免疫组化; 人类; 1:100
默克密理博中国酪氨酸羟化酶抗体(Millipore, LNC1)被用于被用于免疫组化在人类样本上浓度为1:100. PLoS ONE (2011) ncbi
小鼠 单克隆(LNC1)
  • 免疫组化-石蜡切片; 人类; 1:100
  • 免疫组化-石蜡切片; 猕猴; 1:100
默克密理博中国酪氨酸羟化酶抗体(Millipore, MAB318)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100 和 被用于免疫组化-石蜡切片在猕猴样本上浓度为1:100. J Comp Neurol (2011) ncbi
小鼠 单克隆(LNC1)
  • 免疫组化-自由浮动切片; 小鼠; 1:2000
默克密理博中国酪氨酸羟化酶抗体(Millipore, MAB318)被用于被用于免疫组化-自由浮动切片在小鼠样本上浓度为1:2000. J Comp Neurol (2011) ncbi
小鼠 单克隆(LNC1)
  • 免疫印迹; 斑马鱼; 1:1000
默克密理博中国酪氨酸羟化酶抗体(Millipore, MAB318)被用于被用于免疫印迹在斑马鱼样本上浓度为1:1000. J Comp Neurol (2011) ncbi
小鼠 单克隆(LNC1)
  • 免疫组化-冰冻切片; 斑马鱼; 1:200 - 1:500
默克密理博中国酪氨酸羟化酶抗体(Chemicon International Inc., MAB318)被用于被用于免疫组化-冰冻切片在斑马鱼样本上浓度为1:200 - 1:500. J Comp Neurol (2010) ncbi
小鼠 单克隆(LNC1)
  • 免疫组化-冰冻切片; 小鼠; 1:500
默克密理博中国酪氨酸羟化酶抗体(Chemicon International, MAB318)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:500. J Comp Neurol (2010) ncbi
小鼠 单克隆(LNC1)
  • 免疫组化-冰冻切片; 斑马鱼; 1:1000
默克密理博中国酪氨酸羟化酶抗体(Chemicon, MAB318)被用于被用于免疫组化-冰冻切片在斑马鱼样本上浓度为1:1000. J Comp Neurol (2010) ncbi
小鼠 单克隆(LNC1)
  • 免疫组化-冰冻切片; 小鼠; 1:500
默克密理博中国酪氨酸羟化酶抗体(Millipore, MAB318)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:500. J Comp Neurol (2010) ncbi
小鼠 单克隆(LNC1)
  • 免疫组化-冰冻切片; 大鼠; 1:4000
  • 免疫细胞化学; 大鼠; 1:4000
默克密理博中国酪氨酸羟化酶抗体(Millipore-Chemicon, MAB318)被用于被用于免疫组化-冰冻切片在大鼠样本上浓度为1:4000 和 被用于免疫细胞化学在大鼠样本上浓度为1:4000. J Comp Neurol (2009) ncbi
小鼠 单克隆(LNC1)
  • 免疫组化-自由浮动切片; 大鼠; 1:5000
默克密理博中国酪氨酸羟化酶抗体(Chemicon, MAB318)被用于被用于免疫组化-自由浮动切片在大鼠样本上浓度为1:5000. J Comp Neurol (2009) ncbi
小鼠 单克隆(LNC1)
  • 免疫组化-冰冻切片; 非洲爪蛙; 1:100
  • 免疫印迹; 非洲爪蛙; 1:200
默克密理博中国酪氨酸羟化酶抗体(Chemicon, MAB318)被用于被用于免疫组化-冰冻切片在非洲爪蛙样本上浓度为1:100 和 被用于免疫印迹在非洲爪蛙样本上浓度为1:200. J Comp Neurol (2009) ncbi
小鼠 单克隆(LNC1)
  • 免疫组化-冰冻切片; smaller spotted dogfish; 1:2,500
默克密理博中国酪氨酸羟化酶抗体(Chemicon, MAB318)被用于被用于免疫组化-冰冻切片在smaller spotted dogfish样本上浓度为1:2,500. J Comp Neurol (2008) ncbi
小鼠 单克隆(LNC1)
  • 免疫组化; 大鼠; 1:2000
默克密理博中国酪氨酸羟化酶抗体(Chemicon / Millipore, MAB318)被用于被用于免疫组化在大鼠样本上浓度为1:2000. J Comp Neurol (2008) ncbi
小鼠 单克隆(LNC1)
  • 免疫组化-自由浮动切片; 大鼠; 1:400
默克密理博中国酪氨酸羟化酶抗体(Chemicon, MAB318)被用于被用于免疫组化-自由浮动切片在大鼠样本上浓度为1:400. J Comp Neurol (2008) ncbi
小鼠 单克隆(LNC1)
  • 免疫组化-自由浮动切片; 小鼠; 1:2000
默克密理博中国酪氨酸羟化酶抗体(Millipore, MAB318)被用于被用于免疫组化-自由浮动切片在小鼠样本上浓度为1:2000. J Comp Neurol (2008) ncbi
小鼠 单克隆(LNC1)
  • 免疫组化-冰冻切片; 斑马鱼; 1:1,000
默克密理博中国酪氨酸羟化酶抗体(Chemicon, MAB318)被用于被用于免疫组化-冰冻切片在斑马鱼样本上浓度为1:1,000. J Comp Neurol (2008) ncbi
小鼠 单克隆(LNC1)
  • 免疫组化-冰冻切片; 大鼠; 1:1,000
默克密理博中国酪氨酸羟化酶抗体(Chemicon, MAB318)被用于被用于免疫组化-冰冻切片在大鼠样本上浓度为1:1,000. J Comp Neurol (2008) ncbi
小鼠 单克隆(LNC1)
  • 免疫组化-自由浮动切片; 大鼠; 1:500
默克密理博中国酪氨酸羟化酶抗体(Chemicon, MAB318)被用于被用于免疫组化-自由浮动切片在大鼠样本上浓度为1:500. J Comp Neurol (2006) ncbi
小鼠 单克隆(LNC1)
  • 免疫组化-自由浮动切片; 大鼠; 1:5000
默克密理博中国酪氨酸羟化酶抗体(Chemicon, MAB318)被用于被用于免疫组化-自由浮动切片在大鼠样本上浓度为1:5000. J Comp Neurol (2005) ncbi
徕卡显微系统(上海)贸易有限公司
  • 免疫组化-石蜡切片; 人类; 1:50; 表 2
徕卡显微系统(上海)贸易有限公司酪氨酸羟化酶抗体(Leica-Novocastra, NCL-TH36011)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:50 (表 2). Eur J Histochem (2015) ncbi
文章列表
  1. You H, Shang W, Min X, Weinreb J, Li Q, Leapman M, et al. Sight and switch off: Nerve density visualization for interventions targeting nerves in prostate cancer. Sci Adv. 2020;6:eaax6040 pubmed 出版商
  2. Xie K, Wang N, Lin X, Wang Z, Zhao X, Fang P, et al. Organic electrochemical transistor arrays for real-time mapping of evoked neurotransmitter release in vivo. elife. 2020;9: pubmed 出版商
  3. Moriya S, Yamashita A, Masukawa D, Kambe Y, Sakaguchi J, Setoyama H, et al. Involvement of supralemniscal nucleus (B9) 5-HT neuronal system in nociceptive processing: a fiber photometry study. Mol Brain. 2020;13:14 pubmed 出版商
  4. Emam A, Yoffe M, Cardona H, Soares D. Retinal morphology in Astyanax mexicanus during eye degeneration. J Comp Neurol. 2020;528:1523-1534 pubmed 出版商
  5. Wullimann M, Umeasalugo K. Sonic hedgehog expression in zebrafish forebrain identifies the teleostean pallidal signaling center and shows preglomerular complex and posterior tubercular dopamine cells to arise from shh cells. J Comp Neurol. 2019;: pubmed 出版商
  6. Thoen H, Wolff G, Marshall J, Sayre M, Strausfeld N. The reniform body: An integrative lateral protocerebral neuropil complex of Eumalacostraca identified in Stomatopoda and Brachyura. J Comp Neurol. 2019;: pubmed 出版商
  7. Aoki S, Smith J, Li H, Yan X, Igarashi M, Coulon P, et al. An open cortico-basal ganglia loop allows limbic control over motor output via the nigrothalamic pathway. elife. 2019;8: pubmed 出版商
  8. Strausfeld N, Sayre M. Mushroom bodies in Reptantia reflect a major transition in crustacean brain evolution. J Comp Neurol. 2020;528:261-282 pubmed 出版商
  9. L pez J, Morona R, Moreno N, Lozano D, Jim nez S, Gonz lez A. Pax6 expression highlights regional organization in the adult brain of lungfishes, the closest living relatives of land vertebrates. J Comp Neurol. 2020;528:135-159 pubmed 出版商
  10. Beaus jour P, Auclair F, Daghfous G, Ngovandan C, Veilleux D, Zielinski B, et al. Dopaminergic modulation of olfactory-evoked motor output in sea lampreys (Petromyzon marinus L.). J Comp Neurol. 2020;528:114-134 pubmed 出版商
  11. Diniz G, Battagello D, Cherubini P, Reyes Mendoza J, Luna Illades C, Klein M, et al. Melanin-concentrating hormone peptidergic system: Comparative morphology between muroid species. J Comp Neurol. 2019;527:2973-3001 pubmed 出版商
  12. Wen Y, Zhang Z, Li Z, Liu G, Tao G, Song X, et al. The PROK2/PROKR2 signaling pathway is required for the migration of most olfactory bulb interneurons. J Comp Neurol. 2019;527:2931-2947 pubmed 出版商
  13. Szonyi A, Sos K, Nyilas R, Schlingloff D, Domonkos A, Takács V, et al. Brainstem nucleus incertus controls contextual memory formation. Science. 2019;364: pubmed 出版商
  14. Halbout B, Marshall A, Azimi A, Liljeholm M, Mahler S, Wassum K, et al. Mesolimbic dopamine projections mediate cue-motivated reward seeking but not reward retrieval in rats. elife. 2019;8: pubmed 出版商
  15. Gumbs M, Vuuregge A, Eggels L, Unmehopa U, Lamuadni K, Mul J, et al. Afferent neuropeptide Y projections to the ventral tegmental area in normal-weight male Wistar rats. J Comp Neurol. 2019;527:2659-2674 pubmed 出版商
  16. McAlpine C, Kiss M, Rattik S, He S, Vassalli A, Valet C, et al. Sleep modulates haematopoiesis and protects against atherosclerosis. Nature. 2019;566:383-387 pubmed 出版商
  17. Sen S, Parishar P, Pundir A, Reiner A, Iyengar S. The expression of tyrosine hydroxylase and DARPP-32 in the house crow (Corvus splendens) brain. J Comp Neurol. 2019;527:1801-1836 pubmed 出版商
  18. Lopez J, Morona R, González A. Pattern of nitrergic cells and fibers organization in the central nervous system of the Australian lungfish, Neoceratodus forsteri (Sarcopterygii: Dipnoi). J Comp Neurol. 2019;527:1771-1800 pubmed 出版商
  19. Hu K, Huang Q, Liu C, Li Y, Liu Y, Wang H, et al. c-Jun/Bim Upregulation in Dopaminergic Neurons Promotes Neurodegeneration in the MPTP Mouse Model of Parkinson's Disease. Neuroscience. 2019;399:117-124 pubmed 出版商
  20. Fischer A, Schlein C, Cannon B, Heeren J, Nedergaard J. Intact innervation is essential for diet-induced recruitment of brown adipose tissue. Am J Physiol Endocrinol Metab. 2019;316:E487-E503 pubmed 出版商
  21. Kawaguchi M, Hagio H, Yamamoto N, Matsumoto K, Nakayama K, Akazome Y, et al. Atlas of the telencephalon based on cytoarchitecture, neurochemical markers, and gene expressions in Rhinogobius flumineus [Mizuno, 1960]. J Comp Neurol. 2019;527:874-900 pubmed 出版商
  22. Munteanu T, Noronha K, Leung A, Pan S, Lucas J, Schmidt T. Light-dependent pathways for dopaminergic amacrine cell development and function. elife. 2018;7: pubmed 出版商
  23. Breton J, Charbit A, Snyder B, Fong P, Dias E, Himmels P, et al. Relative contributions and mapping of ventral tegmental area dopamine and GABA neurons by projection target in the rat. J Comp Neurol. 2019;527:916-941 pubmed 出版商
  24. Luo S, Huang J, Li Q, Mohammad H, Lee C, Krishna K, et al. Regulation of feeding by somatostatin neurons in the tuberal nucleus. Science. 2018;361:76-81 pubmed 出版商
  25. Balan I, Warnock K, Puche A, GONDRE LEWIS M, JUNE H, Aurelian L. The GABAA Receptor α2 Subunit Activates a Neuronal TLR4 Signal in the Ventral Tegmental Area that Regulates Alcohol and Nicotine Abuse. Brain Sci. 2018;8: pubmed 出版商
  26. Sato S, Uchihara T, Fukuda T, Noda S, Kondo H, Saiki S, et al. Loss of autophagy in dopaminergic neurons causes Lewy pathology and motor dysfunction in aged mice. Sci Rep. 2018;8:2813 pubmed 出版商
  27. Lin Y, Kuo K, Chen S, Huang H. RBFOX3/NeuN is dispensable for visual function. PLoS ONE. 2018;13:e0192355 pubmed 出版商
  28. Xiong Y, Neifert S, Karuppagounder S, Liu Q, Stankowski J, Lee B, et al. Robust kinase- and age-dependent dopaminergic and norepinephrine neurodegeneration in LRRK2 G2019S transgenic mice. Proc Natl Acad Sci U S A. 2018;115:1635-1640 pubmed 出版商
  29. Dunn A, Hoffman C, Stout K, Ozawa M, Dhamsania R, Miller G. Immunochemical analysis of the expression of SV2C in mouse, macaque and human brain. Brain Res. 2019;1702:85-95 pubmed 出版商
  30. Johnson E, Westbrook T, Shayesteh R, Chen E, Schumacher J, Fitzpatrick D, et al. Distribution and diversity of intrinsically photosensitive retinal ganglion cells in tree shrew. J Comp Neurol. 2019;527:328-344 pubmed 出版商
  31. Parmhans N, Sajgo S, Niu J, Luo W, Badea T. Characterization of retinal ganglion cell, horizontal cell, and amacrine cell types expressing the neurotrophic receptor tyrosine kinase Ret. J Comp Neurol. 2018;526:742-766 pubmed 出版商
  32. Zhang Z, Chu S, Wang S, Jiang Y, Gao Y, Yang P, et al. RTP801 is a critical factor in the neurodegeneration process of A53T α-synuclein in a mouse model of Parkinson's disease under chronic restraint stress. Br J Pharmacol. 2018;175:590-605 pubmed 出版商
  33. Bernstein D, Badve P, Barson J, Bass C, Espana R. Hypocretin receptor 1 knockdown in the ventral tegmental area attenuates mesolimbic dopamine signaling and reduces motivation for cocaine. Addict Biol. 2018;23:1032-1045 pubmed 出版商
  34. Hoshi H, Sato F. The morphological characterization of orientation-biased displaced large-field ganglion cells in the central part of goldfish retina. J Comp Neurol. 2018;526:243-261 pubmed 出版商
  35. Litteljohn D, Rudyk C, Dwyer Z, Farmer K, Fortin T, Hayley S. The impact of murine LRRK2 G2019S transgene overexpression on acute responses to inflammatory challenge. Brain Behav Immun. 2018;67:246-256 pubmed 出版商
  36. Salazar S, Gallardo C, Kaufman A, Herber C, Haas L, Robinson S, et al. Conditional Deletion of Prnp Rescues Behavioral and Synaptic Deficits after Disease Onset in Transgenic Alzheimer's Disease. J Neurosci. 2017;37:9207-9221 pubmed 出版商
  37. Barreiro Iglesias A, Fernández López B, Sobrido Cameán D, Anadón R. Organization of alpha-transducin immunoreactive system in the brain and retina of larval and young adult Sea Lamprey (Petromyzon marinus), and their relationship with other neural systems. J Comp Neurol. 2017;525:3683-3704 pubmed 出版商
  38. González Cabrera C, Meza R, Ulloa L, Merino Sepúlveda P, Luco V, Sanhueza A, et al. Characterization of the axon initial segment of mice substantia nigra dopaminergic neurons. J Comp Neurol. 2017;525:3529-3542 pubmed 出版商
  39. Seigneur E, Südhof T. Cerebellins are differentially expressed in selective subsets of neurons throughout the brain. J Comp Neurol. 2017;525:3286-3311 pubmed 出版商
  40. Furlan A, Dyachuk V, Kastriti M, Calvo Enrique L, Abdo H, Hadjab S, et al. Multipotent peripheral glial cells generate neuroendocrine cells of the adrenal medulla. Science. 2017;357: pubmed 出版商
  41. van Groningen T, Koster J, Valentijn L, Zwijnenburg D, Akogul N, Hasselt N, et al. Neuroblastoma is composed of two super-enhancer-associated differentiation states. Nat Genet. 2017;49:1261-1266 pubmed 出版商
  42. López J, González A. Organization of the catecholaminergic systems in the brain of lungfishes, the closest living relatives of terrestrial vertebrates. J Comp Neurol. 2017;525:3083-3109 pubmed 出版商
  43. Fischer D, Kemp C, Cole Strauss A, Polinski N, Paumier K, Lipton J, et al. Subthalamic Nucleus Deep Brain Stimulation Employs trkB Signaling for Neuroprotection and Functional Restoration. J Neurosci. 2017;37:6786-6796 pubmed 出版商
  44. Shiba Fukushima K, Ishikawa K, Inoshita T, Izawa N, Takanashi M, Sato S, et al. Evidence that phosphorylated ubiquitin signaling is involved in the etiology of Parkinson's disease. Hum Mol Genet. 2017;26:3172-3185 pubmed 出版商
  45. Escobar A, González M, Meza R, Noches V, Henny P, Gysling K, et al. Mechanisms of Kappa Opioid Receptor Potentiation of Dopamine D2 Receptor Function in Quinpirole-Induced Locomotor Sensitization in Rats. Int J Neuropsychopharmacol. 2017;20:660-669 pubmed 出版商
  46. Watson C, Shimogori T, Puelles L. Mouse Fgf8-Cre-LacZ lineage analysis defines the territory of the postnatal mammalian isthmus. J Comp Neurol. 2017;525:2782-2799 pubmed 出版商
  47. Solek C, Feng S, Perin S, Weinschutz Mendes H, Ekker M. Lineage tracing of dlx1a/2a and dlx5a/6a expressing cells in the developing zebrafish brain. Dev Biol. 2017;427:131-147 pubmed 出版商
  48. Takahashi Y, Wu J, Suzuki K, Martínez Redondo P, Li M, Liao H, et al. Integration of CpG-free DNA induces de novo methylation of CpG islands in pluripotent stem cells. Science. 2017;356:503-508 pubmed 出版商
  49. Quadrato G, Nguyen T, Macosko E, Sherwood J, Min Yang S, Berger D, et al. Cell diversity and network dynamics in photosensitive human brain organoids. Nature. 2017;545:48-53 pubmed 出版商
  50. Mendivil Perez M, Soto Mercado V, Guerra Librero A, Fernandez Gil B, Florido J, Shen Y, et al. Melatonin enhances neural stem cell differentiation and engraftment by increasing mitochondrial function. J Pineal Res. 2017;63: pubmed 出版商
  51. Ho T, Lee C, Lu Z, Lane H, Tsai M, Ho I, et al. Effects of Electroacupuncture on Methamphetamine-Induced Behavioral Changes in Mice. Evid Based Complement Alternat Med. 2017;2017:5642708 pubmed 出版商
  52. Xavier A, Fontaine R, Bloch S, Affaticati P, Jenett A, Demarque M, et al. Comparative analysis of monoaminergic cerebrospinal fluid-contacting cells in Osteichthyes (bony vertebrates). J Comp Neurol. 2017;525:2265-2283 pubmed 出版商
  53. Longo F, Mercatelli D, Novello S, Arcuri L, Brugnoli A, Vincenzi F, et al. Age-dependent dopamine transporter dysfunction and Serine129 phospho-α-synuclein overload in G2019S LRRK2 mice. Acta Neuropathol Commun. 2017;5:22 pubmed 出版商
  54. Pomeranz L, Ekstrand M, Latcha K, Smith G, Enquist L, Friedman J. Gene Expression Profiling with Cre-Conditional Pseudorabies Virus Reveals a Subset of Midbrain Neurons That Participate in Reward Circuitry. J Neurosci. 2017;37:4128-4144 pubmed 出版商
  55. Shan M, Lin S, Li S, Du Y, Zhao H, Hong H, et al. TIR-Domain-Containing Adapter-Inducing Interferon-? (TRIF) Is Essential for MPTP-Induced Dopaminergic Neuroprotection via Microglial Cell M1/M2 Modulation. Front Cell Neurosci. 2017;11:35 pubmed 出版商
  56. Delfino Machin M, Madelaine R, Busolin G, Nikaido M, Colanesi S, Camargo Sosa K, et al. Sox10 contributes to the balance of fate choice in dorsal root ganglion progenitors. PLoS ONE. 2017;12:e0172947 pubmed 出版商
  57. Williams C, Uytingco C, Green W, McIntyre J, Ukhanov K, Zimmerman A, et al. Gene Therapeutic Reversal of Peripheral Olfactory Impairment in Bardet-Biedl Syndrome. Mol Ther. 2017;25:904-916 pubmed 出版商
  58. Zhao F, Wang W, Wang C, Siedlak S, Fujioka H, Tang B, et al. Mfn2 protects dopaminergic neurons exposed to paraquat both in vitro and in vivo: Implications for idiopathic Parkinson's disease. Biochim Biophys Acta Mol Basis Dis. 2017;1863:1359-1370 pubmed 出版商
  59. Furukawa S, Nagaike M, Ozaki K. Databases for technical aspects of immunohistochemistry. J Toxicol Pathol. 2017;30:79-107 pubmed 出版商
  60. Roberts H, Schneider B, Brown D. α-Synuclein increases β-amyloid secretion by promoting β-/γ-secretase processing of APP. PLoS ONE. 2017;12:e0171925 pubmed 出版商
  61. Goodings L, He J, Wood A, Harris W, Currie P, Jusuf P. In vivo expression of Nurr1/Nr4a2a in developing retinal amacrine subtypes in zebrafish Tg(nr4a2a:eGFP) transgenics. J Comp Neurol. 2017;525:1962-1979 pubmed 出版商
  62. Hannibal J, Christiansen A, Heegaard S, Fahrenkrug J, Kiilgaard J. Melanopsin expressing human retinal ganglion cells: Subtypes, distribution, and intraretinal connectivity. J Comp Neurol. 2017;525:1934-1961 pubmed 出版商
  63. Green H, Zhang X, Tiklová K, Volakakis N, Brodin L, Berg L, et al. Alterations of p11 in brain tissue and peripheral blood leukocytes in Parkinson's disease. Proc Natl Acad Sci U S A. 2017;114:2735-2740 pubmed 出版商
  64. Perelmuter J, Forlano P. Connectivity and ultrastructure of dopaminergic innervation of the inner ear and auditory efferent system of a vocal fish. J Comp Neurol. 2017;525:2090-2108 pubmed 出版商
  65. Liu H, Ho P, Leung G, Lam C, Pang S, Li L, et al. Combined LRRK2 mutation, aging and chronic low dose oral rotenone as a model of Parkinson's disease. Sci Rep. 2017;7:40887 pubmed 出版商
  66. Wircer E, Blechman J, Borodovsky N, Tsoory M, Nunes A, Oliveira R, et al. Homeodomain protein Otp affects developmental neuropeptide switching in oxytocin neurons associated with a long-term effect on social behavior. elife. 2017;6: pubmed 出版商
  67. Song L, McMackin M, Nguyen A, Cortopassi G. Parkin deficiency accelerates consequences of mitochondrial DNA deletions and Parkinsonism. Neurobiol Dis. 2017;100:30-38 pubmed 出版商
  68. Fasoli A, Dang J, Johnson J, Gouw A, Fogli Iseppe A, Ishida A. Somatic and neuritic spines on tyrosine hydroxylase-immunopositive cells of rat retina. J Comp Neurol. 2017;525:1707-1730 pubmed 出版商
  69. Oh Y, Karube F, Takahashi S, Kobayashi K, Takada M, Uchigashima M, et al. Using a novel PV-Cre rat model to characterize pallidonigral cells and their terminations. Brain Struct Funct. 2017;222:2359-2378 pubmed 出版商
  70. Higo S, Iijima N, Ozawa H. Characterisation of Kiss1r (Gpr54)-Expressing Neurones in the Arcuate Nucleus of the Female Rat Hypothalamus. J Neuroendocrinol. 2017;29: pubmed 出版商
  71. Dzamko N, Gysbers A, Bandopadhyay R, Bolliger M, Uchino A, Zhao Y, et al. LRRK2 levels and phosphorylation in Parkinson's disease brain and cases with restricted Lewy bodies. Mov Disord. 2017;32:423-432 pubmed 出版商
  72. Koprich J, Johnston T, Reyes G, Omana V, Brotchie J. Towards a Non-Human Primate Model of Alpha-Synucleinopathy for Development of Therapeutics for Parkinson's Disease: Optimization of AAV1/2 Delivery Parameters to Drive Sustained Expression of Alpha Synuclein and Dopaminergic Degeneration in Macaque. PLoS ONE. 2016;11:e0167235 pubmed 出版商
  73. Kordower J, Goetz C, Chu Y, Halliday G, Nicholson D, Musial T, et al. Robust graft survival and normalized dopaminergic innervation do not obligate recovery in a Parkinson disease patient. Ann Neurol. 2017;81:46-57 pubmed 出版商
  74. Kiyokage E, Kobayashi K, Toida K. Spatial distribution of synapses on tyrosine hydroxylase-expressing juxtaglomerular cells in the mouse olfactory glomerulus. J Comp Neurol. 2017;525:1059-1074 pubmed 出版商
  75. Zeltner N, Fattahi F, Dubois N, Saurat N, Lafaille F, Shang L, et al. Capturing the biology of disease severity in a PSC-based model of familial dysautonomia. Nat Med. 2016;22:1421-1427 pubmed 出版商
  76. Zha J, Liu X, Zhu J, Liu S, Lu S, Xu P, et al. A scFv antibody targeting common oligomeric epitope has potential for treating several amyloidoses. Sci Rep. 2016;6:36631 pubmed 出版商
  77. He J, Xiang Z, Zhu X, Ai Z, Shen J, Huang T, et al. Neuroprotective Effects of 7, 8-dihydroxyflavone on Midbrain Dopaminergic Neurons in MPP+-treated Monkeys. Sci Rep. 2016;6:34339 pubmed 出版商
  78. La Manno G, Gyllborg D, Codeluppi S, Nishimura K, Salto C, Zeisel A, et al. Molecular Diversity of Midbrain Development in Mouse, Human, and Stem Cells. Cell. 2016;167:566-580.e19 pubmed 出版商
  79. Vyas P, Wu J, Zimmerman A, Fuchs P, Glowatzki E. Tyrosine Hydroxylase Expression in Type II Cochlear Afferents in Mice. J Assoc Res Otolaryngol. 2017;18:139-151 pubmed 出版商
  80. Doan K, Kinyua A, Yang D, Ko C, Moh S, Shong K, et al. FoxO1 in dopaminergic neurons regulates energy homeostasis and targets tyrosine hydroxylase. Nat Commun. 2016;7:12733 pubmed 出版商
  81. Neckel P, Mattheus U, Hirt B, Just L, Mack A. Large-scale tissue clearing (PACT): Technical evaluation and new perspectives in immunofluorescence, histology, and ultrastructure. Sci Rep. 2016;6:34331 pubmed 出版商
  82. Lizen B, Hutlet B, Bissen D, Sauvegarde D, Hermant M, Ahn M, et al. HOXA5 localization in postnatal and adult mouse brain is suggestive of regulatory roles in postmitotic neurons. J Comp Neurol. 2017;525:1155-1175 pubmed 出版商
  83. Wu Q, Yang X, Zhang Y, Zhang L, Feng L. Chronic mild stress accelerates the progression of Parkinson's disease in A53T ?-synuclein transgenic mice. Exp Neurol. 2016;285:61-71 pubmed 出版商
  84. Peris J, Macfadyen K, Smith J, de Kloet A, Wang L, Krause E. Oxytocin receptors are expressed on dopamine and glutamate neurons in the mouse ventral tegmental area that project to nucleus accumbens and other mesolimbic targets. J Comp Neurol. 2017;525:1094-1108 pubmed 出版商
  85. Stauffer W, Lak A, Yang A, Borel M, Paulsen O, Boyden E, et al. Dopamine Neuron-Specific Optogenetic Stimulation in Rhesus Macaques. Cell. 2016;166:1564-1571.e6 pubmed 出版商
  86. Hansen S, Stummann T, Borland H, Hasholt L, Tumer Z, Nielsen J, et al. Induced pluripotent stem cell - derived neurons for the study of spinocerebellar ataxia type 3. Stem Cell Res. 2016;17:306-317 pubmed 出版商
  87. Brown R, Kokay I, Phillipps H, Yip S, Gustafson P, Wyatt A, et al. Conditional Deletion of the Prolactin Receptor Reveals Functional Subpopulations of Dopamine Neurons in the Arcuate Nucleus of the Hypothalamus. J Neurosci. 2016;36:9173-85 pubmed 出版商
  88. Ztaou S, Maurice N, Camon J, Guiraudie Capraz G, Kerkerian Le Goff L, Beurrier C, et al. Involvement of Striatal Cholinergic Interneurons and M1 and M4 Muscarinic Receptors in Motor Symptoms of Parkinson's Disease. J Neurosci. 2016;36:9161-72 pubmed 出版商
  89. Breton Provencher V, Bakhshetyan K, Hardy D, Bammann R, Cavarretta F, Snapyan M, et al. Principal cell activity induces spine relocation of adult-born interneurons in the olfactory bulb. Nat Commun. 2016;7:12659 pubmed 出版商
  90. Fukada M, Nakayama A, Mamiya T, Yao T, Kawaguchi Y. Dopaminergic abnormalities in Hdac6-deficient mice. Neuropharmacology. 2016;110:470-479 pubmed 出版商
  91. Morona R, Ferran J, Puelles L, González A. Gene expression analysis of developing cell groups in the pretectal region of Xenopus laevis. J Comp Neurol. 2017;525:715-752 pubmed 出版商
  92. Hamamoto M, Kiyokage E, Sohn J, Hioki H, Harada T, Toida K. Structural basis for cholinergic regulation of neural circuits in the mouse olfactory bulb. J Comp Neurol. 2017;525:574-591 pubmed 出版商
  93. Ku T, Swaney J, Park J, Albanese A, Murray E, Cho J, et al. Multiplexed and scalable super-resolution imaging of three-dimensional protein localization in size-adjustable tissues. Nat Biotechnol. 2016;34:973-81 pubmed 出版商
  94. Cockerham R, Liu S, Cachope R, Kiyokage E, Cheer J, Shipley M, et al. Subsecond Regulation of Synaptically Released Dopamine by COMT in the Olfactory Bulb. J Neurosci. 2016;36:7779-85 pubmed 出版商
  95. Mazzulli J, Zunke F, Tsunemi T, Toker N, Jeon S, Burbulla L, et al. Activation of β-Glucocerebrosidase Reduces Pathological α-Synuclein and Restores Lysosomal Function in Parkinson's Patient Midbrain Neurons. J Neurosci. 2016;36:7693-706 pubmed 出版商
  96. Kordower J, Vinuela A, Chu Y, Isacson O, Redmond D. Parkinsonian monkeys with prior levodopa-induced dyskinesias followed by fetal dopamine precursor grafts do not display graft-induced dyskinesias. J Comp Neurol. 2017;525:498-512 pubmed 出版商
  97. Cholanians A, Phan A, Ditzel E, Camenisch T, Lau S, Monks T. From the Cover: Arsenic Induces Accumulation of α-Synuclein: Implications for Synucleinopathies and Neurodegeneration. Toxicol Sci. 2016;153:271-81 pubmed 出版商
  98. Nandi S, Zheng H, Sharma N, Shahshahan H, Patel K, Mishra P. Lack of miR-133a Decreases Contractility of Diabetic Hearts: A Role for Novel Cross Talk Between Tyrosine Aminotransferase and Tyrosine Hydroxylase. Diabetes. 2016;65:3075-90 pubmed 出版商
  99. Doucet Beaupré H, Gilbert C, Profes M, Chabrat A, Pacelli C, Giguère N, et al. Lmx1a and Lmx1b regulate mitochondrial functions and survival of adult midbrain dopaminergic neurons. Proc Natl Acad Sci U S A. 2016;113:E4387-96 pubmed 出版商
  100. Simmons A, Bloomsburg S, Billingslea S, Merrill M, Li S, Thomas M, et al. Pou4f2 knock-in Cre mouse: A multifaceted genetic tool for vision researchers. Mol Vis. 2016;22:705-17 pubmed
  101. Sommer A, Fadler T, Dorfmeister E, Hoffmann A, Xiang W, Winner B, et al. Infiltrating T lymphocytes reduce myeloid phagocytosis activity in synucleinopathy model. J Neuroinflammation. 2016;13:174 pubmed 出版商
  102. Stojakovic A, Paz Filho G, Arcos Burgos M, Licinio J, Wong M, Mastronardi C. Role of the IL-1 Pathway in Dopaminergic Neurodegeneration and Decreased Voluntary Movement. Mol Neurobiol. 2017;54:4486-4495 pubmed 出版商
  103. Schmitt D, Funk N, Blum R, Asan E, Andersen L, Rülicke T, et al. Initial characterization of a Syap1 knock-out mouse and distribution of Syap1 in mouse brain and cultured motoneurons. Histochem Cell Biol. 2016;146:489-512 pubmed 出版商
  104. Alba Delgado C, Cebada Aleu A, Mico J, Berrocoso E. Comorbid anxiety-like behavior and locus coeruleus impairment in diabetic peripheral neuropathy: A comparative study with the chronic constriction injury model. Prog Neuropsychopharmacol Biol Psychiatry. 2016;71:45-56 pubmed 出版商
  105. Hughes S, Rodgers J, Hickey D, Foster R, Peirson S, Hankins M. Characterisation of light responses in the retina of mice lacking principle components of rod, cone and melanopsin phototransduction signalling pathways. Sci Rep. 2016;6:28086 pubmed 出版商
  106. Zhang S, Rogulja D, Crickmore M. Dopaminergic Circuitry Underlying Mating Drive. Neuron. 2016;91:168-81 pubmed 出版商
  107. Deng H, Shi Y, Yang Y, Ahmeti K, Miller N, Huang C, et al. Identification of TMEM230 mutations in familial Parkinson's disease. Nat Genet. 2016;48:733-9 pubmed 出版商
  108. Prabhudesai S, Bensabeur F, Abdullah R, Basak I, Baez S, Alves G, et al. LRRK2 knockdown in zebrafish causes developmental defects, neuronal loss, and synuclein aggregation. J Neurosci Res. 2016;94:717-35 pubmed 出版商
  109. Figueres Oñate M, López Mascaraque L. Adult Olfactory Bulb Interneuron Phenotypes Identified by Targeting Embryonic and Postnatal Neural Progenitors. Front Neurosci. 2016;10:194 pubmed 出版商
  110. Morales I, Sánchez A, Rodriguez Sabate C, Rodriguez M. The astrocytic response to the dopaminergic denervation of the striatum. J Neurochem. 2016;139:81-95 pubmed 出版商
  111. Momcilovic O, Sivapatham R, Oron T, Meyer M, Mooney S, Rao M, et al. Derivation, Characterization, and Neural Differentiation of Integration-Free Induced Pluripotent Stem Cell Lines from Parkinson's Disease Patients Carrying SNCA, LRRK2, PARK2, and GBA Mutations. PLoS ONE. 2016;11:e0154890 pubmed 出版商
  112. He J, Zhou R, Wu Z, Carrasco M, Kurshan P, Farley J, et al. Prevalent presence of periodic actin-spectrin-based membrane skeleton in a broad range of neuronal cell types and animal species. Proc Natl Acad Sci U S A. 2016;113:6029-34 pubmed 出版商
  113. Aldrin Kirk P, Heuer A, Wang G, Mattsson B, Lundblad M, Parmar M, et al. DREADD Modulation of Transplanted DA Neurons Reveals a Novel Parkinsonian Dyskinesia Mechanism Mediated by the Serotonin 5-HT6 Receptor. Neuron. 2016;90:955-68 pubmed 出版商
  114. He S, Mansour M, Zimmerman M, Ki D, Layden H, Akahane K, et al. Synergy between loss of NF1 and overexpression of MYCN in neuroblastoma is mediated by the GAP-related domain. elife. 2016;5: pubmed 出版商
  115. Glasauer S, Wager R, Gesemann M, Neuhauss S. mglur6b:EGFP Transgenic zebrafish suggest novel functions of metabotropic glutamate signaling in retina and other brain regions. J Comp Neurol. 2016;524:2363-78 pubmed 出版商
  116. Kim H, Oh J, Choi S, Nam Y, Jo A, Kwon A, et al. Down-regulation of p21-activated serine/threonine kinase 1 is involved in loss of mesencephalic dopamine neurons. Mol Brain. 2016;9:45 pubmed 出版商
  117. Ueno M, Ueno Nakamura Y, Niehaus J, Popovich P, Yoshida Y. Silencing spinal interneurons inhibits immune suppressive autonomic reflexes caused by spinal cord injury. Nat Neurosci. 2016;19:784-7 pubmed 出版商
  118. Wang Y, Gratzke C, Tamalunas A, Wiemer N, Ciotkowska A, Rutz B, et al. P21-Activated Kinase Inhibitors FRAX486 and IPA3: Inhibition of Prostate Stromal Cell Growth and Effects on Smooth Muscle Contraction in the Human Prostate. PLoS ONE. 2016;11:e0153312 pubmed 出版商
  119. Chtarto A, Humbert Claude M, Bockstael O, Das A, Boutry S, Breger L, et al. A regulatable AAV vector mediating GDNF biological effects at clinically-approved sub-antimicrobial doxycycline doses. Mol Ther Methods Clin Dev. 2016;5:16027 pubmed 出版商
  120. Gómez López S, Martínez Silva A, Montiel T, Osorio Gómez D, Bermudez Rattoni F, Massieu L, et al. Neural ablation of the PARK10 candidate Plpp3 leads to dopaminergic transmission deficits without neurodegeneration. Sci Rep. 2016;6:24028 pubmed 出版商
  121. Fourgeaud L, Traves P, Tufail Y, Leal Bailey H, Lew E, Burrola P, et al. TAM receptors regulate multiple features of microglial physiology. Nature. 2016;532:240-244 pubmed 出版商
  122. Inokaitis H, Pauziene N, Rysevaite Kyguoliene K, Pauza D. Innervation of sinoatrial nodal cells in the rabbit. Ann Anat. 2016;205:113-21 pubmed 出版商
  123. Kumar A, Jagadeeshan S, Subramanian A, Chidambaram S, Surabhi R, Singhal M, et al. Molecular Mechanism of Regulation of MTA1 Expression by Granulocyte Colony-stimulating Factor. J Biol Chem. 2016;291:12310-21 pubmed 出版商
  124. Rossi M, Li H, Lu D, Kim I, Bartholomew R, Gaidis E, et al. A GABAergic nigrotectal pathway for coordination of drinking behavior. Nat Neurosci. 2016;19:742-748 pubmed 出版商
  125. Chen C, Liu Y, Hua M, Li X, Ji C, Ma D. Neuropathy correlated with imbalanced Foxp3/IL-17 in bone marrow microenvironment of patients with acute myeloid leukemia. Oncotarget. 2016;7:24455-65 pubmed 出版商
  126. González Burguera I, Ricobaraza A, Aretxabala X, Barrondo S, Garcia del Caño G, López de Jesús M, et al. Highly efficient generation of glutamatergic/cholinergic NT2-derived postmitotic human neurons by short-term treatment with the nucleoside analogue cytosine ?-D-arabinofuranoside. Stem Cell Res. 2016;16:541-51 pubmed 出版商
  127. Wang Y, Jones Tabah J, Chakravarty P, Stewart A, Muotri A, Laposa R, et al. Pharmacological Bypass of Cockayne Syndrome B Function in Neuronal Differentiation. Cell Rep. 2016;14:2554-61 pubmed 出版商
  128. Boggild S, Molgaard S, Glerup S, Nyengaard J. Spatiotemporal patterns of sortilin and SorCS2 localization during organ development. BMC Cell Biol. 2016;17:8 pubmed 出版商
  129. Green F, Samaranch L, Zhang H, Manning Bog A, Meyer K, Forsayeth J, et al. Axonal transport of AAV9 in nonhuman primate brain. Gene Ther. 2016;23:520-6 pubmed 出版商
  130. Van Audenhove I, Denert M, Boucherie C, Pieters L, Cornelissen M, Gettemans J. Fascin Rigidity and L-plastin Flexibility Cooperate in Cancer Cell Invadopodia and Filopodia. J Biol Chem. 2016;291:9148-60 pubmed 出版商
  131. Roy A, Rangasamy S, Kundu M, Pahan K. BPOZ-2 Gene Delivery Ameliorates Alpha-Synucleinopathy in A53T Transgenic Mouse Model of Parkinson's Disease. Sci Rep. 2016;6:22067 pubmed 出版商
  132. Rodionova K, Fiedler C, Guenther F, Grouzmann E, Neuhuber W, Fischer M, et al. Complex reinnervation pattern after unilateral renal denervation in rats. Am J Physiol Regul Integr Comp Physiol. 2016;310:R806-18 pubmed 出版商
  133. Koeck F, Schmitt M, Baier C, Stangl H, Beckmann J, Grifka J, et al. Predominance of synovial sensory nerve fibers in arthrofibrosis following total knee arthroplasty compared to osteoarthritis of the knee. J Orthop Surg Res. 2016;11:25 pubmed 出版商
  134. Liu Z, Brown A, Fisher D, Wu Y, Warren J, Cui X. Tissue Specific Expression of Cre in Rat Tyrosine Hydroxylase and Dopamine Active Transporter-Positive Neurons. PLoS ONE. 2016;11:e0149379 pubmed 出版商
  135. Lauretti E, Di Meco A, Merali S, Praticò D. Chronic behavioral stress exaggerates motor deficit and neuroinflammation in the MPTP mouse model of Parkinson's disease. Transl Psychiatry. 2016;6:e733 pubmed 出版商
  136. Bouilloux F, Thireau J, Ventéo S, Farah C, Karam S, Dauvilliers Y, et al. Loss of the transcription factor Meis1 prevents sympathetic neurons target-field innervation and increases susceptibility to sudden cardiac death. elife. 2016;5: pubmed 出版商
  137. Pandit R, Omrani A, Luijendijk M, de Vrind V, van Rozen A, Ophuis R, et al. Melanocortin 3 Receptor Signaling in Midbrain Dopamine Neurons Increases the Motivation for Food Reward. Neuropsychopharmacology. 2016;41:2241-51 pubmed 出版商
  138. van der Keylen P, Garreis F, Steigleder R, Sommer D, Neuhuber W, Wörl J. Involvement of catecholaminergic neurons in motor innervation of striated muscle in the mouse esophagus. Histochem Cell Biol. 2016;145:573-85 pubmed 出版商
  139. de Souza C, Nivison Smith L, Christie D, Polkinghorne P, McGhee C, Kalloniatis M, et al. Macromolecular markers in normal human retina and applications to human retinal disease. Exp Eye Res. 2016;150:135-48 pubmed 出版商
  140. Zhou Q, Yen A, Rymarczyk G, Asai H, Trengrove C, Aziz N, et al. Impairment of PARK14-dependent Ca(2+) signalling is a novel determinant of Parkinson's disease. Nat Commun. 2016;7:10332 pubmed 出版商
  141. Pomrenze M, Millan E, Hopf F, Keiflin R, Maiya R, Blasio A, et al. A Transgenic Rat for Investigating the Anatomy and Function of Corticotrophin Releasing Factor Circuits. Front Neurosci. 2015;9:487 pubmed 出版商
  142. Schmitt M, Dehay B, Bezard E, Garcia Ladona F. Harnessing the trophic and modulatory potential of statins in a dopaminergic cell line. Synapse. 2016;70:71-86 pubmed 出版商
  143. Pinho B, Reis S, Guedes Dias P, Leitão Rocha A, Quintas C, Valentão P, et al. Pharmacological modulation of HDAC1 and HDAC6 in vivo in a zebrafish model: Therapeutic implications for Parkinson's disease. Pharmacol Res. 2016;103:328-39 pubmed 出版商
  144. Ho S, Hartley B, TCW J, Beaumont M, Stafford K, Slesinger P, et al. Rapid Ngn2-induction of excitatory neurons from hiPSC-derived neural progenitor cells. Methods. 2016;101:113-24 pubmed 出版商
  145. Gazea M, Tasouri E, Tolve M, Bosch V, Kabanova A, Gojak C, et al. Primary cilia are critical for Sonic hedgehog-mediated dopaminergic neurogenesis in the embryonic midbrain. Dev Biol. 2016;409:55-71 pubmed 出版商
  146. Romano López A, Méndez Díaz M, García F, Regalado Santiago C, Ruiz Contreras A, Prospero Garcia O. Maternal separation and early stress cause long-lasting effects on dopaminergic and endocannabinergic systems and alters dendritic morphology in the nucleus accumbens and frontal cortex in rats. Dev Neurobiol. 2016;76:819-31 pubmed 出版商
  147. Winiecka Klimek M, Smolarz M, Walczak M, Zieba J, Hulas Bigoszewska K, Kmieciak B, et al. SOX2 and SOX2-MYC Reprogramming Process of Fibroblasts to the Neural Stem Cells Compromised by Senescence. PLoS ONE. 2015;10:e0141688 pubmed 出版商
  148. Knowles M, de la Tremblaye P, Azogu I, Plamondon H. Endocannabinoid CB1 receptor activation upon global ischemia adversely impact recovery of reward and stress signaling molecules, neuronal survival and behavioral impulsivity. Prog Neuropsychopharmacol Biol Psychiatry. 2016;66:8-21 pubmed 出版商
  149. Wu R, Chen H, Ma J, He Q, Huang Q, Liu Q, et al. c-Abl-p38α signaling plays an important role in MPTP-induced neuronal death. Cell Death Differ. 2016;23:542-52 pubmed 出版商
  150. Stouffer M, Woods C, Patel J, Lee C, Witkovsky P, Bao L, et al. Insulin enhances striatal dopamine release by activating cholinergic interneurons and thereby signals reward. Nat Commun. 2015;6:8543 pubmed 出版商
  151. Podlasz P, Jakimiuk A, Chmielewska Krzesinska M, Kasica N, Nowik N, Kaleczyc J. Galanin regulates blood glucose level in the zebrafish: a morphological and functional study. Histochem Cell Biol. 2016;145:105-17 pubmed 出版商
  152. Tuon T, Souza P, Santos M, Pereira F, Pedroso G, Luciano T, et al. Physical Training Regulates Mitochondrial Parameters and Neuroinflammatory Mechanisms in an Experimental Model of Parkinson's Disease. Oxid Med Cell Longev. 2015;2015:261809 pubmed 出版商
  153. Pathak T, Agrawal T, Richhariya S, Sadaf S, Hasan G. Store-Operated Calcium Entry through Orai Is Required for Transcriptional Maturation of the Flight Circuit in Drosophila. J Neurosci. 2015;35:13784-99 pubmed 出版商
  154. Shin W, Jeon M, Leem E, Won S, Jeong K, Park S, et al. Induction of microglial toll-like receptor 4 by prothrombin kringle-2: a potential pathogenic mechanism in Parkinson's disease. Sci Rep. 2015;5:14764 pubmed 出版商
  155. Van Kampen J, Baranowski D, Robertson H, Shaw C, Kay D. The Progressive BSSG Rat Model of Parkinson's: Recapitulating Multiple Key Features of the Human Disease. PLoS ONE. 2015;10:e0139694 pubmed 出版商
  156. Korzhevskii D, Sukhorukova E, Kirik O, Grigorev I. Immunohistochemical demonstration of specific antigens in the human brain fixed in zinc-ethanol-formaldehyde. Eur J Histochem. 2015;59:2530 pubmed 出版商
  157. Hirata H, Umemori J, Yoshioka H, Koide T, Watanabe K, Shimoda Y. Cell adhesion molecule contactin-associated protein 3 is expressed in the mouse basal ganglia during early postnatal stages. J Neurosci Res. 2016;94:74-89 pubmed 出版商
  158. De Luca R, Suvorava T, Yang D, Baumgärtel W, Kojda G, Haas H, et al. Identification of histaminergic neurons through histamine 3 receptor-mediated autoinhibition. Neuropharmacology. 2016;106:102-15 pubmed 出版商
  159. Dearborn J, Harmon S, Fowler S, O Malley K, Taylor G, Sands M, et al. Comprehensive functional characterization of murine infantile Batten disease including Parkinson-like behavior and dopaminergic markers. Sci Rep. 2015;5:12752 pubmed 出版商
  160. Morris R, Purves Tyson T, Weickert C, Rothmond D, Lenroot R, Weickert T. Testosterone and reward prediction-errors in healthy men and men with schizophrenia. Schizophr Res. 2015;168:649-60 pubmed 出版商
  161. Jiang Y, Jiang P, Yang J, Ma D, Lin H, Su W, et al. Cardiac Dysregulation and Myocardial Injury in a 6-Hydroxydopamine-Induced Rat Model of Sympathetic Denervation. PLoS ONE. 2015;10:e0133971 pubmed 出版商
  162. Aimé P, Sun X, Zareen N, Rao A, Berman Z, Volpicelli Daley L, et al. Trib3 Is Elevated in Parkinson's Disease and Mediates Death in Parkinson's Disease Models. J Neurosci. 2015;35:10731-49 pubmed 出版商
  163. Ishikawa M, Ohnishi H, Skerleva D, Sakamoto T, Yamamoto N, Hotta A, et al. Transplantation of neurons derived from human iPS cells cultured on collagen matrix into guinea-pig cochleae. J Tissue Eng Regen Med. 2017;11:1766-1778 pubmed 出版商
  164. Bourdenx M, Dovero S, Engeln M, Bido S, Bastide M, Dutheil N, et al. Lack of additive role of ageing in nigrostriatal neurodegeneration triggered by α-synuclein overexpression. Acta Neuropathol Commun. 2015;3:46 pubmed 出版商
  165. Hryhorczuk C, Florea M, Rodaros D, Poirier I, Daneault C, Des Rosiers C, et al. Dampened Mesolimbic Dopamine Function and Signaling by Saturated but not Monounsaturated Dietary Lipids. Neuropsychopharmacology. 2016;41:811-21 pubmed 出版商
  166. Beckman D, Santos L, Americo T, Ledo J, de Mello F, Linden R. Prion Protein Modulates Monoaminergic Systems and Depressive-like Behavior in Mice. J Biol Chem. 2015;290:20488-98 pubmed 出版商
  167. Theodorou M, Rauser B, Zhang J, Prakash N, Wurst W, Schick J. Limitations of In Vivo Reprogramming to Dopaminergic Neurons via a Tricistronic Strategy. Hum Gene Ther Methods. 2015;26:107-22 pubmed 出版商
  168. Van Rompuy A, Oliveras Salvá M, Van der Perren A, Corti O, Van den Haute C, Baekelandt V. Nigral overexpression of alpha-synuclein in the absence of parkin enhances alpha-synuclein phosphorylation but does not modulate dopaminergic neurodegeneration. Mol Neurodegener. 2015;10:23 pubmed 出版商
  169. Hoeber J, Trolle C, König N, Du Z, Gallo A, Hermans E, et al. Human Embryonic Stem Cell-Derived Progenitors Assist Functional Sensory Axon Regeneration after Dorsal Root Avulsion Injury. Sci Rep. 2015;5:10666 pubmed 出版商
  170. Radovanovic D, Peikert K, Lindström M, Domellöf F. Sympathetic innervation of human muscle spindles. J Anat. 2015;226:542-8 pubmed 出版商
  171. Fontaine R, Affaticati P, Bureau C, Colin I, Demarque M, Dufour S, et al. Dopaminergic Neurons Controlling Anterior Pituitary Functions: Anatomy and Ontogenesis in Zebrafish. Endocrinology. 2015;156:2934-48 pubmed 出版商
  172. Landry J, Hawkins C, Lee A, Coté A, Balaban E, Pompeiano M. Chick embryos have the same pattern of hypoxic lower-brain activation as fetal mammals. Dev Neurobiol. 2016;76:64-74 pubmed 出版商
  173. Schreglmann S, Regensburger M, Rockenstein E, Masliah E, Xiang W, Winkler J, et al. The temporal expression pattern of alpha-synuclein modulates olfactory neurogenesis in transgenic mice. PLoS ONE. 2015;10:e0126261 pubmed 出版商
  174. Agrawal T, Hasan G. Maturation of a central brain flight circuit in Drosophila requires Fz2/Ca²⁺ signaling. elife. 2015;4: pubmed 出版商
  175. Debertin G, Kántor O, Kovács Öller T, Balogh L, Szabó Meleg E, Orbán J, et al. Tyrosine hydroxylase positive perisomatic rings are formed around various amacrine cell types in the mammalian retina. J Neurochem. 2015;134:416-28 pubmed 出版商
  176. Carrigan I, Croll R, Wyeth R. Morphology, innervation, and peripheral sensory cells of the siphon of aplysia californica. J Comp Neurol. 2015;523:2409-25 pubmed 出版商
  177. Laguna A, Schintu N, Nobre A, Alvarsson A, Volakakis N, Jacobsen J, et al. Dopaminergic control of autophagic-lysosomal function implicates Lmx1b in Parkinson's disease. Nat Neurosci. 2015;18:826-35 pubmed 出版商
  178. Salganik M, Sergeyev V, Shinde V, Meyers C, Gorbatyuk M, Lin J, et al. The loss of glucose-regulated protein 78 (GRP78) during normal aging or from siRNA knockdown augments human alpha-synuclein (α-syn) toxicity to rat nigral neurons. Neurobiol Aging. 2015;36:2213-23 pubmed 出版商
  179. Uemura N, Koike M, Ansai S, Kinoshita M, Ishikawa Fujiwara T, Matsui H, et al. Viable neuronopathic Gaucher disease model in Medaka (Oryzias latipes) displays axonal accumulation of alpha-synuclein. PLoS Genet. 2015;11:e1005065 pubmed 出版商
  180. Zheng H, Rinaman L. Simplified CLARITY for visualizing immunofluorescence labeling in the developing rat brain. Brain Struct Funct. 2016;221:2375-83 pubmed 出版商
  181. Briffaud V, Williams P, Courty J, Broberger C. Excitation of tuberoinfundibular dopamine neurons by oxytocin: crosstalk in the control of lactation. J Neurosci. 2015;35:4229-37 pubmed 出版商
  182. Stoyek M, Croll R, Smith F. Intrinsic and extrinsic innervation of the heart in zebrafish (Danio rerio). J Comp Neurol. 2015;523:1683-700 pubmed 出版商
  183. Tamrakar P, Shrestha P, Briski K. Dorsomedial hindbrain catecholamine regulation of hypothalamic astrocyte glycogen metabolic enzyme protein expression: Impact of estradiol. Neuroscience. 2015;292:34-45 pubmed 出版商
  184. Zhang S, Qi J, Li X, Wang H, Britt J, Hoffman A, et al. Dopaminergic and glutamatergic microdomains in a subset of rodent mesoaccumbens axons. Nat Neurosci. 2015;18:386-92 pubmed 出版商
  185. Chand A, Galliano E, Chesters R, Grubb M. A distinct subtype of dopaminergic interneuron displays inverted structural plasticity at the axon initial segment. J Neurosci. 2015;35:1573-90 pubmed 出版商
  186. Haynes P, Christmann B, Griffith L. A single pair of neurons links sleep to memory consolidation in Drosophila melanogaster. elife. 2015;4: pubmed 出版商
  187. Bifsha P, Yang J, Fisher R, Drouin J. Rgs6 is required for adult maintenance of dopaminergic neurons in the ventral substantia nigra. PLoS Genet. 2014;10:e1004863 pubmed 出版商
  188. Tamrakar P, Briski K. Estradiol regulation of hypothalamic astrocyte adenosine 5'-monophosphate-activated protein kinase activity: role of hindbrain catecholamine signaling. Brain Res Bull. 2015;110:47-53 pubmed 出版商
  189. Cui W, Mizukami H, Yanagisawa M, Aida T, Nomura M, Isomura Y, et al. Glial dysfunction in the mouse habenula causes depressive-like behaviors and sleep disturbance. J Neurosci. 2014;34:16273-85 pubmed 出版商
  190. Polinski N, Gombash S, Manfredsson F, Lipton J, Kemp C, Cole Strauss A, et al. Recombinant adenoassociated virus 2/5-mediated gene transfer is reduced in the aged rat midbrain. Neurobiol Aging. 2015;36:1110-20 pubmed 出版商
  191. Vergaño Vera E, Diaz Guerra E, Rodríguez Traver E, Méndez Gómez H, Solis O, Pignatelli J, et al. Nurr1 blocks the mitogenic effect of FGF-2 and EGF, inducing olfactory bulb neural stem cells to adopt dopaminergic and dopaminergic-GABAergic neuronal phenotypes. Dev Neurobiol. 2015;75:823-41 pubmed 出版商
  192. Sharaf A, Rahhal B, Spittau B, Roussa E. Localization of reelin signaling pathway components in murine midbrain and striatum. Cell Tissue Res. 2015;359:393-407 pubmed 出版商
  193. Lee Y, Petkova A, Konkar A, Granneman J. Cellular origins of cold-induced brown adipocytes in adult mice. FASEB J. 2015;29:286-99 pubmed 出版商
  194. Liu G, Rustom N, Litteljohn D, Bobyn J, Rudyk C, Anisman H, et al. Use of induced pluripotent stem cell derived neurons engineered to express BDNF for modulation of stressor related pathology. Front Cell Neurosci. 2014;8:316 pubmed 出版商
  195. Bou Dib P, Gnägi B, Daly F, Sabado V, Tas D, Glauser D, et al. A conserved role for p48 homologs in protecting dopaminergic neurons from oxidative stress. PLoS Genet. 2014;10:e1004718 pubmed 出版商
  196. Huang Y, Chang C, Zhang J, Gao X. Bone marrow-derived mesenchymal stem cells increase dopamine synthesis in the injured striatum. Neural Regen Res. 2012;7:2653-62 pubmed 出版商
  197. Sobieraj J, Kim A, Fannon M, Mandyam C. Chronic wheel running-induced reduction of extinction and reinstatement of methamphetamine seeking in methamphetamine dependent rats is associated with reduced number of periaqueductal gray dopamine neurons. Brain Struct Funct. 2016;221:261-76 pubmed 出版商
  198. Pauza D, Rysevaite Kyguoliene K, Vismantaite J, Brack K, Inokaitis H, Pauza A, et al. A combined acetylcholinesterase and immunohistochemical method for precise anatomical analysis of intrinsic cardiac neural structures. Ann Anat. 2014;196:430-40 pubmed 出版商
  199. Suzuki Y, Kiyokage E, Sohn J, Hioki H, Toida K. Structural basis for serotonergic regulation of neural circuits in the mouse olfactory bulb. J Comp Neurol. 2015;523:262-80 pubmed 出版商
  200. Masuda C, Takeuchi S, J Bisem N, R Vincent S, Tooyama I. Immunohistochemical Localization of an Isoform of TRK-Fused Gene-Like Protein in the Rat Retina. Acta Histochem Cytochem. 2014;47:75-83 pubmed 出版商
  201. Sousa J, Vieira Rocha M, Sá C, Ferreirinha F, Correia de Sá P, Fresco P, et al. Lack of endogenous adenosine tonus on sympathetic neurotransmission in spontaneously hypertensive rat mesenteric artery. PLoS ONE. 2014;9:e105540 pubmed 出版商
  202. Pallarés M, Adrover E, Imsen M, Gonzalez D, Fabre B, Mesch V, et al. Maternal administration of flutamide during late gestation affects the brain and reproductive organs development in the rat male offspring. Neuroscience. 2014;278:122-35 pubmed 出版商
  203. Pinheiro P, Jansen A, de Wit H, Tawfik B, Madsen K, Verhage M, et al. The BAR domain protein PICK1 controls vesicle number and size in adrenal chromaffin cells. J Neurosci. 2014;34:10688-700 pubmed 出版商
  204. Bai Q, Parris R, Burton E. Different mechanisms regulate expression of zebrafish myelin protein zero (P0) in myelinating oligodendrocytes and its induction following axonal injury. J Biol Chem. 2014;289:24114-28 pubmed 出版商
  205. Aldrin Kirk P, Davidsson M, Holmqvist S, Li J, Bjorklund T. Novel AAV-based rat model of forebrain synucleinopathy shows extensive pathologies and progressive loss of cholinergic interneurons. PLoS ONE. 2014;9:e100869 pubmed 出版商
  206. Lotan D, Cunningham M, Joel D. Antibiotic treatment attenuates behavioral and neurochemical changes induced by exposure of rats to group a streptococcal antigen. PLoS ONE. 2014;9:e101257 pubmed 出版商
  207. Shivers K, Nikolopoulou A, Machlovi S, Vallabhajosula S, Figueiredo Pereira M. PACAP27 prevents Parkinson-like neuronal loss and motor deficits but not microglia activation induced by prostaglandin J2. Biochim Biophys Acta. 2014;1842:1707-19 pubmed 出版商
  208. Reyes C, Fong A, Brink D, Milsom W. Distribution and innervation of putative arterial chemoreceptors in the bullfrog (Rana catesbeiana). J Comp Neurol. 2014;522:3754-74 pubmed 出版商
  209. Pérez Fernández J, Stephenson Jones M, Suryanarayana S, Robertson B, Grillner S. Evolutionarily conserved organization of the dopaminergic system in lamprey: SNc/VTA afferent and efferent connectivity and D2 receptor expression. J Comp Neurol. 2014;522:3775-94 pubmed 出版商
  210. García Peña C, Kim M, Frade Pérez D, Avila González D, Téllez E, Mastick G, et al. Ascending midbrain dopaminergic axons require descending GAD65 axon fascicles for normal pathfinding. Front Neuroanat. 2014;8:43 pubmed 出版商
  211. Nordenankar K, Smith Anttila C, Schweizer N, Viereckel T, Birgner C, Mejía Toiber J, et al. Increased hippocampal excitability and impaired spatial memory function in mice lacking VGLUT2 selectively in neurons defined by tyrosine hydroxylase promoter activity. Brain Struct Funct. 2015;220:2171-90 pubmed 出版商
  212. Landry J, Hawkins C, Wiebe S, Balaban E, Pompeiano M. Opposing effects of hypoxia on catecholaminergic locus coeruleus and hypocretin/orexin neurons in chick embryos. Dev Neurobiol. 2014;74:1030-7 pubmed 出版商
  213. Abu El Asrar A, Siddiquei M, Nawaz M, Geboes K, Mohammad G. The proinflammatory cytokine high-mobility group box-1 mediates retinal neuropathy induced by diabetes. Mediators Inflamm. 2014;2014:746415 pubmed 出版商
  214. Forlano P, Kim S, Krzyminska Z, Sisneros J. Catecholaminergic connectivity to the inner ear, central auditory, and vocal motor circuitry in the plainfin midshipman fish porichthys notatus. J Comp Neurol. 2014;522:2887-927 pubmed 出版商
  215. Robertson G, Croll R, Smith F. The structure of the caudal wall of the zebrafish (Danio rerio) swim bladder: evidence of localized lamellar body secretion and a proximate neural plexus. J Morphol. 2014;275:933-48 pubmed 出版商
  216. Swanson C, Emborg M. Expression of peroxisome proliferator-activated receptor-gamma in the substantia nigra of hemiparkinsonian nonhuman primates. Neurol Res. 2014;36:634-46 pubmed 出版商
  217. Bloch J, Brunet J, McEntire C, Redmond D. Primate adult brain cell autotransplantation produces behavioral and biological recovery in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced parkinsonian St. Kitts monkeys. J Comp Neurol. 2014;522:2729-40 pubmed 出版商
  218. Lippert R, Ellacott K, Cone R. Gender-specific roles for the melanocortin-3 receptor in the regulation of the mesolimbic dopamine system in mice. Endocrinology. 2014;155:1718-27 pubmed 出版商
  219. Kudo T, Konno K, Uchigashima M, Yanagawa Y, Sora I, Minami M, et al. GABAergic neurons in the ventral tegmental area receive dual GABA/enkephalin-mediated inhibitory inputs from the bed nucleus of the stria terminalis. Eur J Neurosci. 2014;39:1796-809 pubmed 出版商
  220. O Brien E, Greferath U, Fletcher E. The effect of photoreceptor degeneration on ganglion cell morphology. J Comp Neurol. 2014;522:1155-70 pubmed 出版商
  221. Nam J, Leem E, Jeon M, Kim Y, Jung U, Choi M, et al. Inhibition of prothrombin kringle-2-induced inflammation by minocycline protects dopaminergic neurons in the substantia nigra in vivo. Neuroreport. 2014;25:489-95 pubmed 出版商
  222. Trabalza A, Eleftheriadou I, Sgourou A, Liao T, Patsali P, Lee H, et al. Enhanced central nervous system transduction with lentiviral vectors pseudotyped with RVG/HIV-1gp41 chimeric envelope glycoproteins. J Virol. 2014;88:2877-90 pubmed 出版商
  223. Tapias V, Cannon J, Greenamyre J. Pomegranate juice exacerbates oxidative stress and nigrostriatal degeneration in Parkinson's disease. Neurobiol Aging. 2014;35:1162-76 pubmed 出版商
  224. Moloney T, Hyland R, O Toole D, Paucard A, Kirik D, O Doherty A, et al. Heat shock protein 70 reduces ?-synuclein-induced predegenerative neuronal dystrophy in the ?-synuclein viral gene transfer rat model of Parkinson's disease. CNS Neurosci Ther. 2014;20:50-8 pubmed 出版商
  225. Nishizaki Y, Takagi T, Matsui F, Higashi Y. SIP1 expression patterns in brain investigated by generating a SIP1-EGFP reporter knock-in mouse. Genesis. 2014;52:56-67 pubmed 出版商
  226. Kurowska Z, Brundin P, Schwab M, Li J. Intracellular Nogo-A facilitates initiation of neurite formation in mouse midbrain neurons in vitro. Neuroscience. 2014;256:456-66 pubmed 出版商
  227. Dominguez L, González A, Moreno N. Characterization of the hypothalamus of Xenopus laevis during development. II. The basal regions. J Comp Neurol. 2014;522:1102-31 pubmed 出版商
  228. Newton C, Stoyek M, Croll R, Smith F. Regional innervation of the heart in the goldfish, Carassius auratus: a confocal microscopy study. J Comp Neurol. 2014;522:456-78 pubmed 出版商
  229. Bergami M, Vignoli B, Motori E, Pifferi S, Zuccaro E, Menini A, et al. TrkB signaling directs the incorporation of newly generated periglomerular cells in the adult olfactory bulb. J Neurosci. 2013;33:11464-78 pubmed 出版商
  230. Pose Méndez S, Candal E, Adrio F, Rodriguez Moldes I. Development of the cerebellar afferent system in the shark Scyliorhinus canicula: insights into the basal organization of precerebellar nuclei in gnathostomes. J Comp Neurol. 2014;522:131-68 pubmed 出版商
  231. Joven A, Morona R, González A, Moreno N. Spatiotemporal patterns of Pax3, Pax6, and Pax7 expression in the developing brain of a urodele amphibian, Pleurodeles waltl. J Comp Neurol. 2013;521:3913-53 pubmed 出版商
  232. Milman P, Woulfe J. Novel variant of neuronal intranuclear rodlet immunoreactive for 40 kDa huntingtin associated protein and ubiquitin in the mouse brain. J Comp Neurol. 2013;521:3832-46 pubmed 出版商
  233. Liu Q, Pedersen O, Peng J, Couture L, Rao M, Zeng X. Optimizing dopaminergic differentiation of pluripotent stem cells for the manufacture of dopaminergic neurons for transplantation. Cytotherapy. 2013;15:999-1010 pubmed 出版商
  234. Wojtkiewicz J, Równiak M, Crayton R, Gonkowski S, Robak A, Zalecki M, et al. Axotomy-induced changes in the chemical coding pattern of colon projecting calbindin-positive neurons in the inferior mesenteric ganglia of the pig. J Mol Neurosci. 2013;51:99-108 pubmed 出版商
  235. Bäck S, Peranen J, Galli E, Pulkkila P, Lonka Nevalaita L, Tamminen T, et al. Gene therapy with AAV2-CDNF provides functional benefits in a rat model of Parkinson's disease. Brain Behav. 2013;3:75-88 pubmed 出版商
  236. Ohtsuka N, Badurek S, Busslinger M, Benes F, Minichiello L, Rudolph U. GABAergic neurons regulate lateral ventricular development via transcription factor Pax5. Genesis. 2013;51:234-45 pubmed 出版商
  237. Bron R, Yin L, Russo D, Furness J. Expression of the ghrelin receptor gene in neurons of the medulla oblongata of the rat. J Comp Neurol. 2013;521:2680-702 pubmed 出版商
  238. Sharrad D, Gai W, Brookes S. Selective coexpression of synaptic proteins, ?-synuclein, cysteine string protein-?, synaptophysin, synaptotagmin-1, and synaptobrevin-2 in vesicular acetylcholine transporter-immunoreactive axons in the guinea pig ileum. J Comp Neurol. 2013;521:2523-37 pubmed 出版商
  239. Joven A, Morona R, González A, Moreno N. Expression patterns of Pax6 and Pax7 in the adult brain of a urodele amphibian, Pleurodeles waltl. J Comp Neurol. 2013;521:2088-124 pubmed 出版商
  240. Trabalza A, Georgiadis C, Eleftheriadou I, Hislop J, Ellison S, Karavassilis M, et al. Venezuelan equine encephalitis virus glycoprotein pseudotyping confers neurotropism to lentiviral vectors. Gene Ther. 2013;20:723-32 pubmed 出版商
  241. Liu J, Githinji J, McLaughlin B, Wilczek K, Nolta J. Role of miRNAs in neuronal differentiation from human embryonic stem cell-derived neural stem cells. Stem Cell Rev. 2012;8:1129-37 pubmed 出版商
  242. Dominguez L, Morona R, González A, Moreno N. Characterization of the hypothalamus of Xenopus laevis during development. I. The alar regions. J Comp Neurol. 2013;521:725-59 pubmed 出版商
  243. Chen Y, Sundvik M, Rozov S, Priyadarshini M, Panula P. MANF regulates dopaminergic neuron development in larval zebrafish. Dev Biol. 2012;370:237-49 pubmed 出版商
  244. Sharrad D, de Vries E, Brookes S. Selective expression of ?-synuclein-immunoreactivity in vesicular acetylcholine transporter-immunoreactive axons in the guinea pig rectum and human colon. J Comp Neurol. 2013;521:657-76 pubmed 出版商
  245. Morona R, González A. Pattern of calbindin-D28k and calretinin immunoreactivity in the brain of Xenopus laevis during embryonic and larval development. J Comp Neurol. 2013;521:79-108 pubmed 出版商
  246. Stephenson Jones M, Ericsson J, Robertson B, Grillner S. Evolution of the basal ganglia: dual-output pathways conserved throughout vertebrate phylogeny. J Comp Neurol. 2012;520:2957-73 pubmed 出版商
  247. Lindsey B, Darabie A, Tropepe V. The cellular composition of neurogenic periventricular zones in the adult zebrafish forebrain. J Comp Neurol. 2012;520:2275-316 pubmed 出版商
  248. Puthussery T, Gayet Primo J, Taylor W, Haverkamp S. Immunohistochemical identification and synaptic inputs to the diffuse bipolar cell type DB1 in macaque retina. J Comp Neurol. 2011;519:3640-56 pubmed 出版商
  249. Sapsford T, Kokay I, Ostberg L, Bridges R, Grattan D. Differential sensitivity of specific neuronal populations of the rat hypothalamus to prolactin action. J Comp Neurol. 2012;520:1062-77 pubmed 出版商
  250. Moreno N, Dominguez L, Morona R, González A. Subdivisions of the turtle Pseudemys scripta hypothalamus based on the expression of regulatory genes and neuronal markers. J Comp Neurol. 2012;520:453-78 pubmed 出版商
  251. Hayes L, Zhang Z, Albert P, Zervas M, Ahn S. Timing of Sonic hedgehog and Gli1 expression segregates midbrain dopamine neurons. J Comp Neurol. 2011;519:3001-18 pubmed 出版商
  252. Goemaere J, Knoops B. Peroxiredoxin distribution in the mouse brain with emphasis on neuronal populations affected in neurodegenerative disorders. J Comp Neurol. 2012;520:258-80 pubmed 出版商
  253. Rohn T, Catlin L. Immunolocalization of influenza A virus and markers of inflammation in the human Parkinson's disease brain. PLoS ONE. 2011;6:e20495 pubmed 出版商
  254. Noorian A, Taylor G, Annerino D, Greene J. Neurochemical phenotypes of myenteric neurons in the rhesus monkey. J Comp Neurol. 2011;519:3387-401 pubmed 出版商
  255. Stanic D, Mulder J, Watanabe M, Hokfelt T. Characterization of NPY Y2 receptor protein expression in the mouse brain. II. Coexistence with NPY, the Y1 receptor, and other neurotransmitter-related molecules. J Comp Neurol. 2011;519:1219-57 pubmed 出版商
  256. Fuller P, Fuller P, Sherman D, Pedersen N, Saper C, Lu J. Reassessment of the structural basis of the ascending arousal system. J Comp Neurol. 2011;519:933-56 pubmed 出版商
  257. Bøttger P, Tracz Z, Heuck A, Nissen P, Romero Ramos M, Lykke Hartmann K. Distribution of Na/K-ATPase alpha 3 isoform, a sodium-potassium P-type pump associated with rapid-onset of dystonia parkinsonism (RDP) in the adult mouse brain. J Comp Neurol. 2011;519:376-404 pubmed 出版商
  258. Gayoso J, Castro A, Anadón R, Manso M. Differential bulbar and extrabulbar projections of diverse olfactory receptor neuron populations in the adult zebrafish (Danio rerio). J Comp Neurol. 2011;519:247-76 pubmed 出版商
  259. Moreno N, Morona R, Lopez J, González A. Subdivisions of the turtle Pseudemys scripta subpallium based on the expression of regulatory genes and neuronal markers. J Comp Neurol. 2010;518:4877-902 pubmed 出版商
  260. Uyttebroek L, Shepherd I, Harrisson F, Hubens G, Blust R, Timmermans J, et al. Neurochemical coding of enteric neurons in adult and embryonic zebrafish (Danio rerio). J Comp Neurol. 2010;518:4419-38 pubmed 出版商
  261. Kurz A, Double K, Lastres Becker I, Tozzi A, Tantucci M, Bockhart V, et al. A53T-alpha-synuclein overexpression impairs dopamine signaling and striatal synaptic plasticity in old mice. PLoS ONE. 2010;5:e11464 pubmed 出版商
  262. Phillips M, Otteson D, Sherry D. Progression of neuronal and synaptic remodeling in the rd10 mouse model of retinitis pigmentosa. J Comp Neurol. 2010;518:2071-89 pubmed 出版商
  263. Contini M, Lin B, Kobayashi K, Okano H, Masland R, Raviola E. Synaptic input of ON-bipolar cells onto the dopaminergic neurons of the mouse retina. J Comp Neurol. 2010;518:2035-50 pubmed 出版商
  264. Bastien Dionne P, David L, Parent A, Saghatelyan A. Role of sensory activity on chemospecific populations of interneurons in the adult olfactory bulb. J Comp Neurol. 2010;518:1847-61 pubmed 出版商
  265. Ampatzis K, Dermon C. Regional distribution and cellular localization of beta2-adrenoceptors in the adult zebrafish brain (Danio rerio). J Comp Neurol. 2010;518:1418-41 pubmed 出版商
  266. Kotani T, Murata Y, Ohnishi H, Mori M, Kusakari S, Saito Y, et al. Expression of PTPRO in the interneurons of adult mouse olfactory bulb. J Comp Neurol. 2010;518:119-36 pubmed 出版商
  267. Gritti A, Dal Molin M, Foroni C, Bonfanti L. Effects of developmental age, brain region, and time in culture on long-term proliferation and multipotency of neural stem cell populations. J Comp Neurol. 2009;517:333-49 pubmed 出版商
  268. Madhavan L, Daley B, Paumier K, Collier T. Transplantation of subventricular zone neural precursors induces an endogenous precursor cell response in a rat model of Parkinson's disease. J Comp Neurol. 2009;515:102-15 pubmed 出版商
  269. Jhou T, Geisler S, Marinelli M, Degarmo B, Zahm D. The mesopontine rostromedial tegmental nucleus: A structure targeted by the lateral habenula that projects to the ventral tegmental area of Tsai and substantia nigra compacta. J Comp Neurol. 2009;513:566-96 pubmed 出版商
  270. Vázquez Acevedo N, Reyes Colón D, Ruíz Rodríguez E, Rivera N, Rosenthal J, Kohn A, et al. Cloning and immunoreactivity of the 5-HT 1Mac and 5-HT 2Mac receptors in the central nervous system of the freshwater prawn Macrobrachium rosenbergii. J Comp Neurol. 2009;513:399-416 pubmed 出版商
  271. Nakano M, Goris R, Atobe Y, Kadota T, Funakoshi K. Mediolateral and rostrocaudal topographic organization of the sympathetic preganglionic cell pool in the spinal cord of Xenopus laevis. J Comp Neurol. 2009;513:292-314 pubmed 出版商
  272. Carrera I, Molist P, Anadón R, Rodriguez Moldes I. Development of the serotoninergic system in the central nervous system of a shark, the lesser spotted dogfish Scyliorhinus canicula. J Comp Neurol. 2008;511:804-31 pubmed 出版商
  273. Chung E, Chen L, Chan Y, Yung K. Downregulation of glial glutamate transporters after dopamine denervation in the striatum of 6-hydroxydopamine-lesioned rats. J Comp Neurol. 2008;511:421-37 pubmed 出版商
  274. Yang Z, You Y, Levison S. Neonatal hypoxic/ischemic brain injury induces production of calretinin-expressing interneurons in the striatum. J Comp Neurol. 2008;511:19-33 pubmed 出版商
  275. Luuk H, Koks S, Plaas M, Hannibal J, Rehfeld J, Vasar E. Distribution of Wfs1 protein in the central nervous system of the mouse and its relation to clinical symptoms of the Wolfram syndrome. J Comp Neurol. 2008;509:642-60 pubmed 出版商
  276. Olsson C, Holmberg A, Holmgren S. Development of enteric and vagal innervation of the zebrafish (Danio rerio) gut. J Comp Neurol. 2008;508:756-70 pubmed 出版商
  277. Ampatzis K, Kentouri M, Dermon C. Neuronal and glial localization of alpha(2A)-adrenoceptors in the adult zebrafish (Danio rerio) brain. J Comp Neurol. 2008;508:72-93 pubmed 出版商
  278. Tagliaferro P, Morales M. Synapses between corticotropin-releasing factor-containing axon terminals and dopaminergic neurons in the ventral tegmental area are predominantly glutamatergic. J Comp Neurol. 2008;506:616-26 pubmed
  279. Parrish Aungst S, Shipley M, Erdelyi F, Szabo G, Puche A. Quantitative analysis of neuronal diversity in the mouse olfactory bulb. J Comp Neurol. 2007;501:825-36 pubmed
  280. Berglöf E, af Bjerkén S, Stromberg I. Glial influence on nerve fiber formation from rat ventral mesencephalic organotypic tissue cultures. J Comp Neurol. 2007;501:431-42 pubmed
  281. Cantwell E, Cassone V. Chicken suprachiasmatic nuclei: II. Autoradiographic and immunohistochemical analysis. J Comp Neurol. 2006;499:442-57 pubmed
  282. Fuller C, Yettaw H, Byrd C. Mitral cells in the olfactory bulb of adult zebrafish (Danio rerio): morphology and distribution. J Comp Neurol. 2006;499:218-30 pubmed
  283. Nickerson Poulin A, Guerci A, El Mestikawy S, Semba K. Vesicular glutamate transporter 3 immunoreactivity is present in cholinergic basal forebrain neurons projecting to the basolateral amygdala in rat. J Comp Neurol. 2006;498:690-711 pubmed
  284. Finney J, Robertson G, McGee C, Smith F, Croll R. Structure and autonomic innervation of the swim bladder in the zebrafish (Danio rerio). J Comp Neurol. 2006;495:587-606 pubmed
  285. Kiyokage E, Toida K, Suzuki Yamamoto T, Ishimura K. Localization of 5alpha-reductase in the rat main olfactory bulb. J Comp Neurol. 2005;493:381-95 pubmed