这是一篇来自已证抗体库的有关小鼠 Bad的综述,是根据83篇发表使用所有方法的文章归纳的。这综述旨在帮助来邦网的访客找到最适合Bad 抗体。
Bad 同义词: AI325008; Bbc2

艾博抗(上海)贸易有限公司
domestic rabbit 单克隆(Y208)
  • 免疫印迹基因敲除验证; 小鼠; 1:100; 图 s2-4a
  • 免疫组化; 小鼠; 1:100; 图 s4-1a
艾博抗(上海)贸易有限公司 Bad抗体(Abcam, ab32445)被用于被用于免疫印迹基因敲除验证在小鼠样本上浓度为1:100 (图 s2-4a) 和 被用于免疫组化在小鼠样本上浓度为1:100 (图 s4-1a). elife (2020) ncbi
domestic rabbit 单克隆(Y208)
  • 免疫印迹; 人类; 1:2000; 图 5e
艾博抗(上海)贸易有限公司 Bad抗体(Abcam, ab32445)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 5e). Aging (Albany NY) (2020) ncbi
domestic rabbit 单克隆(Y208)
  • 免疫印迹; 人类; 图 4g
艾博抗(上海)贸易有限公司 Bad抗体(Abcam, ab32445)被用于被用于免疫印迹在人类样本上 (图 4g). BMC Cancer (2019) ncbi
domestic rabbit 单克隆(EPR1891(2))
  • 免疫印迹; 人类; 图 4g
艾博抗(上海)贸易有限公司 Bad抗体(Abcam, ab129192)被用于被用于免疫印迹在人类样本上 (图 4g). BMC Cancer (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 4a
艾博抗(上海)贸易有限公司 Bad抗体(Abcam, ab62465)被用于被用于免疫印迹在人类样本上 (图 4a). elife (2019) ncbi
domestic rabbit 单克隆(EPR1891(2))
  • 免疫组化-石蜡切片; 小鼠; 1:1000; 图 3c
艾博抗(上海)贸易有限公司 Bad抗体(Abcam, ab129192)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:1000 (图 3c). BMC Complement Altern Med (2019) ncbi
domestic rabbit 单克隆(Y208)
  • 免疫组化-石蜡切片; 小鼠; 1:1000; 图 3c
艾博抗(上海)贸易有限公司 Bad抗体(Abcam, ab32445)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:1000 (图 3c). BMC Complement Altern Med (2019) ncbi
domestic rabbit 单克隆(Y208)
  • 免疫组化; 小鼠; 1:100; 图 5s2
艾博抗(上海)贸易有限公司 Bad抗体(Abcam, ab32445)被用于被用于免疫组化在小鼠样本上浓度为1:100 (图 5s2). elife (2018) ncbi
domestic rabbit 单克隆(Y208)
  • 免疫印迹; 小鼠; 图 4b
艾博抗(上海)贸易有限公司 Bad抗体(Abcam, ab32445)被用于被用于免疫印迹在小鼠样本上 (图 4b). J Clin Invest (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 4b
艾博抗(上海)贸易有限公司 Bad抗体(Abcam, ab28825)被用于被用于免疫印迹在小鼠样本上 (图 4b). J Clin Invest (2017) ncbi
domestic rabbit 单克隆(Y208)
  • 免疫组化; 犬; 1:1000; 图 1f
艾博抗(上海)贸易有限公司 Bad抗体(Abcam, ab32445)被用于被用于免疫组化在犬样本上浓度为1:1000 (图 1f). PLoS ONE (2017) ncbi
domestic rabbit 单克隆(Y208)
  • 免疫印迹; 小鼠; 1:500
艾博抗(上海)贸易有限公司 Bad抗体(Abcam, ab32445)被用于被用于免疫印迹在小鼠样本上浓度为1:500. PLoS ONE (2013) ncbi
圣克鲁斯生物技术
小鼠 单克隆(F-6)
  • 免疫印迹; 小鼠; 1:50; 图 7b
圣克鲁斯生物技术 Bad抗体(Santa Cruz Biotechnology, sc-271963)被用于被用于免疫印迹在小鼠样本上浓度为1:50 (图 7b). Front Oncol (2020) ncbi
小鼠 单克隆(C-7)
  • 免疫印迹; 大鼠; 1:2000; 图 8
圣克鲁斯生物技术 Bad抗体(Santa Cruz, SC-8044)被用于被用于免疫印迹在大鼠样本上浓度为1:2000 (图 8). BMC Cancer (2019) ncbi
小鼠 单克隆(F-6)
  • 免疫印迹; 人类; 1:1000; 图 1f
圣克鲁斯生物技术 Bad抗体(SantaCruz, sc-271963)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 1f). Front Immunol (2016) ncbi
小鼠 单克隆(C-7)
  • 免疫印迹; 人类; 图 2
圣克鲁斯生物技术 Bad抗体(Santa Cruz, sc-8044)被用于被用于免疫印迹在人类样本上 (图 2). Genes Dev (2016) ncbi
小鼠 单克隆(C-7)
  • 免疫印迹; 人类; 图 4
圣克鲁斯生物技术 Bad抗体(Santa Cruz, sc-8044)被用于被用于免疫印迹在人类样本上 (图 4). Oncotarget (2016) ncbi
小鼠 单克隆(C-7)
  • 其他; 人类; 图 st1
圣克鲁斯生物技术 Bad抗体(SCBT, C-7)被用于被用于其他在人类样本上 (图 st1). Mol Cell Proteomics (2016) ncbi
小鼠 单克隆(C-7)
  • 免疫印迹; 大鼠; 图 5f
圣克鲁斯生物技术 Bad抗体(Santa Cruz, sc-8044)被用于被用于免疫印迹在大鼠样本上 (图 5f). Apoptosis (2016) ncbi
小鼠 单克隆(C-7)
  • 免疫印迹; 人类; 1:1000
圣克鲁斯生物技术 Bad抗体(Santa Cruz Biotechnologies, 8044)被用于被用于免疫印迹在人类样本上浓度为1:1000. Oncoscience (2015) ncbi
小鼠 单克隆(C-7)
  • 免疫印迹; 小鼠; 图 7
圣克鲁斯生物技术 Bad抗体(Santa Cruz, C-7)被用于被用于免疫印迹在小鼠样本上 (图 7). PLoS ONE (2015) ncbi
小鼠 单克隆(C-7)
  • 免疫印迹; 人类; 图 6
圣克鲁斯生物技术 Bad抗体(Santa Cruz, sc-8044)被用于被用于免疫印迹在人类样本上 (图 6). Leukemia (2016) ncbi
小鼠 单克隆(C-7)
  • 免疫印迹; 人类; 图 4
圣克鲁斯生物技术 Bad抗体(Santa Cruz, sc-8044)被用于被用于免疫印迹在人类样本上 (图 4). J Proteome Res (2015) ncbi
小鼠 单克隆(C-7)
  • 免疫印迹; kangaroo rats; 1:200; 图 3
圣克鲁斯生物技术 Bad抗体(santa cruz, sc-8044)被用于被用于免疫印迹在kangaroo rats样本上浓度为1:200 (图 3). Cell Mol Neurobiol (2015) ncbi
小鼠 单克隆(C-7)
  • 免疫印迹; 人类; 1:100
圣克鲁斯生物技术 Bad抗体(Santa Cruz Biotechnology, sc-8044)被用于被用于免疫印迹在人类样本上浓度为1:100. Biomed Res Int (2014) ncbi
赛信通(上海)生物试剂有限公司
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 s2
赛信通(上海)生物试剂有限公司 Bad抗体(Cell Signalling, 9292)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 s2). Environ Health Perspect (2021) ncbi
domestic rabbit 单克隆(D25H8)
  • 免疫组化; 小鼠; 图 4b
  • 免疫印迹; 小鼠; 1:500; 图 4a
赛信通(上海)生物试剂有限公司 Bad抗体(Cell Signaling Technology, 4366)被用于被用于免疫组化在小鼠样本上 (图 4b) 和 被用于免疫印迹在小鼠样本上浓度为1:500 (图 4a). elife (2020) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 4b
赛信通(上海)生物试剂有限公司 Bad抗体(Santa Cruz, 9292)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 4b). Nat Commun (2020) ncbi
小鼠 单克隆(7E11)
  • 免疫印迹; 人类; 1:1000; 图 4c
赛信通(上海)生物试剂有限公司 Bad抗体(Cell Signaling, 9296)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 4c). Nat Commun (2020) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 2c
赛信通(上海)生物试剂有限公司 Bad抗体(Cell Signaling Technology, 9292)被用于被用于免疫印迹在小鼠样本上 (图 2c). Aging (Albany NY) (2020) ncbi
domestic rabbit 单克隆(D24A9)
  • 免疫印迹; 人类; 图 4f
赛信通(上海)生物试剂有限公司 Bad抗体(Cell Signaling, 9239)被用于被用于免疫印迹在人类样本上 (图 4f). J Clin Invest (2019) ncbi
domestic rabbit 单克隆(D24A9)
  • 免疫印迹; 小鼠; 图 s3i
赛信通(上海)生物试剂有限公司 Bad抗体(Cell Signaling, 9239)被用于被用于免疫印迹在小鼠样本上 (图 s3i). Science (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 3a, 3c, s3d
赛信通(上海)生物试剂有限公司 Bad抗体(Cell Signaling, 9295)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 3a, 3c, s3d). Sci Adv (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 s2c
赛信通(上海)生物试剂有限公司 Bad抗体(CST, 9292)被用于被用于免疫印迹在人类样本上 (图 s2c). Nat Commun (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 5a
赛信通(上海)生物试剂有限公司 Bad抗体(Cell Signaling, 9292S)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 5a). J Biol Chem (2018) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 s4a
赛信通(上海)生物试剂有限公司 Bad抗体(Cell Signaling, 9295)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 s4a). Nat Commun (2018) ncbi
domestic rabbit 单克隆(11E3)
  • 免疫印迹; 人类; 图 3b
赛信通(上海)生物试剂有限公司 Bad抗体(Cell Signaling Technology, 9268)被用于被用于免疫印迹在人类样本上 (图 3b). Oncoimmunology (2018) ncbi
domestic rabbit 多克隆
  • 其他; 人类; 图 4c
赛信通(上海)生物试剂有限公司 Bad抗体(Cell Signaling, 9291)被用于被用于其他在人类样本上 (图 4c). Cancer Cell (2018) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 大鼠; 图 1a
  • 免疫印迹; 小鼠; 图 1b
赛信通(上海)生物试剂有限公司 Bad抗体(Cell Signaling, 9292)被用于被用于免疫印迹在大鼠样本上 (图 1a) 和 被用于免疫印迹在小鼠样本上 (图 1b). J Clin Invest (2017) ncbi
domestic rabbit 单克隆(40A9)
  • 免疫印迹; 人类; 图 s5f
赛信通(上海)生物试剂有限公司 Bad抗体(Cell Signaling, 5284)被用于被用于免疫印迹在人类样本上 (图 s5f). Nat Commun (2017) ncbi
domestic rabbit 单克隆(D25H8)
  • 免疫印迹; 小鼠; 1:1000; 图 2b
赛信通(上海)生物试剂有限公司 Bad抗体(Cell Signaling, D25H8)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 2b). Nat Commun (2017) ncbi
domestic rabbit 多克隆
  • reverse phase protein lysate microarray; 人类; 图 st6
赛信通(上海)生物试剂有限公司 Bad抗体(CST, 9291)被用于被用于reverse phase protein lysate microarray在人类样本上 (图 st6). Cancer Cell (2017) ncbi
domestic rabbit 单克隆(40A9)
  • 流式细胞仪; 小鼠
赛信通(上海)生物试剂有限公司 Bad抗体(Cell Signaling, 40A9)被用于被用于流式细胞仪在小鼠样本上. Proc Natl Acad Sci U S A (2017) ncbi
domestic rabbit 单克隆(11E3)
  • 免疫印迹; 小鼠; 图 12A
赛信通(上海)生物试剂有限公司 Bad抗体(Cell signaling, 9268)被用于被用于免疫印迹在小鼠样本上 (图 12A). EBioMedicine (2017) ncbi
domestic rabbit 单克隆(185D10)
  • 免疫印迹; 小鼠; 图 12A
赛信通(上海)生物试剂有限公司 Bad抗体(Cell signaling, 5286)被用于被用于免疫印迹在小鼠样本上 (图 12A). EBioMedicine (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 Bad抗体(Cell Signaling Technology, 9291)被用于被用于免疫印迹在人类样本上. Cell Syst (2017) ncbi
domestic rabbit 单克隆(D25H8)
  • 免疫印迹; 人类; 图 5a
赛信通(上海)生物试剂有限公司 Bad抗体(cell signalling, 4366)被用于被用于免疫印迹在人类样本上 (图 5a). PLoS Med (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 5
赛信通(上海)生物试剂有限公司 Bad抗体(Cell Signaling, 9292)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 5). Biomed Pharmacother (2017) ncbi
小鼠 单克隆(7E11)
  • 免疫印迹; 人类; 1:200; 图 st1
赛信通(上海)生物试剂有限公司 Bad抗体(Cell Signaling, 9296)被用于被用于免疫印迹在人类样本上浓度为1:200 (图 st1). Nat Commun (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:200; 图 st1
赛信通(上海)生物试剂有限公司 Bad抗体(Cell Signaling, 9292)被用于被用于免疫印迹在人类样本上浓度为1:200 (图 st1). Nat Commun (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 4d
赛信通(上海)生物试剂有限公司 Bad抗体(Cell Signaling, 9295)被用于被用于免疫印迹在人类样本上 (图 4d). Cell Death Discov (2016) ncbi
小鼠 单克隆(7E11)
  • 免疫印迹; 人类; 图 4d
赛信通(上海)生物试剂有限公司 Bad抗体(Cell Signaling, 9296)被用于被用于免疫印迹在人类样本上 (图 4d). Cell Death Discov (2016) ncbi
domestic rabbit 单克隆(D25H8)
  • 免疫印迹; 人类; 图 4e
赛信通(上海)生物试剂有限公司 Bad抗体(Cell Signaling, 4366)被用于被用于免疫印迹在人类样本上 (图 4e). Cancer Sci (2016) ncbi
domestic rabbit 单克隆(D25H8)
  • 免疫印迹; 小鼠; 图 6
赛信通(上海)生物试剂有限公司 Bad抗体(Cell Signaling, 4366)被用于被用于免疫印迹在小鼠样本上 (图 6). Proc Natl Acad Sci U S A (2016) ncbi
小鼠 单克隆(7E11)
  • 免疫印迹; 小鼠; 图 6
赛信通(上海)生物试剂有限公司 Bad抗体(Cell Signaling, 9296)被用于被用于免疫印迹在小鼠样本上 (图 6). Proc Natl Acad Sci U S A (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 s2b
赛信通(上海)生物试剂有限公司 Bad抗体(Cell signaling, 9292)被用于被用于免疫印迹在人类样本上 (图 s2b). Oncotarget (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 10a
赛信通(上海)生物试剂有限公司 Bad抗体(Cell Signaling, 9292)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 10a). PLoS ONE (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 4
赛信通(上海)生物试剂有限公司 Bad抗体(Cell Signaling, 9292)被用于被用于免疫印迹在人类样本上 (图 4). Mol Brain (2016) ncbi
domestic rabbit 单克隆(D24A9)
  • 免疫印迹; 小鼠; 1:1000; 图 7
赛信通(上海)生物试剂有限公司 Bad抗体(Cell Signaling Technology, 9239)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 7). Nat Immunol (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 3f
赛信通(上海)生物试剂有限公司 Bad抗体(Cell Signaling, 9292)被用于被用于免疫印迹在人类样本上 (图 3f). PLoS ONE (2016) ncbi
domestic rabbit 单克隆(D24A9)
  • 免疫印迹; 小鼠; 1:1000; 表 1
赛信通(上海)生物试剂有限公司 Bad抗体(CST, 9239)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (表 1). J Alzheimers Dis (2016) ncbi
domestic rabbit 单克隆(D25H8)
  • 免疫印迹; 小鼠; 1:1000; 表 1
赛信通(上海)生物试剂有限公司 Bad抗体(CST, 4366)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (表 1). J Alzheimers Dis (2016) ncbi
domestic rabbit 单克隆(D24A9)
  • 免疫印迹; 人类; 1:1000; 图 1
赛信通(上海)生物试剂有限公司 Bad抗体(Cell Signaling Tech, 9239)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 1). Oncotarget (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 7
赛信通(上海)生物试剂有限公司 Bad抗体(Cell signaling, 9292S)被用于被用于免疫印迹在人类样本上 (图 7). Life Sci (2016) ncbi
domestic rabbit 单克隆(D25H8)
  • 免疫印迹; 人类; 图 5
赛信通(上海)生物试剂有限公司 Bad抗体(Cell signaling, 4366S)被用于被用于免疫印迹在人类样本上 (图 5). Life Sci (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 2
赛信通(上海)生物试剂有限公司 Bad抗体(Cell signaling, 9292)被用于被用于免疫印迹在人类样本上 (图 2). BMC Cancer (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 2
赛信通(上海)生物试剂有限公司 Bad抗体(Cell signaling, 9291)被用于被用于免疫印迹在人类样本上 (图 2). BMC Cancer (2016) ncbi
domestic rabbit 单克隆(D25H8)
  • 免疫印迹; 人类; 图 4
赛信通(上海)生物试剂有限公司 Bad抗体(Cell signaling, 4366)被用于被用于免疫印迹在人类样本上 (图 4). Mol Cancer (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 4
赛信通(上海)生物试剂有限公司 Bad抗体(Cell signaling, 9292)被用于被用于免疫印迹在人类样本上 (图 4). Mol Cancer (2016) ncbi
domestic rabbit 单克隆(D24A9)
  • 免疫印迹; 人类; 1:1000; 图 s1
赛信通(上海)生物试剂有限公司 Bad抗体(Cell Signaling Technology, 9239)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 s1). PLoS ONE (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:500; 图 5
赛信通(上海)生物试剂有限公司 Bad抗体(Cell Signaling Technology, 9292)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 5). Cancer Res (2016) ncbi
domestic rabbit 单克隆(40A9)
  • 免疫印迹; 人类; 1:500; 图 5
赛信通(上海)生物试剂有限公司 Bad抗体(Cell Signaling Technology, 5284)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 5). Cancer Res (2016) ncbi
domestic rabbit 单克隆(D25H8)
  • 免疫印迹; 大鼠; 1:1000; 图 4
赛信通(上海)生物试剂有限公司 Bad抗体(Cell Signaling Technologies, CST4366P)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 4). Mol Med Rep (2016) ncbi
domestic rabbit 单克隆(D24A9)
  • 免疫印迹; 人类; 图 5
赛信通(上海)生物试剂有限公司 Bad抗体(Cell signaling, 9239)被用于被用于免疫印迹在人类样本上 (图 5). Oncotarget (2016) ncbi
domestic rabbit 单克隆(D24A9)
  • 免疫印迹; 人类; 1:1000; 图 1
赛信通(上海)生物试剂有限公司 Bad抗体(Cell Signaling Technology, 9239)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 1). Mol Cancer (2015) ncbi
domestic rabbit 单克隆(40A9)
  • 免疫印迹; 人类; 1:1000; 图 1
赛信通(上海)生物试剂有限公司 Bad抗体(Cell Signaling Technology, 5284)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 1). Mol Cancer (2015) ncbi
domestic rabbit 单克隆(40A9)
  • 免疫印迹; 小鼠; 图 s4c
赛信通(上海)生物试剂有限公司 Bad抗体(Cell Signaling, 5284)被用于被用于免疫印迹在小鼠样本上 (图 s4c). Sci Adv (2015) ncbi
domestic rabbit 单克隆(D24A9)
  • 免疫印迹; 小鼠; 图 4
赛信通(上海)生物试剂有限公司 Bad抗体(Cell Signaling, 9239)被用于被用于免疫印迹在小鼠样本上 (图 4). Nat Immunol (2016) ncbi
小鼠 单克隆(7E11)
  • 免疫印迹; 人类; 图 s1b
赛信通(上海)生物试剂有限公司 Bad抗体(Cell Signaling, 9296)被用于被用于免疫印迹在人类样本上 (图 s1b). Oncotarget (2015) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 1
赛信通(上海)生物试剂有限公司 Bad抗体(Cell Signaling, CS9292)被用于被用于免疫印迹在小鼠样本上 (图 1). Cell Death Differ (2016) ncbi
domestic rabbit 单克隆(D24A9)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 Bad抗体(Cell Signaling, 9239)被用于被用于免疫印迹在人类样本上. J Biol Chem (2015) ncbi
domestic rabbit 单克隆(40A9)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 Bad抗体(Cell Signaling, 5284)被用于被用于免疫印迹在人类样本上. J Biol Chem (2015) ncbi
domestic rabbit 单克隆(D24A9)
  • 免疫印迹; 人类; 1:1000; 图 1A
赛信通(上海)生物试剂有限公司 Bad抗体(Cell Signaling, 9239)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 1A). Mol Med Rep (2015) ncbi
domestic rabbit 单克隆(D24A9)
  • 免疫印迹; 人类; 图 5
赛信通(上海)生物试剂有限公司 Bad抗体(Cell signaling, 9239)被用于被用于免疫印迹在人类样本上 (图 5). Cell Cycle (2015) ncbi
domestic rabbit 单克隆(D25H8)
  • 免疫印迹; 小鼠; 1:1000; 图 3
赛信通(上海)生物试剂有限公司 Bad抗体(Cell signaling, 4366)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 3). PLoS ONE (2014) ncbi
domestic rabbit 单克隆(D25H8)
  • 免疫印迹; 小鼠; 1:1000; 图 4
赛信通(上海)生物试剂有限公司 Bad抗体(Cell signaling, 4366)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 4). PLoS ONE (2014) ncbi
domestic rabbit 单克隆(D25H8)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 Bad抗体(Cell Signaling, 4366)被用于被用于免疫印迹在人类样本上. J Mol Endocrinol (2014) ncbi
domestic rabbit 单克隆(11E3)
  • 免疫印迹; 人类; 图 6a
赛信通(上海)生物试剂有限公司 Bad抗体(cell signalling, 9268)被用于被用于免疫印迹在人类样本上 (图 6a). Oncotarget (2014) ncbi
domestic rabbit 单克隆(D24A9)
  • 免疫印迹; 小鼠
赛信通(上海)生物试剂有限公司 Bad抗体(Cell Signaling, 9239)被用于被用于免疫印迹在小鼠样本上. Endocrinology (2014) ncbi
domestic rabbit 单克隆(D25H8)
  • 免疫印迹; 人类; 图 2
赛信通(上海)生物试剂有限公司 Bad抗体(Cell Signaling Tech, 4366)被用于被用于免疫印迹在人类样本上 (图 2). Oncogene (2015) ncbi
domestic rabbit 单克隆(40A9)
  • 免疫印迹; 人类; 图 2
赛信通(上海)生物试剂有限公司 Bad抗体(Cell Signaling Tech, 5284)被用于被用于免疫印迹在人类样本上 (图 2). Oncogene (2015) ncbi
domestic rabbit 单克隆(11E3)
  • 免疫印迹; 人类; 图 2
赛信通(上海)生物试剂有限公司 Bad抗体(Cell Signaling Tech, 9268)被用于被用于免疫印迹在人类样本上 (图 2). Oncogene (2015) ncbi
domestic rabbit 单克隆(D24A9)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 Bad抗体(Cell Signaling, 9239)被用于被用于免疫印迹在人类样本上. Cell Death Dis (2014) ncbi
domestic rabbit 单克隆(D24A9)
  • 免疫印迹; 小鼠
赛信通(上海)生物试剂有限公司 Bad抗体(Cell Signaling Technology, 9239)被用于被用于免疫印迹在小鼠样本上. J Neurosci (2013) ncbi
domestic rabbit 单克隆(D24A9)
  • 免疫印迹; 人类; 1:1000
赛信通(上海)生物试剂有限公司 Bad抗体(Cell Signaling Technologies, D24A9)被用于被用于免疫印迹在人类样本上浓度为1:1000. Cell Death Differ (2013) ncbi
domestic rabbit 单克隆(D24A9)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 Bad抗体(Cell Signaling Technology, 9239)被用于被用于免疫印迹在人类样本上. Blood (2013) ncbi
domestic rabbit 单克隆(40A9)
  • 免疫印迹; 人类; 图 1
赛信通(上海)生物试剂有限公司 Bad抗体(Cell Signaling Technology, 5284)被用于被用于免疫印迹在人类样本上 (图 1). Blood (2013) ncbi
domestic rabbit 单克隆(D25H8)
  • 免疫印迹; 人类; 图 1
赛信通(上海)生物试剂有限公司 Bad抗体(Cell Signaling Technology, 4366)被用于被用于免疫印迹在人类样本上 (图 1). PLoS ONE (2012) ncbi
碧迪BD
小鼠 单克隆(48/Bad)
  • 免疫组化-石蜡切片; 人类; 图 6b
碧迪BD Bad抗体(BD Biosciences, 610391)被用于被用于免疫组化-石蜡切片在人类样本上 (图 6b). Oncotarget (2016) ncbi
小鼠 单克隆(48/Bad)
  • 免疫印迹; 人类; 图 st2
碧迪BD Bad抗体(BD Bioscience, 610392)被用于被用于免疫印迹在人类样本上 (图 st2). Oncotarget (2015) ncbi
小鼠 单克隆(48/Bad)
  • 免疫印迹; 人类; 图 4
碧迪BD Bad抗体(BD Bioscience, 610392)被用于被用于免疫印迹在人类样本上 (图 4). Oncotarget (2015) ncbi
小鼠 单克隆(48/Bad)
  • 免疫印迹; 人类; 图 5
碧迪BD Bad抗体(BD Biosciences, 610391)被用于被用于免疫印迹在人类样本上 (图 5). Biomed Res Int (2015) ncbi
文章列表
  1. Wang Y, Lee Y, Hsu Y, Chiu I, Huang C, Huang C, et al. The Kidney-Related Effects of Polystyrene Microplastics on Human Kidney Proximal Tubular Epithelial Cells HK-2 and Male C57BL/6 Mice. Environ Health Perspect. 2021;129:57003 pubmed 出版商
  2. Li J, Zhang L, Zheng Y, Shao R, Liang Q, Yu W, et al. BAD inactivation exacerbates rheumatoid arthritis pathology by promoting survival of sublining macrophages. elife. 2020;9: pubmed 出版商
  3. Ceccarelli M, D Andrea G, Micheli L, Tirone F. Deletion of Btg1 Induces Prmt1-Dependent Apoptosis and Increased Stemness in Shh-Type Medulloblastoma Cells Without Affecting Tumor Frequency. Front Oncol. 2020;10:226 pubmed 出版商
  4. Huang S, Zhang C, Sun C, Hou Y, Zhang Y, Tam N, et al. Obg-like ATPase 1 (OLA1) overexpression predicts poor prognosis and promotes tumor progression by regulating P21/CDK2 in hepatocellular carcinoma. Aging (Albany NY). 2020;12:3025-3041 pubmed 出版商
  5. Kennedy S, Jarboui M, Srihari S, Raso C, Bryan K, Dernayka L, et al. Extensive rewiring of the EGFR network in colorectal cancer cells expressing transforming levels of KRASG13D. Nat Commun. 2020;11:499 pubmed 出版商
  6. Cui J, Duan J, Chu J, Guo C, Xi M, Li Y, et al. Chikusetsu saponin IVa protects pancreatic β cell against intermittent high glucose-induced injury by activating Wnt/β-catenin/TCF7L2 pathway. Aging (Albany NY). 2020;12:1591-1609 pubmed 出版商
  7. Singh M, Kasna S, Roy S, Aldosary S, Saeedan A, Ansari M, et al. Repurposing mechanistic insight of PDE-5 inhibitor in cancer chemoprevention through mitochondrial-oxidative stress intervention and blockade of DuCLOX signalling. BMC Cancer. 2019;19:996 pubmed 出版商
  8. Wang N, Fan Y, Yuan C, Song J, Yao Y, Liu W, et al. Selective ERK1/2 agonists isolated from Melia azedarach with potent anti-leukemic activity. BMC Cancer. 2019;19:764 pubmed 出版商
  9. Kabir S, Cidado J, Andersen C, Dick C, Lin P, Mitros T, et al. The CUL5 ubiquitin ligase complex mediates resistance to CDK9 and MCL1 inhibitors in lung cancer cells. elife. 2019;8: pubmed 出版商
  10. Zhong H, Wu H, Bai H, Wang M, Wen J, Gong J, et al. Panax notoginseng saponins promote liver regeneration through activation of the PI3K/AKT/mTOR cell proliferation pathway and upregulation of the AKT/Bad cell survival pathway in mice. BMC Complement Altern Med. 2019;19:122 pubmed 出版商
  11. Pan C, Jin L, Wang X, Li Y, Chun J, Boese A, et al. Inositol-triphosphate 3-kinase B confers cisplatin resistance by regulating NOX4-dependent redox balance. J Clin Invest. 2019;129:2431-2445 pubmed 出版商
  12. He M, Chaurushiya M, Webster J, Kummerfeld S, Reja R, Chaudhuri S, et al. Intrinsic apoptosis shapes the tumor spectrum linked to inactivation of the deubiquitinase BAP1. Science. 2019;364:283-285 pubmed 出版商
  13. Liu Z, Wu C, Pan Y, Liu H, Wang X, Yang Y, et al. NDR2 promotes the antiviral immune response via facilitating TRIM25-mediated RIG-I activation in macrophages. Sci Adv. 2019;5:eaav0163 pubmed 出版商
  14. Haikala H, Anttila J, Marques E, Raatikainen T, Ilander M, Hakanen H, et al. Pharmacological reactivation of MYC-dependent apoptosis induces susceptibility to anti-PD-1 immunotherapy. Nat Commun. 2019;10:620 pubmed 出版商
  15. De R, Sarkar S, Mazumder S, Debsharma S, Siddiqui A, Saha S, et al. Macrophage migration inhibitory factor regulates mitochondrial dynamics and cell growth of human cancer cell lines through CD74-NF-κB signaling. J Biol Chem. 2018;293:19740-19760 pubmed 出版商
  16. Liu Z, Qin Q, Wu C, Li H, Shou J, Yang Y, et al. Downregulated NDR1 protein kinase inhibits innate immune response by initiating an miR146a-STAT1 feedback loop. Nat Commun. 2018;9:2789 pubmed 出版商
  17. Yang M, Li C, Zhu S, Cao L, Kroemer G, Zeh H, et al. TFAM is a novel mediator of immunogenic cancer cell death. Oncoimmunology. 2018;7:e1431086 pubmed 出版商
  18. Ng P, Li J, Jeong K, Shao S, Chen H, Tsang Y, et al. Systematic Functional Annotation of Somatic Mutations in Cancer. Cancer Cell. 2018;33:450-462.e10 pubmed 出版商
  19. Martínez François J, Fernández Agüera M, Nathwani N, Lahmann C, Burnham V, Danial N, et al. BAD and KATP channels regulate neuron excitability and epileptiform activity. elife. 2018;7: pubmed 出版商
  20. Zhao L, Liu J, He C, Yan R, Zhou K, Cui Q, et al. Protein kinase A determines platelet life span and survival by regulating apoptosis. J Clin Invest. 2017;127:4338-4351 pubmed 出版商
  21. Bartolomeo R, Cinque L, De Leonibus C, Forrester A, Salzano A, Monfregola J, et al. mTORC1 hyperactivation arrests bone growth in lysosomal storage disorders by suppressing autophagy. J Clin Invest. 2017;127:3717-3729 pubmed 出版商
  22. Sinha S, Thomas D, Chan S, Gao Y, Brunen D, Torabi D, et al. Systematic discovery of mutation-specific synthetic lethals by mining pan-cancer human primary tumor data. Nat Commun. 2017;8:15580 pubmed 出版商
  23. Ahmed S, Macara I. The Par3 polarity protein is an exocyst receptor essential for mammary cell survival. Nat Commun. 2017;8:14867 pubmed 出版商
  24. Cherniack A, Shen H, Walter V, Stewart C, Murray B, Bowlby R, et al. Integrated Molecular Characterization of Uterine Carcinosarcoma. Cancer Cell. 2017;31:411-423 pubmed 出版商
  25. Knudson K, Pritzl C, Saxena V, Altman A, Daniels M, Teixeiro E. NFκB-Pim-1-Eomesodermin axis is critical for maintaining CD8 T-cell memory quality. Proc Natl Acad Sci U S A. 2017;114:E1659-E1667 pubmed 出版商
  26. Shen C, Zhou J, Wang X, Yu X, Liang C, Liu B, et al. Angiotensin-II-induced Muscle Wasting is Mediated by 25-Hydroxycholesterol via GSK3? Signaling Pathway. EBioMedicine. 2017;16:238-250 pubmed 出版商
  27. Beffagna G, Sammarco A, Bedin C, Romualdi C, Mainenti M, Mollo A, et al. Circulating Cell-Free DNA in Dogs with Mammary Tumors: Short and Long Fragments and Integrity Index. PLoS ONE. 2017;12:e0169454 pubmed 出版商
  28. Hill S, Nesser N, Johnson Camacho K, Jeffress M, Johnson A, Boniface C, et al. Context Specificity in Causal Signaling Networks Revealed by Phosphoprotein Profiling. Cell Syst. 2017;4:73-83.e10 pubmed 出版商
  29. Li Y, Buijs Gladdines J, Cant Barrett K, Stubbs A, Vroegindeweij E, Smits W, et al. IL-7 Receptor Mutations and Steroid Resistance in Pediatric T cell Acute Lymphoblastic Leukemia: A Genome Sequencing Study. PLoS Med. 2016;13:e1002200 pubmed 出版商
  30. Solárová Z, Kello M, Varinska L, Budovská M, Solar P. Inhibition of heat shock protein (Hsp) 90 potentiates the antiproliferative and pro-apoptotic effects of 2-(4'fluoro-phenylamino)-4H-1,3-thiazine[6,5-b]indole in A2780cis cells. Biomed Pharmacother. 2017;85:463-471 pubmed 出版商
  31. Pandey R, Mehrotra S, Sharma S, Gudde R, Sundar S, Shaha C. Leishmania donovani-Induced Increase in Macrophage Bcl-2 Favors Parasite Survival. Front Immunol. 2016;7:456 pubmed
  32. Treindl F, Ruprecht B, Beiter Y, Schultz S, Döttinger A, Staebler A, et al. A bead-based western for high-throughput cellular signal transduction analyses. Nat Commun. 2016;7:12852 pubmed 出版商
  33. Torres A, Vargas Y, Uribe D, Jaramillo C, Gleisner A, Salazar Onfray F, et al. Adenosine A3 receptor elicits chemoresistance mediated by multiple resistance-associated protein-1 in human glioblastoma stem-like cells. Oncotarget. 2016;7:67373-67386 pubmed 出版商
  34. Jinesh G, Molina J, Huang L, Laing N, Mills G, Bar Eli M, et al. Mitochondrial oligomers boost glycolysis in cancer stem cells to facilitate blebbishield-mediated transformation after apoptosis. Cell Death Discov. 2016;2:16003 pubmed 出版商
  35. Takagi Y, Shimada K, Shimada S, Sakamoto A, Naoe T, Nakamura S, et al. SPIB is a novel prognostic factor in diffuse large B-cell lymphoma that mediates apoptosis via the PI3K-AKT pathway. Cancer Sci. 2016;107:1270-80 pubmed 出版商
  36. Tejada T, Tan L, Torres R, Calvert J, Lambert J, Zaidi M, et al. IGF-1 degradation by mouse mast cell protease 4 promotes cell death and adverse cardiac remodeling days after a myocardial infarction. Proc Natl Acad Sci U S A. 2016;113:6949-54 pubmed 出版商
  37. Park S, Yi H, Suh N, Park Y, Koh J, Jeong S, et al. Inhibition of EHMT2/G9a epigenetically increases the transcription of Beclin-1 via an increase in ROS and activation of NF-?B. Oncotarget. 2016;7:39796-39808 pubmed 出版商
  38. Hossini A, Quast A, Plötz M, Grauel K, Exner T, Küchler J, et al. PI3K/AKT Signaling Pathway Is Essential for Survival of Induced Pluripotent Stem Cells. PLoS ONE. 2016;11:e0154770 pubmed 出版商
  39. Kim H, Oh J, Choi S, Nam Y, Jo A, Kwon A, et al. Down-regulation of p21-activated serine/threonine kinase 1 is involved in loss of mesencephalic dopamine neurons. Mol Brain. 2016;9:45 pubmed 出版商
  40. Swamy M, Pathak S, Grzes K, Damerow S, Sinclair L, van Aalten D, et al. Glucose and glutamine fuel protein O-GlcNAcylation to control T cell self-renewal and malignancy. Nat Immunol. 2016;17:712-20 pubmed 出版商
  41. O Neill K, Huang K, Zhang J, Chen Y, Luo X. Inactivation of prosurvival Bcl-2 proteins activates Bax/Bak through the outer mitochondrial membrane. Genes Dev. 2016;30:973-88 pubmed 出版商
  42. Singh A, Joshi S, Zulcic M, Alcaraz M, GARLICH J, Morales G, et al. PI-3K Inhibitors Preferentially Target CD15+ Cancer Stem Cell Population in SHH Driven Medulloblastoma. PLoS ONE. 2016;11:e0150836 pubmed 出版商
  43. Guillot F, Kemppainen S, Lavasseur G, Miettinen P, Laroche S, Tanila H, et al. Brain-Specific Basal and Novelty-Induced Alternations in PI3K-Akt and MAPK/ERK Signaling in a Middle-Aged AβPP/PS1 Mouse Model of Alzheimer's Disease. J Alzheimers Dis. 2016;51:1157-73 pubmed 出版商
  44. Yu L, Wu W, Gu C, Zhong D, Zhao X, Kong Y, et al. Obatoclax impairs lysosomal function to block autophagy in cisplatin-sensitive and -resistant esophageal cancer cells. Oncotarget. 2016;7:14693-707 pubmed 出版商
  45. Urnukhsaikhan E, Cho H, Mishig Ochir T, Seo Y, Park J. Pulsed electromagnetic fields promote survival and neuronal differentiation of human BM-MSCs. Life Sci. 2016;151:130-138 pubmed 出版商
  46. Wang J, Goetsch L, Tucker L, Zhang Q, Gonzalez A, Vaidya K, et al. Anti-c-Met monoclonal antibody ABT-700 breaks oncogene addiction in tumors with MET amplification. BMC Cancer. 2016;16:105 pubmed 出版商
  47. De Toni E, Ziesch A, Rizzani A, Török H, Hocke S, Lü S, et al. Inactivation of BRCA2 in human cancer cells identifies a subset of tumors with enhanced sensitivity towards death receptor-mediated apoptosis. Oncotarget. 2016;7:9477-90 pubmed 出版商
  48. Luey B, May F. Insulin-like growth factors are essential to prevent anoikis in oestrogen-responsive breast cancer cells: importance of the type I IGF receptor and PI3-kinase/Akt pathway. Mol Cancer. 2016;15:8 pubmed 出版商
  49. Kanderová V, Kuzilkova D, Stuchly J, Vaskova M, Brdicka T, Fiser K, et al. High-resolution Antibody Array Analysis of Childhood Acute Leukemia Cells. Mol Cell Proteomics. 2016;15:1246-61 pubmed 出版商
  50. Qiu Z, Sun R, Mo X, Li W. The p70S6K Specific Inhibitor PF-4708671 Impedes Non-Small Cell Lung Cancer Growth. PLoS ONE. 2016;11:e0147185 pubmed 出版商
  51. Amato K, Wang S, Tan L, Hastings A, Song W, Lovly C, et al. EPHA2 Blockade Overcomes Acquired Resistance to EGFR Kinase Inhibitors in Lung Cancer. Cancer Res. 2016;76:305-18 pubmed 出版商
  52. Zhang H, Xiong Z, Wang J, Zhang S, Lei L, Yang L, et al. Glucagon-like peptide-1 protects cardiomyocytes from advanced oxidation protein product-induced apoptosis via the PI3K/Akt/Bad signaling pathway. Mol Med Rep. 2016;13:1593-601 pubmed 出版商
  53. Wang F, Feng Y, Li P, Wang K, Feng L, Liu Y, et al. RASSF10 is an epigenetically inactivated tumor suppressor and independent prognostic factor in hepatocellular carcinoma. Oncotarget. 2016;7:4279-97 pubmed 出版商
  54. Jia Z, Wang J, Shi Q, Liu S, Wang W, Tian Y, et al. SOX6 and PDCD4 enhance cardiomyocyte apoptosis through LPS-induced miR-499 inhibition. Apoptosis. 2016;21:174-83 pubmed 出版商
  55. Kreuz S, Holmes K, Tooze R, Lefevre P. Loss of PIM2 enhances the anti-proliferative effect of the pan-PIM kinase inhibitor AZD1208 in non-Hodgkin lymphomas. Mol Cancer. 2015;14:205 pubmed 出版商
  56. Green A, Maciel T, Hospital M, Yin C, Mazed F, Townsend E, et al. Pim kinases modulate resistance to FLT3 tyrosine kinase inhibitors in FLT3-ITD acute myeloid leukemia. Sci Adv. 2015;1:e1500221 pubmed 出版商
  57. Hukelmann J, Anderson K, Sinclair L, Grzes K, Murillo A, Hawkins P, et al. The cytotoxic T cell proteome and its shaping by the kinase mTOR. Nat Immunol. 2016;17:104-12 pubmed 出版商
  58. Webber P, Park C, Qui M, Ramalingam S, Khuri F, Fu H, et al. Combination of heat shock protein 90 and focal adhesion kinase inhibitors synergistically inhibits the growth of non-small cell lung cancer cells. Oncoscience. 2015;2:765-776 pubmed
  59. Mazzacurati L, Lambert Q, Pradhan A, Griner L, Huszar D, Reuther G. The PIM inhibitor AZD1208 synergizes with ruxolitinib to induce apoptosis of ruxolitinib sensitive and resistant JAK2-V617F-driven cells and inhibit colony formation of primary MPN cells. Oncotarget. 2015;6:40141-57 pubmed 出版商
  60. Tiffen J, Gunatilake D, Gallagher S, Gowrishankar K, Heinemann A, Cullinane C, et al. Targeting activating mutations of EZH2 leads to potent cell growth inhibition in human melanoma by derepression of tumor suppressor genes. Oncotarget. 2015;6:27023-36 pubmed 出版商
  61. Lee S, Kim J, Hong S, Lee A, Park E, Seo H, et al. High Inorganic Phosphate Intake Promotes Tumorigenesis at Early Stages in a Mouse Model of Lung Cancer. PLoS ONE. 2015;10:e0135582 pubmed 出版商
  62. Akahane K, Sanda T, Mansour M, Radimerski T, DeAngelo D, Weinstock D, et al. HSP90 inhibition leads to degradation of the TYK2 kinase and apoptotic cell death in T-cell acute lymphoblastic leukemia. Leukemia. 2016;30:219-28 pubmed 出版商
  63. Heinemann A, Cullinane C, De Paoli Iseppi R, Wilmott J, Gunatilake D, Madore J, et al. Combining BET and HDAC inhibitors synergistically induces apoptosis of melanoma and suppresses AKT and YAP signaling. Oncotarget. 2015;6:21507-21 pubmed
  64. Schuler F, Baumgartner F, Klepsch V, Chamson M, Müller Holzner E, Watson C, et al. The BH3-only protein BIM contributes to late-stage involution in the mouse mammary gland. Cell Death Differ. 2016;23:41-51 pubmed 出版商
  65. Berard A, Coombs K, Severini A. Quantification of the host response proteome after herpes simplex virus type 1 infection. J Proteome Res. 2015;14:2121-42 pubmed 出版商
  66. Rayavarapu R, Heiden B, Pagani N, Shaw M, Shuff S, Zhang S, et al. The role of multicellular aggregation in the survival of ErbB2-positive breast cancer cells during extracellular matrix detachment. J Biol Chem. 2015;290:8722-33 pubmed 出版商
  67. Huang P, Hung S, Pao C, Wang T. N-(1-pyrenyl) maleimide induces bak oligomerization and mitochondrial dysfunction in Jurkat Cells. Biomed Res Int. 2015;2015:798489 pubmed 出版商
  68. Xia J, Chen S, Lv Y, Lu L, Hu W, Zhou Y. ZGDHu-1 induces Gâ‚‚/M phase arrest and apoptosis in Kasumi-1 cells. Mol Med Rep. 2015;11:3398-404 pubmed 出版商
  69. Valianou M, Cox A, Pichette B, Hartley S, Paladhi U, Astrinidis A. Pharmacological inhibition of Polo-like kinase 1 (PLK1) by BI-2536 decreases the viability and survival of hamartin and tuberin deficient cells via induction of apoptosis and attenuation of autophagy. Cell Cycle. 2015;14:399-407 pubmed 出版商
  70. Chen C, Hung T, Lee C, Wang L, Wu C, Ke C, et al. Berberine protects against neuronal damage via suppression of glia-mediated inflammation in traumatic brain injury. PLoS ONE. 2014;9:e115694 pubmed 出版商
  71. Wu C, Hung T, Chen C, Ke C, Lee C, Wang P, et al. Post-injury treatment with 7,8-dihydroxyflavone, a TrkB receptor agonist, protects against experimental traumatic brain injury via PI3K/Akt signaling. PLoS ONE. 2014;9:e113397 pubmed 出版商
  72. Blaabjerg L, Christensen G, Matsumoto M, van der Meulen T, Huising M, Billestrup N, et al. CRFR1 activation protects against cytokine-induced β-cell death. J Mol Endocrinol. 2014;53:417-27 pubmed 出版商
  73. Pilchova I, Klacanova K, Chomova M, Tatarkova Z, Dobrota D, Racay P. Possible contribution of proteins of Bcl-2 family in neuronal death following transient global brain ischemia. Cell Mol Neurobiol. 2015;35:23-31 pubmed 出版商
  74. Wang F, Cai M, Mai S, Chen J, Bai H, Li Y, et al. Ablation of EIF5A2 induces tumor vasculature remodeling and improves tumor response to chemotherapy via regulation of matrix metalloproteinase 2 expression. Oncotarget. 2014;5:6716-33 pubmed
  75. Liu E, Zalutskaya A, Chae B, Zhu E, Gori F, Demay M. Phosphate interacts with PTHrP to regulate endochondral bone formation. Endocrinology. 2014;155:3750-6 pubmed 出版商
  76. Chondrogiannis G, Kastamoulas M, Kanavaros P, Vartholomatos G, Bai M, Baltogiannis D, et al. Cytokine effects on cell viability and death of prostate carcinoma cells. Biomed Res Int. 2014;2014:536049 pubmed 出版商
  77. Moody S, Schinzel A, Singh S, Izzo F, Strickland M, Luo L, et al. PRKACA mediates resistance to HER2-targeted therapy in breast cancer cells and restores anti-apoptotic signaling. Oncogene. 2015;34:2061-71 pubmed 出版商
  78. Pavet V, Shlyakhtina Y, He T, Ceschin D, Kohonen P, Perala M, et al. Plasminogen activator urokinase expression reveals TRAIL responsiveness and supports fractional survival of cancer cells. Cell Death Dis. 2014;5:e1043 pubmed 出版商
  79. Crowther A, Gama V, Bevilacqua A, Chang S, Yuan H, Deshmukh M, et al. Tonic activation of Bax primes neural progenitors for rapid apoptosis through a mechanism preserved in medulloblastoma. J Neurosci. 2013;33:18098-108 pubmed 出版商
  80. Geissler A, Haun F, Frank D, Wieland K, Simon M, Idzko M, et al. Apoptosis induced by the fungal pathogen gliotoxin requires a triple phosphorylation of Bim by JNK. Cell Death Differ. 2013;20:1317-29 pubmed 出版商
  81. Lu J, Zavorotinskaya T, Dai Y, Niu X, Castillo J, Sim J, et al. Pim2 is required for maintaining multiple myeloma cell growth through modulating TSC2 phosphorylation. Blood. 2013;122:1610-20 pubmed 出版商
  82. Brennan G, Jimenez Mateos E, McKiernan R, Engel T, Tzivion G, Henshall D. Transgenic overexpression of 14-3-3 zeta protects hippocampus against endoplasmic reticulum stress and status epilepticus in vivo. PLoS ONE. 2013;8:e54491 pubmed 出版商
  83. Riaz A, Zeller K, Johansson S. Receptor-specific mechanisms regulate phosphorylation of AKT at Ser473: role of RICTOR in ?1 integrin-mediated cell survival. PLoS ONE. 2012;7:e32081 pubmed 出版商