这是一篇来自已证抗体库的有关小鼠 Aif1的综述,是根据173篇发表使用所有方法的文章归纳的。这综述旨在帮助来邦网的访客找到最适合Aif1 抗体。
Aif1 同义词: AI607846; AIF-1; D17H6S50E; G1; Iba1

艾博抗(上海)贸易有限公司
domestic goat 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:200; 图 5a
艾博抗(上海)贸易有限公司 Aif1抗体(Abcam, ab5076)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:200 (图 5a). Stroke Vasc Neurol (2021) ncbi
domestic rabbit 单克隆(EPR16588)
  • 免疫组化; 小鼠; 图 3c
艾博抗(上海)贸易有限公司 Aif1抗体(Abcam, ab178846)被用于被用于免疫组化在小鼠样本上 (图 3c). Brain Commun (2021) ncbi
domestic goat 多克隆
  • 免疫组化; 大鼠; 1:100; 图 7a
艾博抗(上海)贸易有限公司 Aif1抗体(Abcam, AB5076)被用于被用于免疫组化在大鼠样本上浓度为1:100 (图 7a). Sci Rep (2021) ncbi
domestic goat 多克隆
  • 免疫组化; 小鼠; 1:500; 图 1c
艾博抗(上海)贸易有限公司 Aif1抗体(Abcam, ab-5076)被用于被用于免疫组化在小鼠样本上浓度为1:500 (图 1c). J Neuroinflammation (2021) ncbi
domestic rabbit 单克隆(EPR16588)
  • 免疫组化; 小鼠; 1:500; 图 5e
艾博抗(上海)贸易有限公司 Aif1抗体(Abcam, ab178846)被用于被用于免疫组化在小鼠样本上浓度为1:500 (图 5e). Transl Vis Sci Technol (2021) ncbi
domestic rabbit 单克隆(EPR16588)
  • 免疫组化; 小鼠; 图 1f
艾博抗(上海)贸易有限公司 Aif1抗体(Abcam, EPR16588)被用于被用于免疫组化在小鼠样本上 (图 1f). Sci Rep (2021) ncbi
domestic goat 多克隆
  • 免疫组化; 小鼠; 1:500; 图 s6c
艾博抗(上海)贸易有限公司 Aif1抗体(Abcam, ab5076)被用于被用于免疫组化在小鼠样本上浓度为1:500 (图 s6c). Aging Cell (2021) ncbi
domestic rabbit 单克隆(EPR16588)
  • 免疫组化; 小鼠; 1:1000; 图 5b
艾博抗(上海)贸易有限公司 Aif1抗体(Abcam, ab178846)被用于被用于免疫组化在小鼠样本上浓度为1:1000 (图 5b). PLoS ONE (2021) ncbi
小鼠 单克隆(1022-5)
  • 免疫组化; 大鼠; 1:100; 图 2a
艾博抗(上海)贸易有限公司 Aif1抗体(Abcam, ab15690)被用于被用于免疫组化在大鼠样本上浓度为1:100 (图 2a). J Neuroinflammation (2021) ncbi
domestic goat 多克隆
  • 免疫组化; 小鼠; 图 4a
艾博抗(上海)贸易有限公司 Aif1抗体(Abcam, AB5076)被用于被用于免疫组化在小鼠样本上 (图 4a). Front Mol Neurosci (2021) ncbi
domestic rabbit 单克隆(EPR16589)
  • 免疫组化; 小鼠; 1:500; 图 5a
艾博抗(上海)贸易有限公司 Aif1抗体(Abcam, ab178847)被用于被用于免疫组化在小鼠样本上浓度为1:500 (图 5a). Acta Neuropathol (2021) ncbi
domestic goat 多克隆
  • 免疫组化; 大鼠; 1:1000; 图 3d
艾博抗(上海)贸易有限公司 Aif1抗体(Abcam, ab5076)被用于被用于免疫组化在大鼠样本上浓度为1:1000 (图 3d). Mol Brain (2021) ncbi
domestic goat 多克隆
  • 免疫组化; 小鼠; 1:1500; 图 s3a
艾博抗(上海)贸易有限公司 Aif1抗体(Abcam, ab5076)被用于被用于免疫组化在小鼠样本上浓度为1:1500 (图 s3a). PLoS ONE (2021) ncbi
domestic goat 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 3g
艾博抗(上海)贸易有限公司 Aif1抗体(Abcam, ab5076)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 3g). Int J Mol Sci (2021) ncbi
domestic goat 多克隆
  • 免疫组化-自由浮动切片; 大鼠; 1:1000; 图 4a
艾博抗(上海)贸易有限公司 Aif1抗体(Abcam, ab5076)被用于被用于免疫组化-自由浮动切片在大鼠样本上浓度为1:1000 (图 4a). Brain Behav Immun (2021) ncbi
domestic goat 多克隆
  • 免疫组化-自由浮动切片; 小鼠; 1:200; 图 s6g
艾博抗(上海)贸易有限公司 Aif1抗体(Abcam, ab5076)被用于被用于免疫组化-自由浮动切片在小鼠样本上浓度为1:200 (图 s6g). Sci Adv (2021) ncbi
domestic goat 多克隆
  • 免疫细胞化学; 小鼠; 图 6a
艾博抗(上海)贸易有限公司 Aif1抗体(Abcam, ab48004)被用于被用于免疫细胞化学在小鼠样本上 (图 6a). Aging (Albany NY) (2021) ncbi
domestic goat 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:100; 图 1i
艾博抗(上海)贸易有限公司 Aif1抗体(Abcam, ab5076)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:100 (图 1i). Am J Pathol (2021) ncbi
domestic rabbit 单克隆(EPR16589)
  • 免疫组化; 小鼠; 图 3b
艾博抗(上海)贸易有限公司 Aif1抗体(Abcam, ab178847)被用于被用于免疫组化在小鼠样本上 (图 3b). Wellcome Open Res (2021) ncbi
domestic rabbit 单克隆(EPR16589)
  • 免疫组化; 小鼠; 1:1000; 图 2c
艾博抗(上海)贸易有限公司 Aif1抗体(Abcam, ab221790)被用于被用于免疫组化在小鼠样本上浓度为1:1000 (图 2c). NPJ Regen Med (2021) ncbi
domestic goat 多克隆
  • 免疫组化; 小鼠; 1:500; 图 3a
艾博抗(上海)贸易有限公司 Aif1抗体(Abcam, ab5076)被用于被用于免疫组化在小鼠样本上浓度为1:500 (图 3a). Sci Rep (2021) ncbi
domestic goat 多克隆
  • 免疫组化; 小鼠; 1:200; 图 2h
艾博抗(上海)贸易有限公司 Aif1抗体(Abcam, ab48004)被用于被用于免疫组化在小鼠样本上浓度为1:200 (图 2h). Aging (Albany NY) (2021) ncbi
domestic goat 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:500; 图 1h
艾博抗(上海)贸易有限公司 Aif1抗体(Abcam, ab5076)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:500 (图 1h). elife (2020) ncbi
domestic goat 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 s5a
艾博抗(上海)贸易有限公司 Aif1抗体(Abcam, ab5076)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 s5a). Sci Adv (2020) ncbi
domestic goat 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:500; 图 3g
艾博抗(上海)贸易有限公司 Aif1抗体(Abcam, ab5076)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:500 (图 3g). elife (2020) ncbi
domestic goat 多克隆
  • 免疫组化; 小鼠; 1:1000; 图 6c
艾博抗(上海)贸易有限公司 Aif1抗体(Abcam, ab5076)被用于被用于免疫组化在小鼠样本上浓度为1:1000 (图 6c). Acta Neuropathol Commun (2020) ncbi
domestic rabbit 单克隆(EPR16589)
  • 免疫组化; 小鼠; 1:500; 图 4a
艾博抗(上海)贸易有限公司 Aif1抗体(Abcam, 178847)被用于被用于免疫组化在小鼠样本上浓度为1:500 (图 4a). J Clin Invest (2020) ncbi
domestic rabbit 单克隆(EPR16588)
  • 免疫组化; 小鼠; 图 3e
  • 免疫印迹; 小鼠; 图 3f
艾博抗(上海)贸易有限公司 Aif1抗体(Abcam, ab178846)被用于被用于免疫组化在小鼠样本上 (图 3e) 和 被用于免疫印迹在小鼠样本上 (图 3f). Transl Psychiatry (2020) ncbi
domestic goat 多克隆
  • 免疫组化; 小鼠; 1:200
艾博抗(上海)贸易有限公司 Aif1抗体(Abcam, ab5076)被用于被用于免疫组化在小鼠样本上浓度为1:200. Nat Commun (2020) ncbi
domestic goat 多克隆
  • 免疫组化; 小鼠; 1:1000; 图 2a
艾博抗(上海)贸易有限公司 Aif1抗体(Abcam, ab5076)被用于被用于免疫组化在小鼠样本上浓度为1:1000 (图 2a). Front Neurosci (2020) ncbi
domestic goat 多克隆
  • 免疫组化; 小鼠; 图 6a
艾博抗(上海)贸易有限公司 Aif1抗体(Abcam, ab5076)被用于被用于免疫组化在小鼠样本上 (图 6a). Front Pharmacol (2020) ncbi
domestic goat 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:500; 图 6e
艾博抗(上海)贸易有限公司 Aif1抗体(Abcam, Ab5076)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:500 (图 6e). Theranostics (2020) ncbi
domestic goat 多克隆
  • 免疫组化; 大鼠; 1:1000
艾博抗(上海)贸易有限公司 Aif1抗体(Abcam, ab5076)被用于被用于免疫组化在大鼠样本上浓度为1:1000. Biol Proced Online (2020) ncbi
domestic rabbit 单克隆(EPR16588)
  • 免疫组化-冰冻切片; 小鼠; 图 6a
艾博抗(上海)贸易有限公司 Aif1抗体(Abcam, ab178846)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 6a). Neuropsychiatr Dis Treat (2020) ncbi
domestic rabbit 单克隆(EPR16589)
  • 免疫组化-石蜡切片; 小鼠; 1:5000; 图 4e
艾博抗(上海)贸易有限公司 Aif1抗体(Abcam, ab178847)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:5000 (图 4e). PLoS Pathog (2020) ncbi
domestic rabbit 单克隆(EPR16588)
  • 免疫组化-石蜡切片; 小鼠; 1:1000; 图 5a
  • 免疫印迹; 小鼠; 1:3000; 图 4m
艾博抗(上海)贸易有限公司 Aif1抗体(Abcam, ab178846)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:1000 (图 5a) 和 被用于免疫印迹在小鼠样本上浓度为1:3000 (图 4m). J Neuroinflammation (2020) ncbi
domestic rabbit 单克隆(EPR16589)
  • 免疫组化-冰冻切片; 小鼠; 1:500; 图 7e
艾博抗(上海)贸易有限公司 Aif1抗体(Abcam, ab178847)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:500 (图 7e). Int J Mol Sci (2020) ncbi
domestic goat 多克隆
  • 免疫组化; 小鼠; 1:500; 图 4
艾博抗(上海)贸易有限公司 Aif1抗体(Abcam, #ab5076)被用于被用于免疫组化在小鼠样本上浓度为1:500 (图 4). Eneuro (2020) ncbi
domestic goat 多克隆
  • 免疫组化; 小鼠; 1:500; 图 4a
艾博抗(上海)贸易有限公司 Aif1抗体(Abcam, ab5076)被用于被用于免疫组化在小鼠样本上浓度为1:500 (图 4a). Biosci Rep (2020) ncbi
domestic goat 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:5000; 图 5a
艾博抗(上海)贸易有限公司 Aif1抗体(Abcam, ab5076)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:5000 (图 5a). Front Neurosci (2019) ncbi
domestic goat 多克隆
  • 免疫组化; 人类; 图 5h
艾博抗(上海)贸易有限公司 Aif1抗体(abcam, ab5076)被用于被用于免疫组化在人类样本上 (图 5h). Aging (Albany NY) (2020) ncbi
domestic goat 多克隆
  • 免疫组化-冰冻切片; 大鼠; 1:100; 图 4c
  • 免疫印迹; 大鼠; 1:1000; 图 4d
艾博抗(上海)贸易有限公司 Aif1抗体(Abcam, ab5076)被用于被用于免疫组化-冰冻切片在大鼠样本上浓度为1:100 (图 4c) 和 被用于免疫印迹在大鼠样本上浓度为1:1000 (图 4d). Oxid Med Cell Longev (2020) ncbi
domestic goat 多克隆
  • 免疫组化; 小鼠; 1:1000; 图 6b
艾博抗(上海)贸易有限公司 Aif1抗体(Abcam, ab5076)被用于被用于免疫组化在小鼠样本上浓度为1:1000 (图 6b). J Neurosci (2020) ncbi
domestic rabbit 单克隆(EPR16589)
  • 免疫组化-石蜡切片; 小鼠; 1:8000; 图 3d
艾博抗(上海)贸易有限公司 Aif1抗体(Abcam, ab178847)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:8000 (图 3d). J Neuroinflammation (2020) ncbi
domestic rabbit 单克隆(EPR16589)
  • 免疫印迹; 小鼠; 图 10a
艾博抗(上海)贸易有限公司 Aif1抗体(Abcam, ab178847)被用于被用于免疫印迹在小鼠样本上 (图 10a). Neurochem Res (2020) ncbi
domestic goat 多克隆
  • 免疫印迹; 大鼠; 1:400; 图 2a
艾博抗(上海)贸易有限公司 Aif1抗体(Abcam, ab5076)被用于被用于免疫印迹在大鼠样本上浓度为1:400 (图 2a). J Neuroinflammation (2020) ncbi
domestic rabbit 单克隆(EPR16588)
  • 免疫细胞化学; 小鼠; 图 s1a
艾博抗(上海)贸易有限公司 Aif1抗体(Abcam, ab178846)被用于被用于免疫细胞化学在小鼠样本上 (图 s1a). Neuron (2020) ncbi
domestic goat 多克隆
  • 免疫组化-自由浮动切片; 小鼠; 图 1b
  • 免疫细胞化学; 小鼠; 图 s4
艾博抗(上海)贸易有限公司 Aif1抗体(Abcam, ab48004)被用于被用于免疫组化-自由浮动切片在小鼠样本上 (图 1b) 和 被用于免疫细胞化学在小鼠样本上 (图 s4). J Neuroinflammation (2020) ncbi
domestic goat 多克隆
  • 免疫组化-石蜡切片; 大鼠; 1:100; 图 5c
艾博抗(上海)贸易有限公司 Aif1抗体(Abcam, ab5076)被用于被用于免疫组化-石蜡切片在大鼠样本上浓度为1:100 (图 5c). Biosci Rep (2020) ncbi
domestic goat 多克隆
  • 免疫组化-石蜡切片; 小鼠; 图 6
  • 免疫组化-石蜡切片; 人类; 1:500; 图 3b, 3c
艾博抗(上海)贸易有限公司 Aif1抗体(Abcam, ab5076)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 6) 和 被用于免疫组化-石蜡切片在人类样本上浓度为1:500 (图 3b, 3c). BMC Infect Dis (2019) ncbi
domestic rabbit 单克隆(EPR16589)
  • 免疫组化; 小鼠; 1:8000; 图 1, 2a
艾博抗(上海)贸易有限公司 Aif1抗体(Abcam, ab178847)被用于被用于免疫组化在小鼠样本上浓度为1:8000 (图 1, 2a). JCI Insight (2020) ncbi
domestic goat 多克隆
  • 免疫组化-自由浮动切片; 小鼠; 1:1500; 图 1j
艾博抗(上海)贸易有限公司 Aif1抗体(Abcam, ab5076)被用于被用于免疫组化-自由浮动切片在小鼠样本上浓度为1:1500 (图 1j). Nature (2019) ncbi
domestic rabbit 单克隆(EPR16589)
  • 免疫组化-冰冻切片; 小鼠; 图 5c
艾博抗(上海)贸易有限公司 Aif1抗体(Abcam, ab178847)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 5c). Neuropharmacology (2020) ncbi
domestic goat 多克隆
  • 免疫组化-冰冻切片; 大鼠; 1:1000; 图 9b
艾博抗(上海)贸易有限公司 Aif1抗体(Abcam, AB5076)被用于被用于免疫组化-冰冻切片在大鼠样本上浓度为1:1000 (图 9b). Aging Dis (2019) ncbi
domestic goat 多克隆
  • 免疫组化-冰冻切片; 小鼠; 图 7f
艾博抗(上海)贸易有限公司 Aif1抗体(AbCam, ab5076)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 7f). Cell Stem Cell (2019) ncbi
domestic goat 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:500; 图 2d
艾博抗(上海)贸易有限公司 Aif1抗体(Abcam, AB-5076)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:500 (图 2d). JCI Insight (2019) ncbi
domestic goat 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:5000; 图 1a
艾博抗(上海)贸易有限公司 Aif1抗体(Abcam, ab5076)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:5000 (图 1a). J Comp Neurol (2020) ncbi
domestic goat 多克隆
  • 免疫组化-自由浮动切片; 小鼠; 1:500; 图 s6a
艾博抗(上海)贸易有限公司 Aif1抗体(Abcam, ab5076)被用于被用于免疫组化-自由浮动切片在小鼠样本上浓度为1:500 (图 s6a). PLoS Biol (2019) ncbi
domestic rabbit 单克隆(EPR16588)
  • 免疫组化-冰冻切片; 小鼠; 1:1000; 图 3f
艾博抗(上海)贸易有限公司 Aif1抗体(Abcam, ab178846)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:1000 (图 3f). FASEB J (2019) ncbi
domestic goat 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:500; 图 5e
艾博抗(上海)贸易有限公司 Aif1抗体(Abcam, ab5076)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:500 (图 5e). Nat Commun (2019) ncbi
domestic goat 多克隆
  • 免疫组化-自由浮动切片; 小鼠; 1:500; 图 3b
艾博抗(上海)贸易有限公司 Aif1抗体(Abcam, ab5076)被用于被用于免疫组化-自由浮动切片在小鼠样本上浓度为1:500 (图 3b). Nature (2019) ncbi
小鼠 单克隆(1022-5)
  • 免疫组化-石蜡切片; 小鼠; 1:500; 图 3g
艾博抗(上海)贸易有限公司 Aif1抗体(Abcam, ab15690)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:500 (图 3g). Transl Psychiatry (2019) ncbi
domestic goat 多克隆
  • 免疫组化; 小鼠; 1:100; 图 3k
艾博抗(上海)贸易有限公司 Aif1抗体(Abcam, 5076)被用于被用于免疫组化在小鼠样本上浓度为1:100 (图 3k). Nat Commun (2019) ncbi
domestic goat 多克隆
  • 免疫组化; 小鼠; 1:1000; 图 s3d
艾博抗(上海)贸易有限公司 Aif1抗体(Abcam, ab5076)被用于被用于免疫组化在小鼠样本上浓度为1:1000 (图 s3d). Science (2018) ncbi
domestic goat 多克隆
  • 免疫组化; 小鼠; 1:200; 图 s5o
艾博抗(上海)贸易有限公司 Aif1抗体(Abcam, ab5076)被用于被用于免疫组化在小鼠样本上浓度为1:200 (图 s5o). Nat Neurosci (2018) ncbi
domestic goat 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:300; 图 3c
艾博抗(上海)贸易有限公司 Aif1抗体(Abcam, ab5076)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:300 (图 3c). Nature (2018) ncbi
domestic goat 多克隆
  • 免疫组化-石蜡切片; 人类; 1:100; 图 2
艾博抗(上海)贸易有限公司 Aif1抗体(Abcam, ab5076)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100 (图 2). Epilepsia (2018) ncbi
domestic goat 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:300; 图 1b, s1b, s1e
艾博抗(上海)贸易有限公司 Aif1抗体(Abcam, ab5076)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:300 (图 1b, s1b, s1e). J Exp Med (2018) ncbi
domestic goat 多克隆
  • 免疫组化; 小鼠; 1:300; 图 1a
  • 免疫印迹; 小鼠; 1:10,000; 图 1d
艾博抗(上海)贸易有限公司 Aif1抗体(Abcam, ab5076)被用于被用于免疫组化在小鼠样本上浓度为1:300 (图 1a) 和 被用于免疫印迹在小鼠样本上浓度为1:10,000 (图 1d). J Neurosci (2018) ncbi
domestic rabbit 单克隆(EPR16588)
  • 免疫组化-冰冻切片; 小鼠; 1:1500; 图 10a
艾博抗(上海)贸易有限公司 Aif1抗体(Abcam, ab178846)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:1500 (图 10a). J Neurosci (2018) ncbi
domestic goat 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:100; 图 4a
艾博抗(上海)贸易有限公司 Aif1抗体(Abcam, ab5076)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:100 (图 4a). J Comp Neurol (2019) ncbi
domestic goat 多克隆
  • 免疫组化-冰冻切片; 小鼠; 图 4h
艾博抗(上海)贸易有限公司 Aif1抗体(Abcam, ab5076)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 4h). Neuron (2018) ncbi
domestic goat 多克隆
  • 免疫组化; 小鼠; 1:200; 图 2d
艾博抗(上海)贸易有限公司 Aif1抗体(Abcam, ab5076)被用于被用于免疫组化在小鼠样本上浓度为1:200 (图 2d). Proc Natl Acad Sci U S A (2018) ncbi
domestic goat 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:200; 图 4j, 5i
艾博抗(上海)贸易有限公司 Aif1抗体(Abcam, ab5076)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:200 (图 4j, 5i). J Neurovirol (2018) ncbi
domestic goat 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:2500; 图 6c
艾博抗(上海)贸易有限公司 Aif1抗体(Abcam, ab5076)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:2500 (图 6c). Nat Commun (2018) ncbi
domestic goat 多克隆
  • 免疫组化; 大鼠; 1:200; 图 4a
艾博抗(上海)贸易有限公司 Aif1抗体(Abcam, ab5076)被用于被用于免疫组化在大鼠样本上浓度为1:200 (图 4a). Stroke (2018) ncbi
domestic rabbit 单克隆(EPR16589)
  • 免疫组化-石蜡切片; 大鼠; 1:8000; 图 2c
  • 免疫印迹; 大鼠; 1:1000; 图 2b
艾博抗(上海)贸易有限公司 Aif1抗体(Abcam, ab178847)被用于被用于免疫组化-石蜡切片在大鼠样本上浓度为1:8000 (图 2c) 和 被用于免疫印迹在大鼠样本上浓度为1:1000 (图 2b). Biol Res (2017) ncbi
domestic goat 多克隆
  • 免疫组化-石蜡切片; 小鼠; 图 4e
艾博抗(上海)贸易有限公司 Aif1抗体(Abcam, ab5076)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 4e). Invest Ophthalmol Vis Sci (2017) ncbi
domestic goat 多克隆
  • 免疫组化; 大鼠; 1:100; 图 8a
艾博抗(上海)贸易有限公司 Aif1抗体(Abcam, ab5076)被用于被用于免疫组化在大鼠样本上浓度为1:100 (图 8a). PLoS ONE (2017) ncbi
domestic goat 多克隆
  • 免疫组化-冰冻切片; 大鼠; 1:300; 图 2m
艾博抗(上海)贸易有限公司 Aif1抗体(Abcam, ab5076)被用于被用于免疫组化-冰冻切片在大鼠样本上浓度为1:300 (图 2m). J Pain (2017) ncbi
domestic goat 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:500; 图 s5e
艾博抗(上海)贸易有限公司 Aif1抗体(Abcam, ab5076)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:500 (图 s5e). Mol Ther (2017) ncbi
小鼠 单克隆(1022-5)
  • 免疫组化-石蜡切片; 犬; 1:200; 图 st9
  • 免疫组化-石蜡切片; 大鼠; 1:200; 图 st9
  • 免疫组化-石蜡切片; 小鼠; 1:200; 图 st9
艾博抗(上海)贸易有限公司 Aif1抗体(Abcam, 1022-5)被用于被用于免疫组化-石蜡切片在犬样本上浓度为1:200 (图 st9), 被用于免疫组化-石蜡切片在大鼠样本上浓度为1:200 (图 st9) 和 被用于免疫组化-石蜡切片在小鼠样本上浓度为1:200 (图 st9). J Toxicol Pathol (2017) ncbi
domestic goat 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:200
艾博抗(上海)贸易有限公司 Aif1抗体(Abcam, ab5076)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:200. Sci Rep (2017) ncbi
domestic goat 多克隆
  • 免疫组化; 大鼠; 1:1000; 图 3a
  • 免疫印迹; 大鼠; 1:1000; 图 5a
艾博抗(上海)贸易有限公司 Aif1抗体(Abcam, ab5076)被用于被用于免疫组化在大鼠样本上浓度为1:1000 (图 3a) 和 被用于免疫印迹在大鼠样本上浓度为1:1000 (图 5a). Sci Rep (2016) ncbi
小鼠 单克隆(1022-5)
  • 免疫细胞化学; 人类; 1:200; 图 s3b
艾博抗(上海)贸易有限公司 Aif1抗体(Abcam, ab15690)被用于被用于免疫细胞化学在人类样本上浓度为1:200 (图 s3b). Mol Psychiatry (2017) ncbi
domestic goat 多克隆
  • 免疫印迹; 小鼠; 1:500; 图 st1
艾博抗(上海)贸易有限公司 Aif1抗体(Abcam, Ab5076)被用于被用于免疫印迹在小鼠样本上浓度为1:500 (图 st1). Mov Disord (2017) ncbi
domestic goat 多克隆
  • 免疫组化-自由浮动切片; 大鼠; 1:1500; 图 5
  • 免疫印迹; 大鼠; 1:1000; 图 5
艾博抗(上海)贸易有限公司 Aif1抗体(Abcam, ab48004)被用于被用于免疫组化-自由浮动切片在大鼠样本上浓度为1:1500 (图 5) 和 被用于免疫印迹在大鼠样本上浓度为1:1000 (图 5). PLoS ONE (2016) ncbi
domestic goat 多克隆
  • 免疫组化; 小鼠; 1:100; 图 1b
艾博抗(上海)贸易有限公司 Aif1抗体(Abcam, ab5076)被用于被用于免疫组化在小鼠样本上浓度为1:100 (图 1b). Biol Psychiatry (2017) ncbi
domestic goat 多克隆
  • 免疫组化-石蜡切片; 人类; 1:100; 表 1
艾博抗(上海)贸易有限公司 Aif1抗体(Abcam, ab5076)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100 (表 1). Glia (2017) ncbi
domestic goat 多克隆
  • 免疫组化-石蜡切片; 大鼠; 1:400; 图 7
艾博抗(上海)贸易有限公司 Aif1抗体(Abcam, ab5076)被用于被用于免疫组化-石蜡切片在大鼠样本上浓度为1:400 (图 7). Oncotarget (2016) ncbi
domestic goat 多克隆
  • 免疫组化; 大鼠; 1:10,000; 图 4a
艾博抗(上海)贸易有限公司 Aif1抗体(Abcam, ab5076)被用于被用于免疫组化在大鼠样本上浓度为1:10,000 (图 4a). Brain Behav Immun (2017) ncbi
domestic goat 多克隆
  • 免疫组化-石蜡切片; 猕猴; 1:200; 图 4
艾博抗(上海)贸易有限公司 Aif1抗体(Abcam, 5076)被用于被用于免疫组化-石蜡切片在猕猴样本上浓度为1:200 (图 4). J Neuroinflammation (2016) ncbi
domestic goat 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:500; 图 2e
艾博抗(上海)贸易有限公司 Aif1抗体(Abcam, ab5076)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:500 (图 2e). Neuropharmacology (2016) ncbi
domestic goat 多克隆
  • 免疫组化-冰冻切片; 大鼠; 1:500; 图 4
艾博抗(上海)贸易有限公司 Aif1抗体(Abcam, ab5076)被用于被用于免疫组化-冰冻切片在大鼠样本上浓度为1:500 (图 4). Acta Neuropathol Commun (2016) ncbi
domestic goat 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:400
艾博抗(上海)贸易有限公司 Aif1抗体(Abcam, Ab5076)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:400. J Neuroinflammation (2016) ncbi
domestic goat 多克隆
  • 免疫细胞化学; 小鼠; 图 s7e
艾博抗(上海)贸易有限公司 Aif1抗体(Abcam, ab5076)被用于被用于免疫细胞化学在小鼠样本上 (图 s7e). Cell Rep (2016) ncbi
domestic goat 多克隆
  • 免疫组化; 小鼠; 1:500; 图 s8f
艾博抗(上海)贸易有限公司 Aif1抗体(Abcam, ab5076)被用于被用于免疫组化在小鼠样本上浓度为1:500 (图 s8f). Science (2016) ncbi
domestic goat 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:400; 图 3
艾博抗(上海)贸易有限公司 Aif1抗体(Abcam, ab5076)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:400 (图 3). Acta Neuropathol Commun (2016) ncbi
domestic goat 多克隆
  • 免疫组化; 小鼠; 1:100; 图 8
艾博抗(上海)贸易有限公司 Aif1抗体(Abcam, ab5076)被用于被用于免疫组化在小鼠样本上浓度为1:100 (图 8). Hum Mol Genet (2016) ncbi
小鼠 单克隆(1022-5)
  • 免疫组化-石蜡切片; 小鼠; 1:100; 图 4
艾博抗(上海)贸易有限公司 Aif1抗体(Abcam, ab15690)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:100 (图 4). Sci Rep (2016) ncbi
domestic goat 多克隆
  • 免疫印迹; 大鼠; 1:500; 图 1
艾博抗(上海)贸易有限公司 Aif1抗体(Abcam, ab5076)被用于被用于免疫印迹在大鼠样本上浓度为1:500 (图 1). Cell Signal (2016) ncbi
domestic goat 多克隆
  • 免疫组化-冰冻切片; 大鼠; 1:1000; 图 1
艾博抗(上海)贸易有限公司 Aif1抗体(Abcam, ab5076)被用于被用于免疫组化-冰冻切片在大鼠样本上浓度为1:1000 (图 1). Exp Ther Med (2016) ncbi
domestic goat 多克隆
  • 免疫组化; 小鼠; 1:500; 图 3b
艾博抗(上海)贸易有限公司 Aif1抗体(Abcam, ab5076)被用于被用于免疫组化在小鼠样本上浓度为1:500 (图 3b). PLoS ONE (2016) ncbi
domestic goat 多克隆
  • 免疫组化-冰冻切片; 小鼠; 图 1
艾博抗(上海)贸易有限公司 Aif1抗体(Abcam, ab5076)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 1). Mol Neurodegener (2016) ncbi
domestic goat 多克隆
  • 免疫组化-冰冻切片; 大鼠; 1:200; 图 4a
艾博抗(上海)贸易有限公司 Aif1抗体(Abcam, ab5076)被用于被用于免疫组化-冰冻切片在大鼠样本上浓度为1:200 (图 4a). Front Neurosci (2016) ncbi
小鼠 单克隆(1022-5)
  • 免疫印迹; 大鼠; 1:500; 表 1
艾博抗(上海)贸易有限公司 Aif1抗体(Abcam, ab-15690)被用于被用于免疫印迹在大鼠样本上浓度为1:500 (表 1). Brain Res Bull (2016) ncbi
domestic goat 多克隆
  • 免疫细胞化学; 大鼠; 图 s3
艾博抗(上海)贸易有限公司 Aif1抗体(Abcam, ab5076)被用于被用于免疫细胞化学在大鼠样本上 (图 s3). PLoS ONE (2016) ncbi
domestic goat 多克隆
  • 免疫组化-冰冻切片; 大鼠; 1:100; 图 4
  • 免疫印迹; 大鼠; 1:200; 图 4
艾博抗(上海)贸易有限公司 Aif1抗体(abcam, ab5076)被用于被用于免疫组化-冰冻切片在大鼠样本上浓度为1:100 (图 4) 和 被用于免疫印迹在大鼠样本上浓度为1:200 (图 4). Mol Med Rep (2016) ncbi
小鼠 单克隆(1022-5)
  • 免疫组化-冰冻切片; 小鼠; 1:5000; 图 s3
艾博抗(上海)贸易有限公司 Aif1抗体(Abcam, ab15690)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:5000 (图 s3). EMBO Rep (2016) ncbi
domestic goat 多克隆
  • 免疫组化-冰冻切片; 大鼠; 1:100; 图 5f
艾博抗(上海)贸易有限公司 Aif1抗体(Abcam, ab5076)被用于被用于免疫组化-冰冻切片在大鼠样本上浓度为1:100 (图 5f). Mol Neurobiol (2017) ncbi
domestic goat 多克隆
  • 免疫组化; 小鼠; 1:1000; 图 1
艾博抗(上海)贸易有限公司 Aif1抗体(Abcam, ab5076)被用于被用于免疫组化在小鼠样本上浓度为1:1000 (图 1). Sci Rep (2016) ncbi
domestic goat 多克隆
  • 免疫组化; 小鼠; 1:100; 图 s13
艾博抗(上海)贸易有限公司 Aif1抗体(Abcam, ab5076)被用于被用于免疫组化在小鼠样本上浓度为1:100 (图 s13). Nat Neurosci (2016) ncbi
domestic goat 多克隆
  • 免疫组化-冰冻切片; 小鼠
艾博抗(上海)贸易有限公司 Aif1抗体(Abcam Inc., ab5076)被用于被用于免疫组化-冰冻切片在小鼠样本上. FASEB J (2016) ncbi
小鼠 单克隆(1022-5)
  • 免疫印迹; 小鼠; 1:200
艾博抗(上海)贸易有限公司 Aif1抗体(Abcam, 1022?C5)被用于被用于免疫印迹在小鼠样本上浓度为1:200. PLoS ONE (2015) ncbi
小鼠 单克隆(1022-5)
  • 免疫组化; 大鼠
艾博抗(上海)贸易有限公司 Aif1抗体(Abcam, ab15690)被用于被用于免疫组化在大鼠样本上. Life Sci (2015) ncbi
小鼠 单克隆(1022-5)
  • 免疫组化-石蜡切片; 大鼠; 1:200
艾博抗(上海)贸易有限公司 Aif1抗体(Abcam, ab15690)被用于被用于免疫组化-石蜡切片在大鼠样本上浓度为1:200. Mol Neurobiol (2016) ncbi
小鼠 单克隆(1022-5)
  • 免疫细胞化学; 大鼠; 1:200
艾博抗(上海)贸易有限公司 Aif1抗体(Abcam, ab15690)被用于被用于免疫细胞化学在大鼠样本上浓度为1:200. J Neuroinflammation (2014) ncbi
小鼠 单克隆(1022-5)
  • 免疫组化; 小鼠; 1:200; 图 s10a
艾博抗(上海)贸易有限公司 Aif1抗体(Abcam, ab15690)被用于被用于免疫组化在小鼠样本上浓度为1:200 (图 s10a). Nat Neurosci (2014) ncbi
domestic goat 多克隆
  • 免疫组化-石蜡切片; 大鼠; 1:500
艾博抗(上海)贸易有限公司 Aif1抗体(Abcam, ab5076)被用于被用于免疫组化-石蜡切片在大鼠样本上浓度为1:500. J Tissue Eng Regen Med (2017) ncbi
单克隆
  • 流式细胞仪; 小鼠
艾博抗(上海)贸易有限公司 Aif1抗体(Abcam, ab15691)被用于被用于流式细胞仪在小鼠样本上. J Gerontol A Biol Sci Med Sci (2014) ncbi
小鼠 单克隆(1022-5)
  • 酶联免疫吸附测定; 小鼠; 1:100
艾博抗(上海)贸易有限公司 Aif1抗体(Abcam, ab15690)被用于被用于酶联免疫吸附测定在小鼠样本上浓度为1:100. J Alzheimers Dis (2014) ncbi
小鼠 单克隆(1022-5)
  • 免疫组化-石蜡切片; 大鼠; 1:200
艾博抗(上海)贸易有限公司 Aif1抗体(Abcam, ab15690)被用于被用于免疫组化-石蜡切片在大鼠样本上浓度为1:200. J Neuroinflammation (2013) ncbi
小鼠 单克隆(1022-5)
  • 免疫组化-石蜡切片; 小鼠; 1:200
艾博抗(上海)贸易有限公司 Aif1抗体(Abcam, ab15690)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:200. Radiother Oncol (2013) ncbi
小鼠 单克隆(1022-5)
  • 免疫组化-冰冻切片; 大鼠; 1:500
艾博抗(上海)贸易有限公司 Aif1抗体(Abcam, Ab15690)被用于被用于免疫组化-冰冻切片在大鼠样本上浓度为1:500. J Neurotrauma (2013) ncbi
小鼠 单克隆(1022-5)
  • 免疫组化; 大鼠; 1:200
艾博抗(上海)贸易有限公司 Aif1抗体(Abcam, ab15690)被用于被用于免疫组化在大鼠样本上浓度为1:200. BMC Neurosci (2013) ncbi
小鼠 单克隆(1022-5)
  • 免疫组化-石蜡切片; 大鼠; 1:1000
艾博抗(上海)贸易有限公司 Aif1抗体(Abcam, ab15690)被用于被用于免疫组化-石蜡切片在大鼠样本上浓度为1:1000. PLoS ONE (2012) ncbi
小鼠 单克隆(1022-5)
  • 免疫组化-石蜡切片; 大鼠; 1:200
艾博抗(上海)贸易有限公司 Aif1抗体(Abcam, ab15690)被用于被用于免疫组化-石蜡切片在大鼠样本上浓度为1:200. Cell Mol Neurobiol (2013) ncbi
赛默飞世尔
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:2000; 图 2a
赛默飞世尔 Aif1抗体(Invitrogen, PA5-27436)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:2000 (图 2a). Int J Mol Sci (2021) ncbi
小鼠 单克隆(GT10312)
  • 免疫组化; 大鼠; 1:1000; 图 6d
赛默飞世尔 Aif1抗体(ThermoFisher, MA5-27726)被用于被用于免疫组化在大鼠样本上浓度为1:1000 (图 6d). Front Pharmacol (2021) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 图 2a
赛默飞世尔 Aif1抗体(Invitrogen, PA5-21274)被用于被用于免疫组化在小鼠样本上 (图 2a). Aging Cell (2021) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:75; 图 7c
  • 免疫印迹; 小鼠; 1:1000; 图 7c
赛默飞世尔 Aif1抗体(Thermo Fisher, PAS-27436)被用于被用于免疫组化在小鼠样本上浓度为1:75 (图 7c) 和 被用于免疫印迹在小鼠样本上浓度为1:1000 (图 7c). J Neuroinflammation (2020) ncbi
domestic rabbit 多克隆
  • 免疫组化; 大鼠; 1:200; 图 4d
赛默飞世尔 Aif1抗体(Thermofisher, PA5-27436)被用于被用于免疫组化在大鼠样本上浓度为1:200 (图 4d). Nutrients (2020) ncbi
小鼠 单克隆(GT10312)
  • 免疫组化; 大鼠; 1:200; 图 8c
  • 免疫印迹; 大鼠; 图 8a
赛默飞世尔 Aif1抗体(Thermofisher, MA5-27726)被用于被用于免疫组化在大鼠样本上浓度为1:200 (图 8c) 和 被用于免疫印迹在大鼠样本上 (图 8a). Biomolecules (2020) ncbi
小鼠 单克隆(GT10312)
  • 免疫组化-石蜡切片; 大鼠; 图 6d1
赛默飞世尔 Aif1抗体(TermoFisher, MA5-27726)被用于被用于免疫组化-石蜡切片在大鼠样本上 (图 6d1). Int J Mol Sci (2020) ncbi
domestic goat 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:1000; 图 6i
赛默飞世尔 Aif1抗体(Thermo Fisher, PA5-18039)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:1000 (图 6i). Eneuro (2020) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:1000; 图 6g
赛默飞世尔 Aif1抗体(Thermo Fisher Scientific, PA5?C21274)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:1000 (图 6g). Front Aging Neurosci (2018) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:3000; 图 3c
赛默飞世尔 Aif1抗体(Invitrogen, PA5-21274)被用于被用于免疫印迹在小鼠样本上浓度为1:3000 (图 3c). J Mol Neurosci (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 大鼠; 1:2400; 图 6
赛默飞世尔 Aif1抗体(Thermo Scientific, PA5-27436)被用于被用于免疫印迹在大鼠样本上浓度为1:2400 (图 6). Exp Neurol (2016) ncbi
domestic rabbit 多克隆
赛默飞世尔 Aif1抗体(Thermo Fisher Scientific, PA5- 27436)被用于. J Neurosci (2015) ncbi
domestic goat 多克隆
赛默飞世尔 Aif1抗体(Thermo Fisher Scientific, PA5-18039)被用于. PLoS ONE (2015) ncbi
圣克鲁斯生物技术
小鼠 单克隆(1022-5)
  • 免疫组化; 小鼠; 1:500; 图 s7d
圣克鲁斯生物技术 Aif1抗体(Santa Cruz, sc-32725)被用于被用于免疫组化在小鼠样本上浓度为1:500 (图 s7d). Front Endocrinol (Lausanne) (2021) ncbi
小鼠 单克隆(1022-5)
  • 免疫印迹; 小鼠; 1:500
圣克鲁斯生物技术 Aif1抗体(Santa Cruz Biotechnology, sc- 32725)被用于被用于免疫印迹在小鼠样本上浓度为1:500. Int J Mol Sci (2020) ncbi
小鼠 单克隆(1022-5)
  • 免疫印迹; 小鼠; 图 5e
圣克鲁斯生物技术 Aif1抗体(Santa, sc-32,725)被用于被用于免疫印迹在小鼠样本上 (图 5e). Mol Neurodegener (2020) ncbi
小鼠 单克隆(1022-5)
  • 免疫印迹; 小鼠; 1:1000; 图 8a
圣克鲁斯生物技术 Aif1抗体(Santa Cruz Biotechnology Inc, sc-32,725)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 8a). J Neuroinflammation (2018) ncbi
小鼠 单克隆(1022-5)
  • 免疫组化-石蜡切片; 小鼠; 1:100; 表 1
圣克鲁斯生物技术 Aif1抗体(Santa Cruz, sc-1022-5)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:100 (表 1). PLoS ONE (2015) ncbi
小鼠 单克隆(1022-5)
  • 免疫组化-冰冻切片; 大鼠; 1:100; 图 3
圣克鲁斯生物技术 Aif1抗体(Santa Cruz, sc-32725)被用于被用于免疫组化-冰冻切片在大鼠样本上浓度为1:100 (图 3). Mol Brain (2015) ncbi
小鼠 单克隆(1022-5)
  • 免疫细胞化学; 大鼠; 图 3
  • 免疫印迹; 大鼠; 图 2
圣克鲁斯生物技术 Aif1抗体(Santa Cruz, sc-32725)被用于被用于免疫细胞化学在大鼠样本上 (图 3) 和 被用于免疫印迹在大鼠样本上 (图 2). Front Cell Neurosci (2015) ncbi
小鼠 单克隆(1022-5)
  • 免疫组化-冰冻切片; 小鼠; 图 1a
  • 免疫印迹; 小鼠; 1:500; 图 1b
圣克鲁斯生物技术 Aif1抗体(Santa Cruz, sc-32725)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 1a) 和 被用于免疫印迹在小鼠样本上浓度为1:500 (图 1b). Mol Neurobiol (2016) ncbi
小鼠 单克隆(1022-5)
  • 免疫组化-石蜡切片; 小鼠; 1:300; 图 2
  • 免疫组化; 小鼠; 1:10; 图 6
圣克鲁斯生物技术 Aif1抗体(Santa Cruz, SC-32725)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:300 (图 2) 和 被用于免疫组化在小鼠样本上浓度为1:10 (图 6). J Neuroinflammation (2010) ncbi
Novus Biologicals
domestic goat 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:200; 图 3a
Novus Biologicals Aif1抗体(Novus Biologicals, NB100-1028)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:200 (图 3a). Front Pharmacol (2021) ncbi
domestic goat 多克隆
  • 免疫组化; 人类; 1:500; 图 1a
Novus Biologicals Aif1抗体(Novus, NB100-1028)被用于被用于免疫组化在人类样本上浓度为1:500 (图 1a). Nat Immunol (2021) ncbi
domestic goat 多克隆
  • 免疫组化; 大鼠; 1:200; 图 3b
Novus Biologicals Aif1抗体(Novus, NB100-1028)被用于被用于免疫组化在大鼠样本上浓度为1:200 (图 3b). Mol Med (2021) ncbi
domestic goat 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:1000; 图 s1f
Novus Biologicals Aif1抗体(Novus, NB100-1028)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:1000 (图 s1f). Sci Adv (2020) ncbi
domestic goat 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:250; 图 6h
Novus Biologicals Aif1抗体(Novus, NB100-1028)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:250 (图 6h). Acta Neuropathol (2020) ncbi
domestic goat 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:500; 图 5a
Novus Biologicals Aif1抗体(Novus, NB100-2833)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:500 (图 5a). Sci Rep (2020) ncbi
domestic goat 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:500; 图 3d
Novus Biologicals Aif1抗体(Novus Biological, NB100-1028)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:500 (图 3d). Nature (2019) ncbi
domestic goat 多克隆
  • 免疫组化; 小鼠; 1:100; 图 7i
Novus Biologicals Aif1抗体(Novus, NB100-1028)被用于被用于免疫组化在小鼠样本上浓度为1:100 (图 7i). Nat Commun (2019) ncbi
domestic goat 多克隆
  • 免疫组化-冰冻切片; 小鼠; 图 5a
Novus Biologicals Aif1抗体(Novus Biological, NB100-1028)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 5a). Cell Stem Cell (2019) ncbi
domestic goat 多克隆
  • 免疫组化; 小鼠; 图 3c
Novus Biologicals Aif1抗体(Novus, NB100-1028)被用于被用于免疫组化在小鼠样本上 (图 3c). Proc Natl Acad Sci U S A (2018) ncbi
domestic goat 多克隆
  • 免疫组化; 大鼠; 1:50; 图 s1e
Novus Biologicals Aif1抗体(Novus, NB100-1028)被用于被用于免疫组化在大鼠样本上浓度为1:50 (图 s1e). Cell Death Differ (2018) ncbi
domestic goat 多克隆
  • 免疫印迹; 小鼠; 1:300
Novus Biologicals Aif1抗体(Wako, NB100-1028)被用于被用于免疫印迹在小鼠样本上浓度为1:300. Mol Brain (2016) ncbi
domestic goat 多克隆
  • 免疫组化; 小鼠; 图 6a
Novus Biologicals Aif1抗体(Novus, NB100-1028)被用于被用于免疫组化在小鼠样本上 (图 6a). J Neuropathol Exp Neurol (2016) ncbi
Synaptic Systems
豚鼠 多克隆
  • 免疫组化-自由浮动切片; 小鼠; 1:500; 图 4a
Synaptic Systems Aif1抗体(Synaptic Systems, 234-004)被用于被用于免疫组化-自由浮动切片在小鼠样本上浓度为1:500 (图 4a). Cereb Cortex Commun (2021) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:500; 图 1b
Synaptic Systems Aif1抗体(Synaptic Systems, 234003)被用于被用于免疫组化在小鼠样本上浓度为1:500 (图 1b). EMBO J (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 s3e
Synaptic Systems Aif1抗体(Synaptic Systems, 234 003)被用于被用于免疫印迹在小鼠样本上 (图 s3e). Cell Metab (2021) ncbi
豚鼠 多克隆
  • 免疫组化; 小鼠; 图 1
Synaptic Systems Aif1抗体(Synaptic Systems, 234004)被用于被用于免疫组化在小鼠样本上 (图 1). Neurotrauma Rep (2020) ncbi
鸡 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:1000; 图 7j
Synaptic Systems Aif1抗体(Synaptic Systems, 234006)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:1000 (图 7j). Cell Rep (2020) ncbi
豚鼠 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:100; 图 4c
Synaptic Systems Aif1抗体(Synaptic Systems, 134 004)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:100 (图 4c). elife (2019) ncbi
鸡 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:1000; 图 3f
Synaptic Systems Aif1抗体(Synaptic Systems, 234006)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:1000 (图 3f). FASEB J (2019) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:1000; 图 5b
Synaptic Systems Aif1抗体(Synaptic Systems, 234003)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:1000 (图 5b). Glia (2019) ncbi
豚鼠 多克隆
  • 免疫组化; 小鼠; 1:2000; 图 6
Synaptic Systems Aif1抗体(Synaptic Systems, 234004)被用于被用于免疫组化在小鼠样本上浓度为1:2000 (图 6). PLoS ONE (2016) ncbi
西格玛奥德里奇
小鼠 单克隆(GT10312)
  • 免疫组化; 小鼠; 1:1000; 图 3d
西格玛奥德里奇 Aif1抗体(Sigma-Aldrich, SAB2702364)被用于被用于免疫组化在小鼠样本上浓度为1:1000 (图 3d). elife (2020) ncbi
小鼠 单克隆(GT10312)
  • 免疫组化; 小鼠; 图 7a
西格玛奥德里奇 Aif1抗体(Sigma, SAB2702364)被用于被用于免疫组化在小鼠样本上 (图 7a). Int J Biol Sci (2019) ncbi
小鼠 单克隆(GT10312)
  • 免疫组化-石蜡切片; 小鼠; 1:100; 图 5c
西格玛奥德里奇 Aif1抗体(Sigma, SAB2702364)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:100 (图 5c). Front Aging Neurosci (2019) ncbi
文章列表
  1. Yu S, Cheng L, Tian D, Li Z, Yao F, Luo Y, et al. Fascin-1 is Highly Expressed Specifically in Microglia After Spinal Cord Injury and Regulates Microglial Migration. Front Pharmacol. 2021;12:729524 pubmed 出版商
  2. Zheng Z, Chen J, Lyu H, Lam S, Lu G, Chan W, et al. Novel role of STAT3 in microglia-dependent neuroinflammation after experimental subarachnoid haemorrhage. Stroke Vasc Neurol. 2021;: pubmed 出版商
  3. Kuo P, Weng W, Scofield B, Furnas D, Paraiso H, Yu I, et al. Immunoresponsive gene 1 modulates the severity of brain injury in cerebral ischaemia. Brain Commun. 2021;3:fcab187 pubmed 出版商
  4. Baeza V, Cifuentes M, Martinez F, Ramírez E, Nualart F, Ferrada L, et al. IIIG9 inhibition in adult ependymal cells changes adherens junctions structure and induces cellular detachment. Sci Rep. 2021;11:18537 pubmed 出版商
  5. Zeng H, Chen H, Li M, Zhuang J, Peng Y, Zhou H, et al. Autophagy protein NRBF2 attenuates endoplasmic reticulum stress-associated neuroinflammation and oxidative stress via promoting autophagosome maturation by interacting with Rab7 after SAH. J Neuroinflammation. 2021;18:210 pubmed 出版商
  6. Zhang D, Yamaguchi S, Zhang X, Yang B, Kurooka N, Sugawara R, et al. Upregulation of Mir342 in Diet-Induced Obesity Mouse and the Hypothalamic Appetite Control. Front Endocrinol (Lausanne). 2021;12:727915 pubmed 出版商
  7. Weigelt C, Fuchs H, Schonberger T, Stierstorfer B, Strobel B, Lamla T, et al. AAV-Mediated Expression of Human VEGF, TNF-α, and IL-6 Induces Retinal Pathology in Mice. Transl Vis Sci Technol. 2021;10:15 pubmed 出版商
  8. Droho S, Cuda C, Perlman H, Lavine J. Macrophage-derived interleukin-6 is necessary and sufficient for choroidal angiogenesis. Sci Rep. 2021;11:18084 pubmed 出版商
  9. Hülskötter K, Luhder F, Flügel A, Herder V, Baumgartner W. Tamoxifen Application Is Associated with Transiently Increased Loss of Hippocampal Neurons following Virus Infection. Int J Mol Sci. 2021;22: pubmed 出版商
  10. Xu X, Shen X, Wang J, Feng W, Wang M, Miao X, et al. YAP prevents premature senescence of astrocytes and cognitive decline of Alzheimer's disease through regulating CDK6 signaling. Aging Cell. 2021;20:e13465 pubmed 出版商
  11. Kuroda R, Tominaga K, Kasashima K, Kuroiwa K, Sakashita E, Hayakawa H, et al. Loss of mitochondrial transcription factor A in neural stem cells leads to immature brain development and triggers the activation of the integral stress response in vivo. PLoS ONE. 2021;16:e0255355 pubmed 出版商
  12. Levenga J, Wong H, Milstead R, LaPlante L, Hoeffer C. Immunohistological Examination of AKT Isoforms in the Brain: Cell-Type Specificity That May Underlie AKT's Role in Complex Brain Disorders and Neurological Disease. Cereb Cortex Commun. 2021;2:tgab036 pubmed 出版商
  13. Xiao J, Cai T, Fang Y, Liu R, Flores J, Wang W, et al. Activation of GPR40 attenuates neuroinflammation and improves neurological function via PAK4/CREB/KDM6B pathway in an experimental GMH rat model. J Neuroinflammation. 2021;18:160 pubmed 出版商
  14. Beecher K, Wang J, Jacques A, Chaaya N, Chehrehasa F, Belmer A, et al. Sucrose Consumption Alters Serotonin/Glutamate Co-localisation Within the Prefrontal Cortex and Hippocampus of Mice. Front Mol Neurosci. 2021;14:678267 pubmed 出版商
  15. Ramaglia V, Dubey M, Malpede M, Petersen N, de Vries S, Ahmed S, et al. Complement-associated loss of CA2 inhibitory synapses in the demyelinated hippocampus impairs memory. Acta Neuropathol. 2021;142:643-667 pubmed 出版商
  16. Asahina M, Fujinawa R, Hirayama H, Tozawa R, Kajii Y, Suzuki T. Reversibility of motor dysfunction in the rat model of NGLY1 deficiency. Mol Brain. 2021;14:91 pubmed 出版商
  17. Polinski N, Martinez T, Gorodinsky A, Gareus R, Sasner M, Herberth M, et al. Decreased glucocerebrosidase activity and substrate accumulation of glycosphingolipids in a novel GBA1 D409V knock-in mouse model. PLoS ONE. 2021;16:e0252325 pubmed 出版商
  18. López Gambero A, Rosell Valle C, Medina Vera D, Navarro J, Vargas A, Rivera P, et al. A Negative Energy Balance Is Associated with Metabolic Dysfunctions in the Hypothalamus of a Humanized Preclinical Model of Alzheimer's Disease, the 5XFAD Mouse. Int J Mol Sci. 2021;22: pubmed 出版商
  19. Vicente Rodríguez M, Singh N, Turkheimer F, Peris Yague A, Randall K, Veronese M, et al. Resolving the cellular specificity of TSPO imaging in a rat model of peripherally-induced neuroinflammation. Brain Behav Immun. 2021;96:154-167 pubmed 出版商
  20. Liu W, Rohlman A, Vetreno R, Crews F. Expression of Oligodendrocyte and Oligoprogenitor Cell Proteins in Frontal Cortical White and Gray Matter: Impact of Adolescent Development and Ethanol Exposure. Front Pharmacol. 2021;12:651418 pubmed 出版商
  21. Dá Mesquita S, Herz J, Wall M, Dykstra T, de Lima K, Norris G, et al. Aging-associated deficit in CCR7 is linked to worsened glymphatic function, cognition, neuroinflammation, and β-amyloid pathology. Sci Adv. 2021;7: pubmed 出版商
  22. Steubler V, Erdinger S, Back M, Ludewig S, Fässler D, Richter M, et al. Loss of all three APP family members during development impairs synaptic function and plasticity, disrupts learning, and causes an autism-like phenotype. EMBO J. 2021;40:e107471 pubmed 出版商
  23. Hanhai Z, Bin Q, Shengjun Z, Jingbo L, Yinghan G, Lingxin C, et al. Neutrophil extracellular traps, released from neutrophil, promote microglia inflammation and contribute to poor outcome in subarachnoid hemorrhage. Aging (Albany NY). 2021;13:13108-13123 pubmed 出版商
  24. Gruber T, Pan C, Contreras R, Wiedemann T, Morgan D, Skowronski A, et al. Obesity-associated hyperleptinemia alters the gliovascular interface of the hypothalamus to promote hypertension. Cell Metab. 2021;33:1155-1170.e10 pubmed 出版商
  25. O Hare M, Amarnani D, Whitmore H, An M, Marino C, Ramos L, et al. Targeting Runt-Related Transcription Factor 1 Prevents Pulmonary Fibrosis and Reduces Expression of Severe Acute Respiratory Syndrome Coronavirus 2 Host Mediators. Am J Pathol. 2021;191:1193-1208 pubmed 出版商
  26. Huang Y, Happonen K, Burrola P, O Connor C, Hah N, Huang L, et al. Microglia use TAM receptors to detect and engulf amyloid β plaques. Nat Immunol. 2021;22:586-594 pubmed 出版商
  27. Xu H, Wang Y, Luo Y. OTULIN is a new target of EA treatment in the alleviation of brain injury and glial cell activation via suppression of the NF-κB signalling pathway in acute ischaemic stroke rats. Mol Med. 2021;27:37 pubmed 出版商
  28. Zheng W, Zhao D, Zhang H, Chinnasamy P, SIBINGA N, Pollard J. Induction of interferon signaling and allograft inflammatory factor 1 in macrophages in a mouse model of breast cancer metastases. Wellcome Open Res. 2021;6:52 pubmed 出版商
  29. Saunders D, Aamodt K, Richardson T, Hopkirk A, Aramandla R, Poffenberger G, et al. Coordinated interactions between endothelial cells and macrophages in the islet microenvironment promote β cell regeneration. NPJ Regen Med. 2021;6:22 pubmed 出版商
  30. Grissi M, Boudot C, Assem M, Candellier A, Lando M, Poirot Leclercq S, et al. Metformin prevents stroke damage in non-diabetic female mice with chronic kidney disease. Sci Rep. 2021;11:7464 pubmed 出版商
  31. Niu M, Zhao F, Bondelid K, Siedlak S, Torres S, Fujioka H, et al. VPS35 D620N knockin mice recapitulate cardinal features of Parkinson's disease. Aging Cell. 2021;20:e13347 pubmed 出版商
  32. Zhang Z, Zou X, Zhang R, Xie Y, Feng Z, Li F, et al. Human umbilical cord mesenchymal stem cell-derived exosomal miR-146a-5p reduces microglial-mediated neuroinflammation via suppression of the IRAK1/TRAF6 signaling pathway after ischemic stroke. Aging (Albany NY). 2021;13:3060-3079 pubmed 出版商
  33. Campolo M, Filippone A, Biondo C, Mancuso G, Casili G, Lanza M, et al. TLR7/8 in the Pathogenesis of Parkinson's Disease. Int J Mol Sci. 2020;21: pubmed 出版商
  34. Zhang X, Wang R, Hu D, Sun X, Fujioka H, Lundberg K, et al. Oligodendroglial glycolytic stress triggers inflammasome activation and neuropathology in Alzheimer's disease. Sci Adv. 2020;6: pubmed 出版商
  35. Vita S, Redell J, Maynard M, Zhao J, Grill R, Dash P, et al. P-glycoprotein Expression Is Upregulated in a Pre-Clinical Model of Traumatic Brain Injury. Neurotrauma Rep. 2020;1:207-217 pubmed 出版商
  36. Griffin P, Sheehan P, Dimitry J, Guo C, Kanan M, Lee J, et al. REV-ERBα mediates complement expression and diurnal regulation of microglial synaptic phagocytosis. elife. 2020;9: pubmed 出版商
  37. Ke Y, Weng M, Chhetri G, Usman M, Li Y, Yu Q, et al. Trappc9 deficiency in mice impairs learning and memory by causing imbalance of dopamine D1 and D2 neurons. Sci Adv. 2020;6: pubmed 出版商
  38. Zhan L, Fan L, Kodama L, Sohn P, Wong M, Mousa G, et al. A MAC2-positive progenitor-like microglial population is resistant to CSF1R inhibition in adult mouse brain. elife. 2020;9: pubmed 出版商
  39. Zahedi K, Brooks M, Barone S, Rahmati N, Murray Stewart T, Dunworth M, et al. Ablation of polyamine catabolic enzymes provokes Purkinje cell damage, neuroinflammation, and severe ataxia. J Neuroinflammation. 2020;17:301 pubmed 出版商
  40. Huang W, Bai X, Meyer E, Scheller A. Acute brain injuries trigger microglia as an additional source of the proteoglycan NG2. Acta Neuropathol Commun. 2020;8:146 pubmed 出版商
  41. Cignarella F, Filipello F, Bollman B, Cantoni C, Locca A, Mikesell R, et al. TREM2 activation on microglia promotes myelin debris clearance and remyelination in a model of multiple sclerosis. Acta Neuropathol. 2020;140:513-534 pubmed 出版商
  42. Chen T, Lennon V, Liu Y, Bosco D, Li Y, Yi M, et al. Astrocyte-microglia interaction drives evolving neuromyelitis optica lesion. J Clin Invest. 2020;130:4025-4038 pubmed 出版商
  43. Kukharsky M, Ninkina N, An H, Telezhkin V, Wei W, Meritens C, et al. Long non-coding RNA Neat1 regulates adaptive behavioural response to stress in mice. Transl Psychiatry. 2020;10:171 pubmed 出版商
  44. Kang L, Yu H, Yang X, Zhu Y, Bai X, Wang R, et al. Neutrophil extracellular traps released by neutrophils impair revascularization and vascular remodeling after stroke. Nat Commun. 2020;11:2488 pubmed 出版商
  45. Tomassoni D, Martinelli I, Moruzzi M, Micioni Di Bonaventura M, Cifani C, Amenta F, et al. Obesity and Age-Related Changes in the Brain of the Zucker Lepr fa/fa Rats. Nutrients. 2020;12: pubmed 出版商
  46. LeBlang C, Medalla M, Nicoletti N, Hays E, Zhao J, Shattuck J, et al. Reduction of the RNA Binding Protein TIA1 Exacerbates Neuroinflammation in Tauopathy. Front Neurosci. 2020;14:285 pubmed 出版商
  47. Hongo N, Takamura Y, Nishimaru H, Matsumoto J, Tobe K, Saito T, et al. Astaxanthin Ameliorated Parvalbumin-Positive Neuron Deficits and Alzheimer's Disease-Related Pathological Progression in the Hippocampus of AppNL-G-F/NL-G-F Mice. Front Pharmacol. 2020;11:307 pubmed 出版商
  48. Morse S, Boltersdorf T, Harriss B, Chan T, Baxan N, Jung H, et al. Neuron labeling with rhodamine-conjugated Gd-based MRI contrast agents delivered to the brain via focused ultrasound. Theranostics. 2020;10:2659-2674 pubmed 出版商
  49. Aaltonen N, Singha P, Jakupović H, Wirth T, Samaranayake H, Pasonen Seppänen S, et al. High-Resolution Confocal Fluorescence Imaging of Serine Hydrolase Activity in Cryosections - Application to Glioma Brain Unveils Activity Hotspots Originating from Tumor-Associated Neutrophils. Biol Proced Online. 2020;22:6 pubmed 出版商
  50. Hu S, Hu M, Liu J, Zhang B, Zhang Z, Zhou F, et al. Phosphorylation of Tau and α-Synuclein Induced Neurodegeneration in MPTP Mouse Model of Parkinson's Disease. Neuropsychiatr Dis Treat. 2020;16:651-663 pubmed 出版商
  51. Doll J, Hoebe K, Thompson R, Sawtell N. Resolution of herpes simplex virus reactivation in vivo results in neuronal destruction. PLoS Pathog. 2020;16:e1008296 pubmed 出版商
  52. Merlo S, Luaces J, Spampinato S, Toro Urrego N, Caruso G, D Amico F, et al. SIRT1 Mediates Melatonin's Effects on Microglial Activation in Hypoxia: In Vitro and In Vivo Evidence. Biomolecules. 2020;10: pubmed 出版商
  53. Sun Y, Guo Y, Feng X, Jia M, Ai N, Dong Y, et al. The behavioural and neuropathologic sexual dimorphism and absence of MIP-3α in tau P301S mouse model of Alzheimer's disease. J Neuroinflammation. 2020;17:72 pubmed 出版商
  54. Angel A, Volkman R, Royal T, Offen D. Caspase-6 Knockout in the 5xFAD Model of Alzheimer's Disease Reveals Favorable Outcome on Memory and Neurological Hallmarks. Int J Mol Sci. 2020;21: pubmed 出版商
  55. Shibahara T, Ago T, Nakamura K, Tachibana M, Yoshikawa Y, Komori M, et al. Pericyte-Mediated Tissue Repair through PDGFRβ Promotes Peri-Infarct Astrogliosis, Oligodendrogenesis, and Functional Recovery after Acute Ischemic Stroke. Eneuro. 2020;7: pubmed 出版商
  56. Liu Y, Zhang S, Li X, Liu E, Wang X, Zhou Q, et al. Peripheral inflammation promotes brain tau transmission via disrupting blood-brain barrier. Biosci Rep. 2020;40: pubmed 出版商
  57. Chen K, Gu H, Zhu L, Feng D. A New Model of Repetitive Traumatic Brain Injury in Mice. Front Neurosci. 2019;13:1417 pubmed 出版商
  58. Cernit V, Sénécal J, Othman R, Couture R. Reciprocal Regulatory Interaction between TRPV1 and Kinin B1 Receptor in a Rat Neuropathic Pain Model. Int J Mol Sci. 2020;21: pubmed 出版商
  59. Cao J, Guo Q, Guan G, Zhu C, Zou C, Zhang L, et al. Elevated lymphocyte specific protein 1 expression is involved in the regulation of leukocyte migration and immunosuppressive microenvironment in glioblastoma. Aging (Albany NY). 2020;12:1656-1684 pubmed 出版商
  60. Wang T, Wu C, Ouzounov D, Gu W, Xia F, Kim M, et al. Quantitative analysis of 1300-nm three-photon calcium imaging in the mouse brain. elife. 2020;9: pubmed 出版商
  61. Yu J, Wang W, Matei N, Li X, Pang J, Mo J, et al. Ezetimibe Attenuates Oxidative Stress and Neuroinflammation via the AMPK/Nrf2/TXNIP Pathway after MCAO in Rats. Oxid Med Cell Longev. 2020;2020:4717258 pubmed 出版商
  62. Guyot A, Leuxe C, Disdier C, Oumata N, Costa N, Roux G, et al. A Small Compound Targeting Prohibitin with Potential Interest for Cognitive Deficit Rescue in Aging mice and Tau Pathology Treatment. Sci Rep. 2020;10:1143 pubmed 出版商
  63. Meilandt W, Ngu H, Gogineni A, Lalehzadeh G, Lee S, Srinivasan K, et al. Trem2 Deletion Reduces Late-Stage Amyloid Plaque Accumulation, Elevates the Aβ42:Aβ40 Ratio, and Exacerbates Axonal Dystrophy and Dendritic Spine Loss in the PS2APP Alzheimer's Mouse Model. J Neurosci. 2020;40:1956-1974 pubmed 出版商
  64. Burrus C, McKinstry S, Kim N, Ozlu M, Santoki A, Fang F, et al. Striatal Projection Neurons Require Huntingtin for Synaptic Connectivity and Survival. Cell Rep. 2020;30:642-657.e6 pubmed 出版商
  65. Li J, Chiu J, Ramanjulu M, Blass B, Pratico D. A pharmacological chaperone improves memory by reducing Aβ and tau neuropathology in a mouse model with plaques and tangles. Mol Neurodegener. 2020;15:1 pubmed 出版商
  66. Yue D, Zhao J, Chen H, Guo M, Chen C, Zhou Y, et al. MicroRNA-7, synergizes with RORα, negatively controls the pathology of brain tissue inflammation. J Neuroinflammation. 2020;17:28 pubmed 出版商
  67. Tang X, Yan K, Wang Y, Wang Y, Chen H, Xu J, et al. Activation of PPAR-β/δ Attenuates Brain Injury by Suppressing Inflammation and Apoptosis in a Collagenase-Induced Intracerebral Hemorrhage Mouse Model. Neurochem Res. 2020;45:837-850 pubmed 出版商
  68. Ding H, Chen J, Su M, Lin Z, Zhan H, Yang F, et al. BDNF promotes activation of astrocytes and microglia contributing to neuroinflammation and mechanical allodynia in cyclophosphamide-induced cystitis. J Neuroinflammation. 2020;17:19 pubmed 出版商
  69. Smith H, Freeman O, Butcher A, Holmqvist S, Humoud I, Schätzl T, et al. Astrocyte Unfolded Protein Response Induces a Specific Reactivity State that Causes Non-Cell-Autonomous Neuronal Degeneration. Neuron. 2020;: pubmed 出版商
  70. Zhang S, Hu L, Jiang J, Li H, Wu Q, Ooi K, et al. HMGB1/RAGE axis mediates stress-induced RVLM neuroinflammation in mice via impairing mitophagy flux in microglia. J Neuroinflammation. 2020;17:15 pubmed 出版商
  71. Li L, Du Z, Rong B, Zhao D, Wang A, Xu Y, et al. Foam cells promote atherosclerosis progression by releasing CXCL12. Biosci Rep. 2020;40: pubmed 出版商
  72. Tan Z, Lei Z, Zhang Z, Zhang H, Shu K, Hu F, et al. Identification and characterization of microglia/macrophages in the granuloma microenvironment of encephalic schistosomiasis japonicum. BMC Infect Dis. 2019;19:1088 pubmed 出版商
  73. Robison L, Albert N, Camargo L, Anderson B, Salinero A, Riccio D, et al. High-Fat Diet-Induced Obesity Causes Sex-Specific Deficits in Adult Hippocampal Neurogenesis in Mice. Eneuro. 2020;7: pubmed 出版商
  74. Ward L, Lee D, Sharma A, Wang A, Naouar I, Ma X, et al. Siponimod therapy implicates Th17 cells in a preclinical model of subpial cortical injury. JCI Insight. 2020;5: pubmed 出版商
  75. Ising C, Venegas C, Zhang S, Scheiblich H, Schmidt S, Vieira Saecker A, et al. NLRP3 inflammasome activation drives tau pathology. Nature. 2019;: pubmed 出版商
  76. Wang X, Chang Y, He Y, Lyu C, Li H, Zhu J, et al. Glimepiride and glibenclamide have comparable efficacy in treating acute ischemic stroke in mice. Neuropharmacology. 2020;162:107845 pubmed 出版商
  77. Upadhya D, Kodali M, Gitaí D, Castro O, Zanirati G, Upadhya R, et al. A Model of Chronic Temporal Lobe Epilepsy Presenting Constantly Rhythmic and Robust Spontaneous Seizures, Co-morbidities and Hippocampal Neuropathology. Aging Dis. 2019;10:915-936 pubmed 出版商
  78. Feng Y, Feng F, Zheng C, Zhou Z, Jiang M, Liu Z, et al. Tanshinone IIA attenuates demyelination and promotes remyelination in A. cantonensis-infected BALB/c mice. Int J Biol Sci. 2019;15:2211-2223 pubmed 出版商
  79. Riessland M, Kolisnyk B, Kim T, Cheng J, Ni J, Pearson J, et al. Loss of SATB1 Induces p21-Dependent Cellular Senescence in Post-mitotic Dopaminergic Neurons. Cell Stem Cell. 2019;25:514-530.e8 pubmed 出版商
  80. Yagensky O, Kohansal Nodehi M, Gunaseelan S, Rabe T, Zafar S, Zerr I, et al. Increased expression of heme-binding protein 1 early in Alzheimer's disease is linked to neurotoxicity. elife. 2019;8: pubmed 出版商
  81. Wirsching H, Zhang H, Szulzewsky F, Arora S, Grandi P, Cimino P, et al. Arming oHSV with ULBP3 drives abscopal immunity in lymphocyte-depleted glioblastoma. JCI Insight. 2019;4: pubmed 出版商
  82. Dulken B, Buckley M, Navarro Negredo P, Saligrama N, Cayrol R, Leeman D, et al. Single-cell analysis reveals T cell infiltration in old neurogenic niches. Nature. 2019;571:205-210 pubmed 出版商
  83. Diéguez Hurtado R, Kato K, Giaimo B, Nieminen Kelhä M, Arf H, Ferrante F, et al. Loss of the transcription factor RBPJ induces disease-promoting properties in brain pericytes. Nat Commun. 2019;10:2817 pubmed 出版商
  84. Ohgomori T, Jinno S. The expression of keratan sulfate reveals a unique subset of microglia in the mouse hippocampus after pilocarpine-induced status epileptics. J Comp Neurol. 2020;528:14-31 pubmed 出版商
  85. Zhang Q, Zhu W, Xu F, Dai X, Shi L, Cai W, et al. The interleukin-4/PPARγ signaling axis promotes oligodendrocyte differentiation and remyelination after brain injury. PLoS Biol. 2019;17:e3000330 pubmed 出版商
  86. Garcia Agudo L, Janova H, Sendler L, Arinrad S, Steixner A, Hassouna I, et al. Genetically induced brain inflammation by Cnp deletion transiently benefits from microglia depletion. FASEB J. 2019;33:8634-8647 pubmed 出版商
  87. Bertrand L, Méroth F, Tournebize M, Leda A, Sun E, Toborek M. Targeting the HIV-infected brain to improve ischemic stroke outcome. Nat Commun. 2019;10:2009 pubmed 出版商
  88. Zhang X, He Q, Huang T, Zhao N, Liang F, Xu B, et al. Treadmill Exercise Decreases Aβ Deposition and Counteracts Cognitive Decline in APP/PS1 Mice, Possibly via Hippocampal Microglia Modifications. Front Aging Neurosci. 2019;11:78 pubmed 出版商
  89. Pluvinage J, Haney M, Smith B, Sun J, Iram T, Bonanno L, et al. CD22 blockade restores homeostatic microglial phagocytosis in ageing brains. Nature. 2019;568:187-192 pubmed 出版商
  90. Wang E, Dai Z, Ferrante A, Drake C, Christiano A. A Subset of TREM2+ Dermal Macrophages Secretes Oncostatin M to Maintain Hair Follicle Stem Cell Quiescence and Inhibit Hair Growth. Cell Stem Cell. 2019;: pubmed 出版商
  91. Amal H, Gong G, Gjoneska E, Lewis S, Wishnok J, Tsai L, et al. S-nitrosylation of E3 ubiquitin-protein ligase RNF213 alters non-canonical Wnt/Ca+2 signaling in the P301S mouse model of tauopathy. Transl Psychiatry. 2019;9:44 pubmed 出版商
  92. Rosenzweig N, Dvir Szternfeld R, Tsitsou Kampeli A, Keren Shaul H, Ben Yehuda H, Weill Raynal P, et al. PD-1/PD-L1 checkpoint blockade harnesses monocyte-derived macrophages to combat cognitive impairment in a tauopathy mouse model. Nat Commun. 2019;10:465 pubmed 出版商
  93. Düsedau H, Kleveman J, Figueiredo C, Biswas A, Steffen J, Kliche S, et al. p75NTR regulates brain mononuclear cell function and neuronal structure in Toxoplasma infection-induced neuroinflammation. Glia. 2019;67:193-211 pubmed 出版商
  94. Nie S, Tan Y, Zhang Z, Chen G, Xiong J, Hu D, et al. Bilateral Implantation of Shear Stress Modifier in ApoE Knockout Mouse Induces Cognitive Impairment and Tau Abnormalities. Front Aging Neurosci. 2018;10:303 pubmed 出版商
  95. Real R, Peter M, Trabalza A, Khan S, Smith M, Dopp J, et al. In vivo modeling of human neuron dynamics and Down syndrome. Science. 2018;362: pubmed 出版商
  96. Louveau A, Herz J, Alme M, Salvador A, Dong M, Viar K, et al. CNS lymphatic drainage and neuroinflammation are regulated by meningeal lymphatic vasculature. Nat Neurosci. 2018;21:1380-1391 pubmed 出版商
  97. Han L, Wang L, Tang S, Yuan L, Wu S, Du X, et al. ITGB4 deficiency in bronchial epithelial cells directs airway inflammation and bipolar disorder-related behavior. J Neuroinflammation. 2018;15:246 pubmed 出版商
  98. Dá Mesquita S, Louveau A, Vaccari A, Smirnov I, Cornelison R, Kingsmore K, et al. Functional aspects of meningeal lymphatics in ageing and Alzheimer's disease. Nature. 2018;560:185-191 pubmed 出版商
  99. Weidner L, Kannan P, Mitsios N, Kang S, Hall M, Theodore W, et al. The expression of inflammatory markers and their potential influence on efflux transporters in drug-resistant mesial temporal lobe epilepsy tissue. Epilepsia. 2018;59:1507-1517 pubmed 出版商
  100. Norris G, Smirnov I, Filiano A, Shadowen H, Cody K, Thompson J, et al. Neuronal integrity and complement control synaptic material clearance by microglia after CNS injury. J Exp Med. 2018;215:1789-1801 pubmed 出版商
  101. Appel J, Ye S, Tang F, Sun D, Zhang H, Mei L, et al. Increased Microglial Activity, Impaired Adult Hippocampal Neurogenesis, and Depressive-like Behavior in Microglial VPS35-Depleted Mice. J Neurosci. 2018;38:5949-5968 pubmed 出版商
  102. Kukreja L, Shahidehpour R, Kim G, Keegan J, Sadleir K, Russell T, et al. Differential Neurotoxicity Related to Tetracycline Transactivator and TDP-43 Expression in Conditional TDP-43 Mouse Model of Frontotemporal Lobar Degeneration. J Neurosci. 2018;38:6045-6062 pubmed 出版商
  103. Lee M, Sitko A, Khalid S, Shirasu Hiza M, Mason C. Spatiotemporal distribution of glia in and around the developing mouse optic tract. J Comp Neurol. 2019;527:508-521 pubmed 出版商
  104. Zhao Y, Wu X, Li X, Jiang L, Gui X, Liu Y, et al. TREM2 Is a Receptor for β-Amyloid that Mediates Microglial Function. Neuron. 2018;97:1023-1031.e7 pubmed 出版商
  105. Giurisato E, Xu Q, Lonardi S, Telfer B, Russo I, Pearson A, et al. Myeloid ERK5 deficiency suppresses tumor growth by blocking protumor macrophage polarization via STAT3 inhibition. Proc Natl Acad Sci U S A. 2018;115:E2801-E2810 pubmed 出版商
  106. Zukor K, Wang H, Siddharthan V, Julander J, Morrey J. Zika virus-induced acute myelitis and motor deficits in adult interferon ??/? receptor knockout mice. J Neurovirol. 2018;24:273-290 pubmed 出版商
  107. Sokhi U, Liber M, Frye L, Park S, Kang K, Pannellini T, et al. Dissection and function of autoimmunity-associated TNFAIP3 (A20) gene enhancers in humanized mouse models. Nat Commun. 2018;9:658 pubmed 出版商
  108. Hou Y, Lautrup S, Cordonnier S, Wang Y, Croteau D, Zavala E, et al. NAD+ supplementation normalizes key Alzheimer's features and DNA damage responses in a new AD mouse model with introduced DNA repair deficiency. Proc Natl Acad Sci U S A. 2018;115:E1876-E1885 pubmed 出版商
  109. Zhang R, Wu Y, Xie F, Zhong Y, Wang Y, Xu M, et al. RGMa mediates reactive astrogliosis and glial scar formation through TGF?1/Smad2/3 signaling after stroke. Cell Death Differ. 2018;25:1503-1516 pubmed 出版商
  110. Zhou K, Enkhjargal B, Xie Z, Sun C, Wu L, Malaguit J, et al. Dihydrolipoic Acid Inhibits Lysosomal Rupture and NLRP3 Through Lysosome-Associated Membrane Protein-1/Calcium/Calmodulin-Dependent Protein Kinase II/TAK1 Pathways After Subarachnoid Hemorrhage in Rat. Stroke. 2018;49:175-183 pubmed 出版商
  111. Zhang L, Tan J, Jiang X, Qian W, Yang T, Sun X, et al. Neuron-derived CCL2 contributes to microglia activation and neurological decline in hepatic encephalopathy. Biol Res. 2017;50:26 pubmed 出版商
  112. Gesteira T, Sun M, Coulson Thomas Y, Yamaguchi Y, Yeh L, Hascall V, et al. Hyaluronan Rich Microenvironment in the Limbal Stem Cell Niche Regulates Limbal Stem Cell Differentiation. Invest Ophthalmol Vis Sci. 2017;58:4407-4421 pubmed 出版商
  113. Connolly N, Stokum J, Schneider C, Ozawa T, Xu S, Galisteo R, et al. Genetically engineered rat gliomas: PDGF-driven tumor initiation and progression in tv-a transgenic rats recreate key features of human brain cancer. PLoS ONE. 2017;12:e0174557 pubmed 出版商
  114. Zhou Y, Chen S, Liu D, Manyande A, Zhang W, Yang S, et al. The Role of Spinal GABAB Receptors in Cancer-Induced Bone Pain in Rats. J Pain. 2017;18:933-946 pubmed 出版商
  115. Yang X, Huo F, Liu B, Liu J, Chen T, Li J, et al. Crocin Inhibits Oxidative Stress and Pro-inflammatory Response of Microglial Cells Associated with Diabetic Retinopathy Through the Activation of PI3K/Akt Signaling Pathway. J Mol Neurosci. 2017;61:581-589 pubmed 出版商
  116. Williams C, Uytingco C, Green W, McIntyre J, Ukhanov K, Zimmerman A, et al. Gene Therapeutic Reversal of Peripheral Olfactory Impairment in Bardet-Biedl Syndrome. Mol Ther. 2017;25:904-916 pubmed 出版商
  117. Furukawa S, Nagaike M, Ozaki K. Databases for technical aspects of immunohistochemistry. J Toxicol Pathol. 2017;30:79-107 pubmed 出版商
  118. Wang S, Kugelman T, Buch A, Herman M, Han Y, Karakatsani M, et al. Non-invasive, Focused Ultrasound-Facilitated Gene Delivery for Optogenetics. Sci Rep. 2017;7:39955 pubmed 出版商
  119. Qi J, Chen C, Meng Q, Wu Y, Wu H, Zhao T. Crosstalk between Activated Microglia and Neurons in the Spinal Dorsal Horn Contributes to Stress-induced Hyperalgesia. Sci Rep. 2016;6:39442 pubmed 出版商
  120. Sellgren C, Sheridan S, Gracias J, Xuan D, Fu T, Perlis R. Patient-specific models of microglia-mediated engulfment of synapses and neural progenitors. Mol Psychiatry. 2017;22:170-177 pubmed 出版商
  121. Dzamko N, Gysbers A, Bandopadhyay R, Bolliger M, Uchino A, Zhao Y, et al. LRRK2 levels and phosphorylation in Parkinson's disease brain and cases with restricted Lewy bodies. Mov Disord. 2017;32:423-432 pubmed 出版商
  122. Hurtado Alvarado G, Dominguez Salazar E, Velazquez Moctezuma J, Gómez González B. A2A Adenosine Receptor Antagonism Reverts the Blood-Brain Barrier Dysfunction Induced by Sleep Restriction. PLoS ONE. 2016;11:e0167236 pubmed 出版商
  123. Hodges J, Yu X, Gilmore A, Bennett H, Tjia M, Perna J, et al. Astrocytic Contributions to Synaptic and Learning Abnormalities in a Mouse Model of Fragile X Syndrome. Biol Psychiatry. 2017;82:139-149 pubmed 出版商
  124. Mildner A, Huang H, Radke J, Stenzel W, Priller J. P2Y12 receptor is expressed on human microglia under physiological conditions throughout development and is sensitive to neuroinflammatory diseases. Glia. 2017;65:375-387 pubmed 出版商
  125. Pan S, Li S, Hu Y, Zhang H, Liu Y, Jiang H, et al. Resveratrol post-treatment protects against neonatal brain injury after hypoxia-ischemia. Oncotarget. 2016;7:79247-79261 pubmed 出版商
  126. Teo J, Morris M, Jones N. Maternal obesity increases inflammation and exacerbates damage following neonatal hypoxic-ischaemic brain injury in rats. Brain Behav Immun. 2017;63:186-196 pubmed 出版商
  127. Schmidt A, Kannan P, Chougnet C, Danzer S, Miller L, Jobe A, et al. Intra-amniotic LPS causes acute neuroinflammation in preterm rhesus macaques. J Neuroinflammation. 2016;13:238 pubmed 出版商
  128. Choi S, Roh D, Yoon S, Kwon S, Choi H, Han H, et al. Astrocyte sigma-1 receptors modulate connexin 43 expression leading to the induction of below-level mechanical allodynia in spinal cord injured mice. Neuropharmacology. 2016;111:34-46 pubmed 出版商
  129. Dhillon R, Parker J, Syed Y, Edgley S, Young A, Fawcett J, et al. Axonal plasticity underpins the functional recovery following surgical decompression in a rat model of cervical spondylotic myelopathy. Acta Neuropathol Commun. 2016;4:89 pubmed 出版商
  130. Hillis J, Davies J, Mundim M, Al Dalahmah O, Szele F. Cuprizone demyelination induces a unique inflammatory response in the subventricular zone. J Neuroinflammation. 2016;13:190 pubmed 出版商
  131. Lee S, Le Pichon C, Adolfsson O, Gafner V, Pihlgren M, Lin H, et al. Antibody-Mediated Targeting of Tau In Vivo Does Not Require Effector Function and Microglial Engagement. Cell Rep. 2016;16:1690-1700 pubmed 出版商
  132. Choi M, Ahn S, Yang E, Kim H, Chong Y, Kim H. Hippocampus-based contextual memory alters the morphological characteristics of astrocytes in the dentate gyrus. Mol Brain. 2016;9:72 pubmed 出版商
  133. Urbán N, van den Berg D, Forget A, Andersen J, Demmers J, Hunt C, et al. Return to quiescence of mouse neural stem cells by degradation of a proactivation protein. Science. 2016;353:292-5 pubmed 出版商
  134. Chuang T, Guo Y, Seki S, Rosen A, Johanson D, Mandell J, et al. LRP1 expression in microglia is protective during CNS autoimmunity. Acta Neuropathol Commun. 2016;4:68 pubmed 出版商
  135. Vernay A, Therreau L, Blot B, Risson V, Dirrig Grosch S, Waegaert R, et al. A transgenic mouse expressing CHMP2Bintron5 mutant in neurons develops histological and behavioural features of amyotrophic lateral sclerosis and frontotemporal dementia. Hum Mol Genet. 2016;25:3341-3360 pubmed 出版商
  136. Auderset L, Cullen C, Young K. Low Density Lipoprotein-Receptor Related Protein 1 Is Differentially Expressed by Neuronal and Glial Populations in the Developing and Mature Mouse Central Nervous System. PLoS ONE. 2016;11:e0155878 pubmed 出版商
  137. Singh V, Singh M, Gorantla S, Poluektova L, Maggirwar S. Smoothened Agonist Reduces Human Immunodeficiency Virus Type-1-Induced Blood-Brain Barrier Breakdown in Humanized Mice. Sci Rep. 2016;6:26876 pubmed 出版商
  138. Puchert M, Adams V, Linke A, Engele J. Evidence for the involvement of the CXCL12 system in the adaptation of skeletal muscles to physical exercise. Cell Signal. 2016;28:1205-15 pubmed 出版商
  139. Keilhoff G, Lucas B, Uhde K, Fansa H. Selected gene profiles of stressed NSC-34 cells and rat spinal cord following peripheral nerve reconstruction and minocycline treatment. Exp Ther Med. 2016;11:1685-1699 pubmed
  140. Tzekov R, Dawson C, Orlando M, Mouzon B, Reed J, Evans J, et al. Sub-Chronic Neuropathological and Biochemical Changes in Mouse Visual System after Repetitive Mild Traumatic Brain Injury. PLoS ONE. 2016;11:e0153608 pubmed 出版商
  141. Williams P, Tribble J, Pepper K, Cross S, Morgan B, Morgan J, et al. Inhibition of the classical pathway of the complement cascade prevents early dendritic and synaptic degeneration in glaucoma. Mol Neurodegener. 2016;11:26 pubmed 出版商
  142. Yang J, Ding S, Huang W, Hu J, Huang S, Zhang Y, et al. Interleukin-4 Ameliorates the Functional Recovery of Intracerebral Hemorrhage Through the Alternative Activation of Microglia/Macrophage. Front Neurosci. 2016;10:61 pubmed 出版商
  143. Fan J, Fan X, Li Y, Guo J, Xia D, Ding L, et al. Blunted inflammation mediated by NF-κB activation in hippocampus alleviates chronic normobaric hypoxia-induced anxiety-like behavior in rats. Brain Res Bull. 2016;122:54-61 pubmed 出版商
  144. Loewen J, Barker Haliski M, Dahle E, White H, Wilcox K. Neuronal Injury, Gliosis, and Glial Proliferation in Two Models of Temporal Lobe Epilepsy. J Neuropathol Exp Neurol. 2016;75:366-78 pubmed 出版商
  145. Makani V, Jang Y, Christopher K, Judy W, Eckstein J, Hensley K, et al. BBB-Permeable, Neuroprotective, and Neurotrophic Polysaccharide, Midi-GAGR. PLoS ONE. 2016;11:e0149715 pubmed 出版商
  146. Xu A, Zheng G, Wang Z, Chen X, Jiang Q. Neuroprotective effects of Ilexonin A following transient focal cerebral ischemia in rats. Mol Med Rep. 2016;13:2957-66 pubmed 出版商
  147. Maeda S, Djukic B, Taneja P, Yu G, Lo I, Davis A, et al. Expression of A152T human tau causes age-dependent neuronal dysfunction and loss in transgenic mice. EMBO Rep. 2016;17:530-51 pubmed 出版商
  148. Ma Y, Matsuwaki T, Yamanouchi K, Nishihara M. Glucocorticoids Suppress the Protective Effect of Cyclooxygenase-2-Related Signaling on Hippocampal Neurogenesis Under Acute Immune Stress. Mol Neurobiol. 2017;54:1953-1966 pubmed 出版商
  149. Puyang Z, Feng L, Chen H, Liang P, Troy J, Liu X. Retinal Ganglion Cell Loss is Delayed Following Optic Nerve Crush in NLRP3 Knockout Mice. Sci Rep. 2016;6:20998 pubmed 出版商
  150. Lee Kubli C, Ingves M, Henry K, Shiao R, Collyer E, Tuszynski M, et al. Analysis of the behavioral, cellular and molecular characteristics of pain in severe rodent spinal cord injury. Exp Neurol. 2016;278:91-104 pubmed 出版商
  151. Liu Q, Sanai N, Jin W, La Cava A, Van Kaer L, Shi F. Neural stem cells sustain natural killer cells that dictate recovery from brain inflammation. Nat Neurosci. 2016;19:243-52 pubmed 出版商
  152. Ostapchenko V, Chen M, Guzman M, Xie Y, Lavine N, Fan J, et al. The Transient Receptor Potential Melastatin 2 (TRPM2) Channel Contributes to β-Amyloid Oligomer-Related Neurotoxicity and Memory Impairment. J Neurosci. 2015;35:15157-69 pubmed 出版商
  153. Gatticchi L, Bellezza I, Del Sordo R, Peirce M, Sidoni A, Roberti R, et al. The Tm7sf2 Gene Deficiency Protects Mice against Endotoxin-Induced Acute Kidney Injury. PLoS ONE. 2015;10:e0141885 pubmed 出版商
  154. Gu Y, Zhang Y, Bi Y, Liu J, Tan B, Gong M, et al. Mesenchymal stem cells suppress neuronal apoptosis and decrease IL-10 release via the TLR2/NFκB pathway in rats with hypoxic-ischemic brain damage. Mol Brain. 2015;8:65 pubmed 出版商
  155. Zarpelon A, Rodrigues F, Lopes A, Souza G, Carvalho T, Pinto L, et al. Spinal cord oligodendrocyte-derived alarmin IL-33 mediates neuropathic pain. FASEB J. 2016;30:54-65 pubmed 出版商
  156. Lutzenberger M, Burwinkel M, Riemer C, Bode V, Baier M. Ablation of CCAAT/Enhancer-Binding Protein Delta (C/EBPD): Increased Plaque Burden in a Murine Alzheimer's Disease Model. PLoS ONE. 2015;10:e0134228 pubmed 出版商
  157. Rolón Reyes K, Kucheryavykh Y, Cubano L, Inyushin M, Skatchkov S, Eaton M, et al. Microglia Activate Migration of Glioma Cells through a Pyk2 Intracellular Pathway. PLoS ONE. 2015;10:e0131059 pubmed 出版商
  158. Kim S, Chung Y, Lee H, Chung S, Lee J, Sohn U, et al. Protective effects of phosphatidylcholine on oxaliplatin-induced neuropathy in rats. Life Sci. 2015;130:81-7 pubmed 出版商
  159. Åšlusarczyk J, Trojan E, GÅ‚ombik K, Budziszewska B, Kubera M, LasoÅ„ W, et al. Prenatal stress is a vulnerability factor for altered morphology and biological activity of microglia cells. Front Cell Neurosci. 2015;9:82 pubmed 出版商
  160. Sunkaria A, Bhardwaj S, Halder A, Yadav A, Sandhir R. Migration and Phagocytic Ability of Activated Microglia During Post-natal Development is Mediated by Calcium-Dependent Purinergic Signalling. Mol Neurobiol. 2016;53:944-54 pubmed 出版商
  161. Maurya S, Mishra J, Abbas S, Bandyopadhyay S. Cypermethrin Stimulates GSK3β-Dependent Aβ and p-tau Proteins and Cognitive Loss in Young Rats: Reduced HB-EGF Signaling and Downstream Neuroinflammation as Critical Regulators. Mol Neurobiol. 2016;53:968-82 pubmed 出版商
  162. Huang L, Zhu G, Deng Y, Jiang W, Fang M, Chen C, et al. Hypertonic saline alleviates cerebral edema by inhibiting microglia-derived TNF-? and IL-1?-induced Na-K-Cl Cotransporter up-regulation. J Neuroinflammation. 2014;11:102 pubmed 出版商
  163. Paez Gonzalez P, Asrican B, Rodriguez E, Kuo C. Identification of distinct ChAT? neurons and activity-dependent control of postnatal SVZ neurogenesis. Nat Neurosci. 2014;17:934-42 pubmed 出版商
  164. König N, Trolle C, Kapuralin K, Adameyko I, Mitrecic D, Aldskogius H, et al. Murine neural crest stem cells and embryonic stem cell-derived neuron precursors survive and differentiate after transplantation in a model of dorsal root avulsion. J Tissue Eng Regen Med. 2017;11:129-137 pubmed 出版商
  165. Tucsek Z, Toth P, Sosnowska D, Gautam T, Mitschelen M, Koller A, et al. Obesity in aging exacerbates blood-brain barrier disruption, neuroinflammation, and oxidative stress in the mouse hippocampus: effects on expression of genes involved in beta-amyloid generation and Alzheimer's disease. J Gerontol A Biol Sci Med Sci. 2014;69:1212-26 pubmed 出版商
  166. Tan M, Yu J, Jiang T, Zhu X, Guan H, Tan L. IL12/23 p40 inhibition ameliorates Alzheimer's disease-associated neuropathology and spatial memory in SAMP8 mice. J Alzheimers Dis. 2014;38:633-46 pubmed 出版商
  167. Savard A, Lavoie K, Brochu M, Grbic D, Lepage M, Gris D, et al. Involvement of neuronal IL-1? in acquired brain lesions in a rat model of neonatal encephalopathy. J Neuroinflammation. 2013;10:110 pubmed 出版商
  168. Dilworth J, Krueger S, Dabjan M, Grills I, Torma J, Wilson G, et al. Pulsed low-dose irradiation of orthotopic glioblastoma multiforme (GBM) in a pre-clinical model: effects on vascularization and tumor control. Radiother Oncol. 2013;108:149-54 pubmed 出版商
  169. Harris N, Nogueira M, Verley D, Sutton R. Chondroitinase enhances cortical map plasticity and increases functionally active sprouting axons after brain injury. J Neurotrauma. 2013;30:1257-69 pubmed 出版商
  170. Chio C, Chang C, Wang C, Cheong C, Chao C, Cheng B, et al. Etanercept attenuates traumatic brain injury in rats by reducing early microglial expression of tumor necrosis factor-?. BMC Neurosci. 2013;14:33 pubmed 出版商
  171. Cao L, Li L, Lin D, Zuo Z. Isoflurane induces learning impairment that is mediated by interleukin 1? in rodents. PLoS ONE. 2012;7:e51431 pubmed 出版商
  172. Zhu X, Huang C, Li Q, Guo Q, Wang Y, He X, et al. Temporal distribution of p300/CBP immunoreactivity in the adult rat spinal dorsal horn following chronic constriction injury (CCI). Cell Mol Neurobiol. 2013;33:197-204 pubmed 出版商
  173. Roltsch E, Holcomb L, Young K, Marks A, Zimmer D. PSAPP mice exhibit regionally selective reductions in gliosis and plaque deposition in response to S100B ablation. J Neuroinflammation. 2010;7:78 pubmed 出版商