这是一篇来自已证抗体库的有关人类 血管假性血友病因子 (von Willebrand factor) 的综述,是根据113篇发表使用所有方法的文章归纳的。这综述旨在帮助来邦网的访客找到最适合血管假性血友病因子 抗体。
血管假性血友病因子 同义词: F8VWF; VWD

艾博抗(上海)贸易有限公司
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 人类; 图 1a
艾博抗(上海)贸易有限公司血管假性血友病因子抗体(Abcam, ab6994)被用于被用于免疫组化-石蜡切片在人类样本上 (图 1a). J Biol Chem (2022) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 人类; 图 2d6
  • 免疫细胞化学; 人类; 图 2g
艾博抗(上海)贸易有限公司血管假性血友病因子抗体(Abcam, ab6994)被用于被用于免疫组化-石蜡切片在人类样本上 (图 2d6) 和 被用于免疫细胞化学在人类样本上 (图 2g). PLoS Pathog (2022) ncbi
家羊 多克隆
  • 免疫组化-冰冻切片; 小鼠; 图 1d
艾博抗(上海)贸易有限公司血管假性血友病因子抗体(Abcam, ab11713)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 1d). Cell Metab (2021) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:100; 图 6d
艾博抗(上海)贸易有限公司血管假性血友病因子抗体(Abcam, ab9378)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:100 (图 6d). Sci Rep (2021) ncbi
小鼠 单克隆(3E2D10 + VWF635)
  • 免疫组化-石蜡切片; 猕猴; 图 3c
艾博抗(上海)贸易有限公司血管假性血友病因子抗体(Abcam, ab201336)被用于被用于免疫组化-石蜡切片在猕猴样本上 (图 3c). Stem Cell Res Ther (2021) ncbi
domestic rabbit 单克隆(EPSISR15)
  • 流式细胞仪; 人类; 1:250; 图 1a
艾博抗(上海)贸易有限公司血管假性血友病因子抗体(Abcam, ab195028)被用于被用于流式细胞仪在人类样本上浓度为1:250 (图 1a). elife (2021) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:500; 图 s4e
艾博抗(上海)贸易有限公司血管假性血友病因子抗体(Abcam, ab6994)被用于被用于免疫组化在小鼠样本上浓度为1:500 (图 s4e). Nat Commun (2020) ncbi
domestic rabbit 多克隆
  • 免疫组化; 大鼠; 1:100; 图 2q
艾博抗(上海)贸易有限公司血管假性血友病因子抗体(Abcam, ab6994)被用于被用于免疫组化在大鼠样本上浓度为1:100 (图 2q). J Am Heart Assoc (2020) ncbi
家羊 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:50; 图 5e
艾博抗(上海)贸易有限公司血管假性血友病因子抗体(Abcam, ab11713)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:50 (图 5e). J Thromb Haemost (2020) ncbi
domestic rabbit 多克隆
  • 免疫组化; 大鼠; 1:2000
艾博抗(上海)贸易有限公司血管假性血友病因子抗体(Abcam, ab6994)被用于被用于免疫组化在大鼠样本上浓度为1:2000. Biol Proced Online (2020) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 大鼠; 1:1000; 图 5
艾博抗(上海)贸易有限公司血管假性血友病因子抗体(Abcam, Ab6994)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 5). Bioact Mater (2020) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 小鼠; 图 5c
艾博抗(上海)贸易有限公司血管假性血友病因子抗体(Abcam, ab6994)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 5c). Neuropharmacology (2020) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 1:250; 图 s1b
艾博抗(上海)贸易有限公司血管假性血友病因子抗体(Abcam, ab6994)被用于被用于免疫细胞化学在人类样本上浓度为1:250 (图 s1b). Sci Rep (2019) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 人类; 1:200; 图 2a
艾博抗(上海)贸易有限公司血管假性血友病因子抗体(Abcam, Ab6994)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:200 (图 2a). EMBO Mol Med (2019) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 小鼠; 图 4e
艾博抗(上海)贸易有限公司血管假性血友病因子抗体(Abcam, ab6994)被用于被用于免疫细胞化学在小鼠样本上 (图 4e). Mol Ther Nucleic Acids (2019) ncbi
domestic rabbit 多克隆
  • 免疫组化; pigs ; 1:300; 图 3
艾博抗(上海)贸易有限公司血管假性血友病因子抗体(Abcam, ab6994)被用于被用于免疫组化在pigs 样本上浓度为1:300 (图 3). BMC Cardiovasc Disord (2019) ncbi
家羊 多克隆
  • 酶联免疫吸附测定; 人类; 图 s1a
艾博抗(上海)贸易有限公司血管假性血友病因子抗体(Abcam, ab11713)被用于被用于酶联免疫吸附测定在人类样本上 (图 s1a). Nat Commun (2019) ncbi
domestic rabbit 多克隆
  • 免疫组化; 人类; 1:100; 图 6e
  • 免疫组化; 小鼠; 1:100; 图 6b
艾博抗(上海)贸易有限公司血管假性血友病因子抗体(Abcam, ab6994)被用于被用于免疫组化在人类样本上浓度为1:100 (图 6e) 和 被用于免疫组化在小鼠样本上浓度为1:100 (图 6b). J Clin Invest (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 5a
艾博抗(上海)贸易有限公司血管假性血友病因子抗体(Abcam, ab6994)被用于被用于免疫印迹在人类样本上 (图 5a). Blood Adv (2018) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:500; 图 3a
艾博抗(上海)贸易有限公司血管假性血友病因子抗体(Abcam, ab6994)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:500 (图 3a). Food Chem Toxicol (2018) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 1:200; 图 2a
艾博抗(上海)贸易有限公司血管假性血友病因子抗体(Abcam, ab6994)被用于被用于免疫细胞化学在人类样本上浓度为1:200 (图 2a). J Transl Med (2017) ncbi
家羊 多克隆
  • 免疫细胞化学; 小鼠; 1:50; 图 4d
  • 免疫组化; 小鼠; 1:50; 图 2d
艾博抗(上海)贸易有限公司血管假性血友病因子抗体(Abcam, Ab11713)被用于被用于免疫细胞化学在小鼠样本上浓度为1:50 (图 4d) 和 被用于免疫组化在小鼠样本上浓度为1:50 (图 2d). Hear Res (2017) ncbi
家羊 多克隆
  • 免疫组化-石蜡切片; 人类; 1:100; 图 s2b
艾博抗(上海)贸易有限公司血管假性血友病因子抗体(Abcam, ab11713)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100 (图 s2b). Arterioscler Thromb Vasc Biol (2017) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; pigs ; 图 2b
艾博抗(上海)贸易有限公司血管假性血友病因子抗体(Abcam, ab6994)被用于被用于免疫细胞化学在pigs 样本上 (图 2b). J Cell Physiol (2017) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 小鼠; 图 8d
  • 免疫组化; 人类; 图 1a
艾博抗(上海)贸易有限公司血管假性血友病因子抗体(Abcam, ab9378)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 8d) 和 被用于免疫组化在人类样本上 (图 1a). J Am Heart Assoc (2016) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 牛; 1:400; 图 1c
艾博抗(上海)贸易有限公司血管假性血友病因子抗体(Abcam, ab6994)被用于被用于免疫细胞化学在牛样本上浓度为1:400 (图 1c). Mol Cell Neurosci (2016) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 大鼠; 1:10; 图 1b
艾博抗(上海)贸易有限公司血管假性血友病因子抗体(Abcam, ab6994)被用于被用于免疫细胞化学在大鼠样本上浓度为1:10 (图 1b). J Cereb Blood Flow Metab (2016) ncbi
小鼠 单克隆(3E2D10)
  • 免疫细胞化学; 人类; 图 1
艾博抗(上海)贸易有限公司血管假性血友病因子抗体(Abcam, ab194405)被用于被用于免疫细胞化学在人类样本上 (图 1). Mol Med Rep (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 大鼠; 1:300; 图 1
艾博抗(上海)贸易有限公司血管假性血友病因子抗体(Abcam, ab6994)被用于被用于免疫组化-石蜡切片在大鼠样本上浓度为1:300 (图 1). Braz J Med Biol Res (2016) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 小鼠; 图 1b
艾博抗(上海)贸易有限公司血管假性血友病因子抗体(Abcam, ab6994)被用于被用于免疫细胞化学在小鼠样本上 (图 1b). PLoS ONE (2016) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 家羊; 图 s1
艾博抗(上海)贸易有限公司血管假性血友病因子抗体(Abcam, ab9378)被用于被用于免疫细胞化学在家羊样本上 (图 s1). Stem Cell Reports (2016) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 小鼠; 图 5
艾博抗(上海)贸易有限公司血管假性血友病因子抗体(Abcam, ab6994)被用于被用于免疫细胞化学在小鼠样本上 (图 5). Adv Healthc Mater (2016) ncbi
小鼠 单克隆(F8/86)
  • 免疫组化-石蜡切片; domestic rabbit; 1:100; 图 7
艾博抗(上海)贸易有限公司血管假性血友病因子抗体(abcam, ab778)被用于被用于免疫组化-石蜡切片在domestic rabbit样本上浓度为1:100 (图 7). Mol Med Rep (2016) ncbi
小鼠 单克隆(3E2D10 + VWF635)
  • 免疫细胞化学; 人类; 1:400; 图 s3
艾博抗(上海)贸易有限公司血管假性血友病因子抗体(Abcam, ab201336)被用于被用于免疫细胞化学在人类样本上浓度为1:400 (图 s3). Nat Med (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:200; 图 3
艾博抗(上海)贸易有限公司血管假性血友病因子抗体(Abcam, ab9378)被用于被用于免疫组化在小鼠样本上浓度为1:200 (图 3). Mol Cell Biol (2016) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 小鼠; 1:100; 图 1
艾博抗(上海)贸易有限公司血管假性血友病因子抗体(Abcam, ab9378)被用于被用于免疫细胞化学在小鼠样本上浓度为1:100 (图 1). Eur J Pharm Sci (2016) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 图 2c
艾博抗(上海)贸易有限公司血管假性血友病因子抗体(Abcam, ab6994)被用于被用于免疫细胞化学在人类样本上 (图 2c). Biomaterials (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 大鼠; 1:200; 图 1
艾博抗(上海)贸易有限公司血管假性血友病因子抗体(Abcam, ab6994)被用于被用于免疫组化-冰冻切片在大鼠样本上浓度为1:200 (图 1). Am J Physiol Heart Circ Physiol (2016) ncbi
domestic rabbit 多克隆
  • 流式细胞仪; 人类; 图 3
艾博抗(上海)贸易有限公司血管假性血友病因子抗体(Abcam, ab6994)被用于被用于流式细胞仪在人类样本上 (图 3). J Virol (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; pigs ; 图 4
艾博抗(上海)贸易有限公司血管假性血友病因子抗体(Abcam, ab6994)被用于被用于免疫组化-石蜡切片在pigs 样本上 (图 4). J Vasc Surg (2016) ncbi
小鼠 单克隆(F8/86)
  • 免疫组化-石蜡切片; 大鼠
艾博抗(上海)贸易有限公司血管假性血友病因子抗体(Abcam, ab778)被用于被用于免疫组化-石蜡切片在大鼠样本上. Free Radic Biol Med (2013) ncbi
圣克鲁斯生物技术
小鼠 单克隆(C-12)
  • 免疫组化; 小鼠; 1:100; 图 2d
圣克鲁斯生物技术血管假性血友病因子抗体(Santa Cruz Biotechnology, sc-365712)被用于被用于免疫组化在小鼠样本上浓度为1:100 (图 2d). Fluids Barriers CNS (2021) ncbi
小鼠 单克隆(C-12)
  • 免疫组化; 小鼠; 1:200; 图 3c
圣克鲁斯生物技术血管假性血友病因子抗体(Santa Cruz, sc?\365712)被用于被用于免疫组化在小鼠样本上浓度为1:200 (图 3c). Physiol Rep (2021) ncbi
小鼠 单克隆(C-12)
  • 免疫组化-冰冻切片; 小鼠; 图 6a
圣克鲁斯生物技术血管假性血友病因子抗体(Santa Cruz, sc-365712)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 6a). Neurochem Int (2019) ncbi
小鼠 单克隆(F8/86)
  • 免疫组化-冰冻切片; 大鼠; 图 s4b
圣克鲁斯生物技术血管假性血友病因子抗体(SantaCruz, sc-53466)被用于被用于免疫组化-冰冻切片在大鼠样本上 (图 s4b). Oncotarget (2017) ncbi
小鼠 单克隆(C-12)
  • 免疫细胞化学; 大鼠; 1:50; 图 1e
圣克鲁斯生物技术血管假性血友病因子抗体(SantaCruz, sc-365712)被用于被用于免疫细胞化学在大鼠样本上浓度为1:50 (图 1e). Mol Med Rep (2016) ncbi
小鼠 单克隆(F8/44/20)
  • 免疫组化; 人类; 1:1000; 图 2
圣克鲁斯生物技术血管假性血友病因子抗体(Santa Cruz, sc-53465)被用于被用于免疫组化在人类样本上浓度为1:1000 (图 2). Oncotarget (2015) ncbi
小鼠 单克隆(F8/44/20)
  • 免疫细胞化学; 人类; 1:1000; 图 2
圣克鲁斯生物技术血管假性血友病因子抗体(Santa Cruz, sc-53465)被用于被用于免疫细胞化学在人类样本上浓度为1:1000 (图 2). Int J Oncol (2015) ncbi
小鼠 单克隆(F8/86)
  • 免疫组化; 大鼠; 图 4d
圣克鲁斯生物技术血管假性血友病因子抗体(SantaCruz, sc-53466)被用于被用于免疫组化在大鼠样本上 (图 4d). Braz J Med Biol Res (2014) ncbi
小鼠 单克隆(C-12)
  • 免疫组化; 小鼠
圣克鲁斯生物技术血管假性血友病因子抗体(Santa Cruz, sc-365712)被用于被用于免疫组化在小鼠样本上. Antioxid Redox Signal (2014) ncbi
赛默飞世尔
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 小鼠; 图 1c
赛默飞世尔血管假性血友病因子抗体(Thermo Fisher, PA5-16634)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 1c). Mol Ther (2022) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 小鼠; 图 1b
赛默飞世尔血管假性血友病因子抗体(Thermo Fisher, PA5-16634)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 1b). EBioMedicine (2021) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 大鼠; 图 6
赛默飞世尔血管假性血友病因子抗体(Thermo Scientific, PA5-16634)被用于被用于免疫细胞化学在大鼠样本上 (图 6). Small (2016) ncbi
小鼠 单克隆(F8/86)
  • 免疫组化-冰冻切片; 大鼠
赛默飞世尔血管假性血友病因子抗体(LabVision, F8/86)被用于被用于免疫组化-冰冻切片在大鼠样本上. Plast Surg (Oakv) (2015) ncbi
小鼠 单克隆(F8/86)
  • 免疫组化; 人类; 图 6
赛默飞世尔血管假性血友病因子抗体(Thermo Fisher Scientific,, F8/86)被用于被用于免疫组化在人类样本上 (图 6). Stem Cells Transl Med (2015) ncbi
Novus Biologicals
小鼠 单克隆(VWF635)
  • 流式细胞仪; 人类; 图 1c
Novus Biologicals血管假性血友病因子抗体(Novusbio, NBP2-34510AF488)被用于被用于流式细胞仪在人类样本上 (图 1c). Int J Mol Sci (2022) ncbi
伯乐(Bio-Rad)公司
小鼠 单克隆(RFF-VIII R/1)
  • 免疫组化; 大鼠; 1:100; 图 3
  • 免疫组化; 人类; 1:100; 图 3
伯乐(Bio-Rad)公司血管假性血友病因子抗体(Serotec, clone RFF-VIII R/1)被用于被用于免疫组化在大鼠样本上浓度为1:100 (图 3) 和 被用于免疫组化在人类样本上浓度为1:100 (图 3). Stroke (2015) ncbi
丹科医疗器械技术服务(上海)有限公司
domestic rabbit 多克隆
  • 酶联免疫吸附测定; 人类; 图 2h
丹科医疗器械技术服务(上海)有限公司血管假性血友病因子抗体(Dako, A0082)被用于被用于酶联免疫吸附测定在人类样本上 (图 2h). PLoS Pathog (2022) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:400; 图 4c
丹科医疗器械技术服务(上海)有限公司血管假性血友病因子抗体(Dako, A0082)被用于被用于免疫组化在小鼠样本上浓度为1:400 (图 4c). Aging Dis (2021) ncbi
小鼠 单克隆(F8/86)
  • 免疫组化-石蜡切片; 人类; 1:500; 图 2b
丹科医疗器械技术服务(上海)有限公司血管假性血友病因子抗体(DAKO, M0616)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:500 (图 2b). Cells (2021) ncbi
domestic rabbit 多克隆
  • 免疫组化; domestic rabbit; 1:200; 图 2c
丹科医疗器械技术服务(上海)有限公司血管假性血友病因子抗体(Dako, A0082)被用于被用于免疫组化在domestic rabbit样本上浓度为1:200 (图 2c). FASEB Bioadv (2021) ncbi
小鼠 单克隆(F8/86)
  • 免疫组化; 人类; 1:400; 图 1d
丹科医疗器械技术服务(上海)有限公司血管假性血友病因子抗体(Dako, M0616)被用于被用于免疫组化在人类样本上浓度为1:400 (图 1d). Front Cardiovasc Med (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 大鼠; 1:1000; 图 1a, 4c
丹科医疗器械技术服务(上海)有限公司血管假性血友病因子抗体(DAKO, A0082)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 1a, 4c). Mol Neurobiol (2021) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:4000; 图 3a
丹科医疗器械技术服务(上海)有限公司血管假性血友病因子抗体(Dako, A0082)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:4000 (图 3a). J Thromb Haemost (2020) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 15 ug/ml; 图 s3
丹科医疗器械技术服务(上海)有限公司血管假性血友病因子抗体(Dako, A0082)被用于被用于免疫细胞化学在人类样本上浓度为15 ug/ml (图 s3). Sci Rep (2019) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 图 2j
丹科医疗器械技术服务(上海)有限公司血管假性血友病因子抗体(DAKO, A0082)被用于被用于免疫组化在小鼠样本上 (图 2j). elife (2019) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 图 s2f
丹科医疗器械技术服务(上海)有限公司血管假性血友病因子抗体(DAKO, A008229)被用于被用于免疫细胞化学在人类样本上 (图 s2f). Nature (2019) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 人类; 1:100; 图 s13a
丹科医疗器械技术服务(上海)有限公司血管假性血友病因子抗体(Dako, A008229)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100 (图 s13a). Science (2018) ncbi
domestic rabbit 多克隆
  • 免疫组化; 人类; 图 1a
丹科医疗器械技术服务(上海)有限公司血管假性血友病因子抗体(Dako, A0082)被用于被用于免疫组化在人类样本上 (图 1a). Sci Transl Med (2017) ncbi
小鼠 单克隆(F8/86)
  • 免疫细胞化学; 人类; 图 5c
丹科医疗器械技术服务(上海)有限公司血管假性血友病因子抗体(Dako, F8/86)被用于被用于免疫细胞化学在人类样本上 (图 5c). J Biol Chem (2017) ncbi
小鼠 单克隆(F8/86)
  • 免疫组化-石蜡切片; African green monkey; 1:400; 图 st15
  • 免疫组化-石蜡切片; 大鼠; 1:200; 图 st15
  • 免疫组化-石蜡切片; 犬; 1:25; 图 st15
丹科医疗器械技术服务(上海)有限公司血管假性血友病因子抗体(Dako, M0616)被用于被用于免疫组化-石蜡切片在African green monkey样本上浓度为1:400 (图 st15), 被用于免疫组化-石蜡切片在大鼠样本上浓度为1:200 (图 st15) 和 被用于免疫组化-石蜡切片在犬样本上浓度为1:25 (图 st15). J Toxicol Pathol (2017) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:500; 图 4c
丹科医疗器械技术服务(上海)有限公司血管假性血友病因子抗体(DAKO, A0082)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:500 (图 4c). Sci Rep (2017) ncbi
domestic rabbit 多克隆
  • 免疫组化; 大鼠; 1:400; 图 3a
丹科医疗器械技术服务(上海)有限公司血管假性血友病因子抗体(DAKO, A0082)被用于被用于免疫组化在大鼠样本上浓度为1:400 (图 3a). Sci Rep (2016) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 图 7b
丹科医疗器械技术服务(上海)有限公司血管假性血友病因子抗体(Dako, A0082)被用于被用于免疫细胞化学在人类样本上 (图 7b). Sci Rep (2016) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 鸡; 1:200; 图 6e
丹科医疗器械技术服务(上海)有限公司血管假性血友病因子抗体(Dako, A0082)被用于被用于免疫细胞化学在鸡样本上浓度为1:200 (图 6e). Mol Hum Reprod (2016) ncbi
小鼠 单克隆(F8/86)
  • 免疫组化; 人类; 图 2f
丹科医疗器械技术服务(上海)有限公司血管假性血友病因子抗体(Dako, F8/86)被用于被用于免疫组化在人类样本上 (图 2f). Rheumatology (Oxford) (2016) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 图 4
丹科医疗器械技术服务(上海)有限公司血管假性血友病因子抗体(Dako, A0082)被用于被用于免疫细胞化学在人类样本上 (图 4). Transl Psychiatry (2016) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 1:500; 表 1
丹科医疗器械技术服务(上海)有限公司血管假性血友病因子抗体(Dako, A008202-5)被用于被用于免疫细胞化学在人类样本上浓度为1:500 (表 1). Methods Mol Biol (2016) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 图 2
丹科医疗器械技术服务(上海)有限公司血管假性血友病因子抗体(Dako, A0082)被用于被用于免疫细胞化学在人类样本上 (图 2). Sci Rep (2016) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 10 ug/ml; 图 2a
丹科医疗器械技术服务(上海)有限公司血管假性血友病因子抗体(DAKO, A 0082)被用于被用于免疫细胞化学在人类样本上浓度为10 ug/ml (图 2a). Arterioscler Thromb Vasc Biol (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化; 人类; 图 1b
丹科医疗器械技术服务(上海)有限公司血管假性血友病因子抗体(DAKO, A0082)被用于被用于免疫组化在人类样本上 (图 1b). Sci Rep (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 人类; 1:200; 图 s14
丹科医疗器械技术服务(上海)有限公司血管假性血友病因子抗体(Dako, A0082)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:200 (图 s14). Nat Commun (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化; 人类; 图 6b
丹科医疗器械技术服务(上海)有限公司血管假性血友病因子抗体(Dako, A0082)被用于被用于免疫组化在人类样本上 (图 6b). PLoS ONE (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 人类; 1:800
丹科医疗器械技术服务(上海)有限公司血管假性血友病因子抗体(Dako, A0082)被用于被用于免疫组化-冰冻切片在人类样本上浓度为1:800. PLoS ONE (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:100; 图 7a
丹科医疗器械技术服务(上海)有限公司血管假性血友病因子抗体(Dako, A0082)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:100 (图 7a). J Clin Invest (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 小鼠; 图 6
丹科医疗器械技术服务(上海)有限公司血管假性血友病因子抗体(Dako, A0082)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 6). Dev Biol (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 图 3a
丹科医疗器械技术服务(上海)有限公司血管假性血友病因子抗体(Dako, A0082)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 3a). Reprod Biol (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 人类; 1:1000; 图 3
丹科医疗器械技术服务(上海)有限公司血管假性血友病因子抗体(DAKO/Agilent Technologies, A0082)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:1000 (图 3). Oncotarget (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:500; 图 6c
  • 免疫印迹; 小鼠; 1:2000; 图 6f
丹科医疗器械技术服务(上海)有限公司血管假性血友病因子抗体(Dako, A0082)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:500 (图 6c) 和 被用于免疫印迹在小鼠样本上浓度为1:2000 (图 6f). Oncotarget (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:400; 图 3c
丹科医疗器械技术服务(上海)有限公司血管假性血友病因子抗体(Dako, A0082)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:400 (图 3c). Nat Commun (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 人类; 图 6a
丹科医疗器械技术服务(上海)有限公司血管假性血友病因子抗体(Dako, A0082)被用于被用于免疫组化-石蜡切片在人类样本上 (图 6a). Stem Cells Transl Med (2016) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 1:200; 图 s5
丹科医疗器械技术服务(上海)有限公司血管假性血友病因子抗体(Dako, A0082)被用于被用于免疫细胞化学在人类样本上浓度为1:200 (图 s5). Cell Res (2016) ncbi
小鼠 单克隆(F8/86)
  • 免疫组化; 小鼠; 1:50; 图 5
丹科医疗器械技术服务(上海)有限公司血管假性血友病因子抗体(DAKO, M0616)被用于被用于免疫组化在小鼠样本上浓度为1:50 (图 5). Sci Rep (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 人类; 1:800
丹科医疗器械技术服务(上海)有限公司血管假性血友病因子抗体(Dako, A0082)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:800. PLoS ONE (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 图 4
丹科医疗器械技术服务(上海)有限公司血管假性血友病因子抗体(DakoCytomation, A0082)被用于被用于免疫组化在小鼠样本上 (图 4). Cancer Res (2016) ncbi
小鼠 单克隆(F8/86)
  • 免疫组化-石蜡切片; 人类; 1:50; 图 3b
丹科医疗器械技术服务(上海)有限公司血管假性血友病因子抗体(Dako, F8/86)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:50 (图 3b). Auris Nasus Larynx (2016) ncbi
小鼠 单克隆(F8/86)
  • 免疫组化-冰冻切片; 人类; 1:50; 图 4a
丹科医疗器械技术服务(上海)有限公司血管假性血友病因子抗体(Dako, F8/86)被用于被用于免疫组化-冰冻切片在人类样本上浓度为1:50 (图 4a). Open Forum Infect Dis (2015) ncbi
小鼠 单克隆(F8/86)
  • 免疫组化; 人类; 图 3
丹科医疗器械技术服务(上海)有限公司血管假性血友病因子抗体(DAKO, M 0616)被用于被用于免疫组化在人类样本上 (图 3). J Periodontal Res (2016) ncbi
小鼠 单克隆(F8/86)
  • 免疫组化-石蜡切片; 小鼠; 1:100
丹科医疗器械技术服务(上海)有限公司血管假性血友病因子抗体(DaKo, M0616)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:100. Cancer Res (2014) ncbi
小鼠 单克隆(F8/86)
  • 免疫组化-石蜡切片; 人类; 1:500
丹科医疗器械技术服务(上海)有限公司血管假性血友病因子抗体(Dako, M0616)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:500. Exp Mol Med (2014) ncbi
小鼠 单克隆(F8/86)
  • 免疫组化; 人类
丹科医疗器械技术服务(上海)有限公司血管假性血友病因子抗体(Dako, F8/86)被用于被用于免疫组化在人类样本上. Arthritis Rheumatol (2014) ncbi
小鼠 单克隆(F8/86)
  • 免疫组化; 人类; 1:300
丹科医疗器械技术服务(上海)有限公司血管假性血友病因子抗体(Dako, F8/86)被用于被用于免疫组化在人类样本上浓度为1:300. Fetal Pediatr Pathol (2014) ncbi
domestic rabbit 多克隆
  • 免疫组化; 人类; 图 6
  • 免疫组化; 家羊; 图 6
丹科医疗器械技术服务(上海)有限公司血管假性血友病因子抗体(dSHB, A0082)被用于被用于免疫组化在人类样本上 (图 6) 和 被用于免疫组化在家羊样本上 (图 6). J Tissue Eng Regen Med (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化; pigs ; 1:400; 图 5
丹科医疗器械技术服务(上海)有限公司血管假性血友病因子抗体(Dako, A0082)被用于被用于免疫组化在pigs 样本上浓度为1:400 (图 5). J Tissue Eng Regen Med (2016) ncbi
小鼠 单克隆(F8/86)
  • 免疫组化-石蜡切片; 人类; 2.4 ug/ml
丹科医疗器械技术服务(上海)有限公司血管假性血友病因子抗体(Dako, F8/86)被用于被用于免疫组化-石蜡切片在人类样本上浓度为2.4 ug/ml. Am J Pathol (2012) ncbi
小鼠 单克隆(F8/86)
  • 免疫细胞化学; 人类; 1:50
丹科医疗器械技术服务(上海)有限公司血管假性血友病因子抗体(Dako, F8/86)被用于被用于免疫细胞化学在人类样本上浓度为1:50. Microvasc Res (2012) ncbi
西格玛奥德里奇
domestic rabbit 多克隆
  • 免疫组化; African green monkey; 1:100; 图 1a
西格玛奥德里奇血管假性血友病因子抗体(Sigma, F3520)被用于被用于免疫组化在African green monkey样本上浓度为1:100 (图 1a). Pharmaceutics (2021) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 大鼠; 1:300; 图 6b
西格玛奥德里奇血管假性血友病因子抗体(Sigma, F3520)被用于被用于免疫组化-石蜡切片在大鼠样本上浓度为1:300 (图 6b). Theranostics (2021) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; pigs ; 1:800; 图 6d
西格玛奥德里奇血管假性血友病因子抗体(Sigma, F3520)被用于被用于免疫组化-冰冻切片在pigs 样本上浓度为1:800 (图 6d). Tissue Eng Part A (2017) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 人类; 1:1000; 图 1b
西格玛奥德里奇血管假性血友病因子抗体(Sigma, F3520)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:1000 (图 1b). Histochem Cell Biol (2017) ncbi
domestic rabbit 多克隆
西格玛奥德里奇血管假性血友病因子抗体(Sigma-Aldrich, F3520)被用于. Int J Mol Med (2015) ncbi
碧迪BD
小鼠 单克隆(2F2-A9)
  • 免疫细胞化学; 人类; 图 2h
碧迪BD血管假性血友病因子抗体(Beckton Dickenson (BD), 555849)被用于被用于免疫细胞化学在人类样本上 (图 2h). Cell J (2021) ncbi
小鼠 单克隆(2F2-A9)
  • 免疫细胞化学; 小鼠; 1:200
碧迪BD血管假性血友病因子抗体(BD Biosciences, 555849)被用于被用于免疫细胞化学在小鼠样本上浓度为1:200. Int J Mol Med (2015) ncbi
徕卡显微系统(上海)贸易有限公司
  • 免疫组化-石蜡切片; 人类; 1:100; 表 3
徕卡显微系统(上海)贸易有限公司血管假性血友病因子抗体(Leica Biosystems, NCL-L-Vwf)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100 (表 3). Oncotarget (2016) ncbi
单克隆(36B11)
  • 免疫组化-石蜡切片; 人类; 1:100; 表 2
徕卡显微系统(上海)贸易有限公司血管假性血友病因子抗体(NovoCastra, 36B11)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100 (表 2). Med Mol Morphol (2016) ncbi
文章列表
  1. Vignone D, Gonzalez Paz O, Fini I, Cellucci A, Auciello G, Battista M, et al. Modelling the Human Blood-Brain Barrier in Huntington Disease. Int J Mol Sci. 2022;23: pubmed 出版商
  2. Feng S, Peden E, Guo Q, Lee T, Li Q, Yuan Y, et al. Downregulation of the endothelial histone demethylase JMJD3 is associated with neointimal hyperplasia of arteriovenous fistulas in kidney failure. J Biol Chem. 2022;298:101816 pubmed 出版商
  3. Hsieh L, Dos Santos S, Hall B, Ogbechi J, Loglo A, Salguero F, et al. Aberrant stromal tissue factor localisation and mycolactone-driven vascular dysfunction, exacerbated by IL-1β, are linked to fibrin formation in Buruli ulcer lesions. PLoS Pathog. 2022;18:e1010280 pubmed 出版商
  4. Yang M, Park M, Lee J, Oh B, Kang K, Kim Y, et al. Non-invasive administration of AAV to target lung parenchymal cells and develop SARS-CoV-2-susceptible mice. Mol Ther. 2022;: pubmed 出版商
  5. Wang T, Zhou P, Xie X, Tomita Y, Cho S, Tsirukis D, et al. Myeloid lineage contributes to pathological choroidal neovascularization formation via SOCS3. EBioMedicine. 2021;73:103632 pubmed 出版商
  6. Watanabe D, Nakagawa S, Morofuji Y, Tóth A, Vastag M, Aruga J, et al. Characterization of a Primate Blood-Brain Barrier Co-Culture Model Prepared from Primary Brain Endothelial Cells, Pericytes and Astrocytes. Pharmaceutics. 2021;13: pubmed 出版商
  7. He W, Lu Q, Sherchan P, Huang L, Hu X, Zhang J, et al. Activation of Frizzled-7 attenuates blood-brain barrier disruption through Dvl/β-catenin/WISP1 signaling pathway after intracerebral hemorrhage in mice. Fluids Barriers CNS. 2021;18:44 pubmed 出版商
  8. Fan Z, Turiel G, Ardicoglu R, Ghobrial M, Masschelein E, Kocijan T, et al. Exercise-induced angiogenesis is dependent on metabolically primed ATF3/4+ endothelial cells. Cell Metab. 2021;: pubmed 出版商
  9. Gholami S, Mazidi Z, Pahlavan S, Moslem F, Hosseini M, Taei A, et al. A Novel Insight into Endothelial and Cardiac Cells Phenotype in Systemic Sclerosis Using Patient-Derived Induced Pluripotent Stem Cell. Cell J. 2021;23:273-287 pubmed 出版商
  10. Honda S, Ikeda K, Urata R, Yamazaki E, Emoto N, Matoba S. Cellular senescence promotes endothelial activation through epigenetic alteration, and consequently accelerates atherosclerosis. Sci Rep. 2021;11:14608 pubmed 出版商
  11. Zhang Y, Ma Y, Chen J, Wang M, Cao Y, Li L, et al. Mesenchymal stem cell transplantation for vaginal repair in an ovariectomized rhesus macaque model. Stem Cell Res Ther. 2021;12:406 pubmed 出版商
  12. Dieterle M, Solà Riera C, Ye C, Goodfellow S, Mittler E, Kasikci E, et al. Genetic depletion studies inform receptor usage by virulent hantaviruses in human endothelial cells. elife. 2021;10: pubmed 出版商
  13. An L, Shen Y, Chopp M, Zacharek A, Venkat P, Chen Z, et al. Deficiency of Endothelial Nitric Oxide Synthase (eNOS) Exacerbates Brain Damage and Cognitive Deficit in A Mouse Model of Vascular Dementia. Aging Dis. 2021;12:732-746 pubmed 出版商
  14. Seime T, Akbulut A, Liljeqvist M, Siika A, Jin H, Winski G, et al. Proteoglycan 4 Modulates Osteogenic Smooth Muscle Cell Differentiation during Vascular Remodeling and Intimal Calcification. Cells. 2021;10: pubmed 出版商
  15. Visniauskas B, Perry J, Gomes G, Nogueira Pedro A, Paredes Gamero E, Tufik S, et al. Intermittent hypoxia changes the interaction of the kinin-VEGF system and impairs myocardial angiogenesis in the hypertrophic heart. Physiol Rep. 2021;9:e14863 pubmed 出版商
  16. Anandan V, Thankayyan Retnabai S, Jaleel A, Thulaseedharan T, Mullasari A, Pillai M, et al. Cyclophilin A induces macrophage apoptosis and enhances atherosclerotic lesions in high-fat diet-fed hyperglycemic rabbits. FASEB Bioadv. 2021;3:305-322 pubmed 出版商
  17. Gallina A, Rykaczewska U, Wirka R, Caravaca A, Shavva V, Youness M, et al. AMPA-Type Glutamate Receptors Associated With Vascular Smooth Muscle Cell Subpopulations in Atherosclerosis and Vascular Injury. Front Cardiovasc Med. 2021;8:655869 pubmed 出版商
  18. Li Y, Geng Y, Zhou B, Wu X, Zhang O, Guan X, et al. Long Non-coding RNA GAS5 Worsens Coronary Atherosclerosis Through MicroRNA-194-3p/TXNIP Axis. Mol Neurobiol. 2021;58:3198-3207 pubmed 出版商
  19. Liao Z, Chen Y, Duan C, Zhu K, Huang R, Zhao H, et al. Cardiac telocytes inhibit cardiac microvascular endothelial cell apoptosis through exosomal miRNA-21-5p-targeted cdip1 silencing to improve angiogenesis following myocardial infarction. Theranostics. 2021;11:268-291 pubmed 出版商
  20. Tai Nagara I, Hasumi Y, Kusumoto D, Hasumi H, Okabe K, Ando T, et al. Blood and lymphatic systems are segregated by the FLCN tumor suppressor. Nat Commun. 2020;11:6314 pubmed 出版商
  21. Meng L, Teng X, Liu Y, Yang C, Wang S, Yuan W, et al. Vital Roles of Gremlin-1 in Pulmonary Arterial Hypertension Induced by Systemic-to-Pulmonary Shunts. J Am Heart Assoc. 2020;9:e016586 pubmed 出版商
  22. Tilburg J, Coenen D, Zirka G, Dólleman S, van Oeveren Rietdijk A, Karel M, et al. SLC44A2 deficient mice have a reduced response in stenosis but not in hypercoagulability driven venous thrombosis. J Thromb Haemost. 2020;18:1714-1727 pubmed 出版商
  23. Aaltonen N, Singha P, Jakupović H, Wirth T, Samaranayake H, Pasonen Seppänen S, et al. High-Resolution Confocal Fluorescence Imaging of Serine Hydrolase Activity in Cryosections - Application to Glioma Brain Unveils Activity Hotspots Originating from Tumor-Associated Neutrophils. Biol Proced Online. 2020;22:6 pubmed 出版商
  24. Ma X, Agas A, Siddiqui Z, Kim K, Iglesias Montoro P, Kalluru J, et al. Angiogenic peptide hydrogels for treatment of traumatic brain injury. Bioact Mater. 2020;5:124-132 pubmed 出版商
  25. de Vries J, Barendrecht A, Clark C, Urbanus R, Boross P, de Maat S, et al. Heparin Forms Polymers with Cell-free DNA Which Elongate Under Shear in Flowing Blood. Sci Rep. 2019;9:18316 pubmed 出版商
  26. Wang X, Chang Y, He Y, Lyu C, Li H, Zhu J, et al. Glimepiride and glibenclamide have comparable efficacy in treating acute ischemic stroke in mice. Neuropharmacology. 2020;162:107845 pubmed 出版商
  27. Massa L pez D, Thelen M, Stahl F, Thiel C, Linhorst A, Sylvester M, et al. The lysosomal transporter MFSD1 is essential for liver homeostasis and critically depends on its accessory subunit GLMP. elife. 2019;8: pubmed 出版商
  28. Jiao W, Ji J, Xu W, Bu W, Zheng Y, Ma A, et al. Distinct downstream signaling and the roles of VEGF and PlGF in high glucose-mediated injuries of human retinal endothelial cells in culture. Sci Rep. 2019;9:15339 pubmed 出版商
  29. Ruffenach G, Umar S, Vaillancourt M, Hong J, Cao N, Sarji S, et al. Histological hallmarks and role of Slug/PIP axis in pulmonary hypertension secondary to pulmonary fibrosis. EMBO Mol Med. 2019;11:e10061 pubmed 出版商
  30. Hu Z, Zhou M, Wu Y, Li Z, Liu X, Wu L, et al. ssODN-Mediated In-Frame Deletion with CRISPR/Cas9 Restores FVIII Function in Hemophilia A-Patient-Derived iPSCs and ECs. Mol Ther Nucleic Acids. 2019;17:198-209 pubmed 出版商
  31. Su E, Zhao L, Gao C, Zhao W, Wang X, Qi D, et al. Acute changes in morphology and renal vascular relaxation function after renal denervation using temperature-controlled radiofrequency catheter. BMC Cardiovasc Disord. 2019;19:67 pubmed 出版商
  32. Perdomo J, Leung H, Ahmadi Z, Yan F, Chong J, Passam F, et al. Neutrophil activation and NETosis are the major drivers of thrombosis in heparin-induced thrombocytopenia. Nat Commun. 2019;10:1322 pubmed 出版商
  33. Wimmer R, Leopoldi A, Aichinger M, Wick N, Hantusch B, Novatchkova M, et al. Human blood vessel organoids as a model of diabetic vasculopathy. Nature. 2019;565:505-510 pubmed 出版商
  34. Li B, He J, Lv H, Liu Y, Lv X, Zhang C, et al. c-Abl regulates YAPY357 phosphorylation to activate endothelial atherogenic responses to disturbed flow. J Clin Invest. 2019;129:1167-1179 pubmed 出版商
  35. Al Mamun A, Yu H, Mirza M, Romana S, McCullough L, Liu F. Myeloid cell IRF4 signaling protects neonatal brains from hypoxic ischemic encephalopathy. Neurochem Int. 2019;127:148-157 pubmed 出版商
  36. Jalagadugula G, Goldfinger L, Mao G, Lambert M, Rao A. Defective RAB1B-related megakaryocytic ER-to-Golgi transport in RUNX1 haplodeficiency: impact on von Willebrand factor. Blood Adv. 2018;2:797-806 pubmed 出版商
  37. Pereira E, Kedrin D, Seano G, Gautier O, Meijer E, Jones D, et al. Lymph node metastases can invade local blood vessels, exit the node, and colonize distant organs in mice. Science. 2018;359:1403-1407 pubmed 出版商
  38. Maturu P, Wei Liang Y, Androutsopoulos V, Jiang W, Wang L, Tsatsakis A, et al. Quercetin attenuates the hyperoxic lung injury in neonatal mice: Implications for Bronchopulmonary dysplasia (BPD). Food Chem Toxicol. 2018;114:23-33 pubmed 出版商
  39. Qin D, Yan Y, Hu B, Zhang W, Li H, Li X, et al. Wisp2 disruption represses Cxcr4 expression and inhibits BMSCs homing to injured liver. Oncotarget. 2017;8:98823-98836 pubmed 出版商
  40. Hwangbo C, Wu J, Papangeli I, Adachi T, Sharma B, Park S, et al. Endothelial APLNR regulates tissue fatty acid uptake and is essential for apelin's glucose-lowering effects. Sci Transl Med. 2017;9: pubmed 出版商
  41. Biesemann A, Gorontzi A, Barr F, Gerke V. Rab35 protein regulates evoked exocytosis of endothelial Weibel-Palade bodies. J Biol Chem. 2017;292:11631-11640 pubmed 出版商
  42. Zakharova I, Zhiven M, Saaya S, Shevchenko A, Smirnova A, Strunov A, et al. Endothelial and smooth muscle cells derived from human cardiac explants demonstrate angiogenic potential and suitable for design of cell-containing vascular grafts. J Transl Med. 2017;15:54 pubmed 出版商
  43. Furukawa S, Nagaike M, Ozaki K. Databases for technical aspects of immunohistochemistry. J Toxicol Pathol. 2017;30:79-107 pubmed 出版商
  44. Zhang J, Chen S, Cai J, Hou Z, Wang X, Kachelmeier A, et al. Culture media-based selection of endothelial cells, pericytes, and perivascular-resident macrophage-like melanocytes from the young mouse vestibular system. Hear Res. 2017;345:10-22 pubmed 出版商
  45. de Jong R, Paulin N, Lemnitzer P, Viola J, Winter C, Ferraro B, et al. Protective Aptitude of Annexin A1 in Arterial Neointima Formation in Atherosclerosis-Prone Mice-Brief Report. Arterioscler Thromb Vasc Biol. 2017;37:312-315 pubmed 出版商
  46. Beigi F, Patel M, Morales Garza M, Winebrenner C, Gobin A, Chau E, et al. Optimized method for isolating highly purified and functional porcine aortic endothelial and smooth muscle cells. J Cell Physiol. 2017;232:3139-3145 pubmed 出版商
  47. Biasin V, Wygrecka M, Marsh L, Becker Pauly C, Brcic L, Ghanim B, et al. Meprin β contributes to collagen deposition in lung fibrosis. Sci Rep. 2017;7:39969 pubmed 出版商
  48. Du M, Wang X, Tan X, Li X, Huang D, Huang K, et al. Nkx2-5 Is Expressed in Atherosclerotic Plaques and Attenuates Development of Atherosclerosis in Apolipoprotein E-Deficient Mice. J Am Heart Assoc. 2016;5: pubmed
  49. Kim J, Ko I, Atala A, Yoo J. Progressive Muscle Cell Delivery as a Solution for Volumetric Muscle Defect Repair. Sci Rep. 2016;6:38754 pubmed 出版商
  50. Pieterse E, Jeremic I, Czegley C, Weidner D, Biermann M, Veissi S, et al. Blood-borne phagocytes internalize urate microaggregates and prevent intravascular NETosis by urate crystals. Sci Rep. 2016;6:38229 pubmed 出版商
  51. Dahan N, Sarig U, Bronshtein T, Baruch L, Karram T, Hoffman A, et al. Dynamic Autologous Reendothelialization of Small-Caliber Arterial Extracellular Matrix: A Preclinical Large Animal Study. Tissue Eng Part A. 2017;23:69-79 pubmed 出版商
  52. Moser G, Weiss G, Sundl M, Gauster M, Siwetz M, Lang Olip I, et al. Extravillous trophoblasts invade more than uterine arteries: evidence for the invasion of uterine veins. Histochem Cell Biol. 2017;147:353-366 pubmed 出版商
  53. Gujam F, McMillan D, Edwards J. The relationship between total and phosphorylated STAT1 and STAT3 tumour cell expression, components of tumour microenvironment and survival in patients with invasive ductal breast cancer. Oncotarget. 2016;7:77607-77621 pubmed 出版商
  54. Xu J, Wu D, Yang Y, Ji K, Gao P. Endothelial?like cells differentiated from mesenchymal stem cells attenuate neointimal hyperplasia after vascular injury. Mol Med Rep. 2016;14:4830-4836 pubmed 出版商
  55. Scotti L, Di Pietro M, Pascuali N, Irusta G, I de Zúñiga -, Gomez Peña M, et al. Sphingosine-1-phosphate restores endothelial barrier integrity in ovarian hyperstimulation syndrome. Mol Hum Reprod. 2016;22:852-866 pubmed
  56. Tang M, Reedquist K, Garcia S, Fernandez B, Codullo V, Vieira Sousa E, et al. The prolactin receptor is expressed in rheumatoid arthritis and psoriatic arthritis synovial tissue and contributes to macrophage activation. Rheumatology (Oxford). 2016;55:2248-2259 pubmed
  57. Lopez Vilchez I, Diaz Ricart M, Navarro V, Torramade S, Zamorano León J, Lopez Farre A, et al. Endothelial damage in major depression patients is modulated by SSRI treatment, as demonstrated by circulating biomarkers and an in vitro cell model. Transl Psychiatry. 2016;6:e886 pubmed 出版商
  58. Bao X, Lian X, Palecek S. Directed Endothelial Progenitor Differentiation from Human Pluripotent Stem Cells Via Wnt Activation Under Defined Conditions. Methods Mol Biol. 2016;1481:183-96 pubmed 出版商
  59. Ferraro F, Mafalda Lopes da S, GRIMES W, Lee H, Ketteler R, Kriston Vizi J, et al. Weibel-Palade body size modulates the adhesive activity of its von Willebrand Factor cargo in cultured endothelial cells. Sci Rep. 2016;6:32473 pubmed 出版商
  60. Hersom M, Helms H, Pretzer N, Goldeman C, Jensen A, Severin G, et al. Transferrin receptor expression and role in transendothelial transport of transferrin in cultured brain endothelial monolayers. Mol Cell Neurosci. 2016;76:59-67 pubmed 出版商
  61. Aldabbous L, Abdul Salam V, McKinnon T, Duluc L, Pepke Zaba J, Southwood M, et al. Neutrophil Extracellular Traps Promote Angiogenesis: Evidence From Vascular Pathology in Pulmonary Hypertension. Arterioscler Thromb Vasc Biol. 2016;36:2078-87 pubmed 出版商
  62. Tome M, Herndon J, Schaefer C, Jacobs L, Zhang Y, Jarvis C, et al. P-glycoprotein traffics from the nucleus to the plasma membrane in rat brain endothelium during inflammatory pain. J Cereb Blood Flow Metab. 2016;36:1913-1928 pubmed
  63. Yue X, Wu M, Jiang H, Hao J, Zhao Q, Zhu Q, et al. Endothelial lipase is upregulated by interleukin-6 partly via the p38 MAPK and p65 NF-?B signaling pathways. Mol Med Rep. 2016;14:1979-85 pubmed 出版商
  64. Li X, Chen Y, Wang L, Shang G, Zhang C, Zhao Z, et al. Quercetin alleviates pulmonary angiogenesis in a rat model of hepatopulmonary syndrome. Braz J Med Biol Res. 2016;49: pubmed 出版商
  65. Seo H, Jeong H, Joo H, Choi S, Park C, Kim J, et al. Intrinsic FGF2 and FGF5 promotes angiogenesis of human aortic endothelial cells in 3D microfluidic angiogenesis system. Sci Rep. 2016;6:28832 pubmed 出版商
  66. Evrard S, Lecce L, Michelis K, Nomura Kitabayashi A, Pandey G, Purushothaman K, et al. Endothelial to mesenchymal transition is common in atherosclerotic lesions and is associated with plaque instability. Nat Commun. 2016;7:11853 pubmed 出版商
  67. Velandia Romero M, Calderón Peláez M, Castellanos J. In Vitro Infection with Dengue Virus Induces Changes in the Structure and Function of the Mouse Brain Endothelium. PLoS ONE. 2016;11:e0157786 pubmed 出版商
  68. Mokhtari S, Colletti E, Atala A, Zanjani E, Porada C, Almeida Porada G. Boosting Hematopoietic Engraftment after in Utero Transplantation through Vascular Niche Manipulation. Stem Cell Reports. 2016;6:957-969 pubmed 出版商
  69. Du C, Narayanan K, Leong M, Ibrahim M, Chua Y, Khoo V, et al. Functional Kidney Bioengineering with Pluripotent Stem-Cell-Derived Renal Progenitor Cells and Decellularized Kidney Scaffolds. Adv Healthc Mater. 2016;5:2080-91 pubmed 出版商
  70. Halin Bergström S, Nilsson M, Adamo H, Thysell E, Jernberg E, Stattin P, et al. Extratumoral Heme Oxygenase-1 (HO-1) Expressing Macrophages Likely Promote Primary and Metastatic Prostate Tumor Growth. PLoS ONE. 2016;11:e0157280 pubmed 出版商
  71. Schuster C, Akslen L, Straume O. Expression of Heat Shock Protein 27 in Melanoma Metastases Is Associated with Overall Response to Bevacizumab Monotherapy: Analyses of Predictive Markers in a Clinical Phase II Study. PLoS ONE. 2016;11:e0155242 pubmed 出版商
  72. Wang Y, Li Y, Song L, Li Y, Jiang S, Zhang S. The transplantation of Akt-overexpressing amniotic fluid-derived mesenchymal stem cells protects the heart against ischemia-reperfusion injury in rabbits. Mol Med Rep. 2016;14:234-42 pubmed 出版商
  73. Burridge P, Li Y, Matsa E, Wu H, Ong S, Sharma A, et al. Human induced pluripotent stem cell-derived cardiomyocytes recapitulate the predilection of breast cancer patients to doxorubicin-induced cardiotoxicity. Nat Med. 2016;22:547-56 pubmed 出版商
  74. Roth Flach R, Guo C, Danai L, Yawe J, Gujja S, Edwards Y, et al. Endothelial Mitogen-Activated Protein Kinase Kinase Kinase Kinase 4 Is Critical for Lymphatic Vascular Development and Function. Mol Cell Biol. 2016;36:1740-9 pubmed 出版商
  75. Huang M, Liu T, Ma P, Mitteer R, Zhang Z, Kim H, et al. c-Met-mediated endothelial plasticity drives aberrant vascularization and chemoresistance in glioblastoma. J Clin Invest. 2016;126:1801-14 pubmed 出版商
  76. Chan H, Zhang Y, Leong K. Efficient One-Step Production of Microencapsulated Hepatocyte Spheroids with Enhanced Functions. Small. 2016;12:2720-30 pubmed 出版商
  77. Munger S, Geng X, Srinivasan R, Witte M, Paul D, Simon A. Segregated Foxc2, NFATc1 and Connexin expression at normal developing venous valves, and Connexin-specific differences in the valve phenotypes of Cx37, Cx43, and Cx47 knockout mice. Dev Biol. 2016;412:173-90 pubmed 出版商
  78. Wallingford M, Gammill H, Giachelli C. Slc20a2 deficiency results in fetal growth restriction and placental calcification associated with thickened basement membranes and novel CD13 and lamininα1 expressing cells. Reprod Biol. 2016;16:13-26 pubmed 出版商
  79. Li M, Corbelli A, Watanabe S, Armelloni S, Ikehata M, Parazzi V, et al. Three-dimensional podocyte-endothelial cell co-cultures: Assembly, validation, and application to drug testing and intercellular signaling studies. Eur J Pharm Sci. 2016;86:1-12 pubmed 出版商
  80. Eriksson J, Le Joncour V, Nummela P, Jahkola T, Virolainen S, Laakkonen P, et al. Gene expression analyses of primary melanomas reveal CTHRC1 as an important player in melanoma progression. Oncotarget. 2016;7:15065-92 pubmed 出版商
  81. Alonso F, Domingos Pereira S, Le Gal L, Derré L, Meda P, Jichlinski P, et al. Targeting endothelial connexin40 inhibits tumor growth by reducing angiogenesis and improving vessel perfusion. Oncotarget. 2016;7:14015-28 pubmed 出版商
  82. Ji H, Atchison L, Chen Z, Chakraborty S, Jung Y, Truskey G, et al. Transdifferentiation of human endothelial progenitors into smooth muscle cells. Biomaterials. 2016;85:180-194 pubmed 出版商
  83. Merdzo I, Rutkai I, Tokés T, Sure V, Katakam P, Busija D. The mitochondrial function of the cerebral vasculature in insulin-resistant Zucker obese rats. Am J Physiol Heart Circ Physiol. 2016;310:H830-8 pubmed 出版商
  84. Bulla R, Tripodo C, Rami D, Ling G, Agostinis C, Guarnotta C, et al. C1q acts in the tumour microenvironment as a cancer-promoting factor independently of complement activation. Nat Commun. 2016;7:10346 pubmed 出版商
  85. Solomon I, O Reilly M, Ionescu L, Alphonse R, Rajabali S, Zhong S, et al. Functional Differences Between Placental Micro- and Macrovascular Endothelial Colony-Forming Cells. Stem Cells Transl Med. 2016;5:291-300 pubmed 出版商
  86. Pan H, Guan D, Liu X, Li J, Wang L, Wu J, et al. SIRT6 safeguards human mesenchymal stem cells from oxidative stress by coactivating NRF2. Cell Res. 2016;26:190-205 pubmed 出版商
  87. Samura M, Morikage N, Suehiro K, Tanaka Y, Nakamura T, Nishimoto A, et al. Combinatorial Treatment with Apelin-13 Enhances the Therapeutic Efficacy of a Preconditioned Cell-Based Therapy for Peripheral Ischemia. Sci Rep. 2016;6:19379 pubmed 出版商
  88. Nalwoga H, Ahmed L, Arnes J, Wabinga H, Akslen L. Strong Expression of Hypoxia-Inducible Factor-1α (HIF-1α) Is Associated with Axl Expression and Features of Aggressive Tumors in African Breast Cancer. PLoS ONE. 2016;11:e0146823 pubmed 出版商
  89. Amato K, Wang S, Tan L, Hastings A, Song W, Lovly C, et al. EPHA2 Blockade Overcomes Acquired Resistance to EGFR Kinase Inhibitors in Lung Cancer. Cancer Res. 2016;76:305-18 pubmed 出版商
  90. Shirasaki H, Kanaizumi E, Himi T. Immunohistochemical localization of alpha and beta adrenergic receptors in the human nasal turbinate. Auris Nasus Larynx. 2016;43:309-14 pubmed 出版商
  91. Yaiw K, Mohammad A, Costa H, Taher C, Badrnya S, Assinger A, et al. Human Cytomegalovirus Up-Regulates Endothelin Receptor Type B: Implication for Vasculopathies?. Open Forum Infect Dis. 2015;2:ofv155 pubmed 出版商
  92. Sugiyama M, Gamage A, Zyla R, Armstrong S, Advani S, Advani A, et al. Influenza Virus Infection Induces Platelet-Endothelial Adhesion Which Contributes to Lung Injury. J Virol. 2016;90:1812-23 pubmed 出版商
  93. Tajima S, Takashi Y, Ito N, Fukumoto S, Fukuyama M. ERG and FLI1 are useful immunohistochemical markers in phosphaturic mesenchymal tumors. Med Mol Morphol. 2016;49:203-209 pubmed
  94. Galdyn I, Swanson E, Gordon C, Kwiecien G, Bena J, Siemionow M, et al. Microcirculatory effect of topical vapocoolants. Plast Surg (Oakv). 2015;23:71-6 pubmed
  95. Krossa S, Schmitt A, Hattermann K, Fritsch J, Scheidig A, Mehdorn H, et al. Down regulation of Akirin-2 increases chemosensitivity in human glioblastomas more efficiently than Twist-1. Oncotarget. 2015;6:21029-45 pubmed
  96. Cantley M, Dharmapatni A, Algate K, Crotti T, Bartold P, Haynes D. Class I and II histone deacetylase expression in human chronic periodontitis gingival tissue. J Periodontal Res. 2016;51:143-51 pubmed 出版商
  97. Freeman B, Kouris N, Ogle B. Tracking fusion of human mesenchymal stem cells after transplantation to the heart. Stem Cells Transl Med. 2015;4:685-94 pubmed 出版商
  98. Kubelt C, Hattermann K, Sebens S, Mehdorn H, Held Feindt J. Epithelial-to-mesenchymal transition in paired human primary and recurrent glioblastomas. Int J Oncol. 2015;46:2515-25 pubmed 出版商
  99. Bastijanic J, Marchant R, Kligman F, Allemang M, Lakin R, Kendrick D, et al. In vivo evaluation of biomimetic fluorosurfactant polymer-coated expanded polytetrafluoroethylene vascular grafts in a porcine carotid artery bypass model. J Vasc Surg. 2016;63:1620-1630.e4 pubmed 出版商
  100. Ishikawa T, Takizawa T, Iwaki J, Mishima T, Ui Tei K, Takeshita T, et al. Fc gamma receptor IIb participates in maternal IgG trafficking of human placental endothelial cells. Int J Mol Med. 2015;35:1273-89 pubmed 出版商
  101. Zhao X, Zhao Q, Luo Z, Yu Y, Xiao N, Sun X, et al. Spontaneous immortalization of mouse liver sinusoidal endothelial cells. Int J Mol Med. 2015;35:617-24 pubmed 出版商
  102. Chen Y, Wallace B, Yuen N, Jenkins D, Wulff H, O Donnell M. Blood-brain barrier KCa3.1 channels: evidence for a role in brain Na uptake and edema in ischemic stroke. Stroke. 2015;46:237-44 pubmed 出版商
  103. Zhang J, Zheng G, Wu L, Ou Yang L, Li W. Bone marrow mesenchymal stem cells overexpressing human basic fibroblast growth factor increase vasculogenesis in ischemic rats. Braz J Med Biol Res. 2014;47:886-94 pubmed
  104. Jeon H, Kim S, Jin X, Park J, Kim S, Joshi K, et al. Crosstalk between glioma-initiating cells and endothelial cells drives tumor progression. Cancer Res. 2014;74:4482-92 pubmed 出版商
  105. Lohoefer F, Reeps C, Lipp C, Rudelius M, Haertl F, Matevossian E, et al. Quantitative expression and localization of cysteine and aspartic proteases in human abdominal aortic aneurysms. Exp Mol Med. 2014;46:e95 pubmed 出版商
  106. Kim M, Ryu J, Kwon Y, Lee S, Bae Y, Yoon J, et al. Dual oxidase 2 in lung epithelia is essential for hyperoxia-induced acute lung injury in mice. Antioxid Redox Signal. 2014;21:1803-18 pubmed 出版商
  107. de Hair M, van de Sande M, Ramwadhdoebe T, Hansson M, Landewe R, van der Leij C, et al. Features of the synovium of individuals at risk of developing rheumatoid arthritis: implications for understanding preclinical rheumatoid arthritis. Arthritis Rheumatol. 2014;66:513-22 pubmed 出版商
  108. Yu L, Cheng H, Yang S. Clinicopathological and extensive immunohistochemical study of a type II pleuropulmonary blastoma. Fetal Pediatr Pathol. 2014;33:1-8 pubmed 出版商
  109. Weber B, Kehl D, Bleul U, Behr L, Sammut S, Frese L, et al. In vitro fabrication of autologous living tissue-engineered vascular grafts based on prenatally harvested ovine amniotic fluid-derived stem cells. J Tissue Eng Regen Med. 2016;10:52-70 pubmed 出版商
  110. Lisk C, McCord J, Bose S, Sullivan T, Loomis Z, Nozik Grayck E, et al. Nrf2 activation: a potential strategy for the prevention of acute mountain sickness. Free Radic Biol Med. 2013;63:264-73 pubmed 出版商
  111. Nowocin A, Southgate A, Shurey S, Sibbons P, Gabe S, Ansari T. The development and implantation of a biologically derived allograft scaffold. J Tissue Eng Regen Med. 2016;10:140-8 pubmed 出版商
  112. Sundlisaeter E, Edelmann R, Hol J, Sponheim J, Küchler A, WEISS M, et al. The alarmin IL-33 is a notch target in quiescent endothelial cells. Am J Pathol. 2012;181:1099-111 pubmed 出版商
  113. Sölder E, Böckle B, Nguyen V, Fürhapter C, Obexer P, Erdel M, et al. Isolation and characterization of CD133+CD34+VEGFR-2+CD45- fetal endothelial cells from human term placenta. Microvasc Res. 2012;84:65-73 pubmed 出版商