这是一篇来自已证抗体库的有关小鼠 B7 2的综述,是根据251篇发表使用所有方法的文章归纳的。这综述旨在帮助来邦网的访客找到最适合B7 2 抗体。
B7 2 同义词: B7; B7-2; B7.2; B70; CLS1; Cd28l2; ETC-1; Ly-58; Ly58; MB7; MB7-2; TS/A-2

其他
  • 流式细胞仪; 小鼠; 图 6b
B7 2抗体(Biolegend, GL-1)被用于被用于流式细胞仪在小鼠样本上 (图 6b). Acta Neuropathol (2020) ncbi
  • 流式细胞仪; 小鼠; 图 s4
B7 2抗体(BioLegend, GL-1)被用于被用于流式细胞仪在小鼠样本上 (图 s4). Sci Adv (2019) ncbi
  • 流式细胞仪; 小鼠; 图 4g
B7 2抗体(Biolegend, GL-1)被用于被用于流式细胞仪在小鼠样本上 (图 4g). Sci Rep (2019) ncbi
BioLegend
大鼠 单克隆(GL-1)
  • 免疫组化; 小鼠; 图 4a
BioLegendB7 2抗体(Biolegend, 105011)被用于被用于免疫组化在小鼠样本上 (图 4a). Nat Commun (2021) ncbi
大鼠 单克隆(GL-1)
  • 流式细胞仪; 小鼠; 1:200
BioLegendB7 2抗体(BioLegend, GL-1)被用于被用于流式细胞仪在小鼠样本上浓度为1:200. J Immunother Cancer (2021) ncbi
大鼠 单克隆(GL-1)
  • 流式细胞仪; 小鼠; 图 3b
BioLegendB7 2抗体(BioLegend, 105014)被用于被用于流式细胞仪在小鼠样本上 (图 3b). Brain Commun (2021) ncbi
大鼠 单克隆(PO3)
  • 流式细胞仪; 小鼠; 图 3a
BioLegendB7 2抗体(Biolegend, 105109)被用于被用于流式细胞仪在小鼠样本上 (图 3a). Front Pharmacol (2021) ncbi
大鼠 单克隆(GL-1)
  • 流式细胞仪; 小鼠; 1:400; 图 s6c
BioLegendB7 2抗体(Biolegend, GL-1)被用于被用于流式细胞仪在小鼠样本上浓度为1:400 (图 s6c). Nat Commun (2021) ncbi
大鼠 单克隆(GL-1)
  • 流式细胞仪; 小鼠; 图 3b
BioLegendB7 2抗体(Biolegend, 105013)被用于被用于流式细胞仪在小鼠样本上 (图 3b). Vaccines (Basel) (2021) ncbi
大鼠 单克隆(GL-1)
  • mass cytometry; 小鼠; 图 4g
BioLegendB7 2抗体(Biolegend, 105002)被用于被用于mass cytometry在小鼠样本上 (图 4g). Cancer Cell (2021) ncbi
大鼠 单克隆(GL-1)
  • 流式细胞仪; 小鼠; 1:100; 图 s6g
BioLegendB7 2抗体(Biolegend, 105030)被用于被用于流式细胞仪在小鼠样本上浓度为1:100 (图 s6g). Cell Rep (2021) ncbi
大鼠 单克隆(GL-1)
  • 流式细胞仪; 小鼠; 1:100; 图 2a
BioLegendB7 2抗体(BioLegend, GL-1)被用于被用于流式细胞仪在小鼠样本上浓度为1:100 (图 2a). Sci Rep (2021) ncbi
大鼠 单克隆(GL-1)
  • 流式细胞仪; 小鼠; 1:100; 图 s5-2g
BioLegendB7 2抗体(BioLegend, 105014)被用于被用于流式细胞仪在小鼠样本上浓度为1:100 (图 s5-2g). elife (2021) ncbi
大鼠 单克隆(GL-1)
  • 流式细胞仪; 小鼠; 图 s3d
BioLegendB7 2抗体(Biolegend, 105014)被用于被用于流式细胞仪在小鼠样本上 (图 s3d). Cell (2021) ncbi
大鼠 单克隆(GL-1)
  • 流式细胞仪; 小鼠; 图 5g
BioLegendB7 2抗体(BioLegend, GL-1)被用于被用于流式细胞仪在小鼠样本上 (图 5g). Front Immunol (2020) ncbi
大鼠 单克隆(GL-1)
  • 流式细胞仪; 小鼠; 1:200; 图 s2-2a
BioLegendB7 2抗体(BioLegend, GL1)被用于被用于流式细胞仪在小鼠样本上浓度为1:200 (图 s2-2a). elife (2020) ncbi
大鼠 单克隆(GL-1)
  • 流式细胞仪; 小鼠; 图 6
BioLegendB7 2抗体(BioLegend, GL-1)被用于被用于流式细胞仪在小鼠样本上 (图 6). Front Immunol (2020) ncbi
大鼠 单克隆(GL-1)
  • 流式细胞仪; 小鼠; 图 1b, 5c
BioLegendB7 2抗体(BioLegend, 105008)被用于被用于流式细胞仪在小鼠样本上 (图 1b, 5c). Antioxidants (Basel) (2020) ncbi
大鼠 单克隆(GL-1)
  • 流式细胞仪; 小鼠
BioLegendB7 2抗体(Biolegend, GL-1)被用于被用于流式细胞仪在小鼠样本上. Mucosal Immunol (2021) ncbi
大鼠 单克隆(GL-1)
  • 流式细胞仪; 小鼠; 图 6b
BioLegendB7 2抗体(Biolegend, GL-1)被用于被用于流式细胞仪在小鼠样本上 (图 6b). Acta Neuropathol (2020) ncbi
大鼠 单克隆(GL-1)
  • 流式细胞仪; 小鼠; 1:800; 图 2e
BioLegendB7 2抗体(BioLegend, 105006)被用于被用于流式细胞仪在小鼠样本上浓度为1:800 (图 2e). elife (2020) ncbi
大鼠 单克隆(GL-1)
  • 流式细胞仪; 小鼠; 图 2b
BioLegendB7 2抗体(BioLegend, GL-1)被用于被用于流式细胞仪在小鼠样本上 (图 2b). Nat Commun (2020) ncbi
大鼠 单克隆(GL-1)
  • 流式细胞仪; 小鼠; 图 1f, s2b
BioLegendB7 2抗体(Biolegend, GL-1)被用于被用于流式细胞仪在小鼠样本上 (图 1f, s2b). BMC Immunol (2020) ncbi
大鼠 单克隆(GL-1)
  • 流式细胞仪; 小鼠; 图 4c
BioLegendB7 2抗体(BioLegend, GL-1)被用于被用于流式细胞仪在小鼠样本上 (图 4c). BMC Gastroenterol (2020) ncbi
大鼠 单克隆(GL-1)
  • 流式细胞仪; 小鼠; 1 ug/ml; 图 3e
BioLegendB7 2抗体(BioLegend, GL-1)被用于被用于流式细胞仪在小鼠样本上浓度为1 ug/ml (图 3e). Science (2020) ncbi
大鼠 单克隆(GL-1)
  • 流式细胞仪; 小鼠; 图 s3a, s3b, s3c, s4a
BioLegendB7 2抗体(BioLegend, 105012)被用于被用于流式细胞仪在小鼠样本上 (图 s3a, s3b, s3c, s4a). Cancers (Basel) (2020) ncbi
大鼠 单克隆(GL-1)
  • 流式细胞仪; 小鼠; 1:200; 图 4b
BioLegendB7 2抗体(BioLegend, 105014)被用于被用于流式细胞仪在小鼠样本上浓度为1:200 (图 4b). Nat Commun (2020) ncbi
大鼠 单克隆(GL-1)
  • 流式细胞仪; 小鼠; 1:100; 图 s6c, s9
BioLegendB7 2抗体(Biolegend, 105017)被用于被用于流式细胞仪在小鼠样本上浓度为1:100 (图 s6c, s9). Nat Commun (2020) ncbi
大鼠 单克隆(GL-1)
  • 流式细胞仪; 小鼠; 图 s4b
BioLegendB7 2抗体(BioLegend, GL1)被用于被用于流式细胞仪在小鼠样本上 (图 s4b). Science (2020) ncbi
大鼠 单克隆(GL-1)
  • 流式细胞仪; 小鼠; 图 s4
BioLegendB7 2抗体(BioLegend, GL-1)被用于被用于流式细胞仪在小鼠样本上 (图 s4). Sci Adv (2019) ncbi
大鼠 单克隆(GL-1)
  • mass cytometry; 小鼠; 0.75 ug/ml; 图 5d
BioLegendB7 2抗体(Biolegend, GL-1)被用于被用于mass cytometry在小鼠样本上浓度为0.75 ug/ml (图 5d). Science (2019) ncbi
大鼠 单克隆(GL-1)
  • mass cytometry; 小鼠; 图 1a, 1c, s1
BioLegendB7 2抗体(Biolegend, GL1)被用于被用于mass cytometry在小鼠样本上 (图 1a, 1c, s1). Cell Rep (2019) ncbi
大鼠 单克隆(GL-1)
  • 流式细胞仪; 小鼠; 图 3d
BioLegendB7 2抗体(BioLegend, 105012)被用于被用于流式细胞仪在小鼠样本上 (图 3d). J Exp Med (2020) ncbi
大鼠 单克隆(GL-1)
  • 流式细胞仪; 小鼠; 图 4g
BioLegendB7 2抗体(Biolegend, GL-1)被用于被用于流式细胞仪在小鼠样本上 (图 4g). Sci Rep (2019) ncbi
大鼠 单克隆(GL-1)
  • 流式细胞仪; 小鼠; 图 1a
BioLegendB7 2抗体(Biolegend, 105008)被用于被用于流式细胞仪在小鼠样本上 (图 1a). Front Immunol (2019) ncbi
大鼠 单克隆(GL-1)
  • 流式细胞仪; 小鼠; 图 2g
BioLegendB7 2抗体(Biolegend, 105035)被用于被用于流式细胞仪在小鼠样本上 (图 2g). Oncoimmunology (2019) ncbi
大鼠 单克隆(GL-1)
  • 流式细胞仪; 小鼠; 1:200; 图 ex5a
BioLegendB7 2抗体(BioLegend, 105011)被用于被用于流式细胞仪在小鼠样本上浓度为1:200 (图 ex5a). Nature (2019) ncbi
大鼠 单克隆(GL-1)
  • 流式细胞仪; 小鼠; 图 s13a
BioLegendB7 2抗体(Biolegend, GL-1)被用于被用于流式细胞仪在小鼠样本上 (图 s13a). Science (2019) ncbi
大鼠 单克隆(GL-1)
  • 流式细胞仪; 小鼠; 图 s4h
BioLegendB7 2抗体(Biolegend, 105007)被用于被用于流式细胞仪在小鼠样本上 (图 s4h). Sci Rep (2019) ncbi
大鼠 单克隆(GL-1)
  • 流式细胞仪; 小鼠; 图 1a
BioLegendB7 2抗体(BioLegend, 105011)被用于被用于流式细胞仪在小鼠样本上 (图 1a). Immunity (2019) ncbi
大鼠 单克隆(PO3)
  • mass cytometry; 小鼠; 图 5s2b
BioLegendB7 2抗体(Bio Legend, PO3)被用于被用于mass cytometry在小鼠样本上 (图 5s2b). elife (2019) ncbi
大鼠 单克隆(GL-1)
  • 流式细胞仪; 小鼠; 图 s1c
BioLegendB7 2抗体(BioLegend, GL-1)被用于被用于流式细胞仪在小鼠样本上 (图 s1c). J Immunol (2019) ncbi
大鼠 单克隆(GL-1)
  • 流式细胞仪; 小鼠; 图 2e
BioLegendB7 2抗体(Biolegend, 105022)被用于被用于流式细胞仪在小鼠样本上 (图 2e). Cell Rep (2018) ncbi
大鼠 单克隆(GL-1)
  • 流式细胞仪; 小鼠; 图 s5
BioLegendB7 2抗体(Biolegend, 10503)被用于被用于流式细胞仪在小鼠样本上 (图 s5). Nat Commun (2018) ncbi
大鼠 单克隆(GL-1)
  • 流式细胞仪; 小鼠; 1:300; 图 s9a, s9b
BioLegendB7 2抗体(BioLegend, GL-1)被用于被用于流式细胞仪在小鼠样本上浓度为1:300 (图 s9a, s9b). Nat Commun (2018) ncbi
大鼠 单克隆(GL-1)
  • 流式细胞仪; 小鼠; 图 5d
BioLegendB7 2抗体(Biolegend, GL-1)被用于被用于流式细胞仪在小鼠样本上 (图 5d). Front Immunol (2018) ncbi
大鼠 单克隆(GL-1)
  • 流式细胞仪; 小鼠; 1:100; 图 5e
BioLegendB7 2抗体(BioLegend, GL-1)被用于被用于流式细胞仪在小鼠样本上浓度为1:100 (图 5e). J Pathol (2019) ncbi
大鼠 单克隆(GL-1)
  • 流式细胞仪; 小鼠; 1:200; 图 4h
BioLegendB7 2抗体(BioLegend, GL1)被用于被用于流式细胞仪在小鼠样本上浓度为1:200 (图 4h). Nat Commun (2018) ncbi
大鼠 单克隆(GL-1)
  • 流式细胞仪; 小鼠; 图 4b
BioLegendB7 2抗体(BioLegend, GL-1)被用于被用于流式细胞仪在小鼠样本上 (图 4b). PLoS ONE (2018) ncbi
大鼠 单克隆(GL-1)
  • 流式细胞仪; 小鼠; 图 2e
BioLegendB7 2抗体(Biolegend, 105028)被用于被用于流式细胞仪在小鼠样本上 (图 2e). J Clin Invest (2018) ncbi
大鼠 单克隆(GL-1)
  • 流式细胞仪; 小鼠; 图 4a
BioLegendB7 2抗体(BioLegend, GL-1)被用于被用于流式细胞仪在小鼠样本上 (图 4a). Front Immunol (2018) ncbi
大鼠 单克隆(GL-1)
  • 流式细胞仪; 小鼠; 1:150; 图 s6a
BioLegendB7 2抗体(BioLegend, 105007)被用于被用于流式细胞仪在小鼠样本上浓度为1:150 (图 s6a). Nat Commun (2018) ncbi
大鼠 单克隆(GL-1)
  • 流式细胞仪; 小鼠; 1:100; 图 s1
BioLegendB7 2抗体(Biolegend, GL1)被用于被用于流式细胞仪在小鼠样本上浓度为1:100 (图 s1). Nat Commun (2018) ncbi
大鼠 单克隆(GL-1)
  • 流式细胞仪; 小鼠; 图 s6a
BioLegendB7 2抗体(BioLegend, GL-1)被用于被用于流式细胞仪在小鼠样本上 (图 s6a). Cell Metab (2018) ncbi
大鼠 单克隆(GL-1)
  • 流式细胞仪; 小鼠; 1:200; 图 s1b
BioLegendB7 2抗体(BioLegend, GL-1)被用于被用于流式细胞仪在小鼠样本上浓度为1:200 (图 s1b). Nat Commun (2018) ncbi
大鼠 单克隆(GL-1)
  • 流式细胞仪; 小鼠; 图 6b
BioLegendB7 2抗体(Biolegend, GL-1)被用于被用于流式细胞仪在小鼠样本上 (图 6b). J Immunol (2018) ncbi
大鼠 单克隆(PO3)
  • 流式细胞仪; 小鼠; 图 9b
BioLegendB7 2抗体(BioLegend, PO3)被用于被用于流式细胞仪在小鼠样本上 (图 9b). J Exp Med (2018) ncbi
大鼠 单克隆(GL-1)
  • 流式细胞仪; 小鼠; 图 2c
BioLegendB7 2抗体(BioLegend, 105021)被用于被用于流式细胞仪在小鼠样本上 (图 2c). Cell (2018) ncbi
大鼠 单克隆(GL-1)
  • 流式细胞仪; 小鼠; 图 s1b
BioLegendB7 2抗体(Biolegend, Gl-1)被用于被用于流式细胞仪在小鼠样本上 (图 s1b). Science (2018) ncbi
大鼠 单克隆(GL-1)
  • 流式细胞仪; 小鼠; 图 s6f
BioLegendB7 2抗体(Biolegend, GL-1)被用于被用于流式细胞仪在小鼠样本上 (图 s6f). JCI Insight (2017) ncbi
大鼠 单克隆(GL-1)
  • 流式细胞仪; 小鼠; 图 5b
BioLegendB7 2抗体(Biolegend, 105008)被用于被用于流式细胞仪在小鼠样本上 (图 5b). Cell Death Dis (2017) ncbi
大鼠 单克隆(GL-1)
  • 流式细胞仪; 小鼠; 图 s4d
BioLegendB7 2抗体(Biolegend, GL-1)被用于被用于流式细胞仪在小鼠样本上 (图 s4d). Eur J Immunol (2018) ncbi
大鼠 单克隆(GL-1)
  • 流式细胞仪; 小鼠; 1:200; 图 s8
BioLegendB7 2抗体(Biolegend, 105030)被用于被用于流式细胞仪在小鼠样本上浓度为1:200 (图 s8). Nat Cell Biol (2017) ncbi
大鼠 单克隆(GL-1)
  • 流式细胞仪; 小鼠; 图 5c
BioLegendB7 2抗体(Biolegend, GL-1)被用于被用于流式细胞仪在小鼠样本上 (图 5c). Cancer Res (2017) ncbi
大鼠 单克隆(GL-1)
  • 流式细胞仪; 小鼠; 图 s2b
BioLegendB7 2抗体(BioLegend, GL-1)被用于被用于流式细胞仪在小鼠样本上 (图 s2b). J Exp Med (2017) ncbi
大鼠 单克隆(GL-1)
  • 流式细胞仪; 小鼠; 图 1c
BioLegendB7 2抗体(BioLegend, GL-1)被用于被用于流式细胞仪在小鼠样本上 (图 1c). J Exp Med (2017) ncbi
大鼠 单克隆(GL-1)
  • 流式细胞仪; 小鼠; 图 1a
BioLegendB7 2抗体(BioLegend, GL-1)被用于被用于流式细胞仪在小鼠样本上 (图 1a). J Exp Med (2017) ncbi
大鼠 单克隆(GL-1)
  • 流式细胞仪; 小鼠; 图 2b
BioLegendB7 2抗体(BioLegend, GL1)被用于被用于流式细胞仪在小鼠样本上 (图 2b). Immunology (2017) ncbi
大鼠 单克隆(GL-1)
  • 流式细胞仪; 小鼠; 图 5a
BioLegendB7 2抗体(BioLegend, 105008)被用于被用于流式细胞仪在小鼠样本上 (图 5a). J Exp Med (2017) ncbi
大鼠 单克隆(GL-1)
  • 流式细胞仪; 小鼠; 1:200; 图 2r
BioLegendB7 2抗体(BioLegend, 105015)被用于被用于流式细胞仪在小鼠样本上浓度为1:200 (图 2r). J Neurosci (2017) ncbi
大鼠 单克隆(GL-1)
  • 流式细胞仪; 小鼠; 图 7a
BioLegendB7 2抗体(Biolegend, GL-1)被用于被用于流式细胞仪在小鼠样本上 (图 7a). J Cell Biol (2017) ncbi
大鼠 单克隆(GL-1)
  • 流式细胞仪; 小鼠; 图 2c
BioLegendB7 2抗体(BioLegend, 105028)被用于被用于流式细胞仪在小鼠样本上 (图 2c). Front Cell Neurosci (2016) ncbi
大鼠 单克隆(GL-1)
  • 流式细胞仪; 小鼠; 图 1b
BioLegendB7 2抗体(BioLegend, GL1)被用于被用于流式细胞仪在小鼠样本上 (图 1b). Sci Rep (2016) ncbi
大鼠 单克隆(GL-1)
  • 流式细胞仪; 小鼠; 图 s2b
BioLegendB7 2抗体(BioLegend, GL-1)被用于被用于流式细胞仪在小鼠样本上 (图 s2b). Proc Natl Acad Sci U S A (2016) ncbi
大鼠 单克隆(GL-1)
  • 流式细胞仪; 小鼠; 图 2
BioLegendB7 2抗体(BioLegend, GL-1)被用于被用于流式细胞仪在小鼠样本上 (图 2). Oncotarget (2016) ncbi
大鼠 单克隆(GL-1)
  • 流式细胞仪; 小鼠; 图 s3b
BioLegendB7 2抗体(BioLegend, GL-1)被用于被用于流式细胞仪在小鼠样本上 (图 s3b). J Clin Invest (2016) ncbi
大鼠 单克隆(GL-1)
  • 流式细胞仪; 小鼠; 图 6d
BioLegendB7 2抗体(BioLegend, 105030)被用于被用于流式细胞仪在小鼠样本上 (图 6d). PLoS ONE (2016) ncbi
大鼠 单克隆(GL-1)
  • 流式细胞仪; 小鼠; 图 4b
BioLegendB7 2抗体(Biolegend, GL-1)被用于被用于流式细胞仪在小鼠样本上 (图 4b). Eur J Immunol (2016) ncbi
大鼠 单克隆(GL-1)
  • 流式细胞仪; 小鼠; 图 4
BioLegendB7 2抗体(Biolegend, GL-1)被用于被用于流式细胞仪在小鼠样本上 (图 4). PLoS ONE (2016) ncbi
大鼠 单克隆(GL-1)
  • 流式细胞仪; 小鼠; 图 4e
BioLegendB7 2抗体(Biolegend, GL-1)被用于被用于流式细胞仪在小鼠样本上 (图 4e). J Exp Med (2016) ncbi
大鼠 单克隆(GL-1)
  • 流式细胞仪; 小鼠; 图 2b
BioLegendB7 2抗体(BioLegend, GL-1)被用于被用于流式细胞仪在小鼠样本上 (图 2b). J Immunol (2016) ncbi
大鼠 单克隆(GL-1)
  • 流式细胞仪; 小鼠; 图 1c
BioLegendB7 2抗体(Biolegend, 105008)被用于被用于流式细胞仪在小鼠样本上 (图 1c). J Virol (2016) ncbi
大鼠 单克隆(GL-1)
  • 流式细胞仪; 小鼠; 图 6
BioLegendB7 2抗体(Biolegend, GL-1)被用于被用于流式细胞仪在小鼠样本上 (图 6). J Immunol (2016) ncbi
大鼠 单克隆(GL-1)
  • 流式细胞仪; 小鼠; 图 s2f
BioLegendB7 2抗体(Biolegend, GL-1)被用于被用于流式细胞仪在小鼠样本上 (图 s2f). Proc Natl Acad Sci U S A (2016) ncbi
大鼠 单克隆(GL-1)
  • 流式细胞仪; 小鼠
BioLegendB7 2抗体(BioLegend, GL-1)被用于被用于流式细胞仪在小鼠样本上. Am J Pathol (2016) ncbi
大鼠 单克隆(GL-1)
  • 流式细胞仪; 小鼠; 图 3e
BioLegendB7 2抗体(BioLegend, GL-1)被用于被用于流式细胞仪在小鼠样本上 (图 3e). J Immunol (2016) ncbi
大鼠 单克隆(GL-1)
  • 流式细胞仪; 小鼠; 图 2
BioLegendB7 2抗体(Biolegend, GL1)被用于被用于流式细胞仪在小鼠样本上 (图 2). Aging (Albany NY) (2016) ncbi
大鼠 单克隆(GL-1)
  • 流式细胞仪; 小鼠; 图 s3
BioLegendB7 2抗体(Biolegend, GL-1)被用于被用于流式细胞仪在小鼠样本上 (图 s3). Cancer Discov (2016) ncbi
大鼠 单克隆(PO3)
  • 流式细胞仪; 小鼠; 图 1
BioLegendB7 2抗体(BioLegend, PO3)被用于被用于流式细胞仪在小鼠样本上 (图 1). PLoS ONE (2015) ncbi
大鼠 单克隆(GL-1)
  • 免疫组化-冰冻切片; 小鼠; 图 4
BioLegendB7 2抗体(BioLegend, GL-1)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 4). Cancer Res (2015) ncbi
大鼠 单克隆(GL-1)
  • 流式细胞仪; 小鼠; 图 8
BioLegendB7 2抗体(BioLegend, 105007)被用于被用于流式细胞仪在小鼠样本上 (图 8). Oncoimmunology (2014) ncbi
大鼠 单克隆(GL-1)
  • 流式细胞仪; 小鼠; 图 1
BioLegendB7 2抗体(BioLegend, GL-1)被用于被用于流式细胞仪在小鼠样本上 (图 1). J Immunol (2015) ncbi
大鼠 单克隆(GL-1)
  • 流式细胞仪; 小鼠; 图 6
BioLegendB7 2抗体(BioLegend, GL-1)被用于被用于流式细胞仪在小鼠样本上 (图 6). J Immunol (2015) ncbi
大鼠 单克隆(GL-1)
  • 流式细胞仪; 小鼠; 图 1
BioLegendB7 2抗体(Biolegend, GL-1)被用于被用于流式细胞仪在小鼠样本上 (图 1). Biochem Biophys Res Commun (2015) ncbi
大鼠 单克隆(GL-1)
  • 流式细胞仪; 小鼠; 图 4
BioLegendB7 2抗体(BioLegend, GL1)被用于被用于流式细胞仪在小鼠样本上 (图 4). J Immunol (2015) ncbi
大鼠 单克隆(GL-1)
  • 流式细胞仪; 小鼠; 图 4
BioLegendB7 2抗体(Biolegend, GL-1)被用于被用于流式细胞仪在小鼠样本上 (图 4). J Immunol (2015) ncbi
大鼠 单克隆(GL-1)
  • 流式细胞仪; 小鼠
BioLegendB7 2抗体(BioLegend, GL-1)被用于被用于流式细胞仪在小鼠样本上. J Immunol (2015) ncbi
大鼠 单克隆(GL-1)
  • 流式细胞仪; 小鼠; 图 5
BioLegendB7 2抗体(Biolegend, GL-1)被用于被用于流式细胞仪在小鼠样本上 (图 5). J Heart Lung Transplant (2015) ncbi
大鼠 单克隆(GL-1)
  • 流式细胞仪; 小鼠
BioLegendB7 2抗体(BioLegend, GL1)被用于被用于流式细胞仪在小鼠样本上. PLoS ONE (2014) ncbi
大鼠 单克隆(GL-1)
BioLegendB7 2抗体(BioLegend, 105039)被用于. J Neurosci (2014) ncbi
赛默飞世尔
大鼠 单克隆(GL1)
  • 流式细胞仪; 小鼠; 图 4c
赛默飞世尔B7 2抗体(eBioscience, 25-0862-82)被用于被用于流式细胞仪在小鼠样本上 (图 4c). Adv Sci (Weinh) (2021) ncbi
大鼠 单克隆(GL1)
  • 流式细胞仪; 小鼠; 图 2d
赛默飞世尔B7 2抗体(eBioscience, GL-1)被用于被用于流式细胞仪在小鼠样本上 (图 2d). J Alzheimers Dis (2020) ncbi
大鼠 单克隆(GL-1)
  • 流式细胞仪; 小鼠; 图 2d
赛默飞世尔B7 2抗体(eBioscience, GL-1)被用于被用于流式细胞仪在小鼠样本上 (图 2d). J Alzheimers Dis (2020) ncbi
大鼠 单克隆(GL1)
  • 流式细胞仪; 小鼠; 图 6c
赛默飞世尔B7 2抗体(Thermo Fisher, 17-0862-82)被用于被用于流式细胞仪在小鼠样本上 (图 6c). Cell (2019) ncbi
大鼠 单克隆(PO3.1)
  • 流式细胞仪; 小鼠; 图 s6c
赛默飞世尔B7 2抗体(Thermo Fisher, 12-0861-81)被用于被用于流式细胞仪在小鼠样本上 (图 s6c). Cell (2019) ncbi
大鼠 单克隆(PO3.1)
  • 流式细胞仪; 小鼠; 图 2g
赛默飞世尔B7 2抗体(Ebioscience, 12-0861-82)被用于被用于流式细胞仪在小鼠样本上 (图 2g). Oncoimmunology (2019) ncbi
大鼠 单克隆(GL1)
  • 流式细胞仪; 人类; 图 s4b
赛默飞世尔B7 2抗体(EBioscience, 25-0862-80)被用于被用于流式细胞仪在人类样本上 (图 s4b). Breast Cancer Res (2019) ncbi
大鼠 单克隆(GL-1)
  • 流式细胞仪; 小鼠; 图 1b, 1e
赛默飞世尔B7 2抗体(eBioscience, GL-1)被用于被用于流式细胞仪在小鼠样本上 (图 1b, 1e). Front Immunol (2019) ncbi
大鼠 单克隆(GL1)
  • 流式细胞仪; 小鼠; 图 1b, 1e
赛默飞世尔B7 2抗体(eBioscience, GL-1)被用于被用于流式细胞仪在小鼠样本上 (图 1b, 1e). Front Immunol (2019) ncbi
大鼠 单克隆(GL1)
  • 流式细胞仪; 小鼠; 图 6c
赛默飞世尔B7 2抗体(eBioscience, GL1)被用于被用于流式细胞仪在小鼠样本上 (图 6c). Immune Netw (2018) ncbi
大鼠 单克隆(GL-1)
  • 流式细胞仪; 小鼠; 图 6c
赛默飞世尔B7 2抗体(eBioscience, GL1)被用于被用于流式细胞仪在小鼠样本上 (图 6c). Immune Netw (2018) ncbi
大鼠 单克隆(GL1)
  • 流式细胞仪; 小鼠; 1:100; 图 8c
赛默飞世尔B7 2抗体(eBioscience, 12-0862-82)被用于被用于流式细胞仪在小鼠样本上浓度为1:100 (图 8c). Nat Commun (2018) ncbi
大鼠 单克隆(GL1)
  • 流式细胞仪; 小鼠; 图 e5c
赛默飞世尔B7 2抗体(eBiosciences, GL1)被用于被用于流式细胞仪在小鼠样本上 (图 e5c). Nature (2018) ncbi
大鼠 单克隆(GL-1)
  • 流式细胞仪; 小鼠; 图 e5c
赛默飞世尔B7 2抗体(eBiosciences, GL1)被用于被用于流式细胞仪在小鼠样本上 (图 e5c). Nature (2018) ncbi
大鼠 单克隆(GL-1)
  • 流式细胞仪; 小鼠; 图 s2a
赛默飞世尔B7 2抗体(Thermofisher Scientific, GL1)被用于被用于流式细胞仪在小鼠样本上 (图 s2a). Front Immunol (2018) ncbi
大鼠 单克隆(GL1)
  • 流式细胞仪; 小鼠; 图 s2a
赛默飞世尔B7 2抗体(Thermofisher Scientific, GL1)被用于被用于流式细胞仪在小鼠样本上 (图 s2a). Front Immunol (2018) ncbi
大鼠 单克隆(GL1)
  • 流式细胞仪; 小鼠; 图 2d
赛默飞世尔B7 2抗体(Invitrogen, GL1)被用于被用于流式细胞仪在小鼠样本上 (图 2d). J Immunol (2017) ncbi
大鼠 单克隆(GL-1)
  • 流式细胞仪; 小鼠; 图 2d
赛默飞世尔B7 2抗体(Invitrogen, GL1)被用于被用于流式细胞仪在小鼠样本上 (图 2d). J Immunol (2017) ncbi
大鼠 单克隆(GL1)
  • 流式细胞仪; 小鼠; 图 5d
赛默飞世尔B7 2抗体(eBioscience, GL-1)被用于被用于流式细胞仪在小鼠样本上 (图 5d). J Leukoc Biol (2017) ncbi
大鼠 单克隆(GL-1)
  • 流式细胞仪; 小鼠; 图 5d
赛默飞世尔B7 2抗体(eBioscience, GL-1)被用于被用于流式细胞仪在小鼠样本上 (图 5d). J Leukoc Biol (2017) ncbi
大鼠 单克隆(GL-1)
  • 流式细胞仪; 小鼠; 图 3a
赛默飞世尔B7 2抗体(eBioscience, GL1)被用于被用于流式细胞仪在小鼠样本上 (图 3a). Int J Parasitol (2017) ncbi
大鼠 单克隆(GL1)
  • 流式细胞仪; 小鼠; 图 5d
赛默飞世尔B7 2抗体(eBiosciences, GL1)被用于被用于流式细胞仪在小鼠样本上 (图 5d). J Exp Med (2017) ncbi
大鼠 单克隆(GL-1)
  • 流式细胞仪; 小鼠; 图 5d
赛默飞世尔B7 2抗体(eBiosciences, GL1)被用于被用于流式细胞仪在小鼠样本上 (图 5d). J Exp Med (2017) ncbi
大鼠 单克隆(GL-1)
  • 免疫组化-冰冻切片; 小鼠; 图 S8b
赛默飞世尔B7 2抗体(Thermo Fisher, MA1-10299)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 S8b). Sci Rep (2017) ncbi
大鼠 单克隆(GL-1)
  • 流式细胞仪; 小鼠; 图 2a
赛默飞世尔B7 2抗体(Affymetrix eBioscience, GL1)被用于被用于流式细胞仪在小鼠样本上 (图 2a). Front Immunol (2017) ncbi
大鼠 单克隆(GL1)
  • 流式细胞仪; 小鼠; 图 3a
赛默飞世尔B7 2抗体(eBioscience, 11-0862)被用于被用于流式细胞仪在小鼠样本上 (图 3a). Sci Rep (2017) ncbi
大鼠 单克隆(GL-1)
  • 免疫组化; 大鼠; 1:100; 图 6a
赛默飞世尔B7 2抗体(Thermo Fischer Scientific, MA1-10299)被用于被用于免疫组化在大鼠样本上浓度为1:100 (图 6a). Pathophysiology (2017) ncbi
大鼠 单克隆(GL-1)
  • 流式细胞仪; 小鼠; 1:100; 图 S5
赛默飞世尔B7 2抗体(eBioscience, GL1)被用于被用于流式细胞仪在小鼠样本上浓度为1:100 (图 S5). Proc Natl Acad Sci U S A (2017) ncbi
大鼠 单克隆(GL1)
  • 免疫组化; 小鼠; 1:200; 图 3a
赛默飞世尔B7 2抗体(eBioscience, 14-0862)被用于被用于免疫组化在小鼠样本上浓度为1:200 (图 3a). Front Cell Neurosci (2016) ncbi
大鼠 单克隆(GL-1)
  • 流式细胞仪; 小鼠; 图 2b
赛默飞世尔B7 2抗体(eBioscience, GL1)被用于被用于流式细胞仪在小鼠样本上 (图 2b). Sci Rep (2016) ncbi
大鼠 单克隆(PO3.1)
  • 流式细胞仪; 小鼠; 图 2b
赛默飞世尔B7 2抗体(Invitrogen, P0.3)被用于被用于流式细胞仪在小鼠样本上 (图 2b). Prostate (2017) ncbi
大鼠 单克隆(GL-1)
  • 流式细胞仪; 小鼠; 图 6c
赛默飞世尔B7 2抗体(ebioscience, GL1)被用于被用于流式细胞仪在小鼠样本上 (图 6c). Infect Immun (2017) ncbi
大鼠 单克隆(GL1)
  • 流式细胞仪; 小鼠; 图 3e
赛默飞世尔B7 2抗体(ebioscience, 17-0862-81)被用于被用于流式细胞仪在小鼠样本上 (图 3e). Front Immunol (2016) ncbi
大鼠 单克隆(GL1)
  • 流式细胞仪; 小鼠; 图 6
赛默飞世尔B7 2抗体(eBioscience, 12-0862)被用于被用于流式细胞仪在小鼠样本上 (图 6). J Diabetes Res (2016) ncbi
大鼠 单克隆(PO3.1)
  • 流式细胞仪; 小鼠; 1:80; 图 1a
赛默飞世尔B7 2抗体(eBioscience, PO3.1)被用于被用于流式细胞仪在小鼠样本上浓度为1:80 (图 1a). PLoS ONE (2016) ncbi
大鼠 单克隆(GL-1)
  • 流式细胞仪; 小鼠; 图 4B
赛默飞世尔B7 2抗体(eBioscience, GL1)被用于被用于流式细胞仪在小鼠样本上 (图 4B). Oncoimmunology (2016) ncbi
大鼠 单克隆(GL-1)
  • 流式细胞仪; 小鼠; 图 1a
赛默飞世尔B7 2抗体(BD Pharmingen or eBioscience, GL1)被用于被用于流式细胞仪在小鼠样本上 (图 1a). Mol Cell Biol (2016) ncbi
大鼠 单克隆(PO3.1)
  • 流式细胞仪; 小鼠; 图 s1
赛默飞世尔B7 2抗体(eBioscience, 12-0861-82)被用于被用于流式细胞仪在小鼠样本上 (图 s1). Leukemia (2016) ncbi
大鼠 单克隆(GL1)
  • 流式细胞仪; 小鼠; 图 4a
赛默飞世尔B7 2抗体(eBioscience, 12-0862-83)被用于被用于流式细胞仪在小鼠样本上 (图 4a). Oncoimmunology (2016) ncbi
大鼠 单克隆(GL1)
  • 流式细胞仪; 小鼠; 图 2
赛默飞世尔B7 2抗体(eBioscience, GL1)被用于被用于流式细胞仪在小鼠样本上 (图 2). J Immunol (2016) ncbi
大鼠 单克隆(GL1)
  • 流式细胞仪; 小鼠; 图 s9
赛默飞世尔B7 2抗体(eBioscience, 17-0862-82)被用于被用于流式细胞仪在小鼠样本上 (图 s9). Sci Rep (2016) ncbi
大鼠 单克隆(GL1)
  • 流式细胞仪; 小鼠; 1:100; 图 2
赛默飞世尔B7 2抗体(eBioscience, GL1)被用于被用于流式细胞仪在小鼠样本上浓度为1:100 (图 2). PLoS ONE (2015) ncbi
大鼠 单克隆(GL1)
  • 流式细胞仪; 小鼠
赛默飞世尔B7 2抗体(eBioscience, GL1)被用于被用于流式细胞仪在小鼠样本上. J Immunol (2015) ncbi
大鼠 单克隆(PO3.1)
  • 流式细胞仪; 小鼠
赛默飞世尔B7 2抗体(eBioscience, PO3.1)被用于被用于流式细胞仪在小鼠样本上. J Immunol (2015) ncbi
大鼠 单克隆(GL1)
  • 流式细胞仪; 小鼠; 图 4
赛默飞世尔B7 2抗体(eBioscience, 12-0862)被用于被用于流式细胞仪在小鼠样本上 (图 4). Biomed Res Int (2015) ncbi
大鼠 单克隆(GL1)
  • 流式细胞仪; 小鼠
赛默飞世尔B7 2抗体(生活技术, A15412)被用于被用于流式细胞仪在小鼠样本上. Dis Model Mech (2015) ncbi
大鼠 单克隆(GL1)
  • 流式细胞仪; 小鼠; 图 s3
赛默飞世尔B7 2抗体(eBioscience, GL1)被用于被用于流式细胞仪在小鼠样本上 (图 s3). Nature (2015) ncbi
大鼠 单克隆(GL1)
  • 流式细胞仪; 小鼠
赛默飞世尔B7 2抗体(eBioscience, 17-0862-81)被用于被用于流式细胞仪在小鼠样本上. Cancer Res (2015) ncbi
大鼠 单克隆(GL1)
  • 流式细胞仪; 小鼠; 图 2
赛默飞世尔B7 2抗体(eBioscience, GL1)被用于被用于流式细胞仪在小鼠样本上 (图 2). Nat Immunol (2015) ncbi
大鼠 单克隆(GL1)
  • 流式细胞仪; 小鼠; 表 s3
赛默飞世尔B7 2抗体(eBioscience, GL1)被用于被用于流式细胞仪在小鼠样本上 (表 s3). PLoS ONE (2015) ncbi
大鼠 单克隆(GL1)
  • 流式细胞仪; 小鼠; 图 3
赛默飞世尔B7 2抗体(eBioscience, GL1)被用于被用于流式细胞仪在小鼠样本上 (图 3). Carbohydr Polym (2015) ncbi
大鼠 单克隆(PO3.1)
  • 流式细胞仪; 小鼠
赛默飞世尔B7 2抗体(eBioscience, PO3.1)被用于被用于流式细胞仪在小鼠样本上. PLoS ONE (2014) ncbi
大鼠 单克隆(GL1)
  • 流式细胞仪; 小鼠
赛默飞世尔B7 2抗体(eBioscience, GL1)被用于被用于流式细胞仪在小鼠样本上. Mucosal Immunol (2015) ncbi
大鼠 单克隆(GL1)
  • 流式细胞仪; 小鼠; 图 4e
赛默飞世尔B7 2抗体(eBioscience, 12-0862)被用于被用于流式细胞仪在小鼠样本上 (图 4e). Nat Biotechnol (2015) ncbi
大鼠 单克隆(GL1)
  • 流式细胞仪; 小鼠
赛默飞世尔B7 2抗体(eBioscience, GL1)被用于被用于流式细胞仪在小鼠样本上. Hum Immunol (2014) ncbi
大鼠 单克隆(GL1)
  • 流式细胞仪; 小鼠; 图 2
赛默飞世尔B7 2抗体(eBiosciences, GLI)被用于被用于流式细胞仪在小鼠样本上 (图 2). Eur J Immunol (2015) ncbi
大鼠 单克隆(GL1)
  • 流式细胞仪; 小鼠
赛默飞世尔B7 2抗体(eBioscience, GL1)被用于被用于流式细胞仪在小鼠样本上. PLoS ONE (2014) ncbi
大鼠 单克隆(GL1)
  • 流式细胞仪; 小鼠; 图 3c
赛默飞世尔B7 2抗体(ebioscience, 14-0862-82)被用于被用于流式细胞仪在小鼠样本上 (图 3c). Clin Cancer Res (2015) ncbi
大鼠 单克隆(GL1)
  • 流式细胞仪; 小鼠; 图 3
赛默飞世尔B7 2抗体(eBioscience, GL1)被用于被用于流式细胞仪在小鼠样本上 (图 3). J Immunol (2014) ncbi
大鼠 单克隆(GL1)
  • 流式细胞仪; 小鼠; 1:100; 图 2
赛默飞世尔B7 2抗体(eBioscience, 12-0862-85)被用于被用于流式细胞仪在小鼠样本上浓度为1:100 (图 2). PLoS ONE (2014) ncbi
大鼠 单克隆(GL1)
  • 流式细胞仪; 小鼠
赛默飞世尔B7 2抗体(eBioscience, GL1)被用于被用于流式细胞仪在小鼠样本上. PLoS Pathog (2014) ncbi
大鼠 单克隆(GL1)
  • 流式细胞仪; 人类
赛默飞世尔B7 2抗体(eBioscience, 12-0862-82)被用于被用于流式细胞仪在人类样本上. J Immunol (2014) ncbi
大鼠 单克隆(GL1)
  • 流式细胞仪; 小鼠
赛默飞世尔B7 2抗体(eBioscience, GL1)被用于被用于流式细胞仪在小鼠样本上. J Immunol (2014) ncbi
大鼠 单克隆(GL1)
  • 流式细胞仪; 小鼠; 1:50
赛默飞世尔B7 2抗体(eBioscience, 12-0862-82)被用于被用于流式细胞仪在小鼠样本上浓度为1:50. Acta Neuropathol Commun (2014) ncbi
大鼠 单克隆(GL1)
  • 流式细胞仪; 小鼠; 图 3
赛默飞世尔B7 2抗体(eBioscience, GL1)被用于被用于流式细胞仪在小鼠样本上 (图 3). Immunol Cell Biol (2013) ncbi
大鼠 单克隆(RMMP-2)
  • 流式细胞仪; 小鼠; 图 1d
赛默飞世尔B7 2抗体(Caltag, RMMP-2)被用于被用于流式细胞仪在小鼠样本上 (图 1d). Eur J Immunol (2013) ncbi
大鼠 单克隆(GL1)
  • 流式细胞仪; 小鼠; 图 s3
赛默飞世尔B7 2抗体(eBioscience, GL1)被用于被用于流式细胞仪在小鼠样本上 (图 s3). J Immunol (2010) ncbi
大鼠 单克隆(RMMP-2)
  • 流式细胞仪; 小鼠; 图 5
赛默飞世尔B7 2抗体(Invitrogen, RMMP-2)被用于被用于流式细胞仪在小鼠样本上 (图 5). Infect Immun (2010) ncbi
大鼠 单克隆(GL1)
  • 流式细胞仪; 小鼠; 图 6
赛默飞世尔B7 2抗体(eBioScience, GL1)被用于被用于流式细胞仪在小鼠样本上 (图 6). BMC Immunol (2010) ncbi
大鼠 单克隆(RMMP-2)
  • 流式细胞仪; 小鼠
赛默飞世尔B7 2抗体(Caltag Laboratories, RMMP-2)被用于被用于流式细胞仪在小鼠样本上. J Virol (2009) ncbi
大鼠 单克隆(GL1)
  • 流式细胞仪; 小鼠; 图 4
赛默飞世尔B7 2抗体(eBioscience, GL1)被用于被用于流式细胞仪在小鼠样本上 (图 4). J Immunol (2009) ncbi
大鼠 单克隆(PO3.1)
  • 流式细胞仪; 小鼠
赛默飞世尔B7 2抗体(eBioscience, PO3.1)被用于被用于流式细胞仪在小鼠样本上. J Immunol (2009) ncbi
大鼠 单克隆(GL1)
  • 免疫细胞化学; 小鼠
赛默飞世尔B7 2抗体(eBioscience, GL-1)被用于被用于免疫细胞化学在小鼠样本上. Cell Host Microbe (2009) ncbi
大鼠 单克隆(GL1)
  • 流式细胞仪; 小鼠
赛默飞世尔B7 2抗体(eBioscience, GL1)被用于被用于流式细胞仪在小鼠样本上. Nat Immunol (2007) ncbi
大鼠 单克隆(RMMP-2)
  • 流式细胞仪; 小鼠; 图 6
赛默飞世尔B7 2抗体(Caltag, RMMP-2)被用于被用于流式细胞仪在小鼠样本上 (图 6). J Immunol (2006) ncbi
大鼠 单克隆(PO3.1)
  • 流式细胞仪; 小鼠; 图 2
赛默飞世尔B7 2抗体(eBioscience, PO3.1)被用于被用于流式细胞仪在小鼠样本上 (图 2). Blood (2006) ncbi
大鼠 单克隆(PO3.1)
  • 流式细胞仪; 小鼠; 图 5
  • 流式细胞仪; 人类
赛默飞世尔B7 2抗体(eBioscience, PO3.1)被用于被用于流式细胞仪在小鼠样本上 (图 5) 和 被用于流式细胞仪在人类样本上. J Immunol (2005) ncbi
大鼠 单克隆(RMMP-2)
  • 流式细胞仪; 小鼠; 图 1
赛默飞世尔B7 2抗体(Caltag, RMMP-2)被用于被用于流式细胞仪在小鼠样本上 (图 1). Infect Immun (2005) ncbi
大鼠 单克隆(RMMP-2)
  • 流式细胞仪; 小鼠; 图 4
赛默飞世尔B7 2抗体(Caltag, RMMP-2)被用于被用于流式细胞仪在小鼠样本上 (图 4). Int Immunol (2003) ncbi
大鼠 单克隆(RMMP-2)
  • 流式细胞仪; 小鼠
赛默飞世尔B7 2抗体(Caltag, RMMP-2)被用于被用于流式细胞仪在小鼠样本上. Clin Exp Immunol (2003) ncbi
大鼠 单克隆(RMMP-2)
  • 流式细胞仪; 小鼠; 图 2
赛默飞世尔B7 2抗体(Caltag, RMMP-2)被用于被用于流式细胞仪在小鼠样本上 (图 2). J Immunol (2002) ncbi
大鼠 单克隆(RMMP-2)
  • 流式细胞仪; 小鼠; 图 5
赛默飞世尔B7 2抗体(Caltag, RMMP-2)被用于被用于流式细胞仪在小鼠样本上 (图 5). J Immunol (2000) ncbi
大鼠 单克隆(GL-1)
  • 流式细胞仪; 小鼠
赛默飞世尔B7 2抗体(Biosource, GL1)被用于被用于流式细胞仪在小鼠样本上. Mol Cell Biol (2000) ncbi
大鼠 单克隆(RMMP-2)
  • 流式细胞仪; 小鼠; 表 1
赛默飞世尔B7 2抗体(Caltag, RMMP-2)被用于被用于流式细胞仪在小鼠样本上 (表 1). J Immunol (2000) ncbi
艾博抗(上海)贸易有限公司
小鼠 单克隆(BU63)
  • 流式细胞仪; 大鼠; 图 1b
艾博抗(上海)贸易有限公司B7 2抗体(Abcam, ab213044)被用于被用于流式细胞仪在大鼠样本上 (图 1b). Biosci Rep (2020) ncbi
大鼠 单克隆(GL-1)
  • 免疫组化-自由浮动切片; 小鼠; 图 4g
艾博抗(上海)贸易有限公司B7 2抗体(Abcam, ab119857)被用于被用于免疫组化-自由浮动切片在小鼠样本上 (图 4g). J Neuroinflammation (2020) ncbi
美天旎
大鼠 单克隆(PO3.3)
  • 流式细胞仪; 小鼠; 图 s9
美天旎B7 2抗体(Miltenyi, 130-102-558)被用于被用于流式细胞仪在小鼠样本上 (图 s9). Nat Chem Biol (2020) ncbi
圣克鲁斯生物技术
小鼠 单克隆(BU63)
  • 免疫印迹; 人类
圣克鲁斯生物技术B7 2抗体(Santa Cruz, sc-19617)被用于被用于免疫印迹在人类样本上. J Biomed Mater Res A (2015) ncbi
Tonbo Biosciences
单克隆(GL-1)
  • 流式细胞仪; 小鼠; 图 s8
Tonbo BiosciencesB7 2抗体(Tonbo Biosciences, GL-1)被用于被用于流式细胞仪在小鼠样本上 (图 s8). Adv Sci (Weinh) (2021) ncbi
单克隆(GL-1)
  • 流式细胞仪; 小鼠; 图 2a
Tonbo BiosciencesB7 2抗体(Tonbo Biosciences, GL-1)被用于被用于流式细胞仪在小鼠样本上 (图 2a). PLoS ONE (2018) ncbi
碧迪BD
大鼠 单克隆(GL1)
  • 流式细胞仪; 小鼠
碧迪BDB7 2抗体(BD Biosciences, GL1)被用于被用于流式细胞仪在小鼠样本上. J Immunother Cancer (2021) ncbi
大鼠 单克隆(GL1)
  • 其他; 小鼠
碧迪BDB7 2抗体(BD Biosciences, 553689)被用于被用于其他在小鼠样本上. Nat Commun (2021) ncbi
大鼠 单克隆(GL1)
  • 流式细胞仪; 小鼠; 图 ds1h
碧迪BDB7 2抗体(BD, 560582)被用于被用于流式细胞仪在小鼠样本上 (图 ds1h). Cell Rep (2021) ncbi
大鼠 单克隆(GL1)
  • 流式细胞仪; 小鼠; 1:300; 图 7f
碧迪BDB7 2抗体(BD Biosciences, GL1)被用于被用于流式细胞仪在小鼠样本上浓度为1:300 (图 7f). elife (2020) ncbi
大鼠 单克隆(GL1)
  • 流式细胞仪; 小鼠; 图 6a
碧迪BDB7 2抗体(BD Biosciences, 561963)被用于被用于流式细胞仪在小鼠样本上 (图 6a). Cell Rep (2019) ncbi
大鼠 单克隆(GL1)
  • 流式细胞仪; 小鼠; 图 6a
碧迪BDB7 2抗体(BD, GL1)被用于被用于流式细胞仪在小鼠样本上 (图 6a). Front Immunol (2018) ncbi
大鼠 单克隆(GL1)
  • 流式细胞仪; 小鼠; 2:100; 图 2a
碧迪BDB7 2抗体(BD Biosciences, GL-1)被用于被用于流式细胞仪在小鼠样本上浓度为2:100 (图 2a). Biosci Rep (2019) ncbi
大鼠 单克隆(GL1)
  • 流式细胞仪; 小鼠; 图 2a
碧迪BDB7 2抗体(BD Biosciences, GL1)被用于被用于流式细胞仪在小鼠样本上 (图 2a). Front Immunol (2018) ncbi
大鼠 单克隆(GL1)
  • 流式细胞仪; 小鼠; 图 1a
碧迪BDB7 2抗体(BD, GL1)被用于被用于流式细胞仪在小鼠样本上 (图 1a). J Immunol (2018) ncbi
大鼠 单克隆(GL1)
  • 流式细胞仪; 小鼠; 图 5b
碧迪BDB7 2抗体(BD, GL1)被用于被用于流式细胞仪在小鼠样本上 (图 5b). Front Immunol (2018) ncbi
大鼠 单克隆(GL1)
  • 流式细胞仪; 小鼠; 图 4a
碧迪BDB7 2抗体(BD Biosciences, GL-1)被用于被用于流式细胞仪在小鼠样本上 (图 4a). Mucosal Immunol (2018) ncbi
大鼠 单克隆(GL1)
  • 流式细胞仪; 小鼠; 图 s1b
碧迪BDB7 2抗体(bd Biosciences, GL1)被用于被用于流式细胞仪在小鼠样本上 (图 s1b). J Exp Med (2018) ncbi
大鼠 单克隆(GL1)
  • 流式细胞仪; 小鼠
碧迪BDB7 2抗体(BD Biosciences, GL1)被用于被用于流式细胞仪在小鼠样本上. Cell Immunol (2017) ncbi
大鼠 单克隆(GL1)
  • 流式细胞仪; 小鼠; 图 2j
碧迪BDB7 2抗体(BD, GL1)被用于被用于流式细胞仪在小鼠样本上 (图 2j). J Exp Med (2017) ncbi
大鼠 单克隆(GL1)
  • 流式细胞仪; 小鼠; 1:1000; 图 s5
碧迪BDB7 2抗体(BD Pharmingen, GL-1)被用于被用于流式细胞仪在小鼠样本上浓度为1:1000 (图 s5). Nat Commun (2017) ncbi
大鼠 单克隆(GL1)
  • 流式细胞仪; 小鼠; 图 6a
碧迪BDB7 2抗体(BD Biosciences, 553692)被用于被用于流式细胞仪在小鼠样本上 (图 6a). PLoS ONE (2017) ncbi
大鼠 单克隆(GL1)
  • 流式细胞仪; 小鼠; 图 4
碧迪BDB7 2抗体(BD Pharmingen, 553692)被用于被用于流式细胞仪在小鼠样本上 (图 4). Sci Rep (2017) ncbi
大鼠 单克隆(GL1)
  • 流式细胞仪; 小鼠; 图 2
碧迪BDB7 2抗体(BD Bioscience, GL1)被用于被用于流式细胞仪在小鼠样本上 (图 2). Proc Natl Acad Sci U S A (2017) ncbi
大鼠 单克隆(GL1)
  • 流式细胞仪; 小鼠; 图 4c
碧迪BDB7 2抗体(BD, GL1)被用于被用于流式细胞仪在小鼠样本上 (图 4c). Proc Natl Acad Sci U S A (2017) ncbi
大鼠 单克隆(GL1)
  • 流式细胞仪; 小鼠; 图 7d
碧迪BDB7 2抗体(BD, GL1)被用于被用于流式细胞仪在小鼠样本上 (图 7d). J Exp Med (2017) ncbi
大鼠 单克隆(GL1)
  • 流式细胞仪; 小鼠; 图 s2
碧迪BDB7 2抗体(BD, GL1)被用于被用于流式细胞仪在小鼠样本上 (图 s2). Sci Rep (2016) ncbi
大鼠 单克隆(GL1)
  • 流式细胞仪; 小鼠; 图 5f
碧迪BDB7 2抗体(BD, GL-1)被用于被用于流式细胞仪在小鼠样本上 (图 5f). J Exp Med (2016) ncbi
大鼠 单克隆(GL1)
  • 流式细胞仪; 小鼠; 图 1c
碧迪BDB7 2抗体(BD Biosciences, GL1)被用于被用于流式细胞仪在小鼠样本上 (图 1c). J Immunol (2017) ncbi
大鼠 单克隆(GL1)
  • 流式细胞仪; 小鼠; 1:200; 图 s1
碧迪BDB7 2抗体(BD Bioscience, GL1)被用于被用于流式细胞仪在小鼠样本上浓度为1:200 (图 s1). Nat Commun (2016) ncbi
大鼠 单克隆(GL1)
  • 流式细胞仪; 小鼠; 图 1a
碧迪BDB7 2抗体(BD Biosciences, GL1)被用于被用于流式细胞仪在小鼠样本上 (图 1a). J Immunol (2016) ncbi
大鼠 单克隆(GL1)
  • 流式细胞仪; 小鼠
碧迪BDB7 2抗体(BD, 560582)被用于被用于流式细胞仪在小鼠样本上. Cell (2016) ncbi
大鼠 单克隆(GL1)
  • 流式细胞仪; 小鼠; 图 1
碧迪BDB7 2抗体(BD PharMingen, GL1)被用于被用于流式细胞仪在小鼠样本上 (图 1). Nat Commun (2016) ncbi
大鼠 单克隆(GL1)
  • 免疫组化-冰冻切片; 小鼠; 1:100; 图 5d
碧迪BDB7 2抗体(BD Biosciences, 553689)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:100 (图 5d). J Neurosci (2016) ncbi
大鼠 单克隆(GL1)
  • 流式细胞仪; 小鼠; 图 s6
碧迪BDB7 2抗体(BD Biosciences, 560581)被用于被用于流式细胞仪在小鼠样本上 (图 s6). Nat Commun (2016) ncbi
大鼠 单克隆(GL1)
  • 流式细胞仪; 小鼠; 图 1d
碧迪BDB7 2抗体(BD Biosciences, GL1)被用于被用于流式细胞仪在小鼠样本上 (图 1d). J Immunol (2016) ncbi
大鼠 单克隆(GL1)
  • 流式细胞仪; 小鼠; 图 s4b
碧迪BDB7 2抗体(BD Pharmingen, 558703)被用于被用于流式细胞仪在小鼠样本上 (图 s4b). PLoS Comput Biol (2016) ncbi
大鼠 单克隆(GL1)
  • 流式细胞仪; 小鼠; 1:200; 图 5e
碧迪BDB7 2抗体(BD Biosciences, GL1)被用于被用于流式细胞仪在小鼠样本上浓度为1:200 (图 5e). Nat Commun (2016) ncbi
大鼠 单克隆(GL1)
  • 流式细胞仪; 小鼠; 图 4
碧迪BDB7 2抗体(Becton Dickinson, GL1)被用于被用于流式细胞仪在小鼠样本上 (图 4). Vaccines (Basel) (2016) ncbi
大鼠 单克隆(GL1)
  • 流式细胞仪; 小鼠; 图 3
碧迪BDB7 2抗体(BD Pharmingen, GL1)被用于被用于流式细胞仪在小鼠样本上 (图 3). Cell Mol Immunol (2017) ncbi
大鼠 单克隆(GL1)
  • 流式细胞仪; 小鼠; 图 7b
碧迪BDB7 2抗体(Beckon Dickinson, 560581)被用于被用于流式细胞仪在小鼠样本上 (图 7b). Biol Open (2016) ncbi
大鼠 单克隆(GL1)
  • 流式细胞仪; 小鼠; 图 3i
碧迪BDB7 2抗体(BD, GL1)被用于被用于流式细胞仪在小鼠样本上 (图 3i). J Exp Med (2016) ncbi
大鼠 单克隆(GL1)
  • 流式细胞仪; 小鼠; 1:100
碧迪BDB7 2抗体(BD Biosciences, 553691)被用于被用于流式细胞仪在小鼠样本上浓度为1:100. Nat Commun (2016) ncbi
大鼠 单克隆(GL1)
  • 免疫细胞化学; 小鼠; 1:100; 图 9
碧迪BDB7 2抗体(BD Biosciences, 560582)被用于被用于免疫细胞化学在小鼠样本上浓度为1:100 (图 9). J Immunol Res (2016) ncbi
大鼠 单克隆(GL1)
  • 流式细胞仪; 小鼠
碧迪BDB7 2抗体(BD-Biosciences, 553691)被用于被用于流式细胞仪在小鼠样本上. Oncoimmunology (2016) ncbi
大鼠 单克隆(GL1)
  • 流式细胞仪; 小鼠; 图 2
碧迪BDB7 2抗体(BD Pharmingen, 560582)被用于被用于流式细胞仪在小鼠样本上 (图 2). Cell Rep (2016) ncbi
大鼠 单克隆(GL1)
  • 流式细胞仪; 小鼠; 图 s7
碧迪BDB7 2抗体(BD Pharmingen, GL1)被用于被用于流式细胞仪在小鼠样本上 (图 s7). Cancer Immunol Immunother (2016) ncbi
大鼠 单克隆(GL1)
  • 流式细胞仪; 小鼠; 1:400; 图 3a
碧迪BDB7 2抗体(BD Pharmingen, 558703)被用于被用于流式细胞仪在小鼠样本上浓度为1:400 (图 3a). Oncol Lett (2016) ncbi
大鼠 单克隆(GL1)
  • 流式细胞仪; 小鼠; 图 3c
碧迪BDB7 2抗体(BD Biosciences, GL1)被用于被用于流式细胞仪在小鼠样本上 (图 3c). Diabetes (2016) ncbi
大鼠 单克隆(GL1)
  • 流式细胞仪; 小鼠; 图 4
碧迪BDB7 2抗体(BD, GL1)被用于被用于流式细胞仪在小鼠样本上 (图 4). Int J Oncol (2016) ncbi
大鼠 单克隆(GL1)
  • 流式细胞仪; 小鼠; 图 4
碧迪BDB7 2抗体(BD Bioscience, 561964)被用于被用于流式细胞仪在小鼠样本上 (图 4). Nat Neurosci (2016) ncbi
大鼠 单克隆(GL1)
  • 流式细胞仪; 小鼠; 表 s6
碧迪BDB7 2抗体(BD, 553691)被用于被用于流式细胞仪在小鼠样本上 (表 s6). Nat Immunol (2016) ncbi
大鼠 单克隆(GL1)
  • 流式细胞仪; 小鼠; 图 1
碧迪BDB7 2抗体(BD, GL1)被用于被用于流式细胞仪在小鼠样本上 (图 1). Sci Rep (2015) ncbi
大鼠 单克隆(GL1)
  • 流式细胞仪; 小鼠
碧迪BDB7 2抗体(BD Pharmingen, GL1)被用于被用于流式细胞仪在小鼠样本上. J Immunol (2015) ncbi
大鼠 单克隆(GL1)
  • 流式细胞仪; 小鼠; 图 4b
碧迪BDB7 2抗体(BD Biosciences, GL1)被用于被用于流式细胞仪在小鼠样本上 (图 4b). Mucosal Immunol (2016) ncbi
大鼠 单克隆(GL1)
  • 免疫细胞化学; 小鼠
碧迪BDB7 2抗体(BD Pharmingen, GL1)被用于被用于免疫细胞化学在小鼠样本上. Eur J Immunol (2015) ncbi
大鼠 单克隆(GL1)
  • 流式细胞仪; 小鼠; 图 2
  • 流式细胞仪; 人类; 图 1
碧迪BDB7 2抗体(BD Biosciences, 553692)被用于被用于流式细胞仪在小鼠样本上 (图 2) 和 被用于流式细胞仪在人类样本上 (图 1). Oncoimmunology (2015) ncbi
大鼠 单克隆(GL1)
  • 流式细胞仪; 小鼠; 图 7
碧迪BDB7 2抗体(BD Biosciences, 553692)被用于被用于流式细胞仪在小鼠样本上 (图 7). Exp Neurol (2015) ncbi
大鼠 单克隆(GL1)
  • 流式细胞仪; 小鼠; 图 3
碧迪BDB7 2抗体(BD Biosciences, #553692)被用于被用于流式细胞仪在小鼠样本上 (图 3). Front Immunol (2015) ncbi
大鼠 单克隆(GL1)
碧迪BDB7 2抗体(BD Biosciences, 561963)被用于. Oncogene (2016) ncbi
大鼠 单克隆(GL1)
  • 流式细胞仪; 小鼠
碧迪BDB7 2抗体(BD Biosciences, 553691)被用于被用于流式细胞仪在小鼠样本上. Cytometry A (2015) ncbi
大鼠 单克隆(GL1)
  • 流式细胞仪; 小鼠; 表 s1
碧迪BDB7 2抗体(BD Biosciences, GL-1)被用于被用于流式细胞仪在小鼠样本上 (表 s1). Biochem Biophys Res Commun (2015) ncbi
大鼠 单克隆(GL1)
  • 流式细胞仪; 小鼠
  • 流式细胞仪; 人类
碧迪BDB7 2抗体(BD Pharmingen, GL1)被用于被用于流式细胞仪在小鼠样本上 和 被用于流式细胞仪在人类样本上. Cancer Immunol Res (2015) ncbi
大鼠 单克隆(GL1)
  • 流式细胞仪; 小鼠; 图 2
碧迪BDB7 2抗体(BD Pharmingen, 553692)被用于被用于流式细胞仪在小鼠样本上 (图 2). Mol Med Rep (2015) ncbi
大鼠 单克隆(GL1)
  • 流式细胞仪; 小鼠; 图 4
碧迪BDB7 2抗体(BD Pharmingen, GL1)被用于被用于流式细胞仪在小鼠样本上 (图 4). PLoS ONE (2015) ncbi
大鼠 单克隆(GL1)
  • 流式细胞仪; 小鼠; 图 s2
碧迪BDB7 2抗体(BD Biosciences, GL1)被用于被用于流式细胞仪在小鼠样本上 (图 s2). Clin Sci (Lond) (2015) ncbi
大鼠 单克隆(GL1)
  • 流式细胞仪; 小鼠; 图 6
碧迪BDB7 2抗体(BD Pharmingen, GL1)被用于被用于流式细胞仪在小鼠样本上 (图 6). Clin Exp Immunol (2015) ncbi
大鼠 单克隆(GL1)
  • 流式细胞仪; 小鼠; 图 2
碧迪BDB7 2抗体(BD Biosciences, GL1)被用于被用于流式细胞仪在小鼠样本上 (图 2). J Immunol (2015) ncbi
大鼠 单克隆(GL1)
  • 流式细胞仪; 小鼠
碧迪BDB7 2抗体(BD, GL1)被用于被用于流式细胞仪在小鼠样本上. J Virol (2014) ncbi
大鼠 单克隆(GL1)
  • 流式细胞仪; 小鼠
碧迪BDB7 2抗体(BD, GL1)被用于被用于流式细胞仪在小鼠样本上. Cancer Res (2014) ncbi
大鼠 单克隆(GL1)
  • 流式细胞仪; 小鼠
碧迪BDB7 2抗体(BD, GL1)被用于被用于流式细胞仪在小鼠样本上. J Exp Med (2014) ncbi
大鼠 单克隆(GL1)
  • 流式细胞仪; 小鼠
碧迪BDB7 2抗体(BD Biosciences, GL1)被用于被用于流式细胞仪在小鼠样本上. Blood (2014) ncbi
大鼠 单克隆(GL1)
  • 流式细胞仪; 小鼠
碧迪BDB7 2抗体(BD Biosciences, GL1)被用于被用于流式细胞仪在小鼠样本上. Int J Cancer (2015) ncbi
大鼠 单克隆(GL1)
  • 流式细胞仪; 小鼠
碧迪BDB7 2抗体(BD Pharmingen, GL-1)被用于被用于流式细胞仪在小鼠样本上. J Immunol (2014) ncbi
大鼠 单克隆(GL1)
  • 流式细胞仪; 小鼠; 1:100
碧迪BDB7 2抗体(BD, 553691)被用于被用于流式细胞仪在小鼠样本上浓度为1:100. PLoS ONE (2014) ncbi
大鼠 单克隆(GL1)
  • 流式细胞仪; 小鼠
碧迪BDB7 2抗体(BD Pharmingen, GL1)被用于被用于流式细胞仪在小鼠样本上. PLoS ONE (2014) ncbi
大鼠 单克隆(GL1)
  • 流式细胞仪; 小鼠
碧迪BDB7 2抗体(BD, GL1)被用于被用于流式细胞仪在小鼠样本上. PLoS ONE (2014) ncbi
大鼠 单克隆(GL1)
  • 流式细胞仪; 小鼠
碧迪BDB7 2抗体(BD Biosciences, GL1)被用于被用于流式细胞仪在小鼠样本上. PLoS ONE (2014) ncbi
大鼠 单克隆(GL1)
  • 流式细胞仪; 小鼠
碧迪BDB7 2抗体(BD, 553692)被用于被用于流式细胞仪在小鼠样本上. Exp Mol Med (2014) ncbi
大鼠 单克隆(GL1)
  • 流式细胞仪; 小鼠
碧迪BDB7 2抗体(BD Biosciences, GL1)被用于被用于流式细胞仪在小鼠样本上. Int Immunol (2014) ncbi
大鼠 单克隆(GL1)
  • 流式细胞仪; 小鼠; 1:100
碧迪BDB7 2抗体(BD Biosciences, 553691)被用于被用于流式细胞仪在小鼠样本上浓度为1:100. Nat Med (2013) ncbi
大鼠 单克隆(GL1)
  • 免疫细胞化学; 小鼠; 1:100
碧迪BDB7 2抗体(BD Biosciences, 550542)被用于被用于免疫细胞化学在小鼠样本上浓度为1:100. Brain Behav Immun (2013) ncbi
大鼠 单克隆(GL1)
  • 流式细胞仪; 人类
碧迪BDB7 2抗体(BD Biosciences, 553691)被用于被用于流式细胞仪在人类样本上. J Immunol (2010) ncbi
文章列表
  1. Zhu Y, Elsheikha H, Wang J, Fang S, He J, Zhu X, et al. Synergy between Toxoplasma gondii type I ΔGRA17 immunotherapy and PD-L1 checkpoint inhibition triggers the regression of targeted and distal tumors. J Immunother Cancer. 2021;9: pubmed 出版商
  2. Van Maldegem F, Valand K, Cole M, Patel H, Angelova M, Rana S, et al. Characterisation of tumour microenvironment remodelling following oncogene inhibition in preclinical studies with imaging mass cytometry. Nat Commun. 2021;12:5906 pubmed 出版商
  3. Liu H, Pedros C, Kong K, Canonigo Balancio A, Xue W, Altman A. Leveraging the Treg-intrinsic CTLA4-PKCη signaling pathway for cancer immunotherapy. J Immunother Cancer. 2021;9: pubmed 出版商
  4. Kuo P, Weng W, Scofield B, Furnas D, Paraiso H, Yu I, et al. Immunoresponsive gene 1 modulates the severity of brain injury in cerebral ischaemia. Brain Commun. 2021;3:fcab187 pubmed 出版商
  5. Zhang X, Chang A, Zou Y, Xu H, Cui J, Chen Z, et al. Aspirin Attenuates Cardiac Allograft Rejection by Inhibiting the Maturation of Dendritic Cells via the NF-κB Signaling Pathway. Front Pharmacol. 2021;12:706748 pubmed 出版商
  6. Moreira T, Mangani D, Cox L, Leibowitz J, Lobo E, Oliveira M, et al. PD-L1+ and XCR1+ dendritic cells are region-specific regulators of gut homeostasis. Nat Commun. 2021;12:4907 pubmed 出版商
  7. Guo L, Xie H, Zhang Z, Wang Z, Peng S, Niu Y, et al. Fusion Protein Vaccine Based on Ag85B and STEAP1 Induces a Protective Immune Response against Prostate Cancer. Vaccines (Basel). 2021;9: pubmed 出版商
  8. Hutton C, Heider F, Blanco Gómez A, Banyard A, Kononov A, Zhang X, et al. Single-cell analysis defines a pancreatic fibroblast lineage that supports anti-tumor immunity. Cancer Cell. 2021;: pubmed 出版商
  9. Bruand M, Barras D, Mina M, Ghisoni E, Morotti M, Lanitis E, et al. Cell-autonomous inflammation of BRCA1-deficient ovarian cancers drives both tumor-intrinsic immunoreactivity and immune resistance via STING. Cell Rep. 2021;36:109412 pubmed 出版商
  10. Ortega Molina A, Lebrero Fernández C, Sanz A, Deleyto Seldas N, Plata Gómez A, Menéndez C, et al. Inhibition of Rag GTPase signaling in mice suppresses B cell responses and lymphomagenesis with minimal detrimental trade-offs. Cell Rep. 2021;36:109372 pubmed 出版商
  11. Mai J, Li Z, Xia X, Zhang J, Li J, Liu H, et al. Synergistic Activation of Antitumor Immunity by a Particulate Therapeutic Vaccine. Adv Sci (Weinh). 2021;8:2100166 pubmed 出版商
  12. Nordlohne J, Hulsmann I, Schwafertz S, Zgrajek J, Grundmann M, von Vietinghoff S, et al. A flow cytometry approach reveals heterogeneity in conventional subsets of murine renal mononuclear phagocytes. Sci Rep. 2021;11:13251 pubmed 出版商
  13. Ryu S, Shchukina I, Youm Y, Qing H, Hilliard B, Dlugos T, et al. Ketogenic diet restrains aging-induced exacerbation of coronavirus infection in mice. elife. 2021;10: pubmed 出版商
  14. Tan H, Song Y, Chen J, Zhang N, Wang Q, Li Q, et al. Platelet-Like Fusogenic Liposome-Mediated Targeting Delivery of miR-21 Improves Myocardial Remodeling by Reprogramming Macrophages Post Myocardial Ischemia-Reperfusion Injury. Adv Sci (Weinh). 2021;8:e2100787 pubmed 出版商
  15. Gangoso E, Southgate B, Bradley L, Rus S, Gálvez Cancino F, McGivern N, et al. Glioblastomas acquire myeloid-affiliated transcriptional programs via epigenetic immunoediting to elicit immune evasion. Cell. 2021;184:2454-2470.e26 pubmed 出版商
  16. Chen J, Cao X, Li B, Zhao Z, Chen S, Lai S, et al. Warburg Effect Is a Cancer Immune Evasion Mechanism Against Macrophage Immunosurveillance. Front Immunol. 2020;11:621757 pubmed 出版商
  17. Xu A, Barbosa R, Calado D. Genetic timestamping of plasma cells in vivo reveals tissue-specific homeostatic population turnover. elife. 2020;9: pubmed 出版商
  18. Giri K, De Beaurepaire L, Jegou D, Lavy M, Mosser M, Dupont A, et al. Molecular and Functional Diversity of Distinct Subpopulations of the Stressed Insulin-Secreting Cell's Vesiculome. Front Immunol. 2020;11:1814 pubmed 出版商
  19. Lee H, Park J, Yoo H, Lee H, Lee B, Kim J. The Selenoprotein MsrB1 Instructs Dendritic Cells to Induce T-Helper 1 Immune Responses. Antioxidants (Basel). 2020;9: pubmed 出版商
  20. Zhao L, Hu S, Davila M, Yang J, Lin Y, Albanese J, et al. Coordinated co-migration of CCR10+ antibody-producing B cells with helper T cells for colonic homeostatic regulation. Mucosal Immunol. 2021;14:420-430 pubmed 出版商
  21. Cignarella F, Filipello F, Bollman B, Cantoni C, Locca A, Mikesell R, et al. TREM2 activation on microglia promotes myelin debris clearance and remyelination in a model of multiple sclerosis. Acta Neuropathol. 2020;140:513-534 pubmed 出版商
  22. Kim E, Woodruff M, Grigoryan L, Maier B, Lee S, Mandal P, et al. Squalene emulsion-based vaccine adjuvants stimulate CD8 T cell, but not antibody responses, through a RIPK3-dependent pathway. elife. 2020;9: pubmed 出版商
  23. Zheng D, Gao F, Cheng Q, Bao P, Dong X, Fan J, et al. A vaccine-based nanosystem for initiating innate immunity and improving tumor immunotherapy. Nat Commun. 2020;11:1985 pubmed 出版商
  24. Stebegg M, Bignon A, Hill D, Silva Cayetano A, Krueger C, Vanderleyden I, et al. Rejuvenating conventional dendritic cells and T follicular helper cell formation after vaccination. elife. 2020;9: pubmed 出版商
  25. Luker A, Graham L, Smith T, Camarena C, Zellner M, Gilmer J, et al. The DNA methyltransferase inhibitor, guadecitabine, targets tumor-induced myelopoiesis and recovers T cell activity to slow tumor growth in combination with adoptive immunotherapy in a mouse model of breast cancer. BMC Immunol. 2020;21:8 pubmed 出版商
  26. Takai A, Kikuchi K, Ichimura M, Tsuneyama K, Moritoki Y, Matsumoto K, et al. Fructo-oligosaccharides ameliorate steatohepatitis, visceral adiposity, and associated chronic inflammation via increased production of short-chain fatty acids in a mouse model of non-alcoholic steatohepatitis. BMC Gastroenterol. 2020;20:46 pubmed 出版商
  27. Liang Y, Luo J, Yang N, Wang S, Ye M, Pan G. Activation of the IL-1β/KLF2/HSPH1 pathway promotes STAT3 phosphorylation in alveolar macrophages during LPS-induced acute lung injury. Biosci Rep. 2020;40: pubmed 出版商
  28. Kapralov A, Yang Q, Dar H, Tyurina Y, Anthonymuthu T, Kim R, et al. Redox lipid reprogramming commands susceptibility of macrophages and microglia to ferroptotic death. Nat Chem Biol. 2020;16:278-290 pubmed 出版商
  29. Wang J, Li P, Yu Y, Fu Y, Jiang H, Lu M, et al. Pulmonary surfactant-biomimetic nanoparticles potentiate heterosubtypic influenza immunity. Science. 2020;367: pubmed 出版商
  30. Cohen G, Chandran P, Lorsung R, Tomlinson L, Sundby M, Burks S, et al. The Impact of Focused Ultrasound in Two Tumor Models: Temporal Alterations in the Natural History on Tumor Microenvironment and Immune Cell Response. Cancers (Basel). 2020;12: pubmed 出版商
  31. Terashima Y, Toda E, Itakura M, Otsuji M, Yoshinaga S, Okumura K, et al. Targeting FROUNT with disulfiram suppresses macrophage accumulation and its tumor-promoting properties. Nat Commun. 2020;11:609 pubmed 出版商
  32. Mosaheb M, Dobrikova E, Brown M, Yang Y, Cable J, Okada H, et al. Genetically stable poliovirus vectors activate dendritic cells and prime antitumor CD8 T cell immunity. Nat Commun. 2020;11:524 pubmed 出版商
  33. Ano Y, Ohya R, Takaichi Y, Washinuma T, Uchida K, Takashima A, et al. β-Lactolin, a Whey-Derived Lacto-Tetrapeptide, Prevents Alzheimer's Disease Pathologies and Cognitive Decline. J Alzheimers Dis. 2020;73:1331-1342 pubmed 出版商
  34. Zhang S, Hu L, Jiang J, Li H, Wu Q, Ooi K, et al. HMGB1/RAGE axis mediates stress-induced RVLM neuroinflammation in mice via impairing mitophagy flux in microglia. J Neuroinflammation. 2020;17:15 pubmed 出版商
  35. Reinhard K, Rengstl B, Oehm P, Michel K, Billmeier A, Hayduk N, et al. An RNA vaccine drives expansion and efficacy of claudin-CAR-T cells against solid tumors. Science. 2020;367:446-453 pubmed 出版商
  36. Eastman A, Xu J, Bermik J, Potchen N, den Dekker A, Neal L, et al. Epigenetic stabilization of DC and DC precursor classical activation by TNFα contributes to protective T cell polarization. Sci Adv. 2019;5:eaaw9051 pubmed 出版商
  37. Guo C, Allen B, Hiam K, Dodd D, Van Treuren W, Higginbottom S, et al. Depletion of microbiome-derived molecules in the host using Clostridium genetics. Science. 2019;366: pubmed 出版商
  38. Leylek R, Alcántara Hernández M, Lanzar Z, Lüdtke A, Perez O, Reizis B, et al. Integrated Cross-Species Analysis Identifies a Conserved Transitional Dendritic Cell Population. Cell Rep. 2019;29:3736-3750.e8 pubmed 出版商
  39. Brown C, Gudjonson H, Pritykin Y, Deep D, Lavallée V, Mendoza A, et al. Transcriptional Basis of Mouse and Human Dendritic Cell Heterogeneity. Cell. 2019;179:846-863.e24 pubmed 出版商
  40. Yan D, Wang J, Sun H, Zamani A, Zhang H, Chen W, et al. TIPE2 specifies the functional polarization of myeloid-derived suppressor cells during tumorigenesis. J Exp Med. 2020;217: pubmed 出版商
  41. Wolf Y, Bartok O, Patkar S, Eli G, Cohen S, Litchfield K, et al. UVB-Induced Tumor Heterogeneity Diminishes Immune Response in Melanoma. Cell. 2019;179:219-235.e21 pubmed 出版商
  42. Jia S, Li W, Liu P, Xu L. A role of eosinophils in mediating the anti-tumour effect of cryo-thermal treatment. Sci Rep. 2019;9:13214 pubmed 出版商
  43. Kodumudi K, Ramamoorthi G, Snyder C, Basu A, Jia Y, Awshah S, et al. Sequential Anti-PD1 Therapy Following Dendritic Cell Vaccination Improves Survival in a HER2 Mammary Carcinoma Model and Identifies a Critical Role for CD4 T Cells in Mediating the Response. Front Immunol. 2019;10:1939 pubmed 出版商
  44. Findlay E, Currie A, Zhang A, Ovciarikova J, Young L, Stevens H, et al. Exposure to the antimicrobial peptide LL-37 produces dendritic cells optimized for immunotherapy. Oncoimmunology. 2019;8:1608106 pubmed 出版商
  45. Oh J, Iijima N, Song E, Lu P, Klein J, Jiang R, et al. Migrant memory B cells secrete luminal antibody in the vagina. Nature. 2019;: pubmed 出版商
  46. Sabol R, Bowles A, Côté A, Wise R, O Donnell B, Matossian M, et al. Leptin produced by obesity-altered adipose stem cells promotes metastasis but not tumorigenesis of triple-negative breast cancer in orthotopic xenograft and patient-derived xenograft models. Breast Cancer Res. 2019;21:67 pubmed 出版商
  47. Mizuno R, Sugiura D, Shimizu K, Maruhashi T, Watada M, Okazaki I, et al. PD-1 Primarily Targets TCR Signal in the Inhibition of Functional T Cell Activation. Front Immunol. 2019;10:630 pubmed 出版商
  48. Sugiura D, Maruhashi T, Okazaki I, Shimizu K, Maeda T, Takemoto T, et al. Restriction of PD-1 function by cis-PD-L1/CD80 interactions is required for optimal T cell responses. Science. 2019;364:558-566 pubmed 出版商
  49. Knox T, Sahakian E, Banik D, Hadley M, Palmer E, Noonepalle S, et al. Selective HDAC6 inhibitors improve anti-PD-1 immune checkpoint blockade therapy by decreasing the anti-inflammatory phenotype of macrophages and down-regulation of immunosuppressive proteins in tumor cells. Sci Rep. 2019;9:6136 pubmed 出版商
  50. Arora H, Wilcox S, Johnson L, Munro L, Eyford B, Pfeifer C, et al. The ATP-Binding Cassette Gene ABCF1 Functions as an E2 Ubiquitin-Conjugating Enzyme Controlling Macrophage Polarization to Dampen Lethal Septic Shock. Immunity. 2019;50:418-431.e6 pubmed 出版商
  51. Dosch M, Zindel J, Jebbawi F, Melin N, Sánchez Taltavull D, Stroka D, et al. Connexin-43-dependent ATP release mediates macrophage activation during sepsis. elife. 2019;8: pubmed 出版商
  52. McLaren J, Clement M, Marsden M, Miners K, Llewellyn Lacey S, Grant E, et al. IL-33 Augments Virus-Specific Memory T Cell Inflation and Potentiates the Efficacy of an Attenuated Cytomegalovirus-Based Vaccine. J Immunol. 2019;202:943-955 pubmed 出版商
  53. Lee Y, Ju J, Shon W, Oh S, Min C, Kang M, et al. Skewed Dendritic Cell Differentiation of MyD88-Deficient Donor Bone Marrow Cells, Instead of Massive Expansion as Myeloid-Derived Suppressor Cells, Aggravates GVHD. Immune Netw. 2018;18:e44 pubmed 出版商
  54. Alam M, Yang D, Trivett A, Meyer T, Oppenheim J. HMGN1 and R848 Synergistically Activate Dendritic Cells Using Multiple Signaling Pathways. Front Immunol. 2018;9:2982 pubmed 出版商
  55. Ding L, Kim H, Wang Q, Kearns M, Jiang T, Ohlson C, et al. PARP Inhibition Elicits STING-Dependent Antitumor Immunity in Brca1-Deficient Ovarian Cancer. Cell Rep. 2018;25:2972-2980.e5 pubmed 出版商
  56. Vega Angeles V, Terrazas L, Ledesma Soto Y, Jimenez L, Landa A. Taenia solium glutathione transferase fraction activates macrophages and favors the development of Th1-type response. Biosci Rep. 2019;39: pubmed 出版商
  57. Magallanes Puebla A, Espinosa Cueto P, López Marín L, Mancilla R. Mycobacterial glycolipid Di-O-acyl trehalose promotes a tolerogenic profile in dendritic cells. PLoS ONE. 2018;13:e0207202 pubmed 出版商
  58. Tordesillas L, Lozano Ojalvo D, Dunkin D, Mondoulet L, Agudo J, Merad M, et al. PDL2+ CD11b+ dermal dendritic cells capture topical antigen through hair follicles to prime LAP+ Tregs. Nat Commun. 2018;9:5238 pubmed 出版商
  59. Benmerzoug S, Rose S, Bounab B, Gosset D, Duneau L, Chenuet P, et al. STING-dependent sensing of self-DNA drives silica-induced lung inflammation. Nat Commun. 2018;9:5226 pubmed 出版商
  60. Hayashi T, Momota M, Kuroda E, Kusakabe T, Kobari S, Makisaka K, et al. DAMP-Inducing Adjuvant and PAMP Adjuvants Parallelly Enhance Protective Type-2 and Type-1 Immune Responses to Influenza Split Vaccination. Front Immunol. 2018;9:2619 pubmed 出版商
  61. Aarts S, Seijkens T, Kusters P, Van Tiel C, Reiche M, den Toom M, et al. Macrophage CD40 signaling drives experimental autoimmune encephalomyelitis. J Pathol. 2019;247:471-480 pubmed 出版商
  62. Ushio A, Arakaki R, Otsuka K, Yamada A, Tsunematsu T, Kudo Y, et al. CCL22-Producing Resident Macrophages Enhance T Cell Response in Sjögren's Syndrome. Front Immunol. 2018;9:2594 pubmed 出版商
  63. Walker M, Crute B, Cambier J, Getahun A. B Cell-Intrinsic STING Signaling Triggers Cell Activation, Synergizes with B Cell Receptor Signals, and Promotes Antibody Responses. J Immunol. 2018;201:2641-2653 pubmed 出版商
  64. Sang A, Danhorn T, Peterson J, Rankin A, O Connor B, Leach S, et al. Innate and adaptive signals enhance differentiation and expansion of dual-antibody autoreactive B cells in lupus. Nat Commun. 2018;9:3973 pubmed 出版商
  65. Kim H, Mun Y, Lee K, Park Y, Park J, Park J, et al. T cell microvilli constitute immunological synaptosomes that carry messages to antigen-presenting cells. Nat Commun. 2018;9:3630 pubmed 出版商
  66. Ko Y, Chan Y, Liu C, Liang J, Chuang T, Hsueh Y, et al. Blimp-1-Mediated Pathway Promotes Type I IFN Production in Plasmacytoid Dendritic Cells by Targeting to Interleukin-1 Receptor-Associated Kinase M. Front Immunol. 2018;9:1828 pubmed 出版商
  67. Wilson K, Liu H, Healey G, Vuong V, Ishido S, Herold M, et al. MARCH1-mediated ubiquitination of MHC II impacts the MHC I antigen presentation pathway. PLoS ONE. 2018;13:e0200540 pubmed 出版商
  68. Raso F, Sagadiev S, Du S, Gage E, Arkatkar T, Metzler G, et al. αv Integrins regulate germinal center B cell responses through noncanonical autophagy. J Clin Invest. 2018;128:4163-4178 pubmed 出版商
  69. Yao Y, Huang W, Li X, Li X, Qian J, Han H, et al. Tespa1 Deficiency Dampens Thymus-Dependent B-Cell Activation and Attenuates Collagen-Induced Arthritis in Mice. Front Immunol. 2018;9:965 pubmed 出版商
  70. Du X, Wen J, Wang Y, Karmaus P, Khatamian A, Tan H, et al. Hippo/Mst signalling couples metabolic state and immune function of CD8α+ dendritic cells. Nature. 2018;558:141-145 pubmed 出版商
  71. García Nores G, Ly C, Cuzzone D, Kataru R, Hespe G, Torrisi J, et al. CD4+ T cells are activated in regional lymph nodes and migrate to skin to initiate lymphedema. Nat Commun. 2018;9:1970 pubmed 出版商
  72. Singla B, Ghoshal P, Lin H, Wei Q, Dong Z, Csanyi G. PKCδ-Mediated Nox2 Activation Promotes Fluid-Phase Pinocytosis of Antigens by Immature Dendritic Cells. Front Immunol. 2018;9:537 pubmed 出版商
  73. Mencarelli A, Khameneh H, Fric J, Vacca M, El Daker S, Janela B, et al. Calcineurin-mediated IL-2 production by CD11chighMHCII+ myeloid cells is crucial for intestinal immune homeostasis. Nat Commun. 2018;9:1102 pubmed 出版商
  74. Macdougall C, Wood E, Loschko J, Scagliotti V, Cassidy F, Robinson M, et al. Visceral Adipose Tissue Immune Homeostasis Is Regulated by the Crosstalk between Adipocytes and Dendritic Cell Subsets. Cell Metab. 2018;27:588-601.e4 pubmed 出版商
  75. Yeh C, Nojima T, Kuraoka M, Kelsoe G. Germinal center entry not selection of B cells is controlled by peptide-MHCII complex density. Nat Commun. 2018;9:928 pubmed 出版商
  76. Trapecar M, Khan S, Cohn B, Wu F, Sanjabi S. B cells are the predominant mediators of early systemic viral dissemination during rectal LCMV infection. Mucosal Immunol. 2018;11:1158-1167 pubmed 出版商
  77. Perry C, Muñoz Rojas A, Meeth K, Kellman L, Amezquita R, Thakral D, et al. Myeloid-targeted immunotherapies act in synergy to induce inflammation and antitumor immunity. J Exp Med. 2018;215:877-893 pubmed 出版商
  78. Turner D, Goldklang M, Cvetkovski F, Paik D, Trischler J, Barahona J, et al. Biased Generation and In Situ Activation of Lung Tissue-Resident Memory CD4 T Cells in the Pathogenesis of Allergic Asthma. J Immunol. 2018;200:1561-1569 pubmed 出版商
  79. Capucha T, Koren N, Nassar M, Heyman O, Nir T, Levy M, et al. Sequential BMP7/TGF-β1 signaling and microbiota instruct mucosal Langerhans cell differentiation. J Exp Med. 2018;215:481-500 pubmed 出版商
  80. Christ A, Günther P, Lauterbach M, Duewell P, Biswas D, Pelka K, et al. Western Diet Triggers NLRP3-Dependent Innate Immune Reprogramming. Cell. 2018;172:162-175.e14 pubmed 出版商
  81. Leonardi I, Li X, Semon A, Li D, Doron I, Putzel G, et al. CX3CR1+ mononuclear phagocytes control immunity to intestinal fungi. Science. 2018;359:232-236 pubmed 出版商
  82. Pedros C, Canonigo Balancio A, Kong K, Altman A. Requirement of Treg-intrinsic CTLA4/PKCη signaling pathway for suppressing tumor immunity. JCI Insight. 2017;2: pubmed 出版商
  83. Wasiuk A, Testa J, Weidlick J, Sisson C, Vitale L, Widger J, et al. CD27-Mediated Regulatory T Cell Depletion and Effector T Cell Costimulation Both Contribute to Antitumor Efficacy. J Immunol. 2017;199:4110-4123 pubmed 出版商
  84. Meng Y, Zhou W, Jin L, Liu L, Chang K, Mei J, et al. RANKL-mediated harmonious dialogue between fetus and mother guarantees smooth gestation by inducing decidual M2 macrophage polarization. Cell Death Dis. 2017;8:e3105 pubmed 出版商
  85. Purvis H, Clarke F, Jordan C, Blanco C, Cornish G, Dai X, et al. Protein tyrosine phosphatase PTPN22 regulates IL-1β dependent Th17 responses by modulating dectin-1 signaling in mice. Eur J Immunol. 2018;48:306-315 pubmed 出版商
  86. Giampazolias E, Zunino B, Dhayade S, Bock F, Cloix C, Cao K, et al. Mitochondrial permeabilization engages NF-κB-dependent anti-tumour activity under caspase deficiency. Nat Cell Biol. 2017;19:1116-1129 pubmed 出版商
  87. Akiel M, Guo C, Li X, Rajasekaran D, Mendoza R, Robertson C, et al. IGFBP7 Deletion Promotes Hepatocellular Carcinoma. Cancer Res. 2017;77:4014-4025 pubmed 出版商
  88. Seifert H, Benedek G, Liang J, Nguyen H, Kent G, Vandenbark A, et al. Sex differences in regulatory cells in experimental stroke. Cell Immunol. 2017;318:49-54 pubmed 出版商
  89. Daley D, Mani V, Mohan N, Akkad N, Pandian G, Savadkar S, et al. NLRP3 signaling drives macrophage-induced adaptive immune suppression in pancreatic carcinoma. J Exp Med. 2017;214:1711-1724 pubmed 出版商
  90. Shrestha B, You D, Saravia J, Siefker D, Jaligama S, Lee G, et al. IL-4R? on dendritic cells in neonates and Th2 immunopathology in respiratory syncytial virus infection. J Leukoc Biol. 2017;102:153-161 pubmed 出版商
  91. van der Vlugt L, Obieglo K, Ozir Fazalalikhan A, Sparwasser T, Haeberlein S, Smits H. Schistosome-induced pulmonary B cells inhibit allergic airway inflammation and display a reduced Th2-driving function. Int J Parasitol. 2017;47:545-554 pubmed 出版商
  92. Kitada S, Kayama H, Okuzaki D, Koga R, Kobayashi M, Arima Y, et al. BATF2 inhibits immunopathological Th17 responses by suppressing Il23a expression during Trypanosoma cruzi infection. J Exp Med. 2017;214:1313-1331 pubmed 出版商
  93. Schweighoffer E, Nys J, Vanes L, Smithers N, Tybulewicz V. TLR4 signals in B lymphocytes are transduced via the B cell antigen receptor and SYK. J Exp Med. 2017;214:1269-1280 pubmed 出版商
  94. Inoue T, Shinnakasu R, Ise W, Kawai C, Egawa T, Kurosaki T. The transcription factor Foxo1 controls germinal center B cell proliferation in response to T cell help. J Exp Med. 2017;214:1181-1198 pubmed 出版商
  95. Getahun A, Wemlinger S, Rudra P, Santiago M, van Dyk L, Cambier J. Impaired B cell function during viral infections due to PTEN-mediated inhibition of the PI3K pathway. J Exp Med. 2017;214:931-941 pubmed 出版商
  96. Kogo H, Shimizu M, Negishi Y, Uchida E, Takahashi H. Suppression of murine tumour growth through CD8+ cytotoxic T lymphocytes via activated DEC-205+ dendritic cells by sequential administration of ?-galactosylceramide in vivo. Immunology. 2017;151:324-339 pubmed 出版商
  97. Srinivasan S, Su M, Ravishankar S, Moore J, Head P, Dixon J, et al. TLR-exosomes exhibit distinct kinetics and effector function. Sci Rep. 2017;7:41623 pubmed 出版商
  98. Barthels C, Ogrinc A, Steyer V, Meier S, Simon F, Wimmer M, et al. CD40-signalling abrogates induction of RORγt+ Treg cells by intestinal CD103+ DCs and causes fatal colitis. Nat Commun. 2017;8:14715 pubmed 出版商
  99. Baranek T, Morello E, Valayer A, Aimar R, Bréa D, Henry C, et al. FHL2 Regulates Natural Killer Cell Development and Activation during Streptococcus pneumoniae Infection. Front Immunol. 2017;8:123 pubmed 出版商
  100. Komegae E, Souza T, Grund L, Lima C, Lopes Ferreira M. Multiple functional therapeutic effects of TnP: A small stable synthetic peptide derived from fish venom in a mouse model of multiple sclerosis. PLoS ONE. 2017;12:e0171796 pubmed 出版商
  101. Perez Ruiz de Garibay A, Spinato C, Klippstein R, Bourgognon M, Martincic M, Pach E, et al. Evaluation of the immunological profile of antibody-functionalized metal-filled single-walled carbon nanocapsules for targeted radiotherapy. Sci Rep. 2017;7:42605 pubmed 出版商
  102. Zhang H, Qi Y, Yuan Y, Cai L, Xu H, Zhang L, et al. Paeoniflorin Ameliorates Experimental Autoimmune Encephalomyelitis via Inhibition of Dendritic Cell Function and Th17 Cell Differentiation. Sci Rep. 2017;7:41887 pubmed 出版商
  103. Laidlaw B, Schmidt T, Green J, Allen C, Okada T, Cyster J. The Eph-related tyrosine kinase ligand Ephrin-B1 marks germinal center and memory precursor B cells. J Exp Med. 2017;214:639-649 pubmed 出版商
  104. Gomaa A, El Aziz E. Vitamin D reduces high-fat diet induced weight gain and C-reactive protein, increases interleukin-10, and reduces CD86 and caspase-3. Pathophysiology. 2017;24:31-37 pubmed 出版商
  105. Zhu Y, Lyapichev K, Lee D, Motti D, Ferraro N, Zhang Y, et al. Macrophage Transcriptional Profile Identifies Lipid Catabolic Pathways That Can Be Therapeutically Targeted after Spinal Cord Injury. J Neurosci. 2017;37:2362-2376 pubmed 出版商
  106. Vander Lugt B, Riddell J, Khan A, Hackney J, Lesch J, DeVoss J, et al. Transcriptional determinants of tolerogenic and immunogenic states during dendritic cell maturation. J Cell Biol. 2017;216:779-792 pubmed 出版商
  107. Bracamonte Baran W, Florentin J, Zhou Y, Jankowska Gan E, Haynes W, Zhong W, et al. Modification of host dendritic cells by microchimerism-derived extracellular vesicles generates split tolerance. Proc Natl Acad Sci U S A. 2017;114:1099-1104 pubmed 出版商
  108. Troegeler A, Mercier I, Cougoule C, Pietretti D, Colom A, Duval C, et al. C-type lectin receptor DCIR modulates immunity to tuberculosis by sustaining type I interferon signaling in dendritic cells. Proc Natl Acad Sci U S A. 2017;114:E540-E549 pubmed 出版商
  109. Hellström Erkenstam N, Smith P, Fleiss B, Nair S, Svedin P, Wang W, et al. Temporal Characterization of Microglia/Macrophage Phenotypes in a Mouse Model of Neonatal Hypoxic-Ischemic Brain Injury. Front Cell Neurosci. 2016;10:286 pubmed 出版商
  110. Li M, Li Z, Yao Y, Jin W, Wood K, Liu Q, et al. Astrocyte-derived interleukin-15 exacerbates ischemic brain injury via propagation of cellular immunity. Proc Natl Acad Sci U S A. 2017;114:E396-E405 pubmed 出版商
  111. Connor L, Tang S, Cognard E, Ochiai S, Hilligan K, Old S, et al. Th2 responses are primed by skin dendritic cells with distinct transcriptional profiles. J Exp Med. 2017;214:125-142 pubmed 出版商
  112. Yokota Nakatsuma A, Ohoka Y, Takeuchi H, Song S, Iwata M. Beta 1-integrin ligation and TLR ligation enhance GM-CSF-induced ALDH1A2 expression in dendritic cells, but differentially regulate their anti-inflammatory properties. Sci Rep. 2016;6:37914 pubmed 出版商
  113. Lund M, Greer J, Dixit A, Alvarado R, McCauley Winter P, To J, et al. A parasite-derived 68-mer peptide ameliorates autoimmune disease in murine models of Type 1 diabetes and multiple sclerosis. Sci Rep. 2016;6:37789 pubmed 出版商
  114. Tahiri H, Omri S, Yang C, Duhamel F, Samarani S, Ahmad A, et al. Lymphocytic Microparticles Modulate Angiogenic Properties of Macrophages in Laser-induced Choroidal Neovascularization. Sci Rep. 2016;6:37391 pubmed 出版商
  115. Hammer A, Yang G, Friedrich J, Kovacs A, Lee D, Grave K, et al. Role of the receptor Mas in macrophage-mediated inflammation in vivo. Proc Natl Acad Sci U S A. 2016;113:14109-14114 pubmed
  116. Sulek J, Robinson S, Petrossian A, Zhou S, Goliadze E, Manjili M, et al. Role of Epigenetic Modification and Immunomodulation in a Murine Prostate Cancer Model. Prostate. 2017;77:361-373 pubmed 出版商
  117. Khan S, Woodruff E, Trapecar M, Fontaine K, Ezaki A, Borbet T, et al. Dampened antiviral immunity to intravaginal exposure to RNA viral pathogens allows enhanced viral replication. J Exp Med. 2016;213:2913-2929 pubmed
  118. Takács E, Boto P, Simo E, Csuth T, Toth B, Raveh Amit H, et al. Immunogenic Dendritic Cell Generation from Pluripotent Stem Cells by Ectopic Expression of Runx3. J Immunol. 2017;198:239-248 pubmed
  119. Theisen E, Sauer J. Listeria monocytogenes-Induced Cell Death Inhibits the Generation of Cell-Mediated Immunity. Infect Immun. 2017;85: pubmed 出版商
  120. Hirako I, Ataide M, Faustino L, Assis P, Sorensen E, Ueta H, et al. Splenic differentiation and emergence of CCR5+CXCL9+CXCL10+ monocyte-derived dendritic cells in the brain during cerebral malaria. Nat Commun. 2016;7:13277 pubmed 出版商
  121. Calmette J, Bertrand M, Vétillard M, Ellouze M, Flint S, Nicolas V, et al. Glucocorticoid-Induced Leucine Zipper Protein Controls Macropinocytosis in Dendritic Cells. J Immunol. 2016;197:4247-4256 pubmed
  122. Smirnova T, Bonapace L, MacDonald G, Kondo S, Wyckoff J, Ebersbach H, et al. Serpin E2 promotes breast cancer metastasis by remodeling the tumor matrix and polarizing tumor associated macrophages. Oncotarget. 2016;7:82289-82304 pubmed 出版商
  123. Zhao J, Chen C, Guo M, Tao Y, Cui P, Zhou Y, et al. MicroRNA-7 Deficiency Ameliorates the Pathologies of Acute Lung Injury through Elevating KLF4. Front Immunol. 2016;7:389 pubmed
  124. Zhou Z, Tang Y, Jin X, Chen C, Lu Y, Liu L, et al. Metformin Inhibits Advanced Glycation End Products-Induced Inflammatory Response in Murine Macrophages Partly through AMPK Activation and RAGE/NF?B Pathway Suppression. J Diabetes Res. 2016;2016:4847812 pubmed
  125. Jones D, Gaudette B, Wilmore J, Chernova I, Bortnick A, Weiss B, et al. mTOR has distinct functions in generating versus sustaining humoral immunity. J Clin Invest. 2016;126:4250-4261 pubmed 出版商
  126. Collinson Pautz M, Slawin K, Levitt J, Spencer D. MyD88/CD40 Genetic Adjuvant Function in Cutaneous Atypical Antigen-Presenting Cells Contributes to DNA Vaccine Immunogenicity. PLoS ONE. 2016;11:e0164547 pubmed 出版商
  127. Di Marco Barros R, Roberts N, Dart R, Vantourout P, Jandke A, Nussbaumer O, et al. Epithelia Use Butyrophilin-like Molecules to Shape Organ-Specific γδ T Cell Compartments. Cell. 2016;167:203-218.e17 pubmed 出版商
  128. Papadaki G, Kambas K, Choulaki C, Vlachou K, Drakos E, Bertsias G, et al. Neutrophil extracellular traps exacerbate Th1-mediated autoimmune responses in rheumatoid arthritis by promoting DC maturation. Eur J Immunol. 2016;46:2542-2554 pubmed 出版商
  129. Wu J, Wu H, Tsai D, Chiang M, Chen Y, Gao S, et al. Temporal regulation of Lsp1 O-GlcNAcylation and phosphorylation during apoptosis of activated B cells. Nat Commun. 2016;7:12526 pubmed 出版商
  130. Kouwenberg M, Jacobs C, van der Vlag J, Hilbrands L. Allostimulatory Effects of Dendritic Cells with Characteristic Features of a Regulatory Phenotype. PLoS ONE. 2016;11:e0159986 pubmed 出版商
  131. Gaudet A, Mandrekar Colucci S, Hall J, Sweet D, Schmitt P, Xu X, et al. miR-155 Deletion in Mice Overcomes Neuron-Intrinsic and Neuron-Extrinsic Barriers to Spinal Cord Repair. J Neurosci. 2016;36:8516-32 pubmed 出版商
  132. Zhao Y, Chu X, Chen J, Wang Y, Gao S, Jiang Y, et al. Dectin-1-activated dendritic cells trigger potent antitumour immunity through the induction of Th9 cells. Nat Commun. 2016;7:12368 pubmed 出版商
  133. Pizzolla A, Oh D, Luong S, Prickett S, Henstridge D, Febbraio M, et al. High Fat Diet Inhibits Dendritic Cell and T Cell Response to Allergens but Does Not Impair Inhalational Respiratory Tolerance. PLoS ONE. 2016;11:e0160407 pubmed 出版商
  134. Chow K, Delconte R, Huntington N, Tarlinton D, Sutherland R, Zhan Y, et al. Innate Allorecognition Results in Rapid Accumulation of Monocyte-Derived Dendritic Cells. J Immunol. 2016;197:2000-8 pubmed 出版商
  135. Veinotte L, Gebremeskel S, Johnston B. CXCL16-positive dendritic cells enhance invariant natural killer T cell-dependent IFN? production and tumor control. Oncoimmunology. 2016;5:e1160979 pubmed 出版商
  136. Rex J, Albrecht U, Ehlting C, Thomas M, Zanger U, Sawodny O, et al. Model-Based Characterization of Inflammatory Gene Expression Patterns of Activated Macrophages. PLoS Comput Biol. 2016;12:e1005018 pubmed 出版商
  137. Chen S, Miyazaki M, Chandra V, Fisch K, Chang A, Murre C. Id3 Orchestrates Germinal Center B Cell Development. Mol Cell Biol. 2016;36:2543-52 pubmed 出版商
  138. Parsa R, Lund H, Georgoudaki A, Zhang X, Ortlieb Guerreiro Cacais A, Grommisch D, et al. BAFF-secreting neutrophils drive plasma cell responses during emergency granulopoiesis. J Exp Med. 2016;213:1537-53 pubmed 出版商
  139. Lo T, Silveira P, Fromm P, Verma N, Vu P, Kupresanin F, et al. Characterization of the Expression and Function of the C-Type Lectin Receptor CD302 in Mice and Humans Reveals a Role in Dendritic Cell Migration. J Immunol. 2016;197:885-98 pubmed 出版商
  140. Göbel K, Pankratz S, Asaridou C, Herrmann A, Bittner S, Merker M, et al. Blood coagulation factor XII drives adaptive immunity during neuroinflammation via CD87-mediated modulation of dendritic cells. Nat Commun. 2016;7:11626 pubmed 出版商
  141. Chikh G, Luu R, Patel S, Davis H, Weeratna R. Effects of KLK Peptide on Adjuvanticity of Different ODN Sequences. Vaccines (Basel). 2016;4: pubmed 出版商
  142. Wen S, Dooner M, Cheng Y, Papa E, Del Tatto M, Pereira M, et al. Mesenchymal stromal cell-derived extracellular vesicles rescue radiation damage to murine marrow hematopoietic cells. Leukemia. 2016;30:2221-2231 pubmed 出版商
  143. Xu X, Meng Q, Erben U, Wang P, Glauben R, Kuhl A, et al. Myeloid-derived suppressor cells promote B-cell production of IgA in a TNFR2-dependent manner. Cell Mol Immunol. 2017;14:597-606 pubmed 出版商
  144. Salao K, Jiang L, Li H, Tsai V, Husaini Y, Curmi P, et al. CLIC1 regulates dendritic cell antigen processing and presentation by modulating phagosome acidification and proteolysis. Biol Open. 2016;5:620-30 pubmed 出版商
  145. Anghelina D, Lam E, Falck Pedersen E. Diminished Innate Antiviral Response to Adenovirus Vectors in cGAS/STING-Deficient Mice Minimally Impacts Adaptive Immunity. J Virol. 2016;90:5915-27 pubmed 出版商
  146. Jackson S, Jacobs H, Arkatkar T, Dam E, Scharping N, Kolhatkar N, et al. B cell IFN-γ receptor signaling promotes autoimmune germinal centers via cell-intrinsic induction of BCL-6. J Exp Med. 2016;213:733-50 pubmed 出版商
  147. Uto T, Fukaya T, Takagi H, Arimura K, Nakamura T, Kojima N, et al. Clec4A4 is a regulatory receptor for dendritic cells that impairs inflammation and T-cell immunity. Nat Commun. 2016;7:11273 pubmed 出版商
  148. Ufimtseva E. Differences between Mycobacterium-Host Cell Relationships in Latent Tuberculous Infection of Mice Ex Vivo and Mycobacterial Infection of Mouse Cells In Vitro. J Immunol Res. 2016;2016:4325646 pubmed 出版商
  149. Vandenberk L, Garg A, Verschuere T, Koks C, Belmans J, Beullens M, et al. Irradiation of necrotic cancer cells, employed for pulsing dendritic cells (DCs), potentiates DC vaccine-induced antitumor immunity against high-grade glioma. Oncoimmunology. 2016;5:e1083669 pubmed
  150. Llopiz D, Aranda F, Díaz Valdés N, Ruiz M, Infante S, Belsue V, et al. Vaccine-induced but not tumor-derived Interleukin-10 dictates the efficacy of Interleukin-10 blockade in therapeutic vaccination. Oncoimmunology. 2016;5:e1075113 pubmed
  151. Aaes T, Kaczmarek A, Delvaeye T, De Craene B, De Koker S, Heyndrickx L, et al. Vaccination with Necroptotic Cancer Cells Induces Efficient Anti-tumor Immunity. Cell Rep. 2016;15:274-87 pubmed 出版商
  152. Sim C, Cho Y, Kim B, Baek I, Kim Y, Lee M. 2'-5' Oligoadenylate synthetase-like 1 (OASL1) deficiency in mice promotes an effective anti-tumor immune response by enhancing the production of type I interferons. Cancer Immunol Immunother. 2016;65:663-75 pubmed 出版商
  153. Kawano M, Tanaka K, Itonaga I, Iwasaki T, Miyazaki M, Ikeda S, et al. Dendritic cells combined with doxorubicin induces immunogenic cell death and exhibits antitumor effects for osteosarcoma. Oncol Lett. 2016;11:2169-2175 pubmed
  154. Lee Chang C, Bodogai M, Moritoh K, Chen X, Wersto R, Sen R, et al. Aging Converts Innate B1a Cells into Potent CD8+ T Cell Inducers. J Immunol. 2016;196:3385-97 pubmed 出版商
  155. Leeth C, Racine J, Chapman H, Arpa B, Carrillo J, Carrascal J, et al. B-lymphocytes expressing an Ig specificity recognizing the pancreatic ß-cell autoantigen peripherin are potent contributors to type 1 diabetes development in NOD mice. Diabetes. 2016;65:1977-1987 pubmed 出版商
  156. Flach A, Litke T, Strauss J, Haberl M, Gómez C, Reindl M, et al. Autoantibody-boosted T-cell reactivation in the target organ triggers manifestation of autoimmune CNS disease. Proc Natl Acad Sci U S A. 2016;113:3323-8 pubmed 出版商
  157. Gabunia K, Ellison S, Kelemen S, Kako F, Cornwell W, Rogers T, et al. IL-19 Halts Progression of Atherosclerotic Plaque, Polarizes, and Increases Cholesterol Uptake and Efflux in Macrophages. Am J Pathol. 2016;186:1361-74 pubmed 出版商
  158. Haribhai D, Ziegelbauer J, Jia S, Upchurch K, Yan K, Schmitt E, et al. Alternatively Activated Macrophages Boost Induced Regulatory T and Th17 Cell Responses during Immunotherapy for Colitis. J Immunol. 2016;196:3305-17 pubmed 出版商
  159. Levit Zerdoun E, Becker M, Pohlmeyer R, Wilhelm I, Maity P, Rajewsky K, et al. Survival of Igα-Deficient Mature B Cells Requires BAFF-R Function. J Immunol. 2016;196:2348-60 pubmed 出版商
  160. Ying W, Tseng A, Chang R, Wang H, Lin Y, Kanameni S, et al. miR-150 regulates obesity-associated insulin resistance by controlling B cell functions. Sci Rep. 2016;6:20176 pubmed 出版商
  161. Lasigliè D, Boero S, Bauer I, Morando S, Damonte P, Cea M, et al. Sirt6 regulates dendritic cell differentiation, maturation, and function. Aging (Albany NY). 2016;8:34-49 pubmed
  162. MikyÅ¡ková R, Å tÄ›pánek I, Indrová M, Bieblová J, Šímová J, Truxová I, et al. Dendritic cells pulsed with tumor cells killed by high hydrostatic pressure induce strong immune responses and display therapeutic effects both in murine TC-1 and TRAMP-C2 tumors when combined with docetaxel chemotherapy. Int J Oncol. 2016;48:953-64 pubmed 出版商
  163. Pylayeva Gupta Y, Das S, Handler J, Hajdu C, Coffre M, Koralov S, et al. IL35-Producing B Cells Promote the Development of Pancreatic Neoplasia. Cancer Discov. 2016;6:247-55 pubmed 出版商
  164. Traka M, Podojil J, McCarthy D, Miller S, Popko B. Oligodendrocyte death results in immune-mediated CNS demyelination. Nat Neurosci. 2016;19:65-74 pubmed 出版商
  165. Ensan S, Li A, Besla R, Degousee N, Cosme J, Roufaiel M, et al. Self-renewing resident arterial macrophages arise from embryonic CX3CR1(+) precursors and circulating monocytes immediately after birth. Nat Immunol. 2016;17:159-68 pubmed 出版商
  166. Schachtner H, Weimershaus M, Stache V, Plewa N, Legler D, Höpken U, et al. Loss of Gadkin Affects Dendritic Cell Migration In Vitro. PLoS ONE. 2015;10:e0143883 pubmed 出版商
  167. Onodera T, Fukuhara A, Jang M, Shin J, Aoi K, Kikuta J, et al. Adipose tissue macrophages induce PPARγ-high FOXP3(+) regulatory T cells. Sci Rep. 2015;5:16801 pubmed 出版商
  168. Fontinha D, Lopes F, Marques S, Alenquer M, Simas J. Murid Gammaherpesvirus Latency-Associated Protein M2 Promotes the Formation of Conjugates between Transformed B Lymphoma Cells and T Helper Cells. PLoS ONE. 2015;10:e0142540 pubmed 出版商
  169. Black L, Srivastava R, Schoeb T, Moore R, Barnes S, KABAROWSKI J. Cholesterol-Independent Suppression of Lymphocyte Activation, Autoimmunity, and Glomerulonephritis by Apolipoprotein A-I in Normocholesterolemic Lupus-Prone Mice. J Immunol. 2015;195:4685-98 pubmed 出版商
  170. Wu V, Smith A, You H, Nguyen T, Ferguson R, Taylor M, et al. Plasmacytoid dendritic cell-derived IFNα modulates Th17 differentiation during early Bordetella pertussis infection in mice. Mucosal Immunol. 2016;9:777-86 pubmed 出版商
  171. Riquelme S, Pogu J, Anegon I, Bueno S, Kalergis A. Carbon monoxide impairs mitochondria-dependent endosomal maturation and antigen presentation in dendritic cells. Eur J Immunol. 2015;45:3269-88 pubmed 出版商
  172. Pohar J, Lainšček D, Fukui R, Yamamoto C, Miyake K, Jerala R, et al. Species-Specific Minimal Sequence Motif for Oligodeoxyribonucleotides Activating Mouse TLR9. J Immunol. 2015;195:4396-405 pubmed 出版商
  173. Gonzalez N, Wennhold K, Balkow S, Kondo E, Bölck B, Weber T, et al. In vitro and in vivo imaging of initial B-T-cell interactions in the setting of B-cell based cancer immunotherapy. Oncoimmunology. 2015;4:e1038684 pubmed
  174. Eitan E, Hutchison E, Greig N, Tweedie D, Celik H, Ghosh S, et al. Combination therapy with lenalidomide and nanoceria ameliorates CNS autoimmunity. Exp Neurol. 2015;273:151-60 pubmed 出版商
  175. Yang H, Yamazaki T, Pietrocola F, Zhou H, Zitvogel L, Ma Y, et al. STAT3 Inhibition Enhances the Therapeutic Efficacy of Immunogenic Chemotherapy by Stimulating Type 1 Interferon Production by Cancer Cells. Cancer Res. 2015;75:3812-22 pubmed 出版商
  176. Vogel A, Brown D. Single-Dose CpG Immunization Protects Against a Heterosubtypic Challenge and Generates Antigen-Specific Memory T Cells. Front Immunol. 2015;6:327 pubmed 出版商
  177. Napolitano A, Pellegrini L, Dey A, Larson D, Tanji M, Flores E, et al. Minimal asbestos exposure in germline BAP1 heterozygous mice is associated with deregulated inflammatory response and increased risk of mesothelioma. Oncogene. 2016;35:1996-2002 pubmed 出版商
  178. Jin X, Yao T, Zhou Z, Zhu J, Zhang S, Hu W, et al. Advanced Glycation End Products Enhance Macrophages Polarization into M1 Phenotype through Activating RAGE/NF-κB Pathway. Biomed Res Int. 2015;2015:732450 pubmed 出版商
  179. Keswani R, Yoon G, Sud S, Stringer K, Rosania G. A far-red fluorescent probe for flow cytometry and image-based functional studies of xenobiotic sequestering macrophages. Cytometry A. 2015;87:855-67 pubmed 出版商
  180. Kamachi F, Isshiki T, Harada N, Akiba H, Miyake S. ICOS promotes group 2 innate lymphoid cell activation in lungs. Biochem Biophys Res Commun. 2015;463:739-45 pubmed 出版商
  181. Holtzhausen A, Zhao F, Evans K, Tsutsui M, Orabona C, Tyler D, et al. Melanoma-Derived Wnt5a Promotes Local Dendritic-Cell Expression of IDO and Immunotolerance: Opportunities for Pharmacologic Enhancement of Immunotherapy. Cancer Immunol Res. 2015;3:1082-95 pubmed 出版商
  182. Williams B, Tebbutt N, Buchert M, Putoczki T, Doggett K, Bao S, et al. Glycoprotein A33 deficiency: a new mouse model of impaired intestinal epithelial barrier function and inflammatory disease. Dis Model Mech. 2015;8:805-15 pubmed 出版商
  183. Liechtenstein T, Perez Janices N, Blanco Luquin I, Goyvaerts C, Schwarze J, Dufait I, et al. Anti-melanoma vaccines engineered to simultaneously modulate cytokine priming and silence PD-L1 characterized using ex vivo myeloid-derived suppressor cells as a readout of therapeutic efficacy. Oncoimmunology. 2014;3:e945378 pubmed
  184. Zeng S, Wang L, Li P, Wang W, Yang J. Mesenchymal stem cells abrogate experimental asthma by altering dendritic cell function. Mol Med Rep. 2015;12:2511-20 pubmed 出版商
  185. Carmi Y, Spitzer M, Linde I, Burt B, Prestwood T, Perlman N, et al. Allogeneic IgG combined with dendritic cell stimuli induce antitumour T-cell immunity. Nature. 2015;521:99-104 pubmed 出版商
  186. Sharma S, Chintala N, Vadrevu S, Patel J, Karbowniczek M, Markiewski M. Pulmonary alveolar macrophages contribute to the premetastatic niche by suppressing antitumor T cell responses in the lungs. J Immunol. 2015;194:5529-38 pubmed 出版商
  187. Hamilton J, Li J, Wu Q, Yang P, Luo B, Li H, et al. General Approach for Tetramer-Based Identification of Autoantigen-Reactive B Cells: Characterization of La- and snRNP-Reactive B Cells in Autoimmune BXD2 Mice. J Immunol. 2015;194:5022-34 pubmed 出版商
  188. Kolan S, Boman A, Matozaki T, Lejon K, Oldenborg P. Lack of non-hematopoietic SIRPα signaling disturbs the splenic marginal zone architecture resulting in accumulation and displacement of marginal zone B cells. Biochem Biophys Res Commun. 2015;460:645-50 pubmed 出版商
  189. Wong E, Soni C, Chan A, Domeier P, Shwetank -, Abraham T, et al. B cell-intrinsic CD84 and Ly108 maintain germinal center B cell tolerance. J Immunol. 2015;194:4130-43 pubmed 出版商
  190. Dudek Perić A, Ferreira G, Muchowicz A, Wouters J, Prada N, Martin S, et al. Antitumor immunity triggered by melphalan is potentiated by melanoma cell surface-associated calreticulin. Cancer Res. 2015;75:1603-14 pubmed 出版商
  191. Wensveen F, Jelenčić V, Valentić S, Å estan M, Wensveen T, Theurich S, et al. NK cells link obesity-induced adipose stress to inflammation and insulin resistance. Nat Immunol. 2015;16:376-85 pubmed 出版商
  192. Jobsri J, Allen A, Rajagopal D, Shipton M, Kanyuka K, Lomonossoff G, et al. Plant virus particles carrying tumour antigen activate TLR7 and Induce high levels of protective antibody. PLoS ONE. 2015;10:e0118096 pubmed 出版商
  193. Pannu J, Belle J, Forster M, Duerr C, Shen S, Kane L, et al. Ubiquitin specific protease 21 is dispensable for normal development, hematopoiesis and lymphocyte differentiation. PLoS ONE. 2015;10:e0117304 pubmed 出版商
  194. Sun H, Zhang J, Chen F, Chen X, Zhou Z, Wang H. Activation of RAW264.7 macrophages by the polysaccharide from the roots of Actinidia eriantha and its molecular mechanisms. Carbohydr Polym. 2015;121:388-402 pubmed 出版商
  195. McKay J, Egan R, Yammani R, Chen L, Shin T, Yagita H, et al. PD-1 suppresses protective immunity to Streptococcus pneumoniae through a B cell-intrinsic mechanism. J Immunol. 2015;194:2289-99 pubmed 出版商
  196. Wirsdörfer F, Bangen J, Pastille E, Hansen W, Flohé S. Breaking the co-operation between bystander T-cells and natural killer cells prevents the development of immunosuppression after traumatic skeletal muscle injury in mice. Clin Sci (Lond). 2015;128:825-38 pubmed 出版商
  197. Ikeda T, Hirata S, Takamatsu K, Haruta M, Tsukamoto H, Ito T, et al. Suppression of Th1-mediated autoimmunity by embryonic stem cell-derived dendritic cells. PLoS ONE. 2014;9:e115198 pubmed 出版商
  198. White C, Villarino N, Sloan S, Ganusov V, Schmidt N. Plasmodium suppresses expansion of T cell responses to heterologous infections. J Immunol. 2015;194:697-708 pubmed 出版商
  199. Yin Y, Qin T, Wang X, Lin J, Yu Q, Yang Q. CpG DNA assists the whole inactivated H9N2 influenza virus in crossing the intestinal epithelial barriers via transepithelial uptake of dendritic cell dendrites. Mucosal Immunol. 2015;8:799-814 pubmed 出版商
  200. Kim J, Li W, Choi Y, Lewin S, Verbeke C, Dranoff G, et al. Injectable, spontaneously assembling, inorganic scaffolds modulate immune cells in vivo and increase vaccine efficacy. Nat Biotechnol. 2015;33:64-72 pubmed 出版商
  201. Hou J, Zhang Q, Fujino M, Cai S, Ito H, Takahashi K, et al. 5-Aminolevulinic acid with ferrous iron induces permanent cardiac allograft acceptance in mice via induction of regulatory cells. J Heart Lung Transplant. 2015;34:254-63 pubmed 出版商
  202. Cousens L, Najafian N, Martin W, De Groot A. Tregitope: Immunomodulation powerhouse. Hum Immunol. 2014;75:1139-46 pubmed 出版商
  203. Frossard C, Asigbetse K, Burger D, Eigenmann P. Gut T cell receptor-γδ(+) intraepithelial lymphocytes are activated selectively by cholera toxin to break oral tolerance in mice. Clin Exp Immunol. 2015;180:118-30 pubmed 出版商
  204. Fahl S, Harris B, Coffey F, Wiest D. Rpl22 Loss Impairs the Development of B Lymphocytes by Activating a p53-Dependent Checkpoint. J Immunol. 2015;194:200-9 pubmed
  205. McDonnell A, Lesterhuis W, Khong A, Nowak A, Lake R, Currie A, et al. Tumor-infiltrating dendritic cells exhibit defective cross-presentation of tumor antigens, but is reversed by chemotherapy. Eur J Immunol. 2015;45:49-59 pubmed 出版商
  206. Å krnjug I, Guzmán C, Rueckert C, Ruecker C. Cyclic GMP-AMP displays mucosal adjuvant activity in mice. PLoS ONE. 2014;9:e110150 pubmed 出版商
  207. Döring M, Lessin I, Frenz T, Spanier J, Kessler A, Tegtmeyer P, et al. M27 expressed by cytomegalovirus counteracts effective type I interferon induction of myeloid cells but not of plasmacytoid dendritic cells. J Virol. 2014;88:13638-50 pubmed 出版商
  208. Chen M, Chen Y, Wu M, Yu G, Lin W, Tan T, et al. PP4 is essential for germinal center formation and class switch recombination in mice. PLoS ONE. 2014;9:e107505 pubmed 出版商
  209. Wei F, Yang D, Tewary P, Li Y, Li S, Chen X, et al. The Alarmin HMGN1 contributes to antitumor immunity and is a potent immunoadjuvant. Cancer Res. 2014;74:5989-98 pubmed 出版商
  210. Dai M, Yip Y, Hellstrom I, Hellstrom K. Curing mice with large tumors by locally delivering combinations of immunomodulatory antibodies. Clin Cancer Res. 2015;21:1127-38 pubmed 出版商
  211. Penaloza MacMaster P, Kamphorst A, Wieland A, Araki K, Iyer S, West E, et al. Interplay between regulatory T cells and PD-1 in modulating T cell exhaustion and viral control during chronic LCMV infection. J Exp Med. 2014;211:1905-18 pubmed 出版商
  212. McNally A, Anderson J. Phenotypic expression in human monocyte-derived interleukin-4-induced foreign body giant cells and macrophages in vitro: dependence on material surface properties. J Biomed Mater Res A. 2015;103:1380-90 pubmed 出版商
  213. Lee Chang C, Bodogai M, Moritoh K, Olkhanud P, Chan A, Croft M, et al. Accumulation of 4-1BBL+ B cells in the elderly induces the generation of granzyme-B+ CD8+ T cells with potential antitumor activity. Blood. 2014;124:1450-9 pubmed 出版商
  214. Siurala M, Bramante S, Vassilev L, Hirvinen M, Parviainen S, Tähtinen S, et al. Oncolytic adenovirus and doxorubicin-based chemotherapy results in synergistic antitumor activity against soft-tissue sarcoma. Int J Cancer. 2015;136:945-54 pubmed 出版商
  215. Zhou Q, Ho A, Schlitzer A, Tang Y, Wong K, Wong F, et al. GM-CSF-licensed CD11b+ lung dendritic cells orchestrate Th2 immunity to Blomia tropicalis. J Immunol. 2014;193:496-509 pubmed 出版商
  216. Moreno M, Bannerman P, Ma J, Guo F, Miers L, Soulika A, et al. Conditional ablation of astroglial CCL2 suppresses CNS accumulation of M1 macrophages and preserves axons in mice with MOG peptide EAE. J Neurosci. 2014;34:8175-85 pubmed 出版商
  217. Alsadeq A, Hobeika E, Medgyesi D, Kläsener K, Reth M. The role of the Syk/Shp-1 kinase-phosphatase equilibrium in B cell development and signaling. J Immunol. 2014;193:268-76 pubmed 出版商
  218. Assi H, Espinosa J, Suprise S, SOFRONIEW M, Doherty R, Zamler D, et al. Assessing the role of STAT3 in DC differentiation and autologous DC immunotherapy in mouse models of GBM. PLoS ONE. 2014;9:e96318 pubmed 出版商
  219. Qian L, Zhang M, Wu S, Zhong Y, Van Tol E, Cai W. Alkylglycerols modulate the proliferation and differentiation of non-specific agonist and specific antigen-stimulated splenic lymphocytes. PLoS ONE. 2014;9:e96207 pubmed 出版商
  220. Skrnjug I, Rueckert C, Libanova R, Lienenklaus S, Weiss S, Guzman C. The mucosal adjuvant cyclic di-AMP exerts immune stimulatory effects on dendritic cells and macrophages. PLoS ONE. 2014;9:e95728 pubmed 出版商
  221. Sheng K, Herrero L, Taylor A, Hapel A, Mahalingam S. IL-3 and CSF-1 interact to promote generation of CD11c+ IL-10-producing macrophages. PLoS ONE. 2014;9:e95208 pubmed 出版商
  222. Dupont C, Christian D, Selleck E, Pepper M, Leney Greene M, Harms Pritchard G, et al. Parasite fate and involvement of infected cells in the induction of CD4+ and CD8+ T cell responses to Toxoplasma gondii. PLoS Pathog. 2014;10:e1004047 pubmed 出版商
  223. Hirayama T, Asano Y, Iida H, Watanabe T, Nakamura T, Goitsuka R. Meis1 is required for the maintenance of postnatal thymic epithelial cells. PLoS ONE. 2014;9:e89885 pubmed 出版商
  224. Ramakrishnan R, Tyurin V, Tuyrin V, Veglia F, Condamine T, Amoscato A, et al. Oxidized lipids block antigen cross-presentation by dendritic cells in cancer. J Immunol. 2014;192:2920-31 pubmed 出版商
  225. Jin Y, Wi H, Choi M, Hong S, Bae Y. Regulation of anti-inflammatory cytokines IL-10 and TGF-? in mouse dendritic cells through treatment with Clonorchis sinensis crude antigen. Exp Mol Med. 2014;46:e74 pubmed 出版商
  226. Mercadante A, Perobelli S, Alves A, Gonçalves Silva T, Mello W, Gomes Santos A, et al. Oral combined therapy with probiotics and alloantigen induces B cell-dependent long-lasting specific tolerance. J Immunol. 2014;192:1928-37 pubmed 出版商
  227. Yang M, Rainone A, Shi X, Fournier S, Zhang J. A new animal model of spontaneous autoimmune peripheral polyneuropathy: implications for Guillain-Barré syndrome. Acta Neuropathol Commun. 2014;2:5 pubmed 出版商
  228. Iwata A, Kawashima S, Kobayashi M, Okubo A, Kawashima H, Suto A, et al. Th2-type inflammation instructs inflammatory dendritic cells to induce airway hyperreactivity. Int Immunol. 2014;26:103-14 pubmed 出版商
  229. Harimoto H, Shimizu M, Nakagawa Y, Nakatsuka K, Wakabayashi A, Sakamoto C, et al. Inactivation of tumor-specific CD8? CTLs by tumor-infiltrating tolerogenic dendritic cells. Immunol Cell Biol. 2013;91:545-55 pubmed 出版商
  230. Bittner S, Ruck T, Schuhmann M, Herrmann A, Moha Ou Maati H, Bobak N, et al. Endothelial TWIK-related potassium channel-1 (TREK1) regulates immune-cell trafficking into the CNS. Nat Med. 2013;19:1161-5 pubmed 出版商
  231. Chhor V, Le Charpentier T, Lebon S, Oré M, Celador I, Josserand J, et al. Characterization of phenotype markers and neuronotoxic potential of polarised primary microglia in vitro. Brain Behav Immun. 2013;32:70-85 pubmed 出版商
  232. Khan A, Fu H, Tan L, Harper J, Beutelspacher S, Larkin D, et al. Dendritic cell modification as a route to inhibiting corneal graft rejection by the indirect pathway of allorecognition. Eur J Immunol. 2013;43:734-46 pubmed 出版商
  233. Tait E, Jordan K, Dupont C, Harris T, Gregg B, Wilson E, et al. Virulence of Toxoplasma gondii is associated with distinct dendritic cell responses and reduced numbers of activated CD8+ T cells. J Immunol. 2010;185:1502-12 pubmed 出版商
  234. Charles E, Joshi S, Ash J, Fox B, Farris A, Bzik D, et al. CD4 T-cell suppression by cells from Toxoplasma gondii-infected retinas is mediated by surface protein PD-L1. Infect Immun. 2010;78:3484-92 pubmed 出版商
  235. Sadri N, Lu J, Badura M, Schneider R. AUF1 is involved in splenic follicular B cell maintenance. BMC Immunol. 2010;11:1 pubmed 出版商
  236. Schuhmann M, Stegner D, Berna Erro A, Bittner S, Braun A, Kleinschnitz C, et al. Stromal interaction molecules 1 and 2 are key regulators of autoreactive T cell activation in murine autoimmune central nervous system inflammation. J Immunol. 2010;184:1536-42 pubmed 出版商
  237. Siegemund S, Hartl A, von Buttlar H, Dautel F, Raue R, Freudenberg M, et al. Conventional bone marrow-derived dendritic cells contribute to toll-like receptor-independent production of alpha/beta interferon in response to inactivated parapoxvirus ovis. J Virol. 2009;83:9411-22 pubmed 出版商
  238. Ellestad K, Tsutsui S, Noorbakhsh F, Warren K, Yong V, Pittman Q, et al. Early life exposure to lipopolysaccharide suppresses experimental autoimmune encephalomyelitis by promoting tolerogenic dendritic cells and regulatory T cells. J Immunol. 2009;183:298-309 pubmed 出版商
  239. Kiesel J, Buchwald Z, Aurora R. Cross-presentation by osteoclasts induces FoxP3 in CD8+ T cells. J Immunol. 2009;182:5477-87 pubmed 出版商
  240. Blumenthal A, Kobayashi T, Pierini L, Banaei N, Ernst J, Miyake K, et al. RP105 facilitates macrophage activation by Mycobacterium tuberculosis lipoproteins. Cell Host Microbe. 2009;5:35-46 pubmed 出版商
  241. Hamazaki Y, Fujita H, Kobayashi T, Choi Y, Scott H, Matsumoto M, et al. Medullary thymic epithelial cells expressing Aire represent a unique lineage derived from cells expressing claudin. Nat Immunol. 2007;8:304-11 pubmed
  242. Hewitson J, Jenkins G, Hamblin P, Mountford A. CD40/CD154 interactions are required for the optimal maturation of skin-derived APCs and the induction of helminth-specific IFN-gamma but not IL-4. J Immunol. 2006;177:3209-17 pubmed
  243. Zhang J, Raper A, Sugita N, Hingorani R, Salio M, Palmowski M, et al. Characterization of Siglec-H as a novel endocytic receptor expressed on murine plasmacytoid dendritic cell precursors. Blood. 2006;107:3600-8 pubmed
  244. Hoffmann P, Kench J, Vondracek A, Kruk E, Daleke D, Jordan M, et al. Interaction between phosphatidylserine and the phosphatidylserine receptor inhibits immune responses in vivo. J Immunol. 2005;174:1393-404 pubmed
  245. Jenkins S, Mountford A. Dendritic cells activated with products released by schistosome larvae drive Th2-type immune responses, which can be inhibited by manipulation of CD40 costimulation. Infect Immun. 2005;73:395-402 pubmed
  246. Hogg K, Kumkate S, Mountford A. IL-10 regulates early IL-12-mediated immune responses induced by the radiation-attenuated schistosome vaccine. Int Immunol. 2003;15:1451-9 pubmed
  247. Morin J, Faideau B, Gagnerault M, Lepault F, Boitard C, Boudaly S. Passive transfer of flt-3L-derived dendritic cells delays diabetes development in NOD mice and associates with early production of interleukin (IL)-4 and IL-10 in the spleen of recipient mice. Clin Exp Immunol. 2003;134:388-95 pubmed
  248. Cabatingan M, Schmidt M, Sen R, Woodland R. Naive B lymphocytes undergo homeostatic proliferation in response to B cell deficit. J Immunol. 2002;169:6795-805 pubmed
  249. Magner W, Kazim A, Stewart C, Romano M, Catalano G, Grande C, et al. Activation of MHC class I, II, and CD40 gene expression by histone deacetylase inhibitors. J Immunol. 2000;165:7017-24 pubmed
  250. Knobeloch K, Wright M, Ochsenbein A, Liesenfeld O, Lohler J, Zinkernagel R, et al. Targeted inactivation of the tetraspanin CD37 impairs T-cell-dependent B-cell response under suboptimal costimulatory conditions. Mol Cell Biol. 2000;20:5363-9 pubmed
  251. Bauman S, Nichols K, Murphy J. Dendritic cells in the induction of protective and nonprotective anticryptococcal cell-mediated immune responses. J Immunol. 2000;165:158-67 pubmed