这是一篇来自已证抗体库的有关小鼠 B7 1的综述,是根据197篇发表使用所有方法的文章归纳的。这综述旨在帮助来邦网的访客找到最适合B7 1 抗体。
B7 1 同义词: B71; Cd28l; Ly-53; Ly53; MIC17; TSA1

BioLegend
仓鼠 单克隆(16-10A1)
  • 流式细胞仪; 小鼠; 图 3a
BioLegendB7 1抗体(BioLegend, 104722)被用于被用于流式细胞仪在小鼠样本上 (图 3a). Sci Adv (2022) ncbi
仓鼠 单克隆(16-10A1)
  • 流式细胞仪; 小鼠; 图 2j
BioLegendB7 1抗体(Biolegend, 104718)被用于被用于流式细胞仪在小鼠样本上 (图 2j). Cell Rep (2022) ncbi
仓鼠 单克隆(16-10A1)
  • 流式细胞仪; 小鼠; 图 1a, s2b, s2c
BioLegendB7 1抗体(Biolegend, 16-10A1)被用于被用于流式细胞仪在小鼠样本上 (图 1a, s2b, s2c). Nat Commun (2022) ncbi
仓鼠 单克隆(16-10A1)
  • 流式细胞仪; 小鼠; 1:300; 图 2f, s2l
BioLegendB7 1抗体(BioLegend, 16-10A1)被用于被用于流式细胞仪在小鼠样本上浓度为1:300 (图 2f, s2l). PLoS Pathog (2022) ncbi
仓鼠 单克隆(16-10A1)
  • 流式细胞仪; 小鼠; 1:200; 图 4b, s7c
BioLegendB7 1抗体(BioLegend, 104707)被用于被用于流式细胞仪在小鼠样本上浓度为1:200 (图 4b, s7c). J Immunother Cancer (2022) ncbi
仓鼠 单克隆(16-10A1)
  • 流式细胞仪; 小鼠; 1:200; 图 1s1a, 5s1
BioLegendB7 1抗体(BioLegend, 104722)被用于被用于流式细胞仪在小鼠样本上浓度为1:200 (图 1s1a, 5s1). elife (2022) ncbi
仓鼠 单克隆(16-10A1)
  • 流式细胞仪; 小鼠; 1:100; 图 2c, 5e, e4j
BioLegendB7 1抗体(Biolegend, 104707)被用于被用于流式细胞仪在小鼠样本上浓度为1:100 (图 2c, 5e, e4j). EMBO Mol Med (2022) ncbi
仓鼠 单克隆(16-10A1)
  • 流式细胞仪; 小鼠; 1:100
BioLegendB7 1抗体(BioLegend, 16-10A1)被用于被用于流式细胞仪在小鼠样本上浓度为1:100. J Immunother Cancer (2021) ncbi
仓鼠 单克隆(16-10A1)
  • 流式细胞仪; 小鼠; 图 3a
BioLegendB7 1抗体(Biolegend, 104707)被用于被用于流式细胞仪在小鼠样本上 (图 3a). Front Pharmacol (2021) ncbi
仓鼠 单克隆(16-10A1)
  • 流式细胞仪; 小鼠
BioLegendB7 1抗体(Biolegend, 16-10AI)被用于被用于流式细胞仪在小鼠样本上. Int J Mol Sci (2021) ncbi
仓鼠 单克隆(16-10A1)
  • 流式细胞仪; 小鼠; 图 3b
BioLegendB7 1抗体(Biolegend, 104707)被用于被用于流式细胞仪在小鼠样本上 (图 3b). Vaccines (Basel) (2021) ncbi
仓鼠 单克隆(16-10A1)
  • 流式细胞仪; 小鼠; 1:200
BioLegendB7 1抗体(Biolegend, 104706)被用于被用于流式细胞仪在小鼠样本上浓度为1:200. Aging Cell (2021) ncbi
仓鼠 单克隆(16-10A1)
  • 流式细胞仪; 小鼠; 图 4i
BioLegendB7 1抗体(Biolegend, 104702)被用于被用于流式细胞仪在小鼠样本上 (图 4i). Cancer Cell (2021) ncbi
仓鼠 单克隆(16-10A1)
  • 流式细胞仪; 小鼠; 1:100; 图 s6g
BioLegendB7 1抗体(Biolegend, 104737)被用于被用于流式细胞仪在小鼠样本上浓度为1:100 (图 s6g). Cell Rep (2021) ncbi
仓鼠 单克隆(16-10A1)
  • 流式细胞仪; 小鼠; 图 6c
BioLegendB7 1抗体(BioLegend, 16-10A1)被用于被用于流式细胞仪在小鼠样本上 (图 6c). Front Immunol (2021) ncbi
仓鼠 单克隆(16-10A1)
  • 流式细胞仪; 小鼠; 图 5e
BioLegendB7 1抗体(Biolegend, 104725)被用于被用于流式细胞仪在小鼠样本上 (图 5e). Mol Cancer (2021) ncbi
仓鼠 单克隆(16-10A1)
  • 流式细胞仪; 小鼠
BioLegendB7 1抗体(BioLegend, 104738)被用于被用于流式细胞仪在小鼠样本上. Mucosal Immunol (2021) ncbi
仓鼠 单克隆(16-10A1)
  • 流式细胞仪; 小鼠; 图 5a
BioLegendB7 1抗体(BioLegend, 104725)被用于被用于流式细胞仪在小鼠样本上 (图 5a). Cell Mol Gastroenterol Hepatol (2021) ncbi
仓鼠 单克隆(16-10A1)
  • 流式细胞仪; 小鼠; 图 5h
BioLegendB7 1抗体(BioLegend, 16-10A1)被用于被用于流式细胞仪在小鼠样本上 (图 5h). Front Immunol (2020) ncbi
仓鼠 单克隆(16-10A1)
  • 流式细胞仪; 小鼠; 1:100; 图 5b
BioLegendB7 1抗体(BioLegend, 104705)被用于被用于流式细胞仪在小鼠样本上浓度为1:100 (图 5b). Sci Transl Med (2021) ncbi
仓鼠 单克隆(16-10A1)
  • 流式细胞仪; 小鼠; 图 4a
BioLegendB7 1抗体(BioLegend, 1047220)被用于被用于流式细胞仪在小鼠样本上 (图 4a). PLoS ONE (2021) ncbi
仓鼠 单克隆(16-10A1)
  • 流式细胞仪; 小鼠; 图 s9d
BioLegendB7 1抗体(BioLegend, 104712)被用于被用于流式细胞仪在小鼠样本上 (图 s9d). Sci Adv (2021) ncbi
仓鼠 单克隆(16-10A1)
  • 流式细胞仪; 小鼠
BioLegendB7 1抗体(BioLegend, 104723)被用于被用于流式细胞仪在小鼠样本上. Nat Commun (2021) ncbi
仓鼠 单克隆(16-10A1)
  • 流式细胞仪; 小鼠; 图 2c
BioLegendB7 1抗体(Biolegend, 104706)被用于被用于流式细胞仪在小鼠样本上 (图 2c). Nat Commun (2021) ncbi
仓鼠 单克隆(16-10A1)
  • 流式细胞仪; 小鼠; 图 5e
BioLegendB7 1抗体(Biolegend, 16-10A1)被用于被用于流式细胞仪在小鼠样本上 (图 5e). Antioxidants (Basel) (2020) ncbi
仓鼠 单克隆(16-10A1)
  • 流式细胞仪; 小鼠
BioLegendB7 1抗体(Biolegend, 16-10A1)被用于被用于流式细胞仪在小鼠样本上. Mucosal Immunol (2021) ncbi
仓鼠 单克隆(16-10A1)
  • 流式细胞仪; 小鼠; 图 6b
BioLegendB7 1抗体(Biolegend, 16-10A1)被用于被用于流式细胞仪在小鼠样本上 (图 6b). Acta Neuropathol (2020) ncbi
仓鼠 单克隆(16-10A1)
  • 流式细胞仪; 小鼠; 1:800; 图 2e
BioLegendB7 1抗体(BioLegend, 104729)被用于被用于流式细胞仪在小鼠样本上浓度为1:800 (图 2e). elife (2020) ncbi
仓鼠 单克隆(16-10A1)
  • 流式细胞仪; 小鼠; 图 2b
BioLegendB7 1抗体(BioLegend, 16-10A1)被用于被用于流式细胞仪在小鼠样本上 (图 2b). Nat Commun (2020) ncbi
仓鼠 单克隆(16-10A1)
  • 流式细胞仪; 小鼠; 图 2g
BioLegendB7 1抗体(BioLegend, 16-10A1)被用于被用于流式细胞仪在小鼠样本上 (图 2g). Sci Adv (2020) ncbi
仓鼠 单克隆(16-10A1)
  • 流式细胞仪; 小鼠; 图 1f, s2b
BioLegendB7 1抗体(Biolegend, 16-10A1)被用于被用于流式细胞仪在小鼠样本上 (图 1f, s2b). BMC Immunol (2020) ncbi
仓鼠 单克隆(16-10A1)
  • 流式细胞仪; 小鼠; 1:100; 图 5
BioLegendB7 1抗体(BioLegend, 104734)被用于被用于流式细胞仪在小鼠样本上浓度为1:100 (图 5). Nat Commun (2020) ncbi
仓鼠 单克隆(16-10A1)
  • mass cytometry; 小鼠; 图 5d
BioLegendB7 1抗体(Biolegend, 16-10A1)被用于被用于mass cytometry在小鼠样本上 (图 5d). J Virol (2020) ncbi
仓鼠 单克隆(16-10A1)
  • 流式细胞仪; 小鼠; 1:200; 图 4b
BioLegendB7 1抗体(BioLegend, 104714)被用于被用于流式细胞仪在小鼠样本上浓度为1:200 (图 4b). Nat Commun (2020) ncbi
仓鼠 单克隆(16-10A1)
  • 流式细胞仪; 小鼠; 1:100; 图 s6c
BioLegendB7 1抗体(Biolegend, 104729)被用于被用于流式细胞仪在小鼠样本上浓度为1:100 (图 s6c). Nat Commun (2020) ncbi
仓鼠 单克隆(16-10A1)
  • 流式细胞仪; 小鼠; 图 2a, 2d
BioLegendB7 1抗体(Biolegend, 16-10A1)被用于被用于流式细胞仪在小鼠样本上 (图 2a, 2d). elife (2020) ncbi
仓鼠 单克隆(16-10A1)
  • 流式细胞仪; 小鼠; 图 s7d
BioLegendB7 1抗体(BioLegend, 104725)被用于被用于流式细胞仪在小鼠样本上 (图 s7d). Bone Res (2019) ncbi
仓鼠 单克隆(16-10A1)
  • 流式细胞仪; 小鼠; 图 3d
BioLegendB7 1抗体(BioLegend, 104714)被用于被用于流式细胞仪在小鼠样本上 (图 3d). J Exp Med (2020) ncbi
仓鼠 单克隆(16-10A1)
  • 流式细胞仪; 小鼠; 图 s6c
BioLegendB7 1抗体(BioLegend, 104723)被用于被用于流式细胞仪在小鼠样本上 (图 s6c). Cell (2019) ncbi
仓鼠 单克隆(16-10A1)
  • 流式细胞仪; 小鼠; 图 1a
BioLegendB7 1抗体(Biolegend, 104708)被用于被用于流式细胞仪在小鼠样本上 (图 1a). Front Immunol (2019) ncbi
仓鼠 单克隆(16-10A1)
  • 流式细胞仪; 小鼠; 图 2h
BioLegendB7 1抗体(Biolegend, 104705)被用于被用于流式细胞仪在小鼠样本上 (图 2h). Oncoimmunology (2019) ncbi
仓鼠 单克隆(16-10A1)
  • 流式细胞仪; 小鼠; 1:300; 图 1a
BioLegendB7 1抗体(Biolegend, 16-10A1)被用于被用于流式细胞仪在小鼠样本上浓度为1:300 (图 1a). elife (2019) ncbi
仓鼠 单克隆(16-10A1)
  • 流式细胞仪; 小鼠; 1:200; 图 ex4a
BioLegendB7 1抗体(BioLegend, 104734)被用于被用于流式细胞仪在小鼠样本上浓度为1:200 (图 ex4a). Nature (2019) ncbi
仓鼠 单克隆(16-10A1)
  • 流式细胞仪; 小鼠; 图 4b
BioLegendB7 1抗体(BioLegend, 16-10A1)被用于被用于流式细胞仪在小鼠样本上 (图 4b). J Clin Invest (2019) ncbi
仓鼠 单克隆(16-10A1)
  • 流式细胞仪; 小鼠; 图 3b
BioLegendB7 1抗体(BioLegend, 16-10A1)被用于被用于流式细胞仪在小鼠样本上 (图 3b). Sci Rep (2019) ncbi
仓鼠 单克隆(16-10A1)
  • 流式细胞仪; 小鼠; 图 4e
BioLegendB7 1抗体(Biolegend, 104705)被用于被用于流式细胞仪在小鼠样本上 (图 4e). Cell (2019) ncbi
仓鼠 单克隆(16-10A1)
  • 流式细胞仪; 小鼠; 图 1a
BioLegendB7 1抗体(Biolegend, 16-10A1)被用于被用于流式细胞仪在小鼠样本上 (图 1a). Science (2019) ncbi
仓鼠 单克隆(16-10A1)
  • 流式细胞仪; 小鼠; 图 s4g
BioLegendB7 1抗体(Biolegend, 104707)被用于被用于流式细胞仪在小鼠样本上 (图 s4g). Sci Rep (2019) ncbi
仓鼠 单克隆(16-10A1)
  • 流式细胞仪; 小鼠; 图 s1c
BioLegendB7 1抗体(BioLegend, 16-0A1)被用于被用于流式细胞仪在小鼠样本上 (图 s1c). J Immunol (2019) ncbi
仓鼠 单克隆(16-10A1)
  • 流式细胞仪; 小鼠; 图 2e
BioLegendB7 1抗体(Biolegend, 104708)被用于被用于流式细胞仪在小鼠样本上 (图 2e). Cell Rep (2018) ncbi
仓鼠 单克隆(16-10A1)
  • 流式细胞仪; 小鼠; 图 s5
BioLegendB7 1抗体(Biolegend, 104732)被用于被用于流式细胞仪在小鼠样本上 (图 s5). Nat Commun (2018) ncbi
仓鼠 单克隆(16-10A1)
  • 流式细胞仪; 小鼠; 图 1n
BioLegendB7 1抗体(BioLegend, 104734)被用于被用于流式细胞仪在小鼠样本上 (图 1n). Cell Mol Gastroenterol Hepatol (2019) ncbi
仓鼠 单克隆(16-10A1)
  • 流式细胞仪; 小鼠; 图 3a
BioLegendB7 1抗体(BioLegend, 16-10A1)被用于被用于流式细胞仪在小鼠样本上 (图 3a). Front Immunol (2018) ncbi
仓鼠 单克隆(16-10A1)
  • 流式细胞仪; 小鼠; 图 4a
BioLegendB7 1抗体(BioLegend, 16-10A1)被用于被用于流式细胞仪在小鼠样本上 (图 4a). Front Immunol (2018) ncbi
仓鼠 单克隆(16-10A1)
  • 流式细胞仪; 小鼠; 1:100; 图 s1
BioLegendB7 1抗体(Biolegend, 16-10A1)被用于被用于流式细胞仪在小鼠样本上浓度为1:100 (图 s1). Nat Commun (2018) ncbi
仓鼠 单克隆(16-10A1)
  • 流式细胞仪; 小鼠; 图 s6d
BioLegendB7 1抗体(Biolegend, 16-10A1)被用于被用于流式细胞仪在小鼠样本上 (图 s6d). JCI Insight (2017) ncbi
仓鼠 单克隆(16-10A1)
  • 流式细胞仪; 小鼠; 图 5b
BioLegendB7 1抗体(Biolegend, 104706)被用于被用于流式细胞仪在小鼠样本上 (图 5b). Cell Death Dis (2017) ncbi
仓鼠 单克隆(16-10A1)
  • 流式细胞仪; 小鼠
BioLegendB7 1抗体(Biolegend, 16-10AI)被用于被用于流式细胞仪在小鼠样本上. Science (2017) ncbi
仓鼠 单克隆(16-10A1)
  • 流式细胞仪; 小鼠; 图 5c
BioLegendB7 1抗体(Biolegend, 16-10A1)被用于被用于流式细胞仪在小鼠样本上 (图 5c). Cancer Res (2017) ncbi
仓鼠 单克隆(16-10A1)
  • 流式细胞仪; 小鼠; 图 1b
BioLegendB7 1抗体(BioLegend, 16-10A1)被用于被用于流式细胞仪在小鼠样本上 (图 1b). J Leukoc Biol (2017) ncbi
仓鼠 单克隆(16-10A1)
  • 流式细胞仪; 小鼠; 图 s2b
BioLegendB7 1抗体(BioLegend, 16-10A1)被用于被用于流式细胞仪在小鼠样本上 (图 s2b). J Exp Med (2017) ncbi
仓鼠 单克隆(16-10A1)
  • 流式细胞仪; 小鼠; 图 3a
BioLegendB7 1抗体(biolegend, 16-10A1)被用于被用于流式细胞仪在小鼠样本上 (图 3a). J Exp Med (2017) ncbi
仓鼠 单克隆(16-10A1)
  • 流式细胞仪; 小鼠; 图 2b
BioLegendB7 1抗体(BioLegend, 16-10A1)被用于被用于流式细胞仪在小鼠样本上 (图 2b). Immunology (2017) ncbi
仓鼠 单克隆(16-10A1)
  • 流式细胞仪; 小鼠; 图 6c
BioLegendB7 1抗体(BioLegend, 16-10A1)被用于被用于流式细胞仪在小鼠样本上 (图 6c). J Immunol (2017) ncbi
仓鼠 单克隆(16-10A1)
  • 流式细胞仪; 小鼠; 图 s2b
BioLegendB7 1抗体(BioLegend, 16-10A1)被用于被用于流式细胞仪在小鼠样本上 (图 s2b). Proc Natl Acad Sci U S A (2016) ncbi
仓鼠 单克隆(16-10A1)
  • 流式细胞仪; 小鼠; 图 s4b
BioLegendB7 1抗体(BioLegend, 16-10A1)被用于被用于流式细胞仪在小鼠样本上 (图 s4b). Proc Natl Acad Sci U S A (2016) ncbi
仓鼠 单克隆(16-10A1)
  • 流式细胞仪; 小鼠; 图 s4e
BioLegendB7 1抗体(BioLegend, 16-10A1)被用于被用于流式细胞仪在小鼠样本上 (图 s4e). Proc Natl Acad Sci U S A (2016) ncbi
仓鼠 单克隆(16-10A1)
  • 流式细胞仪; 小鼠; 图 4b
BioLegendB7 1抗体(Biolegend, 16-10A1)被用于被用于流式细胞仪在小鼠样本上 (图 4b). Eur J Immunol (2016) ncbi
仓鼠 单克隆(16-10A1)
  • 流式细胞仪; 小鼠; 1:100; 图 9b
BioLegendB7 1抗体(BioLegend, 16-10A1)被用于被用于流式细胞仪在小鼠样本上浓度为1:100 (图 9b). PLoS Negl Trop Dis (2016) ncbi
仓鼠 单克隆(16-10A1)
  • 流式细胞仪; 小鼠; 1:400; 图 1a
BioLegendB7 1抗体(Biolegend, 16-10A1)被用于被用于流式细胞仪在小鼠样本上浓度为1:400 (图 1a). PLoS ONE (2016) ncbi
仓鼠 单克隆(16-10A1)
  • 流式细胞仪; 小鼠; 图 1a
BioLegendB7 1抗体(Biolegend, 16-10A1)被用于被用于流式细胞仪在小鼠样本上 (图 1a). PLoS ONE (2016) ncbi
仓鼠 单克隆(16-10A1)
  • 流式细胞仪; 人类; 表 2
BioLegendB7 1抗体(Biolegend, 104718)被用于被用于流式细胞仪在人类样本上 (表 2). Vet Parasitol (2016) ncbi
仓鼠 单克隆(16-10A1)
  • 流式细胞仪; 小鼠; 图 3e
BioLegendB7 1抗体(BioLegend, 16- 10A1)被用于被用于流式细胞仪在小鼠样本上 (图 3e). J Immunol (2016) ncbi
仓鼠 单克隆(16-10A1)
  • 流式细胞仪; 小鼠; 图 4
BioLegendB7 1抗体(Biolegend, 16-10A1)被用于被用于流式细胞仪在小鼠样本上 (图 4). Aging (Albany NY) (2016) ncbi
仓鼠 单克隆(16-10A1)
  • 流式细胞仪; 小鼠
BioLegendB7 1抗体(BioLegend, 16-10A1)被用于被用于流式细胞仪在小鼠样本上. J Immunol (2016) ncbi
仓鼠 单克隆(16-10A1)
  • 流式细胞仪; 小鼠; 图 1
BioLegendB7 1抗体(BioLegend, 16-10A1)被用于被用于流式细胞仪在小鼠样本上 (图 1). PLoS ONE (2015) ncbi
仓鼠 单克隆(16-10A1)
  • 流式细胞仪; 小鼠; 图 2j
BioLegendB7 1抗体(Biolegend, 16-10A1)被用于被用于流式细胞仪在小鼠样本上 (图 2j). Sci Rep (2015) ncbi
仓鼠 单克隆(16-10A1)
  • 流式细胞仪; 小鼠; 图 8
BioLegendB7 1抗体(BioLegend, 104713)被用于被用于流式细胞仪在小鼠样本上 (图 8). Oncoimmunology (2014) ncbi
仓鼠 单克隆(16-10A1)
  • 流式细胞仪; 小鼠; 图 1
BioLegendB7 1抗体(BioLegend, 16-10A1)被用于被用于流式细胞仪在小鼠样本上 (图 1). J Immunol (2015) ncbi
仓鼠 单克隆(16-10A1)
  • 流式细胞仪; 小鼠; 图 1
BioLegendB7 1抗体(Biolegend, 16-10A1)被用于被用于流式细胞仪在小鼠样本上 (图 1). Biochem Biophys Res Commun (2015) ncbi
仓鼠 单克隆(16-10A1)
  • 流式细胞仪; 小鼠; 图 3
BioLegendB7 1抗体(BioLegend, 16-10A1)被用于被用于流式细胞仪在小鼠样本上 (图 3). PLoS Pathog (2015) ncbi
仓鼠 单克隆(16-10A1)
  • 流式细胞仪; 小鼠; 1:100
BioLegendB7 1抗体(BioLegend, 104717)被用于被用于流式细胞仪在小鼠样本上浓度为1:100. PLoS ONE (2015) ncbi
仓鼠 单克隆(16-10A1)
  • 流式细胞仪; 小鼠
BioLegendB7 1抗体(BioLegend, 16-10A1)被用于被用于流式细胞仪在小鼠样本上. J Immunol (2015) ncbi
仓鼠 单克隆(16-10A1)
  • 流式细胞仪; 小鼠
BioLegendB7 1抗体(BioLegend, 16-10A1)被用于被用于流式细胞仪在小鼠样本上. PLoS ONE (2014) ncbi
仓鼠 单克隆(16-10A1)
BioLegendB7 1抗体(BioLegend, 104714)被用于. PLoS ONE (2014) ncbi
仓鼠 单克隆(16-10A1)
  • 流式细胞仪; 小鼠; 图 s2b
BioLegendB7 1抗体(BioLegend, 16-10A1)被用于被用于流式细胞仪在小鼠样本上 (图 s2b). J Leukoc Biol (2014) ncbi
赛默飞世尔
仓鼠 单克隆(16-10A1)
  • 流式细胞仪; 小鼠; 1:200; 图 s10c
赛默飞世尔B7 1抗体(Thermo Fisher, 16-10A1)被用于被用于流式细胞仪在小鼠样本上浓度为1:200 (图 s10c). Sci Rep (2021) ncbi
仓鼠 单克隆(16-10A1)
  • 流式细胞仪; 小鼠; 1:50; 图 8a
赛默飞世尔B7 1抗体(eBioscience, 17-0801-82)被用于被用于流式细胞仪在小鼠样本上浓度为1:50 (图 8a). Cell Death Dis (2021) ncbi
仓鼠 单克隆(16-10A1)
  • 流式细胞仪; 小鼠; 图 4a, 7a
赛默飞世尔B7 1抗体(Thermo Fisher, 16-10A1)被用于被用于流式细胞仪在小鼠样本上 (图 4a, 7a). Immunol Cell Biol (2021) ncbi
仓鼠 单克隆(16-10A1)
  • 流式细胞仪; 小鼠; 1:300; 图 3m
赛默飞世尔B7 1抗体(eBioscience, 16-10A1)被用于被用于流式细胞仪在小鼠样本上浓度为1:300 (图 3m). elife (2020) ncbi
仓鼠 单克隆(16-10A1)
  • 流式细胞仪; 小鼠; 图 1b
赛默飞世尔B7 1抗体(eBioscience, 16-10A-1)被用于被用于流式细胞仪在小鼠样本上 (图 1b). Front Immunol (2019) ncbi
仓鼠 单克隆(16-10A1)
  • 流式细胞仪; 小鼠; 图 6c
赛默飞世尔B7 1抗体(eBioscience, 16-10A1)被用于被用于流式细胞仪在小鼠样本上 (图 6c). Immune Netw (2018) ncbi
仓鼠 单克隆(16-10A1)
  • 流式细胞仪; 小鼠; 图 3h
赛默飞世尔B7 1抗体(eBioscience, 16-10A1)被用于被用于流式细胞仪在小鼠样本上 (图 3h). Glia (2019) ncbi
仓鼠 单克隆(16-10A1)
  • 流式细胞仪; 小鼠; 图 s2
赛默飞世尔B7 1抗体(eBioscience, 16-10A1)被用于被用于流式细胞仪在小鼠样本上 (图 s2). Proc Natl Acad Sci U S A (2019) ncbi
仓鼠 单克隆(16-10A1)
  • 流式细胞仪; 小鼠; 图 e5c
赛默飞世尔B7 1抗体(eBiosciences, 16-10A1)被用于被用于流式细胞仪在小鼠样本上 (图 e5c). Nature (2018) ncbi
仓鼠 单克隆(16-10A1)
  • 流式细胞仪; 小鼠; 图 5d
赛默飞世尔B7 1抗体(eBioscience, 16-10A1)被用于被用于流式细胞仪在小鼠样本上 (图 5d). J Leukoc Biol (2017) ncbi
仓鼠 单克隆(16-10A1)
  • 流式细胞仪; 小鼠; 图 5a
赛默飞世尔B7 1抗体(eBioscience, 16-10A1)被用于被用于流式细胞仪在小鼠样本上 (图 5a). J Exp Med (2017) ncbi
仓鼠 单克隆(16-10A1)
  • 流式细胞仪; 小鼠; 1:400; 图 s5
赛默飞世尔B7 1抗体(eBioscience, 16-10A1)被用于被用于流式细胞仪在小鼠样本上浓度为1:400 (图 s5). Nat Commun (2017) ncbi
仓鼠 单克隆(16-10A1)
  • 流式细胞仪; 小鼠; 图 3a
赛默飞世尔B7 1抗体(Ebioscience, 12-0801)被用于被用于流式细胞仪在小鼠样本上 (图 3a). Sci Rep (2017) ncbi
仓鼠 单克隆(16-10A1)
  • 流式细胞仪; 小鼠; 图 3a
赛默飞世尔B7 1抗体(eBioscience, 11-0801)被用于被用于流式细胞仪在小鼠样本上 (图 3a). Sci Rep (2017) ncbi
仓鼠 单克隆(16-10A1)
  • 抑制或激活实验; 小鼠; 图 7
赛默飞世尔B7 1抗体(eBioscience, 16-10A1)被用于被用于抑制或激活实验在小鼠样本上 (图 7). Mol Cells (2017) ncbi
仓鼠 单克隆(16-10A1)
  • 流式细胞仪; 小鼠; 图 5n
赛默飞世尔B7 1抗体(eBiosciences, 16-10A1)被用于被用于流式细胞仪在小鼠样本上 (图 5n). Cell Mol Life Sci (2017) ncbi
仓鼠 单克隆(16-10A1)
  • 流式细胞仪; 小鼠; 图 2b
赛默飞世尔B7 1抗体(eBioscience, 16-10A1)被用于被用于流式细胞仪在小鼠样本上 (图 2b). Sci Rep (2016) ncbi
仓鼠 单克隆(16-10A1)
  • 流式细胞仪; 小鼠; 图 4B
赛默飞世尔B7 1抗体(eBioscience, 16-10A1)被用于被用于流式细胞仪在小鼠样本上 (图 4B). Oncoimmunology (2016) ncbi
仓鼠 单克隆(16-10A1)
  • 流式细胞仪; 小鼠; 图 s2b
赛默飞世尔B7 1抗体(eBioscience, 16-10A1)被用于被用于流式细胞仪在小鼠样本上 (图 s2b). Immunity (2016) ncbi
仓鼠 单克隆(16-10A1)
  • 流式细胞仪; 小鼠; 1:200; 图 s2b
赛默飞世尔B7 1抗体(eBiosciences, 16-10A1)被用于被用于流式细胞仪在小鼠样本上浓度为1:200 (图 s2b). Dis Model Mech (2016) ncbi
仓鼠 单克隆(16-10A1)
  • 流式细胞仪; 小鼠; 图 s8
赛默飞世尔B7 1抗体(eBioscience, 12-0801-85)被用于被用于流式细胞仪在小鼠样本上 (图 s8). Sci Rep (2016) ncbi
仓鼠 单克隆(16-10A1)
  • 流式细胞仪; 小鼠; 1:100; 图 2
赛默飞世尔B7 1抗体(eBioscience, 16-10A1)被用于被用于流式细胞仪在小鼠样本上浓度为1:100 (图 2). PLoS ONE (2015) ncbi
仓鼠 单克隆(16-10A1)
  • 流式细胞仪; 小鼠
赛默飞世尔B7 1抗体(eBioscience, 16-10A1)被用于被用于流式细胞仪在小鼠样本上. J Immunol (2015) ncbi
仓鼠 单克隆(16-10A1)
  • 流式细胞仪; 小鼠; 图 5a
赛默飞世尔B7 1抗体(eBioscience, 16-10A1)被用于被用于流式细胞仪在小鼠样本上 (图 5a). PLoS Pathog (2015) ncbi
仓鼠 单克隆(16-10A1)
  • 流式细胞仪; 小鼠; 表 s1
赛默飞世尔B7 1抗体(eBiosciences, 16-10A1)被用于被用于流式细胞仪在小鼠样本上 (表 s1). Biochem Biophys Res Commun (2015) ncbi
仓鼠 单克隆(16-10A1)
  • 流式细胞仪; 小鼠
赛默飞世尔B7 1抗体(eBioscience, 16-10A1)被用于被用于流式细胞仪在小鼠样本上. Nature (2015) ncbi
仓鼠 单克隆(16-10A1)
  • 流式细胞仪; 小鼠; 图 s3
赛默飞世尔B7 1抗体(eBioscience, 16-10A1)被用于被用于流式细胞仪在小鼠样本上 (图 s3). PLoS ONE (2015) ncbi
仓鼠 单克隆(16-10A1)
  • 流式细胞仪; 小鼠; 图 3
赛默飞世尔B7 1抗体(eBioscience, 16-10A1)被用于被用于流式细胞仪在小鼠样本上 (图 3). Carbohydr Polym (2015) ncbi
仓鼠 单克隆(16-10A1)
  • 流式细胞仪; 小鼠; 图 s2b
赛默飞世尔B7 1抗体(eBioscience, 16-10A1)被用于被用于流式细胞仪在小鼠样本上 (图 s2b). J Immunother Cancer (2015) ncbi
仓鼠 单克隆(16-10A1)
  • 流式细胞仪; 小鼠
赛默飞世尔B7 1抗体(eBioscience, 16-10A1)被用于被用于流式细胞仪在小鼠样本上. PLoS ONE (2014) ncbi
仓鼠 单克隆(16-10A1)
  • 流式细胞仪; 小鼠
赛默飞世尔B7 1抗体(eBioscience, 16-10A1)被用于被用于流式细胞仪在小鼠样本上. Mucosal Immunol (2015) ncbi
仓鼠 单克隆(16-10A1)
  • 流式细胞仪; 小鼠; 图 2
赛默飞世尔B7 1抗体(eBiosciences, 16-10A1)被用于被用于流式细胞仪在小鼠样本上 (图 2). Eur J Immunol (2015) ncbi
仓鼠 单克隆(16-10A1)
  • 流式细胞仪; 小鼠; 图 5a
赛默飞世尔B7 1抗体(ebioscience, 14-0801-82)被用于被用于流式细胞仪在小鼠样本上 (图 5a). Clin Cancer Res (2015) ncbi
仓鼠 单克隆(16-10A1)
  • 流式细胞仪; 小鼠; 图 4
赛默飞世尔B7 1抗体(eBiosciences, 16-10A1)被用于被用于流式细胞仪在小鼠样本上 (图 4). PLoS ONE (2014) ncbi
仓鼠 单克隆(16-10A1)
  • 流式细胞仪; 小鼠; 1:100; 图 2
赛默飞世尔B7 1抗体(eBioscience, 11-0801-86)被用于被用于流式细胞仪在小鼠样本上浓度为1:100 (图 2). PLoS ONE (2014) ncbi
仓鼠 单克隆(16-10A1)
  • 流式细胞仪; 小鼠
赛默飞世尔B7 1抗体(eBioscience Inc., 16-10A1)被用于被用于流式细胞仪在小鼠样本上. PLoS ONE (2014) ncbi
仓鼠 单克隆(16-10A1)
  • 流式细胞仪; 人类
赛默飞世尔B7 1抗体(eBioscience, 17-0801-82)被用于被用于流式细胞仪在人类样本上. J Immunol (2014) ncbi
仓鼠 单克隆(16-10A1)
  • 流式细胞仪; 小鼠; 图 3
赛默飞世尔B7 1抗体(eBioscience, 16-10A1)被用于被用于流式细胞仪在小鼠样本上 (图 3). Immunol Cell Biol (2013) ncbi
大鼠 单克隆(RMMP-1)
  • 流式细胞仪; 小鼠; 图 1d
赛默飞世尔B7 1抗体(Caltag, RMMP-1)被用于被用于流式细胞仪在小鼠样本上 (图 1d). Eur J Immunol (2013) ncbi
仓鼠 单克隆(16-10A1)
  • 流式细胞仪; 小鼠
赛默飞世尔B7 1抗体(eBioscience, 16-10A1)被用于被用于流式细胞仪在小鼠样本上. J Exp Med (2011) ncbi
仓鼠 单克隆(16-10A1)
  • 流式细胞仪; 小鼠; 图 5
赛默飞世尔B7 1抗体(eBioscience, 16-10A1)被用于被用于流式细胞仪在小鼠样本上 (图 5). J Immunol (2010) ncbi
仓鼠 单克隆(16-10A1)
  • 流式细胞仪; 小鼠; 图 5
赛默飞世尔B7 1抗体(eBiosciences, 16-10A1)被用于被用于流式细胞仪在小鼠样本上 (图 5). Infect Immun (2010) ncbi
仓鼠 单克隆(16-10A1)
  • 流式细胞仪; 小鼠; 图 4
赛默飞世尔B7 1抗体(eBioscience, 16-10A1)被用于被用于流式细胞仪在小鼠样本上 (图 4). J Immunol (2009) ncbi
仓鼠 单克隆(16-10A1)
  • 流式细胞仪; 小鼠
赛默飞世尔B7 1抗体(eBioscience, 16-10A1)被用于被用于流式细胞仪在小鼠样本上. J Immunol (2009) ncbi
仓鼠 单克隆(16-10A1)
  • 流式细胞仪; 小鼠
赛默飞世尔B7 1抗体(eBioscience, 16-10A1)被用于被用于流式细胞仪在小鼠样本上. Nat Immunol (2007) ncbi
仓鼠 单克隆(16-10A1)
  • 流式细胞仪; 小鼠; 图 5
  • 流式细胞仪; 人类
赛默飞世尔B7 1抗体(eBioscience, 16-10A1)被用于被用于流式细胞仪在小鼠样本上 (图 5) 和 被用于流式细胞仪在人类样本上. J Immunol (2005) ncbi
大鼠 单克隆(RMMP-1)
  • 流式细胞仪; 小鼠; 图 1
赛默飞世尔B7 1抗体(Caltag, RMMP-1)被用于被用于流式细胞仪在小鼠样本上 (图 1). Infect Immun (2005) ncbi
大鼠 单克隆(RMMP-1)
  • 流式细胞仪; 小鼠; 1:50; 图 1
赛默飞世尔B7 1抗体(Caltag, RMMP-1)被用于被用于流式细胞仪在小鼠样本上浓度为1:50 (图 1). Antivir Ther (2004) ncbi
仓鼠 单克隆(16-10A1)
  • 流式细胞仪; 小鼠
赛默飞世尔B7 1抗体(Caltag, 16-10A1)被用于被用于流式细胞仪在小鼠样本上. Cancer Gene Ther (2004) ncbi
大鼠 单克隆(RMMP-1)
  • 流式细胞仪; 小鼠
赛默飞世尔B7 1抗体(Caltag, RMMP-1)被用于被用于流式细胞仪在小鼠样本上. Clin Exp Immunol (2003) ncbi
大鼠 单克隆(RMMP-1)
  • 流式细胞仪; 小鼠; 图 2
赛默飞世尔B7 1抗体(Caltag, RMMP-1)被用于被用于流式细胞仪在小鼠样本上 (图 2). J Immunol (2002) ncbi
大鼠 单克隆(RMMP-1)
  • 流式细胞仪; 小鼠; 0.5 ug/ml
赛默飞世尔B7 1抗体(Caltag, RMMP1)被用于被用于流式细胞仪在小鼠样本上浓度为0.5 ug/ml. Glycobiology (2002) ncbi
大鼠 单克隆(RMMP-1)
  • 流式细胞仪; 小鼠; 图 5
赛默飞世尔B7 1抗体(Caltag, RMMP-1)被用于被用于流式细胞仪在小鼠样本上 (图 5). J Immunol (2000) ncbi
仓鼠 单克隆(16-10A1)
  • 流式细胞仪; 小鼠
赛默飞世尔B7 1抗体(Biosource, 16-10A1)被用于被用于流式细胞仪在小鼠样本上. Mol Cell Biol (2000) ncbi
Bio X Cell
大鼠 单克隆(1G10)
  • 抑制或激活实验; 小鼠; 图 6e
Bio X CellB7 1抗体(BioXCell, 1G10)被用于被用于抑制或激活实验在小鼠样本上 (图 6e). Nat Commun (2022) ncbi
仓鼠 单克隆(16-10A1)
  • 抑制或激活实验; 小鼠; 图 2e
Bio X CellB7 1抗体(BioXcell, 16-10A1)被用于被用于抑制或激活实验在小鼠样本上 (图 2e). elife (2020) ncbi
大鼠 单克隆(1G10)
  • 流式细胞仪; 小鼠; 图 4b
Bio X CellB7 1抗体(Bio X Cell, 1G10)被用于被用于流式细胞仪在小鼠样本上 (图 4b). Biomaterials (2016) ncbi
美天旎
人类 单克隆(REA983)
  • 流式细胞仪; 小鼠; 1:50; 图 s13b, s14b
美天旎B7 1抗体(Miltenyi Biotec, 130-116-463)被用于被用于流式细胞仪在小鼠样本上浓度为1:50 (图 s13b, s14b). Nat Commun (2022) ncbi
仓鼠 单克隆(16-10A1)
  • 流式细胞仪; 小鼠; 图 s4c
美天旎B7 1抗体(Miltenyi, 130-102-584)被用于被用于流式细胞仪在小鼠样本上 (图 s4c). J Immunother Cancer (2021) ncbi
艾博抗(上海)贸易有限公司
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 小鼠; 图 4f
  • 免疫组化-冰冻切片; 人类; 图 4h
艾博抗(上海)贸易有限公司B7 1抗体(Abcam, ab64116)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 4f) 和 被用于免疫组化-冰冻切片在人类样本上 (图 4h). Cell (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 3
艾博抗(上海)贸易有限公司B7 1抗体(Abcam, ab-64116)被用于被用于免疫印迹在小鼠样本上 (图 3). Sci Rep (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 2
艾博抗(上海)贸易有限公司B7 1抗体(abcam, ab64116)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 2). Nat Commun (2016) ncbi
Tonbo Biosciences
单克隆(16-10A1)
  • 流式细胞仪; 小鼠; 图 2a
Tonbo BiosciencesB7 1抗体(Tonbo Biosciences, 16-10A1)被用于被用于流式细胞仪在小鼠样本上 (图 2a). PLoS ONE (2018) ncbi
碧迪BD
仓鼠 单克隆(16-10A1)
  • 免疫细胞化学; 小鼠; 图 5e
碧迪BDB7 1抗体(BD Biosciences, 16-10A1)被用于被用于免疫细胞化学在小鼠样本上 (图 5e). Nat Commun (2022) ncbi
仓鼠 单克隆(16-10A1)
  • 流式细胞仪; 小鼠; 1:200; 图 s13c
碧迪BDB7 1抗体(BD Biosciences, 553769)被用于被用于流式细胞仪在小鼠样本上浓度为1:200 (图 s13c). J Clin Invest (2022) ncbi
仓鼠 单克隆(16-10A1)
  • 流式细胞仪; 小鼠
碧迪BDB7 1抗体(BD Biosciences, 16-10 A1)被用于被用于流式细胞仪在小鼠样本上. J Immunother Cancer (2021) ncbi
仓鼠 单克隆(16-10A1)
  • 流式细胞仪; 小鼠; 图 s7c
碧迪BDB7 1抗体(BD pharmingen, 561954)被用于被用于流式细胞仪在小鼠样本上 (图 s7c). Nat Commun (2021) ncbi
仓鼠 单克隆(16-10A1)
  • 流式细胞仪; 小鼠; 图 s1d
碧迪BDB7 1抗体(BD, 553767)被用于被用于流式细胞仪在小鼠样本上 (图 s1d). Nat Commun (2021) ncbi
仓鼠 单克隆(16-10A1)
  • 流式细胞仪; 小鼠; 图 6a
碧迪BDB7 1抗体(BD, 16-10A1)被用于被用于流式细胞仪在小鼠样本上 (图 6a). Front Immunol (2018) ncbi
仓鼠 单克隆(16-10A1)
  • 流式细胞仪; 小鼠; 4:100; 图 2a
碧迪BDB7 1抗体(BD Biosciences, 16-10A1)被用于被用于流式细胞仪在小鼠样本上浓度为4:100 (图 2a). Biosci Rep (2019) ncbi
仓鼠 单克隆(16-10A1)
  • 流式细胞仪; 小鼠; 1:200; 图 5d
碧迪BDB7 1抗体(BD, 16-10A1)被用于被用于流式细胞仪在小鼠样本上浓度为1:200 (图 5d). J Pathol (2019) ncbi
仓鼠 单克隆(16-10A1)
  • 流式细胞仪; 小鼠; 图 4
碧迪BDB7 1抗体(BD Pharminger, 16-10A1)被用于被用于流式细胞仪在小鼠样本上 (图 4). J Diabetes Res (2018) ncbi
仓鼠 单克隆(16-10A1)
  • 流式细胞仪; 小鼠; 图 s3
碧迪BDB7 1抗体(BD, 16-10A1)被用于被用于流式细胞仪在小鼠样本上 (图 s3). Eur J Immunol (2018) ncbi
仓鼠 单克隆(16-10A1)
  • 流式细胞仪; 小鼠; 图 6a
碧迪BDB7 1抗体(BD Biosciences, 553769)被用于被用于流式细胞仪在小鼠样本上 (图 6a). PLoS ONE (2017) ncbi
仓鼠 单克隆(16-10A1)
  • 流式细胞仪; 小鼠; 图 3C
碧迪BDB7 1抗体(BD Biosciences, 553769)被用于被用于流式细胞仪在小鼠样本上 (图 3C). J Immunol (2017) ncbi
仓鼠 单克隆(16-10A1)
  • 流式细胞仪; 小鼠; 图 s2
碧迪BDB7 1抗体(BD, 16-10A1)被用于被用于流式细胞仪在小鼠样本上 (图 s2). Sci Rep (2016) ncbi
仓鼠 单克隆(16-10A1)
  • 流式细胞仪; 小鼠; 图 1c
碧迪BDB7 1抗体(BD Biosciences, 16-10A1)被用于被用于流式细胞仪在小鼠样本上 (图 1c). J Immunol (2017) ncbi
仓鼠 单克隆(16-10A1)
  • 流式细胞仪; 小鼠; 1:200; 图 s1
碧迪BDB7 1抗体(BD Bioscience, 16-10A1)被用于被用于流式细胞仪在小鼠样本上浓度为1:200 (图 s1). Nat Commun (2016) ncbi
仓鼠 单克隆(16-10A1)
  • 流式细胞仪; 小鼠; 1:500; 图 S5d
碧迪BDB7 1抗体(BD, 553769)被用于被用于流式细胞仪在小鼠样本上浓度为1:500 (图 S5d). Nat Commun (2016) ncbi
仓鼠 单克隆(16-10A1)
  • 流式细胞仪; 小鼠; 图 s6
碧迪BDB7 1抗体(BD Biosciences, 553769)被用于被用于流式细胞仪在小鼠样本上 (图 s6). Nat Commun (2016) ncbi
仓鼠 单克隆(16-10A1)
  • 流式细胞仪; 小鼠; 图 1d
碧迪BDB7 1抗体(BD Biosciences, 16-10A1)被用于被用于流式细胞仪在小鼠样本上 (图 1d). J Immunol (2016) ncbi
仓鼠 单克隆(16-10A1)
  • 流式细胞仪; 小鼠; 图 2
碧迪BDB7 1抗体(BD Bioscience, 553768)被用于被用于流式细胞仪在小鼠样本上 (图 2). elife (2016) ncbi
仓鼠 单克隆(16-10A1)
  • 流式细胞仪; 小鼠; 图 2b
碧迪BDB7 1抗体(BD Biosciences, 16-10A)被用于被用于流式细胞仪在小鼠样本上 (图 2b). J Immunol (2016) ncbi
仓鼠 单克隆(16-10A1)
  • 流式细胞仪; 小鼠; 1:200; 图 5e
碧迪BDB7 1抗体(BD Biosciences, 16-10A1)被用于被用于流式细胞仪在小鼠样本上浓度为1:200 (图 5e). Nat Commun (2016) ncbi
仓鼠 单克隆(16-10A1)
  • 流式细胞仪; 小鼠; 图 4
碧迪BDB7 1抗体(Becton Dickinson, 16-10A1)被用于被用于流式细胞仪在小鼠样本上 (图 4). Vaccines (Basel) (2016) ncbi
仓鼠 单克隆(16-10A1)
  • 流式细胞仪; 小鼠; 图 3
碧迪BDB7 1抗体(BD Pharmingen, 16-10A1)被用于被用于流式细胞仪在小鼠样本上 (图 3). Cell Mol Immunol (2017) ncbi
仓鼠 单克隆(16-10A1)
  • 流式细胞仪; 小鼠; 图 7c
碧迪BDB7 1抗体(Beckon Dickinson, 553768)被用于被用于流式细胞仪在小鼠样本上 (图 7c). Biol Open (2016) ncbi
仓鼠 单克隆(16-10A1)
  • 流式细胞仪; 小鼠; 1:100
碧迪BDB7 1抗体(BD Biosciences, 553768)被用于被用于流式细胞仪在小鼠样本上浓度为1:100. Nat Commun (2016) ncbi
仓鼠 单克隆(16-10A1)
  • 免疫细胞化学; 小鼠; 1:100; 图 6
碧迪BDB7 1抗体(BD Biosciences, 560526)被用于被用于免疫细胞化学在小鼠样本上浓度为1:100 (图 6). J Immunol Res (2016) ncbi
仓鼠 单克隆(16-10A1)
  • 流式细胞仪; 小鼠
碧迪BDB7 1抗体(BD Bioscience, 16-10A1)被用于被用于流式细胞仪在小鼠样本上. Oncoimmunology (2016) ncbi
仓鼠 单克隆(16-10A1)
  • 流式细胞仪; 小鼠; 1:400; 图 3a
碧迪BDB7 1抗体(BD Pharmingen, 553769)被用于被用于流式细胞仪在小鼠样本上浓度为1:400 (图 3a). Oncol Lett (2016) ncbi
仓鼠 单克隆(16-10A1)
  • 流式细胞仪; 小鼠; 图 3c
碧迪BDB7 1抗体(BD Biosciences, 16-10A1)被用于被用于流式细胞仪在小鼠样本上 (图 3c). Diabetes (2016) ncbi
仓鼠 单克隆(16-10A1)
  • 流式细胞仪; 小鼠; 图 4
碧迪BDB7 1抗体(BD, 16-10A1)被用于被用于流式细胞仪在小鼠样本上 (图 4). Int J Oncol (2016) ncbi
仓鼠 单克隆(16-10A1)
  • 流式细胞仪; 小鼠; 图 4
碧迪BDB7 1抗体(BD Bioscience, 560016)被用于被用于流式细胞仪在小鼠样本上 (图 4). Nat Neurosci (2016) ncbi
仓鼠 单克隆(16-10A1)
  • 流式细胞仪; 小鼠; 图 1
碧迪BDB7 1抗体(BD, 16-10A1)被用于被用于流式细胞仪在小鼠样本上 (图 1). Sci Rep (2015) ncbi
仓鼠 单克隆(16-10A1)
  • 免疫细胞化学; 小鼠
碧迪BDB7 1抗体(BD Pharmingen, 16-10A1)被用于被用于免疫细胞化学在小鼠样本上. Eur J Immunol (2015) ncbi
仓鼠 单克隆(16-10A1)
  • 流式细胞仪; 小鼠; 图 2
碧迪BDB7 1抗体(BD Biosciences, 553768)被用于被用于流式细胞仪在小鼠样本上 (图 2). Oncoimmunology (2015) ncbi
仓鼠 单克隆(16-10A1)
  • 流式细胞仪; 小鼠; 图 2
碧迪BDB7 1抗体(BD Biosciences., 16-10A1)被用于被用于流式细胞仪在小鼠样本上 (图 2). J Immunol (2015) ncbi
仓鼠 单克隆(16-10A1)
  • 流式细胞仪; 人类
  • 流式细胞仪; 小鼠
碧迪BDB7 1抗体(BD Pharmingen, 16-10A1)被用于被用于流式细胞仪在人类样本上 和 被用于流式细胞仪在小鼠样本上. Cancer Immunol Res (2015) ncbi
仓鼠 单克隆(16-10A1)
  • 流式细胞仪; 小鼠; 图 2
碧迪BDB7 1抗体(BD Pharmingen, 553769)被用于被用于流式细胞仪在小鼠样本上 (图 2). Mol Med Rep (2015) ncbi
仓鼠 单克隆(16-10A1)
  • 流式细胞仪; 小鼠; 图 4
碧迪BDB7 1抗体(BD Pharmingen, 16-10A1)被用于被用于流式细胞仪在小鼠样本上 (图 4). PLoS ONE (2015) ncbi
仓鼠 单克隆(16-10A1)
  • 免疫细胞化学; 小鼠
碧迪BDB7 1抗体(BD Pharmingen, 16-10A1)被用于被用于免疫细胞化学在小鼠样本上. J Immunol (2015) ncbi
仓鼠 单克隆(16-10A1)
  • 流式细胞仪; 小鼠; 图 s3
碧迪BDB7 1抗体(BD, 16-10A1)被用于被用于流式细胞仪在小鼠样本上 (图 s3). Brain (2015) ncbi
仓鼠 单克隆(16-10A1)
  • 流式细胞仪; 小鼠; 图 6
碧迪BDB7 1抗体(BD Pharmingen, 16-10A1)被用于被用于流式细胞仪在小鼠样本上 (图 6). Clin Exp Immunol (2015) ncbi
仓鼠 单克隆(16-10A1)
  • 流式细胞仪; 小鼠
碧迪BDB7 1抗体(BD Bioscience, 16-10A1)被用于被用于流式细胞仪在小鼠样本上. J Immunol (2014) ncbi
仓鼠 单克隆(16-10A1)
  • 流式细胞仪; 小鼠
碧迪BDB7 1抗体(BD, 16-10A1)被用于被用于流式细胞仪在小鼠样本上. Cancer Res (2014) ncbi
仓鼠 单克隆(16-10A1)
  • 流式细胞仪; 小鼠
碧迪BDB7 1抗体(BD, 16-10A1)被用于被用于流式细胞仪在小鼠样本上. J Exp Med (2014) ncbi
仓鼠 单克隆(16-10A1)
  • 流式细胞仪; 小鼠
碧迪BDB7 1抗体(BD Biosciences, 16- 10A1)被用于被用于流式细胞仪在小鼠样本上. Blood (2014) ncbi
仓鼠 单克隆(16-10A1)
  • 流式细胞仪; 小鼠
碧迪BDB7 1抗体(BD Biosciences, 16-10A1)被用于被用于流式细胞仪在小鼠样本上. Int J Cancer (2015) ncbi
仓鼠 单克隆(16-10A1)
  • 流式细胞仪; 小鼠
碧迪BDB7 1抗体(BD Biosciences, 16-10A1)被用于被用于流式细胞仪在小鼠样本上. PLoS ONE (2014) ncbi
仓鼠 单克隆(16-10A1)
  • 流式细胞仪; 小鼠
碧迪BDB7 1抗体(BD, 16-10A1)被用于被用于流式细胞仪在小鼠样本上. PLoS ONE (2014) ncbi
仓鼠 单克隆(16-10A1)
  • 流式细胞仪; 小鼠
碧迪BDB7 1抗体(BD, 553768)被用于被用于流式细胞仪在小鼠样本上. Exp Mol Med (2014) ncbi
仓鼠 单克隆(16-10A1)
  • 流式细胞仪; 小鼠
碧迪BDB7 1抗体(BD Biosciences, 16-10A1)被用于被用于流式细胞仪在小鼠样本上. Int Immunol (2014) ncbi
仓鼠 单克隆(16-10A1)
  • 流式细胞仪; 小鼠; 1:100
碧迪BDB7 1抗体(BD Biosciences, 553768)被用于被用于流式细胞仪在小鼠样本上浓度为1:100. Nat Med (2013) ncbi
仓鼠 单克隆(16-10A1)
  • 流式细胞仪; 人类
碧迪BDB7 1抗体(BD Biosciences, 553768)被用于被用于流式细胞仪在人类样本上. J Immunol (2010) ncbi
文章列表
  1. Que W, Ma K, Hu X, Guo W, Li X. Combinations of anti-GITR antibody and CD28 superagonist induce permanent allograft acceptance by generating type 1 regulatory T cells. Sci Adv. 2022;8:eabo4413 pubmed 出版商
  2. Pi xf1 eros A, Kulkarni A, Gao H, Orr K, Glenn L, Huang F, et al. Proinflammatory signaling in islet β cells propagates invasion of pathogenic immune cells in autoimmune diabetes. Cell Rep. 2022;39:111011 pubmed 出版商
  3. Piao W, Li L, Saxena V, Iyyathurai J, Lakhan R, Zhang Y, et al. PD-L1 signaling selectively regulates T cell lymphatic transendothelial migration. Nat Commun. 2022;13:2176 pubmed 出版商
  4. Bartsch P, Kilian C, Hellmig M, Paust H, Borchers A, Sivayoganathan A, et al. Th17 cell plasticity towards a T-bet-dependent Th1 phenotype is required for bacterial control in Staphylococcus aureus infection. PLoS Pathog. 2022;18:e1010430 pubmed 出版商
  5. Zhang Y, Huo F, Cao Q, Jia R, Huang Q, Wang Z, et al. FimH confers mannose-targeting ability to Bacillus Calmette-Guerin for improved immunotherapy in bladder cancer. J Immunother Cancer. 2022;10: pubmed 出版商
  6. Günes Günsel G, Conlon T, Jeridi A, Kim R, Ertuz Z, Lang N, et al. The arginine methyltransferase PRMT7 promotes extravasation of monocytes resulting in tissue injury in COPD. Nat Commun. 2022;13:1303 pubmed 出版商
  7. Araujo A, Abaurrea A, Azcoaga P, L xf3 pez Velazco J, Manzano S, Rodriguez J, et al. Stromal oncostatin M cytokine promotes breast cancer progression by reprogramming the tumor microenvironment. J Clin Invest. 2022;132: pubmed 出版商
  8. Lopes N, Boucherit N, Santamaria J, Provin N, Charaix J, Ferrier P, et al. Thymocytes trigger self-antigen-controlling pathways in immature medullary thymic epithelial stages. elife. 2022;11: pubmed 出版商
  9. Zhou Q, Liang J, Yang T, Liu J, Li B, Li Y, et al. Carfilzomib modulates tumor microenvironment to potentiate immune checkpoint therapy for cancer. EMBO Mol Med. 2022;14:e14502 pubmed 出版商
  10. Stoff M, Ebbecke T, Ciurkiewicz M, Pavasutthipaisit S, Mayer Lambertz S, St xf6 rk T, et al. C-type lectin receptor DCIR contributes to hippocampal injury in acute neurotropic virus infection. Sci Rep. 2021;11:23819 pubmed 出版商
  11. Zhu Y, Elsheikha H, Wang J, Fang S, He J, Zhu X, et al. Synergy between Toxoplasma gondii type I ΔGRA17 immunotherapy and PD-L1 checkpoint inhibition triggers the regression of targeted and distal tumors. J Immunother Cancer. 2021;9: pubmed 出版商
  12. Liu H, Pedros C, Kong K, Canonigo Balancio A, Xue W, Altman A. Leveraging the Treg-intrinsic CTLA4-PKCη signaling pathway for cancer immunotherapy. J Immunother Cancer. 2021;9: pubmed 出版商
  13. Zhang X, Chang A, Zou Y, Xu H, Cui J, Chen Z, et al. Aspirin Attenuates Cardiac Allograft Rejection by Inhibiting the Maturation of Dendritic Cells via the NF-κB Signaling Pathway. Front Pharmacol. 2021;12:706748 pubmed 出版商
  14. Neumann S, Campbell K, Woodall M, Evans M, Clarkson A, Young S. Obesity Has a Systemic Effect on Immune Cells in Naïve and Cancer-Bearing Mice. Int J Mol Sci. 2021;22: pubmed 出版商
  15. Guo L, Xie H, Zhang Z, Wang Z, Peng S, Niu Y, et al. Fusion Protein Vaccine Based on Ag85B and STEAP1 Induces a Protective Immune Response against Prostate Cancer. Vaccines (Basel). 2021;9: pubmed 出版商
  16. Funk K, Arutyunov A, Desai P, White J, Soung A, Rosen S, et al. Decreased antiviral immune response within the central nervous system of aged mice is associated with increased lethality of West Nile virus encephalitis. Aging Cell. 2021;20:e13412 pubmed 出版商
  17. Hutton C, Heider F, Blanco Gómez A, Banyard A, Kononov A, Zhang X, et al. Single-cell analysis defines a pancreatic fibroblast lineage that supports anti-tumor immunity. Cancer Cell. 2021;: pubmed 出版商
  18. Bruand M, Barras D, Mina M, Ghisoni E, Morotti M, Lanitis E, et al. Cell-autonomous inflammation of BRCA1-deficient ovarian cancers drives both tumor-intrinsic immunoreactivity and immune resistance via STING. Cell Rep. 2021;36:109412 pubmed 出版商
  19. Lauret Marie Joseph E, Kirilovsky A, Lecoester B, El Sissy C, Boullerot L, Rangan L, et al. Chemoradiation triggers antitumor Th1 and tissue resident memory-polarized immune responses to improve immune checkpoint inhibitors therapy. J Immunother Cancer. 2021;9: pubmed 出版商
  20. Tian X, Wang Y, Lu Y, Wang W, Du J, Chen S, et al. Conditional depletion of macrophages ameliorates cholestatic liver injury and fibrosis via lncRNA-H19. Cell Death Dis. 2021;12:646 pubmed 出版商
  21. Nakatani T, Tsujimoto K, Park J, Jo T, Kimura T, Hayama Y, et al. The lysosomal Ragulator complex plays an essential role in leukocyte trafficking by activating myosin II. Nat Commun. 2021;12:3333 pubmed 出版商
  22. Okunuki Y, Tabor S, Lee M, Connor K. CD47 Deficiency Ameliorates Ocular Autoimmune Inflammation. Front Immunol. 2021;12:680568 pubmed 出版商
  23. Yan C, Saleh N, Yang J, Nebhan C, Vilgelm A, Reddy E, et al. Novel induction of CD40 expression by tumor cells with RAS/RAF/PI3K pathway inhibition augments response to checkpoint blockade. Mol Cancer. 2021;20:85 pubmed 出版商
  24. Borkner L, Curham L, Wilk M, Moran B, Mills K. IL-17 mediates protective immunity against nasal infection with Bordetella pertussis by mobilizing neutrophils, especially Siglec-F+ neutrophils. Mucosal Immunol. 2021;14:1183-1202 pubmed 出版商
  25. Go D, Lee S, Lee S, Woo S, Kim K, Kim K, et al. Programmed Death Ligand 1-Expressing Classical Dendritic Cells MitigateHelicobacter-Induced Gastritis. Cell Mol Gastroenterol Hepatol. 2021;12:715-739 pubmed 出版商
  26. Chen J, Cao X, Li B, Zhao Z, Chen S, Lai S, et al. Warburg Effect Is a Cancer Immune Evasion Mechanism Against Macrophage Immunosurveillance. Front Immunol. 2020;11:621757 pubmed 出版商
  27. Li Y, Sun Y, Kulke M, Hechler T, Van der Jeught K, Dong T, et al. Targeted immunotherapy for HER2-low breast cancer with 17p loss. Sci Transl Med. 2021;13: pubmed 出版商
  28. Ali S, Borin T, Piranlioglu R, Ara R, Lebedyeva I, Angara K, et al. Changes in the tumor microenvironment and outcome for TME-targeting therapy in glioblastoma: A pilot study. PLoS ONE. 2021;16:e0246646 pubmed 出版商
  29. Chen J, Sivan U, Tan S, Lippo L, De Angelis J, Labella R, et al. High-resolution 3D imaging uncovers organ-specific vascular control of tissue aging. Sci Adv. 2021;7: pubmed 出版商
  30. Yang Y, Li X, Ma Z, Wang C, Yang Q, Byrne Steele M, et al. CTLA-4 expression by B-1a B cells is essential for immune tolerance. Nat Commun. 2021;12:525 pubmed 出版商
  31. Rudloff S, Janot M, Rodriguez S, Dessalle K, Jahnen Dechent W, Huynh Do U. Fetuin-A is a HIF target that safeguards tissue integrity during hypoxic stress. Nat Commun. 2021;12:549 pubmed 出版商
  32. Khaw Y, Majid D, Oh S, Kang E, Inoue M. Early-life-trauma triggers interferon-β resistance and neurodegeneration in a multiple sclerosis model via downregulated β1-adrenergic signaling. Nat Commun. 2021;12:105 pubmed 出版商
  33. Meryk A, Grasse M, Balasco L, Kapferer W, Grubeck Loebenstein B, Pangrazzi L. Antioxidants N-Acetylcysteine and Vitamin C Improve T Cell Commitment to Memory and Long-Term Maintenance of Immunological Memory in Old Mice. Antioxidants (Basel). 2020;9: pubmed 出版商
  34. Weng X, Zhao H, Guan Q, Shi G, Feng S, Gleave M, et al. Clusterin regulates macrophage expansion, polarization and phagocytic activity in response to inflammation in the kidneys. Immunol Cell Biol. 2021;99:274-287 pubmed 出版商
  35. Zhao L, Hu S, Davila M, Yang J, Lin Y, Albanese J, et al. Coordinated co-migration of CCR10+ antibody-producing B cells with helper T cells for colonic homeostatic regulation. Mucosal Immunol. 2021;14:420-430 pubmed 出版商
  36. Cignarella F, Filipello F, Bollman B, Cantoni C, Locca A, Mikesell R, et al. TREM2 activation on microglia promotes myelin debris clearance and remyelination in a model of multiple sclerosis. Acta Neuropathol. 2020;140:513-534 pubmed 出版商
  37. Kim E, Woodruff M, Grigoryan L, Maier B, Lee S, Mandal P, et al. Squalene emulsion-based vaccine adjuvants stimulate CD8 T cell, but not antibody responses, through a RIPK3-dependent pathway. elife. 2020;9: pubmed 出版商
  38. Zheng D, Gao F, Cheng Q, Bao P, Dong X, Fan J, et al. A vaccine-based nanosystem for initiating innate immunity and improving tumor immunotherapy. Nat Commun. 2020;11:1985 pubmed 出版商
  39. Stebegg M, Bignon A, Hill D, Silva Cayetano A, Krueger C, Vanderleyden I, et al. Rejuvenating conventional dendritic cells and T follicular helper cell formation after vaccination. elife. 2020;9: pubmed 出版商
  40. Chao Y, Liang C, Tao H, Du Y, Wu D, Dong Z, et al. Localized cocktail chemoimmunotherapy after in situ gelation to trigger robust systemic antitumor immune responses. Sci Adv. 2020;6:eaaz4204 pubmed 出版商
  41. Luker A, Graham L, Smith T, Camarena C, Zellner M, Gilmer J, et al. The DNA methyltransferase inhibitor, guadecitabine, targets tumor-induced myelopoiesis and recovers T cell activity to slow tumor growth in combination with adoptive immunotherapy in a mouse model of breast cancer. BMC Immunol. 2020;21:8 pubmed 出版商
  42. Aslan K, Turco V, Blobner J, Sonner J, Liuzzi A, Núñez N, et al. Heterogeneity of response to immune checkpoint blockade in hypermutated experimental gliomas. Nat Commun. 2020;11:931 pubmed 出版商
  43. Martinez L, Garcia G, Contreras D, Gong D, Sun R, Arumugaswami V. Zika Virus Mucosal Infection Provides Protective Immunity. J Virol. 2020;94: pubmed 出版商
  44. Terashima Y, Toda E, Itakura M, Otsuji M, Yoshinaga S, Okumura K, et al. Targeting FROUNT with disulfiram suppresses macrophage accumulation and its tumor-promoting properties. Nat Commun. 2020;11:609 pubmed 出版商
  45. Mosaheb M, Dobrikova E, Brown M, Yang Y, Cable J, Okada H, et al. Genetically stable poliovirus vectors activate dendritic cells and prime antitumor CD8 T cell immunity. Nat Commun. 2020;11:524 pubmed 出版商
  46. Canel M, Taggart D, Sims A, Lonergan D, Waizenegger I, Serrels A. T-cell co-stimulation in combination with targeting FAK drives enhanced anti-tumor immunity. elife. 2020;9: pubmed 出版商
  47. Tencerova M, Rendina Ruedy E, Neess D, Færgeman N, Figeac F, Ali D, et al. Metabolic programming determines the lineage-differentiation fate of murine bone marrow stromal progenitor cells. Bone Res. 2019;7:35 pubmed 出版商
  48. Yan D, Wang J, Sun H, Zamani A, Zhang H, Chen W, et al. TIPE2 specifies the functional polarization of myeloid-derived suppressor cells during tumorigenesis. J Exp Med. 2020;217: pubmed 出版商
  49. Wolf Y, Bartok O, Patkar S, Eli G, Cohen S, Litchfield K, et al. UVB-Induced Tumor Heterogeneity Diminishes Immune Response in Melanoma. Cell. 2019;179:219-235.e21 pubmed 出版商
  50. Kodumudi K, Ramamoorthi G, Snyder C, Basu A, Jia Y, Awshah S, et al. Sequential Anti-PD1 Therapy Following Dendritic Cell Vaccination Improves Survival in a HER2 Mammary Carcinoma Model and Identifies a Critical Role for CD4 T Cells in Mediating the Response. Front Immunol. 2019;10:1939 pubmed 出版商
  51. Findlay E, Currie A, Zhang A, Ovciarikova J, Young L, Stevens H, et al. Exposure to the antimicrobial peptide LL-37 produces dendritic cells optimized for immunotherapy. Oncoimmunology. 2019;8:1608106 pubmed 出版商
  52. Koike T, Harada K, Horiuchi S, Kitamura D. The quantity of CD40 signaling determines the differentiation of B cells into functionally distinct memory cell subsets. elife. 2019;8: pubmed 出版商
  53. Oh J, Iijima N, Song E, Lu P, Klein J, Jiang R, et al. Migrant memory B cells secrete luminal antibody in the vagina. Nature. 2019;: pubmed 出版商
  54. Sivaram N, McLaughlin P, Han H, Petrenko O, Jiang Y, Ballou L, et al. Tumor-intrinsic PIK3CA represses tumor immunogenecity in a model of pancreatic cancer. J Clin Invest. 2019;130: pubmed 出版商
  55. Humeniuk P, Geiselhart S, Battin C, Webb T, Steinberger P, Paster W, et al. Generation of a Jurkat-based fluorescent reporter cell line to evaluate lipid antigen interaction with the human iNKT cell receptor. Sci Rep. 2019;9:7426 pubmed 出版商
  56. Miao Y, Yang H, Levorse J, Yuan S, Polak L, Sribour M, et al. Adaptive Immune Resistance Emerges from Tumor-Initiating Stem Cells. Cell. 2019;177:1172-1186.e14 pubmed 出版商
  57. Mizuno R, Sugiura D, Shimizu K, Maruhashi T, Watada M, Okazaki I, et al. PD-1 Primarily Targets TCR Signal in the Inhibition of Functional T Cell Activation. Front Immunol. 2019;10:630 pubmed 出版商
  58. Sugiura D, Maruhashi T, Okazaki I, Shimizu K, Maeda T, Takemoto T, et al. Restriction of PD-1 function by cis-PD-L1/CD80 interactions is required for optimal T cell responses. Science. 2019;364:558-566 pubmed 出版商
  59. Knox T, Sahakian E, Banik D, Hadley M, Palmer E, Noonepalle S, et al. Selective HDAC6 inhibitors improve anti-PD-1 immune checkpoint blockade therapy by decreasing the anti-inflammatory phenotype of macrophages and down-regulation of immunosuppressive proteins in tumor cells. Sci Rep. 2019;9:6136 pubmed 出版商
  60. McLaren J, Clement M, Marsden M, Miners K, Llewellyn Lacey S, Grant E, et al. IL-33 Augments Virus-Specific Memory T Cell Inflation and Potentiates the Efficacy of an Attenuated Cytomegalovirus-Based Vaccine. J Immunol. 2019;202:943-955 pubmed 出版商
  61. Lee Y, Ju J, Shon W, Oh S, Min C, Kang M, et al. Skewed Dendritic Cell Differentiation of MyD88-Deficient Donor Bone Marrow Cells, Instead of Massive Expansion as Myeloid-Derived Suppressor Cells, Aggravates GVHD. Immune Netw. 2018;18:e44 pubmed 出版商
  62. Alam M, Yang D, Trivett A, Meyer T, Oppenheim J. HMGN1 and R848 Synergistically Activate Dendritic Cells Using Multiple Signaling Pathways. Front Immunol. 2018;9:2982 pubmed 出版商
  63. Düsedau H, Kleveman J, Figueiredo C, Biswas A, Steffen J, Kliche S, et al. p75NTR regulates brain mononuclear cell function and neuronal structure in Toxoplasma infection-induced neuroinflammation. Glia. 2019;67:193-211 pubmed 出版商
  64. Kaplanov I, Carmi Y, Kornetsky R, Shemesh A, Shurin G, Shurin M, et al. Blocking IL-1β reverses the immunosuppression in mouse breast cancer and synergizes with anti-PD-1 for tumor abrogation. Proc Natl Acad Sci U S A. 2019;116:1361-1369 pubmed 出版商
  65. Ding L, Kim H, Wang Q, Kearns M, Jiang T, Ohlson C, et al. PARP Inhibition Elicits STING-Dependent Antitumor Immunity in Brca1-Deficient Ovarian Cancer. Cell Rep. 2018;25:2972-2980.e5 pubmed 出版商
  66. Vega Angeles V, Terrazas L, Ledesma Soto Y, Jimenez L, Landa A. Taenia solium glutathione transferase fraction activates macrophages and favors the development of Th1-type response. Biosci Rep. 2019;39: pubmed 出版商
  67. Magallanes Puebla A, Espinosa Cueto P, López Marín L, Mancilla R. Mycobacterial glycolipid Di-O-acyl trehalose promotes a tolerogenic profile in dendritic cells. PLoS ONE. 2018;13:e0207202 pubmed 出版商
  68. Tordesillas L, Lozano Ojalvo D, Dunkin D, Mondoulet L, Agudo J, Merad M, et al. PDL2+ CD11b+ dermal dendritic cells capture topical antigen through hair follicles to prime LAP+ Tregs. Nat Commun. 2018;9:5238 pubmed 出版商
  69. Kiyohara H, Sujino T, Teratani T, Miyamoto K, Arai M, Nomura E, et al. Toll-Like Receptor 7 Agonist-Induced Dermatitis Causes Severe Dextran Sulfate Sodium Colitis by Altering the Gut Microbiome and Immune Cells. Cell Mol Gastroenterol Hepatol. 2019;7:135-156 pubmed 出版商
  70. Aarts S, Seijkens T, Kusters P, Van Tiel C, Reiche M, den Toom M, et al. Macrophage CD40 signaling drives experimental autoimmune encephalomyelitis. J Pathol. 2019;247:471-480 pubmed 出版商
  71. Casagrande F, de Souza Ferreira S, Nunes F, Romera L, Dos Santos S, Tessaro F, et al. Insulin Modulates Paracoccidioides brasiliensis-Induced Inflammation by Restoring the Populations of NK Cells, Dendritic Cells, and B Lymphocytes in Lungs. J Diabetes Res. 2018;2018:6209694 pubmed 出版商
  72. Montero Herradón S, García Ceca J, Zapata A. Altered Maturation of Medullary TEC in EphB-Deficient Thymi Is Recovered by RANK Signaling Stimulation. Front Immunol. 2018;9:1020 pubmed 出版商
  73. Yao Y, Huang W, Li X, Li X, Qian J, Han H, et al. Tespa1 Deficiency Dampens Thymus-Dependent B-Cell Activation and Attenuates Collagen-Induced Arthritis in Mice. Front Immunol. 2018;9:965 pubmed 出版商
  74. Du X, Wen J, Wang Y, Karmaus P, Khatamian A, Tan H, et al. Hippo/Mst signalling couples metabolic state and immune function of CD8α+ dendritic cells. Nature. 2018;558:141-145 pubmed 出版商
  75. Grist J, Marro B, Skinner D, Syage A, Worne C, Doty D, et al. Induced CNS expression of CXCL1 augments neurologic disease in a murine model of multiple sclerosis via enhanced neutrophil recruitment. Eur J Immunol. 2018;48:1199-1210 pubmed 出版商
  76. Mencarelli A, Khameneh H, Fric J, Vacca M, El Daker S, Janela B, et al. Calcineurin-mediated IL-2 production by CD11chighMHCII+ myeloid cells is crucial for intestinal immune homeostasis. Nat Commun. 2018;9:1102 pubmed 出版商
  77. Pedros C, Canonigo Balancio A, Kong K, Altman A. Requirement of Treg-intrinsic CTLA4/PKCη signaling pathway for suppressing tumor immunity. JCI Insight. 2017;2: pubmed 出版商
  78. Meng Y, Zhou W, Jin L, Liu L, Chang K, Mei J, et al. RANKL-mediated harmonious dialogue between fetus and mother guarantees smooth gestation by inducing decidual M2 macrophage polarization. Cell Death Dis. 2017;8:e3105 pubmed 出版商
  79. Billerbeck E, Wolfisberg R, Fahnøe U, Xiao J, Quirk C, Luna J, et al. Mouse models of acute and chronic hepacivirus infection. Science. 2017;357:204-208 pubmed 出版商
  80. Akiel M, Guo C, Li X, Rajasekaran D, Mendoza R, Robertson C, et al. IGFBP7 Deletion Promotes Hepatocellular Carcinoma. Cancer Res. 2017;77:4014-4025 pubmed 出版商
  81. Cao Y, Zhang E, Yang J, Yang Y, Yu J, Xiao Y, et al. Frontline Science: Nasal epithelial GM-CSF contributes to TLR5-mediated modulation of airway dendritic cells and subsequent IgA response. J Leukoc Biol. 2017;102:575-587 pubmed 出版商
  82. Daley D, Mani V, Mohan N, Akkad N, Pandian G, Savadkar S, et al. NLRP3 signaling drives macrophage-induced adaptive immune suppression in pancreatic carcinoma. J Exp Med. 2017;214:1711-1724 pubmed 出版商
  83. Shrestha B, You D, Saravia J, Siefker D, Jaligama S, Lee G, et al. IL-4R? on dendritic cells in neonates and Th2 immunopathology in respiratory syncytial virus infection. J Leukoc Biol. 2017;102:153-161 pubmed 出版商
  84. Lehmann C, Baranska A, Heidkamp G, Heger L, Neubert K, Lühr J, et al. DC subset-specific induction of T cell responses upon antigen uptake via Fc? receptors in vivo. J Exp Med. 2017;214:1509-1528 pubmed 出版商
  85. Inoue T, Shinnakasu R, Ise W, Kawai C, Egawa T, Kurosaki T. The transcription factor Foxo1 controls germinal center B cell proliferation in response to T cell help. J Exp Med. 2017;214:1181-1198 pubmed 出版商
  86. Kogo H, Shimizu M, Negishi Y, Uchida E, Takahashi H. Suppression of murine tumour growth through CD8+ cytotoxic T lymphocytes via activated DEC-205+ dendritic cells by sequential administration of ?-galactosylceramide in vivo. Immunology. 2017;151:324-339 pubmed 出版商
  87. Barthels C, Ogrinc A, Steyer V, Meier S, Simon F, Wimmer M, et al. CD40-signalling abrogates induction of RORγt+ Treg cells by intestinal CD103+ DCs and causes fatal colitis. Nat Commun. 2017;8:14715 pubmed 出版商
  88. Wang H, Mo L, Xiao X, An S, Liu X, Ba J, et al. Pplase of Dermatophagoides farinae promotes ovalbumin-induced airway allergy by modulating the functions of dendritic cells in a mouse model. Sci Rep. 2017;7:43322 pubmed 出版商
  89. Komegae E, Souza T, Grund L, Lima C, Lopes Ferreira M. Multiple functional therapeutic effects of TnP: A small stable synthetic peptide derived from fish venom in a mouse model of multiple sclerosis. PLoS ONE. 2017;12:e0171796 pubmed 出版商
  90. Zhang H, Qi Y, Yuan Y, Cai L, Xu H, Zhang L, et al. Paeoniflorin Ameliorates Experimental Autoimmune Encephalomyelitis via Inhibition of Dendritic Cell Function and Th17 Cell Differentiation. Sci Rep. 2017;7:41887 pubmed 出版商
  91. Hwang I, Kim K, Choi S, Lomunova M. Potentiation of T Cell Stimulatory Activity by Chemical Fixation of a Weak Peptide-MHC Complex. Mol Cells. 2017;40:24-36 pubmed 出版商
  92. van Nieuwenhuijze A, Dooley J, Humblet Baron S, Sreenivasan J, Koenders M, Schlenner S, et al. Defective germinal center B-cell response and reduced arthritic pathology in microRNA-29a-deficient mice. Cell Mol Life Sci. 2017;74:2095-2106 pubmed 出版商
  93. Weindel C, Richey L, Mehta A, Shah M, Huber B. Autophagy in Dendritic Cells and B Cells Is Critical for the Inflammatory State of TLR7-Mediated Autoimmunity. J Immunol. 2017;198:1081-1092 pubmed 出版商
  94. Khameneh H, Ho A, Spreafico R, Derks H, Quek H, Mortellaro A. The Syk-NFAT-IL-2 Pathway in Dendritic Cells Is Required for Optimal Sterile Immunity Elicited by Alum Adjuvants. J Immunol. 2017;198:196-204 pubmed
  95. Lund M, Greer J, Dixit A, Alvarado R, McCauley Winter P, To J, et al. A parasite-derived 68-mer peptide ameliorates autoimmune disease in murine models of Type 1 diabetes and multiple sclerosis. Sci Rep. 2016;6:37789 pubmed 出版商
  96. Tahiri H, Omri S, Yang C, Duhamel F, Samarani S, Ahmad A, et al. Lymphocytic Microparticles Modulate Angiogenic Properties of Macrophages in Laser-induced Choroidal Neovascularization. Sci Rep. 2016;6:37391 pubmed 出版商
  97. Hammer A, Yang G, Friedrich J, Kovacs A, Lee D, Grave K, et al. Role of the receptor Mas in macrophage-mediated inflammation in vivo. Proc Natl Acad Sci U S A. 2016;113:14109-14114 pubmed
  98. Takács E, Boto P, Simo E, Csuth T, Toth B, Raveh Amit H, et al. Immunogenic Dendritic Cell Generation from Pluripotent Stem Cells by Ectopic Expression of Runx3. J Immunol. 2017;198:239-248 pubmed
  99. Hirako I, Ataide M, Faustino L, Assis P, Sorensen E, Ueta H, et al. Splenic differentiation and emergence of CCR5+CXCL9+CXCL10+ monocyte-derived dendritic cells in the brain during cerebral malaria. Nat Commun. 2016;7:13277 pubmed 出版商
  100. Chu V, Graf R, Wirtz T, Weber T, Favret J, Li X, et al. Efficient CRISPR-mediated mutagenesis in primary immune cells using CrispRGold and a C57BL/6 Cas9 transgenic mouse line. Proc Natl Acad Sci U S A. 2016;113:12514-12519 pubmed
  101. Klotz L, Kuzmanov I, Hucke S, Gross C, Posevitz V, Dreykluft A, et al. B7-H1 shapes T-cell-mediated brain endothelial cell dysfunction and regional encephalitogenicity in spontaneous CNS autoimmunity. Proc Natl Acad Sci U S A. 2016;113:E6182-E6191 pubmed
  102. Bemark M, Hazanov H, Strömberg A, Komban R, Holmqvist J, Köster S, et al. Limited clonal relatedness between gut IgA plasma cells and memory B cells after oral immunization. Nat Commun. 2016;7:12698 pubmed 出版商
  103. Papadaki G, Kambas K, Choulaki C, Vlachou K, Drakos E, Bertsias G, et al. Neutrophil extracellular traps exacerbate Th1-mediated autoimmune responses in rheumatoid arthritis by promoting DC maturation. Eur J Immunol. 2016;46:2542-2554 pubmed 出版商
  104. Papp S, Moderzynski K, Rauch J, Heine L, Kuehl S, Richardt U, et al. Liver Necrosis and Lethal Systemic Inflammation in a Murine Model of Rickettsia typhi Infection: Role of Neutrophils, Macrophages and NK Cells. PLoS Negl Trop Dis. 2016;10:e0004935 pubmed 出版商
  105. Kouwenberg M, Jacobs C, van der Vlag J, Hilbrands L. Allostimulatory Effects of Dendritic Cells with Characteristic Features of a Regulatory Phenotype. PLoS ONE. 2016;11:e0159986 pubmed 出版商
  106. Zhao Y, Chu X, Chen J, Wang Y, Gao S, Jiang Y, et al. Dectin-1-activated dendritic cells trigger potent antitumour immunity through the induction of Th9 cells. Nat Commun. 2016;7:12368 pubmed 出版商
  107. Chow K, Delconte R, Huntington N, Tarlinton D, Sutherland R, Zhan Y, et al. Innate Allorecognition Results in Rapid Accumulation of Monocyte-Derived Dendritic Cells. J Immunol. 2016;197:2000-8 pubmed 出版商
  108. Veinotte L, Gebremeskel S, Johnston B. CXCL16-positive dendritic cells enhance invariant natural killer T cell-dependent IFN? production and tumor control. Oncoimmunology. 2016;5:e1160979 pubmed 出版商
  109. Raguz J, Jerić I, Niault T, Nowacka J, Kuzet S, Rupp C, et al. Epidermal RAF prevents allergic skin disease. elife. 2016;5: pubmed 出版商
  110. Wang S, Xia P, Chen Y, Huang G, Xiong Z, Liu J, et al. Natural Killer-like B Cells Prime Innate Lymphocytes against Microbial Infection. Immunity. 2016;45:131-44 pubmed 出版商
  111. Engelmann R, Biemelt A, Cordshagen A, Johl A, Kuthning D, Müller Hilke B. The Prerequisites for Central Tolerance Induction against Citrullinated Proteins in the Mouse. PLoS ONE. 2016;11:e0158773 pubmed 出版商
  112. Ahmad F, Chung Y, Tang Y, Hockman S, Liu S, Khan Y, et al. Phosphodiesterase 3B (PDE3B) regulates NLRP3 inflammasome in adipose tissue. Sci Rep. 2016;6:28056 pubmed 出版商
  113. Lo T, Silveira P, Fromm P, Verma N, Vu P, Kupresanin F, et al. Characterization of the Expression and Function of the C-Type Lectin Receptor CD302 in Mice and Humans Reveals a Role in Dendritic Cell Migration. J Immunol. 2016;197:885-98 pubmed 出版商
  114. Göbel K, Pankratz S, Asaridou C, Herrmann A, Bittner S, Merker M, et al. Blood coagulation factor XII drives adaptive immunity during neuroinflammation via CD87-mediated modulation of dendritic cells. Nat Commun. 2016;7:11626 pubmed 出版商
  115. Chikh G, Luu R, Patel S, Davis H, Weeratna R. Effects of KLK Peptide on Adjuvanticity of Different ODN Sequences. Vaccines (Basel). 2016;4: pubmed 出版商
  116. Xu S, Tao Z, Hai B, Liang H, Shi Y, Wang T, et al. miR-424(322) reverses chemoresistance via T-cell immune response activation by blocking the PD-L1 immune checkpoint. Nat Commun. 2016;7:11406 pubmed 出版商
  117. Xu X, Meng Q, Erben U, Wang P, Glauben R, Kuhl A, et al. Myeloid-derived suppressor cells promote B-cell production of IgA in a TNFR2-dependent manner. Cell Mol Immunol. 2017;14:597-606 pubmed 出版商
  118. Jain N, Khullar B, Oswal N, Banoth B, Joshi P, Ravindran B, et al. TLR-mediated albuminuria needs TNF?-mediated cooperativity between TLRs present in hematopoietic tissues and CD80 present on non-hematopoietic tissues in mice. Dis Model Mech. 2016;9:707-17 pubmed 出版商
  119. Salao K, Jiang L, Li H, Tsai V, Husaini Y, Curmi P, et al. CLIC1 regulates dendritic cell antigen processing and presentation by modulating phagosome acidification and proteolysis. Biol Open. 2016;5:620-30 pubmed 出版商
  120. Uto T, Fukaya T, Takagi H, Arimura K, Nakamura T, Kojima N, et al. Clec4A4 is a regulatory receptor for dendritic cells that impairs inflammation and T-cell immunity. Nat Commun. 2016;7:11273 pubmed 出版商
  121. Ufimtseva E. Differences between Mycobacterium-Host Cell Relationships in Latent Tuberculous Infection of Mice Ex Vivo and Mycobacterial Infection of Mouse Cells In Vitro. J Immunol Res. 2016;2016:4325646 pubmed 出版商
  122. Lee S, Hong S, Verma V, Lee Y, Duong T, Jeong K, et al. Flagellin is a strong vaginal adjuvant of a therapeutic vaccine for genital cancer. Oncoimmunology. 2016;5:e1081328 pubmed
  123. Kawano M, Tanaka K, Itonaga I, Iwasaki T, Miyazaki M, Ikeda S, et al. Dendritic cells combined with doxorubicin induces immunogenic cell death and exhibits antitumor effects for osteosarcoma. Oncol Lett. 2016;11:2169-2175 pubmed
  124. Moreira M, Costa Pereira C, Alves M, Marteleto B, Ribeiro V, Peruhype Magalhães V, et al. Vaccination against canine leishmaniosis increases the phagocytic activity, nitric oxide production and expression of cell activation/migration molecules in neutrophils and monocytes. Vet Parasitol. 2016;220:33-45 pubmed 出版商
  125. Leeth C, Racine J, Chapman H, Arpa B, Carrillo J, Carrascal J, et al. B-lymphocytes expressing an Ig specificity recognizing the pancreatic ß-cell autoantigen peripherin are potent contributors to type 1 diabetes development in NOD mice. Diabetes. 2016;65:1977-1987 pubmed 出版商
  126. Haribhai D, Ziegelbauer J, Jia S, Upchurch K, Yan K, Schmitt E, et al. Alternatively Activated Macrophages Boost Induced Regulatory T and Th17 Cell Responses during Immunotherapy for Colitis. J Immunol. 2016;196:3305-17 pubmed 出版商
  127. Ying W, Tseng A, Chang R, Wang H, Lin Y, Kanameni S, et al. miR-150 regulates obesity-associated insulin resistance by controlling B cell functions. Sci Rep. 2016;6:20176 pubmed 出版商
  128. Lasigliè D, Boero S, Bauer I, Morando S, Damonte P, Cea M, et al. Sirt6 regulates dendritic cell differentiation, maturation, and function. Aging (Albany NY). 2016;8:34-49 pubmed
  129. McCubbrey A, Nelson J, Stolberg V, Blakely P, McCloskey L, Janssen W, et al. MicroRNA-34a Negatively Regulates Efferocytosis by Tissue Macrophages in Part via SIRT1. J Immunol. 2016;196:1366-75 pubmed 出版商
  130. MikyÅ¡ková R, Å tÄ›pánek I, Indrová M, Bieblová J, Šímová J, Truxová I, et al. Dendritic cells pulsed with tumor cells killed by high hydrostatic pressure induce strong immune responses and display therapeutic effects both in murine TC-1 and TRAMP-C2 tumors when combined with docetaxel chemotherapy. Int J Oncol. 2016;48:953-64 pubmed 出版商
  131. Traka M, Podojil J, McCarthy D, Miller S, Popko B. Oligodendrocyte death results in immune-mediated CNS demyelination. Nat Neurosci. 2016;19:65-74 pubmed 出版商
  132. Schachtner H, Weimershaus M, Stache V, Plewa N, Legler D, Höpken U, et al. Loss of Gadkin Affects Dendritic Cell Migration In Vitro. PLoS ONE. 2015;10:e0143883 pubmed 出版商
  133. Onodera T, Fukuhara A, Jang M, Shin J, Aoi K, Kikuta J, et al. Adipose tissue macrophages induce PPARγ-high FOXP3(+) regulatory T cells. Sci Rep. 2015;5:16801 pubmed 出版商
  134. Fontinha D, Lopes F, Marques S, Alenquer M, Simas J. Murid Gammaherpesvirus Latency-Associated Protein M2 Promotes the Formation of Conjugates between Transformed B Lymphoma Cells and T Helper Cells. PLoS ONE. 2015;10:e0142540 pubmed 出版商
  135. Riquelme S, Pogu J, Anegon I, Bueno S, Kalergis A. Carbon monoxide impairs mitochondria-dependent endosomal maturation and antigen presentation in dendritic cells. Eur J Immunol. 2015;45:3269-88 pubmed 出版商
  136. Patel J, Vartabedian V, Bozeman E, Caoyonan B, Srivatsan S, Pack C, et al. Plasma membrane vesicles decorated with glycolipid-anchored antigens and adjuvants via protein transfer as an antigen delivery platform for inhibition of tumor growth. Biomaterials. 2016;74:231-44 pubmed 出版商
  137. Sun L, Sun C, Liang Z, Li H, Chen L, Luo H, et al. FSP1(+) fibroblast subpopulation is essential for the maintenance and regeneration of medullary thymic epithelial cells. Sci Rep. 2015;5:14871 pubmed 出版商
  138. Sun L, Hua Y, Vergarajauregui S, Diab H, Puertollano R. Novel Role of TRPML2 in the Regulation of the Innate Immune Response. J Immunol. 2015;195:4922-32 pubmed 出版商
  139. Gonzalez N, Wennhold K, Balkow S, Kondo E, Bölck B, Weber T, et al. In vitro and in vivo imaging of initial B-T-cell interactions in the setting of B-cell based cancer immunotherapy. Oncoimmunology. 2015;4:e1038684 pubmed
  140. Buerger S, Herrmann V, Mundt S, Trautwein N, Groettrup M, Basler M. The Ubiquitin-like Modifier FAT10 Is Selectively Expressed in Medullary Thymic Epithelial Cells and Modifies T Cell Selection. J Immunol. 2015;195:4106-16 pubmed 出版商
  141. Sei J, Haskett S, Kaminsky L, Lin E, Truckenmiller M, Bellone C, et al. Peptide-MHC-I from Endogenous Antigen Outnumber Those from Exogenous Antigen, Irrespective of APC Phenotype or Activation. PLoS Pathog. 2015;11:e1004941 pubmed 出版商
  142. Kamachi F, Isshiki T, Harada N, Akiba H, Miyake S. ICOS promotes group 2 innate lymphoid cell activation in lungs. Biochem Biophys Res Commun. 2015;463:739-45 pubmed 出版商
  143. Holtzhausen A, Zhao F, Evans K, Tsutsui M, Orabona C, Tyler D, et al. Melanoma-Derived Wnt5a Promotes Local Dendritic-Cell Expression of IDO and Immunotolerance: Opportunities for Pharmacologic Enhancement of Immunotherapy. Cancer Immunol Res. 2015;3:1082-95 pubmed 出版商
  144. Liechtenstein T, Perez Janices N, Blanco Luquin I, Goyvaerts C, Schwarze J, Dufait I, et al. Anti-melanoma vaccines engineered to simultaneously modulate cytokine priming and silence PD-L1 characterized using ex vivo myeloid-derived suppressor cells as a readout of therapeutic efficacy. Oncoimmunology. 2014;3:e945378 pubmed
  145. Zeng S, Wang L, Li P, Wang W, Yang J. Mesenchymal stem cells abrogate experimental asthma by altering dendritic cell function. Mol Med Rep. 2015;12:2511-20 pubmed 出版商
  146. Carmi Y, Spitzer M, Linde I, Burt B, Prestwood T, Perlman N, et al. Allogeneic IgG combined with dendritic cell stimuli induce antitumour T-cell immunity. Nature. 2015;521:99-104 pubmed 出版商
  147. Sharma S, Chintala N, Vadrevu S, Patel J, Karbowniczek M, Markiewski M. Pulmonary alveolar macrophages contribute to the premetastatic niche by suppressing antitumor T cell responses in the lungs. J Immunol. 2015;194:5529-38 pubmed 出版商
  148. Kolan S, Boman A, Matozaki T, Lejon K, Oldenborg P. Lack of non-hematopoietic SIRPα signaling disturbs the splenic marginal zone architecture resulting in accumulation and displacement of marginal zone B cells. Biochem Biophys Res Commun. 2015;460:645-50 pubmed 出版商
  149. Jobsri J, Allen A, Rajagopal D, Shipton M, Kanyuka K, Lomonossoff G, et al. Plant virus particles carrying tumour antigen activate TLR7 and Induce high levels of protective antibody. PLoS ONE. 2015;10:e0118096 pubmed 出版商
  150. Pannu J, Belle J, Forster M, Duerr C, Shen S, Kane L, et al. Ubiquitin specific protease 21 is dispensable for normal development, hematopoiesis and lymphocyte differentiation. PLoS ONE. 2015;10:e0117304 pubmed 出版商
  151. Sun H, Zhang J, Chen F, Chen X, Zhou Z, Wang H. Activation of RAW264.7 macrophages by the polysaccharide from the roots of Actinidia eriantha and its molecular mechanisms. Carbohydr Polym. 2015;121:388-402 pubmed 出版商
  152. Stack G, Jones E, Marsden M, Stacey M, Snelgrove R, Lacaze P, et al. CD200 receptor restriction of myeloid cell responses antagonizes antiviral immunity and facilitates cytomegalovirus persistence within mucosal tissue. PLoS Pathog. 2015;11:e1004641 pubmed 出版商
  153. Jing W, Gershan J, Weber J, Tlomak D, McOlash L, Sabatos Peyton C, et al. Combined immune checkpoint protein blockade and low dose whole body irradiation as immunotherapy for myeloma. J Immunother Cancer. 2015;3:2 pubmed 出版商
  154. Funakoshi S, Shimizu T, Numata O, Ato M, Melchers F, Ohnishi K. BILL-cadherin/cadherin-17 contributes to the survival of memory B cells. PLoS ONE. 2015;10:e0117566 pubmed 出版商
  155. Rattay K, Claude J, Rezavandy E, Matt S, Hofmann T, Kyewski B, et al. Homeodomain-interacting protein kinase 2, a novel autoimmune regulator interaction partner, modulates promiscuous gene expression in medullary thymic epithelial cells. J Immunol. 2015;194:921-8 pubmed 出版商
  156. Skripuletz T, Manzel A, Gropengießer K, Schäfer N, Gudi V, Singh V, et al. Pivotal role of choline metabolites in remyelination. Brain. 2015;138:398-413 pubmed 出版商
  157. Ikeda T, Hirata S, Takamatsu K, Haruta M, Tsukamoto H, Ito T, et al. Suppression of Th1-mediated autoimmunity by embryonic stem cell-derived dendritic cells. PLoS ONE. 2014;9:e115198 pubmed 出版商
  158. White C, Villarino N, Sloan S, Ganusov V, Schmidt N. Plasmodium suppresses expansion of T cell responses to heterologous infections. J Immunol. 2015;194:697-708 pubmed 出版商
  159. Yin Y, Qin T, Wang X, Lin J, Yu Q, Yang Q. CpG DNA assists the whole inactivated H9N2 influenza virus in crossing the intestinal epithelial barriers via transepithelial uptake of dendritic cell dendrites. Mucosal Immunol. 2015;8:799-814 pubmed 出版商
  160. Frossard C, Asigbetse K, Burger D, Eigenmann P. Gut T cell receptor-γδ(+) intraepithelial lymphocytes are activated selectively by cholera toxin to break oral tolerance in mice. Clin Exp Immunol. 2015;180:118-30 pubmed 出版商
  161. Thauland T, Koguchi Y, Dustin M, Parker D. CD28-CD80 interactions control regulatory T cell motility and immunological synapse formation. J Immunol. 2014;193:5894-903 pubmed 出版商
  162. McDonnell A, Lesterhuis W, Khong A, Nowak A, Lake R, Currie A, et al. Tumor-infiltrating dendritic cells exhibit defective cross-presentation of tumor antigens, but is reversed by chemotherapy. Eur J Immunol. 2015;45:49-59 pubmed 出版商
  163. Å krnjug I, Guzmán C, Rueckert C, Ruecker C. Cyclic GMP-AMP displays mucosal adjuvant activity in mice. PLoS ONE. 2014;9:e110150 pubmed 出版商
  164. Wei F, Yang D, Tewary P, Li Y, Li S, Chen X, et al. The Alarmin HMGN1 contributes to antitumor immunity and is a potent immunoadjuvant. Cancer Res. 2014;74:5989-98 pubmed 出版商
  165. Dai M, Yip Y, Hellstrom I, Hellstrom K. Curing mice with large tumors by locally delivering combinations of immunomodulatory antibodies. Clin Cancer Res. 2015;21:1127-38 pubmed 出版商
  166. Rauen J, Kreer C, Paillard A, van Duikeren S, Benckhuijsen W, Camps M, et al. Enhanced cross-presentation and improved CD8+ T cell responses after mannosylation of synthetic long peptides in mice. PLoS ONE. 2014;9:e103755 pubmed 出版商
  167. Penaloza MacMaster P, Kamphorst A, Wieland A, Araki K, Iyer S, West E, et al. Interplay between regulatory T cells and PD-1 in modulating T cell exhaustion and viral control during chronic LCMV infection. J Exp Med. 2014;211:1905-18 pubmed 出版商
  168. Lee Chang C, Bodogai M, Moritoh K, Olkhanud P, Chan A, Croft M, et al. Accumulation of 4-1BBL+ B cells in the elderly induces the generation of granzyme-B+ CD8+ T cells with potential antitumor activity. Blood. 2014;124:1450-9 pubmed 出版商
  169. Siurala M, Bramante S, Vassilev L, Hirvinen M, Parviainen S, Tähtinen S, et al. Oncolytic adenovirus and doxorubicin-based chemotherapy results in synergistic antitumor activity against soft-tissue sarcoma. Int J Cancer. 2015;136:945-54 pubmed 出版商
  170. Assi H, Espinosa J, Suprise S, SOFRONIEW M, Doherty R, Zamler D, et al. Assessing the role of STAT3 in DC differentiation and autologous DC immunotherapy in mouse models of GBM. PLoS ONE. 2014;9:e96318 pubmed 出版商
  171. Qian L, Zhang M, Wu S, Zhong Y, Van Tol E, Cai W. Alkylglycerols modulate the proliferation and differentiation of non-specific agonist and specific antigen-stimulated splenic lymphocytes. PLoS ONE. 2014;9:e96207 pubmed 出版商
  172. Skrnjug I, Rueckert C, Libanova R, Lienenklaus S, Weiss S, Guzman C. The mucosal adjuvant cyclic di-AMP exerts immune stimulatory effects on dendritic cells and macrophages. PLoS ONE. 2014;9:e95728 pubmed 出版商
  173. Hirayama T, Asano Y, Iida H, Watanabe T, Nakamura T, Goitsuka R. Meis1 is required for the maintenance of postnatal thymic epithelial cells. PLoS ONE. 2014;9:e89885 pubmed 出版商
  174. Martins K, Steffens J, Van Tongeren S, Wells J, Bergeron A, Dickson S, et al. Toll-like receptor agonist augments virus-like particle-mediated protection from Ebola virus with transient immune activation. PLoS ONE. 2014;9:e89735 pubmed 出版商
  175. Ramakrishnan R, Tyurin V, Tuyrin V, Veglia F, Condamine T, Amoscato A, et al. Oxidized lipids block antigen cross-presentation by dendritic cells in cancer. J Immunol. 2014;192:2920-31 pubmed 出版商
  176. Jin Y, Wi H, Choi M, Hong S, Bae Y. Regulation of anti-inflammatory cytokines IL-10 and TGF-? in mouse dendritic cells through treatment with Clonorchis sinensis crude antigen. Exp Mol Med. 2014;46:e74 pubmed 出版商
  177. Xia S, Wei J, Wang J, Sun H, Zheng W, Li Y, et al. A requirement of dendritic cell-derived interleukin-27 for the tumor infiltration of regulatory T cells. J Leukoc Biol. 2014;95:733-742 pubmed
  178. Iwata A, Kawashima S, Kobayashi M, Okubo A, Kawashima H, Suto A, et al. Th2-type inflammation instructs inflammatory dendritic cells to induce airway hyperreactivity. Int Immunol. 2014;26:103-14 pubmed 出版商
  179. Harimoto H, Shimizu M, Nakagawa Y, Nakatsuka K, Wakabayashi A, Sakamoto C, et al. Inactivation of tumor-specific CD8? CTLs by tumor-infiltrating tolerogenic dendritic cells. Immunol Cell Biol. 2013;91:545-55 pubmed 出版商
  180. Bittner S, Ruck T, Schuhmann M, Herrmann A, Moha Ou Maati H, Bobak N, et al. Endothelial TWIK-related potassium channel-1 (TREK1) regulates immune-cell trafficking into the CNS. Nat Med. 2013;19:1161-5 pubmed 出版商
  181. Khan A, Fu H, Tan L, Harper J, Beutelspacher S, Larkin D, et al. Dendritic cell modification as a route to inhibiting corneal graft rejection by the indirect pathway of allorecognition. Eur J Immunol. 2013;43:734-46 pubmed 出版商
  182. Purtha W, Tedder T, Johnson S, Bhattacharya D, Diamond M. Memory B cells, but not long-lived plasma cells, possess antigen specificities for viral escape mutants. J Exp Med. 2011;208:2599-606 pubmed 出版商
  183. Tait E, Jordan K, Dupont C, Harris T, Gregg B, Wilson E, et al. Virulence of Toxoplasma gondii is associated with distinct dendritic cell responses and reduced numbers of activated CD8+ T cells. J Immunol. 2010;185:1502-12 pubmed 出版商
  184. Charles E, Joshi S, Ash J, Fox B, Farris A, Bzik D, et al. CD4 T-cell suppression by cells from Toxoplasma gondii-infected retinas is mediated by surface protein PD-L1. Infect Immun. 2010;78:3484-92 pubmed 出版商
  185. Schuhmann M, Stegner D, Berna Erro A, Bittner S, Braun A, Kleinschnitz C, et al. Stromal interaction molecules 1 and 2 are key regulators of autoreactive T cell activation in murine autoimmune central nervous system inflammation. J Immunol. 2010;184:1536-42 pubmed 出版商
  186. Ellestad K, Tsutsui S, Noorbakhsh F, Warren K, Yong V, Pittman Q, et al. Early life exposure to lipopolysaccharide suppresses experimental autoimmune encephalomyelitis by promoting tolerogenic dendritic cells and regulatory T cells. J Immunol. 2009;183:298-309 pubmed 出版商
  187. Kiesel J, Buchwald Z, Aurora R. Cross-presentation by osteoclasts induces FoxP3 in CD8+ T cells. J Immunol. 2009;182:5477-87 pubmed 出版商
  188. Hamazaki Y, Fujita H, Kobayashi T, Choi Y, Scott H, Matsumoto M, et al. Medullary thymic epithelial cells expressing Aire represent a unique lineage derived from cells expressing claudin. Nat Immunol. 2007;8:304-11 pubmed
  189. Hoffmann P, Kench J, Vondracek A, Kruk E, Daleke D, Jordan M, et al. Interaction between phosphatidylserine and the phosphatidylserine receptor inhibits immune responses in vivo. J Immunol. 2005;174:1393-404 pubmed
  190. Jenkins S, Mountford A. Dendritic cells activated with products released by schistosome larvae drive Th2-type immune responses, which can be inhibited by manipulation of CD40 costimulation. Infect Immun. 2005;73:395-402 pubmed
  191. Freyschmidt E, Alonso A, Hartmann G, Gissmann L. Activation of dendritic cells and induction of T cell responses by HPV 16 L1/E7 chimeric virus-like particles are enhanced by CpG ODN or sorbitol. Antivir Ther. 2004;9:479-89 pubmed
  192. Zhang T, He X, Tsang T, Harris D. Transgenic TCR expression: comparison of single chain with full-length receptor constructs for T-cell function. Cancer Gene Ther. 2004;11:487-96 pubmed
  193. Morin J, Faideau B, Gagnerault M, Lepault F, Boitard C, Boudaly S. Passive transfer of flt-3L-derived dendritic cells delays diabetes development in NOD mice and associates with early production of interleukin (IL)-4 and IL-10 in the spleen of recipient mice. Clin Exp Immunol. 2003;134:388-95 pubmed
  194. Cabatingan M, Schmidt M, Sen R, Woodland R. Naive B lymphocytes undergo homeostatic proliferation in response to B cell deficit. J Immunol. 2002;169:6795-805 pubmed
  195. Denda Nagai K, Kubota N, Tsuiji M, Kamata M, Irimura T. Macrophage C-type lectin on bone marrow-derived immature dendritic cells is involved in the internalization of glycosylated antigens. Glycobiology. 2002;12:443-50 pubmed
  196. Magner W, Kazim A, Stewart C, Romano M, Catalano G, Grande C, et al. Activation of MHC class I, II, and CD40 gene expression by histone deacetylase inhibitors. J Immunol. 2000;165:7017-24 pubmed
  197. Knobeloch K, Wright M, Ochsenbein A, Liesenfeld O, Lohler J, Zinkernagel R, et al. Targeted inactivation of the tetraspanin CD37 impairs T-cell-dependent B-cell response under suboptimal costimulatory conditions. Mol Cell Biol. 2000;20:5363-9 pubmed