这是一篇来自已证抗体库的有关人类 泛肽 (ubiquitin) 的综述,是根据277篇发表使用所有方法的文章归纳的。这综述旨在帮助来邦网的访客找到最适合泛肽 抗体。
泛肽 同义词: HEL-S-50

圣克鲁斯生物技术
小鼠 单克隆(P4D1)
  • 免疫组化-石蜡切片; 人类; 图 2g
  • 免疫印迹; 人类; 图 1d
圣克鲁斯生物技术泛肽抗体(Santa, sc-8017)被用于被用于免疫组化-石蜡切片在人类样本上 (图 2g) 和 被用于免疫印迹在人类样本上 (图 1d). Cell Death Discov (2021) ncbi
小鼠 单克隆(P4D1)
  • 免疫印迹; fruit fly ; 图 1c
圣克鲁斯生物技术泛肽抗体(Santa Cruz, sc-8017)被用于被用于免疫印迹在fruit fly 样本上 (图 1c). Cell Death Dis (2021) ncbi
小鼠 单克隆(P4D1)
  • 免疫印迹; 人类; 1:1600; 图 3f
圣克鲁斯生物技术泛肽抗体(Santa Cruz, sc-8017)被用于被用于免疫印迹在人类样本上浓度为1:1600 (图 3f). Nucleic Acids Res (2021) ncbi
小鼠 单克隆(F-11)
  • 免疫印迹; 人类; 图 5g
圣克鲁斯生物技术泛肽抗体(Santa Cruz, sc-271289)被用于被用于免疫印迹在人类样本上 (图 5g). Mol Cancer (2021) ncbi
小鼠 单克隆(P4D1)
  • 免疫印迹; 小鼠; 1:1000; 图 s6c
圣克鲁斯生物技术泛肽抗体(Santa Cruz, sc-8017)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 s6c). Nat Commun (2021) ncbi
小鼠 单克隆(P4D1)
  • 免疫印迹; 小鼠; 图 2f
圣克鲁斯生物技术泛肽抗体(Santa Cruz, sc-8017)被用于被用于免疫印迹在小鼠样本上 (图 2f). J Biol Chem (2021) ncbi
小鼠 单克隆(P4D1)
  • 免疫印迹; 小鼠; 图 s11d
圣克鲁斯生物技术泛肽抗体(Santa Cruz, sc-8017)被用于被用于免疫印迹在小鼠样本上 (图 s11d). Brain Pathol (2021) ncbi
小鼠 单克隆(P4D1)
  • 免疫印迹; 人类; 1:500; 图 4b
圣克鲁斯生物技术泛肽抗体(Santa Cruz Biotechnology, sc-8017)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 4b). NAR Cancer (2021) ncbi
小鼠 单克隆(P4D1)
  • 免疫印迹; 人类; 1:2000; 图 s3g
圣克鲁斯生物技术泛肽抗体(Santa Cruz, sc-8017)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 s3g). Signal Transduct Target Ther (2021) ncbi
小鼠 单克隆(P4D1)
  • 免疫印迹; 人类; 1:2000; 图 s3g
圣克鲁斯生物技术泛肽抗体(Santa Cruz, sc-8017)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 s3g). Nature (2021) ncbi
小鼠 单克隆(P4D1)
  • 免疫印迹; 小鼠; 图 4b
圣克鲁斯生物技术泛肽抗体(Santa Cruz Biotechnology, sc-8017)被用于被用于免疫印迹在小鼠样本上 (图 4b). Acta Neurochir (Wien) (2021) ncbi
小鼠 单克隆(P4D1)
  • 免疫印迹; 小鼠; 图 4b
圣克鲁斯生物技术泛肽抗体(Santa Cruz Biotechnology, sc-8017)被用于被用于免疫印迹在小鼠样本上 (图 4b). Antioxidants (Basel) (2021) ncbi
小鼠 单克隆(P4D1)
  • 免疫组化-石蜡切片; 人类; 图 6c
  • 免疫印迹; 人类; 图 6c
圣克鲁斯生物技术泛肽抗体(Santa Cruz Biotechnology, sc-8017)被用于被用于免疫组化-石蜡切片在人类样本上 (图 6c) 和 被用于免疫印迹在人类样本上 (图 6c). Arterioscler Thromb Vasc Biol (2020) ncbi
小鼠 单克隆(P4D1)
  • 免疫印迹; 人类; 1:3000; 图 4c
圣克鲁斯生物技术泛肽抗体(Santa Cruz, P4D1)被用于被用于免疫印迹在人类样本上浓度为1:3000 (图 4c). elife (2020) ncbi
小鼠 单克隆(P4D1)
  • 免疫印迹; 人类; 1:1000
圣克鲁斯生物技术泛肽抗体(Santa Cruz Biotech, sc-8017)被用于被用于免疫印迹在人类样本上浓度为1:1000. Int J Mol Sci (2020) ncbi
小鼠 单克隆(P4D1)
  • 免疫沉淀; 大鼠; 1:50; 图 5c
圣克鲁斯生物技术泛肽抗体(Santa Cruz, sc-8017)被用于被用于免疫沉淀在大鼠样本上浓度为1:50 (图 5c). Aging (Albany NY) (2020) ncbi
小鼠 单克隆(P4D1)
  • 免疫印迹; 人类; 1:2000; 图 4g
圣克鲁斯生物技术泛肽抗体(Santa Cruz, sc-8017)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 4g). Cell Death Dis (2020) ncbi
小鼠 单克隆(A-5)
  • 免疫印迹; 人类; 1:1000
圣克鲁斯生物技术泛肽抗体(Santa Cruz Biotechnology, sc-166553)被用于被用于免疫印迹在人类样本上浓度为1:1000. Cancer Cell Int (2020) ncbi
小鼠 单克隆(P4D1)
  • 免疫印迹; 人类; 1:500; 图 5a
圣克鲁斯生物技术泛肽抗体(Santa Cruz, sc-8017)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 5a). elife (2020) ncbi
小鼠 单克隆(6C1)
  • 免疫印迹; 人类; 1:500; 图 2f
圣克鲁斯生物技术泛肽抗体(Santa Cruz, sc-47721)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 2f). Cancer Sci (2020) ncbi
小鼠 单克隆(P4D1)
  • 免疫印迹; 小鼠; 图 2c
圣克鲁斯生物技术泛肽抗体(Santa Cruz, P4D1)被用于被用于免疫印迹在小鼠样本上 (图 2c). Nature (2019) ncbi
小鼠 单克隆(P4D1)
  • 免疫印迹; 小鼠; 图 1g
圣克鲁斯生物技术泛肽抗体(Santa, sc-8017)被用于被用于免疫印迹在小鼠样本上 (图 1g). Nat Commun (2019) ncbi
小鼠 单克隆(P4D1)
  • 免疫印迹; 人类; 图 6f
圣克鲁斯生物技术泛肽抗体(Santa Cruz Biotechnology, sc-8017)被用于被用于免疫印迹在人类样本上 (图 6f). Autophagy (2019) ncbi
小鼠 单克隆(P4D1)
  • 免疫印迹; 小鼠; 666 ng/ml; 图 5b
圣克鲁斯生物技术泛肽抗体(Santa, P4D1)被用于被用于免疫印迹在小鼠样本上浓度为666 ng/ml (图 5b). Science (2019) ncbi
小鼠 单克隆(P4D1)
  • 免疫印迹; 人类; 图 2g
圣克鲁斯生物技术泛肽抗体(Santa, sc8017)被用于被用于免疫印迹在人类样本上 (图 2g). Cell (2019) ncbi
小鼠 单克隆(P4D1)
  • 免疫印迹; 非洲爪蛙; 图 e5h
圣克鲁斯生物技术泛肽抗体(Santa Cruz, sc-8017)被用于被用于免疫印迹在非洲爪蛙样本上 (图 e5h). Nature (2019) ncbi
小鼠 单克隆(P4D1)
  • 免疫沉淀; 人类; 1:1000; 图 6
  • 免疫印迹; 人类; 1:1000; 图 6
圣克鲁斯生物技术泛肽抗体(Santa Cruz, sc-8017)被用于被用于免疫沉淀在人类样本上浓度为1:1000 (图 6) 和 被用于免疫印迹在人类样本上浓度为1:1000 (图 6). Front Cell Neurosci (2019) ncbi
小鼠 单克隆(P4D1)
  • 免疫印迹; 人类; 图 1h
圣克鲁斯生物技术泛肽抗体(Santa Cruz Biotechnology, sc-8017)被用于被用于免疫印迹在人类样本上 (图 1h). iScience (2019) ncbi
小鼠 单克隆(P4D1)
  • 免疫印迹; 人类; 图 2f
圣克鲁斯生物技术泛肽抗体(Santa, sc-8017)被用于被用于免疫印迹在人类样本上 (图 2f). J Pathol (2019) ncbi
小鼠 单克隆(P4D1)
  • 免疫细胞化学; 人类; 1:200; 图 3c
圣克鲁斯生物技术泛肽抗体(Santa Cruz, sc-8017)被用于被用于免疫细胞化学在人类样本上浓度为1:200 (图 3c). Oncogene (2019) ncbi
小鼠 单克隆(A-5)
  • 免疫沉淀; 人类; 图 s5b
圣克鲁斯生物技术泛肽抗体(Santa, sc-166553)被用于被用于免疫沉淀在人类样本上 (图 s5b). Nucleic Acids Res (2019) ncbi
小鼠 单克隆(P4D1)
  • 免疫印迹; 人类; 1:100; 图 s8d
圣克鲁斯生物技术泛肽抗体(Santa, sc-8017)被用于被用于免疫印迹在人类样本上浓度为1:100 (图 s8d). Nat Commun (2018) ncbi
小鼠 单克隆(P4D1)
  • 免疫印迹; 小鼠; 图 5c
圣克鲁斯生物技术泛肽抗体(Santa, sc-8017)被用于被用于免疫印迹在小鼠样本上 (图 5c). FASEB J (2019) ncbi
小鼠 单克隆(P4D1)
  • 免疫印迹; 小鼠; 1:1000; 图 4d
圣克鲁斯生物技术泛肽抗体(Santa Cruz, P4D1)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 4d). Mol Neurodegener (2018) ncbi
小鼠 单克隆(P4D1)
  • 免疫印迹; 人类; 图 1h
圣克鲁斯生物技术泛肽抗体(Santa, sc-8017)被用于被用于免疫印迹在人类样本上 (图 1h). Science (2018) ncbi
小鼠 单克隆(P4D1)
  • 免疫印迹; 小鼠; 图 3a
圣克鲁斯生物技术泛肽抗体(Santa, P4D1)被用于被用于免疫印迹在小鼠样本上 (图 3a). PLoS ONE (2018) ncbi
小鼠 单克隆(P4D1)
  • 免疫印迹; 人类; 图 4c, 6b
圣克鲁斯生物技术泛肽抗体(Santa Cruz, sc-8017)被用于被用于免疫印迹在人类样本上 (图 4c, 6b). FASEB J (2018) ncbi
小鼠 单克隆(P4D1)
  • 免疫印迹; 人类; 1:1000; 图 4j
圣克鲁斯生物技术泛肽抗体(SantaCruz, sc-8017)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 4j). Nat Commun (2018) ncbi
小鼠 单克隆(P4D1)
  • 免疫组化-冰冻切片; 小鼠; 1:200; 图 6a
  • 免疫印迹; 小鼠; 1:500; 图 6b
圣克鲁斯生物技术泛肽抗体(SantaCruz, P4D1)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:200 (图 6a) 和 被用于免疫印迹在小鼠样本上浓度为1:500 (图 6b). Metabolism (2018) ncbi
小鼠 单克隆(P4D1)
  • 免疫印迹; 人类; 图 6c
圣克鲁斯生物技术泛肽抗体(Santa, SC-8017)被用于被用于免疫印迹在人类样本上 (图 6c). Nat Commun (2018) ncbi
小鼠 单克隆(P4D1)
  • 免疫细胞化学; 小鼠; 1:100; 图 1a
  • 免疫组化; 小鼠; 1:100; 图 5a
圣克鲁斯生物技术泛肽抗体(SantaCruz, P4D1)被用于被用于免疫细胞化学在小鼠样本上浓度为1:100 (图 1a) 和 被用于免疫组化在小鼠样本上浓度为1:100 (图 5a). Sci Rep (2018) ncbi
小鼠 单克隆(P4D1)
  • 免疫印迹; 小鼠; 1:1000; 图 2i
圣克鲁斯生物技术泛肽抗体(SantaCruz, sc-8017)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 2i). Nat Neurosci (2018) ncbi
小鼠 单克隆(P4D1)
  • 免疫印迹; 小鼠; 1:500; 图 4b
圣克鲁斯生物技术泛肽抗体(Santa, P4D1)被用于被用于免疫印迹在小鼠样本上浓度为1:500 (图 4b). J Immunol (2018) ncbi
小鼠 单克隆(P4D1)
  • 免疫印迹; 人类; 1:500; 图 2a
圣克鲁斯生物技术泛肽抗体(SantaCruz, P4D1)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 2a). J Virol (2018) ncbi
小鼠 单克隆(P4D1)
  • 免疫印迹; 人类; 1:1000; 图 3b
圣克鲁斯生物技术泛肽抗体(SantaCruz, P4D1)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3b). J Mol Biol (2018) ncbi
小鼠 单克隆(P4D1)
  • 免疫印迹; 小鼠; 图 6e
圣克鲁斯生物技术泛肽抗体(SantaCruz, sc-8017)被用于被用于免疫印迹在小鼠样本上 (图 6e). Cell Syst (2017) ncbi
小鼠 单克隆(P4D1)
  • 免疫印迹; 小鼠; 1:200; 图 5b
圣克鲁斯生物技术泛肽抗体(SantaCruz, sc-8017)被用于被用于免疫印迹在小鼠样本上浓度为1:200 (图 5b). Science (2017) ncbi
小鼠 单克隆(P4D1)
  • 免疫印迹; 人类; 图 2b
圣克鲁斯生物技术泛肽抗体(Santa Cruz Biotechnology, P4D1)被用于被用于免疫印迹在人类样本上 (图 2b). PLoS Pathog (2017) ncbi
小鼠 单克隆(P4D1)
  • 免疫细胞化学; 人类; 图 6d
圣克鲁斯生物技术泛肽抗体(Santa Cruz, sc-8017)被用于被用于免疫细胞化学在人类样本上 (图 6d). J Cell Biol (2017) ncbi
小鼠 单克隆(P4D1)
  • 免疫印迹; 人类; 图 6b
圣克鲁斯生物技术泛肽抗体(SantaCruz, sc-8017)被用于被用于免疫印迹在人类样本上 (图 6b). J Biol Chem (2017) ncbi
小鼠 单克隆(P4D1)
  • 免疫印迹; 人类; 1:500; 图 3a
圣克鲁斯生物技术泛肽抗体(SantaCruz, sc-8017)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 3a). Cell Death Dis (2017) ncbi
小鼠 单克隆(P4D1)
  • 免疫印迹; 人类; 图 4b
圣克鲁斯生物技术泛肽抗体(Santa cruz, Sc8017)被用于被用于免疫印迹在人类样本上 (图 4b). Exp Cell Res (2017) ncbi
小鼠 单克隆(P4D1)
  • 免疫印迹; 人类; 图 1c
圣克鲁斯生物技术泛肽抗体(Santa Cruz, sc-8017)被用于被用于免疫印迹在人类样本上 (图 1c). Oncotarget (2017) ncbi
小鼠 单克隆(P4D1)
  • 免疫印迹; 人类; 图 1a
圣克鲁斯生物技术泛肽抗体(Santa Cruz Biotechnology, sc-8017)被用于被用于免疫印迹在人类样本上 (图 1a). elife (2017) ncbi
小鼠 单克隆(P4D1)
圣克鲁斯生物技术泛肽抗体(Santa Cruz, sc-8017)被用于. Nat Commun (2017) ncbi
小鼠 单克隆(F-11)
  • 免疫印迹; 人类; 1:1000; 图 s7e
圣克鲁斯生物技术泛肽抗体(Santa Cruz, sc-271289)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 s7e). Nat Commun (2017) ncbi
小鼠 单克隆(P4D1)
  • 免疫细胞化学; 人类; 1:50; 图 3c
圣克鲁斯生物技术泛肽抗体(SantaCruz, sc-8017)被用于被用于免疫细胞化学在人类样本上浓度为1:50 (图 3c). Front Mol Neurosci (2017) ncbi
小鼠 单克隆(P4D1)
  • 免疫印迹; 大肠杆菌; 1:5000; 图 2c
圣克鲁斯生物技术泛肽抗体(Santa Cruz, sc-8017)被用于被用于免疫印迹在大肠杆菌样本上浓度为1:5000 (图 2c). New Phytol (2018) ncbi
小鼠 单克隆(P4D1)
  • 免疫细胞化学; 人类; 图 3c
圣克鲁斯生物技术泛肽抗体(SantaCruz, Sc-8017)被用于被用于免疫细胞化学在人类样本上 (图 3c). Nat Chem Biol (2017) ncbi
小鼠 单克隆(P4D1)
  • 免疫细胞化学; 人类
圣克鲁斯生物技术泛肽抗体(Santa Cruz, sc-8017)被用于被用于免疫细胞化学在人类样本上. J Biol Chem (2017) ncbi
小鼠 单克隆(P4D1)
  • 免疫组化-冰冻切片; 大鼠; 1:100; 图 7c
  • 免疫印迹; 大鼠; 图 7a
圣克鲁斯生物技术泛肽抗体(SantaCruz, sc-8017)被用于被用于免疫组化-冰冻切片在大鼠样本上浓度为1:100 (图 7c) 和 被用于免疫印迹在大鼠样本上 (图 7a). Sci Rep (2017) ncbi
小鼠 单克隆(P4D1)
  • 免疫印迹; 小鼠; 1:500; 图 1a
圣克鲁斯生物技术泛肽抗体(Santa Cruz, SC-8017)被用于被用于免疫印迹在小鼠样本上浓度为1:500 (图 1a). Cell Rep (2017) ncbi
小鼠 单克隆(A-5)
  • 免疫沉淀; 人类; 图 6c
  • 免疫印迹; 人类; 图 5b
圣克鲁斯生物技术泛肽抗体(Santa Cruz Biotechnology, sc-166553)被用于被用于免疫沉淀在人类样本上 (图 6c) 和 被用于免疫印迹在人类样本上 (图 5b). Sci Rep (2017) ncbi
小鼠 单克隆(P4D1)
  • 免疫印迹; 人类; 图 4d
圣克鲁斯生物技术泛肽抗体(Santa Cruz, SC-8017)被用于被用于免疫印迹在人类样本上 (图 4d). J Virol (2017) ncbi
小鼠 单克隆(P4D1)
  • 免疫沉淀; 人类; 图 3b
圣克鲁斯生物技术泛肽抗体(SantaCruz, sc-8017)被用于被用于免疫沉淀在人类样本上 (图 3b). Nat Commun (2017) ncbi
小鼠 单克隆(P4D1)
  • 免疫印迹; 人类; 1:5000; 图 1d
圣克鲁斯生物技术泛肽抗体(Santa Cruz, sc-8017)被用于被用于免疫印迹在人类样本上浓度为1:5000 (图 1d). Exp Mol Med (2017) ncbi
小鼠 单克隆(P4D1)
  • 免疫印迹; brewer's yeast; 图 3a
圣克鲁斯生物技术泛肽抗体(Santa Cruz, SC-8017)被用于被用于免疫印迹在brewer's yeast样本上 (图 3a). Mol Biol Cell (2017) ncbi
小鼠 单克隆(P4D1)
  • 免疫印迹; 人类; 1:200; 图 s4b
圣克鲁斯生物技术泛肽抗体(SantaCruz, sc-8017)被用于被用于免疫印迹在人类样本上浓度为1:200 (图 s4b). Proc Natl Acad Sci U S A (2017) ncbi
小鼠 单克隆(P4D1)
  • 免疫印迹; 人类; 1:1000; 图 4c
圣克鲁斯生物技术泛肽抗体(SantaCruz, sc-8017)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 4c). Oncogene (2017) ncbi
小鼠 单克隆(P4D1)
  • 免疫印迹; 人类; 1:500; 图 6d
圣克鲁斯生物技术泛肽抗体(Santa Cruz Biotechnology, P4D1)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 6d). PLoS Pathog (2017) ncbi
小鼠 单克隆(P4D1)
  • 免疫印迹; 人类; 图 s3b
圣克鲁斯生物技术泛肽抗体(Santa Cruz, SC-8017)被用于被用于免疫印迹在人类样本上 (图 s3b). Nat Commun (2016) ncbi
小鼠 单克隆(P4D1)
  • 免疫印迹; 人类; 1:200; 图 4e
圣克鲁斯生物技术泛肽抗体(SantaCruz, P4D1)被用于被用于免疫印迹在人类样本上浓度为1:200 (图 4e). Proc Natl Acad Sci U S A (2016) ncbi
小鼠 单克隆(A-5)
  • 免疫印迹; 小鼠; 图 3g
  • 免疫印迹; 人类; 图 3a
圣克鲁斯生物技术泛肽抗体(Santa Cruz, sc-166553)被用于被用于免疫印迹在小鼠样本上 (图 3g) 和 被用于免疫印迹在人类样本上 (图 3a). Cell Death Dis (2016) ncbi
小鼠 单克隆(F-11)
  • 免疫印迹; 小鼠; 1:1000; 图 1f
圣克鲁斯生物技术泛肽抗体(SantaCruz, sc-271289)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 1f). Biochim Biophys Acta Mol Basis Dis (2017) ncbi
小鼠 单克隆(P4D1)
  • 免疫印迹; 小鼠; 图 1c
圣克鲁斯生物技术泛肽抗体(Santa cruz, sc-8017)被用于被用于免疫印迹在小鼠样本上 (图 1c). Sci Rep (2016) ncbi
小鼠 单克隆(P4D1)
  • 免疫印迹; 人类; 图 7
圣克鲁斯生物技术泛肽抗体(Santa Cruz, sc-8017)被用于被用于免疫印迹在人类样本上 (图 7). Oncogene (2017) ncbi
小鼠 单克隆(A-5)
  • 免疫印迹; 人类; 图 2c
圣克鲁斯生物技术泛肽抗体(Santa Cruz, sc-166553)被用于被用于免疫印迹在人类样本上 (图 2c). Sci Rep (2016) ncbi
小鼠 单克隆(P4D1)
  • 免疫印迹; 人类; 图 3d
圣克鲁斯生物技术泛肽抗体(Santa Cruz, sc-8017)被用于被用于免疫印迹在人类样本上 (图 3d). Oncotarget (2016) ncbi
小鼠 单克隆(P4D1)
  • 免疫细胞化学; 人类; 图 5D
圣克鲁斯生物技术泛肽抗体(Santa cruz, sc-8017)被用于被用于免疫细胞化学在人类样本上 (图 5D). Sci Rep (2016) ncbi
小鼠 单克隆(P4D1)
  • 免疫印迹; 小鼠; 图 10a
圣克鲁斯生物技术泛肽抗体(Santa Cruz, P4D1)被用于被用于免疫印迹在小鼠样本上 (图 10a). J Biol Chem (2016) ncbi
小鼠 单克隆(P4D1)
  • 免疫印迹; 小鼠; 1:250; 图 6b
圣克鲁斯生物技术泛肽抗体(Santa Cruz, SC8017)被用于被用于免疫印迹在小鼠样本上浓度为1:250 (图 6b). Nat Immunol (2017) ncbi
小鼠 单克隆(P4D1)
  • 免疫印迹; 人类; 图 2c
圣克鲁斯生物技术泛肽抗体(Santa Cruz, sc-8017)被用于被用于免疫印迹在人类样本上 (图 2c). Oncogene (2017) ncbi
小鼠 单克隆(P4D1)
  • 免疫印迹; 人类; 1:500; 图 5b
圣克鲁斯生物技术泛肽抗体(Santa Cruz Biotech, sc-8017)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 5b). Sci Rep (2016) ncbi
小鼠 单克隆(P4D1)
  • 免疫印迹; 小鼠; 1:250; 图 3a
圣克鲁斯生物技术泛肽抗体(Santa Cruz, sc-8017)被用于被用于免疫印迹在小鼠样本上浓度为1:250 (图 3a). Nat Genet (2016) ncbi
小鼠 单克隆(P4D1)
  • 免疫细胞化学; 大鼠; 1:500; 图 2b
圣克鲁斯生物技术泛肽抗体(Santa Cruz Biotechnology, P4D1)被用于被用于免疫细胞化学在大鼠样本上浓度为1:500 (图 2b). Proc Natl Acad Sci U S A (2016) ncbi
小鼠 单克隆(P4D1)
  • 免疫印迹; 人类; 图 3e
圣克鲁斯生物技术泛肽抗体(Santa Cruz, sc-8017)被用于被用于免疫印迹在人类样本上 (图 3e). Genes Dev (2016) ncbi
小鼠 单克隆(P4D1)
  • 免疫细胞化学; 人类; 图 6d
  • 免疫印迹; 人类; 图 6a
圣克鲁斯生物技术泛肽抗体(SantaCruz, sc-8017)被用于被用于免疫细胞化学在人类样本上 (图 6d) 和 被用于免疫印迹在人类样本上 (图 6a). Autophagy (2016) ncbi
小鼠 单克隆(P4D1)
  • 免疫印迹; 人类; 1:1000; 图 7
圣克鲁斯生物技术泛肽抗体(Santa Cruz, sc-8017)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 7). Nat Commun (2016) ncbi
小鼠 单克隆(F-11)
  • 免疫印迹; 人类; 图 3
圣克鲁斯生物技术泛肽抗体(Santa Cruz, sc-271289)被用于被用于免疫印迹在人类样本上 (图 3). Proc Natl Acad Sci U S A (2016) ncbi
小鼠 单克隆(P4D1)
  • 免疫印迹; 小鼠; 图 5
  • 免疫印迹; 人类; 图 5
圣克鲁斯生物技术泛肽抗体(SantaCruz, sc-8017)被用于被用于免疫印迹在小鼠样本上 (图 5) 和 被用于免疫印迹在人类样本上 (图 5). Sci Rep (2016) ncbi
小鼠 单克隆(P4D1)
  • 免疫印迹; 人类; 1:1000; 图 s15
圣克鲁斯生物技术泛肽抗体(Santa Cruz, sc-8017)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 s15). Nat Commun (2016) ncbi
小鼠 单克隆(P4D1)
  • 免疫印迹; 人类; 图 1f
圣克鲁斯生物技术泛肽抗体(Santa Cruz, sc-8017)被用于被用于免疫印迹在人类样本上 (图 1f). Biochem J (2016) ncbi
小鼠 单克隆(P4D1)
  • 免疫印迹; 人类; 图 5f
圣克鲁斯生物技术泛肽抗体(Santa Cruz, sc-8017)被用于被用于免疫印迹在人类样本上 (图 5f). elife (2016) ncbi
小鼠 单克隆(P4D1)
  • 免疫印迹; 人类; 1:500; 图 s2
圣克鲁斯生物技术泛肽抗体(Santa Cruz, sc-8017)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 s2). EMBO J (2016) ncbi
小鼠 单克隆(P4D1)
  • 免疫印迹; 大鼠; 图 3b
圣克鲁斯生物技术泛肽抗体(Santa Cruz, sc-8017)被用于被用于免疫印迹在大鼠样本上 (图 3b). Proc Natl Acad Sci U S A (2016) ncbi
小鼠 单克隆(P4D1)
  • 免疫印迹; 人类
圣克鲁斯生物技术泛肽抗体(Santa Cruz, sc-8017)被用于被用于免疫印迹在人类样本上. Mol Cancer Res (2016) ncbi
小鼠 单克隆(P4D1)
  • 免疫印迹; 人类; 1:1000; 图 3
圣克鲁斯生物技术泛肽抗体(Santa Cruz, sc-8017)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3). PLoS Pathog (2016) ncbi
小鼠 单克隆(P4D1)
  • 免疫印迹; 小鼠; 图 s4a
圣克鲁斯生物技术泛肽抗体(SantaCruz, P4D1)被用于被用于免疫印迹在小鼠样本上 (图 s4a). Nat Med (2016) ncbi
小鼠 单克隆(P4D1)
  • 免疫印迹; 小鼠; 图 6c
圣克鲁斯生物技术泛肽抗体(Santa Cruz Biotechnology, P4D1)被用于被用于免疫印迹在小鼠样本上 (图 6c). J Clin Invest (2016) ncbi
小鼠 单克隆(P4D1)
  • 免疫组化-冰冻切片; domestic rabbit; 图 4
  • 免疫印迹; domestic rabbit; 图 4
圣克鲁斯生物技术泛肽抗体(Santa Cruz, sc-8017)被用于被用于免疫组化-冰冻切片在domestic rabbit样本上 (图 4) 和 被用于免疫印迹在domestic rabbit样本上 (图 4). Front Aging Neurosci (2016) ncbi
小鼠 单克隆(P4D1)
  • 免疫组化; 小鼠; 1:1000; 图 4a
圣克鲁斯生物技术泛肽抗体(Santa Cruz Biotechnology, sc-8017)被用于被用于免疫组化在小鼠样本上浓度为1:1000 (图 4a). Brain (2016) ncbi
小鼠 单克隆(P4D1)
  • 免疫印迹; 人类; 图 4a
圣克鲁斯生物技术泛肽抗体(Santa Cruz, sc-8017)被用于被用于免疫印迹在人类样本上 (图 4a). J Biol Chem (2016) ncbi
小鼠 单克隆(P4D1)
  • 免疫印迹; 人类; 1:500; 表 3
圣克鲁斯生物技术泛肽抗体(Santa Cruz, 8017)被用于被用于免疫印迹在人类样本上浓度为1:500 (表 3). Oncotarget (2016) ncbi
小鼠 单克隆(P4D1)
  • 免疫印迹; 人类; 1:500; 图 s2d
圣克鲁斯生物技术泛肽抗体(SantaCruz, sc-8017)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 s2d). Nat Cell Biol (2016) ncbi
小鼠 单克隆(F-11)
  • 免疫沉淀; 小鼠; 图 7
圣克鲁斯生物技术泛肽抗体(Santa Cruz, sc-271289)被用于被用于免疫沉淀在小鼠样本上 (图 7). Sci Rep (2016) ncbi
小鼠 单克隆(P4D1)
  • 免疫沉淀; 人类; 图 4d
圣克鲁斯生物技术泛肽抗体(Santa Cruz, sc-8017)被用于被用于免疫沉淀在人类样本上 (图 4d). Proc Natl Acad Sci U S A (2016) ncbi
小鼠 单克隆(P4D1)
  • 免疫印迹; 人类; 图 1a
圣克鲁斯生物技术泛肽抗体(Santa Cruz, sc-8017)被用于被用于免疫印迹在人类样本上 (图 1a). Methods Mol Biol (2016) ncbi
小鼠 单克隆(P4D1)
  • 免疫印迹; 小鼠; 图 5
圣克鲁斯生物技术泛肽抗体(Santa Cruz, sc-8017)被用于被用于免疫印迹在小鼠样本上 (图 5). Cell Rep (2016) ncbi
小鼠 单克隆(P4D1)
  • 免疫印迹; 小鼠; 图 3b
圣克鲁斯生物技术泛肽抗体(Santa Cruz, P4D1)被用于被用于免疫印迹在小鼠样本上 (图 3b). Antimicrob Agents Chemother (2016) ncbi
小鼠 单克隆(P4D1)
  • 免疫印迹; 人类; 图 5b
圣克鲁斯生物技术泛肽抗体(Santa Cruz Biotechnology, sc-8017)被用于被用于免疫印迹在人类样本上 (图 5b). Nat Struct Mol Biol (2016) ncbi
小鼠 单克隆(P4D1)
  • 免疫印迹; 拟南芥; 1:1000; 图 s12
圣克鲁斯生物技术泛肽抗体(Santa Cruz, sc-8017)被用于被用于免疫印迹在拟南芥样本上浓度为1:1000 (图 s12). Nat Commun (2016) ncbi
小鼠 单克隆(F-11)
  • 免疫印迹; 人类; 图 6
圣克鲁斯生物技术泛肽抗体(santa Cruz, sc-271289)被用于被用于免疫印迹在人类样本上 (图 6). Cancer Sci (2016) ncbi
小鼠 单克隆(P4D1)
  • 免疫印迹; 人类; 图 4a
圣克鲁斯生物技术泛肽抗体(Santa Cruz, sc-8017)被用于被用于免疫印迹在人类样本上 (图 4a). Nature (2016) ncbi
小鼠 单克隆(P4D1)
  • 免疫印迹; 人类; 图 1a
圣克鲁斯生物技术泛肽抗体(Santa Cruz, sc-8017)被用于被用于免疫印迹在人类样本上 (图 1a). J Biol Chem (2016) ncbi
小鼠 单克隆(P4D1)
  • 免疫印迹; 人类; 图 2
圣克鲁斯生物技术泛肽抗体(Santa Cruz, sc-8017)被用于被用于免疫印迹在人类样本上 (图 2). Proc Natl Acad Sci U S A (2016) ncbi
小鼠 单克隆(P4D1)
  • 免疫印迹; 人类; 1:500; 图 2
圣克鲁斯生物技术泛肽抗体(Santa Cruz Biotechnology, sc-8017)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 2). Nature (2016) ncbi
小鼠 单克隆(P4D1)
  • 免疫印迹; 人类; 图 4e
圣克鲁斯生物技术泛肽抗体(Santa Cruz, sc-8017)被用于被用于免疫印迹在人类样本上 (图 4e). Oncogene (2016) ncbi
小鼠 单克隆(P4D1)
  • 免疫印迹; 人类; 1:500; 图 5c
圣克鲁斯生物技术泛肽抗体(Santa Cruz, P4D1)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 5c). Mol Cancer Res (2016) ncbi
小鼠 单克隆(P4D1)
  • 免疫印迹; 人类; 1:5000; 图 3d
圣克鲁斯生物技术泛肽抗体(Santa Cruz, P4D1)被用于被用于免疫印迹在人类样本上浓度为1:5000 (图 3d). Nat Commun (2016) ncbi
小鼠 单克隆(P4D1)
  • 免疫印迹; 人类; 图 3a
圣克鲁斯生物技术泛肽抗体(SantaCruz, P4D1)被用于被用于免疫印迹在人类样本上 (图 3a). Cell (2016) ncbi
小鼠 单克隆(P4D1)
  • 免疫印迹; brewer's yeast; 图 s1
圣克鲁斯生物技术泛肽抗体(Santa Cruz, sc-8017)被用于被用于免疫印迹在brewer's yeast样本上 (图 s1). Nature (2016) ncbi
小鼠 单克隆(P4D1)
  • 免疫印迹; 大鼠; 1:1000; 图 6
圣克鲁斯生物技术泛肽抗体(Santa Cruz, sc-8017)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 6). J Neurosci (2016) ncbi
小鼠 单克隆(P4D1)
  • 免疫印迹; African green monkey; 1:1000; 图 6
圣克鲁斯生物技术泛肽抗体(Santa Cruz, sc-8017)被用于被用于免疫印迹在African green monkey样本上浓度为1:1000 (图 6). PLoS ONE (2016) ncbi
小鼠 单克隆(P4D1)
  • 免疫沉淀; 大鼠; 1:1000; 图 5
圣克鲁斯生物技术泛肽抗体(Santa Cruz, sc8017)被用于被用于免疫沉淀在大鼠样本上浓度为1:1000 (图 5). Nat Commun (2016) ncbi
小鼠 单克隆(P4D1)
  • 免疫印迹; 人类; 图 3
圣克鲁斯生物技术泛肽抗体(Santa Cruz Biotechnology, sc-8017)被用于被用于免疫印迹在人类样本上 (图 3). Genes Immun (2016) ncbi
小鼠 单克隆(P4D1)
  • 其他; 人类; 图 st1
圣克鲁斯生物技术泛肽抗体(SCBT, P4D1)被用于被用于其他在人类样本上 (图 st1). Mol Cell Proteomics (2016) ncbi
小鼠 单克隆(P4D1)
  • 免疫印迹; 小鼠; 1:200; 图 4
圣克鲁斯生物技术泛肽抗体(Santa, sc-8017)被用于被用于免疫印迹在小鼠样本上浓度为1:200 (图 4). Science (2015) ncbi
小鼠 单克隆(P4D1)
  • 免疫印迹; 人类; 图 7b
圣克鲁斯生物技术泛肽抗体(SantaCruz, sc-8017)被用于被用于免疫印迹在人类样本上 (图 7b). Oncogene (2016) ncbi
小鼠 单克隆(P4D1)
  • 免疫沉淀; 人类; 图 s3
圣克鲁斯生物技术泛肽抗体(Santa Cruz Biotechnology, sc-8017)被用于被用于免疫沉淀在人类样本上 (图 s3). Proc Natl Acad Sci U S A (2016) ncbi
小鼠 单克隆(P4D1)
  • 免疫印迹; 人类; 1:500; 图 3
圣克鲁斯生物技术泛肽抗体(Santa Cruz, SC-8017)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 3). Nat Commun (2016) ncbi
小鼠 单克隆(P4D1)
  • 免疫印迹; 人类; 图 2A
圣克鲁斯生物技术泛肽抗体(Santa Cruz, sc-8017)被用于被用于免疫印迹在人类样本上 (图 2A). PLoS ONE (2015) ncbi
小鼠 单克隆(P4D1)
  • 免疫印迹; 小鼠; 图 2
圣克鲁斯生物技术泛肽抗体(Santa Cruz, sc-8017)被用于被用于免疫印迹在小鼠样本上 (图 2). J Cell Biol (2015) ncbi
小鼠 单克隆(P4G7)
  • 免疫印迹; brewer's yeast; 1:2000; 图 2D
圣克鲁斯生物技术泛肽抗体(Santa Cruz, sc-53509)被用于被用于免疫印迹在brewer's yeast样本上浓度为1:2000 (图 2D). PLoS Genet (2015) ncbi
小鼠 单克隆(P4D1)
  • 免疫印迹; 人类; 图 2
圣克鲁斯生物技术泛肽抗体(Santa Cruz, sc-8017)被用于被用于免疫印迹在人类样本上 (图 2). Int J Clin Exp Pathol (2015) ncbi
小鼠 单克隆(P4D1)
  • 免疫印迹; 人类; 图 5
圣克鲁斯生物技术泛肽抗体(Santa-Cruz, sc-8017)被用于被用于免疫印迹在人类样本上 (图 5). Nucleic Acids Res (2016) ncbi
小鼠 单克隆(P4D1)
  • 免疫印迹; 人类; 1:250; 图 s3e
圣克鲁斯生物技术泛肽抗体(Santa Cruz, sc-8017)被用于被用于免疫印迹在人类样本上浓度为1:250 (图 s3e). Nat Commun (2015) ncbi
小鼠 单克隆(P4D1)
  • 免疫印迹; 小鼠; 1:1000; 图 5
圣克鲁斯生物技术泛肽抗体(Santa Cruz, sc-8017)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 5). BMC Neurosci (2015) ncbi
小鼠 单克隆(A-5)
  • 免疫印迹; 大鼠
圣克鲁斯生物技术泛肽抗体(Santa Cruz Biotechnology, sc-166553)被用于被用于免疫印迹在大鼠样本上. Redox Biol (2015) ncbi
小鼠 单克隆(P4D1)
  • 免疫印迹; 非洲爪蛙; 图 5
圣克鲁斯生物技术泛肽抗体(Santa Cruz, sc-8017)被用于被用于免疫印迹在非洲爪蛙样本上 (图 5). J Biol Chem (2015) ncbi
小鼠 单克隆(P4D1)
  • 免疫印迹; 人类; 图 4
圣克鲁斯生物技术泛肽抗体(Santa Cruz, sc-8017)被用于被用于免疫印迹在人类样本上 (图 4). Nature (2015) ncbi
小鼠 单克隆(P4D1)
  • 免疫印迹; 小鼠; 图 1
圣克鲁斯生物技术泛肽抗体(Santa Cruz Biotechnology, sc-8017)被用于被用于免疫印迹在小鼠样本上 (图 1). J Cell Sci (2015) ncbi
小鼠 单克隆(P4D1)
  • 免疫印迹; 人类; 图 2
圣克鲁斯生物技术泛肽抗体(Santa Cruz Biotechnology, SC-8017)被用于被用于免疫印迹在人类样本上 (图 2). Oncogene (2016) ncbi
小鼠 单克隆(P4D1)
  • 免疫印迹; 人类; 图 1
圣克鲁斯生物技术泛肽抗体(santa cruz, sc-8017)被用于被用于免疫印迹在人类样本上 (图 1). Carcinogenesis (2015) ncbi
小鼠 单克隆(P4D1)
  • 免疫印迹; 小鼠; 图 1a
圣克鲁斯生物技术泛肽抗体(Santa Cruz, sc-8017)被用于被用于免疫印迹在小鼠样本上 (图 1a). Arch Biochem Biophys (2015) ncbi
小鼠 单克隆(P4D1)
  • 免疫印迹; fruit fly ; 1:1000; 图 2b
圣克鲁斯生物技术泛肽抗体(Santa Cruz Biotechnology, P4D1)被用于被用于免疫印迹在fruit fly 样本上浓度为1:1000 (图 2b). Sci Rep (2015) ncbi
小鼠 单克隆(P4D1)
  • 免疫印迹; 人类
圣克鲁斯生物技术泛肽抗体(Santa Cruz Biotechnology, sc-8017)被用于被用于免疫印迹在人类样本上. Oncogene (2016) ncbi
小鼠 单克隆(P4D1)
  • 免疫印迹; 人类; 1:1000; 图 2
圣克鲁斯生物技术泛肽抗体(Santa Cruz Biotechnology, sc-8017)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 2). J Biol Chem (2015) ncbi
小鼠 单克隆(P4D1)
  • 免疫印迹; 人类; 图 6
圣克鲁斯生物技术泛肽抗体(Santa Cruz, sc-8017)被用于被用于免疫印迹在人类样本上 (图 6). Oncotarget (2015) ncbi
小鼠 单克隆(P4D1)
  • 免疫印迹; 人类
圣克鲁斯生物技术泛肽抗体(Santa Cruz, sc-8017)被用于被用于免疫印迹在人类样本上. PLoS ONE (2015) ncbi
小鼠 单克隆(P4D1)
  • 免疫印迹; 小鼠; 1:250
圣克鲁斯生物技术泛肽抗体(Santa Cruz, sc-8017)被用于被用于免疫印迹在小鼠样本上浓度为1:250. PLoS ONE (2015) ncbi
小鼠 单克隆(P4D1)
  • 免疫印迹; 人类; 图 s5
圣克鲁斯生物技术泛肽抗体(Santa Cruz, sc-8017)被用于被用于免疫印迹在人类样本上 (图 s5). Oncotarget (2015) ncbi
小鼠 单克隆(P4D1)
  • 免疫印迹; 人类; 1:500; 图 1e
圣克鲁斯生物技术泛肽抗体(Santa Cruz, sc-8017)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 1e). Nat Commun (2015) ncbi
小鼠 单克隆(P4D1)
  • 免疫印迹; 小鼠; 1:100; 图 2a
圣克鲁斯生物技术泛肽抗体(Santa Cruz, sc-8017)被用于被用于免疫印迹在小鼠样本上浓度为1:100 (图 2a). Circ Res (2015) ncbi
小鼠 单克隆(P4D1)
  • 免疫印迹; 人类
圣克鲁斯生物技术泛肽抗体(Santa Cruz, sc-8017)被用于被用于免疫印迹在人类样本上. Oncogene (2016) ncbi
小鼠 单克隆(P4D1)
  • 免疫组化; 小鼠; 1:100; 图 3
圣克鲁斯生物技术泛肽抗体(Santa Cruz, sc-8017)被用于被用于免疫组化在小鼠样本上浓度为1:100 (图 3). Amyotroph Lateral Scler Frontotemporal Degener (2015) ncbi
小鼠 单克隆(P4D1)
  • 免疫印迹; 人类; 图 9a
圣克鲁斯生物技术泛肽抗体(Santa Cruz, sc-8017)被用于被用于免疫印迹在人类样本上 (图 9a). elife (2015) ncbi
小鼠 单克隆(P4D1)
  • 免疫印迹; 人类; 图 2
圣克鲁斯生物技术泛肽抗体(Santa-Cruz Biotechnology, SC-8017)被用于被用于免疫印迹在人类样本上 (图 2). Cell Cycle (2015) ncbi
小鼠 单克隆(P4D1)
  • 免疫印迹; 牛; 1:1000
圣克鲁斯生物技术泛肽抗体(SantaCruz, P4D1)被用于被用于免疫印迹在牛样本上浓度为1:1000. Methods (2015) ncbi
小鼠 单克隆(P4D1)
  • 免疫印迹; 人类; 图 4c
圣克鲁斯生物技术泛肽抗体(Santa Cruz Biotechnology, sc-8017)被用于被用于免疫印迹在人类样本上 (图 4c). J Biol Chem (2015) ncbi
小鼠 单克隆(P4D1)
  • 免疫印迹; 人类; 1:200; 图 3b
圣克鲁斯生物技术泛肽抗体(Santa Cruz, sc-8017)被用于被用于免疫印迹在人类样本上浓度为1:200 (图 3b). Mol Med Rep (2015) ncbi
小鼠 单克隆(P4D1)
  • 免疫组化; 日本大米鱼; 1:50; 图 4
  • 免疫印迹; 日本大米鱼; 1:50; 图 4
圣克鲁斯生物技术泛肽抗体(Santa Cruz, sc-8017)被用于被用于免疫组化在日本大米鱼样本上浓度为1:50 (图 4) 和 被用于免疫印迹在日本大米鱼样本上浓度为1:50 (图 4). PLoS Genet (2015) ncbi
小鼠 单克隆(P4D1)
  • 免疫印迹; 小鼠; 1:1000; 图 6
圣克鲁斯生物技术泛肽抗体(Santa Cruz, sc-8017)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 6). Nat Commun (2015) ncbi
小鼠 单克隆(P4D1)
  • 免疫印迹; 小鼠; 1:1000
圣克鲁斯生物技术泛肽抗体(Santa Cruz Biotechnology, sc-8017)被用于被用于免疫印迹在小鼠样本上浓度为1:1000. Cell Death Differ (2015) ncbi
小鼠 单克隆(P4D1)
  • 其他; 小鼠; 图 1e
  • 免疫印迹; 小鼠; 图 1a
圣克鲁斯生物技术泛肽抗体(santa cruz, sc-8017)被用于被用于其他在小鼠样本上 (图 1e) 和 被用于免疫印迹在小鼠样本上 (图 1a). Nat Immunol (2015) ncbi
小鼠 单克隆(P4D1)
  • 免疫印迹; 人类; 1:500; 图 4a
圣克鲁斯生物技术泛肽抗体(Santa, sc-8017)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 4a). PLoS ONE (2015) ncbi
小鼠 单克隆(A-5)
  • 免疫组化-石蜡切片; 人类
  • 染色质免疫沉淀 ; 人类
圣克鲁斯生物技术泛肽抗体(Santa Cruz, sc-166553)被用于被用于免疫组化-石蜡切片在人类样本上 和 被用于染色质免疫沉淀 在人类样本上. Nucleic Acids Res (2015) ncbi
小鼠 单克隆(P4D1)
  • 免疫印迹; 小鼠
圣克鲁斯生物技术泛肽抗体(Santa Cruz Biotechnology, SC-8017)被用于被用于免疫印迹在小鼠样本上. J Biol Chem (2015) ncbi
小鼠 单克隆(P4D1)
  • 免疫印迹; 人类; 图 5
圣克鲁斯生物技术泛肽抗体(santa Cruz, sc-8017)被用于被用于免疫印迹在人类样本上 (图 5). Oncotarget (2015) ncbi
小鼠 单克隆(P4D1)
  • 免疫沉淀; 大鼠; 图 1a
  • 免疫印迹; 大鼠; 图 2b
圣克鲁斯生物技术泛肽抗体(Santa Cruz, sc-8017)被用于被用于免疫沉淀在大鼠样本上 (图 1a) 和 被用于免疫印迹在大鼠样本上 (图 2b). Cell Rep (2015) ncbi
小鼠 单克隆(P4D1)
  • 免疫印迹; 小鼠
圣克鲁斯生物技术泛肽抗体(Santa Cruz, sc-8017)被用于被用于免疫印迹在小鼠样本上. J Immunol (2015) ncbi
小鼠 单克隆(P4D1)
  • 免疫印迹; 人类
圣克鲁斯生物技术泛肽抗体(Santa Cruz, P4D1)被用于被用于免疫印迹在人类样本上. Am J Transl Res (2014) ncbi
小鼠 单克隆(P4D1)
  • 免疫印迹; 牛; 图 4
圣克鲁斯生物技术泛肽抗体(Santa Cruz, sc-8017)被用于被用于免疫印迹在牛样本上 (图 4). Nature (2015) ncbi
小鼠 单克隆(P4D1)
  • 免疫沉淀; 人类; 图 2b
圣克鲁斯生物技术泛肽抗体(Santa Cruz, P4D1)被用于被用于免疫沉淀在人类样本上 (图 2b). Cancer Res (2015) ncbi
小鼠 单克隆(P4D1)
  • 免疫印迹; 人类; 1:5000; 图 4
圣克鲁斯生物技术泛肽抗体(Santa Cruz, sc-8017)被用于被用于免疫印迹在人类样本上浓度为1:5000 (图 4). J Cell Physiol (2015) ncbi
小鼠 单克隆(P4D1)
  • 免疫印迹; 人类; 1:3000; 图 3
圣克鲁斯生物技术泛肽抗体(Santa Cruz, sc-8017)被用于被用于免疫印迹在人类样本上浓度为1:3000 (图 3). Aging Cell (2015) ncbi
小鼠 单克隆(P4D1)
  • 免疫印迹; 人类
圣克鲁斯生物技术泛肽抗体(Santa Cruz, sc-8017)被用于被用于免疫印迹在人类样本上. Biochem Biophys Res Commun (2015) ncbi
小鼠 单克隆(P4D1)
  • 免疫印迹; 人类
圣克鲁斯生物技术泛肽抗体(Santa Cruz, sc8017)被用于被用于免疫印迹在人类样本上. PLoS Pathog (2014) ncbi
小鼠 单克隆(P4D1)
  • 免疫沉淀; 人类; 图 1
圣克鲁斯生物技术泛肽抗体(Santa Cruz, sc-8017)被用于被用于免疫沉淀在人类样本上 (图 1). Int J Clin Exp Pathol (2014) ncbi
小鼠 单克隆(P4D1)
  • 免疫印迹; 人类; 1:1000; 图 4b
圣克鲁斯生物技术泛肽抗体(Santa Cruz, sc-8017)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 4b). Neurobiol Aging (2015) ncbi
小鼠 单克隆(P4D1)
  • 免疫印迹; kangaroo rats; 1:500; 图 1
圣克鲁斯生物技术泛肽抗体(santa cruz, sc-8017)被用于被用于免疫印迹在kangaroo rats样本上浓度为1:500 (图 1). Cell Mol Neurobiol (2015) ncbi
小鼠 单克隆(P4D1)
  • 免疫印迹; 猕猴; 图 2
圣克鲁斯生物技术泛肽抗体(Santa Cruz, sc8017)被用于被用于免疫印迹在猕猴样本上 (图 2). Mol Endocrinol (2014) ncbi
小鼠 单克隆(P4D1)
  • 免疫印迹; 小鼠; 图 s4
圣克鲁斯生物技术泛肽抗体(Santa Cruz Biotechnology, sc-8017)被用于被用于免疫印迹在小鼠样本上 (图 s4). Cell Death Dis (2014) ncbi
小鼠 单克隆(P4D1)
  • 免疫印迹; 小鼠
圣克鲁斯生物技术泛肽抗体(Santa Cruz Biotechnology, sc8017)被用于被用于免疫印迹在小鼠样本上. J Biol Chem (2014) ncbi
小鼠 单克隆(P4D1)
  • 免疫印迹; 人类
圣克鲁斯生物技术泛肽抗体(Santa Cruz Biotechnology, sc-8017)被用于被用于免疫印迹在人类样本上. Oncotarget (2014) ncbi
小鼠 单克隆(P4D1)
  • 免疫印迹; 大鼠; 图 6
  • 免疫印迹; 小鼠; 图 3
圣克鲁斯生物技术泛肽抗体(Santa Cruz Biotechnology, sc-8017)被用于被用于免疫印迹在大鼠样本上 (图 6) 和 被用于免疫印迹在小鼠样本上 (图 3). Oxid Med Cell Longev (2014) ncbi
小鼠 单克隆(P4D1)
  • 免疫印迹; 人类; 1:500; 图 6
圣克鲁斯生物技术泛肽抗体(Santa Cruz, sc-8017)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 6). Mol Cancer (2014) ncbi
小鼠 单克隆(A-5)
  • 免疫印迹; 人类; 1:1000; 图 2
圣克鲁斯生物技术泛肽抗体(Santa Cruz, sc-166553)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 2). Biochim Biophys Acta (2014) ncbi
小鼠 单克隆(P4D1)
  • 流式细胞仪; 人类; 1:400
  • 免疫沉淀; 人类; 1:400
  • 免疫印迹; 人类; 1:400
圣克鲁斯生物技术泛肽抗体(Santa Cruz Biotechnology, SC-8017)被用于被用于流式细胞仪在人类样本上浓度为1:400, 被用于免疫沉淀在人类样本上浓度为1:400 和 被用于免疫印迹在人类样本上浓度为1:400. Nat Commun (2014) ncbi
小鼠 单克隆(P4D1)
  • 免疫印迹; 人类; 1:1000; 图 3e
圣克鲁斯生物技术泛肽抗体(Santa, sc-8017)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3e). Nat Neurosci (2014) ncbi
小鼠 单克隆(P4D1)
  • 免疫印迹; 人类; 图 2
圣克鲁斯生物技术泛肽抗体(Santa Cruz, sc8017)被用于被用于免疫印迹在人类样本上 (图 2). DNA Repair (Amst) (2014) ncbi
小鼠 单克隆(P4D1)
  • 免疫印迹; 人类; 图 1
圣克鲁斯生物技术泛肽抗体(Santa Cruz, P4D1)被用于被用于免疫印迹在人类样本上 (图 1). Mol Pharmacol (2014) ncbi
小鼠 单克隆(P4D1)
  • 免疫沉淀; 人类
  • 免疫细胞化学; 人类
  • 免疫印迹; 人类
圣克鲁斯生物技术泛肽抗体(Santa Cruz Biotechnology, sc-8017)被用于被用于免疫沉淀在人类样本上, 被用于免疫细胞化学在人类样本上 和 被用于免疫印迹在人类样本上. J Biol Chem (2014) ncbi
小鼠 单克隆(P4D1)
  • 免疫细胞化学; 人类; 图 2G
圣克鲁斯生物技术泛肽抗体(Santa Cruz, sc-8017)被用于被用于免疫细胞化学在人类样本上 (图 2G). Eur J Immunol (2014) ncbi
小鼠 单克隆(6C1)
  • 免疫沉淀; 人类; 1:500; 图 5
圣克鲁斯生物技术泛肽抗体(Santa Cruz Biotechnology, sc-47721)被用于被用于免疫沉淀在人类样本上浓度为1:500 (图 5). J Biol Chem (2014) ncbi
小鼠 单克隆(P4D1)
  • 免疫印迹; 人类
圣克鲁斯生物技术泛肽抗体(Santa Cruz Biotechnology, sc-8017)被用于被用于免疫印迹在人类样本上. Int J Oncol (2014) ncbi
小鼠 单克隆(P4D1)
  • 免疫印迹; 人类
圣克鲁斯生物技术泛肽抗体(Santa Cruz, sc-8017)被用于被用于免疫印迹在人类样本上. J Biol Chem (2013) ncbi
小鼠 单克隆(P4D1)
  • 免疫细胞化学; 人类
  • 免疫印迹; 人类; 图 1c
圣克鲁斯生物技术泛肽抗体(Santa Cruz Biotechnology, sc-8017)被用于被用于免疫细胞化学在人类样本上 和 被用于免疫印迹在人类样本上 (图 1c). EMBO J (2013) ncbi
赛默飞世尔
小鼠 单克隆(HWA4C4)
  • 免疫印迹; 人类; 图 s3c
赛默飞世尔泛肽抗体(eBioscience, 14-6077-82)被用于被用于免疫印迹在人类样本上 (图 s3c). iScience (2021) ncbi
小鼠 单克隆(Ubi-1)
  • 免疫印迹; 人类; 1:2000; 图 6b
赛默飞世尔泛肽抗体(Invitrogen, 13-1600)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 6b). EMBO Mol Med (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 大鼠; 1:5000; 图 6b
赛默飞世尔泛肽抗体(Thermo Scientific, PA1-10023)被用于被用于免疫印迹在大鼠样本上浓度为1:5000 (图 6b). Mol Neurobiol (2018) ncbi
小鼠 单克隆(Ubi-1)
  • 免疫印迹; 大鼠; 图 4d
赛默飞世尔泛肽抗体(Invitrogen, 131600)被用于被用于免疫印迹在大鼠样本上 (图 4d). FEBS Open Bio (2017) ncbi
小鼠 单克隆(Ubi-1)
赛默飞世尔泛肽抗体(Thermo Fisher, 13-1600)被用于. Sci Rep (2017) ncbi
小鼠 单克隆(Ubi-1)
  • 免疫印迹; 人类; 1:500; 图 s7a
赛默飞世尔泛肽抗体(Invitrogen, 131600)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 s7a). Nat Commun (2016) ncbi
小鼠 单克隆(Ubi-1)
  • 免疫印迹; 人类; 图 5
赛默飞世尔泛肽抗体(Invitrogen, 13-1600)被用于被用于免疫印迹在人类样本上 (图 5). Neurobiol Dis (2017) ncbi
domestic rabbit 重组(10H4L21)
  • 免疫细胞化学; 人类; 图 6a
赛默飞世尔泛肽抗体(Thermo Fisher, 701339)被用于被用于免疫细胞化学在人类样本上 (图 6a). Stem Cell Reports (2016) ncbi
小鼠 单克隆(HWA4C4)
  • 免疫印迹; 人类; 图 1c
赛默飞世尔泛肽抗体(eBioscience, 14-6077)被用于被用于免疫印迹在人类样本上 (图 1c). J Biol Chem (2016) ncbi
小鼠 单克隆(Ubi-1)
  • 免疫印迹; 人类; 1:1000; 图 3f
赛默飞世尔泛肽抗体(Invitrogen, 13-1600)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3f). Sci Rep (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 非洲爪蛙; 图 1f
赛默飞世尔泛肽抗体(Pierce, PA1-187)被用于被用于免疫印迹在非洲爪蛙样本上 (图 1f). Mol Cell Biol (2016) ncbi
小鼠 单克隆(Ubi-1)
  • 免疫组化-冰冻切片; 小鼠; 1:1000; 图 2
赛默飞世尔泛肽抗体(Invitrogen, 13.1600)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:1000 (图 2). PLoS ONE (2016) ncbi
小鼠 单克隆(Ubi-1)
  • 免疫细胞化学; fruit fly ; 1:20; 图 2
赛默飞世尔泛肽抗体(ThermoFisher Scientific, 13-1600)被用于被用于免疫细胞化学在fruit fly 样本上浓度为1:20 (图 2). Autophagy (2016) ncbi
小鼠 单克隆(Ubi-1)
  • 免疫组化-石蜡切片; 小鼠; 图 s1
赛默飞世尔泛肽抗体(Zymed, 13-1600)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 s1). Eur J Immunol (2016) ncbi
domestic rabbit 重组(10H4L21)
  • 免疫印迹; brewer's yeast
赛默飞世尔泛肽抗体(Thermo Scientific, 701339)被用于被用于免疫印迹在brewer's yeast样本上. Nature (2015) ncbi
小鼠 单克隆(Ubi-1)
  • 免疫印迹; 人类; 图 5e
赛默飞世尔泛肽抗体(生活技术, 13-1600)被用于被用于免疫印迹在人类样本上 (图 5e). Nat Commun (2015) ncbi
小鼠 单克隆(Ubi-1)
  • 免疫组化-石蜡切片; 人类; 1:100
  • 免疫细胞化学; 人类
赛默飞世尔泛肽抗体(生活技术, 13-160)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100 和 被用于免疫细胞化学在人类样本上. Nat Commun (2015) ncbi
小鼠 单克隆(Ubi-1)
  • 免疫印迹; 人类
赛默飞世尔泛肽抗体(Zymed, 13-1600)被用于被用于免疫印迹在人类样本上. Nat Commun (2014) ncbi
domestic rabbit 重组(10H4L21)
  • 免疫印迹; 人类
赛默飞世尔泛肽抗体(生活技术, 701339)被用于被用于免疫印迹在人类样本上. J Virol (2014) ncbi
小鼠 单克隆(Ubi-1)
  • 免疫印迹; 人类; 1:1000; 图 5
赛默飞世尔泛肽抗体(生活技术, 13-1600)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 5). Nat Commun (2014) ncbi
小鼠 单克隆(Ubi-1)
  • 免疫印迹; 人类; 图 5
赛默飞世尔泛肽抗体(Zymed, 13-1600)被用于被用于免疫印迹在人类样本上 (图 5). Clin Cancer Res (2013) ncbi
小鼠 单克隆(Ubi-1)
  • 免疫印迹; 人类; 图 1
赛默飞世尔泛肽抗体(Zymed, monoclonal mix made of P4D1, SCBT and 13-1600)被用于被用于免疫印迹在人类样本上 (图 1). Cell Cycle (2013) ncbi
小鼠 单克隆(HWA4C4)
  • 免疫印迹; 人类
赛默飞世尔泛肽抗体(eBioscience, 14-6077-82)被用于被用于免疫印迹在人类样本上. Mol Cell Biol (2013) ncbi
小鼠 单克隆(Ubi-1)
  • 免疫细胞化学; 人类
  • 免疫组化; 人类
  • 免疫印迹; 人类
  • 免疫细胞化学; African green monkey
  • 免疫印迹; African green monkey
赛默飞世尔泛肽抗体(Zymed, 13-1600)被用于被用于免疫细胞化学在人类样本上, 被用于免疫组化在人类样本上, 被用于免疫印迹在人类样本上, 被用于免疫细胞化学在African green monkey样本上 和 被用于免疫印迹在African green monkey样本上. PLoS ONE (2012) ncbi
小鼠 单克隆(Ubi-1)
  • 免疫印迹; 人类; 图 3
赛默飞世尔泛肽抗体(Invitrogen, 13-1600)被用于被用于免疫印迹在人类样本上 (图 3). J Biol Chem (2012) ncbi
小鼠 单克隆(Ubi-1)
  • 免疫组化; 人类; 1:500; 图 1
赛默飞世尔泛肽抗体(Zymed, 13-1600)被用于被用于免疫组化在人类样本上浓度为1:500 (图 1). Acta Neuropathol (2012) ncbi
小鼠 单克隆(Ubi-1)
  • 免疫组化; 人类; 图 1
赛默飞世尔泛肽抗体(Invitrogen, 13-1600)被用于被用于免疫组化在人类样本上 (图 1). Neurobiol Dis (2012) ncbi
小鼠 单克隆(Ubi-1)
  • 免疫印迹; 人类; 1:2000; 图 5g
赛默飞世尔泛肽抗体(Zymed Laboratories, 13-1600)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 5g). BMC Biol (2010) ncbi
小鼠 单克隆(Ubi-1)
  • 免疫组化; 小鼠; 1:250; 图 4
赛默飞世尔泛肽抗体(Invitrogen, 13?C1600)被用于被用于免疫组化在小鼠样本上浓度为1:250 (图 4). Neuron (2010) ncbi
小鼠 单克隆(Ubi-1)
  • 免疫细胞化学; 人类; 1:50; 图 4
  • 免疫组化; 人类; 1:50; 图 4
赛默飞世尔泛肽抗体(Zymed, 13-1600)被用于被用于免疫细胞化学在人类样本上浓度为1:50 (图 4) 和 被用于免疫组化在人类样本上浓度为1:50 (图 4). Neurobiol Dis (2011) ncbi
小鼠 单克隆(Ubi-1)
  • 免疫组化; fruit fly ; 1:200; 图 6
赛默飞世尔泛肽抗体(Zymed, 13-1600)被用于被用于免疫组化在fruit fly 样本上浓度为1:200 (图 6). Cell Death Differ (2010) ncbi
小鼠 单克隆(Ubi-1)
  • 免疫印迹; 大鼠; 图 6
赛默飞世尔泛肽抗体(Zymed, 13-1600)被用于被用于免疫印迹在大鼠样本上 (图 6). Proteomics (2009) ncbi
小鼠 单克隆(Ubi-1)
  • 免疫印迹; 小鼠; 图 6
赛默飞世尔泛肽抗体(Zymed, 13-1600)被用于被用于免疫印迹在小鼠样本上 (图 6). J Biol Chem (2009) ncbi
小鼠 单克隆(Ubi-1)
  • 免疫组化; 小鼠; 1:500
赛默飞世尔泛肽抗体(Zymed, 131600)被用于被用于免疫组化在小鼠样本上浓度为1:500. Methods Enzymol (2009) ncbi
小鼠 单克隆(Ubi-1)
  • 免疫印迹; 酵母菌目
赛默飞世尔泛肽抗体(Zymed laboratories, 13-1600)被用于被用于免疫印迹在酵母菌目样本上. DNA Repair (Amst) (2008) ncbi
小鼠 单克隆(Ubi-1)
  • 免疫细胞化学; 人类; 4 mg/ml
赛默飞世尔泛肽抗体(Zymed Laboratories, 13-1600)被用于被用于免疫细胞化学在人类样本上浓度为4 mg/ml. Rapid Commun Mass Spectrom (2008) ncbi
小鼠 单克隆(Ubi-1)
  • 免疫印迹; 人类
赛默飞世尔泛肽抗体(Zymed Laboratories, Ubi-1)被用于被用于免疫印迹在人类样本上. Mol Biol Cell (2008) ncbi
小鼠 单克隆(Ubi-1)
赛默飞世尔泛肽抗体(Zymed, 13-1600)被用于. J Biol Chem (2007) ncbi
小鼠 单克隆(Ubi-1)
  • 免疫印迹; 小鼠; 图 1
赛默飞世尔泛肽抗体(Zymed, 13-1600)被用于被用于免疫印迹在小鼠样本上 (图 1). Nat Immunol (2007) ncbi
小鼠 单克隆(Ubi-1)
  • 免疫印迹; 人类; 1:1000; 图 7
赛默飞世尔泛肽抗体(Zymed, 13-1600)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 7). Biochem Pharmacol (2007) ncbi
小鼠 单克隆(Ubi-1)
  • 免疫印迹; 小鼠; 图 4d
赛默飞世尔泛肽抗体(Zymed, 13- 1600)被用于被用于免疫印迹在小鼠样本上 (图 4d). Nat Immunol (2007) ncbi
小鼠 单克隆(Ubi-1)
  • 免疫印迹; 人类
赛默飞世尔泛肽抗体(Zymed, 13-1600)被用于被用于免疫印迹在人类样本上. Methods Enzymol (2005) ncbi
小鼠 单克隆(Ubi-1)
  • 免疫印迹; 人类; 1:1000; 图 5
赛默飞世尔泛肽抗体(ZYMED, 13-1600)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 5). Biochem Biophys Res Commun (2005) ncbi
小鼠 单克隆(Ubi-1)
  • 免疫沉淀; 人类
赛默飞世尔泛肽抗体(Zymed, 13-1600)被用于被用于免疫沉淀在人类样本上. Blood (2003) ncbi
小鼠 单克隆(Ubi-1)
  • 免疫沉淀; 人类; 图 2
赛默飞世尔泛肽抗体(Zymed, 131600)被用于被用于免疫沉淀在人类样本上 (图 2). J Biol Chem (2002) ncbi
小鼠 单克隆(Ubi-1)
  • 免疫印迹; 人类; 图 8
赛默飞世尔泛肽抗体(Zymed, 13?C1600)被用于被用于免疫印迹在人类样本上 (图 8). J Biol Chem (2002) ncbi
小鼠 单克隆(Ubi-1)
  • 免疫组化; 大鼠; 1:200; 表 1
赛默飞世尔泛肽抗体(Zymed, 13-1600)被用于被用于免疫组化在大鼠样本上浓度为1:200 (表 1). Brain Res (2002) ncbi
小鼠 单克隆(Ubi-1)
  • 免疫印迹; 小鼠; 图 2
赛默飞世尔泛肽抗体(Zymed Laboratories, 13-1600)被用于被用于免疫印迹在小鼠样本上 (图 2). J Biol Chem (2002) ncbi
小鼠 单克隆(Ubi-1)
  • 免疫印迹; 人类; 图 2
赛默飞世尔泛肽抗体(Zymed, 13-1600)被用于被用于免疫印迹在人类样本上 (图 2). Proc Natl Acad Sci U S A (2001) ncbi
小鼠 单克隆(Ubi-1)
  • 免疫印迹; 猕猴; 图 5
赛默飞世尔泛肽抗体(Zymed, 13-1600)被用于被用于免疫印迹在猕猴样本上 (图 5). J Biol Chem (1998) ncbi
小鼠 单克隆(Ubi-1)
  • 免疫沉淀; domestic rabbit; 图 5d
赛默飞世尔泛肽抗体(Zymed, 13-1600)被用于被用于免疫沉淀在domestic rabbit样本上 (图 5d). Mol Cell Biol (1997) ncbi
艾博抗(上海)贸易有限公司
domestic rabbit 单克隆(EPR8830)
  • 免疫印迹; 小鼠; 图 3g
艾博抗(上海)贸易有限公司泛肽抗体(Abcam, ab134953)被用于被用于免疫印迹在小鼠样本上 (图 3g). Cell Rep (2021) ncbi
domestic rabbit 单克隆(EPR8830)
  • 免疫细胞化学; 人类; 1:200; 图 5a
艾博抗(上海)贸易有限公司泛肽抗体(Abcam, ab134953)被用于被用于免疫细胞化学在人类样本上浓度为1:200 (图 5a). Nat Commun (2021) ncbi
domestic rabbit 单克隆(EPR8830)
  • 免疫印迹; 人类; 1:5000; 图 3
艾博抗(上海)贸易有限公司泛肽抗体(Abcam, ab134953)被用于被用于免疫印迹在人类样本上浓度为1:5000 (图 3). Aging (Albany NY) (2020) ncbi
  • 免疫印迹; 小鼠; 图 1d
艾博抗(上海)贸易有限公司泛肽抗体(Abcam, ab19247)被用于被用于免疫印迹在小鼠样本上 (图 1d). Aging (Albany NY) (2019) ncbi
domestic rabbit 单克隆(EPR8590-448)
  • 免疫印迹; 小鼠; 1:1000; 图 2b, s2b
艾博抗(上海)贸易有限公司泛肽抗体(Abcam, ab179434)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 2b, s2b). Nat Commun (2019) ncbi
domestic rabbit 单克隆(EP8589)
  • 免疫印迹; 小鼠; 图 3c
艾博抗(上海)贸易有限公司泛肽抗体(Abcam, ab140601)被用于被用于免疫印迹在小鼠样本上 (图 3c). Autophagy (2019) ncbi
domestic rabbit 单克隆(EPR8590-448)
  • 免疫印迹; 小鼠; 图 3c
艾博抗(上海)贸易有限公司泛肽抗体(Abcam, ab179434)被用于被用于免疫印迹在小鼠样本上 (图 3c). Autophagy (2019) ncbi
domestic rabbit 单克隆
  • 免疫沉淀; 小鼠; 1:2000; 图 5c
艾博抗(上海)贸易有限公司泛肽抗体(Abcam, ab181537)被用于被用于免疫沉淀在小鼠样本上浓度为1:2000 (图 5c). Nat Commun (2018) ncbi
domestic rabbit 单克隆(EP8589)
  • 免疫沉淀; 人类; 1:1000; 图 6c
  • 免疫印迹; 人类; 1:1000; 图 6c
艾博抗(上海)贸易有限公司泛肽抗体(Abcam, ab140601)被用于被用于免疫沉淀在人类样本上浓度为1:1000 (图 6c) 和 被用于免疫印迹在人类样本上浓度为1:1000 (图 6c). Mediators Inflamm (2017) ncbi
domestic rabbit 单克隆(EPR8590-448)
  • 免疫沉淀; 人类; 1:1000; 图 6c
  • 免疫印迹; 人类; 1:1000; 图 6c
艾博抗(上海)贸易有限公司泛肽抗体(Abcam, ab179434)被用于被用于免疫沉淀在人类样本上浓度为1:1000 (图 6c) 和 被用于免疫印迹在人类样本上浓度为1:1000 (图 6c). Mediators Inflamm (2017) ncbi
domestic rabbit 单克隆(EPR8830)
  • 免疫印迹; 人类; 1:1500; 图 3d
艾博抗(上海)贸易有限公司泛肽抗体(Abcam, Ab134953)被用于被用于免疫印迹在人类样本上浓度为1:1500 (图 3d). Sci Adv (2017) ncbi
domestic rabbit 单克隆(EP8589)
  • 免疫印迹; 人类; 1:500; 图 s5e
艾博抗(上海)贸易有限公司泛肽抗体(Abcam, 140601)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 s5e). Nat Commun (2017) ncbi
domestic rabbit 单克隆(EPR8590-448)
  • 免疫印迹; 人类; 1:500; 图 s5e
艾博抗(上海)贸易有限公司泛肽抗体(Abcam, 179434)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 s5e). Nat Commun (2017) ncbi
domestic rabbit 单克隆(EP8589)
  • 免疫印迹; 人类; 图 3c
艾博抗(上海)贸易有限公司泛肽抗体(Abcam, ab140601)被用于被用于免疫印迹在人类样本上 (图 3c). Sci Rep (2017) ncbi
domestic rabbit 单克隆(EPR8590-448)
  • 免疫印迹; 小鼠; 1:200; 图 s3
艾博抗(上海)贸易有限公司泛肽抗体(Abcam, ab179434)被用于被用于免疫印迹在小鼠样本上浓度为1:200 (图 s3). J Immunol (2017) ncbi
domestic rabbit 单克隆(EP8589)
  • 免疫组化; 小鼠; 图 2a
  • 免疫印迹; 小鼠; 图 3a
艾博抗(上海)贸易有限公司泛肽抗体(Abcam, ab140601)被用于被用于免疫组化在小鼠样本上 (图 2a) 和 被用于免疫印迹在小鼠样本上 (图 3a). Mol Hum Reprod (2017) ncbi
domestic rabbit 单克隆(EP8589)
  • 免疫印迹; 小鼠; 1:1000; 图 4i
艾博抗(上海)贸易有限公司泛肽抗体(Abcam, ab140601)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 4i). EMBO Mol Med (2017) ncbi
domestic rabbit 单克隆(EPR8590-448)
  • 免疫组化-石蜡切片; 小鼠; 1:100; 图 4a
艾博抗(上海)贸易有限公司泛肽抗体(Abcam, ab179434)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:100 (图 4a). Am J Pathol (2016) ncbi
domestic rabbit 单克隆(EP8589)
  • 免疫印迹; 人类; 1:2000; 图 4
艾博抗(上海)贸易有限公司泛肽抗体(abcam, ab140601)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 4). Int J Oncol (2016) ncbi
domestic rabbit 单克隆(EPR8590-448)
  • 免疫印迹; 人类; 1:1000; 图 6
艾博抗(上海)贸易有限公司泛肽抗体(Abcam, ab179434)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 6). Sci Rep (2016) ncbi
domestic rabbit 单克隆(EP8589)
  • 免疫印迹; 小鼠; 图 5
艾博抗(上海)贸易有限公司泛肽抗体(abcam, ab140601)被用于被用于免疫印迹在小鼠样本上 (图 5). Sci Rep (2016) ncbi
domestic rabbit 单克隆(EP8589)
艾博抗(上海)贸易有限公司泛肽抗体(Abcam, ab140601)被用于. Mol Biol Cell (2015) ncbi
domestic rabbit 单克隆(EPR8830)
  • 免疫印迹; 人类
艾博抗(上海)贸易有限公司泛肽抗体(Epitomics, 6652-1)被用于被用于免疫印迹在人类样本上. Hum Mutat (2014) ncbi
  • 免疫印迹; 非洲爪蛙
艾博抗(上海)贸易有限公司泛肽抗体(Abcam, ab19247)被用于被用于免疫印迹在非洲爪蛙样本上. J Comp Physiol B (2014) ncbi
Enzo Life Sciences
小鼠 单克隆(HWA4C4)
  • 免疫印迹; 小鼠; 1:500; 图 1a
Enzo Life Sciences泛肽抗体(Enzo, HWA4C4)被用于被用于免疫印迹在小鼠样本上浓度为1:500 (图 1a). Mol Metab (2017) ncbi
小鼠 单克隆(HWA4C4)
  • 免疫印迹; 小鼠; 图 5
Enzo Life Sciences泛肽抗体(Enzo, HWA4C4)被用于被用于免疫印迹在小鼠样本上 (图 5). Sci Rep (2015) ncbi
小鼠 单克隆(HWA4C4)
Enzo Life Sciences泛肽抗体(Enzo, HWA4C4)被用于. J Biol Chem (2015) ncbi
小鼠 单克隆(HWA4C4)
  • 免疫印迹; 小鼠; 1:750; 图 1c
Enzo Life Sciences泛肽抗体(Enzo, HWA4C4)被用于被用于免疫印迹在小鼠样本上浓度为1:750 (图 1c). Nat Commun (2014) ncbi
小鼠 单克隆(HWA4C4)
  • 免疫组化-石蜡切片; 人类; 1:50
Enzo Life Sciences泛肽抗体(Enzo Life Sciences Ltd., HWA4C4)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:50. Neurosci Lett (2009) ncbi
安迪生物R&D
小鼠 单克隆(83406)
  • 免疫印迹; 人类; 1:2000; 图 3g
安迪生物R&D泛肽抗体(R&D, MAB701)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 3g). Nucleic Acids Res (2017) ncbi
小鼠 单克隆(83406)
  • 免疫印迹; 人类
安迪生物R&D泛肽抗体(R&D Systems, MAB 701)被用于被用于免疫印迹在人类样本上. PLoS ONE (2015) ncbi
赛信通(上海)生物试剂有限公司
domestic rabbit 单克隆(E5T1W)
  • 免疫细胞化学; 人类; 1:500-1:1000; 图 3c, 6f
  • 免疫印迹; 人类; 1:500-1:2000; 图 1g, s3b
  • 免疫细胞化学; 大鼠; 1:500-1:1000; 图 4i, 4j
  • 免疫印迹; 大鼠; 1:500-1:2000; 图 3e
赛信通(上海)生物试剂有限公司泛肽抗体(Cell Signaling, 70973)被用于被用于免疫细胞化学在人类样本上浓度为1:500-1:1000 (图 3c, 6f), 被用于免疫印迹在人类样本上浓度为1:500-1:2000 (图 1g, s3b), 被用于免疫细胞化学在大鼠样本上浓度为1:500-1:1000 (图 4i, 4j) 和 被用于免疫印迹在大鼠样本上浓度为1:500-1:2000 (图 3e). Cell Rep (2019) ncbi
文章列表
  1. Yan D, Li X, Yang Q, Huang Q, Yao L, Zhang P, et al. Regulation of Bax-dependent apoptosis by mitochondrial deubiquitinase USP30. Cell Death Discov. 2021;7:211 pubmed 出版商
  2. Wani A, Zhu J, ULRICH J, Eteleeb A, Sauerbeck A, Reitz S, et al. Neuronal VCP loss of function recapitulates FTLD-TDP pathology. Cell Rep. 2021;36:109399 pubmed 出版商
  3. Gumeni S, Papanagnou E, Manola M, Trougakos I. Nrf2 activation induces mitophagy and reverses Parkin/Pink1 knock down-mediated neuronal and muscle degeneration phenotypes. Cell Death Dis. 2021;12:671 pubmed 出版商
  4. Iampietro M, Dumont C, Mathieu C, Spanier J, Robert J, Charpenay A, et al. Activation of cGAS/STING pathway upon paramyxovirus infection. iScience. 2021;24:102519 pubmed 出版商
  5. Torres A, Rodríguez Escribà M, Marcet Houben M, Santos Vieira H, Camacho N, Catena H, et al. Human tRNAs with inosine 34 are essential to efficiently translate eukarya-specific low-complexity proteins. Nucleic Acids Res. 2021;49:7011-7034 pubmed 出版商
  6. Liu Z, Li C, Zhang R, Wei D, Shang Y, Yong Y, et al. EYA2 suppresses the progression of hepatocellular carcinoma via SOCS3-mediated blockade of JAK/STAT signaling. Mol Cancer. 2021;20:79 pubmed 出版商
  7. Ma N, Wang Y, Xu S, Ni Q, Zheng Q, Zhu B, et al. PPDPF alleviates hepatic steatosis through inhibition of mTOR signaling. Nat Commun. 2021;12:3059 pubmed 出版商
  8. Cao X, Zhou Z, Tian Y, Liu Z, Cheng K, Chen X, et al. Opposing roles of E3 ligases TRIM23 and TRIM21 in regulation of ion channel ANO1 protein levels. J Biol Chem. 2021;296:100738 pubmed 出版商
  9. Yoon M, Choi B, Kim E, Ohk J, Yang C, Choi Y, et al. UXT chaperone prevents proteotoxicity by acting as an autophagy adaptor for p62-dependent aggrephagy. Nat Commun. 2021;12:1955 pubmed 出版商
  10. Higgins N, Greenslade J, Wu J, Miranda E, Galliciotti G, Monteiro M. Serpin neuropathology in the P497S UBQLN2 mouse model of ALS/FTD. Brain Pathol. 2021;:e12948 pubmed 出版商
  11. Zhu X, Wang X, Yan W, Yang H, Xiang Y, Lv F, et al. Ubiquitination-mediated degradation of TRDMT1 regulates homologous recombination and therapeutic response. NAR Cancer. 2021;3:zcab010 pubmed 出版商
  12. Guo G, Gao M, Gao X, Zhu B, Huang J, Luo K, et al. SARS-CoV-2 non-structural protein 13 (nsp13) hijacks host deubiquitinase USP13 and counteracts host antiviral immune response. Signal Transduct Target Ther. 2021;6:119 pubmed 出版商
  13. Collier D, De Marco A, Ferreira I, Meng B, Datir R, Walls A, et al. Sensitivity of SARS-CoV-2 B.1.1.7 to mRNA vaccine-elicited antibodies. Nature. 2021;593:136-141 pubmed 出版商
  14. Schaller K, Iannotti G, Orepic P, Betka S, Haemmerli J, Boex C, et al. The perspectives of mapping and monitoring of the sense of self in neurosurgical patients. Acta Neurochir (Wien). 2021;163:1213-1226 pubmed 出版商
  15. Swiader A, Camaré C, Guerby P, Salvayre R, Negre Salvayre A. 4-Hydroxynonenal Contributes to Fibroblast Senescence in Skin Photoaging Evoked by UV-A Radiation. Antioxidants (Basel). 2021;10: pubmed 出版商
  16. Choi S, Agatisa Boyle C, Gonen A, Kim A, Kim J, Alekseeva E, et al. Intracellular AIBP (Apolipoprotein A-I Binding Protein) Regulates Oxidized LDL (Low-Density Lipoprotein)-Induced Mitophagy in Macrophages. Arterioscler Thromb Vasc Biol. 2020;:ATVBAHA120315485 pubmed 出版商
  17. Huang T, Fang L, He R, Weng H, Chen X, Ye Q, et al. Fbxo7 and Pink1 play a reciprocal role in regulating their protein levels. Aging (Albany NY). 2020;13:77-88 pubmed 出版商
  18. Tullett K, Tan P, Park H, Schittenhelm R, Michael N, Li R, et al. RNF41 regulates the damage recognition receptor Clec9A and antigen cross-presentation in mouse dendritic cells. elife. 2020;9: pubmed 出版商
  19. Tyagi A, Sarodaya N, Kaushal K, Chandrasekaran A, Antao A, Suresh B, et al. E3 Ubiquitin Ligase APC/CCdh1 Regulation of Phenylalanine Hydroxylase Stability and Function. Int J Mol Sci. 2020;21: pubmed 出版商
  20. Xu Y, Zhi F, Mao J, Peng Y, Shao N, Balboni G, et al. δ-opioid receptor activation protects against Parkinson's disease-related mitochondrial dysfunction by enhancing PINK1/Parkin-dependent mitophagy. Aging (Albany NY). 2020;12:25035-25059 pubmed 出版商
  21. Mamriev D, Abbas R, Klingler F, Kagan J, Kfir N, Donald A, et al. A small-molecule ARTS mimetic promotes apoptosis through degradation of both XIAP and Bcl-2. Cell Death Dis. 2020;11:483 pubmed 出版商
  22. Zhao X, Guo W, Zou L, Hu B. FBXO2 modulates STAT3 signaling to regulate proliferation and tumorigenicity of osteosarcoma cells. Cancer Cell Int. 2020;20:245 pubmed 出版商
  23. Montellese C, van den Heuvel J, Ashiono C, Dörner K, Melnik A, Jonas S, et al. USP16 counteracts mono-ubiquitination of RPS27a and promotes maturation of the 40S ribosomal subunit. elife. 2020;9: pubmed 出版商
  24. Li B, Li M, Li X, Li H, Lai Y, Huang S, et al. Sirt1-inducible deacetylation of p21 promotes cardiomyocyte proliferation. Aging (Albany NY). 2019;11:12546-12567 pubmed 出版商
  25. Ding X, Hu H, Huang K, Wei R, Min J, Qi C, et al. Ubiquitination of NOTCH2 by DTX3 suppresses the proliferation and migration of human esophageal carcinoma. Cancer Sci. 2020;111:489-501 pubmed 出版商
  26. Quach C, Song Y, Guo H, Li S, Maazi H, Fung M, et al. A truncating mutation in the autophagy gene UVRAG drives inflammation and tumorigenesis in mice. Nat Commun. 2019;10:5681 pubmed 出版商
  27. Wall C, Rose C, Adrian M, Zeng Y, Kirkpatrick D, Bingol B. PPEF2 Opposes PINK1-Mediated Mitochondrial Quality Control by Dephosphorylating Ubiquitin. Cell Rep. 2019;29:3280-3292.e7 pubmed 出版商
  28. Majer O, Liu B, Kreuk L, Krogan N, Barton G. UNC93B1 recruits syntenin-1 to dampen TLR7 signalling and prevent autoimmunity. Nature. 2019;575:366-370 pubmed 出版商
  29. Xie Y, Lv X, Ni D, Liu J, Hu Y, Liu Y, et al. HPD degradation regulated by the TTC36-STK33-PELI1 signaling axis induces tyrosinemia and neurological damage. Nat Commun. 2019;10:4266 pubmed 出版商
  30. Zhang B, Chen H, Ouyang J, Xie Y, Chen L, Tan Q, et al. SQSTM1-dependent autophagic degradation of PKM2 inhibits the production of mature IL1B/IL-1β and contributes to LIPUS-mediated anti-inflammatory effect. Autophagy. 2019;:1-17 pubmed 出版商
  31. Peng H, Yang F, Hu Q, Sun J, Peng C, Zhao Y, et al. The ubiquitin-specific protease USP8 directly deubiquitinates SQSTM1/p62 to suppress its autophagic activity. Autophagy. 2019;:1-11 pubmed 出版商
  32. Choi J, Zhong X, McAlpine W, Liao T, Zhang D, Fang B, et al. LMBR1L regulates lymphopoiesis through Wnt/β-catenin signaling. Science. 2019;364: pubmed 出版商
  33. Cadena C, Ahmad S, Xavier A, Willemsen J, Park S, Park J, et al. Ubiquitin-Dependent and -Independent Roles of E3 Ligase RIPLET in Innate Immunity. Cell. 2019;177:1187-1200.e16 pubmed 出版商
  34. Wu R, Semlow D, Kamimae Lanning A, Kochenova O, Chistol G, Hodskinson M, et al. TRAIP is a master regulator of DNA interstrand crosslink repair. Nature. 2019;567:267-272 pubmed 出版商
  35. Cartier E, Garcia Olivares J, Janezic E, Viana J, Moore M, Lin M, et al. The SUMO-Conjugase Ubc9 Prevents the Degradation of the Dopamine Transporter, Enhancing Its Cell Surface Level and Dopamine Uptake. Front Cell Neurosci. 2019;13:35 pubmed 出版商
  36. Patel N, Wang J, Shiozawa K, Jones K, Zhang Y, Prokop J, et al. HDAC2 Regulates Site-Specific Acetylation of MDM2 and Its Ubiquitination Signaling in Tumor Suppression. iScience. 2019;13:43-54 pubmed 出版商
  37. Paul D, Islam S, Manne R, Dinesh U, Malonia S, Maity B, et al. F-box protein FBXO16 functions as a tumor suppressor by attenuating nuclear β-catenin function. J Pathol. 2019;248:266-279 pubmed 出版商
  38. Xie Y, Fan H, Lu W, Yang Q, Nurkesh A, Yeleussizov T, et al. Nuclear MET requires ARF and is inhibited by carbon nanodots through binding to phospho-tyrosine in prostate cancer. Oncogene. 2019;38:2967-2983 pubmed 出版商
  39. Signes A, Cerutti R, Dickson A, Benincá C, Hinchy E, Ghezzi D, et al. APOPT1/COA8 assists COX assembly and is oppositely regulated by UPS and ROS. EMBO Mol Med. 2019;11: pubmed 出版商
  40. Chae Y, Kim J, Park J, Kim K, Oh H, Lee K, et al. FOXO1 degradation via G9a-mediated methylation promotes cell proliferation in colon cancer. Nucleic Acids Res. 2019;47:1692-1705 pubmed 出版商
  41. Jeon Y, Kim T, Park D, Nuovo G, Rhee S, Joshi P, et al. miRNA-mediated TUSC3 deficiency enhances UPR and ERAD to promote metastatic potential of NSCLC. Nat Commun. 2018;9:5110 pubmed 出版商
  42. Panda S, Gekara N. The deubiquitinase MYSM1 dampens NOD2-mediated inflammation and tissue damage by inactivating the RIP2 complex. Nat Commun. 2018;9:4654 pubmed 出版商
  43. Gallot Y, Bohnert K, Straughn A, Xiong G, Hindi S, Kumar A. PERK regulates skeletal muscle mass and contractile function in adult mice. FASEB J. 2019;33:1946-1962 pubmed 出版商
  44. Götzl J, Colombo A, Fellerer K, Reifschneider A, Werner G, Tahirovic S, et al. Early lysosomal maturation deficits in microglia triggers enhanced lysosomal activity in other brain cells of progranulin knockout mice. Mol Neurodegener. 2018;13:48 pubmed 出版商
  45. Zhang J, Wu T, Simon J, Takada M, Saito R, Fan C, et al. VHL substrate transcription factor ZHX2 as an oncogenic driver in clear cell renal cell carcinoma. Science. 2018;361:290-295 pubmed 出版商
  46. Wilson K, Liu H, Healey G, Vuong V, Ishido S, Herold M, et al. MARCH1-mediated ubiquitination of MHC II impacts the MHC I antigen presentation pathway. PLoS ONE. 2018;13:e0200540 pubmed 出版商
  47. Yang C, Chiu L, Chang C, Chuang H, Tan T. Induction of DUSP14 ubiquitination by PRMT5-mediated arginine methylation. FASEB J. 2018;:fj201800244RR pubmed 出版商
  48. Yao F, Zhou Z, Kim J, Hang Q, Xiao Z, Ton B, et al. SKP2- and OTUD1-regulated non-proteolytic ubiquitination of YAP promotes YAP nuclear localization and activity. Nat Commun. 2018;9:2269 pubmed 出版商
  49. Liu H, Jiang W, Chen X, Chang G, Zhao L, Li X, et al. Skeletal muscle-specific Sidt2 knockout in mice induced muscular dystrophy-like phenotype. Metabolism. 2018;85:259-270 pubmed 出版商
  50. Liu J, Huang X, Hao S, Wang Y, Liu M, Xu J, et al. Peli1 negatively regulates noncanonical NF-κB signaling to restrain systemic lupus erythematosus. Nat Commun. 2018;9:1136 pubmed 出版商
  51. Juenemann K, Jansen A, van Riel L, Merkx R, Mulder M, An H, et al. Dynamic recruitment of ubiquitin to mutant huntingtin inclusion bodies. Sci Rep. 2018;8:1405 pubmed 出版商
  52. Gstrein T, Edwards A, Přistoupilová A, Leca I, Breuss M, Pilat Carotta S, et al. Mutations in Vps15 perturb neuronal migration in mice and are associated with neurodevelopmental disease in humans. Nat Neurosci. 2018;21:207-217 pubmed 出版商
  53. Steinbuck M, Arakcheeva K, Winandy S. Novel TCR-Mediated Mechanisms of Notch Activation and Signaling. J Immunol. 2018;200:997-1007 pubmed 出版商
  54. Chiang C, Pauli E, Biryukov J, Feister K, Meng M, White E, et al. The Human Papillomavirus E6 Oncoprotein Targets USP15 and TRIM25 To Suppress RIG-I-Mediated Innate Immune Signaling. J Virol. 2018;92: pubmed 出版商
  55. Zhu T, Yong X, Xia D, Widagdo J, Anggono V. Ubiquitination Regulates the Proteasomal Degradation and Nuclear Translocation of the Fat Mass and Obesity-Associated (FTO) Protein. J Mol Biol. 2018;430:363-371 pubmed 出版商
  56. Kitamura H, Ishino T, Shimamoto Y, Okabe J, Miyamoto T, Takahashi E, et al. Ubiquitin-Specific Protease 2 Modulates the Lipopolysaccharide-Elicited Expression of Proinflammatory Cytokines in Macrophage-like HL-60 Cells. Mediators Inflamm. 2017;2017:6909415 pubmed 出版商
  57. Malty R, Aoki H, Kumar A, Phanse S, Amin S, Zhang Q, et al. A Map of Human Mitochondrial Protein Interactions Linked to Neurodegeneration Reveals New Mechanisms of Redox Homeostasis and NF-κB Signaling. Cell Syst. 2017;5:564-577.e12 pubmed 出版商
  58. Huang C, Wu S, Ji H, Yan X, Xie Y, Murai S, et al. Identification of XBP1-u as a novel regulator of the MDM2/p53 axis using an shRNA library. Sci Adv. 2017;3:e1701383 pubmed 出版商
  59. Nguyen A, Prado M, Schmidt P, Sendamarai A, Wilson Grady J, Min M, et al. UBE2O remodels the proteome during terminal erythroid differentiation. Science. 2017;357: pubmed 出版商
  60. Sheng X, You Q, Zhu H, Chang Z, Li Q, Wang H, et al. Bacterial effector NleL promotes enterohemorrhagic E. coli-induced attaching and effacing lesions by ubiquitylating and inactivating JNK. PLoS Pathog. 2017;13:e1006534 pubmed 出版商
  61. Wang W, Xia Z, Farré J, Subramani S. TRIM37, a novel E3 ligase for PEX5-mediated peroxisomal matrix protein import. J Cell Biol. 2017;216:2843-2858 pubmed 出版商
  62. Perez Leal O, Barrero C, Merali S. Pharmacological stimulation of nuclear factor (erythroid-derived 2)-like 2 translation activates antioxidant responses. J Biol Chem. 2017;292:14108-14121 pubmed 出版商
  63. Zhong J, Wang H, Chen W, Sun Z, Chen J, Xu Y, et al. Ubiquitylation of MFHAS1 by the ubiquitin ligase praja2 promotes M1 macrophage polarization by activating JNK and p38 pathways. Cell Death Dis. 2017;8:e2763 pubmed 出版商
  64. Xu J, Kurup P, Nairn A, Lombroso P. Synaptic NMDA Receptor Activation Induces Ubiquitination and Degradation of STEP61. Mol Neurobiol. 2018;55:3096-3111 pubmed 出版商
  65. Zhou Y, Wu B, Li J, Nan G, Jiang J, Chen Z. Rab22a enhances CD147 recycling and is required for lung cancer cell migration and invasion. Exp Cell Res. 2017;357:9-16 pubmed 出版商
  66. Zhao H, Zhang L, Zhang Y, Zhao L, Wan Q, Wang B, et al. Calmodulin promotes matrix metalloproteinase 9 production and cell migration by inhibiting the ubiquitination and degradation of TBC1D3 oncoprotein in human breast cancer cells. Oncotarget. 2017;8:36383-36398 pubmed 出版商
  67. Li X, Song N, Liu L, Liu X, Ding X, Song X, et al. USP9X regulates centrosome duplication and promotes breast carcinogenesis. Nat Commun. 2017;8:14866 pubmed 出版商
  68. Fischer A, Harrison K, Ramirez Y, Auer D, Chowdhury S, Prusty B, et al. Chlamydia trachomatis-containing vacuole serves as deubiquitination platform to stabilize Mcl-1 and to interfere with host defense. elife. 2017;6: pubmed 出版商
  69. Lee C, Hanna A, Wang H, Dagnino Acosta A, Joshi A, Knoblauch M, et al. A chemical chaperone improves muscle function in mice with a RyR1 mutation. Nat Commun. 2017;8:14659 pubmed 出版商
  70. Song Y, Lai L, Chong Z, He J, Zhang Y, Xue Y, et al. E3 ligase FBXW7 is critical for RIG-I stabilization during antiviral responses. Nat Commun. 2017;8:14654 pubmed 出版商
  71. Wobst H, Wesolowski S, Chadchankar J, Delsing L, Jacobsen S, Mukherjee J, et al. Cytoplasmic Relocalization of TAR DNA-Binding Protein 43 Is Not Sufficient to Reproduce Cellular Pathologies Associated with ALS In vitro. Front Mol Neurosci. 2017;10:46 pubmed 出版商
  72. Mot A, Prell E, Klecker M, Naumann C, Faden F, Westermann B, et al. Real-time detection of N-end rule-mediated ubiquitination via fluorescently labeled substrate probes. New Phytol. 2018;217:613-624 pubmed 出版商
  73. Gilmore B, Liang Y, Winton C, Patel K, Karageorge V, Varano A, et al. Molecular Analysis of BRCA1 in Human Breast Cancer Cells Under Oxidative Stress. Sci Rep. 2017;7:43435 pubmed 出版商
  74. Li J, Yakushi T, Parlati F, MacKinnon A, Pérez C, Ma Y, et al. Capzimin is a potent and specific inhibitor of proteasome isopeptidase Rpn11. Nat Chem Biol. 2017;13:486-493 pubmed 出版商
  75. Jeong J, VanHouten J, Kim W, Dann P, Sullivan C, Choi J, et al. The scaffolding protein NHERF1 regulates the stability and activity of the tyrosine kinase HER2. J Biol Chem. 2017;292:6555-6568 pubmed 出版商
  76. Zhu Y, Zhang Q, Zhang W, Li N, Dai Y, Tu J, et al. Protective Effect of 17β-Estradiol Upon Hippocampal Spine Density and Cognitive Function in an Animal Model of Vascular Dementia. Sci Rep. 2017;7:42660 pubmed 出版商
  77. Chen S, Jing Y, Kang X, Yang L, Wang D, Zhang W, et al. Histone H2B monoubiquitination is a critical epigenetic switch for the regulation of autophagy. Nucleic Acids Res. 2017;45:1144-1158 pubmed 出版商
  78. Li G, Ji T, Chen J, Fu Y, Hou L, Feng Y, et al. CRL4DCAF8 Ubiquitin Ligase Targets Histone H3K79 and Promotes H3K9 Methylation in the Liver. Cell Rep. 2017;18:1499-1511 pubmed 出版商
  79. Aukrust I, Rosenberg L, Ankerud M, Bertelsen V, Hollås H, Saraste J, et al. Post-translational modifications of Annexin A2 are linked to its association with perinuclear nonpolysomal mRNP complexes. FEBS Open Bio. 2017;7:160-173 pubmed 出版商
  80. He S, Cao Y, Xie P, Dong G, Zhang L. The Nedd8 Non-covalent Binding Region in the Smurf HECT Domain is Critical to its Ubiquitn Ligase Function. Sci Rep. 2017;7:41364 pubmed 出版商
  81. Dadson K, Hauck L, Hao Z, Grothe D, Rao V, Mak T, et al. The E3 ligase Mule protects the heart against oxidative stress and mitochondrial dysfunction through Myc-dependent inactivation of Pgc-1α and Pink1. Sci Rep. 2017;7:41490 pubmed 出版商
  82. Hu Y, Li W, Gao T, Cui Y, Jin Y, Li P, et al. The Severe Acute Respiratory Syndrome Coronavirus Nucleocapsid Inhibits Type I Interferon Production by Interfering with TRIM25-Mediated RIG-I Ubiquitination. J Virol. 2017;91: pubmed 出版商
  83. Liu X, Zhao B, Sun L, Bhuripanyo K, Wang Y, Bi Y, et al. Orthogonal ubiquitin transfer identifies ubiquitination substrates under differential control by the two ubiquitin activating enzymes. Nat Commun. 2017;8:14286 pubmed 出版商
  84. Cederquist C, Lentucci C, Martinez Calejman C, Hayashi V, Orofino J, GUERTIN D, et al. Systemic insulin sensitivity is regulated by GPS2 inhibition of AKT ubiquitination and activation in adipose tissue. Mol Metab. 2017;6:125-137 pubmed 出版商
  85. Shin S, Kim J, Lee J, Son Y, Lee M, Kim H, et al. Docosahexaenoic acid-mediated protein aggregates may reduce proteasome activity and delay myotube degradation during muscle atrophy in vitro. Exp Mol Med. 2017;49:e287 pubmed 出版商
  86. Weisshaar N, Welsch H, Guerra Moreno A, Hanna J. Phospholipase Lpl1 links lipid droplet function with quality control protein degradation. Mol Biol Cell. 2017;28:716-725 pubmed 出版商
  87. Coccia M, Rossi A, Riccio A, Trotta E, Santoro M. Human NF-κB repressing factor acts as a stress-regulated switch for ribosomal RNA processing and nucleolar homeostasis surveillance. Proc Natl Acad Sci U S A. 2017;114:1045-1050 pubmed 出版商
  88. Worrall C, Suleymanova N, Crudden C, Trocoli Drakensjö I, Candrea E, Nedelcu D, et al. Unbalancing p53/Mdm2/IGF-1R axis by Mdm2 activation restrains the IGF-1-dependent invasive phenotype of skin melanoma. Oncogene. 2017;36:3274-3286 pubmed 出版商
  89. Li M, Lau Z, Cheung P, Aguilar E, Schneider W, Bozzacco L, et al. TRIM25 Enhances the Antiviral Action of Zinc-Finger Antiviral Protein (ZAP). PLoS Pathog. 2017;13:e1006145 pubmed 出版商
  90. Yu J, Lei R, Zhuang X, Li X, Li G, Lev S, et al. MicroRNA-182 targets SMAD7 to potentiate TGF?-induced epithelial-mesenchymal transition and metastasis of cancer cells. Nat Commun. 2016;7:13884 pubmed 出版商
  91. Meng Z, Zhao T, Zhou K, Zhong Q, Wang Y, Xiong X, et al. A20 Ameliorates Intracerebral Hemorrhage-Induced Inflammatory Injury by Regulating TRAF6 Polyubiquitination. J Immunol. 2017;198:820-831 pubmed 出版商
  92. Oh E, Kim J, Kim J, Kim S, Lee J, Hong S, et al. NQO1 inhibits proteasome-mediated degradation of HIF-1α. Nat Commun. 2016;7:13593 pubmed 出版商
  93. Bromfield E, Aitken R, McLaughlin E, Nixon B. Proteolytic degradation of heat shock protein A2 occurs in response to oxidative stress in male germ cells of the mouse. Mol Hum Reprod. 2017;23:91-105 pubmed 出版商
  94. Cai H, Liu A. Spop promotes skeletal development and homeostasis by positively regulating Ihh signaling. Proc Natl Acad Sci U S A. 2016;113:14751-14756 pubmed 出版商
  95. Wei C, Wang Y, Du Z, Guan K, Cao Y, Yang H, et al. The Yersinia Type III secretion effector YopM Is an E3 ubiquitin ligase that induced necrotic cell death by targeting NLRP3. Cell Death Dis. 2016;7:e2519 pubmed 出版商
  96. Guo X, Qi X. VCP cooperates with UBXD1 to degrade mitochondrial outer membrane protein MCL1 in model of Huntington's disease. Biochim Biophys Acta Mol Basis Dis. 2017;1863:552-559 pubmed 出版商
  97. Dhar J, Barik S. Unique nonstructural proteins of Pneumonia Virus of Mice (PVM) promote degradation of interferon (IFN) pathway components and IFN-stimulated gene proteins. Sci Rep. 2016;6:38139 pubmed 出版商
  98. Kumazoe M, Takai M, Bae J, Hiroi S, Huang Y, Takamatsu K, et al. FOXO3 is essential for CD44 expression in pancreatic cancer cells. Oncogene. 2017;36:2643-2654 pubmed 出版商
  99. Ding X, Barodia S, Ma L, Goldberg M. Fbxl18 targets LRRK2 for proteasomal degradation and attenuates cell toxicity. Neurobiol Dis. 2017;98:122-136 pubmed 出版商
  100. Sambri I, D Alessio R, Ezhova Y, Giuliano T, Sorrentino N, Cacace V, et al. Lysosomal dysfunction disrupts presynaptic maintenance and restoration of presynaptic function prevents neurodegeneration in lysosomal storage diseases. EMBO Mol Med. 2017;9:112-132 pubmed 出版商
  101. Li J, Huang W, Lin P, Wu B, Fu Z, Shen H, et al. N-linked glycosylation at Asn152 on CD147 affects protein folding and stability: promoting tumour metastasis in hepatocellular carcinoma. Sci Rep. 2016;6:35210 pubmed 出版商
  102. Piasecka D, Kitowska K, Czaplinska D, Mieczkowski K, Mieszkowska M, Turczyk L, et al. Fibroblast growth factor signalling induces loss of progesterone receptor in breast cancer cells. Oncotarget. 2016;7:86011-86025 pubmed 出版商
  103. Brykczynska U, Pecho Vrieseling E, Thiemeyer A, Klein J, Fruh I, Doll T, et al. CGG Repeat-Induced FMR1 Silencing Depends on the Expansion Size in Human iPSCs and Neurons Carrying Unmethylated Full Mutations. Stem Cell Reports. 2016;7:1059-1071 pubmed 出版商
  104. Vuono E, Mukherjee A, Vierra D, Adroved M, Hodson C, Deans A, et al. The PTEN phosphatase functions cooperatively with the Fanconi anemia proteins in DNA crosslink repair. Sci Rep. 2016;6:36439 pubmed 出版商
  105. Huang S, Zhou A, Nguyen D, Zhang H, Benz E. Protein 4.1R Influences Myogenin Protein Stability and Skeletal Muscle Differentiation. J Biol Chem. 2016;291:25591-25607 pubmed
  106. Yang Y, Yang C, Chan W, Wang Z, Deibel K, Pomerantz J. Molecular Determinants of Scaffold-induced Linear Ubiquitinylation of B Cell Lymphoma/Leukemia 10 (Bcl10) during T Cell Receptor and Oncogenic Caspase Recruitment Domain-containing Protein 11 (CARD11) Signaling. J Biol Chem. 2016;291:25921-25936 pubmed
  107. Hu Z, Wang J, Yu D, Soon J, de Kleijn D, Foo R, et al. Aberrant Splicing Promotes Proteasomal Degradation of L-type CaV1.2 Calcium Channels by Competitive Binding for CaVβ Subunits in Cardiac Hypertrophy. Sci Rep. 2016;6:35247 pubmed 出版商
  108. Torre S, Polyak M, Langlais D, Fodil N, Kennedy J, Radovanovic I, et al. USP15 regulates type I interferon response and is required for pathogenesis of neuroinflammation. Nat Immunol. 2017;18:54-63 pubmed 出版商
  109. Matsuura K, Huang N, Cocce K, Zhang L, Kornbluth S. Downregulation of the proapoptotic protein MOAP-1 by the UBR5 ubiquitin ligase and its role in ovarian cancer resistance to cisplatin. Oncogene. 2017;36:1698-1706 pubmed 出版商
  110. Sun W, Lee S, Huang X, Liu S, Inayathullah M, Kim K, et al. Attenuation of synaptic toxicity and MARK4/PAR1-mediated Tau phosphorylation by methylene blue for Alzheimer's disease treatment. Sci Rep. 2016;6:34784 pubmed 出版商
  111. Broix L, Jagline H, Ivanova E, Schmucker S, Drouot N, Clayton Smith J, et al. Mutations in the HECT domain of NEDD4L lead to AKT-mTOR pathway deregulation and cause periventricular nodular heterotopia. Nat Genet. 2016;48:1349-1358 pubmed 出版商
  112. Shlevkov E, Kramer T, Schapansky J, LaVoie M, Schwarz T. Miro phosphorylation sites regulate Parkin recruitment and mitochondrial motility. Proc Natl Acad Sci U S A. 2016;113:E6097-E6106 pubmed
  113. Zhang C, Liu J, Huang G, Zhao Y, Yue X, Wu H, et al. Cullin3-KLHL25 ubiquitin ligase targets ACLY for degradation to inhibit lipid synthesis and tumor progression. Genes Dev. 2016;30:1956-70 pubmed 出版商
  114. Chi H, Chen S, Tsai C, Chuang W, Huang Y, Tsai M, et al. Thyroid hormone suppresses hepatocarcinogenesis via DAPK2 and SQSTM1-dependent selective autophagy. Autophagy. 2016;12:2271-2285 pubmed
  115. Fullbright G, Rycenga H, Gruber J, Long D. p97 Promotes a Conserved Mechanism of Helicase Unloading during DNA Cross-Link Repair. Mol Cell Biol. 2016;36:2983-2994 pubmed 出版商
  116. Hubbs A, Fluharty K, Edwards R, Barnabei J, Grantham J, Palmer S, et al. Accumulation of Ubiquitin and Sequestosome-1 Implicate Protein Damage in Diacetyl-Induced Cytotoxicity. Am J Pathol. 2016;186:2887-2908 pubmed 出版商
  117. Fern ndez Majada V, Welz P, Ermolaeva M, Schell M, Adam A, Dietlein F, et al. The tumour suppressor CYLD regulates the p53 DNA damage response. Nat Commun. 2016;7:12508 pubmed 出版商
  118. Zhou Q, Yu X, Demirkaya E, Deuitch N, Stone D, Tsai W, et al. Biallelic hypomorphic mutations in a linear deubiquitinase define otulipenia, an early-onset autoinflammatory disease. Proc Natl Acad Sci U S A. 2016;113:10127-32 pubmed 出版商
  119. Vahid S, Thaper D, Gibson K, Bishop J, Zoubeidi A. Molecular chaperone Hsp27 regulates the Hippo tumor suppressor pathway in cancer. Sci Rep. 2016;6:31842 pubmed 出版商
  120. Nakazawa S, Oikawa D, Ishii R, Ayaki T, Takahashi H, Takeda H, et al. Linear ubiquitination is involved in the pathogenesis of optineurin-associated amyotrophic lateral sclerosis. Nat Commun. 2016;7:12547 pubmed 出版商
  121. BRANDT C, McFie P, Stone S. Diacylglycerol acyltransferase-2 and monoacylglycerol acyltransferase-2 are ubiquitinated proteins that are degraded by the 26S proteasome. Biochem J. 2016;473:3621-3637 pubmed
  122. Hirano A, Shi G, Jones C, Lipzen A, Pennacchio L, Xu Y, et al. A Cryptochrome 2 mutation yields advanced sleep phase in humans. elife. 2016;5: pubmed 出版商
  123. Qin S, Yang C, Zhang B, Li X, Sun X, Li G, et al. XIAP inhibits mature Smac-induced apoptosis by degrading it through ubiquitination in NSCLC. Int J Oncol. 2016;49:1289-96 pubmed 出版商
  124. Vingill S, Brockelt D, Lancelin C, Tatenhorst L, Dontcheva G, Preisinger C, et al. Loss of FBXO7 (PARK15) results in reduced proteasome activity and models a parkinsonism-like phenotype in mice. EMBO J. 2016;35:2008-25 pubmed 出版商
  125. Won S, Incontro S, Nicoll R, Roche K. PSD-95 stabilizes NMDA receptors by inducing the degradation of STEP61. Proc Natl Acad Sci U S A. 2016;113:E4736-44 pubmed 出版商
  126. Singh A, Fedele C, Lu H, Nevalainen M, Keen J, Languino L. Exosome-mediated Transfer of αvβ3 Integrin from Tumorigenic to Nontumorigenic Cells Promotes a Migratory Phenotype. Mol Cancer Res. 2016;14:1136-1146 pubmed
  127. Ren Y, Zhao P, Liu J, Yuan Y, Cheng Q, Zuo Y, et al. Deubiquitinase USP2a Sustains Interferons Antiviral Activity by Restricting Ubiquitination of Activated STAT1 in the Nucleus. PLoS Pathog. 2016;12:e1005764 pubmed 出版商
  128. Xiao Y, Tang J, Guo H, Zhao Y, Tang R, Ouyang S, et al. Targeting CBLB as a potential therapeutic approach for disseminated candidiasis. Nat Med. 2016;22:906-14 pubmed 出版商
  129. Rackov G, Hernandez Jimenez E, Shokri R, Carmona Rodríguez L, Manes S, Alvarez Mon M, et al. p21 mediates macrophage reprogramming through regulation of p50-p50 NF-?B and IFN-?. J Clin Invest. 2016;126:3089-103 pubmed 出版商
  130. Chen X, Wagener J, Ghribi O, Geiger J. Role of Endolysosomes in Skeletal Muscle Pathology Observed in a Cholesterol-Fed Rabbit Model of Alzheimer's Disease. Front Aging Neurosci. 2016;8:129 pubmed 出版商
  131. Shiihashi G, Ito D, Yagi T, Nihei Y, Ebine T, Suzuki N. Mislocated FUS is sufficient for gain-of-toxic-function amyotrophic lateral sclerosis phenotypes in mice. Brain. 2016;139:2380-94 pubmed 出版商
  132. Shao W, Zumer K, Fujinaga K, Peterlin B. FBXO3 Protein Promotes Ubiquitylation and Transcriptional Activity of AIRE (Autoimmune Regulator). J Biol Chem. 2016;291:17953-63 pubmed 出版商
  133. Simile M, Latte G, Demartis M, Brozzetti S, Calvisi D, Porcu A, et al. Post-translational deregulation of YAP1 is genetically controlled in rat liver cancer and determines the fate and stem-like behavior of the human disease. Oncotarget. 2016;7:49194-49216 pubmed 出版商
  134. Lee J, Takahama S, Zhang G, Tomarev S, Ye Y. Unconventional secretion of misfolded proteins promotes adaptation to proteasome dysfunction in mammalian cells. Nat Cell Biol. 2016;18:765-76 pubmed 出版商
  135. He M, Wang M, Huang Y, Peng W, Zheng Z, Xia N, et al. The ORF3 Protein of Genotype 1 Hepatitis E Virus Suppresses TLR3-induced NF-κB Signaling via TRADD and RIP1. Sci Rep. 2016;6:27597 pubmed 出版商
  136. Minegishi S, Ishigami T, Kino T, Chen L, Nakashima Sasaki R, Araki N, et al. An isoform of Nedd4-2 is critically involved in the renal adaptation to high salt intake in mice. Sci Rep. 2016;6:27137 pubmed 出版商
  137. Chesnokova V, Zonis S, Zhou C, Recouvreux M, Ben Shlomo A, Araki T, et al. Growth hormone is permissive for neoplastic colon growth. Proc Natl Acad Sci U S A. 2016;113:E3250-9 pubmed 出版商
  138. Palazón Riquelme P, Lopez Castejon G. Method to Measure Ubiquitination of NLRs. Methods Mol Biol. 2016;1417:223-9 pubmed 出版商
  139. Bayram Weston Z, Jones L, Dunnett S, Brooks S. Comparison of mHTT Antibodies in Huntington's Disease Mouse Models Reveal Specific Binding Profiles and Steady-State Ubiquitin Levels with Disease Development. PLoS ONE. 2016;11:e0155834 pubmed 出版商
  140. Tortola L, Nitsch R, Bertrand M, Kogler M, Redouane Y, Kozieradzki I, et al. The Tumor Suppressor Hace1 Is a Critical Regulator of TNFR1-Mediated Cell Fate. Cell Rep. 2016;15:1481-1492 pubmed 出版商
  141. Passalacqua K, Charbonneau M, Donato N, Showalter H, Sun D, Wen B, et al. Anti-infective Activity of 2-Cyano-3-Acrylamide Inhibitors with Improved Drug-Like Properties against Two Intracellular Pathogens. Antimicrob Agents Chemother. 2016;60:4183-96 pubmed 出版商
  142. Francavilla C, Papetti M, Rigbolt K, Pedersen A, Sigurdsson J, Cazzamali G, et al. Multilayered proteomics reveals molecular switches dictating ligand-dependent EGFR trafficking. Nat Struct Mol Biol. 2016;23:608-18 pubmed 出版商
  143. Yang B, Han X, Yin L, Xing M, Xu Z, Xue H. Arabidopsis PROTEASOME REGULATOR1 is required for auxin-mediated suppression of proteasome activity and regulates auxin signalling. Nat Commun. 2016;7:11388 pubmed 出版商
  144. Itsumi M, Shiota M, Takeuchi A, Kashiwagi E, Inokuchi J, Tatsugami K, et al. Equol inhibits prostate cancer growth through degradation of androgen receptor by S-phase kinase-associated protein 2. Cancer Sci. 2016;107:1022-8 pubmed 出版商
  145. Qiu J, Sheedlo M, Yu K, Tan Y, Nakayasu E, Das C, et al. Ubiquitination independent of E1 and E2 enzymes by bacterial effectors. Nature. 2016;533:120-4 pubmed 出版商
  146. Rorsman C, Tsioumpekou M, Heldin C, Lennartsson J. The Ubiquitin Ligases c-Cbl and Cbl-b Negatively Regulate Platelet-derived Growth Factor (PDGF) BB-induced Chemotaxis by Affecting PDGF Receptor β (PDGFRβ) Internalization and Signaling. J Biol Chem. 2016;291:11608-18 pubmed 出版商
  147. Richter B, Sliter D, Herhaus L, Stolz A, Wang C, Beli P, et al. Phosphorylation of OPTN by TBK1 enhances its binding to Ub chains and promotes selective autophagy of damaged mitochondria. Proc Natl Acad Sci U S A. 2016;113:4039-44 pubmed 出版商
  148. Zhao K, Zhang M, Zhang L, Wang P, Song G, Liu B, et al. Intracellular osteopontin stabilizes TRAF3 to positively regulate innate antiviral response. Sci Rep. 2016;6:23771 pubmed 出版商
  149. Decorsière A, Mueller H, van Breugel P, Abdul F, Gerossier L, Beran R, et al. Hepatitis B virus X protein identifies the Smc5/6 complex as a host restriction factor. Nature. 2016;531:386-9 pubmed 出版商
  150. Jin H, Lee K, Kim Y, Oh H, Maeng Y, Kim T, et al. Scaffold protein FHL2 facilitates MDM2-mediated degradation of IER3 to regulate proliferation of cervical cancer cells. Oncogene. 2016;35:5106-18 pubmed 出版商
  151. Frum R, Love I, Damle P, Mukhopadhyay N, Palit Deb S, Deb S, et al. Constitutive Activation of DNA Damage Checkpoint Signaling Contributes to Mutant p53 Accumulation via Modulation of p53 Ubiquitination. Mol Cancer Res. 2016;14:423-36 pubmed 出版商
  152. Choi W, de Poot S, Lee J, Kim J, Han D, Kim Y, et al. Open-gate mutants of the mammalian proteasome show enhanced ubiquitin-conjugate degradation. Nat Commun. 2016;7:10963 pubmed 出版商
  153. Llambi F, Wang Y, Victor B, Yang M, Schneider D, Gingras S, et al. BOK Is a Non-canonical BCL-2 Family Effector of Apoptosis Regulated by ER-Associated Degradation. Cell. 2016;165:421-33 pubmed 出版商
  154. Choe Y, Park S, Hassemer T, Körner R, Vincenz Donnelly L, Hayer Hartl M, et al. Failure of RQC machinery causes protein aggregation and proteotoxic stress. Nature. 2016;531:191-5 pubmed 出版商
  155. Wei J, Xiong Z, Lee J, Cheng J, Duffney L, Matas E, et al. Histone Modification of Nedd4 Ubiquitin Ligase Controls the Loss of AMPA Receptors and Cognitive Impairment Induced by Repeated Stress. J Neurosci. 2016;36:2119-30 pubmed 出版商
  156. Tung H, Wei S, Lo H, Chao Y. Baculovirus IE2 Stimulates the Expression of Heat Shock Proteins in Insect and Mammalian Cells to Facilitate Its Proper Functioning. PLoS ONE. 2016;11:e0148578 pubmed 出版商
  157. Kwon D, Eom G, Ko J, Shin S, Joung H, Choe N, et al. MDM2 E3 ligase-mediated ubiquitination and degradation of HDAC1 in vascular calcification. Nat Commun. 2016;7:10492 pubmed 出版商
  158. Díaz Barreiro A, Bernal Quirós M, Georg I, Marañón C, Alarcón Riquelme M, Castillejo López C. The SLE variant Ala71Thr of BLK severely decreases protein abundance and binding to BANK1 through impairment of the SH3 domain function. Genes Immun. 2016;17:128-38 pubmed 出版商
  159. Kanderová V, Kuzilkova D, Stuchly J, Vaskova M, Brdicka T, Fiser K, et al. High-resolution Antibody Array Analysis of Childhood Acute Leukemia Cells. Mol Cell Proteomics. 2016;15:1246-61 pubmed 出版商
  160. Gong G, Song M, Csordás G, Kelly D, Matkovich S, Dorn G. Parkin-mediated mitophagy directs perinatal cardiac metabolic maturation in mice. Science. 2015;350:aad2459 pubmed 出版商
  161. Ying M, Zhang L, Zhou Q, Shao X, Cao J, Zhang N, et al. The E3 ubiquitin protein ligase MDM2 dictates all-trans retinoic acid-induced osteoblastic differentiation of osteosarcoma cells by modulating the degradation of RARα. Oncogene. 2016;35:4358-67 pubmed 出版商
  162. Bouché V, Espinosa A, Leone L, Sardiello M, Ballabio A, Botas J. Drosophila Mitf regulates the V-ATPase and the lysosomal-autophagic pathway. Autophagy. 2016;12:484-98 pubmed 出版商
  163. Jeong J, VanHouten J, Dann P, Kim W, Sullivan C, Yu H, et al. PMCA2 regulates HER2 protein kinase localization and signaling and promotes HER2-mediated breast cancer. Proc Natl Acad Sci U S A. 2016;113:E282-90 pubmed 出版商
  164. Zhang H, Liu H, Chen Y, Yang X, Wang P, Liu T, et al. A cell cycle-dependent BRCA1-UHRF1 cascade regulates DNA double-strand break repair pathway choice. Nat Commun. 2016;7:10201 pubmed 出版商
  165. Su X, Yan H, Huang Y, Yun H, Zeng B, Wang E, et al. Expression of FABP4, adipsin and adiponectin in Paneth cells is modulated by gut Lactobacillus. Sci Rep. 2015;5:18588 pubmed 出版商
  166. Ding X, Jiang W, Zhou P, Liu L, Wan X, Yuan X, et al. Mixed Lineage Leukemia 5 (MLL5) Protein Stability Is Cooperatively Regulated by O-GlcNac Transferase (OGT) and Ubiquitin Specific Protease 7 (USP7). PLoS ONE. 2015;10:e0145023 pubmed 出版商
  167. Slowicka K, Vereecke L, Mc Guire C, Sze M, Maelfait J, Kolpe A, et al. Optineurin deficiency in mice is associated with increased sensitivity to Salmonella but does not affect proinflammatory NF-κB signaling. Eur J Immunol. 2016;46:971-80 pubmed 出版商
  168. Giampietro C, Disanza A, Bravi L, Barrios Rodiles M, Corada M, Frittoli E, et al. The actin-binding protein EPS8 binds VE-cadherin and modulates YAP localization and signaling. J Cell Biol. 2015;211:1177-92 pubmed 出版商
  169. Mathur R, Yen J, Kaiser P. Skp1 Independent Function of Cdc53/Cul1 in F-box Protein Homeostasis. PLoS Genet. 2015;11:e1005727 pubmed 出版商
  170. Song H, Tao L, Chen C, Pan L, Hao J, Ni Y, et al. USP17-mediated deubiquitination and stabilization of HDAC2 in cigarette smoke extract-induced inflammation. Int J Clin Exp Pathol. 2015;8:10707-15 pubmed
  171. Cristini A, Park J, Capranico G, Legube G, Favre G, Sordet O. DNA-PK triggers histone ubiquitination and signaling in response to DNA double-strand breaks produced during the repair of transcription-blocking topoisomerase I lesions. Nucleic Acids Res. 2016;44:1161-78 pubmed 出版商
  172. Maxfield K, Taus P, Corcoran K, Wooten J, Macion J, Zhou Y, et al. Comprehensive functional characterization of cancer-testis antigens defines obligate participation in multiple hallmarks of cancer. Nat Commun. 2015;6:8840 pubmed 出版商
  173. Larabee C, Georgescu C, Wren J, Plafker S. Expression profiling of the ubiquitin conjugating enzyme UbcM2 in murine brain reveals modest age-dependent decreases in specific neurons. BMC Neurosci. 2015;16:76 pubmed 出版商
  174. Rizvi F, Mathur A, Krishna S, Siddiqi M, Kakkar P. Suppression in PHLPP2 induction by morin promotes Nrf2-regulated cellular defenses against oxidative injury to primary rat hepatocytes. Redox Biol. 2015;6:587-598 pubmed 出版商
  175. Yue J, Ben Messaoud N, López J. Hyperosmotic Shock Engages Two Positive Feedback Loops through Caspase-3-dependent Proteolysis of JNK1-2 and Bid. J Biol Chem. 2015;290:30375-89 pubmed 出版商
  176. Thorslund T, Ripplinger A, Hoffmann S, Wild T, Uckelmann M, Villumsen B, et al. Histone H1 couples initiation and amplification of ubiquitin signalling after DNA damage. Nature. 2015;527:389-93 pubmed 出版商
  177. Eino A, Kageyama S, Uemura T, Annoh H, Saito T, Narita I, et al. Sqstm1-GFP knock-in mice reveal dynamic actions of Sqstm1 during autophagy and under stress conditions in living cells. J Cell Sci. 2015;128:4453-61 pubmed 出版商
  178. Min M, Mevissen T, De Luca M, Komander D, Lindon C. Efficient APC/C substrate degradation in cells undergoing mitotic exit depends on K11 ubiquitin linkages. Mol Biol Cell. 2015;26:4325-32 pubmed 出版商
  179. Li Z, Hao Q, Luo J, Xiong J, Zhang S, Wang T, et al. USP4 inhibits p53 and NF-κB through deubiquitinating and stabilizing HDAC2. Oncogene. 2016;35:2902-12 pubmed 出版商
  180. Lenain C, Gusyatiner O, Douma S, van den Broek B, Peeper D. Autophagy-mediated degradation of nuclear envelope proteins during oncogene-induced senescence. Carcinogenesis. 2015;36:1263-74 pubmed 出版商
  181. Homma T, Kurahashi T, Lee J, Kang E, Fujii J. SOD1 deficiency decreases proteasomal function, leading to the accumulation of ubiquitinated proteins in erythrocytes. Arch Biochem Biophys. 2015;583:65-72 pubmed 出版商
  182. Zhou Z, Xu C, Chen P, Liu C, Pang S, Yao X, et al. Stability of HIB-Cul3 E3 ligase adaptor HIB Is Regulated by Self-degradation and Availability of Its Substrates. Sci Rep. 2015;5:12709 pubmed 出版商
  183. Lee C, Yang Y, Chen C, Liu J. Syk-mediated tyrosine phosphorylation of mule promotes TNF-induced JNK activation and cell death. Oncogene. 2016;35:1988-95 pubmed 出版商
  184. Wang X, Chen X. A cytosolic network suppressing mitochondria-mediated proteostatic stress and cell death. Nature. 2015;524:481-4 pubmed 出版商
  185. Phan L, Chou P, Velazquez Torres G, Samudio I, Parreno K, Huang Y, et al. The cell cycle regulator 14-3-3σ opposes and reverses cancer metabolic reprogramming. Nat Commun. 2015;6:7530 pubmed 出版商
  186. Chen S, Okada M, Nakato R, Izumi K, Bando M, Shirahige K. The Deubiquitinating Enzyme USP7 Regulates Androgen Receptor Activity by Modulating Its Binding to Chromatin. J Biol Chem. 2015;290:21713-23 pubmed 出版商
  187. Pulvino M, Chen L, Oleksyn D, Li J, Compitello G, Rossi R, et al. Inhibition of COP9-signalosome (CSN) deneddylating activity and tumor growth of diffuse large B-cell lymphomas by doxycycline. Oncotarget. 2015;6:14796-813 pubmed
  188. ToruÅ„ A, SzymaÅ„ska E, Castanon I, WoliÅ„ska NizioÅ‚ L, Bartosik A, JastrzÄ™bski K, et al. Endocytic Adaptor Protein Tollip Inhibits Canonical Wnt Signaling. PLoS ONE. 2015;10:e0130818 pubmed 出版商
  189. Kubli D, Cortez M, Moyzis A, Najor R, Lee Y, Gustafsson Ã. PINK1 Is Dispensable for Mitochondrial Recruitment of Parkin and Activation of Mitophagy in Cardiac Myocytes. PLoS ONE. 2015;10:e0130707 pubmed 出版商
  190. Ma S, Yin N, Qi X, Pfister S, Zhang M, Ma R, et al. Tyrosine dephosphorylation enhances the therapeutic target activity of epidermal growth factor receptor (EGFR) by disrupting its interaction with estrogen receptor (ER). Oncotarget. 2015;6:13320-33 pubmed
  191. Hendriks I, D Souza R, Chang J, Mann M, Vertegaal A. System-wide identification of wild-type SUMO-2 conjugation sites. Nat Commun. 2015;6:7289 pubmed 出版商
  192. Song M, Gong G, Burelle Y, Gustafsson Ã, Kitsis R, Matkovich S, et al. Interdependence of Parkin-Mediated Mitophagy and Mitochondrial Fission in Adult Mouse Hearts. Circ Res. 2015;117:346-51 pubmed 出版商
  193. Kharat S, Tripathi V, Damodaran A, Priyadarshini R, Chandra S, Tikoo S, et al. Mitotic phosphorylation of Bloom helicase at Thr182 is required for its proteasomal degradation and maintenance of chromosomal stability. Oncogene. 2016;35:1025-38 pubmed 出版商
  194. Robinson H, Deykin A, Bronovitsky E, Ovchinnikov R, Ustyugov A, Shelkovnikova T, et al. Early lethality and neuronal proteinopathy in mice expressing cytoplasm-targeted FUS that lacks the RNA recognition motif. Amyotroph Lateral Scler Frontotemporal Degener. 2015;16:402-9 pubmed 出版商
  195. Lim G, Chua D, Basil A, Chan H, Chai C, Arumugam T, et al. Cytosolic PTEN-induced Putative Kinase 1 Is Stabilized by the NF-κB Pathway and Promotes Non-selective Mitophagy. J Biol Chem. 2015;290:16882-93 pubmed 出版商
  196. Watanabe M, Takahashi H, Saeki Y, Ozaki T, Itoh S, Suzuki M, et al. The E3 ubiquitin ligase TRIM23 regulates adipocyte differentiation via stabilization of the adipogenic activator PPARγ. elife. 2015;4:e05615 pubmed 出版商
  197. González Prieto R, Cuijpers S, Kumar R, Hendriks I, Vertegaal A. c-Myc is targeted to the proteasome for degradation in a SUMOylation-dependent manner, regulated by PIAS1, SENP7 and RNF4. Cell Cycle. 2015;14:1859-72 pubmed 出版商
  198. Boutell C, Davido D. A quantitative assay to monitor HSV-1 ICP0 ubiquitin ligase activity in vitro. Methods. 2015;90:3-7 pubmed 出版商
  199. Wang W, Huang X, Xin H, Fu M, Xue A, Wu Z. TRAF Family Member-associated NF-κB Activator (TANK) Inhibits Genotoxic Nuclear Factor κB Activation by Facilitating Deubiquitinase USP10-dependent Deubiquitination of TRAF6 Ligase. J Biol Chem. 2015;290:13372-85 pubmed 出版商
  200. Zhang R, Wang R, Chen Q, Chang H. Inhibition of autophagy using 3-methyladenine increases cisplatin-induced apoptosis by increasing endoplasmic reticulum stress in U251 human glioma cells. Mol Med Rep. 2015;12:1727-32 pubmed 出版商
  201. Uemura N, Koike M, Ansai S, Kinoshita M, Ishikawa Fujiwara T, Matsui H, et al. Viable neuronopathic Gaucher disease model in Medaka (Oryzias latipes) displays axonal accumulation of alpha-synuclein. PLoS Genet. 2015;11:e1005065 pubmed 出版商
  202. Ko R, Park J, Ha H, Choi Y, Lee S. Glycogen synthase kinase 3β ubiquitination by TRAF6 regulates TLR3-mediated pro-inflammatory cytokine production. Nat Commun. 2015;6:6765 pubmed 出版商
  203. Marathe S, Liu S, Brai E, Kaczarowski M, Alberi L. Notch signaling in response to excitotoxicity induces neurodegeneration via erroneous cell cycle reentry. Cell Death Differ. 2015;22:1775-84 pubmed 出版商
  204. Zhang Q, Kuang H, Chen C, Yan J, Do Umehara H, Liu X, et al. The kinase Jnk2 promotes stress-induced mitophagy by targeting the small mitochondrial form of the tumor suppressor ARF for degradation. Nat Immunol. 2015;16:458-66 pubmed 出版商
  205. Friebe S, Deuquet J, van der Goot F. Differential dependence on N-glycosylation of anthrax toxin receptors CMG2 and TEM8. PLoS ONE. 2015;10:e0119864 pubmed 出版商
  206. Shankar V, Hori H, Kihira K, Lei Q, Toyoda H, Iwamoto S, et al. Mesenchymal stromal cell secretome up-regulates 47 kDa CXCR4 expression, and induce invasiveness in neuroblastoma cell lines. PLoS ONE. 2015;10:e0120069 pubmed 出版商
  207. Kim K, Son H, Choi S, Hahm J, Jung H, Baek H, et al. H3K9 methyltransferase G9a negatively regulates UHRF1 transcription during leukemia cell differentiation. Nucleic Acids Res. 2015;43:3509-23 pubmed 出版商
  208. Williams J, Ni H, Haynes A, Manley S, Li Y, Jaeschke H, et al. Chronic Deletion and Acute Knockdown of Parkin Have Differential Responses to Acetaminophen-induced Mitophagy and Liver Injury in Mice. J Biol Chem. 2015;290:10934-46 pubmed 出版商
  209. Li C, Jung S, Lee S, Jeong D, Yang Y, Kim K, et al. Nutrient/serum starvation derived TRIP-Br3 down-regulation accelerates apoptosis by destabilizing XIAP. Oncotarget. 2015;6:7522-35 pubmed
  210. Widagdo J, Chai Y, Ridder M, Chau Y, Johnson R, Sah P, et al. Activity-Dependent Ubiquitination of GluA1 and GluA2 Regulates AMPA Receptor Intracellular Sorting and Degradation. Cell Rep. 2015;10:783-795 pubmed 出版商
  211. Kathania M, Zeng M, Yadav V, Moghaddam S, Yang B, Venuprasad K. Ndfip1 regulates itch ligase activity and airway inflammation via UbcH7. J Immunol. 2015;194:2160-7 pubmed 出版商
  212. Huo L, Li C, Huang T, Lam Y, Xia W, Tu C, et al. Activation of Keap1/Nrf2 signaling pathway by nuclear epidermal growth factor receptor in cancer cells. Am J Transl Res. 2014;6:649-63 pubmed
  213. Marsolier J, Perichon M, Debarry J, Villoutreix B, Chluba J, Lopez T, et al. Theileria parasites secrete a prolyl isomerase to maintain host leukocyte transformation. Nature. 2015;520:378-82 pubmed 出版商
  214. Shim H, Wei M, Brandhorst S, Longo V. Starvation promotes REV1 SUMOylation and p53-dependent sensitization of melanoma and breast cancer cells. Cancer Res. 2015;75:1056-67 pubmed 出版商
  215. Lee S, Lee T, Lee E, Kang S, Park A, Kim S, et al. Identification of a subnuclear body involved in sequence-specific cytokine RNA processing. Nat Commun. 2015;6:5791 pubmed 出版商
  216. Hong A, Lee J, Chung K. Ubiquitin-specific protease 22 (USP22) positively regulates RCAN1 protein levels through RCAN1 de-ubiquitination. J Cell Physiol. 2015;230:1651-60 pubmed 出版商
  217. Gabriel D, Roedl D, Gordon L, Djabali K. Sulforaphane enhances progerin clearance in Hutchinson-Gilford progeria fibroblasts. Aging Cell. 2015;14:78-91 pubmed 出版商
  218. Zhang H, Hu H, Greeley N, Jin J, Matthews A, Ohashi E, et al. STAT3 restrains RANK- and TLR4-mediated signalling by suppressing expression of the E2 ubiquitin-conjugating enzyme Ubc13. Nat Commun. 2014;5:5798 pubmed 出版商
  219. Deegan S, Koryga I, Glynn S, Gupta S, Gorman A, Samali A. A close connection between the PERK and IRE arms of the UPR and the transcriptional regulation of autophagy. Biochem Biophys Res Commun. 2015;456:305-11 pubmed 出版商
  220. Yao Q, Zhang L, Wan X, Chen J, Hu L, Ding X, et al. Structure and specificity of the bacterial cysteine methyltransferase effector NleE suggests a novel substrate in human DNA repair pathway. PLoS Pathog. 2014;10:e1004522 pubmed 出版商
  221. Chen J, Shin J, Zhao R, Phan L, Wang H, Xue Y, et al. CSN6 drives carcinogenesis by positively regulating Myc stability. Nat Commun. 2014;5:5384 pubmed 出版商
  222. Tao L, Chen C, Song H, Piccioni M, Shi G, Li B. Deubiquitination and stabilization of IL-33 by USP21. Int J Clin Exp Pathol. 2014;7:4930-7 pubmed
  223. Wang T, Jiang X, Chen G, Xu J. Interaction of amyotrophic lateral sclerosis/frontotemporal lobar degeneration-associated fused-in-sarcoma with proteins involved in metabolic and protein degradation pathways. Neurobiol Aging. 2015;36:527-35 pubmed 出版商
  224. Pilchova I, Klacanova K, Chomova M, Tatarkova Z, Dobrota D, Racay P. Possible contribution of proteins of Bcl-2 family in neuronal death following transient global brain ischemia. Cell Mol Neurobiol. 2015;35:23-31 pubmed 出版商
  225. Sutinen P, Rahkama V, Rytinki M, Palvimo J. Nuclear mobility and activity of FOXA1 with androgen receptor are regulated by SUMOylation. Mol Endocrinol. 2014;28:1719-28 pubmed 出版商
  226. Xu R, Hu Q, Ma Q, Liu C, Wang G. The protease Omi regulates mitochondrial biogenesis through the GSK3β/PGC-1α pathway. Cell Death Dis. 2014;5:e1373 pubmed 出版商
  227. Biswas C, Shah N, Muthu M, La P, Fernando A, Sengupta S, et al. Nuclear heme oxygenase-1 (HO-1) modulates subcellular distribution and activation of Nrf2, impacting metabolic and anti-oxidant defenses. J Biol Chem. 2014;289:26882-94 pubmed 出版商
  228. Hamouda M, Belhacene N, Puissant A, Colosetti P, Robert G, Jacquel A, et al. The small heat shock protein B8 (HSPB8) confers resistance to bortezomib by promoting autophagic removal of misfolded proteins in multiple myeloma cells. Oncotarget. 2014;5:6252-66 pubmed
  229. Zhang P, Gao K, Tang Y, Jin X, An J, Yu H, et al. Destruction of DDIT3/CHOP protein by wild-type SPOP but not prostate cancer-associated mutants. Hum Mutat. 2014;35:1142-51 pubmed 出版商
  230. Li S, Wang W, Niu T, Wang H, Li B, Shao L, et al. Nrf2 deficiency exaggerates doxorubicin-induced cardiotoxicity and cardiac dysfunction. Oxid Med Cell Longev. 2014;2014:748524 pubmed 出版商
  231. Tu K, Yang W, Li C, Zheng X, Lu Z, Guo C, et al. Fbxw7 is an independent prognostic marker and induces apoptosis and growth arrest by regulating YAP abundance in hepatocellular carcinoma. Mol Cancer. 2014;13:110 pubmed 出版商
  232. Ambrosi G, Ghezzi C, Sepe S, Milanese C, Payan Gomez C, Bombardieri C, et al. Bioenergetic and proteolytic defects in fibroblasts from patients with sporadic Parkinson's disease. Biochim Biophys Acta. 2014;1842:1385-94 pubmed 出版商
  233. Tullman J, Harmon M, Delannoy M, Gibson W. Recovery of an HMWP/hmwBP (pUL48/pUL47) complex from virions of human cytomegalovirus: subunit interactions, oligomer composition, and deubiquitylase activity. J Virol. 2014;88:8256-67 pubmed 出版商
  234. van de Weijer M, Bassik M, Luteijn R, Voorburg C, Lohuis M, Kremmer E, et al. A high-coverage shRNA screen identifies TMEM129 as an E3 ligase involved in ER-associated protein degradation. Nat Commun. 2014;5:3832 pubmed 出版商
  235. Katyal S, Lee Y, Nitiss K, Downing S, Li Y, Shimada M, et al. Aberrant topoisomerase-1 DNA lesions are pathogenic in neurodegenerative genome instability syndromes. Nat Neurosci. 2014;17:813-21 pubmed 出版商
  236. Katzenback B, Dawson N, Storey K. Purification and characterization of a urea sensitive lactate dehydrogenase from the liver of the African clawed frog, Xenopus laevis. J Comp Physiol B. 2014;184:601-11 pubmed 出版商
  237. Aslanian A, Yates J, Hunter T. Mass spectrometry-based quantification of the cellular response to methyl methanesulfonate treatment in human cells. DNA Repair (Amst). 2014;15:29-38 pubmed 出版商
  238. Naudin C, Sirvent A, Leroy C, Larive R, Simon V, Pannequin J, et al. SLAP displays tumour suppressor functions in colorectal cancer via destabilization of the SRC substrate EPHA2. Nat Commun. 2014;5:3159 pubmed 出版商
  239. Aida K, Hayashi H, Inamura K, Mizuno T, Sugiyama Y. Differential roles of ubiquitination in the degradation mechanism of cell surface-resident bile salt export pump and multidrug resistance-associated protein 2. Mol Pharmacol. 2014;85:482-91 pubmed 出版商
  240. Han J, Hou W, Goldstein L, Stolz D, Watkins S, Rabinowich H. A Complex between Atg7 and Caspase-9: A NOVEL MECHANISM OF CROSS-REGULATION BETWEEN AUTOPHAGY AND APOPTOSIS. J Biol Chem. 2014;289:6485-97 pubmed 出版商
  241. Lee H, Kim Y, Kim D. Exosomes derived from human macrophages suppress endothelial cell migration by controlling integrin trafficking. Eur J Immunol. 2014;44:1156-69 pubmed 出版商
  242. Andresen C, Smedegaard S, Sylvestersen K, Svensson C, Iglesias Gato D, Cazzamali G, et al. Protein interaction screening for the ankyrin repeats and suppressor of cytokine signaling (SOCS) box (ASB) family identify Asb11 as a novel endoplasmic reticulum resident ubiquitin ligase. J Biol Chem. 2014;289:2043-54 pubmed 出版商
  243. Sisinni L, Maddalena F, Lettini G, Condelli V, Matassa D, Esposito F, et al. TRAP1 role in endoplasmic reticulum stress protection favors resistance to anthracyclins in breast carcinoma cells. Int J Oncol. 2014;44:573-82 pubmed 出版商
  244. Liu X, Xiao W, Wang X, Li Y, Han J, Li Y. The p38-interacting protein (p38IP) regulates G2/M progression by promoting ?-tubulin acetylation via inhibiting ubiquitination-induced degradation of the acetyltransferase GCN5. J Biol Chem. 2013;288:36648-61 pubmed 出版商
  245. Tikoo S, Madhavan V, Hussain M, Miller E, Arora P, Zlatanou A, et al. Ubiquitin-dependent recruitment of the Bloom syndrome helicase upon replication stress is required to suppress homologous recombination. EMBO J. 2013;32:1778-92 pubmed 出版商
  246. Brouxhon S, Kyrkanides S, Teng X, Raja V, O Banion M, Clarke R, et al. Monoclonal antibody against the ectodomain of E-cadherin (DECMA-1) suppresses breast carcinogenesis: involvement of the HER/PI3K/Akt/mTOR and IAP pathways. Clin Cancer Res. 2013;19:3234-46 pubmed 出版商
  247. Choudhury S, Kolukula V, Preet A, Albanese C, Avantaggiati M. Dissecting the pathways that destabilize mutant p53: the proteasome or autophagy?. Cell Cycle. 2013;12:1022-9 pubmed 出版商
  248. Chan W, Schaffer T, Pomerantz J. A quantitative signaling screen identifies CARD11 mutations in the CARD and LATCH domains that induce Bcl10 ubiquitination and human lymphoma cell survival. Mol Cell Biol. 2013;33:429-43 pubmed 出版商
  249. Kirilyuk A, Shimoji M, Catania J, Sahu G, Pattabiraman N, Giordano A, et al. An intrinsically disordered region of the acetyltransferase p300 with similarity to prion-like domains plays a role in aggregation. PLoS ONE. 2012;7:e48243 pubmed 出版商
  250. Kensche T, Tokunaga F, Ikeda F, Goto E, Iwai K, Dikic I. Analysis of nuclear factor-?B (NF-?B) essential modulator (NEMO) binding to linear and lysine-linked ubiquitin chains and its role in the activation of NF-?B. J Biol Chem. 2012;287:23626-34 pubmed 出版商
  251. Schwab C, Yu S, McGeer P. Optineurin is colocalized with ubiquitin in Marinesco bodies. Acta Neuropathol. 2012;123:289-92 pubmed 出版商
  252. Ginsberg S, Alldred M, Che S. Gene expression levels assessed by CA1 pyramidal neuron and regional hippocampal dissections in Alzheimer's disease. Neurobiol Dis. 2012;45:99-107 pubmed 出版商
  253. Rico Bautista E, Yang C, Lu L, Roth G, Wolf D. Chemical genetics approach to restoring p27Kip1 reveals novel compounds with antiproliferative activity in prostate cancer cells. BMC Biol. 2010;8:153 pubmed 出版商
  254. Duvick L, Barnes J, Ebner B, Agrawal S, ANDRESEN M, Lim J, et al. SCA1-like disease in mice expressing wild-type ataxin-1 with a serine to aspartic acid replacement at residue 776. Neuron. 2010;67:929-35 pubmed 出版商
  255. Takahashi Fujigasaki J, Breidert T, Fujigasaki H, Duyckaerts C, Camonis J, Brice A, et al. Amyloid precursor-like protein 2 cleavage contributes to neuronal intranuclear inclusions and cytotoxicity in spinocerebellar ataxia-7 (SCA7). Neurobiol Dis. 2011;41:33-42 pubmed 出版商
  256. Nisoli I, Chauvin J, Napoletano F, Calamita P, Zanin V, Fanto M, et al. Neurodegeneration by polyglutamine Atrophin is not rescued by induction of autophagy. Cell Death Differ. 2010;17:1577-87 pubmed 出版商
  257. Guttman M, Betts G, Barnes H, Ghassemian M, van der Geer P, Komives E. Interactions of the NPXY microdomains of the low density lipoprotein receptor-related protein 1. Proteomics. 2009;9:5016-28 pubmed 出版商
  258. Paine S, Bedford L, Thorpe J, Mayer R, Cavey J, Bajaj N, et al. Immunoreactivity to Lys63-linked polyubiquitin is a feature of neurodegeneration. Neurosci Lett. 2009;460:205-8 pubmed 出版商
  259. Wiseman R, Chin K, Haynes C, Stanhill A, Xu C, Roguev A, et al. Thioredoxin-related Protein 32 is an arsenite-regulated Thiol Reductase of the proteasome 19 S particle. J Biol Chem. 2009;284:15233-45 pubmed 出版商
  260. Zhu H, Rothermel B, Hill J. Autophagy in load-induced heart disease. Methods Enzymol. 2009;453:343-63 pubmed 出版商
  261. den Dulk B, van Eijk P, de Ruijter M, Brandsma J, Brouwer J. The NER protein Rad33 shows functional homology to human Centrin2 and is involved in modification of Rad4. DNA Repair (Amst). 2008;7:858-68 pubmed 出版商
  262. Marvin Guy L, Duncan P, Wagnière S, Antille N, Porta N, Affolter M, et al. Rapid identification of differentiation markers from whole epithelial cells by matrix-assisted laser desorption/ionisation time-of-flight mass spectrometry and statistical analysis. Rapid Commun Mass Spectrom. 2008;22:1099-108 pubmed 出版商
  263. Nakamura N, Hirose S. Regulation of mitochondrial morphology by USP30, a deubiquitinating enzyme present in the mitochondrial outer membrane. Mol Biol Cell. 2008;19:1903-11 pubmed 出版商
  264. Bjørkhaug L, Molnes J, Søvik O, Njølstad P, Flatmark T. Allosteric activation of human glucokinase by free polyubiquitin chains and its ubiquitin-dependent cotranslational proteasomal degradation. J Biol Chem. 2007;282:22757-64 pubmed
  265. Tanaka T, Grusby M, Kaisho T. PDLIM2-mediated termination of transcription factor NF-kappaB activation by intranuclear sequestration and degradation of the p65 subunit. Nat Immunol. 2007;8:584-91 pubmed
  266. Nomura N, Nomura M, Newcomb E, Zagzag D. Geldanamycin induces G2 arrest in U87MG glioblastoma cells through downregulation of Cdc2 and cyclin B1. Biochem Pharmacol. 2007;73:1528-36 pubmed
  267. Gallagher E, Enzler T, Matsuzawa A, Anzelon Mills A, Otero D, Holzer R, et al. Kinase MEKK1 is required for CD40-dependent activation of the kinases Jnk and p38, germinal center formation, B cell proliferation and antibody production. Nat Immunol. 2007;8:57-63 pubmed
  268. Bloom J, Pagano M. Experimental tests to definitively determine ubiquitylation of a substrate. Methods Enzymol. 2005;399:249-66 pubmed
  269. Nomura M, Nomura N, Yamashita J. Geldanamycin-induced degradation of Chk1 is mediated by proteasome. Biochem Biophys Res Commun. 2005;335:900-5 pubmed
  270. Lensch M, Tischkowitz M, Christianson T, Reifsteck C, Speckhart S, Jakobs P, et al. Acquired FANCA dysfunction and cytogenetic instability in adult acute myelogenous leukemia. Blood. 2003;102:7-16 pubmed
  271. Alberti S, Demand J, Esser C, Emmerich N, Schild H, Hohfeld J. Ubiquitylation of BAG-1 suggests a novel regulatory mechanism during the sorting of chaperone substrates to the proteasome. J Biol Chem. 2002;277:45920-7 pubmed
  272. Kassenbrock C, Hunter S, Garl P, Johnson G, Anderson S. Inhibition of Src family kinases blocks epidermal growth factor (EGF)-induced activation of Akt, phosphorylation of c-Cbl, and ubiquitination of the EGF receptor. J Biol Chem. 2002;277:24967-75 pubmed
  273. Tan Z, Sankar R, Tu W, Shin D, Liu H, Wasterlain C, et al. Immunohistochemical study of p53-associated proteins in rat brain following lithium-pilocarpine status epilepticus. Brain Res. 2002;929:129-38 pubmed
  274. Floyd Z, Stephens J. Interferon-gamma-mediated activation and ubiquitin-proteasome-dependent degradation of PPARgamma in adipocytes. J Biol Chem. 2002;277:4062-8 pubmed
  275. Ruffner H, Joazeiro C, Hemmati D, Hunter T, Verma I. Cancer-predisposing mutations within the RING domain of BRCA1: loss of ubiquitin protein ligase activity and protection from radiation hypersensitivity. Proc Natl Acad Sci U S A. 2001;98:5134-9 pubmed
  276. Verdier F, Chretien S, Muller O, Varlet P, Yoshimura A, Gisselbrecht S, et al. Proteasomes regulate erythropoietin receptor and signal transducer and activator of transcription 5 (STAT5) activation. Possible involvement of the ubiquitinated Cis protein. J Biol Chem. 1998;273:28185-90 pubmed
  277. Nielsen K, Papageorge A, Vass W, Willumsen B, Lowy D. The Ras-specific exchange factors mouse Sos1 (mSos1) and mSos2 are regulated differently: mSos2 contains ubiquitination signals absent in mSos1. Mol Cell Biol. 1997;17:7132-8 pubmed