这是一篇来自已证抗体库的有关小鼠 Acta1的综述,是根据376篇发表使用所有方法的文章归纳的。这综述旨在帮助来邦网的访客找到最适合Acta1 抗体。
Acta1 同义词: AA959943; Acta-2; Acts; Actsk-1

圣克鲁斯生物技术
小鼠 单克隆(5C5)
  • 免疫组化; 小鼠; 1:100; 图 s3-1b
圣克鲁斯生物技术 Acta1抗体(Santa Cruz, SC-58670)被用于被用于免疫组化在小鼠样本上浓度为1:100 (图 s3-1b). elife (2022) ncbi
小鼠 单克隆(B4)
  • 免疫印迹; 小鼠; 1:200; 图 2r
圣克鲁斯生物技术 Acta1抗体(Santa Cruz, sc53142)被用于被用于免疫印迹在小鼠样本上浓度为1:200 (图 2r). Nat Commun (2022) ncbi
小鼠 单克隆(B4)
  • 免疫组化-石蜡切片; 小鼠; 图 2d
圣克鲁斯生物技术 Acta1抗体(Santa Cruz, SC-53142)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 2d). Front Immunol (2021) ncbi
小鼠 单克隆(CGA7)
  • 免疫组化-冰冻切片; 小鼠; 图 2f
  • 免疫组化-石蜡切片; 小鼠; 1:200; 图 2e
圣克鲁斯生物技术 Acta1抗体(Santa Cruz, sc-53015)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 2f) 和 被用于免疫组化-石蜡切片在小鼠样本上浓度为1:200 (图 2e). Cell Prolif (2020) ncbi
小鼠 单克隆(C-2)
  • 免疫印迹; 人类; 图 4g
圣克鲁斯生物技术 Acta1抗体(Santa, sc-8432)被用于被用于免疫印迹在人类样本上 (图 4g). Cell Cycle (2020) ncbi
小鼠 单克隆(CGA7)
  • 免疫组化; 人类; 1:200; 图 1c
圣克鲁斯生物技术 Acta1抗体(Santa, CGA7)被用于被用于免疫组化在人类样本上浓度为1:200 (图 1c). Science (2019) ncbi
小鼠 单克隆(B4)
  • 免疫组化; 小鼠; 1:100; 图 s1b
  • 免疫印迹; 小鼠; 1:1000; 图 6c
圣克鲁斯生物技术 Acta1抗体(Santa Cruz Biotechnology, sc-53142)被用于被用于免疫组化在小鼠样本上浓度为1:100 (图 s1b) 和 被用于免疫印迹在小鼠样本上浓度为1:1000 (图 6c). J Clin Invest (2019) ncbi
小鼠 单克隆(C-2)
  • 免疫印迹; 小鼠; 图 2e
圣克鲁斯生物技术 Acta1抗体(Santa, sc-8432)被用于被用于免疫印迹在小鼠样本上 (图 2e). Sci Rep (2018) ncbi
小鼠 单克隆(C-2)
  • 免疫印迹; 小鼠; 1:1000; 图 1d
  • 免疫印迹; 人类; 1:1000; 图 1d
圣克鲁斯生物技术 Acta1抗体(Santa, C-2)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 1d) 和 被用于免疫印迹在人类样本上浓度为1:1000 (图 1d). Nat Commun (2018) ncbi
小鼠 单克隆(B4)
  • 免疫印迹; 人类; 1:2500; 图 3a
圣克鲁斯生物技术 Acta1抗体(Santa Cruz Biotechnology, Inc, sc-53142)被用于被用于免疫印迹在人类样本上浓度为1:2500 (图 3a). Mol Med Rep (2018) ncbi
小鼠 单克隆(B4)
  • 免疫印迹; 人类; 1:1000; 图 3a
圣克鲁斯生物技术 Acta1抗体(Santa Cruz, sc-53142)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3a). Mol Med Rep (2017) ncbi
小鼠 单克隆(Alpha Sr-1)
  • 免疫细胞化学; 小鼠; 1:100; 图 5a
  • 免疫印迹; 小鼠; 1:200; 图 5b
圣克鲁斯生物技术 Acta1抗体(Santa Cruz, sc-58671)被用于被用于免疫细胞化学在小鼠样本上浓度为1:100 (图 5a) 和 被用于免疫印迹在小鼠样本上浓度为1:200 (图 5b). Am J Pathol (2017) ncbi
小鼠 单克隆(C-2)
  • 免疫印迹; 人类; 图 4
圣克鲁斯生物技术 Acta1抗体(Santa Cruz, sc8432)被用于被用于免疫印迹在人类样本上 (图 4). Oncotarget (2016) ncbi
小鼠 单克隆(CGA7)
  • 免疫组化; 人类; 1:500
圣克鲁斯生物技术 Acta1抗体(Santa Cruz, sc-53015)被用于被用于免疫组化在人类样本上浓度为1:500. Oncol Lett (2016) ncbi
小鼠 单克隆(C-2)
  • 免疫印迹; 人类; 1:1000; 图 1
圣克鲁斯生物技术 Acta1抗体(Santa Cruz, sc-8432)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 1). Oncol Lett (2016) ncbi
小鼠 单克隆(C-2)
  • 免疫印迹; 人类; 1:5000; 图 1
圣克鲁斯生物技术 Acta1抗体(Santa Cruz, sc-8432)被用于被用于免疫印迹在人类样本上浓度为1:5000 (图 1). Oncol Lett (2016) ncbi
小鼠 单克隆(C-2)
  • 免疫印迹; 人类; 1:1000; 图 1
圣克鲁斯生物技术 Acta1抗体(Santa Cruz, sc-8432)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 1). Oncol Lett (2016) ncbi
小鼠 单克隆(C-2)
  • 免疫印迹; 人类; 1:500; 图 6
圣克鲁斯生物技术 Acta1抗体(Santa Cruz Biotechnology, sc-8432)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 6). Oncol Lett (2016) ncbi
小鼠 单克隆(C-2)
  • 免疫印迹; 人类; 1:200; 图 1
圣克鲁斯生物技术 Acta1抗体(Santa Cruz, SC-8432)被用于被用于免疫印迹在人类样本上浓度为1:200 (图 1). Mol Med Rep (2016) ncbi
小鼠 单克隆(C-2)
  • 免疫印迹; 人类; 1:5000; 图 6
圣克鲁斯生物技术 Acta1抗体(Santa Cruz, Sc-8432)被用于被用于免疫印迹在人类样本上浓度为1:5000 (图 6). Front Oncol (2016) ncbi
小鼠 单克隆(C-2)
  • 免疫印迹; 小鼠; 图 5
圣克鲁斯生物技术 Acta1抗体(Santa Cruz, sc-8432)被用于被用于免疫印迹在小鼠样本上 (图 5). PLoS Pathog (2016) ncbi
小鼠 单克隆(CGA7)
  • 免疫印迹; 人类; 1:1500; 图 2B
圣克鲁斯生物技术 Acta1抗体(Santa Cruz, sc-53015)被用于被用于免疫印迹在人类样本上浓度为1:1500 (图 2B). Mol Med Rep (2016) ncbi
小鼠 单克隆(NH3)
  • 免疫印迹; 人类; 图 2
圣克鲁斯生物技术 Acta1抗体(Santa Cruz, sc-58679)被用于被用于免疫印迹在人类样本上 (图 2). Biomed Rep (2016) ncbi
小鼠 单克隆(B4)
  • 免疫组化-石蜡切片; 小鼠; 图 8
圣克鲁斯生物技术 Acta1抗体(Santa Cruz, sc53142)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 8). Sci Rep (2016) ncbi
小鼠 单克隆(C-2)
  • 免疫印迹; 大鼠; 1:500; 图 3
圣克鲁斯生物技术 Acta1抗体(Santa Cruz, sc-8432)被用于被用于免疫印迹在大鼠样本上浓度为1:500 (图 3). Biofactors (2016) ncbi
小鼠 单克隆(C-2)
  • 免疫印迹; 人类; 1:1000; 图 5
圣克鲁斯生物技术 Acta1抗体(Santa Cruz Biotechnology, sc-8432)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 5). Exp Ther Med (2016) ncbi
小鼠 单克隆(B4)
  • 免疫组化-石蜡切片; 大鼠; 1:100; 图 2
圣克鲁斯生物技术 Acta1抗体(Santa Cruz Biotechnology, sc-53142)被用于被用于免疫组化-石蜡切片在大鼠样本上浓度为1:100 (图 2). Mol Med Rep (2016) ncbi
小鼠 单克隆(5C5)
  • 免疫印迹; 大鼠; 1:10,000; 图 1h
圣克鲁斯生物技术 Acta1抗体(Santa Cruz, sc-58670)被用于被用于免疫印迹在大鼠样本上浓度为1:10,000 (图 1h). Diabetologia (2016) ncbi
小鼠 单克隆(C-2)
  • 免疫印迹; 小鼠; 图 2b
圣克鲁斯生物技术 Acta1抗体(Santa Cruz Biotechnology, sc-8432)被用于被用于免疫印迹在小鼠样本上 (图 2b). elife (2016) ncbi
小鼠 单克隆(C-2)
  • 免疫印迹; 小鼠; 图 4
圣克鲁斯生物技术 Acta1抗体(Santa Cruz, sc-8432)被用于被用于免疫印迹在小鼠样本上 (图 4). Int J Mol Med (2016) ncbi
小鼠 单克隆(C-2)
  • 免疫印迹; 人类; 1:1000; 图 4
圣克鲁斯生物技术 Acta1抗体(Santa Cruz Biotechnology, sc-8432)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 4). Mol Med Rep (2016) ncbi
小鼠 单克隆(C-2)
  • 免疫印迹; 小鼠; 1:2000; 图 3
圣克鲁斯生物技术 Acta1抗体(Santa Cruz, sc-8432)被用于被用于免疫印迹在小鼠样本上浓度为1:2000 (图 3). Front Cell Neurosci (2015) ncbi
小鼠 单克隆(C-2)
  • 免疫印迹; 人类; 1 ug/ml; 图 1
圣克鲁斯生物技术 Acta1抗体(Santa Cruz, sc-8432)被用于被用于免疫印迹在人类样本上浓度为1 ug/ml (图 1). Nat Commun (2015) ncbi
小鼠 单克隆(HUC1-1)
  • 免疫印迹; 小鼠; 图 4D
圣克鲁斯生物技术 Acta1抗体(Santa Cruz Biotechnology, sc-53141)被用于被用于免疫印迹在小鼠样本上 (图 4D). Sci Rep (2015) ncbi
小鼠 单克隆(5C5)
  • 免疫组化; 小鼠; 1:100; 图 1
圣克鲁斯生物技术 Acta1抗体(Santa Cruz, sc-58670)被用于被用于免疫组化在小鼠样本上浓度为1:100 (图 1). Genes Dev (2015) ncbi
小鼠 单克隆(C-2)
  • 免疫印迹; 小鼠; 图 1
圣克鲁斯生物技术 Acta1抗体(santa Cruz, sc-8432)被用于被用于免疫印迹在小鼠样本上 (图 1). Cell Death Dis (2015) ncbi
小鼠 单克隆(C-2)
  • 免疫印迹; 人类; 图 2A
圣克鲁斯生物技术 Acta1抗体(Santa Cruz, sc-8432)被用于被用于免疫印迹在人类样本上 (图 2A). Sci Rep (2015) ncbi
小鼠 单克隆(C-2)
  • 免疫印迹; 大鼠; 1:5000; 图 1
  • 免疫印迹; 小鼠; 1:5000; 图 2
圣克鲁斯生物技术 Acta1抗体(Santa Cruz Biotechnology, sc-8432)被用于被用于免疫印迹在大鼠样本上浓度为1:5000 (图 1) 和 被用于免疫印迹在小鼠样本上浓度为1:5000 (图 2). Biochemistry (2015) ncbi
小鼠 单克隆(5C5)
  • 免疫印迹; 小鼠; 1:200; 图 1B
圣克鲁斯生物技术 Acta1抗体(Santa Cruz, sc-58670)被用于被用于免疫印迹在小鼠样本上浓度为1:200 (图 1B). Autophagy (2016) ncbi
小鼠 单克隆(H-6)
  • 免疫印迹; 大鼠; 1:500; 图 4
圣克鲁斯生物技术 Acta1抗体(Santa Cruz Biotechnology, sc-376421)被用于被用于免疫印迹在大鼠样本上浓度为1:500 (图 4). Mol Med Rep (2015) ncbi
小鼠 单克隆(C-2)
  • 免疫细胞化学; 犬; 图 1b
  • 免疫印迹; 犬; 1:1000; 图 s1d
圣克鲁斯生物技术 Acta1抗体(Santa Cruz Biotechnology, sc-8432)被用于被用于免疫细胞化学在犬样本上 (图 1b) 和 被用于免疫印迹在犬样本上浓度为1:1000 (图 s1d). Mol Biol Cell (2015) ncbi
小鼠 单克隆(C-2)
  • 免疫印迹; 人类; 图 2
圣克鲁斯生物技术 Acta1抗体(Santa Cruz, sc-8432)被用于被用于免疫印迹在人类样本上 (图 2). J Transl Med (2015) ncbi
小鼠 单克隆(C-2)
  • 免疫印迹; 人类; 图 5
圣克鲁斯生物技术 Acta1抗体(Santa Cruz, sc-8432)被用于被用于免疫印迹在人类样本上 (图 5). Oncotarget (2015) ncbi
小鼠 单克隆(C-2)
  • 免疫印迹; 人类; 图 3a
圣克鲁斯生物技术 Acta1抗体(Santa Cruz, sc-8432)被用于被用于免疫印迹在人类样本上 (图 3a). PLoS ONE (2015) ncbi
小鼠 单克隆(C-2)
  • 免疫印迹; 人类; 图 6a
圣克鲁斯生物技术 Acta1抗体(Santa Cruz, sc-8432)被用于被用于免疫印迹在人类样本上 (图 6a). Mol Cancer Ther (2015) ncbi
小鼠 单克隆(NH3)
  • 免疫印迹; 人类; 1:1000; 图 8
圣克鲁斯生物技术 Acta1抗体(Santa Cruz Biotechnology, sc-58679)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 8). PLoS ONE (2015) ncbi
小鼠 单克隆(C-2)
  • 免疫印迹; 犬; 1:50,000; 图 1
圣克鲁斯生物技术 Acta1抗体(Santa Cruz, sc-8432)被用于被用于免疫印迹在犬样本上浓度为1:50,000 (图 1). BMC Cancer (2015) ncbi
小鼠 单克隆(C-2)
  • 免疫细胞化学; 人类
  • 免疫印迹; 人类
圣克鲁斯生物技术 Acta1抗体(Santa Cruz Biotechnology, sc-8432)被用于被用于免疫细胞化学在人类样本上 和 被用于免疫印迹在人类样本上. Biochim Biophys Acta (2015) ncbi
小鼠 单克隆(C-2)
  • 免疫细胞化学; 小鼠; 图 3d
圣克鲁斯生物技术 Acta1抗体(Santa Cruz, SC-8432)被用于被用于免疫细胞化学在小鼠样本上 (图 3d). Cell Cycle (2015) ncbi
小鼠 单克隆(C-2)
  • 免疫印迹; 人类; 图 1
圣克鲁斯生物技术 Acta1抗体(Santa Cruz, sc-8432)被用于被用于免疫印迹在人类样本上 (图 1). Oncogene (2016) ncbi
小鼠 单克隆(C-2)
  • 染色质免疫沉淀 ; 人类; 图 5
圣克鲁斯生物技术 Acta1抗体(Santa Cruz, sc8432)被用于被用于染色质免疫沉淀 在人类样本上 (图 5). PLoS ONE (2015) ncbi
小鼠 单克隆(B4)
  • 免疫印迹; 人类; 图 6
圣克鲁斯生物技术 Acta1抗体(Santa Cruz, sc-53142)被用于被用于免疫印迹在人类样本上 (图 6). Oncotarget (2015) ncbi
小鼠 单克隆(C-2)
  • 免疫印迹; 小鼠; 图 f6
圣克鲁斯生物技术 Acta1抗体(Santa Cruz, C-2)被用于被用于免疫印迹在小鼠样本上 (图 f6). Sci Signal (2015) ncbi
小鼠 单克隆(C-2)
  • 免疫印迹; 大鼠; 1:4000
圣克鲁斯生物技术 Acta1抗体(Santa Cruz Biotechnology, sc-8432)被用于被用于免疫印迹在大鼠样本上浓度为1:4000. Int J Mol Med (2015) ncbi
小鼠 单克隆(C-2)
  • 免疫印迹; 人类; 1:5000; 图 1g
圣克鲁斯生物技术 Acta1抗体(Santa Cruz Biotechnology, sc-8432)被用于被用于免疫印迹在人类样本上浓度为1:5000 (图 1g). Int J Obes (Lond) (2015) ncbi
小鼠 单克隆(B4)
  • 免疫印迹; 人类
圣克鲁斯生物技术 Acta1抗体(Santa Cruz, sc-53142)被用于被用于免疫印迹在人类样本上. Mol Cell Endocrinol (2015) ncbi
小鼠 单克隆(5C5)
  • 免疫印迹; 人类; 图 2
圣克鲁斯生物技术 Acta1抗体(Santa Cruz, sc-58670)被用于被用于免疫印迹在人类样本上 (图 2). EMBO Mol Med (2015) ncbi
小鼠 单克隆(C-2)
  • 免疫印迹; 人类; 图 5
圣克鲁斯生物技术 Acta1抗体(Santa Cruz, sc-8432)被用于被用于免疫印迹在人类样本上 (图 5). Cell Death Dis (2015) ncbi
小鼠 单克隆(C-2)
  • 免疫印迹; 小鼠
圣克鲁斯生物技术 Acta1抗体(Santa Cruz Biotechnology, sc-8432)被用于被用于免疫印迹在小鼠样本上. Diabetes (2015) ncbi
小鼠 单克隆(C-2)
  • 免疫印迹; 人类; 图 1
  • 免疫印迹; 小鼠; 图 1
圣克鲁斯生物技术 Acta1抗体(Santa Cruz, sc-8432)被用于被用于免疫印迹在人类样本上 (图 1) 和 被用于免疫印迹在小鼠样本上 (图 1). PLoS Pathog (2015) ncbi
小鼠 单克隆(C-2)
  • 免疫印迹; 人类; 1:1000
圣克鲁斯生物技术 Acta1抗体(Santa Cruz Biotechnology, sc-8432)被用于被用于免疫印迹在人类样本上浓度为1:1000. Mol Med Rep (2015) ncbi
小鼠 单克隆(C-2)
  • 免疫印迹; 人类; 1:3000; 图 2
  • 免疫印迹; 小鼠; 1:3000; 图 6
圣克鲁斯生物技术 Acta1抗体(Santa Cruz, sc-8432)被用于被用于免疫印迹在人类样本上浓度为1:3000 (图 2) 和 被用于免疫印迹在小鼠样本上浓度为1:3000 (图 6). Mol Med Rep (2015) ncbi
小鼠 单克隆(C-2)
  • 免疫印迹; 人类; 1:2000; 图 1
  • 免疫印迹; 小鼠; 1:2000; 图 2
圣克鲁斯生物技术 Acta1抗体(Santa Cruz, sc-8432HRP)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 1) 和 被用于免疫印迹在小鼠样本上浓度为1:2000 (图 2). Autophagy (2015) ncbi
小鼠 单克隆(C-2)
  • 免疫印迹; 人类; 图 3
圣克鲁斯生物技术 Acta1抗体(Santa Cruz, sc-8432)被用于被用于免疫印迹在人类样本上 (图 3). Oncotarget (2015) ncbi
小鼠 单克隆(C-2)
  • 免疫印迹; 人类; 图 1
  • 免疫印迹; 小鼠; 图 1
圣克鲁斯生物技术 Acta1抗体(santa Cruz, sc-8432)被用于被用于免疫印迹在人类样本上 (图 1) 和 被用于免疫印迹在小鼠样本上 (图 1). Autophagy (2015) ncbi
小鼠 单克隆(5C5)
  • 免疫细胞化学; 人类; 图 3
圣克鲁斯生物技术 Acta1抗体(Santa Cruz Biotechnology, sc-58670)被用于被用于免疫细胞化学在人类样本上 (图 3). Cytotechnology (2016) ncbi
小鼠 单克隆(C-2)
  • 免疫印迹; 人类; 1:5000; 图 5
圣克鲁斯生物技术 Acta1抗体(Santa Cruz, SC-8432)被用于被用于免疫印迹在人类样本上浓度为1:5000 (图 5). Mar Drugs (2015) ncbi
小鼠 单克隆(C-2)
  • 免疫印迹; 小鼠
圣克鲁斯生物技术 Acta1抗体(Santa Cruz Biotechnology, sc-8432)被用于被用于免疫印迹在小鼠样本上. FASEB J (2015) ncbi
小鼠 单克隆(C-2)
  • 免疫印迹; 大鼠; 图 7
圣克鲁斯生物技术 Acta1抗体(santa Cruz, sc-8432)被用于被用于免疫印迹在大鼠样本上 (图 7). Int J Mol Med (2015) ncbi
小鼠 单克隆(C-2)
  • 免疫印迹; 人类; 1:2000
圣克鲁斯生物技术 Acta1抗体(Santa Cruz Biotechnology, sc-8432)被用于被用于免疫印迹在人类样本上浓度为1:2000. Nat Commun (2015) ncbi
小鼠 单克隆(C-2)
  • 免疫印迹; 人类; 图 4
圣克鲁斯生物技术 Acta1抗体(SantaCruz, sc-8432)被用于被用于免疫印迹在人类样本上 (图 4). Sci Rep (2015) ncbi
小鼠 单克隆(CGA7)
  • 免疫组化; 小鼠; 1:100; 图 4
圣克鲁斯生物技术 Acta1抗体(Santa Cruz Biotechnology, sc-53015)被用于被用于免疫组化在小鼠样本上浓度为1:100 (图 4). Mol Med Rep (2015) ncbi
小鼠 单克隆(C-2)
  • 免疫印迹; 人类; 图 1c
圣克鲁斯生物技术 Acta1抗体(santa cruz, sc-8432)被用于被用于免疫印迹在人类样本上 (图 1c). Mol Med Rep (2015) ncbi
小鼠 单克隆(C-2)
  • 免疫印迹; 人类
圣克鲁斯生物技术 Acta1抗体(Santa Cruz Biotechnology, sc-8432)被用于被用于免疫印迹在人类样本上. Sci Rep (2014) ncbi
小鼠 单克隆(C-2)
  • 免疫印迹; 人类; 1:1000
圣克鲁斯生物技术 Acta1抗体(Santa Cruz Biotechnology, sc-8432)被用于被用于免疫印迹在人类样本上浓度为1:1000. PLoS ONE (2014) ncbi
小鼠 单克隆(C-2)
  • 免疫印迹; 小鼠
圣克鲁斯生物技术 Acta1抗体(Santa Cruz Biotechnology, sc-8432)被用于被用于免疫印迹在小鼠样本上. Am J Respir Cell Mol Biol (2015) ncbi
小鼠 单克隆(C-2)
  • 免疫印迹; 人类
圣克鲁斯生物技术 Acta1抗体(Santa Cruz Biotech, sc-8432)被用于被用于免疫印迹在人类样本上. Proteomics (2015) ncbi
小鼠 单克隆(C-2)
  • 免疫印迹; 人类
圣克鲁斯生物技术 Acta1抗体(Santa Cruz, sc-8432)被用于被用于免疫印迹在人类样本上. J Biol Chem (2014) ncbi
小鼠 单克隆(C-2)
  • 免疫印迹; 大鼠; 1:1000
圣克鲁斯生物技术 Acta1抗体(Santa Cruz, sc8432)被用于被用于免疫印迹在大鼠样本上浓度为1:1000. PLoS ONE (2014) ncbi
小鼠 单克隆(C-2)
  • 免疫印迹; 小鼠
圣克鲁斯生物技术 Acta1抗体(Santa Cruz Biotechnology, sc-8432)被用于被用于免疫印迹在小鼠样本上. Mol Cell Endocrinol (2014) ncbi
小鼠 单克隆(C-2)
  • 免疫印迹; 人类
圣克鲁斯生物技术 Acta1抗体(Santa Cruz Biotechnology, sc-8432)被用于被用于免疫印迹在人类样本上. J Biol Chem (2014) ncbi
小鼠 单克隆(5C5)
  • 免疫组化-冰冻切片; 大鼠; 图 3
圣克鲁斯生物技术 Acta1抗体(Santa, sc-58670)被用于被用于免疫组化-冰冻切片在大鼠样本上 (图 3). J Tissue Eng Regen Med (2017) ncbi
小鼠 单克隆(CGA7)
  • 免疫组化-石蜡切片; 小鼠
  • 免疫组化-石蜡切片; 豚鼠
圣克鲁斯生物技术 Acta1抗体(Santa Cruz Biotechnology, sc-53015)被用于被用于免疫组化-石蜡切片在小鼠样本上 和 被用于免疫组化-石蜡切片在豚鼠样本上. Am J Respir Cell Mol Biol (2014) ncbi
小鼠 单克隆(C-2)
  • 免疫印迹; 人类; 1:5000
圣克鲁斯生物技术 Acta1抗体(Santa Cruz, sc-8432)被用于被用于免疫印迹在人类样本上浓度为1:5000. Mol Cell Biol (2014) ncbi
小鼠 单克隆(C-2)
  • 免疫印迹; 大鼠; 1:4000
圣克鲁斯生物技术 Acta1抗体(Santa Cruz Biotechnology, sc-8432)被用于被用于免疫印迹在大鼠样本上浓度为1:4000. Exp Neurol (2014) ncbi
小鼠 单克隆(C-2)
  • 免疫印迹; 小鼠
圣克鲁斯生物技术 Acta1抗体(Santa Cruz, sc-8432)被用于被用于免疫印迹在小鼠样本上. J Immunol (2014) ncbi
小鼠 单克隆(5C5)
  • 免疫组化-冰冻切片; 大鼠
圣克鲁斯生物技术 Acta1抗体(Santa Cruz Biotechnology, sc-58670)被用于被用于免疫组化-冰冻切片在大鼠样本上. Tissue Eng Part A (2014) ncbi
小鼠 单克隆(C-2)
  • 免疫印迹; 人类
圣克鲁斯生物技术 Acta1抗体(Santa Cruz, sc-8432)被用于被用于免疫印迹在人类样本上. J Cell Sci (2013) ncbi
小鼠 单克隆(C-2)
  • 免疫印迹; 人类; 1:500
圣克鲁斯生物技术 Acta1抗体(Santa Cruz, sc-8432)被用于被用于免疫印迹在人类样本上浓度为1:500. Eur J Hum Genet (2014) ncbi
小鼠 单克隆(C-2)
  • 免疫印迹; 人类; 图 1
圣克鲁斯生物技术 Acta1抗体(Santa Cruz, sc-8432)被用于被用于免疫印迹在人类样本上 (图 1). PLoS ONE (2013) ncbi
小鼠 单克隆(B4)
  • 免疫细胞化学; 人类
  • 免疫印迹; 人类
圣克鲁斯生物技术 Acta1抗体(Santa Cruz, sc-53142)被用于被用于免疫细胞化学在人类样本上 和 被用于免疫印迹在人类样本上. Cell Cycle (2013) ncbi
小鼠 单克隆(C-2)
  • 免疫印迹; 人类
圣克鲁斯生物技术 Acta1抗体(Santa Cruz, sc8432)被用于被用于免疫印迹在人类样本上. Nucleic Acids Res (2013) ncbi
小鼠 单克隆(Alpha Sr-1)
  • 免疫印迹; 小鼠; 1:1000; 图 3d
圣克鲁斯生物技术 Acta1抗体(Santa, Sc-58671)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 3d). Cell Death Differ (2012) ncbi
赛默飞世尔
小鼠 单克隆(ACTN05 (C4))
  • 免疫印迹; 人类
赛默飞世尔 Acta1抗体(Thermo Fisher, MA5-11869)被用于被用于免疫印迹在人类样本上. PLoS ONE (2020) ncbi
小鼠 单克隆(mAbGEa)
  • 免疫印迹; 小鼠; 1:1000; 图 1b
赛默飞世尔 Acta1抗体(thermo fisher, MA1-744)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 1b). Invest Ophthalmol Vis Sci (2020) ncbi
小鼠 单克隆(HHF35)
  • 免疫组化-冰冻切片; 小鼠; 1:500; 图 2b
赛默飞世尔 Acta1抗体(ThermoFisher, MA5-14084)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:500 (图 2b). Stem Cell Res Ther (2020) ncbi
小鼠 单克隆(ACTN05 (C4))
  • 免疫印迹; 人类; 1:2000; 图 1b
赛默飞世尔 Acta1抗体(ThermoFisher, MA5-11869)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 1b). Nat Commun (2019) ncbi
小鼠 单克隆(ACTN05 (C4))
  • 免疫印迹; 人类; 1:4000; 图 1b
赛默飞世尔 Acta1抗体(Thermo fisher, MA5-11869)被用于被用于免疫印迹在人类样本上浓度为1:4000 (图 1b). Nature (2019) ncbi
小鼠 单克隆(ACTN05 (C4))
  • 免疫印迹; 人类; 1:50; 图 2d
赛默飞世尔 Acta1抗体(Thermo, MA5-11869)被用于被用于免疫印迹在人类样本上浓度为1:50 (图 2d). Nat Commun (2018) ncbi
小鼠 单克隆(ACTN05 (C4))
  • 免疫印迹; 人类; 1:1000; 图 2e
赛默飞世尔 Acta1抗体(Thermo Fisher, MS-1295-P)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 2e). Nature (2017) ncbi
小鼠 单克隆(5C5.F8.C7 (alpha-Sr-1))
  • 免疫细胞化学; 小鼠; 1:500; 图 s1c
  • 免疫印迹; 小鼠; 1:2500; 图 3a
赛默飞世尔 Acta1抗体(Thermo Fisher Scientific, MA5-12542)被用于被用于免疫细胞化学在小鼠样本上浓度为1:500 (图 s1c) 和 被用于免疫印迹在小鼠样本上浓度为1:2500 (图 3a). J Cell Biol (2017) ncbi
小鼠 单克隆(ACTN05 (C4))
  • 免疫印迹; 斑马鱼; 1:5000; 图 s2e
赛默飞世尔 Acta1抗体(Neomarkers, ACTN05)被用于被用于免疫印迹在斑马鱼样本上浓度为1:5000 (图 s2e). Dis Model Mech (2017) ncbi
小鼠 单克隆(ACTN05 (C4))
  • 免疫印迹; 人类; 1:100; 图 1b
赛默飞世尔 Acta1抗体(Invitrogen, MA5-11869)被用于被用于免疫印迹在人类样本上浓度为1:100 (图 1b). Clin Sci (Lond) (2017) ncbi
小鼠 单克隆(ACTN05 (C4))
  • 免疫印迹; 人类; 图 5g
赛默飞世尔 Acta1抗体(Neomarkers, ACTN05)被用于被用于免疫印迹在人类样本上 (图 5g). J Cell Physiol (2017) ncbi
小鼠 单克隆(ACTN05 (C4))
  • 免疫印迹; 人类; 1:300; 图 2
赛默飞世尔 Acta1抗体(Thermo Fisher Scientific, Ab-5)被用于被用于免疫印迹在人类样本上浓度为1:300 (图 2). Oncol Lett (2016) ncbi
小鼠 单克隆(mAbGEa)
  • 免疫印迹; brewer's yeast; 图 2
赛默飞世尔 Acta1抗体(Thermo Scientific, MA1-744)被用于被用于免疫印迹在brewer's yeast样本上 (图 2). Nucleic Acids Res (2016) ncbi
小鼠 单克隆(mAbGEa)
  • 免疫印迹; 人类; 1:500; 图 1a
赛默飞世尔 Acta1抗体(Pierce, MA1-744)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 1a). DNA Repair (Amst) (2016) ncbi
小鼠 单克隆(ACTN05 (C4))
  • 免疫印迹; 人类; 图 1
赛默飞世尔 Acta1抗体(Neo Markers, ACTN05)被用于被用于免疫印迹在人类样本上 (图 1). Nucleic Acids Res (2016) ncbi
小鼠 单克隆(mAbGEa)
  • 免疫沉淀; 大鼠; 图 2
赛默飞世尔 Acta1抗体(Thermo scientific, MA1-744)被用于被用于免疫沉淀在大鼠样本上 (图 2). PLoS ONE (2016) ncbi
小鼠 单克隆(mAbGEa)
  • 免疫印迹; 拟南芥; 图 1
赛默飞世尔 Acta1抗体(Thermo Scientific, MA1-744)被用于被用于免疫印迹在拟南芥样本上 (图 1). Plant Physiol (2016) ncbi
小鼠 单克隆(mAbGEa)
  • 免疫印迹; pigs ; 图 2c
赛默飞世尔 Acta1抗体(Thermo Scientific, mAbGEa)被用于被用于免疫印迹在pigs 样本上 (图 2c). PLoS ONE (2016) ncbi
小鼠 单克隆(ACTN05 (C4))
  • 免疫印迹; 小鼠; 图 3b
赛默飞世尔 Acta1抗体(Thermo Scientific, ACTN05)被用于被用于免疫印迹在小鼠样本上 (图 3b). Antimicrob Agents Chemother (2016) ncbi
小鼠 单克隆(HHF35)
  • 免疫组化-石蜡切片; domestic rabbit; 1:4; 图 1
赛默飞世尔 Acta1抗体(ThermoFisher Scientific, MA5-14084)被用于被用于免疫组化-石蜡切片在domestic rabbit样本上浓度为1:4 (图 1). Acta Histochem (2016) ncbi
小鼠 单克隆(ACTN05 (C4))
  • 免疫印迹; 小鼠; 1:3000; 图 1
  • 免疫印迹; 人类; 1:3000; 图 3
赛默飞世尔 Acta1抗体(Thermo Scientific, Ab-5)被用于被用于免疫印迹在小鼠样本上浓度为1:3000 (图 1) 和 被用于免疫印迹在人类样本上浓度为1:3000 (图 3). elife (2016) ncbi
小鼠 单克隆(mAbGEa)
  • 免疫印迹; brewer's yeast; 1:1000; 图 3
赛默飞世尔 Acta1抗体(Thermo Fisher scientific, mAbGEa)被用于被用于免疫印迹在brewer's yeast样本上浓度为1:1000 (图 3). Nat Commun (2016) ncbi
小鼠 单克隆(ACTN05 (C4))
  • 免疫印迹; 人类; 图 1
赛默飞世尔 Acta1抗体(Thermo Scientific, MS-1295-P1)被用于被用于免疫印迹在人类样本上 (图 1). J Virol (2016) ncbi
小鼠 单克隆(ACTN05 (C4))
  • 免疫印迹; 犬; 图 8
赛默飞世尔 Acta1抗体(Neomarkers, pan Ab-5)被用于被用于免疫印迹在犬样本上 (图 8). Arthritis Res Ther (2016) ncbi
小鼠 单克隆(mAbGEa)
  • 免疫印迹; 小鼠; 图 2
赛默飞世尔 Acta1抗体(Thermo Scientific, mAbGEa)被用于被用于免疫印迹在小鼠样本上 (图 2). Invest Ophthalmol Vis Sci (2015) ncbi
小鼠 单克隆(ACTN05 (C4))
  • 免疫印迹; 人类; 1:10,000; 图 3
赛默飞世尔 Acta1抗体(Pierce Biotechnology, MA5-11869)被用于被用于免疫印迹在人类样本上浓度为1:10,000 (图 3). Mol Med Rep (2015) ncbi
小鼠 单克隆(ACTN05 (C4))
  • 免疫印迹; 人类
赛默飞世尔 Acta1抗体(Thermo Scientific, MA5-11869)被用于被用于免疫印迹在人类样本上. Breast Cancer Res (2015) ncbi
小鼠 单克隆(ACTN05 (C4))
  • 免疫印迹; fruit fly ; 1:4000; 图 9
赛默飞世尔 Acta1抗体(Thermo Scientific, MA5-11869))被用于被用于免疫印迹在fruit fly 样本上浓度为1:4000 (图 9). PLoS Biol (2015) ncbi
小鼠 单克隆(mAbGEa)
  • 免疫印迹; brewer's yeast; 1:1000; 图 2, 4
赛默飞世尔 Acta1抗体(Fisher, MA1-744)被用于被用于免疫印迹在brewer's yeast样本上浓度为1:1000 (图 2, 4). Nat Commun (2015) ncbi
小鼠 单克隆(mAbGEa)
  • 免疫印迹; 拟南芥; 1:1000; 图 1
赛默飞世尔 Acta1抗体(Thermo Scientific, MA1-744)被用于被用于免疫印迹在拟南芥样本上浓度为1:1000 (图 1). Plant Physiol (2015) ncbi
小鼠 单克隆(ACTN05 (C4))
  • 免疫印迹; 小鼠; 1:500; 图 5a
赛默飞世尔 Acta1抗体(Thermo Fisher, MA5-11869)被用于被用于免疫印迹在小鼠样本上浓度为1:500 (图 5a). Eur J Pharmacol (2015) ncbi
小鼠 单克隆(ACTN05 (C4))
  • 免疫印迹; 人类
赛默飞世尔 Acta1抗体(Lab Vision, Ab-5)被用于被用于免疫印迹在人类样本上. J Transl Med (2015) ncbi
小鼠 单克隆(ACTN05 (C4))
  • 免疫印迹; 小鼠; 1:500
赛默飞世尔 Acta1抗体(Thermo Fisher, MA5-11869)被用于被用于免疫印迹在小鼠样本上浓度为1:500. J Ethnopharmacol (2015) ncbi
小鼠 单克隆(ACTN05 (C4))
  • 免疫印迹; 小鼠
赛默飞世尔 Acta1抗体(Thermo Scientific, ACTN05)被用于被用于免疫印迹在小鼠样本上. Eur J Nutr (2016) ncbi
小鼠 单克隆(mAbGEa)
  • 免疫印迹; 人类; 1:1000; 图 6
赛默飞世尔 Acta1抗体(Thermo Fisher, MA1-744)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 6). Mol Med Rep (2015) ncbi
小鼠 单克隆(mAbGEa)
赛默飞世尔 Acta1抗体(Fisher, MA1-744)被用于. Traffic (2015) ncbi
小鼠 单克隆(ACTN05 (C4))
  • 免疫印迹; 人类; 1:10,000; 图 5
赛默飞世尔 Acta1抗体(分子探针, C4)被用于被用于免疫印迹在人类样本上浓度为1:10,000 (图 5). Nat Commun (2015) ncbi
小鼠 单克隆(ACTN05 (C4))
  • 免疫印迹; 小鼠; 图 1,2,3,4,5,6
赛默飞世尔 Acta1抗体(neomarkers, ACTN05)被用于被用于免疫印迹在小鼠样本上 (图 1,2,3,4,5,6). Breast Cancer Res (2014) ncbi
小鼠 单克隆(ACTN05 (C4))
  • 免疫印迹; 人类
赛默飞世尔 Acta1抗体(NeoMarkers, ACTN05)被用于被用于免疫印迹在人类样本上. Cell Death Dis (2014) ncbi
小鼠 单克隆(ACTN05 (C4))
  • 免疫印迹; fruit fly ; 1:4000
赛默飞世尔 Acta1抗体(Thermo Scientific, MA5-11869)被用于被用于免疫印迹在fruit fly 样本上浓度为1:4000. Mech Dev (2014) ncbi
小鼠 单克隆(ACTN05 (C4))
  • 免疫印迹; 犬; 1:2000
赛默飞世尔 Acta1抗体(Thermo, MS-1295-P1)被用于被用于免疫印迹在犬样本上浓度为1:2000. PLoS ONE (2014) ncbi
小鼠 单克隆(ACTN05 (C4))
赛默飞世尔 Acta1抗体(Thermo Fisher Scientific, MS-1295-P1ABX)被用于. Am J Pathol (2014) ncbi
小鼠 单克隆(ACTN05 (C4))
  • 免疫印迹; 小鼠; 1:1000; 图 5
赛默飞世尔 Acta1抗体(NeoMarkers, MS-1295-P1)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 5). J Cell Physiol (2014) ncbi
小鼠 单克隆(ACTN05 (C4))
  • 免疫印迹; 小鼠; 图 1
赛默飞世尔 Acta1抗体(Thermo Scientific, MS1295P1)被用于被用于免疫印迹在小鼠样本上 (图 1). Front Cell Infect Microbiol (2013) ncbi
小鼠 单克隆(ACTN05 (C4))
  • 免疫印迹; 小鼠
赛默飞世尔 Acta1抗体(Thermo Fisher, ACTN05)被用于被用于免疫印迹在小鼠样本上. Cancer Prev Res (Phila) (2014) ncbi
小鼠 单克隆(mAbGEa)
  • 免疫印迹; 人类
赛默飞世尔 Acta1抗体(Thermo Scientific, MA1-744)被用于被用于免疫印迹在人类样本上. Cell Signal (2014) ncbi
小鼠 单克隆(HHF35)
  • 免疫组化; 人类; 1:100; 表 1
赛默飞世尔 Acta1抗体(Neomarker, HHF-35)被用于被用于免疫组化在人类样本上浓度为1:100 (表 1). Int J Surg Pathol (2014) ncbi
小鼠 单克隆(mAbGEa)
  • 免疫印迹; 非洲爪蛙
赛默飞世尔 Acta1抗体(Thermo Scientific, MA1-744)被用于被用于免疫印迹在非洲爪蛙样本上. J Biol Chem (2013) ncbi
小鼠 单克隆(ACTN05 (C4))
  • 免疫印迹; 人类; 图 3
赛默飞世尔 Acta1抗体(Lab Vision, Ab-5)被用于被用于免疫印迹在人类样本上 (图 3). Exp Cell Res (2010) ncbi
小鼠 单克隆(ACTN05 (C4))
  • 免疫印迹; 小鼠; 图 6
赛默飞世尔 Acta1抗体(Neomarkers, ACTN05)被用于被用于免疫印迹在小鼠样本上 (图 6). PLoS ONE (2010) ncbi
小鼠 单克隆(ACTN05 (C4))
  • 免疫印迹; 人类; 图 8
赛默飞世尔 Acta1抗体(Neomarkers, ACTN05)被用于被用于免疫印迹在人类样本上 (图 8). Neuropathology (2009) ncbi
小鼠 单克隆(ACTN05 (C4))
  • 免疫印迹; 人类; 图 4
赛默飞世尔 Acta1抗体(Neomarkers, ACTN05)被用于被用于免疫印迹在人类样本上 (图 4). Mol Hum Reprod (2008) ncbi
小鼠 单克隆(ACTN05 (C4))
  • 免疫印迹; 大鼠; 1:1000
  • 免疫印迹; 人类; 1:1000
赛默飞世尔 Acta1抗体(LabVision, ACTN05)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 和 被用于免疫印迹在人类样本上浓度为1:1000. Brain (2007) ncbi
艾博抗(上海)贸易有限公司
domestic rabbit 单克隆(EPR16769)
  • 免疫印迹; 人类; 1:800; 图 4a
艾博抗(上海)贸易有限公司 Acta1抗体(Abcam, ab179467)被用于被用于免疫印迹在人类样本上浓度为1:800 (图 4a). Aging (Albany NY) (2021) ncbi
domestic rabbit 单克隆(EPR16769)
  • 免疫印迹; 小鼠; 图 5d, 1b
艾博抗(上海)贸易有限公司 Acta1抗体(Abcam, ab179467)被用于被用于免疫印迹在小鼠样本上 (图 5d, 1b). Aging (Albany NY) (2021) ncbi
domestic rabbit 单克隆(EPR16769)
  • 免疫印迹; 人类; 1:5000; 图 2c
艾博抗(上海)贸易有限公司 Acta1抗体(Abcam, ab179467)被用于被用于免疫印迹在人类样本上浓度为1:5000 (图 2c). Nat Commun (2021) ncbi
domestic rabbit 单克隆(EPR16769)
  • 免疫印迹; 人类; 1:5000; 图 3a-d
艾博抗(上海)贸易有限公司 Acta1抗体(Abcam, Cambridge, MA, U.S.A.), ab179467)被用于被用于免疫印迹在人类样本上浓度为1:5000 (图 3a-d). Biosci Rep (2020) ncbi
domestic rabbit 单克隆(EPR16769)
  • 免疫印迹; 人类; 1:4000; 图 4a
艾博抗(上海)贸易有限公司 Acta1抗体(Abcam, ab179467)被用于被用于免疫印迹在人类样本上浓度为1:4000 (图 4a). Int J Mol Med (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 家羊; 1:1000; 图 3
艾博抗(上海)贸易有限公司 Acta1抗体(Abcam, ab1801)被用于被用于免疫印迹在家羊样本上浓度为1:1000 (图 3). Sci Rep (2016) ncbi
小鼠 单克隆(Alpha Sr-1)
  • 免疫组化; 小鼠; 图 5
艾博抗(上海)贸易有限公司 Acta1抗体(Abcam, ab28052)被用于被用于免疫组化在小鼠样本上 (图 5). Proc Natl Acad Sci U S A (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 1
艾博抗(上海)贸易有限公司 Acta1抗体(Abcam, Ab1801)被用于被用于免疫印迹在人类样本上 (图 1). BMC Mol Biol (2016) ncbi
小鼠 单克隆(Alpha Sr-1)
  • 免疫组化-石蜡切片; 人类; 1:100
艾博抗(上海)贸易有限公司 Acta1抗体(Abcam, alpha-Sr1)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100. Hum Pathol (2015) ncbi
小鼠 单克隆(Alpha Sr-1)
  • 免疫细胞化学; 小鼠; 1:50
艾博抗(上海)贸易有限公司 Acta1抗体(Abcam, ab28052)被用于被用于免疫细胞化学在小鼠样本上浓度为1:50. Methods Mol Biol (2015) ncbi
小鼠 单克隆(Alpha Sr-1)
  • 免疫印迹; 小鼠; 1:2000
艾博抗(上海)贸易有限公司 Acta1抗体(Abcam, ab28052)被用于被用于免疫印迹在小鼠样本上浓度为1:2000. Am J Physiol Heart Circ Physiol (2013) ncbi
Nordic BioSite
小鼠 单克隆(BS66)
  • 免疫组化-石蜡切片; 小鼠; 1:350; 图 5e
Nordic BioSite Acta1抗体(Biosite, BS66)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:350 (图 5e). J Cell Sci (2022) ncbi
Novus Biologicals
小鼠 单克隆(mAbGEa)
Novus Biologicals Acta1抗体(Novus, NB100-74340)被用于. PLoS ONE (2016) ncbi
BioVision
  • 免疫印迹; 小鼠; 1:1000
BioVision Acta1抗体(Biovision, 3662-100)被用于被用于免疫印迹在小鼠样本上浓度为1:1000. Hippocampus (2014) ncbi
西格玛奥德里奇
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 5j
西格玛奥德里奇 Acta1抗体(Sigma, A2066)被用于被用于免疫印迹在小鼠样本上 (图 5j). Front Cell Dev Biol (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:800; 图 s10a
西格玛奥德里奇 Acta1抗体(Sigma, A2066)被用于被用于免疫印迹在人类样本上浓度为1:800 (图 s10a). Nat Commun (2021) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 图 s6b
  • 免疫组化-石蜡切片; 小鼠; 图 s5
西格玛奥德里奇 Acta1抗体(Sigma-Aldrich, A2066)被用于被用于免疫细胞化学在人类样本上 (图 s6b) 和 被用于免疫组化-石蜡切片在小鼠样本上 (图 s5). Mucosal Immunol (2021) ncbi
小鼠 单克隆(AC-40)
  • 免疫印迹; 小鼠; 1:4000; 图 s3-1c
西格玛奥德里奇 Acta1抗体(Sigma-Aldrich, A4700)被用于被用于免疫印迹在小鼠样本上浓度为1:4000 (图 s3-1c). elife (2020) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 小鼠
西格玛奥德里奇 Acta1抗体(Sigma-Aldrich, A2066)被用于被用于免疫细胞化学在小鼠样本上. Nat Commun (2020) ncbi
domestic rabbit 多克隆
  • 流式细胞仪; 人类; 1:1000; 图 s5g
西格玛奥德里奇 Acta1抗体(Sigma, A2103)被用于被用于流式细胞仪在人类样本上浓度为1:1000 (图 s5g). Science (2020) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:500; 图 s2c
西格玛奥德里奇 Acta1抗体(Sigma Aldrich, A2066)被用于被用于免疫印迹在小鼠样本上浓度为1:500 (图 s2c). Commun Biol (2020) ncbi
小鼠 单克隆(AC-40)
  • 免疫印迹; 人类; 图 1a, 4a, 4b
西格玛奥德里奇 Acta1抗体(Sigma-Aldrich, A4700)被用于被用于免疫印迹在人类样本上 (图 1a, 4a, 4b). JCI Insight (2020) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 2c
西格玛奥德里奇 Acta1抗体(Sigma, A2066)被用于被用于免疫印迹在人类样本上 (图 2c). Aging (Albany NY) (2020) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 1e
西格玛奥德里奇 Acta1抗体(Sigma, A2103)被用于被用于免疫印迹在人类样本上 (图 1e). Transl Oncol (2020) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 1g
西格玛奥德里奇 Acta1抗体(Sigma, A2066)被用于被用于免疫印迹在人类样本上 (图 1g). Sci Adv (2019) ncbi
小鼠 单克隆(AC-40)
  • 免疫印迹; 人类; 1:100; 图 13a
西格玛奥德里奇 Acta1抗体(Sigma, A4700)被用于被用于免疫印迹在人类样本上浓度为1:100 (图 13a). elife (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; fruit fly ; 图 s5c
西格玛奥德里奇 Acta1抗体(Sigma, A2066)被用于被用于免疫印迹在fruit fly 样本上 (图 s5c). Cell (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:3000; 图 2a
西格玛奥德里奇 Acta1抗体(Sigma, A2066)被用于被用于免疫印迹在小鼠样本上浓度为1:3000 (图 2a). Redox Biol (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 s6b
西格玛奥德里奇 Acta1抗体(Sigma, A2066)被用于被用于免疫印迹在人类样本上 (图 s6b). Mol Cell (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 2b
西格玛奥德里奇 Acta1抗体(Sigma, A2066)被用于被用于免疫印迹在小鼠样本上 (图 2b). Proc Natl Acad Sci U S A (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 8a
西格玛奥德里奇 Acta1抗体(Sigma, A2066)被用于被用于免疫印迹在小鼠样本上 (图 8a). Mol Cell Biol (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 8c
西格玛奥德里奇 Acta1抗体(Sigma, A2066)被用于被用于免疫印迹在小鼠样本上 (图 8c). J Exp Med (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:100; 图 3c
西格玛奥德里奇 Acta1抗体(Sigma, A2066)被用于被用于免疫印迹在人类样本上浓度为1:100 (图 3c). Front Immunol (2018) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000
西格玛奥德里奇 Acta1抗体(Sigma, A2066)被用于被用于免疫印迹在人类样本上浓度为1:1000. Nature (2018) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:10,000; 图 s1d
西格玛奥德里奇 Acta1抗体(Sigma, A2066)被用于被用于免疫印迹在小鼠样本上浓度为1:10,000 (图 s1d). Immunity (2018) ncbi
小鼠 单克隆(AC-40)
  • 免疫印迹; 人类; 图 s3a
西格玛奥德里奇 Acta1抗体(Sigma, AC-40)被用于被用于免疫印迹在人类样本上 (图 s3a). PLoS Pathog (2018) ncbi
domestic rabbit 多克隆
西格玛奥德里奇 Acta1抗体(Sigma, A2066)被用于. Nature (2018) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:10,000; 图 1a
西格玛奥德里奇 Acta1抗体(Sigma, A2066)被用于被用于免疫印迹在人类样本上浓度为1:10,000 (图 1a). Nat Commun (2018) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:8000; 图 6t
西格玛奥德里奇 Acta1抗体(Sigma, A2103)被用于被用于免疫印迹在小鼠样本上浓度为1:8000 (图 6t). J Exp Med (2018) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 1a
西格玛奥德里奇 Acta1抗体(Sigma, A2066)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 1a). J Immunol (2018) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 2a
西格玛奥德里奇 Acta1抗体(Sigma, A2066)被用于被用于免疫印迹在人类样本上 (图 2a). Cancer Res (2018) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 小鼠; 1:50; 图 s11
西格玛奥德里奇 Acta1抗体(Sigma, A2066)被用于被用于免疫细胞化学在小鼠样本上浓度为1:50 (图 s11). Nat Commun (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:5000; 图 4c
西格玛奥德里奇 Acta1抗体(Sigma, A2066)被用于被用于免疫印迹在人类样本上浓度为1:5000 (图 4c). EMBO Mol Med (2017) ncbi
小鼠 单克隆(AC-40)
  • 免疫组化-石蜡切片; pigs ; 1:200; 图 st1
西格玛奥德里奇 Acta1抗体(Sigma-Aldrich, A4700)被用于被用于免疫组化-石蜡切片在pigs 样本上浓度为1:200 (图 st1). J Toxicol Pathol (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 6
西格玛奥德里奇 Acta1抗体(Sigma, A2066)被用于被用于免疫印迹在小鼠样本上 (图 6). J Cell Commun Signal (2017) ncbi
小鼠 单克隆(AC-40)
  • 免疫印迹; 小鼠; 图 1A
西格玛奥德里奇 Acta1抗体(Sigma-Aldrich, A4700)被用于被用于免疫印迹在小鼠样本上 (图 1A). Exp Cell Res (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 1
西格玛奥德里奇 Acta1抗体(Sigma, A2066)被用于被用于免疫印迹在人类样本上 (图 1). Neoplasia (2016) ncbi
小鼠 单克隆(AC-40)
  • 免疫细胞化学; 小鼠; 1:100; 图 6
西格玛奥德里奇 Acta1抗体(Sigma, A4700)被用于被用于免疫细胞化学在小鼠样本上浓度为1:100 (图 6). Sci Rep (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 大鼠; 1:2000; 图 6
西格玛奥德里奇 Acta1抗体(Sigma, A2066)被用于被用于免疫印迹在大鼠样本上浓度为1:2000 (图 6). Alzheimers Res Ther (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:5000; 图 s1
  • 免疫印迹; 小鼠; 1:5000; 图 s3
西格玛奥德里奇 Acta1抗体(Sigma, A2066)被用于被用于免疫印迹在人类样本上浓度为1:5000 (图 s1) 和 被用于免疫印迹在小鼠样本上浓度为1:5000 (图 s3). Nat Commun (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 表 s6
西格玛奥德里奇 Acta1抗体(Sigma, A2066)被用于被用于免疫印迹在人类样本上浓度为1:1000 (表 s6). PLoS Genet (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 大鼠; 1:1000; 图 7
西格玛奥德里奇 Acta1抗体(Sigma, A2066)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 7). Sci Rep (2016) ncbi
小鼠 单克隆(AC-40)
  • 免疫印迹; 人类; 图 1
西格玛奥德里奇 Acta1抗体(Sigma, A4700)被用于被用于免疫印迹在人类样本上 (图 1). Biosci Rep (2016) ncbi
小鼠 单克隆(AC-40)
  • 免疫印迹; 人类; 图 6
西格玛奥德里奇 Acta1抗体(Sigma, A4700)被用于被用于免疫印迹在人类样本上 (图 6). elife (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 1a
西格玛奥德里奇 Acta1抗体(Sigma, A2066)被用于被用于免疫印迹在人类样本上 (图 1a). Exp Mol Med (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 6
西格玛奥德里奇 Acta1抗体(Sigma, A2103)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 6). PLoS Pathog (2016) ncbi
小鼠 单克隆(AC-40)
  • 免疫组化; 人类; 图 4
西格玛奥德里奇 Acta1抗体(Sigma, A4700)被用于被用于免疫组化在人类样本上 (图 4). Sci Rep (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:10,000; 图 1s2
西格玛奥德里奇 Acta1抗体(Sigma, A2066)被用于被用于免疫印迹在人类样本上浓度为1:10,000 (图 1s2). elife (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:2500; 图 3
西格玛奥德里奇 Acta1抗体(Sigma, A2066)被用于被用于免疫印迹在人类样本上浓度为1:2500 (图 3). PLoS ONE (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类
西格玛奥德里奇 Acta1抗体(Sigma, A2066)被用于被用于免疫印迹在人类样本上. J Virol (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 大鼠; 1:1000; 图 2
西格玛奥德里奇 Acta1抗体(Sigma, A2066)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 2). Exp Ther Med (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:5000; 图 1
西格玛奥德里奇 Acta1抗体(Sigma, A2066)被用于被用于免疫印迹在人类样本上浓度为1:5000 (图 1). PLoS ONE (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 3
  • 免疫印迹; 小鼠; 1:1000; 图 1
西格玛奥德里奇 Acta1抗体(Sigma, A2066)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3) 和 被用于免疫印迹在小鼠样本上浓度为1:1000 (图 1). Nat Commun (2016) ncbi
小鼠 单克隆(AC-40)
  • 免疫印迹; 人类; 1:2000; 图 3
西格玛奥德里奇 Acta1抗体(Sigma, AC-40)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 3). Int J Mol Sci (2016) ncbi
domestic rabbit 多克隆
  • 免疫沉淀; 人类; 图 5
  • 免疫印迹; 人类; 图 1
西格玛奥德里奇 Acta1抗体(Sigma, A2066)被用于被用于免疫沉淀在人类样本上 (图 5) 和 被用于免疫印迹在人类样本上 (图 1). Sci Rep (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 3
西格玛奥德里奇 Acta1抗体(Sigma, A2066)被用于被用于免疫印迹在人类样本上 (图 3). Sci Rep (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:4000; 图 2
西格玛奥德里奇 Acta1抗体(Sigma, A2066)被用于被用于免疫印迹在小鼠样本上浓度为1:4000 (图 2). Nat Commun (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:2500; 图 2
西格玛奥德里奇 Acta1抗体(Sigma-Aldrich, A 2066)被用于被用于免疫印迹在人类样本上浓度为1:2500 (图 2). Mol Ther Methods Clin Dev (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 4
西格玛奥德里奇 Acta1抗体(Sigma?\Aldrich, A2066)被用于被用于免疫印迹在人类样本上 (图 4). J Am Heart Assoc (2016) ncbi
小鼠 单克隆(AC-40)
  • 免疫印迹; 人类; 1:5000; 图 s1
西格玛奥德里奇 Acta1抗体(Sigma, A4700)被用于被用于免疫印迹在人类样本上浓度为1:5000 (图 s1). J Cell Sci (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 大鼠; 图 4
西格玛奥德里奇 Acta1抗体(Sigma, A2066)被用于被用于免疫印迹在大鼠样本上 (图 4). Sci Rep (2016) ncbi
小鼠 单克隆(AC-40)
  • 免疫印迹; 人类; 1:10,000; 图 5
  • 免疫印迹; 小鼠; 1:10,000; 图 4
西格玛奥德里奇 Acta1抗体(Sigma-Aldrich, AC-40)被用于被用于免疫印迹在人类样本上浓度为1:10,000 (图 5) 和 被用于免疫印迹在小鼠样本上浓度为1:10,000 (图 4). Nat Commun (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 3
西格玛奥德里奇 Acta1抗体(Sigma, A2066)被用于被用于免疫印迹在小鼠样本上 (图 3). Sci Rep (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:500; 图 2
西格玛奥德里奇 Acta1抗体(Sigma-Aldrich, A2066)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 2). Arthritis Res Ther (2016) ncbi
小鼠 单克隆(AC-40)
  • 免疫印迹; 小鼠; 图 1
西格玛奥德里奇 Acta1抗体(Sigma, A4700)被用于被用于免疫印迹在小鼠样本上 (图 1). Brain Behav (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; fruit fly ; 图 3
西格玛奥德里奇 Acta1抗体(Sigma, A2066)被用于被用于免疫印迹在fruit fly 样本上 (图 3). Mol Psychiatry (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:2000; 图 s1
西格玛奥德里奇 Acta1抗体(Sigma-Aldrich, A2066)被用于被用于免疫印迹在小鼠样本上浓度为1:2000 (图 s1). PLoS ONE (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 1
西格玛奥德里奇 Acta1抗体(Sigma, A2066)被用于被用于免疫印迹在人类样本上 (图 1). Nucleic Acids Res (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 s1
西格玛奥德里奇 Acta1抗体(Sigma, A2066)被用于被用于免疫印迹在人类样本上 (图 s1). Sci Rep (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 1
  • 免疫印迹; 人类; 图 2
西格玛奥德里奇 Acta1抗体(Sigma, A2066)被用于被用于免疫印迹在小鼠样本上 (图 1) 和 被用于免疫印迹在人类样本上 (图 2). Expert Rev Mol Med (2016) ncbi
小鼠 单克隆(AC-40)
  • 免疫印迹; 小鼠; 1:1000; 图 3
西格玛奥德里奇 Acta1抗体(Sigma Aldrich, AC-40)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 3). Sci Rep (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:2000; 图 2
西格玛奥德里奇 Acta1抗体(Sigma-Aldrich, A2066)被用于被用于免疫印迹在小鼠样本上浓度为1:2000 (图 2). Nat Commun (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 2
西格玛奥德里奇 Acta1抗体(Sigma, A2103)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 2). Infect Immun (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 1
西格玛奥德里奇 Acta1抗体(Sigma, A2066)被用于被用于免疫印迹在人类样本上 (图 1). PLoS ONE (2016) ncbi
小鼠 单克隆(AC-40)
  • 免疫印迹; 人类; 图 3
西格玛奥德里奇 Acta1抗体(Sigma, A4700)被用于被用于免疫印迹在人类样本上 (图 3). Endocrinology (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 6
西格玛奥德里奇 Acta1抗体(Sigma, A2066)被用于被用于免疫印迹在人类样本上 (图 6). Endocrinology (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:2500; 图 3
西格玛奥德里奇 Acta1抗体(Sigma, A2066)被用于被用于免疫印迹在人类样本上浓度为1:2500 (图 3). PLoS Pathog (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:5000; 图 s6
西格玛奥德里奇 Acta1抗体(Sigma, A2066)被用于被用于免疫印迹在小鼠样本上浓度为1:5000 (图 s6). Nat Commun (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 大鼠; 1:1000; 图 5
西格玛奥德里奇 Acta1抗体(Sigma, A2066)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 5). J Neurosci (2016) ncbi
小鼠 单克隆(AC-40)
  • 免疫印迹; 人类; 图 6
西格玛奥德里奇 Acta1抗体(Sigma, A4700)被用于被用于免疫印迹在人类样本上 (图 6). Oncotarget (2016) ncbi
小鼠 单克隆(AC-40)
  • 免疫印迹; 人类; 图 6
西格玛奥德里奇 Acta1抗体(Sigma, A4700)被用于被用于免疫印迹在人类样本上 (图 6). Mol Cancer Ther (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:2000; 图 1
西格玛奥德里奇 Acta1抗体(Sigma, A2066)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 1). Dev Dyn (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 s1
西格玛奥德里奇 Acta1抗体(Sigma, A-2066)被用于被用于免疫印迹在人类样本上 (图 s1). Oncotarget (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 1
西格玛奥德里奇 Acta1抗体(Sigma, A2066)被用于被用于免疫印迹在小鼠样本上 (图 1). EMBO J (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 8
西格玛奥德里奇 Acta1抗体(Sigma, A2066)被用于被用于免疫印迹在人类样本上 (图 8). Mol Syst Biol (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类
西格玛奥德里奇 Acta1抗体(Sigma, A2066)被用于被用于免疫印迹在人类样本上. Nucleic Acids Res (2016) ncbi
小鼠 单克隆(AC-40)
  • 免疫印迹; 人类; 1:1000; 图 1
西格玛奥德里奇 Acta1抗体(Sigma, A-4700)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 1). PLoS ONE (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 大鼠; 图 1
西格玛奥德里奇 Acta1抗体(Sigma, A2066)被用于被用于免疫印迹在大鼠样本上 (图 1). Cell Death Dis (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:2000; 图 6
  • 免疫印迹; 人类; 1:2000; 图 1
西格玛奥德里奇 Acta1抗体(Sigma-Aldrich, A2066)被用于被用于免疫印迹在小鼠样本上浓度为1:2000 (图 6) 和 被用于免疫印迹在人类样本上浓度为1:2000 (图 1). Nat Commun (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 大鼠; 1:1000; 图 s1
  • 免疫印迹; 小鼠; 1:1000; 图 s1
西格玛奥德里奇 Acta1抗体(Sigma, A2066)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 s1) 和 被用于免疫印迹在小鼠样本上浓度为1:1000 (图 s1). Nat Commun (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:2000; 图 3
西格玛奥德里奇 Acta1抗体(Sigma, A2066)被用于被用于免疫印迹在小鼠样本上浓度为1:2000 (图 3). Sci Rep (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 5
西格玛奥德里奇 Acta1抗体(Sigma, A2066)被用于被用于免疫印迹在人类样本上 (图 5). Cancer Biol Ther (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:2000; 图 5
西格玛奥德里奇 Acta1抗体(Sigma, A2066)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 5). Oncotarget (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 6
西格玛奥德里奇 Acta1抗体(Sigma, A2066)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 6). Dev Cell (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 6
西格玛奥德里奇 Acta1抗体(Sigma-Aldrich, A2066)被用于被用于免疫印迹在小鼠样本上 (图 6). elife (2016) ncbi
domestic rabbit 多克隆
西格玛奥德里奇 Acta1抗体(Sigma-Aldrich, A2066)被用于. Front Physiol (2015) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 2
西格玛奥德里奇 Acta1抗体(Sigma Aldrich, A2066)被用于被用于免疫印迹在人类样本上 (图 2). Am J Physiol Regul Integr Comp Physiol (2016) ncbi
小鼠 单克隆(AC-40)
  • 其他; 人类; 图 st1
西格玛奥德里奇 Acta1抗体(SIGMA, AC-40)被用于被用于其他在人类样本上 (图 st1). Mol Cell Proteomics (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 1
  • 免疫印迹; 小鼠; 图 1
西格玛奥德里奇 Acta1抗体(Sigma, A2066)被用于被用于免疫印迹在人类样本上 (图 1) 和 被用于免疫印迹在小鼠样本上 (图 1). Nat Med (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 3
西格玛奥德里奇 Acta1抗体(Sigma, A2066)被用于被用于免疫印迹在人类样本上 (图 3). Genes Immun (2016) ncbi
小鼠 单克隆(AC-40)
  • 免疫印迹; 人类; 图 4
西格玛奥德里奇 Acta1抗体(Sigma Aldrich, A4700)被用于被用于免疫印迹在人类样本上 (图 4). Oncotarget (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 2
西格玛奥德里奇 Acta1抗体(Sigma-Aldrich, A2066)被用于被用于免疫印迹在人类样本上 (图 2). Biochim Biophys Acta (2016) ncbi
小鼠 单克隆(AC-40)
  • 免疫印迹; 人类; 图 3
西格玛奥德里奇 Acta1抗体(Sigma, AC40)被用于被用于免疫印迹在人类样本上 (图 3). PLoS Pathog (2016) ncbi
小鼠 单克隆(AC-40)
  • 免疫印迹; 人类; 图 1a
西格玛奥德里奇 Acta1抗体(Sigma Aldrich, ac-40)被用于被用于免疫印迹在人类样本上 (图 1a). Mol Oncol (2016) ncbi
小鼠 单克隆(AC-40)
  • 免疫细胞化学; 大鼠; 图 2
西格玛奥德里奇 Acta1抗体(Sigma, A4700)被用于被用于免疫细胞化学在大鼠样本上 (图 2). elife (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:200; 图 2
西格玛奥德里奇 Acta1抗体(Sigma-Aldrich, A2066)被用于被用于免疫印迹在小鼠样本上浓度为1:200 (图 2). Autophagy (2016) ncbi
小鼠 单克隆(AC-40)
  • 免疫印迹; 人类; 1:5000
西格玛奥德里奇 Acta1抗体(Sigma, A4700)被用于被用于免疫印迹在人类样本上浓度为1:5000. Dis Model Mech (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 4
西格玛奥德里奇 Acta1抗体(Sigma, A2066)被用于被用于免疫印迹在小鼠样本上 (图 4). Proc Natl Acad Sci U S A (2016) ncbi
domestic rabbit 多克隆
西格玛奥德里奇 Acta1抗体(Sigma, A2066)被用于. Oncogene (2016) ncbi
domestic rabbit 多克隆
西格玛奥德里奇 Acta1抗体(Sigma, A2066)被用于. Brain (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 s1
西格玛奥德里奇 Acta1抗体(Sigma-Aldrich, A2066)被用于被用于免疫印迹在小鼠样本上 (图 s1). J Clin Invest (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:5000; 图 3
西格玛奥德里奇 Acta1抗体(Sigma, A2066)被用于被用于免疫印迹在小鼠样本上浓度为1:5000 (图 3). Brain (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 表 1
西格玛奥德里奇 Acta1抗体(Sigma, A2103)被用于被用于免疫印迹在人类样本上 (表 1). Redox Biol (2016) ncbi
domestic rabbit 多克隆
西格玛奥德里奇 Acta1抗体(Sigma-Aldrich, A2066)被用于. PLoS ONE (2015) ncbi
domestic rabbit 多克隆
西格玛奥德里奇 Acta1抗体(Sigma-Aldrich, A2066)被用于. Sci Rep (2015) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:10,000; 图 2
  • 免疫印迹; 小鼠; 1:10,000; 图 1
西格玛奥德里奇 Acta1抗体(Sigma-Aldrich, A2066)被用于被用于免疫印迹在人类样本上浓度为1:10,000 (图 2) 和 被用于免疫印迹在小鼠样本上浓度为1:10,000 (图 1). J Clin Invest (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:5000; 图 2
西格玛奥德里奇 Acta1抗体(Sigma-Aldrich, A2066)被用于被用于免疫印迹在人类样本上浓度为1:5000 (图 2). Nat Genet (2016) ncbi
domestic rabbit 多克隆
西格玛奥德里奇 Acta1抗体(Sigma, A2066)被用于. Development (2015) ncbi
小鼠 单克隆(AC-40)
  • 免疫印迹; 斑马鱼; 图 2
西格玛奥德里奇 Acta1抗体(Sigma, A4700)被用于被用于免疫印迹在斑马鱼样本上 (图 2). J Muscle Res Cell Motil (2016) ncbi
domestic rabbit 多克隆
西格玛奥德里奇 Acta1抗体(Sigma, A2066)被用于. BMC Genomics (2015) ncbi
domestic rabbit 多克隆
西格玛奥德里奇 Acta1抗体(Sigma-Aldrich, A2103)被用于. Sci Rep (2015) ncbi
小鼠 单克隆(AC-40)
  • 免疫印迹; 小鼠; 图 7
西格玛奥德里奇 Acta1抗体(Sigma, AC-40)被用于被用于免疫印迹在小鼠样本上 (图 7). Am J Physiol Renal Physiol (2016) ncbi
domestic rabbit 多克隆
西格玛奥德里奇 Acta1抗体(Sigma-Aldrich, A2066)被用于. Korean J Physiol Pharmacol (2015) ncbi
小鼠 单克隆(AC-40)
  • 免疫印迹; 人类; 图 3
西格玛奥德里奇 Acta1抗体(Sigma, A4700)被用于被用于免疫印迹在人类样本上 (图 3). BMC Cancer (2015) ncbi
domestic rabbit 多克隆
西格玛奥德里奇 Acta1抗体(Sigma, A2066)被用于. Nat Commun (2015) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 1
西格玛奥德里奇 Acta1抗体(Sigma, A2066)被用于被用于免疫印迹在人类样本上 (图 1). Nucleic Acids Res (2016) ncbi
domestic rabbit 多克隆
西格玛奥德里奇 Acta1抗体(Sigma-Aldrich, A2066)被用于. PLoS ONE (2015) ncbi
小鼠 单克隆(AC-40)
  • 免疫印迹; 人类; 1:1000; 图 4
西格玛奥德里奇 Acta1抗体(Sigma, A4700)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 4). J Cell Sci (2015) ncbi
domestic rabbit 多克隆
西格玛奥德里奇 Acta1抗体(Sigma, A2066)被用于. J Cell Sci (2015) ncbi
小鼠 单克隆(AC-40)
  • 免疫印迹; 小鼠; 图 4
西格玛奥德里奇 Acta1抗体(Sigma, A4700)被用于被用于免疫印迹在小鼠样本上 (图 4). Proc Natl Acad Sci U S A (2015) ncbi
小鼠 单克隆(AC-40)
  • 免疫印迹; 小鼠; 1:2000; 图 1b
西格玛奥德里奇 Acta1抗体(Sigma, A4700)被用于被用于免疫印迹在小鼠样本上浓度为1:2000 (图 1b). Nat Commun (2015) ncbi
小鼠 单克隆(AC-40)
  • 免疫印迹; 小鼠; 图 s7
西格玛奥德里奇 Acta1抗体(Sigma-Aldrich, AC-40)被用于被用于免疫印迹在小鼠样本上 (图 s7). Nat Immunol (2015) ncbi
domestic rabbit 多克隆
西格玛奥德里奇 Acta1抗体(Sigma, A2066)被用于. PLoS ONE (2015) ncbi
小鼠 单克隆(AC-40)
  • 免疫印迹; 小鼠
西格玛奥德里奇 Acta1抗体(Sigma, A4700)被用于被用于免疫印迹在小鼠样本上. Biochem J (2016) ncbi
小鼠 单克隆(AC-40)
  • 免疫印迹; 小鼠; 1:2500; 图 2c
西格玛奥德里奇 Acta1抗体(Sigma-Aldrich, A4700)被用于被用于免疫印迹在小鼠样本上浓度为1:2500 (图 2c). Nat Commun (2015) ncbi
小鼠 单克隆(AC-40)
  • 免疫印迹; 人类; 1:10,000; 图 s2b
西格玛奥德里奇 Acta1抗体(Sigma, A4700)被用于被用于免疫印迹在人类样本上浓度为1:10,000 (图 s2b). Mol Cell (2015) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 1
西格玛奥德里奇 Acta1抗体(Sigma, A2066)被用于被用于免疫印迹在人类样本上 (图 1). Eur J Appl Physiol (2016) ncbi
domestic rabbit 多克隆
西格玛奥德里奇 Acta1抗体(Sigma, a2066)被用于. Nat Immunol (2015) ncbi
小鼠 单克隆(AC-40)
  • 免疫印迹; 人类; 图 2
西格玛奥德里奇 Acta1抗体(Sigma-Aldrich, A4700)被用于被用于免疫印迹在人类样本上 (图 2). Oncogene (2016) ncbi
domestic rabbit 多克隆
西格玛奥德里奇 Acta1抗体(Sigma, A2066)被用于. Biol Open (2015) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 2b
西格玛奥德里奇 Acta1抗体(Sigma-Aldrich, A2066)被用于被用于免疫印迹在人类样本上 (图 2b). Oncogene (2016) ncbi
domestic rabbit 多克隆
西格玛奥德里奇 Acta1抗体(Sigma-Aldrich, A2066)被用于. Physiol Rep (2015) ncbi
小鼠 单克隆(AC-40)
  • 免疫印迹; 人类; 1:10,000; 图 1
西格玛奥德里奇 Acta1抗体(Sigma, 4700)被用于被用于免疫印迹在人类样本上浓度为1:10,000 (图 1). Biomed Res Int (2015) ncbi
domestic rabbit 多克隆
西格玛奥德里奇 Acta1抗体(Sigma, A2066)被用于. Oncotarget (2015) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类
西格玛奥德里奇 Acta1抗体(Sigma, A2066)被用于被用于免疫印迹在人类样本上. J Physiol (2016) ncbi
domestic rabbit 多克隆
西格玛奥德里奇 Acta1抗体(Sigma, A2066)被用于. Oncotarget (2015) ncbi
domestic rabbit 多克隆
西格玛奥德里奇 Acta1抗体(Sigma, A2066)被用于. Oxid Med Cell Longev (2015) ncbi
domestic rabbit 多克隆
西格玛奥德里奇 Acta1抗体(Sigma, a2066)被用于. Mol Med Rep (2015) ncbi
domestic rabbit 多克隆
西格玛奥德里奇 Acta1抗体(Sigma, A2066)被用于. Nat Commun (2015) ncbi
domestic rabbit 多克隆
西格玛奥德里奇 Acta1抗体(Sigma, A2066)被用于. Oncotarget (2015) ncbi
domestic rabbit 多克隆
西格玛奥德里奇 Acta1抗体(Sigma, A2066)被用于. Proc Natl Acad Sci U S A (2015) ncbi
domestic rabbit 多克隆
西格玛奥德里奇 Acta1抗体(Sigma-Aldrich, A2066)被用于. PLoS ONE (2015) ncbi
domestic rabbit 多克隆
西格玛奥德里奇 Acta1抗体(Sigma-Aldrich, A2066)被用于. Neuroscience (2015) ncbi
小鼠 单克隆(AC-40)
  • 免疫印迹; 非洲爪蛙; 1:800; 图 3
西格玛奥德里奇 Acta1抗体(Sigma, Ac-40)被用于被用于免疫印迹在非洲爪蛙样本上浓度为1:800 (图 3). Protoplasma (2016) ncbi
domestic rabbit 多克隆
西格玛奥德里奇 Acta1抗体(Sigma-Aldrich, A2066)被用于. Cell Res (2015) ncbi
小鼠 单克隆(AC-40)
  • 免疫印迹; 人类; 图 1b
西格玛奥德里奇 Acta1抗体(Sigma, AC-40)被用于被用于免疫印迹在人类样本上 (图 1b). PLoS Pathog (2015) ncbi
domestic rabbit 多克隆
西格玛奥德里奇 Acta1抗体(Sigma-Aldrich, A2066)被用于. Nat Commun (2015) ncbi
小鼠 单克隆(AC-40)
  • 免疫印迹; 仓鼠; 1:2000; 图 3
西格玛奥德里奇 Acta1抗体(Sigma, A4700)被用于被用于免疫印迹在仓鼠样本上浓度为1:2000 (图 3). Nucleic Acids Res (2015) ncbi
domestic rabbit 多克隆
西格玛奥德里奇 Acta1抗体(Sigma, A2066)被用于. EMBO Rep (2015) ncbi
domestic rabbit 多克隆
西格玛奥德里奇 Acta1抗体(Sigma, A2066)被用于. Oncotarget (2015) ncbi
小鼠 单克隆(AC-40)
  • 免疫印迹; 人类; 1:1000; 图 s5
西格玛奥德里奇 Acta1抗体(Sigma-Aldrich, AC-40)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 s5). PLoS ONE (2015) ncbi
domestic rabbit 多克隆
西格玛奥德里奇 Acta1抗体(Sigma-Aldrich, A2066)被用于. PLoS ONE (2015) ncbi
domestic rabbit 多克隆
西格玛奥德里奇 Acta1抗体(Sigma-Aldrich, A2066)被用于. PLoS ONE (2015) ncbi
domestic rabbit 多克隆
西格玛奥德里奇 Acta1抗体(Sigma, A2066)被用于. J Biol Chem (2015) ncbi
小鼠 单克隆(AC-40)
  • 免疫印迹; pigs ; 1:5000; 图 3
西格玛奥德里奇 Acta1抗体(Sigma, A4700)被用于被用于免疫印迹在pigs 样本上浓度为1:5000 (图 3). Sci Rep (2015) ncbi
小鼠 单克隆(AC-40)
  • 免疫印迹; 人类; 1:5000; 图 4
西格玛奥德里奇 Acta1抗体(Sigma, AC40)被用于被用于免疫印迹在人类样本上浓度为1:5000 (图 4). Sci Rep (2015) ncbi
domestic rabbit 多克隆
西格玛奥德里奇 Acta1抗体(Sigma, A2066)被用于. Exp Dermatol (2015) ncbi
domestic rabbit 多克隆
西格玛奥德里奇 Acta1抗体(Sigma-Aldrich, A2066)被用于. J Cell Mol Med (2015) ncbi
小鼠 单克隆(AC-40)
  • 免疫印迹; 大鼠; 1:2000; 图 2
西格玛奥德里奇 Acta1抗体(Sigma, A 4700)被用于被用于免疫印迹在大鼠样本上浓度为1:2000 (图 2). J Neurosci (2015) ncbi
小鼠 单克隆(AC-40)
  • 免疫印迹; 人类; 1:2000; 图 3
西格玛奥德里奇 Acta1抗体(Sigma-Aldrich, A4700)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 3). Cell Death Dis (2015) ncbi
domestic rabbit 多克隆
西格玛奥德里奇 Acta1抗体(Sigma, A2066)被用于. Acta Neuropathol (2015) ncbi
domestic rabbit 多克隆
西格玛奥德里奇 Acta1抗体(Sigma, A2066)被用于. Nucleic Acids Res (2015) ncbi
小鼠 单克隆(AC-40)
  • 免疫印迹; 小鼠
西格玛奥德里奇 Acta1抗体(Sigma-Aldrich-Aldrich, AC-40)被用于被用于免疫印迹在小鼠样本上. J Am Soc Nephrol (2015) ncbi
domestic rabbit 多克隆
西格玛奥德里奇 Acta1抗体(Sigma, A2066)被用于. Nature (2015) ncbi
小鼠 单克隆(AC-40)
  • 免疫印迹; 人类; 图 s2
西格玛奥德里奇 Acta1抗体(Sigma, A4700)被用于被用于免疫印迹在人类样本上 (图 s2). Nature (2015) ncbi
domestic rabbit 多克隆
西格玛奥德里奇 Acta1抗体(Sigma, A2066)被用于. Nat Commun (2015) ncbi
小鼠 单克隆(AC-40)
  • 免疫印迹; 大鼠; 1:5000; 图 3
  • 免疫印迹; African green monkey; 1:5000; 图 s8
西格玛奥德里奇 Acta1抗体(Sigma-Aldrich, A4700)被用于被用于免疫印迹在大鼠样本上浓度为1:5000 (图 3) 和 被用于免疫印迹在African green monkey样本上浓度为1:5000 (图 s8). Nat Commun (2015) ncbi
小鼠 单克隆(AC-40)
  • 免疫印迹; 人类; 1:500; 图 8
西格玛奥德里奇 Acta1抗体(Sigma-Aldrich, AC-40)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 8). J Cell Biol (2015) ncbi
小鼠 单克隆(AC-40)
  • 免疫印迹; 小鼠; 图 2
西格玛奥德里奇 Acta1抗体(Sigma, A4700)被用于被用于免疫印迹在小鼠样本上 (图 2). Mol Biol Cell (2015) ncbi
domestic rabbit 多克隆
西格玛奥德里奇 Acta1抗体(Sigma-Aldrich, A2103)被用于. PLoS ONE (2015) ncbi
小鼠 单克隆(AC-40)
  • 免疫印迹; 小鼠; 1:5000
西格玛奥德里奇 Acta1抗体(Sigma-Aldrich, A4700)被用于被用于免疫印迹在小鼠样本上浓度为1:5000. PLoS ONE (2015) ncbi
domestic rabbit 多克隆
西格玛奥德里奇 Acta1抗体(Sigma, A2066)被用于. Neural Plast (2015) ncbi
domestic rabbit 多克隆
西格玛奥德里奇 Acta1抗体(Sigma-Aldrich, A2066)被用于. PLoS ONE (2015) ncbi
domestic rabbit 多克隆
西格玛奥德里奇 Acta1抗体(Sigma, A2066)被用于. Stem Cell Reports (2015) ncbi
domestic rabbit 多克隆
西格玛奥德里奇 Acta1抗体(Sigma, A2066)被用于. Cell Death Dis (2015) ncbi
domestic rabbit 多克隆
西格玛奥德里奇 Acta1抗体(Sigma, A2066)被用于. Traffic (2015) ncbi
domestic rabbit 多克隆
西格玛奥德里奇 Acta1抗体(Sigma, A2066)被用于. Mol Cell Neurosci (2015) ncbi
domestic rabbit 多克隆
西格玛奥德里奇 Acta1抗体(Sigma, A2066)被用于. J Biol Chem (2015) ncbi
domestic rabbit 多克隆
西格玛奥德里奇 Acta1抗体(Sigma-Aldrich, A2066)被用于. J Clin Invest (2015) ncbi
domestic rabbit 多克隆
西格玛奥德里奇 Acta1抗体(Sigma, A2066)被用于. Exp Cell Res (2015) ncbi
小鼠 单克隆(AC-40)
  • 免疫印迹; 大鼠
西格玛奥德里奇 Acta1抗体(Sigma Chemical, A4700)被用于被用于免疫印迹在大鼠样本上. FEBS Lett (2015) ncbi
小鼠 单克隆(AC-40)
  • 免疫印迹; 人类; 图 s3
西格玛奥德里奇 Acta1抗体(Sigma, AC-40)被用于被用于免疫印迹在人类样本上 (图 s3). Aging Cell (2015) ncbi
domestic rabbit 多克隆
西格玛奥德里奇 Acta1抗体(Sigma, A2066)被用于. PLoS Genet (2015) ncbi
domestic rabbit 多克隆
西格玛奥德里奇 Acta1抗体(Sigma-Aldrich, A2066)被用于. Nat Neurosci (2015) ncbi
domestic rabbit 多克隆
西格玛奥德里奇 Acta1抗体(Sigma-Aldrich, A2066)被用于. Cell Death Dis (2015) ncbi
domestic rabbit 多克隆
西格玛奥德里奇 Acta1抗体(Sigma, A2066)被用于. Cell Death Dis (2015) ncbi
domestic rabbit 多克隆
西格玛奥德里奇 Acta1抗体(Sigma, A2066)被用于. Oncotarget (2015) ncbi
小鼠 单克隆(AC-40)
  • 免疫印迹; 大鼠; 1:1000
西格玛奥德里奇 Acta1抗体(Sigma-Aldrich, A4700)被用于被用于免疫印迹在大鼠样本上浓度为1:1000. Int J Dev Neurosci (2015) ncbi
小鼠 单克隆(AC-40)
  • 免疫印迹; 人类
西格玛奥德里奇 Acta1抗体(Sigma, AC-40)被用于被用于免疫印迹在人类样本上. Oncotarget (2014) ncbi
domestic rabbit 多克隆
西格玛奥德里奇 Acta1抗体(Sigma Aldrich, A2066)被用于. J Appl Physiol (1985) (2015) ncbi
domestic rabbit 多克隆
西格玛奥德里奇 Acta1抗体(Sigma-Aldrich, A2066)被用于. Am J Physiol Gastrointest Liver Physiol (2015) ncbi
domestic rabbit 多克隆
西格玛奥德里奇 Acta1抗体(Sigma, A2066)被用于. Nat Immunol (2015) ncbi
domestic rabbit 多克隆
西格玛奥德里奇 Acta1抗体(Sigma, A2066)被用于. Mol Cancer Res (2015) ncbi
小鼠 单克隆(AC-40)
  • 免疫印迹; 小鼠; 1:10,000
西格玛奥德里奇 Acta1抗体(Sigma-Aldrich, A4700)被用于被用于免疫印迹在小鼠样本上浓度为1:10,000. J Neurosci (2014) ncbi
小鼠 单克隆(AC-40)
  • 免疫印迹; 小鼠; 1:20,000
西格玛奥德里奇 Acta1抗体(Sigma-Aldrich, AC40)被用于被用于免疫印迹在小鼠样本上浓度为1:20,000. Neurobiol Dis (2015) ncbi
小鼠 单克隆(AC-40)
  • 免疫印迹; 大鼠; 1:2000
西格玛奥德里奇 Acta1抗体(Sigma, A4700)被用于被用于免疫印迹在大鼠样本上浓度为1:2000. Behav Brain Res (2015) ncbi
小鼠 单克隆(AC-40)
  • 免疫印迹; domestic goat; 1:1000; 图 3
西格玛奥德里奇 Acta1抗体(Sigma, A4700)被用于被用于免疫印迹在domestic goat样本上浓度为1:1000 (图 3). PLoS ONE (2014) ncbi
小鼠 单克隆(AC-40)
  • 免疫印迹; 人类; 图 6
西格玛奥德里奇 Acta1抗体(Sigma, AC40)被用于被用于免疫印迹在人类样本上 (图 6). Oncogene (2015) ncbi
小鼠 单克隆(AC-40)
  • 免疫印迹; 人类
西格玛奥德里奇 Acta1抗体(Sigma-Aldrich, AC40)被用于被用于免疫印迹在人类样本上. J Virol (2014) ncbi
小鼠 单克隆(AC-40)
  • 免疫印迹; 小鼠; 1:10,000
西格玛奥德里奇 Acta1抗体(Sigma, A4700)被用于被用于免疫印迹在小鼠样本上浓度为1:10,000. Eur Neuropsychopharmacol (2014) ncbi
domestic rabbit 多克隆
西格玛奥德里奇 Acta1抗体(Sigma, A2066)被用于. J Neurosci (2014) ncbi
小鼠 单克隆(AC-40)
  • 免疫印迹; 小鼠
西格玛奥德里奇 Acta1抗体(Sigma-Aldrich, A4700)被用于被用于免疫印迹在小鼠样本上. J Neurosci (2014) ncbi
小鼠 单克隆(AC-40)
  • 免疫印迹; 小鼠; 图 4
西格玛奥德里奇 Acta1抗体(Sigma Aldrich, #AC40)被用于被用于免疫印迹在小鼠样本上 (图 4). Cancer Med (2014) ncbi
小鼠 单克隆(AC-40)
  • 免疫印迹; 人类; 1:5000
西格玛奥德里奇 Acta1抗体(Sigma, A4700)被用于被用于免疫印迹在人类样本上浓度为1:5000. Biochim Biophys Acta (2014) ncbi
小鼠 单克隆(AC-40)
  • 免疫沉淀; 人类
  • 免疫细胞化学; 人类
  • 免疫印迹; 人类
西格玛奥德里奇 Acta1抗体(Sigma-Aldrich, AC40)被用于被用于免疫沉淀在人类样本上, 被用于免疫细胞化学在人类样本上 和 被用于免疫印迹在人类样本上. Mol Cells (2013) ncbi
小鼠 单克隆(AC-40)
  • 免疫印迹; 小鼠; 1:500
西格玛奥德里奇 Acta1抗体(Sigma-Aldrich, A4700)被用于被用于免疫印迹在小鼠样本上浓度为1:500. J Neurosci (2013) ncbi
小鼠 单克隆(AC-40)
  • 免疫印迹; 人类; 1:3000
西格玛奥德里奇 Acta1抗体(Sigma-Aldrich, A4700)被用于被用于免疫印迹在人类样本上浓度为1:3000. Head Neck (2014) ncbi
小鼠 单克隆(AC-40)
  • 免疫印迹; 大鼠
西格玛奥德里奇 Acta1抗体(Sigma, AC40)被用于被用于免疫印迹在大鼠样本上. J Neurosci (2013) ncbi
小鼠 单克隆(AC-40)
  • 免疫印迹; 斑马鱼; 1:1000
西格玛奥德里奇 Acta1抗体(Sigma, AC40)被用于被用于免疫印迹在斑马鱼样本上浓度为1:1000. Dev Biol (2012) ncbi
小鼠 单克隆(AC-40)
  • 免疫印迹; 大鼠; 1:4000
西格玛奥德里奇 Acta1抗体(Sigma, A4700)被用于被用于免疫印迹在大鼠样本上浓度为1:4000. J Histochem Cytochem (2012) ncbi
小鼠 单克隆(AC-40)
  • 免疫印迹; 人类; 1:10,000; 图 s2
西格玛奥德里奇 Acta1抗体(Sigma, A4700)被用于被用于免疫印迹在人类样本上浓度为1:10,000 (图 s2). PLoS ONE (2010) ncbi
ProSci
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 S1
ProSci Acta1抗体(Prosci, 3779)被用于被用于免疫印迹在小鼠样本上 (图 S1). J Immunol (2016) ncbi
MBL International
多克隆
  • 免疫印迹; 小鼠; 图 2b
MBL International Acta1抗体(MBL, PM053-7)被用于被用于免疫印迹在小鼠样本上 (图 2b). Sci Rep (2016) ncbi
徕卡显微系统(上海)贸易有限公司
单克隆
  • 免疫细胞化学; 小鼠; 1:200; 图 8
徕卡显微系统(上海)贸易有限公司 Acta1抗体(Leica Microsistemas, NCL-MSA)被用于被用于免疫细胞化学在小鼠样本上浓度为1:200 (图 8). PLoS ONE (2014) ncbi
文章列表
  1. Gao F, Li C, Smith S, Peinado N, Kohbodi G, Tran E, et al. Decoding the IGF1 signaling gene regulatory network behind alveologenesis from a mouse model of bronchopulmonary dysplasia. elife. 2022;11: pubmed 出版商
  2. Selle J, Dinger K, Jentgen V, Zanetti D, Will J, Georgomanolis T, et al. Maternal and perinatal obesity induce bronchial obstruction and pulmonary hypertension via IL-6-FoxO1-axis in later life. Nat Commun. 2022;13:4352 pubmed 出版商
  3. Pantasis S, Friemel J, Brütsch S, Hu Z, Krautbauer S, Liebisch G, et al. Vertebrate lonesome kinase modulates the hepatocyte secretome to prevent perivascular liver fibrosis and inflammation. J Cell Sci. 2022;135: pubmed 出版商
  4. Hua X, Ge S, Zhang M, Mo F, Zhang L, Zhang J, et al. Pathogenic Roles of CXCL10 in Experimental Autoimmune Prostatitis by Modulating Macrophage Chemotaxis and Cytokine Secretion. Front Immunol. 2021;12:706027 pubmed 出版商
  5. Xiang Y, Zhou C, Zeng Y, Guo Q, Huang J, Wu T, et al. NAT10-Mediated N4-Acetylcytidine of RNA Contributes to Post-transcriptional Regulation of Mouse Oocyte Maturation in vitro. Front Cell Dev Biol. 2021;9:704341 pubmed 出版商
  6. Zhang Q, Agius S, Flanigan S, Uckelmann M, Levina V, Owen B, et al. PALI1 facilitates DNA and nucleosome binding by PRC2 and triggers an allosteric activation of catalysis. Nat Commun. 2021;12:4592 pubmed 出版商
  7. Xu Z, Cheng C, Kong R, Liu Y, Wang S, Ma Y, et al. S100A8 and S100A9, both transcriptionally regulated by PU.1, promote epithelial-mesenchymal transformation (EMT) and invasive growth of dermal keratinocytes during scar formation post burn. Aging (Albany NY). 2021;13:15523-15537 pubmed 出版商
  8. Wang H, Xiong W, Hang S, Wang Y, Zhang S, Liu S. Depletion of SENP1-mediated PPARγ SUMOylation exaggerates intermittent hypoxia-induced cognitive decline by aggravating microglia-mediated neuroinflammation. Aging (Albany NY). 2021;13:15240-15254 pubmed 出版商
  9. Krausová A, Buresova P, Sarnova L, Oyman Eyrilmez G, Skarda J, Wohl P, et al. Plectin ensures intestinal epithelial integrity and protects colon against colitis. Mucosal Immunol. 2021;14:691-702 pubmed 出版商
  10. Zhou L, He R, Fang P, Li M, Yu H, Wang Q, et al. Hepatitis B virus rigs the cellular metabolome to avoid innate immune recognition. Nat Commun. 2021;12:98 pubmed 出版商
  11. Chen A, Santana A, Doudican N, Roudiani N, Laursen K, Therrien J, et al. MAGE-A3 is a prognostic biomarker for poor clinical outcome in cutaneous squamous cell carcinoma with perineural invasion via modulation of cell proliferation. PLoS ONE. 2020;15:e0241551 pubmed 出版商
  12. Fomicheva M, Macara I. Genome-wide CRISPR screen identifies noncanonical NF-κB signaling as a regulator of density-dependent proliferation. elife. 2020;9: pubmed 出版商
  13. Gurley J, Gmyrek G, McClellan M, Hargis E, Hauck S, Dozmorov M, et al. Neuroretinal-Derived Caveolin-1 Promotes Endotoxin-Induced Inflammation in the Murine Retina. Invest Ophthalmol Vis Sci. 2020;61:19 pubmed 出版商
  14. Ogasawara Y, Cheng J, Tatematsu T, Uchida M, Murase O, Yoshikawa S, et al. Long-term autophagy is sustained by activation of CCTβ3 on lipid droplets. Nat Commun. 2020;11:4480 pubmed 出版商
  15. Zatulovskiy E, Zhang S, Berenson D, Topacio B, Skotheim J. Cell growth dilutes the cell cycle inhibitor Rb to trigger cell division. Science. 2020;369:466-471 pubmed 出版商
  16. Waaler J, Mygland L, Tveita A, Strand M, Solberg N, Olsen P, et al. Tankyrase inhibition sensitizes melanoma to PD-1 immune checkpoint blockade in syngeneic mouse models. Commun Biol. 2020;3:196 pubmed 出版商
  17. Beltran Camacho L, Jimenez Palomares M, Rojas Torres M, Sánchez Gomar I, Rosal Vela A, Eslava Alcon S, et al. Identification of the initial molecular changes in response to circulating angiogenic cells-mediated therapy in critical limb ischemia. Stem Cell Res Ther. 2020;11:106 pubmed 出版商
  18. Xu W, Li K, Fan Q, Zong B, Han L. Knockdown of long non-coding RNA SOX21-AS1 attenuates amyloid-β-induced neuronal damage by sponging miR-107. Biosci Rep. 2020;40: pubmed 出版商
  19. Mallampalli R, Li X, Jang J, Kaminski T, Hoji A, Coon T, et al. Cigarette smoke exposure enhances transforming acidic coiled-coil-containing protein 2 turnover and thereby promotes emphysema. JCI Insight. 2020;5: pubmed 出版商
  20. Zhang L, Wang Y, Wu G, Rao L, Wei Y, Yue H, et al. Blockade of JAK2 protects mice against hypoxia-induced pulmonary arterial hypertension by repressing pulmonary arterial smooth muscle cell proliferation. Cell Prolif. 2020;53:e12742 pubmed 出版商
  21. Singh V, Khalil M, De Benedetti A. The TLK1/Nek1 axis contributes to mitochondrial integrity and apoptosis prevention via phosphorylation of VDAC1. Cell Cycle. 2020;19:363-375 pubmed 出版商
  22. Hu T, Zhou Y, Lu J, Xia P, Chen Y, Cao X, et al. A novel rhamnoside derivative PL402 up-regulates matrix metalloproteinase 3/9 to promote Aβ degradation and alleviates Alzheimer's-like pathology. Aging (Albany NY). 2020;12:481-501 pubmed 出版商
  23. Chen W, Wang Q, Xu X, Saxton B, Tessema M, Leng S, et al. Vasorin/ATIA Promotes Cigarette Smoke-Induced Transformation of Human Bronchial Epithelial Cells by Suppressing Autophagy-Mediated Apoptosis. Transl Oncol. 2020;13:32-41 pubmed 出版商
  24. Wu X, Chen S, Lu C. Amyloid precursor protein promotes the migration and invasion of breast cancer cells by regulating the MAPK signaling pathway. Int J Mol Med. 2019;: pubmed 出版商
  25. Oleinik N, Kim J, Roth B, Selvam S, Gooz M, Johnson R, et al. Mitochondrial protein import is regulated by p17/PERMIT to mediate lipid metabolism and cellular stress. Sci Adv. 2019;5:eaax1978 pubmed 出版商
  26. Fons N, Sundaram R, Breuer G, Peng S, McLean R, Kalathil A, et al. PPM1D mutations silence NAPRT gene expression and confer NAMPT inhibitor sensitivity in glioma. Nat Commun. 2019;10:3790 pubmed 出版商
  27. V gtle T, Sharma S, Mori J, Nagy Z, Semeniak D, Scandola C, et al. Heparan sulfates are critical regulators of the inhibitory megakaryocyte-platelet receptor G6b-B. elife. 2019;8: pubmed 出版商
  28. ElMaghraby M, Andersen P, P hringer F, Hohmann U, Meixner K, Lendl T, et al. A Heterochromatin-Specific RNA Export Pathway Facilitates piRNA Production. Cell. 2019;178:964-979.e20 pubmed 出版商
  29. Nortley R, Korte N, Izquierdo P, Hirunpattarasilp C, Mishra A, Jaunmuktane Z, et al. Amyloid β oligomers constrict human capillaries in Alzheimer's disease via signaling to pericytes. Science. 2019;: pubmed 出版商
  30. Zhao B, Du F, Xu P, Shu C, Sankaran B, Bell S, et al. A conserved PLPLRT/SD motif of STING mediates the recruitment and activation of TBK1. Nature. 2019;: pubmed 出版商
  31. Li Q, Youn J, Siu K, Murugesan P, Zhang Y, Cai H. Knockout of dihydrofolate reductase in mice induces hypertension and abdominal aortic aneurysm via mitochondrial dysfunction. Redox Biol. 2019;24:101185 pubmed 出版商
  32. Lee S, Mayr C. Gain of Additional BIRC3 Protein Functions through 3'-UTR-Mediated Protein Complex Formation. Mol Cell. 2019;: pubmed 出版商
  33. Kubli S, Bassi C, Roux C, Wakeham A, Göbl C, Zhou W, et al. AhR controls redox homeostasis and shapes the tumor microenvironment in BRCA1-associated breast cancer. Proc Natl Acad Sci U S A. 2019;116:3604-3613 pubmed 出版商
  34. So C, Ramachandran S, Martin A. E3 Ubiquitin Ligases RNF20 and RNF40 Are Required for Double-Stranded Break (DSB) Repair: Evidence for Monoubiquitination of Histone H2B Lysine 120 as a Novel Axis of DSB Signaling and Repair. Mol Cell Biol. 2019;39: pubmed 出版商
  35. Faliti C, Gualtierotti R, Rottoli E, Gerosa M, Perruzza L, Romagnani A, et al. P2X7 receptor restrains pathogenic Tfh cell generation in systemic lupus erythematosus. J Exp Med. 2019;216:317-336 pubmed 出版商
  36. Li B, He J, Lv H, Liu Y, Lv X, Zhang C, et al. c-Abl regulates YAPY357 phosphorylation to activate endothelial atherogenic responses to disturbed flow. J Clin Invest. 2019;129:1167-1179 pubmed 出版商
  37. Gómez Fernández P, Urtasun A, Paton A, Paton J, Borrego F, Dersh D, et al. Long Interleukin-22 Binding Protein Isoform-1 Is an Intracellular Activator of the Unfolded Protein Response. Front Immunol. 2018;9:2934 pubmed 出版商
  38. Deng M, Gui X, Kim J, Xie L, Chen W, Li Z, et al. LILRB4 signalling in leukaemia cells mediates T cell suppression and tumour infiltration. Nature. 2018;562:605-609 pubmed 出版商
  39. Mollaoglu G, Jones A, Wait S, Mukhopadhyay A, Jeong S, Arya R, et al. The Lineage-Defining Transcription Factors SOX2 and NKX2-1 Determine Lung Cancer Cell Fate and Shape the Tumor Immune Microenvironment. Immunity. 2018;49:764-779.e9 pubmed 出版商
  40. Rodríguez Baena F, Redondo García S, Peris Torres C, Martino Echarri E, Fernández Rodríguez R, Plaza Calonge M, et al. ADAMTS1 protease is required for a balanced immune cell repertoire and tumour inflammatory response. Sci Rep. 2018;8:13103 pubmed 出版商
  41. Urata S, Kenyon E, Nayak D, Cubitt B, Kurosaki Y, Yasuda J, et al. BST-2 controls T cell proliferation and exhaustion by shaping the early distribution of a persistent viral infection. PLoS Pathog. 2018;14:e1007172 pubmed 出版商
  42. Zhang C, Wang C, Jiang M, Gu C, Xiao J, Chen X, et al. Act1 is a negative regulator in T and B cells via direct inhibition of STAT3. Nat Commun. 2018;9:2745 pubmed 出版商
  43. Rapino F, Delaunay S, Rambow F, Zhou Z, Tharun L, de Tullio P, et al. Codon-specific translation reprogramming promotes resistance to targeted therapy. Nature. 2018;558:605-609 pubmed 出版商
  44. Hsu J, Xia W, Hsu Y, Chan L, Yu W, Cha J, et al. STT3-dependent PD-L1 accumulation on cancer stem cells promotes immune evasion. Nat Commun. 2018;9:1908 pubmed 出版商
  45. Reichenbach N, Delekate A, Breithausen B, Keppler K, Poll S, Schulte T, et al. P2Y1 receptor blockade normalizes network dysfunction and cognition in an Alzheimer's disease model. J Exp Med. 2018;215:1649-1663 pubmed 出版商
  46. Lino Cardenas C, Kessinger C, Cheng Y, MacDonald C, Macgillivray T, Ghoshhajra B, et al. An HDAC9-MALAT1-BRG1 complex mediates smooth muscle dysfunction in thoracic aortic aneurysm. Nat Commun. 2018;9:1009 pubmed 出版商
  47. Steinbuck M, Arakcheeva K, Winandy S. Novel TCR-Mediated Mechanisms of Notch Activation and Signaling. J Immunol. 2018;200:997-1007 pubmed 出版商
  48. Li T, Zhao J. Knockdown of elF3a inhibits TGF??1?induced extracellular matrix protein expression in keloid fibroblasts. Mol Med Rep. 2018;17:4057-4061 pubmed 出版商
  49. Yu R, Longo J, van Leeuwen J, Mullen P, Ba Alawi W, Haibe Kains B, et al. Statin-Induced Cancer Cell Death Can Be Mechanistically Uncoupled from Prenylation of RAS Family Proteins. Cancer Res. 2018;78:1347-1357 pubmed 出版商
  50. Aguado L, Schmid S, May J, Sabin L, Panis M, Blanco Melo D, et al. RNase III nucleases from diverse kingdoms serve as antiviral effectors. Nature. 2017;547:114-117 pubmed 出版商
  51. Kage F, Winterhoff M, Dimchev V, Mueller J, Thalheim T, Freise A, et al. FMNL formins boost lamellipodial force generation. Nat Commun. 2017;8:14832 pubmed 出版商
  52. Chen S, Wang Y, Zhang W, Dong M, Zhang J. Sclareolide enhances gemcitabine?induced cell death through mediating the NICD and Gli1 pathways in gemcitabine?resistant human pancreatic cancer. Mol Med Rep. 2017;15:1461-1470 pubmed 出版商
  53. Guo M, Tomoshige K, Meister M, Muley T, Fukazawa T, Tsuchiya T, et al. Gene signature driving invasive mucinous adenocarcinoma of the lung. EMBO Mol Med. 2017;9:462-481 pubmed 出版商
  54. Moradi M, Sivadasan R, Saal L, Lüningschrör P, Dombert B, Rathod R, et al. Differential roles of α-, β-, and γ-actin in axon growth and collateral branch formation in motoneurons. J Cell Biol. 2017;216:793-814 pubmed 出版商
  55. Furukawa S, Nagaike M, Ozaki K. Databases for technical aspects of immunohistochemistry. J Toxicol Pathol. 2017;30:79-107 pubmed 出版商
  56. Makino S, Fukumura R, Gondo Y. Illegitimate translation causes unexpected gene expression from on-target out-of-frame alleles created by CRISPR-Cas9. Sci Rep. 2016;6:39608 pubmed 出版商
  57. Mayrhofer M, Gourain V, Reischl M, Affaticati P, Jenett A, Joly J, et al. A novel brain tumour model in zebrafish reveals the role of YAP activation in MAPK- and PI3K-induced malignant growth. Dis Model Mech. 2017;10:15-28 pubmed 出版商
  58. Jørgensen L, Jepsen P, Boysen A, Dalgaard L, Hvid L, Ørtenblad N, et al. SPARC Interacts with Actin in Skeletal Muscle in Vitro and in Vivo. Am J Pathol. 2017;187:457-474 pubmed 出版商
  59. Chen Z, Tang C, Zhu Y, Xie M, He D, Pan Q, et al. TrpC5 regulates differentiation through the Ca2+/Wnt5a signalling pathway in colorectal cancer. Clin Sci (Lond). 2017;131:227-237 pubmed 出版商
  60. Tarr J, Visser T, Moon J, Hendesi H, Barbe M, Bradley J, et al. The pivotal role of CCN2 in mammalian palatogenesis. J Cell Commun Signal. 2017;11:25-37 pubmed 出版商
  61. He M, Yuan H, Tan B, Bai R, Kim H, Bae S, et al. SIRT1-mediated downregulation of p27Kip1 is essential for overcoming contact inhibition of Kaposi's sarcoma-associated herpesvirus transformed cells. Oncotarget. 2016;7:75698-75711 pubmed 出版商
  62. Sun K, Xu S, Chen J, Liu G, Shen X, Wu X. Atypical presentation of a gastric stromal tumor masquerading as a giant intraabdominal cyst: A case report. Oncol Lett. 2016;12:3018-3020 pubmed
  63. Romeo S, Conti A, Polito F, Tomasello C, Barresi V, La Torre D, et al. miRNA regulation of Sirtuin-1 expression in human astrocytoma. Oncol Lett. 2016;12:2992-2998 pubmed
  64. Matos M, Lapyckyj L, Rosso M, Besso M, Mencucci M, Briggiler C, et al. Identification of a Novel Human E-Cadherin Splice Variant and Assessment of Its Effects Upon EMT-Related Events. J Cell Physiol. 2017;232:1368-1386 pubmed 出版商
  65. Zhao G, Zhu P, Renvoisé B, Maldonado Baez L, Park S, Blackstone C. Mammalian knock out cells reveal prominent roles for atlastin GTPases in ER network morphology. Exp Cell Res. 2016;349:32-44 pubmed 出版商
  66. Park S, Yoon S, Kim H, Kim K. 90K Glycoprotein Promotes Degradation of Mutant ?-Catenin Lacking the ISGylation or Phosphorylation Sites in the N-terminus. Neoplasia. 2016;18:618-625 pubmed 出版商
  67. Frolikova M, Sebkova N, Ded L, Dvorakova Hortova K. Characterization of CD46 and ?1 integrin dynamics during sperm acrosome reaction. Sci Rep. 2016;6:33714 pubmed 出版商
  68. Zhang S, Wang P, Ren L, Hu C, Bi J. Protective effect of melatonin on soluble A?1-42-induced memory impairment, astrogliosis, and synaptic dysfunction via the Musashi1/Notch1/Hes1 signaling pathway in the rat hippocampus. Alzheimers Res Ther. 2016;8:40 pubmed 出版商
  69. Lee H, Noh H, Mun J, Gu C, Sever S, Park S. Anks1a regulates COPII-mediated anterograde transport of receptor tyrosine kinases critical for tumorigenesis. Nat Commun. 2016;7:12799 pubmed 出版商
  70. Zhou S, Han Q, Wang R, Li X, Wang Q, Wang H, et al. PRDX2 protects hepatocellular carcinoma SMMC-7721 cells from oxidative stress. Oncol Lett. 2016;12:2217-2221 pubmed
  71. Sousa A, Rei M, Freitas R, Ricardo S, Caffrey T, David L, et al. Effect of MUC1/?-catenin interaction on the tumorigenic capacity of pancreatic CD133+ cells. Oncol Lett. 2016;12:1811-1817 pubmed
  72. Mair B, Konopka T, Kerzendorfer C, Sleiman K, Salic S, Serra V, et al. Gain- and Loss-of-Function Mutations in the Breast Cancer Gene GATA3 Result in Differential Drug Sensitivity. PLoS Genet. 2016;12:e1006279 pubmed 出版商
  73. Lee M, Tsai K, Hsu J, Shin S, Wu J, Yeh J. Liraglutide prevents and reverses monocrotaline-induced pulmonary arterial hypertension by suppressing ET-1 and enhancing eNOS/sGC/PKG pathways. Sci Rep. 2016;6:31788 pubmed 出版商
  74. Abraham K, Chan J, Salvi J, Ho B, Hall A, Vidya E, et al. Intersection of calorie restriction and magnesium in the suppression of genome-destabilizing RNA-DNA hybrids. Nucleic Acids Res. 2016;44:8870-8884 pubmed
  75. Weikel K, Cacicedo J, Ruderman N, Ido Y. Knockdown of GSK3β increases basal autophagy and AMPK signalling in nutrient-laden human aortic endothelial cells. Biosci Rep. 2016;36: pubmed 出版商
  76. Bercovich Kinori A, Tai J, Gelbart I, Shitrit A, Ben Moshe S, Drori Y, et al. A systematic view on influenza induced host shutoff. elife. 2016;5: pubmed 出版商
  77. Park Y, Nam H, Do M, Lee J. The p90 ribosomal S6 kinase 2 specifically affects mitotic progression by regulating the basal level, distribution and stability of mitotic spindles. Exp Mol Med. 2016;48:e250 pubmed 出版商
  78. Wang X, Shaw D, Hammond H, Sutterwala F, Rayamajhi M, Shirey K, et al. The Prostaglandin E2-EP3 Receptor Axis Regulates Anaplasma phagocytophilum-Mediated NLRC4 Inflammasome Activation. PLoS Pathog. 2016;12:e1005803 pubmed 出版商
  79. Fritzen R, Delbos F, De Smet A, Palancade B, Canman C, Aoufouchi S, et al. A single aspartate mutation in the conserved catalytic site of Rev3L generates a hypomorphic phenotype in vivo and in vitro. DNA Repair (Amst). 2016;46:37-46 pubmed 出版商
  80. Das S, Rehman I, Ghosh A, Sengupta S, Majumdar P, Jana B, et al. Poly(ADP-ribose) polymers regulate DNA topoisomerase I (Top1) nuclear dynamics and camptothecin sensitivity in living cells. Nucleic Acids Res. 2016;44:8363-75 pubmed 出版商
  81. Yang X, Zhou X, Tone P, Durkin M, Popescu N. Cooperative antiproliferative effect of coordinated ectopic expression of DLC1 tumor suppressor protein and silencing of MYC oncogene expression in liver cancer cells: Therapeutic implications. Oncol Lett. 2016;12:1591-1596 pubmed
  82. Jin Z, Yan W, Jin H, Ge C, Xu Y. Psoralidin inhibits proliferation and enhances apoptosis of human esophageal carcinoma cells via NF-?B and PI3K/Akt signaling pathways. Oncol Lett. 2016;12:971-976 pubmed
  83. Geng J, Li J, Huang T, Zhao K, Chen Q, Guo W, et al. A novel manganese complex selectively induces malignant glioma cell death by targeting mitochondria. Mol Med Rep. 2016;14:1970-8 pubmed 出版商
  84. He Z, Forest F, Gain P, Rageade D, Bernard A, Acquart S, et al. 3D map of the human corneal endothelial cell. Sci Rep. 2016;6:29047 pubmed 出版商
  85. Espinoza I, Sakiyama M, Ma T, Fair L, Zhou X, Hassan M, et al. Hypoxia on the Expression of Hepatoma Upregulated Protein in Prostate Cancer Cells. Front Oncol. 2016;6:144 pubmed 出版商
  86. Fong C, Mazo G, Das T, Goodman J, Kim M, O Rourke B, et al. 53BP1 and USP28 mediate p53-dependent cell cycle arrest in response to centrosome loss and prolonged mitosis. elife. 2016;5: pubmed 出版商
  87. Talar B, Gajos Michniewicz A, Talar M, Chouaib S, Czyz M. Pentoxifylline Inhibits WNT Signalling in ?-Cateninhigh Patient-Derived Melanoma Cell Populations. PLoS ONE. 2016;11:e0158275 pubmed 出版商
  88. Deguise M, Boyer J, McFall E, Yazdani A, De Repentigny Y, Kothary R. Differential induction of muscle atrophy pathways in two mouse models of spinal muscular atrophy. Sci Rep. 2016;6:28846 pubmed 出版商
  89. Liu R, Moss B. Opposing Roles of Double-Stranded RNA Effector Pathways and Viral Defense Proteins Revealed with CRISPR-Cas9 Knockout Cell Lines and Vaccinia Virus Mutants. J Virol. 2016;90:7864-79 pubmed 出版商
  90. Werner A, Herzog B, Frey S, Pöggeler S. Autophagy-Associated Protein SmATG12 Is Required for Fruiting-Body Formation in the Filamentous Ascomycete Sordaria macrospora. PLoS ONE. 2016;11:e0157960 pubmed 出版商
  91. Gui L, Liu B, Lv G. Hypoxia induces autophagy in cardiomyocytes via a hypoxia-inducible factor 1-dependent mechanism. Exp Ther Med. 2016;11:2233-2239 pubmed
  92. Poirier S, Hamouda H, Villeneuve L, Demers A, Mayer G. Trafficking Dynamics of PCSK9-Induced LDLR Degradation: Focus on Human PCSK9 Mutations and C-Terminal Domain. PLoS ONE. 2016;11:e0157230 pubmed 出版商
  93. Ambrosi C, Ren C, Spagnol G, Cavin G, CONE A, Grintsevich E, et al. Connexin43 Forms Supramolecular Complexes through Non-Overlapping Binding Sites for Drebrin, Tubulin, and ZO-1. PLoS ONE. 2016;11:e0157073 pubmed 出版商
  94. Wang T, Pan D, Zhou Z, You Y, Jiang C, Zhao X, et al. Dectin-3 Deficiency Promotes Colitis Development due to Impaired Antifungal Innate Immune Responses in the Gut. PLoS Pathog. 2016;12:e1005662 pubmed 出版商
  95. Bento C, Ashkenazi A, Jimenez Sanchez M, Rubinsztein D. The Parkinson's disease-associated genes ATP13A2 and SYT11 regulate autophagy via a common pathway. Nat Commun. 2016;7:11803 pubmed 出版商
  96. Tejada T, Tan L, Torres R, Calvert J, Lambert J, Zaidi M, et al. IGF-1 degradation by mouse mast cell protease 4 promotes cell death and adverse cardiac remodeling days after a myocardial infarction. Proc Natl Acad Sci U S A. 2016;113:6949-54 pubmed 出版商
  97. Ikeuchi M, Fukumoto Y, Honda T, Kuga T, Saito Y, Yamaguchi N, et al. v-Src Causes Chromosome Bridges in a Caffeine-Sensitive Manner by Generating DNA Damage. Int J Mol Sci. 2016;17: pubmed 出版商
  98. Hintermair C, Voß K, Forné I, Heidemann M, Flatley A, Kremmer E, et al. Specific threonine-4 phosphorylation and function of RNA polymerase II CTD during M phase progression. Sci Rep. 2016;6:27401 pubmed 出版商
  99. Hain K, Colin D, Rastogi S, Allan L, Clarke P. Prolonged mitotic arrest induces a caspase-dependent DNA damage response at telomeres that determines cell survival. Sci Rep. 2016;6:26766 pubmed 出版商
  100. Brosh R, Hrynyk I, Shen J, Waghray A, Zheng N, Lemischka I. A dual molecular analogue tuner for dissecting protein function in mammalian cells. Nat Commun. 2016;7:11742 pubmed 出版商
  101. Marin V, Stornaiuolo A, Piovan C, Corna S, Bossi S, Pema M, et al. RD-MolPack technology for the constitutive production of self-inactivating lentiviral vectors pseudotyped with the nontoxic RD114-TR envelope. Mol Ther Methods Clin Dev. 2016;3:16033 pubmed 出版商
  102. Stampfl H, Fritz M, Dal Santo S, Jonak C. The GSK3/Shaggy-Like Kinase ASKα Contributes to Pattern-Triggered Immunity. Plant Physiol. 2016;171:1366-77 pubmed 出版商
  103. Syam N, Chatel S, Ozhathil L, Sottas V, Rougier J, Baruteau A, et al. Variants of Transient Receptor Potential Melastatin Member 4 in Childhood Atrioventricular Block. J Am Heart Assoc. 2016;5: pubmed 出版商
  104. Freeman S, Christian S, Austin P, Iu I, Graves M, Huang L, et al. Applied stretch initiates directional invasion through the action of Rap1 GTPase as a tension sensor. J Cell Sci. 2017;130:152-163 pubmed 出版商
  105. Ashino T, Yamamoto M, Numazawa S. Nrf2/Keap1 system regulates vascular smooth muscle cell apoptosis for vascular homeostasis: role in neointimal formation after vascular injury. Sci Rep. 2016;6:26291 pubmed 出版商
  106. Speer S, Li Z, Buta S, Payelle Brogard B, Qian L, Vigant F, et al. ISG15 deficiency and increased viral resistance in humans but not mice. Nat Commun. 2016;7:11496 pubmed 出版商
  107. Chan E, Shetty M, Sajikumar S, Chen C, Soong T, Wong B. ApoE4 expression accelerates hippocampus-dependent cognitive deficits by enhancing Aβ impairment of insulin signaling in an Alzheimer's disease mouse model. Sci Rep. 2016;6:26119 pubmed 出版商
  108. Chen Z, Mei Y, Lei H, Tian R, Ni N, Han F, et al. LYTAK1, a TAK1 inhibitor, suppresses proliferation and epithelial?mesenchymal transition in retinal pigment epithelium cells. Mol Med Rep. 2016;14:145-50 pubmed 出版商
  109. Yu P, Ji L, Lee K, Yu M, He C, Ambati S, et al. Subsets of Visceral Adipose Tissue Nuclei with Distinct Levels of 5-Hydroxymethylcytosine. PLoS ONE. 2016;11:e0154949 pubmed 出版商
  110. Pethő Z, Tanner M, Tajhya R, Huq R, Laragione T, Panyi G, et al. Different expression of ? subunits of the KCa1.1 channel by invasive and non-invasive human fibroblast-like synoviocytes. Arthritis Res Ther. 2016;18:103 pubmed 出版商
  111. Passalacqua K, Charbonneau M, Donato N, Showalter H, Sun D, Wen B, et al. Anti-infective Activity of 2-Cyano-3-Acrylamide Inhibitors with Improved Drug-Like Properties against Two Intracellular Pathogens. Antimicrob Agents Chemother. 2016;60:4183-96 pubmed 出版商
  112. Fajardo V, Smith I, Bombardier E, Chambers P, Quadrilatero J, Tupling A. Diaphragm assessment in mice overexpressing phospholamban in slow-twitch type I muscle fibers. Brain Behav. 2016;6:e00470 pubmed 出版商
  113. Yao J, Wang Y, Fang B, Zhang S, Cheng B. piR-651 and its function in 95-D lung cancer cells. Biomed Rep. 2016;4:546-550 pubmed
  114. Dourlen P, Fernandez Gomez F, Dupont C, Grenier Boley B, Bellenguez C, Obriot H, et al. Functional screening of Alzheimer risk loci identifies PTK2B as an in vivo modulator and early marker of Tau pathology. Mol Psychiatry. 2017;22:874-883 pubmed 出版商
  115. Seo J, Singh N, Ottesen E, Sivanesan S, Shishimorova M, Singh R. Oxidative Stress Triggers Body-Wide Skipping of Multiple Exons of the Spinal Muscular Atrophy Gene. PLoS ONE. 2016;11:e0154390 pubmed 出版商
  116. Dinger K, Kasper P, Hucklenbruch Rother E, Vohlen C, Jobst E, Janoschek R, et al. Early-onset obesity dysregulates pulmonary adipocytokine/insulin signaling and induces asthma-like disease in mice. Sci Rep. 2016;6:24168 pubmed 出版商
  117. Kruzliak P, Hare D, Sabaka P, Delev D, Gaspar L, Rodrigo L, et al. Evidence for CD34/SMA positive cells in the left main coronary artery in atherogenesis. Acta Histochem. 2016;118:413-7 pubmed 出版商
  118. Onyango D, Howard S, Neherin K, Yanez D, Stark J. Tetratricopeptide repeat factor XAB2 mediates the end resection step of homologous recombination. Nucleic Acids Res. 2016;44:5702-16 pubmed 出版商
  119. Walia M, Ho P, Taylor S, Ng A, Gupte A, Chalk A, et al. Activation of PTHrP-cAMP-CREB1 signaling following p53 loss is essential for osteosarcoma initiation and maintenance. elife. 2016;5: pubmed 出版商
  120. Miao Y, Han X, Zheng L, Xie Y, Mu Y, Yates J, et al. Fimbrin phosphorylation by metaphase Cdk1 regulates actin cable dynamics in budding yeast. Nat Commun. 2016;7:11265 pubmed 出版商
  121. Albarrán L, Lopez J, Amor N, Martin Cano F, Berna Erro A, Smani T, et al. Dynamic interaction of SARAF with STIM1 and Orai1 to modulate store-operated calcium entry. Sci Rep. 2016;6:24452 pubmed 出版商
  122. Toral Ojeda I, Aldanondo G, Lasa Elgarresta J, Lasa Fernández H, Fernandez Torron R, Lopez de Munain A, et al. Calpain 3 deficiency affects SERCA expression and function in the skeletal muscle. Expert Rev Mol Med. 2016;18:e7 pubmed 出版商
  123. Körber N, Stein V. In vivo imaging demonstrates dendritic spine stabilization by SynCAM 1. Sci Rep. 2016;6:24241 pubmed 出版商
  124. Richmond B, Brucker R, Han W, Du R, Zhang Y, Cheng D, et al. Airway bacteria drive a progressive COPD-like phenotype in mice with polymeric immunoglobulin receptor deficiency. Nat Commun. 2016;7:11240 pubmed 出版商
  125. Wang X, Shaw D, Sakhon O, Snyder G, Sundberg E, Santambrogio L, et al. The Tick Protein Sialostatin L2 Binds to Annexin A2 and Inhibits NLRC4-Mediated Inflammasome Activation. Infect Immun. 2016;84:1796-1805 pubmed 出版商
  126. Wilmington S, Matouschek A. An Inducible System for Rapid Degradation of Specific Cellular Proteins Using Proteasome Adaptors. PLoS ONE. 2016;11:e0152679 pubmed 出版商
  127. Negis Y, Karabay A. Expression of cell cycle proteins in cortical neurons-Correlation with glutamate-induced neurotoxicity. Biofactors. 2016;42:358-67 pubmed 出版商
  128. Yu J, Berga S, Johnston MacAnanny E, Sidell N, Bagchi I, Bagchi M, et al. Endometrial Stromal Decidualization Responds Reversibly to Hormone Stimulation and Withdrawal. Endocrinology. 2016;157:2432-46 pubmed 出版商
  129. Strickland S, Vande Pol S. The Human Papillomavirus 16 E7 Oncoprotein Attenuates AKT Signaling To Promote Internal Ribosome Entry Site-Dependent Translation and Expression of c-MYC. J Virol. 2016;90:5611-5621 pubmed 出版商
  130. Ziegler C, Eisenhauer P, Bruce E, Weir M, King B, Klaus J, et al. The Lymphocytic Choriomeningitis Virus Matrix Protein PPXY Late Domain Drives the Production of Defective Interfering Particles. PLoS Pathog. 2016;12:e1005501 pubmed 出版商
  131. Liu L, Bai Z, Ma X, Wang T, Yang Y, Zhang Z. Effects of taxol resistance gene 1 expression on the chemosensitivity of SGC-7901 cells to oxaliplatin. Exp Ther Med. 2016;11:846-852 pubmed
  132. Park S, Yun Y, Lim J, Kim M, Kim S, Kim J, et al. Stabilin-2 modulates the efficiency of myoblast fusion during myogenic differentiation and muscle regeneration. Nat Commun. 2016;7:10871 pubmed 出版商
  133. He H, Deng K, Siddiq M, Pyie A, Mellado W, Hannila S, et al. Cyclic AMP and Polyamines Overcome Inhibition by Myelin-Associated Glycoprotein through eIF5A-Mediated Increases in p35 Expression and Activation of Cdk5. J Neurosci. 2016;36:3079-91 pubmed 出版商
  134. Jennewein L, Ronellenfitsch M, Antonietti P, Ilina E, Jung J, Stadel D, et al. Diagnostic and clinical relevance of the autophago-lysosomal network in human gliomas. Oncotarget. 2016;7:20016-32 pubmed 出版商
  135. Wang X, Chen L, Liu J, Yan T, Wu G, Xia Y, et al. In vivo treatment of rat arterial adventitia with interleukin‑1β induces intimal proliferation via the JAK2/STAT3 signaling pathway. Mol Med Rep. 2016;13:3451-8 pubmed 出版商
  136. Ardini E, Menichincheri M, Banfi P, Bosotti R, De Ponti C, Pulci R, et al. Entrectinib, a Pan-TRK, ROS1, and ALK Inhibitor with Activity in Multiple Molecularly Defined Cancer Indications. Mol Cancer Ther. 2016;15:628-39 pubmed 出版商
  137. Bach F, Zhang Y, Miranda Bedate A, Verdonschot L, Bergknut N, Creemers L, et al. Increased caveolin-1 in intervertebral disc degeneration facilitates repair. Arthritis Res Ther. 2016;18:59 pubmed 出版商
  138. Gurdziel K, Vogt K, Walton K, Schneider G, Gumucio D. Transcriptome of the inner circular smooth muscle of the developing mouse intestine: Evidence for regulation of visceral smooth muscle genes by the hedgehog target gene, cJun. Dev Dyn. 2016;245:614-26 pubmed 出版商
  139. Tepper S, Jeschke J, Böttcher K, Schmidt A, Davari K, Müller P, et al. PARP activation promotes nuclear AID accumulation in lymphoma cells. Oncotarget. 2016;7:13197-208 pubmed 出版商
  140. Mackenzie K, Carroll P, Lettice L, TarnauskaitÄ— Å, Reddy K, Dix F, et al. Ribonuclease H2 mutations induce a cGAS/STING-dependent innate immune response. EMBO J. 2016;35:831-44 pubmed 出版商
  141. Gawron D, Ndah E, Gevaert K, Van Damme P. Positional proteomics reveals differences in N-terminal proteoform stability. Mol Syst Biol. 2016;12:858 pubmed 出版商
  142. Sparks L, Gemmink A, Phielix E, Bosma M, Schaart G, Moonen Kornips E, et al. ANT1-mediated fatty acid-induced uncoupling as a target for improving myocellular insulin sensitivity. Diabetologia. 2016;59:1030-9 pubmed 出版商
  143. Morales Hernández A, González Rico F, Román A, Rico Leo E, Alvarez Barrientos A, Sánchez L, et al. Alu retrotransposons promote differentiation of human carcinoma cells through the aryl hydrocarbon receptor. Nucleic Acids Res. 2016;44:4665-83 pubmed 出版商
  144. Liu L, Tong Q, Liu S, Cui J, Zhang Q, Sun W, et al. ZEB1 Upregulates VEGF Expression and Stimulates Angiogenesis in Breast Cancer. PLoS ONE. 2016;11:e0148774 pubmed 出版商
  145. Malecova B, Dall Agnese A, Madaro L, Gatto S, Coutinho Toto P, Albini S, et al. TBP/TFIID-dependent activation of MyoD target genes in skeletal muscle cells. elife. 2016;5: pubmed 出版商
  146. Awate S, De Benedetti A. TLK1B mediated phosphorylation of Rad9 regulates its nuclear/cytoplasmic localization and cell cycle checkpoint. BMC Mol Biol. 2016;17:3 pubmed 出版商
  147. Kim J, Kim E, Lee B, Min J, Song D, Lim J, et al. The effects of Lycii Radicis Cortex on RANKL-induced osteoclast differentiation and activation in RAW 264.7 cells. Int J Mol Med. 2016;37:649-58 pubmed 出版商
  148. Delmas E, Jah N, Pirou C, Bouleau S, Le Floch N, Vayssière J, et al. FGF1 C-terminal domain and phosphorylation regulate intracrine FGF1 signaling for its neurotrophic and anti-apoptotic activities. Cell Death Dis. 2016;7:e2079 pubmed 出版商
  149. Wu X, Fleming A, Ricketts T, Pavel M, Virgin H, Menzies F, et al. Autophagy regulates Notch degradation and modulates stem cell development and neurogenesis. Nat Commun. 2016;7:10533 pubmed 出版商
  150. Kwon D, Eom G, Ko J, Shin S, Joung H, Choe N, et al. MDM2 E3 ligase-mediated ubiquitination and degradation of HDAC1 in vascular calcification. Nat Commun. 2016;7:10492 pubmed 出版商
  151. Ottesen E, Howell M, Singh N, Seo J, Whitley E, Singh R. Severe impairment of male reproductive organ development in a low SMN expressing mouse model of spinal muscular atrophy. Sci Rep. 2016;6:20193 pubmed 出版商
  152. Dorris E, Blackshields G, Sommerville G, Alhashemi M, Dias A, McEneaney V, et al. Pluripotency markers are differentially induced by MEK inhibition in thyroid and melanoma BRAFV600E cell lines. Cancer Biol Ther. 2016;17:526-42 pubmed 出版商
  153. Button R, Vincent J, Strang C, Luo S. Dual PI-3 kinase/mTOR inhibition impairs autophagy flux and induces cell death independent of apoptosis and necroptosis. Oncotarget. 2016;7:5157-75 pubmed 出版商
  154. Crawley S, Weck M, Grega Larson N, Shifrin D, Tyska M. ANKS4B Is Essential for Intermicrovillar Adhesion Complex Formation. Dev Cell. 2016;36:190-200 pubmed 出版商
  155. Kuhn P, Colombo A, Schusser B, Dreymueller D, Wetzel S, Schepers U, et al. Systematic substrate identification indicates a central role for the metalloprotease ADAM10 in axon targeting and synapse function. elife. 2016;5: pubmed 出版商
  156. Grasselli E, Voci A, Demori I, Vecchione G, Compalati A, Gallo G, et al. Triglyceride Mobilization from Lipid Droplets Sustains the Anti-Steatotic Action of Iodothyronines in Cultured Rat Hepatocytes. Front Physiol. 2015;6:418 pubmed 出版商
  157. Thomassen M, Gunnarsson T, Christensen P, Pavlovic D, Shattock M, Bangsbo J. Intensive training and reduced volume increases muscle FXYD1 expression and phosphorylation at rest and during exercise in athletes. Am J Physiol Regul Integr Comp Physiol. 2016;310:R659-69 pubmed 出版商
  158. Kanderová V, Kuzilkova D, Stuchly J, Vaskova M, Brdicka T, Fiser K, et al. High-resolution Antibody Array Analysis of Childhood Acute Leukemia Cells. Mol Cell Proteomics. 2016;15:1246-61 pubmed 出版商
  159. Du Y, Yamaguchi H, Wei Y, Hsu J, Wang H, Hsu Y, et al. Blocking c-Met-mediated PARP1 phosphorylation enhances anti-tumor effects of PARP inhibitors. Nat Med. 2016;22:194-201 pubmed 出版商
  160. Berge T, Leikfoss I, Brorson I, Bos S, Page C, Gustavsen M, et al. The multiple sclerosis susceptibility genes TAGAP and IL2RA are regulated by vitamin D in CD4+ T cells. Genes Immun. 2016;17:118-27 pubmed 出版商
  161. Pivonello C, Negri M, De Martino M, Napolitano M, De Angelis C, Provvisiero D, et al. The dual targeting of insulin and insulin-like growth factor 1 receptor enhances the mTOR inhibitor-mediated antitumor efficacy in hepatocellular carcinoma. Oncotarget. 2016;7:9718-31 pubmed 出版商
  162. Umazume T, Thomas W, Campbell S, Aluri H, Thotakura S, Zoukhri D, et al. Lacrimal Gland Inflammation Deregulates Extracellular Matrix Remodeling and Alters Molecular Signature of Epithelial Stem/Progenitor Cells. Invest Ophthalmol Vis Sci. 2015;56:8392-402 pubmed 出版商
  163. Mysore R, Zhou Y, Sädevirta S, Savolainen Peltonen H, Nidhina Haridas P, Soronen J, et al. MicroRNA-192* impairs adipocyte triglyceride storage. Biochim Biophys Acta. 2016;1861:342-51 pubmed 出版商
  164. Suzuki Y, Chin W, Han Q, Ichiyama K, Lee C, Eyo Z, et al. Characterization of RyDEN (C19orf66) as an Interferon-Stimulated Cellular Inhibitor against Dengue Virus Replication. PLoS Pathog. 2016;12:e1005357 pubmed 出版商
  165. Hrstka R, Bouchalova P, Michalová E, Matoulkova E, Muller P, Coates P, et al. AGR2 oncoprotein inhibits p38 MAPK and p53 activation through a DUSP10-mediated regulatory pathway. Mol Oncol. 2016;10:652-62 pubmed 出版商
  166. Tagliatti E, Fadda M, Falace A, Benfenati F, Fassio A. Arf6 regulates the cycling and the readily releasable pool of synaptic vesicles at hippocampal synapse. elife. 2016;5: pubmed 出版商
  167. Xie C, Ginet V, Sun Y, Koike M, Zhou K, Li T, et al. Neuroprotection by selective neuronal deletion of Atg7 in neonatal brain injury. Autophagy. 2016;12:410-23 pubmed 出版商
  168. Creedon H, Balderstone L, Muir M, Balla J, Gómez Cuadrado L, Tracey N, et al. Use of a genetically engineered mouse model as a preclinical tool for HER2 breast cancer. Dis Model Mech. 2016;9:131-40 pubmed 出版商
  169. Nishio M, Sugimachi K, Goto H, Wang J, Morikawa T, Miyachi Y, et al. Dysregulated YAP1/TAZ and TGF-β signaling mediate hepatocarcinogenesis in Mob1a/1b-deficient mice. Proc Natl Acad Sci U S A. 2016;113:E71-80 pubmed 出版商
  170. Rai R, Zhang F, Colavita K, Leu N, Kurosaka S, Kumar A, et al. Arginyltransferase suppresses cell tumorigenic potential and inversely correlates with metastases in human cancers. Oncogene. 2016;35:4058-68 pubmed 出版商
  171. Wang Y, Hou H, Li M, Yang Y, Sun L. Anticancer effect of eupatilin on glioma cells through inhibition of the Notch-1 signaling pathway. Mol Med Rep. 2016;13:1141-6 pubmed 出版商
  172. Haas L, Salazar S, Kostylev M, Um J, Kaufman A, Strittmatter S. Metabotropic glutamate receptor 5 couples cellular prion protein to intracellular signalling in Alzheimer's disease. Brain. 2016;139:526-46 pubmed 出版商
  173. Lagarrigue S, Lopez Mejia I, Denechaud P, Escoté X, Castillo Armengol J, Jimenez V, et al. CDK4 is an essential insulin effector in adipocytes. J Clin Invest. 2016;126:335-48 pubmed 出版商
  174. Müller Schiffmann A, Herring A, Abdel Hafiz L, Chepkova A, Schäble S, Wedel D, et al. Amyloid-β dimers in the absence of plaque pathology impair learning and synaptic plasticity. Brain. 2016;139:509-25 pubmed 出版商
  175. Marazita M, Dugour A, Marquioni Ramella M, Figueroa J, Suburo A. Oxidative stress-induced premature senescence dysregulates VEGF and CFH expression in retinal pigment epithelial cells: Implications for Age-related Macular Degeneration. Redox Biol. 2016;7:78-87 pubmed 出版商
  176. Martínez Zamora A, Meseguer S, Esteve J, Villarroya M, Aguado C, Enríquez J, et al. Defective Expression of the Mitochondrial-tRNA Modifying Enzyme GTPBP3 Triggers AMPK-Mediated Adaptive Responses Involving Complex I Assembly Factors, Uncoupling Protein 2, and the Mitochondrial Pyruvate Carrier. PLoS ONE. 2015;10:e0144273 pubmed 出版商
  177. Brai E, Marathe S, Astori S, Fredj N, Perry E, Lamy C, et al. Notch1 Regulates Hippocampal Plasticity Through Interaction with the Reelin Pathway, Glutamatergic Transmission and CREB Signaling. Front Cell Neurosci. 2015;9:447 pubmed 出版商
  178. Qi D, Kaur Gill N, Santiskulvong C, Sifuentes J, Dorigo O, Rao J, et al. Screening cell mechanotype by parallel microfiltration. Sci Rep. 2015;5:17595 pubmed 出版商
  179. Leshchyns ka I, Liew H, Shepherd C, Halliday G, Stevens C, Ke Y, et al. Aβ-dependent reduction of NCAM2-mediated synaptic adhesion contributes to synapse loss in Alzheimer's disease. Nat Commun. 2015;6:8836 pubmed 出版商
  180. Ni Y, Nagashimada M, Zhuge F, Zhan L, Nagata N, Tsutsui A, et al. Astaxanthin prevents and reverses diet-induced insulin resistance and steatohepatitis in mice: A comparison with vitamin E. Sci Rep. 2015;5:17192 pubmed 出版商
  181. Dewaele M, Tabaglio T, Willekens K, Bezzi M, Teo S, Low D, et al. Antisense oligonucleotide-mediated MDM4 exon 6 skipping impairs tumor growth. J Clin Invest. 2016;126:68-84 pubmed 出版商
  182. Harley M, Murina O, Leitch A, Higgs M, Bicknell L, Yigit G, et al. TRAIP promotes DNA damage response during genome replication and is mutated in primordial dwarfism. Nat Genet. 2016;48:36-43 pubmed 出版商
  183. Hirota S, Clements T, Tang L, Morales J, Lee H, Oh S, et al. Neuropilin 1 balances β8 integrin-activated TGFβ signaling to control sprouting angiogenesis in the brain. Development. 2015;142:4363-73 pubmed 出版商
  184. Furlan S, Mosole S, Murgia M, Nagaraj N, Argenton F, Volpe P, et al. Calsequestrins in skeletal and cardiac muscle from adult Danio rerio. J Muscle Res Cell Motil. 2016;37:27-39 pubmed 出版商
  185. Hunt L, Xu B, Finkelstein D, Fan Y, Carroll P, Cheng P, et al. The glucose-sensing transcription factor MLX promotes myogenesis via myokine signaling. Genes Dev. 2015;29:2475-89 pubmed 出版商
  186. Cao J, Zhang X, Wang Q, Qiu G, Hou C, Wang J, et al. Smad4 represses the generation of memory-precursor effector T cells but is required for the differentiation of central memory T cells. Cell Death Dis. 2015;6:e1984 pubmed 出版商
  187. Moriwaki K, Farias Luz N, Balaji S, De Rosa M, O Donnell C, Gough P, et al. The Mitochondrial Phosphatase PGAM5 Is Dispensable for Necroptosis but Promotes Inflammasome Activation in Macrophages. J Immunol. 2016;196:407-15 pubmed 出版商
  188. Wang W, Liu H, Dai X, Fang S, Wang X, Zhang Y, et al. p53/PUMA expression in human pulmonary fibroblasts mediates cell activation and migration in silicosis. Sci Rep. 2015;5:16900 pubmed 出版商
  189. Shukla P, Vogl C, Wallner B, Rigler D, Müller M, Macho Maschler S. High-throughput mRNA and miRNA profiling of epithelial-mesenchymal transition in MDCK cells. BMC Genomics. 2015;16:944 pubmed 出版商
  190. Hu Z, Hu J, Shen W, Kraemer F, Azhar S. A Novel Role of Salt-Inducible Kinase 1 (SIK1) in the Post-Translational Regulation of Scavenger Receptor Class B Type 1 Activity. Biochemistry. 2015;54:6917-30 pubmed 出版商
  191. Sin J, Andres A, Taylor D, Weston T, Hiraumi Y, Stotland A, et al. Mitophagy is required for mitochondrial biogenesis and myogenic differentiation of C2C12 myoblasts. Autophagy. 2016;12:369-80 pubmed 出版商
  192. Hu X, Garcia C, Fazli L, Gleave M, Vitek M, Jansen M, et al. Inhibition of Pten deficient Castration Resistant Prostate Cancer by Targeting of the SET - PP2A Signaling axis. Sci Rep. 2015;5:15182 pubmed 出版商
  193. Alnasser H, Guan Q, Zhang F, Gleave M, Nguan C, Du C. Requirement of clusterin expression for prosurvival autophagy in hypoxic kidney tubular epithelial cells. Am J Physiol Renal Physiol. 2016;310:F160-73 pubmed 出版商
  194. Kim S, Kim T, Lee H, Kong Y, Kaang B. Mind Bomb-2 Regulates Hippocampus-dependent Memory Formation and Synaptic Plasticity. Korean J Physiol Pharmacol. 2015;19:515-22 pubmed 出版商
  195. Lohberger B, Leithner A, Stuendl N, Kaltenegger H, Kullich W, Steinecker Frohnwieser B. Diacerein retards cell growth of chondrosarcoma cells at the G2/M cell cycle checkpoint via cyclin B1/CDK1 and CDK2 downregulation. BMC Cancer. 2015;15:891 pubmed 出版商
  196. Robles Oteiza C, Taylor S, Yates T, Cicchini M, Lauderback B, Cashman C, et al. Recombinase-based conditional and reversible gene regulation via XTR alleles. Nat Commun. 2015;6:8783 pubmed 出版商
  197. Yu Z, Huang Y, Shieh S. Requirement for human Mps1/TTK in oxidative DNA damage repair and cell survival through MDM2 phosphorylation. Nucleic Acids Res. 2016;44:1133-50 pubmed 出版商
  198. Koudelkova P, Weber G, Mikulits W. Liver Sinusoidal Endothelial Cells Escape Senescence by Loss of p19ARF. PLoS ONE. 2015;10:e0142134 pubmed 出版商
  199. Osmanagic Myers S, Rus S, Wolfram M, Brunner D, Goldmann W, Bonakdar N, et al. Plectin reinforces vascular integrity by mediating crosstalk between the vimentin and the actin networks. J Cell Sci. 2015;128:4138-50 pubmed 出版商
  200. Antonucci L, Fagman J, Kim J, Todoric J, Gukovsky I, Mackey M, et al. Basal autophagy maintains pancreatic acinar cell homeostasis and protein synthesis and prevents ER stress. Proc Natl Acad Sci U S A. 2015;112:E6166-74 pubmed 出版商
  201. Oh Y, Park H, Shin J, Lee J, Park H, Kho D, et al. Ndrg1 is a T-cell clonal anergy factor negatively regulated by CD28 costimulation and interleukin-2. Nat Commun. 2015;6:8698 pubmed 出版商
  202. Finkin S, Yuan D, Stein I, Taniguchi K, Weber A, Unger K, et al. Ectopic lymphoid structures function as microniches for tumor progenitor cells in hepatocellular carcinoma. Nat Immunol. 2015;16:1235-44 pubmed 出版商
  203. Slemmons K, Crose L, Rudzinski E, Bentley R, Linardic C. Role of the YAP Oncoprotein in Priming Ras-Driven Rhabdomyosarcoma. PLoS ONE. 2015;10:e0140781 pubmed 出版商
  204. Kizuka Y, Nakano M, Kitazume S, Saito T, Saido T, Taniguchi N. Bisecting GlcNAc modification stabilizes BACE1 protein under oxidative stress conditions. Biochem J. 2016;473:21-30 pubmed 出版商
  205. Zhang W, Pelicano H, Yin R, Zeng J, Wen T, Ding L, et al. Effective elimination of chronic lymphocytic leukemia cells in the stromal microenvironment by a novel drug combination strategy using redox-mediated mechanisms. Mol Med Rep. 2015;12:7374-88 pubmed 出版商
  206. Takeda S, Wegmann S, Cho H, DeVos S, Commins C, Roe A, et al. Neuronal uptake and propagation of a rare phosphorylated high-molecular-weight tau derived from Alzheimer's disease brain. Nat Commun. 2015;6:8490 pubmed 出版商
  207. Liu F, Hon G, Villa G, Turner K, Ikegami S, Yang H, et al. EGFR Mutation Promotes Glioblastoma through Epigenome and Transcription Factor Network Remodeling. Mol Cell. 2015;60:307-18 pubmed 出版商
  208. Mohr M, Thomassen M, Girard O, Racinais S, Nybo L. Muscle variables of importance for physiological performance in competitive football. Eur J Appl Physiol. 2016;116:251-62 pubmed 出版商
  209. Geng J, Sun X, Wang P, Zhang S, Wang X, Wu H, et al. Kinases Mst1 and Mst2 positively regulate phagocytic induction of reactive oxygen species and bactericidal activity. Nat Immunol. 2015;16:1142-52 pubmed 出版商
  210. Li Z, Hao Q, Luo J, Xiong J, Zhang S, Wang T, et al. USP4 inhibits p53 and NF-κB through deubiquitinating and stabilizing HDAC2. Oncogene. 2016;35:2902-12 pubmed 出版商
  211. Hasanagic M, van Meel E, Luan S, Aurora R, Kornfeld S, Eissenberg J. The lysosomal enzyme receptor protein (LERP) is not essential, but is implicated in lysosomal function in Drosophila melanogaster. Biol Open. 2015;4:1316-25 pubmed 出版商
  212. Perotti V, Baldassari P, Molla A, Vegetti C, Bersani I, Maurichi A, et al. NFATc2 is an intrinsic regulator of melanoma dedifferentiation. Oncogene. 2016;35:2862-72 pubmed 出版商
  213. Caldow M, Thomas E, Dale M, Tomkinson G, Buckley J, Cameron Smith D. Early myogenic responses to acute exercise before and after resistance training in young men. Physiol Rep. 2015;3: pubmed 出版商
  214. Woolery K, Mohamed M, Linger R, Dobrinski K, Roman J, Kruk P. BRCA1 185delAG Mutation Enhances Interleukin-1β Expression in Ovarian Surface Epithelial Cells. Biomed Res Int. 2015;2015:652017 pubmed 出版商
  215. Yao J, Zheng K, Zhang X. Rosiglitazone exerts neuroprotective effects via the suppression of neuronal autophagy and apoptosis in the cortex following traumatic brain injury. Mol Med Rep. 2015;12:6591-7 pubmed 出版商
  216. Andersson K, Brisslert M, Cavallini N, Svensson M, Welin A, Erlandsson M, et al. Survivin co-ordinates formation of follicular T-cells acting in synergy with Bcl-6. Oncotarget. 2015;6:20043-57 pubmed
  217. Jacobs R, Lundby A, Fenk S, Gehrig S, Siebenmann C, Flück D, et al. Twenty-eight days of exposure to 3454 m increases mitochondrial volume density in human skeletal muscle. J Physiol. 2016;594:1151-66 pubmed 出版商
  218. Zagani R, El Assaad W, Gamache I, Teodoro J. Inhibition of adipose triglyceride lipase (ATGL) by the putative tumor suppressor G0S2 or a small molecule inhibitor attenuates the growth of cancer cells. Oncotarget. 2015;6:28282-95 pubmed 出版商
  219. Izuo N, Nojiri H, Uchiyama S, Noda Y, Kawakami S, Kojima S, et al. Brain-Specific Superoxide Dismutase 2 Deficiency Causes Perinatal Death with Spongiform Encephalopathy in Mice. Oxid Med Cell Longev. 2015;2015:238914 pubmed 出版商
  220. Wang T, Cheng C, Yang W, Chen W, Chang P. Characterization of highly proliferative secondary tumor clusters along host blood vessels in malignant glioma. Mol Med Rep. 2015;12:6435-44 pubmed 出版商
  221. Moreau K, Ghislat G, Hochfeld W, Renna M, Zavodszky E, Runwal G, et al. Transcriptional regulation of Annexin A2 promotes starvation-induced autophagy. Nat Commun. 2015;6:8045 pubmed 出版商
  222. Pickup M, Hover L, Guo Y, Gorska A, Chytil A, Novitskiy S, et al. Deletion of the BMP receptor BMPR1a impairs mammary tumor formation and metastasis. Oncotarget. 2015;6:22890-904 pubmed
  223. Archibald A, Al Masri M, Liew Spilger A, McCaffrey L. Atypical protein kinase C induces cell transformation by disrupting Hippo/Yap signaling. Mol Biol Cell. 2015;26:3578-95 pubmed 出版商
  224. Zhang J, Lieu Y, Ali A, Penson A, Reggio K, Rabadan R, et al. Disease-associated mutation in SRSF2 misregulates splicing by altering RNA-binding affinities. Proc Natl Acad Sci U S A. 2015;112:E4726-34 pubmed 出版商
  225. Morancho B, Martínez Barriocanal Ã, Villanueva J, Arribas J. Role of ADAM17 in the non-cell autonomous effects of oncogene-induced senescence. Breast Cancer Res. 2015;17:106 pubmed 出版商
  226. Khan I, Zakaria M, Kumar M, Mani P, Chattopadhyay P, Sarkar D, et al. A novel placental like alkaline phosphatase promoter driven transcriptional silencing combined with single chain variable fragment antibody based virosomal delivery for neoplastic cell targeting [corrected]. J Transl Med. 2015;13:254 pubmed 出版商
  227. Kawalec M, BoratyÅ„ska JasiÅ„ska A, BerÄ™sewicz M, Dymkowska D, ZabÅ‚ocki K, ZabÅ‚ocka B. Mitofusin 2 Deficiency Affects Energy Metabolism and Mitochondrial Biogenesis in MEF Cells. PLoS ONE. 2015;10:e0134162 pubmed 出版商
  228. Xie X, Hsu F, Gao X, Xu W, Ni J, Xing Y, et al. CDK8-Cyclin C Mediates Nutritional Regulation of Developmental Transitions through the Ecdysone Receptor in Drosophila. PLoS Biol. 2015;13:e1002207 pubmed 出版商
  229. Farley M, Swulius M, Waxham M. Electron tomographic structure and protein composition of isolated rat cerebellar, hippocampal and cortical postsynaptic densities. Neuroscience. 2015;304:286-301 pubmed 出版商
  230. DubiÅ„ska Magiera M, Chmielewska M, KozioÅ‚ K, Machowska M, Hutchison C, Goldberg M, et al. Xenopus LAP2β protein knockdown affects location of lamin B and nucleoporins and has effect on assembly of cell nucleus and cell viability. Protoplasma. 2016;253:943-56 pubmed 出版商
  231. Wang C, Du W, Su Q, Zhu M, Feng P, Li Y, et al. Dynamic tubulation of mitochondria drives mitochondrial network formation. Cell Res. 2015;25:1108-20 pubmed 出版商
  232. Chung D, Chan J, Strecker J, Zhang W, Ebrahimi Ardebili S, Lu T, et al. Perinuclear tethers license telomeric DSBs for a broad kinesin- and NPC-dependent DNA repair process. Nat Commun. 2015;6:7742 pubmed 出版商
  233. Zhao L, Tang M, Hu Z, Yan B, Pi W, Li Z, et al. miR-504 mediated down-regulation of nuclear respiratory factor 1 leads to radio-resistance in nasopharyngeal carcinoma. Oncotarget. 2015;6:15995-6018 pubmed
  234. Sloan E, Tatham M, Groslambert M, Glass M, Orr A, Hay R, et al. Analysis of the SUMO2 Proteome during HSV-1 Infection. PLoS Pathog. 2015;11:e1005059 pubmed 出版商
  235. Li W, Qiu Y, Zhang H, Tian X, Fang W. P2Y2 Receptor and EGFR Cooperate to Promote Prostate Cancer Cell Invasion via ERK1/2 Pathway. PLoS ONE. 2015;10:e0133165 pubmed 出版商
  236. Phan L, Chou P, Velazquez Torres G, Samudio I, Parreno K, Huang Y, et al. The cell cycle regulator 14-3-3σ opposes and reverses cancer metabolic reprogramming. Nat Commun. 2015;6:7530 pubmed 出版商
  237. Jones M, Hu W, Litthauer S, Lagarias J, Harmer S. A Constitutively Active Allele of Phytochrome B Maintains Circadian Robustness in the Absence of Light. Plant Physiol. 2015;169:814-25 pubmed 出版商
  238. Lee J, Kim H, Han J, Kim Y, Son C. Anti-fatigue effect of Myelophil in a chronic forced exercise mouse model. Eur J Pharmacol. 2015;764:100-8 pubmed 出版商
  239. Liu R, Fan M, Candas D, Qin L, Zhang X, Eldridge A, et al. CDK1-Mediated SIRT3 Activation Enhances Mitochondrial Function and Tumor Radioresistance. Mol Cancer Ther. 2015;14:2090-102 pubmed 出版商
  240. Breslin C, Hornyak P, Ridley A, Rulten S, Hanzlikova H, Oliver A, et al. The XRCC1 phosphate-binding pocket binds poly (ADP-ribose) and is required for XRCC1 function. Nucleic Acids Res. 2015;43:6934-44 pubmed 出版商
  241. Kazlauskaite A, Martínez Torres R, Wilkie S, Kumar A, Peltier J, González A, et al. Binding to serine 65-phosphorylated ubiquitin primes Parkin for optimal PINK1-dependent phosphorylation and activation. EMBO Rep. 2015;16:939-54 pubmed 出版商
  242. Cipolletta E, Rusciano M, Maione A, Santulli G, Sorriento D, Del Giudice C, et al. Targeting the CaMKII/ERK Interaction in the Heart Prevents Cardiac Hypertrophy. PLoS ONE. 2015;10:e0130477 pubmed 出版商
  243. Nadeau M, Rico C, Tsoi M, Vivancos M, Filimon S, Paquet M, et al. Pharmacological targeting of valosin containing protein (VCP) induces DNA damage and selectively kills canine lymphoma cells. BMC Cancer. 2015;15:479 pubmed 出版商
  244. Hutchinson K, Johnson D, Johnson A, Sanchez V, Kuba M, Lu P, et al. ERBB activation modulates sensitivity to MEK1/2 inhibition in a subset of driver-negative melanoma. Oncotarget. 2015;6:22348-60 pubmed
  245. Mercer J, Argus J, Crabtree D, KEENAN M, Wilks M, Chi J, et al. Modulation of PICALM Levels Perturbs Cellular Cholesterol Homeostasis. PLoS ONE. 2015;10:e0129776 pubmed 出版商
  246. Masuda Y, Takahashi H, Hatakeyama S. TRIM29 regulates the p63-mediated pathway in cervical cancer cells. Biochim Biophys Acta. 2015;1853:2296-305 pubmed 出版商
  247. Lee W, Shen S, Shih Y, Chou C, Tseng J, Chin S, et al. Early decline in serum phospho-CSE1L levels in vemurafenib/sunitinib-treated melanoma and sorafenib/lapatinib-treated colorectal tumor xenografts. J Transl Med. 2015;13:191 pubmed 出版商
  248. Thiyagarajan D, Rekvig O, Seredkina N. TNFα Amplifies DNaseI Expression in Renal Tubular Cells while IL-1β Promotes Nuclear DNaseI Translocation in an Endonuclease-Inactive Form. PLoS ONE. 2015;10:e0129485 pubmed 出版商
  249. Xu Y, Wu X, Her C. hMSH5 Facilitates the Repair of Camptothecin-induced Double-strand Breaks through an Interaction with FANCJ. J Biol Chem. 2015;290:18545-58 pubmed 出版商
  250. Zhang T, Zhou Y, Qi S, Wang Z, Qian W, Ouyang Y, et al. Nuf2 is required for chromosome segregation during mouse oocyte meiotic maturation. Cell Cycle. 2015;14:2701-10 pubmed 出版商
  251. Cui J, Bai X, Sun X, Cai G, Hong Q, Ding R, et al. Rapamycin protects against gentamicin-induced acute kidney injury via autophagy in mini-pig models. Sci Rep. 2015;5:11256 pubmed 出版商
  252. Barr A, Bakal C. A sensitised RNAi screen reveals a ch-TOG genetic interaction network required for spindle assembly. Sci Rep. 2015;5:10564 pubmed 出版商
  253. Koh L, Ng B, Bertrand J, Thierry F. Transcriptional control of late differentiation in human keratinocytes by TAp63 and Notch. Exp Dermatol. 2015;24:754-60 pubmed 出版商
  254. Alias C, Rocchi L, Ribatti D, Caraffi S, D angelo A, Perris R, et al. MMPs and angiogenesis affect the metastatic potential of a human vulvar leiomyosarcoma cell line. J Cell Mol Med. 2015;19:2098-107 pubmed 出版商
  255. Pan D, Jiang C, Ma Z, Blonska M, You M, Lin X. MALT1 is required for EGFR-induced NF-?B activation and contributes to EGFR-driven lung cancer progression. Oncogene. 2016;35:919-28 pubmed 出版商
  256. Kumar P, Gullberg U, Olsson I, Ajore R. Myeloid translocation gene-16 co-repressor promotes degradation of hypoxia-inducible factor 1. PLoS ONE. 2015;10:e0123725 pubmed 出版商
  257. Formisano L, Guida N, Valsecchi V, Cantile M, Cuomo O, Vinciguerra A, et al. Sp3/REST/HDAC1/HDAC2 Complex Represses and Sp1/HIF-1/p300 Complex Activates ncx1 Gene Transcription, in Brain Ischemia and in Ischemic Brain Preconditioning, by Epigenetic Mechanism. J Neurosci. 2015;35:7332-48 pubmed 出版商
  258. Mahale S, Bharate S, Manda S, Joshi P, Jenkins P, Vishwakarma R, et al. Antitumour potential of BPT: a dual inhibitor of cdk4 and tubulin polymerization. Cell Death Dis. 2015;6:e1743 pubmed 出版商
  259. Sztal T, Zhao M, Williams C, Oorschot V, Parslow A, Giousoh A, et al. Zebrafish models for nemaline myopathy reveal a spectrum of nemaline bodies contributing to reduced muscle function. Acta Neuropathol. 2015;130:389-406 pubmed 出版商
  260. Peiris Pagès M, Sotgia F, Lisanti M. Chemotherapy induces the cancer-associated fibroblast phenotype, activating paracrine Hedgehog-GLI signalling in breast cancer cells. Oncotarget. 2015;6:10728-45 pubmed
  261. Miracco C, Toscano M, Butorano M, Baldino G, Tacchini D, Barone A, et al. Unusual clear cell, lymphoplasmacyte-rich, dural-based tumor with divergent differentiation: a tricky case mimicking a meningioma. Hum Pathol. 2015;46:1050-6 pubmed 出版商
  262. Meas R, Smerdon M, Wyrick J. The amino-terminal tails of histones H2A and H3 coordinate efficient base excision repair, DNA damage signaling and postreplication repair in Saccharomyces cerevisiae. Nucleic Acids Res. 2015;43:4990-5001 pubmed 出版商
  263. Randles M, Woolf A, Huang J, Byron A, Humphries J, Price K, et al. Genetic Background is a Key Determinant of Glomerular Extracellular Matrix Composition and Organization. J Am Soc Nephrol. 2015;26:3021-34 pubmed 出版商
  264. Berkovits B, Mayr C. Alternative 3' UTRs act as scaffolds to regulate membrane protein localization. Nature. 2015;522:363-7 pubmed 出版商
  265. Chung J, Bauer D, Ghamari A, Nizzi C, Deck K, Kingsley P, et al. The mTORC1/4E-BP pathway coordinates hemoglobin production with L-leucine availability. Sci Signal. 2015;8:ra34 pubmed 出版商
  266. Zhang X, Liang D, Chi Z, Chu Q, Zhao C, Ma R, et al. Effect of zinc on high glucose-induced epithelial-to-mesenchymal transition in renal tubular epithelial cells. Int J Mol Med. 2015;35:1747-54 pubmed 出版商
  267. Pardo F, Silva L, Sáez T, Salsoso R, Gutiérrez J, Sanhueza C, et al. Human supraphysiological gestational weight gain and fetoplacental vascular dysfunction. Int J Obes (Lond). 2015;39:1264-73 pubmed 出版商
  268. Chien P, Lin C, Hsiao L, Yang C. c-Src/Pyk2/EGFR/PI3K/Akt/CREB-activated pathway contributes to human cardiomyocyte hypertrophy: Role of COX-2 induction. Mol Cell Endocrinol. 2015;409:59-72 pubmed 出版商
  269. Hong S, Lee J, Lee J, Lee H, Kim H, Lee S, et al. The traditional drug Gongjin-Dan ameliorates chronic fatigue in a forced-stress mouse exercise model. J Ethnopharmacol. 2015;168:268-78 pubmed 出版商
  270. Verfaillie A, Imrichová H, Atak Z, Dewaele M, Rambow F, Hulselmans G, et al. Decoding the regulatory landscape of melanoma reveals TEADS as regulators of the invasive cell state. Nat Commun. 2015;6:6683 pubmed 出版商
  271. Sheng X, Arnoldussen Y, Storm M, Tesikova M, Nenseth H, Zhao S, et al. Divergent androgen regulation of unfolded protein response pathways drives prostate cancer. EMBO Mol Med. 2015;7:788-801 pubmed 出版商
  272. Gu Q, Yu D, Hu Z, Liu X, Yang Y, Luo Y, et al. miR-26a and miR-384-5p are required for LTP maintenance and spine enlargement. Nat Commun. 2015;6:6789 pubmed 出版商
  273. Simões A, Pereira D, Gomes S, Brito H, Carvalho T, French A, et al. Aberrant MEK5/ERK5 signalling contributes to human colon cancer progression via NF-κB activation. Cell Death Dis. 2015;6:e1718 pubmed 出版商
  274. Okatsu K, Koyano F, Kimura M, Kosako H, Saeki Y, Tanaka K, et al. Phosphorylated ubiquitin chain is the genuine Parkin receptor. J Cell Biol. 2015;209:111-28 pubmed 出版商
  275. Amrutkar M, Cansby E, Chursa U, Nuñez Durán E, Chanclón B, StÃ¥hlman M, et al. Genetic Disruption of Protein Kinase STK25 Ameliorates Metabolic Defects in a Diet-Induced Type 2 Diabetes Model. Diabetes. 2015;64:2791-804 pubmed 出版商
  276. Bergamo P, Palmieri G, Cocca E, Ferrandino I, Gogliettino M, Monaco A, et al. Adaptive response activated by dietary cis9, trans11 conjugated linoleic acid prevents distinct signs of gliadin-induced enteropathy in mice. Eur J Nutr. 2016;55:729-740 pubmed 出版商
  277. Sherry B. Generating primary cultures of murine cardiac myocytes and cardiac fibroblasts to study viral myocarditis. Methods Mol Biol. 2015;1299:1-16 pubmed 出版商
  278. Lee S, Chang J, Wu J, Sheu D. Antineoplastic effect of a novel chemopreventive agent, neokestose, on the Caco-2 cell line via inhibition of expression of nuclear factor-κB and cyclooxygenase-2. Mol Med Rep. 2015;12:1114-8 pubmed 出版商
  279. Majumdar T, Chattopadhyay S, Ozhegov E, Dhar J, Goswami R, Sen G, et al. Induction of interferon-stimulated genes by IRF3 promotes replication of Toxoplasma gondii. PLoS Pathog. 2015;11:e1004779 pubmed 出版商
  280. Yazlovitskaya E, Tseng H, Viquez O, Tu T, Mernaugh G, McKee K, et al. Integrin α3β1 regulates kidney collecting duct development via TRAF6-dependent K63-linked polyubiquitination of Akt. Mol Biol Cell. 2015;26:1857-74 pubmed 出版商
  281. Jamison S, Lin Y, Lin W. Pancreatic endoplasmic reticulum kinase activation promotes medulloblastoma cell migration and invasion through induction of vascular endothelial growth factor A. PLoS ONE. 2015;10:e0120252 pubmed 出版商
  282. Dicay M, Hirota C, Ronaghan N, Peplowski M, Zaheer R, Carati C, et al. Interferon-γ suppresses intestinal epithelial aquaporin-1 expression via Janus kinase and STAT3 activation. PLoS ONE. 2015;10:e0118713 pubmed 出版商
  283. Nichols G, DeBello W. Hunting increases phosphorylation of calcium/calmodulin-dependent protein kinase type II in adult barn owls. Neural Plast. 2015;2015:819257 pubmed 出版商
  284. Seo H, Woo J, Shin Y, Ko S. Identification of biomarkers regulated by rexinoids (LGD1069, LG100268 and Ro25-7386) in human breast cells using Affymetrix microarray. Mol Med Rep. 2015;12:800-18 pubmed 出版商
  285. Shankar V, Hori H, Kihira K, Lei Q, Toyoda H, Iwamoto S, et al. Mesenchymal stromal cell secretome up-regulates 47 kDa CXCR4 expression, and induce invasiveness in neuroblastoma cell lines. PLoS ONE. 2015;10:e0120069 pubmed 出版商
  286. Kim S, Oceguera Yanez F, Hirohata R, Linker S, Okita K, Yamada Y, et al. KLF4 N-terminal variance modulates induced reprogramming to pluripotency. Stem Cell Reports. 2015;4:727-43 pubmed 出版商
  287. Tassinari V, Campolo F, Cesarini V, Todaro F, Dolci S, Rossi P. Fgf9 inhibition of meiotic differentiation in spermatogonia is mediated by Erk-dependent activation of Nodal-Smad2/3 signaling and is antagonized by Kit Ligand. Cell Death Dis. 2015;6:e1688 pubmed 出版商
  288. Hyun S, Maruri Avidal L, Moss B. Topology of Endoplasmic Reticulum-Associated Cellular and Viral Proteins Determined with Split-GFP. Traffic. 2015;16:787-95 pubmed 出版商
  289. Yang Y, Deng Q, Feng X, Sun J. Use of the disulfiram/copper complex for breast cancer chemoprevention in MMTV-erbB2 transgenic mice. Mol Med Rep. 2015;12:746-52 pubmed 出版商
  290. Pedro J, Wei Y, Sica V, Maiuri M, Zou Z, Kroemer G, et al. BAX and BAK1 are dispensable for ABT-737-induced dissociation of the BCL2-BECN1 complex and autophagy. Autophagy. 2015;11:452-9 pubmed 出版商
  291. Yang L, Liu L, Xu Z, Liao W, Feng D, Dong X, et al. EBV-LMP1 targeted DNAzyme enhances radiosensitivity by inhibiting tumor angiogenesis via the JNKs/HIF-1 pathway in nasopharyngeal carcinoma. Oncotarget. 2015;6:5804-17 pubmed
  292. Zhang L, Hsu F, Mojsilovic Petrovic J, Jablonski A, Zhai J, Coulter D, et al. Structure-function analysis of SAP97, a modular scaffolding protein that drives dendrite growth. Mol Cell Neurosci. 2015;65:31-44 pubmed 出版商
  293. Polletta L, Vernucci E, Carnevale I, Arcangeli T, Rotili D, Palmerio S, et al. SIRT5 regulation of ammonia-induced autophagy and mitophagy. Autophagy. 2015;11:253-70 pubmed 出版商
  294. TaÅŸlı P, DoÄŸan A, Demirci S, Åžahin F. Myogenic and neurogenic differentiation of human tooth germ stem cells (hTGSCs) are regulated by pluronic block copolymers. Cytotechnology. 2016;68:319-29 pubmed 出版商
  295. Lin S, Huang S, Kuo H, Chen C, Ma Y, Chu T, et al. Coral-derived compound WA-25 inhibits angiogenesis by attenuating the VEGF/VEGFR2 signaling pathway. Mar Drugs. 2015;13:861-78 pubmed 出版商
  296. Dong A, Wodziak D, Lowe A. Epidermal growth factor receptor (EGFR) signaling requires a specific endoplasmic reticulum thioredoxin for the post-translational control of receptor presentation to the cell surface. J Biol Chem. 2015;290:8016-27 pubmed 出版商
  297. Chen Y, Terajima M, Yang Y, Sun L, Ahn Y, Panková D, et al. Lysyl hydroxylase 2 induces a collagen cross-link switch in tumor stroma. J Clin Invest. 2015;125:1147-62 pubmed 出版商
  298. Ceriani M, Amigoni L, D Aloia A, Berruti G, Martegani E. The deubiquitinating enzyme UBPy/USP8 interacts with TrkA and inhibits neuronal differentiation in PC12 cells. Exp Cell Res. 2015;333:49-59 pubmed 出版商
  299. Bobba A, Amadoro G, La Piana G, Petragallo V, Calissano P, Atlante A. Glucose-6-phosphate tips the balance in modulating apoptosis in cerebellar granule cells. FEBS Lett. 2015;589:651-8 pubmed 出版商
  300. Gibbs Seymour I, Markiewicz E, Bekker Jensen S, Mailand N, Hutchison C. Lamin A/C-dependent interaction with 53BP1 promotes cellular responses to DNA damage. Aging Cell. 2015;14:162-9 pubmed 出版商
  301. Howard S, Yanez D, Stark J. DNA damage response factors from diverse pathways, including DNA crosslink repair, mediate alternative end joining. PLoS Genet. 2015;11:e1004943 pubmed 出版商
  302. Orr A, Hsiao E, Wang M, Ho K, Kim D, Wang X, et al. Astrocytic adenosine receptor A2A and Gs-coupled signaling regulate memory. Nat Neurosci. 2015;18:423-34 pubmed 出版商
  303. Feliciano D, Tolsma T, Farrell K, Aradi A, Di Pietro S. A second Las17 monomeric actin-binding motif functions in Arp2/3-dependent actin polymerization during endocytosis. Traffic. 2015;16:379-97 pubmed 出版商
  304. Amrutkar M, Cansby E, Nuñez Durán E, Pirazzi C, StÃ¥hlman M, Stenfeldt E, et al. Protein kinase STK25 regulates hepatic lipid partitioning and progression of liver steatosis and NASH. FASEB J. 2015;29:1564-76 pubmed 出版商
  305. Xue T, Wei L, Zha D, Qiao L, Lu L, Chen F, et al. Exposure to acoustic stimuli promotes the development and differentiation of neural stem cells from the cochlear nuclei through the clusterin pathway. Int J Mol Med. 2015;35:637-44 pubmed 出版商
  306. Miyata M, Lee J, Susuki Miyata S, Wang W, Xu H, Kai H, et al. Glucocorticoids suppress inflammation via the upregulation of negative regulator IRAK-M. Nat Commun. 2015;6:6062 pubmed 出版商
  307. Matsuda Y, Kobayashi Ishihara M, Fujikawa D, Ishida T, Watanabe T, Yamagishi M. Epigenetic heterogeneity in HIV-1 latency establishment. Sci Rep. 2015;5:7701 pubmed 出版商
  308. Xue C, Zhang J, Lv Z, Liu H, Huang C, Yang J, et al. Angiotensin II promotes differentiation of mouse c-kit-positive cardiac stem cells into pacemaker-like cells. Mol Med Rep. 2015;11:3249-58 pubmed 出版商
  309. Saveljeva S, Mc Laughlin S, Vandenabeele P, Samali A, Bertrand M. Endoplasmic reticulum stress induces ligand-independent TNFR1-mediated necroptosis in L929 cells. Cell Death Dis. 2015;6:e1587 pubmed 出版商
  310. Cheng Y, Chen P, Chiang H, Suen C, Hwang M, Lin T, et al. Candidate tumor suppressor B-cell translocation gene 3 impedes neoplastic progression by suppression of AKT. Cell Death Dis. 2015;6:e1584 pubmed 出版商
  311. Goossens S, Radaelli E, Blanchet O, Durinck K, Van der Meulen J, Peirs S, et al. ZEB2 drives immature T-cell lymphoblastic leukaemia development via enhanced tumour-initiating potential and IL-7 receptor signalling. Nat Commun. 2015;6:5794 pubmed 出版商
  312. Pérès E, Gérault A, Valable S, Roussel S, Toutain J, Divoux D, et al. Silencing erythropoietin receptor on glioma cells reinforces efficacy of temozolomide and X-rays through senescence and mitotic catastrophe. Oncotarget. 2015;6:2101-19 pubmed
  313. Chen J, Wang Z, Xu D, Liu Y, Gao Y. Aquaporin 3 promotes prostate cancer cell motility and invasion via extracellular signal-regulated kinase 1/2-mediated matrix metalloproteinase-3 secretion. Mol Med Rep. 2015;11:2882-8 pubmed 出版商
  314. Izzo F, Mercogliano F, Venturutti L, Tkach M, Inurrigarro G, Schillaci R, et al. Progesterone receptor activation downregulates GATA3 by transcriptional repression and increased protein turnover promoting breast tumor growth. Breast Cancer Res. 2014;16:491 pubmed 出版商
  315. Kim H, Li A, Ahn S, Song H, Zhang W. Inositol Polyphosphate-5-Phosphatase F (INPP5F) inhibits STAT3 activity and suppresses gliomas tumorigenicity. Sci Rep. 2014;4:7330 pubmed 出版商
  316. Colman J, Laureano D, Reis T, Krolow R, Dalmaz C, Benetti C, et al. Variations in the neonatal environment modulate adult behavioral and brain responses to palatable food withdrawal in adult female rats. Int J Dev Neurosci. 2015;40:70-5 pubmed 出版商
  317. Giovannini C, Minguzzi M, Baglioni M, Fornari F, Giannone F, Ravaioli M, et al. Suppression of p53 by Notch3 is mediated by Cyclin G1 and sustained by MDM2 and miR-221 axis in hepatocellular carcinoma. Oncotarget. 2014;5:10607-20 pubmed
  318. Roufayel R, Johnston D, Mosser D. The elimination of miR-23a in heat-stressed cells promotes NOXA-induced cell death and is prevented by HSP70. Cell Death Dis. 2014;5:e1546 pubmed 出版商
  319. Vigelsø A, Dybboe R, Hansen C, Dela F, Helge J, Guadalupe Grau A. GAPDH and β-actin protein decreases with aging, making Stain-Free technology a superior loading control in Western blotting of human skeletal muscle. J Appl Physiol (1985). 2015;118:386-94 pubmed 出版商
  320. Guthrie G, Aydemir T, Troche C, Martin A, Chang S, Cousins R. Influence of ZIP14 (slc39A14) on intestinal zinc processing and barrier function. Am J Physiol Gastrointest Liver Physiol. 2015;308:G171-8 pubmed 出版商
  321. Schliehe C, Flynn E, Vilagos B, Richson U, Swaminanthan S, Bosnjak B, et al. The methyltransferase Setdb2 mediates virus-induced susceptibility to bacterial superinfection. Nat Immunol. 2015;16:67-74 pubmed 出版商
  322. Lan N, Luo G, Yang X, Cheng Y, Zhang Y, Wang X, et al. 25-Hydroxyvitamin D3-deficiency enhances oxidative stress and corticosteroid resistance in severe asthma exacerbation. PLoS ONE. 2014;9:e111599 pubmed 出版商
  323. Bantikassegn A, Song X, Politi K. Isolation of epithelial, endothelial, and immune cells from lungs of transgenic mice with oncogene-induced lung adenocarcinomas. Am J Respir Cell Mol Biol. 2015;52:409-17 pubmed 出版商
  324. Dammer E, Lee A, Duong D, Gearing M, Lah J, Levey A, et al. Quantitative phosphoproteomics of Alzheimer's disease reveals cross-talk between kinases and small heat shock proteins. Proteomics. 2015;15:508-519 pubmed 出版商
  325. Oujo B, Muñoz Félix J, Arévalo M, Núñez Gómez E, Pérez Roque L, Pericacho M, et al. L-Endoglin overexpression increases renal fibrosis after unilateral ureteral obstruction. PLoS ONE. 2014;9:e110365 pubmed 出版商
  326. Kocher B, White L, Piwnica Worms D. DAPK3 suppresses acini morphogenesis and is required for mouse development. Mol Cancer Res. 2015;13:358-67 pubmed 出版商
  327. Jia J, Hu Z, Nordman J, Li Z. The schizophrenia susceptibility gene dysbindin regulates dendritic spine dynamics. J Neurosci. 2014;34:13725-36 pubmed 出版商
  328. Bernard Marissal N, Sunyach C, Marissal T, Raoul C, Pettmann B. Calreticulin levels determine onset of early muscle denervation by fast motoneurons of ALS model mice. Neurobiol Dis. 2015;73:130-6 pubmed 出版商
  329. Portella A, Silveira P, Laureano D, Cardoso S, Bittencourt V, Noschang C, et al. Litter size reduction alters insulin signaling in the ventral tegmental area and influences dopamine-related behaviors in adult rats. Behav Brain Res. 2015;278:66-73 pubmed 出版商
  330. Ni W, Qiao J, Hu S, Zhao X, Regouski M, Yang M, et al. Efficient gene knockout in goats using CRISPR/Cas9 system. PLoS ONE. 2014;9:e106718 pubmed 出版商
  331. Torsvik J, Johansson B, Dalva M, Marie M, Fjeld K, Johansson S, et al. Endocytosis of secreted carboxyl ester lipase in a syndrome of diabetes and pancreatic exocrine dysfunction. J Biol Chem. 2014;289:29097-111 pubmed 出版商
  332. Luo B, Li B, Wang W, Liu X, Xia Y, Zhang C, et al. NLRP3 gene silencing ameliorates diabetic cardiomyopathy in a type 2 diabetes rat model. PLoS ONE. 2014;9:e104771 pubmed 出版商
  333. Zhang X, Ma W, Cui J, Yao H, Zhou H, Ge Y, et al. Regulation of p21 by TWIST2 contributes to its tumor-suppressor function in human acute myeloid leukemia. Oncogene. 2015;34:3000-10 pubmed 出版商
  334. Zheng Y, Hsu F, Xu W, Xie X, Ren X, Gao X, et al. A developmental genetic analysis of the lysine demethylase KDM2 mutations in Drosophila melanogaster. Mech Dev. 2014;133:36-53 pubmed 出版商
  335. Doceul V, Chauveau E, Lara E, Breard E, Sailleau C, Zientara S, et al. Dual modulation of type I interferon response by bluetongue virus. J Virol. 2014;88:10792-802 pubmed 出版商
  336. Cansby E, Nerstedt A, Amrutkar M, Durán E, Smith U, Mahlapuu M. Partial hepatic resistance to IL-6-induced inflammation develops in type 2 diabetic mice, while the anti-inflammatory effect of AMPK is maintained. Mol Cell Endocrinol. 2014;393:143-51 pubmed 出版商
  337. Hu Q, Dong J, DU H, Zhang D, Ren H, Ma M, et al. Constitutive G?i coupling activity of very large G protein-coupled receptor 1 (VLGR1) and its regulation by PDZD7 protein. J Biol Chem. 2014;289:24215-25 pubmed 出版商
  338. Howell K, Pillai A. Effects of prenatal hypoxia on schizophrenia-related phenotypes in heterozygous reeler mice: a gene × environment interaction study. Eur Neuropsychopharmacol. 2014;24:1324-36 pubmed 出版商
  339. Morgan K, Black L. Investigation into the effects of varying frequency of mechanical stimulation in a cycle-by-cycle manner on engineered cardiac construct function. J Tissue Eng Regen Med. 2017;11:342-353 pubmed 出版商
  340. Fowler S, Chiang A, Savjani R, Larson M, Sherman M, Schuler D, et al. Genetic modulation of soluble A? rescues cognitive and synaptic impairment in a mouse model of Alzheimer's disease. J Neurosci. 2014;34:7871-85 pubmed 出版商
  341. Gracanin A, Timmermans Sprang E, van Wolferen M, Rao N, Grizelj J, Vince S, et al. Ligand-independent canonical Wnt activity in canine mammary tumor cell lines associated with aberrant LEF1 expression. PLoS ONE. 2014;9:e98698 pubmed 出版商
  342. Verstegen A, Tagliatti E, Lignani G, Marte A, Stolero T, Atias M, et al. Phosphorylation of synapsin I by cyclin-dependent kinase-5 sets the ratio between the resting and recycling pools of synaptic vesicles at hippocampal synapses. J Neurosci. 2014;34:7266-80 pubmed 出版商
  343. Yuan B, Wan P, Chu D, Nie J, Cao Y, Luo W, et al. A cardiomyocyte-specific Wdr1 knockout demonstrates essential functional roles for actin disassembly during myocardial growth and maintenance in mice. Am J Pathol. 2014;184:1967-80 pubmed 出版商
  344. Cheng Y, Cao A, Zheng J, Wang H, Sun Y, Liu C, et al. Airway hyperresponsiveness induced by repeated esophageal infusion of HCl in guinea pigs. Am J Respir Cell Mol Biol. 2014;51:701-8 pubmed 出版商
  345. Bach F, Rutten K, Hendriks K, Riemers F, Cornelissen P, de Bruin A, et al. The paracrine feedback loop between vitamin D? (1,25(OH)?D?) and PTHrP in prehypertrophic chondrocytes. J Cell Physiol. 2014;229:1999-2014 pubmed 出版商
  346. Castellano J, Fletcher B, Patzke H, Long J, Sewal A, Kim D, et al. Reassessing the effects of histone deacetylase inhibitors on hippocampal memory and cognitive aging. Hippocampus. 2014;24:1006-16 pubmed 出版商
  347. Quintin J, Le Péron C, Palierne G, Bizot M, Cunha S, Sérandour A, et al. Dynamic estrogen receptor interactomes control estrogen-responsive trefoil Factor (TFF) locus cell-specific activities. Mol Cell Biol. 2014;34:2418-36 pubmed 出版商
  348. Schroder W, Major L, Le T, Gardner J, Sweet M, Janciauskiene S, et al. Tumor cell-expressed SerpinB2 is present on microparticles and inhibits metastasis. Cancer Med. 2014;3:500-13 pubmed 出版商
  349. Carloni S, Albertini M, Galluzzi L, Buonocore G, Proietti F, Balduini W. Increased autophagy reduces endoplasmic reticulum stress after neonatal hypoxia-ischemia: role of protein synthesis and autophagic pathways. Exp Neurol. 2014;255:103-12 pubmed 出版商
  350. Ohshima J, Lee Y, Sasai M, Saitoh T, Su Ma J, Kamiyama N, et al. Role of mouse and human autophagy proteins in IFN-?-induced cell-autonomous responses against Toxoplasma gondii. J Immunol. 2014;192:3328-35 pubmed 出版商
  351. Morgan K, Black L. Mimicking isovolumic contraction with combined electromechanical stimulation improves the development of engineered cardiac constructs. Tissue Eng Part A. 2014;20:1654-67 pubmed 出版商
  352. Qi M, Zhang J, Zeng W, Chen X. DNAJB1 stabilizes MDM2 and contributes to cancer cell proliferation in a p53-dependent manner. Biochim Biophys Acta. 2014;1839:62-9 pubmed 出版商
  353. Bronner D, O Riordan M, He Y. Caspase-2 mediates a Brucella abortus RB51-induced hybrid cell death having features of apoptosis and pyroptosis. Front Cell Infect Microbiol. 2013;3:83 pubmed 出版商
  354. Bi J, Wang R, Zhang Y, Han X, Ampah K, Liu W, et al. Identification of nucleolin as a lipid-raft-dependent ?1-integrin-interacting protein in A375 cell migration. Mol Cells. 2013;36:507-17 pubmed 出版商
  355. Hasty P, Livi C, Dodds S, Jones D, Strong R, Javors M, et al. eRapa restores a normal life span in a FAP mouse model. Cancer Prev Res (Phila). 2014;7:169-78 pubmed 出版商
  356. Sadakata T, Kakegawa W, Shinoda Y, Hosono M, Katoh Semba R, Sekine Y, et al. CAPS1 deficiency perturbs dense-core vesicle trafficking and Golgi structure and reduces presynaptic release probability in the mouse brain. J Neurosci. 2013;33:17326-34 pubmed 出版商
  357. Sollome J, Thavathiru E, Camenisch T, Vaillancourt R. HER2/HER3 regulates extracellular acidification and cell migration through MTK1 (MEKK4). Cell Signal. 2014;26:70-82 pubmed 出版商
  358. Lee P, Yau D, Lau P, Chan J. Plexiform fibromyxoma (plexiform angiomyxoid myofibroblastic tumor) of stomach: an unusual presentation as a fistulating abscess. Int J Surg Pathol. 2014;22:286-90 pubmed 出版商
  359. Chandra S, Priyadarshini R, Madhavan V, Tikoo S, Hussain M, Mudgal R, et al. Enhancement of c-Myc degradation by BLM helicase leads to delayed tumor initiation. J Cell Sci. 2013;126:3782-95 pubmed 出版商
  360. Henderson Y, Toro Serra R, Chen Y, Ryu J, Frederick M, Zhou G, et al. Src inhibitors in suppression of papillary thyroid carcinoma growth. Head Neck. 2014;36:375-84 pubmed 出版商
  361. Medford H, Porter K, Marsh S. Immediate effects of a single exercise bout on protein O-GlcNAcylation and chromatin regulation of cardiac hypertrophy. Am J Physiol Heart Circ Physiol. 2013;305:H114-23 pubmed 出版商
  362. Pantaleo M, Astolfi A, Urbini M, Nannini M, Paterini P, Indio V, et al. Analysis of all subunits, SDHA, SDHB, SDHC, SDHD, of the succinate dehydrogenase complex in KIT/PDGFRA wild-type GIST. Eur J Hum Genet. 2014;22:32-9 pubmed 出版商
  363. Murata Y, Constantine Paton M. Postsynaptic density scaffold SAP102 regulates cortical synapse development through EphB and PAK signaling pathway. J Neurosci. 2013;33:5040-52 pubmed 出版商
  364. Xu J, Deng X, Tang M, Li L, Xiao L, Yang L, et al. Tyrosylprotein sulfotransferase-1 and tyrosine sulfation of chemokine receptor 4 are induced by Epstein-Barr virus encoded latent membrane protein 1 and associated with the metastatic potential of human nasopharyngeal carcinoma. PLoS ONE. 2013;8:e56114 pubmed 出版商
  365. McCoy F, Darbandi R, Chen S, Eckard L, Dodd K, Jones K, et al. Metabolic regulation of CaMKII protein and caspases in Xenopus laevis egg extracts. J Biol Chem. 2013;288:8838-48 pubmed 出版商
  366. Sánchez Alvarez R, Martinez Outschoorn U, Lin Z, Lamb R, Hulit J, Howell A, et al. Ethanol exposure induces the cancer-associated fibroblast phenotype and lethal tumor metabolism: implications for breast cancer prevention. Cell Cycle. 2013;12:289-301 pubmed 出版商
  367. Peddigari S, Li P, Rabe J, Martin S. hnRNPL and nucleolin bind LINE-1 RNA and function as host factors to modulate retrotransposition. Nucleic Acids Res. 2013;41:575-85 pubmed 出版商
  368. Chen Y, Sundvik M, Rozov S, Priyadarshini M, Panula P. MANF regulates dopaminergic neuron development in larval zebrafish. Dev Biol. 2012;370:237-49 pubmed 出版商
  369. Wakabayashi T, Kosaka J, Mori T, Yamada H. Prolonged expression of Puma in cholinergic amacrine cells during the development of rat retina. J Histochem Cytochem. 2012;60:777-88 pubmed
  370. Kee H, Kim J, Joung H, Choe N, Lee S, Eom G, et al. Ret finger protein inhibits muscle differentiation by modulating serum response factor and enhancer of polycomb1. Cell Death Differ. 2012;19:121-31 pubmed 出版商
  371. Tai C, Shen S, Lee W, Liao C, Deng W, Chiou H, et al. Increased cellular apoptosis susceptibility (CSE1L/CAS) protein expression promotes protrusion extension and enhances migration of MCF-7 breast cancer cells. Exp Cell Res. 2010;316:2969-81 pubmed 出版商
  372. Kurz A, Double K, Lastres Becker I, Tozzi A, Tantucci M, Bockhart V, et al. A53T-alpha-synuclein overexpression impairs dopamine signaling and striatal synaptic plasticity in old mice. PLoS ONE. 2010;5:e11464 pubmed 出版商
  373. Polo M, Arnoni M, Riggio M, Wargon V, Lanari C, Novaro V. Responsiveness to PI3K and MEK inhibitors in breast cancer. Use of a 3D culture system to study pathways related to hormone independence in mice. PLoS ONE. 2010;5:e10786 pubmed 出版商
  374. Holthouse D, Dallas P, Ford J, Fabian V, Murch A, Watson M, et al. Classic and desmoplastic medulloblastoma: complete case reports and characterizations of two new cell lines. Neuropathology. 2009;29:398-409 pubmed 出版商
  375. Marín Briggiler C, Veiga M, Matos M, Echeverría M, Furlong L, Vazquez Levin M. Expression of epithelial cadherin in the human male reproductive tract and gametes and evidence of its participation in fertilization. Mol Hum Reprod. 2008;14:561-71 pubmed 出版商
  376. Rigau V, Morin M, Rousset M, de Bock F, Lebrun A, Coubes P, et al. Angiogenesis is associated with blood-brain barrier permeability in temporal lobe epilepsy. Brain. 2007;130:1942-56 pubmed