这是一篇来自已证抗体库的有关小鼠 Aif1的综述,是根据114篇发表使用所有方法的文章归纳的。这综述旨在帮助来邦网的访客找到最适合Aif1 抗体。
Aif1 同义词: AI607846; AIF-1; D17H6S50E; G1; Iba1

艾博抗(上海)贸易有限公司
domestic goat 多克隆
  • 免疫组化-冰冻切片; 大鼠; 1:100; 图 4c
  • 免疫印迹; 大鼠; 1:1000; 图 4d
艾博抗(上海)贸易有限公司 Aif1抗体(Abcam, ab5076)被用于被用于免疫组化-冰冻切片在大鼠样本上浓度为1:100 (图 4c) 和 被用于免疫印迹在大鼠样本上浓度为1:1000 (图 4d). Oxid Med Cell Longev (2020) ncbi
domestic goat 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:200; 图 s2f
艾博抗(上海)贸易有限公司 Aif1抗体(Abcam, ab107159)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:200 (图 s2f). Sci Adv (2020) ncbi
domestic goat 多克隆
  • 免疫组化-自由浮动切片; 小鼠; 1:1500; 图 1j
艾博抗(上海)贸易有限公司 Aif1抗体(Abcam, ab5076)被用于被用于免疫组化-自由浮动切片在小鼠样本上浓度为1:1500 (图 1j). Nature (2019) ncbi
domestic goat 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:5000; 图 1a
艾博抗(上海)贸易有限公司 Aif1抗体(Abcam, ab5076)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:5000 (图 1a). J Comp Neurol (2020) ncbi
domestic goat 多克隆
  • 免疫组化-自由浮动切片; 小鼠; 1:500; 图 3b
艾博抗(上海)贸易有限公司 Aif1抗体(Abcam, ab5076)被用于被用于免疫组化-自由浮动切片在小鼠样本上浓度为1:500 (图 3b). Nature (2019) ncbi
domestic goat 多克隆
  • 免疫组化-石蜡切片; 人类; 1:500; 图 5c
艾博抗(上海)贸易有限公司 Aif1抗体(Abcam, ab107159)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:500 (图 5c). J Histochem Cytochem (2019) ncbi
domestic goat 多克隆
  • 免疫组化; 小鼠; 1:100; 图 3k
艾博抗(上海)贸易有限公司 Aif1抗体(Abcam, 5076)被用于被用于免疫组化在小鼠样本上浓度为1:100 (图 3k). Nat Commun (2019) ncbi
domestic goat 多克隆
  • 免疫组化; 小鼠; 1:1000; 图 s3d
艾博抗(上海)贸易有限公司 Aif1抗体(Abcam, ab5076)被用于被用于免疫组化在小鼠样本上浓度为1:1000 (图 s3d). Science (2018) ncbi
domestic goat 多克隆
  • 免疫组化; 小鼠; 1:200; 图 s5o
艾博抗(上海)贸易有限公司 Aif1抗体(Abcam, ab5076)被用于被用于免疫组化在小鼠样本上浓度为1:200 (图 s5o). Nat Neurosci (2018) ncbi
domestic goat 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:300; 图 3c
艾博抗(上海)贸易有限公司 Aif1抗体(Abcam, ab5076)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:300 (图 3c). Nature (2018) ncbi
domestic goat 多克隆
  • 免疫组化-石蜡切片; 人类; 1:100; 图 2
艾博抗(上海)贸易有限公司 Aif1抗体(Abcam, ab5076)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100 (图 2). Epilepsia (2018) ncbi
domestic goat 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:300; 图 1b, s1b, s1e
艾博抗(上海)贸易有限公司 Aif1抗体(Abcam, ab5076)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:300 (图 1b, s1b, s1e). J Exp Med (2018) ncbi
domestic goat 多克隆
  • 免疫组化; 小鼠; 1:300; 图 1a
  • 免疫印迹; 小鼠; 1:10,000; 图 1d
艾博抗(上海)贸易有限公司 Aif1抗体(Abcam, ab5076)被用于被用于免疫组化在小鼠样本上浓度为1:300 (图 1a) 和 被用于免疫印迹在小鼠样本上浓度为1:10,000 (图 1d). J Neurosci (2018) ncbi
domestic rabbit 单克隆(EPR16588)
  • 免疫组化-冰冻切片; 小鼠; 1:1500; 图 10a
艾博抗(上海)贸易有限公司 Aif1抗体(Abcam, ab178846)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:1500 (图 10a). J Neurosci (2018) ncbi
domestic goat 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:100; 图 4a
艾博抗(上海)贸易有限公司 Aif1抗体(Abcam, ab5076)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:100 (图 4a). J Comp Neurol (2019) ncbi
domestic goat 多克隆
  • 免疫组化-冰冻切片; 小鼠; 图 4h
艾博抗(上海)贸易有限公司 Aif1抗体(Abcam, ab5076)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 4h). Neuron (2018) ncbi
domestic goat 多克隆
  • 免疫组化; 小鼠; 1:200; 图 2d
艾博抗(上海)贸易有限公司 Aif1抗体(Abcam, ab5076)被用于被用于免疫组化在小鼠样本上浓度为1:200 (图 2d). Proc Natl Acad Sci U S A (2018) ncbi
domestic goat 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:200; 图 4j, 5i
艾博抗(上海)贸易有限公司 Aif1抗体(Abcam, ab5076)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:200 (图 4j, 5i). J Neurovirol (2018) ncbi
domestic goat 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:2500; 图 6c
艾博抗(上海)贸易有限公司 Aif1抗体(Abcam, ab5076)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:2500 (图 6c). Nat Commun (2018) ncbi
domestic goat 多克隆
  • 免疫组化; 大鼠; 1:200; 图 4a
艾博抗(上海)贸易有限公司 Aif1抗体(Abcam, ab5076)被用于被用于免疫组化在大鼠样本上浓度为1:200 (图 4a). Stroke (2018) ncbi
domestic goat 多克隆
  • 免疫组化-冰冻切片; 大鼠; 1:500; 图 3b
艾博抗(上海)贸易有限公司 Aif1抗体(Abcam, ab107159)被用于被用于免疫组化-冰冻切片在大鼠样本上浓度为1:500 (图 3b). Neuropharmacology (2018) ncbi
domestic rabbit 单克隆(EPR16589)
  • 免疫组化-石蜡切片; 大鼠; 1:8000; 图 2c
  • 免疫印迹; 大鼠; 1:1000; 图 2b
艾博抗(上海)贸易有限公司 Aif1抗体(Abcam, ab178847)被用于被用于免疫组化-石蜡切片在大鼠样本上浓度为1:8000 (图 2c) 和 被用于免疫印迹在大鼠样本上浓度为1:1000 (图 2b). Biol Res (2017) ncbi
domestic goat 多克隆
  • 免疫组化-石蜡切片; 小鼠; 图 4e
艾博抗(上海)贸易有限公司 Aif1抗体(Abcam, ab5076)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 4e). Invest Ophthalmol Vis Sci (2017) ncbi
domestic goat 多克隆
  • 免疫组化; 大鼠; 1:100; 图 8a
艾博抗(上海)贸易有限公司 Aif1抗体(Abcam, ab5076)被用于被用于免疫组化在大鼠样本上浓度为1:100 (图 8a). PLoS ONE (2017) ncbi
domestic goat 多克隆
  • 免疫组化-冰冻切片; 大鼠; 1:300; 图 2m
艾博抗(上海)贸易有限公司 Aif1抗体(Abcam, ab5076)被用于被用于免疫组化-冰冻切片在大鼠样本上浓度为1:300 (图 2m). J Pain (2017) ncbi
domestic goat 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:500; 图 s5e
艾博抗(上海)贸易有限公司 Aif1抗体(Abcam, ab5076)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:500 (图 s5e). Mol Ther (2017) ncbi
小鼠 单克隆(1022-5)
  • 免疫组化-石蜡切片; 小鼠; 1:200; 图 st9
  • 免疫组化-石蜡切片; 犬; 1:200; 图 st9
  • 免疫组化-石蜡切片; 大鼠; 1:200; 图 st9
艾博抗(上海)贸易有限公司 Aif1抗体(Abcam, 1022-5)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:200 (图 st9), 被用于免疫组化-石蜡切片在犬样本上浓度为1:200 (图 st9) 和 被用于免疫组化-石蜡切片在大鼠样本上浓度为1:200 (图 st9). J Toxicol Pathol (2017) ncbi
domestic goat 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:200
艾博抗(上海)贸易有限公司 Aif1抗体(Abcam, ab5076)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:200. Sci Rep (2017) ncbi
domestic goat 多克隆
  • 免疫组化; 大鼠; 1:1000; 图 3a
  • 免疫印迹; 大鼠; 1:1000; 图 5a
艾博抗(上海)贸易有限公司 Aif1抗体(Abcam, ab5076)被用于被用于免疫组化在大鼠样本上浓度为1:1000 (图 3a) 和 被用于免疫印迹在大鼠样本上浓度为1:1000 (图 5a). Sci Rep (2016) ncbi
小鼠 单克隆(1022-5)
  • 免疫细胞化学; 人类; 1:200; 图 s3b
艾博抗(上海)贸易有限公司 Aif1抗体(Abcam, ab15690)被用于被用于免疫细胞化学在人类样本上浓度为1:200 (图 s3b). Mol Psychiatry (2017) ncbi
domestic goat 多克隆
  • 免疫印迹; 小鼠; 1:500; 图 st1
艾博抗(上海)贸易有限公司 Aif1抗体(Abcam, Ab5076)被用于被用于免疫印迹在小鼠样本上浓度为1:500 (图 st1). Mov Disord (2017) ncbi
domestic goat 多克隆
  • 免疫组化-自由浮动切片; 大鼠; 1:1500; 图 5
  • 免疫印迹; 大鼠; 1:1000; 图 5
艾博抗(上海)贸易有限公司 Aif1抗体(Abcam, ab48004)被用于被用于免疫组化-自由浮动切片在大鼠样本上浓度为1:1500 (图 5) 和 被用于免疫印迹在大鼠样本上浓度为1:1000 (图 5). PLoS ONE (2016) ncbi
domestic goat 多克隆
  • 免疫组化; 小鼠; 1:100; 图 1b
艾博抗(上海)贸易有限公司 Aif1抗体(Abcam, ab5076)被用于被用于免疫组化在小鼠样本上浓度为1:100 (图 1b). Biol Psychiatry (2017) ncbi
domestic goat 多克隆
  • 免疫组化-石蜡切片; 人类; 1:100; 表 1
艾博抗(上海)贸易有限公司 Aif1抗体(Abcam, ab5076)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100 (表 1). Glia (2017) ncbi
domestic goat 多克隆
  • 免疫组化-石蜡切片; 大鼠; 1:400; 图 7
艾博抗(上海)贸易有限公司 Aif1抗体(Abcam, ab5076)被用于被用于免疫组化-石蜡切片在大鼠样本上浓度为1:400 (图 7). Oncotarget (2016) ncbi
domestic goat 多克隆
  • 免疫组化; 大鼠; 1:10,000; 图 4a
艾博抗(上海)贸易有限公司 Aif1抗体(Abcam, ab5076)被用于被用于免疫组化在大鼠样本上浓度为1:10,000 (图 4a). Brain Behav Immun (2017) ncbi
domestic goat 多克隆
  • 免疫组化-石蜡切片; 猕猴; 1:200; 图 4
艾博抗(上海)贸易有限公司 Aif1抗体(Abcam, 5076)被用于被用于免疫组化-石蜡切片在猕猴样本上浓度为1:200 (图 4). J Neuroinflammation (2016) ncbi
domestic goat 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:500; 图 2e
艾博抗(上海)贸易有限公司 Aif1抗体(Abcam, ab5076)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:500 (图 2e). Neuropharmacology (2016) ncbi
domestic goat 多克隆
  • 免疫组化-冰冻切片; 大鼠; 1:500; 图 4
艾博抗(上海)贸易有限公司 Aif1抗体(Abcam, ab5076)被用于被用于免疫组化-冰冻切片在大鼠样本上浓度为1:500 (图 4). Acta Neuropathol Commun (2016) ncbi
domestic goat 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:400
艾博抗(上海)贸易有限公司 Aif1抗体(Abcam, Ab5076)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:400. J Neuroinflammation (2016) ncbi
domestic goat 多克隆
  • 免疫细胞化学; 小鼠; 图 s7e
艾博抗(上海)贸易有限公司 Aif1抗体(Abcam, ab5076)被用于被用于免疫细胞化学在小鼠样本上 (图 s7e). Cell Rep (2016) ncbi
domestic goat 多克隆
  • 免疫组化; 小鼠; 图 1a
艾博抗(上海)贸易有限公司 Aif1抗体(Abcam, ab107159)被用于被用于免疫组化在小鼠样本上 (图 1a). Glia (2016) ncbi
domestic goat 多克隆
  • 免疫组化; 小鼠; 1:500; 图 s8f
艾博抗(上海)贸易有限公司 Aif1抗体(Abcam, ab5076)被用于被用于免疫组化在小鼠样本上浓度为1:500 (图 s8f). Science (2016) ncbi
domestic goat 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:400; 图 3
艾博抗(上海)贸易有限公司 Aif1抗体(Abcam, ab5076)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:400 (图 3). Acta Neuropathol Commun (2016) ncbi
domestic goat 多克隆
  • 免疫组化; 小鼠; 1:100; 图 8
艾博抗(上海)贸易有限公司 Aif1抗体(Abcam, ab5076)被用于被用于免疫组化在小鼠样本上浓度为1:100 (图 8). Hum Mol Genet (2016) ncbi
小鼠 单克隆(1022-5)
  • 免疫组化-石蜡切片; 小鼠; 1:100; 图 4
艾博抗(上海)贸易有限公司 Aif1抗体(Abcam, ab15690)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:100 (图 4). Sci Rep (2016) ncbi
domestic goat 多克隆
  • 免疫印迹; 大鼠; 1:500; 图 1
艾博抗(上海)贸易有限公司 Aif1抗体(Abcam, ab5076)被用于被用于免疫印迹在大鼠样本上浓度为1:500 (图 1). Cell Signal (2016) ncbi
domestic goat 多克隆
  • 免疫印迹; 小鼠; 1:500; 图 1b
艾博抗(上海)贸易有限公司 Aif1抗体(Abcam, ab107159)被用于被用于免疫印迹在小鼠样本上浓度为1:500 (图 1b). Sci Rep (2016) ncbi
domestic goat 多克隆
  • 免疫组化-冰冻切片; 大鼠; 1:1000; 图 1
艾博抗(上海)贸易有限公司 Aif1抗体(Abcam, ab5076)被用于被用于免疫组化-冰冻切片在大鼠样本上浓度为1:1000 (图 1). Exp Ther Med (2016) ncbi
domestic goat 多克隆
  • 免疫组化-自由浮动切片; 小鼠; 1:500; 图 5
艾博抗(上海)贸易有限公司 Aif1抗体(Abcam, ab107159)被用于被用于免疫组化-自由浮动切片在小鼠样本上浓度为1:500 (图 5). Sci Rep (2016) ncbi
domestic goat 多克隆
  • 免疫组化; 小鼠; 1:500; 图 3b
艾博抗(上海)贸易有限公司 Aif1抗体(Abcam, ab5076)被用于被用于免疫组化在小鼠样本上浓度为1:500 (图 3b). PLoS ONE (2016) ncbi
domestic goat 多克隆
  • 免疫组化-冰冻切片; 小鼠; 图 1
艾博抗(上海)贸易有限公司 Aif1抗体(Abcam, ab5076)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 1). Mol Neurodegener (2016) ncbi
domestic goat 多克隆
  • 免疫组化-冰冻切片; 大鼠; 1:200; 图 4a
艾博抗(上海)贸易有限公司 Aif1抗体(Abcam, ab5076)被用于被用于免疫组化-冰冻切片在大鼠样本上浓度为1:200 (图 4a). Front Neurosci (2016) ncbi
小鼠 单克隆(1022-5)
  • 免疫印迹; 大鼠; 1:500; 表 1
艾博抗(上海)贸易有限公司 Aif1抗体(Abcam, ab-15690)被用于被用于免疫印迹在大鼠样本上浓度为1:500 (表 1). Brain Res Bull (2016) ncbi
domestic goat 多克隆
  • 免疫细胞化学; 大鼠; 图 s3
艾博抗(上海)贸易有限公司 Aif1抗体(Abcam, ab5076)被用于被用于免疫细胞化学在大鼠样本上 (图 s3). PLoS ONE (2016) ncbi
domestic goat 多克隆
  • 免疫组化-冰冻切片; 大鼠; 1:100; 图 4
  • 免疫印迹; 大鼠; 1:200; 图 4
艾博抗(上海)贸易有限公司 Aif1抗体(abcam, ab5076)被用于被用于免疫组化-冰冻切片在大鼠样本上浓度为1:100 (图 4) 和 被用于免疫印迹在大鼠样本上浓度为1:200 (图 4). Mol Med Rep (2016) ncbi
小鼠 单克隆(1022-5)
  • 免疫组化-冰冻切片; 小鼠; 1:5000; 图 s3
艾博抗(上海)贸易有限公司 Aif1抗体(Abcam, ab15690)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:5000 (图 s3). EMBO Rep (2016) ncbi
domestic goat 多克隆
  • 免疫组化-冰冻切片; 大鼠; 1:100; 图 5f
艾博抗(上海)贸易有限公司 Aif1抗体(Abcam, ab5076)被用于被用于免疫组化-冰冻切片在大鼠样本上浓度为1:100 (图 5f). Mol Neurobiol (2017) ncbi
domestic goat 多克隆
  • 免疫组化; 小鼠; 1:1000; 图 1
艾博抗(上海)贸易有限公司 Aif1抗体(Abcam, ab5076)被用于被用于免疫组化在小鼠样本上浓度为1:1000 (图 1). Sci Rep (2016) ncbi
domestic goat 多克隆
  • 免疫组化; 小鼠; 1:100; 图 s13
艾博抗(上海)贸易有限公司 Aif1抗体(Abcam, ab5076)被用于被用于免疫组化在小鼠样本上浓度为1:100 (图 s13). Nat Neurosci (2016) ncbi
domestic goat 多克隆
  • 免疫组化-冰冻切片; 小鼠
艾博抗(上海)贸易有限公司 Aif1抗体(Abcam Inc., ab5076)被用于被用于免疫组化-冰冻切片在小鼠样本上. FASEB J (2016) ncbi
小鼠 单克隆(1022-5)
  • 免疫印迹; 小鼠; 1:200
艾博抗(上海)贸易有限公司 Aif1抗体(Abcam, 1022?C5)被用于被用于免疫印迹在小鼠样本上浓度为1:200. PLoS ONE (2015) ncbi
小鼠 单克隆(1022-5)
  • 免疫组化; 大鼠
艾博抗(上海)贸易有限公司 Aif1抗体(Abcam, ab15690)被用于被用于免疫组化在大鼠样本上. Life Sci (2015) ncbi
小鼠 单克隆(1022-5)
  • 免疫组化-石蜡切片; 大鼠; 1:200
艾博抗(上海)贸易有限公司 Aif1抗体(Abcam, ab15690)被用于被用于免疫组化-石蜡切片在大鼠样本上浓度为1:200. Mol Neurobiol (2016) ncbi
小鼠 单克隆(1022-5)
  • 免疫细胞化学; 大鼠; 1:200
艾博抗(上海)贸易有限公司 Aif1抗体(Abcam, ab15690)被用于被用于免疫细胞化学在大鼠样本上浓度为1:200. J Neuroinflammation (2014) ncbi
小鼠 单克隆(1022-5)
  • 免疫组化; 小鼠; 1:200; 图 s10a
艾博抗(上海)贸易有限公司 Aif1抗体(Abcam, ab15690)被用于被用于免疫组化在小鼠样本上浓度为1:200 (图 s10a). Nat Neurosci (2014) ncbi
domestic goat 多克隆
  • 免疫组化-石蜡切片; 大鼠; 1:500
艾博抗(上海)贸易有限公司 Aif1抗体(Abcam, ab5076)被用于被用于免疫组化-石蜡切片在大鼠样本上浓度为1:500. J Tissue Eng Regen Med (2017) ncbi
单克隆
  • 流式细胞仪; 小鼠
艾博抗(上海)贸易有限公司 Aif1抗体(Abcam, ab15691)被用于被用于流式细胞仪在小鼠样本上. J Gerontol A Biol Sci Med Sci (2014) ncbi
小鼠 单克隆(1022-5)
  • 酶联免疫吸附测定; 小鼠; 1:100
艾博抗(上海)贸易有限公司 Aif1抗体(Abcam, ab15690)被用于被用于酶联免疫吸附测定在小鼠样本上浓度为1:100. J Alzheimers Dis (2014) ncbi
小鼠 单克隆(1022-5)
  • 免疫组化-石蜡切片; 大鼠; 1:200
艾博抗(上海)贸易有限公司 Aif1抗体(Abcam, ab15690)被用于被用于免疫组化-石蜡切片在大鼠样本上浓度为1:200. J Neuroinflammation (2013) ncbi
小鼠 单克隆(1022-5)
  • 免疫组化-石蜡切片; 小鼠; 1:200
艾博抗(上海)贸易有限公司 Aif1抗体(Abcam, ab15690)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:200. Radiother Oncol (2013) ncbi
小鼠 单克隆(1022-5)
  • 免疫组化-冰冻切片; 大鼠; 1:500
艾博抗(上海)贸易有限公司 Aif1抗体(Abcam, Ab15690)被用于被用于免疫组化-冰冻切片在大鼠样本上浓度为1:500. J Neurotrauma (2013) ncbi
小鼠 单克隆(1022-5)
  • 免疫组化; 大鼠; 1:200
艾博抗(上海)贸易有限公司 Aif1抗体(Abcam, ab15690)被用于被用于免疫组化在大鼠样本上浓度为1:200. BMC Neurosci (2013) ncbi
小鼠 单克隆(1022-5)
  • 免疫组化-石蜡切片; 大鼠; 1:1000
艾博抗(上海)贸易有限公司 Aif1抗体(Abcam, ab15690)被用于被用于免疫组化-石蜡切片在大鼠样本上浓度为1:1000. PLoS ONE (2012) ncbi
小鼠 单克隆(1022-5)
  • 免疫组化-石蜡切片; 大鼠; 1:200
艾博抗(上海)贸易有限公司 Aif1抗体(Abcam, ab15690)被用于被用于免疫组化-石蜡切片在大鼠样本上浓度为1:200. Cell Mol Neurobiol (2013) ncbi
圣克鲁斯生物技术
小鼠 单克隆(1022-5)
  • 免疫印迹; 小鼠; 图 5e
圣克鲁斯生物技术 Aif1抗体(Santa, sc-32,725)被用于被用于免疫印迹在小鼠样本上 (图 5e). Mol Neurodegener (2020) ncbi
小鼠 单克隆(1022-5)
  • 免疫印迹; 小鼠; 1:1000; 图 8a
圣克鲁斯生物技术 Aif1抗体(Santa Cruz Biotechnology Inc, sc-32,725)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 8a). J Neuroinflammation (2018) ncbi
小鼠 单克隆(1022-5)
  • 免疫组化-石蜡切片; 小鼠; 1:100; 表 1
圣克鲁斯生物技术 Aif1抗体(Santa Cruz, sc-1022-5)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:100 (表 1). PLoS ONE (2015) ncbi
小鼠 单克隆(1022-5)
  • 免疫组化-冰冻切片; 大鼠; 1:100; 图 3
圣克鲁斯生物技术 Aif1抗体(Santa Cruz, sc-32725)被用于被用于免疫组化-冰冻切片在大鼠样本上浓度为1:100 (图 3). Mol Brain (2015) ncbi
小鼠 单克隆(1022-5)
  • 免疫细胞化学; 大鼠; 图 3
  • 免疫印迹; 大鼠; 图 2
圣克鲁斯生物技术 Aif1抗体(Santa Cruz, sc-32725)被用于被用于免疫细胞化学在大鼠样本上 (图 3) 和 被用于免疫印迹在大鼠样本上 (图 2). Front Cell Neurosci (2015) ncbi
小鼠 单克隆(1022-5)
  • 免疫组化-冰冻切片; 小鼠; 图 1a
  • 免疫印迹; 小鼠; 1:500; 图 1b
圣克鲁斯生物技术 Aif1抗体(Santa Cruz, sc-32725)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 1a) 和 被用于免疫印迹在小鼠样本上浓度为1:500 (图 1b). Mol Neurobiol (2016) ncbi
小鼠 单克隆(1022-5)
  • 免疫组化-石蜡切片; 小鼠; 1:300; 图 2
  • 免疫组化; 小鼠; 1:10; 图 6
圣克鲁斯生物技术 Aif1抗体(Santa Cruz, SC-32725)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:300 (图 2) 和 被用于免疫组化在小鼠样本上浓度为1:10 (图 6). J Neuroinflammation (2010) ncbi
GeneTex
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:1000; 图 2a
GeneTex Aif1抗体(GeneTex, GTX101495)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:1000 (图 2a). J Comp Neurol (2019) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:200; 图 2b
  • 免疫印迹; 小鼠; 1:1000; 图 s1d
GeneTex Aif1抗体(GeneTex, GTX100042)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:200 (图 2b) 和 被用于免疫印迹在小鼠样本上浓度为1:1000 (图 s1d). J Neuroinflammation (2018) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:100; 图 7i
  • 免疫组化-石蜡切片; 小鼠; 1:100; 图 4e
GeneTex Aif1抗体(GeneTex, GTX100042)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:100 (图 7i) 和 被用于免疫组化-石蜡切片在小鼠样本上浓度为1:100 (图 4e). Sci Rep (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 图 4
GeneTex Aif1抗体(Genetex, GTX101495)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 4). Sci Rep (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-自由浮动切片; 小鼠; 1:500; 图 4d
GeneTex Aif1抗体(GeneTex, GTX100042)被用于被用于免疫组化-自由浮动切片在小鼠样本上浓度为1:500 (图 4d). Dis Model Mech (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 图 3a-c
GeneTex Aif1抗体(Gene Tex, GTX100042)被用于被用于免疫组化在小鼠样本上 (图 3a-c). Sci Rep (2016) ncbi
Novus Biologicals
domestic goat 多克隆
  • 免疫组化; 小鼠; 1:100; 图 7i
Novus Biologicals Aif1抗体(Novus, NB100-1028)被用于被用于免疫组化在小鼠样本上浓度为1:100 (图 7i). Nat Commun (2019) ncbi
domestic goat 多克隆
  • 免疫组化; 小鼠; 图 3c
Novus Biologicals Aif1抗体(Novus, NB100-1028)被用于被用于免疫组化在小鼠样本上 (图 3c). Proc Natl Acad Sci U S A (2018) ncbi
domestic goat 多克隆
  • 免疫组化; 大鼠; 1:50; 图 s1e
Novus Biologicals Aif1抗体(Novus, NB100-1028)被用于被用于免疫组化在大鼠样本上浓度为1:50 (图 s1e). Cell Death Differ (2018) ncbi
domestic goat 多克隆
  • 免疫印迹; 小鼠; 1:300
Novus Biologicals Aif1抗体(Wako, NB100-1028)被用于被用于免疫印迹在小鼠样本上浓度为1:300. Mol Brain (2016) ncbi
domestic goat 多克隆
  • 免疫组化; 小鼠; 图 6a
Novus Biologicals Aif1抗体(Novus, NB100-1028)被用于被用于免疫组化在小鼠样本上 (图 6a). J Neuropathol Exp Neurol (2016) ncbi
赛默飞世尔
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:1000; 图 6g
赛默飞世尔 Aif1抗体(Thermo Fisher Scientific, PA5?C21274)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:1000 (图 6g). Front Aging Neurosci (2018) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:3000; 图 3c
赛默飞世尔 Aif1抗体(Invitrogen, PA5-21274)被用于被用于免疫印迹在小鼠样本上浓度为1:3000 (图 3c). J Mol Neurosci (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 大鼠; 1:2400; 图 6
赛默飞世尔 Aif1抗体(Thermo Scientific, PA5-27436)被用于被用于免疫印迹在大鼠样本上浓度为1:2400 (图 6). Exp Neurol (2016) ncbi
Synaptic Systems
豚鼠 多克隆(/)
  • 免疫组化-冰冻切片; 小鼠; 1:100; 图 4c
Synaptic Systems Aif1抗体(Synaptic Systems, 134 004)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:100 (图 4c). elife (2019) ncbi
domestic rabbit 多克隆(/)
  • 免疫组化-冰冻切片; 小鼠; 1:1000; 图 5b
Synaptic Systems Aif1抗体(Synaptic Systems, 234003)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:1000 (图 5b). Glia (2019) ncbi
豚鼠 多克隆(/)
  • 免疫组化; 小鼠; 1:2000; 图 6
Synaptic Systems Aif1抗体(Synaptic Systems, 234004)被用于被用于免疫组化在小鼠样本上浓度为1:2000 (图 6). PLoS ONE (2016) ncbi
默克密理博中国
小鼠 单克隆(20A12.1)
  • 免疫印迹; 小鼠; 1:200; 图 5a
默克密理博中国 Aif1抗体(Millipore, MABN92)被用于被用于免疫印迹在小鼠样本上浓度为1:200 (图 5a). Aging Cell (2019) ncbi
小鼠 单克隆(20A12.1)
  • 免疫组化-石蜡切片; 小鼠; 1:50; 图 4d
默克密理博中国 Aif1抗体(Millipore, MABN92)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:50 (图 4d). Mol Vis (2016) ncbi
小鼠 单克隆(20A12.1)
  • 免疫印迹; 人类; 图 2b
默克密理博中国 Aif1抗体(chemicon, MABN92)被用于被用于免疫印迹在人类样本上 (图 2b). EMBO Mol Med (2016) ncbi
小鼠 单克隆(20A12.1)
  • 免疫组化; 小鼠; 1:50; 图 5d
默克密理博中国 Aif1抗体(Millipore, MABN92)被用于被用于免疫组化在小鼠样本上浓度为1:50 (图 5d). Mol Vis (2016) ncbi
小鼠 单克隆(20A12.1)
  • 免疫组化; 小鼠; 1:100; 图 1
默克密理博中国 Aif1抗体(millipore, MABN92)被用于被用于免疫组化在小鼠样本上浓度为1:100 (图 1). J Neuroinflammation (2016) ncbi
小鼠 单克隆(20A12.1)
  • 免疫组化-石蜡切片; 小鼠; 1:200; 图 2
默克密理博中国 Aif1抗体(EMD Millipore, MABN92)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:200 (图 2). BMC Neurosci (2015) ncbi
小鼠 单克隆(20A12.1)
  • 免疫组化; 人类; 图 3
默克密理博中国 Aif1抗体(Millipore, 20A12.1)被用于被用于免疫组化在人类样本上 (图 3). Neuropathology (2016) ncbi
小鼠 单克隆(20A12.1)
  • 免疫组化-石蜡切片; 小鼠; 1:1000
默克密理博中国 Aif1抗体(Millipore, MABN92)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:1000. Neoplasia (2015) ncbi
小鼠 单克隆(20A12.1)
  • 免疫组化; 小鼠; 1:300
  • 免疫组化; 大鼠; 1:300
默克密理博中国 Aif1抗体(Millipore, MABN92)被用于被用于免疫组化在小鼠样本上浓度为1:300 和 被用于免疫组化在大鼠样本上浓度为1:300. Neurobiol Dis (2015) ncbi
小鼠 单克隆(20A12.1)
  • 免疫印迹; 大鼠; 1:500
默克密理博中国 Aif1抗体(Millipore, MABN92)被用于被用于免疫印迹在大鼠样本上浓度为1:500. Mol Pain (2014) ncbi
小鼠 单克隆(20A12.1)
  • 免疫细胞化学; 小鼠; 1:200
默克密理博中国 Aif1抗体(Millipore, MABN92)被用于被用于免疫细胞化学在小鼠样本上浓度为1:200. Chem Res Toxicol (2014) ncbi
小鼠 单克隆(20A12.1)
  • 免疫印迹; 小鼠; 1:250
默克密理博中国 Aif1抗体(Millipore, MABN92)被用于被用于免疫印迹在小鼠样本上浓度为1:250. J Neurochem (2013) ncbi
小鼠 单克隆(20A12.1)
  • 免疫组化; 大鼠; 1:2000
默克密理博中国 Aif1抗体(Millipore, MABN92)被用于被用于免疫组化在大鼠样本上浓度为1:2000. Eur J Neurosci (2013) ncbi
小鼠 单克隆(20A12.1)
  • 免疫组化-冰冻切片; 大鼠; 1:1000
默克密理博中国 Aif1抗体(Millipore, MABN92)被用于被用于免疫组化-冰冻切片在大鼠样本上浓度为1:1000. Comp Immunol Microbiol Infect Dis (2013) ncbi
小鼠 单克隆(20A12.1)
  • 免疫组化-冰冻切片; 大鼠; 1:2000
默克密理博中国 Aif1抗体(Millipore, MABN92)被用于被用于免疫组化-冰冻切片在大鼠样本上浓度为1:2000. J Neuroinflammation (2012) ncbi
文章列表
  1. Yu J, Wang W, Matei N, Li X, Pang J, Mo J, et al. Ezetimibe Attenuates Oxidative Stress and Neuroinflammation via the AMPK/Nrf2/TXNIP Pathway after MCAO in Rats. Oxid Med Cell Longev. 2020;2020:4717258 pubmed 出版商
  2. Li J, Chiu J, Ramanjulu M, Blass B, Pratico D. A pharmacological chaperone improves memory by reducing Aβ and tau neuropathology in a mouse model with plaques and tangles. Mol Neurodegener. 2020;15:1 pubmed 出版商
  3. Evonuk K, Doyle R, Moseley C, Thornell I, Adler K, Bingaman A, et al. Reduction of AMPA receptor activity on mature oligodendrocytes attenuates loss of myelinated axons in autoimmune neuroinflammation. Sci Adv. 2020;6:eaax5936 pubmed 出版商
  4. Ising C, Venegas C, Zhang S, Scheiblich H, Schmidt S, Vieira Saecker A, et al. NLRP3 inflammasome activation drives tau pathology. Nature. 2019;: pubmed 出版商
  5. Baskaran R, Lai C, Li W, Tuan L, Wang C, Lee L, et al. Characterization of striatal phenotypes in heterozygous Disc1 mutant mice, a model of haploinsufficiency. J Comp Neurol. 2019;: pubmed 出版商
  6. di Meco A, Pratico D. Early-life exposure to high-fat diet influences brain health in aging mice. Aging Cell. 2019;18:e13040 pubmed 出版商
  7. Yagensky O, Kohansal Nodehi M, Gunaseelan S, Rabe T, Zafar S, Zerr I, et al. Increased expression of heme-binding protein 1 early in Alzheimer's disease is linked to neurotoxicity. elife. 2019;8: pubmed 出版商
  8. Diéguez Hurtado R, Kato K, Giaimo B, Nieminen Kelhä M, Arf H, Ferrante F, et al. Loss of the transcription factor RBPJ induces disease-promoting properties in brain pericytes. Nat Commun. 2019;10:2817 pubmed 出版商
  9. Ohgomori T, Jinno S. The expression of keratan sulfate reveals a unique subset of microglia in the mouse hippocampus after pilocarpine-induced status epileptics. J Comp Neurol. 2020;528:14-31 pubmed 出版商
  10. Pluvinage J, Haney M, Smith B, Sun J, Iram T, Bonanno L, et al. CD22 blockade restores homeostatic microglial phagocytosis in ageing brains. Nature. 2019;568:187-192 pubmed 出版商
  11. Rotoli D, Morales M, Maeso M, Avila J, Pérez Rodríguez N, Mobasheri A, et al. IQGAP1, AmotL2, and FKBP51 Scaffoldins in the Glioblastoma Microenvironment. J Histochem Cytochem. 2019;67:481-494 pubmed 出版商
  12. Rosenzweig N, Dvir Szternfeld R, Tsitsou Kampeli A, Keren Shaul H, Ben Yehuda H, Weill Raynal P, et al. PD-1/PD-L1 checkpoint blockade harnesses monocyte-derived macrophages to combat cognitive impairment in a tauopathy mouse model. Nat Commun. 2019;10:465 pubmed 出版商
  13. Düsedau H, Kleveman J, Figueiredo C, Biswas A, Steffen J, Kliche S, et al. p75NTR regulates brain mononuclear cell function and neuronal structure in Toxoplasma infection-induced neuroinflammation. Glia. 2019;67:193-211 pubmed 出版商
  14. Nie S, Tan Y, Zhang Z, Chen G, Xiong J, Hu D, et al. Bilateral Implantation of Shear Stress Modifier in ApoE Knockout Mouse Induces Cognitive Impairment and Tau Abnormalities. Front Aging Neurosci. 2018;10:303 pubmed 出版商
  15. Real R, Peter M, Trabalza A, Khan S, Smith M, Dopp J, et al. In vivo modeling of human neuron dynamics and Down syndrome. Science. 2018;362: pubmed 出版商
  16. Louveau A, Herz J, Alme M, Salvador A, Dong M, Viar K, et al. CNS lymphatic drainage and neuroinflammation are regulated by meningeal lymphatic vasculature. Nat Neurosci. 2018;21:1380-1391 pubmed 出版商
  17. Han L, Wang L, Tang S, Yuan L, Wu S, Du X, et al. ITGB4 deficiency in bronchial epithelial cells directs airway inflammation and bipolar disorder-related behavior. J Neuroinflammation. 2018;15:246 pubmed 出版商
  18. Dá Mesquita S, Louveau A, Vaccari A, Smirnov I, Cornelison R, Kingsmore K, et al. Functional aspects of meningeal lymphatics in ageing and Alzheimer's disease. Nature. 2018;560:185-191 pubmed 出版商
  19. Weidner L, Kannan P, Mitsios N, Kang S, Hall M, Theodore W, et al. The expression of inflammatory markers and their potential influence on efflux transporters in drug-resistant mesial temporal lobe epilepsy tissue. Epilepsia. 2018;59:1507-1517 pubmed 出版商
  20. Norris G, Smirnov I, Filiano A, Shadowen H, Cody K, Thompson J, et al. Neuronal integrity and complement control synaptic material clearance by microglia after CNS injury. J Exp Med. 2018;215:1789-1801 pubmed 出版商
  21. Appel J, Ye S, Tang F, Sun D, Zhang H, Mei L, et al. Increased Microglial Activity, Impaired Adult Hippocampal Neurogenesis, and Depressive-like Behavior in Microglial VPS35-Depleted Mice. J Neurosci. 2018;38:5949-5968 pubmed 出版商
  22. Kukreja L, Shahidehpour R, Kim G, Keegan J, Sadleir K, Russell T, et al. Differential Neurotoxicity Related to Tetracycline Transactivator and TDP-43 Expression in Conditional TDP-43 Mouse Model of Frontotemporal Lobar Degeneration. J Neurosci. 2018;38:6045-6062 pubmed 出版商
  23. Huang W, Lin S, Chen H, Chen Y, Chen T, Hsu K, et al. NADPH oxidases as potential pharmacological targets against increased seizure susceptibility after systemic inflammation. J Neuroinflammation. 2018;15:140 pubmed 出版商
  24. Lee M, Sitko A, Khalid S, Shirasu Hiza M, Mason C. Spatiotemporal distribution of glia in and around the developing mouse optic tract. J Comp Neurol. 2019;527:508-521 pubmed 出版商
  25. Zhao Y, Wu X, Li X, Jiang L, Gui X, Liu Y, et al. TREM2 Is a Receptor for β-Amyloid that Mediates Microglial Function. Neuron. 2018;97:1023-1031.e7 pubmed 出版商
  26. Giurisato E, Xu Q, Lonardi S, Telfer B, Russo I, Pearson A, et al. Myeloid ERK5 deficiency suppresses tumor growth by blocking protumor macrophage polarization via STAT3 inhibition. Proc Natl Acad Sci U S A. 2018;115:E2801-E2810 pubmed 出版商
  27. Zukor K, Wang H, Siddharthan V, Julander J, Morrey J. Zika virus-induced acute myelitis and motor deficits in adult interferon ??/? receptor knockout mice. J Neurovirol. 2018;24:273-290 pubmed 出版商
  28. Sokhi U, Liber M, Frye L, Park S, Kang K, Pannellini T, et al. Dissection and function of autoimmunity-associated TNFAIP3 (A20) gene enhancers in humanized mouse models. Nat Commun. 2018;9:658 pubmed 出版商
  29. Hou Y, Lautrup S, Cordonnier S, Wang Y, Croteau D, Zavala E, et al. NAD+ supplementation normalizes key Alzheimer's features and DNA damage responses in a new AD mouse model with introduced DNA repair deficiency. Proc Natl Acad Sci U S A. 2018;115:E1876-E1885 pubmed 出版商
  30. Zhang R, Wu Y, Xie F, Zhong Y, Wang Y, Xu M, et al. RGMa mediates reactive astrogliosis and glial scar formation through TGF?1/Smad2/3 signaling after stroke. Cell Death Differ. 2018;25:1503-1516 pubmed 出版商
  31. Zhou K, Enkhjargal B, Xie Z, Sun C, Wu L, Malaguit J, et al. Dihydrolipoic Acid Inhibits Lysosomal Rupture and NLRP3 Through Lysosome-Associated Membrane Protein-1/Calcium/Calmodulin-Dependent Protein Kinase II/TAK1 Pathways After Subarachnoid Hemorrhage in Rat. Stroke. 2018;49:175-183 pubmed 出版商
  32. Xie Z, Enkhjargal B, Wu L, Zhou K, Sun C, Hu X, et al. Exendin-4 attenuates neuronal death via GLP-1R/PI3K/Akt pathway in early brain injury after subarachnoid hemorrhage in rats. Neuropharmacology. 2018;128:142-151 pubmed 出版商
  33. Zhang L, Tan J, Jiang X, Qian W, Yang T, Sun X, et al. Neuron-derived CCL2 contributes to microglia activation and neurological decline in hepatic encephalopathy. Biol Res. 2017;50:26 pubmed 出版商
  34. Gesteira T, Sun M, Coulson Thomas Y, Yamaguchi Y, Yeh L, Hascall V, et al. Hyaluronan Rich Microenvironment in the Limbal Stem Cell Niche Regulates Limbal Stem Cell Differentiation. Invest Ophthalmol Vis Sci. 2017;58:4407-4421 pubmed 出版商
  35. Connolly N, Stokum J, Schneider C, Ozawa T, Xu S, Galisteo R, et al. Genetically engineered rat gliomas: PDGF-driven tumor initiation and progression in tv-a transgenic rats recreate key features of human brain cancer. PLoS ONE. 2017;12:e0174557 pubmed 出版商
  36. Zhou Y, Chen S, Liu D, Manyande A, Zhang W, Yang S, et al. The Role of Spinal GABAB Receptors in Cancer-Induced Bone Pain in Rats. J Pain. 2017;18:933-946 pubmed 出版商
  37. Yang X, Huo F, Liu B, Liu J, Chen T, Li J, et al. Crocin Inhibits Oxidative Stress and Pro-inflammatory Response of Microglial Cells Associated with Diabetic Retinopathy Through the Activation of PI3K/Akt Signaling Pathway. J Mol Neurosci. 2017;61:581-589 pubmed 出版商
  38. Williams C, Uytingco C, Green W, McIntyre J, Ukhanov K, Zimmerman A, et al. Gene Therapeutic Reversal of Peripheral Olfactory Impairment in Bardet-Biedl Syndrome. Mol Ther. 2017;25:904-916 pubmed 出版商
  39. Furukawa S, Nagaike M, Ozaki K. Databases for technical aspects of immunohistochemistry. J Toxicol Pathol. 2017;30:79-107 pubmed 出版商
  40. Wang S, Kugelman T, Buch A, Herman M, Han Y, Karakatsani M, et al. Non-invasive, Focused Ultrasound-Facilitated Gene Delivery for Optogenetics. Sci Rep. 2017;7:39955 pubmed 出版商
  41. Larabee C, Desai S, Agasing A, Georgescu C, Wren J, Axtell R, et al. Loss of Nrf2 exacerbates the visual deficits and optic neuritis elicited by experimental autoimmune encephalomyelitis. Mol Vis. 2016;22:1503-1513 pubmed
  42. Qi J, Chen C, Meng Q, Wu Y, Wu H, Zhao T. Crosstalk between Activated Microglia and Neurons in the Spinal Dorsal Horn Contributes to Stress-induced Hyperalgesia. Sci Rep. 2016;6:39442 pubmed 出版商
  43. Sellgren C, Sheridan S, Gracias J, Xuan D, Fu T, Perlis R. Patient-specific models of microglia-mediated engulfment of synapses and neural progenitors. Mol Psychiatry. 2017;22:170-177 pubmed 出版商
  44. Dzamko N, Gysbers A, Bandopadhyay R, Bolliger M, Uchino A, Zhao Y, et al. LRRK2 levels and phosphorylation in Parkinson's disease brain and cases with restricted Lewy bodies. Mov Disord. 2017;32:423-432 pubmed 出版商
  45. Hurtado Alvarado G, Dominguez Salazar E, Velazquez Moctezuma J, Gómez González B. A2A Adenosine Receptor Antagonism Reverts the Blood-Brain Barrier Dysfunction Induced by Sleep Restriction. PLoS ONE. 2016;11:e0167236 pubmed 出版商
  46. Hodges J, Yu X, Gilmore A, Bennett H, Tjia M, Perna J, et al. Astrocytic Contributions to Synaptic and Learning Abnormalities in a Mouse Model of Fragile X Syndrome. Biol Psychiatry. 2017;82:139-149 pubmed 出版商
  47. Mildner A, Huang H, Radke J, Stenzel W, Priller J. P2Y12 receptor is expressed on human microglia under physiological conditions throughout development and is sensitive to neuroinflammatory diseases. Glia. 2017;65:375-387 pubmed 出版商
  48. Zha J, Liu X, Zhu J, Liu S, Lu S, Xu P, et al. A scFv antibody targeting common oligomeric epitope has potential for treating several amyloidoses. Sci Rep. 2016;6:36631 pubmed 出版商
  49. Pan S, Li S, Hu Y, Zhang H, Liu Y, Jiang H, et al. Resveratrol post-treatment protects against neonatal brain injury after hypoxia-ischemia. Oncotarget. 2016;7:79247-79261 pubmed 出版商
  50. Teo J, Morris M, Jones N. Maternal obesity increases inflammation and exacerbates damage following neonatal hypoxic-ischaemic brain injury in rats. Brain Behav Immun. 2017;63:186-196 pubmed 出版商
  51. Schmidt A, Kannan P, Chougnet C, Danzer S, Miller L, Jobe A, et al. Intra-amniotic LPS causes acute neuroinflammation in preterm rhesus macaques. J Neuroinflammation. 2016;13:238 pubmed 出版商
  52. Choi S, Roh D, Yoon S, Kwon S, Choi H, Han H, et al. Astrocyte sigma-1 receptors modulate connexin 43 expression leading to the induction of below-level mechanical allodynia in spinal cord injured mice. Neuropharmacology. 2016;111:34-46 pubmed 出版商
  53. Dhillon R, Parker J, Syed Y, Edgley S, Young A, Fawcett J, et al. Axonal plasticity underpins the functional recovery following surgical decompression in a rat model of cervical spondylotic myelopathy. Acta Neuropathol Commun. 2016;4:89 pubmed 出版商
  54. Hillis J, Davies J, Mundim M, Al Dalahmah O, Szele F. Cuprizone demyelination induces a unique inflammatory response in the subventricular zone. J Neuroinflammation. 2016;13:190 pubmed 出版商
  55. Liou A, Wu S, Liao C, Chang Y, Chang C, Shih C. A new animal model containing human SCARB2 and lacking stat-1 is highly susceptible to EV71. Sci Rep. 2016;6:31151 pubmed 出版商
  56. Wolf H, Damme M, Stroobants S, D Hooge R, Beck H, Hermans Borgmeyer I, et al. A mouse model for fucosidosis recapitulates storage pathology and neurological features of the milder form of the human disease. Dis Model Mech. 2016;9:1015-28 pubmed 出版商
  57. Lee S, Le Pichon C, Adolfsson O, Gafner V, Pihlgren M, Lin H, et al. Antibody-Mediated Targeting of Tau In Vivo Does Not Require Effector Function and Microglial Engagement. Cell Rep. 2016;16:1690-1700 pubmed 出版商
  58. Choi M, Ahn S, Yang E, Kim H, Chong Y, Kim H. Hippocampus-based contextual memory alters the morphological characteristics of astrocytes in the dentate gyrus. Mol Brain. 2016;9:72 pubmed 出版商
  59. Xu J, Wang H, Won S, Basu J, Kapfhamer D, Swanson R. Microglial activation induced by the alarmin S100B is regulated by poly(ADP-ribose) polymerase-1. Glia. 2016;64:1869-78 pubmed 出版商
  60. Urbán N, van den Berg D, Forget A, Andersen J, Demmers J, Hunt C, et al. Return to quiescence of mouse neural stem cells by degradation of a proactivation protein. Science. 2016;353:292-5 pubmed 出版商
  61. Chuang T, Guo Y, Seki S, Rosen A, Johanson D, Mandell J, et al. LRP1 expression in microglia is protective during CNS autoimmunity. Acta Neuropathol Commun. 2016;4:68 pubmed 出版商
  62. Janer A, Prudent J, Paupe V, Fahiminiya S, Majewski J, Sgarioto N, et al. SLC25A46 is required for mitochondrial lipid homeostasis and cristae maintenance and is responsible for Leigh syndrome. EMBO Mol Med. 2016;8:1019-38 pubmed 出版商
  63. Vernay A, Therreau L, Blot B, Risson V, Dirrig Grosch S, Waegaert R, et al. A transgenic mouse expressing CHMP2Bintron5 mutant in neurons develops histological and behavioural features of amyotrophic lateral sclerosis and frontotemporal dementia. Hum Mol Genet. 2016;25:3341-3360 pubmed 出版商
  64. Auderset L, Cullen C, Young K. Low Density Lipoprotein-Receptor Related Protein 1 Is Differentially Expressed by Neuronal and Glial Populations in the Developing and Mature Mouse Central Nervous System. PLoS ONE. 2016;11:e0155878 pubmed 出版商
  65. Singh V, Singh M, Gorantla S, Poluektova L, Maggirwar S. Smoothened Agonist Reduces Human Immunodeficiency Virus Type-1-Induced Blood-Brain Barrier Breakdown in Humanized Mice. Sci Rep. 2016;6:26876 pubmed 出版商
  66. Puchert M, Adams V, Linke A, Engele J. Evidence for the involvement of the CXCL12 system in the adaptation of skeletal muscles to physical exercise. Cell Signal. 2016;28:1205-15 pubmed 出版商
  67. Thakurela S, Garding A, Jung R, Müller C, Goebbels S, White R, et al. The transcriptome of mouse central nervous system myelin. Sci Rep. 2016;6:25828 pubmed 出版商
  68. Keilhoff G, Lucas B, Uhde K, Fansa H. Selected gene profiles of stressed NSC-34 cells and rat spinal cord following peripheral nerve reconstruction and minocycline treatment. Exp Ther Med. 2016;11:1685-1699 pubmed
  69. Larabee C, Hu Y, Desai S, Georgescu C, Wren J, Axtell R, et al. Myelin-specific Th17 cells induce severe relapsing optic neuritis with irreversible loss of retinal ganglion cells in C57BL/6 mice. Mol Vis. 2016;22:332-41 pubmed
  70. Lee K, Lee H, Lin H, Tsay H, Tsai F, Shyue S, et al. Role of transient receptor potential ankyrin 1 channels in Alzheimer's disease. J Neuroinflammation. 2016;13:92 pubmed 出版商
  71. Bouvier D, Jones E, Quesseveur G, Davoli M, A Ferreira T, Quirion R, et al. High Resolution Dissection of Reactive Glial Nets in Alzheimer's Disease. Sci Rep. 2016;6:24544 pubmed 出版商
  72. Tzekov R, Dawson C, Orlando M, Mouzon B, Reed J, Evans J, et al. Sub-Chronic Neuropathological and Biochemical Changes in Mouse Visual System after Repetitive Mild Traumatic Brain Injury. PLoS ONE. 2016;11:e0153608 pubmed 出版商
  73. Williams P, Tribble J, Pepper K, Cross S, Morgan B, Morgan J, et al. Inhibition of the classical pathway of the complement cascade prevents early dendritic and synaptic degeneration in glaucoma. Mol Neurodegener. 2016;11:26 pubmed 出版商
  74. Yang J, Ding S, Huang W, Hu J, Huang S, Zhang Y, et al. Interleukin-4 Ameliorates the Functional Recovery of Intracerebral Hemorrhage Through the Alternative Activation of Microglia/Macrophage. Front Neurosci. 2016;10:61 pubmed 出版商
  75. Fan J, Fan X, Li Y, Guo J, Xia D, Ding L, et al. Blunted inflammation mediated by NF-κB activation in hippocampus alleviates chronic normobaric hypoxia-induced anxiety-like behavior in rats. Brain Res Bull. 2016;122:54-61 pubmed 出版商
  76. Loewen J, Barker Haliski M, Dahle E, White H, Wilcox K. Neuronal Injury, Gliosis, and Glial Proliferation in Two Models of Temporal Lobe Epilepsy. J Neuropathol Exp Neurol. 2016;75:366-78 pubmed 出版商
  77. Makani V, Jang Y, Christopher K, Judy W, Eckstein J, Hensley K, et al. BBB-Permeable, Neuroprotective, and Neurotrophic Polysaccharide, Midi-GAGR. PLoS ONE. 2016;11:e0149715 pubmed 出版商
  78. Xu A, Zheng G, Wang Z, Chen X, Jiang Q. Neuroprotective effects of Ilexonin A following transient focal cerebral ischemia in rats. Mol Med Rep. 2016;13:2957-66 pubmed 出版商
  79. Maeda S, Djukic B, Taneja P, Yu G, Lo I, Davis A, et al. Expression of A152T human tau causes age-dependent neuronal dysfunction and loss in transgenic mice. EMBO Rep. 2016;17:530-51 pubmed 出版商
  80. Ma Y, Matsuwaki T, Yamanouchi K, Nishihara M. Glucocorticoids Suppress the Protective Effect of Cyclooxygenase-2-Related Signaling on Hippocampal Neurogenesis Under Acute Immune Stress. Mol Neurobiol. 2017;54:1953-1966 pubmed 出版商
  81. Puyang Z, Feng L, Chen H, Liang P, Troy J, Liu X. Retinal Ganglion Cell Loss is Delayed Following Optic Nerve Crush in NLRP3 Knockout Mice. Sci Rep. 2016;6:20998 pubmed 出版商
  82. Lee Kubli C, Ingves M, Henry K, Shiao R, Collyer E, Tuszynski M, et al. Analysis of the behavioral, cellular and molecular characteristics of pain in severe rodent spinal cord injury. Exp Neurol. 2016;278:91-104 pubmed 出版商
  83. Liu Q, Sanai N, Jin W, La Cava A, Van Kaer L, Shi F. Neural stem cells sustain natural killer cells that dictate recovery from brain inflammation. Nat Neurosci. 2016;19:243-52 pubmed 出版商
  84. Liu H, Shi H, Huang F, Peterson K, Wu H, Lan Y, et al. Astragaloside IV inhibits microglia activation via glucocorticoid receptor mediated signaling pathway. Sci Rep. 2016;6:19137 pubmed 出版商
  85. Larabee C, Georgescu C, Wren J, Plafker S. Expression profiling of the ubiquitin conjugating enzyme UbcM2 in murine brain reveals modest age-dependent decreases in specific neurons. BMC Neurosci. 2015;16:76 pubmed 出版商
  86. Gatticchi L, Bellezza I, Del Sordo R, Peirce M, Sidoni A, Roberti R, et al. The Tm7sf2 Gene Deficiency Protects Mice against Endotoxin-Induced Acute Kidney Injury. PLoS ONE. 2015;10:e0141885 pubmed 出版商
  87. Gu Y, Zhang Y, Bi Y, Liu J, Tan B, Gong M, et al. Mesenchymal stem cells suppress neuronal apoptosis and decrease IL-10 release via the TLR2/NFκB pathway in rats with hypoxic-ischemic brain damage. Mol Brain. 2015;8:65 pubmed 出版商
  88. Zarpelon A, Rodrigues F, Lopes A, Souza G, Carvalho T, Pinto L, et al. Spinal cord oligodendrocyte-derived alarmin IL-33 mediates neuropathic pain. FASEB J. 2016;30:54-65 pubmed 出版商
  89. Satoh J, Kino Y, Asahina N, Takitani M, Miyoshi J, Ishida T, et al. TMEM119 marks a subset of microglia in the human brain. Neuropathology. 2016;36:39-49 pubmed 出版商
  90. Rolón Reyes K, Kucheryavykh Y, Cubano L, Inyushin M, Skatchkov S, Eaton M, et al. Microglia Activate Migration of Glioma Cells through a Pyk2 Intracellular Pathway. PLoS ONE. 2015;10:e0131059 pubmed 出版商
  91. Gabrusiewicz K, Hossain M, Cortes Santiago N, Fan X, Kaminska B, Marini F, et al. Macrophage Ablation Reduces M2-Like Populations and Jeopardizes Tumor Growth in a MAFIA-Based Glioma Model. Neoplasia. 2015;17:374-84 pubmed 出版商
  92. Kim S, Chung Y, Lee H, Chung S, Lee J, Sohn U, et al. Protective effects of phosphatidylcholine on oxaliplatin-induced neuropathy in rats. Life Sci. 2015;130:81-7 pubmed 出版商
  93. Åšlusarczyk J, Trojan E, GÅ‚ombik K, Budziszewska B, Kubera M, LasoÅ„ W, et al. Prenatal stress is a vulnerability factor for altered morphology and biological activity of microglia cells. Front Cell Neurosci. 2015;9:82 pubmed 出版商
  94. Sunkaria A, Bhardwaj S, Halder A, Yadav A, Sandhir R. Migration and Phagocytic Ability of Activated Microglia During Post-natal Development is Mediated by Calcium-Dependent Purinergic Signalling. Mol Neurobiol. 2016;53:944-54 pubmed 出版商
  95. Maurya S, Mishra J, Abbas S, Bandyopadhyay S. Cypermethrin Stimulates GSK3β-Dependent Aβ and p-tau Proteins and Cognitive Loss in Young Rats: Reduced HB-EGF Signaling and Downstream Neuroinflammation as Critical Regulators. Mol Neurobiol. 2016;53:968-82 pubmed 出版商
  96. Li Y, Korgaonkar A, Swietek B, Wang J, Elgammal F, Elkabes S, et al. Toll-like receptor 4 enhancement of non-NMDA synaptic currents increases dentate excitability after brain injury. Neurobiol Dis. 2015;74:240-53 pubmed 出版商
  97. Huang L, Zhu G, Deng Y, Jiang W, Fang M, Chen C, et al. Hypertonic saline alleviates cerebral edema by inhibiting microglia-derived TNF-? and IL-1?-induced Na-K-Cl Cotransporter up-regulation. J Neuroinflammation. 2014;11:102 pubmed 出版商
  98. Barragán Iglesias P, Pineda Farias J, Cervantes Durán C, Bravo Hernández M, Rocha González H, Murbartián J, et al. Role of spinal P2Y6 and P2Y11 receptors in neuropathic pain in rats: possible involvement of glial cells. Mol Pain. 2014;10:29 pubmed 出版商
  99. Paez Gonzalez P, Asrican B, Rodriguez E, Kuo C. Identification of distinct ChAT? neurons and activity-dependent control of postnatal SVZ neurogenesis. Nat Neurosci. 2014;17:934-42 pubmed 出版商
  100. Singh V, Mitra S, Sharma A, Gera R, Ghosh D. Isolation and characterization of microglia from adult mouse brain: selected applications for ex vivo evaluation of immunotoxicological alterations following in vivo xenobiotic exposure. Chem Res Toxicol. 2014;27:895-903 pubmed 出版商
  101. König N, Trolle C, Kapuralin K, Adameyko I, Mitrecic D, Aldskogius H, et al. Murine neural crest stem cells and embryonic stem cell-derived neuron precursors survive and differentiate after transplantation in a model of dorsal root avulsion. J Tissue Eng Regen Med. 2017;11:129-137 pubmed 出版商
  102. Tucsek Z, Toth P, Sosnowska D, Gautam T, Mitschelen M, Koller A, et al. Obesity in aging exacerbates blood-brain barrier disruption, neuroinflammation, and oxidative stress in the mouse hippocampus: effects on expression of genes involved in beta-amyloid generation and Alzheimer's disease. J Gerontol A Biol Sci Med Sci. 2014;69:1212-26 pubmed 出版商
  103. Tan M, Yu J, Jiang T, Zhu X, Guan H, Tan L. IL12/23 p40 inhibition ameliorates Alzheimer's disease-associated neuropathology and spatial memory in SAMP8 mice. J Alzheimers Dis. 2014;38:633-46 pubmed 出版商
  104. Savard A, Lavoie K, Brochu M, Grbic D, Lepage M, Gris D, et al. Involvement of neuronal IL-1? in acquired brain lesions in a rat model of neonatal encephalopathy. J Neuroinflammation. 2013;10:110 pubmed 出版商
  105. Kaushik D, Thounaojam M, Kumawat K, Gupta M, Basu A. Interleukin-1? orchestrates underlying inflammatory responses in microglia via Krüppel-like factor 4. J Neurochem. 2013;127:233-44 pubmed 出版商
  106. Dilworth J, Krueger S, Dabjan M, Grills I, Torma J, Wilson G, et al. Pulsed low-dose irradiation of orthotopic glioblastoma multiforme (GBM) in a pre-clinical model: effects on vascularization and tumor control. Radiother Oncol. 2013;108:149-54 pubmed 出版商
  107. Sogn C, Puchades M, Gundersen V. Rare contacts between synapses and microglial processes containing high levels of Iba1 and actin--a postembedding immunogold study in the healthy rat brain. Eur J Neurosci. 2013;38:2030-40 pubmed 出版商
  108. Harris N, Nogueira M, Verley D, Sutton R. Chondroitinase enhances cortical map plasticity and increases functionally active sprouting axons after brain injury. J Neurotrauma. 2013;30:1257-69 pubmed 出版商
  109. Chio C, Chang C, Wang C, Cheong C, Chao C, Cheng B, et al. Etanercept attenuates traumatic brain injury in rats by reducing early microglial expression of tumor necrosis factor-?. BMC Neurosci. 2013;14:33 pubmed 出版商
  110. Sheu J, Liao W, Wu U, Shyu L, Mai F, Chen L, et al. Resveratrol suppresses calcium-mediated microglial activation and rescues hippocampal neurons of adult rats following acute bacterial meningitis. Comp Immunol Microbiol Infect Dis. 2013;36:137-48 pubmed 出版商
  111. Cao L, Li L, Lin D, Zuo Z. Isoflurane induces learning impairment that is mediated by interleukin 1? in rodents. PLoS ONE. 2012;7:e51431 pubmed 出版商
  112. Zhu X, Huang C, Li Q, Guo Q, Wang Y, He X, et al. Temporal distribution of p300/CBP immunoreactivity in the adult rat spinal dorsal horn following chronic constriction injury (CCI). Cell Mol Neurobiol. 2013;33:197-204 pubmed 出版商
  113. Ziebell J, Taylor S, Cao T, Harrison J, Lifshitz J. Rod microglia: elongation, alignment, and coupling to form trains across the somatosensory cortex after experimental diffuse brain injury. J Neuroinflammation. 2012;9:247 pubmed 出版商
  114. Roltsch E, Holcomb L, Young K, Marks A, Zimmer D. PSAPP mice exhibit regionally selective reductions in gliosis and plaque deposition in response to S100B ablation. J Neuroinflammation. 2010;7:78 pubmed 出版商