这是一篇来自已证抗体库的有关人类 酪氨酸羟化酶 (tyrosine hydroxylase) 的综述,是根据192篇发表使用所有方法的文章归纳的。这综述旨在帮助来邦网的访客找到最适合酪氨酸羟化酶 抗体。
酪氨酸羟化酶 同义词: DYT14; DYT5b; TYH

ImmunoStar
小鼠 单克隆
  • 免疫组化; 小鼠; 1:1000; 图 2c
  • 免疫印迹; 小鼠; 1:2000; 图 8a
ImmunoStar酪氨酸羟化酶抗体(Immunostar, 22,941)被用于被用于免疫组化在小鼠样本上浓度为1:1000 (图 2c) 和 被用于免疫印迹在小鼠样本上浓度为1:2000 (图 8a). elife (2022) ncbi
小鼠 单克隆
  • 免疫组化-冰冻切片; 小鼠; 1:1000; 图 3g
ImmunoStar酪氨酸羟化酶抗体(ImmunoStar, 22941)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:1000 (图 3g). Nat Commun (2022) ncbi
小鼠 单克隆
  • 免疫组化-冰冻切片; 小鼠; 1:1000; 图 2a
ImmunoStar酪氨酸羟化酶抗体(ImmunoStar, 22941)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:1000 (图 2a). Front Pharmacol (2022) ncbi
小鼠 单克隆
  • 免疫组化-自由浮动切片; 小鼠; 1:1000; 图 1c
ImmunoStar酪氨酸羟化酶抗体(Immunostar, 22941)被用于被用于免疫组化-自由浮动切片在小鼠样本上浓度为1:1000 (图 1c). J Neurochem (2022) ncbi
小鼠 单克隆
  • 免疫组化; 斑马鱼; 1:1000; 图 3d
ImmunoStar酪氨酸羟化酶抗体(Immunostar, 22941)被用于被用于免疫组化在斑马鱼样本上浓度为1:1000 (图 3d). Dis Model Mech (2022) ncbi
小鼠 单克隆
  • 免疫组化; 斑马鱼; 1:500; 图 3a
ImmunoStar酪氨酸羟化酶抗体(Immunostar, 22941)被用于被用于免疫组化在斑马鱼样本上浓度为1:500 (图 3a). J Exp Zool A Ecol Integr Physiol (2021) ncbi
小鼠 单克隆
  • 免疫组化; 人类; 1:1000
ImmunoStar酪氨酸羟化酶抗体(Immunostar, 22941)被用于被用于免疫组化在人类样本上浓度为1:1000. Endocrinology (2021) ncbi
小鼠 单克隆
  • 免疫组化; fruit fly ; 1:100; 图 1d
ImmunoStar酪氨酸羟化酶抗体(ImmunoStar, 22941)被用于被用于免疫组化在fruit fly 样本上浓度为1:100 (图 1d). elife (2021) ncbi
小鼠 单克隆
  • 免疫组化; 小鼠; 1:1000; 图 s5-1a
ImmunoStar酪氨酸羟化酶抗体(Immunostar, 22941)被用于被用于免疫组化在小鼠样本上浓度为1:1000 (图 s5-1a). elife (2021) ncbi
小鼠 单克隆
  • 免疫组化-自由浮动切片; 小鼠; 1:2000; 图 1b
ImmunoStar酪氨酸羟化酶抗体(Immunostar, 22941)被用于被用于免疫组化-自由浮动切片在小鼠样本上浓度为1:2000 (图 1b). Nat Commun (2020) ncbi
小鼠 单克隆
ImmunoStar酪氨酸羟化酶抗体(ImmunoStar, 22941)被用于. elife (2020) ncbi
小鼠 单克隆
  • 免疫组化; fruit fly ; 1:100; 图 6b
ImmunoStar酪氨酸羟化酶抗体(Immuno Star, 22941)被用于被用于免疫组化在fruit fly 样本上浓度为1:100 (图 6b). Int J Mol Sci (2020) ncbi
小鼠 单克隆
  • 免疫组化-石蜡切片; 猕猴; 1:400; 图 1a
ImmunoStar酪氨酸羟化酶抗体(Immunostar, 22941)被用于被用于免疫组化-石蜡切片在猕猴样本上浓度为1:400 (图 1a). PLoS ONE (2020) ncbi
小鼠 单克隆
  • 免疫组化; Neogonodactylus oerstedii; 1:250; 图 2a
ImmunoStar酪氨酸羟化酶抗体(ImmunoStar, 22941)被用于被用于免疫组化在Neogonodactylus oerstedii样本上浓度为1:250 (图 2a). J Comp Neurol (2019) ncbi
小鼠 单克隆
  • 免疫组化; hermit crabs ; 1:250; 图 1a
ImmunoStar酪氨酸羟化酶抗体(ImmunoStar, 22941)被用于被用于免疫组化在hermit crabs 样本上浓度为1:250 (图 1a). J Comp Neurol (2020) ncbi
小鼠 单克隆
  • 免疫组化-冰冻切片; 小鼠; 图 9a2
ImmunoStar酪氨酸羟化酶抗体(ImmunoStar Inc., 22941)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 9a2). J Comp Neurol (2019) ncbi
小鼠 单克隆
  • 免疫组化-冰冻切片; 小鼠; 1:2000; 图 s2j
ImmunoStar酪氨酸羟化酶抗体(ImmunoStar, 22941)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:2000 (图 s2j). Science (2019) ncbi
小鼠 单克隆
  • 免疫组化; 大鼠; 1:1000; 图 1c
ImmunoStar酪氨酸羟化酶抗体(Immunostar, 22941)被用于被用于免疫组化在大鼠样本上浓度为1:1000 (图 1c). elife (2019) ncbi
小鼠 单克隆
  • 免疫印迹; 斑马鱼; 图 7g
ImmunoStar酪氨酸羟化酶抗体(ImmunoStar, 22941)被用于被用于免疫印迹在斑马鱼样本上 (图 7g). Dev Cell (2019) ncbi
小鼠 单克隆
ImmunoStar酪氨酸羟化酶抗体(Immuno Star, 22941)被用于. J Comp Neurol (2019) ncbi
小鼠 单克隆
  • 免疫组化; 金鱼; 图 6b
ImmunoStar酪氨酸羟化酶抗体(ImmunoStar, 22941)被用于被用于免疫组化在金鱼样本上 (图 6b). J Comp Neurol (2018) ncbi
小鼠 单克隆
  • 免疫组化; 小鼠; 图 6a
ImmunoStar酪氨酸羟化酶抗体(Immunostar, 22941)被用于被用于免疫组化在小鼠样本上 (图 6a). Brain Behav Immun (2018) ncbi
小鼠 单克隆
  • 免疫印迹; 非洲爪蛙; 1:1000; 图 1
  • 免疫印迹; 大鼠; 1:1000; 图 1
ImmunoStar酪氨酸羟化酶抗体(ImmunoStar, 22941)被用于被用于免疫印迹在非洲爪蛙样本上浓度为1:1000 (图 1) 和 被用于免疫印迹在大鼠样本上浓度为1:1000 (图 1). J Comp Neurol (2017) ncbi
小鼠 单克隆
  • 免疫组化; 斑马鱼; 1:500; 图 2d
ImmunoStar酪氨酸羟化酶抗体(Immunostar, 22941)被用于被用于免疫组化在斑马鱼样本上浓度为1:500 (图 2d). PLoS ONE (2017) ncbi
小鼠 单克隆
  • 免疫组化; 人类; 1:10,000; 表 1
ImmunoStar酪氨酸羟化酶抗体(ImmunoStar, 22941)被用于被用于免疫组化在人类样本上浓度为1:10,000 (表 1). Ann Neurol (2017) ncbi
小鼠 单克隆
  • 免疫组化-石蜡切片; 小鼠; 1:400; 图 2
ImmunoStar酪氨酸羟化酶抗体(ImmunoStar, 22941)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:400 (图 2). Sci Rep (2016) ncbi
小鼠 单克隆
  • 免疫组化; 小鼠; 1:1000; 图 8
ImmunoStar酪氨酸羟化酶抗体(ImmunoStar, 22941)被用于被用于免疫组化在小鼠样本上浓度为1:1000 (图 8). Nat Commun (2016) ncbi
小鼠 单克隆
  • 免疫组化-自由浮动切片; 非洲爪蛙; 1:1000; 表 2
ImmunoStar酪氨酸羟化酶抗体(ImmunoStar, 22941)被用于被用于免疫组化-自由浮动切片在非洲爪蛙样本上浓度为1:1000 (表 2). J Comp Neurol (2017) ncbi
小鼠 单克隆
  • 免疫印迹; 小鼠; 1:5000; 图 3a
ImmunoStar酪氨酸羟化酶抗体(ImmunoStar, 22941)被用于被用于免疫印迹在小鼠样本上浓度为1:5000 (图 3a). J Neurosci (2016) ncbi
小鼠 单克隆
  • 免疫组化; African green monkey; 1:10,000; 图 4a
ImmunoStar酪氨酸羟化酶抗体(ImmunoStar, 22941)被用于被用于免疫组化在African green monkey样本上浓度为1:10,000 (图 4a). J Comp Neurol (2017) ncbi
小鼠 单克隆
  • 免疫细胞化学; 小鼠; 1:400; 图 s4d
  • 免疫组化-冰冻切片; 大鼠; 1:400; 图 4c
  • 免疫印迹; 大鼠; 1:1000; 图 4b
ImmunoStar酪氨酸羟化酶抗体(ImmunoStar, 22941)被用于被用于免疫细胞化学在小鼠样本上浓度为1:400 (图 s4d), 被用于免疫组化-冰冻切片在大鼠样本上浓度为1:400 (图 4c) 和 被用于免疫印迹在大鼠样本上浓度为1:1000 (图 4b). Diabetes (2016) ncbi
小鼠 单克隆
  • 免疫组化; fruit fly ; 1:1000; 图 2
ImmunoStar酪氨酸羟化酶抗体(ImmunoStar, 22941)被用于被用于免疫组化在fruit fly 样本上浓度为1:1000 (图 2). Neuron (2016) ncbi
小鼠 单克隆
  • 免疫组化; 斑马鱼; 1:250; 图 8
ImmunoStar酪氨酸羟化酶抗体(ImmunoStar, 22941)被用于被用于免疫组化在斑马鱼样本上浓度为1:250 (图 8). J Comp Neurol (2016) ncbi
小鼠 单克隆
  • 免疫组化-冰冻切片; 大鼠; 1:2000; 图 3
ImmunoStar酪氨酸羟化酶抗体(Immunostar, 22941)被用于被用于免疫组化-冰冻切片在大鼠样本上浓度为1:2000 (图 3). Front Neurosci (2015) ncbi
小鼠 单克隆
  • 免疫组化; 人类; 1:1000; 图 3e
ImmunoStar酪氨酸羟化酶抗体(Immunostar, 22941)被用于被用于免疫组化在人类样本上浓度为1:1000 (图 3e). Methods (2016) ncbi
小鼠 单克隆
  • 免疫组化-冰冻切片; 鸡; 1:200
ImmunoStar酪氨酸羟化酶抗体(ImmunoStar, 22941)被用于被用于免疫组化-冰冻切片在鸡样本上浓度为1:200. Dev Neurobiol (2016) ncbi
小鼠 单克隆
  • 免疫组化; fruit fly ; 1:50; 图 5
ImmunoStar酪氨酸羟化酶抗体(ImmunoStar, 22941)被用于被用于免疫组化在fruit fly 样本上浓度为1:50 (图 5). elife (2015) ncbi
小鼠 单克隆
  • 免疫组化; California sea hare; 1:100
ImmunoStar酪氨酸羟化酶抗体(Immunostar, 22941)被用于被用于免疫组化在California sea hare样本上浓度为1:100. J Comp Neurol (2015) ncbi
小鼠 单克隆
  • 免疫组化; 斑马鱼; 1:100
ImmunoStar酪氨酸羟化酶抗体(Immunostar, 22941)被用于被用于免疫组化在斑马鱼样本上浓度为1:100. J Comp Neurol (2015) ncbi
小鼠 单克隆
  • 免疫细胞化学; 大鼠; 1:10,000
ImmunoStar酪氨酸羟化酶抗体(Immunostar, 22941)被用于被用于免疫细胞化学在大鼠样本上浓度为1:10,000. Neuroscience (2015) ncbi
小鼠 单克隆
  • 免疫组化; fruit fly ; 1:500; 图 3s1
ImmunoStar酪氨酸羟化酶抗体(Immunostar, 22,941)被用于被用于免疫组化在fruit fly 样本上浓度为1:500 (图 3s1). elife (2015) ncbi
小鼠 单克隆
  • 免疫组化; 大鼠; 1:10,000
ImmunoStar酪氨酸羟化酶抗体(Immunostar, 22941)被用于被用于免疫组化在大鼠样本上浓度为1:10,000. Brain Res Bull (2015) ncbi
小鼠 单克隆
  • 免疫组化; 小鼠; 1:2000
ImmunoStar酪氨酸羟化酶抗体(ImmunoStar, 22941)被用于被用于免疫组化在小鼠样本上浓度为1:2000. J Neurosci (2014) ncbi
小鼠 单克隆
  • 免疫细胞化学; 小鼠; 1:200
ImmunoStar酪氨酸羟化酶抗体(Immunostar, 22941)被用于被用于免疫细胞化学在小鼠样本上浓度为1:200. Dev Neurobiol (2015) ncbi
小鼠 单克隆
  • 免疫细胞化学; 小鼠; 1:25; 图 5
ImmunoStar酪氨酸羟化酶抗体(ImmunoStar, 22941)被用于被用于免疫细胞化学在小鼠样本上浓度为1:25 (图 5). Front Cell Neurosci (2014) ncbi
小鼠 单克隆
  • 免疫组化; fruit fly ; 1:50
ImmunoStar酪氨酸羟化酶抗体(Immunostar, 22941)被用于被用于免疫组化在fruit fly 样本上浓度为1:50. PLoS Genet (2014) ncbi
小鼠 单克隆
  • 免疫组化-冰冻切片; 大鼠; 1:10,000
ImmunoStar酪氨酸羟化酶抗体(Immunostar, 22941)被用于被用于免疫组化-冰冻切片在大鼠样本上浓度为1:10,000. PLoS ONE (2014) ncbi
小鼠 单克隆
  • 免疫组化-冰冻切片; bullfrog
ImmunoStar酪氨酸羟化酶抗体(ImmunoStar, 22941)被用于被用于免疫组化-冰冻切片在bullfrog样本上. J Comp Neurol (2014) ncbi
小鼠 单克隆
  • 免疫组化; 鸡; 1:500
ImmunoStar酪氨酸羟化酶抗体(ImmunoStar, 22941)被用于被用于免疫组化在鸡样本上浓度为1:500. Dev Neurobiol (2014) ncbi
小鼠 单克隆
  • 免疫组化; 斑马鱼; 1:500
ImmunoStar酪氨酸羟化酶抗体(Immunostar, 22941)被用于被用于免疫组化在斑马鱼样本上浓度为1:500. J Morphol (2014) ncbi
小鼠 单克隆
  • 免疫组化-冰冻切片; African green monkey; 1:20,000
ImmunoStar酪氨酸羟化酶抗体(Immunostar, 22941)被用于被用于免疫组化-冰冻切片在African green monkey样本上浓度为1:20,000. Neurol Res (2014) ncbi
小鼠 单克隆
  • 免疫组化; 小鼠
ImmunoStar酪氨酸羟化酶抗体(Immunostar, 22941)被用于被用于免疫组化在小鼠样本上. Eur J Neurosci (2014) ncbi
小鼠 单克隆
  • 免疫组化-自由浮动切片; 小鼠; 1:1000; 图 2
ImmunoStar酪氨酸羟化酶抗体(ImmunoStar, 22941)被用于被用于免疫组化-自由浮动切片在小鼠样本上浓度为1:1000 (图 2). Neuroscience (2014) ncbi
小鼠 单克隆
  • 免疫组化-自由浮动切片; 非洲爪蛙; 1:1000
ImmunoStar酪氨酸羟化酶抗体(ImmunoStar, 22941)被用于被用于免疫组化-自由浮动切片在非洲爪蛙样本上浓度为1:1000. J Comp Neurol (2014) ncbi
小鼠 单克隆
  • 免疫组化; 金鱼; 1:100; 表 1
ImmunoStar酪氨酸羟化酶抗体(Immunostar, 22941)被用于被用于免疫组化在金鱼样本上浓度为1:100 (表 1). J Comp Neurol (2014) ncbi
小鼠 单克隆
  • 免疫组化-自由浮动切片; Spanish newt; 1:1,000
ImmunoStar酪氨酸羟化酶抗体(ImmunoStar, 22941)被用于被用于免疫组化-自由浮动切片在Spanish newt样本上浓度为1:1,000. J Comp Neurol (2013) ncbi
小鼠 单克隆
  • 免疫细胞化学; 人类; 1:500
ImmunoStar酪氨酸羟化酶抗体(ImmunoStar, 22941)被用于被用于免疫细胞化学在人类样本上浓度为1:500. Cytotherapy (2013) ncbi
小鼠 单克隆
  • 免疫组化-冰冻切片; 大鼠; 1:1000
ImmunoStar酪氨酸羟化酶抗体(Immunostar, 22941)被用于被用于免疫组化-冰冻切片在大鼠样本上浓度为1:1000. J Comp Neurol (2013) ncbi
小鼠 单克隆
  • 免疫组化; pigs ; 1:600
ImmunoStar酪氨酸羟化酶抗体(Diasorin, 22941)被用于被用于免疫组化在pigs 样本上浓度为1:600. J Comp Neurol (2013) ncbi
小鼠 单克隆
  • 免疫印迹; 大鼠
  • 免疫组化-自由浮动切片; Spanish newt; 1:1,000
  • 免疫印迹; Spanish newt
ImmunoStar酪氨酸羟化酶抗体(ImmunoStar, 22941)被用于被用于免疫印迹在大鼠样本上, 被用于免疫组化-自由浮动切片在Spanish newt样本上浓度为1:1,000 和 被用于免疫印迹在Spanish newt样本上. J Comp Neurol (2013) ncbi
小鼠 单克隆
  • 免疫组化-冰冻切片; 非洲爪蛙; 1:1000
  • 免疫印迹; 非洲爪蛙
ImmunoStar酪氨酸羟化酶抗体(ImmunoStar, 22941)被用于被用于免疫组化-冰冻切片在非洲爪蛙样本上浓度为1:1000 和 被用于免疫印迹在非洲爪蛙样本上. J Comp Neurol (2013) ncbi
小鼠 单克隆
  • 免疫组化; 豚鼠; 1:600
  • 免疫组化; 人类; 1:600
ImmunoStar酪氨酸羟化酶抗体(Diasorin, 22941)被用于被用于免疫组化在豚鼠样本上浓度为1:600 和 被用于免疫组化在人类样本上浓度为1:600. J Comp Neurol (2013) ncbi
小鼠 单克隆
  • 免疫组化; 非洲爪蛙; 1:1000
ImmunoStar酪氨酸羟化酶抗体(ImmunoStar, 22941)被用于被用于免疫组化在非洲爪蛙样本上浓度为1:1000. J Comp Neurol (2013) ncbi
小鼠 单克隆
  • 免疫组化; dime-store turtle; 1:1000
ImmunoStar酪氨酸羟化酶抗体(ImmunoStar, 22941)被用于被用于免疫组化在dime-store turtle样本上浓度为1:1000. J Comp Neurol (2012) ncbi
小鼠 单克隆
  • 免疫组化-冰冻切片; 小鼠; 1:800
  • 免疫印迹; 小鼠; 1:1000
ImmunoStar酪氨酸羟化酶抗体(ImmunoStar, 22941)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:800 和 被用于免疫印迹在小鼠样本上浓度为1:1000. J Comp Neurol (2011) ncbi
小鼠 单克隆
  • 免疫组化-冰冻切片; 大鼠; 1:30,000
ImmunoStar酪氨酸羟化酶抗体(Diasorin, 22941)被用于被用于免疫组化-冰冻切片在大鼠样本上浓度为1:30,000. J Comp Neurol (2011) ncbi
小鼠 单克隆
  • 免疫组化-冰冻切片; dime-store turtle; 1:1000
ImmunoStar酪氨酸羟化酶抗体(ImmunoStar, 22941)被用于被用于免疫组化-冰冻切片在dime-store turtle样本上浓度为1:1000. J Comp Neurol (2010) ncbi
小鼠 单克隆
  • 免疫组化; 小鼠; 1:500
ImmunoStar酪氨酸羟化酶抗体(Immunostar, 22941)被用于被用于免疫组化在小鼠样本上浓度为1:500. J Comp Neurol (2010) ncbi
小鼠 单克隆
  • 免疫组化; 小鼠; 1:1000
ImmunoStar酪氨酸羟化酶抗体(ImmunoStar, 22941)被用于被用于免疫组化在小鼠样本上浓度为1:1000. J Comp Neurol (2010) ncbi
小鼠 单克隆
  • 免疫细胞化学; giant freshwater prawn; 1:200
ImmunoStar酪氨酸羟化酶抗体(ImmunoStar, 22941)被用于被用于免疫细胞化学在giant freshwater prawn样本上浓度为1:200. J Comp Neurol (2009) ncbi
小鼠 单克隆
  • 免疫组化-冰冻切片; 斑马鱼; 1:1200
ImmunoStar酪氨酸羟化酶抗体(Incstar, 22941)被用于被用于免疫组化-冰冻切片在斑马鱼样本上浓度为1:1200. J Comp Neurol (2008) ncbi
小鼠 单克隆
  • 免疫组化-自由浮动切片; 小鼠; 1:25,000
ImmunoStar酪氨酸羟化酶抗体(ImmunoStar, 22941)被用于被用于免疫组化-自由浮动切片在小鼠样本上浓度为1:25,000. J Comp Neurol (2007) ncbi
小鼠 单克隆
  • 免疫组化; 大鼠; 1:500
ImmunoStar酪氨酸羟化酶抗体(Immunostar Inc, 22941)被用于被用于免疫组化在大鼠样本上浓度为1:500. J Comp Neurol (2007) ncbi
小鼠 单克隆
  • 免疫组化-自由浮动切片; 鸡; 1:1000
ImmunoStar酪氨酸羟化酶抗体(INCSTAR, 22941)被用于被用于免疫组化-自由浮动切片在鸡样本上浓度为1:1000. J Comp Neurol (2006) ncbi
小鼠 单克隆
  • 免疫组化; 斑马鱼; 1:1000
ImmunoStar酪氨酸羟化酶抗体(ImmunoStar, 22941)被用于被用于免疫组化在斑马鱼样本上浓度为1:1000. J Comp Neurol (2006) ncbi
小鼠 单克隆
  • 免疫组化-冰冻切片; 斑马鱼; 1:500
ImmunoStar酪氨酸羟化酶抗体(ImmunoStar, 22941)被用于被用于免疫组化-冰冻切片在斑马鱼样本上浓度为1:500. J Comp Neurol (2006) ncbi
艾博抗(上海)贸易有限公司
domestic rabbit 单克隆(EP1532Y)
  • 免疫组化-石蜡切片; 大鼠; 1:400; 图 3a
艾博抗(上海)贸易有限公司酪氨酸羟化酶抗体(Abcam, ab137869)被用于被用于免疫组化-石蜡切片在大鼠样本上浓度为1:400 (图 3a). Front Cell Neurosci (2022) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:1000; 图 3c
  • 免疫印迹; 小鼠; 1:1000; 图 3b
艾博抗(上海)贸易有限公司酪氨酸羟化酶抗体(Abcam, AB 6211)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:1000 (图 3c) 和 被用于免疫印迹在小鼠样本上浓度为1:1000 (图 3b). Exp Brain Res (2022) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:200; 图 6b
艾博抗(上海)贸易有限公司酪氨酸羟化酶抗体(Abcam, ab112)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:200 (图 6b). Proc Natl Acad Sci U S A (2022) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 大鼠; 1:1000; 图 5a
艾博抗(上海)贸易有限公司酪氨酸羟化酶抗体(Abcam, ab112)被用于被用于免疫组化-石蜡切片在大鼠样本上浓度为1:1000 (图 5a). Int J Mol Sci (2021) ncbi
鸡 多克隆
  • 免疫组化; 小鼠; 1:500; 图 s7b
艾博抗(上海)贸易有限公司酪氨酸羟化酶抗体(Abcam, ab76442)被用于被用于免疫组化在小鼠样本上浓度为1:500 (图 s7b). Front Endocrinol (Lausanne) (2021) ncbi
鸡 多克隆
  • 免疫组化-自由浮动切片; 小鼠; 1:1000; 图 7d
艾博抗(上海)贸易有限公司酪氨酸羟化酶抗体(Abcam, ab76442)被用于被用于免疫组化-自由浮动切片在小鼠样本上浓度为1:1000 (图 7d). Neurobiol Dis (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:5000; 图 1e
艾博抗(上海)贸易有限公司酪氨酸羟化酶抗体(Abcam, ab112)被用于被用于免疫印迹在小鼠样本上浓度为1:5000 (图 1e). Oxid Med Cell Longev (2021) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 图 s1
艾博抗(上海)贸易有限公司酪氨酸羟化酶抗体(Abcam, ab112)被用于被用于免疫组化在小鼠样本上 (图 s1). Antioxidants (Basel) (2021) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 大鼠; 1:500; 图 1b
艾博抗(上海)贸易有限公司酪氨酸羟化酶抗体(Abcam, ab6211)被用于被用于免疫组化-冰冻切片在大鼠样本上浓度为1:500 (图 1b). CNS Neurosci Ther (2021) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:750; 图 3b
艾博抗(上海)贸易有限公司酪氨酸羟化酶抗体(abcam, ab112)被用于被用于免疫组化在小鼠样本上浓度为1:750 (图 3b). iScience (2021) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:1000; 图 2b
艾博抗(上海)贸易有限公司酪氨酸羟化酶抗体(Abcam, ab112)被用于被用于免疫组化在小鼠样本上浓度为1:1000 (图 2b). Histochem Cell Biol (2021) ncbi
鸡 多克隆
  • 免疫组化; 小鼠; 1:500; 图 4d
艾博抗(上海)贸易有限公司酪氨酸羟化酶抗体(Abcam, ab76442)被用于被用于免疫组化在小鼠样本上浓度为1:500 (图 4d). Int J Mol Sci (2021) ncbi
小鼠 单克隆(TH-100)
  • 免疫组化; 小鼠; 1:1000; 图 3a
艾博抗(上海)贸易有限公司酪氨酸羟化酶抗体(Abcam, AB129991)被用于被用于免疫组化在小鼠样本上浓度为1:1000 (图 3a). elife (2021) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 大鼠; 1:1000; 图 7a
艾博抗(上海)贸易有限公司酪氨酸羟化酶抗体(Abcam, ab112)被用于被用于免疫组化-冰冻切片在大鼠样本上浓度为1:1000 (图 7a). Front Pharmacol (2021) ncbi
domestic rabbit 多克隆
  • 免疫组化; 大鼠; 图 5d
艾博抗(上海)贸易有限公司酪氨酸羟化酶抗体(Abcam, ab112)被用于被用于免疫组化在大鼠样本上 (图 5d). JCI Insight (2021) ncbi
小鼠 单克隆(TH-100)
  • 免疫印迹; 小鼠; 1:1000; 图 2d
艾博抗(上海)贸易有限公司酪氨酸羟化酶抗体(Abcam, ab129991)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 2d). J Inflamm Res (2021) ncbi
鸡 多克隆
  • 免疫组化; 小鼠; 1:1000; 图 6??s2a
艾博抗(上海)贸易有限公司酪氨酸羟化酶抗体(Abcam, ab76442)被用于被用于免疫组化在小鼠样本上浓度为1:1000 (图 6??s2a). elife (2021) ncbi
鸡 多克隆
  • 免疫组化; 小鼠; 1:250; 图 3c
艾博抗(上海)贸易有限公司酪氨酸羟化酶抗体(Abcam, ab76442)被用于被用于免疫组化在小鼠样本上浓度为1:250 (图 3c). J Neurosci (2021) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 1:1000; 图 3a
艾博抗(上海)贸易有限公司酪氨酸羟化酶抗体(Abcam, ab112)被用于被用于免疫细胞化学在人类样本上浓度为1:1000 (图 3a). J Neural Transm (Vienna) (2021) ncbi
domestic rabbit 单克隆(EP1532Y)
  • 免疫印迹; 小鼠; 1:5000; 图 4k
艾博抗(上海)贸易有限公司酪氨酸羟化酶抗体(Abcam, ab137869)被用于被用于免疫印迹在小鼠样本上浓度为1:5000 (图 4k). Mol Metab (2021) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 图 3
艾博抗(上海)贸易有限公司酪氨酸羟化酶抗体(Abcam, ab112)被用于被用于免疫组化在小鼠样本上 (图 3). Biomed Res Int (2020) ncbi
domestic rabbit 单克隆(EP1533Y)
  • 免疫印迹; 小鼠; 1:200; 图 4a
艾博抗(上海)贸易有限公司酪氨酸羟化酶抗体(Abcam, ab75875)被用于被用于免疫印迹在小鼠样本上浓度为1:200 (图 4a). Aging (Albany NY) (2020) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:800; 图 2a
艾博抗(上海)贸易有限公司酪氨酸羟化酶抗体(Abcam, ab112)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:800 (图 2a). Nat Commun (2020) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 大鼠; 0.3 ug/ml; 图 4b
艾博抗(上海)贸易有限公司酪氨酸羟化酶抗体(Abcam, ab112)被用于被用于免疫组化-冰冻切片在大鼠样本上浓度为0.3 ug/ml (图 4b). elife (2020) ncbi
domestic rabbit 单克隆(EP1533Y)
  • 免疫组化; pigs ; 1:200; 图 4f
艾博抗(上海)贸易有限公司酪氨酸羟化酶抗体(Abcam, ab75875)被用于被用于免疫组化在pigs 样本上浓度为1:200 (图 4f). BMC Cardiovasc Disord (2019) ncbi
鸡 多克隆
  • 免疫组化; 大鼠; 1:500; 图 3a
艾博抗(上海)贸易有限公司酪氨酸羟化酶抗体(Abcam, ab76442)被用于被用于免疫组化在大鼠样本上浓度为1:500 (图 3a). Brain Behav (2019) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:1000; 图 s5
艾博抗(上海)贸易有限公司酪氨酸羟化酶抗体(Abcam, ab112)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:1000 (图 s5). Nat Commun (2019) ncbi
domestic rabbit 单克隆(EP1532Y)
  • 免疫印迹; 小鼠; 1:5000; 图 5a
艾博抗(上海)贸易有限公司酪氨酸羟化酶抗体(Abcam, ab137869)被用于被用于免疫印迹在小鼠样本上浓度为1:5000 (图 5a). Am J Physiol Endocrinol Metab (2019) ncbi
鸡 多克隆
艾博抗(上海)贸易有限公司酪氨酸羟化酶抗体(Abcam, AB76442)被用于. J Comp Neurol (2019) ncbi
鸡 多克隆
  • 免疫细胞化学; 人类; 1:1000; 图 7b
艾博抗(上海)贸易有限公司酪氨酸羟化酶抗体(Abcam, ab76442)被用于被用于免疫细胞化学在人类样本上浓度为1:1000 (图 7b). Hum Mol Genet (2017) ncbi
鸡 多克隆
  • 免疫组化-自由浮动切片; 小鼠; 1:1000
艾博抗(上海)贸易有限公司酪氨酸羟化酶抗体(Abcam, AB76442)被用于被用于免疫组化-自由浮动切片在小鼠样本上浓度为1:1000. J Comp Neurol (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 4e
艾博抗(上海)贸易有限公司酪氨酸羟化酶抗体(Abcam, ab112)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 4e). Diabetes (2016) ncbi
鸡 多克隆
  • 免疫细胞化学; 小鼠; 1:500; 图 4
艾博抗(上海)贸易有限公司酪氨酸羟化酶抗体(Abcam, ab76442)被用于被用于免疫细胞化学在小鼠样本上浓度为1:500 (图 4). Histochem Cell Biol (2016) ncbi
家羊 多克隆
  • 免疫组化-自由浮动切片; 大鼠; 1:1000; 图 7a
  • 免疫印迹; 大鼠; 1:5000; 图 7d
艾博抗(上海)贸易有限公司酪氨酸羟化酶抗体(Abcam, ab113)被用于被用于免疫组化-自由浮动切片在大鼠样本上浓度为1:1000 (图 7a) 和 被用于免疫印迹在大鼠样本上浓度为1:5000 (图 7d). Prog Neuropsychopharmacol Biol Psychiatry (2016) ncbi
鸡 多克隆
  • 免疫组化; 小鼠; 1:1000; 图 4
艾博抗(上海)贸易有限公司酪氨酸羟化酶抗体(abcam, ab76442)被用于被用于免疫组化在小鼠样本上浓度为1:1000 (图 4). Sci Rep (2016) ncbi
鸡 多克隆
  • 免疫组化-自由浮动切片; 大鼠; 1:400; 图 1
艾博抗(上海)贸易有限公司酪氨酸羟化酶抗体(Abcam, ab76442)被用于被用于免疫组化-自由浮动切片在大鼠样本上浓度为1:400 (图 1). J Neurochem (2016) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 小鼠; 图 s5C-1
艾博抗(上海)贸易有限公司酪氨酸羟化酶抗体(Abcam, ab6211)被用于被用于免疫细胞化学在小鼠样本上 (图 s5C-1). Proc Natl Acad Sci U S A (2016) ncbi
domestic rabbit 单克隆(EP1532Y)
  • 免疫印迹; 人类; 图 3
艾博抗(上海)贸易有限公司酪氨酸羟化酶抗体(Abcam, ab137869)被用于被用于免疫印迹在人类样本上 (图 3). J Biol Chem (2016) ncbi
鸡 多克隆
  • 免疫组化-自由浮动切片; 小鼠; 图 s16
艾博抗(上海)贸易有限公司酪氨酸羟化酶抗体(Abcam, ab76442)被用于被用于免疫组化-自由浮动切片在小鼠样本上 (图 s16). Nat Commun (2016) ncbi
鸡 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:100
艾博抗(上海)贸易有限公司酪氨酸羟化酶抗体(Abcam, ab76442)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:100. Neuropharmacology (2016) ncbi
圣克鲁斯生物技术
小鼠 单克隆(F-11)
  • 免疫组化-冰冻切片; 大鼠; 1:500; 图 5c
  • 免疫印迹; 大鼠; 图 5a
圣克鲁斯生物技术酪氨酸羟化酶抗体(Santa Cruz, sc-25269)被用于被用于免疫组化-冰冻切片在大鼠样本上浓度为1:500 (图 5c) 和 被用于免疫印迹在大鼠样本上 (图 5a). Front Pharmacol (2022) ncbi
小鼠 单克隆(F-11)
  • 免疫组化-自由浮动切片; 小鼠; 图 2c
  • 免疫细胞化学; 小鼠; 图 s1b
  • 免疫印迹; 小鼠; 图 5a
  • 免疫组化-石蜡切片; 人类; 图 1d, 1e
  • 免疫印迹; 人类; 图 1b
圣克鲁斯生物技术酪氨酸羟化酶抗体(Santa Cruz, sc-25269)被用于被用于免疫组化-自由浮动切片在小鼠样本上 (图 2c), 被用于免疫细胞化学在小鼠样本上 (图 s1b), 被用于免疫印迹在小鼠样本上 (图 5a), 被用于免疫组化-石蜡切片在人类样本上 (图 1d, 1e) 和 被用于免疫印迹在人类样本上 (图 1b). Adv Sci (Weinh) (2022) ncbi
小鼠 单克隆(F-11)
  • 免疫组化; 小鼠; 1:500; 图 1b
圣克鲁斯生物技术酪氨酸羟化酶抗体(Santa Cruz, sc-25269)被用于被用于免疫组化在小鼠样本上浓度为1:500 (图 1b). Redox Biol (2021) ncbi
小鼠 单克隆(F-11)
  • 免疫组化; 小鼠; 1:2000; 图 3d
圣克鲁斯生物技术酪氨酸羟化酶抗体(Santa Cruz Biotechnology, sc-25269)被用于被用于免疫组化在小鼠样本上浓度为1:2000 (图 3d). J Neurosci (2020) ncbi
小鼠 单克隆(F-11)
  • 免疫组化; 大鼠; 1:1000; 图 3a
圣克鲁斯生物技术酪氨酸羟化酶抗体(Santa Cruz, sc25269)被用于被用于免疫组化在大鼠样本上浓度为1:1000 (图 3a). elife (2020) ncbi
小鼠 单克隆(F-11)
  • 免疫组化; 小鼠
圣克鲁斯生物技术酪氨酸羟化酶抗体(Santa Cruz Biotechnology, sc-25269)被用于被用于免疫组化在小鼠样本上. Brain Pathol (2020) ncbi
小鼠 单克隆(F-11)
  • 免疫组化-石蜡切片; 小鼠; 图 1a
  • 免疫印迹; 小鼠; 图 2a, 8b
圣克鲁斯生物技术酪氨酸羟化酶抗体(Santa Cruz, sc-25269)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 1a) 和 被用于免疫印迹在小鼠样本上 (图 2a, 8b). Theranostics (2020) ncbi
小鼠 单克隆(F-11)
  • 免疫印迹; 小鼠; 图 2a
圣克鲁斯生物技术酪氨酸羟化酶抗体(Santa Cruz, sc-25269)被用于被用于免疫印迹在小鼠样本上 (图 2a). J Physiol (2019) ncbi
小鼠 单克隆(F-11)
  • 免疫组化; 小鼠; 图 2b
  • 免疫印迹; 小鼠; 图 2c
圣克鲁斯生物技术酪氨酸羟化酶抗体(Santa Cruz, F-11)被用于被用于免疫组化在小鼠样本上 (图 2b) 和 被用于免疫印迹在小鼠样本上 (图 2c). Br J Pharmacol (2018) ncbi
小鼠 单克隆
  • 免疫组化; 小鼠; 图 2b
  • 免疫印迹; 小鼠; 图 2c
圣克鲁斯生物技术酪氨酸羟化酶抗体(Santa Cruz, F-11)被用于被用于免疫组化在小鼠样本上 (图 2b) 和 被用于免疫印迹在小鼠样本上 (图 2c). Br J Pharmacol (2018) ncbi
小鼠 单克隆(F-11)
  • 免疫组化-石蜡切片; 人类; 1:10,000; 图 s9d
圣克鲁斯生物技术酪氨酸羟化酶抗体(Santa Cruz, sc-25269)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:10,000 (图 s9d). Nat Genet (2017) ncbi
小鼠 单克隆(F-11)
  • 免疫组化; 小鼠; 图 5
  • 免疫印迹; 小鼠; 图 7a
圣克鲁斯生物技术酪氨酸羟化酶抗体(Santa Cruz, F11)被用于被用于免疫组化在小鼠样本上 (图 5) 和 被用于免疫印迹在小鼠样本上 (图 7a). Neuropharmacology (2016) ncbi
小鼠 单克隆
  • 免疫组化; 小鼠; 图 5
  • 免疫印迹; 小鼠; 图 7a
圣克鲁斯生物技术酪氨酸羟化酶抗体(Santa Cruz, F11)被用于被用于免疫组化在小鼠样本上 (图 5) 和 被用于免疫印迹在小鼠样本上 (图 7a). Neuropharmacology (2016) ncbi
小鼠 单克隆(A-6)
  • 免疫组化-冰冻切片; 人类; 图 2
圣克鲁斯生物技术酪氨酸羟化酶抗体(Santa Cruz, sc-374048)被用于被用于免疫组化-冰冻切片在人类样本上 (图 2). PLoS ONE (2016) ncbi
小鼠 单克隆(F-11)
  • 免疫细胞化学; 人类; 1:500; 图 7
圣克鲁斯生物技术酪氨酸羟化酶抗体(Santa Cruz Biotechnology, sc-25269)被用于被用于免疫细胞化学在人类样本上浓度为1:500 (图 7). PLoS ONE (2015) ncbi
小鼠 单克隆(F-11)
  • 免疫印迹; 小鼠; 图 1
圣克鲁斯生物技术酪氨酸羟化酶抗体(Santa Cruz, SC25269)被用于被用于免疫印迹在小鼠样本上 (图 1). Oxid Med Cell Longev (2015) ncbi
小鼠 单克隆(TOH A1.1)
  • 免疫组化-石蜡切片; 大鼠; 1:500; 图 5a
  • 免疫印迹; 大鼠; 1:2000; 图 5c
圣克鲁斯生物技术酪氨酸羟化酶抗体(Santa Cruz Biotechnology, sc-47708)被用于被用于免疫组化-石蜡切片在大鼠样本上浓度为1:500 (图 5a) 和 被用于免疫印迹在大鼠样本上浓度为1:2000 (图 5c). Neural Regen Res (2012) ncbi
Novus Biologicals
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:1000; 图 s3c
Novus Biologicals酪氨酸羟化酶抗体(Novus, NB300-109)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:1000 (图 s3c). Cell Metab (2020) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:2000; 图 2b
Novus Biologicals酪氨酸羟化酶抗体(Novus Biologicals, NB300-109)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:2000 (图 2b). Int J Mol Sci (2019) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 小鼠; 图 s3
Novus Biologicals酪氨酸羟化酶抗体(Novus Biologicals, NB300-109)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 s3). Proc Natl Acad Sci U S A (2018) ncbi
家羊 多克隆(6H12)
  • 免疫组化; 小鼠; 1:2000; 图 6b
Novus Biologicals酪氨酸羟化酶抗体(Novus Biologicals, NB300-110)被用于被用于免疫组化在小鼠样本上浓度为1:2000 (图 6b). Science (2017) ncbi
家羊 多克隆(6H12)
  • 免疫组化; 人类; 图 5
  • 免疫组化; 小鼠; 图 5
Novus Biologicals酪氨酸羟化酶抗体(Novus, NB300-110)被用于被用于免疫组化在人类样本上 (图 5) 和 被用于免疫组化在小鼠样本上 (图 5). Cell (2016) ncbi
家羊 多克隆(6H12)
  • 免疫组化; 大鼠; 1:2000; 图 1a
Novus Biologicals酪氨酸羟化酶抗体(Novus Biologicals, NB 300-110)被用于被用于免疫组化在大鼠样本上浓度为1:2000 (图 1a). Am J Physiol Regul Integr Comp Physiol (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:500-1:1000; 图 1a
Novus Biologicals酪氨酸羟化酶抗体(Novus Biologicals, NB300-109)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:500-1:1000 (图 1a). Histochem Cell Biol (2016) ncbi
家羊 多克隆(6H12)
  • 免疫组化-冰冻切片; 小鼠; 1:1000; 图 1a
Novus Biologicals酪氨酸羟化酶抗体(Novus Biologicals, NB300-110)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:1000 (图 1a). Histochem Cell Biol (2016) ncbi
赛默飞世尔
家羊 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:500; 图 5d
  • 免疫印迹; 小鼠; 1:1000; 图 5c
赛默飞世尔酪氨酸羟化酶抗体(ThermoFisher, PA1-4679)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:500 (图 5d) 和 被用于免疫印迹在小鼠样本上浓度为1:1000 (图 5c). Neurobiol Dis (2017) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:1000; 图 3
赛默飞世尔酪氨酸羟化酶抗体(生活技术, P21962)被用于被用于免疫组化在小鼠样本上浓度为1:1000 (图 3). Mol Neurobiol (2017) ncbi
家羊 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:2000; 图 2
赛默飞世尔酪氨酸羟化酶抗体(Thermo Scientific, PA1-4679)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:2000 (图 2). elife (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 大鼠; 1:400; 图 4
赛默飞世尔酪氨酸羟化酶抗体(生活技术, 36-9900)被用于被用于免疫印迹在大鼠样本上浓度为1:400 (图 4). Horm Behav (2016) ncbi
domestic rabbit 多克隆
赛默飞世尔酪氨酸羟化酶抗体(Thermo Fisher Scientific, PA1-18315)被用于. PLoS ONE (2015) ncbi
家羊 多克隆
赛默飞世尔酪氨酸羟化酶抗体(Fisher Emergo BV, PA-14679)被用于. Int J Cardiol (2015) ncbi
domestic rabbit 多克隆
赛默飞世尔酪氨酸羟化酶抗体(Affinity BioReagents, OPA1-04050)被用于. J Neurochem (2015) ncbi
Synaptic Systems
豚鼠 多克隆
  • 免疫细胞化学; 大鼠; 1:1000; 图 3b
Synaptic Systems酪氨酸羟化酶抗体(Synaptic Systems, 213004)被用于被用于免疫细胞化学在大鼠样本上浓度为1:1000 (图 3b). Int J Neuropsychopharmacol (2017) ncbi
安迪生物R&D
小鼠 单克隆(779427)
  • 免疫印迹; 大鼠; 0.5 ug/ml
安迪生物R&D酪氨酸羟化酶抗体(R&D Systems, MAB7566)被用于被用于免疫印迹在大鼠样本上浓度为0.5 ug/ml. Mediators Inflamm (2014) ncbi
BioLegend
小鼠 单克隆(2/40/15)
  • 免疫组化; 小鼠; 图 st1
BioLegend酪氨酸羟化酶抗体(BioLegend, 818001)被用于被用于免疫组化在小鼠样本上 (图 st1). Nat Biotechnol (2016) ncbi
Pel-Freez
domestic rabbit
  • 免疫组化; 小鼠; 1:6000; 图 s3a
Pel-Freez酪氨酸羟化酶抗体(Pelfreeze, P40101-0)被用于被用于免疫组化在小鼠样本上浓度为1:6000 (图 s3a). PLoS ONE (2021) ncbi
domestic rabbit
  • 免疫组化; 人类; 图 1d
Pel-Freez酪氨酸羟化酶抗体(Pel-Freez Biologicals, P40101-0)被用于被用于免疫组化在人类样本上 (图 1d). Cell Death Dis (2020) ncbi
domestic rabbit
  • 免疫组化-冰冻切片; 小鼠; 1:1000; 图 2c
Pel-Freez酪氨酸羟化酶抗体(Pel-Freez, P40101-0)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:1000 (图 2c). Acta Neuropathol (2019) ncbi
domestic rabbit
  • 免疫组化; 小鼠; 1:1000; 图 2d
Pel-Freez酪氨酸羟化酶抗体(Pel-Freez, P40101-0)被用于被用于免疫组化在小鼠样本上浓度为1:1000 (图 2d). J Neurosci (2017) ncbi
domestic rabbit
  • 免疫组化-自由浮动切片; African green monkey; 1:1000; 图 1A
Pel-Freez酪氨酸羟化酶抗体(Pel-Freez, 40101-0)被用于被用于免疫组化-自由浮动切片在African green monkey样本上浓度为1:1000 (图 1A). PLoS ONE (2016) ncbi
domestic rabbit
  • 免疫细胞化学; 人类; 1:700; 图 s8b
Pel-Freez酪氨酸羟化酶抗体(Pel-Freez, P40101-0)被用于被用于免疫细胞化学在人类样本上浓度为1:700 (图 s8b). Nat Med (2016) ncbi
domestic rabbit
  • 免疫组化-冰冻切片; 小鼠; 1:1000; 图 1b
  • 免疫印迹; 小鼠; 1:1000; 图 s4a
Pel-Freez酪氨酸羟化酶抗体(Pel-Freez Biologicals, P40101-0)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:1000 (图 1b) 和 被用于免疫印迹在小鼠样本上浓度为1:1000 (图 s4a). Proc Natl Acad Sci U S A (2016) ncbi
domestic rabbit
  • 免疫细胞化学; 人类; 1:500; 图 2
  • 免疫印迹; 人类; 图 5
Pel-Freez酪氨酸羟化酶抗体(Pel-Freez, P40101)被用于被用于免疫细胞化学在人类样本上浓度为1:500 (图 2) 和 被用于免疫印迹在人类样本上 (图 5). PLoS ONE (2016) ncbi
domestic rabbit
  • 免疫组化-石蜡切片; 斑马鱼; 1:500; 图 3
Pel-Freez酪氨酸羟化酶抗体(Pel-Freez, P40101)被用于被用于免疫组化-石蜡切片在斑马鱼样本上浓度为1:500 (图 3). elife (2016) ncbi
domestic rabbit
  • 免疫组化; 小鼠; 图 6
  • 免疫组化; 大鼠; 图 3
Pel-Freez酪氨酸羟化酶抗体(Pel-Freez, p40101)被用于被用于免疫组化在小鼠样本上 (图 6) 和 被用于免疫组化在大鼠样本上 (图 3). Sci Rep (2015) ncbi
domestic rabbit
  • 免疫组化; 人类; 1:100; 图 3
Pel-Freez酪氨酸羟化酶抗体(Pel-Freez, P40101)被用于被用于免疫组化在人类样本上浓度为1:100 (图 3). Sci Rep (2015) ncbi
domestic rabbit
  • 其他; 人类; 图 3c
Pel-Freez酪氨酸羟化酶抗体(Pel-Freeze Biologicals, P40101-0)被用于被用于其他在人类样本上 (图 3c). J Anat (2015) ncbi
domestic rabbit
  • 免疫组化-自由浮动切片; 小鼠; 1:1000; 图 4
  • 免疫组化-冰冻切片; 小鼠; 1:1000; 图 4
Pel-Freez酪氨酸羟化酶抗体(Pel-Freeze, P40101-0)被用于被用于免疫组化-自由浮动切片在小鼠样本上浓度为1:1000 (图 4) 和 被用于免疫组化-冰冻切片在小鼠样本上浓度为1:1000 (图 4). Nat Neurosci (2015) ncbi
domestic rabbit
  • 免疫组化-自由浮动切片; 大鼠; 1:1000
Pel-Freez酪氨酸羟化酶抗体(Pel-Freez, P40101-0)被用于被用于免疫组化-自由浮动切片在大鼠样本上浓度为1:1000. Neuroscience (2014) ncbi
domestic rabbit
  • 免疫组化-冰冻切片; 小鼠; 图 4
  • 免疫组化; 小鼠; 图 4
  • 免疫组化-冰冻切片; 大鼠; 图 3
  • 免疫细胞化学; 大鼠; 图 8
  • 免疫组化; 大鼠; 图 2
Pel-Freez酪氨酸羟化酶抗体(Pelfreez, P40101-0)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 4), 被用于免疫组化在小鼠样本上 (图 4), 被用于免疫组化-冰冻切片在大鼠样本上 (图 3), 被用于免疫细胞化学在大鼠样本上 (图 8) 和 被用于免疫组化在大鼠样本上 (图 2). Front Neuroanat (2014) ncbi
domestic rabbit
  • 染色质免疫沉淀 ; 人类
Pel-Freez酪氨酸羟化酶抗体(Pel-Freez, p40101)被用于被用于染色质免疫沉淀 在人类样本上. Neuroreport (2014) ncbi
domestic rabbit
  • 免疫组化-自由浮动切片; 小鼠; 1:500; 图 2
Pel-Freez酪氨酸羟化酶抗体(Pel-Freez, P40101-0)被用于被用于免疫组化-自由浮动切片在小鼠样本上浓度为1:500 (图 2). Neuroscience (2014) ncbi
domestic rabbit
  • 免疫印迹; 小鼠; 1:1000; 图 s1
Pel-Freez酪氨酸羟化酶抗体(Pel-Freez, P40101)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 s1). PLoS ONE (2010) ncbi
domestic rabbit
  • 免疫细胞化学; 小鼠; 1:200
Pel-Freez酪氨酸羟化酶抗体(Pel-Freez, P40101-0)被用于被用于免疫细胞化学在小鼠样本上浓度为1:200. J Comp Neurol (2009) ncbi
domestic rabbit
  • 免疫组化-自由浮动切片; 小鼠; 1:5000
Pel-Freez酪氨酸羟化酶抗体(Pel-Freez, P40101-0)被用于被用于免疫组化-自由浮动切片在小鼠样本上浓度为1:5000. J Comp Neurol (2007) ncbi
赛信通(上海)生物试剂有限公司
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 大鼠; 1:1000; 图 5c
  • 免疫印迹; 大鼠; 图 5a
赛信通(上海)生物试剂有限公司酪氨酸羟化酶抗体(Cell Signaling, 2791)被用于被用于免疫组化-冰冻切片在大鼠样本上浓度为1:1000 (图 5c) 和 被用于免疫印迹在大鼠样本上 (图 5a). Front Pharmacol (2022) ncbi
domestic rabbit 单克隆(E2L6M)
  • 免疫组化-冰冻切片; 小鼠; 图 5a
赛信通(上海)生物试剂有限公司酪氨酸羟化酶抗体(Cell Signaling, 58844)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 5a). Neuropsychiatr Dis Treat (2020) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:50; 图 6a
  • 免疫印迹; 小鼠; 1:1000; 图 6c
赛信通(上海)生物试剂有限公司酪氨酸羟化酶抗体(Cell Signaling, 2792)被用于被用于免疫组化在小鼠样本上浓度为1:50 (图 6a) 和 被用于免疫印迹在小鼠样本上浓度为1:1000 (图 6c). Front Neurosci (2020) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 1a
赛信通(上海)生物试剂有限公司酪氨酸羟化酶抗体(Cell Signaling, 2792)被用于被用于免疫印迹在小鼠样本上 (图 1a). Cell Death Differ (2016) ncbi
Neuromics
单克隆
  • 免疫组化; 小鼠; 图 s14f
Neuromics酪氨酸羟化酶抗体(Neuromics, MO20001)被用于被用于免疫组化在小鼠样本上 (图 s14f). Nat Genet (2016) ncbi
西格玛奥德里奇
小鼠 单克隆(TH-2)
  • 免疫组化-冰冻切片; 大鼠; 1:2500; 图 5a
西格玛奥德里奇酪氨酸羟化酶抗体(Sigma, T1299)被用于被用于免疫组化-冰冻切片在大鼠样本上浓度为1:2500 (图 5a). Biomedicines (2022) ncbi
小鼠 单克隆(TH-2)
  • 免疫组化-石蜡切片; 小鼠; 1:1000; 图 2a
  • 免疫印迹; 小鼠; 1:2000; 图 3a
西格玛奥德里奇酪氨酸羟化酶抗体(Sigma, T1299)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:1000 (图 2a) 和 被用于免疫印迹在小鼠样本上浓度为1:2000 (图 3a). Cell Death Differ (2021) ncbi
小鼠 单克隆(TH-2)
  • 免疫组化-冰冻切片; 小鼠; 图 2d
  • 免疫印迹; 小鼠; 1:4000; 图 2a, 2b
西格玛奥德里奇酪氨酸羟化酶抗体(Sigma-Aldrich, T1299)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 2d) 和 被用于免疫印迹在小鼠样本上浓度为1:4000 (图 2a, 2b). Aging Cell (2019) ncbi
小鼠 单克隆(TH-2)
  • 免疫组化-石蜡切片; 小鼠; 1:1000; 图 2d
西格玛奥德里奇酪氨酸羟化酶抗体(Sigma-Aldrich, TH-2)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:1000 (图 2d). Peerj (2018) ncbi
小鼠 单克隆(TH-2)
  • 免疫组化; 大鼠; 1:4000; 图 1
西格玛奥德里奇酪氨酸羟化酶抗体(Sigma, T1299)被用于被用于免疫组化在大鼠样本上浓度为1:4000 (图 1). J Comp Neurol (2017) ncbi
小鼠 单克隆(TH-2)
  • 免疫组化; 大鼠; 图 1b
西格玛奥德里奇酪氨酸羟化酶抗体(Sigma-Aldrich, T1299)被用于被用于免疫组化在大鼠样本上 (图 1b). Brain Res (2016) ncbi
小鼠 单克隆(TH-2)
  • 免疫组化-石蜡切片; 人类; 1:2000; 图 4
西格玛奥德里奇酪氨酸羟化酶抗体(Sigma, T1299)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:2000 (图 4). Reprod Biol Endocrinol (2016) ncbi
小鼠 单克隆(TH-2)
  • 免疫印迹; 人类; 1:500; 图 3d
西格玛奥德里奇酪氨酸羟化酶抗体(Sigma-Aldrich, TH-2)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 3d). J Neurosci (2016) ncbi
小鼠 单克隆(TH-2)
  • 免疫组化-冰冻切片; 小鼠; 1:1000; 图 1a
西格玛奥德里奇酪氨酸羟化酶抗体(Sigma-Aldrich, T1299)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:1000 (图 1a). Autophagy (2016) ncbi
小鼠 单克隆(TH-2)
  • 免疫组化-自由浮动切片; 小鼠; 1:200; 图 s6
西格玛奥德里奇酪氨酸羟化酶抗体(Sigma, T1299)被用于被用于免疫组化-自由浮动切片在小鼠样本上浓度为1:200 (图 s6). Nat Neurosci (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 人类; 图 1a
西格玛奥德里奇酪氨酸羟化酶抗体(Sigma, T8700)被用于被用于免疫组化-石蜡切片在人类样本上 (图 1a). Ann Neurol (2016) ncbi
小鼠 单克隆(TH-2)
  • 免疫组化-自由浮动切片; 大鼠; 1:70,000; 图 8
西格玛奥德里奇酪氨酸羟化酶抗体(Sigma, T1299)被用于被用于免疫组化-自由浮动切片在大鼠样本上浓度为1:70,000 (图 8). J Neuroendocrinol (2016) ncbi
小鼠 单克隆(TH-2)
  • 免疫细胞化学; 大鼠; 图 2
西格玛奥德里奇酪氨酸羟化酶抗体(Sigma, T1299)被用于被用于免疫细胞化学在大鼠样本上 (图 2). Sci Rep (2015) ncbi
小鼠 单克隆(TH-2)
  • 免疫细胞化学; 小鼠; 1:500; 图 3
西格玛奥德里奇酪氨酸羟化酶抗体(Sigma, T1299)被用于被用于免疫细胞化学在小鼠样本上浓度为1:500 (图 3). J Neurosci (2015) ncbi
小鼠 单克隆(TH-2)
  • 免疫细胞化学; 人类; 1:200; 图 3
西格玛奥德里奇酪氨酸羟化酶抗体(Sigma, T1299)被用于被用于免疫细胞化学在人类样本上浓度为1:200 (图 3). Cell J (2015) ncbi
小鼠 单克隆(TH-2)
  • 免疫组化-冰冻切片; 小鼠; 1:200
西格玛奥德里奇酪氨酸羟化酶抗体(Sigma, T1299)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:200. Neuroscience (2015) ncbi
小鼠 单克隆(TH-2)
  • 免疫组化-冰冻切片; 大鼠; 1:5000
  • 免疫印迹; 大鼠; 1:10,000; 图 8
西格玛奥德里奇酪氨酸羟化酶抗体(Sigma, T1299)被用于被用于免疫组化-冰冻切片在大鼠样本上浓度为1:5000 和 被用于免疫印迹在大鼠样本上浓度为1:10,000 (图 8). Transl Res (2015) ncbi
小鼠 单克隆(TH-2)
  • 免疫组化; 大鼠; 1:4000; 图 3
西格玛奥德里奇酪氨酸羟化酶抗体(Sigma, T1299)被用于被用于免疫组化在大鼠样本上浓度为1:4000 (图 3). Nat Neurosci (2015) ncbi
小鼠 单克隆(TH-2)
  • 免疫组化-石蜡切片; 人类; 1:2000
西格玛奥德里奇酪氨酸羟化酶抗体(Sigma-Aldrich, T 1299)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:2000. Dev Neurobiol (2015) ncbi
小鼠 单克隆(TH-2)
  • 免疫细胞化学; 大鼠; 1:2500
西格玛奥德里奇酪氨酸羟化酶抗体(Sigma, T1299)被用于被用于免疫细胞化学在大鼠样本上浓度为1:2500. Neurobiol Dis (2014) ncbi
小鼠 单克隆(TH-2)
  • 免疫组化-冰冻切片; 大鼠
西格玛奥德里奇酪氨酸羟化酶抗体(Sigma, T1299)被用于被用于免疫组化-冰冻切片在大鼠样本上. Transl Res (2014) ncbi
小鼠 单克隆(TH-2)
  • 免疫组化; 大鼠; 1:1000
西格玛奥德里奇酪氨酸羟化酶抗体(Sigma, 1299)被用于被用于免疫组化在大鼠样本上浓度为1:1000. J Comp Neurol (2009) ncbi
徕卡显微系统(上海)贸易有限公司
  • 免疫组化-石蜡切片; 人类; 1:50; 表 2
徕卡显微系统(上海)贸易有限公司酪氨酸羟化酶抗体(Leica-Novocastra, NCL-TH36011)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:50 (表 2). Eur J Histochem (2015) ncbi
文章列表
  1. Song S, Jang W, Jang E, Kim O, Kim H, Son T, et al. Striatal miR-183-5p inhibits methamphetamine-induced locomotion by regulating glucocorticoid receptor signaling. Front Pharmacol. 2022;13:997701 pubmed 出版商
  2. Magdy A, Farrag E, Hamed S, Abdallah Z, El Nashar E, Alghamdi M, et al. Neuroprotective and therapeutic effects of calcitriol in rotenone-induced Parkinson's disease rat model. Front Cell Neurosci. 2022;16:967813 pubmed 出版商
  3. Kosillo P, Ahmed K, Aisenberg E, Karalis V, Roberts B, Cragg S, et al. Dopamine neuron morphology and output are differentially controlled by mTORC1 and mTORC2. elife. 2022;11: pubmed 出版商
  4. Liu Z, Yang N, Dong J, Tian W, Chang L, Ma J, et al. Deficiency in endocannabinoid synthase DAGLB contributes to early onset Parkinsonism and murine nigral dopaminergic neuron dysfunction. Nat Commun. 2022;13:3490 pubmed 出版商
  5. Chen C, Huang P, Bland K, Li M, Zhang Y, Liu Chen L. Agonist-Promoted Phosphorylation and Internalization of the Kappa Opioid Receptor in Mouse Brains: Lack of Connection With Conditioned Place Aversion. Front Pharmacol. 2022;13:835809 pubmed 出版商
  6. Wang X, Wang Y, Chen J, Li J, Liu Y, Chen W. Aerobic exercise improves motor function and striatal MSNs-Erk/MAPK signaling in mice with 6-OHDA-induced Parkinson's disease. Exp Brain Res. 2022;240:1713-1725 pubmed 出版商
  7. Xie H, Heier C, Meng X, Bakiri L, Pototschnig I, Tang Z, et al. An immune-sympathetic neuron communication axis guides adipose tissue browning in cancer-associated cachexia. Proc Natl Acad Sci U S A. 2022;119: pubmed 出版商
  8. Cantero Garc xed a N, Flores Burgess A, Ladr xf3 n de Guevara Miranda D, Serrano A, Garc xed a Dur xe1 n L, Puigcerver A, et al. The Combination of Galanin (1-15) and Escitalopram in Rats Suggests a New Strategy for Alcohol Use Disorder Comorbidity with Depression. Biomedicines. 2022;10: pubmed 出版商
  9. Lo P, Rymar V, Kennedy T, Sadikot A. The netrin-1 receptor DCC promotes the survival of a subpopulation of midbrain dopaminergic neurons: Relevance for ageing and Parkinson's disease. J Neurochem. 2022;161:254-265 pubmed 出版商
  10. Chen G, Ahn E, Kang S, Xia Y, Liu X, Zhang Z, et al. UNC5C Receptor Proteolytic Cleavage by Active AEP Promotes Dopaminergic Neuronal Degeneration in Parkinson's Disease. Adv Sci (Weinh). 2022;9:e2103396 pubmed 出版商
  11. Castoldi G, Carletti R, Ippolito S, Stella A, Zerbini G, Pelucchi S, et al. Angiotensin Type 2 and Mas Receptor Activation Prevents Myocardial Fibrosis and Hypertrophy through the Reduction of Inflammatory Cell Infiltration and Local Sympathetic Activity in Angiotensin II-Dependent Hypertension. Int J Mol Sci. 2021;22: pubmed 出版商
  12. Baronio D, Chen Y, Panula P. Abnormal brain development of monoamine oxidase mutant zebrafish and impaired social interaction of heterozygous fish. Dis Model Mech. 2022;15: pubmed 出版商
  13. Zhang C, Zhao M, Wang B, Su Z, Guo B, Qin L, et al. The Nrf2-NLRP3-caspase-1 axis mediates the neuroprotective effects of Celastrol in Parkinson's disease. Redox Biol. 2021;47:102134 pubmed 出版商
  14. Zhang D, Yamaguchi S, Zhang X, Yang B, Kurooka N, Sugawara R, et al. Upregulation of Mir342 in Diet-Induced Obesity Mouse and the Hypothalamic Appetite Control. Front Endocrinol (Lausanne). 2021;12:727915 pubmed 出版商
  15. Albanese F, Mercatelli D, Finetti L, Lamonaca G, Pizzi S, Shimshek D, et al. Constitutive silencing of LRRK2 kinase activity leads to early glucocerebrosidase deregulation and late impairment of autophagy in vivo. Neurobiol Dis. 2021;159:105487 pubmed 出版商
  16. Zuo Y, Xie J, Li X, Li Y, Thirupathi A, Zhang J, et al. Ferritinophagy-Mediated Ferroptosis Involved in Paraquat-Induced Neurotoxicity of Dopaminergic Neurons: Implication for Neurotoxicity in PD. Oxid Med Cell Longev. 2021;2021:9961628 pubmed 出版商
  17. Freitas A, Aroso M, Barros A, Fernández M, Conde Sousa E, Leite M, et al. Characterization of the Striatal Extracellular Matrix in a Mouse Model of Parkinson's Disease. Antioxidants (Basel). 2021;10: pubmed 出版商
  18. Lyu Y, Huang Y, Shi G, Lei X, Li K, Zhou R, et al. Transcriptome profiling of five brain regions in a 6-hydroxydopamine rat model of Parkinson's disease. CNS Neurosci Ther. 2021;27:1289-1299 pubmed 出版商
  19. Joyce W, Perry S. Hif-1α is not required for the development of cardiac adrenergic control in zebrafish (Danio rerio). J Exp Zool A Ecol Integr Physiol. 2021;335:623-631 pubmed 出版商
  20. Ye S, Yang N, Lu T, Wu T, Wang L, Pan Y, et al. Adamts18 modulates the development of the aortic arch and common carotid artery. iScience. 2021;24:102672 pubmed 出版商
  21. Keen K, Petersen A, Figueroa A, Fordyce B, Shin J, Yadav R, et al. Physiological Characterization and Transcriptomic Properties of GnRH Neurons Derived From Human Stem Cells. Endocrinology. 2021;162: pubmed 出版商
  22. Polinski N, Martinez T, Gorodinsky A, Gareus R, Sasner M, Herberth M, et al. Decreased glucocerebrosidase activity and substrate accumulation of glycosphingolipids in a novel GBA1 D409V knock-in mouse model. PLoS ONE. 2021;16:e0252325 pubmed 出版商
  23. Yamagata N, Ezaki T, Takahashi T, Wu H, Tanimoto H. Presynaptic inhibition of dopamine neurons controls optimistic bias. elife. 2021;10: pubmed 出版商
  24. Maltese M, March J, Bashaw A, Tritsch N. Dopamine differentially modulates the size of projection neuron ensembles in the intact and dopamine-depleted striatum. elife. 2021;10: pubmed 出版商
  25. Kimura E, Kohda M, Maekawa F, Fujii Kuriyama Y, Tohyama C. Neurons expressing the aryl hydrocarbon receptor in the locus coeruleus and island of Calleja major are novel targets of dioxin in the mouse brain. Histochem Cell Biol. 2021;156:147-163 pubmed 出版商
  26. Scherschel K, Bräuninger H, Mölders A, Erlenhardt N, Amin E, Jungen C, et al. Characterization of the HCN Interaction Partner TRIP8b/PEX5R in the Intracardiac Nervous System of TRIP8b-Deficient and Wild-Type Mice. Int J Mol Sci. 2021;22: pubmed 出版商
  27. Wu M, Minkowicz S, Dumrongprechachan V, Hamilton P, Xiao L, Kozorovitskiy Y. Attenuated dopamine signaling after aversive learning is restored by ketamine to rescue escape actions. elife. 2021;10: pubmed 出版商
  28. Wang L, Yang Y, Chen L, He Z, Bi D, Zhang L, et al. Compound Dihuang Granule Inhibits Nigrostriatal Pathway Apoptosis in Parkinson's Disease by Suppressing the JNK/AP-1 Pathway. Front Pharmacol. 2021;12:621359 pubmed 出版商
  29. Baker L, Tar M, Kramer A, Villegas G, Charafeddine R, Vafaeva O, et al. Fidgetin-like 2 negatively regulates axonal growth and can be targeted to promote functional nerve regeneration. JCI Insight. 2021;6: pubmed 出版商
  30. Jing L, Hou L, Zhang D, Li S, Ruan Z, Zhang X, et al. Microglial Activation Mediates Noradrenergic Locus Coeruleus Neurodegeneration via Complement Receptor 3 in a Rotenone-Induced Parkinson's Disease Mouse Model. J Inflamm Res. 2021;14:1341-1356 pubmed 出版商
  31. Courtland J, Bradshaw T, Waitt G, Soderblom E, Ho T, Rajab A, et al. Genetic disruption of WASHC4 drives endo-lysosomal dysfunction and cognitive-movement impairments in mice and humans. elife. 2021;10: pubmed 出版商
  32. Fang Y, Jiang Q, Li S, Zhu H, Xu R, Song N, et al. Opposing functions of β-arrestin 1 and 2 in Parkinson's disease via microglia inflammation and Nprl3. Cell Death Differ. 2021;28:1822-1836 pubmed 出版商
  33. Ryan B, Bengoa Vergniory N, Williamson M, Kirkiz E, Roberts R, Corda G, et al. REST protects dopaminergic neurons from mitochondrial and α-synuclein oligomer pathology in an alpha synuclein overexpressing BAC-transgenic mouse model. J Neurosci. 2021;: pubmed 出版商
  34. Jansch C, Ziegler G, Forero A, Gredy S, W xe4 ldchen S, Vitale M, et al. Serotonin-specific neurons differentiated from human iPSCs form distinct subtypes with synaptic protein assembly. J Neural Transm (Vienna). 2021;128:225-241 pubmed 出版商
  35. Sass F, Schlein C, Jaeckstein M, Pertzborn P, Schweizer M, Schinke T, et al. TFEB deficiency attenuates mitochondrial degradation upon brown adipose tissue whitening at thermoneutrality. Mol Metab. 2021;47:101173 pubmed 出版商
  36. Uchida S, Soya S, Saito Y, Hirano A, Koga K, Tsuda M, et al. A discrete glycinergic neuronal population in the ventromedial medulla that induces muscle atonia during REM sleep and cataplexy in mice. J Neurosci. 2020;: pubmed 出版商
  37. Jung D, Ahn S, Pak M, Lee H, Jung Y, Kim K, et al. Therapeutic effects of anodal transcranial direct current stimulation in a rat model of ADHD. elife. 2020;9: pubmed 出版商
  38. Niu H, Wang Q, Zhao W, Liu J, Wang D, Muhammad B, et al. IL-1β/IL-1R1 signaling induced by intranasal lipopolysaccharide infusion regulates alpha-Synuclein pathology in the olfactory bulb, substantia nigra and striatum. Brain Pathol. 2020;30:1102-1118 pubmed 出版商
  39. Zhang W, Zhou M, Lu W, Gong J, Gao F, Li Y, et al. CNTNAP4 deficiency in dopaminergic neurons initiates parkinsonian phenotypes. Theranostics. 2020;10:3000-3021 pubmed 出版商
  40. Han Y, Zhang Y, Kim H, Grayson V, Jovasevic V, Ren W, et al. Excitatory VTA to DH projections provide a valence signal to memory circuits. Nat Commun. 2020;11:1466 pubmed 出版商
  41. Cao S, Li J, Yuan J, Zhang D, Yu T. Fast Localization and Sectioning of Mouse Locus Coeruleus. Biomed Res Int. 2020;2020:4860735 pubmed 出版商
  42. Hu S, Hu M, Liu J, Zhang B, Zhang Z, Zhou F, et al. Phosphorylation of Tau and α-Synuclein Induced Neurodegeneration in MPTP Mouse Model of Parkinson's Disease. Neuropsychiatr Dis Treat. 2020;16:651-663 pubmed 出版商
  43. Yang H, Wang L, Zang C, Wang Y, Shang J, Zhang Z, et al. Src Inhibition Attenuates Neuroinflammation and Protects Dopaminergic Neurons in Parkinson's Disease Models. Front Neurosci. 2020;14:45 pubmed 出版商
  44. Strausfeld N, Wolff G, Sayre M. Mushroom body evolution demonstrates homology and divergence across Pancrustacea. elife. 2020;9: pubmed 出版商
  45. Chen X, Lan T, Wang Y, He Y, Wu Z, Tian Y, et al. Entorhinal cortex-based metabolic profiling of chronic restraint stress mice model of depression. Aging (Albany NY). 2020;12:3042-3052 pubmed 出版商
  46. Wang X, Ma M, Zhou L, Jiang X, Hao M, Teng R, et al. Autonomic ganglionic injection of α-synuclein fibrils as a model of pure autonomic failure α-synucleinopathy. Nat Commun. 2020;11:934 pubmed 出版商
  47. Zhuang X, Wang S, Tan Y, Song J, Zhu Z, Wang Z, et al. Pharmacological enhancement of TFEB-mediated autophagy alleviated neuronal death in oxidative stress-induced Parkinson's disease models. Cell Death Dis. 2020;11:128 pubmed 出版商
  48. Xie K, Wang N, Lin X, Wang Z, Zhao X, Fang P, et al. Organic electrochemical transistor arrays for real-time mapping of evoked neurotransmitter release in vivo. elife. 2020;9: pubmed 出版商
  49. Elvira R, Cha S, Noh G, Kim K, Han J. PERK-Mediated eIF2α Phosphorylation Contributes to The Protection of Dopaminergic Neurons from Chronic Heat Stress in Drosophila. Int J Mol Sci. 2020;21: pubmed 出版商
  50. Cheng W, Gonzalez I, Pan W, Tsang A, Adams J, Ndoka E, et al. Calcitonin Receptor Neurons in the Mouse Nucleus Tractus Solitarius Control Energy Balance via the Non-aversive Suppression of Feeding. Cell Metab. 2020;31:301-312.e5 pubmed 出版商
  51. Metzger J, Matsoff H, Zinnen A, Fleddermann R, Bondarenko V, Simmons H, et al. Post mortem evaluation of inflammation, oxidative stress, and PPARγ activation in a nonhuman primate model of cardiac sympathetic neurodegeneration. PLoS ONE. 2020;15:e0226999 pubmed 出版商
  52. Ham S, Kim H, Yoon J, Kim H, Song B, Choi J, et al. Therapeutic Evaluation of Synthetic Peucedanocoumarin III in an Animal Model of Parkinson's Disease. Int J Mol Sci. 2019;20: pubmed 出版商
  53. Thoen H, Wolff G, Marshall J, Sayre M, Strausfeld N. The reniform body: An integrative lateral protocerebral neuropil complex of Eumalacostraca identified in Stomatopoda and Brachyura. J Comp Neurol. 2019;: pubmed 出版商
  54. Strausfeld N, Sayre M. Mushroom bodies in Reptantia reflect a major transition in crustacean brain evolution. J Comp Neurol. 2020;528:261-282 pubmed 出版商
  55. Hurr C, Simonyan H, Morgan D, Rahmouni K, Young C. Liver sympathetic denervation reverses obesity-induced hepatic steatosis. J Physiol. 2019;597:4565-4580 pubmed 出版商
  56. Diniz G, Battagello D, Cherubini P, Reyes Mendoza J, Luna Illades C, Klein M, et al. Melanin-concentrating hormone peptidergic system: Comparative morphology between muroid species. J Comp Neurol. 2019;527:2973-3001 pubmed 出版商
  57. Szonyi A, Sos K, Nyilas R, Schlingloff D, Domonkos A, Takács V, et al. Brainstem nucleus incertus controls contextual memory formation. Science. 2019;364: pubmed 出版商
  58. Halbout B, Marshall A, Azimi A, Liljeholm M, Mahler S, Wassum K, et al. Mesolimbic dopamine projections mediate cue-motivated reward seeking but not reward retrieval in rats. elife. 2019;8: pubmed 出版商
  59. Princely Abudu Y, Pankiv S, Mathai B, Håkon Lystad A, Bindesbøll C, Brenne H, et al. NIPSNAP1 and NIPSNAP2 Act as "Eat Me" Signals for Mitophagy. Dev Cell. 2019;49:509-525.e12 pubmed 出版商
  60. Bieri G, Brahic M, Bousset L, Couthouis J, Kramer N, Ma R, et al. LRRK2 modifies α-syn pathology and spread in mouse models and human neurons. Acta Neuropathol. 2019;137:961-980 pubmed 出版商
  61. Su E, Zhao L, Gao C, Zhao W, Wang X, Qi D, et al. Acute changes in morphology and renal vascular relaxation function after renal denervation using temperature-controlled radiofrequency catheter. BMC Cardiovasc Disord. 2019;19:67 pubmed 出版商
  62. Song C, Zhang J, Qi S, Liu Z, Zhang X, Zheng Y, et al. Cardiolipin remodeling by ALCAT1 links mitochondrial dysfunction to Parkinson's diseases. Aging Cell. 2019;18:e12941 pubmed 出版商
  63. Lisieski M, Karavidha K, Gheidi A, Garibyan R, Conti A, Morrow J, et al. Divergent effects of repeated cocaine and novel environment exposure on locus coeruleus c-fos expression and brain catecholamine concentrations in rats. Brain Behav. 2019;9:e01222 pubmed 出版商
  64. Körner A, Schlegel M, Kaussen T, Gudernatsch V, Hansmann G, Schumacher T, et al. Sympathetic nervous system controls resolution of inflammation via regulation of repulsive guidance molecule A. Nat Commun. 2019;10:633 pubmed 出版商
  65. Lopez J, Morona R, González A. Pattern of nitrergic cells and fibers organization in the central nervous system of the Australian lungfish, Neoceratodus forsteri (Sarcopterygii: Dipnoi). J Comp Neurol. 2019;527:1771-1800 pubmed 出版商
  66. Fischer A, Schlein C, Cannon B, Heeren J, Nedergaard J. Intact innervation is essential for diet-induced recruitment of brown adipose tissue. Am J Physiol Endocrinol Metab. 2019;316:E487-E503 pubmed 出版商
  67. Tarasova T, Lytkina O, Goloborshcheva V, Skuratovskaya L, Antohin A, Ovchinnikov R, et al. Genetic inactivation of alpha-synuclein affects embryonic development of dopaminergic neurons of the substantia nigra, but not the ventral tegmental area, in mouse brain. Peerj. 2018;6:e4779 pubmed 出版商
  68. Xiong Y, Neifert S, Karuppagounder S, Liu Q, Stankowski J, Lee B, et al. Robust kinase- and age-dependent dopaminergic and norepinephrine neurodegeneration in LRRK2 G2019S transgenic mice. Proc Natl Acad Sci U S A. 2018;115:1635-1640 pubmed 出版商
  69. Johnson E, Westbrook T, Shayesteh R, Chen E, Schumacher J, Fitzpatrick D, et al. Distribution and diversity of intrinsically photosensitive retinal ganglion cells in tree shrew. J Comp Neurol. 2019;527:328-344 pubmed 出版商
  70. Zhang Z, Chu S, Wang S, Jiang Y, Gao Y, Yang P, et al. RTP801 is a critical factor in the neurodegeneration process of A53T α-synuclein in a mouse model of Parkinson's disease under chronic restraint stress. Br J Pharmacol. 2018;175:590-605 pubmed 出版商
  71. Hoshi H, Sato F. The morphological characterization of orientation-biased displaced large-field ganglion cells in the central part of goldfish retina. J Comp Neurol. 2018;526:243-261 pubmed 出版商
  72. Litteljohn D, Rudyk C, Dwyer Z, Farmer K, Fortin T, Hayley S. The impact of murine LRRK2 G2019S transgene overexpression on acute responses to inflammatory challenge. Brain Behav Immun. 2018;67:246-256 pubmed 出版商
  73. Furlan A, Dyachuk V, Kastriti M, Calvo Enrique L, Abdo H, Hadjab S, et al. Multipotent peripheral glial cells generate neuroendocrine cells of the adrenal medulla. Science. 2017;357: pubmed 出版商
  74. van Groningen T, Koster J, Valentijn L, Zwijnenburg D, Akogul N, Hasselt N, et al. Neuroblastoma is composed of two super-enhancer-associated differentiation states. Nat Genet. 2017;49:1261-1266 pubmed 出版商
  75. López J, González A. Organization of the catecholaminergic systems in the brain of lungfishes, the closest living relatives of terrestrial vertebrates. J Comp Neurol. 2017;525:3083-3109 pubmed 出版商
  76. Shiba Fukushima K, Ishikawa K, Inoshita T, Izawa N, Takanashi M, Sato S, et al. Evidence that phosphorylated ubiquitin signaling is involved in the etiology of Parkinson's disease. Hum Mol Genet. 2017;26:3172-3185 pubmed 出版商
  77. Escobar A, González M, Meza R, Noches V, Henny P, Gysling K, et al. Mechanisms of Kappa Opioid Receptor Potentiation of Dopamine D2 Receptor Function in Quinpirole-Induced Locomotor Sensitization in Rats. Int J Neuropsychopharmacol. 2017;20:660-669 pubmed 出版商
  78. Parker L, Le S, Wearne T, Hardwick K, Kumar N, Robinson K, et al. Neurochemistry of neurons in the ventrolateral medulla activated by hypotension: Are the same neurons activated by glucoprivation?. J Comp Neurol. 2017;525:2249-2264 pubmed 出版商
  79. Pomeranz L, Ekstrand M, Latcha K, Smith G, Enquist L, Friedman J. Gene Expression Profiling with Cre-Conditional Pseudorabies Virus Reveals a Subset of Midbrain Neurons That Participate in Reward Circuitry. J Neurosci. 2017;37:4128-4144 pubmed 出版商
  80. Delfino Machin M, Madelaine R, Busolin G, Nikaido M, Colanesi S, Camargo Sosa K, et al. Sox10 contributes to the balance of fate choice in dorsal root ganglion progenitors. PLoS ONE. 2017;12:e0172947 pubmed 出版商
  81. Song L, McMackin M, Nguyen A, Cortopassi G. Parkin deficiency accelerates consequences of mitochondrial DNA deletions and Parkinsonism. Neurobiol Dis. 2017;100:30-38 pubmed 出版商
  82. Koprich J, Johnston T, Reyes G, Omana V, Brotchie J. Towards a Non-Human Primate Model of Alpha-Synucleinopathy for Development of Therapeutics for Parkinson's Disease: Optimization of AAV1/2 Delivery Parameters to Drive Sustained Expression of Alpha Synuclein and Dopaminergic Degeneration in Macaque. PLoS ONE. 2016;11:e0167235 pubmed 出版商
  83. Kordower J, Goetz C, Chu Y, Halliday G, Nicholson D, Musial T, et al. Robust graft survival and normalized dopaminergic innervation do not obligate recovery in a Parkinson disease patient. Ann Neurol. 2017;81:46-57 pubmed 出版商
  84. Zeltner N, Fattahi F, Dubois N, Saurat N, Lafaille F, Shang L, et al. Capturing the biology of disease severity in a PSC-based model of familial dysautonomia. Nat Med. 2016;22:1421-1427 pubmed 出版商
  85. La Manno G, Gyllborg D, Codeluppi S, Nishimura K, Salto C, Zeisel A, et al. Molecular Diversity of Midbrain Development in Mouse, Human, and Stem Cells. Cell. 2016;167:566-580.e19 pubmed 出版商
  86. Arredondo C, Gonzalez M, Andrés M, Gysling K. Opposite effects of acute and chronic amphetamine on Nurr1 and NF-?B p65 in the rat ventral tegmental area. Brain Res. 2016;1652:14-20 pubmed 出版商
  87. Neckel P, Mattheus U, Hirt B, Just L, Mack A. Large-scale tissue clearing (PACT): Technical evaluation and new perspectives in immunofluorescence, histology, and ultrastructure. Sci Rep. 2016;6:34331 pubmed 出版商
  88. Peris J, Macfadyen K, Smith J, de Kloet A, Wang L, Krause E. Oxytocin receptors are expressed on dopamine and glutamate neurons in the mouse ventral tegmental area that project to nucleus accumbens and other mesolimbic targets. J Comp Neurol. 2017;525:1094-1108 pubmed 出版商
  89. Breton Provencher V, Bakhshetyan K, Hardy D, Bammann R, Cavarretta F, Snapyan M, et al. Principal cell activity induces spine relocation of adult-born interneurons in the olfactory bulb. Nat Commun. 2016;7:12659 pubmed 出版商
  90. Fukada M, Nakayama A, Mamiya T, Yao T, Kawaguchi Y. Dopaminergic abnormalities in Hdac6-deficient mice. Neuropharmacology. 2016;110:470-479 pubmed 出版商
  91. Morona R, Ferran J, Puelles L, González A. Gene expression analysis of developing cell groups in the pretectal region of Xenopus laevis. J Comp Neurol. 2017;525:715-752 pubmed 出版商
  92. Dewanto A, Dudas J, Glueckert R, Mechsner S, Schrott Fischer A, Wildt L, et al. Localization of TrkB and p75 receptors in peritoneal and deep infiltrating endometriosis: an immunohistochemical study. Reprod Biol Endocrinol. 2016;14:43 pubmed 出版商
  93. Ku T, Swaney J, Park J, Albanese A, Murray E, Cho J, et al. Multiplexed and scalable super-resolution imaging of three-dimensional protein localization in size-adjustable tissues. Nat Biotechnol. 2016;34:973-81 pubmed 出版商
  94. Cockerham R, Liu S, Cachope R, Kiyokage E, Cheer J, Shipley M, et al. Subsecond Regulation of Synaptically Released Dopamine by COMT in the Olfactory Bulb. J Neurosci. 2016;36:7779-85 pubmed 出版商
  95. Mazzulli J, Zunke F, Tsunemi T, Toker N, Jeon S, Burbulla L, et al. Activation of β-Glucocerebrosidase Reduces Pathological α-Synuclein and Restores Lysosomal Function in Parkinson's Patient Midbrain Neurons. J Neurosci. 2016;36:7693-706 pubmed 出版商
  96. Kordower J, Vinuela A, Chu Y, Isacson O, Redmond D. Parkinsonian monkeys with prior levodopa-induced dyskinesias followed by fetal dopamine precursor grafts do not display graft-induced dyskinesias. J Comp Neurol. 2017;525:498-512 pubmed 出版商
  97. Nandi S, Zheng H, Sharma N, Shahshahan H, Patel K, Mishra P. Lack of miR-133a Decreases Contractility of Diabetic Hearts: A Role for Novel Cross Talk Between Tyrosine Aminotransferase and Tyrosine Hydroxylase. Diabetes. 2016;65:3075-90 pubmed 出版商
  98. Doucet Beaupré H, Gilbert C, Profes M, Chabrat A, Pacelli C, Giguère N, et al. Lmx1a and Lmx1b regulate mitochondrial functions and survival of adult midbrain dopaminergic neurons. Proc Natl Acad Sci U S A. 2016;113:E4387-96 pubmed 出版商
  99. Stojakovic A, Paz Filho G, Arcos Burgos M, Licinio J, Wong M, Mastronardi C. Role of the IL-1 Pathway in Dopaminergic Neurodegeneration and Decreased Voluntary Movement. Mol Neurobiol. 2017;54:4486-4495 pubmed 出版商
  100. Schmitt D, Funk N, Blum R, Asan E, Andersen L, Rülicke T, et al. Initial characterization of a Syap1 knock-out mouse and distribution of Syap1 in mouse brain and cultured motoneurons. Histochem Cell Biol. 2016;146:489-512 pubmed 出版商
  101. Alba Delgado C, Cebada Aleu A, Mico J, Berrocoso E. Comorbid anxiety-like behavior and locus coeruleus impairment in diabetic peripheral neuropathy: A comparative study with the chronic constriction injury model. Prog Neuropsychopharmacol Biol Psychiatry. 2016;71:45-56 pubmed 出版商
  102. Hughes S, Rodgers J, Hickey D, Foster R, Peirson S, Hankins M. Characterisation of light responses in the retina of mice lacking principle components of rod, cone and melanopsin phototransduction signalling pathways. Sci Rep. 2016;6:28086 pubmed 出版商
  103. Zhang S, Rogulja D, Crickmore M. Dopaminergic Circuitry Underlying Mating Drive. Neuron. 2016;91:168-81 pubmed 出版商
  104. Deng H, Shi Y, Yang Y, Ahmeti K, Miller N, Huang C, et al. Identification of TMEM230 mutations in familial Parkinson's disease. Nat Genet. 2016;48:733-9 pubmed 出版商
  105. Morales I, Sánchez A, Rodriguez Sabate C, Rodriguez M. The astrocytic response to the dopaminergic denervation of the striatum. J Neurochem. 2016;139:81-95 pubmed 出版商
  106. Momcilovic O, Sivapatham R, Oron T, Meyer M, Mooney S, Rao M, et al. Derivation, Characterization, and Neural Differentiation of Integration-Free Induced Pluripotent Stem Cell Lines from Parkinson's Disease Patients Carrying SNCA, LRRK2, PARK2, and GBA Mutations. PLoS ONE. 2016;11:e0154890 pubmed 出版商
  107. Wei Z, Yuan Y, Jaouen F, Ma M, Hao C, Zhang Z, et al. SLC35D3 increases autophagic activity in midbrain dopaminergic neurons by enhancing BECN1-ATG14-PIK3C3 complex formation. Autophagy. 2016;12:1168-79 pubmed 出版商
  108. He J, Zhou R, Wu Z, Carrasco M, Kurshan P, Farley J, et al. Prevalent presence of periodic actin-spectrin-based membrane skeleton in a broad range of neuronal cell types and animal species. Proc Natl Acad Sci U S A. 2016;113:6029-34 pubmed 出版商
  109. He S, Mansour M, Zimmerman M, Ki D, Layden H, Akahane K, et al. Synergy between loss of NF1 and overexpression of MYCN in neuroblastoma is mediated by the GAP-related domain. elife. 2016;5: pubmed 出版商
  110. Glasauer S, Wager R, Gesemann M, Neuhauss S. mglur6b:EGFP Transgenic zebrafish suggest novel functions of metabotropic glutamate signaling in retina and other brain regions. J Comp Neurol. 2016;524:2363-78 pubmed 出版商
  111. Wang Y, Gratzke C, Tamalunas A, Wiemer N, Ciotkowska A, Rutz B, et al. P21-Activated Kinase Inhibitors FRAX486 and IPA3: Inhibition of Prostate Stromal Cell Growth and Effects on Smooth Muscle Contraction in the Human Prostate. PLoS ONE. 2016;11:e0153312 pubmed 出版商
  112. Van Audenhove I, Denert M, Boucherie C, Pieters L, Cornelissen M, Gettemans J. Fascin Rigidity and L-plastin Flexibility Cooperate in Cancer Cell Invadopodia and Filopodia. J Biol Chem. 2016;291:9148-60 pubmed 出版商
  113. Rodionova K, Fiedler C, Guenther F, Grouzmann E, Neuhuber W, Fischer M, et al. Complex reinnervation pattern after unilateral renal denervation in rats. Am J Physiol Regul Integr Comp Physiol. 2016;310:R806-18 pubmed 出版商
  114. Bouilloux F, Thireau J, Ventéo S, Farah C, Karam S, Dauvilliers Y, et al. Loss of the transcription factor Meis1 prevents sympathetic neurons target-field innervation and increases susceptibility to sudden cardiac death. elife. 2016;5: pubmed 出版商
  115. van der Keylen P, Garreis F, Steigleder R, Sommer D, Neuhuber W, Wörl J. Involvement of catecholaminergic neurons in motor innervation of striated muscle in the mouse esophagus. Histochem Cell Biol. 2016;145:573-85 pubmed 出版商
  116. Naudé J, Tolu S, Dongelmans M, Torquet N, Valverde S, Rodriguez G, et al. Nicotinic receptors in the ventral tegmental area promote uncertainty-seeking. Nat Neurosci. 2016;19:471-8 pubmed 出版商
  117. Zhou Q, Yen A, Rymarczyk G, Asai H, Trengrove C, Aziz N, et al. Impairment of PARK14-dependent Ca(2+) signalling is a novel determinant of Parkinson's disease. Nat Commun. 2016;7:10332 pubmed 出版商
  118. Pomrenze M, Millan E, Hopf F, Keiflin R, Maiya R, Blasio A, et al. A Transgenic Rat for Investigating the Anatomy and Function of Corticotrophin Releasing Factor Circuits. Front Neurosci. 2015;9:487 pubmed 出版商
  119. Grafe L, Flanagan Cato L. Differential effects of mineralocorticoid and angiotensin II on incentive and mesolimbic activity. Horm Behav. 2016;79:28-36 pubmed 出版商
  120. Ho S, Hartley B, TCW J, Beaumont M, Stafford K, Slesinger P, et al. Rapid Ngn2-induction of excitatory neurons from hiPSC-derived neural progenitor cells. Methods. 2016;101:113-24 pubmed 出版商
  121. Grünewald A, Rygiel K, Hepplewhite P, Morris C, Picard M, Turnbull D. Mitochondrial DNA Depletion in Respiratory Chain-Deficient Parkinson Disease Neurons. Ann Neurol. 2016;79:366-78 pubmed 出版商
  122. Aquino N, Araujo Lopes R, Batista I, Henriques P, Poletini M, Franci C, et al. Hypothalamic Effects of Tamoxifen on Oestrogen Regulation of Luteinising Hormone and Prolactin Secretion in Female Rats. J Neuroendocrinol. 2016;28: pubmed 出版商
  123. Hajj R, Milet A, Toulorge D, Cholet N, Laffaire J, Foucquier J, et al. Combination of acamprosate and baclofen as a promising therapeutic approach for Parkinson's disease. Sci Rep. 2015;5:16084 pubmed 出版商
  124. Winiecka Klimek M, Smolarz M, Walczak M, Zieba J, Hulas Bigoszewska K, Kmieciak B, et al. SOX2 and SOX2-MYC Reprogramming Process of Fibroblasts to the Neural Stem Cells Compromised by Senescence. PLoS ONE. 2015;10:e0141688 pubmed 出版商
  125. Wu R, Chen H, Ma J, He Q, Huang Q, Liu Q, et al. c-Abl-p38α signaling plays an important role in MPTP-induced neuronal death. Cell Death Differ. 2016;23:542-52 pubmed 出版商
  126. Tuon T, Souza P, Santos M, Pereira F, Pedroso G, Luciano T, et al. Physical Training Regulates Mitochondrial Parameters and Neuroinflammatory Mechanisms in an Experimental Model of Parkinson's Disease. Oxid Med Cell Longev. 2015;2015:261809 pubmed 出版商
  127. Shin W, Jeon M, Leem E, Won S, Jeong K, Park S, et al. Induction of microglial toll-like receptor 4 by prothrombin kringle-2: a potential pathogenic mechanism in Parkinson's disease. Sci Rep. 2015;5:14764 pubmed 出版商
  128. Korzhevskii D, Sukhorukova E, Kirik O, Grigorev I. Immunohistochemical demonstration of specific antigens in the human brain fixed in zinc-ethanol-formaldehyde. Eur J Histochem. 2015;59:2530 pubmed 出版商
  129. Ehrich J, Messinger D, Knakal C, Kuhar J, Schattauer S, Bruchas M, et al. Kappa Opioid Receptor-Induced Aversion Requires p38 MAPK Activation in VTA Dopamine Neurons. J Neurosci. 2015;35:12917-31 pubmed 出版商
  130. De Luca R, Suvorava T, Yang D, Baumgärtel W, Kojda G, Haas H, et al. Identification of histaminergic neurons through histamine 3 receptor-mediated autoinhibition. Neuropharmacology. 2016;106:102-15 pubmed 出版商
  131. Wang X, Guo R, Zhao W. Distribution of Fos-Like Immunoreactivity, Catecholaminergic and Serotoninergic Neurons Activated by the Laryngeal Chemoreflex in the Medulla Oblongata of Rats. PLoS ONE. 2015;10:e0130822 pubmed 出版商
  132. Hoeber J, Trolle C, König N, Du Z, Gallo A, Hermans E, et al. Human Embryonic Stem Cell-Derived Progenitors Assist Functional Sensory Axon Regeneration after Dorsal Root Avulsion Injury. Sci Rep. 2015;5:10666 pubmed 出版商
  133. Radovanovic D, Peikert K, Lindström M, Domellöf F. Sympathetic innervation of human muscle spindles. J Anat. 2015;226:542-8 pubmed 出版商
  134. Landry J, Hawkins C, Lee A, Coté A, Balaban E, Pompeiano M. Chick embryos have the same pattern of hypoxic lower-brain activation as fetal mammals. Dev Neurobiol. 2016;76:64-74 pubmed 出版商
  135. Agrawal T, Hasan G. Maturation of a central brain flight circuit in Drosophila requires Fz2/Ca²⁺ signaling. elife. 2015;4: pubmed 出版商
  136. Carrigan I, Croll R, Wyeth R. Morphology, innervation, and peripheral sensory cells of the siphon of aplysia californica. J Comp Neurol. 2015;523:2409-25 pubmed 出版商
  137. Laguna A, Schintu N, Nobre A, Alvarsson A, Volakakis N, Jacobsen J, et al. Dopaminergic control of autophagic-lysosomal function implicates Lmx1b in Parkinson's disease. Nat Neurosci. 2015;18:826-35 pubmed 出版商
  138. Karbalaie K, Tanhaei S, Rabiei F, Kiani Esfahani A, Masoudi N, Nasr Esfahani M, et al. Stem cells from human exfoliated deciduous tooth exhibit stromal-derived inducing activity and lead to generation of neural crest cells from human embryonic stem cells. Cell J. 2015;17:37-48 pubmed
  139. Smeyne M, Sladen P, Jiao Y, Dragatsis I, Smeyne R. HIF1α is necessary for exercise-induced neuroprotection while HIF2α is needed for dopaminergic neuron survival in the substantia nigra pars compacta. Neuroscience. 2015;295:23-38 pubmed 出版商
  140. Zhang X, Li Y, Liu C, Fan R, Wang P, Zheng L, et al. Alteration of enteric monoamines with monoamine receptors and colonic dysmotility in 6-hydroxydopamine-induced Parkinson's disease rats. Transl Res. 2015;166:152-62 pubmed 出版商
  141. Stoyek M, Croll R, Smith F. Intrinsic and extrinsic innervation of the heart in zebrafish (Danio rerio). J Comp Neurol. 2015;523:1683-700 pubmed 出版商
  142. Tamrakar P, Shrestha P, Briski K. Dorsomedial hindbrain catecholamine regulation of hypothalamic astrocyte glycogen metabolic enzyme protein expression: Impact of estradiol. Neuroscience. 2015;292:34-45 pubmed 出版商
  143. Calkoen E, Vicente Steijn R, Hahurij N, van Munsteren C, Roest A, DeRuiter M, et al. Abnormal sinoatrial node development resulting from disturbed vascular endothelial growth factor signaling. Int J Cardiol. 2015;183:249-57 pubmed 出版商
  144. Koo J, Mazei Robison M, LaPlant Q, Egervári G, Braunscheidel K, Adank D, et al. Epigenetic basis of opiate suppression of Bdnf gene expression in the ventral tegmental area. Nat Neurosci. 2015;18:415-22 pubmed 出版商
  145. Depboylu C, Rösler T, de Andrade A, Oertel W, Höglinger G. Systemically administered neuregulin-1β1 rescues nigral dopaminergic neurons via the ErbB4 receptor tyrosine kinase in MPTP mouse models of Parkinson's disease. J Neurochem. 2015;133:590-7 pubmed 出版商
  146. Haynes P, Christmann B, Griffith L. A single pair of neurons links sleep to memory consolidation in Drosophila melanogaster. elife. 2015;4: pubmed 出版商
  147. Tamrakar P, Briski K. Estradiol regulation of hypothalamic astrocyte adenosine 5'-monophosphate-activated protein kinase activity: role of hindbrain catecholamine signaling. Brain Res Bull. 2015;110:47-53 pubmed 出版商
  148. Cui W, Mizukami H, Yanagisawa M, Aida T, Nomura M, Isomura Y, et al. Glial dysfunction in the mouse habenula causes depressive-like behaviors and sleep disturbance. J Neurosci. 2014;34:16273-85 pubmed 出版商
  149. Vergaño Vera E, Diaz Guerra E, Rodríguez Traver E, Méndez Gómez H, Solis O, Pignatelli J, et al. Nurr1 blocks the mitogenic effect of FGF-2 and EGF, inducing olfactory bulb neural stem cells to adopt dopaminergic and dopaminergic-GABAergic neuronal phenotypes. Dev Neurobiol. 2015;75:823-41 pubmed 出版商
  150. Pechriggl E, Bitsche M, Glueckert R, Rask Andersen H, Blumer M, Schrott Fischer A, et al. Development of the innervation of the human inner ear. Dev Neurobiol. 2015;75:683-702 pubmed 出版商
  151. Liu G, Rustom N, Litteljohn D, Bobyn J, Rudyk C, Anisman H, et al. Use of induced pluripotent stem cell derived neurons engineered to express BDNF for modulation of stressor related pathology. Front Cell Neurosci. 2014;8:316 pubmed 出版商
  152. Bou Dib P, Gnägi B, Daly F, Sabado V, Tas D, Glauser D, et al. A conserved role for p48 homologs in protecting dopaminergic neurons from oxidative stress. PLoS Genet. 2014;10:e1004718 pubmed 出版商
  153. Huang Y, Chang C, Zhang J, Gao X. Bone marrow-derived mesenchymal stem cells increase dopamine synthesis in the injured striatum. Neural Regen Res. 2012;7:2653-62 pubmed 出版商
  154. Pallarés M, Adrover E, Imsen M, Gonzalez D, Fabre B, Mesch V, et al. Maternal administration of flutamide during late gestation affects the brain and reproductive organs development in the rat male offspring. Neuroscience. 2014;278:122-35 pubmed 出版商
  155. Aldrin Kirk P, Davidsson M, Holmqvist S, Li J, Bjorklund T. Novel AAV-based rat model of forebrain synucleinopathy shows extensive pathologies and progressive loss of cholinergic interneurons. PLoS ONE. 2014;9:e100869 pubmed 出版商
  156. Reyes C, Fong A, Brink D, Milsom W. Distribution and innervation of putative arterial chemoreceptors in the bullfrog (Rana catesbeiana). J Comp Neurol. 2014;522:3754-74 pubmed 出版商
  157. García Peña C, Kim M, Frade Pérez D, Avila González D, Téllez E, Mastick G, et al. Ascending midbrain dopaminergic axons require descending GAD65 axon fascicles for normal pathfinding. Front Neuroanat. 2014;8:43 pubmed 出版商
  158. Büchele F, Döbrössy M, Hackl C, Jiang W, Papazoglou A, Nikkhah G. Two-step grafting significantly enhances the survival of foetal dopaminergic transplants and induces graft-derived vascularisation in a 6-OHDA model of Parkinson's disease. Neurobiol Dis. 2014;68:112-25 pubmed 出版商
  159. Landry J, Hawkins C, Wiebe S, Balaban E, Pompeiano M. Opposing effects of hypoxia on catecholaminergic locus coeruleus and hypocretin/orexin neurons in chick embryos. Dev Neurobiol. 2014;74:1030-7 pubmed 出版商
  160. Abu El Asrar A, Siddiquei M, Nawaz M, Geboes K, Mohammad G. The proinflammatory cytokine high-mobility group box-1 mediates retinal neuropathy induced by diabetes. Mediators Inflamm. 2014;2014:746415 pubmed 出版商
  161. Robertson G, Croll R, Smith F. The structure of the caudal wall of the zebrafish (Danio rerio) swim bladder: evidence of localized lamellar body secretion and a proximate neural plexus. J Morphol. 2014;275:933-48 pubmed 出版商
  162. Swanson C, Emborg M. Expression of peroxisome proliferator-activated receptor-gamma in the substantia nigra of hemiparkinsonian nonhuman primates. Neurol Res. 2014;36:634-46 pubmed 出版商
  163. Kudo T, Konno K, Uchigashima M, Yanagawa Y, Sora I, Minami M, et al. GABAergic neurons in the ventral tegmental area receive dual GABA/enkephalin-mediated inhibitory inputs from the bed nucleus of the stria terminalis. Eur J Neurosci. 2014;39:1796-809 pubmed 出版商
  164. Nam J, Leem E, Jeon M, Kim Y, Jung U, Choi M, et al. Inhibition of prothrombin kringle-2-induced inflammation by minocycline protects dopaminergic neurons in the substantia nigra in vivo. Neuroreport. 2014;25:489-95 pubmed 出版商
  165. Song J, Zheng L, Zhang X, Feng X, Fan R, Sun L, et al. Upregulation of ?1-adrenoceptors is involved in the formation of gastric dysmotility in the 6-hydroxydopamine rat model of Parkinson's disease. Transl Res. 2014;164:22-31 pubmed 出版商
  166. Kurowska Z, Brundin P, Schwab M, Li J. Intracellular Nogo-A facilitates initiation of neurite formation in mouse midbrain neurons in vitro. Neuroscience. 2014;256:456-66 pubmed 出版商
  167. Dominguez L, González A, Moreno N. Characterization of the hypothalamus of Xenopus laevis during development. II. The basal regions. J Comp Neurol. 2014;522:1102-31 pubmed 出版商
  168. Newton C, Stoyek M, Croll R, Smith F. Regional innervation of the heart in the goldfish, Carassius auratus: a confocal microscopy study. J Comp Neurol. 2014;522:456-78 pubmed 出版商
  169. Joven A, Morona R, González A, Moreno N. Spatiotemporal patterns of Pax3, Pax6, and Pax7 expression in the developing brain of a urodele amphibian, Pleurodeles waltl. J Comp Neurol. 2013;521:3913-53 pubmed 出版商
  170. Liu Q, Pedersen O, Peng J, Couture L, Rao M, Zeng X. Optimizing dopaminergic differentiation of pluripotent stem cells for the manufacture of dopaminergic neurons for transplantation. Cytotherapy. 2013;15:999-1010 pubmed 出版商
  171. Bron R, Yin L, Russo D, Furness J. Expression of the ghrelin receptor gene in neurons of the medulla oblongata of the rat. J Comp Neurol. 2013;521:2680-702 pubmed 出版商
  172. Sharrad D, Gai W, Brookes S. Selective coexpression of synaptic proteins, ?-synuclein, cysteine string protein-?, synaptophysin, synaptotagmin-1, and synaptobrevin-2 in vesicular acetylcholine transporter-immunoreactive axons in the guinea pig ileum. J Comp Neurol. 2013;521:2523-37 pubmed 出版商
  173. Joven A, Morona R, González A, Moreno N. Expression patterns of Pax6 and Pax7 in the adult brain of a urodele amphibian, Pleurodeles waltl. J Comp Neurol. 2013;521:2088-124 pubmed 出版商
  174. Dominguez L, Morona R, González A, Moreno N. Characterization of the hypothalamus of Xenopus laevis during development. I. The alar regions. J Comp Neurol. 2013;521:725-59 pubmed 出版商
  175. Sharrad D, de Vries E, Brookes S. Selective expression of ?-synuclein-immunoreactivity in vesicular acetylcholine transporter-immunoreactive axons in the guinea pig rectum and human colon. J Comp Neurol. 2013;521:657-76 pubmed 出版商
  176. Morona R, González A. Pattern of calbindin-D28k and calretinin immunoreactivity in the brain of Xenopus laevis during embryonic and larval development. J Comp Neurol. 2013;521:79-108 pubmed 出版商
  177. Moreno N, Dominguez L, Morona R, González A. Subdivisions of the turtle Pseudemys scripta hypothalamus based on the expression of regulatory genes and neuronal markers. J Comp Neurol. 2012;520:453-78 pubmed 出版商
  178. Stanic D, Mulder J, Watanabe M, Hokfelt T. Characterization of NPY Y2 receptor protein expression in the mouse brain. II. Coexistence with NPY, the Y1 receptor, and other neurotransmitter-related molecules. J Comp Neurol. 2011;519:1219-57 pubmed 出版商
  179. Fuller P, Fuller P, Sherman D, Pedersen N, Saper C, Lu J. Reassessment of the structural basis of the ascending arousal system. J Comp Neurol. 2011;519:933-56 pubmed 出版商
  180. Moreno N, Morona R, Lopez J, González A. Subdivisions of the turtle Pseudemys scripta subpallium based on the expression of regulatory genes and neuronal markers. J Comp Neurol. 2010;518:4877-902 pubmed 出版商
  181. Kurz A, Double K, Lastres Becker I, Tozzi A, Tantucci M, Bockhart V, et al. A53T-alpha-synuclein overexpression impairs dopamine signaling and striatal synaptic plasticity in old mice. PLoS ONE. 2010;5:e11464 pubmed 出版商
  182. Contini M, Lin B, Kobayashi K, Okano H, Masland R, Raviola E. Synaptic input of ON-bipolar cells onto the dopaminergic neurons of the mouse retina. J Comp Neurol. 2010;518:2035-50 pubmed 出版商
  183. Bastien Dionne P, David L, Parent A, Saghatelyan A. Role of sensory activity on chemospecific populations of interneurons in the adult olfactory bulb. J Comp Neurol. 2010;518:1847-61 pubmed 出版商
  184. Bérubé Carrière N, Riad M, Dal Bo G, Levesque D, Trudeau L, Descarries L. The dual dopamine-glutamate phenotype of growing mesencephalic neurons regresses in mature rat brain. J Comp Neurol. 2009;517:873-91 pubmed 出版商
  185. Gritti A, Dal Molin M, Foroni C, Bonfanti L. Effects of developmental age, brain region, and time in culture on long-term proliferation and multipotency of neural stem cell populations. J Comp Neurol. 2009;517:333-49 pubmed 出版商
  186. Vázquez Acevedo N, Reyes Colón D, Ruíz Rodríguez E, Rivera N, Rosenthal J, Kohn A, et al. Cloning and immunoreactivity of the 5-HT 1Mac and 5-HT 2Mac receptors in the central nervous system of the freshwater prawn Macrobrachium rosenbergii. J Comp Neurol. 2009;513:399-416 pubmed 出版商
  187. Olsson C, Holmberg A, Holmgren S. Development of enteric and vagal innervation of the zebrafish (Danio rerio) gut. J Comp Neurol. 2008;508:756-70 pubmed 出版商
  188. Parrish Aungst S, Shipley M, Erdelyi F, Szabo G, Puche A. Quantitative analysis of neuronal diversity in the mouse olfactory bulb. J Comp Neurol. 2007;501:825-36 pubmed
  189. Berglöf E, af Bjerkén S, Stromberg I. Glial influence on nerve fiber formation from rat ventral mesencephalic organotypic tissue cultures. J Comp Neurol. 2007;501:431-42 pubmed
  190. Cantwell E, Cassone V. Chicken suprachiasmatic nuclei: II. Autoradiographic and immunohistochemical analysis. J Comp Neurol. 2006;499:442-57 pubmed
  191. Fuller C, Yettaw H, Byrd C. Mitral cells in the olfactory bulb of adult zebrafish (Danio rerio): morphology and distribution. J Comp Neurol. 2006;499:218-30 pubmed
  192. Finney J, Robertson G, McGee C, Smith F, Croll R. Structure and autonomic innervation of the swim bladder in the zebrafish (Danio rerio). J Comp Neurol. 2006;495:587-606 pubmed