这是一篇来自已证抗体库的有关小鼠 Actb的综述,是根据2885篇发表使用所有方法的文章归纳的。这综述旨在帮助来邦网的访客找到最适合Actb 抗体。
Actb 同义词: Actx; E430023M04Rik; beta-actin

圣克鲁斯生物技术
小鼠 单克隆(ACTBD11B7)
  • 免疫印迹; 小鼠; 图 3a
圣克鲁斯生物技术 Actb抗体(Santa, sc81178)被用于被用于免疫印迹在小鼠样本上 (图 3a). Redox Biol (2022) ncbi
小鼠 单克隆(B4)
  • 免疫印迹; 小鼠; 1:200; 图 2r
圣克鲁斯生物技术 Actb抗体(Santa Cruz, sc53142)被用于被用于免疫印迹在小鼠样本上浓度为1:200 (图 2r). Nat Commun (2022) ncbi
小鼠 单克隆(C4)
  • 酶联免疫吸附测定; 人类; 1:500; 图 2k
圣克鲁斯生物技术 Actb抗体(Santa Cruz, sc47778)被用于被用于酶联免疫吸附测定在人类样本上浓度为1:500 (图 2k). Biomedicines (2022) ncbi
小鼠 单克隆(B4)
  • 免疫组化-石蜡切片; 小鼠; 图 2d
圣克鲁斯生物技术 Actb抗体(Santa Cruz, SC-53142)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 2d). Front Immunol (2021) ncbi
小鼠 单克隆(C4)
  • 免疫印迹; 人类; 1:300; 图 1c
圣克鲁斯生物技术 Actb抗体(Santa Cruz, sc-47778)被用于被用于免疫印迹在人类样本上浓度为1:300 (图 1c). elife (2021) ncbi
小鼠 单克隆(C4)
  • 免疫印迹; 人类; 图 1c
圣克鲁斯生物技术 Actb抗体(Santa, sc-47778)被用于被用于免疫印迹在人类样本上 (图 1c). Cancers (Basel) (2021) ncbi
小鼠 单克隆(1)
  • 免疫印迹; 小鼠; 1:1000; 图 1b
圣克鲁斯生物技术 Actb抗体(Santa Cruz Biotechnology, sc-130300)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 1b). Front Immunol (2021) ncbi
小鼠 单克隆(C4)
  • 免疫印迹; 人类; 图 3e
圣克鲁斯生物技术 Actb抗体(Santa Cruz, sc-47778)被用于被用于免疫印迹在人类样本上 (图 3e). Cancers (Basel) (2021) ncbi
小鼠 单克隆(C4)
  • 免疫印迹; 人类; 1:10,000; 图 2a
圣克鲁斯生物技术 Actb抗体(Santa Cruz Biotechnology., sc-47778)被用于被用于免疫印迹在人类样本上浓度为1:10,000 (图 2a). Proc Natl Acad Sci U S A (2021) ncbi
小鼠 单克隆(C4)
  • 免疫印迹; 人类; 图 s4b
  • 免疫印迹; 小鼠; 图 s13c
圣克鲁斯生物技术 Actb抗体(Santacruz, sc47778)被用于被用于免疫印迹在人类样本上 (图 s4b) 和 被用于免疫印迹在小鼠样本上 (图 s13c). Nat Commun (2021) ncbi
小鼠 单克隆(C4)
  • 免疫印迹; 小鼠; 1:2000; 图 7f
圣克鲁斯生物技术 Actb抗体(Santa Cruz, Sc-47778)被用于被用于免疫印迹在小鼠样本上浓度为1:2000 (图 7f). elife (2020) ncbi
小鼠 单克隆(C4)
  • 免疫印迹; 小鼠; 1:2000; 图 s2-4a
圣克鲁斯生物技术 Actb抗体(Santa Cruz, sc-47778)被用于被用于免疫印迹在小鼠样本上浓度为1:2000 (图 s2-4a). elife (2020) ncbi
小鼠 单克隆(C4)
  • 免疫印迹; 小鼠; 1:500; 图 1c
圣克鲁斯生物技术 Actb抗体(Santa Cruz, sc-47778)被用于被用于免疫印迹在小鼠样本上浓度为1:500 (图 1c). elife (2020) ncbi
小鼠 单克隆(C4)
  • 免疫印迹; 人类; 1:300; 图 4c
圣克鲁斯生物技术 Actb抗体(Santa Cruz, sc-47778)被用于被用于免疫印迹在人类样本上浓度为1:300 (图 4c). elife (2020) ncbi
小鼠 单克隆(C4)
  • 免疫印迹; 人类; 1:1000; 图 3d
圣克鲁斯生物技术 Actb抗体(Santa, sc-47778)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3d). PLoS ONE (2020) ncbi
小鼠 单克隆(C4)
  • 免疫印迹; 人类; 1:10,000; 图 1e, 1f
圣克鲁斯生物技术 Actb抗体(Santa Cruz Biotechnology, sc-47778)被用于被用于免疫印迹在人类样本上浓度为1:10,000 (图 1e, 1f). elife (2020) ncbi
小鼠 单克隆(C4)
  • 免疫印迹; 人类; 1:2000; 图 s2e
圣克鲁斯生物技术 Actb抗体(Santa, sc-47778)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 s2e). Oncogenesis (2020) ncbi
小鼠 单克隆(C4)
  • 免疫印迹; 人类; 1:2000; 图 s6g
圣克鲁斯生物技术 Actb抗体(Santa Cruz, sc-47778)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 s6g). Nature (2020) ncbi
小鼠 单克隆(C4)
  • 流式细胞仪; 人类; 图 5s6b
圣克鲁斯生物技术 Actb抗体(LifeSpan Biosciences, sc-47778)被用于被用于流式细胞仪在人类样本上 (图 5s6b). elife (2020) ncbi
小鼠 单克隆(C4)
  • 免疫印迹; 人类; 图 1
圣克鲁斯生物技术 Actb抗体(Santacruz Biotechnology, sc-47778)被用于被用于免疫印迹在人类样本上 (图 1). elife (2020) ncbi
小鼠 单克隆(C4)
  • 免疫印迹; 小鼠; 1:1000; 图 4d
圣克鲁斯生物技术 Actb抗体(Santa Cruz, SC47778)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 4d). elife (2020) ncbi
小鼠 单克隆(C4)
  • 免疫印迹; 小鼠; 1:1000; 图 3d
圣克鲁斯生物技术 Actb抗体(Santa Cruz, sc-47778)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 3d). EBioMedicine (2020) ncbi
小鼠 单克隆(ACTBD11B7)
  • 免疫印迹; domestic rabbit; 1:2000; 图 7e
圣克鲁斯生物技术 Actb抗体(Santa Cruz Biotechnology, sc-81178)被用于被用于免疫印迹在domestic rabbit样本上浓度为1:2000 (图 7e). J Cell Mol Med (2020) ncbi
小鼠 单克隆(C4)
  • 免疫印迹; 小鼠; 图 5c
圣克鲁斯生物技术 Actb抗体(Santa, sc-47778)被用于被用于免疫印迹在小鼠样本上 (图 5c). Bone Res (2020) ncbi
小鼠 单克隆(C4)
  • 免疫印迹; 小鼠; 图 2b
圣克鲁斯生物技术 Actb抗体(Santa Cruz Biotechnology (Santa Cruz, CA), sc-47778))被用于被用于免疫印迹在小鼠样本上 (图 2b). Pharmacol Res (2020) ncbi
小鼠 单克隆(C4)
  • 免疫印迹; 人类; 1:3000; 图 5d
圣克鲁斯生物技术 Actb抗体(Santa, sc-47778)被用于被用于免疫印迹在人类样本上浓度为1:3000 (图 5d). Nat Commun (2020) ncbi
小鼠 单克隆(C4)
  • 免疫印迹; 小鼠; 图 2a
圣克鲁斯生物技术 Actb抗体(Santa, sc-47,778)被用于被用于免疫印迹在小鼠样本上 (图 2a). Mol Neurodegener (2020) ncbi
小鼠 单克隆(C4)
  • 免疫印迹; 人类; 图 1a
圣克鲁斯生物技术 Actb抗体(Santa, sc-47778)被用于被用于免疫印迹在人类样本上 (图 1a). J Clin Med (2020) ncbi
小鼠 单克隆(C4)
  • 免疫印迹; 小鼠; 1:1000
圣克鲁斯生物技术 Actb抗体(Santa Cruz, 47778)被用于被用于免疫印迹在小鼠样本上浓度为1:1000. elife (2020) ncbi
小鼠 单克隆(CGA7)
  • 免疫组化-冰冻切片; 小鼠; 图 2f
  • 免疫组化-石蜡切片; 小鼠; 1:200; 图 2e
圣克鲁斯生物技术 Actb抗体(Santa Cruz, sc-53015)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 2f) 和 被用于免疫组化-石蜡切片在小鼠样本上浓度为1:200 (图 2e). Cell Prolif (2020) ncbi
小鼠 单克隆(C-2)
  • 免疫印迹; 人类; 图 4g
圣克鲁斯生物技术 Actb抗体(Santa, sc-8432)被用于被用于免疫印迹在人类样本上 (图 4g). Cell Cycle (2020) ncbi
小鼠 单克隆(C4)
  • 免疫印迹; 人类; 1:1000; 图 2c
圣克鲁斯生物技术 Actb抗体(Santa Cruz;, sc-47778)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 2c). Nat Immunol (2020) ncbi
小鼠 单克隆(C4)
  • 免疫印迹; 人类; 图 1a, 1b, 1c
圣克鲁斯生物技术 Actb抗体(Santa Cruz Biotechnology, sc-47778)被用于被用于免疫印迹在人类样本上 (图 1a, 1b, 1c). Mol Cell Biol (2020) ncbi
小鼠 单克隆(C4)
  • 免疫印迹; 人类; 图 2e
圣克鲁斯生物技术 Actb抗体(Santa Cruz Biotechnology, sc-47778)被用于被用于免疫印迹在人类样本上 (图 2e). Sci Rep (2019) ncbi
小鼠 单克隆(C4)
  • 免疫印迹; 人类; 图 s7a
圣克鲁斯生物技术 Actb抗体(Santa, sc47778)被用于被用于免疫印迹在人类样本上 (图 s7a). Cell (2019) ncbi
小鼠 单克隆(C4)
  • 免疫印迹; 小鼠; 图 2b
圣克鲁斯生物技术 Actb抗体(Santa, sc-47778)被用于被用于免疫印迹在小鼠样本上 (图 2b). elife (2019) ncbi
小鼠 单克隆(C4)
  • 免疫印迹; 人类; 图 1c
圣克鲁斯生物技术 Actb抗体(Santa, sc-47778)被用于被用于免疫印迹在人类样本上 (图 1c). Cell Rep (2019) ncbi
小鼠 单克隆(C4)
  • 免疫印迹; 人类; 图 1b
圣克鲁斯生物技术 Actb抗体(Santa, sc-47778)被用于被用于免疫印迹在人类样本上 (图 1b). Theranostics (2019) ncbi
小鼠 单克隆(C4)
  • 免疫印迹; 人类; 1:5000; 图 1b
圣克鲁斯生物技术 Actb抗体(Santa, sc-47778)被用于被用于免疫印迹在人类样本上浓度为1:5000 (图 1b). Biosci Rep (2019) ncbi
小鼠 单克隆(C4)
  • 免疫印迹; 小鼠; 1:20,000; 图 6f
圣克鲁斯生物技术 Actb抗体(Santa, sc-47778)被用于被用于免疫印迹在小鼠样本上浓度为1:20,000 (图 6f). Autophagy (2019) ncbi
小鼠 单克隆(C4)
  • 免疫印迹; 人类; 1:1000; 图 5f
圣克鲁斯生物技术 Actb抗体(Santa Cruz, 47778)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 5f). J Exp Clin Cancer Res (2019) ncbi
小鼠 单克隆(CGA7)
  • 免疫组化; 人类; 1:200; 图 1c
圣克鲁斯生物技术 Actb抗体(Santa, CGA7)被用于被用于免疫组化在人类样本上浓度为1:200 (图 1c). Science (2019) ncbi
小鼠 单克隆(C4)
  • 免疫印迹; 人类; 图 4c
圣克鲁斯生物技术 Actb抗体(Santa, sc47778)被用于被用于免疫印迹在人类样本上 (图 4c). Nature (2019) ncbi
小鼠 单克隆(ACTBD11B7)
  • 免疫印迹; 小鼠; 图 4a
圣克鲁斯生物技术 Actb抗体(Santa, ACTBD11B7)被用于被用于免疫印迹在小鼠样本上 (图 4a). J Clin Invest (2019) ncbi
小鼠 单克隆(C4)
  • 免疫印迹; 小鼠; 1:5000; 图 2c
圣克鲁斯生物技术 Actb抗体(Santa, sc-47778)被用于被用于免疫印迹在小鼠样本上浓度为1:5000 (图 2c). elife (2019) ncbi
小鼠 单克隆(C4)
  • 免疫印迹; 人类; 图 2c
圣克鲁斯生物技术 Actb抗体(Santa, sc-47778)被用于被用于免疫印迹在人类样本上 (图 2c). Cell (2019) ncbi
小鼠 单克隆(C4)
  • 免疫印迹; 小鼠; 1:1000; 图 7a
圣克鲁斯生物技术 Actb抗体(Santa, sc-47778)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 7a). Nat Commun (2019) ncbi
小鼠 单克隆(C4)
  • 免疫印迹; 小鼠; 1:1000; 图 6c
圣克鲁斯生物技术 Actb抗体(Santa, sc-47778)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 6c). Nat Commun (2019) ncbi
小鼠 单克隆(C4)
  • 免疫印迹; 小鼠; 图 1c
圣克鲁斯生物技术 Actb抗体(Santa, sc-47778)被用于被用于免疫印迹在小鼠样本上 (图 1c). Cell Stem Cell (2019) ncbi
小鼠 单克隆(C4)
  • 免疫印迹; fruit fly ; 1:50; 图 3c
圣克鲁斯生物技术 Actb抗体(Santa, sc-47778)被用于被用于免疫印迹在fruit fly 样本上浓度为1:50 (图 3c). Cell Rep (2019) ncbi
小鼠 单克隆(C4)
  • 免疫印迹; 人类; 图 2a
圣克鲁斯生物技术 Actb抗体(Santa, sc-47778)被用于被用于免疫印迹在人类样本上 (图 2a). DNA Repair (Amst) (2019) ncbi
小鼠 单克隆(C4)
  • 免疫印迹; 小鼠; 图 1b
圣克鲁斯生物技术 Actb抗体(Santa Cruz Biotechnology, sc-47778)被用于被用于免疫印迹在小鼠样本上 (图 1b). iScience (2019) ncbi
小鼠 单克隆(C4)
  • 免疫印迹; 小鼠; 1:1000; 图 2a
圣克鲁斯生物技术 Actb抗体(Santa, sc-47778)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 2a). Biomed Res Int (2019) ncbi
小鼠 单克隆(ACTBD11B7)
  • 免疫印迹; 小鼠; 图 3a
圣克鲁斯生物技术 Actb抗体(Santa Cruz Biotechnology, sc-81178)被用于被用于免疫印迹在小鼠样本上 (图 3a). FASEB J (2019) ncbi
小鼠 单克隆(C4)
  • 免疫印迹; 大鼠; 1:2000; 图 1e
圣克鲁斯生物技术 Actb抗体(Santa, sc-47,778)被用于被用于免疫印迹在大鼠样本上浓度为1:2000 (图 1e). BMC Complement Altern Med (2019) ncbi
小鼠 单克隆(C4)
  • 免疫印迹; 小鼠; 图 1a
圣克鲁斯生物技术 Actb抗体(Santa, sc-47778)被用于被用于免疫印迹在小鼠样本上 (图 1a). Nat Immunol (2019) ncbi
小鼠 单克隆(C4)
  • 免疫印迹; 人类; 图 s6b
圣克鲁斯生物技术 Actb抗体(Santa, sc-47778)被用于被用于免疫印迹在人类样本上 (图 s6b). Cell (2019) ncbi
小鼠 单克隆(B4)
  • 免疫组化; 小鼠; 1:100; 图 s1b
  • 免疫印迹; 小鼠; 1:1000; 图 6c
圣克鲁斯生物技术 Actb抗体(Santa Cruz Biotechnology, sc-53142)被用于被用于免疫组化在小鼠样本上浓度为1:100 (图 s1b) 和 被用于免疫印迹在小鼠样本上浓度为1:1000 (图 6c). J Clin Invest (2019) ncbi
小鼠 单克隆(C4)
  • 免疫印迹; 人类; 图 1d
圣克鲁斯生物技术 Actb抗体(Santa, sc-47778)被用于被用于免疫印迹在人类样本上 (图 1d). Nucleic Acids Res (2019) ncbi
小鼠 单克隆(C4)
  • 免疫印迹; 人类; 图 3e
圣克鲁斯生物技术 Actb抗体(Santa, C4)被用于被用于免疫印迹在人类样本上 (图 3e). Science (2018) ncbi
小鼠 单克隆(C-2)
  • 免疫印迹; 小鼠; 图 2e
圣克鲁斯生物技术 Actb抗体(Santa, sc-8432)被用于被用于免疫印迹在小鼠样本上 (图 2e). Sci Rep (2018) ncbi
小鼠 单克隆(C4)
  • 免疫印迹; 小鼠; 图 2e
圣克鲁斯生物技术 Actb抗体(Santa, sc-47778)被用于被用于免疫印迹在小鼠样本上 (图 2e). Cell Mol Life Sci (2018) ncbi
小鼠 单克隆(C4)
  • 免疫印迹; 人类; 1:1000; 图 2c
圣克鲁斯生物技术 Actb抗体(Santa, sc-47778)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 2c). Science (2018) ncbi
小鼠 单克隆(C-2)
  • 免疫印迹; 人类; 1:1000; 图 1d
  • 免疫印迹; 小鼠; 1:1000; 图 1d
圣克鲁斯生物技术 Actb抗体(Santa, C-2)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 1d) 和 被用于免疫印迹在小鼠样本上浓度为1:1000 (图 1d). Nat Commun (2018) ncbi
小鼠 单克隆(ACTBD11B7)
  • 免疫印迹; 小鼠; 1:500; 图 4f
圣克鲁斯生物技术 Actb抗体(Santa, sc-81178)被用于被用于免疫印迹在小鼠样本上浓度为1:500 (图 4f). Cell Death Differ (2018) ncbi
小鼠 单克隆(B4)
  • 免疫印迹; 人类; 1:2500; 图 3a
圣克鲁斯生物技术 Actb抗体(Santa Cruz Biotechnology, Inc, sc-53142)被用于被用于免疫印迹在人类样本上浓度为1:2500 (图 3a). Mol Med Rep (2018) ncbi
小鼠 单克隆(C4)
  • 免疫印迹; 人类; 1:500; 图 1a
圣克鲁斯生物技术 Actb抗体(Santa, sc-47778)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 1a). Mol Med Rep (2017) ncbi
小鼠 单克隆(B4)
  • 免疫印迹; 人类; 1:1000; 图 3a
圣克鲁斯生物技术 Actb抗体(Santa Cruz, sc-53142)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3a). Mol Med Rep (2017) ncbi
小鼠 单克隆(ACTBD11B7)
  • 免疫印迹; 小鼠; 图 3b
圣克鲁斯生物技术 Actb抗体(Santa Cruz, sc-81178)被用于被用于免疫印迹在小鼠样本上 (图 3b). Food Funct (2017) ncbi
小鼠 单克隆(C4)
  • 免疫印迹; 人类; 图 2
圣克鲁斯生物技术 Actb抗体(Santa Cruz, sc-47778)被用于被用于免疫印迹在人类样本上 (图 2). Mol Cancer (2016) ncbi
小鼠 单克隆(C4)
  • 免疫印迹; 人类; 图 1
圣克鲁斯生物技术 Actb抗体(Santa Cruz, sc-47778)被用于被用于免疫印迹在人类样本上 (图 1). Sci Rep (2016) ncbi
小鼠 单克隆(C-2)
  • 免疫印迹; 人类; 图 4
圣克鲁斯生物技术 Actb抗体(Santa Cruz, sc8432)被用于被用于免疫印迹在人类样本上 (图 4). Oncotarget (2016) ncbi
小鼠 单克隆(CGA7)
  • 免疫组化; 人类; 1:500
圣克鲁斯生物技术 Actb抗体(Santa Cruz, sc-53015)被用于被用于免疫组化在人类样本上浓度为1:500. Oncol Lett (2016) ncbi
小鼠 单克隆(C-2)
  • 免疫印迹; 人类; 1:1000; 图 1
圣克鲁斯生物技术 Actb抗体(Santa Cruz, sc-8432)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 1). Oncol Lett (2016) ncbi
小鼠 单克隆(C4)
  • 免疫印迹; 大鼠; 1:4000; 图 2
圣克鲁斯生物技术 Actb抗体(Santa Cruz, sc-47778)被用于被用于免疫印迹在大鼠样本上浓度为1:4000 (图 2). Exp Ther Med (2016) ncbi
小鼠 单克隆(ACTBD11B7)
  • 免疫印迹; 人类; 1:500; 图 1
圣克鲁斯生物技术 Actb抗体(santa Cruz, sc-81178)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 1). Virol J (2016) ncbi
小鼠 单克隆(ACTBD11B7)
  • 免疫印迹; 小鼠; 1:1000; 图 5
圣克鲁斯生物技术 Actb抗体(Santa Cruz, sc-81178)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 5). Sci Rep (2016) ncbi
小鼠 单克隆(C4)
  • 免疫印迹; 人类; 图 4
  • 免疫印迹; 小鼠; 图 2
圣克鲁斯生物技术 Actb抗体(Santa Cruz, sc-47778)被用于被用于免疫印迹在人类样本上 (图 4) 和 被用于免疫印迹在小鼠样本上 (图 2). Mol Ther Methods Clin Dev (2016) ncbi
小鼠 单克隆(C-2)
  • 免疫印迹; 人类; 1:5000; 图 1
圣克鲁斯生物技术 Actb抗体(Santa Cruz, sc-8432)被用于被用于免疫印迹在人类样本上浓度为1:5000 (图 1). Oncol Lett (2016) ncbi
小鼠 单克隆(C4)
  • 免疫印迹; 人类; 1:200; 图 2
圣克鲁斯生物技术 Actb抗体(Santa Cruz, sc-47778)被用于被用于免疫印迹在人类样本上浓度为1:200 (图 2). Oncol Lett (2016) ncbi
小鼠 单克隆(C4)
  • 免疫印迹; 人类; 图 5
圣克鲁斯生物技术 Actb抗体(Santa Cruz, sc-47778)被用于被用于免疫印迹在人类样本上 (图 5). Mol Med Rep (2016) ncbi
小鼠 单克隆(C4)
  • 免疫印迹; 人类; 图 s3
圣克鲁斯生物技术 Actb抗体(santa Cruz, sc-47778)被用于被用于免疫印迹在人类样本上 (图 s3). Sci Rep (2016) ncbi
小鼠 单克隆(C4)
  • 免疫印迹; 小鼠; 图 4
圣克鲁斯生物技术 Actb抗体(Santa Cruz, SC47778)被用于被用于免疫印迹在小鼠样本上 (图 4). Sci Rep (2016) ncbi
小鼠 单克隆(C4)
  • 免疫印迹; 小鼠; 1:2500; 图 4
圣克鲁斯生物技术 Actb抗体(santa Cruz, Sc47778)被用于被用于免疫印迹在小鼠样本上浓度为1:2500 (图 4). Sci Rep (2016) ncbi
小鼠 单克隆(C4)
  • 免疫沉淀; 小鼠; 1:1000; 图 s7
圣克鲁斯生物技术 Actb抗体(Santa Cruz Biotechnology, sc-47778)被用于被用于免疫沉淀在小鼠样本上浓度为1:1000 (图 s7). Sci Rep (2016) ncbi
小鼠 单克隆(C4)
  • 免疫印迹; 人类; 图 1
圣克鲁斯生物技术 Actb抗体(Santa Cruz, sc-47778)被用于被用于免疫印迹在人类样本上 (图 1). Cell Metab (2016) ncbi
小鼠 单克隆(C4)
  • 免疫印迹; 小鼠; 1:1000; 图 s5
圣克鲁斯生物技术 Actb抗体(Santa Cruz, sc-47778)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 s5). Nat Commun (2016) ncbi
小鼠 单克隆(C4)
  • 免疫沉淀; roundworm ; 1:5000; 图 s2
圣克鲁斯生物技术 Actb抗体(Santa Cruz, sc-47778)被用于被用于免疫沉淀在roundworm 样本上浓度为1:5000 (图 s2). Nat Commun (2016) ncbi
小鼠 单克隆(C4)
  • 免疫印迹; 人类; 图 1
圣克鲁斯生物技术 Actb抗体(Santa Cruz, C-4)被用于被用于免疫印迹在人类样本上 (图 1). Sci Rep (2016) ncbi
小鼠 单克隆(C4)
圣克鲁斯生物技术 Actb抗体(Santa Cruz, sc-47778)被用于. BMC Complement Altern Med (2016) ncbi
小鼠 单克隆(C4)
  • 免疫印迹; 小鼠; 1:1000; 图 3
圣克鲁斯生物技术 Actb抗体(santa Cruz, sc-47778)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 3). Mol Med Rep (2016) ncbi
小鼠 单克隆(C4)
  • 免疫印迹; 人类; 1:1000; 图 1
圣克鲁斯生物技术 Actb抗体(Santa Cruz, sc-47778)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 1). Cell Death Dis (2016) ncbi
小鼠 单克隆(C4)
  • 免疫印迹; 小鼠; 图 7
圣克鲁斯生物技术 Actb抗体(Santa Cruz, SC-47778)被用于被用于免疫印迹在小鼠样本上 (图 7). Oncotarget (2016) ncbi
小鼠 单克隆(C4)
  • 免疫印迹; 人类; 图 5
圣克鲁斯生物技术 Actb抗体(Santa Cruz, sc-47778)被用于被用于免疫印迹在人类样本上 (图 5). BMC Complement Altern Med (2016) ncbi
小鼠 单克隆(C-2)
  • 免疫印迹; 人类; 1:1000; 图 1
圣克鲁斯生物技术 Actb抗体(Santa Cruz, sc-8432)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 1). Oncol Lett (2016) ncbi
小鼠 单克隆(C-2)
  • 免疫印迹; 人类; 1:500; 图 6
圣克鲁斯生物技术 Actb抗体(Santa Cruz Biotechnology, sc-8432)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 6). Oncol Lett (2016) ncbi
小鼠 单克隆(C-2)
  • 免疫印迹; 人类; 1:200; 图 1
圣克鲁斯生物技术 Actb抗体(Santa Cruz, SC-8432)被用于被用于免疫印迹在人类样本上浓度为1:200 (图 1). Mol Med Rep (2016) ncbi
小鼠 单克隆(C4)
  • 免疫印迹; 人类; 图 3
圣克鲁斯生物技术 Actb抗体(Santa Cruz, sc-47778)被用于被用于免疫印迹在人类样本上 (图 3). Sci Rep (2016) ncbi
小鼠 单克隆(C4)
  • 免疫印迹; 人类; 1:2500; 图 s2
圣克鲁斯生物技术 Actb抗体(Santa-Cruz, sc47778)被用于被用于免疫印迹在人类样本上浓度为1:2500 (图 s2). Nat Commun (2016) ncbi
小鼠 单克隆(C-2)
  • 免疫印迹; 人类; 1:5000; 图 6
圣克鲁斯生物技术 Actb抗体(Santa Cruz, Sc-8432)被用于被用于免疫印迹在人类样本上浓度为1:5000 (图 6). Front Oncol (2016) ncbi
小鼠 单克隆(ACTBD11B7)
  • 免疫印迹; 人类; 图 3f
圣克鲁斯生物技术 Actb抗体(Santa cruz, 81178)被用于被用于免疫印迹在人类样本上 (图 3f). J Exp Clin Cancer Res (2016) ncbi
小鼠 单克隆(ACTBD11B7)
  • 免疫印迹; 人类; 1:2000; 图 7
圣克鲁斯生物技术 Actb抗体(Santa Cruz, sc-81178)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 7). Acta Neuropathol Commun (2016) ncbi
小鼠 单克隆(C4)
  • 免疫印迹; 小鼠; 1:5000; 图 5
圣克鲁斯生物技术 Actb抗体(Santa Cruz, C4)被用于被用于免疫印迹在小鼠样本上浓度为1:5000 (图 5). Sci Rep (2016) ncbi
小鼠 单克隆(C4)
  • 免疫印迹; 人类; 图 4
  • 免疫印迹; 小鼠; 图 6
圣克鲁斯生物技术 Actb抗体(Santa Cruz, sc-47778)被用于被用于免疫印迹在人类样本上 (图 4) 和 被用于免疫印迹在小鼠样本上 (图 6). Nat Commun (2016) ncbi
小鼠 单克隆(1)
  • 免疫印迹; 人类; 图 3
圣克鲁斯生物技术 Actb抗体(Santa Cruz, sc-130300)被用于被用于免疫印迹在人类样本上 (图 3). Oncol Lett (2016) ncbi
小鼠 单克隆(C4)
  • 免疫印迹; 人类; 1:400; 图 3
圣克鲁斯生物技术 Actb抗体(Santa Cruz, Sc-47778)被用于被用于免疫印迹在人类样本上浓度为1:400 (图 3). Sci Rep (2016) ncbi
小鼠 单克隆(ACTBD11B7)
  • 免疫印迹; 人类; 1:2000; 图 2
圣克鲁斯生物技术 Actb抗体(Santa Cruz, sc-81178)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 2). Viruses (2016) ncbi
小鼠 单克隆(9)
  • 免疫印迹; 人类; 1:500; 图 1
圣克鲁斯生物技术 Actb抗体(Santa Cruz, sc-130301)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 1). PLoS ONE (2016) ncbi
小鼠 单克隆(C4)
  • 免疫印迹; 人类; 1:1000; 图 s5
圣克鲁斯生物技术 Actb抗体(Santa Cruz, sc-47778)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 s5). Nat Commun (2016) ncbi
小鼠 单克隆(C4)
  • 免疫印迹; 小鼠; 1:200; 图 s4
圣克鲁斯生物技术 Actb抗体(Santa Cruz, sc-47778)被用于被用于免疫印迹在小鼠样本上浓度为1:200 (图 s4). Sci Rep (2016) ncbi
小鼠 单克隆(C4)
  • 免疫印迹; 大鼠; 1:1000; 图 5
圣克鲁斯生物技术 Actb抗体(santa Cruz, sc-47778)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 5). Front Pharmacol (2016) ncbi
小鼠 单克隆(C4)
  • 免疫印迹; 人类; 图 4
  • 免疫印迹; 小鼠; 图 6
圣克鲁斯生物技术 Actb抗体(Santa Cruz, sc-47778)被用于被用于免疫印迹在人类样本上 (图 4) 和 被用于免疫印迹在小鼠样本上 (图 6). Autophagy (2016) ncbi
小鼠 单克隆(C4)
  • 免疫印迹; 大鼠; 图 1
圣克鲁斯生物技术 Actb抗体(Santa Cruz, sc-47778)被用于被用于免疫印迹在大鼠样本上 (图 1). Mol Brain (2016) ncbi
小鼠 单克隆(C4)
  • 免疫印迹; 人类; 1:500; 图 4
圣克鲁斯生物技术 Actb抗体(Santa Cruz, sc-47778)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 4). Evid Based Complement Alternat Med (2016) ncbi
小鼠 单克隆(C4)
  • 免疫印迹; 小鼠; 图 2d
圣克鲁斯生物技术 Actb抗体(Santa Cruz, sc-47778)被用于被用于免疫印迹在小鼠样本上 (图 2d). Sci Rep (2016) ncbi
小鼠 单克隆(C4)
  • 免疫印迹; 人类; 图 1
圣克鲁斯生物技术 Actb抗体(Santa Cruz, C4)被用于被用于免疫印迹在人类样本上 (图 1). elife (2016) ncbi
小鼠 单克隆(C-2)
  • 免疫印迹; 小鼠; 图 5
圣克鲁斯生物技术 Actb抗体(Santa Cruz, sc-8432)被用于被用于免疫印迹在小鼠样本上 (图 5). PLoS Pathog (2016) ncbi
小鼠 单克隆(9)
  • 免疫印迹; 小鼠; 1:10,000; 图 2
圣克鲁斯生物技术 Actb抗体(Santa Cruz, sc-130301)被用于被用于免疫印迹在小鼠样本上浓度为1:10,000 (图 2). Arch Med Sci (2016) ncbi
小鼠 单克隆(C4)
  • 免疫印迹; 人类; 1:5000; 图 6
圣克鲁斯生物技术 Actb抗体(Santa Cruz, sc-47778)被用于被用于免疫印迹在人类样本上浓度为1:5000 (图 6). Mol Med Rep (2016) ncbi
小鼠 单克隆(C4)
  • 免疫印迹; 小鼠; 1:5000; 图 1
圣克鲁斯生物技术 Actb抗体(Santa Cruz, sc-47778)被用于被用于免疫印迹在小鼠样本上浓度为1:5000 (图 1). Nat Commun (2016) ncbi
小鼠 单克隆(C4)
  • 免疫印迹; 人类; 图 4
圣克鲁斯生物技术 Actb抗体(Santa Cruz, sc-47778)被用于被用于免疫印迹在人类样本上 (图 4). Sci Rep (2016) ncbi
小鼠 单克隆(9)
  • 免疫印迹; 人类; 图 2
圣克鲁斯生物技术 Actb抗体(Santa Cruz, SC-130301)被用于被用于免疫印迹在人类样本上 (图 2). Protein Cell (2016) ncbi
小鼠 单克隆(C4)
  • 免疫印迹; 小鼠; 图 2
圣克鲁斯生物技术 Actb抗体(Santa Cruz, sc-47778)被用于被用于免疫印迹在小鼠样本上 (图 2). FASEB J (2016) ncbi
小鼠 单克隆(C4)
  • 免疫印迹; 人类; 图 1
圣克鲁斯生物技术 Actb抗体(santa Cruz, sc-47778)被用于被用于免疫印迹在人类样本上 (图 1). Chin Med J (Engl) (2016) ncbi
小鼠 单克隆(C4)
  • 免疫印迹; 人类; 图 10
圣克鲁斯生物技术 Actb抗体(Santa Cruz, sc-47778)被用于被用于免疫印迹在人类样本上 (图 10). Eur Cell Mater (2016) ncbi
小鼠 单克隆(C4)
  • 免疫印迹; 人类; 图 1
圣克鲁斯生物技术 Actb抗体(Santa Cruz, SC-47778)被用于被用于免疫印迹在人类样本上 (图 1). J Biol Chem (2016) ncbi
小鼠 单克隆(C4)
  • 免疫印迹; 小鼠; 图 1
圣克鲁斯生物技术 Actb抗体(Santa Cruz, sc-47778)被用于被用于免疫印迹在小鼠样本上 (图 1). Int J Mol Med (2016) ncbi
小鼠 单克隆(ACTBD11B7)
  • 免疫印迹; 小鼠; 1:1000; 图 2
圣克鲁斯生物技术 Actb抗体(Santa Cruz, sc-81178)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 2). Mol Biol Rep (2016) ncbi
小鼠 单克隆(C4)
  • 免疫印迹; 家羊; 1:1000; 图 5
圣克鲁斯生物技术 Actb抗体(santa Cruz, sc-47778)被用于被用于免疫印迹在家羊样本上浓度为1:1000 (图 5). Mediators Inflamm (2016) ncbi
小鼠 单克隆(C4)
  • 免疫印迹; 小鼠; 图 8
圣克鲁斯生物技术 Actb抗体(Santa Cruz, sc-47778)被用于被用于免疫印迹在小鼠样本上 (图 8). Sci Rep (2016) ncbi
小鼠 单克隆(C4)
  • 免疫印迹; 人类; 图 1
圣克鲁斯生物技术 Actb抗体(Santa Cruz, SC-47778)被用于被用于免疫印迹在人类样本上 (图 1). Sci Rep (2016) ncbi
小鼠 单克隆(C4)
  • 免疫印迹; 人类; 图 3
圣克鲁斯生物技术 Actb抗体(Santa Cruz, sc-47778)被用于被用于免疫印迹在人类样本上 (图 3). Biochem J (2016) ncbi
小鼠 单克隆(C4)
  • 免疫印迹; 人类; 图 1
圣克鲁斯生物技术 Actb抗体(Santa Cruz, sc-47778)被用于被用于免疫印迹在人类样本上 (图 1). PLoS ONE (2016) ncbi
小鼠 单克隆(C4)
  • 免疫印迹; 人类; 1:2000; 图 3
圣克鲁斯生物技术 Actb抗体(Santa Cruz, sc-47778)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 3). Nat Commun (2016) ncbi
小鼠 单克隆(CGA7)
  • 免疫印迹; 人类; 1:1500; 图 2B
圣克鲁斯生物技术 Actb抗体(Santa Cruz, sc-53015)被用于被用于免疫印迹在人类样本上浓度为1:1500 (图 2B). Mol Med Rep (2016) ncbi
小鼠 单克隆(C4)
  • 免疫印迹; 小鼠; 图 8
  • 免疫印迹; 大鼠; 图 10
圣克鲁斯生物技术 Actb抗体(Santa Cruz, sc-47778)被用于被用于免疫印迹在小鼠样本上 (图 8) 和 被用于免疫印迹在大鼠样本上 (图 10). Autophagy (2016) ncbi
小鼠 单克隆(C4)
  • 免疫印迹; 人类; 图 3B
圣克鲁斯生物技术 Actb抗体(Santa Cruz, sc-47778)被用于被用于免疫印迹在人类样本上 (图 3B). PLoS ONE (2016) ncbi
小鼠 单克隆(C4)
  • 免疫印迹; 小鼠; 图 5
圣克鲁斯生物技术 Actb抗体(Santa Cruz, sc-47778)被用于被用于免疫印迹在小鼠样本上 (图 5). J Neurochem (2016) ncbi
小鼠 单克隆(C4)
  • 免疫印迹; 人类; 1:4000; 图 s3
圣克鲁斯生物技术 Actb抗体(Santa Cruz, sc-47778 HRP)被用于被用于免疫印迹在人类样本上浓度为1:4000 (图 s3). Sci Rep (2016) ncbi
小鼠 单克隆(C4)
  • 免疫印迹; 小鼠; 图 s1
圣克鲁斯生物技术 Actb抗体(Santa Cruz, sc-47778)被用于被用于免疫印迹在小鼠样本上 (图 s1). Nucleic Acids Res (2016) ncbi
小鼠 单克隆(ACTBD11B7)
  • 免疫印迹; 小鼠; 图 3
圣克鲁斯生物技术 Actb抗体(Santa Cruz Biotechnology, SC81178)被用于被用于免疫印迹在小鼠样本上 (图 3). BMC Mol Biol (2016) ncbi
小鼠 单克隆(C4)
  • 免疫印迹; pigs ; 图 6
圣克鲁斯生物技术 Actb抗体(santa Cruz, Sc-47778)被用于被用于免疫印迹在pigs 样本上 (图 6). Sci Rep (2016) ncbi
小鼠 单克隆(C4)
  • 免疫印迹; 人类; 表 1
圣克鲁斯生物技术 Actb抗体(Santa Cruz, sc-47778)被用于被用于免疫印迹在人类样本上 (表 1). Sci Rep (2016) ncbi
小鼠 单克隆(C4)
  • 免疫印迹; African green monkey; 图 3
圣克鲁斯生物技术 Actb抗体(Santa Cruz, sc- 47778)被用于被用于免疫印迹在African green monkey样本上 (图 3). Genes Dev (2016) ncbi
小鼠 单克隆(C4)
  • 免疫印迹; 人类; 1:1000; 图 1
圣克鲁斯生物技术 Actb抗体(santa Cruz, sc-47778)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 1). PLoS ONE (2016) ncbi
小鼠 单克隆(ACTBD11B7)
  • 免疫印迹; 人类; 图 6
圣克鲁斯生物技术 Actb抗体(Santa Cruz, sc-81178)被用于被用于免疫印迹在人类样本上 (图 6). Mol Neurodegener (2016) ncbi
小鼠 单克隆(9)
  • 免疫印迹; 人类; 图 8
圣克鲁斯生物技术 Actb抗体(Santa Cruz Biotechnology, SC-130301)被用于被用于免疫印迹在人类样本上 (图 8). PLoS ONE (2016) ncbi
小鼠 单克隆(ACTBD11B7)
  • 免疫印迹; 人类; 图 e2a
圣克鲁斯生物技术 Actb抗体(Santa Cruz Biotechnology, ACTBD11B7)被用于被用于免疫印迹在人类样本上 (图 e2a). Nature (2016) ncbi
小鼠 单克隆(C4)
  • 免疫印迹; 大鼠; 1:100; 图 7
圣克鲁斯生物技术 Actb抗体(Santa Cruz, sc-47778)被用于被用于免疫印迹在大鼠样本上浓度为1:100 (图 7). Mol Med Rep (2016) ncbi
小鼠 单克隆(B4)
  • 免疫组化-石蜡切片; 小鼠; 图 8
圣克鲁斯生物技术 Actb抗体(Santa Cruz, sc53142)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 8). Sci Rep (2016) ncbi
小鼠 单克隆(ACTBD11B7)
  • 免疫印迹; 小鼠; 图 2
圣克鲁斯生物技术 Actb抗体(Santa Cruz Biotechnology, SC81178)被用于被用于免疫印迹在小鼠样本上 (图 2). Sci Rep (2016) ncbi
小鼠 单克隆(C4)
  • 免疫印迹; 大鼠; 1:2000; 图 4
圣克鲁斯生物技术 Actb抗体(Santa Cruz, sc-47778)被用于被用于免疫印迹在大鼠样本上浓度为1:2000 (图 4). Exp Ther Med (2016) ncbi
小鼠 单克隆(C4)
  • 免疫印迹; 人类; 1:400; 图 1
圣克鲁斯生物技术 Actb抗体(Santa Cruz, sc-47778)被用于被用于免疫印迹在人类样本上浓度为1:400 (图 1). PLoS ONE (2016) ncbi
小鼠 单克隆(C4)
  • 免疫印迹; 小鼠; 图 4
圣克鲁斯生物技术 Actb抗体(Santa Cruz, sc-47778)被用于被用于免疫印迹在小鼠样本上 (图 4). PLoS ONE (2016) ncbi
小鼠 单克隆(ACTBD11B7)
  • 免疫印迹; 人类; 1:2000; 图 3
  • 免疫印迹; 小鼠; 1:2000; 图 1
圣克鲁斯生物技术 Actb抗体(Santa Cruz, sc-81178)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 3) 和 被用于免疫印迹在小鼠样本上浓度为1:2000 (图 1). Oncogene (2016) ncbi
小鼠 单克隆(C4)
  • 免疫印迹; 人类; 图 1
  • 免疫印迹; 小鼠; 图 4
圣克鲁斯生物技术 Actb抗体(Santa Cruz, sc-47778)被用于被用于免疫印迹在人类样本上 (图 1) 和 被用于免疫印迹在小鼠样本上 (图 4). Int J Mol Sci (2016) ncbi
小鼠 单克隆(C4)
  • 免疫印迹; 人类; 1:1000; 图 5
圣克鲁斯生物技术 Actb抗体(Santa Cruz, sc-47778)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 5). Stem Cells Int (2016) ncbi
小鼠 单克隆(C4)
  • 免疫印迹; 人类; 图 1
圣克鲁斯生物技术 Actb抗体(santa Cruz, sc-47778)被用于被用于免疫印迹在人类样本上 (图 1). FEBS Open Bio (2016) ncbi
小鼠 单克隆(C-2)
  • 免疫印迹; 大鼠; 1:500; 图 3
圣克鲁斯生物技术 Actb抗体(Santa Cruz, sc-8432)被用于被用于免疫印迹在大鼠样本上浓度为1:500 (图 3). Biofactors (2016) ncbi
小鼠 单克隆(C4)
  • 免疫印迹; 人类; 图 3
圣克鲁斯生物技术 Actb抗体(Santa Cruz, sc-47778)被用于被用于免疫印迹在人类样本上 (图 3). Mol Med Rep (2016) ncbi
小鼠 单克隆(C4)
  • 免疫印迹; 人类; 1:1000; 图 5
圣克鲁斯生物技术 Actb抗体(santa Cruz, sc-47778)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 5). Mol Med Rep (2016) ncbi
小鼠 单克隆(C4)
  • 免疫印迹; 小鼠; 1:1000; 图 7
圣克鲁斯生物技术 Actb抗体(Santa cruz, sc-47778)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 7). Oncotarget (2016) ncbi
小鼠 单克隆(C4)
  • 免疫印迹; 人类; 1:10,000; 图 6
圣克鲁斯生物技术 Actb抗体(Santa Cruz Biotechnology, sc-47778)被用于被用于免疫印迹在人类样本上浓度为1:10,000 (图 6). Int J Mol Sci (2016) ncbi
小鼠 单克隆(C4)
  • 免疫印迹; 人类; 图 2
圣克鲁斯生物技术 Actb抗体(Santa Cruz, sc-47778)被用于被用于免疫印迹在人类样本上 (图 2). Oncotarget (2016) ncbi
小鼠 单克隆(C4)
  • 免疫印迹; 人类; 1:500; 图 5
圣克鲁斯生物技术 Actb抗体(Santa Cruz, sc-47778)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 5). Oncol Lett (2016) ncbi
小鼠 单克隆(C-2)
  • 免疫印迹; 人类; 1:1000; 图 5
圣克鲁斯生物技术 Actb抗体(Santa Cruz Biotechnology, sc-8432)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 5). Exp Ther Med (2016) ncbi
小鼠 单克隆(C4)
  • 免疫印迹; 小鼠; 图 s1
圣克鲁斯生物技术 Actb抗体(Santa Cruz, sc-47778)被用于被用于免疫印迹在小鼠样本上 (图 s1). Nutr Metab (Lond) (2016) ncbi
小鼠 单克隆(1)
  • 免疫印迹; 仓鼠; 图 5
圣克鲁斯生物技术 Actb抗体(Santa Cruz, sc-130300)被用于被用于免疫印迹在仓鼠样本上 (图 5). Mol Cell Endocrinol (2016) ncbi
小鼠 单克隆(C4)
  • 免疫印迹; 人类; 图 1
圣克鲁斯生物技术 Actb抗体(Santa Cruz, sc-47778)被用于被用于免疫印迹在人类样本上 (图 1). Oncotarget (2016) ncbi
小鼠 单克隆(C4)
  • 免疫印迹; 人类; 1:2000; 图 4
圣克鲁斯生物技术 Actb抗体(Santa Cruz Biotechnology, sc-47778)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 4). Mol Cancer Ther (2016) ncbi
小鼠 单克隆(C4)
  • 免疫印迹; 人类; 1:1000; 图 7
圣克鲁斯生物技术 Actb抗体(Santa Cruz, sc-47778)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 7). J Gastroenterol Hepatol (2016) ncbi
小鼠 单克隆(C4)
  • 免疫印迹; 人类; 图 s3
圣克鲁斯生物技术 Actb抗体(santa Cruz, sc-47778 HRP)被用于被用于免疫印迹在人类样本上 (图 s3). Nat Commun (2016) ncbi
小鼠 单克隆(B4)
  • 免疫组化-石蜡切片; 大鼠; 1:100; 图 2
圣克鲁斯生物技术 Actb抗体(Santa Cruz Biotechnology, sc-53142)被用于被用于免疫组化-石蜡切片在大鼠样本上浓度为1:100 (图 2). Mol Med Rep (2016) ncbi
小鼠 单克隆(9)
  • 免疫印迹; 人类; 图 2
圣克鲁斯生物技术 Actb抗体(Santa Cruz, sc-130301)被用于被用于免疫印迹在人类样本上 (图 2). Sci Rep (2016) ncbi
小鼠 单克隆(C4)
  • 免疫印迹; 人类; 1:200; 图 5
圣克鲁斯生物技术 Actb抗体(Santa Cruz, sc-47778)被用于被用于免疫印迹在人类样本上浓度为1:200 (图 5). PLoS ONE (2016) ncbi
小鼠 单克隆(C4)
  • 免疫印迹; 人类; 图 3b
圣克鲁斯生物技术 Actb抗体(Santacruz, sc-47778)被用于被用于免疫印迹在人类样本上 (图 3b). PLoS ONE (2016) ncbi
小鼠 单克隆(C4)
  • 免疫印迹; 大鼠; 1:2000; 图 3
圣克鲁斯生物技术 Actb抗体(santa Cruz, sc-47778)被用于被用于免疫印迹在大鼠样本上浓度为1:2000 (图 3). Mol Med Rep (2016) ncbi
小鼠 单克隆(C4)
  • 免疫印迹; 人类; 1:1000; 图 5
圣克鲁斯生物技术 Actb抗体(santa Cruz, sc-47778)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 5). Mol Med Rep (2016) ncbi
小鼠 单克隆(C4)
  • 免疫印迹; 人类; 图 4
  • 免疫印迹; African green monkey; 图 1
  • 免疫印迹; 小鼠; 图 2
圣克鲁斯生物技术 Actb抗体(Santa Cruz Biotechnology, sc-47778)被用于被用于免疫印迹在人类样本上 (图 4), 被用于免疫印迹在African green monkey样本上 (图 1) 和 被用于免疫印迹在小鼠样本上 (图 2). Sci Rep (2016) ncbi
小鼠 单克隆(C4)
  • 免疫印迹; 大鼠; 1:1000; 图 2
圣克鲁斯生物技术 Actb抗体(Santa Cruz Biotechnology, sc-47778)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 2). Sci Rep (2016) ncbi
小鼠 单克隆(C4)
  • 免疫印迹; 人类; 1:1000; 图 1
圣克鲁斯生物技术 Actb抗体(santa Cruz, sc-47778)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 1). PLoS ONE (2016) ncbi
小鼠 单克隆(C4)
  • 免疫印迹; 人类; 图 3
圣克鲁斯生物技术 Actb抗体(Santa, sc-47778)被用于被用于免疫印迹在人类样本上 (图 3). Cell Mol Life Sci (2016) ncbi
小鼠 单克隆(C4)
  • 免疫印迹; 人类; 图 1
圣克鲁斯生物技术 Actb抗体(Santa Cruz, C4)被用于被用于免疫印迹在人类样本上 (图 1). J Biol Chem (2016) ncbi
小鼠 单克隆(C4)
  • 免疫印迹; 人类; 图 s11
圣克鲁斯生物技术 Actb抗体(Santa Cruz, sc-47778)被用于被用于免疫印迹在人类样本上 (图 s11). Nat Commun (2016) ncbi
小鼠 单克隆(C4)
  • 免疫印迹; 人类; 1:200; 图 2
圣克鲁斯生物技术 Actb抗体(Santa Cruz, sc-47778)被用于被用于免疫印迹在人类样本上浓度为1:200 (图 2). Oncol Lett (2016) ncbi
小鼠 单克隆(C4)
  • 免疫印迹; 大鼠; 1:10,000; 图 3
圣克鲁斯生物技术 Actb抗体(Santa Cruz, sc-47778)被用于被用于免疫印迹在大鼠样本上浓度为1:10,000 (图 3). Exp Ther Med (2016) ncbi
小鼠 单克隆(C4)
  • 免疫印迹; 人类; 图 1
圣克鲁斯生物技术 Actb抗体(Santa Cruz, sc-47778)被用于被用于免疫印迹在人类样本上 (图 1). Oncotarget (2016) ncbi
小鼠 单克隆(C4)
  • 免疫印迹; 小鼠; 图 1
圣克鲁斯生物技术 Actb抗体(Santa Cruz, sc-47778)被用于被用于免疫印迹在小鼠样本上 (图 1). Nat Commun (2016) ncbi
小鼠 单克隆(C4)
  • 免疫印迹; 人类; 图 5
圣克鲁斯生物技术 Actb抗体(Santa Cruz, sc-47778)被用于被用于免疫印迹在人类样本上 (图 5). Sci Rep (2016) ncbi
小鼠 单克隆(C4)
  • 免疫印迹; 人类; 1:1000; 图 3
  • 免疫印迹; 大鼠; 1:1000; 图 5
圣克鲁斯生物技术 Actb抗体(Cell Signaling Tech, sc-47778)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3) 和 被用于免疫印迹在大鼠样本上浓度为1:1000 (图 5). Sci Rep (2016) ncbi
小鼠 单克隆(C-2)
  • 免疫印迹; 小鼠; 图 2b
圣克鲁斯生物技术 Actb抗体(Santa Cruz Biotechnology, sc-8432)被用于被用于免疫印迹在小鼠样本上 (图 2b). elife (2016) ncbi
小鼠 单克隆(C4)
  • 免疫印迹; 人类; 图 1
圣克鲁斯生物技术 Actb抗体(Santa Cruz, sc-47778)被用于被用于免疫印迹在人类样本上 (图 1). Oncogene (2016) ncbi
小鼠 单克隆(C4)
  • 免疫印迹; 人类; 1:1000; 图 5
圣克鲁斯生物技术 Actb抗体(santa Cruz, 47778)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 5). Oncol Lett (2016) ncbi
小鼠 单克隆(C4)
  • 免疫印迹; 人类; 图 1
圣克鲁斯生物技术 Actb抗体(Santa Cruz, sc-47778)被用于被用于免疫印迹在人类样本上 (图 1). Oncol Lett (2016) ncbi
小鼠 单克隆(4E8H3)
  • 免疫印迹; 人类; 1:1000; 图 2
圣克鲁斯生物技术 Actb抗体(Santa Cruz Biotechnology, sc-130065)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 2). Mol Med Rep (2016) ncbi
小鼠 单克隆(C-2)
  • 免疫印迹; 小鼠; 图 4
圣克鲁斯生物技术 Actb抗体(Santa Cruz, sc-8432)被用于被用于免疫印迹在小鼠样本上 (图 4). Int J Mol Med (2016) ncbi
小鼠 单克隆(C4)
  • 免疫印迹; 小鼠; 1:2000; 图 2a
圣克鲁斯生物技术 Actb抗体(Santa Cruz, sc-47778)被用于被用于免疫印迹在小鼠样本上浓度为1:2000 (图 2a). Mol Med Rep (2016) ncbi
小鼠 单克隆(C4)
  • 免疫印迹; 人类; 1:500; 图 1
圣克鲁斯生物技术 Actb抗体(Santa Cruz, sc-47778)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 1). PLoS Genet (2016) ncbi
小鼠 单克隆(C4)
  • 免疫印迹; domestic rabbit; 1:500; 图 4
圣克鲁斯生物技术 Actb抗体(Santa Cruz Biotechnology, sc-47778)被用于被用于免疫印迹在domestic rabbit样本上浓度为1:500 (图 4). Int J Clin Exp Pathol (2015) ncbi
小鼠 单克隆(C4)
  • 免疫印迹; 人类; 1:500; 图 2
圣克鲁斯生物技术 Actb抗体(Santa Cruz, C-4)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 2). Breast Cancer Res (2016) ncbi
小鼠 单克隆(ACTBD11B7)
  • 免疫印迹; 人类; 图 5b
圣克鲁斯生物技术 Actb抗体(Santa Cruz, sc-81178)被用于被用于免疫印迹在人类样本上 (图 5b). Oncotarget (2016) ncbi
小鼠 单克隆(C4)
  • 免疫印迹; 人类; 1:1000; 图 3
圣克鲁斯生物技术 Actb抗体(Santa Cruz, sc47778)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3). Biochem Pharmacol (2016) ncbi
小鼠 单克隆(C4)
  • 免疫印迹; 人类; 图 1
圣克鲁斯生物技术 Actb抗体(santa Cruz, sc-47778)被用于被用于免疫印迹在人类样本上 (图 1). Oncotarget (2016) ncbi
小鼠 单克隆(C4)
  • 免疫印迹; 人类; 图 2
圣克鲁斯生物技术 Actb抗体(Santa Cruz, sc-47778)被用于被用于免疫印迹在人类样本上 (图 2). Gene (2016) ncbi
小鼠 单克隆(ACTBD11B7)
  • 免疫印迹; 小鼠; 图 1
圣克鲁斯生物技术 Actb抗体(Santa Cruz Biotechnology, sc81178)被用于被用于免疫印迹在小鼠样本上 (图 1). J Cell Physiol (2016) ncbi
小鼠 单克隆(C4)
  • 免疫印迹; 小鼠; 1:1000; 图 6
圣克鲁斯生物技术 Actb抗体(Santa Cruz, sc-47778)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 6). Mol Med Rep (2016) ncbi
小鼠 单克隆(C4)
  • 免疫印迹; 人类; 图 2d
圣克鲁斯生物技术 Actb抗体(Santa Cruz Biotechnology, sc-47778)被用于被用于免疫印迹在人类样本上 (图 2d). Cell Rep (2016) ncbi
小鼠 单克隆(C4)
  • 免疫印迹; 人类; 图 1
圣克鲁斯生物技术 Actb抗体(Santa Cruz, Sc-47778)被用于被用于免疫印迹在人类样本上 (图 1). Oncotarget (2016) ncbi
小鼠 单克隆(ACTBD11B7)
  • 免疫细胞化学; 人类; 图 2
  • 免疫印迹; 人类; 图 2
圣克鲁斯生物技术 Actb抗体(Santa Cruz, sc-81178)被用于被用于免疫细胞化学在人类样本上 (图 2) 和 被用于免疫印迹在人类样本上 (图 2). PLoS ONE (2016) ncbi
小鼠 单克隆(C4)
  • 免疫印迹; 小鼠; 图 2
圣克鲁斯生物技术 Actb抗体(Santa Cruz Biotechnology, SC-47778)被用于被用于免疫印迹在小鼠样本上 (图 2). Aging Cell (2016) ncbi
小鼠 单克隆(C4)
  • 免疫印迹; 人类; 1:50,000; 图 1
圣克鲁斯生物技术 Actb抗体(Santa Cruz, sc-47778)被用于被用于免疫印迹在人类样本上浓度为1:50,000 (图 1). PLoS ONE (2016) ncbi
小鼠 单克隆(9)
  • 免疫印迹; 人类; 1:2000; 图 3, 4
圣克鲁斯生物技术 Actb抗体(Santa Cruz, sc-130301)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 3, 4). Tumour Biol (2016) ncbi
小鼠 单克隆(C4)
  • 免疫印迹; 人类
圣克鲁斯生物技术 Actb抗体(Santa Cruz, SC-47778)被用于被用于免疫印迹在人类样本上. MBio (2016) ncbi
小鼠 单克隆(C4)
  • 免疫印迹; 大鼠; 图 3b
圣克鲁斯生物技术 Actb抗体(Santa Cruz Biotechnology, sc-47778)被用于被用于免疫印迹在大鼠样本上 (图 3b). Acupunct Med (2016) ncbi
小鼠 单克隆(ACTBD11B7)
  • 免疫印迹; 小鼠; 1:1000; 图 6
圣克鲁斯生物技术 Actb抗体(Santa Cruz Biotech, sc-81178)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 6). J Neuroinflammation (2016) ncbi
小鼠 单克隆(C4)
  • 免疫印迹; 大鼠; 1:1000; 图 1
圣克鲁斯生物技术 Actb抗体(Santa Cruz Biotechnology, sc-47778)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 1). Neurochem Res (2016) ncbi
小鼠 单克隆(C4)
  • 免疫组化; 大鼠
圣克鲁斯生物技术 Actb抗体(Santa Cruz, sc-47778)被用于被用于免疫组化在大鼠样本上. Nutr Cancer (2016) ncbi
小鼠 单克隆(C4)
  • 免疫印迹; 牛; 图 1
圣克鲁斯生物技术 Actb抗体(Santa Cruz Biotechnology, sc-47778)被用于被用于免疫印迹在牛样本上 (图 1). Int J Mol Sci (2015) ncbi
小鼠 单克隆(C4)
  • 免疫印迹; 小鼠; 图 5
圣克鲁斯生物技术 Actb抗体(Santa, sc-47778)被用于被用于免疫印迹在小鼠样本上 (图 5). Sci Rep (2015) ncbi
小鼠 单克隆(C-2)
  • 免疫印迹; 人类; 1:1000; 图 4
圣克鲁斯生物技术 Actb抗体(Santa Cruz Biotechnology, sc-8432)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 4). Mol Med Rep (2016) ncbi
小鼠 单克隆(C4)
  • 免疫印迹; 非洲爪蛙; 图 5C
  • 免疫印迹; 人类; 图 5A
圣克鲁斯生物技术 Actb抗体(Santa Cruz, sc-47778)被用于被用于免疫印迹在非洲爪蛙样本上 (图 5C) 和 被用于免疫印迹在人类样本上 (图 5A). Sci Rep (2015) ncbi
小鼠 单克隆(C4)
  • 免疫印迹; 人类; 1:1000; 图 s19
  • 免疫印迹; 小鼠; 1:1000; 图 9
圣克鲁斯生物技术 Actb抗体(Santa Cruz, sc-47778)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 s19) 和 被用于免疫印迹在小鼠样本上浓度为1:1000 (图 9). Nat Commun (2015) ncbi
小鼠 单克隆(C4)
  • 免疫印迹; 小鼠; 图 2c
圣克鲁斯生物技术 Actb抗体(Santa Cruz Biotechnology, sc-47778)被用于被用于免疫印迹在小鼠样本上 (图 2c). Nucleic Acids Res (2016) ncbi
小鼠 单克隆(C4)
  • 免疫印迹; 人类; 1:1000; 图 2
圣克鲁斯生物技术 Actb抗体(Santa Cruz, sc-47778)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 2). Mol Med Rep (2015) ncbi
小鼠 单克隆(C4)
  • 免疫印迹; fruit fly ; 图 3
圣克鲁斯生物技术 Actb抗体(Santa Cruz Biotechnology, sc-47778)被用于被用于免疫印迹在fruit fly 样本上 (图 3). Sci Rep (2015) ncbi
小鼠 单克隆(C-2)
  • 免疫印迹; 小鼠; 1:2000; 图 3
圣克鲁斯生物技术 Actb抗体(Santa Cruz, sc-8432)被用于被用于免疫印迹在小鼠样本上浓度为1:2000 (图 3). Front Cell Neurosci (2015) ncbi
小鼠 单克隆(C4)
  • 免疫印迹; 人类; 1:5000; 图 3C
圣克鲁斯生物技术 Actb抗体(Santa Cruz, sc-47778)被用于被用于免疫印迹在人类样本上浓度为1:5000 (图 3C). PLoS ONE (2015) ncbi
小鼠 单克隆(C4)
  • 免疫印迹; 人类; 图 6
圣克鲁斯生物技术 Actb抗体(Santa Cruz, sc-47778)被用于被用于免疫印迹在人类样本上 (图 6). Oncotarget (2016) ncbi
小鼠 单克隆(C-2)
  • 免疫印迹; 人类; 1 ug/ml; 图 1
圣克鲁斯生物技术 Actb抗体(Santa Cruz, sc-8432)被用于被用于免疫印迹在人类样本上浓度为1 ug/ml (图 1). Nat Commun (2015) ncbi
小鼠 单克隆(C4)
  • 免疫印迹; 人类; 图 3
圣克鲁斯生物技术 Actb抗体(Santa Cruz, sc-47778)被用于被用于免疫印迹在人类样本上 (图 3). Oncotarget (2015) ncbi
小鼠 单克隆(C4)
  • 免疫印迹; 人类; 1:2000; 图 6
圣克鲁斯生物技术 Actb抗体(Santa Cruz, sc-47778)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 6). Oncotarget (2015) ncbi
小鼠 单克隆(C-2)
  • 免疫印迹; 小鼠; 图 1
圣克鲁斯生物技术 Actb抗体(santa Cruz, sc-8432)被用于被用于免疫印迹在小鼠样本上 (图 1). Cell Death Dis (2015) ncbi
小鼠 单克隆(C4)
  • 免疫印迹; 人类; 图 2
圣克鲁斯生物技术 Actb抗体(Santa Cruz, sc-47778)被用于被用于免疫印迹在人类样本上 (图 2). BMC Cell Biol (2015) ncbi
小鼠 单克隆(C-2)
  • 免疫印迹; 人类; 图 2A
圣克鲁斯生物技术 Actb抗体(Santa Cruz, sc-8432)被用于被用于免疫印迹在人类样本上 (图 2A). Sci Rep (2015) ncbi
小鼠 单克隆(C4)
  • 免疫印迹; 人类; 图 1
圣克鲁斯生物技术 Actb抗体(Santa Cruz Biotechnology, sc-47778)被用于被用于免疫印迹在人类样本上 (图 1). Mol Cell Biol (2016) ncbi
小鼠 单克隆(C4)
  • 免疫印迹; 小鼠; 图 5a
  • 免疫印迹; 人类; 图 2
圣克鲁斯生物技术 Actb抗体(Santa Cruz, SC-47778)被用于被用于免疫印迹在小鼠样本上 (图 5a) 和 被用于免疫印迹在人类样本上 (图 2). PLoS ONE (2015) ncbi
小鼠 单克隆(C-2)
  • 免疫印迹; 小鼠; 1:5000; 图 2
  • 免疫印迹; 大鼠; 1:5000; 图 1
圣克鲁斯生物技术 Actb抗体(Santa Cruz Biotechnology, sc-8432)被用于被用于免疫印迹在小鼠样本上浓度为1:5000 (图 2) 和 被用于免疫印迹在大鼠样本上浓度为1:5000 (图 1). Biochemistry (2015) ncbi
小鼠 单克隆(C4)
  • 免疫印迹; 大鼠; 1:3000; 图 8
圣克鲁斯生物技术 Actb抗体(Santa Cruz Biotechnology, sc-47778)被用于被用于免疫印迹在大鼠样本上浓度为1:3000 (图 8). Endocrinology (2016) ncbi
小鼠 单克隆(C4)
  • 免疫印迹; 人类; 图 4
圣克鲁斯生物技术 Actb抗体(Santa Cruz, sc-47778)被用于被用于免疫印迹在人类样本上 (图 4). PLoS ONE (2015) ncbi
小鼠 单克隆(C4)
  • 免疫印迹; 人类; 图 5
圣克鲁斯生物技术 Actb抗体(Santa Cruz Biotechnology, C4)被用于被用于免疫印迹在人类样本上 (图 5). J Exp Med (2015) ncbi
小鼠 单克隆(C4)
  • 免疫印迹; 人类; 图 1
圣克鲁斯生物技术 Actb抗体(Santa Cruz Biotechnology, sc-47778)被用于被用于免疫印迹在人类样本上 (图 1). Oncotarget (2015) ncbi
小鼠 单克隆(C4)
  • 免疫印迹; 小鼠; 1:2000; 图 2,4,5,6
圣克鲁斯生物技术 Actb抗体(Santa Cruz Biotechnology, sc-47778)被用于被用于免疫印迹在小鼠样本上浓度为1:2000 (图 2,4,5,6). Cell Death Dis (2015) ncbi
小鼠 单克隆(C4)
  • 免疫印迹; 小鼠; 图 6,7
圣克鲁斯生物技术 Actb抗体(Santa Cruz, sc-47778)被用于被用于免疫印迹在小鼠样本上 (图 6,7). J Immunol Res (2015) ncbi
小鼠 单克隆(9)
  • 免疫组化; 大鼠; 1:200; 图 4
圣克鲁斯生物技术 Actb抗体(Santa Cruz, sc-130301)被用于被用于免疫组化在大鼠样本上浓度为1:200 (图 4). Mol Med Rep (2016) ncbi
小鼠 单克隆(C4)
  • 免疫印迹; 人类; 1:1000; 图 2
圣克鲁斯生物技术 Actb抗体(Santa Cruz, sc-47778)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 2). Nat Commun (2015) ncbi
小鼠 单克隆(C4)
  • 免疫印迹; 仓鼠; 图 6
圣克鲁斯生物技术 Actb抗体(santa Cruz, sc-47778)被用于被用于免疫印迹在仓鼠样本上 (图 6). Int J Mol Sci (2015) ncbi
小鼠 单克隆(ACTBD11B7)
  • 免疫印迹; 大鼠
圣克鲁斯生物技术 Actb抗体(Santa Cruz Biotechnology, sc-81178)被用于被用于免疫印迹在大鼠样本上. Redox Biol (2015) ncbi
小鼠 单克隆(C4)
  • 免疫印迹; 人类; 图 2a
圣克鲁斯生物技术 Actb抗体(Santa Cruz, sc-47778)被用于被用于免疫印迹在人类样本上 (图 2a). Cell Death Dis (2015) ncbi
小鼠 单克隆(C4)
  • 免疫印迹; 小鼠; 1:1000; 图 1
圣克鲁斯生物技术 Actb抗体(Santa Cruz, sc-47778)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 1). Nat Commun (2015) ncbi
小鼠 单克隆(C4)
  • 免疫印迹; 人类; 图 7
圣克鲁斯生物技术 Actb抗体(santa Cruz, Sc-47778)被用于被用于免疫印迹在人类样本上 (图 7). PLoS Pathog (2015) ncbi
小鼠 单克隆(C4)
  • 免疫印迹; 人类; 图 3
  • 免疫印迹; 小鼠; 图 3
圣克鲁斯生物技术 Actb抗体(santa Cruz, sc-47778)被用于被用于免疫印迹在人类样本上 (图 3) 和 被用于免疫印迹在小鼠样本上 (图 3). Oncogenesis (2015) ncbi
小鼠 单克隆(C4)
  • 免疫印迹; 人类; 图 3
圣克鲁斯生物技术 Actb抗体(Santa Cruz, sc-47778)被用于被用于免疫印迹在人类样本上 (图 3). Oncotarget (2015) ncbi
小鼠 单克隆(C4)
  • 免疫印迹; 人类; 1:1000; 图 2
圣克鲁斯生物技术 Actb抗体(Santa Cruz, sc-47778)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 2). PLoS ONE (2015) ncbi
小鼠 单克隆(C4)
  • 免疫印迹; 人类; 图 1
圣克鲁斯生物技术 Actb抗体(Santa Cruz Biotechnology, sc-47778)被用于被用于免疫印迹在人类样本上 (图 1). PLoS ONE (2015) ncbi
小鼠 单克隆(C4)
  • 免疫印迹; 人类; 图 9
圣克鲁斯生物技术 Actb抗体(Santa Cruz, sc-47778)被用于被用于免疫印迹在人类样本上 (图 9). elife (2015) ncbi
小鼠 单克隆(4E8H3)
  • 免疫印迹; 大鼠; 1:500; 图 1
圣克鲁斯生物技术 Actb抗体(Santa Cruz, sc-130065)被用于被用于免疫印迹在大鼠样本上浓度为1:500 (图 1). Mol Brain (2015) ncbi
小鼠 单克隆(C4)
  • 免疫印迹; 人类; 1:1000; 图 1B
圣克鲁斯生物技术 Actb抗体(Santa Cruz Biotechnology, sc-47778)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 1B). Mol Med Rep (2015) ncbi
小鼠 单克隆(ACTBD11B7)
  • 免疫印迹; 小鼠; 1:1000; 图 2
圣克鲁斯生物技术 Actb抗体(Santa Cruz Biotechnology, SC-81178)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 2). Free Radic Biol Med (2015) ncbi
小鼠 单克隆(C4)
  • 免疫印迹; 人类
圣克鲁斯生物技术 Actb抗体(Santa Cruz, sc-47778)被用于被用于免疫印迹在人类样本上. Sci Rep (2015) ncbi
小鼠 单克隆(ACTBD11B7)
  • 免疫印迹; 人类; 图 4
圣克鲁斯生物技术 Actb抗体(santa Cruz, sc-81178)被用于被用于免疫印迹在人类样本上 (图 4). Oncotarget (2015) ncbi
小鼠 单克隆(2Q1055)
  • 免疫印迹; 小鼠; 1:500; 图 6
圣克鲁斯生物技术 Actb抗体(santa Cruz, sc-58673)被用于被用于免疫印迹在小鼠样本上浓度为1:500 (图 6). PLoS Genet (2015) ncbi
小鼠 单克隆(C4)
  • 免疫印迹; 小鼠; 图 6a
圣克鲁斯生物技术 Actb抗体(Santa Cruz, sc-47778)被用于被用于免疫印迹在小鼠样本上 (图 6a). J Virol (2015) ncbi
小鼠 单克隆(C4)
  • 免疫印迹; 小鼠; 1:1000; 图 5
圣克鲁斯生物技术 Actb抗体(Santa, sc-47778)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 5). J Clin Invest (2015) ncbi
小鼠 单克隆(C4)
  • 免疫印迹; 人类; 1:1000; 图 2c
  • 免疫印迹; 小鼠; 1:1000; 图 6d
圣克鲁斯生物技术 Actb抗体(Santa Cruz, sc-47778)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 2c) 和 被用于免疫印迹在小鼠样本上浓度为1:1000 (图 6d). Mol Brain (2015) ncbi
小鼠 单克隆(C4)
  • 免疫印迹; 人类; 1:1000; 图 s4
圣克鲁斯生物技术 Actb抗体(Santa Cruz, sc-47778)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 s4). Nat Commun (2015) ncbi
小鼠 单克隆(C4)
  • 免疫印迹; 小鼠; 图 1
圣克鲁斯生物技术 Actb抗体(Santa Cruz, C4)被用于被用于免疫印迹在小鼠样本上 (图 1). Neuroscience (2015) ncbi
小鼠 单克隆(C4)
  • 免疫印迹; 人类; 图 3a
圣克鲁斯生物技术 Actb抗体(Santa Cruz, sc-47778)被用于被用于免疫印迹在人类样本上 (图 3a). PLoS ONE (2015) ncbi
小鼠 单克隆(C4)
  • 免疫印迹; 人类; 图 4
圣克鲁斯生物技术 Actb抗体(Santa Cruz, sc-47778)被用于被用于免疫印迹在人类样本上 (图 4). PLoS ONE (2015) ncbi
小鼠 单克隆(C4)
  • 免疫印迹; 人类; 图 1e
圣克鲁斯生物技术 Actb抗体(Santa Cruz, sc-47778)被用于被用于免疫印迹在人类样本上 (图 1e). Oncotarget (2015) ncbi
小鼠 单克隆(H-6)
  • 免疫印迹; 大鼠; 1:500; 图 4
圣克鲁斯生物技术 Actb抗体(Santa Cruz Biotechnology, sc-376421)被用于被用于免疫印迹在大鼠样本上浓度为1:500 (图 4). Mol Med Rep (2015) ncbi
小鼠 单克隆(C4)
  • 免疫印迹; 小鼠; 图 1
圣克鲁斯生物技术 Actb抗体(santa Cruz, sc-47778)被用于被用于免疫印迹在小鼠样本上 (图 1). J Cell Sci (2015) ncbi
小鼠 单克隆(C4)
  • 免疫印迹; 人类; 图 4
圣克鲁斯生物技术 Actb抗体(Santa, sc-47778)被用于被用于免疫印迹在人类样本上 (图 4). Oncotarget (2015) ncbi
小鼠 单克隆(C4)
  • 免疫印迹; 人类; 图 8
圣克鲁斯生物技术 Actb抗体(Santa Cruz Biotechnology, sc-47778)被用于被用于免疫印迹在人类样本上 (图 8). Oncotarget (2015) ncbi
小鼠 单克隆(ACTBD11B7)
  • 免疫印迹; 小鼠; 1:500; 图 4h
圣克鲁斯生物技术 Actb抗体(Santa Cruz Biotechnology, sc-81178)被用于被用于免疫印迹在小鼠样本上浓度为1:500 (图 4h). J Biol Chem (2015) ncbi
小鼠 单克隆(C4)
  • 免疫印迹; 小鼠; 图 2
圣克鲁斯生物技术 Actb抗体(Santa Cruz Biotechnology, sc-47778)被用于被用于免疫印迹在小鼠样本上 (图 2). PLoS ONE (2015) ncbi
小鼠 单克隆(C4)
  • 免疫印迹; 小鼠; 图 4a
圣克鲁斯生物技术 Actb抗体(santa cruz, sc-47778)被用于被用于免疫印迹在小鼠样本上 (图 4a). Int J Obes (Lond) (2016) ncbi
小鼠 单克隆(C4)
  • 免疫印迹; 小鼠; 图 2
圣克鲁斯生物技术 Actb抗体(Santacruz, sc-47778)被用于被用于免疫印迹在小鼠样本上 (图 2). Sci Rep (2015) ncbi
小鼠 单克隆(C4)
  • 免疫印迹; 大鼠; 1:1000; 图 2
圣克鲁斯生物技术 Actb抗体(santa Cruz, sc-47778)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 2). Mol Med Rep (2015) ncbi
小鼠 单克隆(C4)
  • 免疫印迹; 人类
圣克鲁斯生物技术 Actb抗体(Santa Cruz, sc-47778)被用于被用于免疫印迹在人类样本上. Biomaterials (2015) ncbi
小鼠 单克隆(C4)
  • 免疫印迹; 人类; 图 4
圣克鲁斯生物技术 Actb抗体(Santa Cruz, sc-47778)被用于被用于免疫印迹在人类样本上 (图 4). Sci Rep (2015) ncbi
小鼠 单克隆(C4)
  • 免疫印迹; 大鼠; 1:25,000; 图 4
圣克鲁斯生物技术 Actb抗体(santa Cruz, sc-47778)被用于被用于免疫印迹在大鼠样本上浓度为1:25,000 (图 4). PLoS ONE (2015) ncbi
小鼠 单克隆(9)
  • 免疫印迹; 人类; 1:1000; 图 3
圣克鲁斯生物技术 Actb抗体(Santa Cruz, sc-130301)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3). BMC Gastroenterol (2015) ncbi
小鼠 单克隆(C-2)
  • 免疫细胞化学; 犬; 图 1b
  • 免疫印迹; 犬; 1:1000; 图 s1d
圣克鲁斯生物技术 Actb抗体(Santa Cruz Biotechnology, sc-8432)被用于被用于免疫细胞化学在犬样本上 (图 1b) 和 被用于免疫印迹在犬样本上浓度为1:1000 (图 s1d). Mol Biol Cell (2015) ncbi
小鼠 单克隆(C4)
  • 免疫印迹; 人类; 1 ug/ml
圣克鲁斯生物技术 Actb抗体(Santa Cruz, SANTSC-47778)被用于被用于免疫印迹在人类样本上浓度为1 ug/ml. PLoS ONE (2015) ncbi
小鼠 单克隆(C4)
  • 免疫印迹; 人类; 图 4
圣克鲁斯生物技术 Actb抗体(Santa Cruz Biotechnology);, sc-47778)被用于被用于免疫印迹在人类样本上 (图 4). Oncol Rep (2015) ncbi
小鼠 单克隆(C4)
  • 免疫印迹; 小鼠; 1:5000; 图 5
  • 免疫印迹; 人类; 1:5000; 图 4
圣克鲁斯生物技术 Actb抗体(Santa Cruz, sc-47778)被用于被用于免疫印迹在小鼠样本上浓度为1:5000 (图 5) 和 被用于免疫印迹在人类样本上浓度为1:5000 (图 4). Oncotarget (2015) ncbi
小鼠 单克隆(C-2)
  • 免疫印迹; 人类; 图 2
圣克鲁斯生物技术 Actb抗体(Santa Cruz, sc-8432)被用于被用于免疫印迹在人类样本上 (图 2). J Transl Med (2015) ncbi
小鼠 单克隆(2Q1055)
  • 免疫印迹; 鸡; 1:3000; 图 6a
圣克鲁斯生物技术 Actb抗体(Santa Cruz Biotechnology, sc-58673)被用于被用于免疫印迹在鸡样本上浓度为1:3000 (图 6a). Gen Comp Endocrinol (2015) ncbi
小鼠 单克隆(C4)
  • 免疫印迹; 人类; 图 1
圣克鲁斯生物技术 Actb抗体(Santa Cruz, sc-47778)被用于被用于免疫印迹在人类样本上 (图 1). Cell Rep (2015) ncbi
小鼠 单克隆(C4)
  • 免疫印迹; 大鼠; 1:300; 图 6
圣克鲁斯生物技术 Actb抗体(Santa-Cruz, sc-47778)被用于被用于免疫印迹在大鼠样本上浓度为1:300 (图 6). PLoS ONE (2015) ncbi
小鼠 单克隆(C4)
  • 免疫印迹; 人类; 图 1
圣克鲁斯生物技术 Actb抗体(Santa Cruz Biotechnology, sc-47778)被用于被用于免疫印迹在人类样本上 (图 1). Sci Rep (2015) ncbi
小鼠 单克隆(C-2)
  • 免疫印迹; 人类; 图 5
圣克鲁斯生物技术 Actb抗体(Santa Cruz, sc-8432)被用于被用于免疫印迹在人类样本上 (图 5). Oncotarget (2015) ncbi
小鼠 单克隆(C4)
  • 免疫印迹; 大鼠
圣克鲁斯生物技术 Actb抗体(Santa Cruz Biotechnology, SC-47778)被用于被用于免疫印迹在大鼠样本上. Front Pharmacol (2015) ncbi
小鼠 单克隆(C-2)
  • 免疫印迹; 人类; 图 3a
圣克鲁斯生物技术 Actb抗体(Santa Cruz, sc-8432)被用于被用于免疫印迹在人类样本上 (图 3a). PLoS ONE (2015) ncbi
小鼠 单克隆(ACTBD11B7)
  • 免疫组化-石蜡切片; 小鼠; 1:200; 图 4
圣克鲁斯生物技术 Actb抗体(Santa Cruz Biotechnology, sc-81178)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:200 (图 4). Cell Death Dis (2015) ncbi
小鼠 单克隆(C4)
  • 免疫印迹; 人类; 图 8
圣克鲁斯生物技术 Actb抗体(Santa Cruz, sc-47778)被用于被用于免疫印迹在人类样本上 (图 8). Respir Res (2015) ncbi
小鼠 单克隆(ACTBD11B7)
  • 免疫印迹; 小鼠; 1:1000; 图 3
圣克鲁斯生物技术 Actb抗体(Santa Cruz, sc-81178)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 3). PLoS ONE (2015) ncbi
小鼠 单克隆(C4)
  • 免疫印迹; 人类; 1:1000
圣克鲁斯生物技术 Actb抗体(Santa Cruz Biotechnology, sc-47778)被用于被用于免疫印迹在人类样本上浓度为1:1000. Oncol Lett (2015) ncbi
小鼠 单克隆(ACTBD11B7)
  • 免疫印迹; 小鼠; 1:2000
圣克鲁斯生物技术 Actb抗体(Santa Cruz Biotechnology, sc81178)被用于被用于免疫印迹在小鼠样本上浓度为1:2000. Neuroscience (2015) ncbi
小鼠 单克隆(C4)
  • 免疫组化-自由浮动切片; 大鼠
圣克鲁斯生物技术 Actb抗体(Santa Cruz Biotechnology, sc-47778)被用于被用于免疫组化-自由浮动切片在大鼠样本上. Free Radic Biol Med (2015) ncbi
小鼠 单克隆(C4)
  • 免疫印迹; 人类
圣克鲁斯生物技术 Actb抗体(Santa Cruz Biotechnology, sc-47778)被用于被用于免疫印迹在人类样本上. Neoplasia (2015) ncbi
小鼠 单克隆(C4)
  • 免疫印迹; 小鼠
圣克鲁斯生物技术 Actb抗体(Santa Cruz, sc-47778)被用于被用于免疫印迹在小鼠样本上. Biochim Biophys Acta (2015) ncbi
小鼠 单克隆(C4)
  • 免疫印迹; 人类; 图 3
圣克鲁斯生物技术 Actb抗体(santa Cruz, sc-47778)被用于被用于免疫印迹在人类样本上 (图 3). PLoS ONE (2015) ncbi
小鼠 单克隆(C-2)
  • 免疫印迹; 人类; 图 6a
圣克鲁斯生物技术 Actb抗体(Santa Cruz, sc-8432)被用于被用于免疫印迹在人类样本上 (图 6a). Mol Cancer Ther (2015) ncbi
小鼠 单克隆(C4)
  • 免疫印迹; 大鼠; 1:2000
圣克鲁斯生物技术 Actb抗体(Santa Cruz, sc-47778)被用于被用于免疫印迹在大鼠样本上浓度为1:2000. Exp Ther Med (2015) ncbi
小鼠 单克隆(ACTBD11B7)
  • 免疫印迹; 人类; 1:1000; 图 5a
圣克鲁斯生物技术 Actb抗体(Santa Cruz, sc-81178)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 5a). Am J Physiol Cell Physiol (2015) ncbi
小鼠 单克隆(C4)
  • 免疫印迹; 人类
圣克鲁斯生物技术 Actb抗体(Santa Cruz, sc-47778)被用于被用于免疫印迹在人类样本上. Cell Stress Chaperones (2015) ncbi
小鼠 单克隆(C4)
  • 免疫印迹; 人类; 图 2
圣克鲁斯生物技术 Actb抗体(Santa Cruz, sc-47778)被用于被用于免疫印迹在人类样本上 (图 2). Oncotarget (2015) ncbi
小鼠 单克隆(ACTBD11B7)
  • 免疫印迹; 小鼠
圣克鲁斯生物技术 Actb抗体(Santa Cruz Biotechnology, sc-81178)被用于被用于免疫印迹在小鼠样本上. Nucleic Acids Res (2015) ncbi
小鼠 单克隆(C4)
  • 免疫印迹; 人类
圣克鲁斯生物技术 Actb抗体(SantaCruzBiotechnology, sc- 47778)被用于被用于免疫印迹在人类样本上. Free Radic Biol Med (2015) ncbi
小鼠 单克隆(C4)
  • 免疫印迹; 小鼠
圣克鲁斯生物技术 Actb抗体(Santa Cruz, sc-47778)被用于被用于免疫印迹在小鼠样本上. Neuropharmacology (2015) ncbi
小鼠 单克隆(C-2)
  • 免疫印迹; 犬; 1:50,000; 图 1
圣克鲁斯生物技术 Actb抗体(Santa Cruz, sc-8432)被用于被用于免疫印迹在犬样本上浓度为1:50,000 (图 1). BMC Cancer (2015) ncbi
小鼠 单克隆(C4)
  • 免疫印迹; 小鼠; 图 3
圣克鲁斯生物技术 Actb抗体(Santa Cruz, sc-47778)被用于被用于免疫印迹在小鼠样本上 (图 3). Oncogene (2015) ncbi
小鼠 单克隆(C4)
  • 免疫印迹; 小鼠; 图 1
圣克鲁斯生物技术 Actb抗体(Santa Cruz Biotechnology, sc-47778)被用于被用于免疫印迹在小鼠样本上 (图 1). Oncogene (2016) ncbi
小鼠 单克隆(C4)
  • 免疫印迹; 人类; 1:5000
圣克鲁斯生物技术 Actb抗体(Santa Cruz Biotechnology, sc-47778)被用于被用于免疫印迹在人类样本上浓度为1:5000. J Cell Physiol (2015) ncbi
小鼠 单克隆(C4)
  • 免疫印迹; 大鼠; 图 1
  • 免疫印迹; 小鼠; 图 1
圣克鲁斯生物技术 Actb抗体(Santa Cruz, sc-47778)被用于被用于免疫印迹在大鼠样本上 (图 1) 和 被用于免疫印迹在小鼠样本上 (图 1). J Biol Chem (2015) ncbi
小鼠 单克隆(C4)
  • 免疫印迹; 人类; 1:5000
圣克鲁斯生物技术 Actb抗体(Santa Cruz, sc-47778HRP)被用于被用于免疫印迹在人类样本上浓度为1:5000. Am J Physiol Endocrinol Metab (2015) ncbi
小鼠 单克隆(C4)
  • 免疫印迹; 人类; 图 4
圣克鲁斯生物技术 Actb抗体(Santa Cruz, sc-47778)被用于被用于免疫印迹在人类样本上 (图 4). Oncotarget (2015) ncbi
小鼠 单克隆(C4)
  • 免疫印迹; 小鼠
圣克鲁斯生物技术 Actb抗体(Santa Cruz Biotechnology, sc-47778)被用于被用于免疫印迹在小鼠样本上. J Immunol (2015) ncbi
小鼠 单克隆(C4)
  • 免疫印迹; 人类
圣克鲁斯生物技术 Actb抗体(Santa Cruz, sc-47778)被用于被用于免疫印迹在人类样本上. Cell Signal (2015) ncbi
小鼠 单克隆(C-2)
  • 免疫细胞化学; 人类
  • 免疫印迹; 人类
圣克鲁斯生物技术 Actb抗体(Santa Cruz Biotechnology, sc-8432)被用于被用于免疫细胞化学在人类样本上 和 被用于免疫印迹在人类样本上. Biochim Biophys Acta (2015) ncbi
小鼠 单克隆(C4)
  • 免疫印迹; 人类; 图 7a
圣克鲁斯生物技术 Actb抗体(Santa Cruz, sc-47778)被用于被用于免疫印迹在人类样本上 (图 7a). PLoS Pathog (2015) ncbi
小鼠 单克隆(C4)
  • 免疫印迹; 人类; 1:1000; 图 2
圣克鲁斯生物技术 Actb抗体(Santa Cruz, SC-47778)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 2). PLoS ONE (2015) ncbi
小鼠 单克隆(C4)
  • 免疫印迹; 小鼠; 图 9a
圣克鲁斯生物技术 Actb抗体(Santa Cruz, sc-47778)被用于被用于免疫印迹在小鼠样本上 (图 9a). J Cell Biol (2015) ncbi
小鼠 单克隆(C-2)
  • 免疫细胞化学; 小鼠; 图 3d
圣克鲁斯生物技术 Actb抗体(Santa Cruz, SC-8432)被用于被用于免疫细胞化学在小鼠样本上 (图 3d). Cell Cycle (2015) ncbi
小鼠 单克隆(C4)
  • 免疫印迹; 小鼠; 图 3a
圣克鲁斯生物技术 Actb抗体(Santa Cruz, sc-47778)被用于被用于免疫印迹在小鼠样本上 (图 3a). Br J Cancer (2015) ncbi
小鼠 单克隆(C4)
  • 免疫印迹; 小鼠; 1:1500; 图 6
圣克鲁斯生物技术 Actb抗体(Santa Cruz Biotechnology, sc-47778)被用于被用于免疫印迹在小鼠样本上浓度为1:1500 (图 6). PLoS ONE (2015) ncbi
小鼠 单克隆(C4)
  • 免疫印迹; 人类; 图 3
圣克鲁斯生物技术 Actb抗体(Santa Cruz, sc-47778)被用于被用于免疫印迹在人类样本上 (图 3). Oncotarget (2015) ncbi
小鼠 单克隆(C4)
  • 免疫印迹; 小鼠; 图 3i
圣克鲁斯生物技术 Actb抗体(Santa Cruz, sc-47778)被用于被用于免疫印迹在小鼠样本上 (图 3i). Development (2015) ncbi
小鼠 单克隆(C4)
  • 免疫印迹; 人类; 1:3000; 图 5
圣克鲁斯生物技术 Actb抗体(Santa Cruz Biotechnology, sc-47778)被用于被用于免疫印迹在人类样本上浓度为1:3000 (图 5). Mol Med Rep (2015) ncbi
小鼠 单克隆(ACTBD11B7)
  • 免疫印迹; 小鼠
圣克鲁斯生物技术 Actb抗体(Santa Cruz, SC81178)被用于被用于免疫印迹在小鼠样本上. J Nutr Biochem (2015) ncbi
小鼠 单克隆(C4)
  • 免疫印迹; 小鼠; 图 1
圣克鲁斯生物技术 Actb抗体(Santa Cruz, SC-47778)被用于被用于免疫印迹在小鼠样本上 (图 1). Cell Death Dis (2015) ncbi
小鼠 单克隆(C4)
  • 免疫细胞化学; 人类; 1:200; 图 1
  • 免疫印迹; 人类; 1:500; 图 1
圣克鲁斯生物技术 Actb抗体(Santa Cruz, sc-47778)被用于被用于免疫细胞化学在人类样本上浓度为1:200 (图 1) 和 被用于免疫印迹在人类样本上浓度为1:500 (图 1). Sci Rep (2015) ncbi
小鼠 单克隆(C4)
  • 免疫印迹; 大鼠
圣克鲁斯生物技术 Actb抗体(Santa Cruz, sc-47778)被用于被用于免疫印迹在大鼠样本上. Mol Cell Endocrinol (2015) ncbi
小鼠 单克隆(C-2)
  • 免疫印迹; 人类; 图 1
圣克鲁斯生物技术 Actb抗体(Santa Cruz, sc-8432)被用于被用于免疫印迹在人类样本上 (图 1). Oncogene (2016) ncbi
小鼠 单克隆(C4)
  • 免疫印迹; 人类; 1:2000; 图 4
圣克鲁斯生物技术 Actb抗体(Santa Cruz, sc-47778)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 4). Sci Rep (2015) ncbi
小鼠 单克隆(C4)
  • 免疫印迹; 小鼠; 图 5
圣克鲁斯生物技术 Actb抗体(Santa Cruz, sc-47778)被用于被用于免疫印迹在小鼠样本上 (图 5). FEBS Lett (2015) ncbi
小鼠 单克隆(C-2)
  • 染色质免疫沉淀 ; 人类; 图 5
圣克鲁斯生物技术 Actb抗体(Santa Cruz, sc8432)被用于被用于染色质免疫沉淀 在人类样本上 (图 5). PLoS ONE (2015) ncbi
小鼠 单克隆(C4)
  • 免疫印迹; 小鼠; 图 3
圣克鲁斯生物技术 Actb抗体(santa Cruz, sc-47778)被用于被用于免疫印迹在小鼠样本上 (图 3). PLoS ONE (2015) ncbi
小鼠 单克隆(C4)
  • 免疫印迹; 人类
圣克鲁斯生物技术 Actb抗体(Santa Cruz, sc-47778)被用于被用于免疫印迹在人类样本上. Biomed Res Int (2015) ncbi
小鼠 单克隆(ACTBD11B7)
  • 免疫印迹; 人类; 1:5000; 图 4b
圣克鲁斯生物技术 Actb抗体(Santa Cruz Biotechnology, sc-81178)被用于被用于免疫印迹在人类样本上浓度为1:5000 (图 4b). Oncotarget (2015) ncbi
小鼠 单克隆(C4)
  • 免疫组化-石蜡切片; 人类; 图  1
  • 免疫印迹; 人类; 图  1
圣克鲁斯生物技术 Actb抗体(Santa Cruz Biotechnology, sc-47778)被用于被用于免疫组化-石蜡切片在人类样本上 (图  1) 和 被用于免疫印迹在人类样本上 (图  1). PLoS ONE (2015) ncbi
小鼠 单克隆(C4)
  • 免疫印迹; 人类; 图 3
圣克鲁斯生物技术 Actb抗体(SANTA CRUZ, sc-47778)被用于被用于免疫印迹在人类样本上 (图 3). BMC Cancer (2015) ncbi
小鼠 单克隆(C4)
  • 免疫印迹; 小鼠; 图 1
圣克鲁斯生物技术 Actb抗体(Santa Cruz, sc-47778)被用于被用于免疫印迹在小鼠样本上 (图 1). PLoS ONE (2015) ncbi
小鼠 单克隆(C4)
  • 免疫印迹; 人类; 图 4
圣克鲁斯生物技术 Actb抗体(Santa-Cruz Biotechnology, sc-47778)被用于被用于免疫印迹在人类样本上 (图 4). PLoS ONE (2015) ncbi
小鼠 单克隆(B4)
  • 免疫印迹; 人类; 图 6
圣克鲁斯生物技术 Actb抗体(Santa Cruz, sc-53142)被用于被用于免疫印迹在人类样本上 (图 6). Oncotarget (2015) ncbi
小鼠 单克隆(C4)
  • 免疫印迹; 人类; 1:300; 图 5
圣克鲁斯生物技术 Actb抗体(Santa-Cruz, sc-47778)被用于被用于免疫印迹在人类样本上浓度为1:300 (图 5). PLoS ONE (2015) ncbi
小鼠 单克隆(C4)
  • 免疫印迹; 人类; 图 1
圣克鲁斯生物技术 Actb抗体(Santa Cruz, sc-47778)被用于被用于免疫印迹在人类样本上 (图 1). Oncogene (2016) ncbi
小鼠 单克隆(9)
  • 免疫印迹; 人类; 图 6
圣克鲁斯生物技术 Actb抗体(Santa Cruz Biotechnology, sc-130301)被用于被用于免疫印迹在人类样本上 (图 6). Mol Cancer (2015) ncbi
小鼠 单克隆(C4)
  • 免疫印迹; 小鼠; 1:1000
圣克鲁斯生物技术 Actb抗体(Santa Cruz, sc-47778)被用于被用于免疫印迹在小鼠样本上浓度为1:1000. Mol Cancer (2015) ncbi
小鼠 单克隆(ACTBD11B7)
  • 免疫印迹; 人类
圣克鲁斯生物技术 Actb抗体(Santa Cruz, sc-81178)被用于被用于免疫印迹在人类样本上. J Biol Chem (2015) ncbi
小鼠 单克隆(C4)
  • 免疫印迹; 大鼠; 1:2000
圣克鲁斯生物技术 Actb抗体(Santa Cruz Biotechnology, SC-47778)被用于被用于免疫印迹在大鼠样本上浓度为1:2000. PLoS ONE (2015) ncbi
小鼠 单克隆(C-2)
  • 免疫印迹; 小鼠; 图 f6
圣克鲁斯生物技术 Actb抗体(Santa Cruz, C-2)被用于被用于免疫印迹在小鼠样本上 (图 f6). Sci Signal (2015) ncbi
小鼠 单克隆(C4)
  • 免疫印迹; 小鼠; 图 6c
圣克鲁斯生物技术 Actb抗体(santa cruz, sc-47778)被用于被用于免疫印迹在小鼠样本上 (图 6c). Int J Mol Med (2015) ncbi
小鼠 单克隆(C-2)
  • 免疫印迹; 大鼠; 1:4000
圣克鲁斯生物技术 Actb抗体(Santa Cruz Biotechnology, sc-8432)被用于被用于免疫印迹在大鼠样本上浓度为1:4000. Int J Mol Med (2015) ncbi
小鼠 单克隆(C-2)
  • 免疫印迹; 人类; 1:5000; 图 1g
圣克鲁斯生物技术 Actb抗体(Santa Cruz Biotechnology, sc-8432)被用于被用于免疫印迹在人类样本上浓度为1:5000 (图 1g). Int J Obes (Lond) (2015) ncbi
小鼠 单克隆(B4)
  • 免疫印迹; 人类
圣克鲁斯生物技术 Actb抗体(Santa Cruz, sc-53142)被用于被用于免疫印迹在人类样本上. Mol Cell Endocrinol (2015) ncbi
小鼠 单克隆(C4)
  • 免疫印迹; 人类; 图 7
圣克鲁斯生物技术 Actb抗体(Santa Cruz, SC-47778)被用于被用于免疫印迹在人类样本上 (图 7). PLoS ONE (2015) ncbi
小鼠 单克隆(C-2)
  • 免疫印迹; 人类; 图 5
圣克鲁斯生物技术 Actb抗体(Santa Cruz, sc-8432)被用于被用于免疫印迹在人类样本上 (图 5). Cell Death Dis (2015) ncbi
小鼠 单克隆(C4)
  • 免疫印迹; 人类; 1:500; 图 4
圣克鲁斯生物技术 Actb抗体(Santa Cruz, SC-47778)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 4). Nat Commun (2015) ncbi
小鼠 单克隆(C4)
  • 免疫印迹; 大鼠; 图 3
圣克鲁斯生物技术 Actb抗体(Santa Cruz, sc-47778)被用于被用于免疫印迹在大鼠样本上 (图 3). Am J Physiol Renal Physiol (2015) ncbi
小鼠 单克隆(C4)
  • 免疫印迹; fruit fly ; 图 2
圣克鲁斯生物技术 Actb抗体(Santa Cruz, SC-47778)被用于被用于免疫印迹在fruit fly 样本上 (图 2). MBio (2015) ncbi
小鼠 单克隆(ACTBD11B7)
  • 免疫印迹; 大鼠; 1:1000; 图 6
圣克鲁斯生物技术 Actb抗体(Santa Cruz Biotechnology, sc-81178)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 6). Mol Med Rep (2015) ncbi
小鼠 单克隆(C-2)
  • 免疫印迹; 小鼠
圣克鲁斯生物技术 Actb抗体(Santa Cruz Biotechnology, sc-8432)被用于被用于免疫印迹在小鼠样本上. Diabetes (2015) ncbi
小鼠 单克隆(C4)
  • 免疫印迹; 大鼠; 1:1000; 图 1
圣克鲁斯生物技术 Actb抗体(santa Cruz, sc-47778)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 1). PLoS ONE (2015) ncbi
小鼠 单克隆(C4)
  • 免疫印迹; 人类; 图 1
  • 免疫印迹; 大鼠; 图 4
圣克鲁斯生物技术 Actb抗体(Santa Cruz, C4)被用于被用于免疫印迹在人类样本上 (图 1) 和 被用于免疫印迹在大鼠样本上 (图 4). Oncotarget (2015) ncbi
小鼠 单克隆(C4)
  • 免疫印迹; 人类; 图 6
圣克鲁斯生物技术 Actb抗体(santa Cruz, sc-47778)被用于被用于免疫印迹在人类样本上 (图 6). PLoS ONE (2015) ncbi
小鼠 单克隆(C4)
  • 免疫印迹; 人类; 图 3
圣克鲁斯生物技术 Actb抗体(Santa Cruz, sc-47778)被用于被用于免疫印迹在人类样本上 (图 3). Mol Med Rep (2015) ncbi
小鼠 单克隆(C-2)
  • 免疫印迹; 小鼠; 图 1
  • 免疫印迹; 人类; 图 1
圣克鲁斯生物技术 Actb抗体(Santa Cruz, sc-8432)被用于被用于免疫印迹在小鼠样本上 (图 1) 和 被用于免疫印迹在人类样本上 (图 1). PLoS Pathog (2015) ncbi
小鼠 单克隆(C4)
  • 免疫印迹; 人类; 1:2500; 图 2
圣克鲁斯生物技术 Actb抗体(santa Cruz, Sc-47778)被用于被用于免疫印迹在人类样本上浓度为1:2500 (图 2). Oncotarget (2015) ncbi
小鼠 单克隆(C4)
  • 免疫印迹; 豚鼠; 图 5
圣克鲁斯生物技术 Actb抗体(Santa Cruz Biotechnology, C4)被用于被用于免疫印迹在豚鼠样本上 (图 5). Methods Mol Biol (2015) ncbi
小鼠 单克隆(C4)
  • 免疫印迹; 鸡; 1:1000
圣克鲁斯生物技术 Actb抗体(Santa Cruz Biotechnology, sc-47778)被用于被用于免疫印迹在鸡样本上浓度为1:1000. J Cell Sci (2015) ncbi
小鼠 单克隆(C4)
  • 免疫印迹; pigs
圣克鲁斯生物技术 Actb抗体(Santa Cruz Biotechnology, sc-47778)被用于被用于免疫印迹在pigs 样本上. PLoS ONE (2015) ncbi
小鼠 单克隆(C4)
  • 免疫印迹; 大鼠; 1:1000
圣克鲁斯生物技术 Actb抗体(Santa Cruz biotechnology, sc-47778)被用于被用于免疫印迹在大鼠样本上浓度为1:1000. PLoS ONE (2015) ncbi
小鼠 单克隆(C4)
  • 免疫印迹; 人类; 1:500
圣克鲁斯生物技术 Actb抗体(Santa Cruz, sc-47778)被用于被用于免疫印迹在人类样本上浓度为1:500. Biochim Biophys Acta (2015) ncbi
小鼠 单克隆(1)
  • 免疫印迹; 人类
圣克鲁斯生物技术 Actb抗体(Santa Cruz Biotechnology, sc-130300)被用于被用于免疫印迹在人类样本上. Mediators Inflamm (2015) ncbi
小鼠 单克隆(C4)
  • 免疫印迹; 大鼠; 1:500; 图 3
圣克鲁斯生物技术 Actb抗体(Santa Cruz, sc-47778)被用于被用于免疫印迹在大鼠样本上浓度为1:500 (图 3). Exp Ther Med (2015) ncbi
小鼠 单克隆(C-2)
  • 免疫印迹; 人类; 1:1000
圣克鲁斯生物技术 Actb抗体(Santa Cruz Biotechnology, sc-8432)被用于被用于免疫印迹在人类样本上浓度为1:1000. Mol Med Rep (2015) ncbi
小鼠 单克隆(1)
  • 免疫细胞化学; 人类
圣克鲁斯生物技术 Actb抗体(Santa Cruz, 130300)被用于被用于免疫细胞化学在人类样本上. Mutat Res (2014) ncbi
小鼠 单克隆(C4)
  • 免疫印迹; 小鼠; 1:1000
圣克鲁斯生物技术 Actb抗体(Santa Cruz Biotech, sc- 47778)被用于被用于免疫印迹在小鼠样本上浓度为1:1000. Mol Cell Biochem (2015) ncbi
小鼠 单克隆(C4)
  • 免疫印迹; 人类; 图 1f
圣克鲁斯生物技术 Actb抗体(Santa, sc-47778)被用于被用于免疫印迹在人类样本上 (图 1f). Oncotarget (2015) ncbi
小鼠 单克隆(C4)
  • 免疫印迹; 人类; 图 1
圣克鲁斯生物技术 Actb抗体(Santa Cruz Biotechnology, sc-47778)被用于被用于免疫印迹在人类样本上 (图 1). Sci Rep (2015) ncbi
小鼠 单克隆(C4)
  • 免疫印迹; 小鼠; 1:10,000; 图 5
圣克鲁斯生物技术 Actb抗体(Santa Cruz Biotechnology, sc-47778)被用于被用于免疫印迹在小鼠样本上浓度为1:10,000 (图 5). Nat Cell Biol (2015) ncbi
小鼠 单克隆(C-2)
  • 免疫印迹; 小鼠; 1:3000; 图 6
  • 免疫印迹; 人类; 1:3000; 图 2
圣克鲁斯生物技术 Actb抗体(Santa Cruz, sc-8432)被用于被用于免疫印迹在小鼠样本上浓度为1:3000 (图 6) 和 被用于免疫印迹在人类样本上浓度为1:3000 (图 2). Mol Med Rep (2015) ncbi
小鼠 单克隆(C4)
  • 免疫细胞化学; 人类
圣克鲁斯生物技术 Actb抗体(Santa Cruz Biotechnology, sc-47778)被用于被用于免疫细胞化学在人类样本上. Biochim Biophys Acta (2015) ncbi
小鼠 单克隆(C-2)
  • 免疫印迹; 人类; 1:2000; 图 1
  • 免疫印迹; 小鼠; 1:2000; 图 2
圣克鲁斯生物技术 Actb抗体(Santa Cruz, sc-8432HRP)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 1) 和 被用于免疫印迹在小鼠样本上浓度为1:2000 (图 2). Autophagy (2015) ncbi
小鼠 单克隆(C-2)
  • 免疫印迹; 人类; 图 3
圣克鲁斯生物技术 Actb抗体(Santa Cruz, sc-8432)被用于被用于免疫印迹在人类样本上 (图 3). Oncotarget (2015) ncbi
小鼠 单克隆(C-2)
  • 免疫印迹; 小鼠; 图 1
  • 免疫印迹; 人类; 图 1
圣克鲁斯生物技术 Actb抗体(santa Cruz, sc-8432)被用于被用于免疫印迹在小鼠样本上 (图 1) 和 被用于免疫印迹在人类样本上 (图 1). Autophagy (2015) ncbi
小鼠 单克隆(C4)
  • 免疫印迹; 人类; 图 s3
圣克鲁斯生物技术 Actb抗体(santa Cruz, sc-47778)被用于被用于免疫印迹在人类样本上 (图 s3). Oncotarget (2015) ncbi
小鼠 单克隆(C4)
  • 免疫印迹; 小鼠; 1:2500; 图 4
圣克鲁斯生物技术 Actb抗体(santa Cruz, Sc47778)被用于被用于免疫印迹在小鼠样本上浓度为1:2500 (图 4). Int J Biol Sci (2015) ncbi
小鼠 单克隆(C4)
  • 免疫印迹; 人类; 图 2
圣克鲁斯生物技术 Actb抗体(Santa Cruz, sc-47778)被用于被用于免疫印迹在人类样本上 (图 2). Sci Rep (2015) ncbi
小鼠 单克隆(C-2)
  • 免疫印迹; 人类; 1:5000; 图 5
圣克鲁斯生物技术 Actb抗体(Santa Cruz, SC-8432)被用于被用于免疫印迹在人类样本上浓度为1:5000 (图 5). Mar Drugs (2015) ncbi
小鼠 单克隆(C4)
  • 免疫印迹; 人类; 1:200
圣克鲁斯生物技术 Actb抗体(Santa Cruz Biotechnology, sc-47778 HRP)被用于被用于免疫印迹在人类样本上浓度为1:200. PLoS ONE (2015) ncbi
小鼠 单克隆(ACTBD11B7)
  • 免疫印迹; 大鼠; 1:600
  • 免疫印迹; 人类; 1:600
圣克鲁斯生物技术 Actb抗体(Santa Cruz Biotechnology, sc-81178)被用于被用于免疫印迹在大鼠样本上浓度为1:600 和 被用于免疫印迹在人类样本上浓度为1:600. J Neurochem (2015) ncbi
小鼠 单克隆(C4)
  • 免疫印迹; 人类; 图 2
圣克鲁斯生物技术 Actb抗体(Santa Cruz, Sc-47778)被用于被用于免疫印迹在人类样本上 (图 2). J Cell Biochem (2015) ncbi
小鼠 单克隆(C4)
  • 免疫印迹; 人类
圣克鲁斯生物技术 Actb抗体(Santa Cruz Biotechnology, sc-47778)被用于被用于免疫印迹在人类样本上. Am J Physiol Endocrinol Metab (2015) ncbi
小鼠 单克隆(9)
  • 免疫印迹; 人类; 1:4000; 图 8
圣克鲁斯生物技术 Actb抗体(Santa Cruz, sc-130301)被用于被用于免疫印迹在人类样本上浓度为1:4000 (图 8). Mol Med Rep (2015) ncbi
小鼠 单克隆(C4)
  • 免疫印迹; 人类; 1:10,000; 图 5
圣克鲁斯生物技术 Actb抗体(Santa Cruz, sc-47778)被用于被用于免疫印迹在人类样本上浓度为1:10,000 (图 5). Nat Commun (2015) ncbi
小鼠 单克隆(ACTBD11B7)
  • 免疫印迹; 小鼠; 1:1000; 图 1
圣克鲁斯生物技术 Actb抗体(Santa Cruz, sc-81178)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 1). FASEB J (2015) ncbi
小鼠 单克隆(C4)
  • 免疫印迹; 人类; 图 1
圣克鲁斯生物技术 Actb抗体(Santa Cruz, sc-47778)被用于被用于免疫印迹在人类样本上 (图 1). Cell Death Dis (2015) ncbi
小鼠 单克隆(C4)
  • 免疫印迹; 人类
圣克鲁斯生物技术 Actb抗体(Santa Cruz, SC-47778)被用于被用于免疫印迹在人类样本上. J Biol Chem (2015) ncbi
小鼠 单克隆(9)
  • 免疫印迹; 人类; 图 1
圣克鲁斯生物技术 Actb抗体(Santa Cruz, sc-130301)被用于被用于免疫印迹在人类样本上 (图 1). Mol Cancer (2015) ncbi
小鼠 单克隆(C4)
  • 免疫印迹; 小鼠; 图 2
圣克鲁斯生物技术 Actb抗体(Santa Cruz Biotechnology, sc-47778)被用于被用于免疫印迹在小鼠样本上 (图 2). PLoS ONE (2015) ncbi
小鼠 单克隆(C4)
  • 免疫印迹; 人类
圣克鲁斯生物技术 Actb抗体(SantaCruz, sc-47778)被用于被用于免疫印迹在人类样本上. PLoS ONE (2015) ncbi
小鼠 单克隆(ACTBD11B7)
  • 免疫印迹; 小鼠; 1:10,000; 图 2
圣克鲁斯生物技术 Actb抗体(Santa Cruz, sc-81178)被用于被用于免疫印迹在小鼠样本上浓度为1:10,000 (图 2). Cell Death Dis (2015) ncbi
小鼠 单克隆(C-2)
  • 免疫印迹; 小鼠
圣克鲁斯生物技术 Actb抗体(Santa Cruz Biotechnology, sc-8432)被用于被用于免疫印迹在小鼠样本上. FASEB J (2015) ncbi
小鼠 单克隆(C-2)
  • 免疫印迹; 大鼠; 图 7
圣克鲁斯生物技术 Actb抗体(santa Cruz, sc-8432)被用于被用于免疫印迹在大鼠样本上 (图 7). Int J Mol Med (2015) ncbi
小鼠 单克隆(C4)
  • 免疫印迹; 人类; 图 5b
圣克鲁斯生物技术 Actb抗体(santa cruz, sc-47778)被用于被用于免疫印迹在人类样本上 (图 5b). Int J Mol Med (2015) ncbi
小鼠 单克隆(C4)
  • 免疫印迹; 人类; 1:2000; 图 1
圣克鲁斯生物技术 Actb抗体(Santa Cruz, sc-47778)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 1). Mol Med Rep (2015) ncbi
小鼠 单克隆(C-2)
  • 免疫印迹; 人类; 1:2000
圣克鲁斯生物技术 Actb抗体(Santa Cruz Biotechnology, sc-8432)被用于被用于免疫印迹在人类样本上浓度为1:2000. Nat Commun (2015) ncbi
小鼠 单克隆(C-2)
  • 免疫印迹; 人类; 图 4
圣克鲁斯生物技术 Actb抗体(SantaCruz, sc-8432)被用于被用于免疫印迹在人类样本上 (图 4). Sci Rep (2015) ncbi
小鼠 单克隆(CGA7)
  • 免疫组化; 小鼠; 1:100; 图 4
圣克鲁斯生物技术 Actb抗体(Santa Cruz Biotechnology, sc-53015)被用于被用于免疫组化在小鼠样本上浓度为1:100 (图 4). Mol Med Rep (2015) ncbi
小鼠 单克隆(C4)
  • 免疫印迹; 小鼠; 图 6
圣克鲁斯生物技术 Actb抗体(Santa Cruz, sc-47778)被用于被用于免疫印迹在小鼠样本上 (图 6). Infect Immun (2015) ncbi
小鼠 单克隆(ACTBD11B7)
  • 免疫细胞化学; 小鼠; 1:500
圣克鲁斯生物技术 Actb抗体(Santa Cruz, sc-81178)被用于被用于免疫细胞化学在小鼠样本上浓度为1:500. Neurobiol Dis (2015) ncbi
小鼠 单克隆(C4)
  • 免疫印迹; 人类; 图 3
圣克鲁斯生物技术 Actb抗体(Santa Cruz, sc-47778)被用于被用于免疫印迹在人类样本上 (图 3). Int J Mol Med (2015) ncbi
小鼠 单克隆(C4)
  • 免疫印迹; 小鼠; 1:2000
圣克鲁斯生物技术 Actb抗体(Santa Cruz, sc-47778)被用于被用于免疫印迹在小鼠样本上浓度为1:2000. PLoS ONE (2014) ncbi
小鼠 单克隆(C4)
  • 免疫印迹; 小鼠
圣克鲁斯生物技术 Actb抗体(Santa Cruz Biotechnology, SC-47778)被用于被用于免疫印迹在小鼠样本上. J Mol Cell Cardiol (2015) ncbi
小鼠 单克隆(C4)
  • 免疫印迹; 人类; 1:2000
圣克鲁斯生物技术 Actb抗体(Santa Cruz Biotechnology, sc-47778)被用于被用于免疫印迹在人类样本上浓度为1:2000. BMC Cancer (2014) ncbi
小鼠 单克隆(C4)
  • 免疫印迹; 小鼠
圣克鲁斯生物技术 Actb抗体(Santa Cruz Biotechnology, sc-47778)被用于被用于免疫印迹在小鼠样本上. Stem Cell Res (2015) ncbi
小鼠 单克隆(C4)
  • 免疫印迹; 人类
圣克鲁斯生物技术 Actb抗体(Santa Cruz Biotechnology, sc-47778)被用于被用于免疫印迹在人类样本上. Cell Death Dis (2014) ncbi
小鼠 单克隆(C-2)
  • 免疫印迹; 人类; 图 1c
圣克鲁斯生物技术 Actb抗体(santa cruz, sc-8432)被用于被用于免疫印迹在人类样本上 (图 1c). Mol Med Rep (2015) ncbi
小鼠 单克隆(C4)
  • 免疫印迹; 人类
圣克鲁斯生物技术 Actb抗体(Santa Cruz, C4)被用于被用于免疫印迹在人类样本上. J Immunol (2015) ncbi
小鼠 单克隆(C4)
  • 免疫印迹; 鲤; 1:3000
圣克鲁斯生物技术 Actb抗体(Santa Cruz Biotechnology, sc-47778)被用于被用于免疫印迹在鲤样本上浓度为1:3000. J Comp Neurol (2015) ncbi
小鼠 单克隆(C4)
  • 免疫印迹; 人类
圣克鲁斯生物技术 Actb抗体(Santa Cruz, sc-47778)被用于被用于免疫印迹在人类样本上. Bioorg Med Chem (2015) ncbi
小鼠 单克隆(C-2)
  • 免疫印迹; 人类
圣克鲁斯生物技术 Actb抗体(Santa Cruz Biotechnology, sc-8432)被用于被用于免疫印迹在人类样本上. Sci Rep (2014) ncbi
小鼠 单克隆(C4)
  • 免疫印迹; 人类; 1:2000
圣克鲁斯生物技术 Actb抗体(Santa Cruz, sc-47778)被用于被用于免疫印迹在人类样本上浓度为1:2000. Biochem Biophys Res Commun (2015) ncbi
小鼠 单克隆(C4)
  • 免疫印迹; 猕猴; 图 s1
圣克鲁斯生物技术 Actb抗体(Santa Cruz, sc-47778)被用于被用于免疫印迹在猕猴样本上 (图 s1). FASEB J (2015) ncbi
小鼠 单克隆(ACTBD11B7)
  • 免疫印迹; 人类; 1:500; 图 2
圣克鲁斯生物技术 Actb抗体(Santa Cruz, sc-81178)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 2). Virology (2015) ncbi
小鼠 单克隆(C4)
  • 免疫印迹; 人类; 图 2
圣克鲁斯生物技术 Actb抗体(Santa Cruz, sc-47778)被用于被用于免疫印迹在人类样本上 (图 2). Exp Ther Med (2015) ncbi
小鼠 单克隆(C4)
  • 免疫印迹; 小鼠
圣克鲁斯生物技术 Actb抗体(Santa Cruz, sc-47778)被用于被用于免疫印迹在小鼠样本上. Cancer Lett (2015) ncbi
小鼠 单克隆(C4)
  • 免疫印迹; 人类; 1:1000; 图 6
圣克鲁斯生物技术 Actb抗体(Santa Cruz Biotechnology, sc-47778)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 6). Stem Cells Dev (2015) ncbi
小鼠 单克隆(C4)
  • 免疫印迹; 小鼠
圣克鲁斯生物技术 Actb抗体(Santa Cruz, sc-47778)被用于被用于免疫印迹在小鼠样本上. PLoS ONE (2014) ncbi
小鼠 单克隆(C4)
  • 免疫印迹; 大鼠; 1:1000
圣克鲁斯生物技术 Actb抗体(Santa Cruz Biotechnology, sc-47778)被用于被用于免疫印迹在大鼠样本上浓度为1:1000. J Neurochem (2015) ncbi
小鼠 单克隆(9)
  • 免疫印迹; 人类; 1:1000
圣克鲁斯生物技术 Actb抗体(Santa Cruz, sc-130301)被用于被用于免疫印迹在人类样本上浓度为1:1000. Virol J (2014) ncbi
小鼠 单克隆(C4)
  • 免疫印迹; 人类; 1:500
圣克鲁斯生物技术 Actb抗体(Santa Cruz Biotechnology, sc-47778)被用于被用于免疫印迹在人类样本上浓度为1:500. elife (2014) ncbi
小鼠 单克隆(C4)
  • 免疫印迹; 小鼠; 1:2000
  • 免疫印迹; 人类; 1:2000
圣克鲁斯生物技术 Actb抗体(Santa Cruz, sc-47778)被用于被用于免疫印迹在小鼠样本上浓度为1:2000 和 被用于免疫印迹在人类样本上浓度为1:2000. Biol Open (2014) ncbi
小鼠 单克隆(C4)
  • 免疫印迹; 人类; 图 4
圣克鲁斯生物技术 Actb抗体(Santa Cruz, sc-47778)被用于被用于免疫印迹在人类样本上 (图 4). Oncol Rep (2015) ncbi
小鼠 单克隆(C-2)
  • 免疫印迹; 人类; 1:1000
圣克鲁斯生物技术 Actb抗体(Santa Cruz Biotechnology, sc-8432)被用于被用于免疫印迹在人类样本上浓度为1:1000. PLoS ONE (2014) ncbi
小鼠 单克隆(C4)
  • 免疫印迹; 人类; 1:1000; 图 5a
圣克鲁斯生物技术 Actb抗体(Santa Cruz, sc-47778)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 5a). Int J Clin Exp Med (2014) ncbi
小鼠 单克隆(C-2)
  • 免疫印迹; 小鼠
圣克鲁斯生物技术 Actb抗体(Santa Cruz Biotechnology, sc-8432)被用于被用于免疫印迹在小鼠样本上. Am J Respir Cell Mol Biol (2015) ncbi
小鼠 单克隆(ACTBD11B7)
  • 免疫印迹; 人类; 1:2000
圣克鲁斯生物技术 Actb抗体(Santa Cruz biotechnology, sc-81178)被用于被用于免疫印迹在人类样本上浓度为1:2000. PLoS ONE (2014) ncbi
小鼠 单克隆(C-2)
  • 免疫印迹; 人类
圣克鲁斯生物技术 Actb抗体(Santa Cruz Biotech, sc-8432)被用于被用于免疫印迹在人类样本上. Proteomics (2015) ncbi
小鼠 单克隆(C4)
  • 免疫印迹; 人类
圣克鲁斯生物技术 Actb抗体(Santa, sc-47778)被用于被用于免疫印迹在人类样本上. J Biol Chem (2014) ncbi
小鼠 单克隆(C4)
  • 免疫印迹; 人类; 图 3
圣克鲁斯生物技术 Actb抗体(Santa Cruz, sc-47778)被用于被用于免疫印迹在人类样本上 (图 3). Oncogene (2015) ncbi
小鼠 单克隆(C4)
  • 免疫印迹; 小鼠
圣克鲁斯生物技术 Actb抗体(Santa Cruz Biotechnology, sc-47778)被用于被用于免疫印迹在小鼠样本上. Biochim Biophys Acta (2015) ncbi
小鼠 单克隆(9)
  • 免疫印迹; 人类; 图 3
圣克鲁斯生物技术 Actb抗体(Santa Cruz, sc-130301)被用于被用于免疫印迹在人类样本上 (图 3). Hum Exp Toxicol (2015) ncbi
小鼠 单克隆(C4)
  • 免疫印迹; 小鼠; 图 7
圣克鲁斯生物技术 Actb抗体(Santa Cruz, sc-47778)被用于被用于免疫印迹在小鼠样本上 (图 7). Am J Physiol Gastrointest Liver Physiol (2014) ncbi
小鼠 单克隆(C4)
  • 免疫印迹; 人类; 1:1000; 图 5
圣克鲁斯生物技术 Actb抗体(Santa Cruz, sc-47778)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 5). Oncol Rep (2014) ncbi
小鼠 单克隆(ACTBD11B7)
  • 免疫印迹; 大鼠; 1:2000
圣克鲁斯生物技术 Actb抗体(Santa Cruz Biotechnology, ACTBD11B7)被用于被用于免疫印迹在大鼠样本上浓度为1:2000. Am J Pathol (2014) ncbi
小鼠 单克隆(C4)
  • 免疫印迹; 小鼠
圣克鲁斯生物技术 Actb抗体(Santa Cruz Biotechnology, sc-47778)被用于被用于免疫印迹在小鼠样本上. J Immunol (2014) ncbi
小鼠 单克隆(C4)
  • 免疫印迹; 小鼠; 1:30,000
圣克鲁斯生物技术 Actb抗体(Santa Cruz Biotechnology, sc-47778)被用于被用于免疫印迹在小鼠样本上浓度为1:30,000. J Neurochem (2014) ncbi
小鼠 单克隆(C4)
  • 免疫印迹; 人类
圣克鲁斯生物技术 Actb抗体(Santa Cruz Biotechnology, sc-47778)被用于被用于免疫印迹在人类样本上. Mol Cell Biochem (2015) ncbi
小鼠 单克隆(C4)
  • 免疫印迹; kangaroo rats; 1:2000; 图 1
圣克鲁斯生物技术 Actb抗体(santa cruz, sc-47778)被用于被用于免疫印迹在kangaroo rats样本上浓度为1:2000 (图 1). Cell Mol Neurobiol (2015) ncbi
小鼠 单克隆(C4)
  • 免疫印迹; 人类
圣克鲁斯生物技术 Actb抗体(Santa Cruz, sc-47778)被用于被用于免疫印迹在人类样本上. Nucleic Acids Res (2014) ncbi
小鼠 单克隆(C4)
  • 免疫印迹; 小鼠
圣克鲁斯生物技术 Actb抗体(Santa Cruz Biotechnology, sc-47778)被用于被用于免疫印迹在小鼠样本上. J Immunol (2014) ncbi
小鼠 单克隆(C-2)
  • 免疫印迹; 人类
圣克鲁斯生物技术 Actb抗体(Santa Cruz, sc-8432)被用于被用于免疫印迹在人类样本上. J Biol Chem (2014) ncbi
小鼠 单克隆(C-2)
  • 免疫印迹; 大鼠; 1:1000
圣克鲁斯生物技术 Actb抗体(Santa Cruz, sc8432)被用于被用于免疫印迹在大鼠样本上浓度为1:1000. PLoS ONE (2014) ncbi
小鼠 单克隆(ACTBD11B7)
  • 免疫印迹; 大鼠; 1:500
圣克鲁斯生物技术 Actb抗体(Santa Cruz Biotechnology Inc., sc-81178)被用于被用于免疫印迹在大鼠样本上浓度为1:500. Neuroscience (2014) ncbi
小鼠 单克隆(C4)
  • 免疫印迹; 人类
圣克鲁斯生物技术 Actb抗体(Santa Cruz Biotechnology, sc-47778)被用于被用于免疫印迹在人类样本上. Cancer Res (2014) ncbi
小鼠 单克隆(ACTBD11B7)
  • 免疫印迹; 大鼠; 1:1000; 图 5
圣克鲁斯生物技术 Actb抗体(Santa Cruz, SC81178)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 5). Arq Bras Cardiol (2014) ncbi
小鼠 单克隆(C4)
  • 免疫印迹; 小鼠; 1:1000
圣克鲁斯生物技术 Actb抗体(Santa Cruz Biotechnology, sc-47778)被用于被用于免疫印迹在小鼠样本上浓度为1:1000. PLoS ONE (2014) ncbi
小鼠 单克隆(C4)
  • 免疫印迹; 人类; 1:10,000; 图 3
圣克鲁斯生物技术 Actb抗体(Santa Cruz, sc-47778)被用于被用于免疫印迹在人类样本上浓度为1:10,000 (图 3). Cancer Res (2014) ncbi
小鼠 单克隆(C4)
  • 免疫印迹; 小鼠; 图 2
圣克鲁斯生物技术 Actb抗体(Santa Cruz, sc-47778)被用于被用于免疫印迹在小鼠样本上 (图 2). PLoS ONE (2014) ncbi
小鼠 单克隆(4E8H3)
  • 免疫印迹; 小鼠; 1:1000
圣克鲁斯生物技术 Actb抗体(Santa Cruz, sc130065)被用于被用于免疫印迹在小鼠样本上浓度为1:1000. Neuroreport (2014) ncbi
小鼠 单克隆(C4)
  • 免疫印迹; 大鼠; 1:1000
圣克鲁斯生物技术 Actb抗体(Santa Cruz Biotechnology, sc- 47778)被用于被用于免疫印迹在大鼠样本上浓度为1:1000. Neuroreport (2014) ncbi
小鼠 单克隆(C4)
  • 免疫印迹; 人类
圣克鲁斯生物技术 Actb抗体(Santa Cruz, sc-47778)被用于被用于免疫印迹在人类样本上. J Virol (2014) ncbi
小鼠 单克隆(C4)
  • 免疫印迹; 犬
圣克鲁斯生物技术 Actb抗体(Santa Cruz Biotechnology, sc-47778)被用于被用于免疫印迹在犬样本上. Am J Physiol Renal Physiol (2014) ncbi
小鼠 单克隆(C4)
  • 免疫印迹; 人类
圣克鲁斯生物技术 Actb抗体(Santa Cruz Biotech, sc-47778)被用于被用于免疫印迹在人类样本上. PLoS ONE (2014) ncbi
小鼠 单克隆(C4)
  • 免疫印迹; 人类; 1:2000
圣克鲁斯生物技术 Actb抗体(Santa cruz, sc-47778)被用于被用于免疫印迹在人类样本上浓度为1:2000. BMC Cancer (2014) ncbi
小鼠 单克隆(C-2)
  • 免疫印迹; 小鼠
圣克鲁斯生物技术 Actb抗体(Santa Cruz Biotechnology, sc-8432)被用于被用于免疫印迹在小鼠样本上. Mol Cell Endocrinol (2014) ncbi
小鼠 单克隆(C4)
  • 免疫印迹; 人类
圣克鲁斯生物技术 Actb抗体(Santa Cruz, sc-47778)被用于被用于免疫印迹在人类样本上. J Virol (2014) ncbi
小鼠 单克隆(C-2)
  • 免疫印迹; 人类
圣克鲁斯生物技术 Actb抗体(Santa Cruz Biotechnology, sc-8432)被用于被用于免疫印迹在人类样本上. J Biol Chem (2014) ncbi
小鼠 单克隆(C4)
  • 免疫印迹; 小鼠
圣克鲁斯生物技术 Actb抗体(Santa Cruz, sc-47778)被用于被用于免疫印迹在小鼠样本上. J Cell Mol Med (2014) ncbi
小鼠 单克隆(C4)
  • 免疫印迹; 人类; 图 2
圣克鲁斯生物技术 Actb抗体(santa Cruz, sc-47778 HRP)被用于被用于免疫印迹在人类样本上 (图 2). Oncogene (2015) ncbi
小鼠 单克隆(ACTBD11B7)
  • 免疫印迹; 牛; 1:500
圣克鲁斯生物技术 Actb抗体(Santa Cruz Biotechnology, SC-81178)被用于被用于免疫印迹在牛样本上浓度为1:500. Domest Anim Endocrinol (2014) ncbi
小鼠 单克隆(C4)
  • 免疫印迹; 牛
圣克鲁斯生物技术 Actb抗体(Santa Cruz Biotechnology, sc-47778)被用于被用于免疫印迹在牛样本上. Biomed Res Int (2014) ncbi
小鼠 单克隆(ACTBD11B7)
  • 免疫印迹; 大鼠; 1:2000
圣克鲁斯生物技术 Actb抗体(Santa Cruz Biotechnology, sc-81178)被用于被用于免疫印迹在大鼠样本上浓度为1:2000. Mol Pain (2014) ncbi
小鼠 单克隆(C4)
  • 免疫印迹; 人类; 1:1000; 图 5
圣克鲁斯生物技术 Actb抗体(Santa Cruz, sc-47778)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 5). Mol Cancer (2014) ncbi
小鼠 单克隆(ACTBD11B7)
  • 免疫印迹; 小鼠; 1:1000; 图 5
圣克鲁斯生物技术 Actb抗体(Santa Cruz, ACTBD11B7)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 5). PLoS ONE (2014) ncbi
小鼠 单克隆(C4)
  • 免疫印迹; 人类; 图 4
圣克鲁斯生物技术 Actb抗体(Santa cruz, sc-47778)被用于被用于免疫印迹在人类样本上 (图 4). Biochim Biophys Acta (2014) ncbi
小鼠 单克隆(CGA7)
  • 免疫组化-石蜡切片; 小鼠
  • 免疫组化-石蜡切片; 豚鼠
圣克鲁斯生物技术 Actb抗体(Santa Cruz Biotechnology, sc-53015)被用于被用于免疫组化-石蜡切片在小鼠样本上 和 被用于免疫组化-石蜡切片在豚鼠样本上. Am J Respir Cell Mol Biol (2014) ncbi
小鼠 单克隆(ACTBD11B7)
  • 免疫印迹; 小鼠; 1:1000
圣克鲁斯生物技术 Actb抗体(Santa Cruz, sc-81178)被用于被用于免疫印迹在小鼠样本上浓度为1:1000. Neuropsychopharmacology (2014) ncbi
小鼠 单克隆(C4)
  • 免疫印迹; 小鼠; 1:5000
圣克鲁斯生物技术 Actb抗体(Santa Cruz Biotechnology, sc-47778)被用于被用于免疫印迹在小鼠样本上浓度为1:5000. J Biol Chem (2014) ncbi
小鼠 单克隆(9)
  • 免疫印迹; 大鼠; 1:1000
圣克鲁斯生物技术 Actb抗体(Santa Cruz Biotechnology, sc-130301)被用于被用于免疫印迹在大鼠样本上浓度为1:1000. PLoS ONE (2014) ncbi
小鼠 单克隆(C4)
  • 免疫印迹; 家羊; 1:1000
圣克鲁斯生物技术 Actb抗体(Santa Cruz Biotechnology, sc-47778)被用于被用于免疫印迹在家羊样本上浓度为1:1000. J Anim Physiol Anim Nutr (Berl) (2015) ncbi
小鼠 单克隆(ACTBD11B7)
  • 免疫印迹; 人类; 1:1000
圣克鲁斯生物技术 Actb抗体(Santa Cruz, SC-81178)被用于被用于免疫印迹在人类样本上浓度为1:1000. Gastroenterol Res Pract (2014) ncbi
小鼠 单克隆(C-2)
  • 免疫印迹; 人类; 1:5000
圣克鲁斯生物技术 Actb抗体(Santa Cruz, sc-8432)被用于被用于免疫印迹在人类样本上浓度为1:5000. Mol Cell Biol (2014) ncbi
小鼠 单克隆(C4)
  • 免疫印迹; 人类; 1:5000
圣克鲁斯生物技术 Actb抗体(Santa Cruz, sc-47778)被用于被用于免疫印迹在人类样本上浓度为1:5000. PLoS ONE (2014) ncbi
小鼠 单克隆(C4)
  • 免疫印迹; 小鼠; 1:1000
圣克鲁斯生物技术 Actb抗体(Santa Cruz, sc-47778)被用于被用于免疫印迹在小鼠样本上浓度为1:1000. J Mol Cell Cardiol (2014) ncbi
小鼠 单克隆(C4)
  • 免疫印迹; 小鼠
圣克鲁斯生物技术 Actb抗体(SCBT, sc-47778)被用于被用于免疫印迹在小鼠样本上. Leukemia (2014) ncbi
小鼠 单克隆(C4)
  • 免疫印迹; 人类
圣克鲁斯生物技术 Actb抗体(Santa Cruz Biotechnology, sc-47778)被用于被用于免疫印迹在人类样本上. Cell Rep (2014) ncbi
小鼠 单克隆(C4)
  • 免疫印迹; 人类
圣克鲁斯生物技术 Actb抗体(Santa Cruz Biotechnology, SC-47778)被用于被用于免疫印迹在人类样本上. PLoS ONE (2014) ncbi
小鼠 单克隆(C4)
  • 免疫印迹; 小鼠
圣克鲁斯生物技术 Actb抗体(Santa Cruz, sc-47778)被用于被用于免疫印迹在小鼠样本上. Mol Neurobiol (2014) ncbi
小鼠 单克隆(9)
  • 免疫印迹; 人类; 1:100; 图 1
圣克鲁斯生物技术 Actb抗体(Santa Cruz Biotechnology, sc-130301)被用于被用于免疫印迹在人类样本上浓度为1:100 (图 1). Cancer Gene Ther (2014) ncbi
小鼠 单克隆(9)
  • 免疫印迹; 人类
圣克鲁斯生物技术 Actb抗体(Santa Cruz, sc-130301)被用于被用于免疫印迹在人类样本上. Oncogene (2014) ncbi
小鼠 单克隆(C4)
  • 免疫印迹; 人类
圣克鲁斯生物技术 Actb抗体(Santa Cruz Biotechnology, sc-47778)被用于被用于免疫印迹在人类样本上. Mol Cell Biol (2014) ncbi
小鼠 单克隆(C4)
  • 免疫印迹; 小鼠; 1:500
圣克鲁斯生物技术 Actb抗体(Santa Cruz Biotechnology, sc-47778)被用于被用于免疫印迹在小鼠样本上浓度为1:500. J Recept Signal Transduct Res (2014) ncbi
小鼠 单克隆(C4)
  • 免疫印迹; 大鼠; 1:10,000
圣克鲁斯生物技术 Actb抗体(Santa Cruz, sc-47778)被用于被用于免疫印迹在大鼠样本上浓度为1:10,000. PLoS ONE (2014) ncbi
小鼠 单克隆(C-2)
  • 免疫印迹; 大鼠; 1:4000
圣克鲁斯生物技术 Actb抗体(Santa Cruz Biotechnology, sc-8432)被用于被用于免疫印迹在大鼠样本上浓度为1:4000. Exp Neurol (2014) ncbi
小鼠 单克隆(C4)
  • 免疫印迹; 人类
圣克鲁斯生物技术 Actb抗体(Santa Cruz Biotechnology, sc-47778)被用于被用于免疫印迹在人类样本上. J Biol Chem (2014) ncbi
小鼠 单克隆(C4)
  • 免疫印迹; 人类; 图 4
圣克鲁斯生物技术 Actb抗体(Santa Cruz, sc-47778)被用于被用于免疫印迹在人类样本上 (图 4). J Biol Chem (2014) ncbi
小鼠 单克隆(C-2)
  • 免疫印迹; 小鼠
圣克鲁斯生物技术 Actb抗体(Santa Cruz, sc-8432)被用于被用于免疫印迹在小鼠样本上. J Immunol (2014) ncbi
小鼠 单克隆(C4)
  • 免疫印迹; 小鼠; 1:500
圣克鲁斯生物技术 Actb抗体(Santa Cruz Biotechnology, sc-47778)被用于被用于免疫印迹在小鼠样本上浓度为1:500. Clin Exp Pharmacol Physiol (2014) ncbi
小鼠 单克隆(ACTBD11B7)
  • 免疫印迹; 小鼠; 1:500
圣克鲁斯生物技术 Actb抗体(Santa Cruz, sc-81178)被用于被用于免疫印迹在小鼠样本上浓度为1:500. Mol Cell Endocrinol (2014) ncbi
小鼠 单克隆(C4)
  • 免疫印迹; 人类; 1:1000; 图 2
圣克鲁斯生物技术 Actb抗体(Santa Cruz Biotechnology, sc-47778)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 2). Int Forum Allergy Rhinol (2014) ncbi
小鼠 单克隆(1)
  • 免疫印迹; 小鼠; 1:1000
圣克鲁斯生物技术 Actb抗体(Santa Cruz Biotechnology, sc-130300)被用于被用于免疫印迹在小鼠样本上浓度为1:1000. FASEB J (2014) ncbi
小鼠 单克隆(9)
  • 免疫印迹; 人类; 1:500
圣克鲁斯生物技术 Actb抗体(Santa Cruz Biotechnology, sc-130301)被用于被用于免疫印迹在人类样本上浓度为1:500. Neuro Oncol (2014) ncbi
小鼠 单克隆(C4)
  • 免疫印迹; 人类
圣克鲁斯生物技术 Actb抗体(Santa Cruz Biotechnology, C4)被用于被用于免疫印迹在人类样本上. PLoS ONE (2014) ncbi
小鼠 单克隆(C4)
  • 免疫沉淀; 人类
  • 免疫细胞化学; 人类
  • 免疫印迹; 人类
圣克鲁斯生物技术 Actb抗体(Santa Cruz Biotechnology, C4)被用于被用于免疫沉淀在人类样本上, 被用于免疫细胞化学在人类样本上 和 被用于免疫印迹在人类样本上. Cell Death Differ (2014) ncbi
小鼠 单克隆(C4)
  • 免疫印迹; 人类; 图 3
圣克鲁斯生物技术 Actb抗体(Santa Cruz, sc-47778)被用于被用于免疫印迹在人类样本上 (图 3). J Investig Med (2014) ncbi
小鼠 单克隆(C4)
  • 免疫印迹; 人类; 图 6
圣克鲁斯生物技术 Actb抗体(Santa Cruz Biotechnology Inc, sc-47778)被用于被用于免疫印迹在人类样本上 (图 6). J Pharmacol Sci (2014) ncbi
小鼠 单克隆(C4)
  • 免疫印迹; 人类; 图 2
圣克鲁斯生物技术 Actb抗体(Santa Cruz Biotechnology, sc-47778)被用于被用于免疫印迹在人类样本上 (图 2). Cancer Lett (2014) ncbi
小鼠 单克隆(C4)
  • 免疫印迹; 小鼠; 图 7
圣克鲁斯生物技术 Actb抗体(Santa Cruz, sc-47778)被用于被用于免疫印迹在小鼠样本上 (图 7). PLoS ONE (2014) ncbi
小鼠 单克隆(C4)
  • 免疫印迹; domestic rabbit; 1:2000
圣克鲁斯生物技术 Actb抗体(Santa Cruz Biotechnology, sc-47778)被用于被用于免疫印迹在domestic rabbit样本上浓度为1:2000. Exp Ther Med (2014) ncbi
小鼠 单克隆(2Q1055)
  • 免疫印迹; 小鼠; 1:200; 图 s1
圣克鲁斯生物技术 Actb抗体(Santa Cruz, sc-58673)被用于被用于免疫印迹在小鼠样本上浓度为1:200 (图 s1). Development (2014) ncbi
小鼠 单克隆(ACTBD11B7)
  • 免疫印迹; 小鼠
圣克鲁斯生物技术 Actb抗体(Santa Cruz Biotechnology, sc-81178)被用于被用于免疫印迹在小鼠样本上. J Biol Chem (2014) ncbi
小鼠 单克隆(C4)
  • 免疫沉淀; 人类
  • 免疫细胞化学; 人类
  • 免疫印迹; 人类
圣克鲁斯生物技术 Actb抗体(Santa Cruz Biotechnology, sc-47778)被用于被用于免疫沉淀在人类样本上, 被用于免疫细胞化学在人类样本上 和 被用于免疫印迹在人类样本上. J Biol Chem (2014) ncbi
小鼠 单克隆(C4)
  • 免疫印迹; 人类
圣克鲁斯生物技术 Actb抗体(Santa Cruz Biotechnology, C4)被用于被用于免疫印迹在人类样本上. J Biol Chem (2014) ncbi
小鼠 单克隆(C4)
  • 免疫印迹; 人类
圣克鲁斯生物技术 Actb抗体(Santa Cruz, sc-47778)被用于被用于免疫印迹在人类样本上. Cancer Res (2014) ncbi
小鼠 单克隆(C4)
  • 免疫印迹; 小鼠; 1:8000; 图 2
圣克鲁斯生物技术 Actb抗体(Santa Cruz Biotechnology, sc-47778)被用于被用于免疫印迹在小鼠样本上浓度为1:8000 (图 2). Biochem Biophys Res Commun (2014) ncbi
小鼠 单克隆(C4)
  • 免疫印迹; fission yeast
圣克鲁斯生物技术 Actb抗体(Santa Cruz Biotechnology, C4)被用于被用于免疫印迹在fission yeast样本上. J Biol Chem (2014) ncbi
小鼠 单克隆(C4)
  • 免疫印迹; 小鼠; 1:50
圣克鲁斯生物技术 Actb抗体(Santa Cruz Biotechnology, sc-47778)被用于被用于免疫印迹在小鼠样本上浓度为1:50. J Urol (2014) ncbi
小鼠 单克隆(C4)
  • 免疫印迹; 小鼠
圣克鲁斯生物技术 Actb抗体(Santa Cruz, C4)被用于被用于免疫印迹在小鼠样本上. Br J Cancer (2014) ncbi
小鼠 单克隆(C4)
  • 免疫印迹; 人类
圣克鲁斯生物技术 Actb抗体(Santa Cruz, sc-47778)被用于被用于免疫印迹在人类样本上. J Virol (2014) ncbi
小鼠 单克隆(C4)
  • 免疫印迹; 大鼠
圣克鲁斯生物技术 Actb抗体(Santa Cruz Biotechnology, sc-47778)被用于被用于免疫印迹在大鼠样本上. Reprod Toxicol (2014) ncbi
小鼠 单克隆(C4)
  • 免疫印迹; 仓鼠; 1:1000; 图 1
圣克鲁斯生物技术 Actb抗体(Santa Cruz Biotechnology, sc-47778)被用于被用于免疫印迹在仓鼠样本上浓度为1:1000 (图 1). Mol Biol Cell (2014) ncbi
小鼠 单克隆(C4)
  • 免疫印迹; 小鼠
圣克鲁斯生物技术 Actb抗体(Santa Cruz Biotechnology, sc-47778)被用于被用于免疫印迹在小鼠样本上. J Neural Transm (Vienna) (2014) ncbi
小鼠 单克隆(C4)
  • 免疫印迹; 人类
圣克鲁斯生物技术 Actb抗体(Santa Cruz Biotechnology, sc-47778)被用于被用于免疫印迹在人类样本上. Pflugers Arch (2014) ncbi
小鼠 单克隆(ACTBD11B7)
  • 免疫印迹; 小鼠; 1:2500
圣克鲁斯生物技术 Actb抗体(Santa Cruz Biotechnology, sc-81178)被用于被用于免疫印迹在小鼠样本上浓度为1:2500. J Pharmacol Exp Ther (2014) ncbi
小鼠 单克隆(C4)
  • 免疫印迹; 人类; 1:5000
圣克鲁斯生物技术 Actb抗体(Santa Cruz, sc47778)被用于被用于免疫印迹在人类样本上浓度为1:5000. Stem Cells Dev (2014) ncbi
小鼠 单克隆(C4)
  • 免疫印迹; 人类
圣克鲁斯生物技术 Actb抗体(Santa Cruz, sc-47778)被用于被用于免疫印迹在人类样本上. Infect Immun (2014) ncbi
小鼠 单克隆(C4)
  • 免疫印迹; 人类
圣克鲁斯生物技术 Actb抗体(Santa Cruz, sc-47778)被用于被用于免疫印迹在人类样本上. J Dermatol Sci (2014) ncbi
小鼠 单克隆(C4)
  • 免疫印迹; 人类
圣克鲁斯生物技术 Actb抗体(Santa Cruz Biotechnology, sc-47778)被用于被用于免疫印迹在人类样本上. Cell Death Dis (2013) ncbi
小鼠 单克隆(C4)
  • 免疫细胞化学; 人类
圣克鲁斯生物技术 Actb抗体(Santa Cruz Biotechnology, sc-47778)被用于被用于免疫细胞化学在人类样本上. Cell Cycle (2013) ncbi
小鼠 单克隆(C4)
  • 免疫印迹; 人类
圣克鲁斯生物技术 Actb抗体(Santa Cruz Biotechnology, sc-47778)被用于被用于免疫印迹在人类样本上. Oncogene (2014) ncbi
小鼠 单克隆(C4)
  • 免疫印迹; 小鼠; 1:500; 图 1
圣克鲁斯生物技术 Actb抗体(Santa Cruz, sc-47778)被用于被用于免疫印迹在小鼠样本上浓度为1:500 (图 1). J Alzheimers Dis (2014) ncbi
小鼠 单克隆(ACTBD11B7)
  • 免疫印迹; 人类
圣克鲁斯生物技术 Actb抗体(Santa Cruz, sc-81178)被用于被用于免疫印迹在人类样本上. Cell Mol Immunol (2014) ncbi
小鼠 单克隆(C4)
  • 免疫印迹; 人类
圣克鲁斯生物技术 Actb抗体(Santa Cruz, sc-47778)被用于被用于免疫印迹在人类样本上. PLoS ONE (2013) ncbi
小鼠 单克隆(C4)
  • 免疫印迹; 小鼠
  • 免疫印迹; 人类
圣克鲁斯生物技术 Actb抗体(Santa Cruz Biotechnology, SC-47778)被用于被用于免疫印迹在小鼠样本上 和 被用于免疫印迹在人类样本上. J Biol Chem (2013) ncbi
小鼠 单克隆(C4)
  • 免疫印迹; 人类; 图 1
圣克鲁斯生物技术 Actb抗体(Santa Cruz Biotechnology,, sc-47778)被用于被用于免疫印迹在人类样本上 (图 1). Oncogene (2014) ncbi
小鼠 单克隆(C4)
  • 免疫印迹; 人类; 1:1000
圣克鲁斯生物技术 Actb抗体(Santa Cruz Biotechnology, sc-47778)被用于被用于免疫印迹在人类样本上浓度为1:1000. Biochem Biophys Res Commun (2013) ncbi
小鼠 单克隆(C4)
  • 免疫印迹; 小鼠; 1:1000; 图 6
圣克鲁斯生物技术 Actb抗体(Santa Cruz, sc-47778)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 6). Int J Cancer (2014) ncbi
小鼠 单克隆(ACTBD11B7)
  • 免疫印迹; 小鼠; 1:1000
圣克鲁斯生物技术 Actb抗体(Santa Cruz, SC81178)被用于被用于免疫印迹在小鼠样本上浓度为1:1000. PLoS ONE (2013) ncbi
小鼠 单克隆(C4)
  • 免疫印迹; 人类; 图 1
圣克鲁斯生物技术 Actb抗体(Santa Cruz Biotechnology, sc-47778)被用于被用于免疫印迹在人类样本上 (图 1). Liver Int (2014) ncbi
小鼠 单克隆(C4)
  • 免疫印迹; 大鼠; 1:50,000; 图 2
圣克鲁斯生物技术 Actb抗体(Santa Cruz, sc-47778)被用于被用于免疫印迹在大鼠样本上浓度为1:50,000 (图 2). PLoS ONE (2013) ncbi
小鼠 单克隆(C4)
  • 免疫印迹; 人类
圣克鲁斯生物技术 Actb抗体(Santa Cruz, C4)被用于被用于免疫印迹在人类样本上. Mol Carcinog (2014) ncbi
小鼠 单克隆(C-2)
  • 免疫印迹; 人类
圣克鲁斯生物技术 Actb抗体(Santa Cruz, sc-8432)被用于被用于免疫印迹在人类样本上. J Cell Sci (2013) ncbi
小鼠 单克隆(C-2)
  • 免疫印迹; 人类; 1:500
圣克鲁斯生物技术 Actb抗体(Santa Cruz, sc-8432)被用于被用于免疫印迹在人类样本上浓度为1:500. Eur J Hum Genet (2014) ncbi
小鼠 单克隆(ACTBD11B7)
  • 免疫印迹; 小鼠
圣克鲁斯生物技术 Actb抗体(Santa Cruz Biotechnology, sc-81178)被用于被用于免疫印迹在小鼠样本上. Nucleic Acids Res (2013) ncbi
小鼠 单克隆(C4)
  • 免疫印迹; 人类
圣克鲁斯生物技术 Actb抗体(Santa Cruz, sc-47778)被用于被用于免疫印迹在人类样本上. Mol Syst Biol (2013) ncbi
小鼠 单克隆(C4)
  • 免疫印迹; 小鼠; 1:1000; 图 5sd
圣克鲁斯生物技术 Actb抗体(Santa Cruz Biotechnology, sc47778)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 5sd). J Biomed Mater Res B Appl Biomater (2013) ncbi
小鼠 单克隆(4E8H3)
  • 免疫印迹; 人类; 1:1000; 图 3
圣克鲁斯生物技术 Actb抗体(Santa Cruz, sc-130065)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3). PLoS ONE (2013) ncbi
小鼠 单克隆(ACTBD11B7)
  • 免疫印迹; 人类; 图 5
  • 免疫印迹; 大鼠
圣克鲁斯生物技术 Actb抗体(Santa Cruz, sc-81178)被用于被用于免疫印迹在人类样本上 (图 5) 和 被用于免疫印迹在大鼠样本上. Cell Death Dis (2013) ncbi
小鼠 单克隆(C-2)
  • 免疫印迹; 人类; 图 1
圣克鲁斯生物技术 Actb抗体(Santa Cruz, sc-8432)被用于被用于免疫印迹在人类样本上 (图 1). PLoS ONE (2013) ncbi
小鼠 单克隆(C4)
  • 免疫印迹; 人类
圣克鲁斯生物技术 Actb抗体(Santa Cruz, sc-47778)被用于被用于免疫印迹在人类样本上. EMBO J (2013) ncbi
小鼠 单克隆(C4)
  • 免疫印迹; 小鼠; 1:1000
圣克鲁斯生物技术 Actb抗体(Santa Cruz Biotechnology, sc-47778)被用于被用于免疫印迹在小鼠样本上浓度为1:1000. PLoS ONE (2013) ncbi
小鼠 单克隆(C4)
  • 免疫印迹; 小鼠
圣克鲁斯生物技术 Actb抗体(Santa Cruz, sc-47778)被用于被用于免疫印迹在小鼠样本上. Biochim Biophys Acta (2013) ncbi
小鼠 单克隆(C4)
  • 免疫印迹; 人类; 1:2000
圣克鲁斯生物技术 Actb抗体(Santa Cruz, sc-47778)被用于被用于免疫印迹在人类样本上浓度为1:2000. J Cell Mol Med (2013) ncbi
小鼠 单克隆(ACTBD11B7)
  • 免疫印迹; 人类
圣克鲁斯生物技术 Actb抗体(Santa Cruz, sc-81178)被用于被用于免疫印迹在人类样本上. Urol Oncol (2014) ncbi
小鼠 单克隆(B4)
  • 免疫细胞化学; 人类
  • 免疫印迹; 人类
圣克鲁斯生物技术 Actb抗体(Santa Cruz, sc-53142)被用于被用于免疫细胞化学在人类样本上 和 被用于免疫印迹在人类样本上. Cell Cycle (2013) ncbi
小鼠 单克隆(C4)
  • 免疫印迹; 人类; 1:800; 图 6
圣克鲁斯生物技术 Actb抗体(Santa Cruz Biotechnology, sc-47778)被用于被用于免疫印迹在人类样本上浓度为1:800 (图 6). PLoS ONE (2012) ncbi
小鼠 单克隆(C4)
  • 免疫印迹; 小鼠; 1:5,000
圣克鲁斯生物技术 Actb抗体(Santa Cruz, sc-47778)被用于被用于免疫印迹在小鼠样本上浓度为1:5,000. Transgenic Res (2013) ncbi
小鼠 单克隆(C-2)
  • 免疫印迹; 人类
圣克鲁斯生物技术 Actb抗体(Santa Cruz, sc8432)被用于被用于免疫印迹在人类样本上. Nucleic Acids Res (2013) ncbi
小鼠 单克隆(C4)
  • 免疫印迹; 人类
圣克鲁斯生物技术 Actb抗体(Santa Cruz Biotechnology, sc-47778)被用于被用于免疫印迹在人类样本上. Cell Cycle (2012) ncbi
小鼠 单克隆(C4)
  • 免疫细胞化学; 人类; 1:500
  • 免疫印迹; 人类
圣克鲁斯生物技术 Actb抗体(Santa Cruz Biotechnology, Sc-47778)被用于被用于免疫细胞化学在人类样本上浓度为1:500 和 被用于免疫印迹在人类样本上. J Virol (2013) ncbi
小鼠 单克隆(ACTBD11B7)
  • 免疫印迹; 人类
圣克鲁斯生物技术 Actb抗体(Santa Cruz, sc-81178)被用于被用于免疫印迹在人类样本上. Neurosci Lett (2012) ncbi
小鼠 单克隆(C4)
  • 免疫印迹; 人类; 1:1000
圣克鲁斯生物技术 Actb抗体(Santa Cruz, sc-47778)被用于被用于免疫印迹在人类样本上浓度为1:1000. J Mol Signal (2012) ncbi
小鼠 单克隆(ACTBD11B7)
  • 免疫印迹; 大鼠
圣克鲁斯生物技术 Actb抗体(Santa Cruz Biotechnology, sc-81178)被用于被用于免疫印迹在大鼠样本上. Biochem Biophys Res Commun (2012) ncbi
小鼠 单克隆(C4)
  • 免疫印迹; 小鼠; 1:1000
  • 免疫印迹; 人类; 1:1000
圣克鲁斯生物技术 Actb抗体(Santa Cruz Biotechnology, sc-47778)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 和 被用于免疫印迹在人类样本上浓度为1:1000. Eur Heart J (2011) ncbi
艾博抗(上海)贸易有限公司
小鼠 单克隆(AC-40)
  • 免疫细胞化学; 小鼠; 图 5a
艾博抗(上海)贸易有限公司 Actb抗体(Abcam, ab11003)被用于被用于免疫细胞化学在小鼠样本上 (图 5a). Arthritis Res Ther (2022) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 小鼠; 1:5000; 图 1k
艾博抗(上海)贸易有限公司 Actb抗体(Abcam, ab6276)被用于被用于免疫印迹在小鼠样本上浓度为1:5000 (图 1k). Nat Commun (2021) ncbi
小鼠 单克隆(mAbcam 8226)
  • 免疫印迹; 大鼠; 1:5000; 图 5d
艾博抗(上海)贸易有限公司 Actb抗体(Abcam, ab8226)被用于被用于免疫印迹在大鼠样本上浓度为1:5000 (图 5d). Cell Death Discov (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 大鼠; 1:1000; 图 2c
艾博抗(上海)贸易有限公司 Actb抗体(Abcam, ab8227)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 2c). Evid Based Complement Alternat Med (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:2000; 图 4b
艾博抗(上海)贸易有限公司 Actb抗体(Abcam, ab8227)被用于被用于免疫印迹在小鼠样本上浓度为1:2000 (图 4b). J Cachexia Sarcopenia Muscle (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 5b
艾博抗(上海)贸易有限公司 Actb抗体(Abcam, Ab8227)被用于被用于免疫印迹在小鼠样本上 (图 5b). Cell Rep (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:5000; 图 2c
艾博抗(上海)贸易有限公司 Actb抗体(Abcam, ab8227)被用于被用于免疫印迹在小鼠样本上浓度为1:5000 (图 2c). iScience (2021) ncbi
小鼠 单克隆(mAbcam 8226)
  • 免疫印迹; 人类; 图 2d
艾博抗(上海)贸易有限公司 Actb抗体(Abcam, ab8226)被用于被用于免疫印迹在人类样本上 (图 2d). iScience (2021) ncbi
小鼠 单克隆(mAbcam 8226)
  • 免疫印迹; 小鼠; 1:16,000; 图 4a
艾博抗(上海)贸易有限公司 Actb抗体(Abcam, ab8226)被用于被用于免疫印迹在小鼠样本上浓度为1:16,000 (图 4a). Glia (2021) ncbi
小鼠 单克隆(mAbcam 8226)
  • 免疫印迹; 小鼠; 1:1000; 图 1c
艾博抗(上海)贸易有限公司 Actb抗体(Abcam, ab8226)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 1c). Stem Cell Res Ther (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 大鼠; 1:1000; 图 1e
艾博抗(上海)贸易有限公司 Actb抗体(Abcam, ab8227)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 1e). Aging (Albany NY) (2021) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 人类; ; 图 1c
艾博抗(上海)贸易有限公司 Actb抗体(Abcam, ab6276)被用于被用于免疫印迹在人类样本上浓度为 (图 1c). Nat Cell Biol (2021) ncbi
小鼠 单克隆(mAbcam 8226)
  • 免疫印迹; 小鼠; 1:1000; 图 1e
艾博抗(上海)贸易有限公司 Actb抗体(abcam, ab8226)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 1e). Oncoimmunology (2021) ncbi
小鼠 单克隆(4E3.adl)
  • 免疫印迹; 小鼠; 1:1000; 图 s3d
艾博抗(上海)贸易有限公司 Actb抗体(Abcam, ab130935)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 s3d). Redox Biol (2021) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:1000
艾博抗(上海)贸易有限公司 Actb抗体(Abcam, ab8227)被用于被用于免疫组化在小鼠样本上浓度为1:1000. Nat Commun (2021) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 人类; 1:10,000; 图 6a
艾博抗(上海)贸易有限公司 Actb抗体(Abcam, ab6276)被用于被用于免疫印迹在人类样本上浓度为1:10,000 (图 6a). Int J Mol Sci (2021) ncbi
小鼠 单克隆(mAbcam 8226)
  • 免疫印迹; 小鼠; 图 5a
艾博抗(上海)贸易有限公司 Actb抗体(Abcam, ab8226)被用于被用于免疫印迹在小鼠样本上 (图 5a). Cell Death Dis (2020) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 5e
艾博抗(上海)贸易有限公司 Actb抗体(Abcam, ab8227)被用于被用于免疫印迹在人类样本上 (图 5e). Sci Adv (2020) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 1c
艾博抗(上海)贸易有限公司 Actb抗体(Abcam, ab8227)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 1c). Int J Oncol (2020) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 人类; 图 1b
艾博抗(上海)贸易有限公司 Actb抗体(Abcam, ab6276)被用于被用于免疫印迹在人类样本上 (图 1b). elife (2020) ncbi
小鼠 单克隆(mAbcam 8226)
  • 免疫印迹; 人类; 1:5000; 图 3a
艾博抗(上海)贸易有限公司 Actb抗体(Abcam, ab8226)被用于被用于免疫印迹在人类样本上浓度为1:5000 (图 3a). Int J Oncol (2020) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:5000; 图 5d
艾博抗(上海)贸易有限公司 Actb抗体(Abcam, AB8227)被用于被用于免疫印迹在小鼠样本上浓度为1:5000 (图 5d). Exp Neurobiol (2020) ncbi
小鼠 单克隆(mAbcam 8224)
  • 免疫印迹; 大鼠; 1:500; 图 1d
艾博抗(上海)贸易有限公司 Actb抗体(Abcam, ab8224)被用于被用于免疫印迹在大鼠样本上浓度为1:500 (图 1d). Mol Med Rep (2020) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:2000; 图 2d
艾博抗(上海)贸易有限公司 Actb抗体(Abcam, ab8227)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 2d). PLoS ONE (2020) ncbi
小鼠 单克隆(mAbcam 8226)
  • 免疫印迹; 小鼠; 1:10,000; 图 3h
艾博抗(上海)贸易有限公司 Actb抗体(Abcam, Ab20272)被用于被用于免疫印迹在小鼠样本上浓度为1:10,000 (图 3h). Cancer Cell (2020) ncbi
小鼠 单克隆(mAbcam 8226)
  • 免疫印迹; 小鼠; 1:5000; 图 1b
艾博抗(上海)贸易有限公司 Actb抗体(Abcam, ab8226)被用于被用于免疫印迹在小鼠样本上浓度为1:5000 (图 1b). elife (2020) ncbi
小鼠 单克隆(mAbcam 8226)
  • 免疫印迹; 人类; 1:6000; 图 6b, 6d
艾博抗(上海)贸易有限公司 Actb抗体(Abcam, ab8226)被用于被用于免疫印迹在人类样本上浓度为1:6000 (图 6b, 6d). Eur Rev Med Pharmacol Sci (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:20,000; 图 s3d
艾博抗(上海)贸易有限公司 Actb抗体(Abcam, ab8227)被用于被用于免疫印迹在人类样本上浓度为1:20,000 (图 s3d). Aging Cell (2020) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 1c
艾博抗(上海)贸易有限公司 Actb抗体(Abcam, ab8227)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 1c). EMBO Mol Med (2019) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 小鼠; 图 5f
艾博抗(上海)贸易有限公司 Actb抗体(Abcam, ab6276)被用于被用于免疫印迹在小鼠样本上 (图 5f). Cell (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 2a
艾博抗(上海)贸易有限公司 Actb抗体(Abcam, ab8227)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 2a). Aging (Albany NY) (2019) ncbi
小鼠 单克隆(mAbcam 8226)
  • 免疫印迹; 人类; 1:5000; 图 5s1a
艾博抗(上海)贸易有限公司 Actb抗体(Abcam, Ab8226)被用于被用于免疫印迹在人类样本上浓度为1:5000 (图 5s1a). elife (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:5000; 图 7a
艾博抗(上海)贸易有限公司 Actb抗体(Abcam, ab8227)被用于被用于免疫印迹在人类样本上浓度为1:5000 (图 7a). Aging (Albany NY) (2019) ncbi
小鼠 单克隆(mAbcam 8226)
  • 免疫印迹; 人类; 1:1000; 图 3d
艾博抗(上海)贸易有限公司 Actb抗体(Abcam, ab8226)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3d). BMC Mol Biol (2019) ncbi
小鼠 单克隆(mAbcam 8226)
  • 免疫印迹; 人类; 1:500; 图 1
艾博抗(上海)贸易有限公司 Actb抗体(Abcam, ab8226)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 1). BMC Cancer (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 大鼠; 图 1a
艾博抗(上海)贸易有限公司 Actb抗体(Abcam, ab8227)被用于被用于免疫印迹在大鼠样本上 (图 1a). Cell Rep (2019) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 小鼠; 1:50,000; 图 2b
艾博抗(上海)贸易有限公司 Actb抗体(Abcam, ab49900)被用于被用于免疫印迹在小鼠样本上浓度为1:50,000 (图 2b). Mol Cancer Ther (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 大鼠; 图 3b
艾博抗(上海)贸易有限公司 Actb抗体(Abcam, ab8227)被用于被用于免疫印迹在大鼠样本上 (图 3b). Biosci Rep (2019) ncbi
小鼠 单克隆(mAbcam 8226)
  • 免疫印迹; 人类; 1:1000; 图 2c
艾博抗(上海)贸易有限公司 Actb抗体(Abcam, ab8226)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 2c). Biosci Rep (2019) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 小鼠; 图 5a
艾博抗(上海)贸易有限公司 Actb抗体(Abcam, ac15)被用于被用于免疫印迹在小鼠样本上 (图 5a). Cancer Res (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 1c
艾博抗(上海)贸易有限公司 Actb抗体(Abcam, ab8227)被用于被用于免疫印迹在人类样本上 (图 1c). Biol Res (2019) ncbi
小鼠 单克隆(mAbcam 8226)
  • 免疫印迹; 小鼠; 1:10,000; 图 s1b
艾博抗(上海)贸易有限公司 Actb抗体(Abcam, ab8226)被用于被用于免疫印迹在小鼠样本上浓度为1:10,000 (图 s1b). Sci Adv (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 大鼠; 图 4
艾博抗(上海)贸易有限公司 Actb抗体(Abcam, ab8227)被用于被用于免疫印迹在大鼠样本上 (图 4). BMC Complement Altern Med (2019) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 小鼠; 图 1f
艾博抗(上海)贸易有限公司 Actb抗体(Abcam, ab49900)被用于被用于免疫印迹在小鼠样本上 (图 1f). Cell Rep (2019) ncbi
小鼠 单克隆(mAbcam 8226)
  • 免疫印迹; 大鼠; 1:1000; 图 1c
艾博抗(上海)贸易有限公司 Actb抗体(Abcam, ab8226)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 1c). BMC Biotechnol (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 6l
艾博抗(上海)贸易有限公司 Actb抗体(Abcam, ab8227)被用于被用于免疫印迹在人类样本上 (图 6l). Nat Cell Biol (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1 ug/ml; 图 2a
艾博抗(上海)贸易有限公司 Actb抗体(Abcam, ab8227)被用于被用于免疫印迹在人类样本上浓度为1 ug/ml (图 2a). J Virol (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 2b
艾博抗(上海)贸易有限公司 Actb抗体(Abcam, ab8227)被用于被用于免疫印迹在人类样本上 (图 2b). J Clin Invest (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:3000; 图 3b
艾博抗(上海)贸易有限公司 Actb抗体(Abcam, ab8227)被用于被用于免疫印迹在人类样本上浓度为1:3000 (图 3b). Mol Med Rep (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:2500; 图 s1b
艾博抗(上海)贸易有限公司 Actb抗体(Abcam, ab8227)被用于被用于免疫印迹在人类样本上浓度为1:2500 (图 s1b). Brain Pathol (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 2a
艾博抗(上海)贸易有限公司 Actb抗体(Abcam, ab8227)被用于被用于免疫印迹在人类样本上 (图 2a). PLoS Pathog (2018) ncbi
小鼠 单克隆(NH3)
  • 免疫印迹; 小鼠; 1:1000; 图 6a
  • 免疫细胞化学; pigs ; 1:1000; 图 6e
艾博抗(上海)贸易有限公司 Actb抗体(Abcam, ab205)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 6a) 和 被用于免疫细胞化学在pigs 样本上浓度为1:1000 (图 6e). Redox Biol (2019) ncbi
小鼠 单克隆(AC-40)
  • 免疫印迹; 牛; 0.5 ug/ml; 图 5c
艾博抗(上海)贸易有限公司 Actb抗体(Abcam, ab11003)被用于被用于免疫印迹在牛样本上浓度为0.5 ug/ml (图 5c). Graefes Arch Clin Exp Ophthalmol (2019) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 小鼠; 1:10,000; 图 5m
艾博抗(上海)贸易有限公司 Actb抗体(Abcam, ab6276)被用于被用于免疫印迹在小鼠样本上浓度为1:10,000 (图 5m). Science (2018) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 2c
艾博抗(上海)贸易有限公司 Actb抗体(abcam, ab8227)被用于被用于免疫印迹在人类样本上 (图 2c). MAbs (2018) ncbi
小鼠 单克隆(mAbcam 8226)
  • 免疫印迹; 小鼠; 图 1a
艾博抗(上海)贸易有限公司 Actb抗体(Abcam, 20272)被用于被用于免疫印迹在小鼠样本上 (图 1a). J Cell Commun Signal (2018) ncbi
小鼠 单克隆(mAbcam 8226)
  • 免疫印迹; 小鼠; 图 6e
艾博抗(上海)贸易有限公司 Actb抗体(Abcam, ab8226)被用于被用于免疫印迹在小鼠样本上 (图 6e). Cell Death Dis (2017) ncbi
小鼠 单克隆(mAbcam 8226)
  • 免疫印迹; 小鼠; 图 6d
艾博抗(上海)贸易有限公司 Actb抗体(Abcam, Ab8226)被用于被用于免疫印迹在小鼠样本上 (图 6d). J Clin Invest (2017) ncbi
小鼠 单克隆(mAbcam 8226)
  • 免疫印迹; 人类; 图 5f
艾博抗(上海)贸易有限公司 Actb抗体(Abcam, ab8226)被用于被用于免疫印迹在人类样本上 (图 5f). J Biol Chem (2017) ncbi
小鼠 单克隆(NH3)
  • 免疫组化-冰冻切片; 小鼠; 图 5c
艾博抗(上海)贸易有限公司 Actb抗体(Abcam, ab205)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 5c). Sci Rep (2017) ncbi
小鼠 单克隆(AC-15)
  • 免疫细胞化学; 人类; 图 s6a
艾博抗(上海)贸易有限公司 Actb抗体(Abcam, ab6276)被用于被用于免疫细胞化学在人类样本上 (图 s6a). Oncotarget (2016) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 人类; 图 1
艾博抗(上海)贸易有限公司 Actb抗体(Abcam, AC-15)被用于被用于免疫印迹在人类样本上 (图 1). Sci Rep (2016) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 小鼠; 1:10,000; 图 7b
艾博抗(上海)贸易有限公司 Actb抗体(Abcam, ab6276)被用于被用于免疫印迹在小鼠样本上浓度为1:10,000 (图 7b). Nat Commun (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; fruit fly ; 1:2000; 图 8
艾博抗(上海)贸易有限公司 Actb抗体(Abcam, ab8227)被用于被用于免疫印迹在fruit fly 样本上浓度为1:2000 (图 8). elife (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 1
艾博抗(上海)贸易有限公司 Actb抗体(Abcam, ab8227)被用于被用于免疫印迹在人类样本上 (图 1). Lipids Health Dis (2016) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 小鼠; 图 9
艾博抗(上海)贸易有限公司 Actb抗体(AbCam, ab6276)被用于被用于免疫印迹在小鼠样本上 (图 9). Acta Neuropathol Commun (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 大鼠; 1:2000; 图 5
艾博抗(上海)贸易有限公司 Actb抗体(abcam, ab8227)被用于被用于免疫印迹在大鼠样本上浓度为1:2000 (图 5). Sci Rep (2016) ncbi
小鼠 单克隆(mAbcam 8226)
  • 免疫印迹; 人类; 图 s1
艾博抗(上海)贸易有限公司 Actb抗体(Abcam, Ab20272)被用于被用于免疫印迹在人类样本上 (图 s1). PLoS ONE (2016) ncbi
小鼠 单克隆(mAbcam 8226)
  • 免疫印迹; 小鼠; 1:2000; 图 1d
艾博抗(上海)贸易有限公司 Actb抗体(Abcam, ab8226)被用于被用于免疫印迹在小鼠样本上浓度为1:2000 (图 1d). J Neuroinflammation (2016) ncbi
小鼠 单克隆(4E3.adl)
  • 免疫印迹; 小鼠; 1:200; 图 1
艾博抗(上海)贸易有限公司 Actb抗体(Abcam, ab130935)被用于被用于免疫印迹在小鼠样本上浓度为1:200 (图 1). Nat Commun (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; great pond snail; 1:20,000; 图 2
艾博抗(上海)贸易有限公司 Actb抗体(AbCam, ab8227)被用于被用于免疫印迹在great pond snail样本上浓度为1:20,000 (图 2). Sci Rep (2016) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 人类; 1:25,000; 图 5
艾博抗(上海)贸易有限公司 Actb抗体(abcam, ab49900)被用于被用于免疫印迹在人类样本上浓度为1:25,000 (图 5). Nat Commun (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 1
艾博抗(上海)贸易有限公司 Actb抗体(Abcam, ab8227)被用于被用于免疫印迹在人类样本上 (图 1). Stem Cell Reports (2016) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 人类; 图 1
艾博抗(上海)贸易有限公司 Actb抗体(abcam, ab6276)被用于被用于免疫印迹在人类样本上 (图 1). Cancer Gene Ther (2016) ncbi
小鼠 单克隆(mAbcam 8226)
  • 免疫印迹; 小鼠; 1:5000; 图 3
艾博抗(上海)贸易有限公司 Actb抗体(Abcam, ab20272)被用于被用于免疫印迹在小鼠样本上浓度为1:5000 (图 3). Dis Model Mech (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 大鼠; 1:5000; 图 2
艾博抗(上海)贸易有限公司 Actb抗体(Abcam, ab8227)被用于被用于免疫印迹在大鼠样本上浓度为1:5000 (图 2). Neural Regen Res (2016) ncbi
小鼠 单克隆(mAbcam 8226)
  • 免疫印迹; 小鼠; 图 2D
艾博抗(上海)贸易有限公司 Actb抗体(Abcam, ab8226)被用于被用于免疫印迹在小鼠样本上 (图 2D). Stem Cell Res Ther (2016) ncbi
小鼠 单克隆(mAbcam 8226)
  • 免疫印迹; 人类; 1:5000; 图 1
艾博抗(上海)贸易有限公司 Actb抗体(Abcam, ab8226)被用于被用于免疫印迹在人类样本上浓度为1:5000 (图 1). Exp Ther Med (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:500; 图 4
艾博抗(上海)贸易有限公司 Actb抗体(Abcam, ab8227)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 4). Mol Med Rep (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 4
艾博抗(上海)贸易有限公司 Actb抗体(Abcam, ab8227)被用于被用于免疫印迹在小鼠样本上 (图 4). PLoS Genet (2016) ncbi
小鼠 单克隆(AC-40)
  • 免疫印迹; 人类; 1:2000; 图 3
艾博抗(上海)贸易有限公司 Actb抗体(Abcam, C4)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 3). Sci Rep (2016) ncbi
小鼠 单克隆(mAbcam 8226)
  • 免疫印迹; 人类; 1:5000; 图 4
艾博抗(上海)贸易有限公司 Actb抗体(Abcam, ab8226)被用于被用于免疫印迹在人类样本上浓度为1:5000 (图 4). J Clin Pathol (2016) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 小鼠; 图 5
艾博抗(上海)贸易有限公司 Actb抗体(abcam, ab6276)被用于被用于免疫印迹在小鼠样本上 (图 5). Am J Transl Res (2016) ncbi
小鼠 单克隆(NH3)
  • 免疫沉淀; 小鼠; 1:500; 图 6
艾博抗(上海)贸易有限公司 Actb抗体(Abcam, ab205)被用于被用于免疫沉淀在小鼠样本上浓度为1:500 (图 6). Nat Commun (2016) ncbi
小鼠 单克隆(mAbcam 8226)
  • 免疫印迹; 小鼠; 1:1000; 图 s1
艾博抗(上海)贸易有限公司 Actb抗体(Abcam, 8226)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 s1). Nat Commun (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:2000; 图 1
艾博抗(上海)贸易有限公司 Actb抗体(Abcam, ab8227)被用于被用于免疫印迹在小鼠样本上浓度为1:2000 (图 1). Theranostics (2016) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 犬; 1:10,000; 图 1a
艾博抗(上海)贸易有限公司 Actb抗体(Abcam, ab6276)被用于被用于免疫印迹在犬样本上浓度为1:10,000 (图 1a). Vet Comp Oncol (2017) ncbi
domestic rabbit 多克隆
  • 染色质免疫沉淀 ; 小鼠; 图 1
  • 免疫印迹; 小鼠; 图 1
艾博抗(上海)贸易有限公司 Actb抗体(Abcam, ab8227)被用于被用于染色质免疫沉淀 在小鼠样本上 (图 1) 和 被用于免疫印迹在小鼠样本上 (图 1). J Biol Chem (2016) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 人类; 图 1
艾博抗(上海)贸易有限公司 Actb抗体(Abcam, ab6276)被用于被用于免疫印迹在人类样本上 (图 1). elife (2016) ncbi
domestic goat 多克隆
  • 免疫印迹; 人类; 图 4
艾博抗(上海)贸易有限公司 Actb抗体(AbCam, ab8229)被用于被用于免疫印迹在人类样本上 (图 4). PLoS Genet (2016) ncbi
小鼠 单克隆(mAbcam 8226)
  • 免疫印迹; 小鼠; 图 1
艾博抗(上海)贸易有限公司 Actb抗体(Abcam, 8226)被用于被用于免疫印迹在小鼠样本上 (图 1). PLoS ONE (2016) ncbi
小鼠 单克隆(mAbcam 8226)
  • 免疫印迹; 家羊; 1:500; 图 2
艾博抗(上海)贸易有限公司 Actb抗体(Abcam, ab8226)被用于被用于免疫印迹在家羊样本上浓度为1:500 (图 2). J Neuroinflammation (2016) ncbi
小鼠 单克隆(mAbcam 8224)
  • 免疫印迹; fruit fly ; 1:5000; 图 5
艾博抗(上海)贸易有限公司 Actb抗体(Abcam, Ab8224)被用于被用于免疫印迹在fruit fly 样本上浓度为1:5000 (图 5). Nat Commun (2016) ncbi
小鼠 单克隆(mAbcam 8226)
  • 免疫印迹; 人类; 1:1000; 图 st2
艾博抗(上海)贸易有限公司 Actb抗体(Abcam, ab8226)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 st2). Transl Res (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:10,000; 图 3
  • 免疫印迹; 人类; 1:10,000; 图 3
艾博抗(上海)贸易有限公司 Actb抗体(Abcam, 8227)被用于被用于免疫印迹在小鼠样本上浓度为1:10,000 (图 3) 和 被用于免疫印迹在人类样本上浓度为1:10,000 (图 3). Nat Commun (2016) ncbi
小鼠 单克隆(mAbcam 8226)
  • 免疫印迹; 大鼠; 1:5000; 图 3
艾博抗(上海)贸易有限公司 Actb抗体(Abcam, ab20272)被用于被用于免疫印迹在大鼠样本上浓度为1:5000 (图 3). Iran J Basic Med Sci (2016) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 小鼠; 图 7
艾博抗(上海)贸易有限公司 Actb抗体(Abcam, ab6276)被用于被用于免疫印迹在小鼠样本上 (图 7). Am J Respir Cell Mol Biol (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 4
艾博抗(上海)贸易有限公司 Actb抗体(Abcam, ab8227)被用于被用于免疫印迹在人类样本上 (图 4). J Biochem (2016) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 小鼠; 图 4
艾博抗(上海)贸易有限公司 Actb抗体(Abcam, ab6276)被用于被用于免疫印迹在小鼠样本上 (图 4). Front Neurosci (2016) ncbi
小鼠 单克隆(mAbcam 8226)
  • 免疫印迹; 人类; 图 1
艾博抗(上海)贸易有限公司 Actb抗体(abcam, ab8226)被用于被用于免疫印迹在人类样本上 (图 1). Oncotarget (2016) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 小鼠; 图 4
艾博抗(上海)贸易有限公司 Actb抗体(Abcam, ab6276)被用于被用于免疫印迹在小鼠样本上 (图 4). J Neurochem (2016) ncbi
domestic rabbit 多克隆
艾博抗(上海)贸易有限公司 Actb抗体(Abcam, Ab8227)被用于. Sci Rep (2016) ncbi
小鼠 单克隆(mAbcam 8224)
  • 免疫印迹; fruit fly ; 图 s3
艾博抗(上海)贸易有限公司 Actb抗体(Abcam, ab8224)被用于被用于免疫印迹在fruit fly 样本上 (图 s3). Proc Natl Acad Sci U S A (2016) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 大鼠; 1:10,000; 图 3
艾博抗(上海)贸易有限公司 Actb抗体(Abcam, ab6276)被用于被用于免疫印迹在大鼠样本上浓度为1:10,000 (图 3). J Diabetes Res (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 4
艾博抗(上海)贸易有限公司 Actb抗体(abcam, ab8227)被用于被用于免疫印迹在人类样本上 (图 4). Sci Rep (2016) ncbi
小鼠 单克隆(mAbcam 8226)
  • 免疫印迹; 家羊; 1:5000; 图 5
艾博抗(上海)贸易有限公司 Actb抗体(AbCam, AB8226)被用于被用于免疫印迹在家羊样本上浓度为1:5000 (图 5). Sci Rep (2016) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 人类; 图 1
艾博抗(上海)贸易有限公司 Actb抗体(Abcam, ab6276)被用于被用于免疫印迹在人类样本上 (图 1). PLoS ONE (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:20,000; 图 1d
艾博抗(上海)贸易有限公司 Actb抗体(Abcam, ab8227)被用于被用于免疫印迹在人类样本上浓度为1:20,000 (图 1d). Nat Commun (2016) ncbi
小鼠 单克隆(mAbcam 8226)
  • 免疫印迹; 仓鼠; 图 3
艾博抗(上海)贸易有限公司 Actb抗体(Abcam, ab8226)被用于被用于免疫印迹在仓鼠样本上 (图 3). Biotechnol Bioeng (2016) ncbi
小鼠 单克隆(NH3)
  • 免疫细胞化学; 人类; 1:200; 图 6
艾博抗(上海)贸易有限公司 Actb抗体(Abcam, ab205)被用于被用于免疫细胞化学在人类样本上浓度为1:200 (图 6). Oncotarget (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; domestic rabbit; 1:500; 图 5a
艾博抗(上海)贸易有限公司 Actb抗体(abcam, ab8227)被用于被用于免疫印迹在domestic rabbit样本上浓度为1:500 (图 5a). J Transl Med (2016) ncbi
小鼠 单克隆(mAbcam 8226)
  • 免疫印迹; 小鼠; 图 1
艾博抗(上海)贸易有限公司 Actb抗体(Abcam, ab8226)被用于被用于免疫印迹在小鼠样本上 (图 1). PLoS ONE (2016) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 小鼠; 图 3
艾博抗(上海)贸易有限公司 Actb抗体(Abcam, ab6276)被用于被用于免疫印迹在小鼠样本上 (图 3). Oncotarget (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 大鼠; 1:1000; 图 7
艾博抗(上海)贸易有限公司 Actb抗体(abcam, ab8227)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 7). Sci Rep (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 3f
艾博抗(上海)贸易有限公司 Actb抗体(Abcam, ab8227)被用于被用于免疫印迹在人类样本上 (图 3f). Nat Commun (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 9
艾博抗(上海)贸易有限公司 Actb抗体(Abcam, ab8227)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 9). Drug Des Devel Ther (2016) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 人类; 1:10,000; 图 6
艾博抗(上海)贸易有限公司 Actb抗体(Abcam, Ab6276)被用于被用于免疫印迹在人类样本上浓度为1:10,000 (图 6). Nat Commun (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:5000; 图 4
艾博抗(上海)贸易有限公司 Actb抗体(Abcam, ab8227)被用于被用于免疫印迹在人类样本上浓度为1:5000 (图 4). Nat Commun (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 s6
艾博抗(上海)贸易有限公司 Actb抗体(Abcam, ab8227)被用于被用于免疫印迹在人类样本上 (图 s6). Nat Neurosci (2016) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 人类; 图 3
艾博抗(上海)贸易有限公司 Actb抗体(Abcam, ab6276)被用于被用于免疫印迹在人类样本上 (图 3). J Neurosci (2016) ncbi
小鼠 单克隆(mAbcam 8226)
  • 免疫印迹; 小鼠; 1:3000; 图 s4
艾博抗(上海)贸易有限公司 Actb抗体(Abcam, ab8226)被用于被用于免疫印迹在小鼠样本上浓度为1:3000 (图 s4). Development (2016) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 大鼠; 1:5000; 图 s9
  • 免疫印迹; 人类; 1:5000; 图 s9
艾博抗(上海)贸易有限公司 Actb抗体(Abcam, ab6276)被用于被用于免疫印迹在大鼠样本上浓度为1:5000 (图 s9) 和 被用于免疫印迹在人类样本上浓度为1:5000 (图 s9). Nat Commun (2016) ncbi
小鼠 单克隆(mAbcam 8224)
  • 免疫印迹; brewer's yeast
艾博抗(上海)贸易有限公司 Actb抗体(Abcam, ab8224)被用于被用于免疫印迹在brewer's yeast样本上. Proc Natl Acad Sci U S A (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 6h
艾博抗(上海)贸易有限公司 Actb抗体(Abcam, ab8227)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 6h). Nat Med (2016) ncbi
小鼠 单克隆(mAbcam 8226)
  • 免疫印迹; 小鼠; 1:5000; 图 3
艾博抗(上海)贸易有限公司 Actb抗体(abcam, ab8226)被用于被用于免疫印迹在小鼠样本上浓度为1:5000 (图 3). Sci Rep (2016) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 人类; 图 1
艾博抗(上海)贸易有限公司 Actb抗体(Abcam, ab6276-100)被用于被用于免疫印迹在人类样本上 (图 1). Biochem Biophys Res Commun (2016) ncbi
小鼠 单克隆(mAbcam 8224)
  • 免疫印迹; 大鼠; 1:5000; 图 3
艾博抗(上海)贸易有限公司 Actb抗体(Abcam, ab8224)被用于被用于免疫印迹在大鼠样本上浓度为1:5000 (图 3). PLoS ONE (2016) ncbi
小鼠 单克隆(mAbcam 8226)
  • 免疫印迹; 小鼠; 1:5000; 图 s2
艾博抗(上海)贸易有限公司 Actb抗体(Abcam, AB20272)被用于被用于免疫印迹在小鼠样本上浓度为1:5000 (图 s2). Acta Neuropathol Commun (2016) ncbi
小鼠 单克隆(mAbcam 8224)
  • 免疫印迹; 大鼠; 1:1000
艾博抗(上海)贸易有限公司 Actb抗体(Abcam, ab8224)被用于被用于免疫印迹在大鼠样本上浓度为1:1000. Int J Mol Med (2016) ncbi
domestic rabbit 多克隆
艾博抗(上海)贸易有限公司 Actb抗体(Abcam, ab8227)被用于. Biomed Res Int (2015) ncbi
小鼠 单克隆(mAbcam 8226)
  • 免疫印迹; 小鼠; 图 3b
艾博抗(上海)贸易有限公司 Actb抗体(Abcam, ab8226)被用于被用于免疫印迹在小鼠样本上 (图 3b). Nat Commun (2015) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 大鼠
艾博抗(上海)贸易有限公司 Actb抗体(Abcam, ab6276)被用于被用于免疫印迹在大鼠样本上. Sci Rep (2015) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 大鼠; 1:3000; 图 3
艾博抗(上海)贸易有限公司 Actb抗体(abcam, ab6276)被用于被用于免疫印迹在大鼠样本上浓度为1:3000 (图 3). PLoS ONE (2015) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 1
艾博抗(上海)贸易有限公司 Actb抗体(Abcam, ab8227)被用于被用于免疫印迹在小鼠样本上 (图 1). J Biol Chem (2016) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 小鼠; 图 5a
艾博抗(上海)贸易有限公司 Actb抗体(Abcam, ab6276)被用于被用于免疫印迹在小鼠样本上 (图 5a). Proteome Sci (2015) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 人类; 1:10,000; 图 4
艾博抗(上海)贸易有限公司 Actb抗体(Abcam, ab6276)被用于被用于免疫印迹在人类样本上浓度为1:10,000 (图 4). Genes Cancer (2015) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 人类; 1:3000; 图 3
艾博抗(上海)贸易有限公司 Actb抗体(Abcam, ab6276)被用于被用于免疫印迹在人类样本上浓度为1:3000 (图 3). Oncol Lett (2015) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 人类; 1:5000; 图 1
艾博抗(上海)贸易有限公司 Actb抗体(Abcam, AC-15)被用于被用于免疫印迹在人类样本上浓度为1:5000 (图 1). Nat Chem Biol (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 1
艾博抗(上海)贸易有限公司 Actb抗体(Abcam, ab8227)被用于被用于免疫印迹在人类样本上 (图 1). Mol Cell Endocrinol (2016) ncbi
小鼠 单克隆(mAbcam 8226)
  • 免疫印迹; 人类; 图 s3
艾博抗(上海)贸易有限公司 Actb抗体(Abcam, ab8226)被用于被用于免疫印迹在人类样本上 (图 s3). PLoS Genet (2015) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 小鼠; 1:5000; 图 4
艾博抗(上海)贸易有限公司 Actb抗体(Abcam, ab6276)被用于被用于免疫印迹在小鼠样本上浓度为1:5000 (图 4). Cell Death Dis (2015) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:5000; 图 4
艾博抗(上海)贸易有限公司 Actb抗体(Abcam, 8227)被用于被用于免疫印迹在小鼠样本上浓度为1:5000 (图 4). Leukemia (2016) ncbi
小鼠 单克隆(mAbcam 8226)
  • 免疫印迹; 人类; 图 s1
艾博抗(上海)贸易有限公司 Actb抗体(Abcam, 8226)被用于被用于免疫印迹在人类样本上 (图 s1). Eur J Immunol (2016) ncbi
domestic goat 多克隆
  • 免疫印迹; 小鼠; 图 1
艾博抗(上海)贸易有限公司 Actb抗体(abcam, ab8229)被用于被用于免疫印迹在小鼠样本上 (图 1). Kidney Int (2016) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 小鼠; 图 4
艾博抗(上海)贸易有限公司 Actb抗体(Abcam, ab49900)被用于被用于免疫印迹在小鼠样本上 (图 4). Front Oncol (2015) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 小鼠; 图 4
艾博抗(上海)贸易有限公司 Actb抗体(Abcam, ab6276)被用于被用于免疫印迹在小鼠样本上 (图 4). Sci Rep (2015) ncbi
小鼠 单克隆(mAbcam 8224)
  • 免疫印迹; fruit fly ; 1:1000; 图 2
艾博抗(上海)贸易有限公司 Actb抗体(Abcam, ab8224)被用于被用于免疫印迹在fruit fly 样本上浓度为1:1000 (图 2). Nat Cell Biol (2015) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 小鼠; 1:5000; 图 8
艾博抗(上海)贸易有限公司 Actb抗体(abcam, ab6276)被用于被用于免疫印迹在小鼠样本上浓度为1:5000 (图 8). Anesthesiology (2015) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 人类; 图 2
艾博抗(上海)贸易有限公司 Actb抗体(Abcam, ab6276)被用于被用于免疫印迹在人类样本上 (图 2). Nat Genet (2015) ncbi
小鼠 单克隆(mAbcam 8226)
  • 免疫印迹; 小鼠; 1:5000; 图 3
艾博抗(上海)贸易有限公司 Actb抗体(Abcam, ab8226)被用于被用于免疫印迹在小鼠样本上浓度为1:5000 (图 3). Nat Commun (2015) ncbi
小鼠 单克隆(mAbcam 8226)
  • 免疫印迹; 小鼠; 图 5
  • 免疫印迹; 大鼠; 图 4
艾博抗(上海)贸易有限公司 Actb抗体(Abcam, ab8226)被用于被用于免疫印迹在小鼠样本上 (图 5) 和 被用于免疫印迹在大鼠样本上 (图 4). Sci Rep (2015) ncbi
小鼠 单克隆(mAbcam 8226)
  • 免疫印迹; 人类; 图 2f
艾博抗(上海)贸易有限公司 Actb抗体(Abcam, ab8226)被用于被用于免疫印迹在人类样本上 (图 2f). Oncogene (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 4a
艾博抗(上海)贸易有限公司 Actb抗体(Abcam, ab8227)被用于被用于免疫印迹在人类样本上 (图 4a). Nucleic Acids Res (2016) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 小鼠; 图 6
艾博抗(上海)贸易有限公司 Actb抗体(Abcam, ab6276)被用于被用于免疫印迹在小鼠样本上 (图 6). PLoS ONE (2015) ncbi
小鼠 单克隆(mAbcam 8224)
  • 免疫印迹; 人类; 图 3
艾博抗(上海)贸易有限公司 Actb抗体(Abcam, ab8224)被用于被用于免疫印迹在人类样本上 (图 3). Stem Cells Dev (2015) ncbi
小鼠 单克隆(mAbcam 8226)
  • 免疫印迹; 人类; 图 3
艾博抗(上海)贸易有限公司 Actb抗体(Abcam, ab8226)被用于被用于免疫印迹在人类样本上 (图 3). PLoS ONE (2015) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 小鼠; 1:1000; 图 1
艾博抗(上海)贸易有限公司 Actb抗体(abcam, ab6276)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 1). Mol Cancer (2015) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 人类; 1:20,000; 图 2
艾博抗(上海)贸易有限公司 Actb抗体(Abcam, ab6276)被用于被用于免疫印迹在人类样本上浓度为1:20,000 (图 2). Mol Cell Proteomics (2015) ncbi
小鼠 单克隆(mAbcam 8224)
  • 免疫印迹; 人类; 图 3
艾博抗(上海)贸易有限公司 Actb抗体(Abcam, ab8224)被用于被用于免疫印迹在人类样本上 (图 3). Genome Res (2015) ncbi
小鼠 单克隆(mAbcam 8226)
  • 免疫印迹; 人类; 1:2000
艾博抗(上海)贸易有限公司 Actb抗体(Abcam, Ab8226)被用于被用于免疫印迹在人类样本上浓度为1:2000. Acta Neuropathol Commun (2015) ncbi
小鼠 单克隆(mAbcam 8226)
  • 免疫印迹; 大鼠; 1:5000
艾博抗(上海)贸易有限公司 Actb抗体(Abcam, ab20272)被用于被用于免疫印迹在大鼠样本上浓度为1:5000. J Physiol Sci (2015) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 大鼠; 1:2500
艾博抗(上海)贸易有限公司 Actb抗体(Abcam, ab6276)被用于被用于免疫印迹在大鼠样本上浓度为1:2500. Mol Cell Neurosci (2015) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 人类; 1:5000
艾博抗(上海)贸易有限公司 Actb抗体(Abcam, ab6276)被用于被用于免疫印迹在人类样本上浓度为1:5000. Mol Brain (2015) ncbi
小鼠 单克隆(mAbcam 8226)
  • 免疫印迹; 人类; 1:1000; 图 4
艾博抗(上海)贸易有限公司 Actb抗体(Abcam, ab8226)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 4). Nat Chem (2015) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 人类; 1:5000; 图 5
艾博抗(上海)贸易有限公司 Actb抗体(Abcam, ab6276)被用于被用于免疫印迹在人类样本上浓度为1:5000 (图 5). Nat Commun (2015) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 小鼠; 1:15,000; 图 3
艾博抗(上海)贸易有限公司 Actb抗体(Abcam, ab6276)被用于被用于免疫印迹在小鼠样本上浓度为1:15,000 (图 3). Mol Brain (2015) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 人类; 1:20,000; 图 5
艾博抗(上海)贸易有限公司 Actb抗体(Abcam, ab49900)被用于被用于免疫印迹在人类样本上浓度为1:20,000 (图 5). Cancer Sci (2015) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 人类; 图 1
艾博抗(上海)贸易有限公司 Actb抗体(Abcam, Ab6276)被用于被用于免疫印迹在人类样本上 (图 1). PLoS ONE (2015) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 人类; 图 1
艾博抗(上海)贸易有限公司 Actb抗体(Abcam, ab6276)被用于被用于免疫印迹在人类样本上 (图 1). Autophagy (2015) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 人类; 图 4b
艾博抗(上海)贸易有限公司 Actb抗体(Abcam, ab6276)被用于被用于免疫印迹在人类样本上 (图 4b). Mol Cell Biol (2015) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 人类; 1:10,000; 图 2
艾博抗(上海)贸易有限公司 Actb抗体(Abcam, ab49900)被用于被用于免疫印迹在人类样本上浓度为1:10,000 (图 2). Cancer Res (2015) ncbi
小鼠 单克隆(mAbcam 8226)
  • 免疫印迹; 人类; 1:1000; 图 3
艾博抗(上海)贸易有限公司 Actb抗体(Abcam, ab8226)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3). Cancer Biol Ther (2015) ncbi
小鼠 单克隆(mAbcam 8224)
艾博抗(上海)贸易有限公司 Actb抗体(Abcam, ab8224)被用于. J Biol Chem (2015) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 小鼠; 图 3
艾博抗(上海)贸易有限公司 Actb抗体(Abcam, ab6276)被用于被用于免疫印迹在小鼠样本上 (图 3). Reprod Sci (2016) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 人类; 图 3
艾博抗(上海)贸易有限公司 Actb抗体(Abcam, AC15)被用于被用于免疫印迹在人类样本上 (图 3). PLoS ONE (2015) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 人类
艾博抗(上海)贸易有限公司 Actb抗体(Abcam, ab6276)被用于被用于免疫印迹在人类样本上. PLoS ONE (2015) ncbi
小鼠 单克隆(mAbcam 8224)
  • 免疫印迹; 小鼠; 图 5.c
艾博抗(上海)贸易有限公司 Actb抗体(Abcam, ab8224)被用于被用于免疫印迹在小鼠样本上 (图 5.c). Nucleic Acids Res (2015) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 人类; 1:5000; 图 5
艾博抗(上海)贸易有限公司 Actb抗体(Abcam, ab6276)被用于被用于免疫印迹在人类样本上浓度为1:5000 (图 5). Nat Commun (2015) ncbi
小鼠 单克隆(mAbcam 8226)
  • 免疫印迹; 人类; 图 1
艾博抗(上海)贸易有限公司 Actb抗体(Abcam, ab8226)被用于被用于免疫印迹在人类样本上 (图 1). Brain Pathol (2016) ncbi
小鼠 单克隆(mAbcam 8226)
  • 免疫印迹; 人类; 图 3b
艾博抗(上海)贸易有限公司 Actb抗体(Abcam, ab8226)被用于被用于免疫印迹在人类样本上 (图 3b). PLoS Genet (2015) ncbi
小鼠 单克隆(AC-15)
  • 免疫细胞化学; 人类; 1:10,000
艾博抗(上海)贸易有限公司 Actb抗体(Abcam, AC-15)被用于被用于免疫细胞化学在人类样本上浓度为1:10,000. J Neurochem (2015) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 人类
艾博抗(上海)贸易有限公司 Actb抗体(Abcam, ab6276-100)被用于被用于免疫印迹在人类样本上. J Biol Chem (2015) ncbi
小鼠 单克隆(mAbcam 8226)
  • 免疫印迹; 小鼠; 1:1000; 图 2
艾博抗(上海)贸易有限公司 Actb抗体(Abcam, ab8226)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 2). Nat Commun (2015) ncbi
小鼠 单克隆(mAbcam 8226)
  • 免疫印迹; 人类
艾博抗(上海)贸易有限公司 Actb抗体(Abcam, ab8226)被用于被用于免疫印迹在人类样本上. Metallomics (2015) ncbi
小鼠 单克隆(mAbcam 8226)
  • 免疫印迹; 人类; 1:5000; 图 1
艾博抗(上海)贸易有限公司 Actb抗体(Abcam, ab8226)被用于被用于免疫印迹在人类样本上浓度为1:5000 (图 1). J Virol (2015) ncbi
小鼠 单克隆(mAbcam 8226)
  • 免疫印迹; 人类; 1:5000; 图 3
艾博抗(上海)贸易有限公司 Actb抗体(Abcam, 8226)被用于被用于免疫印迹在人类样本上浓度为1:5000 (图 3). Oncotarget (2015) ncbi
小鼠 单克隆(mAbcam 8226)
  • 免疫印迹; 人类; 1:2000
艾博抗(上海)贸易有限公司 Actb抗体(Abcam, ab8226)被用于被用于免疫印迹在人类样本上浓度为1:2000. BMC Biotechnol (2015) ncbi
小鼠 单克隆(AC-40)
  • 免疫印迹; 小鼠; 1:500; 图 6
艾博抗(上海)贸易有限公司 Actb抗体(Abcam, ab11003)被用于被用于免疫印迹在小鼠样本上浓度为1:500 (图 6). Mol Ther Methods Clin Dev (2015) ncbi
小鼠 单克隆(AC-40)
艾博抗(上海)贸易有限公司 Actb抗体(Abcam, ab11003)被用于. Cilia (2015) ncbi
小鼠 单克隆(mAbcam 8226)
  • 免疫印迹; 人类; 图  3
艾博抗(上海)贸易有限公司 Actb抗体(Abcam, ab20272)被用于被用于免疫印迹在人类样本上 (图  3). Hum Genet (2015) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 小鼠; 1:5000; 图 1
艾博抗(上海)贸易有限公司 Actb抗体(Abcam, ab6276)被用于被用于免疫印迹在小鼠样本上浓度为1:5000 (图 1). Exp Neurol (2015) ncbi
小鼠 单克隆(mAbcam 8226)
  • 免疫印迹; 人类; 图 2
艾博抗(上海)贸易有限公司 Actb抗体(Abcam, 8226)被用于被用于免疫印迹在人类样本上 (图 2). PLoS ONE (2015) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 小鼠; 1:10,000; 图 5
艾博抗(上海)贸易有限公司 Actb抗体(Abcam, ab6276)被用于被用于免疫印迹在小鼠样本上浓度为1:10,000 (图 5). Arch Toxicol (2016) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 人类; 图 7
艾博抗(上海)贸易有限公司 Actb抗体(Abcam, AC15)被用于被用于免疫印迹在人类样本上 (图 7). J Virol (2015) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 人类; 图 2
艾博抗(上海)贸易有限公司 Actb抗体(Abcam, ab6276-100)被用于被用于免疫印迹在人类样本上 (图 2). Oncotarget (2015) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 人类
艾博抗(上海)贸易有限公司 Actb抗体(Abcam, ab6276)被用于被用于免疫印迹在人类样本上. Oncogene (2016) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 人类; 图  5
艾博抗(上海)贸易有限公司 Actb抗体(Abcam, ab6276)被用于被用于免疫印迹在人类样本上 (图  5). Cancer Lett (2015) ncbi
小鼠 单克隆(mAbcam 8226)
  • 免疫印迹; 人类
艾博抗(上海)贸易有限公司 Actb抗体(Abcam, 8226)被用于被用于免疫印迹在人类样本上. Cell Mol Life Sci (2015) ncbi
小鼠 单克隆(mAbcam 8224)
  • 免疫细胞化学; 人类; 1:100
艾博抗(上海)贸易有限公司 Actb抗体(Abcam, ab8224)被用于被用于免疫细胞化学在人类样本上浓度为1:100. Pancreas (2015) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 小鼠; 1:1000; 图 s9
艾博抗(上海)贸易有限公司 Actb抗体(Abcam, ab6276)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 s9). Nat Commun (2015) ncbi
小鼠 单克隆(mAbcam 8224)
  • 免疫印迹; fission yeast
艾博抗(上海)贸易有限公司 Actb抗体(Abcam, ab8224)被用于被用于免疫印迹在fission yeast样本上. Nucleic Acids Res (2015) ncbi
domestic rabbit 多克隆
艾博抗(上海)贸易有限公司 Actb抗体(Abcam, ab8227)被用于. Am J Hum Genet (2015) ncbi
小鼠 单克隆(mAbcam 8226)
  • 免疫印迹; 人类; 图 1
艾博抗(上海)贸易有限公司 Actb抗体(Abcam, 8226)被用于被用于免疫印迹在人类样本上 (图 1). PLoS ONE (2015) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 人类; 1:30,000; 图 1
  • 免疫印迹; 小鼠; 1:1000; 图 5
艾博抗(上海)贸易有限公司 Actb抗体(Abcam, ab49900)被用于被用于免疫印迹在人类样本上浓度为1:30,000 (图 1) 和 被用于免疫印迹在小鼠样本上浓度为1:1000 (图 5). Nat Commun (2015) ncbi
小鼠 单克隆(mAbcam 8226)
  • 免疫印迹; 人类; 图 1,6
  • 免疫印迹; 小鼠; 图 1,6
艾博抗(上海)贸易有限公司 Actb抗体(Abcam, ab8226)被用于被用于免疫印迹在人类样本上 (图 1,6) 和 被用于免疫印迹在小鼠样本上 (图 1,6). Nat Genet (2015) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 人类; 1:500
艾博抗(上海)贸易有限公司 Actb抗体(Abcam, ab49900)被用于被用于免疫印迹在人类样本上浓度为1:500. Front Cell Dev Biol (2015) ncbi
小鼠 单克隆(mAbcam 8226)
  • 免疫印迹; 人类; 图 4
艾博抗(上海)贸易有限公司 Actb抗体(Abcam, 8226)被用于被用于免疫印迹在人类样本上 (图 4). PLoS ONE (2015) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 人类
艾博抗(上海)贸易有限公司 Actb抗体(Abcam, ab6276)被用于被用于免疫印迹在人类样本上. Nucleic Acids Res (2015) ncbi
小鼠 单克隆(mAbcam 8224)
  • 免疫印迹; fission yeast
艾博抗(上海)贸易有限公司 Actb抗体(abcam, ab8224)被用于被用于免疫印迹在fission yeast样本上. PLoS Genet (2015) ncbi
小鼠 单克隆(mAbcam 8226)
  • 免疫印迹; 小鼠; 1:10,000; 图 2
艾博抗(上海)贸易有限公司 Actb抗体(Abcam, ab20272)被用于被用于免疫印迹在小鼠样本上浓度为1:10,000 (图 2). Biol Reprod (2015) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 人类; 图 1
艾博抗(上海)贸易有限公司 Actb抗体(Abcam, ab6276)被用于被用于免疫印迹在人类样本上 (图 1). Proc Natl Acad Sci U S A (2015) ncbi
小鼠 单克隆(mAbcam 8226)
  • 免疫印迹; 人类
艾博抗(上海)贸易有限公司 Actb抗体(Abcam, ab8226)被用于被用于免疫印迹在人类样本上. PLoS ONE (2015) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 人类
艾博抗(上海)贸易有限公司 Actb抗体(Abcam, ab6276)被用于被用于免疫印迹在人类样本上. Cell Signal (2015) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 人类
艾博抗(上海)贸易有限公司 Actb抗体(ABCAM, #ab49900)被用于被用于免疫印迹在人类样本上. Eur J Med Chem (2015) ncbi
小鼠 单克隆(mAbcam 8224)
  • 免疫印迹; 人类; 图 3
艾博抗(上海)贸易有限公司 Actb抗体(Abcam, ab8224)被用于被用于免疫印迹在人类样本上 (图 3). Endocr Relat Cancer (2015) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 人类; 1:20,000
艾博抗(上海)贸易有限公司 Actb抗体(Abcam, Ab6276-100)被用于被用于免疫印迹在人类样本上浓度为1:20,000. J Biol Chem (2015) ncbi
小鼠 单克隆(AC-15)
  • 免疫沉淀; 人类
艾博抗(上海)贸易有限公司 Actb抗体(Abcam, ab6276)被用于被用于免疫沉淀在人类样本上. J Biol Chem (2015) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 小鼠; 1:10,000
艾博抗(上海)贸易有限公司 Actb抗体(Abcam, ab6276)被用于被用于免疫印迹在小鼠样本上浓度为1:10,000. Invest Ophthalmol Vis Sci (2015) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 小鼠; 图 5
艾博抗(上海)贸易有限公司 Actb抗体(Abcam, ab6276)被用于被用于免疫印迹在小鼠样本上 (图 5). Am J Physiol Endocrinol Metab (2015) ncbi
小鼠 单克隆(mAbcam 8226)
  • 免疫印迹; 人类; 图 2
艾博抗(上海)贸易有限公司 Actb抗体(Abcam, mAbcam 8226)被用于被用于免疫印迹在人类样本上 (图 2). Cytotherapy (2015) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 人类; 图 2
艾博抗(上海)贸易有限公司 Actb抗体(Abcam, ab6276)被用于被用于免疫印迹在人类样本上 (图 2). Br J Cancer (2015) ncbi
小鼠 单克隆(mAbcam 8224)
  • 免疫组化; fruit fly ; 1:5000
艾博抗(上海)贸易有限公司 Actb抗体(Abcam, ab8224)被用于被用于免疫组化在fruit fly 样本上浓度为1:5000. Development (2015) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 大鼠; 1:5000
艾博抗(上海)贸易有限公司 Actb抗体(Abcam, ab-6276)被用于被用于免疫印迹在大鼠样本上浓度为1:5000. Ann Anat (2015) ncbi
小鼠 单克隆(AC-40)
  • 免疫印迹; 大鼠; 1:1000
艾博抗(上海)贸易有限公司 Actb抗体(Abcam, ab11003)被用于被用于免疫印迹在大鼠样本上浓度为1:1000. PLoS ONE (2014) ncbi
小鼠 单克隆(mAbcam 8224)
  • 免疫细胞化学; 人类; 1:200
艾博抗(上海)贸易有限公司 Actb抗体(Abcam, mAbcam 8224)被用于被用于免疫细胞化学在人类样本上浓度为1:200. Proc Natl Acad Sci U S A (2014) ncbi
小鼠 单克隆(AC-40)
  • 免疫细胞化学; 大鼠; 1:100; 图 7c
艾博抗(上海)贸易有限公司 Actb抗体(Abcam, Ab11003)被用于被用于免疫细胞化学在大鼠样本上浓度为1:100 (图 7c). Am J Pathol (2015) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 小鼠; 图 3a
艾博抗(上海)贸易有限公司 Actb抗体(Abcam, AC-15)被用于被用于免疫印迹在小鼠样本上 (图 3a). Free Radic Biol Med (2015) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 人类
艾博抗(上海)贸易有限公司 Actb抗体(Abcam, ab49900)被用于被用于免疫印迹在人类样本上. J Biol Chem (2015) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 人类; 图 3
艾博抗(上海)贸易有限公司 Actb抗体(Abcam, ab6276)被用于被用于免疫印迹在人类样本上 (图 3). Int J Cancer (2015) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 人类; 1:20,000; 图 1
艾博抗(上海)贸易有限公司 Actb抗体(Abcam, ab6276)被用于被用于免疫印迹在人类样本上浓度为1:20,000 (图 1). Arch Toxicol (2016) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 人类
艾博抗(上海)贸易有限公司 Actb抗体(Abcam, AC-15)被用于被用于免疫印迹在人类样本上. Histochem Cell Biol (2015) ncbi
小鼠 单克隆(mAbcam 8224)
  • 免疫印迹; brewer's yeast; 图 7
艾博抗(上海)贸易有限公司 Actb抗体(Abcam, ab8224)被用于被用于免疫印迹在brewer's yeast样本上 (图 7). PLoS Genet (2014) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 人类
艾博抗(上海)贸易有限公司 Actb抗体(Abcam, ab6276)被用于被用于免疫印迹在人类样本上. J Mol Endocrinol (2014) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 猕猴; 1:1000
艾博抗(上海)贸易有限公司 Actb抗体(Abcam, ab6276)被用于被用于免疫印迹在猕猴样本上浓度为1:1000. J Neurosci (2014) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 人类
艾博抗(上海)贸易有限公司 Actb抗体(Abcam, ab6276)被用于被用于免疫印迹在人类样本上. J Proteomics (2015) ncbi
小鼠 单克隆(mAbcam 8226)
  • 免疫印迹; 人类; 1:1000
艾博抗(上海)贸易有限公司 Actb抗体(Abcam, ab8226)被用于被用于免疫印迹在人类样本上浓度为1:1000. Hum Pathol (2014) ncbi
小鼠 单克隆(mAbcam 8226)
  • 免疫印迹; 人类; 1:1000; 图 6
艾博抗(上海)贸易有限公司 Actb抗体(Abcam, ab8226)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 6). Nat Cell Biol (2014) ncbi
小鼠 单克隆(mAbcam 8226)
  • 免疫印迹; 人类
艾博抗(上海)贸易有限公司 Actb抗体(Abcam, Ab8226)被用于被用于免疫印迹在人类样本上. PLoS ONE (2014) ncbi
小鼠 单克隆(mAbcam 8226)
  • 免疫印迹; 人类; 1:10,000
艾博抗(上海)贸易有限公司 Actb抗体(Abcam, ab8226)被用于被用于免疫印迹在人类样本上浓度为1:10,000. Hum Mutat (2014) ncbi
小鼠 单克隆(mAbcam 8226)
  • 免疫印迹; 人类
  • 免疫印迹; 小鼠
艾博抗(上海)贸易有限公司 Actb抗体(Abcam, ab8226)被用于被用于免疫印迹在人类样本上 和 被用于免疫印迹在小鼠样本上. Clin Cancer Res (2014) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 小鼠; 图 1
艾博抗(上海)贸易有限公司 Actb抗体(Abcam, AC-15)被用于被用于免疫印迹在小鼠样本上 (图 1). J Cell Sci (2014) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 人类; 1:25,000; 图 7
艾博抗(上海)贸易有限公司 Actb抗体(Abcam, ab49900)被用于被用于免疫印迹在人类样本上浓度为1:25,000 (图 7). Biochem Biophys Res Commun (2014) ncbi
小鼠 单克隆(mAbcam 8224)
  • 免疫印迹; 酵母菌目
艾博抗(上海)贸易有限公司 Actb抗体(Abcam, ab8224)被用于被用于免疫印迹在酵母菌目样本上. Biochim Biophys Acta (2014) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 小鼠; 1:5000
艾博抗(上海)贸易有限公司 Actb抗体(Abcam, ab6276)被用于被用于免疫印迹在小鼠样本上浓度为1:5000. Anesthesiology (2014) ncbi
小鼠 单克隆(mAbcam 8226)
  • 免疫印迹; 小鼠
艾博抗(上海)贸易有限公司 Actb抗体(Abcam, ab8226)被用于被用于免疫印迹在小鼠样本上. Toxicology (2014) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 大鼠; 1:20,000
艾博抗(上海)贸易有限公司 Actb抗体(Abcam, ab49900)被用于被用于免疫印迹在大鼠样本上浓度为1:20,000. Brain Behav Immun (2014) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 人类
艾博抗(上海)贸易有限公司 Actb抗体(Abcam, ab6276)被用于被用于免疫印迹在人类样本上. Cell Death Dis (2014) ncbi
小鼠 单克隆(mAbcam 8226)
  • 免疫印迹; 小鼠; 1:1000
艾博抗(上海)贸易有限公司 Actb抗体(Abcam, ab8226)被用于被用于免疫印迹在小鼠样本上浓度为1:1000. Front Neural Circuits (2014) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 人类; 1:5000
艾博抗(上海)贸易有限公司 Actb抗体(Abcam, AC-15)被用于被用于免疫印迹在人类样本上浓度为1:5000. Oncotarget (2014) ncbi
小鼠 单克隆(mAbcam 8226)
  • 免疫印迹; 小鼠; 1:10,000
艾博抗(上海)贸易有限公司 Actb抗体(Abcam, ab8226)被用于被用于免疫印迹在小鼠样本上浓度为1:10,000. Neurochem Int (2014) ncbi
小鼠 单克隆(AC-15)
  • 免疫细胞化学; 人类
艾博抗(上海)贸易有限公司 Actb抗体(Abcam, Ab6276)被用于被用于免疫细胞化学在人类样本上. Traffic (2014) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 人类; 1:5000
艾博抗(上海)贸易有限公司 Actb抗体(Abcam, ab6276)被用于被用于免疫印迹在人类样本上浓度为1:5000. Mol Cell Proteomics (2014) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 小鼠; 1:5000
艾博抗(上海)贸易有限公司 Actb抗体(Abcam, Ab6276)被用于被用于免疫印迹在小鼠样本上浓度为1:5000. J Biol Chem (2014) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 小鼠; 1:10,000
艾博抗(上海)贸易有限公司 Actb抗体(Abcam, ab6276)被用于被用于免疫印迹在小鼠样本上浓度为1:10,000. Glia (2014) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 人类; 1:20,000
艾博抗(上海)贸易有限公司 Actb抗体(Abcam, AC-15)被用于被用于免疫印迹在人类样本上浓度为1:20,000. Mediators Inflamm (2014) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 人类
艾博抗(上海)贸易有限公司 Actb抗体(Abcam, ab49900)被用于被用于免疫印迹在人类样本上. Cell Death Differ (2014) ncbi
小鼠 单克隆(mAbcam 8226)
  • 免疫印迹; 人类; 图 1a
艾博抗(上海)贸易有限公司 Actb抗体(Abcam, ab8226)被用于被用于免疫印迹在人类样本上 (图 1a). BMC Cancer (2014) ncbi
小鼠 单克隆(mAbcam 8226)
  • 免疫印迹; 人类
艾博抗(上海)贸易有限公司 Actb抗体(Abcam, ab8226)被用于被用于免疫印迹在人类样本上. PLoS ONE (2014) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 小鼠
艾博抗(上海)贸易有限公司 Actb抗体(Abcam, ab6276)被用于被用于免疫印迹在小鼠样本上. PLoS ONE (2014) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 人类
艾博抗(上海)贸易有限公司 Actb抗体(Abcam, ab-6276)被用于被用于免疫印迹在人类样本上. Mol Endocrinol (2014) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 小鼠; 1:1000
艾博抗(上海)贸易有限公司 Actb抗体(Abcam, ab6276)被用于被用于免疫印迹在小鼠样本上浓度为1:1000. Nat Cell Biol (2014) ncbi
小鼠 单克隆(mAbcam 8226)
  • 免疫印迹; 人类; 1:2000
艾博抗(上海)贸易有限公司 Actb抗体(Abcam, ab-8226)被用于被用于免疫印迹在人类样本上浓度为1:2000. Anticancer Res (2014) ncbi
小鼠 单克隆(mAbcam 8226)
  • 免疫印迹; pigs ; 1:1000
艾博抗(上海)贸易有限公司 Actb抗体(Abcam, ab8226)被用于被用于免疫印迹在pigs 样本上浓度为1:1000. J Membr Biol (2014) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 人类
艾博抗(上海)贸易有限公司 Actb抗体(Abcam, ab6276)被用于被用于免疫印迹在人类样本上. Biochem Pharmacol (2014) ncbi
小鼠 单克隆(mAbcam 8224)
  • 免疫印迹; brewer's yeast
艾博抗(上海)贸易有限公司 Actb抗体(Abcam, ab8224)被用于被用于免疫印迹在brewer's yeast样本上. PLoS Genet (2014) ncbi
小鼠 单克隆(mAbcam 8226)
  • 免疫印迹; 人类; 1:1000
艾博抗(上海)贸易有限公司 Actb抗体(Abcam, ab8226)被用于被用于免疫印迹在人类样本上浓度为1:1000. Metabolism (2014) ncbi
小鼠 单克隆(mAbcam 8226)
  • 免疫印迹; 人类; 1:1000
艾博抗(上海)贸易有限公司 Actb抗体(Abcam, ab8226)被用于被用于免疫印迹在人类样本上浓度为1:1000. World J Gastroenterol (2014) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 仓鼠; 1:5000
艾博抗(上海)贸易有限公司 Actb抗体(Abcam, ab6276)被用于被用于免疫印迹在仓鼠样本上浓度为1:5000. J Biol Chem (2014) ncbi
小鼠 单克隆(mAbcam 8226)
  • 免疫印迹; 人类; 1:4000
艾博抗(上海)贸易有限公司 Actb抗体(Abcam, ab8226)被用于被用于免疫印迹在人类样本上浓度为1:4000. PLoS ONE (2014) ncbi
小鼠 单克隆(mAbcam 8226)
  • 免疫印迹; 小鼠
艾博抗(上海)贸易有限公司 Actb抗体(Abcam, 20272)被用于被用于免疫印迹在小鼠样本上. Biochim Biophys Acta (2014) ncbi
小鼠 单克隆(mAbcam 8226)
  • 免疫印迹; 小鼠
艾博抗(上海)贸易有限公司 Actb抗体(Abcam, ab8226)被用于被用于免疫印迹在小鼠样本上. Leukemia (2014) ncbi
小鼠 单克隆(AC-15)
  • 免疫细胞化学; 人类; 1:1000
  • 免疫印迹; 人类; 1:1000
艾博抗(上海)贸易有限公司 Actb抗体(Abcam, ab6276)被用于被用于免疫细胞化学在人类样本上浓度为1:1000 和 被用于免疫印迹在人类样本上浓度为1:1000. J Pharm Pharmacol (2014) ncbi
小鼠 单克隆(mAbcam 8226)
  • 免疫印迹; 牛; 图 5, 6
艾博抗(上海)贸易有限公司 Actb抗体(Abcam, ab8226)被用于被用于免疫印迹在牛样本上 (图 5, 6). Endocrinology (2014) ncbi
小鼠 单克隆(mAbcam 8226)
  • 免疫印迹; 小鼠; 1:6000
艾博抗(上海)贸易有限公司 Actb抗体(Abcam, Ab8226)被用于被用于免疫印迹在小鼠样本上浓度为1:6000. J Sex Med (2014) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 小鼠; 1:5000
艾博抗(上海)贸易有限公司 Actb抗体(Abcam, ab6276)被用于被用于免疫印迹在小鼠样本上浓度为1:5000. J Biol Chem (2014) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 大鼠; 1:5000
艾博抗(上海)贸易有限公司 Actb抗体(Abcam, 6276)被用于被用于免疫印迹在大鼠样本上浓度为1:5000. Acta Histochem (2014) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 人类; 1:2,000
艾博抗(上海)贸易有限公司 Actb抗体(Abcam, AC-15)被用于被用于免疫印迹在人类样本上浓度为1:2,000. Nucleic Acid Ther (2014) ncbi
小鼠 单克隆(mAbcam 8226)
  • 免疫印迹; 人类; 图 1
艾博抗(上海)贸易有限公司 Actb抗体(Abcam, ab8226)被用于被用于免疫印迹在人类样本上 (图 1). DNA Repair (Amst) (2014) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 人类
艾博抗(上海)贸易有限公司 Actb抗体(Abcam, ab6276)被用于被用于免疫印迹在人类样本上. J Rheumatol (2014) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 人类
艾博抗(上海)贸易有限公司 Actb抗体(Abcam, ab6276)被用于被用于免疫印迹在人类样本上. Am J Pathol (2014) ncbi
小鼠 单克隆(mAbcam 8226)
  • 免疫印迹; 人类
艾博抗(上海)贸易有限公司 Actb抗体(Abcam, 8226)被用于被用于免疫印迹在人类样本上. J Immunother (2014) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 人类
艾博抗(上海)贸易有限公司 Actb抗体(Abcam, AC15)被用于被用于免疫印迹在人类样本上. Cell Death Differ (2014) ncbi
小鼠 单克隆(mAbcam 8226)
  • 免疫印迹; 人类; 图 2
艾博抗(上海)贸易有限公司 Actb抗体(Abcam, 8226)被用于被用于免疫印迹在人类样本上 (图 2). PLoS ONE (2013) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 人类
艾博抗(上海)贸易有限公司 Actb抗体(Abcam, ab6276)被用于被用于免疫印迹在人类样本上. Lab Invest (2014) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 人类; 1:5000
艾博抗(上海)贸易有限公司 Actb抗体(Abcam, ab6276)被用于被用于免疫印迹在人类样本上浓度为1:5000. J Biol Chem (2013) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 人类; 1:10,000
艾博抗(上海)贸易有限公司 Actb抗体(Abcam, ab6276-100)被用于被用于免疫印迹在人类样本上浓度为1:10,000. J Neurooncol (2014) ncbi
小鼠 单克隆(mAbcam 8226)
  • 免疫印迹; 人类
艾博抗(上海)贸易有限公司 Actb抗体(Abcam, ab8226)被用于被用于免疫印迹在人类样本上. Anal Chem (2013) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 人类; 1:10,000
艾博抗(上海)贸易有限公司 Actb抗体(Abcam, AB6276)被用于被用于免疫印迹在人类样本上浓度为1:10,000. PLoS ONE (2013) ncbi
小鼠 单克隆(mAbcam 8226)
  • 免疫印迹; 人类
艾博抗(上海)贸易有限公司 Actb抗体(Abcam, AB20272)被用于被用于免疫印迹在人类样本上. elife (2013) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 人类
艾博抗(上海)贸易有限公司 Actb抗体(Abcam, ab49900)被用于被用于免疫印迹在人类样本上. PLoS ONE (2013) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 人类; 1:10,000
艾博抗(上海)贸易有限公司 Actb抗体(Abcam, Ab6276)被用于被用于免疫印迹在人类样本上浓度为1:10,000. PLoS ONE (2013) ncbi
小鼠 单克隆(mAbcam 8226)
  • 免疫印迹; 人类; 1:5000
艾博抗(上海)贸易有限公司 Actb抗体(Abcam, ab8226)被用于被用于免疫印迹在人类样本上浓度为1:5000. PLoS ONE (2013) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 人类
艾博抗(上海)贸易有限公司 Actb抗体(Abcam, ab6276)被用于被用于免疫印迹在人类样本上. Cell Res (2013) ncbi
小鼠 单克隆(mAbcam 8226)
  • 免疫印迹; 人类; 图 4
艾博抗(上海)贸易有限公司 Actb抗体(AbCam, ab8226)被用于被用于免疫印迹在人类样本上 (图 4). Magn Reson Med (2014) ncbi
小鼠 单克隆(mAbcam 8226)
  • 免疫印迹; 小鼠; 1:2,000
艾博抗(上海)贸易有限公司 Actb抗体(Abcam, ab8226)被用于被用于免疫印迹在小鼠样本上浓度为1:2,000. Stem Cells (2013) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 人类
艾博抗(上海)贸易有限公司 Actb抗体(Abcam, ab6276)被用于被用于免疫印迹在人类样本上. Haematologica (2013) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 大鼠; 1:5000
艾博抗(上海)贸易有限公司 Actb抗体(Abcam, ab6276)被用于被用于免疫印迹在大鼠样本上浓度为1:5000. Reprod Toxicol (2013) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 人类; 1:5000; 图 5
艾博抗(上海)贸易有限公司 Actb抗体(Abcam, ab49900)被用于被用于免疫印迹在人类样本上浓度为1:5000 (图 5). J Biol Chem (2013) ncbi
小鼠 单克隆(AC-40)
  • 免疫印迹; 人类
艾博抗(上海)贸易有限公司 Actb抗体(Abcam, ab11003)被用于被用于免疫印迹在人类样本上. PLoS ONE (2013) ncbi
小鼠 单克隆(mAbcam 8226)
  • 免疫印迹; 小鼠
艾博抗(上海)贸易有限公司 Actb抗体(Abcam, ab20272)被用于被用于免疫印迹在小鼠样本上. Mol Genet Metab (2013) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 小鼠; 1:10,000
艾博抗(上海)贸易有限公司 Actb抗体(Abcam, ab6276)被用于被用于免疫印迹在小鼠样本上浓度为1:10,000. Development (2013) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 人类; 图 5
艾博抗(上海)贸易有限公司 Actb抗体(Abcam, ab6276)被用于被用于免疫印迹在人类样本上 (图 5). Oncogenesis (2012) ncbi
小鼠 单克隆(NH3)
  • 酶联免疫吸附测定; 人类
艾博抗(上海)贸易有限公司 Actb抗体(Abcam, ab205)被用于被用于酶联免疫吸附测定在人类样本上. Otol Neurotol (2013) ncbi
小鼠 单克隆(mAbcam 8226)
  • 免疫印迹; 大鼠
艾博抗(上海)贸易有限公司 Actb抗体(Abcam, ab8226)被用于被用于免疫印迹在大鼠样本上. J Neurosci (2013) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 人类; 1:5000
艾博抗(上海)贸易有限公司 Actb抗体(Abcam, AB6276)被用于被用于免疫印迹在人类样本上浓度为1:5000. Glia (2013) ncbi
小鼠 单克隆(mAbcam 8224)
  • 免疫印迹; fruit fly ; 1:1000
艾博抗(上海)贸易有限公司 Actb抗体(Abcam, 8224)被用于被用于免疫印迹在fruit fly 样本上浓度为1:1000. FEBS Lett (2013) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 人类; 1:500; 图 s2c
艾博抗(上海)贸易有限公司 Actb抗体(Abcam, ab6276)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 s2c). Proteomics (2013) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 人类
艾博抗(上海)贸易有限公司 Actb抗体(Abcam, ab6276)被用于被用于免疫印迹在人类样本上. FASEB J (2013) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 人类
艾博抗(上海)贸易有限公司 Actb抗体(Abcam, ab6276)被用于被用于免疫印迹在人类样本上. Nucleic Acids Res (2013) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 小鼠; 1:25,000
艾博抗(上海)贸易有限公司 Actb抗体(Abcam, ab49900)被用于被用于免疫印迹在小鼠样本上浓度为1:25,000. J Neurochem (2013) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 人类; 图 s10b
艾博抗(上海)贸易有限公司 Actb抗体(Abcam, ab6276)被用于被用于免疫印迹在人类样本上 (图 s10b). Genes Cells (2012) ncbi
小鼠 单克隆(mAbcam 8226)
  • 免疫印迹; 小鼠
艾博抗(上海)贸易有限公司 Actb抗体(Abcam, ab8226)被用于被用于免疫印迹在小鼠样本上. Mol Cell Biol (2013) ncbi
小鼠 单克隆(mAbcam 8226)
  • 免疫印迹; 小鼠; 1:5000
艾博抗(上海)贸易有限公司 Actb抗体(Abcam, ab8226)被用于被用于免疫印迹在小鼠样本上浓度为1:5000. Nat Med (2012) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 人类
艾博抗(上海)贸易有限公司 Actb抗体(Abcam, ab6276)被用于被用于免疫印迹在人类样本上. Leukemia (2013) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 仓鼠
艾博抗(上海)贸易有限公司 Actb抗体(Abcam, ab6276)被用于被用于免疫印迹在仓鼠样本上. J Virol (2012) ncbi
小鼠 单克隆(mAbcam 8226)
  • 免疫印迹; 人类; 1:4000
艾博抗(上海)贸易有限公司 Actb抗体(Abcam, 8226)被用于被用于免疫印迹在人类样本上浓度为1:4000. Phlebology (2012) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 人类; 图 1
艾博抗(上海)贸易有限公司 Actb抗体(Abcam, ab6276)被用于被用于免疫印迹在人类样本上 (图 1). Cell Cycle (2012) ncbi
小鼠 单克隆(mAbcam 8226)
  • 免疫印迹; 小鼠; 1:3000
艾博抗(上海)贸易有限公司 Actb抗体(Abcam, 8226)被用于被用于免疫印迹在小鼠样本上浓度为1:3000. J Comp Neurol (2011) ncbi
小鼠 单克隆(AC-15)
  • 免疫组化-石蜡切片; 人类; 1:1000
艾博抗(上海)贸易有限公司 Actb抗体(Abcam, AC15)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:1000. Placenta (2009) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 小鼠
艾博抗(上海)贸易有限公司 Actb抗体(Abcam, ab6276)被用于被用于免疫印迹在小鼠样本上. Dev Biol (2008) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 小鼠; 1:5000
艾博抗(上海)贸易有限公司 Actb抗体(Abcam Ltd., ab6276)被用于被用于免疫印迹在小鼠样本上浓度为1:5000. Mol Cell Biol (2005) ncbi
赛默飞世尔
小鼠 单克隆(BA3R)
  • 免疫印迹; 人类; 图 4d
赛默飞世尔 Actb抗体(Thermo Fisher, MA5-15739-D800)被用于被用于免疫印迹在人类样本上 (图 4d). Sci Adv (2021) ncbi
小鼠 单克隆(ACTN05 (C4))
  • 免疫印迹; 人类
赛默飞世尔 Actb抗体(Thermo Fisher, MA5-11869)被用于被用于免疫印迹在人类样本上. PLoS ONE (2020) ncbi
小鼠 单克隆(mAbGEa)
  • 免疫印迹; 小鼠; 1:1000; 图 1b
赛默飞世尔 Actb抗体(thermo fisher, MA1-744)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 1b). Invest Ophthalmol Vis Sci (2020) ncbi
小鼠 单克隆(ACTN05 (C4))
  • 免疫印迹; 人类; 1:2000; 图 1b
赛默飞世尔 Actb抗体(ThermoFisher, MA5-11869)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 1b). Nat Commun (2019) ncbi
小鼠 单克隆(ACTN05 (C4))
  • 免疫印迹; 人类; 1:4000; 图 1b
赛默飞世尔 Actb抗体(Thermo fisher, MA5-11869)被用于被用于免疫印迹在人类样本上浓度为1:4000 (图 1b). Nature (2019) ncbi
小鼠 单克隆(BA3R)
  • 免疫印迹; 人类; 图 1g
赛默飞世尔 Actb抗体(ThermoFisher, MA5-15739)被用于被用于免疫印迹在人类样本上 (图 1g). Mol Cell (2019) ncbi
小鼠 单克隆(BA3R)
  • 免疫印迹; 小鼠; 1:2000; 图 2b
赛默飞世尔 Actb抗体(Thermo Fisher, MA5-15739-HRP)被用于被用于免疫印迹在小鼠样本上浓度为1:2000 (图 2b). elife (2019) ncbi
小鼠 单克隆(BA3R)
  • 免疫印迹; 小鼠; 图 5b
赛默飞世尔 Actb抗体(Thermo Fisher Scientific, MA5-15739)被用于被用于免疫印迹在小鼠样本上 (图 5b). Molecules (2019) ncbi
小鼠 单克隆(ACTN05 (C4))
  • 免疫印迹; 人类; 1:50; 图 2d
赛默飞世尔 Actb抗体(Thermo, MA5-11869)被用于被用于免疫印迹在人类样本上浓度为1:50 (图 2d). Nat Commun (2018) ncbi
小鼠 单克隆(ACTN05 (C4))
  • 免疫印迹; 人类; 1:1000; 图 2e
赛默飞世尔 Actb抗体(Thermo Fisher, MS-1295-P)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 2e). Nature (2017) ncbi
小鼠 单克隆(BA3R)
  • 免疫印迹; 小鼠; 1:1000; 图 5h
赛默飞世尔 Actb抗体(Thermo Fisher Scientific, MA5-15739)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 5h). J Comp Neurol (2017) ncbi
小鼠 单克隆(BA3R)
  • 免疫印迹; 人类; 1:3000; 图 4a
赛默飞世尔 Actb抗体(Thermo Fisher, MA5-15739)被用于被用于免疫印迹在人类样本上浓度为1:3000 (图 4a). Mol Neurobiol (2018) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 1c
赛默飞世尔 Actb抗体(Thermo Fischer Scientific, PA1-16889)被用于被用于免疫印迹在人类样本上 (图 1c). Toxicol In Vitro (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:2000; 图 5c
赛默飞世尔 Actb抗体(Invitrogen, PA1-183)被用于被用于免疫印迹在小鼠样本上浓度为1:2000 (图 5c). J Mol Neurosci (2017) ncbi
小鼠 单克隆(BA3R)
  • 免疫印迹; 人类; 图 4b
赛默飞世尔 Actb抗体(Thermo Scientific, MA5-15739)被用于被用于免疫印迹在人类样本上 (图 4b). Sci Rep (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:2000; 图 4b
赛默飞世尔 Actb抗体(Thermo Fisher, PA1-16889)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 4b). Int J Mol Sci (2017) ncbi
小鼠 单克隆(BA3R)
  • 免疫印迹; 人类; 1:2000; 图 8b
赛默飞世尔 Actb抗体(Thermoscientific, MA5-15739-HRP)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 8b). Oncotarget (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 3e
赛默飞世尔 Actb抗体(Thermo Scientific, PA1-16889)被用于被用于免疫印迹在人类样本上 (图 3e). Exp Cell Res (2017) ncbi
小鼠 单克隆(ACTN05 (C4))
  • 免疫印迹; 斑马鱼; 1:5000; 图 s2e
赛默飞世尔 Actb抗体(Neomarkers, ACTN05)被用于被用于免疫印迹在斑马鱼样本上浓度为1:5000 (图 s2e). Dis Model Mech (2017) ncbi
小鼠 单克隆(ACTN05 (C4))
  • 免疫印迹; 人类; 1:100; 图 1b
赛默飞世尔 Actb抗体(Invitrogen, MA5-11869)被用于被用于免疫印迹在人类样本上浓度为1:100 (图 1b). Clin Sci (Lond) (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 5d-f
赛默飞世尔 Actb抗体(Thermo, RB-9421)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 5d-f). J Lipid Res (2017) ncbi
小鼠 单克隆(BA3R)
  • 免疫印迹; 大鼠; 1:3000; 图 5
赛默飞世尔 Actb抗体(Thermo Scientific, MA5-15,739)被用于被用于免疫印迹在大鼠样本上浓度为1:3000 (图 5). J Physiol Biochem (2017) ncbi
小鼠 单克隆(BA3R)
  • 免疫印迹; 小鼠; 1:3000; 图 s5a
赛默飞世尔 Actb抗体(Fisher scientific, MA5-15739)被用于被用于免疫印迹在小鼠样本上浓度为1:3000 (图 s5a). Nat Commun (2016) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 大鼠; 1:5000; 图 2
赛默飞世尔 Actb抗体(Thermo Scientific, MA1-91399)被用于被用于免疫印迹在大鼠样本上浓度为1:5000 (图 2). Mol Neurobiol (2017) ncbi
小鼠 单克隆(BA3R)
  • 免疫印迹; 小鼠; 1:5000; 图 1b
赛默飞世尔 Actb抗体(Thermo Fisher, MA5-15739)被用于被用于免疫印迹在小鼠样本上浓度为1:5000 (图 1b). J Pharmacol Exp Ther (2017) ncbi
小鼠 单克隆(BA3R)
  • 免疫印迹; 人类; 图 2a
赛默飞世尔 Actb抗体(Thermo Scientific, MA5-15739)被用于被用于免疫印迹在人类样本上 (图 2a). Dis Model Mech (2016) ncbi
小鼠 单克隆(BA3R)
  • 免疫印迹; 人类; 图 3c
赛默飞世尔 Actb抗体(Thermo Fisher Scientific, BA3R)被用于被用于免疫印迹在人类样本上 (图 3c). J Virol (2017) ncbi
小鼠 单克隆(BA3R)
  • 免疫印迹; 小鼠; 图 2e
赛默飞世尔 Actb抗体(Pierce, MA5-15739)被用于被用于免疫印迹在小鼠样本上 (图 2e). Cell Death Discov (2016) ncbi
小鼠 单克隆(BA3R)
  • 免疫印迹; 人类; 图 4d
赛默飞世尔 Actb抗体(ThermoFisher, MA5-15739)被用于被用于免疫印迹在人类样本上 (图 4d). Integr Biol (Camb) (2016) ncbi
小鼠 单克隆(BA3R)
  • 免疫印迹; 人类; 图 1d
赛默飞世尔 Actb抗体(Pierce, MA5-15739)被用于被用于免疫印迹在人类样本上 (图 1d). Oxid Med Cell Longev (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 1c
赛默飞世尔 Actb抗体(ThermoFisher Scientific, PA1-16889)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 1c). PLoS ONE (2016) ncbi
小鼠 单克隆(BA3R)
  • 免疫印迹; 人类; 1:10,000; 图 s2b
赛默飞世尔 Actb抗体(Invitrogen, MA5-15739)被用于被用于免疫印迹在人类样本上浓度为1:10,000 (图 s2b). Oncogenesis (2016) ncbi
小鼠 单克隆(BA3R)
  • 免疫印迹; 小鼠; 图 4c
赛默飞世尔 Actb抗体(Thermo Fisher, MA5-15739)被用于被用于免疫印迹在小鼠样本上 (图 4c). Eur J Immunol (2016) ncbi
小鼠 单克隆(ACTN05 (C4))
  • 免疫印迹; 人类; 图 5g
赛默飞世尔 Actb抗体(Neomarkers, ACTN05)被用于被用于免疫印迹在人类样本上 (图 5g). J Cell Physiol (2017) ncbi
小鼠 单克隆(BA3R)
  • 免疫印迹; 大鼠; 1:3000; 图 3
赛默飞世尔 Actb抗体(Pierce, Thermo scientific, MA5-15739)被用于被用于免疫印迹在大鼠样本上浓度为1:3000 (图 3). Inflammopharmacology (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 3
赛默飞世尔 Actb抗体(Thermo Scientific, PA1-183)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3). J Oncol (2016) ncbi
小鼠 单克隆(ACTN05 (C4))
  • 免疫印迹; 人类; 1:300; 图 2
赛默飞世尔 Actb抗体(Thermo Fisher Scientific, Ab-5)被用于被用于免疫印迹在人类样本上浓度为1:300 (图 2). Oncol Lett (2016) ncbi
小鼠 单克隆(mAbGEa)
  • 免疫印迹; brewer's yeast; 图 2
赛默飞世尔 Actb抗体(Thermo Scientific, MA1-744)被用于被用于免疫印迹在brewer's yeast样本上 (图 2). Nucleic Acids Res (2016) ncbi
小鼠 单克隆(BA3R)
  • 免疫印迹; 人类; 图 4b
赛默飞世尔 Actb抗体(Thermo Fisher, MA5-15739)被用于被用于免疫印迹在人类样本上 (图 4b). Oncotarget (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 4c
赛默飞世尔 Actb抗体(ThermoFisher Scientific, PA1-16889)被用于被用于免疫印迹在人类样本上 (图 4c). Stem Cells Dev (2016) ncbi
小鼠 单克隆(BA3R)
  • 免疫印迹; 人类; 1:5000; 图 2a
赛默飞世尔 Actb抗体(Thermo Scientific, MA5-15739)被用于被用于免疫印迹在人类样本上浓度为1:5000 (图 2a). Int J Biochem Cell Biol (2016) ncbi
小鼠 单克隆(BA3R)
  • 免疫印迹; 人类; 1:1000; 图 1a
赛默飞世尔 Actb抗体(Thermo Pierce, MA5-15739)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 1a). J Virol (2016) ncbi
小鼠 单克隆(BA3R)
  • 免疫印迹; 大鼠; 1:3000; 图 4
赛默飞世尔 Actb抗体(Thermo Fisher Scientific, MA5-15739- HRP)被用于被用于免疫印迹在大鼠样本上浓度为1:3000 (图 4). Inflammopharmacology (2016) ncbi
小鼠 单克隆(mAbGEa)
  • 免疫印迹; 人类; 1:500; 图 1a
赛默飞世尔 Actb抗体(Pierce, MA1-744)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 1a). DNA Repair (Amst) (2016) ncbi
小鼠 单克隆(BA3R)
  • 免疫印迹; 大鼠; 1:3000; 图 4
赛默飞世尔 Actb抗体(Thermo Scientific, MA5-15739-HRP)被用于被用于免疫印迹在大鼠样本上浓度为1:3000 (图 4). BMC Complement Altern Med (2016) ncbi
小鼠 单克隆(ACTN05 (C4))
  • 免疫印迹; 人类; 图 1
赛默飞世尔 Actb抗体(Neo Markers, ACTN05)被用于被用于免疫印迹在人类样本上 (图 1). Nucleic Acids Res (2016) ncbi
小鼠 单克隆(BA3R)
  • 免疫印迹; 人类; 图 4a
赛默飞世尔 Actb抗体(Invitrogen, MA5-15739-HRP)被用于被用于免疫印迹在人类样本上 (图 4a). PLoS ONE (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 4a
赛默飞世尔 Actb抗体(Thermo Scientific, RB-9421)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 4a). Stem Cells Int (2016) ncbi
小鼠 单克隆(BA3R)
  • 免疫印迹; 人类; 1:5000; 图 2c
赛默飞世尔 Actb抗体(Thermo Fisher, MA5-15739)被用于被用于免疫印迹在人类样本上浓度为1:5000 (图 2c). Mol Cell Endocrinol (2016) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 人类; 图 7a
赛默飞世尔 Actb抗体(Invitrogen, MA1-91399)被用于被用于免疫印迹在人类样本上 (图 7a). Chem Biol Drug Des (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1500; 图 6
赛默飞世尔 Actb抗体(Thermo Scientific, PA5-16914)被用于被用于免疫印迹在人类样本上浓度为1:1500 (图 6). PLoS ONE (2016) ncbi
小鼠 单克隆(8H10D10)
  • 免疫印迹; 人类; 1:2000; 图 7
赛默飞世尔 Actb抗体(Thermo Scientific, MA5-15452)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 7). PLoS ONE (2016) ncbi
小鼠 单克隆(BA3R)
  • 免疫印迹; 人类; 1:5000; 图 1
赛默飞世尔 Actb抗体(Invitrogen, MA5-15739)被用于被用于免疫印迹在人类样本上浓度为1:5000 (图 1). BMC Cancer (2016) ncbi
小鼠 单克隆(mAbGEa)
  • 免疫沉淀; 大鼠; 图 2
赛默飞世尔 Actb抗体(Thermo scientific, MA1-744)被用于被用于免疫沉淀在大鼠样本上 (图 2). PLoS ONE (2016) ncbi
小鼠 单克隆(BA3R)
  • 免疫印迹; 小鼠; 图 s1
赛默飞世尔 Actb抗体(Pierce, MA5-15739)被用于被用于免疫印迹在小鼠样本上 (图 s1). Cell Cycle (2016) ncbi
小鼠 单克隆(BA3R)
  • 免疫印迹; 小鼠; 图 1
赛默飞世尔 Actb抗体(Thermo Scientific, BA3R)被用于被用于免疫印迹在小鼠样本上 (图 1). PLoS ONE (2016) ncbi
小鼠 单克隆(mAbGEa)
  • 免疫印迹; 拟南芥; 图 1
赛默飞世尔 Actb抗体(Thermo Scientific, MA1-744)被用于被用于免疫印迹在拟南芥样本上 (图 1). Plant Physiol (2016) ncbi
小鼠 单克隆(mAbGEa)
  • 免疫印迹; pigs ; 图 2c
赛默飞世尔 Actb抗体(Thermo Scientific, mAbGEa)被用于被用于免疫印迹在pigs 样本上 (图 2c). PLoS ONE (2016) ncbi
小鼠 单克隆(BA3R)
  • 免疫印迹; 人类; 图 8
赛默飞世尔 Actb抗体(ThermoFisher Scientific, MA5-15739)被用于被用于免疫印迹在人类样本上 (图 8). Proc Natl Acad Sci U S A (2016) ncbi
小鼠 单克隆(BA3R)
  • 免疫印迹; 人类; 1:10,000; 图 2
赛默飞世尔 Actb抗体(Thermo Scientific, BA3R)被用于被用于免疫印迹在人类样本上浓度为1:10,000 (图 2). Front Immunol (2016) ncbi
小鼠 单克隆(ACTN05 (C4))
  • 免疫印迹; 小鼠; 图 3b
赛默飞世尔 Actb抗体(Thermo Scientific, ACTN05)被用于被用于免疫印迹在小鼠样本上 (图 3b). Antimicrob Agents Chemother (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; cauliflower coral ; 1:200; 图 4
赛默飞世尔 Actb抗体(Pierce, PA5-16914)被用于被用于免疫组化-石蜡切片在cauliflower coral 样本上浓度为1:200 (图 4). Proc Biol Sci (2016) ncbi
小鼠 单克隆(ACTN05 (C4))
  • 免疫印迹; 小鼠; 1:3000; 图 1
  • 免疫印迹; 人类; 1:3000; 图 3
赛默飞世尔 Actb抗体(Thermo Scientific, Ab-5)被用于被用于免疫印迹在小鼠样本上浓度为1:3000 (图 1) 和 被用于免疫印迹在人类样本上浓度为1:3000 (图 3). elife (2016) ncbi
小鼠 单克隆(mAbGEa)
  • 免疫印迹; brewer's yeast; 1:1000; 图 3
赛默飞世尔 Actb抗体(Thermo Fisher scientific, mAbGEa)被用于被用于免疫印迹在brewer's yeast样本上浓度为1:1000 (图 3). Nat Commun (2016) ncbi
小鼠 单克隆(BA3R)
  • 免疫印迹; 小鼠; 1:5000; 图 4
赛默飞世尔 Actb抗体(Thermofisher scientific, MA5-15739)被用于被用于免疫印迹在小鼠样本上浓度为1:5000 (图 4). Front Cell Neurosci (2016) ncbi
小鼠 单克隆(ACTN05 (C4))
  • 免疫印迹; 人类; 图 1
赛默飞世尔 Actb抗体(Thermo Scientific, MS-1295-P1)被用于被用于免疫印迹在人类样本上 (图 1). J Virol (2016) ncbi
小鼠 单克隆(BA3R)
  • 免疫印迹; 人类; 图 4
赛默飞世尔 Actb抗体(Pierce, MA5-15739)被用于被用于免疫印迹在人类样本上 (图 4). J Clin Invest (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 6
赛默飞世尔 Actb抗体(Thermo Scientific Pierce, PA1-16889)被用于被用于免疫印迹在人类样本上 (图 6). J Nanobiotechnology (2016) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 小鼠; 图 6
赛默飞世尔 Actb抗体(Thermo Scientific, MA1-91399)被用于被用于免疫印迹在小鼠样本上 (图 6). Biochim Biophys Acta (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; pigs ; 图 2
赛默飞世尔 Actb抗体(Thermo Scientific, RB9421P1)被用于被用于免疫印迹在pigs 样本上 (图 2). J Biol Chem (2016) ncbi
小鼠 单克隆(ACTN05 (C4))
  • 免疫印迹; 犬; 图 8
赛默飞世尔 Actb抗体(Neomarkers, pan Ab-5)被用于被用于免疫印迹在犬样本上 (图 8). Arthritis Res Ther (2016) ncbi
小鼠 单克隆(BA3R)
  • 免疫印迹; 小鼠; 1:5000; 图 3c
赛默飞世尔 Actb抗体(Thermo Scientific, PIEMA5-15739)被用于被用于免疫印迹在小鼠样本上浓度为1:5000 (图 3c). Nat Commun (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:4000; 图 3
赛默飞世尔 Actb抗体(Thermo Fisher Scientific, PA1-16889)被用于被用于免疫印迹在人类样本上浓度为1:4000 (图 3). Clin Epigenetics (2016) ncbi
小鼠 单克隆(BA3R)
  • 免疫印迹; 人类; 图 1a
赛默飞世尔 Actb抗体(Thermo Scientific, MA5-15739)被用于被用于免疫印迹在人类样本上 (图 1a). PLoS ONE (2016) ncbi
小鼠 单克隆(mAbGEa)
  • 免疫印迹; 小鼠; 图 2
赛默飞世尔 Actb抗体(Thermo Scientific, mAbGEa)被用于被用于免疫印迹在小鼠样本上 (图 2). Invest Ophthalmol Vis Sci (2015) ncbi
小鼠 单克隆(BA3R)
  • 免疫印迹; 人类; 图 3
赛默飞世尔 Actb抗体(Thermo, MA5-15739)被用于被用于免疫印迹在人类样本上 (图 3). elife (2016) ncbi
小鼠 单克隆(BA3R)
  • 免疫印迹; 小鼠; 图 2
赛默飞世尔 Actb抗体(Thermo Scientific, MA5-15739)被用于被用于免疫印迹在小鼠样本上 (图 2). Sci Rep (2015) ncbi
小鼠 单克隆(BA3R)
  • 免疫印迹; 人类; 1:4000; 图 s5
赛默飞世尔 Actb抗体(Thermo Fisher Scientific, MA5-15739)被用于被用于免疫印迹在人类样本上浓度为1:4000 (图 s5). elife (2015) ncbi
domestic rabbit 多克隆
赛默飞世尔 Actb抗体(Thermo Fisher Scientific, PA1-183)被用于. Exp Ther Med (2015) ncbi
小鼠 单克隆(BA3R)
赛默飞世尔 Actb抗体(Thermo Scientific, MA5-15739)被用于. Environ Health Perspect (2016) ncbi
小鼠 单克隆(BA3R)
  • 免疫印迹; red rice ; 图 s2
赛默飞世尔 Actb抗体(Pierce, MA5-15739)被用于被用于免疫印迹在red rice 样本上 (图 s2). New Phytol (2016) ncbi
domestic rabbit 多克隆
赛默飞世尔 Actb抗体(Thermo Scientific, PA1-46296)被用于. Placenta (2015) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 犬; 图 8
赛默飞世尔 Actb抗体(Thermo Scientific, RB-9421-P0)被用于被用于免疫印迹在犬样本上 (图 8). Stem Cell Rev (2016) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 人类; 图 s1
赛默飞世尔 Actb抗体(Thermo Scientific, AC-15)被用于被用于免疫印迹在人类样本上 (图 s1). PLoS ONE (2015) ncbi
小鼠 单克隆(BA3R)
  • 免疫印迹; 人类; 图 3
赛默飞世尔 Actb抗体(Thermo Scientific, MA5-5739-HRP)被用于被用于免疫印迹在人类样本上 (图 3). Nat Biotechnol (2015) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 人类; 1:250
赛默飞世尔 Actb抗体(生活技术, Ac-15)被用于被用于免疫印迹在人类样本上浓度为1:250. PLoS ONE (2015) ncbi
小鼠 单克隆(ACTN05 (C4))
  • 免疫印迹; 人类; 1:10,000; 图 3
赛默飞世尔 Actb抗体(Pierce Biotechnology, MA5-11869)被用于被用于免疫印迹在人类样本上浓度为1:10,000 (图 3). Mol Med Rep (2015) ncbi
domestic rabbit 多克隆
赛默飞世尔 Actb抗体(Thermo Fisher Scientific, PA1-46296)被用于. Sci Rep (2015) ncbi
小鼠 单克隆(BA3R)
  • 免疫印迹; 人类; 1:1000; 图 3
赛默飞世尔 Actb抗体(Pierce Antibodies, MA5?C 15 739)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3). Mol Endocrinol (2015) ncbi
小鼠 单克隆(BA3R)
  • 免疫印迹; 小鼠; 图 6
赛默飞世尔 Actb抗体(Pierce, MA515739)被用于被用于免疫印迹在小鼠样本上 (图 6). J Neurosci (2015) ncbi
小鼠 单克隆(BA3R)
  • 免疫印迹; 大鼠; 1:1000; 图 3c
赛默飞世尔 Actb抗体(Thermo Scientific, MA5-15739)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 3c). Acupunct Med (2016) ncbi
小鼠 单克隆(ACTN05 (C4))
  • 免疫印迹; 人类
赛默飞世尔 Actb抗体(Thermo Scientific, MA5-11869)被用于被用于免疫印迹在人类样本上. Breast Cancer Res (2015) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 斑马鱼; 图 4
赛默飞世尔 Actb抗体(Thermo, MA 1-91399)被用于被用于免疫印迹在斑马鱼样本上 (图 4). Environ Toxicol Pharmacol (2015) ncbi
小鼠 单克隆(ACTN05 (C4))
  • 免疫印迹; fruit fly ; 1:4000; 图 9
赛默飞世尔 Actb抗体(Thermo Scientific, MA5-11869))被用于被用于免疫印迹在fruit fly 样本上浓度为1:4000 (图 9). PLoS Biol (2015) ncbi
小鼠 单克隆(mAbGEa)
  • 免疫印迹; brewer's yeast; 1:1000; 图 2, 4
赛默飞世尔 Actb抗体(Fisher, MA1-744)被用于被用于免疫印迹在brewer's yeast样本上浓度为1:1000 (图 2, 4). Nat Commun (2015) ncbi
小鼠 单克隆(mAbGEa)
  • 免疫印迹; 拟南芥; 1:1000; 图 1
赛默飞世尔 Actb抗体(Thermo Scientific, MA1-744)被用于被用于免疫印迹在拟南芥样本上浓度为1:1000 (图 1). Plant Physiol (2015) ncbi
小鼠 单克隆(ACTN05 (C4))
  • 免疫印迹; 小鼠; 1:500; 图 5a
赛默飞世尔 Actb抗体(Thermo Fisher, MA5-11869)被用于被用于免疫印迹在小鼠样本上浓度为1:500 (图 5a). Eur J Pharmacol (2015) ncbi
小鼠 单克隆(BA3R)
  • 免疫印迹; 人类; 1:5000; 图 2e
赛默飞世尔 Actb抗体(Thermo Scientific, MA5-15739)被用于被用于免疫印迹在人类样本上浓度为1:5000 (图 2e). J Steroid Biochem Mol Biol (2015) ncbi
小鼠 单克隆(ACTN05 (C4))
  • 免疫印迹; 人类
赛默飞世尔 Actb抗体(Lab Vision, Ab-5)被用于被用于免疫印迹在人类样本上. J Transl Med (2015) ncbi
小鼠 单克隆(BA3R)
  • 免疫印迹; 人类; 1:20,000; 图 5
赛默飞世尔 Actb抗体(Pierce, MA5-15739)被用于被用于免疫印迹在人类样本上浓度为1:20,000 (图 5). PLoS Pathog (2015) ncbi
小鼠 单克隆(BA3R)
  • 免疫印迹; 人类; 1:5000
赛默飞世尔 Actb抗体(Thermo Scientific, MA5-15739)被用于被用于免疫印迹在人类样本上浓度为1:5000. Exp Cell Res (2015) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 人类; 1:8000; 图 f3
赛默飞世尔 Actb抗体(Fisher Scientific, MA191399)被用于被用于免疫印迹在人类样本上浓度为1:8000 (图 f3). PLoS ONE (2015) ncbi
小鼠 单克隆(ACTN05 (C4))
  • 免疫印迹; 小鼠; 1:500
赛默飞世尔 Actb抗体(Thermo Fisher, MA5-11869)被用于被用于免疫印迹在小鼠样本上浓度为1:500. J Ethnopharmacol (2015) ncbi
小鼠 单克隆(8H10D10)
  • 免疫组化-石蜡切片; 人类
  • 免疫组化; 人类
赛默飞世尔 Actb抗体(Pierce, MA5-15452)被用于被用于免疫组化-石蜡切片在人类样本上 和 被用于免疫组化在人类样本上. Clin Cancer Res (2015) ncbi
domestic rabbit 多克隆
赛默飞世尔 Actb抗体(Thermo Fisher Scientific, PA1-16889)被用于. Cell Death Differ (2015) ncbi
小鼠 单克隆(ACTN05 (C4))
  • 免疫印迹; 小鼠
赛默飞世尔 Actb抗体(Thermo Scientific, ACTN05)被用于被用于免疫印迹在小鼠样本上. Eur J Nutr (2016) ncbi
小鼠 单克隆(mAbGEa)
  • 免疫印迹; 人类; 1:1000; 图 6
赛默飞世尔 Actb抗体(Thermo Fisher, MA1-744)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 6). Mol Med Rep (2015) ncbi
小鼠 单克隆(BA3R)
  • 免疫印迹; 小鼠; 1:5000
赛默飞世尔 Actb抗体(Pierce, MA5-15739)被用于被用于免疫印迹在小鼠样本上浓度为1:5000. J Biol Chem (2015) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 牛; 1:5000
赛默飞世尔 Actb抗体(Pierce, MA1-91399)被用于被用于免疫印迹在牛样本上浓度为1:5000. J Proteomics (2015) ncbi
小鼠 单克隆(15G5A11/E2)
  • 免疫印迹; 人类; 1:10,000; 图 5
赛默飞世尔 Actb抗体(Thermo, 15G5A11/E2)被用于被用于免疫印迹在人类样本上浓度为1:10,000 (图 5). Eur J Med Res (2015) ncbi
小鼠 单克隆(mAbGEa)
赛默飞世尔 Actb抗体(Fisher, MA1-744)被用于. Traffic (2015) ncbi
小鼠 单克隆(ACTN05 (C4))
  • 免疫印迹; 人类; 1:10,000; 图 5
赛默飞世尔 Actb抗体(分子探针, C4)被用于被用于免疫印迹在人类样本上浓度为1:10,000 (图 5). Nat Commun (2015) ncbi
小鼠 单克隆(BA3R)
  • 免疫印迹; 小鼠
赛默飞世尔 Actb抗体(Pierce, MA5-15739)被用于被用于免疫印迹在小鼠样本上. Cell Cycle (2014) ncbi
小鼠 单克隆(ACTN05 (C4))
  • 免疫印迹; 小鼠; 图 1,2,3,4,5,6
赛默飞世尔 Actb抗体(neomarkers, ACTN05)被用于被用于免疫印迹在小鼠样本上 (图 1,2,3,4,5,6). Breast Cancer Res (2014) ncbi
小鼠 单克隆(ACTN05 (C4))
  • 免疫印迹; 人类
赛默飞世尔 Actb抗体(NeoMarkers, ACTN05)被用于被用于免疫印迹在人类样本上. Cell Death Dis (2014) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 小鼠; 1:5000; 图 4c
赛默飞世尔 Actb抗体(Thermo, AC-15)被用于被用于免疫印迹在小鼠样本上浓度为1:5000 (图 4c). Nat Cell Biol (2014) ncbi
小鼠 单克隆(BA3R)
  • 免疫印迹; 人类; 1:2000; 图 4
赛默飞世尔 Actb抗体(Thermo Scientific, MA5-15739)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 4). Front Neuroanat (2014) ncbi
小鼠 单克隆(BA3R)
  • 免疫印迹; 人类
赛默飞世尔 Actb抗体(Thermo Scientific Pierce Antibodies, MA5-15739)被用于被用于免疫印迹在人类样本上. Cereb Cortex (2016) ncbi
小鼠 单克隆(ACTN05 (C4))
  • 免疫印迹; fruit fly ; 1:4000
赛默飞世尔 Actb抗体(Thermo Scientific, MA5-11869)被用于被用于免疫印迹在fruit fly 样本上浓度为1:4000. Mech Dev (2014) ncbi
小鼠 单克隆(ACTN05 (C4))
  • 免疫印迹; 犬; 1:2000
赛默飞世尔 Actb抗体(Thermo, MS-1295-P1)被用于被用于免疫印迹在犬样本上浓度为1:2000. PLoS ONE (2014) ncbi
小鼠 单克隆(ACTN05 (C4))
赛默飞世尔 Actb抗体(Thermo Fisher Scientific, MS-1295-P1ABX)被用于. Am J Pathol (2014) ncbi
小鼠 单克隆(ACTN05 (C4))
  • 免疫印迹; 小鼠; 1:1000; 图 5
赛默飞世尔 Actb抗体(NeoMarkers, MS-1295-P1)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 5). J Cell Physiol (2014) ncbi
小鼠 单克隆(BA3R)
  • 免疫印迹; 小鼠
赛默飞世尔 Actb抗体(Pierce, MA515739)被用于被用于免疫印迹在小鼠样本上. PLoS Pathog (2014) ncbi
小鼠 单克隆(BA3R)
  • 免疫印迹; 小鼠; 1:1000
赛默飞世尔 Actb抗体(Thermo, MA5?C15739)被用于被用于免疫印迹在小鼠样本上浓度为1:1000. Channels (Austin) (2014) ncbi
小鼠 单克隆(BA3R)
  • 免疫印迹; 人类; 图 1b
  • 免疫印迹; 小鼠; 图 1a
赛默飞世尔 Actb抗体(Pierce, MA515739)被用于被用于免疫印迹在人类样本上 (图 1b) 和 被用于免疫印迹在小鼠样本上 (图 1a). PLoS Pathog (2014) ncbi
小鼠 单克隆(ACTN05 (C4))
  • 免疫印迹; 小鼠; 图 1
赛默飞世尔 Actb抗体(Thermo Scientific, MS1295P1)被用于被用于免疫印迹在小鼠样本上 (图 1). Front Cell Infect Microbiol (2013) ncbi
小鼠 单克隆(BA3R)
  • 免疫印迹; 人类
赛默飞世尔 Actb抗体(Thermo Scientific, MA5-15739)被用于被用于免疫印迹在人类样本上. Sci Signal (2013) ncbi
小鼠 单克隆(BA3R)
  • 免疫印迹; 小鼠; 1:5000; 图 3c
赛默飞世尔 Actb抗体(Pierce, MA5-15739)被用于被用于免疫印迹在小鼠样本上浓度为1:5000 (图 3c). Circ Res (2014) ncbi
小鼠 单克隆(ACTN05 (C4))
  • 免疫印迹; 小鼠
赛默飞世尔 Actb抗体(Thermo Fisher, ACTN05)被用于被用于免疫印迹在小鼠样本上. Cancer Prev Res (Phila) (2014) ncbi
小鼠 单克隆(mAbGEa)
  • 免疫印迹; 人类
赛默飞世尔 Actb抗体(Thermo Scientific, MA1-744)被用于被用于免疫印迹在人类样本上. Cell Signal (2014) ncbi
小鼠 单克隆(BA3R)
  • 免疫印迹; 人类; 图 8a
赛默飞世尔 Actb抗体(Thermo Fisher, 82353)被用于被用于免疫印迹在人类样本上 (图 8a). Front Immunol (2013) ncbi
小鼠 单克隆(mAbGEa)
  • 免疫印迹; 非洲爪蛙
赛默飞世尔 Actb抗体(Thermo Scientific, MA1-744)被用于被用于免疫印迹在非洲爪蛙样本上. J Biol Chem (2013) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 人类; 1:1000; 图 7
赛默飞世尔 Actb抗体(Invitrogen, clone AC-15)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 7). Am J Physiol Heart Circ Physiol (2012) ncbi
小鼠 单克隆(ACTN05 (C4))
  • 免疫印迹; 人类; 图 3
赛默飞世尔 Actb抗体(Lab Vision, Ab-5)被用于被用于免疫印迹在人类样本上 (图 3). Exp Cell Res (2010) ncbi
小鼠 单克隆(ACTN05 (C4))
  • 免疫印迹; 小鼠; 图 6
赛默飞世尔 Actb抗体(Neomarkers, ACTN05)被用于被用于免疫印迹在小鼠样本上 (图 6). PLoS ONE (2010) ncbi
小鼠 单克隆(ACTN05 (C4))
  • 免疫印迹; 人类; 图 8
赛默飞世尔 Actb抗体(Neomarkers, ACTN05)被用于被用于免疫印迹在人类样本上 (图 8). Neuropathology (2009) ncbi
小鼠 单克隆(ACTN05 (C4))
  • 免疫印迹; 人类; 图 4
赛默飞世尔 Actb抗体(Neomarkers, ACTN05)被用于被用于免疫印迹在人类样本上 (图 4). Mol Hum Reprod (2008) ncbi
小鼠 单克隆(ACTN05 (C4))
  • 免疫印迹; 大鼠; 1:1000
  • 免疫印迹; 人类; 1:1000
赛默飞世尔 Actb抗体(LabVision, ACTN05)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 和 被用于免疫印迹在人类样本上浓度为1:1000. Brain (2007) ncbi
BioLegend
domestic rabbit 多克隆(Poly6221)
  • 免疫印迹; 小鼠; 1:1000; 图 8d
BioLegend Actb抗体(BioLegend, 622102)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 8d). Nat Commun (2021) ncbi
大鼠 单克隆(W16197A)
  • 免疫印迹; 小鼠; 1:20,000; 图 2b
BioLegend Actb抗体(Biolegend, W16197A)被用于被用于免疫印迹在小鼠样本上浓度为1:20,000 (图 2b). Front Immunol (2020) ncbi
大鼠 单克隆(W16197A)
  • 免疫印迹; 小鼠; 图 3g
BioLegend Actb抗体(BioLegend, W16197A)被用于被用于免疫印迹在小鼠样本上 (图 3g). J Immunol (2019) ncbi
domestic rabbit 多克隆(Poly6221)
  • 免疫印迹; 小鼠; 图 1
BioLegend Actb抗体(BioLegend, Poly6221)被用于被用于免疫印迹在小鼠样本上 (图 1). J Clin Invest (2016) ncbi
小鼠 单克隆(2F1-1)
  • 免疫印迹; 小鼠; 图 6
BioLegend Actb抗体(Biolegend, 2F1-1)被用于被用于免疫印迹在小鼠样本上 (图 6). elife (2015) ncbi
domestic rabbit 多克隆(Poly6221)
BioLegend Actb抗体(BioLegend, 622102)被用于. PLoS ONE (2015) ncbi
GeneTex
小鼠 单克隆(AC-15)
  • 免疫细胞化学; 小鼠; 1:1000; 图 s1d
  • 免疫印迹; 小鼠; 1:4000; 图 3b
GeneTex Actb抗体(GeneTex, GTX26276)被用于被用于免疫细胞化学在小鼠样本上浓度为1:1000 (图 s1d) 和 被用于免疫印迹在小鼠样本上浓度为1:4000 (图 3b). J Cell Biol (2017) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 人类; 图 5
GeneTex Actb抗体(GeneTex, GTX26276)被用于被用于免疫印迹在人类样本上 (图 5). J Biol Chem (2015) ncbi
亚诺法生技股份有限公司
小鼠 单克隆(3G4-F9)
  • 免疫印迹; 人类; 1:2000; 图 2b
亚诺法生技股份有限公司 Actb抗体(Abnova, H00000060-M01)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 2b). BMC Cancer (2019) ncbi
小鼠 单克隆(M01)
  • 免疫印迹; 人类
亚诺法生技股份有限公司 Actb抗体(Abnova, M01)被用于被用于免疫印迹在人类样本上. J Biol Chem (2014) ncbi
Synaptic Systems
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:5000; 图 1s1c
Synaptic Systems Actb抗体(Synaptic Systems, 251 003)被用于被用于免疫印迹在小鼠样本上浓度为1:5000 (图 1s1c). elife (2019) ncbi
赛信通(上海)生物试剂有限公司
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 6d, 6e, 8d
赛信通(上海)生物试剂有限公司 Actb抗体(Cell Signaling, 4968)被用于被用于免疫印迹在人类样本上 (图 6d, 6e, 8d). Bioengineered (2022) ncbi
domestic rabbit 单克隆(D6A8)
  • 免疫印迹; 人类; 1:2000; 图 5c
赛信通(上海)生物试剂有限公司 Actb抗体(CST, 8457)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 5c). Nat Commun (2021) ncbi
domestic rabbit 单克隆(D6A8)
  • 免疫印迹; 小鼠; 图 1b
赛信通(上海)生物试剂有限公司 Actb抗体(Cell signaling, 8457)被用于被用于免疫印迹在小鼠样本上 (图 1b). Front Cell Dev Biol (2021) ncbi
domestic rabbit 单克隆(13E5)
  • 免疫组化-石蜡切片; 小鼠; 1:500; 图 2b
赛信通(上海)生物试剂有限公司 Actb抗体(Cell Signaling, 13E5)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:500 (图 2b). J Biomed Sci (2021) ncbi
domestic rabbit 单克隆(D6A8)
  • 免疫印迹; 小鼠; 图 2c
赛信通(上海)生物试剂有限公司 Actb抗体(CST, 8457)被用于被用于免疫印迹在小鼠样本上 (图 2c). Front Immunol (2021) ncbi
domestic rabbit 单克隆(13E5)
  • 免疫印迹; 人类; 1:2000; 图 2a
赛信通(上海)生物试剂有限公司 Actb抗体(CST, 4970)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 2a). Front Cell Dev Biol (2021) ncbi
domestic rabbit 单克隆(13E5)
  • 免疫印迹; 小鼠; 1:5000; 图 7b
赛信通(上海)生物试剂有限公司 Actb抗体(CST, 4970T)被用于被用于免疫印迹在小鼠样本上浓度为1:5000 (图 7b). Cell Death Discov (2021) ncbi
小鼠 单克隆(8H10D10)
  • 免疫印迹; 人类; 图 2c
赛信通(上海)生物试剂有限公司 Actb抗体(CST, 3700S)被用于被用于免疫印迹在人类样本上 (图 2c). Front Pharmacol (2021) ncbi
domestic rabbit 单克隆(13E5)
  • 免疫印迹; 小鼠; 图 6d
赛信通(上海)生物试剂有限公司 Actb抗体(CST, 4970)被用于被用于免疫印迹在小鼠样本上 (图 6d). Nat Commun (2021) ncbi
domestic rabbit 单克隆(13E5)
  • 免疫印迹; 小鼠; 1:1500; 图 5e
赛信通(上海)生物试剂有限公司 Actb抗体(CST, 4970S)被用于被用于免疫印迹在小鼠样本上浓度为1:1500 (图 5e). Cell Death Dis (2021) ncbi
小鼠 单克隆(8H10D10)
  • 免疫印迹; 人类; 1:1000; 图 s4e
赛信通(上海)生物试剂有限公司 Actb抗体(Cell Signaling, 3700)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 s4e). J Cell Biol (2021) ncbi
domestic rabbit 单克隆(13E5)
  • 免疫印迹; 小鼠; 图 1d
赛信通(上海)生物试剂有限公司 Actb抗体(Cell Signaling, 13E5)被用于被用于免疫印迹在小鼠样本上 (图 1d). J Clin Invest (2021) ncbi
domestic rabbit 单克隆(D6A8)
  • 免疫印迹; 人类; 图 1a
赛信通(上海)生物试剂有限公司 Actb抗体(CST, 8457)被用于被用于免疫印迹在人类样本上 (图 1a). Cell Death Dis (2021) ncbi
domestic rabbit 单克隆(13E5)
  • 免疫印迹; 人类; 1:1000; 图 s1a
赛信通(上海)生物试剂有限公司 Actb抗体(Cell Signaling Technology, 4970S)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 s1a). Sci Rep (2021) ncbi
domestic rabbit 单克隆(D6A8)
  • 免疫印迹基因敲除验证; 小鼠; 1:1000; 图 s1b
赛信通(上海)生物试剂有限公司 Actb抗体(Cell Signaling Technology, 8457s)被用于被用于免疫印迹基因敲除验证在小鼠样本上浓度为1:1000 (图 s1b). Genome Biol (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 1g, 4e
赛信通(上海)生物试剂有限公司 Actb抗体(Cell Signaling Technology, 4967)被用于被用于免疫印迹在人类样本上 (图 1g, 4e). Oncogene (2021) ncbi
domestic rabbit 单克隆(13E5)
  • 免疫印迹; 小鼠; 1:10,000; 图 1b
赛信通(上海)生物试剂有限公司 Actb抗体(CST, 4970)被用于被用于免疫印迹在小鼠样本上浓度为1:10,000 (图 1b). J Neurosci (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 4g
赛信通(上海)生物试剂有限公司 Actb抗体(CST, 4967S)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 4g). Redox Biol (2021) ncbi
小鼠 单克隆(8H10D10)
  • 免疫印迹; 小鼠; 1:1000; 图 1b
赛信通(上海)生物试剂有限公司 Actb抗体(Cell Signaling, 3700S)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 1b). Science (2021) ncbi
domestic rabbit 单克隆(13E5)
  • 免疫印迹; 小鼠; 1:1000; 图 3g
赛信通(上海)生物试剂有限公司 Actb抗体(Cell Signaling, 13E5)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 3g). Nature (2021) ncbi
domestic rabbit 单克隆(13E5)
  • 免疫印迹; 小鼠; 1:1000; 图 4g
赛信通(上海)生物试剂有限公司 Actb抗体(Cell Signaling, 5125)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 4g). Front Immunol (2020) ncbi
domestic rabbit 单克隆(13E5)
  • 免疫印迹; 小鼠; 1:1000; 图 6c
赛信通(上海)生物试剂有限公司 Actb抗体(Cell Signaling, 4970)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 6c). Bone Res (2020) ncbi
domestic rabbit 单克隆(D6A8)
  • 免疫印迹; 人类; 图 4a
赛信通(上海)生物试剂有限公司 Actb抗体(Cell Signaling Technology, 8457)被用于被用于免疫印迹在人类样本上 (图 4a). Cell Rep (2020) ncbi
domestic rabbit 单克隆(13E5)
  • 免疫印迹; 小鼠; 图 5c
赛信通(上海)生物试剂有限公司 Actb抗体(Cell Signaling Technology, 4970)被用于被用于免疫印迹在小鼠样本上 (图 5c). Int J Med Sci (2020) ncbi
domestic rabbit 单克隆(D6A8)
  • 免疫印迹; 小鼠; 图 6d
赛信通(上海)生物试剂有限公司 Actb抗体(Cell Signaling Technology, 8457)被用于被用于免疫印迹在小鼠样本上 (图 6d). Oxid Med Cell Longev (2020) ncbi
domestic rabbit 单克隆(13E5)
  • 免疫组化; 小鼠; 1:100; 图 s3-1a
赛信通(上海)生物试剂有限公司 Actb抗体(Cell signaling technology, 13E5)被用于被用于免疫组化在小鼠样本上浓度为1:100 (图 s3-1a). elife (2020) ncbi
domestic rabbit 单克隆(D6A8)
  • 免疫印迹; 人类; 图 3d
赛信通(上海)生物试剂有限公司 Actb抗体(Cell signaling, 8457)被用于被用于免疫印迹在人类样本上 (图 3d). Cell Commun Signal (2020) ncbi
小鼠 单克隆(8H10D10)
  • 免疫印迹; 人类; 1:1000; 图 8f
赛信通(上海)生物试剂有限公司 Actb抗体(Cell Signaling, 8H10D10)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 8f). elife (2020) ncbi
domestic rabbit 单克隆(13E5)
  • 免疫印迹; 小鼠; 图 3e
赛信通(上海)生物试剂有限公司 Actb抗体(Cell Signaling Technologies, 4970)被用于被用于免疫印迹在小鼠样本上 (图 3e). elife (2020) ncbi
domestic rabbit 单克隆(13E5)
  • 免疫印迹; 小鼠; 图 2a
赛信通(上海)生物试剂有限公司 Actb抗体(Cell Signaling, 4970S)被用于被用于免疫印迹在小鼠样本上 (图 2a). Drug Metab Dispos (2020) ncbi
小鼠 单克隆(8H10D10)
  • 免疫印迹; 小鼠; 1:1000; 图 3b
赛信通(上海)生物试剂有限公司 Actb抗体(Cell Signaling Technology, 3700s)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 3b). Front Pharmacol (2020) ncbi
domestic rabbit 单克隆(13E5)
  • 免疫印迹; 小鼠; 1:2000
赛信通(上海)生物试剂有限公司 Actb抗体(Cell Signaling Technology, 4970)被用于被用于免疫印迹在小鼠样本上浓度为1:2000. Nat Commun (2020) ncbi
domestic rabbit 单克隆(13E5)
  • 免疫印迹; 小鼠; 1:1000; 图 4a
赛信通(上海)生物试剂有限公司 Actb抗体(Cell Signaling Technology, 13E5)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 4a). elife (2020) ncbi
domestic rabbit 单克隆(13E5)
  • 免疫印迹; 小鼠; 图 3i
赛信通(上海)生物试剂有限公司 Actb抗体(Cell Signaling Technologies, 5125)被用于被用于免疫印迹在小鼠样本上 (图 3i). Nat Chem Biol (2020) ncbi
domestic rabbit 单克隆(13E5)
  • 免疫印迹; 人类; 图 1b
赛信通(上海)生物试剂有限公司 Actb抗体(Cell Signaling, 4970)被用于被用于免疫印迹在人类样本上 (图 1b). Cell Death Differ (2020) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 大鼠; 1:1000; 图 1b
赛信通(上海)生物试剂有限公司 Actb抗体(Cell signaling technology, 4967)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 1b). Front Pharmacol (2020) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 大鼠; 1:1000; 图 5a
赛信通(上海)生物试剂有限公司 Actb抗体(cell signalling, 4967)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 5a). Metabolism (2020) ncbi
domestic rabbit 单克隆(D18C11)
  • 免疫印迹; 人类; 图 4d
赛信通(上海)生物试剂有限公司 Actb抗体(Cell Signaling, D18C11)被用于被用于免疫印迹在人类样本上 (图 4d). JCI Insight (2020) ncbi
小鼠 单克隆(8H10D10)
  • 免疫印迹; 小鼠; 1:3000; 图 4d
赛信通(上海)生物试剂有限公司 Actb抗体(CST, 3700)被用于被用于免疫印迹在小鼠样本上浓度为1:3000 (图 4d). MBio (2020) ncbi
小鼠 单克隆(8H10D10)
  • 免疫印迹; 人类; 图 3c
赛信通(上海)生物试剂有限公司 Actb抗体(Cell Signaling, 3700)被用于被用于免疫印迹在人类样本上 (图 3c). Front Cell Neurosci (2020) ncbi
domestic rabbit 单克隆(13E5)
  • 免疫印迹; 小鼠; 1:1000; 图 1j
赛信通(上海)生物试剂有限公司 Actb抗体(Cell Signaling, 4970)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 1j). Nat Commun (2020) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 s10c
赛信通(上海)生物试剂有限公司 Actb抗体(Cell Signaling, 4967)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 s10c). Science (2020) ncbi
domestic rabbit 单克隆(13E5)
  • 免疫印迹; 人类; 图 5e
赛信通(上海)生物试剂有限公司 Actb抗体(Cell Signaling, 5125)被用于被用于免疫印迹在人类样本上 (图 5e). Science (2020) ncbi
小鼠 单克隆(8H10D10)
  • 免疫印迹; 大鼠; 1:1000; 图 1b
赛信通(上海)生物试剂有限公司 Actb抗体(Cell Signaling, 3700)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 1b). J Neuroinflammation (2020) ncbi
domestic rabbit 单克隆(D6A8)
  • 免疫印迹; 人类; 1:1000; 图 2k
赛信通(上海)生物试剂有限公司 Actb抗体(Cell Signaling, D6A8)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 2k). Front Oncol (2019) ncbi
小鼠 单克隆(8H10D10)
  • 免疫印迹; 人类; 图 2j
赛信通(上海)生物试剂有限公司 Actb抗体(Cell Signaling Technology, 3700)被用于被用于免疫印迹在人类样本上 (图 2j). Autophagy (2020) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 2b
赛信通(上海)生物试剂有限公司 Actb抗体(Cell Signaling Technology, 4967)被用于被用于免疫印迹在人类样本上 (图 2b). Cancers (Basel) (2020) ncbi
domestic rabbit 单克隆(D6A8)
  • 免疫印迹; 大鼠; 图 3c
赛信通(上海)生物试剂有限公司 Actb抗体(Cell Signaling, 8457)被用于被用于免疫印迹在大鼠样本上 (图 3c). Aging (Albany NY) (2020) ncbi
domestic rabbit 单克隆(13E5)
  • 免疫印迹; 小鼠; 图 1c
  • 免疫印迹; 人类; 图 1b
赛信通(上海)生物试剂有限公司 Actb抗体(Cell Signaling Technology, 4970)被用于被用于免疫印迹在小鼠样本上 (图 1c) 和 被用于免疫印迹在人类样本上 (图 1b). Int J Biol Sci (2020) ncbi
小鼠 单克隆(8H10D10)
  • 免疫印迹; 小鼠; 图 s10b
赛信通(上海)生物试剂有限公司 Actb抗体(Cell Signaling Technology, 8H10D10)被用于被用于免疫印迹在小鼠样本上 (图 s10b). Nature (2019) ncbi
小鼠 单克隆(8H10D10)
  • 免疫印迹; 人类; 图 2g
赛信通(上海)生物试剂有限公司 Actb抗体(Cell Signaling, 3700S)被用于被用于免疫印迹在人类样本上 (图 2g). Cell Rep (2019) ncbi
小鼠 单克隆(8H10D10)
  • 免疫印迹; 小鼠; 图 5a
赛信通(上海)生物试剂有限公司 Actb抗体(Cell Signaling Technology, 8H10D10)被用于被用于免疫印迹在小鼠样本上 (图 5a). Oral Dis (2020) ncbi
小鼠 单克隆(8H10D10)
  • 免疫印迹; 人类; 图 3k
赛信通(上海)生物试剂有限公司 Actb抗体(Cell Signaling, 12262)被用于被用于免疫印迹在人类样本上 (图 3k). Cancer Discov (2019) ncbi
domestic rabbit 单克隆(13E5)
  • 免疫印迹; 大鼠; 1:50; 图 4g
赛信通(上海)生物试剂有限公司 Actb抗体(Cell Signaling, 4970)被用于被用于免疫印迹在大鼠样本上浓度为1:50 (图 4g). Am J Physiol Regul Integr Comp Physiol (2019) ncbi
domestic rabbit 单克隆(D6A8)
  • 免疫印迹; 人类; 1:15,000; 图 4c
赛信通(上海)生物试剂有限公司 Actb抗体(Cell Signaling, D6A8)被用于被用于免疫印迹在人类样本上浓度为1:15,000 (图 4c). Cell Stem Cell (2019) ncbi
domestic rabbit 单克隆(13E5)
  • 免疫印迹; 小鼠; 图 4b
赛信通(上海)生物试剂有限公司 Actb抗体(Cell Signaling Technology, 4970S)被用于被用于免疫印迹在小鼠样本上 (图 4b). Sci Rep (2019) ncbi
domestic rabbit 单克隆(13E5)
  • 免疫印迹; 人类; 1:1000; 图 3a
赛信通(上海)生物试剂有限公司 Actb抗体(CST, 4970)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3a). Med Sci Monit (2019) ncbi
小鼠 单克隆(8H10D10)
  • 免疫印迹; 人类; 图 4b
赛信通(上海)生物试剂有限公司 Actb抗体(CST, 3700)被用于被用于免疫印迹在人类样本上 (图 4b). Cell Commun Signal (2019) ncbi
domestic rabbit 单克隆(13E5)
  • 免疫印迹; 小鼠; 1:1000; 图 4c
赛信通(上海)生物试剂有限公司 Actb抗体(Cell signaling, 4970)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 4c). Adv Sci (Weinh) (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 Actb抗体(Cell Signaling Technology, 4967)被用于被用于免疫印迹在人类样本上. Nature (2019) ncbi
小鼠 单克隆(8H10D10)
  • 免疫印迹; 小鼠; 图 3d
赛信通(上海)生物试剂有限公司 Actb抗体(Cell Signaling, 3700S)被用于被用于免疫印迹在小鼠样本上 (图 3d). Sci Adv (2019) ncbi
小鼠 单克隆(8H10D10)
  • 免疫印迹; 小鼠; 1:5000; 图 3s1c
赛信通(上海)生物试剂有限公司 Actb抗体(Cell Signaling, 12262)被用于被用于免疫印迹在小鼠样本上浓度为1:5000 (图 3s1c). elife (2019) ncbi
domestic rabbit 单克隆(13E5)
  • 免疫印迹; 人类; 图 2d
赛信通(上海)生物试剂有限公司 Actb抗体(Cell Signaling, 5125S)被用于被用于免疫印迹在人类样本上 (图 2d). J Immunol (2019) ncbi
小鼠 单克隆(8H10D10)
  • 免疫印迹; 小鼠; 图 1d
赛信通(上海)生物试剂有限公司 Actb抗体(Cell Signaling, 3700)被用于被用于免疫印迹在小鼠样本上 (图 1d). Sci Adv (2019) ncbi
小鼠 单克隆(8H10D10)
  • 免疫印迹; 人类; 1:1000; 图 1s1a
赛信通(上海)生物试剂有限公司 Actb抗体(Cell Signaling, 3700)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 1s1a). elife (2019) ncbi
domestic rabbit 单克隆(13E5)
  • 免疫印迹; 人类; 1:5000; 图 2g
赛信通(上海)生物试剂有限公司 Actb抗体(cell signaling, 5125)被用于被用于免疫印迹在人类样本上浓度为1:5000 (图 2g). Nature (2019) ncbi
小鼠 单克隆(8H10D10)
  • 免疫印迹; 人类; 1:2000; 图 3a
赛信通(上海)生物试剂有限公司 Actb抗体(Cell Signaling, 3700)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 3a). PLoS Pathog (2019) ncbi
domestic rabbit 单克隆(D6A8)
  • 免疫印迹; 人类; 1:1000; 图 4a
赛信通(上海)生物试剂有限公司 Actb抗体(cell signaling, 8457S)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 4a). Front Pharmacol (2019) ncbi
domestic rabbit 单克隆(D6A8)
  • 免疫印迹; 人类; 图 1a
赛信通(上海)生物试剂有限公司 Actb抗体(Cell Signaling, 8457S)被用于被用于免疫印迹在人类样本上 (图 1a). Cell (2019) ncbi
domestic rabbit 单克隆(13E5)
  • 免疫印迹; 小鼠; 图 4a
赛信通(上海)生物试剂有限公司 Actb抗体(Cell Signaling, 4970)被用于被用于免疫印迹在小鼠样本上 (图 4a). Autophagy (2019) ncbi
domestic rabbit 单克隆(13E5)
  • 免疫印迹; 人类; 图 s4a
赛信通(上海)生物试剂有限公司 Actb抗体(Cell Signaling, 4970)被用于被用于免疫印迹在人类样本上 (图 s4a). Cell Rep (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 s2g
赛信通(上海)生物试剂有限公司 Actb抗体(Cell Signaling, 4967)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 s2g). Cancer Res (2019) ncbi
小鼠 单克隆(8H10D10)
  • 免疫印迹; 人类; 1:1000; 图 2s1d
赛信通(上海)生物试剂有限公司 Actb抗体(Cell Signaling, 3700)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 2s1d). elife (2019) ncbi
domestic rabbit 单克隆(D6A8)
  • 免疫印迹; 人类; 图 2c
赛信通(上海)生物试剂有限公司 Actb抗体(Cell Signaling, D6A8)被用于被用于免疫印迹在人类样本上 (图 2c). Oncogene (2019) ncbi
小鼠 单克隆(8H10D10)
  • 免疫印迹; 人类; 1:10,000; 图 1d
赛信通(上海)生物试剂有限公司 Actb抗体(Cell signaling, 3700)被用于被用于免疫印迹在人类样本上浓度为1:10,000 (图 1d). Biomolecules (2019) ncbi
domestic rabbit 单克隆(D6A8)
  • 免疫印迹; 小鼠; 图 1g
赛信通(上海)生物试剂有限公司 Actb抗体(Cell Signaling, 8457)被用于被用于免疫印迹在小鼠样本上 (图 1g). Biomed Pharmacother (2019) ncbi
domestic rabbit 单克隆(13E5)
  • 免疫印迹; 小鼠; 图 ex8i
赛信通(上海)生物试剂有限公司 Actb抗体(Cell Signaling, 13E5)被用于被用于免疫印迹在小鼠样本上 (图 ex8i). Nature (2019) ncbi
小鼠 单克隆(8H10D10)
  • 免疫印迹; 人类; 图 7c
赛信通(上海)生物试剂有限公司 Actb抗体(Cell Signaling Technology, 8H10D10)被用于被用于免疫印迹在人类样本上 (图 7c). Nat Immunol (2019) ncbi
小鼠 单克隆(8H10D10)
  • 免疫印迹; 小鼠; 图 1b
赛信通(上海)生物试剂有限公司 Actb抗体(Cell Signaling, 3700)被用于被用于免疫印迹在小鼠样本上 (图 1b). Sci Adv (2019) ncbi
小鼠 单克隆(8H10D10)
  • 免疫印迹; 人类; 图 1b
赛信通(上海)生物试剂有限公司 Actb抗体(Cell Signaling, 3700)被用于被用于免疫印迹在人类样本上 (图 1b). J Exp Clin Cancer Res (2019) ncbi
小鼠 单克隆(8H10D10)
  • 免疫印迹; 人类; 1:1000; 图 5
赛信通(上海)生物试剂有限公司 Actb抗体(Cell Signaling, 8H10D10)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 5). BMC Cancer (2019) ncbi
domestic rabbit 单克隆(D6A8)
  • 免疫印迹; 小鼠; 图 s1a
赛信通(上海)生物试剂有限公司 Actb抗体(Cell Signaling, 8457S)被用于被用于免疫印迹在小鼠样本上 (图 s1a). Oncogene (2019) ncbi
小鼠 单克隆(8H10D10)
  • 免疫印迹; 小鼠; 图 1f
赛信通(上海)生物试剂有限公司 Actb抗体(Cell Signaling, 3700)被用于被用于免疫印迹在小鼠样本上 (图 1f). J Clin Invest (2019) ncbi
domestic rabbit 单克隆(13E5)
  • 免疫印迹; 小鼠; 图 s2e
赛信通(上海)生物试剂有限公司 Actb抗体(Cell Signaling Technology, 13E5)被用于被用于免疫印迹在小鼠样本上 (图 s2e). Immunity (2018) ncbi
domestic rabbit 单克隆(13E5)
  • 免疫印迹; 人类; 图 2c
赛信通(上海)生物试剂有限公司 Actb抗体(Cell Signaling, 4970)被用于被用于免疫印迹在人类样本上 (图 2c). Cell Rep (2018) ncbi
domestic rabbit 单克隆(13E5)
  • 免疫印迹; 人类; 1:1000; 图 4a
赛信通(上海)生物试剂有限公司 Actb抗体(Cell Signaling, 4970)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 4a). Nat Commun (2018) ncbi
domestic rabbit 单克隆(13E5)
  • 免疫印迹; 小鼠; 图 6c
赛信通(上海)生物试剂有限公司 Actb抗体(Cell Signaling, 4970S)被用于被用于免疫印迹在小鼠样本上 (图 6c). J Clin Invest (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 1b
赛信通(上海)生物试剂有限公司 Actb抗体(Cell signaling, 4967)被用于被用于免疫印迹在小鼠样本上 (图 1b). Oncoimmunology (2018) ncbi
小鼠 单克隆(8H10D10)
  • 免疫印迹; 人类; 图 2d
赛信通(上海)生物试剂有限公司 Actb抗体(Cell Signaling, 3700)被用于被用于免疫印迹在人类样本上 (图 2d). Science (2018) ncbi
domestic rabbit 单克隆(D18C11)
  • 免疫印迹; 小鼠; 图 1f
赛信通(上海)生物试剂有限公司 Actb抗体(Cell Signaling, 8456)被用于被用于免疫印迹在小鼠样本上 (图 1f). Cancer Discov (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 2d
赛信通(上海)生物试剂有限公司 Actb抗体(Cell Signaling, 4967S)被用于被用于免疫印迹在人类样本上 (图 2d). Nature (2018) ncbi
domestic rabbit 单克隆(13E5)
  • 免疫印迹; 人类; 1:10,000; 图 2d
赛信通(上海)生物试剂有限公司 Actb抗体(Cell Signaling, 4970)被用于被用于免疫印迹在人类样本上浓度为1:10,000 (图 2d). Nat Commun (2018) ncbi
domestic rabbit 单克隆(D6A8)
  • 免疫印迹; 小鼠; 1:1000; 图 6c
赛信通(上海)生物试剂有限公司 Actb抗体(Cell Signaling, 8457)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 6c). Nat Commun (2018) ncbi
domestic rabbit 单克隆(13E5)
  • 免疫印迹; 人类; 1:1000; 图 6a
赛信通(上海)生物试剂有限公司 Actb抗体(Cell Signaling, 4970)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 6a). PLoS Pathog (2018) ncbi
domestic rabbit 单克隆(13E5)
  • 免疫印迹; 小鼠; 图 7b
赛信通(上海)生物试剂有限公司 Actb抗体(Cell Signaling, 4970s)被用于被用于免疫印迹在小鼠样本上 (图 7b). Int J Biol Macromol (2018) ncbi
domestic rabbit 单克隆(13E5)
  • 免疫印迹; 人类; 图 2b
赛信通(上海)生物试剂有限公司 Actb抗体(Cell Signaling, 4970)被用于被用于免疫印迹在人类样本上 (图 2b). Oncogene (2018) ncbi
小鼠 单克隆(8H10D10)
  • 免疫印迹; 小鼠; 1:1000; 图 2
赛信通(上海)生物试剂有限公司 Actb抗体(Cell Signaling, 3700)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 2). Front Mol Neurosci (2018) ncbi
domestic rabbit 单克隆(13E5)
  • 免疫印迹; 大鼠; 1:1000; 图 1a
赛信通(上海)生物试剂有限公司 Actb抗体(Cell Signaling, 4970)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 1a). Cell Death Differ (2018) ncbi
小鼠 单克隆(8H10D10)
  • 免疫印迹; 人类; 1:5000; 图 5a
赛信通(上海)生物试剂有限公司 Actb抗体(Cell Signaling, 3700)被用于被用于免疫印迹在人类样本上浓度为1:5000 (图 5a). Proc Natl Acad Sci U S A (2017) ncbi
小鼠 单克隆(8H10D10)
  • 免疫印迹; 人类; 图 1f
赛信通(上海)生物试剂有限公司 Actb抗体(cst, 3700)被用于被用于免疫印迹在人类样本上 (图 1f). Nature (2017) ncbi
小鼠 单克隆(8H10D10)
  • 免疫印迹; 小鼠; 1:10,000; 图 2b
赛信通(上海)生物试剂有限公司 Actb抗体(Cell Signaling, 3700S)被用于被用于免疫印迹在小鼠样本上浓度为1:10,000 (图 2b). Mol Cancer Res (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 6e
赛信通(上海)生物试剂有限公司 Actb抗体(Cell Signaling, 4967S)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 6e). Am J Physiol Renal Physiol (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:2000; 图 4
赛信通(上海)生物试剂有限公司 Actb抗体(Cell Signaling, 4967)被用于被用于免疫印迹在小鼠样本上浓度为1:2000 (图 4). Transl Psychiatry (2016) ncbi
domestic rabbit 单克隆(D6A8)
  • 免疫印迹; 人类; 图 6
赛信通(上海)生物试剂有限公司 Actb抗体(Cell Signaling, 8457)被用于被用于免疫印迹在人类样本上 (图 6). Autophagy (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 犬; 表 1
赛信通(上海)生物试剂有限公司 Actb抗体(Cell Signaling, 4968)被用于被用于免疫印迹在犬样本上 (表 1). Mol Reprod Dev (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 4
赛信通(上海)生物试剂有限公司 Actb抗体(Cell Signaling, 4967 S)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 4). Sci Rep (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:2000; 图 1
赛信通(上海)生物试剂有限公司 Actb抗体(Cell Signaling, 4967)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 1). Am J Cancer Res (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 2
赛信通(上海)生物试剂有限公司 Actb抗体(Cell Signaling Tech, 4967)被用于被用于免疫印迹在人类样本上 (图 2). Sci Rep (2016) ncbi
domestic rabbit 单克隆(13E5)
  • 免疫印迹; 小鼠; 1:1000; 图 1
赛信通(上海)生物试剂有限公司 Actb抗体(Cell signaling, 4970)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 1). Nat Commun (2016) ncbi
小鼠 单克隆(8H10D10)
  • 免疫印迹; 人类; 图 5
赛信通(上海)生物试剂有限公司 Actb抗体(Cell Signaling, 3700)被用于被用于免疫印迹在人类样本上 (图 5). PLoS ONE (2016) ncbi
domestic rabbit 单克隆(13E5)
  • 免疫印迹; pigs ; 1:2000; 图 2A
赛信通(上海)生物试剂有限公司 Actb抗体(Cell Signaling, 13E5)被用于被用于免疫印迹在pigs 样本上浓度为1:2000 (图 2A). Toxins (Basel) (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:2000; 图 1
赛信通(上海)生物试剂有限公司 Actb抗体(Cell Signaling Tech, 4967)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 1). Oncol Lett (2016) ncbi
小鼠 单克隆(8H10D10)
  • 免疫印迹; 小鼠; 1:1000; 图 1
赛信通(上海)生物试剂有限公司 Actb抗体(Cell Signaling, 3700)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 1). Nat Commun (2016) ncbi
domestic rabbit 单克隆(13E5)
  • 免疫印迹; 小鼠; 1:1000; 图 4
赛信通(上海)生物试剂有限公司 Actb抗体(CST, 5125)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 4). Biomed Res Int (2016) ncbi
domestic rabbit 单克隆(13E5)
  • 免疫印迹; 人类; 图 1
赛信通(上海)生物试剂有限公司 Actb抗体(Cell Signaling, 4970)被用于被用于免疫印迹在人类样本上 (图 1). Proc Natl Acad Sci U S A (2016) ncbi
domestic rabbit 单克隆(13E5)
  • 免疫印迹; 小鼠; 1:5000; 图 4
赛信通(上海)生物试剂有限公司 Actb抗体(Cell Signaling, 4970s)被用于被用于免疫印迹在小鼠样本上浓度为1:5000 (图 4). Nat Commun (2016) ncbi
domestic rabbit 单克隆(D6A8)
  • 免疫印迹; 大鼠; 图 5
赛信通(上海)生物试剂有限公司 Actb抗体(Cell signaling, 8457S)被用于被用于免疫印迹在大鼠样本上 (图 5). Sci Rep (2016) ncbi
小鼠 单克隆(8H10D10)
  • 免疫印迹; 人类; 图 1
赛信通(上海)生物试剂有限公司 Actb抗体(Cell signaling, 3700)被用于被用于免疫印迹在人类样本上 (图 1). Sci Rep (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 1
赛信通(上海)生物试剂有限公司 Actb抗体(Cell Signaling, 4967)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 1). PLoS ONE (2016) ncbi
domestic rabbit 单克隆(13E5)
  • 免疫印迹; 人类; 1:1000; 图 1
赛信通(上海)生物试剂有限公司 Actb抗体(Cell Signaling, 4970S)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 1). Biomed Res Int (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 5
赛信通(上海)生物试剂有限公司 Actb抗体(Cell Signaling, 4967S)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 5). Nat Commun (2016) ncbi
小鼠 单克隆(8H10D10)
  • 免疫印迹; 人类; 1:1000; 图 3
赛信通(上海)生物试剂有限公司 Actb抗体(Cell Signaling Tech, 3700S)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3). Nat Commun (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 5
赛信通(上海)生物试剂有限公司 Actb抗体(Cell Signaling, 4967)被用于被用于免疫印迹在人类样本上 (图 5). BMC Cancer (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 5
赛信通(上海)生物试剂有限公司 Actb抗体(Cell Signaling, 4967)被用于被用于免疫印迹在人类样本上 (图 5). Cell Death Dis (2016) ncbi
小鼠 单克隆(8H10D10)
  • 免疫印迹; 人类; 图 2
赛信通(上海)生物试剂有限公司 Actb抗体(Cell Signaling Tech, 3700S)被用于被用于免疫印迹在人类样本上 (图 2). Oncoimmunology (2016) ncbi
domestic rabbit 单克隆(13E5)
  • 免疫印迹; 人类; 1:1000; 图 6
赛信通(上海)生物试剂有限公司 Actb抗体(Cell Signaling, 4970)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 6). Stem Cell Reports (2016) ncbi
小鼠 单克隆(8H10D10)
  • 免疫印迹; 大鼠; 1:1000; 图 6
赛信通(上海)生物试剂有限公司 Actb抗体(Cell Signalling, 3700)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 6). Sci Rep (2016) ncbi
domestic rabbit 单克隆(13E5)
  • 免疫印迹; 人类; 1:1000; 图 3
赛信通(上海)生物试剂有限公司 Actb抗体(Cell Signaling, 4970)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3). Oncol Lett (2016) ncbi
domestic rabbit 单克隆(13E5)
  • 免疫印迹; 大鼠; 1:1000; 图 3
赛信通(上海)生物试剂有限公司 Actb抗体(Cell signaling, 4970)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 3). Exp Ther Med (2016) ncbi
domestic rabbit 单克隆(13E5)
  • 免疫印迹; African green monkey; 图 2
赛信通(上海)生物试剂有限公司 Actb抗体(Cell signaling, 4970)被用于被用于免疫印迹在African green monkey样本上 (图 2). Sci Rep (2016) ncbi
小鼠 单克隆(8H10D10)
  • 免疫印迹; 小鼠; 1:10,000; 图 7
赛信通(上海)生物试剂有限公司 Actb抗体(Cell Signaling, 3700)被用于被用于免疫印迹在小鼠样本上浓度为1:10,000 (图 7). Mol Neurodegener (2016) ncbi
domestic rabbit 单克隆(D18C11)
  • 免疫印迹; 小鼠; 图 4
赛信通(上海)生物试剂有限公司 Actb抗体(Cell Signaling Technology, 8456)被用于被用于免疫印迹在小鼠样本上 (图 4). Stem Cell Reports (2016) ncbi
domestic rabbit 单克隆(13E5)
  • 免疫印迹; 小鼠; 1:200; 图 1
赛信通(上海)生物试剂有限公司 Actb抗体(Cell Signal, 4970)被用于被用于免疫印迹在小鼠样本上浓度为1:200 (图 1). Sci Rep (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:2000; 图 s2
赛信通(上海)生物试剂有限公司 Actb抗体(Cell Signaling, 4967)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 s2). Nat Commun (2016) ncbi
小鼠 单克隆(8H10D10)
  • 免疫印迹; 大鼠; 1:1000; 图 7B
赛信通(上海)生物试剂有限公司 Actb抗体(Cell Signaling, 3700)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 7B). Am J Transl Res (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:5000; 图 7D
赛信通(上海)生物试剂有限公司 Actb抗体(Cell Signaling, 4967)被用于被用于免疫印迹在小鼠样本上浓度为1:5000 (图 7D). Sci Rep (2016) ncbi
domestic rabbit 单克隆(13E5)
  • 免疫印迹; 大鼠; 1:1000
赛信通(上海)生物试剂有限公司 Actb抗体(Cell Signaling, 4970)被用于被用于免疫印迹在大鼠样本上浓度为1:1000. Front Physiol (2016) ncbi
小鼠 单克隆(8H10D10)
  • 免疫印迹; 人类; 1:5000; 图 3
赛信通(上海)生物试剂有限公司 Actb抗体(Cell Signaling, 3700)被用于被用于免疫印迹在人类样本上浓度为1:5000 (图 3). Exp Ther Med (2016) ncbi
domestic rabbit 单克隆(13E5)
  • 免疫印迹; 小鼠; 图 1
赛信通(上海)生物试剂有限公司 Actb抗体(Cell Signaling Technology, 4970)被用于被用于免疫印迹在小鼠样本上 (图 1). Cell Signal (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; Pacific oyster; 1:1000; 图 1
赛信通(上海)生物试剂有限公司 Actb抗体(Cell Signaling, 4968)被用于被用于免疫印迹在Pacific oyster样本上浓度为1:1000 (图 1). Comp Biochem Physiol A Mol Integr Physiol (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 5c
赛信通(上海)生物试剂有限公司 Actb抗体(Cell Signaling, 4967)被用于被用于免疫印迹在小鼠样本上 (图 5c). J Transl Med (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:2500; 图 6
赛信通(上海)生物试剂有限公司 Actb抗体(Cell signaling, 4968)被用于被用于免疫印迹在小鼠样本上浓度为1:2500 (图 6). Nat Commun (2016) ncbi
小鼠 单克隆(8H10D10)
  • 免疫印迹; 小鼠; 1:1000; 图 4
赛信通(上海)生物试剂有限公司 Actb抗体(Cell Signaling Technology, 8H10D10)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 4). PLoS ONE (2016) ncbi
domestic rabbit 单克隆(13E5)
  • 免疫印迹; 人类; 1:1000; 图 1
赛信通(上海)生物试剂有限公司 Actb抗体(Cell Signaling, 4970)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 1). Sci Rep (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 4
赛信通(上海)生物试剂有限公司 Actb抗体(Cell Signaling, 4967)被用于被用于免疫印迹在小鼠样本上 (图 4). Hepatology (2016) ncbi
domestic rabbit 单克隆(13E5)
  • 免疫印迹; 人类; 图 4
赛信通(上海)生物试剂有限公司 Actb抗体(Cell Signaling, 4970)被用于被用于免疫印迹在人类样本上 (图 4). Sci Rep (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; fruit fly ; 1:2000; 图 2c
赛信通(上海)生物试剂有限公司 Actb抗体(Cell signaling technologies, 4967)被用于被用于免疫印迹在fruit fly 样本上浓度为1:2000 (图 2c). Biol Open (2016) ncbi
domestic rabbit 单克隆(13E5)
  • 免疫印迹; 人类; 1:5000; 图 4
赛信通(上海)生物试剂有限公司 Actb抗体(Cell signaling, 4970)被用于被用于免疫印迹在人类样本上浓度为1:5000 (图 4). Biol Open (2016) ncbi
小鼠 单克隆(8H10D10)
  • 免疫印迹; 小鼠; 1:1000; 图 1
赛信通(上海)生物试剂有限公司 Actb抗体(Cell Signaling Tech, 3700)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 1). Nat Commun (2016) ncbi
domestic rabbit 单克隆(13E5)
  • 免疫印迹; 人类; 图 5
赛信通(上海)生物试剂有限公司 Actb抗体(Cell signaling, 4970L)被用于被用于免疫印迹在人类样本上 (图 5). Int J Mol Med (2016) ncbi
domestic rabbit 单克隆(13E5)
  • 免疫印迹; 牛; 1:1000; 图 4
赛信通(上海)生物试剂有限公司 Actb抗体(Cell Signaling, 4970)被用于被用于免疫印迹在牛样本上浓度为1:1000 (图 4). BMC Vet Res (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 大鼠; 1:4000; 图 1
赛信通(上海)生物试剂有限公司 Actb抗体(Cell Signaling Technology, 4967)被用于被用于免疫印迹在大鼠样本上浓度为1:4000 (图 1). Sci Rep (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:10,000; 图 3b
赛信通(上海)生物试剂有限公司 Actb抗体(Cell Signaling, 4967)被用于被用于免疫印迹在人类样本上浓度为1:10,000 (图 3b). Oncotarget (2016) ncbi
小鼠 单克隆(8H10D10)
  • 免疫印迹; 大鼠; 1:4000; 图 7
赛信通(上海)生物试剂有限公司 Actb抗体(Cell Signaling, 3700)被用于被用于免疫印迹在大鼠样本上浓度为1:4000 (图 7). Mol Med Rep (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:2000; 图 1
赛信通(上海)生物试剂有限公司 Actb抗体(Cell Signaling Tech, 4967 S)被用于被用于免疫印迹在小鼠样本上浓度为1:2000 (图 1). Redox Biol (2016) ncbi
小鼠 单克隆(8H10D10)
  • 免疫印迹; 人类; 图 1
赛信通(上海)生物试剂有限公司 Actb抗体(Cell Signaling Technology, 3700)被用于被用于免疫印迹在人类样本上 (图 1). Cancer Res (2016) ncbi
domestic rabbit 单克隆(13E5)
  • 免疫印迹; 小鼠; 1:1000; 图 1
  • 免疫印迹; African green monkey; 1:1000; 图 s2
赛信通(上海)生物试剂有限公司 Actb抗体(Cell Signaling, 4970)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 1) 和 被用于免疫印迹在African green monkey样本上浓度为1:1000 (图 s2). Nat Commun (2016) ncbi
小鼠 单克隆(8H10D10)
  • 免疫印迹; 小鼠; 1:2000; 图 2
赛信通(上海)生物试剂有限公司 Actb抗体(Cell signaling, 3700)被用于被用于免疫印迹在小鼠样本上浓度为1:2000 (图 2). Nat Commun (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 3
赛信通(上海)生物试剂有限公司 Actb抗体(Cell Signaling Technology, 4967)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 3). Cell Rep (2016) ncbi
小鼠 单克隆(8H10D10)
  • 免疫印迹; 人类; 图 3
赛信通(上海)生物试剂有限公司 Actb抗体(Cell Signaling, 12262S)被用于被用于免疫印迹在人类样本上 (图 3). Autophagy (2016) ncbi
小鼠 单克隆(8H10D10)
  • 免疫印迹; 小鼠; 图 4
  • 免疫印迹; 人类; 图 s3
赛信通(上海)生物试剂有限公司 Actb抗体(Cell Signaling, 3700)被用于被用于免疫印迹在小鼠样本上 (图 4) 和 被用于免疫印迹在人类样本上 (图 s3). Nat Commun (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 大鼠; 1:1000; 图 7
赛信通(上海)生物试剂有限公司 Actb抗体(Cell signaling, 4967)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 7). J Cell Sci (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 3
赛信通(上海)生物试剂有限公司 Actb抗体(Cell Signaling, 4967)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3). J Steroid Biochem Mol Biol (2017) ncbi
小鼠 单克隆(8H10D10)
  • 免疫印迹; 人类; 图 13
赛信通(上海)生物试剂有限公司 Actb抗体(Cell Signaling, 3700)被用于被用于免疫印迹在人类样本上 (图 13). PLoS ONE (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 大鼠; 图 1
赛信通(上海)生物试剂有限公司 Actb抗体(Cell signaling, 4967)被用于被用于免疫印迹在大鼠样本上 (图 1). Neural Plast (2016) ncbi
domestic rabbit 单克隆(13E5)
  • 免疫印迹; 人类; 图 1
赛信通(上海)生物试剂有限公司 Actb抗体(Cell Signaling, 4970)被用于被用于免疫印迹在人类样本上 (图 1). Acta Physiol (Oxf) (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:2000; 图 2
赛信通(上海)生物试剂有限公司 Actb抗体(Cell Signalling, 4967)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 2). PLoS ONE (2016) ncbi
小鼠 单克隆(8H10D10)
  • 免疫印迹; 人类; 图 3
赛信通(上海)生物试剂有限公司 Actb抗体(Cell Signaling, 8H10D10)被用于被用于免疫印迹在人类样本上 (图 3). PLoS Genet (2016) ncbi
小鼠 单克隆(8H10D10)
  • 免疫印迹; 人类; 图 4
赛信通(上海)生物试剂有限公司 Actb抗体(Cell Signaling, 3700)被用于被用于免疫印迹在人类样本上 (图 4). Cell Death Dis (2016) ncbi
小鼠 单克隆(8H10D10)
  • 免疫印迹; 大鼠; 1:2000; 图 7
赛信通(上海)生物试剂有限公司 Actb抗体(Cell Signalling, 8H10D10)被用于被用于免疫印迹在大鼠样本上浓度为1:2000 (图 7). Invest Ophthalmol Vis Sci (2016) ncbi
小鼠 单克隆(8H10D10)
  • 免疫印迹; 小鼠; 1:3000; 图 4
赛信通(上海)生物试剂有限公司 Actb抗体(Cell signaling, 3700)被用于被用于免疫印迹在小鼠样本上浓度为1:3000 (图 4). Sci Rep (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 1a
赛信通(上海)生物试剂有限公司 Actb抗体(Cell Signaling, 4967)被用于被用于免疫印迹在小鼠样本上 (图 1a). J Virol (2016) ncbi
domestic rabbit 单克隆(13E5)
  • 免疫印迹; 小鼠; 图 5
赛信通(上海)生物试剂有限公司 Actb抗体(Cell Signaling, 4970)被用于被用于免疫印迹在小鼠样本上 (图 5). Int J Mol Sci (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 大鼠; 图 1
赛信通(上海)生物试剂有限公司 Actb抗体(Cell Signaling Technology, 4967)被用于被用于免疫印迹在大鼠样本上 (图 1). Anal Biochem (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 1
赛信通(上海)生物试剂有限公司 Actb抗体(Cell Signaling, 4967)被用于被用于免疫印迹在人类样本上 (图 1). Oncotarget (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:2000; 图 2
  • 免疫印迹; 人类; 1:2000; 图 1
赛信通(上海)生物试剂有限公司 Actb抗体(Cell Signaling Technology, 4967S)被用于被用于免疫印迹在小鼠样本上浓度为1:2000 (图 2) 和 被用于免疫印迹在人类样本上浓度为1:2000 (图 1). Oxid Med Cell Longev (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 大鼠; 图 11a
赛信通(上海)生物试剂有限公司 Actb抗体(Cell Signaling Technology, 4968)被用于被用于免疫印迹在大鼠样本上 (图 11a). BMC Biol (2016) ncbi
小鼠 单克隆(8H10D10)
  • 免疫印迹; 人类; 图 8
赛信通(上海)生物试剂有限公司 Actb抗体(Cell signaling, 3700)被用于被用于免疫印迹在人类样本上 (图 8). Endocrinology (2016) ncbi
domestic rabbit 单克隆(13E5)
  • 免疫印迹; 小鼠; 1:1000; 图 2
  • 免疫印迹; 人类; 1:1000; 图 s5
赛信通(上海)生物试剂有限公司 Actb抗体(Cell Signaling, 4970)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 2) 和 被用于免疫印迹在人类样本上浓度为1:1000 (图 s5). Cell Death Differ (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 大鼠; 1:1000; 图 5
赛信通(上海)生物试剂有限公司 Actb抗体(Cell Signaling Tech, 4967)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 5). Mol Med Rep (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 5
赛信通(上海)生物试剂有限公司 Actb抗体(Cell Signaling, 4967)被用于被用于免疫印迹在小鼠样本上 (图 5). Cancer Immunol Immunother (2016) ncbi
domestic rabbit 单克隆(13E5)
  • 免疫印迹; 人类; 1:1000; 图 4
赛信通(上海)生物试剂有限公司 Actb抗体(Cell Signaling, 4970)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 4). Oncotarget (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 4
赛信通(上海)生物试剂有限公司 Actb抗体(Cell Signaling, 4967)被用于被用于免疫印迹在小鼠样本上 (图 4). J Clin Invest (2016) ncbi
小鼠 单克隆(8H10D10)
  • 免疫印迹; 人类; 1:1000; 图 2
赛信通(上海)生物试剂有限公司 Actb抗体(Cell signaling, 3700S)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 2). F1000Res (2016) ncbi
小鼠 单克隆(8H10D10)
  • 免疫印迹; 大鼠; 1:20,000; 图 6
赛信通(上海)生物试剂有限公司 Actb抗体(Cell Signaling, 3700)被用于被用于免疫印迹在大鼠样本上浓度为1:20,000 (图 6). Front Mol Neurosci (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:2000; 图 1c
赛信通(上海)生物试剂有限公司 Actb抗体(Cell Signaling Technology, 4967S)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 1c). Sci Rep (2016) ncbi
小鼠 单克隆(8H10D10)
  • 免疫印迹; 人类; 图 5
赛信通(上海)生物试剂有限公司 Actb抗体(Cell Signaling, 3700S)被用于被用于免疫印迹在人类样本上 (图 5). Oncotarget (2016) ncbi
domestic rabbit 单克隆(13E5)
  • 免疫印迹; 人类; 1:1000; 图 1
赛信通(上海)生物试剂有限公司 Actb抗体(Cell Signaling, 4970C)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 1). Sci Rep (2016) ncbi
domestic rabbit 单克隆(D6A8)
  • 免疫印迹; 小鼠; 图 3c
赛信通(上海)生物试剂有限公司 Actb抗体(Cell Signaling Technology, 8457)被用于被用于免疫印迹在小鼠样本上 (图 3c). Mol Biol Cell (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 1e
赛信通(上海)生物试剂有限公司 Actb抗体(Cell Signaling, 4967)被用于被用于免疫印迹在人类样本上 (图 1e). Oncotarget (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 4
赛信通(上海)生物试剂有限公司 Actb抗体(Cell Signaling, 4967)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 4). BMC Biotechnol (2016) ncbi
domestic rabbit 单克隆(13E5)
  • 免疫印迹; 小鼠; 1:500; 图 2
赛信通(上海)生物试剂有限公司 Actb抗体(Cell signaling, 4970)被用于被用于免疫印迹在小鼠样本上浓度为1:500 (图 2). Neurobiol Dis (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 3
赛信通(上海)生物试剂有限公司 Actb抗体(Cell Signaling, 4968)被用于被用于免疫印迹在小鼠样本上 (图 3). Nat Med (2016) ncbi
domestic rabbit 单克隆(13E5)
  • 免疫印迹; 人类; 1:1000; 图 3h
赛信通(上海)生物试剂有限公司 Actb抗体(Cell Signaling Technology, 4970)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3h). Nat Commun (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 表 1
赛信通(上海)生物试剂有限公司 Actb抗体(Cell Signaling, 4968)被用于被用于免疫印迹在小鼠样本上 (表 1). PLoS ONE (2016) ncbi
domestic rabbit 单克隆(13E5)
  • 免疫印迹; 小鼠; 1:10,000; 图 1
赛信通(上海)生物试剂有限公司 Actb抗体(Cell Signaling, 4970)被用于被用于免疫印迹在小鼠样本上浓度为1:10,000 (图 1). Nat Commun (2016) ncbi
小鼠 单克隆(8H10D10)
  • 免疫印迹; 人类; 1:20,000; 图 2
赛信通(上海)生物试剂有限公司 Actb抗体(Cell Signaling, 3700P)被用于被用于免疫印迹在人类样本上浓度为1:20,000 (图 2). Sci Rep (2016) ncbi
domestic rabbit 单克隆(13E5)
  • 免疫印迹; 人类; 1:1000; 图 1
赛信通(上海)生物试剂有限公司 Actb抗体(Cell Signaling Tech, 4970)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 1). Oncotarget (2016) ncbi
小鼠 单克隆(8H10D10)
  • 免疫印迹; 人类; 图 6c
赛信通(上海)生物试剂有限公司 Actb抗体(Cell Signaling, 12262)被用于被用于免疫印迹在人类样本上 (图 6c). Oncotarget (2016) ncbi
domestic rabbit 单克隆(13E5)
  • 免疫印迹; 人类; 图 1c
赛信通(上海)生物试剂有限公司 Actb抗体(Cell Signaling, 4970)被用于被用于免疫印迹在人类样本上 (图 1c). J Biol Chem (2016) ncbi
domestic rabbit 单克隆(13E5)
  • 免疫印迹; 人类; 图 4
  • 免疫印迹; 小鼠; 图 8
赛信通(上海)生物试剂有限公司 Actb抗体(Cell Signaling Technology, 4970L)被用于被用于免疫印迹在人类样本上 (图 4) 和 被用于免疫印迹在小鼠样本上 (图 8). Sci Rep (2016) ncbi
domestic rabbit 单克隆(D6A8)
  • 免疫印迹; 人类; 1:1000; 图 4
赛信通(上海)生物试剂有限公司 Actb抗体(Cell Signaling, 8457)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 4). Nat Chem Biol (2016) ncbi
小鼠 单克隆(8H10D10)
  • 免疫印迹; 人类; 1:1000; 图 s3
  • 免疫印迹; 小鼠; 1:1000; 图 s3
赛信通(上海)生物试剂有限公司 Actb抗体(Cell Signaling, 3700S)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 s3) 和 被用于免疫印迹在小鼠样本上浓度为1:1000 (图 s3). Nucleus (2016) ncbi
domestic rabbit 单克隆(13E5)
  • 免疫印迹; 人类; 1:2000; 图 2
赛信通(上海)生物试剂有限公司 Actb抗体(Cell signaling, 4970)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 2). Oncol Lett (2016) ncbi
小鼠 单克隆(8H10D10)
  • 免疫印迹; 小鼠; 1:1000; 图 2
赛信通(上海)生物试剂有限公司 Actb抗体(Cell Signaling, 3700)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 2). Sci Rep (2016) ncbi
domestic rabbit 单克隆(13E5)
  • 免疫印迹; 人类; 1:12,000; 图 s4
  • 免疫印迹; 小鼠; 1:12,000; 图 s4
赛信通(上海)生物试剂有限公司 Actb抗体(Cell Signaling, 5125S)被用于被用于免疫印迹在人类样本上浓度为1:12,000 (图 s4) 和 被用于免疫印迹在小鼠样本上浓度为1:12,000 (图 s4). Sci Rep (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 4a
赛信通(上海)生物试剂有限公司 Actb抗体(Cell Signaling Technology, 4967)被用于被用于免疫印迹在小鼠样本上 (图 4a). Int J Food Sci Nutr (2016) ncbi
小鼠 单克隆(8H10D10)
  • 免疫印迹; 人类; 表 2
赛信通(上海)生物试剂有限公司 Actb抗体(Cell Signaling, 12262)被用于被用于免疫印迹在人类样本上 (表 2). elife (2016) ncbi
domestic rabbit 单克隆(13E5)
  • 免疫印迹; 小鼠; 1:2500; 图 s3
赛信通(上海)生物试剂有限公司 Actb抗体(Cell signaling technologies, 4970)被用于被用于免疫印迹在小鼠样本上浓度为1:2500 (图 s3). Nat Commun (2016) ncbi
domestic rabbit 单克隆(13E5)
  • 免疫印迹; 人类; 1:4000; 图 5
赛信通(上海)生物试剂有限公司 Actb抗体(Cell Signaling, 5125)被用于被用于免疫印迹在人类样本上浓度为1:4000 (图 5). PLoS Pathog (2016) ncbi
domestic rabbit 单克隆(13E5)
  • 免疫印迹; 人类; 图 1
赛信通(上海)生物试剂有限公司 Actb抗体(Cell Signaling Technology, 4970)被用于被用于免疫印迹在人类样本上 (图 1). Tumour Biol (2016) ncbi
domestic rabbit 单克隆(D6A8)
  • 免疫印迹; 小鼠; 1:1000; 图 s3
赛信通(上海)生物试剂有限公司 Actb抗体(Cell Signaling, 8457L)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 s3). Nat Biotechnol (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 8
赛信通(上海)生物试剂有限公司 Actb抗体(Cell signaling, 4967L)被用于被用于免疫印迹在人类样本上 (图 8). Nucleic Acids Res (2016) ncbi
小鼠 单克隆(8H10D10)
  • 免疫印迹; 人类; 图 3
赛信通(上海)生物试剂有限公司 Actb抗体(Cell Signaling, 3700)被用于被用于免疫印迹在人类样本上 (图 3). Int J Cancer (2016) ncbi
domestic rabbit 单克隆(13E5)
  • 免疫印迹; 大鼠; 1:5000; 图 4
赛信通(上海)生物试剂有限公司 Actb抗体(Cell Signaling, 13E5)被用于被用于免疫印迹在大鼠样本上浓度为1:5000 (图 4). Respiration (2016) ncbi
domestic rabbit 单克隆(13E5)
  • 免疫印迹; 小鼠; 图 1b
赛信通(上海)生物试剂有限公司 Actb抗体(Cell Signaling, 4970)被用于被用于免疫印迹在小鼠样本上 (图 1b). Aging Cell (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:4000; 图 1
  • 免疫印迹; 小鼠; 1:2000; 图 1
赛信通(上海)生物试剂有限公司 Actb抗体(Cell Signaling, 4967)被用于被用于免疫印迹在人类样本上浓度为1:4000 (图 1) 和 被用于免疫印迹在小鼠样本上浓度为1:2000 (图 1). Nat Commun (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:500; 图 1
赛信通(上海)生物试剂有限公司 Actb抗体(Cell Signaling Technology, 4968)被用于被用于免疫印迹在小鼠样本上浓度为1:500 (图 1). Cell Death Dis (2016) ncbi
domestic rabbit 单克隆(13E5)
  • 免疫印迹; 人类; 图 s2
赛信通(上海)生物试剂有限公司 Actb抗体(Cell Signaling Technology, 4970)被用于被用于免疫印迹在人类样本上 (图 s2). PLoS ONE (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹基因敲除验证; 人类; 图 s2
赛信通(上海)生物试剂有限公司 Actb抗体(Cell Signaling Technology, 4967)被用于被用于免疫印迹基因敲除验证在人类样本上 (图 s2). PLoS ONE (2016) ncbi
domestic rabbit 单克隆(13E5)
  • 免疫印迹; 人类; 1:5000; 图 1
赛信通(上海)生物试剂有限公司 Actb抗体(Cell Signaling Technology, 4970)被用于被用于免疫印迹在人类样本上浓度为1:5000 (图 1). PLoS ONE (2016) ncbi
domestic rabbit 单克隆(13E5)
  • 免疫印迹; 小鼠; 1:1000
赛信通(上海)生物试剂有限公司 Actb抗体(Cell Signaling, 4970)被用于被用于免疫印迹在小鼠样本上浓度为1:1000. Nat Commun (2016) ncbi
domestic rabbit 单克隆(13E5)
  • 免疫印迹; 小鼠; 1:1000; 图 4e
赛信通(上海)生物试剂有限公司 Actb抗体(Cell Signaling, 4970S)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 4e). Mol Med Rep (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 5b
赛信通(上海)生物试剂有限公司 Actb抗体(Cell Signaling Technology, 4967)被用于被用于免疫印迹在小鼠样本上 (图 5b). J Clin Invest (2016) ncbi
domestic rabbit 单克隆(13E5)
  • proximity ligation assay; 人类; 1:200; 图 6a
赛信通(上海)生物试剂有限公司 Actb抗体(Cell signaling, 4970)被用于被用于proximity ligation assay在人类样本上浓度为1:200 (图 6a). Oncotarget (2015) ncbi
domestic rabbit 单克隆(13E5)
  • 免疫印迹; 人类; 图 5
赛信通(上海)生物试剂有限公司 Actb抗体(Cell signaling, 4970)被用于被用于免疫印迹在人类样本上 (图 5). Oncotarget (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:2000; 图 3c
赛信通(上海)生物试剂有限公司 Actb抗体(Cell Signalling, 4967)被用于被用于免疫印迹在小鼠样本上浓度为1:2000 (图 3c). Reprod Domest Anim (2016) ncbi
domestic rabbit 单克隆(D6A8)
  • 免疫印迹; 人类; 1:1000; 图 4h
赛信通(上海)生物试剂有限公司 Actb抗体(Cell Signaling, 8457)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 4h). Int J Oncol (2016) ncbi
domestic rabbit 单克隆(13E5)
赛信通(上海)生物试剂有限公司 Actb抗体(Cell Signaling Technology, 4970)被用于. Nature (2015) ncbi
小鼠 单克隆(8H10D10)
  • 免疫印迹; 人类; 1:5000; 图 2
赛信通(上海)生物试剂有限公司 Actb抗体(Cell Signaling, 3700)被用于被用于免疫印迹在人类样本上浓度为1:5000 (图 2). J Cell Sci (2016) ncbi
domestic rabbit 单克隆(13E5)
  • 免疫印迹; 小鼠; 1:10,000; 图 6
赛信通(上海)生物试剂有限公司 Actb抗体(Cell Signaling, 4970)被用于被用于免疫印迹在小鼠样本上浓度为1:10,000 (图 6). Nat Commun (2015) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 2
赛信通(上海)生物试剂有限公司 Actb抗体(Cell Signaling Technology, 4967)被用于被用于免疫印迹在人类样本上 (图 2). Oncogene (2016) ncbi
domestic rabbit 单克隆(13E5)
  • 免疫印迹; 人类; 图 2
赛信通(上海)生物试剂有限公司 Actb抗体(Cell Signal-ing, 4970S)被用于被用于免疫印迹在人类样本上 (图 2). J Cell Mol Med (2016) ncbi
domestic rabbit 单克隆(13E5)
  • 免疫印迹; 人类; 图 1b
赛信通(上海)生物试剂有限公司 Actb抗体(Cell Signaling Technology, 4970)被用于被用于免疫印迹在人类样本上 (图 1b). BMC Neurosci (2015) ncbi
domestic rabbit 单克隆(13E5)
  • 免疫印迹; 犬; 1:1000; 图 5
赛信通(上海)生物试剂有限公司 Actb抗体(Cell Signaling, 4970S)被用于被用于免疫印迹在犬样本上浓度为1:1000 (图 5). PLoS ONE (2015) ncbi
小鼠 单克隆(8H10D10)
  • 免疫印迹; 人类; 图 2
赛信通(上海)生物试剂有限公司 Actb抗体(Cell signaling, 3700)被用于被用于免疫印迹在人类样本上 (图 2). BMC Cancer (2015) ncbi
小鼠 单克隆(8H10D10)
  • 免疫印迹; 小鼠; 1:1000; 图 s5b
赛信通(上海)生物试剂有限公司 Actb抗体(Cell signaling technology, 3700)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 s5b). Nature (2015) ncbi
domestic rabbit 单克隆(13E5)
  • 免疫印迹; 小鼠; 图 6
赛信通(上海)生物试剂有限公司 Actb抗体(Cell Signaling, 13E5)被用于被用于免疫印迹在小鼠样本上 (图 6). elife (2015) ncbi
domestic rabbit 单克隆(13E5)
  • 免疫印迹; 小鼠; 图 4
赛信通(上海)生物试剂有限公司 Actb抗体(Cell Signaling Technology, 5125s)被用于被用于免疫印迹在小鼠样本上 (图 4). Endocrinology (2016) ncbi
小鼠 单克隆(8H10D10)
  • 免疫印迹; 人类; 1:10,000; 图 1
  • 免疫印迹; 小鼠; 图 2
赛信通(上海)生物试剂有限公司 Actb抗体(Cell Signaling Technology, 3700)被用于被用于免疫印迹在人类样本上浓度为1:10,000 (图 1) 和 被用于免疫印迹在小鼠样本上 (图 2). J Neurosci (2015) ncbi
domestic rabbit 单克隆(D6A8)
  • 免疫印迹; 小鼠; 图 2
赛信通(上海)生物试剂有限公司 Actb抗体(Cell Signaling, D6A8)被用于被用于免疫印迹在小鼠样本上 (图 2). PLoS ONE (2015) ncbi
小鼠 单克隆(8H10D10)
  • 免疫印迹; 小鼠; 图 6
  • 免疫印迹; 人类; 图 1
赛信通(上海)生物试剂有限公司 Actb抗体(Cell Signaling Technology, 3700P)被用于被用于免疫印迹在小鼠样本上 (图 6) 和 被用于免疫印迹在人类样本上 (图 1). Mol Cancer Res (2016) ncbi
domestic rabbit 单克隆(13E5)
  • 免疫印迹; 人类; 1:1000; 图 6
赛信通(上海)生物试剂有限公司 Actb抗体(Cell Signaling Tech, 5125)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 6). Oncotarget (2015) ncbi
小鼠 单克隆(8H10D10)
  • 免疫印迹; 小鼠; 1:2000; 图 2
赛信通(上海)生物试剂有限公司 Actb抗体(Cell Signaling, 12262)被用于被用于免疫印迹在小鼠样本上浓度为1:2000 (图 2). Nat Commun (2015) ncbi
domestic rabbit 单克隆(13E5)
  • 免疫印迹; 人类; 图 1c
赛信通(上海)生物试剂有限公司 Actb抗体(Cell Signaling Technology, 13E5)被用于被用于免疫印迹在人类样本上 (图 1c). Int J Hematol (2015) ncbi
domestic rabbit 单克隆(13E5)
  • 免疫印迹; 人类; 1:5000; 图 3
赛信通(上海)生物试剂有限公司 Actb抗体(Cell Signaling, 4970L)被用于被用于免疫印迹在人类样本上浓度为1:5000 (图 3). Br J Cancer (2015) ncbi
domestic rabbit 单克隆(D6A8)
  • 免疫印迹; 大鼠; 1:2500; 图 3
赛信通(上海)生物试剂有限公司 Actb抗体(Cell Signaling, 8457)被用于被用于免疫印迹在大鼠样本上浓度为1:2500 (图 3). Int J Mol Med (2015) ncbi
domestic rabbit 单克隆(13E5)
  • 免疫印迹; 小鼠
赛信通(上海)生物试剂有限公司 Actb抗体(Cell Signaling Technology, 4970)被用于被用于免疫印迹在小鼠样本上. FASEB J (2016) ncbi
domestic rabbit 单克隆(13E5)
  • 免疫印迹; 小鼠
赛信通(上海)生物试剂有限公司 Actb抗体(Cell Signaling, 4970)被用于被用于免疫印迹在小鼠样本上. PLoS ONE (2015) ncbi
小鼠 单克隆(8H10D10)
  • 免疫印迹; 大鼠; 图 1
赛信通(上海)生物试剂有限公司 Actb抗体(Cell Signaling, 3700S)被用于被用于免疫印迹在大鼠样本上 (图 1). EMBO Mol Med (2015) ncbi
domestic rabbit 单克隆(13E5)
  • 免疫印迹; 人类; 1:1000; 图 3
赛信通(上海)生物试剂有限公司 Actb抗体(Cell Signaling Technology, 5125)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3). PLoS ONE (2015) ncbi
domestic rabbit 单克隆(13E5)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 Actb抗体(Cell Signaling Technology, 4970)被用于被用于免疫印迹在人类样本上. Sci Rep (2015) ncbi
小鼠 单克隆(8H10D10)
  • 免疫印迹; 大鼠; 1:20,000; 图 3
赛信通(上海)生物试剂有限公司 Actb抗体(Cell Signaling, 3700S)被用于被用于免疫印迹在大鼠样本上浓度为1:20,000 (图 3). Exp Cell Res (2015) ncbi
domestic rabbit 单克隆(13E5)
  • 免疫印迹; 小鼠; 1:1000; 图 7a
赛信通(上海)生物试剂有限公司 Actb抗体(Cell Signaling, 4970L)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 7a). Nat Commun (2015) ncbi
小鼠 单克隆(8H10D10)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 Actb抗体(Cell Signaling, 3700)被用于被用于免疫印迹在人类样本上. PLoS ONE (2015) ncbi
domestic rabbit 单克隆(13E5)
  • 免疫印迹; African green monkey; 图 3a
赛信通(上海)生物试剂有限公司 Actb抗体(Cell Signalling, 4970)被用于被用于免疫印迹在African green monkey样本上 (图 3a). Biochim Biophys Acta (2015) ncbi
小鼠 单克隆(8H10D10)
  • 免疫印迹; 人类; 图 1a
赛信通(上海)生物试剂有限公司 Actb抗体(Cell Signaling, 3700)被用于被用于免疫印迹在人类样本上 (图 1a). J Cell Sci (2015) ncbi
小鼠 单克隆(8H10D10)
  • 免疫印迹; 小鼠; 1:3000; 图 s10
赛信通(上海)生物试剂有限公司 Actb抗体(Cell Signaling Technology, 3700S)被用于被用于免疫印迹在小鼠样本上浓度为1:3000 (图 s10). Nat Commun (2015) ncbi
小鼠 单克隆(8H10D10)
  • 免疫印迹; 人类; 1:750; 图 4
赛信通(上海)生物试剂有限公司 Actb抗体(Cell Signaling, 3700)被用于被用于免疫印迹在人类样本上浓度为1:750 (图 4). PLoS ONE (2015) ncbi
domestic rabbit 单克隆(13E5)
  • 免疫印迹; 人类; 图 3
赛信通(上海)生物试剂有限公司 Actb抗体(Cell Signaling, 4970)被用于被用于免疫印迹在人类样本上 (图 3). Oncogene (2016) ncbi
domestic rabbit 单克隆(13E5)
  • 免疫印迹; 人类; 图 4
赛信通(上海)生物试剂有限公司 Actb抗体(Cell Signaling, 4970S)被用于被用于免疫印迹在人类样本上 (图 4). Nucleic Acids Res (2015) ncbi
domestic rabbit 单克隆(13E5)
  • 免疫印迹; 人类; 1:1000; 图 s4
赛信通(上海)生物试剂有限公司 Actb抗体(Cell Signaling, 13E5)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 s4). Nat Commun (2015) ncbi
domestic rabbit 单克隆(13E5)
  • 免疫印迹; 人类; 图 6
赛信通(上海)生物试剂有限公司 Actb抗体(Cell signaling, 4970)被用于被用于免疫印迹在人类样本上 (图 6). J Cell Sci (2015) ncbi
domestic rabbit 单克隆(13E5)
  • 免疫印迹; 人类; 图 1
赛信通(上海)生物试剂有限公司 Actb抗体(Cell signaling, 13E5)被用于被用于免疫印迹在人类样本上 (图 1). Oncotarget (2015) ncbi
小鼠 单克隆(8H10D10)
  • 免疫印迹; 人类; 1:10,000; 图 6
赛信通(上海)生物试剂有限公司 Actb抗体(Cell Signaling, 3700S)被用于被用于免疫印迹在人类样本上浓度为1:10,000 (图 6). Oncotarget (2015) ncbi
小鼠 单克隆(8H10D10)
  • 免疫印迹; 人类; 1:2000; 图 1
赛信通(上海)生物试剂有限公司 Actb抗体(Cell Signaling, 3700s)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 1). Int J Mol Med (2015) ncbi
domestic rabbit 单克隆(13E5)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 Actb抗体(cst, 4970S)被用于被用于免疫印迹在人类样本上. Oncogene (2016) ncbi
小鼠 单克隆(8H10D10)
  • 免疫印迹; 人类; 1:5000
赛信通(上海)生物试剂有限公司 Actb抗体(Cell Signaling Technology, 8H10D10)被用于被用于免疫印迹在人类样本上浓度为1:5000. Hum Mol Genet (2015) ncbi
小鼠 单克隆(8H10D10)
  • 免疫印迹; 人类; 1:3; 图 s17
赛信通(上海)生物试剂有限公司 Actb抗体(CST, 3700S)被用于被用于免疫印迹在人类样本上浓度为1:3 (图 s17). Nat Chem Biol (2015) ncbi
domestic rabbit 单克隆(13E5)
  • 免疫印迹; 小鼠; 图 2b
赛信通(上海)生物试剂有限公司 Actb抗体(Cell Signaling Technology, 4970)被用于被用于免疫印迹在小鼠样本上 (图 2b). Cell Death Dis (2015) ncbi
小鼠 单克隆(8H10D10)
  • 免疫沉淀; 人类; 图 2a
  • 免疫印迹; 人类; 图 2a
赛信通(上海)生物试剂有限公司 Actb抗体(Cell Signaling Technology, 3700)被用于被用于免疫沉淀在人类样本上 (图 2a) 和 被用于免疫印迹在人类样本上 (图 2a). Autophagy (2016) ncbi
domestic rabbit 单克隆(13E5)
  • 免疫印迹; 大鼠
赛信通(上海)生物试剂有限公司 Actb抗体(Cell Signaling Tech, 4970)被用于被用于免疫印迹在大鼠样本上. J Neurotrauma (2015) ncbi
domestic rabbit 单克隆(D6A8)
  • 免疫印迹; 小鼠; 0.02 ug/ml; 图 4
赛信通(上海)生物试剂有限公司 Actb抗体(Cell Signaling, 8457)被用于被用于免疫印迹在小鼠样本上浓度为0.02 ug/ml (图 4). Endocrinology (2015) ncbi
domestic rabbit 单克隆(13E5)
  • 免疫印迹; 人类; 1:1000; 图 6
赛信通(上海)生物试剂有限公司 Actb抗体(Cell Signaling, 4970)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 6). Cancer Biol Ther (2015) ncbi
domestic rabbit 单克隆(13E5)
  • 免疫印迹; 人类; 图 1e
赛信通(上海)生物试剂有限公司 Actb抗体(Cell Signaling, 5125)被用于被用于免疫印迹在人类样本上 (图 1e). Oncotarget (2015) ncbi
domestic rabbit 单克隆(D6A8)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 Actb抗体(Cell Signaling Technology, 8457)被用于被用于免疫印迹在人类样本上. Acta Pharmacol Sin (2015) ncbi
domestic rabbit 单克隆(13E5)
  • 免疫印迹; 小鼠; 图 s9b
赛信通(上海)生物试剂有限公司 Actb抗体(Cell Signaling, 4970)被用于被用于免疫印迹在小鼠样本上 (图 s9b). Proc Natl Acad Sci U S A (2015) ncbi
domestic rabbit 单克隆(D18C11)
  • 免疫印迹; 大鼠; 图 3
赛信通(上海)生物试剂有限公司 Actb抗体(Cell Signaling Technology, 8456)被用于被用于免疫印迹在大鼠样本上 (图 3). Cell Physiol Biochem (2015) ncbi
domestic rabbit 单克隆(13E5)
  • 免疫印迹; 人类; 1:1000; 图 s4e
赛信通(上海)生物试剂有限公司 Actb抗体(Cell Signaling, 4970)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 s4e). Nat Neurosci (2015) ncbi
小鼠 单克隆(8H10D10)
  • 免疫印迹; 人类; 图 2
赛信通(上海)生物试剂有限公司 Actb抗体(Cell signaling, 8H10D10)被用于被用于免疫印迹在人类样本上 (图 2). Autophagy (2015) ncbi
小鼠 单克隆(8H10D10)
  • 免疫印迹; 大鼠; 1:1000
赛信通(上海)生物试剂有限公司 Actb抗体(Cell Signaling Technology, 3700)被用于被用于免疫印迹在大鼠样本上浓度为1:1000. Int J Mol Med (2015) ncbi
domestic rabbit 单克隆(13E5)
  • 免疫印迹; 小鼠; 1:1000; 图 4a
赛信通(上海)生物试剂有限公司 Actb抗体(Cell Signaling Technology, 4970)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 4a). Br J Pharmacol (2015) ncbi
domestic rabbit 单克隆(13E5)
  • 免疫印迹; 小鼠; 1:2000; 图 5
赛信通(上海)生物试剂有限公司 Actb抗体(Cell Signaling, 4970)被用于被用于免疫印迹在小鼠样本上浓度为1:2000 (图 5). Nat Cell Biol (2015) ncbi
小鼠 单克隆(8H10D10)
  • 免疫印迹; 人类; 图 2
  • 免疫印迹; 小鼠; 图 2
赛信通(上海)生物试剂有限公司 Actb抗体(Cell Signaling Technology, 3700)被用于被用于免疫印迹在人类样本上 (图 2) 和 被用于免疫印迹在小鼠样本上 (图 2). PLoS Genet (2015) ncbi
domestic rabbit 单克隆(13E5)
  • 免疫印迹; 小鼠; 图 1,2,3,4
赛信通(上海)生物试剂有限公司 Actb抗体(cell signaling, 4970)被用于被用于免疫印迹在小鼠样本上 (图 1,2,3,4). Mol Cell Biol (2015) ncbi
小鼠 单克隆(8H10D10)
  • 免疫印迹; 小鼠
赛信通(上海)生物试剂有限公司 Actb抗体(Cell signaling, 3700)被用于被用于免疫印迹在小鼠样本上. J Mol Neurosci (2015) ncbi
小鼠 单克隆(8H10D10)
  • 免疫印迹; 人类; 图 2
赛信通(上海)生物试剂有限公司 Actb抗体(Cell signaling, 8H10D10)被用于被用于免疫印迹在人类样本上 (图 2). Oncotarget (2015) ncbi
小鼠 单克隆(8H10D10)
  • 免疫印迹; 人类; 图 1
赛信通(上海)生物试剂有限公司 Actb抗体(Cell Signaling, 3700)被用于被用于免疫印迹在人类样本上 (图 1). Cell Cycle (2014) ncbi
domestic rabbit 单克隆(D18C11)
  • 免疫印迹; 人类; 图 4
赛信通(上海)生物试剂有限公司 Actb抗体(Cell Signaling, D18C11)被用于被用于免疫印迹在人类样本上 (图 4). Cell (2015) ncbi
小鼠 单克隆(8H10D10)
  • 免疫印迹; 小鼠
赛信通(上海)生物试剂有限公司 Actb抗体(CellSignaling, 8H10D10)被用于被用于免疫印迹在小鼠样本上. J Biol Chem (2015) ncbi
domestic rabbit 单克隆(13E5)
  • 免疫印迹; 人类; 图 3
赛信通(上海)生物试剂有限公司 Actb抗体(Cell Signaling Technology, 4970)被用于被用于免疫印迹在人类样本上 (图 3). Oncogene (2015) ncbi
domestic rabbit 单克隆(13E5)
  • 免疫印迹; 人类; 图 6
赛信通(上海)生物试剂有限公司 Actb抗体(Cell Signaling, 4970)被用于被用于免疫印迹在人类样本上 (图 6). J Virol (2015) ncbi
domestic rabbit 单克隆(13E5)
  • 免疫印迹; 小鼠; 1:5000; 图 1c
赛信通(上海)生物试剂有限公司 Actb抗体(Cell Signaling, no. 5125)被用于被用于免疫印迹在小鼠样本上浓度为1:5000 (图 1c). Am J Physiol Regul Integr Comp Physiol (2015) ncbi
domestic rabbit 单克隆(13E5)
  • 免疫印迹; 大鼠; 1:2000; 图 7
赛信通(上海)生物试剂有限公司 Actb抗体(Cell Signaling, 4970)被用于被用于免疫印迹在大鼠样本上浓度为1:2000 (图 7). Physiol Rep (2014) ncbi
domestic rabbit 单克隆(13E5)
  • 免疫印迹; 人类; 1:5000
赛信通(上海)生物试剂有限公司 Actb抗体(Cell Signaling, 13E5)被用于被用于免疫印迹在人类样本上浓度为1:5000. J Pineal Res (2015) ncbi
domestic rabbit 单克隆(13E5)
  • 免疫印迹; 人类; 1:3000; 图 3a
赛信通(上海)生物试剂有限公司 Actb抗体(Cell Signaling, 4970)被用于被用于免疫印迹在人类样本上浓度为1:3000 (图 3a). Epigenetics (2014) ncbi
domestic rabbit 单克隆(D18C11)
  • 免疫印迹; 小鼠; 图 7
赛信通(上海)生物试剂有限公司 Actb抗体(Cell Signaling, 8456)被用于被用于免疫印迹在小鼠样本上 (图 7). Neuropharmacology (2015) ncbi
domestic rabbit 单克隆(13E5)
  • 免疫印迹; 人类; 1:1000
赛信通(上海)生物试剂有限公司 Actb抗体(Cell Signaling, 4970)被用于被用于免疫印迹在人类样本上浓度为1:1000. Br J Cancer (2014) ncbi
domestic rabbit 单克隆(13E5)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 Actb抗体(Cell Signaling Technology, 4970S)被用于被用于免疫印迹在人类样本上. J Biol Chem (2015) ncbi
domestic rabbit 单克隆(D6A8)
  • 免疫印迹; 大鼠; 图 9f
赛信通(上海)生物试剂有限公司 Actb抗体(Cell Signaling Technology, 8457)被用于被用于免疫印迹在大鼠样本上 (图 9f). Int J Mol Med (2015) ncbi
小鼠 单克隆(8H10D10)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 Actb抗体(Cell Signaling Technology, 3700)被用于被用于免疫印迹在人类样本上. Mol Cancer Ther (2014) ncbi
小鼠 单克隆(8H10D10)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 Actb抗体(Cell Signaling Technology, 3700)被用于被用于免疫印迹在人类样本上. Mol Cancer Ther (2014) ncbi
domestic rabbit 单克隆(13E5)
  • 免疫印迹; 小鼠; 图 3
赛信通(上海)生物试剂有限公司 Actb抗体(Cell Signaling, 13E5)被用于被用于免疫印迹在小鼠样本上 (图 3). J Invest Dermatol (2015) ncbi
domestic rabbit 单克隆(13E5)
  • 免疫印迹; 小鼠; 1:2000; 图 4
赛信通(上海)生物试剂有限公司 Actb抗体(Cell Signaling Technology, 4970)被用于被用于免疫印迹在小鼠样本上浓度为1:2000 (图 4). Oncogene (2015) ncbi
domestic rabbit 单克隆(13E5)
  • 免疫印迹; 小鼠; 1:500
赛信通(上海)生物试剂有限公司 Actb抗体(Cell Signaling, 4970S)被用于被用于免疫印迹在小鼠样本上浓度为1:500. PLoS ONE (2014) ncbi
小鼠 单克隆(8H10D10)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 Actb抗体(Cell Signaling, 3700)被用于被用于免疫印迹在人类样本上. J Clin Endocrinol Metab (2014) ncbi
小鼠 单克隆(8H10D10)
  • 免疫印迹; 人类; 1:5000
赛信通(上海)生物试剂有限公司 Actb抗体(Cell Signaling Technology, 8H10D10)被用于被用于免疫印迹在人类样本上浓度为1:5000. PLoS ONE (2014) ncbi
domestic rabbit 单克隆(13E5)
  • 免疫印迹; 人类; 1:500
赛信通(上海)生物试剂有限公司 Actb抗体(Cell Signaling, 4970)被用于被用于免疫印迹在人类样本上浓度为1:500. PPAR Res (2014) ncbi
domestic rabbit 单克隆(13E5)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 Actb抗体(Cell Signaling, 13E5)被用于被用于免疫印迹在人类样本上. Nat Genet (2014) ncbi
domestic rabbit 单克隆(13E5)
  • 免疫印迹; 小鼠
赛信通(上海)生物试剂有限公司 Actb抗体(Cell Signaling, 4970S)被用于被用于免疫印迹在小鼠样本上. J Immunol (2014) ncbi
domestic rabbit 单克隆(13E5)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 Actb抗体(Cell Signaling Technology, 5125)被用于被用于免疫印迹在人类样本上. Mol Cell Biol (2014) ncbi
小鼠 单克隆(8H10D10)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 Actb抗体(Cell Signaling, 8H10D10)被用于被用于免疫印迹在人类样本上. J Virol (2014) ncbi
domestic rabbit 单克隆(13E5)
  • 免疫印迹; 大鼠; 1:1000
赛信通(上海)生物试剂有限公司 Actb抗体(Cell Signaling, 4970S)被用于被用于免疫印迹在大鼠样本上浓度为1:1000. Mol Cell Proteomics (2014) ncbi
小鼠 单克隆(8H10D10)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 Actb抗体(Cell Signaling Technology, 3700)被用于被用于免疫印迹在人类样本上. Autophagy (2014) ncbi
domestic rabbit 单克隆(13E5)
  • 免疫印迹; 小鼠; 1:30,000
赛信通(上海)生物试剂有限公司 Actb抗体(Cell Signaling, 4970S)被用于被用于免疫印迹在小鼠样本上浓度为1:30,000. PLoS ONE (2013) ncbi
小鼠 单克隆(8H10D10)
  • 免疫印迹; 大鼠; 1:1000
赛信通(上海)生物试剂有限公司 Actb抗体(Cell Signaling, 8H10D10)被用于被用于免疫印迹在大鼠样本上浓度为1:1000. J Neurochem (2014) ncbi
domestic rabbit 单克隆(13E5)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 Actb抗体(Cell Signaling Technology, 4970)被用于被用于免疫印迹在人类样本上. Phytother Res (2014) ncbi
小鼠 单克隆(8H10D10)
  • 免疫印迹; 小鼠; 1:1000
赛信通(上海)生物试剂有限公司 Actb抗体(Cell Signaling, 3700S)被用于被用于免疫印迹在小鼠样本上浓度为1:1000. Aging Cell (2014) ncbi
domestic rabbit 单克隆(D6A8)
  • 免疫印迹; 小鼠
赛信通(上海)生物试剂有限公司 Actb抗体(Cell Signaling Technology, 8457S)被用于被用于免疫印迹在小鼠样本上. Biochem J (2013) ncbi
小鼠 单克隆(8H10D10)
  • 免疫印迹; 小鼠
赛信通(上海)生物试剂有限公司 Actb抗体(Cell Signaling, 8H10D10)被用于被用于免疫印迹在小鼠样本上. J Lipids (2013) ncbi
小鼠 单克隆(8H10D10)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 Actb抗体(Cell Signaling, 3700)被用于被用于免疫印迹在人类样本上. Invest Ophthalmol Vis Sci (2012) ncbi
MP Biochemicals
单克隆(C4)
  • 免疫印迹; 人类; 1:5000; 图 1c
MP生化试剂 Actb抗体(MP Biomedicals, 08691001)被用于被用于免疫印迹在人类样本上浓度为1:5000 (图 1c). Stem Cell Res (2019) ncbi
单克隆(C4)
  • 免疫印迹; 人类; 图 1e
MP生化试剂 Actb抗体(MP Biomedicals, 691001)被用于被用于免疫印迹在人类样本上 (图 1e). Science (2018) ncbi
西格玛奥德里奇
小鼠 单克隆(AC-15)
  • 免疫印迹; 小鼠; 图 1f
西格玛奥德里奇 Actb抗体(Sigma, AB1978)被用于被用于免疫印迹在小鼠样本上 (图 1f). Cell Death Dis (2021) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; African green monkey; 1:10,000; 图 4c
  • 免疫印迹; 大鼠; 图 4c
西格玛奥德里奇 Actb抗体(Sigma, A5441)被用于被用于免疫印迹在African green monkey样本上浓度为1:10,000 (图 4c) 和 被用于免疫印迹在大鼠样本上 (图 4c). Pharmaceutics (2021) ncbi
小鼠 单克隆(AC-74)
  • 免疫印迹; 人类; 图 4a
西格玛奥德里奇 Actb抗体(Sigma- Aldrich, A5316)被用于被用于免疫印迹在人类样本上 (图 4a). Aging Dis (2021) ncbi
小鼠 单克隆(AC-74)
  • 免疫印迹; 人类; 1:4000; 图 1e
西格玛奥德里奇 Actb抗体(Sigma, A2228)被用于被用于免疫印迹在人类样本上浓度为1:4000 (图 1e). Acta Neuropathol (2021) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 人类; 1:3000; 图 1e
西格玛奥德里奇 Actb抗体(Sigma, A5441)被用于被用于免疫印迹在人类样本上浓度为1:3000 (图 1e). Cell Rep (2021) ncbi
小鼠 单克隆(AC-74)
  • 免疫印迹; 人类; 1:2000; 图 7d
西格玛奥德里奇 Actb抗体(Sigma, AC-74)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 7d). Nat Commun (2021) ncbi
小鼠 单克隆(AC-74)
  • 免疫印迹; 小鼠; 图 3d
西格玛奥德里奇 Actb抗体(Sigma, A2228)被用于被用于免疫印迹在小鼠样本上 (图 3d). PLoS ONE (2021) ncbi
小鼠 单克隆(AC-74)
  • 免疫印迹; 小鼠; 1:50,000; 图 5b
西格玛奥德里奇 Actb抗体(Merck-Sigma, A5316)被用于被用于免疫印迹在小鼠样本上浓度为1:50,000 (图 5b). Int J Mol Sci (2021) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 大鼠; 1:1000; 图 4a
西格玛奥德里奇 Actb抗体(Sigma, A5441)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 4a). Sci Rep (2021) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 人类; 图 1c
西格玛奥德里奇 Actb抗体(Sigma, AC-15)被用于被用于免疫印迹在人类样本上 (图 1c). Am J Cancer Res (2021) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 人类; 图 2a
西格玛奥德里奇 Actb抗体(Sigma, A3854)被用于被用于免疫印迹在人类样本上 (图 2a). Cell Death Dis (2021) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 人类; 图 4b
西格玛奥德里奇 Actb抗体(Sigma-Aldrich, A1978)被用于被用于免疫印迹在人类样本上 (图 4b). Res Sq (2021) ncbi
小鼠 单克隆(AC-74)
  • 免疫印迹; 人类; 图 1d
西格玛奥德里奇 Actb抗体(Sigma, A5316)被用于被用于免疫印迹在人类样本上 (图 1d). Genome Biol (2021) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 人类; 图 3a
西格玛奥德里奇 Actb抗体(Sigma, A5441)被用于被用于免疫印迹在人类样本上 (图 3a). Cancers (Basel) (2021) ncbi
小鼠 单克隆(AC-74)
  • 免疫印迹; 人类; 图 2c
西格玛奥德里奇 Actb抗体(Sigma, AC-74)被用于被用于免疫印迹在人类样本上 (图 2c). Genes (Basel) (2021) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 人类; 图 s9c
西格玛奥德里奇 Actb抗体(Sigma, A5441)被用于被用于免疫印迹在人类样本上 (图 s9c). Sci Rep (2021) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 小鼠; 图 1h
西格玛奥德里奇 Actb抗体(Sigma, A5441)被用于被用于免疫印迹在小鼠样本上 (图 1h). Proc Natl Acad Sci U S A (2021) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 人类; 图 5b
西格玛奥德里奇 Actb抗体(Sigma, A1978)被用于被用于免疫印迹在人类样本上 (图 5b). Cell Death Dis (2021) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 人类; 图 5b
西格玛奥德里奇 Actb抗体(Sigma, A1978)被用于被用于免疫印迹在人类样本上 (图 5b). Nat Commun (2021) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 人类; 1:10,000; 图 1d
西格玛奥德里奇 Actb抗体(Sigma, A5441)被用于被用于免疫印迹在人类样本上浓度为1:10,000 (图 1d). Sci Rep (2021) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 人类; 1:10,000; 图 2j
西格玛奥德里奇 Actb抗体(Sigma, A1978)被用于被用于免疫印迹在人类样本上浓度为1:10,000 (图 2j). Nucleic Acids Res (2021) ncbi
小鼠 单克隆(AC-74)
  • 免疫印迹; 小鼠; 1:5000; 图 2f
西格玛奥德里奇 Actb抗体(Sigma-Aldrich, A2228)被用于被用于免疫印迹在小鼠样本上浓度为1:5000 (图 2f). elife (2020) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 小鼠; 1:10,000; 图 1a
西格玛奥德里奇 Actb抗体(Sigma, A-5441)被用于被用于免疫印迹在小鼠样本上浓度为1:10,000 (图 1a). Sci Adv (2020) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 人类; 1:10,000; 图 s5a
西格玛奥德里奇 Actb抗体(Sigma, A5441)被用于被用于免疫印迹在人类样本上浓度为1:10,000 (图 s5a). Nat Commun (2020) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 人类; 1:2000; 图 4b
西格玛奥德里奇 Actb抗体(Sigma, A5441)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 4b). elife (2020) ncbi
小鼠 单克隆(AC-74)
  • 免疫印迹; 人类; 1:10,000; 图 3f,
西格玛奥德里奇 Actb抗体(Sigma-Aldrich, A2228)被用于被用于免疫印迹在人类样本上浓度为1:10,000 (图 3f, ). elife (2020) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 小鼠; 1:2000; 图 1b
西格玛奥德里奇 Actb抗体(Sigma Aldrich, A1978)被用于被用于免疫印迹在小鼠样本上浓度为1:2000 (图 1b). elife (2020) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 小鼠; 1:20,000; 图 4b
西格玛奥德里奇 Actb抗体(Sigma, A3854)被用于被用于免疫印迹在小鼠样本上浓度为1:20,000 (图 4b). elife (2020) ncbi
小鼠 单克隆(AC-40)
  • 免疫印迹; 小鼠; 1:4000; 图 s3-1c
西格玛奥德里奇 Actb抗体(Sigma-Aldrich, A4700)被用于被用于免疫印迹在小鼠样本上浓度为1:4000 (图 s3-1c). elife (2020) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 小鼠; 1:2000; 图 1b
西格玛奥德里奇 Actb抗体(Sigma Aldrich, A1978)被用于被用于免疫印迹在小鼠样本上浓度为1:2000 (图 1b). elife (2020) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 小鼠; 1:10,000; 图 s3-1a
西格玛奥德里奇 Actb抗体(Sigma-Aldrich, A5441)被用于被用于免疫印迹在小鼠样本上浓度为1:10,000 (图 s3-1a). elife (2020) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 人类; 1:2000; 图 s1f
西格玛奥德里奇 Actb抗体(Sigma, A1978)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 s1f). Science (2020) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 人类; 1:2000; 图 9a
西格玛奥德里奇 Actb抗体(Sigma, A5441)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 9a). Cancers (Basel) (2020) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 人类; 1:1000
西格玛奥德里奇 Actb抗体(Sigma-Aldrich, A5441)被用于被用于免疫印迹在人类样本上浓度为1:1000. elife (2020) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 人类; 1:10,000
西格玛奥德里奇 Actb抗体(Sigma, A1978)被用于被用于免疫印迹在人类样本上浓度为1:10,000. elife (2020) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 小鼠; 1:4000; 图 3c
西格玛奥德里奇 Actb抗体(Sigma-Aldrich, A5441)被用于被用于免疫印迹在小鼠样本上浓度为1:4000 (图 3c). elife (2020) ncbi
小鼠 单克隆(AC-74)
  • 免疫印迹; 小鼠; 1:2000; 图 4j
西格玛奥德里奇 Actb抗体(Sigma, A2228)被用于被用于免疫印迹在小鼠样本上浓度为1:2000 (图 4j). elife (2020) ncbi
小鼠 单克隆(AC-74)
  • 免疫印迹; 人类; 图 4a
西格玛奥德里奇 Actb抗体(Sigma, A2228)被用于被用于免疫印迹在人类样本上 (图 4a). Cancers (Basel) (2020) ncbi
domestic rabbit 多克隆
  • 流式细胞仪; 人类; 1:1000; 图 s5g
西格玛奥德里奇 Actb抗体(Sigma, A2103)被用于被用于流式细胞仪在人类样本上浓度为1:1000 (图 s5g). Science (2020) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 人类; 1:10,000; 图 1d
西格玛奥德里奇 Actb抗体(Sigma-Aldrich, A5441)被用于被用于免疫印迹在人类样本上浓度为1:10,000 (图 1d). Aging (Albany NY) (2020) ncbi
小鼠 单克隆(AC-74)
  • 免疫印迹; 人类; 1:10,000; 图 3a
西格玛奥德里奇 Actb抗体(Sigma, A5316)被用于被用于免疫印迹在人类样本上浓度为1:10,000 (图 3a). PLoS ONE (2020) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 小鼠; 1:10,000; 图 5c
西格玛奥德里奇 Actb抗体(Sigma, AB1978)被用于被用于免疫印迹在小鼠样本上浓度为1:10,000 (图 5c). Nat Commun (2020) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 小鼠; 图 s1b
西格玛奥德里奇 Actb抗体(Sigma, A1978)被用于被用于免疫印迹在小鼠样本上 (图 s1b). PLoS Biol (2020) ncbi
小鼠 单克隆(AC-74)
  • 免疫印迹; 小鼠; 1:2000; 图 3h
西格玛奥德里奇 Actb抗体(Sigma, A5316)被用于被用于免疫印迹在小鼠样本上浓度为1:2000 (图 3h). elife (2020) ncbi
小鼠 单克隆(AC-15)
西格玛奥德里奇 Actb抗体(Sigma, A1978)被用于. Adv Sci (Weinh) (2020) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 人类; 1:1000; 图 s6k
西格玛奥德里奇 Actb抗体(Sigma-Aldrich, AC-15)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 s6k). Nature (2020) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 小鼠; 1:1000; 图 3s1e
西格玛奥德里奇 Actb抗体(Sigma, A3854)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 3s1e). elife (2020) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 斑马鱼; 图 s1e
西格玛奥德里奇 Actb抗体(Sigma, A5441)被用于被用于免疫印迹在斑马鱼样本上 (图 s1e). J Cell Biol (2020) ncbi
小鼠 单克隆(AC-74)
  • 免疫印迹; 人类; 1:5000; 图 4b
西格玛奥德里奇 Actb抗体(Sigma-Aldrich, A2228)被用于被用于免疫印迹在人类样本上浓度为1:5000 (图 4b). J Exp Med (2020) ncbi
小鼠 单克隆(AC-74)
  • 免疫印迹; 小鼠; 1:5000; 图 4d
西格玛奥德里奇 Actb抗体(MilliporeSigma, A5316)被用于被用于免疫印迹在小鼠样本上浓度为1:5000 (图 4d). J Clin Invest (2020) ncbi
小鼠 单克隆(AC-74)
  • 免疫印迹; 人类; 1:5000; 图 3d
西格玛奥德里奇 Actb抗体(Sigma, A5316)被用于被用于免疫印迹在人类样本上浓度为1:5000 (图 3d). Sci Rep (2020) ncbi
小鼠 单克隆(AC-74)
  • 免疫印迹; 小鼠; 1:5000; 图 3s
西格玛奥德里奇 Actb抗体(Millipore, A2228)被用于被用于免疫印迹在小鼠样本上浓度为1:5000 (图 3s). elife (2020) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 小鼠; 1:10,000; 图 4d
西格玛奥德里奇 Actb抗体(Sigma, AC-15)被用于被用于免疫印迹在小鼠样本上浓度为1:10,000 (图 4d). elife (2020) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 人类; 1:1000; 图 4b
西格玛奥德里奇 Actb抗体(Sigma, A5441)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 4b). Sci Rep (2020) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹基因敲除验证; 人类; 1:1000; 图 5a
西格玛奥德里奇 Actb抗体(Sigma-Aldrich, A5441)被用于被用于免疫印迹基因敲除验证在人类样本上浓度为1:1000 (图 5a). Nat Commun (2020) ncbi
小鼠 单克隆(AC-74)
  • 免疫印迹; 小鼠; 1:1000; 图 6a
西格玛奥德里奇 Actb抗体(Sigma-Aldrich, A2228)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 6a). elife (2020) ncbi
小鼠 单克隆(AC-74)
  • 免疫印迹; 小鼠; 1:10,000; 图 4d
西格玛奥德里奇 Actb抗体(Abcam, A5316)被用于被用于免疫印迹在小鼠样本上浓度为1:10,000 (图 4d). Nat Commun (2020) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 小鼠; 1:3000; 图 1-1, 1-2,
西格玛奥德里奇 Actb抗体(Sigma-Aldrich, #A5441)被用于被用于免疫印迹在小鼠样本上浓度为1:3000 (图 1-1, 1-2, ). Eneuro (2020) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 小鼠; 图 4d
西格玛奥德里奇 Actb抗体(Sigma-Aldrich, AC-15)被用于被用于免疫印迹在小鼠样本上 (图 4d). Cell Stem Cell (2020) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 小鼠; 1:10,000; 图 2d
西格玛奥德里奇 Actb抗体(Sigma (St. Louis, MO, USA), A54418; lot 122M4782))被用于被用于免疫印迹在小鼠样本上浓度为1:10,000 (图 2d). Int J Mol Sci (2020) ncbi
小鼠 单克隆(AC-40)
  • 免疫印迹; 人类; 图 1a, 4a, 4b
西格玛奥德里奇 Actb抗体(Sigma-Aldrich, A4700)被用于被用于免疫印迹在人类样本上 (图 1a, 4a, 4b). JCI Insight (2020) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 小鼠; 1:1000; 图 7h
西格玛奥德里奇 Actb抗体(Sigma, a5441)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 7h). EBioMedicine (2020) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 人类; 1:20,000; 图 3b
西格玛奥德里奇 Actb抗体(Sigma, A1978)被用于被用于免疫印迹在人类样本上浓度为1:20,000 (图 3b). Cancers (Basel) (2020) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 人类; 1:10,000; 图 5a
西格玛奥德里奇 Actb抗体(Sigma, A5441)被用于被用于免疫印迹在人类样本上浓度为1:10,000 (图 5a). J Biomed Sci (2020) ncbi
小鼠 单克隆(AC-74)
  • 免疫印迹; 小鼠; 图 6a
西格玛奥德里奇 Actb抗体(sigma, A5316-100UL)被用于被用于免疫印迹在小鼠样本上 (图 6a). Med Sci Monit (2020) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 人类; 图 2c
西格玛奥德里奇 Actb抗体(Sigma, A1978)被用于被用于免疫印迹在人类样本上 (图 2c). Mol Ther Methods Clin Dev (2020) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 人类; 1:5000; 图 4f
西格玛奥德里奇 Actb抗体(Sigma Aldrich, AC-15)被用于被用于免疫印迹在人类样本上浓度为1:5000 (图 4f). PLoS Biol (2019) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; African green monkey; 1:10,000; 图 3a
西格玛奥德里奇 Actb抗体(Sigma, ac-15)被用于被用于免疫印迹在African green monkey样本上浓度为1:10,000 (图 3a). Sci Adv (2019) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 小鼠; 1:5000; 图 5c
西格玛奥德里奇 Actb抗体(Sigma, AC-15)被用于被用于免疫印迹在小鼠样本上浓度为1:5000 (图 5c). Nat Commun (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 1e
西格玛奥德里奇 Actb抗体(Sigma, A2103)被用于被用于免疫印迹在人类样本上 (图 1e). Transl Oncol (2020) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 小鼠; 图 s1b
西格玛奥德里奇 Actb抗体(Sigma, A-3584)被用于被用于免疫印迹在小鼠样本上 (图 s1b). Cell Rep (2019) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 人类; 1:80,000; 图 5b
西格玛奥德里奇 Actb抗体(Sigma, A3854)被用于被用于免疫印迹在人类样本上浓度为1:80,000 (图 5b). Sci Rep (2019) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 大鼠; 图 5a
西格玛奥德里奇 Actb抗体(Sigma, A1978)被用于被用于免疫印迹在大鼠样本上 (图 5a). Cell (2019) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 人类; 1:60,000; 图 s2-1b
西格玛奥德里奇 Actb抗体(Sigma-Aldrich, A1978)被用于被用于免疫印迹在人类样本上浓度为1:60,000 (图 s2-1b). elife (2019) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 人类; 图 9
西格玛奥德里奇 Actb抗体(Sigma, A3854)被用于被用于免疫印迹在人类样本上 (图 9). Cells (2019) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 小鼠; 图 1b
西格玛奥德里奇 Actb抗体(Sigma, A1978)被用于被用于免疫印迹在小鼠样本上 (图 1b). Nat Commun (2019) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 小鼠; 图 1b
西格玛奥德里奇 Actb抗体(Sigma, A5441)被用于被用于免疫印迹在小鼠样本上 (图 1b). Nature (2019) ncbi
小鼠 单克隆(AC-74)
  • 免疫印迹; 小鼠; 图 1f
西格玛奥德里奇 Actb抗体(Sigma-Aldrich, AC-74)被用于被用于免疫印迹在小鼠样本上 (图 1f). Cell Metab (2019) ncbi
小鼠 单克隆(AC-40)
  • 免疫印迹; 人类; 1:100; 图 13a
西格玛奥德里奇 Actb抗体(Sigma, A4700)被用于被用于免疫印迹在人类样本上浓度为1:100 (图 13a). elife (2019) ncbi
小鼠 单克隆(AC-74)
  • 免疫印迹; 小鼠; 1:2000; 图 4a
西格玛奥德里奇 Actb抗体(Sigma, A2228)被用于被用于免疫印迹在小鼠样本上浓度为1:2000 (图 4a). elife (2019) ncbi
小鼠 单克隆(AC-74)
  • 免疫印迹; 小鼠; 1:1000; 图 2d
西格玛奥德里奇 Actb抗体(Sigma, A5316)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 2d). Stem Cell Reports (2019) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 小鼠; 图 s1h
西格玛奥德里奇 Actb抗体(Sigma, A5441)被用于被用于免疫印迹在小鼠样本上 (图 s1h). Cell (2019) ncbi
小鼠 单克隆(AC-74)
  • 免疫印迹; 小鼠; 1:5000; 图 2c
西格玛奥德里奇 Actb抗体(Sigma, A2228)被用于被用于免疫印迹在小鼠样本上浓度为1:5000 (图 2c). Nat Commun (2019) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 人类; 图 1b
西格玛奥德里奇 Actb抗体(Sigma, A5441)被用于被用于免疫印迹在人类样本上 (图 1b). Sci Adv (2019) ncbi
小鼠 单克隆(AC-74)
  • 免疫印迹; 小鼠; 图 5k
西格玛奥德里奇 Actb抗体(Sigma, A2228)被用于被用于免疫印迹在小鼠样本上 (图 5k). J Comp Neurol (2020) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 人类; 1:5000; 图 1b
西格玛奥德里奇 Actb抗体(Sigma, A1978)被用于被用于免疫印迹在人类样本上浓度为1:5000 (图 1b). Dev Cell (2019) ncbi
小鼠 单克隆(AC-74)
  • 免疫印迹; 人类; 1:10,000; 图 3
西格玛奥德里奇 Actb抗体(Sigma, A5316)被用于被用于免疫印迹在人类样本上浓度为1:10,000 (图 3). Hypoxia (Auckl) (2019) ncbi
小鼠 单克隆(AC-74)
  • 免疫印迹; 鸡; 1:1000; 图 3b
西格玛奥德里奇 Actb抗体(Sigma, A2228)被用于被用于免疫印迹在鸡样本上浓度为1:1000 (图 3b). elife (2019) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 人类; 图 s7
西格玛奥德里奇 Actb抗体(Sigma, clone AC-15)被用于被用于免疫印迹在人类样本上 (图 s7). Nanomedicine (2019) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 小鼠; 图 s1c
西格玛奥德里奇 Actb抗体(Sigma, A3854)被用于被用于免疫印迹在小鼠样本上 (图 s1c). Sci Adv (2019) ncbi
小鼠 单克隆(AC-15)
  • 免疫细胞化学; 人类; 1:10,000; 图 2s1b
西格玛奥德里奇 Actb抗体(Sigma, A5441)被用于被用于免疫细胞化学在人类样本上浓度为1:10,000 (图 2s1b). elife (2019) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 人类; 1:2000; 图 2a
西格玛奥德里奇 Actb抗体(Sigma, A1978)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 2a). Nat Commun (2019) ncbi
小鼠 单克隆(AC-74)
  • 免疫印迹; 人类; 1:5000; 图 1a
西格玛奥德里奇 Actb抗体(Sigma, A2228)被用于被用于免疫印迹在人类样本上浓度为1:5000 (图 1a). elife (2019) ncbi
小鼠 单克隆(AC-74)
  • 免疫印迹; 人类; 1:5000; 图 s3e
西格玛奥德里奇 Actb抗体(Sigma, A5316)被用于被用于免疫印迹在人类样本上浓度为1:5000 (图 s3e). Sci Adv (2019) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 人类; 1:10,000; 图 1a
西格玛奥德里奇 Actb抗体(Sigma, A5441)被用于被用于免疫印迹在人类样本上浓度为1:10,000 (图 1a). elife (2019) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 人类; 图 2c
西格玛奥德里奇 Actb抗体(Sigma, A1978)被用于被用于免疫印迹在人类样本上 (图 2c). J Clin Invest (2019) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 人类; 1:2500; 图 1b
西格玛奥德里奇 Actb抗体(Sigma, A1978)被用于被用于免疫印迹在人类样本上浓度为1:2500 (图 1b). elife (2019) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 小鼠; 图 2a
西格玛奥德里奇 Actb抗体(Sigma, A1978)被用于被用于免疫印迹在小鼠样本上 (图 2a). Cell (2019) ncbi
小鼠 单克隆(AC-74)
  • 免疫印迹; 人类; 1:5000; 图 5d
西格玛奥德里奇 Actb抗体(Sigma- Aldrich, A5316)被用于被用于免疫印迹在人类样本上浓度为1:5000 (图 5d). Front Oncol (2019) ncbi
小鼠 单克隆(AC-74)
  • 免疫印迹; 人类; 1:200; 图 2d
西格玛奥德里奇 Actb抗体(Sigma, AC-74)被用于被用于免疫印迹在人类样本上浓度为1:200 (图 2d). Nucleic Acids Res (2019) ncbi
小鼠 单克隆(AC-74)
  • 免疫印迹; 小鼠; 1:10,000; 图 4b
西格玛奥德里奇 Actb抗体(Sigma, A2228)被用于被用于免疫印迹在小鼠样本上浓度为1:10,000 (图 4b). elife (2019) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 小鼠; 图 2c
西格玛奥德里奇 Actb抗体(Sigma, A3854)被用于被用于免疫印迹在小鼠样本上 (图 2c). J Clin Invest (2019) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 小鼠; 1:1000; 图 1e
西格玛奥德里奇 Actb抗体(Sigma, A1978)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 1e). elife (2019) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 人类; 图 ex8f
西格玛奥德里奇 Actb抗体(Sigma, A1978)被用于被用于免疫印迹在人类样本上 (图 ex8f). Nature (2019) ncbi
小鼠 单克隆(AC-74)
  • 免疫印迹; 人类; 图 5b
西格玛奥德里奇 Actb抗体(Sigma, A5316)被用于被用于免疫印迹在人类样本上 (图 5b). Cell Rep (2019) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 人类; 图 1c
西格玛奥德里奇 Actb抗体(Sigma, A5441)被用于被用于免疫印迹在人类样本上 (图 1c). Cancer Cell (2019) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 人类; 1 ug/ml; 图 1c
西格玛奥德里奇 Actb抗体(Sigma, A1978)被用于被用于免疫印迹在人类样本上浓度为1 ug/ml (图 1c). Proc Natl Acad Sci U S A (2019) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 人类; 图 1d
西格玛奥德里奇 Actb抗体(Sigma, AC-15)被用于被用于免疫印迹在人类样本上 (图 1d). Autophagy (2019) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 人类; 1:3000; 图 3b
西格玛奥德里奇 Actb抗体(Sigma, AC-15)被用于被用于免疫印迹在人类样本上浓度为1:3000 (图 3b). J Hematol Oncol (2019) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 人类; 图 2f
  • 免疫印迹; 小鼠; 1:10,000; 图 2a
西格玛奥德里奇 Actb抗体(Sigma-Aldrich, A1978)被用于被用于免疫印迹在人类样本上 (图 2f) 和 被用于免疫印迹在小鼠样本上浓度为1:10,000 (图 2a). Acta Neuropathol (2019) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 小鼠; 1:5000; 图 2b
西格玛奥德里奇 Actb抗体(Sigma, A5441)被用于被用于免疫印迹在小鼠样本上浓度为1:5000 (图 2b). Nature (2019) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 大鼠; 图 s1
西格玛奥德里奇 Actb抗体(Sigma-Aldrich, A5441)被用于被用于免疫印迹在大鼠样本上 (图 s1). Front Neurol (2019) ncbi
小鼠 单克隆(AC-74)
  • 免疫印迹; 小鼠; 1:2500; 图 1a
西格玛奥德里奇 Actb抗体(Sigma, A5316)被用于被用于免疫印迹在小鼠样本上浓度为1:2500 (图 1a). Front Mol Neurosci (2019) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 人类; 1:5000; 图 8a
西格玛奥德里奇 Actb抗体(Sigma, A5441)被用于被用于免疫印迹在人类样本上浓度为1:5000 (图 8a). Nat Commun (2019) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 小鼠; 1:30,000; 图 4a
西格玛奥德里奇 Actb抗体(Sigma-Aldrich, A5441)被用于被用于免疫印迹在小鼠样本上浓度为1:30,000 (图 4a). Nat Commun (2019) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 人类; 1:50,000; 图 s1b
西格玛奥德里奇 Actb抗体(Sigma, A3854)被用于被用于免疫印迹在人类样本上浓度为1:50,000 (图 s1b). Proc Natl Acad Sci U S A (2019) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 小鼠; 图 4d
西格玛奥德里奇 Actb抗体(Sigma, A1978)被用于被用于免疫印迹在小鼠样本上 (图 4d). Cell Rep (2019) ncbi
小鼠 单克隆(AC-74)
  • 免疫印迹; 小鼠; 图 s1a
西格玛奥德里奇 Actb抗体(Sigma, A2228)被用于被用于免疫印迹在小鼠样本上 (图 s1a). Nat Chem Biol (2019) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 人类; 图 1a
西格玛奥德里奇 Actb抗体(Sigma, A5441)被用于被用于免疫印迹在人类样本上 (图 1a). Cell (2019) ncbi
小鼠 单克隆(AC-74)
  • 免疫印迹; 人类; 图 4b
西格玛奥德里奇 Actb抗体(Sigma, A2228)被用于被用于免疫印迹在人类样本上 (图 4b). Br J Cancer (2019) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 仓鼠; 1:5000; 图 8a
西格玛奥德里奇 Actb抗体(Sigma-Aldrich, A5411)被用于被用于免疫印迹在仓鼠样本上浓度为1:5000 (图 8a). J Gen Virol (2019) ncbi
小鼠 单克隆(AC-74)
  • 免疫印迹; 小鼠; 1:10,000; 图 4a
西格玛奥德里奇 Actb抗体(Sigma, A2228)被用于被用于免疫印迹在小鼠样本上浓度为1:10,000 (图 4a). Sci Signal (2019) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 人类; 1:1000; 图 4d
西格玛奥德里奇 Actb抗体(Sigma, A5441)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 4d). Cell Death Differ (2019) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 小鼠; 图 s7a
西格玛奥德里奇 Actb抗体(Sigma, A5441-100UL)被用于被用于免疫印迹在小鼠样本上 (图 s7a). Nature (2019) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 人类; 1:1000; 图 1d
西格玛奥德里奇 Actb抗体(Sigma, AC-15)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 1d). Sci Signal (2019) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 人类; 1:5000; 图 4a
西格玛奥德里奇 Actb抗体(Sigma, A5441)被用于被用于免疫印迹在人类样本上浓度为1:5000 (图 4a). Sci Rep (2019) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 人类; 图 3g
西格玛奥德里奇 Actb抗体(Sigma, A3854)被用于被用于免疫印迹在人类样本上 (图 3g). Oncogene (2019) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 人类; 图 3c
西格玛奥德里奇 Actb抗体(Sigma, A1978)被用于被用于免疫印迹在人类样本上 (图 3c). Proc Natl Acad Sci U S A (2019) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 人类; 图 2e
西格玛奥德里奇 Actb抗体(Sigma, A-5441)被用于被用于免疫印迹在人类样本上 (图 2e). PLoS ONE (2019) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 人类; 图 3e
西格玛奥德里奇 Actb抗体(Sigma, A3854)被用于被用于免疫印迹在人类样本上 (图 3e). Nat Commun (2019) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 小鼠; 1:2000; 图 5a
西格玛奥德里奇 Actb抗体(Sigma, A5441)被用于被用于免疫印迹在小鼠样本上浓度为1:2000 (图 5a). Nature (2019) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 小鼠; 图 4d
西格玛奥德里奇 Actb抗体(Sigma-Aldrich, A1978)被用于被用于免疫印迹在小鼠样本上 (图 4d). JCI Insight (2019) ncbi
小鼠 单克隆(AC-74)
  • 免疫印迹; 人类; 1:5000; 图 3f
西格玛奥德里奇 Actb抗体(Sigma, A5316)被用于被用于免疫印迹在人类样本上浓度为1:5000 (图 3f). J Cell Biol (2019) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 人类; 图 3b
西格玛奥德里奇 Actb抗体(Sigma, AC-15)被用于被用于免疫印迹在人类样本上 (图 3b). Nucleic Acids Res (2019) ncbi
小鼠 单克隆(AC-74)
  • 免疫印迹; 小鼠; 图 4b
西格玛奥德里奇 Actb抗体(Sigma, A5316)被用于被用于免疫印迹在小鼠样本上 (图 4b). J Clin Invest (2019) ncbi
小鼠 单克隆(AC-74)
  • 免疫印迹; 人类; 图 1d
西格玛奥德里奇 Actb抗体(Sigma, A5316)被用于被用于免疫印迹在人类样本上 (图 1d). Cell (2019) ncbi
小鼠 单克隆(AC-74)
  • 免疫印迹; 人类; 图 5a
西格玛奥德里奇 Actb抗体(Sigma-Aldrich, A5316)被用于被用于免疫印迹在人类样本上 (图 5a). J Exp Clin Cancer Res (2019) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 人类; 图 3a
西格玛奥德里奇 Actb抗体(Sigma, A1978)被用于被用于免疫印迹在人类样本上 (图 3a). Cell Rep (2019) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 小鼠; 1:5000; 图 1c
西格玛奥德里奇 Actb抗体(Sigma, A3854)被用于被用于免疫印迹在小鼠样本上浓度为1:5000 (图 1c). Nucleic Acids Res (2019) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 人类; 图 2e
西格玛奥德里奇 Actb抗体(Sigma, A1978)被用于被用于免疫印迹在人类样本上 (图 2e). Cell (2019) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 人类; 1:20,000; 图 s10d
西格玛奥德里奇 Actb抗体(Sigma, AC-15)被用于被用于免疫印迹在人类样本上浓度为1:20,000 (图 s10d). Science (2018) ncbi
小鼠 单克隆(AC-74)
  • 免疫印迹; 人类; 图 5d
西格玛奥德里奇 Actb抗体(Sigma-Aldrich, A2228)被用于被用于免疫印迹在人类样本上 (图 5d). Cancer Res (2019) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 小鼠; 1:1000; 图 4m
西格玛奥德里奇 Actb抗体(Sigma, A5441)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 4m). Mol Psychiatry (2018) ncbi
小鼠 单克隆(AC-74)
  • 免疫印迹; 人类; 1:5000; 图 ev1b
西格玛奥德里奇 Actb抗体(Sigma, A2228)被用于被用于免疫印迹在人类样本上浓度为1:5000 (图 ev1b). EMBO J (2019) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 人类; 图 4c
西格玛奥德里奇 Actb抗体(Sigma, A5441)被用于被用于免疫印迹在人类样本上 (图 4c). Oncogene (2019) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 人类; 1:10,000; 图 1c
西格玛奥德里奇 Actb抗体(Sigma, AC-15)被用于被用于免疫印迹在人类样本上浓度为1:10,000 (图 1c). MBio (2018) ncbi
小鼠 单克隆(AC-74)
  • 免疫印迹; 人类; 1:1000; 图 s1a
西格玛奥德里奇 Actb抗体(Sigma, A2228)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 s1a). Cell Stem Cell (2018) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 小鼠; 图 3a
西格玛奥德里奇 Actb抗体(Sigma, A5441)被用于被用于免疫印迹在小鼠样本上 (图 3a). Autophagy (2019) ncbi
小鼠 单克隆(AC-74)
  • 免疫印迹; 人类; 图 4b
西格玛奥德里奇 Actb抗体(Sigma-Aldrich, A2228)被用于被用于免疫印迹在人类样本上 (图 4b). Science (2018) ncbi
小鼠 单克隆(AC-74)
  • 免疫印迹; 人类; 1:10,000; 图 s1b
西格玛奥德里奇 Actb抗体(Sigma, A228)被用于被用于免疫印迹在人类样本上浓度为1:10,000 (图 s1b). Science (2018) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 人类; 图 4a
西格玛奥德里奇 Actb抗体(Sigma, A1978)被用于被用于免疫印迹在人类样本上 (图 4a). MBio (2018) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 人类; 图 1a
西格玛奥德里奇 Actb抗体(Sigma, A5441)被用于被用于免疫印迹在人类样本上 (图 1a). J Virol (2019) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 人类; 图 1c
西格玛奥德里奇 Actb抗体(Sigma, A1978)被用于被用于免疫印迹在人类样本上 (图 1c). Sci Rep (2018) ncbi
小鼠 单克隆(AC-74)
  • 免疫组化基因敲除验证; 人类; 1:2000; 图 4b
西格玛奥德里奇 Actb抗体(Sigma-Aldrich, A2228)被用于被用于免疫组化基因敲除验证在人类样本上浓度为1:2000 (图 4b). Plasmid (2018) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 人类; 图 1e
西格玛奥德里奇 Actb抗体(Sigma, A1978)被用于被用于免疫印迹在人类样本上 (图 1e). Oncogene (2019) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 人类; 1:6000; 图 4b
西格玛奥德里奇 Actb抗体(Sigma, A5441)被用于被用于免疫印迹在人类样本上浓度为1:6000 (图 4b). Nat Commun (2018) ncbi
小鼠 单克隆(AC-40)
  • 免疫印迹; 人类; 图 s3a
西格玛奥德里奇 Actb抗体(Sigma, AC-40)被用于被用于免疫印迹在人类样本上 (图 s3a). PLoS Pathog (2018) ncbi
小鼠 单克隆(AC-74)
  • 免疫印迹; 人类; 图 1b
西格玛奥德里奇 Actb抗体(Sigma, A2228)被用于被用于免疫印迹在人类样本上 (图 1b). Front Microbiol (2018) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 人类; 图 1a
西格玛奥德里奇 Actb抗体(Sigma, A1978)被用于被用于免疫印迹在人类样本上 (图 1a). Autophagy (2018) ncbi
小鼠 单克隆(AC-74)
  • 免疫印迹; 人类; 图 4b
西格玛奥德里奇 Actb抗体(Sigma, A2228)被用于被用于免疫印迹在人类样本上 (图 4b). Science (2018) ncbi
小鼠 单克隆(AC-74)
  • 免疫印迹; 非洲爪蛙; 1:1000; 图 1a
西格玛奥德里奇 Actb抗体(Sigma, A5316)被用于被用于免疫印迹在非洲爪蛙样本上浓度为1:1000 (图 1a). Nature (2018) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 人类; 图 s4c
西格玛奥德里奇 Actb抗体(Sigma, A5441)被用于被用于免疫印迹在人类样本上 (图 s4c). Nucleic Acids Res (2018) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 小鼠; 1:5000; 图 5b
西格玛奥德里奇 Actb抗体(Sigma, A1978)被用于被用于免疫印迹在小鼠样本上浓度为1:5000 (图 5b). Nat Commun (2018) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:8000; 图 6t
西格玛奥德里奇 Actb抗体(Sigma, A2103)被用于被用于免疫印迹在小鼠样本上浓度为1:8000 (图 6t). J Exp Med (2018) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 小鼠; 图 2a
西格玛奥德里奇 Actb抗体(sigma, A1978)被用于被用于免疫印迹在小鼠样本上 (图 2a). Nature (2018) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 人类; 1:1000; 图 5f
西格玛奥德里奇 Actb抗体(Sigma, A5441)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 5f). Mol Cell Biol (2018) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 人类; 图 2b
西格玛奥德里奇 Actb抗体(Sigma, A3854)被用于被用于免疫印迹在人类样本上 (图 2b). Science (2018) ncbi
小鼠 单克隆(AC-74)
  • 免疫印迹; 小鼠; 图 4d
西格玛奥德里奇 Actb抗体(Sigma, A2228)被用于被用于免疫印迹在小鼠样本上 (图 4d). Nat Commun (2018) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 小鼠; 1:5000; 图 1c
西格玛奥德里奇 Actb抗体(Sigma, A1978)被用于被用于免疫印迹在小鼠样本上浓度为1:5000 (图 1c). PLoS ONE (2018) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 人类; 图 8a
西格玛奥德里奇 Actb抗体(Sigma, A5441)被用于被用于免疫印迹在人类样本上 (图 8a). Development (2018) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 小鼠; 图 s1c
西格玛奥德里奇 Actb抗体(Sigma, A5441)被用于被用于免疫印迹在小鼠样本上 (图 s1c). Nat Commun (2018) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 小鼠; 图 s3a
西格玛奥德里奇 Actb抗体(Sigma, A1978)被用于被用于免疫印迹在小鼠样本上 (图 s3a). Gastroenterology (2018) ncbi
小鼠 单克隆(AC-74)
  • 免疫印迹; 小鼠; 图 1b
西格玛奥德里奇 Actb抗体(Sigma, A5316)被用于被用于免疫印迹在小鼠样本上 (图 1b). J Immunol (2018) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 大鼠; 图 2c
西格玛奥德里奇 Actb抗体(Sigma, A1978)被用于被用于免疫印迹在大鼠样本上 (图 2c). J Biol Chem (2018) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 小鼠; 1:20,000; 图 1a
西格玛奥德里奇 Actb抗体(Sigma, A5441)被用于被用于免疫印迹在小鼠样本上浓度为1:20,000 (图 1a). J Biol Chem (2018) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 小鼠; 图 s6a
西格玛奥德里奇 Actb抗体(sigma, AC-15)被用于被用于免疫印迹在小鼠样本上 (图 s6a). Am J Pathol (2017) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 小鼠; 1:10,000; 图 3c
西格玛奥德里奇 Actb抗体(sigma, A5441)被用于被用于免疫印迹在小鼠样本上浓度为1:10,000 (图 3c). Oncogene (2017) ncbi
小鼠 单克隆(AC-74)
  • 免疫印迹; 人类; 图 6h
西格玛奥德里奇 Actb抗体(sigma, A228)被用于被用于免疫印迹在人类样本上 (图 6h). Oncogene (2017) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 人类; 图 1b
西格玛奥德里奇 Actb抗体(Sigma, A1978)被用于被用于免疫印迹在人类样本上 (图 1b). Biochim Biophys Acta Gene Regul Mech (2017) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 小鼠; 图 2f
西格玛奥德里奇 Actb抗体(Sigma, A5441)被用于被用于免疫印迹在小鼠样本上 (图 2f). Oncogene (2017) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 大鼠; 图 1d
西格玛奥德里奇 Actb抗体(Sigma, ACTB)被用于被用于免疫印迹在大鼠样本上 (图 1d). Sci Rep (2017) ncbi
小鼠 单克隆(AC-74)
  • 免疫细胞化学; 小鼠; 图 4b
西格玛奥德里奇 Actb抗体(Sigma-Aldrich, AC-74)被用于被用于免疫细胞化学在小鼠样本上 (图 4b). Nature (2017) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 小鼠; 1:5000; 图 5a
西格玛奥德里奇 Actb抗体(Sigma, A5441)被用于被用于免疫印迹在小鼠样本上浓度为1:5000 (图 5a). Sci Rep (2017) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 小鼠; 图 1C
西格玛奥德里奇 Actb抗体(Sigma, AC-15)被用于被用于免疫印迹在小鼠样本上 (图 1C). Sci Rep (2017) ncbi
小鼠 单克隆(AC-74)
  • 免疫印迹; 人类; 1:10,000; 图 4G
西格玛奥德里奇 Actb抗体(Sigma, A2228-2004 L)被用于被用于免疫印迹在人类样本上浓度为1:10,000 (图 4G). Front Microbiol (2017) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 小鼠; 1:5000; 图 6a
西格玛奥德里奇 Actb抗体(Sigma, A5441)被用于被用于免疫印迹在小鼠样本上浓度为1:5000 (图 6a). Sci Rep (2017) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 小鼠; 图 5C
西格玛奥德里奇 Actb抗体(Sigma, A1978)被用于被用于免疫印迹在小鼠样本上 (图 5C). Proc Natl Acad Sci U S A (2017) ncbi
小鼠 单克隆(AC-74)
  • 免疫组化-石蜡切片; 豚鼠; 1:500; 图 st1
  • 免疫组化-石蜡切片; 犬; 1:500; 图 st1
  • 免疫组化-石蜡切片; 大鼠; 1:500; 图 st1
  • 免疫组化-石蜡切片; 小鼠; 1:500; 图 st1
  • 免疫组化-石蜡切片; African green monkey; 1:500; 图 st1
  • 免疫组化-石蜡切片; domestic rabbit; 1:500; 图 st1
  • 免疫组化-石蜡切片; pigs ; 1:500; 图 st1
西格玛奥德里奇 Actb抗体(Sigma-Aldrich, A2228)被用于被用于免疫组化-石蜡切片在豚鼠样本上浓度为1:500 (图 st1), 被用于免疫组化-石蜡切片在犬样本上浓度为1:500 (图 st1), 被用于免疫组化-石蜡切片在大鼠样本上浓度为1:500 (图 st1), 被用于免疫组化-石蜡切片在小鼠样本上浓度为1:500 (图 st1), 被用于免疫组化-石蜡切片在African green monkey样本上浓度为1:500 (图 st1), 被用于免疫组化-石蜡切片在domestic rabbit样本上浓度为1:500 (图 st1) 和 被用于免疫组化-石蜡切片在pigs 样本上浓度为1:500 (图 st1). J Toxicol Pathol (2017) ncbi
小鼠 单克隆(AC-40)
  • 免疫组化-石蜡切片; pigs ; 1:200; 图 st1
西格玛奥德里奇 Actb抗体(Sigma-Aldrich, A4700)被用于被用于免疫组化-石蜡切片在pigs 样本上浓度为1:200 (图 st1). J Toxicol Pathol (2017) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 人类; 图 3a
西格玛奥德里奇 Actb抗体(Sigma-Aldrich, A5441)被用于被用于免疫印迹在人类样本上 (图 3a). Autophagy (2017) ncbi
小鼠 单克隆(AC-15)
  • 免疫细胞化学基因敲除验证; 小鼠; 图 1b
  • 免疫印迹基因敲除验证; 小鼠; 图 1i
西格玛奥德里奇 Actb抗体(Sigma-Aldrich, AC-15)被用于被用于免疫细胞化学基因敲除验证在小鼠样本上 (图 1b) 和 被用于免疫印迹基因敲除验证在小鼠样本上 (图 1i). Mol Biol Cell (2017) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 人类; 图 4
西格玛奥德里奇 Actb抗体(Sigma, A5441)被用于被用于免疫印迹在人类样本上 (图 4). J Cell Biochem (2017) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 小鼠; 图 1
西格玛奥德里奇 Actb抗体(Sigma-Aldrich, A3854)被用于被用于免疫印迹在小鼠样本上 (图 1). Sci Rep (2016) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 大鼠; 1:1000; 图 8
西格玛奥德里奇 Actb抗体(Sigma, A1978)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 8). PLoS ONE (2016) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 小鼠; 1:200; 图 2
西格玛奥德里奇 Actb抗体(Sigma, A3854)被用于被用于免疫印迹在小鼠样本上浓度为1:200 (图 2). Front Neurosci (2016) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 大鼠; 1:1000; 图 2
西格玛奥德里奇 Actb抗体(Sigma, A1978)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 2). Neural Plast (2016) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 小鼠; 图 8
西格玛奥德里奇 Actb抗体(Sigma, MO A5441)被用于被用于免疫印迹在小鼠样本上 (图 8). Mol Vis (2016) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 小鼠; 图 2
  • 免疫印迹; 人类; 图 2
西格玛奥德里奇 Actb抗体(Sigma, A5441)被用于被用于免疫印迹在小鼠样本上 (图 2) 和 被用于免疫印迹在人类样本上 (图 2). elife (2016) ncbi
小鼠 单克隆(AC-15)
西格玛奥德里奇 Actb抗体(Sigma-Aldrich, A5441)被用于. BMC Res Notes (2016) ncbi
小鼠 单克隆(AC-40)
  • 免疫印迹; 小鼠; 图 1A
西格玛奥德里奇 Actb抗体(Sigma-Aldrich, A4700)被用于被用于免疫印迹在小鼠样本上 (图 1A). Exp Cell Res (2016) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 人类; 图 3
  • 免疫印迹; 小鼠; 图 6
西格玛奥德里奇 Actb抗体(Sigma, A1978)被用于被用于免疫印迹在人类样本上 (图 3) 和 被用于免疫印迹在小鼠样本上 (图 6). Sci Rep (2016) ncbi
小鼠 单克隆(AC-40)
  • 免疫细胞化学; 小鼠; 1:100; 图 6
西格玛奥德里奇 Actb抗体(Sigma, A4700)被用于被用于免疫细胞化学在小鼠样本上浓度为1:100 (图 6). Sci Rep (2016) ncbi
小鼠 单克隆(AC-74)
  • 免疫印迹; 小鼠; 图 1
西格玛奥德里奇 Actb抗体(Sigma, A5316)被用于被用于免疫印迹在小鼠样本上 (图 1). Mol Cell Neurosci (2016) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 人类; 1:40,000; 图 4
西格玛奥德里奇 Actb抗体(Sigma, A1978)被用于被用于免疫印迹在人类样本上浓度为1:40,000 (图 4). PLoS ONE (2016) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 人类; 图 st1
西格玛奥德里奇 Actb抗体(Sigma, A1978)被用于被用于免疫印迹在人类样本上 (图 st1). Nat Commun (2016) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 人类; 图 4b
西格玛奥德里奇 Actb抗体(Sigma, A1978)被用于被用于免疫印迹在人类样本上 (图 4b). Int J Oncol (2016) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 小鼠; 图 1
西格玛奥德里奇 Actb抗体(Sigma, A3854)被用于被用于免疫印迹在小鼠样本上 (图 1). Eneuro (2016) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 大鼠; 图 5
  • 免疫印迹; 人类; 图 1
西格玛奥德里奇 Actb抗体(Sigma, A5441)被用于被用于免疫印迹在大鼠样本上 (图 5) 和 被用于免疫印迹在人类样本上 (图 1). Carcinogenesis (2016) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 人类; 图 3
西格玛奥德里奇 Actb抗体(Sigma, A5441)被用于被用于免疫印迹在人类样本上 (图 3). Sci Rep (2016) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 大鼠; 图 2
西格玛奥德里奇 Actb抗体(Sigma, A5441)被用于被用于免疫印迹在大鼠样本上 (图 2). Mol Med Rep (2016) ncbi
小鼠 单克隆(AC-74)
  • 免疫印迹; 人类; 图 1
西格玛奥德里奇 Actb抗体(Sigma, A5316)被用于被用于免疫印迹在人类样本上 (图 1). J Cell Biol (2016) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 人类; 1:20,000; 图 1d
西格玛奥德里奇 Actb抗体(Invitrogen, A1978)被用于被用于免疫印迹在人类样本上浓度为1:20,000 (图 1d). Neurobiol Dis (2016) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 人类; 图 4
西格玛奥德里奇 Actb抗体(Sigma, A3854)被用于被用于免疫印迹在人类样本上 (图 4). PLoS ONE (2016) ncbi
小鼠 单克隆(AC-74)
  • 免疫印迹; 小鼠; 图 s5
西格玛奥德里奇 Actb抗体(Sigma, A2228)被用于被用于免疫印迹在小鼠样本上 (图 s5). Cell Death Dis (2016) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 大鼠; 1:1000; 图 4
西格玛奥德里奇 Actb抗体(Sigma, A5441)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 4). Sci Rep (2016) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 大鼠; 图 3a
西格玛奥德里奇 Actb抗体(Sigma, A5441)被用于被用于免疫印迹在大鼠样本上 (图 3a). Sci Rep (2016) ncbi
小鼠 单克隆(AC-74)
  • 免疫印迹; 人类; 1:1000; 图 8
西格玛奥德里奇 Actb抗体(Sigma, A2228)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 8). BMC Mol Biol (2016) ncbi
小鼠 单克隆(AC-74)
  • 免疫印迹; 人类; 图 1
西格玛奥德里奇 Actb抗体(Sigma, A5316)被用于被用于免疫印迹在人类样本上 (图 1). Respir Res (2016) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 人类; 图 3
西格玛奥德里奇 Actb抗体(Sigma, A5441)被用于被用于免疫印迹在人类样本上 (图 3). Int J Oncol (2016) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 人类; 图 s3
西格玛奥德里奇 Actb抗体(Sigma, A5441)被用于被用于免疫印迹在人类样本上 (图 s3). MBio (2016) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 人类; 图 5
西格玛奥德里奇 Actb抗体(Sigma, A1978)被用于被用于免疫印迹在人类样本上 (图 5). Cell Rep (2016) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 人类; 图 3
西格玛奥德里奇 Actb抗体(Sigma, AC-15)被用于被用于免疫印迹在人类样本上 (图 3). Front Microbiol (2016) ncbi
小鼠 单克隆(AC-40)
  • 免疫印迹; 人类; 图 1
西格玛奥德里奇 Actb抗体(Sigma, A4700)被用于被用于免疫印迹在人类样本上 (图 1). Biosci Rep (2016) ncbi
小鼠 单克隆(AC-74)
  • 免疫印迹; 人类; 图 3
西格玛奥德里奇 Actb抗体(Sigma, AC-74)被用于被用于免疫印迹在人类样本上 (图 3). PLoS ONE (2016) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 人类; 图 s6
西格玛奥德里奇 Actb抗体(Sigma, AC-15)被用于被用于免疫印迹在人类样本上 (图 s6). PLoS ONE (2016) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 小鼠; 图 1
西格玛奥德里奇 Actb抗体(Sigma, A1978)被用于被用于免疫印迹在小鼠样本上 (图 1). Cancer Res (2016) ncbi
小鼠 单克隆(AC-74)
  • 免疫印迹; 小鼠; 1:1000; 图 3
西格玛奥德里奇 Actb抗体(SIGMA, A5316)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 3). Nat Commun (2016) ncbi
小鼠 单克隆(AC-40)
  • 免疫印迹; 人类; 图 6
西格玛奥德里奇 Actb抗体(Sigma, A4700)被用于被用于免疫印迹在人类样本上 (图 6). elife (2016) ncbi
小鼠 单克隆(AC-74)
  • 免疫印迹; 人类; 图 2
西格玛奥德里奇 Actb抗体(Sigma, AC-74)被用于被用于免疫印迹在人类样本上 (图 2). Int J Oncol (2016) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 人类; 1:5000; 图 4c
  • 免疫印迹; 小鼠; 1:5000; 图 1a
西格玛奥德里奇 Actb抗体(Sigma, A5441)被用于被用于免疫印迹在人类样本上浓度为1:5000 (图 4c) 和 被用于免疫印迹在小鼠样本上浓度为1:5000 (图 1a). Nat Commun (2016) ncbi
小鼠 单克隆(AC-74)
西格玛奥德里奇 Actb抗体(Sigma, A53161)被用于. Mol Med Rep (2016) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 小鼠; 图 8
西格玛奥德里奇 Actb抗体(Sigma, A5441)被用于被用于免疫印迹在小鼠样本上 (图 8). PLoS Pathog (2016) ncbi
小鼠 单克隆(AC-74)
  • 免疫细胞化学; 人类; 1:100; 图 4
西格玛奥德里奇 Actb抗体(Sigma, A5316)被用于被用于免疫细胞化学在人类样本上浓度为1:100 (图 4). Sci Rep (2016) ncbi
小鼠 单克隆(AC-15)
  • 免疫细胞化学; 小鼠; 1:100; 图 3
西格玛奥德里奇 Actb抗体(Sigma, A1978)被用于被用于免疫细胞化学在小鼠样本上浓度为1:100 (图 3). Sci Rep (2016) ncbi
小鼠 单克隆(AC-74)
  • 免疫印迹; 日本大米鱼; 图 3
西格玛奥德里奇 Actb抗体(SIGMA, AC-74)被用于被用于免疫印迹在日本大米鱼样本上 (图 3). Sci Rep (2016) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 小鼠; 1:10,000; 图 1
西格玛奥德里奇 Actb抗体(Sigma, A1978)被用于被用于免疫印迹在小鼠样本上浓度为1:10,000 (图 1). Biol Open (2016) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 人类; 图 3
西格玛奥德里奇 Actb抗体(Sigma, A5441)被用于被用于免疫印迹在人类样本上 (图 3). J Virol (2016) ncbi
小鼠 单克隆(AC-74)
  • 免疫印迹; 人类; 1:1000; 图 3h
西格玛奥德里奇 Actb抗体(Sigma, AC-74)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3h). Nat Commun (2016) ncbi
小鼠 单克隆(AC-74)
  • 免疫印迹; 人类; 1:10,000; 图 3
西格玛奥德里奇 Actb抗体(Sigma, A2228)被用于被用于免疫印迹在人类样本上浓度为1:10,000 (图 3). PLoS ONE (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 6
西格玛奥德里奇 Actb抗体(Sigma, A2103)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 6). PLoS Pathog (2016) ncbi
小鼠 单克隆(AC-74)
  • 免疫印迹; 小鼠; 1:10,000; 图 3
西格玛奥德里奇 Actb抗体(Sigma-Aldrich, AC-74)被用于被用于免疫印迹在小鼠样本上浓度为1:10,000 (图 3). Nat Commun (2016) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 小鼠; 图 3A
  • 免疫印迹; 人类; 图 4A
西格玛奥德里奇 Actb抗体(Sigma, A5441)被用于被用于免疫印迹在小鼠样本上 (图 3A) 和 被用于免疫印迹在人类样本上 (图 4A). Oncoimmunology (2016) ncbi
小鼠 单克隆(AC-74)
  • 免疫印迹; 人类; 图 3A
西格玛奥德里奇 Actb抗体(Sigma, A2228)被用于被用于免疫印迹在人类样本上 (图 3A). Sci Rep (2016) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 人类; 图 6
西格玛奥德里奇 Actb抗体(Sigma, A1978)被用于被用于免疫印迹在人类样本上 (图 6). Genome Biol (2016) ncbi
小鼠 单克隆(AC-74)
  • 免疫印迹; 人类; 1:60,000; 图 1
西格玛奥德里奇 Actb抗体(Sigma, A2228)被用于被用于免疫印迹在人类样本上浓度为1:60,000 (图 1). Oncol Lett (2016) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 人类; 图 2
西格玛奥德里奇 Actb抗体(Sigma-Aldrich, A5441)被用于被用于免疫印迹在人类样本上 (图 2). PLoS Genet (2016) ncbi
小鼠 单克隆(AC-15)
  • 免疫组化-石蜡切片; 小鼠; 1:200; 图 2a
西格玛奥德里奇 Actb抗体(Sigma, A 1978)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:200 (图 2a). Am J Physiol Renal Physiol (2016) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 人类; 图 2
西格玛奥德里奇 Actb抗体(Sigma, A1978)被用于被用于免疫印迹在人类样本上 (图 2). PLoS ONE (2016) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 人类; 图 4
西格玛奥德里奇 Actb抗体(Sigma, A3854)被用于被用于免疫印迹在人类样本上 (图 4). Sci Rep (2016) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 小鼠; 1:10,000; 图 4
西格玛奥德里奇 Actb抗体(Sigma Aldrich, A1978)被用于被用于免疫印迹在小鼠样本上浓度为1:10,000 (图 4). Nat Commun (2016) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; fruit fly ; 图 s1
西格玛奥德里奇 Actb抗体(Sigma, A5441)被用于被用于免疫印迹在fruit fly 样本上 (图 s1). Nat Commun (2016) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 人类; 图 3
西格玛奥德里奇 Actb抗体(Sigma-Aldrich, A3854)被用于被用于免疫印迹在人类样本上 (图 3). BMC Neurosci (2016) ncbi
小鼠 单克隆(AC-74)
  • 免疫印迹; 人类; 图 1
西格玛奥德里奇 Actb抗体(Sigma, AC-74)被用于被用于免疫印迹在人类样本上 (图 1). Am J Cancer Res (2016) ncbi
小鼠 单克隆(AC-74)
  • 免疫印迹; 小鼠; 1:2000; 图 1
西格玛奥德里奇 Actb抗体(Sigma, A5316)被用于被用于免疫印迹在小鼠样本上浓度为1:2000 (图 1). Nat Commun (2016) ncbi
小鼠 单克隆(AC-74)
  • 免疫印迹; 小鼠; 图 2
西格玛奥德里奇 Actb抗体(Sigma, AC-74)被用于被用于免疫印迹在小鼠样本上 (图 2). Mol Cancer Ther (2016) ncbi
小鼠 单克隆(AC-74)
  • 免疫印迹; 人类; 图 3
西格玛奥德里奇 Actb抗体(Sigma, A5316)被用于被用于免疫印迹在人类样本上 (图 3). Stem Cell Res Ther (2016) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 小鼠; 图 4
西格玛奥德里奇 Actb抗体(Sigma, A5441)被用于被用于免疫印迹在小鼠样本上 (图 4). Sci Rep (2016) ncbi
小鼠 单克隆(AC-74)
  • 免疫印迹; 人类; 1:2000; 图 s3
西格玛奥德里奇 Actb抗体(Sigma, A5316)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 s3). PLoS ONE (2016) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 人类; 图 1
西格玛奥德里奇 Actb抗体(Sigma-Aldrich, A5441)被用于被用于免疫印迹在人类样本上 (图 1). PLoS ONE (2016) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 人类; 图 2
西格玛奥德里奇 Actb抗体(Sigma, A3854)被用于被用于免疫印迹在人类样本上 (图 2). PLoS ONE (2016) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 大鼠; 1:5000; 图 s7
西格玛奥德里奇 Actb抗体(Sigma, A5441)被用于被用于免疫印迹在大鼠样本上浓度为1:5000 (图 s7). Nat Commun (2016) ncbi
小鼠 单克隆(AC-74)
  • 免疫印迹; 小鼠; 1:10,000; 图 1D
西格玛奥德里奇 Actb抗体(Sigma, A2228)被用于被用于免疫印迹在小鼠样本上浓度为1:10,000 (图 1D). PLoS ONE (2016) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 人类; 1:5000; 图 3
西格玛奥德里奇 Actb抗体(Sigma-Aldrich, AC-15)被用于被用于免疫印迹在人类样本上浓度为1:5000 (图 3). Mol Hum Reprod (2016) ncbi
小鼠 单克隆(AC-40)
  • 免疫组化; 人类; 图 4
西格玛奥德里奇 Actb抗体(Sigma, A4700)被用于被用于免疫组化在人类样本上 (图 4). Sci Rep (2016) ncbi
小鼠 单克隆(AC-74)
  • 免疫印迹; 人类; 图 3
西格玛奥德里奇 Actb抗体(Sigma, A2228)被用于被用于免疫印迹在人类样本上 (图 3). Sci Rep (2016) ncbi
小鼠 单克隆(AC-74)
  • 免疫印迹; 小鼠; 图 s2
西格玛奥德里奇 Actb抗体(Sigma, A5316)被用于被用于免疫印迹在小鼠样本上 (图 s2). Oncotarget (2016) ncbi
小鼠 单克隆(AC-74)
  • 免疫印迹; 小鼠; 1:5000; 图 4
西格玛奥德里奇 Actb抗体(Sigma, A2228)被用于被用于免疫印迹在小鼠样本上浓度为1:5000 (图 4). Nat Commun (2016) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 大鼠; 1:5000
西格玛奥德里奇 Actb抗体(Sigma, A1978)被用于被用于免疫印迹在大鼠样本上浓度为1:5000. Neuroscience (2016) ncbi
小鼠 单克隆(AC-74)
  • 免疫印迹; 人类; 图 1
西格玛奥德里奇 Actb抗体(Sigma, A5316)被用于被用于免疫印迹在人类样本上 (图 1). Sci Rep (2016) ncbi
小鼠 单克隆(AC-74)
  • 免疫印迹; 小鼠; 图 1
西格玛奥德里奇 Actb抗体(Sigma, A5316)被用于被用于免疫印迹在小鼠样本上 (图 1). Brain Pathol (2017) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 人类; 1:1000; 图 3
西格玛奥德里奇 Actb抗体(Sigma, A5441-.2ML)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3). Drug Des Devel Ther (2016) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 小鼠; 1:15,000; 图 s3
西格玛奥德里奇 Actb抗体(Sigma, A5441)被用于被用于免疫印迹在小鼠样本上浓度为1:15,000 (图 s3). Alzheimers Dement (2016) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 人类; 图 4
西格玛奥德里奇 Actb抗体(Sigma-Aldrich, A5441)被用于被用于免疫印迹在人类样本上 (图 4). Cell Res (2016) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 大鼠; 1:10,000; 图 6
西格玛奥德里奇 Actb抗体(Sigma, AC 15)被用于被用于免疫印迹在大鼠样本上浓度为1:10,000 (图 6). Eur J Nutr (2017) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 小鼠; 1:5000; 图 3
西格玛奥德里奇 Actb抗体(Sigma, AC-15)被用于被用于免疫印迹在小鼠样本上浓度为1:5000 (图 3). Nat Immunol (2016) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 小鼠; 1:1000; 表 2
西格玛奥德里奇 Actb抗体(Sigma, A5441)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (表 2). Biochim Biophys Acta (2016) ncbi
小鼠 单克隆(AC-15)
西格玛奥德里奇 Actb抗体(Sigma, A5441)被用于. Nat Commun (2016) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 人类; 1:5000; 图 6
西格玛奥德里奇 Actb抗体(Sigma, A5441)被用于被用于免疫印迹在人类样本上浓度为1:5000 (图 6). Cell Signal (2016) ncbi
小鼠 单克隆(AC-74)
  • 免疫印迹; 小鼠; 1:1000; 图 5
西格玛奥德里奇 Actb抗体(Sigma, A-2228)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 5). FASEB J (2016) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 人类; 1:5000; 图 1
西格玛奥德里奇 Actb抗体(Sigma, A5441)被用于被用于免疫印迹在人类样本上浓度为1:5000 (图 1). BMC Biol (2016) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 人类; 图 2
西格玛奥德里奇 Actb抗体(Sigma, A1978)被用于被用于免疫印迹在人类样本上 (图 2). J Cancer (2016) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 小鼠; 1:15,000; 图 7
西格玛奥德里奇 Actb抗体(Sigma, A5441)被用于被用于免疫印迹在小鼠样本上浓度为1:15,000 (图 7). Neurobiol Dis (2016) ncbi
小鼠 单克隆(AC-74)
  • 免疫印迹; 人类; 图 5
西格玛奥德里奇 Actb抗体(Sigma, A2228)被用于被用于免疫印迹在人类样本上 (图 5). EMBO J (2016) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 小鼠; 图 5
西格玛奥德里奇 Actb抗体(Sigma, AC-15)被用于被用于免疫印迹在小鼠样本上 (图 5). Proc Natl Acad Sci U S A (2016) ncbi
小鼠 单克隆(AC-74)
  • 免疫印迹; 人类; 1:10,000; 图 3
西格玛奥德里奇 Actb抗体(Sigma Aldrich, A2228)被用于被用于免疫印迹在人类样本上浓度为1:10,000 (图 3). Sci Rep (2016) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 小鼠; 图 7
西格玛奥德里奇 Actb抗体(Sigma, AC-15)被用于被用于免疫印迹在小鼠样本上 (图 7). J Cell Biol (2016) ncbi
小鼠 单克隆(AC-74)
  • 免疫印迹; 人类; 1:10,000; 图 5
  • 免疫印迹; 小鼠; 1:10,000; 图 5
西格玛奥德里奇 Actb抗体(Sigma, A-2228)被用于被用于免疫印迹在人类样本上浓度为1:10,000 (图 5) 和 被用于免疫印迹在小鼠样本上浓度为1:10,000 (图 5). Genes Chromosomes Cancer (2016) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 小鼠; 1:1000; 图 s4
  • 免疫印迹; 人类; 1:1000; 图 3
西格玛奥德里奇 Actb抗体(Sigma-Aldrich, A-1978)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 s4) 和 被用于免疫印迹在人类样本上浓度为1:1000 (图 3). Nat Med (2016) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 人类; 1:20,000; 图 4
西格玛奥德里奇 Actb抗体(Sigma, A-1978)被用于被用于免疫印迹在人类样本上浓度为1:20,000 (图 4). Sci Rep (2016) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 小鼠
西格玛奥德里奇 Actb抗体(Sigma-Aldrich, A5441)被用于被用于免疫印迹在小鼠样本上. BMC Neurosci (2016) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 人类; 1:1000; 图 1
西格玛奥德里奇 Actb抗体(Sigma-Aldrich, A1978)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 1). Oncol Lett (2016) ncbi
小鼠 单克隆(AC-74)
  • 免疫印迹; 人类; 1:10,000; 图 3
西格玛奥德里奇 Actb抗体(Sigma, A5316)被用于被用于免疫印迹在人类样本上浓度为1:10,000 (图 3). Nat Commun (2016) ncbi
小鼠 单克隆(AC-74)
  • 免疫印迹; 人类; 图 5
西格玛奥德里奇 Actb抗体(Sigma, A5316)被用于被用于免疫印迹在人类样本上 (图 5). Theranostics (2016) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 人类; 图 1
西格玛奥德里奇 Actb抗体(Sigma, A5441)被用于被用于免疫印迹在人类样本上 (图 1). J Immunol (2016) ncbi
小鼠 单克隆(AC-40)
  • 免疫印迹; 人类; 1:2000; 图 3
西格玛奥德里奇 Actb抗体(Sigma, AC-40)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 3). Int J Mol Sci (2016) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 人类; 图 3
西格玛奥德里奇 Actb抗体(Sigma, A5441)被用于被用于免疫印迹在人类样本上 (图 3). Mol Cancer (2016) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; brewer's yeast; 图 5
西格玛奥德里奇 Actb抗体(Sigma-Aldrich, A1978)被用于被用于免疫印迹在brewer's yeast样本上 (图 5). Sci Rep (2016) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 人类; 图 4
西格玛奥德里奇 Actb抗体(Sigma Aldrich, AC-15)被用于被用于免疫印迹在人类样本上 (图 4). Sci Rep (2016) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 人类; 图 4
西格玛奥德里奇 Actb抗体(Sigma-Aldrich, A5441)被用于被用于免疫印迹在人类样本上 (图 4). Neurobiol Dis (2016) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 大鼠; 1:10,000; 图 1
西格玛奥德里奇 Actb抗体(Sigma-Aldrich, AC-15)被用于被用于免疫印迹在大鼠样本上浓度为1:10,000 (图 1). Psychopharmacology (Berl) (2016) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 人类; 图 4b
西格玛奥德里奇 Actb抗体(Sigma-Aldrich, A1978)被用于被用于免疫印迹在人类样本上 (图 4b). Sci Rep (2016) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 大鼠; 1:1000; 表 1
西格玛奥德里奇 Actb抗体(Sigma, A-1978)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (表 1). Endocrinology (2016) ncbi
小鼠 单克隆(AC-74)
  • 免疫印迹; 人类; 1:5000; 图 1
西格玛奥德里奇 Actb抗体(Sigma, A5316)被用于被用于免疫印迹在人类样本上浓度为1:5000 (图 1). Sci Rep (2016) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 小鼠; 图 4
西格玛奥德里奇 Actb抗体(Sigma, AC-15)被用于被用于免疫印迹在小鼠样本上 (图 4). Biochem Cell Biol (2016) ncbi
小鼠 单克隆(AC-74)
  • 免疫印迹; 小鼠; 图 3
西格玛奥德里奇 Actb抗体(Sigma, AC-74)被用于被用于免疫印迹在小鼠样本上 (图 3). Genes Cells (2016) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 人类; 图 2
西格玛奥德里奇 Actb抗体(Sigma, AC-15)被用于被用于免疫印迹在人类样本上 (图 2). Open Biol (2016) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 大鼠; 图 1
西格玛奥德里奇 Actb抗体(Sigma-Aldrich, A5441)被用于被用于免疫印迹在大鼠样本上 (图 1). Biomed Res Int (2016) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 小鼠; 图 1
西格玛奥德里奇 Actb抗体(Sigma, A5441)被用于被用于免疫印迹在小鼠样本上 (图 1). Nat Cell Biol (2016) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 小鼠; 图 9b
西格玛奥德里奇 Actb抗体(Sigma-Aldrich, AC-15)被用于被用于免疫印迹在小鼠样本上 (图 9b). Sci Rep (2016) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 人类; 图 5
西格玛奥德里奇 Actb抗体(Sigma, A1978)被用于被用于免疫印迹在人类样本上 (图 5). Nucleic Acids Res (2016) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 人类; 图 1b
西格玛奥德里奇 Actb抗体(Sigma, ac15)被用于被用于免疫印迹在人类样本上 (图 1b). J Biol Chem (2016) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 小鼠; 1:2000; 图 1
西格玛奥德里奇 Actb抗体(Sigma, AC-15)被用于被用于免疫印迹在小鼠样本上浓度为1:2000 (图 1). Development (2016) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 人类; 1:5000; 图 2
西格玛奥德里奇 Actb抗体(Sigma, A5441)被用于被用于免疫印迹在人类样本上浓度为1:5000 (图 2). Mol Med Rep (2016) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 大鼠; 1:5000; 图 2
西格玛奥德里奇 Actb抗体(Sigma, A5441)被用于被用于免疫印迹在大鼠样本上浓度为1:5000 (图 2). Cell Tissue Res (2016) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 大鼠; 1 ug/ml; 图 2
西格玛奥德里奇 Actb抗体(Sigma-Aldrich, A1978)被用于被用于免疫印迹在大鼠样本上浓度为1 ug/ml (图 2). Reprod Sci (2016) ncbi
小鼠 单克隆(AC-74)
  • 免疫印迹; 小鼠; 图 1
西格玛奥德里奇 Actb抗体(Sigma, 5316)被用于被用于免疫印迹在小鼠样本上 (图 1). PLoS Genet (2016) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 小鼠; 1:5000; 图 1
西格玛奥德里奇 Actb抗体(Sigma, A1978)被用于被用于免疫印迹在小鼠样本上浓度为1:5000 (图 1). Front Cell Neurosci (2016) ncbi
小鼠 单克隆(AC-74)
  • 免疫印迹; 小鼠; 1:10,0000; 图 s1
  • 免疫印迹; 人类; 1:10,0000; 图 s1
西格玛奥德里奇 Actb抗体(Sigma, A2228)被用于被用于免疫印迹在小鼠样本上浓度为1:10,0000 (图 s1) 和 被用于免疫印迹在人类样本上浓度为1:10,0000 (图 s1). Front Cell Neurosci (2016) ncbi
小鼠 单克隆(AC-40)
  • 免疫印迹; 人类; 1:5000; 图 s1
西格玛奥德里奇 Actb抗体(Sigma, A4700)被用于被用于免疫印迹在人类样本上浓度为1:5000 (图 s1). J Cell Sci (2017) ncbi
小鼠 单克隆(AC-40)
  • 免疫印迹; 小鼠; 1:10,000; 图 4
  • 免疫印迹; 人类; 1:10,000; 图 5
西格玛奥德里奇 Actb抗体(Sigma-Aldrich, AC-40)被用于被用于免疫印迹在小鼠样本上浓度为1:10,000 (图 4) 和 被用于免疫印迹在人类样本上浓度为1:10,000 (图 5). Nat Commun (2016) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 人类; 1:10,000; 图 4
西格玛奥德里奇 Actb抗体(Sigma, A5441)被用于被用于免疫印迹在人类样本上浓度为1:10,000 (图 4). Nat Commun (2016) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 大鼠; 图 4
西格玛奥德里奇 Actb抗体(Sigma, A1978)被用于被用于免疫印迹在大鼠样本上 (图 4). J Neuroinflammation (2016) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 人类; 图 3c
西格玛奥德里奇 Actb抗体(Sigma, A5441)被用于被用于免疫印迹在人类样本上 (图 3c). Sci Rep (2016) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 人类; 图 2
西格玛奥德里奇 Actb抗体(Sigma, A5441)被用于被用于免疫印迹在人类样本上 (图 2). Mol Biol Rep (2016) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 小鼠; 图 1
西格玛奥德里奇 Actb抗体(Sigma, A1978)被用于被用于免疫印迹在小鼠样本上 (图 1). Metab Brain Dis (2016) ncbi
小鼠 单克隆(AC-74)
  • 免疫印迹; 小鼠; 图 4
西格玛奥德里奇 Actb抗体(Sigma, AC-74)被用于被用于免疫印迹在小鼠样本上 (图 4). Nat Commun (2016) ncbi
小鼠 单克隆(AC-74)
  • 免疫印迹; 小鼠; 1:10,000; 图 s9
西格玛奥德里奇 Actb抗体(Sigma, 5316)被用于被用于免疫印迹在小鼠样本上浓度为1:10,000 (图 s9). Mol Psychiatry (2017) ncbi
小鼠 单克隆(AC-74)
  • 免疫印迹; 小鼠; 图 4
西格玛奥德里奇 Actb抗体(Sigma, A5316)被用于被用于免疫印迹在小鼠样本上 (图 4). Am J Pathol (2016) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 人类; 图 1
西格玛奥德里奇 Actb抗体(Sigma-Aldrich, A5441)被用于被用于免疫印迹在人类样本上 (图 1). Sci Rep (2016) ncbi
小鼠 单克隆(AC-74)
  • 免疫印迹; 人类; 图 s2
西格玛奥德里奇 Actb抗体(Sigma, A5316)被用于被用于免疫印迹在人类样本上 (图 s2). J Exp Clin Cancer Res (2016) ncbi
小鼠 单克隆(AC-74)
  • 免疫印迹; 小鼠; 1:20,000; 图 2e
西格玛奥德里奇 Actb抗体(Sigma, A2228)被用于被用于免疫印迹在小鼠样本上浓度为1:20,000 (图 2e). Nat Commun (2016) ncbi
小鼠 单克隆(AC-15)
西格玛奥德里奇 Actb抗体(Sigma-Aldrich, A1978)被用于. PLoS ONE (2016) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 小鼠; 图 1
西格玛奥德里奇 Actb抗体(Sigma, AC-15)被用于被用于免疫印迹在小鼠样本上 (图 1). PLoS ONE (2016) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 人类; 图 6
西格玛奥德里奇 Actb抗体(Sigma-Aldrich, A1978)被用于被用于免疫印迹在人类样本上 (图 6). Cancer Cell Int (2016) ncbi
小鼠 单克隆(AC-74)
  • 免疫印迹; 人类; 图 1
西格玛奥德里奇 Actb抗体(Sigma, A2228)被用于被用于免疫印迹在人类样本上 (图 1). Oncogene (2016) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 人类; 图 3
西格玛奥德里奇 Actb抗体(Sigma, AC-15)被用于被用于免疫印迹在人类样本上 (图 3). Int J Mol Sci (2016) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 小鼠; 图 9
西格玛奥德里奇 Actb抗体(Sigma-Aldrich, AC-15)被用于被用于免疫印迹在小鼠样本上 (图 9). Am J Physiol Gastrointest Liver Physiol (2016) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 人类; 1:10,000; 图 3
西格玛奥德里奇 Actb抗体(Sigma, A5441)被用于被用于免疫印迹在人类样本上浓度为1:10,000 (图 3). PLoS ONE (2016) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 人类; 图 1
西格玛奥德里奇 Actb抗体(Sigma, A5441)被用于被用于免疫印迹在人类样本上 (图 1). Cell Death Dis (2016) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 小鼠; 图 6
西格玛奥德里奇 Actb抗体(Sigma, A1978)被用于被用于免疫印迹在小鼠样本上 (图 6). Sci Rep (2016) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 人类; 1:15,000; 图 s1
西格玛奥德里奇 Actb抗体(Sigma, A1978)被用于被用于免疫印迹在人类样本上浓度为1:15,000 (图 s1). Sci Rep (2016) ncbi
小鼠 单克隆(AC-74)
  • 免疫印迹; 小鼠; 图 2
西格玛奥德里奇 Actb抗体(Sigma, A2228)被用于被用于免疫印迹在小鼠样本上 (图 2). Nat Commun (2016) ncbi
小鼠 单克隆(AC-40)
  • 免疫印迹; 小鼠; 图 1
西格玛奥德里奇 Actb抗体(Sigma, A4700)被用于被用于免疫印迹在小鼠样本上 (图 1). Brain Behav (2016) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 小鼠; 1:50,000; 图 1
西格玛奥德里奇 Actb抗体(Sigma, A5441)被用于被用于免疫印迹在小鼠样本上浓度为1:50,000 (图 1). Neuropharmacology (2016) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 人类; 图 5
西格玛奥德里奇 Actb抗体(Sigma, A1978)被用于被用于免疫印迹在人类样本上 (图 5). Schizophr Res (2016) ncbi
小鼠 单克隆(AC-74)
  • 免疫印迹; 人类; 图 2
西格玛奥德里奇 Actb抗体(Sigma, A2228)被用于被用于免疫印迹在人类样本上 (图 2). Traffic (2016) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 小鼠; 1:5000; 图 2
西格玛奥德里奇 Actb抗体(SIGMA, A5441)被用于被用于免疫印迹在小鼠样本上浓度为1:5000 (图 2). PLoS ONE (2016) ncbi
小鼠 单克隆(AC-74)
  • 免疫印迹; 人类; 图 1
西格玛奥德里奇 Actb抗体(Sigma-Aldrich, AC-74)被用于被用于免疫印迹在人类样本上 (图 1). PLoS ONE (2016) ncbi
小鼠 单克隆(AC-74)
  • 免疫印迹; 人类; 图 1
西格玛奥德里奇 Actb抗体(Sigma-Aldrich, A2228)被用于被用于免疫印迹在人类样本上 (图 1). Autophagy (2016) ncbi
小鼠 单克隆(AC-74)
  • 免疫印迹; 人类
西格玛奥德里奇 Actb抗体(Sigma-Aldrich, AC-74)被用于被用于免疫印迹在人类样本上. Oxid Med Cell Longev (2016) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 人类; 图 5
西格玛奥德里奇 Actb抗体(sIgma, A5441)被用于被用于免疫印迹在人类样本上 (图 5). Sci Rep (2016) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 人类; 图 2
西格玛奥德里奇 Actb抗体(Sigma Aldrich, A5441)被用于被用于免疫印迹在人类样本上 (图 2). Sci Rep (2016) ncbi
小鼠 单克隆(AC-74)
  • 免疫印迹; 人类; 1:5000; 图 1
西格玛奥德里奇 Actb抗体(Sigma, A2228)被用于被用于免疫印迹在人类样本上浓度为1:5000 (图 1). Breast Cancer Res Treat (2016) ncbi
小鼠 单克隆(AC-15)
西格玛奥德里奇 Actb抗体(Sigma Aldrich, AC-15)被用于. PLoS ONE (2016) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 小鼠; 1:1000; 图 3
西格玛奥德里奇 Actb抗体(Sigma, A5441)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 3). Mol Ther (2016) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 人类; 图 1a
西格玛奥德里奇 Actb抗体(Sigma, A5441)被用于被用于免疫印迹在人类样本上 (图 1a). Sci Rep (2016) ncbi
小鼠 单克隆(AC-74)
  • 免疫印迹; 人类; 图 2
西格玛奥德里奇 Actb抗体(Sigma, A2228)被用于被用于免疫印迹在人类样本上 (图 2). Nat Neurosci (2016) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 人类; 图 1
西格玛奥德里奇 Actb抗体(Sigma, A3854)被用于被用于免疫印迹在人类样本上 (图 1). Oncogene (2016) ncbi
小鼠 单克隆(AC-74)
  • 免疫印迹; 人类; 图 2
西格玛奥德里奇 Actb抗体(Sigma, A5316)被用于被用于免疫印迹在人类样本上 (图 2). BMC Cancer (2016) ncbi
小鼠 单克隆(AC-74)
  • 免疫印迹; 人类; 图 1
西格玛奥德里奇 Actb抗体(Sigma-Aldrich, A5316)被用于被用于免疫印迹在人类样本上 (图 1). Oncotarget (2016) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 小鼠; 1:5000; 图 3
西格玛奥德里奇 Actb抗体(Sigma, AC-15)被用于被用于免疫印迹在小鼠样本上浓度为1:5000 (图 3). Nat Commun (2016) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 人类; 图 2
西格玛奥德里奇 Actb抗体(Sigma, AC-15)被用于被用于免疫印迹在人类样本上 (图 2). PLoS ONE (2016) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 小鼠; 1:10,000; 图 3
西格玛奥德里奇 Actb抗体(Sigma-Aldrich, AC-15)被用于被用于免疫印迹在小鼠样本上浓度为1:10,000 (图 3). PLoS ONE (2016) ncbi
小鼠 单克隆(AC-74)
  • 免疫印迹; 人类; 图 1
西格玛奥德里奇 Actb抗体(Sigma, AC-74)被用于被用于免疫印迹在人类样本上 (图 1). J Virol (2016) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 人类; 图 3
西格玛奥德里奇 Actb抗体(Sigma, ac-15)被用于被用于免疫印迹在人类样本上 (图 3). Cancer Discov (2016) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 小鼠; 1:3000; 图 s5
西格玛奥德里奇 Actb抗体(Sigma, A5441)被用于被用于免疫印迹在小鼠样本上浓度为1:3000 (图 s5). Nat Commun (2016) ncbi
小鼠 单克隆(AC-74)
  • 免疫印迹; 人类; 图 1
西格玛奥德里奇 Actb抗体(Sigma, A2228)被用于被用于免疫印迹在人类样本上 (图 1). Brain Pathol (2017) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; fruit fly ; 1:5000
西格玛奥德里奇 Actb抗体(Sigma, AC-15)被用于被用于免疫印迹在fruit fly 样本上浓度为1:5000. Development (2016) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 人类; 图 6
西格玛奥德里奇 Actb抗体(Sigma, A3854)被用于被用于免疫印迹在人类样本上 (图 6). Cancer Sci (2016) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 人类; 图 2
西格玛奥德里奇 Actb抗体(Sigma, AC-15)被用于被用于免疫印迹在人类样本上 (图 2). J Exp Clin Cancer Res (2016) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 小鼠; 1:1000; 图 1
  • 免疫印迹; 大鼠; 1:1000; 图 1
西格玛奥德里奇 Actb抗体(Sigma, A3854)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 1) 和 被用于免疫印迹在大鼠样本上浓度为1:1000 (图 1). Aging Cell (2016) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 大鼠; 1:1000; 图 6
  • 免疫印迹; 人类; 1:1000; 图 6
西格玛奥德里奇 Actb抗体(Sigma, A1978)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 6) 和 被用于免疫印迹在人类样本上浓度为1:1000 (图 6). Oncol Lett (2016) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 大鼠; 图 1
西格玛奥德里奇 Actb抗体(Sigma, A5441)被用于被用于免疫印迹在大鼠样本上 (图 1). Cereb Cortex (2017) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 人类; 图 7
西格玛奥德里奇 Actb抗体(Sigma, A5441)被用于被用于免疫印迹在人类样本上 (图 7). J Biol Chem (2016) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 人类; 1:10,000; 图 s5
西格玛奥德里奇 Actb抗体(Sigma, A1978)被用于被用于免疫印迹在人类样本上浓度为1:10,000 (图 s5). Cell Rep (2016) ncbi
小鼠 单克隆(AC-15)
  • 免疫组化; 小鼠; 图 1
西格玛奥德里奇 Actb抗体(Sigma, A5441)被用于被用于免疫组化在小鼠样本上 (图 1). Oncogene (2016) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 人类; 1:10,000; 图 6
西格玛奥德里奇 Actb抗体(Sigma-Aldrich, A5441)被用于被用于免疫印迹在人类样本上浓度为1:10,000 (图 6). PLoS ONE (2016) ncbi
小鼠 单克隆(AC-74)
  • 免疫印迹; 小鼠; 1:5000; 图 s4
  • 免疫印迹; 人类; 1:5000; 图 s6
西格玛奥德里奇 Actb抗体(Sigma, A5316)被用于被用于免疫印迹在小鼠样本上浓度为1:5000 (图 s4) 和 被用于免疫印迹在人类样本上浓度为1:5000 (图 s6). J Clin Invest (2016) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 人类; 1:10,000; 图 2
西格玛奥德里奇 Actb抗体(Sigma, AC-15)被用于被用于免疫印迹在人类样本上浓度为1:10,000 (图 2). Mov Disord (2016) ncbi
小鼠 单克隆(AC-74)
  • 免疫印迹; 牛; 图 1
西格玛奥德里奇 Actb抗体(sigma, A2228)被用于被用于免疫印迹在牛样本上 (图 1). J Dairy Sci (2016) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 人类; 1:5000; 图 2
西格玛奥德里奇 Actb抗体(Sigma, A5441)被用于被用于免疫印迹在人类样本上浓度为1:5000 (图 2). Int J Mol Sci (2016) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 人类; 图 4
西格玛奥德里奇 Actb抗体(Sigma-Aldrich, A5441)被用于被用于免疫印迹在人类样本上 (图 4). Oncotarget (2016) ncbi
小鼠 单克隆(AC-74)
  • 免疫印迹; 人类; 1:1000; 图 1
西格玛奥德里奇 Actb抗体(Sigma, A2228)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 1). PLoS ONE (2016) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 人类; 1:40,000; 图 2
西格玛奥德里奇 Actb抗体(Sigma, A5441)被用于被用于免疫印迹在人类样本上浓度为1:40,000 (图 2). Haematologica (2016) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 人类
西格玛奥德里奇 Actb抗体(Sigma, A5441)被用于被用于免疫印迹在人类样本上. Genes Dev (2016) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 人类; 图 1
西格玛奥德里奇 Actb抗体(Sigma-Aldrich, A5441)被用于被用于免疫印迹在人类样本上 (图 1). Cell Death Dis (2016) ncbi
小鼠 单克隆(AC-40)
  • 免疫印迹; 小鼠; 1:1000; 图 3
西格玛奥德里奇 Actb抗体(Sigma Aldrich, AC-40)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 3). Sci Rep (2016) ncbi
小鼠 单克隆(AC-74)
  • 免疫印迹; 小鼠; 1:5000; 图 1c
西格玛奥德里奇 Actb抗体(Sigma, AC-74)被用于被用于免疫印迹在小鼠样本上浓度为1:5000 (图 1c). Cell Rep (2016) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 人类; 1:1000; 图 8
西格玛奥德里奇 Actb抗体(Sigma-Aldrich, A5441)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 8). Nat Commun (2016) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 人类; 图 1
西格玛奥德里奇 Actb抗体(Sigma, A5441)被用于被用于免疫印迹在人类样本上 (图 1). Nat Commun (2016) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 小鼠; 图 1
西格玛奥德里奇 Actb抗体(Sigma-Aldrich, AC-15)被用于被用于免疫印迹在小鼠样本上 (图 1). Sci Rep (2016) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 人类; 图 3
西格玛奥德里奇 Actb抗体(Sigma-Aldrich, AC-15)被用于被用于免疫印迹在人类样本上 (图 3). Autophagy (2016) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 小鼠; 图 2
西格玛奥德里奇 Actb抗体(Sigma-Aldrich, a5441)被用于被用于免疫印迹在小鼠样本上 (图 2). Sci Rep (2016) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 人类; 图 1e
西格玛奥德里奇 Actb抗体(Sigma-Aldrich, A1978)被用于被用于免疫印迹在人类样本上 (图 1e). J Immunol (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 2
西格玛奥德里奇 Actb抗体(Sigma, A2103)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 2). Infect Immun (2016) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 人类; 1:5000; 图 1
西格玛奥德里奇 Actb抗体(Sigma, A5441)被用于被用于免疫印迹在人类样本上浓度为1:5000 (图 1). Sci Rep (2016) ncbi
小鼠 单克隆(AC-74)
  • 免疫印迹; 小鼠; 图 1
  • 免疫印迹; 人类; 图 1
西格玛奥德里奇 Actb抗体(Sigma, A2228)被用于被用于免疫印迹在小鼠样本上 (图 1) 和 被用于免疫印迹在人类样本上 (图 1). Oncogenesis (2016) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 人类; 图 1
西格玛奥德里奇 Actb抗体(Sigma, 3854)被用于被用于免疫印迹在人类样本上 (图 1). Oncogenesis (2016) ncbi
小鼠 单克隆(AC-74)
  • 免疫印迹; 人类; 1:1000; 图 s2
西格玛奥德里奇 Actb抗体(Sigma, A5316)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 s2). Nat Commun (2016) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 人类; 1:5000; 图 1
西格玛奥德里奇 Actb抗体(Sigma, A1978)被用于被用于免疫印迹在人类样本上浓度为1:5000 (图 1). Nat Commun (2016) ncbi
小鼠 单克隆(AC-40)
  • 免疫印迹; 人类; 图 3
西格玛奥德里奇 Actb抗体(Sigma, A4700)被用于被用于免疫印迹在人类样本上 (图 3). Endocrinology (2016) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 人类; 1:5000; 图 1
西格玛奥德里奇 Actb抗体(Sigma, A5441)被用于被用于免疫印迹在人类样本上浓度为1:5000 (图 1). Mol Med Rep (2016) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 大鼠; 1:500; 图 4
西格玛奥德里奇 Actb抗体(Sigma, A1978)被用于被用于免疫印迹在大鼠样本上浓度为1:500 (图 4). Int J Mol Med (2016) ncbi
小鼠 单克隆(AC-74)
  • 免疫印迹; 小鼠; 1:5000; 图 5
西格玛奥德里奇 Actb抗体(Sigma, AC-74)被用于被用于免疫印迹在小鼠样本上浓度为1:5000 (图 5). Nat Commun (2016) ncbi
小鼠 单克隆(AC-74)
  • 免疫印迹; 人类; 图 6
西格玛奥德里奇 Actb抗体(Sigma, A5316)被用于被用于免疫印迹在人类样本上 (图 6). elife (2016) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 人类; 1:10,000; 图 1
西格玛奥德里奇 Actb抗体(Sigma, A5441)被用于被用于免疫印迹在人类样本上浓度为1:10,000 (图 1). Nat Commun (2016) ncbi
小鼠 单克隆(AC-74)
  • 免疫印迹; 人类; 1:5000; 图 1
西格玛奥德里奇 Actb抗体(Sigma, A5316)被用于被用于免疫印迹在人类样本上浓度为1:5000 (图 1). Nat Commun (2016) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 人类; 图 1
西格玛奥德里奇 Actb抗体(Sigma, A5441)被用于被用于免疫印迹在人类样本上 (图 1). Pediatr Res (2016) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 大鼠; 1:10,000; 图 2
西格玛奥德里奇 Actb抗体(Sigma, A1978)被用于被用于免疫印迹在大鼠样本上浓度为1:10,000 (图 2). Peptides (2016) ncbi
小鼠 单克隆(AC-74)
  • 免疫印迹; 人类; 图 1
西格玛奥德里奇 Actb抗体(Sigma-Aldrich, A2228)被用于被用于免疫印迹在人类样本上 (图 1). PLoS Genet (2016) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 人类; 图 2
西格玛奥德里奇 Actb抗体(Sigma, A5441)被用于被用于免疫印迹在人类样本上 (图 2). Nat Immunol (2016) ncbi
小鼠 单克隆(AC-74)
  • 免疫印迹; 人类; 1:5000; 图 7
西格玛奥德里奇 Actb抗体(Sigma, A5316)被用于被用于免疫印迹在人类样本上浓度为1:5000 (图 7). Genes Cancer (2016) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 人类; 1:5000; 图 7
西格玛奥德里奇 Actb抗体(Sigma, A5441)被用于被用于免疫印迹在人类样本上浓度为1:5000 (图 7). Genes Cancer (2016) ncbi
小鼠 单克隆(AC-74)
  • 免疫印迹; 小鼠; 图 1
西格玛奥德里奇 Actb抗体(Sigma, AC-74)被用于被用于免疫印迹在小鼠样本上 (图 1). Oncotarget (2016) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 人类; 1:5000; 图 3
西格玛奥德里奇 Actb抗体(Sigma, A5441)被用于被用于免疫印迹在人类样本上浓度为1:5000 (图 3). PLoS Pathog (2016) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 人类; 图 5
西格玛奥德里奇 Actb抗体(Sigma, A3854)被用于被用于免疫印迹在人类样本上 (图 5). J Virol (2016) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 大鼠; 1:3000; 图 2
  • 免疫印迹; 小鼠; 1:3000; 图 9
西格玛奥德里奇 Actb抗体(Sigma, A5441)被用于被用于免疫印迹在大鼠样本上浓度为1:3000 (图 2) 和 被用于免疫印迹在小鼠样本上浓度为1:3000 (图 9). Hum Mol Genet (2016) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 小鼠; 1:40,000; 图 1a
西格玛奥德里奇 Actb抗体(Sigma, A1978)被用于被用于免疫印迹在小鼠样本上浓度为1:40,000 (图 1a). EMBO Mol Med (2016) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 人类; 图 4
西格玛奥德里奇 Actb抗体(Sigma-Aldrich, A1978)被用于被用于免疫印迹在人类样本上 (图 4). J Exp Med (2016) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 人类; 1:2000; 图 2
西格玛奥德里奇 Actb抗体(Sigma, AC-15)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 2). Nat Immunol (2016) ncbi
小鼠 单克隆(AC-74)
  • 免疫印迹; African green monkey; 图 4
  • 免疫印迹; 人类; 图 3
西格玛奥德里奇 Actb抗体(Sigma, A2228)被用于被用于免疫印迹在African green monkey样本上 (图 4) 和 被用于免疫印迹在人类样本上 (图 3). Cancer Sci (2016) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 人类; 图 3
西格玛奥德里奇 Actb抗体(Sigma, A1978)被用于被用于免疫印迹在人类样本上 (图 3). Oncogene (2016) ncbi
小鼠 单克隆(AC-15)
  • 免疫组化; 人类; 图 1
  • 免疫印迹; 人类; 1:1000; 图 1
西格玛奥德里奇 Actb抗体(Sigma-Aldrich, A5441)被用于被用于免疫组化在人类样本上 (图 1) 和 被用于免疫印迹在人类样本上浓度为1:1000 (图 1). Dis Model Mech (2016) ncbi
小鼠 单克隆(AC-74)
  • 免疫印迹; 小鼠; 1:5000; 图 s4a
西格玛奥德里奇 Actb抗体(Sigma-Aldrich, AC-74)被用于被用于免疫印迹在小鼠样本上浓度为1:5000 (图 s4a). Nat Commun (2016) ncbi
小鼠 单克隆(AC-74)
  • 免疫印迹; 人类; 1:5000; 图 4
西格玛奥德里奇 Actb抗体(Sigma-Aldrich, A5316)被用于被用于免疫印迹在人类样本上浓度为1:5000 (图 4). Mol Cancer Ther (2016) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 人类; 图 5
西格玛奥德里奇 Actb抗体(Sigma, A5441)被用于被用于免疫印迹在人类样本上 (图 5). Oncogene (2016) ncbi
小鼠 单克隆(AC-74)
  • 免疫印迹; 大鼠; 1:5000; 图 2
  • 免疫印迹; 小鼠; 1:5000; 图 1
西格玛奥德里奇 Actb抗体(sigma, A2228)被用于被用于免疫印迹在大鼠样本上浓度为1:5000 (图 2) 和 被用于免疫印迹在小鼠样本上浓度为1:5000 (图 1). Arthritis Res Ther (2016) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 小鼠; 图 5
西格玛奥德里奇 Actb抗体(Sigma, A5441)被用于被用于免疫印迹在小鼠样本上 (图 5). J Biol Chem (2016) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 犬; 1:5000; 图 1
  • 免疫印迹; 小鼠; 1:5000; 图 4
西格玛奥德里奇 Actb抗体(Sigma-Aldrich, A5441)被用于被用于免疫印迹在犬样本上浓度为1:5000 (图 1) 和 被用于免疫印迹在小鼠样本上浓度为1:5000 (图 4). Nat Commun (2016) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 小鼠; 1:1000; 图 5
西格玛奥德里奇 Actb抗体(Sigma-Aldrich, AC-15)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 5). Nat Commun (2016) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 人类; 1:12,000; 图 1
西格玛奥德里奇 Actb抗体(Sigma, A5441)被用于被用于免疫印迹在人类样本上浓度为1:12,000 (图 1). Cell Cycle (2016) ncbi
小鼠 单克隆(AC-74)
  • 免疫印迹; 小鼠; 图 6
西格玛奥德里奇 Actb抗体(Sigma, A5316)被用于被用于免疫印迹在小鼠样本上 (图 6). PLoS Genet (2016) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 人类; 图 1
西格玛奥德里奇 Actb抗体(Sigma, A5441)被用于被用于免疫印迹在人类样本上 (图 1). Nucleic Acids Res (2016) ncbi
小鼠 单克隆(AC-74)
  • 免疫印迹; 大鼠; 1:5000; 图 6a
西格玛奥德里奇 Actb抗体(Sigma-Aldrich, A5316)被用于被用于免疫印迹在大鼠样本上浓度为1:5000 (图 6a). Sci Rep (2016) ncbi
小鼠 单克隆(AC-74)
  • 免疫印迹; 小鼠; 图 s1
西格玛奥德里奇 Actb抗体(Sigma-Aldrich, A5316)被用于被用于免疫印迹在小鼠样本上 (图 s1). Proc Natl Acad Sci U S A (2016) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 人类; 1:10,000; 图 s8
西格玛奥德里奇 Actb抗体(Sigma, A1978)被用于被用于免疫印迹在人类样本上浓度为1:10,000 (图 s8). Nat Commun (2016) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 大鼠; 图 1
西格玛奥德里奇 Actb抗体(Sigma, A-1978)被用于被用于免疫印迹在大鼠样本上 (图 1). J Neuroinflammation (2016) ncbi
小鼠 单克隆(AC-74)
  • 免疫印迹; 人类; 图 3
西格玛奥德里奇 Actb抗体(Sigma, A2228)被用于被用于免疫印迹在人类样本上 (图 3). Breast Cancer Res Treat (2016) ncbi
小鼠 单克隆(AC-40)
  • 免疫印迹; 人类; 图 6
西格玛奥德里奇 Actb抗体(Sigma, A4700)被用于被用于免疫印迹在人类样本上 (图 6). Oncotarget (2016) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 斑马鱼; 1:1000; 图 3
西格玛奥德里奇 Actb抗体(sigma, A5441)被用于被用于免疫印迹在斑马鱼样本上浓度为1:1000 (图 3). PLoS ONE (2016) ncbi
小鼠 单克隆(AC-15)
  • 免疫组化-冰冻切片; 小鼠; 图 3
西格玛奥德里奇 Actb抗体(Sigma, A5441)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 3). BMC Cancer (2016) ncbi
小鼠 单克隆(AC-74)
  • 免疫印迹; 小鼠; 图 4
西格玛奥德里奇 Actb抗体(Sigma-Aldrich, AC-74)被用于被用于免疫印迹在小鼠样本上 (图 4). Skelet Muscle (2016) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 人类; 1:3000; 图 7
西格玛奥德里奇 Actb抗体(Sigma-Aldrich, A5441)被用于被用于免疫印迹在人类样本上浓度为1:3000 (图 7). Nat Commun (2016) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 人类; 图 1
西格玛奥德里奇 Actb抗体(Sigma, A1978)被用于被用于免疫印迹在人类样本上 (图 1). J Biol Chem (2016) ncbi
小鼠 单克隆(AC-40)
  • 免疫印迹; 人类; 图 6
西格玛奥德里奇 Actb抗体(Sigma, A4700)被用于被用于免疫印迹在人类样本上 (图 6). Mol Cancer Ther (2016) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 小鼠; 1:2000; 图 1
西格玛奥德里奇 Actb抗体(Sigma, A5441)被用于被用于免疫印迹在小鼠样本上浓度为1:2000 (图 1). PLoS ONE (2016) ncbi
小鼠 单克隆(AC-74)
  • 免疫印迹; 人类; 图 5
西格玛奥德里奇 Actb抗体(Sigma-Aldrich, AC-74)被用于被用于免疫印迹在人类样本上 (图 5). Molecules (2016) ncbi
小鼠 单克隆(AC-74)
  • 免疫印迹; 小鼠; 1:1000; 图 s16
西格玛奥德里奇 Actb抗体(Sigma, AC-74)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 s16). Sci Transl Med (2016) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 人类; 1:3000; 图 1
西格玛奥德里奇 Actb抗体(Sigma, A5441)被用于被用于免疫印迹在人类样本上浓度为1:3000 (图 1). Oncotarget (2016) ncbi
小鼠 单克隆(AC-74)
  • 免疫印迹; 大鼠; 1:2000; 图 2
西格玛奥德里奇 Actb抗体(Sigma-Aldrich, A5316)被用于被用于免疫印迹在大鼠样本上浓度为1:2000 (图 2). Nat Commun (2016) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 小鼠; 1:8000; 图 3
西格玛奥德里奇 Actb抗体(Sigma, A1978)被用于被用于免疫印迹在小鼠样本上浓度为1:8000 (图 3). Nat Commun (2016) ncbi
小鼠 单克隆(AC-74)
  • 免疫印迹; 人类; 1:5000; 图 1
西格玛奥德里奇 Actb抗体(Sigma, A5316)被用于被用于免疫印迹在人类样本上浓度为1:5000 (图 1). BMC Cancer (2016) ncbi
小鼠 单克隆(AC-74)
  • 免疫印迹; 小鼠; 图 2
  • 免疫印迹; 人类; 图 1
西格玛奥德里奇 Actb抗体(Sigma, A5316)被用于被用于免疫印迹在小鼠样本上 (图 2) 和 被用于免疫印迹在人类样本上 (图 1). PLoS Genet (2016) ncbi
小鼠 单克隆(AC-74)
  • 免疫印迹; 人类; 图 1
  • 免疫印迹; 小鼠; 图 1
西格玛奥德里奇 Actb抗体(Sigma-Aldrich, A5316)被用于被用于免疫印迹在人类样本上 (图 1) 和 被用于免疫印迹在小鼠样本上 (图 1). BMC Res Notes (2016) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 人类; 图 4
西格玛奥德里奇 Actb抗体(Sigma, A5441)被用于被用于免疫印迹在人类样本上 (图 4). Oncotarget (2016) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 人类; 图 7
西格玛奥德里奇 Actb抗体(Sigma Aldrich, AC-15)被用于被用于免疫印迹在人类样本上 (图 7). Cell Cycle (2016) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 人类; 图 5
西格玛奥德里奇 Actb抗体(Sigma, A1978)被用于被用于免疫印迹在人类样本上 (图 5). Oncotarget (2016) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 人类; 图 4d
西格玛奥德里奇 Actb抗体(Sigma, A1978)被用于被用于免疫印迹在人类样本上 (图 4d). Sci Rep (2016) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 人类; 图 1f
西格玛奥德里奇 Actb抗体(Sigma-Aldrich, A1978)被用于被用于免疫印迹在人类样本上 (图 1f). Cell Death Differ (2016) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 小鼠; 图 5
西格玛奥德里奇 Actb抗体(Sigma-Aldrich, A5441)被用于被用于免疫印迹在小鼠样本上 (图 5). PLoS ONE (2016) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 人类; 图 s4
西格玛奥德里奇 Actb抗体(Sigma, A5441)被用于被用于免疫印迹在人类样本上 (图 s4). Oncotarget (2016) ncbi
小鼠 单克隆(AC-74)
  • 免疫印迹; 人类; 1:1000; 图 s1
西格玛奥德里奇 Actb抗体(Sigma, AC-74)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 s1). Oncotarget (2016) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 人类; 1:10,000; 图 2
西格玛奥德里奇 Actb抗体(Sigma, A5441)被用于被用于免疫印迹在人类样本上浓度为1:10,000 (图 2). Oncotarget (2016) ncbi
小鼠 单克隆(AC-74)
  • 免疫印迹; 小鼠; 图 3
  • 免疫印迹; 人类; 图 3
西格玛奥德里奇 Actb抗体(Sigma-Aldrich, A5316)被用于被用于免疫印迹在小鼠样本上 (图 3) 和 被用于免疫印迹在人类样本上 (图 3). Sci Rep (2016) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 大鼠; 1:10,000; 图 1
西格玛奥德里奇 Actb抗体(Sigma, AC-15)被用于被用于免疫印迹在大鼠样本上浓度为1:10,000 (图 1). Front Syst Neurosci (2016) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 鸡; 图 1
西格玛奥德里奇 Actb抗体(Sigma, A5441)被用于被用于免疫印迹在鸡样本上 (图 1). PLoS ONE (2016) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 人类; 图 7
西格玛奥德里奇 Actb抗体(Sigma, A1978)被用于被用于免疫印迹在人类样本上 (图 7). Mol Cell Proteomics (2016) ncbi
小鼠 单克隆(AC-74)
  • 免疫印迹; 人类; 1:30,000; 图 3
西格玛奥德里奇 Actb抗体(Sigma, AC-74)被用于被用于免疫印迹在人类样本上浓度为1:30,000 (图 3). Oncotarget (2016) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 人类; 图 2
西格玛奥德里奇 Actb抗体(Sigma, A3854)被用于被用于免疫印迹在人类样本上 (图 2). Glia (2016) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 小鼠; 图 5
西格玛奥德里奇 Actb抗体(Sigma, AC-15)被用于被用于免疫印迹在小鼠样本上 (图 5). Sci Transl Med (2016) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 大鼠; 1:5000; 图 2
西格玛奥德里奇 Actb抗体(Sigma-Aldrich, A5441)被用于被用于免疫印迹在大鼠样本上浓度为1:5000 (图 2). J Am Heart Assoc (2016) ncbi
小鼠 单克隆(AC-74)
  • 免疫印迹; 小鼠; 1:10,000; 图 2
西格玛奥德里奇 Actb抗体(Sigma, AC-74)被用于被用于免疫印迹在小鼠样本上浓度为1:10,000 (图 2). Sci Rep (2016) ncbi
小鼠 单克隆(AC-74)
  • 免疫印迹; 小鼠; 1:25,000; 图 4c
西格玛奥德里奇 Actb抗体(Sigma, A-5316)被用于被用于免疫印迹在小鼠样本上浓度为1:25,000 (图 4c). Diabetologia (2016) ncbi
小鼠 单克隆(AC-74)
  • 免疫印迹; 人类; 1:1000; 图 6
西格玛奥德里奇 Actb抗体(Sigma, A2228)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 6). Sci Rep (2016) ncbi
小鼠 单克隆(AC-74)
  • 免疫印迹; 大鼠; 图 1
西格玛奥德里奇 Actb抗体(Sigma-Aldrich, A2228)被用于被用于免疫印迹在大鼠样本上 (图 1). Sci Rep (2016) ncbi
小鼠 单克隆(AC-40)
  • 免疫印迹; 人类; 1:1000; 图 1
西格玛奥德里奇 Actb抗体(Sigma, A-4700)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 1). PLoS ONE (2016) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 小鼠; 1:10,000; 图 1
西格玛奥德里奇 Actb抗体(Sigma, A3854)被用于被用于免疫印迹在小鼠样本上浓度为1:10,000 (图 1). Sci Rep (2016) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 人类; 图 1
西格玛奥德里奇 Actb抗体(Sigma, A5441)被用于被用于免疫印迹在人类样本上 (图 1). Nat Commun (2016) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 人类; 图 1
西格玛奥德里奇 Actb抗体(Sigma, A5441)被用于被用于免疫印迹在人类样本上 (图 1). BMC Cancer (2016) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 人类; 图 5
西格玛奥德里奇 Actb抗体(Sigma, A5441)被用于被用于免疫印迹在人类样本上 (图 5). BMC Cancer (2016) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 小鼠; 图 2
西格玛奥德里奇 Actb抗体(Sigma, A3854)被用于被用于免疫印迹在小鼠样本上 (图 2). Nat Commun (2016) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 人类; 1:5000; 图 2
西格玛奥德里奇 Actb抗体(Sigma, A5441)被用于被用于免疫印迹在人类样本上浓度为1:5000 (图 2). Nat Commun (2016) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 人类; 图 5
西格玛奥德里奇 Actb抗体(Sigma, A5441)被用于被用于免疫印迹在人类样本上 (图 5). Oncogene (2016) ncbi
小鼠 单克隆(AC-15)
  • 免疫细胞化学; 人类; 图 2
  • 免疫印迹; 人类; 图 4
西格玛奥德里奇 Actb抗体(Sigma-Aldrich, A5441)被用于被用于免疫细胞化学在人类样本上 (图 2) 和 被用于免疫印迹在人类样本上 (图 4). Oncogene (2016) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 小鼠; 1:20,000; 图 7
西格玛奥德里奇 Actb抗体(Sigma, AC-15)被用于被用于免疫印迹在小鼠样本上浓度为1:20,000 (图 7). J Immunol (2016) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 大鼠; 1:5000; 图 6
西格玛奥德里奇 Actb抗体(Sigma, A5441)被用于被用于免疫印迹在大鼠样本上浓度为1:5000 (图 6). Am J Physiol Heart Circ Physiol (2016) ncbi
小鼠 单克隆(AC-74)
  • 免疫印迹; 人类; 图 2
西格玛奥德里奇 Actb抗体(Sigma, AC-74)被用于被用于免疫印迹在人类样本上 (图 2). J Autoimmun (2016) ncbi
小鼠 单克隆(AC-74)
  • 免疫印迹; 小鼠; 1:2000; 图 6
西格玛奥德里奇 Actb抗体(Sigma, A2228)被用于被用于免疫印迹在小鼠样本上浓度为1:2000 (图 6). Front Endocrinol (Lausanne) (2016) ncbi
小鼠 单克隆(AC-74)
  • 免疫印迹; 人类; 图 7
西格玛奥德里奇 Actb抗体(Sigma, A5316)被用于被用于免疫印迹在人类样本上 (图 7). Sci Rep (2016) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 人类; 1:10,000; 图 3
西格玛奥德里奇 Actb抗体(Sigma, A5441)被用于被用于免疫印迹在人类样本上浓度为1:10,000 (图 3). Sci Rep (2016) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 人类; 1:2000; 图 2
西格玛奥德里奇 Actb抗体(Sigma, A1978)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 2). Sci Rep (2016) ncbi
小鼠 单克隆(AC-74)
  • 免疫印迹; 人类; 图 s9
西格玛奥德里奇 Actb抗体(Sigma, A2228)被用于被用于免疫印迹在人类样本上 (图 s9). PLoS Pathog (2016) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 小鼠; 1:10,000; 图 2
西格玛奥德里奇 Actb抗体(Sigma, A5441)被用于被用于免疫印迹在小鼠样本上浓度为1:10,000 (图 2). J Mol Endocrinol (2016) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 小鼠; 1:2000; 图 7
  • 免疫印迹; 人类; 1:2000; 图 6
西格玛奥德里奇 Actb抗体(Sigma, A1978)被用于被用于免疫印迹在小鼠样本上浓度为1:2000 (图 7) 和 被用于免疫印迹在人类样本上浓度为1:2000 (图 6). J Biol Chem (2016) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; African green monkey; 图 1
  • 免疫印迹; 人类; 图 2
西格玛奥德里奇 Actb抗体(Sigma, A1978)被用于被用于免疫印迹在African green monkey样本上 (图 1) 和 被用于免疫印迹在人类样本上 (图 2). PLoS ONE (2016) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 人类; 图 1
西格玛奥德里奇 Actb抗体(Sigma, A3854)被用于被用于免疫印迹在人类样本上 (图 1). Proc Natl Acad Sci U S A (2016) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 小鼠; 图 2
西格玛奥德里奇 Actb抗体(Sigma-Aldrich, A-5441)被用于被用于免疫印迹在小鼠样本上 (图 2). Proc Natl Acad Sci U S A (2016) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 小鼠; 图 6c
西格玛奥德里奇 Actb抗体(Sigma, A5441)被用于被用于免疫印迹在小鼠样本上 (图 6c). Sci Rep (2016) ncbi
小鼠 单克隆(AC-15)
西格玛奥德里奇 Actb抗体(Sigma, A5441)被用于. Clin Cancer Res (2016) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 小鼠; 图 6
西格玛奥德里奇 Actb抗体(Sigma-Aldric, A5441)被用于被用于免疫印迹在小鼠样本上 (图 6). PLoS ONE (2016) ncbi
小鼠 单克隆(AC-74)
  • 免疫印迹; 人类; 图 1
西格玛奥德里奇 Actb抗体(Sigma, A5316)被用于被用于免疫印迹在人类样本上 (图 1). Oncotarget (2016) ncbi
小鼠 单克隆(AC-74)
  • 免疫印迹; 大鼠; 1:30,000; 图 3
西格玛奥德里奇 Actb抗体(Sigma-Aldrich, A5316l)被用于被用于免疫印迹在大鼠样本上浓度为1:30,000 (图 3). Mol Med Rep (2016) ncbi
小鼠 单克隆(AC-74)
  • 免疫印迹; 人类; 图 1b
西格玛奥德里奇 Actb抗体(Sigma, A5316)被用于被用于免疫印迹在人类样本上 (图 1b). J Biol Chem (2016) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 人类; 1:1000; 图 2
西格玛奥德里奇 Actb抗体(Sigma-Aldrich, A1978)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 2). Int J Mol Med (2016) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 大鼠; 1:1000; 图 2
西格玛奥德里奇 Actb抗体(Sigma, A1978)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 2). Cell Death Dis (2016) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 人类; 图 4
西格玛奥德里奇 Actb抗体(Sigma, A5441)被用于被用于免疫印迹在人类样本上 (图 4). Oncotarget (2016) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 人类; 图 s10a
西格玛奥德里奇 Actb抗体(Sigma-Aldrich, A1978)被用于被用于免疫印迹在人类样本上 (图 s10a). Sci Rep (2016) ncbi
小鼠 单克隆(AC-74)
  • 免疫印迹; 小鼠; 1:1000; 图 1
西格玛奥德里奇 Actb抗体(Sigma, A5316)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 1). J Bone Miner Res (2016) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 人类; 1:50,000; 图 2
西格玛奥德里奇 Actb抗体(Sigma, AC15)被用于被用于免疫印迹在人类样本上浓度为1:50,000 (图 2). Oncotarget (2016) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 斑马鱼; 1:1000; 图 5
西格玛奥德里奇 Actb抗体(Sigma-Aldrich, #A544)被用于被用于免疫印迹在斑马鱼样本上浓度为1:1000 (图 5). Int J Mol Sci (2016) ncbi
小鼠 单克隆(AC-74)
  • 免疫印迹; 人类; 1:20,000; 图 5
西格玛奥德里奇 Actb抗体(Sigma, A2228)被用于被用于免疫印迹在人类样本上浓度为1:20,000 (图 5). Oxid Med Cell Longev (2016) ncbi
小鼠 单克隆(AC-74)
  • 免疫印迹; 人类; 图 1b
西格玛奥德里奇 Actb抗体(Sigma,, A5316)被用于被用于免疫印迹在人类样本上 (图 1b). Acta Neuropathol (2016) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 人类; 1:1000; 图 4
西格玛奥德里奇 Actb抗体(Sigma Aldrich, A3854)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 4). PLoS ONE (2016) ncbi
小鼠 单克隆(AC-74)
  • 免疫印迹; 人类; 图 1
  • 免疫印迹; 小鼠; 图 3
西格玛奥德里奇 Actb抗体(Sigma, A5316)被用于被用于免疫印迹在人类样本上 (图 1) 和 被用于免疫印迹在小鼠样本上 (图 3). Mol Neurodegener (2016) ncbi
小鼠 单克隆(AC-74)
  • 免疫印迹; 人类; 图 4
西格玛奥德里奇 Actb抗体(Sigma-Aldrich, AC-74)被用于被用于免疫印迹在人类样本上 (图 4). J Cell Sci (2016) ncbi
小鼠 单克隆(AC-74)
  • 免疫印迹; 人类; 图 1
西格玛奥德里奇 Actb抗体(Sigma, A2228)被用于被用于免疫印迹在人类样本上 (图 1). J Biol Chem (2016) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 人类; 图 2
西格玛奥德里奇 Actb抗体(Sigma-Aldrich, AC-15)被用于被用于免疫印迹在人类样本上 (图 2). Mol Biol Cell (2016) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 人类; 1:5000; 图 1
西格玛奥德里奇 Actb抗体(Sigma, A5441)被用于被用于免疫印迹在人类样本上浓度为1:5000 (图 1). Cardiovasc Diabetol (2016) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 人类; 图 s5b
西格玛奥德里奇 Actb抗体(Sigma, A5441)被用于被用于免疫印迹在人类样本上 (图 s5b). Genome Biol (2016) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 小鼠; 1:2000; 图 3
西格玛奥德里奇 Actb抗体(Sigma, A5441)被用于被用于免疫印迹在小鼠样本上浓度为1:2000 (图 3). Nat Commun (2016) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 人类; 图 1
西格玛奥德里奇 Actb抗体(Sigma-Aldrich, A5441)被用于被用于免疫印迹在人类样本上 (图 1). Genes Immun (2016) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 人类; 1:5000; 图 3
西格玛奥德里奇 Actb抗体(Sigma-Aldrich, A5441)被用于被用于免疫印迹在人类样本上浓度为1:5000 (图 3). Int J Oncol (2016) ncbi
小鼠 单克隆(AC-74)
  • 免疫印迹; 人类; 图 1
西格玛奥德里奇 Actb抗体(Sigma, A2228)被用于被用于免疫印迹在人类样本上 (图 1). Oncotarget (2016) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 小鼠; 1:10,000; 图 5a
西格玛奥德里奇 Actb抗体(Sigma, A5441)被用于被用于免疫印迹在小鼠样本上浓度为1:10,000 (图 5a). Nat Commun (2015) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 人类; 图 2
西格玛奥德里奇 Actb抗体(Sigma, A5441)被用于被用于免疫印迹在人类样本上 (图 2). Biochem J (2016) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 人类; 1:20,000; 图 1
西格玛奥德里奇 Actb抗体(Sigma, A1978)被用于被用于免疫印迹在人类样本上浓度为1:20,000 (图 1). Sci Rep (2016) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 人类; 图 5
西格玛奥德里奇 Actb抗体(Sigma, A5441)被用于被用于免疫印迹在人类样本上 (图 5). Proc Natl Acad Sci U S A (2016) ncbi
小鼠 单克隆(AC-74)
  • 免疫印迹; 小鼠; 1:1000; 图 3
西格玛奥德里奇 Actb抗体(Sigma, A5316)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 3). Eur Neuropsychopharmacol (2016) ncbi
小鼠 单克隆(AC-74)
  • 免疫印迹; 大鼠; 1:10,000; 图 5
西格玛奥德里奇 Actb抗体(Sigma-Aldrich, A2228)被用于被用于免疫印迹在大鼠样本上浓度为1:10,000 (图 5). Exp Neurol (2016) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 人类; 图 2
西格玛奥德里奇 Actb抗体(Sigma, A1978)被用于被用于免疫印迹在人类样本上 (图 2). PLoS ONE (2016) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 人类; 1:4000; 图 s5
西格玛奥德里奇 Actb抗体(Sigma, A1978)被用于被用于免疫印迹在人类样本上浓度为1:4000 (图 s5). Nat Med (2016) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 小鼠; 1:4000; 图 s2
西格玛奥德里奇 Actb抗体(Sigma, A1978)被用于被用于免疫印迹在小鼠样本上浓度为1:4000 (图 s2). Nat Biotechnol (2016) ncbi
小鼠 单克隆(AC-74)
  • 免疫印迹; 人类; 图 3
西格玛奥德里奇 Actb抗体(Sigma, A2228)被用于被用于免疫印迹在人类样本上 (图 3). Neoplasia (2016) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 人类; 图 1
西格玛奥德里奇 Actb抗体(Sigma, A1978)被用于被用于免疫印迹在人类样本上 (图 1). Oncogene (2016) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 小鼠; 图 6
西格玛奥德里奇 Actb抗体(Sigma Aldrich, A3854)被用于被用于免疫印迹在小鼠样本上 (图 6). Mol Cell Endocrinol (2016) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 小鼠; 1:15,000; 图 1
西格玛奥德里奇 Actb抗体(Sigma, A1978)被用于被用于免疫印迹在小鼠样本上浓度为1:15,000 (图 1). J Biol Chem (2016) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 人类; 1:10,000; 图 1
西格玛奥德里奇 Actb抗体(Sigma, A1978)被用于被用于免疫印迹在人类样本上浓度为1:10,000 (图 1). Am J Physiol Lung Cell Mol Physiol (2016) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 小鼠; 1:2000; 图 6
西格玛奥德里奇 Actb抗体(Sigma, A1978)被用于被用于免疫印迹在小鼠样本上浓度为1:2000 (图 6). Neural Plast (2015) ncbi
小鼠 单克隆(AC-74)
  • 免疫印迹; 小鼠; 图 5
西格玛奥德里奇 Actb抗体(Sigma-Aldrich, A5316)被用于被用于免疫印迹在小鼠样本上 (图 5). Int J Mol Med (2016) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 小鼠; 1:10,000; 图 4
西格玛奥德里奇 Actb抗体(Sigma-Aldrich, A3854)被用于被用于免疫印迹在小鼠样本上浓度为1:10,000 (图 4). Front Synaptic Neurosci (2015) ncbi
小鼠 单克隆(AC-15)
西格玛奥德里奇 Actb抗体(Sigma-Aldrich, A5441)被用于. J Biol Chem (2016) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 人类; 图 1
西格玛奥德里奇 Actb抗体(Sigma-Aldrich, A-1978)被用于被用于免疫印迹在人类样本上 (图 1). PLoS ONE (2016) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 小鼠
西格玛奥德里奇 Actb抗体(Sigma, AC-15)被用于被用于免疫印迹在小鼠样本上. Nature (2016) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; domestic rabbit; 1:5000; 图 1
西格玛奥德里奇 Actb抗体(Sigma-Aldrich, A5441)被用于被用于免疫印迹在domestic rabbit样本上浓度为1:5000 (图 1). Mol Vis (2015) ncbi
小鼠 单克隆(AC-40)
  • 其他; 人类; 图 st1
西格玛奥德里奇 Actb抗体(SIGMA, AC-40)被用于被用于其他在人类样本上 (图 st1). Mol Cell Proteomics (2016) ncbi
小鼠 单克隆(AC-74)
  • 免疫印迹; 人类; 图 4
西格玛奥德里奇 Actb抗体(Sigma-Aldrich, A2228)被用于被用于免疫印迹在人类样本上 (图 4). PLoS ONE (2016) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 小鼠; 图 3
西格玛奥德里奇 Actb抗体(Sigma, A5441)被用于被用于免疫印迹在小鼠样本上 (图 3). J Cell Biol (2016) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 犬; 1:4000; 图 1
  • 免疫印迹; 人类; 1:4000; 图 2
西格玛奥德里奇 Actb抗体(Sigma-Aldrich, A5441)被用于被用于免疫印迹在犬样本上浓度为1:4000 (图 1) 和 被用于免疫印迹在人类样本上浓度为1:4000 (图 2). Nat Commun (2016) ncbi
小鼠 单克隆(AC-74)
  • 免疫印迹; 人类; 1:5000; 图 3
西格玛奥德里奇 Actb抗体(Sigma, A5316)被用于被用于免疫印迹在人类样本上浓度为1:5000 (图 3). Nat Commun (2016) ncbi
小鼠 单克隆(AC-74)
  • 免疫印迹; 小鼠; 1:4000; 图 2
西格玛奥德里奇 Actb抗体(Sigma-Aldrich, A5316)被用于被用于免疫印迹在小鼠样本上浓度为1:4000 (图 2). Sci Rep (2016) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 人类; 图 2
西格玛奥德里奇 Actb抗体(Sigma-Aldrich, A5441)被用于被用于免疫印迹在人类样本上 (图 2). Cell Death Dis (2016) ncbi
小鼠 单克隆(AC-74)
  • 免疫印迹; 人类; 图 4
西格玛奥德里奇 Actb抗体(Sigma, AC-74)被用于被用于免疫印迹在人类样本上 (图 4). Cell Death Dis (2016) ncbi
小鼠 单克隆(AC-74)
  • 免疫印迹; 人类; 1:2000; 图 s2
西格玛奥德里奇 Actb抗体(Sigma, A2228)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 s2). Cell Rep (2016) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 人类; 图 1
西格玛奥德里奇 Actb抗体(Sigma, A5441)被用于被用于免疫印迹在人类样本上 (图 1). Traffic (2015) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 人类; 图 1
  • 免疫印迹; 小鼠; 图 1
西格玛奥德里奇 Actb抗体(Sigma, A5441)被用于被用于免疫印迹在人类样本上 (图 1) 和 被用于免疫印迹在小鼠样本上 (图 1). Oncotarget (2016) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 小鼠; 图 1d
西格玛奥德里奇 Actb抗体(Sigma, A1978)被用于被用于免疫印迹在小鼠样本上 (图 1d). PLoS Genet (2016) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 豚鼠; 1:1000; 图 2
西格玛奥德里奇 Actb抗体(Sigma-Aldrich, A1978)被用于被用于免疫印迹在豚鼠样本上浓度为1:1000 (图 2). PLoS ONE (2016) ncbi
小鼠 单克隆(AC-74)
  • 免疫印迹; 大鼠; 图 3
西格玛奥德里奇 Actb抗体(Sigma-Aldrich, A2228)被用于被用于免疫印迹在大鼠样本上 (图 3). Redox Biol (2016) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 人类; 1:10,000
西格玛奥德里奇 Actb抗体(Sigma-Aldrich, ac-15)被用于被用于免疫印迹在人类样本上浓度为1:10,000. Nature (2016) ncbi
小鼠 单克隆(AC-40)
  • 免疫印迹; 人类; 图 4
西格玛奥德里奇 Actb抗体(Sigma Aldrich, A4700)被用于被用于免疫印迹在人类样本上 (图 4). Oncotarget (2016) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 小鼠; 图 s10
西格玛奥德里奇 Actb抗体(Sigma, A1978)被用于被用于免疫印迹在小鼠样本上 (图 s10). Nat Commun (2016) ncbi
小鼠 单克隆(AC-74)
  • 免疫印迹; 人类; 图 1
西格玛奥德里奇 Actb抗体(SIGMA, A2228)被用于被用于免疫印迹在人类样本上 (图 1). Sci Rep (2016) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 人类
西格玛奥德里奇 Actb抗体(Sigma-Aldrich, A1978)被用于被用于免疫印迹在人类样本上. PLoS ONE (2016) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 人类; 1:10,000; 图 1
西格玛奥德里奇 Actb抗体(Sigma, A5441)被用于被用于免疫印迹在人类样本上浓度为1:10,000 (图 1). elife (2016) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 小鼠; 图 3e
西格玛奥德里奇 Actb抗体(Sigma, A5441)被用于被用于免疫印迹在小鼠样本上 (图 3e). Sci Rep (2016) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 人类; 图 3b
西格玛奥德里奇 Actb抗体(Sigma Aldrich, A5441)被用于被用于免疫印迹在人类样本上 (图 3b). Cancer Res (2016) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 人类; 图 6c
西格玛奥德里奇 Actb抗体(Sigma, AC-15)被用于被用于免疫印迹在人类样本上 (图 6c). PLoS ONE (2016) ncbi
小鼠 单克隆(AC-74)
  • 免疫印迹; 人类; 1:30,000; 图 1
西格玛奥德里奇 Actb抗体(Sigma-Aldrich, AC-74)被用于被用于免疫印迹在人类样本上浓度为1:30,000 (图 1). Nat Commun (2016) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 小鼠; 1:5000; 图 3
西格玛奥德里奇 Actb抗体(Sigma, A5441)被用于被用于免疫印迹在小鼠样本上浓度为1:5000 (图 3). Sci Rep (2016) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 人类; 1:1000; 图 2b
西格玛奥德里奇 Actb抗体(Sigma Aldrich, A5441)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 2b). Sci Rep (2016) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 人类; 1:20,000; 图 6
西格玛奥德里奇 Actb抗体(Sigma, AC-15)被用于被用于免疫印迹在人类样本上浓度为1:20,000 (图 6). Breast Cancer Res (2016) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 人类; 图 3
西格玛奥德里奇 Actb抗体(Sigma, A5441)被用于被用于免疫印迹在人类样本上 (图 3). Oncotarget (2016) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 大鼠; 1:20,000; 图 5
西格玛奥德里奇 Actb抗体(Sigma, A3854)被用于被用于免疫印迹在大鼠样本上浓度为1:20,000 (图 5). Biomaterials (2016) ncbi
小鼠 单克隆(AC-40)
  • 免疫印迹; 人类; 图 3
西格玛奥德里奇 Actb抗体(Sigma, AC40)被用于被用于免疫印迹在人类样本上 (图 3). PLoS Pathog (2016) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 人类; 1:8000; 图 4
西格玛奥德里奇 Actb抗体(Sigma, A5441)被用于被用于免疫印迹在人类样本上浓度为1:8000 (图 4). Nature (2016) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 人类; 图 3
西格玛奥德里奇 Actb抗体(Sigma, A5441)被用于被用于免疫印迹在人类样本上 (图 3). Nucleus (2015) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 人类; 1:4000; 图 6a
西格玛奥德里奇 Actb抗体(Sigma, A1978)被用于被用于免疫印迹在人类样本上浓度为1:4000 (图 6a). Front Cell Neurosci (2015) ncbi
小鼠 单克隆(AC-40)
  • 免疫印迹; 人类; 图 1a
西格玛奥德里奇 Actb抗体(Sigma Aldrich, ac-40)被用于被用于免疫印迹在人类样本上 (图 1a). Mol Oncol (2016) ncbi
小鼠 单克隆(AC-40)
  • 免疫细胞化学; 大鼠; 图 2
西格玛奥德里奇 Actb抗体(Sigma, A4700)被用于被用于免疫细胞化学在大鼠样本上 (图 2). elife (2016) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 小鼠; 图 3
  • 免疫印迹; 仓鼠; 图 2
西格玛奥德里奇 Actb抗体(Sigma, A1978)被用于被用于免疫印迹在小鼠样本上 (图 3) 和 被用于免疫印迹在仓鼠样本上 (图 2). J Biol Chem (2016) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 人类; 1:20,000; 图 1
西格玛奥德里奇 Actb抗体(Sigma-Aldrich, A5441)被用于被用于免疫印迹在人类样本上浓度为1:20,000 (图 1). PLoS Pathog (2016) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 人类; 图 1
西格玛奥德里奇 Actb抗体(Sigma, A5441)被用于被用于免疫印迹在人类样本上 (图 1). Sci Rep (2016) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 人类; 图 4
西格玛奥德里奇 Actb抗体(Sigma-Aldrich, AC-15)被用于被用于免疫印迹在人类样本上 (图 4). Theranostics (2016) ncbi
小鼠 单克隆(AC-40)
  • 免疫印迹; 人类; 1:5000
西格玛奥德里奇 Actb抗体(Sigma, A4700)被用于被用于免疫印迹在人类样本上浓度为1:5000. Dis Model Mech (2016) ncbi
小鼠 单克隆(AC-74)
  • 免疫印迹; 人类; 图 2b
西格玛奥德里奇 Actb抗体(Sigma-Aldrich, A2228)被用于被用于免疫印迹在人类样本上 (图 2b). Nucleic Acids Res (2016) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 大鼠; 1:5000; 图 2
西格玛奥德里奇 Actb抗体(Sigma, A5441)被用于被用于免疫印迹在大鼠样本上浓度为1:5000 (图 2). Mol Med Rep (2016) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 小鼠; 图 3
西格玛奥德里奇 Actb抗体(Sigma, AC-15)被用于被用于免疫印迹在小鼠样本上 (图 3). PLoS Biol (2015) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 人类; 1:10,000; 图 2
西格玛奥德里奇 Actb抗体(Sigma Aldrich, A5441)被用于被用于免疫印迹在人类样本上浓度为1:10,000 (图 2). Oncotarget (2016) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 人类; 图 3
西格玛奥德里奇 Actb抗体(Sigma, A5441)被用于被用于免疫印迹在人类样本上 (图 3). Oncotarget (2016) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 人类; 图 2
西格玛奥德里奇 Actb抗体(Sigma Aldrich, A5441)被用于被用于免疫印迹在人类样本上 (图 2). PLoS Pathog (2015) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 小鼠; 1:1000; 图 3
西格玛奥德里奇 Actb抗体(Sigma, A5441)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 3). Mol Ther (2016) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 人类; 1:8000; 图 5
西格玛奥德里奇 Actb抗体(Sigma-Aldrich, AC-15)被用于被用于免疫印迹在人类样本上浓度为1:8000 (图 5). Oncotarget (2016) ncbi
小鼠 单克隆(AC-74)
  • 免疫印迹; 人类; 图 2
西格玛奥德里奇 Actb抗体(Sigma-Aldrich, A2228)被用于被用于免疫印迹在人类样本上 (图 2). Clin Cancer Res (2016) ncbi
小鼠 单克隆(AC-74)
  • 免疫印迹; 小鼠; 图 1a
西格玛奥德里奇 Actb抗体(Sigma, A2228)被用于被用于免疫印迹在小鼠样本上 (图 1a). Int J Biol Sci (2015) ncbi
小鼠 单克隆(AC-74)
  • 免疫印迹; 人类; 图 1D
西格玛奥德里奇 Actb抗体(Sigma, A5316)被用于被用于免疫印迹在人类样本上 (图 1D). PLoS ONE (2015) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 小鼠; 1:5000; 图 1
西格玛奥德里奇 Actb抗体(Sigma, A5441)被用于被用于免疫印迹在小鼠样本上浓度为1:5000 (图 1). elife (2015) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 小鼠; 图 s1c, d
西格玛奥德里奇 Actb抗体(SIGMA, A5441)被用于被用于免疫印迹在小鼠样本上 (图 s1c, d). Sci Rep (2015) ncbi
小鼠 单克隆(AC-15)
  • 免疫沉淀; 大鼠; 1:1000; 图 1
  • 免疫细胞化学; 大鼠; 图 3
  • 免疫印迹; 大鼠; 1:1000; 图 1
西格玛奥德里奇 Actb抗体(Sigma, A5441)被用于被用于免疫沉淀在大鼠样本上浓度为1:1000 (图 1), 被用于免疫细胞化学在大鼠样本上 (图 3) 和 被用于免疫印迹在大鼠样本上浓度为1:1000 (图 1). Mol Med Rep (2016) ncbi
小鼠 单克隆(AC-74)
  • 免疫印迹; 小鼠; 1:16,000; 图 6
西格玛奥德里奇 Actb抗体(Sigma, A2228)被用于被用于免疫印迹在小鼠样本上浓度为1:16,000 (图 6). elife (2015) ncbi
小鼠 单克隆(AC-15)
西格玛奥德里奇 Actb抗体(Sigma-Aldrich, A1978)被用于. Endocrinology (2016) ncbi
小鼠 单克隆(AC-74)
  • 免疫印迹; 人类; 图 2
西格玛奥德里奇 Actb抗体(Sigma, 5316)被用于被用于免疫印迹在人类样本上 (图 2). J Biol Chem (2016) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 人类; 图 2
西格玛奥德里奇 Actb抗体(Sigma, A1978)被用于被用于免疫印迹在人类样本上 (图 2). J Biol Chem (2016) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 人类; 图 1
西格玛奥德里奇 Actb抗体(Sigma, A3854)被用于被用于免疫印迹在人类样本上 (图 1). J Immunol (2016) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 人类; 1:5000; 图 5
西格玛奥德里奇 Actb抗体(Sigma, A5441)被用于被用于免疫印迹在人类样本上浓度为1:5000 (图 5). Proc Natl Acad Sci U S A (2015) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 牛; 图 3
西格玛奥德里奇 Actb抗体(Sigma, A5441)被用于被用于免疫印迹在牛样本上 (图 3). Am J Physiol Cell Physiol (2016) ncbi
小鼠 单克隆(AC-74)
  • 免疫细胞化学; 小鼠; 1:500; 图 5
西格玛奥德里奇 Actb抗体(Sigma, A2228)被用于被用于免疫细胞化学在小鼠样本上浓度为1:500 (图 5). Mol Biol Cell (2016) ncbi
小鼠 单克隆(AC-74)
  • 免疫印迹; 人类; 1:4000; 图 2b
西格玛奥德里奇 Actb抗体(Sigma-Aldrich, AC-74)被用于被用于免疫印迹在人类样本上浓度为1:4000 (图 2b). Oncotarget (2016) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 人类; 图 5A
西格玛奥德里奇 Actb抗体(Sigma, A5441)被用于被用于免疫印迹在人类样本上 (图 5A). Sci Rep (2015) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 小鼠; 1:5000; 图 1b
西格玛奥德里奇 Actb抗体(Sigma, A5441)被用于被用于免疫印迹在小鼠样本上浓度为1:5000 (图 1b). Nat Commun (2015) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 人类; 1:50,000; 图 2
西格玛奥德里奇 Actb抗体(Sigma-Aldrich, A1978)被用于被用于免疫印迹在人类样本上浓度为1:50,000 (图 2). Nat Commun (2015) ncbi
小鼠 单克隆(AC-74)
  • 免疫印迹; 人类; 1:1000; 图 2
西格玛奥德里奇 Actb抗体(Sigma-Aldrich, A2228)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 2). Nat Cell Biol (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 表 1
西格玛奥德里奇 Actb抗体(Sigma, A2103)被用于被用于免疫印迹在人类样本上 (表 1). Redox Biol (2016) ncbi
小鼠 单克隆(AC-74)
  • 免疫印迹; 人类; 图 1
西格玛奥德里奇 Actb抗体(Sigma, A5316)被用于被用于免疫印迹在人类样本上 (图 1). Cell Cycle (2015) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 大鼠; 1:10,000; 图 1
  • 免疫印迹; 小鼠; 1:10,000; 图 10
西格玛奥德里奇 Actb抗体(Sigma-Aldrich, A1978)被用于被用于免疫印迹在大鼠样本上浓度为1:10,000 (图 1) 和 被用于免疫印迹在小鼠样本上浓度为1:10,000 (图 10). Sci Rep (2015) ncbi
小鼠 单克隆(AC-74)
  • 免疫印迹; 人类; 图 2
西格玛奥德里奇 Actb抗体(Sigma, A5316)被用于被用于免疫印迹在人类样本上 (图 2). Oncotarget (2015) ncbi
小鼠 单克隆(AC-74)
  • 免疫印迹; 小鼠; 图 1
西格玛奥德里奇 Actb抗体(Sigma-Aldrich, A2228)被用于被用于免疫印迹在小鼠样本上 (图 1). Mol Cell Biol (2016) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 人类; 图 1
西格玛奥德里奇 Actb抗体(Sigma-Aldrich, A1978)被用于被用于免疫印迹在人类样本上 (图 1). Mol Cancer (2015) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 人类; 图 s10a
西格玛奥德里奇 Actb抗体(Sigma-Aldrich, AC-15)被用于被用于免疫印迹在人类样本上 (图 s10a). J Clin Invest (2016) ncbi
小鼠 单克隆(AC-74)
  • 免疫印迹; 小鼠; 图 s3
西格玛奥德里奇 Actb抗体(Sigma, A2228)被用于被用于免疫印迹在小鼠样本上 (图 s3). Nat Immunol (2016) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 人类; 1:20,000; 图 2
西格玛奥德里奇 Actb抗体(Sigma, A3854)被用于被用于免疫印迹在人类样本上浓度为1:20,000 (图 2). Oncogene (2016) ncbi
小鼠 单克隆(AC-74)
  • 免疫印迹; 小鼠; 1:10,000; 图 1
西格玛奥德里奇 Actb抗体(Sigma, A5316)被用于被用于免疫印迹在小鼠样本上浓度为1:10,000 (图 1). J Biol Chem (2016) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 人类; 图 1
西格玛奥德里奇 Actb抗体(Sigma-Aldrich, A3854)被用于被用于免疫印迹在人类样本上 (图 1). Oncotarget (2016) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 小鼠; 1:10,000; 图 5a
西格玛奥德里奇 Actb抗体(Sigma, A-5441)被用于被用于免疫印迹在小鼠样本上浓度为1:10,000 (图 5a). Sci Rep (2015) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 人类; 1:10,000; 图 2
西格玛奥德里奇 Actb抗体(Sigma-Aldrich, A5441)被用于被用于免疫印迹在人类样本上浓度为1:10,000 (图 2). Mol Cancer (2015) ncbi
小鼠 单克隆(AC-74)
  • 免疫印迹; 小鼠; 1:1000; 图 5
西格玛奥德里奇 Actb抗体(Sigma, A5316)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 5). J Med Chem (2016) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 小鼠; 1:2000; 图 s6a
西格玛奥德里奇 Actb抗体(Sigma, A5441)被用于被用于免疫印迹在小鼠样本上浓度为1:2000 (图 s6a). Sci Rep (2015) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 人类; 图 6
西格玛奥德里奇 Actb抗体(Sigma-Aldrich, A5441)被用于被用于免疫印迹在人类样本上 (图 6). FASEB J (2016) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 人类; 图 5
西格玛奥德里奇 Actb抗体(Sigma, A5441)被用于被用于免疫印迹在人类样本上 (图 5). Anticancer Drugs (2016) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 人类; 图 3
西格玛奥德里奇 Actb抗体(Sigma, A1978)被用于被用于免疫印迹在人类样本上 (图 3). Oncotarget (2016) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 人类; 图 2
西格玛奥德里奇 Actb抗体(Sigma, A3854)被用于被用于免疫印迹在人类样本上 (图 2). Oncotarget (2015) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 人类; 图 9
西格玛奥德里奇 Actb抗体(Sigma, A5441)被用于被用于免疫印迹在人类样本上 (图 9). Genes Cancer (2015) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 小鼠; 1:5000; 图 1
西格玛奥德里奇 Actb抗体(Sigma, A1978)被用于被用于免疫印迹在小鼠样本上浓度为1:5000 (图 1). Sci Rep (2015) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 人类; 图 s5
西格玛奥德里奇 Actb抗体(Sigma, AC-15)被用于被用于免疫印迹在人类样本上 (图 s5). Nature (2015) ncbi
小鼠 单克隆(AC-74)
  • 免疫印迹; 人类; 1:10,000; 图 2
  • 免疫印迹; 小鼠; 1:10,000; 图 2
西格玛奥德里奇 Actb抗体(Sigma-Aldrich, A5316)被用于被用于免疫印迹在人类样本上浓度为1:10,000 (图 2) 和 被用于免疫印迹在小鼠样本上浓度为1:10,000 (图 2). Nat Commun (2015) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 人类; 图 1
西格玛奥德里奇 Actb抗体(Sigma, a5441)被用于被用于免疫印迹在人类样本上 (图 1). J Cell Mol Med (2016) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 大鼠; 1:10,000; 图 3
西格玛奥德里奇 Actb抗体(Sigma, A5441)被用于被用于免疫印迹在大鼠样本上浓度为1:10,000 (图 3). BMC Neurosci (2015) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 小鼠; 图 3E
西格玛奥德里奇 Actb抗体(Sigma-Aldrich, A5441)被用于被用于免疫印迹在小鼠样本上 (图 3E). Sci Rep (2015) ncbi
小鼠 单克隆(AC-15)
  • 免疫组化; 大鼠; 图 2
  • 免疫印迹; 大鼠; 图 2
西格玛奥德里奇 Actb抗体(Sigma, A1978)被用于被用于免疫组化在大鼠样本上 (图 2) 和 被用于免疫印迹在大鼠样本上 (图 2). Physiol Rep (2015) ncbi
小鼠 单克隆(AC-15)
  • 免疫细胞化学; 人类; 图 5
  • 免疫印迹; 人类; 图 1
西格玛奥德里奇 Actb抗体(Sigma, A5441)被用于被用于免疫细胞化学在人类样本上 (图 5) 和 被用于免疫印迹在人类样本上 (图 1). PLoS ONE (2015) ncbi
小鼠 单克隆(AC-74)
  • 免疫印迹; 小鼠; 图 4d
西格玛奥德里奇 Actb抗体(Sigma, A5316)被用于被用于免疫印迹在小鼠样本上 (图 4d). Mol Cell Biol (2016) ncbi
小鼠 单克隆(AC-74)
  • 免疫印迹; 人类; 图 1
西格玛奥德里奇 Actb抗体(Sigma-Aldrich, A5316)被用于被用于免疫印迹在人类样本上 (图 1). EMBO Rep (2016) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 人类; 图 2
西格玛奥德里奇 Actb抗体(Sigma, A3854)被用于被用于免疫印迹在人类样本上 (图 2). Oncotarget (2016) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 小鼠; 1:10,000; 图 1
西格玛奥德里奇 Actb抗体(Sigma Aldrich, A5441)被用于被用于免疫印迹在小鼠样本上浓度为1:10,000 (图 1). Nat Commun (2015) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 人类; 1:10,000; 图 4
西格玛奥德里奇 Actb抗体(Sigma, A5441)被用于被用于免疫印迹在人类样本上浓度为1:10,000 (图 4). FASEB J (2016) ncbi
小鼠 单克隆(AC-74)
  • 免疫印迹; 大鼠; 图 1
西格玛奥德里奇 Actb抗体(Sigma, A5316)被用于被用于免疫印迹在大鼠样本上 (图 1). EMBO Rep (2016) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 人类; 图 3
西格玛奥德里奇 Actb抗体(Sigma, A1978)被用于被用于免疫印迹在人类样本上 (图 3). Mol Cancer (2015) ncbi
小鼠 单克隆(AC-40)
  • 免疫印迹; 斑马鱼; 图 2
西格玛奥德里奇 Actb抗体(Sigma, A4700)被用于被用于免疫印迹在斑马鱼样本上 (图 2). J Muscle Res Cell Motil (2016) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 人类; 图 1
西格玛奥德里奇 Actb抗体(Sigma, A-3854)被用于被用于免疫印迹在人类样本上 (图 1). Biochem Biophys Res Commun (2015) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 人类; 图 4
西格玛奥德里奇 Actb抗体(Sigma, AC-15)被用于被用于免疫印迹在人类样本上 (图 4). Immunogenetics (2016) ncbi
小鼠 单克隆(AC-74)
  • 免疫印迹; 小鼠; 图 3
  • 免疫印迹; 人类; 图 3
西格玛奥德里奇 Actb抗体(Sigma-Aldrich, A2228)被用于被用于免疫印迹在小鼠样本上 (图 3) 和 被用于免疫印迹在人类样本上 (图 3). Mol Biol Cell (2016) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 人类; 图 4
西格玛奥德里奇 Actb抗体(Sigma, A5441)被用于被用于免疫印迹在人类样本上 (图 4). Mol Cancer (2015) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 人类; 1:10,000; 图 1
西格玛奥德里奇 Actb抗体(Sigma-Aldrich, A5441)被用于被用于免疫印迹在人类样本上浓度为1:10,000 (图 1). J Mol Endocrinol (2016) ncbi
小鼠 单克隆(AC-74)
  • 免疫印迹; 小鼠; 图 1
西格玛奥德里奇 Actb抗体(Sigma, A5316)被用于被用于免疫印迹在小鼠样本上 (图 1). Sci Rep (2015) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 人类; 图 3
西格玛奥德里奇 Actb抗体(Sigma-Aldrich, AC-15)被用于被用于免疫印迹在人类样本上 (图 3). PLoS ONE (2015) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 大鼠; 1:3000; 图 2
西格玛奥德里奇 Actb抗体(Sigma, A1978)被用于被用于免疫印迹在大鼠样本上浓度为1:3000 (图 2). Eur J Neurosci (2016) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 人类; 1:5000; 图 4d
西格玛奥德里奇 Actb抗体(Sigma-Aldrich, A-5441)被用于被用于免疫印迹在人类样本上浓度为1:5000 (图 4d). Nat Commun (2015) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 小鼠; 图 3
西格玛奥德里奇 Actb抗体(Sigma-Aldrich, AC-15)被用于被用于免疫印迹在小鼠样本上 (图 3). Sci Rep (2015) ncbi
domestic rabbit 多克隆
西格玛奥德里奇 Actb抗体(Sigma-Aldrich, A2103)被用于. Sci Rep (2015) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 人类; 1:5000; 图 5
西格玛奥德里奇 Actb抗体(Sigma-Aldrich, A1978)被用于被用于免疫印迹在人类样本上浓度为1:5000 (图 5). Nat Commun (2015) ncbi
小鼠 单克隆(AC-40)
  • 免疫印迹; 小鼠; 图 7
西格玛奥德里奇 Actb抗体(Sigma, AC-40)被用于被用于免疫印迹在小鼠样本上 (图 7). Am J Physiol Renal Physiol (2016) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 小鼠; 图 1B
  • 免疫印迹; 人类; 图 1B
西格玛奥德里奇 Actb抗体(Sigma, A5441)被用于被用于免疫印迹在小鼠样本上 (图 1B) 和 被用于免疫印迹在人类样本上 (图 1B). Cancer Biol Ther (2016) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 人类; 图 1
西格玛奥德里奇 Actb抗体(Sigma, A5441)被用于被用于免疫印迹在人类样本上 (图 1). Sci Rep (2015) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 人类; 图 2
西格玛奥德里奇 Actb抗体(Sigma-Aldrich, AC-15)被用于被用于免疫印迹在人类样本上 (图 2). J Virol (2016) ncbi
小鼠 单克隆(AC-74)
  • 免疫印迹; 小鼠; 图 3
西格玛奥德里奇 Actb抗体(Sigma-Aldrich, A2228)被用于被用于免疫印迹在小鼠样本上 (图 3). Int J Ophthalmol (2015) ncbi
小鼠 单克隆(AC-40)
  • 免疫印迹; 人类; 图 3
西格玛奥德里奇 Actb抗体(Sigma, A4700)被用于被用于免疫印迹在人类样本上 (图 3). BMC Cancer (2015) ncbi
小鼠 单克隆(AC-74)
  • 免疫印迹; 人类; 图 1
西格玛奥德里奇 Actb抗体(Sigma, A2228)被用于被用于免疫印迹在人类样本上 (图 1). Sci Rep (2015) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 人类; 图 3
西格玛奥德里奇 Actb抗体(Sigma, A5441)被用于被用于免疫印迹在人类样本上 (图 3). Biochem Pharmacol (2016) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 人类; 1:5000; 图 4
西格玛奥德里奇 Actb抗体(Sigma-Aldrich, A5441)被用于被用于免疫印迹在人类样本上浓度为1:5000 (图 4). Oncogene (2016) ncbi
小鼠 单克隆(AC-74)
  • 免疫印迹; 人类; 图 2
西格玛奥德里奇 Actb抗体(Sigma, A5316)被用于被用于免疫印迹在人类样本上 (图 2). Oncotarget (2015) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 小鼠; 图 5a
西格玛奥德里奇 Actb抗体(Sigma, A5441)被用于被用于免疫印迹在小鼠样本上 (图 5a). Sci Rep (2015) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 人类; 图 1
西格玛奥德里奇 Actb抗体(Sigma, A3854)被用于被用于免疫印迹在人类样本上 (图 1). Mol Ther Nucleic Acids (2015) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 人类; 图 6
西格玛奥德里奇 Actb抗体(Sigma, AC-15)被用于被用于免疫印迹在人类样本上 (图 6). Oncotarget (2015) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 大鼠; 图 5a
  • 免疫印迹; 人类; 图 3b
  • 免疫印迹; 小鼠; 图 2b
西格玛奥德里奇 Actb抗体(Sigma, A5441)被用于被用于免疫印迹在大鼠样本上 (图 5a), 被用于免疫印迹在人类样本上 (图 3b) 和 被用于免疫印迹在小鼠样本上 (图 2b). PLoS ONE (2015) ncbi
小鼠 单克隆(AC-74)
  • 免疫印迹; 人类; 图 3,4,5
西格玛奥德里奇 Actb抗体(Sigma, AC-74)被用于被用于免疫印迹在人类样本上 (图 3,4,5). Biochem J (2016) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 人类; 1:5000; 图 2
西格玛奥德里奇 Actb抗体(Sigma, A5441)被用于被用于免疫印迹在人类样本上浓度为1:5000 (图 2). Nat Immunol (2016) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 小鼠; 图 1
西格玛奥德里奇 Actb抗体(Sigma-Aldrich, A5441)被用于被用于免疫印迹在小鼠样本上 (图 1). Oncogene (2016) ncbi
小鼠 单克隆(AC-40)
  • 免疫印迹; 人类; 1:1000; 图 4
西格玛奥德里奇 Actb抗体(Sigma, A4700)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 4). J Cell Sci (2015) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 小鼠; 图 3
西格玛奥德里奇 Actb抗体(Sigma, A5441)被用于被用于免疫印迹在小鼠样本上 (图 3). Am J Physiol Heart Circ Physiol (2016) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 人类; 1:5000; 图 ev3
西格玛奥德里奇 Actb抗体(Sigma, A5441)被用于被用于免疫印迹在人类样本上浓度为1:5000 (图 ev3). EMBO Mol Med (2015) ncbi
小鼠 单克隆(AC-74)
  • 免疫印迹; 人类; 图 1
西格玛奥德里奇 Actb抗体(Sigma, A5316)被用于被用于免疫印迹在人类样本上 (图 1). Cell Death Dis (2015) ncbi
小鼠 单克隆(AC-74)
  • 免疫印迹; 人类; 图 1
  • 免疫印迹; 犬; 图 1
西格玛奥德里奇 Actb抗体(Sigma, A5316)被用于被用于免疫印迹在人类样本上 (图 1) 和 被用于免疫印迹在犬样本上 (图 1). Int J Mol Sci (2015) ncbi
小鼠 单克隆(AC-40)
  • 免疫印迹; 小鼠; 图 4
西格玛奥德里奇 Actb抗体(Sigma, A4700)被用于被用于免疫印迹在小鼠样本上 (图 4). Proc Natl Acad Sci U S A (2015) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 非洲爪蛙; 图 1
西格玛奥德里奇 Actb抗体(Sigma, A19789)被用于被用于免疫印迹在非洲爪蛙样本上 (图 1). J Biol Chem (2015) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 人类; 图 4a
西格玛奥德里奇 Actb抗体(Sigma-Aldrich, Ac-15)被用于被用于免疫印迹在人类样本上 (图 4a). PLoS ONE (2015) ncbi
小鼠 单克隆(AC-40)
  • 免疫印迹; 小鼠; 1:2000; 图 1b
西格玛奥德里奇 Actb抗体(Sigma, A4700)被用于被用于免疫印迹在小鼠样本上浓度为1:2000 (图 1b). Nat Commun (2015) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 人类; 图 1
  • 免疫印迹; 小鼠; 图 1
西格玛奥德里奇 Actb抗体(Sigma Aldrich, A5441)被用于被用于免疫印迹在人类样本上 (图 1) 和 被用于免疫印迹在小鼠样本上 (图 1). J Biol Chem (2016) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 人类; 图 3
西格玛奥德里奇 Actb抗体(Sigma, A5441)被用于被用于免疫印迹在人类样本上 (图 3). Oncotarget (2016) ncbi
小鼠 单克隆(AC-40)
  • 免疫印迹; 小鼠; 图 s7
西格玛奥德里奇 Actb抗体(Sigma-Aldrich, AC-40)被用于被用于免疫印迹在小鼠样本上 (图 s7). Nat Immunol (2015) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 大鼠; 1:20,000; 图 1
西格玛奥德里奇 Actb抗体(Sigma, AC-15)被用于被用于免疫印迹在大鼠样本上浓度为1:20,000 (图 1). Brain Struct Funct (2016) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 人类; 1:20,000; 图 st3
西格玛奥德里奇 Actb抗体(Sigma, AC-15)被用于被用于免疫印迹在人类样本上浓度为1:20,000 (图 st3). Leukemia (2016) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 人类; 图 6d
西格玛奥德里奇 Actb抗体(Sigma-Aldrich, A1978)被用于被用于免疫印迹在人类样本上 (图 6d). Sci Rep (2015) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 人类; 1:5000; 图 1
西格玛奥德里奇 Actb抗体(Sigma, A5441)被用于被用于免疫印迹在人类样本上浓度为1:5000 (图 1). PLoS ONE (2015) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 人类; 1:20,000; 图 1
西格玛奥德里奇 Actb抗体(Sigma, A3854)被用于被用于免疫印迹在人类样本上浓度为1:20,000 (图 1). PLoS ONE (2015) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 人类; 图 3
西格玛奥德里奇 Actb抗体(Sigma, AC-15)被用于被用于免疫印迹在人类样本上 (图 3). Mol Cancer Ther (2015) ncbi
小鼠 单克隆(AC-74)
  • 免疫印迹; 人类; 图 1
西格玛奥德里奇 Actb抗体(Sigma, A2228)被用于被用于免疫印迹在人类样本上 (图 1). Cell Death Dis (2015) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 人类; 1:5000; 图 1
西格玛奥德里奇 Actb抗体(Sigma-Aldrich, A5441)被用于被用于免疫印迹在人类样本上浓度为1:5000 (图 1). PLoS ONE (2015) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; pigs ; 图 6
西格玛奥德里奇 Actb抗体(Sigma, A5441)被用于被用于免疫印迹在pigs 样本上 (图 6). J Virol (2016) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 小鼠; 1:15,000; 图 3
  • 免疫印迹; 人类; 1:15,000; 图 s4
西格玛奥德里奇 Actb抗体(Sigma, A5441)被用于被用于免疫印迹在小鼠样本上浓度为1:15,000 (图 3) 和 被用于免疫印迹在人类样本上浓度为1:15,000 (图 s4). J Med Genet (2016) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 人类; 图 5
西格玛奥德里奇 Actb抗体(Sigma-Aldrich, AC-15)被用于被用于免疫印迹在人类样本上 (图 5). PLoS ONE (2015) ncbi
小鼠 单克隆(AC-74)
  • 免疫印迹; 小鼠; 图 1
西格玛奥德里奇 Actb抗体(Sigma-Aldrich, A2228)被用于被用于免疫印迹在小鼠样本上 (图 1). J Neurochem (2016) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 人类; 图 8e
西格玛奥德里奇 Actb抗体(Sigma-Aldrich, AC-15)被用于被用于免疫印迹在人类样本上 (图 8e). Nucleic Acids Res (2015) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 人类; 1:10,000; 图 s1
西格玛奥德里奇 Actb抗体(Sigma, A3854)被用于被用于免疫印迹在人类样本上浓度为1:10,000 (图 s1). PLoS Pathog (2015) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 小鼠; 图 5
  • 免疫印迹; 大鼠; 图 2
西格玛奥德里奇 Actb抗体(Sigma, A1978)被用于被用于免疫印迹在小鼠样本上 (图 5) 和 被用于免疫印迹在大鼠样本上 (图 2). Cell Death Differ (2016) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 人类; 图 3
西格玛奥德里奇 Actb抗体(Sigma, A5441)被用于被用于免疫印迹在人类样本上 (图 3). Cell Death Dis (2015) ncbi
小鼠 单克隆(AC-40)
  • 免疫印迹; 小鼠
西格玛奥德里奇 Actb抗体(Sigma, A4700)被用于被用于免疫印迹在小鼠样本上. Biochem J (2016) ncbi
小鼠 单克隆(AC-74)
  • 免疫印迹; 小鼠; 1:5000; 图 s1
西格玛奥德里奇 Actb抗体(Sigma, A5316)被用于被用于免疫印迹在小鼠样本上浓度为1:5000 (图 s1). Nat Commun (2015) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 人类; 1:5000; 图 6
西格玛奥德里奇 Actb抗体(Sigma, A5441)被用于被用于免疫印迹在人类样本上浓度为1:5000 (图 6). PLoS ONE (2015) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 大鼠
西格玛奥德里奇 Actb抗体(Sigma-Aldrich, A1978)被用于被用于免疫印迹在大鼠样本上. Mol Med Rep (2015) ncbi
小鼠 单克隆(AC-40)
  • 免疫印迹; 小鼠; 1:2500; 图 2c
西格玛奥德里奇 Actb抗体(Sigma-Aldrich, A4700)被用于被用于免疫印迹在小鼠样本上浓度为1:2500 (图 2c). Nat Commun (2015) ncbi
小鼠 单克隆(AC-40)
  • 免疫印迹; 人类; 1:10,000; 图 s2b
西格玛奥德里奇 Actb抗体(Sigma, A4700)被用于被用于免疫印迹在人类样本上浓度为1:10,000 (图 s2b). Mol Cell (2015) ncbi
小鼠 单克隆(AC-74)
  • 免疫印迹; 人类; 图 1b
西格玛奥德里奇 Actb抗体(Sigma-Aldrich, A5316)被用于被用于免疫印迹在人类样本上 (图 1b). Free Radic Biol Med (2015) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 人类; 图 1a
西格玛奥德里奇 Actb抗体(Sigma-Aldrich,, A1978)被用于被用于免疫印迹在人类样本上 (图 1a). Oncotarget (2015) ncbi
小鼠 单克隆(AC-74)
  • 免疫印迹; 人类; 图 1
  • 免疫印迹; 小鼠; 图 7
西格玛奥德里奇 Actb抗体(Sigma, A5316)被用于被用于免疫印迹在人类样本上 (图 1) 和 被用于免疫印迹在小鼠样本上 (图 7). J Am Heart Assoc (2015) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 人类; 1:10,000; 图 5
西格玛奥德里奇 Actb抗体(Sigma, A5441)被用于被用于免疫印迹在人类样本上浓度为1:10,000 (图 5). Cell Death Dis (2015) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 人类; 图 1d
西格玛奥德里奇 Actb抗体(Sigma-Aldrich, AC-15)被用于被用于免疫印迹在人类样本上 (图 1d). Nat Commun (2015) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 人类; 1:5000; 图 1
西格玛奥德里奇 Actb抗体(Sigma, A5441)被用于被用于免疫印迹在人类样本上浓度为1:5000 (图 1). Nat Commun (2015) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 人类; 图 6
西格玛奥德里奇 Actb抗体(Sigma, A5441)被用于被用于免疫印迹在人类样本上 (图 6). Oncotarget (2015) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 人类; 图 8
西格玛奥德里奇 Actb抗体(Sigma, A1978)被用于被用于免疫印迹在人类样本上 (图 8). PLoS Biol (2015) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 小鼠; 1:1000; 图 5
西格玛奥德里奇 Actb抗体(Sigma-Aldrich, A5441)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 5). Nat Neurosci (2015) ncbi
小鼠 单克隆(AC-74)
  • 免疫印迹; 人类; 图 2g
西格玛奥德里奇 Actb抗体(Sigma, A2228)被用于被用于免疫印迹在人类样本上 (图 2g). Nat Chem Biol (2015) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 人类; 图 2
西格玛奥德里奇 Actb抗体(Sigma, A5441)被用于被用于免疫印迹在人类样本上 (图 2). Oncogene (2016) ncbi
小鼠 单克隆(AC-74)
  • 免疫组化; 人类
  • 免疫印迹; 人类
西格玛奥德里奇 Actb抗体(Sigma, A2228)被用于被用于免疫组化在人类样本上 和 被用于免疫印迹在人类样本上. Hum Pathol (2015) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 小鼠; 图 3f
西格玛奥德里奇 Actb抗体(SigmaAldrich, A1978)被用于被用于免疫印迹在小鼠样本上 (图 3f). J Biol Chem (2015) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 人类; 图 5
西格玛奥德里奇 Actb抗体(Sigma, A5441)被用于被用于免疫印迹在人类样本上 (图 5). PLoS ONE (2015) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 人类; 1:10,000; 图 2
西格玛奥德里奇 Actb抗体(Sigma, A1978)被用于被用于免疫印迹在人类样本上浓度为1:10,000 (图 2). Oncotarget (2015) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 人类; 1:5000; 图 4
西格玛奥德里奇 Actb抗体(Sigma, A5441)被用于被用于免疫印迹在人类样本上浓度为1:5000 (图 4). PLoS Pathog (2015) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 人类; 图 3c
西格玛奥德里奇 Actb抗体(Sigma-Aldrich, A5441)被用于被用于免疫印迹在人类样本上 (图 3c). Sci Rep (2015) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 人类; 1:5000; 图 4
西格玛奥德里奇 Actb抗体(Sigma, A5441)被用于被用于免疫印迹在人类样本上浓度为1:5000 (图 4). Nat Commun (2015) ncbi
小鼠 单克隆(AC-15)
西格玛奥德里奇 Actb抗体(Sigma Aldrich, A5441)被用于. Nat Commun (2015) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 小鼠; 1:10,000; 图 1
西格玛奥德里奇 Actb抗体(Sigma-Aldrich, A1978)被用于被用于免疫印迹在小鼠样本上浓度为1:10,000 (图 1). EMBO Mol Med (2015) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 人类; 图 1d
西格玛奥德里奇 Actb抗体(Sigma Aldrich, A5441)被用于被用于免疫印迹在人类样本上 (图 1d). Oncotarget (2015) ncbi
小鼠 单克隆(AC-74)
  • 免疫印迹; 人类; 1:3000; 图 2b
  • 免疫印迹; 小鼠; 1:3000; 图 2b
西格玛奥德里奇 Actb抗体(Sigma, A5316)被用于被用于免疫印迹在人类样本上浓度为1:3000 (图 2b) 和 被用于免疫印迹在小鼠样本上浓度为1:3000 (图 2b). Respir Res (2015) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 人类; 图 s5
西格玛奥德里奇 Actb抗体(Sigma, AC-15)被用于被用于免疫印迹在人类样本上 (图 s5). Mol Ther (2015) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 小鼠; 1:50,000; 图 1f
西格玛奥德里奇 Actb抗体(Sigma, A1978)被用于被用于免疫印迹在小鼠样本上浓度为1:50,000 (图 1f). Cell Rep (2015) ncbi
小鼠 单克隆(AC-40)
  • 免疫印迹; 人类; 图 2
西格玛奥德里奇 Actb抗体(Sigma-Aldrich, A4700)被用于被用于免疫印迹在人类样本上 (图 2). Oncogene (2016) ncbi
小鼠 单克隆(AC-74)
  • 免疫印迹; 大鼠; 图 1
西格玛奥德里奇 Actb抗体(Sigma-Aldrich, A5316)被用于被用于免疫印迹在大鼠样本上 (图 1). Cardiovasc Res (2015) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 小鼠; 图 3
西格玛奥德里奇 Actb抗体(Sigma, AC-15)被用于被用于免疫印迹在小鼠样本上 (图 3). PLoS ONE (2015) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 人类; 图 4
西格玛奥德里奇 Actb抗体(Sigma-Aldrich, A5441)被用于被用于免疫印迹在人类样本上 (图 4). Mol Pharmacol (2015) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 人类; 1:2000; 图 3
西格玛奥德里奇 Actb抗体(Sigma, A5441)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 3). PLoS ONE (2015) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 人类; 图 4
西格玛奥德里奇 Actb抗体(Sigma, A1978)被用于被用于免疫印迹在人类样本上 (图 4). Nat Commun (2015) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 人类; 图 2
西格玛奥德里奇 Actb抗体(Sigma-Aldrich, A5441)被用于被用于免疫印迹在人类样本上 (图 2). PLoS ONE (2015) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 人类; 图 3
西格玛奥德里奇 Actb抗体(Sigma, A5441)被用于被用于免疫印迹在人类样本上 (图 3). Oncol Rep (2015) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 小鼠; 图 4c
西格玛奥德里奇 Actb抗体(Sigma, , A1978)被用于被用于免疫印迹在小鼠样本上 (图 4c). Sci Signal (2015) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 人类; 图 2
  • 免疫印迹; 小鼠; 图 5
西格玛奥德里奇 Actb抗体(Sigma, A5441)被用于被用于免疫印迹在人类样本上 (图 2) 和 被用于免疫印迹在小鼠样本上 (图 5). Autophagy (2015) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 小鼠; 图 1
西格玛奥德里奇 Actb抗体(Sigma-Aldrich, AC-15)被用于被用于免疫印迹在小鼠样本上 (图 1). Autophagy (2015) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 人类; 1:10,000; 图 2
西格玛奥德里奇 Actb抗体(Sigma Aldrich, A5441)被用于被用于免疫印迹在人类样本上浓度为1:10,000 (图 2). Autophagy (2015) ncbi
小鼠 单克隆(AC-74)
  • 免疫印迹; 人类; 1:5000; 图 3d
西格玛奥德里奇 Actb抗体(Sigma-Aldrich, A5316)被用于被用于免疫印迹在人类样本上浓度为1:5000 (图 3d). Nat Med (2015) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 大鼠; 图 s2
西格玛奥德里奇 Actb抗体(Sigma, AC-15)被用于被用于免疫印迹在大鼠样本上 (图 s2). PLoS ONE (2015) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 人类; 图 3a
西格玛奥德里奇 Actb抗体(Sigma, A5441)被用于被用于免疫印迹在人类样本上 (图 3a). Oncogene (2016) ncbi
小鼠 单克隆(AC-74)
  • 免疫印迹; 小鼠; 1:50,000; 图 1
西格玛奥德里奇 Actb抗体(Sigma, A5316)被用于被用于免疫印迹在小鼠样本上浓度为1:50,000 (图 1). Nat Commun (2015) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 小鼠; 1:10,000; 图 3
西格玛奥德里奇 Actb抗体(Sigma, A5441)被用于被用于免疫印迹在小鼠样本上浓度为1:10,000 (图 3). Nat Commun (2015) ncbi
小鼠 单克隆(AC-74)
  • 免疫印迹; 小鼠; 图 3
西格玛奥德里奇 Actb抗体(Sigma, A5316)被用于被用于免疫印迹在小鼠样本上 (图 3). Nat Commun (2015) ncbi
小鼠 单克隆(AC-74)
  • 免疫印迹; 人类; 图 3
西格玛奥德里奇 Actb抗体(Sigma Chemicals, AC-74)被用于被用于免疫印迹在人类样本上 (图 3). Hum Mol Genet (2015) ncbi
小鼠 单克隆(AC-74)
  • 免疫印迹; 牛; 1:1000; 图 1b
西格玛奥德里奇 Actb抗体(Sigma, AC-74)被用于被用于免疫印迹在牛样本上浓度为1:1000 (图 1b). Traffic (2015) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 人类; 图 3
西格玛奥德里奇 Actb抗体(Sigma, A5441)被用于被用于免疫印迹在人类样本上 (图 3). Oncotarget (2015) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 小鼠; 图 8g
西格玛奥德里奇 Actb抗体(Sigma-Aldrich., A1978)被用于被用于免疫印迹在小鼠样本上 (图 8g). Nature (2015) ncbi
小鼠 单克隆(AC-74)
  • 免疫印迹; 斑马鱼; 图 4
西格玛奥德里奇 Actb抗体(Sigma, A2228)被用于被用于免疫印迹在斑马鱼样本上 (图 4). Sci Rep (2015) ncbi
小鼠 单克隆(AC-74)
  • 免疫印迹; 人类
西格玛奥德里奇 Actb抗体(Sigma, A5316)被用于被用于免疫印迹在人类样本上. Oncogene (2016) ncbi
小鼠 单克隆(AC-15)
  • 免疫沉淀; 小鼠; 1:25; 图 6e
  • 免疫组化; 小鼠; 1:200; 图 6a
  • 免疫印迹; 小鼠; 1:5000; 图 5f
西格玛奥德里奇 Actb抗体(Sigma, A1978)被用于被用于免疫沉淀在小鼠样本上浓度为1:25 (图 6e), 被用于免疫组化在小鼠样本上浓度为1:200 (图 6a) 和 被用于免疫印迹在小鼠样本上浓度为1:5000 (图 5f). Endocrinology (2015) ncbi
小鼠 单克隆(AC-40)
  • 免疫印迹; 人类; 1:10,000; 图 1
西格玛奥德里奇 Actb抗体(Sigma, 4700)被用于被用于免疫印迹在人类样本上浓度为1:10,000 (图 1). Biomed Res Int (2015) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 人类; 图 6
西格玛奥德里奇 Actb抗体(Sigma, A5441)被用于被用于免疫印迹在人类样本上 (图 6). Cell Mol Life Sci (2016) ncbi
小鼠 单克隆(AC-74)
  • 免疫印迹; 大鼠
西格玛奥德里奇 Actb抗体(Sigma, A5316)被用于被用于免疫印迹在大鼠样本上. Exp Neurol (2015) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 人类; 1:10,000; 图 1
西格玛奥德里奇 Actb抗体(Sigma, AC-15)被用于被用于免疫印迹在人类样本上浓度为1:10,000 (图 1). J Virol (2015) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 人类; 图 1b
西格玛奥德里奇 Actb抗体(Sigma, A5441)被用于被用于免疫印迹在人类样本上 (图 1b). Neuroendocrinology (2016) ncbi
小鼠 单克隆(AC-74)
  • 免疫印迹; 人类; 图 8
西格玛奥德里奇 Actb抗体(Sigma, A5316)被用于被用于免疫印迹在人类样本上 (图 8). PLoS ONE (2015) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 大鼠; 1:1000; 图 3
西格玛奥德里奇 Actb抗体(Sigma, A1978)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 3). Nat Commun (2015) ncbi
小鼠 单克隆(AC-74)
  • 免疫印迹; 小鼠
西格玛奥德里奇 Actb抗体(Sigma-Aldrich, A5316)被用于被用于免疫印迹在小鼠样本上. J Neurosci Res (2015) ncbi
小鼠 单克隆(AC-74)
  • 免疫印迹; 人类; 图 5a
西格玛奥德里奇 Actb抗体(SIGMA, A5316)被用于被用于免疫印迹在人类样本上 (图 5a). Mol Cell Proteomics (2015) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 人类; 1:10,000; 图 1n
  • 免疫印迹; 小鼠; 1:10,000; 图 6l
西格玛奥德里奇 Actb抗体(Sigma-Aldrich, A5441)被用于被用于免疫印迹在人类样本上浓度为1:10,000 (图 1n) 和 被用于免疫印迹在小鼠样本上浓度为1:10,000 (图 6l). FASEB J (2016) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 小鼠; 图 6
西格玛奥德里奇 Actb抗体(Sigma, A1978)被用于被用于免疫印迹在小鼠样本上 (图 6). Physiol Genomics (2015) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 小鼠; 图 1b
西格玛奥德里奇 Actb抗体(Sigma-Aldrich, A5441)被用于被用于免疫印迹在小鼠样本上 (图 1b). EMBO J (2015) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 小鼠; 1:1000; 图 1
西格玛奥德里奇 Actb抗体(Sigma, A1978)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 1). Proc Natl Acad Sci U S A (2015) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 人类; 1:400
西格玛奥德里奇 Actb抗体(Sigma, A5441)被用于被用于免疫印迹在人类样本上浓度为1:400. J Neurodegener Dis (2013) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 大鼠; 1:1000; 图 1
西格玛奥德里奇 Actb抗体(Sigma, A1978)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 1). Cell Death Dis (2015) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 人类
西格玛奥德里奇 Actb抗体(Sigma, A5441)被用于被用于免疫印迹在人类样本上. elife (2015) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 人类; 1:5000; 图 5
西格玛奥德里奇 Actb抗体(Sigma, A1978)被用于被用于免疫印迹在人类样本上浓度为1:5000 (图 5). Nat Commun (2015) ncbi
小鼠 单克隆(AC-74)
  • 免疫印迹; 人类
西格玛奥德里奇 Actb抗体(Sigma-Aldrich, A2228)被用于被用于免疫印迹在人类样本上. PLoS ONE (2015) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 人类; 图 2
西格玛奥德里奇 Actb抗体(Sigma, A1978)被用于被用于免疫印迹在人类样本上 (图 2). Int J Mol Sci (2015) ncbi
小鼠 单克隆(AC-74)
  • 免疫印迹; 人类; 图 st2
西格玛奥德里奇 Actb抗体(Sigma, AC-74)被用于被用于免疫印迹在人类样本上 (图 st2). Oncotarget (2015) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 小鼠; 图 4a
西格玛奥德里奇 Actb抗体(Sigma, A5441)被用于被用于免疫印迹在小鼠样本上 (图 4a). Cell Rep (2015) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 人类; 图 3
西格玛奥德里奇 Actb抗体(Sigma, A5441)被用于被用于免疫印迹在人类样本上 (图 3). PLoS Pathog (2015) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 小鼠; 1:2000
西格玛奥德里奇 Actb抗体(Sigma, A5441)被用于被用于免疫印迹在小鼠样本上浓度为1:2000. Endocrinology (2015) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 小鼠; 1:2500; 图 3
西格玛奥德里奇 Actb抗体(Sigma-Aldrich, A1978)被用于被用于免疫印迹在小鼠样本上浓度为1:2500 (图 3). Mol Neurodegener (2015) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 人类; 1:50,000
西格玛奥德里奇 Actb抗体(Sigma-Aldrich, A5441)被用于被用于免疫印迹在人类样本上浓度为1:50,000. PLoS ONE (2015) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 小鼠; 图 1g
西格玛奥德里奇 Actb抗体(Sigma, A5441)被用于被用于免疫印迹在小鼠样本上 (图 1g). RNA (2015) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 小鼠
西格玛奥德里奇 Actb抗体(Sigma Chemical, A1978)被用于被用于免疫印迹在小鼠样本上. Eur Neuropsychopharmacol (2015) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 人类; 图 1b
西格玛奥德里奇 Actb抗体(Sigma-Aldrich,, A5441)被用于被用于免疫印迹在人类样本上 (图 1b). Oncogene (2016) ncbi
小鼠 单克隆(AC-74)
  • 免疫印迹; 人类
西格玛奥德里奇 Actb抗体(Sigma-Aldrich, A5316)被用于被用于免疫印迹在人类样本上. Sci Rep (2015) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 人类; 1:5000; 图 3b
西格玛奥德里奇 Actb抗体(Sigma, A5441)被用于被用于免疫印迹在人类样本上浓度为1:5000 (图 3b). Int J Radiat Oncol Biol Phys (2015) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 人类; 1:1000; 图 6
西格玛奥德里奇 Actb抗体(Sigma, A5441)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 6). Cancer Med (2015) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 人类; 图 1
西格玛奥德里奇 Actb抗体(Sigma-Aldrich, AC-15)被用于被用于免疫印迹在人类样本上 (图 1). Viruses (2015) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 人类; 1:5000
西格玛奥德里奇 Actb抗体(Sigma-Aldrich, A1978)被用于被用于免疫印迹在人类样本上浓度为1:5000. PLoS ONE (2015) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; degu; 1:4000; 图 5n
西格玛奥德里奇 Actb抗体(Sigma Aldrich, A1978)被用于被用于免疫印迹在degu样本上浓度为1:4000 (图 5n). PLoS ONE (2015) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 小鼠; 1:5000
西格玛奥德里奇 Actb抗体(Sigma-Aldrich, A5441)被用于被用于免疫印迹在小鼠样本上浓度为1:5000. J Mol Cell Cardiol (2015) ncbi
小鼠 单克隆(AC-74)
  • 免疫印迹; 人类; 图 1
西格玛奥德里奇 Actb抗体(Sigma, A5316)被用于被用于免疫印迹在人类样本上 (图 1). PLoS ONE (2015) ncbi
小鼠 单克隆(AC-74)
  • 免疫印迹; 小鼠; 1:10,000; 图 1
  • 免疫印迹; 人类; 1:10,000; 图 7
西格玛奥德里奇 Actb抗体(Sigma, A2228)被用于被用于免疫印迹在小鼠样本上浓度为1:10,000 (图 1) 和 被用于免疫印迹在人类样本上浓度为1:10,000 (图 7). Nat Commun (2015) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 人类; 图 3
西格玛奥德里奇 Actb抗体(Sigma, A5441)被用于被用于免疫印迹在人类样本上 (图 3). elife (2015) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 小鼠; 图 2
西格玛奥德里奇 Actb抗体(A5441, A5441)被用于被用于免疫印迹在小鼠样本上 (图 2). Autophagy (2015) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 小鼠; 1:80,000; 图 6
  • 免疫印迹; 人类; 1:80,000; 图 s2
西格玛奥德里奇 Actb抗体(Sigma, A1978)被用于被用于免疫印迹在小鼠样本上浓度为1:80,000 (图 6) 和 被用于免疫印迹在人类样本上浓度为1:80,000 (图 s2). PLoS ONE (2015) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 人类; 图 9
西格玛奥德里奇 Actb抗体(Sigma, A5441)被用于被用于免疫印迹在人类样本上 (图 9). BMC Cancer (2015) ncbi
小鼠 单克隆(AC-74)
  • 免疫印迹; 人类; 1:10,000; 图 s13
西格玛奥德里奇 Actb抗体(Sigma, A5316)被用于被用于免疫印迹在人类样本上浓度为1:10,000 (图 s13). Genome Med (2015) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 人类; 图 3a
西格玛奥德里奇 Actb抗体(Sigma-Aldrich, A5441)被用于被用于免疫印迹在人类样本上 (图 3a). J Virol (2015) ncbi
小鼠 单克隆(AC-74)
  • 免疫印迹; 人类; 1:2000; 图 1
西格玛奥德里奇 Actb抗体(Sigma-Aldrich, A5316)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 1). PLoS ONE (2015) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 小鼠; 图 1d
西格玛奥德里奇 Actb抗体(Sigma, A1978)被用于被用于免疫印迹在小鼠样本上 (图 1d). Biochim Biophys Acta (2015) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 人类; 图 2
西格玛奥德里奇 Actb抗体(Sigma, A1978)被用于被用于免疫印迹在人类样本上 (图 2). Leukemia (2016) ncbi
小鼠 单克隆(AC-74)
  • 免疫印迹; 小鼠
西格玛奥德里奇 Actb抗体(Sigma, 2228)被用于被用于免疫印迹在小鼠样本上. Biochim Biophys Acta (2015) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 小鼠
西格玛奥德里奇 Actb抗体(Sigma-Aldric, A5441)被用于被用于免疫印迹在小鼠样本上. PLoS ONE (2015) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 人类
西格玛奥德里奇 Actb抗体(Sigma, A5441)被用于被用于免疫印迹在人类样本上. Hepatology (2016) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 人类; 1:5000; 图 2
西格玛奥德里奇 Actb抗体(Sigma, AC15)被用于被用于免疫印迹在人类样本上浓度为1:5000 (图 2). J Cell Sci (2015) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 人类; 1:2000
西格玛奥德里奇 Actb抗体(Sigma-Aldrich, A1978)被用于被用于免疫印迹在人类样本上浓度为1:2000. Data Brief (2015) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 人类; 图 2d
西格玛奥德里奇 Actb抗体(Sigma, AC-15)被用于被用于免疫印迹在人类样本上 (图 2d). Leukemia (2016) ncbi
小鼠 单克隆(AC-74)
  • 免疫印迹; 小鼠; 1:4000
西格玛奥德里奇 Actb抗体(Sigma, A2228)被用于被用于免疫印迹在小鼠样本上浓度为1:4000. BMC Endocr Disord (2015) ncbi
小鼠 单克隆(AC-74)
  • 免疫印迹; 小鼠; 图 1c
西格玛奥德里奇 Actb抗体(Sigma-Aldrich, A2228)被用于被用于免疫印迹在小鼠样本上 (图 1c). J Clin Invest (2015) ncbi
小鼠 单克隆(AC-74)
  • 免疫印迹; 小鼠; 图 4b
西格玛奥德里奇 Actb抗体(Sigma-Aldrich, A5316)被用于被用于免疫印迹在小鼠样本上 (图 4b). Autophagy (2015) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 人类; 图 2
西格玛奥德里奇 Actb抗体(Sigma, A1978)被用于被用于免疫印迹在人类样本上 (图 2). Autophagy (2015) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 人类
西格玛奥德里奇 Actb抗体(Sigma-Aldrich, A1978)被用于被用于免疫印迹在人类样本上. Oncogene (2016) ncbi
小鼠 单克隆(AC-40)
  • 免疫印迹; 非洲爪蛙; 1:800; 图 3
西格玛奥德里奇 Actb抗体(Sigma, Ac-40)被用于被用于免疫印迹在非洲爪蛙样本上浓度为1:800 (图 3). Protoplasma (2016) ncbi
小鼠 单克隆(AC-74)
  • 免疫印迹; 人类
西格玛奥德里奇 Actb抗体(Sigma, A5316)被用于被用于免疫印迹在人类样本上. Mol Cancer Ther (2015) ncbi
小鼠 单克隆(AC-74)
  • 免疫印迹; 人类; 图 1a,b,d
西格玛奥德里奇 Actb抗体(Sigma-Aldrich;, A5316)被用于被用于免疫印迹在人类样本上 (图 1a,b,d). Autophagy (2015) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 人类; 图 4
西格玛奥德里奇 Actb抗体(Sigma-Aldrich, A5441)被用于被用于免疫印迹在人类样本上 (图 4). Fluids Barriers CNS (2015) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 人类
西格玛奥德里奇 Actb抗体(Sigma-Aldrich, clone AC-15)被用于被用于免疫印迹在人类样本上. J Neurochem (2015) ncbi
小鼠 单克隆(AC-15)
  • 免疫组化-石蜡切片; 小鼠; 图 4,5
西格玛奥德里奇 Actb抗体(Sigma, A5441)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 4,5). J Neurosci (2015) ncbi
小鼠 单克隆(AC-40)
  • 免疫印迹; 人类; 图 1b
西格玛奥德里奇 Actb抗体(Sigma, AC-40)被用于被用于免疫印迹在人类样本上 (图 1b). PLoS Pathog (2015) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 人类; 图 2
西格玛奥德里奇 Actb抗体(Sigma, A5441)被用于被用于免疫印迹在人类样本上 (图 2). PLoS ONE (2015) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 人类; 图 2
西格玛奥德里奇 Actb抗体(Sigma, A1978)被用于被用于免疫印迹在人类样本上 (图 2). Acta Pharmacol Sin (2015) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 人类; 图 2
西格玛奥德里奇 Actb抗体(Sigma, AC15)被用于被用于免疫印迹在人类样本上 (图 2). Nucleic Acids Res (2015) ncbi
小鼠 单克隆(AC-74)
  • 免疫印迹; 小鼠; 1:5000; 图 1b
  • 免疫印迹; 人类; 1:5000; 图 1c
西格玛奥德里奇 Actb抗体(Sigma, A5316)被用于被用于免疫印迹在小鼠样本上浓度为1:5000 (图 1b) 和 被用于免疫印迹在人类样本上浓度为1:5000 (图 1c). Nat Commun (2015) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 小鼠; 图 s8
西格玛奥德里奇 Actb抗体(Sigma, AC-15)被用于被用于免疫印迹在小鼠样本上 (图 s8). Genes Dev (2015) ncbi
小鼠 单克隆(AC-74)
  • 免疫印迹; 人类; 1:1000
西格玛奥德里奇 Actb抗体(Sigma-Aldrich, A2228)被用于被用于免疫印迹在人类样本上浓度为1:1000. Nat Commun (2015) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 人类; 1:5000; 图 9
  • 免疫印迹; 小鼠; 1:5000; 图 1
西格玛奥德里奇 Actb抗体(Sigma, A-5441)被用于被用于免疫印迹在人类样本上浓度为1:5000 (图 9) 和 被用于免疫印迹在小鼠样本上浓度为1:5000 (图 1). J Cell Mol Med (2015) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 人类; 1:20,000; 图 3
西格玛奥德里奇 Actb抗体(Sigma Aldrich, A5441)被用于被用于免疫印迹在人类样本上浓度为1:20,000 (图 3). Nat Commun (2015) ncbi
小鼠 单克隆(AC-74)
  • 免疫印迹; 小鼠; 1:5000; 图 1d
西格玛奥德里奇 Actb抗体(Sigma, A5316)被用于被用于免疫印迹在小鼠样本上浓度为1:5000 (图 1d). J Physiol (2015) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 小鼠; 图 s1g
西格玛奥德里奇 Actb抗体(Sigma, A5441)被用于被用于免疫印迹在小鼠样本上 (图 s1g). Nat Genet (2015) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 小鼠; 图 2
西格玛奥德里奇 Actb抗体(Sigma, A3854)被用于被用于免疫印迹在小鼠样本上 (图 2). Cell Rep (2015) ncbi
小鼠 单克隆(AC-74)
  • 免疫印迹; 人类; 1:5000; 图 1
西格玛奥德里奇 Actb抗体(Sigma, A5316)被用于被用于免疫印迹在人类样本上浓度为1:5000 (图 1). PLoS ONE (2015) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 小鼠; 1:4000; 图 1
西格玛奥德里奇 Actb抗体(Sigma, A5441)被用于被用于免疫印迹在小鼠样本上浓度为1:4000 (图 1). elife (2015) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 人类; 1:5000
西格玛奥德里奇 Actb抗体(Sigma-Aldrich, A1978)被用于被用于免疫印迹在人类样本上浓度为1:5000. Mol Biol Cell (2015) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 人类; 图 4
西格玛奥德里奇 Actb抗体(Sigma, A1978)被用于被用于免疫印迹在人类样本上 (图 4). Oncotarget (2015) ncbi
小鼠 单克隆(AC-15)
  • 免疫细胞化学; 人类; 1:1000
西格玛奥德里奇 Actb抗体(Sigma, A3854)被用于被用于免疫细胞化学在人类样本上浓度为1:1000. Nucleic Acids Res (2015) ncbi
小鼠 单克隆(AC-74)
  • 免疫印迹; 小鼠; 1:4000; 图 1
西格玛奥德里奇 Actb抗体(Sigma-Aldrich, A5316)被用于被用于免疫印迹在小鼠样本上浓度为1:4000 (图 1). Nat Commun (2015) ncbi
小鼠 单克隆(AC-74)
  • 免疫印迹; 人类; 1:5000; 图 2.e
西格玛奥德里奇 Actb抗体(Sigma-Aldrich, A2228)被用于被用于免疫印迹在人类样本上浓度为1:5000 (图 2.e). Nat Cell Biol (2015) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 小鼠; 1:5000
西格玛奥德里奇 Actb抗体(Sigma, A5441)被用于被用于免疫印迹在小鼠样本上浓度为1:5000. PLoS ONE (2015) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 人类; 图 4
西格玛奥德里奇 Actb抗体(Sigma, A1978)被用于被用于免疫印迹在人类样本上 (图 4). Cell Stem Cell (2015) ncbi
小鼠 单克隆(AC-74)
  • 免疫印迹; 小鼠; 1:2000; 图 2
西格玛奥德里奇 Actb抗体(Sigma Aldrich, A5316)被用于被用于免疫印迹在小鼠样本上浓度为1:2000 (图 2). Nat Commun (2015) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 小鼠; 1:7500; 图 2b
西格玛奥德里奇 Actb抗体(Sigma, A5441)被用于被用于免疫印迹在小鼠样本上浓度为1:7500 (图 2b). EMBO Mol Med (2015) ncbi
小鼠 单克隆(AC-74)
  • 免疫印迹; 人类; 图 2g
西格玛奥德里奇 Actb抗体(Sigma-Aldrich, A-2228)被用于被用于免疫印迹在人类样本上 (图 2g). Oncotarget (2015) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 人类; 图 2
西格玛奥德里奇 Actb抗体(Sigma, A5441)被用于被用于免疫印迹在人类样本上 (图 2). Mol Biol Cell (2015) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 小鼠
西格玛奥德里奇 Actb抗体(Sigma, A5441)被用于被用于免疫印迹在小鼠样本上. Biol Sex Differ (2015) ncbi
小鼠 单克隆(AC-40)
  • 免疫印迹; 仓鼠; 1:2000; 图 3
西格玛奥德里奇 Actb抗体(Sigma, A4700)被用于被用于免疫印迹在仓鼠样本上浓度为1:2000 (图 3). Nucleic Acids Res (2015) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 小鼠; 图 1
西格玛奥德里奇 Actb抗体(Sigma, A5441)被用于被用于免疫印迹在小鼠样本上 (图 1). Leukemia (2016) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 人类; 图 6
西格玛奥德里奇 Actb抗体(Sigma, A5441)被用于被用于免疫印迹在人类样本上 (图 6). J Biol Chem (2015) ncbi
小鼠 单克隆(AC-74)
  • 免疫印迹; 大鼠; 图 1
西格玛奥德里奇 Actb抗体(Sigma-Aldrich, A5316)被用于被用于免疫印迹在大鼠样本上 (图 1). PLoS ONE (2015) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 小鼠
  • 免疫印迹; 人类
西格玛奥德里奇 Actb抗体(Sigma, A5441)被用于被用于免疫印迹在小鼠样本上 和 被用于免疫印迹在人类样本上. Oncogene (2016) ncbi
小鼠 单克隆(AC-74)
  • 免疫印迹; 牛; 1:1000; 图 4a
西格玛奥德里奇 Actb抗体(Sigma Aldrich, A2228)被用于被用于免疫印迹在牛样本上浓度为1:1000 (图 4a). Theriogenology (2015) ncbi
小鼠 单克隆(AC-74)
  • 免疫印迹; 大鼠; 图 4
西格玛奥德里奇 Actb抗体(Sigma, A2228)被用于被用于免疫印迹在大鼠样本上 (图 4). PLoS ONE (2015) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 人类
西格玛奥德里奇 Actb抗体(Sigma, A5441)被用于被用于免疫印迹在人类样本上. Am J Clin Nutr (2015) ncbi
小鼠 单克隆(AC-74)
  • 免疫印迹; 人类; 图 2
西格玛奥德里奇 Actb抗体(Sigma, AC-74)被用于被用于免疫印迹在人类样本上 (图 2). J Hematol Oncol (2015) ncbi
小鼠 单克隆(AC-74)
  • 免疫印迹; 人类; 1:10,000; 图 2
西格玛奥德里奇 Actb抗体(Sigma-aldrich, A2228)被用于被用于免疫印迹在人类样本上浓度为1:10,000 (图 2). PLoS Pathog (2015) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 小鼠; 图 6
西格玛奥德里奇 Actb抗体(Sigma, AC15)被用于被用于免疫印迹在小鼠样本上 (图 6). PLoS ONE (2015) ncbi
小鼠 单克隆(AC-74)
  • 免疫印迹; 人类; 图 3
  • 免疫印迹; 小鼠; 图 1
西格玛奥德里奇 Actb抗体(Sigma, A2228)被用于被用于免疫印迹在人类样本上 (图 3) 和 被用于免疫印迹在小鼠样本上 (图 1). Mol Cell Biol (2015) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 小鼠
西格玛奥德里奇 Actb抗体(Sigma-Aldrich, A1978)被用于被用于免疫印迹在小鼠样本上. Nat Immunol (2015) ncbi
小鼠 单克隆(AC-74)
  • 免疫印迹; 人类
西格玛奥德里奇 Actb抗体(Sigma-Aldrich, A2228)被用于被用于免疫印迹在人类样本上. Cell Microbiol (2015) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 人类; 1:1000; 图 6
西格玛奥德里奇 Actb抗体(Sigma-Aldrich, A3854)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 6). J Cell Biochem (2015) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 人类; 1:1000; 图 3
西格玛奥德里奇 Actb抗体(Sigma, AC-15)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3). Sci Rep (2015) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 人类
西格玛奥德里奇 Actb抗体(Sigma-Aldrich, A1978)被用于被用于免疫印迹在人类样本上. J Immunol (2015) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 人类; 图 4a
西格玛奥德里奇 Actb抗体(Sigma, A5441)被用于被用于免疫印迹在人类样本上 (图 4a). PLoS Genet (2015) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 人类; 图 1
西格玛奥德里奇 Actb抗体(Sigma, A5441)被用于被用于免疫印迹在人类样本上 (图 1). elife (2015) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 人类; 图 1
西格玛奥德里奇 Actb抗体(Sigma, A1978)被用于被用于免疫印迹在人类样本上 (图 1). Autophagy (2015) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 大鼠; 1:5000
西格玛奥德里奇 Actb抗体(Sigma, A5441)被用于被用于免疫印迹在大鼠样本上浓度为1:5000. Arch Toxicol (2016) ncbi
小鼠 单克隆(AC-74)
  • 免疫印迹; 小鼠; 1:5000
西格玛奥德里奇 Actb抗体(Sigma, A5316)被用于被用于免疫印迹在小鼠样本上浓度为1:5000. Cancer Res (2015) ncbi
小鼠 单克隆(AC-74)
  • 免疫印迹; 小鼠; 图 2
西格玛奥德里奇 Actb抗体(Sigma, A5316)被用于被用于免疫印迹在小鼠样本上 (图 2). Biochem Biophys Res Commun (2015) ncbi
小鼠 单克隆(AC-15)
西格玛奥德里奇 Actb抗体(Sigma, A5441)被用于. Oncotarget (2015) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 人类; 1:10,000; 图 1
西格玛奥德里奇 Actb抗体(Sigma, A5441)被用于被用于免疫印迹在人类样本上浓度为1:10,000 (图 1). Nat Commun (2015) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 人类; 图 4
西格玛奥德里奇 Actb抗体(Sigma, A5441)被用于被用于免疫印迹在人类样本上 (图 4). Mol Cell Biol (2015) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 人类; 1:5000
西格玛奥德里奇 Actb抗体(Sigma, A5441)被用于被用于免疫印迹在人类样本上浓度为1:5000. Int J Cancer (2015) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 小鼠
西格玛奥德里奇 Actb抗体(Sigma-Aldrich, AC15)被用于被用于免疫印迹在小鼠样本上. Cancer Immunol Immunother (2015) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 小鼠
西格玛奥德里奇 Actb抗体(Sigma, AC-15)被用于被用于免疫印迹在小鼠样本上. PLoS ONE (2015) ncbi
小鼠 单克隆(AC-40)
  • 免疫印迹; 人类; 1:1000; 图 s5
西格玛奥德里奇 Actb抗体(Sigma-Aldrich, AC-40)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 s5). PLoS ONE (2015) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 人类; 图 3
西格玛奥德里奇 Actb抗体(Sigma, A5441)被用于被用于免疫印迹在人类样本上 (图 3). Oncogenesis (2015) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 大鼠; 1:10,000; 图 1
西格玛奥德里奇 Actb抗体(Sigma, A5441)被用于被用于免疫印迹在大鼠样本上浓度为1:10,000 (图 1). Front Cell Neurosci (2015) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 人类; 图 5
西格玛奥德里奇 Actb抗体(Sigma, A5441)被用于被用于免疫印迹在人类样本上 (图 5). MAbs (2015) ncbi
小鼠 单克隆(AC-74)
  • 免疫印迹; 人类; 1:100,000
西格玛奥德里奇 Actb抗体(Sigma-Aldrich, A2228)被用于被用于免疫印迹在人类样本上浓度为1:100,000. Exp Cell Res (2015) ncbi
小鼠 单克隆(AC-15)
  • 免疫细胞化学; 人类; 1:200; 图 4
西格玛奥德里奇 Actb抗体(Sigma, A1978)被用于被用于免疫细胞化学在人类样本上浓度为1:200 (图 4). Brain (2015) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 人类; 1:1000; 图 1
西格玛奥德里奇 Actb抗体(Sigma, A5441)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 1). Cell Death Dis (2015) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 小鼠; 1:25,000; 图 s8
西格玛奥德里奇 Actb抗体(Sigma, A3854)被用于被用于免疫印迹在小鼠样本上浓度为1:25,000 (图 s8). Nat Commun (2015) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 小鼠; 1:10,000
西格玛奥德里奇 Actb抗体(Sigma-Aldrich, A1978)被用于被用于免疫印迹在小鼠样本上浓度为1:10,000. PLoS ONE (2015) ncbi
小鼠 单克隆(AC-74)
  • 免疫印迹; 大鼠; 1:4000
西格玛奥德里奇 Actb抗体(Sigma, A5316)被用于被用于免疫印迹在大鼠样本上浓度为1:4000. Eur J Neurosci (2016) ncbi
小鼠 单克隆(AC-74)
  • 免疫印迹; 人类; 图 3
西格玛奥德里奇 Actb抗体(Sigma, A2228)被用于被用于免疫印迹在人类样本上 (图 3). Viruses (2015) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 人类; 图 1
西格玛奥德里奇 Actb抗体(Sigma-Aldrich, AC-15)被用于被用于免疫印迹在人类样本上 (图 1). Viruses (2015) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 人类; 1:10,000; 图 4
西格玛奥德里奇 Actb抗体(Sigma, A5441)被用于被用于免疫印迹在人类样本上浓度为1:10,000 (图 4). Infect Immun (2015) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 小鼠; 图 12d
西格玛奥德里奇 Actb抗体(Sigma-Aldrich, A3854)被用于被用于免疫印迹在小鼠样本上 (图 12d). Mol Cell Biol (2015) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 人类; 图 2
西格玛奥德里奇 Actb抗体(Sigma, A5441)被用于被用于免疫印迹在人类样本上 (图 2). PLoS ONE (2015) ncbi
小鼠 单克隆(AC-40)
  • 免疫印迹; pigs ; 1:5000; 图 3
西格玛奥德里奇 Actb抗体(Sigma, A4700)被用于被用于免疫印迹在pigs 样本上浓度为1:5000 (图 3). Sci Rep (2015) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 小鼠; 图 4
西格玛奥德里奇 Actb抗体(Sigma, A1978)被用于被用于免疫印迹在小鼠样本上 (图 4). Mol Med (2015) ncbi
小鼠 单克隆(AC-74)
  • 免疫印迹; 人类; 图 13
西格玛奥德里奇 Actb抗体(Sigma Aldrich, A2228)被用于被用于免疫印迹在人类样本上 (图 13). Oncotarget (2015) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 小鼠
西格玛奥德里奇 Actb抗体(Sigma Chemical, A1978)被用于被用于免疫印迹在小鼠样本上. Prog Neuropsychopharmacol Biol Psychiatry (2015) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 人类
西格玛奥德里奇 Actb抗体(Sigma, AC-15)被用于被用于免疫印迹在人类样本上. Cancer Immunol Res (2015) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 小鼠; 图 5
西格玛奥德里奇 Actb抗体(Sigma, A5441)被用于被用于免疫印迹在小鼠样本上 (图 5). Am J Physiol Renal Physiol (2015) ncbi
小鼠 单克隆(AC-74)
  • 免疫印迹; 人类
西格玛奥德里奇 Actb抗体(Sigma, A5316)被用于被用于免疫印迹在人类样本上. J Virol (2015) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 小鼠; 1:10,000; 图 4
西格玛奥德里奇 Actb抗体(Sigma Aldrich, AC15)被用于被用于免疫印迹在小鼠样本上浓度为1:10,000 (图 4). PLoS ONE (2015) ncbi
小鼠 单克隆(AC-40)
  • 免疫印迹; 人类; 1:5000; 图 4
西格玛奥德里奇 Actb抗体(Sigma, AC40)被用于被用于免疫印迹在人类样本上浓度为1:5000 (图 4). Sci Rep (2015) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 人类; 1:5000
西格玛奥德里奇 Actb抗体(Sigma-Aldrich, A5441)被用于被用于免疫印迹在人类样本上浓度为1:5000. Biochim Biophys Acta (2015) ncbi
小鼠 单克隆(AC-74)
  • 其他; 小鼠; 图 3
西格玛奥德里奇 Actb抗体(Sigma, A2228)被用于被用于其他在小鼠样本上 (图 3). Cytoskeleton (Hoboken) (2015) ncbi
小鼠 单克隆(AC-74)
  • 免疫印迹; 人类
西格玛奥德里奇 Actb抗体(Sigma-Aldrich, AC-74)被用于被用于免疫印迹在人类样本上. Cancer Med (2015) ncbi
小鼠 单克隆(AC-74)
  • 免疫印迹; 人类; 图 5
西格玛奥德里奇 Actb抗体(Sigma, A5316)被用于被用于免疫印迹在人类样本上 (图 5). PLoS ONE (2015) ncbi
小鼠 单克隆(AC-74)
  • 免疫印迹; 人类; 图 1
西格玛奥德里奇 Actb抗体(Sigma, A5316)被用于被用于免疫印迹在人类样本上 (图 1). Oncogene (2016) ncbi
小鼠 单克隆(AC-74)
  • 免疫印迹; 小鼠
西格玛奥德里奇 Actb抗体(Sigma Chemical, A5316)被用于被用于免疫印迹在小鼠样本上. PLoS ONE (2015) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 小鼠; 1:500
西格玛奥德里奇 Actb抗体(Sigma, A5441)被用于被用于免疫印迹在小鼠样本上浓度为1:500. Biochim Biophys Acta (2015) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 人类; 1:10,000; 图 1b
西格玛奥德里奇 Actb抗体(Sigma, AC-15)被用于被用于免疫印迹在人类样本上浓度为1:10,000 (图 1b). J Virol (2015) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 人类; 图 1
西格玛奥德里奇 Actb抗体(Sigma-Aldrich, A5441)被用于被用于免疫印迹在人类样本上 (图 1). PLoS ONE (2015) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 人类
西格玛奥德里奇 Actb抗体(Sigma-Aldrich, A1978)被用于被用于免疫印迹在人类样本上. BMC Cancer (2015) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 小鼠
西格玛奥德里奇 Actb抗体(Sigma, A5441)被用于被用于免疫印迹在小鼠样本上. Nucleic Acids Res (2015) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 犬; 1:3000; 图 6
西格玛奥德里奇 Actb抗体(Sigma, A1978)被用于被用于免疫印迹在犬样本上浓度为1:3000 (图 6). J Biol Chem (2015) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 小鼠; 1:1000
西格玛奥德里奇 Actb抗体(Sigma-Aldrich, A5441)被用于被用于免疫印迹在小鼠样本上浓度为1:1000. Neuroscience (2015) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 小鼠; 1:1000
西格玛奥德里奇 Actb抗体(Sigma-Aldrich, AC-15)被用于被用于免疫印迹在小鼠样本上浓度为1:1000. Biochim Biophys Acta (2015) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 人类; 图 7
西格玛奥德里奇 Actb抗体(Sigma, 5441)被用于被用于免疫印迹在人类样本上 (图 7). Nucleic Acids Res (2015) ncbi
小鼠 单克隆(AC-74)
  • 免疫印迹; 人类; 1:10,000; 图 1
西格玛奥德里奇 Actb抗体(Sigma, A2228)被用于被用于免疫印迹在人类样本上浓度为1:10,000 (图 1). Nat Commun (2015) ncbi
小鼠 单克隆(AC-74)
  • 免疫印迹; 人类; 1:5000; 图 1b
西格玛奥德里奇 Actb抗体(Sigma, A5316)被用于被用于免疫印迹在人类样本上浓度为1:5000 (图 1b). Nat Commun (2015) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 人类; 1:10,000
西格玛奥德里奇 Actb抗体(Sigma Aldrich, A5441)被用于被用于免疫印迹在人类样本上浓度为1:10,000. Biotechnol Bioeng (2015) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 人类
西格玛奥德里奇 Actb抗体(Sigma Aldrich, A5441)被用于被用于免疫印迹在人类样本上. Oncol Rep (2015) ncbi
小鼠 单克隆(AC-74)
  • 免疫印迹; 小鼠; 1:500; 图 2e
西格玛奥德里奇 Actb抗体(Sigma, A5316)被用于被用于免疫印迹在小鼠样本上浓度为1:500 (图 2e). J Neurosci (2015) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 小鼠; 图 2
西格玛奥德里奇 Actb抗体(Sigma, A5441)被用于被用于免疫印迹在小鼠样本上 (图 2). Sci Rep (2015) ncbi
小鼠 单克隆(AC-74)
  • 免疫印迹; 小鼠; 1:5000; 图 5
西格玛奥德里奇 Actb抗体(Sigma, A-2228)被用于被用于免疫印迹在小鼠样本上浓度为1:5000 (图 5). PLoS ONE (2015) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 人类; 1:3000; 图 1
  • 免疫印迹; 小鼠; 1:3000; 图 1
西格玛奥德里奇 Actb抗体(Sigma-Aldrich, A5441)被用于被用于免疫印迹在人类样本上浓度为1:3000 (图 1) 和 被用于免疫印迹在小鼠样本上浓度为1:3000 (图 1). Amyotroph Lateral Scler Frontotemporal Degener (2015) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 小鼠; 图 1b
西格玛奥德里奇 Actb抗体(Sigma-Aldrich, A3854)被用于被用于免疫印迹在小鼠样本上 (图 1b). J Neurochem (2015) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 小鼠; 图 2
西格玛奥德里奇 Actb抗体(Sigma, A3854)被用于被用于免疫印迹在小鼠样本上 (图 2). Mol Cell (2015) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 小鼠; 1:10,000
西格玛奥德里奇 Actb抗体(Sigma, AC-15)被用于被用于免疫印迹在小鼠样本上浓度为1:10,000. Brain (2015) ncbi
小鼠 单克隆(AC-74)
  • 免疫印迹; 人类
西格玛奥德里奇 Actb抗体(Sigma, AC-74)被用于被用于免疫印迹在人类样本上. J Biomed Sci (2015) ncbi
小鼠 单克隆(AC-74)
  • 免疫印迹; 人类; 图 6
西格玛奥德里奇 Actb抗体(Sigma Chemicals, A-5316)被用于被用于免疫印迹在人类样本上 (图 6). Br J Nutr (2015) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 人类; 图 5a
西格玛奥德里奇 Actb抗体(Sigma, A5441)被用于被用于免疫印迹在人类样本上 (图 5a). Cancer Cell Int (2015) ncbi
小鼠 单克隆(AC-15)
  • 免疫沉淀; 人类
  • 免疫印迹; 人类
西格玛奥德里奇 Actb抗体(Sigma-Aldrich, AC-15)被用于被用于免疫沉淀在人类样本上 和 被用于免疫印迹在人类样本上. Arthritis Res Ther (2015) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 人类
西格玛奥德里奇 Actb抗体(Sigma-Aldrich, A1978-200UL)被用于被用于免疫印迹在人类样本上. Cell Death Dis (2015) ncbi
小鼠 单克隆(AC-40)
  • 免疫印迹; 大鼠; 1:2000; 图 2
西格玛奥德里奇 Actb抗体(Sigma, A 4700)被用于被用于免疫印迹在大鼠样本上浓度为1:2000 (图 2). J Neurosci (2015) ncbi
小鼠 单克隆(AC-74)
  • 免疫印迹; 牛; 1:2000; 图 5
西格玛奥德里奇 Actb抗体(Sigma-Aldrich, A2228)被用于被用于免疫印迹在牛样本上浓度为1:2000 (图 5). Biol Reprod (2015) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 人类; 图 1
西格玛奥德里奇 Actb抗体(Sigma, A5441)被用于被用于免疫印迹在人类样本上 (图 1). Oncotarget (2015) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 人类; 1:1000
西格玛奥德里奇 Actb抗体(Sigma, A5441)被用于被用于免疫印迹在人类样本上浓度为1:1000. Carcinogenesis (2015) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 人类
西格玛奥德里奇 Actb抗体(Sigma-Aldrich, A5441)被用于被用于免疫印迹在人类样本上. Mol Cell Biol (2015) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 人类; 1:5000
西格玛奥德里奇 Actb抗体(Sigma-Aldrich, A5441)被用于被用于免疫印迹在人类样本上浓度为1:5000. Oncogene (2016) ncbi
小鼠 单克隆(AC-74)
  • 免疫印迹; 人类
西格玛奥德里奇 Actb抗体(Sigma-Aldrich, A2228)被用于被用于免疫印迹在人类样本上. Oncogene (2016) ncbi
小鼠 单克隆(AC-74)
  • 免疫印迹; 人类
西格玛奥德里奇 Actb抗体(Sigma-Aldrich, A5316)被用于被用于免疫印迹在人类样本上. Oncogene (2016) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 人类; 1:2000; 图 s12
西格玛奥德里奇 Actb抗体(Sigma, A5441)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 s12). Nat Chem Biol (2015) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 大鼠
西格玛奥德里奇 Actb抗体(Sigma, A5441)被用于被用于免疫印迹在大鼠样本上. Neurogastroenterol Motil (2015) ncbi
小鼠 单克隆(AC-40)
  • 免疫印迹; 人类; 1:2000; 图 3
西格玛奥德里奇 Actb抗体(Sigma-Aldrich, A4700)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 3). Cell Death Dis (2015) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 小鼠; 1:10,000
西格玛奥德里奇 Actb抗体(Sigma, A5441)被用于被用于免疫印迹在小鼠样本上浓度为1:10,000. Radiat Prot Dosimetry (2015) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 人类; 图 3
西格玛奥德里奇 Actb抗体(Sigma, AC15)被用于被用于免疫印迹在人类样本上 (图 3). Drug Metab Dispos (2015) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 小鼠; 图 1
西格玛奥德里奇 Actb抗体(Sigma, A5441)被用于被用于免疫印迹在小鼠样本上 (图 1). Autophagy (2015) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 大鼠; 图 7
西格玛奥德里奇 Actb抗体(Sigma, A1978)被用于被用于免疫印迹在大鼠样本上 (图 7). Biomed Res Int (2015) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 人类; 图 1
西格玛奥德里奇 Actb抗体(Sigma-Aldrich, 5441)被用于被用于免疫印迹在人类样本上 (图 1). Proc Natl Acad Sci U S A (2015) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 人类
西格玛奥德里奇 Actb抗体(Sigma, A5441)被用于被用于免疫印迹在人类样本上. Mol Cancer Res (2015) ncbi
小鼠 单克隆(AC-74)
  • 免疫印迹; 小鼠; 图 6
西格玛奥德里奇 Actb抗体(Sigma-Aldrich, A5316)被用于被用于免疫印迹在小鼠样本上 (图 6). PLoS Pathog (2015) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 人类; 图 4a
西格玛奥德里奇 Actb抗体(Sigma-Aldrich, A1978)被用于被用于免疫印迹在人类样本上 (图 4a). Cell Commun Signal (2015) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 人类; 图 1
西格玛奥德里奇 Actb抗体(Sigma-Aldrich, AC-15)被用于被用于免疫印迹在人类样本上 (图 1). Sci Rep (2015) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 小鼠; 1:5000
西格玛奥德里奇 Actb抗体(Sigma, A5441)被用于被用于免疫印迹在小鼠样本上浓度为1:5000. J Neuroinflammation (2015) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 人类; 图 5
西格玛奥德里奇 Actb抗体(Sigma, A1978)被用于被用于免疫印迹在人类样本上 (图 5). Oncotarget (2015) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 小鼠; 图 1
西格玛奥德里奇 Actb抗体(Sigma, A5441)被用于被用于免疫印迹在小鼠样本上 (图 1). Autophagy (2015) ncbi
小鼠 单克隆(AC-74)
  • 免疫印迹; 人类; 图 3
西格玛奥德里奇 Actb抗体(Sigma, AC-74)被用于被用于免疫印迹在人类样本上 (图 3). Biochim Biophys Acta (2015) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 大鼠; 图 3
西格玛奥德里奇 Actb抗体(Sigma, A5441)被用于被用于免疫印迹在大鼠样本上 (图 3). J Immunol (2015) ncbi
小鼠 单克隆(AC-74)
  • 免疫印迹; 人类; 1:5000; 图 1
西格玛奥德里奇 Actb抗体(Sigma, A5316)被用于被用于免疫印迹在人类样本上浓度为1:5000 (图 1). Front Microbiol (2015) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 人类; 图 3
西格玛奥德里奇 Actb抗体(Sigma, A1978)被用于被用于免疫印迹在人类样本上 (图 3). Oncotarget (2015) ncbi
小鼠 单克隆(AC-74)
  • 免疫印迹; 人类; 图 4
西格玛奥德里奇 Actb抗体(Sigma, A2228)被用于被用于免疫印迹在人类样本上 (图 4). PLoS ONE (2015) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 小鼠; 图 1b
西格玛奥德里奇 Actb抗体(Sigma-Aldrich, AC15)被用于被用于免疫印迹在小鼠样本上 (图 1b). elife (2015) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 人类
西格玛奥德里奇 Actb抗体(Sigma, A5441)被用于被用于免疫印迹在人类样本上. Front Cell Infect Microbiol (2015) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 人类
西格玛奥德里奇 Actb抗体(Sigma-Aldrich, A5441)被用于被用于免疫印迹在人类样本上. Mol Biol Cell (2015) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 鸡; 1:2000
西格玛奥德里奇 Actb抗体(Sigma, A3854)被用于被用于免疫印迹在鸡样本上浓度为1:2000. J Biol Chem (2015) ncbi
小鼠 单克隆(AC-74)
  • ChIP-Seq; 小鼠; 图 2
  • 染色质免疫沉淀 ; 小鼠; 图 3
  • 免疫沉淀; 小鼠; 图 6
  • 免疫印迹; 小鼠; 图 s5
西格玛奥德里奇 Actb抗体(Sigma-Aldrich, A2228)被用于被用于ChIP-Seq在小鼠样本上 (图 2), 被用于染色质免疫沉淀 在小鼠样本上 (图 3), 被用于免疫沉淀在小鼠样本上 (图 6) 和 被用于免疫印迹在小鼠样本上 (图 s5). Proc Natl Acad Sci U S A (2015) ncbi
小鼠 单克隆(AC-40)
  • 免疫印迹; 小鼠
西格玛奥德里奇 Actb抗体(Sigma-Aldrich-Aldrich, AC-40)被用于被用于免疫印迹在小鼠样本上. J Am Soc Nephrol (2015) ncbi
小鼠 单克隆(AC-40)
  • 免疫印迹; 人类; 图 s2
西格玛奥德里奇 Actb抗体(Sigma, A4700)被用于被用于免疫印迹在人类样本上 (图 s2). Nature (2015) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 小鼠; 1:10,000; 图 1
西格玛奥德里奇 Actb抗体(Sigma, A3854)被用于被用于免疫印迹在小鼠样本上浓度为1:10,000 (图 1). Nature (2015) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 人类; 1:5000
西格玛奥德里奇 Actb抗体(Sigma-Aldrich, A3854)被用于被用于免疫印迹在人类样本上浓度为1:5000. Cell Mol Life Sci (2015) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 人类; 1:5000
西格玛奥德里奇 Actb抗体(Sigma, A1978)被用于被用于免疫印迹在人类样本上浓度为1:5000. Oncogene (2016) ncbi
小鼠 单克隆(AC-74)
  • 免疫细胞化学; 人类; 1:100
西格玛奥德里奇 Actb抗体(Sigma-Aldrich, A2228)被用于被用于免疫细胞化学在人类样本上浓度为1:100. Biomaterials (2015) ncbi
小鼠 单克隆(AC-74)
  • 免疫印迹; 小鼠; 1:2000; 图 6
西格玛奥德里奇 Actb抗体(Sigma, A5316)被用于被用于免疫印迹在小鼠样本上浓度为1:2000 (图 6). J Neuroinflammation (2015) ncbi
小鼠 单克隆(AC-15)
  • 免疫组化-冰冻切片; 大鼠; 1:2500
西格玛奥德里奇 Actb抗体(Sigma, A5441)被用于被用于免疫组化-冰冻切片在大鼠样本上浓度为1:2500. J Neuroinflammation (2015) ncbi
小鼠 单克隆(AC-74)
  • 免疫印迹; 人类
西格玛奥德里奇 Actb抗体(Sigma-Aldrich, A2228)被用于被用于免疫印迹在人类样本上. Retrovirology (2015) ncbi
小鼠 单克隆(AC-74)
  • 免疫印迹; 小鼠; 图 2
西格玛奥德里奇 Actb抗体(Sigma, A-5316)被用于被用于免疫印迹在小鼠样本上 (图 2). Lipids Health Dis (2015) ncbi
小鼠 单克隆(AC-74)
  • 免疫印迹; 人类; 1:10,000
西格玛奥德里奇 Actb抗体(Sigma-Aldrich, A2228)被用于被用于免疫印迹在人类样本上浓度为1:10,000. J Clin Endocrinol Metab (2015) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 人类
西格玛奥德里奇 Actb抗体(Sigma-Aldrich, A5441)被用于被用于免疫印迹在人类样本上. BMC Cancer (2015) ncbi
小鼠 单克隆(AC-74)
  • 免疫印迹; 人类; 图 1
西格玛奥德里奇 Actb抗体(Sigma-Aldrich, A-5316)被用于被用于免疫印迹在人类样本上 (图 1). Mol Cancer (2015) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 人类; 1:5000
西格玛奥德里奇 Actb抗体(Cell Signaling, A-5441)被用于被用于免疫印迹在人类样本上浓度为1:5000. J Virol (2015) ncbi
小鼠 单克隆(AC-74)
  • 免疫印迹; 人类; 1:5000
西格玛奥德里奇 Actb抗体(Sigma, A5316)被用于被用于免疫印迹在人类样本上浓度为1:5000. PLoS ONE (2015) ncbi
小鼠 单克隆(AC-74)
  • 免疫印迹; 大鼠; 1:3000
西格玛奥德里奇 Actb抗体(Sigma, A2228)被用于被用于免疫印迹在大鼠样本上浓度为1:3000. Andrology (2015) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 人类; 1:5000; 图 3
西格玛奥德里奇 Actb抗体(Sigma, A5441)被用于被用于免疫印迹在人类样本上浓度为1:5000 (图 3). EMBO Mol Med (2015) ncbi
小鼠 单克隆(AC-74)
  • 免疫印迹; 人类; 1:20,000; 图 1
西格玛奥德里奇 Actb抗体(Sigma-Aldrich, AC-74)被用于被用于免疫印迹在人类样本上浓度为1:20,000 (图 1). PLoS ONE (2015) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 非洲爪蛙; 图 2
西格玛奥德里奇 Actb抗体(Sigma, A19789)被用于被用于免疫印迹在非洲爪蛙样本上 (图 2). PLoS ONE (2015) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 人类
西格玛奥德里奇 Actb抗体(Sigma, A5441)被用于被用于免疫印迹在人类样本上. Chem Biol (2015) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 人类; 1:2000
西格玛奥德里奇 Actb抗体(Sigma-Aldrich Finland Oy, A1978)被用于被用于免疫印迹在人类样本上浓度为1:2000. J Proteomics (2015) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 人类; 1:2000
西格玛奥德里奇 Actb抗体(Sigma, A1978)被用于被用于免疫印迹在人类样本上浓度为1:2000. J Surg Res (2015) ncbi
小鼠 单克隆(AC-15)
  • 其他; 人类; 图 2
西格玛奥德里奇 Actb抗体(Sigma-Aldrich, A5441)被用于被用于其他在人类样本上 (图 2). J Extracell Vesicles (2015) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 人类; 1:2000; 图 1d
西格玛奥德里奇 Actb抗体(Sigma-Aldrich, A5441)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 1d). PLoS ONE (2015) ncbi
小鼠 单克隆(AC-40)
  • 免疫印迹; 大鼠; 1:5000; 图 3
  • 免疫印迹; African green monkey; 1:5000; 图 s8
西格玛奥德里奇 Actb抗体(Sigma-Aldrich, A4700)被用于被用于免疫印迹在大鼠样本上浓度为1:5000 (图 3) 和 被用于免疫印迹在African green monkey样本上浓度为1:5000 (图 s8). Nat Commun (2015) ncbi
小鼠 单克隆(AC-74)
  • 免疫印迹; 小鼠; 图 3
西格玛奥德里奇 Actb抗体(Sigma, AC-74)被用于被用于免疫印迹在小鼠样本上 (图 3). PLoS Pathog (2015) ncbi
小鼠 单克隆(AC-74)
  • 免疫印迹; 小鼠; 图 4
西格玛奥德里奇 Actb抗体(Sigma, A5316)被用于被用于免疫印迹在小鼠样本上 (图 4). J Virol (2015) ncbi
小鼠 单克隆(AC-74)
  • 免疫印迹; 人类; 图 2
西格玛奥德里奇 Actb抗体(Sigma, A5316)被用于被用于免疫印迹在人类样本上 (图 2). Cancer Immunol Immunother (2015) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 人类; 图 5
西格玛奥德里奇 Actb抗体(Sigma Aldrich, AC-15)被用于被用于免疫印迹在人类样本上 (图 5). Chem Biol Drug Des (2015) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 人类; 1:10,000; 图 6
西格玛奥德里奇 Actb抗体(Sigma, A5441)被用于被用于免疫印迹在人类样本上浓度为1:10,000 (图 6). Acta Neuropathol Commun (2015) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 人类
西格玛奥德里奇 Actb抗体(Sigma-Aldrich, A3854)被用于被用于免疫印迹在人类样本上. Oxid Med Cell Longev (2015) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 人类
西格玛奥德里奇 Actb抗体(Sigma-Aldrich, A-5441)被用于被用于免疫印迹在人类样本上. J Biol Chem (2015) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 小鼠
西格玛奥德里奇 Actb抗体(Sigma-Aldrich, A5441)被用于被用于免疫印迹在小鼠样本上. Endocrinology (2015) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 人类; 图 3b
西格玛奥德里奇 Actb抗体(Sigma, A5441)被用于被用于免疫印迹在人类样本上 (图 3b). Breast Cancer Res (2015) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 小鼠
西格玛奥德里奇 Actb抗体(Sigma-Aldrich, A1978)被用于被用于免疫印迹在小鼠样本上. Physiol Rep (2015) ncbi
小鼠 单克隆(AC-40)
  • 免疫印迹; 人类; 1:500; 图 8
西格玛奥德里奇 Actb抗体(Sigma-Aldrich, AC-40)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 8). J Cell Biol (2015) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 小鼠
西格玛奥德里奇 Actb抗体(Sigma, A5441)被用于被用于免疫印迹在小鼠样本上. J Biol Chem (2015) ncbi
小鼠 单克隆(AC-74)
  • 免疫印迹; 人类; 图 1
西格玛奥德里奇 Actb抗体(Sigma-Aldrich, A5316)被用于被用于免疫印迹在人类样本上 (图 1). PLoS ONE (2015) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 日本大米鱼; 1:5000; 图 2
西格玛奥德里奇 Actb抗体(Sigma-Aldrich, A1978)被用于被用于免疫印迹在日本大米鱼样本上浓度为1:5000 (图 2). PLoS Genet (2015) ncbi
小鼠 单克隆(AC-74)
  • 免疫印迹; 大鼠; 图 2
西格玛奥德里奇 Actb抗体(Sigma, A5316)被用于被用于免疫印迹在大鼠样本上 (图 2). Neurotox Res (2015) ncbi
小鼠 单克隆(AC-74)
  • 免疫印迹; 小鼠; 图 2
西格玛奥德里奇 Actb抗体(Sigma-Aldrich, A5316)被用于被用于免疫印迹在小鼠样本上 (图 2). Aging Cell (2015) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 人类; 1:5000; 图 8
西格玛奥德里奇 Actb抗体(Sigma, A1978-200UL)被用于被用于免疫印迹在人类样本上浓度为1:5000 (图 8). Oncotarget (2015) ncbi
小鼠 单克隆(AC-15)
  • 免疫组化; 大鼠
西格玛奥德里奇 Actb抗体(Sigma-Aldrich, clone AC15)被用于被用于免疫组化在大鼠样本上. PLoS ONE (2015) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 人类; 图 7e
西格玛奥德里奇 Actb抗体(Sigma-Aldrich, A5441)被用于被用于免疫印迹在人类样本上 (图 7e). EMBO Mol Med (2015) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 人类; 1:2500; 图 1
西格玛奥德里奇 Actb抗体(sigma, A1978)被用于被用于免疫印迹在人类样本上浓度为1:2500 (图 1). Nat Commun (2015) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 人类; 1:3000
西格玛奥德里奇 Actb抗体(Sigma, A1978)被用于被用于免疫印迹在人类样本上浓度为1:3000. Nat Commun (2015) ncbi
小鼠 单克隆(AC-74)
  • 免疫印迹; 人类; 图 4
西格玛奥德里奇 Actb抗体(Sigma, A5316)被用于被用于免疫印迹在人类样本上 (图 4). Oncotarget (2015) ncbi
小鼠 单克隆(AC-74)
  • 免疫印迹; 人类
西格玛奥德里奇 Actb抗体(Sigma, A2228)被用于被用于免疫印迹在人类样本上. PLoS ONE (2015) ncbi
小鼠 单克隆(AC-15)
  • 其他; 人类; 表 s2
西格玛奥德里奇 Actb抗体(Sigma, A1978)被用于被用于其他在人类样本上 (表 s2). Mol Syst Biol (2015) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 小鼠; 1:2000; 图 1
西格玛奥德里奇 Actb抗体(Sigma, A1978)被用于被用于免疫印迹在小鼠样本上浓度为1:2000 (图 1). Development (2015) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 小鼠; 1:1000; 图 3
西格玛奥德里奇 Actb抗体(Sigma-Aldrich, A5441)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 3). Cell Death Dis (2015) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 大鼠; 1:50,000; 图 1
西格玛奥德里奇 Actb抗体(Sigma, A3854)被用于被用于免疫印迹在大鼠样本上浓度为1:50,000 (图 1). PLoS ONE (2015) ncbi
小鼠 单克隆(AC-74)
  • 免疫印迹; 小鼠; 1:2000; 图 1
西格玛奥德里奇 Actb抗体(Sigma, A2228)被用于被用于免疫印迹在小鼠样本上浓度为1:2000 (图 1). J Histochem Cytochem (2015) ncbi
小鼠 单克隆(AC-74)
  • 免疫印迹; 人类
西格玛奥德里奇 Actb抗体(Sigma, A5316)被用于被用于免疫印迹在人类样本上. Cancer Res (2015) ncbi
小鼠 单克隆(AC-40)
  • 免疫印迹; 小鼠; 图 2
西格玛奥德里奇 Actb抗体(Sigma, A4700)被用于被用于免疫印迹在小鼠样本上 (图 2). Mol Biol Cell (2015) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 人类; 1:300-500
西格玛奥德里奇 Actb抗体(Sigma, #A5441)被用于被用于免疫印迹在人类样本上浓度为1:300-500. PLoS ONE (2015) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 小鼠
西格玛奥德里奇 Actb抗体(Sigma-Aldrich, A5441)被用于被用于免疫印迹在小鼠样本上. Viruses (2015) ncbi
小鼠 单克隆(AC-74)
  • 免疫印迹; 人类; 图 s5
西格玛奥德里奇 Actb抗体(Sigma, AC-74)被用于被用于免疫印迹在人类样本上 (图 s5). Nat Biotechnol (2015) ncbi
小鼠 单克隆(AC-74)
  • 免疫印迹; 小鼠; 1:2000; 图 s2
西格玛奥德里奇 Actb抗体(Sigma, A5316)被用于被用于免疫印迹在小鼠样本上浓度为1:2000 (图 s2). J Clin Invest (2015) ncbi
domestic rabbit 多克隆
西格玛奥德里奇 Actb抗体(Sigma-Aldrich, A2103)被用于. PLoS ONE (2015) ncbi
小鼠 单克隆(AC-40)
  • 免疫印迹; 小鼠; 1:5000
西格玛奥德里奇 Actb抗体(Sigma-Aldrich, A4700)被用于被用于免疫印迹在小鼠样本上浓度为1:5000. PLoS ONE (2015) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 人类; 图 1
西格玛奥德里奇 Actb抗体(Sigma, A5441)被用于被用于免疫印迹在人类样本上 (图 1). PLoS Genet (2015) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 小鼠
西格玛奥德里奇 Actb抗体(Sigma, A1978)被用于被用于免疫印迹在小鼠样本上. J Biol Chem (2015) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 人类; 图 2
西格玛奥德里奇 Actb抗体(Sigma, A5441)被用于被用于免疫印迹在人类样本上 (图 2). J Proteome Res (2015) ncbi
小鼠 单克隆(AC-74)
  • 免疫印迹; 人类; 图 1
西格玛奥德里奇 Actb抗体(Sigma-Aldrich, A-2228)被用于被用于免疫印迹在人类样本上 (图 1). PLoS ONE (2015) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 人类; 1:1000
  • 免疫印迹; 大鼠; 1:1000
西格玛奥德里奇 Actb抗体(Sigma-Aldrich, A1978)被用于被用于免疫印迹在人类样本上浓度为1:1000 和 被用于免疫印迹在大鼠样本上浓度为1:1000. Neurobiol Dis (2015) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 人类; 图 3
西格玛奥德里奇 Actb抗体(Sigma, A5441)被用于被用于免疫印迹在人类样本上 (图 3). Nat Genet (2015) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 人类; 图 4
西格玛奥德里奇 Actb抗体(Sigma, A1978)被用于被用于免疫印迹在人类样本上 (图 4). Oncogene (2015) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 人类; 1:10,000; 图 1,2,3,4,5,6,7
西格玛奥德里奇 Actb抗体(Sigma, A5441)被用于被用于免疫印迹在人类样本上浓度为1:10,000 (图 1,2,3,4,5,6,7). EMBO J (2015) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 人类; 图 5
西格玛奥德里奇 Actb抗体(Sigma, A1978)被用于被用于免疫印迹在人类样本上 (图 5). Oncotarget (2015) ncbi
小鼠 单克隆(AC-74)
  • 免疫印迹; 人类; 1:10,000; 图 7
西格玛奥德里奇 Actb抗体(Sigma, A2228)被用于被用于免疫印迹在人类样本上浓度为1:10,000 (图 7). PLoS Pathog (2015) ncbi
小鼠 单克隆(AC-74)
  • 免疫印迹; 人类; 图 2
西格玛奥德里奇 Actb抗体(Sigma, AC-74)被用于被用于免疫印迹在人类样本上 (图 2). Oncol Rep (2015) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 人类; 图 2
西格玛奥德里奇 Actb抗体(Sigma, A1978)被用于被用于免疫印迹在人类样本上 (图 2). Sci Rep (2015) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 小鼠; 图 1
西格玛奥德里奇 Actb抗体(Sigma-Aldrich, A5441)被用于被用于免疫印迹在小鼠样本上 (图 1). PLoS Pathog (2015) ncbi
小鼠 单克隆(AC-74)
  • 免疫印迹; 人类; 1:30,000
西格玛奥德里奇 Actb抗体(Sigma-Aldrich, A531)被用于被用于免疫印迹在人类样本上浓度为1:30,000. J Neuropathol Exp Neurol (2015) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 人类
西格玛奥德里奇 Actb抗体(Sigma-Aldrich, A5441)被用于被用于免疫印迹在人类样本上. Peerj (2015) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 人类
西格玛奥德里奇 Actb抗体(Sigma-Aldrich, AC-15)被用于被用于免疫印迹在人类样本上. J Cell Mol Med (2015) ncbi
小鼠 单克隆(AC-74)
  • 免疫印迹; 人类; 图 1
西格玛奥德里奇 Actb抗体(Sigma, A5316)被用于被用于免疫印迹在人类样本上 (图 1). Cell Death Differ (2015) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 小鼠; 图 2C
西格玛奥德里奇 Actb抗体(Sigma, A5441)被用于被用于免疫印迹在小鼠样本上 (图 2C). J Immunol (2015) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 人类; 图 2
西格玛奥德里奇 Actb抗体(Sigma, A1978)被用于被用于免疫印迹在人类样本上 (图 2). Cancer Immunol Res (2015) ncbi
小鼠 单克隆(AC-74)
  • 免疫印迹; 小鼠; 图 2
西格玛奥德里奇 Actb抗体(Sigma, AC74)被用于被用于免疫印迹在小鼠样本上 (图 2). Cell Rep (2015) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 人类; 1:10,000
西格玛奥德里奇 Actb抗体(Sigma-Aldrich, A5441)被用于被用于免疫印迹在人类样本上浓度为1:10,000. J Cancer Res Clin Oncol (2015) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 人类; 1:5000; 图 1
西格玛奥德里奇 Actb抗体(Sigma-Aldrich, A1978)被用于被用于免疫印迹在人类样本上浓度为1:5000 (图 1). Oncotarget (2015) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 人类; 1:4000; 图 2
西格玛奥德里奇 Actb抗体(Sigma, A5441)被用于被用于免疫印迹在人类样本上浓度为1:4000 (图 2). Nat Cell Biol (2015) ncbi
小鼠 单克隆(AC-15)
  • 免疫组化; 人类
  • 免疫印迹; 人类
西格玛奥德里奇 Actb抗体(Sigma-Aldrich, A1978)被用于被用于免疫组化在人类样本上 和 被用于免疫印迹在人类样本上. J Biol Chem (2015) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 人类; 图 2
西格玛奥德里奇 Actb抗体(Sigma, AC-15)被用于被用于免疫印迹在人类样本上 (图 2). Mol Biol Cell (2015) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 人类; 1:3000
西格玛奥德里奇 Actb抗体(Sigma, AC-15)被用于被用于免疫印迹在人类样本上浓度为1:3000. J Virol (2015) ncbi
小鼠 单克隆(AC-74)
  • 免疫印迹; 人类
西格玛奥德里奇 Actb抗体(Sigma Aldrich, A5316)被用于被用于免疫印迹在人类样本上. Neuro Oncol (2015) ncbi
小鼠 单克隆(AC-74)
  • 免疫印迹; 人类
西格玛奥德里奇 Actb抗体(Sigma, A2228)被用于被用于免疫印迹在人类样本上. Int J Cancer (2015) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 人类; 1:40,000; 图 1
西格玛奥德里奇 Actb抗体(Sigma-Aldrich, A5441)被用于被用于免疫印迹在人类样本上浓度为1:40,000 (图 1). Int J Oncol (2015) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 小鼠; 1:1000; 图 3d
西格玛奥德里奇 Actb抗体(Sigma, A-1978)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 3d). Nat Commun (2015) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 小鼠; 1:50,000; 图 s1
西格玛奥德里奇 Actb抗体(Sigma, A1978)被用于被用于免疫印迹在小鼠样本上浓度为1:50,000 (图 s1). Genes Dev (2015) ncbi
小鼠 单克隆(AC-74)
  • 免疫印迹; 小鼠; 1:5000; 图 s4
西格玛奥德里奇 Actb抗体(Sigma-Aldrich, A5316)被用于被用于免疫印迹在小鼠样本上浓度为1:5000 (图 s4). J Cell Biol (2015) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 人类; 1:1000; 图 3
西格玛奥德里奇 Actb抗体(SIGMA, AC-15)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3). Oncotarget (2015) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 人类; 1:10,000; 图 1
西格玛奥德里奇 Actb抗体(Sigma, A5441)被用于被用于免疫印迹在人类样本上浓度为1:10,000 (图 1). Nat Med (2015) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 人类
西格玛奥德里奇 Actb抗体(Sigma-Aldrich, A1978)被用于被用于免疫印迹在人类样本上. Oncotarget (2015) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 人类; 1:1000; 图 4
西格玛奥德里奇 Actb抗体(Sigma, AC-15)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 4). PLoS ONE (2015) ncbi
小鼠 单克隆(AC-74)
  • 免疫印迹; 小鼠; 图 4
西格玛奥德里奇 Actb抗体(Sigma, A5316)被用于被用于免疫印迹在小鼠样本上 (图 4). Proc Natl Acad Sci U S A (2015) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 人类
西格玛奥德里奇 Actb抗体(Sigma, AC15)被用于被用于免疫印迹在人类样本上. J Biol Chem (2015) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 人类; 图 3
西格玛奥德里奇 Actb抗体(Sigma, A5441)被用于被用于免疫印迹在人类样本上 (图 3). Cell Oncol (Dordr) (2015) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 小鼠; 1:20,000; 图 6
西格玛奥德里奇 Actb抗体(Sigma-Aldrich, A5441)被用于被用于免疫印迹在小鼠样本上浓度为1:20,000 (图 6). Age (Dordr) (2015) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 小鼠; 1:40,000
西格玛奥德里奇 Actb抗体(Sigma, A3854)被用于被用于免疫印迹在小鼠样本上浓度为1:40,000. Cereb Cortex (2016) ncbi
小鼠 单克隆(AC-74)
  • 免疫印迹; 人类; 1:2000
西格玛奥德里奇 Actb抗体(Sigma, A2228)被用于被用于免疫印迹在人类样本上浓度为1:2000. Mol Cancer Res (2015) ncbi
小鼠 单克隆(AC-40)
  • 免疫印迹; 大鼠
西格玛奥德里奇 Actb抗体(Sigma Chemical, A4700)被用于被用于免疫印迹在大鼠样本上. FEBS Lett (2015) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 人类; 图 6
西格玛奥德里奇 Actb抗体(Sigma, A5441)被用于被用于免疫印迹在人类样本上 (图 6). DNA Repair (Amst) (2015) ncbi
小鼠 单克隆(AC-40)
  • 免疫印迹; 人类; 图 s3
西格玛奥德里奇 Actb抗体(Sigma, AC-40)被用于被用于免疫印迹在人类样本上 (图 s3). Aging Cell (2015) ncbi
小鼠 单克隆(AC-74)
  • 免疫印迹; 小鼠; 图 1
西格玛奥德里奇 Actb抗体(Sigma, AC-74)被用于被用于免疫印迹在小鼠样本上 (图 1). J Immunol (2015) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 小鼠
西格玛奥德里奇 Actb抗体(Sigma, A5441)被用于被用于免疫印迹在小鼠样本上. J Immunol (2015) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 人类; 图 4
西格玛奥德里奇 Actb抗体(Sigma-Aldrich, A-1978)被用于被用于免疫印迹在人类样本上 (图 4). J Biol Chem (2015) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 人类
西格玛奥德里奇 Actb抗体(Sigma, A5441)被用于被用于免疫印迹在人类样本上. Acta Biochim Biophys Sin (Shanghai) (2015) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 人类; 图 3
西格玛奥德里奇 Actb抗体(Sigma-Aldrich, A5441)被用于被用于免疫印迹在人类样本上 (图 3). Int J Oncol (2015) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 牛; 图 s8
西格玛奥德里奇 Actb抗体(Sigma, A1978)被用于被用于免疫印迹在牛样本上 (图 s8). Nature (2015) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 人类; 图 3
西格玛奥德里奇 Actb抗体(Sigma, A1978)被用于被用于免疫印迹在人类样本上 (图 3). Mol Psychiatry (2015) ncbi
小鼠 单克隆(AC-74)
  • 免疫印迹; 人类; 1:3000; 图 5
西格玛奥德里奇 Actb抗体(Sigma, A2228)被用于被用于免疫印迹在人类样本上浓度为1:3000 (图 5). J Transl Med (2015) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 小鼠
西格玛奥德里奇 Actb抗体(Sigma, AC-15)被用于被用于免疫印迹在小鼠样本上. Neoplasia (2015) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 人类; 1:4000; 图 2
西格玛奥德里奇 Actb抗体(Sigma, A1978)被用于被用于免疫印迹在人类样本上浓度为1:4000 (图 2). Nat Cell Biol (2015) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 人类; 1:4000; 图 7
西格玛奥德里奇 Actb抗体(Sigma, A5441)被用于被用于免疫印迹在人类样本上浓度为1:4000 (图 7). Oncogene (2015) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 人类; 1:5000
西格玛奥德里奇 Actb抗体(Sigma, A5441)被用于被用于免疫印迹在人类样本上浓度为1:5000. Chem Biol Interact (2015) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 大鼠; 图 5
西格玛奥德里奇 Actb抗体(Sigma, A5441)被用于被用于免疫印迹在大鼠样本上 (图 5). PLoS ONE (2015) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 人类; 1:50,000
西格玛奥德里奇 Actb抗体(Sigma-Aldrich, A5441)被用于被用于免疫印迹在人类样本上浓度为1:50,000. PLoS ONE (2015) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 人类; 图 1
西格玛奥德里奇 Actb抗体(Sigma-Aldrich, A1978)被用于被用于免疫印迹在人类样本上 (图 1). J Biol Chem (2015) ncbi
小鼠 单克隆(AC-74)
  • 免疫印迹; 人类; 图 4
西格玛奥德里奇 Actb抗体(Sigma, A2228)被用于被用于免疫印迹在人类样本上 (图 4). Ann Surg Oncol (2015) ncbi
小鼠 单克隆(AC-74)
  • 免疫印迹; 小鼠; 1:20,000; 图 1
西格玛奥德里奇 Actb抗体(Sigma-Aldrich, AC-74)被用于被用于免疫印迹在小鼠样本上浓度为1:20,000 (图 1). FASEB J (2015) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 大鼠; 1:20,000; 图 s1
西格玛奥德里奇 Actb抗体(Sigma, A1978)被用于被用于免疫印迹在大鼠样本上浓度为1:20,000 (图 s1). Mol Biol Cell (2015) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 人类; 图 2A
  • 免疫印迹; 小鼠; 图 1A
西格玛奥德里奇 Actb抗体(Sigma, A1978)被用于被用于免疫印迹在人类样本上 (图 2A) 和 被用于免疫印迹在小鼠样本上 (图 1A). Sci Rep (2015) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 小鼠; 1:5000; 图 2c
  • 免疫印迹; 人类; 1:5000; 图 3b
西格玛奥德里奇 Actb抗体(Sigma, A5441)被用于被用于免疫印迹在小鼠样本上浓度为1:5000 (图 2c) 和 被用于免疫印迹在人类样本上浓度为1:5000 (图 3b). Nat Commun (2015) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 大鼠; 图 6
  • 免疫印迹; 小鼠; 图 6
西格玛奥德里奇 Actb抗体(Sigma, A-5441)被用于被用于免疫印迹在大鼠样本上 (图 6) 和 被用于免疫印迹在小鼠样本上 (图 6). J Neuroinflammation (2015) ncbi
小鼠 单克隆(AC-74)
  • 免疫印迹; 小鼠; 1:10,000; 图 1
西格玛奥德里奇 Actb抗体(Sigma, AC-74)被用于被用于免疫印迹在小鼠样本上浓度为1:10,000 (图 1). Oncotarget (2015) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 小鼠; 图 3d
西格玛奥德里奇 Actb抗体(Sigma, A5441)被用于被用于免疫印迹在小鼠样本上 (图 3d). J Biol Chem (2015) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 人类; 1:8000; 图 1
西格玛奥德里奇 Actb抗体(Sigma, A1978)被用于被用于免疫印迹在人类样本上浓度为1:8000 (图 1). Oncotarget (2015) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 小鼠; 图 2a
西格玛奥德里奇 Actb抗体(Sigma, AC-15)被用于被用于免疫印迹在小鼠样本上 (图 2a). J Immunol (2015) ncbi
小鼠 单克隆(AC-15)
  • 免疫细胞化学; 人类; 1:40,000; 图 3
  • 免疫印迹; 人类; 1:40,000; 图 3
西格玛奥德里奇 Actb抗体(Sigma, AC-15)被用于被用于免疫细胞化学在人类样本上浓度为1:40,000 (图 3) 和 被用于免疫印迹在人类样本上浓度为1:40,000 (图 3). Cell Cycle (2015) ncbi
小鼠 单克隆(AC-74)
  • 免疫印迹; 人类; 图 5
西格玛奥德里奇 Actb抗体(Sigma, A2228)被用于被用于免疫印迹在人类样本上 (图 5). J Biol Chem (2015) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 小鼠; 1:10,000
西格玛奥德里奇 Actb抗体(Sigma, A3854)被用于被用于免疫印迹在小鼠样本上浓度为1:10,000. J Neurosci (2015) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 小鼠; 1:3000
西格玛奥德里奇 Actb抗体(Sigma, A1978)被用于被用于免疫印迹在小鼠样本上浓度为1:3000. Int J Mol Med (2015) ncbi
小鼠 单克隆(AC-74)
  • 免疫印迹; 人类; 1:100,000; 图 6
西格玛奥德里奇 Actb抗体(SIGMA-ALDRICH, A2228)被用于被用于免疫印迹在人类样本上浓度为1:100,000 (图 6). Cell Rep (2015) ncbi
小鼠 单克隆(AC-15)
  • 酶联免疫吸附测定; 大鼠
  • 免疫印迹; 大鼠; 1:1000
西格玛奥德里奇 Actb抗体(Sigma Chemical, A5441)被用于被用于酶联免疫吸附测定在大鼠样本上 和 被用于免疫印迹在大鼠样本上浓度为1:1000. Mol Neurobiol (2016) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 小鼠; 1:6000; 图 3
西格玛奥德里奇 Actb抗体(Sigma-Aldrich, AC-15)被用于被用于免疫印迹在小鼠样本上浓度为1:6000 (图 3). Nat Commun (2015) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 人类; 1:5000; 图 s5
  • 免疫印迹; 小鼠; 1:5000; 图 6
西格玛奥德里奇 Actb抗体(Sigma Aldrich, A5441)被用于被用于免疫印迹在人类样本上浓度为1:5000 (图 s5) 和 被用于免疫印迹在小鼠样本上浓度为1:5000 (图 6). Matrix Biol (2015) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 大鼠; 1:1000
西格玛奥德里奇 Actb抗体(Sigma-Aldrich, A1978)被用于被用于免疫印迹在大鼠样本上浓度为1:1000. Cell Death Dis (2015) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 人类; 图 4
西格玛奥德里奇 Actb抗体(Sigma-Aldrich, A5441)被用于被用于免疫印迹在人类样本上 (图 4). Cell Cycle (2015) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 小鼠; 1:1000; 图 s6
西格玛奥德里奇 Actb抗体(Sigma, A1978)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 s6). Development (2015) ncbi
小鼠 单克隆(AC-74)
  • 免疫印迹; 大鼠; 1:75,000
西格玛奥德里奇 Actb抗体(Sigma-Aldrich, A5316)被用于被用于免疫印迹在大鼠样本上浓度为1:75,000. Exp Neurol (2015) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 小鼠; 图 7
西格玛奥德里奇 Actb抗体(Sigma, AC-15)被用于被用于免疫印迹在小鼠样本上 (图 7). Nat Immunol (2015) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 小鼠; 1:5000; 图 4
西格玛奥德里奇 Actb抗体(Sigma, A5441)被用于被用于免疫印迹在小鼠样本上浓度为1:5000 (图 4). J Cell Biol (2015) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 小鼠; 1:2000; 图 s12
西格玛奥德里奇 Actb抗体(Sigma, A1978)被用于被用于免疫印迹在小鼠样本上浓度为1:2000 (图 s12). Antioxid Redox Signal (2015) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; zebra finch; 1:20,000
西格玛奥德里奇 Actb抗体(Sigma, A5441)被用于被用于免疫印迹在zebra finch样本上浓度为1:20,000. J Comp Neurol (2015) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 小鼠; 图 1d
西格玛奥德里奇 Actb抗体(Sigma, A5441)被用于被用于免疫印迹在小鼠样本上 (图 1d). Exp Hematol (2015) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 人类
西格玛奥德里奇 Actb抗体(Sigma-Aldrich, AC15)被用于被用于免疫印迹在人类样本上. J Immunol (2015) ncbi
小鼠 单克隆(AC-15)
  • 免疫组化-冰冻切片; 小鼠
  • 免疫印迹; 小鼠
西格玛奥德里奇 Actb抗体(Sigma-Aldrich, A5441)被用于被用于免疫组化-冰冻切片在小鼠样本上 和 被用于免疫印迹在小鼠样本上. PLoS ONE (2014) ncbi
小鼠 单克隆(AC-74)
  • 免疫印迹; 人类
西格玛奥德里奇 Actb抗体(Sigma, A5316)被用于被用于免疫印迹在人类样本上. J Biol Chem (2015) ncbi
小鼠 单克隆(AC-74)
  • 免疫印迹; 人类
西格玛奥德里奇 Actb抗体(Sigma, A5316)被用于被用于免疫印迹在人类样本上. J Vasc Res (2014) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 人类; 1:1000; 图 s3
西格玛奥德里奇 Actb抗体(Sigma, AC-15)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 s3). Stem Cells Dev (2015) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 小鼠; 图 3
西格玛奥德里奇 Actb抗体(Sigma-Aldrich, A1978)被用于被用于免疫印迹在小鼠样本上 (图 3). Mol Neurodegener (2014) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 大鼠; 1:10,000
西格玛奥德里奇 Actb抗体(Sigma, A5441)被用于被用于免疫印迹在大鼠样本上浓度为1:10,000. Cell Tissue Res (2015) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 人类; 1:50,000
西格玛奥德里奇 Actb抗体(Sigma, A3854)被用于被用于免疫印迹在人类样本上浓度为1:50,000. PLoS ONE (2014) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 人类
西格玛奥德里奇 Actb抗体(Sigma-Aldrich, A1978)被用于被用于免疫印迹在人类样本上. Eur J Pharm Biopharm (2015) ncbi
小鼠 单克隆(AC-74)
  • 免疫印迹; 大鼠; 图 5
  • 免疫印迹; 小鼠; 图 5
西格玛奥德里奇 Actb抗体(Sigma, A5316)被用于被用于免疫印迹在大鼠样本上 (图 5) 和 被用于免疫印迹在小鼠样本上 (图 5). J Cell Biol (2014) ncbi
小鼠 单克隆(AC-74)
  • 免疫印迹; 小鼠; 图 5
西格玛奥德里奇 Actb抗体(Sigma, A2228)被用于被用于免疫印迹在小鼠样本上 (图 5). Mol Psychiatry (2015) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 人类
西格玛奥德里奇 Actb抗体(Sigma, A5441)被用于被用于免疫印迹在人类样本上. J Biol Chem (2015) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 人类
西格玛奥德里奇 Actb抗体(Sigma, A1978)被用于被用于免疫印迹在人类样本上. Oncotarget (2014) ncbi
小鼠 单克隆(AC-74)
  • 免疫印迹; 人类; 1:7000
西格玛奥德里奇 Actb抗体(Sigma-Aldrich, A5316)被用于被用于免疫印迹在人类样本上浓度为1:7000. PLoS ONE (2014) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 小鼠; 1:10,000; 图 6
西格玛奥德里奇 Actb抗体(Sigma, A5441)被用于被用于免疫印迹在小鼠样本上浓度为1:10,000 (图 6). Cell Cycle (2014) ncbi
小鼠 单克隆(AC-15)
  • 免疫沉淀; 人类; 图 3
西格玛奥德里奇 Actb抗体(Sigma, AC-15)被用于被用于免疫沉淀在人类样本上 (图 3). Cell Cycle (2014) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 小鼠
西格玛奥德里奇 Actb抗体(Sigma-Aldrich, A3854)被用于被用于免疫印迹在小鼠样本上. J Clin Invest (2015) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 小鼠; 1:10,000; 图 1
西格玛奥德里奇 Actb抗体(Sigma, A1978)被用于被用于免疫印迹在小鼠样本上浓度为1:10,000 (图 1). Autophagy (2014) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 人类
西格玛奥德里奇 Actb抗体(Sigma-Aldrich, AC15)被用于被用于免疫印迹在人类样本上. Cancer Lett (2015) ncbi
小鼠 单克隆(AC-74)
  • 免疫印迹; 小鼠; 1:5000; 图 2
  • 免疫印迹; 人类; 1:5000; 图 2
西格玛奥德里奇 Actb抗体(Sigma, AC-74)被用于被用于免疫印迹在小鼠样本上浓度为1:5000 (图 2) 和 被用于免疫印迹在人类样本上浓度为1:5000 (图 2). Oncotarget (2015) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 人类; 图 1
西格玛奥德里奇 Actb抗体(Sigma, clone AC-15)被用于被用于免疫印迹在人类样本上 (图 1). J Cell Sci (2015) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 大鼠
西格玛奥德里奇 Actb抗体(Sigma-Aldrich, A5441)被用于被用于免疫印迹在大鼠样本上. J Neurosci (2014) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; Garra rufa
西格玛奥德里奇 Actb抗体(Sigma, A5441)被用于被用于免疫印迹在Garra rufa样本上. Redox Biol (2014) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 人类
西格玛奥德里奇 Actb抗体(Sigma-Aldrich, A5441)被用于被用于免疫印迹在人类样本上. Br J Cancer (2015) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 人类; 1:70,000; 图 2d
西格玛奥德里奇 Actb抗体(Sigma-Aldrich, A5441)被用于被用于免疫印迹在人类样本上浓度为1:70,000 (图 2d). Eur J Cell Biol (2015) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 小鼠; 1:10,000
西格玛奥德里奇 Actb抗体(Sigma, A5441)被用于被用于免疫印迹在小鼠样本上浓度为1:10,000. Behav Brain Res (2015) ncbi
小鼠 单克隆(AC-40)
  • 免疫印迹; 大鼠; 1:1000
西格玛奥德里奇 Actb抗体(Sigma-Aldrich, A4700)被用于被用于免疫印迹在大鼠样本上浓度为1:1000. Int J Dev Neurosci (2015) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 人类; 图 6
西格玛奥德里奇 Actb抗体(Sigma-Aldrich, A5441)被用于被用于免疫印迹在人类样本上 (图 6). Virus Res (2015) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 人类
西格玛奥德里奇 Actb抗体(Sigma, A5441)被用于被用于免疫印迹在人类样本上. FEBS Lett (2014) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 人类; 1:10,000; 图 2
西格玛奥德里奇 Actb抗体(Sigma, A5441)被用于被用于免疫印迹在人类样本上浓度为1:10,000 (图 2). Nat Cell Biol (2015) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 人类; 1:1000; 图 s1
西格玛奥德里奇 Actb抗体(Sigma, A1978)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 s1). Mol Oncol (2015) ncbi
小鼠 单克隆(AC-40)
  • 免疫印迹; 人类
西格玛奥德里奇 Actb抗体(Sigma, AC-40)被用于被用于免疫印迹在人类样本上. Oncotarget (2014) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 小鼠; 1:5000
西格玛奥德里奇 Actb抗体(Sigma, A1978)被用于被用于免疫印迹在小鼠样本上浓度为1:5000. Transl Psychiatry (2014) ncbi
小鼠 单克隆(AC-74)
  • 免疫细胞化学; 小鼠
西格玛奥德里奇 Actb抗体(Sigma, AC-74)被用于被用于免疫细胞化学在小鼠样本上. J Immunol (2015) ncbi
小鼠 单克隆(AC-74)
  • 免疫印迹; 小鼠; 1:5000
西格玛奥德里奇 Actb抗体(Sigma-Aldrich, A5316)被用于被用于免疫印迹在小鼠样本上浓度为1:5000. Invest Ophthalmol Vis Sci (2014) ncbi
小鼠 单克隆(AC-74)
  • 免疫印迹; 小鼠; 1:10,000; 图 1
西格玛奥德里奇 Actb抗体(Sigma, A5316)被用于被用于免疫印迹在小鼠样本上浓度为1:10,000 (图 1). Nat Commun (2014) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 小鼠
西格玛奥德里奇 Actb抗体(Sigma-Aldrich, AC15)被用于被用于免疫印迹在小鼠样本上. J Immunol (2015) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 人类; 图 5
西格玛奥德里奇 Actb抗体(Sigma-Aldrich, A1978)被用于被用于免疫印迹在人类样本上 (图 5). Nucleic Acids Res (2014) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 人类
西格玛奥德里奇 Actb抗体(Sigma-Aldrich, A3854)被用于被用于免疫印迹在人类样本上. Mol Syst Biol (2014) ncbi
小鼠 单克隆(AC-74)
  • 免疫印迹; 小鼠; 1:10,000; 图 2
西格玛奥德里奇 Actb抗体(Sigma, A-5316)被用于被用于免疫印迹在小鼠样本上浓度为1:10,000 (图 2). Nat Med (2014) ncbi
小鼠 单克隆(AC-74)
  • 免疫印迹; 人类; 1:5000; 图 8
西格玛奥德里奇 Actb抗体(Sigma-Aldrich, A5316)被用于被用于免疫印迹在人类样本上浓度为1:5000 (图 8). J Clin Invest (2014) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 大鼠
西格玛奥德里奇 Actb抗体(Sigma, AC-15)被用于被用于免疫印迹在大鼠样本上. In Vitro Cell Dev Biol Anim (2015) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 人类; 图 5
西格玛奥德里奇 Actb抗体(Sigma, A5441)被用于被用于免疫印迹在人类样本上 (图 5). Arch Plast Surg (2014) ncbi
小鼠 单克隆(AC-74)
  • 免疫印迹; 小鼠; 1:5000; 图 4
西格玛奥德里奇 Actb抗体(Sigma, A5316)被用于被用于免疫印迹在小鼠样本上浓度为1:5000 (图 4). Development (2014) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 人类; 图 2
西格玛奥德里奇 Actb抗体(Sigma-Aldrich, A5441)被用于被用于免疫印迹在人类样本上 (图 2). J Biomol Screen (2015) ncbi
小鼠 单克隆(AC-74)
  • 免疫印迹; 小鼠; 1:10,000; 图 1
西格玛奥德里奇 Actb抗体(Sigma, A2228)被用于被用于免疫印迹在小鼠样本上浓度为1:10,000 (图 1). Nat Commun (2014) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 人类; 1:30,000
西格玛奥德里奇 Actb抗体(Sigma, Ac-15)被用于被用于免疫印迹在人类样本上浓度为1:30,000. PLoS ONE (2014) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 小鼠; 1:5000
西格玛奥德里奇 Actb抗体(Sigma-Aldrich, A5441)被用于被用于免疫印迹在小鼠样本上浓度为1:5000. FASEB J (2015) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 小鼠
西格玛奥德里奇 Actb抗体(Sigma, A1978)被用于被用于免疫印迹在小鼠样本上. Brain Struct Funct (2016) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 小鼠
西格玛奥德里奇 Actb抗体(Sigma, A1978)被用于被用于免疫印迹在小鼠样本上. Am J Physiol Heart Circ Physiol (2015) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 人类; 1:1000
西格玛奥德里奇 Actb抗体(Sigma-Aldrich, A5441)被用于被用于免疫印迹在人类样本上浓度为1:1000. J Nat Prod (2014) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 大鼠; 1:1000
西格玛奥德里奇 Actb抗体(Sigma, A5441)被用于被用于免疫印迹在大鼠样本上浓度为1:1000. Mol Neurobiol (2015) ncbi
小鼠 单克隆(AC-74)
  • 免疫印迹; 小鼠
西格玛奥德里奇 Actb抗体(Sigma-Aldrich, A2228)被用于被用于免疫印迹在小鼠样本上. Front Cell Neurosci (2014) ncbi
小鼠 单克隆(AC-74)
  • 免疫印迹; 人类; 1:10,000; 图 3
西格玛奥德里奇 Actb抗体(Sigma, A5316)被用于被用于免疫印迹在人类样本上浓度为1:10,000 (图 3). Nat Commun (2014) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 人类; 图 5
西格玛奥德里奇 Actb抗体(Sigma, A5441)被用于被用于免疫印迹在人类样本上 (图 5). J Med Chem (2015) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 人类; 图 2
西格玛奥德里奇 Actb抗体(Sigma Aldrich, A5441)被用于被用于免疫印迹在人类样本上 (图 2). Mol Biol Cell (2015) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 人类
西格玛奥德里奇 Actb抗体(Sigma-Aldrich, AC-15)被用于被用于免疫印迹在人类样本上. J Biol Chem (2014) ncbi
小鼠 单克隆(AC-74)
  • 免疫印迹; 人类; 1:5000
西格玛奥德里奇 Actb抗体(Sigma-Aldrich, A2228)被用于被用于免疫印迹在人类样本上浓度为1:5000. J Cell Biochem (2015) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 人类
西格玛奥德里奇 Actb抗体(Sigma, A1978)被用于被用于免疫印迹在人类样本上. Environ Sci Technol (2014) ncbi
小鼠 单克隆(AC-15)
西格玛奥德里奇 Actb抗体(Sigma-Aldrich, A1978)被用于. BMC Neurosci (2014) ncbi
小鼠 单克隆(AC-74)
  • 免疫印迹; 人类
西格玛奥德里奇 Actb抗体(Sigma, AC-74)被用于被用于免疫印迹在人类样本上. PLoS ONE (2014) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 人类
西格玛奥德里奇 Actb抗体(Sigma, A5441)被用于被用于免疫印迹在人类样本上. Prostate (2015) ncbi
小鼠 单克隆(AC-74)
  • 免疫印迹; 人类
西格玛奥德里奇 Actb抗体(Sigma-Aldrich, A2228)被用于被用于免疫印迹在人类样本上. J Cancer Res Clin Oncol (2015) ncbi
小鼠 单克隆(AC-74)
  • 免疫印迹; 人类
西格玛奥德里奇 Actb抗体(Sigma-Aldrich, A5316)被用于被用于免疫印迹在人类样本上. J Biol Chem (2014) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 人类; 1:5000
西格玛奥德里奇 Actb抗体(Sigma, A5441)被用于被用于免疫印迹在人类样本上浓度为1:5000. Transl Psychiatry (2014) ncbi
小鼠 单克隆(AC-74)
  • 免疫印迹; 人类; 图 1b
西格玛奥德里奇 Actb抗体(Sigma-Aldrich, A2228)被用于被用于免疫印迹在人类样本上 (图 1b). Leukemia (2015) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 人类; 图 3
西格玛奥德里奇 Actb抗体(Sigma-Aldrich, A1978)被用于被用于免疫印迹在人类样本上 (图 3). Mol Biosyst (2014) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 小鼠; 图 1
西格玛奥德里奇 Actb抗体(Sigma, A5441)被用于被用于免疫印迹在小鼠样本上 (图 1). Am J Pathol (2014) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 人类
西格玛奥德里奇 Actb抗体(Sigma, A1978)被用于被用于免疫印迹在人类样本上. Hum Mol Genet (2015) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 人类
西格玛奥德里奇 Actb抗体(Sigma, A5441)被用于被用于免疫印迹在人类样本上. J Biol Chem (2014) ncbi
小鼠 单克隆(AC-74)
  • 免疫印迹; 小鼠; 图 2
西格玛奥德里奇 Actb抗体(Sigma-Aldrich, A5316)被用于被用于免疫印迹在小鼠样本上 (图 2). Neurosci Bull (2014) ncbi
小鼠 单克隆(AC-74)
  • 免疫印迹; 大鼠; 1:1000
西格玛奥德里奇 Actb抗体(Sigma-Aldrich, A5316)被用于被用于免疫印迹在大鼠样本上浓度为1:1000. PLoS ONE (2014) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 小鼠; 1:5000
西格玛奥德里奇 Actb抗体(Sigma-Aldrich, A5441)被用于被用于免疫印迹在小鼠样本上浓度为1:5000. PLoS ONE (2014) ncbi
小鼠 单克隆(AC-40)
  • 免疫印迹; 小鼠; 1:10,000
西格玛奥德里奇 Actb抗体(Sigma-Aldrich, A4700)被用于被用于免疫印迹在小鼠样本上浓度为1:10,000. J Neurosci (2014) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 小鼠
西格玛奥德里奇 Actb抗体(Sigma, A1978)被用于被用于免疫印迹在小鼠样本上. MBio (2014) ncbi
小鼠 单克隆(AC-15)
  • 免疫细胞化学; 大鼠
西格玛奥德里奇 Actb抗体(Sigma, A5441)被用于被用于免疫细胞化学在大鼠样本上. Toxicol Sci (2015) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 小鼠; 图 5
  • 免疫印迹; 人类; 图 4
西格玛奥德里奇 Actb抗体(Sigma-Aldrich, A5441)被用于被用于免疫印迹在小鼠样本上 (图 5) 和 被用于免疫印迹在人类样本上 (图 4). J Exp Med (2014) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 人类; 1:4000
西格玛奥德里奇 Actb抗体(Sigma-Aldrich, A5441)被用于被用于免疫印迹在人类样本上浓度为1:4000. Mol Cancer Res (2015) ncbi
小鼠 单克隆(AC-40)
  • 免疫印迹; 小鼠; 1:20,000
西格玛奥德里奇 Actb抗体(Sigma-Aldrich, AC40)被用于被用于免疫印迹在小鼠样本上浓度为1:20,000. Neurobiol Dis (2015) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 人类; 1:5000; 图 1
西格玛奥德里奇 Actb抗体(Sigma, A5441)被用于被用于免疫印迹在人类样本上浓度为1:5000 (图 1). elife (2014) ncbi
小鼠 单克隆(AC-40)
  • 免疫印迹; 大鼠; 1:2000
西格玛奥德里奇 Actb抗体(Sigma, A4700)被用于被用于免疫印迹在大鼠样本上浓度为1:2000. Behav Brain Res (2015) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 小鼠
西格玛奥德里奇 Actb抗体(Sigma-Aldrich, A5441)被用于被用于免疫印迹在小鼠样本上. Genesis (2014) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 人类; 1:20,000
西格玛奥德里奇 Actb抗体(Sigma, A-5441)被用于被用于免疫印迹在人类样本上浓度为1:20,000. Biochem Pharmacol (2014) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 小鼠; 图 2
西格玛奥德里奇 Actb抗体(Sigma, A5441)被用于被用于免疫印迹在小鼠样本上 (图 2). J Immunol (2014) ncbi
小鼠 单克隆(AC-15)
西格玛奥德里奇 Actb抗体(Sigma, A5441)被用于. Growth Factors (2014) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 人类; 图 1
西格玛奥德里奇 Actb抗体(Sigma, A5441)被用于被用于免疫印迹在人类样本上 (图 1). PLoS Genet (2014) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 人类
西格玛奥德里奇 Actb抗体(Sigma-Aldrich, A5441)被用于被用于免疫印迹在人类样本上. Pathol Int (2014) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 小鼠; 图 3
西格玛奥德里奇 Actb抗体(Sigma, A-3854)被用于被用于免疫印迹在小鼠样本上 (图 3). Oncogene (2015) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 小鼠; 图 3
  • 免疫印迹; 人类; 图 5
西格玛奥德里奇 Actb抗体(Sigma, AC-15)被用于被用于免疫印迹在小鼠样本上 (图 3) 和 被用于免疫印迹在人类样本上 (图 5). PLoS ONE (2014) ncbi
小鼠 单克隆(AC-15)
  • 免疫细胞化学; 小鼠; 1:500
  • 免疫印迹; 小鼠; 1:5000
西格玛奥德里奇 Actb抗体(Sigma-Aldrich, A5441)被用于被用于免疫细胞化学在小鼠样本上浓度为1:500 和 被用于免疫印迹在小鼠样本上浓度为1:5000. J Biol Chem (2014) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 小鼠; 图 1b
西格玛奥德里奇 Actb抗体(Sigma, AC-15)被用于被用于免疫印迹在小鼠样本上 (图 1b). Mucosal Immunol (2015) ncbi
小鼠 单克隆(AC-74)
  • 免疫印迹; 小鼠; 1:20,000
西格玛奥德里奇 Actb抗体(Sigma-Aldrich, A5316)被用于被用于免疫印迹在小鼠样本上浓度为1:20,000. J Neurosci (2014) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 大鼠; 图 6
西格玛奥德里奇 Actb抗体(Sigma-Aldrich, A1978)被用于被用于免疫印迹在大鼠样本上 (图 6). J Biophotonics (2015) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 大鼠; 1:2000
西格玛奥德里奇 Actb抗体(Sigma, A5441)被用于被用于免疫印迹在大鼠样本上浓度为1:2000. Neurosci Lett (2014) ncbi
小鼠 单克隆(AC-74)
  • 免疫印迹; 人类; 1:5000; 图 3
西格玛奥德里奇 Actb抗体(Sigma, A-5316)被用于被用于免疫印迹在人类样本上浓度为1:5000 (图 3). Drug Chem Toxicol (2015) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 人类
西格玛奥德里奇 Actb抗体(Sigma, C-15)被用于被用于免疫印迹在人类样本上. PLoS ONE (2014) ncbi
小鼠 单克隆(AC-40)
  • 免疫印迹; domestic goat; 1:1000; 图 3
西格玛奥德里奇 Actb抗体(Sigma, A4700)被用于被用于免疫印迹在domestic goat样本上浓度为1:1000 (图 3). PLoS ONE (2014) ncbi
小鼠 单克隆(AC-74)
  • 免疫印迹; 人类; 图 6
西格玛奥德里奇 Actb抗体(Sigma-Aldrich, A2228)被用于被用于免疫印迹在人类样本上 (图 6). PLoS ONE (2014) ncbi
小鼠 单克隆(AC-15)
  • 免疫细胞化学; 小鼠
  • 免疫印迹; 小鼠
西格玛奥德里奇 Actb抗体(Sigma, AC15)被用于被用于免疫细胞化学在小鼠样本上 和 被用于免疫印迹在小鼠样本上. PLoS ONE (2014) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 小鼠; 1:5000; 图 2
西格玛奥德里奇 Actb抗体(Sigma, AC-15)被用于被用于免疫印迹在小鼠样本上浓度为1:5000 (图 2). Front Cell Neurosci (2014) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 人类
西格玛奥德里奇 Actb抗体(Sigma, 1978)被用于被用于免疫印迹在人类样本上. PLoS ONE (2014) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 人类; 1:5000; 图 5
西格玛奥德里奇 Actb抗体(Sigma-Aldrich, A1978-200UL)被用于被用于免疫印迹在人类样本上浓度为1:5000 (图 5). Pigment Cell Melanoma Res (2015) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 小鼠; 1:10,000
西格玛奥德里奇 Actb抗体(Sigma, A5441)被用于被用于免疫印迹在小鼠样本上浓度为1:10,000. J Biol Chem (2014) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 人类
西格玛奥德里奇 Actb抗体(Sigma-Aldrich, A-5441)被用于被用于免疫印迹在人类样本上. Oncotarget (2014) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 大鼠
西格玛奥德里奇 Actb抗体(Sigma Chemical, A5441)被用于被用于免疫印迹在大鼠样本上. Toxicol Appl Pharmacol (2014) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 大鼠; 1:10,000
西格玛奥德里奇 Actb抗体(Sigma-Aldrich, A5441)被用于被用于免疫印迹在大鼠样本上浓度为1:10,000. J Neuroinflammation (2014) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 小鼠; 图 2,3
西格玛奥德里奇 Actb抗体(Sigma Aldrich, A1978)被用于被用于免疫印迹在小鼠样本上 (图 2,3). J Histochem Cytochem (2014) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 人类; 图 4
西格玛奥德里奇 Actb抗体(Sigma, A5441)被用于被用于免疫印迹在人类样本上 (图 4). FEBS J (2014) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 大鼠; 1:5000; 图 4
西格玛奥德里奇 Actb抗体(Sigma, A5441)被用于被用于免疫印迹在大鼠样本上浓度为1:5000 (图 4). Stem Cells (2014) ncbi
小鼠 单克隆(AC-74)
  • 免疫印迹; 小鼠; 1:20,000
西格玛奥德里奇 Actb抗体(Sigma-Aldrich, A5316)被用于被用于免疫印迹在小鼠样本上浓度为1:20,000. J Neurosci Res (2014) ncbi
小鼠 单克隆(AC-74)
  • 免疫印迹; 人类
西格玛奥德里奇 Actb抗体(Sigma, A2228)被用于被用于免疫印迹在人类样本上. Nucleic Acids Res (2014) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 小鼠; 1:10,000; 图 7
西格玛奥德里奇 Actb抗体(Sigma Aldrich, A5441)被用于被用于免疫印迹在小鼠样本上浓度为1:10,000 (图 7). Am J Physiol Endocrinol Metab (2014) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 人类
西格玛奥德里奇 Actb抗体(Sigma-Aldrich, A5441)被用于被用于免疫印迹在人类样本上. J Immunol (2014) ncbi
小鼠 单克隆(AC-74)
  • 免疫印迹; 小鼠; 1:1000; 图 3
西格玛奥德里奇 Actb抗体(Sigma-Aldrich, A5316)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 3). Cell Tissue Res (2014) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 小鼠
西格玛奥德里奇 Actb抗体(Sigma Aldrich, A5441)被用于被用于免疫印迹在小鼠样本上. Molecules (2014) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 人类; 图 5
西格玛奥德里奇 Actb抗体(Sigma-Aldrich, AC-15)被用于被用于免疫印迹在人类样本上 (图 5). J Gen Virol (2014) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 小鼠
西格玛奥德里奇 Actb抗体(Sigma, A5441)被用于被用于免疫印迹在小鼠样本上. PLoS ONE (2014) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 小鼠
  • 免疫印迹; 人类
西格玛奥德里奇 Actb抗体(Sigma-Aldrich, AC-15)被用于被用于免疫印迹在小鼠样本上 和 被用于免疫印迹在人类样本上. Oncogene (2015) ncbi
小鼠 单克隆(AC-40)
  • 免疫印迹; 人类; 图 6
西格玛奥德里奇 Actb抗体(Sigma, AC40)被用于被用于免疫印迹在人类样本上 (图 6). Oncogene (2015) ncbi
小鼠 单克隆(AC-74)
  • 免疫印迹; 人类
西格玛奥德里奇 Actb抗体(Sigma, A5316)被用于被用于免疫印迹在人类样本上. Biochim Biophys Acta (2014) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 小鼠
西格玛奥德里奇 Actb抗体(Sigma-Aldrich Chemie B.V, A5441)被用于被用于免疫印迹在小鼠样本上. Biochim Biophys Acta (2014) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 大鼠; 1:5000; 图 3
西格玛奥德里奇 Actb抗体(Sigma-Aldrich, A5441)被用于被用于免疫印迹在大鼠样本上浓度为1:5000 (图 3). Am J Physiol Heart Circ Physiol (2014) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 大鼠; 1:500,000
西格玛奥德里奇 Actb抗体(Sigma-Aldrich, AC15)被用于被用于免疫印迹在大鼠样本上浓度为1:500,000. Sleep (2014) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 小鼠; 1:30,000
西格玛奥德里奇 Actb抗体(Sigma, A5441)被用于被用于免疫印迹在小鼠样本上浓度为1:30,000. Nat Commun (2014) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 大鼠; 1:20,000
西格玛奥德里奇 Actb抗体(Sigma, AC15)被用于被用于免疫印迹在大鼠样本上浓度为1:20,000. Exp Eye Res (2014) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 人类; 1:5000
西格玛奥德里奇 Actb抗体(Sigma, A5441)被用于被用于免疫印迹在人类样本上浓度为1:5000. Nucleic Acids Res (2014) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 大鼠
西格玛奥德里奇 Actb抗体(Sigma-Aldrich, A5441)被用于被用于免疫印迹在大鼠样本上. J Cereb Blood Flow Metab (2014) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 人类; 1:10,000
西格玛奥德里奇 Actb抗体(Sigma, A5441)被用于被用于免疫印迹在人类样本上浓度为1:10,000. Mol Cell Biol (2014) ncbi
小鼠 单克隆(AC-74)
  • 免疫印迹; 人类; 图 2
西格玛奥德里奇 Actb抗体(Sigma-Aldrich, A5316)被用于被用于免疫印迹在人类样本上 (图 2). Nature (2014) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 小鼠; 1:5000
西格玛奥德里奇 Actb抗体(Sigma, A1978)被用于被用于免疫印迹在小鼠样本上浓度为1:5000. Free Radic Biol Med (2014) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 人类
西格玛奥德里奇 Actb抗体(Sigma-Aldrich, A5441)被用于被用于免疫印迹在人类样本上. Cell Death Dis (2014) ncbi
小鼠 单克隆(AC-74)
  • 免疫印迹; 人类; 图 s4
西格玛奥德里奇 Actb抗体(Sigma, A5316)被用于被用于免疫印迹在人类样本上 (图 s4). Nature (2014) ncbi
小鼠 单克隆(AC-74)
  • 免疫印迹; 人类
西格玛奥德里奇 Actb抗体(Sigma-Aldrich, A-2228)被用于被用于免疫印迹在人类样本上. Oncotarget (2014) ncbi
小鼠 单克隆(AC-74)
  • 免疫印迹; 大鼠; 1:5000
西格玛奥德里奇 Actb抗体(Sigma-Aldrich, A2228)被用于被用于免疫印迹在大鼠样本上浓度为1:5000. PLoS ONE (2014) ncbi
小鼠 单克隆(AC-74)
  • 免疫印迹; 人类; 图 1
西格玛奥德里奇 Actb抗体(Sigma-Aldrich, A2228)被用于被用于免疫印迹在人类样本上 (图 1). PLoS ONE (2014) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 人类; 图 5-s1
西格玛奥德里奇 Actb抗体(Sigma, A5441)被用于被用于免疫印迹在人类样本上 (图 5-s1). PLoS ONE (2014) ncbi
小鼠 单克隆(AC-74)
  • 免疫印迹; 大鼠; 1:40,000
西格玛奥德里奇 Actb抗体(Sigma, AC74)被用于被用于免疫印迹在大鼠样本上浓度为1:40,000. J Neurosci (2014) ncbi
小鼠 单克隆(AC-40)
  • 免疫印迹; 人类
西格玛奥德里奇 Actb抗体(Sigma-Aldrich, AC40)被用于被用于免疫印迹在人类样本上. J Virol (2014) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 人类
西格玛奥德里奇 Actb抗体(Sigma-Aldrich, AC15)被用于被用于免疫印迹在人类样本上. Genes Immun (2014) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 小鼠
西格玛奥德里奇 Actb抗体(Sigma-Aldrich, A1978)被用于被用于免疫印迹在小鼠样本上. PLoS ONE (2014) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 人类
西格玛奥德里奇 Actb抗体(Sigma, A5441)被用于被用于免疫印迹在人类样本上. Histochem Cell Biol (2014) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 小鼠
西格玛奥德里奇 Actb抗体(Sigma Chemical Co., A-5441)被用于被用于免疫印迹在小鼠样本上. Dis Model Mech (2014) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 小鼠; 1:30,000
西格玛奥德里奇 Actb抗体(Sigma, A5441-1)被用于被用于免疫印迹在小鼠样本上浓度为1:30,000. PLoS ONE (2014) ncbi
小鼠 单克隆(AC-74)
  • 免疫印迹; 人类
西格玛奥德里奇 Actb抗体(Sigma, AC74)被用于被用于免疫印迹在人类样本上. Hum Mutat (2014) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 人类; 图 3
西格玛奥德里奇 Actb抗体(Sigma, A1978)被用于被用于免疫印迹在人类样本上 (图 3). Nat Commun (2014) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 人类; 1:1000; 图 2
西格玛奥德里奇 Actb抗体(Sigma, A5441)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 2). J Gastroenterol Hepatol (2015) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 小鼠; 1:10,000
西格玛奥德里奇 Actb抗体(Sigma, A3854)被用于被用于免疫印迹在小鼠样本上浓度为1:10,000. PLoS ONE (2014) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 人类; 1:5000
西格玛奥德里奇 Actb抗体(Sigma, A5441)被用于被用于免疫印迹在人类样本上浓度为1:5000. Biomed Res Int (2014) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 人类
西格玛奥德里奇 Actb抗体(Sigma-Aldrich, A5441)被用于被用于免疫印迹在人类样本上. Oncotarget (2014) ncbi
小鼠 单克隆(AC-74)
  • 免疫印迹; 人类; 1:2000; 图 3
西格玛奥德里奇 Actb抗体(Sigma, A2228)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 3). J Mol Cell Cardiol (2014) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 人类
西格玛奥德里奇 Actb抗体(Sigma-Aldrich, A5441)被用于被用于免疫印迹在人类样本上. Cancer Res (2014) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 大鼠
西格玛奥德里奇 Actb抗体(Sigma-Aldrich, A5441)被用于被用于免疫印迹在大鼠样本上. PLoS ONE (2014) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 人类
西格玛奥德里奇 Actb抗体(Sigma-Aldrich, Clone AC-15)被用于被用于免疫印迹在人类样本上. Neuroscience (2014) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 人类; 1:5000
西格玛奥德里奇 Actb抗体(Sigma, AC-15)被用于被用于免疫印迹在人类样本上浓度为1:5000. Cell Signal (2014) ncbi
小鼠 单克隆(AC-74)
  • 免疫印迹; 小鼠; 1:20,000
西格玛奥德里奇 Actb抗体(Sigma-Aldrich, A2228)被用于被用于免疫印迹在小鼠样本上浓度为1:20,000. Endocrinology (2014) ncbi
小鼠 单克隆(AC-40)
  • 免疫印迹; 小鼠; 1:10,000
西格玛奥德里奇 Actb抗体(Sigma, A4700)被用于被用于免疫印迹在小鼠样本上浓度为1:10,000. Eur Neuropsychopharmacol (2014) ncbi
小鼠 单克隆(AC-15)
  • 免疫组化; 鸡; 1:10,000; 图 s7
西格玛奥德里奇 Actb抗体(Sigma, AC15)被用于被用于免疫组化在鸡样本上浓度为1:10,000 (图 s7). Nat Commun (2014) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 人类; 1:5000
西格玛奥德里奇 Actb抗体(Sigma-Aldrich, A-5441)被用于被用于免疫印迹在人类样本上浓度为1:5000. J Virol (2014) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 人类; 1:5000; 图 5
西格玛奥德里奇 Actb抗体(Sigma, A1978)被用于被用于免疫印迹在人类样本上浓度为1:5000 (图 5). Endocr Relat Cancer (2014) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 人类; 1:5000
西格玛奥德里奇 Actb抗体(Sigma Aldrich, A5441)被用于被用于免疫印迹在人类样本上浓度为1:5000. Cell Physiol Biochem (2014) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 小鼠; 1:20,000
西格玛奥德里奇 Actb抗体(Sigma-Aldrich, AC-15)被用于被用于免疫印迹在小鼠样本上浓度为1:20,000. J Neural Transm (Vienna) (2015) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 小鼠; 图 s3
西格玛奥德里奇 Actb抗体(Sigma, A5441)被用于被用于免疫印迹在小鼠样本上 (图 s3). Cancer Biol Ther (2014) ncbi
小鼠 单克隆(AC-74)
  • 免疫印迹; 大鼠
西格玛奥德里奇 Actb抗体(Sigma, A5316)被用于被用于免疫印迹在大鼠样本上. Basic Res Cardiol (2014) ncbi
小鼠 单克隆(AC-74)
  • 免疫印迹; 人类; 1:40,000
西格玛奥德里奇 Actb抗体(Sigma, A2228)被用于被用于免疫印迹在人类样本上浓度为1:40,000. Toxicol Appl Pharmacol (2014) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 人类; 1:5000
西格玛奥德里奇 Actb抗体(Sigma-Aldrich, A5441)被用于被用于免疫印迹在人类样本上浓度为1:5000. J Virol (2014) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 小鼠; 1:15,000
西格玛奥德里奇 Actb抗体(Sigma-Aldrich, AC15)被用于被用于免疫印迹在小鼠样本上浓度为1:15,000. Neurobiol Aging (2014) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; African green monkey
西格玛奥德里奇 Actb抗体(Sigma, A5441)被用于被用于免疫印迹在African green monkey样本上. PLoS ONE (2014) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 小鼠
  • 免疫印迹; 人类
西格玛奥德里奇 Actb抗体(Sigma, A5441)被用于被用于免疫印迹在小鼠样本上 和 被用于免疫印迹在人类样本上. Cancer Lett (2014) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 人类
西格玛奥德里奇 Actb抗体(Sigma, A5441)被用于被用于免疫印迹在人类样本上. Arch Plast Surg (2014) ncbi
小鼠 单克隆(AC-74)
  • 免疫印迹; 人类; 1:4000; 图 1c
西格玛奥德里奇 Actb抗体(Sigma, A2228)被用于被用于免疫印迹在人类样本上浓度为1:4000 (图 1c). Autophagy (2014) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 人类
西格玛奥德里奇 Actb抗体(SIGMA, A5441)被用于被用于免疫印迹在人类样本上. Nucleic Acids Res (2014) ncbi
小鼠 单克隆(AC-74)
  • 免疫印迹; 人类
西格玛奥德里奇 Actb抗体(Sigma-Aldrich, A2228)被用于被用于免疫印迹在人类样本上. PLoS ONE (2014) ncbi
小鼠 单克隆(AC-40)
  • 免疫印迹; 小鼠
西格玛奥德里奇 Actb抗体(Sigma-Aldrich, A4700)被用于被用于免疫印迹在小鼠样本上. J Neurosci (2014) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 人类; 1:10,000
西格玛奥德里奇 Actb抗体(Sigma-Aldrich, A5441)被用于被用于免疫印迹在人类样本上浓度为1:10,000. Front Endocrinol (Lausanne) (2014) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 小鼠
西格玛奥德里奇 Actb抗体(Sigma, A5441)被用于被用于免疫印迹在小鼠样本上. Cancer Biol Ther (2014) ncbi
小鼠 单克隆(AC-74)
  • 免疫印迹; 人类; 1:5000
西格玛奥德里奇 Actb抗体(Sigma-Aldrich, A5316)被用于被用于免疫印迹在人类样本上浓度为1:5000. Nat Cell Biol (2014) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 人类
西格玛奥德里奇 Actb抗体(Sigma-Aldrich, AC-15)被用于被用于免疫印迹在人类样本上. Hepatology (2014) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 人类
西格玛奥德里奇 Actb抗体(Sigma, A5441)被用于被用于免疫印迹在人类样本上. PLoS ONE (2014) ncbi
小鼠 单克隆(AC-74)
  • 免疫印迹; 小鼠
西格玛奥德里奇 Actb抗体(Sigma-Aldrich, A5316)被用于被用于免疫印迹在小鼠样本上. Mol Psychiatry (2015) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 小鼠
西格玛奥德里奇 Actb抗体(Sigma, AC15)被用于被用于免疫印迹在小鼠样本上. Mol Cell Biol (2014) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 人类
西格玛奥德里奇 Actb抗体(Sigma-Aldrich, A1978)被用于被用于免疫印迹在人类样本上. Cell Tissue Res (2014) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 人类
西格玛奥德里奇 Actb抗体(Sigma, A5441)被用于被用于免疫印迹在人类样本上. Mol Oncol (2014) ncbi
小鼠 单克隆(AC-74)
  • 免疫印迹; 人类; 1:20,000; 图 1
西格玛奥德里奇 Actb抗体(Sigma-Aldrich, A5316)被用于被用于免疫印迹在人类样本上浓度为1:20,000 (图 1). Nat Cell Biol (2014) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 小鼠
西格玛奥德里奇 Actb抗体(Sigma-Aldrich, A5441)被用于被用于免疫印迹在小鼠样本上. Kidney Int (2014) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 人类; 1:1000
西格玛奥德里奇 Actb抗体(Sigma, AC-15)被用于被用于免疫印迹在人类样本上浓度为1:1000. J Biomed Nanotechnol (2014) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 人类; 1:10,000
西格玛奥德里奇 Actb抗体(Sigma-Aldrich, #5441)被用于被用于免疫印迹在人类样本上浓度为1:10,000. Neuromolecular Med (2014) ncbi
小鼠 单克隆(AC-74)
  • 免疫印迹; 人类
西格玛奥德里奇 Actb抗体(Sigma, AC-74)被用于被用于免疫印迹在人类样本上. PLoS ONE (2014) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 人类
西格玛奥德里奇 Actb抗体(Sigma, A5441)被用于被用于免疫印迹在人类样本上. J Biol Chem (2014) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 小鼠; 1:5000
西格玛奥德里奇 Actb抗体(Sigma-Aldrich, AC15)被用于被用于免疫印迹在小鼠样本上浓度为1:5000. Front Integr Neurosci (2014) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 大鼠; 1:10,000
西格玛奥德里奇 Actb抗体(SIGMA, A3854)被用于被用于免疫印迹在大鼠样本上浓度为1:10,000. Metab Brain Dis (2015) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 人类; 图 1
西格玛奥德里奇 Actb抗体(Sigma, A5441)被用于被用于免疫印迹在人类样本上 (图 1). Cell Tissue Res (2014) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; African green monkey; 1:1000; 图 s1
  • 免疫印迹; 人类; 1:1000; 图 3
西格玛奥德里奇 Actb抗体(Sigma, A1978)被用于被用于免疫印迹在African green monkey样本上浓度为1:1000 (图 s1) 和 被用于免疫印迹在人类样本上浓度为1:1000 (图 3). Oncogene (2015) ncbi
小鼠 单克隆(AC-74)
  • 免疫印迹; 人类; 1:5000
西格玛奥德里奇 Actb抗体(Sigma-Aldrich, A5316)被用于被用于免疫印迹在人类样本上浓度为1:5000. Placenta (2014) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 人类
西格玛奥德里奇 Actb抗体(Sigma, A-5441)被用于被用于免疫印迹在人类样本上. Biochem J (2014) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 人类; 图 5
西格玛奥德里奇 Actb抗体(Sigma, A5441)被用于被用于免疫印迹在人类样本上 (图 5). PLoS ONE (2014) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 人类
西格玛奥德里奇 Actb抗体(Sigma-Aldrich, A5441)被用于被用于免疫印迹在人类样本上. Biomaterials (2014) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 人类; 图 4
西格玛奥德里奇 Actb抗体(Sigma, A5441)被用于被用于免疫印迹在人类样本上 (图 4). Tumour Biol (2014) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 人类
  • 免疫印迹; 小鼠
西格玛奥德里奇 Actb抗体(Sigma Aldrich, A-5441)被用于被用于免疫印迹在人类样本上 和 被用于免疫印迹在小鼠样本上. Cell Death Dis (2014) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 人类; 1:5000
西格玛奥德里奇 Actb抗体(Sigma, AC15)被用于被用于免疫印迹在人类样本上浓度为1:5000. PLoS ONE (2014) ncbi
小鼠 单克隆(AC-15)
  • 免疫细胞化学; 大鼠; 1:200
西格玛奥德里奇 Actb抗体(Sigma, AC15)被用于被用于免疫细胞化学在大鼠样本上浓度为1:200. PLoS ONE (2014) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 人类; 图 s7
西格玛奥德里奇 Actb抗体(Sigma-Aldrich, AC-15)被用于被用于免疫印迹在人类样本上 (图 s7). Leukemia (2015) ncbi
小鼠 单克隆(AC-74)
  • 免疫印迹; 小鼠
西格玛奥德里奇 Actb抗体(Sigma, AC-74)被用于被用于免疫印迹在小鼠样本上. J Immunol (2014) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 人类
西格玛奥德里奇 Actb抗体(Sigma-Aldrich, A1978)被用于被用于免疫印迹在人类样本上. J Biol Chem (2014) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 大鼠
西格玛奥德里奇 Actb抗体(Sigma, A5441)被用于被用于免疫印迹在大鼠样本上. Toxicol Pathol (2014) ncbi
小鼠 单克隆(AC-74)
  • 免疫印迹; 人类; 1:5000
西格玛奥德里奇 Actb抗体(Sigma-Aldrich, A2228)被用于被用于免疫印迹在人类样本上浓度为1:5000. Head Neck (2015) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 大鼠
西格玛奥德里奇 Actb抗体(Sigma, AC15)被用于被用于免疫印迹在大鼠样本上. Neuroscience (2014) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 人类; 1:2000; 图 4
西格玛奥德里奇 Actb抗体(Sigma, A1978)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 4). Cancer Prev Res (Phila) (2014) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 人类
西格玛奥德里奇 Actb抗体(Sigma, A1978)被用于被用于免疫印迹在人类样本上. Oncotarget (2014) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 小鼠; 图 2
西格玛奥德里奇 Actb抗体(Sigma, A1978)被用于被用于免疫印迹在小鼠样本上 (图 2). Am J Physiol Renal Physiol (2014) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 大鼠; 1:5000
西格玛奥德里奇 Actb抗体(Sigma-Aldrich, A5441)被用于被用于免疫印迹在大鼠样本上浓度为1:5000. PLoS ONE (2014) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 人类; 1:2,000
西格玛奥德里奇 Actb抗体(Sigma-Aldrich, A5441)被用于被用于免疫印迹在人类样本上浓度为1:2,000. J Clin Invest (2014) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 人类; 1:20,000
西格玛奥德里奇 Actb抗体(Sigma, AC-15)被用于被用于免疫印迹在人类样本上浓度为1:20,000. Am J Pathol (2014) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 人类; 1:5000; 图 1,3
西格玛奥德里奇 Actb抗体(Sigma-Aldrich, A5441)被用于被用于免疫印迹在人类样本上浓度为1:5000 (图 1,3). Mol Cancer (2014) ncbi
小鼠 单克隆(AC-40)
  • 免疫印迹; 小鼠; 图 4
西格玛奥德里奇 Actb抗体(Sigma Aldrich, #AC40)被用于被用于免疫印迹在小鼠样本上 (图 4). Cancer Med (2014) ncbi
小鼠 单克隆(AC-74)
  • 免疫印迹; 人类
西格玛奥德里奇 Actb抗体(Sigma, A5316)被用于被用于免疫印迹在人类样本上. Biochem Biophys Res Commun (2014) ncbi
小鼠 单克隆(AC-74)
  • 免疫印迹; 大鼠
西格玛奥德里奇 Actb抗体(Sigma, A5316)被用于被用于免疫印迹在大鼠样本上. Vasc Cell (2014) ncbi
小鼠 单克隆(AC-74)
  • 免疫印迹; 人类
西格玛奥德里奇 Actb抗体(Sigma-Aldrich, AC74)被用于被用于免疫印迹在人类样本上. Mol Biol Cell (2014) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 人类; 1:500
西格玛奥德里奇 Actb抗体(Sigma, A3854)被用于被用于免疫印迹在人类样本上浓度为1:500. Toxicol Lett (2014) ncbi
小鼠 单克隆(AC-15)
  • 免疫细胞化学; 小鼠
  • 免疫印迹; 小鼠
西格玛奥德里奇 Actb抗体(Sigma, AC-15)被用于被用于免疫细胞化学在小鼠样本上 和 被用于免疫印迹在小鼠样本上. FEBS Lett (2014) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 牛; 1:2000
西格玛奥德里奇 Actb抗体(Sigma-Aldrich, A5441)被用于被用于免疫印迹在牛样本上浓度为1:2000. Tissue Eng Part A (2014) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 小鼠
西格玛奥德里奇 Actb抗体(Sigma-Aldrich, A5441)被用于被用于免疫印迹在小鼠样本上. Biochim Biophys Acta (2014) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 大鼠; 1:1000
西格玛奥德里奇 Actb抗体(Sigma, A5441)被用于被用于免疫印迹在大鼠样本上浓度为1:1000. Lab Invest (2014) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 人类; 1:5000
西格玛奥德里奇 Actb抗体(SIGMA, A5441)被用于被用于免疫印迹在人类样本上浓度为1:5000. PLoS ONE (2014) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 大鼠
西格玛奥德里奇 Actb抗体(Sigma-Aldrich, A1978)被用于被用于免疫印迹在大鼠样本上. PLoS ONE (2014) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 人类; 1:500; 图 4
西格玛奥德里奇 Actb抗体(Sigma, A1978)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 4). PLoS ONE (2014) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 人类
西格玛奥德里奇 Actb抗体(Sigma, A5441)被用于被用于免疫印迹在人类样本上. Am J Hum Genet (2014) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 人类; 1:7500
西格玛奥德里奇 Actb抗体(Sigma-Aldrich, A-5441)被用于被用于免疫印迹在人类样本上浓度为1:7500. Eur J Clin Invest (2014) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 人类; 图 2
西格玛奥德里奇 Actb抗体(Sigma, AC-15)被用于被用于免疫印迹在人类样本上 (图 2). Nat Commun (2014) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 人类; 1:2000; 图 st13
西格玛奥德里奇 Actb抗体(Sigma, A5441)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 st13). Nat Cell Biol (2014) ncbi
小鼠 单克隆(AC-74)
  • 免疫印迹; 人类
西格玛奥德里奇 Actb抗体(Sigma-Aldrich Corp, A2228)被用于被用于免疫印迹在人类样本上. Cell Death Dis (2014) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 小鼠
西格玛奥德里奇 Actb抗体(Sigma-Aldrich, A5441)被用于被用于免疫印迹在小鼠样本上. J Biol Chem (2014) ncbi
小鼠 单克隆(AC-74)
  • 免疫印迹; 小鼠
西格玛奥德里奇 Actb抗体(Sigma, A5316)被用于被用于免疫印迹在小鼠样本上. Int J Cancer (2014) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 人类; 图 7
西格玛奥德里奇 Actb抗体(Sigma-Aldrich, A5441)被用于被用于免疫印迹在人类样本上 (图 7). Mol Cell Biol (2014) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 人类
西格玛奥德里奇 Actb抗体(Sigma Aldrich, A1978)被用于被用于免疫印迹在人类样本上. Mol Cell Proteomics (2014) ncbi
小鼠 单克隆(AC-15)
  • reverse phase protein lysate microarray; 人类; 1:500
西格玛奥德里奇 Actb抗体(Sigma, A1978)被用于被用于reverse phase protein lysate microarray在人类样本上浓度为1:500. Pulm Pharmacol Ther (2014) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 人类; 1:10,000
西格玛奥德里奇 Actb抗体(Epitomics, A5441)被用于被用于免疫印迹在人类样本上浓度为1:10,000. Anticancer Agents Med Chem (2014) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 人类; 1:10,000
西格玛奥德里奇 Actb抗体(Sigma, A5441)被用于被用于免疫印迹在人类样本上浓度为1:10,000. Toxicol Sci (2014) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 人类; 1:1000
西格玛奥德里奇 Actb抗体(Sigma, A1978)被用于被用于免疫印迹在人类样本上浓度为1:1000. Rheumatology (Oxford) (2014) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 人类; 1:40,000
西格玛奥德里奇 Actb抗体(Sigma-Aldrich, A5441)被用于被用于免疫印迹在人类样本上浓度为1:40,000. FASEB J (2014) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 人类
西格玛奥德里奇 Actb抗体(Sigma, A-5441)被用于被用于免疫印迹在人类样本上. PLoS ONE (2014) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 人类
西格玛奥德里奇 Actb抗体(Sigma, A5441)被用于被用于免疫印迹在人类样本上. Mol Oncol (2014) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 人类
西格玛奥德里奇 Actb抗体(Sigma-Aldrich, A5441)被用于被用于免疫印迹在人类样本上. J Biol Chem (2014) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 人类
西格玛奥德里奇 Actb抗体(Sigma-Aldrich, A5441)被用于被用于免疫印迹在人类样本上. PLoS ONE (2014) ncbi
小鼠 单克隆(AC-74)
  • 免疫印迹; 人类; 图 2
西格玛奥德里奇 Actb抗体(Sigma-Aldrich, A5316)被用于被用于免疫印迹在人类样本上 (图 2). Metallomics (2014) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 人类
西格玛奥德里奇 Actb抗体(Sigma, A5441)被用于被用于免疫印迹在人类样本上. Cancer Res (2014) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 小鼠
西格玛奥德里奇 Actb抗体(Sigma, A5441)被用于被用于免疫印迹在小鼠样本上. PLoS ONE (2014) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 人类; 1:50,000
西格玛奥德里奇 Actb抗体(Sigma, A5441)被用于被用于免疫印迹在人类样本上浓度为1:50,000. Breast Cancer Res (2014) ncbi
小鼠 单克隆(AC-15)
  • 免疫沉淀; 人类
  • 免疫印迹; 人类
西格玛奥德里奇 Actb抗体(Sigma, AC15)被用于被用于免疫沉淀在人类样本上 和 被用于免疫印迹在人类样本上. Carcinogenesis (2014) ncbi
小鼠 单克隆(AC-15)
  • 免疫细胞化学; 人类
西格玛奥德里奇 Actb抗体(Sigma, AC15)被用于被用于免疫细胞化学在人类样本上. Arch Biochem Biophys (2014) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 人类
西格玛奥德里奇 Actb抗体(Sigma-Aldrich, A1978)被用于被用于免疫印迹在人类样本上. Placenta (2014) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 小鼠; 1:4000; 图 3, 5
西格玛奥德里奇 Actb抗体(Sigma-Aldrich, A5441)被用于被用于免疫印迹在小鼠样本上浓度为1:4000 (图 3, 5). Am J Physiol Endocrinol Metab (2014) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 小鼠; 图 s2, s4
西格玛奥德里奇 Actb抗体(Sigma, A5441)被用于被用于免疫印迹在小鼠样本上 (图 s2, s4). Development (2014) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 家羊
西格玛奥德里奇 Actb抗体(Sigma, A5441)被用于被用于免疫印迹在家羊样本上. Tissue Eng Part A (2014) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 人类; 1:300
西格玛奥德里奇 Actb抗体(Sigma Aldrich, AC15)被用于被用于免疫印迹在人类样本上浓度为1:300. PLoS ONE (2014) ncbi
小鼠 单克隆(AC-74)
  • 免疫印迹; 人类; 图 6
西格玛奥德里奇 Actb抗体(Sigma-Aldrich, A2228)被用于被用于免疫印迹在人类样本上 (图 6). Blood (2014) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 小鼠; 图 1
西格玛奥德里奇 Actb抗体(Sigma-Aldrich, A5441)被用于被用于免疫印迹在小鼠样本上 (图 1). Biol Open (2014) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 人类; 1:10,000
西格玛奥德里奇 Actb抗体(Sigma, A5441)被用于被用于免疫印迹在人类样本上浓度为1:10,000. Nucleic Acids Res (2014) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 人类
西格玛奥德里奇 Actb抗体(Sigma, A-5441)被用于被用于免疫印迹在人类样本上. J Biol Chem (2014) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 人类; 1:1,000
西格玛奥德里奇 Actb抗体(Sigma, A5441)被用于被用于免疫印迹在人类样本上浓度为1:1,000. Anticancer Res (2014) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 人类
西格玛奥德里奇 Actb抗体(Sigma, A1978)被用于被用于免疫印迹在人类样本上. J Invest Dermatol (2014) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 小鼠; 1:5000
西格玛奥德里奇 Actb抗体(Sigma, A5441)被用于被用于免疫印迹在小鼠样本上浓度为1:5000. J Biol Chem (2014) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 人类; 1:5000
西格玛奥德里奇 Actb抗体(Sigma, A-5441)被用于被用于免疫印迹在人类样本上浓度为1:5000. Stem Cells Dev (2014) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 小鼠; 图 2
西格玛奥德里奇 Actb抗体(Sigma-Aldrich, A5441)被用于被用于免疫印迹在小鼠样本上 (图 2). PLoS ONE (2013) ncbi
小鼠 单克隆(AC-15)
  • 免疫组化; 小鼠
西格玛奥德里奇 Actb抗体(Sigma, A5441)被用于被用于免疫组化在小鼠样本上. J Biol Chem (2014) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 小鼠
西格玛奥德里奇 Actb抗体(Sigma, AC15)被用于被用于免疫印迹在小鼠样本上. PLoS ONE (2013) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 人类; 1:1000
西格玛奥德里奇 Actb抗体(Sigma, A5441)被用于被用于免疫印迹在人类样本上浓度为1:1000. PLoS ONE (2013) ncbi
小鼠 单克隆(AC-74)
  • 免疫细胞化学; 小鼠; 1:1000
西格玛奥德里奇 Actb抗体(Sigma, A-5316)被用于被用于免疫细胞化学在小鼠样本上浓度为1:1000. Virus Res (2014) ncbi
小鼠 单克隆(AC-74)
  • 免疫印迹; 人类; 图 5
西格玛奥德里奇 Actb抗体(Sigma Chemical Co., A5316)被用于被用于免疫印迹在人类样本上 (图 5). Reprod Toxicol (2014) ncbi
小鼠 单克隆(AC-74)
  • 免疫印迹; 人类
西格玛奥德里奇 Actb抗体(Sigma, A5316)被用于被用于免疫印迹在人类样本上. Neuropsychopharmacology (2014) ncbi
小鼠 单克隆(AC-40)
  • 免疫印迹; 人类; 1:5000
西格玛奥德里奇 Actb抗体(Sigma, A4700)被用于被用于免疫印迹在人类样本上浓度为1:5000. Biochim Biophys Acta (2014) ncbi
小鼠 单克隆(AC-74)
  • 免疫印迹; 大鼠; 1:5000
西格玛奥德里奇 Actb抗体(Sigma, A5316)被用于被用于免疫印迹在大鼠样本上浓度为1:5000. J Biol Chem (2014) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 人类; 图 1
西格玛奥德里奇 Actb抗体(Sigma-Aldrich, A5441)被用于被用于免疫印迹在人类样本上 (图 1). Tumour Biol (2014) ncbi
小鼠 单克隆(AC-74)
  • 免疫印迹; 人类; 1:4000; 图 3
西格玛奥德里奇 Actb抗体(Sigma-Aldrich, AC-74)被用于被用于免疫印迹在人类样本上浓度为1:4000 (图 3). J Biol Chem (2014) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 人类
西格玛奥德里奇 Actb抗体(Sigma, A5441)被用于被用于免疫印迹在人类样本上. J Virol (2014) ncbi
小鼠 单克隆(AC-74)
  • 免疫印迹; 人类; 图 1
西格玛奥德里奇 Actb抗体(Sigma, A5316)被用于被用于免疫印迹在人类样本上 (图 1). Exp Cell Res (2014) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 小鼠
西格玛奥德里奇 Actb抗体(Sigma-Aldrich, A5441)被用于被用于免疫印迹在小鼠样本上. Antioxid Redox Signal (2014) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 人类
西格玛奥德里奇 Actb抗体(Sigma, A5441)被用于被用于免疫印迹在人类样本上. J Biol Chem (2014) ncbi
小鼠 单克隆(AC-74)
  • 免疫印迹; 人类
西格玛奥德里奇 Actb抗体(Sigma, A2228)被用于被用于免疫印迹在人类样本上. Hum Mutat (2014) ncbi
小鼠 单克隆(AC-74)
  • 免疫印迹; 人类
西格玛奥德里奇 Actb抗体(Sigma, A5316)被用于被用于免疫印迹在人类样本上. Leukemia (2014) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 人类
西格玛奥德里奇 Actb抗体(Sigma, A5441)被用于被用于免疫印迹在人类样本上. Gynecol Oncol (2014) ncbi
小鼠 单克隆(AC-74)
  • 免疫印迹; 人类
西格玛奥德里奇 Actb抗体(Sigma-Aldrich, AC-74)被用于被用于免疫印迹在人类样本上. Mitochondrion (2014) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 人类; 图 1
西格玛奥德里奇 Actb抗体(Sigma-Aldrich, A5441)被用于被用于免疫印迹在人类样本上 (图 1). FASEB J (2014) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 人类
西格玛奥德里奇 Actb抗体(Sigma Aldrich, AC15)被用于被用于免疫印迹在人类样本上. BMC Cancer (2013) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 人类; 1:5000
西格玛奥德里奇 Actb抗体(Sigma, AC-15)被用于被用于免疫印迹在人类样本上浓度为1:5000. FEBS J (2014) ncbi
小鼠 单克隆(AC-40)
  • 免疫沉淀; 人类
  • 免疫细胞化学; 人类
  • 免疫印迹; 人类
西格玛奥德里奇 Actb抗体(Sigma-Aldrich, AC40)被用于被用于免疫沉淀在人类样本上, 被用于免疫细胞化学在人类样本上 和 被用于免疫印迹在人类样本上. Mol Cells (2013) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 小鼠
西格玛奥德里奇 Actb抗体(Sigma, AC15)被用于被用于免疫印迹在小鼠样本上. Cell Death Differ (2014) ncbi
小鼠 单克隆(AC-74)
  • 免疫印迹; 小鼠; 1:1000
西格玛奥德里奇 Actb抗体(Sigma-Aldrich, AC-74)被用于被用于免疫印迹在小鼠样本上浓度为1:1000. Clin Nutr (2014) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 大鼠; 1:7000
西格玛奥德里奇 Actb抗体(Sigma-Aldrich, A5441)被用于被用于免疫印迹在大鼠样本上浓度为1:7000. J Neurol Sci (2014) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 人类
西格玛奥德里奇 Actb抗体(Sigma, A5441)被用于被用于免疫印迹在人类样本上. PLoS ONE (2013) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 人类; 图 1
西格玛奥德里奇 Actb抗体(Sigma, A5441)被用于被用于免疫印迹在人类样本上 (图 1). Free Radic Biol Med (2014) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 人类
西格玛奥德里奇 Actb抗体(Sigma, A5441)被用于被用于免疫印迹在人类样本上. Mol Cells (2013) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 人类
西格玛奥德里奇 Actb抗体(Sigma, A5441)被用于被用于免疫印迹在人类样本上. Cell Cycle (2014) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 人类
西格玛奥德里奇 Actb抗体(Sigma, A5441)被用于被用于免疫印迹在人类样本上. J Biol Chem (2013) ncbi
小鼠 单克隆(AC-40)
  • 免疫印迹; 小鼠; 1:500
西格玛奥德里奇 Actb抗体(Sigma-Aldrich, A4700)被用于被用于免疫印迹在小鼠样本上浓度为1:500. J Neurosci (2013) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 人类; 1:5000; 图 5
西格玛奥德里奇 Actb抗体(Sigma, A5441)被用于被用于免疫印迹在人类样本上浓度为1:5000 (图 5). Oncogene (2014) ncbi
小鼠 单克隆(AC-74)
  • 免疫印迹; 小鼠
西格玛奥德里奇 Actb抗体(Sigma, A2228)被用于被用于免疫印迹在小鼠样本上. Mol Cell Biol (2014) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 人类
西格玛奥德里奇 Actb抗体(Sigma, A1978)被用于被用于免疫印迹在人类样本上. Biochim Biophys Acta (2014) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 人类; 1:10,000; 图 6, 7
西格玛奥德里奇 Actb抗体(Sigma-Aldrich, A5441)被用于被用于免疫印迹在人类样本上浓度为1:10,000 (图 6, 7). Mol Carcinog (2015) ncbi
小鼠 单克隆(AC-74)
  • 免疫印迹; 大鼠
西格玛奥德里奇 Actb抗体(Sigma, A2228)被用于被用于免疫印迹在大鼠样本上. Physiol Behav (2014) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 人类; 1:5000
西格玛奥德里奇 Actb抗体(Sigma, AC15)被用于被用于免疫印迹在人类样本上浓度为1:5000. PLoS Pathog (2013) ncbi
小鼠 单克隆(AC-74)
  • 免疫印迹; 小鼠
西格玛奥德里奇 Actb抗体(Cell Signaling, A5316)被用于被用于免疫印迹在小鼠样本上. Int J Cancer (2014) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 小鼠
西格玛奥德里奇 Actb抗体(Sigma-Aldrich, A5441)被用于被用于免疫印迹在小鼠样本上. Am J Pathol (2013) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 小鼠; 1:5000
西格玛奥德里奇 Actb抗体(Sigma-Aldrich, A5441)被用于被用于免疫印迹在小鼠样本上浓度为1:5000. Breast Cancer Res (2013) ncbi
小鼠 单克隆(AC-74)
  • 免疫印迹; 小鼠; 图 3
西格玛奥德里奇 Actb抗体(Sigma, AC-74)被用于被用于免疫印迹在小鼠样本上 (图 3). Oncogene (2014) ncbi
小鼠 单克隆(AC-74)
  • 免疫印迹; 人类; 1:5000; 图 7
  • 免疫印迹; 大鼠; 1:5000; 图 1
  • 免疫印迹; 小鼠; 1:5000; 图 5
西格玛奥德里奇 Actb抗体(Sigma-Aldrich, AC-74)被用于被用于免疫印迹在人类样本上浓度为1:5000 (图 7), 被用于免疫印迹在大鼠样本上浓度为1:5000 (图 1) 和 被用于免疫印迹在小鼠样本上浓度为1:5000 (图 5). Sci Rep (2013) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 小鼠
西格玛奥德里奇 Actb抗体(Sigma-Aldrich, A5441)被用于被用于免疫印迹在小鼠样本上. J Exp Med (2013) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 人类; 1:2000
西格玛奥德里奇 Actb抗体(Sigma Aldrich, A5441)被用于被用于免疫印迹在人类样本上浓度为1:2000. Transl Psychiatry (2013) ncbi
小鼠 单克隆(AC-74)
  • 免疫组化; 人类; 1:200
  • 免疫印迹; 人类
西格玛奥德里奇 Actb抗体(Sigma-Aldrich, A2228)被用于被用于免疫组化在人类样本上浓度为1:200 和 被用于免疫印迹在人类样本上. Cancer Lett (2014) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 大鼠
西格玛奥德里奇 Actb抗体(Sigma-Aldrich, AC15)被用于被用于免疫印迹在大鼠样本上. Biochem Biophys Res Commun (2013) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 小鼠
西格玛奥德里奇 Actb抗体(Sigma-Aldrich, A5441)被用于被用于免疫印迹在小鼠样本上. PLoS ONE (2013) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 人类; 1:10,000
西格玛奥德里奇 Actb抗体(Sigma-Aldrich, AC15)被用于被用于免疫印迹在人类样本上浓度为1:10,000. Reprod Biol Endocrinol (2013) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 人类
西格玛奥德里奇 Actb抗体(Sigma, A5441)被用于被用于免疫印迹在人类样本上. PLoS ONE (2013) ncbi
小鼠 单克隆(AC-74)
  • 免疫印迹; 人类
西格玛奥德里奇 Actb抗体(Sigma Aldrich, AC74)被用于被用于免疫印迹在人类样本上. Lab Invest (2013) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 小鼠
西格玛奥德里奇 Actb抗体(Sigma, A5441)被用于被用于免疫印迹在小鼠样本上. Mol Cancer Res (2013) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 人类
西格玛奥德里奇 Actb抗体(Sigma-Aldrich, A5441)被用于被用于免疫印迹在人类样本上. Apoptosis (2013) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 人类; 1:20,000
西格玛奥德里奇 Actb抗体(Sigma, AC-15)被用于被用于免疫印迹在人类样本上浓度为1:20,000. Leukemia (2014) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 小鼠; 1:15,000
西格玛奥德里奇 Actb抗体(Sigma-Aldrich, AC15)被用于被用于免疫印迹在小鼠样本上浓度为1:15,000. Transl Psychiatry (2013) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 人类; 1:10,000; 图 1
西格玛奥德里奇 Actb抗体(Sigma, A5441)被用于被用于免疫印迹在人类样本上浓度为1:10,000 (图 1). Nat Commun (2013) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 小鼠; 1:10,000
西格玛奥德里奇 Actb抗体(Sigma-Aldrich, A5441)被用于被用于免疫印迹在小鼠样本上浓度为1:10,000. Pflugers Arch (2014) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 人类; 1:50,000
西格玛奥德里奇 Actb抗体(Sigma-Aldrich, A-1978)被用于被用于免疫印迹在人类样本上浓度为1:50,000. Arch Dermatol Res (2014) ncbi
小鼠 单克隆(AC-15)
  • 免疫组化-自由浮动切片; 小鼠
  • 免疫印迹; 小鼠; 1:1000
西格玛奥德里奇 Actb抗体(Sigma-Aldrich, A5441)被用于被用于免疫组化-自由浮动切片在小鼠样本上 和 被用于免疫印迹在小鼠样本上浓度为1:1000. Cell Transplant (2014) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 小鼠; 1:10,000; 图 2
西格玛奥德里奇 Actb抗体(Sigma, A5441)被用于被用于免疫印迹在小鼠样本上浓度为1:10,000 (图 2). PLoS ONE (2013) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 小鼠
西格玛奥德里奇 Actb抗体(Sigma, A5441)被用于被用于免疫印迹在小鼠样本上. PLoS ONE (2013) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 人类
西格玛奥德里奇 Actb抗体(Sigma-Aldrich, A1978)被用于被用于免疫印迹在人类样本上. Oncogene (2014) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 人类; 1:100,000
西格玛奥德里奇 Actb抗体(Sigma, A5441)被用于被用于免疫印迹在人类样本上浓度为1:100,000. Nucleic Acids Res (2013) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 人类; 1:5000
西格玛奥德里奇 Actb抗体(Sigma, A5441)被用于被用于免疫印迹在人类样本上浓度为1:5000. Hum Mol Genet (2013) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 人类; 1:5000
西格玛奥德里奇 Actb抗体(Sigma Aldrich, A5441)被用于被用于免疫印迹在人类样本上浓度为1:5000. Transl Psychiatry (2013) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 人类
西格玛奥德里奇 Actb抗体(Sigma, A5441)被用于被用于免疫印迹在人类样本上. Epigenetics (2013) ncbi
小鼠 单克隆(AC-74)
  • 免疫印迹; 人类; 1:5000; 图 7
西格玛奥德里奇 Actb抗体(Sigma, A5316)被用于被用于免疫印迹在人类样本上浓度为1:5000 (图 7). Oxid Med Cell Longev (2013) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 大鼠; 1:1000
西格玛奥德里奇 Actb抗体(Sigma, A5441)被用于被用于免疫印迹在大鼠样本上浓度为1:1000. Neuroreport (2013) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 小鼠; 1:1000
西格玛奥德里奇 Actb抗体(Sigma, 5441)被用于被用于免疫印迹在小鼠样本上浓度为1:1000. J Biol Chem (2013) ncbi
小鼠 单克隆(AC-40)
  • 免疫印迹; 人类; 1:3000
西格玛奥德里奇 Actb抗体(Sigma-Aldrich, A4700)被用于被用于免疫印迹在人类样本上浓度为1:3000. Head Neck (2014) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 小鼠; 1:1000
西格玛奥德里奇 Actb抗体(Sigma, A5441)被用于被用于免疫印迹在小鼠样本上浓度为1:1000. PLoS ONE (2013) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 小鼠; 1:1000
西格玛奥德里奇 Actb抗体(Sigma-Aldrich, AC15)被用于被用于免疫印迹在小鼠样本上浓度为1:1000. Mech Ageing Dev (2013) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 人类
西格玛奥德里奇 Actb抗体(Sigma-Aldrich, A5441)被用于被用于免疫印迹在人类样本上. FASEB J (2013) ncbi
小鼠 单克隆(AC-74)
  • 免疫印迹; 小鼠
西格玛奥德里奇 Actb抗体(Sigma-Aldrich, AC74)被用于被用于免疫印迹在小鼠样本上. J Neurosci (2013) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 小鼠
  • 免疫印迹; 人类
西格玛奥德里奇 Actb抗体(Sigma Chemical, A-5441)被用于被用于免疫印迹在小鼠样本上 和 被用于免疫印迹在人类样本上. Cell Death Dis (2013) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 人类
西格玛奥德里奇 Actb抗体(Sigma, A5441)被用于被用于免疫印迹在人类样本上. J Biol Chem (2013) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 小鼠; 1:10,000
西格玛奥德里奇 Actb抗体(Sigma, AC15)被用于被用于免疫印迹在小鼠样本上浓度为1:10,000. PLoS ONE (2013) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 人类; 1:5000
西格玛奥德里奇 Actb抗体(Sigma, A5441)被用于被用于免疫印迹在人类样本上浓度为1:5000. Neurochem Res (2013) ncbi
小鼠 单克隆(AC-74)
  • 免疫印迹; 人类; 1:5000; 图 4
西格玛奥德里奇 Actb抗体(Sigma-Aldrich, A2228)被用于被用于免疫印迹在人类样本上浓度为1:5000 (图 4). Hepatol Res (2014) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 人类; 图 3
西格玛奥德里奇 Actb抗体(Sigma, AC-15)被用于被用于免疫印迹在人类样本上 (图 3). Oncogene (2014) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 大鼠; 图 4
西格玛奥德里奇 Actb抗体(Sigma, AC15)被用于被用于免疫印迹在大鼠样本上 (图 4). Neurobiol Aging (2013) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 小鼠
西格玛奥德里奇 Actb抗体(Sigma-Aldrich, A5441)被用于被用于免疫印迹在小鼠样本上. Diabetologia (2013) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 人类; 1:20,000
西格玛奥德里奇 Actb抗体(Sigma, A5441)被用于被用于免疫印迹在人类样本上浓度为1:20,000. J Biol Chem (2013) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 人类; 图 1
西格玛奥德里奇 Actb抗体(Sigma, A5441)被用于被用于免疫印迹在人类样本上 (图 1). Oncogene (2014) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 人类
西格玛奥德里奇 Actb抗体(Sigma, A5441)被用于被用于免疫印迹在人类样本上. Cancer Res (2013) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 人类
西格玛奥德里奇 Actb抗体(Sigma-Aldrich, A5441)被用于被用于免疫印迹在人类样本上. Cell Cycle (2013) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 人类; 1:6000
西格玛奥德里奇 Actb抗体(Sigma, A5441)被用于被用于免疫印迹在人类样本上浓度为1:6000. Lupus (2013) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 小鼠
西格玛奥德里奇 Actb抗体(Sigma-Aldrich, Ac15)被用于被用于免疫印迹在小鼠样本上. J Gerontol A Biol Sci Med Sci (2013) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 人类; 图 4a
西格玛奥德里奇 Actb抗体(Sigma, A5441)被用于被用于免疫印迹在人类样本上 (图 4a). J Biol Chem (2013) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 人类
西格玛奥德里奇 Actb抗体(Sigma-Aldrich, A-5441)被用于被用于免疫印迹在人类样本上. Aging Cell (2013) ncbi
小鼠 单克隆(AC-40)
  • 免疫印迹; 大鼠
西格玛奥德里奇 Actb抗体(Sigma, AC40)被用于被用于免疫印迹在大鼠样本上. J Neurosci (2013) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 小鼠
西格玛奥德里奇 Actb抗体(Sigma, A5441)被用于被用于免疫印迹在小鼠样本上. J Neurosci (2013) ncbi
小鼠 单克隆(AC-15)
  • 免疫细胞化学; 人类
  • 免疫印迹; 人类; 图 6b
西格玛奥德里奇 Actb抗体(Sigma-Aldrich, AC15)被用于被用于免疫细胞化学在人类样本上 和 被用于免疫印迹在人类样本上 (图 6b). Cell Death Dis (2013) ncbi
小鼠 单克隆(AC-74)
  • 免疫印迹; 人类
西格玛奥德里奇 Actb抗体(Sigma-Aldrich, AC74)被用于被用于免疫印迹在人类样本上. PLoS ONE (2013) ncbi
小鼠 单克隆(AC-74)
  • 免疫印迹; 人类
  • 免疫印迹; 鸡
西格玛奥德里奇 Actb抗体(Sigma, AC74)被用于被用于免疫印迹在人类样本上 和 被用于免疫印迹在鸡样本上. PLoS ONE (2013) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 人类; 图 2
西格玛奥德里奇 Actb抗体(Sigma, AC15)被用于被用于免疫印迹在人类样本上 (图 2). Cell Cycle (2013) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 小鼠; 1:5000
西格玛奥德里奇 Actb抗体(Sigma, A5441)被用于被用于免疫印迹在小鼠样本上浓度为1:5000. J Comp Neurol (2013) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 人类
西格玛奥德里奇 Actb抗体(Sigma, AC15)被用于被用于免疫印迹在人类样本上. Mol Cancer Res (2013) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 人类; 1:5000
西格玛奥德里奇 Actb抗体(Sigma, A5441)被用于被用于免疫印迹在人类样本上浓度为1:5000. Proc Natl Acad Sci U S A (2013) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 人类
西格玛奥德里奇 Actb抗体(Sigma, A5441)被用于被用于免疫印迹在人类样本上. PLoS ONE (2012) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 小鼠
西格玛奥德里奇 Actb抗体(Sigma-Aldrich, A5441)被用于被用于免疫印迹在小鼠样本上. Eur J Pharmacol (2013) ncbi
小鼠 单克隆(AC-15)
  • 免疫细胞化学; 人类
  • 免疫印迹; 人类
西格玛奥德里奇 Actb抗体(Sigma-Aldrich, A5441)被用于被用于免疫细胞化学在人类样本上 和 被用于免疫印迹在人类样本上. Cell Cycle (2013) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 人类
西格玛奥德里奇 Actb抗体(Sigma-Aldrich, A5441)被用于被用于免疫印迹在人类样本上. Cell Cycle (2013) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 人类
西格玛奥德里奇 Actb抗体(Sigma, A5441)被用于被用于免疫印迹在人类样本上. Leuk Res (2013) ncbi
小鼠 单克隆(AC-74)
  • 免疫印迹; 小鼠; 1:1000
西格玛奥德里奇 Actb抗体(Sigma-Aldrich, AC74)被用于被用于免疫印迹在小鼠样本上浓度为1:1000. Blood (2013) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 人类; 图 3
西格玛奥德里奇 Actb抗体(Sigma, AC15)被用于被用于免疫印迹在人类样本上 (图 3). Oncogene (2013) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 大鼠; 1:3000
西格玛奥德里奇 Actb抗体(Sigma, A5441)被用于被用于免疫印迹在大鼠样本上浓度为1:3000. Mol Pharm (2013) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 小鼠
西格玛奥德里奇 Actb抗体(Sigma, AC15)被用于被用于免疫印迹在小鼠样本上. Glia (2013) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 人类; 1:5000
西格玛奥德里奇 Actb抗体(Sigma-Aldrich, A5441)被用于被用于免疫印迹在人类样本上浓度为1:5000. Cancer Res (2013) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 大鼠; 1:10,000
西格玛奥德里奇 Actb抗体(Sigma-Aldrich, AC15)被用于被用于免疫印迹在大鼠样本上浓度为1:10,000. J Neurochem (2012) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 人类
西格玛奥德里奇 Actb抗体(Sigma, A5441)被用于被用于免疫印迹在人类样本上. Cell Cycle (2012) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 人类
西格玛奥德里奇 Actb抗体(Sigma, A5441)被用于被用于免疫印迹在人类样本上. Diabetologia (2012) ncbi
小鼠 单克隆(AC-40)
  • 免疫印迹; 斑马鱼; 1:1000
西格玛奥德里奇 Actb抗体(Sigma, AC40)被用于被用于免疫印迹在斑马鱼样本上浓度为1:1000. Dev Biol (2012) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 人类; 1:2000
西格玛奥德里奇 Actb抗体(SIGMA, AC15)被用于被用于免疫印迹在人类样本上浓度为1:2000. Cell Stress Chaperones (2012) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 小鼠; 1:10,000
西格玛奥德里奇 Actb抗体(Sigma Aldrich, A5441)被用于被用于免疫印迹在小鼠样本上浓度为1:10,000. Parasitology (2012) ncbi
小鼠 单克隆(AC-40)
  • 免疫印迹; 大鼠; 1:4000
西格玛奥德里奇 Actb抗体(Sigma, A4700)被用于被用于免疫印迹在大鼠样本上浓度为1:4000. J Histochem Cytochem (2012) ncbi
小鼠 单克隆(AC-15)
  • 免疫沉淀; 小鼠
西格玛奥德里奇 Actb抗体(Sigma-Aldrich, A5441)被用于被用于免疫沉淀在小鼠样本上. Nucleic Acids Res (2012) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 小鼠
西格玛奥德里奇 Actb抗体(Sigma, A5441)被用于被用于免疫印迹在小鼠样本上. J Neurosci (2012) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 人类
西格玛奥德里奇 Actb抗体(Sigma, A5441)被用于被用于免疫印迹在人类样本上. J Biol Chem (2012) ncbi
小鼠 单克隆(AC-15)
  • 免疫组化基因敲除验证; 小鼠; 图 1c
  • 免疫印迹基因敲除验证; 小鼠; 图 1f
  • 免疫组化; 人类; 图 1c
西格玛奥德里奇 Actb抗体(Sigma, AC-15)被用于被用于免疫组化基因敲除验证在小鼠样本上 (图 1c), 被用于免疫印迹基因敲除验证在小鼠样本上 (图 1f) 和 被用于免疫组化在人类样本上 (图 1c). Mol Cell Proteomics (2012) ncbi
小鼠 单克隆(AC-74)
  • 免疫印迹; 小鼠; 1:10,000; 图 5d
西格玛奥德里奇 Actb抗体(sigma, A53166)被用于被用于免疫印迹在小鼠样本上浓度为1:10,000 (图 5d). PLoS ONE (2012) ncbi
小鼠 单克隆(AC-74)
  • 免疫印迹; 小鼠
西格玛奥德里奇 Actb抗体(Sigma, AC74)被用于被用于免疫印迹在小鼠样本上. Biochem J (2012) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 小鼠
  • 免疫印迹; 人类
西格玛奥德里奇 Actb抗体(Sigma, A5441)被用于被用于免疫印迹在小鼠样本上 和 被用于免疫印迹在人类样本上. J Biol Chem (2012) ncbi
小鼠 单克隆(AC-74)
  • 免疫印迹; 人类
西格玛奥德里奇 Actb抗体(Sigma-Aldrich, AC74)被用于被用于免疫印迹在人类样本上. Cell Death Dis (2011) ncbi
小鼠 单克隆(AC-15)
  • 染色质免疫沉淀 ; 犬
西格玛奥德里奇 Actb抗体(Sigma, A5441)被用于被用于染色质免疫沉淀 在犬样本上. J Biol Chem (2012) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 人类; 1:10,000
西格玛奥德里奇 Actb抗体(Sigma, AC15)被用于被用于免疫印迹在人类样本上浓度为1:10,000. Leuk Res (2012) ncbi
小鼠 单克隆(AC-15)
  • 染色质免疫沉淀 ; 人类
  • EMSA; 人类
西格玛奥德里奇 Actb抗体(Sigma, A5441)被用于被用于染色质免疫沉淀 在人类样本上 和 被用于EMSA在人类样本上. J Biol Chem (2011) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹基因敲除验证; 小鼠; 图 2
西格玛奥德里奇 Actb抗体(Sigma, AC15)被用于被用于免疫印迹基因敲除验证在小鼠样本上 (图 2). Mol Biol Cell (2011) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 人类
西格玛奥德里奇 Actb抗体(Sigma-Aldrich, A5441)被用于被用于免疫印迹在人类样本上. Mol Neurodegener (2011) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 人类; 图 6
西格玛奥德里奇 Actb抗体(Sigma, A5441)被用于被用于免疫印迹在人类样本上 (图 6). J Virol (2011) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 小鼠; 1:4000
西格玛奥德里奇 Actb抗体(Sigma-Aldrich, A5441)被用于被用于免疫印迹在小鼠样本上浓度为1:4000. J Comp Neurol (2011) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 小鼠; 1:5000
西格玛奥德里奇 Actb抗体(Sigma, A5441)被用于被用于免疫印迹在小鼠样本上浓度为1:5000. J Comp Neurol (2011) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 人类
西格玛奥德里奇 Actb抗体(Sigma, A5441)被用于被用于免疫印迹在人类样本上. Biochem Pharmacol (2011) ncbi
小鼠 单克隆(AC-74)
  • 免疫印迹; 小鼠; 1:1000
西格玛奥德里奇 Actb抗体(Sigma, A2228)被用于被用于免疫印迹在小鼠样本上浓度为1:1000. Am J Pathol (2011) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 人类; 图 6
西格玛奥德里奇 Actb抗体(Sigma, A5441)被用于被用于免疫印迹在人类样本上 (图 6). Nat Immunol (2011) ncbi
小鼠 单克隆(AC-74)
  • 免疫印迹; African green monkey; 1:2000
  • 免疫印迹; 人类; 1:2000
西格玛奥德里奇 Actb抗体(Sigma-Aldrich, AC74)被用于被用于免疫印迹在African green monkey样本上浓度为1:2000 和 被用于免疫印迹在人类样本上浓度为1:2000. J Comp Neurol (2011) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 小鼠; 图 s16
西格玛奥德里奇 Actb抗体(Sigma, A5441)被用于被用于免疫印迹在小鼠样本上 (图 s16). Nature (2010) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 人类
西格玛奥德里奇 Actb抗体(Sigma, A5441)被用于被用于免疫印迹在人类样本上. J Cell Biol (2010) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 人类; 图 5
西格玛奥德里奇 Actb抗体(Sigma, A 5441)被用于被用于免疫印迹在人类样本上 (图 5). Leukemia (2011) ncbi
小鼠 单克隆(AC-74)
  • 免疫印迹; 小鼠
西格玛奥德里奇 Actb抗体(Sigma, ac74)被用于被用于免疫印迹在小鼠样本上. Mol Cell Biol (2010) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 大鼠; 1:5000
西格玛奥德里奇 Actb抗体(Sigma, A5441)被用于被用于免疫印迹在大鼠样本上浓度为1:5000. J Comp Neurol (2010) ncbi
小鼠 单克隆(AC-40)
  • 免疫印迹; 人类; 1:10,000; 图 s2
西格玛奥德里奇 Actb抗体(Sigma, A4700)被用于被用于免疫印迹在人类样本上浓度为1:10,000 (图 s2). PLoS ONE (2010) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 小鼠; 1:10,000; 图 4
西格玛奥德里奇 Actb抗体(Sigma, A5441)被用于被用于免疫印迹在小鼠样本上浓度为1:10,000 (图 4). PLoS ONE (2010) ncbi
小鼠 单克隆(AC-74)
  • 免疫印迹; 人类; 1:5000
西格玛奥德里奇 Actb抗体(Sigma, AC74)被用于被用于免疫印迹在人类样本上浓度为1:5000. PLoS ONE (2010) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 人类; 1:10,000; 图 2
西格玛奥德里奇 Actb抗体(Invitrogen, A5441)被用于被用于免疫印迹在人类样本上浓度为1:10,000 (图 2). Blood (2010) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 人类
西格玛奥德里奇 Actb抗体(Sigma-Aldrich, A5441)被用于被用于免疫印迹在人类样本上. Blood (2010) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 人类
西格玛奥德里奇 Actb抗体(Sigma, AC15)被用于被用于免疫印迹在人类样本上. J Neurooncol (2010) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 大鼠; 1:500,000
西格玛奥德里奇 Actb抗体(Sigma, A5441)被用于被用于免疫印迹在大鼠样本上浓度为1:500,000. J Comp Neurol (2009) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 人类
西格玛奥德里奇 Actb抗体(Sigma, A5441)被用于被用于免疫印迹在人类样本上. J Virol (2009) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 小鼠; 1:10,000
西格玛奥德里奇 Actb抗体(Sigma, A5441)被用于被用于免疫印迹在小鼠样本上浓度为1:10,000. Methods Enzymol (2009) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 小鼠; 1:10,000
西格玛奥德里奇 Actb抗体(Sigma, A-5441)被用于被用于免疫印迹在小鼠样本上浓度为1:10,000. Proteomics (2009) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 小鼠
西格玛奥德里奇 Actb抗体(Sigma, A5441)被用于被用于免疫印迹在小鼠样本上. Oncogene (2009) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 大鼠; 1:5000
西格玛奥德里奇 Actb抗体(Sigma-Aldrich, A5441)被用于被用于免疫印迹在大鼠样本上浓度为1:5000. J Comp Neurol (2008) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 人类
西格玛奥德里奇 Actb抗体(Sigma-Aldrich, A5441)被用于被用于免疫印迹在人类样本上. Biogerontology (2009) ncbi
小鼠 单克隆(AC-74)
  • 免疫印迹; 人类
西格玛奥德里奇 Actb抗体(Sigma Chemical Co., AC74)被用于被用于免疫印迹在人类样本上. J Lipid Res (2008) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 人类
西格玛奥德里奇 Actb抗体(Sigma, A5441)被用于被用于免疫印迹在人类样本上. Mol Cell Proteomics (2008) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 人类
西格玛奥德里奇 Actb抗体(Sigma, AC15)被用于被用于免疫印迹在人类样本上. Cell Death Differ (2008) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 小鼠
西格玛奥德里奇 Actb抗体(Sigma, A5441)被用于被用于免疫印迹在小鼠样本上. J Comp Neurol (2007) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 人类
西格玛奥德里奇 Actb抗体(Sigma, AC15)被用于被用于免疫印迹在人类样本上. Hepatology (2007) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 人类
西格玛奥德里奇 Actb抗体(Sigma-Aldrich, AC15)被用于被用于免疫印迹在人类样本上. J Cell Biol (2007) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 人类
西格玛奥德里奇 Actb抗体(Sigma, AC15)被用于被用于免疫印迹在人类样本上. Biochem Biophys Res Commun (2006) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 大鼠; 1:5,000
西格玛奥德里奇 Actb抗体(Sigma, A5441)被用于被用于免疫印迹在大鼠样本上浓度为1:5,000. J Cereb Blood Flow Metab (2003) ncbi
小鼠 单克隆(AC-74)
  • 免疫沉淀; 人类
西格玛奥德里奇 Actb抗体(Sigma, AC74)被用于被用于免疫沉淀在人类样本上. Mol Cell Biol (2003) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 人类
西格玛奥德里奇 Actb抗体(Sigma, A-5441)被用于被用于免疫印迹在人类样本上. Br J Cancer (2002) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 人类
西格玛奥德里奇 Actb抗体(Sigma, A-5441)被用于被用于免疫印迹在人类样本上. Int J Cancer (2001) ncbi
小鼠 单克隆(AC-15)
  • 免疫印迹; 人类
西格玛奥德里奇 Actb抗体(Sigma, A-5441)被用于被用于免疫印迹在人类样本上. Jpn J Cancer Res (2001) ncbi
文章列表
  1. Yao Y, Cai X, Zhang M, Zhang X, Ren F, Zheng Y, et al. PSTPIP2 regulates synovial macrophages polarization and dynamics via ERβ in the joint microenvironment. Arthritis Res Ther. 2022;24:247 pubmed 出版商
  2. Wrublewsky S, Glas J, Carlein C, Nalbach L, Hoffmann M, Pack M, et al. The loss of pancreatic islet NADPH oxidase (NOX)2 improves islet transplantation. Redox Biol. 2022;55:102419 pubmed 出版商
  3. Selle J, Dinger K, Jentgen V, Zanetti D, Will J, Georgomanolis T, et al. Maternal and perinatal obesity induce bronchial obstruction and pulmonary hypertension via IL-6-FoxO1-axis in later life. Nat Commun. 2022;13:4352 pubmed 出版商
  4. Goebel H, Koeditz B, Huerta M, Kameri E, Nestler T, Kamphausen T, et al. COVID-19 Infection Induce miR-371a-3p Upregulation Resulting in Influence on Male Fertility. Biomedicines. 2022;10: pubmed 出版商
  5. Yi B, Dai K, Yan Z, Yin Z. Circular RNA PLCE1 promotes epithelial mesenchymal transformation, glycolysis in colorectal cancer and M2 polarization of tumor-associated macrophages. Bioengineered. 2022;13:6243-6256 pubmed 出版商
  6. Kim J, Hwang K, Dang B, Eom M, Kong I, Gwack Y, et al. Insulin-activated store-operated Ca2+ entry via Orai1 induces podocyte actin remodeling and causes proteinuria. Nat Commun. 2021;12:6537 pubmed 出版商
  7. Hua X, Ge S, Zhang M, Mo F, Zhang L, Zhang J, et al. Pathogenic Roles of CXCL10 in Experimental Autoimmune Prostatitis by Modulating Macrophage Chemotaxis and Cytokine Secretion. Front Immunol. 2021;12:706027 pubmed 出版商
  8. van der Meer J, de Boer R, Meijer B, Smit W, Vermeulen J, Meisner S, et al. Epithelial argininosuccinate synthetase is dispensable for intestinal regeneration and tumorigenesis. Cell Death Dis. 2021;12:897 pubmed 出版商
  9. Watanabe D, Nakagawa S, Morofuji Y, Tóth A, Vastag M, Aruga J, et al. Characterization of a Primate Blood-Brain Barrier Co-Culture Model Prepared from Primary Brain Endothelial Cells, Pericytes and Astrocytes. Pharmaceutics. 2021;13: pubmed 出版商
  10. Sil S, Singh S, Chemparathy D, Chivero E, Gordon L, Buch S. Astrocytes & Astrocyte derived Extracellular Vesicles in Morphine Induced Amyloidopathy: Implications for Cognitive Deficits in Opiate Abusers. Aging Dis. 2021;12:1389-1408 pubmed 出版商
  11. Zhao J, Lu W, Ren Y, Fu Y, Martens Y, Shue F, et al. Apolipoprotein E regulates lipid metabolism and α-synuclein pathology in human iPSC-derived cerebral organoids. Acta Neuropathol. 2021;142:807-825 pubmed 出版商
  12. Kalogirou C, Linxweiler J, Schmucker P, Snaebjornsson M, Schmitz W, Wach S, et al. MiR-205-driven downregulation of cholesterol biosynthesis through SQLE-inhibition identifies therapeutic vulnerability in aggressive prostate cancer. Nat Commun. 2021;12:5066 pubmed 出版商
  13. Ma S, Mangala L, Hu W, Bayaktar E, Yokoi A, Hu W, et al. CD63-mediated cloaking of VEGF in small extracellular vesicles contributes to anti-VEGF therapy resistance. Cell Rep. 2021;36:109549 pubmed 出版商
  14. Opoku E, TRAUGHBER C, Zhang D, Iacano A, Khan M, Han J, et al. Gasdermin D Mediates Inflammation-Induced Defects in Reverse Cholesterol Transport and Promotes Atherosclerosis. Front Cell Dev Biol. 2021;9:715211 pubmed 出版商
  15. Xiao X, Li W, Rong D, Xu Z, Zhang Z, Ye H, et al. Human umbilical cord mesenchymal stem cells-derived extracellular vesicles facilitate the repair of spinal cord injury via the miR-29b-3p/PTEN/Akt/mTOR axis. Cell Death Discov. 2021;7:212 pubmed 出版商
  16. Setyaningsih W, Arfian N, Fitriawan A, Yuniartha R, Sari D. Ethanolic Extract of Centella asiatica Treatment in the Early Stage of Hyperglycemia Condition Inhibits Glomerular Injury and Vascular Remodeling in Diabetic Rat Model. Evid Based Complement Alternat Med. 2021;2021:6671130 pubmed 出版商
  17. Shen C, Hsieh C, Jiang K, Lin C, Chiang N, Li T, et al. AUY922 induces retinal toxicity through attenuating TRPM1. J Biomed Sci. 2021;28:55 pubmed 出版商
  18. Xia Z, Xu J, Lu E, He W, Deng S, Gong A, et al. m6A mRNA Methylation Regulates Epithelial Innate Antimicrobial Defense Against Cryptosporidial Infection. Front Immunol. 2021;12:705232 pubmed 出版商
  19. De Groof T, Bergkamp N, Heukers R, Giap T, Bebelman M, Goeij de Haas R, et al. Selective targeting of ligand-dependent and -independent signaling by GPCR conformation-specific anti-US28 intrabodies. Nat Commun. 2021;12:4357 pubmed 出版商
  20. Guo Y, Liu B, Liu Y, Sun W, Gao W, Mao S, et al. Oncogenic Chromatin Modifier KAT2A Activates MCT1 to Drive the Glycolytic Process and Tumor Progression in Renal Cell Carcinoma. Front Cell Dev Biol. 2021;9:690796 pubmed 出版商
  21. Liu H, Zang P, Lee I, Anderson B, Christiani A, Strait Bodey L, et al. Growth hormone secretagogue receptor-1a mediates ghrelin's effects on attenuating tumour-induced loss of muscle strength but not muscle mass. J Cachexia Sarcopenia Muscle. 2021;12:1280-1295 pubmed 出版商
  22. Swarnkar S, Avchalumov Y, Espadas I, Grinman E, Liu X, Raveendra B, et al. Molecular motor protein KIF5C mediates structural plasticity and long-term memory by constraining local translation. Cell Rep. 2021;36:109369 pubmed 出版商
  23. Mandal P, Lyons J, Burd E, Koval M, Mocarski E, Coopersmith C. Integrated evaluation of lung disease in single animals. PLoS ONE. 2021;16:e0246270 pubmed 出版商
  24. Dieterle M, Solà Riera C, Ye C, Goodfellow S, Mittler E, Kasikci E, et al. Genetic depletion studies inform receptor usage by virulent hantaviruses in human endothelial cells. elife. 2021;10: pubmed 出版商
  25. Lu J, Wang W, Li P, Wang X, Gao C, Zhang B, et al. MiR-146a regulates regulatory T cells to suppress heart transplant rejection in mice. Cell Death Discov. 2021;7:165 pubmed 出版商
  26. Lee S, Jung J, Lee Y, Kim S, Kim J, Kim B, et al. Targeting HSF1 as a Therapeutic Strategy for Multiple Mechanisms of EGFR Inhibitor Resistance in EGFR Mutant Non-Small-Cell Lung Cancer. Cancers (Basel). 2021;13: pubmed 出版商
  27. Gaja Capdevila N, Hernández N, Zamanillo D, Vela J, Merlos M, Navarro X, et al. Neuroprotective Effects of Sigma 1 Receptor Ligands on Motoneuron Death after Spinal Root Injury in Mice. Int J Mol Sci. 2021;22: pubmed 出版商
  28. Huang D, Yang B, Yao Y, Liao M, Zhang Y, Zeng Y, et al. Autophagic Inhibition of Caveolin-1 by Compound Phyllanthus urinaria L. Activates Ubiquitination and Proteasome Degradation of β-catenin to Suppress Metastasis of Hepatitis B-Associated Hepatocellular Carcinoma. Front Pharmacol. 2021;12:659325 pubmed 出版商
  29. Samuel M, Fonseka P, Sanwlani R, Gangoda L, Chee S, Keerthikumar S, et al. Oral administration of bovine milk-derived extracellular vesicles induces senescence in the primary tumor but accelerates cancer metastasis. Nat Commun. 2021;12:3950 pubmed 出版商
  30. Tian X, Wang Y, Lu Y, Wang W, Du J, Chen S, et al. Conditional depletion of macrophages ameliorates cholestatic liver injury and fibrosis via lncRNA-H19. Cell Death Dis. 2021;12:646 pubmed 出版商
  31. Ito S, Nomura T, Ueda T, Inui S, Morioka Y, Honjo H, et al. Gene expression profiles during tissue remodeling following bladder outlet obstruction. Sci Rep. 2021;11:13171 pubmed 出版商
  32. Souza C, Ketelut Carneiro N, Milanezi C, Faccioli L, Gardinassi L, Silva J. NLRC4 inhibits NLRP3 inflammasome and abrogates effective antifungal CD8+ T cell responses. iScience. 2021;24:102548 pubmed 出版商
  33. Low J, Du W, Gocha T, Oguz G, Zhang X, Chen M, et al. Molecular docking-aided identification of small molecule inhibitors targeting β-catenin-TCF4 interaction. iScience. 2021;24:102544 pubmed 出版商
  34. Hoxha E, Balbo I, Parolisi R, Audano M, Montarolo F, Ravera F, et al. Elovl5 is required for proper action potential conduction along peripheral myelinated fibers. Glia. 2021;69:2419-2428 pubmed 出版商
  35. Wan C, Mahara S, Sun C, Doan A, Chua H, Xu D, et al. Genome-scale CRISPR-Cas9 screen of Wnt/β-catenin signaling identifies therapeutic targets for colorectal cancer. Sci Adv. 2021;7: pubmed 出版商
  36. Shan T, Yue H, Sun X, Jiang Y, Chen L. Rspo3 regulates the abnormal differentiation of small intestinal epithelial cells in diabetic state. Stem Cell Res Ther. 2021;12:330 pubmed 出版商
  37. Pipathsouk A, Brunetti R, Town J, Graziano B, Breuer A, Pellett P, et al. The WAVE complex associates with sites of saddle membrane curvature. J Cell Biol. 2021;220: pubmed 出版商
  38. Wang J, Zhang Y, Xiao Y, Yuan X, Li P, Wang X, et al. Boosting immune surveillance by low-dose PI3K inhibitor facilitates early intervention of breast cancer. Am J Cancer Res. 2021;11:2005-2024 pubmed
  39. Daks A, Petukhov A, Fedorova O, Shuvalov O, Kizenko A, Tananykina E, et al. The RNA-binding protein HuR is a novel target of Pirh2 E3 ubiquitin ligase. Cell Death Dis. 2021;12:581 pubmed 出版商
  40. Sha S, Shen X, Cao Y, Qu L. Mesenchymal stem cells-derived extracellular vesicles ameliorate Alzheimer's disease in rat models via the microRNA-29c-3p/BACE1 axis and the Wnt/β-catenin pathway. Aging (Albany NY). 2021;13:15285-15306 pubmed 出版商
  41. Truong D, Phlairaharn T, Eßwein B, Gruber C, Tümen D, Baligács E, et al. Non-invasive and high-throughput interrogation of exon-specific isoform expression. Nat Cell Biol. 2021;23:652-663 pubmed 出版商
  42. Goujon C, Rebendenne A, Roy P, Bonaventure B, Valadao A, Desmarets L, et al. Bidirectional genome-wide CRISPR screens reveal host factors regulating SARS-CoV-2, MERS-CoV and seasonal HCoVs. Res Sq. 2021;: pubmed 出版商
  43. Padmanabhan N, Kyon H, Boot A, Lim K, Srivastava S, Chen S, et al. Highly recurrent CBS epimutations in gastric cancer CpG island methylator phenotypes and inflammation. Genome Biol. 2021;22:167 pubmed 出版商
  44. Kim C, Jin J, Ye Z, Jadhav R, Gustafson C, Hu B, et al. Histone deficiency and accelerated replication stress in T cell aging. J Clin Invest. 2021;131: pubmed 出版商
  45. Wang K, Ding Y, Xu C, Hao M, Li H, Ding L. Cldn-7 deficiency promotes experimental colitis and associated carcinogenesis by regulating intestinal epithelial integrity. Oncoimmunology. 2021;10:1923910 pubmed 出版商
  46. Liu M, Rao H, Liu J, Li X, Feng W, Gui L, et al. The histone methyltransferase SETD2 modulates oxidative stress to attenuate experimental colitis. Redox Biol. 2021;43:102004 pubmed 出版商
  47. Chen L, Luo S, Dupre A, Vasoya R, Parthasarathy A, Aita R, et al. The nuclear receptor HNF4 drives a brush border gene program conserved across murine intestine, kidney, and embryonic yolk sac. Nat Commun. 2021;12:2886 pubmed 出版商
  48. Hanna B, Michel M, Helleday T, Mortusewicz O. NEIL1 and NEIL2 Are Recruited as Potential Backup for OGG1 upon OGG1 Depletion or Inhibition by TH5487. Int J Mol Sci. 2021;22: pubmed 出版商
  49. Koeniger A, Brichkina A, Nee I, Dempwolff L, Hupfer A, Galperin I, et al. Activation of Cilia-Independent Hedgehog/GLI1 Signaling as a Novel Concept for Neuroblastoma Therapy. Cancers (Basel). 2021;13: pubmed 出版商
  50. Nakajima W, Miyazaki K, Asano Y, Kubota S, Tanaka N. Krüppel-Like Factor 4 and Its Activator APTO-253 Induce NOXA-Mediated, p53-Independent Apoptosis in Triple-Negative Breast Cancer Cells. Genes (Basel). 2021;12: pubmed 出版商
  51. Fang W, Sofia Acevedo D, Smart C, Zinda B, Alissa N, Warren K, et al. Expression of CCL2/CCR2 signaling proteins in breast carcinoma cells is associated with invasive progression. Sci Rep. 2021;11:8708 pubmed 出版商
  52. Sharma V, Sood R, Lou D, Hung T, Levesque M, Han Y, et al. 4E-BP2-dependent translation in parvalbumin neurons controls epileptic seizure threshold. Proc Natl Acad Sci U S A. 2021;118: pubmed 出版商
  53. Nishina T, Deguchi Y, Ohshima D, Takeda W, Ohtsuka M, Shichino S, et al. Interleukin-11-expressing fibroblasts have a unique gene signature correlated with poor prognosis of colorectal cancer. Nat Commun. 2021;12:2281 pubmed 出版商
  54. Lake C, Voss K, Bauman B, Pohida K, Jiang T, Dveksler G, et al. TIM-3 drives temporal differences in restimulation-induced cell death sensitivity in effector CD8+ T cells in conjunction with CEACAM1. Cell Death Dis. 2021;12:400 pubmed 出版商
  55. Feng L, Chen M, Li Y, Li M, Hu S, Zhou B, et al. Sirt1 deacetylates and stabilizes p62 to promote hepato-carcinogenesis. Cell Death Dis. 2021;12:405 pubmed 出版商
  56. Gaston C, de Beco S, Doss B, Pan M, Gauquelin E, D Alessandro J, et al. EpCAM promotes endosomal modulation of the cortical RhoA zone for epithelial organization. Nat Commun. 2021;12:2226 pubmed 出版商
  57. Huang H, Li N, Li D, Jing D, Liu Z, Xu X, et al. Autophagy Promotes Cigarette Smoke-Initiated and Elastin-Driven Bronchitis-Like Airway Inflammation in Mice. Front Immunol. 2021;12:594330 pubmed 出版商
  58. Warwick T, Schulz M, Günther S, Gilsbach R, Neme A, Carlberg C, et al. A hierarchical regulatory network analysis of the vitamin D induced transcriptome reveals novel regulators and complete VDR dependency in monocytes. Sci Rep. 2021;11:6518 pubmed 出版商
  59. Gu X, Wang D, Xu Z, Wang J, Guo L, Chai R, et al. Prevention of acquired sensorineural hearing loss in mice by in vivo Htra2 gene editing. Genome Biol. 2021;22:86 pubmed 出版商
  60. Liss F, Frech M, Wang Y, Giel G, Fischer S, Simon C, et al. IRF8 Is an AML-Specific Susceptibility Factor That Regulates Signaling Pathways and Proliferation of AML Cells. Cancers (Basel). 2021;13: pubmed 出版商
  61. Liu Y, Li X, Zhang H, Zhang M, Wei Y. HuR up-regulates cell surface PD-L1 via stabilizing CMTM6 transcript in cancer. Oncogene. 2021;40:2230-2242 pubmed 出版商
  62. Little J, McNeely K, Michel N, Bott C, Lettieri K, Hecht M, et al. Loss of Coiled-Coil Protein Cep55 Impairs Neural Stem Cell Abscission and Results in p53-Dependent Apoptosis in Developing Cortex. J Neurosci. 2021;41:3344-3365 pubmed 出版商
  63. Naguib S, Backstrom J, Gil M, Calkins D, Rex T. Retinal oxidative stress activates the NRF2/ARE pathway: An early endogenous protective response to ocular hypertension. Redox Biol. 2021;42:101883 pubmed 出版商
  64. Baquero J, Benitez Buelga C, Rajagopal V, Zhenjun Z, Torres Ruiz R, Muller S, et al. Small molecule inhibitor of OGG1 blocks oxidative DNA damage repair at telomeres and potentiates methotrexate anticancer effects. Sci Rep. 2021;11:3490 pubmed 出版商
  65. Wijshake T, Zou Z, Chen B, Zhong L, Xiao G, Xie Y, et al. Tumor-suppressor function of Beclin 1 in breast cancer cells requires E-cadherin. Proc Natl Acad Sci U S A. 2021;118: pubmed 出版商
  66. Xu K, Yin N, Peng M, Stamatiades E, Shyu A, Li P, et al. Glycolysis fuels phosphoinositide 3-kinase signaling to bolster T cell immunity. Science. 2021;371:405-410 pubmed 出版商
  67. Roliński M, Montaldo N, Aksu M, Fordyce Martin S, Brambilla A, Kunath N, et al. Loss of Mediator complex subunit 13 (MED13) promotes resistance to alkylation through cyclin D1 upregulation. Nucleic Acids Res. 2021;: pubmed 出版商
  68. Kumar A, Sundaram K, Mu J, Dryden G, Sriwastva M, Lei C, et al. High-fat diet-induced upregulation of exosomal phosphatidylcholine contributes to insulin resistance. Nat Commun. 2021;12:213 pubmed 出版商
  69. Ben Sasson A, Watson J, Sheffler W, Johnson M, Bittleston A, Somasundaram L, et al. Design of biologically active binary protein 2D materials. Nature. 2021;589:468-473 pubmed 出版商
  70. Jin X, Morro B, Tørresen O, Moiche V, Solbakken M, Jakobsen K, et al. Innovation in Nucleotide-Binding Oligomerization-Like Receptor and Toll-Like Receptor Sensing Drives the Major Histocompatibility Complex-II Free Atlantic Cod Immune System. Front Immunol. 2020;11:609456 pubmed 出版商
  71. Bele S, Girada S, Ray A, Gupta A, Oruganti S, Prakash Babu P, et al. MS-275, a class 1 histone deacetylase inhibitor augments glucagon-like peptide-1 receptor agonism to improve glycemic control and reduce obesity in diet-induced obese mice. elife. 2020;9: pubmed 出版商
  72. Gumber D, Do M, Suresh Kumar N, Sonavane P, Wu C, Cruz L, et al. Selective activation of FZD7 promotes mesendodermal differentiation of human pluripotent stem cells. elife. 2020;9: pubmed 出版商
  73. Iwata S, Morikawa M, Takei Y, Hirokawa N. An activity-dependent local transport regulation via degradation and synthesis of KIF17 underlying cognitive flexibility. Sci Adv. 2020;6: pubmed 出版商
  74. Torretta S, Scagliola A, Ricci L, Mainini F, Di Marco S, Cuccovillo I, et al. D-mannose suppresses macrophage IL-1β production. Nat Commun. 2020;11:6343 pubmed 出版商
  75. Kushioka J, Kaito T, Okada R, Ishiguro H, Bal Z, Kodama J, et al. A novel negative regulatory mechanism of Smurf2 in BMP/Smad signaling in bone. Bone Res. 2020;8:41 pubmed 出版商
  76. Pavlova N, King B, Josselsohn R, Violante S, Macera V, Vardhana S, et al. Translation in amino-acid-poor environments is limited by tRNAGln charging. elife. 2020;9: pubmed 出版商
  77. Li J, Zhang L, Zheng Y, Shao R, Liang Q, Yu W, et al. BAD inactivation exacerbates rheumatoid arthritis pathology by promoting survival of sublining macrophages. elife. 2020;9: pubmed 出版商
  78. Chiu C, Weng Y, Huang Y, Chen R, Liu Y, Yeh T, et al. (D620N) VPS35 causes the impairment of Wnt/β-catenin signaling cascade and mitochondrial dysfunction in a PARK17 knockin mouse model. Cell Death Dis. 2020;11:1018 pubmed 出版商
  79. Pal A, Leung J, Ang G, Rao V, Pignata L, Lim H, et al. EHMT2 epigenetically suppresses Wnt signaling and is a potential target in embryonal rhabdomyosarcoma. elife. 2020;9: pubmed 出版商
  80. Khayati K, Bhatt V, Hu Z, Fahumy S, Luo X, Guo J. Autophagy compensates for Lkb1 loss to maintain adult mice homeostasis and survival. elife. 2020;9: pubmed 出版商
  81. Chen A, Santana A, Doudican N, Roudiani N, Laursen K, Therrien J, et al. MAGE-A3 is a prognostic biomarker for poor clinical outcome in cutaneous squamous cell carcinoma with perineural invasion via modulation of cell proliferation. PLoS ONE. 2020;15:e0241551 pubmed 出版商
  82. Green J, Swanton T, Morris L, El Sharkawy L, Cook J, Yu S, et al. LRRC8A is essential for hypotonicity-, but not for DAMP-induced NLRP3 inflammasome activation. elife. 2020;9: pubmed 出版商
  83. Atkins A, Xu M, Li M, Rogers N, Pryzhkova M, Jordan P. SMC5/6 is required for replication fork stability and faithful chromosome segregation during neurogenesis. elife. 2020;9: pubmed 出版商
  84. Fomicheva M, Macara I. Genome-wide CRISPR screen identifies noncanonical NF-κB signaling as a regulator of density-dependent proliferation. elife. 2020;9: pubmed 出版商
  85. Wilson M, Reske J, Holladay J, Neupane S, Ngo J, Cuthrell N, et al. ARID1A Mutations Promote P300-Dependent Endometrial Invasion through Super-Enhancer Hyperacetylation. Cell Rep. 2020;33:108366 pubmed 出版商
  86. Hu Q, Lu Y, Hu F, He S, Xu X, Niu Y, et al. Resistant dextrin reduces obesity and attenuates adipose tissue inflammation in high-fat diet-fed mice. Int J Med Sci. 2020;17:2611-2621 pubmed 出版商
  87. Sun Q, Chen J, Xu L, Kang J, Wu X, Ren Y, et al. MUTYH Deficiency Is Associated with Attenuated Pulmonary Fibrosis in a Bleomycin-Induced Model. Oxid Med Cell Longev. 2020;2020:4828256 pubmed 出版商
  88. Hao Q, Zong X, Sun Q, Lin Y, Song Y, Hashemikhabir S, et al. The S-phase-induced lncRNA SUNO1 promotes cell proliferation by controlling YAP1/Hippo signaling pathway. elife. 2020;9: pubmed 出版商
  89. Giri K, De Beaurepaire L, Jegou D, Lavy M, Mosser M, Dupont A, et al. Molecular and Functional Diversity of Distinct Subpopulations of the Stressed Insulin-Secreting Cell's Vesiculome. Front Immunol. 2020;11:1814 pubmed 出版商
  90. Hu Q, Masuda T, Kuramitsu S, Tobo T, Sato K, Kidogami S, et al. Potential association of LOXL1 with peritoneal dissemination in gastric cancer possibly via promotion of EMT. PLoS ONE. 2020;15:e0241140 pubmed 出版商
  91. Mancini M, Karakuzu A, Cohen Adad J, Cercignani M, Nichols T, Stikov N. An interactive meta-analysis of MRI biomarkers of myelin. elife. 2020;9: pubmed 出版商
  92. Riou R, Ladli M, Gerbal Chaloin S, Bossard P, Gougelet A, Godard C, et al. ARID1A loss in adult hepatocytes activates β-catenin-mediated erythropoietin transcription. elife. 2020;9: pubmed 出版商
  93. Daly J, Simonetti B, Klein K, Chen K, Williamson M, Antón Plágaro C, et al. Neuropilin-1 is a host factor for SARS-CoV-2 infection. Science. 2020;370:861-865 pubmed 出版商
  94. Boucher J, Balandre A, Debant M, Vix J, Harnois T, Bourmeyster N, et al. Cx43 Present at the Leading Edge Membrane Governs Promigratory Effects of Osteoblast-Conditioned Medium on Human Prostate Cancer Cells in the Context of Bone Metastasis. Cancers (Basel). 2020;12: pubmed 出版商
  95. Gurley J, Gmyrek G, McClellan M, Hargis E, Hauck S, Dozmorov M, et al. Neuroretinal-Derived Caveolin-1 Promotes Endotoxin-Induced Inflammation in the Murine Retina. Invest Ophthalmol Vis Sci. 2020;61:19 pubmed 出版商
  96. Ded L, Hwang J, Miki K, Shi H, Chung J. 3D in situ imaging of the female reproductive tract reveals molecular signatures of fertilizing spermatozoa in mice. elife. 2020;9: pubmed 出版商
  97. Lomphithak T, Choksi S, Mutirangura A, Tohtong R, Tencomnao T, Usubuchi H, et al. Receptor-interacting protein kinase 1 is a key mediator in TLR3 ligand and Smac mimetic-induced cell death and suppresses TLR3 ligand-promoted invasion in cholangiocarcinoma. Cell Commun Signal. 2020;18:161 pubmed 出版商
  98. Huang Y, Liang C, Ritz D, Coelho R, Septiadi D, Estermann M, et al. Collagen-rich omentum is a premetastatic niche for integrin α2-mediated peritoneal metastasis. elife. 2020;9: pubmed 出版商
  99. Cheng C, Wooten J, Gibbs Z, McGlynn K, Mishra P, Whitehurst A. Sperm-specific COX6B2 enhances oxidative phosphorylation, proliferation, and survival in human lung adenocarcinoma. elife. 2020;9: pubmed 出版商
  100. Pan L, Lemieux M, Thomas T, Rogers J, Lipper C, Lee W, et al. IER5, a DNA damage response gene, is required for Notch-mediated induction of squamous cell differentiation. elife. 2020;9: pubmed 出版商
  101. Yuan S, Chu H, Huang J, Zhao X, Ye Z, Lai P, et al. Viruses harness YxxØ motif to interact with host AP2M1 for replication: A vulnerable broad-spectrum antiviral target. Sci Adv. 2020;6:eaba7910 pubmed 出版商
  102. Oliemuller E, Newman R, Tsang S, Foo S, Muirhead G, Noor F, et al. SOX11 promotes epithelial/mesenchymal hybrid state and alters tropism of invasive breast cancer cells. elife. 2020;9: pubmed 出版商
  103. Panic V, Pearson S, Banks J, Tippetts T, Velasco Silva J, Lee S, et al. Mitochondrial pyruvate carrier is required for optimal brown fat thermogenesis. elife. 2020;9: pubmed 出版商
  104. Blazquez C, Ruiz Calvo A, Bajo Grañeras R, Baufreton J, Resel E, Varilh M, et al. Inhibition of striatonigral autophagy as a link between cannabinoid intoxication and impairment of motor coordination. elife. 2020;9: pubmed 出版商
  105. Geng A, Wu T, Cai C, Song W, Wang J, Yu Q, et al. A novel function of R-spondin1 in regulating estrogen receptor expression independent of Wnt/β-catenin signaling. elife. 2020;9: pubmed 出版商
  106. Wu Y, Sarkissyan M, Ogah O, Kim J, Vadgama J. Expression of MALAT1 Promotes Trastuzumab Resistance in HER2 Overexpressing Breast Cancers. Cancers (Basel). 2020;12: pubmed 出版商
  107. Jiang Z, Zhang C, Liu X, Ma X, Bian X, Xiao X, et al. Dexamethasone inhibits stemness maintenance and enhances chemosensitivity of hepatocellular carcinoma stem cells by inducing deSUMOylation of HIF‑1α and Oct4. Int J Oncol. 2020;57:780-790 pubmed 出版商
  108. Zatulovskiy E, Zhang S, Berenson D, Topacio B, Skotheim J. Cell growth dilutes the cell cycle inhibitor Rb to trigger cell division. Science. 2020;369:466-471 pubmed 出版商
  109. Huang H, Liu R, Huang Y, Feng Y, Fu Y, Chen L, et al. Acetylation-mediated degradation of HSD17B4 regulates the progression of prostate cancer. Aging (Albany NY). 2020;12:14699-14717 pubmed 出版商
  110. Coelho R, Ricardo S, Amaral A, Huang Y, Nunes M, Neves J, et al. Regulation of invasion and peritoneal dissemination of ovarian cancer by mesothelin manipulation. Oncogenesis. 2020;9:61 pubmed 出版商
  111. Sato K, Hikita H, Myojin Y, Fukumoto K, Murai K, Sakane S, et al. Hyperglycemia enhances pancreatic cancer progression accompanied by elevations in phosphorylated STAT3 and MYC levels. PLoS ONE. 2020;15:e0235573 pubmed 出版商
  112. Jiao T, Yao X, Zhao Y, Zhou Y, Gao Y, Fan S, et al. Dexamethasone-Induced Liver Enlargement Is Related to PXR/YAP Activation and Lipid Accumulation but Not Hepatocyte Proliferation. Drug Metab Dispos. 2020;48:830-839 pubmed 出版商
  113. Miles R, Kerridge C, Hilditch L, Monit C, Jacques D, Towers G. MxB sensitivity of HIV-1 is determined by a highly variable and dynamic capsid surface. elife. 2020;9: pubmed 出版商
  114. Pattwell S, Arora S, Cimino P, Ozawa T, Szulzewsky F, Hoellerbauer P, et al. A kinase-deficient NTRK2 splice variant predominates in glioma and amplifies several oncogenic signaling pathways. Nat Commun. 2020;11:2977 pubmed 出版商
  115. Xiong L, Zhao K, Cao Y, Guo H, Pan J, Yang X, et al. Linking skeletal muscle aging with osteoporosis by lamin A/C deficiency. PLoS Biol. 2020;18:e3000731 pubmed 出版商
  116. Sato T, Kataoka K, Ito Y, Yokoyama S, Inui M, Mori M, et al. Lin28a/let-7 pathway modulates the Hox code via Polycomb regulation during axial patterning in vertebrates. elife. 2020;9: pubmed 出版商
  117. Shen S, Li B, Dai J, Wu Z, He Y, Wen L, et al. BRD4 Inhibition Protects Against Acute Pancreatitis Through Restoring Impaired Autophagic Flux. Front Pharmacol. 2020;11:618 pubmed 出版商
  118. Guo Y, Chen J, Feng Y, Chua M, Zeng Y, Hui E, et al. Germline Polymorphisms and Length of Survival of Nasopharyngeal Carcinoma: An Exome-Wide Association Study in Multiple Cohorts. Adv Sci (Weinh). 2020;7:1903727 pubmed 出版商
  119. Kang L, Yu H, Yang X, Zhu Y, Bai X, Wang R, et al. Neutrophil extracellular traps released by neutrophils impair revascularization and vascular remodeling after stroke. Nat Commun. 2020;11:2488 pubmed 出版商
  120. Alexander R, Liou Y, Knudsen N, Starost K, Xu C, Hyde A, et al. Bmal1 integrates mitochondrial metabolism and macrophage activation. elife. 2020;9: pubmed 出版商
  121. Ghergurovich J, García Cañaveras J, Wang J, Schmidt E, Zhang Z, Teslaa T, et al. A small molecule G6PD inhibitor reveals immune dependence on pentose phosphate pathway. Nat Chem Biol. 2020;16:731-739 pubmed 出版商
  122. Vu M, Kassouf N, Ofili R, Lund T, Bell C, Appiah S. Doxorubicin selectively induces apoptosis through the inhibition of a novel isoform of Bcl‑2 in acute myeloid leukaemia MOLM‑13 cells with reduced Beclin 1 expression. Int J Oncol. 2020;57:113-121 pubmed 出版商
  123. Yamamoto K, Venida A, Yano J, Biancur D, Kakiuchi M, Gupta S, et al. Autophagy promotes immune evasion of pancreatic cancer by degrading MHC-I. Nature. 2020;581:100-105 pubmed 出版商
  124. Simula L, Corrado M, Accordi B, Di Rita A, Nazio F, Antonucci Y, et al. JNK1 and ERK1/2 modulate lymphocyte homeostasis via BIM and DRP1 upon AICD induction. Cell Death Differ. 2020;: pubmed 出版商
  125. Somerville T, Biffi G, Da ler Plenker J, Hur S, He X, Vance K, et al. Squamous trans-differentiation of pancreatic cancer cells promotes stromal inflammation. elife. 2020;9: pubmed 出版商
  126. Golenberg N, Squirrell J, Bennin D, Rindy J, Pistono P, Eliceiri K, et al. Citrullination regulates wound responses and tissue regeneration in zebrafish. J Cell Biol. 2020;219: pubmed 出版商
  127. Roulis M, Kaklamanos A, Schernthanner M, Bielecki P, Zhao J, Kaffe E, et al. Paracrine orchestration of intestinal tumorigenesis by a mesenchymal niche. Nature. 2020;580:524-529 pubmed 出版商
  128. Murata K, Nakatsugawa M, Rahman M, Nguyen L, Millar D, Mulder D, et al. Landscape mapping of shared antigenic epitopes and their cognate TCRs of tumor-infiltrating T lymphocytes in melanoma. elife. 2020;9: pubmed 出版商
  129. An L, Nie P, Chen M, Tang Y, Zhang H, Guan J, et al. MST4 kinase suppresses gastric tumorigenesis by limiting YAP activation via a non-canonical pathway. J Exp Med. 2020;217: pubmed 出版商
  130. Alajati A, D Ambrosio M, Troiani M, Mosole S, Pellegrini L, Chen J, et al. CDCP1 overexpression drives prostate cancer progression and can be targeted in vivo. J Clin Invest. 2020;130:2435-2450 pubmed 出版商
  131. Lochab S, Singh Y, Sengupta S, Nandicoori V. Mycobacterium tuberculosis exploits host ATM kinase for survival advantage through SecA2 secretome. elife. 2020;9: pubmed 出版商
  132. Rana S, Espinosa Díez C, Ruhl R, Chatterjee N, Hudson C, Fraile Bethencourt E, et al. Differential regulation of microRNA-15a by radiation affects angiogenesis and tumor growth via modulation of acid sphingomyelinase. Sci Rep. 2020;10:5581 pubmed 出版商
  133. Yang L, Han B, Zhang M, Wang Y, Tao K, Zhu M, et al. Activation of BK Channels Prevents Hepatic Stellate Cell Activation and Liver Fibrosis Through the Suppression of TGFβ1/SMAD3 and JAK/STAT3 Profibrotic Signaling Pathways. Front Pharmacol. 2020;11:165 pubmed 出版商
  134. Adapala N, Swarnkar G, Arra M, Shen J, Mbalaviele G, Ke K, et al. Inflammatory osteolysis is regulated by site-specific ISGylation of the scaffold protein NEMO. elife. 2020;9: pubmed 出版商
  135. Zhang R, Liakath Ali K, Sudhof T. Latrophilin-2 and latrophilin-3 are redundantly essential for parallel-fiber synapse function in cerebellum. elife. 2020;9: pubmed 出版商
  136. Sozen E, Yazgan B, Tok O, Demirel T, Ercan F, Proto J, et al. Cholesterol induced autophagy via IRE1/JNK pathway promotes autophagic cell death in heart tissue. Metabolism. 2020;106:154205 pubmed 出版商
  137. Shen H, Gan P, Wang K, Darehzereshki A, Wang K, Kumar S, et al. Mononuclear diploid cardiomyocytes support neonatal mouse heart regeneration in response to paracrine IGF2 signaling. elife. 2020;9: pubmed 出版商
  138. Martin E, Minet N, Boschat A, Sanquer S, Sobrino S, Lenoir C, et al. Impaired lymphocyte function and differentiation in CTPS1-deficient patients result from a hypomorphic homozygous mutation. JCI Insight. 2020;5: pubmed 出版商
  139. Ma H, Qian W, Bambousková M, Collins P, Porter S, Byrum A, et al. Barrier-to-Autointegration Factor 1 Protects against a Basal cGAS-STING Response. MBio. 2020;11: pubmed 出版商
  140. De Luna N, Turon Sans J, Cortés Vicente E, Carrasco Rozas A, Illán Gala I, Dols Icardo O, et al. Downregulation of miR-335-5P in Amyotrophic Lateral Sclerosis Can Contribute to Neuronal Mitochondrial Dysfunction and Apoptosis. Sci Rep. 2020;10:4308 pubmed 出版商
  141. Zhang J, Huang J, Zhang Y, Zhang X, Zhao L, Li C, et al. Microtubule associated protein 9 inhibits liver tumorigenesis by suppressing ERCC3. EBioMedicine. 2020;53:102701 pubmed 出版商
  142. Bajpai R, Sharma A, Achreja A, Edgar C, Wei C, Siddiqa A, et al. Electron transport chain activity is a predictor and target for venetoclax sensitivity in multiple myeloma. Nat Commun. 2020;11:1228 pubmed 出版商
  143. Huang Z, Zhao J, Wang W, Zhou J, Zhang J. Depletion of LncRNA NEAT1 Rescues Mitochondrial Dysfunction Through NEDD4L-Dependent PINK1 Degradation in Animal Models of Alzheimer's Disease. Front Cell Neurosci. 2020;14:28 pubmed 出版商
  144. Chen Y, Waqar A, Nishijima K, Ning B, Kitajima S, Matsuhisa F, et al. Macrophage-derived MMP-9 enhances the progression of atherosclerotic lesions and vascular calcification in transgenic rabbits. J Cell Mol Med. 2020;24:4261-4274 pubmed 出版商
  145. Lee J, Hong J, Yoon B, Son K, Lee K, Im D, et al. Expression of Cellular Receptors in the Ischemic Hemisphere of Mice with Increased Glucose Uptake. Exp Neurobiol. 2020;29:70-79 pubmed 出版商
  146. Wei Y, Lu M, Mei M, Wang H, Han Z, Chen M, et al. Pyridoxine induces glutathione synthesis via PKM2-mediated Nrf2 transactivation and confers neuroprotection. Nat Commun. 2020;11:941 pubmed 出版商
  147. Hinte F, van Anken E, Tirosh B, Brune W. Repression of viral gene expression and replication by the unfolded protein response effector XBP1u. elife. 2020;9: pubmed 出版商
  148. Eom T, Han S, Kim J, Blundon J, Wang Y, Yu J, et al. Schizophrenia-related microdeletion causes defective ciliary motility and brain ventricle enlargement via microRNA-dependent mechanisms in mice. Nat Commun. 2020;11:912 pubmed 出版商
  149. Nagaoka S, Nakaki F, Miyauchi H, Nosaka Y, Ohta H, Yabuta Y, et al. ZGLP1 is a determinant for the oogenic fate in mice. Science. 2020;: pubmed 出版商
  150. Kim H, Takegahara N, Walsh M, Middleton S, Yu J, Shirakawa J, et al. IgSF11 regulates osteoclast differentiation through association with the scaffold protein PSD-95. Bone Res. 2020;8:5 pubmed 出版商
  151. Shibahara T, Ago T, Nakamura K, Tachibana M, Yoshikawa Y, Komori M, et al. Pericyte-Mediated Tissue Repair through PDGFRβ Promotes Peri-Infarct Astrogliosis, Oligodendrogenesis, and Functional Recovery after Acute Ischemic Stroke. Eneuro. 2020;7: pubmed 出版商
  152. Yang F, Huang X, Zang R, Chen J, Fidalgo M, Sanchez Priego C, et al. DUX-miR-344-ZMYM2-Mediated Activation of MERVL LTRs Induces a Totipotent 2C-like State. Cell Stem Cell. 2020;26:234-250.e7 pubmed 出版商
  153. Wilmes S, Hafer M, Vuorio J, Tucker J, Winkelmann H, Löchte S, et al. Mechanism of homodimeric cytokine receptor activation and dysregulation by oncogenic mutations. Science. 2020;367:643-652 pubmed 出版商
  154. Zhang M, Wang Z, Li B, Sun F, Chen A, Gong M. Identification of microRNA‑363‑3p as an essential regulator of chondrocyte apoptosis in osteoarthritis by targeting NRF1 through the p53‑signaling pathway. Mol Med Rep. 2020;21:1077-1088 pubmed 出版商
  155. Yang S, Ma C, Wu H, Zhang H, Yuan F, Yang G, et al. Tectorigenin attenuates diabetic nephropathy by improving vascular endothelium dysfunction through activating AdipoR1/2 pathway. Pharmacol Res. 2020;153:104678 pubmed 出版商
  156. Majewski L, Maciąg F, Boguszewski P, Kuznicki J. Transgenic Mice Overexpressing Human STIM2 and ORAI1 in Neurons Exhibit Changes in Behavior and Calcium Homeostasis but Show No Signs of Neurodegeneration. Int J Mol Sci. 2020;21: pubmed 出版商
  157. Ando Y, Ohuchida K, Otsubo Y, Kibe S, Takesue S, Abe T, et al. Necroptosis in pancreatic cancer promotes cancer cell migration and invasion by release of CXCL5. PLoS ONE. 2020;15:e0228015 pubmed 出版商
  158. Mallampalli R, Li X, Jang J, Kaminski T, Hoji A, Coon T, et al. Cigarette smoke exposure enhances transforming acidic coiled-coil-containing protein 2 turnover and thereby promotes emphysema. JCI Insight. 2020;5: pubmed 出版商
  159. Cheung E, DeNicola G, Nixon C, Blyth K, Labuschagne C, Tuveson D, et al. Dynamic ROS Control by TIGAR Regulates the Initiation and Progression of Pancreatic Cancer. Cancer Cell. 2020;37:168-182.e4 pubmed 出版商
  160. Chen F, Liu X, Chen Y, Liu J, Lu H, Wang W, et al. Sphere-induced reprogramming of RPE cells into dual-potential RPE stem-like cells. EBioMedicine. 2020;52:102618 pubmed 出版商
  161. Tanaka H, Homma H, Fujita K, Kondo K, Yamada S, Jin X, et al. YAP-dependent necrosis occurs in early stages of Alzheimer's disease and regulates mouse model pathology. Nat Commun. 2020;11:507 pubmed 出版商
  162. Li J, Chiu J, Ramanjulu M, Blass B, Pratico D. A pharmacological chaperone improves memory by reducing Aβ and tau neuropathology in a mouse model with plaques and tangles. Mol Neurodegener. 2020;15:1 pubmed 出版商
  163. Lin C, Lin W, Cho R, Yang C, Yeh Y, Hsiao L, et al. Induction of HO-1 by Mevastatin Mediated via a Nox/ROS-Dependent c-Src/PDGFRα/PI3K/Akt/Nrf2/ARE Cascade Suppresses TNF-α-Induced Lung Inflammation. J Clin Med. 2020;9: pubmed 出版商
  164. Budzik J, Swaney D, Jimenez Morales D, Johnson J, Garelis N, Repasy T, et al. Dynamic post-translational modification profiling of Mycobacterium tuberculosis-infected primary macrophages. elife. 2020;9: pubmed 出版商
  165. Zhang L, Wang Y, Wu G, Rao L, Wei Y, Yue H, et al. Blockade of JAK2 protects mice against hypoxia-induced pulmonary arterial hypertension by repressing pulmonary arterial smooth muscle cell proliferation. Cell Prolif. 2020;53:e12742 pubmed 出版商
  166. Skoda J, Neradil J, Staniczkova Zambo I, Nunukova A, Macsek P, Borankova K, et al. Serial Xenotransplantation in NSG Mice Promotes a Hybrid Epithelial/Mesenchymal Gene Expression Signature and Stemness in Rhabdomyosarcoma Cells. Cancers (Basel). 2020;12: pubmed 出版商
  167. Porreca R, Herrera Moyano E, Skourti E, Law P, Gonzalez Franco R, Montoya A, et al. TRF1 averts chromatin remodelling, recombination and replication dependent-break induced replication at mouse telomeres. elife. 2020;9: pubmed 出版商
  168. Ding H, Chen J, Su M, Lin Z, Zhan H, Yang F, et al. BDNF promotes activation of astrocytes and microglia contributing to neuroinflammation and mechanical allodynia in cyclophosphamide-induced cystitis. J Neuroinflammation. 2020;17:19 pubmed 出版商
  169. Hsu H, Liu C, Lin J, Hsu T, Hsu J, Li A, et al. Involvement of collagen XVII in pluripotency gene expression and metabolic reprogramming of lung cancer stem cells. J Biomed Sci. 2020;27:5 pubmed 出版商
  170. Cai H, Li J, Zhang Y, Liao Y, Zhu Y, Wang C, et al. LDHA Promotes Oral Squamous Cell Carcinoma Progression Through Facilitating Glycolysis and Epithelial-Mesenchymal Transition. Front Oncol. 2019;9:1446 pubmed 出版商
  171. Dai E, Han L, Liu J, Xie Y, Kroemer G, Klionsky D, et al. Autophagy-dependent ferroptosis drives tumor-associated macrophage polarization via release and uptake of oncogenic KRAS protein. Autophagy. 2020;:1-15 pubmed 出版商
  172. Singh V, Khalil M, De Benedetti A. The TLK1/Nek1 axis contributes to mitochondrial integrity and apoptosis prevention via phosphorylation of VDAC1. Cell Cycle. 2020;19:363-375 pubmed 出版商
  173. Zhai Y, Zhu Y, Liu J, Xie K, Yu J, Yu L, et al. Dexmedetomidine Post-Conditioning Alleviates Cerebral Ischemia-Reperfusion Injury in Rats by Inhibiting High Mobility Group Protein B1 Group (HMGB1)/Toll-Like Receptor 4 (TLR4)/Nuclear Factor kappa B (NF-κB) Signaling Pathway. Med Sci Monit. 2020;26:e918617 pubmed 出版商
  174. Kwan S, Au Yeung C, Yeung T, Rynne Vidal A, Wong K, Risinger J, et al. Ubiquitin Carboxyl-Terminal Hydrolase L1 (UCHL1) Promotes Uterine Serous Cancer Cell Proliferation and Cell Cycle Progression. Cancers (Basel). 2020;12: pubmed 出版商
  175. Sarker M, Lee J, Lee D, Chun K, Jun H. Attenuation of diabetic kidney injury in DPP4-deficient rats; role of GLP-1 on the suppression of AGE formation by inducing glyoxalase 1. Aging (Albany NY). 2020;12:593-610 pubmed 出版商
  176. Wang H, Chen B, Lin Y, Zhou Y, Li X. Legumain Promotes Gastric Cancer Progression Through Tumor-associated Macrophages In vitro and In vivo. Int J Biol Sci. 2020;16:172-180 pubmed 出版商
  177. Kawai K, Negoro R, Ichikawa M, Yamashita T, Deguchi S, Harada K, et al. Establishment of SLC15A1/PEPT1-Knockout Human-Induced Pluripotent Stem Cell Line for Intestinal Drug Absorption Studies. Mol Ther Methods Clin Dev. 2020;17:49-57 pubmed 出版商
  178. Wei J, Long L, Zheng W, Dhungana Y, Lim S, Guy C, et al. Targeting REGNASE-1 programs long-lived effector T cells for cancer therapy. Nature. 2019;576:471-476 pubmed 出版商
  179. Hiepen C, Jatzlau J, Hildebrandt S, Kampfrath B, Goktas M, Murgai A, et al. BMPR2 acts as a gatekeeper to protect endothelial cells from increased TGFβ responses and altered cell mechanics. PLoS Biol. 2019;17:e3000557 pubmed 出版商
  180. Hoj J, Mayro B, Pendergast A. A TAZ-AXL-ABL2 Feed-Forward Signaling Axis Promotes Lung Adenocarcinoma Brain Metastasis. Cell Rep. 2019;29:3421-3434.e8 pubmed 出版商
  181. Zewinger S, Reiser J, Jankowski V, Alansary D, Hahm E, Triem S, et al. Apolipoprotein C3 induces inflammation and organ damage by alternative inflammasome activation. Nat Immunol. 2020;21:30-41 pubmed 出版商
  182. Abe H, Satoh J, Shirasaka Y, Kogure A, Kato H, Ito S, et al. Priming Phosphorylation of TANK-Binding Kinase 1 by IκB Kinase β Is Essential in Toll-Like Receptor 3/4 Signaling. Mol Cell Biol. 2020;40: pubmed 出版商
  183. Lehmann M, Lukonin I, Noe F, Schmoranzer J, Clementi C, Loerke D, et al. Nanoscale coupling of endocytic pit growth and stability. Sci Adv. 2019;5:eaax5775 pubmed 出版商
  184. Jiang K, Zhi X, Ma Y, Zhou L. Long non-coding RNA TOB1-AS1 modulates cell proliferation, apoptosis, migration and invasion through miR-23a/NEU1 axis via Wnt/b-catenin pathway in gastric cancer. Eur Rev Med Pharmacol Sci. 2019;23:9890-9899 pubmed 出版商
  185. Zhang Y, Thery F, Wu N, Luhmann E, Dussurget O, Foecke M, et al. The in vivo ISGylome links ISG15 to metabolic pathways and autophagy upon Listeria monocytogenes infection. Nat Commun. 2019;10:5383 pubmed 出版商
  186. Foster A, El Chami C, O Neill C, Watson R. Osmolyte transporter expression is reduced in photoaged human skin: Implications for skin hydration in aging. Aging Cell. 2020;19:e13058 pubmed 出版商
  187. Chen W, Wang Q, Xu X, Saxton B, Tessema M, Leng S, et al. Vasorin/ATIA Promotes Cigarette Smoke-Induced Transformation of Human Bronchial Epithelial Cells by Suppressing Autophagy-Mediated Apoptosis. Transl Oncol. 2020;13:32-41 pubmed 出版商
  188. Wang L, Shen E, Luo L, Rabe H, Wang Q, Yin J, et al. Control of Germinal Center Localization and Lineage Stability of Follicular Regulatory T Cells by the Blimp1 Transcription Factor. Cell Rep. 2019;29:1848-1861.e6 pubmed 出版商
  189. Li H, Yang F, Hu A, Wang X, Fang E, Chen Y, et al. Therapeutic targeting of circ-CUX1/EWSR1/MAZ axis inhibits glycolysis and neuroblastoma progression. EMBO Mol Med. 2019;11:e10835 pubmed 出版商
  190. Wang Y, Chiang I, Ohara T, Fujii S, Cheng J, Muegge B, et al. Long-Term Culture Captures Injury-Repair Cycles of Colonic Stem Cells. Cell. 2019;179:1144-1159.e15 pubmed 出版商
  191. Zhou S, da Silva S, Siegel P, Philip A. CD109 acts as a gatekeeper of the epithelial trait by suppressing epithelial to mesenchymal transition in squamous cell carcinoma cells in vitro. Sci Rep. 2019;9:16317 pubmed 出版商
  192. Choi S, Shin S, Lee H, Sohn K, Yoon S, Kim J. 1-Palmitoyl-2-linoleoyl-3-acetyl-rac-glycerol ameliorates chemoradiation-induced oral mucositis. Oral Dis. 2020;26:111-121 pubmed 出版商
  193. Yang X, Yang J, Lei P, Wen T. LncRNA MALAT1 shuttled by bone marrow-derived mesenchymal stem cells-secreted exosomes alleviates osteoporosis through mediating microRNA-34c/SATB2 axis. Aging (Albany NY). 2019;11:8777-8791 pubmed 出版商
  194. Welk V, Meul T, Lukas C, Kammerl I, Mulay S, Schamberger A, et al. Proteasome activator PA200 regulates myofibroblast differentiation. Sci Rep. 2019;9:15224 pubmed 出版商
  195. Delgobo M, Mendes D, Kozlova E, Rocha E, Rodrigues Luiz G, Mascarin L, et al. An evolutionary recent IFN/IL-6/CEBP axis is linked to monocyte expansion and tuberculosis severity in humans. elife. 2019;8: pubmed 出版商
  196. Lundby A, Franciosa G, Emdal K, Refsgaard J, Gnosa S, Bekker Jensen D, et al. Oncogenic Mutations Rewire Signaling Pathways by Switching Protein Recruitment to Phosphotyrosine Sites. Cell. 2019;179:543-560.e26 pubmed 出版商
  197. Brigidi G, Hayes M, Delos Santos N, Hartzell A, Texari L, Lin P, et al. Genomic Decoding of Neuronal Depolarization by Stimulus-Specific NPAS4 Heterodimers. Cell. 2019;179:373-391.e27 pubmed 出版商
  198. Javier Torrent M, Marco S, Rocandio D, Pons Vizcarra M, Janes P, Lackmann M, et al. Presenilin/γ-secretase-dependent EphA3 processing mediates axon elongation through non-muscle myosin IIA. elife. 2019;8: pubmed 出版商
  199. Lang X, Green M, Wang W, Yu J, Choi J, Jiang L, et al. Radiotherapy and Immunotherapy Promote Tumoral Lipid Oxidation and Ferroptosis via Synergistic Repression of SLC7A11. Cancer Discov. 2019;9:1673-1685 pubmed 出版商
  200. Presby D, Checkley L, Jackman M, Higgins J, Jones K, Giles E, et al. Regular exercise potentiates energetically expensive hepatic de novo lipogenesis during early weight regain. Am J Physiol Regul Integr Comp Physiol. 2019;317:R684-R695 pubmed 出版商
  201. Wenta T, Rychlowski M, Jarzab M, Lipinska B. HtrA4 Protease Promotes Chemotherapeutic-Dependent Cancer Cell Death. Cells. 2019;8: pubmed 出版商
  202. Riessland M, Kolisnyk B, Kim T, Cheng J, Ni J, Pearson J, et al. Loss of SATB1 Induces p21-Dependent Cellular Senescence in Post-mitotic Dopaminergic Neurons. Cell Stem Cell. 2019;25:514-530.e8 pubmed 出版商
  203. Robinson M, Maximov V, Lallani S, Farooq H, Taylor M, Read R, et al. Upregulation of the chromatin remodeler HELLS is mediated by YAP1 in Sonic Hedgehog Medulloblastoma. Sci Rep. 2019;9:13611 pubmed 出版商
  204. Xie Y, Lv X, Ni D, Liu J, Hu Y, Liu Y, et al. HPD degradation regulated by the TTC36-STK33-PELI1 signaling axis induces tyrosinemia and neurological damage. Nat Commun. 2019;10:4266 pubmed 出版商
  205. Jiao X, Ye J, Wang X, Yin X, Zhang G, Cheng X. KIAA1199, a Target of MicoRNA-486-5p, Promotes Papillary Thyroid Cancer Invasion by Influencing Epithelial-Mesenchymal Transition (EMT). Med Sci Monit. 2019;25:6788-6796 pubmed 出版商
  206. Padmanaban V, Krol I, Suhail Y, Szczerba B, Aceto N, Bader J, et al. E-cadherin is required for metastasis in multiple models of breast cancer. Nature. 2019;573:439-444 pubmed 出版商
  207. Deng Q, Li P, Che M, Liu J, Biswas S, Ma G, et al. Activation of hedgehog signaling in mesenchymal stem cells induces cartilage and bone tumor formation via Wnt/β-Catenin. elife. 2019;8: pubmed 出版商
  208. Choi W, Kim H, Kim M, Cinar R, Yi H, Eun H, et al. Glutamate Signaling in Hepatic Stellate Cells Drives Alcoholic Steatosis. Cell Metab. 2019;30:877-889.e7 pubmed 出版商
  209. Jiang S, Zhang M, Zhang Y, Zhou W, Zhu T, Ruan Q, et al. WNT5B governs the phenotype of basal-like breast cancer by activating WNT signaling. Cell Commun Signal. 2019;17:109 pubmed 出版商
  210. Yagensky O, Kohansal Nodehi M, Gunaseelan S, Rabe T, Zafar S, Zerr I, et al. Increased expression of heme-binding protein 1 early in Alzheimer's disease is linked to neurotoxicity. elife. 2019;8: pubmed 出版商
  211. Chen P, Chen Y, Wu W, Chen L, Yang X, Zhang S. Identification and validation of four hub genes involved in the plaque deterioration of atherosclerosis. Aging (Albany NY). 2019;11:6469-6489 pubmed 出版商
  212. Fons N, Sundaram R, Breuer G, Peng S, McLean R, Kalathil A, et al. PPM1D mutations silence NAPRT gene expression and confer NAMPT inhibitor sensitivity in glioma. Nat Commun. 2019;10:3790 pubmed 出版商
  213. Shen J, Xing W, Liu R, Zhang Y, Xie C, Gong F. MiR-32-5p influences high glucose-induced cardiac fibroblast proliferation and phenotypic alteration by inhibiting DUSP1. BMC Mol Biol. 2019;20:21 pubmed 出版商
  214. V gtle T, Sharma S, Mori J, Nagy Z, Semeniak D, Scandola C, et al. Heparan sulfates are critical regulators of the inhibitory megakaryocyte-platelet receptor G6b-B. elife. 2019;8: pubmed 出版商
  215. Cohen Katsenelson K, Stender J, Kawashima A, Lordén G, Uchiyama S, Nizet V, et al. PHLPP1 counter-regulates STAT1-mediated inflammatory signaling. elife. 2019;8: pubmed 出版商
  216. Liu H, Muhammad T, Guo Y, Li M, Sha Q, Zhang C, et al. RNA-Binding Protein IGF2BP2/IMP2 is a Critical Maternal Activator in Early Zygotic Genome Activation. Adv Sci (Weinh). 2019;6:1900295 pubmed 出版商
  217. Gao X, Chen H, Liu J, Shen S, Wang Q, Clement T, et al. The REGγ-Proteasome Regulates Spermatogenesis Partially by P53-PLZF Signaling. Stem Cell Reports. 2019;13:559-571 pubmed 出版商
  218. Sanghvi V, Leibold J, Mina M, Mohan P, Berishaj M, Li Z, et al. The Oncogenic Action of NRF2 Depends on De-glycation by Fructosamine-3-Kinase. Cell. 2019;178:807-819.e21 pubmed 出版商
  219. Debruyne D, Dries R, Sengupta S, Seruggia D, Gao Y, Sharma B, et al. BORIS promotes chromatin regulatory interactions in treatment-resistant cancer cells. Nature. 2019;572:676-680 pubmed 出版商
  220. Chung K, Hsu C, Fan L, Huang Z, Bhatia D, Chen Y, et al. Mitofusins regulate lipid metabolism to mediate the development of lung fibrosis. Nat Commun. 2019;10:3390 pubmed 出版商
  221. Treeck O, Diepolder E, Skrzypczak M, Schüler Toprak S, Ortmann O. Knockdown of estrogen receptor β increases proliferation and affects the transcriptome of endometrial adenocarcinoma cells. BMC Cancer. 2019;19:745 pubmed 出版商
  222. Yang M, Chen P, Liu J, Zhu S, Kroemer G, Klionsky D, et al. Clockophagy is a novel selective autophagy process favoring ferroptosis. Sci Adv. 2019;5:eaaw2238 pubmed 出版商
  223. Zhang Y, Jin X, Liang J, Guo Y, Sun G, Zeng X, et al. Extracellular vesicles derived from ODN-stimulated macrophages transfer and activate Cdc42 in recipient cells and thereby increase cellular permissiveness to EV uptake. Sci Adv. 2019;5:eaav1564 pubmed 出版商
  224. Njah K, Chakraborty S, Qiu B, Arumugam S, Raju A, Pobbati A, et al. A Role of Agrin in Maintaining the Stability of Vascular Endothelial Growth Factor Receptor-2 during Tumor Angiogenesis. Cell Rep. 2019;28:949-965.e7 pubmed 出版商
  225. Wang Z, Xiang J, Liu X, Yu S, Manfredsson F, Sandoval I, et al. Deficiency in BDNF/TrkB Neurotrophic Activity Stimulates δ-Secretase by Upregulating C/EBPβ in Alzheimer's Disease. Cell Rep. 2019;28:655-669.e5 pubmed 出版商
  226. Mao N, Gao D, Hu W, Hieronymus H, Wang S, Lee Y, et al. Aberrant Expression of ERG Promotes Resistance to Combined PI3K and AR Pathway Inhibition through Maintenance of AR Target Genes. Mol Cancer Ther. 2019;18:1577-1586 pubmed 出版商
  227. Du F, Qiao C, Li X, Chen Z, Liu H, Wu S, et al. Forkhead box K2 promotes human colorectal cancer metastasis by upregulating ZEB1 and EGFR. Theranostics. 2019;9:3879-3902 pubmed 出版商
  228. Zhang H, Sathyamurthy A, Liu F, Li L, Zhang L, Dong Z, et al. Agrin-Lrp4-Ror2 signaling regulates adult hippocampal neurogenesis in mice. elife. 2019;8: pubmed 出版商
  229. Zhang L, Feng Q, Wang Z, Liu P, Cui S. Progesterone receptor antagonist provides palliative effects for uterine leiomyoma through a Bcl-2/Beclin1-dependent mechanism. Biosci Rep. 2019;39: pubmed 出版商
  230. Chen J, Huang W, Bamodu O, Chang P, Chao T, Huang T. Monospecific antibody targeting of CDH11 inhibits epithelial-to-mesenchymal transition and represses cancer stem cell-like phenotype by up-regulating miR-335 in metastatic breast cancer, in vitro and in vivo. BMC Cancer. 2019;19:634 pubmed 出版商
  231. Insolia V, Priori E, Gasperini C, Coppa F, Cocchia M, Iervasi E, et al. Prolidase enzyme is required for extracellular matrix integrity and impacts on postnatal cerebellar cortex development. J Comp Neurol. 2020;528:61-80 pubmed 出版商
  232. Jung S, Choe S, Woo H, Jeong H, An H, Moon H, et al. Autophagic death of neural stem cells mediates chronic stress-induced decline of adult hippocampal neurogenesis and cognitive deficits. Autophagy. 2019;:1-19 pubmed 出版商
  233. Marques P, Nyegaard S, Collins R, Troise F, Freeman S, Trimble W, et al. Multimerization and Retention of the Scavenger Receptor SR-B1 in the Plasma Membrane. Dev Cell. 2019;: pubmed 出版商
  234. Caporali S, Amaro A, Levati L, Alvino E, Lacal P, Mastroeni S, et al. miR-126-3p down-regulation contributes to dabrafenib acquired resistance in melanoma by up-regulating ADAM9 and VEGF-A. J Exp Clin Cancer Res. 2019;38:272 pubmed 出版商
  235. Nortley R, Korte N, Izquierdo P, Hirunpattarasilp C, Mishra A, Jaunmuktane Z, et al. Amyloid β oligomers constrict human capillaries in Alzheimer's disease via signaling to pericytes. Science. 2019;: pubmed 出版商
  236. Wohlrab C, Kuiper C, Vissers M, Phillips E, Robinson B, Dachs G. Ascorbate modulates the hypoxic pathway by increasing intracellular activity of the HIF hydroxylases in renal cell carcinoma cells. Hypoxia (Auckl). 2019;7:17-31 pubmed 出版商
  237. Sharif H, Wang L, Wang W, Magupalli V, Andreeva L, Qiao Q, et al. Structural mechanism for NEK7-licensed activation of NLRP3 inflammasome. Nature. 2019;: pubmed 出版商
  238. Liu Y, Liu L, Jia Y, Sun Y, Ma F. Role of microRNA-15a-5p in the atherosclerotic inflammatory response and arterial injury improvement of diabetic by targeting FASN. Biosci Rep. 2019;: pubmed 出版商
  239. Loh J, Xu S, Huo J, Kim S, Wang Y, Lam K. Dok3-protein phosphatase 1 interaction attenuates Card9 signaling and neutrophil-dependent antifungal immunity. J Clin Invest. 2019;129:2717-2729 pubmed 出版商
  240. Gu C, Wang L, Zurawski S, Oh S. Signaling Cascade through DC-ASGPR Induces Transcriptionally Active CREB for IL-10 Induction and Immune Regulation. J Immunol. 2019;: pubmed 出版商
  241. Long J, Idoko Akoh A, Mistry B, Goldhill D, Staller E, Schreyer J, et al. Species specific differences in use of ANP32 proteins by influenza A virus. elife. 2019;8: pubmed 出版商
  242. An D, Fujiki R, Iannitelli D, Smerdon J, Maity S, Rose M, et al. Stem cell-derived cranial and spinal motor neurons reveal proteostatic differences between ALS resistant and sensitive motor neurons. elife. 2019;8: pubmed 出版商
  243. Zhang W, Wang G, Xu Z, Tu H, Hu F, Dai J, et al. Lactate Is a Natural Suppressor of RLR Signaling by Targeting MAVS. Cell. 2019;: pubmed 出版商
  244. Ortega F, Roefs M, De Miguel Pérez D, Kooijmans S, de Jong O, Sluijter J, et al. Interfering with endolysosomal trafficking enhances release of bioactive exosomes. Nanomedicine. 2019;:102014 pubmed 出版商
  245. Yang S, Harding A, Sweeney C, Miao D, Swan G, Zhou C, et al. Control of antiviral innate immune response by protein geranylgeranylation. Sci Adv. 2019;5:eaav7999 pubmed 出版商
  246. Bayer S, Grither W, Brenot A, Hwang P, Barcus C, Ernst M, et al. DDR2 controls breast tumor stiffness and metastasis by regulating integrin mediated mechanotransduction in CAFs. elife. 2019;8: pubmed 出版商
  247. Genet G, Boyé K, Mathivet T, Ola R, Zhang F, Dubrac A, et al. Endophilin-A2 dependent VEGFR2 endocytosis promotes sprouting angiogenesis. Nat Commun. 2019;10:2350 pubmed 出版商
  248. Stefanius K, Servage K, de Souza Santos M, Gray H, Toombs J, Chimalapati S, et al. Human pancreatic cancer cell exosomes, but not human normal cell exosomes, act as an initiator in cell transformation. elife. 2019;8: pubmed 出版商
  249. Wu S, Fatkhutdinov N, Rosin L, Luppino J, Iwasaki O, Tanizawa H, et al. ARID1A spatially partitions interphase chromosomes. Sci Adv. 2019;5:eaaw5294 pubmed 出版商
  250. Chen R, Zeng L, Zhu S, Liu J, Zeh H, Kroemer G, et al. cAMP metabolism controls caspase-11 inflammasome activation and pyroptosis in sepsis. Sci Adv. 2019;5:eaav5562 pubmed 出版商
  251. Wu K, Zou J, Lin C, Jie Z. MicroRNA-140-5p inhibits cell proliferation, migration and promotes cell apoptosis in gastric cancer through the negative regulation of THY1-mediated Notch signaling. Biosci Rep. 2019;: pubmed 出版商
  252. Zhao B, Du F, Xu P, Shu C, Sankaran B, Bell S, et al. A conserved PLPLRT/SD motif of STING mediates the recruitment and activation of TBK1. Nature. 2019;: pubmed 出版商
  253. Fernández Chacón M, Casquero García V, Luo W, Francesca Lunella F, Ferreira Rocha S, Del Olmo Cabrera S, et al. iSuRe-Cre is a genetic tool to reliably induce and report Cre-dependent genetic modifications. Nat Commun. 2019;10:2262 pubmed 出版商
  254. Mikuličić S, Finke J, Boukhallouk F, Wüstenhagen E, Sons D, Homsi Y, et al. ADAM17-dependent signaling is required for oncogenic human papillomavirus entry platform assembly. elife. 2019;8: pubmed 出版商
  255. Pfeifer M, Brem R, Lippert T, Boulianne B, Ho H, Robinson M, et al. SSB1/SSB2 Proteins Safeguard B Cell Development by Protecting the Genomes of B Cell Precursors. J Immunol. 2019;202:3423-3433 pubmed 出版商
  256. Pan C, Jin L, Wang X, Li Y, Chun J, Boese A, et al. Inositol-triphosphate 3-kinase B confers cisplatin resistance by regulating NOX4-dependent redox balance. J Clin Invest. 2019;129:2431-2445 pubmed 出版商
  257. Gaska J, Balev M, Ding Q, Heller B, Ploss A. Differences across cyclophilin A orthologs contribute to the host range restriction of hepatitis C virus. elife. 2019;8: pubmed 出版商
  258. Turnham R, Smith F, Kenerson H, Omar M, Golkowski M, Garcia I, et al. An acquired scaffolding function of the DNAJ-PKAc fusion contributes to oncogenic signaling in fibrolamellar carcinoma. elife. 2019;8: pubmed 出版商
  259. Li S, Lavagnino Z, Lemaçon D, Kong L, Ustione A, Ng X, et al. Ca2+-Stimulated AMPK-Dependent Phosphorylation of Exo1 Protects Stressed Replication Forks from Aberrant Resection. Mol Cell. 2019;74:1123-1137.e6 pubmed 出版商
  260. Hernández Alvarez M, Sebastian D, Vives S, Ivanova S, Bartoccioni P, Kakimoto P, et al. Deficient Endoplasmic Reticulum-Mitochondrial Phosphatidylserine Transfer Causes Liver Disease. Cell. 2019;177:881-895.e17 pubmed 出版商
  261. Wang W, Green M, Choi J, Gijon M, Kennedy P, Johnson J, et al. CD8+ T cells regulate tumour ferroptosis during cancer immunotherapy. Nature. 2019;569:270-274 pubmed 出版商
  262. Tang L, Sheraz M, McGrane M, Chang J, Guo J. DNA Polymerase alpha is essential for intracellular amplification of hepatitis B virus covalently closed circular DNA. PLoS Pathog. 2019;15:e1007742 pubmed 出版商
  263. Li Y, Liang R, Zhang X, Wang J, Shan C, Liu S, et al. Copper Chaperone for Superoxide Dismutase Promotes Breast Cancer Cell Proliferation and Migration via ROS-Mediated MAPK/ERK Signaling. Front Pharmacol. 2019;10:356 pubmed 出版商
  264. Cadena C, Ahmad S, Xavier A, Willemsen J, Park S, Park J, et al. Ubiquitin-Dependent and -Independent Roles of E3 Ligase RIPLET in Innate Immunity. Cell. 2019;177:1187-1200.e16 pubmed 出版商
  265. Liu X, Zhou Z, Li W, Zhang S, Li J, Zhou M, et al. Heparanase Promotes Tumor Growth and Liver Metastasis of Colorectal Cancer Cells by Activating the p38/MMP1 Axis. Front Oncol. 2019;9:216 pubmed 出版商
  266. Li Y, Wang L, Rivera Serrano E, Chen X, Lemon S. TNRC6 proteins modulate hepatitis C virus replication by spatially regulating the binding of miR-122/Ago2 complexes to viral RNA. Nucleic Acids Res. 2019;47:6411-6424 pubmed 出版商
  267. Ben J, Jiang B, Wang D, Liu Q, Zhang Y, Qi Y, et al. Major vault protein suppresses obesity and atherosclerosis through inhibiting IKK-NF-κB signaling mediated inflammation. Nat Commun. 2019;10:1801 pubmed 出版商
  268. Udden S, Kwak Y, Godfrey V, Khan M, Khan S, Loof N, et al. NLRP12 suppresses hepatocellular carcinoma via downregulation of cJun N-terminal kinase activation in the hepatocyte. elife. 2019;8: pubmed 出版商
  269. Cohen T, Takahashi V, Bonnell J, Tovchigrechko A, Chaerkady R, Yu W, et al. Staphylococcus aureus drives expansion of low-density neutrophils in diabetic mice. J Clin Invest. 2019;129:2133-2144 pubmed 出版商
  270. Sommars M, Ramachandran K, Senagolage M, Futtner C, Germain D, Allred A, et al. Dynamic repression by BCL6 controls the genome-wide liver response to fasting and steatosis. elife. 2019;8: pubmed 出版商
  271. Ho P, Leung C, Liu H, Pang S, Lam C, Xian J, et al. Age-dependent accumulation of oligomeric SNCA/α-synuclein from impaired degradation in mutant LRRK2 knockin mouse model of Parkinson disease: role for therapeutic activation of chaperone-mediated autophagy (CMA). Autophagy. 2019;:1-24 pubmed 出版商
  272. Zhang Y, Cheng T, Huang G, Lu Q, Surleac M, Mandell J, et al. Transposon molecular domestication and the evolution of the RAG recombinase. Nature. 2019;569:79-84 pubmed 出版商
  273. Mair B, Tomic J, Masud S, Tonge P, Weiss A, Usaj M, et al. Essential Gene Profiles for Human Pluripotent Stem Cells Identify Uncharacterized Genes and Substrate Dependencies. Cell Rep. 2019;27:599-615.e12 pubmed 出版商
  274. Zhang Q, Higginbotham J, Jeppesen D, Yang Y, Li W, McKinley E, et al. Transfer of Functional Cargo in Exomeres. Cell Rep. 2019;27:940-954.e6 pubmed 出版商
  275. Kong X, Chen J, Xie W, Brown S, Cai Y, Wu K, et al. Defining UHRF1 Domains that Support Maintenance of Human Colon Cancer DNA Methylation and Oncogenic Properties. Cancer Cell. 2019;35:633-648.e7 pubmed 出版商
  276. Koster K, Francesconi W, Berton F, Alahmadi S, Srinivas R, Yoshii A. Developmental NMDA receptor dysregulation in the infantile neuronal ceroid lipofuscinosis mouse model. elife. 2019;8: pubmed 出版商
  277. Vogel S, Schäfer C, Hess S, Folz Donahue K, Nelles M, Minassian A, et al. The in vivo timeline of differentiation of engrafted human neural progenitor cells. Stem Cell Res. 2019;37:101429 pubmed 出版商
  278. Wang E, Dai Z, Ferrante A, Drake C, Christiano A. A Subset of TREM2+ Dermal Macrophages Secretes Oncostatin M to Maintain Hair Follicle Stem Cell Quiescence and Inhibit Hair Growth. Cell Stem Cell. 2019;: pubmed 出版商
  279. Figard L, Zheng L, Biel N, Xue Z, Seede H, COLEMAN S, et al. Cofilin-Mediated Actin Stress Response Is Maladaptive in Heat-Stressed Embryos. Cell Rep. 2019;26:3493-3501.e4 pubmed 出版商
  280. Sohoni S, Ghosh P, Wang T, Kalainayakan S, Vidal C, Dey S, et al. Elevated Heme Synthesis and Uptake Underpin Intensified Oxidative Metabolism and Tumorigenic Functions in Non-Small Cell Lung Cancer Cells. Cancer Res. 2019;79:2511-2525 pubmed 出版商
  281. Quinney K, Frankel E, Shankar R, Kasberg W, Luong P, Audhya A. Growth factor stimulation promotes multivesicular endosome biogenesis by prolonging recruitment of the late-acting ESCRT machinery. Proc Natl Acad Sci U S A. 2019;116:6858-6867 pubmed 出版商
  282. Li H, Petersen S, García Mariscal A, Brakebusch C. Negative Regulation of p53-Induced Senescence by N-WASP Is Crucial for DMBA/TPA-Induced Skin Tumor Formation. Cancer Res. 2019;79:2167-2181 pubmed 出版商
  283. Zhang X, Wang L, Ireland S, Ahat E, Li J, Bekier Ii M, et al. GORASP2/GRASP55 collaborates with the PtdIns3K UVRAG complex to facilitate autophagosome-lysosome fusion. Autophagy. 2019;:1-14 pubmed 出版商
  284. Wobser M, Weber A, Glunz A, Tauch S, Seitz K, Butelmann T, et al. Elucidating the mechanism of action of domatinostat (4SC-202) in cutaneous T cell lymphoma cells. J Hematol Oncol. 2019;12:30 pubmed 出版商
  285. Hu D, Sun X, Liao X, Zhang X, Zarabi S, Schimmer A, et al. Alpha-synuclein suppresses mitochondrial protease ClpP to trigger mitochondrial oxidative damage and neurotoxicity. Acta Neuropathol. 2019;137:939-960 pubmed 出版商
  286. Li W, Yu X, Zhu C, Wang Z, Zhao Z, Li Y, et al. Notum attenuates HBV-related liver fibrosis through inhibiting Wnt 5a mediated non-canonical pathways. Biol Res. 2019;52:10 pubmed 出版商
  287. Yi R, Zhang J, Sun P, Qian Y, Zhao X. Protective Effects of Kuding Tea (Ilex kudingcha C. J. Tseng) Polyphenols on UVB-Induced Skin Aging in SKH1 Hairless Mice. Molecules. 2019;24: pubmed 出版商
  288. Diamond E, Durham B, Ulaner G, Drill E, Buthorn J, Ki M, et al. Efficacy of MEK inhibition in patients with histiocytic neoplasms. Nature. 2019;567:521-524 pubmed 出版商
  289. Yan X, Tang B, Chen B, Shan Y, Yang H, Iorns E, et al. Replication Study: The microRNA miR-34a inhibits prostate cancer stem cells and metastasis by directly repressing CD44. elife. 2019;8: pubmed 出版商
  290. Aranda S, Alcaine Colet A, Blanco E, Borras E, Caillot C, Sabidó E, et al. Chromatin capture links the metabolic enzyme AHCY to stem cell proliferation. Sci Adv. 2019;5:eaav2448 pubmed 出版商
  291. Hlavac N, VandeVord P. Astrocyte Mechano-Activation by High-Rate Overpressure Involves Alterations in Structural and Junctional Proteins. Front Neurol. 2019;10:99 pubmed 出版商
  292. Upadhyay A, Hosseinibarkooie S, Schneider S, Kaczmarek A, Torres Benito L, Mendoza Ferreira N, et al. Neurocalcin Delta Knockout Impairs Adult Neurogenesis Whereas Half Reduction Is Not Pathological. Front Mol Neurosci. 2019;12:19 pubmed 出版商
  293. Carballo Carbajal I, Laguna A, Romero Gimenez J, Cuadros T, Bove J, Martinez Vicente M, et al. Brain tyrosinase overexpression implicates age-dependent neuromelanin production in Parkinson's disease pathogenesis. Nat Commun. 2019;10:973 pubmed 出版商
  294. Liu W, Wang G, Palovcak A, Li Y, Hao S, Liu Z, et al. Impeding the single-strand annealing pathway of DNA double-strand break repair by withaferin A-mediated FANCA degradation. DNA Repair (Amst). 2019;77:10-17 pubmed 出版商
  295. Zhu H, Bhatt B, Sivaprakasam S, Cai Y, Liu S, Kodeboyina S, et al. Ufbp1 promotes plasma cell development and ER expansion by modulating distinct branches of UPR. Nat Commun. 2019;10:1084 pubmed 出版商
  296. SCHADE A, Oser M, Nicholson H, DeCaprio J. Cyclin D-CDK4 relieves cooperative repression of proliferation and cell cycle gene expression by DREAM and RB. Oncogene. 2019;38:4962-4976 pubmed 出版商
  297. McCambridge G, Agrawal M, Keady A, Kern P, Hasturk H, Nikolajczyk B, et al. Saturated Fatty Acid Activates T Cell Inflammation Through a Nicotinamide Nucleotide Transhydrogenase (NNT)-Dependent Mechanism. Biomolecules. 2019;9: pubmed 出版商
  298. Massey J, Liu Y, Alvarenga O, Saez T, Schmerer M, Warmflash A. Synergy with TGFβ ligands switches WNT pathway dynamics from transient to sustained during human pluripotent cell differentiation. Proc Natl Acad Sci U S A. 2019;116:4989-4998 pubmed 出版商
  299. Tata C, Sewani Rusike C, Oyedeji O, Gwebu E, Mahlakata F, Nkeh Chungag B. Antihypertensive effects of the hydro-ethanol extract of Senecio serratuloides DC in rats. BMC Complement Altern Med. 2019;19:52 pubmed 出版商
  300. Patel N, Wang J, Shiozawa K, Jones K, Zhang Y, Prokop J, et al. HDAC2 Regulates Site-Specific Acetylation of MDM2 and Its Ubiquitination Signaling in Tumor Suppression. iScience. 2019;13:43-54 pubmed 出版商
  301. Lin K, Qiang W, Zhu M, Ding Y, Shi Q, Chen X, et al. Mammalian Pum1 and Pum2 Control Body Size via Translational Regulation of the Cell Cycle Inhibitor Cdkn1b. Cell Rep. 2019;26:2434-2450.e6 pubmed 出版商
  302. Tan D, Li Y, Yang C, Li J, Tan S, Chin D, et al. PRMT5 Modulates Splicing for Genome Integrity and Preserves Proteostasis of Hematopoietic Stem Cells. Cell Rep. 2019;26:2316-2328.e6 pubmed 出版商
  303. Fu Y, Zhu J, Zhang Y, Liu Z, Su H, Kong J. Vitamin D Regulates the Expressions of AQP-1 and AQP-4 in Mice Kidneys. Biomed Res Int. 2019;2019:3027036 pubmed 出版商
  304. Wang M, Hu J, Yan L, Yang Y, He M, Wu M, et al. High glucose-induced ubiquitination of G6PD leads to the injury of podocytes. FASEB J. 2019;33:6296-6310 pubmed 出版商
  305. Feng F, Wang Z, Li R, Wu Q, Gu C, Xu Y, et al. Citrus alkaline extracts prevent fibroblast senescence to ameliorate pulmonary fibrosis via activation of COX-2. Biomed Pharmacother. 2019;112:108669 pubmed 出版商
  306. Mauer J, Sindelar M, Despic V, Guez T, Hawley B, Vasseur J, et al. FTO controls reversible m6Am RNA methylation during snRNA biogenesis. Nat Chem Biol. 2019;15:340-347 pubmed 出版商
  307. Horos R, Büscher M, Kleinendorst R, Alleaume A, Tarafder A, Schwarzl T, et al. The Small Non-coding Vault RNA1-1 Acts as a Riboregulator of Autophagy. Cell. 2019;176:1054-1067.e12 pubmed 出版商
  308. Dufour F, Silina L, Neyret Kahn H, Moreno Vega A, Krucker C, Karboul N, et al. TYRO3 as a molecular target for growth inhibition and apoptosis induction in bladder cancer. Br J Cancer. 2019;120:555-564 pubmed 出版商
  309. Vrijens P, Noppen S, Boogaerts T, Vanstreels E, Ronca R, Chiodelli P, et al. Influenza virus entry via the GM3 ganglioside-mediated platelet-derived growth factor receptor β signalling pathway. J Gen Virol. 2019;100:583-601 pubmed 出版商
  310. McAlpine C, Kiss M, Rattik S, He S, Vassalli A, Valet C, et al. Sleep modulates haematopoiesis and protects against atherosclerosis. Nature. 2019;566:383-387 pubmed 出版商
  311. Li J, Liu X, Chen H, Sun Z, Chen H, Wang L, et al. Multi-targeting chemoprevention of Chinese herb formula Yanghe Huayan decoction on experimentally induced mammary tumorigenesis. BMC Complement Altern Med. 2019;19:48 pubmed 出版商
  312. Herb M, Gluschko A, Wiegmann K, Farid A, Wolf A, Utermöhlen O, et al. Mitochondrial reactive oxygen species enable proinflammatory signaling through disulfide linkage of NEMO. Sci Signal. 2019;12: pubmed 出版商
  313. Frank T, Tuppi M, Hugle M, Dötsch V, van Wijk S, Fulda S. Cell cycle arrest in mitosis promotes interferon-induced necroptosis. Cell Death Differ. 2019;: pubmed 出版商
  314. Wen Z, Jin K, Shen Y, Yang Z, Li Y, Wu B, et al. N-myristoyltransferase deficiency impairs activation of kinase AMPK and promotes synovial tissue inflammation. Nat Immunol. 2019;20:313-325 pubmed 出版商
  315. Gronke K, Hernandez P, Zimmermann J, Klose C, Kofoed Branzk M, Guendel F, et al. Interleukin-22 protects intestinal stem cells against genotoxic stress. Nature. 2019;566:249-253 pubmed 出版商
  316. Beug S, Cheung H, Sanda T, St Jean M, Beauregard C, Mamady H, et al. The transcription factor SP3 drives TNF-α expression in response to Smac mimetics. Sci Signal. 2019;12: pubmed 出版商
  317. Oliveira H, Roma Rodrigues C, Santos A, Veigas B, Brás N, Faria A, et al. GLUT1 and GLUT3 involvement in anthocyanin gastric transport- Nanobased targeted approach. Sci Rep. 2019;9:789 pubmed 出版商
  318. Zhang G, Liu Y, Xu L, Sha C, Zhang H, Xu W. Resveratrol alleviates lipopolysaccharide-induced inflammation in PC-12 cells and in rat model. BMC Biotechnol. 2019;19:10 pubmed 出版商
  319. Rossi F, Legnini I, Megiorni F, Colantoni A, Santini T, Morlando M, et al. Circ-ZNF609 regulates G1-S progression in rhabdomyosarcoma. Oncogene. 2019;38:3843-3854 pubmed 出版商
  320. Taura M, Song E, Ho Y, Iwasaki A. Apobec3A maintains HIV-1 latency through recruitment of epigenetic silencing machinery to the long terminal repeat. Proc Natl Acad Sci U S A. 2019;116:2282-2289 pubmed 出版商
  321. Sayas C, Medina M, Cuadros R, Ollá I, Garcia E, Perez M, et al. Role of tau N-terminal motif in the secretion of human tau by End Binding proteins. PLoS ONE. 2019;14:e0210864 pubmed 出版商
  322. Liu P, Shah R, Li Y, Arora A, Ung P, Raman R, et al. An IRAK1-PIN1 signalling axis drives intrinsic tumour resistance to radiation therapy. Nat Cell Biol. 2019;21:203-213 pubmed 出版商
  323. Huang X, Feng Z, Jiang Y, Li J, Xiang Q, Guo S, et al. VSIG4 mediates transcriptional inhibition of Nlrp3 and Il-1β in macrophages. Sci Adv. 2019;5:eaau7426 pubmed 出版商
  324. Chen X, Hu L, Yang H, Ma H, Ye K, Zhao C, et al. DHHC protein family targets different subsets of glioma stem cells in specific niches. J Exp Clin Cancer Res. 2019;38:25 pubmed 出版商
  325. Chi V, Garaud S, De Silva P, Thibaud V, Stamatopoulos B, Berehad M, et al. Age-related changes in the BACH2 and PRDM1 genes in lymphocytes from healthy donors and chronic lymphocytic leukemia patients. BMC Cancer. 2019;19:81 pubmed 出版商
  326. Srikanth S, Woo J, Wu B, El Sherbiny Y, Leung J, Chupradit K, et al. The Ca2+ sensor STIM1 regulates the type I interferon response by retaining the signaling adaptor STING at the endoplasmic reticulum. Nat Immunol. 2019;20:152-162 pubmed 出版商
  327. Das S, Bar Sagi D. BTK signaling drives CD1dhiCD5+ regulatory B-cell differentiation to promote pancreatic carcinogenesis. Oncogene. 2019;38:3316-3324 pubmed 出版商
  328. Ge Y, Schuster M, Pundhir S, Rapin N, Bagger F, Sidiropoulos N, et al. The splicing factor RBM25 controls MYC activity in acute myeloid leukemia. Nat Commun. 2019;10:172 pubmed 出版商
  329. Oakes B, Fellmann C, Rishi H, Taylor K, Ren S, Nadler D, et al. CRISPR-Cas9 Circular Permutants as Programmable Scaffolds for Genome Modification. Cell. 2019;176:254-267.e16 pubmed 出版商
  330. Li B, He J, Lv H, Liu Y, Lv X, Zhang C, et al. c-Abl regulates YAPY357 phosphorylation to activate endothelial atherogenic responses to disturbed flow. J Clin Invest. 2019;129:1167-1179 pubmed 出版商
  331. Poulopoulos A, Murphy A, Ozkan A, Davis P, Hatch J, Kirchner R, et al. Subcellular transcriptomes and proteomes of developing axon projections in the cerebral cortex. Nature. 2019;565:356-360 pubmed 出版商
  332. Kurundkar D, Kurundkar A, Bone N, Becker E, Liu W, Chacko B, et al. SIRT3 diminishes inflammation and mitigates endotoxin-induced acute lung injury. JCI Insight. 2019;4: pubmed 出版商
  333. Niu F, Liao K, Hu G, Sil S, Callen S, Guo M, et al. Cocaine-induced release of CXCL10 from pericytes regulates monocyte transmigration into the CNS. J Cell Biol. 2019;218:700-721 pubmed 出版商
  334. Iwata Yoshikawa N, Okamura T, Shimizu Y, Kotani O, Sato H, Sekimukai H, et al. Acute Respiratory Infection in Human Dipeptidyl Peptidase 4-Transgenic Mice Infected with Middle East Respiratory Syndrome Coronavirus. J Virol. 2019;93: pubmed 出版商
  335. Martins R, Malbert Colas L, Lista M, Daskalogianni C, Apcher S, Pla M, et al. Nuclear processing of nascent transcripts determines synthesis of full-length proteins and antigenic peptides. Nucleic Acids Res. 2019;47:3086-3100 pubmed 出版商
  336. MacFarlane E, Parker S, Shin J, Kang B, Ziegler S, Creamer T, et al. Lineage-specific events underlie aortic root aneurysm pathogenesis in Loeys-Dietz syndrome. J Clin Invest. 2019;129:659-675 pubmed 出版商
  337. Jachimowicz R, Beleggia F, Isensee J, Velpula B, Goergens J, Bustos M, et al. UBQLN4 Represses Homologous Recombination and Is Overexpressed in Aggressive Tumors. Cell. 2019;176:505-519.e22 pubmed 出版商
  338. Song J, Zhang X, Liao Z, Liang H, Chu L, Dong W, et al. 14-3-3ζ inhibits heme oxygenase-1 (HO-1) degradation and promotes hepatocellular carcinoma proliferation: involvement of STAT3 signaling. J Exp Clin Cancer Res. 2019;38:3 pubmed 出版商
  339. Liebelt F, Sebastian R, Moore C, Mulder M, Ovaa H, Shoulders M, et al. SUMOylation and the HSF1-Regulated Chaperone Network Converge to Promote Proteostasis in Response to Heat Shock. Cell Rep. 2019;26:236-249.e4 pubmed 出版商
  340. Ding D, Liu J, Dong K, Melnick A, Latham K, Chen C. Mitochondrial membrane-based initial separation of MIWI and MILI functions during pachytene piRNA biogenesis. Nucleic Acids Res. 2019;47:2594-2608 pubmed 出版商
  341. Hu Y, Guo F, Xu Y, Li P, Lu Z, McVey D, et al. Long noncoding RNA NEXN-AS1 mitigates atherosclerosis by regulating the actin-binding protein NEXN. J Clin Invest. 2019;129:1115-1128 pubmed 出版商
  342. Moon S, Huang C, Houlihan S, Regunath K, Freed Pastor W, Morris J, et al. p53 Represses the Mevalonate Pathway to Mediate Tumor Suppression. Cell. 2019;176:564-580.e19 pubmed 出版商
  343. Ruscetti M, Leibold J, Bott M, Fennell M, Kulick A, Salgado N, et al. NK cell-mediated cytotoxicity contributes to tumor control by a cytostatic drug combination. Science. 2018;362:1416-1422 pubmed 出版商
  344. Zhang C, Wang Y. Metformin attenuates cells stemness and epithelial‑mesenchymal transition in colorectal cancer cells by inhibiting the Wnt3a/β‑catenin pathway. Mol Med Rep. 2019;19:1203-1209 pubmed 出版商
  345. Sanin D, Matsushita M, Klein Geltink R, Grzes K, van Teijlingen Bakker N, Corrado M, et al. Mitochondrial Membrane Potential Regulates Nuclear Gene Expression in Macrophages Exposed to Prostaglandin E2. Immunity. 2018;49:1021-1033.e6 pubmed 出版商
  346. Neel D, Allegakoen D, Olivas V, Mayekar M, Hemmati G, Chatterjee N, et al. Differential Subcellular Localization Regulates Oncogenic Signaling by ROS1 Kinase Fusion Proteins. Cancer Res. 2019;79:546-556 pubmed 出版商
  347. Chae Y, Kim J, Park J, Kim K, Oh H, Lee K, et al. FOXO1 degradation via G9a-mediated methylation promotes cell proliferation in colon cancer. Nucleic Acids Res. 2019;47:1692-1705 pubmed 出版商
  348. Wang M, Tang C, Xing R, Liu X, Han X, Liu Y, et al. WDR81 regulates adult hippocampal neurogenesis through endosomal SARA-TGFβ signaling. Mol Psychiatry. 2018;: pubmed 出版商
  349. Zeiner P, Preusse C, Golebiewska A, Zinke J, Iriondo A, Muller A, et al. Distribution and prognostic impact of microglia/macrophage subpopulations in gliomas. Brain Pathol. 2019;29:513-529 pubmed 出版商
  350. Safiulina D, Kuum M, Choubey V, Gogichaishvili N, Liiv J, Hickey M, et al. Miro proteins prime mitochondria for Parkin translocation and mitophagy. EMBO J. 2019;38: pubmed 出版商
  351. Urtishak K, Wang L, Culjkovic Kraljacic B, Davenport J, Porazzi P, Vincent T, et al. Targeting EIF4E signaling with ribavirin in infant acute lymphoblastic leukemia. Oncogene. 2019;38:2241-2262 pubmed 出版商
  352. Kim C, Hu B, Jadhav R, Jin J, Zhang H, Cavanagh M, et al. Activation of miR-21-Regulated Pathways in Immune Aging Selects against Signatures Characteristic of Memory T Cells. Cell Rep. 2018;25:2148-2162.e5 pubmed 出版商
  353. Wang F, Meng M, Mo B, Yang Y, Ji Y, Huang P, et al. Crosstalks between mTORC1 and mTORC2 variagate cytokine signaling to control NK maturation and effector function. Nat Commun. 2018;9:4874 pubmed 出版商
  354. Liu N, Luo J, Kuang D, Xu S, Duan Y, Xia Y, et al. Lactate inhibits ATP6V0d2 expression in tumor-associated macrophages to promote HIF-2α-mediated tumor progression. J Clin Invest. 2019;129:631-646 pubmed 出版商
  355. Sarracino A, Gharu L, Kula A, Pasternak A, Avettand Fenoel V, Rouzioux C, et al. Posttranscriptional Regulation of HIV-1 Gene Expression during Replication and Reactivation from Latency by Nuclear Matrix Protein MATR3. MBio. 2018;9: pubmed 出版商
  356. Petrillo C, Thorne L, Unali G, Schiroli G, Giordano A, Piras F, et al. Cyclosporine H Overcomes Innate Immune Restrictions to Improve Lentiviral Transduction and Gene Editing In Human Hematopoietic Stem Cells. Cell Stem Cell. 2018;23:820-832.e9 pubmed 出版商
  357. Theisen D, Davidson J, Briseño C, Gargaro M, Lauron E, Wang Q, et al. WDFY4 is required for cross-presentation in response to viral and tumor antigens. Science. 2018;362:694-699 pubmed 出版商
  358. Rai S, Arasteh M, Jefferson M, Pearson T, Wang Y, Zhang W, et al. The ATG5-binding and coiled coil domains of ATG16L1 maintain autophagy and tissue homeostasis in mice independently of the WD domain required for LC3-associated phagocytosis. Autophagy. 2019;15:599-612 pubmed 出版商
  359. Leoz M, Kukanja P, Luo Z, Huang F, Cary D, Peterlin B, et al. HEXIM1-Tat chimera inhibits HIV-1 replication. PLoS Pathog. 2018;14:e1007402 pubmed 出版商
  360. Wu B, Sun X, Gupta H, Yuan B, Li J, Ge F, et al. Adipose PD-L1 Modulates PD-1/PD-L1 Checkpoint Blockade Immunotherapy Efficacy in Breast Cancer. Oncoimmunology. 2018;7:e1500107 pubmed 出版商
  361. Sievers Q, Petzold G, Bunker R, Renneville A, Słabicki M, Liddicoat B, et al. Defining the human C2H2 zinc finger degrome targeted by thalidomide analogs through CRBN. Science. 2018;362: pubmed 出版商
  362. Ablain J, Xu M, Rothschild H, JORDAN R, Mito J, Daniels B, et al. Human tumor genomics and zebrafish modeling identify SPRED1 loss as a driver of mucosal melanoma. Science. 2018;362:1055-1060 pubmed 出版商
  363. Li H, Feng J, Zhang Y, Feng J, Wang Q, Zhao S, et al. Mst1 deletion attenuates renal ischaemia-reperfusion injury: The role of microtubule cytoskeleton dynamics, mitochondrial fission and the GSK3β-p53 signalling pathway. Redox Biol. 2019;20:261-274 pubmed 出版商
  364. Deissler H, Lang G, Lang G. Fate of the Fc fusion protein aflibercept in retinal endothelial cells: competition of recycling and degradation. Graefes Arch Clin Exp Ophthalmol. 2019;257:83-94 pubmed 出版商
  365. Biffi G, Oni T, Spielman B, Hao Y, Elyada E, Park Y, et al. IL1-Induced JAK/STAT Signaling Is Antagonized by TGFβ to Shape CAF Heterogeneity in Pancreatic Ductal Adenocarcinoma. Cancer Discov. 2019;9:282-301 pubmed 出版商
  366. Real R, Peter M, Trabalza A, Khan S, Smith M, Dopp J, et al. In vivo modeling of human neuron dynamics and Down syndrome. Science. 2018;362: pubmed 出版商
  367. Song M, Sandoval T, Chae C, Chopra S, Tan C, Rutkowski M, et al. IRE1α-XBP1 controls T cell function in ovarian cancer by regulating mitochondrial activity. Nature. 2018;562:423-428 pubmed 出版商
  368. Bando H, Lee Y, Sakaguchi N, Pradipta A, Ma J, Tanaka S, et al. Inducible Nitric Oxide Synthase Is a Key Host Factor for Toxoplasma GRA15-Dependent Disruption of the Gamma Interferon-Induced Antiparasitic Human Response. MBio. 2018;9: pubmed 出版商
  369. Xu P, Chen A, Ganaie S, Cheng F, Shen W, Wang X, et al. The 11-Kilodalton Nonstructural Protein of Human Parvovirus B19 Facilitates Viral DNA Replication by Interacting with Grb2 through Its Proline-Rich Motifs. J Virol. 2019;93: pubmed 出版商
  370. Al Maskari M, Care M, Robinson E, Cocco M, Tooze R, Doody G. Site-1 protease function is essential for the generation of antibody secreting cells and reprogramming for secretory activity. Sci Rep. 2018;8:14338 pubmed 出版商
  371. Mangolini M, Götte F, Moore A, Ammon T, Oelsner M, Lutzny Geier G, et al. Notch2 controls non-autonomous Wnt-signalling in chronic lymphocytic leukaemia. Nat Commun. 2018;9:3839 pubmed 出版商
  372. Nagasaki A, Kato Y, Meguro K, Yamagishi A, Nakamura C, Uyeda T. A genome editing vector that enables easy selection and identification of knockout cells. Plasmid. 2018;98:37-44 pubmed 出版商
  373. Kim H, Mun Y, Lee K, Park Y, Park J, Park J, et al. T cell microvilli constitute immunological synaptosomes that carry messages to antigen-presenting cells. Nat Commun. 2018;9:3630 pubmed 出版商
  374. Mena E, Kjolby R, Saxton R, Werner A, Lew B, Boyle J, et al. Dimerization quality control ensures neuronal development and survival. Science. 2018;362: pubmed 出版商
  375. Birnbaum M, Zhao N, Moorthy B, Patel D, Kryvenko O, Heidman L, et al. Reduced Arginyltransferase 1 is a driver and a potential prognostic indicator of prostate cancer metastasis. Oncogene. 2019;38:838-851 pubmed 出版商
  376. Rodríguez Baena F, Redondo García S, Peris Torres C, Martino Echarri E, Fernández Rodríguez R, Plaza Calonge M, et al. ADAMTS1 protease is required for a balanced immune cell repertoire and tumour inflammatory response. Sci Rep. 2018;8:13103 pubmed 出版商
  377. Guerrini V, Prideaux B, Blanc L, Bruiners N, Arrigucci R, Singh S, et al. Storage lipid studies in tuberculosis reveal that foam cell biogenesis is disease-specific. PLoS Pathog. 2018;14:e1007223 pubmed 出版商
  378. Persi E, Duran Frigola M, Damaghi M, Roush W, Aloy P, Cleveland J, et al. Systems analysis of intracellular pH vulnerabilities for cancer therapy. Nat Commun. 2018;9:2997 pubmed 出版商
  379. Shang X, Shen C, Liu J, Tang L, Zhang H, Wang Y, et al. Serine protease PRSS55 is crucial for male mouse fertility via affecting sperm migration and sperm-egg binding. Cell Mol Life Sci. 2018;75:4371-4384 pubmed 出版商
  380. Urata S, Kenyon E, Nayak D, Cubitt B, Kurosaki Y, Yasuda J, et al. BST-2 controls T cell proliferation and exhaustion by shaping the early distribution of a persistent viral infection. PLoS Pathog. 2018;14:e1007172 pubmed 出版商
  381. Grevet J, Lan X, Hamagami N, Edwards C, Sankaranarayanan L, Ji X, et al. Domain-focused CRISPR screen identifies HRI as a fetal hemoglobin regulator in human erythroid cells. Science. 2018;361:285-290 pubmed 出版商
  382. Zhang C, Wang C, Jiang M, Gu C, Xiao J, Chen X, et al. Act1 is a negative regulator in T and B cells via direct inhibition of STAT3. Nat Commun. 2018;9:2745 pubmed 出版商
  383. Sammaibashi S, Yamayoshi S, Kawaoka Y. Strain-Specific Contribution of Eukaryotic Elongation Factor 1 Gamma to the Translation of Influenza A Virus Proteins. Front Microbiol. 2018;9:1446 pubmed 出版商
  384. Wang W, Xia Z, Farre J, Subramani S. TRIM37 deficiency induces autophagy through deregulating the MTORC1-TFEB axis. Autophagy. 2018;14:1574-1585 pubmed 出版商
  385. Chong S, Dugast Darzacq C, Liu Z, Dong P, Dailey G, Cattoglio C, et al. Imaging dynamic and selective low-complexity domain interactions that control gene transcription. Science. 2018;361: pubmed 出版商
  386. Schrank B, Aparicio T, Li Y, Chang W, Chait B, Gundersen G, et al. Nuclear ARP2/3 drives DNA break clustering for homology-directed repair. Nature. 2018;559:61-66 pubmed 出版商
  387. Xu Y, Xu J, Ge K, Tian Q, Zhao P, Guo Y. Anti-inflammatory effect of low molecular weight fucoidan from Saccharina japonica on atherosclerosis in apoE-knockout mice. Int J Biol Macromol. 2018;118:365-374 pubmed 出版商
  388. Chakrabarti R, Celià Terrassa T, Kumar S, Hang X, Wei Y, Choudhury A, et al. Notch ligand Dll1 mediates cross-talk between mammary stem cells and the macrophageal niche. Science. 2018;360: pubmed 出版商
  389. Liu H, Lorenzini P, Zhang F, Xu S, Wong M, Zheng J, et al. Alternative splicing analysis in human monocytes and macrophages reveals MBNL1 as major regulator. Nucleic Acids Res. 2018;46:6069-6086 pubmed 出版商
  390. Li T, Song L, Sun Y, Li J, Yi C, Lam S, et al. Tip60-mediated lipin 1 acetylation and ER translocation determine triacylglycerol synthesis rate. Nat Commun. 2018;9:1916 pubmed 出版商
  391. Dai L, Del Valle L, Miley W, Whitby D, Ochoa A, Flemington E, et al. Transactivation of human endogenous retrovirus K (HERV-K) by KSHV promotes Kaposi's sarcoma development. Oncogene. 2018;37:4534-4545 pubmed 出版商
  392. Reichenbach N, Delekate A, Breithausen B, Keppler K, Poll S, Schulte T, et al. P2Y1 receptor blockade normalizes network dysfunction and cognition in an Alzheimer's disease model. J Exp Med. 2018;215:1649-1663 pubmed 出版商
  393. Peltzer N, Darding M, Montinaro A, Dráber P, Draberova H, Kupka S, et al. LUBAC is essential for embryogenesis by preventing cell death and enabling haematopoiesis. Nature. 2018;557:112-117 pubmed 出版商
  394. Fujimoto M, Takii R, Katiyar A, Srivastava P, Nakai A. Poly(ADP-Ribose) Polymerase 1 Promotes the Human Heat Shock Response by Facilitating Heat Shock Transcription Factor 1 Binding to DNA. Mol Cell Biol. 2018;38: pubmed 出版商
  395. Muhar M, Ebert A, Neumann T, Umkehrer C, Jude J, Wieshofer C, et al. SLAM-seq defines direct gene-regulatory functions of the BRD4-MYC axis. Science. 2018;360:800-805 pubmed 出版商
  396. Liu J, Huang X, Hao S, Wang Y, Liu M, Xu J, et al. Peli1 negatively regulates noncanonical NF-κB signaling to restrain systemic lupus erythematosus. Nat Commun. 2018;9:1136 pubmed 出版商
  397. Guo S, Zhang Y, Zhou T, Wang D, Weng Y, Chen Q, et al. GATA4 as a novel regulator involved in the development of the neural crest and craniofacial skeleton via Barx1. Cell Death Differ. 2018;25:1996-2009 pubmed 出版商
  398. Lino Cardenas C, Kessinger C, Cheng Y, MacDonald C, Macgillivray T, Ghoshhajra B, et al. An HDAC9-MALAT1-BRG1 complex mediates smooth muscle dysfunction in thoracic aortic aneurysm. Nat Commun. 2018;9:1009 pubmed 出版商
  399. Everington E, Gibbard A, Swinny J, Seifi M. Molecular Characterization of GABA-A Receptor Subunit Diversity within Major Peripheral Organs and Their Plasticity in Response to Early Life Psychosocial Stress. Front Mol Neurosci. 2018;11:18 pubmed 出版商
  400. Lin Y, Kuo K, Chen S, Huang H. RBFOX3/NeuN is dispensable for visual function. PLoS ONE. 2018;13:e0192355 pubmed 出版商
  401. Roy G, Martin T, Barnes A, Wang J, Jimenez R, Rice M, et al. A novel bicistronic gene design couples stable cell line selection with a fucose switch in a designer CHO host to produce native and afucosylated glycoform antibodies. MAbs. 2018;10:416-430 pubmed 出版商
  402. Zhang R, Wu Y, Xie F, Zhong Y, Wang Y, Xu M, et al. RGMa mediates reactive astrogliosis and glial scar formation through TGF?1/Smad2/3 signaling after stroke. Cell Death Differ. 2018;25:1503-1516 pubmed 出版商
  403. Soncin F, Khater M, To C, Pizzo D, Farah O, Wakeland A, et al. Comparative analysis of mouse and human placentae across gestation reveals species-specific regulators of placental development. Development. 2018;145: pubmed 出版商
  404. Fiaturi N, Russo J, Nielsen H, Castellot J. CCN5 in alveolar epithelial proliferation and differentiation during neonatal lung oxygen injury. J Cell Commun Signal. 2018;12:217-229 pubmed 出版商
  405. Teater M, Domínguez P, Redmond D, Chen Z, Ennishi D, Scott D, et al. AICDA drives epigenetic heterogeneity and accelerates germinal center-derived lymphomagenesis. Nat Commun. 2018;9:222 pubmed 出版商
  406. Li T, Zhao J. Knockdown of elF3a inhibits TGF??1?induced extracellular matrix protein expression in keloid fibroblasts. Mol Med Rep. 2018;17:4057-4061 pubmed 出版商
  407. He P, Yang J, Yang V, Bialkowska A. Krüppel-like Factor 5, Increased in Pancreatic Ductal Adenocarcinoma, Promotes Proliferation, Acinar-to-Ductal Metaplasia, Pancreatic Intraepithelial Neoplasia, and Tumor Growth in Mice. Gastroenterology. 2018;154:1494-1508.e13 pubmed 出版商
  408. Iseka F, Goetz B, Mushtaq I, An W, Cypher L, Bielecki T, et al. Role of the EHD Family of Endocytic Recycling Regulators for TCR Recycling and T Cell Function. J Immunol. 2018;200:483-499 pubmed 出版商
  409. Gasparotto J, Girardi C, Somensi N, Ribeiro C, Moreira J, Michels M, et al. Receptor for advanced glycation end products mediates sepsis-triggered amyloid-β accumulation, Tau phosphorylation, and cognitive impairment. J Biol Chem. 2018;293:226-244 pubmed 出版商
  410. Sala M, Chen C, Zhang Q, Do Umehara H, Wu W, Misharin A, et al. JNK2 up-regulates hypoxia-inducible factors and contributes to hypoxia-induced erythropoiesis and pulmonary hypertension. J Biol Chem. 2018;293:271-284 pubmed 出版商
  411. Krendl C, Shaposhnikov D, Rishko V, Ori C, Ziegenhain C, Sass S, et al. GATA2/3-TFAP2A/C transcription factor network couples human pluripotent stem cell differentiation to trophectoderm with repression of pluripotency. Proc Natl Acad Sci U S A. 2017;114:E9579-E9588 pubmed 出版商
  412. Kumar S, Nakashizuka H, Jones A, Lambert A, Zhao X, Shen M, et al. Proteolytic Degradation and Inflammation Play Critical Roles in Polypoidal Choroidal Vasculopathy. Am J Pathol. 2017;187:2841-2857 pubmed 出版商
  413. Simond A, Rao T, Zuo D, Zhao J, Muller W. ErbB2-positive mammary tumors can escape PI3K-p110α loss through downregulation of the Pten tumor suppressor. Oncogene. 2017;36:6059-6066 pubmed 出版商
  414. Gallagher E, Zelenko Z, Neel B, Antoniou I, Rajan L, Kase N, et al. Elevated tumor LDLR expression accelerates LDL cholesterol-mediated breast cancer growth in mouse models of hyperlipidemia. Oncogene. 2017;36:6462-6471 pubmed 出版商
  415. Patne K, Rakesh R, Arya V, Chanana U, Sethy R, Swer P, et al. BRG1 and SMARCAL1 transcriptionally co-regulate DROSHA, DGCR8 and DICER in response to doxorubicin-induced DNA damage. Biochim Biophys Acta Gene Regul Mech. 2017;1860:936-951 pubmed 出版商
  416. Aguado L, Schmid S, May J, Sabin L, Panis M, Blanco Melo D, et al. RNase III nucleases from diverse kingdoms serve as antiviral effectors. Nature. 2017;547:114-117 pubmed 出版商
  417. Gatliff J, East D, Singh A, Alvarez M, Frison M, Matic I, et al. A role for TSPO in mitochondrial Ca2+ homeostasis and redox stress signaling. Cell Death Dis. 2017;8:e2896 pubmed 出版商
  418. Jha S, Rollins M, Fuchs G, Procter D, HALL E, Cozzolino K, et al. Trans-kingdom mimicry underlies ribosome customization by a poxvirus kinase. Nature. 2017;546:651-655 pubmed 出版商
  419. Coleman J, Lin B, Schwob J. Dissecting LSD1-Dependent Neuronal Maturation in the Olfactory Epithelium. J Comp Neurol. 2017;525:3391-3413 pubmed 出版商
  420. Read M, Fong J, Modasia B, Fletcher A, Imruetaicharoenchoke W, Thompson R, et al. Elevated PTTG and PBF predicts poor patient outcome and modulates DNA damage response genes in thyroid cancer. Oncogene. 2017;36:5296-5308 pubmed 出版商
  421. Cabezas R, Vega Vela N, González Sanmiguel J, Gonzalez J, Esquinas P, Echeverria V, et al. PDGF-BB Preserves Mitochondrial Morphology, Attenuates ROS Production, and Upregulates Neuroglobin in an Astrocytic Model Under Rotenone Insult. Mol Neurobiol. 2018;55:3085-3095 pubmed 出版商
  422. Rippe C, Zhu B, Krawczyk K, Bavel E, Albinsson S, Sjölund J, et al. Hypertension reduces soluble guanylyl cyclase expression in the mouse aorta via the Notch signaling pathway. Sci Rep. 2017;7:1334 pubmed 出版商
  423. Xie Y, Ma W, Meng J, Ren X. Knockdown of ZFPL1 results in increased autophagy and autophagy‑related cell death in NCI‑N87 and BGC‑823 human gastric carcinoma cell lines. Mol Med Rep. 2017;15:2633-2642 pubmed 出版商
  424. Chen J, Zhong M, Guo H, Davidson D, Mishel S, Lu Y, et al. SLAMF7 is critical for phagocytosis of haematopoietic tumour cells via Mac-1 integrin. Nature. 2017;544:493-497 pubmed 出版商
  425. Lamonica J, Kwon D, Goffin D, Fenik P, Johnson B, Cui Y, et al. Elevating expression of MeCP2 T158M rescues DNA binding and Rett syndrome-like phenotypes. J Clin Invest. 2017;127:1889-1904 pubmed 出版商
  426. Cho H, Kim J, Jang H, Lee T, Jung M, Kim T, et al. Alpha-lipoic acid ameliorates the epithelial mesenchymal transition induced by unilateral ureteral obstruction in mice. Sci Rep. 2017;7:46065 pubmed 出版商
  427. Mytych J, Romerowicz Misielak M, Koziorowski M. Long-term culture with lipopolysaccharide induces dose-dependent cytostatic and cytotoxic effects in THP-1 monocytes. Toxicol In Vitro. 2017;42:1-9 pubmed 出版商
  428. Busnelli M, Manzini S, Hilvo M, Parolini C, Ganzetti G, Dellera F, et al. Liver-specific deletion of the Plpp3 gene alters plasma lipid composition and worsens atherosclerosis in apoE-/- mice. Sci Rep. 2017;7:44503 pubmed 出版商
  429. Fusco D, Pratt H, Kandilas S, Cheon S, Lin W, Cronkite D, et al. HELZ2 Is an IFN Effector Mediating Suppression of Dengue Virus. Front Microbiol. 2017;8:240 pubmed 出版商
  430. Chen S, Wang Y, Zhang W, Dong M, Zhang J. Sclareolide enhances gemcitabine?induced cell death through mediating the NICD and Gli1 pathways in gemcitabine?resistant human pancreatic cancer. Mol Med Rep. 2017;15:1461-1470 pubmed 出版商
  431. Moradi M, Sivadasan R, Saal L, Lüningschrör P, Dombert B, Rathod R, et al. Differential roles of α-, β-, and γ-actin in axon growth and collateral branch formation in motoneurons. J Cell Biol. 2017;216:793-814 pubmed 出版商
  432. Pi H, Li M, Tian L, Yang Z, Yu Z, Zhou Z. Enhancing lysosomal biogenesis and autophagic flux by activating the transcription factor EB protects against cadmium-induced neurotoxicity. Sci Rep. 2017;7:43466 pubmed 出版商
  433. Yang X, Huo F, Liu B, Liu J, Chen T, Li J, et al. Crocin Inhibits Oxidative Stress and Pro-inflammatory Response of Microglial Cells Associated with Diabetic Retinopathy Through the Activation of PI3K/Akt Signaling Pathway. J Mol Neurosci. 2017;61:581-589 pubmed 出版商
  434. Li W, Li H, Zhang L, Hu M, Li F, Deng J, et al. Long non-coding RNA LINC00672 contributes to p53 protein-mediated gene suppression and promotes endometrial cancer chemosensitivity. J Biol Chem. 2017;292:5801-5813 pubmed 出版商
  435. Oliver D, Ji H, Liu P, Gasparian A, Gardiner E, Lee S, et al. Identification of novel cancer therapeutic targets using a designed and pooled shRNA library screen. Sci Rep. 2017;7:43023 pubmed 出版商
  436. Eliscovich C, Shenoy S, Singer R. Imaging mRNA and protein interactions within neurons. Proc Natl Acad Sci U S A. 2017;114:E1875-E1884 pubmed 出版商
  437. Furukawa S, Nagaike M, Ozaki K. Databases for technical aspects of immunohistochemistry. J Toxicol Pathol. 2017;30:79-107 pubmed 出版商
  438. Chamma C, Bargut T, Mandarim de Lacerda C, Aguila M. A rich medium-chain triacylglycerol diet benefits adiposity but has adverse effects on the markers of hepatic lipogenesis and beta-oxidation. Food Funct. 2017;8:778-787 pubmed 出版商
  439. Rubovitch V, Zilberstein Y, Chapman J, Schreiber S, Pick C. Restoring GM1 ganglioside expression ameliorates axonal outgrowth inhibition and cognitive impairments induced by blast traumatic brain injury. Sci Rep. 2017;7:41269 pubmed 出版商
  440. Bianchi E, Ruberti S, Rontauroli S, Guglielmelli P, Salati S, Rossi C, et al. Role of miR-34a-5p in Hematopoietic Progenitor Cells Proliferation and Fate Decision: Novel Insights into the Pathogenesis of Primary Myelofibrosis. Int J Mol Sci. 2017;18: pubmed 出版商
  441. Sun A, Wei J, Childress C, Shaw J, Peng K, Shao G, et al. The E3 ubiquitin ligase NEDD4 is an LC3-interactive protein and regulates autophagy. Autophagy. 2017;13:522-537 pubmed 出版商
  442. Patrinostro X, O Rourke A, Chamberlain C, Moriarity B, Perrin B, Ervasti J. Relative importance of ?cyto- and ?cyto-actin in primary mouse embryonic fibroblasts. Mol Biol Cell. 2017;28:771-782 pubmed 出版商
  443. Guan X, Lapak K, Hennessey R, Yu C, Shakya R, Zhang J, et al. Stromal Senescence By Prolonged CDK4/6 Inhibition Potentiates Tumor Growth. Mol Cancer Res. 2017;15:237-249 pubmed 出版商
  444. Rychtarčíková Z, Lettlova S, Tomkova V, Korenkova V, Langerova L, Simonova E, et al. Tumor-initiating cells of breast and prostate origin show alterations in the expression of genes related to iron metabolism. Oncotarget. 2017;8:6376-6398 pubmed 出版商
  445. Mytych J, Wos I, Solek P, Koziorowski M. Protective role of klotho protein on epithelial cells upon co-culture with activated or senescent monocytes. Exp Cell Res. 2017;350:358-367 pubmed 出版商
  446. Roncal Jimenez C, Milagres T, Andres Hernando A, Kuwabara M, Jensen T, Song Z, et al. Effects of exogenous desmopressin on a model of heat stress nephropathy in mice. Am J Physiol Renal Physiol. 2017;312:F418-F426 pubmed 出版商
  447. Mayrhofer M, Gourain V, Reischl M, Affaticati P, Jenett A, Joly J, et al. A novel brain tumour model in zebrafish reveals the role of YAP activation in MAPK- and PI3K-induced malignant growth. Dis Model Mech. 2017;10:15-28 pubmed 出版商
  448. Cheng Y, Cawley N, Yanik T, Murthy S, Liu C, Kasikci F, et al. A human carboxypeptidase E/NF-?1 gene mutation in an Alzheimer's disease patient leads to dementia and depression in mice. Transl Psychiatry. 2016;6:e973 pubmed 出版商
  449. Natarajan S, Muthukrishnan E, Khalimonchuk O, Mott J, Becker D. Evidence for Pipecolate Oxidase in Mediating Protection Against Hydrogen Peroxide Stress. J Cell Biochem. 2017;118:1678-1688 pubmed 出版商
  450. Chen Z, Tang C, Zhu Y, Xie M, He D, Pan Q, et al. TrpC5 regulates differentiation through the Ca2+/Wnt5a signalling pathway in colorectal cancer. Clin Sci (Lond). 2017;131:227-237 pubmed 出版商
  451. Langhi C, Arias N, Rajamoorthi A, Basta J, Lee R, Baldán A. Therapeutic silencing of fat-specific protein 27 improves glycemic control in mouse models of obesity and insulin resistance. J Lipid Res. 2017;58:81-91 pubmed 出版商
  452. Boro M, Singh V, Balaji K. Mycobacterium tuberculosis-triggered Hippo pathway orchestrates CXCL1/2 expression to modulate host immune responses. Sci Rep. 2016;6:37695 pubmed 出版商
  453. Yadav S, Tiwari V, Singh M, Yadav R, Roy S, Devi U, et al. Comparative efficacy of alpha-linolenic acid and gamma-linolenic acid to attenuate valproic acid-induced autism-like features. J Physiol Biochem. 2017;73:187-198 pubmed 出版商
  454. Rebo J, Mehdipour M, Gathwala R, Causey K, Liu Y, Conboy M, et al. A single heterochronic blood exchange reveals rapid inhibition of multiple tissues by old blood. Nat Commun. 2016;7:13363 pubmed 出版商
  455. Keshri G, Gupta A, Yadav A, Sharma S, Singh S. Photobiomodulation with Pulsed and Continuous Wave Near-Infrared Laser (810 nm, Al-Ga-As) Augments Dermal Wound Healing in Immunosuppressed Rats. PLoS ONE. 2016;11:e0166705 pubmed 出版商
  456. Chruvattil R, Banerjee S, Nath S, Machhi J, Kharkwal G, Yadav M, et al. Dexamethasone Alters the Appetite Regulation via Induction of Hypothalamic Insulin Resistance in Rat Brain. Mol Neurobiol. 2017;54:7483-7496 pubmed 出版商
  457. Bu P, Le Y, Zhang Y, Cheng X. Hormonal and Chemical Regulation of the Glut9 Transporter in Mice. J Pharmacol Exp Ther. 2017;360:206-214 pubmed 出版商
  458. Gil V, Bhagat G, Howell L, Zhang J, Kim C, Stengel S, et al. Deregulated expression of HDAC9 in B cells promotes development of lymphoproliferative disease and lymphoma in mice. Dis Model Mech. 2016;9:1483-1495 pubmed
  459. Cruz L, Streck N, Ferguson K, Desai T, Desai D, Amin S, et al. Potent Inhibition of Human Cytomegalovirus by Modulation of Cellular SNARE Syntaxin 5. J Virol. 2017;91: pubmed 出版商
  460. Nozawa T, Minowa Nozawa A, Aikawa C, Nakagawa I. The STX6-VTI1B-VAMP3 complex facilitates xenophagy by regulating the fusion between recycling endosomes and autophagosomes. Autophagy. 2017;13:57-69 pubmed 出版商
  461. Liu L, Tao Z, Zheng L, Brooke J, Smith C, Liu D, et al. FoxO1 interacts with transcription factor EB and differentially regulates mitochondrial uncoupling proteins via autophagy in adipocytes. Cell Death Discov. 2016;2:16066 pubmed
  462. Bulldan A, Shihan M, Goericke Pesch S, Scheiner Bobis G. Signaling events associated with gonadotropin releasing hormone-agonist-induced hormonal castration and its reversal in canines. Mol Reprod Dev. 2016;83:1092-1101 pubmed 出版商
  463. Nguyen A, Nyberg K, Scott M, Welsh A, Nguyen A, Wu N, et al. Stiffness of pancreatic cancer cells is associated with increased invasive potential. Integr Biol (Camb). 2016;8:1232-1245 pubmed
  464. Arora R, Sawney S, Saini V, Steffi C, Tiwari M, Saluja D. Esculetin induces antiproliferative and apoptotic response in pancreatic cancer cells by directly binding to KEAP1. Mol Cancer. 2016;15:64 pubmed
  465. Zou P, Liu L, Zheng L, Payne K, Manjili M, Idowu M, et al. Coordinated Upregulation of Mitochondrial Biogenesis and Autophagy in Breast Cancer Cells: The Role of Dynamin Related Protein-1 and Implication for Breast Cancer Treatment. Oxid Med Cell Longev. 2016;2016:4085727 pubmed
  466. Collinson Pautz M, Slawin K, Levitt J, Spencer D. MyD88/CD40 Genetic Adjuvant Function in Cutaneous Atypical Antigen-Presenting Cells Contributes to DNA Vaccine Immunogenicity. PLoS ONE. 2016;11:e0164547 pubmed 出版商
  467. Ross Adams H, Ball S, Lawrenson K, Halim S, Russell R, Wells C, et al. HNF1B variants associate with promoter methylation and regulate gene networks activated in prostate and ovarian cancer. Oncotarget. 2016;7:74734-74746 pubmed 出版商
  468. Lorenzen I, Lokau J, Korpys Y, Oldefest M, Flynn C, Künzel U, et al. Control of ADAM17 activity by regulation of its cellular localisation. Sci Rep. 2016;6:35067 pubmed 出版商
  469. Tseng H, Vong C, Kwan Y, Lee S, Hoi M. TRPM2 regulates TXNIP-mediated NLRP3 inflammasome activation via interaction with p47 phox under high glucose in human monocytic cells. Sci Rep. 2016;6:35016 pubmed 出版商
  470. Gasperini L, Meneghetti E, Legname G, Benetti F. In Absence of the Cellular Prion Protein, Alterations in Copper Metabolism and Copper-Dependent Oxidase Activity Affect Iron Distribution. Front Neurosci. 2016;10:437 pubmed
  471. Grolmusz V, Karaszi K, Micsik T, Toth E, Mészáros K, Karvaly G, et al. Cell cycle dependent RRM2 may serve as proliferation marker and pharmaceutical target in adrenocortical cancer. Am J Cancer Res. 2016;6:2041-2053 pubmed
  472. Li F, Feng J, Gao D, Wang J, Song C, Wei S, et al. Shuyu Capsules Relieve Premenstrual Syndrome Depression by Reducing 5-HT3AR and 5-HT3BR Expression in the Rat Brain. Neural Plast. 2016;2016:7950781 pubmed
  473. Liu Z, Tian R, Li Y, Zhang L, Shao H, Yang C, et al. SDF-1?-induced dual pairs of E-selectin/ligand mediate endothelial progenitor cell homing to critical ischemia. Sci Rep. 2016;6:34416 pubmed 出版商
  474. He M, Yuan H, Tan B, Bai R, Kim H, Bae S, et al. SIRT1-mediated downregulation of p27Kip1 is essential for overcoming contact inhibition of Kaposi's sarcoma-associated herpesvirus transformed cells. Oncotarget. 2016;7:75698-75711 pubmed 出版商
  475. Wizeman J, Nicholas A, Ishigami A, Mohan R. Citrullination of glial intermediate filaments is an early response in retinal injury. Mol Vis. 2016;22:1137-1155 pubmed
  476. Cizmecioglu O, Ni J, Xie S, Zhao J, Roberts T. Rac1-mediated membrane raft localization of PI3K/p110? is required for its activation by GPCRs or PTEN loss. elife. 2016;5: pubmed 出版商
  477. Sun K, Xu S, Chen J, Liu G, Shen X, Wu X. Atypical presentation of a gastric stromal tumor masquerading as a giant intraabdominal cyst: A case report. Oncol Lett. 2016;12:3018-3020 pubmed
  478. Romeo S, Conti A, Polito F, Tomasello C, Barresi V, La Torre D, et al. miRNA regulation of Sirtuin-1 expression in human astrocytoma. Oncol Lett. 2016;12:2992-2998 pubmed
  479. Liao F, Li G, Yuan W, Chen Y, Zuo Y, Rashid K, et al. LSKL peptide alleviates subarachnoid fibrosis and hydrocephalus by inhibiting TSP1-mediated TGF-?1 signaling activity following subarachnoid hemorrhage in rats. Exp Ther Med. 2016;12:2537-2543 pubmed
  480. Zhang Y, Zhang Y, Zhong C, Xiao F. Cr(VI) induces premature senescence through ROS-mediated p53 pathway in L-02 hepatocytes. Sci Rep. 2016;6:34578 pubmed 出版商
  481. Little A, Sham D, Hristova M, Danyal K, Heppner D, Bauer R, et al. DUOX1 silencing in lung cancer promotes EMT, cancer stem cell characteristics and invasive properties. Oncogenesis. 2016;5:e261 pubmed 出版商
  482. Castillo E, Zheng H, Van Cabanlong C, Dong F, Luo Y, Yang Y, et al. Lumican negatively controls the pathogenicity of murine encephalitic TH17 cells. Eur J Immunol. 2016;46:2852-2861 pubmed 出版商
  483. Matos M, Lapyckyj L, Rosso M, Besso M, Mencucci M, Briggiler C, et al. Identification of a Novel Human E-Cadherin Splice Variant and Assessment of Its Effects Upon EMT-Related Events. J Cell Physiol. 2017;232:1368-1386 pubmed 出版商
  484. Doan K, Kinyua A, Yang D, Ko C, Moh S, Shong K, et al. FoxO1 in dopaminergic neurons regulates energy homeostasis and targets tyrosine hydroxylase. Nat Commun. 2016;7:12733 pubmed 出版商
  485. Vallo S, Michaelis M, Gust K, Black P, Rothweiler F, Kvasnicka H, et al. Dasatinib enhances tumor growth in gemcitabine-resistant orthotopic bladder cancer xenografts. BMC Res Notes. 2016;9:454 pubmed
  486. Rani A, Roy S, Singh M, Devi U, Yadav R, Gautam S, et al. ?-Chymotrypsin regulates free fatty acids and UCHL-1 to ameliorate N-methyl nitrosourea induced mammary gland carcinoma in albino wistar rats. Inflammopharmacology. 2016;24:277-286 pubmed
  487. Ishikawa E, Kosako H, Yasuda T, Ohmuraya M, Araki K, Kurosaki T, et al. Protein kinase D regulates positive selection of CD4+ thymocytes through phosphorylation of SHP-1. Nat Commun. 2016;7:12756 pubmed 出版商
  488. Zhao G, Zhu P, Renvoisé B, Maldonado Baez L, Park S, Blackstone C. Mammalian knock out cells reveal prominent roles for atlastin GTPases in ER network morphology. Exp Cell Res. 2016;349:32-44 pubmed 出版商
  489. Vanhoutte D, Schips T, Kwong J, Davis J, Tjondrokoesoemo A, Brody M, et al. Thrombospondin expression in myofibers stabilizes muscle membranes. elife. 2016;5: pubmed 出版商
  490. Ow J, Palanichamy Kala M, Rao V, Choi M, Bharathy N, Taneja R. G9a inhibits MEF2C activity to control sarcomere assembly. Sci Rep. 2016;6:34163 pubmed 出版商
  491. Frolikova M, Sebkova N, Ded L, Dvorakova Hortova K. Characterization of CD46 and ?1 integrin dynamics during sperm acrosome reaction. Sci Rep. 2016;6:33714 pubmed 出版商
  492. Fogarty L, Song B, Suppiah Y, Hasan S, Martin H, Hogan S, et al. Bcl-xL dependency coincides with the onset of neurogenesis in the developing mammalian spinal cord. Mol Cell Neurosci. 2016;77:34-46 pubmed 出版商
  493. Urrutia M, Fernandez S, Gonzalez M, Vilches R, Rojas P, Vásquez M, et al. Overexpression of Glutamate Decarboxylase in Mesenchymal Stem Cells Enhances Their Immunosuppressive Properties and Increases GABA and Nitric Oxide Levels. PLoS ONE. 2016;11:e0163735 pubmed 出版商
  494. Treindl F, Ruprecht B, Beiter Y, Schultz S, Döttinger A, Staebler A, et al. A bead-based western for high-throughput cellular signal transduction analyses. Nat Commun. 2016;7:12852 pubmed 出版商
  495. Christensen B, Nellemann B, Jørgensen J, Pedersen S, Jessen N. Erythropoietin does not activate erythropoietin receptor signaling or lipolytic pathways in human subcutaneous white adipose tissue in vivo. Lipids Health Dis. 2016;15:160 pubmed 出版商
  496. Bingula R, Dupuis C, Pichon C, Berthon J, Filaire M, Pigeon L, et al. Study of the Effects of Betaine and/or C-Phycocyanin on the Growth of Lung Cancer A549 Cells In Vitro and In Vivo. J Oncol. 2016;2016:8162952 pubmed 出版商
  497. Gabriel K, Jones A, Nguyen J, Antillon K, Janos S, Overton H, et al. Association and regulation of protein factors of field effect in prostate tissues. Int J Oncol. 2016;49:1541-1552 pubmed 出版商
  498. Mester T, Raychaudhuri N, Gillespie E, Chen H, Smith T, Douglas R. CD40 Expression in Fibrocytes Is Induced by TSH: Potential Synergistic Immune Activation. PLoS ONE. 2016;11:e0162994 pubmed 出版商
  499. Liu Y, Li M, Zhang D, Zhang M, Hu Q. HSV-2 glycoprotein gD targets the CC domain of tetherin and promotes tetherin degradation via lysosomal pathway. Virol J. 2016;13:154 pubmed 出版商
  500. Jiang H, Kang S, Zhang S, Karuppagounder S, Xu J, Lee Y, et al. Adult Conditional Knockout of PGC-1? Leads to Loss of Dopamine Neurons. Eneuro. 2016;3: pubmed 出版商
  501. Waasdorp M, Duitman J, Florquin S, Spek C. Protease-activated receptor-1 deficiency protects against streptozotocin-induced diabetic nephropathy in mice. Sci Rep. 2016;6:33030 pubmed 出版商
  502. Springler A, Hessenberger S, Schatzmayr G, Mayer E. Early Activation of MAPK p44/42 Is Partially Involved in DON-Induced Disruption of the Intestinal Barrier Function and Tight Junction Network. Toxins (Basel). 2016;8: pubmed 出版商
  503. Wang H, Han X, Bretz C, Becker S, Gambhir D, Smith G, et al. Retinal pigment epithelial cell expression of active Rap 1a by scAAV2 inhibits choroidal neovascularization. Mol Ther Methods Clin Dev. 2016;3:16056 pubmed 出版商
  504. Hesler R, Huang J, Starr M, Treboschi V, Bernanke A, Nixon A, et al. TGF-?-induced stromal CYR61 promotes resistance to gemcitabine in pancreatic ductal adenocarcinoma through downregulation of the nucleoside transporters hENT1 and hCNT3. Carcinogenesis. 2016;37:1041-1051 pubmed 出版商
  505. García Carpizo V, Sarmentero J, Han B, Grana O, Ruiz Llorente S, Pisano D, et al. NSD2 contributes to oncogenic RAS-driven transcription in lung cancer cells through long-range epigenetic activation. Sci Rep. 2016;6:32952 pubmed 出版商
  506. Zhou S, Han Q, Wang R, Li X, Wang Q, Wang H, et al. PRDX2 protects hepatocellular carcinoma SMMC-7721 cells from oxidative stress. Oncol Lett. 2016;12:2217-2221 pubmed
  507. Wu Y, Zhang J, Zhang H, Zhai Y. Hepatitis B virus X protein mediates yes-associated protein 1 upregulation in hepatocellular carcinoma. Oncol Lett. 2016;12:1971-1974 pubmed
  508. Yao J, Qin L, Miao S, Wang X, Wu X. Overexpression of miR-506 suppresses proliferation and promotes apoptosis of osteosarcoma cells by targeting astrocyte elevated gene-1. Oncol Lett. 2016;12:1840-1848 pubmed
  509. Sousa A, Rei M, Freitas R, Ricardo S, Caffrey T, David L, et al. Effect of MUC1/?-catenin interaction on the tumorigenic capacity of pancreatic CD133+ cells. Oncol Lett. 2016;12:1811-1817 pubmed
  510. Lee J, Jung H, Han Y, Yoon Y, Yun C, Sun H, et al. Antioxidant effects of Cirsium setidens extract on oxidative stress in human mesenchymal stem cells. Mol Med Rep. 2016;14:3777-84 pubmed 出版商
  511. Kim J, Kim C, Sohn E, Kim J. Cytoplasmic translocation of high-mobility group box-1 protein is induced by diabetes and high glucose in retinal pericytes. Mol Med Rep. 2016;14:3655-61 pubmed 出版商
  512. Chai Y, Sierecki E, Tomatis V, Gormal R, Giles N, Morrow I, et al. Munc18-1 is a molecular chaperone for α-synuclein, controlling its self-replicating aggregation. J Cell Biol. 2016;214:705-18 pubmed 出版商
  513. Smethurst P, Newcombe J, Troakes C, Simone R, Chen Y, Patani R, et al. In vitro prion-like behaviour of TDP-43 in ALS. Neurobiol Dis. 2016;96:236-247 pubmed 出版商
  514. Twardziok M, Kleinsimon S, Rolff J, Jäger S, Eggert A, Seifert G, et al. Multiple Active Compounds from Viscum album L. Synergistically Converge to Promote Apoptosis in Ewing Sarcoma. PLoS ONE. 2016;11:e0159749 pubmed 出版商
  515. Caporali P, Bruno F, Palladino G, Dragotto J, Petrosini L, Mangia F, et al. Developmental delay in motor skill acquisition in Niemann-Pick C1 mice reveals abnormal cerebellar morphogenesis. Acta Neuropathol Commun. 2016;4:94 pubmed 出版商
  516. Bilardi R, Anstee N, Glaser S, Robati M, Vandenberg C, Cory S. Impact of loss of BH3-only proteins on the development and treatment of MLL-fusion gene-driven AML in mice. Cell Death Dis. 2016;7:e2351 pubmed 出版商
  517. Lee M, Tsai K, Hsu J, Shin S, Wu J, Yeh J. Liraglutide prevents and reverses monocrotaline-induced pulmonary arterial hypertension by suppressing ET-1 and enhancing eNOS/sGC/PKG pathways. Sci Rep. 2016;6:31788 pubmed 出版商
  518. Krawczyk K, Ekman M, Rippe C, Grossi M, Nilsson B, Albinsson S, et al. Assessing the contribution of thrombospondin-4 induction and ATF6? activation to endoplasmic reticulum expansion and phenotypic modulation in bladder outlet obstruction. Sci Rep. 2016;6:32449 pubmed 出版商
  519. Yang Y, Zhang Y, Iwamoto H, Hosaka K, Seki T, Andersson P, et al. Discontinuation of anti-VEGF cancer therapy promotes metastasis through a liver revascularization mechanism. Nat Commun. 2016;7:12680 pubmed 出版商
  520. Liu J, Ma Y, Sun C, Li S, Wang J. High Mobility Group Box1 Protein Is Involved in Endoplasmic Reticulum Stress Induced by Clostridium difficile Toxin A. Biomed Res Int. 2016;2016:4130834 pubmed 出版商
  521. Frydryskova K, Masek T, Borcin K, Mrvova S, Venturi V, Pospisek M. Distinct recruitment of human eIF4E isoforms to processing bodies and stress granules. BMC Mol Biol. 2016;17:21 pubmed 出版商
  522. Liu Z, Ding J, Yang Q, Song H, Chen X, Xu Y, et al. Early developmental bisphenol-A exposure sex-independently impairs spatial memory by remodeling hippocampal dendritic architecture and synaptic transmission in rats. Sci Rep. 2016;6:32492 pubmed 出版商
  523. Sato N, Takasaka N, Yoshida M, Tsubouchi K, Minagawa S, Araya J, et al. Metformin attenuates lung fibrosis development via NOX4 suppression. Respir Res. 2016;17:107 pubmed 出版商
  524. Abraham K, Chan J, Salvi J, Ho B, Hall A, Vidya E, et al. Intersection of calorie restriction and magnesium in the suppression of genome-destabilizing RNA-DNA hybrids. Nucleic Acids Res. 2016;44:8870-8884 pubmed
  525. Jeong O, Chae Y, Jung H, Park S, Cho S, Kook H, et al. Long noncoding RNA linc00598 regulates CCND2 transcription and modulates the G1 checkpoint. Sci Rep. 2016;6:32172 pubmed 出版商
  526. Yamada H, Takeda T, Michiue H, Abe T, Takei K. Actin bundling by dynamin 2 and cortactin is implicated in cell migration by stabilizing filopodia in human non-small cell lung carcinoma cells. Int J Oncol. 2016;49:877-86 pubmed 出版商
  527. Vickers T, Crooke S. Development of a Quantitative BRET Affinity Assay for Nucleic Acid-Protein Interactions. PLoS ONE. 2016;11:e0161930 pubmed 出版商
  528. Ettle B, Kuhbandner K, Jörg S, Hoffmann A, Winkler J, Linker R. α-Synuclein deficiency promotes neuroinflammation by increasing Th1 cell-mediated immune responses. J Neuroinflammation. 2016;13:201 pubmed 出版商
  529. Guo L, Costanzo Garvey D, Smith D, Zavorka M, Venable Kang M, MacDonald R, et al. Cell non-autonomous regulation of hepatic IGF-1 and neonatal growth by Kinase Suppressor of Ras 2 (KSR2). Sci Rep. 2016;6:32093 pubmed 出版商
  530. Zhou Q, Yu X, Demirkaya E, Deuitch N, Stone D, Tsai W, et al. Biallelic hypomorphic mutations in a linear deubiquitinase define otulipenia, an early-onset autoinflammatory disease. Proc Natl Acad Sci U S A. 2016;113:10127-32 pubmed 出版商
  531. Suman S, Kumar S, Fornace A, Datta K. Space radiation exposure persistently increased leptin and IGF1 in serum and activated leptin-IGF1 signaling axis in mouse intestine. Sci Rep. 2016;6:31853 pubmed 出版商
  532. Fujita K, Motoki K, Tagawa K, Chen X, Hama H, Nakajima K, et al. HMGB1, a pathogenic molecule that induces neurite degeneration via TLR4-MARCKS, is a potential therapeutic target for Alzheimer's disease. Sci Rep. 2016;6:31895 pubmed 出版商
  533. Wu J, Wu H, Tsai D, Chiang M, Chen Y, Gao S, et al. Temporal regulation of Lsp1 O-GlcNAcylation and phosphorylation during apoptosis of activated B cells. Nat Commun. 2016;7:12526 pubmed 出版商
  534. Wilkie A, Lawler J, Coen D. A Role for Nuclear F-Actin Induction in Human Cytomegalovirus Nuclear Egress. MBio. 2016;7: pubmed 出版商
  535. Villa M, Crotta S, Dingwell K, Hirst E, Gialitakis M, Ahlfors H, et al. The aryl hydrocarbon receptor controls cyclin O to promote epithelial multiciliogenesis. Nat Commun. 2016;7:12652 pubmed 出版商
  536. Andersen N, Srinivas S, Piñero G, Monje P. A rapid and versatile method for the isolation, purification and cryogenic storage of Schwann cells from adult rodent nerves. Sci Rep. 2016;6:31781 pubmed 出版商
  537. Rey G, Valekunja U, Feeney K, Wulund L, Milev N, Stangherlin A, et al. The Pentose Phosphate Pathway Regulates the Circadian Clock. Cell Metab. 2016;24:462-473 pubmed 出版商
  538. Kupka S, De Miguel D, Dráber P, Martino L, Surinova S, Rittinger K, et al. SPATA2-Mediated Binding of CYLD to HOIP Enables CYLD Recruitment to Signaling Complexes. Cell Rep. 2016;16:2271-80 pubmed 出版商
  539. Murakami Tonami Y, Ikeda H, Yamagishi R, Inayoshi M, Inagaki S, Kishida S, et al. SGO1 is involved in the DNA damage response in MYCN-amplified neuroblastoma cells. Sci Rep. 2016;6:31615 pubmed 出版商
  540. Getz A, Visser F, Bell E, Xu F, Flynn N, Zaidi W, et al. Two proteolytic fragments of menin coordinate the nuclear transcription and postsynaptic clustering of neurotransmitter receptors during synaptogenesis between Lymnaea neurons. Sci Rep. 2016;6:31779 pubmed 出版商
  541. Klose R, Krzywinska E, Castells M, Gotthardt D, Putz E, Kantari Mimoun C, et al. Targeting VEGF-A in myeloid cells enhances natural killer cell responses to chemotherapy and ameliorates cachexia. Nat Commun. 2016;7:12528 pubmed 出版商
  542. Timucin A, Basaga H. SIRT6 Is a Positive Regulator of Aldose Reductase Expression in U937 and HeLa cells under Osmotic Stress: In Vitro and In Silico Insights. PLoS ONE. 2016;11:e0161494 pubmed 出版商
  543. Sakai Y, Miyake A, Doi N, Sasada H, Miyazaki Y, Adachi A, et al. Expression Profiles of Vpx/Vpr Proteins Are Co-related with the Primate Lentiviral Lineage. Front Microbiol. 2016;7:1211 pubmed 出版商
  544. Weikel K, Cacicedo J, Ruderman N, Ido Y. Knockdown of GSK3β increases basal autophagy and AMPK signalling in nutrient-laden human aortic endothelial cells. Biosci Rep. 2016;36: pubmed 出版商
  545. Wei Q, Zhang Y, Schouteden C, Zhang Y, Zhang Q, Dong J, et al. The hydrolethalus syndrome protein HYLS-1 regulates formation of the ciliary gate. Nat Commun. 2016;7:12437 pubmed 出版商
  546. Hastie E, Cataldi M, Moerdyk Schauwecker M, Felt S, Steuerwald N, Grdzelishvili V. Novel biomarkers of resistance of pancreatic cancer cells to oncolytic vesicular stomatitis virus. Oncotarget. 2016;7:61601-61618 pubmed 出版商
  547. Valencia Gattas M, Conner G, Fregien N. Gefitinib, an EGFR Tyrosine Kinase inhibitor, Prevents Smoke-Mediated Ciliated Airway Epithelial Cell Loss and Promotes Their Recovery. PLoS ONE. 2016;11:e0160216 pubmed 出版商
  548. Gusscott S, Jenkins C, Lam S, Giambra V, Pollak M, Weng A. IGF1R Derived PI3K/AKT Signaling Maintains Growth in a Subset of Human T-Cell Acute Lymphoblastic Leukemias. PLoS ONE. 2016;11:e0161158 pubmed 出版商
  549. Walton J, Blagih J, Ennis D, Leung E, Dowson S, Farquharson M, et al. CRISPR/Cas9-Mediated Trp53 and Brca2 Knockout to Generate Improved Murine Models of Ovarian High-Grade Serous Carcinoma. Cancer Res. 2016;76:6118-6129 pubmed
  550. Li L, Liu H, Wang C, Liu X, Hu F, Xie N, et al. Overexpression of ?-Catenin Induces Cisplatin Resistance in Oral Squamous Cell Carcinoma. Biomed Res Int. 2016;2016:5378567 pubmed 出版商
  551. Nakamichi R, Ito Y, Inui M, Onizuka N, Kayama T, Kataoka K, et al. Mohawk promotes the maintenance and regeneration of the outer annulus fibrosus of intervertebral discs. Nat Commun. 2016;7:12503 pubmed 出版商
  552. Rasmussen M, Lyskjær I, Jersie Christensen R, Tarpgaard L, Primdal Bengtson B, Nielsen M, et al. miR-625-3p regulates oxaliplatin resistance by targeting MAP2K6-p38 signalling in human colorectal adenocarcinoma cells. Nat Commun. 2016;7:12436 pubmed 出版商
  553. Bercovich Kinori A, Tai J, Gelbart I, Shitrit A, Ben Moshe S, Drori Y, et al. A systematic view on influenza induced host shutoff. elife. 2016;5: pubmed 出版商
  554. Zini R, Rossi C, Norfo R, Pennucci V, Barbieri G, Ruberti S, et al. miR-382-5p Controls Hematopoietic Stem Cell Differentiation Through the Downregulation of MXD1. Stem Cells Dev. 2016;25:1433-43 pubmed 出版商
  555. Meneses M, Bernardino R, Sa R, Silva J, Barros A, Sousa M, et al. Pioglitazone increases the glycolytic efficiency of human Sertoli cells with possible implications for spermatogenesis. Int J Biochem Cell Biol. 2016;79:52-60 pubmed 出版商
  556. Kariya Y, Tatsuta T, Sugawara S, Kariya Y, Nitta K, Hosono M. RNase activity of sialic acid-binding lectin from bullfrog eggs drives antitumor effect via the activation of p38 MAPK to caspase-3/7 signaling pathway in human breast cancer cells. Int J Oncol. 2016;49:1334-42 pubmed 出版商
  557. Manghera M, Ferguson Parry J, Lin R, Douville R. NF-?B and IRF1 Induce Endogenous Retrovirus K Expression via Interferon-Stimulated Response Elements in Its 5' Long Terminal Repeat. J Virol. 2016;90:9338-49 pubmed 出版商
  558. Sun L, Fan G, Shan P, Qiu X, Dong S, Liao L, et al. Regulation of energy homeostasis by the ubiquitin-independent REG? proteasome. Nat Commun. 2016;7:12497 pubmed 出版商
  559. Park J, Park J, Ahn J, Kim J, Won M, Lee C. Age?dependent increase in the expression of antioxidant?like protein?1 in the gerbil hippocampus. Mol Med Rep. 2016;14:3215-9 pubmed 出版商
  560. Durand S, Franks T, Lykke Andersen J. Hyperphosphorylation amplifies UPF1 activity to resolve stalls in nonsense-mediated mRNA decay. Nat Commun. 2016;7:12434 pubmed 出版商
  561. Yao Y, Deng Q, Song W, Zhang H, Li Y, Yang Y, et al. MIF Plays a Key Role in Regulating Tissue-Specific Chondro-Osteogenic Differentiation Fate of Human Cartilage Endplate Stem Cells under Hypoxia. Stem Cell Reports. 2016;7:249-62 pubmed 出版商
  562. Meliopoulos V, Van De Velde L, Van De Velde N, Karlsson E, Neale G, Vogel P, et al. An Epithelial Integrin Regulates the Amplitude of Protective Lung Interferon Responses against Multiple Respiratory Pathogens. PLoS Pathog. 2016;12:e1005804 pubmed 出版商
  563. Busse B, Bezrukov L, Blank P, Zimmerberg J. Resin embedded multicycle imaging (REMI): a tool to evaluate protein domains. Sci Rep. 2016;6:30284 pubmed 出版商
  564. Yuan Y, Wang Y, Liu Q, Zhu F, Hong Y. Singapore grouper iridovirus protein VP088 is essential for viral infectivity. Sci Rep. 2016;6:31170 pubmed 出版商
  565. Dutta N, Seo S. RPGR, a prenylated retinal ciliopathy protein, is targeted to cilia in a prenylation- and PDE6D-dependent manner. Biol Open. 2016;5:1283-9 pubmed 出版商
  566. Kaliberov S, Kaliberova L, Yan H, Kapoor V, Hallahan D. Retargeted adenoviruses for radiation-guided gene delivery. Cancer Gene Ther. 2016;23:303-14 pubmed 出版商
  567. Wong M, Chen S. Human Choline Kinase-? Promotes Hepatitis C Virus RNA Replication through Modulation of Membranous Viral Replication Complex Formation. J Virol. 2016;90:9075-95 pubmed 出版商
  568. Kaukonen R, Mai A, Georgiadou M, Saari M, De Franceschi N, Betz T, et al. Normal stroma suppresses cancer cell proliferation via mechanosensitive regulation of JMJD1a-mediated transcription. Nat Commun. 2016;7:12237 pubmed 出版商
  569. Tiwari V, Singh M, Rawat J, Devi U, Yadav R, Roy S, et al. Redefining the role of peripheral LPS as a neuroinflammatory agent and evaluating the role of hydrogen sulphide through metformin intervention. Inflammopharmacology. 2016;24:253-264 pubmed
  570. Galambos C, Minic A, Bush D, Nguyen D, Dodson B, Seedorf G, et al. Increased Lung Expression of Anti-Angiogenic Factors in Down Syndrome: Potential Role in Abnormal Lung Vascular Growth and the Risk for Pulmonary Hypertension. PLoS ONE. 2016;11:e0159005 pubmed 出版商
  571. Turchinovich A, Surowy H, Tonevitsky A, Burwinkel B. Interference in transcription of overexpressed genes by promoter-proximal downstream sequences. Sci Rep. 2016;6:30735 pubmed 出版商
  572. Kim J, Weeratunga P, Kim M, Nikapitiya C, Lee B, Uddin M, et al. Inhibitory effects of an aqueous extract from Cortex Phellodendri on the growth and replication of broad-spectrum of viruses in vitro and in vivo. BMC Complement Altern Med. 2016;16:265 pubmed 出版商
  573. Sahu N, Stephan J, Cruz D, Merchant M, Haley B, Bourgon R, et al. Functional screening implicates miR-371-3p and peroxiredoxin 6 in reversible tolerance to cancer drugs. Nat Commun. 2016;7:12351 pubmed 出版商
  574. Wang Z, Zhang H, Sun X, Ren L. The protective role of vitamin D3 in a murine model of asthma via the suppression of TGF-?/Smad signaling and activation of the Nrf2/HO-1 pathway. Mol Med Rep. 2016;14:2389-96 pubmed 出版商
  575. Westbroek W, Nguyen M, Siebert M, Lindstrom T, Burnett R, Aflaki E, et al. A new glucocerebrosidase-deficient neuronal cell model provides a tool to probe pathophysiology and therapeutics for Gaucher disease. Dis Model Mech. 2016;9:769-78 pubmed 出版商
  576. Wang X, Shaw D, Hammond H, Sutterwala F, Rayamajhi M, Shirey K, et al. The Prostaglandin E2-EP3 Receptor Axis Regulates Anaplasma phagocytophilum-Mediated NLRC4 Inflammasome Activation. PLoS Pathog. 2016;12:e1005803 pubmed 出版商
  577. Zhao Y, Song J, Ma X, Zhang B, Li D, Pang H. Rosiglitazone ameliorates diffuse axonal injury by reducing loss of tau and up-regulating caveolin-1 expression. Neural Regen Res. 2016;11:944-50 pubmed 出版商
  578. Fritzen R, Delbos F, De Smet A, Palancade B, Canman C, Aoufouchi S, et al. A single aspartate mutation in the conserved catalytic site of Rev3L generates a hypomorphic phenotype in vivo and in vitro. DNA Repair (Amst). 2016;46:37-46 pubmed 出版商
  579. Lai M, Gonzalez Martin A, Cooper A, Oda H, Jin H, Shepherd J, et al. Regulation of B-cell development and tolerance by different members of the miR-17∼92 family microRNAs. Nat Commun. 2016;7:12207 pubmed 出版商
  580. Manral C, Roy S, Singh M, Gautam S, Yadav R, Rawat J, et al. Effect of ?-sitosterol against methyl nitrosourea-induced mammary gland carcinoma in albino rats. BMC Complement Altern Med. 2016;16:260 pubmed 出版商
  581. Martinez L, Thames E, Kim J, Chaudhuri G, Singh R, Pervin S. Increased sensitivity of African American triple negative breast cancer cells to nitric oxide-induced mitochondria-mediated apoptosis. BMC Cancer. 2016;16:559 pubmed 出版商
  582. Iacovides D, Rizki G, Lapathitis G, Strati K. Direct conversion of mouse embryonic fibroblasts into functional keratinocytes through transient expression of pluripotency-related genes. Stem Cell Res Ther. 2016;7:98 pubmed 出版商
  583. Zhang M, Qi Y, Li H, Cui J, Dai L, Frank J, et al. AIM2 inflammasome mediates Arsenic-induced secretion of IL-1 ? and IL-18. Oncoimmunology. 2016;5:e1160182 pubmed 出版商
  584. Wang Y, Sun H, Wang J, Wang H, Meng L, Xu C, et al. DNA-PK-mediated phosphorylation of EZH2 regulates the DNA damage-induced apoptosis to maintain T-cell genomic integrity. Cell Death Dis. 2016;7:e2316 pubmed 出版商
  585. Anta B, Pérez Rodríguez A, Castro J, García Domínguez C, Ibiza S, Martínez N, et al. PGA1-induced apoptosis involves specific activation of H-Ras and N-Ras in cellular endomembranes. Cell Death Dis. 2016;7:e2311 pubmed 出版商
  586. Franzese O, Palermo B, Di Donna C, Sperduti I, Ferraresi V, Stabile H, et al. Polyfunctional Melan-A-specific tumor-reactive CD8(+) T cells elicited by dacarbazine treatment before peptide-vaccination depends on AKT activation sustained by ICOS. Oncoimmunology. 2016;5:e1114203 pubmed 出版商
  587. Das S, Rehman I, Ghosh A, Sengupta S, Majumdar P, Jana B, et al. Poly(ADP-ribose) polymers regulate DNA topoisomerase I (Top1) nuclear dynamics and camptothecin sensitivity in living cells. Nucleic Acids Res. 2016;44:8363-75 pubmed 出版商
  588. Pang J, Wu Y, Peng J, Yang P, Kuai L, Qin X, et al. Potential implications of Apolipoprotein E in early brain injury after experimental subarachnoid hemorrhage: Involvement in the modulation of blood-brain barrier integrity. Oncotarget. 2016;7:56030-56044 pubmed 出版商
  589. Kumar R, Agrawal T, Khan N, Nakayama Y, Medigeshi G. Identification and characterization of the role of c-terminal Src kinase in dengue virus replication. Sci Rep. 2016;6:30490 pubmed 出版商
  590. Nelson D, Jaber Hijazi F, Cole J, Robertson N, Pawlikowski J, Norris K, et al. Mapping H4K20me3 onto the chromatin landscape of senescent cells indicates a function in control of cell senescence and tumor suppression through preservation of genetic and epigenetic stability. Genome Biol. 2016;17:158 pubmed 出版商
  591. Jeong H, Cho Y, Kim K, Kim Y, Kim K, Na Y, et al. Anti-lipoapoptotic effects of Alisma orientalis extract on non-esterified fatty acid-induced HepG2 cells. BMC Complement Altern Med. 2016;16:239 pubmed 出版商
  592. Fan C, Jia L, Zheng Y, Jin C, Liu Y, Liu H, et al. MiR-34a Promotes Osteogenic Differentiation of Human Adipose-Derived Stem Cells via the RBP2/NOTCH1/CYCLIN D1 Coregulatory Network. Stem Cell Reports. 2016;7:236-48 pubmed 出版商
  593. Jiao K, Zeng G, Niu L, Yang H, Ren G, Xu X, et al. Activation of ?2A-adrenergic signal transduction in chondrocytes promotes degenerative remodelling of temporomandibular joint. Sci Rep. 2016;6:30085 pubmed 出版商
  594. Yang X, Zhou X, Tone P, Durkin M, Popescu N. Cooperative antiproliferative effect of coordinated ectopic expression of DLC1 tumor suppressor protein and silencing of MYC oncogene expression in liver cancer cells: Therapeutic implications. Oncol Lett. 2016;12:1591-1596 pubmed
  595. Jiang S, Gao Y, Hou W, Liu R, Qi X, Xu X, et al. Sinomenine inhibits A549 human lung cancer cell invasion by mediating the STAT3 signaling pathway. Oncol Lett. 2016;12:1380-1386 pubmed
  596. Jin Z, Yan W, Jin H, Ge C, Xu Y. Psoralidin inhibits proliferation and enhances apoptosis of human esophageal carcinoma cells via NF-?B and PI3K/Akt signaling pathways. Oncol Lett. 2016;12:971-976 pubmed
  597. Zhou Q, Chai W. Suppression of STN1 enhances the cytotoxicity of chemotherapeutic agents in cancer cells by elevating DNA damage. Oncol Lett. 2016;12:800-808 pubmed
  598. Zhang Y, Lin R, Tao J, Wu Y, Chen B, Yu K, et al. Electroacupuncture improves cognitive ability following cerebral ischemia reperfusion injury via CaM-CaMKIV-CREB signaling in the rat hippocampus. Exp Ther Med. 2016;12:777-782 pubmed
  599. Chen S, Lin J, Yao X, Peng B, Xu Y, Liu M, et al. Nrdp1-mediated degradation of BRUCE decreases cell viability and induces apoptosis in human 786-O renal cell carcinoma cells. Exp Ther Med. 2016;12:597-602 pubmed
  600. Cabral W, Ishikawa M, Garten M, Makareeva E, Sargent B, Weis M, et al. Absence of the ER Cation Channel TMEM38B/TRIC-B Disrupts Intracellular Calcium Homeostasis and Dysregulates Collagen Synthesis in Recessive Osteogenesis Imperfecta. PLoS Genet. 2016;12:e1006156 pubmed 出版商
  601. Yoshioka W, Kawaguchi T, Nishimura N, Akagi T, Fujisawa N, Yanagisawa H, et al. Polyuria-associated hydronephrosis induced by xenobiotic chemical exposure in mice. Am J Physiol Renal Physiol. 2016;311:F752-F762 pubmed 出版商
  602. Liu L, Jiang Y, Steinle J. Compound 49b Restores Retinal Thickness and Reduces Degenerate Capillaries in the Rat Retina following Ischemia/Reperfusion. PLoS ONE. 2016;11:e0159532 pubmed 出版商
  603. Posada I, Serulla M, Zhou Y, Oetken Lindholm C, Abankwa D, Lectez B. ASPP2 Is a Novel Pan-Ras Nanocluster Scaffold. PLoS ONE. 2016;11:e0159677 pubmed 出版商
  604. Schamberger A, Schiller H, Fernandez I, Sterclova M, Heinzelmann K, Hennen E, et al. Glutathione peroxidase 3 localizes to the epithelial lining fluid and the extracellular matrix in interstitial lung disease. Sci Rep. 2016;6:29952 pubmed 出版商
  605. Fernando R, Cotter L, Perrin Tricaud C, Berthelot J, Bartolami S, Pereira J, et al. Optimal myelin elongation relies on YAP activation by axonal growth and inhibition by Crb3/Hippo pathway. Nat Commun. 2016;7:12186 pubmed 出版商
  606. Geng J, Li J, Huang T, Zhao K, Chen Q, Guo W, et al. A novel manganese complex selectively induces malignant glioma cell death by targeting mitochondria. Mol Med Rep. 2016;14:1970-8 pubmed 出版商
  607. Jiang S, Chen G, Feng L, Jiang Z, Yu M, Bao J, et al. Disruption of kif3a results in defective osteoblastic differentiation in dental mesenchymal stem/precursor cells via the Wnt signaling pathway. Mol Med Rep. 2016;14:1891-900 pubmed 出版商
  608. Penney J, Tsurudome K, Liao E, Kauwe G, Gray L, Yanagiya A, et al. LRRK2 regulates retrograde synaptic compensation at the Drosophila neuromuscular junction. Nat Commun. 2016;7:12188 pubmed 出版商
  609. Thomas R, Henson A, Gerrish A, Jones L, Williams J, Kidd E. Decreasing the expression of PICALM reduces endocytosis and the activity of β-secretase: implications for Alzheimer's disease. BMC Neurosci. 2016;17:50 pubmed 出版商
  610. Liu X, Ehmed E, Li B, Dou J, Qiao X, Jiang W, et al. Breast cancer metastasis suppressor 1 modulates SIRT1-dependent p53 deacetylation through interacting with DBC1. Am J Cancer Res. 2016;6:1441-9 pubmed
  611. Zhao X, Lokanga R, Allette K, Gazy I, Wu D, Usdin K. A MutS?-Dependent Contribution of MutS? to Repeat Expansions in Fragile X Premutation Mice?. PLoS Genet. 2016;12:e1006190 pubmed 出版商
  612. Brunnemann A, Liermann K, Deinhardt Emmer S, Maschkowitz G, Pohlmann A, Sodeik B, et al. Recombinant herpes simplex virus type 1 strains with targeted mutations relevant for aciclovir susceptibility. Sci Rep. 2016;6:29903 pubmed 出版商
  613. Kuwahara T, Inoue K, D Agati V, Fujimoto T, Eguchi T, Saha S, et al. LRRK2 and RAB7L1 coordinately regulate axonal morphology and lysosome integrity in diverse cellular contexts. Sci Rep. 2016;6:29945 pubmed 出版商
  614. Jang H, Lee G, Selby C, Lee G, Jeon Y, Lee J, et al. SREBP1c-CRY1 signalling represses hepatic glucose production by promoting FOXO1 degradation during refeeding. Nat Commun. 2016;7:12180 pubmed 出版商
  615. Velázquez R, Shaw D, Caccamo A, Oddo S. Pim1 inhibition as a novel therapeutic strategy for Alzheimer's disease. Mol Neurodegener. 2016;11:52 pubmed 出版商
  616. McClelland Descalzo D, Satoorian T, Walker L, Sparks N, Pulyanina P, zur Nieden N. Glucose-Induced Oxidative Stress Reduces Proliferation in Embryonic Stem Cells via FOXO3A/?-Catenin-Dependent Transcription of p21(cip1). Stem Cell Reports. 2016;7:55-68 pubmed 出版商
  617. Hogg S, Newbold A, Vervoort S, Cluse L, Martin B, Gregory G, et al. BET Inhibition Induces Apoptosis in Aggressive B-Cell Lymphoma via Epigenetic Regulation of BCL-2 Family Members. Mol Cancer Ther. 2016;15:2030-41 pubmed 出版商
  618. Seo H, Lee C, Lee J, Lim S, Choi E, Park J, et al. The role of nuclear factor of activated T cells during phorbol myristate acetate-induced cardiac differentiation of mesenchymal stem cells. Stem Cell Res Ther. 2016;7:90 pubmed 出版商
  619. Yuan Y, Ren Y, Yuan P, Yan L, Qiao J. TRAIP is involved in chromosome alignment and SAC regulation in mouse oocyte meiosis. Sci Rep. 2016;6:29735 pubmed 出版商
  620. Tsuboki J, Fujiwara Y, Horlad H, Shiraishi D, Nohara T, Tayama S, et al. Onionin A inhibits ovarian cancer progression by suppressing cancer cell proliferation and the protumour function of macrophages. Sci Rep. 2016;6:29588 pubmed 出版商
  621. Li S, Qu Z, Haas M, Ngo L, Heo Y, Kang H, et al. The HSA21 gene EURL/C21ORF91 controls neurogenesis within the cerebral cortex and is implicated in the pathogenesis of Down Syndrome. Sci Rep. 2016;6:29514 pubmed 出版商
  622. Ahmed N, Murakami M, Hirose Y, Nakashima M. Therapeutic Potential of Dental Pulp Stem Cell Secretome for Alzheimer's Disease Treatment: An In Vitro Study. Stem Cells Int. 2016;2016:8102478 pubmed 出版商
  623. Deblois G, Smith H, Tam I, Gravel S, Caron M, Savage P, et al. ERR? mediates metabolic adaptations driving lapatinib resistance in breast cancer. Nat Commun. 2016;7:12156 pubmed 出版商
  624. Kloten V, Schlensog M, Eschenbruch J, Gasthaus J, Tiedemann J, Mijnes J, et al. Abundant NDRG2 Expression Is Associated with Aggressiveness and Unfavorable Patients' Outcome in Basal-Like Breast Cancer. PLoS ONE. 2016;11:e0159073 pubmed 出版商
  625. Fang J, Jia C, Zheng Z, Ye X, Wei B, Huang L, et al. Periprostatic implantation of neural differentiated mesenchymal stem cells restores cavernous nerve injury-mediated erectile dysfunction. Am J Transl Res. 2016;8:2549-61 pubmed
  626. Martins A, Sá R, Monteiro M, Barros A, Sousa M, Carvalho R, et al. Ghrelin acts as energy status sensor of male reproduction by modulating Sertoli cells glycolytic metabolism and mitochondrial bioenergetics. Mol Cell Endocrinol. 2016;434:199-209 pubmed 出版商
  627. Kawano S, Grassian A, Tsuda M, Knutson S, Warholic N, Kuznetsov G, et al. Preclinical Evidence of Anti-Tumor Activity Induced by EZH2 Inhibition in Human Models of Synovial Sarcoma. PLoS ONE. 2016;11:e0158888 pubmed 出版商
  628. Holcomb N, Goswami M, Han S, Clark S, Orren D, Gairola C, et al. Exposure of Human Lung Cells to Tobacco Smoke Condensate Inhibits the Nucleotide Excision Repair Pathway. PLoS ONE. 2016;11:e0158858 pubmed 出版商
  629. Unsal E, Degirmenci B, Harmanda B, Erman B, Ozlu N. A small molecule identified through an in silico screen inhibits Aurora B-INCENP interaction. Chem Biol Drug Des. 2016;88:783-794 pubmed 出版商
  630. Wang M, Sips P, Khin E, Rotival M, Sun X, Ahmed R, et al. Wars2 is a determinant of angiogenesis. Nat Commun. 2016;7:12061 pubmed 出版商
  631. Zea A, Stewart T, Ascani J, Tate D, Finkel Jimenez B, Wilk A, et al. Activation of the IL-2 Receptor in Podocytes: A Potential Mechanism for Podocyte Injury in Idiopathic Nephrotic Syndrome?. PLoS ONE. 2016;11:e0157907 pubmed 出版商
  632. Bayne R, Donnachie D, Kinnell H, Childs A, Anderson R. BMP signalling in human fetal ovary somatic cells is modulated in a gene-specific fashion by GREM1 and GREM2. Mol Hum Reprod. 2016;22:622-33 pubmed 出版商
  633. He Z, Forest F, Gain P, Rageade D, Bernard A, Acquart S, et al. 3D map of the human corneal endothelial cell. Sci Rep. 2016;6:29047 pubmed 出版商
  634. Liu S, Li Q, Zhang M, Mao Ying Q, Hu L, Wu G, et al. Curcumin ameliorates neuropathic pain by down-regulating spinal IL-1β via suppressing astroglial NALP1 inflammasome and JAK2-STAT3 signalling. Sci Rep. 2016;6:28956 pubmed 出版商
  635. Espinoza I, Sakiyama M, Ma T, Fair L, Zhou X, Hassan M, et al. Hypoxia on the Expression of Hepatoma Upregulated Protein in Prostate Cancer Cells. Front Oncol. 2016;6:144 pubmed 出版商
  636. Arsenijevic D, Cajot J, Fellay B, Dulloo A, Van Vliet B, Montani J. Uninephrectomy-Induced Lipolysis and Low-Grade Inflammation Are Mimicked by Unilateral Renal Denervation. Front Physiol. 2016;7:227 pubmed 出版商
  637. Chen Z, Wang Z, Pang J, Yu Y, Bieerkehazhi S, Lu J, et al. Multiple CDK inhibitor dinaciclib suppresses neuroblastoma growth via inhibiting CDK2 and CDK9 activity. Sci Rep. 2016;6:29090 pubmed 出版商
  638. Wu D, Chen C, Wu Z, Liu B, Gao L, Yang Q, et al. ATF2 predicts poor prognosis and promotes malignant phenotypes in renal cell carcinoma. J Exp Clin Cancer Res. 2016;35:108 pubmed 出版商
  639. Xiao L, Feng Q, Zhang Z, Wang F, Lydon J, Ittmann M, et al. The essential role of GATA transcription factors in adult murine prostate. Oncotarget. 2016;7:47891-47903 pubmed 出版商
  640. Itinteang T, Dunne J, Chibnall A, Brasch H, Davis P, Tan S. Cancer stem cells in moderately differentiated oral tongue squamous cell carcinoma express components of the renin-angiotensin system. J Clin Pathol. 2016;69:942-5 pubmed 出版商
  641. Brai E, Alina Raio N, Alberi L. Notch1 hallmarks fibrillary depositions in sporadic Alzheimer's disease. Acta Neuropathol Commun. 2016;4:64 pubmed 出版商
  642. Schokrpur S, Hu J, Moughon D, Liu P, Lin L, Hermann K, et al. CRISPR-Mediated VHL Knockout Generates an Improved Model for Metastatic Renal Cell Carcinoma. Sci Rep. 2016;6:29032 pubmed 出版商
  643. Dai L, Cui X, Zhang X, Cheng L, Liu Y, Yang Y, et al. SARI inhibits angiogenesis and tumour growth of human colon cancer through directly targeting ceruloplasmin. Nat Commun. 2016;7:11996 pubmed 出版商
  644. Edmondson R, Adcock A, Yang L. Influence of Matrices on 3D-Cultured Prostate Cancer Cells' Drug Response and Expression of Drug-Action Associated Proteins. PLoS ONE. 2016;11:e0158116 pubmed 出版商
  645. Badal S, Wang Y, Long J, Corcoran D, CHANG B, Truong L, et al. miR-93 regulates Msk2-mediated chromatin remodelling in diabetic nephropathy. Nat Commun. 2016;7:12076 pubmed 出版商
  646. Ni T, Liu Y, Peng Y, Li M, Fang Y, Yao M. Substance P induces inflammatory responses involving NF-?B in genetically diabetic mice skin fibroblasts co-cultured with macrophages. Am J Transl Res. 2016;8:2179-88 pubmed
  647. Zhou J, Li L, Fang L, Xie H, Yao W, Zhou X, et al. Quercetin reduces cyclin D1 activity and induces G1 phase arrest in HepG2 cells. Oncol Lett. 2016;12:516-522 pubmed
  648. Li Q, Guo Y, Chen F, Liu J, Jin P. Stromal cell-derived factor-1 promotes human adipose tissue-derived stem cell survival and chronic wound healing. Exp Ther Med. 2016;12:45-50 pubmed
  649. Zhao W, Li A, Feng X, Hou T, Liu K, Liu B, et al. Metformin and resveratrol ameliorate muscle insulin resistance through preventing lipolysis and inflammation in hypoxic adipose tissue. Cell Signal. 2016;28:1401-11 pubmed 出版商
  650. Yang C, Sierp M, Abbott C, Li Y, Qin J. Responses to thermal and salinity stress in wild and farmed Pacific oysters Crassostrea gigas. Comp Biochem Physiol A Mol Integr Physiol. 2016;201:22-29 pubmed 出版商
  651. Shen J, Li Z, Li L, Lu L, Xiao Z, Wu W, et al. Vascular-targeted TNF? and IFN? inhibits orthotopic colorectal tumor growth. J Transl Med. 2016;14:187 pubmed 出版商
  652. Eterno V, Zambelli A, Villani L, Tuscano A, Manera S, Spitaleri A, et al. AurkA controls self-renewal of breast cancer-initiating cells promoting wnt3a stabilization through suppression of miR-128. Sci Rep. 2016;6:28436 pubmed 出版商
  653. Mavlyutov T, Duellman T, Kim H, Epstein M, Leese C, Davletov B, et al. Sigma-1 receptor expression in the dorsal root ganglion: Reexamination using a highly specific antibody. Neuroscience. 2016;331:148-57 pubmed 出版商
  654. Bristol M, Wang X, Smith N, Son M, Evans M, Morgan I. DNA Damage Reduces the Quality, but Not the Quantity of Human Papillomavirus 16 E1 and E2 DNA Replication. Viruses. 2016;8: pubmed 出版商
  655. Gayatri S, Cowles M, Vemulapalli V, Cheng D, Sun Z, Bedford M. Using oriented peptide array libraries to evaluate methylarginine-specific antibodies and arginine methyltransferase substrate motifs. Sci Rep. 2016;6:28718 pubmed 出版商
  656. Fernández Nogales M, Santos Galindo M, Merchán Rubira J, Hoozemans J, Rábano A, Ferrer I, et al. Tau-positive nuclear indentations in P301S tauopathy mice. Brain Pathol. 2017;27:314-322 pubmed 出版商
  657. Cevik O, Baykal A, Sener A. Platelets Proteomic Profiles of Acute Ischemic Stroke Patients. PLoS ONE. 2016;11:e0158287 pubmed 出版商
  658. Campos Y, Qiu X, Gomero E, Wakefield R, Horner L, Brutkowski W, et al. Alix-mediated assembly of the actomyosin-tight junction polarity complex preserves epithelial polarity and epithelial barrier. Nat Commun. 2016;7:11876 pubmed 出版商
  659. Davis M, Delaney J, Patel C, Storgard R, Stupack D. Nelfinavir is effective against human cervical cancer cells in vivo: a potential treatment modality in resource-limited settings. Drug Des Devel Ther. 2016;10:1837-46 pubmed 出版商
  660. Hong A, Tseng Y, Cowley G, Jonas O, Cheah J, Kynnap B, et al. Integrated genetic and pharmacologic interrogation of rare cancers. Nat Commun. 2016;7:11987 pubmed 出版商
  661. Nakashima H, Ohkawara B, Ishigaki S, Fukudome T, Ito K, Tsushima M, et al. R-spondin 2 promotes acetylcholine receptor clustering at the neuromuscular junction via Lgr5. Sci Rep. 2016;6:28512 pubmed 出版商
  662. Mehrabian M, Brethour D, Williams D, Wang H, Arnould H, Schneider B, et al. Prion Protein Deficiency Causes Diverse Proteome Shifts in Cell Models That Escape Detection in Brain Tissue. PLoS ONE. 2016;11:e0156779 pubmed 出版商
  663. Herring A, Münster Y, Akkaya T, Moghaddam S, Deinsberger K, Meyer J, et al. Kallikrein-8 inhibition attenuates Alzheimer's disease pathology in mice. Alzheimers Dement. 2016;12:1273-1287 pubmed 出版商
  664. Helmke C, Raab M, Rodel F, Matthess Y, Oellerich T, Mandal R, et al. Ligand stimulation of CD95 induces activation of Plk3 followed by phosphorylation of caspase-8. Cell Res. 2016;26:914-34 pubmed 出版商
  665. Kovacevic S, Nestorov J, Matić G, Elaković I. Fructose and stress induce opposite effects on lipid metabolism in the visceral adipose tissue of adult female rats through glucocorticoid action. Eur J Nutr. 2017;56:2115-2128 pubmed 出版商
  666. Kathania M, Khare P, Zeng M, Cantarel B, Zhang H, Ueno H, et al. Itch inhibits IL-17-mediated colon inflammation and tumorigenesis by ROR-?t ubiquitination. Nat Immunol. 2016;17:997-1004 pubmed 出版商
  667. Muñoz Félix J, Pérez Roque L, Núñez Gómez E, Oujo B, Arevalo M, Ruiz Remolina L, et al. Overexpression of the short endoglin isoform reduces renal fibrosis and inflammation after unilateral ureteral obstruction. Biochim Biophys Acta. 2016;1862:1801-14 pubmed 出版商
  668. Richman T, Spahr H, Ermer J, Davies S, Viola H, Bates K, et al. Loss of the RNA-binding protein TACO1 causes late-onset mitochondrial dysfunction in mice. Nat Commun. 2016;7:11884 pubmed 出版商
  669. Tsukumo Y, Alain T, Fonseca B, Nadon R, Sonenberg N. Translation control during prolonged mTORC1 inhibition mediated by 4E-BP3. Nat Commun. 2016;7:11776 pubmed 出版商
  670. Mohammed H, Pickard M, Mourtada Maarabouni M. The protein phosphatase 4 - PEA15 axis regulates the survival of breast cancer cells. Cell Signal. 2016;28:1389-400 pubmed 出版商
  671. Borowiec A, Sion B, Chalmel F, D Rolland A, Lemonnier L, De Clerck T, et al. Cold/menthol TRPM8 receptors initiate the cold-shock response and protect germ cells from cold-shock-induced oxidation. FASEB J. 2016;30:3155-70 pubmed 出版商
  672. Toneff M, Sreekumar A, Tinnirello A, Hollander P, Habib S, Li S, et al. The Z-cad dual fluorescent sensor detects dynamic changes between the epithelial and mesenchymal cellular states. BMC Biol. 2016;14:47 pubmed 出版商
  673. Trapé A, Liu S, Cortés A, Ueno N, Gonzalez Angulo A. Effects of CDK4/6 Inhibition in Hormone Receptor-Positive/Human Epidermal Growth Factor Receptor 2-Negative Breast Cancer Cells with Acquired Resistance to Paclitaxel. J Cancer. 2016;7:947-56 pubmed 出版商
  674. Yu H, Shi L, Qi G, Zhao S, Gao Y, Li Y. Gypenoside Protects Cardiomyocytes against Ischemia-Reperfusion Injury via the Inhibition of Mitogen-Activated Protein Kinase Mediated Nuclear Factor Kappa B Pathway In Vitro and In Vivo. Front Pharmacol. 2016;7:148 pubmed 出版商
  675. Herring A, Münster Y, Metzdorf J, Bolczek B, Krüssel S, Krieter D, et al. Late running is not too late against Alzheimer's pathology. Neurobiol Dis. 2016;94:44-54 pubmed 出版商
  676. Sun Y, Zheng W, Guo Z, Ju Q, Zhu L, Gao J, et al. A novel TP53 pathway influences the HGS-mediated exosome formation in colorectal cancer. Sci Rep. 2016;6:28083 pubmed 出版商
  677. Wagner S, Satpathy S, Beli P, Choudhary C. SPATA2 links CYLD to the TNF-? receptor signaling complex and modulates the receptor signaling outcomes. EMBO J. 2016;35:1868-84 pubmed 出版商
  678. Kuramoto K, Wang N, Fan Y, Zhang W, Schoenen F, Frankowski K, et al. Autophagy activation by novel inducers prevents BECN2-mediated drug tolerance to cannabinoids. Autophagy. 2016;12:1460-71 pubmed 出版商
  679. Kanemori Y, Koga Y, Sudo M, Kang W, Kashiwabara S, Ikawa M, et al. Biogenesis of sperm acrosome is regulated by pre-mRNA alternative splicing of Acrbp in the mouse. Proc Natl Acad Sci U S A. 2016;113:E3696-705 pubmed 出版商
  680. Andersson A, Andersson B, Lorell C, Raffetseder J, Larsson M, Blomgran R. Autophagy induction targeting mTORC1 enhances Mycobacterium tuberculosis replication in HIV co-infected human macrophages. Sci Rep. 2016;6:28171 pubmed 出版商
  681. Roychowdhury S, McCullough R, Sanz Garcia C, Saikia P, Alkhouri N, Matloob A, et al. Receptor interacting protein 3 protects mice from high-fat diet-induced liver injury. Hepatology. 2016;64:1518-1533 pubmed 出版商
  682. Zhai W, Chen D, Shen H, Chen Z, Li H, Yu Z, et al. A1 adenosine receptor attenuates intracerebral hemorrhage-induced secondary brain injury in rats by activating the P38-MAPKAP2-Hsp27 pathway. Mol Brain. 2016;9:66 pubmed 出版商
  683. Muroyama A, Seldin L, Lechler T. Divergent regulation of functionally distinct γ-tubulin complexes during differentiation. J Cell Biol. 2016;213:679-92 pubmed 出版商
  684. Li Q, Karim A, Ding X, Das B, Dobrowolski C, Gibson R, et al. Novel high throughput pooled shRNA screening identifies NQO1 as a potential drug target for host directed therapy for tuberculosis. Sci Rep. 2016;6:27566 pubmed 出版商
  685. Kargaran P, Yasaei H, Anjomani Virmouni S, Mangiapane G, Slijepcevic P. Analysis of alternative lengthening of telomere markers in BRCA1 defective cells. Genes Chromosomes Cancer. 2016;55:864-76 pubmed 出版商
  686. Eichner R, Heider M, Fernández Sáiz V, van Bebber F, Garz A, Lemeer S, et al. Immunomodulatory drugs disrupt the cereblon-CD147-MCT1 axis to exert antitumor activity and teratogenicity. Nat Med. 2016;22:735-43 pubmed 出版商
  687. Han L, Guo X, Bian H, Yang L, Chen Z, Zang W, et al. Guizhi Fuling Wan, a Traditional Chinese Herbal Formula, Sensitizes Cisplatin-Resistant Human Ovarian Cancer Cells through Inactivation of the PI3K/AKT/mTOR Pathway. Evid Based Complement Alternat Med. 2016;2016:4651949 pubmed 出版商
  688. Martinez Cruzado L, Tornin J, Santos L, Rodriguez A, Garcia Castro J, Morís F, et al. Aldh1 Expression and Activity Increase During Tumor Evolution in Sarcoma Cancer Stem Cell Populations. Sci Rep. 2016;6:27878 pubmed 出版商
  689. Nakagawa Y, Oikawa F, Mizuno S, Ohno H, Yagishita Y, Satoh A, et al. Hyperlipidemia and hepatitis in liver-specific CREB3L3 knockout mice generated using a one-step CRISPR/Cas9 system. Sci Rep. 2016;6:27857 pubmed 出版商
  690. Tran M, Tsarouhas V, Kegel A. Early development of Drosophila embryos requires Smc5/6 function during oogenesis. Biol Open. 2016;5:928-41 pubmed 出版商
  691. Kim H, Lee J, Park K, Kim W, Roh G. A mitochondrial division inhibitor, Mdivi-1, inhibits mitochondrial fragmentation and attenuates kainic acid-induced hippocampal cell death. BMC Neurosci. 2016;17:33 pubmed 出版商
  692. Cai C, Qin X, Wu Z, Shen Q, Yang W, Zhang S, et al. Inhibitory effect of MyoD on the proliferation of breast cancer cells. Oncol Lett. 2016;11:3589-3596 pubmed
  693. Timms R, Menzies S, Tchasovnikarova I, Christensen L, Williamson J, Antrobus R, et al. Genetic dissection of mammalian ERAD through comparative haploid and CRISPR forward genetic screens. Nat Commun. 2016;7:11786 pubmed 出版商
  694. Zhou X, Hao Q, Liao P, Luo S, Zhang M, Hu G, et al. Nerve growth factor receptor negates the tumor suppressor p53 as a feedback regulator. elife. 2016;5: pubmed 出版商
  695. Park W, Kim H, Kang D, Ryu J, Choi K, Lee G, et al. Comparative expression patterns and diagnostic efficacies of SR splicing factors and HNRNPA1 in gastric and colorectal cancer. BMC Cancer. 2016;16:358 pubmed 出版商
  696. Ambrosi C, Ren C, Spagnol G, Cavin G, CONE A, Grintsevich E, et al. Connexin43 Forms Supramolecular Complexes through Non-Overlapping Binding Sites for Drebrin, Tubulin, and ZO-1. PLoS ONE. 2016;11:e0157073 pubmed 出版商
  697. Wang T, Pan D, Zhou Z, You Y, Jiang C, Zhao X, et al. Dectin-3 Deficiency Promotes Colitis Development due to Impaired Antifungal Innate Immune Responses in the Gut. PLoS Pathog. 2016;12:e1005662 pubmed 出版商
  698. Deveza L, Choi J, Lee J, HUANG N, Cooke J, Yang F. Polymer-DNA Nanoparticle-Induced CXCR4 Overexpression Improves Stem Cell Engraftment and Tissue Regeneration in a Mouse Hindlimb Ischemia Model. Theranostics. 2016;6:1176-89 pubmed 出版商
  699. Lo Dico A, Costa V, Martelli C, Diceglie C, Rajata F, Rizzo A, et al. MiR675-5p Acts on HIF-1? to Sustain Hypoxic Responses: A New Therapeutic Strategy for Glioma. Theranostics. 2016;6:1105-18 pubmed 出版商
  700. Zhu Y, Wu Y, Liang Y, Tan W, Liu Z, Xiao J. Regulation of expression level of fms-like tyrosine kinase-4 is related to osteoclast differentiation. Arch Med Sci. 2016;12:502-6 pubmed 出版商
  701. Zhao X, Wang J, Xiao L, Xu Q, Zhao E, Zheng X, et al. Effects of 17-AAG on the cell cycle and apoptosis of H446 cells and the associated mechanisms. Mol Med Rep. 2016;14:1067-74 pubmed 出版商
  702. Kobayashi K, Araya J, Minagawa S, Hara H, Saito N, Kadota T, et al. Involvement of PARK2-Mediated Mitophagy in Idiopathic Pulmonary Fibrosis Pathogenesis. J Immunol. 2016;197:504-16 pubmed 出版商
  703. Wang J, Farris A, Xu K, Wang P, Zhang X, Duong D, et al. GPRC5A suppresses protein synthesis at the endoplasmic reticulum to prevent radiation-induced lung tumorigenesis. Nat Commun. 2016;7:11795 pubmed 出版商
  704. Ansari M, Haqqi T. Interleukin-1β induced Stress Granules Sequester COX-2 mRNA and Regulates its Stability and Translation in Human OA Chondrocytes. Sci Rep. 2016;6:27611 pubmed 出版商
  705. Ikeuchi M, Fukumoto Y, Honda T, Kuga T, Saito Y, Yamaguchi N, et al. v-Src Causes Chromosome Bridges in a Caffeine-Sensitive Manner by Generating DNA Damage. Int J Mol Sci. 2016;17: pubmed 出版商
  706. Li Y, Zhang W, Chang L, Han Y, Sun L, Gong X, et al. Vitamin C alleviates aging defects in a stem cell model for Werner syndrome. Protein Cell. 2016;7:478-88 pubmed 出版商
  707. Andersen A, Flinck M, Oernbo E, Pedersen N, Viuff B, Pedersen S. Roles of acid-extruding ion transporters in regulation of breast cancer cell growth in a 3-dimensional microenvironment. Mol Cancer. 2016;15:45 pubmed 出版商
  708. Wrobel L, Sokol A, Chojnacka M, Chacinska A. The presence of disulfide bonds reveals an evolutionarily conserved mechanism involved in mitochondrial protein translocase assembly. Sci Rep. 2016;6:27484 pubmed 出版商
  709. Wang X, Mazurkiewicz M, Hillert E, Olofsson M, Pierrou S, Hillertz P, et al. The proteasome deubiquitinase inhibitor VLX1570 shows selectivity for ubiquitin-specific protease-14 and induces apoptosis of multiple myeloma cells. Sci Rep. 2016;6:26979 pubmed 出版商
  710. Liu L, Zheng L, Zou P, Brooke J, Smith C, Long Y, et al. FoxO1 antagonist suppresses autophagy and lipid droplet growth in adipocytes. Cell Cycle. 2016;15:2033-41 pubmed 出版商
  711. Ando K, Tomimura K, Sazdovitch V, Suain V, Yilmaz Z, Authelet M, et al. Level of PICALM, a key component of clathrin-mediated endocytosis, is correlated with levels of phosphotau and autophagy-related proteins and is associated with tau inclusions in AD, PSP and Pick disease. Neurobiol Dis. 2016;94:32-43 pubmed 出版商
  712. Garcia Fuster M, Garcia Sevilla J. Effects of anti-depressant treatments on FADD and p-FADD protein in rat brain cortex: enhanced anti-apoptotic p-FADD/FADD ratio after chronic desipramine and fluoxetine administration. Psychopharmacology (Berl). 2016;233:2955-71 pubmed 出版商
  713. Kochan J, Wawro M, Kasza A. IF-combined smRNA FISH reveals interaction of MCPIP1 protein with IER3 mRNA. Biol Open. 2016;5:889-98 pubmed 出版商
  714. Svalina M, Kikuchi K, Abraham J, Lal S, Davare M, Settelmeyer T, et al. IGF1R as a Key Target in High Risk, Metastatic Medulloblastoma. Sci Rep. 2016;6:27012 pubmed 出版商
  715. Miletta M, Petkovic V, Eblé A, Flück C, Mullis P. Rescue of Isolated GH Deficiency Type II (IGHD II) via Pharmacologic Modulation of GH-1 Splicing. Endocrinology. 2016;157:3972-3982 pubmed
  716. Mukhopadhyay A, Sehgal L, Bose A, Gulvady A, Senapati P, Thorat R, et al. 14-3-3? Prevents Centrosome Amplification and Neoplastic Progression. Sci Rep. 2016;6:26580 pubmed 出版商
  717. Krachulec J, Sedlmeier G, Thiele W, Sleeman J. Footprintless disruption of prosurvival genes in aneuploid cancer cells using CRISPR/Cas9 technology. Biochem Cell Biol. 2016;94:289-96 pubmed 出版商
  718. Minakawa Y, Atsumi Y, Shinohara A, Murakami Y, Yoshioka K. Gamma-irradiated quiescent cells repair directly induced double-strand breaks but accumulate persistent double-strand breaks during subsequent DNA replication. Genes Cells. 2016;21:789-97 pubmed 出版商
  719. Tzani I, Ivanov I, Andreev D, Dmitriev R, Dean K, Baranov P, et al. Systematic analysis of the PTEN 5' leader identifies a major AUU initiated proteoform. Open Biol. 2016;6: pubmed 出版商
  720. Zhang H, Kang E, Wang Y, Yang C, Yu H, Wang Q, et al. Brain-specific Crmp2 deletion leads to neuronal development deficits and behavioural impairments in mice. Nat Commun. 2016;7: pubmed 出版商
  721. Guo Q, Li X, Han H, Li C, Liu S, Gao W, et al. Histone Lysine Methylation in TGF-?1 Mediated p21 Gene Expression in Rat Mesangial Cells. Biomed Res Int. 2016;2016:6927234 pubmed 出版商
  722. Jia Y, Zhao J, Liu M, Li B, Song Y, Li Y, et al. Brazilin exerts protective effects against renal ischemia-reperfusion injury by inhibiting the NF-?B signaling pathway. Int J Mol Med. 2016;38:210-6 pubmed 出版商
  723. van Ree J, Nam H, Jeganathan K, Kanakkanthara A, van Deursen J. Pten regulates spindle pole movement through Dlg1-mediated recruitment of Eg5 to centrosomes. Nat Cell Biol. 2016;18:814-21 pubmed 出版商
  724. Nwadozi E, Roudier E, Rullman E, Tharmalingam S, Liu H, Gustafsson T, et al. Endothelial FoxO proteins impair insulin sensitivity and restrain muscle angiogenesis in response to a high-fat diet. FASEB J. 2016;30:3039-52 pubmed 出版商
  725. Huang S, Jiang M, Chen G, Qian K, Gao H, Guan W, et al. Epigenetic Silencing of Eyes Absent 4 Gene by Acute Myeloid Leukemia 1-Eight-twenty-one Oncoprotein Contributes to Leukemogenesis in t(8;21) Acute Myeloid Leukemia. Chin Med J (Engl). 2016;129:1355-62 pubmed 出版商
  726. Gray M, Lee S, McDowell A, Erskine M, Loh Q, Grice O, et al. Dual targeting of EGFR and ERBB2 pathways produces a synergistic effect on cancer cell proliferation and migration in vitro. Vet Comp Oncol. 2017;15:890-909 pubmed 出版商
  727. Lee S, Kim H, Kim K, Lee H, Lee S, Lee D. Arhgap17, a RhoGTPase activating protein, regulates mucosal and epithelial barrier function in the mouse colon. Sci Rep. 2016;6:26923 pubmed 出版商
  728. Lin Y, Sun X, Hou X, Qu B, Gao X, Li Q. Effects of glucose on lactose synthesis in mammary epithelial cells from dairy cow. BMC Vet Res. 2016;12:81 pubmed 出版商
  729. Rao V, Ow J, Shankar S, Bharathy N, Manikandan J, Wang Y, et al. G9a promotes proliferation and inhibits cell cycle exit during myogenic differentiation. Nucleic Acids Res. 2016;44:8129-43 pubmed 出版商
  730. Lehner C, Gehwolf R, Ek J, Korntner S, Bauer H, Bauer H, et al. The blood-tendon barrier: identification and characterisation of a novel tissue barrier in tendon blood vessels. Eur Cell Mater. 2016;31:296-311 pubmed
  731. Chen X, Stauffer S, Chen Y, Dong J. Ajuba Phosphorylation by CDK1 Promotes Cell Proliferation and Tumorigenesis. J Biol Chem. 2016;291:14761-72 pubmed 出版商
  732. Choi S, Park S, Yoo H, Pi J, Kang C. Charged Amino Acid-rich Leucine Zipper-1 (Crlz-1) as a Target of Wnt Signaling Pathway Controls Pre-B Cell Proliferation by Affecting Runx/CBF?-targeted VpreB and ?5 Genes. J Biol Chem. 2016;291:15008-19 pubmed 出版商
  733. Schütz I, López Hernández T, Gao Q, Puchkov D, Jabs S, Nordmeyer D, et al. Lysosomal Dysfunction Caused by Cellular Accumulation of Silica Nanoparticles. J Biol Chem. 2016;291:14170-84 pubmed 出版商
  734. Hudish L, Galati D, Ravanelli A, Pearson C, Huang P, Appel B. miR-219 regulates neural progenitors by dampening apical Par protein-dependent Hedgehog signaling. Development. 2016;143:2292-304 pubmed 出版商
  735. Chunchai T, Samniang B, Sripetchwandee J, Pintana H, Pongkan W, Kumfu S, et al. Vagus Nerve Stimulation Exerts the Neuroprotective Effects in Obese-Insulin Resistant Rats, Leading to the Improvement of Cognitive Function. Sci Rep. 2016;6:26866 pubmed 出版商
  736. Roy A, Femel J, Huijbers E, Spillmann D, Larsson E, Ringvall M, et al. Targeting Serglycin Prevents Metastasis in Murine Mammary Carcinoma. PLoS ONE. 2016;11:e0156151 pubmed 出版商
  737. Zuckerwise L, Li J, Lu L, Men Y, Geng T, Buhimschi C, et al. H19 long noncoding RNA alters trophoblast cell migration and invasion by regulating TβR3 in placentae with fetal growth restriction. Oncotarget. 2016;7:38398-38407 pubmed 出版商
  738. Gu X, Liu X, Chen Y, Zhao Y, Xu M, Han X, et al. Involvement of NADPH oxidases in alkali burn-induced corneal injury. Int J Mol Med. 2016;38:75-82 pubmed 出版商
  739. Tatsuno T, Nakamura Y, Ma S, Tomosugi N, Ishigaki Y. Nonsense-mediated mRNA decay factor Upf2 exists in both the nucleoplasm and the cytoplasm. Mol Med Rep. 2016;14:655-60 pubmed 出版商
  740. Rodríguez Jiménez F, Alastrue A, Stojkovic M, Erceg S, Moreno Manzano V. Connexin 50 modulates Sox2 expression in spinal-cord-derived ependymal stem/progenitor cells. Cell Tissue Res. 2016;365:295-307 pubmed 出版商
  741. Dong Y, Bao C, Yu J, Liu X. Receptor-interacting protein kinase 3-mediated programmed cell necrosis in rats subjected to focal cerebral ischemia-reperfusion injury. Mol Med Rep. 2016;14:728-36 pubmed 出版商
  742. Poon C, Madawala R, Dowland S, Murphy C. Nectin-3 Is Increased in the Cell Junctions of the Uterine Epithelium at Implantation. Reprod Sci. 2016;23:1580-1592 pubmed
  743. Pujol Lopez Y, Kenis G, Stettinger W, Neumeier K, De Jonge S, Steinbusch H, et al. Effects of prenatal Poly I:C exposure on global histone deacetylase (HDAC) and DNA methyltransferase (DNMT) activity in the mouse brain. Mol Biol Rep. 2016;43:711-7 pubmed 出版商
  744. Herman A, Bochenek J, Krol K, Krawczynska A, Antushevich H, Pawlina B, et al. Central Interleukin-1? Suppresses the Nocturnal Secretion of Melatonin. Mediators Inflamm. 2016;2016:2589483 pubmed 出版商
  745. Lu J, Ji W, Zhao M, Wang M, Yan W, Chen M, et al. Protamine zinc insulin combined with sodium selenite improves glycometabolism in the diabetic KKAy mice. Sci Rep. 2016;6:26563 pubmed 出版商
  746. Hou Z, Zhang J, Han Q, Su C, Qu J, Xu D, et al. Hepatitis B virus inhibits intrinsic RIG-I and RIG-G immune signaling via inducing miR146a. Sci Rep. 2016;6:26150 pubmed 出版商
  747. Pharaoh G, Pulliam D, Hill S, Sataranatarajan K, Van Remmen H. Ablation of the mitochondrial complex IV assembly protein Surf1 leads to increased expression of the UPR(MT) and increased resistance to oxidative stress in primary cultures of fibroblasts. Redox Biol. 2016;8:430-8 pubmed 出版商
  748. Stampfl H, Fritz M, Dal Santo S, Jonak C. The GSK3/Shaggy-Like Kinase ASKα Contributes to Pattern-Triggered Immunity. Plant Physiol. 2016;171:1366-77 pubmed 出版商
  749. Sun Y, Hu W, Yu X, Liu Z, Tarran R, Ravid K, et al. Actinin-1 binds to the C-terminus of A2B adenosine receptor (A2BAR) and enhances A2BAR cell-surface expression. Biochem J. 2016;473:2179-86 pubmed 出版商
  750. Ni T, Kuperwasser C. Premature polyadenylation of MAGI3 produces a dominantly-acting oncogene in human breast cancer. elife. 2016;5: pubmed 出版商
  751. Zeng L, Cai C, Li S, Wang W, Li Y, Chen J, et al. Essential Roles of Cyclin Y-Like 1 and Cyclin Y in Dividing Wnt-Responsive Mammary Stem/Progenitor Cells. PLoS Genet. 2016;12:e1006055 pubmed 出版商
  752. Agostoni E, Michelazzi S, Maurutto M, Carnemolla A, Ciani Y, Vatta P, et al. Effects of Pin1 Loss in Hdh(Q111) Knock-in Mice. Front Cell Neurosci. 2016;10:110 pubmed 出版商
  753. Heise C, Schroeder J, Schoen M, Halbedl S, Reim D, Woelfle S, et al. Selective Localization of Shanks to VGLUT1-Positive Excitatory Synapses in the Mouse Hippocampus. Front Cell Neurosci. 2016;10:106 pubmed 出版商
  754. Freeman S, Christian S, Austin P, Iu I, Graves M, Huang L, et al. Applied stretch initiates directional invasion through the action of Rap1 GTPase as a tension sensor. J Cell Sci. 2017;130:152-163 pubmed 出版商
  755. Lim S, Liu H, Madeira da Silva L, Arora R, Liu Z, Phillips J, et al. Immunoregulatory Protein B7-H3 Reprograms Glucose Metabolism in Cancer Cells by ROS-Mediated Stabilization of HIF1?. Cancer Res. 2016;76:2231-42 pubmed 出版商
  756. Hartung A, Swensen J, Uriz I, Lapin M, Kristjansdottir K, Petersen U, et al. The Splicing Efficiency of Activating HRAS Mutations Can Determine Costello Syndrome Phenotype and Frequency in Cancer. PLoS Genet. 2016;12:e1006039 pubmed 出版商
  757. Reinhard J, Kriz A, Galic M, Angliker N, Rajalu M, Vogt K, et al. The calcium sensor Copine-6 regulates spine structural plasticity and learning and memory. Nat Commun. 2016;7:11613 pubmed 出版商
  758. Speer S, Li Z, Buta S, Payelle Brogard B, Qian L, Vigant F, et al. ISG15 deficiency and increased viral resistance in humans but not mice. Nat Commun. 2016;7:11496 pubmed 出版商
  759. Wang J, Hu K, Guo J, Cheng F, Lv J, Jiang W, et al. Suppression of KRas-mutant cancer through the combined inhibition of KRAS with PLK1 and ROCK. Nat Commun. 2016;7:11363 pubmed 出版商
  760. Marignier R, Ruiz A, Cavagna S, Nicole A, Watrin C, Touret M, et al. Neuromyelitis optica study model based on chronic infusion of autoantibodies in rat cerebrospinal fluid. J Neuroinflammation. 2016;13:111 pubmed 出版商
  761. Zschemisch N, Brüsch I, Hambusch A, Bleich A. Transcription Factor SP2 Enhanced the Expression of Cd14 in Colitis-Susceptible C3H/HeJBir. PLoS ONE. 2016;11:e0155821 pubmed 出版商
  762. Ranjan A, Srivastava S. Penfluridol suppresses pancreatic tumor growth by autophagy-mediated apoptosis. Sci Rep. 2016;6:26165 pubmed 出版商
  763. Miao H, Ou J, Peng Y, Zhang X, Chen Y, Hao L, et al. Macrophage ABHD5 promotes colorectal cancer growth by suppressing spermidine production by SRM. Nat Commun. 2016;7:11716 pubmed 出版商
  764. Lin S, Wang B, Lin C, Chien P, Wu Y, Ko J, et al. Chidamide alleviates TGF-?-induced epithelial-mesenchymal transition in lung cancer cell lines. Mol Biol Rep. 2016;43:687-95 pubmed 出版商
  765. Stroh M, Winter M, Swerdlow R, McCarson K, Zhu H. Loss of NCB5OR in the cerebellum disturbs iron pathways, potentiates behavioral abnormalities, and exacerbates harmaline-induced tremor in mice. Metab Brain Dis. 2016;31:951-64 pubmed 出版商
  766. de Jong P, Taniguchi K, Harris A, Bertin S, Takahashi N, Duong J, et al. ERK5 signalling rescues intestinal epithelial turnover and tumour cell proliferation upon ERK1/2 abrogation. Nat Commun. 2016;7:11551 pubmed 出版商
  767. Zhang X, Adderley S, Breslin J. Activation of RhoA, but Not Rac1, Mediates Early Stages of S1P-Induced Endothelial Barrier Enhancement. PLoS ONE. 2016;11:e0155490 pubmed 出版商
  768. Najibi M, Labed S, Visvikis O, IRAZOQUI J. An Evolutionarily Conserved PLC-PKD-TFEB Pathway for Host Defense. Cell Rep. 2016;15:1728-42 pubmed 出版商
  769. Devaraju P, Yu J, Eddins D, Mellado Lagarde M, Earls L, Westmoreland J, et al. Haploinsufficiency of the 22q11.2 microdeletion gene Mrpl40 disrupts short-term synaptic plasticity and working memory through dysregulation of mitochondrial calcium. Mol Psychiatry. 2017;22:1313-1326 pubmed 出版商
  770. Benjamin J, Van Der Meer R, Im A, Plosa E, Zaynagetdinov R, Burman A, et al. Epithelial-Derived Inflammation Disrupts Elastin Assembly and Alters Saccular Stage Lung Development. Am J Pathol. 2016;186:1786-1800 pubmed 出版商
  771. Ferrán B, Martí Pàmies I, Alonso J, Rodríguez Calvo R, Aguiló S, Vidal F, et al. The nuclear receptor NOR-1 regulates the small muscle protein, X-linked (SMPX) and myotube differentiation. Sci Rep. 2016;6:25944 pubmed 出版商
  772. Hamam D, Abdouh M, Gao Z, Arena V, Arena M, Arena G. Transfer of malignant trait to BRCA1 deficient human fibroblasts following exposure to serum of cancer patients. J Exp Clin Cancer Res. 2016;35:80 pubmed 出版商
  773. Karlas A, Berrè S, Couderc T, Varjak M, Braun P, Meyer M, et al. A human genome-wide loss-of-function screen identifies effective chikungunya antiviral drugs. Nat Commun. 2016;7:11320 pubmed 出版商
  774. Chen Z, Mei Y, Lei H, Tian R, Ni N, Han F, et al. LYTAK1, a TAK1 inhibitor, suppresses proliferation and epithelial?mesenchymal transition in retinal pigment epithelium cells. Mol Med Rep. 2016;14:145-50 pubmed 出版商
  775. Xu Z, Bu Y, Chitnis N, Koumenis C, Fuchs S, Diehl J. miR-216b regulation of c-Jun mediates GADD153/CHOP-dependent apoptosis. Nat Commun. 2016;7:11422 pubmed 出版商
  776. Song J, Sun Y, Peluso I, Zeng Y, Yu X, Lu J, et al. A novel curcumin analog binds to and activates TFEB in vitro and in vivo independent of MTOR inhibition. Autophagy. 2016;12:1372-89 pubmed 出版商
  777. Yu P, Ji L, Lee K, Yu M, He C, Ambati S, et al. Subsets of Visceral Adipose Tissue Nuclei with Distinct Levels of 5-Hydroxymethylcytosine. PLoS ONE. 2016;11:e0154949 pubmed 出版商
  778. Kwon O, Kim K, Lee E, Kim M, Choi S, Li H, et al. Induction of MiR-21 by Stereotactic Body Radiotherapy Contributes to the Pulmonary Fibrotic Response. PLoS ONE. 2016;11:e0154942 pubmed 出版商
  779. Martin G, Chung S, Landrock D, Landrock K, Huang H, Dangott L, et al. FABP-1 gene ablation impacts brain endocannabinoid system in male mice. J Neurochem. 2016;138:407-22 pubmed 出版商
  780. Latosinska A, Makridakis M, Frantzi M, Borràs D, Janssen B, Mullen W, et al. Integrative analysis of extracellular and intracellular bladder cancer cell line proteome with transcriptome: improving coverage and validity of -omics findings. Sci Rep. 2016;6:25619 pubmed 出版商
  781. Lee B, Wu C, Lin Y, Park S, Wei L. Synergistic activation of Arg1 gene by retinoic acid and IL-4 involves chromatin remodeling for transcription initiation and elongation coupling. Nucleic Acids Res. 2016;44:7568-79 pubmed 出版商
  782. Frasch M, Szynkaruk M, Prout A, Nygard K, Cao M, Veldhuizen R, et al. Decreased neuroinflammation correlates to higher vagus nerve activity fluctuations in near-term ovine fetuses: a case for the afferent cholinergic anti-inflammatory pathway?. J Neuroinflammation. 2016;13:103 pubmed 出版商
  783. Xue H, Yuan G, Guo X, Liu Q, Zhang J, Gao X, et al. A novel tumor-promoting mechanism of IL6 and the therapeutic efficacy of tocilizumab: Hypoxia-induced IL6 is a potent autophagy initiator in glioblastoma via the p-STAT3-MIR155-3p-CREBRF pathway. Autophagy. 2016;12:1129-52 pubmed 出版商
  784. Xu P, Mallon S, Roizman B. PML plays both inimical and beneficial roles in HSV-1 replication. Proc Natl Acad Sci U S A. 2016;113:E3022-8 pubmed 出版商
  785. Cao N, Li J, Rao Y, Liu H, Wu J, Li B, et al. A potential role for protein palmitoylation and zDHHC16 in DNA damage response. BMC Mol Biol. 2016;17:12 pubmed 出版商
  786. Seref Ferlengez Z, Maung S, Schaffler M, Spray D, Suadicani S, Thi M. P2X7R-Panx1 Complex Impairs Bone Mechanosignaling under High Glucose Levels Associated with Type-1 Diabetes. PLoS ONE. 2016;11:e0155107 pubmed 出版商
  787. Tsai L, Chang Y, Lee M, Chang Y, Hwang P, Huang Y, et al. Biphasic and Stage-Associated Expression of CPEB4 in Hepatocellular Carcinoma. PLoS ONE. 2016;11:e0155025 pubmed 出版商
  788. Stepanenko A, Andreieva S, Korets K, Mykytenko D, Baklaushev V, Huleyuk N, et al. Temozolomide promotes genomic and phenotypic changes in glioblastoma cells. Cancer Cell Int. 2016;16:36 pubmed 出版商
  789. Ren W, Yin J, Chen S, Duan J, Liu G, Li T, et al. Proteome analysis for the global proteins in the jejunum tissues of enterotoxigenic Escherichia coli -infected piglets. Sci Rep. 2016;6:25640 pubmed 出版商
  790. Teo W, Merino V, Cho S, Korangath P, Liang X, Wu R, et al. HOXA5 determines cell fate transition and impedes tumor initiation and progression in breast cancer through regulation of E-cadherin and CD24. Oncogene. 2016;35:5539-5551 pubmed 出版商
  791. Lombardo G, Dentelli P, Togliatto G, Rosso A, Gili M, Gallo S, et al. Activated Stat5 trafficking Via Endothelial Cell-derived Extracellular Vesicles Controls IL-3 Pro-angiogenic Paracrine Action. Sci Rep. 2016;6:25689 pubmed 出版商
  792. Kant R, Yen C, Lu C, Lin Y, Li J, Chen Y. Identification of 1,2,3,4,6-Penta-O-galloyl-?-d-glucopyranoside as a Glycine N-Methyltransferase Enhancer by High-Throughput Screening of Natural Products Inhibits Hepatocellular Carcinoma. Int J Mol Sci. 2016;17: pubmed 出版商
  793. Geissler R, Simkin A, Floss D, Patel R, Fogarty E, Scheller J, et al. A widespread sequence-specific mRNA decay pathway mediated by hnRNPs A1 and A2/B1. Genes Dev. 2016;30:1070-85 pubmed 出版商
  794. Vorvis C, Hatziapostolou M, Mahurkar Joshi S, Koutsioumpa M, Williams J, Donahue T, et al. Transcriptomic and CRISPR/Cas9 technologies reveal FOXA2 as a tumor suppressor gene in pancreatic cancer. Am J Physiol Gastrointest Liver Physiol. 2016;310:G1124-37 pubmed 出版商
  795. Le T, Vuong L, Kim A, Hsu Y, Choi K. 14-3-3 proteins regulate Tctp-Rheb interaction for organ growth in Drosophila. Nat Commun. 2016;7:11501 pubmed 出版商
  796. Yang Y, Andersson P, Hosaka K, Zhang Y, Cao R, Iwamoto H, et al. The PDGF-BB-SOX7 axis-modulated IL-33 in pericytes and stromal cells promotes metastasis through tumour-associated macrophages. Nat Commun. 2016;7:11385 pubmed 出版商
  797. Dai Y, Hung L, Chen R, Lai C, Chang K. ON 01910.Na inhibits growth of diffuse large B-cell lymphoma by cytoplasmic sequestration of sumoylated C-MYB/TRAF6 complex. Transl Res. 2016;175:129-143.e13 pubmed 出版商
  798. O Santos A, Parrini M, Camonis J. RalGPS2 Is Essential for Survival and Cell Cycle Progression of Lung Cancer Cells Independently of Its Established Substrates Ral GTPases. PLoS ONE. 2016;11:e0154840 pubmed 出版商
  799. Taniguchi T, Iizumi Y, Watanabe M, Masuda M, Morita M, Aono Y, et al. Resveratrol directly targets DDX5 resulting in suppression of the mTORC1 pathway in prostate cancer. Cell Death Dis. 2016;7:e2211 pubmed 出版商
  800. Yuen J, Pluthero F, Douda D, Riedl M, Cherry A, Ulanova M, et al. NETosing Neutrophils Activate Complement Both on Their Own NETs and Bacteria via Alternative and Non-alternative Pathways. Front Immunol. 2016;7:137 pubmed 出版商
  801. Xie X, Liu C, Zhang H, Jani P, Lu Y, Wang X, et al. Abrogation of epithelial BMP2 and BMP4 causes Amelogenesis Imperfecta by reducing MMP20 and KLK4 expression. Sci Rep. 2016;6:25364 pubmed 出版商
  802. Alaee M, Danesh G, Pasdar M. Plakoglobin Reduces the in vitro Growth, Migration and Invasion of Ovarian Cancer Cells Expressing N-Cadherin and Mutant p53. PLoS ONE. 2016;11:e0154323 pubmed 出版商
  803. Takeo Y, Kurabayashi N, Nguyen M, Sanada K. The G protein-coupled receptor GPR157 regulates neuronal differentiation of radial glial progenitors through the Gq-IP3 pathway. Sci Rep. 2016;6:25180 pubmed 出版商
  804. Tokhtaeva E, Sun H, Deiss Yehiely N, Wen Y, Soni P, Gabrielli N, et al. The O-glycosylated ectodomain of FXYD5 impairs adhesion by disrupting cell-cell trans-dimerization of Na,K-ATPase β1 subunits. J Cell Sci. 2016;129:2394-406 pubmed 出版商
  805. Aizawa S, Okamoto T, Sugiyama Y, Kouwaki T, Ito A, Suzuki T, et al. TRC8-dependent degradation of hepatitis C virus immature core protein regulates viral propagation and pathogenesis. Nat Commun. 2016;7:11379 pubmed 出版商
  806. Passalacqua K, Charbonneau M, Donato N, Showalter H, Sun D, Wen B, et al. Anti-infective Activity of 2-Cyano-3-Acrylamide Inhibitors with Improved Drug-Like Properties against Two Intracellular Pathogens. Antimicrob Agents Chemother. 2016;60:4183-96 pubmed 出版商
  807. Alquezar C, Salado I, de la Encarnación A, Perez D, Moreno F, Gil C, et al. Targeting TDP-43 phosphorylation by Casein Kinase-1? inhibitors: a novel strategy for the treatment of frontotemporal dementia. Mol Neurodegener. 2016;11:36 pubmed 出版商
  808. Fajardo V, Smith I, Bombardier E, Chambers P, Quadrilatero J, Tupling A. Diaphragm assessment in mice overexpressing phospholamban in slow-twitch type I muscle fibers. Brain Behav. 2016;6:e00470 pubmed 出版商
  809. Silva S, Levy D, Ruiz J, de Melo T, Isaac C, Fidelis M, et al. Oxysterols in adipose tissue-derived mesenchymal stem cell proliferation and death. J Steroid Biochem Mol Biol. 2017;169:164-175 pubmed 出版商
  810. Walter C, Clemens L, Müller A, Fallier Becker P, Proikas Cezanne T, Riess O, et al. Activation of AMPK-induced autophagy ameliorates Huntington disease pathology in vitro. Neuropharmacology. 2016;108:24-38 pubmed 出版商
  811. García Bea A, Walker M, Hyde T, Kleinman J, Harrison P, Lane T. Metabotropic glutamate receptor 3 (mGlu3; mGluR3; GRM3) in schizophrenia: Antibody characterisation and a semi-quantitative western blot study. Schizophr Res. 2016;177:18-27 pubmed 出版商
  812. Ono M, Yamada K, Bensaddek D, Afzal V, Biddlestone J, Ortmann B, et al. Enhanced snoMEN Vectors Facilitate Establishment of GFP-HIF-1α Protein Replacement Human Cell Lines. PLoS ONE. 2016;11:e0154759 pubmed 出版商
  813. Jang S, Royston S, Lee G, Wang S, Chung H. Seizure-Induced Regulations of Amyloid-?, STEP61, and STEP61 Substrates Involved in Hippocampal Synaptic Plasticity. Neural Plast. 2016;2016:2123748 pubmed 出版商
  814. Rapiteanu R, Davis L, Williamson J, Timms R, Paul Luzio J, Lehner P. A Genetic Screen Identifies a Critical Role for the WDR81-WDR91 Complex in the Trafficking and Degradation of Tetherin. Traffic. 2016;17:940-58 pubmed 出版商
  815. Shearn C, Orlicky D, McCullough R, Jiang H, Maclean K, Mercer K, et al. Liver-Specific Deletion of Phosphatase and Tensin Homolog Deleted on Chromosome 10 Significantly Ameliorates Chronic EtOH-Induced Increases in Hepatocellular Damage. PLoS ONE. 2016;11:e0154152 pubmed 出版商
  816. Bugueno I, Khelif Y, Seelam N, Morand D, Tenenbaum H, Davideau J, et al. Porphyromonas gingivalis Differentially Modulates Cell Death Profile in Ox-LDL and TNF-α Pre-Treated Endothelial Cells. PLoS ONE. 2016;11:e0154590 pubmed 出版商
  817. Josipovic I, Fork C, Preussner J, Prior K, Iloska D, Vasconez A, et al. PAFAH1B1 and the lncRNA NONHSAT073641 maintain an angiogenic phenotype in human endothelial cells. Acta Physiol (Oxf). 2016;218:13-27 pubmed 出版商
  818. McDonnell F, Irnaten M, Clark A, O Brien C, Wallace D. Hypoxia-Induced Changes in DNA Methylation Alter RASAL1 and TGFβ1 Expression in Human Trabecular Meshwork Cells. PLoS ONE. 2016;11:e0153354 pubmed 出版商
  819. Tenorio M, Ross B, Luchsinger C, Rivera Dictter A, Arriagada C, Acuña D, et al. Distinct Biochemical Pools of Golgi Phosphoprotein 3 in the Human Breast Cancer Cell Lines MCF7 and MDA-MB-231. PLoS ONE. 2016;11:e0154719 pubmed 出版商
  820. Strappazzon F, Di Rita A, Cianfanelli V, D Orazio M, Nazio F, Fimia G, et al. Prosurvival AMBRA1 turns into a proapoptotic BH3-like protein during mitochondrial apoptosis. Autophagy. 2016;12:963-75 pubmed 出版商
  821. Matias A, Manieri T, Cerchiaro G. Zinc Chelation Mediates the Lysosomal Disruption without Intracellular ROS Generation. Oxid Med Cell Longev. 2016;2016:6724585 pubmed 出版商
  822. Mass T, Putnam H, Drake J, Zelzion E, Gates R, Bhattacharya D, et al. Temporal and spatial expression patterns of biomineralization proteins during early development in the stony coral Pocillopora damicornis. Proc Biol Sci. 2016;283: pubmed 出版商
  823. Rentas S, Holzapfel N, Belew M, Pratt G, Voisin V, Wilhelm B, et al. Musashi-2 attenuates AHR signalling to expand human haematopoietic stem cells. Nature. 2016;532:508-511 pubmed 出版商
  824. Zhu H, Bai W, Liu J, Zheng Z, Guan H, Zhou Q, et al. Up-regulation of FGFBP1 signaling contributes to miR-146a-induced angiogenesis in human umbilical vein endothelial cells. Sci Rep. 2016;6:25272 pubmed 出版商
  825. Beard J, Tenga A, Hills J, Hoyer J, Cherian M, Wang Y, et al. The orphan nuclear receptor NR4A2 is part of a p53-microRNA-34 network. Sci Rep. 2016;6:25108 pubmed 出版商
  826. Xiao X, Chang G, Liu J, Sun G, Liu L, Qin S, et al. Simvastatin ameliorates ventricular remodeling via the TGF??1 signaling pathway in rats following myocardial infarction. Mol Med Rep. 2016;13:5093-101 pubmed 出版商
  827. Thakkar A, Wang B, Picon Ruiz M, Buchwald P, Ince T. Vitamin D and androgen receptor-targeted therapy for triple-negative breast cancer. Breast Cancer Res Treat. 2016;157:77-90 pubmed 出版商
  828. Zhang J, Lachance V, Schaffner A, Li X, Fedick A, Kaye L, et al. A Founder Mutation in VPS11 Causes an Autosomal Recessive Leukoencephalopathy Linked to Autophagic Defects. PLoS Genet. 2016;12:e1005848 pubmed 出版商
  829. Elfers K, Marr I, Wilkens M, Breves G, Langeheine M, Brehm R, et al. Expression of Tight Junction Proteins and Cadherin 17 in the Small Intestine of Young Goats Offered a Reduced N and/or Ca Diet. PLoS ONE. 2016;11:e0154311 pubmed 出版商
  830. Choudhury S, Fitzpatrick Z, Harris A, Maitland S, Ferreira J, Zhang Y, et al. In Vivo Selection Yields AAV-B1 Capsid for Central Nervous System and Muscle Gene Therapy. Mol Ther. 2016;24:1247-57 pubmed 出版商
  831. De Boeck M, Cui C, Mulder A, Jost C, Ikeno S, Ten Dijke P. Smad6 determines BMP-regulated invasive behaviour of breast cancer cells in a zebrafish xenograft model. Sci Rep. 2016;6:24968 pubmed 出版商
  832. Xue Y, Qian H, Hu J, Zhou B, Zhou Y, Hu X, et al. Sequential regulatory loops as key gatekeepers for neuronal reprogramming in human cells. Nat Neurosci. 2016;19:807-15 pubmed 出版商
  833. Cross A, Wilson A, Guerrero M, Thomas K, Bachir A, Kubow K, et al. Breast cancer antiestrogen resistance 3-p130Cas interactions promote adhesion disassembly and invasion in breast cancer cells. Oncogene. 2016;35:5850-5859 pubmed 出版商
  834. Scott A, Wilkinson A, Wilkinson J. Basal metabolic state governs AIF-dependent growth support in pancreatic cancer cells. BMC Cancer. 2016;16:286 pubmed 出版商
  835. Leung C, Mak W, Kai A, Chan K, Lee T, Ng I, et al. Sox9 confers stemness properties in hepatocellular carcinoma through Frizzled-7 mediated Wnt/?-catenin signaling. Oncotarget. 2016;7:29371-86 pubmed 出版商
  836. Rios A, Fu N, Jamieson P, Pal B, Whitehead L, Nicholas K, et al. Essential role for a novel population of binucleated mammary epithelial cells in lactation. Nat Commun. 2016;7:11400 pubmed 出版商
  837. Rebolleda N, Losada Fernandez I, Perez Chacon G, Castejon R, Rosado S, Morado M, et al. Synergistic Activity of Deguelin and Fludarabine in Cells from Chronic Lymphocytic Leukemia Patients and in the New Zealand Black Murine Model. PLoS ONE. 2016;11:e0154159 pubmed 出版商
  838. van Loon E, Little R, Prehar S, Bindels R, Cartwright E, Hoenderop J. Calcium Extrusion Pump PMCA4: A New Player in Renal Calcium Handling?. PLoS ONE. 2016;11:e0153483 pubmed 出版商
  839. Zhuang L, Yang Y, Ma X, Han B, Wang Z, Zhao Q, et al. MicroRNA-92b promotes hepatocellular carcinoma progression by targeting Smad7 and is mediated by long non-coding RNA XIST. Cell Death Dis. 2016;7:e2203 pubmed 出版商
  840. Choh V, Gurdita A, Tan B, Prasad R, Bizheva K, Joos K. Short-Term Moderately Elevated Intraocular Pressure Is Associated With Elevated Scotopic Electroretinogram Responses. Invest Ophthalmol Vis Sci. 2016;57:2140-51 pubmed 出版商
  841. Ren H, Elgner F, Jiang B, Himmelsbach K, Medvedev R, Ploen D, et al. The Autophagosomal SNARE Protein Syntaxin 17 Is an Essential Factor for the Hepatitis C Virus Life Cycle. J Virol. 2016;90:5989-6000 pubmed 出版商
  842. Tasdemir N, Banito A, Roe J, Alonso Curbelo D, Camiolo M, Tschaharganeh D, et al. BRD4 Connects Enhancer Remodeling to Senescence Immune Surveillance. Cancer Discov. 2016;6:612-29 pubmed 出版商
  843. Li Z, Hodgkinson T, Gothard E, Boroumand S, Lamb R, Cummins I, et al. Epidermal Notch1 recruits RORγ(+) group 3 innate lymphoid cells to orchestrate normal skin repair. Nat Commun. 2016;7:11394 pubmed 出版商
  844. Cabrera J, Lucas J. MAP2 Splicing is Altered in Huntington's Disease. Brain Pathol. 2017;27:181-189 pubmed 出版商
  845. Kwenda L, Collins C, Dattoli A, Dunleavy E. Nucleolar activity and CENP-C regulate CENP-A and CAL1 availability for centromere assembly in meiosis. Development. 2016;143:1400-12 pubmed 出版商
  846. Yin S, Jian F, Chen Y, Chien S, Hsieh M, Hsiao P, et al. Induction of IL-25 secretion from tumour-associated fibroblasts suppresses mammary tumour metastasis. Nat Commun. 2016;7:11311 pubmed 出版商
  847. Itsumi M, Shiota M, Takeuchi A, Kashiwagi E, Inokuchi J, Tatsugami K, et al. Equol inhibits prostate cancer growth through degradation of androgen receptor by S-phase kinase-associated protein 2. Cancer Sci. 2016;107:1022-8 pubmed 出版商
  848. Dinger K, Kasper P, Hucklenbruch Rother E, Vohlen C, Jobst E, Janoschek R, et al. Early-onset obesity dysregulates pulmonary adipocytokine/insulin signaling and induces asthma-like disease in mice. Sci Rep. 2016;6:24168 pubmed 出版商
  849. Cao Y, Liang H, Zhang F, Luan Z, Zhao S, Wang X, et al. Prohibitin overexpression predicts poor prognosis and promotes cell proliferation and invasion through ERK pathway activation in gallbladder cancer. J Exp Clin Cancer Res. 2016;35:68 pubmed 出版商
  850. Mard S, Veisi A, Ahangarpour A, Gharib Naseri M. Mucosal acidification increases hydrogen sulfide release through up-regulating gene and protein expressions of cystathionine gamma-lyase in the rat gastric mucosa. Iran J Basic Med Sci. 2016;19:172-7 pubmed
  851. Anghelina D, Lam E, Falck Pedersen E. Diminished Innate Antiviral Response to Adenovirus Vectors in cGAS/STING-Deficient Mice Minimally Impacts Adaptive Immunity. J Virol. 2016;90:5915-27 pubmed 出版商
  852. Triaca V, Sposato V, Bolasco G, Ciotti M, Pelicci P, Bruni A, et al. NGF controls APP cleavage by downregulating APP phosphorylation at Thr668: relevance for Alzheimer's disease. Aging Cell. 2016;15:661-72 pubmed 出版商
  853. He D, Xiang J, Li B, Liu H. The dynamic behavior of Ect2 in response to DNA damage. Sci Rep. 2016;6:24504 pubmed 出版商
  854. Yu Z, Zhao G, Li P, Li Y, Zhou G, Chen Y, et al. Temozolomide in combination with metformin act synergistically to inhibit proliferation and expansion of glioma stem-like cells. Oncol Lett. 2016;11:2792-2800 pubmed
  855. Jeong J, Noh M, Choi J, Lee H, Kim S. Neuroprotective and antioxidant activities of bamboo salt soy sauce against H2O2-induced oxidative stress in rat cortical neurons. Exp Ther Med. 2016;11:1201-1210 pubmed
  856. Lauterborn J, Kramar E, Rice J, Babayan A, Cox C, Karsten C, et al. Cofilin Activation Is Temporally Associated with the Cessation of Growth in the Developing Hippocampus. Cereb Cortex. 2017;27:2640-2651 pubmed 出版商
  857. Wang Y, Gratzke C, Tamalunas A, Wiemer N, Ciotkowska A, Rutz B, et al. P21-Activated Kinase Inhibitors FRAX486 and IPA3: Inhibition of Prostate Stromal Cell Growth and Effects on Smooth Muscle Contraction in the Human Prostate. PLoS ONE. 2016;11:e0153312 pubmed 出版商
  858. Yang E, Ahn S, Lee K, Mahmood U, Kim H. Early Behavioral Abnormalities and Perinatal Alterations of PTEN/AKT Pathway in Valproic Acid Autism Model Mice. PLoS ONE. 2016;11:e0153298 pubmed 出版商
  859. Qin Y, Wang Q, Zhou Y, Duan Y, Gao Q. Inhibition of IFN-?-Induced Nitric Oxide Dependent Antimycobacterial Activity by miR-155 and C/EBP?. Int J Mol Sci. 2016;17:535 pubmed 出版商
  860. Walia M, Ho P, Taylor S, Ng A, Gupte A, Chalk A, et al. Activation of PTHrP-cAMP-CREB1 signaling following p53 loss is essential for osteosarcoma initiation and maintenance. elife. 2016;5: pubmed 出版商
  861. Zattas D, Berk J, Kreft S, Hochstrasser M. A Conserved C-terminal Element in the Yeast Doa10 and Human MARCH6 Ubiquitin Ligases Required for Selective Substrate Degradation. J Biol Chem. 2016;291:12105-18 pubmed 出版商
  862. Conway A, Van Nostrand E, Pratt G, Aigner S, Wilbert M, Sundararaman B, et al. Enhanced CLIP Uncovers IMP Protein-RNA Targets in Human Pluripotent Stem Cells Important for Cell Adhesion and Survival. Cell Rep. 2016;15:666-679 pubmed 出版商
  863. Miao Y, Han X, Zheng L, Xie Y, Mu Y, Yates J, et al. Fimbrin phosphorylation by metaphase Cdk1 regulates actin cable dynamics in budding yeast. Nat Commun. 2016;7:11265 pubmed 出版商
  864. Hobbs R, Batazzi A, Han M, Coulombe P. Loss of Keratin 17 induces tissue-specific cytokine polarization and cellular differentiation in HPV16-driven cervical tumorigenesis in vivo. Oncogene. 2016;35:5653-5662 pubmed 出版商
  865. Yang Y, Huycke M, Herman T, Wang X. Glutathione S-transferase alpha 4 induction by activator protein 1 in colorectal cancer. Oncogene. 2016;35:5795-5806 pubmed 出版商
  866. Flodby P, Kim Y, Beard L, Gao D, Ji Y, Kage H, et al. Knockout Mice Reveal a Major Role for Alveolar Epithelial Type I Cells in Alveolar Fluid Clearance. Am J Respir Cell Mol Biol. 2016;55:395-406 pubmed 出版商
  867. Bueno C, Tabares Seisdedos R, Moraleda J, Martinez S. Rett Syndrome Mutant Neural Cells Lacks MeCP2 Immunoreactive Bands. PLoS ONE. 2016;11:e0153262 pubmed 出版商
  868. Huang G, Yang X, Chen K, Xing J, Guo L, Zhu L, et al. Porf-2 Inhibits Neural Stem Cell Proliferation Through Wnt/?-Catenin Pathway by Its GAP Domain. Front Cell Neurosci. 2016;10:85 pubmed 出版商
  869. Haemmerle M, Bottsford Miller J, Pradeep S, Taylor M, Choi H, Hansen J, et al. FAK regulates platelet extravasation and tumor growth after antiangiogenic therapy withdrawal. J Clin Invest. 2016;126:1885-96 pubmed 出版商
  870. Caviness J, Lue L, Hentz J, Schmitz C, Adler C, Shill H, et al. Cortical phosphorylated α-Synuclein levels correlate with brain wave spectra in Parkinson's disease. Mov Disord. 2016;31:1012-9 pubmed 出版商
  871. Wohlgemuth S, Ramirez Lee Y, Tao S, Monteiro A, Ahmed B, Dahl G. Short communication: Effect of heat stress on markers of autophagy in the mammary gland during the dry period. J Dairy Sci. 2016;99:4875-4880 pubmed 出版商
  872. Fortes M, Marzuca Nassr G, Vitzel K, da Justa Pinheiro C, Newsholme P, Curi R. Housekeeping proteins: How useful are they in skeletal muscle diabetes studies and muscle hypertrophy models?. Anal Biochem. 2016;504:38-40 pubmed 出版商
  873. Zhuang H, Tian W, Li W, Zhang X, Wang J, Yang Y, et al. Autophagic Cell Death and Apoptosis Jointly Mediate Cisatracurium Besylate-Induced Cell Injury. Int J Mol Sci. 2016;17:515 pubmed 出版商
  874. Martínez M, Ubeda A, Moreno J, Trillo M. Power Frequency Magnetic Fields Affect the p38 MAPK-Mediated Regulation of NB69 Cell Proliferation Implication of Free Radicals. Int J Mol Sci. 2016;17:510 pubmed 出版商
  875. Xing M, Wang X, Chi Y, Zhou D. Gene therapy for colorectal cancer using adenovirus-mediated full-length antibody, cetuximab. Oncotarget. 2016;7:28262-72 pubmed 出版商
  876. Panchanathan R, Liu H, Choubey D. Hypoxia primes human normal prostate epithelial cells and cancer cell lines for the NLRP3 and AIM2 inflammasome activation. Oncotarget. 2016;7:28183-94 pubmed 出版商
  877. Huang Y, Amin A, Qin Y, Wang Z, Jiang H, Liang L, et al. A Role of hIPI3 in DNA Replication Licensing in Human Cells. PLoS ONE. 2016;11:e0151803 pubmed 出版商
  878. Chen Y, Pandiri I, Joe Y, Kim H, Kim S, Park J, et al. Synergistic Effects of Cilostazol and Probucol on ER Stress-Induced Hepatic Steatosis via Heme Oxygenase-1-Dependent Activation of Mitochondrial Biogenesis. Oxid Med Cell Longev. 2016;2016:3949813 pubmed 出版商
  879. Ojala M, Prajapati C, Pölönen R, Rajala K, Pekkanen Mattila M, Rasku J, et al. Mutation-Specific Phenotypes in hiPSC-Derived Cardiomyocytes Carrying Either Myosin-Binding Protein C Or α-Tropomyosin Mutation for Hypertrophic Cardiomyopathy. Stem Cells Int. 2016;2016:1684792 pubmed 出版商
  880. Brown P, Gascoyne D, Lyne L, Spearman H, Felce S, McFadden N, et al. N-terminally truncated FOXP1 protein expression and alternate internal FOXP1 promoter usage in normal and malignant B cells. Haematologica. 2016;101:861-71 pubmed 出版商
  881. O Neill K, Huang K, Zhang J, Chen Y, Luo X. Inactivation of prosurvival Bcl-2 proteins activates Bax/Bak through the outer mitochondrial membrane. Genes Dev. 2016;30:973-88 pubmed 出版商
  882. Hall A, Lu W, Godfrey J, Antonov A, Paicu C, Moxon S, et al. The cytoskeleton adaptor protein ankyrin-1 is upregulated by p53 following DNA damage and alters cell migration. Cell Death Dis. 2016;7:e2184 pubmed 出版商
  883. Körber N, Stein V. In vivo imaging demonstrates dendritic spine stabilization by SynCAM 1. Sci Rep. 2016;6:24241 pubmed 出版商
  884. Katlinskaya Y, Katlinski K, Yu Q, Ortiz A, Beiting D, Brice A, et al. Suppression of Type I Interferon Signaling Overcomes Oncogene-Induced Senescence and Mediates Melanoma Development and Progression. Cell Rep. 2016;15:171-180 pubmed 出版商
  885. Canton J, Schlam D, Breuer C, Gutschow M, Glogauer M, Grinstein S. Calcium-sensing receptors signal constitutive macropinocytosis and facilitate the uptake of NOD2 ligands in macrophages. Nat Commun. 2016;7:11284 pubmed 出版商
  886. Yosef R, Pilpel N, Tokarsky Amiel R, Biran A, Ovadya Y, Cohen S, et al. Directed elimination of senescent cells by inhibition of BCL-W and BCL-XL. Nat Commun. 2016;7:11190 pubmed 出版商
  887. Foot N, Gembus K, MacKenzie K, Kumar S. Ndfip2 is a potential regulator of the iron transporter DMT1 in the liver. Sci Rep. 2016;6:24045 pubmed 出版商
  888. Shi J, CUI N, Wang S, Zhao M, Wang B, Wang Y, et al. Overexpression of YB1 C-terminal domain inhibits proliferation, angiogenesis and tumorigenicity in a SK-BR-3 breast cancer xenograft mouse model. FEBS Open Bio. 2016;6:33-42 pubmed 出版商
  889. Aizawa S, Fujiwara Y, Contu V, Hase K, Takahashi M, Kikuchi H, et al. Lysosomal putative RNA transporter SIDT2 mediates direct uptake of RNA by lysosomes. Autophagy. 2016;12:565-78 pubmed 出版商
  890. Lee Y, Lee S, Lee C, Kim S, Song Y, Yoon M, et al. Association between betatrophin/ANGPTL8 and non-alcoholic fatty liver disease: animal and human studies. Sci Rep. 2016;6:24013 pubmed 出版商
  891. Wang Z, Ji J, Peng D, Ma F, Cheng G, Qin F. Complex Regulation Pattern of IRF3 Activation Revealed by a Novel Dimerization Reporter System. J Immunol. 2016;196:4322-30 pubmed 出版商
  892. Wang X, Shaw D, Sakhon O, Snyder G, Sundberg E, Santambrogio L, et al. The Tick Protein Sialostatin L2 Binds to Annexin A2 and Inhibits NLRC4-Mediated Inflammasome Activation. Infect Immun. 2016;84:1796-1805 pubmed 出版商
  893. Rhee M, Lee S, Kim J, Ham D, Park H, Yang H, et al. Preadipocyte factor 1 induces pancreatic ductal cell differentiation into insulin-producing cells. Sci Rep. 2016;6:23960 pubmed 出版商
  894. West A, Martin B, Andrews D, Hogg S, Banerjee A, Grigoriadis G, et al. The SMAC mimetic, LCL-161, reduces survival in aggressive MYC-driven lymphoma while promoting susceptibility to endotoxic shock. Oncogenesis. 2016;5:e216 pubmed 出版商
  895. Papadakis E, Barker C, Syed H, Reeves T, Schwaiger S, Stuppner H, et al. The Bag-1 inhibitor, Thio-2, reverses an atypical 3D morphology driven by Bag-1L overexpression in a MCF-10A model of ductal carcinoma in situ. Oncogenesis. 2016;5:e215 pubmed 出版商
  896. Wu S, Rupaimoole R, Shen F, Pradeep S, Pecot C, Ivan C, et al. A miR-192-EGR1-HOXB9 regulatory network controls the angiogenic switch in cancer. Nat Commun. 2016;7:11169 pubmed 出版商
  897. Gandin V, Masvidal L, Cargnello M, Gyenis L, McLaughlan S, Cai Y, et al. mTORC1 and CK2 coordinate ternary and eIF4F complex assembly. Nat Commun. 2016;7:11127 pubmed 出版商
  898. Negis Y, Karabay A. Expression of cell cycle proteins in cortical neurons-Correlation with glutamate-induced neurotoxicity. Biofactors. 2016;42:358-67 pubmed 出版商
  899. Kuzuya A, Zoltowska K, Post K, Arimon M, Li X, Svirsky S, et al. Identification of the novel activity-driven interaction between synaptotagmin 1 and presenilin 1 links calcium, synapse, and amyloid beta. BMC Biol. 2016;14:25 pubmed 出版商
  900. Popek S, Kapka Skrzypczak L, Sawicki K, Wolinska E, Skrzypczak M, Czajka M. IL?6 and IL?8 enhance factor H binding to the cell membranes. Mol Med Rep. 2016;13:3886-94 pubmed 出版商
  901. Yu J, Berga S, Johnston MacAnanny E, Sidell N, Bagchi I, Bagchi M, et al. Endometrial Stromal Decidualization Responds Reversibly to Hormone Stimulation and Withdrawal. Endocrinology. 2016;157:2432-46 pubmed 出版商
  902. Tosco A, De Gregorio F, Esposito S, De Stefano D, Sana I, Ferrari E, et al. A novel treatment of cystic fibrosis acting on-target: cysteamine plus epigallocatechin gallate for the autophagy-dependent rescue of class II-mutated CFTR. Cell Death Differ. 2016;23:1380-93 pubmed 出版商
  903. Hernández Bule M, Martinez Botas J, Trillo M, Paíno C, Ubeda A. Antiadipogenic effects of subthermal electric stimulation at 448 kHz on differentiating human mesenchymal stem cells. Mol Med Rep. 2016;13:3895-903 pubmed 出版商
  904. Xu W, Huang M, Zhang Y, Li H, Zheng H, Yu L, et al. Extracts of Bauhinia championii (Benth.) Benth. attenuate the in?ammatory response in a rat model of collagen-induced arthritis. Mol Med Rep. 2016;13:4167-74 pubmed 出版商
  905. Jiang Y, Wang X, Li Y, Mu S, Zhou S, Liu Y, et al. GGsTOP increases migration of human periodontal ligament cells in vitro via reactive oxygen species pathway. Mol Med Rep. 2016;13:3813-20 pubmed 出版商
  906. Jia W, Jian Z, Li J, Luo L, Zhao L, Zhou Y, et al. Upregulated ATF6 contributes to chronic intermittent hypoxia-afforded protection against myocardial ischemia/reperfusion injury. Int J Mol Med. 2016;37:1199-208 pubmed 出版商
  907. Sim C, Cho Y, Kim B, Baek I, Kim Y, Lee M. 2'-5' Oligoadenylate synthetase-like 1 (OASL1) deficiency in mice promotes an effective anti-tumor immune response by enhancing the production of type I interferons. Cancer Immunol Immunother. 2016;65:663-75 pubmed 出版商
  908. Xing R, Zhang Y, Xu H, Luo X, Chang R, Liu J, et al. Spatial memory impairment by TRPC1 depletion is ameliorated by environmental enrichment. Oncotarget. 2016;7:27855-73 pubmed 出版商
  909. Liu J, Sun X, Zhu H, Qin Q, Yang X, Sun X. Long noncoding RNA POU6F2-AS2 is associated with oesophageal squamous cell carcinoma. J Biochem. 2016;160:195-204 pubmed
  910. Nemeth T, Futosi K, Sitaru C, Ruland J, Mocsai A. Neutrophil-specific deletion of the CARD9 gene expression regulator suppresses autoantibody-induced inflammation in vivo. Nat Commun. 2016;7:11004 pubmed 出版商
  911. Mosadeghi R, Reichermeier K, Winkler M, Schreiber A, Reitsma J, Zhang Y, et al. Structural and kinetic analysis of the COP9-Signalosome activation and the cullin-RING ubiquitin ligase deneddylation cycle. elife. 2016;5: pubmed 出版商
  912. Strickland S, Vande Pol S. The Human Papillomavirus 16 E7 Oncoprotein Attenuates AKT Signaling To Promote Internal Ribosome Entry Site-Dependent Translation and Expression of c-MYC. J Virol. 2016;90:5611-5621 pubmed 出版商
  913. Ma B, Cheng H, Gao R, Mu C, Chen L, Wu S, et al. Zyxin-Siah2-Lats2 axis mediates cooperation between Hippo and TGF-β signalling pathways. Nat Commun. 2016;7:11123 pubmed 出版商
  914. Iimori M, Watanabe S, Kiyonari S, Matsuoka K, Sakasai R, Saeki H, et al. Phosphorylation of EB2 by Aurora B and CDK1 ensures mitotic progression and genome stability. Nat Commun. 2016;7:11117 pubmed 出版商
  915. Jung Y, Decker A, Wang J, Lee E, Kana L, Yumoto K, et al. Endogenous GAS6 and Mer receptor signaling regulate prostate cancer stem cells in bone marrow. Oncotarget. 2016;7:25698-711 pubmed 出版商
  916. Riggle K, Riehle K, Kenerson H, Turnham R, Homma M, Kazami M, et al. Enhanced cAMP-stimulated protein kinase A activity in human fibrolamellar hepatocellular carcinoma. Pediatr Res. 2016;80:110-8 pubmed 出版商
  917. Yang C, Demars K, Hawkins K, Candelario Jalil E. Adropin reduces paracellular permeability of rat brain endothelial cells exposed to ischemia-like conditions. Peptides. 2016;81:29-37 pubmed 出版商
  918. Wiechens N, Singh V, Gkikopoulos T, Schofield P, Rocha S, Owen Hughes T. The Chromatin Remodelling Enzymes SNF2H and SNF2L Position Nucleosomes adjacent to CTCF and Other Transcription Factors. PLoS Genet. 2016;12:e1005940 pubmed 出版商
  919. Starokadomskyy P, Gemelli T, Rios J, Xing C, Wang R, Li H, et al. DNA polymerase-? regulates the activation of type I interferons through cytosolic RNA:DNA synthesis. Nat Immunol. 2016;17:495-504 pubmed 出版商
  920. Liu D, Bordicchia M, Zhang C, Fang H, Wei W, Li J, et al. Activation of mTORC1 is essential for ?-adrenergic stimulation of adipose browning. J Clin Invest. 2016;126:1704-16 pubmed 出版商
  921. Rockel J, Yu C, Whetstone H, Craft A, Reilly K, Ma H, et al. Hedgehog inhibits ?-catenin activity in synovial joint development and osteoarthritis. J Clin Invest. 2016;126:1649-63 pubmed 出版商
  922. Woodfield S, Guo R, Liu Y, Major A, Hollingsworth E, Indiviglio S, et al. Neuroblastoma patient outcomes, tumor differentiation, and ERK activation are correlated with expression levels of the ubiquitin ligase UBE4B. Genes Cancer. 2016;7:13-26 pubmed
  923. Wang X, Zhang X, Zhou T, Li N, Jang C, Xiao Z, et al. Elevated Neuronal Excitability Due to Modulation of the Voltage-Gated Sodium Channel Nav1.6 by Aβ1-42. Front Neurosci. 2016;10:94 pubmed 出版商
  924. Chou C, Fan C, Lin P, Liao P, Tung J, Hsieh C, et al. Sciellin mediates mesenchymal-to-epithelial transition in colorectal cancer hepatic metastasis. Oncotarget. 2016;7:25742-54 pubmed 出版商
  925. Vermeer D, Coppock J, Zeng E, Lee K, Spanos W, Onken M, et al. Metastatic model of HPV+ oropharyngeal squamous cell carcinoma demonstrates heterogeneity in tumor metastasis. Oncotarget. 2016;7:24194-207 pubmed 出版商
  926. Ding Z, Jin G, Wang W, Sun Y, Chen W, Chen L, et al. Activin A-Smad Signaling Mediates Connective Tissue Growth Factor Synthesis in Liver Progenitor Cells. Int J Mol Sci. 2016;17:408 pubmed 出版商
  927. Ziegler C, Eisenhauer P, Bruce E, Weir M, King B, Klaus J, et al. The Lymphocytic Choriomeningitis Virus Matrix Protein PPXY Late Domain Drives the Production of Defective Interfering Particles. PLoS Pathog. 2016;12:e1005501 pubmed 出版商
  928. Dheekollu J, Wiedmer A, Sentana Lledo D, Cassel J, Messick T, Lieberman P. HCF1 and OCT2 Cooperate with EBNA1 To Enhance OriP-Dependent Transcription and Episome Maintenance of Latent Epstein-Barr Virus. J Virol. 2016;90:5353-5367 pubmed 出版商
  929. Dai Y, Wang L, Tang J, Cao P, Luo Z, Sun J, et al. Activation of anaphase-promoting complex by p53 induces a state of dormancy in cancer cells against chemotherapeutic stress. Oncotarget. 2016;7:25478-92 pubmed 出版商
  930. Viringipurampeer I, Metcalfe A, Bashar A, Sivak O, Yanai A, Mohammadi Z, et al. NLRP3 inflammasome activation drives bystander cone photoreceptor cell death in a P23H rhodopsin model of retinal degeneration. Hum Mol Genet. 2016;25:1501-16 pubmed 出版商
  931. Gruosso T, Mieulet V, Cardon M, Bourachot B, Kieffer Y, Devun F, et al. Chronic oxidative stress promotes H2AX protein degradation and enhances chemosensitivity in breast cancer patients. EMBO Mol Med. 2016;8:527-49 pubmed 出版商
  932. Patzke C, Acuna C, Giam L, Wernig M, Südhof T. Conditional deletion of L1CAM in human neurons impairs both axonal and dendritic arborization and action potential generation. J Exp Med. 2016;213:499-515 pubmed 出版商
  933. Lopes V, Loitto V, Audinot J, Bayat N, Gutleb A, Cristobal S. Dose-dependent autophagic effect of titanium dioxide nanoparticles in human HaCaT cells at non-cytotoxic levels. J Nanobiotechnology. 2016;14:22 pubmed 出版商
  934. Peteranderl C, Morales Nebreda L, Selvakumar B, Lecuona E, Vadász I, Morty R, et al. Macrophage-epithelial paracrine crosstalk inhibits lung edema clearance during influenza infection. J Clin Invest. 2016;126:1566-80 pubmed 出版商
  935. Chan Y, Gack M. A phosphomimetic-based mechanism of dengue virus to antagonize innate immunity. Nat Immunol. 2016;17:523-30 pubmed 出版商
  936. Yousuf M, Tan C, Torres Altoro M, Lu F, Plautz E, Zhang S, et al. Involvement of aberrant cyclin-dependent kinase 5/p25 activity in experimental traumatic brain injury. J Neurochem. 2016;138:317-27 pubmed 出版商
  937. Ezawa I, Sawai Y, Kawase T, Okabe A, Tsutsumi S, Ichikawa H, et al. Novel p53 target gene FUCA1 encodes a fucosidase and regulates growth and survival of cancer cells. Cancer Sci. 2016;107:734-45 pubmed 出版商
  938. Ortuno D, Carlisle H, Miller S. Does inactivation of USP14 enhance degradation of proteasomal substrates that are associated with neurodegenerative diseases?. F1000Res. 2016;5:137 pubmed 出版商
  939. Li B, Chen D, Li W, Xiao D. 20(S)-Protopanaxadiol saponins inhibit SKOV3 cell migration. Oncol Lett. 2016;11:1693-1698 pubmed
  940. Liu L, Bai Z, Ma X, Wang T, Yang Y, Zhang Z. Effects of taxol resistance gene 1 expression on the chemosensitivity of SGC-7901 cells to oxaliplatin. Exp Ther Med. 2016;11:846-852 pubmed
  941. Garcia R, Roemmich J, Claycombe K. Evaluation of markers of beige adipocytes in white adipose tissue of the mouse. Nutr Metab (Lond). 2016;13:24 pubmed 出版商
  942. Oettinghaus B, D Alonzo D, Barbieri E, Restelli L, Savoia C, Licci M, et al. DRP1-dependent apoptotic mitochondrial fission occurs independently of BAX, BAK and APAF1 to amplify cell death by BID and oxidative stress. Biochim Biophys Acta. 2016;1857:1267-1276 pubmed 出版商
  943. Lee I, Maniar K, Lydon J, Kim J. Akt regulates progesterone receptor B-dependent transcription and angiogenesis in endometrial cancer cells. Oncogene. 2016;35:5191-201 pubmed 出版商
  944. Wang W, Shi Q, Guo T, Yang Z, Jia Z, Chen P, et al. PDX1 and ISL1 differentially coordinate with epigenetic modifications to regulate insulin gene expression in varied glucose concentrations. Mol Cell Endocrinol. 2016;428:38-48 pubmed 出版商
  945. Mukherjee D, Lu H, Yu L, He C, Lahiri S, Li T, et al. Krüppel-like factor 8 activates the transcription of C-X-C cytokine receptor type 4 to promote breast cancer cell invasion, transendothelial migration and metastasis. Oncotarget. 2016;7:23552-68 pubmed 出版商
  946. Galán M, Varona S, Orriols M, Rodríguez J, Aguiló S, Dilmé J, et al. Induction of histone deacetylases (HDACs) in human abdominal aortic aneurysm: therapeutic potential of HDAC inhibitors. Dis Model Mech. 2016;9:541-52 pubmed 出版商
  947. Tran Q, Firkins R, Giles J, Francis S, Matnishian V, Tran P, et al. Estrogen Enhances Linkage in the Vascular Endothelial Calmodulin Network via a Feedforward Mechanism at the G Protein-coupled Estrogen Receptor 1. J Biol Chem. 2016;291:10805-23 pubmed 出版商
  948. Shih Y, Hsueh Y. VCP and ATL1 regulate endoplasmic reticulum and protein synthesis for dendritic spine formation. Nat Commun. 2016;7:11020 pubmed 出版商
  949. Tögel L, Nightingale R, Chueh A, Jayachandran A, Tran H, Phesse T, et al. Dual Targeting of Bromodomain and Extraterminal Domain Proteins, and WNT or MAPK Signaling, Inhibits c-MYC Expression and Proliferation of Colorectal Cancer Cells. Mol Cancer Ther. 2016;15:1217-26 pubmed 出版商
  950. Zhao N, Sun H, Sun B, Zhu D, Zhao X, Wang Y, et al. miR-27a-3p suppresses tumor metastasis and VM by down-regulating VE-cadherin expression and inhibiting EMT: an essential role for Twist-1 in HCC. Sci Rep. 2016;6:23091 pubmed 出版商
  951. Chaudhuri D, Artiga D, Abiria S, Clapham D. Mitochondrial calcium uniporter regulator 1 (MCUR1) regulates the calcium threshold for the mitochondrial permeability transition. Proc Natl Acad Sci U S A. 2016;113:E1872-80 pubmed 出版商
  952. Li J, Su Y, Wang H, Zhao Y, Liao X, Wang X, et al. Repeated Blockade of NMDA Receptors During Adolescence Impairs Reversal Learning and Disrupts GABAergic Interneurons in Rat Medial Prefrontal Cortex. Front Mol Neurosci. 2016;9:17 pubmed 出版商
  953. German P, Bai S, Liu X, Sun M, Zhou L, Kalra S, et al. Phosphorylation-dependent cleavage regulates von Hippel Lindau proteostasis and function. Oncogene. 2016;35:4973-80 pubmed 出版商
  954. Ranjan K, Pathak C. FADD regulates NF-κB activation and promotes ubiquitination of cFLIPL to induce apoptosis. Sci Rep. 2016;6:22787 pubmed 出版商
  955. Liang Q, Ju Y, Chen Y, Wang W, Li J, Zhang L, et al. Lymphatic endothelial cells efferent to inflamed joints produce iNOS and inhibit lymphatic vessel contraction and drainage in TNF-induced arthritis in mice. Arthritis Res Ther. 2016;18:62 pubmed 出版商
  956. Joo M, Park J, Yoo H, Lee B, Chun H, Lee S, et al. The roles of HOXB7 in promoting migration, invasion, and anti-apoptosis in gastric cancer. J Gastroenterol Hepatol. 2016;31:1717-1726 pubmed 出版商
  957. Xu X, Zhang Y, Jasper J, Lykken E, Alexander P, Markowitz G, et al. MiR-148a functions to suppress metastasis and serves as a prognostic indicator in triple-negative breast cancer. Oncotarget. 2016;7:20381-94 pubmed 出版商
  958. Nishida Fukuda H, Araki R, Shudou M, Okazaki H, Tomono Y, Nakayama H, et al. Ectodomain Shedding of Lymphatic Vessel Endothelial Hyaluronan Receptor 1 (LYVE-1) Is Induced by Vascular Endothelial Growth Factor A (VEGF-A). J Biol Chem. 2016;291:10490-500 pubmed 出版商
  959. Bartuzi P, Billadeau D, Favier R, Rong S, Dekker D, Fedoseienko A, et al. CCC- and WASH-mediated endosomal sorting of LDLR is required for normal clearance of circulating LDL. Nat Commun. 2016;7:10961 pubmed 出版商
  960. Acharya M, Sokolovska A, Tam J, Conway K, Stefani C, Raso F, et al. αv Integrins combine with LC3 and atg5 to regulate Toll-like receptor signalling in B cells. Nat Commun. 2016;7:10917 pubmed 出版商
  961. Weigel C, Veldwijk M, Oakes C, Seibold P, Slynko A, Liesenfeld D, et al. Epigenetic regulation of diacylglycerol kinase alpha promotes radiation-induced fibrosis. Nat Commun. 2016;7:10893 pubmed 出版商
  962. Angeloni N, McMahon K, Swaminathan S, Plebanek M, Osman I, Volpert O, et al. Pathways for Modulating Exosome Lipids Identified By High-Density Lipoprotein-Like Nanoparticle Binding to Scavenger Receptor Type B-1. Sci Rep. 2016;6:22915 pubmed 出版商
  963. Pavlides S, Lecanda J, Daubriac J, Pandya U, Gama P, Blank S, et al. TGF-β activates APC through Cdh1 binding for Cks1 and Skp2 proteasomal destruction stabilizing p27kip1 for normal endometrial growth. Cell Cycle. 2016;15:931-47 pubmed 出版商
  964. Van De Pette M, Tunster S, McNamara G, Shelkovnikova T, Millership S, Benson L, et al. Cdkn1c Boosts the Development of Brown Adipose Tissue in a Murine Model of Silver Russell Syndrome. PLoS Genet. 2016;12:e1005916 pubmed 出版商
  965. Prause M, Mayer C, Brorsson C, Frederiksen K, Billestrup N, Størling J, et al. JNK1 Deficient Insulin-Producing Cells Are Protected against Interleukin-1β-Induced Apoptosis Associated with Abrogated Myc Expression. J Diabetes Res. 2016;2016:1312705 pubmed 出版商
  966. Mitxelena J, Apraiz A, Vallejo Rodríguez J, Malumbres M, Zubiaga A. E2F7 regulates transcription and maturation of multiple microRNAs to restrain cell proliferation. Nucleic Acids Res. 2016;: pubmed
  967. Barja Fernández S, Folgueira C, Castelao C, Al Massadi O, Bravo S, Garcia Caballero T, et al. FNDC5 is produced in the stomach and associated to body composition. Sci Rep. 2016;6:23067 pubmed 出版商
  968. Fusakio M, Willy J, Wang Y, Mirek E, Al Baghdadi R, Adams C, et al. Transcription factor ATF4 directs basal and stress-induced gene expression in the unfolded protein response and cholesterol metabolism in the liver. Mol Biol Cell. 2016;27:1536-51 pubmed 出版商
  969. Atiq R, Hertz R, Eldad S, Smeir E, Bar Tana J. Suppression of B-Raf(V600E) cancers by MAPK hyper-activation. Oncotarget. 2016;7:18694-704 pubmed 出版商
  970. Ma X, Xu L, Mueller E. Forkhead box A3 mediates glucocorticoid receptor function in adipose tissue. Proc Natl Acad Sci U S A. 2016;113:3377-82 pubmed 出版商
  971. Choi W, de Poot S, Lee J, Kim J, Han D, Kim Y, et al. Open-gate mutants of the mammalian proteasome show enhanced ubiquitin-conjugate degradation. Nat Commun. 2016;7:10963 pubmed 出版商
  972. Christensen D, Ejlerskov P, Rasmussen I, Vilhardt F. Reciprocal signals between microglia and neurons regulate α-synuclein secretion by exophagy through a neuronal cJUN-N-terminal kinase-signaling axis. J Neuroinflammation. 2016;13:59 pubmed 出版商
  973. Pandiri I, Chen Y, Joe Y, Kim H, Park J, Chung H, et al. Tristetraprolin mediates the anti-proliferative effects of metformin in breast cancer cells. Breast Cancer Res Treat. 2016;156:57-64 pubmed 出版商
  974. Boulter N, Suarez F, Schibeci S, Sunderland T, Tolhurst O, Hunter T, et al. A simple, accurate and universal method for quantification of PCR. BMC Biotechnol. 2016;16:27 pubmed 出版商
  975. Jennewein L, Ronellenfitsch M, Antonietti P, Ilina E, Jung J, Stadel D, et al. Diagnostic and clinical relevance of the autophago-lysosomal network in human gliomas. Oncotarget. 2016;7:20016-32 pubmed 出版商
  976. Wang X, Chen L, Liu J, Yan T, Wu G, Xia Y, et al. In vivo treatment of rat arterial adventitia with interleukin‑1β induces intimal proliferation via the JAK2/STAT3 signaling pathway. Mol Med Rep. 2016;13:3451-8 pubmed 出版商
  977. Hirth S, Bühler A, Bührdel J, Rudeck S, Dahme T, Rottbauer W, et al. Paxillin and Focal Adhesion Kinase (FAK) Regulate Cardiac Contractility in the Zebrafish Heart. PLoS ONE. 2016;11:e0150323 pubmed 出版商
  978. Ramani M, Mylvaganam S, Krawczyk M, Wang L, Zoidl C, Brien J, et al. Differential expression of astrocytic connexins in a mouse model of prenatal alcohol exposure. Neurobiol Dis. 2016;91:83-93 pubmed 出版商
  979. Shukla P, Chaudhry K, Mir H, Gangwar R, Yadav N, Manda B, et al. Chronic ethanol feeding promotes azoxymethane and dextran sulfate sodium-induced colonic tumorigenesis potentially by enhancing mucosal inflammation. BMC Cancer. 2016;16:189 pubmed 出版商
  980. Jang C, Oh S, Wada S, Rowe G, Liu L, Chan M, et al. A branched-chain amino acid metabolite drives vascular fatty acid transport and causes insulin resistance. Nat Med. 2016;22:421-6 pubmed 出版商
  981. Shin J, Nunomiya A, Kitajima Y, Dan T, Miyata T, Nagatomi R. Prolyl hydroxylase domain 2 deficiency promotes skeletal muscle fiber-type transition via a calcineurin/NFATc1-dependent pathway. Skelet Muscle. 2016;6:5 pubmed 出版商
  982. Gdynia G, Sauer S, Kopitz J, Fuchs D, Duglova K, Ruppert T, et al. The HMGB1 protein induces a metabolic type of tumour cell death by blocking aerobic respiration. Nat Commun. 2016;7:10764 pubmed 出版商
  983. Jin J, Liao W, Yao W, Zhu R, Li Y, He S. Aldo-keto Reductase Family 1 Member B 10 Mediates Liver Cancer Cell Proliferation through Sphingosine-1-Phosphate. Sci Rep. 2016;6:22746 pubmed 出版商
  984. Shao Z, Zhang R, Khodadadi Jamayran A, Chen B, Crowley M, Festok M, et al. The acetyllysine reader BRD3R promotes human nuclear reprogramming and regulates mitosis. Nat Commun. 2016;7:10869 pubmed 出版商
  985. Di X, Wang Y, Han D, Fu Y, Duerfeldt A, Blagg B, et al. Grp94 Protein Delivers γ-Aminobutyric Acid Type A (GABAA) Receptors to Hrd1 Protein-mediated Endoplasmic Reticulum-associated Degradation. J Biol Chem. 2016;291:9526-39 pubmed 出版商
  986. Hackler L, Ozsvári B, Gyuris M, Sipos P, Fábián G, Molnar E, et al. The Curcumin Analog C-150, Influencing NF-κB, UPR and Akt/Notch Pathways Has Potent Anticancer Activity In Vitro and In Vivo. PLoS ONE. 2016;11:e0149832 pubmed 出版商
  987. Ardini E, Menichincheri M, Banfi P, Bosotti R, De Ponti C, Pulci R, et al. Entrectinib, a Pan-TRK, ROS1, and ALK Inhibitor with Activity in Multiple Molecularly Defined Cancer Indications. Mol Cancer Ther. 2016;15:628-39 pubmed 出版商
  988. Bach F, Zhang Y, Miranda Bedate A, Verdonschot L, Bergknut N, Creemers L, et al. Increased caveolin-1 in intervertebral disc degeneration facilitates repair. Arthritis Res Ther. 2016;18:59 pubmed 出版商
  989. Nagase M, Kurihara H, Aiba A, Young M, Sakai T. Deletion of Rac1GTPase in the Myeloid Lineage Protects against Inflammation-Mediated Kidney Injury in Mice. PLoS ONE. 2016;11:e0150886 pubmed 出版商
  990. Papadopoulos D, Dietze R, Shihan M, Kirch U, Scheiner Bobis G. Dehydroepiandrosterone Sulfate Stimulates Expression of Blood-Testis-Barrier Proteins Claudin-3 and -5 and Tight Junction Formation via a Gnα11-Coupled Receptor in Sertoli Cells. PLoS ONE. 2016;11:e0150143 pubmed 出版商
  991. Pokharel D, Padula M, Lu J, Jaiswal R, Djordjevic S, Bebawy M. The Role of CD44 and ERM Proteins in Expression and Functionality of P-glycoprotein in Breast Cancer Cells. Molecules. 2016;21:290 pubmed 出版商
  992. Singh A, Joshi S, Zulcic M, Alcaraz M, GARLICH J, Morales G, et al. PI-3K Inhibitors Preferentially Target CD15+ Cancer Stem Cell Population in SHH Driven Medulloblastoma. PLoS ONE. 2016;11:e0150836 pubmed 出版商
  993. Karuppagounder S, Alim I, Khim S, Bourassa M, Sleiman S, John R, et al. Therapeutic targeting of oxygen-sensing prolyl hydroxylases abrogates ATF4-dependent neuronal death and improves outcomes after brain hemorrhage in several rodent models. Sci Transl Med. 2016;8:328ra29 pubmed 出版商
  994. Xu A, Zheng G, Wang Z, Chen X, Jiang Q. Neuroprotective effects of Ilexonin A following transient focal cerebral ischemia in rats. Mol Med Rep. 2016;13:2957-66 pubmed 出版商
  995. Jing H, Sun W, Fan J, Zhang Y, Yang J, Jia J, et al. Shikonin induces apoptosis of HaCaT cells via the mitochondrial, Erk and Akt pathways. Mol Med Rep. 2016;13:3009-16 pubmed 出版商
  996. Persaud S, Park S, Ishigami Yuasa M, Koyano Nakagawa N, Kagechika H, Wei L. All trans-retinoic acid analogs promote cancer cell apoptosis through non-genomic Crabp1 mediating ERK1/2 phosphorylation. Sci Rep. 2016;6:22396 pubmed 出版商
  997. Tao Y, Hu K, Tan F, Zhang S, Zhou M, Luo J, et al. SH3-domain binding protein 1 in the tumor microenvironment promotes hepatocellular carcinoma metastasis through WAVE2 pathway. Oncotarget. 2016;7:18356-70 pubmed 出版商
  998. Cannavo A, Liccardo D, Eguchi A, Elliott K, Traynham C, Ibetti J, et al. Myocardial pathology induced by aldosterone is dependent on non-canonical activities of G protein-coupled receptor kinases. Nat Commun. 2016;7:10877 pubmed 出版商
  999. Zhang Y, Stefanovic B. Akt mediated phosphorylation of LARP6; critical step in biosynthesis of type I collagen. Sci Rep. 2016;6:22597 pubmed 出版商
  1000. Lea R, Amezaga M, Loup B, Mandon Pépin B, Stefansdottir A, Filis P, et al. The fetal ovary exhibits temporal sensitivity to a 'real-life' mixture of environmental chemicals. Sci Rep. 2016;6:22279 pubmed 出版商
  1001. Wong H, Jin G, Cao R, Zhang S, Cao Y, Zhou Z. MT1-MMP sheds LYVE-1 on lymphatic endothelial cells and suppresses VEGF-C production to inhibit lymphangiogenesis. Nat Commun. 2016;7:10824 pubmed 出版商
  1002. Chen C, Meng S, Xue Y, Han Y, Sun C, Deng J, et al. Epigenetic modification of PKMζ rescues aging-related cognitive impairment. Sci Rep. 2016;6:22096 pubmed 出版商
  1003. Woodfield S, Zhang L, Scorsone K, Liu Y, Zage P. Binimetinib inhibits MEK and is effective against neuroblastoma tumor cells with low NF1 expression. BMC Cancer. 2016;16:172 pubmed 出版商
  1004. Shin M, He Y, Marrogi E, Piperdi S, Ren L, Khanna C, et al. A RUNX2-Mediated Epigenetic Regulation of the Survival of p53 Defective Cancer Cells. PLoS Genet. 2016;12:e1005884 pubmed 出版商
  1005. Kabra D, Pfuhlmann K, García Cáceres C, Schriever S, Casquero García V, Kebede A, et al. Hypothalamic leptin action is mediated by histone deacetylase 5. Nat Commun. 2016;7:10782 pubmed 出版商
  1006. Weiher H, Pircher H, Jansen Dürr P, Hegenbarth S, Knolle P, Grunau S, et al. A monoclonal antibody raised against bacterially expressed MPV17 sequences shows peroxisomal, endosomal and lysosomal localisation in U2OS cells. BMC Res Notes. 2016;9:128 pubmed 出版商
  1007. Lasek A, McPherson B, Trueman N, Burkard M. The Functional Significance of Posttranslational Modifications on Polo-Like Kinase 1 Revealed by Chemical Genetic Complementation. PLoS ONE. 2016;11:e0150225 pubmed 出版商
  1008. Chen R, Du Y, Han P, Wang H, Liang F, Feng G, et al. ISG15 predicts poor prognosis and promotes cancer stem cell phenotype in nasopharyngeal carcinoma. Oncotarget. 2016;7:16910-22 pubmed 出版商
  1009. Köhler C, Koalick D, Fabricius A, Parplys A, Borgmann K, Pospiech H, et al. Cdc45 is limiting for replication initiation in humans. Cell Cycle. 2016;15:974-85 pubmed 出版商
  1010. Tang Y, Huang L, Lin W, Wang L, Tian Y, Shi D, et al. Butein inhibits cell proliferation and induces cell cycle arrest in acute lymphoblastic leukemia via FOXO3a/p27kip1 pathway. Oncotarget. 2016;7:18651-64 pubmed 出版商
  1011. Chang T, Chen C, Wu Y, Liu J, Kuo Y, Lee K, et al. Inflammation Promotes Expression of Stemness-Related Properties in HBV-Related Hepatocellular Carcinoma. PLoS ONE. 2016;11:e0149897 pubmed 出版商
  1012. Xu Q, Zhang Y, Wei Q, Huang Y, Hu J, Ling K. Phosphatidylinositol phosphate kinase PIPKIγ and phosphatase INPP5E coordinate initiation of ciliogenesis. Nat Commun. 2016;7:10777 pubmed 出版商
  1013. Yang Z, Liu S, Zhu M, Zhang H, Wang J, Xu Q, et al. PS341 inhibits hepatocellular and colorectal cancer cells through the FOXO3/CTNNB1 signaling pathway. Sci Rep. 2016;6:22090 pubmed 出版商
  1014. Mason J, Davison Versagli C, Leliaert A, Pape D, McCallister C, Zuo J, et al. Oncogenic Ras differentially regulates metabolism and anoikis in extracellular matrix-detached cells. Cell Death Differ. 2016;23:1271-82 pubmed 出版商
  1015. Fong S, Lin H, Wu M, Chen C, Huang Y. CPEB3 Deficiency Elevates TRPV1 Expression in Dorsal Root Ganglia Neurons to Potentiate Thermosensation. PLoS ONE. 2016;11:e0148491 pubmed 出版商
  1016. Sommeregger W, Mayrhofer P, Steinfellner W, Reinhart D, Henry M, Clynes M, et al. Proteomic differences in recombinant CHO cells producing two similar antibody fragments. Biotechnol Bioeng. 2016;113:1902-12 pubmed 出版商
  1017. Wood L, Cox N, Phelps C, Lai S, Poddar A, Talbot C, et al. Thyroid Transcription Factor 1 Reprograms Angiogenic Activities of Secretome. Sci Rep. 2016;6:19857 pubmed 出版商
  1018. Yu L, Wu W, Gu C, Zhong D, Zhao X, Kong Y, et al. Obatoclax impairs lysosomal function to block autophagy in cisplatin-sensitive and -resistant esophageal cancer cells. Oncotarget. 2016;7:14693-707 pubmed 出版商
  1019. Bistulfi G, Affronti H, Foster B, Karasik E, Gillard B, Morrison C, et al. The essential role of methylthioadenosine phosphorylase in prostate cancer. Oncotarget. 2016;7:14380-93 pubmed 出版商
  1020. Xu M, Bian S, Li J, He J, Chen H, Ge L, et al. MeCP2 suppresses LIN28A expression via binding to its methylated-CpG islands in pancreatic cancer cells. Oncotarget. 2016;7:14476-85 pubmed 出版商
  1021. De Herdt M, Willems S, van der Steen B, Noorlag R, Verhoef E, van Leenders G, et al. Absent and abundant MET immunoreactivity is associated with poor prognosis of patients with oral and oropharyngeal squamous cell carcinoma. Oncotarget. 2016;7:13167-81 pubmed 出版商
  1022. Swetzig W, Wang J, Das G. Estrogen receptor alpha (ERα/ESR1) mediates the p53-independent overexpression of MDM4/MDMX and MDM2 in human breast cancer. Oncotarget. 2016;7:16049-69 pubmed 出版商
  1023. Randles L, Anchoori R, Roden R, Walters K. The Proteasome Ubiquitin Receptor hRpn13 and Its Interacting Deubiquitinating Enzyme Uch37 Are Required for Proper Cell Cycle Progression. J Biol Chem. 2016;291:8773-83 pubmed 出版商
  1024. Lee S, Jeong A, Park J, Han S, Jang C, Kim K, et al. IK-guided PP2A suppresses Aurora B activity in the interphase of tumor cells. Cell Mol Life Sci. 2016;73:3375-86 pubmed 出版商
  1025. Shukla S, Sinha S, Khan S, Kumar S, Singh K, Mitra K, et al. Cucurbitacin B inhibits the stemness and metastatic abilities of NSCLC via downregulation of canonical Wnt/β-catenin signaling axis. Sci Rep. 2016;6:21860 pubmed 出版商
  1026. Liu L, Liu X, Ren X, Tian Y, Chen Z, Xu X, et al. Smad2 and Smad3 have differential sensitivity in relaying TGFβ signaling and inversely regulate early lineage specification. Sci Rep. 2016;6:21602 pubmed 出版商
  1027. Wilson N, Titus D, Oliva A, Furones C, Atkins C. Traumatic Brain Injury Upregulates Phosphodiesterase Expression in the Hippocampus. Front Syst Neurosci. 2016;10:5 pubmed 出版商
  1028. Golnik R, Lehmann A, Kloetzel P, Ebstein F. Major Histocompatibility Complex (MHC) Class I Processing of the NY-ESO-1 Antigen Is Regulated by Rpn10 and Rpn13 Proteins and Immunoproteasomes following Non-lysine Ubiquitination. J Biol Chem. 2016;291:8805-15 pubmed 出版商
  1029. Nim S, Jeon J, Corbi Verge C, Seo M, Ivarsson Y, Moffat J, et al. Pooled screening for antiproliferative inhibitors of protein-protein interactions. Nat Chem Biol. 2016;12:275-81 pubmed 出版商
  1030. Casasola A, Scalzo D, Nandakumar V, Halow J, Recillas Targa F, Groudine M, et al. Prelamin A processing, accumulation and distribution in normal cells and laminopathy disorders. Nucleus. 2016;7:84-102 pubmed 出版商
  1031. Williams A, Maman Y, Alinikula J, Schatz D. Bcl6 Is Required for Somatic Hypermutation and Gene Conversion in Chicken DT40 Cells. PLoS ONE. 2016;11:e0149146 pubmed 出版商
  1032. Sancho Martinez I, Nivet E, Xia Y, Hishida T, Aguirre A, Ocampo A, et al. Establishment of human iPSC-based models for the study and targeting of glioma initiating cells. Nat Commun. 2016;7:10743 pubmed 出版商
  1033. Sieber J, Hauer C, Bhuvanagiri M, Leicht S, Krijgsveld J, Neu Yilik G, et al. Proteomic Analysis Reveals Branch-specific Regulation of the Unfolded Protein Response by Nonsense-mediated mRNA Decay. Mol Cell Proteomics. 2016;15:1584-97 pubmed 出版商
  1034. Gao S, Chen X, Jin H, Ren S, Liu Z, Fang X, et al. Overexpression of ErbB2 renders breast cancer cells susceptible to 3-BrPA through the increased dissociation of hexokinase II from mitochondrial outer membrane. Oncol Lett. 2016;11:1567-1573 pubmed
  1035. Wang Y, Ha M, Liu J, Li P, Zhang W, Zhang X. Role of BCL2-associated athanogene in resistance to platinum-based chemotherapy in non-small-cell lung cancer. Oncol Lett. 2016;11:984-990 pubmed
  1036. Lin Y, Ma Q, Lin S, Zhou H, Wen Q, Gao S, et al. Inhibitory effects of 90Sr/90Y β-irradiation on alkali burn-induced corneal neovascularization in rats. Exp Ther Med. 2016;11:409-414 pubmed
  1037. Kan H, Huang Y, Li X, Liu D, Chen J, Shu M. Zinc finger protein ZBTB20 is an independent prognostic marker and promotes tumor growth of human hepatocellular carcinoma by repressing FoxO1. Oncotarget. 2016;7:14336-49 pubmed 出版商
  1038. Edalat L, Stegen B, Klumpp L, Haehl E, Schilbach K, Lukowski R, et al. BK K+ channel blockade inhibits radiation-induced migration/brain infiltration of glioblastoma cells. Oncotarget. 2016;7:14259-78 pubmed 出版商
  1039. Liu R, Li S, Garcia E, Glubrecht D, Poon H, Easaw J, et al. Association between cytoplasmic CRABP2, altered retinoic acid signaling, and poor prognosis in glioblastoma. Glia. 2016;64:963-76 pubmed 出版商
  1040. Bowles J, Feng C, Miles K, Ineson J, Spiller C, Koopman P. ALDH1A1 provides a source of meiosis-inducing retinoic acid in mouse fetal ovaries. Nat Commun. 2016;7:10845 pubmed 出版商
  1041. Hwang S, Jang S, Kim M, Kim L, Kim B, Kim H, et al. YY1 inhibits differentiation and function of regulatory T cells by blocking Foxp3 expression and activity. Nat Commun. 2016;7:10789 pubmed 出版商
  1042. Ma Y, Guo H, Zhang L, Tao L, Yin A, Liu Z, et al. Estrogen replacement therapy-induced neuroprotection against brain ischemia-reperfusion injury involves the activation of astrocytes via estrogen receptor β. Sci Rep. 2016;6:21467 pubmed 出版商
  1043. Burgy O, Wettstein G, Bellaye P, Decologne N, Racoeur C, Goirand F, et al. Deglycosylated bleomycin has the antitumor activity of bleomycin without pulmonary toxicity. Sci Transl Med. 2016;8:326ra20 pubmed 出版商
  1044. Rubattu S, Di Castro S, Schulz H, Geurts A, Cotugno M, Bianchi F, et al. Ndufc2 Gene Inhibition Is Associated With Mitochondrial Dysfunction and Increased Stroke Susceptibility in an Animal Model of Complex Human Disease. J Am Heart Assoc. 2016;5: pubmed 出版商
  1045. del Río C, Navarrete C, Collado J, Bellido M, Gómez Cañas M, Pazos M, et al. The cannabinoid quinol VCE-004.8 alleviates bleomycin-induced scleroderma and exerts potent antifibrotic effects through peroxisome proliferator-activated receptor-γ and CB2 pathways. Sci Rep. 2016;6:21703 pubmed 出版商
  1046. Haraguchi T, Kondo M, Uchikawa R, Kobayashi K, Hiramatsu H, Kobayashi K, et al. Dynamics and plasticity of the epithelial to mesenchymal transition induced by miR-200 family inhibition. Sci Rep. 2016;6:21117 pubmed 出版商
  1047. Sparks L, Gemmink A, Phielix E, Bosma M, Schaart G, Moonen Kornips E, et al. ANT1-mediated fatty acid-induced uncoupling as a target for improving myocellular insulin sensitivity. Diabetologia. 2016;59:1030-9 pubmed 出版商
  1048. Ibrahim A, Mander S, Hussein K, Elsherbiny N, Smith S, Al Shabrawey M, et al. Hyperhomocysteinemia disrupts retinal pigment epithelial structure and function with features of age-related macular degeneration. Oncotarget. 2016;7:8532-45 pubmed 出版商
  1049. Lee M, Goralczyk A, Kriszt R, Ang X, Badowski C, Li Y, et al. ECM microenvironment unlocks brown adipogenic potential of adult human bone marrow-derived MSCs. Sci Rep. 2016;6:21173 pubmed 出版商
  1050. Nabhan J, Wood K, Rao V, Morin J, Bhamidipaty S, LaBranche T, et al. Intrathecal delivery of frataxin mRNA encapsulated in lipid nanoparticles to dorsal root ganglia as a potential therapeutic for Friedreich's ataxia. Sci Rep. 2016;6:20019 pubmed 出版商
  1051. Zhu Y, Gao W, Zhang Y, Jia F, Zhang H, Liu Y, et al. Astrocyte-derived phosphatidic acid promotes dendritic branching. Sci Rep. 2016;6:21096 pubmed 出版商
  1052. Zhao J, Wang L, Dong X, Hu X, Zhou L, Liu Q, et al. The c-Jun N-terminal kinase (JNK) pathway is activated in human interstitial cystitis (IC) and rat protamine sulfate induced cystitis. Sci Rep. 2016;6:19670 pubmed 出版商
  1053. Ishibashi K, Nehashi K, Oshima T, Ohkura N, Atsumi G. Differentiation with elaidate tends to impair insulin-dependent glucose uptake and GLUT4 translocation in 3T3-L1 adipocytes. Int J Food Sci Nutr. 2016;67:99-110 pubmed 出版商
  1054. Liu L, Tong Q, Liu S, Cui J, Zhang Q, Sun W, et al. ZEB1 Upregulates VEGF Expression and Stimulates Angiogenesis in Breast Cancer. PLoS ONE. 2016;11:e0148774 pubmed 出版商
  1055. Bhargava A, Pelech S, Woodard B, Kerwin J, Maherali N. Registered report: RAF inhibitors prime wild-type RAF to activate the MAPK pathway and enhance growth. elife. 2016;5: pubmed 出版商
  1056. Malecova B, Dall Agnese A, Madaro L, Gatto S, Coutinho Toto P, Albini S, et al. TBP/TFIID-dependent activation of MyoD target genes in skeletal muscle cells. elife. 2016;5: pubmed 出版商
  1057. Nakayama D, Hashikawa Yamasaki Y, Ikegaya Y, Matsuki N, Nomura H. Late Arc/Arg3.1 expression in the basolateral amygdala is essential for persistence of newly-acquired and reactivated contextual fear memories. Sci Rep. 2016;6:21007 pubmed 出版商
  1058. Hatori Y, Yan Y, Schmidt K, Furukawa E, Hasan N, Yang N, et al. Neuronal differentiation is associated with a redox-regulated increase of copper flow to the secretory pathway. Nat Commun. 2016;7:10640 pubmed 出版商
  1059. Wang J, Goetsch L, Tucker L, Zhang Q, Gonzalez A, Vaidya K, et al. Anti-c-Met monoclonal antibody ABT-700 breaks oncogene addiction in tumors with MET amplification. BMC Cancer. 2016;16:105 pubmed 出版商
  1060. Nyhan M, O Donovan T, Boersma A, Wiemer E, McKenna S. MiR-193b promotes autophagy and non-apoptotic cell death in oesophageal cancer cells. BMC Cancer. 2016;16:101 pubmed 出版商
  1061. Clermont P, Crea F, Chiang Y, Lin D, Zhang A, Wang J, et al. Identification of the epigenetic reader CBX2 as a potential drug target in advanced prostate cancer. Clin Epigenetics. 2016;8:16 pubmed 出版商
  1062. Karmakar M, Katsnelson M, Dubyak G, Pearlman E. Neutrophil P2X7 receptors mediate NLRP3 inflammasome-dependent IL-1β secretion in response to ATP. Nat Commun. 2016;7:10555 pubmed 出版商
  1063. Lehmann W, Mossmann D, Kleemann J, Mock K, Meisinger C, Brummer T, et al. ZEB1 turns into a transcriptional activator by interacting with YAP1 in aggressive cancer types. Nat Commun. 2016;7:10498 pubmed 出版商
  1064. Lei Y, Kansy B, Li J, Cong L, Liu Y, Trivedi S, et al. EGFR-targeted mAb therapy modulates autophagy in head and neck squamous cell carcinoma through NLRX1-TUFM protein complex. Oncogene. 2016;35:4698-707 pubmed 出版商
  1065. Kim D, Helfman D. Loss of MLCK leads to disruption of cell-cell adhesion and invasive behavior of breast epithelial cells via increased expression of EGFR and ERK/JNK signaling. Oncogene. 2016;35:4495-508 pubmed 出版商
  1066. Franciosa G, Diluvio G, Gaudio F, Giuli M, Palermo R, Grazioli P, et al. Prolyl-isomerase Pin1 controls Notch3 protein expression and regulates T-ALL progression. Oncogene. 2016;35:4741-51 pubmed 出版商
  1067. Currie S, Gwyer Findlay E, McFarlane A, Fitch P, Böttcher B, Colegrave N, et al. Cathelicidins Have Direct Antiviral Activity against Respiratory Syncytial Virus In Vitro and Protective Function In Vivo in Mice and Humans. J Immunol. 2016;196:2699-710 pubmed 出版商
  1068. Merdzo I, Rutkai I, Tokés T, Sure V, Katakam P, Busija D. The mitochondrial function of the cerebral vasculature in insulin-resistant Zucker obese rats. Am J Physiol Heart Circ Physiol. 2016;310:H830-8 pubmed 出版商
  1069. Trivedi P, Bruns T, Ward S, Mai M, Schmidt C, Hirschfield G, et al. Intestinal CCL25 expression is increased in colitis and correlates with inflammatory activity. J Autoimmun. 2016;68:98-104 pubmed 出版商
  1070. Gehlot P, Shukla V, Gupta S, Makidon P. Detection of ALDH1 activity in rabbit hepatic VX2 tumors and isolation of ALDH1 positive cancer stem cells. J Transl Med. 2016;14:49 pubmed 出版商
  1071. Singhal G, Fisher F, Chee M, Tan T, El Ouaamari A, Adams A, et al. Fibroblast Growth Factor 21 (FGF21) Protects against High Fat Diet Induced Inflammation and Islet Hyperplasia in Pancreas. PLoS ONE. 2016;11:e0148252 pubmed 出版商
  1072. Krause C, Popp O, Thirunarayanan N, Dittmar G, Lipp M, Müller G. MicroRNA-34a promotes genomic instability by a broad suppression of genome maintenance mechanisms downstream of the oncogene KSHV-vGPCR. Oncotarget. 2016;7:10414-32 pubmed 出版商
  1073. Zhang Z, Zhang H, Peng T, Li D, Xu J. Melittin suppresses cathepsin S-induced invasion and angiogenesis via blocking of the VEGF-A/VEGFR-2/MEK1/ERK1/2 pathway in human hepatocellular carcinoma. Oncol Lett. 2016;11:610-618 pubmed
  1074. Miao F, Zhu J, Chen Y, Tang N, Wang X, Li X. MicroRNA-183-5p promotes the proliferation, invasion and metastasis of human pancreatic adenocarcinoma cells. Oncol Lett. 2016;11:134-140 pubmed
  1075. Anjum S, Krishna A, Tsutsui K. Possible Role of GnIH as a Mediator between Adiposity and Impaired Testicular Function. Front Endocrinol (Lausanne). 2016;7:6 pubmed 出版商
  1076. Tong L, Zhou J, Rong L, Seeley E, Pan J, Zhu X, et al. Fibroblast Growth Factor-10 (FGF-10) Mobilizes Lung-resident Mesenchymal Stem Cells and Protects Against Acute Lung Injury. Sci Rep. 2016;6:21642 pubmed 出版商
  1077. Xu J, Wang N, Luo J, Xia J. Syntabulin regulates the trafficking of PICK1-containing vesicles in neurons. Sci Rep. 2016;6:20924 pubmed 出版商
  1078. Estruch S, Graham S, Deriziotis P, Fisher S. The language-related transcription factor FOXP2 is post-translationally modified with small ubiquitin-like modifiers. Sci Rep. 2016;6:20911 pubmed 出版商
  1079. Chen S, Blank M, Iyer A, Huang B, Wang L, Grummt I, et al. SIRT7-dependent deacetylation of the U3-55k protein controls pre-rRNA processing. Nat Commun. 2016;7:10734 pubmed 出版商
  1080. Fazio C, Piazzi G, Vitaglione P, Fogliano V, Munarini A, Prossomariti A, et al. Inflammation increases NOTCH1 activity via MMP9 and is counteracted by Eicosapentaenoic Acid-free fatty acid in colon cancer cells. Sci Rep. 2016;6:20670 pubmed 出版商
  1081. Oh S, Onomoto K, Wakimoto M, Onoguchi K, Ishidate F, Fujiwara T, et al. Leader-Containing Uncapped Viral Transcript Activates RIG-I in Antiviral Stress Granules. PLoS Pathog. 2016;12:e1005444 pubmed 出版商
  1082. Wadosky K, Berthiaume J, Tang W, Zungu M, Portman M, Gerdes A, et al. MuRF1 mono-ubiquitinates TRα to inhibit T3-induced cardiac hypertrophy in vivo. J Mol Endocrinol. 2016;56:273-90 pubmed 出版商
  1083. Prior K, Wittig I, Leisegang M, Groenendyk J, Weissmann N, Michalak M, et al. The Endoplasmic Reticulum Chaperone Calnexin Is a NADPH Oxidase NOX4 Interacting Protein. J Biol Chem. 2016;291:7045-59 pubmed 出版商
  1084. Zhang J, Liu J, Li H, Wang J. β-Catenin signaling pathway regulates cisplatin resistance in lung adenocarcinoma cells by upregulating Bcl-xl. Mol Med Rep. 2016;13:2543-51 pubmed 出版商
  1085. Qiu X, Fu Q, Meng C, Yu S, Zhan Y, Dong L, et al. Newcastle Disease Virus V Protein Targets Phosphorylated STAT1 to Block IFN-I Signaling. PLoS ONE. 2016;11:e0148560 pubmed 出版商
  1086. Sowd G, Serrao E, Wang H, Wang W, Fadel H, Poeschla E, et al. A critical role for alternative polyadenylation factor CPSF6 in targeting HIV-1 integration to transcriptionally active chromatin. Proc Natl Acad Sci U S A. 2016;113:E1054-63 pubmed 出版商
  1087. Su R, Strug M, Jeong J, Miele L, Fazleabas A. Aberrant activation of canonical Notch1 signaling in the mouse uterus decreases progesterone receptor by hypermethylation and leads to infertility. Proc Natl Acad Sci U S A. 2016;113:2300-5 pubmed 出版商
  1088. Liu Y, Takahashi Y, Desai N, Zhang J, Serfass J, Shi Y, et al. Bif-1 deficiency impairs lipid homeostasis and causes obesity accompanied by insulin resistance. Sci Rep. 2016;6:20453 pubmed 出版商
  1089. Guo Y, Sun J, Ye J, Ma W, Yan H, Wang G. Saussurea tridactyla Sch. Bip.-derived polysaccharides and flavones reduce oxidative damage in ultraviolet B-irradiated HaCaT cells via a p38MAPK-independent mechanism. Drug Des Devel Ther. 2016;10:389-403 pubmed 出版商
  1090. White Y, Bagchi A, Van Ziffle J, Inguva A, Bollag G, Zhang C, et al. KRAS insertion mutations are oncogenic and exhibit distinct functional properties. Nat Commun. 2016;7:10647 pubmed 出版商
  1091. Vieyra Garcia P, Wei T, Naym D, Fredholm S, Fink Puches R, Cerroni L, et al. STAT3/5-Dependent IL9 Overexpression Contributes to Neoplastic Cell Survival in Mycosis Fungoides. Clin Cancer Res. 2016;22:3328-39 pubmed 出版商
  1092. Nawaz M, Giarda E, Bedogni F, La Montanara P, Ricciardi S, Ciceri D, et al. CDKL5 and Shootin1 Interact and Concur in Regulating Neuronal Polarization. PLoS ONE. 2016;11:e0148634 pubmed 出版商
  1093. Li J, Pan Q, Rowan P, Trotter T, Peker D, Regal K, et al. Heparanase promotes myeloma progression by inducing mesenchymal features and motility of myeloma cells. Oncotarget. 2016;7:11299-309 pubmed 出版商
  1094. Khaperskyy D, Schmaling S, Larkins Ford J, McCormick C, Gaglia M. Selective Degradation of Host RNA Polymerase II Transcripts by Influenza A Virus PA-X Host Shutoff Protein. PLoS Pathog. 2016;12:e1005427 pubmed 出版商
  1095. Kim J, Kim E, Lee B, Min J, Song D, Lim J, et al. The effects of Lycii Radicis Cortex on RANKL-induced osteoclast differentiation and activation in RAW 264.7 cells. Int J Mol Med. 2016;37:649-58 pubmed 出版商
  1096. Zhang J, Jiang Z, Bao C, Mei J, Zhu J. Cardiopulmonary bypass increases pulmonary microvascular permeability through the Src kinase pathway: Involvement of caveolin-1 and vascular endothelial cadherin. Mol Med Rep. 2016;13:2918-24 pubmed 出版商
  1097. Wang P, Li L, Zhang Z, Kan Q, Chen S, Gao F. Time-dependent homeostasis between glucose uptake and consumption in astrocytes exposed to CoClâ‚‚ treatment. Mol Med Rep. 2016;13:2909-17 pubmed 出版商
  1098. Heir P, Srikumar T, Bikopoulos G, Bunda S, Poon B, Lee J, et al. Oxygen-dependent Regulation of Erythropoietin Receptor Turnover and Signaling. J Biol Chem. 2016;291:7357-72 pubmed 出版商
  1099. He Y, Luan Z, Fu X, Xu X. Overexpression of uncoupling protein 2 inhibits the high glucose-induced apoptosis of human umbilical vein endothelial cells. Int J Mol Med. 2016;37:631-8 pubmed 出版商
  1100. Cao K, Gong H, Qiu Z, Wen Q, Zhang B, Tang T, et al. Hepatitis B virus X protein reduces the stability of Nrdp1 to up-regulate ErbB3 in hepatocellular carcinoma cells. Tumour Biol. 2016;37:10375-82 pubmed 出版商
  1101. Ho J, Chang F, Huang F, Liu J, Liu Y, Chen S, et al. Estrogen Enhances the Cell Viability and Motility of Breast Cancer Cells through the ERα-ΔNp63-Integrin β4 Signaling Pathway. PLoS ONE. 2016;11:e0148301 pubmed 出版商
  1102. Shinde V, Kotla P, Strang C, Gorbatyuk M. Unfolded protein response-induced dysregulation of calcium homeostasis promotes retinal degeneration in rat models of autosomal dominant retinitis pigmentosa. Cell Death Dis. 2016;7:e2085 pubmed 出版商
  1103. De Toni E, Ziesch A, Rizzani A, Török H, Hocke S, Lü S, et al. Inactivation of BRCA2 in human cancer cells identifies a subset of tumors with enhanced sensitivity towards death receptor-mediated apoptosis. Oncotarget. 2016;7:9477-90 pubmed 出版商
  1104. Haokip D, Goel I, Arya V, Sharma T, Kumari R, Priya R, et al. Transcriptional Regulation of Atp-Dependent Chromatin Remodeling Factors: Smarcal1 and Brg1 Mutually Co-Regulate Each Other. Sci Rep. 2016;6:20532 pubmed 出版商
  1105. Franz A, Pirson P, Pilger D, Halder S, Achuthankutty D, Kashkar H, et al. Chromatin-associated degradation is defined by UBXN-3/FAF1 to safeguard DNA replication fork progression. Nat Commun. 2016;7:10612 pubmed 出版商
  1106. Sun H, Luo L, Lal B, Ma X, Chen L, Hann C, et al. A monoclonal antibody against KCNK9 K(+) channel extracellular domain inhibits tumour growth and metastasis. Nat Commun. 2016;7:10339 pubmed 出版商
  1107. Xu C, Ochi H, Fukuda T, Sato S, Sunamura S, Takarada T, et al. Circadian Clock Regulates Bone Resorption in Mice. J Bone Miner Res. 2016;31:1344-55 pubmed 出版商
  1108. Regina C, Compagnone M, Peschiaroli A, Lena A, Annicchiarico Petruzzelli M, Piro M, et al. Setdb1, a novel interactor of ΔNp63, is involved in breast tumorigenesis. Oncotarget. 2016;7:28836-48 pubmed 出版商
  1109. Bühler A, Kustermann M, Bummer T, Rottbauer W, Sandri M, Just S. Atrogin-1 Deficiency Leads to Myopathy and Heart Failure in Zebrafish. Int J Mol Sci. 2016;17: pubmed 出版商
  1110. Klumpp D, Misovic M, Szteyn K, Shumilina E, Rudner J, Huber S. Targeting TRPM2 Channels Impairs Radiation-Induced Cell Cycle Arrest and Fosters Cell Death of T Cell Leukemia Cells in a Bcl-2-Dependent Manner. Oxid Med Cell Longev. 2016;2016:8026702 pubmed 出版商
  1111. Jiang P, Gan M, Yen S, Moussaud S, McLean P, Dickson D. Proaggregant nuclear factor(s) trigger rapid formation of ?-synuclein aggregates in apoptotic neurons. Acta Neuropathol. 2016;132:77-91 pubmed 出版商
  1112. Muntión S, Ramos T, Diez Campelo M, Rosón B, Sánchez Abarca L, Misiewicz Krzeminska I, et al. Microvesicles from Mesenchymal Stromal Cells Are Involved in HPC-Microenvironment Crosstalk in Myelodysplastic Patients. PLoS ONE. 2016;11:e0146722 pubmed 出版商
  1113. Duplan E, Giordano C, Checler F, Alves da Costa C. Direct α-synuclein promoter transactivation by the tumor suppressor p53. Mol Neurodegener. 2016;11:13 pubmed 出版商
  1114. Tai D, Ragavendran A, Manavalan P, Stortchevoi A, Seabra C, Erdin S, et al. Engineering microdeletions and microduplications by targeting segmental duplications with CRISPR. Nat Neurosci. 2016;19:517-22 pubmed 出版商
  1115. Yang Y, Wang L, Bell P, McMenamin D, He Z, White J, et al. A dual AAV system enables the Cas9-mediated correction of a metabolic liver disease in newborn mice. Nat Biotechnol. 2016;34:334-8 pubmed 出版商
  1116. Kuosmanen S, Viitala S, Laitinen T, Peräkylä M, Pölönen P, Kansanen E, et al. The Effects of Sequence Variation on Genome-wide NRF2 Binding--New Target Genes and Regulatory SNPs. Nucleic Acids Res. 2016;44:1760-75 pubmed 出版商
  1117. Hayashi H, Al Mamun A, Sakima M, Sato M. Activator of G-protein signaling 8 is involved in VEGF-mediated signal processing during angiogenesis. J Cell Sci. 2016;129:1210-22 pubmed 出版商
  1118. Bondy Chorney E, Crawford Parks T, Ravel Chapuis A, Klinck R, Rocheleau L, Pelchat M, et al. Staufen1 Regulates Multiple Alternative Splicing Events either Positively or Negatively in DM1 Indicating Its Role as a Disease Modifier. PLoS Genet. 2016;12:e1005827 pubmed 出版商
  1119. Lin F, Chen Y, Liang H, Tan S. Echistatin prevents posterior capsule opacification in diabetic rabbit model via integrin linked kinase signaling pathway. Int J Clin Exp Pathol. 2015;8:14294-304 pubmed
  1120. Krick S, Wang J, St Pierre M, Gonzalez C, Dahl G, Salathe M. Dual Oxidase 2 (Duox2) Regulates Pannexin 1-mediated ATP Release in Primary Human Airway Epithelial Cells via Changes in Intracellular pH and Not H2O2 Production. J Biol Chem. 2016;291:6423-32 pubmed 出版商
  1121. Fujiwara S, Ohashi K, Mashiko T, Kondo H, Mizuno K. Interplay between Solo and keratin filaments is crucial for mechanical force-induced stress fiber reinforcement. Mol Biol Cell. 2016;27:954-66 pubmed 出版商
  1122. Madonna R, Giovannelli G, Confalone P, Renna F, Geng Y, De Caterina R. High glucose-induced hyperosmolarity contributes to COX-2 expression and angiogenesis: implications for diabetic retinopathy. Cardiovasc Diabetol. 2016;15:18 pubmed 出版商
  1123. Lin L, Jiang P, Park J, Wang J, Lu Z, Lam M, et al. The contribution of Alu exons to the human proteome. Genome Biol. 2016;17:15 pubmed 出版商
  1124. Kishi N, MacDonald J, Ye J, Molyneaux B, Azim E, Macklis J. Reduction of aberrant NF-κB signalling ameliorates Rett syndrome phenotypes in Mecp2-null mice. Nat Commun. 2016;7:10520 pubmed 出版商
  1125. Díaz Barreiro A, Bernal Quirós M, Georg I, Marañón C, Alarcón Riquelme M, Castillejo López C. The SLE variant Ala71Thr of BLK severely decreases protein abundance and binding to BANK1 through impairment of the SH3 domain function. Genes Immun. 2016;17:128-38 pubmed 出版商
  1126. Long C, Guo W, Zhou H, Wang J, Wang H, Sun X. Triptolide decreases expression of latency-associated nuclear antigen 1 and reduces viral titers in Kaposi's sarcoma-associated and herpesvirus-related primary effusion lymphoma cells. Int J Oncol. 2016;48:1519-30 pubmed 出版商
  1127. Li Y, Lu W, Saini S, Moukha Chafiq O, Pathak V, Ananthan S. Identification of quinazoline compounds as novel potent inhibitors of Wnt/?-catenin signaling in colorectal cancer cells. Oncotarget. 2016;7:11263-70 pubmed 出版商
  1128. Gentry E, Henderson B, Arrant A, Gearing M, Feng Y, Riddle N, et al. Rho Kinase Inhibition as a Therapeutic for Progressive Supranuclear Palsy and Corticobasal Degeneration. J Neurosci. 2016;36:1316-23 pubmed 出版商
  1129. van der Mijn J, Broxterman H, Knol J, Piersma S, de Haas R, Dekker H, et al. Sunitinib activates Axl signaling in renal cell cancer. Int J Cancer. 2016;138:3002-10 pubmed 出版商
  1130. Bothur E, Raifer H, Haftmann C, Stittrich A, Brüstle A, Brenner D, et al. Antigen receptor-mediated depletion of FOXP3 in induced regulatory T-lymphocytes via PTPN2 and FOXO1. Nat Commun. 2015;6:8576 pubmed 出版商
  1131. Bindesbøll C, Tan S, Bott D, Cho T, Tamblyn L, MacPherson L, et al. TCDD-inducible poly-ADP-ribose polymerase (TIPARP/PARP7) mono-ADP-ribosylates and co-activates liver X receptors. Biochem J. 2016;473:899-910 pubmed 出版商
  1132. Gao Y, Zhao Y, Zhang J, Lu Y, Liu X, Geng P, et al. The dual function of PRMT1 in modulating epithelial-mesenchymal transition and cellular senescence in breast cancer cells through regulation of ZEB1. Sci Rep. 2016;6:19874 pubmed 出版商
  1133. Zhang G, Chan B, Samarina N, Abere B, Weidner Glunde M, Buch A, et al. Cytoplasmic isoforms of Kaposi sarcoma herpesvirus LANA recruit and antagonize the innate immune DNA sensor cGAS. Proc Natl Acad Sci U S A. 2016;113:E1034-43 pubmed 出版商
  1134. Tadokoro T, Gao X, Hong C, Hotten D, Hogan B. BMP signaling and cellular dynamics during regeneration of airway epithelium from basal progenitors. Development. 2016;143:764-73 pubmed 出版商
  1135. Blanco E, Galeano P, Palomino A, Pavón F, Rivera P, Serrano A, et al. Cocaine-induced behavioral sensitization decreases the expression of endocannabinoid signaling-related proteins in the mouse hippocampus. Eur Neuropsychopharmacol. 2016;26:477-92 pubmed 出版商
  1136. Ward A, Mellor P, Smith S, Kendall S, Just N, Vizeacoumar F, et al. Epigenetic silencing of CREB3L1 by DNA methylation is associated with high-grade metastatic breast cancers with poor prognosis and is prevalent in triple negative breast cancers. Breast Cancer Res. 2016;18:12 pubmed 出版商
  1137. Lee Kubli C, Ingves M, Henry K, Shiao R, Collyer E, Tuszynski M, et al. Analysis of the behavioral, cellular and molecular characteristics of pain in severe rodent spinal cord injury. Exp Neurol. 2016;278:91-104 pubmed 出版商
  1138. Wei X, Liu C, Wang H, Wang L, Xiao F, Guo Z, et al. Surface Phosphatidylserine Is Responsible for the Internalization on Microvesicles Derived from Hypoxia-Induced Human Bone Marrow Mesenchymal Stem Cells into Human Endothelial Cells. PLoS ONE. 2016;11:e0147360 pubmed 出版商
  1139. Vegas A, Veiseh O, Gürtler M, Millman J, Pagliuca F, Bader A, et al. Long-term glycemic control using polymer-encapsulated human stem cell-derived beta cells in immune-competent mice. Nat Med. 2016;22:306-11 pubmed 出版商
  1140. Binolfi A, Limatola A, Verzini S, Kosten J, Theillet F, Rose H, et al. Intracellular repair of oxidation-damaged α-synuclein fails to target C-terminal modification sites. Nat Commun. 2016;7:10251 pubmed 出版商
  1141. Vegas A, Veiseh O, Doloff J, Ma M, Tam H, Bratlie K, et al. Combinatorial hydrogel library enables identification of materials that mitigate the foreign body response in primates. Nat Biotechnol. 2016;34:345-52 pubmed 出版商
  1142. Couderc C, Boin A, Fuhrmann L, Vincent Salomon A, Mandati V, Kieffer Y, et al. AMOTL1 Promotes Breast Cancer Progression and Is Antagonized by Merlin. Neoplasia. 2016;18:10-24 pubmed 出版商
  1143. Grassilli E, Pisano F, Cialdella A, Bonomo S, Missaglia C, Cerrito M, et al. A novel oncogenic BTK isoform is overexpressed in colon cancers and required for RAS-mediated transformation. Oncogene. 2016;35:4368-78 pubmed 出版商
  1144. Chadchan S, Kumar V, Maurya V, Soni U, Jha R. Endoglin (CD105) coordinates the process of endometrial receptivity for embryo implantation. Mol Cell Endocrinol. 2016;425:69-83 pubmed 出版商
  1145. Heo J, Kim W, Choi K, Bae S, Jeong J, Kim K. XIAP-associating factor 1, a transcriptional target of BRD7, contributes to endothelial cell senescence. Oncotarget. 2016;7:5118-30 pubmed 出版商
  1146. Koyani C, Kitz K, Rossmann C, Bernhart E, Huber E, Trummer C, et al. Activation of the MAPK/Akt/Nrf2-Egr1/HO-1-GCLc axis protects MG-63 osteosarcoma cells against 15d-PGJ2-mediated cell death. Biochem Pharmacol. 2016;104:29-41 pubmed 出版商
  1147. Puente C, Hendrickson R, Jiang X. Nutrient-regulated Phosphorylation of ATG13 Inhibits Starvation-induced Autophagy. J Biol Chem. 2016;291:6026-35 pubmed 出版商
  1148. Salomon J, Spahn S, Wang X, Füllekrug J, Bertrand C, Mall M. Generation and functional characterization of epithelial cells with stable expression of SLC26A9 Cl- channels. Am J Physiol Lung Cell Mol Physiol. 2016;310:L593-602 pubmed 出版商
  1149. Wu C, Chou H, Huang L, Lin Y, Chen C. Bubble CPAP Support after Discontinuation of Mechanical Ventilation Protects Rat Lungs with Ventilator-Induced Lung Injury. Respiration. 2016;91:171-9 pubmed 出版商
  1150. Chung S, Moon H, Ju H, Kim D, Cho K, Ribback S, et al. Comparison of liver oncogenic potential among human RAS isoforms. Oncotarget. 2016;7:7354-66 pubmed 出版商
  1151. Bian Y, Yang L, Wang Z, Wang Q, Zeng L, Xu G. Repeated Three-Hour Maternal Separation Induces Depression-Like Behavior and Affects the Expression of Hippocampal Plasticity-Related Proteins in C57BL/6N Mice. Neural Plast. 2015;2015:627837 pubmed 出版商
  1152. Park W, Kim S, Kim Y, Park J. Bortezomib alleviates drug-induced liver injury by regulating CYP2E1 gene transcription. Int J Mol Med. 2016;37:613-22 pubmed 出版商
  1153. Deb M, Sengupta D, Kar S, Rath S, Roy S, Das G, et al. Epigenetic drift towards histone modifications regulates CAV1 gene expression in colon cancer. Gene. 2016;581:75-84 pubmed 出版商
  1154. Ye R, Quinlan M, Iwamoto H, Wu H, Green N, Jetter C, et al. Physical Interactions and Functional Relationships of Neuroligin 2 and Midbrain Serotonin Transporters. Front Synaptic Neurosci. 2015;7:20 pubmed 出版商
  1155. Sun L, Dutta R, Xie P, Kanwar Y. myo-Inositol Oxygenase Overexpression Accentuates Generation of Reactive Oxygen Species and Exacerbates Cellular Injury following High Glucose Ambience: A NEW MECHANISM RELEVANT TO THE PATHOGENESIS OF DIABETIC NEPHROPATHY. J Biol Chem. 2016;291:5688-707 pubmed 出版商
  1156. Kao S, Soares V, Kristiansen A, Stankovic K. Activation of TRAIL-DR5 pathway promotes sensorineural degeneration in the inner ear. Aging Cell. 2016;15:301-8 pubmed 出版商
  1157. Villarroel Espíndola F, Tapia C, González Stegmaier R, Concha I, Slebe J. Polyglucosan Molecules Induce Mitochondrial Impairment and Apoptosis in Germ Cells Without Affecting the Integrity and Functionality of Sertoli Cells. J Cell Physiol. 2016;231:2142-52 pubmed 出版商
  1158. Yoshida T, Song L, Bai Y, Kinose F, Li J, Ohaegbulam K, et al. ZEB1 Mediates Acquired Resistance to the Epidermal Growth Factor Receptor-Tyrosine Kinase Inhibitors in Non-Small Cell Lung Cancer. PLoS ONE. 2016;11:e0147344 pubmed 出版商
  1159. Luo C, Liao W, Dadi S, Toure A, Li M. Graded Foxo1 activity in Treg cells differentiates tumour immunity from spontaneous autoimmunity. Nature. 2016;529:532-6 pubmed 出版商
  1160. Santhanam A, Torricelli A, Wu J, Marino G, Wilson S. Differential expression of epithelial basement membrane components nidogens and perlecan in corneal stromal cells in vitro. Mol Vis. 2015;21:1318-27 pubmed
  1161. McCann T, Guo Y, McDonald W, Tansey W. Antagonistic roles for the ubiquitin ligase Asr1 and the ubiquitin-specific protease Ubp3 in subtelomeric gene silencing. Proc Natl Acad Sci U S A. 2016;113:1309-14 pubmed 出版商
  1162. Kanderová V, Kuzilkova D, Stuchly J, Vaskova M, Brdicka T, Fiser K, et al. High-resolution Antibody Array Analysis of Childhood Acute Leukemia Cells. Mol Cell Proteomics. 2016;15:1246-61 pubmed 出版商
  1163. Khoory J, Estanislau J, Elkhal A, Lazaar A, Melhorn M, Brodsky A, et al. Ligation of Glycophorin A Generates Reactive Oxygen Species Leading to Decreased Red Blood Cell Function. PLoS ONE. 2016;11:e0141206 pubmed 出版商
  1164. Korwitz A, Merkwirth C, Richter Dennerlein R, Tröder S, Sprenger H, Quirós P, et al. Loss of OMA1 delays neurodegeneration by preventing stress-induced OPA1 processing in mitochondria. J Cell Biol. 2016;212:157-66 pubmed 出版商
  1165. Tien S, Lee H, Yang Y, Lin M, Chen Y, Chang Z. The Shp2-induced epithelial disorganization defect is reversed by HDAC6 inhibition independent of Cdc42. Nat Commun. 2016;7:10420 pubmed 出版商
  1166. Zheng F, Yue C, Li G, He B, Cheng W, Wang X, et al. Nuclear AURKA acquires kinase-independent transactivating function to enhance breast cancer stem cell phenotype. Nat Commun. 2016;7:10180 pubmed 出版商
  1167. Sawada S, Chosa N, Takizawa N, Yokota J, Igarashi Y, Tomoda K, et al. Establishment of mesenchymal stem cell lines derived from the bone marrow of green fluorescent protein-transgenic mice exhibiting a diversity in intracellular transforming growth factor-β and bone morphogenetic protein signaling. Mol Med Rep. 2016;13:2023-31 pubmed 出版商
  1168. Soo Lee N, Jin Chung H, Kim H, Yun Lee S, Ji J, Seo Y, et al. TRAIP/RNF206 is required for recruitment of RAP80 to sites of DNA damage. Nat Commun. 2016;7:10463 pubmed 出版商
  1169. Lood C, Blanco L, Purmalek M, Carmona Rivera C, De Ravin S, Smith C, et al. Neutrophil extracellular traps enriched in oxidized mitochondrial DNA are interferogenic and contribute to lupus-like disease. Nat Med. 2016;22:146-53 pubmed 出版商
  1170. Watari K, Shibata T, Nabeshima H, Shinoda A, Fukunaga Y, Kawahara A, et al. Impaired differentiation of macrophage lineage cells attenuates bone remodeling and inflammatory angiogenesis in Ndrg1 deficient mice. Sci Rep. 2016;6:19470 pubmed 出版商
  1171. Grohar P, Kim S, Rangel Rivera G, Sen N, Haddock S, Harlow M, et al. Functional Genomic Screening Reveals Splicing of the EWS-FLI1 Fusion Transcript as a Vulnerability in Ewing Sarcoma. Cell Rep. 2016;14:598-610 pubmed 出版商
  1172. Wu H, Shi L, Wang Q, Cheng L, Zhao X, Chen Q, et al. Mumps virus-induced innate immune responses in mouse Sertoli and Leydig cells. Sci Rep. 2016;6:19507 pubmed 出版商
  1173. Ruiz A, Rockfield S, Taran N, Haller E, Engelman R, Flores I, et al. Effect of hydroxychloroquine and characterization of autophagy in a mouse model of endometriosis. Cell Death Dis. 2016;7:e2059 pubmed 出版商
  1174. Schirmer M, Trentin L, Queudeville M, Seyfried F, Demir S, Tausch E, et al. Intrinsic and chemo-sensitizing activity of SMAC-mimetics on high-risk childhood acute lymphoblastic leukemia. Cell Death Dis. 2016;7:e2052 pubmed 出版商
  1175. Vlčková K, OndruÅ¡ová L, Vachtenheim J, Réda J, Dundr P, Zadinová M, et al. Survivin, a novel target of the Hedgehog/GLI signaling pathway in human tumor cells. Cell Death Dis. 2016;7:e2048 pubmed 出版商
  1176. Vais H, Mallilankaraman K, Mak D, Hoff H, Payne R, Tanis J, et al. EMRE Is a Matrix Ca(2+) Sensor that Governs Gatekeeping of the Mitochondrial Ca(2+) Uniporter. Cell Rep. 2016;14:403-410 pubmed 出版商
  1177. Park S, Jeong S. SRSF3 represses the expression of PDCD4 protein by coordinated regulation of alternative splicing, export and translation. Biochem Biophys Res Commun. 2016;470:431-438 pubmed 出版商
  1178. Dieckmann N, Hackmann Y, Aricò M, Griffiths G. Munc18-2 is required for Syntaxin 11 Localization on the Plasma Membrane in Cytotoxic T-Lymphocytes. Traffic. 2015;16:1330-41 pubmed 出版商
  1179. Oda S, Nozawa T, Nozawa Minowa A, Tanaka M, Aikawa C, Harada H, et al. Golgi-Resident GTPase Rab30 Promotes the Biogenesis of Pathogen-Containing Autophagosomes. PLoS ONE. 2016;11:e0147061 pubmed 出版商
  1180. Dai X, Zhuang L, Wang D, Zhou T, Chang L, Gai R, et al. Nuclear translocation and activation of YAP by hypoxia contributes to the chemoresistance of SN38 in hepatocellular carcinoma cells. Oncotarget. 2016;7:6933-47 pubmed 出版商
  1181. Qiu Z, Sun R, Mo X, Li W. The p70S6K Specific Inhibitor PF-4708671 Impedes Non-Small Cell Lung Cancer Growth. PLoS ONE. 2016;11:e0147185 pubmed 出版商
  1182. Wang S, Ni H, Dorko K, Kumer S, Schmitt T, Nawabi A, et al. Increased hepatic receptor interacting protein kinase 3 expression due to impaired proteasomal functions contributes to alcohol-induced steatosis and liver injury. Oncotarget. 2016;7:17681-98 pubmed 出版商
  1183. Yeh P, Huang H, Yang C, Yang W, Yang C. Astaxanthin Inhibits Expression of Retinal Oxidative Stress and Inflammatory Mediators in Streptozotocin-Induced Diabetic Rats. PLoS ONE. 2016;11:e0146438 pubmed 出版商
  1184. Bai G, Smolka M, Schimenti J. Chronic DNA Replication Stress Reduces Replicative Lifespan of Cells by TRP53-Dependent, microRNA-Assisted MCM2-7 Downregulation. PLoS Genet. 2016;12:e1005787 pubmed 出版商
  1185. Nassal D, Wan X, Liu H, Deschenes I. Myocardial KChIP2 Expression in Guinea Pig Resolves an Expanded Electrophysiologic Role. PLoS ONE. 2016;11:e0146561 pubmed 出版商
  1186. Visavadiya N, Patel S, VanRooyen J, Sullivan P, Rabchevsky A. Cellular and subcellular oxidative stress parameters following severe spinal cord injury. Redox Biol. 2016;8:59-67 pubmed 出版商
  1187. Ketel K, Krauss M, Nicot A, Puchkov D, Wieffer M, Müller R, et al. A phosphoinositide conversion mechanism for exit from endosomes. Nature. 2016;529:408-12 pubmed 出版商
  1188. Cacabelos D, Ramírez Núñez O, Granado Serrano A, Torres P, Ayala V, Moiseeva V, et al. Early and gender-specific differences in spinal cord mitochondrial function and oxidative stress markers in a mouse model of ALS. Acta Neuropathol Commun. 2016;4:3 pubmed 出版商
  1189. Pivonello C, Negri M, De Martino M, Napolitano M, De Angelis C, Provvisiero D, et al. The dual targeting of insulin and insulin-like growth factor 1 receptor enhances the mTOR inhibitor-mediated antitumor efficacy in hepatocellular carcinoma. Oncotarget. 2016;7:9718-31 pubmed 出版商
  1190. Zhou Q, Yen A, Rymarczyk G, Asai H, Trengrove C, Aziz N, et al. Impairment of PARK14-dependent Ca(2+) signalling is a novel determinant of Parkinson's disease. Nat Commun. 2016;7:10332 pubmed 出版商
  1191. Asano Y, Kawase T, Okabe A, Tsutsumi S, Ichikawa H, Tatebe S, et al. IER5 generates a novel hypo-phosphorylated active form of HSF1 and contributes to tumorigenesis. Sci Rep. 2016;6:19174 pubmed 出版商
  1192. Roth J, Köhler D, Schneider M, Granja T, Rosenberger P. Semaphorin 7A Aggravates Pulmonary Inflammation during Lung Injury. PLoS ONE. 2016;11:e0146930 pubmed 出版商
  1193. Gu L, Hitzel J, Moll F, Kruse C, Malik R, Preussner J, et al. The Histone Demethylase PHF8 Is Essential for Endothelial Cell Migration. PLoS ONE. 2016;11:e0146645 pubmed 出版商
  1194. Zhang C, Liu J, Zhao Y, Yue X, Zhu Y, Wang X, et al. Glutaminase 2 is a novel negative regulator of small GTPase Rac1 and mediates p53 function in suppressing metastasis. elife. 2016;5:e10727 pubmed 出版商
  1195. Liu H, Shi H, Huang F, Peterson K, Wu H, Lan Y, et al. Astragaloside IV inhibits microglia activation via glucocorticoid receptor mediated signaling pathway. Sci Rep. 2016;6:19137 pubmed 出版商
  1196. Li W, Zou J, Yue F, Song K, Chen Q, McKeehan W, et al. Defects in MAP1S-mediated autophagy cause reduction in mouse lifespans especially when fibronectin is overexpressed. Aging Cell. 2016;15:370-9 pubmed 出版商
  1197. Li N, Dhar S, Chen T, Kan P, Wei Y, Kim J, et al. JARID1D Is a Suppressor and Prognostic Marker of Prostate Cancer Invasion and Metastasis. Cancer Res. 2016;76:831-43 pubmed 出版商
  1198. Umazume T, Thomas W, Campbell S, Aluri H, Thotakura S, Zoukhri D, et al. Lacrimal Gland Inflammation Deregulates Extracellular Matrix Remodeling and Alters Molecular Signature of Epithelial Stem/Progenitor Cells. Invest Ophthalmol Vis Sci. 2015;56:8392-402 pubmed 出版商
  1199. Hérate C, Ramdani G, Grant N, Marion S, Gasman S, Niedergang F, et al. Phospholipid Scramblase 1 Modulates FcR-Mediated Phagocytosis in Differentiated Macrophages. PLoS ONE. 2016;11:e0145617 pubmed 出版商
  1200. Kiel C, Benisty H, Lloréns Rico V, Serrano L. The yin-yang of kinase activation and unfolding explains the peculiarity of Val600 in the activation segment of BRAF. elife. 2016;5:e12814 pubmed 出版商
  1201. Klawitter S, Fuchs N, Upton K, Muñoz Lopez M, Shukla R, Wang J, et al. Reprogramming triggers endogenous L1 and Alu retrotransposition in human induced pluripotent stem cells. Nat Commun. 2016;7:10286 pubmed 出版商
  1202. Kim K, Qiang L, Hayden M, Sparling D, Purcell N, Pajvani U. mTORC1-independent Raptor prevents hepatic steatosis by stabilizing PHLPP2. Nat Commun. 2016;7:10255 pubmed 出版商
  1203. Vacca V, Marinelli S, Pieroni L, Urbani A, Luvisetto S, Pavone F. 17beta-estradiol counteracts neuropathic pain: a behavioural, immunohistochemical, and proteomic investigation on sex-related differences in mice. Sci Rep. 2016;6:18980 pubmed 出版商
  1204. Gupta Y, Pasupuleti V, Du W, Welford S. Macrophage Migration Inhibitory Factor Secretion Is Induced by Ionizing Radiation and Oxidative Stress in Cancer Cells. PLoS ONE. 2016;11:e0146482 pubmed 出版商
  1205. Chen Y, Statt S, Wu R, Chang H, Liao J, Wang C, et al. High mobility group box 1-induced epithelial mesenchymal transition in human airway epithelial cells. Sci Rep. 2016;6:18815 pubmed 出版商
  1206. Lin R, Chen J, Li X, Mao J, Wu Y, Zhuo P, et al. Electroacupuncture at the Baihui acupoint alleviates cognitive impairment and exerts neuroprotective effects by modulating the expression and processing of brain-derived neurotrophic factor in APP/PS1 transgenic mice. Mol Med Rep. 2016;13:1611-7 pubmed 出版商
  1207. Piggin C, Roden D, Gallego Ortega D, Lee H, Oakes S, Ormandy C. ELF5 isoform expression is tissue-specific and significantly altered in cancer. Breast Cancer Res. 2016;18:4 pubmed 出版商
  1208. Liberante F, Pouryahya T, McMullin M, Zhang S, Mills K. Identification and validation of the dopamine agonist bromocriptine as a novel therapy for high-risk myelodysplastic syndromes and secondary acute myeloid leukemia. Oncotarget. 2016;7:6609-19 pubmed 出版商
  1209. Yang S, Krug S, Heitmann J, Hu L, Reinhold A, Sauer S, et al. Analgesic drug delivery via recombinant tissue plasminogen activator and microRNA-183-triggered opening of the blood-nerve barrier. Biomaterials. 2016;82:20-33 pubmed 出版商
  1210. Suzuki Y, Chin W, Han Q, Ichiyama K, Lee C, Eyo Z, et al. Characterization of RyDEN (C19orf66) as an Interferon-Stimulated Cellular Inhibitor against Dengue Virus Replication. PLoS Pathog. 2016;12:e1005357 pubmed 出版商
  1211. Lee S, Frattini V, Bansal M, Castano A, Sherman D, Hutchinson K, et al. An ID2-dependent mechanism for VHL inactivation in cancer. Nature. 2016;529:172-7 pubmed 出版商
  1212. Rassoolzadeh H, Coucoravas C, Farnebo M. The proximity ligation assay reveals that at DNA double-strand breaks WRAP53β associates with γH2AX and controls interactions between RNF8 and MDC1. Nucleus. 2015;6:417-24 pubmed 出版商
  1213. Juranek J, Daffu G, Wojtkiewicz J, Lacomis D, Kofler J, Schmidt A. Receptor for Advanced Glycation End Products and its Inflammatory Ligands are Upregulated in Amyotrophic Lateral Sclerosis. Front Cell Neurosci. 2015;9:485 pubmed 出版商
  1214. Hrstka R, Bouchalova P, Michalová E, Matoulkova E, Muller P, Coates P, et al. AGR2 oncoprotein inhibits p38 MAPK and p53 activation through a DUSP10-mediated regulatory pathway. Mol Oncol. 2016;10:652-62 pubmed 出版商
  1215. Liu X, Yao D, Liu C, Cao Y, Yang Q, Sun Z, et al. Overexpression of ABCC3 promotes cell proliferation, drug resistance, and aerobic glycolysis and is associated with poor prognosis in urinary bladder cancer patients. Tumour Biol. 2016;37:8367-74 pubmed 出版商
  1216. Phillips S, Soderblom E, Bradrick S, Garcia Blanco M. Identification of Proteins Bound to Dengue Viral RNA In Vivo Reveals New Host Proteins Important for Virus Replication. MBio. 2016;7:e01865-15 pubmed 出版商
  1217. Jiang Q, Wang M, Li L, Mo H, Song J, Tang Q, et al. Electroacupuncture relieves labour pain and influences the spinal dynorphin/κ-opioid receptor system in rats. Acupunct Med. 2016;34:223-8 pubmed 出版商
  1218. Tagliatti E, Fadda M, Falace A, Benfenati F, Fassio A. Arf6 regulates the cycling and the readily releasable pool of synaptic vesicles at hippocampal synapse. elife. 2016;5: pubmed 出版商
  1219. Chang Y, Yang C, Pan S, Chou Y, Chang F, Lai C, et al. DNA methyltransferase inhibition restores erythropoietin production in fibrotic murine kidneys. J Clin Invest. 2016;126:721-31 pubmed 出版商
  1220. Singh A, Kan C, Dong B, Liu J. SREBP2 Activation Induces Hepatic Long-chain Acyl-CoA Synthetase 1 (ACSL1) Expression in Vivo and in Vitro through a Sterol Regulatory Element (SRE) Motif of the ACSL1 C-promoter. J Biol Chem. 2016;291:5373-84 pubmed 出版商
  1221. Businaro R, Corsi M, Azzara G, Di Raimo T, Laviola G, Romano E, et al. Interleukin-18 modulation in autism spectrum disorders. J Neuroinflammation. 2016;13:2 pubmed 出版商
  1222. Zayas M, Long G, Madan V, Bartenschlager R. Coordination of Hepatitis C Virus Assembly by Distinct Regulatory Regions in Nonstructural Protein 5A. PLoS Pathog. 2016;12:e1005376 pubmed 出版商
  1223. Han M, Lee D, Woo S, Seo B, Min K, Kim S, et al. Galangin sensitizes TRAIL-induced apoptosis through down-regulation of anti-apoptotic proteins in renal carcinoma Caki cells. Sci Rep. 2016;6:18642 pubmed 出版商
  1224. Clark D, Mei Y, Sun S, Zhang H, Yang A, Mao L. Glycoproteomic Approach Identifies KRAS as a Positive Regulator of CREG1 in Non-small Cell Lung Cancer Cells. Theranostics. 2016;6:65-77 pubmed 出版商
  1225. Creedon H, Balderstone L, Muir M, Balla J, Gómez Cuadrado L, Tracey N, et al. Use of a genetically engineered mouse model as a preclinical tool for HER2 breast cancer. Dis Model Mech. 2016;9:131-40 pubmed 出版商
  1226. Wang J, Liang W, Cui Y, He J, Liu H, Wang Y, et al. Noncanonical Activin A Signaling in PC12 Cells: A Self-Limiting Feedback Loop. Neurochem Res. 2016;41:1073-84 pubmed 出版商
  1227. Baude A, Aaes T, Zhai B, Al Nakouzi N, Oo H, Daugaard M, et al. Hepatoma-derived growth factor-related protein 2 promotes DNA repair by homologous recombination. Nucleic Acids Res. 2016;44:2214-26 pubmed 出版商
  1228. Tang S, Chen H, Cheng Y, Nasir M, Kemper N, Bao E. The interactive association between heat shock factor 1 and heat shock proteins in primary myocardial cells subjected to heat stress. Int J Mol Med. 2016;37:56-62 pubmed 出版商
  1229. Wang Q, Wang D, Yan G, Sun L, Tang C. TRPC6 is required for hypoxia-induced basal intracellular calcium concentration elevation, and for the proliferation and migration of rat distal pulmonary venous smooth muscle cells. Mol Med Rep. 2016;13:1577-85 pubmed 出版商
  1230. Gallego Ortega D, Ledger A, Roden D, Law A, Magenau A, Kikhtyak Z, et al. ELF5 Drives Lung Metastasis in Luminal Breast Cancer through Recruitment of Gr1+ CD11b+ Myeloid-Derived Suppressor Cells. PLoS Biol. 2015;13:e1002330 pubmed 出版商
  1231. Xu Y, Wu D, Zheng W, Yu F, Yang F, Yao Y, et al. Proteome profiling of cadmium-induced apoptosis by antibody array analyses in human bronchial epithelial cells. Oncotarget. 2016;7:6146-58 pubmed 出版商
  1232. Noh H, Hah Y, Ha J, Kang M, Zada S, Rha S, et al. Regulation of the epithelial to mesenchymal transition and metastasis by Raf kinase inhibitory protein-dependent Notch1 activity. Oncotarget. 2016;7:4632-46 pubmed 出版商
  1233. Li R, Liao G, Nirujogi R, Pinto S, Shaw P, Huang T, et al. Phosphoproteomic Profiling Reveals Epstein-Barr Virus Protein Kinase Integration of DNA Damage Response and Mitotic Signaling. PLoS Pathog. 2015;11:e1005346 pubmed 出版商
  1234. Choudhury S, Harris A, Cabral D, Keeler A, Sapp E, Ferreira J, et al. Widespread Central Nervous System Gene Transfer and Silencing After Systemic Delivery of Novel AAV-AS Vector. Mol Ther. 2016;24:726-35 pubmed 出版商
  1235. Wong H, Wang G, Croessmann S, Zabransky D, Chu D, Garay J, et al. TMSB4Y is a candidate tumor suppressor on the Y chromosome and is deleted in male breast cancer. Oncotarget. 2015;6:44927-40 pubmed 出版商
  1236. Wang F, Feng Y, Li P, Wang K, Feng L, Liu Y, et al. RASSF10 is an epigenetically inactivated tumor suppressor and independent prognostic factor in hepatocellular carcinoma. Oncotarget. 2016;7:4279-97 pubmed 出版商
  1237. Bartosch C, Monteiro Reis S, Almeida Rios D, Vieira R, Castro A, Moutinho M, et al. Assessing sirtuin expression in endometrial carcinoma and non-neoplastic endometrium. Oncotarget. 2016;7:1144-54 pubmed 出版商
  1238. Toledo R, Qin Y, Cheng Z, Gao Q, Iwata S, Silva G, et al. Recurrent Mutations of Chromatin-Remodeling Genes and Kinase Receptors in Pheochromocytomas and Paragangliomas. Clin Cancer Res. 2016;22:2301-10 pubmed 出版商
  1239. Bishayee A, Mandal A, Bhattacharyya P, Bhatia D. Pomegranate exerts chemoprevention of experimentally induced mammary tumorigenesis by suppression of cell proliferation and induction of apoptosis. Nutr Cancer. 2016;68:120-30 pubmed 出版商
  1240. Jing W, Zhang X, Sun W, Hou X, Yao Z, Zhu Y. CRISPR/CAS9-Mediated Genome Editing of miRNA-155 Inhibits Proinflammatory Cytokine Production by RAW264.7 Cells. Biomed Res Int. 2015;2015:326042 pubmed 出版商
  1241. Ao J, Wei C, Si Y, Luo C, Lv W, Lin Y, et al. Tudor-SN Regulates Milk Synthesis and Proliferation of Bovine Mammary Epithelial Cells. Int J Mol Sci. 2015;16:29936-47 pubmed 出版商
  1242. Su X, Yan H, Huang Y, Yun H, Zeng B, Wang E, et al. Expression of FABP4, adipsin and adiponectin in Paneth cells is modulated by gut Lactobacillus. Sci Rep. 2015;5:18588 pubmed 出版商
  1243. Zhou J, Yang L, Zhong T, Mueller M, Men Y, Zhang N, et al. H19 lncRNA alters DNA methylation genome wide by regulating S-adenosylhomocysteine hydrolase. Nat Commun. 2015;6:10221 pubmed 出版商
  1244. Lei X, Cui K, Liu Q, Zhang H, Li Z, Huang B, et al. Exogenous Estradiol Benzoate Induces Spermatogenesis Disorder through Influencing Apoptosis and Oestrogen Receptor Signalling Pathway. Reprod Domest Anim. 2016;51:75-84 pubmed 出版商
  1245. Liu Z, Oyola M, Zhou S, Chen X, Liao L, Tien J, et al. Knockout of the Histone Demethylase Kdm3b Decreases Spermatogenesis and Impairs Male Sexual Behaviors. Int J Biol Sci. 2015;11:1447-57 pubmed 出版商
  1246. Ding X, Jiang W, Zhou P, Liu L, Wan X, Yuan X, et al. Mixed Lineage Leukemia 5 (MLL5) Protein Stability Is Cooperatively Regulated by O-GlcNac Transferase (OGT) and Ubiquitin Specific Protease 7 (USP7). PLoS ONE. 2015;10:e0145023 pubmed 出版商
  1247. Smith K, Zhou B, Avdulov S, Benyumov A, Peterson M, Liu Y, et al. Transforming Growth Factor-β1 Induced Epithelial Mesenchymal Transition is blocked by a chemical antagonist of translation factor eIF4E. Sci Rep. 2015;5:18233 pubmed 出版商
  1248. Khoutorsky A, Bonin R, Sorge R, Gkogkas C, Pawlowski S, Jafarnejad S, et al. Translational control of nociception via 4E-binding protein 1. elife. 2015;4: pubmed 出版商
  1249. Kamitani T, Sakaguchi H, Tamura A, Miyashita T, Yamazaki Y, Tokumasu R, et al. Deletion of Tricellulin Causes Progressive Hearing Loss Associated with Degeneration of Cochlear Hair Cells. Sci Rep. 2015;5:18402 pubmed 出版商
  1250. Gong X, Tan M, Gao Y, Chen K, Guo G. CRMP‑5 interacts with actin to regulate neurite outgrowth. Mol Med Rep. 2016;13:1179-85 pubmed 出版商
  1251. Yan L, Liu Y, Xiang J, Wu Q, Xu L, Luo X, et al. PIK3R1 targeting by miR-21 suppresses tumor cell migration and invasion by reducing PI3K/AKT signaling and reversing EMT, and predicts clinical outcome of breast cancer. Int J Oncol. 2016;48:471-84 pubmed 出版商
  1252. Wang Y, Hou H, Li M, Yang Y, Sun L. Anticancer effect of eupatilin on glioma cells through inhibition of the Notch-1 signaling pathway. Mol Med Rep. 2016;13:1141-6 pubmed 出版商
  1253. Brunati M, Perucca S, Han L, Cattaneo A, Consolato F, Andolfo A, et al. The serine protease hepsin mediates urinary secretion and polymerisation of Zona Pellucida domain protein uromodulin. elife. 2015;4:e08887 pubmed 出版商
  1254. Overton J, Komiya Y, Mezzacappa C, Nama K, Cai N, Lou L, et al. Hepatocystin is Essential for TRPM7 Function During Early Embryogenesis. Sci Rep. 2015;5:18395 pubmed 出版商
  1255. Liao S, Vickers M, Stanley J, Ponnampalam A, Baker P, Perry J. The Placental Variant of Human Growth Hormone Reduces Maternal Insulin Sensitivity in a Dose-Dependent Manner in C57BL/6J Mice. Endocrinology. 2016;157:1175-86 pubmed 出版商
  1256. Yin K, Lei Y, Wen X, Lacruz R, Soleimani M, Kurtz I, et al. SLC26A Gene Family Participate in pH Regulation during Enamel Maturation. PLoS ONE. 2015;10:e0144703 pubmed 出版商
  1257. Monian P, Jiang X. The Cellular Apoptosis Susceptibility Protein (CAS) Promotes Tumor Necrosis Factor-related Apoptosis-inducing Ligand (TRAIL)-induced Apoptosis and Cell Proliferation. J Biol Chem. 2016;291:2379-88 pubmed 出版商
  1258. Vural A, Al Khodor S, Cheung G, Shi C, Srinivasan L, McQuiston T, et al. Activator of G-Protein Signaling 3-Induced Lysosomal Biogenesis Limits Macrophage Intracellular Bacterial Infection. J Immunol. 2016;196:846-56 pubmed 出版商
  1259. Wille C, Nawandar D, Henning A, Ma S, Oetting K, Lee D, et al. 5-hydroxymethylation of the EBV genome regulates the latent to lytic switch. Proc Natl Acad Sci U S A. 2015;112:E7257-65 pubmed 出版商
  1260. Arévalo Turrubiarte M, Perruchot M, Finot L, Mayeur F, Dessauge F. Phenotypic and functional characterization of two bovine mammary epithelial cell lines in 2D and 3D models. Am J Physiol Cell Physiol. 2016;310:C348-56 pubmed 出版商
  1261. Mills K, Brocardo M, Henderson B. APC binds the Miro/Milton motor complex to stimulate transport of mitochondria to the plasma membrane. Mol Biol Cell. 2016;27:466-82 pubmed 出版商
  1262. Schrage R, Schmitz A, Gaffal E, Annala S, Kehraus S, Wenzel D, et al. The experimental power of FR900359 to study Gq-regulated biological processes. Nat Commun. 2015;6:10156 pubmed 出版商
  1263. Weijer R, Broekgaarden M, Krekorian M, Alles L, van Wijk A, Mackaaij C, et al. Inhibition of hypoxia inducible factor 1 and topoisomerase with acriflavine sensitizes perihilar cholangiocarcinomas to photodynamic therapy. Oncotarget. 2016;7:3341-56 pubmed 出版商
  1264. Yu F, Shen X, Fan L, Yu Z. Analysis of histone modifications at human ribosomal DNA in liver cancer cell. Sci Rep. 2015;5:18100 pubmed 出版商
  1265. Ageta Ishihara N, Yamazaki M, Konno K, Nakayama H, Abe M, Hashimoto K, et al. A CDC42EP4/septin-based perisynaptic glial scaffold facilitates glutamate clearance. Nat Commun. 2015;6:10090 pubmed 出版商
  1266. Sanchez G, Bondy Chorney E, Laframboise J, Paris G, Didillon A, Jasmin B, et al. A novel role for CARM1 in promoting nonsense-mediated mRNA decay: potential implications for spinal muscular atrophy. Nucleic Acids Res. 2016;44:2661-76 pubmed 出版商
  1267. Pillai S, Nguyen J, Johnson J, Haura E, Coppola D, Chellappan S. Tank binding kinase 1 is a centrosome-associated kinase necessary for microtubule dynamics and mitosis. Nat Commun. 2015;6:10072 pubmed 出版商
  1268. Guo X, Wang X, Wang Z, Banerjee S, Yang J, Huang L, et al. Site-specific proteasome phosphorylation controls cell proliferation and tumorigenesis. Nat Cell Biol. 2016;18:202-12 pubmed 出版商
  1269. Marazita M, Dugour A, Marquioni Ramella M, Figueroa J, Suburo A. Oxidative stress-induced premature senescence dysregulates VEGF and CFH expression in retinal pigment epithelial cells: Implications for Age-related Macular Degeneration. Redox Biol. 2016;7:78-87 pubmed 出版商
  1270. Adam M, Matt S, Christian S, Hess Stumpp H, Haegebarth A, Hofmann T, et al. SIAH ubiquitin ligases regulate breast cancer cell migration and invasion independent of the oxygen status. Cell Cycle. 2015;14:3734-47 pubmed 出版商
  1271. Kimmey J, Huynh J, Weiss L, Park S, Kambal A, Debnath J, et al. Unique role for ATG5 in neutrophil-mediated immunopathology during M. tuberculosis infection. Nature. 2015;528:565-9 pubmed 出版商
  1272. Frankowski J, Demars K, Ahmad A, Hawkins K, Yang C, Leclerc J, et al. Detrimental role of the EP1 prostanoid receptor in blood-brain barrier damage following experimental ischemic stroke. Sci Rep. 2015;5:17956 pubmed 出版商
  1273. Ying Z, Li X, Dang H, Wang F, Xu X. Effect of Hath1 on the proliferation and apoptosis of cutaneous squamous cell carcinoma in vitro. Mol Med Rep. 2015;12:7845-50 pubmed 出版商
  1274. Jeong K, Lee S, Seo H, Oh Y, Jang D, Choe J, et al. Ca-α1T, a fly T-type Ca2+ channel, negatively modulates sleep. Sci Rep. 2015;5:17893 pubmed 出版商
  1275. Iskit S, Schlicker A, Wessels L, Peeper D. Fra-1 is a key driver of colon cancer metastasis and a Fra-1 classifier predicts disease-free survival. Oncotarget. 2015;6:43146-61 pubmed 出版商
  1276. Marland J, Hasel P, Bonnycastle K, Cousin M. Mitochondrial Calcium Uptake Modulates Synaptic Vesicle Endocytosis in Central Nerve Terminals. J Biol Chem. 2016;291:2080-6 pubmed 出版商
  1277. Kaizuka T, Mizushima N. Atg13 Is Essential for Autophagy and Cardiac Development in Mice. Mol Cell Biol. 2016;36:585-95 pubmed 出版商
  1278. Ortmann B, Bensaddek D, Carvalhal S, Moser S, Mudie S, Griffis E, et al. CDK-dependent phosphorylation of PHD1 on serine 130 alters its substrate preference in cells. J Cell Sci. 2016;129:191-205 pubmed 出版商
  1279. Kreuz S, Holmes K, Tooze R, Lefevre P. Loss of PIM2 enhances the anti-proliferative effect of the pan-PIM kinase inhibitor AZD1208 in non-Hodgkin lymphomas. Mol Cancer. 2015;14:205 pubmed 出版商
  1280. Bowser J, Blackburn M, Shipley G, Molina J, Dunner K, Broaddus R. Loss of CD73-mediated actin polymerization promotes endometrial tumor progression. J Clin Invest. 2016;126:220-38 pubmed 出版商
  1281. Shi H, Wang Y, Li X, Zhan X, Tang M, Fina M, et al. NLRP3 activation and mitosis are mutually exclusive events coordinated by NEK7, a new inflammasome component. Nat Immunol. 2016;17:250-8 pubmed 出版商
  1282. Anadón C, Guil S, Simó Riudalbas L, Moutinho C, Setien F, Martínez Cardús A, et al. Gene amplification-associated overexpression of the RNA editing enzyme ADAR1 enhances human lung tumorigenesis. Oncogene. 2016;35:4407-13 pubmed 出版商
  1283. Tarangelo A, Lo N, Teng R, Kim E, Le L, Watson D, et al. Recruitment of Pontin/Reptin by E2f1 amplifies E2f transcriptional response during cancer progression. Nat Commun. 2015;6:10028 pubmed 出版商
  1284. Hashimoto M, Murata K, Ishida J, Kanou A, Kasuya Y, Fukamizu A. Severe Hypomyelination and Developmental Defects Are Caused in Mice Lacking Protein Arginine Methyltransferase 1 (PRMT1) in the Central Nervous System. J Biol Chem. 2016;291:2237-45 pubmed 出版商
  1285. Trzeciecka A, Klossowski S, Bajor M, Zagozdzon R, Gaj P, Muchowicz A, et al. Dimeric peroxiredoxins are druggable targets in human Burkitt lymphoma. Oncotarget. 2016;7:1717-31 pubmed 出版商
  1286. Brai E, Marathe S, Astori S, Fredj N, Perry E, Lamy C, et al. Notch1 Regulates Hippocampal Plasticity Through Interaction with the Reelin Pathway, Glutamatergic Transmission and CREB Signaling. Front Cell Neurosci. 2015;9:447 pubmed 出版商
  1287. Aimi F, Georgiopoulou S, Kalus I, Lehner F, Hegglin A, Limani P, et al. Endothelial Rictor is crucial for midgestational development and sustained and extensive FGF2-induced neovascularization in the adult. Sci Rep. 2015;5:17705 pubmed 出版商
  1288. Seidensaal K, Nollert A, Feige A, Muller M, Fleming T, Gunkel N, et al. Impaired aldehyde dehydrogenase 1 subfamily member 2A-dependent retinoic acid signaling is related with a mesenchymal-like phenotype and an unfavorable prognosis of head and neck squamous cell carcinoma. Mol Cancer. 2015;14:204 pubmed 出版商
  1289. Min J, Guo K, Suryadevara P, Zhu F, Holbrook G, Chen Y, et al. Optimization of a Novel Series of Ataxia-Telangiectasia Mutated Kinase Inhibitors as Potential Radiosensitizing Agents. J Med Chem. 2016;59:559-77 pubmed 出版商
  1290. Jimenez Mateos E, Arribas Blázquez M, Sanz Rodriguez A, Concannon C, Olivos Ore L, Reschke C, et al. microRNA targeting of the P2X7 purinoceptor opposes a contralateral epileptogenic focus in the hippocampus. Sci Rep. 2015;5:17486 pubmed 出版商
  1291. Lommel M, Trairatphisan P, Gäbler K, Laurini C, Muller A, Kaoma T, et al. L-plastin Ser5 phosphorylation in breast cancer cells and in vitro is mediated by RSK downstream of the ERK/MAPK pathway. FASEB J. 2016;30:1218-33 pubmed 出版商
  1292. Biziota E, Briasoulis E, Mavroeidis L, Marselos M, Harris A, Pappas P. Cellular and molecular effects of metronomic vinorelbine and 4-O-deacetylvinorelbine on human umbilical vein endothelial cells. Anticancer Drugs. 2016;27:216-24 pubmed 出版商
  1293. Suica V, Uyy E, Boteanu R, Ivan L, Antohe F. Alteration of actin dependent signaling pathways associated with membrane microdomains in hyperlipidemia. Proteome Sci. 2015;13:30 pubmed 出版商
  1294. Qi D, Kaur Gill N, Santiskulvong C, Sifuentes J, Dorigo O, Rao J, et al. Screening cell mechanotype by parallel microfiltration. Sci Rep. 2015;5:17595 pubmed 出版商
  1295. Wu S, Yang Z, Ye R, An D, Li C, Wang Y, et al. Novel variants in MLL confer to bladder cancer recurrence identified by whole-exome sequencing. Oncotarget. 2016;7:2629-45 pubmed 出版商
  1296. Lin C, Huang P, Lai C, Chen J, Lin S, Chen J. Simvastatin Attenuates Oxidative Stress, NF-κB Activation, and Artery Calcification in LDLR-/- Mice Fed with High Fat Diet via Down-regulation of Tumor Necrosis Factor-α and TNF Receptor 1. PLoS ONE. 2015;10:e0143686 pubmed 出版商
  1297. Valletta S, Dolatshad H, Bartenstein M, Yip B, Bello E, Gordon S, et al. ASXL1 mutation correction by CRISPR/Cas9 restores gene function in leukemia cells and increases survival in mouse xenografts. Oncotarget. 2015;6:44061-71 pubmed 出版商
  1298. Cataldo A, Cheung D, Balsari A, Tagliabue E, Coppola V, Iorio M, et al. miR-302b enhances breast cancer cell sensitivity to cisplatin by regulating E2F1 and the cellular DNA damage response. Oncotarget. 2016;7:786-97 pubmed 出版商
  1299. Farrow P, Khodosevich K, Sapir Y, Schulmann A, Aslam M, Stern Bach Y, et al. Auxiliary subunits of the CKAMP family differentially modulate AMPA receptor properties. elife. 2015;4:e09693 pubmed 出版商
  1300. Mehraein Ghomi F, Church D, Schreiber C, Weichmann A, Basu H, Wilding G. Inhibitor of p52 NF-κB subunit and androgen receptor (AR) interaction reduces growth of human prostate cancer cells by abrogating nuclear translocation of p52 and phosphorylated AR(ser81). Genes Cancer. 2015;6:428-44 pubmed
  1301. Fleury H, Communal L, Carmona E, Portelance L, Arcand S, Rahimi K, et al. Novel high-grade serous epithelial ovarian cancer cell lines that reflect the molecular diversity of both the sporadic and hereditary disease. Genes Cancer. 2015;6:378-398 pubmed
  1302. Bo Q, Sun X, Liu J, Sui X, Li G. Antitumor action of the peroxisome proliferator-activated receptor-γ agonist rosiglitazone in hepatocellular carcinoma. Oncol Lett. 2015;10:1979-1984 pubmed
  1303. Liu J, Wang Y, He H, Jin W, Zheng R. Overexpression of the pituitary tumor transforming gene upregulates metastasis in malignant neoplasms of the human salivary glands. Exp Ther Med. 2015;10:763-768 pubmed
  1304. Wang H, Hsieh P, Huang D, Chin P, Chou C, Tung C, et al. RBFOX3/NeuN is Required for Hippocampal Circuit Balance and Function. Sci Rep. 2015;5:17383 pubmed 出版商
  1305. Pankow S, Bamberger C, Calzolari D, Martínez Bartolomé S, Lavallée Adam M, Balch W, et al. ∆F508 CFTR interactome remodelling promotes rescue of cystic fibrosis. Nature. 2015;528:510-6 pubmed 出版商
  1306. Bunda S, Burrell K, Heir P, Zeng L, Alamsahebpour A, Kano Y, et al. Inhibition of SHP2-mediated dephosphorylation of Ras suppresses oncogenesis. Nat Commun. 2015;6:8859 pubmed 出版商
  1307. Debruyne D, Bhatnagar N, Sharma B, Luther W, Moore N, Cheung N, et al. ALK inhibitor resistance in ALK(F1174L)-driven neuroblastoma is associated with AXL activation and induction of EMT. Oncogene. 2016;35:3681-91 pubmed 出版商
  1308. Wu Y, Wang L, Bao H, Zou S, Fu C, Gong H, et al. Nrdp1S, short variant of Nrdp1, inhibits human glioma progression by increasing Nrdp1-mediated ErbB3 ubiquitination and degradation. J Cell Mol Med. 2016;20:422-9 pubmed 出版商
  1309. de Jong O, van Balkom B, Gremmels H, Verhaar M. Exosomes from hypoxic endothelial cells have increased collagen crosslinking activity through up-regulation of lysyl oxidase-like 2. J Cell Mol Med. 2016;20:342-50 pubmed 出版商
  1310. Leshchyns ka I, Liew H, Shepherd C, Halliday G, Stevens C, Ke Y, et al. Aβ-dependent reduction of NCAM2-mediated synaptic adhesion contributes to synapse loss in Alzheimer's disease. Nat Commun. 2015;6:8836 pubmed 出版商
  1311. Yang B, Zhang M, Gao J, Li J, Fan L, Xiang G, et al. Small molecule RL71 targets SERCA2 at a novel site in the treatment of human colorectal cancer. Oncotarget. 2015;6:37613-25 pubmed 出版商
  1312. Fang M, Yuan Y, Rangarajan P, Lu J, Wu Y, Wang H, et al. Scutellarin regulates microglia-mediated TNC1 astrocytic reaction and astrogliosis in cerebral ischemia in the adult rats. BMC Neurosci. 2015;16:84 pubmed 出版商
  1313. Ni Y, Nagashimada M, Zhuge F, Zhan L, Nagata N, Tsutsui A, et al. Astaxanthin prevents and reverses diet-induced insulin resistance and steatohepatitis in mice: A comparison with vitamin E. Sci Rep. 2015;5:17192 pubmed 出版商
  1314. Martín Pardillos A, Sorribas V. Effects of donor age and proliferative aging on the phenotype stability of rat aortic smooth muscle cells. Physiol Rep. 2015;3: pubmed 出版商
  1315. Yasuda K, Takahashi M, Mori N. Mdm20 Modulates Actin Remodeling through the mTORC2 Pathway via Its Effect on Rictor Expression. PLoS ONE. 2015;10:e0142943 pubmed 出版商
  1316. Hagelkruys A, Mattes K, Moos V, Rennmayr M, Ringbauer M, Sawicka A, et al. Essential Nonredundant Function of the Catalytic Activity of Histone Deacetylase 2 in Mouse Development. Mol Cell Biol. 2016;36:462-74 pubmed 出版商
  1317. Kim M, Kim M, Park S, Lee C, Lim D. Role of Angiomotin-like 2 mono-ubiquitination on YAP inhibition. EMBO Rep. 2016;17:64-78 pubmed 出版商
  1318. Sakurikar N, Thompson R, Montano R, Eastman A. A subset of cancer cell lines is acutely sensitive to the Chk1 inhibitor MK-8776 as monotherapy due to CDK2 activation in S phase. Oncotarget. 2016;7:1380-94 pubmed 出版商
  1319. Wanzel M, Vischedyk J, Gittler M, Gremke N, Seiz J, Hefter M, et al. CRISPR-Cas9-based target validation for p53-reactivating model compounds. Nat Chem Biol. 2016;12:22-8 pubmed 出版商
  1320. Ferri F, Parcelier A, Petit V, Gallouet A, Lewandowski D, Dalloz M, et al. TRIM33 switches off Ifnb1 gene transcription during the late phase of macrophage activation. Nat Commun. 2015;6:8900 pubmed 出版商
  1321. Lyu L, Whitcomb E, Jiang S, Chang M, Gu Y, Duncan M, et al. Unfolded-protein response-associated stabilization of p27(Cdkn1b) interferes with lens fiber cell denucleation, leading to cataract. FASEB J. 2016;30:1087-95 pubmed 出版商
  1322. Wang C, Wang Y, Hu M, Chai Z, Wu Q, Huang R, et al. Synaptotagmin-11 inhibits clathrin-mediated and bulk endocytosis. EMBO Rep. 2016;17:47-63 pubmed 出版商
  1323. Bartscht T, Rosien B, Rades D, Kaufmann R, Biersack H, Lehnert H, et al. Dasatinib blocks transcriptional and promigratory responses to transforming growth factor-beta in pancreatic adenocarcinoma cells through inhibition of Smad signalling: implications for in vivo mode of action. Mol Cancer. 2015;14:199 pubmed 出版商
  1324. Shearer J, Wold E, Umbaugh C, Lichti C, Nilsson C, Figueiredo M. Inorganic Arsenic-Related Changes in the Stromal Tumor Microenvironment in a Prostate Cancer Cell-Conditioned Media Model. Environ Health Perspect. 2016;124:1009-15 pubmed 出版商
  1325. Zhou R, Zhou X, Yin Z, Guo J, Hu T, Jiang S, et al. Tumor invasion and metastasis regulated by microRNA-184 and microRNA-574-5p in small-cell lung cancer. Oncotarget. 2015;6:44609-22 pubmed 出版商
  1326. Hagberg Thulin M, Nilsson M, Thulin P, Céraline J, Ohlsson C, Damber J, et al. Osteoblasts promote castration-resistant prostate cancer by altering intratumoral steroidogenesis. Mol Cell Endocrinol. 2016;422:182-191 pubmed 出版商
  1327. Furlan S, Mosole S, Murgia M, Nagaraj N, Argenton F, Volpe P, et al. Calsequestrins in skeletal and cardiac muscle from adult Danio rerio. J Muscle Res Cell Motil. 2016;37:27-39 pubmed 出版商
  1328. Murata Y, Uehara Y, Hosoi Y. Activation of mTORC1 under nutrient starvation conditions increases cellular radiosensitivity in human liver cancer cell lines, HepG2 and HuH6. Biochem Biophys Res Commun. 2015;468:684-90 pubmed 出版商
  1329. Zhao W, Yang P, Kang L, Cui F. Different pathogenicities of Rice stripe virus from the insect vector and from viruliferous plants. New Phytol. 2016;210:196-207 pubmed 出版商
  1330. Isernhagen A, Schilling D, Monecke S, Shah P, Elsner L, Walter L, et al. The MICA-129Met/Val dimorphism affects plasma membrane expression and shedding of the NKG2D ligand MICA. Immunogenetics. 2016;68:109-23 pubmed 出版商
  1331. García Rubio M, Pérez Calero C, Barroso S, Tumini E, Herrera Moyano E, Rosado I, et al. The Fanconi Anemia Pathway Protects Genome Integrity from R-loops. PLoS Genet. 2015;11:e1005674 pubmed 出版商
  1332. Cao J, Zhang X, Wang Q, Qiu G, Hou C, Wang J, et al. Smad4 represses the generation of memory-precursor effector T cells but is required for the differentiation of central memory T cells. Cell Death Dis. 2015;6:e1984 pubmed 出版商
  1333. Xu S, Nam S, Kim J, Das R, Choi S, Nguyen T, et al. Palmitate induces ER calcium depletion and apoptosis in mouse podocytes subsequent to mitochondrial oxidative stress. Cell Death Dis. 2015;6:e1976 pubmed 出版商
  1334. Chen S, Chang B, Chang S, Tong T, Ham S, Sherry B, et al. BTK inhibition results in impaired CXCR4 chemokine receptor surface expression, signaling and function in chronic lymphocytic leukemia. Leukemia. 2016;30:833-43 pubmed 出版商
  1335. Mani M, Lee U, Yoon N, Kim H, Ko M, Seol W, et al. Developmentally regulated GTP-binding protein 2 coordinates Rab5 activity and transferrin recycling. Mol Biol Cell. 2016;27:334-48 pubmed 出版商
  1336. Xu Y, Ma L, Norton M, Stuart C, Zhao Z, Toibero D, et al. Gestation age dependent transfer of human immunoglobulins across placenta in timed-pregnant guinea pigs. Placenta. 2015;36:1370-7 pubmed 出版商
  1337. Ponti D, Bastianelli D, Rosa P, Pacini L, Ibrahim M, Rendina E, et al. The expression of B23 and EGR1 proteins is functionally linked in tumor cells under stress conditions. BMC Cell Biol. 2015;16:27 pubmed 出版商
  1338. Wang W, Liu H, Dai X, Fang S, Wang X, Zhang Y, et al. p53/PUMA expression in human pulmonary fibroblasts mediates cell activation and migration in silicosis. Sci Rep. 2015;5:16900 pubmed 出版商
  1339. van Jaarsveld M, van Kuijk P, Boersma A, Helleman J, Van Ijcken W, Mathijssen R, et al. miR-634 restores drug sensitivity in resistant ovarian cancer cells by targeting the Ras-MAPK pathway. Mol Cancer. 2015;14:196 pubmed 出版商
  1340. Nanba K, Chen A, Turcu A, Rainey W. H295R expression of melanocortin 2 receptor accessory protein results in ACTH responsiveness. J Mol Endocrinol. 2016;56:69-76 pubmed 出版商
  1341. Elder M, Webster S, Williams D, Gaston J, Goodall J. TSLP production by dendritic cells is modulated by IL-1β and components of the endoplasmic reticulum stress response. Eur J Immunol. 2016;46:455-63 pubmed 出版商
  1342. Gao L, Jiang Y, Mu L, Liu Y, Wang F, Wang P, et al. Efficient Generation of Mice with Consistent Transgene Expression by FEEST. Sci Rep. 2015;5:16284 pubmed 出版商
  1343. Matsunuma R, Niida H, Ohhata T, Kitagawa K, Sakai S, Uchida C, et al. UV Damage-Induced Phosphorylation of HBO1 Triggers CRL4DDB2-Mediated Degradation To Regulate Cell Proliferation. Mol Cell Biol. 2016;36:394-406 pubmed 出版商
  1344. Freischmidt A, Schöpflin M, Feiler M, Fleck A, Ludolph A, Weishaupt J. Profilin 1 with the amyotrophic lateral sclerosis associated mutation T109M displays unaltered actin binding and does not affect the actin cytoskeleton. BMC Neurosci. 2015;16:77 pubmed 出版商
  1345. Song K, Hu W, Yue F, Zou J, Li W, Chen Q, et al. Transforming Growth Factor TGFβ Increases Levels of Microtubule-Associated Protein MAP1S and Autophagy Flux in Pancreatic Ductal Adenocarcinomas. PLoS ONE. 2015;10:e0143150 pubmed 出版商
  1346. Lamana A, López Santalla M, Castillo González R, Ortiz A, Martín J, García Vicuña R, et al. The Minor Allele of rs7574865 in the STAT4 Gene Is Associated with Increased mRNA and Protein Expression. PLoS ONE. 2015;10:e0142683 pubmed 出版商
  1347. Hu Z, Hu J, Shen W, Kraemer F, Azhar S. A Novel Role of Salt-Inducible Kinase 1 (SIK1) in the Post-Translational Regulation of Scavenger Receptor Class B Type 1 Activity. Biochemistry. 2015;54:6917-30 pubmed 出版商
  1348. Sang H, Liu L, Wang L, Qiu Z, Li M, Yu L, et al. Opposite roles of bradykinin B1 and B2 receptors during cerebral ischaemia-reperfusion injury in experimental diabetic rats. Eur J Neurosci. 2016;43:53-65 pubmed 出版商
  1349. Fridriksdottir A, Kim J, Villadsen R, Klitgaard M, Hopkinson B, Petersen O, et al. Propagation of oestrogen receptor-positive and oestrogen-responsive normal human breast cells in culture. Nat Commun. 2015;6:8786 pubmed 出版商
  1350. Ninkina N, Connor Robson N, Ustyugov A, Tarasova T, Shelkovnikova T, Buchman V. A novel resource for studying function and dysfunction of α-synuclein: mouse lines for modulation of endogenous Snca gene expression. Sci Rep. 2015;5:16615 pubmed 出版商
  1351. Hu X, Garcia C, Fazli L, Gleave M, Vitek M, Jansen M, et al. Inhibition of Pten deficient Castration Resistant Prostate Cancer by Targeting of the SET - PP2A Signaling axis. Sci Rep. 2015;5:15182 pubmed 出版商
  1352. Miura S, Sato K, Kato Negishi M, Teshima T, Takeuchi S. Fluid shear triggers microvilli formation via mechanosensitive activation of TRPV6. Nat Commun. 2015;6:8871 pubmed 出版商
  1353. Lesmana R, Sinha R, Singh B, Zhou J, Ohba K, Wu Y, et al. Thyroid Hormone Stimulation of Autophagy Is Essential for Mitochondrial Biogenesis and Activity in Skeletal Muscle. Endocrinology. 2016;157:23-38 pubmed 出版商
  1354. Alnasser H, Guan Q, Zhang F, Gleave M, Nguan C, Du C. Requirement of clusterin expression for prosurvival autophagy in hypoxic kidney tubular epithelial cells. Am J Physiol Renal Physiol. 2016;310:F160-73 pubmed 出版商
  1355. He X, Wang L, Yan J, Yuan C, Witze E, Hua X. Menin localization in cell membrane compartment. Cancer Biol Ther. 2016;17:114-22 pubmed 出版商
  1356. Funauchi Y, Tanikawa C, Yi Lo P, Mori J, Daigo Y, Takano A, et al. Regulation of iron homeostasis by the p53-ISCU pathway. Sci Rep. 2015;5:16497 pubmed 出版商
  1357. Clemente Vicario F, Alvarez C, ROWELL J, Roy S, London C, Kisseberth W, et al. Human Genetic Relevance and Potent Antitumor Activity of Heat Shock Protein 90 Inhibition in Canine Lung Adenocarcinoma Cell Lines. PLoS ONE. 2015;10:e0142007 pubmed 出版商
  1358. Scherer M, Otto V, Stump J, Klingl S, Müller R, Reuter N, et al. Characterization of Recombinant Human Cytomegaloviruses Encoding IE1 Mutants L174P and 1-382 Reveals that Viral Targeting of PML Bodies Perturbs both Intrinsic and Innate Immune Responses. J Virol. 2016;90:1190-205 pubmed 出版商
  1359. Yi Y, Cai L, Shao Y, Xu M, Yi J. The protective role of tacrine and donepezil in the retina of acetylcholinesterase knockout mice. Int J Ophthalmol. 2015;8:884-90 pubmed 出版商
  1360. Lohberger B, Leithner A, Stuendl N, Kaltenegger H, Kullich W, Steinecker Frohnwieser B. Diacerein retards cell growth of chondrosarcoma cells at the G2/M cell cycle checkpoint via cyclin B1/CDK1 and CDK2 downregulation. BMC Cancer. 2015;15:891 pubmed 出版商
  1361. Lee J, Park K, Han D, Bang N, Kim D, Na H, et al. PharmDB-K: Integrated Bio-Pharmacological Network Database for Traditional Korean Medicine. PLoS ONE. 2015;10:e0142624 pubmed 出版商
  1362. Dixon D, Coates J, Del Carpio Pons A, Horabin J, Walker A, Abdul N, et al. A potential mode of action for Anakinra in patients with arthrofibrosis following total knee arthroplasty. Sci Rep. 2015;5:16466 pubmed 出版商
  1363. Zhang Z, Wu N, Lu Y, Davidson D, Colonna M, Veillette A. DNAM-1 controls NK cell activation via an ITT-like motif. J Exp Med. 2015;212:2165-82 pubmed 出版商
  1364. Seidel C, Schnekenburger M, Mazumder A, Teiten M, Kirsch G, Dicato M, et al. 4-Hydroxybenzoic acid derivatives as HDAC6-specific inhibitors modulating microtubular structure and HSP90α chaperone activity against prostate cancer. Biochem Pharmacol. 2016;99:31-52 pubmed 出版商
  1365. Buczek M, Miles A, Green W, Johnson C, Boocock D, Pockley A, et al. Cytoplasmic PML promotes TGF-β-associated epithelial-mesenchymal transition and invasion in prostate cancer. Oncogene. 2016;35:3465-75 pubmed 出版商
  1366. Zucal C, D Agostino V, Casini A, Mantelli B, Thongon N, Soncini D, et al. EIF2A-dependent translational arrest protects leukemia cells from the energetic stress induced by NAMPT inhibition. BMC Cancer. 2015;15:855 pubmed 出版商
  1367. Amigo Jiménez I, Bailón E, Aguilera Montilla N, Terol M, García Marco J, García Pardo A. Bone marrow stroma-induced resistance of chronic lymphocytic leukemia cells to arsenic trioxide involves Mcl-1 upregulation and is overcome by inhibiting the PI3Kδ or PKCβ signaling pathways. Oncotarget. 2015;6:44832-48 pubmed 出版商
  1368. Ahn H, Kim K, Shin K, Lim K, Kim J, Lee J, et al. Ell3 stabilizes p53 following CDDP treatment via its effects on ubiquitin-dependent and -independent proteasomal degradation pathways in breast cancer cells. Oncotarget. 2015;6:44523-37 pubmed 出版商
  1369. Hao J, Sun N, Lei L, Li X, Yao B, Sun K, et al. L-Stepholidine rescues memory deficit and synaptic plasticity in models of Alzheimer's disease via activating dopamine D1 receptor/PKA signaling pathway. Cell Death Dis. 2015;6:e1965 pubmed 出版商
  1370. Vernot J, Perdomo Arciniegas A, Pérez Quintero L, Martínez D. Modulating p56Lck in T-Cells by a Chimeric Peptide Comprising Two Functionally Different Motifs of Tip from Herpesvirus saimiri. J Immunol Res. 2015;2015:395371 pubmed 出版商
  1371. Duan W, Lopez M. Effects of Cryopreservation on Canine Multipotent Stromal Cells from Subcutaneous and Infrapatellar Adipose Tissue. Stem Cell Rev. 2016;12:257-68 pubmed 出版商
  1372. David V, Martin A, Isakova T, Spaulding C, Qi L, Ramirez V, et al. Inflammation and functional iron deficiency regulate fibroblast growth factor 23 production. Kidney Int. 2016;89:135-46 pubmed 出版商
  1373. Hatanaka Y, Watase K, Wada K, Nagai Y. Abnormalities in synaptic dynamics during development in a mouse model of spinocerebellar ataxia type 1. Sci Rep. 2015;5:16102 pubmed 出版商
  1374. Qiao Y, Guo W, Li L, Shao S, Qiao X, Shao J, et al. Melatonin attenuates hypertension-induced renal injury partially through inhibiting oxidative stress in rats. Mol Med Rep. 2016;13:21-6 pubmed 出版商
  1375. Riesenberg S, Groetchen A, Siddaway R, Bald T, Reinhardt J, Smorra D, et al. MITF and c-Jun antagonism interconnects melanoma dedifferentiation with pro-inflammatory cytokine responsiveness and myeloid cell recruitment. Nat Commun. 2015;6:8755 pubmed 出版商
  1376. Laustriat D, Gide J, Barrault L, Chautard E, Benoit C, Auboeuf D, et al. In Vitro and In Vivo Modulation of Alternative Splicing by the Biguanide Metformin. Mol Ther Nucleic Acids. 2015;4:e262 pubmed 出版商
  1377. Xiao D, Ren P, Su H, Yue M, Xiu R, Hu Y, et al. Myc promotes glutaminolysis in human neuroblastoma through direct activation of glutaminase 2. Oncotarget. 2015;6:40655-66 pubmed 出版商
  1378. Yu D, Makkar G, Dong T, Strickland D, Sarkar R, Monahan T. MARCKS Signaling Differentially Regulates Vascular Smooth Muscle and Endothelial Cell Proliferation through a KIS-, p27kip1- Dependent Mechanism. PLoS ONE. 2015;10:e0141397 pubmed 出版商
  1379. Nikonova A, Deneka A, Eckman L, Kopp M, Hensley H, Egleston B, et al. Opposing Effects of Inhibitors of Aurora-A and EGFR in Autosomal-Dominant Polycystic Kidney Disease. Front Oncol. 2015;5:228 pubmed 出版商
  1380. Elgner F, Donnerhak C, Ren H, Medvedev R, Schreiber A, Weber L, et al. Characterization of α-taxilin as a novel factor controlling the release of hepatitis C virus. Biochem J. 2016;473:145-55 pubmed 出版商
  1381. Zhao E, Maj T, Kryczek I, Li W, Wu K, Zhao L, et al. Cancer mediates effector T cell dysfunction by targeting microRNAs and EZH2 via glycolysis restriction. Nat Immunol. 2016;17:95-103 pubmed 出版商
  1382. Hunter J, Butterworth J, Zhao B, Sellier H, Campbell K, Thomas H, et al. The NF-κB subunit c-Rel regulates Bach2 tumour suppressor expression in B-cell lymphoma. Oncogene. 2016;35:3476-84 pubmed 出版商
  1383. Osmanagic Myers S, Rus S, Wolfram M, Brunner D, Goldmann W, Bonakdar N, et al. Plectin reinforces vascular integrity by mediating crosstalk between the vimentin and the actin networks. J Cell Sci. 2015;128:4138-50 pubmed 出版商
  1384. Shimura D, Kusakari Y, Sasano T, Nakashima Y, Nakai G, Jiao Q, et al. Heterozygous deletion of sarcolipin maintains normal cardiac function. Am J Physiol Heart Circ Physiol. 2016;310:H92-103 pubmed 出版商
  1385. Ting W, Kuo W, Hsieh D, Yeh Y, Day C, Chen Y, et al. Heat Killed Lactobacillus reuteri GMNL-263 Reduces Fibrosis Effects on the Liver and Heart in High Fat Diet-Hamsters via TGF-β Suppression. Int J Mol Sci. 2015;16:25881-96 pubmed 出版商
  1386. Fernández Santiago R, Carballo Carbajal I, Castellano G, Torrent R, Richaud Y, Sánchez Danés A, et al. Aberrant epigenome in iPSC-derived dopaminergic neurons from Parkinson's disease patients. EMBO Mol Med. 2015;7:1529-46 pubmed 出版商
  1387. Rizvi F, Mathur A, Krishna S, Siddiqi M, Kakkar P. Suppression in PHLPP2 induction by morin promotes Nrf2-regulated cellular defenses against oxidative injury to primary rat hepatocytes. Redox Biol. 2015;6:587-598 pubmed 出版商
  1388. d Avenia M, Citro R, De Marco M, Veronese A, Rosati A, Visone R, et al. A novel miR-371a-5p-mediated pathway, leading to BAG3 upregulation in cardiomyocytes in response to epinephrine, is lost in Takotsubo cardiomyopathy. Cell Death Dis. 2015;6:e1948 pubmed 出版商
  1389. Shi J, Fung G, Deng H, Zhang J, Fiesel F, Springer W, et al. NBR1 is dispensable for PARK2-mediated mitophagy regardless of the presence or absence of SQSTM1. Cell Death Dis. 2015;6:e1943 pubmed 出版商
  1390. Heishima K, Mori T, Ichikawa Y, Sakai H, Kuranaga Y, Nakagawa T, et al. MicroRNA-214 and MicroRNA-126 Are Potential Biomarkers for Malignant Endothelial Proliferative Diseases. Int J Mol Sci. 2015;16:25377-91 pubmed 出版商
  1391. Antonucci L, Fagman J, Kim J, Todoric J, Gukovsky I, Mackey M, et al. Basal autophagy maintains pancreatic acinar cell homeostasis and protein synthesis and prevents ER stress. Proc Natl Acad Sci U S A. 2015;112:E6166-74 pubmed 出版商
  1392. Yue J, Ben Messaoud N, López J. Hyperosmotic Shock Engages Two Positive Feedback Loops through Caspase-3-dependent Proteolysis of JNK1-2 and Bid. J Biol Chem. 2015;290:30375-89 pubmed 出版商
  1393. Wang B, Ma A, Zhang L, Jin W, Qian Y, Xu G, et al. POH1 deubiquitylates and stabilizes E2F1 to promote tumour formation. Nat Commun. 2015;6:8704 pubmed 出版商
  1394. Deisting W, Raum T, Kufer P, Baeuerle P, Münz M. Impact of Diverse Immune Evasion Mechanisms of Cancer Cells on T Cells Engaged by EpCAM/CD3-Bispecific Antibody Construct AMG 110. PLoS ONE. 2015;10:e0141669 pubmed 出版商
  1395. Hadzic E, Catillon M, Halavatyi A, Medves S, Van Troys M, Moes M, et al. Delineating the Tes Interaction Site in Zyxin and Studying Cellular Effects of Its Disruption. PLoS ONE. 2015;10:e0140511 pubmed 出版商
  1396. Oh Y, Park H, Shin J, Lee J, Park H, Kho D, et al. Ndrg1 is a T-cell clonal anergy factor negatively regulated by CD28 costimulation and interleukin-2. Nat Commun. 2015;6:8698 pubmed 出版商
  1397. Eiseler T, Wille C, Koehler C, Illing A, Seufferlein T. Protein Kinase D2 Assembles a Multiprotein Complex at the Trans-Golgi Network to Regulate Matrix Metalloproteinase Secretion. J Biol Chem. 2016;291:462-77 pubmed 出版商
  1398. Watkinson R, McEwan W, Tam J, Vaysburd M, James L. TRIM21 Promotes cGAS and RIG-I Sensing of Viral Genomes during Infection by Antibody-Opsonized Virus. PLoS Pathog. 2015;11:e1005253 pubmed 出版商
  1399. Knoll M, Macher Goeppinger S, Kopitz J, Duensing S, Pahernik S, Hohenfellner M, et al. The ribosomal protein S6 in renal cell carcinoma: functional relevance and potential as biomarker. Oncotarget. 2016;7:418-32 pubmed 出版商
  1400. Zampieri A, Champagne J, Auzemery B, Fuentes I, Maurel B, Bienvenu F. Hyper sensitive protein detection by Tandem-HTRF reveals Cyclin D1 dynamics in adult mouse. Sci Rep. 2015;5:15739 pubmed 出版商
  1401. He W, Bai G, Zhou H, Wei N, White N, Lauer J, et al. CMT2D neuropathy is linked to the neomorphic binding activity of glycyl-tRNA synthetase. Nature. 2015;526:710-4 pubmed 出版商
  1402. Finkin S, Yuan D, Stein I, Taniguchi K, Weber A, Unger K, et al. Ectopic lymphoid structures function as microniches for tumor progenitor cells in hepatocellular carcinoma. Nat Immunol. 2015;16:1235-44 pubmed 出版商
  1403. Ryu T, Spatola B, Delabaere L, Bowlin K, Hopp H, Kunitake R, et al. Heterochromatic breaks move to the nuclear periphery to continue recombinational repair. Nat Cell Biol. 2015;17:1401-11 pubmed 出版商
  1404. Choi J, Lee S, Mallard W, Clement K, Tagliazucchi G, Lim H, et al. A comparison of genetically matched cell lines reveals the equivalence of human iPSCs and ESCs. Nat Biotechnol. 2015;33:1173-81 pubmed 出版商
  1405. Shen W, Chang A, Wang J, Zhou W, Gao R, Li J, et al. TIFA, an inflammatory signaling adaptor, is tumor suppressive for liver cancer. Oncogenesis. 2015;4:e173 pubmed 出版商
  1406. Chidlow G, Wood J, Knoops B, Casson R. Expression and distribution of peroxiredoxins in the retina and optic nerve. Brain Struct Funct. 2016;221:3903-3925 pubmed
  1407. Brown P, Wong K, Felce S, Lyne L, Spearman H, Soilleux E, et al. FOXP1 suppresses immune response signatures and MHC class II expression in activated B-cell-like diffuse large B-cell lymphomas. Leukemia. 2016;30:605-16 pubmed 出版商
  1408. Ramlee M, Yan T, Cheung A, Chuah C, Li S. High-throughput genotyping of CRISPR/Cas9-mediated mutants using fluorescent PCR-capillary gel electrophoresis. Sci Rep. 2015;5:15587 pubmed 出版商
  1409. Qin W, Li C, Zheng W, Guo Q, Zhang Y, Kang M, et al. Inhibition of autophagy promotes metastasis and glycolysis by inducing ROS in gastric cancer cells. Oncotarget. 2015;6:39839-54 pubmed 出版商
  1410. Slemmons K, Crose L, Rudzinski E, Bentley R, Linardic C. Role of the YAP Oncoprotein in Priming Ras-Driven Rhabdomyosarcoma. PLoS ONE. 2015;10:e0140781 pubmed 出版商
  1411. Bridoux L, Deneyer N, Bergiers I, Rezsohazy R. Molecular Analysis of the HOXA2-Dependent Degradation of RCHY1. PLoS ONE. 2015;10:e0141347 pubmed 出版商
  1412. Ramiscal R, Parish I, Lee Young R, Babon J, Blagih J, Pratama A, et al. Attenuation of AMPK signaling by ROQUIN promotes T follicular helper cell formation. elife. 2015;4: pubmed 出版商
  1413. Zomerman W, Plasschaert S, Diks S, Lourens H, Meeuwsen de Boer T, Hoving E, et al. Exogenous HGF Bypasses the Effects of ErbB Inhibition on Tumor Cell Viability in Medulloblastoma Cell Lines. PLoS ONE. 2015;10:e0141381 pubmed 出版商
  1414. Tonsing Carter E, Bailey B, Saadatzadeh M, Ding J, Wang H, Sinn A, et al. Potentiation of Carboplatin-Mediated DNA Damage by the Mdm2 Modulator Nutlin-3a in a Humanized Orthotopic Breast-to-Lung Metastatic Model. Mol Cancer Ther. 2015;14:2850-63 pubmed 出版商
  1415. Tajerian M, Leu D, Yang P, Huang T, Kingery W, Clark J. Differential Efficacy of Ketamine in the Acute versus Chronic Stages of Complex Regional Pain Syndrome in Mice. Anesthesiology. 2015;123:1435-47 pubmed 出版商
  1416. Yang C, Lowther K, Lalioti M, Seli E. Embryonic Poly(A)-Binding Protein (EPAB) Is Required for Granulosa Cell EGF Signaling and Cumulus Expansion in Female Mice. Endocrinology. 2016;157:405-16 pubmed 出版商
  1417. Liu C, Zheng L, Wang H, Ran X, Liu H, Sun X. The RCAN1 inhibits NF-κB and suppresses lymphoma growth in mice. Cell Death Dis. 2015;6:e1929 pubmed 出版商
  1418. Lauková J, Kozubík A, Hofmanová J, Nekvindová J, Sova P, Moyer M, et al. Loss of PTEN Facilitates Rosiglitazone-Mediated Enhancement of Platinum(IV) Complex LA-12-Induced Apoptosis in Colon Cancer Cells. PLoS ONE. 2015;10:e0141020 pubmed 出版商
  1419. Lee J, Lee S, Heo S, Kim K, Kim C, Kim D, et al. Novel Function of Lysine Methyltransferase G9a in the Regulation of Sox2 Protein Stability. PLoS ONE. 2015;10:e0141118 pubmed 出版商
  1420. Du J, Ge X, Liu Y, Jiang P, Wang Z, Zhang R, et al. Targeting Swine Leukocyte Antigen Class I Molecules for Proteasomal Degradation by the nsp1α Replicase Protein of the Chinese Highly Pathogenic Porcine Reproductive and Respiratory Syndrome Virus Strain JXwn06. J Virol. 2016;90:682-93 pubmed 出版商
  1421. Slaats G, Isabella C, Kroes H, Dempsey J, Gremmels H, Monroe G, et al. MKS1 regulates ciliary INPP5E levels in Joubert syndrome. J Med Genet. 2016;53:62-72 pubmed 出版商
  1422. Reeder J, Kwak Y, McNamara R, Forst C, D Orso I. HIV Tat controls RNA Polymerase II and the epigenetic landscape to transcriptionally reprogram target immune cells. elife. 2015;4: pubmed 出版商
  1423. Graindorge D, Martineau S, Machon C, Arnoux P, Guitton J, Francesconi S, et al. Singlet Oxygen-Mediated Oxidation during UVA Radiation Alters the Dynamic of Genomic DNA Replication. PLoS ONE. 2015;10:e0140645 pubmed 出版商
  1424. Kenney J, Genheden M, Moon K, Wang X, Foster L, Proud C. Eukaryotic elongation factor 2 kinase regulates the synthesis of microtubule-related proteins in neurons. J Neurochem. 2016;136:276-84 pubmed 出版商
  1425. DeNicola G, Chen P, Mullarky E, Sudderth J, Hu Z, Wu D, et al. NRF2 regulates serine biosynthesis in non-small cell lung cancer. Nat Genet. 2015;47:1475-81 pubmed 出版商
  1426. Hochrainer K, Pejanovic N, Olaseun V, Zhang S, Iadecola C, Anrather J. The ubiquitin ligase HERC3 attenuates NF-κB-dependent transcription independently of its enzymatic activity by delivering the RelA subunit for degradation. Nucleic Acids Res. 2015;43:9889-904 pubmed 出版商
  1427. Gu Y, Zhang Y, Bi Y, Liu J, Tan B, Gong M, et al. Mesenchymal stem cells suppress neuronal apoptosis and decrease IL-10 release via the TLR2/NFκB pathway in rats with hypoxic-ischemic brain damage. Mol Brain. 2015;8:65 pubmed 出版商
  1428. Lu R, Herrera B, Eshleman H, Fu Y, Bloom A, Li Z, et al. Shigella Effector OspB Activates mTORC1 in a Manner That Depends on IQGAP1 and Promotes Cell Proliferation. PLoS Pathog. 2015;11:e1005200 pubmed 出版商
  1429. Sabirzhanov B, Stoica B, Zhao Z, Loane D, Wu J, Dorsey S, et al. miR-711 upregulation induces neuronal cell death after traumatic brain injury. Cell Death Differ. 2016;23:654-68 pubmed 出版商
  1430. Liu Z, Hu J, Liang J, Zhou A, Li M, Yan S, et al. Far upstream element-binding protein 1 is a prognostic biomarker and promotes nasopharyngeal carcinoma progression. Cell Death Dis. 2015;6:e1920 pubmed 出版商
  1431. Caccamo A, Branca C, Talboom J, Shaw D, Turner D, Ma L, et al. Reducing Ribosomal Protein S6 Kinase 1 Expression Improves Spatial Memory and Synaptic Plasticity in a Mouse Model of Alzheimer's Disease. J Neurosci. 2015;35:14042-56 pubmed 出版商
  1432. Kizuka Y, Nakano M, Kitazume S, Saito T, Saido T, Taniguchi N. Bisecting GlcNAc modification stabilizes BACE1 protein under oxidative stress conditions. Biochem J. 2016;473:21-30 pubmed 出版商
  1433. Gökbuget D, Pereira J, Bachofner S, Marchais A, Ciaudo C, Stoffel M, et al. The Lin28/let-7 axis is critical for myelination in the peripheral nervous system. Nat Commun. 2015;6:8584 pubmed 出版商
  1434. Montes M, Coiras M, Becerra S, Moreno Castro C, Mateos E, Majuelos J, et al. Functional Consequences for Apoptosis by Transcription Elongation Regulator 1 (TCERG1)-Mediated Bcl-x and Fas/CD95 Alternative Splicing. PLoS ONE. 2015;10:e0139812 pubmed 出版商
  1435. Ou Yang L, Xiao S, Liu P, Yi S, Zhang X, Ou Yang S, et al. Forkhead box C1 induces epithelial‑mesenchymal transition and is a potential therapeutic target in nasopharyngeal carcinoma. Mol Med Rep. 2015;12:8003-9 pubmed 出版商
  1436. Mello A, Leal M, Rey J, Pinto G, Lamarão L, Montenegro R, et al. Deregulated Expression of SRC, LYN and CKB Kinases by DNA Methylation and Its Potential Role in Gastric Cancer Invasiveness and Metastasis. PLoS ONE. 2015;10:e0140492 pubmed 出版商
  1437. Kim C, Kim J, Jo K, Lee Y, Sohn E, Yoo N, et al. OSSC1E-K19, a novel phytochemical component of Osteomeles schwerinae, prevents glycated albumin-induced retinal vascular injury in rats. Mol Med Rep. 2015;12:7279-84 pubmed 出版商
  1438. Zhang W, Pelicano H, Yin R, Zeng J, Wen T, Ding L, et al. Effective elimination of chronic lymphocytic leukemia cells in the stromal microenvironment by a novel drug combination strategy using redox-mediated mechanisms. Mol Med Rep. 2015;12:7374-88 pubmed 出版商
  1439. Takeda S, Wegmann S, Cho H, DeVos S, Commins C, Roe A, et al. Neuronal uptake and propagation of a rare phosphorylated high-molecular-weight tau derived from Alzheimer's disease brain. Nat Commun. 2015;6:8490 pubmed 出版商
  1440. Covarrubias Pinto A, Moll P, Solís Maldonado M, Acuña A, Riveros A, Miró M, et al. Beyond the redox imbalance: Oxidative stress contributes to an impaired GLUT3 modulation in Huntington's disease. Free Radic Biol Med. 2015;89:1085-96 pubmed 出版商
  1441. Liu F, Hon G, Villa G, Turner K, Ikegami S, Yang H, et al. EGFR Mutation Promotes Glioblastoma through Epigenome and Transcription Factor Network Remodeling. Mol Cell. 2015;60:307-18 pubmed 出版商
  1442. Kabaria S, Choi D, Chaudhuri A, Jain M, Li H, Junn E. MicroRNA-7 activates Nrf2 pathway by targeting Keap1 expression. Free Radic Biol Med. 2015;89:548-56 pubmed 出版商
  1443. Courtaut F, Derangère V, Chevriaux A, Ladoire S, Cotte A, Arnould L, et al. Liver X receptor ligand cytotoxicity in colon cancer cells and not in normal colon epithelial cells depends on LXRβ subcellular localization. Oncotarget. 2015;6:26651-62 pubmed 出版商
  1444. Yu D, Makkar G, Strickland D, Blanpied T, Stumpo D, Blackshear P, et al. Myristoylated Alanine-Rich Protein Kinase Substrate (MARCKS) Regulates Small GTPase Rac1 and Cdc42 Activity and Is a Critical Mediator of Vascular Smooth Muscle Cell Migration in Intimal Hyperplasia Formation. J Am Heart Assoc. 2015;4:e002255 pubmed 出版商
  1445. Bae E, Yang N, Lee C, Kim S, Lee H, Lee S. Haploinsufficiency of cathepsin D leads to lysosomal dysfunction and promotes cell-to-cell transmission of α-synuclein aggregates. Cell Death Dis. 2015;6:e1901 pubmed 出版商
  1446. Schmidt T, Schmid Burgk J, Hornung V. Synthesis of an arrayed sgRNA library targeting the human genome. Sci Rep. 2015;5:14987 pubmed 出版商
  1447. Liu X, Chandramouly G, Rass E, Guan Y, Wang G, Hobbs R, et al. LRF maintains genome integrity by regulating the non-homologous end joining pathway of DNA repair. Nat Commun. 2015;6:8325 pubmed 出版商
  1448. Richardson E, Shukla S, Nagy N, Boom W, Beck R, Zhou L, et al. ERK Signaling Is Essential for Macrophage Development. PLoS ONE. 2015;10:e0140064 pubmed 出版商
  1449. Phinney D, Di Giuseppe M, Njah J, Sala E, Shiva S, St Croix C, et al. Mesenchymal stem cells use extracellular vesicles to outsource mitophagy and shuttle microRNAs. Nat Commun. 2015;6:8472 pubmed 出版商
  1450. Shin W, Jeon M, Leem E, Won S, Jeong K, Park S, et al. Induction of microglial toll-like receptor 4 by prothrombin kringle-2: a potential pathogenic mechanism in Parkinson's disease. Sci Rep. 2015;5:14764 pubmed 出版商
  1451. Donzelli S, Mori F, Bellissimo T, Sacconi A, Casini B, Frixa T, et al. Epigenetic silencing of miR-145-5p contributes to brain metastasis. Oncotarget. 2015;6:35183-201 pubmed 出版商
  1452. Shuhendler A, Ye D, Brewer K, Bazalova Carter M, Lee K, Kempen P, et al. Molecular Magnetic Resonance Imaging of Tumor Response to Therapy. Sci Rep. 2015;5:14759 pubmed 出版商
  1453. Meng Z, Moroishi T, Mottier Pavie V, Plouffe S, Hansen C, Hong A, et al. MAP4K family kinases act in parallel to MST1/2 to activate LATS1/2 in the Hippo pathway. Nat Commun. 2015;6:8357 pubmed 出版商
  1454. Fink S, Myeroff L, Kariv R, Platzer P, Xin B, Mikkola D, et al. Induction of KIAA1199/CEMIP is associated with colon cancer phenotype and poor patient survival. Oncotarget. 2015;6:30500-15 pubmed 出版商
  1455. Bacaj T, Wu D, Burré J, Malenka R, Liu X, Sudhof T. Synaptotagmin-1 and -7 Are Redundantly Essential for Maintaining the Capacity of the Readily-Releasable Pool of Synaptic Vesicles. PLoS Biol. 2015;13:e1002267 pubmed 出版商
  1456. Asai H, Ikezu S, Tsunoda S, Medalla M, Luebke J, Haydar T, et al. Depletion of microglia and inhibition of exosome synthesis halt tau propagation. Nat Neurosci. 2015;18:1584-93 pubmed 出版商
  1457. Okoye Okafor U, Bartholdy B, Cartier J, Gao E, Pietrak B, Rendina A, et al. New IDH1 mutant inhibitors for treatment of acute myeloid leukemia. Nat Chem Biol. 2015;11:878-86 pubmed 出版商
  1458. Felli N, Errico M, Pedini F, Petrini M, Puglisi R, Bellenghi M, et al. AP2α controls the dynamic balance between miR-126&126* and miR-221&222 during melanoma progression. Oncogene. 2016;35:3016-26 pubmed 出版商
  1459. Dai B, Chen A, Corkum C, Peroutka R, Landon A, Houng S, et al. Hepatitis C virus upregulates B-cell receptor signaling: a novel mechanism for HCV-associated B-cell lymphoproliferative disorders. Oncogene. 2016;35:2979-90 pubmed 出版商
  1460. Adesina A, Veo B, Courteau G, Mehta V, Wu X, Pang K, et al. FOXG1 expression shows correlation with neuronal differentiation in cerebellar development, aggressive phenotype in medulloblastomas, and survival in a xenograft model of medulloblastoma. Hum Pathol. 2015;46:1859-71 pubmed 出版商
  1461. Finch Edmondson M, Strauss R, Passman A, Sudol M, Yeoh G, Callus B. TAZ Protein Accumulation Is Negatively Regulated by YAP Abundance in Mammalian Cells. J Biol Chem. 2015;290:27928-38 pubmed 出版商
  1462. Patruno A, Pesce M, Grilli A, Speranza L, Franceschelli S, De Lutiis M, et al. mTOR Activation by PI3K/Akt and ERK Signaling in Short ELF-EMF Exposed Human Keratinocytes. PLoS ONE. 2015;10:e0139644 pubmed 出版商
  1463. Patel M, Jacobson B, Ji Y, Drees J, Tang S, Xiong K, et al. Vesicular stomatitis virus expressing interferon-β is oncolytic and promotes antitumor immune responses in a syngeneic murine model of non-small cell lung cancer. Oncotarget. 2015;6:33165-77 pubmed 出版商
  1464. Nawandar D, Wang A, Makielski K, Lee D, Ma S, Barlow E, et al. Differentiation-Dependent KLF4 Expression Promotes Lytic Epstein-Barr Virus Infection in Epithelial Cells. PLoS Pathog. 2015;11:e1005195 pubmed 出版商
  1465. Gely Pernot A, Raverdeau M, Teletin M, Vernet N, Féret B, Klopfenstein M, et al. Retinoic Acid Receptors Control Spermatogonia Cell-Fate and Induce Expression of the SALL4A Transcription Factor. PLoS Genet. 2015;11:e1005501 pubmed 出版商
  1466. Schmidt J, Klingler F, Proschak E, Steinhilber D, Schubert Zsilavecz M, Merk D. NSAIDs Ibuprofen, Indometacin, and Diclofenac do not interact with Farnesoid X Receptor. Sci Rep. 2015;5:14782 pubmed 出版商
  1467. Londrigan S, Short K, Ma J, Gillespie L, Rockman S, Brooks A, et al. Infection of Mouse Macrophages by Seasonal Influenza Viruses Can Be Restricted at the Level of Virus Entry and at a Late Stage in the Virus Life Cycle. J Virol. 2015;89:12319-29 pubmed 出版商
  1468. Hu D, Gur M, Zhou Z, Gamper A, Hung M, Fujita N, et al. Interplay between arginine methylation and ubiquitylation regulates KLF4-mediated genome stability and carcinogenesis. Nat Commun. 2015;6:8419 pubmed 出版商
  1469. Qin J, Zhou Z, Chen W, Wang C, Zhang H, Ge G, et al. BAP1 promotes breast cancer cell proliferation and metastasis by deubiquitinating KLF5. Nat Commun. 2015;6:8471 pubmed 出版商
  1470. Marchi S, Corricelli M, Trapani E, Bravi L, Pittaro A, Delle Monache S, et al. Defective autophagy is a key feature of cerebral cavernous malformations. EMBO Mol Med. 2015;7:1403-17 pubmed 出版商
  1471. Kharaziha P, Chioureas D, Baltatzis G, Fonseca P, Rodriguez P, Gogvadze V, et al. Sorafenib-induced defective autophagy promotes cell death by necroptosis. Oncotarget. 2015;6:37066-82 pubmed 出版商
  1472. André P, Prêle C, Vierkotten S, Carnesecchi S, Donati Y, Chambers R, et al. BARD1 mediates TGF-β signaling in pulmonary fibrosis. Respir Res. 2015;16:118 pubmed 出版商
  1473. Moody P, Sayers E, Magnusson J, Alexander C, Borri P, Watson P, et al. Receptor Crosslinking: A General Method to Trigger Internalization and Lysosomal Targeting of Therapeutic Receptor:Ligand Complexes. Mol Ther. 2015;23:1888-98 pubmed 出版商
  1474. Hainer S, Fazzio T. Regulation of Nucleosome Architecture and Factor Binding Revealed by Nuclease Footprinting of the ESC Genome. Cell Rep. 2015;13:61-69 pubmed 出版商
  1475. Li Z, Hao Q, Luo J, Xiong J, Zhang S, Wang T, et al. USP4 inhibits p53 and NF-κB through deubiquitinating and stabilizing HDAC2. Oncogene. 2016;35:2902-12 pubmed 出版商
  1476. Pellet Many C, Mehta V, Fields L, Mahmoud M, Lowe V, Evans I, et al. Neuropilins 1 and 2 mediate neointimal hyperplasia and re-endothelialization following arterial injury. Cardiovasc Res. 2015;108:288-98 pubmed 出版商
  1477. Zulliger R, Conley S, Mwoyosvi M, Stuck M, Azadi S, Naash M. SNAREs Interact with Retinal Degeneration Slow and Rod Outer Segment Membrane Protein-1 during Conventional and Unconventional Outer Segment Targeting. PLoS ONE. 2015;10:e0138508 pubmed 出版商
  1478. Matsuda S, Adachi J, Ihara M, Tanuma N, Shima H, Kakizuka A, et al. Nuclear pyruvate kinase M2 complex serves as a transcriptional coactivator of arylhydrocarbon receptor. Nucleic Acids Res. 2016;44:636-47 pubmed 出版商
  1479. Xiong R, Zhou W, Siegel D, Kitson R, Freed C, Moody C, et al. A Novel Hsp90 Inhibitor Activates Compensatory Heat Shock Protein Responses and Autophagy and Alleviates Mutant A53T α-Synuclein Toxicity. Mol Pharmacol. 2015;88:1045-54 pubmed 出版商
  1480. Cecchetti S, Bortolomai I, Ferri R, Mercurio L, Canevari S, Podo F, et al. Inhibition of Phosphatidylcholine-Specific Phospholipase C Interferes with Proliferation and Survival of Tumor Initiating Cells in Squamous Cell Carcinoma. PLoS ONE. 2015;10:e0136120 pubmed 出版商
  1481. Bauskar A, Mack W, Mauris J, Argüeso P, Heur M, Nagel B, et al. Clusterin Seals the Ocular Surface Barrier in Mouse Dry Eye. PLoS ONE. 2015;10:e0138958 pubmed 出版商
  1482. McCormack R, de Armas L, Shiratsuchi M, Fiorentino D, Olsson M, Lichtenheld M, et al. Perforin-2 is essential for intracellular defense of parenchymal cells and phagocytes against pathogenic bacteria. elife. 2015;4: pubmed 出版商
  1483. Shnitsar I, Bashkurov M, Masson G, Ogunjimi A, Mosessian S, Cabeza E, et al. PTEN regulates cilia through Dishevelled. Nat Commun. 2015;6:8388 pubmed 出版商
  1484. Polettini J, Behnia F, Taylor B, Saade G, Taylor R, Menon R. Telomere Fragment Induced Amnion Cell Senescence: A Contributor to Parturition?. PLoS ONE. 2015;10:e0137188 pubmed 出版商
  1485. Wu L, Guo L, Liang Y, Liu X, Jiang L, Wang L. Curcumin suppresses stem-like traits of lung cancer cells via inhibiting the JAK2/STAT3 signaling pathway. Oncol Rep. 2015;34:3311-7 pubmed 出版商
  1486. Sun Y, Ju M, Lin Z, Fredrick T, Evans L, Tian K, et al. SOCS3 in retinal neurons and glial cells suppresses VEGF signaling to prevent pathological neovascular growth. Sci Signal. 2015;8:ra94 pubmed 出版商
  1487. Telias M, Mayshar Y, Amit A, Ben Yosef D. Molecular mechanisms regulating impaired neurogenesis of fragile X syndrome human embryonic stem cells. Stem Cells Dev. 2015;24:2353-65 pubmed 出版商
  1488. Haim Y, Bluher M, Slutsky N, Goldstein N, Kloting N, Harman Boehm I, et al. Elevated autophagy gene expression in adipose tissue of obese humans: A potential non-cell-cycle-dependent function of E2F1. Autophagy. 2015;11:2074-2088 pubmed 出版商
  1489. Grootaert M, da Costa Martins P, Bitsch N, Pintelon I, De Meyer G, Martinet W, et al. Defective autophagy in vascular smooth muscle cells accelerates senescence and promotes neointima formation and atherogenesis. Autophagy. 2015;11:2014-2032 pubmed 出版商
  1490. Granato M, Santarelli R, Filardi M, Gonnella R, Farina A, Torrisi M, et al. The activation of KSHV lytic cycle blocks autophagy in PEL cells. Autophagy. 2015;11:1978-1986 pubmed 出版商
  1491. Mazur P, Herner A, Mello S, Wirth M, Hausmann S, Sánchez Rivera F, et al. Combined inhibition of BET family proteins and histone deacetylases as a potential epigenetics-based therapy for pancreatic ductal adenocarcinoma. Nat Med. 2015;21:1163-71 pubmed 出版商
  1492. Yao H, Ferdaus M, Zahid H, Ohara H, Nakahara T, Nabika T. Focal Ischemic Injury with Complex Middle Cerebral Artery in Stroke-Prone Spontaneously Hypertensive Rats with Loss-Of-Function in NADPH Oxidases. PLoS ONE. 2015;10:e0138551 pubmed 出版商
  1493. Ferdaoussi M, Dai X, Jensen M, Wang R, Peterson B, Huang C, et al. Isocitrate-to-SENP1 signaling amplifies insulin secretion and rescues dysfunctional β cells. J Clin Invest. 2015;125:3847-60 pubmed 出版商
  1494. Yokdang N, Hatakeyama J, Wald J, Simion C, Tellez J, Chang D, et al. LRIG1 opposes epithelial-to-mesenchymal transition and inhibits invasion of basal-like breast cancer cells. Oncogene. 2016;35:2932-47 pubmed 出版商
  1495. Nemazanyy I, Montagnac G, Russell R, Morzyglod L, Burnol A, Guan K, et al. Class III PI3K regulates organismal glucose homeostasis by providing negative feedback on hepatic insulin signalling. Nat Commun. 2015;6:8283 pubmed 出版商
  1496. Agarwal S, Bell C, Taylor S, Moran R. p53 Deletion or Hotspot Mutations Enhance mTORC1 Activity by Altering Lysosomal Dynamics of TSC2 and Rheb. Mol Cancer Res. 2016;14:66-77 pubmed 出版商
  1497. Ho D, Kim H, Kim J, Sim H, Ahn H, Kim J, et al. Leucine-Rich Repeat Kinase 2 (LRRK2) phosphorylates p53 and induces p21(WAF1/CIP1) expression. Mol Brain. 2015;8:54 pubmed 出版商
  1498. Brina D, Miluzio A, Ricciardi S, Clarke K, Davidsen P, Viero G, et al. eIF6 coordinates insulin sensitivity and lipid metabolism by coupling translation to transcription. Nat Commun. 2015;6:8261 pubmed 出版商
  1499. Gebhardt A, Habjan M, Benda C, Meiler A, Haas D, Hein M, et al. mRNA export through an additional cap-binding complex consisting of NCBP1 and NCBP3. Nat Commun. 2015;6:8192 pubmed 出版商
  1500. Yang L, McKnight G. Hypothalamic PKA regulates leptin sensitivity and adiposity. Nat Commun. 2015;6:8237 pubmed 出版商
  1501. Watt S, Dayal J, Wright S, Riddle M, Pourreyron C, McMillan J, et al. Lysyl Hydroxylase 3 Localizes to Epidermal Basement Membrane and Is Reduced in Patients with Recessive Dystrophic Epidermolysis Bullosa. PLoS ONE. 2015;10:e0137639 pubmed 出版商
  1502. Hu P, Chu J, Wu Y, Sun L, Lv X, Zhu Y, et al. NBAT1 suppresses breast cancer metastasis by regulating DKK1 via PRC2. Oncotarget. 2015;6:32410-25 pubmed 出版商
  1503. Zoppi N, Chiarelli N, Cinquina V, Ritelli M, Colombi M. GLUT10 deficiency leads to oxidative stress and non-canonical αvβ3 integrin-mediated TGFβ signalling associated with extracellular matrix disarray in arterial tortuosity syndrome skin fibroblasts. Hum Mol Genet. 2015;24:6769-87 pubmed 出版商
  1504. Laird J, Pan Y, Modestou M, Yamaguchi D, Song H, Sokolov M, et al. Identification of a VxP Targeting Signal in the Flagellar Na+ /K+ -ATPase. Traffic. 2015;16:1239-53 pubmed 出版商
  1505. Iriondo O, Rábano M, Domenici G, Carlevaris O, López Ruiz J, Zabalza I, et al. Distinct breast cancer stem/progenitor cell populations require either HIF1α or loss of PHD3 to expand under hypoxic conditions. Oncotarget. 2015;6:31721-39 pubmed 出版商
  1506. Darr J, Klochendler A, Isaac S, Geiger T, Geiger T, Eden A. Phosphoproteomic analysis reveals Smarcb1 dependent EGFR signaling in Malignant Rhabdoid tumor cells. Mol Cancer. 2015;14:167 pubmed 出版商
  1507. Fong C, Gilan O, Lam E, Rubin A, Ftouni S, Tyler D, et al. BET inhibitor resistance emerges from leukaemia stem cells. Nature. 2015;525:538-42 pubmed 出版商
  1508. Xiao X, Shi X, Fan Y, Zhang X, Wu M, Lan P, et al. GITR subverts Foxp3(+) Tregs to boost Th9 immunity through regulation of histone acetylation. Nat Commun. 2015;6:8266 pubmed 出版商
  1509. Bohovych I, Fernandez M, Rahn J, Stackley K, Bestman J, Anandhan A, et al. Metalloprotease OMA1 Fine-tunes Mitochondrial Bioenergetic Function and Respiratory Supercomplex Stability. Sci Rep. 2015;5:13989 pubmed 出版商
  1510. Qiao Y, Lin S, Chen Y, Voon D, Zhu F, Chuang L, et al. RUNX3 is a novel negative regulator of oncogenic TEAD-YAP complex in gastric cancer. Oncogene. 2016;35:2664-74 pubmed 出版商
  1511. Chen H, Sun Y, Lai L, Wu H, Xiao Y, Ming B, et al. Interleukin-33 is released in spinal cord and suppresses experimental autoimmune encephalomyelitis in mice. Neuroscience. 2015;308:157-68 pubmed 出版商
  1512. Dong H, Chen Z, Wang C, Xiong Z, Zhao W, Jia C, et al. Rictor Regulates Spermatogenesis by Controlling Sertoli Cell Cytoskeletal Organization and Cell Polarity in the Mouse Testis. Endocrinology. 2015;156:4244-56 pubmed 出版商
  1513. Rodríguez C, Reidel S, Bal de Kier Joffé E, Jasnis M, Fiszman G. Autophagy Protects from Trastuzumab-Induced Cytotoxicity in HER2 Overexpressing Breast Tumor Spheroids. PLoS ONE. 2015;10:e0137920 pubmed 出版商
  1514. Woolery K, Mohamed M, Linger R, Dobrinski K, Roman J, Kruk P. BRCA1 185delAG Mutation Enhances Interleukin-1β Expression in Ovarian Surface Epithelial Cells. Biomed Res Int. 2015;2015:652017 pubmed 出版商
  1515. Ray A, Vasudevan S, Sengupta S. 6-Shogaol Inhibits Breast Cancer Cells and Stem Cell-Like Spheroids by Modulation of Notch Signaling Pathway and Induction of Autophagic Cell Death. PLoS ONE. 2015;10:e0137614 pubmed 出版商
  1516. Vennin C, Spruyt N, Dahmani F, Julien S, Bertucci F, Finetti P, et al. H19 non coding RNA-derived miR-675 enhances tumorigenesis and metastasis of breast cancer cells by downregulating c-Cbl and Cbl-b. Oncotarget. 2015;6:29209-23 pubmed 出版商
  1517. Yao J, Zheng K, Zhang X. Rosiglitazone exerts neuroprotective effects via the suppression of neuronal autophagy and apoptosis in the cortex following traumatic brain injury. Mol Med Rep. 2015;12:6591-7 pubmed 出版商
  1518. Lund R, Leth Larsen R, Caterino T, Terp M, Nissen J, Lænkholm A, et al. NADH-Cytochrome b5 Reductase 3 Promotes Colonization and Metastasis Formation and Is a Prognostic Marker of Disease-Free and Overall Survival in Estrogen Receptor-Negative Breast Cancer. Mol Cell Proteomics. 2015;14:2988-99 pubmed 出版商
  1519. Hu M, Wang Z, Teng Y, Jiang Z, Ma X, Hou N, et al. Loss of protein phosphatase 6 in oocytes causes failure of meiosis II exit and impaired female fertility. J Cell Sci. 2015;128:3769-80 pubmed 出版商
  1520. Ashford A, Dunkley T, Cockerill M, Rowlinson R, Baak L, Gallo R, et al. Identification of DYRK1B as a substrate of ERK1/2 and characterisation of the kinase activity of DYRK1B mutants from cancer and metabolic syndrome. Cell Mol Life Sci. 2016;73:883-900 pubmed 出版商
  1521. Mizuno S, Hanamura I, Ota A, Karnan S, Narita T, Ri M, et al. Overexpression of salivary-type amylase reduces the sensitivity to bortezomib in multiple myeloma cells. Int J Hematol. 2015;102:569-78 pubmed 出版商
  1522. Li M, Yang S, Xing B, Ferguson B, Gulchina Y, Li Y, et al. LY395756, an mGluR2 agonist and mGluR3 antagonist, enhances NMDA receptor expression and function in the normal adult rat prefrontal cortex, but fails to improve working memory and reverse MK801-induced working memory impairment. Exp Neurol. 2015;273:190-201 pubmed 出版商
  1523. Hardege I, Xu S, Gordon R, Thompson A, Figg N, Stowasser M, et al. Novel Insertion Mutation in KCNJ5 Channel Produces Constitutive Aldosterone Release From H295R Cells. Mol Endocrinol. 2015;29:1522-30 pubmed 出版商
  1524. King C, Li X, Barbachano Guerrero A, Bhaduri McIntosh S. STAT3 Regulates Lytic Activation of Kaposi's Sarcoma-Associated Herpesvirus. J Virol. 2015;89:11347-55 pubmed 出版商
  1525. Jang C, Lahens N, Hogenesch J, Sehgal A. Ribosome profiling reveals an important role for translational control in circadian gene expression. Genome Res. 2015;25:1836-47 pubmed 出版商
  1526. Reuther C, Heinzle V, Spampatti M, Vlotides G, de Toni E, Spöttl G, et al. Cabozantinib and Tivantinib, but Not INC280, Induce Antiproliferative and Antimigratory Effects in Human Neuroendocrine Tumor Cells in vitro: Evidence for 'Off-Target' Effects Not Mediated by c-Met Inhibition. Neuroendocrinology. 2016;103:383-401 pubmed 出版商
  1527. Weaver A, Cooper T, Rodriguez M, Trummell H, Bonner J, Rosenthal E, et al. DNA double strand break repair defect and sensitivity to poly ADP-ribose polymerase (PARP) inhibition in human papillomavirus 16-positive head and neck squamous cell carcinoma. Oncotarget. 2015;6:26995-7007 pubmed 出版商
  1528. Clark D, Tripathi K, Dorsman J, Palle K. FANCJ protein is important for the stability of FANCD2/FANCI proteins and protects them from proteasome and caspase-3 dependent degradation. Oncotarget. 2015;6:28816-32 pubmed 出版商
  1529. Heishima K, Mori T, Sakai H, Sugito N, Murakami M, Yamada N, et al. MicroRNA-214 Promotes Apoptosis in Canine Hemangiosarcoma by Targeting the COP1-p53 Axis. PLoS ONE. 2015;10:e0137361 pubmed 出版商
  1530. Henstridge C, Jackson R, Kim J, Herrmann A, Wright A, Harris S, et al. Post-mortem brain analyses of the Lothian Birth Cohort 1936: extending lifetime cognitive and brain phenotyping to the level of the synapse. Acta Neuropathol Commun. 2015;3:53 pubmed 出版商
  1531. Brigidi G, Santyr B, Shimell J, Jovellar B, Bamji S. Activity-regulated trafficking of the palmitoyl-acyl transferase DHHC5. Nat Commun. 2015;6:8200 pubmed 出版商
  1532. Pflibsen L, Stang K, Sconce M, Wilson V, Hood R, Meshul C, et al. Executive function deficits and glutamatergic protein alterations in a progressive 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine mouse model of Parkinson's disease. J Neurosci Res. 2015;93:1849-64 pubmed 出版商
  1533. Wu X, Zahari M, Renuse S, Nirujogi R, Kim M, Manda S, et al. Phosphoproteomic Analysis Identifies Focal Adhesion Kinase 2 (FAK2) as a Potential Therapeutic Target for Tamoxifen Resistance in Breast Cancer. Mol Cell Proteomics. 2015;14:2887-900 pubmed 出版商
  1534. Sharma B, Kolhe R, Black S, Keller J, Mivechi N, Satyanarayana A. Inhibitor of differentiation 1 transcription factor promotes metabolic reprogramming in hepatocellular carcinoma cells. FASEB J. 2016;30:262-75 pubmed 出版商
  1535. Zhou L, Panasiuk A, Downton M, Zhao D, Yang B, Jia Z, et al. Systemic PPARγ deletion causes severe disturbance in fluid homeostasis in mice. Physiol Genomics. 2015;47:541-7 pubmed 出版商
  1536. Yao X, Tang Z, Fu X, Yin J, Liang Y, Li C, et al. The Mediator subunit MED23 couples H2B mono-ubiquitination to transcriptional control and cell fate determination. EMBO J. 2015;34:2885-902 pubmed 出版商
  1537. O Leary K, Shia A, Cavicchioli F, Haley V, Comino A, Merlano M, et al. Identification of Endoglin as an epigenetically regulated tumour-suppressor gene in lung cancer. Br J Cancer. 2015;113:970-8 pubmed 出版商
  1538. Chen A, Donovan A, Ned Sykes R, Andrews N. Noncanonical role of transferrin receptor 1 is essential for intestinal homeostasis. Proc Natl Acad Sci U S A. 2015;112:11714-9 pubmed 出版商
  1539. Quijada P, Hariharan N, Cubillo J, Bala K, Emathinger J, Wang B, et al. Nuclear Calcium/Calmodulin-dependent Protein Kinase II Signaling Enhances Cardiac Progenitor Cell Survival and Cardiac Lineage Commitment. J Biol Chem. 2015;290:25411-26 pubmed 出版商
  1540. Mard S, Veisi A, Ahangarpour A, Gharib Naseri M. Gastric acid induces mucosal H2S release in rats by upregulating mRNA and protein expression of cystathionine gamma lyase. J Physiol Sci. 2015;65:545-54 pubmed 出版商
  1541. Okoro E, Zhang H, Guo Z, Yang F, Smith C, Yang H. A Subregion of Reelin Suppresses Lipoprotein-Induced Cholesterol Accumulation in Macrophages. PLoS ONE. 2015;10:e0136895 pubmed 出版商
  1542. Chun Y, Oh H, Park M, Kim T, Chung S. Increasing Membrane Cholesterol Level Increases the Amyloidogenic Peptide by Enhancing the Expression of Phospholipase C. J Neurodegener Dis. 2013;2013:407903 pubmed 出版商
  1543. Lee Y, Yun M, Kim H, Jeon B, Park B, Lee B, et al. Exogenous administration of DLK1 ameliorates hepatic steatosis and regulates gluconeogenesis via activation of AMPK. Int J Obes (Lond). 2016;40:356-65 pubmed 出版商
  1544. Wang L, Hao H, Wang J, Wang X, Zhang S, Du Y, et al. Decreased autophagy: a major factor for cardiomyocyte death induced by β1-adrenoceptor autoantibodies. Cell Death Dis. 2015;6:e1862 pubmed 出版商
  1545. Chojnowski A, Ong P, Wong E, Lim J, Mutalif R, Navasankari R, et al. Progerin reduces LAP2α-telomere association in Hutchinson-Gilford progeria. elife. 2015;4: pubmed 出版商
  1546. Rolyan H, Tyurina Y, Hernandez M, Amoscato A, Sparvero L, Nmezi B, et al. Defects of Lipid Synthesis Are Linked to the Age-Dependent Demyelination Caused by Lamin B1 Overexpression. J Neurosci. 2015;35:12002-17 pubmed 出版商
  1547. Yan G, Wang Q, Hu S, Wang D, Qiao Y, Ma G, et al. Digoxin inhibits PDGF-BB-induced VSMC proliferation and migration through an increase in ILK signaling and attenuates neointima formation following carotid injury. Int J Mol Med. 2015;36:1001-11 pubmed 出版商
  1548. Wong P, Feng Y, Wang J, Shi R, Jiang X. Regulation of autophagy by coordinated action of mTORC1 and protein phosphatase 2A. Nat Commun. 2015;6:8048 pubmed 出版商
  1549. Zarpelon A, Rodrigues F, Lopes A, Souza G, Carvalho T, Pinto L, et al. Spinal cord oligodendrocyte-derived alarmin IL-33 mediates neuropathic pain. FASEB J. 2016;30:54-65 pubmed 出版商
  1550. Cavieres V, González A, Muñoz V, Yefi C, Bustamante H, Barraza R, et al. Tetrahydrohyperforin Inhibits the Proteolytic Processing of Amyloid Precursor Protein and Enhances Its Degradation by Atg5-Dependent Autophagy. PLoS ONE. 2015;10:e0136313 pubmed 出版商
  1551. Serban A, Stanca L, Geicu O, Dinischiotu A. AGEs-Induced IL-6 Synthesis Precedes RAGE Up-Regulation in HEK 293 Cells: An Alternative Inflammatory Mechanism?. Int J Mol Sci. 2015;16:20100-17 pubmed 出版商
  1552. Singh V, Alex J, Lakshmi B, Sailasree S, Raj T, Kumar S. Role of mouse Wdr13 in placental growth; a genetic evidence for lifetime body weight determination by placenta during development. Sci Rep. 2015;5:13371 pubmed 出版商
  1553. Simpson M, Venkatesh I, Callif B, Thiel L, Coley D, Winsor K, et al. The tumor suppressor HHEX inhibits axon growth when prematurely expressed in developing central nervous system neurons. Mol Cell Neurosci. 2015;68:272-83 pubmed 出版商
  1554. Tiffen J, Gunatilake D, Gallagher S, Gowrishankar K, Heinemann A, Cullinane C, et al. Targeting activating mutations of EZH2 leads to potent cell growth inhibition in human melanoma by derepression of tumor suppressor genes. Oncotarget. 2015;6:27023-36 pubmed 出版商
  1555. Barão S, Gärtner A, Leyva Díaz E, Demyanenko G, Munck S, Vanhoutvin T, et al. Antagonistic Effects of BACE1 and APH1B-γ-Secretase Control Axonal Guidance by Regulating Growth Cone Collapse. Cell Rep. 2015;12:1367-76 pubmed 出版商
  1556. Lv X, Guo F, Xu X, Chen Z, Sun X, Min D, et al. Abnormal alterations in the Ca²⁺/CaV1.2/calmodulin/caMKII signaling pathway in a tremor rat model and in cultured hippocampal neurons exposed to Mg²⁺-free solution. Mol Med Rep. 2015;12:6663-71 pubmed 出版商
  1557. Garwood C, Ratcliffe L, Morgan S, Simpson J, Owens H, Vazquez Villaseñor I, et al. Insulin and IGF1 signalling pathways in human astrocytes in vitro and in vivo; characterisation, subcellular localisation and modulation of the receptors. Mol Brain. 2015;8:51 pubmed 出版商
  1558. Zhang Y, Dai Q, Chen W, Jiang S, Chen S, Zhang Y, et al. Effects of acupuncture on cortical expression of Wnt3a, β-catenin and Sox2 in a rat model of traumatic brain injury. Acupunct Med. 2016;34:48-54 pubmed 出版商
  1559. Gramolelli S, Weidner Glunde M, Abere B, Viejo Borbolla A, Bala K, Rückert J, et al. Inhibiting the Recruitment of PLCγ1 to Kaposi's Sarcoma Herpesvirus K15 Protein Reduces the Invasiveness and Angiogenesis of Infected Endothelial Cells. PLoS Pathog. 2015;11:e1005105 pubmed 出版商
  1560. Badr H, Alsadek D, Mathew M, Li C, Djansugurova L, Yarema K, et al. Nutrient-deprived cancer cells preferentially use sialic acid to maintain cell surface glycosylation. Biomaterials. 2015;70:23-36 pubmed 出版商
  1561. Lee Y, Liu C, Liao M, Sukhova G, Shirakawa J, Abdennour M, et al. Deficiency of FcϵR1 Increases Body Weight Gain but Improves Glucose Tolerance in Diet-Induced Obese Mice. Endocrinology. 2015;156:4047-58 pubmed 出版商
  1562. Wunsch E, Milkiewicz M, Wasik U, Trottier J, KempiÅ„ska Podhorodecka A, Elias E, et al. Expression of hepatic Fibroblast Growth Factor 19 is enhanced in Primary Biliary Cirrhosis and correlates with severity of the disease. Sci Rep. 2015;5:13462 pubmed 出版商
  1563. Lee I, Jung K, Kim I, Lee H, Kim M, Yun S, et al. Human neural stem cells alleviate Alzheimer-like pathology in a mouse model. Mol Neurodegener. 2015;10:38 pubmed 出版商
  1564. Cañeque T, Gomes F, Mai T, Maestri G, Malacria M, Rodriguez R. Synthesis of marmycin A and investigation into its cellular activity. Nat Chem. 2015;7:744-51 pubmed 出版商
  1565. Kim S, Lee K, Choi J, Ringstad N, Dynlacht B. Nek2 activation of Kif24 ensures cilium disassembly during the cell cycle. Nat Commun. 2015;6:8087 pubmed 出版商
  1566. Fritz H, Gustafsson A, Ljungberg B, Ceder Y, Axelson H, Dahlbäck B. The Axl-Regulating Tumor Suppressor miR-34a Is Increased in ccRCC but Does Not Correlate with Axl mRNA or Axl Protein Levels. PLoS ONE. 2015;10:e0135991 pubmed 出版商
  1567. Gilda J, Ghosh R, Cheah J, West T, Bodine S, Gomes A. Western Blotting Inaccuracies with Unverified Antibodies: Need for a Western Blotting Minimal Reporting Standard (WBMRS). PLoS ONE. 2015;10:e0135392 pubmed 出版商
  1568. Galicia Vázquez G, Chu J, Pelletier J. eIF4AII is dispensable for miRNA-mediated gene silencing. RNA. 2015;21:1826-33 pubmed 出版商
  1569. Qu D, Weygant N, May R, Chandrakesan P, Madhoun M, Ali N, et al. Ablation of Doublecortin-Like Kinase 1 in the Colonic Epithelium Exacerbates Dextran Sulfate Sodium-Induced Colitis. PLoS ONE. 2015;10:e0134212 pubmed 出版商
  1570. Liu H, Li Y, Wang Y, Wang X, An X, Wang S, et al. The distinct role of NR2B subunit in the enhancement of visual plasticity in adulthood. Mol Brain. 2015;8:49 pubmed 出版商
  1571. Álvaro Bartolomé M, García Sevilla J. The neuroplastic index p-FADD/FADD and phosphoprotein PEA-15, interacting at GABAA receptor, are upregulated in brain cortex during midazolam-induced hypnosis in mice. Eur Neuropsychopharmacol. 2015;25:2131-44 pubmed 出版商
  1572. Fan L, Peng G, Sahgal N, Fazli L, Gleave M, Zhang Y, et al. Regulation of c-Myc expression by the histone demethylase JMJD1A is essential for prostate cancer cell growth and survival. Oncogene. 2016;35:2441-52 pubmed 出版商
  1573. Kauko O, Laajala T, Jumppanen M, Hintsanen P, Suni V, Haapaniemi P, et al. Label-free quantitative phosphoproteomics with novel pairwise abundance normalization reveals synergistic RAS and CIP2A signaling. Sci Rep. 2015;5:13099 pubmed 出版商
  1574. Lim T, Lee I, Kim J, Kang W. Synergistic Effect of Simvastatin Plus Radiation in Gastric Cancer and Colorectal Cancer: Implications of BIRC5 and Connective Tissue Growth Factor. Int J Radiat Oncol Biol Phys. 2015;93:316-25 pubmed 出版商
  1575. Uchiyama T, Kawabata H, Miura Y, Yoshioka S, Iwasa M, Yao H, et al. The role of growth differentiation factor 15 in the pathogenesis of primary myelofibrosis. Cancer Med. 2015;4:1558-72 pubmed 出版商
  1576. Guo H, Li Y, Tian T, Han L, Ruan Z, Liang X, et al. The role of cytoplasmic p57 in invasion of hepatocellular carcinoma. BMC Gastroenterol. 2015;15:104 pubmed 出版商
  1577. Steingruber M, Socher E, Hutterer C, Webel R, Bergbrede T, Lenac T, et al. The Interaction between Cyclin B1 and Cytomegalovirus Protein Kinase pUL97 is Determined by an Active Kinase Domain. Viruses. 2015;7:4582-601 pubmed 出版商
  1578. Archibald A, Al Masri M, Liew Spilger A, McCaffrey L. Atypical protein kinase C induces cell transformation by disrupting Hippo/Yap signaling. Mol Biol Cell. 2015;26:3578-95 pubmed 出版商
  1579. Hwang S, Disatnik M, Mochly Rosen D. Impaired GAPDH-induced mitophagy contributes to the pathology of Huntington's disease. EMBO Mol Med. 2015;7:1307-26 pubmed 出版商
  1580. Brito R, Malta C, Souza D, Matheus L, Matos Y, Silva C, et al. 1-Methyl-D-tryptophan potentiates TGF-β-induced epithelial-mesenchymal transition in T24 human bladder cancer cells. PLoS ONE. 2015;10:e0134858 pubmed 出版商
  1581. Du L, Chang L, Ardiles A, Tapia Rojas C, Araya J, Inestrosa N, et al. Alzheimer's Disease-Related Protein Expression in the Retina of Octodon degus. PLoS ONE. 2015;10:e0135499 pubmed 出版商
  1582. Haaß W, Kleiner H, Müller M, Hofmann W, Fabarius A, Seifarth W. Measurement of separase proteolytic activity in single living cells by a fluorogenic flow cytometry assay. PLoS ONE. 2015;10:e0133769 pubmed 出版商
  1583. Meraviglia V, Azzimato V, Colussi C, Florio M, Binda A, Panariti A, et al. Acetylation mediates Cx43 reduction caused by electrical stimulation. J Mol Cell Cardiol. 2015;87:54-64 pubmed 出版商
  1584. Menz C, Parsi M, Adams J, Sideek M, Kopecki Z, Cowin A, et al. LTBP-2 Has a Single High-Affinity Binding Site for FGF-2 and Blocks FGF-2-Induced Cell Proliferation. PLoS ONE. 2015;10:e0135577 pubmed 出版商
  1585. Kieffer Kwon P, Happel C, Uldrick T, Ramalingam D, Ziegelbauer J. KSHV MicroRNAs Repress Tropomyosin 1 and Increase Anchorage-Independent Growth and Endothelial Tube Formation. PLoS ONE. 2015;10:e0135560 pubmed 出版商
  1586. Morancho B, Martínez Barriocanal Ã, Villanueva J, Arribas J. Role of ADAM17 in the non-cell autonomous effects of oncogene-induced senescence. Breast Cancer Res. 2015;17:106 pubmed 出版商
  1587. Nakamura R, Sene A, Santeford A, Gdoura A, Kubota S, Zapata N, et al. IL10-driven STAT3 signalling in senescent macrophages promotes pathological eye angiogenesis. Nat Commun. 2015;6:7847 pubmed 出版商
  1588. Radoshevich L, Impens F, Ribet D, Quereda J, Nam Tham T, Nahori M, et al. ISG15 counteracts Listeria monocytogenes infection. elife. 2015;4: pubmed 出版商
  1589. Zhen Y, Li W. Impairment of autophagosome-lysosome fusion in the buff mutant mice with the VPS33A(D251E) mutation. Autophagy. 2015;11:1608-22 pubmed 出版商
  1590. Zoch A, Mayerl S, Schulz A, Greither T, Frappart L, Rübsam J, et al. Merlin Isoforms 1 and 2 Both Act as Tumour Suppressors and Are Required for Optimal Sperm Maturation. PLoS ONE. 2015;10:e0129151 pubmed 出版商
  1591. Genin M, Clement F, Fattaccioli A, Raes M, Michiels C. M1 and M2 macrophages derived from THP-1 cells differentially modulate the response of cancer cells to etoposide. BMC Cancer. 2015;15:577 pubmed 出版商
  1592. Cui H, Li Q, Chen J, Na Q, Liu C. Hepatitis B virus X protein modifies invasion, proliferation and the inflammatory response in an HTR-8/SVneo cell model. Oncol Rep. 2015;34:2090-8 pubmed 出版商
  1593. Swindell W, Remmer H, Sarkar M, Xing X, Barnes D, Wolterink L, et al. Proteogenomic analysis of psoriasis reveals discordant and concordant changes in mRNA and protein abundance. Genome Med. 2015;7:86 pubmed 出版商
  1594. Chalertpet K, Pakdeechaidan W, Patel V, Mutirangura A, Yanatatsaneejit P. Human papillomavirus type 16 E7 oncoprotein mediates CCNA1 promoter methylation. Cancer Sci. 2015;106:1333-40 pubmed 出版商
  1595. Ju X, Yan Y, Liu Q, Li N, Sheng M, Zhang L, et al. Neuraminidase of Influenza A Virus Binds Lysosome-Associated Membrane Proteins Directly and Induces Lysosome Rupture. J Virol. 2015;89:10347-58 pubmed 出版商
  1596. Mukhopadhyay D, Priya P, Chattopadhyay A. Sodium fluoride affects zebrafish behaviour and alters mRNA expressions of biomarker genes in the brain: Role of Nrf2/Keap1. Environ Toxicol Pharmacol. 2015;40:352-9 pubmed 出版商
  1597. Kim J, Sato M, Choi J, Kim H, Yeh B, Larsen J, et al. Nuclear Receptor Expression and Function in Human Lung Cancer Pathogenesis. PLoS ONE. 2015;10:e0134842 pubmed 出版商
  1598. Roggia M, Ueta T. αvβ5 Integrin/FAK/PGC-1α Pathway Confers Protective Effects on Retinal Pigment Epithelium. PLoS ONE. 2015;10:e0134870 pubmed 出版商
  1599. Barger C, Zhang W, Hillman J, Stablewski A, Higgins M, Vanderhyden B, et al. Genetic determinants of FOXM1 overexpression in epithelial ovarian cancer and functional contribution to cell cycle progression. Oncotarget. 2015;6:27613-27 pubmed 出版商
  1600. Khan I, Zakaria M, Kumar M, Mani P, Chattopadhyay P, Sarkar D, et al. A novel placental like alkaline phosphatase promoter driven transcriptional silencing combined with single chain variable fragment antibody based virosomal delivery for neoplastic cell targeting [corrected]. J Transl Med. 2015;13:254 pubmed 出版商
  1601. Fan Z, Hao C, Li M, Dai X, Qin H, Li J, et al. MKL1 is an epigenetic modulator of TGF-β induced fibrogenesis. Biochim Biophys Acta. 2015;1849:1219-28 pubmed 出版商
  1602. Hermanova I, Arruabarrena Aristorena A, Valis K, Nůsková H, Alberich Jorda M, Fiser K, et al. Pharmacological inhibition of fatty-acid oxidation synergistically enhances the effect of l-asparaginase in childhood ALL cells. Leukemia. 2016;30:209-18 pubmed 出版商
  1603. Johansson I, Monsen V, Pettersen K, Mildenberger J, Misund K, Kaarniranta K, et al. The marine n-3 PUFA DHA evokes cytoprotection against oxidative stress and protein misfolding by inducing autophagy and NFE2L2 in human retinal pigment epithelial cells. Autophagy. 2015;11:1636-51 pubmed 出版商
  1604. Zhang Z, Wang Y, Yan S, Du F, Yan S. NR2B-dependent cyclophilin D translocation suppresses the recovery of synaptic transmission after oxygen-glucose deprivation. Biochim Biophys Acta. 2015;1852:2225-2234 pubmed 出版商
  1605. Luna Acosta J, Alba Betancourt C, Martínez Moreno C, Ramírez C, Carranza M, Luna M, et al. Direct antiapoptotic effects of growth hormone are mediated by PI3K/Akt pathway in the chicken bursa of Fabricius. Gen Comp Endocrinol. 2015;224:148-59 pubmed 出版商
  1606. Lutzenberger M, Burwinkel M, Riemer C, Bode V, Baier M. Ablation of CCAAT/Enhancer-Binding Protein Delta (C/EBPD): Increased Plaque Burden in a Murine Alzheimer's Disease Model. PLoS ONE. 2015;10:e0134228 pubmed 出版商
  1607. Verrier E, Colpitts C, Bach C, Heydmann L, Weiss A, Renaud M, et al. A targeted functional RNA interference screen uncovers glypican 5 as an entry factor for hepatitis B and D viruses. Hepatology. 2016;63:35-48 pubmed 出版商
  1608. Xie X, Hsu F, Gao X, Xu W, Ni J, Xing Y, et al. CDK8-Cyclin C Mediates Nutritional Regulation of Developmental Transitions through the Ecdysone Receptor in Drosophila. PLoS Biol. 2015;13:e1002207 pubmed 出版商
  1609. Chen C, Tian F, Lu L, Wang Y, Xiao Z, Yu C, et al. Characterization of Cep85 - a new antagonist of Nek2A that is involved in the regulation of centrosome disjunction. J Cell Sci. 2015;128:3290-303 pubmed 出版商
  1610. Scifo E, Szwajda A, Soliymani R, Pezzini F, Bianchi M, Dapkunas A, et al. Quantitative analysis of PPT1 interactome in human neuroblastoma cells. Data Brief. 2015;4:207-16 pubmed 出版商
  1611. Cao Q, Yamamoto J, Isobe T, Tateno S, Murase Y, Chen Y, et al. Characterization of the Human Transcription Elongation Factor Rtf1: Evidence for Nonoverlapping Functions of Rtf1 and the Paf1 Complex. Mol Cell Biol. 2015;35:3459-70 pubmed 出版商
  1612. Roncero A, López Nieva P, Cobos Fernández M, Villa Morales M, González Sánchez L, López Lorenzo J, et al. Contribution of JAK2 mutations to T-cell lymphoblastic lymphoma development. Leukemia. 2016;30:94-103 pubmed 出版商
  1613. Kao S, Stankovic K. Transactivation of human osteoprotegerin promoter by GATA-3. Sci Rep. 2015;5:12479 pubmed 出版商
  1614. Quintana M, He J, Sullivan J, Grevengoed T, Schisler J, Han Y, et al. Muscle ring finger-3 protects against diabetic cardiomyopathy induced by a high fat diet. BMC Endocr Disord. 2015;15:36 pubmed 出版商
  1615. Krishnan N, Krishnan K, Connors C, Choy M, Page R, Peti W, et al. PTP1B inhibition suggests a therapeutic strategy for Rett syndrome. J Clin Invest. 2015;125:3163-77 pubmed 出版商
  1616. Hieke N, Löffler A, Kaizuka T, Berleth N, Böhler P, Drießen S, et al. Expression of a ULK1/2 binding-deficient ATG13 variant can partially restore autophagic activity in ATG13-deficient cells. Autophagy. 2015;11:1471-83 pubmed 出版商
  1617. Xie W, Zhang L, Jiao H, Guan L, Zha J, Li X, et al. Chaperone-mediated autophagy prevents apoptosis by degrading BBC3/PUMA. Autophagy. 2015;11:1623-35 pubmed 出版商
  1618. Ritho J, Arold S, Yeh E. A Critical SUMO1 Modification of LKB1 Regulates AMPK Activity during Energy Stress. Cell Rep. 2015;12:734-42 pubmed 出版商
  1619. Lee C, Yang Y, Chen C, Liu J. Syk-mediated tyrosine phosphorylation of mule promotes TNF-induced JNK activation and cell death. Oncogene. 2016;35:1988-95 pubmed 出版商
  1620. DubiÅ„ska Magiera M, Chmielewska M, KozioÅ‚ K, Machowska M, Hutchison C, Goldberg M, et al. Xenopus LAP2β protein knockdown affects location of lamin B and nucleoporins and has effect on assembly of cell nucleus and cell viability. Protoplasma. 2016;253:943-56 pubmed 出版商
  1621. Yang H, Yamazaki T, Pietrocola F, Zhou H, Zitvogel L, Ma Y, et al. STAT3 Inhibition Enhances the Therapeutic Efficacy of Immunogenic Chemotherapy by Stimulating Type 1 Interferon Production by Cancer Cells. Cancer Res. 2015;75:3812-22 pubmed 出版商
  1622. Kiyonari S, Iimori M, Matsuoka K, Watanabe S, Morikawa Ichinose T, Miura D, et al. The 1,2-Diaminocyclohexane Carrier Ligand in Oxaliplatin Induces p53-Dependent Transcriptional Repression of Factors Involved in Thymidylate Biosynthesis. Mol Cancer Ther. 2015;14:2332-42 pubmed 出版商
  1623. Nishimatsu H, Suzuki E, Saito Y, Niimi A, Nomiya A, Yamada D, et al. Neuromedin B Restores Erectile Function by Protecting the Cavernous Body and the Nitrergic Nerves from Injury in a Diabetic Rat Model. PLoS ONE. 2015;10:e0133874 pubmed 出版商
  1624. Drießen S, Berleth N, Friesen O, Löffler A, Böhler P, Hieke N, et al. Deubiquitinase inhibition by WP1130 leads to ULK1 aggregation and blockade of autophagy. Autophagy. 2015;11:1458-70 pubmed 出版商
  1625. Woo Park J, Kim K, Kim J, Chae Y, Jeong O, Seo S. RE-IIBP Methylates H3K79 and Induces MEIS1-mediated Apoptosis via H2BK120 Ubiquitination by RNF20. Sci Rep. 2015;5:12485 pubmed 出版商
  1626. Prasad S, Sajja R, Park J, Naik P, Kaisar M, Cucullo L. Impact of cigarette smoke extract and hyperglycemic conditions on blood-brain barrier endothelial cells. Fluids Barriers CNS. 2015;12:18 pubmed 出版商
  1627. He D, Chen H, Muramatsu H, Lasek A. Ethanol activates midkine and anaplastic lymphoma kinase signaling in neuroblastoma cells and in the brain. J Neurochem. 2015;135:508-21 pubmed 出版商
  1628. Chung D, Chan J, Strecker J, Zhang W, Ebrahimi Ardebili S, Lu T, et al. Perinuclear tethers license telomeric DSBs for a broad kinesin- and NPC-dependent DNA repair process. Nat Commun. 2015;6:7742 pubmed 出版商
  1629. Gingras S, Earls L, Howell S, Smeyne R, Zakharenko S, Pelletier S. SCYL2 Protects CA3 Pyramidal Neurons from Excitotoxicity during Functional Maturation of the Mouse Hippocampus. J Neurosci. 2015;35:10510-22 pubmed 出版商
  1630. Zhao L, Tang M, Hu Z, Yan B, Pi W, Li Z, et al. miR-504 mediated down-regulation of nuclear respiratory factor 1 leads to radio-resistance in nasopharyngeal carcinoma. Oncotarget. 2015;6:15995-6018 pubmed
  1631. Sloan E, Tatham M, Groslambert M, Glass M, Orr A, Hay R, et al. Analysis of the SUMO2 Proteome during HSV-1 Infection. PLoS Pathog. 2015;11:e1005059 pubmed 出版商
  1632. Kreit M, Vertommen D, Gillet L, Michiels T. The Interferon-Inducible Mouse Apolipoprotein L9 and Prohibitins Cooperate to Restrict Theiler's Virus Replication. PLoS ONE. 2015;10:e0133190 pubmed 出版商
  1633. Sarma P, Bag I, Ramaiah M, Kamal A, Bhadra U, Pal Bhadra M. Bisindole-PBD regulates breast cancer cell proliferation via SIRT-p53 axis. Cancer Biol Ther. 2015;16:1486-501 pubmed 出版商
  1634. Winsauer P, Filipeanu C, Weed P, Sutton J. Hormonal status and age differentially affect tolerance to the disruptive effects of delta-9-tetrahydrocannabinol (Δ(9)-THC) on learning in female rats. Front Pharmacol. 2015;6:133 pubmed 出版商
  1635. Zhang L, Dai F, Sheng P, Chen Z, Xu Q, Guo Y. Resveratrol analogue 3,4,4'-trihydroxy-trans-stilbene induces apoptosis and autophagy in human non-small-cell lung cancer cells in vitro. Acta Pharmacol Sin. 2015;36:1256-65 pubmed 出版商
  1636. Yang Y, Liu Z, Wang F, Temviriyanukul P, Ma X, Tu Y, et al. FANCD2 and REV1 cooperate in the protection of nascent DNA strands in response to replication stress. Nucleic Acids Res. 2015;43:8325-39 pubmed 出版商
  1637. Geletu M, Guy S, Greer S, Raptis L. Differential effects of polyoma virus middle tumor antigen mutants upon gap junctional, intercellular communication. Exp Cell Res. 2015;336:223-31 pubmed 出版商
  1638. He C, Medley S, Hu T, Hinsdale M, Lupu F, Virmani R, et al. PDGFRβ signalling regulates local inflammation and synergizes with hypercholesterolaemia to promote atherosclerosis. Nat Commun. 2015;6:7770 pubmed 出版商
  1639. Lee M, Jeong M, Lee H, Han H, Ko A, Hewitt S, et al. PI3K/AKT activation induces PTEN ubiquitination and destabilization accelerating tumourigenesis. Nat Commun. 2015;6:7769 pubmed 出版商
  1640. Li W, Qiu Y, Zhang H, Tian X, Fang W. P2Y2 Receptor and EGFR Cooperate to Promote Prostate Cancer Cell Invasion via ERK1/2 Pathway. PLoS ONE. 2015;10:e0133165 pubmed 出版商
  1641. Meadows S, Cleaver O. Annexin A3 Regulates Early Blood Vessel Formation. PLoS ONE. 2015;10:e0132580 pubmed 出版商
  1642. Xu J, Wan P, Wang M, Zhang J, Gao X, Hu B, et al. AIP1-mediated actin disassembly is required for postnatal germ cell migration and spermatogonial stem cell niche establishment. Cell Death Dis. 2015;6:e1818 pubmed 出版商
  1643. Chiou S, Winters I, Wang J, Naranjo S, Dudgeon C, Tamburini F, et al. Pancreatic cancer modeling using retrograde viral vector delivery and in vivo CRISPR/Cas9-mediated somatic genome editing. Genes Dev. 2015;29:1576-85 pubmed 出版商
  1644. Lin A, Abbas S, Kim S, Ortega M, Bouamar H, Escobedo Y, et al. D2HGDH regulates alpha-ketoglutarate levels and dioxygenase function by modulating IDH2. Nat Commun. 2015;6:7768 pubmed 出版商
  1645. Malik I, Stange I, Martius G, Cameron S, Rave Fränk M, Hess C, et al. Role of PECAM-1 in radiation-induced liver inflammation. J Cell Mol Med. 2015;19:2441-52 pubmed 出版商
  1646. Chen S, Okada M, Nakato R, Izumi K, Bando M, Shirahige K. The Deubiquitinating Enzyme USP7 Regulates Androgen Receptor Activity by Modulating Its Binding to Chromatin. J Biol Chem. 2015;290:21713-23 pubmed 出版商
  1647. Zhang F, Patel D, Colavita K, Rodionova I, Buckley B, Scott D, et al. Arginylation regulates purine nucleotide biosynthesis by enhancing the activity of phosphoribosyl pyrophosphate synthase. Nat Commun. 2015;6:7517 pubmed 出版商
  1648. Quintana P, Soto D, Poirot O, Zonouzi M, Kellenberger S, Muller D, et al. Acid-sensing ion channel 1a drives AMPA receptor plasticity following ischaemia and acidosis in hippocampal CA1 neurons. J Physiol. 2015;593:4373-86 pubmed 出版商
  1649. Gough K, Maddison B, Shikotra A, Moiseeva E, Yang W, Jarvis S, et al. Evidence for a novel Kit adhesion domain mediating human mast cell adhesion to structural airway cells. Respir Res. 2015;16:86 pubmed 出版商
  1650. Zhao J, Li H, Zhou R, Ma G, Dekker J, Tucker H, et al. Foxp1 Regulates the Proliferation of Hair Follicle Stem Cells in Response to Oxidative Stress during Hair Cycling. PLoS ONE. 2015;10:e0131674 pubmed 出版商
  1651. Yao X, Wu Y, Zhu M, Qian H, Chen Y. Nitric oxide/cyclic guanosine monophosphate inducers sodium nitroprusside and L-arginine inhibit the proliferation of gastric cancer cells via the activation of type II cyclic guanosine monophosphate-dependent protein kinase. Oncol Lett. 2015;10:479-484 pubmed
  1652. Hobbs R, DePianto D, Jacob J, Han M, Chung B, Batazzi A, et al. Keratin-dependent regulation of Aire and gene expression in skin tumor keratinocytes. Nat Genet. 2015;47:933-8 pubmed 出版商
  1653. Kim Y, Kim T, McKemy D, Bae Y. Expression of vesicular glutamate transporters in transient receptor potential melastatin 8 (TRPM8)-positive dental afferents in the mouse. Neuroscience. 2015;303:378-88 pubmed 出版商
  1654. Dutchak P, Laxman S, Estill S, Wang C, Wang Y, Wang Y, et al. Regulation of Hematopoiesis and Methionine Homeostasis by mTORC1 Inhibitor NPRL2. Cell Rep. 2015;12:371-9 pubmed 出版商
  1655. Lee Y, Chun S, Kim K. Sumoylation controls CLOCK-BMAL1-mediated clock resetting via CBP recruitment in nuclear transcriptional foci. Biochim Biophys Acta. 2015;1853:2697-708 pubmed 出版商
  1656. Gorojod R, Alaimo A, Porte Alcon S, Pomilio C, Saravia F, Kotler M. The autophagic- lysosomal pathway determines the fate of glial cells under manganese- induced oxidative stress conditions. Free Radic Biol Med. 2015;87:237-51 pubmed 出版商
  1657. Kontro H, Cannino G, Rustin P, Dufour E, Kainulainen H. DAPIT Over-Expression Modulates Glucose Metabolism and Cell Behaviour in HEK293T Cells. PLoS ONE. 2015;10:e0131990 pubmed 出版商
  1658. Wu H, Barik A, Lu Y, Shen C, Bowman A, Li L, et al. Slit2 as a β-catenin/Ctnnb1-dependent retrograde signal for presynaptic differentiation. elife. 2015;4: pubmed 出版商
  1659. Chaki S, Barhoumi R, Rivera G. Actin remodeling by Nck regulates endothelial lumen formation. Mol Biol Cell. 2015;26:3047-60 pubmed 出版商
  1660. Jones M, Hu W, Litthauer S, Lagarias J, Harmer S. A Constitutively Active Allele of Phytochrome B Maintains Circadian Robustness in the Absence of Light. Plant Physiol. 2015;169:814-25 pubmed 出版商
  1661. Regan J, Kannan P, Kemp M, Kramer B, Newnham J, Jobe A, et al. Damage-Associated Molecular Pattern and Fetal Membrane Vascular Injury and Collagen Disorganization in Lipopolysaccharide-Induced Intra-amniotic Inflammation in Fetal Sheep. Reprod Sci. 2016;23:69-80 pubmed 出版商
  1662. Patergnani S, Giorgi C, Maniero S, Missiroli S, Maniscalco P, Bononi I, et al. The endoplasmic reticulum mitochondrial calcium cross talk is downregulated in malignant pleural mesothelioma cells and plays a critical role in apoptosis inhibition. Oncotarget. 2015;6:23427-44 pubmed
  1663. Azzi S, Gallerne C, Romei C, Le Coz V, Gangemi R, Khawam K, et al. Human Renal Normal, Tumoral, and Cancer Stem Cells Express Membrane-Bound Interleukin-15 Isoforms Displaying Different Functions. Neoplasia. 2015;17:509-17 pubmed 出版商
  1664. Fimiani C, Goina E, Mallamaci A. Upregulating endogenous genes by an RNA-programmable artificial transactivator. Nucleic Acids Res. 2015;43:7850-64 pubmed 出版商
  1665. Wu C, Jiao H, Lai Y, Zheng W, Chen K, Qu H, et al. Kindlin-2 controls TGF-β signalling and Sox9 expression to regulate chondrogenesis. Nat Commun. 2015;6:7531 pubmed 出版商
  1666. Jung E, Sim Y, Jeong H, Kim S, Yun Y, Song J, et al. Jmjd2C increases MyoD transcriptional activity through inhibiting G9a-dependent MyoD degradation. Biochim Biophys Acta. 2015;1849:1081-94 pubmed 出版商
  1667. Moniz S, Bandarra D, Biddlestone J, Campbell K, Komander D, Bremm A, et al. Cezanne regulates E2F1-dependent HIF2α expression. J Cell Sci. 2015;128:3082-93 pubmed 出版商
  1668. Chan M, Atasoylu O, Hodson E, Tumber A, Leung I, Chowdhury R, et al. Potent and Selective Triazole-Based Inhibitors of the Hypoxia-Inducible Factor Prolyl-Hydroxylases with Activity in the Murine Brain. PLoS ONE. 2015;10:e0132004 pubmed 出版商
  1669. Wu C, Huang K, Yang T, Li Y, Wen C, Hsu S, et al. The Topoisomerase 1 Inhibitor Austrobailignan-1 Isolated from Koelreuteria henryi Induces a G2/M-Phase Arrest and Cell Death Independently of p53 in Non-Small Cell Lung Cancer Cells. PLoS ONE. 2015;10:e0132052 pubmed 出版商
  1670. Laberge R, Sun Y, Orjalo A, Patil C, Freund A, Zhou L, et al. MTOR regulates the pro-tumorigenic senescence-associated secretory phenotype by promoting IL1A translation. Nat Cell Biol. 2015;17:1049-61 pubmed 出版商
  1671. Yang X, Zheng K, Lin K, Zheng G, Zou H, Wang J, et al. Energy Metabolism Disorder as a Contributing Factor of Rheumatoid Arthritis: A Comparative Proteomic and Metabolomic Study. PLoS ONE. 2015;10:e0132695 pubmed 出版商
  1672. Maggiorani D, Dissard R, Belloy M, Saulnier Blache J, Casemayou A, Ducassé L, et al. Shear Stress-Induced Alteration of Epithelial Organization in Human Renal Tubular Cells. PLoS ONE. 2015;10:e0131416 pubmed 出版商
  1673. Chen Y, Cao J, Xiong M, Petersen A, Dong Y, Tao Y, et al. Engineering Human Stem Cell Lines with Inducible Gene Knockout using CRISPR/Cas9. Cell Stem Cell. 2015;17:233-44 pubmed 出版商
  1674. Lee J, Kim H, Han J, Kim Y, Son C. Anti-fatigue effect of Myelophil in a chronic forced exercise mouse model. Eur J Pharmacol. 2015;764:100-8 pubmed 出版商
  1675. Liu R, Fan M, Candas D, Qin L, Zhang X, Eldridge A, et al. CDK1-Mediated SIRT3 Activation Enhances Mitochondrial Function and Tumor Radioresistance. Mol Cancer Ther. 2015;14:2090-102 pubmed 出版商
  1676. Kim A, Park Y, Pan X, Shin K, Kwak S, Bassas A, et al. Obesity-induced DNA hypermethylation of the adiponectin gene mediates insulin resistance. Nat Commun. 2015;6:7585 pubmed 出版商
  1677. Yan S, Xu Z, Lou F, Zhang L, Ke F, Bai J, et al. NF-κB-induced microRNA-31 promotes epidermal hyperplasia by repressing protein phosphatase 6 in psoriasis. Nat Commun. 2015;6:7652 pubmed 出版商
  1678. Tan F, Fu W, Cheng N, Meng D, Gu Y. Ligustrazine reduces blood-brain barrier permeability in a rat model of focal cerebral ischemia and reperfusion. Exp Ther Med. 2015;9:1757-1762 pubmed
  1679. Yang F, Silber S, Leu N, Oates R, Marszalek J, Skaletsky H, et al. TEX11 is mutated in infertile men with azoospermia and regulates genome-wide recombination rates in mouse. EMBO Mol Med. 2015;7:1198-210 pubmed 出版商
  1680. Pulito C, Mori F, Sacconi A, Casadei L, Ferraiuolo M, Valerio M, et al. Cynara scolymus affects malignant pleural mesothelioma by promoting apoptosis and restraining invasion. Oncotarget. 2015;6:18134-50 pubmed
  1681. Gigliotti D, Leiter J, Macek B, Davidson M, MacDonald P, Anderson J. Atrophy, inducible satellite cell activation, and possible denervation of supraspinatus muscle in injured human rotator-cuff muscle. Am J Physiol Cell Physiol. 2015;309:C383-91 pubmed 出版商
  1682. Hamacher Brady A, Brady N. Bax/Bak-dependent, Drp1-independent Targeting of X-linked Inhibitor of Apoptosis Protein (XIAP) into Inner Mitochondrial Compartments Counteracts Smac/DIABLO-dependent Effector Caspase Activation. J Biol Chem. 2015;290:22005-18 pubmed 出版商
  1683. Ben Salem I, Prola A, Boussabbeh M, Guilbert A, Bacha H, Abid Essefi S, et al. Crocin and Quercetin protect HCT116 and HEK293 cells from Zearalenone-induced apoptosis by reducing endoplasmic reticulum stress. Cell Stress Chaperones. 2015;20:927-38 pubmed 出版商
  1684. Dias T, Alves M, Almeida S, Silva J, Barros A, Sousa M, et al. Dehydroepiandrosterone and 7-oxo-dehydroepiandrosterone in male reproductive health: Implications of differential regulation of human Sertoli cells metabolic profile. J Steroid Biochem Mol Biol. 2015;154:1-11 pubmed 出版商
  1685. Sadaie M, Dillon C, Narita M, Young A, Cairney C, Godwin L, et al. Cell-based screen for altered nuclear phenotypes reveals senescence progression in polyploid cells after Aurora kinase B inhibition. Mol Biol Cell. 2015;26:2971-85 pubmed 出版商
  1686. Thatcher S, Zhang X, Woody S, Wang Y, Alsiraj Y, Charnigo R, et al. Exogenous 17-β estradiol administration blunts progression of established angiotensin II-induced abdominal aortic aneurysms in female ovariectomized mice. Biol Sex Differ. 2015;6:12 pubmed 出版商
  1687. Van Maldegem F, Maslen S, Johnson C, Chandra A, Ganesh K, Skehel M, et al. CTNNBL1 facilitates the association of CWC15 with CDC5L and is required to maintain the abundance of the Prp19 spliceosomal complex. Nucleic Acids Res. 2015;43:7058-69 pubmed 出版商
  1688. Breslin C, Hornyak P, Ridley A, Rulten S, Hanzlikova H, Oliver A, et al. The XRCC1 phosphate-binding pocket binds poly (ADP-ribose) and is required for XRCC1 function. Nucleic Acids Res. 2015;43:6934-44 pubmed 出版商
  1689. Sive J, Basilico S, Hannah R, Kinston S, Calero Nieto F, Göttgens B. Genome-scale definition of the transcriptional programme associated with compromised PU.1 activity in acute myeloid leukaemia. Leukemia. 2016;30:14-23 pubmed 出版商
  1690. Huygens C, Liénart S, Dedobbeleer O, Stockis J, Gauthy E, Coulie P, et al. Lysosomal-associated Transmembrane Protein 4B (LAPTM4B) Decreases Transforming Growth Factor β1 (TGF-β1) Production in Human Regulatory T Cells. J Biol Chem. 2015;290:20105-16 pubmed 出版商
  1691. Cho H, Kang J, Lee J, Lee J, Jeon S, Ko J, et al. Direct regulation of E-cadherin by targeted histone methylation of TALE-SET fusion protein in cancer cells. Oncotarget. 2015;6:23837-44 pubmed
  1692. Boros G, Miko E, Muramatsu H, Weissman D, Emri E, van der Horst G, et al. Identification of Cyclobutane Pyrimidine Dimer-Responsive Genes Using UVB-Irradiated Human Keratinocytes Transfected with In Vitro-Synthesized Photolyase mRNA. PLoS ONE. 2015;10:e0131141 pubmed 出版商
  1693. Jacquin S, Rincheval V, Mignotte B, Richard S, Humbert M, Mercier O, et al. Inactivation of p53 Is Sufficient to Induce Development of Pulmonary Hypertension in Rats. PLoS ONE. 2015;10:e0131940 pubmed 出版商
  1694. Zhang J, Gao Q, Zhou Y, Dier U, Hempel N, Hochwald S. Focal adhesion kinase-promoted tumor glucose metabolism is associated with a shift of mitochondrial respiration to glycolysis. Oncogene. 2016;35:1926-42 pubmed 出版商
  1695. Zhu S, Chen Z, Katsha A, Hong J, Belkhiri A, el Rifai W. Regulation of CD44E by DARPP-32-dependent activation of SRp20 splicing factor in gastric tumorigenesis. Oncogene. 2016;35:1847-56 pubmed 出版商
  1696. Shan C, Lin J, Hou J, Liu H, Chen S, Chen A, et al. Chemical intervention of the NM23-H2 transcriptional programme on c-MYC via a novel small molecule. Nucleic Acids Res. 2015;43:6677-91 pubmed 出版商
  1697. Hu Y, Belaghzal H, Hsiao W, Qi J, Bradner J, Guertin D, et al. Transcriptional and post-transcriptional control of adipocyte differentiation by Jumonji domain-containing protein 6. Nucleic Acids Res. 2015;43:7790-804 pubmed 出版商
  1698. Madrigal Matute J, Fernandez García C, Blanco Colio L, Burillo E, Fortuño A, Martinez Pinna R, et al. Thioredoxin-1/peroxiredoxin-1 as sensors of oxidative stress mediated by NADPH oxidase activity in atherosclerosis. Free Radic Biol Med. 2015;86:352-61 pubmed 出版商
  1699. Sano M, Hashiba K, Higashi M, Okuda K. Alteration of glycan structures by swainsonine affects steroidogenesis in bovine luteal cells. Theriogenology. 2015;84:827-32 pubmed 出版商
  1700. Sáez J, Gómez A, Barrios Ã, Parada G, Galdames L, González M, et al. Decreased Expression of CoREST1 and CoREST2 Together with LSD1 and HDAC1/2 during Neuronal Differentiation. PLoS ONE. 2015;10:e0131760 pubmed 出版商
  1701. Goichon A, Bertrand J, Chan P, Lecleire S, Coquard A, Cailleux A, et al. Enteral delivery of proteins enhances the expression of proteins involved in the cytoskeleton and protein biosynthesis in human duodenal mucosa. Am J Clin Nutr. 2015;102:359-67 pubmed 出版商
  1702. Chhabra S, Jain S, Wallace C, Hong F, Liu B. High expression of endoplasmic reticulum chaperone grp94 is a novel molecular hallmark of malignant plasma cells in multiple myeloma. J Hematol Oncol. 2015;8:77 pubmed 出版商
  1703. Adoro S, Cubillos Ruiz J, Chen X, Deruaz M, Vrbanac V, Song M, et al. IL-21 induces antiviral microRNA-29 in CD4 T cells to limit HIV-1 infection. Nat Commun. 2015;6:7562 pubmed 出版商
  1704. Pickard A, McDade S, McFarland M, McCluggage W, Wheeler C, McCance D. HPV16 Down-Regulates the Insulin-Like Growth Factor Binding Protein 2 to Promote Epithelial Invasion in Organotypic Cultures. PLoS Pathog. 2015;11:e1004988 pubmed 出版商
  1705. Choi J, Kim J, Kim T, Park J, Lee J, Kim H, et al. TRH and TRH receptor system in the basolateral amygdala mediate stress-induced depression-like behaviors. Neuropharmacology. 2015;97:346-56 pubmed 出版商
  1706. Sedic M, Skibinski A, Brown N, Gallardo M, Mulligan P, Martinez P, et al. Haploinsufficiency for BRCA1 leads to cell-type-specific genomic instability and premature senescence. Nat Commun. 2015;6:7505 pubmed 出版商
  1707. Nadeau M, Rico C, Tsoi M, Vivancos M, Filimon S, Paquet M, et al. Pharmacological targeting of valosin containing protein (VCP) induces DNA damage and selectively kills canine lymphoma cells. BMC Cancer. 2015;15:479 pubmed 出版商
  1708. Zhang J, Li L, Baldwin A, Friedman A, Paz Priel I. Loss of IKKβ but Not NF-κB p65 Skews Differentiation towards Myeloid over Erythroid Commitment and Increases Myeloid Progenitor Self-Renewal and Functional Long-Term Hematopoietic Stem Cells. PLoS ONE. 2015;10:e0130441 pubmed 出版商
  1709. Khan K, Dô F, Marineau A, Doyon P, Clément J, Woodgett J, et al. Fine-Tuning of the RIG-I-Like Receptor/Interferon Regulatory Factor 3-Dependent Antiviral Innate Immune Response by the Glycogen Synthase Kinase 3/β-Catenin Pathway. Mol Cell Biol. 2015;35:3029-43 pubmed 出版商
  1710. Bruchard M, Rebé C, Derangère V, Togbé D, Ryffel B, Boidot R, et al. The receptor NLRP3 is a transcriptional regulator of TH2 differentiation. Nat Immunol. 2015;16:859-70 pubmed 出版商
  1711. Castillo Lluva S, Hontecillas Prieto L, Blanco Gómez A, Del Mar Sáez Freire M, García Cenador B, García Criado J, et al. A new role of SNAI2 in postlactational involution of the mammary gland links it to luminal breast cancer development. Oncogene. 2015;34:4777-90 pubmed 出版商
  1712. Wang J, Chen S, Sun C, Chien T, Chern Y. A central role of TRAX in the ATM-mediated DNA repair. Oncogene. 2016;35:1657-70 pubmed 出版商
  1713. Carthy J, Sundqvist A, Heldin A, van Dam H, Kletsas D, Heldin C, et al. Tamoxifen Inhibits TGF-β-Mediated Activation of Myofibroblasts by Blocking Non-Smad Signaling Through ERK1/2. J Cell Physiol. 2015;230:3084-92 pubmed 出版商
  1714. Bonfim Melo A, Zanetti B, Ferreira Ã, Vandoninck S, Han S, Van Lint J, et al. Trypanosoma cruzi extracellular amastigotes trigger the protein kinase D1-cortactin-actin pathway during cell invasion. Cell Microbiol. 2015;17:1797-810 pubmed 出版商
  1715. Cook T, Hoekstra J, Eaton D, Zhang J. Mortalin is Expressed by Astrocytes and Decreased in the Midbrain of Parkinson's Disease Patients. Brain Pathol. 2016;26:75-81 pubmed 出版商
  1716. Raghubeer S, Nagiah S, Phulukdaree A, Chuturgoon A. The Phytoalexin Resveratrol Ameliorates Ochratoxin A Toxicity in Human Embryonic Kidney (HEK293) Cells. J Cell Biochem. 2015;116:2947-55 pubmed 出版商
  1717. Pishas K, Adwal A, Neuhaus S, Clayer M, Farshid G, Staudacher A, et al. XI-006 induces potent p53-independent apoptosis in Ewing sarcoma. Sci Rep. 2015;5:11465 pubmed 出版商
  1718. Zhang T, Zhou Q, Ogmundsdottir M, Möller K, Siddaway R, Larue L, et al. Mitf is a master regulator of the v-ATPase, forming a control module for cellular homeostasis with v-ATPase and TORC1. J Cell Sci. 2015;128:2938-50 pubmed 出版商
  1719. Yu H, Park W, Nam K, Song D, Kim H, Baik T, et al. Neuregulin 1 Controls Glutamate Uptake by Up-regulating Excitatory Amino Acid Carrier 1 (EAAC1). J Biol Chem. 2015;290:20233-44 pubmed 出版商
  1720. Sathyamoorthy T, Tezera L, Walker N, Brilha S, Saraiva L, Mauri F, et al. Membrane Type 1 Matrix Metalloproteinase Regulates Monocyte Migration and Collagen Destruction in Tuberculosis. J Immunol. 2015;195:882-91 pubmed 出版商
  1721. Loveless T, Topacio B, Vashisht A, Galaang S, Ulrich K, Young B, et al. DNA Damage Regulates Translation through β-TRCP Targeting of CReP. PLoS Genet. 2015;11:e1005292 pubmed 出版商
  1722. de Jager M, Drukarch B, Hofstee M, Brevé J, Jongenelen C, Bol J, et al. Tissue transglutaminase-catalysed cross-linking induces Apolipoprotein E multimers inhibiting Apolipoprotein E's protective effects towards amyloid-beta-induced toxicity. J Neurochem. 2015;134:1116-28 pubmed 出版商
  1723. Kawamura N, Nimura K, Nagano H, Yamaguchi S, Nonomura N, Kaneda Y. CRISPR/Cas9-mediated gene knockout of NANOG and NANOGP8 decreases the malignant potential of prostate cancer cells. Oncotarget. 2015;6:22361-74 pubmed
  1724. Durham T, Toth J, Klimkowski V, Cao J, Siesky A, Alexander Chacko J, et al. Dual Exosite-binding Inhibitors of Insulin-degrading Enzyme Challenge Its Role as the Primary Mediator of Insulin Clearance in Vivo. J Biol Chem. 2015;290:20044-59 pubmed 出版商
  1725. Alexander M, Hu R, Runtsch M, Kagele D, Mosbruger T, Tolmachova T, et al. Exosome-delivered microRNAs modulate the inflammatory response to endotoxin. Nat Commun. 2015;6:7321 pubmed 出版商
  1726. Lu H, Xue Y, Xue Y, Yu G, Arias C, Lin J, et al. Compensatory induction of MYC expression by sustained CDK9 inhibition via a BRD4-dependent mechanism. elife. 2015;4:e06535 pubmed 出版商
  1727. Song H, Pu J, Wang L, Wu L, Xiao J, Liu Q, et al. ATG16L1 phosphorylation is oppositely regulated by CSNK2/casein kinase 2 and PPP1/protein phosphatase 1 which determines the fate of cardiomyocytes during hypoxia/reoxygenation. Autophagy. 2015;11:1308-25 pubmed 出版商
  1728. Liu G, Wang Z, Wang Z, Yang D, Liu Z, Wang L. Mitochondrial permeability transition and its regulatory components are implicated in apoptosis of primary cultures of rat proximal tubular cells exposed to lead. Arch Toxicol. 2016;90:1193-209 pubmed 出版商
  1729. Gopinathan G, Milagre C, Pearce O, Reynolds L, Hodivala Dilke K, Leinster D, et al. Interleukin-6 Stimulates Defective Angiogenesis. Cancer Res. 2015;75:3098-107 pubmed 出版商
  1730. Li C, Siragy H. (Pro)renin receptor regulates autophagy and apoptosis in podocytes exposed to high glucose. Am J Physiol Endocrinol Metab. 2015;309:E302-10 pubmed 出版商
  1731. Ma S, Yin N, Qi X, Pfister S, Zhang M, Ma R, et al. Tyrosine dephosphorylation enhances the therapeutic target activity of epidermal growth factor receptor (EGFR) by disrupting its interaction with estrogen receptor (ER). Oncotarget. 2015;6:13320-33 pubmed
  1732. Kim J, Jeong M, Lee S, Song J. Camptothecin and topotecan inhibit adipocyte differentiation by inducing degradation of PPARγ. Biochem Biophys Res Commun. 2015;463:1122-8 pubmed 出版商
  1733. Ge F, Chen W, Qin J, Zhou Z, Liu R, Liu L, et al. Ataxin-3 like (ATXN3L), a member of the Josephin family of deubiquitinating enzymes, promotes breast cancer proliferation by deubiquitinating Krüppel-like factor 5 (KLF5). Oncotarget. 2015;6:21369-78 pubmed
  1734. Whalley H, Porter A, Diamantopoulou Z, White G, Castañeda Saucedo E, Malliri A. Cdk1 phosphorylates the Rac activator Tiam1 to activate centrosomal Pak and promote mitotic spindle formation. Nat Commun. 2015;6:7437 pubmed 出版商
  1735. Specks J, Lecona E, Lopez Contreras A, Fernandez Capetillo O. A Single Conserved Residue Mediates Binding of the Ribonucleotide Reductase Catalytic Subunit RRM1 to RRM2 and Is Essential for Mouse Development. Mol Cell Biol. 2015;35:2910-7 pubmed 出版商
  1736. Preca B, Bajdak K, Mock K, Sundararajan V, Pfannstiel J, Maurer J, et al. A self-enforcing CD44s/ZEB1 feedback loop maintains EMT and stemness properties in cancer cells. Int J Cancer. 2015;137:2566-77 pubmed 出版商
  1737. Stermann A, Huebener N, Seidel D, Fest S, Eschenburg G, Stauder M, et al. Targeting of MYCN by means of DNA vaccination is effective against neuroblastoma in mice. Cancer Immunol Immunother. 2015;64:1215-27 pubmed 出版商
  1738. Schell C, Kretz O, Bregenzer A, Rogg M, Helmstädter M, Lisewski U, et al. Podocyte-Specific Deletion of Murine CXADR Does Not Impair Podocyte Development, Function or Stress Response. PLoS ONE. 2015;10:e0129424 pubmed 出版商
  1739. Mercer J, Argus J, Crabtree D, KEENAN M, Wilks M, Chi J, et al. Modulation of PICALM Levels Perturbs Cellular Cholesterol Homeostasis. PLoS ONE. 2015;10:e0129776 pubmed 出版商
  1740. Su Y, Chang Y, Lin W, Liang C, Lee J. An aberrant nuclear localization of E-cadherin is a potent inhibitor of Wnt/β-catenin-elicited promotion of the cancer stem cell phenotype. Oncogenesis. 2015;4:e157 pubmed 出版商
  1741. Bijata M, Wlodarczyk J, Figiel I. Dystroglycan controls dendritic morphogenesis of hippocampal neurons in vitro. Front Cell Neurosci. 2015;9:199 pubmed 出版商
  1742. Shen Y, Zeng L, Novosyadlyy R, Forest A, Zhu A, Korytko A, et al. A bi-functional antibody-receptor domain fusion protein simultaneously targeting IGF-IR and VEGF for degradation. MAbs. 2015;7:931-45 pubmed 出版商
  1743. Lundvig D, Pennings S, Brouwer K, Mtaya Mlangwa M, Mugonzibwa E, Kuijpers Jagtman A, et al. Cytoprotective responses in HaCaT keratinocytes exposed to high doses of curcumin. Exp Cell Res. 2015;336:298-307 pubmed 出版商
  1744. Evonuk K, Baker B, Doyle R, Moseley C, Sestero C, Johnston B, et al. Inhibition of System Xc(-) Transporter Attenuates Autoimmune Inflammatory Demyelination. J Immunol. 2015;195:450-463 pubmed 出版商
  1745. Park S, Choi S, Yoo S, Nah J, Jeong E, Kim H, et al. Pyruvate stimulates mitophagy via PINK1 stabilization. Cell Signal. 2015;27:1824-30 pubmed 出版商
  1746. Masuda Y, Takahashi H, Hatakeyama S. TRIM29 regulates the p63-mediated pathway in cervical cancer cells. Biochim Biophys Acta. 2015;1853:2296-305 pubmed 出版商
  1747. Jinks R, Puffenberger E, Baple E, Harding B, Crino P, Fogo A, et al. Recessive nephrocerebellar syndrome on the Galloway-Mowat syndrome spectrum is caused by homozygous protein-truncating mutations of WDR73. Brain. 2015;138:2173-90 pubmed 出版商
  1748. Lee W, Shen S, Shih Y, Chou C, Tseng J, Chin S, et al. Early decline in serum phospho-CSE1L levels in vemurafenib/sunitinib-treated melanoma and sorafenib/lapatinib-treated colorectal tumor xenografts. J Transl Med. 2015;13:191 pubmed 出版商
  1749. Kang D, Skalsky R, Cullen B. EBV BART MicroRNAs Target Multiple Pro-apoptotic Cellular Genes to Promote Epithelial Cell Survival. PLoS Pathog. 2015;11:e1004979 pubmed 出版商
  1750. Cerella C, Muller F, Gaigneaux A, Radogna F, Viry E, Chateauvieux S, et al. Early downregulation of Mcl-1 regulates apoptosis triggered by cardiac glycoside UNBS1450. Cell Death Dis. 2015;6:e1782 pubmed 出版商
  1751. Lin C, Zhang Z, Wang T, Chen C, James Kang Y. Copper uptake by DMT1: a compensatory mechanism for CTR1 deficiency in human umbilical vein endothelial cells. Metallomics. 2015;7:1285-9 pubmed 出版商
  1752. Ruozi G, Bortolotti F, Falcione A, Dal Ferro M, Ukovich L, Macedo A, et al. AAV-mediated in vivo functional selection of tissue-protective factors against ischaemia. Nat Commun. 2015;6:7388 pubmed 出版商
  1753. Szwarc M, Kommagani R, Jacob A, Dougall W, Ittmann M, Lydon J. Aberrant Activation of the RANK Signaling Receptor Induces Murine Salivary Gland Tumors. PLoS ONE. 2015;10:e0128467 pubmed 出版商
  1754. Ronchi G, Haastert Talini K, Fornasari B, Perroteau I, Geuna S, Gambarotta G. The Neuregulin1/ErbB system is selectively regulated during peripheral nerve degeneration and regeneration. Eur J Neurosci. 2016;43:351-64 pubmed 出版商
  1755. Tong T, Kim N, Park T. Topical Application of Oleuropein Induces Anagen Hair Growth in Telogen Mouse Skin. PLoS ONE. 2015;10:e0129578 pubmed 出版商
  1756. Hollingworth R, Skalka G, Stewart G, Hislop A, Blackbourn D, Grand R. Activation of DNA Damage Response Pathways during Lytic Replication of KSHV. Viruses. 2015;7:2908-27 pubmed 出版商
  1757. Wagenknecht N, Reuter N, Scherer M, Reichel A, Müller R, Stamminger T. Contribution of the Major ND10 Proteins PML, hDaxx and Sp100 to the Regulation of Human Cytomegalovirus Latency and Lytic Replication in the Monocytic Cell Line THP-1. Viruses. 2015;7:2884-907 pubmed 出版商
  1758. Dille S, Kleinschnitz E, Kontchou C, Nölke T, Häcker G. In contrast to Chlamydia trachomatis, Waddlia chondrophila grows in human cells without inhibiting apoptosis, fragmenting the Golgi apparatus, or diverting post-Golgi sphingomyelin transport. Infect Immun. 2015;83:3268-80 pubmed 出版商
  1759. Xie C, Wei D, Zhao L, Marchetto S, Mei L, Borg J, et al. Erbin is a novel substrate of the Sag-βTrCP E3 ligase that regulates KrasG12D-induced skin tumorigenesis. J Cell Biol. 2015;209:721-37 pubmed 出版商
  1760. Du M, Otalora L, Martin A, Moiseyev G, Vanlandingham P, Wang Q, et al. Transgenic Mice Overexpressing Serum Retinol-Binding Protein Develop Progressive Retinal Degeneration through a Retinoid-Independent Mechanism. Mol Cell Biol. 2015;35:2771-89 pubmed 出版商
  1761. Zhang T, Zhou Y, Qi S, Wang Z, Qian W, Ouyang Y, et al. Nuf2 is required for chromosome segregation during mouse oocyte meiotic maturation. Cell Cycle. 2015;14:2701-10 pubmed 出版商
  1762. von Einem B, Wahler A, Schips T, Serrano Pozo A, Proepper C, Boeckers T, et al. The Golgi-Localized γ-Ear-Containing ARF-Binding (GGA) Proteins Alter Amyloid-β Precursor Protein (APP) Processing through Interaction of Their GAE Domain with the Beta-Site APP Cleaving Enzyme 1 (BACE1). PLoS ONE. 2015;10:e0129047 pubmed 出版商
  1763. Cui J, Bai X, Sun X, Cai G, Hong Q, Ding R, et al. Rapamycin protects against gentamicin-induced acute kidney injury via autophagy in mini-pig models. Sci Rep. 2015;5:11256 pubmed 出版商
  1764. Li W, Zhu S, Li J, D Amore J, D Angelo J, Yang H, et al. Serum Amyloid A Stimulates PKR Expression and HMGB1 Release Possibly through TLR4/RAGE Receptors. Mol Med. 2015;21:515-25 pubmed 出版商
  1765. Pfoh R, Lacdao I, Georges A, Capar A, Zheng H, Frappier L, et al. Crystal Structure of USP7 Ubiquitin-like Domains with an ICP0 Peptide Reveals a Novel Mechanism Used by Viral and Cellular Proteins to Target USP7. PLoS Pathog. 2015;11:e1004950 pubmed 出版商
  1766. Ching J, Amiridis S, Stylli S, Bjorksten A, Kountouri N, Zheng T, et al. The peroxisome proliferator activated receptor gamma agonist pioglitazone increases functional expression of the glutamate transporter excitatory amino acid transporter 2 (EAAT2) in human glioblastoma cells. Oncotarget. 2015;6:21301-14 pubmed
  1767. Keller B, García Sevilla J. Regulation of hippocampal Fas receptor and death-inducing signaling complex after kainic acid treatment in mice. Prog Neuropsychopharmacol Biol Psychiatry. 2015;63:54-62 pubmed 出版商
  1768. Wightman S, Uppal A, Pitroda S, Ganai S, Burnette B, Stack M, et al. Oncogenic CXCL10 signalling drives metastasis development and poor clinical outcome. Br J Cancer. 2015;113:327-35 pubmed 出版商
  1769. Holtzhausen A, Zhao F, Evans K, Tsutsui M, Orabona C, Tyler D, et al. Melanoma-Derived Wnt5a Promotes Local Dendritic-Cell Expression of IDO and Immunotolerance: Opportunities for Pharmacologic Enhancement of Immunotherapy. Cancer Immunol Res. 2015;3:1082-95 pubmed 出版商
  1770. Subathra M, Korrapati M, Howell L, Arthur J, Shayman J, Schnellmann R, et al. Kidney glycosphingolipids are elevated early in diabetic nephropathy and mediate hypertrophy of mesangial cells. Am J Physiol Renal Physiol. 2015;309:F204-15 pubmed 出版商
  1771. de Wilde A, Wannee K, Scholte F, Goeman J, Ten Dijke P, Snijder E, et al. A Kinome-Wide Small Interfering RNA Screen Identifies Proviral and Antiviral Host Factors in Severe Acute Respiratory Syndrome Coronavirus Replication, Including Double-Stranded RNA-Activated Protein Kinase and Early Secretory Pathway Proteins. J Virol. 2015;89:8318-33 pubmed 出版商
  1772. Turner E, Brown R, Laudermilch E, Tsai P, Schlieker C. The Torsin Activator LULL1 Is Required for Efficient Growth of Herpes Simplex Virus 1. J Virol. 2015;89:8444-52 pubmed 出版商
  1773. Castiglioni A, Corna G, Rigamonti E, Basso V, Vezzoli M, Monno A, et al. FOXP3+ T Cells Recruited to Sites of Sterile Skeletal Muscle Injury Regulate the Fate of Satellite Cells and Guide Effective Tissue Regeneration. PLoS ONE. 2015;10:e0128094 pubmed 出版商
  1774. Hua X, Yuan X, Li Z, Coursey T, Pflugfelder S, Li D. A Novel Innate Response of Human Corneal Epithelium to Heat-killed Candida albicans by Producing Peptidoglycan Recognition Proteins. PLoS ONE. 2015;10:e0128039 pubmed 出版商
  1775. Barr A, Bakal C. A sensitised RNAi screen reveals a ch-TOG genetic interaction network required for spindle assembly. Sci Rep. 2015;5:10564 pubmed 出版商
  1776. Tréhoux S, Lahdaoui F, Delpu Y, Renaud F, Leteurtre E, Torrisani J, et al. Micro-RNAs miR-29a and miR-330-5p function as tumor suppressors by targeting the MUC1 mucin in pancreatic cancer cells. Biochim Biophys Acta. 2015;1853:2392-403 pubmed 出版商
  1777. Zucha M, Wu A, Lee W, Wang L, Lin W, Yuan C, et al. Bruton's tyrosine kinase (Btk) inhibitor ibrutinib suppresses stem-like traits in ovarian cancer. Oncotarget. 2015;6:13255-68 pubmed
  1778. Wang H, Sharma L, Lu J, Finch P, Fletcher S, Prochownik E. Structurally diverse c-Myc inhibitors share a common mechanism of action involving ATP depletion. Oncotarget. 2015;6:15857-70 pubmed
  1779. Andrade L. Evidence for changes in beta- and gamma-actin proportions during inner ear hair cell life. Cytoskeleton (Hoboken). 2015;72:282-91 pubmed 出版商
  1780. Barber A, Castillo Martin M, Bonal D, Jia A, Rybicki B, Christiano A, et al. PI3K/AKT pathway regulates E-cadherin and Desmoglein 2 in aggressive prostate cancer. Cancer Med. 2015;4:1258-71 pubmed 出版商
  1781. Chin C, Chin H, Chin C, Lai E, Ng S. Engineering selection stringency on expression vector for the production of recombinant human alpha1-antitrypsin using Chinese Hamster ovary cells. BMC Biotechnol. 2015;15:44 pubmed 出版商
  1782. Wang L, Liang J, Leung P. The ACE2/Ang-(1-7)/Mas Axis Regulates the Development of Pancreatic Endocrine Cells in Mouse Embryos. PLoS ONE. 2015;10:e0128216 pubmed 出版商
  1783. Bosco D, Kenworthy R, Zorio D, Sang Q. Human mesenchymal stem cells are resistant to Paclitaxel by adopting a non-proliferative fibroblastic state. PLoS ONE. 2015;10:e0128511 pubmed 出版商
  1784. Pryadkina M, Lostal W, Bourg N, Charton K, Roudaut C, Hirsch M, et al. A comparison of AAV strategies distinguishes overlapping vectors for efficient systemic delivery of the 6.2 kb Dysferlin coding sequence. Mol Ther Methods Clin Dev. 2015;2:15009 pubmed 出版商
  1785. Lee K, Guevarra M, Nguyen A, Chua M, Wang Y, Jacobs C. The primary cilium functions as a mechanical and calcium signaling nexus. Cilia. 2015;4:7 pubmed 出版商
  1786. Park S, Shim J, Park H, Eum D, Park M, Mi Yi J, et al. MacroH2A1 downregulation enhances the stem-like properties of bladder cancer cells by transactivation of Lin28B. Oncogene. 2016;35:1292-301 pubmed 出版商
  1787. Hwang D, Kohl S, Fan X, Vivante A, Chan S, Dworschak G, et al. Mutations of the SLIT2-ROBO2 pathway genes SLIT2 and SRGAP1 confer risk for congenital anomalies of the kidney and urinary tract. Hum Genet. 2015;134:905-16 pubmed 出版商
  1788. Li T, Lu H, Mukherjee D, Lahiri S, Shen C, Yu L, et al. Identification of epidermal growth factor receptor and its inhibitory microRNA141 as novel targets of Krüppel-like factor 8 in breast cancer. Oncotarget. 2015;6:21428-42 pubmed
  1789. Ramljak S, Schmitz M, Zafar S, Wrede A, Schenkel S, Asif A, et al. Cellular prion protein directly interacts with and enhances lactate dehydrogenase expression under hypoxic conditions. Exp Neurol. 2015;271:155-67 pubmed 出版商
  1790. Musicki B, Zhang Y, Chen H, Brown T, Zirkin B, Burnett A. Mechanism of testosterone deficiency in the transgenic sickle cell mouse. PLoS ONE. 2015;10:e0128694 pubmed 出版商
  1791. Yang N, Li L, Eguether T, Sundberg J, Pazour G, Chen J. Intraflagellar transport 27 is essential for hedgehog signaling but dispensable for ciliogenesis during hair follicle morphogenesis. Development. 2015;142:2194-202 pubmed 出版商
  1792. Kim S, Lee E, Kuh H. Co-culture of 3D tumor spheroids with fibroblasts as a model for epithelial-mesenchymal transition in vitro. Exp Cell Res. 2015;335:187-96 pubmed 出版商
  1793. Vinue A, Andrés Blasco I, Herrero Cervera A, Piqueras L, Andres V, Burks D, et al. Ink4/Arf locus restores glucose tolerance and insulin sensitivity by reducing hepatic steatosis and inflammation in mice with impaired IRS2-dependent signalling. Biochim Biophys Acta. 2015;1852:1729-42 pubmed 出版商
  1794. Hayashi T, Wills S, Bussey K, Takimoto T. Identification of Influenza A Virus PB2 Residues Involved in Enhanced Polymerase Activity and Virus Growth in Mammalian Cells at Low Temperatures. J Virol. 2015;89:8042-9 pubmed 出版商
  1795. Yen C, Chiang W, Liu S, Lin C, Liao K, Lin C, et al. Impacts of autophagy-inducing ingredient of areca nut on tumor cells. PLoS ONE. 2015;10:e0128011 pubmed 出版商
  1796. Korotkevych N, Labyntsev A, Kolybo D, Komisarenko S. The Soluble Heparin-Binding EGF-Like Growth Factor Stimulates EGF Receptor Trafficking to the Nucleus. PLoS ONE. 2015;10:e0127887 pubmed 出版商
  1797. Ramirez U, Nikonova A, Liu H, Pecherskaya A, Lawrence S, Serebriiskii I, et al. Compounds identified by virtual docking to a tetrameric EGFR extracellular domain can modulate Grb2 internalization. BMC Cancer. 2015;15:436 pubmed 出版商
  1798. Mulholland C, Smets M, Schmidtmann E, Leidescher S, Markaki Y, Hofweber M, et al. A modular open platform for systematic functional studies under physiological conditions. Nucleic Acids Res. 2015;43:e112 pubmed 出版商
  1799. Lindert U, Weis M, Rai J, Seeliger F, Hausser I, Leeb T, et al. Molecular Consequences of the SERPINH1/HSP47 Mutation in the Dachshund Natural Model of Osteogenesis Imperfecta. J Biol Chem. 2015;290:17679-89 pubmed 出版商
  1800. Reigada D, Nieto Díaz M, Navarro Ruiz R, Caballero López M, Del Águila A, Muñoz Galdeano T, et al. Acute administration of ucf-101 ameliorates the locomotor impairments induced by a traumatic spinal cord injury. Neuroscience. 2015;300:404-17 pubmed 出版商
  1801. Suárez Causado A, Caballero Díaz D, Bertrán E, Roncero C, Addante A, García Álvaro M, et al. HGF/c-Met signaling promotes liver progenitor cell migration and invasion by an epithelial-mesenchymal transition-independent, phosphatidyl inositol-3 kinase-dependent pathway in an in vitro model. Biochim Biophys Acta. 2015;1853:2453-63 pubmed 出版商
  1802. Peng B, Wang J, Hu Y, Zhao H, Hou W, Zhao H, et al. Modulation of LSD1 phosphorylation by CK2/WIP1 regulates RNF168-dependent 53BP1 recruitment in response to DNA damage. Nucleic Acids Res. 2015;43:5936-47 pubmed 出版商
  1803. Fan C, Wang Y, Liu Z, Sun Y, Wang X, Wei G, et al. Metformin exerts anticancer effects through the inhibition of the Sonic hedgehog signaling pathway in breast cancer. Int J Mol Med. 2015;36:204-14 pubmed 出版商
  1804. Milkereit R, Persaud A, Vanoaica L, Guetg A, Verrey F, Rotin D. LAPTM4b recruits the LAT1-4F2hc Leu transporter to lysosomes and promotes mTORC1 activation. Nat Commun. 2015;6:7250 pubmed 出版商
  1805. Yu J, Ramasamy T, Murphy N, Holt M, Czapiewski R, Wei S, et al. PI3K/mTORC2 regulates TGF-β/Activin signalling by modulating Smad2/3 activity via linker phosphorylation. Nat Commun. 2015;6:7212 pubmed 出版商
  1806. Han Y, Lee J, Lee S. Fucoidan inhibits the migration and proliferation of HT-29 human colon cancer cells via the phosphoinositide-3 kinase/Akt/mechanistic target of rapamycin pathways. Mol Med Rep. 2015;12:3446-3452 pubmed 出版商
  1807. Bargut T, Mandarim de Lacerda C, Aguila M. A high-fish-oil diet prevents adiposity and modulates white adipose tissue inflammation pathways in mice. J Nutr Biochem. 2015;26:960-9 pubmed 出版商
  1808. Fischer S, Paul A, Wagner A, Mathias S, Geiss M, Schandock F, et al. miR-2861 as novel HDAC5 inhibitor in CHO cells enhances productivity while maintaining product quality. Biotechnol Bioeng. 2015;112:2142-53 pubmed 出版商
  1809. Moon J, Eo S, Lee J, Park S. Quercetin-induced autophagy flux enhances TRAIL-mediated tumor cell death. Oncol Rep. 2015;34:375-81 pubmed 出版商
  1810. Liang X, Ding Y, Zhang Y, Chai Y, He J, Chiu S, et al. Activation of NRG1-ERBB4 signaling potentiates mesenchymal stem cell-mediated myocardial repairs following myocardial infarction. Cell Death Dis. 2015;6:e1765 pubmed 出版商
  1811. Watanabe S, Sanuki R, Sugita Y, Imai W, Yamazaki R, Kozuka T, et al. Prdm13 regulates subtype specification of retinal amacrine interneurons and modulates visual sensitivity. J Neurosci. 2015;35:8004-20 pubmed 出版商
  1812. Krais A, Speksnijder E, Melis J, Indra R, Moserova M, Godschalk R, et al. The impact of p53 on DNA damage and metabolic activation of the environmental carcinogen benzo[a]pyrene: effects in Trp53(+/+), Trp53(+/-) and Trp53(-/-) mice. Arch Toxicol. 2016;90:839-51 pubmed 出版商
  1813. Yufune S, Satoh Y, Takamatsu I, Ohta H, Kobayashi Y, Takaenoki Y, et al. Transient Blockade of ERK Phosphorylation in the Critical Period Causes Autistic Phenotypes as an Adult in Mice. Sci Rep. 2015;5:10252 pubmed 出版商
  1814. Sato M, Matsubara T, Adachi J, Hashimoto Y, Fukamizu K, Kishida M, et al. Differential Proteome Analysis Identifies TGF-β-Related Pro-Metastatic Proteins in a 4T1 Murine Breast Cancer Model. PLoS ONE. 2015;10:e0126483 pubmed 出版商
  1815. Robinson H, Deykin A, Bronovitsky E, Ovchinnikov R, Ustyugov A, Shelkovnikova T, et al. Early lethality and neuronal proteinopathy in mice expressing cytoplasm-targeted FUS that lacks the RNA recognition motif. Amyotroph Lateral Scler Frontotemporal Degener. 2015;16:402-9 pubmed 出版商
  1816. Zhou Y, Han C, Li D, Yu Z, Li F, Li F, et al. Cyclin-dependent kinase 11(p110) (CDK11(p110)) is crucial for human breast cancer cell proliferation and growth. Sci Rep. 2015;5:10433 pubmed 出版商
  1817. Shen X, Yang L, Yan S, Zheng H, Liang L, Cai X, et al. Fetuin A promotes lipotoxicity in β cells through the TLR4 signaling pathway and the role of pioglitazone in anti-lipotoxicity. Mol Cell Endocrinol. 2015;412:1-11 pubmed 出版商
  1818. Singh P, Konar A, Kumar A, Srivas S, Thakur M. Hippocampal chromatin-modifying enzymes are pivotal for scopolamine-induced synaptic plasticity gene expression changes and memory impairment. J Neurochem. 2015;134:642-51 pubmed 出版商
  1819. Pan D, Jiang C, Ma Z, Blonska M, You M, Lin X. MALT1 is required for EGFR-induced NF-?B activation and contributes to EGFR-driven lung cancer progression. Oncogene. 2016;35:919-28 pubmed 出版商
  1820. Duvall Noelle N, Karwandyar A, Richmond A, Raman D. LASP-1: a nuclear hub for the UHRF1-DNMT1-G9a-Snail1 complex. Oncogene. 2016;35:1122-33 pubmed 出版商
  1821. Roe J, Mercan F, Rivera K, Pappin D, Vakoc C. BET Bromodomain Inhibition Suppresses the Function of Hematopoietic Transcription Factors in Acute Myeloid Leukemia. Mol Cell. 2015;58:1028-39 pubmed 出版商
  1822. Wang D, Kinoshita Y, Kinoshita C, Uo T, Sopher B, Cudaback E, et al. Loss of endophilin-B1 exacerbates Alzheimer's disease pathology. Brain. 2015;138:2005-19 pubmed 出版商
  1823. Hao W, Yuan X, Yu L, Gao C, Sun X, Wang D, et al. Licochalcone A-induced human gastric cancer BGC-823 cells apoptosis by regulating ROS-mediated MAPKs and PI3K/AKT signaling pathways. Sci Rep. 2015;5:10336 pubmed 出版商
  1824. Yang C, Chiang C, Chen C, Lee Y, Wu M, Tsou Y, et al. Identification and characterization of nuclear and nucleolar localization signals in 58-kDa microspherule protein (MSP58). J Biomed Sci. 2015;22:33 pubmed 出版商
  1825. Tian W, Li W, Chen Y, Yan Z, Huang X, Zhuang H, et al. Phosphorylation of ULK1 by AMPK regulates translocation of ULK1 to mitochondria and mitophagy. FEBS Lett. 2015;589:1847-54 pubmed 出版商
  1826. Wong T, Lin S, Leung L. The flavone apigenin blocks nuclear translocation of sterol regulatory element-binding protein-2 in the hepatic cells WRL-68. Br J Nutr. 2015;113:1844-52 pubmed 出版商
  1827. Wang Z, Ma B, Ji X, Deng Y, Zhang T, Zhang X, et al. MicroRNA-378-5p suppresses cell proliferation and induces apoptosis in colorectal cancer cells by targeting BRAF. Cancer Cell Int. 2015;15:40 pubmed 出版商
  1828. Noss E, Watts G, Zocco D, Keller T, Whitman M, Blobel C, et al. Evidence for cadherin-11 cleavage in the synovium and partial characterization of its mechanism. Arthritis Res Ther. 2015;17:126 pubmed 出版商
  1829. Kumar P, Gullberg U, Olsson I, Ajore R. Myeloid translocation gene-16 co-repressor promotes degradation of hypoxia-inducible factor 1. PLoS ONE. 2015;10:e0123725 pubmed 出版商
  1830. Oishi N, Duscha S, Boukari H, Meyer M, Xie J, Wei G, et al. XBP1 mitigates aminoglycoside-induced endoplasmic reticulum stress and neuronal cell death. Cell Death Dis. 2015;6:e1763 pubmed 出版商
  1831. Bai Y, Xuan B, Liu H, Zhong J, Yu D, Qian Z. Tuberous Sclerosis Complex Protein 2-Independent Activation of mTORC1 by Human Cytomegalovirus pUL38. J Virol. 2015;89:7625-35 pubmed 出版商
  1832. Grice S, Sleigh J, Motley W, Liu J, Burgess R, Talbot K, et al. Dominant, toxic gain-of-function mutations in gars lead to non-cell autonomous neuropathology. Hum Mol Genet. 2015;24:4397-406 pubmed 出版商
  1833. Formisano L, Guida N, Valsecchi V, Cantile M, Cuomo O, Vinciguerra A, et al. Sp3/REST/HDAC1/HDAC2 Complex Represses and Sp1/HIF-1/p300 Complex Activates ncx1 Gene Transcription, in Brain Ischemia and in Ischemic Brain Preconditioning, by Epigenetic Mechanism. J Neurosci. 2015;35:7332-48 pubmed 出版商
  1834. Bowdridge E, Goravanahally M, Inskeep E, Flores J. Activation of Adenosine Monophosphate-Activated Protein Kinase Is an Additional Mechanism That Participates in Mediating Inhibitory Actions of Prostaglandin F2Alpha in Mature, but Not Developing, Bovine Corpora Lutea. Biol Reprod. 2015;93:7 pubmed 出版商
  1835. Wang C, Nie Z, Zhou Z, Zhang H, Liu R, Wu J, et al. The interplay between TEAD4 and KLF5 promotes breast cancer partially through inhibiting the transcription of p27Kip1. Oncotarget. 2015;6:17685-97 pubmed
  1836. Adhikary G, Grun D, Balasubramanian S, Kerr C, Huang J, Eckert R. Survival of skin cancer stem cells requires the Ezh2 polycomb group protein. Carcinogenesis. 2015;36:800-10 pubmed 出版商
  1837. Saini P, Li Y, Dobbelstein M. Wee1 is required to sustain ATR/Chk1 signaling upon replicative stress. Oncotarget. 2015;6:13072-87 pubmed
  1838. Bergeron D, Pal G, Beaulieu Y, Chabot B, Bachand F. Regulated Intron Retention and Nuclear Pre-mRNA Decay Contribute to PABPN1 Autoregulation. Mol Cell Biol. 2015;35:2503-17 pubmed 出版商
  1839. Tanas M, Ma S, Jadaan F, Ng C, Weigelt B, Reis Filho J, et al. Mechanism of action of a WWTR1(TAZ)-CAMTA1 fusion oncoprotein. Oncogene. 2016;35:929-38 pubmed 出版商
  1840. Scala F, Brighenti E, Govoni M, Imbrogno E, Fornari F, Treré D, et al. Direct relationship between the level of p53 stabilization induced by rRNA synthesis-inhibiting drugs and the cell ribosome biogenesis rate. Oncogene. 2016;35:977-89 pubmed 出版商
  1841. Garcia P, Miller A, Kreitzburg K, Council L, Gamblin T, Christein J, et al. The BET bromodomain inhibitor JQ1 suppresses growth of pancreatic ductal adenocarcinoma in patient-derived xenograft models. Oncogene. 2016;35:833-45 pubmed 出版商
  1842. Mortusewicz O, Evers B, Helleday T. PC4 promotes genome stability and DNA repair through binding of ssDNA at DNA damage sites. Oncogene. 2016;35:761-70 pubmed 出版商
  1843. Pang B, de Jong J, Qiao X, Wessels L, Neefjes J. Chemical profiling of the genome with anti-cancer drugs defines target specificities. Nat Chem Biol. 2015;11:472-80 pubmed 出版商
  1844. Li W, Zhang C, Ren A, Li T, Jin R, Li G, et al. Shikonin Suppresses Skin Carcinogenesis via Inhibiting Cell Proliferation. PLoS ONE. 2015;10:e0126459 pubmed 出版商
  1845. Li Y, Wang W, Xu X, Sun S, Xu X, Qu X. {2-[1-(3-Methoxycarbonylmethyl-1H-indol-2-yl)-1-methyl-ethyl]-1H-indol-3-yl}-acetic Acid Methyl Ester Inhibited Hepatocellular Carcinoma Growth in Bel-7402 Cells and Its Resistant Variants by Activation of NOX4 and SIRT3. Biomed Res Int. 2015;2015:491205 pubmed 出版商
  1846. Piskareva O, Harvey H, Nolan J, Conlon R, Alcock L, Buckley P, et al. The development of cisplatin resistance in neuroblastoma is accompanied by epithelial to mesenchymal transition in vitro. Cancer Lett. 2015;364:142-55 pubmed 出版商
  1847. Fujikawa Y, Tominaga K, Tanaka F, Tanigawa T, Watanabe T, Fujiwara Y, et al. Enteric glial cells are associated with stress-induced colonic hyper-contraction in maternally separated rats. Neurogastroenterol Motil. 2015;27:1010-23 pubmed 出版商
  1848. Mahale S, Bharate S, Manda S, Joshi P, Jenkins P, Vishwakarma R, et al. Antitumour potential of BPT: a dual inhibitor of cdk4 and tubulin polymerization. Cell Death Dis. 2015;6:e1743 pubmed 出版商
  1849. Son Y, Heo K, Bae M, Lee C, Cho W, Kim S, et al. Injury to the blood-testis barrier after low-dose-rate chronic radiation exposure in mice. Radiat Prot Dosimetry. 2015;167:316-20 pubmed 出版商
  1850. Barrett K, Fang H, Cukovic D, Dombkowski A, Kocarek T, Runge Morris M. Upregulation of UGT2B4 Expression by 3'-Phosphoadenosine-5'-Phosphosulfate Synthase Knockdown: Implications for Coordinated Control of Bile Acid Conjugation. Drug Metab Dispos. 2015;43:1061-70 pubmed 出版商
  1851. Sadowski S, Boufraqech M, Zhang L, Mehta A, Kapur P, Zhang Y, et al. Torin2 targets dysregulated pathways in anaplastic thyroid cancer and inhibits tumor growth and metastasis. Oncotarget. 2015;6:18038-49 pubmed
  1852. Shi Y, Tan S, Ng S, Zhou J, Yang N, Koo G, et al. Critical role of CAV1/caveolin-1 in cell stress responses in human breast cancer cells via modulation of lysosomal function and autophagy. Autophagy. 2015;11:769-84 pubmed 出版商
  1853. Cuevas C, Tapia Rojas C, Cespedes C, Inestrosa N, Vio C. β-Catenin-Dependent Signaling Pathway Contributes to Renal Fibrosis in Hypertensive Rats. Biomed Res Int. 2015;2015:726012 pubmed 出版商
  1854. Milenkovic A, Brandl C, Milenkovic V, Jendryke T, Sirianant L, Wanitchakool P, et al. Bestrophin 1 is indispensable for volume regulation in human retinal pigment epithelium cells. Proc Natl Acad Sci U S A. 2015;112:E2630-9 pubmed 出版商
  1855. Basu S, Majumder S, Bhowal A, Ghosh A, Naskar S, Nandy S, et al. A study of molecular signals deregulating mismatch repair genes in prostate cancer compared to benign prostatic hyperplasia. PLoS ONE. 2015;10:e0125560 pubmed 出版商
  1856. Fisher M, Keillor J, Xu W, Eckert R, Kerr C. Transglutaminase Is Required for Epidermal Squamous Cell Carcinoma Stem Cell Survival. Mol Cancer Res. 2015;13:1083-94 pubmed 出版商
  1857. Lin A, Beasley F, Olson J, Keller N, Shalwitz R, Hannan T, et al. Role of Hypoxia Inducible Factor-1α (HIF-1α) in Innate Defense against Uropathogenic Escherichia coli Infection. PLoS Pathog. 2015;11:e1004818 pubmed 出版商
  1858. Philipp S, Sosna J, Plenge J, Kalthoff H, Adam D. Homoharringtonine, a clinically approved anti-leukemia drug, sensitizes tumor cells for TRAIL-induced necroptosis. Cell Commun Signal. 2015;13:25 pubmed 出版商
  1859. Isogai T, van der Kammen R, Innocenti M. SMIFH2 has effects on Formins and p53 that perturb the cell cytoskeleton. Sci Rep. 2015;5:9802 pubmed 出版商
  1860. Liu H, Wei Q, Wang J, Huang X, Li C, Zheng Q, et al. DNA Polymerases as targets for gene therapy of hepatocellular carcinoma. BMC Cancer. 2015;15:325 pubmed 出版商
  1861. Cardoso F, Herz J, Fernandes A, Rocha J, Sepodes B, Brito M, et al. Systemic inflammation in early neonatal mice induces transient and lasting neurodegenerative effects. J Neuroinflammation. 2015;12:82 pubmed 出版商
  1862. Moon H, Ruelcke J, Choi E, Sharpe L, Nassar Z, Bielefeldt Ohmann H, et al. Diet-induced hypercholesterolemia promotes androgen-independent prostate cancer metastasis via IQGAP1 and caveolin-1. Oncotarget. 2015;6:7438-53 pubmed
  1863. Li G, Wang J, Ye J, Zhang Y, Zhang Y. PPARα Protein Expression Was Increased by Four Weeks of Intermittent Hypoxic Training via AMPKα2-Dependent Manner in Mouse Skeletal Muscle. PLoS ONE. 2015;10:e0122593 pubmed 出版商
  1864. Hsu P, Liu X, Zhang J, Wang H, Ye J, Shi Y. Cardiolipin remodeling by TAZ/tafazzin is selectively required for the initiation of mitophagy. Autophagy. 2015;11:643-52 pubmed 出版商
  1865. Tate C, Mc Entire J, Pallini R, Vakana E, Wyss L, Blosser W, et al. A BMP7 Variant Inhibits Tumor Angiogenesis In Vitro and In Vivo through Direct Modulation of Endothelial Cell Biology. PLoS ONE. 2015;10:e0125697 pubmed 出版商
  1866. Studzian M, Bartosz G, Pulaski L. Endocytosis of ABCG2 drug transporter caused by binding of 5D3 antibody: trafficking mechanisms and intracellular fate. Biochim Biophys Acta. 2015;1853:1759-71 pubmed 出版商
  1867. Bhushan S, Tchatalbachev S, Lu Y, Fröhlich S, Fijak M, Vijayan V, et al. Differential activation of inflammatory pathways in testicular macrophages provides a rationale for their subdued inflammatory capacity. J Immunol. 2015;194:5455-64 pubmed 出版商
  1868. Peiris Pagès M, Sotgia F, Lisanti M. Chemotherapy induces the cancer-associated fibroblast phenotype, activating paracrine Hedgehog-GLI signalling in breast cancer cells. Oncotarget. 2015;6:10728-45 pubmed
  1869. Chan Penebre E, Kuplast K, Majer C, Boriack Sjodin P, Wigle T, Johnston L, et al. A selective inhibitor of PRMT5 with in vivo and in vitro potency in MCL models. Nat Chem Biol. 2015;11:432-7 pubmed 出版商
  1870. Suzuki M, Takeda T, Nakagawa H, Iwata S, Watanabe T, Siddiquey M, et al. The heat shock protein 90 inhibitor BIIB021 suppresses the growth of T and natural killer cell lymphomas. Front Microbiol. 2015;6:280 pubmed 出版商
  1871. Cheng Y, Jutooru I, Chadalapaka G, Corton J, Safe S. The long non-coding RNA HOTTIP enhances pancreatic cancer cell proliferation, survival and migration. Oncotarget. 2015;6:10840-52 pubmed
  1872. Pasqualon T, Pruessmeyer J, Weidenfeld S, Babendreyer A, Groth E, Schumacher J, et al. A transmembrane C-terminal fragment of syndecan-1 is generated by the metalloproteinase ADAM17 and promotes lung epithelial tumor cell migration and lung metastasis formation. Cell Mol Life Sci. 2015;72:3783-801 pubmed 出版商
  1873. Kataoka K, Matsumoto H, Kaneko H, Notomi S, Takeuchi K, Sweigard J, et al. Macrophage- and RIP3-dependent inflammasome activation exacerbates retinal detachment-induced photoreceptor cell death. Cell Death Dis. 2015;6:e1731 pubmed 出版商
  1874. Luo T, Fu J, Xu A, Su B, Ren Y, Li N, et al. PSMD10/gankyrin induces autophagy to promote tumor progression through cytoplasmic interaction with ATG7 and nuclear transactivation of ATG7 expression. Autophagy. 2016;12:1355-71 pubmed 出版商
  1875. Lin Y, Yuan J, Pei H, Liu T, Ann D, Lou Z. KAP1 Deacetylation by SIRT1 Promotes Non-Homologous End-Joining Repair. PLoS ONE. 2015;10:e0123935 pubmed 出版商
  1876. Watanabe M, Takahashi H, Saeki Y, Ozaki T, Itoh S, Suzuki M, et al. The E3 ubiquitin ligase TRIM23 regulates adipocyte differentiation via stabilization of the adipogenic activator PPARγ. elife. 2015;4:e05615 pubmed 出版商
  1877. Ezzati P, Komher K, Severini G, Coombs K. Comparative proteomic analyses demonstrate enhanced interferon and STAT-1 activation in reovirus T3D-infected HeLa cells. Front Cell Infect Microbiol. 2015;5:30 pubmed 出版商
  1878. Willy J, Young S, Stevens J, Masuoka H, Wek R. CHOP links endoplasmic reticulum stress to NF-κB activation in the pathogenesis of nonalcoholic steatohepatitis. Mol Biol Cell. 2015;26:2190-204 pubmed 出版商
  1879. Walliser C, Tron K, Clauss K, Gutman O, Kobitski A, Retlich M, et al. Rac-mediated Stimulation of Phospholipase Cγ2 Amplifies B Cell Receptor-induced Calcium Signaling. J Biol Chem. 2015;290:17056-72 pubmed 出版商
  1880. Cattoglio C, Zhang E, Grubisic I, Chiba K, Fong Y, Tjian R. Functional and mechanistic studies of XPC DNA-repair complex as transcriptional coactivator in embryonic stem cells. Proc Natl Acad Sci U S A. 2015;112:E2317-26 pubmed 出版商
  1881. Randles M, Woolf A, Huang J, Byron A, Humphries J, Price K, et al. Genetic Background is a Key Determinant of Glomerular Extracellular Matrix Composition and Organization. J Am Soc Nephrol. 2015;26:3021-34 pubmed 出版商
  1882. Berkovits B, Mayr C. Alternative 3' UTRs act as scaffolds to regulate membrane protein localization. Nature. 2015;522:363-7 pubmed 出版商
  1883. Najm F, Madhavan M, Zaremba A, Shick E, Karl R, Factor D, et al. Drug-based modulation of endogenous stem cells promotes functional remyelination in vivo. Nature. 2015;522:216-20 pubmed 出版商
  1884. Kim S, Lahmy R, Riha C, Yang C, Jakubison B, van Niekerk J, et al. The basic helix-loop-helix transcription factor E47 reprograms human pancreatic cancer cells to a quiescent acinar state with reduced tumorigenic potential. Pancreas. 2015;44:718-27 pubmed 出版商
  1885. Benzina S, Pitaval A, Lemercier C, Lustremant C, Frouin V, Wu N, et al. A kinome-targeted RNAi-based screen links FGF signaling to H2AX phosphorylation in response to radiation. Cell Mol Life Sci. 2015;72:3559-73 pubmed 出版商
  1886. Nishimatsu H, Suzuki E, Saito Y, Niimi A, Nomiya A, Fukuhara H, et al. Senescent Cells Impair Erectile Function through Induction of Endothelial Dysfunction and Nerve Injury in Mice. PLoS ONE. 2015;10:e0124129 pubmed 出版商
  1887. Lodillinsky C, Infante E, Guichard A, Chaligné R, Fuhrmann L, Cyrta J, et al. p63/MT1-MMP axis is required for in situ to invasive transition in basal-like breast cancer. Oncogene. 2016;35:344-57 pubmed 出版商
  1888. Min K, Liggett J, Silva G, Wu W, Wang R, Shen R, et al. NAG-1/GDF15 accumulates in the nucleus and modulates transcriptional regulation of the Smad pathway. Oncogene. 2016;35:377-88 pubmed 出版商
  1889. Park Y, Liu C, Luo T, Dietrich W, Bramlett H, Hu B. Chaperone-Mediated Autophagy after Traumatic Brain Injury. J Neurotrauma. 2015;32:1449-57 pubmed 出版商
  1890. Li J, Jørgensen S, Maggadottir S, Bakay M, Warnatz K, Glessner J, et al. Association of CLEC16A with human common variable immunodeficiency disorder and role in murine B cells. Nat Commun. 2015;6:6804 pubmed 出版商
  1891. Ho F, Zhang W, Li Y, Chan B. Mechanoresponsive, omni-directional and local matrix-degrading actin protrusions in human mesenchymal stem cells microencapsulated in a 3D collagen matrix. Biomaterials. 2015;53:392-405 pubmed 出版商
  1892. Ji T, Guo Y, Kim K, McQueen P, Ghaffar S, Christ A, et al. Neuropilin-2 expression is inhibited by secreted Wnt antagonists and its down-regulation is associated with reduced tumor growth and metastasis in osteosarcoma. Mol Cancer. 2015;14:86 pubmed 出版商
  1893. Sheean R, Weston R, Perera N, D Amico A, Nutt S, Turner B. Effect of thymic stimulation of CD4+ T cell expansion on disease onset and progression in mutant SOD1 mice. J Neuroinflammation. 2015;12:40 pubmed 出版商
  1894. Huang S, Sung C, Chen W, Chen C, Feng C, Yang S, et al. Involvement of phosphatase and tensin homolog deleted from chromosome 10 in rodent model of neuropathic pain. J Neuroinflammation. 2015;12:59 pubmed 出版商
  1895. Apostoli A, Roche J, Schneider M, SenGupta S, Di Lena M, Rubino R, et al. Opposing roles for mammary epithelial-specific PPARγ signaling and activation during breast tumour progression. Mol Cancer. 2015;14:85 pubmed 出版商
  1896. Erkelenz S, Hillebrand F, Widera M, Theiss S, Fayyaz A, Degrandi D, et al. Balanced splicing at the Tat-specific HIV-1 3'ss A3 is critical for HIV-1 replication. Retrovirology. 2015;12:29 pubmed 出版商
  1897. Uetake Y, Ikeda H, Irie R, Tejima K, Matsui H, Ogura S, et al. High-salt in addition to high-fat diet may enhance inflammation and fibrosis in liver steatosis induced by oxidative stress and dyslipidemia in mice. Lipids Health Dis. 2015;14:6 pubmed 出版商
  1898. Roca Rodríguez M, El Bekay R, Garrido Sanchez L, Gómez Serrano M, Coin Aragüez L, Oliva Olivera W, et al. Parathyroid Hormone-Related Protein, Human Adipose-Derived Stem Cells Adipogenic Capacity and Healthy Obesity. J Clin Endocrinol Metab. 2015;100:E826-35 pubmed 出版商
  1899. Cookman C, Belcher S. Estrogen Receptor-β Up-Regulates IGF1R Expression and Activity to Inhibit Apoptosis and Increase Growth of Medulloblastoma. Endocrinology. 2015;156:2395-408 pubmed 出版商
  1900. Zhao H, Agazie Y. Inhibition of SHP2 in basal-like and triple-negative breast cells induces basal-to-luminal transition, hormone dependency, and sensitivity to anti-hormone treatment. BMC Cancer. 2015;15:109 pubmed 出版商
  1901. Vishwamitra D, Curry C, Alkan S, Song Y, Gallick G, Kaseb A, et al. The transcription factors Ik-1 and MZF1 downregulate IGF-IR expression in NPM-ALK⁺ T-cell lymphoma. Mol Cancer. 2015;14:53 pubmed 出版商
  1902. Samse K, Emathinger J, Hariharan N, Quijada P, Ilves K, Völkers M, et al. Functional Effect of Pim1 Depends upon Intracellular Localization in Human Cardiac Progenitor Cells. J Biol Chem. 2015;290:13935-47 pubmed 出版商
  1903. Mues M, Cheshenko N, Wilson D, Gunther Cummins L, Herold B. Dynasore disrupts trafficking of herpes simplex virus proteins. J Virol. 2015;89:6673-84 pubmed 出版商
  1904. Basu S, Thorat R, Dalal S. MMP7 is required to mediate cell invasion and tumor formation upon Plakophilin3 loss. PLoS ONE. 2015;10:e0123979 pubmed 出版商
  1905. Guo S, Jin Y, Fang Q, You C, Wang X, Hu X, et al. Beneficial effects of hydrogen-rich saline on early burn-wound progression in rats. PLoS ONE. 2015;10:e0124897 pubmed 出版商
  1906. Badding M, Schwegler Berry D, Park J, Fix N, Cummings K, Leonard S. Sintered indium-tin oxide particles induce pro-inflammatory responses in vitro, in part through inflammasome activation. PLoS ONE. 2015;10:e0124368 pubmed 出版商
  1907. Zarzycka M, Chojnacka K, Mruk D, Górowska E, Hejmej A, Kotula Balak M, et al. Flutamide alters the distribution of c-Src and affects the N-cadherin-β-catenin complex in the seminiferous epithelium of adult rat. Andrology. 2015;3:569-81 pubmed 出版商
  1908. Meidhof S, Brabletz S, Lehmann W, Preca B, Mock K, Ruh M, et al. ZEB1-associated drug resistance in cancer cells is reversed by the class I HDAC inhibitor mocetinostat. EMBO Mol Med. 2015;7:831-47 pubmed 出版商
  1909. Chung J, Bauer D, Ghamari A, Nizzi C, Deck K, Kingsley P, et al. The mTORC1/4E-BP pathway coordinates hemoglobin production with L-leucine availability. Sci Signal. 2015;8:ra34 pubmed 出版商
  1910. Li L, Dong Q, Wang Y, Feng Q, Zhou P, Ou X, et al. Hedgehog signaling is involved in the BMP9-induced osteogenic differentiation of mesenchymal stem cells. Int J Mol Med. 2015;35:1641-50 pubmed 出版商
  1911. Zhang X, Liang D, Chi Z, Chu Q, Zhao C, Ma R, et al. Effect of zinc on high glucose-induced epithelial-to-mesenchymal transition in renal tubular epithelial cells. Int J Mol Med. 2015;35:1747-54 pubmed 出版商
  1912. Tyagi K, Pedrioli P. Protein degradation and dynamic tRNA thiolation fine-tune translation at elevated temperatures. Nucleic Acids Res. 2015;43:4701-12 pubmed 出版商
  1913. Zhang B, Shi L, Lu S, Sun X, Liu Y, Li H, et al. Autocrine IL-8 promotes F-actin polymerization and mediate mesenchymal transition via ELMO1-NF-κB-Snail signaling in glioma. Cancer Biol Ther. 2015;16:898-911 pubmed 出版商
  1914. Pardo F, Silva L, Sáez T, Salsoso R, Gutiérrez J, Sanhueza C, et al. Human supraphysiological gestational weight gain and fetoplacental vascular dysfunction. Int J Obes (Lond). 2015;39:1264-73 pubmed 出版商
  1915. Chien P, Lin C, Hsiao L, Yang C. c-Src/Pyk2/EGFR/PI3K/Akt/CREB-activated pathway contributes to human cardiomyocyte hypertrophy: Role of COX-2 induction. Mol Cell Endocrinol. 2015;409:59-72 pubmed 出版商
  1916. Barfeld S, Fazli L, Persson M, Marjavaara L, Urbanucci A, Kaukoniemi K, et al. Myc-dependent purine biosynthesis affects nucleolar stress and therapy response in prostate cancer. Oncotarget. 2015;6:12587-602 pubmed
  1917. Jühlen R, Idkowiak J, Taylor A, Kind B, Arlt W, Huebner A, et al. Role of ALADIN in human adrenocortical cells for oxidative stress response and steroidogenesis. PLoS ONE. 2015;10:e0124582 pubmed 出版商
  1918. Ben Messaoud N, Yue J, Valent D, Katzarova I, López J. Osmostress-induced apoptosis in Xenopus oocytes: role of stress protein kinases, calpains and Smac/DIABLO. PLoS ONE. 2015;10:e0124482 pubmed 出版商
  1919. Hong S, Lee J, Lee J, Lee H, Kim H, Lee S, et al. The traditional drug Gongjin-Dan ameliorates chronic fatigue in a forced-stress mouse exercise model. J Ethnopharmacol. 2015;168:268-78 pubmed 出版商
  1920. Nakayama T, Al Maawali A, El Quessny M, Rajab A, Khalil S, Stoler J, et al. Mutations in PYCR2, Encoding Pyrroline-5-Carboxylate Reductase 2, Cause Microcephaly and Hypomyelination. Am J Hum Genet. 2015;96:709-19 pubmed 出版商
  1921. Corbel C, Zhang B, Le Parc A, Baratte B, Colas P, Couturier C, et al. Tamoxifen inhibits CDK5 kinase activity by interacting with p35/p25 and modulates the pattern of tau phosphorylation. Chem Biol. 2015;22:472-482 pubmed 出版商
  1922. Scifo E, Szwajda A, Soliymani R, Pezzini F, Bianchi M, Dapkunas A, et al. Proteomic analysis of the palmitoyl protein thioesterase 1 interactome in SH-SY5Y human neuroblastoma cells. J Proteomics. 2015;123:42-53 pubmed 出版商
  1923. Asundi J, Crocker L, Tremayne J, Chang P, Sakanaka C, Tanguay J, et al. An Antibody-Drug Conjugate Directed against Lymphocyte Antigen 6 Complex, Locus E (LY6E) Provides Robust Tumor Killing in a Wide Range of Solid Tumor Malignancies. Clin Cancer Res. 2015;21:3252-62 pubmed 出版商
  1924. Gillory L, Stewart J, Megison M, Waters A, Beierle E. Focal adhesion kinase and p53 synergistically decrease neuroblastoma cell survival. J Surg Res. 2015;196:339-49 pubmed 出版商
  1925. Jørgensen M, Bæk R, Varming K. Potentials and capabilities of the Extracellular Vesicle (EV) Array. J Extracell Vesicles. 2015;4:26048 pubmed 出版商
  1926. Lund K, Dembinski J, Solberg N, Urbanucci A, Mills I, Krauss S. Slug-dependent upregulation of L1CAM is responsible for the increased invasion potential of pancreatic cancer cells following long-term 5-FU treatment. PLoS ONE. 2015;10:e0123684 pubmed 出版商
  1927. Bojovic O, Panja D, Bittins M, Bramham C, Tjølsen A. Time course of immediate early gene protein expression in the spinal cord following conditioning stimulation of the sciatic nerve in rats. PLoS ONE. 2015;10:e0123604 pubmed 出版商
  1928. Gu Q, Yu D, Hu Z, Liu X, Yang Y, Luo Y, et al. miR-26a and miR-384-5p are required for LTP maintenance and spine enlargement. Nat Commun. 2015;6:6789 pubmed 出版商
  1929. Bianchi E, Bulgarelli J, Ruberti S, Rontauroli S, Sacchi G, Norfo R, et al. MYB controls erythroid versus megakaryocyte lineage fate decision through the miR-486-3p-mediated downregulation of MAF. Cell Death Differ. 2015;22:1906-21 pubmed 出版商
  1930. Kropp K, Hsieh W, Isern E, Forster T, Krause E, Brune W, et al. A temporal gate for viral enhancers to co-opt Toll-like-receptor transcriptional activation pathways upon acute infection. PLoS Pathog. 2015;11:e1004737 pubmed 出版商
  1931. Sun Y, Zhang T, Wang C, Jin X, Jia C, Yu S, et al. MiRNA-615-5p functions as a tumor suppressor in pancreatic ductal adenocarcinoma by targeting AKT2. PLoS ONE. 2015;10:e0119783 pubmed 出版商
  1932. Simões A, Pereira D, Gomes S, Brito H, Carvalho T, French A, et al. Aberrant MEK5/ERK5 signalling contributes to human colon cancer progression via NF-κB activation. Cell Death Dis. 2015;6:e1718 pubmed 出版商
  1933. Vashist S, Ureña L, Gonzalez Hernandez M, Choi J, de Rougemont A, Rocha Pereira J, et al. Molecular chaperone Hsp90 is a therapeutic target for noroviruses. J Virol. 2015;89:6352-63 pubmed 出版商
  1934. Witkiewicz A, McMillan E, Balaji U, Baek G, Lin W, Mansour J, et al. Whole-exome sequencing of pancreatic cancer defines genetic diversity and therapeutic targets. Nat Commun. 2015;6:6744 pubmed 出版商
  1935. Ali Q, Patel S, Hussain T. Angiotensin AT2 receptor agonist prevents salt-sensitive hypertension in obese Zucker rats. Am J Physiol Renal Physiol. 2015;308:F1379-85 pubmed 出版商
  1936. Schilling D, Kühnel A, Tetzlaff F, Konrad S, Multhoff G. NZ28-induced inhibition of HSF1, SP1 and NF-κB triggers the loss of the natural killer cell-activating ligands MICA/B on human tumor cells. Cancer Immunol Immunother. 2015;64:599-608 pubmed 出版商
  1937. Wang X, D Arcy P, Caulfield T, Paulus A, Chitta K, Mohanty C, et al. Synthesis and evaluation of derivatives of the proteasome deubiquitinase inhibitor b-AP15. Chem Biol Drug Des. 2015;86:1036-48 pubmed 出版商
  1938. Ecker J, Oehme I, Mazitschek R, Korshunov A, Kool M, Hielscher T, et al. Targeting class I histone deacetylase 2 in MYC amplified group 3 medulloblastoma. Acta Neuropathol Commun. 2015;3:22 pubmed 出版商
  1939. Rodríguez Sureda V, Vilches Ã, Sánchez O, Audí L, Domínguez C. Intracellular oxidant activity, antioxidant enzyme defense system, and cell senescence in fibroblasts with trisomy 21. Oxid Med Cell Longev. 2015;2015:509241 pubmed 出版商
  1940. Panda D, Gold B, Tartell M, Rausch K, Casas Tinto S, Cherry S. The transcription factor FoxK participates with Nup98 to regulate antiviral gene expression. MBio. 2015;6: pubmed 出版商
  1941. Saha K, Eckert R. Methylosome Protein 50 and PKC?/p38? Protein Signaling Control Keratinocyte Proliferation via Opposing Effects on p21Cip1 Gene Expression. J Biol Chem. 2015;290:13521-30 pubmed 出版商
  1942. Chakraborty A, Diefenbacher M, Mylona A, Kassel O, Behrens A. The E3 ubiquitin ligase Trim7 mediates c-Jun/AP-1 activation by Ras signalling. Nat Commun. 2015;6:6782 pubmed 出版商
  1943. Kim T, Lawson M. GnRH Regulates Gonadotropin Gene Expression Through NADPH/Dual Oxidase-Derived Reactive Oxygen Species. Endocrinology. 2015;156:2185-99 pubmed 出版商
  1944. Li Y, Drabsch Y, Pujuguet P, Ren J, van Laar T, Zhang L, et al. Genetic depletion and pharmacological targeting of αv integrin in breast cancer cells impairs metastasis in zebrafish and mouse xenograft models. Breast Cancer Res. 2015;17:28 pubmed 出版商
  1945. Wu S, Yi J, Zhang Y, Zhou J, Sun J. Leaky intestine and impaired microbiome in an amyotrophic lateral sclerosis mouse model. Physiol Rep. 2015;3: pubmed 出版商
  1946. Okatsu K, Koyano F, Kimura M, Kosako H, Saeki Y, Tanaka K, et al. Phosphorylated ubiquitin chain is the genuine Parkin receptor. J Cell Biol. 2015;209:111-28 pubmed 出版商
  1947. Shang A, Yang Y, Wang H, Wang J, Hang X, Wang Z, et al. Upregulation of neuroglobin expression and changes in serum redox indices in a rat model of middle cerebral artery occlusion. Mol Med Rep. 2015;12:1693-8 pubmed 出版商
  1948. Majumder A, Syed K, Joseph S, Scambler P, Dutta D. Histone Chaperone HIRA in Regulation of Transcription Factor RUNX1. J Biol Chem. 2015;290:13053-63 pubmed 出版商
  1949. Amrutkar M, Cansby E, Chursa U, Nuñez Durán E, Chanclón B, StÃ¥hlman M, et al. Genetic Disruption of Protein Kinase STK25 Ameliorates Metabolic Defects in a Diet-Induced Type 2 Diabetes Model. Diabetes. 2015;64:2791-804 pubmed 出版商
  1950. Bergamo P, Palmieri G, Cocca E, Ferrandino I, Gogliettino M, Monaco A, et al. Adaptive response activated by dietary cis9, trans11 conjugated linoleic acid prevents distinct signs of gliadin-induced enteropathy in mice. Eur J Nutr. 2016;55:729-740 pubmed 出版商
  1951. Hausmann S, Brandt E, Köchel C, Einsele H, Bargou R, Seggewiss Bernhardt R, et al. Loss of serum and glucocorticoid-regulated kinase 3 (SGK3) does not affect proliferation and survival of multiple myeloma cell lines. PLoS ONE. 2015;10:e0122689 pubmed 出版商
  1952. Uemura N, Koike M, Ansai S, Kinoshita M, Ishikawa Fujiwara T, Matsui H, et al. Viable neuronopathic Gaucher disease model in Medaka (Oryzias latipes) displays axonal accumulation of alpha-synuclein. PLoS Genet. 2015;11:e1005065 pubmed 出版商
  1953. Neira Peña T, Rojas Mancilla E, Munoz Vio V, Perez R, Gutierrez Hernandez M, Bustamante D, et al. Perinatal asphyxia leads to PARP-1 overactivity, p65 translocation, IL-1β and TNF-α overexpression, and apoptotic-like cell death in mesencephalon of neonatal rats: prevention by systemic neonatal nicotinamide administration. Neurotox Res. 2015;27:453-65 pubmed 出版商
  1954. Yamakoshi K, Katano S, Iida M, Kimura H, Okuma A, Ikemoto Uezumi M, et al. Dysregulation of the Bmi-1/p16(Ink⁴a) pathway provokes an aging-associated decline of submandibular gland function. Aging Cell. 2015;14:616-24 pubmed 出版商
  1955. Ma Y, Han W, Li J, Hu L, Zhou Y. Physalin B not only inhibits the ubiquitin-proteasome pathway but also induces incomplete autophagic response in human colon cancer cells in vitro. Acta Pharmacol Sin. 2015;36:517-27 pubmed 出版商
  1956. Zhao J, Song Q, Wang L, Dong X, Yang X, Bai X, et al. Detrusor myocyte autophagy protects the bladder function via inhibiting the inflammation in cyclophosphamide-induced cystitis in rats. PLoS ONE. 2015;10:e0122597 pubmed 出版商
  1957. Li X, Tao J, Cigliano A, Sini M, Calderaro J, Azoulay D, et al. Co-activation of PIK3CA and Yap promotes development of hepatocellular and cholangiocellular tumors in mouse and human liver. Oncotarget. 2015;6:10102-15 pubmed
  1958. Shi Y, Chen J, Karner C, Long F. Hedgehog signaling activates a positive feedback mechanism involving insulin-like growth factors to induce osteoblast differentiation. Proc Natl Acad Sci U S A. 2015;112:4678-83 pubmed 出版商
  1959. Zhang Z, Zhang T, Zhou Y, Wei X, Zhu J, Zhang J, et al. Activated phosphatidylinositol 3-kinase/Akt inhibits the transition of endothelial progenitor cells to mesenchymal cells by regulating the forkhead box subgroup O-3a signaling. Cell Physiol Biochem. 2015;35:1643-53 pubmed 出版商
  1960. Cerqueira O, Truesdell P, Baldassarre T, Vilella Arias S, Watt K, Meens J, et al. CIP4 promotes metastasis in triple-negative breast cancer and is associated with poor patient prognosis. Oncotarget. 2015;6:9397-408 pubmed
  1961. Fausther M, Goree J, Lavoie Ã, Graham A, Sévigny J, Dranoff J. Establishment and characterization of rat portal myofibroblast cell lines. PLoS ONE. 2015;10:e0121161 pubmed 出版商
  1962. Liao J, Karnik R, Gu H, Ziller M, Clement K, Tsankov A, et al. Targeted disruption of DNMT1, DNMT3A and DNMT3B in human embryonic stem cells. Nat Genet. 2015;47:469-78 pubmed 出版商
  1963. Bol G, Vesuna F, Xie M, Zeng J, Aziz K, Gandhi N, et al. Targeting DDX3 with a small molecule inhibitor for lung cancer therapy. EMBO Mol Med. 2015;7:648-69 pubmed 出版商
  1964. Malikov V, da Silva E, Jovasevic V, Bennett G, de Souza Aranha Vieira D, Schulte B, et al. HIV-1 capsids bind and exploit the kinesin-1 adaptor FEZ1 for inward movement to the nucleus. Nat Commun. 2015;6:6660 pubmed 出版商
  1965. Xu D, Li C, Zhang X, Gong Z, Chan C, Lee S, et al. Skp2-macroH2A1-CDK8 axis orchestrates G2/M transition and tumorigenesis. Nat Commun. 2015;6:6641 pubmed 出版商
  1966. Yun H, Xie J, Olumi A, Ghosh R, Kumar A. Activation of AKR1C1/ERβ induces apoptosis by downregulation of c-FLIP in prostate cancer cells: A prospective therapeutic opportunity. Oncotarget. 2015;6:11600-13 pubmed
  1967. Li S, Wu X, Dong C, Xie X, Wu J, Zhang X. The differential expression of OCT4 isoforms in cervical carcinoma. PLoS ONE. 2015;10:e0118033 pubmed 出版商
  1968. Clark P, Kim R, Pober J, Kluger M. Tumor necrosis factor disrupts claudin-5 endothelial tight junction barriers in two distinct NF-κB-dependent phases. PLoS ONE. 2015;10:e0120075 pubmed 出版商
  1969. Lee S, Chang J, Wu J, Sheu D. Antineoplastic effect of a novel chemopreventive agent, neokestose, on the Caco-2 cell line via inhibition of expression of nuclear factor-κB and cyclooxygenase-2. Mol Med Rep. 2015;12:1114-8 pubmed 出版商
  1970. Zhang Z, Fang Y, Wang Q, Sun Y, Xiong C, Cao L, et al. Tumor necrosis factor-like weak inducer of apoptosis regulates particle-induced inflammatory osteolysis via the p38 mitogen-activated protein kinase signaling pathway. Mol Med Rep. 2015;12:1499-505 pubmed 出版商
  1971. Lee J, Garbe J, Vrba L, Miyano M, Futscher B, Stampfer M, et al. Age and the means of bypassing stasis influence the intrinsic subtype of immortalized human mammary epithelial cells. Front Cell Dev Biol. 2015;3:13 pubmed 出版商
  1972. Fallahi Sichani M, Moerke N, Niepel M, Zhang T, Gray N, Sorger P. Systematic analysis of BRAF(V600E) melanomas reveals a role for JNK/c-Jun pathway in adaptive resistance to drug-induced apoptosis. Mol Syst Biol. 2015;11:797 pubmed 出版商
  1973. Alexander J, Hota S, He D, Thomas S, Ho L, Pennacchio L, et al. Brg1 modulates enhancer activation in mesoderm lineage commitment. Development. 2015;142:1418-30 pubmed 出版商
  1974. Majumdar T, Chattopadhyay S, Ozhegov E, Dhar J, Goswami R, Sen G, et al. Induction of interferon-stimulated genes by IRF3 promotes replication of Toxoplasma gondii. PLoS Pathog. 2015;11:e1004779 pubmed 出版商
  1975. Ngo J, Matsuyama M, Kim C, Poventud Fuentes I, Bates A, Siedlak S, et al. Bax deficiency extends the survival of Ku70 knockout mice that develop lung and heart diseases. Cell Death Dis. 2015;6:e1706 pubmed 出版商
  1976. Hoekstra E, Kodach L, Das A, Ruela de Sousa R, Ferreira C, Hardwick J, et al. Low molecular weight protein tyrosine phosphatase (LMWPTP) upregulation mediates malignant potential in colorectal cancer. Oncotarget. 2015;6:8300-12 pubmed
  1977. Wong M, Nicholson C, Holloway A, Hardy D. Maternal nicotine exposure leads to impaired disulfide bond formation and augmented endoplasmic reticulum stress in the rat placenta. PLoS ONE. 2015;10:e0122295 pubmed 出版商
  1978. Sand C, Grant A, Nandi M. Vascular Expression of Transient Receptor Potential Vanilloid 1 (TRPV1). J Histochem Cytochem. 2015;63:449-53 pubmed 出版商
  1979. Hsieh C, Botta G, Gao S, Li T, Van Allen E, Treacy D, et al. PLZF, a tumor suppressor genetically lost in metastatic castration-resistant prostate cancer, is a mediator of resistance to androgen deprivation therapy. Cancer Res. 2015;75:1944-8 pubmed 出版商
  1980. Yazlovitskaya E, Tseng H, Viquez O, Tu T, Mernaugh G, McKee K, et al. Integrin α3β1 regulates kidney collecting duct development via TRAF6-dependent K63-linked polyubiquitination of Akt. Mol Biol Cell. 2015;26:1857-74 pubmed 出版商
  1981. Sajja R, Green K, Cucullo L. Altered Nrf2 signaling mediates hypoglycemia-induced blood-brain barrier endothelial dysfunction in vitro. PLoS ONE. 2015;10:e0122358 pubmed 出版商
  1982. Yan J, Zapata J, PAUZA C, Salvato M. Modulation of SIV and HIV DNA vaccine immunity by Fas-FasL signaling. Viruses. 2015;7:1429-53 pubmed 出版商
  1983. Freischmidt A, Wieland T, Richter B, Ruf W, Schaeffer V, Müller K, et al. Haploinsufficiency of TBK1 causes familial ALS and fronto-temporal dementia. Nat Neurosci. 2015;18:631-6 pubmed 出版商
  1984. Hollevoet K, Mason Osann E, Müller F, Pastan I. Methylation-associated partial down-regulation of mesothelin causes resistance to anti-mesothelin immunotoxins in a pancreatic cancer cell line. PLoS ONE. 2015;10:e0122462 pubmed 出版商
  1985. Chu V, Weber T, Wefers B, Wurst W, Sander S, Rajewsky K, et al. Increasing the efficiency of homology-directed repair for CRISPR-Cas9-induced precise gene editing in mammalian cells. Nat Biotechnol. 2015;33:543-8 pubmed 出版商
  1986. Crauwels P, Bohn R, Thomas M, Gottwalt S, Jäckel F, Krämer S, et al. Apoptotic-like Leishmania exploit the host's autophagy machinery to reduce T-cell-mediated parasite elimination. Autophagy. 2015;11:285-97 pubmed 出版商
  1987. Ivan V, van der Sluijs P. Methods for analysis of AP-3/Rabin4' in regulation of lysosome distribution. Methods Mol Biol. 2015;1298:245-58 pubmed 出版商
  1988. Markkanen E, Fischer R, Ledentcova M, Kessler B, Dianov G. Cells deficient in base-excision repair reveal cancer hallmarks originating from adjustments to genetic instability. Nucleic Acids Res. 2015;43:3667-79 pubmed 出版商
  1989. Steglich B, Strålfors A, Khorosjutina O, Persson J, Smialowska A, Javerzat J, et al. The Fun30 chromatin remodeler Fft3 controls nuclear organization and chromatin structure of insulators and subtelomeres in fission yeast. PLoS Genet. 2015;11:e1005101 pubmed 出版商
  1990. Venkatesh A, Ma S, Le Y, Hall M, Rüegg M, Punzo C. Activated mTORC1 promotes long-term cone survival in retinitis pigmentosa mice. J Clin Invest. 2015;125:1446-58 pubmed 出版商
  1991. Padmanabhan R, Taneyhill L. Cadherin-6B undergoes macropinocytosis and clathrin-mediated endocytosis during cranial neural crest cell EMT. J Cell Sci. 2015;128:1773-86 pubmed 出版商
  1992. Jamison S, Lin Y, Lin W. Pancreatic endoplasmic reticulum kinase activation promotes medulloblastoma cell migration and invasion through induction of vascular endothelial growth factor A. PLoS ONE. 2015;10:e0120252 pubmed 出版商
  1993. Qu X, Pröll M, Neuhoff C, Zhang R, Cinar M, Hossain M, et al. Sulforaphane epigenetically regulates innate immune responses of porcine monocyte-derived dendritic cells induced with lipopolysaccharide. PLoS ONE. 2015;10:e0121574 pubmed 出版商
  1994. Dicay M, Hirota C, Ronaghan N, Peplowski M, Zaheer R, Carati C, et al. Interferon-γ suppresses intestinal epithelial aquaporin-1 expression via Janus kinase and STAT3 activation. PLoS ONE. 2015;10:e0118713 pubmed 出版商
  1995. Patki G, Salvi A, Liu H, Atrooz F, Alkadhi I, Kelly M, et al. Tempol treatment reduces anxiety-like behaviors induced by multiple anxiogenic drugs in rats. PLoS ONE. 2015;10:e0117498 pubmed 出版商
  1996. Kitsiouli E, Antoniou G, Gotzou H, Karagiannopoulos M, Basagiannis D, Christoforidis S, et al. Effect of azithromycin on the LPS-induced production and secretion of phospholipase A2 in lung cells. Biochim Biophys Acta. 2015;1852:1288-97 pubmed 出版商
  1997. Kirschner K, Samarajiwa S, Cairns J, Menon S, Perez Mancera P, Tomimatsu K, et al. Phenotype specific analyses reveal distinct regulatory mechanism for chronically activated p53. PLoS Genet. 2015;11:e1005053 pubmed 出版商
  1998. Shen X, Sun W, Shi Y, Xing Z, Su X. Altered viral replication and cell responses by inserting microRNA recognition element into PB1 in pandemic influenza A virus (H1N1) 2009. Mediators Inflamm. 2015;2015:976575 pubmed 出版商
  1999. Balboula A, Stein P, Schultz R, Schindler K. RBBP4 regulates histone deacetylation and bipolar spindle assembly during oocyte maturation in the mouse. Biol Reprod. 2015;92:105 pubmed 出版商
  2000. Meng X, Yang S, Zhang Y, Wang X, Goodfellow R, Jia Y, et al. Genetic Deficiency of Mtdh Gene in Mice Causes Male Infertility via Impaired Spermatogenesis and Alterations in the Expression of Small Non-coding RNAs. J Biol Chem. 2015;290:11853-64 pubmed 出版商
  2001. Kuo R, Lin Y, Wang R, Hsu C, Chiu Y, Huang H, et al. Proteomics analysis of EV71-infected cells reveals the involvement of host protein NEDD4L in EV71 replication. J Proteome Res. 2015;14:1818-30 pubmed 出版商
  2002. Rigalli J, Ciriaci N, Arias A, Ceballos M, Villanueva S, Luquita M, et al. Regulation of multidrug resistance proteins by genistein in a hepatocarcinoma cell line: impact on sorafenib cytotoxicity. PLoS ONE. 2015;10:e0119502 pubmed 出版商
  2003. Wu J, Liu B, Tong W, Zhang A, Li F, Lin J, et al. Opioid receptors and associated regulator of G protein signaling are involved in the cathartic colon of rats. Exp Ther Med. 2015;9:1229-1234 pubmed
  2004. Harris White M, Ferbas K, Johnson M, Eslami P, Poteshkina A, Venkova K, et al. A cell-penetrating ester of the neural metabolite lanthionine ketimine stimulates autophagy through the mTORC1 pathway: Evidence for a mechanism of action with pharmacological implications for neurodegenerative pathologies. Neurobiol Dis. 2015;84:60-8 pubmed 出版商
  2005. Seo H, Woo J, Shin Y, Ko S. Identification of biomarkers regulated by rexinoids (LGD1069, LG100268 and Ro25-7386) in human breast cells using Affymetrix microarray. Mol Med Rep. 2015;12:800-18 pubmed 出版商
  2006. Jin S, Liu Y, Deng S, Liao L, Lin T, Ning Q, et al. Neuroprotective effects of activated protein C on intrauterine inflammation-induced neonatal white matter injury are associated with the downregulation of fibrinogen-like protein 2/fibroleukin prothrombinase and the inhibition of pro-inflammatory cyt. Int J Mol Med. 2015;35:1199-212 pubmed 出版商
  2007. Khoronenkova S, Dianov G. ATM prevents DSB formation by coordinating SSB repair and cell cycle progression. Proc Natl Acad Sci U S A. 2015;112:3997-4002 pubmed 出版商
  2008. CURTIS J, Luo Y, Zenner H, Cuchet Lourenço D, Wu C, Lo K, et al. Susceptibility to tuberculosis is associated with variants in the ASAP1 gene encoding a regulator of dendritic cell migration. Nat Genet. 2015;47:523-527 pubmed 出版商
  2009. Strohecker A, Joshi S, Possemato R, Abraham R, Sabatini D, White E. Identification of 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase as a novel autophagy regulator by high content shRNA screening. Oncogene. 2015;34:5662-76 pubmed 出版商
  2010. Stellas D, Souliotis V, Bekyrou M, Smirlis D, Kirsch Volders M, Degrassi F, et al. Benzo[a]pyrene-induced cell cycle arrest in HepG2 cells is associated with delayed induction of mitotic instability. Mutat Res. 2014;769:59-68 pubmed 出版商
  2011. Desantis A, Bruno T, Catena V, De Nicola F, Goeman F, Iezzi S, et al. Che-1-induced inhibition of mTOR pathway enables stress-induced autophagy. EMBO J. 2015;34:1214-30 pubmed 出版商
  2012. Zub K, Sousa M, Sarno A, Sharma A, Demirovic A, Rao S, et al. Modulation of cell metabolic pathways and oxidative stress signaling contribute to acquired melphalan resistance in multiple myeloma cells. PLoS ONE. 2015;10:e0119857 pubmed 出版商
  2013. Kesherwani V, Nandi S, Sharawat S, Shahshahan H, Mishra P. Hydrogen sulfide mitigates homocysteine-mediated pathological remodeling by inducing miR-133a in cardiomyocytes. Mol Cell Biochem. 2015;404:241-50 pubmed 出版商
  2014. Le A, Huang Y, Pingle S, Kesari S, Wang H, Yong R, et al. Plexin-B2 promotes invasive growth of malignant glioma. Oncotarget. 2015;6:7293-304 pubmed
  2015. Rappa G, Green T, Karbanová J, Corbeil D, Lorico A. Tetraspanin CD9 determines invasiveness and tumorigenicity of human breast cancer cells. Oncotarget. 2015;6:7970-91 pubmed
  2016. Honegger A, Schilling D, Bastian S, Sponagel J, Kuryshev V, Sultmann H, et al. Dependence of intracellular and exosomal microRNAs on viral E6/E7 oncogene expression in HPV-positive tumor cells. PLoS Pathog. 2015;11:e1004712 pubmed 出版商
  2017. Shibayama Y, Kondo T, Ohya H, Fujisawa S, Teshima T, Iseki K. Upregulation of microRNA-126-5p is associated with drug resistance to cytarabine and poor prognosis in AML patients. Oncol Rep. 2015;33:2176-82 pubmed 出版商
  2018. Lin Y, Yang Z, Xu A, Dong P, Huang Y, Liu H, et al. PIK3R1 negatively regulates the epithelial-mesenchymal transition and stem-like phenotype of renal cancer cells through the AKT/GSK3β/CTNNB1 signaling pathway. Sci Rep. 2015;5:8997 pubmed 出版商
  2019. Hodgson A, Wier E, Fu K, Sun X, Yu H, Zheng W, et al. Metalloprotease NleC suppresses host NF-κB/inflammatory responses by cleaving p65 and interfering with the p65/RPS3 interaction. PLoS Pathog. 2015;11:e1004705 pubmed 出版商
  2020. López González I, Schlüter A, Aso E, Garcia Esparcia P, Ansoleaga B, Llorens F, et al. Neuroinflammatory signals in Alzheimer disease and APP/PS1 transgenic mice: correlations with plaques, tangles, and oligomeric species. J Neuropathol Exp Neurol. 2015;74:319-44 pubmed 出版商
  2021. Howlin J, Cirenajwis H, Lettiero B, Staaf J, Lauss M, Saal L, et al. Loss of CITED1, an MITF regulator, drives a phenotype switch in vitro and can predict clinical outcome in primary melanoma tumours. Peerj. 2015;3:e788 pubmed 出版商
  2022. Katagiri N, Kuroda T, Kishimoto H, Hayashi Y, Kumazawa T, Kimura K. The nucleolar protein nucleophosmin is essential for autophagy induced by inhibiting Pol I transcription. Sci Rep. 2015;5:8903 pubmed 出版商
  2023. Zheng T, Yang X, Wu D, Xing S, Bian F, Li W, et al. Salidroside ameliorates insulin resistance through activation of a mitochondria-associated AMPK/PI3K/Akt/GSK3β pathway. Br J Pharmacol. 2015;172:3284-301 pubmed 出版商
  2024. Münzberg C, Höhn K, Krndija D, Maaß U, Bartsch D, Slater E, et al. IGF-1 drives chromogranin A secretion via activation of Arf1 in human neuroendocrine tumour cells. J Cell Mol Med. 2015;19:948-59 pubmed 出版商
  2025. Chen W, Wu J, Li L, Zhang Z, Ren J, Liang Y, et al. Ppm1b negatively regulates necroptosis through dephosphorylating Rip3. Nat Cell Biol. 2015;17:434-44 pubmed 出版商
  2026. Warren D, Tajsic T, Porter L, Minaisah R, Cobb A, Jacob A, et al. Nesprin-2-dependent ERK1/2 compartmentalisation regulates the DNA damage response in vascular smooth muscle cell ageing. Cell Death Differ. 2015;22:1540-50 pubmed 出版商
  2027. Pone E, Lam T, Lou Z, Wang R, Chen Y, Liu D, et al. B cell Rab7 mediates induction of activation-induced cytidine deaminase expression and class-switching in T-dependent and T-independent antibody responses. J Immunol. 2015;194:3065-78 pubmed 出版商
  2028. Yang Y, Deng Q, Feng X, Sun J. Use of the disulfiram/copper complex for breast cancer chemoprevention in MMTV-erbB2 transgenic mice. Mol Med Rep. 2015;12:746-52 pubmed 出版商
  2029. Bardhan K, Paschall A, Yang D, Chen M, Simon P, Bhutia Y, et al. IFNγ Induces DNA Methylation-Silenced GPR109A Expression via pSTAT1/p300 and H3K18 Acetylation in Colon Cancer. Cancer Immunol Res. 2015;3:795-805 pubmed 出版商
  2030. Aubrey B, Kelly G, Kueh A, Brennan M, O Connor L, Milla L, et al. An inducible lentiviral guide RNA platform enables the identification of tumor-essential genes and tumor-promoting mutations in vivo. Cell Rep. 2015;10:1422-32 pubmed 出版商
  2031. Rogler A, Kendziorra E, Giedl J, Stoehr C, Taubert H, Goebell P, et al. Functional analyses and prognostic significance of SFRP1 expression in bladder cancer. J Cancer Res Clin Oncol. 2015;141:1779-90 pubmed 出版商
  2032. Jeffery E, Church C, Holtrup B, Colman L, Rodeheffer M. Rapid depot-specific activation of adipocyte precursor cells at the onset of obesity. Nat Cell Biol. 2015;17:376-85 pubmed 出版商
  2033. Oliva C, Markert T, Gillespie G, Griguer C. Nuclear-encoded cytochrome c oxidase subunit 4 regulates BMI1 expression and determines proliferative capacity of high-grade gliomas. Oncotarget. 2015;6:4330-44 pubmed
  2034. Jeong H, Jung E, Sim Y, Kim S, Jang J, Hong K, et al. Fbxo25 controls Tbx5 and Nkx2-5 transcriptional activity to regulate cardiomyocyte development. Biochim Biophys Acta. 2015;1849:709-21 pubmed 出版商
  2035. Lim J, Lachenmayer M, Wu S, Liu W, Kundu M, Wang R, et al. Proteotoxic stress induces phosphorylation of p62/SQSTM1 by ULK1 to regulate selective autophagic clearance of protein aggregates. PLoS Genet. 2015;11:e1004987 pubmed 出版商
  2036. Medina D, Di Paola S, Peluso I, Armani A, De Stefani D, Venditti R, et al. Lysosomal calcium signalling regulates autophagy through calcineurin and ​TFEB. Nat Cell Biol. 2015;17:288-99 pubmed
  2037. Jansson P, Yamagishi T, Arvind A, Seebacher N, Gutierrez E, Stacy A, et al. Di-2-pyridylketone 4,4-dimethyl-3-thiosemicarbazone (Dp44mT) overcomes multidrug resistance by a novel mechanism involving the hijacking of lysosomal P-glycoprotein (Pgp). J Biol Chem. 2015;290:9588-603 pubmed 出版商
  2038. Cruse G, Beaven M, Music S, Bradding P, Gilfillan A, Metcalfe D. The CD20 homologue MS4A4 directs trafficking of KIT toward clathrin-independent endocytosis pathways and thus regulates receptor signaling and recycling. Mol Biol Cell. 2015;26:1711-27 pubmed 出版商
  2039. Koganti S, Clark C, Zhi J, Li X, Chen E, Chakrabortty S, et al. Cellular STAT3 functions via PCBP2 to restrain Epstein-Barr Virus lytic activation in B lymphocytes. J Virol. 2015;89:5002-11 pubmed 出版商
  2040. Pedro J, Wei Y, Sica V, Maiuri M, Zou Z, Kroemer G, et al. BAX and BAK1 are dispensable for ABT-737-induced dissociation of the BCL2-BECN1 complex and autophagy. Autophagy. 2015;11:452-9 pubmed 出版商
  2041. Yang L, Liu L, Xu Z, Liao W, Feng D, Dong X, et al. EBV-LMP1 targeted DNAzyme enhances radiosensitivity by inhibiting tumor angiogenesis via the JNKs/HIF-1 pathway in nasopharyngeal carcinoma. Oncotarget. 2015;6:5804-17 pubmed
  2042. Prabhu A, Sarcar B, Miller C, Kim S, Nakano I, Forsyth P, et al. Ras-mediated modulation of pyruvate dehydrogenase activity regulates mitochondrial reserve capacity and contributes to glioblastoma tumorigenesis. Neuro Oncol. 2015;17:1220-30 pubmed 出版商
  2043. Bulk E, Ay A, Hammadi M, Ouadid Ahidouch H, Schelhaas S, Hascher A, et al. Epigenetic dysregulation of KCa 3.1 channels induces poor prognosis in lung cancer. Int J Cancer. 2015;137:1306-17 pubmed 出版商
  2044. Wnorowski A, Sadowska M, Paul R, Singh N, Boguszewska Czubara A, Jimenez L, et al. Activation of β2-adrenergic receptor by (R,R')-4'-methoxy-1-naphthylfenoterol inhibits proliferation and motility of melanoma cells. Cell Signal. 2015;27:997-1007 pubmed 出版商
  2045. Polletta L, Vernucci E, Carnevale I, Arcangeli T, Rotili D, Palmerio S, et al. SIRT5 regulation of ammonia-induced autophagy and mitophagy. Autophagy. 2015;11:253-70 pubmed 出版商
  2046. Susanto J, Colvin E, Pinese M, Chang D, Pajic M, Mawson A, et al. The epigenetic agents suberoylanilide hydroxamic acid and 5‑AZA‑2' deoxycytidine decrease cell proliferation, induce cell death and delay the growth of MiaPaCa2 pancreatic cancer cells in vivo. Int J Oncol. 2015;46:2223-30 pubmed 出版商
  2047. Lawlor K, Khan N, Mildenhall A, Gerlic M, Croker B, D Cruz A, et al. RIPK3 promotes cell death and NLRP3 inflammasome activation in the absence of MLKL. Nat Commun. 2015;6:6282 pubmed 出版商
  2048. Bryant J, Donahue G, Wang X, Meyer Ficca M, Luense L, Weller A, et al. Characterization of BRD4 during mammalian postmeiotic sperm development. Mol Cell Biol. 2015;35:1433-48 pubmed 出版商
  2049. Hainer S, Gu W, Carone B, Landry B, Rando O, Mello C, et al. Suppression of pervasive noncoding transcription in embryonic stem cells by esBAF. Genes Dev. 2015;29:362-78 pubmed 出版商
  2050. Mourier A, Motori E, Brandt T, Lagouge M, Atanassov I, Galinier A, et al. Mitofusin 2 is required to maintain mitochondrial coenzyme Q levels. J Cell Biol. 2015;208:429-42 pubmed 出版商
  2051. Wu C, Niu L, Yan Z, Wang C, Liu N, Dai Y, et al. Pcdh11x Negatively Regulates Dendritic Branching. J Mol Neurosci. 2015;56:822-8 pubmed 出版商
  2052. Uppal A, Wightman S, Mallon S, Oshima G, Pitroda S, Zhang Q, et al. 14q32-encoded microRNAs mediate an oligometastatic phenotype. Oncotarget. 2015;6:3540-52 pubmed
  2053. Nakagawa Y, Sedukhina A, Okamoto N, Nagasawa S, Suzuki N, Ohta T, et al. NF-κB signaling mediates acquired resistance after PARP inhibition. Oncotarget. 2015;6:3825-39 pubmed
  2054. Bitler B, Aird K, Garipov A, Li H, Amatangelo M, Kossenkov A, et al. Synthetic lethality by targeting EZH2 methyltransferase activity in ARID1A-mutated cancers. Nat Med. 2015;21:231-8 pubmed 出版商
  2055. Shi S, Wang Q, Xu J, Jang J, Padilla M, Nyunoya T, et al. Synergistic anticancer effect of cisplatin and Chal-24 combination through IAP and c-FLIPL degradation, Ripoptosome formation and autophagy-mediated apoptosis. Oncotarget. 2015;6:1640-51 pubmed
  2056. Alghamdi R, O Reilly P, Lu C, Gomes J, Lagace T, Basak A. LDL-R promoting activity of peptides derived from human PCSK9 catalytic domain (153-421): design, synthesis and biochemical evaluation. Eur J Med Chem. 2015;92:890-907 pubmed 出版商
  2057. Nagasawa S, Sedukhina A, Nakagawa Y, Maeda I, Kubota M, Ohnuma S, et al. LSD1 overexpression is associated with poor prognosis in basal-like breast cancer, and sensitivity to PARP inhibition. PLoS ONE. 2015;10:e0118002 pubmed 出版商
  2058. Suman S, Kallakury B, Fornace A, Datta K. Protracted upregulation of leptin and IGF1 is associated with activation of PI3K/Akt and JAK2 pathway in mouse intestine after ionizing radiation exposure. Int J Biol Sci. 2015;11:274-83 pubmed 出版商
  2059. Guillaumond F, Bidaut G, Ouaissi M, Servais S, Gouirand V, Olivares O, et al. Cholesterol uptake disruption, in association with chemotherapy, is a promising combined metabolic therapy for pancreatic adenocarcinoma. Proc Natl Acad Sci U S A. 2015;112:2473-8 pubmed 出版商
  2060. Kobayashi K, Sakurai K, Hiramatsu H, Inada K, Shiogama K, Nakamura S, et al. The miR-199a/Brm/EGR1 axis is a determinant of anchorage-independent growth in epithelial tumor cell lines. Sci Rep. 2015;5:8428 pubmed 出版商
  2061. Nieves Cintrón M, Nystoriak M, Prada M, Johnson K, Fayer W, Dell Acqua M, et al. Selective down-regulation of KV2.1 function contributes to enhanced arterial tone during diabetes. J Biol Chem. 2015;290:7918-29 pubmed 出版商
  2062. Nakajima T, Kitagawa K, Ohhata T, Sakai S, Uchida C, Shibata K, et al. Regulation of GATA-binding protein 2 levels via ubiquitin-dependent degradation by Fbw7: involvement of cyclin B-cyclin-dependent kinase 1-mediated phosphorylation of THR176 in GATA-binding protein 2. J Biol Chem. 2015;290:10368-81 pubmed 出版商
  2063. Stegeman S, Moya L, Selth L, Spurdle A, Clements J, Batra J. A genetic variant of MDM4 influences regulation by multiple microRNAs in prostate cancer. Endocr Relat Cancer. 2015;22:265-76 pubmed 出版商
  2064. Momeny M, Saunus J, Marturana F, McCart Reed A, Black D, Sala G, et al. Heregulin-HER3-HER2 signaling promotes matrix metalloproteinase-dependent blood-brain-barrier transendothelial migration of human breast cancer cell lines. Oncotarget. 2015;6:3932-46 pubmed
  2065. Lin S, Huang S, Kuo H, Chen C, Ma Y, Chu T, et al. Coral-derived compound WA-25 inhibits angiogenesis by attenuating the VEGF/VEGFR2 signaling pathway. Mar Drugs. 2015;13:861-78 pubmed 出版商
  2066. Gotink K, Rovithi M, de Haas R, Honeywell R, Dekker H, Poel D, et al. Cross-resistance to clinically used tyrosine kinase inhibitors sunitinib, sorafenib and pazopanib. Cell Oncol (Dordr). 2015;38:119-29 pubmed 出版商
  2067. Porquet D, Andrés Benito P, Griñán Ferré C, Camins A, Ferrer I, Canudas A, et al. Amyloid and tau pathology of familial Alzheimer's disease APP/PS1 mouse model in a senescence phenotype background (SAMP8). Age (Dordr). 2015;37:9747 pubmed 出版商
  2068. Sceniak M, Lang M, Enomoto A, James Howell C, Hermes D, Katz D. Mechanisms of Functional Hypoconnectivity in the Medial Prefrontal Cortex of Mecp2 Null Mice. Cereb Cortex. 2016;26:1938-1956 pubmed 出版商
  2069. Jena M, Janjanam J, Naru J, Kumar S, Kumar S, Singh S, et al. DIGE based proteome analysis of mammary gland tissue in water buffalo (Bubalus bubalis): lactating vis-a-vis heifer. J Proteomics. 2015;119:100-11 pubmed 出版商
  2070. Breslin J, Zhang X, Worthylake R, Souza Smith F. Involvement of local lamellipodia in endothelial barrier function. PLoS ONE. 2015;10:e0117970 pubmed 出版商
  2071. Mbefo M, Fares M, Paleologou K, Oueslati A, Yin G, Tenreiro S, et al. Parkinson disease mutant E46K enhances α-synuclein phosphorylation in mammalian cell lines, in yeast, and in vivo. J Biol Chem. 2015;290:9412-27 pubmed 出版商
  2072. Perrigue P, Silva M, Warden C, Feng N, Reid M, Mota D, et al. The histone demethylase jumonji coordinates cellular senescence including secretion of neural stem cell-attracting cytokines. Mol Cancer Res. 2015;13:636-50 pubmed 出版商
  2073. Xu X, Yang X, Xiong Y, Gu J, He C, Hu Y, et al. Increased expression of receptor for activated C kinase 1 in temporal lobe epilepsy. J Neurochem. 2015;133:134-43 pubmed 出版商
  2074. Jeong H, Gil N, Lee H, Cho S, Kim K, Chun K, et al. Timely Degradation of Wip1 Phosphatase by APC/C Activator Protein Cdh1 is Necessary for Normal Mitotic Progression. J Cell Biochem. 2015;116:1602-12 pubmed 出版商
  2075. Moreno Navarrete J, Moreno M, Vidal M, Ortega F, Serrano M, Xifra G, et al. Deleted in breast cancer 1 plays a functional role in adipocyte differentiation. Am J Physiol Endocrinol Metab. 2015;308:E554-61 pubmed 出版商
  2076. Bobba A, Amadoro G, La Piana G, Petragallo V, Calissano P, Atlante A. Glucose-6-phosphate tips the balance in modulating apoptosis in cerebellar granule cells. FEBS Lett. 2015;589:651-8 pubmed 出版商
  2077. Han T, Yi X, Liu B, Ke M, Li Y. MicroRNA-145 suppresses cell proliferation, invasion and migration in pancreatic cancer cells by targeting NEDD9. Mol Med Rep. 2015;11:4115-20 pubmed 出版商
  2078. Hedgepeth S, Garcia M, Wagner L, Rodriguez A, Chintapalli S, Snyder R, et al. The BRCA1 tumor suppressor binds to inositol 1,4,5-trisphosphate receptors to stimulate apoptotic calcium release. J Biol Chem. 2015;290:7304-13 pubmed 出版商
  2079. Suganya R, Chakraborty A, Miriyala S, Hazra T, Izumi T. Suppression of oxidative phosphorylation in mouse embryonic fibroblast cells deficient in apurinic/apyrimidinic endonuclease. DNA Repair (Amst). 2015;27:40-8 pubmed 出版商
  2080. Gibbs Seymour I, Markiewicz E, Bekker Jensen S, Mailand N, Hutchison C. Lamin A/C-dependent interaction with 53BP1 promotes cellular responses to DNA damage. Aging Cell. 2015;14:162-9 pubmed 出版商
  2081. Xue J, Chen Y, Wu Y, Wang Z, Zhou A, Zhang S, et al. Tumour suppressor TRIM33 targets nuclear β-catenin degradation. Nat Commun. 2015;6:6156 pubmed 出版商
  2082. Michelet X, Garg S, Wolf B, Tuli A, Ricciardi Castagnoli P, Brenner M. MHC class II presentation is controlled by the lysosomal small GTPase, Arl8b. J Immunol. 2015;194:2079-88 pubmed 出版商
  2083. Belogurov A, Kuzina E, Kudriaeva A, Kononikhin A, Kovalchuk S, Surina Y, et al. Ubiquitin-independent proteosomal degradation of myelin basic protein contributes to development of neurodegenerative autoimmunity. FASEB J. 2015;29:1901-13 pubmed 出版商
  2084. Guan J, Zhang X, Sun W, Qi L, Wu J, Qin Z. DRAM1 regulates apoptosis through increasing protein levels and lysosomal localization of BAX. Cell Death Dis. 2015;6:e1624 pubmed 出版商
  2085. Kathania M, Zeng M, Yadav V, Moghaddam S, Yang B, Venuprasad K. Ndfip1 regulates itch ligase activity and airway inflammation via UbcH7. J Immunol. 2015;194:2160-7 pubmed 出版商
  2086. Yao Y, Wei W, Sun J, Chen L, Deng X, Ma L, et al. Proteomic analysis of exosomes derived from human lymphoma cells. Eur J Med Res. 2015;20:8 pubmed 出版商
  2087. Abraham S, Paknikar R, Bhumbra S, Luan D, Garg R, Dressler G, et al. The Groucho-associated phosphatase PPM1B displaces Pax transactivation domain interacting protein (PTIP) to switch the transcription factor Pax2 from a transcriptional activator to a repressor. J Biol Chem. 2015;290:7185-94 pubmed 出版商
  2088. Zou J, Li W, Misra A, Yue F, Song K, Chen Q, et al. The viral restriction factor tetherin prevents leucine-rich pentatricopeptide repeat-containing protein (LRPPRC) from association with beclin 1 and B-cell CLL/lymphoma 2 (Bcl-2) and enhances autophagy and mitophagy. J Biol Chem. 2015;290:7269-79 pubmed 出版商
  2089. Niu Z, Liu H, Zhou M, Wang H, Liu Y, Li X, et al. Knockdown of c-Myc inhibits cell proliferation by negatively regulating the Cdk/Rb/E2F pathway in nasopharyngeal carcinoma cells. Acta Biochim Biophys Sin (Shanghai). 2015;47:183-91 pubmed 出版商
  2090. Hole S, Pedersen A, Hansen S, Lundqvist J, Yde C, Lykkesfeldt A. New cell culture model for aromatase inhibitor-resistant breast cancer shows sensitivity to fulvestrant treatment and cross-resistance between letrozole and exemestane. Int J Oncol. 2015;46:1481-90 pubmed 出版商
  2091. Marsolier J, Perichon M, Debarry J, Villoutreix B, Chluba J, Lopez T, et al. Theileria parasites secrete a prolyl isomerase to maintain host leukocyte transformation. Nature. 2015;520:378-82 pubmed 出版商
  2092. Bavamian S, Mellios N, Lalonde J, Fass D, Wang J, Sheridan S, et al. Dysregulation of miR-34a links neuronal development to genetic risk factors for bipolar disorder. Mol Psychiatry. 2015;20:573-84 pubmed 出版商
  2093. Ghiabi P, Jiang J, Pasquier J, Maleki M, Abu Kaoud N, Halabi N, et al. Breast cancer cells promote a notch-dependent mesenchymal phenotype in endothelial cells participating to a pro-tumoral niche. J Transl Med. 2015;13:27 pubmed 出版商
  2094. Iglesias Gato D, Chuan Y, Jiang N, Svensson C, Bao J, Paul I, et al. OTUB1 de-ubiquitinating enzyme promotes prostate cancer cell invasion in vitro and tumorigenesis in vivo. Mol Cancer. 2015;14:8 pubmed 出版商
  2095. Cai K, Wang Y, Smith E, Smedberg J, Yang D, Yang W, et al. Global deletion of Trp53 reverts ovarian tumor phenotype of the germ cell-deficient white spotting variant (Wv) mice. Neoplasia. 2015;17:89-100 pubmed 出版商
  2096. Fong M, Zhou W, Liu L, Alontaga A, Chandra M, Ashby J, et al. Breast-cancer-secreted miR-122 reprograms glucose metabolism in premetastatic niche to promote metastasis. Nat Cell Biol. 2015;17:183-94 pubmed 出版商
  2097. Warnier M, Roudbaraki M, Derouiche S, Delcourt P, Bokhobza A, Prevarskaya N, et al. CACNA2D2 promotes tumorigenesis by stimulating cell proliferation and angiogenesis. Oncogene. 2015;34:5383-94 pubmed 出版商
  2098. Han M, Woo S, Min K, Kim S, Park J, Kim D, et al. 6-Shogaol enhances renal carcinoma Caki cells to TRAIL-induced apoptosis through reactive oxygen species-mediated cytochrome c release and down-regulation of c-FLIP(L) expression. Chem Biol Interact. 2015;228:69-78 pubmed 出版商
  2099. Sadegh M, Ekman M, Krawczyk K, Svensson D, Göransson O, Dahan D, et al. Detrusor induction of miR-132/212 following bladder outlet obstruction: association with MeCP2 repression and cell viability. PLoS ONE. 2015;10:e0116784 pubmed 出版商
  2100. Olsen R, Mary Sinclair M, Yin Z, Freeman K. Antagonizing Bcl-2 family members sensitizes neuroblastoma and Ewing's sarcoma to an inhibitor of glutamine metabolism. PLoS ONE. 2015;10:e0116998 pubmed 出版商
  2101. HERRERA V, Pasion K, Moran A, Zaninello R, Ortu M, Fresu G, et al. A functional 12T-insertion polymorphism in the ATP1A1 promoter confers decreased susceptibility to hypertension in a male Sardinian population. PLoS ONE. 2015;10:e0116724 pubmed 出版商
  2102. Feliciano D, Tolsma T, Farrell K, Aradi A, Di Pietro S. A second Las17 monomeric actin-binding motif functions in Arp2/3-dependent actin polymerization during endocytosis. Traffic. 2015;16:379-97 pubmed 出版商
  2103. Aki S, Yoshioka K, Okamoto Y, Takuwa N, Takuwa Y. Phosphatidylinositol 3-kinase class II α-isoform PI3K-C2α is required for transforming growth factor β-induced Smad signaling in endothelial cells. J Biol Chem. 2015;290:6086-105 pubmed 出版商
  2104. Hsiao S, Chen M, Chen C, Chien M, Hua K, Hsiao M, et al. The H3K9 Methyltransferase G9a Represses E-cadherin and is Associated with Myometrial Invasion in Endometrial Cancer. Ann Surg Oncol. 2015;22 Suppl 3:S1556-65 pubmed 出版商
  2105. Kaihola H, Olivier J, Poromaa I, Akerud H. The effect of antenatal depression and selective serotonin reuptake inhibitor treatment on nerve growth factor signaling in human placenta. PLoS ONE. 2015;10:e0116459 pubmed 出版商
  2106. Gao X, Ma W, Nie J, Zhang C, Zhang J, Yao G, et al. A G-quadruplex DNA structure resolvase, RHAU, is essential for spermatogonia differentiation. Cell Death Dis. 2015;6:e1610 pubmed 出版商
  2107. Amrutkar M, Cansby E, Nuñez Durán E, Pirazzi C, StÃ¥hlman M, Stenfeldt E, et al. Protein kinase STK25 regulates hepatic lipid partitioning and progression of liver steatosis and NASH. FASEB J. 2015;29:1564-76 pubmed 出版商
  2108. La Sala G, Marazziti D, Di Pietro C, Golini E, Matteoni R, Tocchini Valentini G. Modulation of Dhh signaling and altered Sertoli cell function in mice lacking the GPR37-prosaposin receptor. FASEB J. 2015;29:2059-69 pubmed 出版商
  2109. Garcia Alvarez G, Lu B, Yap K, Wong L, Thevathasan J, Lim L, et al. STIM2 regulates PKA-dependent phosphorylation and trafficking of AMPARs. Mol Biol Cell. 2015;26:1141-59 pubmed 出版商
  2110. Xue T, Wei L, Zha D, Qiao L, Lu L, Chen F, et al. Exposure to acoustic stimuli promotes the development and differentiation of neural stem cells from the cochlear nuclei through the clusterin pathway. Int J Mol Med. 2015;35:637-44 pubmed 出版商
  2111. Kang O, Kim S, Mun S, Seo Y, Hwang H, Lee Y, et al. Puerarin ameliorates hepatic steatosis by activating the PPARα and AMPK signaling pathways in hepatocytes. Int J Mol Med. 2015;35:803-9 pubmed 出版商
  2112. Bárcena C, Stefanovic M, Tutusaus A, Martinez Nieto G, Martinez L, García Ruiz C, et al. Angiogenin secretion from hepatoma cells activates hepatic stellate cells to amplify a self-sustained cycle promoting liver cancer. Sci Rep. 2015;5:7916 pubmed 出版商
  2113. Wang L, Liu R, Ye P, Wong C, Chen G, Zhou P, et al. Intracellular CD24 disrupts the ARF-NPM interaction and enables mutational and viral oncogene-mediated p53 inactivation. Nat Commun. 2015;6:5909 pubmed 出版商
  2114. Yuan Y, Rangarajan P, Kan E, Wu Y, Wu C, Ling E. Scutellarin regulates the Notch pathway and affects the migration and morphological transformation of activated microglia in experimentally induced cerebral ischemia in rats and in activated BV-2 microglia. J Neuroinflammation. 2015;12:11 pubmed 出版商
  2115. Lu W, Liu S, Li B, Xie Y, Adhiambo C, Yang Q, et al. SKP2 inactivation suppresses prostate tumorigenesis by mediating JARID1B ubiquitination. Oncotarget. 2015;6:771-88 pubmed
  2116. Keembiyehetty C, Love D, Harwood K, Gavrilova O, Comly M, Hanover J. Conditional knock-out reveals a requirement for O-linked N-Acetylglucosaminase (O-GlcNAcase) in metabolic homeostasis. J Biol Chem. 2015;290:7097-113 pubmed 出版商
  2117. Mesquita D, Barros Silva J, Santos J, Skotheim R, Lothe R, Paulo P, et al. Specific and redundant activities of ETV1 and ETV4 in prostate cancer aggressiveness revealed by co-overexpression cellular contexts. Oncotarget. 2015;6:5217-36 pubmed
  2118. Tanaka T, Kajiwara T, Torigoe T, Okamoto Y, Sato N, Tamura Y. Cancer-associated oxidoreductase ERO1-α drives the production of tumor-promoting myeloid-derived suppressor cells via oxidative protein folding. J Immunol. 2015;194:2004-10 pubmed 出版商
  2119. Yu C, Yang S, Fang X, Jiang J, Sun C, Huang T. Hypoxia disrupts the expression levels of circadian rhythm genes in hepatocellular carcinoma. Mol Med Rep. 2015;11:4002-8 pubmed 出版商
  2120. Stolz A, Ertych N, Bastians H. A phenotypic screen identifies microtubule plus end assembly regulators that can function in mitotic spindle orientation. Cell Cycle. 2015;14:827-37 pubmed 出版商
  2121. Wujak L, Didiasova M, Zakrzewicz D, Frey H, Schaefer L, Wygrecka M. Heparan sulfate proteoglycans mediate factor XIIa binding to the cell surface. J Biol Chem. 2015;290:7027-39 pubmed 出版商
  2122. Nakayama D, Iwata H, Teshirogi C, Ikegaya Y, Matsuki N, Nomura H. Long-delayed expression of the immediate early gene Arc/Arg3.1 refines neuronal circuits to perpetuate fear memory. J Neurosci. 2015;35:819-30 pubmed 出版商
  2123. Chucair Elliott A, Zheng M, Carr D. Degeneration and regeneration of corneal nerves in response to HSV-1 infection. Invest Ophthalmol Vis Sci. 2015;56:1097-107 pubmed 出版商
  2124. Zhao X, Zhao Q, Luo Z, Yu Y, Xiao N, Sun X, et al. Spontaneous immortalization of mouse liver sinusoidal endothelial cells. Int J Mol Med. 2015;35:617-24 pubmed 出版商
  2125. Miyata M, Lee J, Susuki Miyata S, Wang W, Xu H, Kai H, et al. Glucocorticoids suppress inflammation via the upregulation of negative regulator IRAK-M. Nat Commun. 2015;6:6062 pubmed 出版商
  2126. Lubas M, Andersen P, Schein A, Dziembowski A, Kudla G, Jensen T. The human nuclear exosome targeting complex is loaded onto newly synthesized RNA to direct early ribonucleolysis. Cell Rep. 2015;10:178-92 pubmed 出版商
  2127. Maurya S, Mishra J, Abbas S, Bandyopadhyay S. Cypermethrin Stimulates GSK3β-Dependent Aβ and p-tau Proteins and Cognitive Loss in Young Rats: Reduced HB-EGF Signaling and Downstream Neuroinflammation as Critical Regulators. Mol Neurobiol. 2016;53:968-82 pubmed 出版商
  2128. Chang K, Nayak R, Roy S, Perumbeti A, Wellendorf A, Bezold K, et al. Vasculopathy-associated hyperangiotensinemia mobilizes haematopoietic stem cells/progenitors through endothelial ATâ‚‚R and cytoskeletal dysregulation. Nat Commun. 2015;6:5914 pubmed 出版商
  2129. Besschetnova T, Ichimura T, Katebi N, St Croix B, Bonventre J, Olsen B. Regulatory mechanisms of anthrax toxin receptor 1-dependent vascular and connective tissue homeostasis. Matrix Biol. 2015;42:56-73 pubmed 出版商
  2130. Matsuda Y, Kobayashi Ishihara M, Fujikawa D, Ishida T, Watanabe T, Yamagishi M. Epigenetic heterogeneity in HIV-1 latency establishment. Sci Rep. 2015;5:7701 pubmed 出版商
  2131. Xue C, Zhang J, Lv Z, Liu H, Huang C, Yang J, et al. Angiotensin II promotes differentiation of mouse c-kit-positive cardiac stem cells into pacemaker-like cells. Mol Med Rep. 2015;11:3249-58 pubmed 出版商
  2132. Liu S, Sarkar C, Dinizo M, Faden A, Koh E, Lipinski M, et al. Disrupted autophagy after spinal cord injury is associated with ER stress and neuronal cell death. Cell Death Dis. 2015;6:e1582 pubmed 出版商
  2133. Valianou M, Cox A, Pichette B, Hartley S, Paladhi U, Astrinidis A. Pharmacological inhibition of Polo-like kinase 1 (PLK1) by BI-2536 decreases the viability and survival of hamartin and tuberin deficient cells via induction of apoptosis and attenuation of autophagy. Cell Cycle. 2015;14:399-407 pubmed 出版商
  2134. Goossens S, Radaelli E, Blanchet O, Durinck K, Van der Meulen J, Peirs S, et al. ZEB2 drives immature T-cell lymphoblastic leukaemia development via enhanced tumour-initiating potential and IL-7 receptor signalling. Nat Commun. 2015;6:5794 pubmed 出版商
  2135. Sathyamurthy A, Yin D, Barik A, Shen C, Bean J, Figueiredo D, et al. ERBB3-mediated regulation of Bergmann glia proliferation in cerebellar lamination. Development. 2015;142:522-32 pubmed 出版商
  2136. Gao Z, Zhang J, Henagan T, Lee J, Ye X, Wang H, et al. P65 inactivation in adipocytes and macrophages attenuates adipose inflammatory response in lean but not in obese mice. Am J Physiol Endocrinol Metab. 2015;308:E496-505 pubmed 出版商
  2137. Wang W, Visavadiya N, Pandya J, Nelson P, Sullivan P, Springer J. Mitochondria-associated microRNAs in rat hippocampus following traumatic brain injury. Exp Neurol. 2015;265:84-93 pubmed 出版商
  2138. Kim K, Kim N, Kim S, Kim I, Kim K, Lee G. Cyclo(Phe-Pro) produced by the human pathogen Vibrio vulnificus inhibits host innate immune responses through the NF-κB pathway. Infect Immun. 2015;83:1150-61 pubmed 出版商
  2139. Shrestha S, Yang K, Guy C, Vogel P, Neale G, Chi H. Treg cells require the phosphatase PTEN to restrain TH1 and TFH cell responses. Nat Immunol. 2015;16:178-87 pubmed 出版商
  2140. Harr J, Luperchio T, Wong X, Cohen E, Wheelan S, Reddy K. Directed targeting of chromatin to the nuclear lamina is mediated by chromatin state and A-type lamins. J Cell Biol. 2015;208:33-52 pubmed 出版商
  2141. Kim H, Huang L, Critser P, Yang Z, Chan R, Wang L, et al. Notch ligand Delta-like 1 promotes in vivo vasculogenesis in human cord blood-derived endothelial colony forming cells. Cytotherapy. 2015;17:579-92 pubmed 出版商
  2142. Mudie S, Bandarra D, Batie M, Biddlestone J, Moniz S, Ortmann B, et al. PITX1, a specificity determinant in the HIF-1α-mediated transcriptional response to hypoxia. Cell Cycle. 2014;13:3878-91 pubmed 出版商
  2143. Boj S, Hwang C, Baker L, Chio I, Engle D, Corbo V, et al. Organoid models of human and mouse ductal pancreatic cancer. Cell. 2015;160:324-38 pubmed 出版商
  2144. Zheng H, Fu J, Xue P, Zhao R, Dong J, Liu D, et al. CNC-bZIP protein Nrf1-dependent regulation of glucose-stimulated insulin secretion. Antioxid Redox Signal. 2015;22:819-31 pubmed 出版商
  2145. Mendoza E, Tokarev K, Düring D, Retamosa E, Weiss M, Arpenik N, et al. Differential coexpression of FoxP1, FoxP2, and FoxP4 in the Zebra Finch (Taeniopygia guttata) song system. J Comp Neurol. 2015;523:1318-40 pubmed 出版商
  2146. Ehret F, Vogler S, Pojar S, Elliott D, Bradke F, Steiner B, et al. Mouse model of CADASIL reveals novel insights into Notch3 function in adult hippocampal neurogenesis. Neurobiol Dis. 2015;75:131-41 pubmed 出版商
  2147. Krysiak K, Tibbitts J, Shao J, Liu T, Ndonwi M, Walter M. Reduced levels of Hspa9 attenuate Stat5 activation in mouse B cells. Exp Hematol. 2015;43:319-30.e10 pubmed 出版商
  2148. Mir S, George N, Zahoor L, Harms R, Guinn Z, SARVETNICK N. Inhibition of autophagic turnover in β-cells by fatty acids and glucose leads to apoptotic cell death. J Biol Chem. 2015;290:6071-85 pubmed 出版商
  2149. Hatano R, Ohnuma K, Otsuka H, Komiya E, Taki I, Iwata S, et al. CD26-mediated induction of EGR2 and IL-10 as potential regulatory mechanism for CD26 costimulatory pathway. J Immunol. 2015;194:960-72 pubmed 出版商
  2150. Kim E, Lee J, Jung Y, Park J, Park M, Lee J, et al. Involvement of corin downregulation in ionizing radiation-induced senescence of myocardial cells. Int J Mol Med. 2015;35:731-8 pubmed 出版商
  2151. Ohno M, Kanayama T, Moore R, Ray M, Negishi M. The roles of co-chaperone CCRP/DNAJC7 in Cyp2b10 gene activation and steatosis development in mouse livers. PLoS ONE. 2014;9:e115663 pubmed 出版商
  2152. Ni H, Bhakta A, Wang S, Li Z, Manley S, Huang H, et al. Role of hypoxia inducing factor-1β in alcohol-induced autophagy, steatosis and liver injury in mice. PLoS ONE. 2014;9:e115849 pubmed 出版商
  2153. Cebulla J, Huuse E, Pettersen K, van der Veen A, Kim E, Andersen S, et al. MRI reveals the in vivo cellular and vascular response to BEZ235 in ovarian cancer xenografts with different PI3-kinase pathway activity. Br J Cancer. 2015;112:504-13 pubmed 出版商
  2154. Jepsen M, Kløverpris S, Mikkelsen J, Pedersen J, Füchtbauer E, Laursen L, et al. Stanniocalcin-2 inhibits mammalian growth by proteolytic inhibition of the insulin-like growth factor axis. J Biol Chem. 2015;290:3430-9 pubmed 出版商
  2155. Han Y, Hsieh F. Osteogenic differentiation of late-outgrowth CD45-negative endothelial progenitor cells. J Vasc Res. 2014;51:369-75 pubmed 出版商
  2156. Gong X, Yi J, Carmon K, Crumbley C, Xiong W, Thomas A, et al. Aberrant RSPO3-LGR4 signaling in Keap1-deficient lung adenocarcinomas promotes tumor aggressiveness. Oncogene. 2015;34:4692-701 pubmed 出版商
  2157. Lin Y, Liu P, Adhikari N, Hall J, Wei L. RIP140 contributes to foam cell formation and atherosclerosis by regulating cholesterol homeostasis in macrophages. J Mol Cell Cardiol. 2015;79:287-94 pubmed 出版商
  2158. Naganuma K, Hatta M, Ikebe T, Yamazaki J. Epigenetic alterations of the keratin 13 gene in oral squamous cell carcinoma. BMC Cancer. 2014;14:988 pubmed 出版商
  2159. Yang Y, Otte A, Hass R. Human mesenchymal stroma/stem cells exchange membrane proteins and alter functionality during interaction with different tumor cell lines. Stem Cells Dev. 2015;24:1205-22 pubmed 出版商
  2160. Serrano F, Tapia Rojas C, Carvajal F, Hancke J, Cerpa W, Inestrosa N. Andrographolide reduces cognitive impairment in young and mature AβPPswe/PS-1 mice. Mol Neurodegener. 2014;9:61 pubmed 出版商
  2161. Hamanoue M, Ikeda Y, Ogata T, Takamatsu K. Predominant expression of N-acetylglucosaminyltransferase V (GnT-V) in neural stem/progenitor cells. Stem Cell Res. 2015;14:68-78 pubmed 出版商
  2162. Li W, Ouyang Z, Zhang Q, Wang L, Shen Y, Gu Y, et al. SBF-1 exerts strong anticervical cancer effect through inducing endoplasmic reticulum stress-associated cell death via targeting sarco/endoplasmic reticulum Ca(2+)-ATPase 2. Cell Death Dis. 2014;5:e1581 pubmed 出版商
  2163. Ye S, Lowther S, Stambas J. Inhibition of reactive oxygen species production ameliorates inflammation induced by influenza A viruses via upregulation of SOCS1 and SOCS3. J Virol. 2015;89:2672-83 pubmed 出版商
  2164. Gammella E, Díaz V, Recalcati S, Buratti P, Samaja M, Dey S, et al. Erythropoietin's inhibiting impact on hepcidin expression occurs indirectly. Am J Physiol Regul Integr Comp Physiol. 2015;308:R330-5 pubmed 出版商
  2165. Tsai M, Chu C, Wei T, Chiu M, Chang C, Wei I, et al. CD200 in growing rat lungs: developmental expression and control by dexamethasone. Cell Tissue Res. 2015;359:729-42 pubmed 出版商
  2166. Chen J, Wang Z, Xu D, Liu Y, Gao Y. Aquaporin 3 promotes prostate cancer cell motility and invasion via extracellular signal-regulated kinase 1/2-mediated matrix metalloproteinase-3 secretion. Mol Med Rep. 2015;11:2882-8 pubmed 出版商
  2167. Huang K, Kiefer C, Kamal A. Novel role for NFAT3 in ERK-mediated regulation of CXCR4. PLoS ONE. 2014;9:e115249 pubmed 出版商
  2168. Watari A, Hashegawa M, Yagi K, Kondoh M. Homoharringtonine increases intestinal epithelial permeability by modulating specific claudin isoforms in Caco-2 cell monolayers. Eur J Pharm Biopharm. 2015;89:232-8 pubmed 出版商
  2169. Zhang D, Wang X, Li Y, Zhao L, Lu M, Yao X, et al. Thyroid hormone regulates muscle fiber type conversion via miR-133a1. J Cell Biol. 2014;207:753-66 pubmed 出版商
  2170. Fitzgerald P, Pinard C, Camp M, Feyder M, Sah A, Bergstrom H, et al. Durable fear memories require PSD-95. Mol Psychiatry. 2015;20:901-12 pubmed 出版商
  2171. Hoffmann F, Kuhn P, Laurent S, Hauck S, Berer K, Wendlinger S, et al. The immunoregulator soluble TACI is released by ADAM10 and reflects B cell activation in autoimmunity. J Immunol. 2015;194:542-52 pubmed 出版商
  2172. Shao C, Ahmad N, Hodges K, Kuang S, Ratliff T, Liu X. Inhibition of polo-like kinase 1 (Plk1) enhances the antineoplastic activity of metformin in prostate cancer. J Biol Chem. 2015;290:2024-33 pubmed 出版商
  2173. Jilg C, Ketscher A, Metzger E, Hummel B, Willmann D, Rüsseler V, et al. PRK1/PKN1 controls migration and metastasis of androgen-independent prostate cancer cells. Oncotarget. 2014;5:12646-64 pubmed
  2174. Ta M, Rao P, Korgaonkar M, Foster S, Peduto A, Harris D, et al. Pyrrolidine dithiocarbamate reduces the progression of total kidney volume and cyst enlargement in experimental polycystic kidney disease. Physiol Rep. 2014;2: pubmed 出版商
  2175. Shukla M, Htoo H, Wintachai P, Hernandez J, Dubois C, Postina R, et al. Melatonin stimulates the nonamyloidogenic processing of βAPP through the positive transcriptional regulation of ADAM10 and ADAM17. J Pineal Res. 2015;58:151-65 pubmed 出版商
  2176. Winkler M, Dib C, Ljubimov A, Saghizadeh M. Targeting miR-146a to treat delayed wound healing in human diabetic organ-cultured corneas. PLoS ONE. 2014;9:e114692 pubmed 出版商
  2177. Vaccaro R, Toni M, Casini A, Vivacqua G, Yu S, D Este L, et al. Localization of α-synuclein in teleost central nervous system: immunohistochemical and Western blot evidence by 3D5 monoclonal antibody in the common carp, Cyprinus carpio. J Comp Neurol. 2015;523:1095-124 pubmed 出版商
  2178. Qiao X, Roth I, Féraille E, Hasler U. Different effects of ZO-1, ZO-2 and ZO-3 silencing on kidney collecting duct principal cell proliferation and adhesion. Cell Cycle. 2014;13:3059-75 pubmed 出版商
  2179. Jirawatnotai S, Sharma S, Michowski W, Suktitipat B, Geng Y, Quackenbush J, et al. The cyclin D1-CDK4 oncogenic interactome enables identification of potential novel oncogenes and clinical prognosis. Cell Cycle. 2014;13:2889-900 pubmed 出版商
  2180. Maltecca F, Baseggio E, Consolato F, Mazza D, Podini P, Young S, et al. Purkinje neuron Ca2+ influx reduction rescues ataxia in SCA28 model. J Clin Invest. 2015;125:263-74 pubmed 出版商
  2181. Sarkar C, Zhao Z, Aungst S, Sabirzhanov B, Faden A, Lipinski M. Impaired autophagy flux is associated with neuronal cell death after traumatic brain injury. Autophagy. 2014;10:2208-22 pubmed 出版商
  2182. Zou P, Liu L, Zheng L, Liu L, Stoneman R, Cho A, et al. Targeting FoxO1 with AS1842856 suppresses adipogenesis. Cell Cycle. 2014;13:3759-67 pubmed 出版商
  2183. Kabbaj F, Lu S, Faouzi M, Meddah B, Proksch P, Cherrah Y, et al. Bioactive metabolites from Chaetomium aureum: structure elucidation and inhibition of the Hsp90 machine chaperoning activity. Bioorg Med Chem. 2015;23:126-31 pubmed 出版商
  2184. Chen X, Yammine S, Shi C, Tark Dame M, Göndör A, Ohlsson R. The visualization of large organized chromatin domains enriched in the H3K9me2 mark within a single chromosome in a single cell. Epigenetics. 2014;9:1439-45 pubmed 出版商
  2185. Lee J, Peng Y, Lin W, Parrish J. Coordinate control of terminal dendrite patterning and dynamics by the membrane protein Raw. Development. 2015;142:162-73 pubmed 出版商
  2186. Ozmen A, Unek G, Kipmen Korgun D, Cetinkaya B, Avcil Z, Korgun E. Glucocorticoid exposure altered angiogenic factor expression via Akt/mTOR pathway in rat placenta. Ann Anat. 2015;198:34-40 pubmed 出版商
  2187. Izzo F, Mercogliano F, Venturutti L, Tkach M, Inurrigarro G, Schillaci R, et al. Progesterone receptor activation downregulates GATA3 by transcriptional repression and increased protein turnover promoting breast tumor growth. Breast Cancer Res. 2014;16:491 pubmed 出版商
  2188. Grell A, Thigarajah R, Edvinsson L, Samraj A. Regulatory mechanism of endothelin receptor B in the cerebral arteries after focal cerebral ischemia. PLoS ONE. 2014;9:e113624 pubmed 出版商
  2189. Kim H, Li A, Ahn S, Song H, Zhang W. Inositol Polyphosphate-5-Phosphatase F (INPP5F) inhibits STAT3 activity and suppresses gliomas tumorigenicity. Sci Rep. 2014;4:7330 pubmed 出版商
  2190. Wilson L, McKeown L, Tumova S, Li J, Beech D. Expression of a long variant of CRACR2A that belongs to the Rab GTPase protein family in endothelial cells. Biochem Biophys Res Commun. 2015;456:398-402 pubmed 出版商
  2191. Selmi A, de Saint Jean M, Jallas A, Garin E, Hogarty M, Bénard J, et al. TWIST1 is a direct transcriptional target of MYCN and MYC in neuroblastoma. Cancer Lett. 2015;357:412-8 pubmed 出版商
  2192. Ventelä S, Sittig E, Mannermaa L, Mäkelä J, Kulmala J, Löyttyniemi E, et al. CIP2A is an Oct4 target gene involved in head and neck squamous cell cancer oncogenicity and radioresistance. Oncotarget. 2015;6:144-58 pubmed
  2193. Diesenberg K, Beerbaum M, Fink U, Schmieder P, Krauss M. SEPT9 negatively regulates ubiquitin-dependent downregulation of EGFR. J Cell Sci. 2015;128:397-407 pubmed 出版商
  2194. Yang D, Sun Y, Bhaumik S, Li Y, Baumann J, Lin X, et al. Blocking lymphocyte trafficking with FTY720 prevents inflammation-sensitized hypoxic-ischemic brain injury in newborns. J Neurosci. 2014;34:16467-81 pubmed 出版商
  2195. O Connell K, Guo W, Serra C, Beck M, Wachtman L, Hoggatt A, et al. The effects of an ActRIIb receptor Fc fusion protein ligand trap in juvenile simian immunodeficiency virus-infected rhesus macaques. FASEB J. 2015;29:1165-75 pubmed 出版商
  2196. Liu Y, Luo S, He S, Zhang M, Wang P, Li C, et al. Tetherin restricts HSV-2 release and is counteracted by multiple viral glycoproteins. Virology. 2015;475:96-109 pubmed 出版商
  2197. Oksala N, Ekmekçi F, Ozsoy E, Kirankaya S, Kokkola T, Emecen G, et al. Natural thermal adaptation increases heat shock protein levels and decreases oxidative stress. Redox Biol. 2014;3:25-8 pubmed 出版商
  2198. Kuo P, Huang C, Lee C, Chang H, Hsieh S, Chung Y, et al. BCAS2 promotes prostate cancer cells proliferation by enhancing AR mRNA transcription and protein stability. Br J Cancer. 2015;112:391-402 pubmed 出版商
  2199. Ã…gren M, Schnabel R, Christensen L, Mirastschijski U. Tumor necrosis factor-α-accelerated degradation of type I collagen in human skin is associated with elevated matrix metalloproteinase (MMP)-1 and MMP-3 ex vivo. Eur J Cell Biol. 2015;94:12-21 pubmed 出版商
  2200. Jones D, Liu F, Vaidyanathan R, Eckhardt L, Trudeau M, Robertson G. hERG 1b is critical for human cardiac repolarization. Proc Natl Acad Sci U S A. 2014;111:18073-7 pubmed 出版商
  2201. Wang H, Zhang L, Zhang S, Li Y. Inhibition of vascular endothelial growth factor by small interfering RNA upregulates differentiation, maturation and function of dendritic cells. Exp Ther Med. 2015;9:120-124 pubmed
  2202. Yokoi F, Dang M, Liu J, Gandre J, Kwon K, Yuen R, et al. Decreased dopamine receptor 1 activity and impaired motor-skill transfer in Dyt1 ΔGAG heterozygous knock-in mice. Behav Brain Res. 2015;279:202-10 pubmed 出版商
  2203. Colman J, Laureano D, Reis T, Krolow R, Dalmaz C, Benetti C, et al. Variations in the neonatal environment modulate adult behavioral and brain responses to palatable food withdrawal in adult female rats. Int J Dev Neurosci. 2015;40:70-5 pubmed 出版商
  2204. Zhao S, Ge X, Wang X, Liu A, Guo X, Zhou L, et al. The DEAD-box RNA helicase 5 positively regulates the replication of porcine reproductive and respiratory syndrome virus by interacting with viral Nsp9 in vitro. Virus Res. 2015;195:217-24 pubmed 出版商
  2205. Kim H, Jung G. Reactive oxygen species increase HEPN1 expression via activation of the XBP1 transcription factor. FEBS Lett. 2014;588:4413-21 pubmed 出版商
  2206. Liu D, Yovchev M, Zhang J, Alfieri A, Tchaikovskaya T, Laconi E, et al. Identification and characterization of mesenchymal-epithelial progenitor-like cells in normal and injured rat liver. Am J Pathol. 2015;185:110-28 pubmed 出版商
  2207. Olayanju A, Copple I, Bryan H, Edge G, Sison R, Wong M, et al. Brusatol provokes a rapid and transient inhibition of Nrf2 signaling and sensitizes mammalian cells to chemical toxicity-implications for therapeutic targeting of Nrf2. Free Radic Biol Med. 2015;78:202-12 pubmed 出版商
  2208. Garzón J, Herrero Labrador R, Rodríguez Muñoz M, Shah R, Vicente Sánchez A, Wagner C, et al. HINT1 protein: a new therapeutic target to enhance opioid antinociception and block mechanical allodynia. Neuropharmacology. 2015;89:412-23 pubmed
  2209. Mou W, Xu Y, Ye Y, Chen S, Li X, Gong K, et al. Expression of Sox2 in breast cancer cells promotes the recruitment of M2 macrophages to tumor microenvironment. Cancer Lett. 2015;358:115-23 pubmed 出版商
  2210. Ma B, Chen Y, Chen L, Cheng H, Mu C, Li J, et al. Hypoxia regulates Hippo signalling through the SIAH2 ubiquitin E3 ligase. Nat Cell Biol. 2015;17:95-103 pubmed 出版商
  2211. Lu W, Han L, Su L, Zhao J, Zhang Y, Zhang S, et al. A 3'UTR-associated RNA, FLJ11812 maintains stemness of human embryonic stem cells by targeting miR-4459. Stem Cells Dev. 2015;24:1133-40 pubmed 出版商
  2212. Maya Mendoza A, Ostrakova J, Kosar M, Hall A, Duskova P, Mistrik M, et al. Myc and Ras oncogenes engage different energy metabolism programs and evoke distinct patterns of oxidative and DNA replication stress. Mol Oncol. 2015;9:601-16 pubmed 出版商
  2213. Giovannini C, Minguzzi M, Baglioni M, Fornari F, Giannone F, Ravaioli M, et al. Suppression of p53 by Notch3 is mediated by Cyclin G1 and sustained by MDM2 and miR-221 axis in hepatocellular carcinoma. Oncotarget. 2014;5:10607-20 pubmed
  2214. Roufayel R, Johnston D, Mosser D. The elimination of miR-23a in heat-stressed cells promotes NOXA-induced cell death and is prevented by HSP70. Cell Death Dis. 2014;5:e1546 pubmed 出版商
  2215. Beutner G, Eliseev R, Porter G. Initiation of electron transport chain activity in the embryonic heart coincides with the activation of mitochondrial complex 1 and the formation of supercomplexes. PLoS ONE. 2014;9:e113330 pubmed 出版商
  2216. Dachtler J, Glasper J, Cohen R, Ivorra J, Swiffen D, Jackson A, et al. Deletion of α-neurexin II results in autism-related behaviors in mice. Transl Psychiatry. 2014;4:e484 pubmed 出版商
  2217. Choi T, Jung S, Nah J, Ko H, Jo S, Chung G, et al. Low levels of methyl β-cyclodextrin disrupt GluA1-dependent synaptic potentiation but not synaptic depression. J Neurochem. 2015;132:276-85 pubmed 出版商
  2218. Lu S, Zeumer L, Sorensen H, Yang H, Ng Y, Yu F, et al. The murine Pbx1-d lupus susceptibility allele accelerates mesenchymal stem cell differentiation and impairs their immunosuppressive function. J Immunol. 2015;194:43-55 pubmed
  2219. Nashine S, Liu Y, Kim B, Clark A, Pang I. Role of C/EBP homologous protein in retinal ganglion cell death after ischemia/reperfusion injury. Invest Ophthalmol Vis Sci. 2014;56:221-31 pubmed 出版商
  2220. Shi L, Zhang B, Sun X, Lu S, Liu Z, Liu Y, et al. MiR-204 inhibits human NSCLC metastasis through suppression of NUAK1. Br J Cancer. 2014;111:2316-27 pubmed 出版商
  2221. Frederick D, Davis J, Dávila A, Agarwal B, Michan S, Puchowicz M, et al. Increasing NAD synthesis in muscle via nicotinamide phosphoribosyltransferase is not sufficient to promote oxidative metabolism. J Biol Chem. 2015;290:1546-58 pubmed 出版商
  2222. Yin Y, Zhang S, Luo H, Zhang X, Geng G, Li J, et al. Interleukin 7 up-regulates CD95 protein on CD4+ T cells by affecting mRNA alternative splicing: priming for a synergistic effect on HIV-1 reservoir maintenance. J Biol Chem. 2015;290:35-45 pubmed 出版商
  2223. Wu S, Wang Y, Lin L, Si X, Wang T, Zhong X, et al. Protease 2A induces stress granule formation during coxsackievirus B3 and enterovirus 71 infections. Virol J. 2014;11:192 pubmed 出版商
  2224. Holloway A, Simmonds M, Azad A, Fox J, Storey A. Resistance to UV-induced apoptosis by β-HPV5 E6 involves targeting of activated BAK for proteolysis by recruitment of the HERC1 ubiquitin ligase. Int J Cancer. 2015;136:2831-43 pubmed 出版商
  2225. Isobe T, Hisamori S, Hogan D, Zabala M, Hendrickson D, Dalerba P, et al. miR-142 regulates the tumorigenicity of human breast cancer stem cells through the canonical WNT signaling pathway. elife. 2014;3: pubmed 出版商
  2226. Kim H, Xu H, Yao Q, Li W, Huang Q, Outeda P, et al. Ciliary membrane proteins traffic through the Golgi via a Rabep1/GGA1/Arl3-dependent mechanism. Nat Commun. 2014;5:5482 pubmed 出版商
  2227. Zanotti K, Maul R, Castiblanco D, Yang W, Choi Y, Fox J, et al. ATAD5 deficiency decreases B cell division and Igh recombination. J Immunol. 2015;194:35-42 pubmed 出版商
  2228. Maruyama A, Mimura J, Itoh K. Non-coding RNA derived from the region adjacent to the human HO-1 E2 enhancer selectively regulates HO-1 gene induction by modulating Pol II binding. Nucleic Acids Res. 2014;42:13599-614 pubmed 出版商
  2229. Busskamp V, Lewis N, Guye P, Ng A, Shipman S, Byrne S, et al. Rapid neurogenesis through transcriptional activation in human stem cells. Mol Syst Biol. 2014;10:760 pubmed 出版商
  2230. Gascon E, Lynch K, Ruan H, Almeida S, Verheyden J, Seeley W, et al. Alterations in microRNA-124 and AMPA receptors contribute to social behavioral deficits in frontotemporal dementia. Nat Med. 2014;20:1444-51 pubmed 出版商
  2231. Marques Howarth M, Simpson D, Ngok S, Nieves B, Chen R, Siprashvili Z, et al. Long noncoding RNA EWSAT1-mediated gene repression facilitates Ewing sarcoma oncogenesis. J Clin Invest. 2014;124:5275-90 pubmed 出版商
  2232. Wohak L, Krais A, Kucab J, Stertmann J, Øvrebø S, Seidel A, et al. Carcinogenic polycyclic aromatic hydrocarbons induce CYP1A1 in human cells via a p53-dependent mechanism. Arch Toxicol. 2016;90:291-304 pubmed 出版商
  2233. Krawczyk P, Twarog E, Kurowska E, Klopotowska D, Matuszyk J. Establishment of a cellular model to study TrkC-dependent neuritogenesis. In Vitro Cell Dev Biol Anim. 2015;51:241-8 pubmed 出版商
  2234. Choi C, Kim J, Wee S, Lee J, Nam D, Kim C, et al. Expression of nuclear factor erythroid 2 protein in malignant cutaneous tumors. Arch Plast Surg. 2014;41:654-60 pubmed 出版商
  2235. Siggs O, Grieve A, Xu H, Bambrough P, Christova Y, Freeman M. Genetic interaction implicates iRhom2 in the regulation of EGF receptor signalling in mice. Biol Open. 2014;3:1151-7 pubmed 出版商
  2236. Plosa E, Young L, Gulleman P, Polosukhin V, Zaynagetdinov R, Benjamin J, et al. Epithelial β1 integrin is required for lung branching morphogenesis and alveolarization. Development. 2014;141:4751-62 pubmed 出版商
  2237. Chruscicka B, Burnat G, Branski P, Chorobik P, Lenda T, Marciniak M, et al. Tetracycline-based system for controlled inducible expression of group III metabotropic glutamate receptors. J Biomol Screen. 2015;20:350-8 pubmed 出版商
  2238. Huang L, Carney J, Cardona D, Counter C. Decreased tumorigenesis in mice with a Kras point mutation at C118. Nat Commun. 2014;5:5410 pubmed 出版商
  2239. Wang C, Zhang W, Fu M, Yang A, Huang H, Xie J. Establishment of human pancreatic cancer gemcitabine‑resistant cell line with ribonucleotide reductase overexpression. Oncol Rep. 2015;33:383-90 pubmed 出版商
  2240. Shimamoto A, Kagawa H, Zensho K, Sera Y, Kazuki Y, Osaki M, et al. Reprogramming suppresses premature senescence phenotypes of Werner syndrome cells and maintains chromosomal stability over long-term culture. PLoS ONE. 2014;9:e112900 pubmed 出版商
  2241. Martínez Vega R, Garrido F, Partearroyo T, Cediel R, Zeisel S, Martínez Álvarez C, et al. Folic acid deficiency induces premature hearing loss through mechanisms involving cochlear oxidative stress and impairment of homocysteine metabolism. FASEB J. 2015;29:418-32 pubmed 出版商
  2242. Olivito L, Saccone P, Perri V, Bachman J, Fragapane P, Mele A, et al. Phosphorylation of the AMPA receptor GluA1 subunit regulates memory load capacity. Brain Struct Funct. 2016;221:591-603 pubmed 出版商
  2243. Starr M, Takahashi H, Okamura D, Zwischenberger B, Mrazek A, Ueda J, et al. Increased coagulation and suppressed generation of activated protein C in aged mice during intra-abdominal sepsis. Am J Physiol Heart Circ Physiol. 2015;308:H83-91 pubmed 出版商
  2244. Lan N, Luo G, Yang X, Cheng Y, Zhang Y, Wang X, et al. 25-Hydroxyvitamin D3-deficiency enhances oxidative stress and corticosteroid resistance in severe asthma exacerbation. PLoS ONE. 2014;9:e111599 pubmed 出版商
  2245. Dejos C, Voisin P, Bernard M, Régnacq M, Bergès T. Canthin-6-one displays antiproliferative activity and causes accumulation of cancer cells in the G2/M phase. J Nat Prod. 2014;77:2481-7 pubmed 出版商
  2246. Pérez Alvarez M, Mateos L, Alonso A, Wandosell F. Estradiol and Progesterone Administration After pMCAO Stimulates the Neurological Recovery and Reduces the Detrimental Effect of Ischemia Mainly in Hippocampus. Mol Neurobiol. 2015;52:1690-1703 pubmed 出版商
  2247. Grau C, Arató K, Fernández Fernández J, Valderrama A, Sindreu C, Fillat C, et al. DYRK1A-mediated phosphorylation of GluN2A at Ser(1048) regulates the surface expression and channel activity of GluN1/GluN2A receptors. Front Cell Neurosci. 2014;8:331 pubmed 出版商
  2248. Kim M, Kim M, Lee M, Kim C, Lim D. The MST1/2-SAV1 complex of the Hippo pathway promotes ciliogenesis. Nat Commun. 2014;5:5370 pubmed 出版商
  2249. Berghold V, Gauster M, Hemmings D, Moser G, Kremshofer J, Siwetz M, et al. Phospholipid scramblase 1 (PLSCR1) in villous trophoblast of the human placenta. Histochem Cell Biol. 2015;143:381-96 pubmed 出版商
  2250. Qin J, Rajaratnam R, Feng L, Salami J, Barber Rotenberg J, Domsic J, et al. Development of organometallic S6K1 inhibitors. J Med Chem. 2015;58:305-14 pubmed 出版商
  2251. Gao L, Fang Y, Zhang T, Ge B, Xu B, Huang J, et al. GSTP1 arrests bladder cancer T24 cells in G0/G1 phase and up-regulates p21 expression. Int J Clin Exp Med. 2014;7:2984-91 pubmed
  2252. Phillips Krawczak C, Singla A, Starokadomskyy P, Deng Z, Osborne D, Li H, et al. COMMD1 is linked to the WASH complex and regulates endosomal trafficking of the copper transporter ATP7A. Mol Biol Cell. 2015;26:91-103 pubmed 出版商
  2253. Xu J, Huang Z, Lin L, Fu M, Song Y, Shen Y, et al. miRNA-130b is required for the ERK/FOXM1 pathway activation-mediated protective effects of isosorbide dinitrate against mesenchymal stem cell senescence induced by high glucose. Int J Mol Med. 2015;35:59-71 pubmed 出版商
  2254. Bantikassegn A, Song X, Politi K. Isolation of epithelial, endothelial, and immune cells from lungs of transgenic mice with oncogene-induced lung adenocarcinomas. Am J Respir Cell Mol Biol. 2015;52:409-17 pubmed 出版商
  2255. Li N, Fassl A, Chick J, Inuzuka H, Li X, Mansour M, et al. Cyclin C is a haploinsufficient tumour suppressor. Nat Cell Biol. 2014;16:1080-91 pubmed 出版商
  2256. Chandrasekaran S, Marshall J, Messing J, Hsu J, King M. TRAIL-mediated apoptosis in breast cancer cells cultured as 3D spheroids. PLoS ONE. 2014;9:e111487 pubmed 出版商
  2257. Srinivasan S, Romagnoli M, Bohm A, Sonenshein G. N-glycosylation regulates ADAM8 processing and activation. J Biol Chem. 2014;289:33676-88 pubmed 出版商
  2258. Martin S, Lovat P, Redfern C. Cell-type variation in stress responses as a consequence of manipulating GRP78 expression in neuroectodermal cells. J Cell Biochem. 2015;116:438-49 pubmed 出版商
  2259. Dammer E, Lee A, Duong D, Gearing M, Lah J, Levey A, et al. Quantitative phosphoproteomics of Alzheimer's disease reveals cross-talk between kinases and small heat shock proteins. Proteomics. 2015;15:508-519 pubmed 出版商
  2260. Wang S, Zheng W, Liu X, Xue P, Jiang S, Lu D, et al. Iodoacetic acid activates Nrf2-mediated antioxidant response in vitro and in vivo. Environ Sci Technol. 2014;48:13478-88 pubmed 出版商
  2261. Musazzi L, Seguini M, Mallei A, Treccani G, Pelizzari M, Tornese P, et al. Time-dependent activation of MAPK/Erk1/2 and Akt/GSK3 cascades: modulation by agomelatine. BMC Neurosci. 2014;15:119 pubmed 出版商
  2262. Soncini D, Caffa I, Zoppoli G, Cea M, Cagnetta A, Passalacqua M, et al. Nicotinamide phosphoribosyltransferase promotes epithelial-to-mesenchymal transition as a soluble factor independent of its enzymatic activity. J Biol Chem. 2014;289:34189-204 pubmed 出版商
  2263. Wang D, Zhang P, Gao K, Tang Y, Jin X, Zhang Y, et al. PLK1 and β-TrCP-dependent ubiquitination and degradation of Rap1GAP controls cell proliferation. PLoS ONE. 2014;9:e110296 pubmed 出版商
  2264. Jeppsson K, Carlborg K, Nakato R, Berta D, Lilienthal I, Kanno T, et al. The chromosomal association of the Smc5/6 complex depends on cohesion and predicts the level of sister chromatid entanglement. PLoS Genet. 2014;10:e1004680 pubmed 出版商
  2265. O Loghlen A, Martin N, Krusche B, Pemberton H, Alonso M, Chandler H, et al. The nuclear receptor NR2E1/TLX controls senescence. Oncogene. 2015;34:4069-4077 pubmed 出版商
  2266. Lambert J, Whitson R, Iczkowski K, La Rosa F, Smith M, Wilson R, et al. Reduced expression of GDF-15 is associated with atrophic inflammatory lesions of the prostate. Prostate. 2015;75:255-65 pubmed 出版商
  2267. Blaabjerg L, Christensen G, Matsumoto M, van der Meulen T, Huising M, Billestrup N, et al. CRFR1 activation protects against cytokine-induced β-cell death. J Mol Endocrinol. 2014;53:417-27 pubmed 出版商
  2268. Holland W, Chinn D, Lara P, Gandara D, Mack P. Effects of AKT inhibition on HGF-mediated erlotinib resistance in non-small cell lung cancer cell lines. J Cancer Res Clin Oncol. 2015;141:615-26 pubmed 出版商
  2269. Bailey Elkin B, Knaap R, Johnson G, Dalebout T, Ninaber D, van Kasteren P, et al. Crystal structure of the Middle East respiratory syndrome coronavirus (MERS-CoV) papain-like protease bound to ubiquitin facilitates targeted disruption of deubiquitinating activity to demonstrate its role in innate immune suppression. J Biol Chem. 2014;289:34667-82 pubmed 出版商
  2270. Hasanali Z, Epner E, Feith D, Loughran T, Sample C. Vorinostat downregulates CD30 and decreases brentuximab vedotin efficacy in human lymphocytes. Mol Cancer Ther. 2014;13:2784-92 pubmed 出版商
  2271. Guerrouahen B, Pasquier J, Kaoud N, Maleki M, Beauchamp M, Yasmeen A, et al. Akt-activated endothelium constitutes the niche for residual disease and resistance to bevacizumab in ovarian cancer. Mol Cancer Ther. 2014;13:3123-36 pubmed 出版商
  2272. Bowton E, Saunders C, Reddy I, Campbell N, Hamilton P, Henry L, et al. SLC6A3 coding variant Ala559Val found in two autism probands alters dopamine transporter function and trafficking. Transl Psychiatry. 2014;4:e464 pubmed 出版商
  2273. Ortega M, Bhatnagar H, Lin A, Wang L, Aster J, Sill H, et al. A microRNA-mediated regulatory loop modulates NOTCH and MYC oncogenic signals in B- and T-cell malignancies. Leukemia. 2015;29:968-76 pubmed 出版商
  2274. Chu T, Li Q, Qiu T, Sun Z, Hu Z, Chen Y, et al. Clearance of the intracellular high level of the tau protein directed by an artificial synthetic hydrolase. Mol Biosyst. 2014;10:3081-5 pubmed 出版商
  2275. Xu H, Zhou Y, Coughlan K, Ding Y, Wang S, Wu Y, et al. AMPKα1 deficiency promotes cellular proliferation and DNA damage via p21 reduction in mouse embryonic fibroblasts. Biochim Biophys Acta. 2015;1853:65-73 pubmed 出版商
  2276. Goren I, Pfeilschifter J, Frank S. Uptake of neutrophil-derived Ym1 protein distinguishes wound macrophages in the absence of interleukin-4 signaling in murine wound healing. Am J Pathol. 2014;184:3249-61 pubmed 出版商
  2277. Requena T, Cabrera S, Martín Sierra C, Price S, Lysakowski A, Lopez Escamez J. Identification of two novel mutations in FAM136A and DTNA genes in autosomal-dominant familial Meniere's disease. Hum Mol Genet. 2015;24:1119-26 pubmed 出版商
  2278. Yang N, Tan S, Ng S, Shi Y, Zhou J, Tan K, et al. Artesunate induces cell death in human cancer cells via enhancing lysosomal function and lysosomal degradation of ferritin. J Biol Chem. 2014;289:33425-41 pubmed 出版商
  2279. Iwaniuk A, JabÅ‚oÅ„ska E, JabÅ‚oÅ„ski J, Ratajczak Wrona W, Garley M. Expression of selected proteins of the extrinsic and intrinsic pathways of apoptosis in human leukocytes exposed to N-nitrosodimethylamine. Hum Exp Toxicol. 2015;34:591-600 pubmed 出版商
  2280. Zhang Y, Wang N, Su P, Lu J, Wang Y. Disruption of dopamine D1 receptor phosphorylation at serine 421 attenuates cocaine-induced behaviors in mice. Neurosci Bull. 2014;30:1025-35 pubmed 出版商
  2281. Kinjo E, Higa G, Morya E, Valle A, Kihara A, Britto L. Reciprocal regulation of epileptiform neuronal oscillations and electrical synapses in the rat hippocampus. PLoS ONE. 2014;9:e109149 pubmed 出版商
  2282. Laporta J, Keil K, Vezina C, Hernandez L. Peripheral serotonin regulates maternal calcium trafficking in mammary epithelial cells during lactation in mice. PLoS ONE. 2014;9:e110190 pubmed 出版商
  2283. Jia J, Hu Z, Nordman J, Li Z. The schizophrenia susceptibility gene dysbindin regulates dendritic spine dynamics. J Neurosci. 2014;34:13725-36 pubmed 出版商
  2284. Forny Germano L, Lyra e Silva N, Batista A, Brito Moreira J, Gralle M, Boehnke S, et al. Alzheimer's disease-like pathology induced by amyloid-β oligomers in nonhuman primates. J Neurosci. 2014;34:13629-43 pubmed 出版商
  2285. Bosse J, Virding S, Thiberge S, Scherer J, Wodrich H, Ruzsics Z, et al. Nuclear herpesvirus capsid motility is not dependent on F-actin. MBio. 2014;5:e01909-14 pubmed 出版商
  2286. Ashok A, Rai N, Tripathi S, Bandyopadhyay S. Exposure to As-, Cd-, and Pb-mixture induces Aβ, amyloidogenic APP processing and cognitive impairments via oxidative stress-dependent neuroinflammation in young rats. Toxicol Sci. 2015;143:64-80 pubmed 出版商
  2287. Liang N, Zhang C, Dill P, Panasyuk G, Pion D, Koka V, et al. Regulation of YAP by mTOR and autophagy reveals a therapeutic target of tuberous sclerosis complex. J Exp Med. 2014;211:2249-63 pubmed 出版商
  2288. Eriksson O, Ramström M, Hörnaeus K, Bergquist J, Mokhtari D, Siegbahn A. The Eph tyrosine kinase receptors EphB2 and EphA2 are novel proteolytic substrates of tissue factor/coagulation factor VIIa. J Biol Chem. 2014;289:32379-91 pubmed 出版商
  2289. Xu W, Yang X, Li D, Zheng K, Qiu P, Zhang W, et al. Up-regulation of fatty acid oxidation in the ligament as a contributing factor of ankylosing spondylitis: A comparative proteomic study. J Proteomics. 2015;113:57-72 pubmed 出版商
  2290. Hong L, Wu Y, Feng J, Yu S, Li C, Wu Y, et al. Overexpression of the cell adhesion molecule claudin-9 is associated with invasion in pituitary oncocytomas. Hum Pathol. 2014;45:2423-9 pubmed 出版商
  2291. Saloura V, Cho H, Kiyotani K, Alachkar H, Zuo Z, Nakakido M, et al. WHSC1 promotes oncogenesis through regulation of NIMA-related kinase-7 in squamous cell carcinoma of the head and neck. Mol Cancer Res. 2015;13:293-304 pubmed 出版商
  2292. Martin G, Atshaves B, Landrock K, Landrock D, Storey S, Howles P, et al. Ablating L-FABP in SCP-2/SCP-x null mice impairs bile acid metabolism and biliary HDL-cholesterol secretion. Am J Physiol Gastrointest Liver Physiol. 2014;307:G1130-43 pubmed 出版商
  2293. Bernard Marissal N, Sunyach C, Marissal T, Raoul C, Pettmann B. Calreticulin levels determine onset of early muscle denervation by fast motoneurons of ALS model mice. Neurobiol Dis. 2015;73:130-6 pubmed 出版商
  2294. Schmidt J, Dalby A, Cech T. Identification of human TERT elements necessary for telomerase recruitment to telomeres. elife. 2014;3: pubmed 出版商
  2295. Zheng R, Hu W, Sui C, Ma N, Jiang Y. Effects of doxorubicin and gemcitabine on the induction of apoptosis in breast cancer cells. Oncol Rep. 2014;32:2719-25 pubmed 出版商
  2296. Lu H, Clauser K, Tam W, Fröse J, Ye X, Eaton E, et al. A breast cancer stem cell niche supported by juxtacrine signalling from monocytes and macrophages. Nat Cell Biol. 2014;16:1105-17 pubmed 出版商
  2297. Portella A, Silveira P, Laureano D, Cardoso S, Bittencourt V, Noschang C, et al. Litter size reduction alters insulin signaling in the ventral tegmental area and influences dopamine-related behaviors in adult rats. Behav Brain Res. 2015;278:66-73 pubmed 出版商
  2298. Morioka T, Sakabe M, Ioka T, Iguchi T, Mizuta K, Hattammaru M, et al. An important role of endothelial hairy-related transcription factors in mouse vascular development. Genesis. 2014;52:897-906 pubmed 出版商
  2299. Lupino E, Ramondetti C, Buccinnà B, Piccinini M. Exposure of neuroblastoma cell lines to imatinib results in the upregulation of the CDK inhibitor p27(KIP1) as a consequence of c-Abl inhibition. Biochem Pharmacol. 2014;92:235-50 pubmed 出版商
  2300. Ahn J, Ruiz P, Barber G. Intrinsic self-DNA triggers inflammatory disease dependent on STING. J Immunol. 2014;193:4634-42 pubmed 出版商
  2301. Knudsen S, Mac A, Henriksen L, van Deurs B, Grøvdal L. EGFR signaling patterns are regulated by its different ligands. Growth Factors. 2014;32:155-63 pubmed 出版商
  2302. Iannetti A, Ledoux A, Tudhope S, Sellier H, Zhao B, Mowla S, et al. Regulation of p53 and Rb links the alternative NF-κB pathway to EZH2 expression and cell senescence. PLoS Genet. 2014;10:e1004642 pubmed 出版商
  2303. Tavares E, Maldonado R, Miñano F. Immunoneutralization of endogenous aminoprocalcitonin attenuates sepsis-induced acute lung injury and mortality in rats. Am J Pathol. 2014;184:3069-83 pubmed 出版商
  2304. Fan Y, Meley D, Pizer B, Sée V. Mir-34a mimics are potential therapeutic agents for p53-mutated and chemo-resistant brain tumour cells. PLoS ONE. 2014;9:e108514 pubmed 出版商
  2305. Tassi I, Claudio E, Wang H, Tang W, Ha H, Saret S, et al. The NF-κB regulator Bcl-3 governs dendritic cell antigen presentation functions in adaptive immunity. J Immunol. 2014;193:4303-11 pubmed 出版商
  2306. Ishii J, Sato H, Yazawa T, Shishido Hara Y, Hiramatsu C, Nakatani Y, et al. Class III/IV POU transcription factors expressed in small cell lung cancer cells are involved in proneural/neuroendocrine differentiation. Pathol Int. 2014;64:415-22 pubmed 出版商
  2307. Song J, An N, Chatterjee S, Kistner Griffin E, Mahajan S, Mehrotra S, et al. Deletion of Pim kinases elevates the cellular levels of reactive oxygen species and sensitizes to K-Ras-induced cell killing. Oncogene. 2015;34:3728-36 pubmed 出版商
  2308. Chang Y, Huang Y. Arsenite-activated JNK signaling enhances CPEB4-Vinexin interaction to facilitate stress granule assembly and cell survival. PLoS ONE. 2014;9:e107961 pubmed 出版商
  2309. Perreten Lambert H, Zenger M, Azarias G, Chatton J, Magistretti P, Lengacher S. Control of mitochondrial pH by uncoupling protein 4 in astrocytes promotes neuronal survival. J Biol Chem. 2014;289:31014-28 pubmed 出版商
  2310. Bertin S, Lozano Ruiz B, Bachiller V, García Martínez I, Herdman S, Zapater P, et al. Dual-specificity phosphatase 6 regulates CD4+ T-cell functions and restrains spontaneous colitis in IL-10-deficient mice. Mucosal Immunol. 2015;8:505-15 pubmed 出版商
  2311. Kumari D, Bhattacharya A, Nadel J, Moulton K, Zeak N, Glicksman A, et al. Identification of fragile X syndrome specific molecular markers in human fibroblasts: a useful model to test the efficacy of therapeutic drugs. Hum Mutat. 2014;35:1485-94 pubmed 出版商
  2312. Kerr M, Scott H, Groselj B, Stratford M, Karaszi K, Sharma N, et al. Deoxycytidine kinase expression underpins response to gemcitabine in bladder cancer. Clin Cancer Res. 2014;20:5435-45 pubmed 出版商
  2313. Kurokawa K, Mizuno K, Ohkuma S. Sensitization of ethanol-induced place preference as a result of up-regulation of type 1 inositol 1,4,5-trisphosphate receptors in mouse nucleus accumbens. J Neurochem. 2014;131:836-47 pubmed 出版商
  2314. Lee S, Xu G, Jay T, Bhatta S, Kim K, Jung S, et al. Opposing effects of membrane-anchored CX3CL1 on amyloid and tau pathologies via the p38 MAPK pathway. J Neurosci. 2014;34:12538-46 pubmed 出版商
  2315. Gupta A, Keshri G, Yadav A, Gola S, Chauhan S, Salhan A, et al. Superpulsed (Ga-As, 904 nm) low-level laser therapy (LLLT) attenuates inflammatory response and enhances healing of burn wounds. J Biophotonics. 2015;8:489-501 pubmed 出版商
  2316. Sonzogni S, Ogara M, Castillo D, Sirkin P, Radicella J, Cánepa E. Nuclear translocation of p19INK4d in response to oxidative DNA damage promotes chromatin relaxation. Mol Cell Biochem. 2015;398:63-72 pubmed 出版商
  2317. Jebelli J, Hooper C, Pocock J. Microglial p53 activation is detrimental to neuronal synapses during activation-induced inflammation: Implications for neurodegeneration. Neurosci Lett. 2014;583:92-7 pubmed 出版商
  2318. Jung K, Han D, Jeong S, Choi M, Chai Y, Cho G. Proteomic analysis reveals KRIT1 as a modulator for the antioxidant effects of valproic acid in human bone-marrow mesenchymal stromal cells. Drug Chem Toxicol. 2015;38:286-92 pubmed 出版商
  2319. Lucken Ardjomande Häsler S, Vallis Y, Jolin H, McKenzie A, McMahon H. GRAF1a is a brain-specific protein that promotes lipid droplet clustering and growth, and is enriched at lipid droplet junctions. J Cell Sci. 2014;127:4602-19 pubmed 出版商
  2320. Kelsey L, Katoch P, Ray A, Mitra S, Chakraborty S, Lin M, et al. Vitamin D3 regulates the formation and degradation of gap junctions in androgen-responsive human prostate cancer cells. PLoS ONE. 2014;9:e106437 pubmed 出版商
  2321. Ni W, Qiao J, Hu S, Zhao X, Regouski M, Yang M, et al. Efficient gene knockout in goats using CRISPR/Cas9 system. PLoS ONE. 2014;9:e106718 pubmed 出版商
  2322. Pilchova I, Klacanova K, Chomova M, Tatarkova Z, Dobrota D, Racay P. Possible contribution of proteins of Bcl-2 family in neuronal death following transient global brain ischemia. Cell Mol Neurobiol. 2015;35:23-31 pubmed 出版商
  2323. Das L, Rosenjack J, Au L, Galle P, Hansen M, Cathcart M, et al. Hyper-inflammation and skin destruction mediated by rosiglitazone activation of macrophages in IL-6 deficiency. J Invest Dermatol. 2015;135:389-399 pubmed 出版商
  2324. Candelaria N, Addanki S, Zheng J, Nguyen Vu T, Karaboga H, Dey P, et al. Antiproliferative effects and mechanisms of liver X receptor ligands in pancreatic ductal adenocarcinoma cells. PLoS ONE. 2014;9:e106289 pubmed 出版商
  2325. Cho S, Park J, Kang Y. AGO2 and SETDB1 cooperate in promoter-targeted transcriptional silencing of the androgen receptor gene. Nucleic Acids Res. 2014;42:13545-56 pubmed 出版商
  2326. Yamasaki T, Suzuki A, Hasebe R, Horiuchi M. Comparison of the anti-prion mechanism of four different anti-prion compounds, anti-PrP monoclonal antibody 44B1, pentosan polysulfate, chlorpromazine, and U18666A, in prion-infected mouse neuroblastoma cells. PLoS ONE. 2014;9:e106516 pubmed 出版商
  2327. Gruol D, Vo K, Bray J. Increased astrocyte expression of IL-6 or CCL2 in transgenic mice alters levels of hippocampal and cerebellar proteins. Front Cell Neurosci. 2014;8:234 pubmed 出版商
  2328. Yang S, Deng P, Zhu Z, Zhu J, Wang G, Zhang L, et al. Adenosine deaminase acting on RNA 1 limits RIG-I RNA detection and suppresses IFN production responding to viral and endogenous RNAs. J Immunol. 2014;193:3436-45 pubmed 出版商
  2329. Zahoor M, Xue G, Sato H, Murakami T, Takeshima S, Aida Y. HIV-1 Vpr induces interferon-stimulated genes in human monocyte-derived macrophages. PLoS ONE. 2014;9:e106418 pubmed 出版商
  2330. Marzese D, Liu M, Huynh J, Hirose H, Donovan N, Huynh K, et al. Brain metastasis is predetermined in early stages of cutaneous melanoma by CD44v6 expression through epigenetic regulation of the spliceosome. Pigment Cell Melanoma Res. 2015;28:82-93 pubmed 出版商
  2331. Radonjić N, Ortega J, Memi F, Dionne K, Jakovcevski I, Zecevic N. The complexity of the calretinin-expressing progenitors in the human cerebral cortex. Front Neuroanat. 2014;8:82 pubmed 出版商
  2332. Torsvik J, Johansson B, Dalva M, Marie M, Fjeld K, Johansson S, et al. Endocytosis of secreted carboxyl ester lipase in a syndrome of diabetes and pancreatic exocrine dysfunction. J Biol Chem. 2014;289:29097-111 pubmed 出版商
  2333. Wang H, Yuan Y, Zhang Z, Yan H, Feng Y, Li W. Dysbindin-1C is required for the survival of hilar mossy cells and the maturation of adult newborn neurons in dentate gyrus. J Biol Chem. 2014;289:29060-72 pubmed 出版商
  2334. Peng M, Emmadi R, Wang Z, Wiley E, Gann P, Khan S, et al. PTK6/BRK is expressed in the normal mammary gland and activated at the plasma membrane in breast tumors. Oncotarget. 2014;5:6038-48 pubmed
  2335. Knake C, Stamp L, Bahn A. Molecular mechanism of an adverse drug-drug interaction of allopurinol and furosemide in gout treatment. Biochem Biophys Res Commun. 2014;452:157-62 pubmed 出版商
  2336. Xiong R, Siegel D, Ross D. Quinone-induced protein handling changes: implications for major protein handling systems in quinone-mediated toxicity. Toxicol Appl Pharmacol. 2014;280:285-95 pubmed 出版商
  2337. Yang L, Kan E, Lu J, Wu C, Ling E. Expression of 2',3'-cyclic nucleotide 3'-phosphodiesterase (CNPase) and its roles in activated microglia in vivo and in vitro. J Neuroinflammation. 2014;11:148 pubmed 出版商
  2338. Radonjić N, Memi F, Ortega J, Glidden N, Zhan H, Zecevic N. The Role of Sonic Hedgehog in the Specification of Human Cortical Progenitors In Vitro. Cereb Cortex. 2016;26:131-43 pubmed 出版商
  2339. Flanders K, Heger C, Conway C, Tang B, Sato M, Dengler S, et al. Brightfield proximity ligation assay reveals both canonical and mixed transforming growth factor-β/bone morphogenetic protein Smad signaling complexes in tissue sections. J Histochem Cytochem. 2014;62:846-63 pubmed 出版商
  2340. Luo B, Li B, Wang W, Liu X, Xia Y, Zhang C, et al. NLRP3 gene silencing ameliorates diabetic cardiomyopathy in a type 2 diabetes rat model. PLoS ONE. 2014;9:e104771 pubmed 出版商
  2341. Wang J, Zhang Q, Zhao L, Li D, Fu Z, Liang L. Down-regulation of PPAR? in the spinal cord contributes to augmented peripheral inflammation and inflammatory hyperalgesia in diet-induced obese rats. Neuroscience. 2014;278:165-78 pubmed 出版商
  2342. Morris S, Carter K, Baek J, Koszarek A, Yeh M, Knoblaugh S, et al. TGF-? signaling alters the pattern of liver tumorigenesis induced by Pten inactivation. Oncogene. 2015;34:3273-82 pubmed 出版商
  2343. Ito S, Ueda T, Ueno A, Nakagawa H, Taniguchi H, Hongo F, et al. Paired box 2 upregulates androgen receptor gene expression in androgen-independent prostate cancer. FEBS J. 2014;281:4506-18 pubmed 出版商
  2344. Chau M, Deveau T, Song M, Gu X, Chen D, Wei L. iPSC Transplantation increases regeneration and functional recovery after ischemic stroke in neonatal rats. Stem Cells. 2014;32:3075-87 pubmed 出版商
  2345. Abazyan S, Yang E, Abazyan B, Xia M, Yang C, Rojas C, et al. Mutant disrupted-in-schizophrenia 1 in astrocytes: focus on glutamate metabolism. J Neurosci Res. 2014;92:1659-68 pubmed 出版商
  2346. Tomicic M, Aasland D, Naumann S, Meise R, Barckhausen C, Kaina B, et al. Translesion polymerase ? is upregulated by cancer therapeutics and confers anticancer drug resistance. Cancer Res. 2014;74:5585-96 pubmed 出版商
  2347. Kambara H, Niazi F, Kostadinova L, Moonka D, Siegel C, Post A, et al. Negative regulation of the interferon response by an interferon-induced long non-coding RNA. Nucleic Acids Res. 2014;42:10668-80 pubmed 出版商
  2348. Freire P, Alves C, Deus A, Leopoldo A, Leopoldo A, Silva D, et al. Obesity does not lead to imbalance between myocardial phospholamban phosphorylation and dephosphorylation. Arq Bras Cardiol. 2014;103:41-50 pubmed
  2349. Jousse C, Muranishi Y, Parry L, Montaurier C, Even P, Launay J, et al. Perinatal protein malnutrition affects mitochondrial function in adult and results in a resistance to high fat diet-induced obesity. PLoS ONE. 2014;9:e104896 pubmed 出版商
  2350. Wu A, Yang M, Dalvi P, Turinsky A, Wang W, Butcher D, et al. Role of STAT5 and epigenetics in lactation-associated upregulation of multidrug transporter ABCG2 in the mammary gland. Am J Physiol Endocrinol Metab. 2014;307:E596-610 pubmed 出版商
  2351. Bae J, Lee S, Park C, Lee Y, Chun T. Trafficking of LAG-3 to the surface on activated T cells via its cytoplasmic domain and protein kinase C signaling. J Immunol. 2014;193:3101-12 pubmed 出版商
  2352. Steiner E, Enzmann G, Lyck R, Lin S, Ruegg M, Kroger S, et al. The heparan sulfate proteoglycan agrin contributes to barrier properties of mouse brain endothelial cells by stabilizing adherens junctions. Cell Tissue Res. 2014;358:465-79 pubmed 出版商
  2353. Fleming A, Beggs S, CHURCH M, Tsukihashi Y, Pennings S. The yeast Cyc8-Tup1 complex cooperates with Hda1p and Rpd3p histone deacetylases to robustly repress transcription of the subtelomeric FLO1 gene. Biochim Biophys Acta. 2014;1839:1242-55 pubmed 出版商
  2354. Van Brocklyn J, Wojton J, Meisen W, Kellough D, Ecsedy J, Kaur B, et al. Aurora-A inhibition offers a novel therapy effective against intracranial glioblastoma. Cancer Res. 2014;74:5364-70 pubmed 出版商
  2355. Baek J, Kim J, Cheon Y, Park S, Ahn S, Yoon K, et al. Aconitum pseudo-laeve var. erectum inhibits receptor activator of nuclear factor kappa-B ligand-induced osteoclastogenesis via the c-Fos/nuclear factor of activated T-cells, cytoplasmic 1 signaling pathway and prevents lipopolysaccharide-induced bone. Molecules. 2014;19:11628-44 pubmed 出版商
  2356. Matsuda M, Suzuki R, Kataoka C, Watashi K, Aizaki H, Kato N, et al. Alternative endocytosis pathway for productive entry of hepatitis C virus. J Gen Virol. 2014;95:2658-67 pubmed 出版商
  2357. Tajerian M, Leu D, Zou Y, Sahbaie P, Li W, Khan H, et al. Brain neuroplastic changes accompany anxiety and memory deficits in a model of complex regional pain syndrome. Anesthesiology. 2014;121:852-65 pubmed 出版商
  2358. Viceconte N, McKenna T, Eriksson M. Low levels of the reverse transactivator fail to induce target transgene expression in vascular smooth muscle cells. PLoS ONE. 2014;9:e104098 pubmed 出版商
  2359. Xiao Z, Huang J, Cao L, Liang Y, Han X, Quarles L. Osteocyte-specific deletion of Fgfr1 suppresses FGF23. PLoS ONE. 2014;9:e104154 pubmed 出版商
  2360. Huang T, Huang W, Zhang Z, Yu L, Xie C, Zhu D, et al. Hypoxia-inducible factor-1? upregulation in microglia following hypoxia protects against ischemia-induced cerebral infarction. Neuroreport. 2014;25:1122-8 pubmed 出版商
  2361. Vassilopoulos A, Tominaga Y, Kim H, Lahusen T, Li B, Yu H, et al. WEE1 murine deficiency induces hyper-activation of APC/C and results in genomic instability and carcinogenesis. Oncogene. 2015;34:3023-35 pubmed 出版商
  2362. Zhang X, Ma W, Cui J, Yao H, Zhou H, Ge Y, et al. Regulation of p21 by TWIST2 contributes to its tumor-suppressor function in human acute myeloid leukemia. Oncogene. 2015;34:3000-10 pubmed 出版商
  2363. Sutiwisesak R, Kitiyanant N, Kotchabhakdi N, Felsenfeld G, Andrews P, Wongtrakoongate P. Induced pluripotency enables differentiation of human nullipotent embryonal carcinoma cells N2102Ep. Biochim Biophys Acta. 2014;1843:2611-9 pubmed 出版商
  2364. Bartuzi P, Wijshake T, Dekker D, Fedoseienko A, Kloosterhuis N, Youssef S, et al. A cell-type-specific role for murine Commd1 in liver inflammation. Biochim Biophys Acta. 2014;1842:2257-65 pubmed 出版商
  2365. Rutkai I, Katakam P, Dutta S, Busija D. Sustained mitochondrial functioning in cerebral arteries after transient ischemic stress in the rat: a potential target for therapies. Am J Physiol Heart Circ Physiol. 2014;307:H958-66 pubmed 出版商
  2366. Dalmases M, Torres M, Márquez Kisinousky L, Almendros I, Planas A, Embid C, et al. Brain tissue hypoxia and oxidative stress induced by obstructive apneas is different in young and aged rats. Sleep. 2014;37:1249-56 pubmed 出版商
  2367. Requejo Aguilar R, Lopez Fabuel I, Fernandez E, Martins L, Almeida A, Bolanos J. PINK1 deficiency sustains cell proliferation by reprogramming glucose metabolism through HIF1. Nat Commun. 2014;5:4514 pubmed 出版商
  2368. Shibeeb O, Wood J, Casson R, Chidlow G. Effects of a conventional photocoagulator and a 3-ns pulse laser on preconditioning responses and retinal ganglion cell survival after optic nerve crush. Exp Eye Res. 2014;127:77-90 pubmed 出版商
  2369. Tan G, Chan E, Molnar A, Sarkar R, Alexieva D, Isa I, et al. 5' isomiR variation is of functional and evolutionary importance. Nucleic Acids Res. 2014;42:9424-35 pubmed 出版商
  2370. Li K, Zhao G, Li L, Wu G, Cui S. Epigenetic upregulation of Cdk5 in the dorsal horn contributes to neuropathic pain in rats. Neuroreport. 2014;25:1116-21 pubmed 出版商
  2371. Banoujaafar H, Van Hoecke J, Mossiat C, Marie C. Brain BDNF levels elevation induced by physical training is reduced after unilateral common carotid artery occlusion in rats. J Cereb Blood Flow Metab. 2014;34:1681-7 pubmed 出版商
  2372. Boros J, Arnoult N, Stroobant V, Collet J, Decottignies A. Polycomb repressive complex 2 and H3K27me3 cooperate with H3K9 methylation to maintain heterochromatin protein 1? at chromatin. Mol Cell Biol. 2014;34:3662-74 pubmed 出版商
  2373. Domitrovic R, Cvijanovic O, Susnić V, Katalinić N. Renoprotective mechanisms of chlorogenic acid in cisplatin-induced kidney injury. Toxicology. 2014;324:98-107 pubmed 出版商
  2374. Saha S, Parachoniak C, Ghanta K, Fitamant J, Ross K, Najem M, et al. Mutant IDH inhibits HNF-4α to block hepatocyte differentiation and promote biliary cancer. Nature. 2014;513:110-4 pubmed 出版商
  2375. Tanti G, Goswami S. SG2NA recruits DJ-1 and Akt into the mitochondria and membrane to protect cells from oxidative damage. Free Radic Biol Med. 2014;75:1-13 pubmed 出版商
  2376. Ciavardelli D, Rossi C, Barcaroli D, Volpe S, Consalvo A, Zucchelli M, et al. Breast cancer stem cells rely on fermentative glycolysis and are sensitive to 2-deoxyglucose treatment. Cell Death Dis. 2014;5:e1336 pubmed 出版商
  2377. Pohl M, Edinger T, Stertz S. Prolidase is required for early trafficking events during influenza A virus entry. J Virol. 2014;88:11271-83 pubmed 出版商
  2378. Ouyang H, Xue Y, Lin Y, Zhang X, Xi L, Patel S, et al. WNT7A and PAX6 define corneal epithelium homeostasis and pathogenesis. Nature. 2014;511:358-61 pubmed 出版商
  2379. George S, Vishwamitra D, Manshouri R, Shi P, Amin H. The ALK inhibitor ASP3026 eradicates NPM-ALK? T-cell anaplastic large-cell lymphoma in vitro and in a systemic xenograft lymphoma model. Oncotarget. 2014;5:5750-63 pubmed
  2380. Cui Y, Xu H, Wu H, Qi J, Shi J, Li Y. Spatio-temporal expression and functional involvement of transient receptor potential vanilloid 1 in diabetic mechanical allodynia in rats. PLoS ONE. 2014;9:e102052 pubmed 出版商
  2381. Zheng Y, Hsu F, Xu W, Xie X, Ren X, Gao X, et al. A developmental genetic analysis of the lysine demethylase KDM2 mutations in Drosophila melanogaster. Mech Dev. 2014;133:36-53 pubmed 出版商
  2382. Baraz R, Cisterne A, Saunders P, Hewson J, Thien M, Weiss J, et al. mTOR inhibition by everolimus in childhood acute lymphoblastic leukemia induces caspase-independent cell death. PLoS ONE. 2014;9:e102494 pubmed 出版商
  2383. Lo Sasso G, Ryu D, Mouchiroud L, Fernando S, Anderson C, Katsyuba E, et al. Loss of Sirt1 function improves intestinal anti-bacterial defense and protects from colitis-induced colorectal cancer. PLoS ONE. 2014;9:e102495 pubmed 出版商
  2384. Connors E, Shaik A, Migliore M, Kentner A. Environmental enrichment mitigates the sex-specific effects of gestational inflammation on social engagement and the hypothalamic pituitary adrenal axis-feedback system. Brain Behav Immun. 2014;42:178-90 pubmed 出版商
  2385. Kehoe L, Bellone C, De Roo M, Zandueta A, Dey P, Pérez Otaño I, et al. GluN3A promotes dendritic spine pruning and destabilization during postnatal development. J Neurosci. 2014;34:9213-21 pubmed 出版商
  2386. Doceul V, Chauveau E, Lara E, Breard E, Sailleau C, Zientara S, et al. Dual modulation of type I interferon response by bluetongue virus. J Virol. 2014;88:10792-802 pubmed 出版商
  2387. Kłossowicz M, Marek Bukowiec K, Arbulo Echevarria M, Scirka B, Majkowski M, Sikorski A, et al. Identification of functional, short-lived isoform of linker for activation of T cells (LAT). Genes Immun. 2014;15:449-56 pubmed 出版商
  2388. Taub M, Parker R, Mathivanan P, Ariff M, Rudra T. Antagonism of the prostaglandin E2 EP1 receptor in MDCK cells increases growth through activation of Akt and the epidermal growth factor receptor. Am J Physiol Renal Physiol. 2014;307:F539-50 pubmed 出版商
  2389. Yokota M, Kobayashi Y, Morita J, Suzuki H, Hashimoto Y, Sasaki Y, et al. Therapeutic effect of nanogel-based delivery of soluble FGFR2 with S252W mutation on craniosynostosis. PLoS ONE. 2014;9:e101693 pubmed 出版商
  2390. Osterman M, Kathawa D, Liu D, Guo H, Zhang C, Li M, et al. Elevated DNA damage response in pancreatic cancer. Histochem Cell Biol. 2014;142:713-20 pubmed 出版商
  2391. Gonzalez Rodriguez A, Reibert B, Amann T, Constien R, Rondinone C, Valverde A. In vivo siRNA delivery of Keap1 modulates death and survival signaling pathways and attenuates concanavalin-A-induced acute liver injury in mice. Dis Model Mech. 2014;7:1093-100 pubmed 出版商
  2392. Sadleir K, Eimer W, Kaufman R, Osten P, Vassar R. Genetic inhibition of phosphorylation of the translation initiation factor eIF2α does not block Aβ-dependent elevation of BACE1 and APP levels or reduce amyloid pathology in a mouse model of Alzheimer's disease. PLoS ONE. 2014;9:e101643 pubmed 出版商
  2393. Li C, Chen J, Lu B, Shi Z, Wang H, Zhang B, et al. Molecular switch role of Akt in Polygonatum odoratum lectin-induced apoptosis and autophagy in human non-small cell lung cancer A549 cells. PLoS ONE. 2014;9:e101526 pubmed 出版商
  2394. Charan R, Johnson B, Zaganelli S, Nardozzi J, LaVoie M. Inhibition of apoptotic Bax translocation to the mitochondria is a central function of parkin. Cell Death Dis. 2014;5:e1313 pubmed 出版商
  2395. Zhang P, Gao K, Tang Y, Jin X, An J, Yu H, et al. Destruction of DDIT3/CHOP protein by wild-type SPOP but not prostate cancer-associated mutants. Hum Mutat. 2014;35:1142-51 pubmed 出版商
  2396. Boczonadi V, Müller J, Pyle A, Munkley J, Dor T, Quartararo J, et al. EXOSC8 mutations alter mRNA metabolism and cause hypomyelination with spinal muscular atrophy and cerebellar hypoplasia. Nat Commun. 2014;5:4287 pubmed 出版商
  2397. Wei X, Li J, Xie H, Wang H, Wang J, Zhang X, et al. Chloride intracellular channel 1 participates in migration and invasion of hepatocellular carcinoma by targeting maspin. J Gastroenterol Hepatol. 2015;30:208-16 pubmed 出版商
  2398. Gou W, Zhao Y, Lu H, Yang X, Xiu Y, Zhao S, et al. The role of RhoC in epithelial-to-mesenchymal transition of ovarian carcinoma cells. BMC Cancer. 2014;14:477 pubmed 出版商
  2399. Robker R, Watson L, Robertson S, Dunning K, McLaughlin E, Russell D. Identification of sites of STAT3 action in the female reproductive tract through conditional gene deletion. PLoS ONE. 2014;9:e101182 pubmed 出版商
  2400. Chondrogiannis G, Kastamoulas M, Kanavaros P, Vartholomatos G, Bai M, Baltogiannis D, et al. Cytokine effects on cell viability and death of prostate carcinoma cells. Biomed Res Int. 2014;2014:536049 pubmed 出版商
  2401. Samartzis E, Gutsche K, Dedes K, Fink D, Stucki M, Imesch P. Loss of ARID1A expression sensitizes cancer cells to PI3K- and AKT-inhibition. Oncotarget. 2014;5:5295-303 pubmed
  2402. Cansby E, Nerstedt A, Amrutkar M, Durán E, Smith U, Mahlapuu M. Partial hepatic resistance to IL-6-induced inflammation develops in type 2 diabetic mice, while the anti-inflammatory effect of AMPK is maintained. Mol Cell Endocrinol. 2014;393:143-51 pubmed 出版商
  2403. Gemel J, Simon A, Patel D, Xu Q, Matiukas A, Veenstra R, et al. Degradation of a connexin40 mutant linked to atrial fibrillation is accelerated. J Mol Cell Cardiol. 2014;74:330-9 pubmed 出版商
  2404. Brewer K, Baran C, Whitfield B, Jensen A, Clemens S. Dopamine D3 receptor dysfunction prevents anti-nociceptive effects of morphine in the spinal cord. Front Neural Circuits. 2014;8:62 pubmed 出版商
  2405. Chang P, Hung C, Wang S, Tsai P, Shih Y, Chen L, et al. Identification and characterization of two novel spliced genes located in the orf47-orf46-orf45 gene locus of Kaposi's sarcoma-associated herpesvirus. J Virol. 2014;88:10092-109 pubmed 出版商
  2406. Hu Q, Dong J, DU H, Zhang D, Ren H, Ma M, et al. Constitutive G?i coupling activity of very large G protein-coupled receptor 1 (VLGR1) and its regulation by PDZD7 protein. J Biol Chem. 2014;289:24215-25 pubmed 出版商
  2407. von Roemeling C, Radisky D, Marlow L, Cooper S, Grebe S, ANASTASIADIS P, et al. Neuronal pentraxin 2 supports clear cell renal cell carcinoma by activating the AMPA-selective glutamate receptor-4. Cancer Res. 2014;74:4796-810 pubmed 出版商
  2408. Pardee T, Stadelman K, Jennings Gee J, Caudell D, Gmeiner W. The poison oligonucleotide F10 is highly effective against acute lymphoblastic leukemia while sparing normal hematopoietic cells. Oncotarget. 2014;5:4170-9 pubmed
  2409. Fernandes J, Vieira M, Carreto L, Santos M, Duarte C, Carvalho A, et al. In vitro ischemia triggers a transcriptional response to down-regulate synaptic proteins in hippocampal neurons. PLoS ONE. 2014;9:e99958 pubmed 出版商
  2410. Zhao Z, Wu L, Xiong R, Wang L, Zhang B, Wang C, et al. MicroRNA-922 promotes tau phosphorylation by downregulating ubiquitin carboxy-terminal hydrolase L1 (UCHL1) expression in the pathogenesis of Alzheimer's disease. Neuroscience. 2014;275:232-7 pubmed 出版商
  2411. Tanaka T, Iino M. Sec6 regulated cytoplasmic translocation and degradation of p27 via interactions with Jab1 and Siah1. Cell Signal. 2014;26:2071-85 pubmed 出版商
  2412. Girgis C, Mokbel N, Cha K, Houweling P, Abboud M, Fraser D, et al. The vitamin D receptor (VDR) is expressed in skeletal muscle of male mice and modulates 25-hydroxyvitamin D (25OHD) uptake in myofibers. Endocrinology. 2014;155:3227-37 pubmed 出版商
  2413. Howell K, Pillai A. Effects of prenatal hypoxia on schizophrenia-related phenotypes in heterozygous reeler mice: a gene × environment interaction study. Eur Neuropsychopharmacol. 2014;24:1324-36 pubmed 出版商
  2414. Herrera A, Saade M, Menendez A, Marti E, Pons S. Sustained Wnt/?-catenin signalling causes neuroepithelial aberrations through the accumulation of aPKC at the apical pole. Nat Commun. 2014;5:4168 pubmed 出版商
  2415. Cheshenko N, Trepanier J, González P, Eugenin E, Jacobs W, Herold B. Herpes simplex virus type 2 glycoprotein H interacts with integrin ?v?3 to facilitate viral entry and calcium signaling in human genital tract epithelial cells. J Virol. 2014;88:10026-38 pubmed 出版商
  2416. Shaikhibrahim Z, Offermann A, Braun M, Menon R, Syring I, Nowak M, et al. MED12 overexpression is a frequent event in castration-resistant prostate cancer. Endocr Relat Cancer. 2014;21:663-75 pubmed 出版商
  2417. Price D, Ackland M, Burks W, Knight M, Suphioglu C. Peanut allergens alter intestinal barrier permeability and tight junction localisation in Caco-2 cell cultures. Cell Physiol Biochem. 2014;33:1758-77 pubmed 出版商
  2418. Kaneko Y, Ota A, Nakashima A, Nagasaki H, Kodani Y, Mori K, et al. Lipopolysaccharide treatment arrests the cell cycle of BV-2 microglial cells in G? phase and protects them from UV light-induced apoptosis. J Neural Transm (Vienna). 2015;122:187-99 pubmed 出版商
  2419. Etnyre D, Stone A, Fong J, Jacobs R, Uppada S, Botting G, et al. Targeting c-Met in melanoma: mechanism of resistance and efficacy of novel combinatorial inhibitor therapy. Cancer Biol Ther. 2014;15:1129-41 pubmed 出版商
  2420. Su Z, Yin J, Wang T, Sun Y, Ni P, Ma R, et al. Up-regulated HMGB1 in EAM directly led to collagen deposition by a PKC?/Erk1/2-dependent pathway: cardiac fibroblast/myofibroblast might be another source of HMGB1. J Cell Mol Med. 2014;18:1740-51 pubmed 出版商
  2421. Inada C, Niu Y, Matsumoto K, Le X, Fujiwara H. Possible involvement of VEGF signaling system in rescuing effect of endogenous acetylcholine on NMDA-induced long-lasting hippocampal cell damage in organotypic hippocampal slice cultures. Neurochem Int. 2014;75:39-47 pubmed 出版商
  2422. Moody S, Schinzel A, Singh S, Izzo F, Strickland M, Luo L, et al. PRKACA mediates resistance to HER2-targeted therapy in breast cancer cells and restores anti-apoptotic signaling. Oncogene. 2015;34:2061-71 pubmed 出版商
  2423. Kopaliani I, Martin M, Zatschler B, Bortlik K, Müller B, Deussen A. Cell-specific and endothelium-dependent regulations of matrix metalloproteinase-2 in rat aorta. Basic Res Cardiol. 2014;109:419 pubmed 出版商
  2424. Wilmes A, Aschauer L, Limonciel A, Pfaller W, Jennings P. Evidence for a role of claudin 2 as a proximal tubular stress responsive paracellular water channel. Toxicol Appl Pharmacol. 2014;279:163-72 pubmed 出版商
  2425. Gupta M, Dangi S, Chouhan V, Hyder I, Babitha V, Yadav V, et al. Expression and localization of ghrelin and its functional receptor in corpus luteum during different stages of estrous cycle and the modulatory role of ghrelin on progesterone production in cultured luteal cells in buffalo. Domest Anim Endocrinol. 2014;48:21-32 pubmed 出版商
  2426. Yan T, Li L, Sun B, Liu F, Yang P, Chen T, et al. Luteolin inhibits behavioral sensitization by blocking methamphetamine-induced MAPK pathway activation in the caudate putamen in mice. PLoS ONE. 2014;9:e98981 pubmed 出版商
  2427. van Doremalen N, Miazgowicz K, Milne Price S, Bushmaker T, Robertson S, Scott D, et al. Host species restriction of Middle East respiratory syndrome coronavirus through its receptor, dipeptidyl peptidase 4. J Virol. 2014;88:9220-32 pubmed 出版商
  2428. Zielniok K, Motyl T, Gajewska M. Functional interactions between 17 ? -estradiol and progesterone regulate autophagy during acini formation by bovine mammary epithelial cells in 3D cultures. Biomed Res Int. 2014;2014:382653 pubmed 出版商
  2429. Macdonald E, Urbé S, Clague M. USP8 controls the trafficking and sorting of lysosomal enzymes. Traffic. 2014;15:879-88 pubmed 出版商
  2430. Devi L, Ohno M. PERK mediates eIF2? phosphorylation responsible for BACE1 elevation, CREB dysfunction and neurodegeneration in a mouse model of Alzheimer's disease. Neurobiol Aging. 2014;35:2272-81 pubmed 出版商
  2431. Fausther M, Lavoie E, Goree J, Baldini G, Dranoff J. NT5E mutations that cause human disease are associated with intracellular mistrafficking of NT5E protein. PLoS ONE. 2014;9:e98568 pubmed 出版商
  2432. Kodama T, Tsukaguchi T, Yoshida M, Kondoh O, Sakamoto H. Selective ALK inhibitor alectinib with potent antitumor activity in models of crizotinib resistance. Cancer Lett. 2014;351:215-21 pubmed 出版商
  2433. Gracanin A, Timmermans Sprang E, van Wolferen M, Rao N, Grizelj J, Vince S, et al. Ligand-independent canonical Wnt activity in canine mammary tumor cell lines associated with aberrant LEF1 expression. PLoS ONE. 2014;9:e98698 pubmed 出版商
  2434. Bao Y, Hou W, Liu R, Gao Y, Kong X, Yang L, et al. PAR2-mediated upregulation of BDNF contributes to central sensitization in bone cancer pain. Mol Pain. 2014;10:28 pubmed 出版商
  2435. Tu K, Yang W, Li C, Zheng X, Lu Z, Guo C, et al. Fbxw7 is an independent prognostic marker and induces apoptosis and growth arrest by regulating YAP abundance in hepatocellular carcinoma. Mol Cancer. 2014;13:110 pubmed 出版商
  2436. Cho M, Kwon S, Kim C, Lee Y, Nam H, Lee S. Overexpression of KAI1 Protein in Diabetic Skin Tissues. Arch Plast Surg. 2014;41:248-52 pubmed 出版商
  2437. Choubey V, Cagalinec M, Liiv J, Safiulina D, Hickey M, Kuum M, et al. BECN1 is involved in the initiation of mitophagy: it facilitates PARK2 translocation to mitochondria. Autophagy. 2014;10:1105-19 pubmed 出版商
  2438. Kadota S, Nagata K. Silencing of IFN-stimulated gene transcription is regulated by histone H1 and its chaperone TAF-I. Nucleic Acids Res. 2014;42:7642-53 pubmed 出版商
  2439. Suh H, Lo Y, Choi N, Letendre S, Lee S. Evidence of the innate antiviral and neuroprotective properties of progranulin. PLoS ONE. 2014;9:e98184 pubmed 出版商
  2440. Chen H, Mester T, Raychaudhuri N, Kauh C, Gupta S, Smith T, et al. Teprotumumab, an IGF-1R blocking monoclonal antibody inhibits TSH and IGF-1 action in fibrocytes. J Clin Endocrinol Metab. 2014;99:E1635-40 pubmed 出版商
  2441. Nandi B, Pai C, Huang Q, Prabhala R, Munshi N, Gold J. CCR6, the sole receptor for the chemokine CCL20, promotes spontaneous intestinal tumorigenesis. PLoS ONE. 2014;9:e97566 pubmed 出版商
  2442. Hsieh F, Chen N, Yao Y, Wang S, Chen J, Lai C, et al. The transcriptional repression activity of STAF65γ is facilitated by promoter tethering and nuclear import of class IIa histone deacetylases. Biochim Biophys Acta. 2014;1839:579-91 pubmed 出版商
  2443. Verstegen A, Tagliatti E, Lignani G, Marte A, Stolero T, Atias M, et al. Phosphorylation of synapsin I by cyclin-dependent kinase-5 sets the ratio between the resting and recycling pools of synaptic vesicles at hippocampal synapses. J Neurosci. 2014;34:7266-80 pubmed 出版商
  2444. Zeng L, Holly J, Perks C. Effects of physiological levels of the green tea extract epigallocatechin-3-gallate on breast cancer cells. Front Endocrinol (Lausanne). 2014;5:61 pubmed 出版商
  2445. Maas N, Singh N, Diehl J. Generation and characterization of an analog-sensitive PERK allele. Cancer Biol Ther. 2014;15:1106-11 pubmed 出版商
  2446. Yuan B, Wan P, Chu D, Nie J, Cao Y, Luo W, et al. A cardiomyocyte-specific Wdr1 knockout demonstrates essential functional roles for actin disassembly during myocardial growth and maintenance in mice. Am J Pathol. 2014;184:1967-80 pubmed 出版商
  2447. Lakshminarayan R, Wunder C, Becken U, Howes M, Benzing C, Arumugam S, et al. Galectin-3 drives glycosphingolipid-dependent biogenesis of clathrin-independent carriers. Nat Cell Biol. 2014;16:595-606 pubmed 出版商
  2448. Israelow B, Narbus C, Sourisseau M, Evans M. HepG2 cells mount an effective antiviral interferon-lambda based innate immune response to hepatitis C virus infection. Hepatology. 2014;60:1170-9 pubmed 出版商
  2449. Cheng Y, Cao A, Zheng J, Wang H, Sun Y, Liu C, et al. Airway hyperresponsiveness induced by repeated esophageal infusion of HCl in guinea pigs. Am J Respir Cell Mol Biol. 2014;51:701-8 pubmed 出版商
  2450. Warren C, Griffin L, Little A, Huang I, Farzan M, Pyeon D. The antiviral restriction factors IFITM1, 2 and 3 do not inhibit infection of human papillomavirus, cytomegalovirus and adenovirus. PLoS ONE. 2014;9:e96579 pubmed 出版商
  2451. Li S, Zhou T, Li C, Dai Z, Che D, Yao Y, et al. High metastaticgastric and breast cancer cells consume oleic acid in an AMPK dependent manner. PLoS ONE. 2014;9:e97330 pubmed 出版商
  2452. Durak O, de Anda F, Singh K, Leussis M, Petryshen T, Sklar P, et al. Ankyrin-G regulates neurogenesis and Wnt signaling by altering the subcellular localization of ?-catenin. Mol Psychiatry. 2015;20:388-97 pubmed 出版商
  2453. Tape C, Norrie I, Worboys J, Lim L, Lauffenburger D, Jørgensen C. Cell-specific labeling enzymes for analysis of cell-cell communication in continuous co-culture. Mol Cell Proteomics. 2014;13:1866-76 pubmed 出版商
  2454. Kitagawa K, Shibata K, Matsumoto A, Matsumoto M, Ohhata T, Nakayama K, et al. Fbw7 targets GATA3 through cyclin-dependent kinase 2-dependent proteolysis and contributes to regulation of T-cell development. Mol Cell Biol. 2014;34:2732-44 pubmed
  2455. Mrosewski I, Jork N, Gorte K, Conrad C, Wiegand E, Kohl B, et al. Regulation of osteoarthritis-associated key mediators by TNF? and IL-10: effects of IL-10 overexpression in human synovial fibroblasts and a synovial cell line. Cell Tissue Res. 2014;357:207-23 pubmed 出版商
  2456. Li C, Egloff A, Sen M, Grandis J, Johnson D. Caspase-8 mutations in head and neck cancer confer resistance to death receptor-mediated apoptosis and enhance migration, invasion, and tumor growth. Mol Oncol. 2014;8:1220-30 pubmed 出版商
  2457. Thoresen S, Campsteijn C, Vietri M, Schink K, Liestøl K, Andersen J, et al. ANCHR mediates Aurora-B-dependent abscission checkpoint control through retention of VPS4. Nat Cell Biol. 2014;16:550-60 pubmed 出版商
  2458. De Filippis B, Nativio P, Fabbri A, Ricceri L, Adriani W, Lacivita E, et al. Pharmacological stimulation of the brain serotonin receptor 7 as a novel therapeutic approach for Rett syndrome. Neuropsychopharmacology. 2014;39:2506-18 pubmed 出版商
  2459. Chu D, Malinowska E, Gawronska Kozak B, Kozak L. Expression of adipocyte biomarkers in a primary cell culture models reflects preweaning adipobiology. J Biol Chem. 2014;289:18478-88 pubmed 出版商
  2460. Chucair Elliott A, Conrady C, Zheng M, Kroll C, Lane T, Carr D. Microglia-induced IL-6 protects against neuronal loss following HSV-1 infection of neural progenitor cells. Glia. 2014;62:1418-34 pubmed 出版商
  2461. Altshuler A, Lamadrid I, Li D, Ma S, Kurre L, Schmid Schonbein G, et al. Transmural intestinal wall permeability in severe ischemia after enteral protease inhibition. PLoS ONE. 2014;9:e96655 pubmed 出版商
  2462. Sreedharan R, Chen S, Miller M, Haribhai D, Williams C, Van Why S. Mice with an absent stress response are protected against ischemic renal injury. Kidney Int. 2014;86:515-24 pubmed 出版商
  2463. Dengler F, Rackwitz R, Benesch F, Pfannkuche H, Gabel G. Both butyrate incubation and hypoxia upregulate genes involved in the ruminal transport of SCFA and their metabolites. J Anim Physiol Anim Nutr (Berl). 2015;99:379-90 pubmed 出版商
  2464. Senkiv Y, Riabtseva A, Heffeter P, Boiko N, Kowol C, Jungwith U, et al. Enhanced anticancer activity and circumvention of resistance mechanisms by novel polymeric/ phospholipidic nanocarriers of doxorubicin. J Biomed Nanotechnol. 2014;10:1369-81 pubmed
  2465. Brandl C, Zimmermann S, Milenkovic V, Rosendahl S, Grassmann F, Milenkovic A, et al. In-depth characterisation of Retinal Pigment Epithelium (RPE) cells derived from human induced pluripotent stem cells (hiPSC). Neuromolecular Med. 2014;16:551-64 pubmed 出版商
  2466. Liu F, Cao Q, Liu N, Li C, You C, Liu C, et al. Overexpression of Testes-Specific Protease 50 (TSP50) Predicts Poor Prognosis in Patients with Gastric Cancer. Gastroenterol Res Pract. 2014;2014:498246 pubmed 出版商
  2467. Dichamp I, Seite P, Agius G, Barbarin A, Beby Defaux A. Human papillomavirus 16 oncoprotein E7 stimulates UBF1-mediated rDNA gene transcription, inhibiting a p53-independent activity of p14ARF. PLoS ONE. 2014;9:e96136 pubmed 出版商
  2468. Jacob A, Singh R, Mohammad F, Bebee T, Chandler D. The splicing factor FUBP1 is required for the efficient splicing of oncogene MDM2 pre-mRNA. J Biol Chem. 2014;289:17350-64 pubmed 出版商
  2469. Bach F, Rutten K, Hendriks K, Riemers F, Cornelissen P, de Bruin A, et al. The paracrine feedback loop between vitamin D? (1,25(OH)?D?) and PTHrP in prehypertrophic chondrocytes. J Cell Physiol. 2014;229:1999-2014 pubmed 出版商
  2470. Gruol D, Vo K, Bray J, Roberts A. CCL2-ethanol interactions and hippocampal synaptic protein expression in a transgenic mouse model. Front Integr Neurosci. 2014;8:29 pubmed 出版商
  2471. Siwetz M, Blaschitz A, Kremshofer J, Bilic J, Desoye G, Huppertz B, et al. Metalloprotease dependent release of placenta derived fractalkine. Mediators Inflamm. 2014;2014:839290 pubmed 出版商
  2472. Wei D, Xiong X, Zhao H. Tim-3 cell signaling and iNOS are involved in the protective effects of ischemic postconditioning against focal ischemia in rats. Metab Brain Dis. 2015;30:483-90 pubmed 出版商
  2473. Klaus C, Kaemmerer E, Reinartz A, Schneider U, Plum P, Jeon M, et al. TP53 status regulates ACSL5-induced expression of mitochondrial mortalin in enterocytes and colorectal adenocarcinomas. Cell Tissue Res. 2014;357:267-78 pubmed 出版商
  2474. Abuali G, Chaisaklert W, Stelloo E, Pazarentzos E, Hwang M, Qize D, et al. The anticancer gene ORCTL3 targets stearoyl-CoA desaturase-1 for tumour-specific apoptosis. Oncogene. 2015;34:1718-28 pubmed 出版商
  2475. Cazanave S, Wang X, Zhou H, Rahmani M, Grant S, Durrant D, et al. Degradation of Keap1 activates BH3-only proteins Bim and PUMA during hepatocyte lipoapoptosis. Cell Death Differ. 2014;21:1303-12 pubmed 出版商
  2476. Tossetta G, Paolinelli F, Avellini C, Salvolini E, Ciarmela P, Lorenzi T, et al. IL-1? and TGF-? weaken the placental barrier through destruction of tight junctions: an in vivo and in vitro study. Placenta. 2014;35:509-16 pubmed 出版商
  2477. Coomans de Brachène A, Bollaert E, Eijkelenboom A, de Rocca Serra A, van der Vos K, Burgering B, et al. The expression of the tumour suppressor HBP1 is down-regulated by growth factors via the PI3K/PKB/FOXO pathway. Biochem J. 2014;460:25-34 pubmed 出版商
  2478. Sahlberg S, Spiegelberg D, Glimelius B, Stenerlow B, Nestor M. Evaluation of cancer stem cell markers CD133, CD44, CD24: association with AKT isoforms and radiation resistance in colon cancer cells. PLoS ONE. 2014;9:e94621 pubmed 出版商
  2479. Adomas A, Grimm S, Malone C, Takaku M, Sims J, Wade P. Breast tumor specific mutation in GATA3 affects physiological mechanisms regulating transcription factor turnover. BMC Cancer. 2014;14:278 pubmed 出版商
  2480. Shi W, Ogbomo S, Wagh N, Zhou Z, Jia Y, Brusnahan S, et al. The influence of linker length on the properties of cathepsin S cleavable (177)Lu-labeled HPMA copolymers for pancreatic cancer imaging. Biomaterials. 2014;35:5760-70 pubmed 出版商
  2481. Quintin J, Le Péron C, Palierne G, Bizot M, Cunha S, Sérandour A, et al. Dynamic estrogen receptor interactomes control estrogen-responsive trefoil Factor (TFF) locus cell-specific activities. Mol Cell Biol. 2014;34:2418-36 pubmed 出版商
  2482. Lefevre M, Felmlee D, Parnot M, Baumert T, Schuster C. Syndecan 4 is involved in mediating HCV entry through interaction with lipoviral particle-associated apolipoprotein E. PLoS ONE. 2014;9:e95550 pubmed 出版商
  2483. O Sullivan D, Henry M, Joyce H, Walsh N, Mc Auley E, Dowling P, et al. 7B7: a novel antibody directed against the Ku70/Ku80 heterodimer blocks invasion in pancreatic and lung cancer cells. Tumour Biol. 2014;35:6983-97 pubmed 出版商
  2484. Gonzalez Rodriguez A, Mayoral R, Agra N, Valdecantos M, Pardo V, Miquilena Colina M, et al. Impaired autophagic flux is associated with increased endoplasmic reticulum stress during the development of NAFLD. Cell Death Dis. 2014;5:e1179 pubmed 出版商
  2485. Qi Y, Wang M, Liu R, Wei H, Chao W, Zhang T, et al. Downregulation of 14-3-3σ correlates with multistage carcinogenesis and poor prognosis of esophageal squamous cell carcinoma. PLoS ONE. 2014;9:e95386 pubmed 出版商
  2486. Juan W, Roca X, Ong S. Identification of cis-acting elements and splicing factors involved in the regulation of BIM Pre-mRNA splicing. PLoS ONE. 2014;9:e95210 pubmed 出版商
  2487. Wei X, Ke B, Zhao Z, Ye X, Gao Z, Ye J. Regulation of insulin degrading enzyme activity by obesity-associated factors and pioglitazone in liver of diet-induced obese mice. PLoS ONE. 2014;9:e95399 pubmed 出版商
  2488. Calabrese B, Saffin J, Halpain S. Activity-dependent dendritic spine shrinkage and growth involve downregulation of cofilin via distinct mechanisms. PLoS ONE. 2014;9:e94787 pubmed 出版商
  2489. Chen R, Zhang F, Song L, Shu Y, Lin Y, Dong L, et al. Transcriptome profiling reveals that the SM22?-regulated molecular pathways contribute to vascular pathology. J Mol Cell Cardiol. 2014;72:263-72 pubmed 出版商
  2490. Veronese A, Pepe F, Chiacchia J, Pagotto S, Lanuti P, Veschi S, et al. Allele-specific loss and transcription of the miR-15a/16-1 cluster in chronic lymphocytic leukemia. Leukemia. 2015;29:86-95 pubmed 出版商
  2491. Malaviya A, Sylvester P. Synergistic Antiproliferative Effects of Combined ? -Tocotrienol and PPAR ? Antagonist Treatment Are Mediated through PPAR ? -Independent Mechanisms in Breast Cancer Cells. PPAR Res. 2014;2014:439146 pubmed 出版商
  2492. Kumar V, Palermo R, Talora C, Campese A, Checquolo S, Bellavia D, et al. Notch and NF-kB signaling pathways regulate miR-223/FBXW7 axis in T-cell acute lymphoblastic leukemia. Leukemia. 2014;28:2324-35 pubmed 出版商
  2493. Han L, Masani S, Hsieh C, Yu K. DNA ligase I is not essential for mammalian cell viability. Cell Rep. 2014;7:316-320 pubmed 出版商
  2494. Bhansali M, Shemshedini L. COP9 subunits 4 and 5 target soluble guanylyl cyclase ?1 and p53 in prostate cancer cells. Mol Endocrinol. 2014;28:834-45 pubmed 出版商
  2495. Zou J, Yue F, Li W, Song K, Jiang X, Yi J, et al. Autophagy inhibitor LRPPRC suppresses mitophagy through interaction with mitophagy initiator Parkin. PLoS ONE. 2014;9:e94903 pubmed 出版商
  2496. Gürtler C, Carty M, Kearney J, Schattgen S, Ding A, Fitzgerald K, et al. SARM regulates CCL5 production in macrophages by promoting the recruitment of transcription factors and RNA polymerase II to the Ccl5 promoter. J Immunol. 2014;192:4821-32 pubmed 出版商
  2497. Wu Z, Zhu Y, Cao X, Sun S, Zhao B. Mitochondrial toxic effects of A? through mitofusins in the early pathogenesis of Alzheimer's disease. Mol Neurobiol. 2014;50:986-96 pubmed 出版商
  2498. Touat Hamici Z, Legrain Y, Bulteau A, Chavatte L. Selective up-regulation of human selenoproteins in response to oxidative stress. J Biol Chem. 2014;289:14750-61 pubmed 出版商
  2499. Tobin G, Zhang J, Goodwin D, Stewart S, Xu L, Knapton A, et al. The role of eNOS phosphorylation in causing drug-induced vascular injury. Toxicol Pathol. 2014;42:709-24 pubmed 出版商
  2500. Bejarano E, Yuste A, Patel B, Stout R, Spray D, Cuervo A. Connexins modulate autophagosome biogenesis. Nat Cell Biol. 2014;16:401-14 pubmed 出版商
  2501. Fontebasso A, Papillon Cavanagh S, Schwartzentruber J, Nikbakht H, Gerges N, Fiset P, et al. Recurrent somatic mutations in ACVR1 in pediatric midline high-grade astrocytoma. Nat Genet. 2014;46:462-6 pubmed 出版商
  2502. Jung Y, Vermeer P, Vermeer D, Lee S, Goh A, Ahn H, et al. CD200: association with cancer stem cell features and response to chemoradiation in head and neck squamous cell carcinoma. Head Neck. 2015;37:327-35 pubmed 出版商
  2503. Adeyemi R, Fuller M, Pintel D. Efficient parvovirus replication requires CRL4Cdt2-targeted depletion of p21 to prevent its inhibitory interaction with PCNA. PLoS Pathog. 2014;10:e1004055 pubmed 出版商
  2504. Han X, Cheng D, Song F, Zeng T, An L, Xie K. Decelerated transport and its mechanism of 2,5-hexanedione on middle-molecular-weight neurofilament in rat dorsal root ganglia cells. Neuroscience. 2014;269:192-8 pubmed 出版商
  2505. Yamamura T, Matsumoto N, Matsue Y, Okudera M, Nishikawa Y, Abiko Y, et al. Sodium butyrate, a histone deacetylase inhibitor, regulates Lymphangiogenic factors in oral cancer cell line HSC-3. Anticancer Res. 2014;34:1701-8 pubmed
  2506. Wahler J, So J, Kim Y, Liu F, Maehr H, Uskokovic M, et al. Inhibition of the transition of ductal carcinoma in situ to invasive ductal carcinoma by a Gemini vitamin D analog. Cancer Prev Res (Phila). 2014;7:617-26 pubmed 出版商
  2507. Li Z, Liang S, Wang Z, Li Y, Guo C, Fang F, et al. Expression of Smac induced by the Egr1 promoter enhances the radiosensitivity of breast cancer cells. Cancer Gene Ther. 2014;21:142-9 pubmed 出版商
  2508. Wang Q, Shi S, He W, Padilla M, Zhang L, Wang X, et al. Retaining MKP1 expression and attenuating JNK-mediated apoptosis by RIP1 for cisplatin resistance through miR-940 inhibition. Oncotarget. 2014;5:1304-14 pubmed
  2509. Marquez E, Riera M, Pascual J, Soler M. Albumin inhibits the insulin-mediated ACE2 increase in cultured podocytes. Am J Physiol Renal Physiol. 2014;306:F1327-34 pubmed 出版商
  2510. Rodier M, Prigent Tessier A, B jot Y, Jacquin A, Mossiat C, Marie C, et al. Exogenous t-PA administration increases hippocampal mature BDNF levels. plasmin- or NMDA-dependent mechanism?. PLoS ONE. 2014;9:e92416 pubmed 出版商
  2511. Scharfmann R, Pechberty S, Hazhouz Y, von Bülow M, Bricout Neveu E, Grenier Godard M, et al. Development of a conditionally immortalized human pancreatic ? cell line. J Clin Invest. 2014;124:2087-98 pubmed 出版商
  2512. Wong P, Yeoh C, Ahmad A, Chelala C, Gillett C, Speirs V, et al. Identification of MAGEA antigens as causal players in the development of tamoxifen-resistant breast cancer. Oncogene. 2014;33:4579-88 pubmed 出版商
  2513. Rozelle D, Filone C, Kedersha N, Connor J. Activation of stress response pathways promotes formation of antiviral granules and restricts virus replication. Mol Cell Biol. 2014;34:2003-16 pubmed 出版商
  2514. Balk Møller E, Kim J, Hopkinson B, Timmermans Wielenga V, Petersen O, Villadsen R. A marker of endocrine receptor-positive cells, CEACAM6, is shared by two major classes of breast cancer: luminal and HER2-enriched. Am J Pathol. 2014;184:1198-208 pubmed 出版商
  2515. Levendoski E, Sivasankar M. Vocal fold ion transport and mucin expression following acrolein exposure. J Membr Biol. 2014;247:441-50 pubmed 出版商
  2516. Etem E, Bal R, Akağaç A, Kuloglu T, Tuzcu M, Andrievsky G, et al. The effects of hydrated C(60) fullerene on gene expression profile of TRPM2 and TRPM7 in hyperhomocysteinemic mice. J Recept Signal Transduct Res. 2014;34:317-24 pubmed 出版商
  2517. Morrison J, Pike L, Sams S, Sharma V, Zhou Q, Severson J, et al. Thioredoxin interacting protein (TXNIP) is a novel tumor suppressor in thyroid cancer. Mol Cancer. 2014;13:62 pubmed 出版商
  2518. Schroder W, Major L, Le T, Gardner J, Sweet M, Janciauskiene S, et al. Tumor cell-expressed SerpinB2 is present on microparticles and inhibits metastasis. Cancer Med. 2014;3:500-13 pubmed 出版商
  2519. Alaimo A, Gorojod R, Beauquis J, Muñoz M, Saravia F, Kotler M. Deregulation of mitochondria-shaping proteins Opa-1 and Drp-1 in manganese-induced apoptosis. PLoS ONE. 2014;9:e91848 pubmed 出版商
  2520. Wojdyla L, Stone A, Sethakorn N, Uppada S, Devito J, Bissonnette M, et al. T-oligo as an anticancer agent in colorectal cancer. Biochem Biophys Res Commun. 2014;446:596-601 pubmed 出版商
  2521. Carloni S, Albertini M, Galluzzi L, Buonocore G, Proietti F, Balduini W. Increased autophagy reduces endoplasmic reticulum stress after neonatal hypoxia-ischemia: role of protein synthesis and autophagic pathways. Exp Neurol. 2014;255:103-12 pubmed 出版商
  2522. Glorieux C, Auquier J, Dejeans N, Sid B, Demoulin J, Bertrand L, et al. Catalase expression in MCF-7 breast cancer cells is mainly controlled by PI3K/Akt/mTor signaling pathway. Biochem Pharmacol. 2014;89:217-23 pubmed 出版商
  2523. Kennedy E, Hakimjavadi R, Greene C, Mooney C, Fitzpatrick E, Collins L, et al. Embryonic rat vascular smooth muscle cells revisited - a model for neonatal, neointimal SMC or differentiated vascular stem cells?. Vasc Cell. 2014;6:6 pubmed 出版商
  2524. Termini C, Cotter M, Marjon K, Buranda T, Lidke K, Gillette J. The membrane scaffold CD82 regulates cell adhesion by altering α4 integrin stability and molecular density. Mol Biol Cell. 2014;25:1560-73 pubmed 出版商
  2525. Mackeh R, Lorin S, Ratier A, Mejdoubi Charef N, Baillet A, Bruneel A, et al. Reactive oxygen species, AMP-activated protein kinase, and the transcription cofactor p300 regulate ?-tubulin acetyltransferase-1 (?TAT-1/MEC-17)-dependent microtubule hyperacetylation during cell stress. J Biol Chem. 2014;289:11816-28 pubmed 出版商
  2526. Caro Maldonado A, Wang R, Nichols A, Kuraoka M, Milasta S, Sun L, et al. Metabolic reprogramming is required for antibody production that is suppressed in anergic but exaggerated in chronically BAFF-exposed B cells. J Immunol. 2014;192:3626-36 pubmed 出版商
  2527. Chuturgoon A, Phulukdaree A, Moodley D. Fumonisin B? modulates expression of human cytochrome P450 1b1 in human hepatoma (Hepg2) cells by repressing Mir-27b. Toxicol Lett. 2014;227:50-5 pubmed 出版商
  2528. Boudoukha S, Rivera Vargas T, Dang I, Kropp J, Cuvellier S, Gautreau A, et al. MiRNA let-7g regulates skeletal myoblast motility via Pinch-2. FEBS Lett. 2014;588:1623-9 pubmed 出版商
  2529. Ahmed N, Iu J, Brown C, Taylor D, Kandel R. Serum- and growth-factor-free three-dimensional culture system supports cartilage tissue formation by promoting collagen synthesis via Sox9-Col2a1 interaction. Tissue Eng Part A. 2014;20:2224-33 pubmed 出版商
  2530. Gaillard H, Aguilera A. Cleavage factor I links transcription termination to DNA damage response and genome integrity maintenance in Saccharomyces cerevisiae. PLoS Genet. 2014;10:e1004203 pubmed 出版商
  2531. Jha P, Knopf A, Koefeler H, Mueller M, Lackner C, Hoefler G, et al. Role of adipose tissue in methionine-choline-deficient model of non-alcoholic steatohepatitis (NASH). Biochim Biophys Acta. 2014;1842:959-70 pubmed 出版商
  2532. Ekman M, Uvelius B, Albinsson S, Swärd K. HIF-mediated metabolic switching in bladder outlet obstruction mitigates the relaxing effect of mitochondrial inhibition. Lab Invest. 2014;94:557-68 pubmed 出版商
  2533. Fernandez Estevez M, Casarejos M, Lopez Sendon J, Garcia Caldentey J, Ruiz C, Gomez A, et al. Trehalose reverses cell malfunction in fibroblasts from normal and Huntington's disease patients caused by proteosome inhibition. PLoS ONE. 2014;9:e90202 pubmed 出版商
  2534. Baby N, Li Y, Ling E, Lu J, Dheen S. Runx1t1 (Runt-related transcription factor 1; translocated to, 1) epigenetically regulates the proliferation and nitric oxide production of microglia. PLoS ONE. 2014;9:e89326 pubmed 出版商
  2535. Rutledge C, Lau H, Mangan H, Hardy L, Sunnotel O, Guo F, et al. Efficient translation of Dnmt1 requires cytoplasmic polyadenylation and Musashi binding elements. PLoS ONE. 2014;9:e88385 pubmed 出版商
  2536. Jankovic A, Korac A, Srdić Galić B, Buzadzic B, Otasevic V, Stancic A, et al. Differences in the redox status of human visceral and subcutaneous adipose tissues--relationships to obesity and metabolic risk. Metabolism. 2014;63:661-71 pubmed 出版商
  2537. Herve D, Philippi A, Belbouab R, Zerah M, Chabrier S, Collardeau Frachon S, et al. Loss of ?1?1 soluble guanylate cyclase, the major nitric oxide receptor, leads to moyamoya and achalasia. Am J Hum Genet. 2014;94:385-94 pubmed 出版商
  2538. Kim J, Kim H, Park J, Park D, Cho Y, Sohn C, et al. Epidermal growth factor upregulates Skp2/Cks1 and p27(kip1) in human extrahepatic cholangiocarcinoma cells. World J Gastroenterol. 2014;20:755-73 pubmed 出版商
  2539. Tashima Y, Stanley P. Antibodies that detect O-linked ?-D-N-acetylglucosamine on the extracellular domain of cell surface glycoproteins. J Biol Chem. 2014;289:11132-42 pubmed 出版商
  2540. Li W, Zhang X, Zhuang H, Chen H, Chen Y, Tian W, et al. MicroRNA-137 is a novel hypoxia-responsive microRNA that inhibits mitophagy via regulation of two mitophagy receptors FUNDC1 and NIX. J Biol Chem. 2014;289:10691-701 pubmed 出版商
  2541. López Farré A, Modrego J, Azcona L, Guerra R, Segura A, Rodriguez P, et al. Nitric oxide from mononuclear cells may be involved in platelet responsiveness to aspirin. Eur J Clin Invest. 2014;44:463-9 pubmed 出版商
  2542. Nakahata S, Ichikawa T, Maneesaay P, Saito Y, Nagai K, Tamura T, et al. Loss of NDRG2 expression activates PI3K-AKT signalling via PTEN phosphorylation in ATLL and other cancers. Nat Commun. 2014;5:3393 pubmed 出版商
  2543. Ohshima J, Lee Y, Sasai M, Saitoh T, Su Ma J, Kamiyama N, et al. Role of mouse and human autophagy proteins in IFN-?-induced cell-autonomous responses against Toxoplasma gondii. J Immunol. 2014;192:3328-35 pubmed 出版商
  2544. Hwang W, Jiang J, Yang S, Huang T, Lan H, Teng H, et al. MicroRNA-146a directs the symmetric division of Snail-dominant colorectal cancer stem cells. Nat Cell Biol. 2014;16:268-80 pubmed 出版商
  2545. Cheng J, Fan Y, Xu X, Dou J, Tang Y, Zhong X, et al. A small-molecule inhibitor of UBE2N induces neuroblastoma cell death via activation of p53 and JNK pathways. Cell Death Dis. 2014;5:e1079 pubmed 出版商
  2546. Qi Y, Zhang M, Li H, Frank J, Dai L, Liu H, et al. MicroRNA-29b regulates ethanol-induced neuronal apoptosis in the developing cerebellum through SP1/RAX/PKR cascade. J Biol Chem. 2014;289:10201-10 pubmed 出版商
  2547. Durmus S, Naik J, Buil L, Wagenaar E, van Tellingen O, Schinkel A. In vivo disposition of doxorubicin is affected by mouse Oatp1a/1b and human OATP1A/1B transporters. Int J Cancer. 2014;135:1700-10 pubmed 出版商
  2548. Tavukçu H, Sener T, Tinay I, Akbal C, Ersahin M, Cevik O, et al. Melatonin and tadalafil treatment improves erectile dysfunction after spinal cord injury in rats. Clin Exp Pharmacol Physiol. 2014;41:309-16 pubmed 出版商
  2549. Ippolito J, Piwnica Worms D. A fluorescence-coupled assay for gamma aminobutyric acid (GABA) reveals metabolic stress-induced modulation of GABA content in neuroendocrine cancer. PLoS ONE. 2014;9:e88667 pubmed 出版商
  2550. Maida Y, Yasukawa M, Okamoto N, Ohka S, Kinoshita K, Totoki Y, et al. Involvement of telomerase reverse transcriptase in heterochromatin maintenance. Mol Cell Biol. 2014;34:1576-93 pubmed 出版商
  2551. Nassa G, Tarallo R, Giurato G, De Filippo M, Ravo M, Rizzo F, et al. Post-transcriptional regulation of human breast cancer cell proteome by unliganded estrogen receptor ? via microRNAs. Mol Cell Proteomics. 2014;13:1076-90 pubmed 出版商
  2552. Milara J, Peiró T, Serrano A, Guijarro R, Zaragozá C, Tenor H, et al. Roflumilast N-oxide inhibits bronchial epithelial to mesenchymal transition induced by cigarette smoke in smokers with COPD. Pulm Pharmacol Ther. 2014;28:138-48 pubmed 出版商
  2553. Akiyama M, Izumi H, Wang K, Yamaguchi T, Kuma A, Kitamura N, et al. Hypersensitivity to aurora kinase inhibitors in cells resistant against platinum- containing anticancer agents. Anticancer Agents Med Chem. 2014;14:1042-50 pubmed
  2554. Muenyi C, Trivedi A, Helm C, States J. Cisplatin plus sodium arsenite and hyperthermia induces pseudo-G1 associated apoptotic cell death in ovarian cancer cells. Toxicol Sci. 2014;139:74-82 pubmed 出版商
  2555. Ma Y, Li X, Fu J, Li Y, Gao L, Yang L, et al. Acetylcholine affects osteocytic MLO-Y4 cells via acetylcholine receptors. Mol Cell Endocrinol. 2014;384:155-64 pubmed 出版商
  2556. Chen D, Mao M, Bellussi L, Passali D, Chen L. Increase of high mobility group box chromosomal protein 1 in eosinophilic chronic rhinosinusitis with nasal polyps. Int Forum Allergy Rhinol. 2014;4:453-62 pubmed 出版商
  2557. Bloch O, Amit Vazina M, Yona E, Molad Y, Rapoport M. Increased ERK and JNK activation and decreased ERK/JNK ratio are associated with long-term organ damage in patients with systemic lupus erythematosus. Rheumatology (Oxford). 2014;53:1034-42 pubmed
  2558. Kilander M, Petersen J, Andressen K, Ganji R, Levy F, Schuster J, et al. Disheveled regulates precoupling of heterotrimeric G proteins to Frizzled 6. FASEB J. 2014;28:2293-305 pubmed 出版商
  2559. Anastasía A, Deinhardt K, Wang S, Martin L, Nichol D, Irmady K, et al. Trkb signaling in pericytes is required for cardiac microvessel stabilization. PLoS ONE. 2014;9:e87406 pubmed 出版商
  2560. Xiao W, Feng Y, Holst J, Hartmann B, Yang H, Teitelbaum D. Glutamate prevents intestinal atrophy via luminal nutrient sensing in a mouse model of total parenteral nutrition. FASEB J. 2014;28:2073-87 pubmed 出版商
  2561. Chen Q, Lu G, Cai Y, Li Y, Xu R, Ke Y, et al. MiR-124-5p inhibits the growth of high-grade gliomas through posttranscriptional regulation of LAMB1. Neuro Oncol. 2014;16:637-51 pubmed 出版商
  2562. Matthess Y, Raab M, Knecht R, Becker S, Strebhardt K. Sequential Cdk1 and Plk1 phosphorylation of caspase-8 triggers apoptotic cell death during mitosis. Mol Oncol. 2014;8:596-608 pubmed 出版商
  2563. Dhar S, Alam H, Li N, Wagner K, Chung J, Ahn Y, et al. Transcriptional repression of histone deacetylase 3 by the histone demethylase KDM2A is coupled to tumorigenicity of lung cancer cells. J Biol Chem. 2014;289:7483-96 pubmed 出版商
  2564. Liu J, Supnet C, Sun S, Zhang H, Good L, Popugaeva E, et al. The role of ryanodine receptor type 3 in a mouse model of Alzheimer disease. Channels (Austin). 2014;8:230-42 pubmed
  2565. Tuttle T, Hugo E, Tong W, Ben Jonathan N. Placental lactogen is expressed but is not translated into protein in breast cancer. PLoS ONE. 2014;9:e87325 pubmed 出版商
  2566. Pournara A, Holmlund T, Lu Y, Ceder R, Putnik M, Grafstrom R, et al. Arsenic-induced suppression of kidney cell proliferation and the transcriptional coregulator MAML1. Metallomics. 2014;6:498-504 pubmed 出版商
  2567. Prensner J, Chen W, Iyer M, Cao Q, Ma T, Han S, et al. PCAT-1, a long noncoding RNA, regulates BRCA2 and controls homologous recombination in cancer. Cancer Res. 2014;74:1651-60 pubmed 出版商
  2568. Galicia Vázquez G, Di Marco S, Lian X, Ma J, Gallouzi I, Pelletier J. Regulation of eukaryotic initiation factor 4AII by MyoD during murine myogenic cell differentiation. PLoS ONE. 2014;9:e87237 pubmed 出版商
  2569. Moiseeva E, Straatman K, Leyland M, Bradding P. CADM1 controls actin cytoskeleton assembly and regulates extracellular matrix adhesion in human mast cells. PLoS ONE. 2014;9:e85980 pubmed 出版商
  2570. Chen M, Zhang Y, Yu V, Chong Y, Yoshioka T, Ge R. Isthmin targets cell-surface GRP78 and triggers apoptosis via induction of mitochondrial dysfunction. Cell Death Differ. 2014;21:797-810 pubmed 出版商
  2571. Chen Y, Wang Z, Zhou L. Interleukin 8 inhibition enhanced cholesterol efflux in acetylated low-density lipoprotein-stimulated THP-1 macrophages. J Investig Med. 2014;62:615-20 pubmed 出版商
  2572. Fiaturi N, Ritzkat A, Dammann C, Castellot J, Nielsen H. Dissociated presenilin-1 and TACE processing of ErbB4 in lung alveolar type II cell differentiation. Biochim Biophys Acta. 2014;1843:797-805 pubmed 出版商
  2573. Jordan N, Dutkowski C, Barrow D, Mottram H, Hutcheson I, Nicholson R, et al. Impact of dual mTORC1/2 mTOR kinase inhibitor AZD8055 on acquired endocrine resistance in breast cancer in vitro. Breast Cancer Res. 2014;16:R12 pubmed 出版商
  2574. Zhou J, Wu J, Li B, Liu D, Yu J, Yan X, et al. PU.1 is essential for MLL leukemia partially via crosstalk with the MEIS/HOX pathway. Leukemia. 2014;28:1436-48 pubmed 出版商
  2575. Massimino M, Consoli M, Mesuraca M, Stagno F, Tirrò E, Stella S, et al. IRF5 is a target of BCR-ABL kinase activity and reduces CML cell proliferation. Carcinogenesis. 2014;35:1132-43 pubmed 出版商
  2576. Chung Y, Pan C, Liou W, Sheu M, Lin W, Chen T, et al. NSC746364, a G-quadruplex-stabilizing agent, suppresses cell growth of A549 human lung cancer cells through activation of the ATR/Chk1-dependent pathway. J Pharmacol Sci. 2014;124:7-17 pubmed
  2577. Salvi M, Raiborg C, Hanson P, Campsteijn C, Stenmark H, Pinna L. CK2 involvement in ESCRT-III complex phosphorylation. Arch Biochem Biophys. 2014;545:83-91 pubmed 出版商
  2578. Takahashi H, Matsubara S, Ohkuchi A, Kuwata T, Usui R, Matsumoto H, et al. Extravillous trophoblast cell invasion is promoted by the CD44-hyaluronic acid interaction. Placenta. 2014;35:163-70 pubmed 出版商
  2579. Dannoura A, Giraldo A, Pereira I, Gibbins J, Dash P, Bicknell K, et al. Ibuprofen inhibits migration and proliferation of human coronary artery smooth muscle cells by inducing a differentiated phenotype: role of peroxisome proliferator-activated receptor ?. J Pharm Pharmacol. 2014;66:779-92 pubmed 出版商
  2580. Turner M, Cronin J, Healey G, Sheldon I. Epithelial and stromal cells of bovine endometrium have roles in innate immunity and initiate inflammatory responses to bacterial lipopeptides in vitro via Toll-like receptors TLR2, TLR1, and TLR6. Endocrinology. 2014;155:1453-65 pubmed 出版商
  2581. Kim S, Park E, Joo H, Shen Y, Hong S, Kim C, et al. RRM1 maintains centrosomal integrity via CHK1 and CDK1 signaling during replication stress. Cancer Lett. 2014;346:249-56 pubmed 出版商
  2582. Song K, Chung J, Choi M, Jin H, Yin G, Kwon M, et al. Effectiveness of intracavernous delivery of adenovirus encoding Smad7 gene on erectile function in a mouse model of cavernous nerve injury. J Sex Med. 2014;11:51-63 pubmed 出版商
  2583. Tsuneki M, Madri J. CD44 regulation of endothelial cell proliferation and apoptosis via modulation of CD31 and VE-cadherin expression. J Biol Chem. 2014;289:5357-70 pubmed 出版商
  2584. Wadosky K, Rodriguez J, Hite R, Min J, Walton B, Willis M. Muscle RING finger-1 attenuates IGF-I-dependent cardiomyocyte hypertrophy by inhibiting JNK signaling. Am J Physiol Endocrinol Metab. 2014;306:E723-39 pubmed 出版商
  2585. Denissov S, Hofemeister H, Marks H, Kranz A, Ciotta G, Singh S, et al. Mll2 is required for H3K4 trimethylation on bivalent promoters in embryonic stem cells, whereas Mll1 is redundant. Development. 2014;141:526-37 pubmed 出版商
  2586. WILSON B, Helming K, Wang X, Kim Y, Vazquez F, Jagani Z, et al. Residual complexes containing SMARCA2 (BRM) underlie the oncogenic drive of SMARCA4 (BRG1) mutation. Mol Cell Biol. 2014;34:1136-44 pubmed 出版商
  2587. Syedain Z, Meier L, Lahti M, Johnson S, Tranquillo R. Implantation of completely biological engineered grafts following decellularization into the sheep femoral artery. Tissue Eng Part A. 2014;20:1726-34 pubmed 出版商
  2588. Rouhigharabaei L, Finalet Ferreiro J, Tousseyn T, van der Krogt J, Put N, Haralambieva E, et al. Non-IG aberrations of FOXP1 in B-cell malignancies lead to an aberrant expression of N-truncated isoforms of FOXP1. PLoS ONE. 2014;9:e85851 pubmed 出版商
  2589. Karaca G, Swiderska Syn M, Xie G, Syn W, Krüger L, Machado M, et al. TWEAK/Fn14 signaling is required for liver regeneration after partial hepatectomy in mice. PLoS ONE. 2014;9:e83987 pubmed 出版商
  2590. Adeyemi R, Pintel D. Parvovirus-induced depletion of cyclin B1 prevents mitotic entry of infected cells. PLoS Pathog. 2014;10:e1003891 pubmed 出版商
  2591. Bots M, Verbrugge I, Martin B, Salmon J, Ghisi M, Baker A, et al. Differentiation therapy for the treatment of t(8;21) acute myeloid leukemia using histone deacetylase inhibitors. Blood. 2014;123:1341-52 pubmed 出版商
  2592. Moore R, Tao W, Meng Y, Smith E, Xu X. Cell adhesion and sorting in embryoid bodies derived from N- or E-cadherin deficient murine embryonic stem cells. Biol Open. 2014;3:121-8 pubmed 出版商
  2593. Heyne K, Förster J, Schüle R, Roemer K. Transcriptional repressor NIR interacts with the p53-inhibiting ubiquitin ligase MDM2. Nucleic Acids Res. 2014;42:3565-79 pubmed 出版商
  2594. Ustunel I, Acar N, Gemici B, Ozbey O, Edizer I, Soylu H, et al. The effects of water immersion and restraint stress on the expressions of apelin, apelin receptor (APJR) and apoptosis rate in the rat heart. Acta Histochem. 2014;116:675-81 pubmed 出版商
  2595. Stahlschmidt W, Robertson M, Robinson P, McCluskey A, Haucke V. Clathrin terminal domain-ligand interactions regulate sorting of mannose 6-phosphate receptors mediated by AP-1 and GGA adaptors. J Biol Chem. 2014;289:4906-18 pubmed 出版商
  2596. Kainulainen M, Habjan M, Hubel P, Busch L, Lau S, Colinge J, et al. Virulence factor NSs of rift valley fever virus recruits the F-box protein FBXO3 to degrade subunit p62 of general transcription factor TFIIH. J Virol. 2014;88:3464-73 pubmed 出版商
  2597. Doherty B, Lawlor D, Gillet J, Gottesman M, O Leary J, Stordal B. Collateral sensitivity to cisplatin in KB-8-5-11 drug-resistant cancer cells. Anticancer Res. 2014;34:503-7 pubmed
  2598. Scharadin T, Adhikary G, Shaw K, Grun D, Xu W, Eckert R. Pericentrosomal localization of the TIG3 tumor suppressor requires an N-terminal hydrophilic region motif. J Invest Dermatol. 2014;134:1220-1229 pubmed 出版商
  2599. Ziegler A, Chidambaram S, Forbes B, Wood T, Levison S. Insulin-like growth factor-II (IGF-II) and IGF-II analogs with enhanced insulin receptor-a binding affinity promote neural stem cell expansion. J Biol Chem. 2014;289:4626-33 pubmed 出版商
  2600. Ahn J, Jang J, Choi J, Lee J, Oh S, Lee J, et al. GSK3?, but not GSK3?, inhibits the neuronal differentiation of neural progenitor cells as a downstream target of mammalian target of rapamycin complex1. Stem Cells Dev. 2014;23:1121-33 pubmed 出版商
  2601. Wang L, Wang J, Wang Y, Fu Q, Lei Y, Nie Z, et al. Protective effect of exogenous matrix metalloproteinase-9 on chronic renal failure. Exp Ther Med. 2014;7:329-334 pubmed
  2602. Yamanaka T, Tosaki A, Kurosawa M, Akimoto K, Hirose T, Ohno S, et al. Loss of aPKC? in differentiated neurons disrupts the polarity complex but does not induce obvious neuronal loss or disorientation in mouse brains. PLoS ONE. 2013;8:e84036 pubmed 出版商
  2603. Mott N, Pinceti E, Rao Y, Przybycien Szymanska M, Prins S, Shults C, et al. Age-dependent Effects of 17?-estradiol on the dynamics of estrogen receptor ? (ER?) protein-protein interactions in the ventral hippocampus. Mol Cell Proteomics. 2014;13:760-79 pubmed 出版商
  2604. Steinecke A, Gampe C, Zimmer G, Rudolph J, Bolz J. EphA/ephrin A reverse signaling promotes the migration of cortical interneurons from the medial ganglionic eminence. Development. 2014;141:460-71 pubmed 出版商
  2605. Basu S, Rajakaruna S, De Arcangelis A, Zhang L, Georges Labouesse E, Menko A. ?6 integrin transactivates insulin-like growth factor receptor-1 (IGF-1R) to regulate caspase-3-mediated lens epithelial cell differentiation initiation. J Biol Chem. 2014;289:3842-55 pubmed 出版商
  2606. Evers M, Tran H, Zalachoras I, Meijer O, den Dunnen J, van Ommen G, et al. Preventing formation of toxic N-terminal huntingtin fragments through antisense oligonucleotide-mediated protein modification. Nucleic Acid Ther. 2014;24:4-12 pubmed 出版商
  2607. Borghgraef P, Menuet C, Theunis C, Louis J, Devijver H, Maurin H, et al. Increasing brain protein O-GlcNAc-ylation mitigates breathing defects and mortality of Tau.P301L mice. PLoS ONE. 2013;8:e84442 pubmed 出版商
  2608. Adhikary G, Grun D, Kerr C, Balasubramanian S, Rorke E, Vemuri M, et al. Identification of a population of epidermal squamous cell carcinoma cells with enhanced potential for tumor formation. PLoS ONE. 2013;8:e84324 pubmed 出版商
  2609. Toko H, Hariharan N, Konstandin M, Ormachea L, McGregor M, Gude N, et al. Differential regulation of cellular senescence and differentiation by prolyl isomerase Pin1 in cardiac progenitor cells. J Biol Chem. 2014;289:5348-56 pubmed 出版商
  2610. Low Calle A, Prada Arismendy J, Castellanos J. Study of interferon-? antiviral activity against Herpes simplex virus type 1 in neuron-enriched trigeminal ganglia cultures. Virus Res. 2014;180:49-58 pubmed 出版商
  2611. Gregoraszczuk E, Ptak A, Karpeta A, Fiedor E, Wrobel A, Milewicz T, et al. Hexachlorobenzene and pentachlorobenzene accumulation, metabolism and effect on steroid secretion and on CYP11A1 and CYP19 expression in cultured human placental tissue. Reprod Toxicol. 2014;43:102-10 pubmed 出版商
  2612. Wang N, Su P, Zhang Y, Lu J, Xing B, Kang K, et al. Protein kinase D1-dependent phosphorylation of dopamine D1 receptor regulates cocaine-induced behavioral responses. Neuropsychopharmacology. 2014;39:1290-301 pubmed 出版商
  2613. Han J, Hou W, Goldstein L, Stolz D, Watkins S, Rabinowich H. A Complex between Atg7 and Caspase-9: A NOVEL MECHANISM OF CROSS-REGULATION BETWEEN AUTOPHAGY AND APOPTOSIS. J Biol Chem. 2014;289:6485-97 pubmed 出版商
  2614. Qi M, Zhang J, Zeng W, Chen X. DNAJB1 stabilizes MDM2 and contributes to cancer cell proliferation in a p53-dependent manner. Biochim Biophys Acta. 2014;1839:62-9 pubmed 出版商
  2615. Gao R, Das B, Chatterjee R, Abaan O, Agama K, Matuo R, et al. Epigenetic and genetic inactivation of tyrosyl-DNA-phosphodiesterase 1 (TDP1) in human lung cancer cells from the NCI-60 panel. DNA Repair (Amst). 2014;13:1-9 pubmed 出版商
  2616. Bronner D, O Riordan M, He Y. Caspase-2 mediates a Brucella abortus RB51-induced hybrid cell death having features of apoptosis and pyroptosis. Front Cell Infect Microbiol. 2013;3:83 pubmed 出版商
  2617. Kiel C, Verschueren E, Yang J, Serrano L. Integration of protein abundance and structure data reveals competition in the ErbB signaling network. Sci Signal. 2013;6:ra109 pubmed 出版商
  2618. Liu F, Wang X, Hu G, Wang Y, Zhou J. The transcription factor TEAD1 represses smooth muscle-specific gene expression by abolishing myocardin function. J Biol Chem. 2014;289:3308-16 pubmed 出版商
  2619. Sahlberg S, Gustafsson A, Pendekanti P, Glimelius B, Stenerlow B. The influence of AKT isoforms on radiation sensitivity and DNA repair in colon cancer cell lines. Tumour Biol. 2014;35:3525-34 pubmed 出版商
  2620. Du Y, Teng X, Wang N, Zhang X, Chen J, Ding P, et al. NF-?B and enhancer-binding CREB protein scaffolded by CREB-binding protein (CBP)/p300 proteins regulate CD59 protein expression to protect cells from complement attack. J Biol Chem. 2014;289:2711-24 pubmed 出版商
  2621. Andresen C, Smedegaard S, Sylvestersen K, Svensson C, Iglesias Gato D, Cazzamali G, et al. Protein interaction screening for the ankyrin repeats and suppressor of cytokine signaling (SOCS) box (ASB) family identify Asb11 as a novel endoplasmic reticulum resident ubiquitin ligase. J Biol Chem. 2014;289:2043-54 pubmed 出版商
  2622. Wu K, Chen K, Wang C, Jiao X, Wang L, Zhou J, et al. Cell fate factor DACH1 represses YB-1-mediated oncogenic transcription and translation. Cancer Res. 2014;74:829-39 pubmed 出版商
  2623. Sharma Walia N, Chandran K, Patel K, Veettil M, Marginean A. The Kaposi's sarcoma-associated herpesvirus (KSHV)-induced 5-lipoxygenase-leukotriene B4 cascade plays key roles in KSHV latency, monocyte recruitment, and lipogenesis. J Virol. 2014;88:2131-56 pubmed 出版商
  2624. Yang Q, Yu C, Yang Z, Wei Q, Mu K, Zhang Y, et al. Deregulated NLRP3 and NLRP1 inflammasomes and their correlations with disease activity in systemic lupus erythematosus. J Rheumatol. 2014;41:444-52 pubmed 出版商
  2625. Wongtrakoongate P, Li J, Andrews P. DNMT3B inhibits the re-expression of genes associated with induced pluripotency. Exp Cell Res. 2014;321:231-9 pubmed 出版商
  2626. Abdelalim E, Tooyama I. Knockdown of p53 suppresses Nanog expression in embryonic stem cells. Biochem Biophys Res Commun. 2014;443:652-7 pubmed 出版商
  2627. Larson A, Lee C, Lezcano C, Zhan Q, Huang J, Fischer A, et al. Melanoma spheroid formation involves laminin-associated vasculogenic mimicry. Am J Pathol. 2014;184:71-8 pubmed 出版商
  2628. Xavier J, Morgado A, Sola S, Rodrigues C. Mitochondrial translocation of p53 modulates neuronal fate by preventing differentiation-induced mitochondrial stress. Antioxid Redox Signal. 2014;21:1009-24 pubmed 出版商
  2629. Brookheart R, Lee C, Espenshade P. Casein kinase 1 regulates sterol regulatory element-binding protein (SREBP) to control sterol homeostasis. J Biol Chem. 2014;289:2725-35 pubmed 出版商
  2630. Feng Y, Wu H, Xu Y, Zhang Z, Liu T, Lin X, et al. Zinc finger protein 451 is a novel Smad corepressor in transforming growth factor-? signaling. J Biol Chem. 2014;289:2072-83 pubmed 出版商
  2631. Molina Vila M, Nabau Moretó N, Tornador C, Sabnis A, Rosell R, Estivill X, et al. Activating mutations cluster in the "molecular brake" regions of protein kinases and do not associate with conserved or catalytic residues. Hum Mutat. 2014;35:318-28 pubmed 出版商
  2632. Nystoriak M, Nieves Cintrón M, Nygren P, Hinke S, Nichols C, Chen C, et al. AKAP150 contributes to enhanced vascular tone by facilitating large-conductance Ca2+-activated K+ channel remodeling in hyperglycemia and diabetes mellitus. Circ Res. 2014;114:607-15 pubmed 出版商
  2633. Zhan Z, Xie X, Cao H, Zhou X, Zhang X, Fan H, et al. Autophagy facilitates TLR4- and TLR3-triggered migration and invasion of lung cancer cells through the promotion of TRAF6 ubiquitination. Autophagy. 2014;10:257-68 pubmed 出版商
  2634. Morotti A, Panuzzo C, Crivellaro S, Pergolizzi B, Familiari U, Berger A, et al. BCR-ABL disrupts PTEN nuclear-cytoplasmic shuttling through phosphorylation-dependent activation of HAUSP. Leukemia. 2014;28:1326-33 pubmed 出版商
  2635. Hollevoet K, Antignani A, FitzGerald D, Pastan I. Combining the antimesothelin immunotoxin SS1P with the BH3-mimetic ABT-737 induces cell death in SS1P-resistant pancreatic cancer cells. J Immunother. 2014;37:8-15 pubmed 出版商
  2636. Wu C, Ko J, Chen S, Lin Y, Han C, Yang T, et al. Clinical implications of aldo-keto reductase family 1 member C3 and its relationship with lipocalin 2 in cancer of the uterine cervix. Gynecol Oncol. 2014;132:474-82 pubmed 出版商
  2637. Ngamsiri P, Watcharasit P, Satayavivad J. Glycogen synthase kinase-3 (GSK3) controls deoxyglucose-induced mitochondrial biogenesis in human neuroblastoma SH-SY5Y cells. Mitochondrion. 2014;14:54-63 pubmed 出版商
  2638. Okumu L, Braden T, Vail K, Simon L, GOYAL H. Low androgen induced penile maldevelopment involves altered gene expression of biomarkers of smooth muscle differentiation and a key enzyme regulating cavernous smooth muscle cell tone. J Urol. 2014;192:267-73 pubmed 出版商
  2639. Holtzhausen A, Golzio C, How T, Lee Y, Schiemann W, Katsanis N, et al. Novel bone morphogenetic protein signaling through Smad2 and Smad3 to regulate cancer progression and development. FASEB J. 2014;28:1248-67 pubmed 出版商
  2640. Wagner M, Koslowski M, Paret C, Schmidt M, Tureci O, Sahin U. NCOA3 is a selective co-activator of estrogen receptor ?-mediated transactivation of PLAC1 in MCF-7 breast cancer cells. BMC Cancer. 2013;13:570 pubmed 出版商
  2641. Tanaka T, Iino M. Knockdown of Sec8 promotes cell-cycle arrest at G1/S phase by inducing p21 via control of FOXO proteins. FEBS J. 2014;281:1068-84 pubmed 出版商
  2642. Bi J, Wang R, Zhang Y, Han X, Ampah K, Liu W, et al. Identification of nucleolin as a lipid-raft-dependent ?1-integrin-interacting protein in A375 cell migration. Mol Cells. 2013;36:507-17 pubmed 出版商
  2643. Park R, Chen J, Kim J, Jeong S, Ohn T. Splicing factor SRSF3 represses the translation of programmed cell death 4 mRNA by associating with the 5'-UTR region. Cell Death Differ. 2014;21:481-90 pubmed 出版商
  2644. Sandow J, Dorstyn L, O Reilly L, Tailler M, Kumar S, Strasser A, et al. ER stress does not cause upregulation and activation of caspase-2 to initiate apoptosis. Cell Death Differ. 2014;21:475-80 pubmed 出版商
  2645. Jesus P, Ouelaa W, François M, Riachy L, Guérin C, Aziz M, et al. Alteration of intestinal barrier function during activity-based anorexia in mice. Clin Nutr. 2014;33:1046-53 pubmed 出版商
  2646. Nakajima T, Yanagihara M, Nishii H. Temporal and regional patterns of Smad activation in the rat hippocampus following global ischemia. J Neurol Sci. 2014;337:25-37 pubmed 出版商
  2647. Lam T, Thomas L, White C, Li G, Pone E, Xu Z, et al. Scaffold functions of 14-3-3 adaptors in B cell immunoglobulin class switch DNA recombination. PLoS ONE. 2013;8:e80414 pubmed 出版商
  2648. Hasty P, Livi C, Dodds S, Jones D, Strong R, Javors M, et al. eRapa restores a normal life span in a FAP mouse model. Cancer Prev Res (Phila). 2014;7:169-78 pubmed 出版商
  2649. Gujar S, Clements D, Dielschneider R, Helson E, Marcato P, Lee P. Gemcitabine enhances the efficacy of reovirus-based oncotherapy through anti-tumour immunological mechanisms. Br J Cancer. 2014;110:83-93 pubmed 出版商
  2650. Newman A, Selkoe D, Dettmer U. A new method for quantitative immunoblotting of endogenous ?-synuclein. PLoS ONE. 2013;8:e81314 pubmed 出版商
  2651. Rubio N, Verrax J, Dewaele M, Verfaillie T, Johansen T, Piette J, et al. p38(MAPK)-regulated induction of p62 and NBR1 after photodynamic therapy promotes autophagic clearance of ubiquitin aggregates and reduces reactive oxygen species levels by supporting Nrf2-antioxidant signaling. Free Radic Biol Med. 2014;67:292-303 pubmed 出版商
  2652. Prentoe J, Serre S, Ramírez S, Nicosia A, Gottwein J, Bukh J. Hypervariable region 1 deletion and required adaptive envelope mutations confer decreased dependency on scavenger receptor class B type I and low-density lipoprotein receptor for hepatitis C virus. J Virol. 2014;88:1725-39 pubmed 出版商
  2653. Brandt J, Silveira L, Grassi T, Anselmo Franci J, Fávaro W, Felisbino S, et al. Indole-3-carbinol attenuates the deleterious gestational effects of bisphenol A exposure on the prostate gland of male F1 rats. Reprod Toxicol. 2014;43:56-66 pubmed 出版商
  2654. Qin Z, Kaufman R, Khoury R, Khoury M, Aswad D. Isoaspartate accumulation in mouse brain is associated with altered patterns of protein phosphorylation and acetylation, some of which are highly sex-dependent. PLoS ONE. 2013;8:e80758 pubmed 出版商
  2655. Han J, Rho S, Lee J, Bae J, Park S, Lee S, et al. Human cytomegalovirus (HCMV) US2 protein interacts with human CD1d (hCD1d) and down-regulates invariant NKT (iNKT) cell activity. Mol Cells. 2013;36:455-64 pubmed 出版商
  2656. Singh A, Zapata M, Choi Y, Yoon S. GSI promotes vincristine-induced apoptosis by enhancing multi-polar spindle formation. Cell Cycle. 2014;13:157-66 pubmed 出版商
  2657. Schiffmacher A, Padmanabhan R, Jhingory S, Taneyhill L. Cadherin-6B is proteolytically processed during epithelial-to-mesenchymal transitions of the cranial neural crest. Mol Biol Cell. 2014;25:41-54 pubmed 出版商
  2658. Wu H, Balsbaugh J, Chandler H, Georgilis A, Zullow H, Shabanowitz J, et al. Mitogen-activated protein kinase signaling mediates phosphorylation of polycomb ortholog Cbx7. J Biol Chem. 2013;288:36398-408 pubmed 出版商
  2659. Sadakata T, Kakegawa W, Shinoda Y, Hosono M, Katoh Semba R, Sekine Y, et al. CAPS1 deficiency perturbs dense-core vesicle trafficking and Golgi structure and reduces presynaptic release probability in the mouse brain. J Neurosci. 2013;33:17326-34 pubmed 出版商
  2660. Formosa A, Markert E, Lena A, Italiano D, Finazzi Agrò E, Levine A, et al. MicroRNAs, miR-154, miR-299-5p, miR-376a, miR-376c, miR-377, miR-381, miR-487b, miR-485-3p, miR-495 and miR-654-3p, mapped to the 14q32.31 locus, regulate proliferation, apoptosis, migration and invasion in metastatic prostate cancer cells. Oncogene. 2014;33:5173-82 pubmed 出版商
  2661. Wei Q, Mu K, Li T, Zhang Y, Yang Z, Jia X, et al. Deregulation of the NLRP3 inflammasome in hepatic parenchymal cells during liver cancer progression. Lab Invest. 2014;94:52-62 pubmed 出版商
  2662. Moreira E, de Oliveira J, Engel D, Walz R, de Bem A, Farina M, et al. Hypercholesterolemia induces short-term spatial memory impairments in mice: up-regulation of acetylcholinesterase activity as an early and causal event?. J Neural Transm (Vienna). 2014;121:415-26 pubmed 出版商
  2663. Whiteman E, Fan S, Harder J, Walton K, Liu C, Soofi A, et al. Crumbs3 is essential for proper epithelial development and viability. Mol Cell Biol. 2014;34:43-56 pubmed 出版商
  2664. Bondarenko A, Jean Quartier C, Parichatikanond W, Alam M, Waldeck Weiermair M, Malli R, et al. Mitochondrial Ca(2+) uniporter (MCU)-dependent and MCU-independent Ca(2+) channels coexist in the inner mitochondrial membrane. Pflugers Arch. 2014;466:1411-20 pubmed 出版商
  2665. Almalki A, Alston C, Parker A, Simonic I, Mehta S, He L, et al. Mutation of the human mitochondrial phenylalanine-tRNA synthetase causes infantile-onset epilepsy and cytochrome c oxidase deficiency. Biochim Biophys Acta. 2014;1842:56-64 pubmed 出版商
  2666. Thrasivoulou C, Millar M, Ahmed A. Activation of intracellular calcium by multiple Wnt ligands and translocation of ?-catenin into the nucleus: a convergent model of Wnt/Ca2+ and Wnt/?-catenin pathways. J Biol Chem. 2013;288:35651-9 pubmed 出版商
  2667. Sánchez Fernández C, Montilla García Á, González Cano R, Nieto F, Romero L, Artacho Cordón A, et al. Modulation of peripheral ?-opioid analgesia by ?1 receptors. J Pharmacol Exp Ther. 2014;348:32-45 pubmed 出版商
  2668. Bana E, Sibille E, Valente S, Cerella C, Chaimbault P, Kirsch G, et al. A novel coumarin-quinone derivative SV37 inhibits CDC25 phosphatases, impairs proliferation, and induces cell death. Mol Carcinog. 2015;54:229-41 pubmed 出版商
  2669. Killinger B, Shah M, Moszczynska A. Co-administration of betulinic acid and methamphetamine causes toxicity to dopaminergic and serotonergic nerve terminals in the striatum of late adolescent rats. J Neurochem. 2014;128:764-75 pubmed 出版商
  2670. Epis M, Giles K, Candy P, Webster R, Leedman P. miR-331-3p regulates expression of neuropilin-2 in glioblastoma. J Neurooncol. 2014;116:67-75 pubmed 出版商
  2671. Heydendael W, Sengupta A, Beck S, Bhatnagar S. Optogenetic examination identifies a context-specific role for orexins/hypocretins in anxiety-related behavior. Physiol Behav. 2014;130:182-90 pubmed 出版商
  2672. Feng N, Han Q, Li J, Wang S, Li H, Yao X, et al. Generation of highly purified neural stem cells from human adipose-derived mesenchymal stem cells by Sox1 activation. Stem Cells Dev. 2014;23:515-29 pubmed 出版商
  2673. Gastaldello S, Chen X, Callegari S, Masucci M. Caspase-1 promotes Epstein-Barr virus replication by targeting the large tegument protein deneddylase to the nucleus of productively infected cells. PLoS Pathog. 2013;9:e1003664 pubmed 出版商
  2674. Park E, Na H, Song Y, Shin S, Kim Y, Chung J. Activation of NLRP3 and AIM2 inflammasomes by Porphyromonas gingivalis infection. Infect Immun. 2014;82:112-23 pubmed 出版商
  2675. Lee J, Park J, Kwon O, Kim H, Fornace A, Cha H. Off-target response of a Wip1 chemical inhibitor in skin keratinocytes. J Dermatol Sci. 2014;73:125-34 pubmed 出版商
  2676. Haas M, Onstead Haas L, Naem E, Arnold A, Rohrbaugh N, Flowers M, et al. The effect of black seed (Nigella sativa) extract on FOXO3 expression in HepG2 cells. Phytother Res. 2014;28:873-9 pubmed 出版商
  2677. Battle M, Gillespie C, Quarshie A, Lanier V, Harmon T, Wilson K, et al. Obesity induced a leptin-Notch signaling axis in breast cancer. Int J Cancer. 2014;134:1605-16 pubmed 出版商
  2678. Hashizume C, Kobayashi A, Wong R. Down-modulation of nucleoporin RanBP2/Nup358 impaired chromosomal alignment and induced mitotic catastrophe. Cell Death Dis. 2013;4:e854 pubmed 出版商
  2679. Hashizume C, Moyori A, Kobayashi A, Yamakoshi N, Endo A, Wong R. Nucleoporin Nup62 maintains centrosome homeostasis. Cell Cycle. 2013;12:3804-16 pubmed 出版商
  2680. Naidoo N, Davis J, Zhu J, Yabumoto M, Singletary K, Brown M, et al. Aging and sleep deprivation induce the unfolded protein response in the pancreas: implications for metabolism. Aging Cell. 2014;13:131-41 pubmed 出版商
  2681. Li T, Lu H, Shen C, Lahiri S, Wason M, Mukherjee D, et al. Identification of epithelial stromal interaction 1 as a novel effector downstream of Krüppel-like factor 8 in breast cancer invasion and metastasis. Oncogene. 2014;33:4746-55 pubmed 出版商
  2682. Ni H, Du K, You M, Ding W. Critical role of FoxO3a in alcohol-induced autophagy and hepatotoxicity. Am J Pathol. 2013;183:1815-1825 pubmed 出版商
  2683. Kuo H, Deluca T, Miller W, Mrksich M. Profiling deacetylase activities in cell lysates with peptide arrays and SAMDI mass spectrometry. Anal Chem. 2013;85:10635-10642 pubmed 出版商
  2684. Bray K, Gillette M, Young J, Loughran E, Hwang M, Sears J, et al. Cdc42 overexpression induces hyperbranching in the developing mammary gland by enhancing cell migration. Breast Cancer Res. 2013;15:R91 pubmed
  2685. Smith M, Tippetts T, Brassfield E, Tucker B, Ockey A, Swensen A, et al. Mitochondrial fission mediates ceramide-induced metabolic disruption in skeletal muscle. Biochem J. 2013;456:427-39 pubmed 出版商
  2686. Fernandez S, Genis L, Torres Aleman I. A phosphatase-independent gain-of-function mutation in PTEN triggers aberrant cell growth in astrocytes through an autocrine IGF-1 loop. Oncogene. 2014;33:4114-22 pubmed 出版商
  2687. Tan M, Yu J, Jiang T, Zhu X, Guan H, Tan L. IL12/23 p40 inhibition ameliorates Alzheimer's disease-associated neuropathology and spatial memory in SAMP8 mice. J Alzheimers Dis. 2014;38:633-46 pubmed 出版商
  2688. Whittington R, Bretteville A, Virag L, Emala C, Maurin T, Marcouiller F, et al. Anesthesia-induced hypothermia mediates decreased ARC gene and protein expression through ERK/MAPK inactivation. Sci Rep. 2013;3:1388 pubmed 出版商
  2689. Soler A, Serra H, Pearce W, Angulo A, Guillermet Guibert J, Friedman L, et al. Inhibition of the p110? isoform of PI 3-kinase stimulates nonfunctional tumor angiogenesis. J Exp Med. 2013;210:1937-45 pubmed 出版商
  2690. Chhabra J, Chattopadhyay B, Paul B. SOCS3 dictates the transition of divergent time-phased events in granulocyte TNF-? signaling. Cell Mol Immunol. 2014;11:105-6 pubmed 出版商
  2691. Sollome J, Thavathiru E, Camenisch T, Vaillancourt R. HER2/HER3 regulates extracellular acidification and cell migration through MTK1 (MEKK4). Cell Signal. 2014;26:70-82 pubmed 出版商
  2692. Nkyimbeng T, Ruppert C, Shiomi T, Dahal B, Lang G, Seeger W, et al. Pivotal role of matrix metalloproteinase 13 in extracellular matrix turnover in idiopathic pulmonary fibrosis. PLoS ONE. 2013;8:e73279 pubmed 出版商
  2693. Iordanova B, Hitchens T, Robison C, Ahrens E. Engineered mitochondrial ferritin as a magnetic resonance imaging reporter in mouse olfactory epithelium. PLoS ONE. 2013;8:e72720 pubmed 出版商
  2694. Fatemi S, Folsom T, Rooney R, Thuras P. Expression of GABAA ?2-, ?1- and ?-receptors are altered significantly in the lateral cerebellum of subjects with schizophrenia, major depression and bipolar disorder. Transl Psychiatry. 2013;3:e303 pubmed 出版商
  2695. Jia B, Choy E, Cote G, Harmon D, Ye S, Kan Q, et al. Cyclin-dependent kinase 11 (CDK11) is crucial in the growth of liposarcoma cells. Cancer Lett. 2014;342:104-12 pubmed 出版商
  2696. Singh B, Sinha R, Zhou J, Xie S, You S, Gauthier K, et al. FoxO1 deacetylation regulates thyroid hormone-induced transcription of key hepatic gluconeogenic genes. J Biol Chem. 2013;288:30365-72 pubmed 出版商
  2697. Yi X, Pashaj A, Xia M, Moreau R. Reversal of obesity-induced hypertriglyceridemia by (R)-?-lipoic acid in ZDF (fa/fa) rats. Biochem Biophys Res Commun. 2013;439:390-5 pubmed 出版商
  2698. Tucker B, Mullins R, Streb L, Anfinson K, Eyestone M, Kaalberg E, et al. Patient-specific iPSC-derived photoreceptor precursor cells as a means to investigate retinitis pigmentosa. elife. 2013;2:e00824 pubmed 出版商
  2699. Subramanian V, Moorleghen J, Balakrishnan A, Howatt D, Chishti A, Uchida H. Calpain-2 compensation promotes angiotensin II-induced ascending and abdominal aortic aneurysms in calpain-1 deficient mice. PLoS ONE. 2013;8:e72214 pubmed 出版商
  2700. Chen Z, Chen J, Gu Y, Hu C, Li J, Lin S, et al. Aberrantly activated AREG-EGFR signaling is required for the growth and survival of CRTC1-MAML2 fusion-positive mucoepidermoid carcinoma cells. Oncogene. 2014;33:3869-77 pubmed 出版商
  2701. Sáinz Jaspeado M, Huertas Martínez J, Lagares Tena L, Martín Liberal J, Mateo Lozano S, de Alava E, et al. EphA2-induced angiogenesis in ewing sarcoma cells works through bFGF production and is dependent on caveolin-1. PLoS ONE. 2013;8:e71449 pubmed 出版商
  2702. Andersen S, Baar C, Fladvad T, Laugsand E, Skorpen F. The N-terminally truncated µ3 and µ3-like opioid receptors are transcribed from a novel promoter upstream of exon 2 in the human OPRM1 gene. PLoS ONE. 2013;8:e71024 pubmed 出版商
  2703. Yoshida G, Saya H, Zouboulis C. Three-dimensional culture of sebaceous gland cells revealing the role of prostaglandin E2-induced activation of canonical Wnt signaling. Biochem Biophys Res Commun. 2013;438:640-6 pubmed 出版商
  2704. O Brien M, Carbin S, Morrison J, Smith T. Decreased myometrial p160 ROCK-1 expression in obese women at term pregnancy. Reprod Biol Endocrinol. 2013;11:79 pubmed 出版商
  2705. Garcia Jove Navarro M, Basset C, Arcondeguy T, Touriol C, Perez G, Prats H, et al. Api5 contributes to E2F1 control of the G1/S cell cycle phase transition. PLoS ONE. 2013;8:e71443 pubmed 出版商
  2706. Wong Y, Jakt L, Nishikawa S. Prolonged treatment with DNMT inhibitors induces distinct effects in promoters and gene-bodies. PLoS ONE. 2013;8:e71099 pubmed 出版商
  2707. Yoshida R, Nagata M, Nakayama H, Niimori Kita K, Hassan W, Tanaka T, et al. The pathological significance of Notch1 in oral squamous cell carcinoma. Lab Invest. 2013;93:1068-81 pubmed 出版商
  2708. Maunakea A, Chepelev I, Cui K, Zhao K. Intragenic DNA methylation modulates alternative splicing by recruiting MeCP2 to promote exon recognition. Cell Res. 2013;23:1256-69 pubmed 出版商
  2709. Apostoli A, Skelhorne Gross G, Rubino R, Peterson N, Di Lena M, Schneider M, et al. Loss of PPAR? expression in mammary secretory epithelial cells creates a pro-breast tumorigenic environment. Int J Cancer. 2014;134:1055-66 pubmed 出版商
  2710. Gurung B, Feng Z, Hua X. Menin directly represses Gli1 expression independent of canonical Hedgehog signaling. Mol Cancer Res. 2013;11:1215-22 pubmed 出版商
  2711. Bucur O, Pennarun B, Stancu A, Nadler M, Muraru M, Bertomeu T, et al. Poor antibody validation is a challenge in biomedical research: a case study for detection of c-FLIP. Apoptosis. 2013;18:1154-62 pubmed 出版商
  2712. Frantz E, Crespo Mascarenhas C, Barreto Vianna A, Aguila M, Mandarim de Lacerda C. Renin-angiotensin system blockers protect pancreatic islets against diet-induced obesity and insulin resistance in mice. PLoS ONE. 2013;8:e67192 pubmed 出版商
  2713. Hou Z, Han Q, Zhang C, Tian Z, Zhang J. miR146a impairs the IFN-induced anti-HBV immune response by downregulating STAT1 in hepatocytes. Liver Int. 2014;34:58-68 pubmed 出版商
  2714. Wong K, Gascoyne D, Brown P, Soilleux E, Snell C, Chen H, et al. Reciprocal expression of the endocytic protein HIP1R and its repressor FOXP1 predicts outcome in R-CHOP-treated diffuse large B-cell lymphoma patients. Leukemia. 2014;28:362-72 pubmed 出版商
  2715. Devi L, Ohno M. Mechanisms that lessen benefits of ?-secretase reduction in a mouse model of Alzheimer's disease. Transl Psychiatry. 2013;3:e284 pubmed 出版商
  2716. Esmaeili M, Bathen T, Engebraten O, Mælandsmo G, Gribbestad I, Moestue S. Quantitative (31)P HR-MAS MR spectroscopy for detection of response to PI3K/mTOR inhibition in breast cancer xenografts. Magn Reson Med. 2014;71:1973-81 pubmed 出版商
  2717. Gurkar A, Chu K, Raj L, Bouley R, Lee S, Kim Y, et al. Identification of ROCK1 kinase as a critical regulator of Beclin1-mediated autophagy during metabolic stress. Nat Commun. 2013;4:2189 pubmed 出版商
  2718. Montiel V, León Gómez E, Bouzin C, Esfahani H, Romero Pérez M, Lobysheva I, et al. Genetic deletion of aquaporin-1 results in microcardia and low blood pressure in mouse with intact nitric oxide-dependent relaxation, but enhanced prostanoids-dependent relaxation. Pflugers Arch. 2014;466:237-51 pubmed 出版商
  2719. Wen S, Jadhav K, Williamson D, Rideout T. Treadmill Exercise Training Modulates Hepatic Cholesterol Metabolism and Circulating PCSK9 Concentration in High-Fat-Fed Mice. J Lipids. 2013;2013:908048 pubmed 出版商
  2720. Siljamäki E, Raiko L, Toriseva M, Nissinen L, Näreoja T, Peltonen J, et al. p38? mitogen-activated protein kinase regulates the expression of tight junction protein ZO-1 in differentiating human epidermal keratinocytes. Arch Dermatol Res. 2014;306:131-41 pubmed 出版商
  2721. Roux C, Lesueur C, Aligny C, Brasse Lagnel C, Genty D, Marret S, et al. 3-MA inhibits autophagy and favors long-term integration of grafted Gad67-GFP GABAergic precursors in the developing neocortex by preventing apoptosis. Cell Transplant. 2014;23:1425-50 pubmed 出版商
  2722. Hafko R, Villapol S, Nostramo R, Symes A, Sabban E, Inagami T, et al. Commercially available angiotensin II At? receptor antibodies are nonspecific. PLoS ONE. 2013;8:e69234 pubmed 出版商
  2723. Puglisi F, Vanni V, Ponterio G, Tassone A, Sciamanna G, Bonsi P, et al. Torsin A Localization in the Mouse Cerebellar Synaptic Circuitry. PLoS ONE. 2013;8:e68063 pubmed 出版商
  2724. He W, Wang Q, Srinivasan B, Xu J, Padilla M, Li Z, et al. A JNK-mediated autophagy pathway that triggers c-IAP degradation and necroptosis for anticancer chemotherapy. Oncogene. 2014;33:3004-13 pubmed 出版商
  2725. Hou P, Chuang C, Kao C, Chou S, Stone L, Ho H, et al. LHX2 regulates the neural differentiation of human embryonic stem cells via transcriptional modulation of PAX6 and CER1. Nucleic Acids Res. 2013;41:7753-70 pubmed 出版商
  2726. Luijten M, Basten S, Claessens T, Vernooij M, Scott C, Janssen R, et al. Birt-Hogg-Dube syndrome is a novel ciliopathy. Hum Mol Genet. 2013;22:4383-97 pubmed 出版商
  2727. Fatemi S, Folsom T, Rooney R, Thuras P. mRNA and protein expression for novel GABAA receptors ? and ?2 are altered in schizophrenia and mood disorders; relevance to FMRP-mGluR5 signaling pathway. Transl Psychiatry. 2013;3:e271 pubmed 出版商
  2728. Brouxhon S, Kyrkanides S, Teng X, O Banion M, Clarke R, Byers S, et al. Soluble-E-cadherin activates HER and IAP family members in HER2+ and TNBC human breast cancers. Mol Carcinog. 2014;53:893-906 pubmed 出版商
  2729. Rajendran P, Kidane A, Yu T, Dashwood W, Bisson W, LOHR C, et al. HDAC turnover, CtIP acetylation and dysregulated DNA damage signaling in colon cancer cells treated with sulforaphane and related dietary isothiocyanates. Epigenetics. 2013;8:612-23 pubmed 出版商
  2730. Campbell M, Karaca M, Adamski K, Chorley B, Wang X, Bell D. Novel hematopoietic target genes in the NRF2-mediated transcriptional pathway. Oxid Med Cell Longev. 2013;2013:120305 pubmed 出版商
  2731. Muruganandan S, Dranse H, Rourke J, McMullen N, Sinal C. Chemerin neutralization blocks hematopoietic stem cell osteoclastogenesis. Stem Cells. 2013;31:2172-82 pubmed 出版商
  2732. Hartsink Segers S, Exalto C, Allen M, Williamson D, Clifford S, Horstmann M, et al. Inhibiting Polo-like kinase 1 causes growth reduction and apoptosis in pediatric acute lymphoblastic leukemia cells. Haematologica. 2013;98:1539-46 pubmed 出版商
  2733. Chandra S, Priyadarshini R, Madhavan V, Tikoo S, Hussain M, Mudgal R, et al. Enhancement of c-Myc degradation by BLM helicase leads to delayed tumor initiation. J Cell Sci. 2013;126:3782-95 pubmed 出版商
  2734. Shibata K, Nakahara S, Shimizu E, Yamashita T, Matsuki N, Koyama R. Repulsive guidance molecule a regulates hippocampal mossy fiber branching in vitro. Neuroreport. 2013;24:609-15 pubmed 出版商
  2735. Zhang X, Hernandez I, Rei D, Mair W, Laha J, Cornwell M, et al. Diaminothiazoles modify Tau phosphorylation and improve the tauopathy in mouse models. J Biol Chem. 2013;288:22042-56 pubmed 出版商
  2736. Henderson Y, Toro Serra R, Chen Y, Ryu J, Frederick M, Zhou G, et al. Src inhibitors in suppression of papillary thyroid carcinoma growth. Head Neck. 2014;36:375-84 pubmed 出版商
  2737. Gillette M, Bray K, Blumenthaler A, Vargo Gogola T. P190B RhoGAP overexpression in the developing mammary epithelium induces TGF?-dependent fibroblast activation. PLoS ONE. 2013;8:e65105 pubmed 出版商
  2738. Takasugi M, Hayakawa K, Arai D, Shiota K. Age- and sex-dependent DNA hypomethylation controlled by growth hormone in mouse liver. Mech Ageing Dev. 2013;134:331-7 pubmed 出版商
  2739. Shen H, Liao K, Zhang W, Wu H, Shen B, Xu Z. Differential expression of peroxiredoxin 6, annexin A5 and ubiquitin carboxyl-terminal hydrolase isozyme L1 in testis of rat fetuses after maternal exposure to di-n-butyl phthalate. Reprod Toxicol. 2013;39:76-84 pubmed 出版商
  2740. Huang B, Ray P, Iwasaki K, Tsuji Y. Transcriptional regulation of the human ferritin gene by coordinated regulation of Nrf2 and protein arginine methyltransferases PRMT1 and PRMT4. FASEB J. 2013;27:3763-74 pubmed 出版商
  2741. Brochier C, Dennis G, Rivieccio M, McLaughlin K, Coppola G, Ratan R, et al. Specific acetylation of p53 by HDAC inhibition prevents DNA damage-induced apoptosis in neurons. J Neurosci. 2013;33:8621-32 pubmed 出版商
  2742. Narayanan A, Iordanskiy S, Das R, Van Duyne R, Santos S, Jaworski E, et al. Exosomes derived from HIV-1-infected cells contain trans-activation response element RNA. J Biol Chem. 2013;288:20014-33 pubmed 出版商
  2743. Mobasher M, Gonzalez Rodriguez A, Santamaria B, Ramos S, Martin M, Goya L, et al. Protein tyrosine phosphatase 1B modulates GSK3?/Nrf2 and IGFIR signaling pathways in acetaminophen-induced hepatotoxicity. Cell Death Dis. 2013;4:e626 pubmed 出版商
  2744. Olsen J, Oyan A, Rostad K, Hellem M, Liu J, Li L, et al. p63 attenuates epithelial to mesenchymal potential in an experimental prostate cell model. PLoS ONE. 2013;8:e62547 pubmed 出版商
  2745. Sharma A, Diecke S, Zhang W, Lan F, He C, Mordwinkin N, et al. The role of SIRT6 protein in aging and reprogramming of human induced pluripotent stem cells. J Biol Chem. 2013;288:18439-47 pubmed 出版商
  2746. Nguyen H, Hübener J, Weber J, Grueninger S, Riess O, Weiss A. Cerebellar soluble mutant ataxin-3 level decreases during disease progression in Spinocerebellar Ataxia Type 3 mice. PLoS ONE. 2013;8:e62043 pubmed 出版商
  2747. Park Y, Ko J, Jang Y, Kwon Y. Activation of AMP-activated protein kinase alleviates homocysteine-mediated neurotoxicity in SH-SY5Y cells. Neurochem Res. 2013;38:1561-71 pubmed 出版商
  2748. Brooks E, Little D, Arumugam R, Sun B, Curtis S, Demaster A, et al. Pathogenesis of growth failure and partial reversal with gene therapy in murine and canine Glycogen Storage Disease type Ia. Mol Genet Metab. 2013;109:161-70 pubmed 出版商
  2749. Oshikawa M, Okada K, Nakajima K, Ajioka I. Cortical excitatory neurons become protected from cell division during neurogenesis in an Rb family-dependent manner. Development. 2013;140:2310-20 pubmed 出版商
  2750. Pantaleo M, Astolfi A, Urbini M, Nannini M, Paterini P, Indio V, et al. Analysis of all subunits, SDHA, SDHB, SDHC, SDHD, of the succinate dehydrogenase complex in KIT/PDGFRA wild-type GIST. Eur J Hum Genet. 2014;22:32-9 pubmed 出版商
  2751. Hernández Hernández J, Mallappa C, Nasipak B, Oesterreich S, Imbalzano A. The Scaffold attachment factor b1 (Safb1) regulates myogenic differentiation by facilitating the transition of myogenic gene chromatin from a repressed to an activated state. Nucleic Acids Res. 2013;41:5704-16 pubmed 出版商
  2752. Hakucho A, Liu J, Liu X, Fujimiya T. Carvedilol improves ethanol-induced liver injury via modifying the interaction between oxidative stress and sympathetic hyperactivity in rats. Hepatol Res. 2014;44:560-70 pubmed 出版商
  2753. Moreno A, Soleto I, García Sanz P, Moreno Bueno G, Palmero I. ING4 regulates a secretory phenotype in primary fibroblasts with dual effects on cell proliferation and tumor growth. Oncogene. 2014;33:1945-53 pubmed 出版商
  2754. Rodriguez Martin T, Cuchillo Ibanez I, Noble W, Nyenya F, Anderton B, Hanger D. Tau phosphorylation affects its axonal transport and degradation. Neurobiol Aging. 2013;34:2146-57 pubmed 出版商
  2755. Mandemakers W, Abuhatzira L, Xu H, Caromile L, Hébert S, Snellinx A, et al. Co-regulation of intragenic microRNA miR-153 and its host gene Ia-2 ?: identification of miR-153 target genes with functions related to IA-2? in pancreas and brain. Diabetologia. 2013;56:1547-56 pubmed 出版商
  2756. Kuttner V, Mack C, Rigbolt K, Kern J, Schilling O, Busch H, et al. Global remodelling of cellular microenvironment due to loss of collagen VII. Mol Syst Biol. 2013;9:657 pubmed 出版商
  2757. Ipenberg I, Guttmann Raviv N, Khoury H, Kupershmit I, Ayoub N. Heat shock protein 90 (Hsp90) selectively regulates the stability of KDM4B/JMJD2B histone demethylase. J Biol Chem. 2013;288:14681-7 pubmed 出版商
  2758. Vanoirbeek E, Eelen G, Verlinden L, Carmeliet G, Mathieu C, Bouillon R, et al. PDLIM2 expression is driven by vitamin D and is involved in the pro-adhesion, and anti-migration and -invasion activity of vitamin D. Oncogene. 2014;33:1904-11 pubmed 出版商
  2759. Gurung B, Feng Z, Iwamoto D, Thiel A, Jin G, Fan C, et al. Menin epigenetically represses Hedgehog signaling in MEN1 tumor syndrome. Cancer Res. 2013;73:2650-8 pubmed 出版商
  2760. Avena P, Anselmo W, Whitaker Menezes D, Wang C, Pestell R, Lamb R, et al. Compartment-specific activation of PPAR? governs breast cancer tumor growth, via metabolic reprogramming and symbiosis. Cell Cycle. 2013;12:1360-70 pubmed 出版商
  2761. Sappino A, Buser R, Seguin Q, Fernet M, Lesne L, Gumy Pause F, et al. The CEACAM1 tumor suppressor is an ATM and p53-regulated gene required for the induction of cellular senescence by DNA damage. Oncogenesis. 2012;1:e7 pubmed 出版商
  2762. Ward J, Rider V, Abdou N, Kimler B. Estradiol differentially regulates calreticulin: a potential link with abnormal T cell function in systemic lupus erythematosus?. Lupus. 2013;22:583-96 pubmed 出版商
  2763. Choi K, Kang B, Kim H, Lee S, Bae S, Kweon O, et al. Low-level laser therapy promotes the osteogenic potential of adipose-derived mesenchymal stem cells seeded on an acellular dermal matrix. J Biomed Mater Res B Appl Biomater. 2013;101:919-28 pubmed 出版商
  2764. Mitterberger M, Zwerschke W. Mechanisms of resveratrol-induced inhibition of clonal expansion and terminal adipogenic differentiation in 3T3-L1 preadipocytes. J Gerontol A Biol Sci Med Sci. 2013;68:1356-76 pubmed 出版商
  2765. Fu H, Sohail A, Valiathan R, Wasinski B, Kumarasiri M, Mahasenan K, et al. Shedding of discoidin domain receptor 1 by membrane-type matrix metalloproteinases. J Biol Chem. 2013;288:12114-29 pubmed 出版商
  2766. Peng X, Guo W, Ren T, Lou Z, Lu X, Zhang S, et al. Differential expression of the RANKL/RANK/OPG system is associated with bone metastasis in human non-small cell lung cancer. PLoS ONE. 2013;8:e58361 pubmed 出版商
  2767. Dilwali S, Lysaght A, Roberts D, Barker F, McKenna M, Stankovic K. Sporadic vestibular schwannomas associated with good hearing secrete higher levels of fibroblast growth factor 2 than those associated with poor hearing irrespective of tumor size. Otol Neurotol. 2013;34:748-54 pubmed 出版商
  2768. Dellago H, Preschitz Kammerhofer B, Terlecki Zaniewicz L, Schreiner C, Fortschegger K, Chang M, et al. High levels of oncomiR-21 contribute to the senescence-induced growth arrest in normal human cells and its knock-down increases the replicative lifespan. Aging Cell. 2013;12:446-58 pubmed 出版商
  2769. Xu S, Pi H, Chen Y, Zhang N, Guo P, Lu Y, et al. Cadmium induced Drp1-dependent mitochondrial fragmentation by disturbing calcium homeostasis in its hepatotoxicity. Cell Death Dis. 2013;4:e540 pubmed 出版商
  2770. Murata Y, Constantine Paton M. Postsynaptic density scaffold SAP102 regulates cortical synapse development through EphB and PAK signaling pathway. J Neurosci. 2013;33:5040-52 pubmed 出版商
  2771. Smith A, Gibbons H, Oldfield R, Bergin P, Mee E, Faull R, et al. The transcription factor PU.1 is critical for viability and function of human brain microglia. Glia. 2013;61:929-42 pubmed 出版商
  2772. Xu J, Deng X, Tang M, Li L, Xiao L, Yang L, et al. Tyrosylprotein sulfotransferase-1 and tyrosine sulfation of chemokine receptor 4 are induced by Epstein-Barr virus encoded latent membrane protein 1 and associated with the metastatic potential of human nasopharyngeal carcinoma. PLoS ONE. 2013;8:e56114 pubmed 出版商
  2773. Yamada H, Abe T, Satoh A, Okazaki N, Tago S, Kobayashi K, et al. Stabilization of actin bundles by a dynamin 1/cortactin ring complex is necessary for growth cone filopodia. J Neurosci. 2013;33:4514-26 pubmed 出版商
  2774. Martin N, Popov N, Aguilo F, O Loghlen A, Raguz S, Snijders A, et al. Interplay between Homeobox proteins and Polycomb repressive complexes in p16INK?a regulation. EMBO J. 2013;32:982-95 pubmed 出版商
  2775. Kimura S. The Nap family proteins, CG5017/Hanabi and Nap1, are essential for Drosophila spermiogenesis. FEBS Lett. 2013;587:922-9 pubmed 出版商
  2776. Werwein E, Dzuganova M, Usadel C, Klempnauer K. B-Myb switches from Cyclin/Cdk-dependent to Jnk- and p38 kinase-dependent phosphorylation and associates with SC35 bodies after UV stress. Cell Death Dis. 2013;4:e511 pubmed 出版商
  2777. Huebbers C, Preuss S, Kolligs J, Vent J, Stenner M, Wieland U, et al. Integration of HPV6 and downregulation of AKR1C3 expression mark malignant transformation in a patient with juvenile-onset laryngeal papillomatosis. PLoS ONE. 2013;8:e57207 pubmed 出版商
  2778. Heo S, Choi J, Kim Y, Jung C, Lee J, Jin H, et al. Comparative proteomic analysis in children with idiopathic short stature (ISS) before and after short-term recombinant human growth hormone (rhGH) therapy. Proteomics. 2013;13:1211-9 pubmed 出版商
  2779. Fiorentino M, Lammers K, Levine M, Sztein M, Fasano A. In vitro Intestinal Mucosal Epithelial Responses to Wild-Type Salmonella Typhi and Attenuated Typhoid Vaccines. Front Immunol. 2013;4:17 pubmed 出版商
  2780. McCoy F, Darbandi R, Chen S, Eckard L, Dodd K, Jones K, et al. Metabolic regulation of CaMKII protein and caspases in Xenopus laevis egg extracts. J Biol Chem. 2013;288:8838-48 pubmed 出版商
  2781. Kim H, Woo H, Ryu J, Bok J, Kim J, Choi S, et al. Conditional deletion of pten leads to defects in nerve innervation and neuronal survival in inner ear development. PLoS ONE. 2013;8:e55609 pubmed 出版商
  2782. Tuul M, Kitao H, Iimori M, Matsuoka K, Kiyonari S, Saeki H, et al. Rad9, Rad17, TopBP1 and claspin play essential roles in heat-induced activation of ATR kinase and heat tolerance. PLoS ONE. 2013;8:e55361 pubmed 出版商
  2783. Lu B, Palacino J. A novel human embryonic stem cell-derived Huntington's disease neuronal model exhibits mutant huntingtin (mHTT) aggregates and soluble mHTT-dependent neurodegeneration. FASEB J. 2013;27:1820-9 pubmed 出版商
  2784. Caldon C, Sergio C, Burgess A, Deans A, Sutherland R, Musgrove E. Cyclin E2 induces genomic instability by mechanisms distinct from cyclin E1. Cell Cycle. 2013;12:606-17 pubmed 出版商
  2785. Petrie C, Smithson L, Crotty A, Michalski B, Fahnestock M, Kawaja M. Overexpression of nerve growth factor by murine smooth muscle cells: role of the p75 neurotrophin receptor on sympathetic and sensory sprouting. J Comp Neurol. 2013;521:2621-43 pubmed 出版商
  2786. Zhang L, Dasuri K, Fernandez Kim S, Bruce Keller A, Freeman L, Pepping J, et al. Prolonged diet induced obesity has minimal effects towards brain pathology in mouse model of cerebral amyloid angiopathy: implications for studying obesity-brain interactions in mice. Biochim Biophys Acta. 2013;1832:1456-62 pubmed 出版商
  2787. Balaburski G, Leu J, Beeharry N, Hayik S, Andrake M, Zhang G, et al. A modified HSP70 inhibitor shows broad activity as an anticancer agent. Mol Cancer Res. 2013;11:219-29 pubmed 出版商
  2788. Maute R, Schneider C, Sumazin P, Holmes A, Califano A, Basso K, et al. tRNA-derived microRNA modulates proliferation and the DNA damage response and is down-regulated in B cell lymphoma. Proc Natl Acad Sci U S A. 2013;110:1404-9 pubmed 出版商
  2789. Ogiwara H, Kohno T. CBP and p300 histone acetyltransferases contribute to homologous recombination by transcriptionally activating the BRCA1 and RAD51 genes. PLoS ONE. 2012;7:e52810 pubmed 出版商
  2790. Liu T, Sun B, Zhao X, Gu Q, Dong X, Yao Z, et al. HER2/neu expression correlates with vasculogenic mimicry in invasive breast carcinoma. J Cell Mol Med. 2013;17:116-22 pubmed 出版商
  2791. Nagakura A, Shitaka Y, Yarimizu J, Matsuoka N. Characterization of cognitive deficits in a transgenic mouse model of Alzheimer's disease and effects of donepezil and memantine. Eur J Pharmacol. 2013;703:53-61 pubmed 出版商
  2792. Khoronenkova S, Dianov G. USP7S-dependent inactivation of Mule regulates DNA damage signalling and repair. Nucleic Acids Res. 2013;41:1750-6 pubmed 出版商
  2793. Ji S, Su X, Cheng W, Zhang H, Zhao Y, Han Z. Down-regulation of CD74 inhibits growth and invasion in clear cell renal cell carcinoma through HIF-1? pathway. Urol Oncol. 2014;32:153-61 pubmed 出版商
  2794. Sánchez Alvarez R, Martinez Outschoorn U, Lin Z, Lamb R, Hulit J, Howell A, et al. Ethanol exposure induces the cancer-associated fibroblast phenotype and lethal tumor metabolism: implications for breast cancer prevention. Cell Cycle. 2013;12:289-301 pubmed 出版商
  2795. Sánchez Alvarez R, Martinez Outschoorn U, Lamb R, Hulit J, Howell A, Gandara R, et al. Mitochondrial dysfunction in breast cancer cells prevents tumor growth: understanding chemoprevention with metformin. Cell Cycle. 2013;12:172-82 pubmed 出版商
  2796. Prasad R, Atul -, Soni A, Puri S, Sijwali P. Expression, characterization, and cellular localization of knowpains, papain-like cysteine proteases of the Plasmodium knowlesi malaria parasite. PLoS ONE. 2012;7:e51619 pubmed 出版商
  2797. Landry W, Woolley J, Cotter T. Imatinib and Nilotinib inhibit Bcr-Abl-induced ROS through targeted degradation of the NADPH oxidase subunit p22phox. Leuk Res. 2013;37:183-9 pubmed 出版商
  2798. Forand A, Beck L, Leroy C, Rousseau A, Boitez V, Cohen I, et al. EKLF-driven PIT1 expression is critical for mouse erythroid maturation in vivo and in vitro. Blood. 2013;121:666-78 pubmed 出版商
  2799. Günther S, Fietz D, Weider K, Bergmann M, Brehm R. Effects of a murine germ cell-specific knockout of Connexin 43 on Connexin expression in testis and fertility. Transgenic Res. 2013;22:631-41 pubmed 出版商
  2800. Peddigari S, Li P, Rabe J, Martin S. hnRNPL and nucleolin bind LINE-1 RNA and function as host factors to modulate retrotransposition. Nucleic Acids Res. 2013;41:575-85 pubmed 出版商
  2801. Pereira G, Meng F, Kockara N, Yang B, Wight P. Targeted deletion of the antisilencer/enhancer (ASE) element from intron 1 of the myelin proteolipid protein gene (Plp1) in mouse reveals that the element is dispensable for Plp1 expression in brain during development and remyelination. J Neurochem. 2013;124:454-65 pubmed 出版商
  2802. Sakasai R, Sakai A, Iimori M, Kiyonari S, Matsuoka K, Kakeji Y, et al. CtIP- and ATR-dependent FANCJ phosphorylation in response to DNA strand breaks mediated by DNA replication. Genes Cells. 2012;17:962-70 pubmed 出版商
  2803. Chandler R, Brennan J, Schisler J, Serber D, Patterson C, Magnuson T. ARID1a-DNA interactions are required for promoter occupancy by SWI/SNF. Mol Cell Biol. 2013;33:265-80 pubmed 出版商
  2804. Ballarino M, Jobert L, Dembele D, de la Grange P, Auboeuf D, Tora L. TAF15 is important for cellular proliferation and regulates the expression of a subset of cell cycle genes through miRNAs. Oncogene. 2013;32:4646-55 pubmed 出版商
  2805. Godinho B, Ogier J, Darcy R, O Driscoll C, Cryan J. Self-assembling modified ?-cyclodextrin nanoparticles as neuronal siRNA delivery vectors: focus on Huntington's disease. Mol Pharm. 2013;10:640-9 pubmed 出版商
  2806. Einheber S, MENG X, Rubin M, Lam I, Mohandas N, An X, et al. The 4.1B cytoskeletal protein regulates the domain organization and sheath thickness of myelinated axons. Glia. 2013;61:240-53 pubmed 出版商
  2807. Gallo M, Ho J, Coutinho F, Vanner R, Lee L, Head R, et al. A tumorigenic MLL-homeobox network in human glioblastoma stem cells. Cancer Res. 2013;73:417-27 pubmed 出版商
  2808. Zhang S, Liu X, Bawa Khalfe T, Lu L, Lyu Y, Liu L, et al. Identification of the molecular basis of doxorubicin-induced cardiotoxicity. Nat Med. 2012;18:1639-42 pubmed 出版商
  2809. Vazquez Martin A, Sauri Nadal T, Menendez O, Oliveras Ferraros C, Cufí S, Corominas Faja B, et al. Ser2481-autophosphorylated mTOR colocalizes with chromosomal passenger proteins during mammalian cell cytokinesis. Cell Cycle. 2012;11:4211-21 pubmed 出版商
  2810. Gillespie E, Raychaudhuri N, Papageorgiou K, Atkins S, Lu Y, Charara L, et al. Interleukin-6 production in CD40-engaged fibrocytes in thyroid-associated ophthalmopathy: involvement of Akt and NF-?B. Invest Ophthalmol Vis Sci. 2012;53:7746-53 pubmed 出版商
  2811. Dinh P, Beura L, Das P, Panda D, Das A, Pattnaik A. Induction of stress granule-like structures in vesicular stomatitis virus-infected cells. J Virol. 2013;87:372-83 pubmed 出版商
  2812. Hong K, Li Y, Duan W, Guo Y, Jiang H, Li W, et al. Full-length TDP-43 and its C-terminal fragments activate mitophagy in NSC34 cell line. Neurosci Lett. 2012;530:144-9 pubmed 出版商
  2813. Oliva A, Kang Y, Furones C, Alonso O, Bruno O, Dietrich W, et al. Phosphodiesterase isoform-specific expression induced by traumatic brain injury. J Neurochem. 2012;123:1019-29 pubmed 出版商
  2814. Salem A, Howell A, Sartini M, Sotgia F, Lisanti M. Downregulation of stromal BRCA1 drives breast cancer tumor growth via upregulation of HIF-1?, autophagy and ketone body production. Cell Cycle. 2012;11:4167-73 pubmed 出版商
  2815. Cheung T, Ganatra M, Peters E, Truskey G. Effect of cellular senescence on the albumin permeability of blood-derived endothelial cells. Am J Physiol Heart Circ Physiol. 2012;303:H1374-83 pubmed 出版商
  2816. Marchetti P, Lupi R, Bugliani M, Kirkpatrick C, Sebastiani G, Grieco F, et al. A local glucagon-like peptide 1 (GLP-1) system in human pancreatic islets. Diabetologia. 2012;55:3262-72 pubmed 出版商
  2817. Hartsink Segers S, Zwaan C, Exalto C, Luijendijk M, Calvert V, Petricoin E, et al. Aurora kinases in childhood acute leukemia: the promise of aurora B as therapeutic target. Leukemia. 2013;27:560-8 pubmed 出版商
  2818. Chen Y, Sundvik M, Rozov S, Priyadarshini M, Panula P. MANF regulates dopaminergic neuron development in larval zebrafish. Dev Biol. 2012;370:237-49 pubmed 出版商
  2819. Takahashi A, Torigoe T, Tamura Y, Kanaseki T, Tsukahara T, Sasaki Y, et al. Heat shock enhances the expression of cytotoxic granule proteins and augments the activities of tumor-associated antigen-specific cytotoxic T lymphocytes. Cell Stress Chaperones. 2012;17:757-63 pubmed 出版商
  2820. Deschacht M, Van Assche T, Hendrickx S, Bult H, Maes L, Cos P. Role of oxidative stress and apoptosis in the cellular response of murine macrophages upon Leishmania infection. Parasitology. 2012;139:1429-37 pubmed 出版商
  2821. Wakabayashi T, Kosaka J, Mori T, Yamada H. Prolonged expression of Puma in cholinergic amacrine cells during the development of rat retina. J Histochem Cytochem. 2012;60:777-88 pubmed
  2822. Chao H, Lai Y, Lu Y, Lin C, Mai W, Huang Y. NMDAR signaling facilitates the IPO5-mediated nuclear import of CPEB3. Nucleic Acids Res. 2012;40:8484-98 pubmed
  2823. Shimada I, LeComte M, Granger J, Quinlan N, Spees J. Self-renewal and differentiation of reactive astrocyte-derived neural stem/progenitor cells isolated from the cortical peri-infarct area after stroke. J Neurosci. 2012;32:7926-40 pubmed 出版商
  2824. Wu C, Tang S, Wang P, Lee H, Ko J. Nickel-induced epithelial-mesenchymal transition by reactive oxygen species generation and E-cadherin promoter hypermethylation. J Biol Chem. 2012;287:25292-302 pubmed 出版商
  2825. Kocer S, Wang H, Malbon C. "Shaping" of cell signaling via AKAP-tethered PDE4D: Probing with AKAR2-AKAP5 biosensor. J Mol Signal. 2012;7:4 pubmed 出版商
  2826. Akhrymuk I, Kulemzin S, Frolova E. Evasion of the innate immune response: the Old World alphavirus nsP2 protein induces rapid degradation of Rpb1, a catalytic subunit of RNA polymerase II. J Virol. 2012;86:7180-91 pubmed 出版商
  2827. Tondeleir D, Lambrechts A, Muller M, Jonckheere V, Doll T, Vandamme D, et al. Cells lacking ?-actin are genetically reprogrammed and maintain conditional migratory capacity. Mol Cell Proteomics. 2012;11:255-71 pubmed 出版商
  2828. Kim Y, Remacle A, Chernov A, Liu H, Shubayev I, Lai C, et al. The MMP-9/TIMP-1 axis controls the status of differentiation and function of myelin-forming Schwann cells in nerve regeneration. PLoS ONE. 2012;7:e33664 pubmed 出版商
  2829. Lee J, Lai C, Yang W, Lee T. Increased expression of hypoxia-inducible factor-1? and metallothionein in varicocele and varicose veins. Phlebology. 2012;27:409-15 pubmed 出版商
  2830. Kenneth N, Younger J, Hughes E, Marcotte D, Barker P, Saunders T, et al. An inactivating caspase 11 passenger mutation originating from the 129 murine strain in mice targeted for c-IAP1. Biochem J. 2012;443:355-9 pubmed 出版商
  2831. Kawakami K, Nakamura A, Goto S. Dietary restriction increases site-specific histone H3 acetylation in rat liver: possible modulation by sirtuins. Biochem Biophys Res Commun. 2012;418:836-40 pubmed 出版商
  2832. Zhou F, Zhang X, van Dam H, Ten Dijke P, Huang H, Zhang L. Ubiquitin-specific protease 4 mitigates Toll-like/interleukin-1 receptor signaling and regulates innate immune activation. J Biol Chem. 2012;287:11002-10 pubmed 出版商
  2833. Ewald F, Ueffing N, Brockmann L, Hader C, Telieps T, Schuster M, et al. The role of c-FLIP splice variants in urothelial tumours. Cell Death Dis. 2011;2:e245 pubmed 出版商
  2834. Gu B, Watanabe K, Dai X. Pygo2 regulates histone gene expression and H3 K56 acetylation in human mammary epithelial cells. Cell Cycle. 2012;11:79-87 pubmed 出版商
  2835. Badeaux A, Yang Y, Cardenas K, Vemulapalli V, Chen K, Kusewitt D, et al. Loss of the methyl lysine effector protein PHF20 impacts the expression of genes regulated by the lysine acetyltransferase MOF. J Biol Chem. 2012;287:429-37 pubmed 出版商
  2836. Balsas P, Galán Malo P, Marzo I, Naval J. Bortezomib resistance in a myeloma cell line is associated to PSM?5 overexpression and polyploidy. Leuk Res. 2012;36:212-8 pubmed 出版商
  2837. Wang W, Wu S, Lee A, Chiang C. Binding site specificity and factor redundancy in activator protein-1-driven human papillomavirus chromatin-dependent transcription. J Biol Chem. 2011;286:40974-86 pubmed 出版商
  2838. Bunnell T, Burbach B, Shimizu Y, Ervasti J. ?-Actin specifically controls cell growth, migration, and the G-actin pool. Mol Biol Cell. 2011;22:4047-58 pubmed 出版商
  2839. Wang Z, Zhang Y, Zhang S, Guo Q, Tan Y, Wang X, et al. DJ-1 can inhibit microtubule associated protein 1 B formed aggregates. Mol Neurodegener. 2011;6:38 pubmed 出版商
  2840. Zürner M, Mittelstaedt T, Tom Dieck S, Becker A, Schoch S. Analyses of the spatiotemporal expression and subcellular localization of liprin-? proteins. J Comp Neurol. 2011;519:3019-39 pubmed 出版商
  2841. Ariumi Y, Kuroki M, Kushima Y, Osugi K, Hijikata M, Maki M, et al. Hepatitis C virus hijacks P-body and stress granule components around lipid droplets. J Virol. 2011;85:6882-92 pubmed 出版商
  2842. Mouton Liger F, Thomas S, Rattenbach R, Magnol L, Larigaldie V, Ledru A, et al. PCP4 (PEP19) overexpression induces premature neuronal differentiation associated with Ca(2+) /calmodulin-dependent kinase II-? activation in mouse models of Down syndrome. J Comp Neurol. 2011;519:2779-802 pubmed 出版商
  2843. Kawaja M, Smithson L, Elliott J, Trinh G, Crotty A, Michalski B, et al. Nerve growth factor promoter activity revealed in mice expressing enhanced green fluorescent protein. J Comp Neurol. 2011;519:2522-45 pubmed 出版商
  2844. Karius T, Schnekenburger M, Ghelfi J, Walter J, Dicato M, Diederich M. Reversible epigenetic fingerprint-mediated glutathione-S-transferase P1 gene silencing in human leukemia cell lines. Biochem Pharmacol. 2011;81:1329-42 pubmed 出版商
  2845. Xin Y, Lu Q, Li Q. IKK1 control of epidermal differentiation is modulated by notch signaling. Am J Pathol. 2011;178:1568-77 pubmed 出版商
  2846. Wan F, Weaver A, Gao X, Bern M, Hardwidge P, Lenardo M. IKK? phosphorylation regulates RPS3 nuclear translocation and NF-?B function during infection with Escherichia coli strain O157:H7. Nat Immunol. 2011;12:335-43 pubmed 出版商
  2847. Bloch J, Kaeser M, Sadeghi Y, Rouiller E, Redmond D, Brunet J. Doublecortin-positive cells in the adult primate cerebral cortex and possible role in brain plasticity and development. J Comp Neurol. 2011;519:775-89 pubmed 出版商
  2848. Cheng Z, Völkers M, Din S, Avitabile D, Khan M, Gude N, et al. Mitochondrial translocation of Nur77 mediates cardiomyocyte apoptosis. Eur Heart J. 2011;32:2179-88 pubmed 出版商
  2849. Kapoor A, Goldberg M, Cumberland L, Ratnakumar K, Segura M, Emanuel P, et al. The histone variant macroH2A suppresses melanoma progression through regulation of CDK8. Nature. 2010;468:1105-9 pubmed 出版商
  2850. Day T, Palle K, Barkley L, Kakusho N, Zou Y, Tateishi S, et al. Phosphorylated Rad18 directs DNA polymerase η to sites of stalled replication. J Cell Biol. 2010;191:953-66 pubmed 出版商
  2851. Modi H, Li L, Chu S, Rossi J, Yee J, Bhatia R. Inhibition of Grb2 expression demonstrates an important role in BCR-ABL-mediated MAPK activation and transformation of primary human hematopoietic cells. Leukemia. 2011;25:305-12 pubmed 出版商
  2852. Foster C, Dovey O, Lezina L, Luo J, Gant T, Barlev N, et al. Lysine-specific demethylase 1 regulates the embryonic transcriptome and CoREST stability. Mol Cell Biol. 2010;30:4851-63 pubmed 出版商
  2853. Tai C, Shen S, Lee W, Liao C, Deng W, Chiou H, et al. Increased cellular apoptosis susceptibility (CSE1L/CAS) protein expression promotes protrusion extension and enhances migration of MCF-7 breast cancer cells. Exp Cell Res. 2010;316:2969-81 pubmed 出版商
  2854. Schwartz C, Cheng A, Mughal M, Mattson M, Yao P. Clathrin assembly proteins AP180 and CALM in the embryonic rat brain. J Comp Neurol. 2010;518:3803-18 pubmed 出版商
  2855. Kurz A, Double K, Lastres Becker I, Tozzi A, Tantucci M, Bockhart V, et al. A53T-alpha-synuclein overexpression impairs dopamine signaling and striatal synaptic plasticity in old mice. PLoS ONE. 2010;5:e11464 pubmed 出版商
  2856. Polo M, Arnoni M, Riggio M, Wargon V, Lanari C, Novaro V. Responsiveness to PI3K and MEK inhibitors in breast cancer. Use of a 3D culture system to study pathways related to hormone independence in mice. PLoS ONE. 2010;5:e10786 pubmed 出版商
  2857. Roblek M, Schüchner S, Huber V, Ollram K, Vlcek Vesely S, Foisner R, et al. Monoclonal antibodies specific for disease-associated point-mutants: lamin A/C R453W and R482W. PLoS ONE. 2010;5:e10604 pubmed 出版商
  2858. Magnus N, Garnier D, Rak J. Oncogenic epidermal growth factor receptor up-regulates multiple elements of the tissue factor signaling pathway in human glioma cells. Blood. 2010;116:815-8 pubmed 出版商
  2859. Wang W, Schwemmers S, Hexner E, Pahl H. AML1 is overexpressed in patients with myeloproliferative neoplasms and mediates JAK2V617F-independent overexpression of NF-E2. Blood. 2010;116:254-66 pubmed 出版商
  2860. Koschny R, Holland H, Sykora J, Erdal H, Krupp W, Bauer M, et al. Bortezomib sensitizes primary human esthesioneuroblastoma cells to TRAIL-induced apoptosis. J Neurooncol. 2010;97:171-85 pubmed 出版商
  2861. Furmanski O, Gajavelli S, Lee J, Collado M, Jergova S, Sagen J. Combined extrinsic and intrinsic manipulations exert complementary neuronal enrichment in embryonic rat neural precursor cultures: an in vitro and in vivo analysis. J Comp Neurol. 2009;515:56-71 pubmed 出版商
  2862. Gauster M, Siwetz M, Huppertz B. Fusion of villous trophoblast can be visualized by localizing active caspase 8. Placenta. 2009;30:547-50 pubmed 出版商
  2863. Nichols G, Schaack J, Ornelles D. Widespread phosphorylation of histone H2AX by species C adenovirus infection requires viral DNA replication. J Virol. 2009;83:5987-98 pubmed 出版商
  2864. Zhang J, Kundu M, Ney P. Mitophagy in mammalian cells: the reticulocyte model. Methods Enzymol. 2009;452:227-45 pubmed 出版商
  2865. Tuomela S, Rautajoki K, Moulder R, Nyman T, Lahesmaa R. Identification of novel Stat6 regulated proteins in IL-4-treated mouse lymphocytes. Proteomics. 2009;9:1087-98 pubmed 出版商
  2866. Ito K, Inoue K, Bae S, Ito Y. Runx3 expression in gastrointestinal tract epithelium: resolving the controversy. Oncogene. 2009;28:1379-84 pubmed 出版商
  2867. Holthouse D, Dallas P, Ford J, Fabian V, Murch A, Watson M, et al. Classic and desmoplastic medulloblastoma: complete case reports and characterizations of two new cell lines. Neuropathology. 2009;29:398-409 pubmed 出版商
  2868. Marín Briggiler C, Veiga M, Matos M, Echeverría M, Furlong L, Vazquez Levin M. Expression of epithelial cadherin in the human male reproductive tract and gametes and evidence of its participation in fertilization. Mol Hum Reprod. 2008;14:561-71 pubmed 出版商
  2869. Papadeas S, Halloran C, McCown T, Breese G, Blake B. Changes in apical dendritic structure correlate with sustained ERK1/2 phosphorylation in medial prefrontal cortex of a rat model of dopamine D1 receptor agonist sensitization. J Comp Neurol. 2008;511:271-85 pubmed 出版商
  2870. Sejersen H, Rattan S. Dicarbonyl-induced accelerated aging in vitro in human skin fibroblasts. Biogerontology. 2009;10:203-11 pubmed 出版商
  2871. Nair M, Nagamori I, Sun P, Mishra D, Rhéaume C, Li B, et al. Nuclear regulator Pygo2 controls spermiogenesis and histone H3 acetylation. Dev Biol. 2008;320:446-55 pubmed 出版商
  2872. Garver W, Jelinek D, Francis G, Murphy B. The Niemann-Pick C1 gene is downregulated by feedback inhibition of the SREBP pathway in human fibroblasts. J Lipid Res. 2008;49:1090-102 pubmed 出版商
  2873. Sui J, Zhang J, Tan T, Ching C, Chen W. Comparative proteomics analysis of vascular smooth muscle cells incubated with S- and R-enantiomers of atenolol using iTRAQ-coupled two-dimensional LC-MS/MS. Mol Cell Proteomics. 2008;7:1007-18 pubmed 出版商
  2874. Strauss G, Westhoff M, Fischer Posovszky P, Fulda S, Schanbacher M, Eckhoff S, et al. 4-hydroperoxy-cyclophosphamide mediates caspase-independent T-cell apoptosis involving oxidative stress-induced nuclear relocation of mitochondrial apoptogenic factors AIF and EndoG. Cell Death Differ. 2008;15:332-43 pubmed
  2875. Daniele L, Adams R, Durante D, Pugh E, Philp N. Novel distribution of junctional adhesion molecule-C in the neural retina and retinal pigment epithelium. J Comp Neurol. 2007;505:166-76 pubmed
  2876. Rigau V, Morin M, Rousset M, de Bock F, Lebrun A, Coubes P, et al. Angiogenesis is associated with blood-brain barrier permeability in temporal lobe epilepsy. Brain. 2007;130:1942-56 pubmed
  2877. Koschny R, Ganten T, Sykora J, Haas T, Sprick M, Kolb A, et al. TRAIL/bortezomib cotreatment is potentially hepatotoxic but induces cancer-specific apoptosis within a therapeutic window. Hepatology. 2007;45:649-58 pubmed
  2878. Spada F, Haemmer A, Kuch D, Rothbauer U, Schermelleh L, Kremmer E, et al. DNMT1 but not its interaction with the replication machinery is required for maintenance of DNA methylation in human cells. J Cell Biol. 2007;176:565-71 pubmed
  2879. Tanno B, Vitali R, De Arcangelis D, Mancini C, Eleuteri P, Dominici C, et al. Bim-dependent apoptosis follows IGFBP-5 down-regulation in neuroblastoma cells. Biochem Biophys Res Commun. 2006;351:547-52 pubmed
  2880. Christian M, Kiskinis E, Debevec D, Leonardsson G, White R, Parker M. RIP140-targeted repression of gene expression in adipocytes. Mol Cell Biol. 2005;25:9383-91 pubmed
  2881. Han H, Karabiyikoglu M, Kelly S, Sobel R, Yenari M. Mild hypothermia inhibits nuclear factor-kappaB translocation in experimental stroke. J Cereb Blood Flow Metab. 2003;23:589-98 pubmed
  2882. Lagger G, Doetzlhofer A, Schuettengruber B, Haidweger E, Simboeck E, Tischler J, et al. The tumor suppressor p53 and histone deacetylase 1 are antagonistic regulators of the cyclin-dependent kinase inhibitor p21/WAF1/CIP1 gene. Mol Cell Biol. 2003;23:2669-79 pubmed
  2883. Shinoura N, Sakurai S, Shibasaki F, Asai A, Kirino T, Hamada H. Co-transduction of Apaf-1 and caspase-9 highly enhances p53-mediated apoptosis in gliomas. Br J Cancer. 2002;86:587-95 pubmed
  2884. Shinoura N, Sakurai S, Asai A, Kirino T, Hamada H. Over-expression of APAF-1 and caspase-9 augments radiation-induced apoptosis in U-373MG glioma cells. Int J Cancer. 2001;93:252-61 pubmed
  2885. Shinoura N, Sakurai S, Asai A, Kirino T, Hamada H. Co-transduction of Apaf-1 and caspase-9 augments etoposide-induced apoptosis in U-373MG glioma cells. Jpn J Cancer Res. 2001;92:467-74 pubmed