这是一篇来自已证抗体库的有关小鼠 Abeta的综述,是根据195篇发表使用所有方法的文章归纳的。这综述旨在帮助来邦网的访客找到最适合Abeta 抗体。
Abeta 同义词: Abeta; Abpp; Adap; Ag; Cvap; E030013M08Rik; betaApp

BioLegend
domestic rabbit 多克隆(Poly18058)
  • 免疫组化; 小鼠; 1:500; 图 s12a
BioLegend Abeta抗体(BioLegend, 805801)被用于被用于免疫组化在小鼠样本上浓度为1:500 (图 s12a). Sci Adv (2022) ncbi
小鼠 单克隆(12F4)
  • 免疫组化-冰冻切片; 小鼠; 1:200; 图 2h
BioLegend Abeta抗体(BioLegend, 805501)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:200 (图 2h). Acta Neuropathol Commun (2022) ncbi
小鼠 单克隆(4G8)
  • 免疫组化; 小鼠; 1:200; 图 5a
BioLegend Abeta抗体(Biolegend, 800701)被用于被用于免疫组化在小鼠样本上浓度为1:200 (图 5a). Acta Neuropathol Commun (2022) ncbi
小鼠 单克隆(4G8)
  • 免疫组化-石蜡切片; 人类; 图 1c
BioLegend Abeta抗体(Covance, SIG-39220)被用于被用于免疫组化-石蜡切片在人类样本上 (图 1c). Acta Neuropathol Commun (2022) ncbi
小鼠 单克隆(4G8)
  • 免疫组化-石蜡切片; 人类; 1:4000; 图 6
BioLegend Abeta抗体(BioLegend, 800701)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:4000 (图 6). Acta Neuropathol Commun (2022) ncbi
小鼠 单克隆(C1/6.1)
  • 免疫印迹; 小鼠; 1:2000; 图 1i
BioLegend Abeta抗体(Biolegend, 802803)被用于被用于免疫印迹在小鼠样本上浓度为1:2000 (图 1i). EBioMedicine (2022) ncbi
小鼠 单克隆(4G8)
  • 免疫组化; 小鼠; 1:100; 图 2a
BioLegend Abeta抗体(Biolegend, 800715)被用于被用于免疫组化在小鼠样本上浓度为1:100 (图 2a). EBioMedicine (2022) ncbi
domestic rabbit 多克隆(Poly8134)
  • 免疫印迹; 人类; 1:1000; 图 1c
BioLegend Abeta抗体(Covance, SIG-39138)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 1c). EMBO Mol Med (2022) ncbi
小鼠 单克隆(4G8)
  • 免疫组化-石蜡切片; 小鼠; 1:500; 图 s6b
BioLegend Abeta抗体(BioLegend, 800701)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:500 (图 s6b). Signal Transduct Target Ther (2021) ncbi
小鼠 单克隆(4G8)
  • 免疫组化-石蜡切片; African green monkey; 1:200; 图 1g
BioLegend Abeta抗体(Biolegend, 800701)被用于被用于免疫组化-石蜡切片在African green monkey样本上浓度为1:200 (图 1g). Protein Cell (2021) ncbi
小鼠 单克隆(4G8)
  • 免疫组化-冰冻切片; 小鼠; 1:1000; 图 5g
BioLegend Abeta抗体(BioLegend, 800720)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:1000 (图 5g). Acta Neuropathol Commun (2021) ncbi
小鼠 单克隆(C1/6.1)
  • 免疫沉淀; 人类; 图 8e
  • 免疫印迹; 小鼠; 图 6a
BioLegend Abeta抗体(BioLegend, C1/6.1)被用于被用于免疫沉淀在人类样本上 (图 8e) 和 被用于免疫印迹在小鼠样本上 (图 6a). J Biol Chem (2021) ncbi
小鼠 单克隆(12F4)
  • 免疫组化-自由浮动切片; 小鼠; 图 1e
BioLegend Abeta抗体(Covance, Sig-39142)被用于被用于免疫组化-自由浮动切片在小鼠样本上 (图 1e). Front Immunol (2020) ncbi
小鼠 单克隆(C1/6.1)
  • 免疫组化-冰冻切片; 人类; 图 1b
BioLegend Abeta抗体(Biolegen, 802803)被用于被用于免疫组化-冰冻切片在人类样本上 (图 1b). Cell Rep (2021) ncbi
小鼠 单克隆(4G8)
  • 免疫组化; 小鼠; 1:500; 图 s2c, s2d
BioLegend Abeta抗体(Biolegend, 4G8)被用于被用于免疫组化在小鼠样本上浓度为1:500 (图 s2c, s2d). Front Pharmacol (2020) ncbi
小鼠 单克隆(4G8)
  • 免疫组化; 人类; 1:5000; 表 1
BioLegend Abeta抗体(BioLegend, 4G8)被用于被用于免疫组化在人类样本上浓度为1:5000 (表 1). Acta Neuropathol Commun (2020) ncbi
小鼠 单克隆(4G8)
  • 免疫组化-石蜡切片; 人类; 1:1000; 图 2a
BioLegend Abeta抗体(Biolegend, 4G8)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:1000 (图 2a). Acta Neuropathol Commun (2020) ncbi
小鼠 单克隆(4G8)
  • 免疫组化-石蜡切片; 小鼠; 图 6a
  • 免疫组化-石蜡切片; 人类; 图 7a
BioLegend Abeta抗体(Covance, SIG-39220)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 6a) 和 被用于免疫组化-石蜡切片在人类样本上 (图 7a). Int J Mol Sci (2020) ncbi
小鼠 单克隆(M3.2)
  • 免疫印迹; 大鼠; 1:1000; 图 2b
BioLegend Abeta抗体(BioLegend, 805701)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 2b). elife (2020) ncbi
小鼠 单克隆(C1/6.1)
  • proximity ligation assay; 大鼠; 1:1000; 图 2a
BioLegend Abeta抗体(BioLegend, 802801)被用于被用于proximity ligation assay在大鼠样本上浓度为1:1000 (图 2a). BMC Neurosci (2020) ncbi
小鼠 单克隆(4G8)
  • 免疫组化; 小鼠; 1:1000; 图 1a
BioLegend Abeta抗体(BioLegend, 4G8)被用于被用于免疫组化在小鼠样本上浓度为1:1000 (图 1a). Int J Mol Sci (2020) ncbi
小鼠 单克隆(4G8)
  • 免疫组化-石蜡切片; 人类; 1:1000; 图 s6e
BioLegend Abeta抗体(BioLegend, SIG-39220)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:1000 (图 s6e). Nat Commun (2020) ncbi
小鼠 单克隆(4G8)
  • 免疫组化-石蜡切片; 小鼠; 图 3c
BioLegend Abeta抗体(Covance, SIG-39220)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 3c). Mol Neurodegener (2020) ncbi
小鼠 单克隆(4G8)
  • 免疫组化-自由浮动切片; 人类; 1:5000
BioLegend Abeta抗体(Covance, 4G8)被用于被用于免疫组化-自由浮动切片在人类样本上浓度为1:5000. J Neuropathol Exp Neurol (2020) ncbi
小鼠 单克隆(4G8)
  • 免疫组化-自由浮动切片; 小鼠; 1:2000; 图 s8g
BioLegend Abeta抗体(Biolegend (previously Covance), SIG-39220)被用于被用于免疫组化-自由浮动切片在小鼠样本上浓度为1:2000 (图 s8g). PLoS Biol (2020) ncbi
小鼠 单克隆(4G8)
  • 免疫组化-石蜡切片; 人类; 1:500; 图 1b
BioLegend Abeta抗体(Biolegend, 4G8)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:500 (图 1b). Acta Neuropathol (2020) ncbi
小鼠 单克隆(4G8)
  • 免疫组化-冰冻切片; fruit fly ; 1:500; 图 3c
BioLegend Abeta抗体(BioLegend, SIG-39220)被用于被用于免疫组化-冰冻切片在fruit fly 样本上浓度为1:500 (图 3c). FEBS Open Bio (2020) ncbi
小鼠 单克隆(4G8)
  • 免疫组化-石蜡切片; 人类; 1:4000; 图 2b
BioLegend Abeta抗体(BioLegend, 800702)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:4000 (图 2b). Acta Neuropathol Commun (2019) ncbi
小鼠 单克隆(4G8)
  • 免疫组化; 人类; 1:9,000; 表 2
BioLegend Abeta抗体(Covance, 4G8)被用于被用于免疫组化在人类样本上浓度为1:9,000 (表 2). Neurology (2020) ncbi
小鼠 单克隆(4G8)
  • 免疫组化; 小鼠; 图 5g
BioLegend Abeta抗体(BioLegend, 800712)被用于被用于免疫组化在小鼠样本上 (图 5g). Cell Rep (2019) ncbi
小鼠 单克隆(12F4)
  • 免疫组化-自由浮动切片; 小鼠; 图 3g
BioLegend Abeta抗体(Biolegend, 805501)被用于被用于免疫组化-自由浮动切片在小鼠样本上 (图 3g). Cell (2019) ncbi
小鼠 单克隆(4G8)
  • 免疫组化; 人类; 1:500; 图 2e
BioLegend Abeta抗体(BioLegend, SIG-39200)被用于被用于免疫组化在人类样本上浓度为1:500 (图 2e). Sci Adv (2019) ncbi
小鼠 单克隆(C1/6.1)
  • 免疫印迹; 小鼠; 1:1000; 图 3h
BioLegend Abeta抗体(BioLegend, 802801)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 3h). EMBO Mol Med (2019) ncbi
小鼠 单克隆(M3.2)
  • 免疫印迹; 小鼠; 图 s2c
BioLegend Abeta抗体(BioLegend, 805701)被用于被用于免疫印迹在小鼠样本上 (图 s2c). Nat Commun (2019) ncbi
小鼠 单克隆(C1/6.1)
  • 免疫印迹; 人类; 1:1000; 图 s1b
BioLegend Abeta抗体(Biolegend, 802801)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 s1b). Science (2018) ncbi
小鼠 单克隆(C1/6.1)
  • 免疫印迹; 小鼠; 1:1000; 图 6t
BioLegend Abeta抗体(BioLegend, 802801)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 6t). J Exp Med (2018) ncbi
domestic rabbit 多克隆(Poly8134)
  • 免疫印迹; 人类; 图 1r
BioLegend Abeta抗体(Covance, SIG-39138)被用于被用于免疫印迹在人类样本上 (图 1r). Nat Med (2018) ncbi
小鼠 单克隆(12F4)
  • 酶联免疫吸附测定; 小鼠; 图 3d
BioLegend Abeta抗体(BioLegend, 805507)被用于被用于酶联免疫吸附测定在小鼠样本上 (图 3d). J Neuroinflammation (2018) ncbi
domestic rabbit 多克隆(Poly8134)
  • 免疫印迹; 人类; 图 8a
BioLegend Abeta抗体(Covance, SIG-39138)被用于被用于免疫印迹在人类样本上 (图 8a). Exp Neurol (2018) ncbi
小鼠 单克隆(4G8)
  • 免疫组化; 小鼠; 图 3c
BioLegend Abeta抗体(Covance, SIG-39220)被用于被用于免疫组化在小鼠样本上 (图 3c). Sci Rep (2017) ncbi
小鼠 单克隆(4G8)
  • 免疫细胞化学; 大鼠; 图 s4b
BioLegend Abeta抗体(Covance, SIG39220)被用于被用于免疫细胞化学在大鼠样本上 (图 s4b). Front Cell Neurosci (2017) ncbi
小鼠 单克隆(12F4)
  • 免疫组化-自由浮动切片; 小鼠; 1:1000; 图 5a
  • 免疫印迹; 小鼠; 1:1000
BioLegend Abeta抗体(BioLegend, SIG-39142)被用于被用于免疫组化-自由浮动切片在小鼠样本上浓度为1:1000 (图 5a) 和 被用于免疫印迹在小鼠样本上浓度为1:1000. Nat Commun (2017) ncbi
小鼠 单克隆(C1/6.1)
  • proximity ligation assay; 大鼠; 图 5D
BioLegend Abeta抗体(Biolegend, 802801)被用于被用于proximity ligation assay在大鼠样本上 (图 5D). Front Mol Neurosci (2017) ncbi
小鼠 单克隆(4G8)
  • 免疫组化-石蜡切片; 小鼠; 1:200; 图 1a
BioLegend Abeta抗体(Covance, SIG-39220)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:200 (图 1a). J Vis Exp (2016) ncbi
小鼠 单克隆(4G8)
  • 免疫组化-石蜡切片; 人类; 1:4000; 图 6
BioLegend Abeta抗体(BioLegend, SIG39220-500)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:4000 (图 6). J Neuropathol Exp Neurol (2016) ncbi
小鼠 单克隆(4G8)
  • 免疫组化-石蜡切片; 大鼠; 1:2000; 图 3
BioLegend Abeta抗体(Covance, SIG-39220)被用于被用于免疫组化-石蜡切片在大鼠样本上浓度为1:2000 (图 3). Acta Neuropathol Commun (2016) ncbi
小鼠 单克隆(4G8)
  • 免疫组化; 人类; 1:100; 图 4d
BioLegend Abeta抗体(BioLegend, 800701)被用于被用于免疫组化在人类样本上浓度为1:100 (图 4d). Neuropathol Appl Neurobiol (2017) ncbi
小鼠 单克隆(4G8)
  • 免疫组化-冰冻切片; 小鼠; 1:1000; 图 3b
BioLegend Abeta抗体(Covance, 4G8)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:1000 (图 3b). J Neurosci (2016) ncbi
domestic rabbit 多克隆(Poly8134)
BioLegend Abeta抗体(Covance BioLegend, 813401)被用于. EMBO Mol Med (2016) ncbi
小鼠 单克隆(4G8)
  • 免疫组化-自由浮动切片; 人类; 1:1000; 图 7c
  • 免疫组化-石蜡切片; 人类; 1:1000; 图 7c
  • 免疫组化-自由浮动切片; 小鼠; 1:1000; 图 3b
  • 免疫组化-石蜡切片; 小鼠; 1:1000; 图 3b
  • 免疫印迹; 小鼠; 1:2000; 图 st7
BioLegend Abeta抗体(Covance, SIG-39220-200)被用于被用于免疫组化-自由浮动切片在人类样本上浓度为1:1000 (图 7c), 被用于免疫组化-石蜡切片在人类样本上浓度为1:1000 (图 7c), 被用于免疫组化-自由浮动切片在小鼠样本上浓度为1:1000 (图 3b), 被用于免疫组化-石蜡切片在小鼠样本上浓度为1:1000 (图 3b) 和 被用于免疫印迹在小鼠样本上浓度为1:2000 (图 st7). Autophagy (2016) ncbi
小鼠 单克隆(4G8)
  • 免疫组化-石蜡切片; 人类; 1:500; 图 2
BioLegend Abeta抗体(Covance, SIG-39220)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:500 (图 2). Lancet Neurol (2016) ncbi
小鼠 单克隆(4G8)
  • 抑制或激活实验; 人类; 图 3
  • 免疫组化; 人类; 图 2
BioLegend Abeta抗体(Covance, 4G8)被用于被用于抑制或激活实验在人类样本上 (图 3) 和 被用于免疫组化在人类样本上 (图 2). Sci Transl Med (2016) ncbi
domestic rabbit 多克隆(Poly8134)
  • 免疫印迹; 小鼠; 1:1000; 图 4d
BioLegend Abeta抗体(Covance, SIG-39138-050)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 4d). Aging (Albany NY) (2016) ncbi
小鼠 单克隆(4G8)
  • 免疫沉淀; 人类; 1:500-1:2500; 图 1H
BioLegend Abeta抗体(Covance, SIG?\39220)被用于被用于免疫沉淀在人类样本上浓度为1:500-1:2500 (图 1H). EMBO Mol Med (2016) ncbi
小鼠 单克隆(4G8)
  • 免疫沉淀; 人类; 图 4
BioLegend Abeta抗体(Covance, 4G8)被用于被用于免疫沉淀在人类样本上 (图 4). Acta Neuropathol Commun (2016) ncbi
小鼠 单克隆(4G8)
BioLegend Abeta抗体(BioLegend, 800702)被用于. J Neurosci (2016) ncbi
小鼠 单克隆(4G8)
  • 酶联免疫吸附测定; 小鼠; 1:2500; 图 2
  • 免疫印迹; 小鼠; 图 1
BioLegend Abeta抗体(Covance, 4G8)被用于被用于酶联免疫吸附测定在小鼠样本上浓度为1:2500 (图 2) 和 被用于免疫印迹在小鼠样本上 (图 1). Brain (2016) ncbi
小鼠 单克隆(4G8)
  • 免疫组化; 小鼠; 图 2i
  • 免疫印迹; 小鼠; 图 2f
BioLegend Abeta抗体(Covance, 4G8)被用于被用于免疫组化在小鼠样本上 (图 2i) 和 被用于免疫印迹在小鼠样本上 (图 2f). Mol Neurodegener (2015) ncbi
小鼠 单克隆(4G8)
  • 免疫组化; 人类; 1:250; 图 5
  • 免疫组化; 小鼠; 1:250; 图 5
BioLegend Abeta抗体(Covance, 4G8)被用于被用于免疫组化在人类样本上浓度为1:250 (图 5) 和 被用于免疫组化在小鼠样本上浓度为1:250 (图 5). Acta Neuropathol Commun (2015) ncbi
小鼠 单克隆(12F4)
  • 酶联免疫吸附测定; 人类; 1 ug/ml; 图 6
BioLegend Abeta抗体(Covance, 12F4)被用于被用于酶联免疫吸附测定在人类样本上浓度为1 ug/ml (图 6). Brain Pathol (2016) ncbi
小鼠 单克隆(4G8)
  • 免疫沉淀; 小鼠
BioLegend Abeta抗体(Covance, 4G8)被用于被用于免疫沉淀在小鼠样本上. Acta Neuropathol Commun (2015) ncbi
小鼠 单克隆(4G8)
  • 免疫组化-石蜡切片; 人类; 1:100; 表 3
BioLegend Abeta抗体(Covance, SIG39220)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100 (表 3). Biochim Biophys Acta (2016) ncbi
小鼠 单克隆(4G8)
  • 免疫组化; 人类; 表 1
BioLegend Abeta抗体(Covance, 4G8)被用于被用于免疫组化在人类样本上 (表 1). Alzheimers Dement (2016) ncbi
小鼠 单克隆(M3.2)
  • 免疫印迹; 大鼠; 1:1000
BioLegend Abeta抗体(BioLegend, SIG-39155)被用于被用于免疫印迹在大鼠样本上浓度为1:1000. J Neurochem (2015) ncbi
小鼠 单克隆(12F4)
  • 免疫印迹; 小鼠; 1:500; 图 4
BioLegend Abeta抗体(BioLegend Co, SIG-39142;)被用于被用于免疫印迹在小鼠样本上浓度为1:500 (图 4). Ann Thorac Surg (2015) ncbi
小鼠 单克隆(12F4)
  • 免疫印迹; 小鼠; 1:500; 图 4
BioLegend Abeta抗体(BioLegend Co, SIG-39142;)被用于被用于免疫印迹在小鼠样本上浓度为1:500 (图 4). J Neuropathol Exp Neurol (2015) ncbi
小鼠 单克隆(4G8)
  • 免疫组化; 小鼠; 1:100
BioLegend Abeta抗体(Covance, SIG-39220)被用于被用于免疫组化在小鼠样本上浓度为1:100. Mol Neurodegener (2015) ncbi
小鼠 单克隆(C1/6.1)
  • 免疫印迹; 小鼠; 1:1000
BioLegend Abeta抗体(BioLegend, 802802)被用于被用于免疫印迹在小鼠样本上浓度为1:1000. Proc Natl Acad Sci U S A (2015) ncbi
domestic rabbit 多克隆(Poly8134)
BioLegend Abeta抗体(BioLegend, 813401)被用于. Proc Natl Acad Sci U S A (2015) ncbi
小鼠 单克隆(M3.2)
  • 免疫沉淀; 小鼠; 1:300
  • 免疫印迹; 小鼠; 1:800
BioLegend Abeta抗体(BioLegend, 805701)被用于被用于免疫沉淀在小鼠样本上浓度为1:300 和 被用于免疫印迹在小鼠样本上浓度为1:800. Proc Natl Acad Sci U S A (2015) ncbi
小鼠 单克隆(4G8)
  • 免疫组化; 人类; 1:500
BioLegend Abeta抗体(Covance, SIG-39220)被用于被用于免疫组化在人类样本上浓度为1:500. Tremor Other Hyperkinet Mov (N Y) (2015) ncbi
小鼠 单克隆(4G8)
BioLegend Abeta抗体(Covance, 4G8)被用于. Cell Rep (2015) ncbi
小鼠 单克隆(4G8)
  • 免疫组化; 小鼠; 图 1f
BioLegend Abeta抗体(Covance, SIG-39200)被用于被用于免疫组化在小鼠样本上 (图 1f). PLoS ONE (2015) ncbi
小鼠 单克隆(4G8)
  • 免疫组化-冰冻切片; 人类
BioLegend Abeta抗体(Covance, 4G8)被用于被用于免疫组化-冰冻切片在人类样本上. Nucl Med Biol (2015) ncbi
小鼠 单克隆(4G8)
  • 免疫沉淀; 人类
BioLegend Abeta抗体(Covance, 4G8)被用于被用于免疫沉淀在人类样本上. J Biol Chem (2015) ncbi
小鼠 单克隆(4G8)
  • 免疫组化-自由浮动切片; 小鼠
BioLegend Abeta抗体(Covance, 4G8)被用于被用于免疫组化-自由浮动切片在小鼠样本上. Sci Transl Med (2015) ncbi
小鼠 单克隆(4G8)
  • 免疫印迹; 人类; 1:500
BioLegend Abeta抗体(Covance, 4G8)被用于被用于免疫印迹在人类样本上浓度为1:500. J Neuropathol Exp Neurol (2015) ncbi
小鼠 单克隆(4G8)
  • 免疫组化; 人类; 1:400
BioLegend Abeta抗体(Covance, 4G8)被用于被用于免疫组化在人类样本上浓度为1:400. Neurobiol Aging (2015) ncbi
小鼠 单克隆(4G8)
  • 免疫组化; 人类; 1:1000
BioLegend Abeta抗体(Covance, SIG39220)被用于被用于免疫组化在人类样本上浓度为1:1000. F1000Res (2014) ncbi
小鼠 单克隆(C1/6.1)
  • 免疫印迹; 小鼠; 1:1000; 图 8
BioLegend Abeta抗体(Covance, SIG-39152)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 8). Age (Dordr) (2015) ncbi
小鼠 单克隆(4G8)
  • 免疫组化; 小鼠; 图 s2
BioLegend Abeta抗体(BioLegend, SIG-39200)被用于被用于免疫组化在小鼠样本上 (图 s2). Nat Commun (2015) ncbi
小鼠 单克隆(12F4)
  • 酶联免疫吸附测定; 人类; 1:500
BioLegend Abeta抗体(Covance, 12F4)被用于被用于酶联免疫吸附测定在人类样本上浓度为1:500. Neuropathol Appl Neurobiol (2015) ncbi
小鼠 单克隆(4G8)
  • 免疫组化; 小鼠; 1:150
BioLegend Abeta抗体(Covance, Sig-39220)被用于被用于免疫组化在小鼠样本上浓度为1:150. Neurosci Lett (2015) ncbi
小鼠 单克隆(4G8)
  • 免疫组化-冰冻切片; 大鼠; 1:4000
BioLegend Abeta抗体(Signet, #39240)被用于被用于免疫组化-冰冻切片在大鼠样本上浓度为1:4000. Adv Alzheimer Dis (2014) ncbi
小鼠 单克隆(4G8)
  • 免疫印迹; 人类; 1:1000
BioLegend Abeta抗体(Covance, SIG-39220)被用于被用于免疫印迹在人类样本上浓度为1:1000. Acta Neuropathol Commun (2014) ncbi
小鼠 单克隆(4G8)
  • 免疫细胞化学; 小鼠; 1:1000
BioLegend Abeta抗体(Covance, 4G8)被用于被用于免疫细胞化学在小鼠样本上浓度为1:1000. Neurobiol Aging (2015) ncbi
小鼠 单克隆(C1/6.1)
  • 免疫印迹; 小鼠; 1:1000
BioLegend Abeta抗体(Covance, C1/6.1)被用于被用于免疫印迹在小鼠样本上浓度为1:1000. Neurobiol Aging (2015) ncbi
小鼠 单克隆(4G8)
  • 免疫组化-自由浮动切片; 大鼠; 1:200
BioLegend Abeta抗体(Covance, SIG-39220-200)被用于被用于免疫组化-自由浮动切片在大鼠样本上浓度为1:200. J Neurosci (2014) ncbi
小鼠 单克隆(4G8)
  • 免疫组化-自由浮动切片; 小鼠; 1:250
BioLegend Abeta抗体(Signet Laboratories, SIG-39200-1000)被用于被用于免疫组化-自由浮动切片在小鼠样本上浓度为1:250. J Neurosci (2014) ncbi
小鼠 单克隆(1G6)
  • 免疫印迹; 人类; 图 1
BioLegend Abeta抗体(Covance, SIG-39180)被用于被用于免疫印迹在人类样本上 (图 1). PLoS ONE (2014) ncbi
小鼠 单克隆(C1/6.1)
  • 免疫印迹; 人类; 图 1
BioLegend Abeta抗体(Covance, SIG-39152)被用于被用于免疫印迹在人类样本上 (图 1). PLoS ONE (2014) ncbi
小鼠 单克隆(4G8)
  • 免疫组化; 小鼠; 1 ug/ml
  • 酶联免疫吸附测定; 小鼠
BioLegend Abeta抗体(Covance, 4G8)被用于被用于免疫组化在小鼠样本上浓度为1 ug/ml 和 被用于酶联免疫吸附测定在小鼠样本上. J Biol Chem (2014) ncbi
小鼠 单克隆(4G8)
  • 免疫组化-石蜡切片; 人类; 1:1000
BioLegend Abeta抗体(Covance, SIG-39220-200)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:1000. Neurobiol Aging (2014) ncbi
小鼠 单克隆(4G8)
  • 免疫沉淀; 人类
  • 酶联免疫吸附测定; 人类
  • 免疫印迹; 人类
BioLegend Abeta抗体(Covance, 4G8)被用于被用于免疫沉淀在人类样本上, 被用于酶联免疫吸附测定在人类样本上 和 被用于免疫印迹在人类样本上. Int J Alzheimers Dis (2014) ncbi
小鼠 单克隆(4G8)
  • 免疫组化-冰冻切片; 小鼠; 1:500
BioLegend Abeta抗体(Covance, SIG-39220)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:500. J Alzheimers Dis (2014) ncbi
小鼠 单克隆(C1/6.1)
  • 免疫印迹; 小鼠; 1:1000
BioLegend Abeta抗体(Covance, SIG-39152)被用于被用于免疫印迹在小鼠样本上浓度为1:1000. Apoptosis (2013) ncbi
小鼠 单克隆(4G8)
  • 免疫组化; 人类; 1:200
BioLegend Abeta抗体(Covance, 4G8)被用于被用于免疫组化在人类样本上浓度为1:200. Exp Neurol (2014) ncbi
小鼠 单克隆(4G8)
BioLegend Abeta抗体(Signet, 4G8)被用于. J Alzheimers Dis (2012) ncbi
小鼠 单克隆(4G8)
  • 免疫沉淀; 小鼠
BioLegend Abeta抗体(Signet, 4G8)被用于被用于免疫沉淀在小鼠样本上. Hum Mol Genet (2011) ncbi
艾博抗(上海)贸易有限公司
domestic rabbit 单克隆(Y188)
  • 免疫组化-自由浮动切片; 小鼠; 1:200; 图 s9b
艾博抗(上海)贸易有限公司 Abeta抗体(Abcam, ab32136)被用于被用于免疫组化-自由浮动切片在小鼠样本上浓度为1:200 (图 s9b). Nat Commun (2022) ncbi
domestic rabbit 单克隆(mOC64)
  • 免疫印迹; 小鼠; 1:500; 图 s1e
艾博抗(上海)贸易有限公司 Abeta抗体(Abcam, ab201060)被用于被用于免疫印迹在小鼠样本上浓度为1:500 (图 s1e). Cell Rep (2022) ncbi
domestic rabbit 单克隆(Y188)
  • 免疫印迹; 人类; 图 1c
艾博抗(上海)贸易有限公司 Abeta抗体(Abcam, ab32136)被用于被用于免疫印迹在人类样本上 (图 1c). Int J Mol Sci (2022) ncbi
domestic rabbit 单克隆(mOC64)
  • 免疫印迹; 人类; 图 1c
  • 免疫印迹; 小鼠; 图 6e
艾博抗(上海)贸易有限公司 Abeta抗体(Abcam, ab201060)被用于被用于免疫印迹在人类样本上 (图 1c) 和 被用于免疫印迹在小鼠样本上 (图 6e). Int J Mol Sci (2022) ncbi
小鼠 单克隆(BDI350)
  • 免疫印迹; 小鼠; 1:1000; 图 3g
艾博抗(上海)贸易有限公司 Abeta抗体(Abcam, ab20068)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 3g). Neural Regen Res (2022) ncbi
domestic rabbit 单克隆(mOC64)
  • 免疫印迹; 小鼠; 1:1000; 图 3g
艾博抗(上海)贸易有限公司 Abeta抗体(Abcam, ab201060)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 3g). Neural Regen Res (2022) ncbi
domestic rabbit 单克隆(Y188)
  • 免疫印迹; 小鼠; 图 3d
艾博抗(上海)贸易有限公司 Abeta抗体(Abcam, ab32136)被用于被用于免疫印迹在小鼠样本上 (图 3d). Cell Rep (2022) ncbi
domestic rabbit 单克隆(mOC64)
  • 免疫印迹; 人类; 图 4a
  • 免疫组化; 猕猴; 图 2a, 2b
  • 免疫印迹; 猕猴; 图 1a, 1b
艾博抗(上海)贸易有限公司 Abeta抗体(Abcam, ab201060)被用于被用于免疫印迹在人类样本上 (图 4a), 被用于免疫组化在猕猴样本上 (图 2a, 2b) 和 被用于免疫印迹在猕猴样本上 (图 1a, 1b). Aging Dis (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 4b
艾博抗(上海)贸易有限公司 Abeta抗体(Abcam, ab15272)被用于被用于免疫印迹在人类样本上 (图 4b). Aging Dis (2021) ncbi
domestic rabbit 单克隆(mOC64)
  • 免疫印迹; 小鼠; 1:1000; 图 5a
艾博抗(上海)贸易有限公司 Abeta抗体(Abcam, ab201060)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 5a). PLoS ONE (2021) ncbi
domestic rabbit 单克隆(Y188)
  • 免疫组化; 小鼠; 1:500
艾博抗(上海)贸易有限公司 Abeta抗体(Abcam, ab32136)被用于被用于免疫组化在小鼠样本上浓度为1:500. Acta Neuropathol Commun (2020) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 5a
艾博抗(上海)贸易有限公司 Abeta抗体(Abcam, ab2072)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 5a). Acta Neuropathol Commun (2020) ncbi
domestic rabbit 单克隆(Y188)
  • 免疫印迹; 小鼠; 1:1000; 图 5a
艾博抗(上海)贸易有限公司 Abeta抗体(Abcam, ab32136)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 5a). Acta Neuropathol Commun (2020) ncbi
domestic rabbit 单克隆(Y188)
  • 免疫组化-冰冻切片; 小鼠; 1:150; 图 3b
  • 免疫印迹; 小鼠; 1:2000; 图 3f
艾博抗(上海)贸易有限公司 Abeta抗体(Abcam, ab32136)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:150 (图 3b) 和 被用于免疫印迹在小鼠样本上浓度为1:2000 (图 3f). Front Aging Neurosci (2020) ncbi
domestic rabbit 单克隆(Y188)
  • 免疫组化-冰冻切片; 小鼠; 1:500; 图 5a, 5d
艾博抗(上海)贸易有限公司 Abeta抗体(Abcam, ab32136)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:500 (图 5a, 5d). Sci Adv (2020) ncbi
domestic rabbit 单克隆(Y188)
  • 免疫组化-石蜡切片; 小鼠; 1:15,000; 图 4
艾博抗(上海)贸易有限公司 Abeta抗体(Abcam, ab32136)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:15,000 (图 4). J Neurotrauma (2020) ncbi
domestic rabbit 单克隆(Y188)
  • 免疫组化-石蜡切片; 小鼠; 1:200; 图 4c
  • 免疫细胞化学; 小鼠; 1:200; 图 1b
  • 免疫印迹; 小鼠; 图 1c
  • 免疫细胞化学; 人类; 1:200; 图 2b
  • 免疫印迹; 人类; 图 2c
艾博抗(上海)贸易有限公司 Abeta抗体(Abcam, ab32136)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:200 (图 4c), 被用于免疫细胞化学在小鼠样本上浓度为1:200 (图 1b), 被用于免疫印迹在小鼠样本上 (图 1c), 被用于免疫细胞化学在人类样本上浓度为1:200 (图 2b) 和 被用于免疫印迹在人类样本上 (图 2c). Nat Commun (2019) ncbi
domestic rabbit 单克隆(Y188)
  • 免疫印迹; 人类; 图 1b
艾博抗(上海)贸易有限公司 Abeta抗体(Abcam, ab32136)被用于被用于免疫印迹在人类样本上 (图 1b). J Biol Chem (2019) ncbi
domestic rabbit 单克隆(Y188)
  • 免疫组化; 小鼠; 图 5
艾博抗(上海)贸易有限公司 Abeta抗体(Abcam, Y188)被用于被用于免疫组化在小鼠样本上 (图 5). Front Cell Neurosci (2018) ncbi
domestic rabbit 单克隆(Y188)
  • 免疫印迹; 小鼠; 图 1a
艾博抗(上海)贸易有限公司 Abeta抗体(Abcam, ab32136)被用于被用于免疫印迹在小鼠样本上 (图 1a). Sci Transl Med (2018) ncbi
domestic rabbit 单克隆(Y188)
  • 免疫印迹; 小鼠; 1:2000; 图 4b
艾博抗(上海)贸易有限公司 Abeta抗体(Abcam, Y188)被用于被用于免疫印迹在小鼠样本上浓度为1:2000 (图 4b). Mol Neurodegener (2018) ncbi
domestic rabbit 单克隆(mOC64)
  • 免疫印迹; 小鼠; 图 3f
艾博抗(上海)贸易有限公司 Abeta抗体(Abcam, ab201060)被用于被用于免疫印迹在小鼠样本上 (图 3f). Neurotherapeutics (2018) ncbi
domestic rabbit 单克隆(Y188)
  • 免疫细胞化学; pigs ; 图 5d
  • 免疫细胞化学; 人类; 图 7a
艾博抗(上海)贸易有限公司 Abeta抗体(Abcam, ab32136)被用于被用于免疫细胞化学在pigs 样本上 (图 5d) 和 被用于免疫细胞化学在人类样本上 (图 7a). Front Mol Neurosci (2017) ncbi
domestic rabbit 单克隆(Y188)
  • 免疫印迹; 小鼠; 图 5b
艾博抗(上海)贸易有限公司 Abeta抗体(Abcam, ab32136)被用于被用于免疫印迹在小鼠样本上 (图 5b). Sci Rep (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 4a
艾博抗(上海)贸易有限公司 Abeta抗体(Abcam, ab15272)被用于被用于免疫印迹在人类样本上 (图 4a). elife (2017) ncbi
domestic rabbit 单克隆(Y188)
  • 免疫组化基因敲除验证; 小鼠; 图 1e
  • 免疫印迹基因敲除验证; 小鼠; 图 2
  • 免疫组化-自由浮动切片; 小鼠; 图 1d
  • 免疫印迹; 小鼠; 图 2
艾博抗(上海)贸易有限公司 Abeta抗体(Epitomics, ab32136)被用于被用于免疫组化基因敲除验证在小鼠样本上 (图 1e), 被用于免疫印迹基因敲除验证在小鼠样本上 (图 2), 被用于免疫组化-自由浮动切片在小鼠样本上 (图 1d) 和 被用于免疫印迹在小鼠样本上 (图 2). Front Mol Neurosci (2016) ncbi
domestic rabbit 单克隆(Y188)
  • 免疫细胞化学; 人类; 1:200; 图 1a
艾博抗(上海)贸易有限公司 Abeta抗体(Abcam, ab32136)被用于被用于免疫细胞化学在人类样本上浓度为1:200 (图 1a). Cell Rep (2016) ncbi
domestic rabbit 单克隆(Y188)
  • 免疫印迹; 人类; 1:1000; 图 3
艾博抗(上海)贸易有限公司 Abeta抗体(Abcam, ab32136)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3). PLoS ONE (2016) ncbi
domestic rabbit 单克隆(Y188)
  • 免疫组化-石蜡切片; 大鼠; 1:100; 图 4
  • 免疫印迹; 大鼠; 1:1000; 图 3
艾博抗(上海)贸易有限公司 Abeta抗体(Abcam, ab32136)被用于被用于免疫组化-石蜡切片在大鼠样本上浓度为1:100 (图 4) 和 被用于免疫印迹在大鼠样本上浓度为1:1000 (图 3). Neural Regen Res (2016) ncbi
domestic rabbit 单克隆(Y188)
艾博抗(上海)贸易有限公司 Abeta抗体(Abcam, ab32136)被用于. PLoS ONE (2016) ncbi
domestic rabbit 单克隆(Y188)
  • 免疫印迹; 人类; 1:4000; 图 1
艾博抗(上海)贸易有限公司 Abeta抗体(Abcam, ab32136)被用于被用于免疫印迹在人类样本上浓度为1:4000 (图 1). EMBO Mol Med (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 大鼠; 1:1000; 图 2
艾博抗(上海)贸易有限公司 Abeta抗体(Abcam, ab2072)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 2). Neuropharmacology (2016) ncbi
domestic rabbit 单克隆(Y188)
  • 免疫细胞化学; 小鼠; 图 3a
艾博抗(上海)贸易有限公司 Abeta抗体(Abcam, ab32136)被用于被用于免疫细胞化学在小鼠样本上 (图 3a). Nat Neurosci (2016) ncbi
domestic rabbit 单克隆(Y188)
  • 免疫印迹; 大鼠; 1:5000
艾博抗(上海)贸易有限公司 Abeta抗体(Abcam, ab32136)被用于被用于免疫印迹在大鼠样本上浓度为1:5000. J Neurochem (2015) ncbi
小鼠 单克隆(BDI350)
  • 免疫印迹; 小鼠
艾博抗(上海)贸易有限公司 Abeta抗体(Abcam, ab20068)被用于被用于免疫印迹在小鼠样本上. J Inorg Biochem (2015) ncbi
domestic rabbit 单克隆(Y188)
  • 免疫组化; 小鼠; 1:1000
艾博抗(上海)贸易有限公司 Abeta抗体(Abcam, ab32136)被用于被用于免疫组化在小鼠样本上浓度为1:1000. J Neuroimmunol (2015) ncbi
domestic rabbit 单克隆(Y188)
  • 免疫组化; 小鼠; 图 3c
  • 免疫印迹; 小鼠; 1:1000; 图 3a
艾博抗(上海)贸易有限公司 Abeta抗体(Abcam, Ab32136)被用于被用于免疫组化在小鼠样本上 (图 3c) 和 被用于免疫印迹在小鼠样本上浓度为1:1000 (图 3a). PLoS ONE (2015) ncbi
domestic rabbit 单克隆(Y188)
  • 酶联免疫吸附测定; 人类; 表 4
  • 免疫印迹; 人类; 表 4
  • 免疫印迹; 小鼠; 表 3
艾博抗(上海)贸易有限公司 Abeta抗体(Abcam, ab32136)被用于被用于酶联免疫吸附测定在人类样本上 (表 4), 被用于免疫印迹在人类样本上 (表 4) 和 被用于免疫印迹在小鼠样本上 (表 3). Biogerontology (2015) ncbi
domestic rabbit 单克隆(Y188)
  • 免疫组化-石蜡切片; 小鼠
  • 免疫沉淀; 小鼠
  • 免疫印迹; 小鼠
艾博抗(上海)贸易有限公司 Abeta抗体(Abcam, Y188)被用于被用于免疫组化-石蜡切片在小鼠样本上, 被用于免疫沉淀在小鼠样本上 和 被用于免疫印迹在小鼠样本上. Front Cell Neurosci (2015) ncbi
domestic rabbit 单克隆(Y188)
  • 免疫印迹; 小鼠; 1:1000
艾博抗(上海)贸易有限公司 Abeta抗体(Abcam, ab32136)被用于被用于免疫印迹在小鼠样本上浓度为1:1000. PLoS ONE (2015) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 大鼠; 1:1000
艾博抗(上海)贸易有限公司 Abeta抗体(Abcam, ab15272)被用于被用于免疫印迹在大鼠样本上浓度为1:1000. Mol Neurobiol (2016) ncbi
domestic rabbit 单克隆(Y188)
  • 免疫细胞化学; 人类
艾博抗(上海)贸易有限公司 Abeta抗体(Abcam, Y188)被用于被用于免疫细胞化学在人类样本上. J Biol Chem (2014) ncbi
domestic rabbit 单克隆(Y188)
  • 免疫印迹; 小鼠
艾博抗(上海)贸易有限公司 Abeta抗体(Abcam, Y188)被用于被用于免疫印迹在小鼠样本上. J Neurosci (2014) ncbi
赛默飞世尔
小鼠 单克隆(22C11)
  • 免疫印迹; 人类; 1:5000; 图 s4b
赛默飞世尔 Abeta抗体(Thermo Fisher, 22C11)被用于被用于免疫印迹在人类样本上浓度为1:5000 (图 s4b). Cell Mol Life Sci (2022) ncbi
domestic rabbit 多克隆(CT695)
  • 免疫印迹基因敲除验证; 小鼠; 1:250; 图 s1
赛默飞世尔 Abeta抗体(Invitrogen, 51-2700)被用于被用于免疫印迹基因敲除验证在小鼠样本上浓度为1:250 (图 s1). Aging (Albany NY) (2021) ncbi
domestic rabbit 多克隆(CT695)
  • 免疫印迹; 人类
赛默飞世尔 Abeta抗体(Invitrogen, 51-2700)被用于被用于免疫印迹在人类样本上. Acta Neuropathol Commun (2021) ncbi
domestic rabbit 多克隆(CT695)
  • 免疫组化; 小鼠; ; 图 3b
赛默飞世尔 Abeta抗体(hermoFisher, 51-2700)被用于被用于免疫组化在小鼠样本上浓度为 (图 3b). Acta Neuropathol Commun (2021) ncbi
domestic rabbit 重组(H31L21)
  • 免疫组化-冰冻切片; 小鼠; 1:1000; 图 6d
赛默飞世尔 Abeta抗体(Invitrogen, 700254)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:1000 (图 6d). J Alzheimers Dis (2021) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:200; 图 5b
赛默飞世尔 Abeta抗体(Thermo Fischer, PA5-19923)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:200 (图 5b). Sci Adv (2021) ncbi
小鼠 单克隆(22C11)
  • 免疫组化-石蜡切片; 大鼠; 1:250; 图 6a
赛默飞世尔 Abeta抗体(Thermo Fisher, 22C11)被用于被用于免疫组化-石蜡切片在大鼠样本上浓度为1:250 (图 6a). Histochem Cell Biol (2019) ncbi
domestic rabbit 重组(H31L21)
  • 免疫组化-冰冻切片; African green monkey; 1:2500; 图 1d
赛默飞世尔 Abeta抗体(Invitrogen, 700254)被用于被用于免疫组化-冰冻切片在African green monkey样本上浓度为1:2500 (图 1d). Neurobiol Aging (2017) ncbi
domestic rabbit 重组(H31L21)
  • 免疫印迹; 人类; 图 6b
赛默飞世尔 Abeta抗体(Invitrogen, 700254)被用于被用于免疫印迹在人类样本上 (图 6b). PLoS Genet (2017) ncbi
domestic rabbit 重组(H31L21)
  • 免疫组化-自由浮动切片; 小鼠; 1:200; 图 st1
赛默飞世尔 Abeta抗体(Invitrogen, 700254)被用于被用于免疫组化-自由浮动切片在小鼠样本上浓度为1:200 (图 st1). Nat Commun (2017) ncbi
domestic rabbit 多克隆(CT695)
  • 免疫组化-冰冻切片; pigs ; 1:250; 图 1a
赛默飞世尔 Abeta抗体(生活技术, 51-2700)被用于被用于免疫组化-冰冻切片在pigs 样本上浓度为1:250 (图 1a). PLoS ONE (2017) ncbi
domestic rabbit 多克隆(CT695)
  • 免疫组化-自由浮动切片; 小鼠; 图 2e
赛默飞世尔 Abeta抗体(Invitrogen, 51-2700)被用于被用于免疫组化-自由浮动切片在小鼠样本上 (图 2e). Neuroimage (2017) ncbi
domestic rabbit 重组(H31L21)
  • 酶联免疫吸附测定; 人类; 图 1a
赛默飞世尔 Abeta抗体(Invitrogen, H31L21)被用于被用于酶联免疫吸附测定在人类样本上 (图 1a). Brain Inj (2016) ncbi
domestic rabbit 重组(H31L21)
  • dot blot; 小鼠; 1:1000; 图 6a
  • 免疫组化; 小鼠; 1:500; 图 6b
赛默飞世尔 Abeta抗体(Invitrogen, 700254)被用于被用于dot blot在小鼠样本上浓度为1:1000 (图 6a) 和 被用于免疫组化在小鼠样本上浓度为1:500 (图 6b). Autophagy (2017) ncbi
domestic rabbit 多克隆(CT695)
  • 免疫印迹; 人类; 图 3b
赛默飞世尔 Abeta抗体(Invitrogen, 51-2700)被用于被用于免疫印迹在人类样本上 (图 3b). J Neurochem (2016) ncbi
domestic rabbit 多克隆(CT695)
  • 免疫印迹; 小鼠; 图 3a
赛默飞世尔 Abeta抗体(Invitrogen, 51-2700)被用于被用于免疫印迹在小鼠样本上 (图 3a). J Biol Chem (2016) ncbi
domestic rabbit 重组(H31L21)
  • 免疫组化; 小鼠; 图 2a
  • 酶联免疫吸附测定; 小鼠; 图 5a
  • 免疫印迹; 小鼠; 图 1f
赛默飞世尔 Abeta抗体(ThermoFisher, H31L21)被用于被用于免疫组化在小鼠样本上 (图 2a), 被用于酶联免疫吸附测定在小鼠样本上 (图 5a) 和 被用于免疫印迹在小鼠样本上 (图 1f). J Neurosci (2016) ncbi
domestic rabbit 重组(H31L21)
  • 免疫组化; 小鼠; 图 7e
赛默飞世尔 Abeta抗体(生活技术, H31L21)被用于被用于免疫组化在小鼠样本上 (图 7e). Neuroimage (2016) ncbi
domestic rabbit 重组(H31L21)
  • 免疫细胞化学; 小鼠; 1:600; 图 1b
赛默飞世尔 Abeta抗体(ThermoFisher, 700254)被用于被用于免疫细胞化学在小鼠样本上浓度为1:600 (图 1b). Acta Neuropathol (2016) ncbi
domestic rabbit 重组(H31L21)
  • 免疫组化-自由浮动切片; 人类; 1:100; 表 2
赛默飞世尔 Abeta抗体(Invitrogen, 700254)被用于被用于免疫组化-自由浮动切片在人类样本上浓度为1:100 (表 2). Neurobiol Aging (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-自由浮动切片; 小鼠; 1:1000; 图 4
赛默飞世尔 Abeta抗体(Invitrogen, 36-6900)被用于被用于免疫组化-自由浮动切片在小鼠样本上浓度为1:1000 (图 4). Am J Pathol (2016) ncbi
domestic rabbit 多克隆(CT695)
  • 免疫细胞化学; longfin inshore squid; 图 1
赛默飞世尔 Abeta抗体(Invitrogen, 51-C2700)被用于被用于免疫细胞化学在longfin inshore squid样本上 (图 1). PLoS ONE (2016) ncbi
domestic rabbit 多克隆(CT695)
赛默飞世尔 Abeta抗体(Invitrogen, 51-2700)被用于. J Neuroinflammation (2015) ncbi
domestic rabbit 多克隆(CT695)
赛默飞世尔 Abeta抗体(Novex by Life Technologies, 512700)被用于. PLoS ONE (2015) ncbi
domestic rabbit 多克隆(CT695)
赛默飞世尔 Abeta抗体(生活技术, 51-2700)被用于. J Neuroinflammation (2015) ncbi
domestic rabbit 多克隆(CT695)
赛默飞世尔 Abeta抗体(Invitrogen, 512700)被用于. J Neurosci (2015) ncbi
domestic rabbit 多克隆(CT695)
赛默飞世尔 Abeta抗体(Invitrogen, 51-2700)被用于. PLoS ONE (2015) ncbi
domestic rabbit 多克隆
赛默飞世尔 Abeta抗体(Invitrogen, 36-6900)被用于. Cell Rep (2015) ncbi
domestic rabbit 多克隆(CT695)
赛默飞世尔 Abeta抗体(Invitrogen, 51-2700)被用于. Exp Neurol (2015) ncbi
domestic rabbit 重组(H31L21)
  • 免疫组化-冰冻切片; 小鼠
赛默飞世尔 Abeta抗体(Invitrogen, H31L21)被用于被用于免疫组化-冰冻切片在小鼠样本上. J Neurosci (2015) ncbi
domestic rabbit 多克隆(CT695)
赛默飞世尔 Abeta抗体(Invitrogen, 51-2700)被用于. J Neurosci Methods (2015) ncbi
domestic rabbit 多克隆(CT695)
赛默飞世尔 Abeta抗体(Invitrogen, 51-2700)被用于. Acta Neuropathol (2015) ncbi
domestic rabbit 重组(H31L21)
  • 免疫组化-石蜡切片; 人类; 图 4
赛默飞世尔 Abeta抗体(Invitrogen, 700254)被用于被用于免疫组化-石蜡切片在人类样本上 (图 4). J Neuropathol Exp Neurol (2015) ncbi
domestic rabbit 重组(H31L21)
  • 酶联免疫吸附测定; 小鼠; 图 3
  • 免疫印迹; 小鼠; 1:2500; 图 2
赛默飞世尔 Abeta抗体(Invitrogen, 700254)被用于被用于酶联免疫吸附测定在小鼠样本上 (图 3) 和 被用于免疫印迹在小鼠样本上浓度为1:2500 (图 2). Mol Neurodegener (2015) ncbi
domestic rabbit 多克隆(CT695)
赛默飞世尔 Abeta抗体(Invitrogen, 51-2700)被用于. Acta Neuropathol (2015) ncbi
domestic rabbit 多克隆(CT695)
赛默飞世尔 Abeta抗体(生活技术, 51-2700)被用于. J Neurotrauma (2015) ncbi
domestic rabbit 多克隆(CT695)
赛默飞世尔 Abeta抗体(生活技术, 51-2700)被用于. Cereb Cortex (2015) ncbi
domestic rabbit 重组(H31L21)
  • 免疫细胞化学; 人类; 1:2000
赛默飞世尔 Abeta抗体(Invitrogen, 700254)被用于被用于免疫细胞化学在人类样本上浓度为1:2000. Nat Commun (2014) ncbi
domestic rabbit 重组(H31L21)
  • 免疫组化-冰冻切片; 小鼠; 1:500
赛默飞世尔 Abeta抗体(Invitrogen, 700254)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:500. J Neurotrauma (2014) ncbi
domestic rabbit 重组(H31L21)
  • 免疫细胞化学; 人类
  • 免疫印迹; 人类
赛默飞世尔 Abeta抗体(Invitrogen, 700254)被用于被用于免疫细胞化学在人类样本上 和 被用于免疫印迹在人类样本上. Mol Neurodegener (2013) ncbi
domestic rabbit 重组(H31L21)
  • 免疫印迹; 人类; 1:2500
赛默飞世尔 Abeta抗体(Invitrogen, 700254)被用于被用于免疫印迹在人类样本上浓度为1:2500. Curr Alzheimer Res (2013) ncbi
domestic rabbit 重组(H31L21)
  • 酶联免疫吸附测定; 人类; 0.1 ug/ml
赛默飞世尔 Abeta抗体(Invitrogen, H31L21)被用于被用于酶联免疫吸附测定在人类样本上浓度为0.1 ug/ml. PLoS ONE (2011) ncbi
圣克鲁斯生物技术
小鼠 单克隆(B-4)
  • 免疫印迹; 人类; 1:1000
圣克鲁斯生物技术 Abeta抗体(Santa Cruz, SC-28365)被用于被用于免疫印迹在人类样本上浓度为1:1000. Nat Commun (2021) ncbi
小鼠 单克隆(B-4)
  • 免疫印迹; 大鼠; 1:200; 图 5a
圣克鲁斯生物技术 Abeta抗体(Santa Cruz Biotechnology, sc-28365)被用于被用于免疫印迹在大鼠样本上浓度为1:200 (图 5a). Neuropharmacology (2019) ncbi
小鼠 单克隆(B-4)
  • 免疫印迹; 大鼠; 图 5
圣克鲁斯生物技术 Abeta抗体(Santa Cruz, SC-28365)被用于被用于免疫印迹在大鼠样本上 (图 5). Neural Plast (2016) ncbi
小鼠 单克隆(B-4)
  • proximity ligation assay; 小鼠; 2 ug/ml; 图 5
  • 免疫印迹; 小鼠; 1 ug/ml; 图 8
圣克鲁斯生物技术 Abeta抗体(Santa Cruz, sc-28365)被用于被用于proximity ligation assay在小鼠样本上浓度为2 ug/ml (图 5) 和 被用于免疫印迹在小鼠样本上浓度为1 ug/ml (图 8). Nat Commun (2015) ncbi
Synaptic Systems
小鼠 单克隆(80C2)
  • 免疫组化-石蜡切片; 小鼠; 1:1000; 图 4a
Synaptic Systems Abeta抗体(Synaptic Systems, 218231)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:1000 (图 4a). Cell Mol Life Sci (2022) ncbi
小鼠 单克隆(88B12)
  • 免疫印迹; 小鼠; 1:500; 图 4a
Synaptic Systems Abeta抗体(Synaptic Systems, 218711)被用于被用于免疫印迹在小鼠样本上浓度为1:500 (图 4a). Neurobiol Learn Mem (2019) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 人类; 图 2
Synaptic Systems Abeta抗体(Synaptic Systems, 218703)被用于被用于免疫组化-石蜡切片在人类样本上 (图 2). Acta Neuropathol Commun (2016) ncbi
Novus Biologicals
小鼠 单克隆(MOAB-2)
  • 免疫组化-自由浮动切片; 小鼠; 1:1000; 图 1a
Novus Biologicals Abeta抗体(Novus, NBP2-13075)被用于被用于免疫组化-自由浮动切片在小鼠样本上浓度为1:1000 (图 1a). Mol Neurodegener (2022) ncbi
赛信通(上海)生物试剂有限公司
domestic rabbit 单克隆(D12B2)
  • 免疫组化-石蜡切片; 小鼠; 1:500; 图 4g
赛信通(上海)生物试剂有限公司 Abeta抗体(Cell Signaling, 9888)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:500 (图 4g). Int J Mol Sci (2022) ncbi
domestic rabbit 单克隆(D9A3A)
  • 免疫印迹; 小鼠; 1:100; 图 3a
赛信通(上海)生物试剂有限公司 Abeta抗体(Cell Signaling Technology, 14974)被用于被用于免疫印迹在小鼠样本上浓度为1:100 (图 3a). Sci Adv (2022) ncbi
domestic rabbit 单克隆(D54D2)
  • 免疫组化; 小鼠; 1:500; 图 4c
赛信通(上海)生物试剂有限公司 Abeta抗体(Cell Signaling Technologies, 8243S)被用于被用于免疫组化在小鼠样本上浓度为1:500 (图 4c). J Biol Chem (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 s3e
赛信通(上海)生物试剂有限公司 Abeta抗体(Cell Signaling Technology, 2452)被用于被用于免疫印迹在小鼠样本上 (图 s3e). Sci Adv (2021) ncbi
domestic rabbit 单克隆(D54D2)
  • 免疫组化-自由浮动切片; 小鼠; 1:400; 图 4e
赛信通(上海)生物试剂有限公司 Abeta抗体(Cell Signaling Technology, 8243S)被用于被用于免疫组化-自由浮动切片在小鼠样本上浓度为1:400 (图 4e). Sci Adv (2021) ncbi
domestic rabbit 单克隆(D54D2)
  • 免疫组化; 小鼠; 图 s3b
赛信通(上海)生物试剂有限公司 Abeta抗体(Cell signaling, 8243)被用于被用于免疫组化在小鼠样本上 (图 s3b). Alzheimers Res Ther (2021) ncbi
domestic rabbit 单克隆(D54D2)
  • 免疫印迹; 小鼠; 图 3e
赛信通(上海)生物试剂有限公司 Abeta抗体(Cell Signaling, 8243)被用于被用于免疫印迹在小鼠样本上 (图 3e). Front Cell Neurosci (2020) ncbi
domestic rabbit 单克隆(D54D2)
  • 免疫组化-石蜡切片; 人类; 1:2000; 图 s7b
赛信通(上海)生物试剂有限公司 Abeta抗体(Cell Signaling, D54D2)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:2000 (图 s7b). Nature (2020) ncbi
domestic rabbit 多克隆
  • 免疫组化; 人类; 1:300; 图 1a
  • 免疫印迹; 人类; 图 1dd-1
赛信通(上海)生物试剂有限公司 Abeta抗体(Cell Signaling Technology, 2452S)被用于被用于免疫组化在人类样本上浓度为1:300 (图 1a) 和 被用于免疫印迹在人类样本上 (图 1dd-1). Int J Mol Med (2019) ncbi
domestic rabbit 单克隆(D54D2)
  • 免疫组化-石蜡切片; 人类; 1:100; 图 1a
赛信通(上海)生物试剂有限公司 Abeta抗体(细胞SIGNALING, 8243s)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100 (图 1a). Front Neurosci (2019) ncbi
domestic rabbit 单克隆(D54D2)
  • 免疫组化; 人类; 1:500
赛信通(上海)生物试剂有限公司 Abeta抗体(Cell Signaling Technology, 8243)被用于被用于免疫组化在人类样本上浓度为1:500. Nature (2019) ncbi
domestic rabbit 单克隆(D54D2)
  • 免疫组化-自由浮动切片; 小鼠; 图 3c
赛信通(上海)生物试剂有限公司 Abeta抗体(Cell Signaling Technology, 8243)被用于被用于免疫组化-自由浮动切片在小鼠样本上 (图 3c). Cell (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 3e
赛信通(上海)生物试剂有限公司 Abeta抗体(Cell Signaling Technology, 2452)被用于被用于免疫印迹在小鼠样本上 (图 3e). Sci Adv (2019) ncbi
domestic rabbit 单克隆(D9A3A)
  • 其他; 大鼠; 1:200; 图 5d
赛信通(上海)生物试剂有限公司 Abeta抗体(Cell Signaling Technology, 14974)被用于被用于其他在大鼠样本上浓度为1:200 (图 5d). Neuropharmacology (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 6b
赛信通(上海)生物试剂有限公司 Abeta抗体(Cell Signaling Technology, 2452S)被用于被用于免疫印迹在小鼠样本上 (图 6b). Neurotherapeutics (2018) ncbi
domestic rabbit 单克隆(D9A3A)
  • 免疫印迹; 小鼠; 1:1000; 图 3a
赛信通(上海)生物试剂有限公司 Abeta抗体(Cell signaling, 14974)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 3a). Front Pharmacol (2017) ncbi
domestic rabbit 单克隆(D90B8)
  • 免疫印迹; 小鼠; 图 5
赛信通(上海)生物试剂有限公司 Abeta抗体(cell signalling, 6986)被用于被用于免疫印迹在小鼠样本上 (图 5). Int J Mol Med (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 4
赛信通(上海)生物试剂有限公司 Abeta抗体(Cell Signaling, 2452)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 4). Dis Model Mech (2016) ncbi
domestic rabbit 单克隆(D54D2)
  • 免疫细胞化学; 小鼠; 1:250
赛信通(上海)生物试剂有限公司 Abeta抗体(Cell Signaling, 8243)被用于被用于免疫细胞化学在小鼠样本上浓度为1:250. Acta Neuropathol Commun (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 1
赛信通(上海)生物试剂有限公司 Abeta抗体(Cell signaling, 2452)被用于被用于免疫印迹在小鼠样本上 (图 1). Metab Brain Dis (2016) ncbi
domestic rabbit 单克隆(D54D2)
  • 免疫印迹; 人类; 1:4000; 图 4
  • 免疫组化-石蜡切片; 小鼠; 1:1000; 图 4
  • 免疫印迹; 小鼠; 1:4000; 图 4
赛信通(上海)生物试剂有限公司 Abeta抗体(Cell signaling, 8243)被用于被用于免疫印迹在人类样本上浓度为1:4000 (图 4), 被用于免疫组化-石蜡切片在小鼠样本上浓度为1:1000 (图 4) 和 被用于免疫印迹在小鼠样本上浓度为1:4000 (图 4). Nat Commun (2016) ncbi
domestic rabbit 单克隆(D5Y9L)
  • 免疫组化-石蜡切片; 人类; 图 1
赛信通(上海)生物试剂有限公司 Abeta抗体(Cell signaling, 12077)被用于被用于免疫组化-石蜡切片在人类样本上 (图 1). Acta Neuropathol Commun (2016) ncbi
domestic rabbit 单克隆(D2A6H)
  • 免疫组化-石蜡切片; 人类; 图 1
赛信通(上海)生物试剂有限公司 Abeta抗体(Cell signaling, 12467)被用于被用于免疫组化-石蜡切片在人类样本上 (图 1). Acta Neuropathol Commun (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 表 1
赛信通(上海)生物试剂有限公司 Abeta抗体(CST, 2452)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (表 1). J Alzheimers Dis (2016) ncbi
domestic rabbit 单克隆(D9A3A)
  • 免疫组化-冰冻切片; 小鼠; 图 5
赛信通(上海)生物试剂有限公司 Abeta抗体(Cell Signaling, 14974)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 5). J Neurosci (2016) ncbi
domestic rabbit 单克隆(D54D2)
  • 免疫印迹; 小鼠; 1:1000
赛信通(上海)生物试剂有限公司 Abeta抗体(Cell Signaling, 8243)被用于被用于免疫印迹在小鼠样本上浓度为1:1000. Proc Natl Acad Sci U S A (2015) ncbi
domestic rabbit 单克隆(D54D2)
  • 免疫印迹; 人类; 1:200; 图 7
赛信通(上海)生物试剂有限公司 Abeta抗体(Cell Signaling Technology, 8243)被用于被用于免疫印迹在人类样本上浓度为1:200 (图 7). Nat Neurosci (2015) ncbi
domestic rabbit 单克隆(D54D2)
  • 免疫印迹; 人类; 1:1000
赛信通(上海)生物试剂有限公司 Abeta抗体(Cell Signaling, #8243)被用于被用于免疫印迹在人类样本上浓度为1:1000. Neurosci Res (2015) ncbi
domestic rabbit 单克隆(D2A6H)
  • 酶联免疫吸附测定; 人类
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 Abeta抗体(Cell Signaling, 12356BF)被用于被用于酶联免疫吸附测定在人类样本上 和 被用于免疫印迹在人类样本上. Int J Alzheimers Dis (2014) ncbi
西格玛奥德里奇
domestic rabbit 多克隆
  • 免疫印迹; 小鼠
西格玛奥德里奇 Abeta抗体(Sigma, A3356)被用于被用于免疫印迹在小鼠样本上. Cell Death Discov (2020) ncbi
文章列表
  1. O Shea T, Ao Y, Wang S, Wollenberg A, Kim J, Ramos Espinoza R, et al. Lesion environments direct transplanted neural progenitors towards a wound repair astroglial phenotype in mice. Nat Commun. 2022;13:5702 pubmed 出版商
  2. Rangan P, Lobo F, Parrella E, Rochette N, Morselli M, Stephen T, et al. Fasting-mimicking diet cycles reduce neuroinflammation to attenuate cognitive decline in Alzheimer's models. Cell Rep. 2022;40:111417 pubmed 出版商
  3. Welch G, Boix C, Schmauch E, Davila Velderrain J, Victor M, Dileep V, et al. Neurons burdened by DNA double-strand breaks incite microglia activation through antiviral-like signaling in neurodegeneration. Sci Adv. 2022;8:eabo4662 pubmed 出版商
  4. Wuli W, Lin S, Chen S, Tannous B, Huang W, Woon P, et al. Targeting PSEN1 by lnc-CYP3A43-2/miR-29b-2-5p to Reduce β Amyloid Plaque Formation and Improve Cognition Function. Int J Mol Sci. 2022;23: pubmed 出版商
  5. Shi H, Yin Z, Koronyo Y, Fuchs D, Sheyn J, Davis M, et al. Regulating microglial miR-155 transcriptional phenotype alleviates Alzheimer's-induced retinal vasculopathy by limiting Clec7a/Galectin-3+ neurodegenerative microglia. Acta Neuropathol Commun. 2022;10:136 pubmed 出版商
  6. Singh N, Das B, Zhou J, Hu X, Yan R. Targeted BACE-1 inhibition in microglia enhances amyloid clearance and improved cognitive performance. Sci Adv. 2022;8:eabo3610 pubmed 出版商
  7. Puntambekar S, Moutinho M, Lin P, Jadhav V, Tumbleson Brink D, Balaji A, et al. CX3CR1 deficiency aggravates amyloid driven neuronal pathology and cognitive decline in Alzheimer's disease. Mol Neurodegener. 2022;17:47 pubmed 出版商
  8. Rauskolb S, Andreska T, Fries S, von Collenberg C, Blum R, Monoranu C, et al. Insulin-like growth factor 5 associates with human Aß plaques and promotes cognitive impairment. Acta Neuropathol Commun. 2022;10:68 pubmed 出版商
  9. Drummond E, Kavanagh T, Pires G, Martá Ariza M, Kanshin E, Nayak S, et al. The amyloid plaque proteome in early onset Alzheimer's disease and Down syndrome. Acta Neuropathol Commun. 2022;10:53 pubmed 出版商
  10. Han X, Wang C, Song L, Wang X, Tang S, Hou T, et al. KIBRA regulates amyloid β metabolism by controlling extracellular vesicles secretion. EBioMedicine. 2022;78:103980 pubmed 出版商
  11. Marino M, Zhou L, Rincon M, Callaerts Vegh Z, Verhaert J, Wahis J, et al. AAV-mediated delivery of an anti-BACE1 VHH alleviates pathology in an Alzheimer's disease model. EMBO Mol Med. 2022;14:e09824 pubmed 出版商
  12. Marengo L, Armbrust F, Schoenherr C, Storck S, Schmitt U, Zampar S, et al. Meprin β knockout reduces brain Aβ levels and rescues learning and memory impairments in the APP/lon mouse model for Alzheimer's disease. Cell Mol Life Sci. 2022;79:168 pubmed 出版商
  13. Liu Y, Hu P, Zhai S, Feng W, Zhang R, Li Q, et al. Aquaporin 4 deficiency eliminates the beneficial effects of voluntary exercise in a mouse model of Alzheimer's disease. Neural Regen Res. 2022;17:2079-2088 pubmed 出版商
  14. Qureshi Y, Berman D, Marsh S, Klein R, Patel V, Simoes S, et al. The neuronal retromer can regulate both neuronal and microglial phenotypes of Alzheimer's disease. Cell Rep. 2022;38:110262 pubmed 出版商
  15. Sil S, Singh S, Chemparathy D, Chivero E, Gordon L, Buch S. Astrocytes & Astrocyte derived Extracellular Vesicles in Morphine Induced Amyloidopathy: Implications for Cognitive Deficits in Opiate Abusers. Aging Dis. 2021;12:1389-1408 pubmed 出版商
  16. Nies S, Takahashi H, Herber C, Huttner A, Chase A, Strittmatter S. Spreading of Alzheimer tau seeds is enhanced by aging and template matching with limited impact of amyloid-β. J Biol Chem. 2021;297:101159 pubmed 出版商
  17. Luo R, Fan Y, Yang J, Ye M, Zhang D, Guo K, et al. A novel missense variant in ACAA1 contributes to early-onset Alzheimer's disease, impairs lysosomal function, and facilitates amyloid-β pathology and cognitive decline. Signal Transduct Target Ther. 2021;6:325 pubmed 出版商
  18. Lee S, Chen Y, Chien C, Yan Y, Chen H, Chuang H, et al. Three month inhalation exposure to low-level PM2.5 induced brain toxicity in an Alzheimer's disease mouse model. PLoS ONE. 2021;16:e0254587 pubmed 出版商
  19. Cheng J, Dong Y, Ma J, Pan R, Liao Y, Kong X, et al. Microglial Calhm2 regulates neuroinflammation and contributes to Alzheimer's disease pathology. Sci Adv. 2021;7: pubmed 出版商
  20. d Uscio L, Katusic Z. Endothelium-specific deletion of amyloid-β precursor protein exacerbates endothelial dysfunction induced by aging. Aging (Albany NY). 2021;13:19165-19185 pubmed 出版商
  21. Jeong A, Cheng S, Zhong R, Bennett D, Bergo M, Li L. Protein farnesylation is upregulated in Alzheimer's human brains and neuron-specific suppression of farnesyltransferase mitigates pathogenic processes in Alzheimer's model mice. Acta Neuropathol Commun. 2021;9:129 pubmed 出版商
  22. Zhang H, Li J, Ren J, Sun S, Ma S, Zhang W, et al. Single-nucleus transcriptomic landscape of primate hippocampal aging. Protein Cell. 2021;12:695-716 pubmed 出版商
  23. Dá Mesquita S, Herz J, Wall M, Dykstra T, de Lima K, Norris G, et al. Aging-associated deficit in CCR7 is linked to worsened glymphatic function, cognition, neuroinflammation, and β-amyloid pathology. Sci Adv. 2021;7: pubmed 出版商
  24. Bradshaw D, Knutsen A, Korotcov A, Sullivan G, Radomski K, Dardzinski B, et al. Genetic inactivation of SARM1 axon degeneration pathway improves outcome trajectory after experimental traumatic brain injury based on pathological, radiological, and functional measures. Acta Neuropathol Commun. 2021;9:89 pubmed 出版商
  25. Park J, Kam T, Lee S, Park H, Oh Y, Kwon S, et al. Blocking microglial activation of reactive astrocytes is neuroprotective in models of Alzheimer's disease. Acta Neuropathol Commun. 2021;9:78 pubmed 出版商
  26. Hanna R, Flamier A, Barabino A, Bernier G. G-quadruplexes originating from evolutionary conserved L1 elements interfere with neuronal gene expression in Alzheimer's disease. Nat Commun. 2021;12:1828 pubmed 出版商
  27. Hinteregger B, Loeffler T, Flunkert S, Neddens J, Bayer T, Madl T, et al. Metabolic, Phenotypic, and Neuropathological Characterization of the Tg4-42 Mouse Model for Alzheimer's Disease. J Alzheimers Dis. 2021;80:1151-1168 pubmed 出版商
  28. Zarb Y, Sridhar S, Nassiri S, Utz S, Schaffenrath J, Maheshwari U, et al. Microglia control small vessel calcification via TREM2. Sci Adv. 2021;7: pubmed 出版商
  29. Kim W, Watanabe H, Lomoio S, Tesco G. Spatiotemporal processing of neural cell adhesion molecules 1 and 2 by BACE1 in vivo. J Biol Chem. 2021;296:100372 pubmed 出版商
  30. Ma C, Hunt J, Selenica M, Sanneh A, Sandusky Beltran L, Watler M, et al. Arginase 1 Insufficiency Precipitates Amyloid-β Deposition and Hastens Behavioral Impairment in a Mouse Model of Amyloidosis. Front Immunol. 2020;11:582998 pubmed 出版商
  31. Arber C, Lovejoy C, Harris L, Willumsen N, Alatza A, Casey J, et al. Familial Alzheimer's Disease Mutations in PSEN1 Lead to Premature Human Stem Cell Neurogenesis. Cell Rep. 2021;34:108615 pubmed 出版商
  32. Son G, Yoo S, Kang S, Rasheed A, Jung D, Park H, et al. Region-specific amyloid-β accumulation in the olfactory system influences olfactory sensory neuronal dysfunction in 5xFAD mice. Alzheimers Res Ther. 2021;13:4 pubmed 出版商
  33. Zhang X, Gou Y, Zhang Y, Li J, Han K, Xu Y, et al. Hepcidin overexpression in astrocytes alters brain iron metabolism and protects against amyloid-β induced brain damage in mice. Cell Death Discov. 2020;6:113 pubmed 出版商
  34. Lin L, Petralia R, Lake R, Wang Y, Hoffman D. A novel structure associated with aging is augmented in the DPP6-KO mouse brain. Acta Neuropathol Commun. 2020;8:197 pubmed 出版商
  35. Iyaswamy A, Krishnamoorthi S, Liu Y, Song J, Kammala A, Sreenivasmurthy S, et al. Yuan-Hu Zhi Tong Prescription Mitigates Tau Pathology and Alleviates Memory Deficiency in the Preclinical Models of Alzheimer's Disease. Front Pharmacol. 2020;11:584770 pubmed 出版商
  36. Lackie R, Marques Lopes J, Ostapchenko V, Good S, Choy W, van Oosten Hawle P, et al. Increased levels of Stress-inducible phosphoprotein-1 accelerates amyloid-β deposition in a mouse model of Alzheimer's disease. Acta Neuropathol Commun. 2020;8:143 pubmed 出版商
  37. Yilmazer Hanke D, Mayer T, Müller H, Neugebauer H, Abaei A, Scheuerle A, et al. Histological correlates of postmortem ultra-high-resolution single-section MRI in cortical cerebral microinfarcts. Acta Neuropathol Commun. 2020;8:33 pubmed 出版商
  38. Lloyd G, Trejo Lopez J, Xia Y, McFarland K, Lincoln S, Ertekin Taner N, et al. Prominent amyloid plaque pathology and cerebral amyloid angiopathy in APP V717I (London) carrier - phenotypic variability in autosomal dominant Alzheimer's disease. Acta Neuropathol Commun. 2020;8:31 pubmed 出版商
  39. Huang Z, Zhao J, Wang W, Zhou J, Zhang J. Depletion of LncRNA NEAT1 Rescues Mitochondrial Dysfunction Through NEDD4L-Dependent PINK1 Degradation in Animal Models of Alzheimer's Disease. Front Cell Neurosci. 2020;14:28 pubmed 出版商
  40. Honarpisheh P, Reynolds C, Blasco Conesa M, Moruno Manchon J, Putluri N, Bhattacharjee M, et al. Dysregulated Gut Homeostasis Observed Prior to the Accumulation of the Brain Amyloid-β in Tg2576 Mice. Int J Mol Sci. 2020;21: pubmed 出版商
  41. Tang Y, Xu A, Shao S, Zhou Y, Xiong B, Li Z. Electroacupuncture Ameliorates Cognitive Impairment by Inhibiting the JNK Signaling Pathway in a Mouse Model of Alzheimer's Disease. Front Aging Neurosci. 2020;12:23 pubmed 出版商
  42. Tambini M, Norris K, D ADAMIO L. Opposite changes in APP processing and human Aβ levels in rats carrying either a protective or a pathogenic APP mutation. elife. 2020;9: pubmed 出版商
  43. Lundgren J, Vandermeulen L, Sandebring Matton A, Ahmed S, Winblad B, Di Luca M, et al. Proximity ligation assay reveals both pre- and postsynaptic localization of the APP-processing enzymes ADAM10 and BACE1 in rat and human adult brain. BMC Neurosci. 2020;21:6 pubmed 出版商
  44. Oh S, Kim J, Park S, Lee J. Associative Interactions among Zinc, Apolipoprotein E, and Amyloid-β in the Amyloid Pathology. Int J Mol Sci. 2020;21: pubmed 出版商
  45. Yan T, Liang J, Gao J, Wang L, Fujioka H, Zhu X, et al. FAM222A encodes a protein which accumulates in plaques in Alzheimer's disease. Nat Commun. 2020;11:411 pubmed 出版商
  46. Li J, Chiu J, Ramanjulu M, Blass B, Pratico D. A pharmacological chaperone improves memory by reducing Aβ and tau neuropathology in a mouse model with plaques and tangles. Mol Neurodegener. 2020;15:1 pubmed 出版商
  47. Evonuk K, Doyle R, Moseley C, Thornell I, Adler K, Bingaman A, et al. Reduction of AMPA receptor activity on mature oligodendrocytes attenuates loss of myelinated axons in autoimmune neuroinflammation. Sci Adv. 2020;6:eaax5936 pubmed 出版商
  48. Gate D, Saligrama N, Leventhal O, Yang A, Unger M, Middeldorp J, et al. Clonally expanded CD8 T cells patrol the cerebrospinal fluid in Alzheimer's disease. Nature. 2020;577:399-404 pubmed 出版商
  49. Braak H, Del Tredici K. From the Entorhinal Region via the Prosubiculum to the Dentate Fascia: Alzheimer Disease-Related Neurofibrillary Changes in the Temporal Allocortex. J Neuropathol Exp Neurol. 2020;79:163-175 pubmed 出版商
  50. Bhattarai P, Cosacak M, Mashkaryan V, Demir S, Popova S, Govindarajan N, et al. Neuron-glia interaction through Serotonin-BDNF-NGFR axis enables regenerative neurogenesis in Alzheimer's model of adult zebrafish brain. PLoS Biol. 2020;18:e3000585 pubmed 出版商
  51. Smith R, Pawlik D, Nilsson C, Englund E, Hansson O. [18F]Flortaucipir distinguishes Alzheimer's disease from progressive supranuclear palsy pathology in a mixed-pathology case. Acta Neuropathol. 2020;139:411-413 pubmed 出版商
  52. Bergkvist L, Du Z, Elovsson G, Appelqvist H, Itzhaki L, Kumita J, et al. Mapping pathogenic processes contributing to neurodegeneration in Drosophila models of Alzheimer's disease. FEBS Open Bio. 2020;10:338-350 pubmed 出版商
  53. Pires G, McElligott S, Drusinsky S, Halliday G, Potier M, Wisniewski T, et al. Secernin-1 is a novel phosphorylated tau binding protein that accumulates in Alzheimer's disease and not in other tauopathies. Acta Neuropathol Commun. 2019;7:195 pubmed 出版商
  54. Yu L, Boyle P, Dawe R, Bennett D, Arfanakis K, Schneider J. Contribution of TDP and hippocampal sclerosis to hippocampal volume loss in older-old persons. Neurology. 2020;94:e142-e152 pubmed 出版商
  55. Wu X, Chen S, Lu C. Amyloid precursor protein promotes the migration and invasion of breast cancer cells by regulating the MAPK signaling pathway. Int J Mol Med. 2019;: pubmed 出版商
  56. Newell E, Todd B, Luo Z, Evans L, Ferguson P, Bassuk A. A Mouse Model for Juvenile, Lateral Fluid Percussion Brain Injury Reveals Sex-Dependent Differences in Neuroinflammation and Functional Recovery. J Neurotrauma. 2020;37:635-646 pubmed 出版商
  57. Grimaldi A, Pediconi N, Oieni F, Pizzarelli R, Rosito M, Giubettini M, et al. Neuroinflammatory Processes, A1 Astrocyte Activation and Protein Aggregation in the Retina of Alzheimer's Disease Patients, Possible Biomarkers for Early Diagnosis. Front Neurosci. 2019;13:925 pubmed 出版商
  58. Wang Z, Xiang J, Liu X, Yu S, Manfredsson F, Sandoval I, et al. Deficiency in BDNF/TrkB Neurotrophic Activity Stimulates δ-Secretase by Upregulating C/EBPβ in Alzheimer's Disease. Cell Rep. 2019;28:655-669.e5 pubmed 出版商
  59. Mathys H, Davila Velderrain J, Peng Z, Gao F, Mohammadi S, Young J, et al. Single-cell transcriptomic analysis of Alzheimer's disease. Nature. 2019;570:332-337 pubmed 出版商
  60. Adeosun S, Hou X, Shi L, Stockmeier C, Zheng B, Raffai R, et al. Female mice with apolipoprotein E4 domain interaction demonstrated impairments in spatial learning and memory performance and disruption of hippocampal cyto-architecture. Neurobiol Learn Mem. 2019;161:106-114 pubmed 出版商
  61. Martorell A, Paulson A, Suk H, Abdurrob F, Drummond G, Guan W, et al. Multi-sensory Gamma Stimulation Ameliorates Alzheimer's-Associated Pathology and Improves Cognition. Cell. 2019;177:256-271.e22 pubmed 出版商
  62. Mammone T, Chidlow G, Casson R, Wood J. Improved immunohistochemical detection of phosphorylated mitogen-activated protein kinases in the injured rat optic nerve head. Histochem Cell Biol. 2019;151:435-456 pubmed 出版商
  63. Pan R, Ma J, Kong X, Wang X, Li S, Qi X, et al. Sodium rutin ameliorates Alzheimer's disease-like pathology by enhancing microglial amyloid-β clearance. Sci Adv. 2019;5:eaau6328 pubmed 出版商
  64. Dominy S, LYNCH C, Ermini F, Benedyk M, Marczyk A, Konradi A, et al. Porphyromonas gingivalis in Alzheimer's disease brains: Evidence for disease causation and treatment with small-molecule inhibitors. Sci Adv. 2019;5:eaau3333 pubmed 出版商
  65. Pierzynowska K, Podlacha M, Gaffke L, Majkutewicz I, Mantej J, Wegrzyn A, et al. Autophagy-dependent mechanism of genistein-mediated elimination of behavioral and biochemical defects in the rat model of sporadic Alzheimer's disease. Neuropharmacology. 2019;148:332-346 pubmed 出版商
  66. Reichenbach N, Delekate A, Plescher M, Schmitt F, Krauss S, Blank N, et al. Inhibition of Stat3-mediated astrogliosis ameliorates pathology in an Alzheimer's disease model. EMBO Mol Med. 2019;11: pubmed 出版商
  67. Sun J, Carlson Stevermer J, Das U, Shen M, Delenclos M, Snead A, et al. CRISPR/Cas9 editing of APP C-terminus attenuates β-cleavage and promotes α-cleavage. Nat Commun. 2019;10:53 pubmed 出版商
  68. Tan J, Gleeson P. The trans-Golgi network is a major site for α-secretase processing of amyloid precursor protein in primary neurons. J Biol Chem. 2019;294:1618-1631 pubmed 出版商
  69. Thygesen C, Ilkjær L, Kempf S, Hemdrup A, von Linstow C, Babcock A, et al. Diverse Protein Profiles in CNS Myeloid Cells and CNS Tissue From Lipopolysaccharide- and Vehicle-Injected APPSWE/PS1ΔE9 Transgenic Mice Implicate Cathepsin Z in Alzheimer's Disease. Front Cell Neurosci. 2018;12:397 pubmed 出版商
  70. Real R, Peter M, Trabalza A, Khan S, Smith M, Dopp J, et al. In vivo modeling of human neuron dynamics and Down syndrome. Science. 2018;362: pubmed 出版商
  71. Ou Yang M, Kurz J, Nomura T, Popovic J, Rajapaksha T, Dong H, et al. Axonal organization defects in the hippocampus of adult conditional BACE1 knockout mice. Sci Transl Med. 2018;10: pubmed 出版商
  72. Götzl J, Colombo A, Fellerer K, Reifschneider A, Werner G, Tahirovic S, et al. Early lysosomal maturation deficits in microglia triggers enhanced lysosomal activity in other brain cells of progranulin knockout mice. Mol Neurodegener. 2018;13:48 pubmed 出版商
  73. Huang M, Qi W, Fang S, Jiang P, Yang C, Mo Y, et al. Pigment Epithelium-Derived Factor Plays a Role in Alzheimer's Disease by Negatively Regulating Aβ42. Neurotherapeutics. 2018;15:728-741 pubmed 出版商
  74. Reichenbach N, Delekate A, Breithausen B, Keppler K, Poll S, Schulte T, et al. P2Y1 receptor blockade normalizes network dysfunction and cognition in an Alzheimer's disease model. J Exp Med. 2018;215:1649-1663 pubmed 出版商
  75. Wang C, Najm R, Xu Q, Jeong D, Walker D, Balestra M, et al. Gain of toxic apolipoprotein E4 effects in human iPSC-derived neurons is ameliorated by a small-molecule structure corrector. Nat Med. 2018;24:647-657 pubmed 出版商
  76. Casali B, Reed Geaghan E, Landreth G. Nuclear receptor agonist-driven modification of inflammation and amyloid pathology enhances and sustains cognitive improvements in a mouse model of Alzheimer's disease. J Neuroinflammation. 2018;15:43 pubmed 出版商
  77. Ruan C, Liu J, Yang M, Saadipour K, Zeng Y, Liao H, et al. Sortilin inhibits amyloid pathology by regulating non-specific degradation of APP. Exp Neurol. 2018;299:75-85 pubmed 出版商
  78. Edler M, Sherwood C, Meindl R, Hopkins W, Ely J, Erwin J, et al. Aged chimpanzees exhibit pathologic hallmarks of Alzheimer's disease. Neurobiol Aging. 2017;59:107-120 pubmed 出版商
  79. Rocchi A, Yamamoto S, Ting T, Fan Y, SADLEIR K, Wang Y, et al. A Becn1 mutation mediates hyperactive autophagic sequestration of amyloid oligomers and improved cognition in Alzheimer's disease. PLoS Genet. 2017;13:e1006962 pubmed 出版商
  80. Li J, Barrero C, Merali S, Pratico D. Five lipoxygenase hypomethylation mediates the homocysteine effect on Alzheimer's phenotype. Sci Rep. 2017;7:46002 pubmed 出版商
  81. Latina V, Caioli S, Zona C, Ciotti M, Amadoro G, Calissano P. Impaired NGF/TrkA Signaling Causes Early AD-Linked Presynaptic Dysfunction in Cholinergic Primary Neurons. Front Cell Neurosci. 2017;11:68 pubmed 出版商
  82. Poulsen E, Iannuzzi F, Rasmussen H, Maier T, Enghild J, Jørgensen A, et al. An Aberrant Phosphorylation of Amyloid Precursor Protein Tyrosine Regulates Its Trafficking and the Binding to the Clathrin Endocytic Complex in Neural Stem Cells of Alzheimer's Disease Patients. Front Mol Neurosci. 2017;10:59 pubmed 出版商
  83. Yan L, Deng Y, Gao J, Liu Y, Li F, Shi J, et al. Icariside II Effectively Reduces Spatial Learning and Memory Impairments in Alzheimer's Disease Model Mice Targeting Beta-Amyloid Production. Front Pharmacol. 2017;8:106 pubmed 出版商
  84. Klementieva O, Willén K, Martinsson I, Israelsson B, Engdahl A, Cladera J, et al. Pre-plaque conformational changes in Alzheimer's disease-linked Aβ and APP. Nat Commun. 2017;8:14726 pubmed 出版商
  85. Vienken H, Mabrouki N, Grabau K, Claas R, Rudowski A, Schömel N, et al. Characterization of cholesterol homeostasis in sphingosine-1-phosphate lyase-deficient fibroblasts reveals a Niemann-Pick disease type C-like phenotype with enhanced lysosomal Ca2+ storage. Sci Rep. 2017;7:43575 pubmed 出版商
  86. Canu N, Pagano I, La Rosa L, Pellegrino M, Ciotti M, Mercanti D, et al. Association of TrkA and APP Is Promoted by NGF and Reduced by Cell Death-Promoting Agents. Front Mol Neurosci. 2017;10:15 pubmed 出版商
  87. Kallakuri S, Desai A, Feng K, Tummala S, Saif T, Chen C, et al. Neuronal Injury and Glial Changes Are Hallmarks of Open Field Blast Exposure in Swine Frontal Lobe. PLoS ONE. 2017;12:e0169239 pubmed 出版商
  88. Guillot Sestier M, Weitz T, Town T. Quantitative 3D In Silico Modeling (q3DISM) of Cerebral Amyloid-beta Phagocytosis in Rodent Models of Alzheimer's Disease. J Vis Exp. 2016;: pubmed 出版商
  89. Chen M, Wang J, Jiang J, Zheng X, Justice N, Wang K, et al. APP modulates KCC2 expression and function in hippocampal GABAergic inhibition. elife. 2017;6: pubmed 出版商
  90. Park T, Ryu Y, Park H, Kim J, Go J, Noh J, et al. Humulus japonicus inhibits the progression of Alzheimer's disease in a APP/PS1 transgenic mouse model. Int J Mol Med. 2017;39:21-30 pubmed 出版商
  91. Del Turco D, Paul M, Schlaudraff J, Hick M, Endres K, Müller U, et al. Region-Specific Differences in Amyloid Precursor Protein Expression in the Mouse Hippocampus. Front Mol Neurosci. 2016;9:134 pubmed
  92. Hübner N, Mechling A, Lee H, Reisert M, Bienert T, Hennig J, et al. The connectomics of brain demyelination: Functional and structural patterns in the cuprizone mouse model. Neuroimage. 2017;146:1-18 pubmed 出版商
  93. Lejbman N, OLIVERA A, Heinzelmann M, Feng R, Yun S, Kim H, et al. Active duty service members who sustain a traumatic brain injury have chronically elevated peripheral concentrations of A?40 and lower ratios of A?42/40. Brain Inj. 2016;30:1436-1441 pubmed
  94. Noy S, Krawitz S, Del Bigio M. Chronic Traumatic Encephalopathy-Like Abnormalities in a Routine Neuropathology Service. J Neuropathol Exp Neurol. 2016;75:1145-1154 pubmed 出版商
  95. Fan Y, Wang N, Rocchi A, Zhang W, Vassar R, Zhou Y, et al. Identification of natural products with neuronal and metabolic benefits through autophagy induction. Autophagy. 2017;13:41-56 pubmed 出版商
  96. Tapia Rojas C, Burgos P, Inestrosa N. Inhibition of Wnt signaling induces amyloidogenic processing of amyloid precursor protein and the production and aggregation of Amyloid-? (A?)42 peptides. J Neurochem. 2016;139:1175-1191 pubmed 出版商
  97. Woodruff G, Reyna S, Dunlap M, van der Kant R, Callender J, Young J, et al. Defective Transcytosis of APP and Lipoproteins in Human iPSC-Derived Neurons with Familial Alzheimer's Disease Mutations. Cell Rep. 2016;17:759-773 pubmed 出版商
  98. Qin X, Wang Y, Paudel H. Early Growth Response 1 (Egr-1) Is a Transcriptional Activator of ?-Secretase 1 (BACE-1) in the Brain. J Biol Chem. 2016;291:22276-22287 pubmed
  99. Steffen J, Krohn M, Paarmann K, Schwitlick C, Brüning T, Marreiros R, et al. Revisiting rodent models: Octodon degus as Alzheimer's disease model?. Acta Neuropathol Commun. 2016;4:91 pubmed 出版商
  100. Manousopoulou A, Gatherer M, Smith C, Nicoll J, Woelk C, Johnson M, et al. Systems proteomic analysis reveals that clusterin and tissue inhibitor of metalloproteinases 3 increase in leptomeningeal arteries affected by cerebral amyloid angiopathy. Neuropathol Appl Neurobiol. 2017;43:492-504 pubmed 出版商
  101. Dinkins M, Enasko J, Hernandez C, Wang G, Kong J, Helwa I, et al. Neutral Sphingomyelinase-2 Deficiency Ameliorates Alzheimer's Disease Pathology and Improves Cognition in the 5XFAD Mouse. J Neurosci. 2016;36:8653-67 pubmed 出版商
  102. Badea A, Kane L, Anderson R, Qi Y, Foster M, Cofer G, et al. The fornix provides multiple biomarkers to characterize circuit disruption in a mouse model of Alzheimer's disease. Neuroimage. 2016;142:498-511 pubmed 出版商
  103. Manocha G, Floden A, Rausch K, Kulas J, McGregor B, Rojanathammanee L, et al. APP Regulates Microglial Phenotype in a Mouse Model of Alzheimer's Disease. J Neurosci. 2016;36:8471-86 pubmed 出版商
  104. Galambos C, Minic A, Bush D, Nguyen D, Dodson B, Seedorf G, et al. Increased Lung Expression of Anti-Angiogenic Factors in Down Syndrome: Potential Role in Abnormal Lung Vascular Growth and the Risk for Pulmonary Hypertension. PLoS ONE. 2016;11:e0159005 pubmed 出版商
  105. Salta E, Sierksma A, Vanden Eynden E, De Strooper B. miR-132 loss de-represses ITPKB and aggravates amyloid and TAU pathology in Alzheimer's brain. EMBO Mol Med. 2016;8:1005-18 pubmed 出版商
  106. Kim H, Lee K, Kim A, Choi M, Choi K, Kang M, et al. A chemical with proven clinical safety rescues Down-syndrome-related phenotypes in through DYRK1A inhibition. Dis Model Mech. 2016;9:839-48 pubmed 出版商
  107. Zhao Y, Song J, Ma X, Zhang B, Li D, Pang H. Rosiglitazone ameliorates diffuse axonal injury by reducing loss of tau and up-regulating caveolin-1 expression. Neural Regen Res. 2016;11:944-50 pubmed 出版商
  108. Pajares M, Jiménez Moreno N, García Yagüe A, Escoll M, De Ceballos M, Van Leuven F, et al. Transcription factor NFE2L2/NRF2 is a regulator of macroautophagy genes. Autophagy. 2016;12:1902-1916 pubmed
  109. Brai E, Alina Raio N, Alberi L. Notch1 hallmarks fibrillary depositions in sporadic Alzheimer's disease. Acta Neuropathol Commun. 2016;4:64 pubmed 出版商
  110. Shively S, Horkayne Szakaly I, Jones R, Kelly J, Armstrong R, Perl D. Characterisation of interface astroglial scarring in the human brain after blast exposure: a post-mortem case series. Lancet Neurol. 2016;15:944-953 pubmed 出版商
  111. Kumar D, Choi S, Washicosky K, Eimer W, Tucker S, Ghofrani J, et al. Amyloid-β peptide protects against microbial infection in mouse and worm models of Alzheimer's disease. Sci Transl Med. 2016;8:340ra72 pubmed 出版商
  112. Stroh M, Winter M, Swerdlow R, McCarson K, Zhu H. Loss of NCB5OR in the cerebellum disturbs iron pathways, potentiates behavioral abnormalities, and exacerbates harmaline-induced tremor in mice. Metab Brain Dis. 2016;31:951-64 pubmed 出版商
  113. Beck S, Guo L, Phensy A, Tian J, Wang L, Tandon N, et al. Deregulation of mitochondrial F1FO-ATP synthase via OSCP in Alzheimer's disease. Nat Commun. 2016;7:11483 pubmed 出版商
  114. Jang S, Royston S, Lee G, Wang S, Chung H. Seizure-Induced Regulations of Amyloid-?, STEP61, and STEP61 Substrates Involved in Hippocampal Synaptic Plasticity. Neural Plast. 2016;2016:2123748 pubmed 出版商
  115. Yetman M, Fowler S, Jankowsky J. Humanized Tau Mice with Regionalized Amyloid Exhibit Behavioral Deficits but No Pathological Interaction. PLoS ONE. 2016;11:e0153724 pubmed 出版商
  116. Griñan Ferré C, Sarroca S, Ivanova A, Puigoriol Illamola D, Aguado F, Camins A, et al. Epigenetic mechanisms underlying cognitive impairment and Alzheimer disease hallmarks in 5XFAD mice. Aging (Albany NY). 2016;8:664-84 pubmed 出版商
  117. Sadleir K, Kandalepas P, Buggia Prevot V, Nicholson D, Thinakaran G, Vassar R. Presynaptic dystrophic neurites surrounding amyloid plaques are sites of microtubule disruption, BACE1 elevation, and increased Aβ generation in Alzheimer's disease. Acta Neuropathol. 2016;132:235-56 pubmed 出版商
  118. Kretner B, Trambauer J, Fukumori A, Mielke J, Kuhn P, Kremmer E, et al. Generation and deposition of Aβ43 by the virtually inactive presenilin-1 L435F mutant contradicts the presenilin loss-of-function hypothesis of Alzheimer's disease. EMBO Mol Med. 2016;8:458-65 pubmed 出版商
  119. Reinert J, Richard B, Klafki H, Friedrich B, Bayer T, Wiltfang J, et al. Deposition of C-terminally truncated Aβ species Aβ37 and Aβ39 in Alzheimer's disease and transgenic mouse models. Acta Neuropathol Commun. 2016;4:24 pubmed 出版商
  120. Perez S, Sherwood C, Cranfield M, Erwin J, Mudakikwa A, Hof P, et al. Early Alzheimer's disease-type pathology in the frontal cortex of wild mountain gorillas (Gorilla beringei beringei). Neurobiol Aging. 2016;39:195-201 pubmed 出版商
  121. Guillot F, Kemppainen S, Lavasseur G, Miettinen P, Laroche S, Tanila H, et al. Brain-Specific Basal and Novelty-Induced Alternations in PI3K-Akt and MAPK/ERK Signaling in a Middle-Aged AβPP/PS1 Mouse Model of Alzheimer's Disease. J Alzheimers Dis. 2016;51:1157-73 pubmed 出版商
  122. Garcia Ratés S, Morrill P, Tu H, Pottiez G, Badin A, Tormo Garcia C, et al. (I) Pharmacological profiling of a novel modulator of the α7 nicotinic receptor: Blockade of a toxic acetylcholinesterase-derived peptide increased in Alzheimer brains. Neuropharmacology. 2016;105:487-499 pubmed 出版商
  123. Winston C, Noël A, Neustadtl A, Parsadanian M, Barton D, Chellappa D, et al. Dendritic Spine Loss and Chronic White Matter Inflammation in a Mouse Model of Highly Repetitive Head Trauma. Am J Pathol. 2016;186:552-67 pubmed 出版商
  124. Stevenson J, Conaty E, Walsh R, Poidomani P, Samoriski C, Scollins B, et al. The Amyloid Precursor Protein of Alzheimer's Disease Clusters at the Organelle/Microtubule Interface on Organelles that Bind Microtubules in an ATP Dependent Manner. PLoS ONE. 2016;11:e0147808 pubmed 出版商
  125. Lian H, Litvinchuk A, Chiang A, Aithmitti N, Jankowsky J, Zheng H. Astrocyte-Microglia Cross Talk through Complement Activation Modulates Amyloid Pathology in Mouse Models of Alzheimer's Disease. J Neurosci. 2016;36:577-89 pubmed 出版商
  126. Müller Schiffmann A, Herring A, Abdel Hafiz L, Chepkova A, Schäble S, Wedel D, et al. Amyloid-β dimers in the absence of plaque pathology impair learning and synaptic plasticity. Brain. 2016;139:509-25 pubmed 出版商
  127. Das U, Wang L, Ganguly A, Saikia J, Wagner S, Koo E, et al. Visualizing APP and BACE-1 approximation in neurons yields insight into the amyloidogenic pathway. Nat Neurosci. 2016;19:55-64 pubmed 出版商
  128. Gyoneva S, Kim D, Katsumoto A, Kokiko Cochran O, Lamb B, Ransohoff R. Ccr2 deletion dissociates cavity size and tau pathology after mild traumatic brain injury. J Neuroinflammation. 2015;12:228 pubmed 出版商
  129. Leshchyns ka I, Liew H, Shepherd C, Halliday G, Stevens C, Ke Y, et al. Aβ-dependent reduction of NCAM2-mediated synaptic adhesion contributes to synapse loss in Alzheimer's disease. Nat Commun. 2015;6:8836 pubmed 出版商
  130. Tapia Rojas C, Lindsay C, Montecinos Oliva C, Arrázola M, Retamales R, Bunout D, et al. Is L-methionine a trigger factor for Alzheimer's-like neurodegeneration?: Changes in Aβ oligomers, tau phosphorylation, synaptic proteins, Wnt signaling and behavioral impairment in wild-type mice. Mol Neurodegener. 2015;10:62 pubmed 出版商
  131. Xu G, Ran Y, Fromholt S, Fu C, Yachnis A, Golde T, et al. Murine Aβ over-production produces diffuse and compact Alzheimer-type amyloid deposits. Acta Neuropathol Commun. 2015;3:72 pubmed 出版商
  132. Quigley H, Pitha I, Welsbie D, Nguyen C, Steinhart M, Nguyen T, et al. Losartan Treatment Protects Retinal Ganglion Cells and Alters Scleral Remodeling in Experimental Glaucoma. PLoS ONE. 2015;10:e0141137 pubmed 出版商
  133. Miners J, Palmer J, Love S. Pathophysiology of Hypoperfusion of the Precuneus in Early Alzheimer's Disease. Brain Pathol. 2016;26:533-41 pubmed 出版商
  134. Lafrenaye A, Todani M, Walker S, Povlishock J. Microglia processes associate with diffusely injured axons following mild traumatic brain injury in the micro pig. J Neuroinflammation. 2015;12:186 pubmed 出版商
  135. Howell M, Bailey L, Cozart M, Gannon B, Gottschall P. Hippocampal administration of chondroitinase ABC increases plaque-adjacent synaptic marker and diminishes amyloid burden in aged APPswe/PS1dE9 mice. Acta Neuropathol Commun. 2015;3:54 pubmed 出版商
  136. Keable A, Fenna K, Yuen H, Johnston D, Smyth N, Smith C, et al. Deposition of amyloid β in the walls of human leptomeningeal arteries in relation to perivascular drainage pathways in cerebral amyloid angiopathy. Biochim Biophys Acta. 2016;1862:1037-46 pubmed 出版商
  137. Montine T, Monsell S, Beach T, Bigio E, Bu Y, Cairns N, et al. Multisite assessment of NIA-AA guidelines for the neuropathologic evaluation of Alzheimer's disease. Alzheimers Dement. 2016;12:164-169 pubmed 出版商
  138. Rolyan H, Tyurina Y, Hernandez M, Amoscato A, Sparvero L, Nmezi B, et al. Defects of Lipid Synthesis Are Linked to the Age-Dependent Demyelination Caused by Lamin B1 Overexpression. J Neurosci. 2015;35:12002-17 pubmed 出版商
  139. Cavieres V, González A, Muñoz V, Yefi C, Bustamante H, Barraza R, et al. Tetrahydrohyperforin Inhibits the Proteolytic Processing of Amyloid Precursor Protein and Enhances Its Degradation by Atg5-Dependent Autophagy. PLoS ONE. 2015;10:e0136313 pubmed 出版商
  140. Lundgren J, Ahmed S, Schedin Weiss S, Gouras G, Winblad B, Tjernberg L, et al. ADAM10 and BACE1 are localized to synaptic vesicles. J Neurochem. 2015;135:606-15 pubmed 出版商
  141. Owais K, Huang T, Mahmood F, Hubbard J, Saraf R, Bardia A, et al. Cardiopulmonary Bypass Decreases Activation of the Signal Transducer and Activator of Transcription 3 (STAT3) Pathway in Diabetic Human Myocardium. Ann Thorac Surg. 2015;100:1636-45; discussion 1645 pubmed 出版商
  142. Tousseyn T, Bajsarowicz K, Sánchez H, Gheyara A, Oehler A, Geschwind M, et al. Prion Disease Induces Alzheimer Disease-Like Neuropathologic Changes. J Neuropathol Exp Neurol. 2015;74:873-88 pubmed 出版商
  143. Pogue A, Dua P, Hill J, Lukiw W. Progressive inflammatory pathology in the retina of aluminum-fed 5xFAD transgenic mice. J Inorg Biochem. 2015;152:206-9 pubmed 出版商
  144. Alme M, Nystad A, Bø L, Myhr K, Vedeler C, Wergeland S, et al. Fingolimod does not enhance cerebellar remyelination in the cuprizone model. J Neuroimmunol. 2015;285:180-6 pubmed 出版商
  145. Tan X, Xue Y, Ma T, Wang X, Li J, Lan L, et al. Partial eNOS deficiency causes spontaneous thrombotic cerebral infarction, amyloid angiopathy and cognitive impairment. Mol Neurodegener. 2015;10:24 pubmed 出版商
  146. Corbett G, Gonzalez F, Pahan K. Activation of peroxisome proliferator-activated receptor α stimulates ADAM10-mediated proteolysis of APP. Proc Natl Acad Sci U S A. 2015;112:8445-50 pubmed 出版商
  147. Iacono D, Geraci Erck M, Peng H, Rabin M, Kurlan R. Reduced Number of Pigmented Neurons in the Substantia Nigra of Dystonia Patients? Findings from Extensive Neuropathologic, Immunohistochemistry, and Quantitative Analyses. Tremor Other Hyperkinet Mov (N Y). 2015;5: pubmed 出版商
  148. Liu P, Reed M, Kotilinek L, Grant M, Forster C, Qiang W, et al. Quaternary Structure Defines a Large Class of Amyloid-β Oligomers Neutralized by Sequestration. Cell Rep. 2015;11:1760-71 pubmed 出版商
  149. Zhao Z, Sagare A, Ma Q, Halliday M, Kong P, Kisler K, et al. Central role for PICALM in amyloid-β blood-brain barrier transcytosis and clearance. Nat Neurosci. 2015;18:978-87 pubmed 出版商
  150. Bhatt D, Puig K, Gorr M, Wold L, Combs C. A pilot study to assess effects of long-term inhalation of airborne particulate matter on early Alzheimer-like changes in the mouse brain. PLoS ONE. 2015;10:e0127102 pubmed 出版商
  151. Rotman M, Welling M, van den Boogaard M, Moursel L, van der Graaf L, van Buchem M, et al. Fusion of hIgG1-Fc to 111In-anti-amyloid single domain antibody fragment VHH-pa2H prolongs blood residential time in APP/PS1 mice but does not increase brain uptake. Nucl Med Biol. 2015;42:695-702 pubmed 出版商
  152. Del Mar N, von Buttlar X, Yu A, Guley N, Reiner A, Honig M. A novel closed-body model of spinal cord injury caused by high-pressure air blasts produces extensive axonal injury and motor impairments. Exp Neurol. 2015;271:53-71 pubmed 出版商
  153. Plagg B, Marksteiner J, Kniewallner K, Humpel C. Platelet dysfunction in hypercholesterolemia mice, two Alzheimer's disease mouse models and in human patients with Alzheimer's disease. Biogerontology. 2015;16:543-58 pubmed 出版商
  154. La Rosa L, Perrone L, Nielsen M, Calissano P, Andersen O, Matrone C. Y682G Mutation of Amyloid Precursor Protein Promotes Endo-Lysosomal Dysfunction by Disrupting APP-SorLA Interaction. Front Cell Neurosci. 2015;9:109 pubmed 出版商
  155. Hernandez Guillamon M, Mawhirt S, Blais S, Montaner J, Neubert T, Rostagno A, et al. Sequential Amyloid-β Degradation by the Matrix Metalloproteases MMP-2 and MMP-9. J Biol Chem. 2015;290:15078-91 pubmed 出版商
  156. Kan M, Lee J, Wilson J, Everhart A, Brown C, Hoofnagle A, et al. Arginine deprivation and immune suppression in a mouse model of Alzheimer's disease. J Neurosci. 2015;35:5969-82 pubmed 出版商
  157. Hohsfield L, Humpel C. Intravenous infusion of monocytes isolated from 2-week-old mice enhances clearance of Beta-amyloid plaques in an Alzheimer mouse model. PLoS ONE. 2015;10:e0121930 pubmed 出版商
  158. Leinenga G, Götz J. Scanning ultrasound removes amyloid-β and restores memory in an Alzheimer's disease mouse model. Sci Transl Med. 2015;7:278ra33 pubmed 出版商
  159. López González I, Schlüter A, Aso E, Garcia Esparcia P, Ansoleaga B, Llorens F, et al. Neuroinflammatory signals in Alzheimer disease and APP/PS1 transgenic mice: correlations with plaques, tangles, and oligomeric species. J Neuropathol Exp Neurol. 2015;74:319-44 pubmed 出版商
  160. Bennett R, Brody D. Array tomography for the detection of non-dilated, injured axons in traumatic brain injury. J Neurosci Methods. 2015;245:25-36 pubmed 出版商
  161. Jensen M, Arvaniti M, Mikkelsen J, Michalski D, Pinborg L, Härtig W, et al. Prostate stem cell antigen interacts with nicotinic acetylcholine receptors and is affected in Alzheimer's disease. Neurobiol Aging. 2015;36:1629-1638 pubmed 出版商
  162. Vallortigara J, Rangarajan S, Whitfield D, Alghamdi A, Howlett D, Hortobágyi T, et al. Dynamin1 concentration in the prefrontal cortex is associated with cognitive impairment in Lewy body dementia. F1000Res. 2014;3:108 pubmed 出版商
  163. Porquet D, Andrés Benito P, Griñán Ferré C, Camins A, Ferrer I, Canudas A, et al. Amyloid and tau pathology of familial Alzheimer's disease APP/PS1 mouse model in a senescence phenotype background (SAMP8). Age (Dordr). 2015;37:9747 pubmed 出版商
  164. Cantoni C, Bollman B, Licastro D, Xie M, Mikesell R, Schmidt R, et al. TREM2 regulates microglial cell activation in response to demyelination in vivo. Acta Neuropathol. 2015;129:429-47 pubmed 出版商
  165. Condello C, Yuan P, Schain A, Grutzendler J. Microglia constitute a barrier that prevents neurotoxic protofibrillar Aβ42 hotspots around plaques. Nat Commun. 2015;6:6176 pubmed 出版商
  166. Maurya S, Mishra J, Abbas S, Bandyopadhyay S. Cypermethrin Stimulates GSK3β-Dependent Aβ and p-tau Proteins and Cognitive Loss in Young Rats: Reduced HB-EGF Signaling and Downstream Neuroinflammation as Critical Regulators. Mol Neurobiol. 2016;53:968-82 pubmed 出版商
  167. Postupna N, Keene C, Crane P, Gonzalez Cuyar L, Sonnen J, Hewitt J, et al. Cerebral cortical Aβ42 and PHF-Ï„ in 325 consecutive brain autopsies stratified by diagnosis, location, and APOE. J Neuropathol Exp Neurol. 2015;74:100-9 pubmed 出版商
  168. Sadleir K, Eimer W, Cole S, Vassar R. Aβ reduction in BACE1 heterozygous null 5XFAD mice is associated with transgenic APP level. Mol Neurodegener. 2015;10:1 pubmed 出版商
  169. Ashby E, Miners J, Kumar S, Walter J, Love S, Kehoe P. Investigation of Aβ phosphorylated at serine 8 (pAβ) in Alzheimer's disease, dementia with Lewy bodies and vascular dementia. Neuropathol Appl Neurobiol. 2015;41:428-44 pubmed 出版商
  170. HÃ¥nell A, Greer J, McGinn M, Povlishock J. Traumatic brain injury-induced axonal phenotypes react differently to treatment. Acta Neuropathol. 2015;129:317-32 pubmed 出版商
  171. Kawa L, Arborelius U, Yoshitake T, Kehr J, Hökfelt T, Risling M, et al. Neurotransmitter Systems in a Mild Blast Traumatic Brain Injury Model: Catecholamines and Serotonin. J Neurotrauma. 2015;32:1190-9 pubmed 出版商
  172. Meng P, Yoshida H, Tanji K, Matsumiya T, Xing F, Hayakari R, et al. Carnosic acid attenuates apoptosis induced by amyloid-β 1-42 or 1-43 in SH-SY5Y human neuroblastoma cells. Neurosci Res. 2015;94:1-9 pubmed 出版商
  173. Fine J, Renner D, Forsberg A, Cameron R, Galick B, Le C, et al. Intranasal deferoxamine engages multiple pathways to decrease memory loss in the APP/PS1 model of amyloid accumulation. Neurosci Lett. 2015;584:362-7 pubmed 出版商
  174. Deng X, Li M, Ai W, He L, Lu D, Patrylo P, et al. Lipolysaccharide-Induced Neuroinflammation Is Associated with Alzheimer-Like Amyloidogenic Axonal Pathology and Dendritic Degeneration in Rats. Adv Alzheimer Dis. 2014;3:78-93 pubmed
  175. Thomzig A, Wagenführ K, Daus M, Joncic M, Schulz Schaeffer W, Thanheiser M, et al. Decontamination of medical devices from pathological amyloid-?-, tau- and ?-synuclein aggregates. Acta Neuropathol Commun. 2014;2:151 pubmed 出版商
  176. Joshi G, Gan K, Johnson D, Johnson J. Increased Alzheimer's disease-like pathology in the APP/ PS1ΔE9 mouse model lacking Nrf2 through modulation of autophagy. Neurobiol Aging. 2015;36:664-79 pubmed 出版商
  177. Forny Germano L, Lyra e Silva N, Batista A, Brito Moreira J, Gralle M, Boehnke S, et al. Alzheimer's disease-like pathology induced by amyloid-β oligomers in nonhuman primates. J Neurosci. 2014;34:13629-43 pubmed 出版商
  178. Maloney J, Bainbridge T, Gustafson A, Zhang S, Kyauk R, Steiner P, et al. Molecular mechanisms of Alzheimer disease protection by the A673T allele of amyloid precursor protein. J Biol Chem. 2014;289:30990-1000 pubmed 出版商
  179. Lee S, Xu G, Jay T, Bhatta S, Kim K, Jung S, et al. Opposing effects of membrane-anchored CX3CL1 on amyloid and tau pathologies via the p38 MAPK pathway. J Neurosci. 2014;34:12538-46 pubmed 出版商
  180. Maarouf C, Kokjohn T, Walker D, Whiteside C, Kalback W, Whetzel A, et al. Biochemical assessment of precuneus and posterior cingulate gyrus in the context of brain aging and Alzheimer's disease. PLoS ONE. 2014;9:e105784 pubmed 出版商
  181. Yan Y, Eipper B, Mains R. Kalirin-9 and Kalirin-12 Play Essential Roles in Dendritic Outgrowth and Branching. Cereb Cortex. 2015;25:3487-501 pubmed 出版商
  182. Hanenberg M, McAfoose J, Kulic L, Welt T, Wirth F, Parizek P, et al. Amyloid-β peptide-specific DARPins as a novel class of potential therapeutics for Alzheimer disease. J Biol Chem. 2014;289:27080-9 pubmed 出版商
  183. Whitfield D, Vallortigara J, Alghamdi A, Howlett D, Hortobagyi T, Johnson M, et al. Assessment of ZnT3 and PSD95 protein levels in Lewy body dementias and Alzheimer's disease: association with cognitive impairment. Neurobiol Aging. 2014;35:2836-2844 pubmed 出版商
  184. Toyn J, Thompson L, Lentz K, Meredith J, Burton C, Sankaranararyanan S, et al. Identification and Preclinical Pharmacology of the ?-Secretase Modulator BMS-869780. Int J Alzheimers Dis. 2014;2014:431858 pubmed 出版商
  185. Wu Z, Guo Z, Gearing M, Chen G. Tonic inhibition in dentate gyrus impairs long-term potentiation and memory in an Alzheimer's [corrected] disease model. Nat Commun. 2014;5:4159 pubmed 出版商
  186. Durk M, Han K, Chow E, Ahrens R, Henderson J, Fraser P, et al. 1?,25-Dihydroxyvitamin D3 reduces cerebral amyloid-? accumulation and improves cognition in mouse models of Alzheimer's disease. J Neurosci. 2014;34:7091-101 pubmed 出版商
  187. Fu Y, Rusznák Z, Kwok J, Kim W, Paxinos G. Age-dependent alterations of the hippocampal cell composition and proliferative potential in the hA?PPSwInd-J20 mouse. J Alzheimers Dis. 2014;41:1177-92 pubmed 出版商
  188. Washington P, Morffy N, Parsadanian M, Zapple D, Burns M. Experimental traumatic brain injury induces rapid aggregation and oligomerization of amyloid-beta in an Alzheimer's disease mouse model. J Neurotrauma. 2014;31:125-34 pubmed 出版商
  189. Li W, Tang Y, Fan Z, Meng Y, Yang G, Luo J, et al. Autophagy is involved in oligodendroglial precursor-mediated clearance of amyloid peptide. Mol Neurodegener. 2013;8:27 pubmed 出版商
  190. Sadleir K, Bennett D, Schneider J, Vassar R. Elevated A?42 in aged, non-demented individuals with cerebral atherosclerosis. Curr Alzheimer Res. 2013;10:785-9 pubmed
  191. Kang E, Kwon I, Koo J, Kim E, Kim C, Lee J, et al. Treadmill exercise represses neuronal cell death and inflammation during A?-induced ER stress by regulating unfolded protein response in aged presenilin 2 mutant mice. Apoptosis. 2013;18:1332-1347 pubmed 出版商
  192. Hebron M, Algarzae N, Lonskaya I, Moussa C. Fractalkine signaling and Tau hyper-phosphorylation are associated with autophagic alterations in lentiviral Tau and A?1-42 gene transfer models. Exp Neurol. 2014;251:127-38 pubmed 出版商
  193. Zetterberg H, Mörtberg E, Song L, Chang L, Provuncher G, Patel P, et al. Hypoxia due to cardiac arrest induces a time-dependent increase in serum amyloid ? levels in humans. PLoS ONE. 2011;6:e28263 pubmed 出版商
  194. Chapuis J, Vingtdeux V, Capiralla H, Davies P, Marambaud P. Gas1 interferes with A?PP trafficking by facilitating the accumulation of immature A?PP in endoplasmic reticulum-associated raft subdomains. J Alzheimers Dis. 2012;28:127-35 pubmed 出版商
  195. Chapuis J, Vingtdeux V, Campagne F, Davies P, Marambaud P. Growth arrest-specific 1 binds to and controls the maturation and processing of the amyloid-beta precursor protein. Hum Mol Genet. 2011;20:2026-36 pubmed 出版商