这是一篇来自已证抗体库的有关人类 弹性蛋白 (vimentin) 的综述,是根据721篇发表使用所有方法的文章归纳的。这综述旨在帮助来邦网的访客找到最适合弹性蛋白 抗体。
艾博抗(上海)贸易有限公司
domestic rabbit 单克隆(EPR3776)
  • 免疫印迹; 人类; 图 4b
艾博抗(上海)贸易有限公司弹性蛋白抗体(Abcam, EPR3776)被用于被用于免疫印迹在人类样本上 (图 4b). Aging (Albany NY) (2020) ncbi
domestic rabbit 单克隆(EPR3776)
  • 免疫组化-冰冻切片; 小鼠; 1:200; 图 8s1a
艾博抗(上海)贸易有限公司弹性蛋白抗体(Abcam, ab92547)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:200 (图 8s1a). elife (2020) ncbi
domestic rabbit 单克隆
  • 流式细胞仪; 人类; 1:5000; 图 7p, q
艾博抗(上海)贸易有限公司弹性蛋白抗体(Abcam, Cambridge, UK, #ab194719)被用于被用于流式细胞仪在人类样本上浓度为1:5000 (图 7p, q). Sci Rep (2020) ncbi
单克隆
  • 免疫组化; 小鼠; 1:300; 图 4s3a
艾博抗(上海)贸易有限公司弹性蛋白抗体(Abcam, ab22651)被用于被用于免疫组化在小鼠样本上浓度为1:300 (图 4s3a). elife (2020) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:500; 图 3e
艾博抗(上海)贸易有限公司弹性蛋白抗体(Abcam, ab137321)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 3e). Front Oncol (2020) ncbi
domestic rabbit 单克隆(EPR3776)
  • 免疫印迹; 人类; 图 2f
艾博抗(上海)贸易有限公司弹性蛋白抗体(Abcam, ab92547)被用于被用于免疫印迹在人类样本上 (图 2f). Cell Death Dis (2020) ncbi
domestic rabbit 单克隆(EPR3776)
  • 免疫印迹; 人类; 1:2000; 图 3d
艾博抗(上海)贸易有限公司弹性蛋白抗体(Abcam, ab92547)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 3d). Cancer Cell Int (2020) ncbi
domestic rabbit 单克隆(EPR3776)
  • 免疫印迹; 人类; 1:5000; 图 1f, 5a
艾博抗(上海)贸易有限公司弹性蛋白抗体(Abcam, Cambridge, England, ab92547)被用于被用于免疫印迹在人类样本上浓度为1:5000 (图 1f, 5a). Integr Cancer Ther (2020) ncbi
小鼠 单克隆(VI-10)
  • 免疫组化-石蜡切片; pigs ; 1:500; 图 6b
艾博抗(上海)贸易有限公司弹性蛋白抗体(Abcam, ab20346)被用于被用于免疫组化-石蜡切片在pigs 样本上浓度为1:500 (图 6b). Biores Open Access (2020) ncbi
domestic rabbit 单克隆(EPR3776)
  • 免疫印迹; 人类; 1:1000; 图 3a
艾博抗(上海)贸易有限公司弹性蛋白抗体(Abcam, ab193555)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3a). Biosci Rep (2020) ncbi
domestic rabbit 单克隆(EPR3776)
  • 免疫印迹; 人类; 1:1000; 图 2g: 2h, 2i
艾博抗(上海)贸易有限公司弹性蛋白抗体(Abcam, ab92547)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 2g: 2h, 2i). Am J Cancer Res (2020) ncbi
domestic rabbit 单克隆(EPR3776)
  • 免疫组化-石蜡切片; 小鼠; 1:200; 图 1d
艾博抗(上海)贸易有限公司弹性蛋白抗体(Abcam, ab92547)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:200 (图 1d). Stem Cell Res Ther (2020) ncbi
domestic rabbit 单克隆(EPR3776)
  • 免疫组化-石蜡切片; 小鼠; 1:500; 图 e9k
艾博抗(上海)贸易有限公司弹性蛋白抗体(Abcam, ab92547)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:500 (图 e9k). Nature (2020) ncbi
domestic rabbit 单克隆(EPR3776)
  • 免疫印迹; 人类; 1:2000; 图 7a, 7b
艾博抗(上海)贸易有限公司弹性蛋白抗体(Abcam, ab92547)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 7a, 7b). Oncol Rep (2020) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 3a, 3c
艾博抗(上海)贸易有限公司弹性蛋白抗体(Abcam, ab137321)被用于被用于免疫印迹在人类样本上 (图 3a, 3c). Aging (Albany NY) (2020) ncbi
小鼠 单克隆(RV202)
  • 免疫细胞化学; 大鼠; 1:1000; 图 s1b
艾博抗(上海)贸易有限公司弹性蛋白抗体(Abcam, ab8978)被用于被用于免疫细胞化学在大鼠样本上浓度为1:1000 (图 s1b). J Neuroinflammation (2020) ncbi
domestic rabbit 单克隆(SP20)
  • 免疫细胞化学; 人类; 图 s2a
艾博抗(上海)贸易有限公司弹性蛋白抗体(Abcam, ab16700)被用于被用于免疫细胞化学在人类样本上 (图 s2a). Sci Rep (2020) ncbi
domestic rabbit 单克隆(EPR3776)
  • 免疫印迹; 人类; 1:2500; 图 2j
  • 免疫印迹; 小鼠; 1:2500; 图 4f
艾博抗(上海)贸易有限公司弹性蛋白抗体(Abcam, ab92547)被用于被用于免疫印迹在人类样本上浓度为1:2500 (图 2j) 和 被用于免疫印迹在小鼠样本上浓度为1:2500 (图 4f). Cancer Cell Int (2020) ncbi
小鼠 单克隆(VI-10)
  • 免疫组化-冰冻切片; 小鼠; 1:300; 图 3d
艾博抗(上海)贸易有限公司弹性蛋白抗体(Abcam, ab20346)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:300 (图 3d). Cell (2020) ncbi
domestic rabbit 单克隆(EPR3776)
艾博抗(上海)贸易有限公司弹性蛋白抗体(Abcam, Ab92547)被用于. Oncol Lett (2020) ncbi
鸡 多克隆
  • 免疫组化; 小鼠; 图 5d
艾博抗(上海)贸易有限公司弹性蛋白抗体(Abcam, ab24525)被用于被用于免疫组化在小鼠样本上 (图 5d). Aging (Albany NY) (2019) ncbi
domestic rabbit 单克隆(EPR3776)
  • 免疫印迹; 人类; 图 s1d
艾博抗(上海)贸易有限公司弹性蛋白抗体(Abcam, ab193555)被用于被用于免疫印迹在人类样本上 (图 s1d). BMC Cancer (2019) ncbi
domestic rabbit 单克隆(EPR3776)
  • 免疫印迹; 人类; 图 2c
艾博抗(上海)贸易有限公司弹性蛋白抗体(Abcam, ab92547)被用于被用于免疫印迹在人类样本上 (图 2c). Braz J Med Biol Res (2019) ncbi
domestic rabbit 单克隆(EPR3776)
  • 免疫组化; 人类; 1:200; 图 2a
艾博抗(上海)贸易有限公司弹性蛋白抗体(Abcam, ab92547)被用于被用于免疫组化在人类样本上浓度为1:200 (图 2a). Breast Cancer Res (2019) ncbi
domestic rabbit 单克隆(EPR3776)
  • 免疫印迹; 人类; 1:1000; 图 3b
艾博抗(上海)贸易有限公司弹性蛋白抗体(Abcam, ab92547)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3b). BMC Ophthalmol (2019) ncbi
domestic rabbit 单克隆(EPR3776)
  • 免疫组化-石蜡切片; 人类; 1:3000; 图 2a, 2e, 2i, 2m
艾博抗(上海)贸易有限公司弹性蛋白抗体(Abcam, ab92547)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:3000 (图 2a, 2e, 2i, 2m). Tissue Eng Part A (2020) ncbi
鸡 多克隆
  • 免疫细胞化学; 小鼠; 1:500; 图 1a
艾博抗(上海)贸易有限公司弹性蛋白抗体(Abcam, ab24525)被用于被用于免疫细胞化学在小鼠样本上浓度为1:500 (图 1a). Mol Biol Cell (2019) ncbi
domestic rabbit 单克隆
  • 免疫印迹; 小鼠; 1:5000; 图 4a
艾博抗(上海)贸易有限公司弹性蛋白抗体(Abcam, EP1071Y)被用于被用于免疫印迹在小鼠样本上浓度为1:5000 (图 4a). Mol Biol Cell (2019) ncbi
小鼠 单克隆(VI-10)
  • 免疫细胞化学; 人类; 1:500; 图 3f
艾博抗(上海)贸易有限公司弹性蛋白抗体(Abcam, VI-10)被用于被用于免疫细胞化学在人类样本上浓度为1:500 (图 3f). Mol Biol Cell (2019) ncbi
domestic rabbit 单克隆(EP1070Y)
  • 免疫印迹; 小鼠; 1:5000; 图 4a
艾博抗(上海)贸易有限公司弹性蛋白抗体(Abcam, EP1070Y)被用于被用于免疫印迹在小鼠样本上浓度为1:5000 (图 4a). Mol Biol Cell (2019) ncbi
domestic rabbit 单克隆(EPR3776)
  • 免疫印迹; 人类; 图 5c
艾博抗(上海)贸易有限公司弹性蛋白抗体(Abcam, ab92547)被用于被用于免疫印迹在人类样本上 (图 5c). Br J Cancer (2019) ncbi
鸡 多克隆
  • 免疫组化-冰冻切片; 小鼠; 图 2c
艾博抗(上海)贸易有限公司弹性蛋白抗体(Abcam, ab24525)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 2c). Nature (2019) ncbi
小鼠 单克隆(V9)
  • 免疫细胞化学; 人类; 图 4, 5
艾博抗(上海)贸易有限公司弹性蛋白抗体(Abcam, V9)被用于被用于免疫细胞化学在人类样本上 (图 4, 5). Breast Cancer Res (2019) ncbi
domestic rabbit 单克隆(EPR3776)
  • 流式细胞仪; 人类; 1:500; 图 1a
艾博抗(上海)贸易有限公司弹性蛋白抗体(Abcam, ab92547)被用于被用于流式细胞仪在人类样本上浓度为1:500 (图 1a). BMC Mol Biol (2019) ncbi
小鼠 单克隆(RV202)
  • 免疫组化-冰冻切片; 小鼠; 图 1e
艾博抗(上海)贸易有限公司弹性蛋白抗体(Abcam, ab8978)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 1e). PLoS ONE (2019) ncbi
domestic rabbit 单克隆(EPR3776)
  • 免疫印迹; 人类; 图 3b
艾博抗(上海)贸易有限公司弹性蛋白抗体(Abcam, ab92547)被用于被用于免疫印迹在人类样本上 (图 3b). Exp Ther Med (2019) ncbi
domestic rabbit 单克隆(EPR3776)
  • 免疫细胞化学; 小鼠; 1:500; 图 2b
艾博抗(上海)贸易有限公司弹性蛋白抗体(Abcam, ab92547)被用于被用于免疫细胞化学在小鼠样本上浓度为1:500 (图 2b). Biosci Rep (2019) ncbi
domestic rabbit 单克隆(EPR3776)
  • 免疫组化-石蜡切片; 大鼠; 1:300; 图 2f
艾博抗(上海)贸易有限公司弹性蛋白抗体(Abcam, 92547)被用于被用于免疫组化-石蜡切片在大鼠样本上浓度为1:300 (图 2f). elife (2019) ncbi
domestic rabbit 单克隆(EPR3776)
  • 免疫组化; 小鼠; 1:200; 图 5d
艾博抗(上海)贸易有限公司弹性蛋白抗体(Abcam, ab92547)被用于被用于免疫组化在小鼠样本上浓度为1:200 (图 5d). elife (2019) ncbi
小鼠 单克隆(RV202)
  • 免疫印迹; 人类; 图 3a, 3c
艾博抗(上海)贸易有限公司弹性蛋白抗体(Abcam, ab8978)被用于被用于免疫印迹在人类样本上 (图 3a, 3c). Breast Cancer (2019) ncbi
domestic rabbit 单克隆(EPR3776)
  • mass cytometry; 人类; 图 3a
艾博抗(上海)贸易有限公司弹性蛋白抗体(Abcam, ab92547)被用于被用于mass cytometry在人类样本上 (图 3a). Cell (2019) ncbi
小鼠 单克隆(RV202)
  • 免疫印迹; 人类; 图 2c
艾博抗(上海)贸易有限公司弹性蛋白抗体(Abcam, ab8978)被用于被用于免疫印迹在人类样本上 (图 2c). FEBS Open Bio (2019) ncbi
domestic rabbit 单克隆
  • 流式细胞仪; 人类; 1:100; 图 s12b, s12a
艾博抗(上海)贸易有限公司弹性蛋白抗体(Abcam, ab203428)被用于被用于流式细胞仪在人类样本上浓度为1:100 (图 s12b, s12a). Nat Commun (2019) ncbi
domestic rabbit 单克隆(EPR3776)
  • 免疫细胞化学; 人类; 1:100; 图 s1d
艾博抗(上海)贸易有限公司弹性蛋白抗体(Abcam, ab92547)被用于被用于免疫细胞化学在人类样本上浓度为1:100 (图 s1d). Nat Commun (2019) ncbi
domestic rabbit 单克隆(EPR3776)
  • 免疫细胞化学; 人类; 1:500; 图 4c35
艾博抗(上海)贸易有限公司弹性蛋白抗体(Abcam, ab92547)被用于被用于免疫细胞化学在人类样本上浓度为1:500 (图 4c35). Ocul Surf (2019) ncbi
domestic rabbit 单克隆(EPR3776)
  • 免疫印迹; 人类; 1:2000; 图 3e, 3f
艾博抗(上海)贸易有限公司弹性蛋白抗体(Abcam, ab92547)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 3e, 3f). Biosci Rep (2019) ncbi
domestic rabbit 单克隆(EPR3776)
  • 免疫组化; 小鼠; 1:200; 图 5a
艾博抗(上海)贸易有限公司弹性蛋白抗体(abcam, ab 92547)被用于被用于免疫组化在小鼠样本上浓度为1:200 (图 5a). elife (2019) ncbi
domestic rabbit 单克隆(EPR3776)
  • 免疫组化; 小鼠; 图 s4a
艾博抗(上海)贸易有限公司弹性蛋白抗体(Abcam, ab92547)被用于被用于免疫组化在小鼠样本上 (图 s4a). Blood Adv (2019) ncbi
小鼠 单克隆(VI-10)
  • 免疫组化-冰冻切片; 小鼠; 图 s13a
艾博抗(上海)贸易有限公司弹性蛋白抗体(Abcam, ab20346)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 s13a). Science (2019) ncbi
domestic rabbit 单克隆(EPR3776)
  • 免疫组化; 小鼠; 2:500; 图 5b
艾博抗(上海)贸易有限公司弹性蛋白抗体(abcam, ab92547)被用于被用于免疫组化在小鼠样本上浓度为2:500 (图 5b). J Clin Invest (2019) ncbi
domestic rabbit 单克隆(EPR3776)
  • 免疫组化-石蜡切片; 人类; 图 2f
  • 免疫细胞化学; 人类; 图 1f
  • 免疫印迹; 人类; 图 2d
艾博抗(上海)贸易有限公司弹性蛋白抗体(Abcam, ab92547)被用于被用于免疫组化-石蜡切片在人类样本上 (图 2f), 被用于免疫细胞化学在人类样本上 (图 1f) 和 被用于免疫印迹在人类样本上 (图 2d). Biomed Res Int (2019) ncbi
鸡 多克隆
  • 免疫组化-冰冻切片; 大鼠; 1:200; 图 2c
艾博抗(上海)贸易有限公司弹性蛋白抗体(Abcam, ab24525)被用于被用于免疫组化-冰冻切片在大鼠样本上浓度为1:200 (图 2c). BMC Med Genomics (2019) ncbi
domestic rabbit 单克隆(EPR3776)
  • 免疫印迹; 人类; 图 2d
艾博抗(上海)贸易有限公司弹性蛋白抗体(Abcam, ab92547)被用于被用于免疫印迹在人类样本上 (图 2d). J Exp Med (2019) ncbi
鸡 多克隆
  • 免疫组化; fruit fly ; 图 s32
艾博抗(上海)贸易有限公司弹性蛋白抗体(Abcam, ab24525)被用于被用于免疫组化在fruit fly 样本上 (图 s32). Science (2019) ncbi
小鼠 单克隆(RV202)
  • 免疫印迹; 人类; 1:3000; 图 2b
艾博抗(上海)贸易有限公司弹性蛋白抗体(Abcam, ab8978)被用于被用于免疫印迹在人类样本上浓度为1:3000 (图 2b). Mol Med Rep (2019) ncbi
domestic rabbit 单克隆(EPR3776)
  • 免疫印迹; 小鼠; 图 7b
艾博抗(上海)贸易有限公司弹性蛋白抗体(abcam, EPR3776)被用于被用于免疫印迹在小鼠样本上 (图 7b). Oncogene (2019) ncbi
domestic rabbit 单克隆(EPR3776)
  • 免疫印迹; 人类; 图 3a
艾博抗(上海)贸易有限公司弹性蛋白抗体(Abcam, ab92547)被用于被用于免疫印迹在人类样本上 (图 3a). J Mol Med (Berl) (2019) ncbi
domestic rabbit 单克隆(EPR3776)
  • 免疫细胞化学; 人类; 图 1b
  • 免疫印迹; 人类; 图 1d
艾博抗(上海)贸易有限公司弹性蛋白抗体(Abcam, ab92547)被用于被用于免疫细胞化学在人类样本上 (图 1b) 和 被用于免疫印迹在人类样本上 (图 1d). J Cell Physiol (2019) ncbi
小鼠 单克隆(RV202)
  • 免疫印迹; 牛; 70 ng/ml; 图 6b
艾博抗(上海)贸易有限公司弹性蛋白抗体(Abcam, ab8978)被用于被用于免疫印迹在牛样本上浓度为70 ng/ml (图 6b). Graefes Arch Clin Exp Ophthalmol (2019) ncbi
小鼠 单克隆(RV202)
  • 免疫细胞化学; 人类; 1:500; 图 s4i
艾博抗(上海)贸易有限公司弹性蛋白抗体(Abcam, ab8978)被用于被用于免疫细胞化学在人类样本上浓度为1:500 (图 s4i). Science (2018) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:5000; 图 1a
艾博抗(上海)贸易有限公司弹性蛋白抗体(abcam, ab45939)被用于被用于免疫印迹在人类样本上浓度为1:5000 (图 1a). Nat Commun (2018) ncbi
domestic rabbit 单克隆(EPR3776)
  • 免疫组化-石蜡切片; 小鼠; 1:500; 图 3a
艾博抗(上海)贸易有限公司弹性蛋白抗体(Abcam, Ab92547)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:500 (图 3a). Exp Mol Med (2018) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 人类; 1:200; 图 11c
艾博抗(上海)贸易有限公司弹性蛋白抗体(Abcam, ab45939)被用于被用于免疫组化-冰冻切片在人类样本上浓度为1:200 (图 11c). J Clin Invest (2018) ncbi
小鼠 单克隆(RV202)
  • 免疫组化-冰冻切片; black ferret
艾博抗(上海)贸易有限公司弹性蛋白抗体(Abcam, ab8978)被用于被用于免疫组化-冰冻切片在black ferret样本上. Nature (2018) ncbi
小鼠 单克隆(RV202)
  • 免疫印迹; 人类; 图 3c
艾博抗(上海)贸易有限公司弹性蛋白抗体(Abcam, ab8978)被用于被用于免疫印迹在人类样本上 (图 3c). J Exp Clin Cancer Res (2018) ncbi
domestic rabbit 单克隆(EPR3776)
  • 免疫组化-冰冻切片; 小鼠; 图 3
  • 免疫细胞化学; 小鼠; 图 6a
艾博抗(上海)贸易有限公司弹性蛋白抗体(Abcam, ab92547)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 3) 和 被用于免疫细胞化学在小鼠样本上 (图 6a). Wound Repair Regen (2018) ncbi
小鼠 单克隆(RV202)
  • 免疫印迹; 人类; 1:1000; 图 2b
艾博抗(上海)贸易有限公司弹性蛋白抗体(Abcam, ab8978)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 2b). Mol Med Rep (2017) ncbi
domestic rabbit 单克隆(EPR3776)
  • 免疫细胞化学; 人类; 图 1b
艾博抗(上海)贸易有限公司弹性蛋白抗体(Abcam, ab92547)被用于被用于免疫细胞化学在人类样本上 (图 1b). Stem Cell Res Ther (2017) ncbi
domestic rabbit 单克隆(EPR3776)
  • 免疫印迹; 人类; 图 3c
艾博抗(上海)贸易有限公司弹性蛋白抗体(Abcam, ab92547)被用于被用于免疫印迹在人类样本上 (图 3c). Oncogene (2017) ncbi
domestic rabbit 单克隆(SP20)
  • 免疫细胞化学; 人类; 图 1e
艾博抗(上海)贸易有限公司弹性蛋白抗体(Abcam, ab16700)被用于被用于免疫细胞化学在人类样本上 (图 1e). Stem Cell Reports (2017) ncbi
小鼠 单克隆(RV202)
  • 免疫组化; 人类; 图 6i
艾博抗(上海)贸易有限公司弹性蛋白抗体(Abcam, ab8978)被用于被用于免疫组化在人类样本上 (图 6i). J Biol Chem (2017) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 人类; 1:10,000; 图 9d
  • 免疫印迹; 人类; 1:1000; 图 3a
艾博抗(上海)贸易有限公司弹性蛋白抗体(Abcam, ab45939)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:10,000 (图 9d) 和 被用于免疫印迹在人类样本上浓度为1:1000 (图 3a). Oncotarget (2017) ncbi
单克隆
  • 免疫组化; 小鼠; 图 s3e
艾博抗(上海)贸易有限公司弹性蛋白抗体(Abcam, AB22651)被用于被用于免疫组化在小鼠样本上 (图 s3e). Cell (2017) ncbi
小鼠 单克隆(RV202)
  • 免疫细胞化学; 小鼠; 1:50; 图 1f
艾博抗(上海)贸易有限公司弹性蛋白抗体(Abcam, ab8978)被用于被用于免疫细胞化学在小鼠样本上浓度为1:50 (图 1f). Am J Transl Res (2017) ncbi
domestic rabbit 单克隆(EPR3776)
  • 免疫组化; 人类; 1:400; 图 7
艾博抗(上海)贸易有限公司弹性蛋白抗体(Abcam, ab92547)被用于被用于免疫组化在人类样本上浓度为1:400 (图 7). Int J Mol Med (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:250; 图 1e
艾博抗(上海)贸易有限公司弹性蛋白抗体(Abcam, ab45939)被用于被用于免疫印迹在人类样本上浓度为1:250 (图 1e). Int J Mol Med (2017) ncbi
domestic rabbit 单克隆(EPR3776)
  • 免疫组化; 小鼠; 1:200; 图 4c
艾博抗(上海)贸易有限公司弹性蛋白抗体(Abcam, ab92547)被用于被用于免疫组化在小鼠样本上浓度为1:200 (图 4c). Nat Commun (2017) ncbi
鸡 多克隆
  • 免疫组化; 大鼠; 1:500; 图 5
艾博抗(上海)贸易有限公司弹性蛋白抗体(Sigma, ab24525)被用于被用于免疫组化在大鼠样本上浓度为1:500 (图 5). Glia (2017) ncbi
domestic rabbit 单克隆(EPR3776)
  • 免疫细胞化学; 人类; 图 4a
  • 免疫印迹; 人类; 图 3c
艾博抗(上海)贸易有限公司弹性蛋白抗体(Abcam, ab92547)被用于被用于免疫细胞化学在人类样本上 (图 4a) 和 被用于免疫印迹在人类样本上 (图 3c). PLoS ONE (2017) ncbi
单克隆
  • 免疫细胞化学; 人类; 图 1e
艾博抗(上海)贸易有限公司弹性蛋白抗体(Abcam, Ab22651)被用于被用于免疫细胞化学在人类样本上 (图 1e). Cell Stem Cell (2017) ncbi
domestic rabbit 单克隆(EPR3776)
  • 免疫组化; 人类; 1:2000; 图 4a
艾博抗(上海)贸易有限公司弹性蛋白抗体(Abcam, ab154207)被用于被用于免疫组化在人类样本上浓度为1:2000 (图 4a). Int J Oncol (2017) ncbi
domestic rabbit 单克隆(EPR3776)
  • 免疫细胞化学; 大鼠; 图 3i
艾博抗(上海)贸易有限公司弹性蛋白抗体(Abcam, ab92547)被用于被用于免疫细胞化学在大鼠样本上 (图 3i). Sci Rep (2017) ncbi
小鼠 单克隆(RV202)
  • 免疫印迹; 人类; 图 1h
艾博抗(上海)贸易有限公司弹性蛋白抗体(Abcam, ab8978)被用于被用于免疫印迹在人类样本上 (图 1h). Biochem Biophys Res Commun (2016) ncbi
domestic rabbit 单克隆(EPR3776)
  • 免疫印迹; 人类; 1:1000; 图 4a
艾博抗(上海)贸易有限公司弹性蛋白抗体(Abcam, ab92547)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 4a). Int J Cancer (2017) ncbi
domestic rabbit 单克隆(EPR3776)
  • 流式细胞仪; 人类; 1:100; 图 s1g
艾博抗(上海)贸易有限公司弹性蛋白抗体(Abcam, EPR3776)被用于被用于流式细胞仪在人类样本上浓度为1:100 (图 s1g). Nat Commun (2016) ncbi
小鼠 单克隆(RV202)
  • 免疫印迹; 人类; 1:1000; 图 s2a
艾博抗(上海)贸易有限公司弹性蛋白抗体(Abcam, ab8978)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 s2a). Nat Commun (2016) ncbi
domestic rabbit 单克隆(EPR3776)
  • 免疫细胞化学; 人类; 1:1000; 图 4b
艾博抗(上海)贸易有限公司弹性蛋白抗体(Abcam, Ab154207)被用于被用于免疫细胞化学在人类样本上浓度为1:1000 (图 4b). Carcinogenesis (2017) ncbi
domestic rabbit 单克隆(EPR3776)
  • 免疫组化-石蜡切片; 小鼠; 图 4b
艾博抗(上海)贸易有限公司弹性蛋白抗体(Abcam, ab92547)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 4b). Oncogenesis (2016) ncbi
domestic rabbit 单克隆(EPR3776)
  • 免疫组化; 人类; 1:100; 图 3a
艾博抗(上海)贸易有限公司弹性蛋白抗体(Abcam, ab92547)被用于被用于免疫组化在人类样本上浓度为1:100 (图 3a). PLoS ONE (2016) ncbi
小鼠 单克隆(V9)
  • 免疫组化-石蜡切片; 人类; 1:100; 图 2a
艾博抗(上海)贸易有限公司弹性蛋白抗体(Abcam, ab8069)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100 (图 2a). Oncotarget (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:200; 图 5
  • 免疫印迹; 小鼠; 图 1
艾博抗(上海)贸易有限公司弹性蛋白抗体(Abcam, ab45939)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:200 (图 5) 和 被用于免疫印迹在小鼠样本上 (图 1). Mol Vis (2016) ncbi
domestic goat 多克隆
  • 免疫细胞化学; 家羊; 1:50; 图 1g
艾博抗(上海)贸易有限公司弹性蛋白抗体(Abcam, ab11256)被用于被用于免疫细胞化学在家羊样本上浓度为1:50 (图 1g). Int J Trichology (2016) ncbi
domestic rabbit 单克隆(EPR3776)
  • 免疫印迹; 人类; 图 4a
艾博抗(上海)贸易有限公司弹性蛋白抗体(Abcam, ab92547)被用于被用于免疫印迹在人类样本上 (图 4a). Oncotarget (2016) ncbi
domestic rabbit 单克隆(EPR3776)
  • 免疫印迹; 人类; 图 5
艾博抗(上海)贸易有限公司弹性蛋白抗体(Abcam, ab92547)被用于被用于免疫印迹在人类样本上 (图 5). Cancer Cell Int (2016) ncbi
domestic rabbit 单克隆(EPR3776)
  • 免疫组化-石蜡切片; 大鼠; 图 2b
艾博抗(上海)贸易有限公司弹性蛋白抗体(Abcam, ab92547)被用于被用于免疫组化-石蜡切片在大鼠样本上 (图 2b). Sci Rep (2016) ncbi
单克隆
  • 流式细胞仪; 人类; 图 st1
艾博抗(上海)贸易有限公司弹性蛋白抗体(Abcam, ab128507)被用于被用于流式细胞仪在人类样本上 (图 st1). Sci Rep (2016) ncbi
domestic rabbit 单克隆(EPR3776)
  • 免疫组化-石蜡切片; 人类; 1:200; 图 4c
  • 免疫细胞化学; 人类; 1:200; 图 2a
  • 免疫印迹; 人类; 图 2b
艾博抗(上海)贸易有限公司弹性蛋白抗体(Abcam, ab92547)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:200 (图 4c), 被用于免疫细胞化学在人类样本上浓度为1:200 (图 2a) 和 被用于免疫印迹在人类样本上 (图 2b). Biochem Pharmacol (2016) ncbi
鸡 多克隆
  • 免疫细胞化学; 人类; 图 4b
艾博抗(上海)贸易有限公司弹性蛋白抗体(Abcam, ab24525)被用于被用于免疫细胞化学在人类样本上 (图 4b). Oncotarget (2016) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 小鼠; 图 2C
  • 免疫印迹; 小鼠; 图 2D
艾博抗(上海)贸易有限公司弹性蛋白抗体(Abcam, ab45939)被用于被用于免疫细胞化学在小鼠样本上 (图 2C) 和 被用于免疫印迹在小鼠样本上 (图 2D). Stem Cell Res Ther (2016) ncbi
小鼠 单克隆(RV202)
  • 免疫组化; 人类; 图 3A
艾博抗(上海)贸易有限公司弹性蛋白抗体(Abcam, ab8978)被用于被用于免疫组化在人类样本上 (图 3A). Sci Rep (2016) ncbi
鸡 多克隆
  • 免疫组化-石蜡切片; 小鼠; 图 s1e
艾博抗(上海)贸易有限公司弹性蛋白抗体(Abcam, ab24525)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 s1e). Nat Biotechnol (2016) ncbi
小鼠 单克隆(RV202)
  • 免疫组化-石蜡切片; 大鼠; 1:50; 图 2
  • 免疫印迹; 大鼠; 1:1000; 图 2
艾博抗(上海)贸易有限公司弹性蛋白抗体(Abcam, ab8978)被用于被用于免疫组化-石蜡切片在大鼠样本上浓度为1:50 (图 2) 和 被用于免疫印迹在大鼠样本上浓度为1:1000 (图 2). Physiol Rep (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; domestic rabbit; 1:200; 图 5
艾博抗(上海)贸易有限公司弹性蛋白抗体(Abcam, ab45939)被用于被用于免疫印迹在domestic rabbit样本上浓度为1:200 (图 5). Oncol Lett (2016) ncbi
鸡 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:100; 图 s6
艾博抗(上海)贸易有限公司弹性蛋白抗体(Abcam, ab24525)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:100 (图 s6). Nat Commun (2016) ncbi
小鼠 单克隆(VI-10)
  • 免疫细胞化学; 人类; 1:100; 图 s15
艾博抗(上海)贸易有限公司弹性蛋白抗体(Abcam, ab20346)被用于被用于免疫细胞化学在人类样本上浓度为1:100 (图 s15). Nat Commun (2016) ncbi
小鼠 单克隆(RV202)
  • 免疫细胞化学; 大鼠; 1:500; 图 1
艾博抗(上海)贸易有限公司弹性蛋白抗体(Abcam, ab8978)被用于被用于免疫细胞化学在大鼠样本上浓度为1:500 (图 1). Mol Med Rep (2016) ncbi
domestic rabbit 单克隆(EPR3776)
  • 免疫组化; 大鼠; 图 3a
艾博抗(上海)贸易有限公司弹性蛋白抗体(Abcam, ab92547)被用于被用于免疫组化在大鼠样本上 (图 3a). Mol Med Rep (2016) ncbi
domestic rabbit 单克隆(SP20)
  • 免疫组化-石蜡切片; 人类; 1:100; 图 1
艾博抗(上海)贸易有限公司弹性蛋白抗体(Abcam, SP20)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100 (图 1). Sci Rep (2016) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 家羊; 图 s1
艾博抗(上海)贸易有限公司弹性蛋白抗体(Abcam, ab45939)被用于被用于免疫细胞化学在家羊样本上 (图 s1). Stem Cell Reports (2016) ncbi
小鼠 单克隆(RV203)
  • 免疫组化-石蜡切片; 大鼠; 1:100; 图 6
艾博抗(上海)贸易有限公司弹性蛋白抗体(Abcam, ab8979)被用于被用于免疫组化-石蜡切片在大鼠样本上浓度为1:100 (图 6). PLoS ONE (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化; 人类; 图 4e
  • 免疫印迹; 人类; 图 4c
艾博抗(上海)贸易有限公司弹性蛋白抗体(Abcam, ab45939)被用于被用于免疫组化在人类样本上 (图 4e) 和 被用于免疫印迹在人类样本上 (图 4c). Proc Natl Acad Sci U S A (2016) ncbi
domestic rabbit 单克隆(EPR3776)
  • 免疫印迹; 小鼠; 图 3a
艾博抗(上海)贸易有限公司弹性蛋白抗体(Abcam, ab92547)被用于被用于免疫印迹在小鼠样本上 (图 3a). PLoS ONE (2016) ncbi
domestic rabbit 单克隆(EPR3776)
  • 免疫组化-冰冻切片; 小鼠; 1:200; 图 3
艾博抗(上海)贸易有限公司弹性蛋白抗体(Abcam, ab92547)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:200 (图 3). Oncogene (2017) ncbi
小鼠 单克隆(RV202)
  • 免疫细胞化学; 大鼠; 1:500; 图 5
  • 免疫印迹; 大鼠; 图 s5
艾博抗(上海)贸易有限公司弹性蛋白抗体(Abcam, RV202)被用于被用于免疫细胞化学在大鼠样本上浓度为1:500 (图 5) 和 被用于免疫印迹在大鼠样本上 (图 s5). Stem Cells Dev (2016) ncbi
domestic rabbit 单克隆(EPR3776)
  • 免疫细胞化学; 人类; 1:200; 图 1
艾博抗(上海)贸易有限公司弹性蛋白抗体(Abcam, ab92547)被用于被用于免疫细胞化学在人类样本上浓度为1:200 (图 1). Sci Rep (2016) ncbi
鸡 多克隆
  • 免疫组化-自由浮动切片; 大鼠; 1:700; 图 6
艾博抗(上海)贸易有限公司弹性蛋白抗体(Abcam, ab24525)被用于被用于免疫组化-自由浮动切片在大鼠样本上浓度为1:700 (图 6). J Neurochem (2016) ncbi
domestic rabbit 单克隆(EPR3776)
  • 免疫组化-石蜡切片; 小鼠; 1:1000; 图 s6d
  • 免疫细胞化学; 小鼠; 1:1000; 图 1g
艾博抗(上海)贸易有限公司弹性蛋白抗体(abcam, EPR3776)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:1000 (图 s6d) 和 被用于免疫细胞化学在小鼠样本上浓度为1:1000 (图 1g). Nat Commun (2016) ncbi
鸡 多克隆
  • 免疫细胞化学; 小鼠; 1:200; 图 1b
艾博抗(上海)贸易有限公司弹性蛋白抗体(Abcam, ab24525)被用于被用于免疫细胞化学在小鼠样本上浓度为1:200 (图 1b). Stem Cell Res (2016) ncbi
domestic rabbit 单克隆(EPR3776)
  • 免疫细胞化学; 人类; 1:200; 图 3
艾博抗(上海)贸易有限公司弹性蛋白抗体(Abcam, ab92547)被用于被用于免疫细胞化学在人类样本上浓度为1:200 (图 3). Sci Rep (2016) ncbi
domestic rabbit 单克隆(EPR3776)
  • 免疫组化-石蜡切片; 人类; 1:100; 图 6
  • 免疫细胞化学; 人类; 1:100; 图 3
艾博抗(上海)贸易有限公司弹性蛋白抗体(abcam, ab92547)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100 (图 6) 和 被用于免疫细胞化学在人类样本上浓度为1:100 (图 3). Tissue Eng Part C Methods (2016) ncbi
小鼠 单克隆(RV202)
  • 免疫印迹; domestic water buffalo; 1:3000; 图 5
艾博抗(上海)贸易有限公司弹性蛋白抗体(Abcam, ab8978)被用于被用于免疫印迹在domestic water buffalo样本上浓度为1:3000 (图 5). Int J Mol Sci (2016) ncbi
小鼠 单克隆(RV202)
  • 免疫组化-石蜡切片; 大鼠; 图 5c
艾博抗(上海)贸易有限公司弹性蛋白抗体(Abcam, ab8978)被用于被用于免疫组化-石蜡切片在大鼠样本上 (图 5c). Oncotarget (2016) ncbi
小鼠 单克隆(V9)
  • 免疫组化; 大鼠; 5 ug/ml; 图 4
艾博抗(上海)贸易有限公司弹性蛋白抗体(abcam, ab8069)被用于被用于免疫组化在大鼠样本上浓度为5 ug/ml (图 4). Sci Rep (2016) ncbi
domestic rabbit 单克隆(EPR3776)
  • 免疫细胞化学; 人类; 1:1000; 图 s1
艾博抗(上海)贸易有限公司弹性蛋白抗体(Abcam, EPR3776)被用于被用于免疫细胞化学在人类样本上浓度为1:1000 (图 s1). Nat Neurosci (2016) ncbi
domestic rabbit 单克隆(EPR3776)
  • 免疫印迹; 人类; 1:3000; 图 5b
艾博抗(上海)贸易有限公司弹性蛋白抗体(Abcam, ab92547)被用于被用于免疫印迹在人类样本上浓度为1:3000 (图 5b). PLoS ONE (2016) ncbi
domestic rabbit 单克隆(EPR3776)
  • 免疫印迹; 人类; 1:2500; 图 4
艾博抗(上海)贸易有限公司弹性蛋白抗体(Abcam, ab92547)被用于被用于免疫印迹在人类样本上浓度为1:2500 (图 4). PLoS ONE (2016) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 小鼠; 1:100; 图 13
艾博抗(上海)贸易有限公司弹性蛋白抗体(abcam, ab45939)被用于被用于免疫细胞化学在小鼠样本上浓度为1:100 (图 13). J Immunol Res (2016) ncbi
domestic rabbit 单克隆(EPR3776)
  • 免疫组化-石蜡切片; 小鼠; 1:1000; 图 6
艾博抗(上海)贸易有限公司弹性蛋白抗体(abcam, ab92547)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:1000 (图 6). Breast Cancer Res (2016) ncbi
小鼠 单克隆(V9)
  • 免疫沉淀; 人类; 图 4
  • 免疫印迹; 人类; 1:10,000; 图 4
艾博抗(上海)贸易有限公司弹性蛋白抗体(Abcam, ab8069)被用于被用于免疫沉淀在人类样本上 (图 4) 和 被用于免疫印迹在人类样本上浓度为1:10,000 (图 4). Nat Commun (2016) ncbi
单克隆
  • 流式细胞仪; 大鼠; 图 6
艾博抗(上海)贸易有限公司弹性蛋白抗体(Abcam, ab128507)被用于被用于流式细胞仪在大鼠样本上 (图 6). Sci Rep (2016) ncbi
小鼠 单克隆(RV202)
  • 免疫细胞化学; 人类; 图 4b
  • 免疫印迹; 人类; 图 4a
  • 免疫细胞化学; 小鼠; 图 4g
  • 免疫印迹; 小鼠; 图 4f
艾博抗(上海)贸易有限公司弹性蛋白抗体(Abcam, Ab8978)被用于被用于免疫细胞化学在人类样本上 (图 4b), 被用于免疫印迹在人类样本上 (图 4a), 被用于免疫细胞化学在小鼠样本上 (图 4g) 和 被用于免疫印迹在小鼠样本上 (图 4f). Nat Commun (2016) ncbi
小鼠 单克隆(VI-10)
  • 免疫细胞化学; 人类; 1:200; 图 5
艾博抗(上海)贸易有限公司弹性蛋白抗体(abcam, ab20346)被用于被用于免疫细胞化学在人类样本上浓度为1:200 (图 5). PLoS ONE (2016) ncbi
domestic rabbit 单克隆(EPR3776)
  • 免疫印迹; 小鼠; 1:200; 图 2
  • 免疫印迹; 大鼠; 1:200; 图 2
艾博抗(上海)贸易有限公司弹性蛋白抗体(abcam, Ab92547)被用于被用于免疫印迹在小鼠样本上浓度为1:200 (图 2) 和 被用于免疫印迹在大鼠样本上浓度为1:200 (图 2). PLoS ONE (2016) ncbi
domestic rabbit 单克隆(EPR3776)
  • 免疫印迹; 小鼠; 图 4c
艾博抗(上海)贸易有限公司弹性蛋白抗体(Abcam, ab92547)被用于被用于免疫印迹在小鼠样本上 (图 4c). Sci Rep (2016) ncbi
domestic rabbit 单克隆(SP20)
  • 免疫印迹; 人类; 图 2
艾博抗(上海)贸易有限公司弹性蛋白抗体(abcam, ab16700)被用于被用于免疫印迹在人类样本上 (图 2). Sci Rep (2016) ncbi
domestic rabbit 单克隆(EPR3776)
  • 免疫组化-冰冻切片; 小鼠; 1:500; 图 2
艾博抗(上海)贸易有限公司弹性蛋白抗体(Abcam, ab92547)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:500 (图 2). Mol Med Rep (2016) ncbi
小鼠 单克隆(V9)
  • 免疫细胞化学; 人类; 图 2b
  • 免疫印迹; 人类; 图 2c
艾博抗(上海)贸易有限公司弹性蛋白抗体(Abcam, ab8069)被用于被用于免疫细胞化学在人类样本上 (图 2b) 和 被用于免疫印迹在人类样本上 (图 2c). Reprod Sci (2016) ncbi
domestic goat 多克隆
  • 免疫细胞化学; 人类; 1:100; 图 4
艾博抗(上海)贸易有限公司弹性蛋白抗体(Abcam, Ab-11256)被用于被用于免疫细胞化学在人类样本上浓度为1:100 (图 4). J Cancer (2016) ncbi
小鼠 单克隆(V9)
  • 免疫组化; 人类; 图 2
艾博抗(上海)贸易有限公司弹性蛋白抗体(Abcam, ab8069)被用于被用于免疫组化在人类样本上 (图 2). Int Braz J Urol (2015) ncbi
domestic rabbit 单克隆(EPR3776)
  • 免疫印迹; 人类; 1:1000; 图 4h
艾博抗(上海)贸易有限公司弹性蛋白抗体(Abcam, 92547)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 4h). Int J Oncol (2016) ncbi
domestic rabbit 单克隆(EPR3776)
  • 免疫印迹; 人类; 图 2c
艾博抗(上海)贸易有限公司弹性蛋白抗体(Abcam, ab92547)被用于被用于免疫印迹在人类样本上 (图 2c). Onco Targets Ther (2015) ncbi
小鼠 单克隆(RV202)
  • 免疫印迹; 人类; 1:500; 图 2
艾博抗(上海)贸易有限公司弹性蛋白抗体(Abcam, ab8978)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 2). Mol Med Rep (2016) ncbi
domestic rabbit 单克隆(SP20)
  • 免疫细胞化学; 小鼠; 图 5i
艾博抗(上海)贸易有限公司弹性蛋白抗体(abcam, ab16700)被用于被用于免疫细胞化学在小鼠样本上 (图 5i). Cell Tissue Res (2016) ncbi
domestic rabbit 单克隆(EPR3776)
  • 免疫细胞化学; 人类; 图 1
  • 免疫印迹; 人类; 图 1
艾博抗(上海)贸易有限公司弹性蛋白抗体(Abcam, Ab92547)被用于被用于免疫细胞化学在人类样本上 (图 1) 和 被用于免疫印迹在人类样本上 (图 1). Sci Rep (2015) ncbi
小鼠 单克隆(RV202)
  • 免疫印迹; 人类; 1:1000; 图 5C
艾博抗(上海)贸易有限公司弹性蛋白抗体(Abcam, ab8978)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 5C). Mol Oncol (2016) ncbi
小鼠 单克隆(RV202)
  • 免疫组化-石蜡切片; 人类; 1:100; 图 1c
艾博抗(上海)贸易有限公司弹性蛋白抗体(Abcam, Ab8978)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100 (图 1c). PLoS ONE (2015) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:2500
艾博抗(上海)贸易有限公司弹性蛋白抗体(Abcam, ab-45939)被用于被用于免疫组化在小鼠样本上浓度为1:2500. Cell Tissue Res (2016) ncbi
小鼠 单克隆(RV202)
  • 免疫细胞化学; 人类; 1:200
艾博抗(上海)贸易有限公司弹性蛋白抗体(Abcam, ab8978)被用于被用于免疫细胞化学在人类样本上浓度为1:200. Mol Brain (2015) ncbi
单克隆
  • 免疫细胞化学; 小鼠; 1:500; 图 5
艾博抗(上海)贸易有限公司弹性蛋白抗体(Abcam, ab22651)被用于被用于免疫细胞化学在小鼠样本上浓度为1:500 (图 5). PLoS Biol (2015) ncbi
小鼠 单克隆(RV203)
  • 免疫细胞化学; 人类; 图 2b
  • 免疫印迹; 人类; 1:100; 图 s4c
艾博抗(上海)贸易有限公司弹性蛋白抗体(AbCam, ab8979)被用于被用于免疫细胞化学在人类样本上 (图 2b) 和 被用于免疫印迹在人类样本上浓度为1:100 (图 s4c). Cell Death Dis (2015) ncbi
domestic rabbit 单克隆(EPR3776)
  • 免疫组化-石蜡切片; 小鼠; 1:1000; 图 2
艾博抗(上海)贸易有限公司弹性蛋白抗体(Abcam, AB92547)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:1000 (图 2). PLoS ONE (2015) ncbi
domestic rabbit 单克隆(EPR3776)
  • 免疫细胞化学; 人类
艾博抗(上海)贸易有限公司弹性蛋白抗体(Abcam, ab92547)被用于被用于免疫细胞化学在人类样本上. Adv Healthc Mater (2015) ncbi
domestic rabbit 单克隆(EPR3776)
  • 免疫组化; 犬; 图 4
艾博抗(上海)贸易有限公司弹性蛋白抗体(Abcam, ab92547)被用于被用于免疫组化在犬样本上 (图 4). PLoS Genet (2015) ncbi
domestic rabbit 单克隆(EPR3776)
  • 免疫细胞化学; 小鼠; 1:400
艾博抗(上海)贸易有限公司弹性蛋白抗体(Abcam, ab92547)被用于被用于免疫细胞化学在小鼠样本上浓度为1:400. Biochim Biophys Acta (2015) ncbi
domestic rabbit 单克隆(EPR3776)
  • 免疫细胞化学; 人类; 1:400; 图 4
艾博抗(上海)贸易有限公司弹性蛋白抗体(abcam, ab92547)被用于被用于免疫细胞化学在人类样本上浓度为1:400 (图 4). Mol Cancer (2015) ncbi
domestic rabbit 单克隆(EPR3776)
  • 免疫印迹; 人类; 1:1000; 图 3
艾博抗(上海)贸易有限公司弹性蛋白抗体(AbCam, ab92547)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3). Oncotarget (2015) ncbi
小鼠 单克隆(V9)
  • 免疫细胞化学; 人类; 图 3
艾博抗(上海)贸易有限公司弹性蛋白抗体(Abcam, ab8069)被用于被用于免疫细胞化学在人类样本上 (图 3). Mol Cell Proteomics (2015) ncbi
小鼠 单克隆(RV202)
  • 免疫细胞化学; 人类; 1:25
艾博抗(上海)贸易有限公司弹性蛋白抗体(Abcam, ab8978)被用于被用于免疫细胞化学在人类样本上浓度为1:25. Biomaterials (2015) ncbi
小鼠 单克隆(RV202)
  • 免疫细胞化学; 人类; 1:20; 图 4
艾博抗(上海)贸易有限公司弹性蛋白抗体(Abcam, Ab8978)被用于被用于免疫细胞化学在人类样本上浓度为1:20 (图 4). Cell J (2015) ncbi
小鼠 单克隆(RV202)
  • 免疫印迹; 人类; 1:1000; 图 2
艾博抗(上海)贸易有限公司弹性蛋白抗体(Abcam, ab8978)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 2). PLoS ONE (2015) ncbi
小鼠 单克隆(V9)
  • 免疫印迹; 人类; 图 2e
艾博抗(上海)贸易有限公司弹性蛋白抗体(Abcam, ab8069)被用于被用于免疫印迹在人类样本上 (图 2e). PLoS ONE (2015) ncbi
小鼠 单克隆(RV202)
  • 免疫细胞化学; 人类; 1:100; 图 4d
艾博抗(上海)贸易有限公司弹性蛋白抗体(Abcam, ab8978)被用于被用于免疫细胞化学在人类样本上浓度为1:100 (图 4d). Mol Med Rep (2015) ncbi
小鼠 单克隆(RV202)
  • 免疫印迹; 人类; 图 3
艾博抗(上海)贸易有限公司弹性蛋白抗体(Abcam, AB8978)被用于被用于免疫印迹在人类样本上 (图 3). Sci Rep (2015) ncbi
domestic rabbit 单克隆(SP20)
  • 免疫组化-石蜡切片; 人类; 图 4
艾博抗(上海)贸易有限公司弹性蛋白抗体(Abcam, ab16700)被用于被用于免疫组化-石蜡切片在人类样本上 (图 4). Stem Cell Reports (2015) ncbi
小鼠 单克隆(RV202)
  • 免疫细胞化学; 人类
艾博抗(上海)贸易有限公司弹性蛋白抗体(Abcam, ab8978-100)被用于被用于免疫细胞化学在人类样本上. J Vis Exp (2015) ncbi
domestic rabbit 单克隆(EPR3776)
  • 免疫印迹; 小鼠; 图 7b
艾博抗(上海)贸易有限公司弹性蛋白抗体(Abcam, ab92547)被用于被用于免疫印迹在小鼠样本上 (图 7b). Neoplasia (2015) ncbi
小鼠 单克隆(V9)
  • 免疫细胞化学; 人类
艾博抗(上海)贸易有限公司弹性蛋白抗体(Abcam, ab8069)被用于被用于免疫细胞化学在人类样本上. PLoS ONE (2014) ncbi
小鼠 单克隆(V9)
  • 免疫组化-石蜡切片; 人类; 图 1
艾博抗(上海)贸易有限公司弹性蛋白抗体(Abcam, ab8069)被用于被用于免疫组化-石蜡切片在人类样本上 (图 1). In Vitro Cell Dev Biol Anim (2015) ncbi
domestic rabbit 单克隆(EPR3776)
  • 免疫组化; 人类; 图 1
艾博抗(上海)贸易有限公司弹性蛋白抗体(Abcam, ab92547)被用于被用于免疫组化在人类样本上 (图 1). Circ Heart Fail (2015) ncbi
domestic rabbit 单克隆(EPR3776)
  • 免疫组化-石蜡切片; 小鼠; 1:500; 图 3b
艾博抗(上海)贸易有限公司弹性蛋白抗体(Abcam, ab92547)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:500 (图 3b). Int J Cancer (2015) ncbi
  • 免疫细胞化学; anapsid reptiles; 1:50-1:100
艾博抗(上海)贸易有限公司弹性蛋白抗体(Abcam, ab71144)被用于被用于免疫细胞化学在anapsid reptiles样本上浓度为1:50-1:100. Environ Sci Technol (2014) ncbi
单克隆
  • 免疫组化-冰冻切片; 小鼠; 1:200
艾博抗(上海)贸易有限公司弹性蛋白抗体(Abcam, AB22651)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:200. Nat Neurosci (2014) ncbi
小鼠 单克隆(RV202)
  • 免疫细胞化学; 大鼠
艾博抗(上海)贸易有限公司弹性蛋白抗体(Abcam, ab8978)被用于被用于免疫细胞化学在大鼠样本上. Int J Mol Med (2014) ncbi
小鼠 单克隆(RV202)
  • 免疫细胞化学; 人类; 1:200
艾博抗(上海)贸易有限公司弹性蛋白抗体(Abcam, ab8978)被用于被用于免疫细胞化学在人类样本上浓度为1:200. Acta Naturae (2014) ncbi
domestic rabbit 单克隆(EPR3776)
  • 免疫组化-冰冻切片; 人类; 1:100
艾博抗(上海)贸易有限公司弹性蛋白抗体(Abcam, ab92547)被用于被用于免疫组化-冰冻切片在人类样本上浓度为1:100. J Cell Mol Med (2014) ncbi
小鼠 单克隆(V9)
  • 免疫组化; 人类; 1:100; 图 7
艾博抗(上海)贸易有限公司弹性蛋白抗体(Abcam, ab8069)被用于被用于免疫组化在人类样本上浓度为1:100 (图 7). Clin Exp Metastasis (2014) ncbi
小鼠 单克隆(RV202)
  • 免疫印迹; 人类; 图 2A
艾博抗(上海)贸易有限公司弹性蛋白抗体(Abcam, ab8978)被用于被用于免疫印迹在人类样本上 (图 2A). Prostate (2014) ncbi
小鼠 单克隆(VI-10)
  • 免疫组化-石蜡切片; 小鼠; 1:500
艾博抗(上海)贸易有限公司弹性蛋白抗体(Abcam, ab20346)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:500. Reproduction (2014) ncbi
小鼠 单克隆(RV202)
  • 免疫组化-石蜡切片; 小鼠
艾博抗(上海)贸易有限公司弹性蛋白抗体(Abcam, ab8978)被用于被用于免疫组化-石蜡切片在小鼠样本上. Am J Pathol (2013) ncbi
domestic rabbit 单克隆(EPR3776)
  • 免疫组化-冰冻切片; 小鼠; 1:500
艾博抗(上海)贸易有限公司弹性蛋白抗体(Abcam, ab92547)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:500. Angiogenesis (2013) ncbi
小鼠 单克隆(RV202)
  • 免疫印迹; 人类
艾博抗(上海)贸易有限公司弹性蛋白抗体(Abcam, ab8978)被用于被用于免疫印迹在人类样本上. PLoS ONE (2013) ncbi
圣克鲁斯生物技术
小鼠 单克隆(V9)
  • 免疫组化; 人类; 1:100; 图 5
圣克鲁斯生物技术弹性蛋白抗体(Santa Cruz Biotechnology, sc- 6260)被用于被用于免疫组化在人类样本上浓度为1:100 (图 5). Eur J Histochem (2020) ncbi
小鼠 单克隆(9E7E7)
  • 免疫组化-石蜡切片; 人类; 图 4e
圣克鲁斯生物技术弹性蛋白抗体(Santa Cruz, sc-66001)被用于被用于免疫组化-石蜡切片在人类样本上 (图 4e). Oncogenesis (2020) ncbi
小鼠 单克隆(5G3F10)
  • 免疫印迹; 人类; 1:1500; 图 5a
圣克鲁斯生物技术弹性蛋白抗体(Santa Cruz, 5G3F10)被用于被用于免疫印迹在人类样本上浓度为1:1500 (图 5a). BMC Cancer (2019) ncbi
小鼠 单克隆(E-5)
  • 免疫组化-冰冻切片; 小鼠; 1:250; 图 2s1k
圣克鲁斯生物技术弹性蛋白抗体(Santa Cruz, sc-373717)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:250 (图 2s1k). elife (2019) ncbi
小鼠 单克隆(V9)
  • 免疫细胞化学; 人类; 1:100; 图 3c
圣克鲁斯生物技术弹性蛋白抗体(Santa, V9)被用于被用于免疫细胞化学在人类样本上浓度为1:100 (图 3c). BMC Cancer (2019) ncbi
小鼠 单克隆(RV202)
  • 免疫印迹; 大鼠; 图 3i
圣克鲁斯生物技术弹性蛋白抗体(Santa Cruz, sc-32322)被用于被用于免疫印迹在大鼠样本上 (图 3i). Front Endocrinol (Lausanne) (2019) ncbi
小鼠 单克隆(V9)
  • 免疫组化; 人类; 1:50; 图 8b
圣克鲁斯生物技术弹性蛋白抗体(Santa, sc-6260)被用于被用于免疫组化在人类样本上浓度为1:50 (图 8b). Nat Cell Biol (2019) ncbi
小鼠 单克隆(RV202)
  • 免疫印迹; 人类; 图 4d
圣克鲁斯生物技术弹性蛋白抗体(Santa Cruz Biotechnology, sc-32322)被用于被用于免疫印迹在人类样本上 (图 4d). Sci Rep (2018) ncbi
小鼠 单克隆(RV202)
  • 免疫组化; 小鼠; 图 2b
  • 免疫印迹; 小鼠; 图 s5a
圣克鲁斯生物技术弹性蛋白抗体(Santa Cruz, sc-32322)被用于被用于免疫组化在小鼠样本上 (图 2b) 和 被用于免疫印迹在小鼠样本上 (图 s5a). Sci Rep (2018) ncbi
小鼠 单克隆(2Q1123)
  • 免疫印迹; 人类; 图 2a
圣克鲁斯生物技术弹性蛋白抗体(SantaCruz, sc-73258)被用于被用于免疫印迹在人类样本上 (图 2a). Exp Ther Med (2018) ncbi
小鼠 单克隆(E-5)
  • 免疫印迹; 人类; 1:1000; 图 4a
圣克鲁斯生物技术弹性蛋白抗体(Santa Cruz, sc-373717)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 4a). Exp Cell Res (2018) ncbi
小鼠 单克隆(5G3F10)
  • 免疫印迹; 人类; 1:500; 图 4
圣克鲁斯生物技术弹性蛋白抗体(Santa Cruz, SC-66002)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 4). Kidney Int Rep (2017) ncbi
小鼠 单克隆(V9)
  • 免疫细胞化学; 人类; 1:50; 图 7d
  • 免疫印迹; 人类; 图 7b
圣克鲁斯生物技术弹性蛋白抗体(Santa Cruz, sc-6260)被用于被用于免疫细胞化学在人类样本上浓度为1:50 (图 7d) 和 被用于免疫印迹在人类样本上 (图 7b). Cancer Res (2018) ncbi
小鼠 单克隆(0.N.602)
  • 免疫印迹; 人类; 图 4d
圣克鲁斯生物技术弹性蛋白抗体(SantaCruz, sc-73259)被用于被用于免疫印迹在人类样本上 (图 4d). Oncotarget (2017) ncbi
小鼠 单克隆(E-5)
  • 免疫印迹; 人类; 1:800; 图 6a
圣克鲁斯生物技术弹性蛋白抗体(Santa Cruz, sc-373717)被用于被用于免疫印迹在人类样本上浓度为1:800 (图 6a). Exp Ther Med (2017) ncbi
小鼠 单克隆(V9)
  • 免疫印迹; 人类; 1:1000; 图 4e
圣克鲁斯生物技术弹性蛋白抗体(Santa Cruz, sc-6260)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 4e). Int J Mol Med (2017) ncbi
小鼠 单克隆(V9)
  • 免疫细胞化学; 人类; 图 6d
圣克鲁斯生物技术弹性蛋白抗体(SantaCruz, V9)被用于被用于免疫细胞化学在人类样本上 (图 6d). EMBO J (2017) ncbi
小鼠 单克隆(V9)
  • 免疫细胞化学; 人类; 1:1000; 图 4B
  • 免疫印迹; 人类; 图 4A
圣克鲁斯生物技术弹性蛋白抗体(Santa Cruz, sc-6260)被用于被用于免疫细胞化学在人类样本上浓度为1:1000 (图 4B) 和 被用于免疫印迹在人类样本上 (图 4A). Oncol Lett (2017) ncbi
小鼠 单克隆(V9)
  • 免疫印迹; 人类; 1:1000; 图 7b
圣克鲁斯生物技术弹性蛋白抗体(Santa Cruz, SC-6260)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 7b). Mol Vis (2017) ncbi
小鼠 单克隆(0.N.602)
  • 免疫印迹; 人类; 图 1c
圣克鲁斯生物技术弹性蛋白抗体(Santa Cruz, sc-73259)被用于被用于免疫印迹在人类样本上 (图 1c). Biosci Rep (2017) ncbi
小鼠 单克隆(0.N.602)
  • 流式细胞仪; domestic rabbit; 1:100; 图 2
圣克鲁斯生物技术弹性蛋白抗体(Santa Cruz, sc-73259)被用于被用于流式细胞仪在domestic rabbit样本上浓度为1:100 (图 2). Stem Cell Res Ther (2017) ncbi
小鼠 单克隆(2Q1123)
  • 免疫印迹; 人类; 图 s2
圣克鲁斯生物技术弹性蛋白抗体(Santa Cruz, sc-73258)被用于被用于免疫印迹在人类样本上 (图 s2). Neoplasia (2017) ncbi
小鼠 单克隆(V9)
  • 免疫细胞化学; 人类; 图 s2i
圣克鲁斯生物技术弹性蛋白抗体(SCBT, sc6260)被用于被用于免疫细胞化学在人类样本上 (图 s2i). Cell (2016) ncbi
小鼠 单克隆(V9)
  • 免疫组化-石蜡切片; 人类; 图 4b
圣克鲁斯生物技术弹性蛋白抗体(Santa Cruz, sc-6260)被用于被用于免疫组化-石蜡切片在人类样本上 (图 4b). PLoS ONE (2016) ncbi
小鼠 单克隆(E-5)
  • 免疫印迹; 人类; 图 4f
圣克鲁斯生物技术弹性蛋白抗体(Santa Cruz, E-5)被用于被用于免疫印迹在人类样本上 (图 4f). Oncogenesis (2016) ncbi
小鼠 单克隆
  • 免疫印迹; 人类; 图 4f
圣克鲁斯生物技术弹性蛋白抗体(Santa Cruz, E-5)被用于被用于免疫印迹在人类样本上 (图 4f). Oncogenesis (2016) ncbi
小鼠 单克隆(2Q1123)
  • 免疫组化-石蜡切片; 人类; 图 6a
  • 免疫印迹; 人类; 图 5a
圣克鲁斯生物技术弹性蛋白抗体(Santa Cruz, sc-73258)被用于被用于免疫组化-石蜡切片在人类样本上 (图 6a) 和 被用于免疫印迹在人类样本上 (图 5a). Oncotarget (2017) ncbi
小鼠 单克隆
  • 免疫印迹; 人类; 1:1000; 图 2
圣克鲁斯生物技术弹性蛋白抗体(Santa Cruz Biotechnologies, E-5)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 2). Cell Adh Migr (2017) ncbi
小鼠 单克隆(E-5)
  • 免疫印迹; 人类; 1:1000; 图 2
圣克鲁斯生物技术弹性蛋白抗体(Santa Cruz Biotechnologies, E-5)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 2). Cell Adh Migr (2017) ncbi
小鼠 单克隆(0.N.602)
  • 免疫印迹; 人类; 1:200; 图 6a
圣克鲁斯生物技术弹性蛋白抗体(Santa Cruz, Sc-73259)被用于被用于免疫印迹在人类样本上浓度为1:200 (图 6a). Carcinogenesis (2017) ncbi
小鼠 单克隆(V9)
  • 免疫组化; 牛; 1:100; 图 7c
圣克鲁斯生物技术弹性蛋白抗体(Santa Cruz, Sc-6260)被用于被用于免疫组化在牛样本上浓度为1:100 (图 7c). PLoS ONE (2016) ncbi
小鼠 单克隆(E-5)
  • 免疫印迹; 人类; 1:1000; 图 1b
圣克鲁斯生物技术弹性蛋白抗体(SantaCruz, sc-373717)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 1b). Biol Open (2016) ncbi
小鼠 单克隆(E-5)
  • 免疫细胞化学; 人类; 1:500; 图 6d
  • 免疫印迹; 人类; 1:500; 图 5a
圣克鲁斯生物技术弹性蛋白抗体(Santa Cruz, sc373717)被用于被用于免疫细胞化学在人类样本上浓度为1:500 (图 6d) 和 被用于免疫印迹在人类样本上浓度为1:500 (图 5a). Oncotarget (2016) ncbi
小鼠 单克隆(5G3F10)
  • 免疫印迹; 人类; 1:100; 图 2d
圣克鲁斯生物技术弹性蛋白抗体(Santa Cruz Biotechnology, sc-66002)被用于被用于免疫印迹在人类样本上浓度为1:100 (图 2d). Oncotarget (2016) ncbi
小鼠 单克隆(E-5)
  • 免疫组化-石蜡切片; 人类; 1:200
圣克鲁斯生物技术弹性蛋白抗体(Santa Cruz, sc-373717)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:200. Oncol Lett (2016) ncbi
小鼠 单克隆(V9)
  • 免疫印迹; 大鼠; 1:1000; 表 1
圣克鲁斯生物技术弹性蛋白抗体(Santa Cruz, sc-6260)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (表 1). Spermatogenesis (2016) ncbi
小鼠 单克隆(RV203)
  • 免疫印迹; 人类; 1:1000; 图 7f
圣克鲁斯生物技术弹性蛋白抗体(Santa Cruz, sc-58899)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 7f). Oncotarget (2016) ncbi
小鼠 单克隆(V9)
  • 免疫细胞化学; 人类; 1:100; 图 2d
圣克鲁斯生物技术弹性蛋白抗体(SantaCruz, sc-6260)被用于被用于免疫细胞化学在人类样本上浓度为1:100 (图 2d). Endocrinology (2016) ncbi
小鼠 单克隆(RV202)
  • 免疫印迹; 人类; 图 1b
圣克鲁斯生物技术弹性蛋白抗体(Santa Cruz, sc-32322)被用于被用于免疫印迹在人类样本上 (图 1b). Oncotarget (2016) ncbi
小鼠 单克隆(RV202)
  • 免疫印迹; 人类; 图 3
圣克鲁斯生物技术弹性蛋白抗体(santa Cruz, sc-3232)被用于被用于免疫印迹在人类样本上 (图 3). Cancer Gene Ther (2016) ncbi
小鼠 单克隆(V9)
  • 免疫印迹; 大鼠; 1:1000; 图 2
圣克鲁斯生物技术弹性蛋白抗体(Santa Cruz, sc-6260)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 2). Sci Rep (2016) ncbi
小鼠 单克隆(V9)
  • 免疫细胞化学; 人类; 图 2a
圣克鲁斯生物技术弹性蛋白抗体(Santa Cruz, V9)被用于被用于免疫细胞化学在人类样本上 (图 2a). BMC Cancer (2016) ncbi
小鼠 单克隆(V9)
  • 免疫沉淀; 大鼠; 图 4
圣克鲁斯生物技术弹性蛋白抗体(Santa Cruz Biotechnology, sc-6260)被用于被用于免疫沉淀在大鼠样本上 (图 4). Sci Rep (2016) ncbi
小鼠 单克隆(V9)
  • 免疫组化; 人类; 1:200; 图 6b
圣克鲁斯生物技术弹性蛋白抗体(Santa Cruz, sc-6260)被用于被用于免疫组化在人类样本上浓度为1:200 (图 6b). Mol Cancer Res (2016) ncbi
小鼠 单克隆(V9)
  • 免疫组化-石蜡切片; 大鼠; 图 2
圣克鲁斯生物技术弹性蛋白抗体(Santa Cruz, sc-6260)被用于被用于免疫组化-石蜡切片在大鼠样本上 (图 2). Biomed Res Int (2016) ncbi
小鼠 单克隆(V9)
  • 免疫细胞化学; 人类; 1:1000; 图 3
圣克鲁斯生物技术弹性蛋白抗体(Santa Cruz, SC-6260)被用于被用于免疫细胞化学在人类样本上浓度为1:1000 (图 3). Oncol Rep (2016) ncbi
小鼠 单克隆(V9)
  • 免疫印迹; 人类; 1:200; 图 5c
圣克鲁斯生物技术弹性蛋白抗体(SantaCruz, sc-6260)被用于被用于免疫印迹在人类样本上浓度为1:200 (图 5c). Oncotarget (2016) ncbi
小鼠 单克隆(V9)
  • 免疫印迹; 人类; 1:1000; 图 1c
圣克鲁斯生物技术弹性蛋白抗体(Santa Cruz, sc-6260)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 1c). Mol Med Rep (2016) ncbi
小鼠 单克隆(E-5)
  • 免疫细胞化学; 人类; 1:400; 图 1
圣克鲁斯生物技术弹性蛋白抗体(Santa Cruz, sc-373717)被用于被用于免疫细胞化学在人类样本上浓度为1:400 (图 1). Mol Med Rep (2016) ncbi
小鼠 单克隆(V9)
  • 免疫细胞化学; 人类; 1:50; 图 2a
圣克鲁斯生物技术弹性蛋白抗体(Santa Cruz, sc-6260)被用于被用于免疫细胞化学在人类样本上浓度为1:50 (图 2a). Ann Oncol (2016) ncbi
小鼠 单克隆(E-5)
  • 免疫印迹; 人类; 1:1000; 图 2
圣克鲁斯生物技术弹性蛋白抗体(santa Cruz, Sc-373717)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 2). PLoS ONE (2016) ncbi
小鼠 单克隆(V9)
  • 免疫细胞化学; 大鼠; 1:100; 图 3g
圣克鲁斯生物技术弹性蛋白抗体(Santa Cruz, Sc-6260)被用于被用于免疫细胞化学在大鼠样本上浓度为1:100 (图 3g). Sci Rep (2016) ncbi
小鼠 单克隆(V9)
  • 免疫印迹; 人类; 图 5
圣克鲁斯生物技术弹性蛋白抗体(Santa Cruz, SC-6260)被用于被用于免疫印迹在人类样本上 (图 5). Sci Rep (2016) ncbi
小鼠 单克隆(V9)
  • 免疫印迹; 人类; 图 5
圣克鲁斯生物技术弹性蛋白抗体(Santa Cruz, sc-6260)被用于被用于免疫印迹在人类样本上 (图 5). Sci Rep (2016) ncbi
小鼠 单克隆(V9)
  • 免疫印迹; 大鼠; 1:200; 图 2
圣克鲁斯生物技术弹性蛋白抗体(Santa Cruz, sc-6260)被用于被用于免疫印迹在大鼠样本上浓度为1:200 (图 2). Cell Signal (2016) ncbi
小鼠 单克隆(J144)
  • 免疫组化; 人类; 1:100; 图 3
圣克鲁斯生物技术弹性蛋白抗体(santa Cruz, sc-53464)被用于被用于免疫组化在人类样本上浓度为1:100 (图 3). Sci Rep (2016) ncbi
小鼠 单克隆(E-5)
  • 免疫细胞化学; 小鼠; 1:1000; 图 4
圣克鲁斯生物技术弹性蛋白抗体(Santa Cruz, sc-373717)被用于被用于免疫细胞化学在小鼠样本上浓度为1:1000 (图 4). J Neuroinflammation (2016) ncbi
小鼠 单克隆(RV202)
  • 免疫印迹; 大鼠; 1:1000; 图 3
圣克鲁斯生物技术弹性蛋白抗体(Santa Cruz Biotechnology, sc-32322)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 3). Int J Mol Med (2016) ncbi
小鼠 单克隆(V9)
  • 免疫印迹; 人类; 1:500; 图 st3
圣克鲁斯生物技术弹性蛋白抗体(Santa Cruz, sc-6260)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 st3). Nat Commun (2016) ncbi
小鼠 单克隆(0.N.602)
  • 免疫细胞化学; 小鼠; 图 s1b
圣克鲁斯生物技术弹性蛋白抗体(Santa Cruz, sc73259)被用于被用于免疫细胞化学在小鼠样本上 (图 s1b). Toxicol Sci (2016) ncbi
小鼠 单克隆(RV202)
  • 免疫组化-石蜡切片; 小鼠; 1:50; 图 s5
圣克鲁斯生物技术弹性蛋白抗体(Santa Cruz Biotechnology, SC32322)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:50 (图 s5). Breast Cancer Res (2016) ncbi
小鼠 单克隆(V9)
  • 免疫印迹; 人类; 1:500; 图 4
圣克鲁斯生物技术弹性蛋白抗体(Santa Cruz Biotechnology, sc-6260)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 4). Genes Cancer (2015) ncbi
小鼠 单克隆(V9)
  • 免疫组化; 人类; 1:250; 表 1
圣克鲁斯生物技术弹性蛋白抗体(Santa Cruz, sc-6260)被用于被用于免疫组化在人类样本上浓度为1:250 (表 1). J Anat (2016) ncbi
小鼠 单克隆(RV202)
  • 免疫组化; 人类; 图 1
圣克鲁斯生物技术弹性蛋白抗体(Santa Cruz, sc-32322)被用于被用于免疫组化在人类样本上 (图 1). PLoS ONE (2015) ncbi
小鼠 单克隆(V9)
  • 免疫组化-石蜡切片; 大鼠; 1:150; 图 3
圣克鲁斯生物技术弹性蛋白抗体(Santa Cruz Biotechnology, sc-6260)被用于被用于免疫组化-石蜡切片在大鼠样本上浓度为1:150 (图 3). Reproduction (2016) ncbi
小鼠 单克隆(E-5)
  • 免疫印迹; 大鼠; 1:400; 图 2
圣克鲁斯生物技术弹性蛋白抗体(Santa Cruz, sc-373717)被用于被用于免疫印迹在大鼠样本上浓度为1:400 (图 2). Mol Med Rep (2015) ncbi
小鼠 单克隆(V9)
  • 免疫印迹; 人类; 1:1000; 图 3
圣克鲁斯生物技术弹性蛋白抗体(Santa Cruz Biotechnology, sc-6260)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3). Mol Med Rep (2015) ncbi
小鼠 单克隆(V9)
  • 免疫印迹; 人类; 图 3C
圣克鲁斯生物技术弹性蛋白抗体(Santa cruz, V-9)被用于被用于免疫印迹在人类样本上 (图 3C). Mol Cell Biol (2015) ncbi
小鼠 单克隆(V9)
  • 免疫印迹; 人类; 图 s1d
圣克鲁斯生物技术弹性蛋白抗体(Santa Cruz Biotechnology, sc-6260)被用于被用于免疫印迹在人类样本上 (图 s1d). Oncotarget (2015) ncbi
小鼠 单克隆(V9)
  • 免疫组化; 大鼠; 1:200; 图 s6
圣克鲁斯生物技术弹性蛋白抗体(Santa Cruz, SC-6260)被用于被用于免疫组化在大鼠样本上浓度为1:200 (图 s6). PLoS ONE (2015) ncbi
小鼠 单克隆(V9)
  • 免疫组化; 大鼠; 1:200; 图 6
圣克鲁斯生物技术弹性蛋白抗体(santa Cruz, sc-6260)被用于被用于免疫组化在大鼠样本上浓度为1:200 (图 6). Mol Med Rep (2015) ncbi
小鼠 单克隆(RV202)
  • 免疫印迹; 小鼠
圣克鲁斯生物技术弹性蛋白抗体(Santa Cruz, sc-32322)被用于被用于免疫印迹在小鼠样本上. Cell Physiol Biochem (2015) ncbi
小鼠 单克隆(V9)
  • 免疫印迹; 人类; 图 6
圣克鲁斯生物技术弹性蛋白抗体(Santa Cruz Biotechnology, sc-6260)被用于被用于免疫印迹在人类样本上 (图 6). Oncogene (2016) ncbi
小鼠 单克隆(V9)
  • 免疫印迹; 人类; 图 4
圣克鲁斯生物技术弹性蛋白抗体(Santa Cruz Biotechnology);, sc-6260)被用于被用于免疫印迹在人类样本上 (图 4). Oncol Rep (2015) ncbi
小鼠 单克隆(RV202)
  • 免疫印迹; 人类; 1:3000; 图 3
圣克鲁斯生物技术弹性蛋白抗体(Santa Cruz, sc-32322)被用于被用于免疫印迹在人类样本上浓度为1:3000 (图 3). Nat Commun (2015) ncbi
小鼠 单克隆(E-5)
  • 免疫组化-冰冻切片; 小鼠; 1:50; 图 6
圣克鲁斯生物技术弹性蛋白抗体(Santa Cruz, sc-373717)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:50 (图 6). Cell Death Dis (2015) ncbi
小鼠 单克隆(V9)
  • 免疫印迹; 人类; 1:200; 图 7
圣克鲁斯生物技术弹性蛋白抗体(Santa Cruz, sc-6260)被用于被用于免疫印迹在人类样本上浓度为1:200 (图 7). Respir Res (2015) ncbi
小鼠 单克隆(V9)
  • 免疫组化; 大鼠; 1:100
  • 免疫印迹; 大鼠; 1:300
圣克鲁斯生物技术弹性蛋白抗体(Santa Cruz Biotechnology, sc-6260)被用于被用于免疫组化在大鼠样本上浓度为1:100 和 被用于免疫印迹在大鼠样本上浓度为1:300. FASEB J (2015) ncbi
小鼠 单克隆(V9)
  • 免疫组化; 人类; 图 3
圣克鲁斯生物技术弹性蛋白抗体(Santa Cruz Biotechnology, sc-6260)被用于被用于免疫组化在人类样本上 (图 3). Oncotarget (2015) ncbi
小鼠 单克隆(V9)
  • 免疫细胞化学; 人类
  • 免疫印迹; 人类
圣克鲁斯生物技术弹性蛋白抗体(Santa Cruz Biotechnology, sc-6260)被用于被用于免疫细胞化学在人类样本上 和 被用于免疫印迹在人类样本上. Stem Cell Res Ther (2015) ncbi
小鼠 单克隆(V9)
  • 免疫细胞化学; African green monkey; 图 1
圣克鲁斯生物技术弹性蛋白抗体(Santa Cruz, sc-6260)被用于被用于免疫细胞化学在African green monkey样本上 (图 1). PLoS ONE (2015) ncbi
小鼠 单克隆(RV202)
  • 免疫印迹; 人类; 1:1000; 图 6g
圣克鲁斯生物技术弹性蛋白抗体(Santa Cruz, RV202)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 6g). Mol Cancer (2015) ncbi
小鼠 单克隆(E-5)
  • 免疫印迹; 人类
圣克鲁斯生物技术弹性蛋白抗体(Santa Cruz Biotechnologies, sc-373717)被用于被用于免疫印迹在人类样本上. FEBS Lett (2015) ncbi
小鼠 单克隆(RV202)
  • 免疫印迹; 人类
圣克鲁斯生物技术弹性蛋白抗体(Santa Cruz Biotechnology, SC-32322)被用于被用于免疫印迹在人类样本上. BMC Cancer (2015) ncbi
小鼠 单克隆(V9)
  • 免疫印迹; 人类; 图 4
圣克鲁斯生物技术弹性蛋白抗体(Santa Cruz, sc-6260)被用于被用于免疫印迹在人类样本上 (图 4). Oncotarget (2015) ncbi
小鼠 单克隆(RV202)
  • 免疫印迹; 人类; 图 5
圣克鲁斯生物技术弹性蛋白抗体(Santa Cruz, sc-32322)被用于被用于免疫印迹在人类样本上 (图 5). Cell Death Dis (2015) ncbi
小鼠 单克隆(V9)
  • 免疫细胞化学; 人类; 1:50; 图 2
圣克鲁斯生物技术弹性蛋白抗体(Santa Cruz, sc-6260)被用于被用于免疫细胞化学在人类样本上浓度为1:50 (图 2). Int J Oncol (2015) ncbi
小鼠 单克隆(V9)
  • 免疫印迹; 人类; 1:1000; 图 4c
圣克鲁斯生物技术弹性蛋白抗体(Santa Cruz Biotechnology, sc-6260)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 4c). Mol Med Rep (2015) ncbi
小鼠 单克隆(RV202)
  • 免疫印迹; 人类; 1:1500
圣克鲁斯生物技术弹性蛋白抗体(Santa Cruz Biotech, sc-32322)被用于被用于免疫印迹在人类样本上浓度为1:1500. Biochem Biophys Res Commun (2015) ncbi
小鼠 单克隆(V9)
  • 免疫组化; 人类; 1:200
圣克鲁斯生物技术弹性蛋白抗体(Santa Cruz Biotechnology, sc-6260)被用于被用于免疫组化在人类样本上浓度为1:200. Tumour Biol (2015) ncbi
小鼠 单克隆(V9)
  • 免疫组化-石蜡切片; 人类; 图 6
  • 免疫组化-石蜡切片; 小鼠; 图 6
圣克鲁斯生物技术弹性蛋白抗体(Santa Cruz Biotechnology, sc-6260)被用于被用于免疫组化-石蜡切片在人类样本上 (图 6) 和 被用于免疫组化-石蜡切片在小鼠样本上 (图 6). Cell Cycle (2015) ncbi
小鼠 单克隆(V9)
  • 免疫印迹; 大鼠; 1:300
圣克鲁斯生物技术弹性蛋白抗体(Santa Cruz Biotechnology, sc-6260)被用于被用于免疫印迹在大鼠样本上浓度为1:300. Endocrinology (2015) ncbi
小鼠 单克隆(E-5)
  • 免疫印迹; 小鼠
圣克鲁斯生物技术弹性蛋白抗体(Santa Cruz Biotechnology, SC-373717)被用于被用于免疫印迹在小鼠样本上. Nucl Recept Signal (2014) ncbi
小鼠 单克隆(V9)
  • 免疫细胞化学; 人类; 1:200
圣克鲁斯生物技术弹性蛋白抗体(Santa Cruz, V9)被用于被用于免疫细胞化学在人类样本上浓度为1:200. PLoS ONE (2014) ncbi
小鼠 单克隆(V9)
  • 免疫细胞化学; 大鼠
  • 免疫印迹; 大鼠
圣克鲁斯生物技术弹性蛋白抗体(Santa Cruz Biotechnology, sc-6260)被用于被用于免疫细胞化学在大鼠样本上 和 被用于免疫印迹在大鼠样本上. Reprod Toxicol (2014) ncbi
小鼠 单克隆(E-5)
  • 免疫印迹; 人类; 1:500
圣克鲁斯生物技术弹性蛋白抗体(Santa Cruz Biotechnology, sc-373717)被用于被用于免疫印迹在人类样本上浓度为1:500. Cell Death Dis (2014) ncbi
小鼠 单克隆(V9)
  • 免疫组化-石蜡切片; 人类; 1:50
圣克鲁斯生物技术弹性蛋白抗体(Santa Cruz, V9)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:50. J Pathol (2015) ncbi
小鼠 单克隆(RV202)
  • 免疫细胞化学; alpaca; 1:200
圣克鲁斯生物技术弹性蛋白抗体(Santa Cruz Biotechnology Inc, sc-32322)被用于被用于免疫细胞化学在alpaca样本上浓度为1:200. PLoS ONE (2014) ncbi
小鼠 单克隆(V9)
  • 免疫细胞化学; 人类; 1:200; 图 3
圣克鲁斯生物技术弹性蛋白抗体(Santa Cruz, sc-6260)被用于被用于免疫细胞化学在人类样本上浓度为1:200 (图 3). Cell Biol Int (2015) ncbi
小鼠 单克隆(0.N.602)
  • 免疫组化; South American coati; 1:400
圣克鲁斯生物技术弹性蛋白抗体(Santa Cruz Biotechnology, sc-73259)被用于被用于免疫组化在South American coati样本上浓度为1:400. Reprod Biol Endocrinol (2014) ncbi
小鼠 单克隆(V9)
  • 免疫细胞化学; 人类
圣克鲁斯生物技术弹性蛋白抗体(Santa Cruz, sc-6260)被用于被用于免疫细胞化学在人类样本上. Biomaterials (2014) ncbi
小鼠 单克隆(E-5)
  • 免疫印迹; 人类
圣克鲁斯生物技术弹性蛋白抗体(Santa Cruz Biotechnology, sc-373717)被用于被用于免疫印迹在人类样本上. Oncogenesis (2014) ncbi
小鼠 单克隆(V9)
  • 免疫印迹; 人类
圣克鲁斯生物技术弹性蛋白抗体(Santa Cruz Biotechnology, V-9)被用于被用于免疫印迹在人类样本上. Mol Oncol (2014) ncbi
小鼠 单克隆(V9)
  • 免疫组化-冰冻切片; 人类; 1:50
  • 免疫印迹; 人类; 1:200
圣克鲁斯生物技术弹性蛋白抗体(Santa Cruz, sc6260)被用于被用于免疫组化-冰冻切片在人类样本上浓度为1:50 和 被用于免疫印迹在人类样本上浓度为1:200. Stem Cells Dev (2014) ncbi
小鼠 单克隆(V9)
  • 免疫印迹; 人类
圣克鲁斯生物技术弹性蛋白抗体(Santa Cruz, sc-6260)被用于被用于免疫印迹在人类样本上. J Biol Chem (2013) ncbi
小鼠 单克隆(RV202)
  • 免疫组化-石蜡切片; 人类; 1:300
圣克鲁斯生物技术弹性蛋白抗体(Santa Cruz Biotechnology, RV202)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:300. Clin Transl Oncol (2014) ncbi
小鼠 单克隆(V9)
  • 免疫细胞化学; pigs
圣克鲁斯生物技术弹性蛋白抗体(Santa Cruz, sc-6260)被用于被用于免疫细胞化学在pigs 样本上. Stem Cells Transl Med (2012) ncbi
赛默飞世尔
小鼠 单克隆(V9)
  • 免疫印迹; 人类; 1:2000; 图 1d
赛默飞世尔弹性蛋白抗体(Thermo Fisher, MS129P)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 1d). Proc Natl Acad Sci U S A (2020) ncbi
小鼠 单克隆(V9)
  • 免疫印迹; 人类; 图 1a
赛默飞世尔弹性蛋白抗体(Thermo Fisher Scientific, MA5-11883)被用于被用于免疫印迹在人类样本上 (图 1a). Biol Open (2019) ncbi
小鼠 单克隆(V9)
  • 免疫印迹; 人类; 图 2c
赛默飞世尔弹性蛋白抗体(Thermo Fisher, V9)被用于被用于免疫印迹在人类样本上 (图 2c). Sci Rep (2017) ncbi
小鼠 单克隆(V9)
  • 免疫组化-石蜡切片; 人类; 1:200; 表 2
赛默飞世尔弹性蛋白抗体(Zymed, V9)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:200 (表 2). Hum Pathol (2017) ncbi
小鼠 单克隆(V9)
  • 免疫印迹; 人类; 1:2000; 图 5a
赛默飞世尔弹性蛋白抗体(Neomarkers, Ab-2)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 5a). Nat Commun (2017) ncbi
domestic rabbit 单克隆(SP20)
  • 其他; 人类; 图 1,3
赛默飞世尔弹性蛋白抗体(Thermo Scientific, RM-9120)被用于被用于其他在人类样本上 (图 1,3). Stem Cell Reports (2017) ncbi
小鼠 单克隆(V9)
  • 免疫细胞化学; pigs
赛默飞世尔弹性蛋白抗体(Thermo Fisher, MA5-11883)被用于被用于免疫细胞化学在pigs 样本上. J Cell Physiol (2017) ncbi
鸡 多克隆
  • 免疫细胞化学; 小鼠; 1:2000; 图 2a
赛默飞世尔弹性蛋白抗体(ThermoFisher Scientific, PA1-16759)被用于被用于免疫细胞化学在小鼠样本上浓度为1:2000 (图 2a). Virology (2017) ncbi
domestic rabbit 单克隆(SP20)
  • 免疫组化-石蜡切片; 家羊; 图 4
赛默飞世尔弹性蛋白抗体(Thermo, RM-9120)被用于被用于免疫组化-石蜡切片在家羊样本上 (图 4). Stem Cells Int (2016) ncbi
domestic rabbit 单克隆(SP20)
  • 免疫组化-石蜡切片; 人类; 图 4b
赛默飞世尔弹性蛋白抗体(Thermo Scientific, RM-9120-S0)被用于被用于免疫组化-石蜡切片在人类样本上 (图 4b). PLoS ONE (2016) ncbi
小鼠 单克隆(V9)
  • 免疫组化-石蜡切片; 人类; 1:200; 表 2
赛默飞世尔弹性蛋白抗体(Zymed, V9)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:200 (表 2). Mod Pathol (2017) ncbi
鸡 多克隆
  • 免疫组化; 小鼠; 图 5c
赛默飞世尔弹性蛋白抗体(Invitrogen, PA1-10003)被用于被用于免疫组化在小鼠样本上 (图 5c). Glia (2017) ncbi
小鼠 单克隆(V9)
  • 免疫组化; 人类; 1:100
赛默飞世尔弹性蛋白抗体(Thermo Scientific, V9)被用于被用于免疫组化在人类样本上浓度为1:100. Balkan Med J (2016) ncbi
小鼠 单克隆(RV202)
  • 免疫细胞化学; 人类; 1:200; 图 1
赛默飞世尔弹性蛋白抗体(Thermo Fisher, OMA1-06001)被用于被用于免疫细胞化学在人类样本上浓度为1:200 (图 1). Mol Med Rep (2016) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 1:50; 图 1
赛默飞世尔弹性蛋白抗体(ThermoFisher Scientific, PA5-27231)被用于被用于免疫细胞化学在人类样本上浓度为1:50 (图 1). Future Oncol (2016) ncbi
小鼠 单克隆(VI-01)
  • 免疫组化-冰冻切片; 大鼠; 1:200
赛默飞世尔弹性蛋白抗体(Thermo Scientific, MA1-19168)被用于被用于免疫组化-冰冻切片在大鼠样本上浓度为1:200. Fertil Steril (2016) ncbi
小鼠 单克隆(V9)
  • 免疫组化-石蜡切片; 人类; 1:1000; 表 2
赛默飞世尔弹性蛋白抗体(NeoMarkers, D9)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:1000 (表 2). Am J Surg Pathol (2016) ncbi
小鼠 单克隆(V9)
  • 免疫组化; 大鼠; 1:1000; 图 7d
赛默飞世尔弹性蛋白抗体(Neomarkers, MS-129)被用于被用于免疫组化在大鼠样本上浓度为1:1000 (图 7d). Acta Biomater (2016) ncbi
domestic rabbit 单克隆(SP20)
  • 免疫组化; 人类; 图 4j
赛默飞世尔弹性蛋白抗体(Thermo Scientific, SP20)被用于被用于免疫组化在人类样本上 (图 4j). Stem Cell Res Ther (2016) ncbi
小鼠 单克隆(V9)
  • 免疫印迹; 小鼠; 图 2
赛默飞世尔弹性蛋白抗体(Thermo Scientific, MS-129-PO)被用于被用于免疫印迹在小鼠样本上 (图 2). Sci Rep (2015) ncbi
小鼠 单克隆(V9)
  • 免疫组化-石蜡切片; 人类; 1:200; 图 3
赛默飞世尔弹性蛋白抗体(Zymed, V9)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:200 (图 3). Pathol Res Pract (2015) ncbi
小鼠 单克隆(RV203)
  • 免疫印迹; 人类; 图 7
赛默飞世尔弹性蛋白抗体(Thermo, RV203)被用于被用于免疫印迹在人类样本上 (图 7). Biochim Biophys Acta (2015) ncbi
小鼠 单克隆(V9)
  • 免疫印迹; 人类; 1:1000
赛默飞世尔弹性蛋白抗体(Neomarkers, MS-129-P)被用于被用于免疫印迹在人类样本上浓度为1:1000. PLoS ONE (2015) ncbi
domestic rabbit 单克隆(SP20)
  • 免疫印迹; 人类; 图 s3
赛默飞世尔弹性蛋白抗体(Thermo Scientific, RM-9120-S0)被用于被用于免疫印迹在人类样本上 (图 s3). Oncotarget (2015) ncbi
小鼠 单克隆(V9)
  • 免疫印迹; 人类
赛默飞世尔弹性蛋白抗体(Thermo Scientific, MS-129)被用于被用于免疫印迹在人类样本上. Lab Invest (2015) ncbi
小鼠 单克隆(V9)
  • 免疫组化-石蜡切片; 人类; 1:150
赛默飞世尔弹性蛋白抗体(ZYMED, V9)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:150. Genes Chromosomes Cancer (2015) ncbi
小鼠 单克隆(V9)
  • 免疫印迹; 人类; 图 s6
赛默飞世尔弹性蛋白抗体(Thermo Scientific, MS-129-P)被用于被用于免疫印迹在人类样本上 (图 s6). Genes Dev (2015) ncbi
domestic rabbit 单克隆(SP20)
  • 免疫组化-石蜡切片; 人类
赛默飞世尔弹性蛋白抗体(THERMO, SP20)被用于被用于免疫组化-石蜡切片在人类样本上. Int J Clin Exp Pathol (2015) ncbi
小鼠 单克隆(RV202)
  • 免疫细胞化学; 人类; 1:400
赛默飞世尔弹性蛋白抗体(Thermo Fisher Scientific, OMA1-06001)被用于被用于免疫细胞化学在人类样本上浓度为1:400. J Mol Histol (2015) ncbi
小鼠 单克隆(V9)
  • 免疫细胞化学; 大鼠; 1:50; 图 7g
赛默飞世尔弹性蛋白抗体(Lab Vision Corporation, MS129-PO)被用于被用于免疫细胞化学在大鼠样本上浓度为1:50 (图 7g). Am J Pathol (2015) ncbi
domestic rabbit 单克隆(SP20)
  • 免疫组化; 人类; 1:50
赛默飞世尔弹性蛋白抗体(Thermo Scientific, SP20)被用于被用于免疫组化在人类样本上浓度为1:50. Rom J Morphol Embryol (2014) ncbi
小鼠 单克隆(VI-10)
  • 免疫细胞化学; 人类; 1:500
赛默飞世尔弹性蛋白抗体(Pierce, VI-10)被用于被用于免疫细胞化学在人类样本上浓度为1:500. Hum Reprod (2014) ncbi
小鼠 单克隆(V9)
  • 免疫组化-石蜡切片; 人类; 1:200
赛默飞世尔弹性蛋白抗体(Zymed, V9)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:200. Hum Pathol (2014) ncbi
domestic rabbit 单克隆(SP20)
  • 免疫组化-石蜡切片; 人类
赛默飞世尔弹性蛋白抗体(Thermo Fisher Scientific, SP20)被用于被用于免疫组化-石蜡切片在人类样本上. PLoS ONE (2014) ncbi
小鼠 单克隆(V9)
  • 免疫组化-石蜡切片; 人类; 1:200
赛默飞世尔弹性蛋白抗体(Thermo Fisher Scientific, V9)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:200. Rom J Morphol Embryol (2014) ncbi
小鼠 单克隆(V9)
  • 免疫细胞化学; 人类
赛默飞世尔弹性蛋白抗体(Thermo, V9)被用于被用于免疫细胞化学在人类样本上. Eur J Cell Biol (2014) ncbi
小鼠 单克隆(V9)
  • 免疫组化; 人类; 1:200
赛默飞世尔弹性蛋白抗体(Invitrogen, V9)被用于被用于免疫组化在人类样本上浓度为1:200. Histopathology (2015) ncbi
小鼠 单克隆(V9)
  • 免疫细胞化学; 人类
赛默飞世尔弹性蛋白抗体(Thermo Scientific, MS-129)被用于被用于免疫细胞化学在人类样本上. Int J Clin Exp Pathol (2014) ncbi
小鼠 单克隆(V9)
  • 流式细胞仪; 人类
赛默飞世尔弹性蛋白抗体(eBioscience, V9)被用于被用于流式细胞仪在人类样本上. PLoS ONE (2014) ncbi
小鼠 单克隆(V9)
  • 免疫组化-石蜡切片; 人类
  • 免疫细胞化学; 人类
  • 免疫印迹; 人类; 1:1000
赛默飞世尔弹性蛋白抗体(Invitrogen, V9)被用于被用于免疫组化-石蜡切片在人类样本上, 被用于免疫细胞化学在人类样本上 和 被用于免疫印迹在人类样本上浓度为1:1000. Br J Cancer (2014) ncbi
小鼠 单克隆(V9)
  • 免疫印迹; 小鼠; 图 3
赛默飞世尔弹性蛋白抗体(Thermo Scientific, MS-129-P0)被用于被用于免疫印迹在小鼠样本上 (图 3). Int J Mol Sci (2013) ncbi
小鼠 单克隆(V9)
  • 免疫组化-石蜡切片; 人类; 1:100; 表 2
赛默飞世尔弹性蛋白抗体(Invitrogen, V9)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100 (表 2). Sci Rep (2013) ncbi
小鼠 单克隆(V9)
  • 免疫组化; 人类; 图 2
赛默飞世尔弹性蛋白抗体(Invitrogen, V9)被用于被用于免疫组化在人类样本上 (图 2). Diagn Pathol (2013) ncbi
小鼠 单克隆(V9)
  • 免疫印迹; 人类
赛默飞世尔弹性蛋白抗体(Thermo Scientific, MS-129)被用于被用于免疫印迹在人类样本上. Oncogene (2013) ncbi
domestic rabbit 单克隆(SP20)
  • 免疫印迹; 人类; 图 3
赛默飞世尔弹性蛋白抗体(Thermo Scientific, RM-9120-S0)被用于被用于免疫印迹在人类样本上 (图 3). PLoS ONE (2012) ncbi
小鼠 单克隆(V9)
  • 免疫组化-石蜡切片; 人类; 图 3
赛默飞世尔弹性蛋白抗体(Invitrogen, V9)被用于被用于免疫组化-石蜡切片在人类样本上 (图 3). Anticancer Res (2012) ncbi
小鼠 单克隆(V9)
  • 免疫细胞化学; 人类
赛默飞世尔弹性蛋白抗体(Thermo Scientific, MS-129)被用于被用于免疫细胞化学在人类样本上. Pediatr Dev Pathol (2012) ncbi
小鼠 单克隆(J144)
  • 其他; 人类; 表 5.1
赛默飞世尔弹性蛋白抗体(ABR Affinity BioReagents, MA3-745)被用于被用于其他在人类样本上 (表 5.1). Methods Mol Biol (2011) ncbi
小鼠 单克隆(V9)
  • 免疫组化-石蜡切片; 人类; 1:1000; 表 2
赛默飞世尔弹性蛋白抗体(Zymed, V9)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:1000 (表 2). J Comp Pathol (2009) ncbi
domestic rabbit 单克隆(SP20)
  • 免疫组化-石蜡切片; 人类; 1:100; 表 2
  • 免疫组化; 人类; 1:100
赛默飞世尔弹性蛋白抗体(Lab Vision, 9120-S0)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100 (表 2) 和 被用于免疫组化在人类样本上浓度为1:100. Pathol Res Pract (2008) ncbi
小鼠 单克隆(V9)
  • 免疫组化-石蜡切片; pigs ; 图 7
赛默飞世尔弹性蛋白抗体(Zymed, V9)被用于被用于免疫组化-石蜡切片在pigs 样本上 (图 7). Wound Repair Regen (2007) ncbi
小鼠 单克隆(V9)
  • 免疫印迹; 人类; 图 2
  • 免疫组化; 犬; 图 2
赛默飞世尔弹性蛋白抗体(Neomarkers, MS129P)被用于被用于免疫印迹在人类样本上 (图 2) 和 被用于免疫组化在犬样本上 (图 2). Proc Natl Acad Sci U S A (2006) ncbi
小鼠 单克隆(V9)
  • 免疫组化; 人类; 1:400
赛默飞世尔弹性蛋白抗体(Zymed, V9)被用于被用于免疫组化在人类样本上浓度为1:400. Am J Transplant (2006) ncbi
小鼠 单克隆(V9)
  • 免疫组化-石蜡切片; 大鼠; 表 1
赛默飞世尔弹性蛋白抗体(Zymed, V9)被用于被用于免疫组化-石蜡切片在大鼠样本上 (表 1). Arch Med Res (2006) ncbi
小鼠 单克隆(V9)
  • 免疫组化-石蜡切片; 大鼠
赛默飞世尔弹性蛋白抗体(Zymed, V9)被用于被用于免疫组化-石蜡切片在大鼠样本上. Physiol Res (2007) ncbi
小鼠 单克隆(V9)
  • 免疫组化-石蜡切片; 人类
  • 免疫组化; 人类
赛默飞世尔弹性蛋白抗体(Neomarkers, V9)被用于被用于免疫组化-石蜡切片在人类样本上 和 被用于免疫组化在人类样本上. Pathol Res Pract (2005) ncbi
小鼠 单克隆(V9)
  • 免疫印迹; 人类; 图 5
赛默飞世尔弹性蛋白抗体(Lab Vision, MS-129-P)被用于被用于免疫印迹在人类样本上 (图 5). Int J Cancer (2005) ncbi
武汉三鹰
小鼠 单克隆(3H9D1)
  • 免疫组化; 大鼠; 图 4f
武汉三鹰弹性蛋白抗体(ProteinTech, 60330-1-lg)被用于被用于免疫组化在大鼠样本上 (图 4f). Cell Commun Signal (2020) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 图 1b
  • 免疫印迹; 人类; 图 1a
武汉三鹰弹性蛋白抗体(Proteintech, 10366-1-AP)被用于被用于免疫细胞化学在人类样本上 (图 1b) 和 被用于免疫印迹在人类样本上 (图 1a). Nat Commun (2020) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 5f
武汉三鹰弹性蛋白抗体(Proteintech, 10366-1-AP)被用于被用于免疫印迹在人类样本上 (图 5f). EBioMedicine (2020) ncbi
小鼠 单克隆(3H9D1)
  • 免疫印迹; 人类; 1:4000; 图 1c
武汉三鹰弹性蛋白抗体(ProteinTech, 60330-1-Ig)被用于被用于免疫印迹在人类样本上浓度为1:4000 (图 1c). Mol Med Rep (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 4e
武汉三鹰弹性蛋白抗体(Proteintech, 10366-1-AP)被用于被用于免疫印迹在人类样本上 (图 4e). Cancer Lett (2020) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:2000; 图 2a
武汉三鹰弹性蛋白抗体(ProteinTech, 10366-1-AP)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 2a). EBioMedicine (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 2c
武汉三鹰弹性蛋白抗体(Proteintech, 10366-1-AP)被用于被用于免疫印迹在人类样本上 (图 2c). Theranostics (2019) ncbi
小鼠 单克隆(3H9D1)
  • 免疫印迹; 人类; 1:2000; 图 5
武汉三鹰弹性蛋白抗体(Proteintech, 60330-1-Ig)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 5). Am J Transl Res (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 6d
武汉三鹰弹性蛋白抗体(Proteintech, 10366-1-AP)被用于被用于免疫印迹在人类样本上 (图 6d). Onco Targets Ther (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 2e
武汉三鹰弹性蛋白抗体(Proteintech, 10366-1-AP)被用于被用于免疫印迹在人类样本上 (图 2e). Cell Death Dis (2019) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 图 5b
  • 免疫印迹; 人类; 图 5a
武汉三鹰弹性蛋白抗体(Proteintech, 10366-1-AP)被用于被用于免疫细胞化学在人类样本上 (图 5b) 和 被用于免疫印迹在人类样本上 (图 5a). Exp Cell Res (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 8c
  • 免疫组化-石蜡切片; 小鼠; 图 6a
  • 免疫印迹; 小鼠; 图 6f
武汉三鹰弹性蛋白抗体(Proteintech, 10366-C1-AP)被用于被用于免疫印迹在人类样本上 (图 8c), 被用于免疫组化-石蜡切片在小鼠样本上 (图 6a) 和 被用于免疫印迹在小鼠样本上 (图 6f). J Exp Clin Cancer Res (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 3c
武汉三鹰弹性蛋白抗体(Proteintech, 10366-1-AP)被用于被用于免疫印迹在人类样本上 (图 3c). Med Sci Monit (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 1d
武汉三鹰弹性蛋白抗体(Proteintech Group, 10366-1-AP)被用于被用于免疫印迹在人类样本上 (图 1d). Cancer Lett (2018) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 4c
武汉三鹰弹性蛋白抗体(Proteintech, 10366)被用于被用于免疫印迹在人类样本上 (图 4c). Oncogenesis (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 5
武汉三鹰弹性蛋白抗体(ProteinTech, 10366-1-AP)被用于被用于免疫印迹在小鼠样本上 (图 5). Sci Rep (2016) ncbi
domestic rabbit 多克隆
武汉三鹰弹性蛋白抗体(Proteintech Group, 10366-1-AP)被用于. Sci Rep (2015) ncbi
Novus Biologicals
小鼠 单克隆(VM452)
  • 免疫组化-石蜡切片; 鸡; 1:400; 图 3b
Novus Biologicals弹性蛋白抗体(Novus, VM452)被用于被用于免疫组化-石蜡切片在鸡样本上浓度为1:400 (图 3b). J Vet Med Sci (2020) ncbi
小鼠 单克隆(2A52)
  • 免疫组化; 人类; 图 s4d
Novus Biologicals弹性蛋白抗体(Novus, 2A52)被用于被用于免疫组化在人类样本上 (图 s4d). Cell Death Dis (2020) ncbi
domestic rabbit 多克隆(45M1)
  • 免疫印迹; 人类; 1:1000; 图 1c
Novus Biologicals弹性蛋白抗体(Novus, NBP1-31327)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 1c). Cancer Lett (2020) ncbi
小鼠 单克隆(J144)
  • 免疫印迹; 人类; 图 4b
Novus Biologicals弹性蛋白抗体(Novusbiologicals, NB100-74564)被用于被用于免疫印迹在人类样本上 (图 4b). BMC Cancer (2019) ncbi
小鼠 单克隆(RV202)
  • 免疫组化; 小鼠; 图 s2c
Novus Biologicals弹性蛋白抗体(Novus Biologicals, RV202)被用于被用于免疫组化在小鼠样本上 (图 s2c). Diabetes (2017) ncbi
鸡 多克隆(6C5cc)
  • 免疫组化-石蜡切片; 小鼠; 1:200; 图 2k
Novus Biologicals弹性蛋白抗体(Novus Biologicals, NB300-223)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:200 (图 2k). Dev Growth Differ (2016) ncbi
安迪生物R&D
大鼠 单克隆(280618)
  • 免疫组化; 人类; 图 3a
安迪生物R&D弹性蛋白抗体(R&D Systems, MAB2105)被用于被用于免疫组化在人类样本上 (图 3a). Cell Mol Life Sci (2019) ncbi
大鼠 单克隆(280618)
  • 免疫组化; 人类; 1:200; 图 2d,2e
安迪生物R&D弹性蛋白抗体(R&D, MAB2105)被用于被用于免疫组化在人类样本上浓度为1:200 (图 2d,2e). PLoS ONE (2017) ncbi
大鼠 单克隆(280618)
  • 免疫组化; 大鼠; 1:100; 图 2
安迪生物R&D弹性蛋白抗体(R&D Systems, MAB2105)被用于被用于免疫组化在大鼠样本上浓度为1:100 (图 2). Int J Mol Med (2016) ncbi
大鼠 单克隆(280618)
  • 免疫细胞化学; 小鼠; 图 2
  • 免疫印迹; 小鼠; 图 2
安迪生物R&D弹性蛋白抗体(R&D, MAB2105)被用于被用于免疫细胞化学在小鼠样本上 (图 2) 和 被用于免疫印迹在小鼠样本上 (图 2). PLoS ONE (2015) ncbi
大鼠 单克隆(280618)
  • 免疫组化-石蜡切片; 人类; 图 1
安迪生物R&D弹性蛋白抗体(R&D Systems, MAB2105)被用于被用于免疫组化-石蜡切片在人类样本上 (图 1). Head Neck (2016) ncbi
西格玛奥德里奇
domestic goat 多克隆
  • 免疫细胞化学; 人类; 1:100; 图 3f
西格玛奥德里奇弹性蛋白抗体(Sigma, V4630)被用于被用于免疫细胞化学在人类样本上浓度为1:100 (图 3f). BMC Cancer (2019) ncbi
domestic goat 多克隆
  • 免疫组化; 人类; 72.6 ug/ml; 表 s3
西格玛奥德里奇弹性蛋白抗体(Sigma, V4630)被用于被用于免疫组化在人类样本上浓度为72.6 ug/ml (表 s3). Development (2017) ncbi
domestic goat 多克隆
  • 免疫组化; 小鼠; 图 1l
西格玛奥德里奇弹性蛋白抗体(Sigma, V4630)被用于被用于免疫组化在小鼠样本上 (图 1l). Sci Rep (2017) ncbi
亚诺法生技股份有限公司
小鼠 单克隆(84-1)
  • 免疫印迹; 人类; 1:1000; 图 2b
亚诺法生技股份有限公司弹性蛋白抗体(Abnova, H00007431-M10)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 2b). BMC Cancer (2019) ncbi
Synaptic Systems
domestic rabbit 多克隆
  • 免疫印迹; 大鼠; 1:1000; 图 1c
Synaptic Systems弹性蛋白抗体(Synaptic Systems, 172002)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 1c). J Gen Physiol (2017) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 图 5c
Synaptic Systems弹性蛋白抗体(Synaptic Systems, 172002)被用于被用于免疫组化在小鼠样本上 (图 5c). Glia (2017) ncbi
GeneTex
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:2000; 图 6
GeneTex弹性蛋白抗体(GeneTex, GTX100619)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 6). Oncol Lett (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 2
GeneTex弹性蛋白抗体(GeneTex, gtx100619)被用于被用于免疫印迹在人类样本上 (图 2). Oncotarget (2016) ncbi
LifeSpan Biosciences
鸡 多克隆
  • 免疫组化; 人类; 1:200; 图 s9c
LifeSpan Biosciences弹性蛋白抗体(LSBio, LS-C204593)被用于被用于免疫组化在人类样本上浓度为1:200 (图 s9c). J Clin Invest (2019) ncbi
小鼠 单克隆
  • 免疫组化-石蜡切片; 大鼠
LifeSpan Biosciences弹性蛋白抗体(LifeSpan BioSciences, LS-C40195)被用于被用于免疫组化-石蜡切片在大鼠样本上. Cancer Sci (2011) ncbi
BioLegend
鸡 多克隆(Poly29191)
  • 免疫细胞化学; African green monkey; 图 5f
  • 免疫细胞化学; 小鼠; 图 4
BioLegend弹性蛋白抗体(Biolegend, Poly 29191)被用于被用于免疫细胞化学在African green monkey样本上 (图 5f) 和 被用于免疫细胞化学在小鼠样本上 (图 4). Sci Rep (2016) ncbi
Enzo Life Sciences
小鼠 单克隆(4A4)
  • 免疫组化-冰冻切片; 人类; 图 s11b
Enzo Life Sciences弹性蛋白抗体(Enzo, 4A4)被用于被用于免疫组化-冰冻切片在人类样本上 (图 s11b). Nat Methods (2016) ncbi
EnCor Biotechnology
鸡 多克隆
  • 免疫组化-石蜡切片; 小鼠; 图 s4a
EnCor Biotechnology弹性蛋白抗体(Encor Biotechnologies, CPCA-Vim)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 s4a). Cell (2019) ncbi
赛信通(上海)生物试剂有限公司
domestic rabbit 单克隆(D21H3)
  • 免疫印迹; 人类; 1:1000; 图 5
赛信通(上海)生物试剂有限公司弹性蛋白抗体(Cell Signaling, 5741)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 5). Oncol Lett (2020) ncbi
domestic rabbit 单克隆(D21H3)
  • 免疫印迹; 人类; 图 5i
赛信通(上海)生物试剂有限公司弹性蛋白抗体(CST, 5741)被用于被用于免疫印迹在人类样本上 (图 5i). CNS Neurosci Ther (2020) ncbi
domestic rabbit 单克隆(D21H3)
  • 免疫细胞化学; 大鼠; 1:100; 图 1g
赛信通(上海)生物试剂有限公司弹性蛋白抗体(CST, 5741S)被用于被用于免疫细胞化学在大鼠样本上浓度为1:100 (图 1g). Mol Vis (2020) ncbi
domestic rabbit 单克隆(D21H3)
  • 免疫印迹; 人类; 1:1000; 图 2c
赛信通(上海)生物试剂有限公司弹性蛋白抗体(Cell Signaling, 5741)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 2c). Biosci Rep (2020) ncbi
domestic rabbit 单克隆(D21H3)
  • 免疫印迹; 人类; 1:1000; 图 3b, 3d
赛信通(上海)生物试剂有限公司弹性蛋白抗体(Cell Signaling, 5741)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3b, 3d). Cell Div (2020) ncbi
domestic rabbit 单克隆(D21H3)
  • 免疫组化; 人类; 图 2m
  • 免疫印迹; 人类; 图 2f, 2g
赛信通(上海)生物试剂有限公司弹性蛋白抗体(Cell Signaling, 5741)被用于被用于免疫组化在人类样本上 (图 2m) 和 被用于免疫印迹在人类样本上 (图 2f, 2g). Cell Death Dis (2020) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 5e
赛信通(上海)生物试剂有限公司弹性蛋白抗体(CST, 3932)被用于被用于免疫印迹在人类样本上 (图 5e). Sci Adv (2020) ncbi
domestic rabbit 单克隆(D21H3)
  • 免疫印迹; 人类; 图 3c
赛信通(上海)生物试剂有限公司弹性蛋白抗体(CST, 5741)被用于被用于免疫印迹在人类样本上 (图 3c). Int J Biol Sci (2020) ncbi
domestic rabbit 单克隆(D21H3)
  • 免疫印迹; 人类; 图 7d
赛信通(上海)生物试剂有限公司弹性蛋白抗体(CST, 5741)被用于被用于免疫印迹在人类样本上 (图 7d). Am J Cancer Res (2020) ncbi
domestic rabbit 单克隆(D21H3)
  • 免疫细胞化学; 大鼠; 图 s10
赛信通(上海)生物试剂有限公司弹性蛋白抗体(Cell Signaling, 5741)被用于被用于免疫细胞化学在大鼠样本上 (图 s10). JACC Basic Transl Sci (2020) ncbi
domestic rabbit 单克隆(D21H3)
  • 免疫印迹; 人类; 图 3f
赛信通(上海)生物试剂有限公司弹性蛋白抗体(CST, 5741)被用于被用于免疫印迹在人类样本上 (图 3f). Int J Biol Sci (2020) ncbi
domestic rabbit 单克隆(D21H3)
  • 免疫印迹; 人类; 图 2f
赛信通(上海)生物试剂有限公司弹性蛋白抗体(Cell Signaling Technology, 5741)被用于被用于免疫印迹在人类样本上 (图 2f). Aging (Albany NY) (2020) ncbi
domestic rabbit 单克隆(D21H3)
  • 免疫组化-石蜡切片; 小鼠; 1:300; 图 3c
  • 免疫细胞化学; 小鼠; 1:500; 图 3i
赛信通(上海)生物试剂有限公司弹性蛋白抗体(Cell Signaling, 5741)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:300 (图 3c) 和 被用于免疫细胞化学在小鼠样本上浓度为1:500 (图 3i). Cancer Cell (2020) ncbi
小鼠 单克隆(5G3F10)
  • 免疫细胞化学; 人类; 1:200; 图 1d
赛信通(上海)生物试剂有限公司弹性蛋白抗体(CST, 3390)被用于被用于免疫细胞化学在人类样本上浓度为1:200 (图 1d). Sci Rep (2020) ncbi
domestic rabbit 单克隆(D21H3)
  • 免疫印迹; 人类; 1:1000; 图 4b
赛信通(上海)生物试剂有限公司弹性蛋白抗体(CST, 5741)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 4b). J Cancer (2020) ncbi
domestic rabbit 单克隆(D21H3)
  • 免疫组化-石蜡切片; 小鼠; 1:200; 图 2i
  • 免疫印迹; 人类; 1:1000; 图 2g
赛信通(上海)生物试剂有限公司弹性蛋白抗体(Cell Signaling Technology, D21H3)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:200 (图 2i) 和 被用于免疫印迹在人类样本上浓度为1:1000 (图 2g). Front Oncol (2019) ncbi
domestic rabbit 单克隆(D21H3)
  • 免疫细胞化学; 人类; 图 3d
  • 免疫印迹; 人类; 图 3c
赛信通(上海)生物试剂有限公司弹性蛋白抗体(CST, 5741)被用于被用于免疫细胞化学在人类样本上 (图 3d) 和 被用于免疫印迹在人类样本上 (图 3c). Cell Death Dis (2020) ncbi
domestic rabbit 单克隆(D21H3)
  • 免疫印迹; 人类; 图 3i
赛信通(上海)生物试剂有限公司弹性蛋白抗体(Cell Signaling, 5741)被用于被用于免疫印迹在人类样本上 (图 3i). Mol Oncol (2020) ncbi
domestic rabbit 单克隆(D21H3)
  • 免疫印迹; 人类; 图 e4c
赛信通(上海)生物试剂有限公司弹性蛋白抗体(Cell Signaling, D21H3)被用于被用于免疫印迹在人类样本上 (图 e4c). Nature (2020) ncbi
domestic rabbit 单克隆(D21H3)
  • 免疫组化-石蜡切片; 小鼠; 1:1000; 图 5e
  • 免疫印迹; 小鼠; 1:1000; 图 s5c
赛信通(上海)生物试剂有限公司弹性蛋白抗体(CST, 5741T)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:1000 (图 5e) 和 被用于免疫印迹在小鼠样本上浓度为1:1000 (图 s5c). Nat Commun (2019) ncbi
domestic rabbit 单克隆(D21H3)
  • 免疫印迹; 人类; 1:1000; 图 10a
赛信通(上海)生物试剂有限公司弹性蛋白抗体(Cell signaling, 5741)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 10a). Aging (Albany NY) (2019) ncbi
domestic rabbit 单克隆(D21H3)
  • 免疫印迹; 人类; 图 6c
赛信通(上海)生物试剂有限公司弹性蛋白抗体(CST, 5741P)被用于被用于免疫印迹在人类样本上 (图 6c). Cell Death Dis (2019) ncbi
小鼠 单克隆(V9)
  • 免疫印迹; 人类; 1:2000; 图 3b
赛信通(上海)生物试剂有限公司弹性蛋白抗体(Cell Signaling Technology, 49636)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 3b). Int J Mol Med (2019) ncbi
domestic rabbit 单克隆(D21H3)
  • 免疫印迹; 人类; 图 6b
赛信通(上海)生物试剂有限公司弹性蛋白抗体(Cell signaling, 5741)被用于被用于免疫印迹在人类样本上 (图 6b). Sci Rep (2019) ncbi
domestic rabbit 单克隆(D21H3)
  • 免疫印迹; 人类; 图 4e
赛信通(上海)生物试剂有限公司弹性蛋白抗体(Cell Signaling Technology, 5741)被用于被用于免疫印迹在人类样本上 (图 4e). Oncogene (2020) ncbi
domestic rabbit 单克隆(D21H3)
  • 免疫印迹; 小鼠; 1:1000; 图 8g
赛信通(上海)生物试剂有限公司弹性蛋白抗体(Cell Signaling, D21H3)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 8g). Mol Biol Cell (2019) ncbi
domestic rabbit 单克隆(D21H3)
  • 免疫印迹; 人类; 1:1000; 图 4f
赛信通(上海)生物试剂有限公司弹性蛋白抗体(Cell Signaling Technology, 5741S)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 4f). Cell Death Dis (2019) ncbi
domestic rabbit 单克隆(D21H3)
  • 免疫细胞化学; 人类; 图 2g
赛信通(上海)生物试剂有限公司弹性蛋白抗体(CST, 5741)被用于被用于免疫细胞化学在人类样本上 (图 2g). Oncogene (2020) ncbi
domestic rabbit 单克隆(D21H3)
  • 免疫组化-石蜡切片; 小鼠; 图 e3a
  • 免疫组化-石蜡切片; 人类; 图 e2b
赛信通(上海)生物试剂有限公司弹性蛋白抗体(Cell Signaling, 9854)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 e3a) 和 被用于免疫组化-石蜡切片在人类样本上 (图 e2b). Nature (2019) ncbi
domestic rabbit 单克隆(D21H3)
  • 免疫印迹; 人类; 1:1000; 图 3f
赛信通(上海)生物试剂有限公司弹性蛋白抗体(CST, 5741)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3f). Med Sci Monit (2019) ncbi
domestic rabbit 单克隆(D21H3)
  • 免疫印迹; 人类; 图 5a
赛信通(上海)生物试剂有限公司弹性蛋白抗体(CST, 5741)被用于被用于免疫印迹在人类样本上 (图 5a). BMC Cancer (2019) ncbi
domestic rabbit 单克隆(D21H3)
  • 免疫组化; 小鼠; 1:250; 图 s3a
赛信通(上海)生物试剂有限公司弹性蛋白抗体(Cell Signaling, 5741)被用于被用于免疫组化在小鼠样本上浓度为1:250 (图 s3a). Nature (2019) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 人类; 1:200; 图 2d
赛信通(上海)生物试剂有限公司弹性蛋白抗体(Cell Signaling, 3932)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:200 (图 2d). EMBO Mol Med (2019) ncbi
domestic rabbit 单克隆(D21H3)
  • 免疫印迹; 人类; 图 2a
赛信通(上海)生物试剂有限公司弹性蛋白抗体(CST, 5741)被用于被用于免疫印迹在人类样本上 (图 2a). Cell Commun Signal (2019) ncbi
domestic rabbit 单克隆(D21H3)
  • 免疫印迹; 人类; 图 3d
赛信通(上海)生物试剂有限公司弹性蛋白抗体(CST, 5741)被用于被用于免疫印迹在人类样本上 (图 3d). J Exp Clin Cancer Res (2019) ncbi
domestic rabbit 单克隆(D21H3)
  • 免疫组化-石蜡切片; 小鼠; 1:100; 图 5g
赛信通(上海)生物试剂有限公司弹性蛋白抗体(Cell Signaling, 5741)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:100 (图 5g). Nat Commun (2019) ncbi
domestic rabbit 单克隆(D21H3)
  • 免疫印迹; 大鼠; 1:1000; 图 6
赛信通(上海)生物试剂有限公司弹性蛋白抗体(Cell Signaling Technology, D21H3)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 6). Biomed Res Int (2019) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 图 2a
赛信通(上海)生物试剂有限公司弹性蛋白抗体(Cell Signaling, 3932)被用于被用于免疫细胞化学在人类样本上 (图 2a). Theranostics (2019) ncbi
domestic rabbit 单克隆(D21H3)
  • 免疫印迹; 人类; 图 2b
赛信通(上海)生物试剂有限公司弹性蛋白抗体(Cell Signaling, 5741)被用于被用于免疫印迹在人类样本上 (图 2b). Theranostics (2019) ncbi
domestic rabbit 单克隆(D21H3)
  • 免疫印迹; 人类; 图 2a
赛信通(上海)生物试剂有限公司弹性蛋白抗体(Cell Signaling Technology, 5741)被用于被用于免疫印迹在人类样本上 (图 2a). elife (2019) ncbi
domestic rabbit 单克隆(D21H3)
  • 免疫印迹; 小鼠; 1:500; 图 7d
赛信通(上海)生物试剂有限公司弹性蛋白抗体(Cell Signaling, 5741)被用于被用于免疫印迹在小鼠样本上浓度为1:500 (图 7d). Nat Commun (2019) ncbi
domestic rabbit 单克隆(D21H3)
  • 免疫印迹; 人类; 图 4i
赛信通(上海)生物试剂有限公司弹性蛋白抗体(Cell Signaling, 5741)被用于被用于免疫印迹在人类样本上 (图 4i). Biosci Rep (2019) ncbi
domestic rabbit 单克隆(D21H3)
  • 免疫印迹; 人类; 1:1000; 图 2a
赛信通(上海)生物试剂有限公司弹性蛋白抗体(Cell Signalling Technology, 5741)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 2a). EMBO Mol Med (2019) ncbi
domestic rabbit 单克隆(D5A2D)
  • 免疫印迹; 人类; 1:1000; 图 8a
赛信通(上海)生物试剂有限公司弹性蛋白抗体(Cell Signalling Technology, 12569)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 8a). EMBO Mol Med (2019) ncbi
小鼠 单克隆(5G3F10)
  • 免疫沉淀; 人类; 1:100; 图 8f
赛信通(上海)生物试剂有限公司弹性蛋白抗体(Cell Signalling Technology, 3390)被用于被用于免疫沉淀在人类样本上浓度为1:100 (图 8f). EMBO Mol Med (2019) ncbi
domestic rabbit 单克隆(D21H3)
  • 免疫细胞化学; 人类; 1:100; 图 6b
  • 免疫印迹; 人类; 1:1000; 图 7e
赛信通(上海)生物试剂有限公司弹性蛋白抗体(Cell Signaling, 5741)被用于被用于免疫细胞化学在人类样本上浓度为1:100 (图 6b) 和 被用于免疫印迹在人类样本上浓度为1:1000 (图 7e). Front Mol Neurosci (2019) ncbi
domestic rabbit 单克隆(D21H3)
  • 免疫印迹; 人类; 图 5a
赛信通(上海)生物试剂有限公司弹性蛋白抗体(Cell Signaling Technology, D21H3)被用于被用于免疫印迹在人类样本上 (图 5a). Biomed Res Int (2019) ncbi
domestic rabbit 单克隆(D21H3)
  • 免疫组化-石蜡切片; 小鼠; 1:300; 图 3s1f
赛信通(上海)生物试剂有限公司弹性蛋白抗体(Cell Signaling, 5741)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:300 (图 3s1f). elife (2019) ncbi
domestic rabbit 单克隆(D21H3)
  • 免疫印迹; 人类; 1:250; 图 s3e
赛信通(上海)生物试剂有限公司弹性蛋白抗体(Cell Signaling Technology, D21H3)被用于被用于免疫印迹在人类样本上浓度为1:250 (图 s3e). J Cell Sci (2019) ncbi
domestic rabbit 单克隆(D21H3)
  • 免疫印迹; 人类; 1:1000; 图 3a
赛信通(上海)生物试剂有限公司弹性蛋白抗体(Cell Signaling Technology, 5741)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3a). J Cell Mol Med (2019) ncbi
domestic rabbit 单克隆(D21H3)
  • 免疫印迹; 人类; 图 s6
赛信通(上海)生物试剂有限公司弹性蛋白抗体(Cell Signaling, D21H3)被用于被用于免疫印迹在人类样本上 (图 s6). Mol Oncol (2019) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 1:500; 图 1b
赛信通(上海)生物试剂有限公司弹性蛋白抗体(Cell Signaling, 3932)被用于被用于免疫细胞化学在人类样本上浓度为1:500 (图 1b). Science (2018) ncbi
domestic rabbit 单克隆(D21H3)
  • 免疫细胞化学; 人类; 1:400; 图 1d
赛信通(上海)生物试剂有限公司弹性蛋白抗体(Cell Signaling, D21H3)被用于被用于免疫细胞化学在人类样本上浓度为1:400 (图 1d). Front Neurosci (2018) ncbi
domestic rabbit 单克隆(D21H3)
  • 免疫组化; 小鼠; 1:500; 图 e1i
赛信通(上海)生物试剂有限公司弹性蛋白抗体(Cell Signaling, 5741s)被用于被用于免疫组化在小鼠样本上浓度为1:500 (图 e1i). Nature (2018) ncbi
domestic rabbit 单克隆(D21H3)
  • 免疫组化-冰冻切片; 小鼠; 1:200; 图 6a
赛信通(上海)生物试剂有限公司弹性蛋白抗体(Cell Signaling, 5741)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:200 (图 6a). Sci Rep (2018) ncbi
domestic rabbit 单克隆(D21H3)
  • 免疫印迹; 人类; 图 1f
赛信通(上海)生物试剂有限公司弹性蛋白抗体(Cell Signaling, D21H3)被用于被用于免疫印迹在人类样本上 (图 1f). Cancer Res (2018) ncbi
domestic rabbit 单克隆(D21H3)
  • 免疫印迹; 犬; 图 6a
赛信通(上海)生物试剂有限公司弹性蛋白抗体(Cell Signaling Technology, 5741)被用于被用于免疫印迹在犬样本上 (图 6a). Nature (2018) ncbi
domestic rabbit 单克隆(D21H3)
  • 免疫印迹; 人类; 1:1000; 图 1a
赛信通(上海)生物试剂有限公司弹性蛋白抗体(Cell Signaling, 5741)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 1a). Mol Med Rep (2018) ncbi
domestic rabbit 单克隆(D21H3)
  • 免疫组化; 小鼠; 图 6c
赛信通(上海)生物试剂有限公司弹性蛋白抗体(Cell Signaling, 5741)被用于被用于免疫组化在小鼠样本上 (图 6c). Gastroenterology (2018) ncbi
domestic rabbit 单克隆(D21H3)
  • 免疫印迹; 人类; 图 3c
赛信通(上海)生物试剂有限公司弹性蛋白抗体(Cell Signaling, 5741)被用于被用于免疫印迹在人类样本上 (图 3c). Cancer Res (2018) ncbi
小鼠 单克隆(5G3F10)
  • 免疫组化; 人类; 图 3a1
赛信通(上海)生物试剂有限公司弹性蛋白抗体(Cell Signalling, 5G3F10)被用于被用于免疫组化在人类样本上 (图 3a1). Stem Cells Int (2017) ncbi
domestic rabbit 单克隆(D21H3)
  • 免疫印迹; 小鼠; 1:1000; 图 s1e
赛信通(上海)生物试剂有限公司弹性蛋白抗体(Cell Signaling, D21H3)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 s1e). PLoS ONE (2017) ncbi
domestic rabbit 单克隆(D21H3)
  • 免疫组化-冰冻切片; 小鼠; 1:100; 图 5c
赛信通(上海)生物试剂有限公司弹性蛋白抗体(Cell Signaling Technology, 5741s)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:100 (图 5c). Development (2017) ncbi
domestic rabbit 单克隆(D21H3)
  • 免疫印迹; 人类; 1:1000; 图 7j
赛信通(上海)生物试剂有限公司弹性蛋白抗体(Cell Signaling, 5741)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 7j). J Clin Invest (2017) ncbi
domestic rabbit 单克隆(D21H3)
  • 免疫印迹; 人类; 图 2j
赛信通(上海)生物试剂有限公司弹性蛋白抗体(cell signalling, 5741)被用于被用于免疫印迹在人类样本上 (图 2j). Mol Cancer (2017) ncbi
domestic rabbit 单克隆(D21H3)
  • 免疫印迹; 人类; 1:1000; 图 ex1a
赛信通(上海)生物试剂有限公司弹性蛋白抗体(Cell signaling, 5741)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 ex1a). Nature (2017) ncbi
domestic rabbit 单克隆(D21H3)
  • 免疫印迹; 人类; 图 4b
赛信通(上海)生物试剂有限公司弹性蛋白抗体(Cell Signaling, 5741)被用于被用于免疫印迹在人类样本上 (图 4b). Nat Genet (2017) ncbi
domestic rabbit 单克隆(D21H3)
  • 免疫印迹基因敲除验证; 人类; 图 1c
  • 免疫细胞化学; 人类; 图 s2f
  • proximity ligation assay; 小鼠; 图 1b
  • 免疫细胞化学; 小鼠; 图 1a
  • 免疫印迹; 小鼠; 图 2a
赛信通(上海)生物试剂有限公司弹性蛋白抗体(Cell Signaling, D21H3)被用于被用于免疫印迹基因敲除验证在人类样本上 (图 1c), 被用于免疫细胞化学在人类样本上 (图 s2f), 被用于proximity ligation assay在小鼠样本上 (图 1b), 被用于免疫细胞化学在小鼠样本上 (图 1a) 和 被用于免疫印迹在小鼠样本上 (图 2a). Proc Natl Acad Sci U S A (2017) ncbi
domestic rabbit 单克隆(D21H3)
  • 免疫印迹; 人类; 1:1000; 图 1c
赛信通(上海)生物试剂有限公司弹性蛋白抗体(Cell Signaling Technology, 5741)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 1c). Exp Ther Med (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 2a
赛信通(上海)生物试剂有限公司弹性蛋白抗体(Cell Signaling Technolog, 3932 S)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 2a). Sci Rep (2017) ncbi
domestic rabbit 单克隆(D21H3)
  • 免疫印迹; 人类; 图 5c
赛信通(上海)生物试剂有限公司弹性蛋白抗体(Cell Signaling, D21H3)被用于被用于免疫印迹在人类样本上 (图 5c). Sci Rep (2017) ncbi
domestic rabbit 单克隆(D21H3)
  • 免疫细胞化学; 人类; 图 4b
  • 免疫印迹; 人类; 图 1c
赛信通(上海)生物试剂有限公司弹性蛋白抗体(Cell Signaling, D21H3)被用于被用于免疫细胞化学在人类样本上 (图 4b) 和 被用于免疫印迹在人类样本上 (图 1c). J Pathol (2017) ncbi
domestic rabbit 单克隆(D21H3)
  • 免疫细胞化学; 人类; 1:100; 图 3b
赛信通(上海)生物试剂有限公司弹性蛋白抗体(Cell Signaling, 5741)被用于被用于免疫细胞化学在人类样本上浓度为1:100 (图 3b). Nature (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 2g
赛信通(上海)生物试剂有限公司弹性蛋白抗体(cell signalling, 3932)被用于被用于免疫印迹在人类样本上 (图 2g). Cell Death Dis (2017) ncbi
domestic rabbit 单克隆(D21H3)
  • 免疫细胞化学; 小鼠; 1:100; 图 s4b
赛信通(上海)生物试剂有限公司弹性蛋白抗体(Cell Signaling, 5741)被用于被用于免疫细胞化学在小鼠样本上浓度为1:100 (图 s4b). J Cell Sci (2017) ncbi
domestic rabbit 单克隆(D21H3)
  • 免疫印迹; 人类; 1:1000; 图 6d
赛信通(上海)生物试剂有限公司弹性蛋白抗体(Cell Signaling, 5741)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 6d). Int J Mol Med (2017) ncbi
domestic rabbit 单克隆(D21H3)
  • 免疫组化-石蜡切片; 小鼠; 图 2a
赛信通(上海)生物试剂有限公司弹性蛋白抗体(Cell Signaling, 5741)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 2a). Nature (2017) ncbi
domestic rabbit 单克隆(D21H3)
  • 流式细胞仪; 人类; 图 S3a
  • 免疫印迹; 人类; 图 4c
赛信通(上海)生物试剂有限公司弹性蛋白抗体(Cell Signaling Technology, 5741)被用于被用于流式细胞仪在人类样本上 (图 S3a) 和 被用于免疫印迹在人类样本上 (图 4c). Neoplasia (2017) ncbi
domestic rabbit 单克隆(D21H3)
  • 免疫印迹; 人类; 图 3d
赛信通(上海)生物试剂有限公司弹性蛋白抗体(Cell Signaling, 5741)被用于被用于免疫印迹在人类样本上 (图 3d). Cell Rep (2017) ncbi
domestic rabbit 单克隆(D21H3)
  • 免疫印迹; 人类; 图 4f
赛信通(上海)生物试剂有限公司弹性蛋白抗体(Cell signaling, 5741)被用于被用于免疫印迹在人类样本上 (图 4f). Oncoimmunology (2016) ncbi
domestic rabbit 单克隆(D21H3)
  • 免疫印迹; 人类; 图 5a
赛信通(上海)生物试剂有限公司弹性蛋白抗体(Cell Signaling, 5741)被用于被用于免疫印迹在人类样本上 (图 5a). Biomed Pharmacother (2017) ncbi
domestic rabbit 单克隆(D21H3)
  • 免疫细胞化学; 人类; 图 4d
赛信通(上海)生物试剂有限公司弹性蛋白抗体(Cell signaling, 5741)被用于被用于免疫细胞化学在人类样本上 (图 4d). Sci Rep (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 5c
赛信通(上海)生物试剂有限公司弹性蛋白抗体(Cell Signaling Technology, 3932)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 5c). Oncol Lett (2016) ncbi
domestic rabbit 单克隆(D21H3)
  • 免疫印迹基因敲除验证; 人类; 1:1000; 图 2b
赛信通(上海)生物试剂有限公司弹性蛋白抗体(Cell signaling, D21H3)被用于被用于免疫印迹基因敲除验证在人类样本上浓度为1:1000 (图 2b). J Cell Sci (2017) ncbi
domestic rabbit 单克隆(D21H3)
  • 免疫细胞化学; 人类; 1:500; 图 4b
  • 免疫印迹; 人类; 1:1000; 图 1i
赛信通(上海)生物试剂有限公司弹性蛋白抗体(Cell signaling, 5741)被用于被用于免疫细胞化学在人类样本上浓度为1:500 (图 4b) 和 被用于免疫印迹在人类样本上浓度为1:1000 (图 1i). Nat Commun (2017) ncbi
domestic rabbit 单克隆(D21H3)
  • 免疫组化-石蜡切片; 人类; 1:400; 图 3c
赛信通(上海)生物试剂有限公司弹性蛋白抗体(Cell Signaling, D21H3)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:400 (图 3c). J Am Acad Dermatol (2017) ncbi
domestic rabbit 单克隆(D21H3)
  • 免疫印迹; 人类; 图 10
赛信通(上海)生物试剂有限公司弹性蛋白抗体(Cell Signaling Technology, D21H3)被用于被用于免疫印迹在人类样本上 (图 10). Oncotarget (2017) ncbi
domestic rabbit 单克隆(D21H3)
  • 免疫组化; 小鼠; 1:500; 图 2g
赛信通(上海)生物试剂有限公司弹性蛋白抗体(Cell Signaling, 5741)被用于被用于免疫组化在小鼠样本上浓度为1:500 (图 2g). Dis Model Mech (2017) ncbi
domestic rabbit 单克隆(D21H3)
  • 免疫印迹; 人类; 1:5000; 图 5a
赛信通(上海)生物试剂有限公司弹性蛋白抗体(Cell Signaling, 5741)被用于被用于免疫印迹在人类样本上浓度为1:5000 (图 5a). Oncotarget (2017) ncbi
domestic rabbit 单克隆(D21H3)
  • 免疫细胞化学; 人类; 图 6a
  • 免疫印迹; 人类; 图 5c
赛信通(上海)生物试剂有限公司弹性蛋白抗体(Cell Signaling, 5741)被用于被用于免疫细胞化学在人类样本上 (图 6a) 和 被用于免疫印迹在人类样本上 (图 5c). Cell Cycle (2017) ncbi
domestic rabbit 单克隆(D21H3)
  • 免疫细胞化学; 人类; 1:100; 图 3b
赛信通(上海)生物试剂有限公司弹性蛋白抗体(cell signalling, D21H3)被用于被用于免疫细胞化学在人类样本上浓度为1:100 (图 3b). Cell (2016) ncbi
domestic rabbit 单克隆(D21H3)
  • 免疫组化-石蜡切片; 小鼠; 图 5
  • 免疫印迹; 小鼠; 图 5
赛信通(上海)生物试剂有限公司弹性蛋白抗体(Cell Signaling, 5741)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 5) 和 被用于免疫印迹在小鼠样本上 (图 5). Am J Pathol (2016) ncbi
domestic rabbit 单克隆(D21H3)
  • 免疫组化-石蜡切片; 人类; 图 4
赛信通(上海)生物试剂有限公司弹性蛋白抗体(Cell signaling, D2H3)被用于被用于免疫组化-石蜡切片在人类样本上 (图 4). Eur J Rheumatol (2016) ncbi
domestic rabbit 单克隆(D21H3)
  • 免疫细胞化学; 人类; 图 s12
赛信通(上海)生物试剂有限公司弹性蛋白抗体(Cell signaling, 9856S)被用于被用于免疫细胞化学在人类样本上 (图 s12). Mol Biol Cell (2016) ncbi
domestic rabbit 单克隆(D21H3)
  • 免疫细胞化学; 人类; 1:100; 图 5a
  • 免疫印迹; 人类; 1:500; 图 5b
赛信通(上海)生物试剂有限公司弹性蛋白抗体(Cell Signaling, 5741)被用于被用于免疫细胞化学在人类样本上浓度为1:100 (图 5a) 和 被用于免疫印迹在人类样本上浓度为1:500 (图 5b). Oncogenesis (2016) ncbi
domestic rabbit 单克隆(D21H3)
  • 免疫组化; 人类; 1:200; 图 3g
  • 免疫印迹; 人类; 1:2000; 图 3d
赛信通(上海)生物试剂有限公司弹性蛋白抗体(Cell Signaling, 5741)被用于被用于免疫组化在人类样本上浓度为1:200 (图 3g) 和 被用于免疫印迹在人类样本上浓度为1:2000 (图 3d). Oncotarget (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 1
赛信通(上海)生物试剂有限公司弹性蛋白抗体(Cell Signaling, 3932)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 1). Neoplasia (2016) ncbi
domestic rabbit 单克隆(D21H3)
  • 免疫印迹; 人类; 图 6a
赛信通(上海)生物试剂有限公司弹性蛋白抗体(Cell Signaling, 5741)被用于被用于免疫印迹在人类样本上 (图 6a). J Immunol (2016) ncbi
domestic rabbit 单克隆(D21H3)
  • 免疫印迹; 人类; 1:1000; 图 s8
赛信通(上海)生物试剂有限公司弹性蛋白抗体(Cell Signaling, 5741S)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 s8). Nat Commun (2016) ncbi
domestic rabbit 单克隆(D21H3)
  • 免疫印迹; 小鼠; 图 2c
赛信通(上海)生物试剂有限公司弹性蛋白抗体(Cell Signaling, 5741)被用于被用于免疫印迹在小鼠样本上 (图 2c). Oncotarget (2016) ncbi
domestic rabbit 单克隆(D21H3)
  • 免疫组化; 人类; 1:100; 图 2c
赛信通(上海)生物试剂有限公司弹性蛋白抗体(Cell Signaling, D21H3)被用于被用于免疫组化在人类样本上浓度为1:100 (图 2c). J Clin Invest (2016) ncbi
domestic rabbit 单克隆(D21H3)
  • 免疫印迹; 人类; 1:1000; 图 2
赛信通(上海)生物试剂有限公司弹性蛋白抗体(Cell Signaling, 5741)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 2). Oncotarget (2016) ncbi
domestic rabbit 单克隆(D21H3)
  • 免疫印迹; 人类; 图 2b
赛信通(上海)生物试剂有限公司弹性蛋白抗体(Cell Signaling Technology, 5741S)被用于被用于免疫印迹在人类样本上 (图 2b). J Biol Chem (2016) ncbi
domestic rabbit 单克隆(D21H3)
  • 免疫组化-石蜡切片; 小鼠; 1:100; 图 3a
赛信通(上海)生物试剂有限公司弹性蛋白抗体(Cell Signalling, 5741)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:100 (图 3a). Nat Commun (2016) ncbi
domestic rabbit 单克隆(D21H3)
  • 免疫组化; 人类; 图 2c
赛信通(上海)生物试剂有限公司弹性蛋白抗体(Cell Signaling, 9854)被用于被用于免疫组化在人类样本上 (图 2c). J Proteomics (2017) ncbi
domestic rabbit 单克隆(D21H3)
  • 免疫组化; 小鼠; 图 4d
赛信通(上海)生物试剂有限公司弹性蛋白抗体(Cell Signaling, 5741)被用于被用于免疫组化在小鼠样本上 (图 4d). Oncogene (2017) ncbi
domestic rabbit 单克隆(D21H3)
  • 免疫组化-石蜡切片; 小鼠; 1:200; 图 6c
赛信通(上海)生物试剂有限公司弹性蛋白抗体(Cell Signaling, D21h3)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:200 (图 6c). Oncogene (2017) ncbi
domestic rabbit 单克隆(D21H3)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司弹性蛋白抗体(Cell Signaling, 5741)被用于被用于免疫印迹在人类样本上. Oncotarget (2016) ncbi
domestic rabbit 单克隆(D21H3)
  • 免疫细胞化学; 人类; 1:200; 图 5
赛信通(上海)生物试剂有限公司弹性蛋白抗体(Cell Signaling Tech, 5741)被用于被用于免疫细胞化学在人类样本上浓度为1:200 (图 5). BMC Biol (2016) ncbi
domestic rabbit 单克隆(D21H3)
  • 免疫印迹; 人类; 1:3000; 图 1d
赛信通(上海)生物试剂有限公司弹性蛋白抗体(cell signalling, 5741)被用于被用于免疫印迹在人类样本上浓度为1:3000 (图 1d). Oncotarget (2016) ncbi
domestic rabbit 单克隆(D21H3)
  • 免疫细胞化学; 人类; 图 3b
  • 免疫印迹; 人类; 图 3a
赛信通(上海)生物试剂有限公司弹性蛋白抗体(Cell Signaling, 5741)被用于被用于免疫细胞化学在人类样本上 (图 3b) 和 被用于免疫印迹在人类样本上 (图 3a). Cell Signal (2016) ncbi
domestic rabbit 单克隆(D21H3)
  • 免疫印迹; 人类; 1:1000; 图 4d
赛信通(上海)生物试剂有限公司弹性蛋白抗体(CST, 5741)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 4d). Aging (Albany NY) (2016) ncbi
domestic rabbit 单克隆(D21H3)
  • 免疫印迹; 人类; 图 4
赛信通(上海)生物试剂有限公司弹性蛋白抗体(Cell Signaling, 5741)被用于被用于免疫印迹在人类样本上 (图 4). Nat Commun (2016) ncbi
domestic rabbit 单克隆(D21H3)
  • 免疫印迹; 人类; 图 3b
赛信通(上海)生物试剂有限公司弹性蛋白抗体(CST, 5741S)被用于被用于免疫印迹在人类样本上 (图 3b). Oncotarget (2016) ncbi
domestic rabbit 单克隆(D21H3)
  • 免疫印迹; 人类; 1:3000; 图 5b
赛信通(上海)生物试剂有限公司弹性蛋白抗体(Cell Signaling, 5741)被用于被用于免疫印迹在人类样本上浓度为1:3000 (图 5b). Oncogene (2017) ncbi
domestic rabbit 单克隆(D21H3)
  • 免疫印迹; 人类; 图 5
赛信通(上海)生物试剂有限公司弹性蛋白抗体(Cell signaling, 5741)被用于被用于免疫印迹在人类样本上 (图 5). J Biol Chem (2016) ncbi
domestic rabbit 单克隆(D21H3)
  • 免疫印迹; 人类; 1:1000; 图 5d
赛信通(上海)生物试剂有限公司弹性蛋白抗体(cell signalling, 5741P)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 5d). Oncotarget (2016) ncbi
domestic rabbit 单克隆(D21H3)
  • 免疫印迹; 人类; 图 4a
赛信通(上海)生物试剂有限公司弹性蛋白抗体(Cell Signaling, 5741)被用于被用于免疫印迹在人类样本上 (图 4a). Oncol Rep (2016) ncbi
domestic rabbit 单克隆(D21H3)
  • 免疫印迹; 人类; 1:2000; 图 3
赛信通(上海)生物试剂有限公司弹性蛋白抗体(Cell Signaling Technology, 5741)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 3). Nat Commun (2016) ncbi
domestic rabbit 单克隆(D21H3)
  • 免疫印迹; 人类; 图 4
赛信通(上海)生物试剂有限公司弹性蛋白抗体(Cell Signaling, 5741)被用于被用于免疫印迹在人类样本上 (图 4). Oncotarget (2016) ncbi
小鼠 单克隆(5G3F10)
  • 免疫印迹; 人类; 图 4
赛信通(上海)生物试剂有限公司弹性蛋白抗体(Cell Signaling, 3390)被用于被用于免疫印迹在人类样本上 (图 4). Cell Death Dis (2016) ncbi
domestic rabbit 单克隆(D21H3)
  • 免疫组化-石蜡切片; 人类; 1:200; 表 2
赛信通(上海)生物试剂有限公司弹性蛋白抗体(Cell Signaling, 5741)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:200 (表 2). PLoS ONE (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 1
赛信通(上海)生物试剂有限公司弹性蛋白抗体(Cell Signaling, 3932)被用于被用于免疫印迹在人类样本上 (图 1). Oncotarget (2016) ncbi
domestic rabbit 单克隆(D21H3)
  • 免疫印迹; 人类; 1:1000; 图 1
赛信通(上海)生物试剂有限公司弹性蛋白抗体(Cell signaling, D21H3-XP)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 1). Oncogenesis (2016) ncbi
domestic rabbit 单克隆(D21H3)
  • 免疫组化-石蜡切片; 人类; 图 4b
赛信通(上海)生物试剂有限公司弹性蛋白抗体(Cell signaling, 5741)被用于被用于免疫组化-石蜡切片在人类样本上 (图 4b). Oncol Lett (2016) ncbi
domestic rabbit 单克隆(D21H3)
  • 免疫印迹; 人类; 1:1000; 图 2
赛信通(上海)生物试剂有限公司弹性蛋白抗体(Cell signaling, 5741)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 2). Oncotarget (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 s3b
赛信通(上海)生物试剂有限公司弹性蛋白抗体(Cell Signaling, 3932)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 s3b). Science (2016) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 1:75; 图 5a
赛信通(上海)生物试剂有限公司弹性蛋白抗体(Cell Signaling, 3932)被用于被用于免疫细胞化学在人类样本上浓度为1:75 (图 5a). Nat Commun (2016) ncbi
domestic rabbit 单克隆(D21H3)
  • 免疫印迹; 人类; 图 4b
赛信通(上海)生物试剂有限公司弹性蛋白抗体(Cell Signaling, D21H3)被用于被用于免疫印迹在人类样本上 (图 4b). Cancer Sci (2016) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 大鼠; 图 2
赛信通(上海)生物试剂有限公司弹性蛋白抗体(Cell Signaling Tech, R28)被用于被用于免疫细胞化学在大鼠样本上 (图 2). Sci Rep (2016) ncbi
domestic rabbit 单克隆(D21H3)
  • 免疫组化-石蜡切片; 人类; 图 2
  • 免疫印迹; 人类; 图 1
赛信通(上海)生物试剂有限公司弹性蛋白抗体(Cell signaling, 5741)被用于被用于免疫组化-石蜡切片在人类样本上 (图 2) 和 被用于免疫印迹在人类样本上 (图 1). Oncotarget (2016) ncbi
domestic rabbit 单克隆(D21H3)
  • 免疫细胞化学; 小鼠; 图 5
赛信通(上海)生物试剂有限公司弹性蛋白抗体(Cell Signaling, 5741)被用于被用于免疫细胞化学在小鼠样本上 (图 5). J Cell Mol Med (2016) ncbi
domestic rabbit 单克隆(D21H3)
  • 免疫组化-石蜡切片; 小鼠; 1:100; 图 3
赛信通(上海)生物试剂有限公司弹性蛋白抗体(Cell Signaling Technology, 5741)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:100 (图 3). Cell Death Dis (2016) ncbi
domestic rabbit 单克隆(D21H3)
  • 免疫组化-石蜡切片; 小鼠; 1:100; 图 4
赛信通(上海)生物试剂有限公司弹性蛋白抗体(Cell Signaling, 5741)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:100 (图 4). Int J Cancer (2016) ncbi
domestic rabbit 单克隆(D21H3)
  • 免疫组化-石蜡切片; 人类; 1:100; 图 4
赛信通(上海)生物试剂有限公司弹性蛋白抗体(Cell Signaling, 5741)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100 (图 4). Dis Model Mech (2016) ncbi
domestic rabbit 单克隆(D21H3)
  • 免疫组化-石蜡切片; 小鼠; 图 1
  • 免疫组化; 小鼠; 图 1
  • 免疫组化-石蜡切片; 人类; 图 1
  • 免疫组化; 人类; 图 1
赛信通(上海)生物试剂有限公司弹性蛋白抗体(Cell Signaling, 5741P)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 1), 被用于免疫组化在小鼠样本上 (图 1), 被用于免疫组化-石蜡切片在人类样本上 (图 1) 和 被用于免疫组化在人类样本上 (图 1). Cancer Discov (2016) ncbi
domestic rabbit 单克隆(D21H3)
  • 免疫印迹; 人类; 图 6
赛信通(上海)生物试剂有限公司弹性蛋白抗体(Cell signaling, 5741)被用于被用于免疫印迹在人类样本上 (图 6). Oncotarget (2016) ncbi
domestic rabbit 单克隆(D21H3)
  • 免疫组化-石蜡切片; 人类; 1:100; 图 2
赛信通(上海)生物试剂有限公司弹性蛋白抗体(Cell Signaling, 5741)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100 (图 2). Nat Commun (2015) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 s4b
赛信通(上海)生物试剂有限公司弹性蛋白抗体(Cell Signaling, R28)被用于被用于免疫印迹在人类样本上 (图 s4b). J Clin Invest (2016) ncbi
domestic rabbit 单克隆(D21H3)
  • 免疫印迹; 人类; 图 4
赛信通(上海)生物试剂有限公司弹性蛋白抗体(Cell Signaling Technology, 5741)被用于被用于免疫印迹在人类样本上 (图 4). Oncogene (2016) ncbi
domestic rabbit 单克隆(D21H3)
  • 免疫细胞化学; 人类; 1:100; 图 5
  • 免疫印迹; 人类; 1:100; 图 5
赛信通(上海)生物试剂有限公司弹性蛋白抗体(Cell Signaling, 5741)被用于被用于免疫细胞化学在人类样本上浓度为1:100 (图 5) 和 被用于免疫印迹在人类样本上浓度为1:100 (图 5). Oncotarget (2016) ncbi
domestic rabbit 单克隆(D21H3)
  • 免疫组化-石蜡切片; 小鼠; 1:50; 图 3
赛信通(上海)生物试剂有限公司弹性蛋白抗体(Cell signaling, 5741)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:50 (图 3). J Gastrointest Surg (2016) ncbi
domestic rabbit 单克隆(D21H3)
  • 免疫细胞化学; 人类; 图 2
  • 免疫印迹; 人类; 图 1
赛信通(上海)生物试剂有限公司弹性蛋白抗体(Cell Signaling, 5741)被用于被用于免疫细胞化学在人类样本上 (图 2) 和 被用于免疫印迹在人类样本上 (图 1). Oncotarget (2015) ncbi
小鼠 单克隆(5G3F10)
  • 免疫印迹; 人类; 图 5
赛信通(上海)生物试剂有限公司弹性蛋白抗体(Cell Signaling, 3390)被用于被用于免疫印迹在人类样本上 (图 5). Mol Cancer (2015) ncbi
domestic rabbit 单克隆(D21H3)
  • 流式细胞仪; 人类; 1:500; 表 4
赛信通(上海)生物试剂有限公司弹性蛋白抗体(Cell Signaling, 9856)被用于被用于流式细胞仪在人类样本上浓度为1:500 (表 4). Sci Rep (2015) ncbi
domestic rabbit 单克隆(D21H3)
  • 免疫组化-石蜡切片; 小鼠; 1:600; 图 4
赛信通(上海)生物试剂有限公司弹性蛋白抗体(Cell Signaling Technology, 5741)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:600 (图 4). Endocrinology (2015) ncbi
domestic rabbit 单克隆(D21H3)
  • 免疫细胞化学; 人类; 图 3c
  • 免疫印迹; 人类; 图 3a
赛信通(上海)生物试剂有限公司弹性蛋白抗体(Cell Signaling Technology, 5741)被用于被用于免疫细胞化学在人类样本上 (图 3c) 和 被用于免疫印迹在人类样本上 (图 3a). Oncogene (2016) ncbi
domestic rabbit 单克隆(D21H3)
  • 免疫印迹; 人类; 1:3000; 图 3d
赛信通(上海)生物试剂有限公司弹性蛋白抗体(Cell Signaling, 5741)被用于被用于免疫印迹在人类样本上浓度为1:3000 (图 3d). Dig Dis Sci (2016) ncbi
domestic rabbit 单克隆(D21H3)
  • 免疫印迹; 人类; 图 8
赛信通(上海)生物试剂有限公司弹性蛋白抗体(Cell Signaling, 5741)被用于被用于免疫印迹在人类样本上 (图 8). Neuroendocrinology (2016) ncbi
domestic rabbit 单克隆(D21H3)
  • 免疫印迹; 小鼠; 1:1000; 图 6
赛信通(上海)生物试剂有限公司弹性蛋白抗体(Cell Signaling Technology, 5741)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 6). PLoS Med (2015) ncbi
domestic rabbit 单克隆(D21H3)
  • 免疫印迹; 人类; 图 1
赛信通(上海)生物试剂有限公司弹性蛋白抗体(Cell Signal, D21H3)被用于被用于免疫印迹在人类样本上 (图 1). PLoS ONE (2015) ncbi
domestic rabbit 单克隆(D21H3)
  • 免疫印迹; 人类; 图 s1
赛信通(上海)生物试剂有限公司弹性蛋白抗体(Cell Signaling Tech, 50741S)被用于被用于免疫印迹在人类样本上 (图 s1). Cancer Biol Ther (2015) ncbi
domestic rabbit 单克隆(D21H3)
  • 免疫细胞化学; 人类; 图 2b
  • 免疫印迹; 人类; 1:100; 图 s4c
赛信通(上海)生物试剂有限公司弹性蛋白抗体(Cell Signaling Technology, 5741)被用于被用于免疫细胞化学在人类样本上 (图 2b) 和 被用于免疫印迹在人类样本上浓度为1:100 (图 s4c). Cell Death Dis (2015) ncbi
domestic rabbit 单克隆(D21H3)
  • 免疫细胞化学; 人类; 图 1
  • 免疫印迹; 人类; 图 1
赛信通(上海)生物试剂有限公司弹性蛋白抗体(Cell Signalling, 5741)被用于被用于免疫细胞化学在人类样本上 (图 1) 和 被用于免疫印迹在人类样本上 (图 1). Int J Mol Med (2015) ncbi
domestic rabbit 单克隆(D21H3)
  • 流式细胞仪; 大鼠; 1:50
赛信通(上海)生物试剂有限公司弹性蛋白抗体(Cell Signaling, #9854)被用于被用于流式细胞仪在大鼠样本上浓度为1:50. Andrology (2015) ncbi
domestic rabbit 单克隆(D21H3)
  • 免疫印迹; 小鼠; 1:3000; 图 5
赛信通(上海)生物试剂有限公司弹性蛋白抗体(Cell Signaling Tech, 5741)被用于被用于免疫印迹在小鼠样本上浓度为1:3000 (图 5). PLoS ONE (2015) ncbi
domestic rabbit 单克隆(D21H3)
  • 免疫印迹; 小鼠; 图 3
赛信通(上海)生物试剂有限公司弹性蛋白抗体(Cell Signaling Technology, D21H3)被用于被用于免疫印迹在小鼠样本上 (图 3). Sci Rep (2015) ncbi
domestic rabbit 单克隆(D21H3)
  • 免疫印迹; 人类; 图 2c
赛信通(上海)生物试剂有限公司弹性蛋白抗体(Cell Signaling, 5741S)被用于被用于免疫印迹在人类样本上 (图 2c). J Exp Clin Cancer Res (2015) ncbi
domestic rabbit 单克隆(D21H3)
  • 免疫组化-石蜡切片; 小鼠; 图 1
赛信通(上海)生物试剂有限公司弹性蛋白抗体(Cell Signaling, 5741)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 1). Cancer Res (2015) ncbi
domestic rabbit 单克隆(D21H3)
  • 免疫组化-石蜡切片; 小鼠; 1:50; 图 6
  • 免疫印迹; 小鼠; 1:1000; 图 6
赛信通(上海)生物试剂有限公司弹性蛋白抗体(CST, D21H3)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:50 (图 6) 和 被用于免疫印迹在小鼠样本上浓度为1:1000 (图 6). BMC Complement Altern Med (2015) ncbi
domestic rabbit 单克隆(D21H3)
  • 免疫细胞化学; 人类; 图 5a
赛信通(上海)生物试剂有限公司弹性蛋白抗体(Cell Signaling, 5741)被用于被用于免疫细胞化学在人类样本上 (图 5a). J Biomed Mater Res B Appl Biomater (2016) ncbi
小鼠 单克隆(5G3F10)
  • 免疫印迹; 人类; 图 1a
赛信通(上海)生物试剂有限公司弹性蛋白抗体(Cell Signaling, 3390)被用于被用于免疫印迹在人类样本上 (图 1a). Oncotarget (2015) ncbi
domestic rabbit 单克隆(D21H3)
  • 免疫组化-石蜡切片; 小鼠
赛信通(上海)生物试剂有限公司弹性蛋白抗体(Cell Signaling, 5741)被用于被用于免疫组化-石蜡切片在小鼠样本上. Oncogene (2015) ncbi
domestic rabbit 单克隆(D21H3)
  • 免疫细胞化学; 人类; 1:200
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司弹性蛋白抗体(Cell Signaling Technology, 5741)被用于被用于免疫细胞化学在人类样本上浓度为1:200 和 被用于免疫印迹在人类样本上. Int J Oncol (2015) ncbi
domestic rabbit 单克隆(D21H3)
  • 免疫印迹; 人类; 1:1000; 图 4
赛信通(上海)生物试剂有限公司弹性蛋白抗体(Cell Signaling Technology, 5741)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 4). Cancer Lett (2015) ncbi
domestic rabbit 单克隆(D21H3)
  • 免疫印迹; 人类; 图 3
赛信通(上海)生物试剂有限公司弹性蛋白抗体(Cell Signaling, 5741)被用于被用于免疫印迹在人类样本上 (图 3). Int J Gynecol Cancer (2015) ncbi
domestic rabbit 单克隆(D21H3)
  • 免疫印迹; 人类; 图 1
赛信通(上海)生物试剂有限公司弹性蛋白抗体(Cell Signaling, D21H3)被用于被用于免疫印迹在人类样本上 (图 1). Cell Death Dis (2015) ncbi
domestic rabbit 单克隆(D21H3)
  • 免疫组化-石蜡切片; 人类; 图 1
  • 流式细胞仪; 人类; 图 2
  • 免疫细胞化学; 人类; 图 2
赛信通(上海)生物试剂有限公司弹性蛋白抗体(Cell Signaling, 5741)被用于被用于免疫组化-石蜡切片在人类样本上 (图 1), 被用于流式细胞仪在人类样本上 (图 2) 和 被用于免疫细胞化学在人类样本上 (图 2). J Transl Med (2015) ncbi
domestic rabbit 单克隆(D21H3)
  • 免疫组化; 人类; 图 5
赛信通(上海)生物试剂有限公司弹性蛋白抗体(Cell Signaling, 5741)被用于被用于免疫组化在人类样本上 (图 5). Oncogene (2015) ncbi
domestic rabbit 单克隆(D21H3)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司弹性蛋白抗体(Cell Signaling Technology, 5741)被用于被用于免疫印迹在人类样本上. PLoS ONE (2014) ncbi
domestic rabbit 单克隆(D21H3)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司弹性蛋白抗体(Cell Signaling Technology, 5741)被用于被用于免疫印迹在人类样本上. Oncogene (2015) ncbi
domestic rabbit 单克隆(D21H3)
  • 免疫细胞化学; 人类
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司弹性蛋白抗体(Cell Signaling Technology, 5741)被用于被用于免疫细胞化学在人类样本上 和 被用于免疫印迹在人类样本上. J Biol Chem (2014) ncbi
domestic rabbit 单克隆(D21H3)
  • 免疫组化-石蜡切片; 小鼠; 图 2
  • 免疫组化; 小鼠; 图 3
赛信通(上海)生物试剂有限公司弹性蛋白抗体(Cell Signaling Technology, 5741)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 2) 和 被用于免疫组化在小鼠样本上 (图 3). J Exp Med (2014) ncbi
domestic rabbit 单克隆(D21H3)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司弹性蛋白抗体(Cell Signaling, 5741)被用于被用于免疫印迹在人类样本上. Cancer Cell (2014) ncbi
domestic rabbit 单克隆(D21H3)
  • 免疫印迹; 人类; 1:500
赛信通(上海)生物试剂有限公司弹性蛋白抗体(Cell Signaling Technology, 5741s)被用于被用于免疫印迹在人类样本上浓度为1:500. Urol Oncol (2014) ncbi
domestic rabbit 单克隆(D21H3)
  • 免疫组化-石蜡切片; 人类; 1:600
赛信通(上海)生物试剂有限公司弹性蛋白抗体(Cell Signaling, #5741)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:600. Am J Pathol (2014) ncbi
domestic rabbit 单克隆(D21H3)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司弹性蛋白抗体(Cell Signaling Technology, 5741)被用于被用于免疫印迹在人类样本上. PLoS ONE (2014) ncbi
domestic rabbit 单克隆(D21H3)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司弹性蛋白抗体(Cell Signaling Technology, 5741)被用于被用于免疫印迹在人类样本上. Cell Cycle (2014) ncbi
domestic rabbit 单克隆(D21H3)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司弹性蛋白抗体(Cell Signaling Technology, D21H3)被用于被用于免疫印迹在人类样本上. Br J Cancer (2014) ncbi
domestic rabbit 单克隆(D21H3)
  • 免疫组化-石蜡切片; 小鼠; 1:200
赛信通(上海)生物试剂有限公司弹性蛋白抗体(Cell Signaling technology, 5741)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:200. Mol Endocrinol (2014) ncbi
domestic rabbit 单克隆(D21H3)
  • 免疫组化-石蜡切片; 小鼠
赛信通(上海)生物试剂有限公司弹性蛋白抗体(Cell Signaling Technology Japan, 5741)被用于被用于免疫组化-石蜡切片在小鼠样本上. Exp Toxicol Pathol (2014) ncbi
domestic rabbit 单克隆(D21H3)
  • 免疫组化-冰冻切片; 小鼠; 1:50
赛信通(上海)生物试剂有限公司弹性蛋白抗体(Cell Signaling Technologies, 5741P)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:50. Kidney Int (2014) ncbi
domestic rabbit 单克隆(D21H3)
  • 免疫印迹; 人类; 1:500
赛信通(上海)生物试剂有限公司弹性蛋白抗体(Cell Signaling, 5741)被用于被用于免疫印迹在人类样本上浓度为1:500. Autophagy (2013) ncbi
domestic rabbit 单克隆(D21H3)
  • 免疫组化-石蜡切片; 小鼠
赛信通(上海)生物试剂有限公司弹性蛋白抗体(Cell signaling, 5741)被用于被用于免疫组化-石蜡切片在小鼠样本上. Exp Toxicol Pathol (2013) ncbi
domestic rabbit 单克隆(D21H3)
  • 免疫组化-石蜡切片; 小鼠
赛信通(上海)生物试剂有限公司弹性蛋白抗体(Cell signaling, D21H3)被用于被用于免疫组化-石蜡切片在小鼠样本上. EMBO Mol Med (2013) ncbi
domestic rabbit 单克隆(D21H3)
  • 免疫印迹; 人类; 图 9
赛信通(上海)生物试剂有限公司弹性蛋白抗体(Cell Signaling, 5741)被用于被用于免疫印迹在人类样本上 (图 9). PLoS ONE (2013) ncbi
丹科医疗器械技术服务(上海)有限公司
小鼠 单克隆(V9)
  • 免疫组化; 人类; 1:50; 图 4d, 5a
丹科医疗器械技术服务(上海)有限公司弹性蛋白抗体(Dako, V9)被用于被用于免疫组化在人类样本上浓度为1:50 (图 4d, 5a). Medicine (Baltimore) (2020) ncbi
小鼠 单克隆(V9)
  • 免疫组化-冰冻切片; 人类; 1:500; 图 s1e
丹科医疗器械技术服务(上海)有限公司弹性蛋白抗体(Dako, M0725)被用于被用于免疫组化-冰冻切片在人类样本上浓度为1:500 (图 s1e). Aging Cell (2020) ncbi
小鼠 单克隆(V9)
  • 免疫组化-石蜡切片; 人类; 表 2
丹科医疗器械技术服务(上海)有限公司弹性蛋白抗体(Dako, V9)被用于被用于免疫组化-石蜡切片在人类样本上 (表 2). BMC Cancer (2018) ncbi
小鼠 单克隆(VIM 3B4)
  • 免疫细胞化学; 人类; 1:25; 图 2c
丹科医疗器械技术服务(上海)有限公司弹性蛋白抗体(Dako, M7020)被用于被用于免疫细胞化学在人类样本上浓度为1:25 (图 2c). J Histochem Cytochem (2018) ncbi
小鼠 单克隆(V9)
  • 其他; 人类; 图 4c
丹科医疗器械技术服务(上海)有限公司弹性蛋白抗体(Dako, M0725)被用于被用于其他在人类样本上 (图 4c). Cancer Cell (2018) ncbi
小鼠 单克隆(V9)
  • 免疫组化; 人类; 1:200; 图 1d
丹科医疗器械技术服务(上海)有限公司弹性蛋白抗体(Dako, M0725)被用于被用于免疫组化在人类样本上浓度为1:200 (图 1d). EBioMedicine (2018) ncbi
小鼠 单克隆(VIM 3B4)
  • 免疫印迹; 人类; 图 s4b
丹科医疗器械技术服务(上海)有限公司弹性蛋白抗体(Dako, M7020)被用于被用于免疫印迹在人类样本上 (图 s4b). Int J Cancer (2018) ncbi
小鼠 单克隆(V9)
  • 免疫组化; 人类; 1:100; 图 7b
丹科医疗器械技术服务(上海)有限公司弹性蛋白抗体(DAKO, M 0725)被用于被用于免疫组化在人类样本上浓度为1:100 (图 7b). PLoS ONE (2017) ncbi
小鼠 单克隆(VIM 3B4)
  • 免疫组化-石蜡切片; 小鼠; 图 st15
  • 免疫组化-石蜡切片; 大鼠; 1:200; 图 st15
丹科医疗器械技术服务(上海)有限公司弹性蛋白抗体(Dako, M7020)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 st15) 和 被用于免疫组化-石蜡切片在大鼠样本上浓度为1:200 (图 st15). J Toxicol Pathol (2017) ncbi
小鼠 单克隆(V9)
  • 流式细胞仪; 人类; 图 1b
  • 免疫细胞化学; 人类; 图 1d
丹科医疗器械技术服务(上海)有限公司弹性蛋白抗体(DAKO, M0725)被用于被用于流式细胞仪在人类样本上 (图 1b) 和 被用于免疫细胞化学在人类样本上 (图 1d). Cell Cycle (2017) ncbi
小鼠 单克隆(V9)
  • 免疫组化-石蜡切片; 小鼠; 1:400; 图 3g
丹科医疗器械技术服务(上海)有限公司弹性蛋白抗体(Dako, M0725)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:400 (图 3g). PLoS ONE (2017) ncbi
小鼠 单克隆(V9)
  • 免疫组化-石蜡切片; 人类; 1:5000; 图 6
丹科医疗器械技术服务(上海)有限公司弹性蛋白抗体(Dako, V9)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:5000 (图 6). J Neuropathol Exp Neurol (2016) ncbi
小鼠 单克隆(V9)
  • 免疫印迹; 人类; 1:500; 图 2b
丹科医疗器械技术服务(上海)有限公司弹性蛋白抗体(Dako, M0725)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 2b). Mol Med Rep (2016) ncbi
小鼠 单克隆(V9)
  • 免疫组化; 人类; 1:400; 图 2g
丹科医疗器械技术服务(上海)有限公司弹性蛋白抗体(Dako, V9)被用于被用于免疫组化在人类样本上浓度为1:400 (图 2g). Diagn Pathol (2016) ncbi
小鼠 单克隆(V9)
  • 免疫组化-石蜡切片; 人类; 1:5000; 图 1
丹科医疗器械技术服务(上海)有限公司弹性蛋白抗体(Dako, M0725)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:5000 (图 1). J Clin Pathol (2017) ncbi
小鼠 单克隆(V9)
  • 免疫细胞化学; 人类; 1 ug/ml; 图 5f
丹科医疗器械技术服务(上海)有限公司弹性蛋白抗体(Dako, V9)被用于被用于免疫细胞化学在人类样本上浓度为1 ug/ml (图 5f). J Cell Physiol (2017) ncbi
小鼠 单克隆(V9)
  • 免疫组化-石蜡切片; 大鼠; 1:1000; 图 s5
丹科医疗器械技术服务(上海)有限公司弹性蛋白抗体(DAKO, M0725)被用于被用于免疫组化-石蜡切片在大鼠样本上浓度为1:1000 (图 s5). Sci Rep (2016) ncbi
小鼠 单克隆(V9)
  • 免疫细胞化学; 人类; 1:200; 表 s4
丹科医疗器械技术服务(上海)有限公司弹性蛋白抗体(Dako, M0725)被用于被用于免疫细胞化学在人类样本上浓度为1:200 (表 s4). Stem Cell Res (2016) ncbi
小鼠 单克隆(V9)
  • 免疫细胞化学; 人类; 图 1
丹科医疗器械技术服务(上海)有限公司弹性蛋白抗体(DakoCytomation, V9)被用于被用于免疫细胞化学在人类样本上 (图 1). FASEB J (2016) ncbi
小鼠 单克隆(V9)
  • 免疫细胞化学; 人类; 1:100; 图 2b
丹科医疗器械技术服务(上海)有限公司弹性蛋白抗体(Dako, M072529)被用于被用于免疫细胞化学在人类样本上浓度为1:100 (图 2b). Fertil Steril (2016) ncbi
小鼠 单克隆(V9)
  • 免疫组化-石蜡切片; 人类; 1:150; 图 1
丹科医疗器械技术服务(上海)有限公司弹性蛋白抗体(Dako, V9)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:150 (图 1). Oncol Lett (2016) ncbi
小鼠 单克隆(V9)
  • 免疫组化-石蜡切片; 人类; 1:300; 图 2
丹科医疗器械技术服务(上海)有限公司弹性蛋白抗体(Dako, M0725)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:300 (图 2). Pathol Oncol Res (2017) ncbi
小鼠 单克隆(V9)
  • 免疫组化; 人类; 图 3A
丹科医疗器械技术服务(上海)有限公司弹性蛋白抗体(Dako, M0725)被用于被用于免疫组化在人类样本上 (图 3A). Sci Rep (2016) ncbi
小鼠 单克隆(V9)
  • 免疫组化-石蜡切片; 人类; 1:10,000; 图 5y
丹科医疗器械技术服务(上海)有限公司弹性蛋白抗体(Dako, M0725)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:10,000 (图 5y). Sci Rep (2016) ncbi
小鼠 单克隆(V9)
  • 免疫组化; 大鼠; 1:300; 图 2C
丹科医疗器械技术服务(上海)有限公司弹性蛋白抗体(Dako, M0725)被用于被用于免疫组化在大鼠样本上浓度为1:300 (图 2C). F1000Res (2016) ncbi
小鼠 单克隆(V9)
  • 免疫组化; 人类; 图 5e
丹科医疗器械技术服务(上海)有限公司弹性蛋白抗体(Dako, V9)被用于被用于免疫组化在人类样本上 (图 5e). Cancer Lett (2016) ncbi
小鼠 单克隆(V9)
  • 免疫组化-石蜡切片; 大鼠; 图 2b
丹科医疗器械技术服务(上海)有限公司弹性蛋白抗体(Dako, V9)被用于被用于免疫组化-石蜡切片在大鼠样本上 (图 2b). J Toxicol Pathol (2016) ncbi
小鼠 单克隆(V9)
  • 免疫细胞化学; 人类; 图 s3
丹科医疗器械技术服务(上海)有限公司弹性蛋白抗体(Dako, M0725)被用于被用于免疫细胞化学在人类样本上 (图 s3). Oncotarget (2016) ncbi
小鼠 单克隆(V9)
  • 免疫组化-石蜡切片; 人类; 1:100
丹科医疗器械技术服务(上海)有限公司弹性蛋白抗体(Dako, M0725)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100. Oncol Lett (2016) ncbi
小鼠 单克隆(V9)
  • 免疫组化-石蜡切片; 人类; 1:900; 表 2
丹科医疗器械技术服务(上海)有限公司弹性蛋白抗体(Dako, V9)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:900 (表 2). Hum Pathol (2016) ncbi
小鼠 单克隆(V9)
  • 免疫组化-石蜡切片; 人类; 1:900; 表 2
丹科医疗器械技术服务(上海)有限公司弹性蛋白抗体(Dako, V9)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:900 (表 2). PLoS ONE (2016) ncbi
小鼠 单克隆(V9)
  • 免疫组化-冰冻切片; 大鼠; 1:150; 图 1
丹科医疗器械技术服务(上海)有限公司弹性蛋白抗体(Dako, M0725)被用于被用于免疫组化-冰冻切片在大鼠样本上浓度为1:150 (图 1). Front Pharmacol (2016) ncbi
小鼠 单克隆(VIM 3B4)
  • 免疫组化-石蜡切片; 人类; 1:500; 图 5
丹科医疗器械技术服务(上海)有限公司弹性蛋白抗体(Dako, M7020)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:500 (图 5). Eur J Histochem (2016) ncbi
小鼠 单克隆(V9)
  • 免疫组化-石蜡切片; 人类; 1:50; 表 1
丹科医疗器械技术服务(上海)有限公司弹性蛋白抗体(DAKO, V9)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:50 (表 1). Neuropathology (2016) ncbi
小鼠 单克隆(V9)
  • 免疫组化-石蜡切片; 人类; 1:900; 图 7
丹科医疗器械技术服务(上海)有限公司弹性蛋白抗体(Dako, V9)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:900 (图 7). Mod Pathol (2016) ncbi
小鼠 单克隆(V9)
  • 免疫组化-石蜡切片; 人类; 1:100; 图 3b
丹科医疗器械技术服务(上海)有限公司弹性蛋白抗体(Dako, V9)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100 (图 3b). Exp Ther Med (2016) ncbi
小鼠 单克隆(V9)
  • 免疫组化-石蜡切片; 人类; 图 1c
丹科医疗器械技术服务(上海)有限公司弹性蛋白抗体(Dako, V9)被用于被用于免疫组化-石蜡切片在人类样本上 (图 1c). Cancer Sci (2016) ncbi
小鼠 单克隆(VIM 3B4)
  • 免疫细胞化学; 人类; 图 s2b
  • 免疫印迹; 人类; 图 2b
丹科医疗器械技术服务(上海)有限公司弹性蛋白抗体(Dako, M7020)被用于被用于免疫细胞化学在人类样本上 (图 s2b) 和 被用于免疫印迹在人类样本上 (图 2b). Sci Rep (2016) ncbi
小鼠 单克隆(VIM 3B4)
  • 免疫细胞化学; 人类; 1:200; 图 1
丹科医疗器械技术服务(上海)有限公司弹性蛋白抗体(DakoCytomation, VIM 3B4)被用于被用于免疫细胞化学在人类样本上浓度为1:200 (图 1). Sci Rep (2016) ncbi
小鼠 单克隆(V9)
  • 免疫细胞化学; 人类; 图 s1
丹科医疗器械技术服务(上海)有限公司弹性蛋白抗体(Dako, M0725)被用于被用于免疫细胞化学在人类样本上 (图 s1). Stem Cell Reports (2016) ncbi
小鼠 单克隆(V9)
  • 免疫印迹; 人类; 图 s1
丹科医疗器械技术服务(上海)有限公司弹性蛋白抗体(Dako, M0725)被用于被用于免疫印迹在人类样本上 (图 s1). Oncotarget (2016) ncbi
小鼠 单克隆(V9)
  • 免疫组化; 人类; 1:1000; 图 1
丹科医疗器械技术服务(上海)有限公司弹性蛋白抗体(Dako, V9)被用于被用于免疫组化在人类样本上浓度为1:1000 (图 1). J Clin Pathol (2016) ncbi
小鼠 单克隆(VIM 3B4)
  • 免疫细胞化学; 人类; 图 1
丹科医疗器械技术服务(上海)有限公司弹性蛋白抗体(Dako, M7020)被用于被用于免疫细胞化学在人类样本上 (图 1). Sci Rep (2015) ncbi
小鼠 单克隆(V9)
  • 免疫组化-石蜡切片; 人类; 1:400; 图 1g
丹科医疗器械技术服务(上海)有限公司弹性蛋白抗体(Dako, M0725)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:400 (图 1g). J Pathol (2016) ncbi
小鼠 单克隆(V9)
  • 免疫组化-石蜡切片; 大鼠; 1:200; 图 11
丹科医疗器械技术服务(上海)有限公司弹性蛋白抗体(Dako, V9)被用于被用于免疫组化-石蜡切片在大鼠样本上浓度为1:200 (图 11). Brain Struct Funct (2016) ncbi
小鼠 单克隆(V9)
  • 免疫细胞化学; 人类
丹科医疗器械技术服务(上海)有限公司弹性蛋白抗体(Dako, M0725)被用于被用于免疫细胞化学在人类样本上. J Neural Eng (2015) ncbi
小鼠 单克隆(V9)
  • 免疫组化-石蜡切片; 人类; 1:100
丹科医疗器械技术服务(上海)有限公司弹性蛋白抗体(Dako, V9)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100. Am J Surg Pathol (2016) ncbi
小鼠 单克隆(V9)
  • 免疫组化-石蜡切片; 大鼠; 1:1000; 图 s5
丹科医疗器械技术服务(上海)有限公司弹性蛋白抗体(DAKO, M0725)被用于被用于免疫组化-石蜡切片在大鼠样本上浓度为1:1000 (图 s5). Development (2015) ncbi
小鼠 单克隆(VIM 3B4)
  • 免疫组化; 小鼠; 1:200; 图 6d
丹科医疗器械技术服务(上海)有限公司弹性蛋白抗体(Dako, M7020)被用于被用于免疫组化在小鼠样本上浓度为1:200 (图 6d). Am J Pathol (2015) ncbi
小鼠 单克隆(V9)
丹科医疗器械技术服务(上海)有限公司弹性蛋白抗体(Dako, M0725)被用于. J Virol (2015) ncbi
小鼠 单克隆(V9)
  • 免疫细胞化学; 大鼠
丹科医疗器械技术服务(上海)有限公司弹性蛋白抗体(Dako, M0725)被用于被用于免疫细胞化学在大鼠样本上. Sci Rep (2015) ncbi
小鼠 单克隆(VIM 3B4)
  • 免疫细胞化学; 人类; 1:500; 图 4
丹科医疗器械技术服务(上海)有限公司弹性蛋白抗体(Dako, 3B4)被用于被用于免疫细胞化学在人类样本上浓度为1:500 (图 4). J Biol Chem (2015) ncbi
小鼠 单克隆(V9)
  • 免疫组化-石蜡切片; 人类; 1:25; 表 2
丹科医疗器械技术服务(上海)有限公司弹性蛋白抗体(DakoCytomation, V9)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:25 (表 2). Hum Pathol (2015) ncbi
小鼠 单克隆(VIM 3B4)
  • 免疫组化-石蜡切片; 小鼠; 1:5
丹科医疗器械技术服务(上海)有限公司弹性蛋白抗体(Dako, M7020)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:5. PLoS ONE (2015) ncbi
小鼠 单克隆(VIM 3B4)
  • 免疫组化; 人类; 图 2c
  • 免疫印迹; 人类; 1:1000; 图 6b
丹科医疗器械技术服务(上海)有限公司弹性蛋白抗体(DAKO, M7020)被用于被用于免疫组化在人类样本上 (图 2c) 和 被用于免疫印迹在人类样本上浓度为1:1000 (图 6b). PLoS ONE (2015) ncbi
小鼠 单克隆(V9)
  • 免疫组化; 人类; 1:10,000; 表 s4
丹科医疗器械技术服务(上海)有限公司弹性蛋白抗体(DAKO, M0725)被用于被用于免疫组化在人类样本上浓度为1:10,000 (表 s4). Proc Natl Acad Sci U S A (2015) ncbi
小鼠 单克隆(V9)
  • 免疫组化-石蜡切片; 人类; 1:1000; 图 s1
丹科医疗器械技术服务(上海)有限公司弹性蛋白抗体(Dako, V9)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:1000 (图 s1). Appl Immunohistochem Mol Morphol (2016) ncbi
小鼠 单克隆(V9)
  • 免疫组化-石蜡切片; 人类; 图 7
丹科医疗器械技术服务(上海)有限公司弹性蛋白抗体(Dako, M0725)被用于被用于免疫组化-石蜡切片在人类样本上 (图 7). Breast Cancer Res (2015) ncbi
小鼠 单克隆(V9)
  • 免疫组化-石蜡切片; 人类; 1:100; 图 3
丹科医疗器械技术服务(上海)有限公司弹性蛋白抗体(Dako, V9)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100 (图 3). Ann Diagn Pathol (2015) ncbi
小鼠 单克隆(V9)
  • 免疫组化; 人类; 1:6400
丹科医疗器械技术服务(上海)有限公司弹性蛋白抗体(DAKO, V9)被用于被用于免疫组化在人类样本上浓度为1:6400. Int J Clin Exp Pathol (2015) ncbi
小鼠 单克隆(V9)
  • 免疫组化; 人类; 1:2
丹科医疗器械技术服务(上海)有限公司弹性蛋白抗体(Dako, clone:V9)被用于被用于免疫组化在人类样本上浓度为1:2. PLoS ONE (2015) ncbi
小鼠 单克隆(V9)
  • 免疫组化; 人类
丹科医疗器械技术服务(上海)有限公司弹性蛋白抗体(Dako, clone V9)被用于被用于免疫组化在人类样本上. Brain Tumor Pathol (2015) ncbi
小鼠 单克隆(V9)
  • 免疫细胞化学; 人类; 1:500; 图 4
  • 免疫印迹; 人类; 1:1000; 图 1
丹科医疗器械技术服务(上海)有限公司弹性蛋白抗体(Dako, M0725)被用于被用于免疫细胞化学在人类样本上浓度为1:500 (图 4) 和 被用于免疫印迹在人类样本上浓度为1:1000 (图 1). EMBO Mol Med (2015) ncbi
小鼠 单克隆(V9)
  • 免疫细胞化学; 人类; 1:200
丹科医疗器械技术服务(上海)有限公司弹性蛋白抗体(Dako, M0725)被用于被用于免疫细胞化学在人类样本上浓度为1:200. Brain Pathol (2016) ncbi
小鼠 单克隆(VIM 3B4)
  • 免疫细胞化学; pigs ; 1:200
丹科医疗器械技术服务(上海)有限公司弹性蛋白抗体(Dako, M 7020)被用于被用于免疫细胞化学在pigs 样本上浓度为1:200. Tissue Eng Part C Methods (2015) ncbi
小鼠 单克隆(V9)
  • 免疫组化; 人类; 表 1
丹科医疗器械技术服务(上海)有限公司弹性蛋白抗体(DAKO, V9)被用于被用于免疫组化在人类样本上 (表 1). Int J Clin Exp Pathol (2015) ncbi
小鼠 单克隆(V9)
  • 免疫组化-石蜡切片; 大鼠
丹科医疗器械技术服务(上海)有限公司弹性蛋白抗体(DAKO, V9)被用于被用于免疫组化-石蜡切片在大鼠样本上. PLoS ONE (2015) ncbi
小鼠 单克隆(V9)
  • 免疫组化-石蜡切片; 人类; 1:100
丹科医疗器械技术服务(上海)有限公司弹性蛋白抗体(Dako, Clone V9, M0725)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100. Cent European J Urol (2014) ncbi
小鼠 单克隆(V9)
  • 免疫组化-石蜡切片; black ferret; 1:100; 表 3
丹科医疗器械技术服务(上海)有限公司弹性蛋白抗体(Dakopatts, V9)被用于被用于免疫组化-石蜡切片在black ferret样本上浓度为1:100 (表 3). J Vet Med Sci (2015) ncbi
小鼠 单克隆(V9)
  • 免疫组化; 人类; 1:200
丹科医疗器械技术服务(上海)有限公司弹性蛋白抗体(DakoCytomation, M0725)被用于被用于免疫组化在人类样本上浓度为1:200. Histopathology (2015) ncbi
小鼠 单克隆(V9)
  • 免疫细胞化学; 人类; 1:100
丹科医疗器械技术服务(上海)有限公司弹性蛋白抗体(Dako, M0725)被用于被用于免疫细胞化学在人类样本上浓度为1:100. Stem Cells (2015) ncbi
小鼠 单克隆(V9)
  • 免疫组化-石蜡切片; 大鼠; 1:200
丹科医疗器械技术服务(上海)有限公司弹性蛋白抗体(Dako, M0725)被用于被用于免疫组化-石蜡切片在大鼠样本上浓度为1:200. J Mol Cell Cardiol (2015) ncbi
小鼠 单克隆(V9)
  • 免疫组化-石蜡切片; 人类; 1:800
丹科医疗器械技术服务(上海)有限公司弹性蛋白抗体(Dako, V9)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:800. APMIS (2015) ncbi
小鼠 单克隆(V9)
  • 免疫组化-石蜡切片; 人类; 1:1600
丹科医疗器械技术服务(上海)有限公司弹性蛋白抗体(Dako Cytomation, V9)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:1600. Hum Pathol (2015) ncbi
小鼠 单克隆(VIM 3B4)
  • 免疫组化-石蜡切片; 人类; 1:100
丹科医疗器械技术服务(上海)有限公司弹性蛋白抗体(Dako, 3B4)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100. Int J Clin Exp Pathol (2014) ncbi
小鼠 单克隆(V9)
  • 免疫细胞化学; 人类
丹科医疗器械技术服务(上海)有限公司弹性蛋白抗体(Dako, V9)被用于被用于免疫细胞化学在人类样本上. Int J Biochem Cell Biol (2014) ncbi
小鼠 单克隆(VIM 3B4)
  • 免疫组化-冰冻切片; 人类; 1:100
丹科医疗器械技术服务(上海)有限公司弹性蛋白抗体(Dako, M7020)被用于被用于免疫组化-冰冻切片在人类样本上浓度为1:100. J Comp Neurol (2015) ncbi
小鼠 单克隆(V9)
  • 免疫组化; 牛; 图 1
丹科医疗器械技术服务(上海)有限公司弹性蛋白抗体(Dako, M0725)被用于被用于免疫组化在牛样本上 (图 1). Vet Res (2014) ncbi
小鼠 单克隆(V9)
  • 流式细胞仪; 人类
  • 免疫细胞化学; 人类
丹科医疗器械技术服务(上海)有限公司弹性蛋白抗体(DAKO, M0725)被用于被用于流式细胞仪在人类样本上 和 被用于免疫细胞化学在人类样本上. Biomed Mater (2014) ncbi
小鼠 单克隆(V9)
  • 免疫组化; 人类; 图 s1
丹科医疗器械技术服务(上海)有限公司弹性蛋白抗体(Dako, V9)被用于被用于免疫组化在人类样本上 (图 s1). J Thorac Oncol (2014) ncbi
小鼠 单克隆(V9)
  • 免疫组化-石蜡切片; 人类
丹科医疗器械技术服务(上海)有限公司弹性蛋白抗体(Dako, V9)被用于被用于免疫组化-石蜡切片在人类样本上. Virchows Arch (2014) ncbi
小鼠 单克隆(V9)
  • 免疫组化-石蜡切片; 人类; 1:1200; 表 3
丹科医疗器械技术服务(上海)有限公司弹性蛋白抗体(DAKO, V9)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:1200 (表 3). Breast Cancer Res Treat (2014) ncbi
小鼠 单克隆(V9)
  • 免疫组化; 大鼠; 1:500
丹科医疗器械技术服务(上海)有限公司弹性蛋白抗体(Dako, M0725)被用于被用于免疫组化在大鼠样本上浓度为1:500. PLoS ONE (2014) ncbi
小鼠 单克隆(VIM 3B4)
  • 免疫组化; 人类; 1:1000
丹科医疗器械技术服务(上海)有限公司弹性蛋白抗体(DAKO, M7020)被用于被用于免疫组化在人类样本上浓度为1:1000. BMC Pregnancy Childbirth (2014) ncbi
小鼠 单克隆(V9)
  • 免疫组化; 人类
丹科医疗器械技术服务(上海)有限公司弹性蛋白抗体(DAKO, V9)被用于被用于免疫组化在人类样本上. Invest Ophthalmol Vis Sci (2014) ncbi
小鼠 单克隆(V9)
  • 免疫组化; 人类; 1:200
丹科医疗器械技术服务(上海)有限公司弹性蛋白抗体(Dako, M0725)被用于被用于免疫组化在人类样本上浓度为1:200. Brain Pathol (2015) ncbi
小鼠 单克隆(VIM 3B4)
  • 免疫细胞化学; 人类
丹科医疗器械技术服务(上海)有限公司弹性蛋白抗体(DAKO, Vim 3B4)被用于被用于免疫细胞化学在人类样本上. PLoS ONE (2014) ncbi
小鼠 单克隆(V9)
  • 免疫细胞化学; 人类; 1:50
丹科医疗器械技术服务(上海)有限公司弹性蛋白抗体(Dako, M0725)被用于被用于免疫细胞化学在人类样本上浓度为1:50. PLoS ONE (2014) ncbi
小鼠 单克隆(V9)
  • 免疫组化; 人类; 1:400
丹科医疗器械技术服务(上海)有限公司弹性蛋白抗体(Dako, M072501)被用于被用于免疫组化在人类样本上浓度为1:400. Histopathology (2014) ncbi
小鼠 单克隆(VIM 3B4)
  • 免疫组化; 人类; 1:100
丹科医疗器械技术服务(上海)有限公司弹性蛋白抗体(Dako, Vim3B4)被用于被用于免疫组化在人类样本上浓度为1:100. Pathol Res Pract (2014) ncbi
小鼠 单克隆(V9)
  • 免疫组化; 人类; 1:500; 图 2a
丹科医疗器械技术服务(上海)有限公司弹性蛋白抗体(Dako, V9)被用于被用于免疫组化在人类样本上浓度为1:500 (图 2a). J Urol (2014) ncbi
小鼠 单克隆(VIM 3B4)
  • 免疫细胞化学; 人类
丹科医疗器械技术服务(上海)有限公司弹性蛋白抗体(DakoCytomation, M7020)被用于被用于免疫细胞化学在人类样本上. Cell Tissue Res (2014) ncbi
小鼠 单克隆(V9)
  • 免疫组化-石蜡切片; 人类; 1:50
丹科医疗器械技术服务(上海)有限公司弹性蛋白抗体(DAKO, V9)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:50. Neuropathology (2014) ncbi
小鼠 单克隆(V9)
  • 免疫组化-石蜡切片; 家羊; 1:100
丹科医疗器械技术服务(上海)有限公司弹性蛋白抗体(Dako Cytomation, V9)被用于被用于免疫组化-石蜡切片在家羊样本上浓度为1:100. Virchows Arch (2014) ncbi
小鼠 单克隆(VIM 3B4)
  • 免疫组化-石蜡切片; 人类
丹科医疗器械技术服务(上海)有限公司弹性蛋白抗体(Dako Cytomation, Vim3B4)被用于被用于免疫组化-石蜡切片在人类样本上. PLoS ONE (2014) ncbi
小鼠 单克隆(VIM 3B4)
  • 免疫细胞化学; 人类; 1:25
  • 免疫组化; 人类; 1:25
丹科医疗器械技术服务(上海)有限公司弹性蛋白抗体(Dako, Vim3B4)被用于被用于免疫细胞化学在人类样本上浓度为1:25 和 被用于免疫组化在人类样本上浓度为1:25. Am J Pathol (2014) ncbi
小鼠 单克隆(V9)
  • 免疫组化-石蜡切片; pigs
丹科医疗器械技术服务(上海)有限公司弹性蛋白抗体(Dako, M0725)被用于被用于免疫组化-石蜡切片在pigs 样本上. Cardiovasc Res (2014) ncbi
小鼠 单克隆(V9)
  • 免疫组化; 人类; 1:2500
丹科医疗器械技术服务(上海)有限公司弹性蛋白抗体(DakoCytomation, m0725)被用于被用于免疫组化在人类样本上浓度为1:2500. BMC Res Notes (2014) ncbi
小鼠 单克隆(V9)
  • 免疫组化-石蜡切片; 大鼠
丹科医疗器械技术服务(上海)有限公司弹性蛋白抗体(DAKO, M0725)被用于被用于免疫组化-石蜡切片在大鼠样本上. Mol Cancer Res (2014) ncbi
小鼠 单克隆(V9)
  • 免疫印迹; 人类; 1:1000
丹科医疗器械技术服务(上海)有限公司弹性蛋白抗体(Dako, V9)被用于被用于免疫印迹在人类样本上浓度为1:1000. Mol Cancer Res (2014) ncbi
小鼠 单克隆(V9)
  • 免疫组化; 人类; 图 1
丹科医疗器械技术服务(上海)有限公司弹性蛋白抗体(Dako, V9)被用于被用于免疫组化在人类样本上 (图 1). Cancer Genet (2013) ncbi
小鼠 单克隆(V9)
  • 免疫组化; 人类; 图 5
丹科医疗器械技术服务(上海)有限公司弹性蛋白抗体(Dako, V9)被用于被用于免疫组化在人类样本上 (图 5). Clin Cancer Res (2014) ncbi
小鼠 单克隆(V9)
  • 免疫组化; 人类; 1:200
丹科医疗器械技术服务(上海)有限公司弹性蛋白抗体(Dako, V9)被用于被用于免疫组化在人类样本上浓度为1:200. Fetal Pediatr Pathol (2014) ncbi
小鼠 单克隆(V9)
  • 免疫组化-石蜡切片; 人类; 1:400
丹科医疗器械技术服务(上海)有限公司弹性蛋白抗体(DAKO, V9)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:400. J Clin Pathol (2014) ncbi
小鼠 单克隆(V9)
  • 免疫组化; 人类
丹科医疗器械技术服务(上海)有限公司弹性蛋白抗体(DakoCytomation, V9)被用于被用于免疫组化在人类样本上. Head Neck (2014) ncbi
小鼠 单克隆(VIM 3B4)
  • 免疫组化; 人类; 图 6
  • 免疫细胞化学; 家羊; 图 5
  • 免疫组化; 家羊; 图 6
丹科医疗器械技术服务(上海)有限公司弹性蛋白抗体(dako, Vim 3B4)被用于被用于免疫组化在人类样本上 (图 6), 被用于免疫细胞化学在家羊样本上 (图 5) 和 被用于免疫组化在家羊样本上 (图 6). J Tissue Eng Regen Med (2016) ncbi
小鼠 单克隆(V9)
  • 免疫组化-石蜡切片; 人类; 1:1000
丹科医疗器械技术服务(上海)有限公司弹性蛋白抗体(DAKO, V9)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:1000. Neurobiol Dis (2013) ncbi
小鼠 单克隆(V9)
  • 免疫细胞化学; 人类; 1:100
丹科医疗器械技术服务(上海)有限公司弹性蛋白抗体(Dako, M0725)被用于被用于免疫细胞化学在人类样本上浓度为1:100. Cell Tissue Res (2013) ncbi
小鼠 单克隆(V9)
  • 免疫组化-石蜡切片; 人类; 1:1000
丹科医疗器械技术服务(上海)有限公司弹性蛋白抗体(DAKO, V9)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:1000. Brain Pathol (2013) ncbi
小鼠 单克隆(V9)
  • 免疫组化; 大鼠; 1:500
丹科医疗器械技术服务(上海)有限公司弹性蛋白抗体(Dako, 0725)被用于被用于免疫组化在大鼠样本上浓度为1:500. J Comp Neurol (2013) ncbi
小鼠 单克隆(V9)
  • 免疫组化; 人类; 1:25
丹科医疗器械技术服务(上海)有限公司弹性蛋白抗体(Dako Cytomation, V9)被用于被用于免疫组化在人类样本上浓度为1:25. Pathol Int (2011) ncbi
小鼠 单克隆(V9)
  • 免疫组化-石蜡切片; 人类; 1:400
丹科医疗器械技术服务(上海)有限公司弹性蛋白抗体(DAKO, V9)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:400. Brain (2011) ncbi
小鼠 单克隆(V9)
  • 免疫组化-石蜡切片; 人类; 1:400
丹科医疗器械技术服务(上海)有限公司弹性蛋白抗体(DAKO, V9)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:400. Neuroscience (2011) ncbi
小鼠 单克隆(V9)
  • 免疫组化-冰冻切片; 人类
  • 免疫组化-石蜡切片; 人类
  • 免疫组化-冰冻切片; African green monkey
  • 免疫组化-石蜡切片; African green monkey
丹科医疗器械技术服务(上海)有限公司弹性蛋白抗体(Dako, M0725)被用于被用于免疫组化-冰冻切片在人类样本上, 被用于免疫组化-石蜡切片在人类样本上, 被用于免疫组化-冰冻切片在African green monkey样本上 和 被用于免疫组化-石蜡切片在African green monkey样本上. J Comp Neurol (2011) ncbi
小鼠 单克隆(VIM 3B4)
  • 免疫组化-石蜡切片; 人类; 1:200
丹科医疗器械技术服务(上海)有限公司弹性蛋白抗体(DakoCytomation, Vim 3B4)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:200. J Am Acad Dermatol (2010) ncbi
小鼠 单克隆(V9)
  • 免疫组化-冰冻切片; African green monkey; 1:300
丹科医疗器械技术服务(上海)有限公司弹性蛋白抗体(DakoCytomation, M0725)被用于被用于免疫组化-冰冻切片在African green monkey样本上浓度为1:300. J Comp Neurol (2008) ncbi
小鼠 单克隆(V9)
  • 免疫组化-冰冻切片; 大鼠; 1:1000
丹科医疗器械技术服务(上海)有限公司弹性蛋白抗体(Dako, M0725)被用于被用于免疫组化-冰冻切片在大鼠样本上浓度为1:1000. J Comp Neurol (2007) ncbi
小鼠 单克隆(V9)
  • 免疫组化-冰冻切片; domestic rabbit; 1:800
丹科医疗器械技术服务(上海)有限公司弹性蛋白抗体(Dako, M0725)被用于被用于免疫组化-冰冻切片在domestic rabbit样本上浓度为1:800. J Comp Neurol (2006) ncbi
Cell Marque
domestic rabbit 单克隆(SP20)
  • 免疫组化; 小鼠; 图 2a
Cell Marque弹性蛋白抗体(Cell Marque, SP20)被用于被用于免疫组化在小鼠样本上 (图 2a). BMC Genomics (2020) ncbi
单克隆(V9)
  • 免疫组化; domestic rabbit; 1:400; 图 2d
Cell Marque弹性蛋白抗体(CellMarque, V9)被用于被用于免疫组化在domestic rabbit样本上浓度为1:400 (图 2d). Exp Anim (2019) ncbi
Vector Laboratories
  • 免疫细胞化学; 人类; 图 1
载体实验室弹性蛋白抗体(Vector Labs, VPV684)被用于被用于免疫细胞化学在人类样本上 (图 1). J Tissue Eng Regen Med (2018) ncbi
  • 免疫细胞化学; 人类; 图 2
载体实验室弹性蛋白抗体(Vector Labs, VPV684)被用于被用于免疫细胞化学在人类样本上 (图 2). Cytotherapy (2015) ncbi
Bioworld
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:500; 图 4
Bioworld弹性蛋白抗体(Bioworld Technology, BS1776)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 4). Chin J Cancer (2016) ncbi
  • 免疫印迹; 人类; 图 1
Bioworld弹性蛋白抗体(Bioworld Technology, BS-1855)被用于被用于免疫印迹在人类样本上 (图 1). Oncotarget (2016) ncbi
Biogenex
  • 免疫组化-石蜡切片; 人类; 1:300; 图 3, 4
Biogenex弹性蛋白抗体(Biogenex, MU074-UC)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:300 (图 3, 4). Methods Mol Biol (2014) ncbi
碧迪BD
小鼠 单克隆(RV202)
  • 免疫印迹; 人类; 1:17,000; 图 1b
碧迪BD弹性蛋白抗体(BD Pharmingen, 550513)被用于被用于免疫印迹在人类样本上浓度为1:17,000 (图 1b). Nat Commun (2020) ncbi
小鼠 单克隆(RV202)
  • 免疫细胞化学; 犬; 1:2000; 图 5d
  • 免疫印迹; 犬; 1:2000; 图 5c
碧迪BD弹性蛋白抗体(BD, 550513)被用于被用于免疫细胞化学在犬样本上浓度为1:2000 (图 5d) 和 被用于免疫印迹在犬样本上浓度为1:2000 (图 5c). Sci Adv (2020) ncbi
小鼠 单克隆(RV202)
  • 免疫印迹; 人类; 1:1000
碧迪BD弹性蛋白抗体(BD Biosciences, 550513)被用于被用于免疫印迹在人类样本上浓度为1:1000. Nat Commun (2019) ncbi
小鼠 单克隆(RV202)
  • 免疫印迹; 人类; 1:10,000; 图 5b
碧迪BD弹性蛋白抗体(BD Pharmingen, 550513)被用于被用于免疫印迹在人类样本上浓度为1:10,000 (图 5b). Stem Cells (2019) ncbi
小鼠 单克隆(RV202)
  • 免疫印迹; 人类; 图 s1c
碧迪BD弹性蛋白抗体(BD Biosciences, 550513)被用于被用于免疫印迹在人类样本上 (图 s1c). Breast Cancer Res (2019) ncbi
小鼠 单克隆(RV202)
  • 流式细胞仪; 人类; 15 ug/ml
碧迪BD弹性蛋白抗体(BD Biosciences, 562337)被用于被用于流式细胞仪在人类样本上浓度为15 ug/ml. Cell Death Dis (2017) ncbi
小鼠 单克隆(RV202)
  • 免疫印迹; 人类; 图 4b
碧迪BD弹性蛋白抗体(BD Biosciences, 550513)被用于被用于免疫印迹在人类样本上 (图 4b). Cancer Res (2017) ncbi
小鼠 单克隆(RV202)
  • 免疫印迹; 人类; 1:5000; 图 2e
碧迪BD弹性蛋白抗体(BD Biosciences, RV202)被用于被用于免疫印迹在人类样本上浓度为1:5000 (图 2e). Genes Cancer (2016) ncbi
小鼠 单克隆(RV202)
  • 免疫印迹; 人类; 1:5000; 图 3C; 3E
碧迪BD弹性蛋白抗体(BD, 550513)被用于被用于免疫印迹在人类样本上浓度为1:5000 (图 3C; 3E). Oncotarget (2017) ncbi
小鼠 单克隆(RV202)
  • 免疫印迹; 人类; 图 2ii
碧迪BD弹性蛋白抗体(BD Biosciences, BD550513)被用于被用于免疫印迹在人类样本上 (图 2ii). J Cell Biochem (2017) ncbi
小鼠 单克隆(RV202)
  • 免疫细胞化学; 人类; 1:2000; 图 4b
  • 免疫印迹; 人类; 1:2000; 图 1b
  • 免疫组化; 小鼠; 1:2000; 图 3f
碧迪BD弹性蛋白抗体(BD Biosciences, 550513)被用于被用于免疫细胞化学在人类样本上浓度为1:2000 (图 4b), 被用于免疫印迹在人类样本上浓度为1:2000 (图 1b) 和 被用于免疫组化在小鼠样本上浓度为1:2000 (图 3f). Nat Commun (2016) ncbi
小鼠 单克隆(RV202)
  • 免疫组化-冰冻切片; 小鼠; 1:100; 图 7d
碧迪BD弹性蛋白抗体(BD Biosciences, 550513)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:100 (图 7d). J Clin Invest (2017) ncbi
小鼠 单克隆(RV202)
  • 免疫细胞化学; 人类; 图 1b
碧迪BD弹性蛋白抗体(BD Biosciences, 550513)被用于被用于免疫细胞化学在人类样本上 (图 1b). Int J Mol Med (2016) ncbi
小鼠 单克隆(RV202)
  • 免疫印迹; 人类; 图 7e
碧迪BD弹性蛋白抗体(BD Bioscience, 550513)被用于被用于免疫印迹在人类样本上 (图 7e). EMBO Mol Med (2016) ncbi
小鼠 单克隆(RV202)
  • 免疫印迹; 人类; 图 s5
碧迪BD弹性蛋白抗体(BD Pharmingen, 550513)被用于被用于免疫印迹在人类样本上 (图 s5). Oncotarget (2016) ncbi
小鼠 单克隆(RV202)
  • 免疫组化; 人类; 图 7
碧迪BD弹性蛋白抗体(BD Pharmingen, 550513)被用于被用于免疫组化在人类样本上 (图 7). Oncotarget (2016) ncbi
小鼠 单克隆(RV202)
  • 免疫组化-石蜡切片; 小鼠; 图 3
碧迪BD弹性蛋白抗体(BD Pharmingen, RV202)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 3). Oncogene (2016) ncbi
小鼠 单克隆(RV202)
  • 免疫印迹; 人类; 图 4
碧迪BD弹性蛋白抗体(BD Biosciences, 550513)被用于被用于免疫印迹在人类样本上 (图 4). Oncogene (2016) ncbi
小鼠 单克隆(RV202)
  • 免疫印迹; 人类; 1:2000; 图 2f
碧迪BD弹性蛋白抗体(BD, RV202)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 2f). Nat Commun (2016) ncbi
小鼠 单克隆(RV202)
  • 免疫印迹; 人类; 1:8000; 图 1
碧迪BD弹性蛋白抗体(bD Bioscience, 550513)被用于被用于免疫印迹在人类样本上浓度为1:8000 (图 1). Sci Rep (2016) ncbi
小鼠 单克隆(RV202)
  • 免疫印迹; 人类; 图 3
碧迪BD弹性蛋白抗体(BD Biosciences, BDB550513)被用于被用于免疫印迹在人类样本上 (图 3). PLoS ONE (2016) ncbi
小鼠 单克隆(RV202)
  • 流式细胞仪; 人类; 图 3
碧迪BD弹性蛋白抗体(BD Pharmingen, 562338)被用于被用于流式细胞仪在人类样本上 (图 3). BMC Res Notes (2015) ncbi
小鼠 单克隆(RV202)
  • 免疫印迹; 人类; 1:15,000; 图 8d
碧迪BD弹性蛋白抗体(BD Pharmingen, 550513)被用于被用于免疫印迹在人类样本上浓度为1:15,000 (图 8d). Oncotarget (2015) ncbi
小鼠 单克隆(RV202)
  • 免疫组化; 人类; 图 8
碧迪BD弹性蛋白抗体(BD Biosciences, 550513)被用于被用于免疫组化在人类样本上 (图 8). Oncotarget (2015) ncbi
小鼠 单克隆(RV202)
  • 免疫细胞化学; 人类; 图 1
  • 免疫印迹; 人类; 图 1
碧迪BD弹性蛋白抗体(BD Pharmingen, RV202)被用于被用于免疫细胞化学在人类样本上 (图 1) 和 被用于免疫印迹在人类样本上 (图 1). PLoS ONE (2014) ncbi
小鼠 单克隆(RV202)
  • 免疫组化-石蜡切片; 小鼠
碧迪BD弹性蛋白抗体(BD BioSciences, 550513)被用于被用于免疫组化-石蜡切片在小鼠样本上. Cancer Res (2014) ncbi
小鼠 单克隆(RV202)
  • 免疫组化-石蜡切片; 人类; 1:200
碧迪BD弹性蛋白抗体(BD, RV202)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:200. Virchows Arch (2014) ncbi
小鼠 单克隆(RV202)
  • 免疫印迹; 人类
碧迪BD弹性蛋白抗体(BD Biosciences, 550513)被用于被用于免疫印迹在人类样本上. Oncol Rep (2013) ncbi
小鼠 单克隆(RV202)
  • 免疫印迹; 小鼠
碧迪BD弹性蛋白抗体(BD Pharmingen, 550513)被用于被用于免疫印迹在小鼠样本上. Oncogene (2014) ncbi
小鼠 单克隆(RV202)
  • 免疫细胞化学; 人类
  • 免疫印迹; 人类; 图 st8
碧迪BD弹性蛋白抗体(BD Pharmigen, 550513)被用于被用于免疫细胞化学在人类样本上 和 被用于免疫印迹在人类样本上 (图 st8). Cell Cycle (2013) ncbi
小鼠 单克隆(RV202)
  • 免疫印迹; 人类; 1:10000
碧迪BD弹性蛋白抗体(BD, 550513)被用于被用于免疫印迹在人类样本上浓度为1:10000. Sci Rep (2012) ncbi
小鼠 单克隆(RV202)
  • 免疫细胞化学; 大鼠; 1:100
碧迪BD弹性蛋白抗体(BD Biosciences, 550513)被用于被用于免疫细胞化学在大鼠样本上浓度为1:100. J Tissue Eng Regen Med (2014) ncbi
Developmental Studies Hybridoma Bank
小鼠 单克隆(AMF-17b)
  • 免疫印迹; 人类; 图 s1b
Developmental Studies Hybridoma Bank弹性蛋白抗体(DSHB, AMF-17b)被用于被用于免疫印迹在人类样本上 (图 s1b). Adv Sci (Weinh) (2020) ncbi
小鼠 单克隆(AMF-17b)
  • 免疫印迹; 人类; 1:500; 图 s4a
Developmental Studies Hybridoma Bank弹性蛋白抗体(DSHB, AMF-17b)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 s4a). Sci Rep (2019) ncbi
小鼠 单克隆(AMF-17b)
  • 免疫印迹; 人类; 图 1b
Developmental Studies Hybridoma Bank弹性蛋白抗体(DSHB, AMF-17b)被用于被用于免疫印迹在人类样本上 (图 1b). Mol Carcinog (2015) ncbi
小鼠 单克隆(3CB2)
  • 免疫组化-冰冻切片; 鸡
Developmental Studies Hybridoma Bank弹性蛋白抗体(DSHB, 3CB2)被用于被用于免疫组化-冰冻切片在鸡样本上. PLoS ONE (2014) ncbi
小鼠 单克隆(AMF-17b)
  • 免疫组化; pigs ; 1:100
Developmental Studies Hybridoma Bank弹性蛋白抗体(Hybridoma bank, AMF-17b)被用于被用于免疫组化在pigs 样本上浓度为1:100. PLoS ONE (2012) ncbi
徕卡显微系统(上海)贸易有限公司
  • 免疫组化-石蜡切片; domestic rabbit; 1:100; 图 4a
徕卡显微系统(上海)贸易有限公司弹性蛋白抗体(Leica Microsystems, NCL-L-VIM-V9)被用于被用于免疫组化-石蜡切片在domestic rabbit样本上浓度为1:100 (图 4a). Nat Chem Biol (2018) ncbi
小鼠 单克隆(VIM 3B4)
  • 免疫组化-石蜡切片; 人类; 1:400; 图 6b
徕卡显微系统(上海)贸易有限公司弹性蛋白抗体(Novocastra, NCL-VIM-V9)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:400 (图 6b). PLoS ONE (2017) ncbi
单克隆(SRL33)
  • 免疫组化-石蜡切片; 人类
徕卡显微系统(上海)贸易有限公司弹性蛋白抗体(Novocastra, SRL33)被用于被用于免疫组化-石蜡切片在人类样本上. Hum Pathol (2015) ncbi
单克隆(SRL33)
徕卡显微系统(上海)贸易有限公司弹性蛋白抗体(Leica, srl-33)被用于. Vet Ophthalmol (2016) ncbi
小鼠 单克隆(VIM 3B4)
  • 免疫组化-冰冻切片; 大鼠; 1:100
徕卡显微系统(上海)贸易有限公司弹性蛋白抗体(Novocastra, NCL-VIM-V9)被用于被用于免疫组化-冰冻切片在大鼠样本上浓度为1:100. Cell Biol Int (2015) ncbi
小鼠 单克隆(VIM 3B4)
  • 免疫组化-石蜡切片; 人类
徕卡显微系统(上海)贸易有限公司弹性蛋白抗体(Novocastra Laboratories, VIM3B4)被用于被用于免疫组化-石蜡切片在人类样本上. Oncol Lett (2014) ncbi
MBL International
  • 免疫组化-冰冻切片; black ferret; 图 2g
MBL International弹性蛋白抗体(MBL, D076-3)被用于被用于免疫组化-冰冻切片在black ferret样本上 (图 2g). Nature (2018) ncbi
单克隆(MO82)
  • 免疫组化; 人类; 1:500; 图 s7b
MBL International弹性蛋白抗体(MBL, D095-3)被用于被用于免疫组化在人类样本上浓度为1:500 (图 s7b). Science (2017) ncbi
  • 免疫组化-冰冻切片; 小鼠; 1:500; 图 3s1
MBL International弹性蛋白抗体(MBL, D076-3s)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:500 (图 3s1). elife (2016) ncbi
  • 免疫组化-冰冻切片; 人类; 1:2000; 图 s10a
MBL International弹性蛋白抗体(MBL International, D076-3)被用于被用于免疫组化-冰冻切片在人类样本上浓度为1:2000 (图 s10a). Nat Neurosci (2016) ncbi
  • 免疫印迹; 人类; 1:20; 图 4,5,6
MBL International弹性蛋白抗体(MBL, D076-3)被用于被用于免疫印迹在人类样本上浓度为1:20 (图 4,5,6). Biochim Biophys Acta (2015) ncbi
文章列表
  1. Hosseini K, Taubenberger A, Werner C, Fischer Friedrich E. EMT-Induced Cell-Mechanical Changes Enhance Mitotic Rounding Strength. Adv Sci (Weinh). 2020;7:2001276 pubmed 出版商
  2. He Z, Duan Z, Chen L, Li B, Zhou Y. Long non-coding RNA Loc490 inhibits gastric cancer cell proliferation and metastasis by upregulating RNA-binding protein Quaking. Aging (Albany NY). 2020;12:17681-17693 pubmed 出版商
  3. Dias A, Lozovska A, Wymeersch F, Novoa A, Binagui Casas A, Sobral D, et al. A Tgfbr1/Snai1-dependent developmental module at the core of vertebrate axial elongation. elife. 2020;9: pubmed 出版商
  4. Bozic M, Caus M, Rodrigues Díez R, Pedraza N, Ruiz Ortega M, Garí E, et al. Protective role of renal proximal tubular alpha-synuclein in the pathogenesis of kidney fibrosis. Nat Commun. 2020;11:1943 pubmed 出版商
  5. Gremlich S, Roth Kleiner M, Equey L, Fytianos K, Schittny J, Cremona T. Tenascin-C inactivation impacts lung structure and function beyond lung development. Sci Rep. 2020;10:5118 pubmed 出版商
  6. Liang W, Gao R, Yang M, Wang X, Cheng K, Shi X, et al. MARCKSL1 promotes the proliferation, migration and invasion of lung adenocarcinoma cells. Oncol Lett. 2020;19:2272-2280 pubmed 出版商
  7. Guven A, Kalebic N, Long K, Florio M, Vaid S, Brandl H, et al. Extracellular matrix-inducing Sox9 promotes both basal progenitor proliferation and gliogenesis in developing neocortex. elife. 2020;9: pubmed 出版商
  8. Alafate W, Li X, Zuo J, Zhang H, Xiang J, Wu W, et al. Elevation of CXCL1 indicates poor prognosis and radioresistance by inducing mesenchymal transition in glioblastoma. CNS Neurosci Ther. 2020;26:475-485 pubmed 出版商
  9. Deng C, Chen S, Li X, Luo H, Zhang Q, Hu P, et al. Role of the PGE2 receptor in ischemia-reperfusion injury of the rat retina. Mol Vis. 2020;26:36-47 pubmed
  10. Guo Y, Zhang Z, Wang Z, Liu G, Liu Y, Wang H. Astragalus polysaccharides inhibit ovarian cancer cell growth via microRNA-27a/FBXW7 signaling pathway. Biosci Rep. 2020;40: pubmed 出版商
  11. Jin T, Liu M, Liu Y, Li Y, Xu Z, He H, et al. Lcn2-derived Circular RNA (hsa_circ_0088732) Inhibits Cell Apoptosis and Promotes EMT in Glioma via the miR-661/RAB3D Axis. Front Oncol. 2020;10:170 pubmed 出版商
  12. Chen J, Chen S, Zhuo L, Zhu Y, Zheng H. Regulation of cancer stem cell properties, angiogenesis, and vasculogenic mimicry by miR-450a-5p/SOX2 axis in colorectal cancer. Cell Death Dis. 2020;11:173 pubmed 出版商
  13. Wang X, Shan Y, Tan Q, Tan C, Zhang H, Liu J, et al. MEX3A knockdown inhibits the development of pancreatic ductal adenocarcinoma. Cancer Cell Int. 2020;20:63 pubmed 出版商
  14. Chen Z, Zhang J, Xue H, Qian M, Guo X, Gao X, et al. Nitidine Chloride Is a Potential Alternative Therapy for Glioma Through Inducing Endoplasmic Reticulum Stress and Alleviating Epithelial-Mesenchymal Transition. Integr Cancer Ther. 2020;19:1534735419900927 pubmed 出版商
  15. Dong C, Zhang J, Fang S, Liu F. IGFBP5 increases cell invasion and inhibits cell proliferation by EMT and Akt signaling pathway in Glioblastoma multiforme cells. Cell Div. 2020;15:4 pubmed 出版商
  16. Wang S, Qi Y, Gao X, Qiu W, Liu Q, Guo X, et al. Hypoxia-induced lncRNA PDIA3P1 promotes mesenchymal transition via sponging of miR-124-3p in glioma. Cell Death Dis. 2020;11:168 pubmed 出版商
  17. Nayakawde N, Methe K, Banerjee D, Berg M, Premaratne G, Olausson M. In Vitro Regeneration of Decellularized Pig Esophagus Using Human Amniotic Stem Cells. Biores Open Access. 2020;9:22-36 pubmed 出版商
  18. Aldonza M, Ku J, Hong J, Kim D, Yu S, Lee M, et al. Prior acquired resistance to paclitaxel relays diverse EGFR-targeted therapy persistence mechanisms. Sci Adv. 2020;6:eaav7416 pubmed 出版商
  19. Zhang Y, Du P, Li Y, Zhu Q, Song X, Liu S, et al. TASP1 Promotes Gallbladder Cancer Cell Proliferation and Metastasis by Up-regulating FAM49B via PI3K/AKT Pathway. Int J Biol Sci. 2020;16:739-751 pubmed 出版商
  20. Hu D, Chen H, Lou L, Zhang H, Yang G. SKA3 promotes lung adenocarcinoma metastasis through the EGFR-PI3K-Akt axis. Biosci Rep. 2020;40: pubmed 出版商
  21. Liu K, Yu Q, Li H, Xie C, Wu Y, Ma D, et al. BIRC7 promotes epithelial-mesenchymal transition and metastasis in papillary thyroid carcinoma through restraining autophagy. Am J Cancer Res. 2020;10:78-94 pubmed
  22. Li M, Wu P, Yang Z, Deng S, Ni L, Zhang Y, et al. miR-193a-5p promotes pancreatic cancer cell metastasis through SRSF6-mediated alternative splicing of OGDHL and ECM1. Am J Cancer Res. 2020;10:38-59 pubmed
  23. Hou M, Han J, Li G, Kwon M, Jiang J, Emani S, et al. Multipotency of mouse trophoblast stem cells. Stem Cell Res Ther. 2020;11:55 pubmed 出版商
  24. Ayanlaja A, Ji G, Wang J, Gao Y, Cheng B, Kanwore K, et al. Doublecortin undergo nucleocytoplasmic transport via the RanGTPase signaling to promote glioma progression. Cell Commun Signal. 2020;18:24 pubmed 出版商
  25. Li D, Zhu R, Zhou L, Zhong D. Clinical, histopathologic, subtype, and immunohistochemical analysis of jaw phosphaturic mesenchymal tumors. Medicine (Baltimore). 2020;99:e19090 pubmed 出版商
  26. Guo X, Kolpakov M, Hooshdaran B, Schappell W, Wang T, Eguchi S, et al. Cardiac Expression of Factor X Mediates Cardiac Hypertrophy and Fibrosis in Pressure Overload. JACC Basic Transl Sci. 2020;5:69-83 pubmed 出版商
  27. Tan S, Swathi Y, Tan S, Goh J, Seishima R, Murakami K, et al. AQP5 enriches for stem cells and cancer origins in the distal stomach. Nature. 2020;578:437-443 pubmed 出版商
  28. Feng Y, Ji D, Huang Y, Ji B, Zhang Y, Li J, et al. TGM3 functions as a tumor suppressor by repressing epithelial‑to‑mesenchymal transition and the PI3K/AKT signaling pathway in colorectal cancer. Oncol Rep. 2020;43:864-876 pubmed 出版商
  29. Gu Y, Zhu Z, Pei H, Xu D, Jiang Y, Zhang L, et al. Long non-coding RNA NNT-AS1 promotes cholangiocarcinoma cells proliferation and epithelial-to-mesenchymal transition through down-regulating miR-203. Aging (Albany NY). 2020;12:2333-2346 pubmed 出版商
  30. Guoren Z, Zhaohui F, Wei Z, Mei W, Yuan W, Lin S, et al. TFAP2A Induced ITPKA Serves as an Oncogene and Interacts with DBN1 in Lung Adenocarcinoma. Int J Biol Sci. 2020;16:504-514 pubmed 出版商
  31. Xiong G, Chen J, Zhang G, Wang S, Kawasaki K, Zhu J, et al. Hsp47 promotes cancer metastasis by enhancing collagen-dependent cancer cell-platelet interaction. Proc Natl Acad Sci U S A. 2020;117:3748-3758 pubmed 出版商
  32. Hou K, Li G, Zhao J, Xu B, Zhang Y, Yu J, et al. Bone mesenchymal stem cell-derived exosomal microRNA-29b-3p prevents hypoxic-ischemic injury in rat brain by activating the PTEN-mediated Akt signaling pathway. J Neuroinflammation. 2020;17:46 pubmed 出版商
  33. Wu Q, Li G, Wen C, Zeng T, Fan Y, Liu C, et al. Monoubiquitination of p120-catenin is essential for TGFβ-induced epithelial-mesenchymal transition and tumor metastasis. Sci Adv. 2020;6:eaay9819 pubmed 出版商
  34. Lin L, Li Y, Liu M, Li Q, Liu Q, Li R. The Interleukin-33/ST2 axis promotes glioma mesenchymal transition, stemness and TMZ resistance via JNK activation. Aging (Albany NY). 2020;12:1685-1703 pubmed 出版商
  35. Vetuschi A, Pompili S, Di Marco G, Calvaruso F, Iacomino E, Angelosante L, et al. Can the AGE/RAGE/ERK signalling pathway and the epithelial-to-mesenchymal transition interact in the pathogenesis of chronic rhinosinusitis with nasal polyps?. Eur J Histochem. 2020;64: pubmed 出版商
  36. Cheung E, DeNicola G, Nixon C, Blyth K, Labuschagne C, Tuveson D, et al. Dynamic ROS Control by TIGAR Regulates the Initiation and Progression of Pancreatic Cancer. Cancer Cell. 2020;37:168-182.e4 pubmed 出版商
  37. Famulari E, Navarro Tableros V, Herrera Sanchez M, Bortolussi G, Gai M, Conti L, et al. Human liver stem cells express UGT1A1 and improve phenotype of immunocompromised Crigler Najjar syndrome type I mice. Sci Rep. 2020;10:887 pubmed 出版商
  38. Rahman M, Wruck W, Spitzhorn L, Nguyen L, Bohndorf M, Martins S, et al. The FGF, TGFβ and WNT axis Modulate Self-renewal of Human SIX2+ Urine Derived Renal Progenitor Cells. Sci Rep. 2020;10:739 pubmed 出版商
  39. Ye D, Zhu J, Zhao Q, Ma W, Xiao Y, Xu G, et al. LMP1 Up-regulates Calreticulin to Induce Epithelial-mesenchymal Transition via TGF-β/Smad3/NRP1 Pathway in Nasopharyngeal Carcinoma Cells. J Cancer. 2020;11:1257-1269 pubmed 出版商
  40. Wang H, Ren Y, Qian C, Liu J, Li G, Li Z. Over-expression of CDX2 alleviates breast cancer by up-regulating microRNA let-7b and inhibiting COL11A1 expression. Cancer Cell Int. 2020;20:13 pubmed 出版商
  41. Yoshida K, Miyoshi T, Murakami T. Multicystic peritoneal tumor in two layer hens. J Vet Med Sci. 2020;82:294-298 pubmed 出版商
  42. del Toro D, Carrasquero Ordaz M, Chu A, Ruff T, Shahin M, Jackson V, et al. Structural Basis of Teneurin-Latrophilin Interaction in Repulsive Guidance of Migrating Neurons. Cell. 2020;180:323-339.e19 pubmed 出版商
  43. Du X, Zhang Z, Zheng X, Zhang H, Dong D, Zhang Z, et al. An electrochemical biosensor for the detection of epithelial-mesenchymal transition. Nat Commun. 2020;11:192 pubmed 出版商
  44. Cai H, Li J, Zhang Y, Liao Y, Zhu Y, Wang C, et al. LDHA Promotes Oral Squamous Cell Carcinoma Progression Through Facilitating Glycolysis and Epithelial-Mesenchymal Transition. Front Oncol. 2019;9:1446 pubmed 出版商
  45. Xu C, Zhang M, Bian L, Li Y, Yao Y, Li D. N-glycosylated SGK196 suppresses the metastasis of basal-like breast cancer cells. Oncogenesis. 2020;9:4 pubmed 出版商
  46. Yin L, Li W, Xu A, Shi H, Wang K, Yang H, et al. SH3BGRL2 inhibits growth and metastasis in clear cell renal cell carcinoma via activating hippo/TEAD1-Twist1 pathway. EBioMedicine. 2020;51:102596 pubmed 出版商
  47. Rabé M, Dumont S, Álvarez Arenas A, Janati H, Belmonte Beitia J, Calvo G, et al. Identification of a transient state during the acquisition of temozolomide resistance in glioblastoma. Cell Death Dis. 2020;11:19 pubmed 出版商
  48. Liu X, Ma F, Liu C, Zhu K, Li W, Xu Y, et al. UBE2O promotes the proliferation, EMT and stemness properties of breast cancer cells through the UBE2O/AMPKα2/mTORC1-MYC positive feedback loop. Cell Death Dis. 2020;11:10 pubmed 出版商
  49. Zhou Z, Zhou Q, Wu X, Xu S, Hu X, Tao X, et al. VCAM-1 secreted from cancer-associated fibroblasts enhances the growth and invasion of lung cancer cells through AKT and MAPK signaling. Cancer Lett. 2020;473:62-73 pubmed 出版商
  50. Zhong W, Myers J, Wang F, Wang K, Lucas J, Rosfjord E, et al. Comparison of the molecular and cellular phenotypes of common mouse syngeneic models with human tumors. BMC Genomics. 2020;21:2 pubmed 出版商
  51. Liang L, Wu J, Luo J, Wang L, Chen Z, Han C, et al. Oxymatrine reverses 5-fluorouracil resistance by inhibition of colon cancer cell epithelial-mesenchymal transition and NF-κB signaling in vitro. Oncol Lett. 2020;19:519-526 pubmed 出版商
  52. Li B, Li M, Li X, Li H, Lai Y, Huang S, et al. Sirt1-inducible deacetylation of p21 promotes cardiomyocyte proliferation. Aging (Albany NY). 2019;11:12546-12567 pubmed 出版商
  53. Wang H, Chen Z, Wang S, Gao X, Qian M, Qiu W, et al. TGFβ1-induced beta-site APP-cleaving enzyme 2 upregulation promotes tumorigenesis through the NF-κB signalling pathway in human gliomas. Mol Oncol. 2020;14:407-425 pubmed 出版商
  54. Tasdogan A, Faubert B, Ramesh V, Ubellacker J, Shen B, Solmonson A, et al. Metabolic heterogeneity confers differences in melanoma metastatic potential. Nature. 2020;577:115-120 pubmed 出版商
  55. Quach C, Song Y, Guo H, Li S, Maazi H, Fung M, et al. A truncating mutation in the autophagy gene UVRAG drives inflammation and tumorigenesis in mice. Nat Commun. 2019;10:5681 pubmed 出版商
  56. Perri A, Agosti V, Olivo E, Concolino A, Angelis M, Tammè L, et al. Histone proteomics reveals novel post-translational modifications in breast cancer. Aging (Albany NY). 2019;11:11722-11755 pubmed 出版商
  57. Li W, Zhang X, Wu F, Zhou Y, Bao Z, Li H, et al. Gastric cancer-derived mesenchymal stromal cells trigger M2 macrophage polarization that promotes metastasis and EMT in gastric cancer. Cell Death Dis. 2019;10:918 pubmed 出版商
  58. Hu Y, Ma Y, Liu J, Cai Y, Zhang M, Fang X. LINC01128 expedites cervical cancer progression by regulating miR-383-5p/SFN axis. BMC Cancer. 2019;19:1157 pubmed 出版商
  59. Yang X, Jiang J, Zhang C, Li Y. Baicalein restrains proliferation, migration, and invasion of human malignant melanoma cells by down-regulating colon cancer associated transcript-1. Braz J Med Biol Res. 2019;52:e8934 pubmed 出版商
  60. Davaadelger B, Choi M, Singhal H, Clare S, Khan S, Kim J. BRCA1 mutation influences progesterone response in human benign mammary organoids. Breast Cancer Res. 2019;21:124 pubmed 出版商
  61. Foster A, El Chami C, O Neill C, Watson R. Osmolyte transporter expression is reduced in photoaged human skin: Implications for skin hydration in aging. Aging Cell. 2020;19:e13058 pubmed 出版商
  62. Wu Y, Zhao Y, He X, He Z, Wang T, Wan L, et al. Hydroxypropyl‑β‑cyclodextrin attenuates the epithelial‑to‑mesenchymal transition via endoplasmic reticulum stress in MDA‑MB‑231 breast cancer cells. Mol Med Rep. 2019;: pubmed 出版商
  63. Wu X, Chen S, Lu C. Amyloid precursor protein promotes the migration and invasion of breast cancer cells by regulating the MAPK signaling pathway. Int J Mol Med. 2019;: pubmed 出版商
  64. Li X, Wang F, Ren M, Du M, Zhou J. The effects of c-Src kinase on EMT signaling pathway in human lens epithelial cells associated with lens diseases. BMC Ophthalmol. 2019;19:219 pubmed 出版商
  65. Lodes N, Seidensticker K, Perniss A, Nietzer S, Oberwinkler H, May T, et al. Investigation on Ciliary Functionality of Different Airway Epithelial Cell Lines in Three-Dimensional Cell Culture. Tissue Eng Part A. 2020;26:432-440 pubmed 出版商
  66. Zhou S, da Silva S, Siegel P, Philip A. CD109 acts as a gatekeeper of the epithelial trait by suppressing epithelial to mesenchymal transition in squamous cell carcinoma cells in vitro. Sci Rep. 2019;9:16317 pubmed 出版商
  67. Chen X, Xiong X, Cui D, Yang F, Wei D, Li H, et al. DEPTOR is an in vivo tumor suppressor that inhibits prostate tumorigenesis via the inactivation of mTORC1/2 signals. Oncogene. 2020;39:1557-1571 pubmed 出版商
  68. Wang Z, Li Y, Zhan S, Zhang L, Zhang S, Tang Q, et al. SMAD4 Y353C promotes the progression of PDAC. BMC Cancer. 2019;19:1037 pubmed 出版商
  69. Vohnoutka R, Gulvady A, Goreczny G, Alpha K, Handelman S, Sexton J, et al. The focal adhesion scaffold protein Hic-5 regulates vimentin organization in fibroblasts. Mol Biol Cell. 2019;30:3037-3056 pubmed 出版商
  70. Fusco P, Parisatto B, Rampazzo E, Persano L, Frasson C, Di Meglio A, et al. Patient-derived organoids (PDOs) as a novel in vitro model for neuroblastoma tumours. BMC Cancer. 2019;19:970 pubmed 出版商
  71. Chen Q, Yang C, Chen L, Zhang J, Ge W, Yuan H, et al. YY1 targets tubulin polymerisation-promoting protein to inhibit migration, invasion and angiogenesis in pancreatic cancer via p38/MAPK and PI3K/AKT pathways. Br J Cancer. 2019;121:912-921 pubmed 出版商
  72. Tan P, Xu Y, Du Y, Wu L, Guo B, Huang S, et al. SPOP suppresses pancreatic cancer progression by promoting the degradation of NANOG. Cell Death Dis. 2019;10:794 pubmed 出版商
  73. Chen R, Chen X, Xia L, Zhang J, Pan Z, Ma X, et al. N6-methyladenosine modification of circNSUN2 facilitates cytoplasmic export and stabilizes HMGA2 to promote colorectal liver metastasis. Nat Commun. 2019;10:4695 pubmed 出版商
  74. Guo S, Liu R, Wen Y, Liu L, Yuan L, Li Y, et al. Endogenous production of C-C motif chemokine ligand 2 by nasopharyngeal carcinoma cells drives radioresistance-associated metastasis. Cancer Lett. 2020;468:27-40 pubmed 出版商
  75. Liu Y, Jiang Q, Liu X, Lin X, Tang Z, Liu C, et al. Cinobufotalin powerfully reversed EBV-miR-BART22-induced cisplatin resistance via stimulating MAP2K4 to antagonize non-muscle myosin heavy chain IIA/glycogen synthase 3β/β-catenin signaling pathway. EBioMedicine. 2019;48:386-404 pubmed 出版商
  76. Veschi V, Mangiapane L, Nicotra A, Di Franco S, Scavo E, Apuzzo T, et al. Targeting chemoresistant colorectal cancer via systemic administration of a BMP7 variant. Oncogene. 2020;39:987-1003 pubmed 出版商
  77. Meertens L, Hafirassou M, Couderc T, Bonnet Madin L, Kril V, Kummerer B, et al. FHL1 is a major host factor for chikungunya virus infection. Nature. 2019;: pubmed 出版商
  78. Aghajanian H, Kimura T, Rurik J, Hancock A, Leibowitz M, Li L, et al. Targeting cardiac fibrosis with engineered T cells. Nature. 2019;573:430-433 pubmed 出版商
  79. Jiao X, Ye J, Wang X, Yin X, Zhang G, Cheng X. KIAA1199, a Target of MicoRNA-486-5p, Promotes Papillary Thyroid Cancer Invasion by Influencing Epithelial-Mesenchymal Transition (EMT). Med Sci Monit. 2019;25:6788-6796 pubmed 出版商
  80. Li L, Yan S, Zhang H, Zhang M, Huang G, Chen M. Interaction of hnRNP K with MAP 1B-LC1 promotes TGF-β1-mediated epithelial to mesenchymal transition in lung cancer cells. BMC Cancer. 2019;19:894 pubmed 出版商
  81. Padmanaban V, Krol I, Suhail Y, Szczerba B, Aceto N, Bader J, et al. E-cadherin is required for metastasis in multiple models of breast cancer. Nature. 2019;573:439-444 pubmed 出版商
  82. Ruffenach G, Umar S, Vaillancourt M, Hong J, Cao N, Sarji S, et al. Histological hallmarks and role of Slug/PIP axis in pulmonary hypertension secondary to pulmonary fibrosis. EMBO Mol Med. 2019;11:e10061 pubmed 出版商
  83. Jiang S, Zhang M, Zhang Y, Zhou W, Zhu T, Ruan Q, et al. WNT5B governs the phenotype of basal-like breast cancer by activating WNT signaling. Cell Commun Signal. 2019;17:109 pubmed 出版商
  84. Ramani V, Lemaire C, Triboulet M, Casey K, Heirich K, Renier C, et al. Investigating circulating tumor cells and distant metastases in patient-derived orthotopic xenograft models of triple-negative breast cancer. Breast Cancer Res. 2019;21:98 pubmed 出版商
  85. Shen J, Xing W, Liu R, Zhang Y, Xie C, Gong F. MiR-32-5p influences high glucose-induced cardiac fibroblast proliferation and phenotypic alteration by inhibiting DUSP1. BMC Mol Biol. 2019;20:21 pubmed 出版商
  86. Seki M, Furukawa N, Koitabashi N, Obokata M, Conway S, Arakawa H, et al. Periostin-expressing cell-specific transforming growth factor-β inhibition in pulmonary artery prevents pulmonary arterial hypertension. PLoS ONE. 2019;14:e0220795 pubmed 出版商
  87. Menon V, Thomas R, Elgueta C, Horl M, Osborn T, Hallett P, et al. Comprehensive Cell Surface Antigen Analysis Identifies Transferrin Receptor Protein-1 (CD71) as a Negative Selection Marker for Human Neuronal Cells. Stem Cells. 2019;37:1293-1306 pubmed 出版商
  88. Li Q, Lai Q, He C, Fang Y, Yan Q, Zhang Y, et al. RUNX1 promotes tumour metastasis by activating the Wnt/β-catenin signalling pathway and EMT in colorectal cancer. J Exp Clin Cancer Res. 2019;38:334 pubmed 出版商
  89. Xie C, Zhu J, Jiang Y, Chen J, Wang X, Geng S, et al. Sulforaphane Inhibits the Acquisition of Tobacco Smoke-Induced Lung Cancer Stem Cell-Like Properties via the IL-6/ΔNp63α/Notch Axis. Theranostics. 2019;9:4827-4840 pubmed 出版商
  90. Chung K, Hsu C, Fan L, Huang Z, Bhatia D, Chen Y, et al. Mitofusins regulate lipid metabolism to mediate the development of lung fibrosis. Nat Commun. 2019;10:3390 pubmed 出版商
  91. Yin Y, Zhang Q, Zhao Q, Ding G, Wei C, Chang L, et al. Tongxinluo Attenuates Myocardiac Fibrosis after Acute Myocardial Infarction in Rats via Inhibition of Endothelial-to-Mesenchymal Transition. Biomed Res Int. 2019;2019:6595437 pubmed 出版商
  92. Chang Z. Downregulation of SOX2 may be targeted by miR-590-5p and inhibits epithelial-to-mesenchymal transition in non-small-cell lung cancer. Exp Ther Med. 2019;18:1189-1195 pubmed 出版商
  93. Bhandari A, Guan Y, Xia E, Huang Q, Chen Y. VASN promotes YAP/TAZ and EMT pathway in thyroid carcinogenesis in vitro. Am J Transl Res. 2019;11:3589-3599 pubmed
  94. Vazquez Iglesias L, Barcia Castro L, Rodríguez Quiroga M, Páez de la Cadena M, Rodríguez Berrocal J, Cordero O. Surface expression marker profile in colon cancer cell lines and sphere-derived cells suggests complexity in CD26+ cancer stem cells subsets. Biol Open. 2019;8: pubmed 出版商
  95. Du F, Qiao C, Li X, Chen Z, Liu H, Wu S, et al. Forkhead box K2 promotes human colorectal cancer metastasis by upregulating ZEB1 and EGFR. Theranostics. 2019;9:3879-3902 pubmed 出版商
  96. Xie X, Wang Y, Xia Y, Mao Y. Overexpressed vascular endothelial growth factor in adipose derived stem cells attenuates fibroblasts and skin injuries by ultraviolet radiation. Biosci Rep. 2019;39: pubmed 出版商
  97. Chen J, Huang W, Bamodu O, Chang P, Chao T, Huang T. Monospecific antibody targeting of CDH11 inhibits epithelial-to-mesenchymal transition and represses cancer stem cell-like phenotype by up-regulating miR-335 in metastatic breast cancer, in vitro and in vivo. BMC Cancer. 2019;19:634 pubmed 出版商
  98. Ye Z, Zeng Z, Shen Y, Yang Q, Chen D, Chen Z, et al. ODC1 promotes proliferation and mobility via the AKT/GSK3β/β-catenin pathway and modulation of acidotic microenvironment in human hepatocellular carcinoma. Onco Targets Ther. 2019;12:4081-4092 pubmed 出版商
  99. Saatcioglu H, Kano M, Horn H, Zhang L, Samore W, Nagykery N, et al. Single-cell sequencing of neonatal uterus reveals an Misr2+ endometrial progenitor indispensable for fertility. elife. 2019;8: pubmed 出版商
  100. Adams C, Htwe H, Marsh T, Wang A, Montoya M, Subbaraj L, et al. Transcriptional control of subtype switching ensures adaptation and growth of pancreatic cancer. elife. 2019;8: pubmed 出版商
  101. Rubio K, Singh I, Dobersch S, Sarvari P, Günther S, Cordero J, et al. Inactivation of nuclear histone deacetylases by EP300 disrupts the MiCEE complex in idiopathic pulmonary fibrosis. Nat Commun. 2019;10:2229 pubmed 出版商
  102. Roy A, Murphy R, Deng M, MacDonald J, Bammler T, Aldinger K, et al. PI3K-Yap activity drives cortical gyrification and hydrocephalus in mice. elife. 2019;8: pubmed 出版商
  103. Fan M, Zou Y, He P, Zhang S, Sun X, Li C. Long non-coding RNA SPRY4-IT1 promotes epithelial-mesenchymal transition of cervical cancer by regulating the miR-101-3p/ZEB1 axis. Biosci Rep. 2019;: pubmed 出版商
  104. Norwood J, Zhang Q, CARD D, Craine A, Ryan T, Drew P. Anatomical basis and physiological role of cerebrospinal fluid transport through the murine cribriform plate. elife. 2019;8: pubmed 出版商
  105. Singh R, Peng S, Viswanath P, Sambandam V, Shen L, Rao X, et al. Non-canonical cMet regulation by vimentin mediates Plk1 inhibitor-induced apoptosis. EMBO Mol Med. 2019;: pubmed 出版商
  106. Szvicsek Z, Oszvald Á, Szabó L, Sándor G, Kelemen A, Soós A, et al. Extracellular vesicle release from intestinal organoids is modulated by Apc mutation and other colorectal cancer progression factors. Cell Mol Life Sci. 2019;76:2463-2476 pubmed 出版商
  107. Wu D, Zhang T, Liu Y, Deng S, Han R, Liu T, et al. The PAX6-ZEB2 axis promotes metastasis and cisplatin resistance in non-small cell lung cancer through PI3K/AKT signaling. Cell Death Dis. 2019;10:349 pubmed 出版商
  108. Gao X, Liu X, Lu Y, Wang Y, Cao W, Liu X, et al. PIM1 is responsible for IL-6-induced breast cancer cell EMT and stemness via c-myc activation. Breast Cancer. 2019;: pubmed 出版商
  109. Hausott B, Park J, Valovka T, Offterdinger M, Hess M, Geley S, et al. Subcellular Localization of Sprouty2 in Human Glioma Cells. Front Mol Neurosci. 2019;12:73 pubmed 出版商
  110. Wagner J, Rapsomaniki M, Chevrier S, Anzeneder T, Langwieder C, Dykgers A, et al. A Single-Cell Atlas of the Tumor and Immune Ecosystem of Human Breast Cancer. Cell. 2019;177:1330-1345.e18 pubmed 出版商
  111. Gao R, Kanasaki K, Li J, Kitada M, Okazaki T, Koya D. βklotho is essential for the anti-endothelial mesenchymal transition effects of N-acetyl-seryl-aspartyl-lysyl-proline. FEBS Open Bio. 2019;9:1029-1038 pubmed 出版商
  112. Liu Y, Xue M, Du S, Feng W, Zhang K, Zhang L, et al. Competitive endogenous RNA is an intrinsic component of EMT regulatory circuits and modulates EMT. Nat Commun. 2019;10:1637 pubmed 出版商
  113. An S, Raju I, Surenkhuu B, Kwon J, Gulati S, Karaman M, et al. Neutrophil extracellular traps (NETs) contribute to pathological changes of ocular graft-vs.-host disease (oGVHD) dry eye: Implications for novel biomarkers and therapeutic strategies. Ocul Surf. 2019;: pubmed 出版商
  114. Li Y, Lu Y, Chen Y. Long non-coding RNA SNHG16 affects cell proliferation and predicts a poor prognosis in patients with colorectal cancer via sponging miR-200a-3p. Biosci Rep. 2019;39: pubmed 出版商
  115. Saykali B, Mathiah N, Nahaboo W, Racu M, Hammou L, Defrance M, et al. Distinct mesoderm migration phenotypes in extra-embryonic and embryonic regions of the early mouse embryo. elife. 2019;8: pubmed 出版商
  116. Zhang D, Zhou H, Liu J, Mao J. Long Noncoding RNA ASB16-AS1 Promotes Proliferation, Migration, and Invasion in Glioma Cells. Biomed Res Int. 2019;2019:5437531 pubmed 出版商
  117. Costa B, Eisemann T, Strelau J, Spaan I, Korshunov A, Liu H, et al. Intratumoral platelet aggregate formation in a murine preclinical glioma model depends on podoplanin expression on tumor cells. Blood Adv. 2019;3:1092-1102 pubmed 出版商
  118. Rodriques S, Stickels R, Goeva A, Martin C, Murray E, Vanderburg C, et al. Slide-seq: A scalable technology for measuring genome-wide expression at high spatial resolution. Science. 2019;363:1463-1467 pubmed 出版商
  119. Li L, Kang H, Zhang Q, D Agati V, Al Awqati Q, Lin F. FoxO3 activation in hypoxic tubules prevents chronic kidney disease. J Clin Invest. 2019;129:2374-2389 pubmed 出版商
  120. Lodge E, Santambrogio A, Russell J, Xekouki P, Jacques T, Johnson R, et al. Homeostatic and tumourigenic activity of SOX2+ pituitary stem cells is controlled by the LATS/YAP/TAZ cascade. elife. 2019;8: pubmed 出版商
  121. Li Y, Li H, Duan Y, Cai X, You D, Zhou F, et al. Blockage of TGF-α Induced by Spherical Silica Nanoparticles Inhibits Epithelial-Mesenchymal Transition and Proliferation of Human Lung Epithelial Cells. Biomed Res Int. 2019;2019:8231267 pubmed 出版商
  122. Kaschula C, Tuveri R, Ngarande E, Dzobo K, Barnett C, Kusza D, et al. The garlic compound ajoene covalently binds vimentin, disrupts the vimentin network and exerts anti-metastatic activity in cancer cells. BMC Cancer. 2019;19:248 pubmed 出版商
  123. Fuziwara C, Saito K, Leoni S, Waitzberg A, Kimura E. The Highly Expressed FAM83F Protein in Papillary Thyroid Cancer Exerts a Pro-Oncogenic Role in Thyroid Follicular Cells. Front Endocrinol (Lausanne). 2019;10:134 pubmed 出版商
  124. Telegina D, Kolosova N, Kozhevnikova O. Immunohistochemical localization of NGF, BDNF, and their receptors in a normal and AMD-like rat retina. BMC Med Genomics. 2019;12:48 pubmed 出版商
  125. Crippa S, Rossella V, Aprile A, Silvestri L, Rivis S, Scaramuzza S, et al. Bone marrow stromal cells from β-thalassemia patients have impaired hematopoietic supportive capacity. J Clin Invest. 2019;129:1566-1580 pubmed 出版商
  126. Jung H, Fattet L, Tsai J, Kajimoto T, Chang Q, Newton A, et al. Apical-basal polarity inhibits epithelial-mesenchymal transition and tumour metastasis by PAR-complex-mediated SNAI1 degradation. Nat Cell Biol. 2019;21:359-371 pubmed 出版商
  127. Jalal S, Shi S, Acharya V, Huang R, Viasnoff V, Bershadsky A, et al. Actin cytoskeleton self-organization in single epithelial cells and fibroblasts under isotropic confinement. J Cell Sci. 2019;132: pubmed 出版商
  128. Greer Y, Gilbert S, Gril B, Narwal R, Peacock Brooks D, Tice D, et al. MEDI3039, a novel highly potent tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) receptor 2 agonist, causes regression of orthotopic tumors and inhibits outgrowth of metastatic triple-negative breast cancer. Breast Cancer Res. 2019;21:27 pubmed 出版商
  129. Guan H, Li N, Wang X, Shan X, Li Z, Lin Z. Role of Paip1 on angiogenesis and invasion in pancreatic cancer. Exp Cell Res. 2019;376:198-209 pubmed 出版商
  130. Vanneste M, Huang Q, Li M, Moose D, Zhao L, STAMNES M, et al. High content screening identifies monensin as an EMT-selective cytotoxic compound. Sci Rep. 2019;9:1200 pubmed 出版商
  131. Gao Q, Yang Z, Xu S, Li X, Yang X, Jin P, et al. Heterotypic CAF-tumor spheroids promote early peritoneal metastatis of ovarian cancer. J Exp Med. 2019;216:688-703 pubmed 出版商
  132. Xie C, Zhu J, Wang X, Chen J, Geng S, Wu J, et al. Tobacco smoke induced hepatic cancer stem cell-like properties through IL-33/p38 pathway. J Exp Clin Cancer Res. 2019;38:39 pubmed 出版商
  133. Sharon N, Chawla R, Mueller J, Vanderhooft J, Whitehorn L, Rosenthal B, et al. A Peninsular Structure Coordinates Asynchronous Differentiation with Morphogenesis to Generate Pancreatic Islets. Cell. 2019;176:790-804.e13 pubmed 出版商
  134. Gao R, Asano S, Upadhyayula S, Pisarev I, Milkie D, Liu T, et al. Cortical column and whole-brain imaging with molecular contrast and nanoscale resolution. Science. 2019;363: pubmed 出版商
  135. Liu Z, Liu J, Dong X, Hu X, Jiang Y, Li L, et al. Tn antigen promotes human colorectal cancer metastasis via H-Ras mediated epithelial-mesenchymal transition activation. J Cell Mol Med. 2019;23:2083-2092 pubmed 出版商
  136. Chen L, Yang G, Dong H. Everolimus Reverses Palbociclib Resistance in ER+ Human Breast Cancer Cells by Inhibiting Phosphatidylinositol 3-Kinase(PI3K)/Akt/Mammalian Target of Rapamycin (mTOR) Pathway. Med Sci Monit. 2019;25:77-86 pubmed 出版商
  137. Zhang C, Wang Y. Metformin attenuates cells stemness and epithelial‑mesenchymal transition in colorectal cancer cells by inhibiting the Wnt3a/β‑catenin pathway. Mol Med Rep. 2019;19:1203-1209 pubmed 出版商
  138. Zhang Z, Chen J, Huang W, Ning D, Liu Q, Wang C, et al. FAM134B induces tumorigenesis and epithelial-to-mesenchymal transition via Akt signaling in hepatocellular carcinoma. Mol Oncol. 2019;13:792-810 pubmed 出版商
  139. Rajarajan P, Borrman T, Liao W, Schrode N, Flaherty E, Casiño C, et al. Neuron-specific signatures in the chromosomal connectome associated with schizophrenia risk. Science. 2018;362: pubmed 出版商
  140. Flood B, Manils J, Nulty C, Flis E, Kenealy S, Barber G, et al. Caspase-11 regulates the tumour suppressor function of STAT1 in a murine model of colitis-associated carcinogenesis. Oncogene. 2019;38:2658-2674 pubmed 出版商
  141. Lee C, Cheng Y, Chang C, Lin C, Chang J. Alpha-tubulin acetyltransferase/MEC-17 regulates cancer cell migration and invasion through epithelial-mesenchymal transition suppression and cell polarity disruption. Sci Rep. 2018;8:17477 pubmed 出版商
  142. Tang Z, Ding Y, Shen Q, Zhang C, Li J, Nazar M, et al. KIAA1199 promotes invasion and migration in non-small-cell lung cancer (NSCLC) via PI3K-Akt mediated EMT. J Mol Med (Berl). 2019;97:127-140 pubmed 出版商
  143. Hakuno D, Kimura M, Ito S, Satoh J, Nakashima Y, Horie T, et al. Hepatokine α1-Microglobulin Signaling Exacerbates Inflammation and Disturbs Fibrotic Repair in Mouse Myocardial Infarction. Sci Rep. 2018;8:16749 pubmed 出版商
  144. Song S, Zhang R, Cao W, Fang G, Yu Y, Wan Y, et al. Foxm1 is a critical driver of TGF-β-induced EndMT in endothelial cells through Smad2/3 and binds to the Snail promoter. J Cell Physiol. 2019;234:9052-9064 pubmed 出版商
  145. Deissler H, Lang G, Lang G. Fate of the Fc fusion protein aflibercept in retinal endothelial cells: competition of recycling and degradation. Graefes Arch Clin Exp Ophthalmol. 2019;257:83-94 pubmed 出版商
  146. Matyskiela M, Couto S, Zheng X, Lu G, Hui J, Stamp K, et al. SALL4 mediates teratogenicity as a thalidomide-dependent cereblon substrate. Nat Chem Biol. 2018;14:981-987 pubmed 出版商
  147. Robbins J, Perfect L, Ribe E, Maresca M, Dangla Valls A, Foster E, et al. Clusterin Is Required for β-Amyloid Toxicity in Human iPSC-Derived Neurons. Front Neurosci. 2018;12:504 pubmed 出版商
  148. Phakdeedindan P, Setthawong P, Tiptanavattana N, Rungarunlert S, Ingrungruanglert P, Israsena N, et al. Rabbit induced pluripotent stem cells retain capability of in vitro cardiac differentiation. Exp Anim. 2019;68:35-47 pubmed 出版商
  149. Gut G, Herrmann M, Pelkmans L. Multiplexed protein maps link subcellular organization to cellular states. Science. 2018;361: pubmed 出版商
  150. Shimoda Y, Ubukata Y, Handa T, Yokobori T, Watanabe T, Gantumur D, et al. High expression of forkhead box protein C2 is associated with aggressive phenotypes and poor prognosis in clinical hepatocellular carcinoma. BMC Cancer. 2018;18:597 pubmed 出版商
  151. Hsu J, Xia W, Hsu Y, Chan L, Yu W, Cha J, et al. STT3-dependent PD-L1 accumulation on cancer stem cells promotes immune evasion. Nat Commun. 2018;9:1908 pubmed 出版商
  152. Singal S, Nygard K, Gratton R, Jansson T, Gupta M. Increased Insulin-like Growth Factor Binding Protein-1 Phosphorylation in Decidualized Stromal Mesenchymal Cells in Human Intrauterine Growth Restriction Placentas. J Histochem Cytochem. 2018;66:617-630 pubmed 出版商
  153. Chen W, Yang J, Wu Y, Li L, Li R, Chang Y, et al. IL-33/ST2 axis mediates hyperplasia of intrarenal urothelium in obstructive renal injury. Exp Mol Med. 2018;50:36 pubmed 出版商
  154. Fu X, Khalil H, Kanisicak O, Boyer J, Vagnozzi R, Maliken B, et al. Specialized fibroblast differentiated states underlie scar formation in the infarcted mouse heart. J Clin Invest. 2018;128:2127-2143 pubmed 出版商
  155. Johnson M, Sun X, Kodani A, Borges Monroy R, Girskis K, Ryu S, et al. Aspm knockout ferret reveals an evolutionary mechanism governing cerebral cortical size. Nature. 2018;556:370-375 pubmed 出版商
  156. Liakath Ali K, Mills E, Sequeira I, Lichtenberger B, Pisco A, Sipilä K, et al. An evolutionarily conserved ribosome-rescue pathway maintains epidermal homeostasis. Nature. 2018;556:376-380 pubmed 出版商
  157. Zheng C, Wang J, Lin M, Zhang P, Liu L, Lin J, et al. CDK5RAP3 suppresses Wnt/β-catenin signaling by inhibiting AKT phosphorylation in gastric cancer. J Exp Clin Cancer Res. 2018;37:59 pubmed 出版商
  158. Ng P, Li J, Jeong K, Shao S, Chen H, Tsang Y, et al. Systematic Functional Annotation of Somatic Mutations in Cancer. Cancer Cell. 2018;33:450-462.e10 pubmed 出版商
  159. Fregni G, Quinodoz M, Möller E, Vuille J, Galland S, Fusco C, et al. Reciprocal modulation of mesenchymal stem cells and tumor cells promotes lung cancer metastasis. EBioMedicine. 2018;29:128-145 pubmed 出版商
  160. Nguyen H, Noguchi S, Sugie K, Matsuo Y, Nguyen C, Koito H, et al. Small-Vessel Vasculopathy Due to Aberrant Autophagy in LAMP-2 Deficiency. Sci Rep. 2018;8:3326 pubmed 出版商
  161. Fang L, Wu J, Huang T, Zhang P, Xin X, Shi Y. TGF-?1 stimulates epithelial-mesenchymal transition mediated by ADAM33. Exp Ther Med. 2018;15:985-992 pubmed 出版商
  162. Xu K, Pan X, Qiu X, Wang D, Dong N, Yang L, et al. Neural crest-derived cells migrate from nerve to participate in Achilles tendon remodeling. Wound Repair Regen. 2018;26:54-63 pubmed 出版商
  163. Schwab A, Siddiqui A, Vazakidou M, Napoli F, Böttcher M, Menchicchi B, et al. Polyol Pathway Links Glucose Metabolism to the Aggressiveness of Cancer Cells. Cancer Res. 2018;78:1604-1618 pubmed 出版商
  164. Palesch D, Bosinger S, Tharp G, Vanderford T, Paiardini M, Chahroudi A, et al. Sooty mangabey genome sequence provides insight into AIDS resistance in a natural SIV host. Nature. 2018;553:77-81 pubmed 出版商
  165. Park G, Kim D. Cigarette smoke-induced EGFR activation promotes epithelial mesenchymal migration of human retinal pigment epithelial cells through regulation of the FAK-mediated Syk/Src pathway. Mol Med Rep. 2018;17:3563-3574 pubmed 出版商
  166. Liu L, Wu B, Cai H, Li D, Ma Y, Zhu X, et al. Tiam1 promotes thyroid carcinoma metastasis by modulating EMT via Wnt/?-catenin signaling. Exp Cell Res. 2018;362:532-540 pubmed 出版商
  167. Gertow J, Ng C, Mamede Branca R, Werngren O, Du L, Kjellqvist S, et al. Altered Protein Composition of Subcutaneous Adipose Tissue in Chronic Kidney Disease. Kidney Int Rep. 2017;2:1208-1218 pubmed 出版商
  168. He P, Yang J, Yang V, Bialkowska A. Krüppel-like Factor 5, Increased in Pancreatic Ductal Adenocarcinoma, Promotes Proliferation, Acinar-to-Ductal Metaplasia, Pancreatic Intraepithelial Neoplasia, and Tumor Growth in Mice. Gastroenterology. 2018;154:1494-1508.e13 pubmed 出版商
  169. Liu S, Li X, Lin Z, Su L, Yan S, Zhao B, et al. SEC-induced activation of ANXA7 GTPase suppresses prostate cancer metastasis. Cancer Lett. 2018;416:11-23 pubmed 出版商
  170. Yu R, Longo J, van Leeuwen J, Mullen P, Ba Alawi W, Haibe Kains B, et al. Statin-Induced Cancer Cell Death Can Be Mechanistically Uncoupled from Prenylation of RAS Family Proteins. Cancer Res. 2018;78:1347-1357 pubmed 出版商
  171. Spitzhorn L, Rahman M, Schwindt L, Ho H, Wruck W, Bohndorf M, et al. Isolation and Molecular Characterization of Amniotic Fluid-Derived Mesenchymal Stem Cells Obtained from Caesarean Sections. Stem Cells Int. 2017;2017:5932706 pubmed 出版商
  172. Nowakowski T, Bhaduri A, Pollen A, Alvarado B, Mostajo Radji M, Di Lullo E, et al. Spatiotemporal gene expression trajectories reveal developmental hierarchies of the human cortex. Science. 2017;358:1318-1323 pubmed 出版商
  173. You S, Guan Y, Li W. Epithelial?mesenchymal transition in colorectal carcinoma cells is mediated by DEK/IMP3. Mol Med Rep. 2017;: pubmed 出版商
  174. Li Y, Zhong C, Liu D, Yu W, Chen W, Wang Y, et al. Evidence for Kaposi Sarcoma Originating from Mesenchymal Stem Cell through KSHV-induced Mesenchymal-to-Endothelial Transition. Cancer Res. 2018;78:230-245 pubmed 出版商
  175. Zhao X, Huang L, Xu W, Chen X, Shen Y, Zeng W, et al. Physapubescin B inhibits tumorgenesis and circumvents taxol resistance of ovarian cancer cells through STAT3 signaling. Oncotarget. 2017;8:70130-70141 pubmed 出版商
  176. Niell N, Larriba M, Ferrer Mayorga G, Sanchez Perez I, Cantero R, Real F, et al. The human PKP2/plakophilin-2 gene is induced by Wnt/?-catenin in normal and colon cancer-associated fibroblasts. Int J Cancer. 2018;142:792-804 pubmed 出版商
  177. Peuhu E, Salomaa S, De Franceschi N, Potter C, Sundberg J, Pouwels J. Integrin beta 1 inhibition alleviates the chronic hyperproliferative dermatitis phenotype of SHARPIN-deficient mice. PLoS ONE. 2017;12:e0186628 pubmed 出版商
  178. Meng Y, Zhou W, Jin L, Liu L, Chang K, Mei J, et al. RANKL-mediated harmonious dialogue between fetus and mother guarantees smooth gestation by inducing decidual M2 macrophage polarization. Cell Death Dis. 2017;8:e3105 pubmed 出版商
  179. Hazim R, Karumbayaram S, Jiang M, Dimashkie A, Lopes V, Li D, et al. Differentiation of RPE cells from integration-free iPS cells and their cell biological characterization. Stem Cell Res Ther. 2017;8:217 pubmed 出版商
  180. Paikari A, D Belair C, Saw D, Blelloch R. The eutheria-specific miR-290 cluster modulates placental growth and maternal-fetal transport. Development. 2017;144:3731-3743 pubmed 出版商
  181. Caino M, Seo J, Wang Y, Rivadeneira D, Gabrilovich D, Kim E, et al. Syntaphilin controls a mitochondrial rheostat for proliferation-motility decisions in cancer. J Clin Invest. 2017;127:3755-3769 pubmed 出版商
  182. Jiang X, Bao Y, Liu H, Kou X, Zhang Z, Sun F, et al. VPS34 stimulation of p62 phosphorylation for cancer progression. Oncogene. 2017;36:6850-6862 pubmed 出版商
  183. Wang W, Liu F, Wang C, Wang C, Tang Y, Jiang Z. Glutathione S-transferase A1 mediates nicotine-induced lung cancer cell metastasis by promoting epithelial-mesenchymal transition. Exp Ther Med. 2017;14:1783-1788 pubmed 出版商
  184. Hu J, Guan W, Liu P, Dai J, Tang K, Xiao H, et al. Endoglin Is Essential for the Maintenance of Self-Renewal and Chemoresistance in Renal Cancer Stem Cells. Stem Cell Reports. 2017;9:464-477 pubmed 出版商
  185. Luo W, Tan P, Rodriguez M, He L, Tan K, Zeng L, et al. Leucine-rich repeat-containing G protein-coupled receptor 4 (Lgr4) is necessary for prostate cancer metastasis via epithelial-mesenchymal transition. J Biol Chem. 2017;292:15525-15537 pubmed 出版商
  186. Toloczko A, Guo F, Yuen H, Wen Q, Wood S, Ong Y, et al. Deubiquitinating Enzyme USP9X Suppresses Tumor Growth via LATS Kinase and Core Components of the Hippo Pathway. Cancer Res. 2017;77:4921-4933 pubmed 出版商
  187. Ren D, Yang Q, Dai Y, Guo W, Du H, Song L, et al. Oncogenic miR-210-3p promotes prostate cancer cell EMT and bone metastasis via NF-?B signaling pathway. Mol Cancer. 2017;16:117 pubmed 出版商
  188. Viswanathan V, Ryan M, Dhruv H, Gill S, Eichhoff O, Seashore Ludlow B, et al. Dependency of a therapy-resistant state of cancer cells on a lipid peroxidase pathway. Nature. 2017;547:453-457 pubmed 出版商
  189. van Groningen T, Koster J, Valentijn L, Zwijnenburg D, Akogul N, Hasselt N, et al. Neuroblastoma is composed of two super-enhancer-associated differentiation states. Nat Genet. 2017;49:1261-1266 pubmed 出版商
  190. Hiramoto H, Muramatsu T, Ichikawa D, Tanimoto K, Yasukawa S, Otsuji E, et al. miR-509-5p and miR-1243 increase the sensitivity to gemcitabine by inhibiting epithelial-mesenchymal transition in pancreatic cancer. Sci Rep. 2017;7:4002 pubmed 出版商
  191. Xu P, Tao X, Zhao C, Huang Q, Chang H, Ban N, et al. DTX3L is upregulated in glioma and is associated with glioma progression. Int J Mol Med. 2017;40:491-498 pubmed 出版商
  192. Lu J, Yang Y, Guo G, Liu Y, Zhang Z, Dong S, et al. IKBKE regulates cell proliferation and epithelial-mesenchymal transition of human malignant glioma via the Hippo pathway. Oncotarget. 2017;8:49502-49514 pubmed 出版商
  193. Antfolk D, Sjöqvist M, Cheng F, Isoniemi K, Duran C, Rivero Muller A, et al. Selective regulation of Notch ligands during angiogenesis is mediated by vimentin. Proc Natl Acad Sci U S A. 2017;114:E4574-E4581 pubmed 出版商
  194. del Toro D, Ruff T, Cederfjäll E, Villalba A, Seyit Bremer G, Borrell V, et al. Regulation of Cerebral Cortex Folding by Controlling Neuronal Migration via FLRT Adhesion Molecules. Cell. 2017;169:621-635.e16 pubmed 出版商
  195. Li P, Wang Y, Mao X, Jiang Y, Liu J, Li J, et al. CRB3 downregulation confers breast cancer stem cell traits through TAZ/?-catenin. Oncogenesis. 2017;6:e322 pubmed 出版商
  196. Kim D, Ko H, Park G, Hur D, Kim Y, Yang J. Vandetanib and ADAM inhibitors synergistically attenuate the pathological migration of EBV-infected retinal pigment epithelial cells by regulating the VEGF-mediated MAPK pathway. Exp Ther Med. 2017;13:1415-1425 pubmed 出版商
  197. Yan X, Zhu Z, Xu S, Yang L, Liao X, Zheng M, et al. MicroRNA-140-5p inhibits hepatocellular carcinoma by directly targeting the unique isomerase Pin1 to block multiple cancer-driving pathways. Sci Rep. 2017;7:45915 pubmed 出版商
  198. Kannan A, Hertweck K, Philley J, Wells R, Dasgupta S. Genetic Mutation and Exosome Signature of Human Papilloma Virus Associated Oropharyngeal Cancer. Sci Rep. 2017;7:46102 pubmed 出版商
  199. Matějů D, Franzmann T, Patel A, Kopach A, Boczek E, Maharana S, et al. An aberrant phase transition of stress granules triggered by misfolded protein and prevented by chaperone function. EMBO J. 2017;36:1669-1687 pubmed 出版商
  200. Liao Z, Zhao L, Cai M, Xi M, He L, Yu F, et al. P300 promotes migration, invasion and epithelial-mesenchymal transition in a nasopharyngeal carcinoma cell line. Oncol Lett. 2017;13:763-769 pubmed 出版商
  201. Samuel W, Jaworski C, Postnikova O, Kutty R, Duncan T, Tan L, et al. Appropriately differentiated ARPE-19 cells regain phenotype and gene expression profiles similar to those of native RPE cells. Mol Vis. 2017;23:60-89 pubmed
  202. Ojeh N, Akgul B, Tomic Canic M, Philpott M, Navsaria H. In vitro skin models to study epithelial regeneration from the hair follicle. PLoS ONE. 2017;12:e0174389 pubmed 出版商
  203. Siddiqui A, Vazakidou M, Schwab A, Napoli F, Fernandez Molina C, Rapa I, et al. Thymidylate synthase is functionally associated with ZEB1 and contributes to the epithelial-to-mesenchymal transition of cancer cells. J Pathol. 2017;242:221-233 pubmed 出版商
  204. Ji H, Xiong Y, Zhang E, Song W, Gao Z, Yao F, et al. Which has more stem-cell characteristics: Müller cells or Müller cells derived from in vivo culture in neurospheres?. Am J Transl Res. 2017;9:611-619 pubmed
  205. Keckesova Z, Donaher J, De Cock J, Freinkman E, Lingrell S, Bachovchin D, et al. LACTB is a tumour suppressor that modulates lipid metabolism and cell state. Nature. 2017;543:681-686 pubmed 出版商
  206. Wang X, Xia Q, Ni H, Ye S, Li R, Wang X, et al. SFPQ/PSF-TFE3 renal cell carcinoma: a clinicopathologic study emphasizing extended morphology and reviewing the differences between SFPQ-TFE3 RCC and the corresponding mesenchymal neoplasm despite an identical gene fusion. Hum Pathol. 2017;63:190-200 pubmed 出版商
  207. Sahu U, Choudhury A, Parvez S, Biswas S, Kar S. Induction of intestinal stemness and tumorigenicity by aberrant internalization of commensal non-pathogenic E. coli. Cell Death Dis. 2017;8:e2667 pubmed 出版商
  208. Sun L, Liu T, Li L, Tang W, Zou J, Chen X, et al. Transplantation of betatrophin-expressing adipose-derived mesenchymal stem cells induces ?-cell proliferation in diabetic mice. Int J Mol Med. 2017;39:936-948 pubmed 出版商
  209. Reynolds L, D Amico G, Lechertier T, Papachristodoulou A, Muñoz Félix J, De Arcangelis A, et al. Dual role of pericyte ?6?1-integrin in tumour blood vessels. J Cell Sci. 2017;130:1583-1595 pubmed 出版商
  210. Bi Y, Shen W, Min M, Liu Y. MicroRNA-7 functions as a tumor-suppressor gene by regulating ILF2 in pancreatic carcinoma. Int J Mol Med. 2017;39:900-906 pubmed 出版商
  211. Li X, Liu W, Chen X, Wang Y, Shi D, Zhang H, et al. Overexpression of TMPRSS4 promotes tumor proliferation and aggressiveness in breast cancer. Int J Mol Med. 2017;39:927-935 pubmed 出版商
  212. Garrido Gomez T, Ona K, Kapidzic M, Gormley M, Simon C, Genbacev O, et al. Severe pre-eclampsia is associated with alterations in cytotrophoblasts of the smooth chorion. Development. 2017;144:767-777 pubmed 出版商
  213. Zhang L, Liu H, Mu X, Cui J, Peng Z. Dysregulation of Fra1 expression by Wnt/β-catenin signalling promotes glioma aggressiveness through epithelial-mesenchymal transition. Biosci Rep. 2017;37: pubmed 出版商
  214. Vermillion M, Lei J, Shabi Y, Baxter V, Crilly N, McLane M, et al. Intrauterine Zika virus infection of pregnant immunocompetent mice models transplacental transmission and adverse perinatal outcomes. Nat Commun. 2017;8:14575 pubmed 出版商
  215. Benford H, Bolborea M, Pollatzek E, Lossow K, Hermans Borgmeyer I, Liu B, et al. A sweet taste receptor-dependent mechanism of glucosensing in hypothalamic tanycytes. Glia. 2017;65:773-789 pubmed 出版商
  216. Wu Y, Wang Y, Lin Y, Liu Y, Wang Y, Jia J, et al. Dub3 inhibition suppresses breast cancer invasion and metastasis by promoting Snail1 degradation. Nat Commun. 2017;8:14228 pubmed 出版商
  217. Daks A, Petukhov A, Fedorova O, Shuvalov O, Merkulov V, Vasileva E, et al. E3 ubiquitin ligase Pirh2 enhances tumorigenic properties of human non-small cell lung carcinoma cells. Genes Cancer. 2016;7:383-393 pubmed 出版商
  218. Furukawa S, Nagaike M, Ozaki K. Databases for technical aspects of immunohistochemistry. J Toxicol Pathol. 2017;30:79-107 pubmed 出版商
  219. Grzelak C, Sigglekow N, Tirnitz Parker J, Hamson E, Warren A, Maneck B, et al. Widespread GLI expression but limited canonical hedgehog signaling restricted to the ductular reaction in human chronic liver disease. PLoS ONE. 2017;12:e0171480 pubmed 出版商
  220. Wu Q, Yan H, Tao S, Wang X, Mou L, Chen P, et al. XIAP 3'-untranslated region as a ceRNA promotes FSCN1 function in inducing the progression of breast cancer by binding endogenous miR-29a-5p. Oncotarget. 2017;8:16784-16800 pubmed 出版商
  221. Saha D, Koli S, Patgaonkar M, Reddy K. Expression of hemoglobin-α and β subunits in human vaginal epithelial cells and their functional significance. PLoS ONE. 2017;12:e0171084 pubmed 出版商
  222. Genovese G, Carugo A, TEPPER J, Robinson F, Li L, Svelto M, et al. Synthetic vulnerabilities of mesenchymal subpopulations in pancreatic cancer. Nature. 2017;542:362-366 pubmed 出版商
  223. Borghesi J, Mario L, Carreira A, Miglino M, Favaron P. Phenotype and multipotency of rabbit (Oryctolagus cuniculus) amniotic stem cells. Stem Cell Res Ther. 2017;8:27 pubmed 出版商
  224. Qiu X, Pascal L, Song Q, Zang Y, Ai J, O Malley K, et al. Physical and Functional Interactions between ELL2 and RB in the Suppression of Prostate Cancer Cell Proliferation, Migration, and Invasion. Neoplasia. 2017;19:207-215 pubmed 出版商
  225. Jafari A, Qanie D, Andersen T, Zhang Y, Chen L, Postert B, et al. Legumain Regulates Differentiation Fate of Human Bone Marrow Stromal Cells and Is Altered in Postmenopausal Osteoporosis. Stem Cell Reports. 2017;8:373-386 pubmed 出版商
  226. Zhai S, Liu C, Zhang L, Zhu J, Guo J, Zhang J, et al. PLCE1 Promotes Esophageal Cancer Cell Progression by Maintaining the Transcriptional Activity of Snail. Neoplasia. 2017;19:154-164 pubmed 出版商
  227. Gonzalez M, Martin E, Anwar T, Arellano Garcia C, Medhora N, Lama A, et al. Mesenchymal Stem Cell-Induced DDR2 Mediates Stromal-Breast Cancer Interactions and Metastasis Growth. Cell Rep. 2017;18:1215-1228 pubmed 出版商
  228. Melchionna R, Iapicca P, Di Modugno F, Trono P, Sperduti I, Fassan M, et al. The pattern of hMENA isoforms is regulated by TGF-?1 in pancreatic cancer and may predict patient outcome. Oncoimmunology. 2016;5:e1221556 pubmed 出版商
  229. Xu J, Zhang X, Wang H, Ge S, Gao T, Song L, et al. HCRP1 downregulation promotes hepatocellular carcinoma cell migration and invasion through the induction of EGFR activation and epithelial-mesenchymal transition. Biomed Pharmacother. 2017;88:421-429 pubmed 出版商
  230. Zorin V, Pulin A, Eremin I, Korsakov I, Zorina A, Khromova N, et al. Myogenic potential of human alveolar mucosa derived cells. Cell Cycle. 2017;16:545-555 pubmed 出版商
  231. Das S, Jackson W, Prasain J, Hanna A, Bailey S, Tucker J, et al. Loss of Merlin induces metabolomic adaptation that engages dependence on Hedgehog signaling. Sci Rep. 2017;7:40773 pubmed 出版商
  232. Bershteyn M, Nowakowski T, Pollen A, Di Lullo E, Nene A, Wynshaw Boris A, et al. Human iPSC-Derived Cerebral Organoids Model Cellular Features of Lissencephaly and Reveal Prolonged Mitosis of Outer Radial Glia. Cell Stem Cell. 2017;20:435-449.e4 pubmed 出版商
  233. Marigil M, Martinez Vélez N, Dominguez P, Idoate M, Xipell E, Patino Garcia A, et al. Development of a DIPG Orthotopic Model in Mice Using an Implantable Guide-Screw System. PLoS ONE. 2017;12:e0170501 pubmed 出版商
  234. González González M, Gómez González G, Becerra González M, Martinez Torres A. Identification of novel cellular clusters define a specialized area in the cerebellar periventricular zone. Sci Rep. 2017;7:40768 pubmed 出版商
  235. Zhang Y, An J, Lv W, Lou T, Liu Y, Kang W. miRNA-129-5p suppresses cell proliferation and invasion in lung cancer by targeting microspherule protein 1, E-cadherin and vimentin. Oncol Lett. 2016;12:5163-5169 pubmed 出版商
  236. Lango Chavarría M, Chimal Ramírez G, Ruiz Tachiquín M, Espinoza Sánchez N, Suárez Arriaga M, Fuentes Pananá E. A 22q11.2 amplification in the region encoding microRNA-650 correlates with the epithelial to mesenchymal transition in breast cancer primary cultures of Mexican patients. Int J Oncol. 2017;50:432-440 pubmed 出版商
  237. Chandravanshi B, Bhonde R. Shielding Engineered Islets With Mesenchymal Stem Cells Enhance Survival Under Hypoxia. J Cell Biochem. 2017;118:2672-2683 pubmed 出版商
  238. Jiu Y, Peranen J, Schaible N, Cheng F, Eriksson J, Krishnan R, et al. Vimentin intermediate filaments control actin stress fiber assembly through GEF-H1 and RhoA. J Cell Sci. 2017;130:892-902 pubmed 出版商
  239. Wang D, Wang A, Wu F, Qiu X, Li Y, Chu J, et al. Sox10+ adult stem cells contribute to biomaterial encapsulation and microvascularization. Sci Rep. 2017;7:40295 pubmed 出版商
  240. Liu T, Yu J, Deng M, Yin Y, Zhang H, Luo K, et al. CDK4/6-dependent activation of DUB3 regulates cancer metastasis through SNAIL1. Nat Commun. 2017;8:13923 pubmed 出版商
  241. Beigi F, Patel M, Morales Garza M, Winebrenner C, Gobin A, Chau E, et al. Optimized method for isolating highly purified and functional porcine aortic endothelial and smooth muscle cells. J Cell Physiol. 2017;232:3139-3145 pubmed 出版商
  242. Hennika T, Hu G, Olaciregui N, Barton K, Ehteda A, Chitranjan A, et al. Pre-Clinical Study of Panobinostat in Xenograft and Genetically Engineered Murine Diffuse Intrinsic Pontine Glioma Models. PLoS ONE. 2017;12:e0169485 pubmed 出版商
  243. Rivera Serrano E, Sherry B. NF-?B activation is cell type-specific in the heart. Virology. 2017;502:133-143 pubmed 出版商
  244. Nguyen K, Lee E, Yue Y, Stork J, Pock L, North J, et al. Human polyomavirus 6 and 7 are associated with pruritic and dyskeratotic dermatoses. J Am Acad Dermatol. 2017;76:932-940.e3 pubmed 出版商
  245. Boylan K, Buchanan P, Manion R, Shukla D, Braumberger K, Bruggemeyer C, et al. The expression of Nectin-4 on the surface of ovarian cancer cells alters their ability to adhere, migrate, aggregate, and proliferate. Oncotarget. 2017;8:9717-9738 pubmed 出版商
  246. Yu J, Lei R, Zhuang X, Li X, Li G, Lev S, et al. MicroRNA-182 targets SMAD7 to potentiate TGF?-induced epithelial-mesenchymal transition and metastasis of cancer cells. Nat Commun. 2016;7:13884 pubmed 出版商
  247. Kjærgaard K, Dreyer C, Ditzel N, Andreasen C, Chen L, Sheikh S, et al. Bone Formation by Sheep Stem Cells in an Ectopic Mouse Model: Comparison of Adipose and Bone Marrow Derived Cells and Identification of Donor-Derived Bone by Antibody Staining. Stem Cells Int. 2016;2016:3846971 pubmed
  248. Ang Y, Rivas R, Ribeiro A, Srivas R, Rivera J, Stone N, et al. Disease Model of GATA4 Mutation Reveals Transcription Factor Cooperativity in Human Cardiogenesis. Cell. 2016;167:1734-1749.e22 pubmed 出版商
  249. Han X, Fang Z, Wang H, Jiao R, Zhou J, Fang N. CUL4A functions as an oncogene in ovarian cancer and is directly regulated by miR-494. Biochem Biophys Res Commun. 2016;480:675-681 pubmed 出版商
  250. Tang Z, Li J, Shen Q, Feng J, Liu H, Wang W, et al. Contribution of upregulated dipeptidyl peptidase 9 (DPP9) in promoting tumoregenicity, metastasis and the prediction of poor prognosis in non-small cell lung cancer (NSCLC). Int J Cancer. 2017;140:1620-1632 pubmed 出版商
  251. Bhagirath D, Zhao X, Mirza S, West W, Band H, Band V. Mutant PIK3CA Induces EMT in a Cell Type Specific Manner. PLoS ONE. 2016;11:e0167064 pubmed 出版商
  252. Yang Z, Peng Y, Gopalan A, Gao D, Chen Y, Joyner A. Stromal hedgehog signaling maintains smooth muscle and hampers micro-invasive prostate cancer. Dis Model Mech. 2017;10:39-52 pubmed 出版商
  253. Xia Q, Wang Z, Chen N, Gan H, Teng X, Shi S, et al. Xp11.2 translocation renal cell carcinoma with NONO-TFE3 gene fusion: morphology, prognosis, and potential pitfall in detecting TFE3 gene rearrangement. Mod Pathol. 2017;30:416-426 pubmed 出版商
  254. Kempf H, Olmer R, Haase A, Franke A, Bolesani E, Schwanke K, et al. Bulk cell density and Wnt/TGFbeta signalling regulate mesendodermal patterning of human pluripotent stem cells. Nat Commun. 2016;7:13602 pubmed 出版商
  255. Tiwari A, Copeland C, Han B, Hanson C, Raghunathan K, Kenworthy A. Caveolin-1 is an aggresome-inducing protein. Sci Rep. 2016;6:38681 pubmed 出版商
  256. Nakaya M, Watari K, Tajima M, Nakaya T, Matsuda S, Ohara H, et al. Cardiac myofibroblast engulfment of dead cells facilitates recovery after myocardial infarction. J Clin Invest. 2017;127:383-401 pubmed 出版商
  257. Wolfes A, Ahmed S, Awasthi A, Stahlberg M, Rajput A, Magruder D, et al. A novel method for culturing stellate astrocytes reveals spatially distinct Ca2+ signaling and vesicle recycling in astrocytic processes. J Gen Physiol. 2017;149:149-170 pubmed 出版商
  258. He X, Liu Z, Xia Y, Xu J, Lv G, Wang L, et al. HOXB7 overexpression promotes cell proliferation and correlates with poor prognosis in gastric cancer patients by inducing expression of both AKT and MARKs. Oncotarget. 2017;8:1247-1261 pubmed 出版商
  259. Wu M, Tang W, Zhan X, Li Y, Peng Y, Huang X, et al. FOXK1 interaction with FHL2 promotes proliferation, invasion and metastasis in colorectal cancer. Oncogenesis. 2016;5:e271 pubmed 出版商
  260. Bryson B, Junk D, Cipriano R, Jackson M. STAT3-mediated SMAD3 activation underlies Oncostatin M-induced Senescence. Cell Cycle. 2017;16:319-334 pubmed 出版商
  261. Chaudhury A, Cheema S, Fachini J, Kongchan N, Lu G, Simon L, et al. CELF1 is a central node in post-transcriptional regulatory programmes underlying EMT. Nat Commun. 2016;7:13362 pubmed 出版商
  262. Yang S, Ji Q, Chang B, Wang Y, Zhu Y, Li D, et al. STC2 promotes head and neck squamous cell carcinoma metastasis through modulating the PI3K/AKT/Snail signaling. Oncotarget. 2017;8:5976-5991 pubmed 出版商
  263. Bizzarro V, Belvedere R, Migliaro V, Romano E, Parente L, Petrella A. Hypoxia regulates ANXA1 expression to support prostate cancer cell invasion and aggressiveness. Cell Adh Migr. 2017;11:247-260 pubmed 出版商
  264. Noy S, Krawitz S, Del Bigio M. Chronic Traumatic Encephalopathy-Like Abnormalities in a Routine Neuropathology Service. J Neuropathol Exp Neurol. 2016;75:1145-1154 pubmed 出版商
  265. Cirillo N, Hassona Y, Celentano A, Lim K, Manchella S, Parkinson E, et al. Cancer-associated fibroblasts regulate keratinocyte cell-cell adhesion via TGF-β-dependent pathways in genotype-specific oral cancer. Carcinogenesis. 2017;38:76-85 pubmed 出版商
  266. Sauvegarde C, Paul D, Bridoux L, Jouneau A, Degrelle S, Hue I, et al. Dynamic Pattern of HOXB9 Protein Localization during Oocyte Maturation and Early Embryonic Development in Mammals. PLoS ONE. 2016;11:e0165898 pubmed 出版商
  267. Sheen M, Marotti J, Allegrezza M, Rutkowski M, Conejo Garcia J, Fiering S. Constitutively activated PI3K accelerates tumor initiation and modifies histopathology of breast cancer. Oncogenesis. 2016;5:e267 pubmed 出版商
  268. Naylor R, McGhee C, Cowan C, Davidson A, Holm T, Sherwin T. Derivation of Corneal Keratocyte-Like Cells from Human Induced Pluripotent Stem Cells. PLoS ONE. 2016;11:e0165464 pubmed 出版商
  269. Lin Y, Mori E, Kato M, Xiang S, Wu L, Kwon I, et al. Toxic PR Poly-Dipeptides Encoded by the C9orf72 Repeat Expansion Target LC Domain Polymers. Cell. 2016;167:789-802.e12 pubmed 出版商
  270. Ren S, Luo Y, Chen H, Warburton D, Lam H, Wang L, et al. Inactivation of Tsc2 in Mesoderm-Derived Cells Causes Polycystic Kidney Lesions and Impairs Lung Alveolarization. Am J Pathol. 2016;186:3261-3272 pubmed 出版商
  271. Takai K, Le A, Weaver V, Werb Z. Targeting the cancer-associated fibroblasts as a treatment in triple-negative breast cancer. Oncotarget. 2016;7:82889-82901 pubmed 出版商
  272. Che D, Zhou T, Lan Y, Xie J, Gong H, Li C, et al. High glucose-induced epithelial-mesenchymal transition contributes to the upregulation of fibrogenic factors in retinal pigment epithelial cells. Int J Mol Med. 2016;38:1815-1822 pubmed 出版商
  273. Zeng F, Xie Y, Liao L, Li L, Chen B, Xie J, et al. Biological characterization of three immortalized esophageal epithelial cell lines. Mol Med Rep. 2016;14:4802-4810 pubmed 出版商
  274. Gay O, Gilquin B, Assard N, Stuelsatz P, Delphin C, Lachuer J, et al. Refilins are short-lived Actin-bundling proteins that regulate lamellipodium protrusion dynamics. Biol Open. 2016;5:1351-1361 pubmed 出版商
  275. Yu L, Li J, Xu S, Navia Miranda M, Wang G, Duan Y. An Xp11.2 translocation renal cell carcinoma with SMARCB1 (INI1) inactivation in adult end-stage renal disease: a case report. Diagn Pathol. 2016;11:98 pubmed
  276. Busch A, Bauer L, Wardelmann E, Rudack C, Grünewald I, Stenner M. Prognostic relevance of epithelial-mesenchymal transition and proliferation in surgically treated primary parotid gland cancer. J Clin Pathol. 2017;70:403-409 pubmed 出版商
  277. Hofmann K, Lamberz C, Piotrowitz K, Offermann N, But D, Scheller A, et al. Tanycytes and a differential fatty acid metabolism in the hypothalamus. Glia. 2017;65:231-249 pubmed 出版商
  278. Badillo Soto M, Rodríguez Rodríguez M, Pérez Pérez M, Daza Benítez L, Bollain Y Goytia J, Carrillo Jiménez M, et al. Potential protein targets of the peptidylarginine deiminase 2 and peptidylarginine deiminase 4 enzymes in rheumatoid synovial tissue and its possible meaning. Eur J Rheumatol. 2016;3:44-49 pubmed
  279. Yi J, Manna A, Barr V, Hong J, Neuman K, Samelson L. madSTORM: a superresolution technique for large-scale multiplexing at single-molecule accuracy. Mol Biol Cell. 2016;27:3591-3600 pubmed
  280. Wizeman J, Nicholas A, Ishigami A, Mohan R. Citrullination of glial intermediate filaments is an early response in retinal injury. Mol Vis. 2016;22:1137-1155 pubmed
  281. Little A, Sham D, Hristova M, Danyal K, Heppner D, Bauer R, et al. DUOX1 silencing in lung cancer promotes EMT, cancer stem cell characteristics and invasive properties. Oncogenesis. 2016;5:e261 pubmed 出版商
  282. Sidney L, Hopkinson A. Corneal keratocyte transition to mesenchymal stem cell phenotype and reversal using serum-free medium supplemented with fibroblast growth factor-2, transforming growth factor-β3 and retinoic acid. J Tissue Eng Regen Med. 2018;12:e203-e215 pubmed 出版商
  283. Matos M, Lapyckyj L, Rosso M, Besso M, Mencucci M, Briggiler C, et al. Identification of a Novel Human E-Cadherin Splice Variant and Assessment of Its Effects Upon EMT-Related Events. J Cell Physiol. 2017;232:1368-1386 pubmed 出版商
  284. Chen B, Zeng X, He Y, Wang X, Liang Z, Liu J, et al. STC2 promotes the epithelial-mesenchymal transition of colorectal cancer cells through AKT-ERK signaling pathways. Oncotarget. 2016;7:71400-71416 pubmed 出版商
  285. Cao R, Meng Z, Liu T, Wang G, Qian G, Cao T, et al. Decreased TRPM7 inhibits activities and induces apoptosis of bladder cancer cells via ERK1/2 pathway. Oncotarget. 2016;7:72941-72960 pubmed 出版商
  286. Lee E, Wang J, Yumoto K, Jung Y, Cackowski F, Decker A, et al. DNMT1 Regulates Epithelial-Mesenchymal Transition and Cancer Stem Cells, Which Promotes Prostate Cancer Metastasis. Neoplasia. 2016;18:553-66 pubmed 出版商
  287. Lund P, Elias J, Davis M. Global Analysis of O-GlcNAc Glycoproteins in Activated Human T Cells. J Immunol. 2016;197:3086-3098 pubmed
  288. Chen P, Qin L, Li G, Tellides G, Simons M. Fibroblast growth factor (FGF) signaling regulates transforming growth factor beta (TGF?)-dependent smooth muscle cell phenotype modulation. Sci Rep. 2016;6:33407 pubmed 出版商
  289. Wang W, Ji G, Xiao X, Chen X, Qin W, Yang F, et al. Epigenetically regulated miR-145 suppresses colon cancer invasion and metastasis by targeting LASP1. Oncotarget. 2016;7:68674-68687 pubmed 出版商
  290. Sari A, Rufaut N, Jones L, Sinclair R. Characterization of Ovine Dermal Papilla Cell Aggregation. Int J Trichology. 2016;8:121-9 pubmed 出版商
  291. Tonyali S, Yazici S, Yeşilırmak A, Ergen A. The Ewing's Sarcoma Family of Tumors of Urinary Bladder: A Case Report and Review of the Literature. Balkan Med J. 2016;33:462-6 pubmed 出版商
  292. Kong X, Liu F, Gao J. MiR-155 promotes epithelial-mesenchymal transition in hepatocellular carcinoma cells through the activation of PI3K/SGK3/β-catenin signaling pathways. Oncotarget. 2016;7:66051-66060 pubmed 出版商
  293. Wang L, Xu D, Qiao Z, Shen L, Dai H, Ji Y. Follicular dendritic cell sarcoma of the spleen: A case report and review of the literature. Oncol Lett. 2016;12:2062-2064 pubmed
  294. Liu P, Wang C, Ma C, Wu Q, Zhang W, Lao G. MicroRNA-23a regulates epithelial-to-mesenchymal transition in endometrial endometrioid adenocarcinoma by targeting SMAD3. Cancer Cell Int. 2016;16:67 pubmed 出版商
  295. Chung I, Reichelt M, Shao L, Akita R, Koeppen H, Rangell L, et al. High cell-surface density of HER2 deforms cell membranes. Nat Commun. 2016;7:12742 pubmed 出版商
  296. Hansen S, Stummann T, Borland H, Hasholt L, Tumer Z, Nielsen J, et al. Induced pluripotent stem cell - derived neurons for the study of spinocerebellar ataxia type 3. Stem Cell Res. 2016;17:306-317 pubmed 出版商
  297. Vardaki I, Ceder S, Rutishauser D, Baltatzis G, Foukakis T, Panaretakis T. Periostin is identified as a putative metastatic marker in breast cancer-derived exosomes. Oncotarget. 2016;7:74966-74978 pubmed 出版商
  298. Xiaojun W, Yan L, Hong X, Xianghong Z, Shifeng L, Dingjie X, et al. Acetylated ?-Tubulin Regulated by N-Acetyl-Seryl-Aspartyl-Lysyl-Proline(Ac-SDKP) Exerts the Anti-fibrotic Effect in Rat Lung Fibrosis Induced by Silica. Sci Rep. 2016;6:32257 pubmed 出版商
  299. Vishnyakova P, Volodina M, Tarasova N, Marey M, Tsvirkun D, Vavina O, et al. Mitochondrial role in adaptive response to stress conditions in preeclampsia. Sci Rep. 2016;6:32410 pubmed 出版商
  300. Jones R, Robinson T, Liu J, Shrestha M, Voisin V, Ju Y, et al. RB1 deficiency in triple-negative breast cancer induces mitochondrial protein translation. J Clin Invest. 2016;126:3739-3757 pubmed 出版商
  301. Li N, Lee W, Cheng C. Overexpression of plastin 3 in Sertoli cells disrupts actin microfilament bundle homeostasis and perturbs the tight junction barrier. Spermatogenesis. 2016;6:e1206353 pubmed 出版商
  302. Zeng Y, Yao X, Chen L, Yan Z, Liu J, Zhang Y, et al. Sphingosine-1-phosphate induced epithelial-mesenchymal transition of hepatocellular carcinoma via an MMP-7/ syndecan-1/TGF-β autocrine loop. Oncotarget. 2016;7:63324-63337 pubmed 出版商
  303. Liu C, Guo C, Wang W, Zhu P, Li W, Mi Y, et al. Inhibition of Lysyl Oxidase by Cortisol Regeneration in Human Amnion: Implications for Rupture of Fetal Membranes. Endocrinology. 2016;157:4055-4065 pubmed
  304. Efazat G, Novak M, Kaminskyy V, De Petris L, Kanter L, Juntti T, et al. Ephrin B3 interacts with multiple EphA receptors and drives migration and invasion in non-small cell lung cancer. Oncotarget. 2016;7:60332-60347 pubmed 出版商
  305. Liu L, Phua Y, Lee R, Ma X, Jenkins Y, Novy K, et al. Homo- and Heterotypic Association Regulates Signaling by the SgK269/PEAK1 and SgK223 Pseudokinases. J Biol Chem. 2016;291:21571-21583 pubmed
  306. Zhang P, He D, Chen Z, Pan Q, Du F, Zang X, et al. Chemotherapy enhances tumor vascularization via Notch signaling-mediated formation of tumor-derived endothelium in breast cancer. Biochem Pharmacol. 2016;118:18-30 pubmed 出版商
  307. Ju X, Hou Q, Sheng A, Wu K, Zhou Y, Jin Y, et al. The hominoid-specific gene TBC1D3 promotes generation of basal neural progenitors and induces cortical folding in mice. elife. 2016;5: pubmed 出版商
  308. Deniz M, Kaufmann J, Stahl A, Gundelach T, Janni W, Hoffmann I, et al. In vitro model for DNA double-strand break repair analysis in breast cancer reveals cell type-specific associations with age and prognosis. FASEB J. 2016;30:3786-3799 pubmed
  309. Liu S, Tian Z, Zhang L, Hou S, Hu S, Wu J, et al. Combined cell surface carbonic anhydrase 9 and CD147 antigens enable high-efficiency capture of circulating tumor cells in clear cell renal cell carcinoma patients. Oncotarget. 2016;7:59877-59891 pubmed 出版商
  310. Oh B, Kim S, Lee Y, Hong H, Kim T, Kim S, et al. Twist1-induced epithelial-mesenchymal transition according to microsatellite instability status in colon cancer cells. Oncotarget. 2016;7:57066-57076 pubmed 出版商
  311. Li C, Li Q, Cai Y, He Y, Lan X, Wang W, et al. Overexpression of angiopoietin 2 promotes the formation of oral squamous cell carcinoma by increasing epithelial-mesenchymal transition-induced angiogenesis. Cancer Gene Ther. 2016;23:295-302 pubmed 出版商
  312. Gerling M, Büller N, Kirn L, Joost S, Frings O, Englert B, et al. Stromal Hedgehog signalling is downregulated in colon cancer and its restoration restrains tumour growth. Nat Commun. 2016;7:12321 pubmed 出版商
  313. Medrano J, Rombaut C, Simon C, Pellicer A, Goossens E. Human spermatogonial stem cells display limited proliferation in vitro under mouse spermatogonial stem cell culture conditions. Fertil Steril. 2016;106:1539-1549.e8 pubmed 出版商
  314. Portillo J, Lopez Corcino Y, Miao Y, Tang J, Sheibani N, Kern T, et al. CD40 in Retinal Müller Cells Induces P2X7-Dependent Cytokine Expression in Macrophages/Microglia in Diabetic Mice and Development of Early Experimental Diabetic Retinopathy. Diabetes. 2017;66:483-493 pubmed 出版商
  315. Iacovides D, Rizki G, Lapathitis G, Strati K. Direct conversion of mouse embryonic fibroblasts into functional keratinocytes through transient expression of pluripotency-related genes. Stem Cell Res Ther. 2016;7:98 pubmed 出版商
  316. Liu Y, Wang K, Xing H, Zhai X, Wang L, Wang W. Attempt towards a novel classification of triple-negative breast cancer using immunohistochemical markers. Oncol Lett. 2016;12:1240-1256 pubmed
  317. Li N, Mruk D, Chen H, Wong C, Lee W, Cheng C. Rescue of perfluorooctanesulfonate (PFOS)-mediated Sertoli cell injury by overexpression of gap junction protein connexin 43. Sci Rep. 2016;6:29667 pubmed 出版商
  318. Jiang S, Chen G, Feng L, Jiang Z, Yu M, Bao J, et al. Disruption of kif3a results in defective osteoblastic differentiation in dental mesenchymal stem/precursor cells via the Wnt signaling pathway. Mol Med Rep. 2016;14:1891-900 pubmed 出版商
  319. Pailler E, Oulhen M, Billiot F, Galland A, Auger N, Faugeroux V, et al. Method for semi-automated microscopy of filtration-enriched circulating tumor cells. BMC Cancer. 2016;16:477 pubmed 出版商
  320. Virág J, Haberler C, Baksa G, Piurko V, Hegedûs Z, Reiniger L, et al. Region Specific Differences of Claudin-5 Expression in Pediatric Intracranial Ependymomas: Potential Prognostic Role in Supratentorial Cases. Pathol Oncol Res. 2017;23:245-252 pubmed 出版商
  321. Grassi M, Palma C, Thomé C, Lanfredi G, Poersch A, Faça V. Proteomic analysis of ovarian cancer cells during epithelial-mesenchymal transition (EMT) induced by epidermal growth factor (EGF) reveals mechanisms of cell cycle control. J Proteomics. 2017;151:2-11 pubmed 出版商
  322. Janer A, Prudent J, Paupe V, Fahiminiya S, Majewski J, Sgarioto N, et al. SLC25A46 is required for mitochondrial lipid homeostasis and cristae maintenance and is responsible for Leigh syndrome. EMBO Mol Med. 2016;8:1019-38 pubmed 出版商
  323. He Z, Forest F, Gain P, Rageade D, Bernard A, Acquart S, et al. 3D map of the human corneal endothelial cell. Sci Rep. 2016;6:29047 pubmed 出版商
  324. Liang Y, Zhu F, Zhang H, Chen D, Zhang X, Gao Q, et al. Conditional ablation of TGF-? signaling inhibits tumor progression and invasion in an induced mouse bladder cancer model. Sci Rep. 2016;6:29479 pubmed 出版商
  325. Tillberg P, Chen F, Piatkevich K, Zhao Y, Yu C, English B, et al. Protein-retention expansion microscopy of cells and tissues labeled using standard fluorescent proteins and antibodies. Nat Biotechnol. 2016;34:987-92 pubmed 出版商
  326. Zhang Q, Liu S, Parajuli K, Zhang W, Zhang K, Mo Z, et al. Interleukin-17 promotes prostate cancer via MMP7-induced epithelial-to-mesenchymal transition. Oncogene. 2017;36:687-699 pubmed 出版商
  327. Stock K, Estrada M, Vidic S, Gjerde K, Rudisch A, Santo V, et al. Capturing tumor complexity in vitro: Comparative analysis of 2D and 3D tumor models for drug discovery. Sci Rep. 2016;6:28951 pubmed 出版商
  328. Gao Y, Lui W, Lee W, Cheng C. Polarity protein Crumbs homolog-3 (CRB3) regulates ectoplasmic specialization dynamics through its action on F-actin organization in Sertoli cells. Sci Rep. 2016;6:28589 pubmed 出版商
  329. Bai H, Wang M, Foster T, Hu H, He H, Hashimoto T, et al. Pericardial patch venoplasty heals via attraction of venous progenitor cells. Physiol Rep. 2016;4: pubmed 出版商
  330. Mo A, Jackson S, Varma K, Carpino A, Giardina C, Devers T, et al. Distinct Transcriptional Changes and Epithelial-Stromal Interactions Are Altered in Early-Stage Colon Cancer Development. Mol Cancer Res. 2016;14:795-804 pubmed 出版商
  331. Zhang J, Sun D, Fu Q, Cao Q, Zhang H, Zhang K. Bone mesenchymal stem cells differentiate into myofibroblasts in the tumor microenvironment. Oncol Lett. 2016;12:644-650 pubmed
  332. Su Q, Zhang B, Zhang L, Dang T, Rowley D, Ittmann M, et al. Jagged1 upregulation in prostate epithelial cells promotes formation of reactive stroma in the Pten null mouse model for prostate cancer. Oncogene. 2017;36:618-627 pubmed 出版商
  333. Evrard S, Lecce L, Michelis K, Nomura Kitabayashi A, Pandey G, Purushothaman K, et al. Endothelial to mesenchymal transition is common in atherosclerotic lesions and is associated with plaque instability. Nat Commun. 2016;7:11853 pubmed 出版商
  334. Chaponnier C, Gabbiani G. Monoclonal antibodies against muscle actin isoforms: epitope identification and analysis of isoform expression by immunoblot and immunostaining in normal and regenerating skeletal muscle. F1000Res. 2016;5:416 pubmed 出版商
  335. Chakedis J, French R, Babicky M, Jaquish D, Mose E, Cheng P, et al. Characterization of RON protein isoforms in pancreatic cancer: implications for biology and therapeutics. Oncotarget. 2016;7:45959-45975 pubmed 出版商
  336. Shriver M, Marimuthu S, Paul C, Geist J, Seale T, Konstantopoulos K, et al. Giant obscurins regulate the PI3K cascade in breast epithelial cells via direct binding to the PI3K/p85 regulatory subunit. Oncotarget. 2016;7:45414-45428 pubmed 出版商
  337. Toneff M, Sreekumar A, Tinnirello A, Hollander P, Habib S, Li S, et al. The Z-cad dual fluorescent sensor detects dynamic changes between the epithelial and mesenchymal cellular states. BMC Biol. 2016;14:47 pubmed 出版商
  338. Cui L, Wang Y, Yu R, Li B, Xie S, Gao Y, et al. Jia-Shen decoction-medicated serum inhibits angiotensin-II induced cardiac fibroblast proliferation via the TGF-?1/Smad signaling pathway. Mol Med Rep. 2016;14:1610-6 pubmed 出版商
  339. Li Y, Zhang S, Li Y, Wang Y. Isolation, culture, purification and ultrastructural investigation of cardiac telocytes. Mol Med Rep. 2016;14:1194-200 pubmed 出版商
  340. Hou Y, You J, Yang C, Pan H, Chen H, Lee J, et al. Aberrant DNA hypomethylation of miR-196b contributes to migration and invasion of oral cancer. Oncol Lett. 2016;11:4013-4021 pubmed
  341. Meinhardt G, Saleh L, Otti G, Haider S, Velicky P, Fiala C, et al. Wingless ligand 5a is a critical regulator of placental growth and survival. Sci Rep. 2016;6:28127 pubmed 出版商
  342. Mokhtari S, Colletti E, Atala A, Zanjani E, Porada C, Almeida Porada G. Boosting Hematopoietic Engraftment after in Utero Transplantation through Vascular Niche Manipulation. Stem Cell Reports. 2016;6:957-969 pubmed 出版商
  343. Tisza M, Zhao W, Fuentes J, Prijic S, Chen X, Levental I, et al. Motility and stem cell properties induced by the epithelial-mesenchymal transition require destabilization of lipid rafts. Oncotarget. 2016;7:51553-51568 pubmed 出版商
  344. Cerman E, Akkoç T, Eraslan M, Sahin O, Ozkara S, Vardar Aker F, et al. Retinal Electrophysiological Effects of Intravitreal Bone Marrow Derived Mesenchymal Stem Cells in Streptozotocin Induced Diabetic Rats. PLoS ONE. 2016;11:e0156495 pubmed 出版商
  345. Li Q, Sodroski C, Lowey B, Schweitzer C, Cha H, Zhang F, et al. Hepatitis C virus depends on E-cadherin as an entry factor and regulates its expression in epithelial-to-mesenchymal transition. Proc Natl Acad Sci U S A. 2016;113:7620-5 pubmed 出版商
  346. Zheng X, Xu M, Yao B, Wang C, Jia Y, Liu Q. IL-6/STAT3 axis initiated CAFs via up-regulating TIMP-1 which was attenuated by acetylation of STAT3 induced by PCAF in HCC microenvironment. Cell Signal. 2016;28:1314-24 pubmed 出版商
  347. Zeng L, Yang X, Wen Y, Mail S, Wang M, Zhang M, et al. Overexpressed HDAC4 is associated with poor survival and promotes tumor progression in esophageal carcinoma. Aging (Albany NY). 2016;8:1236-49 pubmed 出版商
  348. Wan F, Bai H, Liu J, Tian M, Wang Y, Niu X, et al. Proliferation and Glia-Directed Differentiation of Neural Stem Cells in the Subventricular Zone of the Lateral Ventricle and the Migratory Pathway to the Lesions after Cortical Devascularization of Adult Rats. Biomed Res Int. 2016;2016:3625959 pubmed 出版商
  349. Qi Y, Yu J, Han W, Fan X, Qian H, Wei H, et al. A splicing isoform of TEAD4 attenuates the Hippo-YAP signalling to inhibit tumour proliferation. Nat Commun. 2016;7:ncomms11840 pubmed 出版商
  350. Guo Y, Wang L, Li B, Xu H, Yang J, Zheng L, et al. Wnt/?-catenin pathway transactivates microRNA-150 that promotes EMT of colorectal cancer cells by suppressing CREB signaling. Oncotarget. 2016;7:42513-42526 pubmed 出版商
  351. Bakshi M, Azimzadeh O, Merl Pham J, Verreet T, Hauck S, Benotmane M, et al. In-Utero Low-Dose Irradiation Leads to Persistent Alterations in the Mouse Heart Proteome. PLoS ONE. 2016;11:e0156952 pubmed 出版商
  352. Chen H, Lorton B, Gupta V, Shechter D. A TGFβ-PRMT5-MEP50 axis regulates cancer cell invasion through histone H3 and H4 arginine methylation coupled transcriptional activation and repression. Oncogene. 2017;36:373-386 pubmed 出版商
  353. De Cian M, Pauper E, Bandiera R, Vidal V, Sacco S, Gregoire E, et al. Amplification of R-spondin1 signaling induces granulosa cell fate defects and cancers in mouse adult ovary. Oncogene. 2017;36:208-218 pubmed 出版商
  354. Lin S, Gou G, Hsia C, Ho C, Huang K, Wu Y, et al. Simulated Microgravity Disrupts Cytoskeleton Organization and Increases Apoptosis of Rat Neural Crest Stem Cells Via Upregulating CXCR4 Expression and RhoA-ROCK1-p38 MAPK-p53 Signaling. Stem Cells Dev. 2016;25:1172-93 pubmed 出版商
  355. Yao Y, Cui Y, Qiu X, Zhang L, Zhang W, Li H, et al. Attenuated LKB1-SIK1 signaling promotes epithelial-mesenchymal transition and radioresistance of non-small cell lung cancer cells. Chin J Cancer. 2016;35:50 pubmed 出版商
  356. He Y, Ou Z, Chen X, Zu X, Liu L, Li Y, et al. LPS/TLR4 Signaling Enhances TGF-β Response Through Downregulating BAMBI During Prostatic Hyperplasia. Sci Rep. 2016;6:27051 pubmed 出版商
  357. Kim J, Cho Y, Oh E, Lee N, An H, Sung D, et al. Disulfiram targets cancer stem-like properties and the HER2/Akt signaling pathway in HER2-positive breast cancer. Cancer Lett. 2016;379:39-48 pubmed 出版商
  358. Morales I, Sánchez A, Rodriguez Sabate C, Rodriguez M. The astrocytic response to the dopaminergic denervation of the striatum. J Neurochem. 2016;139:81-95 pubmed 出版商
  359. Chen X, Stauffer S, Chen Y, Dong J. Ajuba Phosphorylation by CDK1 Promotes Cell Proliferation and Tumorigenesis. J Biol Chem. 2016;291:14761-72 pubmed 出版商
  360. Wang L, Hou S, Han Y. Hedgehog signaling promotes basal progenitor expansion and the growth and folding of the neocortex. Nat Neurosci. 2016;19:888-96 pubmed 出版商
  361. He F, Wei L, Luo W, Liao Z, Li B, Zhou X, et al. Glutaredoxin 3 promotes nasopharyngeal carcinoma growth and metastasis via EGFR/Akt pathway and independent of ROS. Oncotarget. 2016;7:37000-37012 pubmed 出版商
  362. Ogawa T, Onozato T, Okuhara Y, Nagasawa T, Tamura T, Hayashi M. Spontaneous cutaneous soft tissue sarcoma with differentiation into fibroblasts in a Sprague-Dawley rat. J Toxicol Pathol. 2016;29:119-24 pubmed 出版商
  363. Yang Y, Lu Y, Wang L, Mizokami A, Keller E, Zhang J, et al. Skp2 is associated with paclitaxel resistance in prostate cancer cells. Oncol Rep. 2016;36:559-66 pubmed 出版商
  364. Fabbri R, Macciocca M, Vicenti R, Paradisi R, Klinger F, Pasquinelli G, et al. Doxorubicin and cisplatin induce apoptosis in ovarian stromal cells obtained from cryopreserved human ovarian tissue. Future Oncol. 2016;12:1699-711 pubmed 出版商
  365. Miyawaki S, Kawamura Y, Oiwa Y, Shimizu A, Hachiya T, Bono H, et al. Tumour resistance in induced pluripotent stem cells derived from naked mole-rats. Nat Commun. 2016;7:11471 pubmed 出版商
  366. Shi H, Drummond C, Fan X, Haller S, Liu J, Malhotra D, et al. Hiding inside? Intracellular expression of non-glycosylated c-kit protein in cardiac progenitor cells. Stem Cell Res. 2016;16:795-806 pubmed 出版商
  367. Bell C, Hendriks D, Moro S, Ellis E, Walsh J, Renblom A, et al. Characterization of primary human hepatocyte spheroids as a model system for drug-induced liver injury, liver function and disease. Sci Rep. 2016;6:25187 pubmed 出版商
  368. Nietzer S, Baur F, Sieber S, Hansmann J, Schwarz T, Stoffer C, et al. Mimicking Metastases Including Tumor Stroma: A New Technique to Generate a Three-Dimensional Colorectal Cancer Model Based on a Biological Decellularized Intestinal Scaffold. Tissue Eng Part C Methods. 2016;22:621-35 pubmed 出版商
  369. Fu Q, Huang Y, Wang Z, Chen F, Huang D, Lu Y, et al. Proteome Profile and Quantitative Proteomic Analysis of Buffalo (Bubalusbubalis) Follicular Fluid during Follicle Development. Int J Mol Sci. 2016;17: pubmed 出版商
  370. Roulois D, Deshayes S, Guilly M, Nader J, Liddell C, Robard M, et al. Characterization of preneoplastic and neoplastic rat mesothelial cell lines: the involvement of TETs, DNMTs, and 5-hydroxymethylcytosine. Oncotarget. 2016;7:34664-87 pubmed 出版商
  371. Nakamura R, Koshiba Takeuchi K, Tsuchiya M, Kojima M, Miyazawa A, Ito K, et al. Expression analysis of Baf60c during heart regeneration in axolotls and neonatal mice. Dev Growth Differ. 2016;58:367-82 pubmed 出版商
  372. Ren M, Du C, Herrero Acero E, Tang Schomer M, Ozkucur N. A biofidelic 3D culture model to study the development of brain cellular systems. Sci Rep. 2016;6:24953 pubmed 出版商
  373. Xue Y, Qian H, Hu J, Zhou B, Zhou Y, Hu X, et al. Sequential regulatory loops as key gatekeepers for neuronal reprogramming in human cells. Nat Neurosci. 2016;19:807-15 pubmed 出版商
  374. Lin S, Kao C, Lee H, Creighton C, Ittmann M, Tsai S, et al. Dysregulation of miRNAs-COUP-TFII-FOXM1-CENPF axis contributes to the metastasis of prostate cancer. Nat Commun. 2016;7:11418 pubmed 出版商
  375. Yan M, Li X, Tong D, Han C, Zhao R, He Y, et al. miR-136 suppresses tumor invasion and metastasis by targeting RASAL2 in triple-negative breast cancer. Oncol Rep. 2016;36:65-71 pubmed 出版商
  376. Leung C, Mak W, Kai A, Chan K, Lee T, Ng I, et al. Sox9 confers stemness properties in hepatocellular carcinoma through Frizzled-7 mediated Wnt/?-catenin signaling. Oncotarget. 2016;7:29371-86 pubmed 出版商
  377. Zhuang L, Yang Y, Ma X, Han B, Wang Z, Zhao Q, et al. MicroRNA-92b promotes hepatocellular carcinoma progression by targeting Smad7 and is mediated by long non-coding RNA XIST. Cell Death Dis. 2016;7:e2203 pubmed 出版商
  378. Sato K, Suda K, Shimizu S, Sakai K, Mizuuchi H, Tomizawa K, et al. Clinical, Pathological, and Molecular Features of Lung Adenocarcinomas with AXL Expression. PLoS ONE. 2016;11:e0154186 pubmed 出版商
  379. Liu S, Zhou F, Shen Y, Zhang Y, Yin H, Zeng Y, et al. Fluid shear stress induces epithelial-mesenchymal transition (EMT) in Hep-2 cells. Oncotarget. 2016;7:32876-92 pubmed 出版商
  380. Liang H, Zhang Q, Lu J, Yang G, Tian N, Wang X, et al. MSX2 Induces Trophoblast Invasion in Human Placenta. PLoS ONE. 2016;11:e0153656 pubmed 出版商
  381. E L, Xu W, Feng L, Liu Y, Cai D, Wen N, et al. Estrogen enhances the bone regeneration potential of periodontal ligament stem cells derived from osteoporotic rats and seeded on nano-hydroxyapatite/collagen/poly(L-lactide). Int J Mol Med. 2016;37:1475-86 pubmed 出版商
  382. Montalbano M, Curcurù G, Shirafkan A, Vento R, Rastellini C, Cicalese L. Modeling of Hepatocytes Proliferation Isolated from Proximal and Distal Zones from Human Hepatocellular Carcinoma Lesion. PLoS ONE. 2016;11:e0153613 pubmed 出版商
  383. Fujiwara M, Kanayama K, Hirokawa Y, Shiraishi T. ASF-4-1 fibroblast-rich culture increases chemoresistance and mTOR expression of pancreatic cancer BxPC-3 cells at the invasive front in vitro, and promotes tumor growth and invasion in vivo. Oncol Lett. 2016;11:2773-2779 pubmed
  384. Hellstrom M, Moreno Moya J, Bandstein S, Bom E, Akouri R, Miyazaki K, et al. Bioengineered uterine tissue supports pregnancy in a rat model. Fertil Steril. 2016;106:487-496.e1 pubmed 出版商
  385. Liang L, Huang H, Dadhania V, Zhang J, Zhang M, Liu J. Renal cell carcinoma metastatic to the ovary or fallopian tube: a clinicopathological study of 9 cases. Hum Pathol. 2016;51:96-102 pubmed 出版商
  386. Ufimtseva E. Differences between Mycobacterium-Host Cell Relationships in Latent Tuberculous Infection of Mice Ex Vivo and Mycobacterial Infection of Mouse Cells In Vitro. J Immunol Res. 2016;2016:4325646 pubmed 出版商
  387. Choi S, Kim M, Lee H, Kim E, Kim C, Lee Y. Effects of NOX1 on fibroblastic changes of endothelial cells in radiation?induced pulmonary fibrosis. Mol Med Rep. 2016;13:4135-42 pubmed 出版商
  388. Li J, Cen B, Chen S, He Y. MicroRNA-29b inhibits TGF-?1-induced fibrosis via regulation of the TGF-?1/Smad pathway in primary human endometrial stromal cells. Mol Med Rep. 2016;13:4229-37 pubmed 出版商
  389. Wang O, Azizian N, Guo M, Capello M, Deng D, Zang F, et al. Prognostic and Functional Significance of MAP4K5 in Pancreatic Cancer. PLoS ONE. 2016;11:e0152300 pubmed 出版商
  390. Yin K, Yin W, Wang Y, Zhou L, Liu Y, Yang G, et al. MiR-206 suppresses epithelial mesenchymal transition by targeting TGF-? signaling in estrogen receptor positive breast cancer cells. Oncotarget. 2016;7:24537-48 pubmed 出版商
  391. Bragança B, Oliveira Monteiro N, Ferreirinha F, Lima P, Faria M, Fontes Sousa A, et al. Ion Fluxes through KCa2 (SK) and Cav1 (L-type) Channels Contribute to Chronoselectivity of Adenosine A1 Receptor-Mediated Actions in Spontaneously Beating Rat Atria. Front Pharmacol. 2016;7:45 pubmed 出版商
  392. Chou C, Fan C, Lin P, Liao P, Tung J, Hsieh C, et al. Sciellin mediates mesenchymal-to-epithelial transition in colorectal cancer hepatic metastasis. Oncotarget. 2016;7:25742-54 pubmed 出版商
  393. Morrow C, Trapani F, Metcalf R, Bertolini G, Hodgkinson C, Khandelwal G, et al. Tumourigenic non-small-cell lung cancer mesenchymal circulating tumour cells: a clinical case study. Ann Oncol. 2016;27:1155-60 pubmed 出版商
  394. Esbona K, Inman D, Saha S, Jeffery J, Schedin P, Wilke L, et al. COX-2 modulates mammary tumor progression in response to collagen density. Breast Cancer Res. 2016;18:35 pubmed 出版商
  395. Bassey Archibong B, Kwiecien J, Milosavljevic S, Hallett R, Rayner L, Erb M, et al. Kaiso depletion attenuates transforming growth factor-? signaling and metastatic activity of triple-negative breast cancer cells. Oncogenesis. 2016;5:e208 pubmed 出版商
  396. Hes O, Condom Mundo E, Peckova K, Lopez J, Martinek P, Vanecek T, et al. Biphasic Squamoid Alveolar Renal Cell Carcinoma: A Distinctive Subtype of Papillary Renal Cell Carcinoma?. Am J Surg Pathol. 2016;40:664-75 pubmed 出版商
  397. Lao X, Liang Y, Su Y, Zhang S, Zhou X, Liao G. Distribution and significance of interstitial fibrosis and stroma-infiltrating B cells in tongue squamous cell carcinoma. Oncol Lett. 2016;11:2027-2034 pubmed
  398. Salzman D, Nakamura K, Nallur S, Dookwah M, Metheetrairut C, Slack F, et al. miR-34 activity is modulated through 5'-end phosphorylation in response to DNA damage. Nat Commun. 2016;7:10954 pubmed 出版商
  399. Cui Y, Han J, Xiao Z, Chen T, Wang B, Chen B, et al. The miR-20-Rest-Wnt signaling axis regulates neural progenitor cell differentiation. Sci Rep. 2016;6:23300 pubmed 出版商
  400. Mukherjee D, Lu H, Yu L, He C, Lahiri S, Li T, et al. Krüppel-like factor 8 activates the transcription of C-X-C cytokine receptor type 4 to promote breast cancer cell invasion, transendothelial migration and metastasis. Oncotarget. 2016;7:23552-68 pubmed 出版商
  401. Yin S, Fan Y, Zhang H, Zhao Z, Hao Y, Li J, et al. Differential TGF? pathway targeting by miR-122 in humans and mice affects liver cancer metastasis. Nat Commun. 2016;7:11012 pubmed 出版商
  402. Palermo G, Neri Q, Cozzubbo T, Cheung S, Pereira N, Rosenwaks Z. Shedding Light on the Nature of Seminal Round Cells. PLoS ONE. 2016;11:e0151640 pubmed 出版商
  403. Vinci L, Ravarino A, Fanos V, Naccarato A, Senes G, Gerosa C, et al. Immunohistochemical markers of neural progenitor cells in the early embryonic human cerebral cortex. Eur J Histochem. 2016;60:2563 pubmed 出版商
  404. Dhar S, Kumar A, Zhang L, Rimando A, Lage J, Lewin J, et al. Dietary pterostilbene is a novel MTA1-targeted chemopreventive and therapeutic agent in prostate cancer. Oncotarget. 2016;7:18469-84 pubmed 出版商
  405. Pattabiraman D, Bierie B, Kober K, Thiru P, Krall J, Zill C, et al. Activation of PKA leads to mesenchymal-to-epithelial transition and loss of tumor-initiating ability. Science. 2016;351:aad3680 pubmed 出版商
  406. Ito M, Nakamura K, Mori F, Miki Y, Tanji K, Wakabayashi K. Novel eosinophilic neuronal cytoplasmic inclusions in the external cuneate nucleus of humans. Neuropathology. 2016;36:441-447 pubmed 出版商
  407. Fogl C, Mohammed F, Al Jassar C, Jeeves M, Knowles T, Rodriguez Zamora P, et al. Mechanism of intermediate filament recognition by plakin repeat domains revealed by envoplakin targeting of vimentin. Nat Commun. 2016;7:10827 pubmed 出版商
  408. Checa M, Hagood J, Velázquez Cruz R, Ruiz V, García de Alba C, Rangel Escareño C, et al. Cigarette Smoke Enhances the Expression of Profibrotic Molecules in Alveolar Epithelial Cells. PLoS ONE. 2016;11:e0150383 pubmed 出版商
  409. Huo L, Wang Y, Gong Y, Krishnamurthy S, Wang J, Diao L, et al. MicroRNA expression profiling identifies decreased expression of miR-205 in inflammatory breast cancer. Mod Pathol. 2016;29:330-46 pubmed 出版商
  410. Zou M, Zhu W, Wang L, Shi L, Gao R, Ou Y, et al. AEG-1/MTDH-activated autophagy enhances human malignant glioma susceptibility to TGF-β1-triggered epithelial-mesenchymal transition. Oncotarget. 2016;7:13122-38 pubmed 出版商
  411. Hazra S, Nandi S, Naskar D, Guha R, Chowdhury S, Pradhan N, et al. Non-mulberry Silk Fibroin Biomaterial for Corneal Regeneration. Sci Rep. 2016;6:21840 pubmed 出版商
  412. Shukla S, Sinha S, Khan S, Kumar S, Singh K, Mitra K, et al. Cucurbitacin B inhibits the stemness and metastatic abilities of NSCLC via downregulation of canonical Wnt/β-catenin signaling axis. Sci Rep. 2016;6:21860 pubmed 出版商
  413. Li H, Shen P, Liang Y, Zhang F. Fibroblastic reticular cell tumor of the breast: A case report and review of the literature. Exp Ther Med. 2016;11:561-564 pubmed
  414. Matsuda Y, Miura K, Yamane J, Shima H, Fujibuchi W, Ishida K, et al. SERPINI1 regulates epithelial-mesenchymal transition in an orthotopic implantation model of colorectal cancer. Cancer Sci. 2016;107:619-28 pubmed 出版商
  415. Ambade A, Satishchandran A, Szabo G. Alcoholic hepatitis accelerates early hepatobiliary cancer by increasing stemness and miR-122-mediated HIF-1α activation. Sci Rep. 2016;6:21340 pubmed 出版商
  416. Chung V, Tan T, Tan M, Wong M, Kuay K, Yang Z, et al. GRHL2-miR-200-ZEB1 maintains the epithelial status of ovarian cancer through transcriptional regulation and histone modification. Sci Rep. 2016;6:19943 pubmed 出版商
  417. Haraguchi T, Kondo M, Uchikawa R, Kobayashi K, Hiramatsu H, Kobayashi K, et al. Dynamics and plasticity of the epithelial to mesenchymal transition induced by miR-200 family inhibition. Sci Rep. 2016;6:21117 pubmed 出版商
  418. Gradiz R, Silva H, Carvalho L, Botelho M, Mota Pinto A. MIA PaCa-2 and PANC-1 - pancreas ductal adenocarcinoma cell lines with neuroendocrine differentiation and somatostatin receptors. Sci Rep. 2016;6:21648 pubmed 出版商
  419. Collazos Castro J, García Rama C, Alves Sampaio A. Glial progenitor cell migration promotes CNS axon growth on functionalized electroconducting microfibers. Acta Biomater. 2016;35:42-56 pubmed 出版商
  420. Chojnacka K, Bilinska B, Mruk D. Interleukin 1alpha-induced disruption of the Sertoli cell cytoskeleton affects gap junctional communication. Cell Signal. 2016;28:469-480 pubmed 出版商
  421. Mahesh P, Retnakumar R, Mundayoor S. Downregulation of vimentin in macrophages infected with live Mycobacterium tuberculosis is mediated by Reactive Oxygen Species. Sci Rep. 2016;6:21526 pubmed 出版商
  422. Hammam O, Elkhafif N, Attia Y, Mansour M, Elmazar M, Abdelsalam R, et al. Wharton's jelly-derived mesenchymal stem cells combined with praziquantel as a potential therapy for Schistosoma mansoni-induced liver fibrosis. Sci Rep. 2016;6:21005 pubmed 出版商
  423. Du L, Chen X, Cao Y, Lu L, Zhang F, Bornstein S, et al. Overexpression of PIK3CA in murine head and neck epithelium drives tumor invasion and metastasis through PDK1 and enhanced TGFβ signaling. Oncogene. 2016;35:4641-52 pubmed 出版商
  424. Kim D, Helfman D. Loss of MLCK leads to disruption of cell-cell adhesion and invasive behavior of breast epithelial cells via increased expression of EGFR and ERK/JNK signaling. Oncogene. 2016;35:4495-508 pubmed 出版商
  425. Tong L, Zhou J, Rong L, Seeley E, Pan J, Zhu X, et al. Fibroblast Growth Factor-10 (FGF-10) Mobilizes Lung-resident Mesenchymal Stem Cells and Protects Against Acute Lung Injury. Sci Rep. 2016;6:21642 pubmed 出版商
  426. O Sullivan C, Schubart A, Mir A, Dev K. The dual S1PR1/S1PR5 drug BAF312 (Siponimod) attenuates demyelination in organotypic slice cultures. J Neuroinflammation. 2016;13:31 pubmed 出版商
  427. Li J, Pan Q, Rowan P, Trotter T, Peker D, Regal K, et al. Heparanase promotes myeloma progression by inducing mesenchymal features and motility of myeloma cells. Oncotarget. 2016;7:11299-309 pubmed 出版商
  428. Ouyang F, Huang H, Zhang M, Chen M, Huang H, Huang F, et al. HMGB1 induces apoptosis and EMT in association with increased autophagy following H/R injury in cardiomyocytes. Int J Mol Med. 2016;37:679-89 pubmed 出版商
  429. Li M, Li M, Yin T, Shi H, Wen Y, Zhang B, et al. Targeting of cancer‑associated fibroblasts enhances the efficacy of cancer chemotherapy by regulating the tumor microenvironment. Mol Med Rep. 2016;13:2476-84 pubmed 出版商
  430. Wang X, Jung Y, Jun S, Lee S, Wang W, Schneider A, et al. PAF-Wnt signaling-induced cell plasticity is required for maintenance of breast cancer cell stemness. Nat Commun. 2016;7:10633 pubmed 出版商
  431. Sun H, Chen J, Qian W, Kang J, Wang J, Jiang L, et al. Integrated long non-coding RNA analyses identify novel regulators of epithelial-mesenchymal transition in the mouse model of pulmonary fibrosis. J Cell Mol Med. 2016;20:1234-46 pubmed 出版商
  432. Nassour J, Martien S, Martin N, Deruy E, Tomellini E, Malaquin N, et al. Defective DNA single-strand break repair is responsible for senescence and neoplastic escape of epithelial cells. Nat Commun. 2016;7:10399 pubmed 出版商
  433. Zhang W, St Clair D, Butterfield A, Vore M. Loss of Mrp1 Potentiates Doxorubicin-Induced Cytotoxicity in Neonatal Mouse Cardiomyocytes and Cardiac Fibroblasts. Toxicol Sci. 2016;151:44-56 pubmed 出版商
  434. Gao Y, Zhao Y, Zhang J, Lu Y, Liu X, Geng P, et al. The dual function of PRMT1 in modulating epithelial-mesenchymal transition and cellular senescence in breast cancer cells through regulation of ZEB1. Sci Rep. 2016;6:19874 pubmed 出版商
  435. Yoshida T, Song L, Bai Y, Kinose F, Li J, Ohaegbulam K, et al. ZEB1 Mediates Acquired Resistance to the Epidermal Growth Factor Receptor-Tyrosine Kinase Inhibitors in Non-Small Cell Lung Cancer. PLoS ONE. 2016;11:e0147344 pubmed 出版商
  436. Wang S, Liu J, Kim D, Datti A, Zacksenhaus E. Targeted Pten deletion plus p53-R270H mutation in mouse mammary epithelium induces aggressive claudin-low and basal-like breast cancer. Breast Cancer Res. 2016;18:9 pubmed 出版商
  437. Kyttälä A, Moraghebi R, Valensisi C, Kettunen J, Andrus C, Pasumarthy K, et al. Genetic Variability Overrides the Impact of Parental Cell Type and Determines iPSC Differentiation Potential. Stem Cell Reports. 2016;6:200-12 pubmed 出版商
  438. Ruiz A, Rockfield S, Taran N, Haller E, Engelman R, Flores I, et al. Effect of hydroxychloroquine and characterization of autophagy in a mouse model of endometriosis. Cell Death Dis. 2016;7:e2059 pubmed 出版商
  439. Allaire J, Roy S, Ouellet C, Lemieux Ã, Jones C, Paquet M, et al. Bmp signaling in colonic mesenchyme regulates stromal microenvironment and protects from polyposis initiation. Int J Cancer. 2016;138:2700-12 pubmed 出版商
  440. Ke W, Chen C, Luo H, Tang J, Zhang Y, Gao W, et al. Histone Deacetylase 1 Regulates the Expression of Progesterone Receptor A During Human Parturition by Occupying the Progesterone Receptor A Promoter. Reprod Sci. 2016;23:955-64 pubmed 出版商
  441. Harkness L, Zaher W, Ditzel N, Isa A, Kassem M. CD146/MCAM defines functionality of human bone marrow stromal stem cell populations. Stem Cell Res Ther. 2016;7:4 pubmed 出版商
  442. Terranova Barberio M, Roca M, Zotti A, Leone A, Bruzzese F, Vitagliano C, et al. Valproic acid potentiates the anticancer activity of capecitabine in vitro and in vivo in breast cancer models via induction of thymidine phosphorylase expression. Oncotarget. 2016;7:7715-31 pubmed 出版商
  443. Chen Y, Cheng B, He Z, Wang S, Wang Z, Sun M, et al. Capture and Identification of Heterogeneous Circulating Tumor Cells Using Transparent Nanomaterials and Quantum Dots-Based Multiplexed Imaging. J Cancer. 2016;7:69-79 pubmed 出版商
  444. Creedon H, Balderstone L, Muir M, Balla J, Gómez Cuadrado L, Tracey N, et al. Use of a genetically engineered mouse model as a preclinical tool for HER2 breast cancer. Dis Model Mech. 2016;9:131-40 pubmed 出版商
  445. Pylayeva Gupta Y, Das S, Handler J, Hajdu C, Coffre M, Koralov S, et al. IL35-Producing B Cells Promote the Development of Pancreatic Neoplasia. Cancer Discov. 2016;6:247-55 pubmed 出版商
  446. Wang F, Feng Y, Li P, Wang K, Feng L, Liu Y, et al. RASSF10 is an epigenetically inactivated tumor suppressor and independent prognostic factor in hepatocellular carcinoma. Oncotarget. 2016;7:4279-97 pubmed 出版商
  447. Silva M, Matheus W, Garcia P, Stopiglia R, Billis A, Ferreira U, et al. Characterization of reactive stroma in prostate cancer: involvement of growth factors, metalloproteinase matrix, sexual hormones receptors and prostatic stem cells. Int Braz J Urol. 2015;41:849-58 pubmed 出版商
  448. Yan L, Liu Y, Xiang J, Wu Q, Xu L, Luo X, et al. PIK3R1 targeting by miR-21 suppresses tumor cell migration and invasion by reducing PI3K/AKT signaling and reversing EMT, and predicts clinical outcome of breast cancer. Int J Oncol. 2016;48:471-84 pubmed 出版商
  449. Choe C, Shin Y, Kim C, Choi S, Lee J, Kim S, et al. Crosstalk with cancer-associated fibroblasts induces resistance of non-small cell lung cancer cells to epidermal growth factor receptor tyrosine kinase inhibition. Onco Targets Ther. 2015;8:3665-78 pubmed 出版商
  450. Terashita K, Chuma M, Hatanaka Y, Hatanaka K, Mitsuhashi T, Yokoo H, et al. ZEB1 expression is associated with prognosis of intrahepatic cholangiocarcinoma. J Clin Pathol. 2016;69:593-9 pubmed 出版商
  451. Schosserer M, Reynoso R, Wally V, Jug B, Kantner V, Weilner S, et al. Urine is a novel source of autologous mesenchymal stem cells for patients with epidermolysis bullosa. BMC Res Notes. 2015;8:767 pubmed 出版商
  452. Osorio L, Farfán N, Castellón E, Contreras H. SNAIL transcription factor increases the motility and invasive capacity of prostate cancer cells. Mol Med Rep. 2016;13:778-86 pubmed 出版商
  453. Kessler M, Hoffmann K, Brinkmann V, Thieck O, Jackisch S, Toelle B, et al. The Notch and Wnt pathways regulate stemness and differentiation in human fallopian tube organoids. Nat Commun. 2015;6:8989 pubmed 出版商
  454. Bowser J, Blackburn M, Shipley G, Molina J, Dunner K, Broaddus R. Loss of CD73-mediated actin polymerization promotes endometrial tumor progression. J Clin Invest. 2016;126:220-38 pubmed 出版商
  455. Qi D, Kaur Gill N, Santiskulvong C, Sifuentes J, Dorigo O, Rao J, et al. Screening cell mechanotype by parallel microfiltration. Sci Rep. 2015;5:17595 pubmed 出版商
  456. Fleury H, Communal L, Carmona E, Portelance L, Arcand S, Rahimi K, et al. Novel high-grade serous epithelial ovarian cancer cell lines that reflect the molecular diversity of both the sporadic and hereditary disease. Genes Cancer. 2015;6:378-398 pubmed
  457. Debruyne D, Bhatnagar N, Sharma B, Luther W, Moore N, Cheung N, et al. ALK inhibitor resistance in ALK(F1174L)-driven neuroblastoma is associated with AXL activation and induction of EMT. Oncogene. 2016;35:3681-91 pubmed 出版商
  458. Shah F, Berggren D, Holmlund T, Levring Jäghagen E, StÃ¥l P. Unique expression of cytoskeletal proteins in human soft palate muscles. J Anat. 2016;228:487-94 pubmed 出版商
  459. Yoshie S, Imaizumi M, Nakamura R, Otsuki K, Ikeda M, Nomoto Y, et al. Generation of airway epithelial cells with native characteristics from mouse induced pluripotent stem cells. Cell Tissue Res. 2016;364:319-30 pubmed 出版商
  460. Tan X, Fu Y, Chen L, Lee W, Lai Y, Rezaei K, et al. miR-671-5p inhibits epithelial-to-mesenchymal transition by downregulating FOXM1 expression in breast cancer. Oncotarget. 2016;7:293-307 pubmed 出版商
  461. Majumder K, Arora N, Modi S, Chugh R, Nomura A, Giri B, et al. A Novel Immunocompetent Mouse Model of Pancreatic Cancer with Robust Stroma: a Valuable Tool for Preclinical Evaluation of New Therapies. J Gastrointest Surg. 2016;20:53-65; discussion 65 pubmed 出版商
  462. Fraveto A, Cardinale V, Bragazzi M, Giuliante F, De Rose A, Grazi G, et al. Sensitivity of Human Intrahepatic Cholangiocarcinoma Subtypes to Chemotherapeutics and Molecular Targeted Agents: A Study on Primary Cell Cultures. PLoS ONE. 2015;10:e0142124 pubmed 出版商
  463. Jung M, Ryu Y, Kang G. Investigation of the origin of stromal and endothelial cells at the desmoplastic interface in xenograft tumor in mice. Pathol Res Pract. 2015;211:925-30 pubmed 出版商
  464. Paccola C, Miraglia S. Prenatal and lactation nicotine exposure affects Sertoli cell and gonadotropin levels in rats. Reproduction. 2016;151:117-33 pubmed 出版商
  465. Dixon D, Coates J, Del Carpio Pons A, Horabin J, Walker A, Abdul N, et al. A potential mode of action for Anakinra in patients with arthrofibrosis following total knee arthroplasty. Sci Rep. 2015;5:16466 pubmed 出版商
  466. Pai P, Rachagani S, Lakshmanan I, Macha M, Sheinin Y, Smith L, et al. The canonical Wnt pathway regulates the metastasis-promoting mucin MUC4 in pancreatic ductal adenocarcinoma. Mol Oncol. 2016;10:224-39 pubmed 出版商
  467. Thomsen E, Mich J, Yao Z, Hodge R, Doyle A, Jang S, et al. Fixed single-cell transcriptomic characterization of human radial glial diversity. Nat Methods. 2016;13:87-93 pubmed 出版商
  468. McCart Reed A, Kutasovic J, Vargas A, Jayanthan J, Al Murrani A, Reid L, et al. An epithelial to mesenchymal transition programme does not usually drive the phenotype of invasive lobular carcinomas. J Pathol. 2016;238:489-94 pubmed 出版商
  469. Chidlow G, Wood J, Knoops B, Casson R. Expression and distribution of peroxiredoxins in the retina and optic nerve. Brain Struct Funct. 2016;221:3903-3925 pubmed
  470. Han Y, Shen P, Chang W. Involvement of epithelial-to-mesenchymal transition and associated transforming growth factor-β/Smad signaling in paraquat-induced pulmonary fibrosis. Mol Med Rep. 2015;12:7979-84 pubmed 出版商
  471. Qin W, Li C, Zheng W, Guo Q, Zhang Y, Kang M, et al. Inhibition of autophagy promotes metastasis and glycolysis by inducing ROS in gastric cancer cells. Oncotarget. 2015;6:39839-54 pubmed 出版商
  472. Bauer J, Ozden O, Akagi N, Carroll T, Principe D, Staudacher J, et al. Activin and TGFβ use diverging mitogenic signaling in advanced colon cancer. Mol Cancer. 2015;14:182 pubmed 出版商
  473. Taylor A, Vagaska B, Edgington R, Hébert C, Ferretti P, Bergonzo P, et al. Biocompatibility of nanostructured boron doped diamond for the attachment and proliferation of human neural stem cells. J Neural Eng. 2015;12:066016 pubmed 出版商
  474. Forni M, Ramos Maia Lobba A, Pereira Ferreira A, Sogayar M. Simultaneous Isolation of Three Different Stem Cell Populations from Murine Skin. PLoS ONE. 2015;10:e0140143 pubmed 出版商
  475. Ou Yang L, Xiao S, Liu P, Yi S, Zhang X, Ou Yang S, et al. Forkhead box C1 induces epithelial‑mesenchymal transition and is a potential therapeutic target in nasopharyngeal carcinoma. Mol Med Rep. 2015;12:8003-9 pubmed 出版商
  476. Sidney L, Branch M, Dua H, Hopkinson A. Effect of culture medium on propagation and phenotype of corneal stroma-derived stem cells. Cytotherapy. 2015;17:1706-22 pubmed 出版商
  477. Agaimy A, Specht K, Stoehr R, Lorey T, Märkl B, Niedobitek G, et al. Metastatic Malignant Melanoma With Complete Loss of Differentiation Markers (Undifferentiated/Dedifferentiated Melanoma): Analysis of 14 Patients Emphasizing Phenotypic Plasticity and the Value of Molecular Testing as Surrogate Diagnostic Marker. Am J Surg Pathol. 2016;40:181-91 pubmed 出版商
  478. Woods N, Trevino J, Coppola D, Chellappan S, Yang S, Padmanabhan J. Fendiline inhibits proliferation and invasion of pancreatic cancer cells by interfering with ADAM10 activation and β-catenin signaling. Oncotarget. 2015;6:35931-48 pubmed 出版商
  479. Abou Kheir W, Eid A, El Merahbi R, Assaf R, Daoud G. A Unique Expression of Keratin 14 in a Subset of Trophoblast Cells. PLoS ONE. 2015;10:e0139939 pubmed 出版商
  480. Nath A, Li I, Roberts L, Chan C. Elevated free fatty acid uptake via CD36 promotes epithelial-mesenchymal transition in hepatocellular carcinoma. Sci Rep. 2015;5:14752 pubmed 出版商
  481. Chen F, Rosiene J, Che A, Becker A, LoTurco J. Tracking and transforming neocortical progenitors by CRISPR/Cas9 gene targeting and piggyBac transposase lineage labeling. Development. 2015;142:3601-11 pubmed 出版商
  482. Dubois V, Simitsidellis I, Laurent M, Jardí F, Saunders P, Vanderschueren D, et al. Enobosarm (GTx-024) Modulates Adult Skeletal Muscle Mass Independently of the Androgen Receptor in the Satellite Cell Lineage. Endocrinology. 2015;156:4522-33 pubmed 出版商
  483. Asanoma K, Liu G, Yamane T, Miyanari Y, Takao T, Yagi H, et al. Regulation of the Mechanism of TWIST1 Transcription by BHLHE40 and BHLHE41 in Cancer Cells. Mol Cell Biol. 2015;35:4096-109 pubmed 出版商
  484. Yokdang N, Hatakeyama J, Wald J, Simion C, Tellez J, Chang D, et al. LRIG1 opposes epithelial-to-mesenchymal transition and inhibits invasion of basal-like breast cancer cells. Oncogene. 2016;35:2932-47 pubmed 出版商
  485. Kuang X, Zhu J, Peng Z, Wang J, Chen Z. Transducin (Beta)-Like 1 X-Linked Receptor 1 Correlates with Clinical Prognosis and Epithelial-Mesenchymal Transition in Hepatocellular Carcinoma. Dig Dis Sci. 2016;61:489-500 pubmed 出版商
  486. Santi A, Caselli A, Ranaldi F, Paoli P, Mugnaioni C, Michelucci E, et al. Cancer associated fibroblasts transfer lipids and proteins to cancer cells through cargo vesicles supporting tumor growth. Biochim Biophys Acta. 2015;1853:3211-23 pubmed 出版商
  487. Mangiavini L, Merceron C, Araldi E, Khatri R, Gerard O Riley R, Wilson T, et al. Fibrosis and hypoxia-inducible factor-1α-dependent tumors of the soft tissue on loss of von Hippel-Lindau in mesenchymal progenitors. Am J Pathol. 2015;185:3090-101 pubmed 出版商
  488. Otahal A, Fuchs R, Al Allaf F, Blaas D. Release of Vesicular Stomatitis Virus Spike Protein G-Pseudotyped Lentivirus from the Host Cell Is Impaired upon Low-Density Lipoprotein Receptor Overexpression. J Virol. 2015;89:11723-6 pubmed 出版商
  489. Reuther C, Heinzle V, Spampatti M, Vlotides G, de Toni E, Spöttl G, et al. Cabozantinib and Tivantinib, but Not INC280, Induce Antiproliferative and Antimigratory Effects in Human Neuroendocrine Tumor Cells in vitro: Evidence for 'Off-Target' Effects Not Mediated by c-Met Inhibition. Neuroendocrinology. 2016;103:383-401 pubmed 出版商
  490. Forbes M, Thornhill B, Galarreta C, Chevalier R. A population of mitochondrion-rich cells in the pars recta of mouse kidney. Cell Tissue Res. 2016;363:791-803 pubmed 出版商
  491. Maris P, Blomme A, Palacios A, Costanza B, Bellahcène A, Bianchi E, et al. Asporin Is a Fibroblast-Derived TGF-β1 Inhibitor and a Tumor Suppressor Associated with Good Prognosis in Breast Cancer. PLoS Med. 2015;12:e1001871 pubmed 出版商
  492. Brusgard J, Choe M, Chumsri S, Renoud K, MacKerell A, Sudol M, et al. RUNX2 and TAZ-dependent signaling pathways regulate soluble E-Cadherin levels and tumorsphere formation in breast cancer cells. Oncotarget. 2015;6:28132-50 pubmed 出版商
  493. Chen Y, Chen H, Chien C, Wu S, Ho Y, Yu C, et al. Contribution of Mature Hepatocytes to Biliary Regeneration in Rats with Acute and Chronic Biliary Injury. PLoS ONE. 2015;10:e0134327 pubmed 出版商
  494. Sawitza I, Kordes C, Götze S, Herebian D, Häussinger D. Bile acids induce hepatic differentiation of mesenchymal stem cells. Sci Rep. 2015;5:13320 pubmed 出版商
  495. Wang T, Cheng C, Yang W, Chen W, Chang P. Characterization of highly proliferative secondary tumor clusters along host blood vessels in malignant glioma. Mol Med Rep. 2015;12:6435-44 pubmed 出版商
  496. Garwood C, Ratcliffe L, Morgan S, Simpson J, Owens H, Vazquez Villaseñor I, et al. Insulin and IGF1 signalling pathways in human astrocytes in vitro and in vivo; characterisation, subcellular localisation and modulation of the receptors. Mol Brain. 2015;8:51 pubmed 出版商
  497. Zhang Y, Wei X, Liang Y, Chen W, Zhang F, Bai J, et al. Over-Expressed Twist Associates with Markers of Epithelial Mesenchymal Transition and Predicts Poor Prognosis in Breast Cancers via ERK and Akt Activation. PLoS ONE. 2015;10:e0135851 pubmed 出版商
  498. Tsaktanis T, Kremling H, PavÅ¡ič M, von Stackelberg R, Mack B, Fukumori A, et al. Cleavage and cell adhesion properties of human epithelial cell adhesion molecule (HEPCAM). J Biol Chem. 2015;290:24574-91 pubmed 出版商
  499. Wang J, Bao L, Yu B, Liu Z, Han W, Deng C, et al. Interleukin-1β Promotes Epithelial-Derived Alveolar Elastogenesis via αvβ6 Integrin-Dependent TGF-β Activation. Cell Physiol Biochem. 2015;36:2198-216 pubmed 出版商
  500. Li H, Yu P, Huang K, Su H, Hsiao T, Chang C, et al. NKX6.1 functions as a metastatic suppressor through epigenetic regulation of the epithelial-mesenchymal transition. Oncogene. 2016;35:2266-78 pubmed 出版商
  501. Wong F, Fei J, Mora Bermúdez F, Taverna E, Haffner C, Fu J, et al. Sustained Pax6 Expression Generates Primate-like Basal Radial Glia in Developing Mouse Neocortex. PLoS Biol. 2015;13:e1002217 pubmed 出版商
  502. Cui H, Li Q, Chen J, Na Q, Liu C. Hepatitis B virus X protein modifies invasion, proliferation and the inflammatory response in an HTR-8/SVneo cell model. Oncol Rep. 2015;34:2090-8 pubmed 出版商
  503. Takahashi S, Kohashi K, Yamamoto H, Hirahashi M, Kumagai R, Takizawa N, et al. Expression of adhesion molecules and epithelial-mesenchymal transition factors in medullary carcinoma of the colorectum. Hum Pathol. 2015;46:1257-66 pubmed 出版商
  504. Cho M, Park J, Choi H, Park M, Won H, Park Y, et al. DOT1L cooperates with the c-Myc-p300 complex to epigenetically derepress CDH1 transcription factors in breast cancer progression. Nat Commun. 2015;6:7821 pubmed 出版商
  505. Shah S, Miller P, Garcia Contreras M, Ao Z, Machlin L, Issa E, et al. Hierarchical paracrine interaction of breast cancer associated fibroblasts with cancer cells via hMAPK-microRNAs to drive ER-negative breast cancer phenotype. Cancer Biol Ther. 2015;16:1671-81 pubmed 出版商
  506. Liang S, Marti T, Dorn P, Froment L, Hall S, Berezowska S, et al. Blocking the epithelial-to-mesenchymal transition pathway abrogates resistance to anti-folate chemotherapy in lung cancer. Cell Death Dis. 2015;6:e1824 pubmed 出版商
  507. El Zowalaty A, Baumann C, Li R, Chen W, De La Fuente R, Ye X. Seipin deficiency increases chromocenter fragmentation and disrupts acrosome formation leading to male infertility. Cell Death Dis. 2015;6:e1817 pubmed 出版商
  508. Zhuang J, Lu Q, Shen B, Huang X, Shen L, Zheng X, et al. TGFβ1 secreted by cancer-associated fibroblasts induces epithelial-mesenchymal transition of bladder cancer cells through lncRNA-ZEB2NAT. Sci Rep. 2015;5:11924 pubmed 出版商
  509. Maggiorani D, Dissard R, Belloy M, Saulnier Blache J, Casemayou A, Ducassé L, et al. Shear Stress-Induced Alteration of Epithelial Organization in Human Renal Tubular Cells. PLoS ONE. 2015;10:e0131416 pubmed 出版商
  510. Zhao L, Liu S, Che X, Hou K, Ma Y, Li C, et al. Bufalin inhibits TGF-β-induced epithelial-to-mesenchymal transition and migration in human lung cancer A549 cells by downregulating TGF-β receptors. Int J Mol Med. 2015;36:645-52 pubmed 出版商
  511. Wilson R, Buckberry S, Spronk F, Laurence J, Leemaqz S, O Leary S, et al. Vitamin D Receptor Gene Ablation in the Conceptus Has Limited Effects on Placental Morphology, Function and Pregnancy Outcome. PLoS ONE. 2015;10:e0131287 pubmed 出版商
  512. Lee Y, Han M, Baek S, Kim S, Oh S. MED30 Regulates the Proliferation and Motility of Gastric Cancer Cells. PLoS ONE. 2015;10:e0130826 pubmed 出版商
  513. Nishioka M, Venkatesan N, Dessalle K, Mogas A, Kyoh S, Lin T, et al. Fibroblast-epithelial cell interactions drive epithelial-mesenchymal transition differently in cells from normal and COPD patients. Respir Res. 2015;16:72 pubmed 出版商
  514. Larsson K, Kock A, Idborg H, Arsenian Henriksson M, Martinsson T, Johnsen J, et al. COX/mPGES-1/PGE2 pathway depicts an inflammatory-dependent high-risk neuroblastoma subset. Proc Natl Acad Sci U S A. 2015;112:8070-5 pubmed 出版商
  515. Lokody I, Francis J, Gardiner J, Erler J, Swain A. Pten Regulates Epithelial Cytodifferentiation during Prostate Development. PLoS ONE. 2015;10:e0129470 pubmed 出版商
  516. Scalia C, Gendusa R, Cattoretti G. A 2-Step Laemmli and Antigen Retrieval Method Improves Immunodetection. Appl Immunohistochem Mol Morphol. 2016;24:436-46 pubmed 出版商
  517. Engel B, Constantinou P, Sablatura L, Doty N, Carson D, Farach Carson M, et al. Multilayered, Hyaluronic Acid-Based Hydrogel Formulations Suitable for Automated 3D High Throughput Drug Screening of Cancer-Stromal Cell Cocultures. Adv Healthc Mater. 2015;4:1664-74 pubmed 出版商
  518. Li N, Mruk D, Wong C, Lee W, Han D, Cheng C. Actin-bundling protein plastin 3 is a regulator of ectoplasmic specialization dynamics during spermatogenesis in the rat testis. FASEB J. 2015;29:3788-805 pubmed 出版商
  519. Pimenta M, Francisco R, Silva R, Porto C, Lazari M. Relaxin affects cell organization and early and late stages of spermatogenesis in a coculture of rat testicular cells. Andrology. 2015;3:772-86 pubmed 出版商
  520. Huo C, Chew G, Hill P, Huang D, Ingman W, Hodson L, et al. High mammographic density is associated with an increase in stromal collagen and immune cells within the mammary epithelium. Breast Cancer Res. 2015;17:79 pubmed 出版商
  521. Liu D, Xiong H, Ellis A, Northrup N, Dobbin K, Shin D, et al. Canine spontaneous head and neck squamous cell carcinomas represent their human counterparts at the molecular level. PLoS Genet. 2015;11:e1005277 pubmed 出版商
  522. Li T, Lu H, Mukherjee D, Lahiri S, Shen C, Yu L, et al. Identification of epidermal growth factor receptor and its inhibitory microRNA141 as novel targets of Krüppel-like factor 8 in breast cancer. Oncotarget. 2015;6:21428-42 pubmed
  523. Cicchini C, de Nonno V, Battistelli C, Cozzolino A, De Santis Puzzonia M, Ciafrè S, et al. Epigenetic control of EMT/MET dynamics: HNF4α impacts DNMT3s through miRs-29. Biochim Biophys Acta. 2015;1849:919-29 pubmed 出版商
  524. Heubach J, Monsior J, Deenen R, Niegisch G, Szarvas T, Niedworok C, et al. The long noncoding RNA HOTAIR has tissue and cell type-dependent effects on HOX gene expression and phenotype of urothelial cancer cells. Mol Cancer. 2015;14:108 pubmed 出版商
  525. Sato M, Matsubara T, Adachi J, Hashimoto Y, Fukamizu K, Kishida M, et al. Differential Proteome Analysis Identifies TGF-β-Related Pro-Metastatic Proteins in a 4T1 Murine Breast Cancer Model. PLoS ONE. 2015;10:e0126483 pubmed 出版商
  526. Ohlmann C, Brecht I, Junker K, van der Zee J, Nistor A, Bohle R, et al. Sclerosing epithelioid fibrosarcoma of the kidney: clinicopathologic and molecular study of a rare neoplasm at a novel location. Ann Diagn Pathol. 2015;19:221-5 pubmed 出版商
  527. Palla A, Piazzolla D, Alcazar N, Cañamero M, Graña O, Gómez López G, et al. The pluripotency factor NANOG promotes the formation of squamous cell carcinomas. Sci Rep. 2015;5:10205 pubmed 出版商
  528. He F, Li J, Xu J, Zhang S, Xu Y, Zhao W, et al. Decreased expression of ARID1A associates with poor prognosis and promotes metastases of hepatocellular carcinoma. J Exp Clin Cancer Res. 2015;34:47 pubmed 出版商
  529. Kuroda N, Agatsuma Y, Tamura M, Martinek P, Hes O, Michal M. Sporadic renal hemangioblastoma with CA9, PAX2 and PAX8 expression: diagnostic pitfall in the differential diagnosis from clear cell renal cell carcinoma. Int J Clin Exp Pathol. 2015;8:2131-8 pubmed
  530. Ohira M, Iwasaki Y, Tanaka C, Kuroki M, Matsuo N, Kitamura T, et al. A novel anti-microtubule agent with carbazole and benzohydrazide structures suppresses tumor cell growth in vivo. Biochim Biophys Acta. 2015;1850:1676-84 pubmed 出版商
  531. Ruscetti M, Quach B, Dadashian E, Mulholland D, Wu H. Tracking and Functional Characterization of Epithelial-Mesenchymal Transition and Mesenchymal Tumor Cells during Prostate Cancer Metastasis. Cancer Res. 2015;75:2749-59 pubmed 出版商
  532. Sadowski S, Boufraqech M, Zhang L, Mehta A, Kapur P, Zhang Y, et al. Torin2 targets dysregulated pathways in anaplastic thyroid cancer and inhibits tumor growth and metastasis. Oncotarget. 2015;6:18038-49 pubmed
  533. Bhagirath D, Zhao X, West W, Qiu F, Band H, Band V. Cell type of origin as well as genetic alterations contribute to breast cancer phenotypes. Oncotarget. 2015;6:9018-30 pubmed
  534. Balla P, Maros M, Barna G, Antal I, Papp G, Sapi Z, et al. Prognostic impact of reduced connexin43 expression and gap junction coupling of neoplastic stromal cells in giant cell tumor of bone. PLoS ONE. 2015;10:e0125316 pubmed 出版商
  535. Katanov C, Lerrer S, Liubomirski Y, Leider Trejo L, Meshel T, Bar J, et al. Regulation of the inflammatory profile of stromal cells in human breast cancer: prominent roles for TNF-? and the NF-?B pathway. Stem Cell Res Ther. 2015;6:87 pubmed 出版商
  536. Pérez Núñez D, García Urdiales E, Martínez Bonet M, Nogal M, Barroso S, Revilla Y, et al. CD2v Interacts with Adaptor Protein AP-1 during African Swine Fever Infection. PLoS ONE. 2015;10:e0123714 pubmed 出版商
  537. Miracco C, Toscano M, Butorano M, Baldino G, Tacchini D, Barone A, et al. Unusual clear cell, lymphoplasmacyte-rich, dural-based tumor with divergent differentiation: a tricky case mimicking a meningioma. Hum Pathol. 2015;46:1050-6 pubmed 出版商
  538. Gago Fuentes R, Fernández Puente P, Megias D, Carpintero Fernández P, Mateos J, Acea B, et al. Proteomic Analysis of Connexin 43 Reveals Novel Interactors Related to Osteoarthritis. Mol Cell Proteomics. 2015;14:1831-45 pubmed 出版商
  539. Lin X, Xu W, Shao M, Fan Q, Wen G, Li C, et al. Shenling Baizhu San supresses colitis associated colorectal cancer through inhibition of epithelial-mesenchymal transition and myeloid-derived suppressor infiltration. BMC Complement Altern Med. 2015;15:126 pubmed 出版商
  540. Nakada S, Minato H, Takegami T, Kurose N, Ikeda H, Kobayashi M, et al. NAB2-STAT6 fusion gene analysis in two cases of meningeal solitary fibrous tumor/hemangiopericytoma with late distant metastases. Brain Tumor Pathol. 2015;32:268-74 pubmed 出版商
  541. Ho F, Zhang W, Li Y, Chan B. Mechanoresponsive, omni-directional and local matrix-degrading actin protrusions in human mesenchymal stem cells microencapsulated in a 3D collagen matrix. Biomaterials. 2015;53:392-405 pubmed 出版商
  542. Zhang P, Yang X, Ma X, Ingram D, Lazar A, Torres K, et al. Antitumor effects of pharmacological EZH2 inhibition on malignant peripheral nerve sheath tumor through the miR-30a and KPNB1 pathway. Mol Cancer. 2015;14:55 pubmed 出版商
  543. Pilli V, Gupta K, Kotha B, Aradhyam G. Snail-mediated Cripto-1 repression regulates the cell cycle and epithelial-mesenchymal transition-related gene expression. FEBS Lett. 2015;589:1249-56 pubmed 出版商
  544. Zhao H, Agazie Y. Inhibition of SHP2 in basal-like and triple-negative breast cells induces basal-to-luminal transition, hormone dependency, and sensitivity to anti-hormone treatment. BMC Cancer. 2015;15:109 pubmed 出版商
  545. Chen P, Wu T, Cheng Y, Chen C, Lee H. NKX2-1-mediated p53 expression modulates lung adenocarcinoma progression via modulating IKKβ/NF-κB activation. Oncotarget. 2015;6:14274-89 pubmed
  546. Meidhof S, Brabletz S, Lehmann W, Preca B, Mock K, Ruh M, et al. ZEB1-associated drug resistance in cancer cells is reversed by the class I HDAC inhibitor mocetinostat. EMBO Mol Med. 2015;7:831-47 pubmed 出版商
  547. Karbalaie K, Tanhaei S, Rabiei F, Kiani Esfahani A, Masoudi N, Nasr Esfahani M, et al. Stem cells from human exfoliated deciduous tooth exhibit stromal-derived inducing activity and lead to generation of neural crest cells from human embryonic stem cells. Cell J. 2015;17:37-48 pubmed
  548. Maity G, De A, Das A, Banerjee S, Sarkar S, Banerjee S. Aspirin blocks growth of breast tumor cells and tumor-initiating cells and induces reprogramming factors of mesenchymal to epithelial transition. Lab Invest. 2015;95:702-17 pubmed 出版商
  549. Lund K, Dembinski J, Solberg N, Urbanucci A, Mills I, Krauss S. Slug-dependent upregulation of L1CAM is responsible for the increased invasion potential of pancreatic cancer cells following long-term 5-FU treatment. PLoS ONE. 2015;10:e0123684 pubmed 出版商
  550. Simões A, Pereira D, Gomes S, Brito H, Carvalho T, French A, et al. Aberrant MEK5/ERK5 signalling contributes to human colon cancer progression via NF-κB activation. Cell Death Dis. 2015;6:e1718 pubmed 出版商
  551. Kubelt C, Hattermann K, Sebens S, Mehdorn H, Held Feindt J. Epithelial-to-mesenchymal transition in paired human primary and recurrent glioblastomas. Int J Oncol. 2015;46:2515-25 pubmed 出版商
  552. Lee S, Koh Y, Roh H, Cha H, Kwon Y. Ovarian microcystic stromal tumor: A novel extracolonic tumor in familial adenomatous polyposis. Genes Chromosomes Cancer. 2015;54:353-60 pubmed 出版商
  553. Santoro R, Consolo F, Spiccia M, Piola M, Kassem S, Prandi F, et al. Feasibility of pig and human-derived aortic valve interstitial cells seeding on fixative-free decellularized animal pericardium. J Biomed Mater Res B Appl Biomater. 2016;104:345-56 pubmed 出版商
  554. Videla Richardson G, Garcia C, Roisman A, Slavutsky I, Fernandez Espinosa D, Romorini L, et al. Specific Preferences in Lineage Choice and Phenotypic Plasticity of Glioma Stem Cells Under BMP4 and Noggin Influence. Brain Pathol. 2016;26:43-61 pubmed 出版商
  555. Chen X, Liu X, Lang H, Zhang S, Luo Y, Zhang J. S100 calcium-binding protein A6 promotes epithelial-mesenchymal transition through β-catenin in pancreatic cancer cell line. PLoS ONE. 2015;10:e0121319 pubmed 出版商
  556. Falkenberg N, Anastasov N, Schaub A, Radulovic V, Schmitt M, Magdolen V, et al. Secreted uPAR isoform 2 (uPAR7b) is a novel direct target of miR-221. Oncotarget. 2015;6:8103-14 pubmed
  557. Meekins J, Eshar D, Rankin A, Henningson J. Clinical and histologic description of ocular anatomy in captive black-tailed prairie dogs (Cynomys ludovicianus). Vet Ophthalmol. 2016;19:110-6 pubmed 出版商
  558. Melo E, Kasper J, Unger R, Farré R, Kirkpatrick C. Development of a Bronchial Wall Model: Triple Culture on a Decellularized Porcine Trachea. Tissue Eng Part C Methods. 2015;21:909-21 pubmed 出版商
  559. Ma W, Na M, Tang C, Wang H, Lin Z. Overexpression of N-myc downstream-regulated gene 1 inhibits human glioma proliferation and invasion via phosphoinositide 3-kinase/AKT pathways. Mol Med Rep. 2015;12:1050-8 pubmed 出版商
  560. Chang A, Liu Y, Ayyanathan K, Benner C, Jiang Y, Prokop J, et al. An evolutionarily conserved DNA architecture determines target specificity of the TWIST family bHLH transcription factors. Genes Dev. 2015;29:603-16 pubmed 出版商
  561. Lin Y, Yang Z, Xu A, Dong P, Huang Y, Liu H, et al. PIK3R1 negatively regulates the epithelial-mesenchymal transition and stem-like phenotype of renal cancer cells through the AKT/GSK3β/CTNNB1 signaling pathway. Sci Rep. 2015;5:8997 pubmed 出版商
  562. Chen Q, Gu Y, Liu B. Clinicopathological characteristics of kidney mucinous tubular and spindle cell carcinoma. Int J Clin Exp Pathol. 2015;8:1007-12 pubmed
  563. Xiu Y, Jiang L, Liu W. Classic biphasic pulmonary blastoma with brain and axillary metastases: a case report with molecular analysis and review of literature. Int J Clin Exp Pathol. 2015;8:983-8 pubmed
  564. Wang G, Liu G, Ye Y, Fu Y, Zhang X. The role of microRNA-1274a in the tumorigenesis of gastric cancer: accelerating cancer cell proliferation and migration via directly targeting FOXO4. Biochem Biophys Res Commun. 2015;459:629-35 pubmed 出版商
  565. Knezevic J, Pfefferle A, Petrovic I, Greene S, Perou C, Rosen J. Expression of miR-200c in claudin-low breast cancer alters stem cell functionality, enhances chemosensitivity and reduces metastatic potential. Oncogene. 2015;34:5997-6006 pubmed 出版商
  566. Costabile V, Duraturo F, Delrio P, Rega D, Pace U, Liccardo R, et al. Lithium chloride induces mesenchymal‑to‑epithelial reverting transition in primary colon cancer cell cultures. Int J Oncol. 2015;46:1913-23 pubmed 出版商
  567. Yamashita A, Morioka M, Yahara Y, Okada M, Kobayashi T, Kuriyama S, et al. Generation of scaffoldless hyaline cartilaginous tissue from human iPSCs. Stem Cell Reports. 2015;4:404-18 pubmed 出版商
  568. Tang D, Gao J, Wang S, Yuan Z, Ye N, Chong Y, et al. Apoptosis and anergy of T cell induced by pancreatic stellate cells-derived galectin-1 in pancreatic cancer. Tumour Biol. 2015;36:5617-26 pubmed 出版商
  569. Otsuki S, Sawada H, Yodoya N, Shinohara T, Kato T, Ohashi H, et al. Potential contribution of phenotypically modulated smooth muscle cells and related inflammation in the development of experimental obstructive pulmonary vasculopathy in rats. PLoS ONE. 2015;10:e0118655 pubmed 出版商
  570. Wang H, Bao W, Jiang F, Che Q, Chen Z, Wang F, et al. Mutant p53 (p53-R248Q) functions as an oncogene in promoting endometrial cancer by up-regulating REGγ. Cancer Lett. 2015;360:269-79 pubmed 出版商
  571. Song E, Yu W, Xiong X, Kuang X, Ai Y, Xiong X. Astrocyte elevated gene-1 promotes progression of cervical squamous cell carcinoma by inducing epithelial-mesenchymal transition via Wnt signaling. Int J Gynecol Cancer. 2015;25:345-55 pubmed 出版商
  572. Morlé A, Garrido C, Micheau O. Hyperthermia restores apoptosis induced by death receptors through aggregation-induced c-FLIP cytosolic depletion. Cell Death Dis. 2015;6:e1633 pubmed 出版商
  573. Canda A, Dogan H, Kandemir O, Atmaca A, Akbulut Z, Balbay M. Does diabetes affect the distribution and number of interstitial cells and neuronal tissue in the ureter, bladder, prostate, and urethra of humans?. Cent European J Urol. 2014;67:366-74 pubmed 出版商
  574. Afzal M, Strande J. Generation of induced pluripotent stem cells from muscular dystrophy patients: efficient integration-free reprogramming of urine derived cells. J Vis Exp. 2015;:52032 pubmed 出版商
  575. Yui T, Ohmachi T, Matsuda K, Okamoto M, Taniyama H. Histochemical and immunohistochemical characterization of chordoma in ferrets. J Vet Med Sci. 2015;77:467-73 pubmed 出版商
  576. Ko J, Klimowicz A, Jagdis A, Phan T, Laskin J, Lau H, et al. ATM, THMS, and RRM1 protein expression in nasopharyngeal carcinomas treated with curative intent. Head Neck. 2016;38 Suppl 1:E384-91 pubmed 出版商
  577. Kap M, Lam K, Ewing Graham P, Riegman P. A reference image-based method for optimization of clinical immunohistochemistry. Histopathology. 2015;67:193-205 pubmed 出版商
  578. Zhang M, Schulte J, Heinick A, Piccini I, Rao J, Quaranta R, et al. Universal cardiac induction of human pluripotent stem cells in two and three-dimensional formats: implications for in vitro maturation. Stem Cells. 2015;33:1456-69 pubmed 出版商
  579. Hirt M, Werner T, Indenbirken D, Alawi M, Demin P, Kunze A, et al. Deciphering the microRNA signature of pathological cardiac hypertrophy by engineered heart tissue- and sequencing-technology. J Mol Cell Cardiol. 2015;81:1-9 pubmed 出版商
  580. Ghiabi P, Jiang J, Pasquier J, Maleki M, Abu Kaoud N, Halabi N, et al. Breast cancer cells promote a notch-dependent mesenchymal phenotype in endothelial cells participating to a pro-tumoral niche. J Transl Med. 2015;13:27 pubmed 出版商
  581. Gajula R, Chettiar S, Williams R, Nugent K, Kato Y, Wang H, et al. Structure-function studies of the bHLH phosphorylation domain of TWIST1 in prostate cancer cells. Neoplasia. 2015;17:16-31 pubmed 出版商
  582. Bele A, Mirza S, Zhang Y, Ahmad Mir R, Lin S, Kim J, et al. The cell cycle regulator ecdysoneless cooperates with H-Ras to promote oncogenic transformation of human mammary epithelial cells. Cell Cycle. 2015;14:990-1000 pubmed 出版商
  583. Gurzu S, Kádár Z, Sugimura H, Bara T, Hălmaciu I, Jung I. Gastric cancer in young vs old Romanian patients: immunoprofile with emphasis on maspin and mena protein reactivity. APMIS. 2015;123:223-33 pubmed 出版商
  584. Tange S, Oktyabri D, Terashima M, Ishimura A, Suzuki T. JARID2 is involved in transforming growth factor-beta-induced epithelial-mesenchymal transition of lung and colon cancer cell lines. PLoS ONE. 2014;9:e115684 pubmed 出版商
  585. Yao P, Kang D, Wang X, Lin R, Ye Z. Cell-density-dependent manifestation of partial characteristics for neuronal precursors in a newly established human gliosarcoma cell line. In Vitro Cell Dev Biol Anim. 2015;51:345-52 pubmed 出版商
  586. Gong X, Yi J, Carmon K, Crumbley C, Xiong W, Thomas A, et al. Aberrant RSPO3-LGR4 signaling in Keap1-deficient lung adenocarcinomas promotes tumor aggressiveness. Oncogene. 2015;34:4692-701 pubmed 出版商
  587. Park S, Bae H, Park J. Osteogenic differentiation and gene expression profile of human dental follicle cells induced by human dental pulp cells. J Mol Histol. 2015;46:93-106 pubmed 出版商
  588. Ulanet D, Couto K, Jha A, Choe S, Wang A, Woo H, et al. Mesenchymal phenotype predisposes lung cancer cells to impaired proliferation and redox stress in response to glutaminase inhibition. PLoS ONE. 2014;9:e115144 pubmed 出版商
  589. Okada H, Takemura G, Kanamori H, Tsujimoto A, Goto K, Kawamura I, et al. Phenotype and physiological significance of the endocardial smooth muscle cells in human failing hearts. Circ Heart Fail. 2015;8:149-55 pubmed 出版商
  590. Tang E, Mok K, Lee W, Cheng C. EB1 regulates tubulin and actin cytoskeletal networks at the sertoli cell blood-testis barrier in male rats: an in vitro study. Endocrinology. 2015;156:680-93 pubmed 出版商
  591. Davidson B, Holth A, Hellesylt E, Tan T, Huang R, Tropé C, et al. The clinical role of epithelial-mesenchymal transition and stem cell markers in advanced-stage ovarian serous carcinoma effusions. Hum Pathol. 2015;46:1-8 pubmed 出版商
  592. Jannasch K, Wegwitz F, Lenfert E, Maenz C, Deppert W, Alves F. Chemotherapy of WAP-T mouse mammary carcinomas aggravates tumor phenotype and enhances tumor cell dissemination. Int J Cancer. 2015;137:25-36 pubmed 出版商
  593. Liu D, Yovchev M, Zhang J, Alfieri A, Tchaikovskaya T, Laconi E, et al. Identification and characterization of mesenchymal-epithelial progenitor-like cells in normal and injured rat liver. Am J Pathol. 2015;185:110-28 pubmed 出版商
  594. Liu X, Giguère V. Inactivation of RARβ inhibits Wnt1-induced mammary tumorigenesis by suppressing epithelial-mesenchymal transitions. Nucl Recept Signal. 2014;12:e004 pubmed 出版商
  595. Shimamoto A, Kagawa H, Zensho K, Sera Y, Kazuki Y, Osaki M, et al. Reprogramming suppresses premature senescence phenotypes of Werner syndrome cells and maintains chromosomal stability over long-term culture. PLoS ONE. 2014;9:e112900 pubmed 出版商
  596. Webb S, Zychowski G, Bauman S, Higgins B, Raudsepp T, Gollahon L, et al. Establishment, characterization, and toxicological application of loggerhead sea turtle (Caretta caretta) primary skin fibroblast cell cultures. Environ Sci Technol. 2014;48:14728-37 pubmed 出版商
  597. Shriver M, Stroka K, Vitolo M, Martin S, Huso D, Konstantopoulos K, et al. Loss of giant obscurins from breast epithelium promotes epithelial-to-mesenchymal transition, tumorigenicity and metastasis. Oncogene. 2015;34:4248-59 pubmed 出版商
  598. Merikallio H, T T, Paakko P, Mäkitaro R, Kaarteenaho R, Lehtonen S, et al. Slug is associated with poor survival in squamous cell carcinoma of the lung. Int J Clin Exp Pathol. 2014;7:5846-54 pubmed
  599. Soncini D, Caffa I, Zoppoli G, Cea M, Cagnetta A, Passalacqua M, et al. Nicotinamide phosphoribosyltransferase promotes epithelial-to-mesenchymal transition as a soluble factor independent of its enzymatic activity. J Biol Chem. 2014;289:34189-204 pubmed 出版商
  600. Calangiu C, Simionescu C, Stepan A, Cernea D, Zăvoi R, Mărgăritescu C. The expression of CK19, vimentin and E-cadherin in differentiated thyroid carcinomas. Rom J Morphol Embryol. 2014;55:919-25 pubmed
  601. Pawelczyk T, Sakowicz Burkiewicz M, Wesserling M, Grden M, Kuczkowski J. Altered response of fibroblasts from human tympanosclerotic membrane to interacting mast cells: implication for tissue remodeling. Int J Biochem Cell Biol. 2014;57:35-44 pubmed 出版商
  602. Tate M, Lindquist R, Nguyen T, Sanai N, Barkovich A, Huang E, et al. Postnatal growth of the human pons: a morphometric and immunohistochemical analysis. J Comp Neurol. 2015;523:449-62 pubmed 出版商
  603. Berghuis L, Abdelaziz K, Bierworth J, Wyer L, Jacob G, Karrow N, et al. Comparison of innate immune agonists for induction of tracheal antimicrobial peptide gene expression in tracheal epithelial cells of cattle. Vet Res. 2014;45:105 pubmed 出版商
  604. Zhang X, Liu W, Yang H, Tan L, Ao L, Liu J, et al. Inhibition of PPARα attenuates vimentin phosphorylation on Ser-83 and collapse of vimentin filaments during exposure of rat Sertoli cells in vitro to DBP. Reprod Toxicol. 2014;50:11-8 pubmed 出版商
  605. Cai X, Dai Z, Reeves R, Caballero Benítez A, Duran K, Delrow J, et al. Autonomous stimulation of cancer cell plasticity by the human NKG2D lymphocyte receptor coexpressed with its ligands on cancer cells. PLoS ONE. 2014;9:e108942 pubmed 出版商
  606. Liang N, Zhang C, Dill P, Panasyuk G, Pion D, Koka V, et al. Regulation of YAP by mTOR and autophagy reveals a therapeutic target of tuberous sclerosis complex. J Exp Med. 2014;211:2249-63 pubmed 出版商
  607. Joseph J, Conroy S, Tomar T, Eggens Meijer E, Bhat K, Copray S, et al. TGF-β is an inducer of ZEB1-dependent mesenchymal transdifferentiation in glioblastoma that is associated with tumor invasion. Cell Death Dis. 2014;5:e1443 pubmed 出版商
  608. Zheng Y, Thomas A, Schmidt C, Dann C. Quantitative detection of human spermatogonia for optimization of spermatogonial stem cell culture. Hum Reprod. 2014;29:2497-511 pubmed 出版商
  609. Sun Y, Hu L, Zheng H, Bagnoli M, Guo Y, Rupaimoole R, et al. MiR-506 inhibits multiple targets in the epithelial-to-mesenchymal transition network and is associated with good prognosis in epithelial ovarian cancer. J Pathol. 2015;235:25-36 pubmed 出版商
  610. Cao Y, Slaney C, Bidwell B, Parker B, Johnstone C, Rautela J, et al. BMP4 inhibits breast cancer metastasis by blocking myeloid-derived suppressor cell activity. Cancer Res. 2014;74:5091-102 pubmed 出版商
  611. Sempere L. Fully automated fluorescence-based four-color multiplex assay for co-detection of microRNA and protein biomarkers in clinical tissue specimens. Methods Mol Biol. 2014;1211:151-70 pubmed 出版商
  612. Li L, Fan X, Xia Q, Rao Q, Liu B, Yu B, et al. Concurrent loss of INI1, PBRM1, and BRM expression in epithelioid sarcoma: implications for the cocontributions of multiple SWI/SNF complex members to pathogenesis. Hum Pathol. 2014;45:2247-54 pubmed 出版商
  613. Moser B, Megerle A, Bekos C, Janik S, Szerafin T, Birner P, et al. Local and systemic RAGE axis changes in pulmonary hypertension: CTEPH and iPAH. PLoS ONE. 2014;9:e106440 pubmed 出版商
  614. Greene C, Green C, Sherwin T. Transdifferentiation of chondrocytes into neuron-like cells induced by neuronal lineage specifying growth factors. Cell Biol Int. 2015;39:185-91 pubmed 出版商
  615. Costache M, Pătraşcu O, Dumitru A, Costache D, Voinea L, Simionescu O, et al. Histopathological findings concerning ocular melanomas. Rom J Morphol Embryol. 2014;55:649-53 pubmed
  616. García E, Machesky L, Jones G, Antón I. WIP is necessary for matrix invasion by breast cancer cells. Eur J Cell Biol. 2014;93:413-23 pubmed 出版商
  617. Zorin V, Komlev V, Zorina A, Khromova N, Solovieva E, Fedotov A, et al. Octacalcium phosphate ceramics combined with gingiva-derived stromal cells for engineered functional bone grafts. Biomed Mater. 2014;9:055005 pubmed 出版商
  618. Kodama T, Motoi N, Ninomiya H, Sakamoto H, Kitada K, Tsukaguchi T, et al. A novel mechanism of EML4-ALK rearrangement mediated by chromothripsis in a patient-derived cell line. J Thorac Oncol. 2014;9:1638-46 pubmed 出版商
  619. Franceschi V, Jacca S, Sassu E, Stellari F, van Santen V, Donofrio G. Generation and characterization of the first immortalized alpaca cell line suitable for diagnostic and immunization studies. PLoS ONE. 2014;9:e105643 pubmed 出版商
  620. Jeon Y, Moon K, Park S, Chung D. Primary pulmonary myxoid sarcomas with EWSR1-CREB1 translocation might originate from primitive peribronchial mesenchymal cells undergoing (myo)fibroblastic differentiation. Virchows Arch. 2014;465:453-61 pubmed 出版商
  621. Lu G, Zhang Q, Huang Y, Song J, Tomaino R, Ehrenberger T, et al. Phosphorylation of ETS1 by Src family kinases prevents its recognition by the COP1 tumor suppressor. Cancer Cell. 2014;26:222-34 pubmed 出版商
  622. Guan H, Tan J, Zhang F, Gao L, Bai L, Qi D, et al. Myofibroblasts from salivary gland adenoid cystic carcinomas promote cancer invasion by expressing MMP2 and CXCL12. Histopathology. 2015;66:781-90 pubmed 出版商
  623. Gwak J, Kim H, Kim E, Chung Y, Yun S, Seo A, et al. MicroRNA-9 is associated with epithelial-mesenchymal transition, breast cancer stem cell phenotype, and tumor progression in breast cancer. Breast Cancer Res Treat. 2014;147:39-49 pubmed 出版商
  624. Dogan A, Demirci S, Sahin F. In vitro differentiation of human tooth germ stem cells into endothelial- and epithelial-like cells. Cell Biol Int. 2015;39:94-103 pubmed 出版商
  625. Carlos C, Sonehara N, Oliani S, Burdmann E. Predictive usefulness of urinary biomarkers for the identification of cyclosporine A-induced nephrotoxicity in a rat model. PLoS ONE. 2014;9:e103660 pubmed 出版商
  626. Phillips R, Fortier M, Lopez Bernal A. Prostaglandin pathway gene expression in human placenta, amnion and choriodecidua is differentially affected by preterm and term labour and by uterine inflammation. BMC Pregnancy Childbirth. 2014;14:241 pubmed 出版商
  627. Yuan S, Guo Y, Zhou X, Shen W, Chen H. PDGFR-? (+) perivascular cells from infantile hemangioma display the features of mesenchymal stem cells and show stronger adipogenic potential in vitro and in vivo. Int J Clin Exp Pathol. 2014;7:2861-70 pubmed
  628. Janbaz A, Lindström M, Liu J, Pedrosa Domellöf F. Intermediate filaments in the human extraocular muscles. Invest Ophthalmol Vis Sci. 2014;55:5151-9 pubmed 出版商
  629. Hagel C, Krasemann S, Löffler J, Puschel K, Magnus T, Glatzel M. Upregulation of Shiga toxin receptor CD77/Gb3 and interleukin-1? expression in the brain of EHEC patients with hemolytic uremic syndrome and neurologic symptoms. Brain Pathol. 2015;25:146-56 pubmed 出版商
  630. Fenton S, Hutchens K, Denning M. Targeting Fyn in Ras-transformed cells induces F-actin to promote adherens junction-mediated cell-cell adhesion. Mol Carcinog. 2015;54:1181-93 pubmed 出版商
  631. Favaron P, Morini J, Mess A, Miglino M, Ambrosio C. Placentation and fetal membrane development in the South American coati, Nasua nasua (Mammalia, Carnivora, Procyonidae). Reprod Biol Endocrinol. 2014;12:57 pubmed 出版商
  632. Liang W, Hao Z, Han J, Zhu D, Jin Z, Xie W. CAV-1 contributes to bladder cancer progression by inducing epithelial-to-mesenchymal transition. Urol Oncol. 2014;32:855-63 pubmed 出版商
  633. de Borja Callejas F, Martinez Anton A, Alobid I, Fuentes M, Cortijo J, Picado C, et al. Reconstituted human upper airway epithelium as 3-d in vitro model for nasal polyposis. PLoS ONE. 2014;9:e100537 pubmed 出版商
  634. Francis V, Abera A, Matjila M, Millar R, Katz A. Kisspeptin regulation of genes involved in cell invasion and angiogenesis in first trimester human trophoblast cells. PLoS ONE. 2014;9:e99680 pubmed 出版商
  635. Greaves E, Cousins F, Murray A, Esnal Zufiaurre A, Fassbender A, Horne A, et al. A novel mouse model of endometriosis mimics human phenotype and reveals insights into the inflammatory contribution of shed endometrium. Am J Pathol. 2014;184:1930-9 pubmed 出版商
  636. Milione M, Gasparini P, Sozzi G, Mazzaferro V, Ferrari A, Casali P, et al. Ewing sarcoma of the small bowel: a study of seven cases, including one with the uncommonly reported EWSR1-FEV translocation. Histopathology. 2014;64:1014-26 pubmed 出版商
  637. Oishi N, Kondo T, Nakazawa T, Mochizuki K, Kasai K, Inoue T, et al. Thyroid-like low-grade nasopharyngeal papillary adenocarcinoma: case report and literature review. Pathol Res Pract. 2014;210:1142-5 pubmed 出版商
  638. Gevaert T, Vanstreels E, Daelemans D, Franken J, Van Der Aa F, Roskams T, et al. Identification of different phenotypes of interstitial cells in the upper and deep lamina propria of the human bladder dome. J Urol. 2014;192:1555-63 pubmed 出版商
  639. Morris K, Nofchissey R, Pinchuk I, Beswick E. Chronic macrophage migration inhibitory factor exposure induces mesenchymal epithelial transition and promotes gastric and colon cancers. PLoS ONE. 2014;9:e98656 pubmed 出版商
  640. Kielar M, Tuy F, Bizzotto S, Lebrand C, de Juan Romero C, Poirier K, et al. Mutations in Eml1 lead to ectopic progenitors and neuronal heterotopia in mouse and human. Nat Neurosci. 2014;17:923-33 pubmed 出版商
  641. Yi X, Li X, Zhou Y, Ren S, Wan W, Feng G, et al. Hepatocyte growth factor regulates the TGF-?1-induced proliferation, differentiation and secretory function of cardiac fibroblasts. Int J Mol Med. 2014;34:381-90 pubmed 出版商
  642. Mrosewski I, Jork N, Gorte K, Conrad C, Wiegand E, Kohl B, et al. Regulation of osteoarthritis-associated key mediators by TNF? and IL-10: effects of IL-10 overexpression in human synovial fibroblasts and a synovial cell line. Cell Tissue Res. 2014;357:207-23 pubmed 出版商
  643. Mori F, Watanabe Y, Miki Y, Tanji K, Odagiri S, Eto K, et al. Ubiquitin-negative, eosinophilic neuronal cytoplasmic inclusions associated with stress granules and autophagy: an immunohistochemical investigation of two cases. Neuropathology. 2014;34:140-7 pubmed
  644. Subramani R, Lopez Valdez R, Arumugam A, Nandy S, Boopalan T, Lakshmanaswamy R. Targeting insulin-like growth factor 1 receptor inhibits pancreatic cancer growth and metastasis. PLoS ONE. 2014;9:e97016 pubmed 出版商
  645. Miki Y, Hamada K, Yoshino T, Miyatani K, Takahashi K. Type AB thymoma is not a mixed tumor of type A and type B thymomas, but a distinct type of thymoma. Virchows Arch. 2014;464:725-34 pubmed 出版商
  646. Helm O, Mennrich R, Petrick D, Goebel L, Freitag Wolf S, Roder C, et al. Comparative characterization of stroma cells and ductal epithelium in chronic pancreatitis and pancreatic ductal adenocarcinoma. PLoS ONE. 2014;9:e94357 pubmed 出版商
  647. Muchkaeva I, Dashinimaev E, Artyuhov A, Myagkova E, Vorotelyak E, Yegorov Y, et al. Generation of iPS Cells from Human Hair Follice Dermal Papilla Cells. Acta Naturae. 2014;6:45-53 pubmed
  648. Bao Y, Cao X, Luo D, Sun R, Peng L, Wang L, et al. Urokinase-type plasminogen activator receptor signaling is critical in nasopharyngeal carcinoma cell growth and metastasis. Cell Cycle. 2014;13:1958-69 pubmed 出版商
  649. Pryzhkova M, Aria I, Cheng Q, Harris G, Zan X, Gharib M, et al. Carbon nanotube-based substrates for modulation of human pluripotent stem cell fate. Biomaterials. 2014;35:5098-109 pubmed 出版商
  650. Yang Y, Sun W, Wu S, Xiao J, Kong X. Telocytes in human heart valves. J Cell Mol Med. 2014;18:759-65 pubmed 出版商
  651. Balk Møller E, Kim J, Hopkinson B, Timmermans Wielenga V, Petersen O, Villadsen R. A marker of endocrine receptor-positive cells, CEACAM6, is shared by two major classes of breast cancer: luminal and HER2-enriched. Am J Pathol. 2014;184:1198-208 pubmed 出版商
  652. Sarrazy V, Koehler A, Chow M, Zimina E, Li C, Kato H, et al. Integrins ?v?5 and ?v?3 promote latent TGF-?1 activation by human cardiac fibroblast contraction. Cardiovasc Res. 2014;102:407-17 pubmed 出版商
  653. Fukai J, Fujita K, Yamoto T, Sasaki T, Uematsu Y, Nakao N. Intracranial extension of adenoid cystic carcinoma: potential involvement of EphA2 expression and epithelial-mesenchymal transition in tumor metastasis: a case report. BMC Res Notes. 2014;7:131 pubmed 出版商
  654. Yoshida T, Ozawa Y, Kimura T, Sato Y, Kuznetsov G, Xu S, et al. Eribulin mesilate suppresses experimental metastasis of breast cancer cells by reversing phenotype from epithelial-mesenchymal transition (EMT) to mesenchymal-epithelial transition (MET) states. Br J Cancer. 2014;110:1497-505 pubmed 出版商
  655. Hesami P, Holzapfel B, Taubenberger A, Roudier M, Fazli L, Sieh S, et al. A humanized tissue-engineered in vivo model to dissect interactions between human prostate cancer cells and human bone. Clin Exp Metastasis. 2014;31:435-46 pubmed 出版商
  656. Gao Y, Bayless K, Li Q. TGFBR1 is required for mouse myometrial development. Mol Endocrinol. 2014;28:380-94 pubmed 出版商
  657. Chen F, Becker A, LoTurco J. Contribution of tumor heterogeneity in a new animal model of CNS tumors. Mol Cancer Res. 2014;12:742-53 pubmed 出版商
  658. Shen L, Qu X, Ma Y, Zheng J, Chu D, Liu B, et al. Tumor suppressor NDRG2 tips the balance of oncogenic TGF-? via EMT inhibition in colorectal cancer. Oncogenesis. 2014;3:e86 pubmed 出版商
  659. Aoshiba K, Tsuji T, Itoh M, Semba S, Yamaguchi K, Nakamura H, et al. A murine model of airway fibrosis induced by repeated naphthalene exposure. Exp Toxicol Pathol. 2014;66:169-77 pubmed 出版商
  660. Joannes A, Grelet S, Duca L, Gilles C, Kileztky C, Dalstein V, et al. Fhit regulates EMT targets through an EGFR/Src/ERK/Slug signaling axis in human bronchial cells. Mol Cancer Res. 2014;12:775-83 pubmed 出版商
  661. Facciuto F, Bugnon Valdano M, Marziali F, Massimi P, Banks L, Cavatorta A, et al. Human papillomavirus (HPV)-18 E6 oncoprotein interferes with the epithelial cell polarity Par3 protein. Mol Oncol. 2014;8:533-43 pubmed 出版商
  662. Dadone B, Ambrosetti D, Carpentier X, Duranton Tanneur V, Burel Vandenbos F, Amiel J, et al. A renal metanephric adenoma showing both a 2p16e24 deletion and BRAF V600E mutation: a synergistic role for a tumor suppressor gene on chromosome 2p and BRAF activation?. Cancer Genet. 2013;206:347-52 pubmed
  663. Yan X, Lin J, Talabattula V, Mußmann C, Yang F, Wree A, et al. ADAM10 negatively regulates neuronal differentiation during spinal cord development. PLoS ONE. 2014;9:e84617 pubmed 出版商
  664. Ishida M, Iwai M, Yoshida K, Kagotani A, Okabe H. Signet-ring cell melanoma with sentinel lymph node metastasis: A case report with immunohistochemical analysis and review of the clinicopathological features. Oncol Lett. 2014;7:65-68 pubmed
  665. Bohonowych J, Hance M, Nolan K, DEFEE M, Parsons C, Isaacs J. Extracellular Hsp90 mediates an NF-?B dependent inflammatory stromal program: implications for the prostate tumor microenvironment. Prostate. 2014;74:395-407 pubmed 出版商
  666. Yu Y, Xiao C, Tan L, Wang Q, Li X, Feng Y. Cancer-associated fibroblasts induce epithelial-mesenchymal transition of breast cancer cells through paracrine TGF-? signalling. Br J Cancer. 2014;110:724-32 pubmed 出版商
  667. Cañadas I, Rojo F, Taus A, Arpi O, Arumi Uria M, Pijuan L, et al. Targeting epithelial-to-mesenchymal transition with Met inhibitors reverts chemoresistance in small cell lung cancer. Clin Cancer Res. 2014;20:938-50 pubmed 出版商
  668. Luo W, Yao K. Cancer stem cell characteristics, ALDH1 expression in the invasive front of nasopharyngeal carcinoma. Virchows Arch. 2014;464:35-43 pubmed 出版商
  669. Chen Y, Pan H, Tseng H, Chu H, Hung Y, Yen Y, et al. Differentiated epithelial- and mesenchymal-like phenotypes in subcutaneous mouse xenografts using diffusion weighted-magnetic resonance imaging. Int J Mol Sci. 2013;14:21943-59 pubmed 出版商
  670. Fretz J, Nelson T, Velazquez H, Xi Y, Moeckel G, Horowitz M. Early B-cell factor 1 is an essential transcription factor for postnatal glomerular maturation. Kidney Int. 2014;85:1091-102 pubmed 出版商
  671. Peng Y, Shi Y, Ding Z, Ke A, Gu C, Hui B, et al. Autophagy inhibition suppresses pulmonary metastasis of HCC in mice via impairing anoikis resistance and colonization of HCC cells. Autophagy. 2013;9:2056-68 pubmed 出版商
  672. Feng N, Han Q, Li J, Wang S, Li H, Yao X, et al. Generation of highly purified neural stem cells from human adipose-derived mesenchymal stem cells by Sox1 activation. Stem Cells Dev. 2014;23:515-29 pubmed 出版商
  673. Zheng Q, Wang X, Wen Q, Zhang Y, Chen S, Zhang J, et al. Wt1 deficiency causes undifferentiated spermatogonia accumulation and meiotic progression disruption in neonatal mice. Reproduction. 2014;147:45-52 pubmed 出版商
  674. Chen Y, Huang W, Chang S, Chang K, Kao S, Lo J, et al. Enhanced filopodium formation and stem-like phenotypes in a novel metastatic head and neck cancer cell model. Oncol Rep. 2013;30:2829-37 pubmed 出版商
  675. Yu L, Cheng H, Yang S. Clinicopathological and extensive immunohistochemical study of a type II pleuropulmonary blastoma. Fetal Pediatr Pathol. 2014;33:1-8 pubmed 出版商
  676. Gu M, Choi J. Epithelial-mesenchymal transition phenotypes are associated with patient survival in intrahepatic cholangiocarcinoma. J Clin Pathol. 2014;67:229-34 pubmed 出版商
  677. Kusafuka K, Onitsuka T, Muramatsu K, Miki T, Murai C, Suda T, et al. Salivary duct carcinoma with rhabdoid features: report of 2 cases with immunohistochemical and ultrastructural analyses. Head Neck. 2014;36:E28-35 pubmed 出版商
  678. Dave J, Kang H, Abbey C, Maxwell S, Bayless K. Proteomic profiling of endothelial invasion revealed receptor for activated C kinase 1 (RACK1) complexed with vimentin to regulate focal adhesion kinase (FAK). J Biol Chem. 2013;288:30720-33 pubmed 出版商
  679. Qiu S, Wei X, Huang W, Wu M, Qin Y, Li Y, et al. Diagnostic and therapeutic strategy and the most efficient prognostic factors of breast malignant fibrous histiocytoma. Sci Rep. 2013;3:2529 pubmed 出版商
  680. Xu Y, Xu Y, Liao L, Zhou N, Theissen S, Liao X, et al. Inducible knockout of Twist1 in young and adult mice prolongs hair growth cycle and has mild effects on general health, supporting Twist1 as a preferential cancer target. Am J Pathol. 2013;183:1281-1292 pubmed 出版商
  681. Weber B, Kehl D, Bleul U, Behr L, Sammut S, Frese L, et al. In vitro fabrication of autologous living tissue-engineered vascular grafts based on prenatally harvested ovine amniotic fluid-derived stem cells. J Tissue Eng Regen Med. 2016;10:52-70 pubmed 出版商
  682. Lu H, Hu L, Yu L, Wang X, Urvalek A, Li T, et al. KLF8 and FAK cooperatively enrich the active MMP14 on the cell surface required for the metastatic progression of breast cancer. Oncogene. 2014;33:2909-17 pubmed 出版商
  683. Cedervall J, Zhang Y, Ringvall M, Thulin A, Moustakas A, Jahnen Dechent W, et al. HRG regulates tumor progression, epithelial to mesenchymal transition and metastasis via platelet-induced signaling in the pre-tumorigenic microenvironment. Angiogenesis. 2013;16:889-902 pubmed 出版商
  684. Zhang X, Wang Z, Kang Y, Li X, Ma X, Ma L. MCAM expression is associated with poor prognosis in non-small cell lung cancer. Clin Transl Oncol. 2014;16:178-83 pubmed 出版商
  685. Aoshiba K, Tsuji T, Kameyama S, Itoh M, Semba S, Yamaguchi K, et al. Senescence-associated secretory phenotype in a mouse model of bleomycin-induced lung injury. Exp Toxicol Pathol. 2013;65:1053-62 pubmed 出版商
  686. Olsen J, Oyan A, Rostad K, Hellem M, Liu J, Li L, et al. p63 attenuates epithelial to mesenchymal potential in an experimental prostate cell model. PLoS ONE. 2013;8:e62547 pubmed 出版商
  687. Park J, Morley T, Scherer P. Inhibition of endotrophin, a cleavage product of collagen VI, confers cisplatin sensitivity to tumours. EMBO Mol Med. 2013;5:935-48 pubmed 出版商
  688. Iori V, Maroso M, Rizzi M, Iyer A, Vertemara R, Carli M, et al. Receptor for Advanced Glycation Endproducts is upregulated in temporal lobe epilepsy and contributes to experimental seizures. Neurobiol Dis. 2013;58:102-14 pubmed 出版商
  689. Yang G, Li J, Jin H, Ding H. Is mammary not otherwise specified-type sarcoma with CD10 expression a distinct entity? A rare case report with immunohistochemical and ultrastructural study. Diagn Pathol. 2013;8:14 pubmed 出版商
  690. Ford C, Jary E, Ma S, Nixdorf S, Heinzelmann Schwarz V, Ward R. The Wnt gatekeeper SFRP4 modulates EMT, cell migration and downstream Wnt signalling in serous ovarian cancer cells. PLoS ONE. 2013;8:e54362 pubmed 出版商
  691. Sánchez Alvarez R, Martinez Outschoorn U, Lin Z, Lamb R, Hulit J, Howell A, et al. Ethanol exposure induces the cancer-associated fibroblast phenotype and lethal tumor metabolism: implications for breast cancer prevention. Cell Cycle. 2013;12:289-301 pubmed 出版商
  692. Boshnjaku V, Shim K, Tsurubuchi T, Ichi S, Szany E, Xi G, et al. Nuclear localization of folate receptor alpha: a new role as a transcription factor. Sci Rep. 2012;2:980 pubmed 出版商
  693. Fong G, Backman L, Andersson G, Scott A, Danielson P. Human tenocytes are stimulated to proliferate by acetylcholine through an EGFR signalling pathway. Cell Tissue Res. 2013;351:465-75 pubmed 出版商
  694. Wright E, Farrell K, Malik N, Kassem M, Lewis A, Wallrapp C, et al. Encapsulated glucagon-like peptide-1-producing mesenchymal stem cells have a beneficial effect on failing pig hearts. Stem Cells Transl Med. 2012;1:759-69 pubmed 出版商
  695. Rodriguez A, Allegrucci C, Alberio R. Modulation of pluripotency in the porcine embryo and iPS cells. PLoS ONE. 2012;7:e49079 pubmed 出版商
  696. Baek H, Noh Y, Lee J, Yeon S, Jeong J, Kwon H. Autonomous isolation, long-term culture and differentiation potential of adult salivary gland-derived stem/progenitor cells. J Tissue Eng Regen Med. 2014;8:717-27 pubmed 出版商
  697. Prabowo A, Anink J, Lammens M, Nellist M, van den Ouweland A, Adle Biassette H, et al. Fetal brain lesions in tuberous sclerosis complex: TORC1 activation and inflammation. Brain Pathol. 2013;23:45-59 pubmed 出版商
  698. Ezponda T, Popovic R, Shah M, Martinez Garcia E, Zheng Y, Min D, et al. The histone methyltransferase MMSET/WHSC1 activates TWIST1 to promote an epithelial-mesenchymal transition and invasive properties of prostate cancer. Oncogene. 2013;32:2882-90 pubmed 出版商
  699. Garcia Ovejero D, Arevalo Martin A, Paniagua Torija B, Sierra Palomares Y, Molina Holgado E. A cell population that strongly expresses the CB1 cannabinoid receptor in the ependyma of the rat spinal cord. J Comp Neurol. 2013;521:233-51 pubmed 出版商
  700. Zhao X, Malhotra G, Band H, Band V. Derivation of myoepithelial progenitor cells from bipotent mammary stem/progenitor cells. PLoS ONE. 2012;7:e35338 pubmed 出版商
  701. Stoyianni A, Goussia A, Pentheroudakis G, Siozopoulou V, Ioachim E, Krikelis D, et al. Immunohistochemical study of the epithelial-mesenchymal transition phenotype in cancer of unknown primary: incidence, correlations and prognostic utility. Anticancer Res. 2012;32:1273-81 pubmed
  702. Yamada Y, Yamamoto H, Ohishi Y, Nishiyama K, Fukuhara M, Saitou T, et al. Sclerosing variant of perivascular epithelioid cell tumor in the female genital organs. Pathol Int. 2011;61:768-72 pubmed 出版商
  703. Yuan S, Chen R, Shen W, Chen H, Zhou X. Mesenchymal stem cells in infantile hemangioma reside in the perivascular region. Pediatr Dev Pathol. 2012;15:5-12 pubmed 出版商
  704. Zurolo E, Iyer A, Maroso M, Carbonell C, Anink J, Ravizza T, et al. Activation of Toll-like receptor, RAGE and HMGB1 signalling in malformations of cortical development. Brain. 2011;134:1015-32 pubmed 出版商
  705. Casula M, Iyer A, Spliet W, Anink J, Steentjes K, Sta M, et al. Toll-like receptor signaling in amyotrophic lateral sclerosis spinal cord tissue. Neuroscience. 2011;179:233-43 pubmed 出版商
  706. Bloch J, Kaeser M, Sadeghi Y, Rouiller E, Redmond D, Brunet J. Doublecortin-positive cells in the adult primate cerebral cortex and possible role in brain plasticity and development. J Comp Neurol. 2011;519:775-89 pubmed 出版商
  707. Yamana D, Shimizu T, Fan Y, Miura T, Nanashima N, Yamada T, et al. Decrease of hepatic stellate cells in rats with enhanced sensitivity to clofibrate-induced hepatocarcinogenesis. Cancer Sci. 2011;102:735-41 pubmed 出版商
  708. Hu Y, Janitz M. High-throughput subcellular protein localization using transfected-cell arrays. Subcellular protein localization using cell arrays. Methods Mol Biol. 2011;706:53-72 pubmed 出版商
  709. Sellheyer K, Krahl D. Spatiotemporal expression pattern of neuroepithelial stem cell marker nestin suggests a role in dermal homeostasis, neovasculogenesis, and tumor stroma development: a study on embryonic and adult human skin. J Am Acad Dermatol. 2010;63:93-113 pubmed 出版商
  710. Gil da Costa R, Santos M, Amorim I, Lopes C, Pereira P, Faustino A. An immunohistochemical study of feline endometrial adenocarcinoma. J Comp Pathol. 2009;140:254-9 pubmed 出版商
  711. Martínez Navarrete G, Angulo A, Martín Nieto J, Cuenca N. Gradual morphogenesis of retinal neurons in the peripheral retinal margin of adult monkeys and humans. J Comp Neurol. 2008;511:557-80 pubmed 出版商
  712. Eisenthal A, Trejo L, Shtabsky A, Bedny F, Brazowski E. A novel assessment of the quality of immunohistostaining overcomes the limitations of current methods. Pathol Res Pract. 2008;204:323-8 pubmed 出版商
  713. Fu X, Fang L, Li H, Li X, Cheng B, Sheng Z. Adipose tissue extract enhances skin wound healing. Wound Repair Regen. 2007;15:540-8 pubmed
  714. Pecchi E, Dallaporta M, Charrier C, Pio J, Jean A, Moyse E, et al. Glial fibrillary acidic protein (GFAP)-positive radial-like cells are present in the vicinity of proliferative progenitors in the nucleus tractus solitarius of adult rat. J Comp Neurol. 2007;501:353-68 pubmed
  715. Hartwell K, Muir B, Reinhardt F, Carpenter A, Sgroi D, Weinberg R. The Spemann organizer gene, Goosecoid, promotes tumor metastasis. Proc Natl Acad Sci U S A. 2006;103:18969-74 pubmed
  716. Hertig A, Verine J, Mougenot B, Jouanneau C, Ouali N, Sebe P, et al. Risk factors for early epithelial to mesenchymal transition in renal grafts. Am J Transplant. 2006;6:2937-46 pubmed
  717. Baravalle C, Salvetti N, Mira G, Pezzone N, Ortega H. Microscopic characterization of follicular structures in letrozole-induced polycystic ovarian syndrome in the rat. Arch Med Res. 2006;37:830-9 pubmed
  718. Ponti G, Aimar P, Bonfanti L. Cellular composition and cytoarchitecture of the rabbit subventricular zone and its extensions in the forebrain. J Comp Neurol. 2006;498:491-507 pubmed
  719. Baravalle C, Salvetti N, Mira G, Lorente J, Ortega H. The role of ACTH in the pathogenesis of polycystic ovarian syndrome in rats: hormonal profiles and ovarian morphology. Physiol Res. 2007;56:67-78 pubmed
  720. Guarino M, Ballabio G, Rubino B, Nebuloni M, Tosoni A. Soft tissue sacrococcygeal chordoma with intracytoplasmic filamentous inclusions. Pathol Res Pract. 2005;201:699-704 pubmed
  721. Lu S, Yu G, Zhu Y, Archer M. Cyclooxygenase-2 overexpression in MCF-10F human breast epithelial cells inhibits proliferation, apoptosis and differentiation, and causes partial transformation. Int J Cancer. 2005;116:847-52 pubmed