这是一篇来自已证抗体库的有关小鼠 CD8的综述,是根据1387篇发表使用所有方法的文章归纳的。这综述旨在帮助来邦网的访客找到最适合CD8 抗体。
CD8 同义词: BB154331; Ly-2; Ly-35; Ly-B; Lyt-2

BioLegend
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 1:200
BioLegend CD8抗体(BioLegend, 100728)被用于被用于流式细胞仪在小鼠样本上浓度为1:200. elife (2022) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 6e, 6f, 6g, 6h
BioLegend CD8抗体(BioLegend, 100711)被用于被用于流式细胞仪在小鼠样本上 (图 6e, 6f, 6g, 6h). Allergy Asthma Immunol Res (2022) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠
BioLegend CD8抗体(BioLegend, 53-6.7)被用于被用于流式细胞仪在小鼠样本上. J Exp Med (2022) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠
BioLegend CD8抗体(BioLegend, 100730)被用于被用于流式细胞仪在小鼠样本上. Vaccine (2022) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 4b, s4b
BioLegend CD8抗体(Biolegend, 53-6.7)被用于被用于流式细胞仪在小鼠样本上 (图 4b, s4b). Front Cell Infect Microbiol (2022) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 s5a
BioLegend CD8抗体(Biolegend, 53-6.7)被用于被用于流式细胞仪在小鼠样本上 (图 s5a). Leukemia (2022) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 1:200; 图 s4
BioLegend CD8抗体(Biolegend, 100741)被用于被用于流式细胞仪在小鼠样本上浓度为1:200 (图 s4). PLoS Biol (2022) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 s3
BioLegend CD8抗体(BioLegend, 100711)被用于被用于流式细胞仪在小鼠样本上 (图 s3). J Clin Invest (2022) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 3a
BioLegend CD8抗体(Biolegend, 53-6.7)被用于被用于流式细胞仪在小鼠样本上 (图 3a). Front Immunol (2022) ncbi
大鼠 单克隆(53-6.7)
  • 免疫组化-冰冻切片; 小鼠; 图 6g
BioLegend CD8抗体(BioLegend, 100777)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 6g). Sci Adv (2022) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 1:100; 图 7d
BioLegend CD8抗体(Biolgend, 100712)被用于被用于流式细胞仪在小鼠样本上浓度为1:100 (图 7d). Nat Commun (2022) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 2c
BioLegend CD8抗体(Biolegend, 100712)被用于被用于流式细胞仪在小鼠样本上 (图 2c). iScience (2022) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 2f
BioLegend CD8抗体(Biolegend, 53-6.7)被用于被用于流式细胞仪在小鼠样本上 (图 2f). Theranostics (2022) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 2k
BioLegend CD8抗体(Biolegend, 100734)被用于被用于流式细胞仪在小鼠样本上 (图 2k). Cell Rep (2022) ncbi
大鼠 单克隆(53-6.7)
  • 抑制或激活实验; 小鼠; 10 ug/ml; 图 6b
  • 流式细胞仪; 小鼠; 图 1a, 4e, s4a
BioLegend CD8抗体(BioLegend, 53.6-7)被用于被用于抑制或激活实验在小鼠样本上浓度为10 ug/ml (图 6b) 和 被用于流式细胞仪在小鼠样本上 (图 1a, 4e, s4a). Proc Natl Acad Sci U S A (2022) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 1:100; 图 1f
BioLegend CD8抗体(BioLegend, 53-6.7)被用于被用于流式细胞仪在小鼠样本上浓度为1:100 (图 1f). Nat Commun (2022) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 3d, 4b
BioLegend CD8抗体(BioLegend, 53-6.7)被用于被用于流式细胞仪在小鼠样本上 (图 3d, 4b). Int J Mol Sci (2022) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 s1a, 4c
BioLegend CD8抗体(BioLegend, 53-6.7)被用于被用于流式细胞仪在小鼠样本上 (图 s1a, 4c). J Immunother Cancer (2022) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 1:800; 图 3c, 4c
BioLegend CD8抗体(BioLegend, 100722)被用于被用于流式细胞仪在小鼠样本上浓度为1:800 (图 3c, 4c). Cell Rep (2022) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 3a
BioLegend CD8抗体(Biolegend, 53-6.7)被用于被用于流式细胞仪在小鼠样本上 (图 3a). Oncoimmunology (2022) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 5g, 5h, s1f
BioLegend CD8抗体(BioLegend, 100730)被用于被用于流式细胞仪在小鼠样本上 (图 5g, 5h, s1f). Cell Rep Med (2022) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 5c
BioLegend CD8抗体(Biolegend, 100749)被用于被用于流式细胞仪在小鼠样本上 (图 5c). Oncoimmunology (2022) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 3
BioLegend CD8抗体(Biolegend, 53-6.7)被用于被用于流式细胞仪在小鼠样本上 (图 3). In Vivo (2022) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 s5e, s6a
BioLegend CD8抗体(Biolegend, 53-6.7)被用于被用于流式细胞仪在小鼠样本上 (图 s5e, s6a). Nat Commun (2022) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 1:50; 图 6h, s8
BioLegend CD8抗体(Biolegend, 100730)被用于被用于流式细胞仪在小鼠样本上浓度为1:50 (图 6h, s8). Nat Commun (2022) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 1:200; 图 3a, 4b, 5a
BioLegend CD8抗体(BioLegend, 100711)被用于被用于流式细胞仪在小鼠样本上浓度为1:200 (图 3a, 4b, 5a). J Immunother Cancer (2022) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 2b, 4c
BioLegend CD8抗体(BioLegend, 53-6.7)被用于被用于流式细胞仪在小鼠样本上 (图 2b, 4c). Basic Res Cardiol (2022) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 6e
BioLegend CD8抗体(BioLegend, 100734)被用于被用于流式细胞仪在小鼠样本上 (图 6e). J Immunol (2022) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 2e, 3c
BioLegend CD8抗体(BioLegend, 100752)被用于被用于流式细胞仪在小鼠样本上 (图 2e, 3c). J Immunother Cancer (2022) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 2.5 ug/ml; 图 4a
BioLegend CD8抗体(BioLegend, 100743)被用于被用于流式细胞仪在小鼠样本上浓度为2.5 ug/ml (图 4a). Sci Transl Med (2022) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 s2d, 1k
BioLegend CD8抗体(BioLegend, 100743)被用于被用于流式细胞仪在小鼠样本上 (图 s2d, 1k). J Immunother Cancer (2022) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 1:100; 图 4c
BioLegend CD8抗体(BioLegend, 100713)被用于被用于流式细胞仪在小鼠样本上浓度为1:100 (图 4c). J Biol Chem (2022) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 人类; 图 s7j
BioLegend CD8抗体(BioLegend, 100712)被用于被用于流式细胞仪在人类样本上 (图 s7j). J Clin Invest (2022) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 6e
BioLegend CD8抗体(BioLegend, 100708)被用于被用于流式细胞仪在小鼠样本上 (图 6e). J Immunother Cancer (2022) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 2h
BioLegend CD8抗体(Biolegend, 53-6.7)被用于被用于流式细胞仪在小鼠样本上 (图 2h). JCI Insight (2022) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 5c, s8f
BioLegend CD8抗体(BioLegend, 100712)被用于被用于流式细胞仪在小鼠样本上 (图 5c, s8f). J Clin Invest (2022) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 4c, 4g, 4i
BioLegend CD8抗体(Biolegend, 100708)被用于被用于流式细胞仪在小鼠样本上 (图 4c, 4g, 4i). Nat Commun (2022) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 1d
BioLegend CD8抗体(BioLegend, 53-6.7)被用于被用于流式细胞仪在小鼠样本上 (图 1d). Oncoimmunology (2022) ncbi
大鼠 单克隆(53-6.7)
  • 免疫组化-冰冻切片; 小鼠; 1:200; 图 s7i
  • 流式细胞仪; 小鼠; 1:100
BioLegend CD8抗体(Biolegend, 100733)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:200 (图 s7i) 和 被用于流式细胞仪在小鼠样本上浓度为1:100. Nat Nanotechnol (2022) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 2a
BioLegend CD8抗体(BioLegend, 100708)被用于被用于流式细胞仪在小鼠样本上 (图 2a). Front Oncol (2021) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 1b
BioLegend CD8抗体(BioLegend, 100704)被用于被用于流式细胞仪在小鼠样本上 (图 1b). Sci Immunol (2021) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 1:500; 图 2d
BioLegend CD8抗体(BioLegend, 53-6.7)被用于被用于流式细胞仪在小鼠样本上浓度为1:500 (图 2d). Mol Psychiatry (2021) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 s2a
BioLegend CD8抗体(BioLegend, 100722)被用于被用于流式细胞仪在小鼠样本上 (图 s2a). iScience (2021) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠
BioLegend CD8抗体(BioLegend, 53-6.7)被用于被用于流式细胞仪在小鼠样本上. Sci Adv (2021) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 1:200
BioLegend CD8抗体(BioLegend, 53?C6.7)被用于被用于流式细胞仪在小鼠样本上浓度为1:200. J Immunother Cancer (2021) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 2
BioLegend CD8抗体(BioLegend, 53-6.7)被用于被用于流式细胞仪在小鼠样本上 (图 2). Commun Biol (2021) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠
BioLegend CD8抗体(BioLegend, 53-6.7)被用于被用于流式细胞仪在小鼠样本上. Int J Mol Sci (2021) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 1:1000; 图 s2d
BioLegend CD8抗体(BioLegend, 53-6.7)被用于被用于流式细胞仪在小鼠样本上浓度为1:1000 (图 s2d). Sci Adv (2021) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠
BioLegend CD8抗体(BioLegend, 100704)被用于被用于流式细胞仪在小鼠样本上. Immunity (2021) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 1:1000; 图 s6g
BioLegend CD8抗体(Biolegend, 100708)被用于被用于流式细胞仪在小鼠样本上浓度为1:1000 (图 s6g). Nat Commun (2021) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 s13b
BioLegend CD8抗体(Biolegend., 53-6.7)被用于被用于流式细胞仪在小鼠样本上 (图 s13b). J Immunother Cancer (2021) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠
BioLegend CD8抗体(Biolegend, 53-6.7)被用于被用于流式细胞仪在小鼠样本上. Int J Mol Sci (2021) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 6a
BioLegend CD8抗体(Biolegend, 100705)被用于被用于流式细胞仪在小鼠样本上 (图 6a). Cell Death Dis (2021) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 1:400; 图 1c
BioLegend CD8抗体(Biolegend, 100748)被用于被用于流式细胞仪在小鼠样本上浓度为1:400 (图 1c). Nat Commun (2021) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠
BioLegend CD8抗体(BioLegend, 53-6.7)被用于被用于流式细胞仪在小鼠样本上. Am J Physiol Endocrinol Metab (2021) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠
BioLegend CD8抗体(Biolegend, 53-6.7)被用于被用于流式细胞仪在小鼠样本上. PLoS Pathog (2021) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 1:200
BioLegend CD8抗体(Biolegend, 100712)被用于被用于流式细胞仪在小鼠样本上浓度为1:200. Aging Cell (2021) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 500 ug/ml; 图 2e
BioLegend CD8抗体(BioLegend, 100706)被用于被用于流式细胞仪在小鼠样本上浓度为500 ug/ml (图 2e). Sci Rep (2021) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 5b, 5h
BioLegend CD8抗体(Biolegend, 100732)被用于被用于流式细胞仪在小鼠样本上 (图 5b, 5h). J Immunother Cancer (2021) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 1:200
BioLegend CD8抗体(BioLegend, 53-6.7)被用于被用于流式细胞仪在小鼠样本上浓度为1:200. Cancer Res (2021) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 1:100; 图 s7h
BioLegend CD8抗体(Biolegend, 100748)被用于被用于流式细胞仪在小鼠样本上浓度为1:100 (图 s7h). Cell Rep (2021) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 1:100; 图 4a, s3a
BioLegend CD8抗体(Biolegend, 100759)被用于被用于流式细胞仪在小鼠样本上浓度为1:100 (图 4a, s3a). Clin Exp Metastasis (2021) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 1:500
BioLegend CD8抗体(Biolegend, 100706)被用于被用于流式细胞仪在小鼠样本上浓度为1:500. Nat Commun (2021) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 1:500; 图 6a
BioLegend CD8抗体(Biolegend, 53-6.7)被用于被用于流式细胞仪在小鼠样本上浓度为1:500 (图 6a). Acta Neuropathol Commun (2021) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 2f
BioLegend CD8抗体(BioLegend, 53-6.7)被用于被用于流式细胞仪在小鼠样本上 (图 2f). Animals (Basel) (2021) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 3b
BioLegend CD8抗体(Biolegend, 100711)被用于被用于流式细胞仪在小鼠样本上 (图 3b). Int J Mol Sci (2021) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 6a
BioLegend CD8抗体(BioLegend, 53-6.7)被用于被用于流式细胞仪在小鼠样本上 (图 6a). BMC Cancer (2021) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 1:200
BioLegend CD8抗体(Biolegend, 100723)被用于被用于流式细胞仪在小鼠样本上浓度为1:200. Cancer Res (2021) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 5e
BioLegend CD8抗体(BioLegend, 100734)被用于被用于流式细胞仪在小鼠样本上 (图 5e). Am J Cancer Res (2021) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 4b
BioLegend CD8抗体(BioLegend, 53-6.7)被用于被用于流式细胞仪在小鼠样本上 (图 4b). Front Immunol (2021) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 2a
BioLegend CD8抗体(Biolegend, 100709)被用于被用于流式细胞仪在小鼠样本上 (图 2a). Transl Oncol (2021) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 1:1000; 图 e6a
BioLegend CD8抗体(Biolegend, 100708)被用于被用于流式细胞仪在小鼠样本上浓度为1:1000 (图 e6a). Nat Cancer (2021) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 s11
BioLegend CD8抗体(BioLegend, 53-6.7)被用于被用于流式细胞仪在小鼠样本上 (图 s11). J Clin Invest (2021) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 s3
BioLegend CD8抗体(Biolegend, 100751)被用于被用于流式细胞仪在小鼠样本上 (图 s3). J Clin Invest (2021) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 1:800; 图 1s2a
BioLegend CD8抗体(Biolegend, 100712)被用于被用于流式细胞仪在小鼠样本上浓度为1:800 (图 1s2a). elife (2021) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 4d
BioLegend CD8抗体(BioLegend, 53-6.7)被用于被用于流式细胞仪在小鼠样本上 (图 4d). Adv Sci (Weinh) (2021) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 人类
BioLegend CD8抗体(Biolegend, 100706)被用于被用于流式细胞仪在人类样本上. Aging (Albany NY) (2021) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 1:100; 图 5a
BioLegend CD8抗体(Biolegend, 53-6.7)被用于被用于流式细胞仪在小鼠样本上浓度为1:100 (图 5a). Nat Commun (2021) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 1:200; 图 5b
BioLegend CD8抗体(Biolegend, 53-6.7)被用于被用于流式细胞仪在小鼠样本上浓度为1:200 (图 5b). Nat Commun (2021) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 1:1000; 图 1b
BioLegend CD8抗体(BioLegend, 53-6.7)被用于被用于流式细胞仪在小鼠样本上浓度为1:1000 (图 1b). Sci Rep (2021) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 1c
BioLegend CD8抗体(BioLegend, 100762)被用于被用于流式细胞仪在小鼠样本上 (图 1c). Cell Mol Gastroenterol Hepatol (2021) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 人类
BioLegend CD8抗体(Biolegend, 100744)被用于被用于流式细胞仪在人类样本上. J Immunother Cancer (2021) ncbi
大鼠 单克隆(53-6.7)
  • mass cytometry; 小鼠
BioLegend CD8抗体(BioLegend, 100702)被用于被用于mass cytometry在小鼠样本上. Br J Cancer (2021) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 6f
BioLegend CD8抗体(Biolegend, 100,708)被用于被用于流式细胞仪在小鼠样本上 (图 6f). Am J Cancer Res (2021) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 1:100
BioLegend CD8抗体(BioLegend, 100733)被用于被用于流式细胞仪在小鼠样本上浓度为1:100. Nat Commun (2021) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 1c
BioLegend CD8抗体(BioLegend, 53-6.7)被用于被用于流式细胞仪在小鼠样本上 (图 1c). JCI Insight (2021) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 1:100
BioLegend CD8抗体(BioLegend, 53-6.7)被用于被用于流式细胞仪在小鼠样本上浓度为1:100. J Am Heart Assoc (2021) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 1:200; 图 2f
BioLegend CD8抗体(BioLegend, 100,733)被用于被用于流式细胞仪在小鼠样本上浓度为1:200 (图 2f). Acta Neuropathol Commun (2021) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 s4c, s6d
BioLegend CD8抗体(Biolegend, 100758)被用于被用于流式细胞仪在小鼠样本上 (图 s4c, s6d). JCI Insight (2021) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 1:1000; 图 1c
BioLegend CD8抗体(Biolegend, 100725)被用于被用于流式细胞仪在小鼠样本上浓度为1:1000 (图 1c). PLoS Biol (2021) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 4a
BioLegend CD8抗体(Biolegend, 100711)被用于被用于流式细胞仪在小鼠样本上 (图 4a). Front Cell Dev Biol (2021) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 2c, s4a, s4b
BioLegend CD8抗体(Biolegend, 53-6.7)被用于被用于流式细胞仪在小鼠样本上 (图 2c, s4a, s4b). J Immunother Cancer (2021) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 4b
BioLegend CD8抗体(Biolegend, 100714)被用于被用于流式细胞仪在小鼠样本上 (图 4b). Front Immunol (2020) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 1:100
BioLegend CD8抗体(BioLegend, 53-6.7)被用于被用于流式细胞仪在小鼠样本上浓度为1:100. Nat Commun (2021) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 1:100
BioLegend CD8抗体(BioLegend, 53-6.7)被用于被用于流式细胞仪在小鼠样本上浓度为1:100. Nat Immunol (2021) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 1:100; 图 s16a
BioLegend CD8抗体(BioLegend, 53-6.7)被用于被用于流式细胞仪在小鼠样本上浓度为1:100 (图 s16a). Sci Transl Med (2021) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 5
BioLegend CD8抗体(BioLegend, 100732)被用于被用于流式细胞仪在小鼠样本上 (图 5). PLoS ONE (2021) ncbi
大鼠 单克隆(53-6.7)
  • 免疫组化-冰冻切片; 大鼠; 1:100; 图 7f
BioLegend CD8抗体(Biolegend, 10070)被用于被用于免疫组化-冰冻切片在大鼠样本上浓度为1:100 (图 7f). Front Cell Neurosci (2020) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 1:400
BioLegend CD8抗体(BioLegend, 100706)被用于被用于流式细胞仪在小鼠样本上浓度为1:400. Nature (2021) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 s9b
BioLegend CD8抗体(BioLegend, 100730)被用于被用于流式细胞仪在小鼠样本上 (图 s9b). Sci Adv (2021) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 6d
BioLegend CD8抗体(BioLegend, 100707)被用于被用于流式细胞仪在小鼠样本上 (图 6d). Neoplasia (2021) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 s2f
BioLegend CD8抗体(Biolegend, 100708)被用于被用于流式细胞仪在小鼠样本上 (图 s2f). Sci Adv (2021) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 s1a
BioLegend CD8抗体(Biolegend, 53-6.7)被用于被用于流式细胞仪在小鼠样本上 (图 s1a). J Immunother Cancer (2021) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 3e
BioLegend CD8抗体(Biolegend, 100722)被用于被用于流式细胞仪在小鼠样本上 (图 3e). Theranostics (2021) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 7c, 9d
BioLegend CD8抗体(Biolegend, 100722)被用于被用于流式细胞仪在小鼠样本上 (图 7c, 9d). Sci Rep (2021) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 1:100; 图 3b
BioLegend CD8抗体(BioLegend, 53-6.7)被用于被用于流式细胞仪在小鼠样本上浓度为1:100 (图 3b). Science (2021) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 1:200; 图 s3g
BioLegend CD8抗体(Biolegend, 100729)被用于被用于流式细胞仪在小鼠样本上浓度为1:200 (图 s3g). Proc Natl Acad Sci U S A (2021) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠
BioLegend CD8抗体(Biolegend, 100721)被用于被用于流式细胞仪在小鼠样本上. J Hematol Oncol (2021) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 2a, s2b
BioLegend CD8抗体(Biolegend, 100708)被用于被用于流式细胞仪在小鼠样本上 (图 2a, s2b). Nat Commun (2021) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠
BioLegend CD8抗体(BioLegend, 100704)被用于被用于流式细胞仪在小鼠样本上. J Clin Invest (2021) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 4d
BioLegend CD8抗体(Biolegend, 100722)被用于被用于流式细胞仪在小鼠样本上 (图 4d). Theranostics (2021) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 4a, 4b, s2
BioLegend CD8抗体(Biolegend, 100732)被用于被用于流式细胞仪在小鼠样本上 (图 4a, 4b, s2). Diabetes (2021) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 s5e
BioLegend CD8抗体(Biolegend, 100706)被用于被用于流式细胞仪在小鼠样本上 (图 s5e). Nat Commun (2020) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 1:100; 图 2g
BioLegend CD8抗体(Biolegend, 53-6.7)被用于被用于流式细胞仪在小鼠样本上浓度为1:100 (图 2g). Nature (2021) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 2a, 3e, 3f
BioLegend CD8抗体(Biolegend, 53-6.7)被用于被用于流式细胞仪在小鼠样本上 (图 2a, 3e, 3f). Antioxidants (Basel) (2020) ncbi
大鼠 单克隆(5H10-1)
  • 流式细胞仪; 小鼠; 1:400
BioLegend CD8抗体(Biolegend, 5H10-1)被用于被用于流式细胞仪在小鼠样本上浓度为1:400. elife (2020) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 1:200; 图 5a
BioLegend CD8抗体(BioLegend, 53-6.7)被用于被用于流式细胞仪在小鼠样本上浓度为1:200 (图 5a). Hepatol Commun (2020) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 人类; 图 7g
BioLegend CD8抗体(BioLegend, 100730)被用于被用于流式细胞仪在人类样本上 (图 7g). Cancer Res (2021) ncbi
大鼠 单克隆(53-6.7)
BioLegend CD8抗体(BioLegend, 100714)被用于. Antioxidants (Basel) (2020) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 s18, s20
BioLegend CD8抗体(BioLegend, 53-6.7)被用于被用于流式细胞仪在小鼠样本上 (图 s18, s20). J Clin Invest (2021) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠
BioLegend CD8抗体(Biolegend, 53-C6.7)被用于被用于流式细胞仪在小鼠样本上. elife (2020) ncbi
大鼠 单克隆(53-6.7)
  • 免疫组化; 小鼠; 1:200
BioLegend CD8抗体(Biolegend, 100730)被用于被用于免疫组化在小鼠样本上浓度为1:200. elife (2020) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 s2d
BioLegend CD8抗体(BioLegend, 53-6.7)被用于被用于流式细胞仪在小鼠样本上 (图 s2d). Proc Natl Acad Sci U S A (2020) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 3f
BioLegend CD8抗体(Biolegend, 100733)被用于被用于流式细胞仪在小鼠样本上 (图 3f). Nat Commun (2020) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 1:250; 图 4g
  • 免疫组化; 小鼠; 图 2a
BioLegend CD8抗体(Biolegend, 100713)被用于被用于流式细胞仪在小鼠样本上浓度为1:250 (图 4g) 和 被用于免疫组化在小鼠样本上 (图 2a). elife (2020) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 1s1a
BioLegend CD8抗体(Biolegend, 100712)被用于被用于流式细胞仪在小鼠样本上 (图 1s1a). elife (2020) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 1d
BioLegend CD8抗体(BioLegend, 53-6.7)被用于被用于流式细胞仪在小鼠样本上 (图 1d). Am J Transplant (2021) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 1s3, 4c
BioLegend CD8抗体(Biolegend, 53-6.7)被用于被用于流式细胞仪在小鼠样本上 (图 1s3, 4c). elife (2020) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 2a
BioLegend CD8抗体(Biolegend, 53 - 6.7)被用于被用于流式细胞仪在小鼠样本上 (图 2a). J Immunother Cancer (2020) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 1:100; 图 9b
BioLegend CD8抗体(BioLegend, 100721)被用于被用于流式细胞仪在小鼠样本上浓度为1:100 (图 9b). elife (2020) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 2d
BioLegend CD8抗体(BioLegend, 53-6.7)被用于被用于流式细胞仪在小鼠样本上 (图 2d). Adv Sci (Weinh) (2020) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 1:800; 图 2a
BioLegend CD8抗体(BioLegend, 53-6.7)被用于被用于流式细胞仪在小鼠样本上浓度为1:800 (图 2a). elife (2020) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 1:400; 图 1j
BioLegend CD8抗体(BioLegend, 53-6.7)被用于被用于流式细胞仪在小鼠样本上浓度为1:400 (图 1j). J Allergy Clin Immunol (2021) ncbi
大鼠 单克隆(53-6.7)
BioLegend CD8抗体(BioLegend, 53-6.7)被用于. Nature (2020) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 3g
BioLegend CD8抗体(BioLegend, 53-6.7)被用于被用于流式细胞仪在小鼠样本上 (图 3g). Nat Commun (2020) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 2b
BioLegend CD8抗体(Biolegend, 53-C6.7)被用于被用于流式细胞仪在小鼠样本上 (图 2b). BMC Immunol (2020) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 s17
BioLegend CD8抗体(BioLegend, 100727)被用于被用于流式细胞仪在小鼠样本上 (图 s17). Nat Commun (2020) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 1:100; 图 s3d
BioLegend CD8抗体(BioLegend, 53-6.7)被用于被用于流式细胞仪在小鼠样本上浓度为1:100 (图 s3d). Commun Biol (2020) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 1a
BioLegend CD8抗体(Biolegend, 53-6.7)被用于被用于流式细胞仪在小鼠样本上 (图 1a). BMC Biol (2020) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 8c
BioLegend CD8抗体(BioLegend, 100707)被用于被用于流式细胞仪在小鼠样本上 (图 8c). Oncoimmunology (2020) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 s4b
BioLegend CD8抗体(BioLegend, 53-6.7)被用于被用于流式细胞仪在小鼠样本上 (图 s4b). Sci Adv (2020) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 1c
BioLegend CD8抗体(Biolegend, 100734)被用于被用于流式细胞仪在小鼠样本上 (图 1c). Cell Rep (2020) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 1c, 1d, 6a
BioLegend CD8抗体(BioLegend, 53-6.7)被用于被用于流式细胞仪在小鼠样本上 (图 1c, 1d, 6a). elife (2020) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 1:1000; 图 2e
BioLegend CD8抗体(Biolegend, 100730)被用于被用于流式细胞仪在小鼠样本上浓度为1:1000 (图 2e). elife (2020) ncbi
大鼠 单克隆(53-6.7)
  • 免疫组化-冰冻切片; 小鼠; 图 4d
  • 流式细胞仪; 小鼠; 图 4a, 4b
BioLegend CD8抗体(Biolegend, 53-6.7)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 4d) 和 被用于流式细胞仪在小鼠样本上 (图 4a, 4b). BMC Immunol (2020) ncbi
大鼠 单克隆(53-6.7)
  • 免疫细胞化学; 小鼠; 图 e5b
BioLegend CD8抗体(Biolegend, 100711)被用于被用于免疫细胞化学在小鼠样本上 (图 e5b). Nature (2020) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 1 ug/ml
BioLegend CD8抗体(Biolegend, 53-6.7)被用于被用于流式细胞仪在小鼠样本上浓度为1 ug/ml. Science (2020) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 1:100; 图 5, s11
BioLegend CD8抗体(BioLegend, 100730)被用于被用于流式细胞仪在小鼠样本上浓度为1:100 (图 5, s11). Nat Commun (2020) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 1:100; 图 5d
BioLegend CD8抗体(BioLegend, 100712)被用于被用于流式细胞仪在小鼠样本上浓度为1:100 (图 5d). Proc Natl Acad Sci U S A (2020) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 s3a, s3b, s3c, s4a
BioLegend CD8抗体(BioLegend, 100708)被用于被用于流式细胞仪在小鼠样本上 (图 s3a, s3b, s3c, s4a). Cancers (Basel) (2020) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 1:200; 图 3a
BioLegend CD8抗体(BioLegend, 100725)被用于被用于流式细胞仪在小鼠样本上浓度为1:200 (图 3a). Nat Commun (2020) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 1:100; 图 s17b
BioLegend CD8抗体(Biolegend, 100738)被用于被用于流式细胞仪在小鼠样本上浓度为1:100 (图 s17b). Nat Commun (2020) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 s16d
BioLegend CD8抗体(Biolegend, 53-6.7)被用于被用于流式细胞仪在小鼠样本上 (图 s16d). Nat Commun (2020) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 7b
BioLegend CD8抗体(Biolegend, 53-6.7)被用于被用于流式细胞仪在小鼠样本上 (图 7b). elife (2020) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 1:100; 图 s19d
BioLegend CD8抗体(Biolegend, 100711)被用于被用于流式细胞仪在小鼠样本上浓度为1:100 (图 s19d). Nat Commun (2020) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 s1a, s4e
BioLegend CD8抗体(Biolegend, 53-6.7)被用于被用于流式细胞仪在小鼠样本上 (图 s1a, s4e). J Neuroinflammation (2020) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 1:200; 图 1a
BioLegend CD8抗体(BioLegend, 100714)被用于被用于流式细胞仪在小鼠样本上浓度为1:200 (图 1a). elife (2019) ncbi
大鼠 单克隆(53-6.7)
  • mass cytometry; 小鼠; 3 ug/ml; 图 5d
BioLegend CD8抗体(Biolegend, 53-6.7)被用于被用于mass cytometry在小鼠样本上浓度为3 ug/ml (图 5d). Science (2019) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 2d, s3a, s3b
BioLegend CD8抗体(Biolegend, 100752)被用于被用于流式细胞仪在小鼠样本上 (图 2d, s3a, s3b). Cell Rep (2019) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 1:200
BioLegend CD8抗体(Biolegend, 100748)被用于被用于流式细胞仪在小鼠样本上浓度为1:200. JCI Insight (2020) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 e2a, e5h
BioLegend CD8抗体(BioLegend, 53-6.7)被用于被用于流式细胞仪在小鼠样本上 (图 e2a, e5h). Nature (2019) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 2a, 2f
BioLegend CD8抗体(BioLegend, 100708)被用于被用于流式细胞仪在小鼠样本上 (图 2a, 2f). J Exp Med (2020) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 4a
BioLegend CD8抗体(Biolegend, 100712)被用于被用于流式细胞仪在小鼠样本上 (图 4a). elife (2019) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 s4
BioLegend CD8抗体(BioLegend, 53-6.7)被用于被用于流式细胞仪在小鼠样本上 (图 s4). Aging (Albany NY) (2019) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 e10
BioLegend CD8抗体(BioLegend, 53-6.7)被用于被用于流式细胞仪在小鼠样本上 (图 e10). Nature (2019) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 1a, 1c, 1d, 5d, s5a
BioLegend CD8抗体(BioLegend, 100722)被用于被用于流式细胞仪在小鼠样本上 (图 1a, 1c, 1d, 5d, s5a). Cell Rep (2019) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 s5
BioLegend CD8抗体(BioLegend, 53-C6.7)被用于被用于流式细胞仪在小鼠样本上 (图 s5). Br J Cancer (2019) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 1:400; 图 4d
BioLegend CD8抗体(Biolegend, 100712)被用于被用于流式细胞仪在小鼠样本上浓度为1:400 (图 4d). Nat Commun (2019) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 1a
BioLegend CD8抗体(BioLegend, 53-6.7)被用于被用于流式细胞仪在小鼠样本上 (图 1a). J Clin Invest (2019) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 s1c
BioLegend CD8抗体(BioLegend, 100755)被用于被用于流式细胞仪在小鼠样本上 (图 s1c). Cell (2019) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 1:100; 图 3f, 5c
BioLegend CD8抗体(BioLegend, 100706)被用于被用于流式细胞仪在小鼠样本上浓度为1:100 (图 3f, 5c). Nat Commun (2019) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 1b
BioLegend CD8抗体(Biolegend, 53-6.7)被用于被用于流式细胞仪在小鼠样本上 (图 1b). JCI Insight (2019) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 s2k
BioLegend CD8抗体(BioLegend, 100722)被用于被用于流式细胞仪在小鼠样本上 (图 s2k). Sci Adv (2019) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 1:100; 图 e7b
BioLegend CD8抗体(Biolegend, 100705)被用于被用于流式细胞仪在小鼠样本上浓度为1:100 (图 e7b). Nature (2019) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 2e
BioLegend CD8抗体(Biolegend, 53-6.7)被用于被用于流式细胞仪在小鼠样本上 (图 2e). J Clin Invest (2019) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 s3b
BioLegend CD8抗体(BioLegend, 100740)被用于被用于流式细胞仪在小鼠样本上 (图 s3b). Cell (2019) ncbi
大鼠 单克隆(53-6.7)
  • 其他; 小鼠; 图 2b
BioLegend CD8抗体(BioLegend, 100707)被用于被用于其他在小鼠样本上 (图 2b). Int Immunol (2019) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 1a
BioLegend CD8抗体(BioLegend, 100712)被用于被用于流式细胞仪在小鼠样本上 (图 1a). Immunity (2019) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 ex4a
BioLegend CD8抗体(BioLegend, 53-6.7)被用于被用于流式细胞仪在小鼠样本上 (图 ex4a). Nature (2019) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 s2b
BioLegend CD8抗体(Biolegend, 100730)被用于被用于流式细胞仪在小鼠样本上 (图 s2b). Cell Rep (2019) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 1:100; 图 s7e
BioLegend CD8抗体(Biolegend, 100748)被用于被用于流式细胞仪在小鼠样本上浓度为1:100 (图 s7e). Cancer Cell (2019) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠
BioLegend CD8抗体(BioLegend, 53-6.7)被用于被用于流式细胞仪在小鼠样本上. Nature (2019) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 1b
BioLegend CD8抗体(Biolegend, 53-6.7)被用于被用于流式细胞仪在小鼠样本上 (图 1b). Cell Rep (2019) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 3a, 3b
BioLegend CD8抗体(BioLegend, 100750)被用于被用于流式细胞仪在小鼠样本上 (图 3a, 3b). Immunity (2019) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 3a
BioLegend CD8抗体(Biolegend, 53-6.7)被用于被用于流式细胞仪在小鼠样本上 (图 3a). Proc Natl Acad Sci U S A (2019) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 1a
BioLegend CD8抗体(BioLegend, 53-6.7)被用于被用于流式细胞仪在小鼠样本上 (图 1a). Sci Rep (2019) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 3e
BioLegend CD8抗体(Biolegend, 100766)被用于被用于流式细胞仪在小鼠样本上 (图 3e). Sci Rep (2019) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 e3p
BioLegend CD8抗体(Biolegend, 100744)被用于被用于流式细胞仪在小鼠样本上 (图 e3p). Nature (2019) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 3a
BioLegend CD8抗体(Biolegend, 100707)被用于被用于流式细胞仪在小鼠样本上 (图 3a). Front Oncol (2019) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 1:100; 图 s1d
BioLegend CD8抗体(Biolegend, 100737)被用于被用于流式细胞仪在小鼠样本上浓度为1:100 (图 s1d). Nat Commun (2019) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 1:400; 图 3b
BioLegend CD8抗体(BioLegend, 53-6.7)被用于被用于流式细胞仪在小鼠样本上浓度为1:400 (图 3b). Nat Med (2019) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 s8a
BioLegend CD8抗体(BioLegend, 53-6.7)被用于被用于流式细胞仪在小鼠样本上 (图 s8a). Nat Commun (2019) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 5 ug/ml; 图 s12
BioLegend CD8抗体(BioLegend, 100744)被用于被用于流式细胞仪在小鼠样本上浓度为5 ug/ml (图 s12). Science (2019) ncbi
大鼠 单克隆(53-6.7)
  • 免疫组化-冰冻切片; 小鼠; 图 6g
BioLegend CD8抗体(Biolegend, 53-6.7)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 6g). Eur J Immunol (2019) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 1:100; 图 s2o
BioLegend CD8抗体(BioLegend, 53-6.7)被用于被用于流式细胞仪在小鼠样本上浓度为1:100 (图 s2o). Nature (2019) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 ex2e
BioLegend CD8抗体(eBioscience, 100706)被用于被用于流式细胞仪在小鼠样本上 (图 ex2e). Nature (2019) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 s9a
BioLegend CD8抗体(BioLegend, 53-6.7)被用于被用于流式细胞仪在小鼠样本上 (图 s9a). Eur J Immunol (2019) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 s8b
BioLegend CD8抗体(BioLegend, 100747)被用于被用于流式细胞仪在小鼠样本上 (图 s8b). Nat Commun (2019) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 3s1b
BioLegend CD8抗体(Biolegend, 100708)被用于被用于流式细胞仪在小鼠样本上 (图 3s1b). elife (2019) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 s4b
BioLegend CD8抗体(Biolegend, 100733)被用于被用于流式细胞仪在小鼠样本上 (图 s4b). Cell Rep (2019) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 s2a
BioLegend CD8抗体(BioLegend, 53-6.7)被用于被用于流式细胞仪在小鼠样本上 (图 s2a). Science (2019) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 1c
BioLegend CD8抗体(BioLegend, 53-6.7)被用于被用于流式细胞仪在小鼠样本上 (图 1c). J Immunol (2019) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 e1b, e1c, e1d
BioLegend CD8抗体(BioLegend, 53-6.7)被用于被用于流式细胞仪在小鼠样本上 (图 e1b, e1c, e1d). Nature (2019) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 s5b
BioLegend CD8抗体(Biolegend, 53-6.7)被用于被用于流式细胞仪在小鼠样本上 (图 s5b). Science (2018) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 2a
BioLegend CD8抗体(Biolegend, 53-6.7)被用于被用于流式细胞仪在小鼠样本上 (图 2a). Nature (2019) ncbi
大鼠 单克隆(53-6.7)
  • 免疫组化-冰冻切片; 小鼠; 图 5d
BioLegend CD8抗体(Biolegend, 53-6.7)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 5d). Proc Natl Acad Sci U S A (2019) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 猕猴; 图 2e
BioLegend CD8抗体(BioLegend, 53-6.7)被用于被用于流式细胞仪在猕猴样本上 (图 2e). J Virol (2019) ncbi
大鼠 单克隆(53-6.7)
  • 免疫组化-石蜡切片; 小鼠; 图 6g
BioLegend CD8抗体(Biolegend, 100702)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 6g). Cell Rep (2018) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 2a, 2g, s2j
BioLegend CD8抗体(Biolegend, 100730)被用于被用于流式细胞仪在小鼠样本上 (图 2a, 2g, s2j). Cell Rep (2018) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 s2a
BioLegend CD8抗体(BioLegend, 53-6.7)被用于被用于流式细胞仪在小鼠样本上 (图 s2a). Front Immunol (2018) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 s2a, s2b
BioLegend CD8抗体(BioLegend, 53-6.7)被用于被用于流式细胞仪在小鼠样本上 (图 s2a, s2b). JCI Insight (2018) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 1c
BioLegend CD8抗体(Biolegend, 52-6.7)被用于被用于流式细胞仪在小鼠样本上 (图 1c). Transl Oncol (2019) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 5c
BioLegend CD8抗体(BioLegend, 100722)被用于被用于流式细胞仪在小鼠样本上 (图 5c). Br J Cancer (2019) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 4a, 4b, 4c
BioLegend CD8抗体(BioLegend, 100725)被用于被用于流式细胞仪在小鼠样本上 (图 4a, 4b, 4c). Invest Ophthalmol Vis Sci (2018) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 1c
BioLegend CD8抗体(BioLegend, 53-6.7)被用于被用于流式细胞仪在小鼠样本上 (图 1c). Front Immunol (2018) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 s2a
BioLegend CD8抗体(BioLegend, 53-C6.7)被用于被用于流式细胞仪在小鼠样本上 (图 s2a). PLoS ONE (2018) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 1a
BioLegend CD8抗体(BioLegend, 53-7.7)被用于被用于流式细胞仪在小鼠样本上 (图 1a). J Exp Med (2018) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 1c, 2b
BioLegend CD8抗体(BioLegend, 53-6.7)被用于被用于流式细胞仪在小鼠样本上 (图 1c, 2b). J Clin Invest (2018) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 4a
BioLegend CD8抗体(Biolegend, 53-6.7)被用于被用于流式细胞仪在小鼠样本上 (图 4a). J Neuroinflammation (2018) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 2.5 ug/ml; 图 s4
BioLegend CD8抗体(Biolegend, 100751)被用于被用于流式细胞仪在小鼠样本上浓度为2.5 ug/ml (图 s4). Nat Commun (2018) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 1h
BioLegend CD8抗体(BioLegend, 53-6.7)被用于被用于流式细胞仪在小鼠样本上 (图 1h). J Clin Invest (2018) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 5a
BioLegend CD8抗体(BioLegend, 100737)被用于被用于流式细胞仪在小鼠样本上 (图 5a). Immunity (2018) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 e8a
BioLegend CD8抗体(BioLegend, 53-6.7)被用于被用于流式细胞仪在小鼠样本上 (图 e8a). Nature (2018) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 s2a
BioLegend CD8抗体(Biolegend, 100706)被用于被用于流式细胞仪在小鼠样本上 (图 s2a). Nat Commun (2018) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 5b
BioLegend CD8抗体(BioLegend, 53-6.7)被用于被用于流式细胞仪在小鼠样本上 (图 5b). J Clin Invest (2018) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 3d
BioLegend CD8抗体(Biolegend, 100722)被用于被用于流式细胞仪在小鼠样本上 (图 3d). J Clin Invest (2018) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 s3c
BioLegend CD8抗体(BioLegend, 53-6.7)被用于被用于流式细胞仪在小鼠样本上 (图 s3c). J Immunol (2018) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 s5a
BioLegend CD8抗体(Biolegend, 5.3?C6.7)被用于被用于流式细胞仪在小鼠样本上 (图 s5a). Eur J Immunol (2018) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 s2j
BioLegend CD8抗体(BioLegend, clone 53-6.7)被用于被用于流式细胞仪在小鼠样本上 (图 s2j). Science (2018) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 3g
BioLegend CD8抗体(BioLegend, 53-6.7)被用于被用于流式细胞仪在小鼠样本上 (图 3g). Nat Med (2018) ncbi
大鼠 单克隆(53-6.7)
  • 免疫组化-冰冻切片; 小鼠; 1:50; 图 s2a
BioLegend CD8抗体(Biolegend, 53.6-7)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:50 (图 s2a). Science (2018) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 1:200; 图 s2a
BioLegend CD8抗体(BioLegend, 53?C6.7)被用于被用于流式细胞仪在小鼠样本上浓度为1:200 (图 s2a). J Exp Med (2018) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 2b
BioLegend CD8抗体(BioLegend, 53-6.7)被用于被用于流式细胞仪在小鼠样本上 (图 2b). Int J Cancer (2018) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 1c
BioLegend CD8抗体(Biolegend, 53-6.7)被用于被用于流式细胞仪在小鼠样本上 (图 1c). Sci Rep (2018) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 s2c
BioLegend CD8抗体(BioLegend, 53-6.7)被用于被用于流式细胞仪在小鼠样本上 (图 s2c). Cell Rep (2018) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 s11
BioLegend CD8抗体(Biolegend, 53-6.7)被用于被用于流式细胞仪在小鼠样本上 (图 s11). Oncoimmunology (2018) ncbi
大鼠 单克隆(53-6.7)
  • 免疫组化-石蜡切片; 小鼠; 图 5c
BioLegend CD8抗体(Biolegend, 53-6.7)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 5c). PLoS ONE (2018) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 s5a
BioLegend CD8抗体(Biolegend, 53-6.7)被用于被用于流式细胞仪在小鼠样本上 (图 s5a). Front Immunol (2018) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 s1a
BioLegend CD8抗体(Biolegend, 100705)被用于被用于流式细胞仪在小鼠样本上 (图 s1a). Cell (2018) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 2f
BioLegend CD8抗体(BioLegend, 53-6.7)被用于被用于流式细胞仪在小鼠样本上 (图 2f). Transgenic Res (2018) ncbi
大鼠 单克隆(53-6.7)
  • 免疫组化-冰冻切片; 小鼠; 图 s5c
BioLegend CD8抗体(BioLegend, 53-6.7)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 s5c). J Cell Biol (2018) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 s4a
BioLegend CD8抗体(BioLegend, 53-6.7)被用于被用于流式细胞仪在小鼠样本上 (图 s4a). J Cell Biol (2018) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 s2
BioLegend CD8抗体(BioLegend, 53-6.7)被用于被用于流式细胞仪在小鼠样本上 (图 s2). Front Microbiol (2018) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 1a
BioLegend CD8抗体(BioLegend, 53-6.7)被用于被用于流式细胞仪在小鼠样本上 (图 1a). Proc Natl Acad Sci U S A (2018) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 3c
BioLegend CD8抗体(Biolegend, 53-6.7)被用于被用于流式细胞仪在小鼠样本上 (图 3c). Science (2018) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 3a
BioLegend CD8抗体(BioLegend, 53.6-7)被用于被用于流式细胞仪在小鼠样本上 (图 3a). Oncoimmunology (2018) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 1:100; 图 3a
BioLegend CD8抗体(Biolegend, 100734)被用于被用于流式细胞仪在小鼠样本上浓度为1:100 (图 3a). Development (2018) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 3b, 3e
BioLegend CD8抗体(Biolegend, 53-6.7)被用于被用于流式细胞仪在小鼠样本上 (图 3b, 3e). J Virol (2018) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 3b
BioLegend CD8抗体(BioLegend, 53-6.7)被用于被用于流式细胞仪在小鼠样本上 (图 3b). J Immunol (2018) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 3f
BioLegend CD8抗体(Biolegend, 53-6.7)被用于被用于流式细胞仪在小鼠样本上 (图 3f). Science (2018) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 5a
BioLegend CD8抗体(Biolegend, 53-6.7)被用于被用于流式细胞仪在小鼠样本上 (图 5a). Eur J Immunol (2018) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 1k
BioLegend CD8抗体(BioLegend, 53-6.7)被用于被用于流式细胞仪在小鼠样本上 (图 1k). J Exp Med (2018) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 6a
BioLegend CD8抗体(BioLegend, 53-6.7)被用于被用于流式细胞仪在小鼠样本上 (图 6a). Infect Immun (2018) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 4b
BioLegend CD8抗体(BioLegend, 53-6.7)被用于被用于流式细胞仪在小鼠样本上 (图 4b). J Immunol (2018) ncbi
大鼠 单克隆(53-6.7)
  • 免疫组化-冰冻切片; 小鼠; 图 3b
BioLegend CD8抗体(Biolegend, 53-6.7)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 3b). Science (2017) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 2b
BioLegend CD8抗体(Biolegend, 53-6.7)被用于被用于流式细胞仪在小鼠样本上 (图 2b). JCI Insight (2017) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 s11
BioLegend CD8抗体(BD, 100725)被用于被用于流式细胞仪在小鼠样本上 (图 s11). Science (2017) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 s10e
BioLegend CD8抗体(BioLegend, 100708)被用于被用于流式细胞仪在小鼠样本上 (图 s10e). Nature (2018) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 1:200; 图 2a
BioLegend CD8抗体(BioLegend, 53-6.7)被用于被用于流式细胞仪在小鼠样本上浓度为1:200 (图 2a). Nat Commun (2017) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 s4a
BioLegend CD8抗体(BioLegend, 100721)被用于被用于流式细胞仪在小鼠样本上 (图 s4a). Proc Natl Acad Sci U S A (2017) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 1f
BioLegend CD8抗体(Biolegend, 100712)被用于被用于流式细胞仪在小鼠样本上 (图 1f). Sci Rep (2017) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 s5d
BioLegend CD8抗体(BioLegend, 53-6.7)被用于被用于流式细胞仪在小鼠样本上 (图 s5d). Nature (2017) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 1:200; 图 s7c
BioLegend CD8抗体(Biolegend, 100721)被用于被用于流式细胞仪在小鼠样本上浓度为1:200 (图 s7c). Nat Cell Biol (2017) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 1:100; 图 s1d
BioLegend CD8抗体(BioLegend, 100725)被用于被用于流式细胞仪在小鼠样本上浓度为1:100 (图 s1d). Leukemia (2018) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 4c
BioLegend CD8抗体(Biolegend, 53-6.7)被用于被用于流式细胞仪在小鼠样本上 (图 4c). Nature (2017) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 1b
BioLegend CD8抗体(BioLegend, 100733)被用于被用于流式细胞仪在小鼠样本上 (图 1b). Cell Rep (2017) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 3a
BioLegend CD8抗体(Biolegend, 53-6.7)被用于被用于流式细胞仪在小鼠样本上 (图 3a). Science (2017) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 5e
BioLegend CD8抗体(BioLegend, 53-6.7)被用于被用于流式细胞仪在小鼠样本上 (图 5e). Cell Death Differ (2017) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 1:400; 图 s3a
BioLegend CD8抗体(Biolegend, 53-6.7)被用于被用于流式细胞仪在小鼠样本上浓度为1:400 (图 s3a). Nat Commun (2017) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 s2a
BioLegend CD8抗体(Biolegend, 53-6.7)被用于被用于流式细胞仪在小鼠样本上 (图 s2a). Nature (2017) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 st1
BioLegend CD8抗体(Biolegend, 53-6.7)被用于被用于流式细胞仪在小鼠样本上 (图 st1). Nature (2017) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 1d
BioLegend CD8抗体(BioLegend, 53-6.7)被用于被用于流式细胞仪在小鼠样本上 (图 1d). J Exp Med (2017) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠
BioLegend CD8抗体(BioLegend, 53-6.7)被用于被用于流式细胞仪在小鼠样本上. Cell Mol Immunol (2018) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 s2a
BioLegend CD8抗体(Biolegend, 100725)被用于被用于流式细胞仪在小鼠样本上 (图 s2a). Nature (2017) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 st1a
BioLegend CD8抗体(BioLegend, 100708)被用于被用于流式细胞仪在小鼠样本上 (图 st1a). Nature (2017) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 4e
BioLegend CD8抗体(BioLegend, 53-6.7)被用于被用于流式细胞仪在小鼠样本上 (图 4e). J Exp Med (2017) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 s11b
BioLegend CD8抗体(Biolegend, 53-6.7)被用于被用于流式细胞仪在小鼠样本上 (图 s11b). J Clin Invest (2017) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 1b
BioLegend CD8抗体(BioLegend, 53-6.7)被用于被用于流式细胞仪在小鼠样本上 (图 1b). J Exp Med (2017) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 3b
BioLegend CD8抗体(Biolegend, 53-6.7)被用于被用于流式细胞仪在小鼠样本上 (图 3b). Nat Med (2017) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 1:250; 图 4a
BioLegend CD8抗体(BioLegend, 100707)被用于被用于流式细胞仪在小鼠样本上浓度为1:250 (图 4a). Sci Rep (2017) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠
BioLegend CD8抗体(Biolegend, 53-6.7)被用于被用于流式细胞仪在小鼠样本上. Science (2017) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 s1g
BioLegend CD8抗体(BioLegend, 53-6.7)被用于被用于流式细胞仪在小鼠样本上 (图 s1g). J Exp Med (2017) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠
BioLegend CD8抗体(BioLegend, 53-6.7)被用于被用于流式细胞仪在小鼠样本上. J Exp Med (2017) ncbi
大鼠 单克隆(53-6.7)
  • 免疫组化; 小鼠; 图 3e
BioLegend CD8抗体(Biolegend, 100701)被用于被用于免疫组化在小鼠样本上 (图 3e). Oncogene (2017) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 1:300; 图 6b
BioLegend CD8抗体(BioLegend, 100708)被用于被用于流式细胞仪在小鼠样本上浓度为1:300 (图 6b). Nat Commun (2017) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 2a
BioLegend CD8抗体(BioLegend, 53-6.7)被用于被用于流式细胞仪在小鼠样本上 (图 2a). Front Immunol (2017) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 6e
BioLegend CD8抗体(BioLegend, 53-67)被用于被用于流式细胞仪在小鼠样本上 (图 6e). J Biol Chem (2017) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 s2h
BioLegend CD8抗体(Biolegend, 53-6.7)被用于被用于流式细胞仪在小鼠样本上 (图 s2h). Proc Natl Acad Sci U S A (2017) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 s1f
BioLegend CD8抗体(BioLegend, 100908)被用于被用于流式细胞仪在小鼠样本上 (图 s1f). Nature (2017) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 1
BioLegend CD8抗体(BioLegend, 53-6.7)被用于被用于流式细胞仪在小鼠样本上 (图 1). J Clin Invest (2017) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 5c
BioLegend CD8抗体(Biolegend, 53-6.7)被用于被用于流式细胞仪在小鼠样本上 (图 5c). Proc Natl Acad Sci U S A (2017) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 s2
BioLegend CD8抗体(BioLegend, 53-6.7)被用于被用于流式细胞仪在小鼠样本上 (图 s2). Invest Ophthalmol Vis Sci (2017) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 4b
BioLegend CD8抗体(BioLegend, 53-6.7)被用于被用于流式细胞仪在小鼠样本上 (图 4b). JCI Insight (2017) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 1g
BioLegend CD8抗体(BioLegend, 53-6.7)被用于被用于流式细胞仪在小鼠样本上 (图 1g). Proc Natl Acad Sci U S A (2017) ncbi
大鼠 单克隆(53-6.7)
  • 免疫组化; 小鼠; 图 2c
BioLegend CD8抗体(Biolegend, 100726)被用于被用于免疫组化在小鼠样本上 (图 2c). Cell Stem Cell (2017) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 s6a
BioLegend CD8抗体(Biolegend, 53-6.7)被用于被用于流式细胞仪在小鼠样本上 (图 s6a). Nature (2017) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 2
BioLegend CD8抗体(BioLegend, 53-6.7)被用于被用于流式细胞仪在小鼠样本上 (图 2). Proc Natl Acad Sci U S A (2017) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 1:160; 图 5h
BioLegend CD8抗体(Biolegend, 100708)被用于被用于流式细胞仪在小鼠样本上浓度为1:160 (图 5h). Nat Commun (2016) ncbi
大鼠 单克隆(53-6.7)
  • 抑制或激活实验; 小鼠; 图 6a
BioLegend CD8抗体(biolegend, 53-6.7)被用于被用于抑制或激活实验在小鼠样本上 (图 6a). Proc Natl Acad Sci U S A (2017) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 2a
BioLegend CD8抗体(BioLegend, 53-6.7)被用于被用于流式细胞仪在小鼠样本上 (图 2a). Oncotarget (2017) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 1b
BioLegend CD8抗体(BioLegend, 53-6.7)被用于被用于流式细胞仪在小鼠样本上 (图 1b). PLoS Pathog (2016) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 s1b
BioLegend CD8抗体(BioLegend, 53-6.7)被用于被用于流式细胞仪在小鼠样本上 (图 s1b). Nat Commun (2016) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 4a
BioLegend CD8抗体(BioLegend, 53-6.7)被用于被用于流式细胞仪在小鼠样本上 (图 4a). J Immunol (2017) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 s2b
BioLegend CD8抗体(Biolegend, 53-6.7)被用于被用于流式细胞仪在小鼠样本上 (图 s2b). Proc Natl Acad Sci U S A (2016) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 s3c
BioLegend CD8抗体(BioLegend, 53-6.7)被用于被用于流式细胞仪在小鼠样本上 (图 s3c). Proc Natl Acad Sci U S A (2016) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 1G
BioLegend CD8抗体(Biolegend, 100704)被用于被用于流式细胞仪在小鼠样本上 (图 1G). Cell (2016) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 s2
BioLegend CD8抗体(BioLegend, 53-6.7)被用于被用于流式细胞仪在小鼠样本上 (图 s2). J Clin Invest (2016) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 1b
BioLegend CD8抗体(BioLegend, 100705)被用于被用于流式细胞仪在小鼠样本上 (图 1b). J Exp Med (2016) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 1:1000; 图 4c
BioLegend CD8抗体(BioLegend, 53-6.7)被用于被用于流式细胞仪在小鼠样本上浓度为1:1000 (图 4c). Nat Commun (2016) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 4b
BioLegend CD8抗体(BioLegend, 53-6.7)被用于被用于流式细胞仪在小鼠样本上 (图 4b). Proc Natl Acad Sci U S A (2016) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 1c
BioLegend CD8抗体(Biolegend, 53-6.7)被用于被用于流式细胞仪在小鼠样本上 (图 1c). J Immunol (2016) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠
BioLegend CD8抗体(BioLegend, 53-6.7)被用于被用于流式细胞仪在小鼠样本上. J Virol (2017) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 6
BioLegend CD8抗体(Biolegend, 53-6.7)被用于被用于流式细胞仪在小鼠样本上 (图 6). Proc Natl Acad Sci U S A (2016) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 s1
BioLegend CD8抗体(BioLegend, 53-6.7)被用于被用于流式细胞仪在小鼠样本上 (图 s1). Science (2016) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 1:400; 图 2a
BioLegend CD8抗体(BioLegend, 53-6.7)被用于被用于流式细胞仪在小鼠样本上浓度为1:400 (图 2a). J Clin Invest (2016) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 人类; 图 5
BioLegend CD8抗体(BioLegend, 53-6.7)被用于被用于流式细胞仪在人类样本上 (图 5). Nature (2016) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 6f
BioLegend CD8抗体(Biolegend, 100722)被用于被用于流式细胞仪在小鼠样本上 (图 6f). PLoS ONE (2016) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 1:50; 图 s2e
BioLegend CD8抗体(Biolegend, 53-6.7)被用于被用于流式细胞仪在小鼠样本上浓度为1:50 (图 s2e). Nat Commun (2016) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 2c
BioLegend CD8抗体(BioLegend, 53-6.7)被用于被用于流式细胞仪在小鼠样本上 (图 2c). Proc Natl Acad Sci U S A (2016) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 4
BioLegend CD8抗体(BioLegend, 100725)被用于被用于流式细胞仪在小鼠样本上 (图 4). PLoS ONE (2016) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 1
BioLegend CD8抗体(BioLegend, 100722)被用于被用于流式细胞仪在小鼠样本上 (图 1). Cell (2016) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 2
BioLegend CD8抗体(Biolegend, 53-6.7)被用于被用于流式细胞仪在小鼠样本上 (图 2). Sci Rep (2016) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 s9a
BioLegend CD8抗体(BioLegend, 53-6.7)被用于被用于流式细胞仪在小鼠样本上 (图 s9a). Science (2016) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 5B
BioLegend CD8抗体(Biolegend, 100747)被用于被用于流式细胞仪在小鼠样本上 (图 5B). Oncoimmunology (2016) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 1b
BioLegend CD8抗体(BioLegend, 100729)被用于被用于流式细胞仪在小鼠样本上 (图 1b). J Exp Clin Cancer Res (2016) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 人类; 1:100
BioLegend CD8抗体(BioLegend, 53-6.7)被用于被用于流式细胞仪在人类样本上浓度为1:100. Nat Commun (2016) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 6
BioLegend CD8抗体(Biolegend, 53-6.7)被用于被用于流式细胞仪在小鼠样本上 (图 6). PLoS ONE (2016) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 1a
BioLegend CD8抗体(BioLegend, 53-6.7)被用于被用于流式细胞仪在小鼠样本上 (图 1a). Proc Natl Acad Sci U S A (2016) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 s1
BioLegend CD8抗体(Biolegend, 53-6.7)被用于被用于流式细胞仪在小鼠样本上 (图 s1). Proc Natl Acad Sci U S A (2016) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 3c
BioLegend CD8抗体(BioLegend, 53-6.7)被用于被用于流式细胞仪在小鼠样本上 (图 3c). J Clin Invest (2016) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 1e
BioLegend CD8抗体(BioLegend, 53-6.7)被用于被用于流式细胞仪在小鼠样本上 (图 1e). J Immunol (2016) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 1:50; 图 3
BioLegend CD8抗体(Biolegend, 100723)被用于被用于流式细胞仪在小鼠样本上浓度为1:50 (图 3). Nat Commun (2016) ncbi
大鼠 单克隆(53-6.7)
  • 免疫组化-冰冻切片; 小鼠; 图 8c
BioLegend CD8抗体(BioLegend, 53-6.7)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 8c). J Exp Med (2016) ncbi
大鼠 单克隆(53-6.7)
  • 免疫组化-冰冻切片; 小鼠; 图 2i
BioLegend CD8抗体(BioLegend, 100727)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 2i). JCI Insight (2016) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 1a
BioLegend CD8抗体(biolegend, 100730)被用于被用于流式细胞仪在小鼠样本上 (图 1a). Proc Natl Acad Sci U S A (2016) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 4d
BioLegend CD8抗体(BioLegend, 53-6.7)被用于被用于流式细胞仪在小鼠样本上 (图 4d). J Exp Med (2016) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 1c
BioLegend CD8抗体(Biolegend, 53-6.7)被用于被用于流式细胞仪在小鼠样本上 (图 1c). Nature (2016) ncbi
大鼠 单克隆(53-6.7)
  • 免疫组化-冰冻切片; 小鼠; 1:100
  • 流式细胞仪; 小鼠; 1:200; 表 s2
BioLegend CD8抗体(Biolegend, 53-6.7)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:100 和 被用于流式细胞仪在小鼠样本上浓度为1:200 (表 s2). Nat Immunol (2016) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 s1
BioLegend CD8抗体(BioLegend, 53-6.7)被用于被用于流式细胞仪在小鼠样本上 (图 s1). Proc Natl Acad Sci U S A (2016) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 4g
BioLegend CD8抗体(BioLegend, 53-6.7)被用于被用于流式细胞仪在小鼠样本上 (图 4g). Am J Pathol (2016) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 1e
BioLegend CD8抗体(Biolegend, 53-6.7)被用于被用于流式细胞仪在小鼠样本上 (图 1e). J Leukoc Biol (2017) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 6a
BioLegend CD8抗体(BioLegend, 536.7)被用于被用于流式细胞仪在小鼠样本上 (图 6a). Nat Commun (2016) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 人类; 图 4
BioLegend CD8抗体(BioLegend, 53.6.7)被用于被用于流式细胞仪在人类样本上 (图 4). J Virol (2016) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 s6b
BioLegend CD8抗体(BioLegend, 53-6.7)被用于被用于流式细胞仪在小鼠样本上 (图 s6b). Nat Med (2016) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 s3
BioLegend CD8抗体(BioLegend, 53-6.7)被用于被用于流式细胞仪在小鼠样本上 (图 s3). J Clin Invest (2016) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 5c
BioLegend CD8抗体(Biolegend, 100733)被用于被用于流式细胞仪在小鼠样本上 (图 5c). Nat Commun (2016) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 1b
BioLegend CD8抗体(Biolegend, 53-6.7)被用于被用于流式细胞仪在小鼠样本上 (图 1b). Nature (2016) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 1:300; 图 s4b
BioLegend CD8抗体(Biolegend, 53-6.7)被用于被用于流式细胞仪在小鼠样本上浓度为1:300 (图 s4b). Nat Immunol (2016) ncbi
大鼠 单克隆(53-6.7)
BioLegend CD8抗体(BioLegend, 100711)被用于. PLoS ONE (2016) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 3c
BioLegend CD8抗体(Biolegend, 100734)被用于被用于流式细胞仪在小鼠样本上 (图 3c). J Virol (2016) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 4b
BioLegend CD8抗体(Biolegend, 100706)被用于被用于流式细胞仪在小鼠样本上 (图 4b). J Transl Med (2016) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 1a
BioLegend CD8抗体(Biolegend, 100708)被用于被用于流式细胞仪在小鼠样本上 (图 1a). Eur J Immunol (2016) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 1:200; 图 s1
BioLegend CD8抗体(BioLegend, 53-6.7)被用于被用于流式细胞仪在小鼠样本上浓度为1:200 (图 s1). Nat Commun (2016) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 1b
BioLegend CD8抗体(Biolegend, 53-6.7)被用于被用于流式细胞仪在小鼠样本上 (图 1b). PLoS ONE (2016) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 5
BioLegend CD8抗体(BioLegend, 53-6.7)被用于被用于流式细胞仪在小鼠样本上 (图 5). Sci Rep (2016) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 3
BioLegend CD8抗体(Biolegend, 100722)被用于被用于流式细胞仪在小鼠样本上 (图 3). J Clin Invest (2016) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 1:100; 图 s5
BioLegend CD8抗体(Biolegend, 53-6.7)被用于被用于流式细胞仪在小鼠样本上浓度为1:100 (图 s5). Nat Commun (2016) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 1:200; 图 1a
BioLegend CD8抗体(Biolegend, 53-6.7)被用于被用于流式细胞仪在小鼠样本上浓度为1:200 (图 1a). Nat Commun (2016) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 st1
BioLegend CD8抗体(Biolegend, 53-6.7)被用于被用于流式细胞仪在小鼠样本上 (图 st1). Nature (2016) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠
BioLegend CD8抗体(Biolegend, 53-6.7)被用于被用于流式细胞仪在小鼠样本上. Oncoimmunology (2016) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 s2
BioLegend CD8抗体(Biolegend, 100744)被用于被用于流式细胞仪在小鼠样本上 (图 s2). Oncotarget (2016) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 s3a
BioLegend CD8抗体(Biolegend, 53-6.7)被用于被用于流式细胞仪在小鼠样本上 (图 s3a). Nature (2016) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 s1
BioLegend CD8抗体(Biolegend, 53-6.7)被用于被用于流式细胞仪在小鼠样本上 (图 s1). Oncotarget (2016) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 4a
BioLegend CD8抗体(Biolegend, 53-6.7)被用于被用于流式细胞仪在小鼠样本上 (图 4a). Nat Immunol (2016) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 2
BioLegend CD8抗体(Biolegend, 53-6.7)被用于被用于流式细胞仪在小鼠样本上 (图 2). Nat Immunol (2016) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 7d
BioLegend CD8抗体(BioLegend, 53-6.7)被用于被用于流式细胞仪在小鼠样本上 (图 7d). Oncotarget (2016) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 s3a
BioLegend CD8抗体(Biolegend, 53-6.7)被用于被用于流式细胞仪在小鼠样本上 (图 s3a). Diabetes (2016) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠
BioLegend CD8抗体(Biolegend, 53-6.7)被用于被用于流式细胞仪在小鼠样本上. Proc Natl Acad Sci U S A (2016) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 5a
BioLegend CD8抗体(BioLegend, 53-6.7)被用于被用于流式细胞仪在小鼠样本上 (图 5a). Gastroenterology (2016) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 5
BioLegend CD8抗体(BioLegend, 53-6.7)被用于被用于流式细胞仪在小鼠样本上 (图 5). J Transl Med (2016) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 5
BioLegend CD8抗体(BioLegend, 53-6.7)被用于被用于流式细胞仪在小鼠样本上 (图 5). PLoS ONE (2016) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 1
BioLegend CD8抗体(Biolegend, 53-6.7)被用于被用于流式细胞仪在小鼠样本上 (图 1). Mucosal Immunol (2016) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠
BioLegend CD8抗体(BioLegend, 53-6.7)被用于被用于流式细胞仪在小鼠样本上. Nature (2016) ncbi
大鼠 单克隆(53-6.7)
BioLegend CD8抗体(Biolegend, 100711)被用于. Clin Cancer Res (2016) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 s13
BioLegend CD8抗体(Biolegend, 53-6.7)被用于被用于流式细胞仪在小鼠样本上 (图 s13). Science (2016) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 5a
BioLegend CD8抗体(Biolegend, 53-6.7)被用于被用于流式细胞仪在小鼠样本上 (图 5a). J Thorac Oncol (2016) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 1b
BioLegend CD8抗体(BioLegend, 53-6.7)被用于被用于流式细胞仪在小鼠样本上 (图 1b). J Exp Med (2016) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 2
BioLegend CD8抗体(Biolegend, 53-6.7)被用于被用于流式细胞仪在小鼠样本上 (图 2). Sci Rep (2016) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠
BioLegend CD8抗体(Biolegend, 53-6.7)被用于被用于流式细胞仪在小鼠样本上. Dis Model Mech (2016) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠
BioLegend CD8抗体(BioLegend, 100713)被用于被用于流式细胞仪在小鼠样本上. Nature (2016) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 s5
BioLegend CD8抗体(Biolegend, 53-6.7)被用于被用于流式细胞仪在小鼠样本上 (图 s5). EMBO Mol Med (2016) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 1a
BioLegend CD8抗体(Biolegend, 53-6.7)被用于被用于流式细胞仪在小鼠样本上 (图 1a). Sci Rep (2016) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠
BioLegend CD8抗体(Biolegend, 53-6.7)被用于被用于流式细胞仪在小鼠样本上. Aging (Albany NY) (2016) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 4
BioLegend CD8抗体(BioLegend, 53-6.7)被用于被用于流式细胞仪在小鼠样本上 (图 4). PLoS Pathog (2016) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 1:400; 图 2e
BioLegend CD8抗体(BioLegend, 100722)被用于被用于流式细胞仪在小鼠样本上浓度为1:400 (图 2e). Nat Commun (2016) ncbi
大鼠 单克隆(53-6.7)
BioLegend CD8抗体(Biolegend, 100725)被用于. Sci Rep (2015) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 s1
BioLegend CD8抗体(BioLegend, 53-6.7)被用于被用于流式细胞仪在小鼠样本上 (图 s1). Science (2016) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠
BioLegend CD8抗体(BioLegend, 53-6.7)被用于被用于流式细胞仪在小鼠样本上. Nat Genet (2016) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 2
BioLegend CD8抗体(biolegend, 53-6.7)被用于被用于流式细胞仪在小鼠样本上 (图 2). Theranostics (2015) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 1
  • 免疫组化; 小鼠; 图 1
BioLegend CD8抗体(BioLegend, 53.6.7)被用于被用于流式细胞仪在小鼠样本上 (图 1) 和 被用于免疫组化在小鼠样本上 (图 1). Nat Med (2015) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 5
BioLegend CD8抗体(Biolegend, 53-6.7)被用于被用于流式细胞仪在小鼠样本上 (图 5). Eur J Immunol (2016) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠
BioLegend CD8抗体(BioLegend, 53-6.7)被用于被用于流式细胞仪在小鼠样本上. J Immunol (2015) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 人类
BioLegend CD8抗体(BioLegend, 53-6.7)被用于被用于流式细胞仪在人类样本上. Science (2015) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 s7
BioLegend CD8抗体(Biolegend, 53-6.7)被用于被用于流式细胞仪在小鼠样本上 (图 s7). elife (2015) ncbi
大鼠 单克隆(53-6.7)
BioLegend CD8抗体(BioLegend, 100731)被用于. Mol Med Rep (2015) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 4
BioLegend CD8抗体(Biolegend, 53-6.7)被用于被用于流式细胞仪在小鼠样本上 (图 4). Mucosal Immunol (2016) ncbi
大鼠 单克隆(53-6.7)
  • 免疫组化-冰冻切片; 小鼠; 图 4
BioLegend CD8抗体(BioLegend, 53-6.7)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 4). Cancer Res (2015) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 1c
BioLegend CD8抗体(Biolegend, 53-6.7)被用于被用于流式细胞仪在小鼠样本上 (图 1c). Cancer Res (2015) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 2d
BioLegend CD8抗体(Biolegend, 53-6.7)被用于被用于流式细胞仪在小鼠样本上 (图 2d). Cancer Res (2015) ncbi
大鼠 单克隆(5H10-1)
  • 流式细胞仪; 小鼠; 图 1
BioLegend CD8抗体(BioLegend, #100802)被用于被用于流式细胞仪在小鼠样本上 (图 1). Exp Ther Med (2015) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 s1
BioLegend CD8抗体(biolegend, 53?C6.7)被用于被用于流式细胞仪在小鼠样本上 (图 s1). Immunity (2015) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 2a
BioLegend CD8抗体(BioLegend, 53-6.7)被用于被用于流式细胞仪在小鼠样本上 (图 2a). J Exp Med (2015) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 10 ug/ml; 图 7a
BioLegend CD8抗体(Biolegend, 53-6.7)被用于被用于流式细胞仪在小鼠样本上浓度为10 ug/ml (图 7a). Nat Commun (2015) ncbi
大鼠 单克隆(53-6.7)
  • 免疫组化-冰冻切片; 小鼠; 图 9
BioLegend CD8抗体(BioLegend, 53-6.7)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 9). PLoS ONE (2015) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 表 s1
BioLegend CD8抗体(BioLegend, 53-6.7)被用于被用于流式细胞仪在小鼠样本上 (表 s1). Biochem Biophys Res Commun (2015) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 2
BioLegend CD8抗体(BioLegend, 53-6.7)被用于被用于流式细胞仪在小鼠样本上 (图 2). PLoS ONE (2015) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 3b
BioLegend CD8抗体(BioLegend, 5.3-6.7)被用于被用于流式细胞仪在小鼠样本上 (图 3b). J Leukoc Biol (2015) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 1
BioLegend CD8抗体(BioLegend, 100707)被用于被用于流式细胞仪在小鼠样本上 (图 1). Nat Immunol (2015) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 7
BioLegend CD8抗体(Biolegend, 53-6.7)被用于被用于流式细胞仪在小鼠样本上 (图 7). J Immunol (2015) ncbi
大鼠 单克隆(53-6.7)
  • 免疫组化; 小鼠; 图 4
BioLegend CD8抗体(BioLegend, 100711)被用于被用于免疫组化在小鼠样本上 (图 4). J Virol (2015) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠
BioLegend CD8抗体(BioLegend, 53-6.7)被用于被用于流式细胞仪在小鼠样本上. J Exp Med (2015) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠
BioLegend CD8抗体(Biolegend, 53-6.7)被用于被用于流式细胞仪在小鼠样本上. Eur J Immunol (2015) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 4
BioLegend CD8抗体(Biolegend, 53-6.7)被用于被用于流式细胞仪在小鼠样本上 (图 4). Nat Commun (2015) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 2
BioLegend CD8抗体(BioLegend, 53-6.7)被用于被用于流式细胞仪在小鼠样本上 (图 2). J Immunol (2015) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠
BioLegend CD8抗体(Biolegend, 53-6.7)被用于被用于流式细胞仪在小鼠样本上. Microbes Infect (2015) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 3a
BioLegend CD8抗体(BioLegend, 53-6.7)被用于被用于流式细胞仪在小鼠样本上 (图 3a). Tuberculosis (Edinb) (2015) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 7d
  • 免疫组化; 小鼠; 图 4c
BioLegend CD8抗体(Biolegend, 100733)被用于被用于流式细胞仪在小鼠样本上 (图 7d) 和 被用于免疫组化在小鼠样本上 (图 4c). Proc Natl Acad Sci U S A (2015) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 s4
BioLegend CD8抗体(Biolegend, 100734)被用于被用于流式细胞仪在小鼠样本上 (图 s4). Proc Natl Acad Sci U S A (2015) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 2a
BioLegend CD8抗体(Biolegend, 53-6.7)被用于被用于流式细胞仪在小鼠样本上 (图 2a). Sci Transl Med (2015) ncbi
大鼠 单克隆(53-6.7)
  • 抑制或激活实验; 小鼠
BioLegend CD8抗体(Biolegend, 53-6.7)被用于被用于抑制或激活实验在小鼠样本上. Oncotarget (2015) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 1:5000; 图 4
BioLegend CD8抗体(BioLegend, 100705)被用于被用于流式细胞仪在小鼠样本上浓度为1:5000 (图 4). Immun Ageing (2015) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 大鼠
BioLegend CD8抗体(BioLegend, 100701)被用于被用于流式细胞仪在大鼠样本上. Transpl Immunol (2015) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 表 s3
BioLegend CD8抗体(Biolegend, 53-6.7)被用于被用于流式细胞仪在小鼠样本上 (表 s3). PLoS ONE (2015) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠
BioLegend CD8抗体(BioLegend, 100705)被用于被用于流式细胞仪在小鼠样本上. Anticancer Res (2015) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 4
BioLegend CD8抗体(Biolegend, 53-6.7)被用于被用于流式细胞仪在小鼠样本上 (图 4). Neuropathol Appl Neurobiol (2015) ncbi
大鼠 单克隆(53-6.7)
  • 免疫组化-石蜡切片; 小鼠; 表 1
BioLegend CD8抗体(Biolegend, 100701)被用于被用于免疫组化-石蜡切片在小鼠样本上 (表 1). Methods Mol Biol (2015) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 5
BioLegend CD8抗体(BioLegend, 53-6.7)被用于被用于流式细胞仪在小鼠样本上 (图 5). Cancer Immunol Res (2015) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 8f
BioLegend CD8抗体(Biolegend, 53-6.7)被用于被用于流式细胞仪在小鼠样本上 (图 8f). J Virol (2015) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 2
BioLegend CD8抗体(BioLegend, 53-6.7)被用于被用于流式细胞仪在小鼠样本上 (图 2). PLoS Pathog (2015) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 3a
BioLegend CD8抗体(Biolegend, 100734)被用于被用于流式细胞仪在小鼠样本上 (图 3a). Shock (2015) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 5
BioLegend CD8抗体(Biolegend, clone 53-6.7)被用于被用于流式细胞仪在小鼠样本上 (图 5). Eur J Immunol (2015) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠
BioLegend CD8抗体(BioLegend, 53-6.7)被用于被用于流式细胞仪在小鼠样本上. J Immunol (2015) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠
BioLegend CD8抗体(BioLegend, 100710)被用于被用于流式细胞仪在小鼠样本上. J Immunol (2015) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 3
BioLegend CD8抗体(Biolegend, 53-6.7)被用于被用于流式细胞仪在小鼠样本上 (图 3). Infect Immun (2015) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠
BioLegend CD8抗体(BioLegend, 53-6.7)被用于被用于流式细胞仪在小鼠样本上. J Clin Invest (2015) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 6a
BioLegend CD8抗体(biolegend, 100707)被用于被用于流式细胞仪在小鼠样本上 (图 6a). Appl Microbiol Biotechnol (2015) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 表 s1
BioLegend CD8抗体(Biolegend, 53-6.7)被用于被用于流式细胞仪在小鼠样本上 (表 s1). Stem Cells (2015) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 5
BioLegend CD8抗体(Biolegend, 53-6.7)被用于被用于流式细胞仪在小鼠样本上 (图 5). Eur J Immunol (2015) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 1:200
BioLegend CD8抗体(BioLegend, 53-6.7)被用于被用于流式细胞仪在小鼠样本上浓度为1:200. PLoS ONE (2014) ncbi
大鼠 单克隆(53-6.7)
BioLegend CD8抗体(Biolegend, 53-6.7)被用于. PLoS ONE (2014) ncbi
大鼠 单克隆(53-6.7)
BioLegend CD8抗体(BioLegend, 53-6.7)被用于. J Immunol (2014) ncbi
大鼠 单克隆(53-6.7)
BioLegend CD8抗体(BioLegend, 53-6.7)被用于. Cell Res (2014) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠
BioLegend CD8抗体(BioLegend, 53-6.7)被用于被用于流式细胞仪在小鼠样本上. Blood (2014) ncbi
大鼠 单克隆(53-6.7)
  • 抑制或激活实验; 小鼠; 150 ug/mice
BioLegend CD8抗体(BioLegend, 53-6.7)被用于被用于抑制或激活实验在小鼠样本上浓度为150 ug/mice. PLoS ONE (2014) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠
BioLegend CD8抗体(BioLegend, 53-6.7)被用于被用于流式细胞仪在小鼠样本上. J Virol (2014) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠
BioLegend CD8抗体(BioLegend, 53-6.7)被用于被用于流式细胞仪在小鼠样本上. Cancer Immunol Res (2014) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠
BioLegend CD8抗体(Biolegend, 53-6.7)被用于被用于流式细胞仪在小鼠样本上. J Immunol (2014) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠
BioLegend CD8抗体(Biolegend, 53-6.7)被用于被用于流式细胞仪在小鼠样本上. Mol Cell Biol (2014) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠
BioLegend CD8抗体(BioLegend, 53-6.7)被用于被用于流式细胞仪在小鼠样本上. Infect Immun (2014) ncbi
大鼠 单克隆(53-6.7)
BioLegend CD8抗体(BioLegend, 53-6.7)被用于. PLoS Negl Trop Dis (2014) ncbi
大鼠 单克隆(53-6.7)
  • 免疫细胞化学; 小鼠
BioLegend CD8抗体(Biolegend, 100723)被用于被用于免疫细胞化学在小鼠样本上. Proc Natl Acad Sci U S A (2014) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 2
  • 免疫组化; 小鼠; 图 2
BioLegend CD8抗体(BioLegend, 53-6.7)被用于被用于流式细胞仪在小鼠样本上 (图 2) 和 被用于免疫组化在小鼠样本上 (图 2). Immunol Cell Biol (2014) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠
BioLegend CD8抗体(Biolegend, 53-6.7)被用于被用于流式细胞仪在小鼠样本上. J Immunol (2014) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 s2
BioLegend CD8抗体(BioLegend, 53-6.7)被用于被用于流式细胞仪在小鼠样本上 (图 s2). J Immunol (2014) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 1:100
BioLegend CD8抗体(BioLegend, 100712)被用于被用于流式细胞仪在小鼠样本上浓度为1:100. Nat Med (2013) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 4
BioLegend CD8抗体(Biolegend, 100733)被用于被用于流式细胞仪在小鼠样本上 (图 4). Autophagy (2013) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠
BioLegend CD8抗体(Biolegend, 53-6.7)被用于被用于流式细胞仪在小鼠样本上. Arch Immunol Ther Exp (Warsz) (2013) ncbi
赛默飞世尔
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 1:200
赛默飞世尔 CD8抗体(eBioscience, 17-0081-81)被用于被用于流式细胞仪在小鼠样本上浓度为1:200. Nat Commun (2022) ncbi
大鼠 单克隆(4SM15)
  • 免疫组化; 小鼠; 1:1000; 图 3a
赛默飞世尔 CD8抗体(Thermo Fisher, 14-0808-82)被用于被用于免疫组化在小鼠样本上浓度为1:1000 (图 3a). Theranostics (2022) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 1:1000; 图 3b, 3c
赛默飞世尔 CD8抗体(Invitrogen, 48-0081-80)被用于被用于流式细胞仪在小鼠样本上浓度为1:1000 (图 3b, 3c). Theranostics (2022) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 人类; 1:100; 图 s5a
赛默飞世尔 CD8抗体(Invitrogen, 25-0081-81)被用于被用于流式细胞仪在人类样本上浓度为1:100 (图 s5a). Nat Commun (2022) ncbi
大鼠 单克隆(4SM15)
  • 免疫组化; 小鼠; 1:1000; 图 s5b
赛默飞世尔 CD8抗体(Invitrogen, 14-0808-82)被用于被用于免疫组化在小鼠样本上浓度为1:1000 (图 s5b). Sci Transl Med (2022) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 2b, 2g
赛默飞世尔 CD8抗体(eBioscience, 56-0081-82)被用于被用于流式细胞仪在小鼠样本上 (图 2b, 2g). PLoS Pathog (2022) ncbi
大鼠 单克隆(53-6.7)
  • 免疫组化-冰冻切片; 小鼠; 1:100; 图 4a
赛默飞世尔 CD8抗体(e-Bioscience, 53-6.7)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:100 (图 4a). In Vivo (2022) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 1:400; 图 1c, s3a, s3b
赛默飞世尔 CD8抗体(eBioscience, 11-0081-82)被用于被用于流式细胞仪在小鼠样本上浓度为1:400 (图 1c, s3a, s3b). Development (2022) ncbi
大鼠 单克隆(4SM15)
  • 免疫组化; 小鼠; 1:2000; 图 s6a
赛默飞世尔 CD8抗体(eBioscience, 14-0808)被用于被用于免疫组化在小鼠样本上浓度为1:2000 (图 s6a). Nat Commun (2022) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 s3, 1d
赛默飞世尔 CD8抗体(eBioscience, 53-6.7)被用于被用于流式细胞仪在小鼠样本上 (图 s3, 1d). Int J Mol Sci (2022) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 1:100; 图 2j, 5g, e5b, s1g
赛默飞世尔 CD8抗体(eBioscience, 45-0081-82)被用于被用于流式细胞仪在小鼠样本上浓度为1:100 (图 2j, 5g, e5b, s1g). EMBO Mol Med (2022) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 1:100; 图 6f
赛默飞世尔 CD8抗体(Thermo Fisher, 53-6.7)被用于被用于流式细胞仪在小鼠样本上浓度为1:100 (图 6f). Sci Rep (2021) ncbi
大鼠 单克隆(4SM15)
  • 免疫组化-石蜡切片; 小鼠; 1:100; 图 4b
赛默飞世尔 CD8抗体(Invitrogen, 4SM15)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:100 (图 4b). Nat Commun (2021) ncbi
大鼠 单克隆(4SM15)
  • 免疫组化; 小鼠; 1:5000; 图 6b
赛默飞世尔 CD8抗体(Ebioscience, 14-0808-82)被用于被用于免疫组化在小鼠样本上浓度为1:5000 (图 6b). Cancers (Basel) (2021) ncbi
大鼠 单克隆(4SM15)
  • 免疫组化; 小鼠; 1:200; 图 3c
赛默飞世尔 CD8抗体(Invitrogen, 14-0808-82)被用于被用于免疫组化在小鼠样本上浓度为1:200 (图 3c). Cancers (Basel) (2021) ncbi
大鼠 单克隆(4SM15)
  • 免疫细胞化学; 小鼠; 1:100; 图 3b
赛默飞世尔 CD8抗体(Thermo Fisher Scientific, 4?C0808)被用于被用于免疫细胞化学在小鼠样本上浓度为1:100 (图 3b). J Immunother Cancer (2021) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 3d
赛默飞世尔 CD8抗体(eBioscience, 25-0081-82)被用于被用于流式细胞仪在小鼠样本上 (图 3d). Cell Death Dis (2021) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 1:50; 图 4d
赛默飞世尔 CD8抗体(eBioscience, 11-0081-85)被用于被用于流式细胞仪在小鼠样本上浓度为1:50 (图 4d). Cells (2021) ncbi
大鼠 单克隆(4SM15)
  • 免疫组化-石蜡切片; 小鼠; 1:200; 图 7e
赛默飞世尔 CD8抗体(Invitrogen, 14-0808-80)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:200 (图 7e). NPJ Breast Cancer (2021) ncbi
大鼠 单克隆(4SM15)
  • 免疫组化-石蜡切片; 小鼠; 图 7e
赛默飞世尔 CD8抗体(Thermo fisher, 14-0808-82)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 7e). Cell Rep (2021) ncbi
大鼠 单克隆(53-6.7)
  • 免疫组化; 小鼠; 1:100; 图 2e
赛默飞世尔 CD8抗体(eBioscience, 14-0081-82)被用于被用于免疫组化在小鼠样本上浓度为1:100 (图 2e). Cell Death Discov (2021) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠
赛默飞世尔 CD8抗体(eBioscience, 45-0081-82)被用于被用于流式细胞仪在小鼠样本上. Int J Mol Sci (2021) ncbi
大鼠 单克隆(53-6.7)
  • 免疫组化-冰冻切片; 小鼠; 图 2e
赛默飞世尔 CD8抗体(Invitrogen, 14-0081-82)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 2e). Int J Mol Sci (2021) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 1:100
赛默飞世尔 CD8抗体(Thermo Fisher Scientific, 48-0081-82)被用于被用于流式细胞仪在小鼠样本上浓度为1:100. elife (2021) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 人类; 1:40
赛默飞世尔 CD8抗体(ThermoFisher Scientific, 53-0081-82)被用于被用于流式细胞仪在人类样本上浓度为1:40. elife (2021) ncbi
大鼠 单克隆(4SM15)
  • 免疫组化-石蜡切片; 小鼠; 图 3f
赛默飞世尔 CD8抗体(Ebiosciences, 14-0808-80)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 3f). Mol Cancer (2021) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 2b
赛默飞世尔 CD8抗体(eBioscience, 12-0081-81)被用于被用于流式细胞仪在小鼠样本上 (图 2b). Cell Mol Gastroenterol Hepatol (2021) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 表 2
赛默飞世尔 CD8抗体(Thermo Fisher, 47-0081-82)被用于被用于流式细胞仪在小鼠样本上 (表 2). Int J Mol Sci (2021) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 1:100; 图 6c
赛默飞世尔 CD8抗体(eBioscience, 11-0081-82)被用于被用于流式细胞仪在小鼠样本上浓度为1:100 (图 6c). Cell Prolif (2021) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠
赛默飞世尔 CD8抗体(eBioscience, 56-0081-82)被用于被用于流式细胞仪在小鼠样本上. Mucosal Immunol (2021) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 s3
赛默飞世尔 CD8抗体(Thermo Fisher, 53-6.7)被用于被用于流式细胞仪在小鼠样本上 (图 s3). Cell Death Dis (2021) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 3b
赛默飞世尔 CD8抗体(eBiosciences, 53-6.7)被用于被用于流式细胞仪在小鼠样本上 (图 3b). BMC Res Notes (2021) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 6c
赛默飞世尔 CD8抗体(eBioscience, 53-6.7)被用于被用于流式细胞仪在小鼠样本上 (图 6c). Antioxidants (Basel) (2021) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠
赛默飞世尔 CD8抗体(Thermo-Fisher, 12-0081-82)被用于被用于流式细胞仪在小鼠样本上. J Exp Clin Cancer Res (2021) ncbi
大鼠 单克隆(4SM15)
  • 免疫组化-石蜡切片; 小鼠; 1:200; 图 7e
赛默飞世尔 CD8抗体(eBioscience, 14-0808-82)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:200 (图 7e). Nat Commun (2021) ncbi
大鼠 单克隆(4SM15)
  • 免疫组化; 小鼠; 1:50; 图 2
赛默飞世尔 CD8抗体(Thermo Fisher Scientific, 4SM15)被用于被用于免疫组化在小鼠样本上浓度为1:50 (图 2). NPJ Breast Cancer (2021) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 1a
赛默飞世尔 CD8抗体(ThermoFisher, 53-6.7)被用于被用于流式细胞仪在小鼠样本上 (图 1a). Front Immunol (2020) ncbi
大鼠 单克隆(5H10)
  • 流式细胞仪; 人类; 图 5f
赛默飞世尔 CD8抗体(Thermo Fisher, MCD0801)被用于被用于流式细胞仪在人类样本上 (图 5f). Oncogene (2021) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 1:1000; 图 1c
赛默飞世尔 CD8抗体(Thermofisher, 53-6.7)被用于被用于流式细胞仪在小鼠样本上浓度为1:1000 (图 1c). Protein Cell (2021) ncbi
大鼠 单克隆(4SM16)
  • 免疫组化-石蜡切片; 小鼠; 图 6a
  • 免疫组化-石蜡切片; 人类; 图 7c
赛默飞世尔 CD8抗体(eBioscience, 14-0195-82)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 6a) 和 被用于免疫组化-石蜡切片在人类样本上 (图 7c). Oncogene (2021) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 s8
赛默飞世尔 CD8抗体(eBioscience, 12-0081-81)被用于被用于流式细胞仪在小鼠样本上 (图 s8). Commun Biol (2021) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 7
赛默飞世尔 CD8抗体(eBioscience, 53-6.7)被用于被用于流式细胞仪在小鼠样本上 (图 7). Adv Sci (Weinh) (2021) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 10a
赛默飞世尔 CD8抗体(Thermo Fisher, 53-6.7)被用于被用于流式细胞仪在小鼠样本上 (图 10a). PLoS Pathog (2021) ncbi
大鼠 单克隆(53-6.7)
  • 免疫组化-冰冻切片; 小鼠; 1:1000; 图 1c
赛默飞世尔 CD8抗体(eBioscience, 14-0081-82)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:1000 (图 1c). Nat Neurosci (2021) ncbi
大鼠 单克隆(5H10)
  • 流式细胞仪; 小鼠; 1:100; 图 1a
赛默飞世尔 CD8抗体(eBioscience, MCD0828)被用于被用于流式细胞仪在小鼠样本上浓度为1:100 (图 1a). J Neuroinflammation (2021) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 1:500; 图 6d
赛默飞世尔 CD8抗体(eBiosciences, 56-0081-82)被用于被用于流式细胞仪在小鼠样本上浓度为1:500 (图 6d). Cancer Res (2021) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 ev4d
赛默飞世尔 CD8抗体(eBioscience, 53-6.7)被用于被用于流式细胞仪在小鼠样本上 (图 ev4d). EMBO Mol Med (2021) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠
赛默飞世尔 CD8抗体(eBioscience, 48-0081-82)被用于被用于流式细胞仪在小鼠样本上. J Clin Invest (2021) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 1a
赛默飞世尔 CD8抗体(eBioscience, 53-6.7)被用于被用于流式细胞仪在小鼠样本上 (图 1a). J Clin Invest (2020) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 s2a
赛默飞世尔 CD8抗体(eBioscience, 53-6.7)被用于被用于流式细胞仪在小鼠样本上 (图 s2a). Mucosal Immunol (2021) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 s2b
赛默飞世尔 CD8抗体(eBioscience, 13-0081-82)被用于被用于流式细胞仪在小鼠样本上 (图 s2b). Cell (2020) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 s4
赛默飞世尔 CD8抗体(Thermo Fisher, 53-6.7)被用于被用于流式细胞仪在小鼠样本上 (图 s4). Eur J Immunol (2021) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 4c
赛默飞世尔 CD8抗体(Thermo Fisher, 53-0081-82)被用于被用于流式细胞仪在小鼠样本上 (图 4c). Cell (2020) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 s1a, s1b
赛默飞世尔 CD8抗体(eBioscience, 53-6.7)被用于被用于流式细胞仪在小鼠样本上 (图 s1a, s1b). BMC Immunol (2020) ncbi
大鼠 单克隆(53-6.7)
  • 免疫组化; 小鼠; 图 4a
赛默飞世尔 CD8抗体(eBioscience, 16-0081-81)被用于被用于免疫组化在小鼠样本上 (图 4a). Basic Res Cardiol (2020) ncbi
大鼠 单克隆(4SM15)
  • 免疫组化-石蜡切片; 小鼠; 图 4b
赛默飞世尔 CD8抗体(eBioscience, 14-0808-82)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 4b). Cell (2020) ncbi
大鼠 单克隆(4SM15)
  • 免疫组化; 小鼠; 1:50; 图 5e
赛默飞世尔 CD8抗体(eBioscience, 14-0808-82)被用于被用于免疫组化在小鼠样本上浓度为1:50 (图 5e). Nat Commun (2020) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 人类; 1:100; 图 6a
赛默飞世尔 CD8抗体(eBioscience, 53-6.7)被用于被用于流式细胞仪在人类样本上浓度为1:100 (图 6a). Front Immunol (2020) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 7b
赛默飞世尔 CD8抗体(Invitrogen, 53-6.7)被用于被用于流式细胞仪在小鼠样本上 (图 7b). PLoS Pathog (2020) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 1:300; 图 4d
赛默飞世尔 CD8抗体(Invitrogen, 17-0081-82)被用于被用于流式细胞仪在小鼠样本上浓度为1:300 (图 4d). Cell Res (2020) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 1:100; 图 3, s4
赛默飞世尔 CD8抗体(eBioscience, 45-0081-82)被用于被用于流式细胞仪在小鼠样本上浓度为1:100 (图 3, s4). Nat Commun (2020) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 2e
赛默飞世尔 CD8抗体(eBioscience, 53-6.7)被用于被用于流式细胞仪在小鼠样本上 (图 2e). Nature (2020) ncbi
大鼠 单克隆(4SM16)
  • 免疫组化-石蜡切片; 小鼠; 图 6e
赛默飞世尔 CD8抗体(eBioscience, 14-0195-82)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 6e). Sci Transl Med (2020) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠
赛默飞世尔 CD8抗体(eBioscience, 53.6-7)被用于被用于流式细胞仪在小鼠样本上. elife (2020) ncbi
大鼠 单克隆(4SM15)
  • 免疫组化-石蜡切片; 小鼠; 图 5b
赛默飞世尔 CD8抗体(Fisher Scientific, 4SM15)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 5b). Cancers (Basel) (2020) ncbi
大鼠 单克隆(4SM15)
  • 免疫组化-石蜡切片; 小鼠; 图 5b
赛默飞世尔 CD8抗体(eBioscience, 4SM15)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 5b). Acta Neuropathol (2020) ncbi
大鼠 单克隆(KT15)
  • 流式细胞仪; 小鼠; 1:100; 图 s15
赛默飞世尔 CD8抗体(ThermoFisher, MA5-16761)被用于被用于流式细胞仪在小鼠样本上浓度为1:100 (图 s15). Nat Commun (2020) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 5b
赛默飞世尔 CD8抗体(eBioscience, 12-0081-82)被用于被用于流式细胞仪在小鼠样本上 (图 5b). Aging (Albany NY) (2020) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 1:50; 图 s5a
赛默飞世尔 CD8抗体(eBioscience, 53-6.7)被用于被用于流式细胞仪在小鼠样本上浓度为1:50 (图 s5a). Mol Ther Methods Clin Dev (2020) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 1:800; 图 s15b
赛默飞世尔 CD8抗体(Thermo Fisher, 12-0081-81)被用于被用于流式细胞仪在小鼠样本上浓度为1:800 (图 s15b). Nat Commun (2020) ncbi
大鼠 单克隆(4SM15)
  • 免疫组化-冰冻切片; 小鼠; 1:150; 图 2a
赛默飞世尔 CD8抗体(eBioscience, 14-0808-82)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:150 (图 2a). Nat Commun (2020) ncbi
大鼠 单克隆(4SM15)
  • 免疫组化-石蜡切片; 小鼠; 图 s7f
赛默飞世尔 CD8抗体(eBioscience, 14-0808-82)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 s7f). Nature (2020) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 2d, s3a, s3b
赛默飞世尔 CD8抗体(ThermoFisher, 47-0081-82)被用于被用于流式细胞仪在小鼠样本上 (图 2d, s3a, s3b). Cell Rep (2019) ncbi
大鼠 单克隆(4SM16)
  • 免疫组化-石蜡切片; 小鼠; 图 4f
赛默飞世尔 CD8抗体(Thermo Fisher, 4SM16)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 4f). Cell Rep (2019) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 1:100; 图 5b
赛默飞世尔 CD8抗体(eBioscience, MA1-10304)被用于被用于流式细胞仪在小鼠样本上浓度为1:100 (图 5b). Nat Commun (2019) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 1:200; 图 s1f
赛默飞世尔 CD8抗体(Invitrogen, 11-0081-85)被用于被用于流式细胞仪在小鼠样本上浓度为1:200 (图 s1f). Nat Commun (2019) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 1:100; 图 s4
赛默飞世尔 CD8抗体(eBioscience, 17-0081-82)被用于被用于流式细胞仪在小鼠样本上浓度为1:100 (图 s4). Nature (2019) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 s3a, s3b
赛默飞世尔 CD8抗体(eBioscience, 53-6.7)被用于被用于流式细胞仪在小鼠样本上 (图 s3a, s3b). Sci Adv (2019) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 1:100; 图 3s1
赛默飞世尔 CD8抗体(eBiosciences, 25-0081-81)被用于被用于流式细胞仪在小鼠样本上浓度为1:100 (图 3s1). elife (2019) ncbi
大鼠 单克隆(5H10)
  • 流式细胞仪; 小鼠; 图 s1d
赛默飞世尔 CD8抗体(Thermo Fisher, 5H10)被用于被用于流式细胞仪在小鼠样本上 (图 s1d). Science (2019) ncbi
大鼠 单克隆(4SM15)
  • 免疫组化-石蜡切片; 小鼠; 1:100; 图 5a
赛默飞世尔 CD8抗体(eBioscience, 14-C0808)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:100 (图 5a). Br J Cancer (2019) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 s2c
赛默飞世尔 CD8抗体(eBioscience, 25-0081-82)被用于被用于流式细胞仪在小鼠样本上 (图 s2c). Cell (2019) ncbi
大鼠 单克隆(4SM15)
  • 免疫组化; 小鼠; 1:4000; 图 5a
赛默飞世尔 CD8抗体(eBioscience, 14-0808-82)被用于被用于免疫组化在小鼠样本上浓度为1:4000 (图 5a). Nat Commun (2019) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 2h, 3k, 5a
赛默飞世尔 CD8抗体(Ebioscience, 45-0081-82)被用于被用于流式细胞仪在小鼠样本上 (图 2h, 3k, 5a). Oncoimmunology (2019) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 s2a
赛默飞世尔 CD8抗体(Thermo Fisher, 53-6.7)被用于被用于流式细胞仪在小鼠样本上 (图 s2a). Science (2019) ncbi
大鼠 单克隆(4SM15)
  • 免疫组化-石蜡切片; 小鼠; 1:300; 图 3f
赛默飞世尔 CD8抗体(ebioscience, 14-0808-80)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:300 (图 3f). JCI Insight (2019) ncbi
大鼠 单克隆(53-6.7)
  • 其他; 小鼠; 图 2b
赛默飞世尔 CD8抗体(eBioscience, 13-0081-86)被用于被用于其他在小鼠样本上 (图 2b). Int Immunol (2019) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 1:400; 图 s5a
赛默飞世尔 CD8抗体(eBioscience, 53-6.7)被用于被用于流式细胞仪在小鼠样本上浓度为1:400 (图 s5a). Science (2019) ncbi
大鼠 单克隆(4SM15)
  • 免疫组化-石蜡切片; 小鼠; 图 6a
赛默飞世尔 CD8抗体(eBioscience, 14-0808-82)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 6a). Cancer Cell (2019) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 1:200; 图 e3b
赛默飞世尔 CD8抗体(Invitrogen, 47-0081-82)被用于被用于流式细胞仪在小鼠样本上浓度为1:200 (图 e3b). Nature (2019) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 1:2000; 图 e5c
赛默飞世尔 CD8抗体(eBioscience, 17-0081-83)被用于被用于流式细胞仪在小鼠样本上浓度为1:2000 (图 e5c). Nature (2019) ncbi
大鼠 单克隆(4SM15)
  • 免疫组化-石蜡切片; 小鼠; 图 7e
赛默飞世尔 CD8抗体(eBioscience, 4SM15)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 7e). J Clin Invest (2019) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 e3p
赛默飞世尔 CD8抗体(eBioscience, 56-0081-82)被用于被用于流式细胞仪在小鼠样本上 (图 e3p). Nature (2019) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 s6a
赛默飞世尔 CD8抗体(eBioscience, 12-0081-82)被用于被用于流式细胞仪在小鼠样本上 (图 s6a). Cell (2019) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 2d
赛默飞世尔 CD8抗体(eBiosciences, 53-6.7)被用于被用于流式细胞仪在小鼠样本上 (图 2d). J Exp Med (2019) ncbi
大鼠 单克隆(5H10)
  • 流式细胞仪; 小鼠; 图 s7c
赛默飞世尔 CD8抗体(Invitrogen, MCD0830)被用于被用于流式细胞仪在小鼠样本上 (图 s7c). Cell Metab (2019) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 2d
赛默飞世尔 CD8抗体(Thermo Fisher Scientific, A15386)被用于被用于流式细胞仪在小鼠样本上 (图 2d). J Clin Invest (2019) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 1b
赛默飞世尔 CD8抗体(eBioscience, 53-6.7)被用于被用于流式细胞仪在小鼠样本上 (图 1b). Oncoimmunology (2019) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 1:1000; 图 5a
赛默飞世尔 CD8抗体(eBioscience, 17-0081)被用于被用于流式细胞仪在小鼠样本上浓度为1:1000 (图 5a). Cell (2019) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 2a
赛默飞世尔 CD8抗体(eBioscience, 53-6.7)被用于被用于流式细胞仪在小鼠样本上 (图 2a). Immune Netw (2018) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 s4b
赛默飞世尔 CD8抗体(eBioscience, 53-6.7)被用于被用于流式细胞仪在小鼠样本上 (图 s4b). Front Immunol (2018) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 1:400; 图 2d
赛默飞世尔 CD8抗体(eBiosciences, 53-6.7)被用于被用于流式细胞仪在小鼠样本上浓度为1:400 (图 2d). Nat Commun (2018) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 5d
赛默飞世尔 CD8抗体(eBioscience, 53-6.7)被用于被用于流式细胞仪在小鼠样本上 (图 5d). Proc Natl Acad Sci U S A (2019) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 3b
赛默飞世尔 CD8抗体(eBioscience, 56-0081-82)被用于被用于流式细胞仪在小鼠样本上 (图 3b). Nat Commun (2018) ncbi
大鼠 单克隆(53-6.7)
  • 免疫细胞化学; 小鼠; 图 1c
赛默飞世尔 CD8抗体(eBioscience, 53-6.7)被用于被用于免疫细胞化学在小鼠样本上 (图 1c). Science (2019) ncbi
大鼠 单克隆(4SM15)
  • 免疫组化-石蜡切片; 小鼠; 图 s4
赛默飞世尔 CD8抗体(eBioscience, 4SM15)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 s4). JCI Insight (2018) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 1c
赛默飞世尔 CD8抗体(eBioscience, 53-6.7)被用于被用于流式细胞仪在小鼠样本上 (图 1c). Proc Natl Acad Sci U S A (2018) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 1:100; 图 s2a, s2b
赛默飞世尔 CD8抗体(eBioscience, 53-6.7)被用于被用于流式细胞仪在小鼠样本上浓度为1:100 (图 s2a, s2b). J Pathol (2019) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 1:200; 图 2d
赛默飞世尔 CD8抗体(eBioscience, 53-6.7)被用于被用于流式细胞仪在小鼠样本上浓度为1:200 (图 2d). Nat Commun (2018) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 1a
赛默飞世尔 CD8抗体(eBioscience, 12-0081-81)被用于被用于流式细胞仪在小鼠样本上 (图 1a). Nat Commun (2018) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 3b
赛默飞世尔 CD8抗体(eBioscience, 53-C6.7)被用于被用于流式细胞仪在小鼠样本上 (图 3b). PLoS ONE (2018) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 1:100; 图 s3b
赛默飞世尔 CD8抗体(eBioscience, 25-0081-82)被用于被用于流式细胞仪在小鼠样本上浓度为1:100 (图 s3b). Nat Commun (2018) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 s1a
赛默飞世尔 CD8抗体(eBioscience, 53-6.7)被用于被用于流式细胞仪在小鼠样本上 (图 s1a). Blood (2018) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 ev2c
赛默飞世尔 CD8抗体(eBioscience, 53?\6.7)被用于被用于流式细胞仪在小鼠样本上 (图 ev2c). EMBO J (2019) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 4i
赛默飞世尔 CD8抗体(eBioscience, 53-6.7)被用于被用于流式细胞仪在小鼠样本上 (图 4i). J Clin Invest (2018) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 2
赛默飞世尔 CD8抗体(eBioscience, 53-6.7)被用于被用于流式细胞仪在小鼠样本上 (图 2). Sci Rep (2018) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 1:200; 图 s3c
赛默飞世尔 CD8抗体(eBioscience, 53-6.7)被用于被用于流式细胞仪在小鼠样本上浓度为1:200 (图 s3c). J Clin Invest (2018) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 s3b
赛默飞世尔 CD8抗体(eBiosciences, 53.6.7)被用于被用于流式细胞仪在小鼠样本上 (图 s3b). Science (2018) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 3a
赛默飞世尔 CD8抗体(Thermo Fisher Scientific, 53-6.7)被用于被用于流式细胞仪在小鼠样本上 (图 3a). Eur J Immunol (2018) ncbi
大鼠 单克隆(53-6.7)
  • 免疫组化-冰冻切片; 小鼠; 图 2c
赛默飞世尔 CD8抗体(eBioscience, 53-6.7)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 2c). PLoS ONE (2018) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 1:300; 图 3c
赛默飞世尔 CD8抗体(eBioscience, 53-6.7)被用于被用于流式细胞仪在小鼠样本上浓度为1:300 (图 3c). Nat Commun (2018) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 1:400; 图 4a
赛默飞世尔 CD8抗体(eBioscience, 53-6.7)被用于被用于流式细胞仪在小鼠样本上浓度为1:400 (图 4a). Nat Commun (2018) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 1:500; 图 s11c
赛默飞世尔 CD8抗体(Thermo Fisher Scientific, 47-0081-82)被用于被用于流式细胞仪在小鼠样本上浓度为1:500 (图 s11c). Nat Commun (2018) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 5k
  • 免疫组化; 小鼠; 图 4d
赛默飞世尔 CD8抗体(eBioscience, 14-0081-82)被用于被用于流式细胞仪在小鼠样本上 (图 5k) 和 被用于免疫组化在小鼠样本上 (图 4d). Cancer Res (2018) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 2b
赛默飞世尔 CD8抗体(eBioscience, 45-0081-82)被用于被用于流式细胞仪在小鼠样本上 (图 2b). Cell Rep (2018) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 e2c
赛默飞世尔 CD8抗体(eBiosciences, 53-6.7)被用于被用于流式细胞仪在小鼠样本上 (图 e2c). Nature (2018) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 s1e
赛默飞世尔 CD8抗体(eBiosciences, 53-6.7)被用于被用于流式细胞仪在小鼠样本上 (图 s1e). Cell Stem Cell (2018) ncbi
大鼠 单克隆(4SM15)
  • 免疫组化; 小鼠; 1:40; 图 5a
赛默飞世尔 CD8抗体(Thermo Fisher, 14-0808-82)被用于被用于免疫组化在小鼠样本上浓度为1:40 (图 5a). J Exp Med (2018) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 4d
赛默飞世尔 CD8抗体(eBioscience, 53-6.7)被用于被用于流式细胞仪在小鼠样本上 (图 4d). EMBO J (2018) ncbi
大鼠 单克隆(4SM15)
  • 免疫组化-石蜡切片; 小鼠; 图 5c
赛默飞世尔 CD8抗体(eBioscience, 14-0808)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 5c). J Clin Invest (2018) ncbi
大鼠 单克隆(53-6.7)
  • 免疫组化; 小鼠; 图 s3d
赛默飞世尔 CD8抗体(eBioscience, 53-6.7)被用于被用于免疫组化在小鼠样本上 (图 s3d). Proc Natl Acad Sci U S A (2018) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 3e
赛默飞世尔 CD8抗体(eBioscience, 53-6.7)被用于被用于流式细胞仪在小鼠样本上 (图 3e). J Virol (2018) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 4a
赛默飞世尔 CD8抗体(Thermo Fisher, 53-6.7)被用于被用于流式细胞仪在小鼠样本上 (图 4a). Oncogene (2018) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 s2b
赛默飞世尔 CD8抗体(eBioscience, 53-6.7)被用于被用于流式细胞仪在小鼠样本上 (图 s2b). Cell Metab (2018) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 1:200; 图 1c
赛默飞世尔 CD8抗体(Affymetrix/eBioscience, 53-6.7)被用于被用于流式细胞仪在小鼠样本上浓度为1:200 (图 1c). J Clin Invest (2018) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 2a
赛默飞世尔 CD8抗体(Thermo Fisher Scientific, 53-6.7)被用于被用于流式细胞仪在小鼠样本上 (图 2a). J Immunol (2018) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 s1a
赛默飞世尔 CD8抗体(eBioscience, 53-6.7)被用于被用于流式细胞仪在小鼠样本上 (图 s1a). J Exp Med (2018) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 3a
赛默飞世尔 CD8抗体(eBioscience, 53-6.7)被用于被用于流式细胞仪在小鼠样本上 (图 3a). Front Immunol (2018) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 人类; 图 s14a
赛默飞世尔 CD8抗体(eBioscience, 25-0081)被用于被用于流式细胞仪在人类样本上 (图 s14a). Nat Med (2018) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 2b
赛默飞世尔 CD8抗体(eBioscience, 53-6.7)被用于被用于流式细胞仪在小鼠样本上 (图 2b). Front Immunol (2018) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 1:500; 图 s4b
赛默飞世尔 CD8抗体(eBiosciences, 17-0081-82)被用于被用于流式细胞仪在小鼠样本上浓度为1:500 (图 s4b). J Clin Invest (2018) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 3b
赛默飞世尔 CD8抗体(eBiosciences, 56-0081-82)被用于被用于流式细胞仪在小鼠样本上 (图 3b). Cell (2018) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 2d
赛默飞世尔 CD8抗体(eBioscience, 53-6.7)被用于被用于流式细胞仪在小鼠样本上 (图 2d). Nat Commun (2018) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 1a
赛默飞世尔 CD8抗体(eBioscience, 53-6.7)被用于被用于流式细胞仪在小鼠样本上 (图 1a). J Immunol (2018) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 s2a
赛默飞世尔 CD8抗体(eBioscience, 53-6.7)被用于被用于流式细胞仪在小鼠样本上 (图 s2a). Science (2017) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 7a
赛默飞世尔 CD8抗体(eBioscience, 53-6.7)被用于被用于流式细胞仪在小鼠样本上 (图 7a). Cell (2017) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 s2b
赛默飞世尔 CD8抗体(eBioscience, 53-6.7)被用于被用于流式细胞仪在小鼠样本上 (图 s2b). Cancer Res (2018) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 1:400
赛默飞世尔 CD8抗体(ebioscience, 53-6.7)被用于被用于流式细胞仪在小鼠样本上浓度为1:400. Nat Commun (2017) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 3a
赛默飞世尔 CD8抗体(eBioscience, 53.6-72)被用于被用于流式细胞仪在小鼠样本上 (图 3a). J Clin Invest (2017) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 1b
赛默飞世尔 CD8抗体(eBioscience, 12-0081-83)被用于被用于流式细胞仪在小鼠样本上 (图 1b). Cell Rep (2017) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 1b
赛默飞世尔 CD8抗体(eBiosciences, 45-0081-82)被用于被用于流式细胞仪在小鼠样本上 (图 1b). J Exp Med (2017) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 5a
赛默飞世尔 CD8抗体(eBioscience, 17-0081-82)被用于被用于流式细胞仪在小鼠样本上 (图 5a). Immunity (2017) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 1
赛默飞世尔 CD8抗体(eBiosciences, 12-0081-81)被用于被用于流式细胞仪在小鼠样本上 (图 1). J Exp Med (2017) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 s2c
赛默飞世尔 CD8抗体(Thermo, 25-0081-81)被用于被用于流式细胞仪在小鼠样本上 (图 s2c). J Immunol (2017) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 1c
赛默飞世尔 CD8抗体(eBiosciences, 53-6.7)被用于被用于流式细胞仪在小鼠样本上 (图 1c). J Exp Med (2017) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 1b
赛默飞世尔 CD8抗体(Thermo Fisher Scientific, 53?C6.7)被用于被用于流式细胞仪在小鼠样本上 (图 1b). J Exp Med (2017) ncbi
大鼠 单克隆(4SM15)
  • 免疫组化-石蜡切片; 小鼠; 1:50; 图 5e
赛默飞世尔 CD8抗体(eBiosciences, 14-0808-82)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:50 (图 5e). JCI Insight (2017) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 1:400
赛默飞世尔 CD8抗体(eBioscience, 11-0081-82)被用于被用于流式细胞仪在小鼠样本上浓度为1:400. J Exp Med (2017) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 5b
赛默飞世尔 CD8抗体(eBiosciences, 53-6.7)被用于被用于流式细胞仪在小鼠样本上 (图 5b). Nat Commun (2017) ncbi
大鼠 单克隆(4SM15)
  • 免疫组化; 小鼠; 图 s7b
赛默飞世尔 CD8抗体(eBioscience, 4SM15)被用于被用于免疫组化在小鼠样本上 (图 s7b). Proc Natl Acad Sci U S A (2017) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 s3d
赛默飞世尔 CD8抗体(eBioscience, 48-0081-82)被用于被用于流式细胞仪在小鼠样本上 (图 s3d). Proc Natl Acad Sci U S A (2017) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 1c,d
赛默飞世尔 CD8抗体(eBioscience, 53-6.7)被用于被用于流式细胞仪在小鼠样本上 (图 1c,d). EMBO J (2017) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 1b
赛默飞世尔 CD8抗体(ebioscience, 47?\0081?\82)被用于被用于流式细胞仪在小鼠样本上 (图 1b). Immun Inflamm Dis (2017) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 1:300; 图 6c
赛默飞世尔 CD8抗体(eBioscience, 25-0081-81)被用于被用于流式细胞仪在小鼠样本上浓度为1:300 (图 6c). Nat Commun (2017) ncbi
大鼠 单克隆(53-6.7)
  • 抑制或激活实验; 小鼠; 图 s6
赛默飞世尔 CD8抗体(eBiosciences, 16-0081-85)被用于被用于抑制或激活实验在小鼠样本上 (图 s6). J Clin Invest (2017) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 1d
赛默飞世尔 CD8抗体(eBioscience, 25-0081)被用于被用于流式细胞仪在小鼠样本上 (图 1d). Sci Rep (2017) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 1a
赛默飞世尔 CD8抗体(eBioscience, 53-6.7)被用于被用于流式细胞仪在小鼠样本上 (图 1a). Blood (2017) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 2c
赛默飞世尔 CD8抗体(eBioscience, 53-6.7)被用于被用于流式细胞仪在小鼠样本上 (图 2c). Cell Mol Life Sci (2017) ncbi
大鼠 单克隆(53-6.7)
  • 免疫组化-冰冻切片; 小鼠; 1:100; 图 2a
赛默飞世尔 CD8抗体(eBioscience, 14-0081-82)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:100 (图 2a). Sci Rep (2017) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 2d
赛默飞世尔 CD8抗体(eBioscience, 12-0081-82)被用于被用于流式细胞仪在小鼠样本上 (图 2d). Sci Rep (2017) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 s1
赛默飞世尔 CD8抗体(EBioscience, 53-6.7)被用于被用于流式细胞仪在小鼠样本上 (图 s1). Haematologica (2017) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠
赛默飞世尔 CD8抗体(eBioscience, 53-6.7)被用于被用于流式细胞仪在小鼠样本上. J Biol Chem (2017) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 4a
赛默飞世尔 CD8抗体(eBioscience, 53-6.7)被用于被用于流式细胞仪在小鼠样本上 (图 4a). PLoS ONE (2016) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 s3c
赛默飞世尔 CD8抗体(Affymetrix eBioscience, 48-0081-82)被用于被用于流式细胞仪在小鼠样本上 (图 s3c). Nature (2016) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 5
赛默飞世尔 CD8抗体(eBioscience, 53-6.7)被用于被用于流式细胞仪在小鼠样本上 (图 5). Sci Rep (2016) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 2j
赛默飞世尔 CD8抗体(eBioscience, 17-0081-81)被用于被用于流式细胞仪在小鼠样本上 (图 2j). J Exp Med (2016) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 4b
赛默飞世尔 CD8抗体(ebioscience, 53-6.7)被用于被用于流式细胞仪在小鼠样本上 (图 4b). J Exp Med (2016) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 1:800; 图 4d
赛默飞世尔 CD8抗体(eBioscience, 53-6.7)被用于被用于流式细胞仪在小鼠样本上浓度为1:800 (图 4d). Nat Commun (2016) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 1:400; 图 2a
赛默飞世尔 CD8抗体(eBioscience, 53-6.7)被用于被用于流式细胞仪在小鼠样本上浓度为1:400 (图 2a). J Clin Invest (2016) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 3h
赛默飞世尔 CD8抗体(ebioscience, 25-0081-81)被用于被用于流式细胞仪在小鼠样本上 (图 3h). Front Immunol (2016) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 s2a
赛默飞世尔 CD8抗体(eBioscience, 53-6.7)被用于被用于流式细胞仪在小鼠样本上 (图 s2a). J Clin Invest (2016) ncbi
大鼠 单克隆(YTS105.18)
  • 抑制或激活实验; 小鼠; 图 9b
赛默飞世尔 CD8抗体(Thermo Scientific, YTS105.18)被用于被用于抑制或激活实验在小鼠样本上 (图 9b). Sci Rep (2016) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 2B
赛默飞世尔 CD8抗体(eBioscience, 53-6.7)被用于被用于流式细胞仪在小鼠样本上 (图 2B). PLoS ONE (2016) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 s3
赛默飞世尔 CD8抗体(eBioscience, 11-0081-82)被用于被用于流式细胞仪在小鼠样本上 (图 s3). Sci Rep (2016) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 4
赛默飞世尔 CD8抗体(eBioscience, 53-6.7)被用于被用于流式细胞仪在小鼠样本上 (图 4). PLoS ONE (2016) ncbi
大鼠 单克隆(KT15)
  • 流式细胞仪; 小鼠; 图 8a
赛默飞世尔 CD8抗体(Thermo Fisher Scientific, KT15)被用于被用于流式细胞仪在小鼠样本上 (图 8a). Proc Natl Acad Sci U S A (2016) ncbi
大鼠 单克隆(4SM15)
  • 免疫组化-石蜡切片; 小鼠; 1:100; 图 3b
赛默飞世尔 CD8抗体(eBiosciences, 14-0808)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:100 (图 3b). Science (2016) ncbi
大鼠 单克隆(53-6.7)
  • 免疫印迹; 小鼠; 1:1000; 图 4
赛默飞世尔 CD8抗体(eBioscience, 14-0081)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 4). Sci Rep (2016) ncbi
大鼠 单克隆(4SM15)
  • 免疫组化-石蜡切片; 小鼠; 图 3a
赛默飞世尔 CD8抗体(eBioscience, 4SM15)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 3a). Proc Natl Acad Sci U S A (2016) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 5a
赛默飞世尔 CD8抗体(Affymetrix eBioscience, 25-0081-82)被用于被用于流式细胞仪在小鼠样本上 (图 5a). Sci Rep (2016) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 4
赛默飞世尔 CD8抗体(eBioscience, 45-0081-82)被用于被用于流式细胞仪在小鼠样本上 (图 4). Front Immunol (2016) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 5
赛默飞世尔 CD8抗体(Ebioscience, 12-0081)被用于被用于流式细胞仪在小鼠样本上 (图 5). BMC Complement Altern Med (2016) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 1d
赛默飞世尔 CD8抗体(eBioscience, 53-6.7)被用于被用于流式细胞仪在小鼠样本上 (图 1d). J Exp Med (2016) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 1:200; 图 s4k
赛默飞世尔 CD8抗体(eBioscience, 12-0081)被用于被用于流式细胞仪在小鼠样本上浓度为1:200 (图 s4k). Cell Metab (2016) ncbi
大鼠 单克隆(53-6.7)
  • 免疫组化-冰冻切片; 小鼠; 1:100; 图 3a
  • 流式细胞仪; 小鼠; 图 s2
赛默飞世尔 CD8抗体(eBioscience, 11-0081)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:100 (图 3a) 和 被用于流式细胞仪在小鼠样本上 (图 s2). PLoS ONE (2016) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 8
赛默飞世尔 CD8抗体(eBioscience, 53-6.7)被用于被用于流式细胞仪在小鼠样本上 (图 8). Nat Commun (2016) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 3b
赛默飞世尔 CD8抗体(eBioscience, 53-6.7)被用于被用于流式细胞仪在小鼠样本上 (图 3b). J Clin Invest (2016) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 4
赛默飞世尔 CD8抗体(eBioscience, 53-6.7)被用于被用于流式细胞仪在小鼠样本上 (图 4). PLoS Pathog (2016) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 3a
赛默飞世尔 CD8抗体(eBioscience, 53-6.7)被用于被用于流式细胞仪在小鼠样本上 (图 3a). J Immunol (2016) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 s5c
赛默飞世尔 CD8抗体(eBiosciences, 11-0081-81)被用于被用于流式细胞仪在小鼠样本上 (图 s5c). J Clin Invest (2016) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 s1a
赛默飞世尔 CD8抗体(eBioscience, 47-0081)被用于被用于流式细胞仪在小鼠样本上 (图 s1a). Nat Commun (2016) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 s1
赛默飞世尔 CD8抗体(eBioscience, 53-6.7)被用于被用于流式细胞仪在小鼠样本上 (图 s1). Proc Natl Acad Sci U S A (2016) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 6
赛默飞世尔 CD8抗体(eBioscience, 53-6.7)被用于被用于流式细胞仪在小鼠样本上 (图 6). Clin Cancer Res (2017) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 3
赛默飞世尔 CD8抗体(BD Biosciences, 17-0081-83)被用于被用于流式细胞仪在小鼠样本上 (图 3). Sci Rep (2016) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠
赛默飞世尔 CD8抗体(eBioscience, 53-6.7)被用于被用于流式细胞仪在小鼠样本上. J Neuroimmunol (2016) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠
赛默飞世尔 CD8抗体(eBioscience, 11-0081)被用于被用于流式细胞仪在小鼠样本上. Front Cell Neurosci (2016) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 1-s1
赛默飞世尔 CD8抗体(eBiosciences, 13-0081-86)被用于被用于流式细胞仪在小鼠样本上 (图 1-s1). elife (2016) ncbi
大鼠 单克隆(5H10)
  • 流式细胞仪; 小鼠; 1:200; 图 1
赛默飞世尔 CD8抗体(Invitrogen, MCD0817)被用于被用于流式细胞仪在小鼠样本上浓度为1:200 (图 1). Nat Immunol (2016) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 1
赛默飞世尔 CD8抗体(eBioscience, 45-0081-8)被用于被用于流式细胞仪在小鼠样本上 (图 1). Nat Immunol (2016) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 1:500; 图 st1
赛默飞世尔 CD8抗体(eBioscience, 17-0081)被用于被用于流式细胞仪在小鼠样本上浓度为1:500 (图 st1). Nat Commun (2016) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 st2
赛默飞世尔 CD8抗体(eBioscience, 25-0081)被用于被用于流式细胞仪在小鼠样本上 (图 st2). Atherosclerosis (2016) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 2b
赛默飞世尔 CD8抗体(eBiosciences, 53-6.7)被用于被用于流式细胞仪在小鼠样本上 (图 2b). J Immunol (2016) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠
赛默飞世尔 CD8抗体(eBioscience, 45-0081-80)被用于被用于流式细胞仪在小鼠样本上. J Allergy Clin Immunol (2017) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 1a
赛默飞世尔 CD8抗体(eBioscience, 53-6.7)被用于被用于流式细胞仪在小鼠样本上 (图 1a). elife (2016) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠
赛默飞世尔 CD8抗体(eBiosciences, 53-6.7)被用于被用于流式细胞仪在小鼠样本上. Bio Protoc (2016) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 3g
赛默飞世尔 CD8抗体(eBiosciences, 53-6.7)被用于被用于流式细胞仪在小鼠样本上 (图 3g). PLoS ONE (2016) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 s4
赛默飞世尔 CD8抗体(eBioscience, 53-6.7)被用于被用于流式细胞仪在小鼠样本上 (图 s4). Sci Rep (2016) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 1:66; 图 2f
赛默飞世尔 CD8抗体(eBioscience, 11-0081-82)被用于被用于流式细胞仪在小鼠样本上浓度为1:66 (图 2f). Nat Cell Biol (2016) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 2
赛默飞世尔 CD8抗体(eBiosciences, 48-0081-82)被用于被用于流式细胞仪在小鼠样本上 (图 2). Immunol Cell Biol (2016) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 1:400; 图 s3
赛默飞世尔 CD8抗体(eBioscience, 12-0081-82)被用于被用于流式细胞仪在小鼠样本上浓度为1:400 (图 s3). Nat Commun (2016) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 s6
赛默飞世尔 CD8抗体(eBioscience, 16-0081-82)被用于被用于流式细胞仪在小鼠样本上 (图 s6). Nat Cell Biol (2016) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠
赛默飞世尔 CD8抗体(eBioscience, 48-0081)被用于被用于流式细胞仪在小鼠样本上. Biol Open (2016) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 5
赛默飞世尔 CD8抗体(eBiosciences, 47-0081)被用于被用于流式细胞仪在小鼠样本上 (图 5). Nature (2016) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 4b
赛默飞世尔 CD8抗体(eBioscience, 55-3030)被用于被用于流式细胞仪在小鼠样本上 (图 4b). Oncoimmunology (2016) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 1:100; 图 s4
赛默飞世尔 CD8抗体(eBioscience, 11-0081)被用于被用于流式细胞仪在小鼠样本上浓度为1:100 (图 s4). Nat Commun (2016) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 4
赛默飞世尔 CD8抗体(eBioscience, 53-C6.7)被用于被用于流式细胞仪在小鼠样本上 (图 4). PLoS ONE (2016) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 2
赛默飞世尔 CD8抗体(eBioscience, 48-0081-82)被用于被用于流式细胞仪在小鼠样本上 (图 2). Mucosal Immunol (2017) ncbi
大鼠 单克隆(2.43)
  • 免疫组化-石蜡切片; 小鼠; 1:25-1:50; 图 4
赛默飞世尔 CD8抗体(Thermo Scientific, MA1-145)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:25-1:50 (图 4). J Lipid Res (2016) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 1:400; 图 4b
赛默飞世尔 CD8抗体(eBioscience, 53-6.7)被用于被用于流式细胞仪在小鼠样本上浓度为1:400 (图 4b). Cellbio (Irvine, Calif) (2015) ncbi
大鼠 单克隆(4SM15)
  • 免疫组化-石蜡切片; 小鼠; 1:200; 图 10
赛默飞世尔 CD8抗体(eBioscience, 14-0808-82)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:200 (图 10). PLoS ONE (2016) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 2
赛默飞世尔 CD8抗体(eBioscience, 53.6.7)被用于被用于流式细胞仪在小鼠样本上 (图 2). elife (2016) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 1
赛默飞世尔 CD8抗体(eBioscience, 53-6.7)被用于被用于流式细胞仪在小鼠样本上 (图 1). J Exp Med (2016) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 4a
赛默飞世尔 CD8抗体(eBioscience, 53-6.7)被用于被用于流式细胞仪在小鼠样本上 (图 4a). Infect Immun (2016) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 s21
赛默飞世尔 CD8抗体(eBioscience, 17-0081-82)被用于被用于流式细胞仪在小鼠样本上 (图 s21). Sci Rep (2016) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 1:100; 图 s6a
赛默飞世尔 CD8抗体(eBioscience, 53-6.7)被用于被用于流式细胞仪在小鼠样本上浓度为1:100 (图 s6a). Nat Commun (2016) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 3
赛默飞世尔 CD8抗体(eBiosciences, 53-6.7)被用于被用于流式细胞仪在小鼠样本上 (图 3). PLoS Pathog (2016) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 3
赛默飞世尔 CD8抗体(eBioscience, 53?C6.7)被用于被用于流式细胞仪在小鼠样本上 (图 3). Sci Rep (2016) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 1c
赛默飞世尔 CD8抗体(eBioscience, 53-6.7)被用于被用于流式细胞仪在小鼠样本上 (图 1c). PLoS ONE (2016) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠
赛默飞世尔 CD8抗体(eBioscience, 11-0081-85)被用于被用于流式细胞仪在小鼠样本上. Nature (2016) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 6
赛默飞世尔 CD8抗体(eBioscience, 53-6.7)被用于被用于流式细胞仪在小鼠样本上 (图 6). PLoS Biol (2015) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 2J
赛默飞世尔 CD8抗体(eBioscience, 53-6.7)被用于被用于流式细胞仪在小鼠样本上 (图 2J). J Exp Med (2016) ncbi
大鼠 单克隆(53-6.7)
  • 免疫组化-石蜡切片; 小鼠
赛默飞世尔 CD8抗体(eBioscience, 11-0081-82)被用于被用于免疫组化-石蜡切片在小鼠样本上. Nature (2015) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 4
赛默飞世尔 CD8抗体(eBioscience, 17-0081)被用于被用于流式细胞仪在小鼠样本上 (图 4). Nat Neurosci (2016) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 1:100; 图 3
赛默飞世尔 CD8抗体(eBioscience, 53-6.7)被用于被用于流式细胞仪在小鼠样本上浓度为1:100 (图 3). PLoS ONE (2015) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 1:1000; 图 s8
赛默飞世尔 CD8抗体(eBioscience, 17-0081-81)被用于被用于流式细胞仪在小鼠样本上浓度为1:1000 (图 s8). Nat Commun (2015) ncbi
大鼠 单克隆(5H10)
  • 流式细胞仪; 小鼠
赛默飞世尔 CD8抗体(Caltag Laboratories, 5H10)被用于被用于流式细胞仪在小鼠样本上. J Immunol (2015) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 s3
赛默飞世尔 CD8抗体(eBioscience, 53-6.7)被用于被用于流式细胞仪在小鼠样本上 (图 s3). Nat Commun (2015) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 1
赛默飞世尔 CD8抗体(eBioscience, 53-6.7)被用于被用于流式细胞仪在小鼠样本上 (图 1). J Immunol (2015) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 2
赛默飞世尔 CD8抗体(eBiosciences, 53-6.7)被用于被用于流式细胞仪在小鼠样本上 (图 2). Nat Immunol (2015) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠
赛默飞世尔 CD8抗体(eBioscience, 53-6.7)被用于被用于流式细胞仪在小鼠样本上. J Immunol (2015) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠
赛默飞世尔 CD8抗体(EBioscience, 53-6.7)被用于被用于流式细胞仪在小鼠样本上. Am J Transplant (2016) ncbi
大鼠 单克隆(YTS 169AG 101HL)
  • 免疫组化-石蜡切片; 小鼠; 1:100; 图 2
赛默飞世尔 CD8抗体(Pierce Antibodies, MA1-70041)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:100 (图 2). Cell Transplant (2016) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠
赛默飞世尔 CD8抗体(eBioscience, 53-6.7)被用于被用于流式细胞仪在小鼠样本上. Science (2015) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 s4b
赛默飞世尔 CD8抗体(eBioscience, 53-6.7)被用于被用于流式细胞仪在小鼠样本上 (图 s4b). Retrovirology (2015) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 1c
赛默飞世尔 CD8抗体(eBioscience, 53-6.7)被用于被用于流式细胞仪在小鼠样本上 (图 1c). Cancer Res (2015) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 2e
赛默飞世尔 CD8抗体(eBiosciences, 53-6.7)被用于被用于流式细胞仪在小鼠样本上 (图 2e). Eur J Immunol (2015) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠
赛默飞世尔 CD8抗体(eBioscience, 46-0081-80)被用于被用于流式细胞仪在小鼠样本上. J Vis Exp (2015) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 5
赛默飞世尔 CD8抗体(eBioscience, # 11-0081-82)被用于被用于流式细胞仪在小鼠样本上 (图 5). Front Immunol (2015) ncbi
大鼠 单克隆(5H10)
  • 流式细胞仪; 小鼠; 图 2a
赛默飞世尔 CD8抗体(Invitrogen, 5H-10)被用于被用于流式细胞仪在小鼠样本上 (图 2a). J Exp Med (2015) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠
赛默飞世尔 CD8抗体(eBioscience, 53-6.7)被用于被用于流式细胞仪在小鼠样本上. Free Radic Biol Med (2015) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 1
赛默飞世尔 CD8抗体(eBioscience, 53-6.7)被用于被用于流式细胞仪在小鼠样本上 (图 1). Nat Commun (2015) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 1
赛默飞世尔 CD8抗体(eBioscience, 53-6.7)被用于被用于流式细胞仪在小鼠样本上 (图 1). Immunity (2015) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 1
赛默飞世尔 CD8抗体(eBioscience, 53-6.7)被用于被用于流式细胞仪在小鼠样本上 (图 1). Mol Cancer Ther (2015) ncbi
大鼠 单克隆(53-6.7)
  • 免疫组化-石蜡切片; 人类; 图 s8
赛默飞世尔 CD8抗体(ebiosciences, 53.67)被用于被用于免疫组化-石蜡切片在人类样本上 (图 s8). Nat Biotechnol (2015) ncbi
大鼠 单克隆(53-6.7)
  • 免疫组化; 小鼠; 图 6
赛默飞世尔 CD8抗体(eBiosciences, 14008182)被用于被用于免疫组化在小鼠样本上 (图 6). Oncotarget (2015) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 6e
  • 免疫组化; 小鼠; 图 4k
赛默飞世尔 CD8抗体(eBioscience, 53-6.7)被用于被用于流式细胞仪在小鼠样本上 (图 6e) 和 被用于免疫组化在小鼠样本上 (图 4k). Nat Commun (2015) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠
赛默飞世尔 CD8抗体(eBiosciences, 53-6.7)被用于被用于流式细胞仪在小鼠样本上. PLoS ONE (2015) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 s1
赛默飞世尔 CD8抗体(eBioscience, 55-6.7)被用于被用于流式细胞仪在小鼠样本上 (图 s1). J Immunol (2015) ncbi
大鼠 单克隆(5H10)
  • 流式细胞仪; 小鼠
赛默飞世尔 CD8抗体(Caltag, 5H10)被用于被用于流式细胞仪在小鼠样本上. Microbes Infect (2015) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠
赛默飞世尔 CD8抗体(eBioscience, 25-0081-82)被用于被用于流式细胞仪在小鼠样本上. Cardiovasc Res (2015) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 1:1000; 图 2
赛默飞世尔 CD8抗体(eBioscience, 53-6.7)被用于被用于流式细胞仪在小鼠样本上浓度为1:1000 (图 2). Nat Commun (2015) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 5
赛默飞世尔 CD8抗体(eBioscience, 15-0081-82)被用于被用于流式细胞仪在小鼠样本上 (图 5). PLoS Negl Trop Dis (2015) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 5
赛默飞世尔 CD8抗体(eBioscience, 17-0081)被用于被用于流式细胞仪在小鼠样本上 (图 5). EMBO Mol Med (2015) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 6b
  • 免疫组化; 小鼠; 图 3a
赛默飞世尔 CD8抗体(eBioscience, 53-6.7)被用于被用于流式细胞仪在小鼠样本上 (图 6b) 和 被用于免疫组化在小鼠样本上 (图 3a). Transplantation (2015) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠
赛默飞世尔 CD8抗体(eBioscience, 53-6.7)被用于被用于流式细胞仪在小鼠样本上. PLoS Pathog (2015) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 3
赛默飞世尔 CD8抗体(eBioscience, 53-6.7)被用于被用于流式细胞仪在小鼠样本上 (图 3). PLoS ONE (2015) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 5
赛默飞世尔 CD8抗体(eBioscience, 53-6.7)被用于被用于流式细胞仪在小鼠样本上 (图 5). PLoS ONE (2015) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 s1
赛默飞世尔 CD8抗体(eBioscience, 53-6.7)被用于被用于流式细胞仪在小鼠样本上 (图 s1). PLoS Pathog (2015) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 3A
赛默飞世尔 CD8抗体(eBioscience, 17-0081)被用于被用于流式细胞仪在小鼠样本上 (图 3A). J Immunol (2015) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 1:100; 图 2
赛默飞世尔 CD8抗体(eBiosciences, 53-6.7)被用于被用于流式细胞仪在小鼠样本上浓度为1:100 (图 2). Am J Physiol Endocrinol Metab (2015) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 表 s3
赛默飞世尔 CD8抗体(eBioscience, 53-6.7)被用于被用于流式细胞仪在小鼠样本上 (表 s3). PLoS ONE (2015) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 1
赛默飞世尔 CD8抗体(eBioscience, 53-6.7)被用于被用于流式细胞仪在小鼠样本上 (图 1). PLoS Pathog (2015) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 s2
赛默飞世尔 CD8抗体(eBiosciences, 53-6.7)被用于被用于流式细胞仪在小鼠样本上 (图 s2). Blood (2015) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠
赛默飞世尔 CD8抗体(eBioscience, 53-6.7)被用于被用于流式细胞仪在小鼠样本上. Eur J Immunol (2015) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 2b
赛默飞世尔 CD8抗体(eBioscience, 53-6.7)被用于被用于流式细胞仪在小鼠样本上 (图 2b). J Immunother Cancer (2015) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 1
  • 免疫细胞化学; 小鼠; 图 2
赛默飞世尔 CD8抗体(eBioscience, 53-6.7)被用于被用于流式细胞仪在小鼠样本上 (图 1) 和 被用于免疫细胞化学在小鼠样本上 (图 2). J Exp Med (2015) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠
赛默飞世尔 CD8抗体(eBioscience, 53-6.7)被用于被用于流式细胞仪在小鼠样本上. Immunol Cell Biol (2015) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 人类
赛默飞世尔 CD8抗体(eBioscience, 53-6.7)被用于被用于流式细胞仪在人类样本上. J Immunol (2015) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 1:100; 图 3
赛默飞世尔 CD8抗体(eBioscience, 15-0081)被用于被用于流式细胞仪在小鼠样本上浓度为1:100 (图 3). Biol Reprod (2015) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠
赛默飞世尔 CD8抗体(eBioscience, 53-6.7)被用于被用于流式细胞仪在小鼠样本上. J Leukoc Biol (2015) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 2
赛默飞世尔 CD8抗体(eBioscience, 53-6.7)被用于被用于流式细胞仪在小鼠样本上 (图 2). PLoS Pathog (2015) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠
赛默飞世尔 CD8抗体(eBioscience, 53-6.7)被用于被用于流式细胞仪在小鼠样本上. J Leukoc Biol (2015) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠
  • 免疫细胞化学; 小鼠
赛默飞世尔 CD8抗体(eBioscience or BioLegend, 53-6.7)被用于被用于流式细胞仪在小鼠样本上 和 被用于免疫细胞化学在小鼠样本上. Cell Mol Immunol (2016) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠
赛默飞世尔 CD8抗体(eBioscience, 53-6.7)被用于被用于流式细胞仪在小鼠样本上. PLoS ONE (2014) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠
赛默飞世尔 CD8抗体(eBioscience, 53-6.7)被用于被用于流式细胞仪在小鼠样本上. Development (2015) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠
赛默飞世尔 CD8抗体(eBiosciences, 53-6.7)被用于被用于流式细胞仪在小鼠样本上. J Am Heart Assoc (2014) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 5i
赛默飞世尔 CD8抗体(eBioscience, 17-0081)被用于被用于流式细胞仪在小鼠样本上 (图 5i). Nat Biotechnol (2015) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠
  • 免疫细胞化学; 小鼠
赛默飞世尔 CD8抗体(eBioscience, 53-6.7)被用于被用于流式细胞仪在小鼠样本上 和 被用于免疫细胞化学在小鼠样本上. PLoS Pathog (2014) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 s3
赛默飞世尔 CD8抗体(ebioscience, 53.67)被用于被用于流式细胞仪在小鼠样本上 (图 s3). J Natl Cancer Inst (2015) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 s1
赛默飞世尔 CD8抗体(eBioscience, 53-6.8)被用于被用于流式细胞仪在小鼠样本上 (图 s1). J Immunol (2015) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠
赛默飞世尔 CD8抗体(eBioscience, 53-6.7)被用于被用于流式细胞仪在小鼠样本上. elife (2014) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 2
赛默飞世尔 CD8抗体(eBioscience, 53-6.7)被用于被用于流式细胞仪在小鼠样本上 (图 2). J Immunol (2015) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠
赛默飞世尔 CD8抗体(eBioscience, 53-6.7)被用于被用于流式细胞仪在小鼠样本上. Proc Natl Acad Sci U S A (2014) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠
赛默飞世尔 CD8抗体(eBioscience, 53-6.7)被用于被用于流式细胞仪在小鼠样本上. EMBO J (2014) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠
赛默飞世尔 CD8抗体(eBioscience, 53.6.7 A700)被用于被用于流式细胞仪在小鼠样本上. Immunology (2015) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 1b
赛默飞世尔 CD8抗体(eBioscience, 53-6.7)被用于被用于流式细胞仪在小鼠样本上 (图 1b). Nat Immunol (2014) ncbi
大鼠 单克隆(KT15)
  • 免疫组化-石蜡切片; 人类
赛默飞世尔 CD8抗体(Thermo Scientific, MA5-16761)被用于被用于免疫组化-石蜡切片在人类样本上. Cancer Res (2014) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 S2a
赛默飞世尔 CD8抗体(eBioscience, 53-6.7)被用于被用于流式细胞仪在小鼠样本上 (图 S2a). Mucosal Immunol (2015) ncbi
大鼠 单克隆(5H10)
  • 流式细胞仪; 小鼠
赛默飞世尔 CD8抗体(BD Biosciences, MCD0830)被用于被用于流式细胞仪在小鼠样本上. J Neuroimmunol (2014) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠
赛默飞世尔 CD8抗体(eBioscience, 53-6.7)被用于被用于流式细胞仪在小鼠样本上. Cancer Res (2014) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 4
赛默飞世尔 CD8抗体(eBioscience, 53-6.7)被用于被用于流式细胞仪在小鼠样本上 (图 4). Nat Med (2014) ncbi
大鼠 单克隆(53-6.7)
  • 免疫组化-冰冻切片; 小鼠; 1:50
赛默飞世尔 CD8抗体(eBioscience, 53-6.7)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:50. Mol Pharm (2014) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 3c
赛默飞世尔 CD8抗体(ebioscience, 14-0081-82)被用于被用于流式细胞仪在小鼠样本上 (图 3c). Clin Cancer Res (2015) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 5
赛默飞世尔 CD8抗体(eBiosciences, 53-6.7)被用于被用于流式细胞仪在小鼠样本上 (图 5). PLoS ONE (2014) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠
赛默飞世尔 CD8抗体(eBioscience, 53-6.7)被用于被用于流式细胞仪在小鼠样本上. Proc Natl Acad Sci U S A (2014) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 人类
赛默飞世尔 CD8抗体(eBioscience, 53-6.7)被用于被用于流式细胞仪在人类样本上. Cancer Res (2014) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠
赛默飞世尔 CD8抗体(eBioscience, clone 53-6.)被用于被用于流式细胞仪在小鼠样本上. Development (2014) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 2
赛默飞世尔 CD8抗体(eBioscience, 53-6.7)被用于被用于流式细胞仪在小鼠样本上 (图 2). Eur J Immunol (2014) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 s5
赛默飞世尔 CD8抗体(eBioscience, 53-6.7)被用于被用于流式细胞仪在小鼠样本上 (图 s5). Mucosal Immunol (2015) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠
赛默飞世尔 CD8抗体(eBioscience, 53-6.7)被用于被用于流式细胞仪在小鼠样本上. J Virol (2014) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 4
赛默飞世尔 CD8抗体(eBioscience, 53-6.7)被用于被用于流式细胞仪在小鼠样本上 (图 4). Nat Immunol (2014) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠
赛默飞世尔 CD8抗体(eBioscience, 53-6.7)被用于被用于流式细胞仪在小鼠样本上. Cancer Res (2014) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠
赛默飞世尔 CD8抗体(eBioscience, 53-6.7)被用于被用于流式细胞仪在小鼠样本上. J Immunol (2014) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 1
赛默飞世尔 CD8抗体(eBioscience, 53-6.7)被用于被用于流式细胞仪在小鼠样本上 (图 1). J Immunol (2014) ncbi
大鼠 单克隆(5H10)
  • 流式细胞仪; 小鼠
赛默飞世尔 CD8抗体(Invitrogen, MCD0830)被用于被用于流式细胞仪在小鼠样本上. Kidney Int (2014) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠
赛默飞世尔 CD8抗体(eBioscience, 53-6.7)被用于被用于流式细胞仪在小鼠样本上. Eur J Immunol (2014) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠
赛默飞世尔 CD8抗体(eBioscience Inc., 53-6.7)被用于被用于流式细胞仪在小鼠样本上. PLoS ONE (2014) ncbi
大鼠 单克隆(53-6.7)
  • 免疫组化; 小鼠; 1:50
赛默飞世尔 CD8抗体(eBioscience, 53-6.7)被用于被用于免疫组化在小鼠样本上浓度为1:50. PLoS ONE (2014) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠
赛默飞世尔 CD8抗体(eBioscience, 53-6.7)被用于被用于流式细胞仪在小鼠样本上. PLoS Pathog (2014) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠
赛默飞世尔 CD8抗体(eBioscience, 53-6.7)被用于被用于流式细胞仪在小鼠样本上. Bone (2014) ncbi
大鼠 单克隆(53-6.7)
  • 免疫细胞化学; 人类; 表 2
赛默飞世尔 CD8抗体(eBioscience, 53-6.7)被用于被用于免疫细胞化学在人类样本上 (表 2). J Clin Invest (2014) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 1:100
赛默飞世尔 CD8抗体(eBioscience, 53-6.7)被用于被用于流式细胞仪在小鼠样本上浓度为1:100. Nat Commun (2014) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 5a
赛默飞世尔 CD8抗体(eBioscience, 53-6.7)被用于被用于流式细胞仪在小鼠样本上 (图 5a). PLoS Pathog (2014) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠
赛默飞世尔 CD8抗体(eBioscience, 53-6.7)被用于被用于流式细胞仪在小鼠样本上. PLoS ONE (2014) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠
赛默飞世尔 CD8抗体(eBioscience, 53-6.7)被用于被用于流式细胞仪在小鼠样本上. J Immunol (2014) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 s1
赛默飞世尔 CD8抗体(Ebioscience, 12-008-81)被用于被用于流式细胞仪在小鼠样本上 (图 s1). PLoS Pathog (2014) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠
赛默飞世尔 CD8抗体(eBioscience, 53-6.7)被用于被用于流式细胞仪在小鼠样本上. J Immunol (2014) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠
赛默飞世尔 CD8抗体(eBioscience, 53-6.7)被用于被用于流式细胞仪在小鼠样本上. Virol Sin (2014) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 1:50
赛默飞世尔 CD8抗体(eBioscience, 45-0081-82)被用于被用于流式细胞仪在小鼠样本上浓度为1:50. Acta Neuropathol Commun (2014) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 1:100
赛默飞世尔 CD8抗体(eBioscience, 11-0081-82)被用于被用于流式细胞仪在小鼠样本上浓度为1:100. Cell Transplant (2015) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 3
赛默飞世尔 CD8抗体(eBioscience, 53-6.7)被用于被用于流式细胞仪在小鼠样本上 (图 3). J Exp Med (2013) ncbi
大鼠 单克隆(53-6.7)
  • 免疫组化; 小鼠
赛默飞世尔 CD8抗体(ebioscience, 53-6.7)被用于被用于免疫组化在小鼠样本上. J Immunol (2014) ncbi
大鼠 单克隆(5H10)
  • 流式细胞仪; 小鼠
赛默飞世尔 CD8抗体(Invitrogen, 5H10)被用于被用于流式细胞仪在小鼠样本上. J Immunol (2014) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠
赛默飞世尔 CD8抗体(eBioscience, 53-6.7)被用于被用于流式细胞仪在小鼠样本上. PLoS ONE (2013) ncbi
大鼠 单克隆(CT-CD8a)
  • 流式细胞仪; 小鼠
赛默飞世尔 CD8抗体(Caltag, CT-CD8a)被用于被用于流式细胞仪在小鼠样本上. Surg Infect (Larchmt) (2014) ncbi
大鼠 单克隆(5H10)
  • 流式细胞仪; 小鼠; 图 3
赛默飞世尔 CD8抗体(Invitrogen, 5H10)被用于被用于流式细胞仪在小鼠样本上 (图 3). J Immunol (2013) ncbi
大鼠 单克隆(CT-CD8a)
  • 流式细胞仪; 小鼠; 图 2
赛默飞世尔 CD8抗体(Caltag, CT-CD8)被用于被用于流式细胞仪在小鼠样本上 (图 2). Immunol Cell Biol (2013) ncbi
大鼠 单克隆(5H10)
  • 流式细胞仪; 小鼠; 图 2
赛默飞世尔 CD8抗体(Caltag, 5H10)被用于被用于流式细胞仪在小鼠样本上 (图 2). Mol Oral Microbiol (2013) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠
赛默飞世尔 CD8抗体(eBioscience, 53-6.7)被用于被用于流式细胞仪在小鼠样本上. Stem Cells (2014) ncbi
大鼠 单克隆(5H10)
  • 流式细胞仪; 小鼠; 图 2
赛默飞世尔 CD8抗体(CALTAG, 5H10)被用于被用于流式细胞仪在小鼠样本上 (图 2). Immunol Lett (2013) ncbi
大鼠 单克隆(53-6.7)
  • 抑制或激活实验; 小鼠; 图 4b
赛默飞世尔 CD8抗体(eBioscience, 16-0081)被用于被用于抑制或激活实验在小鼠样本上 (图 4b). Hum Vaccin Immunother (2013) ncbi
大鼠 单克隆(YTS 169AG 101HL)
  • 流式细胞仪; 小鼠; 图 2
赛默飞世尔 CD8抗体(Caltag, clone YTS169)被用于被用于流式细胞仪在小鼠样本上 (图 2). Cell Death Dis (2013) ncbi
大鼠 单克隆(YTS169.4)
  • 流式细胞仪; 小鼠; 图 2
赛默飞世尔 CD8抗体(Caltag, clone YTS169)被用于被用于流式细胞仪在小鼠样本上 (图 2). Cell Death Dis (2013) ncbi
大鼠 单克隆(5H10)
  • 流式细胞仪; 小鼠; 图 5b
赛默飞世尔 CD8抗体(Caltag, 5H10)被用于被用于流式细胞仪在小鼠样本上 (图 5b). PLoS ONE (2013) ncbi
大鼠 单克隆(5H10)
  • 流式细胞仪; 小鼠; 图 1
赛默飞世尔 CD8抗体(Invitrogen, MCD0830)被用于被用于流式细胞仪在小鼠样本上 (图 1). J Neuroinflammation (2013) ncbi
大鼠 单克隆(YTS 169AG 101HL)
  • 免疫组化-石蜡切片; 小鼠; 1:50
  • 免疫组化; 小鼠; 1:50
赛默飞世尔 CD8抗体(Pierce, MA1-70041)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:50 和 被用于免疫组化在小鼠样本上浓度为1:50. PLoS ONE (2013) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠
赛默飞世尔 CD8抗体(eBioscience, 53-6.7)被用于被用于流式细胞仪在小鼠样本上. Am J Pathol (2013) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠
赛默飞世尔 CD8抗体(ebioscience, 53-6.7)被用于被用于流式细胞仪在小鼠样本上. PLoS ONE (2013) ncbi
大鼠 单克隆(5H10)
  • 流式细胞仪; 小鼠; 图 2
赛默飞世尔 CD8抗体(Invitrogen, 5H10)被用于被用于流式细胞仪在小鼠样本上 (图 2). J Exp Med (2013) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 表 1
赛默飞世尔 CD8抗体(eBioscience, 53-6.7)被用于被用于流式细胞仪在小鼠样本上 (表 1). PLoS ONE (2013) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠
赛默飞世尔 CD8抗体(eBiosciences, 17-0081)被用于被用于流式细胞仪在小鼠样本上. PLoS Genet (2013) ncbi
大鼠 单克隆(5H10)
  • 流式细胞仪; 小鼠
赛默飞世尔 CD8抗体(Invitrogen, 5H10)被用于被用于流式细胞仪在小鼠样本上. J Immunol (2013) ncbi
大鼠 单克隆(53-6.7)
  • 其他; 小鼠; 图 5
  • 流式细胞仪; 小鼠; 图 5
赛默飞世尔 CD8抗体(eBioscience, 53-6.7)被用于被用于其他在小鼠样本上 (图 5) 和 被用于流式细胞仪在小鼠样本上 (图 5). Front Immunol (2013) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠
赛默飞世尔 CD8抗体(eBiosciences, 53-6.7)被用于被用于流式细胞仪在小鼠样本上. FASEB J (2013) ncbi
大鼠 单克隆(5H10)
  • 流式细胞仪; 小鼠; 图 4
赛默飞世尔 CD8抗体(Invitrogen, MCD0801)被用于被用于流式细胞仪在小鼠样本上 (图 4). Methods Mol Biol (2013) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠
赛默飞世尔 CD8抗体(eBioscience, 53-6.7)被用于被用于流式细胞仪在小鼠样本上. J Exp Med (2013) ncbi
大鼠 单克隆(CT-CD8a)
  • 流式细胞仪; 小鼠; 图 5a
赛默飞世尔 CD8抗体(Caltag, CT-CD8a)被用于被用于流式细胞仪在小鼠样本上 (图 5a). PLoS ONE (2012) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 1b
赛默飞世尔 CD8抗体(Caltag, 53-6.7)被用于被用于流式细胞仪在小鼠样本上 (图 1b). PLoS Pathog (2012) ncbi
大鼠 单克隆(5H10)
  • 流式细胞仪; 小鼠; 图 2
赛默飞世尔 CD8抗体(Invitrogen, 5H10)被用于被用于流式细胞仪在小鼠样本上 (图 2). J Immunol (2012) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠
赛默飞世尔 CD8抗体(e-Bioscience, 53-6.7)被用于被用于流式细胞仪在小鼠样本上. Nature (2012) ncbi
大鼠 单克隆(CT-CD8a)
  • 流式细胞仪; 小鼠
赛默飞世尔 CD8抗体(Caltag Laboratories, CT-CD8alpha)被用于被用于流式细胞仪在小鼠样本上. PLoS ONE (2012) ncbi
大鼠 单克隆(5H10)
  • 流式细胞仪; 小鼠; 图 1
赛默飞世尔 CD8抗体(Invitrogen, clone 5H10)被用于被用于流式细胞仪在小鼠样本上 (图 1). J Immunol (2012) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠
赛默飞世尔 CD8抗体(eBioscience, 53-6.7)被用于被用于流式细胞仪在小鼠样本上. Nat Immunol (2012) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠
赛默飞世尔 CD8抗体(eBioscience, 13-0081-82)被用于被用于流式细胞仪在小鼠样本上. Exp Hematol (2012) ncbi
大鼠 单克隆(53-6.7)
  • 免疫组化-冰冻切片; 小鼠
赛默飞世尔 CD8抗体(eBioscience, 53-6.7)被用于被用于免疫组化-冰冻切片在小鼠样本上. Front Immunol (2012) ncbi
大鼠 单克隆(5H10)
  • 流式细胞仪; 小鼠
赛默飞世尔 CD8抗体(Caltag, 5H10)被用于被用于流式细胞仪在小鼠样本上. EMBO J (2012) ncbi
大鼠 单克隆(5H10)
  • 流式细胞仪; 小鼠; 图 2
赛默飞世尔 CD8抗体(Caltag, 5H10)被用于被用于流式细胞仪在小鼠样本上 (图 2). Cancer Res (2012) ncbi
大鼠 单克隆(5H10)
  • 流式细胞仪; 小鼠; 图 5
赛默飞世尔 CD8抗体(Zymed/Invitrogen, clone 5H10)被用于被用于流式细胞仪在小鼠样本上 (图 5). Vaccine (2012) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠
赛默飞世尔 CD8抗体(eBioscience, 53-6.7)被用于被用于流式细胞仪在小鼠样本上. PLoS ONE (2012) ncbi
大鼠 单克隆(5H10)
  • 流式细胞仪; 小鼠
赛默飞世尔 CD8抗体(Caltag Laboratories, 5H10)被用于被用于流式细胞仪在小鼠样本上. Aging Cell (2012) ncbi
大鼠 单克隆(5H10)
  • 流式细胞仪; 小鼠
赛默飞世尔 CD8抗体(Caltag Laboratories, 5H10)被用于被用于流式细胞仪在小鼠样本上. PLoS ONE (2011) ncbi
大鼠 单克隆(5H10)
  • 流式细胞仪; 小鼠; 图 2
赛默飞世尔 CD8抗体(Invitrogen, 5H10)被用于被用于流式细胞仪在小鼠样本上 (图 2). J Immunol (2011) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 犬
赛默飞世尔 CD8抗体(eBiosciences, 11-0081-85)被用于被用于流式细胞仪在犬样本上. J Biol Chem (2012) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠
赛默飞世尔 CD8抗体(eBioscience, 25-0081-81)被用于被用于流式细胞仪在小鼠样本上. J Immunol (2011) ncbi
大鼠 单克隆(CT-CD8a)
  • 流式细胞仪; 小鼠
赛默飞世尔 CD8抗体(Caltag, CT-CD8a)被用于被用于流式细胞仪在小鼠样本上. EMBO J (2012) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠
赛默飞世尔 CD8抗体(eBioScience, 53-6.7)被用于被用于流式细胞仪在小鼠样本上. PLoS ONE (2011) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 5
赛默飞世尔 CD8抗体(eBioscience, 53-6.7)被用于被用于流式细胞仪在小鼠样本上 (图 5). Mol Biol Cell (2011) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 3
赛默飞世尔 CD8抗体(eBioscience, 53-6.7)被用于被用于流式细胞仪在小鼠样本上 (图 3). Nat Immunol (2011) ncbi
大鼠 单克隆(5H10)
  • 流式细胞仪; 小鼠; 图 1
赛默飞世尔 CD8抗体(Caltag, 5H10)被用于被用于流式细胞仪在小鼠样本上 (图 1). J Immunol (2011) ncbi
大鼠 单克隆(5H10)
  • 流式细胞仪; 小鼠; 图 s1
赛默飞世尔 CD8抗体(Invitrogen, 5H10)被用于被用于流式细胞仪在小鼠样本上 (图 s1). Arterioscler Thromb Vasc Biol (2012) ncbi
大鼠 单克隆(CT-CD8a)
  • 流式细胞仪; 小鼠; 图 2
赛默飞世尔 CD8抗体(Caltag, clone CT-CD8a)被用于被用于流式细胞仪在小鼠样本上 (图 2). J Immunol (2011) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 1
赛默飞世尔 CD8抗体(Invitrogen, 53?C6.7)被用于被用于流式细胞仪在小鼠样本上 (图 1). J Immunol (2011) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 4
赛默飞世尔 CD8抗体(eBioscience, 53-6.7)被用于被用于流式细胞仪在小鼠样本上 (图 4). PLoS ONE (2011) ncbi
大鼠 单克隆(5H10)
  • 免疫组化-冰冻切片; 小鼠; 1:50; 图 4
赛默飞世尔 CD8抗体(分子探针, MCD0801)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:50 (图 4). J Surg Res (2011) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 6, 7
赛默飞世尔 CD8抗体(eBioscience, 53-6.7)被用于被用于流式细胞仪在小鼠样本上 (图 6, 7). J Immunol (2010) ncbi
大鼠 单克隆(5H10)
  • 免疫细胞化学; 小鼠; 图 s3
赛默飞世尔 CD8抗体(Caltag Laboratories, clone 5H10)被用于被用于免疫细胞化学在小鼠样本上 (图 s3). J Immunol (2010) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 4
赛默飞世尔 CD8抗体(eBioscience, 53-6.7)被用于被用于流式细胞仪在小鼠样本上 (图 4). J Immunol (2010) ncbi
大鼠 单克隆(CT-CD8a)
  • 流式细胞仪; 小鼠; 图 3
赛默飞世尔 CD8抗体(Invitrogen, CT-CD8alpha)被用于被用于流式细胞仪在小鼠样本上 (图 3). Infect Immun (2010) ncbi
大鼠 单克隆(5H10)
  • 流式细胞仪; 小鼠; 图 3
赛默飞世尔 CD8抗体(Caltag, 5H10)被用于被用于流式细胞仪在小鼠样本上 (图 3). J Virol (2010) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 1, 2, 3
赛默飞世尔 CD8抗体(eBioscience, 53-6.7)被用于被用于流式细胞仪在小鼠样本上 (图 1, 2, 3). Blood (2010) ncbi
大鼠 单克隆(CT-CD8a)
  • 流式细胞仪; 小鼠; 表 1
赛默飞世尔 CD8抗体(Caltag, RM2204)被用于被用于流式细胞仪在小鼠样本上 (表 1). Free Radic Res (2010) ncbi
大鼠 单克隆(5H10)
  • 流式细胞仪; 小鼠; 表 1
赛默飞世尔 CD8抗体(Invitrogen, 5H10)被用于被用于流式细胞仪在小鼠样本上 (表 1). J Immunol (2010) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 3
赛默飞世尔 CD8抗体(eBioscience, 53-6.7)被用于被用于流式细胞仪在小鼠样本上 (图 3). J Immunol (2009) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠
赛默飞世尔 CD8抗体(eBioscience, 53-6.7)被用于被用于流式细胞仪在小鼠样本上. PLoS ONE (2009) ncbi
大鼠 单克隆(CT-CD8a)
  • 流式细胞仪; 小鼠; 图 4
赛默飞世尔 CD8抗体(Caltag, RM2204)被用于被用于流式细胞仪在小鼠样本上 (图 4). Bone Marrow Transplant (2010) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠
赛默飞世尔 CD8抗体(eBiosciences, 53-6.7)被用于被用于流式细胞仪在小鼠样本上. Nat Med (2009) ncbi
大鼠 单克隆(CT-CD8a)
  • 流式细胞仪; 小鼠
赛默飞世尔 CD8抗体(Caltag Laboratories, RM2215-3)被用于被用于流式细胞仪在小鼠样本上. Blood (2009) ncbi
大鼠 单克隆(5H10)
  • 流式细胞仪; 小鼠
赛默飞世尔 CD8抗体(Caltag Laboratories, 5H10)被用于被用于流式细胞仪在小鼠样本上. J Immunol (2009) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 1
赛默飞世尔 CD8抗体(Caltag, 53.6.7)被用于被用于流式细胞仪在小鼠样本上 (图 1). J Virol (2009) ncbi
大鼠 单克隆(5H10)
  • 流式细胞仪; 小鼠; 图 5
赛默飞世尔 CD8抗体(CalTag, clone 5H10)被用于被用于流式细胞仪在小鼠样本上 (图 5). Vaccine (2009) ncbi
大鼠 单克隆(5H10)
  • 流式细胞仪; 小鼠
赛默飞世尔 CD8抗体(Caltag Laboratories, 5H10)被用于被用于流式细胞仪在小鼠样本上. J Immunol (2009) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠
赛默飞世尔 CD8抗体(eBioscience, 53-6.7)被用于被用于流式细胞仪在小鼠样本上. J Immunol (2009) ncbi
大鼠 单克隆(5H10)
  • 流式细胞仪; 小鼠
赛默飞世尔 CD8抗体(Caltag-Invitrogen, MCD0830)被用于被用于流式细胞仪在小鼠样本上. Nat Protoc (2009) ncbi
大鼠 单克隆(5H10)
  • 流式细胞仪; 小鼠; 图 1
赛默飞世尔 CD8抗体(Caltag, 5H10)被用于被用于流式细胞仪在小鼠样本上 (图 1). J Immunol (2009) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠
赛默飞世尔 CD8抗体(eBioscience, 53-6.7)被用于被用于流式细胞仪在小鼠样本上. J Virol (2009) ncbi
大鼠 单克隆(5H10)
  • 流式细胞仪; 小鼠
赛默飞世尔 CD8抗体(Caltag, 5H10)被用于被用于流式细胞仪在小鼠样本上. J Virol (2009) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 1c
赛默飞世尔 CD8抗体(eBioscience, 53-6.7)被用于被用于流式细胞仪在小鼠样本上 (图 1c). J Immunol (2009) ncbi
大鼠 单克隆(CT-CD8a)
  • 流式细胞仪; 小鼠; 图 2, 4
赛默飞世尔 CD8抗体(Caltag, CT-CD8a)被用于被用于流式细胞仪在小鼠样本上 (图 2, 4). J Immunol (2009) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 2
赛默飞世尔 CD8抗体(eBioscience, 53.6.7)被用于被用于流式细胞仪在小鼠样本上 (图 2). J Immunol (2009) ncbi
大鼠 单克隆(5H10)
  • 流式细胞仪; 小鼠; 图 2
赛默飞世尔 CD8抗体(Caltag, 5H10)被用于被用于流式细胞仪在小鼠样本上 (图 2). J Immunol (2008) ncbi
大鼠 单克隆(CT-CD8a)
  • 流式细胞仪; 小鼠
赛默飞世尔 CD8抗体(Caltag, CT-CD8alpha)被用于被用于流式细胞仪在小鼠样本上. J Immunol (2008) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 2
赛默飞世尔 CD8抗体(eBioscience, 53-6.7)被用于被用于流式细胞仪在小鼠样本上 (图 2). Proc Natl Acad Sci U S A (2008) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 s4
赛默飞世尔 CD8抗体(eBioscience, 53-6.7)被用于被用于流式细胞仪在小鼠样本上 (图 s4). Nat Immunol (2008) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠
赛默飞世尔 CD8抗体(eBioscience, 53-6.7)被用于被用于流式细胞仪在小鼠样本上. Cancer Res (2008) ncbi
大鼠 单克隆(53-6.7)
  • 其他; 小鼠; 5 mg/kg
赛默飞世尔 CD8抗体(eBioscience, 53-6.72)被用于被用于其他在小鼠样本上浓度为5 mg/kg. Invest Ophthalmol Vis Sci (2008) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠
赛默飞世尔 CD8抗体(eBioscience, 53-6.7)被用于被用于流式细胞仪在小鼠样本上. J Virol (2008) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 2
赛默飞世尔 CD8抗体(eBioscience, 53-6.7)被用于被用于流式细胞仪在小鼠样本上 (图 2). Blood (2008) ncbi
大鼠 单克隆(5H10)
  • 流式细胞仪; 小鼠; 图 1
赛默飞世尔 CD8抗体(Caltag, 5H10)被用于被用于流式细胞仪在小鼠样本上 (图 1). J Immunol (2007) ncbi
大鼠 单克隆(5H10)
  • 流式细胞仪; 小鼠
赛默飞世尔 CD8抗体(Caltag Laboratories, 5H10)被用于被用于流式细胞仪在小鼠样本上. J Immunol (2007) ncbi
大鼠 单克隆(5H10)
  • 流式细胞仪; 小鼠; 图 1
赛默飞世尔 CD8抗体(Caltag, 5H10)被用于被用于流式细胞仪在小鼠样本上 (图 1). J Immunol (2007) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠
赛默飞世尔 CD8抗体(eBioscience, 53-6.7)被用于被用于流式细胞仪在小鼠样本上. Blood (2008) ncbi
大鼠 单克隆(5H10)
  • 流式细胞仪; 小鼠
赛默飞世尔 CD8抗体(Invitrogen/Caltag Laboratories, 5H10)被用于被用于流式细胞仪在小鼠样本上. Cancer Res (2007) ncbi
大鼠 单克隆(CT-CD8a)
  • 流式细胞仪; 小鼠
赛默飞世尔 CD8抗体(Caltag, CT-CD8a)被用于被用于流式细胞仪在小鼠样本上. Blood (2007) ncbi
大鼠 单克隆(CT-CD8a)
  • 流式细胞仪; 小鼠
赛默飞世尔 CD8抗体(Caltag Laboratories, RM2201-3)被用于被用于流式细胞仪在小鼠样本上. J Leukoc Biol (2007) ncbi
大鼠 单克隆(CT-CD8a)
  • 免疫组化-冰冻切片; 小鼠
  • 流式细胞仪; 小鼠
赛默飞世尔 CD8抗体(Caltag, CT-CD8a)被用于被用于免疫组化-冰冻切片在小鼠样本上 和 被用于流式细胞仪在小鼠样本上. Med Microbiol Immunol (2008) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠
赛默飞世尔 CD8抗体(e-bioscience, 53-6.7)被用于被用于流式细胞仪在小鼠样本上. Microbiol Immunol (2007) ncbi
大鼠 单克隆(5H10)
  • 流式细胞仪; 小鼠
赛默飞世尔 CD8抗体(Caltag, 5H10)被用于被用于流式细胞仪在小鼠样本上. J Virol (2007) ncbi
大鼠 单克隆(CT-CD8a)
  • 免疫组化-石蜡切片; fruit fly ; 1:100
赛默飞世尔 CD8抗体(Invitrogen, RM2200)被用于被用于免疫组化-石蜡切片在fruit fly 样本上浓度为1:100. Nat Protoc (2006) ncbi
大鼠 单克隆(5H10)
  • 流式细胞仪; 小鼠
赛默飞世尔 CD8抗体(Caltag Laboratories, MCD0805)被用于被用于流式细胞仪在小鼠样本上. Mol Cell Biol (2007) ncbi
大鼠 单克隆(CT-CD8a)
  • 免疫细胞化学; fruit fly ; 1:100
赛默飞世尔 CD8抗体(CALTAG, RM2200)被用于被用于免疫细胞化学在fruit fly 样本上浓度为1:100. Nat Protoc (2006) ncbi
大鼠 单克隆(CT-CD8a)
  • 流式细胞仪; 小鼠; 图 1
赛默飞世尔 CD8抗体(Caltag, CD8alpha)被用于被用于流式细胞仪在小鼠样本上 (图 1). Int Immunol (2007) ncbi
大鼠 单克隆(5H10)
  • 免疫组化-冰冻切片; 小鼠
赛默飞世尔 CD8抗体(Caltag, 5H10)被用于被用于免疫组化-冰冻切片在小鼠样本上. Proc Natl Acad Sci U S A (2007) ncbi
大鼠 单克隆(CT-CD8a)
  • 免疫组化-冰冻切片; 小鼠
  • 流式细胞仪; 小鼠
赛默飞世尔 CD8抗体(Caltag, CT-CD8a)被用于被用于免疫组化-冰冻切片在小鼠样本上 和 被用于流式细胞仪在小鼠样本上. Proc Natl Acad Sci U S A (2007) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 1
赛默飞世尔 CD8抗体(ebiosciences, 53-6.7)被用于被用于流式细胞仪在小鼠样本上 (图 1). Int Immunopharmacol (2006) ncbi
大鼠 单克隆(5H10)
  • 流式细胞仪; 小鼠
赛默飞世尔 CD8抗体(Caltag, 5H10)被用于被用于流式细胞仪在小鼠样本上. Nat Immunol (2007) ncbi
大鼠 单克隆(5H10)
  • 流式细胞仪; 小鼠; 图 1
赛默飞世尔 CD8抗体(Caltag, 5H10)被用于被用于流式细胞仪在小鼠样本上 (图 1). Infect Immun (2007) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 4
赛默飞世尔 CD8抗体(eBioscience, 53-6.7)被用于被用于流式细胞仪在小鼠样本上 (图 4). Circulation (2006) ncbi
大鼠 单克隆(5H10)
  • 免疫组化-石蜡切片; 小鼠
赛默飞世尔 CD8抗体(Caltag, MCD0820)被用于被用于免疫组化-石蜡切片在小鼠样本上. Proc Natl Acad Sci U S A (2006) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠
赛默飞世尔 CD8抗体(eBioscience, 53-6.7)被用于被用于流式细胞仪在小鼠样本上. Cancer Res (2006) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠
赛默飞世尔 CD8抗体(ebiosciences, 53-6.7)被用于被用于流式细胞仪在小鼠样本上. Cytometry A (2006) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠
赛默飞世尔 CD8抗体(eBioscience, 53-6.7)被用于被用于流式细胞仪在小鼠样本上. J Exp Med (2006) ncbi
大鼠 单克隆(5H10)
  • 流式细胞仪; 小鼠; 图 2
赛默飞世尔 CD8抗体(Caltag, 5H10)被用于被用于流式细胞仪在小鼠样本上 (图 2). Cancer Res (2006) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 2
赛默飞世尔 CD8抗体(eBioscience, 53-6.7)被用于被用于流式细胞仪在小鼠样本上 (图 2). Cancer Res (2006) ncbi
大鼠 单克隆(KT15)
  • 免疫组化; 小鼠; 图 5
赛默飞世尔 CD8抗体(Biosource, KT15)被用于被用于免疫组化在小鼠样本上 (图 5). Immunology (2006) ncbi
大鼠 单克隆(5H10)
  • 流式细胞仪; 小鼠; 图 2
赛默飞世尔 CD8抗体(Caltag, 5H10)被用于被用于流式细胞仪在小鼠样本上 (图 2). Blood (2006) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 7
赛默飞世尔 CD8抗体(Caltag, 53-6.7)被用于被用于流式细胞仪在小鼠样本上 (图 7). J Infect Dis (2006) ncbi
大鼠 单克隆(CT-CD8a)
  • 流式细胞仪; 小鼠
赛默飞世尔 CD8抗体(Caltag, CTCD8a)被用于被用于流式细胞仪在小鼠样本上. Crit Care Med (2006) ncbi
大鼠 单克隆(CT-CD8a)
  • 流式细胞仪; 小鼠; 图 1
赛默飞世尔 CD8抗体(Caltag, CT-CD8a)被用于被用于流式细胞仪在小鼠样本上 (图 1). J Virol (2005) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 2
赛默飞世尔 CD8抗体(eBioscience, 53-6.7)被用于被用于流式细胞仪在小鼠样本上 (图 2). J Immunol (2005) ncbi
大鼠 单克隆(YTS169.4)
  • 流式细胞仪; 小鼠; 图 1
赛默飞世尔 CD8抗体(Caltag, YTS169.4)被用于被用于流式细胞仪在小鼠样本上 (图 1). J Immunol (2005) ncbi
大鼠 单克隆(CT-CD8a)
  • 流式细胞仪; 小鼠
赛默飞世尔 CD8抗体(Caltag, CT-CD8)被用于被用于流式细胞仪在小鼠样本上. J Immunol (2005) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠
赛默飞世尔 CD8抗体(eBiosciences, 53-6.7)被用于被用于流式细胞仪在小鼠样本上. Infect Immun (2005) ncbi
大鼠 单克隆(CT-CD8a)
  • 流式细胞仪; 小鼠
赛默飞世尔 CD8抗体(Caltag, CTCD8a)被用于被用于流式细胞仪在小鼠样本上. Parasitol Res (2005) ncbi
大鼠 单克隆(5H10)
  • 流式细胞仪; 小鼠; 图 5
赛默飞世尔 CD8抗体(Caltag, 5H10)被用于被用于流式细胞仪在小鼠样本上 (图 5). J Immunol (2005) ncbi
大鼠 单克隆(CT-CD8a)
  • 流式细胞仪; 小鼠
赛默飞世尔 CD8抗体(Caltag, CT-CD8a)被用于被用于流式细胞仪在小鼠样本上. Blood (2005) ncbi
大鼠 单克隆(CT-CD8a)
  • 流式细胞仪; 小鼠
赛默飞世尔 CD8抗体(Caltag, CT-CD8a)被用于被用于流式细胞仪在小鼠样本上. J Virol (2005) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 2
赛默飞世尔 CD8抗体(Invitrogen Life Technologies, 53-6.7)被用于被用于流式细胞仪在小鼠样本上 (图 2). J Immunol (2005) ncbi
大鼠 单克隆(5H10)
  • 其他; 小鼠
  • 流式细胞仪; 小鼠
赛默飞世尔 CD8抗体(Caltag, 5H10)被用于被用于其他在小鼠样本上 和 被用于流式细胞仪在小鼠样本上. J Immunol (2005) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠
赛默飞世尔 CD8抗体(eBioscience, 53-6.7)被用于被用于流式细胞仪在小鼠样本上. J Immunol (2005) ncbi
大鼠 单克隆(CT-CD8a)
  • 流式细胞仪; 小鼠
赛默飞世尔 CD8抗体(Caltag, CT-CD8a)被用于被用于流式细胞仪在小鼠样本上. J Infect Dis (2004) ncbi
大鼠 单克隆(5H10)
  • 流式细胞仪; 小鼠; 图 2
赛默飞世尔 CD8抗体(Caltag, 5H10)被用于被用于流式细胞仪在小鼠样本上 (图 2). Cancer Res (2004) ncbi
大鼠 单克隆(5H10)
  • 流式细胞仪; 小鼠
赛默飞世尔 CD8抗体(Caltag, 5H10)被用于被用于流式细胞仪在小鼠样本上. J Exp Med (2004) ncbi
大鼠 单克隆(CT-CD8a)
  • 流式细胞仪; 小鼠
赛默飞世尔 CD8抗体(Caltag, CT-CD8a)被用于被用于流式细胞仪在小鼠样本上. J Exp Med (2004) ncbi
大鼠 单克隆(CT-CD8a)
  • 流式细胞仪; 小鼠
赛默飞世尔 CD8抗体(Caltag, CT-CD8a)被用于被用于流式细胞仪在小鼠样本上. J Immunol (2004) ncbi
大鼠 单克隆(CT-CD8a)
  • 免疫细胞化学; 小鼠; 图 5
赛默飞世尔 CD8抗体(Caltag, CT-CD8a)被用于被用于免疫细胞化学在小鼠样本上 (图 5). J Immunol (2004) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 5
赛默飞世尔 CD8抗体(Caltag, 53-6.7)被用于被用于流式细胞仪在小鼠样本上 (图 5). J Immunol (2004) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 1
赛默飞世尔 CD8抗体(eBioscience, 53-6.7)被用于被用于流式细胞仪在小鼠样本上 (图 1). J Immunol (2004) ncbi
大鼠 单克隆(CT-CD8a)
  • 流式细胞仪; 小鼠; 图 4
赛默飞世尔 CD8抗体(Caltag, CT-CD8alpha)被用于被用于流式细胞仪在小鼠样本上 (图 4). J Immunol (2004) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠
赛默飞世尔 CD8抗体(Caltag, 53-6.7)被用于被用于流式细胞仪在小鼠样本上. Cancer Gene Ther (2004) ncbi
大鼠 单克隆(CT-CD8a)
  • 流式细胞仪; 小鼠
赛默飞世尔 CD8抗体(Caltag, CT-CD8a)被用于被用于流式细胞仪在小鼠样本上. Am J Transplant (2004) ncbi
大鼠 单克隆(CT-CD8a)
  • 流式细胞仪; 小鼠; 图 4
赛默飞世尔 CD8抗体(Caltag, CT-CD8a)被用于被用于流式细胞仪在小鼠样本上 (图 4). Nat Cell Biol (2004) ncbi
大鼠 单克隆(CT-CD8a)
  • 流式细胞仪; 小鼠
赛默飞世尔 CD8抗体(Caltag, CT-CD8a)被用于被用于流式细胞仪在小鼠样本上. J Autoimmun (2004) ncbi
大鼠 单克隆(5H10)
  • 流式细胞仪; 小鼠
赛默飞世尔 CD8抗体(Caltag, 5H10)被用于被用于流式细胞仪在小鼠样本上. J Autoimmun (2004) ncbi
大鼠 单克隆(CT-CD8a)
  • 流式细胞仪; 小鼠; 表 1
赛默飞世尔 CD8抗体(Caltag, CT-CD8a)被用于被用于流式细胞仪在小鼠样本上 (表 1). J Autoimmun (2004) ncbi
大鼠 单克隆(CT-CD8a)
  • 流式细胞仪; 小鼠; 图 6
赛默飞世尔 CD8抗体(Caltag, CTCD8)被用于被用于流式细胞仪在小鼠样本上 (图 6). Int Immunol (2004) ncbi
大鼠 单克隆(5H10)
  • 流式细胞仪; 小鼠; 图 1
赛默飞世尔 CD8抗体(Caltag, 5H10)被用于被用于流式细胞仪在小鼠样本上 (图 1). Blood (2004) ncbi
大鼠 单克隆(CT-CD8a)
  • 流式细胞仪; 小鼠; 图 1
赛默飞世尔 CD8抗体(Caltag, CT-CD8alpha)被用于被用于流式细胞仪在小鼠样本上 (图 1). Blood (2004) ncbi
大鼠 单克隆(CT-CD8a)
  • 流式细胞仪; 小鼠; 图 6
赛默飞世尔 CD8抗体(Caltag, CT-CD8alpha)被用于被用于流式细胞仪在小鼠样本上 (图 6). Eur J Immunol (2004) ncbi
大鼠 单克隆(CT-CD8a)
  • 流式细胞仪; 小鼠
赛默飞世尔 CD8抗体(Caltag, CT-CD8a)被用于被用于流式细胞仪在小鼠样本上. Clin Exp Immunol (2004) ncbi
大鼠 单克隆(CT-CD8a)
  • 流式细胞仪; 小鼠
赛默飞世尔 CD8抗体(Caltag, CT-CD8a)被用于被用于流式细胞仪在小鼠样本上. Clin Exp Immunol (2003) ncbi
大鼠 单克隆(CT-CD8a)
  • 流式细胞仪; 小鼠
赛默飞世尔 CD8抗体(Caltag, CT-CD8a)被用于被用于流式细胞仪在小鼠样本上. J Exp Med (2003) ncbi
大鼠 单克隆(5H10)
  • 流式细胞仪; 小鼠; 图 1
赛默飞世尔 CD8抗体(Caltag, 5H10)被用于被用于流式细胞仪在小鼠样本上 (图 1). J Immunol (2003) ncbi
大鼠 单克隆(CT-CD8a)
  • 流式细胞仪; 小鼠; 图 1
赛默飞世尔 CD8抗体(Caltag, CT-CD8a)被用于被用于流式细胞仪在小鼠样本上 (图 1). J Immunol (2003) ncbi
大鼠 单克隆(CT-CD8a)
  • 流式细胞仪; 小鼠; 表 1
赛默飞世尔 CD8抗体(Caltag, CT-CD8a)被用于被用于流式细胞仪在小鼠样本上 (表 1). Exp Hematol (2003) ncbi
大鼠 单克隆(5H10)
  • 流式细胞仪; 小鼠; 图 1
赛默飞世尔 CD8抗体(Caltag, 5H10)被用于被用于流式细胞仪在小鼠样本上 (图 1). J Immunol (2003) ncbi
大鼠 单克隆(5H10)
  • 流式细胞仪; 小鼠; 图 1
赛默飞世尔 CD8抗体(Caltag, 5H10)被用于被用于流式细胞仪在小鼠样本上 (图 1). Transplantation (2003) ncbi
大鼠 单克隆(YTS169.4)
  • 流式细胞仪; 小鼠; 图 1
赛默飞世尔 CD8抗体(Caltag, YTS169.4)被用于被用于流式细胞仪在小鼠样本上 (图 1). J Histochem Cytochem (2003) ncbi
大鼠 单克隆(CT-CD8a)
  • 流式细胞仪; 小鼠
赛默飞世尔 CD8抗体(Zymed, CT-CD8a)被用于被用于流式细胞仪在小鼠样本上. Blood (2003) ncbi
大鼠 单克隆(CT-CD8a)
  • 流式细胞仪; 小鼠; 图 1
赛默飞世尔 CD8抗体(Caltag, CT-CD8a)被用于被用于流式细胞仪在小鼠样本上 (图 1). J Immunol (2003) ncbi
大鼠 单克隆(CT-CD8a)
  • 流式细胞仪; 小鼠; 图 4
赛默飞世尔 CD8抗体(Caltag, CT-CD8a)被用于被用于流式细胞仪在小鼠样本上 (图 4). Cell Immunol (2003) ncbi
大鼠 单克隆(CT-CD8a)
  • 流式细胞仪; 小鼠; 图 6, 7
赛默飞世尔 CD8抗体(Caltag, CT-CD8a)被用于被用于流式细胞仪在小鼠样本上 (图 6, 7). Eur J Immunol (2003) ncbi
大鼠 单克隆(CT-CD8a)
  • 流式细胞仪; 小鼠
赛默飞世尔 CD8抗体(Caltag, CT-CD8a)被用于被用于流式细胞仪在小鼠样本上. Parasite Immunol (2002) ncbi
大鼠 单克隆(CT-CD8a)
  • 流式细胞仪; 小鼠
赛默飞世尔 CD8抗体(Caltag, CT-CD8a)被用于被用于流式细胞仪在小鼠样本上. J Clin Invest (2003) ncbi
大鼠 单克隆(YTS169.4)
  • 流式细胞仪; 小鼠; 表 1
赛默飞世尔 CD8抗体(Caltag, YTS169.4)被用于被用于流式细胞仪在小鼠样本上 (表 1). Eur J Immunol (2003) ncbi
大鼠 单克隆(5H10)
  • 流式细胞仪; 小鼠; 图 4
赛默飞世尔 CD8抗体(Caltag, 5H10)被用于被用于流式细胞仪在小鼠样本上 (图 4). Nature (2002) ncbi
大鼠 单克隆(YTS169.4)
  • 流式细胞仪; 小鼠
赛默飞世尔 CD8抗体(Caltag, YTS 169.4)被用于被用于流式细胞仪在小鼠样本上. Cell Immunol (2002) ncbi
大鼠 单克隆(5H10)
  • 流式细胞仪; 小鼠
赛默飞世尔 CD8抗体(Caltag, 5H10)被用于被用于流式细胞仪在小鼠样本上. J Exp Med (2002) ncbi
大鼠 单克隆(CT-CD8a)
  • 流式细胞仪; 小鼠
赛默飞世尔 CD8抗体(Caltag, CT-CD8a)被用于被用于流式细胞仪在小鼠样本上. Blood (2003) ncbi
大鼠 单克隆(CT-CD8a)
  • 流式细胞仪; 小鼠; 图 2
赛默飞世尔 CD8抗体(Caltag, CT-CD8a)被用于被用于流式细胞仪在小鼠样本上 (图 2). J Immunol (2002) ncbi
大鼠 单克隆(CT-CD8a)
  • 流式细胞仪; 小鼠; 图 1
赛默飞世尔 CD8抗体(Caltag Laboratories, clone CT-CD8a)被用于被用于流式细胞仪在小鼠样本上 (图 1). Blood (2002) ncbi
大鼠 单克隆(CT-CD8a)
  • 免疫组化; 小鼠; 图 1
赛默飞世尔 CD8抗体(Caltag, clone CT-CD8a)被用于被用于免疫组化在小鼠样本上 (图 1). J Neuroimmunol (2002) ncbi
大鼠 单克隆(CT-CD8a)
  • 流式细胞仪; 小鼠
赛默飞世尔 CD8抗体(Caltag, CT-CD8a)被用于被用于流式细胞仪在小鼠样本上. Mol Cell Biol (2002) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 2
赛默飞世尔 CD8抗体(Caltag, 53-6.7)被用于被用于流式细胞仪在小鼠样本上 (图 2). Int Immunol (2002) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠
赛默飞世尔 CD8抗体(Caltag, 53-6.7)被用于被用于流式细胞仪在小鼠样本上. Clin Exp Immunol (2002) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 1
赛默飞世尔 CD8抗体(Caltag, 53-6.7)被用于被用于流式细胞仪在小鼠样本上 (图 1). J Immunol (2002) ncbi
大鼠 单克隆(CT-CD8a)
  • 流式细胞仪; 小鼠
赛默飞世尔 CD8抗体(Caltag, CT-CD8a)被用于被用于流式细胞仪在小鼠样本上. Blood (2002) ncbi
大鼠 单克隆(CT-CD8a)
  • 流式细胞仪; 小鼠
赛默飞世尔 CD8抗体(Caltag, CT-CD8a)被用于被用于流式细胞仪在小鼠样本上. Blood (2002) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 6
赛默飞世尔 CD8抗体(noco, 53-6.7)被用于被用于流式细胞仪在小鼠样本上 (图 6). J Clin Invest (2002) ncbi
大鼠 单克隆(CT-CD8a)
  • 流式细胞仪; 小鼠; 图 4, 5
赛默飞世尔 CD8抗体(CALTAG, CT-CD8alpha)被用于被用于流式细胞仪在小鼠样本上 (图 4, 5). J Immunol (2002) ncbi
大鼠 单克隆(CT-CD8a)
  • 流式细胞仪; 小鼠
赛默飞世尔 CD8抗体(Caltag, CT-CD8a)被用于被用于流式细胞仪在小鼠样本上. Blood (2002) ncbi
大鼠 单克隆(5H10)
  • 流式细胞仪; 小鼠; 图 1
赛默飞世尔 CD8抗体(Caltag, 5H10)被用于被用于流式细胞仪在小鼠样本上 (图 1). J Immunol (2002) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 2
赛默飞世尔 CD8抗体(生活技术, 53-6.7)被用于被用于流式细胞仪在小鼠样本上 (图 2). J Immunol (2001) ncbi
大鼠 单克隆(CT-CD8a)
  • 流式细胞仪; 小鼠; 图 2
赛默飞世尔 CD8抗体(Caltag, clone CT-CD8)被用于被用于流式细胞仪在小鼠样本上 (图 2). Scand J Immunol (2001) ncbi
大鼠 单克隆(CT-CD8a)
  • 流式细胞仪; 小鼠
赛默飞世尔 CD8抗体(Caltag, CT-CD8a)被用于被用于流式细胞仪在小鼠样本上. J Biol Chem (2001) ncbi
大鼠 单克隆(CT-CD8a)
  • 流式细胞仪; 小鼠
赛默飞世尔 CD8抗体(Caltag, CT-CD8a)被用于被用于流式细胞仪在小鼠样本上. Blood (2001) ncbi
大鼠 单克隆(YTS169.4)
  • 流式细胞仪; 小鼠; 图 1
赛默飞世尔 CD8抗体(Caltag, YTS169.4)被用于被用于流式细胞仪在小鼠样本上 (图 1). J Immunol (2001) ncbi
大鼠 单克隆(YTS169.4)
  • 流式细胞仪; 小鼠; 图 3, 4
赛默飞世尔 CD8抗体(Caltag, YTS 169.4)被用于被用于流式细胞仪在小鼠样本上 (图 3, 4). J Immunol (2001) ncbi
大鼠 单克隆(CT-CD8a)
  • 流式细胞仪; 小鼠; 图 1
赛默飞世尔 CD8抗体(Caltag, CT-CD8alpha-APC)被用于被用于流式细胞仪在小鼠样本上 (图 1). Int Immunol (2001) ncbi
大鼠 单克隆(CT-CD8a)
  • 流式细胞仪; 小鼠; 图 3
赛默飞世尔 CD8抗体(Caltag, CT-CD8a)被用于被用于流式细胞仪在小鼠样本上 (图 3). Int Immunol (2001) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 3
赛默飞世尔 CD8抗体(生活技术, 53-6.7)被用于被用于流式细胞仪在小鼠样本上 (图 3). J Immunol (2000) ncbi
大鼠 单克隆(CT-CD8a)
  • 流式细胞仪; 小鼠
赛默飞世尔 CD8抗体(Caltag, CT-CD8a)被用于被用于流式细胞仪在小鼠样本上. Blood (2000) ncbi
大鼠 单克隆(CT-CD8a)
  • 流式细胞仪; 小鼠; 图 2
赛默飞世尔 CD8抗体(Caltag, CT-CD8a)被用于被用于流式细胞仪在小鼠样本上 (图 2). J Immunol (2000) ncbi
大鼠 单克隆(CT-CD8a)
  • 流式细胞仪; 小鼠
赛默飞世尔 CD8抗体(Caltag, CT-CD8a)被用于被用于流式细胞仪在小鼠样本上. J Immunol (2000) ncbi
大鼠 单克隆(CT-CD8a)
  • 免疫组化-冰冻切片; 小鼠
赛默飞世尔 CD8抗体(Caltag, CT-CD8a)被用于被用于免疫组化-冰冻切片在小鼠样本上. Infect Immun (2000) ncbi
大鼠 单克隆(CT-CD8a)
  • 流式细胞仪; 小鼠; 图 1
赛默飞世尔 CD8抗体(Caltag, CT-CD8)被用于被用于流式细胞仪在小鼠样本上 (图 1). J Immunol (2000) ncbi
大鼠 单克隆(CT-CD8a)
  • 流式细胞仪; 小鼠
赛默飞世尔 CD8抗体(Caltag, CT-CD8a)被用于被用于流式细胞仪在小鼠样本上. Proc Natl Acad Sci U S A (1999) ncbi
大鼠 单克隆(YTS169.4)
  • 流式细胞仪; 小鼠
赛默飞世尔 CD8抗体(Caltag, YTS169.4)被用于被用于流式细胞仪在小鼠样本上. J Exp Med (1999) ncbi
大鼠 单克隆(YTS169.4)
  • 流式细胞仪; 小鼠
赛默飞世尔 CD8抗体(Caltag, YTS169.4)被用于被用于流式细胞仪在小鼠样本上. J Immunol (1999) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠
赛默飞世尔 CD8抗体(Caltag, 53-6.7)被用于被用于流式细胞仪在小鼠样本上. J Exp Med (1999) ncbi
大鼠 单克隆(CT-CD8a)
  • 流式细胞仪; 小鼠
赛默飞世尔 CD8抗体(Caltag, CT-CD8a)被用于被用于流式细胞仪在小鼠样本上. Immunology (1999) ncbi
大鼠 单克隆(YTS169.4)
  • 流式细胞仪; 小鼠
赛默飞世尔 CD8抗体(Caltag, YTS169.4)被用于被用于流式细胞仪在小鼠样本上. J Immunol (1999) ncbi
大鼠 单克隆(CT-CD8a)
  • 流式细胞仪; 小鼠
赛默飞世尔 CD8抗体(Caltag, CT-CD8a)被用于被用于流式细胞仪在小鼠样本上. J Immunol (1999) ncbi
大鼠 单克隆(YTS169.4)
  • 流式细胞仪; 小鼠
赛默飞世尔 CD8抗体(Caltag, YTS169.4)被用于被用于流式细胞仪在小鼠样本上. Int Immunol (1999) ncbi
大鼠 单克隆(CT-CD8a)
  • 流式细胞仪; 小鼠
赛默飞世尔 CD8抗体(Caltag, CT-CD8a)被用于被用于流式细胞仪在小鼠样本上. Immunology (1999) ncbi
大鼠 单克隆(CT-CD8a)
  • 流式细胞仪; 小鼠
赛默飞世尔 CD8抗体(Caltag, CT-CD8alpha)被用于被用于流式细胞仪在小鼠样本上. J Exp Med (1999) ncbi
大鼠 单克隆(YTS169.4)
  • 流式细胞仪; 小鼠
赛默飞世尔 CD8抗体(Caltag, YTS169.4)被用于被用于流式细胞仪在小鼠样本上. J Immunol (1999) ncbi
大鼠 单克隆(YTS169.4)
  • 流式细胞仪; 小鼠; 图 1, 2
赛默飞世尔 CD8抗体(Caltag, YTS-169.4)被用于被用于流式细胞仪在小鼠样本上 (图 1, 2). Biochim Biophys Acta (1999) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠
赛默飞世尔 CD8抗体(Caltag, 53?C6.72)被用于被用于流式细胞仪在小鼠样本上. J Immunol (1999) ncbi
大鼠 单克隆(CT-CD8a)
  • 流式细胞仪; 小鼠; 图 4
赛默飞世尔 CD8抗体(Caltag, CT-CD8a)被用于被用于流式细胞仪在小鼠样本上 (图 4). J Immunol (1998) ncbi
大鼠 单克隆(CT-CD8a)
  • 流式细胞仪; 小鼠
赛默飞世尔 CD8抗体(Caltag, CT-CD8alpha)被用于被用于流式细胞仪在小鼠样本上. J Exp Med (1998) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠
赛默飞世尔 CD8抗体(Caltag, 53-6.7)被用于被用于流式细胞仪在小鼠样本上. J Immunol (1998) ncbi
大鼠 单克隆(CT-CD8a)
  • 流式细胞仪; 小鼠
赛默飞世尔 CD8抗体(Caltag, CT-CD8a)被用于被用于流式细胞仪在小鼠样本上. Blood (1998) ncbi
大鼠 单克隆(CT-CD8a)
  • 流式细胞仪; 小鼠
赛默飞世尔 CD8抗体(Caltag, CT-CD8a)被用于被用于流式细胞仪在小鼠样本上. Infect Immun (1998) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 4
赛默飞世尔 CD8抗体(生活技术, 53-6.7)被用于被用于流式细胞仪在小鼠样本上 (图 4). J Immunol (1998) ncbi
大鼠 单克隆(CT-CD8a)
  • 流式细胞仪; 小鼠
赛默飞世尔 CD8抗体(Caltag, T-CD8a)被用于被用于流式细胞仪在小鼠样本上. J Immunol (1998) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 1
赛默飞世尔 CD8抗体(Caltag, clone 53.6.7)被用于被用于流式细胞仪在小鼠样本上 (图 1). Int Immunol (1997) ncbi
大鼠 单克隆(YTS169.4)
  • 流式细胞仪; 小鼠; 图 2
赛默飞世尔 CD8抗体(Caltag Laboratories, YTS 169.4)被用于被用于流式细胞仪在小鼠样本上 (图 2). Blood (1997) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 3
赛默飞世尔 CD8抗体(Caltag, 53-6.7)被用于被用于流式细胞仪在小鼠样本上 (图 3). Endocrinology (1997) ncbi
大鼠 单克隆(YTS169.4)
  • 流式细胞仪; 小鼠
赛默飞世尔 CD8抗体(Caltag, YTS169-4)被用于被用于流式细胞仪在小鼠样本上. Clin Exp Immunol (1997) ncbi
大鼠 单克隆(YTS169.4)
  • 流式细胞仪; 小鼠
赛默飞世尔 CD8抗体(Caltag, YTS169.4)被用于被用于流式细胞仪在小鼠样本上. J Exp Med (1996) ncbi
大鼠 单克隆(YTS169.4)
  • 流式细胞仪; 小鼠
赛默飞世尔 CD8抗体(Caltag, YTS169.4)被用于被用于流式细胞仪在小鼠样本上. J Exp Med (1996) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 5
赛默飞世尔 CD8抗体(生活技术, 53-6.7)被用于被用于流式细胞仪在小鼠样本上 (图 5). J Immunol (1996) ncbi
大鼠 单克隆(YTS169.4)
  • 流式细胞仪; 小鼠; 图 1
赛默飞世尔 CD8抗体(Caltag, YTS169.4)被用于被用于流式细胞仪在小鼠样本上 (图 1). Clin Exp Immunol (1996) ncbi
大鼠 单克隆(YTS169.4)
  • 流式细胞仪; 小鼠
赛默飞世尔 CD8抗体(Caltag, YTS169.4)被用于被用于流式细胞仪在小鼠样本上. J Exp Med (1996) ncbi
大鼠 单克隆(YTS169.4)
  • 流式细胞仪; 小鼠; 表 1
赛默飞世尔 CD8抗体(CalTag, YTS 169.4)被用于被用于流式细胞仪在小鼠样本上 (表 1). Science (1993) ncbi
大鼠 单克隆(YTS169.4)
  • 流式细胞仪; 小鼠; 图 3
赛默飞世尔 CD8抗体(Caltag, YTS 169.4)被用于被用于流式细胞仪在小鼠样本上 (图 3). J Immunol (1995) ncbi
大鼠 单克隆(YTS169.4)
  • 流式细胞仪; 小鼠; 图 1
赛默飞世尔 CD8抗体(Caltag, YTS-169.4)被用于被用于流式细胞仪在小鼠样本上 (图 1). J Immunol (1994) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 表 1
赛默飞世尔 CD8抗体(noco, 53-6.7)被用于被用于流式细胞仪在小鼠样本上 (表 1). J Exp Med (1980) ncbi
大鼠 单克隆(YTS169.4)
  • 流式细胞仪; 小鼠; 表 1
  • 酶联免疫吸附测定; 小鼠; 表 1
赛默飞世尔 CD8抗体(CalTag, YTS 169.4)被用于被用于流式细胞仪在小鼠样本上 (表 1) 和 被用于酶联免疫吸附测定在小鼠样本上 (表 1). Cell (1991) ncbi
大鼠 单克隆(YTS169.4)
  • 流式细胞仪; 小鼠; 图 5
赛默飞世尔 CD8抗体(Caltag, YTS169.4)被用于被用于流式细胞仪在小鼠样本上 (图 5). J Exp Med (1992) ncbi
大鼠 单克隆(53-6.7)
  • 其他; 小鼠; 图 2
赛默飞世尔 CD8抗体(noco, 53-6.72)被用于被用于其他在小鼠样本上 (图 2). Proc Natl Acad Sci U S A (1992) ncbi
大鼠 单克隆(YTS169.4)
  • 流式细胞仪; 小鼠; 表 2
赛默飞世尔 CD8抗体(Caltag, YTS169.4)被用于被用于流式细胞仪在小鼠样本上 (表 2). Am Rev Respir Dis (1992) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 1C
  • 免疫沉淀; 小鼠; 图 3F
赛默飞世尔 CD8抗体(noco, 53-6.7)被用于被用于流式细胞仪在小鼠样本上 (图 1C) 和 被用于免疫沉淀在小鼠样本上 (图 3F). Immunol Rev (1979) ncbi
艾博抗(上海)贸易有限公司
domestic rabbit 单克隆(EPR21769)
  • 免疫组化; 小鼠; 1:50; 图 1d
艾博抗(上海)贸易有限公司 CD8抗体(Abcam, ab217344)被用于被用于免疫组化在小鼠样本上浓度为1:50 (图 1d). Cell Death Dis (2022) ncbi
domestic rabbit 单克隆(EPR20305)
  • 免疫组化-石蜡切片; 小鼠; 图 7a
艾博抗(上海)贸易有限公司 CD8抗体(Abcam, ab209775)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 7a). J Int Med Res (2022) ncbi
domestic rabbit 单克隆(EPR20305)
  • 免疫组化; 小鼠; 1:1000; 图 2h
艾博抗(上海)贸易有限公司 CD8抗体(ABCAM, ab209775)被用于被用于免疫组化在小鼠样本上浓度为1:1000 (图 2h). J Immunol Res (2022) ncbi
domestic rabbit 单克隆(EPR21769)
  • 免疫组化-石蜡切片; 小鼠; 1:2000; 图 s8a
艾博抗(上海)贸易有限公司 CD8抗体(Abcam, ab217344)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:2000 (图 s8a). Theranostics (2022) ncbi
domestic rabbit 单克隆(EPR21769)
  • 免疫组化-石蜡切片; 小鼠; 图 5g, s5b
艾博抗(上海)贸易有限公司 CD8抗体(Abcam, 217344)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 5g, s5b). J Immunother Cancer (2022) ncbi
小鼠 单克隆(OX-8)
  • 免疫组化-冰冻切片; 大鼠; 1:100; 图 4d
艾博抗(上海)贸易有限公司 CD8抗体(Abcam, ab33786)被用于被用于免疫组化-冰冻切片在大鼠样本上浓度为1:100 (图 4d). Sci Rep (2022) ncbi
domestic rabbit 单克隆(EPR21769)
  • 免疫组化-石蜡切片; 小鼠; 1:2000; 图 5a
艾博抗(上海)贸易有限公司 CD8抗体(Abcam, 217344)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:2000 (图 5a). Front Pharmacol (2022) ncbi
domestic rabbit 单克隆(EPR21769)
  • 免疫组化-石蜡切片; 小鼠; 1:500; 图 4c
艾博抗(上海)贸易有限公司 CD8抗体(Abcam, ab217344)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:500 (图 4c). Oncol Rep (2022) ncbi
domestic rabbit 单克隆(EPR20305)
  • 免疫组化-石蜡切片; 小鼠; 1:1000; 图 s2
艾博抗(上海)贸易有限公司 CD8抗体(Abcam, ab209775)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:1000 (图 s2). Development (2022) ncbi
大鼠 单克隆(YTS169.4)
  • 免疫组化; 小鼠; 图 4g
艾博抗(上海)贸易有限公司 CD8抗体(Abcam, ab22378)被用于被用于免疫组化在小鼠样本上 (图 4g). J Exp Clin Cancer Res (2022) ncbi
domestic rabbit 单克隆(EPR20305)
  • 免疫组化-石蜡切片; 小鼠; 1:500; 图 3b
艾博抗(上海)贸易有限公司 CD8抗体(Abcam, EPR20305)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:500 (图 3b). Med Oncol (2022) ncbi
domestic rabbit 单克隆(EPR20305)
  • 免疫组化-石蜡切片; 小鼠; 图 4b
艾博抗(上海)贸易有限公司 CD8抗体(Abcam, ab209775)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 4b). Gastric Cancer (2022) ncbi
大鼠 单克隆(YTS169.4)
  • 免疫组化-石蜡切片; 小鼠; 1:50; 图 s6g
艾博抗(上海)贸易有限公司 CD8抗体(Abcam, ab22378)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:50 (图 s6g). Theranostics (2021) ncbi
大鼠 单克隆(YTS169.4)
  • 免疫组化; 小鼠; 1:50; 图 5a
艾博抗(上海)贸易有限公司 CD8抗体(Abcam, ab22378)被用于被用于免疫组化在小鼠样本上浓度为1:50 (图 5a). Cancers (Basel) (2021) ncbi
domestic rabbit 单克隆(EPR21769)
  • 免疫印迹; 人类; 图 6h
  • 免疫组化-石蜡切片; 小鼠; 图 4n
  • 流式细胞仪; 小鼠; 图 4o
艾博抗(上海)贸易有限公司 CD8抗体(Abcam, ab217344)被用于被用于免疫印迹在人类样本上 (图 6h), 被用于免疫组化-石蜡切片在小鼠样本上 (图 4n) 和 被用于流式细胞仪在小鼠样本上 (图 4o). Mol Cancer (2021) ncbi
domestic rabbit 单克隆(EPR21769)
  • 免疫组化; 小鼠; 1:100; 图 4b
艾博抗(上海)贸易有限公司 CD8抗体(Abcam, ab217344)被用于被用于免疫组化在小鼠样本上浓度为1:100 (图 4b). Am J Cancer Res (2021) ncbi
domestic rabbit 单克隆(EPR20305)
  • 免疫组化-石蜡切片; 小鼠; 图 1h
艾博抗(上海)贸易有限公司 CD8抗体(Abcam, ab209775)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 1h). Adv Sci (Weinh) (2021) ncbi
大鼠 单克隆(YTS169.4)
  • 免疫组化; 小鼠; 1:200; 图 5c
艾博抗(上海)贸易有限公司 CD8抗体(Abcam, ab22378)被用于被用于免疫组化在小鼠样本上浓度为1:200 (图 5c). J Oncol (2021) ncbi
domestic rabbit 单克隆(EPR20305)
  • 免疫组化; 小鼠; 图 8c
艾博抗(上海)贸易有限公司 CD8抗体(Abcam, ab209775)被用于被用于免疫组化在小鼠样本上 (图 8c). Neoplasia (2021) ncbi
domestic rabbit 单克隆(EPR20305)
  • 免疫组化-石蜡切片; 小鼠; 图 6f
艾博抗(上海)贸易有限公司 CD8抗体(Abcam, ab209775)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 6f). Sci Adv (2021) ncbi
domestic rabbit 单克隆(EPR21769)
  • 免疫组化-石蜡切片; 小鼠; 图 5e
艾博抗(上海)贸易有限公司 CD8抗体(Abcam, ab217344)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 5e). BMC Cancer (2021) ncbi
domestic rabbit 单克隆(EPR20305)
  • 免疫组化-冰冻切片; 小鼠; 图 5c
艾博抗(上海)贸易有限公司 CD8抗体(Abcam, EPR20305)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 5c). Cancers (Basel) (2021) ncbi
domestic rabbit 单克隆(EPR20305)
  • 免疫组化-石蜡切片; 小鼠; 1:2000; 图 4a
艾博抗(上海)贸易有限公司 CD8抗体(Abcam, ab209775)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:2000 (图 4a). BMC Cancer (2020) ncbi
小鼠 单克隆(OX-8)
  • 免疫组化; 大鼠; 1:500
艾博抗(上海)贸易有限公司 CD8抗体(Abcam, ab33786)被用于被用于免疫组化在大鼠样本上浓度为1:500. Biol Proced Online (2020) ncbi
大鼠 单克隆(YTS169.4)
  • 免疫组化; 小鼠; 图 2e
艾博抗(上海)贸易有限公司 CD8抗体(Abcam, ab22378)被用于被用于免疫组化在小鼠样本上 (图 2e). Sci Rep (2020) ncbi
domestic rabbit 单克隆(EPR20305)
  • 免疫组化-石蜡切片; 小鼠; 图 6
艾博抗(上海)贸易有限公司 CD8抗体(Abcam, ab209775)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 6). Oncoimmunology (2020) ncbi
大鼠 单克隆(YTS169.4)
  • 免疫组化-石蜡切片; 人类; 图 5d
艾博抗(上海)贸易有限公司 CD8抗体(Abcam, ab22378)被用于被用于免疫组化-石蜡切片在人类样本上 (图 5d). Oncoimmunology (2020) ncbi
大鼠 单克隆(YTS169.4)
  • 免疫组化-冰冻切片; 小鼠; 图 1d
艾博抗(上海)贸易有限公司 CD8抗体(Abcam, ab22378)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 1d). Cell (2019) ncbi
domestic rabbit 单克隆(EPR20305)
  • 免疫组化-石蜡切片; 小鼠; 图 8c
艾博抗(上海)贸易有限公司 CD8抗体(Abcam, EPR20305)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 8c). J Exp Med (2019) ncbi
domestic rabbit 单克隆(EPR20305)
  • 免疫组化; 人类; 1:100
艾博抗(上海)贸易有限公司 CD8抗体(Abcam, EPR20305)被用于被用于免疫组化在人类样本上浓度为1:100. Nature (2019) ncbi
domestic rabbit 单克隆(EPR20305)
  • 免疫组化; 小鼠; 1:750; 图 s4b
艾博抗(上海)贸易有限公司 CD8抗体(Abcam, ab209775)被用于被用于免疫组化在小鼠样本上浓度为1:750 (图 s4b). Breast Cancer Res (2018) ncbi
小鼠 单克隆(OX-8)
  • 免疫组化; 大鼠; 1:200; 图 7a
艾博抗(上海)贸易有限公司 CD8抗体(Abcam, ab33786)被用于被用于免疫组化在大鼠样本上浓度为1:200 (图 7a). PLoS ONE (2017) ncbi
大鼠 单克隆(53-6.7)
  • 免疫组化-冰冻切片; 小鼠; 图 3a
艾博抗(上海)贸易有限公司 CD8抗体(Abcam, 53-6.7)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 3a). Infect Immun (2016) ncbi
大鼠 单克隆(YTS169.4)
  • 免疫组化-冰冻切片; 小鼠; 1:100
艾博抗(上海)贸易有限公司 CD8抗体(abcam, 22378)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:100. J Transl Med (2016) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 5
艾博抗(上海)贸易有限公司 CD8抗体(Abcam, clone 53-6.7)被用于被用于流式细胞仪在小鼠样本上 (图 5). Vaccine (2014) ncbi
大鼠 单克隆(53-6.7)
  • 免疫组化-冰冻切片; 小鼠
艾博抗(上海)贸易有限公司 CD8抗体(Abcam, Ab25478)被用于被用于免疫组化-冰冻切片在小鼠样本上. Transplant Res (2013) ncbi
Bio X Cell
大鼠 单克隆(2.43)
  • 抑制或激活实验; 小鼠; ; 图 2d
Bio X Cell CD8抗体(Bio X Cell, 2.43)被用于被用于抑制或激活实验在小鼠样本上浓度为 (图 2d). J Immunother Cancer (2022) ncbi
大鼠 单克隆(53-6.7)
  • 抑制或激活实验; 小鼠; ; 图 3a
Bio X Cell CD8抗体(BioXCell, 53-6.7)被用于被用于抑制或激活实验在小鼠样本上浓度为 (图 3a). PLoS Pathog (2022) ncbi
大鼠 单克隆(YTS169.4)
  • 抑制或激活实验; 小鼠; 图 s5d
Bio X Cell CD8抗体(BioXcell, BE0117)被用于被用于抑制或激活实验在小鼠样本上 (图 s5d). Nat Commun (2021) ncbi
大鼠 单克隆(2.43)
  • 抑制或激活实验; 小鼠; 图 s3k
Bio X Cell CD8抗体(BioXCell, 2.43)被用于被用于抑制或激活实验在小鼠样本上 (图 s3k). J Immunother Cancer (2021) ncbi
大鼠 单克隆(YTS169.4)
  • 抑制或激活实验; 小鼠; ; 图 2g
Bio X Cell CD8抗体(Bio X Cell, YTS 169.4)被用于被用于抑制或激活实验在小鼠样本上浓度为 (图 2g). Nat Commun (2021) ncbi
大鼠 单克隆(2.43)
  • 抑制或激活实验; 小鼠; 图 10d
Bio X Cell CD8抗体(BioXCell, 2.43)被用于被用于抑制或激活实验在小鼠样本上 (图 10d). PLoS Pathog (2021) ncbi
大鼠 单克隆(YTS169.4)
  • 抑制或激活实验; 小鼠; 图 4c
Bio X Cell CD8抗体(BioXCell, YTS 169.4)被用于被用于抑制或激活实验在小鼠样本上 (图 4c). elife (2020) ncbi
大鼠 单克隆(2.43)
  • 流式细胞仪; 小鼠; 图 s2c
Bio X Cell CD8抗体(Bio X cell, 2.43)被用于被用于流式细胞仪在小鼠样本上 (图 s2c). Nature (2020) ncbi
大鼠 单克隆(YTS169.4)
  • 抑制或激活实验; 小鼠; 图 5h
Bio X Cell CD8抗体(BioXcell, YTS 169.4)被用于被用于抑制或激活实验在小鼠样本上 (图 5h). Nat Commun (2020) ncbi
大鼠 单克隆(53-6.7)
  • 抑制或激活实验; 小鼠; 图 4g
  • 流式细胞仪; 小鼠; 图 1a
Bio X Cell CD8抗体(Bio X Cell, 53-6.7)被用于被用于抑制或激活实验在小鼠样本上 (图 4g) 和 被用于流式细胞仪在小鼠样本上 (图 1a). Sci Adv (2020) ncbi
大鼠 单克隆(2.43)
  • 抑制或激活实验; 小鼠; 图 7f
Bio X Cell CD8抗体(BioXCell, BE0061)被用于被用于抑制或激活实验在小鼠样本上 (图 7f). Nat Commun (2020) ncbi
大鼠 单克隆(53-6.7)
  • 抑制或激活实验; 小鼠; 150 ug/mouse; 图 1h
Bio X Cell CD8抗体(BioXcell, 53-6.7)被用于被用于抑制或激活实验在小鼠样本上浓度为150 ug/mouse (图 1h). elife (2020) ncbi
大鼠 单克隆(YTS169.4)
  • 抑制或激活实验; 小鼠; 图 e5g
Bio X Cell CD8抗体(BioXCell, YTS 169.4)被用于被用于抑制或激活实验在小鼠样本上 (图 e5g). Nature (2019) ncbi
大鼠 单克隆(53-6.7)
  • 抑制或激活实验; 小鼠; ; 图 1g
Bio X Cell CD8抗体(BioXcell, BE0004-1)被用于被用于抑制或激活实验在小鼠样本上浓度为 (图 1g). J Exp Med (2020) ncbi
大鼠 单克隆(2.43)
  • 免疫组化-冰冻切片; 小鼠; 图 1c
Bio X Cell CD8抗体(Bio-X-Cel, BE0061)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 1c). Cell (2019) ncbi
大鼠 单克隆(2.43)
  • 其他; 小鼠
Bio X Cell CD8抗体(BioXCell, 2.43)被用于被用于其他在小鼠样本上. Nature (2019) ncbi
大鼠 单克隆(2.43)
  • 抑制或激活实验; 小鼠; 图 s8
Bio X Cell CD8抗体(BioXcel, 2.43)被用于被用于抑制或激活实验在小鼠样本上 (图 s8). Science (2018) ncbi
大鼠 单克隆(YTS169.4)
  • 抑制或激活实验; 小鼠; 图 1e
Bio X Cell CD8抗体(BioXcell, BE0117)被用于被用于抑制或激活实验在小鼠样本上 (图 1e). Cell Rep (2018) ncbi
大鼠 单克隆(53-6.7)
  • 抑制或激活实验; 小鼠; 图 s3a
Bio X Cell CD8抗体(Bio X Cell, 53-6.72)被用于被用于抑制或激活实验在小鼠样本上 (图 s3a). J Clin Invest (2019) ncbi
大鼠 单克隆(2.43)
  • 抑制或激活实验; 小鼠; 图 5b
Bio X Cell CD8抗体(BioXcell, BE0061)被用于被用于抑制或激活实验在小鼠样本上 (图 5b). Nature (2018) ncbi
大鼠 单克隆(53-6.7)
  • 抑制或激活实验; 小鼠; 100 ug/mouse; 图 5a
Bio X Cell CD8抗体(Bioxcell, BE0004-1)被用于被用于抑制或激活实验在小鼠样本上浓度为100 ug/mouse (图 5a). Nat Commun (2018) ncbi
大鼠 单克隆(53-6.7)
  • 免疫组化; 小鼠; 图 5a
Bio X Cell CD8抗体(BioXCell, 53.6.72)被用于被用于免疫组化在小鼠样本上 (图 5a). PLoS ONE (2018) ncbi
大鼠 单克隆(2.43)
  • 流式细胞仪; 小鼠; 图 7a
Bio X Cell CD8抗体(BioXcell, 2.43)被用于被用于流式细胞仪在小鼠样本上 (图 7a). Cell (2017) ncbi
大鼠 单克隆(2.43)
  • 抑制或激活实验; 小鼠; 图 3a
Bio X Cell CD8抗体(BioXcell, 2.43)被用于被用于抑制或激活实验在小鼠样本上 (图 3a). Nat Commun (2017) ncbi
大鼠 单克隆(YTS169.4)
  • 抑制或激活实验; 小鼠; 图 10
Bio X Cell CD8抗体(BioXcell, YTS 169.4)被用于被用于抑制或激活实验在小鼠样本上 (图 10). J Virol (2017) ncbi
大鼠 单克隆(2.43)
  • 抑制或激活实验; 小鼠; 图 s6a
Bio X Cell CD8抗体(Bioxcell, 2.43)被用于被用于抑制或激活实验在小鼠样本上 (图 s6a). Science (2017) ncbi
大鼠 单克隆(53-6.7)
  • 抑制或激活实验; 小鼠; 图 6
Bio X Cell CD8抗体(BioXCell, 53-6.72)被用于被用于抑制或激活实验在小鼠样本上 (图 6). J Transl Med (2017) ncbi
大鼠 单克隆(2.43)
  • 抑制或激活实验; 小鼠; 图 6a
Bio X Cell CD8抗体(BioXcell, 2.43)被用于被用于抑制或激活实验在小鼠样本上 (图 6a). J Exp Med (2017) ncbi
大鼠 单克隆(53-6.7)
  • 抑制或激活实验; 小鼠; 图 7h
Bio X Cell CD8抗体(BioXcell, 53-6.72)被用于被用于抑制或激活实验在小鼠样本上 (图 7h). J Exp Med (2017) ncbi
大鼠 单克隆(2.43)
  • 抑制或激活实验; 小鼠; 图 6a
Bio X Cell CD8抗体(BioXCell, 2.43)被用于被用于抑制或激活实验在小鼠样本上 (图 6a). Nat Commun (2017) ncbi
大鼠 单克隆(YTS169.4)
  • 抑制或激活实验; 小鼠; 图 4d
Bio X Cell CD8抗体(BioXCell, YTS169.4)被用于被用于抑制或激活实验在小鼠样本上 (图 4d). Nature (2017) ncbi
大鼠 单克隆(2.43)
  • 抑制或激活实验; 小鼠
Bio X Cell CD8抗体(Bio-X-Cell, 2.43)被用于被用于抑制或激活实验在小鼠样本上. Nat Commun (2016) ncbi
大鼠 单克隆(YTS169.4)
  • 抑制或激活实验; 小鼠; 图 3a
Bio X Cell CD8抗体(BioXcell, YTS 169.4)被用于被用于抑制或激活实验在小鼠样本上 (图 3a). PLoS Pathog (2016) ncbi
大鼠 单克隆(53-6.7)
  • 抑制或激活实验; 小鼠; 图 7b
Bio X Cell CD8抗体(BioXcell, 53-6.7)被用于被用于抑制或激活实验在小鼠样本上 (图 7b). Proc Natl Acad Sci U S A (2016) ncbi
大鼠 单克隆(2.43)
  • 抑制或激活实验; 小鼠; 图 s8
Bio X Cell CD8抗体(BioXcell, 2.43)被用于被用于抑制或激活实验在小鼠样本上 (图 s8). Nature (2016) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 s1
Bio X Cell CD8抗体(Bio X-Cell/Bhattacharya, 53-6.72)被用于被用于流式细胞仪在小鼠样本上 (图 s1). Exp Hematol (2015) ncbi
伯乐(Bio-Rad)公司
大鼠 单克隆(KT15)
  • 免疫组化-冰冻切片; 小鼠; 1:500; 图 2a
伯乐(Bio-Rad)公司 CD8抗体(Bio-Rad AbD Serotec, MCA609G)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:500 (图 2a). Brain Commun (2021) ncbi
大鼠 单克隆(YTS169.4)
  • 流式细胞仪; 小鼠; 图 3a
伯乐(Bio-Rad)公司 CD8抗体(Bio-Rad, YTS169.4)被用于被用于流式细胞仪在小鼠样本上 (图 3a). Clin Transl Med (2021) ncbi
大鼠 单克隆(KT15)
  • 流式细胞仪; 人类; 0.125 ug/ml; 图 6d
伯乐(Bio-Rad)公司 CD8抗体(BioRad, KT15)被用于被用于流式细胞仪在人类样本上浓度为0.125 ug/ml (图 6d). Cell Host Microbe (2019) ncbi
大鼠 单克隆(KT15)
  • 免疫组化-冰冻切片; 小鼠; 1:100; 图 1e
伯乐(Bio-Rad)公司 CD8抗体(BioRad, MCA609G)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:100 (图 1e). Mol Cell (2018) ncbi
大鼠 单克隆(KT15)
  • 免疫组化-冰冻切片; 小鼠; 1:500; 图 4b
伯乐(Bio-Rad)公司 CD8抗体(AbD Serotec/Bio-Rad, KT15)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:500 (图 4b). Nat Commun (2017) ncbi
大鼠 单克隆(KT15)
  • 免疫组化-自由浮动切片; 小鼠; 1:100; 图 3a
伯乐(Bio-Rad)公司 CD8抗体(AbD Serotec, KT15)被用于被用于免疫组化-自由浮动切片在小鼠样本上浓度为1:100 (图 3a). Brain (2017) ncbi
大鼠 单克隆(53-6.7)
  • 免疫组化; 小鼠; 图 2d
伯乐(Bio-Rad)公司 CD8抗体(AbD Serotec, MCA2694)被用于被用于免疫组化在小鼠样本上 (图 2d). Sci Rep (2016) ncbi
大鼠 单克隆(YTS105.18)
  • 免疫组化-冰冻切片; 小鼠; 7 ug/ml
伯乐(Bio-Rad)公司 CD8抗体(AbD, MCA1108GT)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为7 ug/ml. J Immunol (2015) ncbi
大鼠 单克隆(53-6.7)
  • 免疫组化; 小鼠; 1:100
伯乐(Bio-Rad)公司 CD8抗体(AbD Serotec, MCA2694)被用于被用于免疫组化在小鼠样本上浓度为1:100. PLoS ONE (2014) ncbi
圣克鲁斯生物技术
小鼠 单克隆(32-M4)
  • 免疫组化; 人类; 图 1a
圣克鲁斯生物技术 CD8抗体(Santa Cruz, SC-1177)被用于被用于免疫组化在人类样本上 (图 1a). J Immunother Cancer (2022) ncbi
小鼠 单克隆(32-M4)
  • 免疫组化; 小鼠; 1:50; 图 9d
圣克鲁斯生物技术 CD8抗体(Santa Cruz, sc-1177)被用于被用于免疫组化在小鼠样本上浓度为1:50 (图 9d). J Neuroinflammation (2020) ncbi
大鼠 单克隆(53-6.7)
  • 免疫组化; 小鼠; 图 3
圣克鲁斯生物技术 CD8抗体(Santa Cruz Biotechnology, sc-18913)被用于被用于免疫组化在小鼠样本上 (图 3). Int J Mol Med (2016) ncbi
大鼠 单克隆(53-6.7)
  • 免疫组化-冰冻切片; 小鼠; 图 2
圣克鲁斯生物技术 CD8抗体(Santa Cruz Biotechnology, 53-6.7)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 2). PLoS ONE (2015) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 大鼠; 1:1000
圣克鲁斯生物技术 CD8抗体(Santa Cruz Biotechnology, sc-18913)被用于被用于流式细胞仪在大鼠样本上浓度为1:1000. Mol Med Rep (2015) ncbi
大鼠 单克隆(53-6.7)
  • 免疫组化; 小鼠; 图 5
圣克鲁斯生物技术 CD8抗体(Santa Cruz, sc18913)被用于被用于免疫组化在小鼠样本上 (图 5). PLoS ONE (2015) ncbi
Dianova
大鼠 单克隆(GHH8)
  • 免疫组化-石蜡切片; 小鼠; 1:100; 图 1f
Dianova CD8抗体(Dianova, DIA-808)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:100 (图 1f). Br J Cancer (2022) ncbi
大鼠 单克隆(GHH8)
  • 免疫组化; 小鼠; 1:200; 图 3
Dianova CD8抗体(Dianova, DIA-808)被用于被用于免疫组化在小鼠样本上浓度为1:200 (图 3). Sci Rep (2020) ncbi
Novus Biologicals
大鼠 单克隆(YTS105.18)
  • 免疫组化-冰冻切片; 人类; 1:100; 图 5c
Novus Biologicals CD8抗体(Novus, NB200-578)被用于被用于免疫组化-冰冻切片在人类样本上浓度为1:100 (图 5c). Sci Transl Med (2022) ncbi
domestic rabbit 多克隆(A103)
  • 免疫组化-石蜡切片; 小鼠; 图 6q
Novus Biologicals CD8抗体(Novus, NBP2-29475)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 6q). Signal Transduct Target Ther (2021) ncbi
domestic rabbit 多克隆(A103)
  • 免疫组化; 人类; 1:100; 图 4i
Novus Biologicals CD8抗体(Novus Biologicals, NBP2-29475)被用于被用于免疫组化在人类样本上浓度为1:100 (图 4i). Adv Sci (Weinh) (2021) ncbi
美天旎
人类 单克隆(REA601)
  • 免疫组化-冰冻切片; 小鼠; 图 s6
美天旎 CD8抗体(Miltenyi Biotec, 130-123-781)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 s6). Sci Rep (2022) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 s1
美天旎 CD8抗体(Miltenyi Biotec, 130-102-595)被用于被用于流式细胞仪在小鼠样本上 (图 s1). J Cell Mol Med (2018) ncbi
安迪生物R&D
大鼠 单克隆(53-6.7)
  • 免疫组化-冰冻切片; 小鼠; 2 ug/ml; 图 3e
安迪生物R&D CD8抗体(RD Systems, 53-6.7)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为2 ug/ml (图 3e). Science (2021) ncbi
Synaptic Systems
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:250; 图 3f
Synaptic Systems CD8抗体(Synaptic Systems, HS-361 003)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:250 (图 3f). Cell Rep (2022) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 小鼠; 图 8a
Synaptic Systems CD8抗体(Synaptic Systems, 361003)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 8a). Front Oncol (2021) ncbi
赛信通(上海)生物试剂有限公司
单克隆(D4W2Z)
  • 免疫组化-石蜡切片; 小鼠; 1:400; 图 6k
赛信通(上海)生物试剂有限公司 CD8抗体(CST, 98941S)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:400 (图 6k). J Immunother Cancer (2022) ncbi
单克隆(D4W2Z)
  • 免疫组化; 小鼠; 图 2d
赛信通(上海)生物试剂有限公司 CD8抗体(Cell Signaling, 98941)被用于被用于免疫组化在小鼠样本上 (图 2d). Cancer Commun (Lond) (2022) ncbi
单克隆(D4W2Z)
  • 免疫组化-石蜡切片; 小鼠; 图 6f
赛信通(上海)生物试剂有限公司 CD8抗体(Cell Signaling, 98941s)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 6f). Invest Ophthalmol Vis Sci (2022) ncbi
单克隆(D4W2Z)
  • 免疫组化-石蜡切片; 小鼠; 1:2000; 图 1f
赛信通(上海)生物试剂有限公司 CD8抗体(Cell Signaling, 98941)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:2000 (图 1f). Cell Rep Med (2022) ncbi
单克隆(D4W2Z)
  • 免疫组化-石蜡切片; 小鼠; 图 s1a
赛信通(上海)生物试剂有限公司 CD8抗体(Cell Signaling, 98941)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 s1a). J Immunother Cancer (2022) ncbi
单克隆(D4W2Z)
  • 免疫组化-石蜡切片; 小鼠; 图 6d
赛信通(上海)生物试剂有限公司 CD8抗体(Cell Signaling, D4W2Z)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 6d). Cancers (Basel) (2021) ncbi
单克隆(D4W2Z)
  • 免疫组化; 小鼠; 1:50; 图 6
赛信通(上海)生物试剂有限公司 CD8抗体(Cell Signaling Technology, 98941)被用于被用于免疫组化在小鼠样本上浓度为1:50 (图 6). Front Cell Infect Microbiol (2021) ncbi
单克隆(D4W2Z)
  • 免疫组化; 小鼠; 1:400; 图 2c, 2f
赛信通(上海)生物试剂有限公司 CD8抗体(Cell Signaling, 98941)被用于被用于免疫组化在小鼠样本上浓度为1:400 (图 2c, 2f). J Immunother Cancer (2021) ncbi
单克隆(D4W2Z)
  • 免疫组化; 小鼠; 图 s4a
赛信通(上海)生物试剂有限公司 CD8抗体(Cell Signaling, 98941)被用于被用于免疫组化在小鼠样本上 (图 s4a). Cells (2021) ncbi
单克隆(D4W2Z)
  • 免疫组化; 小鼠; 1:200; 图 s15d
赛信通(上海)生物试剂有限公司 CD8抗体(Cell Signaling Technology, D4W2Z)被用于被用于免疫组化在小鼠样本上浓度为1:200 (图 s15d). Nat Commun (2021) ncbi
单克隆(D4W2Z)
  • 免疫组化-石蜡切片; 小鼠; 图 6
赛信通(上海)生物试剂有限公司 CD8抗体(CST, 98941)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 6). Front Cell Dev Biol (2021) ncbi
单克隆(D4W2Z)
  • 免疫组化; 小鼠; 1:400; 图 4d
赛信通(上海)生物试剂有限公司 CD8抗体(CST, 98941)被用于被用于免疫组化在小鼠样本上浓度为1:400 (图 4d). Cancer Res (2021) ncbi
单克隆(D4W2Z)
  • 免疫细胞化学; 人类; 1:100; 图 6a
赛信通(上海)生物试剂有限公司 CD8抗体(Cell Signaling Technology, D4W2Z)被用于被用于免疫细胞化学在人类样本上浓度为1:100 (图 6a). Nat Cancer (2021) ncbi
单克隆(D4W2Z)
  • 免疫组化; 小鼠; 图 5b
赛信通(上海)生物试剂有限公司 CD8抗体(Cell Signaling Technology, 98941S)被用于被用于免疫组化在小鼠样本上 (图 5b). Br J Cancer (2021) ncbi
单克隆(D4W2Z)
  • 免疫组化-石蜡切片; 小鼠; 1:100; 图 s6g
赛信通(上海)生物试剂有限公司 CD8抗体(CST, 98941)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:100 (图 s6g). Nat Commun (2021) ncbi
单克隆(D4W2Z)
  • 免疫组化; 小鼠; 图 3
赛信通(上海)生物试剂有限公司 CD8抗体(Cell Signaling Technology, D4W2Z)被用于被用于免疫组化在小鼠样本上 (图 3). PLoS ONE (2021) ncbi
单克隆(D4W2Z)
  • 免疫组化-石蜡切片; 小鼠; 1:100; 图 5d
赛信通(上海)生物试剂有限公司 CD8抗体(Cell Signaling, 98941)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:100 (图 5d). Clin Cancer Res (2021) ncbi
单克隆(D4W2Z)
  • 免疫组化; 小鼠; 1:1000; 图 6g
赛信通(上海)生物试剂有限公司 CD8抗体(Cell Signaling, 98941)被用于被用于免疫组化在小鼠样本上浓度为1:1000 (图 6g). Sci Rep (2021) ncbi
单克隆(D4W2Z)
  • 免疫组化; 小鼠; 1:400; 图 5e
赛信通(上海)生物试剂有限公司 CD8抗体(Cell Signaling Technology, 98941S)被用于被用于免疫组化在小鼠样本上浓度为1:400 (图 5e). Cancer Res (2021) ncbi
单克隆(D4W2Z)
  • 免疫组化; 小鼠; 图 5f
赛信通(上海)生物试剂有限公司 CD8抗体(Cell Signaling, 98941)被用于被用于免疫组化在小鼠样本上 (图 5f). Front Immunol (2020) ncbi
单克隆(D4W2Z)
  • 免疫组化-石蜡切片; 小鼠; 图 s5
赛信通(上海)生物试剂有限公司 CD8抗体(Cell Signaling, 98941)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 s5). Cancer Sci (2021) ncbi
单克隆(D4W2Z)
  • 免疫组化; 小鼠; 1:500; 图 6d
赛信通(上海)生物试剂有限公司 CD8抗体(Cell Signaling Technology, 98941S)被用于被用于免疫组化在小鼠样本上浓度为1:500 (图 6d). JCI Insight (2020) ncbi
单克隆(D4W2Z)
  • 免疫组化-石蜡切片; 小鼠; 1:50; 图 4e
赛信通(上海)生物试剂有限公司 CD8抗体(Cell Signaling, 98941)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:50 (图 4e). EMBO Mol Med (2020) ncbi
单克隆(D4W2Z)
  • 免疫组化; 小鼠; 图 3e
赛信通(上海)生物试剂有限公司 CD8抗体(Cell Signaling Technology, D4W22)被用于被用于免疫组化在小鼠样本上 (图 3e). Nat Commun (2020) ncbi
单克隆(D4W2Z)
  • 免疫组化-石蜡切片; 小鼠; 图 8a
赛信通(上海)生物试剂有限公司 CD8抗体(Cell Signalling, D4W2Z)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 8a). Sci Rep (2020) ncbi
单克隆(D4W2Z)
  • 免疫组化-石蜡切片; 小鼠; 1:500; 图 5c
赛信通(上海)生物试剂有限公司 CD8抗体(Cell Signaling Technology, 98941)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:500 (图 5c). Nature (2019) ncbi
单克隆(D4W2Z)
  • 免疫组化-石蜡切片; 小鼠; 图 e8d
赛信通(上海)生物试剂有限公司 CD8抗体(Cell Signaling, 98941)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 e8d). Nature (2019) ncbi
单克隆(D4W2Z)
  • 免疫组化-石蜡切片; 小鼠; 图 3g
赛信通(上海)生物试剂有限公司 CD8抗体(Cell Signaling Technology, 98941)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 3g). J Clin Invest (2019) ncbi
单克隆(D4W2Z)
  • 免疫组化-石蜡切片; 小鼠; 图 e5c
  • 流式细胞仪; 小鼠; 图 e5b
赛信通(上海)生物试剂有限公司 CD8抗体(Cell Signaling, 98941)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 e5c) 和 被用于流式细胞仪在小鼠样本上 (图 e5b). Nature (2019) ncbi
单克隆(D4W2Z)
  • 免疫组化; 小鼠; 图 4a, 4b
赛信通(上海)生物试剂有限公司 CD8抗体(Cell Signaling, D4W2Z)被用于被用于免疫组化在小鼠样本上 (图 4a, 4b). J Immunol (2019) ncbi
Tonbo Biosciences
单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 1:400; 图 3s1a
Tonbo Biosciences CD8抗体(Tonbo, 35-0081 U500)被用于被用于流式细胞仪在小鼠样本上浓度为1:400 (图 3s1a). elife (2021) ncbi
单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 4a
Tonbo Biosciences CD8抗体(Tonbo, 53-6.7)被用于被用于流式细胞仪在小鼠样本上 (图 4a). Nutrients (2018) ncbi
单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 2a
Tonbo Biosciences CD8抗体(Tonbo, 65-0081)被用于被用于流式细胞仪在小鼠样本上 (图 2a). PLoS Pathog (2018) ncbi
单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 s2a
Tonbo Biosciences CD8抗体(Tonbo, 53-67)被用于被用于流式细胞仪在小鼠样本上 (图 s2a). J Immunol (2018) ncbi
单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 1a
Tonbo Biosciences CD8抗体(Tonbo, 53-6.7)被用于被用于流式细胞仪在小鼠样本上 (图 1a). J Immunol (2017) ncbi
碧迪BD
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 1:50; 图 4b
碧迪BD CD8抗体(BD, 551162)被用于被用于流式细胞仪在小鼠样本上浓度为1:50 (图 4b). Nat Commun (2022) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 2f
碧迪BD CD8抗体(BD, 553035)被用于被用于流式细胞仪在小鼠样本上 (图 2f). Nat Commun (2022) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠
碧迪BD CD8抗体(BD Pharmingen, 561109)被用于被用于流式细胞仪在小鼠样本上. Front Oncol (2022) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 5c, s5d
碧迪BD CD8抗体(BD Biosciences, 553035)被用于被用于流式细胞仪在小鼠样本上 (图 5c, s5d). J Immunother Cancer (2022) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 s1e, s2a, s4f
碧迪BD CD8抗体(BD Biosciences, 563786)被用于被用于流式细胞仪在小鼠样本上 (图 s1e, s2a, s4f). Sci Adv (2022) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 e5f
碧迪BD CD8抗体(BD Horizon, 53-6.7)被用于被用于流式细胞仪在小鼠样本上 (图 e5f). Nature (2022) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 1:400; 图 1c, s3a, s3b
碧迪BD CD8抗体(BD Biosciences, 563332)被用于被用于流式细胞仪在小鼠样本上浓度为1:400 (图 1c, s3a, s3b). Development (2022) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 6i
碧迪BD CD8抗体(BD Biosciences, 552877)被用于被用于流式细胞仪在小鼠样本上 (图 6i). Mol Ther Oncolytics (2022) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 1:100; 图 2, s1
碧迪BD CD8抗体(BD Bioscience, 563046)被用于被用于流式细胞仪在小鼠样本上浓度为1:100 (图 2, s1). Front Immunol (2022) ncbi
大鼠 单克隆(MECA-32)
  • 免疫组化-石蜡切片; 小鼠; 1:500; 图 s2f
碧迪BD CD8抗体(BD Pharmingen, 553849)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:500 (图 s2f). J Cell Sci (2022) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 1l
碧迪BD CD8抗体(BD Biosciences, 561097)被用于被用于流式细胞仪在小鼠样本上 (图 1l). J Immunother Cancer (2022) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 人类; 图 s7j
碧迪BD CD8抗体(BD Biosciences, 553032)被用于被用于流式细胞仪在人类样本上 (图 s7j). J Clin Invest (2022) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 1:100; 图 5n
碧迪BD CD8抗体(BD Biosciences, 563786)被用于被用于流式细胞仪在小鼠样本上浓度为1:100 (图 5n). Nat Commun (2022) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 s1f
碧迪BD CD8抗体(BD, 53-6.7)被用于被用于流式细胞仪在小鼠样本上 (图 s1f). J Exp Med (2022) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 s2c
碧迪BD CD8抗体(BD Biosciences, 558106)被用于被用于流式细胞仪在小鼠样本上 (图 s2c). Signal Transduct Target Ther (2022) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 1c
碧迪BD CD8抗体(BD Biosciences, 553032)被用于被用于流式细胞仪在小鼠样本上 (图 1c). EMBO J (2022) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 2i, 5g, 5i
碧迪BD CD8抗体(BD Pharmingen, 53-6.7)被用于被用于流式细胞仪在小鼠样本上 (图 2i, 5g, 5i). Front Immunol (2021) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 1:200; 图 6f
碧迪BD CD8抗体(BD Biosciences, 53-6.7)被用于被用于流式细胞仪在小鼠样本上浓度为1:200 (图 6f). Sci Rep (2021) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 3a
碧迪BD CD8抗体(BD Biosciences, 53-6.7)被用于被用于流式细胞仪在小鼠样本上 (图 3a). J Immunother Cancer (2021) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 人类; 图 s2b
碧迪BD CD8抗体(BD Biosciences, 53-6.7)被用于被用于流式细胞仪在人类样本上 (图 s2b). Front Immunol (2021) ncbi
大鼠 单克隆(53-6.7)
  • 免疫组化; 小鼠; 图 3a
碧迪BD CD8抗体(BD Biosciences, 563786)被用于被用于免疫组化在小鼠样本上 (图 3a). Nat Commun (2021) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 1:100
碧迪BD CD8抗体(BD Pharmingen, 553032)被用于被用于流式细胞仪在小鼠样本上浓度为1:100. Hypertension (2021) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 3a
碧迪BD CD8抗体(BD, 562283)被用于被用于流式细胞仪在小鼠样本上 (图 3a). Theranostics (2021) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 2b
碧迪BD CD8抗体(BD Pharmingen, 551162)被用于被用于流式细胞仪在小鼠样本上 (图 2b). Signal Transduct Target Ther (2021) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 4b, 6a
碧迪BD CD8抗体(BD Biosciences, 53?C6.7)被用于被用于流式细胞仪在小鼠样本上 (图 4b, 6a). Sci Rep (2021) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 1:300; 图 s2b
碧迪BD CD8抗体(BD Biosciences, 53-6.7)被用于被用于流式细胞仪在小鼠样本上浓度为1:300 (图 s2b). Nat Commun (2021) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 7e
碧迪BD CD8抗体(BD Pharmingen, 553033)被用于被用于流式细胞仪在小鼠样本上 (图 7e). Signal Transduct Target Ther (2021) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 1:200; 图 4d
碧迪BD CD8抗体(BD Horizon, 560776)被用于被用于流式细胞仪在小鼠样本上浓度为1:200 (图 4d). Cells (2021) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 1:200; 图 6e, s3l
碧迪BD CD8抗体(BD Biosciences, 564422)被用于被用于流式细胞仪在小鼠样本上浓度为1:200 (图 6e, s3l). J Immunother Cancer (2021) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 1:200; 图 2j
碧迪BD CD8抗体(BD Bioscience, 561109)被用于被用于流式细胞仪在小鼠样本上浓度为1:200 (图 2j). Proc Natl Acad Sci U S A (2021) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠
碧迪BD CD8抗体(BD Biosciences, 562283)被用于被用于流式细胞仪在小鼠样本上. Int J Mol Sci (2021) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 s13
碧迪BD CD8抗体(BD Bioscience, 53-6.7)被用于被用于流式细胞仪在小鼠样本上 (图 s13). Adv Sci (Weinh) (2021) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 2c
碧迪BD CD8抗体(BD, 53-6.7)被用于被用于流式细胞仪在小鼠样本上 (图 2c). Adv Sci (Weinh) (2021) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 1:100; 图 5d
碧迪BD CD8抗体(BD, 552877)被用于被用于流式细胞仪在小鼠样本上浓度为1:100 (图 5d). iScience (2021) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 1:200; 图 s3a, s3b
碧迪BD CD8抗体(BD Biosciences, 563068)被用于被用于流式细胞仪在小鼠样本上浓度为1:200 (图 s3a, s3b). Nat Commun (2021) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 s3
碧迪BD CD8抗体(BD Biosciences, 553032)被用于被用于流式细胞仪在小鼠样本上 (图 s3). Cell Death Dis (2021) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 s2i
碧迪BD CD8抗体(BD, 560776)被用于被用于流式细胞仪在小鼠样本上 (图 s2i). Front Cell Dev Biol (2021) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 1:100; 图 s3b
碧迪BD CD8抗体(BD, 53-6.7)被用于被用于流式细胞仪在小鼠样本上浓度为1:100 (图 s3b). Cancer Res (2021) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 1b
碧迪BD CD8抗体(BD, 53-6.7)被用于被用于流式细胞仪在小鼠样本上 (图 1b). Sci Adv (2021) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 4e
碧迪BD CD8抗体(BD, 53-6.7)被用于被用于流式细胞仪在小鼠样本上 (图 4e). Acta Naturae (2021) ncbi
大鼠 单克隆(53-6.7)
  • 免疫组化; 小鼠; 图 2g
碧迪BD CD8抗体(BD, 550281)被用于被用于免疫组化在小鼠样本上 (图 2g). Front Cell Dev Biol (2021) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 3b
碧迪BD CD8抗体(BD, 53-6.7)被用于被用于流式细胞仪在小鼠样本上 (图 3b). Front Immunol (2021) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 1:200
碧迪BD CD8抗体(BD Pharmingen, 53-6.7)被用于被用于流式细胞仪在小鼠样本上浓度为1:200. Front Immunol (2021) ncbi
大鼠 单克隆(53-6.7)
  • 免疫组化-冰冻切片; 小鼠; 图 s3a
碧迪BD CD8抗体(BD, 550281)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 s3a). Aging (Albany NY) (2021) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 1:200
碧迪BD CD8抗体(BD Biosciences, 557654)被用于被用于流式细胞仪在小鼠样本上浓度为1:200. Commun Biol (2021) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 6k
碧迪BD CD8抗体(BD Pharmingen, 551162)被用于被用于流式细胞仪在小鼠样本上 (图 6k). Signal Transduct Target Ther (2021) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 s4a
碧迪BD CD8抗体(BD Biosciences, 561095)被用于被用于流式细胞仪在小鼠样本上 (图 s4a). JCI Insight (2021) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 2a, 2b, s5, s7b
碧迪BD CD8抗体(BD Biosciences, 553035)被用于被用于流式细胞仪在小鼠样本上 (图 2a, 2b, s5, s7b). Nat Commun (2021) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 1:100; 图 s6d, s4e
碧迪BD CD8抗体(BD, 53-6.7)被用于被用于流式细胞仪在小鼠样本上浓度为1:100 (图 s6d, s4e). Nat Commun (2021) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 12i
碧迪BD CD8抗体(BD Pharmingen, 551162)被用于被用于流式细胞仪在小鼠样本上 (图 12i). Cell Mol Gastroenterol Hepatol (2021) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 1:200; 图 s8
碧迪BD CD8抗体(BD Pharmingen, 557654)被用于被用于流式细胞仪在小鼠样本上浓度为1:200 (图 s8). Nat Commun (2021) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 1:200; 图 6d
碧迪BD CD8抗体(BD Biosciences, 558106)被用于被用于流式细胞仪在小鼠样本上浓度为1:200 (图 6d). Cancer Res (2021) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 1:300; 图 e10e
碧迪BD CD8抗体(BD, 53-6.7)被用于被用于流式细胞仪在小鼠样本上浓度为1:300 (图 e10e). Nat Neurosci (2021) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠
碧迪BD CD8抗体(BD Biosciences, 53-C6.7)被用于被用于流式细胞仪在小鼠样本上. elife (2021) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 8a
碧迪BD CD8抗体(BD Biosciences, 53-6.7)被用于被用于流式细胞仪在小鼠样本上 (图 8a). Front Immunol (2020) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 人类; 图 s3c
碧迪BD CD8抗体(BD, 553030)被用于被用于流式细胞仪在人类样本上 (图 s3c). Cell (2021) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 2b
碧迪BD CD8抗体(BD Bioscience, 53-6.7)被用于被用于流式细胞仪在小鼠样本上 (图 2b). J Clin Invest (2021) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 5d
碧迪BD CD8抗体(BD Biosciences, 53-6.7)被用于被用于流式细胞仪在小鼠样本上 (图 5d). Front Immunol (2020) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 1:200; 图 1f
碧迪BD CD8抗体(BD Biosciences, 53-C6.7)被用于被用于流式细胞仪在小鼠样本上浓度为1:200 (图 1f). elife (2020) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 1:200; 图 s6-1b
碧迪BD CD8抗体(BD Biosciences, 53-C6.7)被用于被用于流式细胞仪在小鼠样本上浓度为1:200 (图 s6-1b). elife (2020) ncbi
大鼠 单克隆(53-6.7)
碧迪BD CD8抗体(BD, 563786)被用于. Aging Cell (2020) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 s5
碧迪BD CD8抗体(BD Pharmingen, 553031)被用于被用于流式细胞仪在小鼠样本上 (图 s5). Vaccines (Basel) (2020) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 5s1a
碧迪BD CD8抗体(BD Biosciences, 561093)被用于被用于流式细胞仪在小鼠样本上 (图 5s1a). elife (2020) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 1:500; 图 1j
碧迪BD CD8抗体(BD Bioscience, 53-6.7)被用于被用于流式细胞仪在小鼠样本上浓度为1:500 (图 1j). J Allergy Clin Immunol (2021) ncbi
大鼠 单克隆(MECA-32)
  • 免疫组化-冰冻切片; 小鼠; 1:200; 图 5b, 5g
碧迪BD CD8抗体(BD Biosciences, 553849)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:200 (图 5b, 5g). Angiogenesis (2020) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 4d
碧迪BD CD8抗体(BD Pharmingen, 53-6.7)被用于被用于流式细胞仪在小鼠样本上 (图 4d). elife (2020) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 1:200; 图 4h
碧迪BD CD8抗体(BD Biosciences, 53-6.7)被用于被用于流式细胞仪在小鼠样本上浓度为1:200 (图 4h). elife (2020) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 3b
碧迪BD CD8抗体(BD Bioscience, 553033)被用于被用于流式细胞仪在小鼠样本上 (图 3b). Sci Rep (2020) ncbi
大鼠 单克隆(MECA-32)
  • 抑制或激活实验; 小鼠; 图 5c
碧迪BD CD8抗体(BD, 550563)被用于被用于抑制或激活实验在小鼠样本上 (图 5c). Nat Commun (2020) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 3j
碧迪BD CD8抗体(BD, 563068)被用于被用于流式细胞仪在小鼠样本上 (图 3j). J Clin Invest (2020) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 1m
碧迪BD CD8抗体(BD, 53-6.7)被用于被用于流式细胞仪在小鼠样本上 (图 1m). Nat Commun (2020) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 2a
碧迪BD CD8抗体(BD Biosciences, 553035)被用于被用于流式细胞仪在小鼠样本上 (图 2a). Nat Commun (2020) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 s4f, s6b
碧迪BD CD8抗体(BD, 560182)被用于被用于流式细胞仪在小鼠样本上 (图 s4f, s6b). Nat Commun (2020) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 6c
碧迪BD CD8抗体(BD, 53-6.7)被用于被用于流式细胞仪在小鼠样本上 (图 6c). elife (2020) ncbi
大鼠 单克隆(53-6.7)
  • 免疫组化-冰冻切片; 小鼠; 1.25 ug/ml; 图 4a
碧迪BD CD8抗体(BD Pharmingen, 53-6.7)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1.25 ug/ml (图 4a). BMC Cancer (2020) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 2e
碧迪BD CD8抗体(BD Biosciences, 53-6.7)被用于被用于流式细胞仪在小鼠样本上 (图 2e). Sci Adv (2019) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 1:200; 图 s4a
碧迪BD CD8抗体(BD Biosciences, 53-6.7)被用于被用于流式细胞仪在小鼠样本上浓度为1:200 (图 s4a). Cell Rep (2019) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 2a
碧迪BD CD8抗体(BD, 53-6.7)被用于被用于流式细胞仪在小鼠样本上 (图 2a). BMC Infect Dis (2019) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 1:100; 图 s2
碧迪BD CD8抗体(BD Biosciences, 563898)被用于被用于流式细胞仪在小鼠样本上浓度为1:100 (图 s2). Nature (2019) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 s3a
碧迪BD CD8抗体(BD, 53-6.7)被用于被用于流式细胞仪在小鼠样本上 (图 s3a). Nature (2019) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 1:500; 图 s1h
碧迪BD CD8抗体(BD Pharmingen, 553032)被用于被用于流式细胞仪在小鼠样本上浓度为1:500 (图 s1h). Nat Metab (2019) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 3b, 4b
碧迪BD CD8抗体(BD, 53-67)被用于被用于流式细胞仪在小鼠样本上 (图 3b, 4b). Biomolecules (2019) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 2h, 3k, 5a
碧迪BD CD8抗体(BD Biosciences, 563234)被用于被用于流式细胞仪在小鼠样本上 (图 2h, 3k, 5a). Oncoimmunology (2019) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 1:100; 图 s5
碧迪BD CD8抗体(BD Bioscience, 563046)被用于被用于流式细胞仪在小鼠样本上浓度为1:100 (图 s5). Science (2019) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 1:200; 图 1h, 3c
碧迪BD CD8抗体(BD Biosciences, 557959)被用于被用于流式细胞仪在小鼠样本上浓度为1:200 (图 1h, 3c). Nat Immunol (2019) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 1:40; 图 s3a
碧迪BD CD8抗体(BD, 557654)被用于被用于流式细胞仪在小鼠样本上浓度为1:40 (图 s3a). Nat Commun (2019) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 s3b
碧迪BD CD8抗体(BD Biosciences, 553036)被用于被用于流式细胞仪在小鼠样本上 (图 s3b). Cell Rep (2019) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 s1
碧迪BD CD8抗体(BD Bioscience, 552877)被用于被用于流式细胞仪在小鼠样本上 (图 s1). Oncoimmunology (2019) ncbi
大鼠 单克隆(MECA-32)
  • 免疫组化; 小鼠; 1:400; 图 1a
碧迪BD CD8抗体(BD Biosciences, 553849)被用于被用于免疫组化在小鼠样本上浓度为1:400 (图 1a). elife (2019) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠
碧迪BD CD8抗体(BD Biosciences, 53-6.7)被用于被用于流式细胞仪在小鼠样本上. Nature (2019) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 3f
碧迪BD CD8抗体(BD Pharmigen, 553029)被用于被用于流式细胞仪在小鼠样本上 (图 3f). Nature (2019) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 s1a
碧迪BD CD8抗体(BD Biosciences, 553030)被用于被用于流式细胞仪在小鼠样本上 (图 s1a). Sci Rep (2019) ncbi
大鼠 单克隆(MECA-32)
  • 免疫组化-冰冻切片; 小鼠; 1:100; 图 3b
碧迪BD CD8抗体(BD Pharmingen, 553849)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:100 (图 3b). elife (2019) ncbi
大鼠 单克隆(MECA-32)
  • 免疫组化; 小鼠; 图 1b
碧迪BD CD8抗体(BD Biosciences, 553849)被用于被用于免疫组化在小鼠样本上 (图 1b). elife (2019) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 ex4a
碧迪BD CD8抗体(BD Biosciences, 563786)被用于被用于流式细胞仪在小鼠样本上 (图 ex4a). Nature (2019) ncbi
大鼠 单克隆(53-6.7)
  • 免疫组化-冰冻切片; 小鼠; 图 3e
  • 流式细胞仪; 小鼠; 图 s6d
碧迪BD CD8抗体(BD, 563786)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 3e) 和 被用于流式细胞仪在小鼠样本上 (图 s6d). Cell (2019) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 3d
碧迪BD CD8抗体(BD Biosciences, 53-6.7)被用于被用于流式细胞仪在小鼠样本上 (图 3d). J Clin Invest (2019) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 4a
碧迪BD CD8抗体(BD Biosciences, 53-6.7)被用于被用于流式细胞仪在小鼠样本上 (图 4a). Nature (2019) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 s1
碧迪BD CD8抗体(BD Biosciences, 557959)被用于被用于流式细胞仪在小鼠样本上 (图 s1). J Clin Invest (2019) ncbi
大鼠 单克隆(53-6.7)
  • 免疫组化; 小鼠; 图 4d
碧迪BD CD8抗体(BD PharMingen, 53-6.7)被用于被用于免疫组化在小鼠样本上 (图 4d). J Exp Med (2019) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 3a
碧迪BD CD8抗体(BD, 558106)被用于被用于流式细胞仪在小鼠样本上 (图 3a). Oncoimmunology (2018) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 s5b
碧迪BD CD8抗体(BD, 551162)被用于被用于流式细胞仪在小鼠样本上 (图 s5b). Cell Rep (2018) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 2a
碧迪BD CD8抗体(BD, 560776)被用于被用于流式细胞仪在小鼠样本上 (图 2a). Cell (2018) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 s3a
碧迪BD CD8抗体(BD Biosciences, 53-6.7)被用于被用于流式细胞仪在小鼠样本上 (图 s3a). J Clin Invest (2019) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 2f
碧迪BD CD8抗体(BD, 553035)被用于被用于流式细胞仪在小鼠样本上 (图 2f). Cell (2018) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 4
碧迪BD CD8抗体(BD Pharminger, 53-6.7)被用于被用于流式细胞仪在小鼠样本上 (图 4). J Diabetes Res (2018) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 s1a
碧迪BD CD8抗体(BD Biosciences, 53-6.7)被用于被用于流式细胞仪在小鼠样本上 (图 s1a). J Clin Invest (2019) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 5
碧迪BD CD8抗体(BD Biosciences, 53-C6.7)被用于被用于流式细胞仪在小鼠样本上 (图 5). Virology (2019) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 6b
碧迪BD CD8抗体(BD Biosciences, 558106)被用于被用于流式细胞仪在小鼠样本上 (图 6b). Cell Stem Cell (2018) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 s7a
碧迪BD CD8抗体(BD, 551162)被用于被用于流式细胞仪在小鼠样本上 (图 s7a). Nat Commun (2018) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 5e
碧迪BD CD8抗体(BD Bioscience, 53-6.7)被用于被用于流式细胞仪在小鼠样本上 (图 5e). Front Immunol (2018) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 3b
碧迪BD CD8抗体(BD Pharmingen, 53-6.7)被用于被用于流式细胞仪在小鼠样本上 (图 3b). Sci Rep (2018) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 s4a, s4b
碧迪BD CD8抗体(BD Biosciences, 53-6.7)被用于被用于流式细胞仪在小鼠样本上 (图 s4a, s4b). Oncogene (2019) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 s1d
碧迪BD CD8抗体(BD Biosciences, 553033)被用于被用于流式细胞仪在小鼠样本上 (图 s1d). Cell (2018) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 1a
碧迪BD CD8抗体(BD, 53-6.7)被用于被用于流式细胞仪在小鼠样本上 (图 1a). Cancer Immunol Immunother (2019) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 2c
碧迪BD CD8抗体(BD Biosciences, 53-6.7)被用于被用于流式细胞仪在小鼠样本上 (图 2c). Oncotarget (2018) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 5b
碧迪BD CD8抗体(BD Biosciences, 53-6.7)被用于被用于流式细胞仪在小鼠样本上 (图 5b). J Biol Chem (2018) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 人类; 图 s1a
碧迪BD CD8抗体(BD Bioscience, 562283)被用于被用于流式细胞仪在人类样本上 (图 s1a). Immunity (2018) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 s17a
碧迪BD CD8抗体(BD Biosciences, 53-6.7)被用于被用于流式细胞仪在小鼠样本上 (图 s17a). J Clin Invest (2018) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 3b
碧迪BD CD8抗体(BD Pharmingen, 53-6.7)被用于被用于流式细胞仪在小鼠样本上 (图 3b). Cell Death Dis (2018) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 2a
碧迪BD CD8抗体(BD Biosciences, 53-6.7)被用于被用于流式细胞仪在小鼠样本上 (图 2a). J Clin Invest (2018) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 2c
碧迪BD CD8抗体(BD Biosciences, 562283)被用于被用于流式细胞仪在小鼠样本上 (图 2c). Mol Cell (2018) ncbi
大鼠 单克隆(53-6.7)
  • 免疫组化; 小鼠; 图 2d
碧迪BD CD8抗体(BD Pharmingen, 53-6.7)被用于被用于免疫组化在小鼠样本上 (图 2d). Int J Cancer (2018) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 3c
碧迪BD CD8抗体(BD Biosciences, 551162)被用于被用于流式细胞仪在小鼠样本上 (图 3c). Nat Immunol (2018) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 4a
碧迪BD CD8抗体(BD Pharmingen, 561967)被用于被用于流式细胞仪在小鼠样本上 (图 4a). J Clin Invest (2018) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 3e
碧迪BD CD8抗体(BD, 53-6.7)被用于被用于流式细胞仪在小鼠样本上 (图 3e). Nat Commun (2018) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 1:250; 图 s6a
碧迪BD CD8抗体(BD Biosciences, 553033)被用于被用于流式细胞仪在小鼠样本上浓度为1:250 (图 s6a). Nat Commun (2018) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 1:1000; 图 s7
碧迪BD CD8抗体(BioLegend, 553031)被用于被用于流式细胞仪在小鼠样本上浓度为1:1000 (图 s7). J Clin Invest (2018) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 s7c
碧迪BD CD8抗体(BD Biosciences, 553033)被用于被用于流式细胞仪在小鼠样本上 (图 s7c). Cell (2018) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 s4a
碧迪BD CD8抗体(BD Biosciences, 53-6.7)被用于被用于流式细胞仪在小鼠样本上 (图 s4a). PLoS ONE (2018) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 4c
碧迪BD CD8抗体(BD Biosciences, 53-6.7)被用于被用于流式细胞仪在小鼠样本上 (图 4c). J Clin Invest (2018) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 9a
碧迪BD CD8抗体(BD Biosciences, 53-6.7)被用于被用于流式细胞仪在小鼠样本上 (图 9a). J Exp Med (2018) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 5d
碧迪BD CD8抗体(BD Biosciences, 53-6.7)被用于被用于流式细胞仪在小鼠样本上 (图 5d). J Exp Med (2018) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 2a
碧迪BD CD8抗体(BD Biosciences, 553031)被用于被用于流式细胞仪在小鼠样本上 (图 2a). Cell (2018) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 s4
碧迪BD CD8抗体(BD Pharmingen, 558106)被用于被用于流式细胞仪在小鼠样本上 (图 s4). J Immunol (2018) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 8d
碧迪BD CD8抗体(BD Biosciences, 53-6.7)被用于被用于流式细胞仪在小鼠样本上 (图 8d). J Clin Invest (2018) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 2b
碧迪BD CD8抗体(BD Biosciences, 562283)被用于被用于流式细胞仪在小鼠样本上 (图 2b). J Immunol (2018) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 1d
碧迪BD CD8抗体(BD Biosciences, 53-6.7)被用于被用于流式细胞仪在小鼠样本上 (图 1d). Cell (2018) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 3b, 4d
碧迪BD CD8抗体(BD, 53-6.7)被用于被用于流式细胞仪在小鼠样本上 (图 3b, 4d). Nature (2018) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 1c
碧迪BD CD8抗体(BD Biosciences, 53-6.7)被用于被用于流式细胞仪在小鼠样本上 (图 1c). Sci Rep (2018) ncbi
大鼠 单克隆(53-6.7)
碧迪BD CD8抗体(BD, 53-6.7)被用于. Proc Natl Acad Sci U S A (2018) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 1:200; 图 2b
碧迪BD CD8抗体(BD, 53-6.7)被用于被用于流式细胞仪在小鼠样本上浓度为1:200 (图 2b). Infect Immun (2018) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 3d
碧迪BD CD8抗体(BD Bioscience, 560469)被用于被用于流式细胞仪在小鼠样本上 (图 3d). J Immunol (2018) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠
碧迪BD CD8抗体(BD Biosciences, 53-6.7)被用于被用于流式细胞仪在小鼠样本上. Sci Rep (2017) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 2b
碧迪BD CD8抗体(BD Bioscience, 53-6.7)被用于被用于流式细胞仪在小鼠样本上 (图 2b). J Virol (2018) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 3f
碧迪BD CD8抗体(BD Biosciences, 553032)被用于被用于流式细胞仪在小鼠样本上 (图 3f). Cancer Cell (2017) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 3c
碧迪BD CD8抗体(BD Biosciences, 53-6.7)被用于被用于流式细胞仪在小鼠样本上 (图 3c). J Cell Biol (2017) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 6a
碧迪BD CD8抗体(BD Biosciences, 53-6.7)被用于被用于流式细胞仪在小鼠样本上 (图 6a). Int J Biochem Cell Biol (2017) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 4a
碧迪BD CD8抗体(Becton Dickinson, 53?C6.7)被用于被用于流式细胞仪在小鼠样本上 (图 4a). PLoS ONE (2017) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 s6b
碧迪BD CD8抗体(BD Biosciences, 53-6.7)被用于被用于流式细胞仪在小鼠样本上 (图 s6b). Proc Natl Acad Sci U S A (2017) ncbi
大鼠 单克隆(MECA-32)
  • 免疫组化; 小鼠; 图 3h
碧迪BD CD8抗体(BD Biosciences, 553849)被用于被用于免疫组化在小鼠样本上 (图 3h). J Clin Invest (2017) ncbi
大鼠 单克隆(MECA-32)
  • 免疫组化; 小鼠; 图 2b
碧迪BD CD8抗体(BD Biosciences, 553849)被用于被用于免疫组化在小鼠样本上 (图 2b). Neuron (2017) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 s1c
碧迪BD CD8抗体(BD, 53 6.7)被用于被用于流式细胞仪在小鼠样本上 (图 s1c). Science (2017) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 2b
碧迪BD CD8抗体(BD Biosciences, 553033)被用于被用于流式细胞仪在小鼠样本上 (图 2b). Immunity (2017) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 2
碧迪BD CD8抗体(BD Bioscience, 53-6.7)被用于被用于流式细胞仪在小鼠样本上 (图 2). Proc Natl Acad Sci U S A (2017) ncbi
大鼠 单克隆(53-6.7)
  • 免疫组化-冰冻切片; 小鼠; 1:100; 图 4b
碧迪BD CD8抗体(BD Pharmingen, 553027)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:100 (图 4b). Proc Natl Acad Sci U S A (2017) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 表 s1
碧迪BD CD8抗体(BD Bioscience, 553030)被用于被用于流式细胞仪在小鼠样本上 (表 s1). J Clin Invest (2017) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 s4c
碧迪BD CD8抗体(BD Biosciences, 53-6.7)被用于被用于流式细胞仪在小鼠样本上 (图 s4c). J Immunol (2017) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 s1f
碧迪BD CD8抗体(BD Biosciences, 53-6.7)被用于被用于流式细胞仪在小鼠样本上 (图 s1f). Infect Immun (2017) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 表 1
碧迪BD CD8抗体(BD Biosciences, 563786)被用于被用于流式细胞仪在小鼠样本上 (表 1). Cell (2017) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 5c
碧迪BD CD8抗体(BD Biosciences, 53-6.7)被用于被用于流式细胞仪在小鼠样本上 (图 5c). Nat Commun (2017) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 2b
碧迪BD CD8抗体(BD Pharmingen, 53-6.7)被用于被用于流式细胞仪在小鼠样本上 (图 2b). Immunology (2017) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 s2b
碧迪BD CD8抗体(BD Pharmingen, 53-6.7)被用于被用于流式细胞仪在小鼠样本上 (图 s2b). J Clin Invest (2017) ncbi
大鼠 单克隆(53-6.7)
  • 免疫组化-石蜡切片; 小鼠; 图 s3c
碧迪BD CD8抗体(BD Biosciences, 550281)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 s3c). PLoS ONE (2017) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 1a
碧迪BD CD8抗体(Pharmingen, 553029)被用于被用于流式细胞仪在小鼠样本上 (图 1a). Redox Biol (2017) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 1:100; 图 3
碧迪BD CD8抗体(BD Bioscience, 558106)被用于被用于流式细胞仪在小鼠样本上浓度为1:100 (图 3). Front Immunol (2017) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 6l
碧迪BD CD8抗体(BD Pharmingen, 53-6.7)被用于被用于流式细胞仪在小鼠样本上 (图 6l). Proc Natl Acad Sci U S A (2017) ncbi
大鼠 单克隆(53-6.7)
  • 免疫组化-冰冻切片; 小鼠; 1:50
  • 免疫组化; 小鼠; 图 48
碧迪BD CD8抗体(BD Biosciences, 550281)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:50 和 被用于免疫组化在小鼠样本上 (图 48). J Toxicol Pathol (2017) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠
碧迪BD CD8抗体(BD Biosciences, 557654)被用于被用于流式细胞仪在小鼠样本上. PLoS ONE (2017) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 3
碧迪BD CD8抗体(BD Pharmingen, 53-6.7)被用于被用于流式细胞仪在小鼠样本上 (图 3). Eur J Immunol (2017) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 s1c
碧迪BD CD8抗体(BD, 53-6.7)被用于被用于流式细胞仪在小鼠样本上 (图 s1c). Nat Commun (2017) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 人类
碧迪BD CD8抗体(BD Biosciences, 53-6.7)被用于被用于流式细胞仪在人类样本上. Front Immunol (2016) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 s11
碧迪BD CD8抗体(BD Bioscience, 53-6.7)被用于被用于流式细胞仪在小鼠样本上 (图 s11). JCI Insight (2017) ncbi
大鼠 单克隆(53-6.7)
  • 其他; 小鼠
碧迪BD CD8抗体(BD PharMingen, 5532029)被用于被用于其他在小鼠样本上. PLoS ONE (2017) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 1 ug/ml; 图 1a
碧迪BD CD8抗体(BD Biosciences, 53-6.7)被用于被用于流式细胞仪在小鼠样本上浓度为1 ug/ml (图 1a). Nat Commun (2017) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 5c
碧迪BD CD8抗体(BD Pharmingen, 53-6.7)被用于被用于流式细胞仪在小鼠样本上 (图 5c). J Immunol (2017) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 s6a
碧迪BD CD8抗体(BD Biosciences, 53-6.7)被用于被用于流式细胞仪在小鼠样本上 (图 s6a). Nature (2017) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 1:200; 图 4a
碧迪BD CD8抗体(Becton - Dickinson, 53-67)被用于被用于流式细胞仪在小鼠样本上浓度为1:200 (图 4a). Mol Vis (2016) ncbi
大鼠 单克隆(MECA-32)
  • 免疫组化-石蜡切片; 小鼠; 1:250; 图 1c
碧迪BD CD8抗体(BD Biosciences, 550563)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:250 (图 1c). Nat Commun (2016) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 4d
碧迪BD CD8抗体(bd, 53-6.7)被用于被用于流式细胞仪在小鼠样本上 (图 4d). Proc Natl Acad Sci U S A (2017) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 2a
碧迪BD CD8抗体(BD Bioscience, 53-6.7)被用于被用于流式细胞仪在小鼠样本上 (图 2a). Oncotarget (2017) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 2
碧迪BD CD8抗体(BD Bioscience, 553031)被用于被用于流式细胞仪在小鼠样本上 (图 2). Genes Dev (2016) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 5a
碧迪BD CD8抗体(BD Biosciences, 53-6.7)被用于被用于流式细胞仪在小鼠样本上 (图 5a). Cell (2016) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 s5f
碧迪BD CD8抗体(BD, 53-6.7)被用于被用于流式细胞仪在小鼠样本上 (图 s5f). Proc Natl Acad Sci U S A (2016) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 s3a
碧迪BD CD8抗体(BD Biosciences, 53-6.7)被用于被用于流式细胞仪在小鼠样本上 (图 s3a). Proc Natl Acad Sci U S A (2016) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 1b
碧迪BD CD8抗体(BD, 53-6.7)被用于被用于流式细胞仪在小鼠样本上 (图 1b). J Exp Med (2016) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 3a
碧迪BD CD8抗体(BD PharMingen, 53-6.7)被用于被用于流式细胞仪在小鼠样本上 (图 3a). Sci Rep (2016) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 1h
碧迪BD CD8抗体(BD Biosciences, 53-6.7)被用于被用于流式细胞仪在小鼠样本上 (图 1h). Cell Death Dis (2016) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 s10a
碧迪BD CD8抗体(BD Pharmingen, 53-6.7)被用于被用于流式细胞仪在小鼠样本上 (图 s10a). JCI Insight (2016) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 3d
碧迪BD CD8抗体(BD Biosciences, 53-6.7)被用于被用于流式细胞仪在小鼠样本上 (图 3d). Cancer Res (2017) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 人类; 图 4c
碧迪BD CD8抗体(BD Pharmingen, 53-6.7)被用于被用于流式细胞仪在人类样本上 (图 4c). J Virol (2017) ncbi
大鼠 单克隆(MECA-32)
  • 免疫组化; 小鼠; 1:100; 表 1
碧迪BD CD8抗体(BD Biosciences, 553849)被用于被用于免疫组化在小鼠样本上浓度为1:100 (表 1). elife (2016) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 s4a
碧迪BD CD8抗体(BD Biosciences, 53-6.7)被用于被用于流式细胞仪在小鼠样本上 (图 s4a). Brain (2017) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 1b
碧迪BD CD8抗体(BD, 553035)被用于被用于流式细胞仪在小鼠样本上 (图 1b). J Exp Med (2016) ncbi
大鼠 单克隆(53-6.7)
  • 抑制或激活实验; 小鼠; 图 6c
  • 流式细胞仪; 小鼠; 图 5a
碧迪BD CD8抗体(BD Pharmingen, 53-6.7)被用于被用于抑制或激活实验在小鼠样本上 (图 6c) 和 被用于流式细胞仪在小鼠样本上 (图 5a). J Virol (2017) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 1a
碧迪BD CD8抗体(BD Biosciences, 53-6.7)被用于被用于流式细胞仪在小鼠样本上 (图 1a). J Immunol (2016) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 0.2-0.8 ug/ml
碧迪BD CD8抗体(BD Biosciences, BD553028)被用于被用于流式细胞仪在小鼠样本上浓度为0.2-0.8 ug/ml. Nat Commun (2016) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 3a
碧迪BD CD8抗体(BD Pharmingen, 53-6.7)被用于被用于流式细胞仪在小鼠样本上 (图 3a). J Immunol (2016) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 st2
碧迪BD CD8抗体(BD, 553032)被用于被用于流式细胞仪在小鼠样本上 (图 st2). Nature (2016) ncbi
大鼠 单克隆(MECA-32)
  • 免疫组化-冰冻切片; 小鼠; 图 st2
碧迪BD CD8抗体(BD, 550563)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 st2). Nature (2016) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 4b
碧迪BD CD8抗体(BD Pharmingen, 552877)被用于被用于流式细胞仪在小鼠样本上 (图 4b). PLoS ONE (2016) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 s1b
碧迪BD CD8抗体(BD Pharmingen, 552877)被用于被用于流式细胞仪在小鼠样本上 (图 s1b). Mucosal Immunol (2017) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 4D
碧迪BD CD8抗体(BD, 563068)被用于被用于流式细胞仪在小鼠样本上 (图 4D). Sci Rep (2016) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 s5
碧迪BD CD8抗体(BD, 53-6.7)被用于被用于流式细胞仪在小鼠样本上 (图 s5). Proc Natl Acad Sci U S A (2016) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 1:100; 图 10
碧迪BD CD8抗体(BD PharMingen, (53-6.7)被用于被用于流式细胞仪在小鼠样本上浓度为1:100 (图 10). Nat Commun (2016) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 1:100; 图 3
碧迪BD CD8抗体(Cell signaling, 553033)被用于被用于流式细胞仪在小鼠样本上浓度为1:100 (图 3). Nat Commun (2016) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 4
碧迪BD CD8抗体(BD, 553033)被用于被用于流式细胞仪在小鼠样本上 (图 4). PLoS ONE (2016) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 1a, 1b
碧迪BD CD8抗体(BD, 53-6.7)被用于被用于流式细胞仪在小鼠样本上 (图 1a, 1b). J Exp Med (2016) ncbi
大鼠 单克隆(53-6.7)
  • 免疫组化-冰冻切片; 小鼠; 1:50; 图 s7g
  • 流式细胞仪; 小鼠; 图 3f
碧迪BD CD8抗体(BD Biosciences, 53-6.7)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:50 (图 s7g) 和 被用于流式细胞仪在小鼠样本上 (图 3f). Nature (2016) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠
碧迪BD CD8抗体(BD, 557959)被用于被用于流式细胞仪在小鼠样本上. Cell (2016) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠
碧迪BD CD8抗体(BD Pharmingen, 53-6.7)被用于被用于流式细胞仪在小鼠样本上. Proc Natl Acad Sci U S A (2016) ncbi
大鼠 单克隆(53-6.7)
  • 免疫组化-冰冻切片; 小鼠; 图 5d
碧迪BD CD8抗体(BD, 553027)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 5d). Sci Rep (2016) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 2c
碧迪BD CD8抗体(BD Biosciences, 53-6.7)被用于被用于流式细胞仪在小鼠样本上 (图 2c). J Clin Invest (2016) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 2b
碧迪BD CD8抗体(BD, 553031)被用于被用于流式细胞仪在小鼠样本上 (图 2b). Nat Methods (2016) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠
碧迪BD CD8抗体(Becton, 53-6.7)被用于被用于流式细胞仪在小鼠样本上. Nature (2016) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 2b
碧迪BD CD8抗体(BD Pharmingen, 53-6.7)被用于被用于流式细胞仪在小鼠样本上 (图 2b). Sci Rep (2016) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 1:200; 图 3
碧迪BD CD8抗体(BD Horizon, 563332)被用于被用于流式细胞仪在小鼠样本上浓度为1:200 (图 3). Nat Commun (2016) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠
碧迪BD CD8抗体(BD Biosciences, 561093)被用于被用于流式细胞仪在小鼠样本上. Nat Commun (2016) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 8c
碧迪BD CD8抗体(BD Biosciences, 53-6.7)被用于被用于流式细胞仪在小鼠样本上 (图 8c). J Immunol (2016) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 s3a
碧迪BD CD8抗体(BD Pharmingen, 53-6.7)被用于被用于流式细胞仪在小鼠样本上 (图 s3a). Cell Rep (2016) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 4a
碧迪BD CD8抗体(BD Biosciences, 53-6.7)被用于被用于流式细胞仪在小鼠样本上 (图 4a). J Immunol (2016) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 2
碧迪BD CD8抗体(BD Bioscience, 553032)被用于被用于流式细胞仪在小鼠样本上 (图 2). elife (2016) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 1:200; 图 3
碧迪BD CD8抗体(BD Biosciences, 557682)被用于被用于流式细胞仪在小鼠样本上浓度为1:200 (图 3). Nat Commun (2016) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 s3
  • 免疫印迹; 人类; 1:1000; 图 5g
碧迪BD CD8抗体(BD Pharmingen, 53-6.7)被用于被用于流式细胞仪在小鼠样本上 (图 s3) 和 被用于免疫印迹在人类样本上浓度为1:1000 (图 5g). Gut (2017) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 2a
碧迪BD CD8抗体(BD, 53-6.7)被用于被用于流式细胞仪在小鼠样本上 (图 2a). J Exp Med (2016) ncbi
大鼠 单克隆(53-6.7)
  • 免疫细胞化学; 小鼠; 图 4a
碧迪BD CD8抗体(BD Pharmingen, 550281)被用于被用于免疫细胞化学在小鼠样本上 (图 4a). J Transl Med (2016) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 s1b
碧迪BD CD8抗体(BD Biosciences, 53-6.7)被用于被用于流式细胞仪在小鼠样本上 (图 s1b). J Allergy Clin Immunol (2017) ncbi
大鼠 单克隆(MECA-32)
  • 免疫组化-石蜡切片; 人类; 图 9c
碧迪BD CD8抗体(BD Pharmigen, 550563)被用于被用于免疫组化-石蜡切片在人类样本上 (图 9c). Oncotarget (2016) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 4
碧迪BD CD8抗体(Becton Dickinson, 553029)被用于被用于流式细胞仪在小鼠样本上 (图 4). Blood (2016) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 s3
碧迪BD CD8抗体(BD Bioscience, 53-6.7)被用于被用于流式细胞仪在小鼠样本上 (图 s3). Sci Rep (2016) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 1:50; 图 4
碧迪BD CD8抗体(BD, 560776)被用于被用于流式细胞仪在小鼠样本上浓度为1:50 (图 4). PLoS ONE (2016) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 4c
碧迪BD CD8抗体(BD Biosciences, 53-6.7)被用于被用于流式细胞仪在小鼠样本上 (图 4c). Oncotarget (2016) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 2a
碧迪BD CD8抗体(Becton Dickinson, 53-6.7)被用于被用于流式细胞仪在小鼠样本上 (图 2a). Vaccines (Basel) (2016) ncbi
大鼠 单克隆(53-6.7)
  • 其他; 小鼠
碧迪BD CD8抗体(BD Bioscience, 553026)被用于被用于其他在小鼠样本上. Leukemia (2016) ncbi
大鼠 单克隆(MECA-32)
  • 免疫组化; 人类; 1:100; 图 3b
碧迪BD CD8抗体(BD Pharmingen, 550563)被用于被用于免疫组化在人类样本上浓度为1:100 (图 3b). J Transl Med (2016) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 s8
碧迪BD CD8抗体(BD Biosciences, 53-6.7)被用于被用于流式细胞仪在小鼠样本上 (图 s8). Nat Neurosci (2016) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠
碧迪BD CD8抗体(BD, 53-6.7)被用于被用于流式细胞仪在小鼠样本上. PLoS ONE (2016) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 1:100; 图 6
碧迪BD CD8抗体(BD Biosciences, 553032)被用于被用于流式细胞仪在小鼠样本上浓度为1:100 (图 6). Nat Commun (2016) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 3e
碧迪BD CD8抗体(BD, 563898)被用于被用于流式细胞仪在小鼠样本上 (图 3e). Oncoimmunology (2016) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 s1
碧迪BD CD8抗体(BD-Biosciences, 553030)被用于被用于流式细胞仪在小鼠样本上 (图 s1). Oncoimmunology (2016) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 3
碧迪BD CD8抗体(BD Pharmingen, 553036)被用于被用于流式细胞仪在小鼠样本上 (图 3). Cell Rep (2016) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 s5a
碧迪BD CD8抗体(BD Biosciences, 53-6.7)被用于被用于流式细胞仪在小鼠样本上 (图 s5a). Science (2016) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 s5b
碧迪BD CD8抗体(BD, 53-6.7)被用于被用于流式细胞仪在小鼠样本上 (图 s5b). Science (2016) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 1:600; 图 2
碧迪BD CD8抗体(BD Pharmingen, 53-6.7)被用于被用于流式细胞仪在小鼠样本上浓度为1:600 (图 2). PLoS ONE (2016) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 2
碧迪BD CD8抗体(BD Biosciences, 551162)被用于被用于流式细胞仪在小鼠样本上 (图 2). Clin Cancer Res (2016) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 大鼠; 图 2d
碧迪BD CD8抗体(BD, 553032)被用于被用于流式细胞仪在大鼠样本上 (图 2d). Stem Cell Reports (2016) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 5
碧迪BD CD8抗体(BD Biosciences, 560776)被用于被用于流式细胞仪在小鼠样本上 (图 5). Hum Vaccin Immunother (2016) ncbi
  • 流式细胞仪; 小鼠
碧迪BD CD8抗体(BD Biosciences, 557766)被用于被用于流式细胞仪在小鼠样本上. Sci Rep (2016) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 2
碧迪BD CD8抗体(BD Pharmingen, 53-6.7)被用于被用于流式细胞仪在小鼠样本上 (图 2). EMBO Mol Med (2016) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 6a
碧迪BD CD8抗体(BD Pharmingen, 53-6.7)被用于被用于流式细胞仪在小鼠样本上 (图 6a). Crit Care Med (2016) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 2
碧迪BD CD8抗体(BD Biosciences, 553035)被用于被用于流式细胞仪在小鼠样本上 (图 2). Nat Immunol (2016) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 2f
碧迪BD CD8抗体(BD Biosciences, 53-6.7)被用于被用于流式细胞仪在小鼠样本上 (图 2f). Immunol Cell Biol (2016) ncbi
大鼠 单克隆(MECA-32)
  • 免疫组化; 小鼠; 图 s5
碧迪BD CD8抗体(BD Biosciences, 553849)被用于被用于免疫组化在小鼠样本上 (图 s5). PLoS ONE (2015) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 人类; 1:200
碧迪BD CD8抗体(BD Pharmingen, 53-6.7)被用于被用于流式细胞仪在人类样本上浓度为1:200. Nat Commun (2015) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 4
碧迪BD CD8抗体(BD Pharmingen, 553036)被用于被用于流式细胞仪在小鼠样本上 (图 4). Infect Immun (2016) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 s2d
碧迪BD CD8抗体(BD Biosciences, 53-6.7)被用于被用于流式细胞仪在小鼠样本上 (图 s2d). Nat Med (2015) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 表 1
碧迪BD CD8抗体(BD Pharmingen, 53-6.7)被用于被用于流式细胞仪在小鼠样本上 (表 1). J Immunol (2015) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 6
碧迪BD CD8抗体(BD Biosciences, 551162)被用于被用于流式细胞仪在小鼠样本上 (图 6). Oncoimmunology (2015) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 2b
碧迪BD CD8抗体(BD Biosciences, 53-6.7)被用于被用于流式细胞仪在小鼠样本上 (图 2b). J Immunol (2015) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠
碧迪BD CD8抗体(BD Biosciences, 553035)被用于被用于流式细胞仪在小鼠样本上. PLoS ONE (2015) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 1a
碧迪BD CD8抗体(BD Bioscience, 53-6.7)被用于被用于流式细胞仪在小鼠样本上 (图 1a). J Virol (2015) ncbi
大鼠 单克隆(MECA-32)
  • 免疫组化-冰冻切片; 小鼠; 1:200; 图 1j
碧迪BD CD8抗体(BD Biosciences, 550563)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:200 (图 1j). PLoS ONE (2015) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 2e
碧迪BD CD8抗体(BD Biosciences, 53-6.7)被用于被用于流式细胞仪在小鼠样本上 (图 2e). Eur J Immunol (2015) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠
碧迪BD CD8抗体(BD Biosciences, 53-6.7)被用于被用于流式细胞仪在小鼠样本上. Glia (2015) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠
碧迪BD CD8抗体(BD Biosciences, 550281)被用于被用于流式细胞仪在小鼠样本上. Autophagy (2015) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 1:100; 图 s1
碧迪BD CD8抗体(BD Biosciences, 553036)被用于被用于流式细胞仪在小鼠样本上浓度为1:100 (图 s1). Nat Commun (2015) ncbi
大鼠 单克隆(U5A2-13)
  • 流式细胞仪; 小鼠; 图 7
碧迪BD CD8抗体(BD Pharmingen, 550082)被用于被用于流式细胞仪在小鼠样本上 (图 7). Nat Commun (2015) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠
碧迪BD CD8抗体(Pharmingen, 53-6.7)被用于被用于流式细胞仪在小鼠样本上. Nat Med (2015) ncbi
大鼠 单克隆(53-6.7)
  • 免疫组化; 小鼠; 1:25
碧迪BD CD8抗体(BD Pharmingen, 53-6.7)被用于被用于免疫组化在小鼠样本上浓度为1:25. Cancer Immunol Immunother (2015) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠
  • 流式细胞仪; 人类
碧迪BD CD8抗体(BD Pharmingen, 53- 6.7)被用于被用于流式细胞仪在小鼠样本上 和 被用于流式细胞仪在人类样本上. Cancer Immunol Res (2015) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 5
碧迪BD CD8抗体(BD Pharmingen, 561094)被用于被用于流式细胞仪在小鼠样本上 (图 5). Int J Obes (Lond) (2015) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 1:50; 图 3
碧迪BD CD8抗体(BD, 53-6.7)被用于被用于流式细胞仪在小鼠样本上浓度为1:50 (图 3). PLoS ONE (2015) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠
碧迪BD CD8抗体(BD Pharmingen, 552877)被用于被用于流式细胞仪在小鼠样本上. Dis Model Mech (2015) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠
碧迪BD CD8抗体(BD, 563068)被用于被用于流式细胞仪在小鼠样本上. Biochim Biophys Acta (2015) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 10-20 ug/ml
碧迪BD CD8抗体(BD Biosciences, 53-6.7)被用于被用于流式细胞仪在小鼠样本上浓度为10-20 ug/ml. Immunology (2015) ncbi
大鼠 单克隆(MECA-32)
  • 免疫组化; 小鼠; 图 3a
碧迪BD CD8抗体(BD Pharmingen, 550563)被用于被用于免疫组化在小鼠样本上 (图 3a). PLoS ONE (2015) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 2a
碧迪BD CD8抗体(BD Biosciences, 53-6.7)被用于被用于流式细胞仪在小鼠样本上 (图 2a). Vaccine (2015) ncbi
大鼠 单克隆(53-6.7)
  • 免疫组化-冰冻切片; 小鼠; 图 ED3d
碧迪BD CD8抗体(BD, 53-6.7)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 ED3d). Nature (2015) ncbi
大鼠 单克隆(53-6.7)
  • 免疫组化-冰冻切片; 小鼠; 图 2
碧迪BD CD8抗体(BD Pharmingen, 53e6.7)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 2). Arthritis Res Ther (2015) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 8
碧迪BD CD8抗体(BD Pharmingen, 53-6.7)被用于被用于流式细胞仪在小鼠样本上 (图 8). PLoS ONE (2015) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 1:100
碧迪BD CD8抗体(BD Pharmingen, 553029)被用于被用于流式细胞仪在小鼠样本上浓度为1:100. PLoS ONE (2015) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 s3b, 5g
碧迪BD CD8抗体(BD Biosciences, 53-6.7)被用于被用于流式细胞仪在小鼠样本上 (图 s3b, 5g). J Immunol (2015) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠
  • 免疫细胞化学; 小鼠
碧迪BD CD8抗体(BD Biosciences, 53-6.7)被用于被用于流式细胞仪在小鼠样本上 和 被用于免疫细胞化学在小鼠样本上. Immun Inflamm Dis (2014) ncbi
大鼠 单克隆(53-6.7)
  • 免疫细胞化学; 小鼠; 1:200
碧迪BD CD8抗体(BD Biosciences, clone 53-6.7)被用于被用于免疫细胞化学在小鼠样本上浓度为1:200. J Neurosci (2015) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 4
碧迪BD CD8抗体(BD, 553031)被用于被用于流式细胞仪在小鼠样本上 (图 4). Cancer Res (2015) ncbi
大鼠 单克隆(MECA-32)
  • 免疫细胞化学; 小鼠; 1:100; 图 2d
碧迪BD CD8抗体(BD Pharmingen, 550563)被用于被用于免疫细胞化学在小鼠样本上浓度为1:100 (图 2d). Sci Rep (2015) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠
碧迪BD CD8抗体(BD Biosciences, 53?C6.7)被用于被用于流式细胞仪在小鼠样本上. PLoS ONE (2015) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 1:200; 图 3
碧迪BD CD8抗体(BD, 553035)被用于被用于流式细胞仪在小鼠样本上浓度为1:200 (图 3). Nagoya J Med Sci (2014) ncbi
大鼠 单克隆(53-6.7)
  • 免疫组化-冰冻切片; 小鼠; 1:400
碧迪BD CD8抗体(BD, BD-553027)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:400. J Control Release (2015) ncbi
大鼠 单克隆(53-6.7)
  • 其他; 小鼠; 图 2
碧迪BD CD8抗体(BD Pharmingen, 53-6.7)被用于被用于其他在小鼠样本上 (图 2). Nat Commun (2015) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 1
碧迪BD CD8抗体(BD Pharmingen, 53-6.7)被用于被用于流式细胞仪在小鼠样本上 (图 1). J Bone Miner Res (2015) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 3
碧迪BD CD8抗体(BD Pharmingen, 553030)被用于被用于流式细胞仪在小鼠样本上 (图 3). J Immunol (2015) ncbi
大鼠 单克隆(MECA-32)
  • 免疫组化-冰冻切片; 小鼠; 1:100; 图 2
碧迪BD CD8抗体(BD Pharmingen, 550563)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:100 (图 2). Methods Mol Biol (2015) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 1:200
碧迪BD CD8抗体(BD, 53-6.7)被用于被用于流式细胞仪在小鼠样本上浓度为1:200. Nat Commun (2015) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 7
碧迪BD CD8抗体(BD Biosciences, 53-6.7)被用于被用于流式细胞仪在小鼠样本上 (图 7). J Immunol (2015) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠
碧迪BD CD8抗体(BD, 53-6.7)被用于被用于流式细胞仪在小鼠样本上. Sci Rep (2015) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠
碧迪BD CD8抗体(BD Biosciences, 53-6.7)被用于被用于流式细胞仪在小鼠样本上. Vaccines (Basel) (2014) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 s2
碧迪BD CD8抗体(BD, 53-6.7)被用于被用于流式细胞仪在小鼠样本上 (图 s2). Brain (2015) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠
碧迪BD CD8抗体(BD, 53-6.7)被用于被用于流式细胞仪在小鼠样本上. Nature (2015) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 7a
碧迪BD CD8抗体(BD Bioscience, 53-6.7)被用于被用于流式细胞仪在小鼠样本上 (图 7a). Int Immunopharmacol (2015) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 4
碧迪BD CD8抗体(BD, 553035)被用于被用于流式细胞仪在小鼠样本上 (图 4). EMBO Mol Med (2015) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 4
碧迪BD CD8抗体(BD Pharmingen, 53-6.7)被用于被用于流式细胞仪在小鼠样本上 (图 4). Clin Exp Immunol (2015) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 2
碧迪BD CD8抗体(BD, 53-6.7)被用于被用于流式细胞仪在小鼠样本上 (图 2). Gut (2015) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 人类; 图 2
碧迪BD CD8抗体(BD Bioscience, 53-6.7)被用于被用于流式细胞仪在人类样本上 (图 2). Clin Cancer Res (2015) ncbi
大鼠 单克隆(MECA-32)
  • 免疫组化; 小鼠
碧迪BD CD8抗体(BD Pharmingen, 553849)被用于被用于免疫组化在小鼠样本上. Invest Ophthalmol Vis Sci (2014) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 e4
碧迪BD CD8抗体(BD Pharmingen, 53-6.7)被用于被用于流式细胞仪在小鼠样本上 (图 e4). Nature (2015) ncbi
大鼠 单克隆(53-6.7)
  • 免疫组化-冰冻切片; 小鼠; 图 1
碧迪BD CD8抗体(BD Biosciences, 53-6.7)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 1). Transpl Int (2015) ncbi
大鼠 单克隆(53-6.7)
  • 免疫组化; 小鼠; 图 1
碧迪BD CD8抗体(BD PharMingen, 53-6.7)被用于被用于免疫组化在小鼠样本上 (图 1). Arthritis Rheumatol (2015) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠
碧迪BD CD8抗体(BD Biosciences, 53-6.7)被用于被用于流式细胞仪在小鼠样本上. PLoS ONE (2014) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠
碧迪BD CD8抗体(BD Biosciences, 552877)被用于被用于流式细胞仪在小鼠样本上. PLoS ONE (2014) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 5
碧迪BD CD8抗体(BD Biosciences, 53-6.7)被用于被用于流式细胞仪在小鼠样本上 (图 5). Infect Immun (2015) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 表 s1
碧迪BD CD8抗体(BD, 53-6.7)被用于被用于流式细胞仪在小鼠样本上 (表 s1). Stem Cells (2015) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠
碧迪BD CD8抗体(BD Biosciences, 53-6.7)被用于被用于流式细胞仪在小鼠样本上. J Immunol (2014) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠
碧迪BD CD8抗体(BD Pharmingen, 553036)被用于被用于流式细胞仪在小鼠样本上. Cancer Res (2014) ncbi
大鼠 单克隆(MECA-32)
  • 免疫组化-石蜡切片; 小鼠; 1:200
碧迪BD CD8抗体(BD, 550563)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:200. Mol Oncol (2015) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 5
碧迪BD CD8抗体(BD, 53-6.7)被用于被用于流式细胞仪在小鼠样本上 (图 5). J Exp Med (2014) ncbi
大鼠 单克隆(53-6.7)
  • 免疫组化-冰冻切片; 小鼠; 图 3
  • 流式细胞仪; 小鼠; 图 6
碧迪BD CD8抗体(BD, 53-6.7)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 3) 和 被用于流式细胞仪在小鼠样本上 (图 6). Am J Pathol (2014) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠
碧迪BD CD8抗体(BD Biosciences, 53-6.7)被用于被用于流式细胞仪在小鼠样本上. Cancer Res (2014) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠
碧迪BD CD8抗体(BD Biosciences, 53-6.7)被用于被用于流式细胞仪在小鼠样本上. J Immunol (2014) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠
碧迪BD CD8抗体(BD, 53-6.7)被用于被用于流式细胞仪在小鼠样本上. J Exp Med (2014) ncbi
大鼠 单克隆(53-6.7)
  • 免疫组化-冰冻切片; 小鼠; 图 2
碧迪BD CD8抗体(BD Bioscience, 53-6.7)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 2). PLoS ONE (2014) ncbi
大鼠 单克隆(MECA-32)
  • 免疫组化; 小鼠; 图 3
碧迪BD CD8抗体(BD Biosciences, 553849)被用于被用于免疫组化在小鼠样本上 (图 3). J Clin Invest (2014) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 2
碧迪BD CD8抗体(BD Biosciences, 53?C6.7)被用于被用于流式细胞仪在小鼠样本上 (图 2). Eur J Immunol (2014) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 人类
碧迪BD CD8抗体(BD Biosciences, 53-6.7)被用于被用于流式细胞仪在人类样本上. J Leukoc Biol (2014) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠
碧迪BD CD8抗体(BD Biosciences Pharmingen, 53-6.7)被用于被用于流式细胞仪在小鼠样本上. Nanomedicine (2014) ncbi
大鼠 单克隆(MECA-32)
  • 免疫组化-石蜡切片; 人类; 1:200
碧迪BD CD8抗体(BD, 550563)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:200. Oncogene (2015) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠
碧迪BD CD8抗体(BD Biosciences, 53-6.7)被用于被用于流式细胞仪在小鼠样本上. Int Immunol (2014) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠
碧迪BD CD8抗体(BD Biosciences, 53-6.7)被用于被用于流式细胞仪在小鼠样本上. Int J Cancer (2015) ncbi
大鼠 单克隆(MECA-32)
  • 免疫组化-冰冻切片; 小鼠
碧迪BD CD8抗体(BD Pharmingen, 550563)被用于被用于免疫组化-冰冻切片在小鼠样本上. Bone (2014) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠
碧迪BD CD8抗体(BD Pharmingen, 53-6.7)被用于被用于流式细胞仪在小鼠样本上. FASEB J (2014) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 1:100
碧迪BD CD8抗体(BD, 553035)被用于被用于流式细胞仪在小鼠样本上浓度为1:100. PLoS ONE (2014) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠
碧迪BD CD8抗体(BD Pharmingen, 53-6.7)被用于被用于流式细胞仪在小鼠样本上. Cancer Immunol Res (2014) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠
碧迪BD CD8抗体(BD Biosciences, 53-6.7)被用于被用于流式细胞仪在小鼠样本上. PLoS Pathog (2014) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠
碧迪BD CD8抗体(BD Biosciences, 53-6.7)被用于被用于流式细胞仪在小鼠样本上. Eur J Immunol (2014) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠
碧迪BD CD8抗体(BD, 53-6.7)被用于被用于流式细胞仪在小鼠样本上. PLoS ONE (2014) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠
碧迪BD CD8抗体(BD Biosciences, 53-6.7)被用于被用于流式细胞仪在小鼠样本上. J Neuroimmunol (2014) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠
碧迪BD CD8抗体(PharMingen, 53-6.7)被用于被用于流式细胞仪在小鼠样本上. Vaccine (2014) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 8
碧迪BD CD8抗体(BD, 560776)被用于被用于流式细胞仪在小鼠样本上 (图 8). Hum Vaccin Immunother (2014) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠
碧迪BD CD8抗体(BD Biosciences, 53-6.72)被用于被用于流式细胞仪在小鼠样本上. PLoS ONE (2014) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠
碧迪BD CD8抗体(BD, 53-6.7)被用于被用于流式细胞仪在小鼠样本上. PLoS ONE (2014) ncbi
大鼠 单克隆(53-6.7)
  • 免疫组化-石蜡切片; 小鼠; 1:200; 图 6
碧迪BD CD8抗体(BD, 53-6.7)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:200 (图 6). Nat Commun (2014) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠
碧迪BD CD8抗体(BD Biosciences, 53-6.7)被用于被用于流式细胞仪在小鼠样本上. Am J Transplant (2014) ncbi
大鼠 单克隆(53-6.7)
  • 免疫组化; 小鼠; 1:2000
碧迪BD CD8抗体(BD pharmingen, 550281)被用于被用于免疫组化在小鼠样本上浓度为1:2000. Acta Neuropathol Commun (2014) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠
碧迪BD CD8抗体(BD, 53-6.7)被用于被用于流式细胞仪在小鼠样本上. FASEB J (2014) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠
碧迪BD CD8抗体(BD Biosciences, 53-6.7)被用于被用于流式细胞仪在小鼠样本上. J Immunol (2014) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠
碧迪BD CD8抗体(BD Biosciences, 53-6.7)被用于被用于流式细胞仪在小鼠样本上. Diabetes (2014) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠
碧迪BD CD8抗体(BD Biosciences, 53-6.7)被用于被用于流式细胞仪在小鼠样本上. Br J Cancer (2014) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠
碧迪BD CD8抗体(BD Pharmingen, 553036)被用于被用于流式细胞仪在小鼠样本上. PLoS ONE (2013) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠
碧迪BD CD8抗体(BD Biosciences, 53-6.7)被用于被用于流式细胞仪在小鼠样本上. Int Immunol (2014) ncbi
大鼠 单克隆(53-6.7)
  • 免疫组化; 小鼠
碧迪BD CD8抗体(BD Biosciences Pharmingen, 53-6.7)被用于被用于免疫组化在小鼠样本上. Mol Ther (2014) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 1:100
碧迪BD CD8抗体(BD Biosciences, 553033)被用于被用于流式细胞仪在小鼠样本上浓度为1:100. Nat Med (2013) ncbi
大鼠 单克隆(MECA-32)
  • 免疫组化-冰冻切片; 小鼠
碧迪BD CD8抗体(BD Pharmingen, 550563)被用于被用于免疫组化-冰冻切片在小鼠样本上. Am J Pathol (2013) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 表 1
碧迪BD CD8抗体(BD, 553030)被用于被用于流式细胞仪在小鼠样本上 (表 1). PLoS ONE (2013) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠
碧迪BD CD8抗体(BD Biosciences, 53-6.7)被用于被用于流式细胞仪在小鼠样本上. J Immunol (2013) ncbi
大鼠 单克隆(53-6.7)
  • 免疫组化-冰冻切片; 小鼠
碧迪BD CD8抗体(BD Pharmingen, 553027)被用于被用于免疫组化-冰冻切片在小鼠样本上. Circulation (2013) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠
碧迪BD CD8抗体(BD Biosciences, 53-6.7)被用于被用于流式细胞仪在小鼠样本上. Infect Immun (2011) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 人类
碧迪BD CD8抗体(BD Biosciences, 553033)被用于被用于流式细胞仪在人类样本上. J Immunol (2010) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠
碧迪BD CD8抗体(BD PharMingen, 53-6.7)被用于被用于流式细胞仪在小鼠样本上. Nat Immunol (2006) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 5
碧迪BD CD8抗体(Becton Dickinson, 53-6.7)被用于被用于流式细胞仪在小鼠样本上 (图 5). J Immunol (1994) ncbi
MBL International
rat 单克隆(KT15)
  • 流式细胞仪; 小鼠; 图 s3a
MBL International CD8抗体(MBL International, D271-4)被用于被用于流式细胞仪在小鼠样本上 (图 s3a). Cell (2019) ncbi
文章列表
  1. Ravindranathan S, Passang T, Li J, Wang S, Dhamsania R, Ware M, et al. Targeting vasoactive intestinal peptide-mediated signaling enhances response to immune checkpoint therapy in pancreatic ductal adenocarcinoma. Nat Commun. 2022;13:6418 pubmed 出版商
  2. Zhang Q, Xiu B, Zhang L, Chen M, Chi W, Li L, et al. Immunosuppressive lncRNA LINC00624 promotes tumor progression and therapy resistance through ADAR1 stabilization. J Immunother Cancer. 2022;10: pubmed 出版商
  3. Yang P, Qin H, Li Y, Xiao A, Zheng E, Zeng H, et al. CD36-mediated metabolic crosstalk between tumor cells and macrophages affects liver metastasis. Nat Commun. 2022;13:5782 pubmed 出版商
  4. Chen Y, Lian N, Chen S, Xiao T, Ke Y, Zhang Y, et al. GSDME deficiency leads to the aggravation of UVB-induced skin inflammation through enhancing recruitment and activation of neutrophils. Cell Death Dis. 2022;13:841 pubmed 出版商
  5. Gawish R, Maier B, Obermayer G, Watzenboeck M, Gorki A, Quattrone F, et al. A neutrophil-B-cell axis impacts tissue damage control in a mouse model of intraabdominal bacterial infection via Cxcr4. elife. 2022;11: pubmed 出版商
  6. Feng K, Meng P, Zhang M, Zou X, Li S, Huang C, et al. IL-24 Contributes to Neutrophilic Asthma in an IL-17A-Dependent Manner and Is Suppressed by IL-37. Allergy Asthma Immunol Res. 2022;14:505-527 pubmed 出版商
  7. Huang J, Huang Q, Xue J, Liu H, Guo Y, Chen H, et al. Fibrinogen like protein-1 knockdown suppresses the proliferation and metastasis of TU-686 cells and sensitizes laryngeal cancer to LAG-3 blockade. J Int Med Res. 2022;50:3000605221126874 pubmed 出版商
  8. Ni H, Zhang H, Li L, Huang H, Guo H, Zhang L, et al. T cell-intrinsic STING signaling promotes regulatory T cell induction and immunosuppression by upregulating FOXP3 transcription in cervical cancer. J Immunother Cancer. 2022;10: pubmed 出版商
  9. Amaral E, Foreman T, Namasivayam S, Hilligan K, Kauffman K, Barbosa Bomfim C, et al. GPX4 regulates cellular necrosis and host resistance in Mycobacterium tuberculosis infection. J Exp Med. 2022;219: pubmed 出版商
  10. Hemmi T, Ainai A, Hashiguchi T, Tobiume M, Kanno T, Iwata Yoshikawa N, et al. Intranasal vaccination induced cross-protective secretory IgA antibodies against SARS-CoV-2 variants with reducing the potential risk of lung eosinophilic immunopathology. Vaccine. 2022;40:5892-5903 pubmed 出版商
  11. Hou X, Shi Y, Kang X, Rousu Z, Li D, Wang M, et al. Echinococcus granulosus: The establishment of the metacestode in the liver is associated with control of the CD4+ T-cell-mediated immune response in patients with cystic echinococcosis and a mouse model. Front Cell Infect Microbiol. 2022;12:983119 pubmed 出版商
  12. Lee A, Pingali S, Pinilla Ibarz J, Atchison M, Koumenis C, Argon Y, et al. Loss of AID exacerbates the malignant progression of CLL. Leukemia. 2022;36:2430-2442 pubmed 出版商
  13. Zhan Z, Liu L, Cheng M, Gao Y, Zhou W. The Effects of 6 Common Antidiabetic Drugs on Anti-PD1 Immune Checkpoint Inhibitor in Tumor Treatment. J Immunol Res. 2022;2022:2651790 pubmed 出版商
  14. Smith K, Minns D, McHugh B, Holloway R, O CONNOR R, Williams A, et al. The antimicrobial peptide cathelicidin drives development of experimental autoimmune encephalomyelitis in mice by affecting Th17 differentiation. PLoS Biol. 2022;20:e3001554 pubmed 出版商
  15. Piliponsky A, Sharma K, Quach P, Brokaw A, Nguyen S, Orvis A, et al. Mast cell-derived factor XIIIA contributes to sexual dimorphic defense against group B streptococcal infections. J Clin Invest. 2022;132: pubmed 出版商
  16. Cao S, Hung Y, Wang Y, Chung Y, Qi Y, Ouyang C, et al. Glutamine is essential for overcoming the immunosuppressive microenvironment in malignant salivary gland tumors. Theranostics. 2022;12:6038-6056 pubmed 出版商
  17. Costain A, Phythian Adams A, Colombo S, Marley A, Owusu C, Cook P, et al. Dynamics of Host Immune Response Development During Schistosoma mansoni Infection. Front Immunol. 2022;13:906338 pubmed 出版商
  18. Que W, Ma K, Hu X, Guo W, Li X. Combinations of anti-GITR antibody and CD28 superagonist induce permanent allograft acceptance by generating type 1 regulatory T cells. Sci Adv. 2022;8:eabo4413 pubmed 出版商
  19. Xie F, Zhou X, Su P, Li H, Tu Y, Du J, et al. Breast cancer cell-derived extracellular vesicles promote CD8+ T cell exhaustion via TGF-β type II receptor signaling. Nat Commun. 2022;13:4461 pubmed 出版商
  20. Xu D, Ma R, Ju Y, Song X, Niu B, Hong W, et al. Cholesterol sulfate alleviates ulcerative colitis by promoting cholesterol biosynthesis in colonic epithelial cells. Nat Commun. 2022;13:4428 pubmed 出版商
  21. Dinnon K, Leist S, Okuda K, Dang H, Fritch E, Gully K, et al. SARS-CoV-2 infection produces chronic pulmonary epithelial and immune cell dysfunction with fibrosis in mice. Sci Transl Med. 2022;14:eabo5070 pubmed 出版商
  22. Zhao X, Hu S, Zeng L, Liu X, Song Y, Zhang Y, et al. Irradiation combined with PD-L1-/- and autophagy inhibition enhances the antitumor effect of lung cancer via cGAS-STING-mediated T cell activation. iScience. 2022;25:104690 pubmed 出版商
  23. Ma Z, Zhang W, Dong B, Xin Z, Ji Y, Su R, et al. Docetaxel remodels prostate cancer immune microenvironment and enhances checkpoint inhibitor-based immunotherapy. Theranostics. 2022;12:4965-4979 pubmed 出版商
  24. Wu B, Song M, Dong Q, Xiang G, Li J, Ma X, et al. UBR5 promotes tumor immune evasion through enhancing IFN-γ-induced PDL1 transcription in triple negative breast cancer. Theranostics. 2022;12:5086-5102 pubmed 出版商
  25. Liu C, Zheng S, Wang Z, Wang S, Wang X, Yang L, et al. KRAS-G12D mutation drives immune suppression and the primary resistance of anti-PD-1/PD-L1 immunotherapy in non-small cell lung cancer. Cancer Commun (Lond). 2022;42:828-847 pubmed 出版商
  26. Lei X, Lin H, Wang J, Ou Z, Ruan Y, Sadagopan A, et al. Mitochondrial fission induces immunoescape in solid tumors through decreasing MHC-I surface expression. Nat Commun. 2022;13:3882 pubmed 出版商
  27. Chi R, Yao C, Chen S, Liu Y, He Y, Zhang J, et al. Elevated BCAA Suppresses the Development and Metastasis of Breast Cancer. Front Oncol. 2022;12:887257 pubmed 出版商
  28. Pi xf1 eros A, Kulkarni A, Gao H, Orr K, Glenn L, Huang F, et al. Proinflammatory signaling in islet β cells propagates invasion of pathogenic immune cells in autoimmune diabetes. Cell Rep. 2022;39:111011 pubmed 出版商
  29. Laffey K, Stiles R, Ludescher M, Davis T, Khwaja S, Bram R, et al. Early expression of mature αβ TCR in CD4-CD8- T cell progenitors enables MHC to drive development of T-ALL bearing NOTCH mutations. Proc Natl Acad Sci U S A. 2022;119:e2118529119 pubmed 出版商
  30. Huang S, Si H, Liu J, Qi D, Pei X, Lu D, et al. Sleep Loss Causes Dysfunction in Murine Extraorbital Lacrimal Glands. Invest Ophthalmol Vis Sci. 2022;63:19 pubmed 出版商
  31. Huang J, Wang X, Li B, Shen S, Wang R, Tao H, et al. L-5-hydroxytryptophan promotes antitumor immunity by inhibiting PD-L1 inducible expression. J Immunother Cancer. 2022;10: pubmed 出版商
  32. Garnier L, Pick R, Montorfani J, Sun M, Brighouse D, Liaudet N, et al. IFN-γ-dependent tumor-antigen cross-presentation by lymphatic endothelial cells promotes their killing by T cells and inhibits metastasis. Sci Adv. 2022;8:eabl5162 pubmed 出版商
  33. Lu L, Li T, Feng X, Liu Z, Liu Y, Chao T, et al. Excessive immunosuppression by regulatory T cells antagonizes T cell response to schistosome infection in PD-1-deficient mice. PLoS Pathog. 2022;18:e1010596 pubmed 出版商
  34. Wang Q, Bergholz J, Ding L, Lin Z, Kabraji S, Hughes M, et al. STING agonism reprograms tumor-associated macrophages and overcomes resistance to PARP inhibition in BRCA1-deficient models of breast cancer. Nat Commun. 2022;13:3022 pubmed 出版商
  35. Deal B, Reynolds L, PATTERSON C, Janjic J, Pollock J. Behavioral and inflammatory sex differences revealed by celecoxib nanotherapeutic treatment of peripheral neuroinflammation. Sci Rep. 2022;12:8472 pubmed 出版商
  36. Koutn xed k J, Klepsch V, Pommermayr M, Thuille N, Baier G, Siegmund K. A MLR-Based Approach to Analyze Regulators of T Lymphocyte Activation In Vivo. Int J Mol Sci. 2022;23: pubmed 出版商
  37. Aiken T, Erbe A, Zebertavage L, Komjathy D, Feils A, Rodriguez M, et al. Mechanism of effective combination radio-immunotherapy against 9464D-GD2, an immunologically cold murine neuroblastoma. J Immunother Cancer. 2022;10: pubmed 出版商
  38. Maruyama J, Reyna R, Kishimoto Urata M, Urata S, Manning J, Harsell N, et al. CD4 T-cell depletion prevents Lassa fever associated hearing loss in the mouse model. PLoS Pathog. 2022;18:e1010557 pubmed 出版商
  39. Taniguchi H, Caeser R, Chavan S, Zhan Y, Chow A, Manoj P, et al. WEE1 inhibition enhances the antitumor immune response to PD-L1 blockade by the concomitant activation of STING and STAT1 pathways in SCLC. Cell Rep. 2022;39:110814 pubmed 出版商
  40. Zhang R, Wang Y, Liu D, Luo Q, Du P, Zhang H, et al. Sodium Tanshinone IIA Sulfonate as a Potent IDO1/TDO2 Dual Inhibitor Enhances Anti-PD1 Therapy for Colorectal Cancer in Mice. Front Pharmacol. 2022;13:870848 pubmed 出版商
  41. Pan C, Wu Q, Wang S, Mei Z, Zhang L, Gao X, et al. Combination with Toll-like receptor 4 (TLR4) agonist reverses GITR agonism mediated M2 polarization of macrophage in Hepatocellular carcinoma. Oncoimmunology. 2022;11:2073010 pubmed 出版商
  42. Khan M, Engstr xf6 m C, Fagman J, Smedh U, Lundholm K, Iresj xf6 B. Reduced tumor growth in EP2 knockout mice is related to signaling pathways favoring an increased local anti‑tumor immunity in the tumor stroma. Oncol Rep. 2022;47: pubmed 出版商
  43. Li H, Liu Z, Liu L, Zhang H, Han C, Girard L, et al. AXL targeting restores PD-1 blockade sensitivity of STK11/LKB1 mutant NSCLC through expansion of TCF1+ CD8 T cells. Cell Rep Med. 2022;3:100554 pubmed 出版商
  44. Melese E, Franks E, Cederberg R, Harbourne B, Shi R, Wadsworth B, et al. CCL5 production in lung cancer cells leads to an altered immune microenvironment and promotes tumor development. Oncoimmunology. 2022;11:2010905 pubmed 出版商
  45. Kumagai Y, Futoh Y, Miyato H, Ohzawa H, Yamaguchi H, Saito S, et al. Effect of Systemic or Intraperitoneal Administration of Anti-PD-1 Antibody for Peritoneal Metastases from Gastric Cancer. In Vivo. 2022;36:1126-1135 pubmed 出版商
  46. Brown G, Ca xf1 ete P, Wang H, Medhavy A, Bones J, Roco J, et al. TLR7 gain-of-function genetic variation causes human lupus. Nature. 2022;605:349-356 pubmed 出版商
  47. Piao W, Li L, Saxena V, Iyyathurai J, Lakhan R, Zhang Y, et al. PD-L1 signaling selectively regulates T cell lymphatic transendothelial migration. Nat Commun. 2022;13:2176 pubmed 出版商
  48. Meléndez E, Chondronasiou D, Mosteiro L, Mart xed nez de Villarreal J, Fern xe1 ndez Alfara M, Lynch C, et al. Natural killer cells act as an extrinsic barrier for in vivo reprogramming. Development. 2022;149: pubmed 出版商
  49. El Sayes N, Walsh S, Vito A, Reihani A, Ask K, Wan Y, et al. IFNAR blockade synergizes with oncolytic VSV to prevent virus-mediated PD-L1 expression and promote antitumor T cell activity. Mol Ther Oncolytics. 2022;25:16-30 pubmed 出版商
  50. Wedge M, Jennings V, Crupi M, Poutou J, Jamieson T, Pelin A, et al. Virally programmed extracellular vesicles sensitize cancer cells to oncolytic virus and small molecule therapy. Nat Commun. 2022;13:1898 pubmed 出版商
  51. Xiong W, Gao X, Zhang T, Jiang B, Hu M, Bu X, et al. USP8 inhibition reshapes an inflamed tumor microenvironment that potentiates the immunotherapy. Nat Commun. 2022;13:1700 pubmed 出版商
  52. Zhang Y, Huo F, Cao Q, Jia R, Huang Q, Wang Z, et al. FimH confers mannose-targeting ability to Bacillus Calmette-Guerin for improved immunotherapy in bladder cancer. J Immunother Cancer. 2022;10: pubmed 出版商
  53. Seung H, Wröbel J, Wadle C, B xfc hler T, Chiang D, Rettkowski J, et al. P2Y12-dependent activation of hematopoietic stem and progenitor cells promotes emergency hematopoiesis after myocardial infarction. Basic Res Cardiol. 2022;117:16 pubmed 出版商
  54. Wemlinger S, Parker Harp C, Yu B, Hardy I, Seefeldt M, Matsuda J, et al. Preclinical Analysis of Candidate Anti-Human CD79 Therapeutic Antibodies Using a Humanized CD79 Mouse Model. J Immunol. 2022;208:1566-1584 pubmed 出版商
  55. Seitz S, Dreyer T, Stange C, Steiger K, Bräuer R, Scheutz L, et al. CXCL9 inhibits tumour growth and drives anti-PD-L1 therapy in ovarian cancer. Br J Cancer. 2022;126:1470-1480 pubmed 出版商
  56. Abbas Z, GEORGE C, Ancliffe M, Howlett M, Jones A, Kuchibhotla M, et al. Conventional Therapies Deplete Brain-Infiltrating Adaptive Immune Cells in a Mouse Model of Group 3 Medulloblastoma Implicating Myeloid Cells as Favorable Immunotherapy Targets. Front Immunol. 2022;13:837013 pubmed 出版商
  57. van Vloten J, Matuszewska K, Minow M, Minott J, Santry L, Pereira M, et al. Oncolytic Orf virus licenses NK cells via cDC1 to activate innate and adaptive antitumor mechanisms and extends survival in a murine model of late-stage ovarian cancer. J Immunother Cancer. 2022;10: pubmed 出版商
  58. Wennerberg E, Mukherjee S, Spada S, Hung C, Agrusa C, Chen C, et al. Expression of the mono-ADP-ribosyltransferase ART1 by tumor cells mediates immune resistance in non-small cell lung cancer. Sci Transl Med. 2022;14:eabe8195 pubmed 出版商
  59. Pantasis S, Friemel J, Brütsch S, Hu Z, Krautbauer S, Liebisch G, et al. Vertebrate lonesome kinase modulates the hepatocyte secretome to prevent perivascular liver fibrosis and inflammation. J Cell Sci. 2022;135: pubmed 出版商
  60. Tang T, Huang X, Zhang G, Lu M, Hong Z, Wang M, et al. Oncolytic peptide LTX-315 induces anti-pancreatic cancer immunity by targeting the ATP11B-PD-L1 axis. J Immunother Cancer. 2022;10: pubmed 出版商
  61. Cha J, Chan L, Wang Y, Chu Y, Wang C, Lee H, et al. Ephrin receptor A10 monoclonal antibodies and the derived chimeric antigen receptor T cells exert an antitumor response in mouse models of triple-negative breast cancer. J Biol Chem. 2022;298:101817 pubmed 出版商
  62. Salaroglio I, Belisario D, Bironzo P, Ananthanarayanan P, Ricci L, Digiovanni S, et al. SKP2 drives the sensitivity to neddylation inhibitors and cisplatin in malignant pleural mesothelioma. J Exp Clin Cancer Res. 2022;41:75 pubmed 出版商
  63. Yokomizo K, Waki K, Ozawa M, Yamamoto K, Ogasawara S, Yano H, et al. Knockout of high-mobility group box 1 in B16F10 melanoma cells induced host immunity-mediated suppression of in vivo tumor growth. Med Oncol. 2022;39:58 pubmed 出版商
  64. Yang B, Zhang Z, Chen X, Wang X, Qin S, Du L, et al. An Asia-specific variant of human IgG1 represses colorectal tumorigenesis by shaping the tumor microenvironment. J Clin Invest. 2022;132: pubmed 出版商
  65. Thakkar D, Paliwal S, Dharmadhikari B, Guan S, Liu L, Kar S, et al. Rationally targeted anti-VISTA antibody that blockades the C-C' loop region can reverse VISTA immune suppression and remodel the immune microenvironment to potently inhibit tumor growth in an Fc independent manner. J Immunother Cancer. 2022;10: pubmed 出版商
  66. Kinkhabwala A, Herbel C, Pankratz J, Yushchenko D, R xfc berg S, Praveen P, et al. MACSima imaging cyclic staining (MICS) technology reveals combinatorial target pairs for CAR T cell treatment of solid tumors. Sci Rep. 2022;12:1911 pubmed 出版商
  67. D Addio F, Maestroni A, Assi E, Ben Nasr M, Amabile G, Usuelli V, et al. The IGFBP3/TMEM219 pathway regulates beta cell homeostasis. Nat Commun. 2022;13:684 pubmed 出版商
  68. Quách T, Huang W, Sahu R, Diadhiou C, Raparia C, Johnson R, et al. Context-dependent induction of autoimmunity by TNF signaling deficiency. JCI Insight. 2022;7: pubmed 出版商
  69. Gopal A, Ibrahim R, Fuller M, Umlandt P, Parker J, Tran J, et al. TIRAP drives myelosuppression through an Ifnγ-Hmgb1 axis that disrupts the endothelial niche in mice. J Exp Med. 2022;219: pubmed 出版商
  70. Feng L, Li C, Zeng L, Gao D, Sun Y, Zhong L, et al. MARCH3 negatively regulates IL-3-triggered inflammatory response by mediating K48-linked polyubiquitination and degradation of IL-3Rα. Signal Transduct Target Ther. 2022;7:21 pubmed 出版商
  71. Keller E, Dvorina N, Jørgensen T. Spontaneous CD4+ T Cell Activation and Differentiation in Lupus-Prone B6.Nba2 Mice Is IFNAR-Independent. Int J Mol Sci. 2022;23: pubmed 出版商
  72. Yang K, Han J, Asada M, Gill J, Park J, Sathe M, et al. Cytoplasmic RNA quality control failure engages mTORC1-mediated autoinflammatory disease. J Clin Invest. 2022;132: pubmed 出版商
  73. Jiang Z, Li H, Schroer S, Voisin V, Ju Y, Pacal M, et al. Hypophosphorylated pRb knock-in mice exhibit hallmarks of aging and vitamin C-preventable diabetes. EMBO J. 2022;41:e106825 pubmed 出版商
  74. Du Y, Peng Q, Cheng D, Pan T, Sun W, Wang H, et al. Cancer cell-expressed BTNL2 facilitates tumour immune escape via engagement with IL-17A-producing γδ T cells. Nat Commun. 2022;13:231 pubmed 出版商
  75. Kono M, Komatsuda H, Yamaki H, Kumai T, Hayashi R, Wakisaka R, et al. Immunomodulation via FGFR inhibition augments FGFR1 targeting T-cell based antitumor immunotherapy for head and neck squamous cell carcinoma. Oncoimmunology. 2022;11:2021619 pubmed 出版商
  76. Nakamura Y, Kinoshita J, Yamaguchi T, Aoki T, Saito H, Hamabe Horiike T, et al. Crosstalk between cancer-associated fibroblasts and immune cells in peritoneal metastasis: inhibition in the migration of M2 macrophages and mast cells by Tranilast. Gastric Cancer. 2022;25:515-526 pubmed 出版商
  77. Lin J, Chen Y, Zhu H, Cheng K, Wang H, Yu X, et al. Lymphatic Reconstruction in Kidney Allograft Aggravates Chronic Rejection by Promoting Alloantigen Presentation. Front Immunol. 2021;12:796260 pubmed 出版商
  78. Liu Y, Wang L, Song Q, Ali M, Crowe W, Kucera G, et al. Intrapleural nano-immunotherapy promotes innate and adaptive immune responses to enhance anti-PD-L1 therapy for malignant pleural effusion. Nat Nanotechnol. 2022;17:206-216 pubmed 出版商
  79. Bristow C, Reeves M, Winston R. Alphataxin, a Small-Molecule Drug That Elevates Tumor-Infiltrating CD4+ T Cells, in Combination With Anti-PD-1 Therapy, Suppresses Murine Renal Cancer and Metastasis. Front Oncol. 2021;11:739080 pubmed 出版商
  80. Zhou Q, Liang J, Yang T, Liu J, Li B, Li Y, et al. Carfilzomib modulates tumor microenvironment to potentiate immune checkpoint therapy for cancer. EMBO Mol Med. 2022;14:e14502 pubmed 出版商
  81. Stoff M, Ebbecke T, Ciurkiewicz M, Pavasutthipaisit S, Mayer Lambertz S, St xf6 rk T, et al. C-type lectin receptor DCIR contributes to hippocampal injury in acute neurotropic virus infection. Sci Rep. 2021;11:23819 pubmed 出版商
  82. Tatsumi N, Codrington A, El Fenej J, Phondge V, Kumamoto Y. Effective CD4 T cell priming requires repertoire scanning by CD301b+ migratory cDC2 cells upon lymph node entry. Sci Immunol. 2021;6:eabg0336 pubmed 出版商
  83. Arinrad S, Wilke J, Seelbach A, Doeren J, Hindermann M, Butt U, et al. NMDAR1 autoantibodies amplify behavioral phenotypes of genetic white matter inflammation: a mild encephalitis model with neuropsychiatric relevance. Mol Psychiatry. 2021;: pubmed 出版商
  84. Kettwig M, Ternka K, Wendland K, Krüger D, Zampar S, Schob C, et al. Interferon-driven brain phenotype in a mouse model of RNaseT2 deficient leukoencephalopathy. Nat Commun. 2021;12:6530 pubmed 出版商
  85. Zhu Y, Elsheikha H, Wang J, Fang S, He J, Zhu X, et al. Synergy between Toxoplasma gondii type I ΔGRA17 immunotherapy and PD-L1 checkpoint inhibition triggers the regression of targeted and distal tumors. J Immunother Cancer. 2021;9: pubmed 出版商
  86. Fahy N, Palomares Cabeza V, Lolli A, Witte Bouma J, Merino A, Ridwan Y, et al. Chondrogenically Primed Human Mesenchymal Stem Cells Persist and Undergo Early Stages of Endochondral Ossification in an Immunocompetent Xenogeneic Model. Front Immunol. 2021;12:715267 pubmed 出版商
  87. Fearon A, Slabber C, Kuklin A, Bachofner M, Tortola L, Pohlmeier L, et al. Fibroblast growth factor receptor 3 in hepatocytes protects from toxin-induced liver injury and fibrosis. iScience. 2021;24:103143 pubmed 出版商
  88. Ni Y, Hu B, Wu G, Shao Z, Zheng Y, Zhang R, et al. Interruption of neutrophil extracellular traps formation dictates host defense and tubular HOXA5 stability to augment efficacy of anti-Fn14 therapy against septic AKI. Theranostics. 2021;11:9431-9451 pubmed 出版商
  89. Choe D, Lee E, Beeghly Fadiel A, Wilson A, Whalen M, Adunyah S, et al. High-Fat Diet-Induced Obese Effects of Adipocyte-Specific CXCR2 Conditional Knockout in the Peritoneal Tumor Microenvironment of Ovarian Cancer. Cancers (Basel). 2021;13: pubmed 出版商
  90. Correia de Sousa M, Calo N, Sobolewski C, Gjorgjieva M, Clement S, Maeder C, et al. Mir-21 Suppression Promotes Mouse Hepatocarcinogenesis. Cancers (Basel). 2021;13: pubmed 出版商
  91. Hoefflin R, Harlander S, Abhari B, Peighambari A, Adlesic M, Seidel P, et al. Therapeutic Effects of Inhibition of Sphingosine-1-Phosphate Signaling in HIF-2α Inhibitor-Resistant Clear Cell Renal Cell Carcinoma. Cancers (Basel). 2021;13: pubmed 出版商
  92. Van Maldegem F, Valand K, Cole M, Patel H, Angelova M, Rana S, et al. Characterisation of tumour microenvironment remodelling following oncogene inhibition in preclinical studies with imaging mass cytometry. Nat Commun. 2021;12:5906 pubmed 出版商
  93. Horiuchi S, Wu H, Liu W, Schmitt N, Provot J, Liu Y, et al. Tox2 is required for the maintenance of GC TFH cells and the generation of memory TFH cells. Sci Adv. 2021;7:eabj1249 pubmed 出版商
  94. Liu H, Pedros C, Kong K, Canonigo Balancio A, Xue W, Altman A. Leveraging the Treg-intrinsic CTLA4-PKCη signaling pathway for cancer immunotherapy. J Immunother Cancer. 2021;9: pubmed 出版商
  95. Susukida T, Kuwahara S, Song B, Kazaoka A, Aoki S, Ito K. Regulation of the immune tolerance system determines the susceptibility to HLA-mediated abacavir-induced skin toxicity. Commun Biol. 2021;4:1137 pubmed 出版商
  96. Tanaka Y, Onozato M, Mikami T, Kohwi Shigematsu T, Fukushima T, Kondo M. Increased Indoleamine 2,3-Dioxygenase Levels at the Onset of Sjögren's Syndrome in SATB1-Conditional Knockout Mice. Int J Mol Sci. 2021;22: pubmed 出版商
  97. Carnevale D, Carnevale L, Perrotta S, Pallante F, Migliaccio A, Iodice D, et al. Chronic 3D Vascular-Immune Interface Established by Coculturing Pressurized Resistance Arteries and Immune Cells. Hypertension. 2021;78:1648-1661 pubmed 出版商
  98. Tian N, Hu L, Lu Y, Tong L, Feng M, Liu Q, et al. TKT maintains intestinal ATP production and inhibits apoptosis-induced colitis. Cell Death Dis. 2021;12:853 pubmed 出版商
  99. Jiang Y, Yuan Y, Chen M, Li S, Bai J, Zhang Y, et al. PRMT5 disruption drives antitumor immunity in cervical cancer by reprogramming T cell-mediated response and regulating PD-L1 expression. Theranostics. 2021;11:9162-9176 pubmed 出版商
  100. Yang M, Long D, Hu L, Zhao Z, Li Q, Guo Y, et al. AIM2 deficiency in B cells ameliorates systemic lupus erythematosus by regulating Blimp-1-Bcl-6 axis-mediated B-cell differentiation. Signal Transduct Target Ther. 2021;6:341 pubmed 出版商
  101. Rizvi Z, Dalal R, Sadhu S, Kumar Y, Kumar S, Gupta S, et al. High-salt diet mediates interplay between NK cells and gut microbiota to induce potent tumor immunity. Sci Adv. 2021;7:eabg5016 pubmed 出版商
  102. Onodera T, Kita S, Adachi Y, Moriyama S, Sato A, Nomura T, et al. A SARS-CoV-2 antibody broadly neutralizes SARS-related coronaviruses and variants by coordinated recognition of a virus-vulnerable site. Immunity. 2021;54:2385-2398.e10 pubmed 出版商
  103. Droho S, Cuda C, Perlman H, Lavine J. Macrophage-derived interleukin-6 is necessary and sufficient for choroidal angiogenesis. Sci Rep. 2021;11:18084 pubmed 出版商
  104. Hoffman K, Villar M, Poveda C, Bottazzi M, Hotez P, Tweardy D, et al. Signal Transducer and Activator of Transcription-3 Modulation of Cardiac Pathology in Chronic Chagasic Cardiomyopathy. Front Cell Infect Microbiol. 2021;11:708325 pubmed 出版商
  105. Lin J, Liu H, Fukumoto T, Zundell J, Yan Q, Tang C, et al. Targeting the IRE1α/XBP1s pathway suppresses CARM1-expressing ovarian cancer. Nat Commun. 2021;12:5321 pubmed 出版商
  106. Wang Z, He L, Li W, Xu C, Zhang J, Wang D, et al. GDF15 induces immunosuppression via CD48 on regulatory T cells in hepatocellular carcinoma. J Immunother Cancer. 2021;9: pubmed 出版商
  107. Neumann S, Campbell K, Woodall M, Evans M, Clarkson A, Young S. Obesity Has a Systemic Effect on Immune Cells in Naïve and Cancer-Bearing Mice. Int J Mol Sci. 2021;22: pubmed 出版商
  108. Drzyzga A, Cichon T, Czapla J, Jarosz Biej M, Pilny E, Matuszczak S, et al. The Proper Administration Sequence of Radiotherapy and Anti-Vascular Agent-DMXAA Is Essential to Inhibit the Growth of Melanoma Tumors. Cancers (Basel). 2021;13: pubmed 出版商
  109. Liu Z, Wang T, She Y, Wu K, Gu S, Li L, et al. N6-methyladenosine-modified circIGF2BP3 inhibits CD8+ T-cell responses to facilitate tumor immune evasion by promoting the deubiquitination of PD-L1 in non-small cell lung cancer. Mol Cancer. 2021;20:105 pubmed 出版商
  110. Moreira T, Mangani D, Cox L, Leibowitz J, Lobo E, Oliveira M, et al. PD-L1+ and XCR1+ dendritic cells are region-specific regulators of gut homeostasis. Nat Commun. 2021;12:4907 pubmed 出版商
  111. Zhu Q, Ma Y, Liang J, Wei Z, Li M, Zhang Y, et al. AHR mediates the aflatoxin B1 toxicity associated with hepatocellular carcinoma. Signal Transduct Target Ther. 2021;6:299 pubmed 出版商
  112. Xu P, Xiong W, Lin Y, Fan L, Pan H, Li Y. Histone deacetylase 2 knockout suppresses immune escape of triple-negative breast cancer cells via downregulating PD-L1 expression. Cell Death Dis. 2021;12:779 pubmed 出版商
  113. Petley E, Koay H, Henderson M, Sek K, Todd K, Keam S, et al. MAIT cells regulate NK cell-mediated tumor immunity. Nat Commun. 2021;12:4746 pubmed 出版商
  114. Tillie R, Theelen T, van Kuijk K, Temmerman L, de Bruijn J, Gijbels M, et al. A Switch from Cell-Associated to Soluble PDGF-B Protects against Atherosclerosis, despite Driving Extramedullary Hematopoiesis. Cells. 2021;10: pubmed 出版商
  115. Winn N, Wolf E, Cottam M, Bhanot M, Hasty A. Myeloid-specific deletion of ferroportin impairs macrophage bioenergetics but is disconnected from systemic insulin action in adult mice. Am J Physiol Endocrinol Metab. 2021;321:E376-E391 pubmed 出版商
  116. Forman R, Logunova L, Smith H, Wemyss K, Mair I, Boon L, et al. Trichuris muris infection drives cell-intrinsic IL4R alpha independent colonic RELMα+ macrophages. PLoS Pathog. 2021;17:e1009768 pubmed 出版商
  117. Funk K, Arutyunov A, Desai P, White J, Soung A, Rosen S, et al. Decreased antiviral immune response within the central nervous system of aged mice is associated with increased lethality of West Nile virus encephalitis. Aging Cell. 2021;20:e13412 pubmed 出版商
  118. Patial S, Lewis B, Vo T, Choudhary I, Paudel K, Mao Y, et al. Myeloid-IL4Rα is an indispensable link in IL-33-ILCs-IL-13-IL4Rα axis of eosinophil recruitment in murine lungs. Sci Rep. 2021;11:15465 pubmed 出版商
  119. Lu C, Liu Z, Klement J, Yang D, Merting A, Poschel D, et al. WDR5-H3K4me3 epigenetic axis regulates OPN expression to compensate PD-L1 function to promote pancreatic cancer immune escape. J Immunother Cancer. 2021;9: pubmed 出版商
  120. Wu S, Xiao Y, Wei J, Xu X, Jin X, Hu X, et al. MYC suppresses STING-dependent innate immunity by transcriptionally upregulating DNMT1 in triple-negative breast cancer. J Immunother Cancer. 2021;9: pubmed 出版商
  121. Van De Velde L, Allen E, Crawford J, Wilson T, Guy C, Russier M, et al. Neuroblastoma Formation Requires Unconventional CD4 T Cells and Arginase-1-Dependent Myeloid Cells. Cancer Res. 2021;81:5047-5059 pubmed 出版商
  122. Tulotta C, Lefley D, Moore C, Amariutei A, Spicer Hadlington A, Quayle L, et al. IL-1B drives opposing responses in primary tumours and bone metastases; harnessing combination therapies to improve outcome in breast cancer. NPJ Breast Cancer. 2021;7:95 pubmed 出版商
  123. Bruand M, Barras D, Mina M, Ghisoni E, Morotti M, Lanitis E, et al. Cell-autonomous inflammation of BRCA1-deficient ovarian cancers drives both tumor-intrinsic immunoreactivity and immune resistance via STING. Cell Rep. 2021;36:109412 pubmed 出版商
  124. Wutschka J, Kast B, Sator Schmitt M, Appak Baskoy S, Hess J, Sinn H, et al. JUNB suppresses distant metastasis by influencing the initial metastatic stage. Clin Exp Metastasis. 2021;38:411-423 pubmed 出版商
  125. Goyette M, Elkholi I, Apcher C, Kuasne H, Rothlin C, Muller W, et al. Targeting Axl favors an antitumorigenic microenvironment that enhances immunotherapy responses by decreasing Hif-1α levels. Proc Natl Acad Sci U S A. 2021;118: pubmed 出版商
  126. James O, Vandereyken M, Marchingo J, Singh F, Bray S, Wilson J, et al. IL-15 and PIM kinases direct the metabolic programming of intestinal intraepithelial lymphocytes. Nat Commun. 2021;12:4290 pubmed 出版商
  127. Lu J, Wang W, Li P, Wang X, Gao C, Zhang B, et al. MiR-146a regulates regulatory T cells to suppress heart transplant rejection in mice. Cell Death Discov. 2021;7:165 pubmed 出版商
  128. Wilke J, Hindermann M, Moussavi A, Butt U, Dadarwal R, Berghoff S, et al. Inducing sterile pyramidal neuronal death in mice to model distinct aspects of gray matter encephalitis. Acta Neuropathol Commun. 2021;9:121 pubmed 出版商
  129. Gvozdeva O, Achasova K, Litvinova N, Kozhevnikova E, Litvinova E. Female Scent Activated Expression of Arginase1 and Inducible NO-Synthetase in Lung of BALB/c Male Mice. Animals (Basel). 2021;11: pubmed 出版商
  130. Maier J, Rogg M, Helmstädter M, Sammarco A, Walz G, Werner M, et al. A Novel Model for Nephrotic Syndrome Reveals Associated Dysbiosis of the Gut Microbiome and Extramedullary Hematopoiesis. Cells. 2021;10: pubmed 出版商
  131. Hering L, Katkeviciute E, Schwarzfischer M, Niechcial A, Riggs J, Wawrzyniak M, et al. Macrophages Compensate for Loss of Protein Tyrosine Phosphatase N2 in Dendritic Cells to Protect from Elevated Colitis. Int J Mol Sci. 2021;22: pubmed 出版商
  132. Gehlsen U, Stary D, Maass M, Riesner K, Musial G, Stern M, et al. Ocular Graft-versus-Host Disease in a Chemotherapy-Based Minor-Mismatch Mouse Model Features Corneal (Lymph-) Angiogenesis. Int J Mol Sci. 2021;22: pubmed 出版商
  133. Mai J, Li Z, Xia X, Zhang J, Li J, Liu H, et al. Synergistic Activation of Antitumor Immunity by a Particulate Therapeutic Vaccine. Adv Sci (Weinh). 2021;8:2100166 pubmed 出版商
  134. Bohannon C, Ende Z, Cao W, Mboko W, Ranjan P, Kumar A, et al. Influenza Virus Infects and Depletes Activated Adaptive Immune Responders. Adv Sci (Weinh). 2021;8:e2100693 pubmed 出版商
  135. Innamarato P, Morse J, Mackay A, Asby S, Beatty M, Blauvelt J, et al. Intralesional injection of rose bengal augments the efficacy of gemcitabine chemotherapy against pancreatic tumors. BMC Cancer. 2021;21:756 pubmed 出版商
  136. Khan I, Del Guzzo C, Shao A, Cho J, Du R, Cohen A, et al. The CD200-CD200R Axis Promotes Squamous Cell Carcinoma Metastasis via Regulation of Cathepsin K. Cancer Res. 2021;81:5021-5032 pubmed 出版商
  137. Ryu S, Shchukina I, Youm Y, Qing H, Hilliard B, Dlugos T, et al. Ketogenic diet restrains aging-induced exacerbation of coronavirus infection in mice. elife. 2021;10: pubmed 出版商
  138. Souza C, Ketelut Carneiro N, Milanezi C, Faccioli L, Gardinassi L, Silva J. NLRC4 inhibits NLRP3 inflammasome and abrogates effective antifungal CD8+ T cell responses. iScience. 2021;24:102548 pubmed 出版商
  139. Ho D, Tsui Y, Chan L, Sze K, Zhang X, Cheu J, et al. Single-cell RNA sequencing shows the immunosuppressive landscape and tumor heterogeneity of HBV-associated hepatocellular carcinoma. Nat Commun. 2021;12:3684 pubmed 出版商
  140. Uyanik B, Goloudina A, Akbarali A, Grigorash B, Petukhov A, Singhal S, et al. Inhibition of the DNA damage response phosphatase PPM1D reprograms neutrophils to enhance anti-tumor immune responses. Nat Commun. 2021;12:3622 pubmed 出版商
  141. Ramos M, Tian L, de Ruiter E, Song C, Paucarmayta A, Singh A, et al. Cancer immunotherapy by NC410, a LAIR-2 Fc protein blocking human LAIR-collagen interaction. elife. 2021;10: pubmed 出版商
  142. Zhang J, Qi J, Wei H, Lei Y, Yu H, Liu N, et al. TGFβ1 in Cancer-Associated Fibroblasts Is Associated With Progression and Radiosensitivity in Small-Cell Lung Cancer. Front Cell Dev Biol. 2021;9:667645 pubmed 出版商
  143. Wang J, Zhang Y, Xiao Y, Yuan X, Li P, Wang X, et al. Boosting immune surveillance by low-dose PI3K inhibitor facilitates early intervention of breast cancer. Am J Cancer Res. 2021;11:2005-2024 pubmed
  144. Okunuki Y, Tabor S, Lee M, Connor K. CD47 Deficiency Ameliorates Ocular Autoimmune Inflammation. Front Immunol. 2021;12:680568 pubmed 出版商
  145. Yan C, Saleh N, Yang J, Nebhan C, Vilgelm A, Reddy E, et al. Novel induction of CD40 expression by tumor cells with RAS/RAF/PI3K pathway inhibition augments response to checkpoint blockade. Mol Cancer. 2021;20:85 pubmed 出版商
  146. Pereira J, Cavaco P, da Silva R, Pacheco Leyva I, Mereiter S, Pinto R, et al. P-selectin glycoprotein ligand 1 promotes T cell lymphoma development and dissemination. Transl Oncol. 2021;14:101125 pubmed 出版商
  147. Zhang X, Liu X, Zhou W, Du Q, Yang M, Ding Y, et al. Blockade of IDO-Kynurenine-AhR Axis Ameliorated Colitis-Associated Colon Cancer via Inhibiting Immune Tolerance. Cell Mol Gastroenterol Hepatol. 2021;12:1179-1199 pubmed 出版商
  148. Wu S, Fukumoto T, Lin J, Nacarelli T, Wang Y, Ong D, et al. Targeting glutamine dependence through GLS1 inhibition suppresses ARID1A-inactivated clear cell ovarian carcinoma. Nat Cancer. 2021;2:189-200 pubmed 出版商
  149. West J, Austin E, Rizzi E, Yan L, Tanjore H, Crabtree A, et al. KCNK3 Mutation Causes Altered Immune Function in Pulmonary Arterial Hypertension Patients and Mouse Models. Int J Mol Sci. 2021;22: pubmed 出版商
  150. Kim C, Jin J, Ye Z, Jadhav R, Gustafson C, Hu B, et al. Histone deficiency and accelerated replication stress in T cell aging. J Clin Invest. 2021;131: pubmed 出版商
  151. Barker K, Etesami N, Shenoy A, Arafa E, Lyon de Ana C, Smith N, et al. Lung-resident memory B cells protect against bacterial pneumonia. J Clin Invest. 2021;131: pubmed 出版商
  152. Chen S, Liu H, Li Z, Tang J, Huang B, Zhi F, et al. Epithelial PBLD attenuates intestinal inflammatory response and improves intestinal barrier function by inhibiting NF-κB signaling. Cell Death Dis. 2021;12:563 pubmed 出版商
  153. Demandt J, van Kuijk K, Theelen T, Marsch E, Heffron S, Fisher E, et al. Whole-Body Prolyl Hydroxylase Domain (PHD) 3 Deficiency Increased Plasma Lipids and Hematocrit Without Impacting Plaque Size in Low-Density Lipoprotein Receptor Knockout Mice. Front Cell Dev Biol. 2021;9:664258 pubmed 出版商
  154. Kemp S, Carpenter E, Steele N, Donahue K, Nwosu Z, Pacheco A, et al. Apolipoprotein E Promotes Immune Suppression in Pancreatic Cancer through NF-κB-Mediated Production of CXCL1. Cancer Res. 2021;81:4305-4318 pubmed 出版商
  155. Lebratti T, Lim Y, Cofie A, Andhey P, Jiang X, Scott J, et al. A sustained type I IFN-neutrophil-IL-18 axis drives pathology during mucosal viral infection. elife. 2021;10: pubmed 出版商
  156. Zhang H, Xia Y, Wang F, Luo M, Yang K, Liang S, et al. Aldehyde Dehydrogenase 2 Mediates Alcohol-Induced Colorectal Cancer Immune Escape through Stabilizing PD-L1 Expression. Adv Sci (Weinh). 2021;8:2003404 pubmed 出版商
  157. Clemen R, Freund E, Mrochen D, Miebach L, Schmidt A, Rauch B, et al. Gas Plasma Technology Augments Ovalbumin Immunogenicity and OT-II T Cell Activation Conferring Tumor Protection in Mice. Adv Sci (Weinh). 2021;8:2003395 pubmed 出版商
  158. Liu K, Jing N, Wang D, Xu P, Wang J, Chen X, et al. A novel mouse model for liver metastasis of prostate cancer reveals dynamic tumour-immune cell communication. Cell Prolif. 2021;54:e13056 pubmed 出版商
  159. Wu K, Zheng X, Yao Z, Zheng Z, Huang W, Mu X, et al. Accumulation of CD45RO+CD8+ T cells is a diagnostic and prognostic biomarker for clear cell renal cell carcinoma. Aging (Albany NY). 2021;13:14304-14321 pubmed 出版商
  160. Li K, Yuan Z, Lyu J, Ahn E, Davis S, Ahmed R, et al. PD-1 suppresses TCR-CD8 cooperativity during T-cell antigen recognition. Nat Commun. 2021;12:2746 pubmed 出版商
  161. Groh J, Berve K, Martini R. Immune modulation attenuates infantile neuronal ceroid lipofuscinosis in mice before and after disease onset. Brain Commun. 2021;3:fcab047 pubmed 出版商
  162. Borkner L, Curham L, Wilk M, Moran B, Mills K. IL-17 mediates protective immunity against nasal infection with Bordetella pertussis by mobilizing neutrophils, especially Siglec-F+ neutrophils. Mucosal Immunol. 2021;14:1183-1202 pubmed 出版商
  163. Amoozgar Z, Kloepper J, Ren J, Tay R, Kazer S, Kiner E, et al. Targeting Treg cells with GITR activation alleviates resistance to immunotherapy in murine glioblastomas. Nat Commun. 2021;12:2582 pubmed 出版商
  164. Kerselidou D, Dohai B, Nelson D, Daakour S, De Cock N, Hassoun Z, et al. Alternative glycosylation controls endoplasmic reticulum dynamics and tubular extension in mammalian cells. Sci Adv. 2021;7: pubmed 出版商
  165. Kalinina A, Khromykh L, Kazansky D, Deykin A, Silaeva Y. Suppression of the Immune Response by Syngeneic Splenocytes Adoptively Transferred to Sublethally Irradiated Mice. Acta Naturae. 2021;13:116-126 pubmed 出版商
  166. Phong B, D Souza S, Baudier R, Wu E, Immethun V, Bauer D, et al. IgE-activated mast cells enhance TLR4-mediated antigen-specific CD4+ T cell responses. Sci Rep. 2021;11:9686 pubmed 出版商
  167. Chen S, Han C, Bian S, Chen J, Feng X, Li G, et al. Chemerin-9 Attenuates Experimental Abdominal Aortic Aneurysm Formation in ApoE-/- Mice. J Oncol. 2021;2021:6629204 pubmed 出版商
  168. Flamini S, Sergeev P, Viana de Barros Z, Mello T, Biagioli M, Paglialunga M, et al. Glucocorticoid-induced leucine zipper regulates liver fibrosis by suppressing CCL2-mediated leukocyte recruitment. Cell Death Dis. 2021;12:421 pubmed 出版商
  169. Morel K, Sheahan A, Burkhart D, Baca S, Boufaied N, Liu Y, et al. EZH2 inhibition activates a dsRNA-STING-interferon stress axis that potentiates response to PD-1 checkpoint blockade in prostate cancer. Nat Cancer. 2021;2:444-456 pubmed 出版商
  170. Liu Y, Li Y, Loh Y, Singer J, Zhu W, Macia L, et al. Fiber Derived Microbial Metabolites Prevent Acute Kidney Injury Through G-Protein Coupled Receptors and HDAC Inhibition. Front Cell Dev Biol. 2021;9:648639 pubmed 出版商
  171. Go D, Lee S, Lee S, Woo S, Kim K, Kim K, et al. Programmed Death Ligand 1-Expressing Classical Dendritic Cells MitigateHelicobacter-Induced Gastritis. Cell Mol Gastroenterol Hepatol. 2021;12:715-739 pubmed 出版商
  172. Zhou J, Pei X, Yang Y, Wang Z, Gao W, Ye R, et al. Orphan nuclear receptor TLX promotes immunosuppression via its transcriptional activation of PD-L1 in glioma. J Immunother Cancer. 2021;9: pubmed 出版商
  173. Yang C, Kwon D, Kim M, Im S, Lee Y. Commensal Microbiome Expands Tγδ17 Cells in the Lung and Promotes Particulate Matter-Induced Acute Neutrophilia. Front Immunol. 2021;12:645741 pubmed 出版商
  174. Datta M, Staszewski O. Hdac1 and Hdac2 are essential for physiological maturation of a Cx3cr1 expressing subset of T-lymphocytes. BMC Res Notes. 2021;14:135 pubmed 出版商
  175. Borges P, Waclawiak I, Georgii J, Fraga Junior V, Barros J, Lemos F, et al. Adenosine Diphosphate Improves Wound Healing in Diabetic Mice Through P2Y12 Receptor Activation. Front Immunol. 2021;12:651740 pubmed 出版商
  176. Roux C, Mucciolo G, Kopecka J, Novelli F, Riganti C, Cappello P. IL17A Depletion Affects the Metabolism of Macrophages Treated with Gemcitabine. Antioxidants (Basel). 2021;10: pubmed 出版商
  177. Joseph R, Soundararajan R, Vasaikar S, Yang F, Allton K, Tian L, et al. CD8+ T cells inhibit metastasis and CXCL4 regulates its function. Br J Cancer. 2021;125:176-189 pubmed 出版商
  178. Xia X, Li R, Zhou P, Xing Z, Lu C, Long Z, et al. Decreased NSG3 enhances PD-L1 expression by Erk1/2 pathway to promote pancreatic cancer progress. Am J Cancer Res. 2021;11:916-929 pubmed
  179. Sánchez del Campo L, Martí Díaz R, Montenegro M, González Guerrero R, Hernández Caselles T, Martínez Barba E, et al. MITF induces escape from innate immunity in melanoma. J Exp Clin Cancer Res. 2021;40:117 pubmed 出版商
  180. Shang M, Yang H, Yang R, Chen T, Fu Y, Li Y, et al. The folate cycle enzyme MTHFD2 induces cancer immune evasion through PD-L1 up-regulation. Nat Commun. 2021;12:1940 pubmed 出版商
  181. Brea R, Valdecantos P, Rada P, Alen R, García Monzón C, Bosca L, et al. Chronic treatment with acetaminophen protects against liver aging by targeting inflammation and oxidative stress. Aging (Albany NY). 2021;13:7800-7827 pubmed 出版商
  182. Voisin M, Shrestha E, Rollet C, Nikain C, Josefs T, Mahe M, et al. Inhibiting LXRα phosphorylation in hematopoietic cells reduces inflammation and attenuates atherosclerosis and obesity in mice. Commun Biol. 2021;4:420 pubmed 出版商
  183. Sugita J, Fujiu K, Nakayama Y, Matsubara T, Matsuda J, Oshima T, et al. Cardiac macrophages prevent sudden death during heart stress. Nat Commun. 2021;12:1910 pubmed 出版商
  184. Petty A, Dai R, Lapalombella R, Baiocchi R, Benson D, Li Z, et al. Hedgehog-induced PD-L1 on tumor-associated macrophages is critical for suppression of tumor-infiltrating CD8+ T cell function. JCI Insight. 2021;6: pubmed 出版商
  185. Nakajima S, Tanaka R, Yamashiro K, Chiba A, Noto D, Inaba T, et al. Mucosal-Associated Invariant T Cells Are Involved in Acute Ischemic Stroke by Regulating Neuroinflammation. J Am Heart Assoc. 2021;10:e018803 pubmed 出版商
  186. Steenbrugge J, Vander Elst N, Demeyere K, De Wever O, Sanders N, van den Broeck W, et al. OMO-1 reduces progression and enhances cisplatin efficacy in a 4T1-based non-c-MET addicted intraductal mouse model for triple-negative breast cancer. NPJ Breast Cancer. 2021;7:27 pubmed 出版商
  187. Shen T, Liu J, Wang C, Rixiati Y, Li S, Cai L, et al. Targeting Erbin in B cells for therapy of lung metastasis of colorectal cancer. Signal Transduct Target Ther. 2021;6:115 pubmed 出版商
  188. Celorrio M, Abellanas M, Rhodes J, Goodwin V, Moritz J, Vadivelu S, et al. Gut microbial dysbiosis after traumatic brain injury modulates the immune response and impairs neurogenesis. Acta Neuropathol Commun. 2021;9:40 pubmed 出版商
  189. Xiao Y, Shu L, Wu X, Liu Y, Cheong L, Liao B, et al. Fatty acid binding protein 4 promotes autoimmune diabetes by recruitment and activation of pancreatic islet macrophages. JCI Insight. 2021;6: pubmed 出版商
  190. Sripada A, Sirohi K, Michalec L, Guo L, McKay J, Yadav S, et al. Sprouty2 positively regulates T cell function and airway inflammation through regulation of CSK and LCK kinases. PLoS Biol. 2021;19:e3001063 pubmed 出版商
  191. Uhl B, Braun C, Dominik J, Luft J, Canis M, Reichel C. A Novel Experimental Approach for In Vivo Analyses of the Salivary Gland Microvasculature. Front Immunol. 2020;11:604470 pubmed 出版商
  192. Santos Zas I, Lemari xe9 J, Zlatanova I, Cachanado M, Seghezzi J, Benamer H, et al. Cytotoxic CD8+ T cells promote granzyme B-dependent adverse post-ischemic cardiac remodeling. Nat Commun. 2021;12:1483 pubmed 出版商
  193. Yin H, Zhang X, Yang P, Zhang X, Peng Y, Li D, et al. RNA m6A methylation orchestrates cancer growth and metastasis via macrophage reprogramming. Nat Commun. 2021;12:1394 pubmed 出版商
  194. Liu J, Wang C, Cheng T, Rixiati Y, Ji C, Deng M, et al. Circadian Clock Disruption Suppresses PDL1+ Intraepithelial B Cells in Experimental Colitis and Colitis-Associated Colorectal Cancer. Cell Mol Gastroenterol Hepatol. 2021;12:251-276 pubmed 出版商
  195. Liu Y, Li X, Zhang H, Zhang M, Wei Y. HuR up-regulates cell surface PD-L1 via stabilizing CMTM6 transcript in cancer. Oncogene. 2021;40:2230-2242 pubmed 出版商
  196. Zheng H, Zhang Y, Li L, Zhang R, Luo Z, Yang Z, et al. Depletion of Toll-Like Receptor-9 Attenuates Renal Tubulointerstitial Fibrosis After Ischemia-Reperfusion Injury. Front Cell Dev Biol. 2021;9:641527 pubmed 出版商
  197. Choi Y, Kim Y, Oh S, Suh K, Kim Y, Lee G, et al. Senescent Tumor Cells Build a Cytokine Shield in Colorectal Cancer. Adv Sci (Weinh). 2021;8:2002497 pubmed 出版商
  198. Can xe8 S, Van Snick J, Uyttenhove C, Pilotte L, van den Eynde B. TGFβ1 neutralization displays therapeutic efficacy through both an immunomodulatory and a non-immune tumor-intrinsic mechanism. J Immunother Cancer. 2021;9: pubmed 出版商
  199. Sorrentino C, Ciummo S, D Antonio L, Lanuti P, Abrams S, Yin Z, et al. Hindering triple negative breast cancer progression by targeting endogenous interleukin-30 requires IFNγ signaling. Clin Transl Med. 2021;11:e278 pubmed 出版商
  200. Guo S, Smeltz R, Nanajian A, Heller R. IL-15/IL-15Rα Heterodimeric Complex as Cancer Immunotherapy in Murine Breast Cancer Models. Front Immunol. 2020;11:614667 pubmed 出版商
  201. Yuan J, Cai T, Zheng X, Ren Y, Qi J, Lu X, et al. Potentiating CD8+ T cell antitumor activity by inhibiting PCSK9 to promote LDLR-mediated TCR recycling and signaling. Protein Cell. 2021;12:240-260 pubmed 出版商
  202. Fletcher R, Tong J, Risnik D, Leibowitz B, Wang Y, Concha Benavente F, et al. Non-steroidal anti-inflammatory drugs induce immunogenic cell death in suppressing colorectal tumorigenesis. Oncogene. 2021;40:2035-2050 pubmed 出版商
  203. Song L, Chang R, Sun X, Lu L, Gao H, Lu H, et al. Macrophage-derived EDA-A2 inhibits intestinal stem cells by targeting miR-494/EDA2R/β-catenin signaling in mice. Commun Biol. 2021;4:213 pubmed 出版商
  204. Page N, Lemeille S, Vincenti I, Klimek B, Mariotte A, Wagner I, et al. Persistence of self-reactive CD8+ T cells in the CNS requires TOX-dependent chromatin remodeling. Nat Commun. 2021;12:1009 pubmed 出版商
  205. Yao C, Lou G, Sun H, Zhu Z, Sun Y, Chen Z, et al. BACH2 enforces the transcriptional and epigenetic programs of stem-like CD8+ T cells. Nat Immunol. 2021;22:370-380 pubmed 出版商
  206. Adam K, Iuga A, Tocheva A, Mor A. A novel mouse model for checkpoint inhibitor-induced adverse events. PLoS ONE. 2021;16:e0246168 pubmed 出版商
  207. Li Y, Sun Y, Kulke M, Hechler T, Van der Jeught K, Dong T, et al. Targeted immunotherapy for HER2-low breast cancer with 17p loss. Sci Transl Med. 2021;13: pubmed 出版商
  208. Mpekris F, Panagi M, Voutouri C, Martin J, Samuel R, Takahashi S, et al. Normalizing the Microenvironment Overcomes Vessel Compression and Resistance to Nano-immunotherapy in Breast Cancer Lung Metastasis. Adv Sci (Weinh). 2021;8:2001917 pubmed 出版商
  209. Ali S, Borin T, Piranlioglu R, Ara R, Lebedyeva I, Angara K, et al. Changes in the tumor microenvironment and outcome for TME-targeting therapy in glioblastoma: A pilot study. PLoS ONE. 2021;16:e0246646 pubmed 出版商
  210. Greferath U, Huynh M, Jobling A, Vessey K, Venables G, Surrao D, et al. Dorsal-Ventral Differences in Retinal Structure in the Pigmented Royal College of Surgeons Model of Retinal Degeneration. Front Cell Neurosci. 2020;14:553708 pubmed 出版商
  211. Bielecki P, Riesenfeld S, Hütter J, Torlai Triglia E, Kowalczyk M, Ricardo Gonzalez R, et al. Skin-resident innate lymphoid cells converge on a pathogenic effector state. Nature. 2021;592:128-132 pubmed 出版商
  212. Chen J, Sivan U, Tan S, Lippo L, De Angelis J, Labella R, et al. High-resolution 3D imaging uncovers organ-specific vascular control of tissue aging. Sci Adv. 2021;7: pubmed 出版商
  213. Yoshikawa T, Taniguchi S, Kato H, Iwata Yoshikawa N, Tani H, Kurosu T, et al. A highly attenuated vaccinia virus strain LC16m8-based vaccine for severe fever with thrombocytopenia syndrome. PLoS Pathog. 2021;17:e1008859 pubmed 出版商
  214. Wang F, Ye W, Wang S, He Y, Zhong H, Wang Y, et al. Discovery of a new inhibitor targeting PD-L1 for cancer immunotherapy. Neoplasia. 2021;23:281-293 pubmed 出版商
  215. Dorrier C, Aran D, Haenelt E, Sheehy R, Hoi K, Pintarić L, et al. CNS fibroblasts form a fibrotic scar in response to immune cell infiltration. Nat Neurosci. 2021;24:234-244 pubmed 出版商
  216. Ziegler D, Vindrieux D, Goehrig D, Jaber S, Collin G, Griveau A, et al. Calcium channel ITPR2 and mitochondria-ER contacts promote cellular senescence and aging. Nat Commun. 2021;12:720 pubmed 出版商
  217. You G, Lee Y, Kang Y, Park H, Park K, Kim H, et al. B7-H3×4-1BB bispecific antibody augments antitumor immunity by enhancing terminally differentiated CD8+ tumor-infiltrating lymphocytes. Sci Adv. 2021;7: pubmed 出版商
  218. Malone K, Diaz Diaz A, Shearer J, Moore A, Waeber C. The effect of fingolimod on regulatory T cells in a mouse model of brain ischaemia. J Neuroinflammation. 2021;18:37 pubmed 出版商
  219. Phan T, Schink L, Mann J, Merk V, Zwicky P, Mundt S, et al. Keratinocytes control skin immune homeostasis through de novo-synthesized glucocorticoids. Sci Adv. 2021;7: pubmed 出版商
  220. Steele N, Biffi G, Kemp S, Zhang Y, Drouillard D, Syu L, et al. Inhibition of Hedgehog Signaling Alters Fibroblast Composition in Pancreatic Cancer. Clin Cancer Res. 2021;: pubmed 出版商
  221. Kharkwal S, Johndrow C, Veerapen N, Kharkwal H, Saavedra Avila N, Carreño L, et al. Serial Stimulation of Invariant Natural Killer T Cells with Covalently Stabilized Bispecific T-cell Engagers Generates Antitumor Immunity While Avoiding Anergy. Cancer Res. 2021;81:1788-1801 pubmed 出版商
  222. Vavassori V, Mercuri E, Marcovecchio G, Castiello M, Schiroli G, Albano L, et al. Modeling, optimization, and comparable efficacy of T cell and hematopoietic stem cell gene editing for treating hyper-IgM syndrome. EMBO Mol Med. 2021;13:e13545 pubmed 出版商
  223. Brownlie D, Doughty Shenton D, Yh Soong D, Nixon C, O Carragher N, M Carlin L, et al. Metastasis-associated macrophages constrain antitumor capability of natural killer cells in the metastatic site at least partially by membrane bound transforming growth factor β. J Immunother Cancer. 2021;9: pubmed 出版商
  224. Devilbiss A, Zhao Z, Martin Sandoval M, Ubellacker J, Tasdogan A, Agathocleous M, et al. Metabolomic profiling of rare cell populations isolated by flow cytometry from tissues. elife. 2021;10: pubmed 出版商
  225. Mastorakos P, Mihelson N, Luby M, Burks S, Johnson K, Hsia A, et al. Temporally distinct myeloid cell responses mediate damage and repair after cerebrovascular injury. Nat Neurosci. 2021;24:245-258 pubmed 出版商
  226. Chen W, Wu Y, Tsai T, Li R, Lai A, Li L, et al. Group 2 innate lymphoid cells contribute to IL-33-mediated alleviation of cardiac fibrosis. Theranostics. 2021;11:2594-2611 pubmed 出版商
  227. Wang Y, Mohseni M, Grauel A, Diez J, Guan W, Liang S, et al. SHP2 blockade enhances anti-tumor immunity via tumor cell intrinsic and extrinsic mechanisms. Sci Rep. 2021;11:1399 pubmed 出版商
  228. Break T, Oikonomou V, Dutzan N, Desai J, Swidergall M, Freiwald T, et al. Aberrant type 1 immunity drives susceptibility to mucosal fungal infections. Science. 2021;371: pubmed 出版商
  229. Yoneyama T, Hatakeyama S, Sutoh Yoneyama M, Yoshiya T, Uemura T, Ishizu T, et al. Tumor vasculature-targeted 10B delivery by an Annexin A1-binding peptide boosts effects of boron neutron capture therapy. BMC Cancer. 2021;21:72 pubmed 出版商
  230. Costa B, Fletcher M, Boskovic P, Ivanova E, Eisemann T, Lohr S, et al. A Set of Cell Lines Derived from a Genetic Murine Glioblastoma Model Recapitulates Molecular and Morphological Characteristics of Human Tumors. Cancers (Basel). 2021;13: pubmed 出版商
  231. Tyagi A, Darby T, Hsu E, Yu M, Pal S, Dar H, et al. The gut microbiota is a transmissible determinant of skeletal maturation. elife. 2021;10: pubmed 出版商
  232. Hou P, Jia P, Yang K, Li Z, Tian T, Lin Y, et al. An unconventional role of an ASB family protein in NF-κB activation and inflammatory response during microbial infection and colitis. Proc Natl Acad Sci U S A. 2021;118: pubmed 出版商
  233. Kaur S, Sehgal A, Wu A, Millard S, Batoon L, Sandrock C, et al. Stable colony-stimulating factor 1 fusion protein treatment increases hematopoietic stem cell pool and enhances their mobilisation in mice. J Hematol Oncol. 2021;14:3 pubmed 出版商
  234. Khaw Y, Majid D, Oh S, Kang E, Inoue M. Early-life-trauma triggers interferon-β resistance and neurodegeneration in a multiple sclerosis model via downregulated β1-adrenergic signaling. Nat Commun. 2021;12:105 pubmed 出版商
  235. Suah A, Tran D, Khiew S, Andrade M, Pollard J, Jain D, et al. Pregnancy-induced humoral sensitization overrides T cell tolerance to fetus-matched allografts in mice. J Clin Invest. 2021;131: pubmed 出版商
  236. Luo R, Cheng Y, Chang D, Liu T, Liu L, Pei G, et al. Tertiary lymphoid organs are associated with the progression of kidney damage and regulated by interleukin-17A. Theranostics. 2021;11:117-131 pubmed 出版商
  237. Grand M, Waqasi M, Demarta Gatsi C, Wei Y, Peronet R, Commere P, et al. Hepatic Inflammation Confers Protective Immunity Against Liver Stages of Malaria Parasite. Front Immunol. 2020;11:585502 pubmed 出版商
  238. Antony A, Lian Z, Perrard X, Perrard J, Liu H, Cox A, et al. Deficiency of Stat1 in CD11c+ Cells Alters Adipose Tissue Inflammation and Improves Metabolic Dysfunctions in Mice Fed a High-Fat Diet. Diabetes. 2021;70:720-732 pubmed 出版商
  239. Li X, Zhang M, Huang X, Liang W, Li G, Lu X, et al. Ubiquitination of RIPK1 regulates its activation mediated by TNFR1 and TLRs signaling in distinct manners. Nat Commun. 2020;11:6364 pubmed 出版商
  240. Rodda L, Netland J, Shehata L, Pruner K, Morawski P, Thouvenel C, et al. Functional SARS-CoV-2-Specific Immune Memory Persists after Mild COVID-19. Cell. 2021;184:169-183.e17 pubmed 出版商
  241. Harro C, Perez Sanz J, Costich T, Payne K, Anadon C, Chaurio R, et al. Methyltransferase inhibitors restore SATB1 protective activity against cutaneous T cell lymphoma in mice. J Clin Invest. 2021;131: pubmed 出版商
  242. Sanchez Felipe L, Vercruysse T, Sharma S, Ma J, Lemmens V, Van Looveren D, et al. A single-dose live-attenuated YF17D-vectored SARS-CoV-2 vaccine candidate. Nature. 2021;590:320-325 pubmed 出版商
  243. Meryk A, Grasse M, Balasco L, Kapferer W, Grubeck Loebenstein B, Pangrazzi L. Antioxidants N-Acetylcysteine and Vitamin C Improve T Cell Commitment to Memory and Long-Term Maintenance of Immunological Memory in Old Mice. Antioxidants (Basel). 2020;9: pubmed 出版商
  244. Jensen I, Jensen S, Sjaastad F, Gibson Corley K, Dileepan T, Griffith T, et al. Sepsis impedes EAE disease development and diminishes autoantigen-specific naive CD4 T cells. elife. 2020;9: pubmed 出版商
  245. Gao L, Li B, Wang J, Shen D, Yang M, Sun R, et al. Activation of Liver X Receptor α Sensitizes Mice to T-Cell Mediated Hepatitis. Hepatol Commun. 2020;4:1664-1679 pubmed 出版商
  246. Wang Y, Luo M, Chen Y, Wang Y, Zhang B, Ren Z, et al. ZMYND8 Expression in Breast Cancer Cells Blocks T-Lymphocyte Surveillance to Promote Tumor Growth. Cancer Res. 2021;81:174-186 pubmed 出版商
  247. Myers D, Abram C, Wildes D, Belwafa A, Welsh A, Schulze C, et al. Shp1 Loss Enhances Macrophage Effector Function and Promotes Anti-Tumor Immunity. Front Immunol. 2020;11:576310 pubmed 出版商
  248. Rundqvist H, Veliça P, Barbieri L, Gameiro P, Bargiela D, Gojkovic M, et al. Cytotoxic T-cells mediate exercise-induced reductions in tumor growth. elife. 2020;9: pubmed 出版商
  249. Lee H, Park J, Yoo H, Lee H, Lee B, Kim J. The Selenoprotein MsrB1 Instructs Dendritic Cells to Induce T-Helper 1 Immune Responses. Antioxidants (Basel). 2020;9: pubmed 出版商
  250. Fujimori D, Kinoshita J, Yamaguchi T, Nakamura Y, Gunjigake K, Ohama T, et al. Established fibrous peritoneal metastasis in an immunocompetent mouse model similar to clinical immune microenvironment of gastric cancer. BMC Cancer. 2020;20:1014 pubmed 出版商
  251. Pariser D, Hilt Z, Ture S, Blick Nitko S, Looney M, Cleary S, et al. Lung megakaryocytes are immune modulatory cells. J Clin Invest. 2021;131: pubmed 出版商
  252. Kasuga A, Semba T, Sato R, Nobusue H, Sugihara E, Takaishi H, et al. Oncogenic KRAS-expressing organoids with biliary epithelial stem cell properties give rise to biliary tract cancer in mice. Cancer Sci. 2021;112:1822-1838 pubmed 出版商
  253. Zahedi K, Brooks M, Barone S, Rahmati N, Murray Stewart T, Dunworth M, et al. Ablation of polyamine catabolic enzymes provokes Purkinje cell damage, neuroinflammation, and severe ataxia. J Neuroinflammation. 2020;17:301 pubmed 出版商
  254. Lissner M, Cumnock K, Davis N, Vilches Moure J, Basak P, Navarrete D, et al. Metabolic profiling during malaria reveals the role of the aryl hydrocarbon receptor in regulating kidney injury. elife. 2020;9: pubmed 出版商
  255. Lauver M, Goetschius D, Netherby Winslow C, Ayers K, Jin G, Haas D, et al. Antibody escape by polyomavirus capsid mutation facilitates neurovirulence. elife. 2020;9: pubmed 出版商
  256. Ishii K, Pouzolles M, Chien C, Erwin Cohen R, Kohler M, Qin H, et al. Perforin-deficient CAR T cells recapitulate late-onset inflammatory toxicities observed in patients. J Clin Invest. 2020;130:5425-5443 pubmed 出版商
  257. Zhao L, Hu S, Davila M, Yang J, Lin Y, Albanese J, et al. Coordinated co-migration of CCR10+ antibody-producing B cells with helper T cells for colonic homeostatic regulation. Mucosal Immunol. 2021;14:420-430 pubmed 出版商
  258. Ricci B, Tycksen E, Celik H, Belle J, Fontana F, Civitelli R, et al. Osterix-Cre marks distinct subsets of CD45- and CD45+ stromal populations in extra-skeletal tumors with pro-tumorigenic characteristics. elife. 2020;9: pubmed 出版商
  259. Li N, Kang Y, Wang L, Huff S, Tang R, Hui H, et al. ALKBH5 regulates anti-PD-1 therapy response by modulating lactate and suppressive immune cell accumulation in tumor microenvironment. Proc Natl Acad Sci U S A. 2020;117:20159-20170 pubmed 出版商
  260. Li Z, Zhang H, Huang Y, Huang J, Sun P, Zhou N, et al. Autophagy deficiency promotes triple-negative breast cancer resistance to T cell-mediated cytotoxicity by blocking tenascin-C degradation. Nat Commun. 2020;11:3806 pubmed 出版商
  261. Runyan C, Welch L, Lecuona E, Shigemura M, Amarelle L, Abdala Valencia H, et al. Impaired phagocytic function in CX3CR1+ tissue-resident skeletal muscle macrophages prevents muscle recovery after influenza A virus-induced pneumonia in old mice. Aging Cell. 2020;: pubmed 出版商
  262. Pasciuto E, Burton O, Roca C, Lagou V, Rajan W, Theys T, et al. Microglia Require CD4 T Cells to Complete the Fetal-to-Adult Transition. Cell. 2020;182:625-640.e24 pubmed 出版商
  263. Li H, Lu C, Zhang H, Hu Q, Zhang J, Cuevas I, et al. A PoleP286R mouse model of endometrial cancer recapitulates high mutational burden and immunotherapy response. JCI Insight. 2020;5: pubmed 出版商
  264. Bhaskar A, Kumar S, Khan M, Singh A, Dwivedi V, Nandicoori V. Host sirtuin 2 as an immunotherapeutic target against tuberculosis. elife. 2020;9: pubmed 出版商
  265. Peligero Cruz C, Givony T, Sebé Pedrós A, Dobes J, Kadouri N, Nevo S, et al. IL18 signaling promotes homing of mature Tregs into the thymus. elife. 2020;9: pubmed 出版商
  266. Neuper T, Neureiter D, Sarajlic M, Strandt H, Bauer R, Schwarz H, et al. IL-31 transgenic mice show reduced allergen-induced lung inflammation. Eur J Immunol. 2021;51:191-196 pubmed 出版商
  267. Robbins Y, Greene S, Friedman J, Clavijo P, Van Waes C, Fabian K, et al. Tumor control via targeting PD-L1 with chimeric antigen receptor modified NK cells. elife. 2020;9: pubmed 出版商
  268. Mahr B, Pilat N, Granofszky N, Muckenhuber M, Unger L, Weijler A, et al. Distinct roles for major and minor antigen barriers in chimerism-based tolerance under irradiation-free conditions. Am J Transplant. 2021;21:968-977 pubmed 出版商
  269. Manils J, Webb L, Howes A, Janzen J, Boeing S, Bowcock A, et al. CARD14E138A signalling in keratinocytes induces TNF-dependent skin and systemic inflammation. elife. 2020;9: pubmed 出版商
  270. Zhou T, Damsky W, Weizman O, McGeary M, Hartmann K, Rosen C, et al. IL-18BP is a secreted immune checkpoint and barrier to IL-18 immunotherapy. Nature. 2020;583:609-614 pubmed 出版商
  271. Seitz V, Kleo K, Dröge A, Schaper S, Elezkurtaj S, Bedjaoui N, et al. Evidence for a role of RUNX1 as recombinase cofactor for TCRβ rearrangements and pathological deletions in ETV6-RUNX1 ALL. Sci Rep. 2020;10:10024 pubmed 出版商
  272. Jansons J, Bayurova E, Skrastina D, Kurlanda A, Fridrihsone I, Kostyushev D, et al. Expression of the Reverse Transcriptase Domain of Telomerase Reverse Transcriptase Induces Lytic Cellular Response in DNA-Immunized Mice and Limits Tumorigenic and Metastatic Potential of Murine Adenocarcinoma 4T1 Cells. Vaccines (Basel). 2020;8: pubmed 出版商
  273. Ho J, Angel M, Ma Y, Sloan E, Wang G, Martínez Romero C, et al. Hybrid Gene Origination Creates Human-Virus Chimeric Proteins during Infection. Cell. 2020;181:1502-1517.e23 pubmed 出版商
  274. Ning Y, Ding J, Sun X, Xie Y, Su M, Ma C, et al. HDAC9 deficiency promotes tumor progression by decreasing the CD8+ dendritic cell infiltration of the tumor microenvironment. J Immunother Cancer. 2020;8: pubmed 出版商
  275. Zhou S, Wu W, Wang Z, Wang Z, Su Q, Li X, et al. RelB regulates the homeostatic proliferation but not the function of Tregs. BMC Immunol. 2020;21:37 pubmed 出版商
  276. Lubos N, van der Gaag S, Gerçek M, Kant S, Leube R, Krusche C. Inflammation shapes pathogenesis of murine arrhythmogenic cardiomyopathy. Basic Res Cardiol. 2020;115:42 pubmed 出版商
  277. Domingo Gonzalez R, Zanini F, Che X, Liu M, Jones R, Swift M, et al. Diverse homeostatic and immunomodulatory roles of immune cells in the developing mouse lung at single cell resolution. elife. 2020;9: pubmed 出版商
  278. Bekeschus S, Clemen R, Nießner F, Sagwal S, Freund E, Schmidt A. Medical Gas Plasma Jet Technology Targets Murine Melanoma in an Immunogenic Fashion. Adv Sci (Weinh). 2020;7:1903438 pubmed 出版商
  279. Burfeind K, Zhu X, Norgard M, Levasseur P, Huisman C, Buenafe A, et al. Circulating myeloid cells invade the central nervous system to mediate cachexia during pancreatic cancer. elife. 2020;9: pubmed 出版商
  280. Sollberger G, Streeck R, Apel F, Caffrey B, Skoultchi A, Zychlinsky A. Linker histone H1.2 and H1.4 affect the neutrophil lineage determination. elife. 2020;9: pubmed 出版商
  281. Fan Z, Tian Y, Chen Z, Liu L, Zhou Q, He J, et al. Blocking interaction between SHP2 and PD-1 denotes a novel opportunity for developing PD-1 inhibitors. EMBO Mol Med. 2020;12:e11571 pubmed 出版商
  282. Castiello M, Bosticardo M, Sacchetti N, Calzoni E, Fontana E, Yamazaki Y, et al. Efficacy and safety of anti-CD45-saporin as conditioning agent for RAG deficiency. J Allergy Clin Immunol. 2021;147:309-320.e6 pubmed 出版商
  283. Yamamoto K, Venida A, Yano J, Biancur D, Kakiuchi M, Gupta S, et al. Autophagy promotes immune evasion of pancreatic cancer by degrading MHC-I. Nature. 2020;581:100-105 pubmed 出版商
  284. Liu X, Kong W, Peterson C, McGrail D, Hoang A, Zhang X, et al. PBRM1 loss defines a nonimmunogenic tumor phenotype associated with checkpoint inhibitor resistance in renal carcinoma. Nat Commun. 2020;11:2135 pubmed 出版商
  285. Zheng D, Gao F, Cheng Q, Bao P, Dong X, Fan J, et al. A vaccine-based nanosystem for initiating innate immunity and improving tumor immunotherapy. Nat Commun. 2020;11:1985 pubmed 出版商
  286. Dieterich L, Tacconi C, Menzi F, Proulx S, Kapaklikaya K, Hamada M, et al. Lymphatic MAFB regulates vascular patterning during developmental and pathological lymphangiogenesis. Angiogenesis. 2020;23:411-423 pubmed 出版商
  287. Zhu M, Ma Y, Tan K, Zhang L, Wang Z, Li Y, et al. Thalidomide with blockade of co-stimulatory molecules prolongs the survival of alloantigen-primed mice with cardiac allografts. BMC Immunol. 2020;21:19 pubmed 出版商
  288. Ruscetti M, Morris J, Mezzadra R, Russell J, Leibold J, Romesser P, et al. Senescence-Induced Vascular Remodeling Creates Therapeutic Vulnerabilities in Pancreas Cancer. Cell. 2020;181:424-441.e21 pubmed 出版商
  289. Luoni M, Giannelli S, Indrigo M, Niro A, Massimino L, Iannielli A, et al. Whole brain delivery of an instability-prone Mecp2 transgene improves behavioral and molecular pathological defects in mouse models of Rett syndrome. elife. 2020;9: pubmed 出版商
  290. Stebegg M, Bignon A, Hill D, Silva Cayetano A, Krueger C, Vanderleyden I, et al. Rejuvenating conventional dendritic cells and T follicular helper cell formation after vaccination. elife. 2020;9: pubmed 出版商
  291. von Roemeling C, Wang Y, Qie Y, Yuan H, Zhao H, Liu X, et al. Therapeutic modulation of phagocytosis in glioblastoma can activate both innate and adaptive antitumour immunity. Nat Commun. 2020;11:1508 pubmed 出版商
  292. Gao M, Wang T, Ji L, Bai S, Tian L, Song H. Therapy With Carboplatin and Anti-PD-1 Antibodies Before Surgery Demonstrates Sustainable Anti-Tumor Effects for Secondary Cancers in Mice With Triple-Negative Breast Cancer. Front Immunol. 2020;11:366 pubmed 出版商
  293. Aaltonen N, Singha P, Jakupović H, Wirth T, Samaranayake H, Pasonen Seppänen S, et al. High-Resolution Confocal Fluorescence Imaging of Serine Hydrolase Activity in Cryosections - Application to Glioma Brain Unveils Activity Hotspots Originating from Tumor-Associated Neutrophils. Biol Proced Online. 2020;22:6 pubmed 出版商
  294. Wuggenig P, Kaya B, Melhem H, Ayata C, Hruz P, Sayan A, et al. Loss of the branched-chain amino acid transporter CD98hc alters the development of colonic macrophages in mice. Commun Biol. 2020;3:130 pubmed 出版商
  295. Zhang S, Liang W, Luo L, Sun S, Wang F. The role of T cell trafficking in CTLA-4 blockade-induced gut immunopathology. BMC Biol. 2020;18:29 pubmed 出版商
  296. Yoshida S, Miyagawa S, Toyofuku T, Fukushima S, Kawamura T, Kawamura A, et al. Syngeneic Mesenchymal Stem Cells Reduce Immune Rejection After Induced Pluripotent Stem Cell-Derived Allogeneic Cardiomyocyte Transplantation. Sci Rep. 2020;10:4593 pubmed 出版商
  297. Donaldson D, Bradford B, Else K, Mabbott N. Accelerated onset of CNS prion disease in mice co-infected with a gastrointestinal helminth pathogen during the preclinical phase. Sci Rep. 2020;10:4554 pubmed 出版商
  298. Chaurasiya S, Yang A, Kang S, Lu J, Kim S, Park A, et al. Oncolytic poxvirus CF33-hNIS-ΔF14.5 favorably modulates tumor immune microenvironment and works synergistically with anti-PD-L1 antibody in a triple-negative breast cancer model. Oncoimmunology. 2020;9:1729300 pubmed 出版商
  299. Doll J, Hoebe K, Thompson R, Sawtell N. Resolution of herpes simplex virus reactivation in vivo results in neuronal destruction. PLoS Pathog. 2020;16:e1008296 pubmed 出版商
  300. Fu Y, Ding Y, Wang Q, Zhu F, Tan Y, Lu X, et al. Blood-stage malaria parasites manipulate host innate immune responses through the induction of sFGL2. Sci Adv. 2020;6:eaay9269 pubmed 出版商
  301. Ramstead A, Wallace J, Lee S, Bauer K, Tang W, Ekiz H, et al. Mitochondrial Pyruvate Carrier 1 Promotes Peripheral T Cell Homeostasis through Metabolic Regulation of Thymic Development. Cell Rep. 2020;30:2889-2899.e6 pubmed 出版商
  302. Kumar A, Chamoto K, Chowdhury P, Honjo T. Tumors attenuating the mitochondrial activity in T cells escape from PD-1 blockade therapy. elife. 2020;9: pubmed 出版商
  303. Wei J, Mattapallil M, Horai R, Jittayasothorn Y, Modi A, Sen H, et al. A novel role for lipoxin A4 in driving a lymph node-eye axis that controls autoimmunity to the neuroretina. elife. 2020;9: pubmed 出版商
  304. Simon S, Hu X, Panten J, Grees M, Renders S, Thomas D, et al. Eosinophil accumulation predicts response to melanoma treatment with immune checkpoint inhibitors. Oncoimmunology. 2020;9:1727116 pubmed 出版商
  305. Martens R, Permanyer M, Werth K, Yu K, Braun A, Halle O, et al. Efficient homing of T cells via afferent lymphatics requires mechanical arrest and integrin-supported chemokine guidance. Nat Commun. 2020;11:1114 pubmed 出版商
  306. Luker A, Graham L, Smith T, Camarena C, Zellner M, Gilmer J, et al. The DNA methyltransferase inhibitor, guadecitabine, targets tumor-induced myelopoiesis and recovers T cell activity to slow tumor growth in combination with adoptive immunotherapy in a mouse model of breast cancer. BMC Immunol. 2020;21:8 pubmed 出版商
  307. Lu Z, Zou J, Li S, Topper M, Tao Y, Zhang H, et al. Epigenetic therapy inhibits metastases by disrupting premetastatic niches. Nature. 2020;579:284-290 pubmed 出版商
  308. Hu X, Deng Q, Ma L, Li Q, Chen Y, Liao Y, et al. Meningeal lymphatic vessels regulate brain tumor drainage and immunity. Cell Res. 2020;30:229-243 pubmed 出版商
  309. Wang J, Li P, Yu Y, Fu Y, Jiang H, Lu M, et al. Pulmonary surfactant-biomimetic nanoparticles potentiate heterosubtypic influenza immunity. Science. 2020;367: pubmed 出版商
  310. Aslan K, Turco V, Blobner J, Sonner J, Liuzzi A, Núñez N, et al. Heterogeneity of response to immune checkpoint blockade in hypermutated experimental gliomas. Nat Commun. 2020;11:931 pubmed 出版商
  311. Chen H, Cong X, Wu C, Wu X, Wang J, Mao K, et al. Intratumoral delivery of CCL25 enhances immunotherapy against triple-negative breast cancer by recruiting CCR9+ T cells. Sci Adv. 2020;6:eaax4690 pubmed 出版商
  312. Abadie V, Kim S, Lejeune T, Palanski B, Ernest J, Tastet O, et al. IL-15, gluten and HLA-DQ8 drive tissue destruction in coeliac disease. Nature. 2020;578:600-604 pubmed 出版商
  313. Jaynes J, Sable R, Ronzetti M, Bautista W, Knotts Z, Abisoye Ogunniyan A, et al. Mannose receptor (CD206) activation in tumor-associated macrophages enhances adaptive and innate antitumor immune responses. Sci Transl Med. 2020;12: pubmed 出版商
  314. Tizian C, Lahmann A, Hölsken O, Cosovanu C, Kofoed Branzk M, Heinrich F, et al. c-Maf restrains T-bet-driven programming of CCR6-negative group 3 innate lymphoid cells. elife. 2020;9: pubmed 出版商
  315. Tzeng S, Patel K, Wilson D, Meyer R, Rhodes K, Green J. In situ genetic engineering of tumors for long-lasting and systemic immunotherapy. Proc Natl Acad Sci U S A. 2020;117:4043-4052 pubmed 出版商
  316. Cohen G, Chandran P, Lorsung R, Tomlinson L, Sundby M, Burks S, et al. The Impact of Focused Ultrasound in Two Tumor Models: Temporal Alterations in the Natural History on Tumor Microenvironment and Immune Cell Response. Cancers (Basel). 2020;12: pubmed 出版商
  317. Theivanthiran B, Evans K, Devito N, Plebanek M, Sturdivant M, Wachsmuth L, et al. A tumor-intrinsic PD-L1/NLRP3 inflammasome signaling pathway drives resistance to anti-PD-1 immunotherapy. J Clin Invest. 2020;130:2570-2586 pubmed 出版商
  318. Terashima Y, Toda E, Itakura M, Otsuji M, Yoshinaga S, Okumura K, et al. Targeting FROUNT with disulfiram suppresses macrophage accumulation and its tumor-promoting properties. Nat Commun. 2020;11:609 pubmed 出版商
  319. Williams G, Marmion D, Schonhoff A, Jurkuvenaite A, Won W, Standaert D, et al. T cell infiltration in both human multiple system atrophy and a novel mouse model of the disease. Acta Neuropathol. 2020;139:855-874 pubmed 出版商
  320. Mosaheb M, Dobrikova E, Brown M, Yang Y, Cable J, Okada H, et al. Genetically stable poliovirus vectors activate dendritic cells and prime antitumor CD8 T cell immunity. Nat Commun. 2020;11:524 pubmed 出版商
  321. Liu Z, Wen J, Wu C, Hu C, Wang J, Bao Q, et al. MicroRNA-200a induces immunosuppression by promoting PTEN-mediated PD-L1 upregulation in osteosarcoma. Aging (Albany NY). 2020;12:1213-1236 pubmed 出版商
  322. Choi S, Bae H, Jeong S, Park I, Cho H, Hong S, et al. YAP/TAZ direct commitment and maturation of lymph node fibroblastic reticular cells. Nat Commun. 2020;11:519 pubmed 出版商
  323. Yu M, Guo G, Huang L, Deng L, Chang C, Achyut B, et al. CD73 on cancer-associated fibroblasts enhanced by the A2B-mediated feedforward circuit enforces an immune checkpoint. Nat Commun. 2020;11:515 pubmed 出版商
  324. Singh K, Leu J, Barnoud T, Vonteddu P, Gnanapradeepan K, Lin C, et al. African-centric TP53 variant increases iron accumulation and bacterial pathogenesis but improves response to malaria toxin. Nat Commun. 2020;11:473 pubmed 出版商
  325. Canel M, Taggart D, Sims A, Lonergan D, Waizenegger I, Serrels A. T-cell co-stimulation in combination with targeting FAK drives enhanced anti-tumor immunity. elife. 2020;9: pubmed 出版商
  326. Schafflick D, Xu C, Hartlehnert M, Cole M, Schulte Mecklenbeck A, Lautwein T, et al. Integrated single cell analysis of blood and cerebrospinal fluid leukocytes in multiple sclerosis. Nat Commun. 2020;11:247 pubmed 出版商
  327. Bliss C, Parsons A, Nachbagauer R, Hamilton J, Cappuccini F, Ulaszewska M, et al. Targeting Antigen to the Surface of EVs Improves the In Vivo Immunogenicity of Human and Non-human Adenoviral Vaccines in Mice. Mol Ther Methods Clin Dev. 2020;16:108-125 pubmed 出版商
  328. Kimura S, Nakamura Y, Kobayashi N, Shiroguchi K, Kawakami E, Mutoh M, et al. Osteoprotegerin-dependent M cell self-regulation balances gut infection and immunity. Nat Commun. 2020;11:234 pubmed 出版商
  329. Hayes M, Ward S, Crawford G, Seoane R, Jackson W, Kipling D, et al. Inflammation-induced IgE promotes epithelial hyperplasia and tumour growth. elife. 2020;9: pubmed 出版商
  330. Wang G, Xu J, Zhao J, Yin W, Liu D, Chen W, et al. Arf1-mediated lipid metabolism sustains cancer cells and its ablation induces anti-tumor immune responses in mice. Nat Commun. 2020;11:220 pubmed 出版商
  331. Gate D, Saligrama N, Leventhal O, Yang A, Unger M, Middeldorp J, et al. Clonally expanded CD8 T cells patrol the cerebrospinal fluid in Alzheimer's disease. Nature. 2020;577:399-404 pubmed 出版商
  332. Thiele Née Schrewe L, Guse K, Tietz S, Remlinger J, Demir S, Pedreiturria X, et al. Functional relevance of the multi-drug transporter abcg2 on teriflunomide therapy in an animal model of multiple sclerosis. J Neuroinflammation. 2020;17:9 pubmed 出版商
  333. Enríquez Pérez J, Kopecky J, Visse E, Darabi A, Siesjo P. Convection-enhanced delivery of temozolomide and whole cell tumor immunizations in GL261 and KR158 experimental mouse gliomas. BMC Cancer. 2020;20:7 pubmed 出版商
  334. Williford J, Ishihara J, Ishihara A, Mansurov A, Hosseinchi P, Marchell T, et al. Recruitment of CD103+ dendritic cells via tumor-targeted chemokine delivery enhances efficacy of checkpoint inhibitor immunotherapy. Sci Adv. 2019;5:eaay1357 pubmed 出版商
  335. Jimeno R, Lebrusant Fernandez M, Margreitter C, LUCAS B, Veerapen N, Kelly G, et al. Tissue-specific shaping of the TCR repertoire and antigen specificity of iNKT cells. elife. 2019;8: pubmed 出版商
  336. Guo C, Allen B, Hiam K, Dodd D, Van Treuren W, Higginbottom S, et al. Depletion of microbiome-derived molecules in the host using Clostridium genetics. Science. 2019;366: pubmed 出版商
  337. Leylek R, Alcántara Hernández M, Lanzar Z, Lüdtke A, Perez O, Reizis B, et al. Integrated Cross-Species Analysis Identifies a Conserved Transitional Dendritic Cell Population. Cell Rep. 2019;29:3736-3750.e8 pubmed 出版商
  338. Ward L, Lee D, Sharma A, Wang A, Naouar I, Ma X, et al. Siponimod therapy implicates Th17 cells in a preclinical model of subpial cortical injury. JCI Insight. 2020;5: pubmed 出版商
  339. Li A, Herbst R, Canner D, Schenkel J, Smith O, Kim J, et al. IL-33 Signaling Alters Regulatory T Cell Diversity in Support of Tumor Development. Cell Rep. 2019;29:2998-3008.e8 pubmed 出版商
  340. Shi L, Wang J, Ding N, Zhang Y, Zhu Y, Dong S, et al. Inflammation induced by incomplete radiofrequency ablation accelerates tumor progression and hinders PD-1 immunotherapy. Nat Commun. 2019;10:5421 pubmed 出版商
  341. Zhao Y, Yang Q, Jin C, Feng Y, Xie S, Xie H, et al. Changes of CD103-expressing pulmonary CD4+ and CD8+ T cells in S. japonicum infected C57BL/6 mice. BMC Infect Dis. 2019;19:999 pubmed 出版商
  342. Reed M, Luissint A, Azcutia V, Fan S, O Leary M, Quirós M, et al. Epithelial CD47 is critical for mucosal repair in the murine intestine in vivo. Nat Commun. 2019;10:5004 pubmed 出版商
  343. Strickley J, Messerschmidt J, Awad M, Li T, Hasegawa T, Ha D, et al. Immunity to commensal papillomaviruses protects against skin cancer. Nature. 2019;: pubmed 出版商
  344. Canon J, Rex K, Saiki A, Mohr C, Cooke K, Bagal D, et al. The clinical KRAS(G12C) inhibitor AMG 510 drives anti-tumour immunity. Nature. 2019;575:217-223 pubmed 出版商
  345. Yan D, Wang J, Sun H, Zamani A, Zhang H, Chen W, et al. TIPE2 specifies the functional polarization of myeloid-derived suppressor cells during tumorigenesis. J Exp Med. 2020;217: pubmed 出版商
  346. Chu C, Murdock M, Jing D, Won T, Chung H, Kressel A, et al. The microbiota regulate neuronal function and fear extinction learning. Nature. 2019;574:543-548 pubmed 出版商
  347. Liberatore R, Mastrocola E, Cassella E, Schmidt F, Willen J, Voronin D, et al. Rhabdo-immunodeficiency virus, a murine model of acute HIV-1 infection. elife. 2019;8: pubmed 出版商
  348. Lin F, Meng X, Guo Y, Cao W, Liu W, Xia Q, et al. Epigenetic initiation of the TH17 differentiation program is promoted by Cxxc finger protein 1. Sci Adv. 2019;5:eaax1608 pubmed 出版商
  349. Helsley R, Varadharajan V, Brown A, Gromovsky A, Schugar R, Ramachandiran I, et al. Obesity-linked suppression of membrane-bound O-acyltransferase 7 (MBOAT7) drives non-alcoholic fatty liver disease. elife. 2019;8: pubmed 出版商
  350. Mani V, Bromley S, Aijö T, Mora Buch R, Carrizosa E, Warner R, et al. Migratory DCs activate TGF-β to precondition naïve CD8+ T cells for tissue-resident memory fate. Science. 2019;366: pubmed 出版商
  351. Shikama Y, Kurosawa M, Furukawa M, Ishimaru N, Matsushita K. Involvement of adiponectin in age-related increases in tear production in mice. Aging (Albany NY). 2019;11:8329-8346 pubmed 出版商
  352. Ortega Molina A, Deleyto Seldas N, Carreras J, Sanz A, Lebrero Fernández C, Menéndez C, et al. Oncogenic Rag GTPase signaling enhances B cell activation and drives follicular lymphoma sensitive to pharmacological inhibition of mTOR. Nat Metab. 2019;1:775-789 pubmed 出版商
  353. Lecocq Q, Zeven K, De Vlaeminck Y, Martens S, Massa S, Goyvaerts C, et al. Noninvasive Imaging of the Immune Checkpoint LAG-3 Using Nanobodies, from Development to Pre-Clinical Use. Biomolecules. 2019;9: pubmed 出版商
  354. Majer O, Liu B, Kreuk L, Krogan N, Barton G. UNC93B1 recruits syntenin-1 to dampen TLR7 signalling and prevent autoimmunity. Nature. 2019;575:366-370 pubmed 出版商
  355. Nelson C, Thompson E, Quarnstrom C, Fraser K, Seelig D, Bhela S, et al. Robust Iterative Stimulation with Self-Antigens Overcomes CD8+ T Cell Tolerance to Self- and Tumor Antigens. Cell Rep. 2019;28:3092-3104.e5 pubmed 出版商
  356. Schreiber L, Urbiola C, Das K, Spiesschaert B, Kimpel J, Heinemann F, et al. The lytic activity of VSV-GP treatment dominates the therapeutic effects in a syngeneic model of lung cancer. Br J Cancer. 2019;121:647-658 pubmed 出版商
  357. Aghajanian H, Kimura T, Rurik J, Hancock A, Leibowitz M, Li L, et al. Targeting cardiac fibrosis with engineered T cells. Nature. 2019;573:430-433 pubmed 出版商
  358. Liu Z, Gu Y, Chakarov S, Blériot C, Kwok I, Chen X, et al. Fate Mapping via Ms4a3-Expression History Traces Monocyte-Derived Cells. Cell. 2019;178:1509-1525.e19 pubmed 出版商
  359. Zhang F, Parayath N, Ene C, Stephan S, Koehne A, Coon M, et al. Genetic programming of macrophages to perform anti-tumor functions using targeted mRNA nanocarriers. Nat Commun. 2019;10:3974 pubmed 出版商
  360. Rasoulouniriana D, Santana Magal N, Gutwillig A, Farhat Younis L, Wine Y, Saperia C, et al. A distinct subset of FcγRI-expressing Th1 cells exert antibody-mediated cytotoxic activity. J Clin Invest. 2019;129:4151-4164 pubmed 出版商
  361. Jordan S, Tung N, Casanova Acebes M, Chang C, Cantoni C, Zhang D, et al. Dietary Intake Regulates the Circulating Inflammatory Monocyte Pool. Cell. 2019;178:1102-1114.e17 pubmed 出版商
  362. Collins N, Han S, Enamorado M, Link V, Huang B, Moseman E, et al. The Bone Marrow Protects and Optimizes Immunological Memory during Dietary Restriction. Cell. 2019;178:1088-1101.e15 pubmed 出版商
  363. Findlay E, Currie A, Zhang A, Ovciarikova J, Young L, Stevens H, et al. Exposure to the antimicrobial peptide LL-37 produces dendritic cells optimized for immunotherapy. Oncoimmunology. 2019;8:1608106 pubmed 出版商
  364. Benci J, Johnson L, Choa R, Xu Y, Qiu J, Zhou Z, et al. Opposing Functions of Interferon Coordinate Adaptive and Innate Immune Responses to Cancer Immune Checkpoint Blockade. Cell. 2019;178:933-948.e14 pubmed 出版商
  365. Rosshart S, Herz J, Vassallo B, Hunter A, Wall M, Badger J, et al. Laboratory mice born to wild mice have natural microbiota and model human immune responses. Science. 2019;365: pubmed 出版商
  366. Verma V, Shrimali R, Ahmad S, Dai W, Wang H, Lu S, et al. PD-1 blockade in subprimed CD8 cells induces dysfunctional PD-1+CD38hi cells and anti-PD-1 resistance. Nat Immunol. 2019;20:1231-1243 pubmed 出版商
  367. Niemann J, Woller N, Brooks J, Fleischmann Mundt B, Martin N, Kloos A, et al. Molecular retargeting of antibodies converts immune defense against oncolytic viruses into cancer immunotherapy. Nat Commun. 2019;10:3236 pubmed 出版商
  368. Ma L, Dichwalkar T, Chang J, Cossette B, Garafola D, Zhang A, et al. Enhanced CAR-T cell activity against solid tumors by vaccine boosting through the chimeric receptor. Science. 2019;365:162-168 pubmed 出版商
  369. Wirsching H, Zhang H, Szulzewsky F, Arora S, Grandi P, Cimino P, et al. Arming oHSV with ULBP3 drives abscopal immunity in lymphocyte-depleted glioblastoma. JCI Insight. 2019;4: pubmed 出版商
  370. Lee Y, Riopel M, Cabrales P, Bandyopadhyay G. Hepatocyte-specific HIF-1α ablation improves obesity-induced glucose intolerance by reducing first-pass GLP-1 degradation. Sci Adv. 2019;5:eaaw4176 pubmed 出版商
  371. Dulken B, Buckley M, Navarro Negredo P, Saligrama N, Cayrol R, Leeman D, et al. Single-cell analysis reveals T cell infiltration in old neurogenic niches. Nature. 2019;571:205-210 pubmed 出版商
  372. Papaioannou E, Yanez D, Ross S, Lau C, Solanki A, Chawda M, et al. Sonic Hedgehog signaling limits atopic dermatitis via Gli2-driven immune regulation. J Clin Invest. 2019;129:3153-3170 pubmed 出版商
  373. Ponzetta A, Carriero R, Carnevale S, Barbagallo M, Molgora M, Perucchini C, et al. Neutrophils Driving Unconventional T Cells Mediate Resistance against Murine Sarcomas and Selected Human Tumors. Cell. 2019;178:346-360.e24 pubmed 出版商
  374. Leach S, Shinnakasu R, Adachi Y, Momota M, Makino Okamura C, Yamamoto T, et al. Requirement for memory B cell activation in protection from heterologous influenza virus reinfection. Int Immunol. 2019;: pubmed 出版商
  375. Liu D, Yin X, Olyha S, Nascimento M, Chen P, White T, et al. IL-10-Dependent Crosstalk between Murine Marginal Zone B Cells, Macrophages, and CD8α+ Dendritic Cells Promotes Listeria monocytogenes Infection. Immunity. 2019;: pubmed 出版商
  376. Ansaldo E, Slayden L, Ching K, Koch M, Wolf N, Plichta D, et al. Akkermansia muciniphila induces intestinal adaptive immune responses during homeostasis. Science. 2019;364:1179-1184 pubmed 出版商
  377. Khan O, Giles J, McDonald S, Manne S, Ngiow S, Patel K, et al. TOX transcriptionally and epigenetically programs CD8+ T cell exhaustion. Nature. 2019;: pubmed 出版商
  378. Celis Gutierrez J, Blattmann P, Zhai Y, Jarmuzynski N, Ruminski K, Gregoire C, et al. Quantitative Interactomics in Primary T Cells Provides a Rationale for Concomitant PD-1 and BTLA Coinhibitor Blockade in Cancer Immunotherapy. Cell Rep. 2019;27:3315-3330.e7 pubmed 出版商
  379. Pascual García M, Bonfill Teixidor E, Planas Rigol E, Rubio Perez C, Iurlaro R, Arias A, et al. LIF regulates CXCL9 in tumor-associated macrophages and prevents CD8+ T cell tumor-infiltration impairing anti-PD1 therapy. Nat Commun. 2019;10:2416 pubmed 出版商
  380. Dangaj D, Bruand M, Grimm A, Ronet C, Barras D, Duttagupta P, et al. Cooperation between Constitutive and Inducible Chemokines Enables T Cell Engraftment and Immune Attack in Solid Tumors. Cancer Cell. 2019;35:885-900.e10 pubmed 出版商
  381. Escolano A, Gristick H, Abernathy M, Merkenschlager J, Gautam R, Oliveira T, et al. Immunization expands B cells specific to HIV-1 V3 glycan in mice and macaques. Nature. 2019;: pubmed 出版商
  382. Wilkinson A, Ishida R, Kikuchi M, Sudo K, Morita M, Crisostomo R, et al. Long-term ex vivo haematopoietic-stem-cell expansion allows nonconditioned transplantation. Nature. 2019;: pubmed 出版商
  383. Sivaram N, McLaughlin P, Han H, Petrenko O, Jiang Y, Ballou L, et al. Tumor-intrinsic PIK3CA represses tumor immunogenecity in a model of pancreatic cancer. J Clin Invest. 2019;130: pubmed 出版商
  384. Di Pilato M, Kim E, Cadilha B, Prüßmann J, Nasrallah M, Seruggia D, et al. Targeting the CBM complex causes Treg cells to prime tumours for immune checkpoint therapy. Nature. 2019;570:112-116 pubmed 出版商
  385. Harding J, Herbáth M, Chen Y, Rayasam A, Ritter A, Csóka B, et al. VEGF-A from Granuloma Macrophages Regulates Granulomatous Inflammation by a Non-angiogenic Pathway during Mycobacterial Infection. Cell Rep. 2019;27:2119-2131.e6 pubmed 出版商
  386. Qiu J, Villa M, Sanin D, Buck M, O Sullivan D, Ching R, et al. Acetate Promotes T Cell Effector Function during Glucose Restriction. Cell Rep. 2019;27:2063-2074.e5 pubmed 出版商
  387. Komuczki J, Tuzlak S, Friebel E, Hartwig T, Spath S, Rosenstiel P, et al. Fate-Mapping of GM-CSF Expression Identifies a Discrete Subset of Inflammation-Driving T Helper Cells Regulated by Cytokines IL-23 and IL-1β. Immunity. 2019;: pubmed 出版商
  388. Sharma N, Vacher J, Allison J. TLR1/2 ligand enhances antitumor efficacy of CTLA-4 blockade by increasing intratumoral Treg depletion. Proc Natl Acad Sci U S A. 2019;116:10453-10462 pubmed 出版商
  389. Takagaki S, Yamashita R, Hashimoto N, Sugihara K, Kanari K, Tabata K, et al. Galactosyl carbohydrate residues on hematopoietic stem/progenitor cells are essential for homing and engraftment to the bone marrow. Sci Rep. 2019;9:7133 pubmed 出版商
  390. Ajina R, Zamalin D, Zuo A, Moussa M, Catalfamo M, Jablonski S, et al. SpCas9-expression by tumor cells can cause T cell-dependent tumor rejection in immunocompetent mice. Oncoimmunology. 2019;8:e1577127 pubmed 出版商
  391. Cho C, Wang Y, Smallwood P, Williams J, Nathans J. Dlg1 activates beta-catenin signaling to regulate retinal angiogenesis and the blood-retina and blood-brain barriers. elife. 2019;8: pubmed 出版商
  392. Rühl J, Citterio C, Engelmann C, Haigh T, Dzionek A, Dreyer J, et al. Heterologous prime-boost vaccination protects against EBV antigen-expressing lymphomas. J Clin Invest. 2019;129:2071-2087 pubmed 出版商
  393. Miao Y, Yang H, Levorse J, Yuan S, Polak L, Sribour M, et al. Adaptive Immune Resistance Emerges from Tumor-Initiating Stem Cells. Cell. 2019;177:1172-1186.e14 pubmed 出版商
  394. Veglia F, Tyurin V, Blasi M, De Leo A, Kossenkov A, Donthireddy L, et al. Fatty acid transport protein 2 reprograms neutrophils in cancer. Nature. 2019;569:73-78 pubmed 出版商
  395. Knox T, Sahakian E, Banik D, Hadley M, Palmer E, Noonepalle S, et al. Selective HDAC6 inhibitors improve anti-PD-1 immune checkpoint blockade therapy by decreasing the anti-inflammatory phenotype of macrophages and down-regulation of immunosuppressive proteins in tumor cells. Sci Rep. 2019;9:6136 pubmed 出版商
  396. Esterházy D, Canesso M, Mesin L, Muller P, de Castro T, Lockhart A, et al. Compartmentalized gut lymph node drainage dictates adaptive immune responses. Nature. 2019;569:126-130 pubmed 出版商
  397. Eisemann T, Costa B, Peterziel H, Angel P. Podoplanin Positive Myeloid Cells Promote Glioma Development by Immune Suppression. Front Oncol. 2019;9:187 pubmed 出版商
  398. LaFleur M, Nguyen T, Coxe M, Yates K, Trombley J, Weiss S, et al. A CRISPR-Cas9 delivery system for in vivo screening of genes in the immune system. Nat Commun. 2019;10:1668 pubmed 出版商
  399. Hammerich L, Marron T, Upadhyay R, Svensson Arvelund J, Dhainaut M, Hussein S, et al. Systemic clinical tumor regressions and potentiation of PD1 blockade with in situ vaccination. Nat Med. 2019;25:814-824 pubmed 出版商
  400. Pais H, Ruggero K, Zhang J, Al Assar O, Bery N, Bhuller R, et al. Surfaceome interrogation using an RNA-seq approach highlights leukemia initiating cell biomarkers in an LMO2 T cell transgenic model. Sci Rep. 2019;9:5760 pubmed 出版商
  401. Lytle N, Ferguson L, Rajbhandari N, Gilroy K, Fox R, Deshpande A, et al. A Multiscale Map of the Stem Cell State in Pancreatic Adenocarcinoma. Cell. 2019;177:572-586.e22 pubmed 出版商
  402. Li Y, Tinoco R, Elmén L, Segota I, Xian Y, Fujita Y, et al. Gut microbiota dependent anti-tumor immunity restricts melanoma growth in Rnf5-/- mice. Nat Commun. 2019;10:1492 pubmed 出版商
  403. Benz F, Wichitnaowarat V, Lehmann M, Germano R, Mihova D, Macas J, et al. Low wnt/β-catenin signaling determines leaky vessels in the subfornical organ and affects water homeostasis in mice. elife. 2019;8: pubmed 出版商
  404. Wang Y, Sabbagh M, Gu X, Rattner A, Williams J, Nathans J. Beta-catenin signaling regulates barrier-specific gene expression in circumventricular organ and ocular vasculatures. elife. 2019;8: pubmed 出版商
  405. Bottermann M, Foss S, Caddy S, Clift D, van Tienen L, Vaysburd M, et al. Complement C4 Prevents Viral Infection through Capsid Inactivation. Cell Host Microbe. 2019;25:617-629.e7 pubmed 出版商
  406. Sweere J, Van Belleghem J, Ishak H, Bach M, Popescu M, Sunkari V, et al. Bacteriophage trigger antiviral immunity and prevent clearance of bacterial infection. Science. 2019;363: pubmed 出版商
  407. Yao W, Rose J, Wang W, Seth S, Jiang H, Taguchi A, et al. Syndecan 1 is a critical mediator of macropinocytosis in pancreatic cancer. Nature. 2019;: pubmed 出版商
  408. Pascutti M, Geerman S, Collins N, Brasser G, Nota B, Stark R, et al. Peripheral and systemic antigens elicit an expandable pool of resident memory CD8+ T cells in the bone marrow. Eur J Immunol. 2019;49:853-872 pubmed 出版商
  409. Gong B, Kiyotani K, Sakata S, Nagano S, Kumehara S, Baba S, et al. Secreted PD-L1 variants mediate resistance to PD-L1 blockade therapy in non-small cell lung cancer. J Exp Med. 2019;: pubmed 出版商
  410. Lee J, Stone M, Porrett P, Thomas S, Komar C, Li J, et al. Hepatocytes direct the formation of a pro-metastatic niche in the liver. Nature. 2019;567:249-252 pubmed 出版商
  411. Xing S, Gai K, Li X, Shao P, Zeng Z, Zhao X, et al. Tcf1 and Lef1 are required for the immunosuppressive function of regulatory T cells. J Exp Med. 2019;: pubmed 出版商
  412. Chen J, López Moyado I, Seo H, Lio C, Hempleman L, Sekiya T, et al. NR4A transcription factors limit CAR T cell function in solid tumours. Nature. 2019;567:530-534 pubmed 出版商
  413. Thompson P, Shah A, Ntranos V, Van Gool F, Atkinson M, Bhushan A. Targeted Elimination of Senescent Beta Cells Prevents Type 1 Diabetes. Cell Metab. 2019;29:1045-1060.e10 pubmed 出版商
  414. Straub T, Pircher H. Enhancing immunity prevents virus-induced T-cell-mediated immunopathology in B cell-deficient mice. Eur J Immunol. 2019;49:782-789 pubmed 出版商
  415. Michaels Y, Barnkob M, Barbosa H, Baeumler T, Thompson M, Andre V, et al. Precise tuning of gene expression levels in mammalian cells. Nat Commun. 2019;10:818 pubmed 出版商
  416. Anandagoda N, Willis J, Hertweck A, Roberts L, Jackson I, Gökmen M, et al. microRNA-142-mediated repression of phosphodiesterase 3B critically regulates peripheral immune tolerance. J Clin Invest. 2019;129:1257-1271 pubmed 出版商
  417. Dosch M, Zindel J, Jebbawi F, Melin N, Sánchez Taltavull D, Stroka D, et al. Connexin-43-dependent ATP release mediates macrophage activation during sepsis. elife. 2019;8: pubmed 出版商
  418. Salerno F, Guislain A, Freen van Heeren J, Nicolet B, Young H, Wolkers M. Critical role of post-transcriptional regulation for IFN-γ in tumor-infiltrating T cells. Oncoimmunology. 2019;8:e1532762 pubmed 出版商
  419. Jin C, Lagoudas G, Zhao C, Bullman S, Bhutkar A, Hu B, et al. Commensal Microbiota Promote Lung Cancer Development via γδ T Cells. Cell. 2019;176:998-1013.e16 pubmed 出版商
  420. Davies A, Kim H, González Cano R, Choi J, Back S, Roh S, et al. Natural Killer Cells Degenerate Intact Sensory Afferents following Nerve Injury. Cell. 2019;176:716-728.e18 pubmed 出版商
  421. Hendrikx S, Coso S, Prat Luri B, Wetterwald L, Sabine A, Franco C, et al. Endothelial Calcineurin Signaling Restrains Metastatic Outgrowth by Regulating Bmp2. Cell Rep. 2019;26:1227-1241.e6 pubmed 出版商
  422. Yamamoto T, Lee P, Vodnala S, Gurusamy D, Kishton R, Yu Z, et al. T cells genetically engineered to overcome death signaling enhance adoptive cancer immunotherapy. J Clin Invest. 2019;129:1551-1565 pubmed 出版商
  423. Martins J, Andoniou C, Fleming P, Kuns R, Schuster I, Voigt V, et al. Strain-specific antibody therapy prevents cytomegalovirus reactivation after transplantation. Science. 2019;363:288-293 pubmed 出版商
  424. McLaren J, Clement M, Marsden M, Miners K, Llewellyn Lacey S, Grant E, et al. IL-33 Augments Virus-Specific Memory T Cell Inflation and Potentiates the Efficacy of an Attenuated Cytomegalovirus-Based Vaccine. J Immunol. 2019;202:943-955 pubmed 出版商
  425. Silva D, Yu S, Ulge U, Spangler J, Jude K, Labao Almeida C, et al. De novo design of potent and selective mimics of IL-2 and IL-15. Nature. 2019;565:186-191 pubmed 出版商
  426. Lee Y, Ju J, Shon W, Oh S, Min C, Kang M, et al. Skewed Dendritic Cell Differentiation of MyD88-Deficient Donor Bone Marrow Cells, Instead of Massive Expansion as Myeloid-Derived Suppressor Cells, Aggravates GVHD. Immune Netw. 2018;18:e44 pubmed 出版商
  427. Li J, He Y, Hao J, Ni L, Dong C. High Levels of Eomes Promote Exhaustion of Anti-tumor CD8+ T Cells. Front Immunol. 2018;9:2981 pubmed 出版商
  428. Ruscetti M, Leibold J, Bott M, Fennell M, Kulick A, Salgado N, et al. NK cell-mediated cytotoxicity contributes to tumor control by a cytostatic drug combination. Science. 2018;362:1416-1422 pubmed 出版商
  429. Mantri C, St John A. Immune synapses between mast cells and γδ T cells limit viral infection. J Clin Invest. 2019;129:1094-1108 pubmed 出版商
  430. Chorro L, Suzuki M, Chin S, Williams T, Snapp E, Odagiu L, et al. Interleukin 2 modulates thymic-derived regulatory T cell epigenetic landscape. Nat Commun. 2018;9:5368 pubmed 出版商
  431. Ishizuka J, Manguso R, Cheruiyot C, Bi K, Panda A, Iracheta Vellve A, et al. Loss of ADAR1 in tumours overcomes resistance to immune checkpoint blockade. Nature. 2019;565:43-48 pubmed 出版商
  432. Lauron E, Yang L, Harvey I, Sojka D, Williams G, Paley M, et al. Viral MHCI inhibition evades tissue-resident memory T cell formation and responses. J Exp Med. 2019;216:117-132 pubmed 出版商
  433. Kaplanov I, Carmi Y, Kornetsky R, Shemesh A, Shurin G, Shurin M, et al. Blocking IL-1β reverses the immunosuppression in mouse breast cancer and synergizes with anti-PD-1 for tumor abrogation. Proc Natl Acad Sci U S A. 2019;116:1361-1369 pubmed 出版商
  434. Chea L, Wyatt L, Gangadhara S, Moss B, Amara R. Novel Modified Vaccinia Virus Ankara Vector Expressing Anti-apoptotic Gene B13R Delays Apoptosis and Enhances Humoral Responses. J Virol. 2019;93: pubmed 出版商
  435. Simula L, Pacella I, Colamatteo A, Procaccini C, Cancila V, Bordi M, et al. Drp1 Controls Effective T Cell Immune-Surveillance by Regulating T Cell Migration, Proliferation, and cMyc-Dependent Metabolic Reprogramming. Cell Rep. 2018;25:3059-3073.e10 pubmed 出版商
  436. Ding L, Kim H, Wang Q, Kearns M, Jiang T, Ohlson C, et al. PARP Inhibition Elicits STING-Dependent Antitumor Immunity in Brca1-Deficient Ovarian Cancer. Cell Rep. 2018;25:2972-2980.e5 pubmed 出版商
  437. Gubernatorova E, Gorshkova E, Namakanova O, Zvartsev R, Hidalgo J, Drutskaya M, et al. Non-redundant Functions of IL-6 Produced by Macrophages and Dendritic Cells in Allergic Airway Inflammation. Front Immunol. 2018;9:2718 pubmed 出版商
  438. Tordesillas L, Lozano Ojalvo D, Dunkin D, Mondoulet L, Agudo J, Merad M, et al. PDL2+ CD11b+ dermal dendritic cells capture topical antigen through hair follicles to prime LAP+ Tregs. Nat Commun. 2018;9:5238 pubmed 出版商
  439. Quandt J, Schlude C, Bartoschek M, Will R, Cid Arregui A, Schölch S, et al. Long-peptide vaccination with driver gene mutations in p53 and Kras induces cancer mutation-specific effector as well as regulatory T cell responses. Oncoimmunology. 2018;7:e1500671 pubmed 出版商
  440. Harrison O, Linehan J, Shih H, Bouladoux N, Han S, SMELKINSON M, et al. Commensal-specific T cell plasticity promotes rapid tissue adaptation to injury. Science. 2019;363: pubmed 出版商
  441. Sato Y, Bolzenius J, Eteleeb A, Su X, Maher C, Sehn J, et al. CD4+ T cells induce rejection of urothelial tumors after immune checkpoint blockade. JCI Insight. 2018;3: pubmed 出版商
  442. Uccellini M, Garcia Sastre A. ISRE-Reporter Mouse Reveals High Basal and Induced Type I IFN Responses in Inflammatory Monocytes. Cell Rep. 2018;25:2784-2796.e3 pubmed 出版商
  443. Sorrelle N, Ganguly D, Dominguez A, Zhang Y, Huang H, Dahal L, et al. Improved Multiplex Immunohistochemistry for Immune Microenvironment Evaluation of Mouse Formalin-Fixed, Paraffin-Embedded Tissues. J Immunol. 2019;202:292-299 pubmed 出版商
  444. Du X, de Almeida P, Manieri N, de Almeida Nagata D, Wu T, Harden Bowles K, et al. CD226 regulates natural killer cell antitumor responses via phosphorylation-mediated inactivation of transcription factor FOXO1. Proc Natl Acad Sci U S A. 2018;115:E11731-E11740 pubmed 出版商
  445. Andre P, Denis C, Soulas C, Bourbon Caillet C, Lopez J, Arnoux T, et al. Anti-NKG2A mAb Is a Checkpoint Inhibitor that Promotes Anti-tumor Immunity by Unleashing Both T and NK Cells. Cell. 2018;175:1731-1743.e13 pubmed 出版商
  446. Wiedemann G, Aithal C, Kraechan A, Heise C, Cadilha B, Zhang J, et al. Microphthalmia-Associated Transcription Factor (MITF) Regulates Immune Cell Migration into Melanoma. Transl Oncol. 2019;12:350-360 pubmed 出版商
  447. Wu F, Xu P, Chow A, Man S, Kruger J, Khan K, et al. Pre- and post-operative anti-PD-L1 plus anti-angiogenic therapies in mouse breast or renal cancer models of micro- or macro-metastatic disease. Br J Cancer. 2019;120:196-206 pubmed 出版商
  448. Lopez M, Seyed Razavi Y, Jamali A, Harris D, Hamrah P. The Chemokine Receptor CXCR4 Mediates Recruitment of CD11c+ Conventional Dendritic Cells Into the Inflamed Murine Cornea. Invest Ophthalmol Vis Sci. 2018;59:5671-5681 pubmed 出版商
  449. Muscate F, Stetter N, Schramm C, Schulze zur Wiesch J, Bosurgi L, Jacobs T. HVEM and CD160: Regulators of Immunopathology During Malaria Blood-Stage. Front Immunol. 2018;9:2611 pubmed 出版商
  450. Aarts S, Seijkens T, Kusters P, Van Tiel C, Reiche M, den Toom M, et al. Macrophage CD40 signaling drives experimental autoimmune encephalomyelitis. J Pathol. 2019;247:471-480 pubmed 出版商
  451. Inoue T, Ito Y, Nishizawa N, Eshima K, Kojo K, Otaka F, et al. RAMP1 in Kupffer cells is a critical regulator in immune-mediated hepatitis. PLoS ONE. 2018;13:e0200432 pubmed 出版商
  452. Dong S, Harrington B, Hu E, Greene J, Lehman A, Tran M, et al. PI3K p110δ inactivation antagonizes chronic lymphocytic leukemia and reverses T cell immune suppression. J Clin Invest. 2019;129:122-136 pubmed 出版商
  453. Grohmann M, Wiede F, Dodd G, Gurzov E, Ooi G, Butt T, et al. Obesity Drives STAT-1-Dependent NASH and STAT-3-Dependent HCC. Cell. 2018;175:1289-1306.e20 pubmed 出版商
  454. He Z, Zhang J, Huang Z, Du Q, Li N, Zhang Q, et al. Sumoylation of RORγt regulates TH17 differentiation and thymocyte development. Nat Commun. 2018;9:4870 pubmed 出版商
  455. Casagrande F, de Souza Ferreira S, Nunes F, Romera L, Dos Santos S, Tessaro F, et al. Insulin Modulates Paracoccidioides brasiliensis-Induced Inflammation by Restoring the Populations of NK Cells, Dendritic Cells, and B Lymphocytes in Lungs. J Diabetes Res. 2018;2018:6209694 pubmed 出版商
  456. James K, Cosway E, LUCAS B, White A, Parnell S, Carvalho Gaspar M, et al. Endothelial cells act as gatekeepers for LTβR-dependent thymocyte emigration. J Exp Med. 2018;215:2984-2993 pubmed 出版商
  457. Walsh S, Bastin D, Chen L, Nguyen A, Storbeck C, Lefebvre C, et al. Type I IFN blockade uncouples immunotherapy-induced antitumor immunity and autoimmune toxicity. J Clin Invest. 2019;129:518-530 pubmed 出版商
  458. Wilgenburg B, Loh L, Chen Z, Pediongco T, Wang H, Shi M, et al. MAIT cells contribute to protection against lethal influenza infection in vivo. Nat Commun. 2018;9:4706 pubmed 出版商
  459. Ramanjulu J, Pesiridis G, Yang J, Concha N, Singhaus R, Zhang S, et al. Design of amidobenzimidazole STING receptor agonists with systemic activity. Nature. 2018;564:439-443 pubmed 出版商
  460. Klement J, Paschall A, Redd P, Ibrahim M, Lu C, Yang D, et al. An osteopontin/CD44 immune checkpoint controls CD8+ T cell activation and tumor immune evasion. J Clin Invest. 2018;128:5549-5560 pubmed 出版商
  461. Nicol M, Campbell G, Shaw D, Dransfield I, Ligertwood Y, Beard P, et al. Lack of IFNγ signaling attenuates spread of influenza A virus in vivo and leads to reduced pathogenesis. Virology. 2019;526:155-164 pubmed 出版商
  462. Hsu J, Dayaram T, Tovy A, De Braekeleer E, Jeong M, Wang F, et al. PPM1D Mutations Drive Clonal Hematopoiesis in Response to Cytotoxic Chemotherapy. Cell Stem Cell. 2018;23:700-713.e6 pubmed 出版商
  463. Singh A, Khare P, Obaid A, Conlon K, Basrur V, Depinho R, et al. SUMOylation of ROR-γt inhibits IL-17 expression and inflammation via HDAC2. Nat Commun. 2018;9:4515 pubmed 出版商
  464. Bhagwandin C, Ashbeck E, Whalen M, Bandola Simon J, Roche P, Szajman A, et al. The E3 ubiquitin ligase MARCH1 regulates glucose-tolerance and lipid storage in a sex-specific manner. PLoS ONE. 2018;13:e0204898 pubmed 出版商
  465. Meyer I, Goetzke C, Kespohl M, Sauter M, Heuser A, Eckstein V, et al. Silencing the CSF-1 Axis Using Nanoparticle Encapsulated siRNA Mitigates Viral and Autoimmune Myocarditis. Front Immunol. 2018;9:2303 pubmed 出版商
  466. Sheng C, Yao C, Wang Z, Chen H, Zhao Y, Xu D, et al. Cyclophilin J limits inflammation through the blockage of ubiquitin chain sensing. Nat Commun. 2018;9:4381 pubmed 出版商
  467. Humblet Baron S, Barber J, Roca C, Lenaerts A, Koni P, Liston A. Murine myeloproliferative disorder as a consequence of impaired collaboration between dendritic cells and CD4 T cells. Blood. 2018;: pubmed 出版商
  468. Noh J, Kim Y, Kim D, Hwang J, Kim K, Choi D, et al. Small heterodimer partner negatively regulates C-X-C motif chemokine ligand 2 in hepatocytes during liver inflammation. Sci Rep. 2018;8:15222 pubmed 出版商
  469. Aydin E, Hallner A, Grauers Wiktorin H, Staffas A, Hellstrand K, Martner A. NOX2 inhibition reduces oxidative stress and prolongs survival in murine KRAS-induced myeloproliferative disease. Oncogene. 2019;38:1534-1543 pubmed 出版商
  470. Er J, Koean R, Ding J. Loss of T-bet confers survival advantage to influenza-bacterial superinfection. EMBO J. 2019;38: pubmed 出版商
  471. Xu X, Xu J, Wu J, Hu Y, Han Y, Gu Y, et al. Phosphorylation-Mediated IFN-γR2 Membrane Translocation Is Required to Activate Macrophage Innate Response. Cell. 2018;175:1336-1351.e17 pubmed 出版商
  472. Masuda J, Umemura C, Yokozawa M, Yamauchi K, Seko T, Yamashita M, et al. Dietary Supplementation of Selenoneine-Containing Tuna Dark Muscle Extract Effectively Reduces Pathology of Experimental Colorectal Cancers in Mice. Nutrients. 2018;10: pubmed 出版商
  473. Luo H, Winkelmann E, Zhu S, Ru W, Mays E, Silvas J, et al. Peli1 facilitates virus replication and promotes neuroinflammation during West Nile virus infection. J Clin Invest. 2018;128:4980-4991 pubmed 出版商
  474. Qiao G, Bucsek M, Winder N, Chen M, Giridharan T, Olejniczak S, et al. β-Adrenergic signaling blocks murine CD8+ T-cell metabolic reprogramming during activation: a mechanism for immunosuppression by adrenergic stress. Cancer Immunol Immunother. 2019;68:11-22 pubmed 出版商
  475. Williams G, Schonhoff A, Jurkuvenaite A, Thome A, Standaert D, Harms A. Targeting of the class II transactivator attenuates inflammation and neurodegeneration in an alpha-synuclein model of Parkinson's disease. J Neuroinflammation. 2018;15:244 pubmed 出版商
  476. Schrand B, Clark E, Levay A, Capote A, Martínez O, Brenneman R, et al. Hapten-mediated recruitment of polyclonal antibodies to tumors engenders antitumor immunity. Nat Commun. 2018;9:3348 pubmed 出版商
  477. Cha J, Yang W, Xia W, Wei Y, Chan L, Lim S, et al. Metformin Promotes Antitumor Immunity via Endoplasmic-Reticulum-Associated Degradation of PD-L1. Mol Cell. 2018;71:606-620.e7 pubmed 出版商
  478. Amôr N, de Oliveira C, Gasparoto T, Vilas Boas V, Perri G, Kaneno R, et al. ST2/IL-33 signaling promotes malignant development of experimental squamous cell carcinoma by decreasing NK cells cytotoxicity and modulating the intratumoral cell infiltrate. Oncotarget. 2018;9:30894-30904 pubmed 出版商
  479. Lin Y, Wang L, Lee C, Chen S. Flt3 ligand treatment reduces enterovirus A71 lethality in mice with enhanced B cell responses. Sci Rep. 2018;8:12184 pubmed 出版商
  480. Zhao D, Kim Y, Jeong S, Greenson J, Chaudhry M, Hoepting M, et al. Survival signal REG3α prevents crypt apoptosis to control acute gastrointestinal graft-versus-host disease. J Clin Invest. 2018;128:4970-4979 pubmed 出版商
  481. White E, Gyulay G, Lhotak S, Szewczyk M, Chong T, Fuller M, et al. Sialidase down-regulation reduces non-HDL cholesterol, inhibits leukocyte transmigration, and attenuates atherosclerosis in ApoE knockout mice. J Biol Chem. 2018;293:14689-14706 pubmed 出版商
  482. Wang C, Oshima M, Sato D, Matsui H, Kubota S, Aoyama K, et al. Ezh2 loss propagates hypermethylation at T cell differentiation-regulating genes to promote leukemic transformation. J Clin Invest. 2018;128:3872-3886 pubmed 出版商
  483. Stathopoulou C, Gangaplara A, Mallett G, Flomerfelt F, Liniany L, Knight D, et al. PD-1 Inhibitory Receptor Downregulates Asparaginyl Endopeptidase and Maintains Foxp3 Transcription Factor Stability in Induced Regulatory T Cells. Immunity. 2018;49:247-263.e7 pubmed 出版商
  484. Poffenberger M, Metcalfe Roach A, Aguilar E, Chen J, Hsu B, Wong A, et al. LKB1 deficiency in T cells promotes the development of gastrointestinal polyposis. Science. 2018;361:406-411 pubmed 出版商
  485. Baens M, Stirparo R, Lampi Y, Verbeke D, Vandepoel R, Cools J, et al. Malt1 self-cleavage is critical for regulatory T cell homeostasis and anti-tumor immunity in mice. Eur J Immunol. 2018;48:1728-1738 pubmed 出版商
  486. Thyagarajan H, Lancaster J, Lira S, Ehrlich L. CCR8 is expressed by post-positive selection CD4-lineage thymocytes but is dispensable for central tolerance induction. PLoS ONE. 2018;13:e0200765 pubmed 出版商
  487. Wan X, Zinselmeyer B, Zakharov P, Vomund A, Taniguchi R, Santambrogio L, et al. Pancreatic islets communicate with lymphoid tissues via exocytosis of insulin peptides. Nature. 2018;560:107-111 pubmed 出版商
  488. Zhu L, Xie X, Zhang L, Wang H, Jie Z, Zhou X, et al. TBK-binding protein 1 regulates IL-15-induced autophagy and NKT cell survival. Nat Commun. 2018;9:2812 pubmed 出版商
  489. Zhang C, Wang C, Jiang M, Gu C, Xiao J, Chen X, et al. Act1 is a negative regulator in T and B cells via direct inhibition of STAT3. Nat Commun. 2018;9:2745 pubmed 出版商
  490. Cho S, Lee H, Yu I, Choi Y, Huang H, Hashemifar S, et al. Differential cell-intrinsic regulations of germinal center B and T cells by miR-146a and miR-146b. Nat Commun. 2018;9:2757 pubmed 出版商
  491. Webster P, Dawes J, Dewchand H, Takacs K, Iadarola B, Bolt B, et al. Subclonal mutation selection in mouse lymphomagenesis identifies known cancer loci and suggests novel candidates. Nat Commun. 2018;9:2649 pubmed 出版商
  492. Chute C, Yang X, Meyer K, Yang N, O Neil K, Kasza I, et al. Syndecan-1 induction in lung microenvironment supports the establishment of breast tumor metastases. Breast Cancer Res. 2018;20:66 pubmed 出版商
  493. Tan B, Shi X, Zhang J, Qin J, Zhang N, Ren H, et al. Inhibition of Rspo-Lgr4 Facilitates Checkpoint Blockade Therapy by Switching Macrophage Polarization. Cancer Res. 2018;78:4929-4942 pubmed 出版商
  494. Li J, Byrne K, Yan F, Yamazoe T, Chen Z, Baslan T, et al. Tumor Cell-Intrinsic Factors Underlie Heterogeneity of Immune Cell Infiltration and Response to Immunotherapy. Immunity. 2018;49:178-193.e7 pubmed 出版商
  495. Vendetti F, Karukonda P, Clump D, Teo T, Lalonde R, Nugent K, et al. ATR kinase inhibitor AZD6738 potentiates CD8+ T cell-dependent antitumor activity following radiation. J Clin Invest. 2018;128:3926-3940 pubmed 出版商
  496. Kirkling M, Cytlak U, Lau C, Lewis K, Resteu A, Khodadadi Jamayran A, et al. Notch Signaling Facilitates In Vitro Generation of Cross-Presenting Classical Dendritic Cells. Cell Rep. 2018;23:3658-3672.e6 pubmed 出版商
  497. Alissafi T, Hatzioannou A, Mintzas K, Barouni R, Banos A, Sormendi S, et al. Autophagy orchestrates the regulatory program of tumor-associated myeloid-derived suppressor cells. J Clin Invest. 2018;128:3840-3852 pubmed 出版商
  498. Napolitano A, van der Veen A, Bunyan M, Borg A, Frith D, Howell S, et al. Cysteine-Reactive Free ISG15 Generates IL-1β-Producing CD8α+ Dendritic Cells at the Site of Infection. J Immunol. 2018;201:604-614 pubmed 出版商
  499. Feng Y, Liao Y, Huang W, Lai X, Luo J, Du C, et al. Mesenchymal stromal cells-derived matrix Gla protein contribute to the alleviation of experimental colitis. Cell Death Dis. 2018;9:691 pubmed 出版商
  500. Jones R, Cosway E, Willis C, White A, Jenkinson W, Fehling H, et al. Dynamic changes in intrathymic ILC populations during murine neonatal development. Eur J Immunol. 2018;48:1481-1491 pubmed 出版商
  501. Du X, Wen J, Wang Y, Karmaus P, Khatamian A, Tan H, et al. Hippo/Mst signalling couples metabolic state and immune function of CD8α+ dendritic cells. Nature. 2018;558:141-145 pubmed 出版商
  502. Baumgartner C, Toifl S, Farlik M, Halbritter F, Scheicher R, Fischer I, et al. An ERK-Dependent Feedback Mechanism Prevents Hematopoietic Stem Cell Exhaustion. Cell Stem Cell. 2018;22:879-892.e6 pubmed 出版商
  503. Ma C, Han M, Heinrich B, Fu Q, Zhang Q, Sandhu M, et al. Gut microbiome-mediated bile acid metabolism regulates liver cancer via NKT cells. Science. 2018;360: pubmed 出版商
  504. Kanneganti A, Malireddi R, Saavedra P, Vande Walle L, Van Gorp H, Kambara H, et al. GSDMD is critical for autoinflammatory pathology in a mouse model of Familial Mediterranean Fever. J Exp Med. 2018;215:1519-1529 pubmed 出版商
  505. Jun H, Yu H, Gong J, Jiang J, Qiao X, Perkey E, et al. An immune-beige adipocyte communication via nicotinic acetylcholine receptor signaling. Nat Med. 2018;24:814-822 pubmed 出版商
  506. Daenthanasanmak A, Wu Y, Iamsawat S, Nguyen H, Bastian D, Zhang M, et al. PIM-2 protein kinase negatively regulates T cell responses in transplantation and tumor immunity. J Clin Invest. 2018;128:2787-2801 pubmed 出版商
  507. Pommier A, Anaparthy N, Memos N, Kelley Z, Gouronnec A, Yan R, et al. Unresolved endoplasmic reticulum stress engenders immune-resistant, latent pancreatic cancer metastases. Science. 2018;360: pubmed 出版商
  508. Huynh J, Lin C, Kimmey J, Jarjour N, Schwarzkopf E, Bradstreet T, et al. Bhlhe40 is an essential repressor of IL-10 during Mycobacterium tuberculosis infection. J Exp Med. 2018;215:1823-1838 pubmed 出版商
  509. Bellelli R, Borel V, Logan C, Svendsen J, Cox D, Nye E, et al. Polε Instability Drives Replication Stress, Abnormal Development, and Tumorigenesis. Mol Cell. 2018;70:707-721.e7 pubmed 出版商
  510. Stefani F, Eberstål S, Vergani S, Kristiansen T, Bengzon J. Low-dose irradiated mesenchymal stromal cells break tumor defensive properties in vivo. Int J Cancer. 2018;143:2200-2212 pubmed 出版商
  511. Drobek A, Moudra A, Mueller D, Huranová M, Horková V, Pribikova M, et al. Strong homeostatic TCR signals induce formation of self-tolerant virtual memory CD8 T cells. EMBO J. 2018;37: pubmed 出版商
  512. Borlido J, Sakuma S, Raices M, Carrette F, Tinoco R, Bradley L, et al. Nuclear pore complex-mediated modulation of TCR signaling is required for naïve CD4+ T cell homeostasis. Nat Immunol. 2018;19:594-605 pubmed 出版商
  513. Ubil E, Caskey L, Holtzhausen A, Hunter D, Story C, Earp H. Tumor-secreted Pros1 inhibits macrophage M1 polarization to reduce antitumor immune response. J Clin Invest. 2018;128:2356-2369 pubmed 出版商
  514. Takamori A, Nambu A, Sato K, Yamaguchi S, Matsuda K, Numata T, et al. IL-31 is crucial for induction of pruritus, but not inflammation, in contact hypersensitivity. Sci Rep. 2018;8:6639 pubmed 出版商
  515. Gounder A, Yokoyama C, Jarjour N, Bricker T, Edelson B, Boon A. Interferon induced protein 35 exacerbates H5N1 influenza disease through the expression of IL-12p40 homodimer. PLoS Pathog. 2018;14:e1007001 pubmed 出版商
  516. Emmerson A, Trevelin S, Mongue Din H, Becker P, Ortiz C, Smyth L, et al. Nox2 in regulatory T cells promotes angiotensin II-induced cardiovascular remodeling. J Clin Invest. 2018;128:3088-3101 pubmed 出版商
  517. Anker J, Naseem A, Mok H, Schaeffer A, Abdulkadir S, Thumbikat P. Multi-faceted immunomodulatory and tissue-tropic clinical bacterial isolate potentiates prostate cancer immunotherapy. Nat Commun. 2018;9:1591 pubmed 出版商
  518. Tanaka S, Pfleger C, Lai J, Roan F, Sun S, Ziegler S. KAP1 Regulates Regulatory T Cell Function and Proliferation in Both Foxp3-Dependent and -Independent Manners. Cell Rep. 2018;23:796-807 pubmed 出版商
  519. Silva M, Davoli Ferreira M, Medina T, Sesti Costa R, Silva G, Lopes C, et al. Canonical PI3Kγ signaling in myeloid cells restricts Trypanosoma cruzi infection and dampens chagasic myocarditis. Nat Commun. 2018;9:1513 pubmed 出版商
  520. Zheng X, Fang Z, Liu X, Deng S, Zhou P, Wang X, et al. Increased vessel perfusion predicts the efficacy of immune checkpoint blockade. J Clin Invest. 2018;128:2104-2115 pubmed 出版商
  521. Foerster F, Boegel S, Heck R, Pickert G, R ssel N, Rosigkeit S, et al. Enhanced protection of C57 BL/6 vs Balb/c mice to melanoma liver metastasis is mediated by NK cells. Oncoimmunology. 2018;7:e1409929 pubmed 出版商
  522. Peranzoni E, Lemoine J, Vimeux L, Feuillet V, Barrin S, Kantari Mimoun C, et al. Macrophages impede CD8 T cells from reaching tumor cells and limit the efficacy of anti-PD-1 treatment. Proc Natl Acad Sci U S A. 2018;115:E4041-E4050 pubmed 出版商
  523. Carrasco S, Hu S, Imai D, Kumar R, Sandusky G, Yang X, et al. Toll-like receptor 3 (TLR3) promotes the resolution of Chlamydia muridarum genital tract infection in congenic C57BL/6N mice. PLoS ONE. 2018;13:e0195165 pubmed 出版商
  524. Prado C, Gaiazzi M, Gonzalez H, Ugalde V, Figueroa A, Osorio Barrios F, et al. Dopaminergic Stimulation of Myeloid Antigen-Presenting Cells Attenuates Signal Transducer and Activator of Transcription 3-Activation Favouring the Development of Experimental Autoimmune Encephalomyelitis. Front Immunol. 2018;9:571 pubmed 出版商
  525. Han Y, Liu Q, Hou J, Gu Y, Zhang Y, Chen Z, et al. Tumor-Induced Generation of Splenic Erythroblast-like Ter-Cells Promotes Tumor Progression. Cell. 2018;173:634-648.e12 pubmed 出版商
  526. Lee J, Park J, Nam T, Seo S, Kim J, Lee H, et al. Differences between immunodeficient mice generated by classical gene targeting and CRISPR/Cas9-mediated gene knockout. Transgenic Res. 2018;27:241-251 pubmed 出版商
  527. Harker J, Wong K, Dallari S, Bao P, Dolgoter A, Jo Y, et al. Interleukin-27R Signaling Mediates Early Viral Containment and Impacts Innate and Adaptive Immunity after Chronic Lymphocytic Choriomeningitis Virus Infection. J Virol. 2018;92: pubmed 出版商
  528. Xiao G, Chan L, Klemm L, Braas D, Chen Z, Geng H, et al. B-Cell-Specific Diversion of Glucose Carbon Utilization Reveals a Unique Vulnerability in B Cell Malignancies. Cell. 2018;173:470-484.e18 pubmed 出版商
  529. Xi J, Huang Q, Wang L, Ma X, Deng Q, Kumar M, et al. miR-21 depletion in macrophages promotes tumoricidal polarization and enhances PD-1 immunotherapy. Oncogene. 2018;37:3151-3165 pubmed 出版商
  530. Sun H, Lagarrigue F, Gingras A, Fan Z, Ley K, Ginsberg M. Transmission of integrin β7 transmembrane domain topology enables gut lymphoid tissue development. J Cell Biol. 2018;217:1453-1465 pubmed 出版商
  531. Macdougall C, Wood E, Loschko J, Scagliotti V, Cassidy F, Robinson M, et al. Visceral Adipose Tissue Immune Homeostasis Is Regulated by the Crosstalk between Adipocytes and Dendritic Cell Subsets. Cell Metab. 2018;27:588-601.e4 pubmed 出版商
  532. Tang C, Chang S, Paton A, Paton J, Gabrilovich D, Ploegh H, et al. Phosphorylation of IRE1 at S729 regulates RIDD in B cells and antibody production after immunization. J Cell Biol. 2018;217:1739-1755 pubmed 出版商
  533. Metghalchi S, Vandestienne M, Haddad Y, Esposito B, Dairou J, Tedgui A, et al. Indoleamine 2 3-dioxygenase knockout limits angiotensin II-induced aneurysm in low density lipoprotein receptor-deficient mice fed with high fat diet. PLoS ONE. 2018;13:e0193737 pubmed 出版商
  534. Khan A, Carpenter B, Santos e Sousa P, Pospori C, Khorshed R, Griffin J, et al. Redirection to the bone marrow improves T cell persistence and antitumor functions. J Clin Invest. 2018;128:2010-2024 pubmed 出版商
  535. Hailemichael Y, Woods A, Fu T, He Q, Nielsen M, Hasan F, et al. Cancer vaccine formulation dictates synergy with CTLA-4 and PD-L1 checkpoint blockade therapy. J Clin Invest. 2018;128:1338-1354 pubmed 出版商
  536. Lee Y, Lee J, Jang Y, Seo S, Chang J, Seong B. Non-specific Effect of Vaccines: Immediate Protection against Respiratory Syncytial Virus Infection by a Live Attenuated Influenza Vaccine. Front Microbiol. 2018;9:83 pubmed 出版商
  537. Kim I, Kim K, Lee E, Oh D, Park C, Park S, et al. Sox7 promotes high-grade glioma by increasing VEGFR2-mediated vascular abnormality. J Exp Med. 2018;215:963-983 pubmed 出版商
  538. A Verghese D, Demir M, Chun N, Fribourg M, Cravedi P, Llaudó I, et al. T Cell Expression of C5a Receptor 2 Augments Murine Regulatory T Cell (TREG) Generation and TREG-Dependent Cardiac Allograft Survival. J Immunol. 2018;200:2186-2198 pubmed 出版商
  539. Perry C, Muñoz Rojas A, Meeth K, Kellman L, Amezquita R, Thakral D, et al. Myeloid-targeted immunotherapies act in synergy to induce inflammation and antitumor immunity. J Exp Med. 2018;215:877-893 pubmed 出版商
  540. Seki A, Rutz S. Optimized RNP transfection for highly efficient CRISPR/Cas9-mediated gene knockout in primary T cells. J Exp Med. 2018;215:985-997 pubmed 出版商
  541. Liang W, Mao S, Sun S, Li M, Li Z, Yu R, et al. Core Fucosylation of the T Cell Receptor Is Required for T Cell Activation. Front Immunol. 2018;9:78 pubmed 出版商
  542. Fahl S, Coffey F, Kain L, Zarin P, Dunbrack R, Teyton L, et al. Role of a selecting ligand in shaping the murine γδ-TCR repertoire. Proc Natl Acad Sci U S A. 2018;115:1889-1894 pubmed 出版商
  543. Mathew N, Baumgartner F, Braun L, O Sullivan D, Thomas S, Waterhouse M, et al. Sorafenib promotes graft-versus-leukemia activity in mice and humans through IL-15 production in FLT3-ITD-mutant leukemia cells. Nat Med. 2018;24:282-291 pubmed 出版商
  544. Böttcher J, Bonavita E, Chakravarty P, Blees H, Cabeza Cabrerizo M, Sammicheli S, et al. NK Cells Stimulate Recruitment of cDC1 into the Tumor Microenvironment Promoting Cancer Immune Control. Cell. 2018;172:1022-1037.e14 pubmed 出版商
  545. Anderson A, Baranowska Hustad M, Braathen R, Grodeland G, Bogen B. Simultaneous Targeting of Multiple Hemagglutinins to APCs for Induction of Broad Immunity against Influenza. J Immunol. 2018;200:2057-2066 pubmed 出版商
  546. Dejea C, Fathi P, Craig J, Boleij A, Taddese R, Geis A, et al. Patients with familial adenomatous polyposis harbor colonic biofilms containing tumorigenic bacteria. Science. 2018;359:592-597 pubmed 出版商
  547. Ellestad K, Thangavelu G, Haile Y, Lin J, Boon L, Anderson C. Prior to Peripheral Tolerance, Newly Generated CD4 T Cells Maintain Dangerous Autoimmune Potential: Fas- and Perforin-Independent Autoimmunity Controlled by Programmed Death-1. Front Immunol. 2018;9:12 pubmed 出版商
  548. Doorduijn E, Sluijter M, Marijt K, Querido B, van der Burg S, van Hall T. T cells specific for a TAP-independent self-peptide remain naïve in tumor-bearing mice and are fully exploitable for therapy. Oncoimmunology. 2018;7:e1382793 pubmed 出版商
  549. Ehlers L, Rohde S, Ibrahim S, Jaster R. Adoptive transfer of CD3+ T cells and CD4+ CD44high memory T cells induces autoimmune pancreatitis in MRL/MpJ mice. J Cell Mol Med. 2018;22:2404-2412 pubmed 出版商
  550. Wheeler D, Sariol A, Meyerholz D, Perlman S. Microglia are required for protection against lethal coronavirus encephalitis in mice. J Clin Invest. 2018;128:931-943 pubmed 出版商
  551. Solanki A, Yanez D, Ross S, Lau C, Papaioannou E, Li J, et al. Gli3 in fetal thymic epithelial cells promotes thymocyte positive selection and differentiation by repression of Shh. Development. 2018;145: pubmed 出版商
  552. Delong J, Hall A, Konradt C, Coppock G, Park J, Harms Pritchard G, et al. Cytokine- and TCR-Mediated Regulation of T Cell Expression of Ly6C and Sca-1. J Immunol. 2018;200:1761-1770 pubmed 出版商
  553. Scott J, Lebratti T, Richner J, Jiang X, Fernandez E, Zhao H, et al. Cellular and Humoral Immunity Protect against Vaginal Zika Virus Infection in Mice. J Virol. 2018;92: pubmed 出版商
  554. Turner D, Goldklang M, Cvetkovski F, Paik D, Trischler J, Barahona J, et al. Biased Generation and In Situ Activation of Lung Tissue-Resident Memory CD4 T Cells in the Pathogenesis of Allergic Asthma. J Immunol. 2018;200:1561-1569 pubmed 出版商
  555. Tang H, Liang Y, Anders R, Taube J, Qiu X, Mulgaonkar A, et al. PD-L1 on host cells is essential for PD-L1 blockade-mediated tumor regression. J Clin Invest. 2018;128:580-588 pubmed 出版商
  556. Tavazoie M, Pollack I, Tanqueco R, Ostendorf B, Reis B, Gonsalves F, et al. LXR/ApoE Activation Restricts Innate Immune Suppression in Cancer. Cell. 2018;172:825-840.e18 pubmed 出版商
  557. Ferdinand J, Richard A, Meylan F, Al Shamkhani A, Siegel R. Cleavage of TL1A Differentially Regulates Its Effects on Innate and Adaptive Immune Cells. J Immunol. 2018;200:1360-1369 pubmed 出版商
  558. Kaufmann E, Sanz J, Dunn J, Khan N, Mendonça L, Pacis A, et al. BCG Educates Hematopoietic Stem Cells to Generate Protective Innate Immunity against Tuberculosis. Cell. 2018;172:176-190.e19 pubmed 出版商
  559. Garaycoechea J, Crossan G, Langevin F, Mulderrig L, Louzada S, Yang F, et al. Alcohol and endogenous aldehydes damage chromosomes and mutate stem cells. Nature. 2018;553:171-177 pubmed 出版商
  560. Nakashima H, Alayo Q, Penaloza MacMaster P, Freeman G, Kuchroo V, Reardon D, et al. Modeling tumor immunity of mouse glioblastoma by exhausted CD8+ T cells. Sci Rep. 2018;8:208 pubmed 出版商
  561. Choi I, Wang Z, Ke Q, Hong M, Qian Y, Zhao X, et al. Signaling by the Epstein-Barr virus LMP1 protein induces potent cytotoxic CD4+ and CD8+ T cell responses. Proc Natl Acad Sci U S A. 2018;115:E686-E695 pubmed 出版商
  562. Guarnerio J, Mendez L, Asada N, Menon A, Fung J, Berry K, et al. A non-cell-autonomous role for Pml in the maintenance of leukemia from the niche. Nat Commun. 2018;9:66 pubmed 出版商
  563. Pan D, Kobayashi A, Jiang P, Ferrari de Andrade L, Tay R, Luoma A, et al. A major chromatin regulator determines resistance of tumor cells to T cell-mediated killing. Science. 2018;359:770-775 pubmed 出版商
  564. Cowan J, Baik S, McCarthy N, Parnell S, White A, Jenkinson W, et al. Aire controls the recirculation of murine Foxp3+ regulatory T-cells back to the thymus. Eur J Immunol. 2018;48:844-854 pubmed 出版商
  565. Lynch J, Werder R, Loh Z, Sikder M, Curren B, Zhang V, et al. Plasmacytoid dendritic cells protect from viral bronchiolitis and asthma through semaphorin 4a-mediated T reg expansion. J Exp Med. 2018;215:537-557 pubmed 出版商
  566. Zhang Y, Khairallah C, Sheridan B, van der Velden A, Bliska J. CCR2+ Inflammatory Monocytes Are Recruited to Yersinia pseudotuberculosis Pyogranulomas and Dictate Adaptive Responses at the Expense of Innate Immunity during Oral Infection. Infect Immun. 2018;86: pubmed 出版商
  567. Guimarães G, Gomes M, Campos P, Marinho F, de Assis N, Silveira T, et al. Immunoproteasome Subunits Are Required for CD8+ T Cell Function and Host Resistance to Brucella abortus Infection in Mice. Infect Immun. 2018;86: pubmed 出版商
  568. Burrack A, Malhotra D, Dileepan T, Osum K, Swanson L, Fife B, et al. Cutting Edge: Allograft Rejection Is Associated with Weak T Cell Responses to Many Different Graft Leukocyte-Derived Peptides. J Immunol. 2018;200:477-482 pubmed 出版商
  569. Matsuo K, Nagakubo D, Yamamoto S, Shigeta A, Tomida S, Fujita M, et al. CCL28-Deficient Mice Have Reduced IgA Antibody-Secreting Cells and an Altered Microbiota in the Colon. J Immunol. 2018;200:800-809 pubmed 出版商
  570. Medaglia C, Giladi A, Stoler Barak L, De Giovanni M, Salame T, Biram A, et al. Spatial reconstruction of immune niches by combining photoactivatable reporters and scRNA-seq. Science. 2017;358:1622-1626 pubmed 出版商
  571. Pedros C, Canonigo Balancio A, Kong K, Altman A. Requirement of Treg-intrinsic CTLA4/PKCη signaling pathway for suppressing tumor immunity. JCI Insight. 2017;2: pubmed 出版商
  572. Iseka F, Goetz B, Mushtaq I, An W, Cypher L, Bielecki T, et al. Role of the EHD Family of Endocytic Recycling Regulators for TCR Recycling and T Cell Function. J Immunol. 2018;200:483-499 pubmed 出版商
  573. Kortlever R, Sodir N, Wilson C, Burkhart D, Pellegrinet L, Brown Swigart L, et al. Myc Cooperates with Ras by Programming Inflammation and Immune Suppression. Cell. 2017;171:1301-1315.e14 pubmed 出版商
  574. Engblom C, Pfirschke C, Zilionis R, da Silva Martins J, Bos S, Courties G, et al. Osteoblasts remotely supply lung tumors with cancer-promoting SiglecFhigh neutrophils. Science. 2017;358: pubmed 出版商
  575. Zhang J, Bu X, Wang H, Zhu Y, Geng Y, Nihira N, et al. Cyclin D-CDK4 kinase destabilizes PD-L1 via cullin 3-SPOP to control cancer immune surveillance. Nature. 2018;553:91-95 pubmed 出版商
  576. Mailer R, Gisterå A, Polyzos K, Ketelhuth D, Hansson G. Hypercholesterolemia Enhances T Cell Receptor Signaling and Increases the Regulatory T Cell Population. Sci Rep. 2017;7:15655 pubmed 出版商
  577. Whitney P, Makhlouf C, MacLeod B, Ma J, Gressier E, Greyer M, et al. Effective Priming of Herpes Simplex Virus-Specific CD8+ T Cells In Vivo Does Not Require Infected Dendritic Cells. J Virol. 2018;92: pubmed 出版商
  578. Robles Valero J, Lorenzo Martín L, Menacho Márquez M, Fernández Pisonero I, Abad A, Camos M, et al. A Paradoxical Tumor-Suppressor Role for the Rac1 Exchange Factor Vav1 in T Cell Acute Lymphoblastic Leukemia. Cancer Cell. 2017;32:608-623.e9 pubmed 出版商
  579. Singh M, Vianden C, Cantwell M, Dai Z, Xiao Z, Sharma M, et al. Intratumoral CD40 activation and checkpoint blockade induces T cell-mediated eradication of melanoma in the brain. Nat Commun. 2017;8:1447 pubmed 出版商
  580. Kwak J, Laskowski J, Li H, McSharry M, Sippel T, Bullock B, et al. Complement Activation via a C3a Receptor Pathway Alters CD4+ T Lymphocytes and Mediates Lung Cancer Progression. Cancer Res. 2018;78:143-156 pubmed 出版商
  581. Widjaja Adhi M, Palczewski G, Dale K, Knauss E, Kelly M, Golczak M, et al. Transcription factor ISX mediates the cross talk between diet and immunity. Proc Natl Acad Sci U S A. 2017;114:11530-11535 pubmed 出版商
  582. Mao A, Ishizuka I, Kasal D, Mandal M, Bendelac A. A shared Runx1-bound Zbtb16 enhancer directs innate and innate-like lymphoid lineage development. Nat Commun. 2017;8:863 pubmed 出版商
  583. Glasner A, Isaacson B, Viukov S, Neuman T, Friedman N, Mandelboim M, et al. Increased NK cell immunity in a transgenic mouse model of NKp46 overexpression. Sci Rep. 2017;7:13090 pubmed 出版商
  584. Capece T, Walling B, Lim K, Kim K, Bae S, Chung H, et al. A novel intracellular pool of LFA-1 is critical for asymmetric CD8+ T cell activation and differentiation. J Cell Biol. 2017;216:3817-3829 pubmed 出版商
  585. Francis N, Every A, Ayodele B, Pike R, Mackie E, Pagel C. A T cell-specific knockout reveals an important role for protease-activated receptor 2 in lymphocyte development. Int J Biochem Cell Biol. 2017;92:95-103 pubmed 出版商
  586. Sasaki F, Koga T, Saeki K, Okuno T, Kazuno S, Fujimura T, et al. Biochemical and immunological characterization of a novel monoclonal antibody against mouse leukotriene B4 receptor 1. PLoS ONE. 2017;12:e0185133 pubmed 出版商
  587. Wallrapp A, Riesenfeld S, Burkett P, Abdulnour R, Nyman J, Dionne D, et al. The neuropeptide NMU amplifies ILC2-driven allergic lung inflammation. Nature. 2017;549:351-356 pubmed 出版商
  588. Jung K, Heishi T, Incio J, Huang Y, Beech E, Pinter M, et al. Targeting CXCR4-dependent immunosuppressive Ly6Clow monocytes improves antiangiogenic therapy in colorectal cancer. Proc Natl Acad Sci U S A. 2017;114:10455-10460 pubmed 出版商
  589. Koyanagi N, Imai T, Shindo K, Sato A, Fujii W, Ichinohe T, et al. Herpes simplex virus-1 evasion of CD8+ T cell accumulation contributes to viral encephalitis. J Clin Invest. 2017;127:3784-3795 pubmed 出版商
  590. Giampazolias E, Zunino B, Dhayade S, Bock F, Cloix C, Cao K, et al. Mitochondrial permeabilization engages NF-κB-dependent anti-tumour activity under caspase deficiency. Nat Cell Biol. 2017;19:1116-1129 pubmed 出版商
  591. Kumar B, Garcia M, Weng L, Jung X, Murakami J, Hu X, et al. Acute myeloid leukemia transforms the bone marrow niche into a leukemia-permissive microenvironment through exosome secretion. Leukemia. 2018;32:575-587 pubmed 出版商
  592. Goel S, Decristo M, Watt A, BrinJones H, Sceneay J, Li B, et al. CDK4/6 inhibition triggers anti-tumour immunity. Nature. 2017;548:471-475 pubmed 出版商
  593. Kim J, Kim Y, Kim J, Park D, Bae H, Lee D, et al. YAP/TAZ regulates sprouting angiogenesis and vascular barrier maturation. J Clin Invest. 2017;127:3441-3461 pubmed 出版商
  594. Cho C, Smallwood P, Nathans J. Reck and Gpr124 Are Essential Receptor Cofactors for Wnt7a/Wnt7b-Specific Signaling in Mammalian CNS Angiogenesis and Blood-Brain Barrier Regulation. Neuron. 2017;95:1056-1073.e5 pubmed 出版商
  595. Sinclair C, Bommakanti G, Gardinassi L, Loebbermann J, Johnson M, Hakimpour P, et al. mTOR regulates metabolic adaptation of APCs in the lung and controls the outcome of allergic inflammation. Science. 2017;357:1014-1021 pubmed 出版商
  596. Earl P, Americo J, Moss B. Insufficient Innate Immunity Contributes to the Susceptibility of the Castaneous Mouse to Orthopoxvirus Infection. J Virol. 2017;91: pubmed 出版商
  597. Wang Y, Yun C, Gao B, Xu Y, Zhang Y, Wang Y, et al. The Lysine Acetyltransferase GCN5 Is Required for iNKT Cell Development through EGR2 Acetylation. Cell Rep. 2017;20:600-612 pubmed 出版商
  598. Billerbeck E, Wolfisberg R, Fahnøe U, Xiao J, Quirk C, Luna J, et al. Mouse models of acute and chronic hepacivirus infection. Science. 2017;357:204-208 pubmed 出版商
  599. Alloatti A, Rookhuizen D, Joannas L, Carpier J, Iborra S, Magalhaes J, et al. Critical role for Sec22b-dependent antigen cross-presentation in antitumor immunity. J Exp Med. 2017;214:2231-2241 pubmed 出版商
  600. Lingel H, Wissing J, Arra A, Schanze D, Lienenklaus S, Klawonn F, et al. CTLA-4-mediated posttranslational modifications direct cytotoxic T-lymphocyte differentiation. Cell Death Differ. 2017;24:1739-1749 pubmed 出版商
  601. Hasan Z, Koizumi S, Sasaki D, Yamada H, Arakaki N, Fujihara Y, et al. JunB is essential for IL-23-dependent pathogenicity of Th17 cells. Nat Commun. 2017;8:15628 pubmed 出版商
  602. Escribà Garcia L, Alvarez Fernández C, Tellez Gabriel M, Sierra J, Briones J. Dendritic cells combined with tumor cells and ?-galactosylceramide induce a potent, therapeutic and NK-cell dependent antitumor immunity in B cell lymphoma. J Transl Med. 2017;15:115 pubmed 出版商
  603. Mendoza A, Fang V, Chen C, Serasinghe M, Verma A, Muller J, et al. Lymphatic endothelial S1P promotes mitochondrial function and survival in naive T cells. Nature. 2017;546:158-161 pubmed 出版商
  604. Mildner A, Schönheit J, Giladi A, David E, Lara Astiaso D, Lorenzo Vivas E, et al. Genomic Characterization of Murine Monocytes Reveals C/EBP? Transcription Factor Dependence of Ly6C- Cells. Immunity. 2017;46:849-862.e7 pubmed 出版商
  605. Miyazaki M, Miyazaki K, Chen K, Jin Y, Turner J, Moore A, et al. The E-Id Protein Axis Specifies Adaptive Lymphoid Cell Identity and Suppresses Thymic Innate Lymphoid Cell Development. Immunity. 2017;46:818-834.e4 pubmed 出版商
  606. Gordon S, Maute R, Dulken B, Hutter G, George B, McCracken M, et al. PD-1 expression by tumour-associated macrophages inhibits phagocytosis and tumour immunity. Nature. 2017;545:495-499 pubmed 出版商
  607. Jinnohara T, Kanaya T, Hase K, Sakakibara S, Kato T, Tachibana N, et al. IL-22BP dictates characteristics of Peyer's patch follicle-associated epithelium for antigen uptake. J Exp Med. 2017;214:1607-1618 pubmed 出版商
  608. Torcellan T, Hampton H, Bailey J, Tomura M, Brink R, Chtanova T. In vivo photolabeling of tumor-infiltrating cells reveals highly regulated egress of T-cell subsets from tumors. Proc Natl Acad Sci U S A. 2017;114:5677-5682 pubmed 出版商
  609. Hara T, Nakaoka H, Hayashi T, Mimura K, Hoshino D, Inoue M, et al. Control of metastatic niche formation by targeting APBA3/Mint3 in inflammatory monocytes. Proc Natl Acad Sci U S A. 2017;114:E4416-E4424 pubmed 出版商
  610. Kraakman M, Lee M, Al Sharea A, Dragoljevic D, Barrett T, Montenont E, et al. Neutrophil-derived S100 calcium-binding proteins A8/A9 promote reticulated thrombocytosis and atherogenesis in diabetes. J Clin Invest. 2017;127:2133-2147 pubmed 出版商
  611. Zhang C, Feng J, Du J, Zhuo Z, Yang S, Zhang W, et al. Macrophage-derived IL-1α promotes sterile inflammation in a mouse model of acetaminophen hepatotoxicity. Cell Mol Immunol. 2018;15:973-982 pubmed 出版商
  612. Tang A, Choi J, Kotzin J, Yang Y, Hong C, Hobson N, et al. Endothelial TLR4 and the microbiome drive cerebral cavernous malformations. Nature. 2017;545:305-310 pubmed 出版商
  613. Miao T, Symonds A, Singh R, Symonds J, Ogbe A, Omodho B, et al. Egr2 and 3 control adaptive immune responses by temporally uncoupling expansion from T cell differentiation. J Exp Med. 2017;214:1787-1808 pubmed 出版商
  614. Kwan B, Zhu E, Tzeng A, Sugito H, Eltahir A, Ma B, et al. Integrin-targeted cancer immunotherapy elicits protective adaptive immune responses. J Exp Med. 2017;214:1679-1690 pubmed 出版商
  615. Chowdhary V, Krogman A, Tilahun A, Alexander M, David C, Rajagopalan G. Concomitant Disruption of CD4 and CD8 Genes Facilitates the Development of Double Negative ?? TCR+ Peripheral T Cells That Respond Robustly to Staphylococcal Superantigen. J Immunol. 2017;198:4413-4424 pubmed 出版商
  616. Kammertoens T, Friese C, Arina A, Idel C, Briesemeister D, Rothe M, et al. Tumour ischaemia by interferon-? resembles physiological blood vessel regression. Nature. 2017;545:98-102 pubmed 出版商
  617. Daley D, Mani V, Mohan N, Akkad N, Pandian G, Savadkar S, et al. NLRP3 signaling drives macrophage-induced adaptive immune suppression in pancreatic carcinoma. J Exp Med. 2017;214:1711-1724 pubmed 出版商
  618. Zhang H, Luo J, Alcorn J, Chen K, Fan S, Pilewski J, et al. AIM2 Inflammasome Is Critical for Influenza-Induced Lung Injury and Mortality. J Immunol. 2017;198:4383-4393 pubmed 出版商
  619. Ma S, Wan X, Deng Z, Shi L, Hao C, Zhou Z, et al. Epigenetic regulator CXXC5 recruits DNA demethylase Tet2 to regulate TLR7/9-elicited IFN response in pDCs. J Exp Med. 2017;214:1471-1491 pubmed 出版商
  620. Lee H, Tian L, Bouladoux N, Davis J, Quinones M, Belkaid Y, et al. Dendritic cells expressing immunoreceptor CD300f are critical for controlling chronic gut inflammation. J Clin Invest. 2017;127:1905-1917 pubmed 出版商
  621. Fu G, Xu Q, Qiu Y, Jin X, Xu T, Dong S, et al. Suppression of Th17 cell differentiation by misshapen/NIK-related kinase MINK1. J Exp Med. 2017;214:1453-1469 pubmed 出版商
  622. Claser C, de Souza J, Thorburn S, Grau G, Riley E, Renia L, et al. Host Resistance to Plasmodium-Induced Acute Immune Pathology Is Regulated by Interleukin-10 Receptor Signaling. Infect Immun. 2017;85: pubmed 出版商
  623. Daley D, Mani V, Mohan N, Akkad N, Ochi A, Heindel D, et al. Dectin 1 activation on macrophages by galectin 9 promotes pancreatic carcinoma and peritumoral immune tolerance. Nat Med. 2017;23:556-567 pubmed 出版商
  624. Lehmann C, Baranska A, Heidkamp G, Heger L, Neubert K, Lühr J, et al. DC subset-specific induction of T cell responses upon antigen uptake via Fc? receptors in vivo. J Exp Med. 2017;214:1509-1528 pubmed 出版商
  625. Chen Y, Wu K, Wu K, Wu K, Tsai H, Chen M, et al. Recombinant Adeno-Associated Virus-Mediated Expression of Methamphetamine Antibody Attenuates Methamphetamine-Induced Hyperactivity in Mice. Sci Rep. 2017;7:46301 pubmed 出版商
  626. Bouziat R, Hinterleitner R, Brown J, Stencel Baerenwald J, Ikizler M, Mayassi T, et al. Reovirus infection triggers inflammatory responses to dietary antigens and development of celiac disease. Science. 2017;356:44-50 pubmed 出版商
  627. Daniels B, Snyder A, Olsen T, Orozco S, Oguin T, Tait S, et al. RIPK3 Restricts Viral Pathogenesis via Cell Death-Independent Neuroinflammation. Cell. 2017;169:301-313.e11 pubmed 出版商
  628. Connolly N, Stokum J, Schneider C, Ozawa T, Xu S, Galisteo R, et al. Genetically engineered rat gliomas: PDGF-driven tumor initiation and progression in tv-a transgenic rats recreate key features of human brain cancer. PLoS ONE. 2017;12:e0174557 pubmed 出版商
  629. Kitada S, Kayama H, Okuzaki D, Koga R, Kobayashi M, Arima Y, et al. BATF2 inhibits immunopathological Th17 responses by suppressing Il23a expression during Trypanosoma cruzi infection. J Exp Med. 2017;214:1313-1331 pubmed 出版商
  630. Schweighoffer E, Nys J, Vanes L, Smithers N, Tybulewicz V. TLR4 signals in B lymphocytes are transduced via the B cell antigen receptor and SYK. J Exp Med. 2017;214:1269-1280 pubmed 出版商
  631. Guo Q, Minnier J, Burchard J, Chiotti K, Spellman P, Schedin P. Physiologically activated mammary fibroblasts promote postpartum mammary cancer. JCI Insight. 2017;2:e89206 pubmed 出版商
  632. Thomas D, Clare S, Sowerby J, Pardo M, Juss J, Goulding D, et al. Eros is a novel transmembrane protein that controls the phagocyte respiratory burst and is essential for innate immunity. J Exp Med. 2017;214:1111-1128 pubmed 出版商
  633. He W, Wang C, Mu R, Liang P, Huang Z, Zhang J, et al. MiR-21 is required for anti-tumor immune response in mice: an implication for its bi-directional roles. Oncogene. 2017;36:4212-4223 pubmed 出版商
  634. Liu Z, Ravindranathan R, Kalinski P, Guo Z, Bartlett D. Rational combination of oncolytic vaccinia virus and PD-L1 blockade works synergistically to enhance therapeutic efficacy. Nat Commun. 2017;8:14754 pubmed 出版商
  635. González Pérez G, Lamousé Smith E. Gastrointestinal Microbiome Dysbiosis in Infant Mice Alters Peripheral CD8+ T Cell Receptor Signaling. Front Immunol. 2017;8:265 pubmed 出版商
  636. Klein J, Moses K, Zelinskyy G, Sody S, Buer J, Lang S, et al. Combined toll-like receptor 3/7/9 deficiency on host cells results in T-cell-dependent control of tumour growth. Nat Commun. 2017;8:14600 pubmed 出版商
  637. Bhattacharyya M, Penaloza MacMaster P. T regulatory cells are critical for the maintenance, anamnestic expansion and protection elicited by vaccine-induced CD8 T cells. Immunology. 2017;151:340-348 pubmed 出版商
  638. Ansa Addo E, Zhang Y, Yang Y, Hussey G, Howley B, Salem M, et al. Membrane-organizing protein moesin controls Treg differentiation and antitumor immunity via TGF-β signaling. J Clin Invest. 2017;127:1321-1337 pubmed 出版商
  639. Ravindran D, Ridiandries A, Vanags L, Henriquez R, Cartland S, Tan J, et al. Chemokine binding protein 'M3' limits atherosclerosis in apolipoprotein E-/- mice. PLoS ONE. 2017;12:e0173224 pubmed 出版商
  640. Pishesha N, Bilate A, Wibowo M, Huang N, Li Z, Deshycka R, et al. Engineered erythrocytes covalently linked to antigenic peptides can protect against autoimmune disease. Proc Natl Acad Sci U S A. 2017;114:3157-3162 pubmed 出版商
  641. Obeid S, Wankell M, Charrez B, Sternberg J, Kreuter R, Esmaili S, et al. Adiponectin confers protection from acute colitis and restricts a B cell immune response. J Biol Chem. 2017;292:6569-6582 pubmed 出版商
  642. Ramos G, van den Berg A, Nunes Silva V, Weirather J, Peters L, Burkard M, et al. Myocardial aging as a T-cell-mediated phenomenon. Proc Natl Acad Sci U S A. 2017;114:E2420-E2429 pubmed 出版商
  643. Guidi N, Sacma M, Ständker L, Soller K, Marka G, Eiwen K, et al. Osteopontin attenuates aging-associated phenotypes of hematopoietic stem cells. EMBO J. 2017;36:840-853 pubmed 出版商
  644. Fisher S, Aston W, Chee J, Khong A, Cleaver A, Solin J, et al. Transient Treg depletion enhances therapeutic anti-cancer vaccination. Immun Inflamm Dis. 2017;5:16-28 pubmed 出版商
  645. Ho T, Warr M, Adelman E, Lansinger O, Flach J, Verovskaya E, et al. Autophagy maintains the metabolism and function of young and old stem cells. Nature. 2017;543:205-210 pubmed 出版商
  646. Rubtsova K, Rubtsov A, Thurman J, Mennona J, Kappler J, Marrack P. B cells expressing the transcription factor T-bet drive lupus-like autoimmunity. J Clin Invest. 2017;127:1392-1404 pubmed 出版商
  647. Zhao Y, Carroll D, You Y, Chaiswing L, Wen R, Batinic Haberle I, et al. A novel redox regulator, MnTnBuOE-2-PyP5+, enhances normal hematopoietic stem/progenitor cell function. Redox Biol. 2017;12:129-138 pubmed 出版商
  648. Sanges S, Jendoubi M, Kavian N, Hauspie C, Speca S, Crave J, et al. B Cell Homeostasis and Functional Properties Are Altered in an Hypochlorous Acid-Induced Murine Model of Systemic Sclerosis. Front Immunol. 2017;8:53 pubmed 出版商
  649. Rossey I, Gilman M, Kabeche S, Sedeyn K, Wrapp D, Kanekiyo M, et al. Potent single-domain antibodies that arrest respiratory syncytial virus fusion protein in its prefusion state. Nat Commun. 2017;8:14158 pubmed 出版商
  650. Knudson K, Pritzl C, Saxena V, Altman A, Daniels M, Teixeiro E. NFκB-Pim-1-Eomesodermin axis is critical for maintaining CD8 T-cell memory quality. Proc Natl Acad Sci U S A. 2017;114:E1659-E1667 pubmed 出版商
  651. Ying W, Wollam J, Ofrecio J, Bandyopadhyay G, El Ouarrat D, Lee Y, et al. Adipose tissue B2 cells promote insulin resistance through leukotriene LTB4/LTB4R1 signaling. J Clin Invest. 2017;127:1019-1030 pubmed 出版商
  652. Furukawa S, Nagaike M, Ozaki K. Databases for technical aspects of immunohistochemistry. J Toxicol Pathol. 2017;30:79-107 pubmed 出版商
  653. Cortez Toledo O, Schnair C, Sangngern P, Metzger D, Chao L. Nur77 deletion impairs muscle growth during developmental myogenesis and muscle regeneration in mice. PLoS ONE. 2017;12:e0171268 pubmed 出版商
  654. Zhang H, Qi Y, Yuan Y, Cai L, Xu H, Zhang L, et al. Paeoniflorin Ameliorates Experimental Autoimmune Encephalomyelitis via Inhibition of Dendritic Cell Function and Th17 Cell Differentiation. Sci Rep. 2017;7:41887 pubmed 出版商
  655. Asano T, Meguri Y, Yoshioka T, Kishi Y, Iwamoto M, Nakamura M, et al. PD-1 modulates regulatory T-cell homeostasis during low-dose interleukin-2 therapy. Blood. 2017;129:2186-2197 pubmed 出版商
  656. Oh J, Oh D, Jung H, Lee H. A mechanism for the induction of type 2 immune responses by a protease allergen in the genital tract. Proc Natl Acad Sci U S A. 2017;114:E1188-E1195 pubmed 出版商
  657. Ishiguro T, Fukawa T, Akaki K, Nagaoka K, Takeda T, Iwakura Y, et al. Absence of DCIR1 reduces the mortality rate of endotoxemic hepatitis in mice. Eur J Immunol. 2017;47:704-712 pubmed 出版商
  658. van Nieuwenhuijze A, Dooley J, Humblet Baron S, Sreenivasan J, Koenders M, Schlenner S, et al. Defective germinal center B-cell response and reduced arthritic pathology in microRNA-29a-deficient mice. Cell Mol Life Sci. 2017;74:2095-2106 pubmed 出版商
  659. Berghoff S, Gerndt N, Winchenbach J, Stumpf S, Hosang L, Odoardi F, et al. Dietary cholesterol promotes repair of demyelinated lesions in the adult brain. Nat Commun. 2017;8:14241 pubmed 出版商
  660. Edwards R, Kopp S, Ifergan I, Shui J, Kronenberg M, Miller S, et al. Murine Corneal Inflammation and Nerve Damage After Infection With HSV-1 Are Promoted by HVEM and Ameliorated by Immune-Modifying Nanoparticle Therapy. Invest Ophthalmol Vis Sci. 2017;58:282-291 pubmed 出版商
  661. Welsby I, Detienne S, N kuli F, Thomas S, Wouters S, Bechtold V, et al. Lysosome-Dependent Activation of Human Dendritic Cells by the Vaccine Adjuvant QS-21. Front Immunol. 2016;7:663 pubmed 出版商
  662. Yanagita T, Murata Y, Tanaka D, Motegi S, Arai E, Daniwijaya E, et al. Anti-SIRPα antibodies as a potential new tool for cancer immunotherapy. JCI Insight. 2017;2:e89140 pubmed 出版商
  663. Chamoto K, Chowdhury P, Kumar A, Sonomura K, Matsuda F, Fagarasan S, et al. Mitochondrial activation chemicals synergize with surface receptor PD-1 blockade for T cell-dependent antitumor activity. Proc Natl Acad Sci U S A. 2017;114:E761-E770 pubmed 出版商
  664. Zhu J, Cifuentes H, Reynolds J, Lamba D. Immunosuppression via Loss of IL2rγ Enhances Long-Term Functional Integration of hESC-Derived Photoreceptors in the Mouse Retina. Cell Stem Cell. 2017;20:374-384.e5 pubmed 出版商
  665. Oben K, Gachuki B, Alhakeem S, McKenna M, Liang Y, St Clair D, et al. Radiation Induced Apoptosis of Murine Bone Marrow Cells Is Independent of Early Growth Response 1 (EGR1). PLoS ONE. 2017;12:e0169767 pubmed 出版商
  666. Yamamura K, Uruno T, Shiraishi A, Tanaka Y, Ushijima M, Nakahara T, et al. The transcription factor EPAS1 links DOCK8 deficiency to atopic skin inflammation via IL-31 induction. Nat Commun. 2017;8:13946 pubmed 出版商
  667. Ai J, Li J, Gessler D, Su Q, Wei Q, Li H, et al. Adeno-associated virus serotype rh.10 displays strong muscle tropism following intraperitoneal delivery. Sci Rep. 2017;7:40336 pubmed 出版商
  668. Rowe A, Yun H, Treat B, Kinchington P, Hendricks R. Subclinical Herpes Simplex Virus Type 1 Infections Provide Site-Specific Resistance to an Unrelated Pathogen. J Immunol. 2017;198:1706-1717 pubmed 出版商
  669. Atkin Smith G, Paone S, Zanker D, Duan M, Phan T, Chen W, et al. Isolation of cell type-specific apoptotic bodies by fluorescence-activated cell sorting. Sci Rep. 2017;7:39846 pubmed 出版商
  670. Cañete A, Carmona R, Ariza L, Sanchez M, Rojas A, Muñoz Chápuli R. A population of hematopoietic stem cells derives from GATA4-expressing progenitors located in the placenta and lateral mesoderm of mice. Haematologica. 2017;102:647-655 pubmed 出版商
  671. van der Weyden L, Arends M, Campbell A, Bald T, Wardle Jones H, Griggs N, et al. Genome-wide in vivo screen identifies novel host regulators of metastatic colonization. Nature. 2017;541:233-236 pubmed 出版商
  672. Larabee C, Desai S, Agasing A, Georgescu C, Wren J, Axtell R, et al. Loss of Nrf2 exacerbates the visual deficits and optic neuritis elicited by experimental autoimmune encephalomyelitis. Mol Vis. 2016;22:1503-1513 pubmed
  673. Engler J, Kursawe N, Solano M, Patas K, Wehrmann S, Heckmann N, et al. Glucocorticoid receptor in T cells mediates protection from autoimmunity in pregnancy. Proc Natl Acad Sci U S A. 2017;114:E181-E190 pubmed 出版商
  674. Hayakawa M, Hayakawa H, Petrova T, Ritprajak P, Sutavani R, Jiménez Andrade G, et al. Loss of Functionally Redundant p38 Isoforms in T Cells Enhances Regulatory T Cell Induction. J Biol Chem. 2017;292:1762-1772 pubmed 出版商
  675. Aguilera T, Rafat M, Castellini L, Shehade H, Kariolis M, Hui A, et al. Reprogramming the immunological microenvironment through radiation and targeting Axl. Nat Commun. 2016;7:13898 pubmed 出版商
  676. Lamprianou S, Gysemans C, Bou Saab J, Pontes H, Mathieu C, Meda P. Glibenclamide Prevents Diabetes in NOD Mice. PLoS ONE. 2016;11:e0168839 pubmed 出版商
  677. Li M, Li Z, Yao Y, Jin W, Wood K, Liu Q, et al. Astrocyte-derived interleukin-15 exacerbates ischemic brain injury via propagation of cellular immunity. Proc Natl Acad Sci U S A. 2017;114:E396-E405 pubmed 出版商
  678. Karki R, Man S, Malireddi R, Kesavardhana S, Zhu Q, Burton A, et al. NLRC3 is an inhibitory sensor of PI3K-mTOR pathways in cancer. Nature. 2016;540:583-587 pubmed 出版商
  679. Wei Y, Lu C, Chen J, Cui G, Wang L, Yu T, et al. High salt diet stimulates gut Th17 response and exacerbates TNBS-induced colitis in mice. Oncotarget. 2017;8:70-82 pubmed 出版商
  680. Bieber K, Witte M, Sun S, Hundt J, Kalies K, Dräger S, et al. T cells mediate autoantibody-induced cutaneous inflammation and blistering in epidermolysis bullosa acquisita. Sci Rep. 2016;6:38357 pubmed 出版商
  681. Ikawa T, Masuda K, Endo T, Endo M, Isono K, Koseki Y, et al. Conversion of T cells to B cells by inactivation of polycomb-mediated epigenetic suppression of the B-lineage program. Genes Dev. 2016;30:2475-2485 pubmed
  682. Moroishi T, Hayashi T, Pan W, Fujita Y, Holt M, Qin J, et al. The Hippo Pathway Kinases LATS1/2 Suppress Cancer Immunity. Cell. 2016;167:1525-1539.e17 pubmed 出版商
  683. Semenkovich N, Planer J, Ahern P, Griffin N, Lin C, Gordon J. Impact of the gut microbiota on enhancer accessibility in gut intraepithelial lymphocytes. Proc Natl Acad Sci U S A. 2016;113:14805-14810 pubmed 出版商
  684. Morita K, Okamura T, Inoue M, Komai T, Teruya S, Iwasaki Y, et al. Egr2 and Egr3 in regulatory T cells cooperatively control systemic autoimmunity through Ltbp3-mediated TGF-β3 production. Proc Natl Acad Sci U S A. 2016;113:E8131-E8140 pubmed
  685. Swanson P, Hart G, Russo M, Nayak D, Yazew T, Pena M, et al. CD8+ T Cells Induce Fatal Brainstem Pathology during Cerebral Malaria via Luminal Antigen-Specific Engagement of Brain Vasculature. PLoS Pathog. 2016;12:e1006022 pubmed 出版商
  686. Ma C, Mishra S, Demel E, Liu Y, Zhang N. TGF-? Controls the Formation of Kidney-Resident T Cells via Promoting Effector T Cell Extravasation. J Immunol. 2017;198:749-756 pubmed 出版商
  687. Angela M, Endo Y, Asou H, Yamamoto T, Tumes D, Tokuyama H, et al. Fatty acid metabolic reprogramming via mTOR-mediated inductions of PPAR? directs early activation of T cells. Nat Commun. 2016;7:13683 pubmed 出版商
  688. Kretzer N, Theisen D, Tussiwand R, Briseño C, Grajales Reyes G, Wu X, et al. RAB43 facilitates cross-presentation of cell-associated antigens by CD8?+ dendritic cells. J Exp Med. 2016;213:2871-2883 pubmed
  689. Khameneh H, Ho A, Spreafico R, Derks H, Quek H, Mortellaro A. The Syk-NFAT-IL-2 Pathway in Dendritic Cells Is Required for Optimal Sterile Immunity Elicited by Alum Adjuvants. J Immunol. 2017;198:196-204 pubmed
  690. Brinza L, Djebali S, Tomkowiak M, Mafille J, Loiseau C, Jouve P, et al. Immune signatures of protective spleen memory CD8 T cells. Sci Rep. 2016;6:37651 pubmed 出版商
  691. Le Q, Yao W, Chen Y, Yan B, Liu C, Yuan M, et al. GRK6 regulates ROS response and maintains hematopoietic stem cell self-renewal. Cell Death Dis. 2016;7:e2478 pubmed 出版商
  692. Wang X, Cao Q, Yu L, Shi H, Xue B, Shi H. Epigenetic regulation of macrophage polarization and inflammation by DNA methylation in obesity. JCI Insight. 2016;1:e87748 pubmed 出版商
  693. Kuchmiy A, D Hont J, Hochepied T, Lamkanfi M. NLRP2 controls age-associated maternal fertility. J Exp Med. 2016;213:2851-2860 pubmed
  694. Sektioglu I, Carretero R, Bulbuc N, Bald T, Tüting T, Rudensky A, et al. Basophils Promote Tumor Rejection via Chemotaxis and Infiltration of CD8+ T Cells. Cancer Res. 2017;77:291-302 pubmed 出版商
  695. Kimura Y, Inoue A, Hangai S, Saijo S, Negishi H, Nishio J, et al. The innate immune receptor Dectin-2 mediates the phagocytosis of cancer cells by Kupffer cells for the suppression of liver metastasis. Proc Natl Acad Sci U S A. 2016;113:14097-14102 pubmed
  696. Hammer A, Yang G, Friedrich J, Kovacs A, Lee D, Grave K, et al. Role of the receptor Mas in macrophage-mediated inflammation in vivo. Proc Natl Acad Sci U S A. 2016;113:14109-14114 pubmed
  697. Yu V, Yusuf R, Oki T, Wu J, Saez B, Wang X, et al. Epigenetic Memory Underlies Cell-Autonomous Heterogeneous Behavior of Hematopoietic Stem Cells. Cell. 2016;167:1310-1322.e17 pubmed 出版商
  698. Srivastava R, Khan A, Garg S, Syed S, Furness J, Vahed H, et al. Human Asymptomatic Epitopes Identified from the Herpes Simplex Virus Tegument Protein VP13/14 (UL47) Preferentially Recall Polyfunctional Effector Memory CD44high CD62Llow CD8+ TEM Cells and Protect Humanized HLA-A*02:01 Transgenic Mice against Ocula. J Virol. 2017;91: pubmed 出版商
  699. Bassett E, Tokarew N, Allemano E, Mazerolle C, Morin K, Mears A, et al. Norrin/Frizzled4 signalling in the preneoplastic niche blocks medulloblastoma initiation. elife. 2016;5: pubmed 出版商
  700. Park K, Mikulski Z, Seo G, Andreyev A, Marcovecchio P, Blatchley A, et al. The transcription factor NR4A3 controls CD103+ dendritic cell migration. J Clin Invest. 2016;126:4603-4615 pubmed 出版商
  701. Laurent C, Dorothee G, Hunot S, Martin E, Monnet Y, Duchamp M, et al. Hippocampal T cell infiltration promotes neuroinflammation and cognitive decline in a mouse model of tauopathy. Brain. 2017;140:184-200 pubmed 出版商
  702. Hu Y, Kim J, He K, Wan Q, Kim J, Flach M, et al. Scramblase TMEM16F terminates T cell receptor signaling to restrict T cell exhaustion. J Exp Med. 2016;213:2759-2772 pubmed
  703. Zamora Pineda J, Kumar A, Suh J, Zhang M, Saba J. Dendritic cell sphingosine-1-phosphate lyase regulates thymic egress. J Exp Med. 2016;213:2773-2791 pubmed
  704. Hirako I, Ataide M, Faustino L, Assis P, Sorensen E, Ueta H, et al. Splenic differentiation and emergence of CCR5+CXCL9+CXCL10+ monocyte-derived dendritic cells in the brain during cerebral malaria. Nat Commun. 2016;7:13277 pubmed 出版商
  705. Kirschbaum K, Sonner J, Zeller M, Deumelandt K, Bode J, Sharma R, et al. In vivo nanoparticle imaging of innate immune cells can serve as a marker of disease severity in a model of multiple sclerosis. Proc Natl Acad Sci U S A. 2016;113:13227-13232 pubmed
  706. Jirmo A, Daluege K, Happle C, Albrecht M, Dittrich A, Busse M, et al. IL-27 Is Essential for Suppression of Experimental Allergic Asthma by the TLR7/8 Agonist R848 (Resiquimod). J Immunol. 2016;197:4219-4227 pubmed
  707. Coleman C, Sisk J, Halasz G, Zhong J, Beck S, Matthews K, et al. CD8+ T Cells and Macrophages Regulate Pathogenesis in a Mouse Model of Middle East Respiratory Syndrome. J Virol. 2017;91: pubmed 出版商
  708. Teng O, Chen S, Hsu T, Sia S, Cole S, Valkenburg S, et al. CLEC5A-Mediated Enhancement of the Inflammatory Response in Myeloid Cells Contributes to Influenza Virus Pathogenicity In Vivo. J Virol. 2017;91: pubmed 出版商
  709. Calmette J, Bertrand M, Vétillard M, Ellouze M, Flint S, Nicolas V, et al. Glucocorticoid-Induced Leucine Zipper Protein Controls Macropinocytosis in Dendritic Cells. J Immunol. 2016;197:4247-4256 pubmed
  710. Serr I, Fürst R, Ott V, Scherm M, Nikolaev A, Gökmen F, et al. miRNA92a targets KLF2 and the phosphatase PTEN signaling to promote human T follicular helper precursors in T1D islet autoimmunity. Proc Natl Acad Sci U S A. 2016;113:E6659-E6668 pubmed
  711. Sen D, Kaminski J, Barnitz R, Kurachi M, Gerdemann U, Yates K, et al. The epigenetic landscape of T cell exhaustion. Science. 2016;354:1165-1169 pubmed
  712. Bahal R, Ali McNeer N, Quijano E, Liu Y, Sulkowski P, Turchick A, et al. In vivo correction of anaemia in ?-thalassemic mice by ?PNA-mediated gene editing with nanoparticle delivery. Nat Commun. 2016;7:13304 pubmed 出版商
  713. Starobinets H, Ye J, Broz M, Barry K, Goldsmith J, Marsh T, et al. Antitumor adaptive immunity remains intact following inhibition of autophagy and antimalarial treatment. J Clin Invest. 2016;126:4417-4429 pubmed 出版商
  714. Zhao J, Chen C, Guo M, Tao Y, Cui P, Zhou Y, et al. MicroRNA-7 Deficiency Ameliorates the Pathologies of Acute Lung Injury through Elevating KLF4. Front Immunol. 2016;7:389 pubmed
  715. Kotschy A, Szlávik Z, Murray J, Davidson J, Maragno A, Le Toumelin Braizat G, et al. The MCL1 inhibitor S63845 is tolerable and effective in diverse cancer models. Nature. 2016;538:477-482 pubmed 出版商
  716. Massaad M, Zhou J, Tsuchimoto D, Chou J, Jabara H, Janssen E, et al. Deficiency of base excision repair enzyme NEIL3 drives increased predisposition to autoimmunity. J Clin Invest. 2016;126:4219-4236 pubmed 出版商
  717. Clement M, Pearson J, Gras S, van den Berg H, Lissina A, Llewellyn Lacey S, et al. Targeted suppression of autoreactive CD8+ T-cell activation using blocking anti-CD8 antibodies. Sci Rep. 2016;6:35332 pubmed 出版商
  718. Elgueta R, Tse D, Deharvengt S, Luciano M, CARRIERE C, Noelle R, et al. Endothelial Plasmalemma Vesicle-Associated Protein Regulates the Homeostasis of Splenic Immature B Cells and B-1 B Cells. J Immunol. 2016;197:3970-3981 pubmed
  719. Collinson Pautz M, Slawin K, Levitt J, Spencer D. MyD88/CD40 Genetic Adjuvant Function in Cutaneous Atypical Antigen-Presenting Cells Contributes to DNA Vaccine Immunogenicity. PLoS ONE. 2016;11:e0164547 pubmed 出版商
  720. Alves da Costa T, Di Gangi R, Thomé R, Barreto Felisbino M, Pires Bonfanti A, Lumi Watanabe Ishikawa L, et al. Severe Changes in Thymic Microenvironment in a Chronic Experimental Model of Paracoccidioidomycosis. PLoS ONE. 2016;11:e0164745 pubmed 出版商
  721. Rantakari P, Jäppinen N, Lokka E, Mokkala E, Gerke H, Peuhu E, et al. Fetal liver endothelium regulates the seeding of tissue-resident macrophages. Nature. 2016;538:392-396 pubmed 出版商
  722. Kimura T, Nada S, Takegahara N, Okuno T, Nojima S, Kang S, et al. Polarization of M2 macrophages requires Lamtor1 that integrates cytokine and amino-acid signals. Nat Commun. 2016;7:13130 pubmed 出版商
  723. Lopez Guadamillas E, Fernandez Marcos P, Pantoja C, Muñoz Martin M, Martinez D, Gomez Lopez G, et al. p21Cip1 plays a critical role in the physiological adaptation to fasting through activation of PPAR?. Sci Rep. 2016;6:34542 pubmed 出版商
  724. Xu X, Greenland J, Gotts J, Matthay M, Caughey G. Cathepsin L Helps to Defend Mice from Infection with Influenza A. PLoS ONE. 2016;11:e0164501 pubmed 出版商
  725. Coursey T, Bian F, Zaheer M, Pflugfelder S, Volpe E, de Paiva C. Age-related spontaneous lacrimal keratoconjunctivitis is accompanied by dysfunctional T regulatory cells. Mucosal Immunol. 2017;10:743-756 pubmed 出版商
  726. Swaminathan G, Thoryk E, Cox K, Smith J, Wolf J, Gindy M, et al. A Tetravalent Sub-unit Dengue Vaccine Formulated with Ionizable Cationic Lipid Nanoparticle induces Significant Immune Responses in Rodents and Non-Human Primates. Sci Rep. 2016;6:34215 pubmed 出版商
  727. Rothchild A, Sissons J, Shafiani S, Plaisier C, Min D, Mai D, et al. MiR-155-regulated molecular network orchestrates cell fate in the innate and adaptive immune response to Mycobacterium tuberculosis. Proc Natl Acad Sci U S A. 2016;113:E6172-E6181 pubmed
  728. Carnevale D, Perrotta M, Pallante F, Fardella V, Iacobucci R, Fardella S, et al. A cholinergic-sympathetic pathway primes immunity in hypertension and mediates brain-to-spleen communication. Nat Commun. 2016;7:13035 pubmed 出版商
  729. Klotz L, Kuzmanov I, Hucke S, Gross C, Posevitz V, Dreykluft A, et al. B7-H1 shapes T-cell-mediated brain endothelial cell dysfunction and regional encephalitogenicity in spontaneous CNS autoimmunity. Proc Natl Acad Sci U S A. 2016;113:E6182-E6191 pubmed
  730. Ishikawa E, Kosako H, Yasuda T, Ohmuraya M, Araki K, Kurosaki T, et al. Protein kinase D regulates positive selection of CD4+ thymocytes through phosphorylation of SHP-1. Nat Commun. 2016;7:12756 pubmed 出版商
  731. Hrdinka M, Sudan K, Just S, Drobek A, Stepanek O, Schluter D, et al. Normal Development and Function of T Cells in Proline Rich 7 (Prr7) Deficient Mice. PLoS ONE. 2016;11:e0162863 pubmed 出版商
  732. Takeshima T, Pop L, Laine A, Iyengar P, Vitetta E, Hannan R. Key role for neutrophils in radiation-induced antitumor immune responses: Potentiation with G-CSF. Proc Natl Acad Sci U S A. 2016;113:11300-11305 pubmed
  733. Roncagalli R, Cucchetti M, Jarmuzynski N, Gregoire C, Bergot E, Audebert S, et al. The scaffolding function of the RLTPR protein explains its essential role for CD28 co-stimulation in mouse and human T cells. J Exp Med. 2016;213:2437-2457 pubmed
  734. Kaneda M, Messer K, Ralainirina N, Li H, Leem C, Gorjestani S, et al. PI3Kγ is a molecular switch that controls immune suppression. Nature. 2016;539:437-442 pubmed 出版商
  735. Di Marco Barros R, Roberts N, Dart R, Vantourout P, Jandke A, Nussbaumer O, et al. Epithelia Use Butyrophilin-like Molecules to Shape Organ-Specific γδ T Cell Compartments. Cell. 2016;167:203-218.e17 pubmed 出版商
  736. Huang M, Zhang W, Guo J, Wei X, Phiwpan K, Zhang J, et al. Improved Transgenic Mouse Model for Studying HLA Class I Antigen Presentation. Sci Rep. 2016;6:33612 pubmed 出版商
  737. Hirai Yuki A, Hensley L, McGivern D, Gonzalez Lopez O, Das A, Feng H, et al. MAVS-dependent host species range and pathogenicity of human hepatitis A virus. Science. 2016;353:1541-1545 pubmed
  738. Hu H, Umemori H, Hsueh Y. Postsynaptic SDC2 induces transsynaptic signaling via FGF22 for bidirectional synaptic formation. Sci Rep. 2016;6:33592 pubmed 出版商
  739. Hay C, Sult E, Huang Q, Mulgrew K, Fuhrmann S, McGlinchey K, et al. Targeting CD73 in the tumor microenvironment with MEDI9447. Oncoimmunology. 2016;5:e1208875 pubmed 出版商
  740. Bernard Valnet R, Yshii L, Quériault C, Nguyen X, Arthaud S, Rodrigues M, et al. CD8 T cell-mediated killing of orexinergic neurons induces a narcolepsy-like phenotype in mice. Proc Natl Acad Sci U S A. 2016;113:10956-61 pubmed 出版商
  741. Takeda Y, Azuma M, Matsumoto M, Seya T. Tumoricidal efficacy coincides with CD11c up-regulation in antigen-specific CD8(+) T cells during vaccine immunotherapy. J Exp Clin Cancer Res. 2016;35:143 pubmed 出版商
  742. Saranchova I, Han J, Huang H, Fenninger F, Choi K, Munro L, et al. Discovery of a Metastatic Immune Escape Mechanism Initiated by the Loss of Expression of the Tumour Biomarker Interleukin-33. Sci Rep. 2016;6:30555 pubmed 出版商
  743. Boddupalli C, Nair S, Gray S, Nowyhed H, Verma R, Gibson J, et al. ABC transporters and NR4A1 identify a quiescent subset of tissue-resident memory T cells. J Clin Invest. 2016;126:3905-3916 pubmed 出版商
  744. Akk A, Springer L, Pham C. Neutrophil Extracellular Traps Enhance Early Inflammatory Response in Sendai Virus-Induced Asthma Phenotype. Front Immunol. 2016;7:325 pubmed 出版商
  745. Lu X, Chen Q, Rong Y, Yang G, Li C, Xu N, et al. LECT2 drives haematopoietic stem cell expansion and mobilization via regulating the macrophages and osteolineage cells. Nat Commun. 2016;7:12719 pubmed 出版商
  746. Chew W, Tabebordbar M, Cheng J, Mali P, Wu E, Ng A, et al. A multifunctional AAV-CRISPR-Cas9 and its host response. Nat Methods. 2016;13:868-74 pubmed 出版商
  747. Ushiki T, Huntington N, Glaser S, Kiu H, Georgiou A, Zhang J, et al. Rapid Inflammation in Mice Lacking Both SOCS1 and SOCS3 in Hematopoietic Cells. PLoS ONE. 2016;11:e0162111 pubmed 出版商
  748. Ladle B, Li K, Phillips M, Pucsek A, Haile A, Powell J, et al. De novo DNA methylation by DNA methyltransferase 3a controls early effector CD8+ T-cell fate decisions following activation. Proc Natl Acad Sci U S A. 2016;113:10631-6 pubmed 出版商
  749. Zhang S, Liu X, Mei L, Wang H, Fang F. Epigallocatechin-3-gallate (EGCG) inhibits imiquimod-induced psoriasis-like inflammation of BALB/c mice. BMC Complement Altern Med. 2016;16:334 pubmed 出版商
  750. Olsson A, Venkatasubramanian M, Chaudhri V, Aronow B, Salomonis N, Singh H, et al. Single-cell analysis of mixed-lineage states leading to a binary cell fate choice. Nature. 2016;537:698-702 pubmed 出版商
  751. Kong S, Yang Y, Xu Y, Wang Y, Zhang Y, Melo Cardenas J, et al. Endoplasmic reticulum-resident E3 ubiquitin ligase Hrd1 controls B-cell immunity through degradation of the death receptor CD95/Fas. Proc Natl Acad Sci U S A. 2016;113:10394-9 pubmed 出版商
  752. Uckelmann H, Blaszkiewicz S, Nicolae C, Haas S, Schnell A, Wurzer S, et al. Extracellular matrix protein Matrilin-4 regulates stress-induced HSC proliferation via CXCR4. J Exp Med. 2016;213:1961-71 pubmed 出版商
  753. Proekt I, Miller C, Jeanne M, Fasano K, Moon J, Lowell C, et al. LYN- and AIRE-mediated tolerance checkpoint defects synergize to trigger organ-specific autoimmunity. J Clin Invest. 2016;126:3758-3771 pubmed 出版商
  754. Fabbiano S, Suárez Zamorano N, Rigo D, Veyrat Durebex C, Stevanovic Dokic A, Colin D, et al. Caloric Restriction Leads to Browning of White Adipose Tissue through Type 2 Immune Signaling. Cell Metab. 2016;24:434-446 pubmed 出版商
  755. Vogel K, Bell L, Galloway A, Ahlfors H, Turner M. The RNA-Binding Proteins Zfp36l1 and Zfp36l2 Enforce the Thymic ?-Selection Checkpoint by Limiting DNA Damage Response Signaling and Cell Cycle Progression. J Immunol. 2016;197:2673-2685 pubmed 出版商
  756. Bombeiro A, Thomé R, Oliveira Nunes S, Monteiro Moreira B, Verinaud L, Oliveira A. MHC-I and PirB Upregulation in the Central and Peripheral Nervous System following Sciatic Nerve Injury. PLoS ONE. 2016;11:e0161463 pubmed 出版商
  757. Klose R, Krzywinska E, Castells M, Gotthardt D, Putz E, Kantari Mimoun C, et al. Targeting VEGF-A in myeloid cells enhances natural killer cell responses to chemotherapy and ameliorates cachexia. Nat Commun. 2016;7:12528 pubmed 出版商
  758. He C, Duan X, Guo N, Chan C, Poon C, Weichselbaum R, et al. Core-shell nanoscale coordination polymers combine chemotherapy and photodynamic therapy to potentiate checkpoint blockade cancer immunotherapy. Nat Commun. 2016;7:12499 pubmed 出版商
  759. Chopra M, Biehl M, Steinfatt T, Brandl A, Kums J, Amich J, et al. Exogenous TNFR2 activation protects from acute GvHD via host T reg cell expansion. J Exp Med. 2016;213:1881-900 pubmed 出版商
  760. Lund A, Wagner M, Fankhauser M, Steinskog E, Broggi M, Spranger S, et al. Lymphatic vessels regulate immune microenvironments in human and murine melanoma. J Clin Invest. 2016;126:3389-402 pubmed 出版商
  761. Belinson H, Savage A, Fadrosh D, Kuo Y, Lin D, Valladares R, et al. Dual epithelial and immune cell function of Dvl1 regulates gut microbiota composition and intestinal homeostasis. JCI Insight. 2016;1: pubmed 出版商
  762. Moodley D, Yoshida H, Mostafavi S, Asinovski N, Ortiz Lopez A, Symanowicz P, et al. Network pharmacology of JAK inhibitors. Proc Natl Acad Sci U S A. 2016;113:9852-7 pubmed 出版商
  763. Meliopoulos V, Van De Velde L, Van De Velde N, Karlsson E, Neale G, Vogel P, et al. An Epithelial Integrin Regulates the Amplitude of Protective Lung Interferon Responses against Multiple Respiratory Pathogens. PLoS Pathog. 2016;12:e1005804 pubmed 出版商
  764. Waterstrat A, Rector K, Geiger H, Liang Y. Quantitative trait gene Slit2 positively regulates murine hematopoietic stem cell numbers. Sci Rep. 2016;6:31412 pubmed 出版商
  765. Carow B, Gao Y, Coquet J, Reilly M, Rottenberg M. lck-Driven Cre Expression Alters T Cell Development in the Thymus and the Frequencies and Functions of Peripheral T Cell Subsets. J Immunol. 2016;197:2261-8 pubmed 出版商
  766. Liu H, Jain R, Guan J, Vuong V, Ishido S, La Gruta N, et al. Ubiquitin ligase MARCH 8 cooperates with CD83 to control surface MHC II expression in thymic epithelium and CD4 T cell selection. J Exp Med. 2016;213:1695-703 pubmed 出版商
  767. He R, Hou S, Liu C, Zhang A, Bai Q, Han M, et al. Follicular CXCR5- expressing CD8(+) T cells curtail chronic viral infection. Nature. 2016;537:412-428 pubmed 出版商
  768. You L, Li L, Zou J, Yan K, Belle J, Nijnik A, et al. BRPF1 is essential for development of fetal hematopoietic stem cells. J Clin Invest. 2016;126:3247-62 pubmed 出版商
  769. Shi L, Fu T, Guan B, Chen J, Blando J, Allison J, et al. Interdependent IL-7 and IFN-? signalling in T-cell controls tumour eradication by combined ?-CTLA-4+?-PD-1 therapy. Nat Commun. 2016;7:12335 pubmed 出版商
  770. Shi Y, Wu W, Chai Q, Li Q, Hou Y, Xia H, et al. LTβR controls thymic portal endothelial cells for haematopoietic progenitor cell homing and T-cell regeneration. Nat Commun. 2016;7:12369 pubmed 出版商
  771. Zhao Y, Chu X, Chen J, Wang Y, Gao S, Jiang Y, et al. Dectin-1-activated dendritic cells trigger potent antitumour immunity through the induction of Th9 cells. Nat Commun. 2016;7:12368 pubmed 出版商
  772. Leong Y, Chen Y, Ong H, Wu D, Man K, Deléage C, et al. CXCR5(+) follicular cytotoxic T cells control viral infection in B cell follicles. Nat Immunol. 2016;17:1187-96 pubmed 出版商
  773. Imhof B, Jemelin S, Ballet R, Vesin C, Schapira M, Karaca M, et al. CCN1/CYR61-mediated meticulous patrolling by Ly6Clow monocytes fuels vascular inflammation. Proc Natl Acad Sci U S A. 2016;113:E4847-56 pubmed 出版商
  774. Boucard Jourdin M, Kugler D, Endale Ahanda M, This S, De Calisto J, Zhang A, et al. ?8 Integrin Expression and Activation of TGF-? by Intestinal Dendritic Cells Are Determined by Both Tissue Microenvironment and Cell Lineage. J Immunol. 2016;197:1968-78 pubmed 出版商
  775. Liu J, Liu J, Holmström K, Menazza S, Parks R, Fergusson M, et al. MICU1 Serves as a Molecular Gatekeeper to Prevent In Vivo Mitochondrial Calcium Overload. Cell Rep. 2016;16:1561-1573 pubmed 出版商
  776. Chow K, Delconte R, Huntington N, Tarlinton D, Sutherland R, Zhan Y, et al. Innate Allorecognition Results in Rapid Accumulation of Monocyte-Derived Dendritic Cells. J Immunol. 2016;197:2000-8 pubmed 出版商
  777. Seifert A, Zeng S, Zhang J, Kim T, Cohen N, Beckman M, et al. PD-1/PD-L1 Blockade Enhances T-cell Activity and Antitumor Efficacy of Imatinib in Gastrointestinal Stromal Tumors. Clin Cancer Res. 2017;23:454-465 pubmed 出版商
  778. Barin J, Talor M, Schaub J, Diny N, Hou X, Hoyer M, et al. Collaborative Interferon-? and Interleukin-17 Signaling Protects the Oral Mucosa from Staphylococcus aureus. Am J Pathol. 2016;186:2337-52 pubmed 出版商
  779. Schneider C, Nobs S, Heer A, Hirsch E, Penninger J, Siggs O, et al. Frontline Science: Coincidental null mutation of Csf2rα in a colony of PI3Kγ-/- mice causes alveolar macrophage deficiency and fatal respiratory viral infection. J Leukoc Biol. 2017;101:367-376 pubmed 出版商
  780. Aryal B, Rotllan N, Araldi E, Ramírez C, He S, Chousterman B, et al. ANGPTL4 deficiency in haematopoietic cells promotes monocyte expansion and atherosclerosis progression. Nat Commun. 2016;7:12313 pubmed 出版商
  781. Di Scala M, Otano I, Gil Farina I, Vanrell L, Hommel M, Olague C, et al. Complementary Effects of Interleukin-15 and Alpha Interferon Induce Immunity in Hepatitis B Virus Transgenic Mice. J Virol. 2016;90:8563-74 pubmed 出版商
  782. Raguz J, Jerić I, Niault T, Nowacka J, Kuzet S, Rupp C, et al. Epidermal RAF prevents allergic skin disease. elife. 2016;5: pubmed 出版商
  783. Xiao Y, Tang J, Guo H, Zhao Y, Tang R, Ouyang S, et al. Targeting CBLB as a potential therapeutic approach for disseminated candidiasis. Nat Med. 2016;22:906-14 pubmed 出版商
  784. Rackov G, Hernandez Jimenez E, Shokri R, Carmona Rodríguez L, Manes S, Alvarez Mon M, et al. p21 mediates macrophage reprogramming through regulation of p50-p50 NF-?B and IFN-?. J Clin Invest. 2016;126:3089-103 pubmed 出版商
  785. Baptista M, Keszei M, Oliveira M, Sunahara K, Andersson J, Dahlberg C, et al. Deletion of Wiskott-Aldrich syndrome protein triggers Rac2 activity and increased cross-presentation by dendritic cells. Nat Commun. 2016;7:12175 pubmed 出版商
  786. Xu Y, Zhao F, Qiu Q, Chen K, Wei J, Kong Q, et al. The ER membrane-anchored ubiquitin ligase Hrd1 is a positive regulator of T-cell immunity. Nat Commun. 2016;7:12073 pubmed 出版商
  787. Ibiza S, García Cassani B, Ribeiro H, Carvalho T, Almeida L, Marques R, et al. Glial-cell-derived neuroregulators control type 3 innate lymphoid cells and gut defence. Nature. 2016;535:440-443 pubmed 出版商
  788. Stifter K, Schuster C, Schlosser M, Boehm B, Schirmbeck R. Exploring the induction of preproinsulin-specific Foxp3(+) CD4(+) Treg cells that inhibit CD8(+) T cell-mediated autoimmune diabetes by DNA vaccination. Sci Rep. 2016;6:29419 pubmed 出版商
  789. Zhang Y, Velez Delgado A, Mathew E, Li D, Mendez F, Flannagan K, et al. Myeloid cells are required for PD-1/PD-L1 checkpoint activation and the establishment of an immunosuppressive environment in pancreatic cancer. Gut. 2017;66:124-136 pubmed 出版商
  790. Riedel A, Shorthouse D, Haas L, Hall B, Shields J. Tumor-induced stromal reprogramming drives lymph node transformation. Nat Immunol. 2016;17:1118-27 pubmed 出版商
  791. Keil M, Sonner J, Lanz T, Oezen I, Bunse T, Bittner S, et al. General control non-derepressible 2 (GCN2) in T cells controls disease progression of autoimmune neuroinflammation. J Neuroimmunol. 2016;297:117-26 pubmed 出版商
  792. Iwasaki Y, Sugita S, Mandai M, Yonemura S, Onishi A, Ito S, et al. Differentiation/Purification Protocol for Retinal Pigment Epithelium from Mouse Induced Pluripotent Stem Cells as a Research Tool. PLoS ONE. 2016;11:e0158282 pubmed 出版商
  793. Gorman M, Poddar S, Farzan M, Diamond M. The Interferon-Stimulated Gene Ifitm3 Restricts West Nile Virus Infection and Pathogenesis. J Virol. 2016;90:8212-25 pubmed 出版商
  794. Bombeiro A, Santini J, Thomé R, Ferreira E, Nunes S, Moreira B, et al. Enhanced Immune Response in Immunodeficient Mice Improves Peripheral Nerve Regeneration Following Axotomy. Front Cell Neurosci. 2016;10:151 pubmed 出版商
  795. Orta Mascaró M, Consuegra Fernández M, Carreras E, Roncagalli R, Carreras Sureda A, Alvarez P, et al. CD6 modulates thymocyte selection and peripheral T cell homeostasis. J Exp Med. 2016;213:1387-97 pubmed 出版商
  796. Allison K, Sajti E, Collier J, Gosselin D, Troutman T, Stone E, et al. Affinity and dose of TCR engagement yield proportional enhancer and gene activity in CD4+ T cells. elife. 2016;5: pubmed 出版商
  797. Larocca R, Abbink P, Peron J, Zanotto P, Iampietro M, Badamchi Zadeh A, et al. Vaccine protection against Zika virus from Brazil. Nature. 2016;536:474-8 pubmed
  798. Stadinski B, Shekhar K, Gomez Tourino I, Jung J, Sasaki K, Sewell A, et al. Hydrophobic CDR3 residues promote the development of self-reactive T cells. Nat Immunol. 2016;17:946-55 pubmed 出版商
  799. Shen J, Li Z, Li L, Lu L, Xiao Z, Wu W, et al. Vascular-targeted TNF? and IFN? inhibits orthotopic colorectal tumor growth. J Transl Med. 2016;14:187 pubmed 出版商
  800. Rudolph H, Klopstein A, Gruber I, Blatti C, Lyck R, Engelhardt B. Postarrest stalling rather than crawling favors CD8(+) over CD4(+) T-cell migration across the blood-brain barrier under flow in vitro. Eur J Immunol. 2016;46:2187-203 pubmed 出版商
  801. Brinkman C, Iwami D, Hritzo M, Xiong Y, Ahmad S, Simon T, et al. Treg engage lymphotoxin beta receptor for afferent lymphatic transendothelial migration. Nat Commun. 2016;7:12021 pubmed 出版商
  802. Albarrán Juárez J, Kaur H, Grimm M, Offermanns S, Wettschureck N. Lineage tracing of cells involved in atherosclerosis. Atherosclerosis. 2016;251:445-453 pubmed 出版商
  803. Lo T, Silveira P, Fromm P, Verma N, Vu P, Kupresanin F, et al. Characterization of the Expression and Function of the C-Type Lectin Receptor CD302 in Mice and Humans Reveals a Role in Dendritic Cell Migration. J Immunol. 2016;197:885-98 pubmed 出版商
  804. Stentzel S, Teufelberger A, Nordengrün M, Kolata J, Schmidt F, Van Crombruggen K, et al. Staphylococcal serine protease-like proteins are pacemakers of allergic airway reactions to Staphylococcus aureus. J Allergy Clin Immunol. 2017;139:492-500.e8 pubmed 出版商
  805. De Grove K, Provoost S, Hendriks R, McKenzie A, Seys L, Kumar S, et al. Dysregulation of type 2 innate lymphoid cells and TH2 cells impairs pollutant-induced allergic airway responses. J Allergy Clin Immunol. 2017;139:246-257.e4 pubmed 出版商
  806. Priego N, Arechederra M, Sequera C, Bragado P, Vázquez Carballo A, Gutierrez Uzquiza A, et al. C3G knock-down enhances migration and invasion by increasing Rap1-mediated p38? activation, while it impairs tumor growth through p38?-independent mechanisms. Oncotarget. 2016;7:45060-45078 pubmed 出版商
  807. Mkhikian H, Mortales C, Zhou R, Khachikyan K, Wu G, Haslam S, et al. Golgi self-correction generates bioequivalent glycans to preserve cellular homeostasis. elife. 2016;5: pubmed 出版商
  808. Seehus C, Kaye J. In vitro Differentiation of Murine Innate Lymphoid Cells from Common Lymphoid Progenitor Cells. Bio Protoc. 2016;6: pubmed
  809. Sinclair A, Park L, Shah M, Drotar M, Calaminus S, Hopcroft L, et al. CXCR2 and CXCL4 regulate survival and self-renewal of hematopoietic stem/progenitor cells. Blood. 2016;128:371-83 pubmed 出版商
  810. Ricard C, Tchoghandjian A, Luche H, Grenot P, Figarella Branger D, Rougon G, et al. Phenotypic dynamics of microglial and monocyte-derived cells in glioblastoma-bearing mice. Sci Rep. 2016;6:26381 pubmed 出版商
  811. Martin S, Brown S, Wick D, Nielsen J, Kroeger D, Twumasi Boateng K, et al. Low Mutation Burden in Ovarian Cancer May Limit the Utility of Neoantigen-Targeted Vaccines. PLoS ONE. 2016;11:e0155189 pubmed 出版商
  812. Stein S, Mack E, Rome K, Pajcini K, Ohtani T, Xu L, et al. Trib2 Suppresses Tumor Initiation in Notch-Driven T-ALL. PLoS ONE. 2016;11:e0155408 pubmed 出版商
  813. Göbel K, Pankratz S, Asaridou C, Herrmann A, Bittner S, Merker M, et al. Blood coagulation factor XII drives adaptive immunity during neuroinflammation via CD87-mediated modulation of dendritic cells. Nat Commun. 2016;7:11626 pubmed 出版商
  814. Brandstätter O, Schanz O, Vorac J, König J, Mori T, Maruyama T, et al. Balancing intestinal and systemic inflammation through cell type-specific expression of the aryl hydrocarbon receptor repressor. Sci Rep. 2016;6:26091 pubmed 出版商
  815. Welte T, Kim I, Tian L, Gao X, Wang H, Li J, et al. Oncogenic mTOR signalling recruits myeloid-derived suppressor cells to promote tumour initiation. Nat Cell Biol. 2016;18:632-44 pubmed 出版商
  816. Rao E, Zhang Y, Li Q, Hao J, Egilmez N, Suttles J, et al. AMPK-dependent and independent effects of AICAR and compound C on T-cell responses. Oncotarget. 2016;7:33783-95 pubmed 出版商
  817. Chikh G, Luu R, Patel S, Davis H, Weeratna R. Effects of KLK Peptide on Adjuvanticity of Different ODN Sequences. Vaccines (Basel). 2016;4: pubmed 出版商
  818. Wen S, Dooner M, Cheng Y, Papa E, Del Tatto M, Pereira M, et al. Mesenchymal stromal cell-derived extracellular vesicles rescue radiation damage to murine marrow hematopoietic cells. Leukemia. 2016;30:2221-2231 pubmed 出版商
  819. Leuci V, Maione F, Rotolo R, Giraudo E, Sassi F, Migliardi G, et al. Lenalidomide normalizes tumor vessels in colorectal cancer improving chemotherapy activity. J Transl Med. 2016;14:119 pubmed 出版商
  820. Reynaldi A, Smith N, Schlub T, Venturi V, Rudd B, Davenport M. Modeling the dynamics of neonatal CD8+ T-cell responses. Immunol Cell Biol. 2016;94:838-848 pubmed 出版商
  821. Szalay G, Martinecz B, Lénárt N, Kornyei Z, Orsolits B, Judák L, et al. Microglia protect against brain injury and their selective elimination dysregulates neuronal network activity after stroke. Nat Commun. 2016;7:11499 pubmed 出版商
  822. Qualai J, Li L, Cantero J, Tarrats A, Fernández M, Sumoy L, et al. Expression of CD11c Is Associated with Unconventional Activated T Cell Subsets with High Migratory Potential. PLoS ONE. 2016;11:e0154253 pubmed 出版商
  823. Li Y, Nishikawa T, Kaneda Y. Platelet-cytokine Complex Suppresses Tumour Growth by Exploiting Intratumoural Thrombin-dependent Platelet Aggregation. Sci Rep. 2016;6:25077 pubmed 出版商
  824. Pietras E, Mirantes Barbeito C, Fong S, Loeffler D, Kovtonyuk L, Zhang S, et al. Chronic interleukin-1 exposure drives haematopoietic stem cells towards precocious myeloid differentiation at the expense of self-renewal. Nat Cell Biol. 2016;18:607-18 pubmed 出版商
  825. Li J, Chassaing B, Tyagi A, Vaccaro C, Luo T, Adams J, et al. Sex steroid deficiency-associated bone loss is microbiota dependent and prevented by probiotics. J Clin Invest. 2016;126:2049-63 pubmed 出版商
  826. Carofino B, Ayanga B, Tracey L, Brooke Bisschop T, Justice M. PRDM14 promotes RAG-dependent Notch1 driver mutations in mouse T-ALL. Biol Open. 2016;5:645-53 pubmed 出版商
  827. Li Z, Hodgkinson T, Gothard E, Boroumand S, Lamb R, Cummins I, et al. Epidermal Notch1 recruits RORγ(+) group 3 innate lymphoid cells to orchestrate normal skin repair. Nat Commun. 2016;7:11394 pubmed 出版商
  828. Ueno M, Ueno Nakamura Y, Niehaus J, Popovich P, Yoshida Y. Silencing spinal interneurons inhibits immune suppressive autonomic reflexes caused by spinal cord injury. Nat Neurosci. 2016;19:784-7 pubmed 出版商
  829. O Leary C, Riling C, Spruce L, Ding H, Kumar S, Deng G, et al. Ndfip-mediated degradation of Jak1 tunes cytokine signalling to limit expansion of CD4+ effector T cells. Nat Commun. 2016;7:11226 pubmed 出版商
  830. Goldstein J, Burlion A, Zaragoza B, Sendeyo K, Polansky J, Huehn J, et al. Inhibition of the JAK/STAT Signaling Pathway in Regulatory T Cells Reveals a Very Dynamic Regulation of Foxp3 Expression. PLoS ONE. 2016;11:e0153682 pubmed 出版商
  831. Itkin T, Gur Cohen S, Spencer J, Schajnovitz A, Ramasamy S, Kusumbe A, et al. Distinct bone marrow blood vessels differentially regulate haematopoiesis. Nature. 2016;532:323-8 pubmed 出版商
  832. Uto T, Fukaya T, Takagi H, Arimura K, Nakamura T, Kojima N, et al. Clec4A4 is a regulatory receptor for dendritic cells that impairs inflammation and T-cell immunity. Nat Commun. 2016;7:11273 pubmed 出版商
  833. Verbist K, Guy C, Milasta S, Liedmann S, Kaminski M, Wang R, et al. Metabolic maintenance of cell asymmetry following division in activated T lymphocytes. Nature. 2016;532:389-93 pubmed 出版商
  834. Vandenberk L, Garg A, Verschuere T, Koks C, Belmans J, Beullens M, et al. Irradiation of necrotic cancer cells, employed for pulsing dendritic cells (DCs), potentiates DC vaccine-induced antitumor immunity against high-grade glioma. Oncoimmunology. 2016;5:e1083669 pubmed
  835. Lee S, Hong S, Verma V, Lee Y, Duong T, Jeong K, et al. Flagellin is a strong vaginal adjuvant of a therapeutic vaccine for genital cancer. Oncoimmunology. 2016;5:e1081328 pubmed
  836. Mall C, Sckisel G, Proia D, Mirsoian A, Grossenbacher S, Pai C, et al. Repeated PD-1/PD-L1 monoclonal antibody administration induces fatal xenogeneic hypersensitivity reactions in a murine model of breast cancer. Oncoimmunology. 2016;5:e1075114 pubmed
  837. Llopiz D, Aranda F, Díaz Valdés N, Ruiz M, Infante S, Belsue V, et al. Vaccine-induced but not tumor-derived Interleukin-10 dictates the efficacy of Interleukin-10 blockade in therapeutic vaccination. Oncoimmunology. 2016;5:e1075113 pubmed
  838. Aaes T, Kaczmarek A, Delvaeye T, De Craene B, De Koker S, Heyndrickx L, et al. Vaccination with Necroptotic Cancer Cells Induces Efficient Anti-tumor Immunity. Cell Rep. 2016;15:274-87 pubmed 出版商
  839. Seidel P, Remus M, Delacher M, Grigaravicius P, Reuss D, Frappart L, et al. Epidermal Nbn deletion causes premature hair loss and a phenotype resembling psoriasiform dermatitis. Oncotarget. 2016;7:23006-18 pubmed 出版商
  840. Seifert L, Werba G, Tiwari S, Giao Ly N, Alothman S, Alqunaibit D, et al. The necrosome promotes pancreatic oncogenesis via CXCL1 and Mincle-induced immune suppression. Nature. 2016;532:245-9 pubmed 出版商
  841. Du C, Duan Y, Wei W, Cai Y, Chai H, Lv J, et al. Kappa opioid receptor activation alleviates experimental autoimmune encephalomyelitis and promotes oligodendrocyte-mediated remyelination. Nat Commun. 2016;7:11120 pubmed 出版商
  842. Seo J, Bang M, Kim G, Cho S, Park D. Erythronium japonicum attenuates histopathological lung abnormalities in a mouse model of ovalbumin-induced asthma. Int J Mol Med. 2016;37:1221-8 pubmed 出版商
  843. Braun J, Meixner A, Brachner A, Foisner R. The GIY-YIG Type Endonuclease Ankyrin Repeat and LEM Domain-Containing Protein 1 (ANKLE1) Is Dispensable for Mouse Hematopoiesis. PLoS ONE. 2016;11:e0152278 pubmed 出版商
  844. Yang Y, Xu J, Chen H, Fei X, Tang Y, Yan Y, et al. MiR-128-2 inhibits common lymphoid progenitors from developing into progenitor B cells. Oncotarget. 2016;7:17520-31 pubmed 出版商
  845. Qi X, Gurung P, Malireddi R, Karmaus P, Sharma D, Vogel P, et al. Critical role of caspase-8-mediated IL-1 signaling in promoting Th2 responses during asthma pathogenesis. Mucosal Immunol. 2017;10:128-138 pubmed 出版商
  846. Mathewson N, Jenq R, Mathew A, Koenigsknecht M, Hanash A, Toubai T, et al. Gut microbiome-derived metabolites modulate intestinal epithelial cell damage and mitigate graft-versus-host disease. Nat Immunol. 2016;17:505-513 pubmed 出版商
  847. O Rourke J, Bogdanik L, Yáñez A, Lall D, Wolf A, Muhammad A, et al. C9orf72 is required for proper macrophage and microglial function in mice. Science. 2016;351:1324-9 pubmed 出版商
  848. Gomez de Agüero M, Ganal Vonarburg S, Fuhrer T, Rupp S, Uchimura Y, Li H, et al. The maternal microbiota drives early postnatal innate immune development. Science. 2016;351:1296-302 pubmed 出版商
  849. Miller M, Rosten P, Lemieux M, Lai C, Humphries R. Meis1 Is Required for Adult Mouse Erythropoiesis, Megakaryopoiesis and Hematopoietic Stem Cell Expansion. PLoS ONE. 2016;11:e0151584 pubmed 出版商
  850. Apostolidis S, Rodríguez Rodríguez N, Suárez Fueyo A, Dioufa N, Ozcan E, Crispín J, et al. Phosphatase PP2A is requisite for the function of regulatory T cells. Nat Immunol. 2016;17:556-64 pubmed 出版商
  851. McFarland B, Marks M, Rowse A, Fehling S, Gerigk M, Qin H, et al. Loss of SOCS3 in myeloid cells prolongs survival in a syngeneic model of glioma. Oncotarget. 2016;7:20621-35 pubmed 出版商
  852. Chattopadhyay A, Navab M, Hough G, Grijalva V, Mukherjee P, Fogelman H, et al. Tg6F ameliorates the increase in oxidized phospholipids in the jejunum of mice fed unsaturated LysoPC or WD. J Lipid Res. 2016;57:832-47 pubmed 出版商
  853. Zheng H, Zhao W, Yan C, Watson C, Massengill M, Xie M, et al. HDAC Inhibitors Enhance T-Cell Chemokine Expression and Augment Response to PD-1 Immunotherapy in Lung Adenocarcinoma. Clin Cancer Res. 2016;22:4119-32 pubmed 出版商
  854. Leeth C, Racine J, Chapman H, Arpa B, Carrillo J, Carrascal J, et al. B-lymphocytes expressing an Ig specificity recognizing the pancreatic ß-cell autoantigen peripherin are potent contributors to type 1 diabetes development in NOD mice. Diabetes. 2016;65:1977-1987 pubmed 出版商
  855. Flach A, Litke T, Strauss J, Haberl M, Gómez C, Reindl M, et al. Autoantibody-boosted T-cell reactivation in the target organ triggers manifestation of autoimmune CNS disease. Proc Natl Acad Sci U S A. 2016;113:3323-8 pubmed 出版商
  856. Seifert L, Werba G, Tiwari S, Giao Ly N, Nguy S, Alothman S, et al. Radiation Therapy Induces Macrophages to Suppress T-Cell Responses Against Pancreatic Tumors in Mice. Gastroenterology. 2016;150:1659-1672.e5 pubmed 出版商
  857. Miller M, Blystone S. Human Macrophages Utilize the Podosome Formin FMNL1 for Adhesion and Migration. Cellbio (Irvine, Calif). 2015;4:1-11 pubmed
  858. Marek I, Lichtneger T, Cordasic N, Hilgers K, Volkert G, Fahlbusch F, et al. Alpha8 Integrin (Itga8) Signalling Attenuates Chronic Renal Interstitial Fibrosis by Reducing Fibroblast Activation, Not by Interfering with Regulation of Cell Turnover. PLoS ONE. 2016;11:e0150471 pubmed 出版商
  859. Crisan M, Solaimani Kartalaei P, Neagu A, Karkanpouna S, Yamada Inagawa T, Purini C, et al. BMP and Hedgehog Regulate Distinct AGM Hematopoietic Stem Cells Ex Vivo. Stem Cell Reports. 2016;6:383-95 pubmed 出版商
  860. Tagliamonte M, Petrizzo A, Napolitano M, Luciano A, Rea D, Barbieri A, et al. A novel multi-drug metronomic chemotherapy significantly delays tumor growth in mice. J Transl Med. 2016;14:58 pubmed 出版商
  861. Foy S, Sennino B, dela Cruz T, Cote J, Gordon E, Kemp F, et al. Poxvirus-Based Active Immunotherapy with PD-1 and LAG-3 Dual Immune Checkpoint Inhibition Overcomes Compensatory Immune Regulation, Yielding Complete Tumor Regression in Mice. PLoS ONE. 2016;11:e0150084 pubmed 出版商
  862. Kabat A, Harrison O, Riffelmacher T, Moghaddam A, Pearson C, Laing A, et al. The autophagy gene Atg16l1 differentially regulates Treg and TH2 cells to control intestinal inflammation. elife. 2016;5:e12444 pubmed 出版商
  863. Hu H, Wang H, Xiao Y, Jin J, Chang J, Zou Q, et al. Otud7b facilitates T cell activation and inflammatory responses by regulating Zap70 ubiquitination. J Exp Med. 2016;213:399-414 pubmed 出版商
  864. Barry M, Wang Q, Jones K, Heffernan M, Buhaya M, Beaumier C, et al. A therapeutic nanoparticle vaccine against Trypanosoma cruzi in a BALB/c mouse model of Chagas disease. Hum Vaccin Immunother. 2016;12:976-87 pubmed 出版商
  865. Pelly V, Kannan Y, Coomes S, Entwistle L, Rückerl D, Seddon B, et al. IL-4-producing ILC2s are required for the differentiation of TH2 cells following Heligmosomoides polygyrus infection. Mucosal Immunol. 2016;9:1407-1417 pubmed 出版商
  866. Chen J, Miyanishi M, Wang S, Yamazaki S, Sinha R, Kao K, et al. Hoxb5 marks long-term haematopoietic stem cells and reveals a homogenous perivascular niche. Nature. 2016;530:223-7 pubmed 出版商
  867. Roffê E, Marino A, Weaver J, Wan W, de Araújo F, Hoffman V, et al. Trypanosoma cruzi Causes Paralyzing Systemic Necrotizing Vasculitis Driven by Pathogen-Specific Type I Immunity in Mice. Infect Immun. 2016;84:1123-1136 pubmed 出版商
  868. Vieyra Garcia P, Wei T, Naym D, Fredholm S, Fink Puches R, Cerroni L, et al. STAT3/5-Dependent IL9 Overexpression Contributes to Neoplastic Cell Survival in Mycosis Fungoides. Clin Cancer Res. 2016;22:3328-39 pubmed 出版商
  869. Howitt M, Lavoie S, Michaud M, Blum A, Tran S, Weinstock J, et al. Tuft cells, taste-chemosensory cells, orchestrate parasite type 2 immunity in the gut. Science. 2016;351:1329-33 pubmed 出版商
  870. Azpilikueta A, Agorreta J, Labiano S, Pérez Gracia J, Sánchez Paulete A, Aznar M, et al. Successful Immunotherapy against a Transplantable Mouse Squamous Lung Carcinoma with Anti-PD-1 and Anti-CD137 Monoclonal Antibodies. J Thorac Oncol. 2016;11:524-36 pubmed 出版商
  871. Lin C, Bradstreet T, Schwarzkopf E, Jarjour N, Chou C, Archambault A, et al. IL-1-induced Bhlhe40 identifies pathogenic T helper cells in a model of autoimmune neuroinflammation. J Exp Med. 2016;213:251-71 pubmed 出版商
  872. Ying W, Tseng A, Chang R, Wang H, Lin Y, Kanameni S, et al. miR-150 regulates obesity-associated insulin resistance by controlling B cell functions. Sci Rep. 2016;6:20176 pubmed 出版商
  873. Bulla R, Tripodo C, Rami D, Ling G, Agostinis C, Guarnotta C, et al. C1q acts in the tumour microenvironment as a cancer-promoting factor independently of complement activation. Nat Commun. 2016;7:10346 pubmed 出版商
  874. Polansky J, Bahri R, Divivier M, Duitman E, Vock C, Goyeneche Patino D, et al. High dose CD11c-driven IL15 is sufficient to drive NK cell maturation and anti-tumor activity in a trans-presentation independent manner. Sci Rep. 2016;6:19699 pubmed 出版商
  875. Atkinson S, Hoffmann U, Hamann A, Bach E, Danneskiold Samsøe N, Kristiansen K, et al. Depletion of regulatory T cells leads to an exacerbation of delayed-type hypersensitivity arthritis in C57BL/6 mice that can be counteracted by IL-17 blockade. Dis Model Mech. 2016;9:427-40 pubmed 出版商
  876. Maelfait J, Roose K, Vereecke L, Mc Guire C, Sze M, Schuijs M, et al. A20 Deficiency in Lung Epithelial Cells Protects against Influenza A Virus Infection. PLoS Pathog. 2016;12:e1005410 pubmed 出版商
  877. Duhan V, Khairnar V, Friedrich S, Zhou F, Gassa A, Honke N, et al. Virus-specific antibodies allow viral replication in the marginal zone, thereby promoting CD8(+) T-cell priming and viral control. Sci Rep. 2016;6:19191 pubmed 出版商
  878. Yabas M, Jing W, Shafik S, Bröer S, Enders A. ATP11C Facilitates Phospholipid Translocation across the Plasma Membrane of All Leukocytes. PLoS ONE. 2016;11:e0146774 pubmed 出版商
  879. Luchsinger L, de Almeida M, Corrigan D, Mumau M, Snoeck H. Mitofusin 2 maintains haematopoietic stem cells with extensive lymphoid potential. Nature. 2016;529:528-31 pubmed 出版商
  880. Catarinella M, Monestiroli A, Escobar G, Fiocchi A, Tran N, Aiolfi R, et al. IFNα gene/cell therapy curbs colorectal cancer colonization of the liver by acting on the hepatic microenvironment. EMBO Mol Med. 2016;8:155-70 pubmed 出版商
  881. Metz P, Lopez J, Kim S, Akimoto K, Ohno S, Chang J. Regulation of Asymmetric Division by Atypical Protein Kinase C Influences Early Specification of CD8(+) T Lymphocyte Fates. Sci Rep. 2016;6:19182 pubmed 出版商
  882. Lasigliè D, Boero S, Bauer I, Morando S, Damonte P, Cea M, et al. Sirt6 regulates dendritic cell differentiation, maturation, and function. Aging (Albany NY). 2016;8:34-49 pubmed
  883. Ito T, Itakura J, Takahashi S, Sato M, Mino M, Fushimi S, et al. Sprouty-Related Ena/Vasodilator-Stimulated Phosphoprotein Homology 1-Domain-Containing Protein-2 Critically Regulates Influenza A Virus-Induced Pneumonia. Crit Care Med. 2016;44:e530-43 pubmed 出版商
  884. Yasuma K, Yasunaga J, Takemoto K, Sugata K, Mitobe Y, Takenouchi N, et al. HTLV-1 bZIP Factor Impairs Anti-viral Immunity by Inducing Co-inhibitory Molecule, T Cell Immunoglobulin and ITIM Domain (TIGIT). PLoS Pathog. 2016;12:e1005372 pubmed 出版商
  885. Guo Z, Kong Q, Liu C, Zhang S, Zou L, Yan F, et al. DCAF1 controls T-cell function via p53-dependent and -independent mechanisms. Nat Commun. 2016;7:10307 pubmed 出版商
  886. Kindy M, Yu J, Zhu H, Smith M, Gattoni Celli S. A therapeutic cancer vaccine against GL261 murine glioma. J Transl Med. 2016;14:1 pubmed 出版商
  887. Gallego Ortega D, Ledger A, Roden D, Law A, Magenau A, Kikhtyak Z, et al. ELF5 Drives Lung Metastasis in Luminal Breast Cancer through Recruitment of Gr1+ CD11b+ Myeloid-Derived Suppressor Cells. PLoS Biol. 2015;13:e1002330 pubmed 出版商
  888. Everts B, Tussiwand R, Dreesen L, Fairfax K, Huang S, Smith A, et al. Migratory CD103+ dendritic cells suppress helminth-driven type 2 immunity through constitutive expression of IL-12. J Exp Med. 2016;213:35-51 pubmed 出版商
  889. Ulaganathan V, Sperl B, Rapp U, Ullrich A. Germline variant FGFR4  p.G388R exposes a membrane-proximal STAT3 binding site. Nature. 2015;528:570-4 pubmed 出版商
  890. Ren Y, Wang N, Hu W, Zhang X, Xu J, Wan Y. Successive site translocating inoculation potentiates DNA/recombinant vaccinia vaccination. Sci Rep. 2015;5:18099 pubmed 出版商
  891. Kiermaier E, Moussion C, Veldkamp C, Gerardy Schahn R, de Vries I, Williams L, et al. Polysialylation controls dendritic cell trafficking by regulating chemokine recognition. Science. 2016;351:186-90 pubmed 出版商
  892. Traka M, Podojil J, McCarthy D, Miller S, Popko B. Oligodendrocyte death results in immune-mediated CNS demyelination. Nat Neurosci. 2016;19:65-74 pubmed 出版商
  893. Shi H, Wang Y, Li X, Zhan X, Tang M, Fina M, et al. NLRP3 activation and mitosis are mutually exclusive events coordinated by NEK7, a new inflammasome component. Nat Immunol. 2016;17:250-8 pubmed 出版商
  894. Jabara H, Boyden S, Chou J, Ramesh N, Massaad M, Benson H, et al. A missense mutation in TFRC, encoding transferrin receptor 1, causes combined immunodeficiency. Nat Genet. 2016;48:74-8 pubmed 出版商
  895. Wei R, Hu Y, Dong F, Xu X, Hu A, Gao G. Hepatoma cell-derived leptin downregulates the immunosuppressive function of regulatory T-cells to enhance the anti-tumor activity of CD8+ T-cells. Immunol Cell Biol. 2016;94:388-99 pubmed 出版商
  896. Zhou Y, Williams J, Smallwood P, Nathans J. Sox7, Sox17, and Sox18 Cooperatively Regulate Vascular Development in the Mouse Retina. PLoS ONE. 2015;10:e0143650 pubmed 出版商
  897. Schachtner H, Weimershaus M, Stache V, Plewa N, Legler D, Höpken U, et al. Loss of Gadkin Affects Dendritic Cell Migration In Vitro. PLoS ONE. 2015;10:e0143883 pubmed 出版商
  898. Messaoudi S, He Y, Gutsol A, Wight A, Hébert R, Vilmundarson R, et al. Endothelial Gata5 transcription factor regulates blood pressure. Nat Commun. 2015;6:8835 pubmed 出版商
  899. Riesenberg S, Groetchen A, Siddaway R, Bald T, Reinhardt J, Smorra D, et al. MITF and c-Jun antagonism interconnects melanoma dedifferentiation with pro-inflammatory cytokine responsiveness and myeloid cell recruitment. Nat Commun. 2015;6:8755 pubmed 出版商
  900. Kim J, Phan T, Nguyen V, Dinh Vu H, Zheng J, Yun M, et al. Salmonella typhimurium Suppresses Tumor Growth via the Pro-Inflammatory Cytokine Interleukin-1β. Theranostics. 2015;5:1328-42 pubmed 出版商
  901. Ruan S, Samuelson D, Assouline B, Morre M, Shellito J. Treatment with Interleukin-7 Restores Host Defense against Pneumocystis in CD4+ T-Lymphocyte-Depleted Mice. Infect Immun. 2016;84:108-19 pubmed 出版商
  902. Adachi T, Kobayashi T, Sugihara E, Yamada T, Ikuta K, Pittaluga S, et al. Hair follicle-derived IL-7 and IL-15 mediate skin-resident memory T cell homeostasis and lymphoma. Nat Med. 2015;21:1272-9 pubmed 出版商
  903. Alam M, Gaida M, Bergmann F, Lasitschka F, Giese T, Giese N, et al. Selective inhibition of the p38 alternative activation pathway in infiltrating T cells inhibits pancreatic cancer progression. Nat Med. 2015;21:1337-43 pubmed 出版商
  904. Venkatasubramanian S, Tripathi D, Tucker T, Paidipally P, Cheekatla S, Welch E, et al. Tissue factor expression by myeloid cells contributes to protective immune response against Mycobacterium tuberculosis infection. Eur J Immunol. 2016;46:464-79 pubmed 出版商
  905. Black L, Srivastava R, Schoeb T, Moore R, Barnes S, KABAROWSKI J. Cholesterol-Independent Suppression of Lymphocyte Activation, Autoimmunity, and Glomerulonephritis by Apolipoprotein A-I in Normocholesterolemic Lupus-Prone Mice. J Immunol. 2015;195:4685-98 pubmed 出版商
  906. Jones D, Wilmore J, Allman D. Cellular Dynamics of Memory B Cell Populations: IgM+ and IgG+ Memory B Cells Persist Indefinitely as Quiescent Cells. J Immunol. 2015;195:4753-9 pubmed 出版商
  907. Sewald X, Ladinsky M, Uchil P, Beloor J, Pi R, Herrmann C, et al. Retroviruses use CD169-mediated trans-infection of permissive lymphocytes to establish infection. Science. 2015;350:563-567 pubmed 出版商
  908. Ladell K, Hazenberg M, Fitch M, Emson C, McEvoy Hein Asgarian B, Mold J, et al. Continuous Antigenic Stimulation of DO11.10 TCR Transgenic Mice in the Presence or Absence of IL-1?: Possible Implications for Mechanisms of T Cell Depletion in HIV Disease. J Immunol. 2015;195:4096-105 pubmed 出版商
  909. Gonzalez N, Wennhold K, Balkow S, Kondo E, Bölck B, Weber T, et al. In vitro and in vivo imaging of initial B-T-cell interactions in the setting of B-cell based cancer immunotherapy. Oncoimmunology. 2015;4:e1038684 pubmed
  910. Murayama M, Kakuta S, Inoue A, Umeda N, Yonezawa T, Maruhashi T, et al. CTRP6 is an endogenous complement regulator that can effectively treat induced arthritis. Nat Commun. 2015;6:8483 pubmed 出版商
  911. McCormack R, de Armas L, Shiratsuchi M, Fiorentino D, Olsson M, Lichtenheld M, et al. Perforin-2 is essential for intracellular defense of parenchymal cells and phagocytes against pathogenic bacteria. elife. 2015;4: pubmed 出版商
  912. Buerger S, Herrmann V, Mundt S, Trautwein N, Groettrup M, Basler M. The Ubiquitin-like Modifier FAT10 Is Selectively Expressed in Medullary Thymic Epithelial Cells and Modifies T Cell Selection. J Immunol. 2015;195:4106-16 pubmed 出版商
  913. Wei T, Zhang N, Guo Z, Chi F, Song Y, Zhu X. Wnt4 signaling is associated with the decrease of proliferation and increase of apoptosis during age-related thymic involution. Mol Med Rep. 2015;12:7568-76 pubmed 出版商
  914. Manlove L, Berquam Vrieze K, Pauken K, Williams R, Jenkins M, Farrar M. Adaptive Immunity to Leukemia Is Inhibited by Cross-Reactive Induced Regulatory T Cells. J Immunol. 2015;195:4028-37 pubmed 出版商
  915. Hanot Mambres D, Machelart A, Vanderwinden J, De Trez C, Ryffel B, Letesson J, et al. In Situ Characterization of Splenic Brucella melitensis Reservoir Cells during the Chronic Phase of Infection in Susceptible Mice. PLoS ONE. 2015;10:e0137835 pubmed 出版商
  916. Wang X, Zeng X, Yang B, Zhao S, Chen W, Guo X. Efficacy of thymosin α1 and interferon α for the treatment of severe acute pancreatitis in a rat model. Mol Med Rep. 2015;12:6775-81 pubmed 出版商
  917. Guo L, Huang Y, Chen X, Hu Li J, Urban J, Paul W. Innate immunological function of TH2 cells in vivo. Nat Immunol. 2015;16:1051-9 pubmed 出版商
  918. Pearce V, Bouabe H, MacQueen A, Carbonaro V, Okkenhaug K. PI3Kδ Regulates the Magnitude of CD8+ T Cell Responses after Challenge with Listeria monocytogenes. J Immunol. 2015;195:3206-17 pubmed 出版商
  919. Matsuda Y, Wang X, Oishi H, Guan Z, Saito M, Liu M, et al. Spleen Tyrosine Kinase Modulates Fibrous Airway Obliteration and Associated Lymphoid Neogenesis After Transplantation. Am J Transplant. 2016;16:342-52 pubmed 出版商
  920. Boettler T, Schneider D, Cheng Y, Kadoya K, Brandon E, Martinson L, et al. Pancreatic Tissue Transplanted in TheraCyte Encapsulation Devices Is Protected and Prevents Hyperglycemia in a Mouse Model of Immune-Mediated Diabetes. Cell Transplant. 2016;25:609-14 pubmed 出版商
  921. Smith K, Filbey K, Reynolds L, Hewitson J, Harcus Y, Boon L, et al. Low-level regulatory T-cell activity is essential for functional type-2 effector immunity to expel gastrointestinal helminths. Mucosal Immunol. 2016;9:428-43 pubmed 出版商
  922. Yoon K, Byun S, Kwon E, Hwang S, Chu K, Hiraki M, et al. Control of signaling-mediated clearance of apoptotic cells by the tumor suppressor p53. Science. 2015;349:1261669 pubmed 出版商
  923. Littwitz Salomon E, Akhmetzyanova I, Vallet C, Francois S, Dittmer U, Gibbert K. Activated regulatory T cells suppress effector NK cell responses by an IL-2-mediated mechanism during an acute retroviral infection. Retrovirology. 2015;12:66 pubmed 出版商
  924. Jovicic N, Jeftic I, Jovanovic I, Radosavljevic G, Arsenijevic N, Lukic M, et al. Differential Immunometabolic Phenotype in Th1 and Th2 Dominant Mouse Strains in Response to High-Fat Feeding. PLoS ONE. 2015;10:e0134089 pubmed 出版商
  925. Yang H, Yamazaki T, Pietrocola F, Zhou H, Zitvogel L, Ma Y, et al. STAT3 Inhibition Enhances the Therapeutic Efficacy of Immunogenic Chemotherapy by Stimulating Type 1 Interferon Production by Cancer Cells. Cancer Res. 2015;75:3812-22 pubmed 出版商
  926. Ngiow S, Young A, Jacquelot N, Yamazaki T, Enot D, Zitvogel L, et al. A Threshold Level of Intratumor CD8+ T-cell PD1 Expression Dictates Therapeutic Response to Anti-PD1. Cancer Res. 2015;75:3800-11 pubmed 出版商
  927. Kaminsky L, Sei J, Parekh N, Davies M, Reider I, Krouse T, et al. Redundant Function of Plasmacytoid and Conventional Dendritic Cells Is Required To Survive a Natural Virus Infection. J Virol. 2015;89:9974-85 pubmed 出版商
  928. Bodogai M, Moritoh K, Lee Chang C, Hollander C, Sherman Baust C, Wersto R, et al. Immunosuppressive and Prometastatic Functions of Myeloid-Derived Suppressive Cells Rely upon Education from Tumor-Associated B Cells. Cancer Res. 2015;75:3456-65 pubmed 出版商
  929. Johnson V, Xiang M, Chen Z, Junge H. Neurite Mistargeting and Inverse Order of Intraretinal Vascular Plexus Formation Precede Subretinal Vascularization in Vldlr Mutant Mice. PLoS ONE. 2015;10:e0132013 pubmed 出版商
  930. Lowe K, Navarro Núñez L, Bénézech C, Nayar S, Kingston B, Nieswandt B, et al. The expression of mouse CLEC-2 on leucocyte subsets varies according to their anatomical location and inflammatory state. Eur J Immunol. 2015;45:2484-93 pubmed 出版商
  931. Deng B, Deng W, Xiao P, Zeng K, Zhang S, Zhang H, et al. Nonadherent culture method downregulates stem cell antigen-1 expression in mouse bone marrow mesenchymal stem cells. Exp Ther Med. 2015;10:31-36 pubmed
  932. Pérez Girón J, Gómez Medina S, Lüdtke A, Munoz Fontela C. Intranasal Administration of Recombinant Influenza Vaccines in Chimeric Mouse Models to Study Mucosal Immunity. J Vis Exp. 2015;:e52803 pubmed 出版商
  933. Vogel A, Brown D. Single-Dose CpG Immunization Protects Against a Heterosubtypic Challenge and Generates Antigen-Specific Memory T Cells. Front Immunol. 2015;6:327 pubmed 出版商
  934. Kim M, Taparowsky E, Kim C. Retinoic Acid Differentially Regulates the Migration of Innate Lymphoid Cell Subsets to the Gut. Immunity. 2015;43:107-19 pubmed 出版商
  935. Puntambekar S, Hinton D, Yin X, Savarin C, Bergmann C, Trapp B, et al. Interleukin-10 is a critical regulator of white matter lesion containment following viral induced demyelination. Glia. 2015;63:2106-2120 pubmed 出版商
  936. Herz J, Johnson K, McGavern D. Therapeutic antiviral T cells noncytopathically clear persistently infected microglia after conversion into antigen-presenting cells. J Exp Med. 2015;212:1153-69 pubmed 出版商
  937. Weindel C, Richey L, Bolland S, Mehta A, Kearney J, Huber B. B cell autophagy mediates TLR7-dependent autoimmunity and inflammation. Autophagy. 2015;11:1010-24 pubmed 出版商
  938. Mikucki M, Fisher D, Matsuzaki J, Skitzki J, Gaulin N, Muhitch J, et al. Non-redundant requirement for CXCR3 signalling during tumoricidal T-cell trafficking across tumour vascular checkpoints. Nat Commun. 2015;6:7458 pubmed 出版商
  939. Singh N, Kotla S, Dyukova E, Traylor J, Orr A, Chernoff J, et al. Disruption of p21-activated kinase 1 gene diminishes atherosclerosis in apolipoprotein E-deficient mice. Nat Commun. 2015;6:7450 pubmed 出版商
  940. Sasaki K, Takada K, Ohte Y, Kondo H, Sorimachi H, Tanaka K, et al. Thymoproteasomes produce unique peptide motifs for positive selection of CD8(+) T cells. Nat Commun. 2015;6:7484 pubmed 出版商
  941. Wang J, Sun C, Gerdes N, Liu C, Liao M, Liu J, et al. Interleukin 18 function in atherosclerosis is mediated by the interleukin 18 receptor and the Na-Cl co-transporter. Nat Med. 2015;21:820-6 pubmed 出版商
  942. Onishi S, Adnan E, Ishizaki J, Miyazaki T, Tanaka Y, Matsumoto T, et al. Novel Autoantigens Associated with Lupus Nephritis. PLoS ONE. 2015;10:e0126564 pubmed 出版商
  943. Xu G, Wu H, Zhang J, Li D, Wang Y, Wang Y, et al. Metformin ameliorates ionizing irradiation-induced long-term hematopoietic stem cell injury in mice. Free Radic Biol Med. 2015;87:15-25 pubmed 出版商
  944. Kamimura D, Katsunuma K, Arima Y, Atsumi T, Jiang J, Bando H, et al. KDEL receptor 1 regulates T-cell homeostasis via PP1 that is a key phosphatase for ISR. Nat Commun. 2015;6:7474 pubmed 出版商
  945. Stermann A, Huebener N, Seidel D, Fest S, Eschenburg G, Stauder M, et al. Targeting of MYCN by means of DNA vaccination is effective against neuroblastoma in mice. Cancer Immunol Immunother. 2015;64:1215-27 pubmed 出版商
  946. Conde P, Rodriguez M, van der Touw W, Jimenez A, Burns M, Miller J, et al. DC-SIGN(+) Macrophages Control the Induction of Transplantation Tolerance. Immunity. 2015;42:1143-58 pubmed 出版商
  947. Deppisch N, Ruf P, Eissler N, Neff F, Buhmann R, Lindhofer H, et al. Efficacy and Tolerability of a GD2-Directed Trifunctional Bispecific Antibody in a Preclinical Model: Subcutaneous Administration Is Superior to Intravenous Delivery. Mol Cancer Ther. 2015;14:1877-83 pubmed 出版商
  948. Kamachi F, Isshiki T, Harada N, Akiba H, Miyake S. ICOS promotes group 2 innate lymphoid cell activation in lungs. Biochem Biophys Res Commun. 2015;463:739-45 pubmed 出版商
  949. Durrans A, Gao D, Gupta R, Fischer K, Choi H, El Rayes T, et al. Identification of Reprogrammed Myeloid Cell Transcriptomes in NSCLC. PLoS ONE. 2015;10:e0129123 pubmed 出版商
  950. Holtzhausen A, Zhao F, Evans K, Tsutsui M, Orabona C, Tyler D, et al. Melanoma-Derived Wnt5a Promotes Local Dendritic-Cell Expression of IDO and Immunotolerance: Opportunities for Pharmacologic Enhancement of Immunotherapy. Cancer Immunol Res. 2015;3:1082-95 pubmed 出版商
  951. Khan I, Perrard X, Brunner G, Lui H, Sparks L, Smith S, et al. Intermuscular and perimuscular fat expansion in obesity correlates with skeletal muscle T cell and macrophage infiltration and insulin resistance. Int J Obes (Lond). 2015;39:1607-18 pubmed 出版商
  952. Castiglioni A, Corna G, Rigamonti E, Basso V, Vezzoli M, Monno A, et al. FOXP3+ T Cells Recruited to Sites of Sterile Skeletal Muscle Injury Regulate the Fate of Satellite Cells and Guide Effective Tissue Regeneration. PLoS ONE. 2015;10:e0128094 pubmed 出版商
  953. Williams B, Tebbutt N, Buchert M, Putoczki T, Doggett K, Bao S, et al. Glycoprotein A33 deficiency: a new mouse model of impaired intestinal epithelial barrier function and inflammatory disease. Dis Model Mech. 2015;8:805-15 pubmed 出版商
  954. Vinue A, Andrés Blasco I, Herrero Cervera A, Piqueras L, Andres V, Burks D, et al. Ink4/Arf locus restores glucose tolerance and insulin sensitivity by reducing hepatic steatosis and inflammation in mice with impaired IRS2-dependent signalling. Biochim Biophys Acta. 2015;1852:1729-42 pubmed 出版商
  955. Deberge M, Ely K, Wright P, Thorp E, Enelow R. Shedding of TNF receptor 2 by effector CD8⁺ T cells by ADAM17 is important for regulating TNF-α availability during influenza infection. J Leukoc Biol. 2015;98:423-34 pubmed 出版商
  956. Chuprin A, Avin A, Goldfarb Y, Herzig Y, Levi B, Jacob A, et al. The deacetylase Sirt1 is an essential regulator of Aire-mediated induction of central immunological tolerance. Nat Immunol. 2015;16:737-45 pubmed 出版商
  957. Chen H, Sun J, Huang Z, Hou H, Arcilla M, Rakhilin N, et al. Comprehensive models of human primary and metastatic colorectal tumors in immunodeficient and immunocompetent mice by chemokine targeting. Nat Biotechnol. 2015;33:656-60 pubmed 出版商
  958. McCully M, Collins P, Hughes T, Thomas C, Billen J, O Donnell V, et al. Skin Metabolites Define a New Paradigm in the Localization of Skin Tropic Memory T Cells. J Immunol. 2015;195:96-104 pubmed 出版商
  959. Teo T, Her Z, Tan J, Lum F, Lee W, Chan Y, et al. Caribbean and La Réunion Chikungunya Virus Isolates Differ in Their Capacity To Induce Proinflammatory Th1 and NK Cell Responses and Acute Joint Pathology. J Virol. 2015;89:7955-69 pubmed 出版商
  960. Huang H, Chan Y, Hui C, Wu J, Wu C, Chen J. Use of tilapia piscidin 3 (TP3) to protect against MRSA infection in mice with skin injuries. Oncotarget. 2015;6:12955-69 pubmed
  961. Jacque E, Schweighoffer E, Tybulewicz V, Ley S. BAFF activation of the ERK5 MAP kinase pathway regulates B cell survival. J Exp Med. 2015;212:883-92 pubmed 出版商
  962. Peske J, Thompson E, Gemta L, Baylis R, Fu Y, Engelhard V. Effector lymphocyte-induced lymph node-like vasculature enables naive T-cell entry into tumours and enhanced anti-tumour immunity. Nat Commun. 2015;6:7114 pubmed 出版商
  963. Kato Nagaoka N, Shimada S, Yamakawa Y, Tsujibe S, Naito T, Setoyama H, et al. Enhanced differentiation of intraepithelial lymphocytes in the intestine of polymeric immunoglobulin receptor-deficient mice. Immunology. 2015;146:59-69 pubmed 出版商
  964. Berent Maoz B, Montecino Rodriguez E, Fice M, Casero D, Seet C, Crooks G, et al. The expansion of thymopoiesis in neonatal mice is dependent on expression of high mobility group a 2 protein (Hmga2). PLoS ONE. 2015;10:e0125414 pubmed 出版商
  965. Vuillefroy de Silly R, Ducimetière L, Yacoub Maroun C, Dietrich P, Derouazi M, Walker P. Phenotypic switch of CD8(+) T cells reactivated under hypoxia toward IL-10 secreting, poorly proliferative effector cells. Eur J Immunol. 2015;45:2263-75 pubmed 出版商
  966. Brindle N, Joyce J, Rostker F, Lawlor E, Swigart Brown L, Evan G, et al. Deficiency for the cysteine protease cathepsin L impairs Myc-induced tumorigenesis in a mouse model of pancreatic neuroendocrine cancer. PLoS ONE. 2015;10:e0120348 pubmed 出版商
  967. Becker P, Hervouet C, Mason G, KWON S, Klavinskis L. Skin vaccination with live virus vectored microneedle arrays induce long lived CD8(+) T cell memory. Vaccine. 2015;33:4691-8 pubmed 出版商
  968. Bouchery T, Kyle R, Camberis M, Shepherd A, Filbey K, Smith A, et al. ILC2s and T cells cooperate to ensure maintenance of M2 macrophages for lung immunity against hookworms. Nat Commun. 2015;6:6970 pubmed 出版商
  969. Sharma S, Chintala N, Vadrevu S, Patel J, Karbowniczek M, Markiewski M. Pulmonary alveolar macrophages contribute to the premetastatic niche by suppressing antitumor T cell responses in the lungs. J Immunol. 2015;194:5529-38 pubmed 出版商
  970. Opata M, Carpio V, Ibitokou S, Dillon B, Obiero J, Stephens R. Early effector cells survive the contraction phase in malaria infection and generate both central and effector memory T cells. J Immunol. 2015;194:5346-54 pubmed 出版商
  971. Kreiter S, Vormehr M, van de Roemer N, Diken M, Löwer M, Diekmann J, et al. Mutant MHC class II epitopes drive therapeutic immune responses to cancer. Nature. 2015;520:692-6 pubmed 出版商
  972. Olguín J, Fernández J, Salinas N, Juárez I, Rodriguez Sosa M, Campuzano J, et al. Adoptive transfer of CD4(+)Foxp3(+) regulatory T cells to C57BL/6J mice during acute infection with Toxoplasma gondii down modulates the exacerbated Th1 immune response. Microbes Infect. 2015;17:586-95 pubmed 出版商
  973. Bian F, Barbosa F, Corrales R, Pelegrino F, Volpe E, Pflugfelder S, et al. Altered balance of interleukin-13/interferon-gamma contributes to lacrimal gland destruction and secretory dysfunction in CD25 knockout model of Sjögren's syndrome. Arthritis Res Ther. 2015;17:53 pubmed 出版商
  974. Gardner J, Mamotte C, Patel P, Yeoh T, Jackaman C, Nelson D. Mesothelioma tumor cells modulate dendritic cell lipid content, phenotype and function. PLoS ONE. 2015;10:e0123563 pubmed 出版商
  975. Crawford G, Boldison J, Copland D, Adamson P, Gale D, Brandt M, et al. The role of lipoprotein-associated phospholipase A2 in a murine model of experimental autoimmune uveoretinitis. PLoS ONE. 2015;10:e0122093 pubmed 出版商
  976. Martner A, Wiktorin H, Lenox B, Ewald Sander F, Aydin E, Aurelius J, et al. Histamine promotes the development of monocyte-derived dendritic cells and reduces tumor growth by targeting the myeloid NADPH oxidase. J Immunol. 2015;194:5014-21 pubmed 出版商
  977. Boding L, Hansen A, Nielsen M, Meroni G, Braunstein T, Woetmann A, et al. Midline 1 controls polarization and migration of murine cytotoxic T cells. Immun Inflamm Dis. 2014;2:262-71 pubmed 出版商
  978. Wan W, Liu Q, Lionakis M, Marino A, Anderson S, Swamydas M, et al. Atypical chemokine receptor 1 deficiency reduces atherogenesis in ApoE-knockout mice. Cardiovasc Res. 2015;106:478-87 pubmed 出版商
  979. Rouhani S, Eccles J, Riccardi P, Peske J, Tewalt E, Cohen J, et al. Roles of lymphatic endothelial cells expressing peripheral tissue antigens in CD4 T-cell tolerance induction. Nat Commun. 2015;6:6771 pubmed 出版商
  980. Tsou Y, Lin Y, Shao H, Yu S, Wu S, Lin H, et al. Recombinant adeno-vaccine expressing enterovirus 71-like particles against hand, foot, and mouth disease. PLoS Negl Trop Dis. 2015;9:e0003692 pubmed 出版商
  981. Li C, Li W, Xiao J, Jiao S, Teng F, Xue S, et al. ADAP and SKAP55 deficiency suppresses PD-1 expression in CD8+ cytotoxic T lymphocytes for enhanced anti-tumor immunotherapy. EMBO Mol Med. 2015;7:754-69 pubmed 出版商
  982. Iwai H, Funatogawa K, Matsumura K, Kato Miyazawa M, Kirikae F, Kiga K, et al. MicroRNA-155 knockout mice are susceptible to Mycobacterium tuberculosis infection. Tuberculosis (Edinb). 2015;95:246-50 pubmed 出版商
  983. Lal G, Nakayama Y, Sethi A, Singh A, Burrell B, Kulkarni N, et al. Interleukin-10 From Marginal Zone Precursor B-Cell Subset Is Required for Costimulatory Blockade-Induced Transplantation Tolerance. Transplantation. 2015;99:1817-28 pubmed 出版商
  984. Koh F, Lizama C, Wong P, Hawkins J, Zovein A, Ramalho Santos M. Emergence of hematopoietic stem and progenitor cells involves a Chd1-dependent increase in total nascent transcription. Proc Natl Acad Sci U S A. 2015;112:E1734-43 pubmed 出版商
  985. Cheah M, Chen J, Sahoo D, Contreras Trujillo H, Volkmer A, Scheeren F, et al. CD14-expressing cancer cells establish the inflammatory and proliferative tumor microenvironment in bladder cancer. Proc Natl Acad Sci U S A. 2015;112:4725-30 pubmed 出版商
  986. Napier R, Norris B, Swimm A, Giver C, Harris W, Laval J, et al. Low doses of imatinib induce myelopoiesis and enhance host anti-microbial immunity. PLoS Pathog. 2015;11:e1004770 pubmed 出版商
  987. Povinelli B, Kokolus K, Eng J, Dougher C, Curtin L, Capitano M, et al. Standard sub-thermoneutral caging temperature influences radiosensitivity of hematopoietic stem and progenitor cells. PLoS ONE. 2015;10:e0120078 pubmed 出版商
  988. Hu Lieskovan S, Mok S, Homet Moreno B, Tsoi J, Robert L, Goedert L, et al. Improved antitumor activity of immunotherapy with BRAF and MEK inhibitors in BRAF(V600E) melanoma. Sci Transl Med. 2015;7:279ra41 pubmed 出版商
  989. Van Den Ham K, Shio M, Rainone A, Fournier S, Krawczyk C, Olivier M. Iron prevents the development of experimental cerebral malaria by attenuating CXCR3-mediated T cell chemotaxis. PLoS ONE. 2015;10:e0118451 pubmed 出版商
  990. Wiesner D, Specht C, Lee C, Smith K, Mukaremera L, Lee S, et al. Chitin recognition via chitotriosidase promotes pathologic type-2 helper T cell responses to cryptococcal infection. PLoS Pathog. 2015;11:e1004701 pubmed 出版商
  991. Boulay A, Mazeraud A, Cisternino S, Saubaméa B, Mailly P, Jourdren L, et al. Immune quiescence of the brain is set by astroglial connexin 43. J Neurosci. 2015;35:4427-39 pubmed 出版商
  992. Dudek Perić A, Ferreira G, Muchowicz A, Wouters J, Prada N, Martin S, et al. Antitumor immunity triggered by melphalan is potentiated by melanoma cell surface-associated calreticulin. Cancer Res. 2015;75:1603-14 pubmed 出版商
  993. Maione F, Oliaro Bosso S, Meda C, Di Nicolantonio F, Bussolino F, Balliano G, et al. The cholesterol biosynthesis enzyme oxidosqualene cyclase is a new target to impair tumour angiogenesis and metastasis dissemination. Sci Rep. 2015;5:9054 pubmed 出版商
  994. Rao E, Zhang Y, Zhu G, Hao J, Persson X, Egilmez N, et al. Deficiency of AMPK in CD8+ T cells suppresses their anti-tumor function by inducing protein phosphatase-mediated cell death. Oncotarget. 2015;6:7944-58 pubmed
  995. Sakala I, Chaudhri G, Eldi P, Buller R, Karupiah G. Deficiency in Th2 cytokine responses exacerbate orthopoxvirus infection. PLoS ONE. 2015;10:e0118685 pubmed 出版商
  996. Kishimoto M, Matsuda T, Yanase S, Katsumi A, Suzuki N, Ikejiri M, et al. Rhof promotes murine marginal zone B cell development. Nagoya J Med Sci. 2014;76:293-305 pubmed
  997. Pone E, Lam T, Lou Z, Wang R, Chen Y, Liu D, et al. B cell Rab7 mediates induction of activation-induced cytidine deaminase expression and class-switching in T-dependent and T-independent antibody responses. J Immunol. 2015;194:3065-78 pubmed 出版商
  998. Matsuda T, Yanase S, Takaoka A, Maruyama M. The immunosenescence-related gene Zizimin2 is associated with early bone marrow B cell development and marginal zone B cell formation. Immun Ageing. 2015;12:1 pubmed 出版商
  999. Thomas A, Palma J, Shea L. Sponge-mediated lentivirus delivery to acute and chronic spinal cord injuries. J Control Release. 2015;204:1-10 pubmed 出版商
  1000. Choi E, Park H, Sul O, Rajasekaran M, Yu R, Choi H. Carbon monoxide reverses adipose tissue inflammation and insulin resistance upon loss of ovarian function. Am J Physiol Endocrinol Metab. 2015;308:E621-30 pubmed 出版商
  1001. Okamura T, Sumitomo S, Morita K, Iwasaki Y, Inoue M, Nakachi S, et al. TGF-β3-expressing CD4+CD25(-)LAG3+ regulatory T cells control humoral immune responses. Nat Commun. 2015;6:6329 pubmed 出版商
  1002. Gong W, Shou D, Cheng F, Shi J, Ge F, Liu D. Tolerance induced by IL-6 deficient donor heart is significantly involved in myeloid-derived suppressor cells (MDSCs). Transpl Immunol. 2015;32:72-5 pubmed 出版商
  1003. Pannu J, Belle J, Forster M, Duerr C, Shen S, Kane L, et al. Ubiquitin specific protease 21 is dispensable for normal development, hematopoiesis and lymphocyte differentiation. PLoS ONE. 2015;10:e0117304 pubmed 出版商
  1004. Drees J, Mertensotto M, Liu G, Panyam J, Leonard A, Augustin L, et al. Attenuated Salmonella enterica Typhimurium reduces tumor burden in an autochthonous breast cancer model. Anticancer Res. 2015;35:843-9 pubmed
  1005. Sell S, Dietz M, Schneider A, Holtappels R, Mach M, Winkler T. Control of murine cytomegalovirus infection by γδ T cells. PLoS Pathog. 2015;11:e1004481 pubmed 出版商
  1006. Bang M, Seo J, Seo J, Jo G, Jung S, Yu R, et al. Bacillus subtilis KCTC 11782BP-produced alginate oligosaccharide effectively suppresses asthma via T-helper cell type 2-related cytokines. PLoS ONE. 2015;10:e0117524 pubmed 出版商
  1007. Buchwald Z, Yang C, Nellore S, Shashkova E, Davis J, Cline A, et al. A Bone Anabolic Effect of RANKL in a Murine Model of Osteoporosis Mediated Through FoxP3+ CD8 T Cells. J Bone Miner Res. 2015;30:1508-22 pubmed 出版商
  1008. Valle A, Barbagiovanni G, Jofra T, Stabilini A, Pérol L, Baeyens A, et al. Heterogeneous CD3 expression levels in differing T cell subsets correlate with the in vivo anti-CD3-mediated T cell modulation. J Immunol. 2015;194:2117-27 pubmed 出版商
  1009. Häusler D, Nessler S, Kruse N, Brück W, Metz I. Natalizumab analogon therapy is effective in a B cell-dependent multiple sclerosis model. Neuropathol Appl Neurobiol. 2015;41:814-31 pubmed 出版商
  1010. Maione F, Giraudo E. Tumor angiogenesis: methods to analyze tumor vasculature and vessel normalization in mouse models of cancer. Methods Mol Biol. 2015;1267:349-65 pubmed 出版商
  1011. Crncec I, Pathria P, Svinka J, Eferl R. Induction of colorectal cancer in mice and histomorphometric evaluation of tumors. Methods Mol Biol. 2015;1267:145-64 pubmed 出版商
  1012. Hu W, Dooley J, Chung S, Chandramohan D, Cimmino L, Mukherjee S, et al. miR-29a maintains mouse hematopoietic stem cell self-renewal by regulating Dnmt3a. Blood. 2015;125:2206-16 pubmed 出版商
  1013. Franckaert D, Schlenner S, Heirman N, Gill J, Skogberg G, Ekwall O, et al. Premature thymic involution is independent of structural plasticity of the thymic stroma. Eur J Immunol. 2015;45:1535-47 pubmed 出版商
  1014. Jing W, Gershan J, Weber J, Tlomak D, McOlash L, Sabatos Peyton C, et al. Combined immune checkpoint protein blockade and low dose whole body irradiation as immunotherapy for myeloma. J Immunother Cancer. 2015;3:2 pubmed 出版商
  1015. Evans E, Jonason A, Bussler H, Torno S, Veeraraghavan J, Reilly C, et al. Antibody Blockade of Semaphorin 4D Promotes Immune Infiltration into Tumor and Enhances Response to Other Immunomodulatory Therapies. Cancer Immunol Res. 2015;3:689-701 pubmed 出版商
  1016. Kanayama M, Inoue M, Danzaki K, Hammer G, He Y, Shinohara M. Autophagy enhances NFκB activity in specific tissue macrophages by sequestering A20 to boost antifungal immunity. Nat Commun. 2015;6:5779 pubmed 出版商
  1017. Voron T, Colussi O, Marcheteau E, Pernot S, Nizard M, Pointet A, et al. VEGF-A modulates expression of inhibitory checkpoints on CD8+ T cells in tumors. J Exp Med. 2015;212:139-48 pubmed 出版商
  1018. Bergot A, Monnet N, Le Tran S, Mittal D, Al Kouba J, Steptoe R, et al. HPV16 E7 expression in skin induces TSLP secretion, type 2 ILC infiltration and atopic dermatitis-like lesions. Immunol Cell Biol. 2015;93:540-7 pubmed 出版商
  1019. Sun C, Schattgen S, Pisitkun P, Jorgensen J, Hilterbrand A, Wang L, et al. Evasion of innate cytosolic DNA sensing by a gammaherpesvirus facilitates establishment of latent infection. J Immunol. 2015;194:1819-31 pubmed 出版商
  1020. Minkah N, Macaluso M, Oldenburg D, Paden C, White D, McBride K, et al. Absence of the uracil DNA glycosylase of murine gammaherpesvirus 68 impairs replication and delays the establishment of latency in vivo. J Virol. 2015;89:3366-79 pubmed 出版商
  1021. Karsten C, Laumonnier Y, Eurich B, Ender F, Bröker K, Roy S, et al. Monitoring and cell-specific deletion of C5aR1 using a novel floxed GFP-C5aR1 reporter knock-in mouse. J Immunol. 2015;194:1841-55 pubmed 出版商
  1022. Liu Z, Zhao S, Chen Q, Yan K, Liu P, Li N, et al. Roles of Toll-like receptors 2 and 4 in mediating experimental autoimmune orchitis induction in mice. Biol Reprod. 2015;92:63 pubmed 出版商
  1023. Singh K, Hjort M, Thorvaldson L, Sandler S. Concomitant analysis of Helios and Neuropilin-1 as a marker to detect thymic derived regulatory T cells in naïve mice. Sci Rep. 2015;5:7767 pubmed 出版商
  1024. Spada R, Rojas J, Pérez Yagüe S, Mulens V, Cannata Ortiz P, Bragado R, et al. NKG2D ligand overexpression in lupus nephritis correlates with increased NK cell activity and differentiation in kidneys but not in the periphery. J Leukoc Biol. 2015;97:583-98 pubmed 出版商
  1025. Sullivan B, Teijaro J, de la Torre J, Oldstone M. Early virus-host interactions dictate the course of a persistent infection. PLoS Pathog. 2015;11:e1004588 pubmed 出版商
  1026. Shindo Y, Unsinger J, Burnham C, Green J, Hotchkiss R. Interleukin-7 and anti-programmed cell death 1 antibody have differing effects to reverse sepsis-induced immunosuppression. Shock. 2015;43:334-43 pubmed 出版商
  1027. Singh S, Nehete P, Yang G, He H, Nehete B, Hanley P, et al. Enhancement of Mucosal Immunogenicity of Viral Vectored Vaccines by the NKT Cell Agonist Alpha-Galactosylceramide as Adjuvant. Vaccines (Basel). 2014;2:686-706 pubmed 出版商
  1028. Sakaguchi S, Hombauer M, Hassan H, Tanaka H, Yasmin N, Naoe Y, et al. A novel Cd8-cis-regulatory element preferentially directs expression in CD44hiCD62L+ CD8+ T cells and in CD8αα+ dendritic cells. J Leukoc Biol. 2015;97:635-44 pubmed 出版商
  1029. Hu Z, Molloy M, Usherwood E. CD4(+) T-cell dependence of primary CD8(+) T-cell response against vaccinia virus depends upon route of infection and viral dose. Cell Mol Immunol. 2016;13:82-93 pubmed 出版商
  1030. Bassi M, Kongsgaard M, Steffensen M, Fenger C, Rasmussen M, Skjødt K, et al. CD8+ T cells complement antibodies in protecting against yellow fever virus. J Immunol. 2015;194:1141-53 pubmed 出版商
  1031. Skripuletz T, Manzel A, Gropengießer K, Schäfer N, Gudi V, Singh V, et al. Pivotal role of choline metabolites in remyelination. Brain. 2015;138:398-413 pubmed 出版商
  1032. Ikeda T, Hirata S, Takamatsu K, Haruta M, Tsukamoto H, Ito T, et al. Suppression of Th1-mediated autoimmunity by embryonic stem cell-derived dendritic cells. PLoS ONE. 2014;9:e115198 pubmed 出版商
  1033. LUCAS B, White A, Ulvmar M, Nibbs R, Sitnik K, Agace W, et al. CCRL1/ACKR4 is expressed in key thymic microenvironments but is dispensable for T lymphopoiesis at steady state in adult mice. Eur J Immunol. 2015;45:574-83 pubmed 出版商
  1034. Karamitros D, Patmanidi A, Kotantaki P, Potocnik A, Bähr Ivacevic T, Benes V, et al. Geminin deletion increases the number of fetal hematopoietic stem cells by affecting the expression of key transcription factors. Development. 2015;142:70-81 pubmed 出版商
  1035. Harmon E, Fronhofer V, Keller R, Feustel P, Zhu X, Xu H, et al. Anti-inflammatory immune skewing is atheroprotective: Apoe−/−FcγRIIb−/− mice develop fibrous carotid plaques. J Am Heart Assoc. 2014;3:e001232 pubmed 出版商
  1036. White C, Villarino N, Sloan S, Ganusov V, Schmidt N. Plasmodium suppresses expansion of T cell responses to heterologous infections. J Immunol. 2015;194:697-708 pubmed 出版商
  1037. Kim J, Li W, Choi Y, Lewin S, Verbeke C, Dranoff G, et al. Injectable, spontaneously assembling, inorganic scaffolds modulate immune cells in vivo and increase vaccine efficacy. Nat Biotechnol. 2015;33:64-72 pubmed 出版商
  1038. Nacer A, Movila A, Sohet F, Girgis N, Gundra U, Loke P, et al. Experimental cerebral malaria pathogenesis--hemodynamics at the blood brain barrier. PLoS Pathog. 2014;10:e1004528 pubmed 出版商
  1039. Naik A, Hawwari A, Krangel M. Specification of Vδ and Vα usage by Tcra/Tcrd locus V gene segment promoters. J Immunol. 2015;194:790-4 pubmed 出版商
  1040. Rutz S, Kayagaki N, Phung Q, Eidenschenk C, Noubade R, Wang X, et al. Deubiquitinase DUBA is a post-translational brake on interleukin-17 production in T cells. Nature. 2015;518:417-21 pubmed 出版商
  1041. Mang Y, Zhao Z, Zeng Z, Wu X, Li Z, Zhang L. Efficient elimination of CD103-expressing cells by anti-CD103 antibody drug conjugates in immunocompetent mice. Int Immunopharmacol. 2015;24:119-27 pubmed 出版商
  1042. Her Z, Teng T, Tan J, Teo T, Kam Y, Lum F, et al. Loss of TLR3 aggravates CHIKV replication and pathology due to an altered virus-specific neutralizing antibody response. EMBO Mol Med. 2015;7:24-41 pubmed 出版商
  1043. Frossard C, Asigbetse K, Burger D, Eigenmann P. Gut T cell receptor-γδ(+) intraepithelial lymphocytes are activated selectively by cholera toxin to break oral tolerance in mice. Clin Exp Immunol. 2015;180:118-30 pubmed 出版商
  1044. Martin P, Dubois C, Jacquier E, Dion S, Mancini Bourgine M, Godon O, et al. TG1050, an immunotherapeutic to treat chronic hepatitis B, induces robust T cells and exerts an antiviral effect in HBV-persistent mice. Gut. 2015;64:1961-71 pubmed 出版商
  1045. Svatek R, Zhao X, Morales E, Jha M, Tseng T, Hugen C, et al. Sequential intravesical mitomycin plus Bacillus Calmette-Guérin for non-muscle-invasive urothelial bladder carcinoma: translational and phase I clinical trial. Clin Cancer Res. 2015;21:303-11 pubmed 出版商
  1046. Kobold S, Steffen J, Chaloupka M, Grassmann S, Henkel J, Castoldi R, et al. Selective bispecific T cell recruiting antibody and antitumor activity of adoptive T cell transfer. J Natl Cancer Inst. 2015;107:364 pubmed 出版商
  1047. Nakamura Y, Sato K, Yamamoto H, Matsumura K, Matsumoto I, Nomura T, et al. Dectin-2 deficiency promotes Th2 response and mucin production in the lungs after pulmonary infection with Cryptococcus neoformans. Infect Immun. 2015;83:671-81 pubmed 出版商
  1048. Peters A, Burkett P, Sobel R, Buckley C, Watson S, Bettelli E, et al. Podoplanin negatively regulates CD4+ effector T cell responses. J Clin Invest. 2015;125:129-40 pubmed 出版商
  1049. Rattner A, Wang Y, Zhou Y, Williams J, Nathans J. The role of the hypoxia response in shaping retinal vascular development in the absence of Norrin/Frizzled4 signaling. Invest Ophthalmol Vis Sci. 2014;55:8614-25 pubmed 出版商
  1050. van Blijswijk J, Schraml B, Rogers N, Whitney P, Zelenay S, Acton S, et al. Altered lymph node composition in diphtheria toxin receptor-based mouse models to ablate dendritic cells. J Immunol. 2015;194:307-15 pubmed 出版商
  1051. Venkatanarayan A, Raulji P, Norton W, Chakravarti D, Coarfa C, Su X, et al. IAPP-driven metabolic reprogramming induces regression of p53-deficient tumours in vivo. Nature. 2015;517:626-30 pubmed 出版商
  1052. Baptista A, Roozendaal R, Reijmers R, Koning J, Unger W, Greuter M, et al. Lymph node stromal cells constrain immunity via MHC class II self-antigen presentation. elife. 2014;3: pubmed 出版商
  1053. Uchiyama M, Jin X, Yin E, Shimokawa T, Niimi M. Treadmill exercise induces murine cardiac allograft survival and generates regulatory T cell. Transpl Int. 2015;28:352-62 pubmed 出版商
  1054. Buchan S, Manzo T, Flutter B, Rogel A, Edwards N, Zhang L, et al. OX40- and CD27-mediated costimulation synergizes with anti-PD-L1 blockade by forcing exhausted CD8+ T cells to exit quiescence. J Immunol. 2015;194:125-133 pubmed 出版商
  1055. Schwartz C, Turqueti Neves A, Hartmann S, Yu P, Nimmerjahn F, Voehringer D. Basophil-mediated protection against gastrointestinal helminths requires IgE-induced cytokine secretion. Proc Natl Acad Sci U S A. 2014;111:E5169-77 pubmed 出版商
  1056. Taniguchi T, Asano Y, Akamata K, Noda S, Takahashi T, Ichimura Y, et al. Fibrosis, vascular activation, and immune abnormalities resembling systemic sclerosis in bleomycin-treated Fli-1-haploinsufficient mice. Arthritis Rheumatol. 2015;67:517-26 pubmed 出版商
  1057. Cui Z, Han D, Sun X, Zhang M, Feng X, Sun C, et al. Mannose-modified chitosan microspheres enhance OprF-OprI-mediated protection of mice against Pseudomonas aeruginosa infection via induction of mucosal immunity. Appl Microbiol Biotechnol. 2015;99:667-80 pubmed 出版商
  1058. Kern J, Drutel R, Leanhart S, Bogacz M, Pacholczyk R. Reduction of T cell receptor diversity in NOD mice prevents development of type 1 diabetes but not Sjögren's syndrome. PLoS ONE. 2014;9:e112467 pubmed 出版商
  1059. Jurkin J, Henkel T, Nielsen A, Minnich M, Popow J, Kaufmann T, et al. The mammalian tRNA ligase complex mediates splicing of XBP1 mRNA and controls antibody secretion in plasma cells. EMBO J. 2014;33:2922-36 pubmed 出版商
  1060. Mouchacca P, Chasson L, Frick M, Foray C, Schmitt Verhulst A, Boyer C. Visualization of granzyme B-expressing CD8 T cells during primary and secondary immune responses to Listeria monocytogenes. Immunology. 2015;145:24-33 pubmed 出版商
  1061. Backer R, Helbig C, Gentek R, Kent A, Laidlaw B, Dominguez C, et al. A central role for Notch in effector CD8(+) T cell differentiation. Nat Immunol. 2014;15:1143-51 pubmed 出版商
  1062. Johnson H, Willenbring R, Jin F, Manhart W, Lafrance S, Pirko I, et al. Perforin competent CD8 T cells are sufficient to cause immune-mediated blood-brain barrier disruption. PLoS ONE. 2014;9:e111401 pubmed 出版商
  1063. Behler F, Maus R, Bohling J, Knippenberg S, Kirchhof G, Nagata M, et al. Macrophage-inducible C-type lectin Mincle-expressing dendritic cells contribute to control of splenic Mycobacterium bovis BCG infection in mice. Infect Immun. 2015;83:184-96 pubmed 出版商
  1064. Sakamoto H, Takeda N, Arai F, Hosokawa K, García P, Suda T, et al. Determining c-Myb protein levels can isolate functional hematopoietic stem cell subtypes. Stem Cells. 2015;33:479-90 pubmed 出版商
  1065. Edwards C, Best S, Gun S, Claser C, James K, de Oca M, et al. Spatiotemporal requirements for IRF7 in mediating type I IFN-dependent susceptibility to blood-stage Plasmodium infection. Eur J Immunol. 2015;45:130-41 pubmed 出版商
  1066. Becker A, Walcheck B, Bhattacharya D. ADAM17 limits the expression of CSF1R on murine hematopoietic progenitors. Exp Hematol. 2015;43:44-52.e1-3 pubmed 出版商
  1067. Hoelzinger D, Dominguez A, Cohen P, Gendler S. Inhibition of adaptive immunity by IL9 can be disrupted to achieve rapid T-cell sensitization and rejection of progressive tumor challenges. Cancer Res. 2014;74:6845-55 pubmed 出版商
  1068. Maneva Radicheva L, Amatya C, Parker C, Ellefson J, Radichev I, Raghavan A, et al. Autoimmune diabetes is suppressed by treatment with recombinant human tissue Kallikrein-1. PLoS ONE. 2014;9:e107213 pubmed 出版商
  1069. Tassi I, Claudio E, Wang H, Tang W, Ha H, Saret S, et al. The NF-κB regulator Bcl-3 governs dendritic cell antigen presentation functions in adaptive immunity. J Immunol. 2014;193:4303-11 pubmed 出版商
  1070. Bertin S, Lozano Ruiz B, Bachiller V, García Martínez I, Herdman S, Zapater P, et al. Dual-specificity phosphatase 6 regulates CD4+ T-cell functions and restrains spontaneous colitis in IL-10-deficient mice. Mucosal Immunol. 2015;8:505-15 pubmed 出版商
  1071. Castro Rojas C, Deason K, Hussain R, Hayardeny L, Cravens P, Yarovinsky F, et al. Testing effects of glatiramer acetate and fingolimod in an infectious model of CNS immune surveillance. J Neuroimmunol. 2014;276:232-5 pubmed 出版商
  1072. Cao Y, Slaney C, Bidwell B, Parker B, Johnstone C, Rautela J, et al. BMP4 inhibits breast cancer metastasis by blocking myeloid-derived suppressor cell activity. Cancer Res. 2014;74:5091-102 pubmed 出版商
  1073. Carty S, Koretzky G, Jordan M. Interleukin-4 regulates eomesodermin in CD8+ T cell development and differentiation. PLoS ONE. 2014;9:e106659 pubmed 出版商
  1074. Wei F, Yang D, Tewary P, Li Y, Li S, Chen X, et al. The Alarmin HMGN1 contributes to antitumor immunity and is a potent immunoadjuvant. Cancer Res. 2014;74:5989-98 pubmed 出版商
  1075. Pickup M, Hover L, Polikowsky E, Chytil A, Gorska A, Novitskiy S, et al. BMPR2 loss in fibroblasts promotes mammary carcinoma metastasis via increased inflammation. Mol Oncol. 2015;9:179-91 pubmed 出版商
  1076. Naik E, Webster J, DeVoss J, Liu J, Suriben R, Dixit V. Regulation of proximal T cell receptor signaling and tolerance induction by deubiquitinase Usp9X. J Exp Med. 2014;211:1947-55 pubmed 出版商
  1077. Herranz D, Ambesi Impiombato A, Palomero T, Schnell S, Belver L, Wendorff A, et al. A NOTCH1-driven MYC enhancer promotes T cell development, transformation and acute lymphoblastic leukemia. Nat Med. 2014;20:1130-7 pubmed 出版商
  1078. Meraz I, Savage D, Segura Ibarra V, Li J, Rhudy J, Gu J, et al. Adjuvant cationic liposomes presenting MPL and IL-12 induce cell death, suppress tumor growth, and alter the cellular phenotype of tumors in a murine model of breast cancer. Mol Pharm. 2014;11:3484-91 pubmed 出版商
  1079. Kobayashi T, Hamaguchi Y, Hasegawa M, Fujimoto M, Takehara K, Matsushita T. B cells promote tumor immunity against B16F10 melanoma. Am J Pathol. 2014;184:3120-9 pubmed 出版商
  1080. Schwartz M, Kolhatkar N, Thouvenel C, Khim S, Rawlings D. CD4+ T cells and CD40 participate in selection and homeostasis of peripheral B cells. J Immunol. 2014;193:3492-502 pubmed 出版商
  1081. Parker K, Sinha P, Horn L, Clements V, Yang H, Li J, et al. HMGB1 enhances immune suppression by facilitating the differentiation and suppressive activity of myeloid-derived suppressor cells. Cancer Res. 2014;74:5723-33 pubmed 出版商
  1082. Smith T, Verdeil G, Marquardt K, Sherman L. Contribution of TCR signaling strength to CD8+ T cell peripheral tolerance mechanisms. J Immunol. 2014;193:3409-16 pubmed 出版商
  1083. Chen J, Zhao Y, Zhang C, Chen H, Feng J, Chi X, et al. Persistent hepatitis C virus infections and hepatopathological manifestations in immune-competent humanized mice. Cell Res. 2014;24:1050-66 pubmed 出版商
  1084. Dai M, Yip Y, Hellstrom I, Hellstrom K. Curing mice with large tumors by locally delivering combinations of immunomodulatory antibodies. Clin Cancer Res. 2015;21:1127-38 pubmed 出版商
  1085. Rauen J, Kreer C, Paillard A, van Duikeren S, Benckhuijsen W, Camps M, et al. Enhanced cross-presentation and improved CD8+ T cell responses after mannosylation of synthetic long peptides in mice. PLoS ONE. 2014;9:e103755 pubmed 出版商
  1086. Penaloza MacMaster P, Kamphorst A, Wieland A, Araki K, Iyer S, West E, et al. Interplay between regulatory T cells and PD-1 in modulating T cell exhaustion and viral control during chronic LCMV infection. J Exp Med. 2014;211:1905-18 pubmed 出版商
  1087. Ishihara M, Seo N, Mitsui J, Muraoka D, Tanaka M, Mineno J, et al. Systemic CD8+ T cell-mediated tumoricidal effects by intratumoral treatment of oncolytic herpes simplex virus with the agonistic monoclonal antibody for murine glucocorticoid-induced tumor necrosis factor receptor. PLoS ONE. 2014;9:e104669 pubmed 出版商
  1088. Denton A, Roberts E, Linterman M, Fearon D. Fibroblastic reticular cells of the lymph node are required for retention of resting but not activated CD8+ T cells. Proc Natl Acad Sci U S A. 2014;111:12139-44 pubmed 出版商
  1089. Zhou Y, Wang Y, TISCHFIELD M, Williams J, Smallwood P, Rattner A, et al. Canonical WNT signaling components in vascular development and barrier formation. J Clin Invest. 2014;124:3825-46 pubmed 出版商
  1090. Zhu Y, Knolhoff B, Meyer M, Nywening T, West B, Luo J, et al. CSF1/CSF1R blockade reprograms tumor-infiltrating macrophages and improves response to T-cell checkpoint immunotherapy in pancreatic cancer models. Cancer Res. 2014;74:5057-69 pubmed 出版商
  1091. Reeh K, Cardenas K, Bain V, Liu Z, LAURENT M, Manley N, et al. Ectopic TBX1 suppresses thymic epithelial cell differentiation and proliferation during thymus organogenesis. Development. 2014;141:2950-8 pubmed 出版商
  1092. Boding L, Hansen A, Meroni G, Johansen B, Braunstein T, Bonefeld C, et al. Midline 1 directs lytic granule exocytosis and cytotoxicity of mouse killer T cells. Eur J Immunol. 2014;44:3109-18 pubmed 出版商
  1093. Lee Chang C, Bodogai M, Moritoh K, Olkhanud P, Chan A, Croft M, et al. Accumulation of 4-1BBL+ B cells in the elderly induces the generation of granzyme-B+ CD8+ T cells with potential antitumor activity. Blood. 2014;124:1450-9 pubmed 出版商
  1094. Chandran P, Keller A, Weinmann L, Seida A, Braun M, Andreev K, et al. The TGF-?-inducible miR-23a cluster attenuates IFN-? levels and antigen-specific cytotoxicity in human CD8? T cells. J Leukoc Biol. 2014;96:633-45 pubmed 出版商
  1095. Knuschke T, Bayer W, Rotan O, Sokolova V, Wadwa M, Kirschning C, et al. Prophylactic and therapeutic vaccination with a nanoparticle-based peptide vaccine induces efficient protective immunity during acute and chronic retroviral infection. Nanomedicine. 2014;10:1787-98 pubmed 出版商
  1096. Furugaki K, Cui L, Kunisawa Y, Osada K, Shinkai K, Tanaka M, et al. Intraperitoneal administration of a tumor-associated antigen SART3, CD40L, and GM-CSF gene-loaded polyplex micelle elicits a vaccine effect in mouse tumor models. PLoS ONE. 2014;9:e101854 pubmed 出版商
  1097. Price P, Luckow B, Torres Domínguez L, Brandmüller C, Zorn J, Kirschning C, et al. Chemokine (C-C Motif) receptor 1 is required for efficient recruitment of neutrophils during respiratory infection with modified vaccinia virus Ankara. J Virol. 2014;88:10840-50 pubmed 出版商
  1098. Knoop K, McDonald K, McCrate S, McDole J, Newberry R. Microbial sensing by goblet cells controls immune surveillance of luminal antigens in the colon. Mucosal Immunol. 2015;8:198-210 pubmed 出版商
  1099. Owens P, Pickup M, Novitskiy S, Giltnane J, Gorska A, Hopkins C, et al. Inhibition of BMP signaling suppresses metastasis in mammary cancer. Oncogene. 2015;34:2437-49 pubmed 出版商
  1100. Honjo K, Kubagawa Y, Suzuki Y, Takagi M, Ohno H, Bucy R, et al. Enhanced auto-antibody production and Mott cell formation in Fc?R-deficient autoimmune mice. Int Immunol. 2014;26:659-72 pubmed 出版商
  1101. Boyoglu Barnum S, Chirkova T, Todd S, Barnum T, Gaston K, Jorquera P, et al. Prophylaxis with a respiratory syncytial virus (RSV) anti-G protein monoclonal antibody shifts the adaptive immune response to RSV rA2-line19F infection from Th2 to Th1 in BALB/c mice. J Virol. 2014;88:10569-83 pubmed 出版商
  1102. Siurala M, Bramante S, Vassilev L, Hirvinen M, Parviainen S, Tähtinen S, et al. Oncolytic adenovirus and doxorubicin-based chemotherapy results in synergistic antitumor activity against soft-tissue sarcoma. Int J Cancer. 2015;136:945-54 pubmed 出版商
  1103. Kühnisch J, Seto J, Lange C, Stumpp S, Kobus K, Grohmann J, et al. Neurofibromin inactivation impairs osteocyte development in Nf1Prx1 and Nf1Col1 mouse models. Bone. 2014;66:155-62 pubmed 出版商
  1104. Au Yeung B, Melichar H, Ross J, Cheng D, Zikherman J, Shokat K, et al. Quantitative and temporal requirements revealed for Zap70 catalytic activity during T cell development. Nat Immunol. 2014;15:687-94 pubmed 出版商
  1105. Pastille E, Bardini K, Fleissner D, Adamczyk A, Frede A, Wadwa M, et al. Transient ablation of regulatory T cells improves antitumor immunity in colitis-associated colon cancer. Cancer Res. 2014;74:4258-69 pubmed 出版商
  1106. Alsadeq A, Hobeika E, Medgyesi D, Kläsener K, Reth M. The role of the Syk/Shp-1 kinase-phosphatase equilibrium in B cell development and signaling. J Immunol. 2014;193:268-76 pubmed 出版商
  1107. Geem D, Medina Contreras O, McBride M, Newberry R, Koni P, Denning T. Specific microbiota-induced intestinal Th17 differentiation requires MHC class II but not GALT and mesenteric lymph nodes. J Immunol. 2014;193:431-8 pubmed 出版商
  1108. Chen Z, Ozbun L, Chong N, Wallecha A, Berzofsky J, Khleif S. Episomal expression of truncated listeriolysin O in LmddA-LLO-E7 vaccine enhances antitumor efficacy by preferentially inducing expansions of CD4+FoxP3- and CD8+ T cells. Cancer Immunol Res. 2014;2:911-22 pubmed 出版商
  1109. Smith N, Wissink E, Wang J, Pinello J, Davenport M, Grimson A, et al. Rapid proliferation and differentiation impairs the development of memory CD8+ T cells in early life. J Immunol. 2014;193:177-84 pubmed 出版商
  1110. Kitagawa K, Shibata K, Matsumoto A, Matsumoto M, Ohhata T, Nakayama K, et al. Fbw7 targets GATA3 through cyclin-dependent kinase 2-dependent proteolysis and contributes to regulation of T-cell development. Mol Cell Biol. 2014;34:2732-44 pubmed
  1111. Vargas A, Zhou S, Ethier Chiasson M, Flipo D, Lafond J, Gilbert C, et al. Syncytin proteins incorporated in placenta exosomes are important for cell uptake and show variation in abundance in serum exosomes from patients with preeclampsia. FASEB J. 2014;28:3703-19 pubmed 出版商
  1112. Assi H, Espinosa J, Suprise S, SOFRONIEW M, Doherty R, Zamler D, et al. Assessing the role of STAT3 in DC differentiation and autologous DC immunotherapy in mouse models of GBM. PLoS ONE. 2014;9:e96318 pubmed 出版商
  1113. Sreedharan R, Chen S, Miller M, Haribhai D, Williams C, Van Why S. Mice with an absent stress response are protected against ischemic renal injury. Kidney Int. 2014;86:515-24 pubmed 出版商
  1114. Zhang Y, Mena P, Romanov G, Bliska J. Effector CD8+ T cells are generated in response to an immunodominant epitope in type III effector YopE during primary Yersinia pseudotuberculosis infection. Infect Immun. 2014;82:3033-44 pubmed 出版商
  1115. Zhang Y, Yan W, Mathew E, Bednar F, Wan S, Collins M, et al. CD4+ T lymphocyte ablation prevents pancreatic carcinogenesis in mice. Cancer Immunol Res. 2014;2:423-35 pubmed 出版商
  1116. Richardson M, Fu C, Pennington L, Honeycutt J, Odegaard J, Odegaard J, et al. A new mouse model for female genital schistosomiasis. PLoS Negl Trop Dis. 2014;8:e2825 pubmed 出版商
  1117. Smolarchuk C, Zhu L, Chan W, Anderson C. T cells generated in the absence of a thoracic thymus fail to establish homeostasis. Eur J Immunol. 2014;44:2263-73 pubmed 出版商
  1118. Ebert S, Becker M, Lemmermann N, Büttner J, Michel A, Taube C, et al. Mast cells expedite control of pulmonary murine cytomegalovirus infection by enhancing the recruitment of protective CD8 T cells to the lungs. PLoS Pathog. 2014;10:e1004100 pubmed 出版商
  1119. Skrnjug I, Rueckert C, Libanova R, Lienenklaus S, Weiss S, Guzman C. The mucosal adjuvant cyclic di-AMP exerts immune stimulatory effects on dendritic cells and macrophages. PLoS ONE. 2014;9:e95728 pubmed 出版商
  1120. Meraz I, Hearnden C, Liu X, Yang M, Williams L, Savage D, et al. Multivalent presentation of MPL by porous silicon microparticles favors T helper 1 polarization enhancing the anti-tumor efficacy of doxorubicin nanoliposomes. PLoS ONE. 2014;9:e94703 pubmed 出版商
  1121. Pick J, Arra A, Lingel H, Hegel J, Huber M, Nishanth G, et al. CTLA-4 (CD152) enhances the Tc17 differentiation program. Eur J Immunol. 2014;44:2139-52 pubmed 出版商
  1122. Dupont C, Christian D, Selleck E, Pepper M, Leney Greene M, Harms Pritchard G, et al. Parasite fate and involvement of infected cells in the induction of CD4+ and CD8+ T cell responses to Toxoplasma gondii. PLoS Pathog. 2014;10:e1004047 pubmed 出版商
  1123. Könnecke I, Serra A, El Khassawna T, Schlundt C, Schell H, Hauser A, et al. T and B cells participate in bone repair by infiltrating the fracture callus in a two-wave fashion. Bone. 2014;64:155-65 pubmed 出版商
  1124. Inoue M, Arikawa T, Chen Y, Moriwaki Y, Price M, Brown M, et al. T cells down-regulate macrophage TNF production by IRAK1-mediated IL-10 expression and control innate hyperinflammation. Proc Natl Acad Sci U S A. 2014;111:5295-300 pubmed 出版商
  1125. Cochain C, Chaudhari S, Koch M, Wiendl H, Eckstein H, Zernecke A. Programmed cell death-1 deficiency exacerbates T cell activation and atherogenesis despite expansion of regulatory T cells in atherosclerosis-prone mice. PLoS ONE. 2014;9:e93280 pubmed 出版商
  1126. Ntranos A, Hall O, Robinson D, Grishkan I, Schott J, Tosi D, et al. FTY720 impairs CD8 T-cell function independently of the sphingosine-1-phosphate pathway. J Neuroimmunol. 2014;270:13-21 pubmed 出版商
  1127. Koga T, Hedrich C, Mizui M, Yoshida N, Otomo K, Lieberman L, et al. CaMK4-dependent activation of AKT/mTOR and CREM-? underlies autoimmunity-associated Th17 imbalance. J Clin Invest. 2014;124:2234-45 pubmed 出版商
  1128. Takei S, Omoto C, Kitagawa K, Morishita N, Katayama T, Shigemura K, et al. Oral administration of genetically modified Bifidobacterium displaying HCV-NS3 multi-epitope fusion protein could induce an HCV-NS3-specific systemic immune response in mice. Vaccine. 2014;32:3066-74 pubmed 出版商
  1129. Li J, Arévalo M, Chen Y, Posadas O, Smith J, Zeng M. Intranasal immunization with influenza antigens conjugated with cholera toxin subunit B stimulates broad spectrum immunity against influenza viruses. Hum Vaccin Immunother. 2014;10:1211-20 pubmed 出版商
  1130. Yan J, Villarreal D, Racine T, Chu J, Walters J, Morrow M, et al. Protective immunity to H7N9 influenza viruses elicited by synthetic DNA vaccine. Vaccine. 2014;32:2833-42 pubmed 出版商
  1131. Fu H, Kishore M, Gittens B, Wang G, Coe D, Komarowska I, et al. Self-recognition of the endothelium enables regulatory T-cell trafficking and defines the kinetics of immune regulation. Nat Commun. 2014;5:3436 pubmed 出版商
  1132. Le Saout C, Hasley R, Imamichi H, Tcheung L, Hu Z, Luckey M, et al. Chronic exposure to type-I IFN under lymphopenic conditions alters CD4 T cell homeostasis. PLoS Pathog. 2014;10:e1003976 pubmed 出版商
  1133. Hirayama T, Asano Y, Iida H, Watanabe T, Nakamura T, Goitsuka R. Meis1 is required for the maintenance of postnatal thymic epithelial cells. PLoS ONE. 2014;9:e89885 pubmed 出版商
  1134. Martins K, Steffens J, Van Tongeren S, Wells J, Bergeron A, Dickson S, et al. Toll-like receptor agonist augments virus-like particle-mediated protection from Ebola virus with transient immune activation. PLoS ONE. 2014;9:e89735 pubmed 出版商
  1135. Vanoaica L, Richman L, Jaworski M, Darshan D, Luther S, Kühn L. Conditional deletion of ferritin h in mice reduces B and T lymphocyte populations. PLoS ONE. 2014;9:e89270 pubmed 出版商
  1136. Nakahata S, Ichikawa T, Maneesaay P, Saito Y, Nagai K, Tamura T, et al. Loss of NDRG2 expression activates PI3K-AKT signalling via PTEN phosphorylation in ATLL and other cancers. Nat Commun. 2014;5:3393 pubmed 出版商
  1137. Lee J, Walsh M, Hoehn K, James D, Wherry E, Choi Y. Regulator of fatty acid metabolism, acetyl coenzyme a carboxylase 1, controls T cell immunity. J Immunol. 2014;192:3190-9 pubmed 出版商
  1138. Russell T, Tscharke D. Strikingly poor CD8+ T-cell immunogenicity of vaccinia virus strain MVA in BALB/c mice. Immunol Cell Biol. 2014;92:466-9 pubmed 出版商
  1139. Ataide M, Andrade W, Zamboni D, Wang D, Souza M, Franklin B, et al. Malaria-induced NLRP12/NLRP3-dependent caspase-1 activation mediates inflammation and hypersensitivity to bacterial superinfection. PLoS Pathog. 2014;10:e1003885 pubmed 出版商
  1140. Misumi I, Whitmire J. B cell depletion curtails CD4+ T cell memory and reduces protection against disseminating virus infection. J Immunol. 2014;192:1597-608 pubmed 出版商
  1141. Mercadante A, Perobelli S, Alves A, Gonçalves Silva T, Mello W, Gomes Santos A, et al. Oral combined therapy with probiotics and alloantigen induces B cell-dependent long-lasting specific tolerance. J Immunol. 2014;192:1928-37 pubmed 出版商
  1142. Joedicke J, Dietze K, Zelinskyy G, Dittmer U. The phenotype and activation status of regulatory T cells during Friend retrovirus infection. Virol Sin. 2014;29:48-60 pubmed 出版商
  1143. Brenndörfer E, Brass A, Karthe J, Ahlen G, Bode J, Sallberg M. Cleavage of the T cell protein tyrosine phosphatase by the hepatitis C virus nonstructural 3/4A protease induces a Th1 to Th2 shift reversible by ribavirin therapy. J Immunol. 2014;192:1671-80 pubmed 出版商
  1144. Gaughan A, Wang J, Pelletier R, Nadasdy T, Brodsky S, Roy S, et al. Key role for CD4 T cells during mixed antibody-mediated rejection of renal allografts. Am J Transplant. 2014;14:284-94 pubmed 出版商
  1145. Yang M, Rainone A, Shi X, Fournier S, Zhang J. A new animal model of spontaneous autoimmune peripheral polyneuropathy: implications for Guillain-Barré syndrome. Acta Neuropathol Commun. 2014;2:5 pubmed 出版商
  1146. Costa R, Bergwerf I, Santermans E, De Vocht N, Praet J, Daans J, et al. Distinct in vitro properties of embryonic and extraembryonic fibroblast-like cells are reflected in their in vivo behavior following grafting in the adult mouse brain. Cell Transplant. 2015;24:223-33 pubmed 出版商
  1147. Saligrama N, Case L, Krementsov D, Teuscher C. Histamine H₂ receptor signaling × environment interactions determine susceptibility to experimental allergic encephalomyelitis. FASEB J. 2014;28:1898-909 pubmed 出版商
  1148. Kim E, Gasper D, Lee S, Plisch E, Svaren J, Suresh M. Bach2 regulates homeostasis of Foxp3+ regulatory T cells and protects against fatal lung disease in mice. J Immunol. 2014;192:985-95 pubmed 出版商
  1149. Cavnar M, Zeng S, Kim T, Sorenson E, Ocuin L, Balachandran V, et al. KIT oncogene inhibition drives intratumoral macrophage M2 polarization. J Exp Med. 2013;210:2873-86 pubmed 出版商
  1150. Salem H, Trojanowski B, Fiedler K, Maier H, Schirmbeck R, Wagner M, et al. Long-term IKK2/NF-?B signaling in pancreatic ?-cells induces immune-mediated diabetes. Diabetes. 2014;63:960-75 pubmed 出版商
  1151. Murphy K, Erickson J, Johnson C, Seiler C, Bedi J, Hu P, et al. CD8+ T cell-independent tumor regression induced by Fc-OX40L and therapeutic vaccination in a mouse model of glioma. J Immunol. 2014;192:224-33 pubmed 出版商
  1152. Gujar S, Clements D, Dielschneider R, Helson E, Marcato P, Lee P. Gemcitabine enhances the efficacy of reovirus-based oncotherapy through anti-tumour immunological mechanisms. Br J Cancer. 2014;110:83-93 pubmed 出版商
  1153. Diaz de Durana Y, Lau J, Knee D, Filippi C, Londei M, McNamara P, et al. IL-2 immunotherapy reveals potential for innate beta cell regeneration in the non-obese diabetic mouse model of autoimmune diabetes. PLoS ONE. 2013;8:e78483 pubmed 出版商
  1154. Griffiths K, Stylianou E, Poyntz H, Betts G, Fletcher H, McShane H. Cholera toxin enhances vaccine-induced protection against Mycobacterium tuberculosis challenge in mice. PLoS ONE. 2013;8:e78312 pubmed 出版商
  1155. Moriya T, Fukatsu K, Noguchi M, Okamoto K, Murakoshi S, Saitoh D, et al. Intravenous administration of high-dose Paclitaxel reduces gut-associated lymphoid tissue cell number and respiratory immunoglobulin A concentrations in mice. Surg Infect (Larchmt). 2014;15:50-7 pubmed 出版商
  1156. Schmitt E, Haribhai D, Jeschke J, Co D, Ziegelbauer J, Yan K, et al. Chronic follicular bronchiolitis requires antigen-specific regulatory T cell control to prevent fatal disease progression. J Immunol. 2013;191:5460-76 pubmed 出版商
  1157. Iwata A, Kawashima S, Kobayashi M, Okubo A, Kawashima H, Suto A, et al. Th2-type inflammation instructs inflammatory dendritic cells to induce airway hyperreactivity. Int Immunol. 2014;26:103-14 pubmed 出版商
  1158. Brunner S, Schiechl G, Kesselring R, Martin M, Balam S, Schlitt H, et al. IL-13 signaling via IL-13R?2 triggers TGF-?1-dependent allograft fibrosis. Transplant Res. 2013;2:16 pubmed 出版商
  1159. Weng T, Huang S, Yen M, Lin C, Chen Y, Lin C, et al. A novel cancer therapeutic using thrombospondin 1 in dendritic cells. Mol Ther. 2014;22:292-302 pubmed 出版商
  1160. Harimoto H, Shimizu M, Nakagawa Y, Nakatsuka K, Wakabayashi A, Sakamoto C, et al. Inactivation of tumor-specific CD8? CTLs by tumor-infiltrating tolerogenic dendritic cells. Immunol Cell Biol. 2013;91:545-55 pubmed 出版商
  1161. Bittner Eddy P, Fischer L, Costalonga M. Identification of gingipain-specific I-A(b) -restricted CD4+ T cells following mucosal colonization with Porphyromonas gingivalis in C57BL/6 mice. Mol Oral Microbiol. 2013;28:452-66 pubmed 出版商
  1162. Povinelli B, Nemeth M. Wnt5a regulates hematopoietic stem cell proliferation and repopulation through the Ryk receptor. Stem Cells. 2014;32:105-15 pubmed 出版商
  1163. Bittner S, Ruck T, Schuhmann M, Herrmann A, Moha Ou Maati H, Bobak N, et al. Endothelial TWIK-related potassium channel-1 (TREK1) regulates immune-cell trafficking into the CNS. Nat Med. 2013;19:1161-5 pubmed 出版商
  1164. Fuertbauer E, Zaujec J, Uhrin P, Raab I, Weber M, Schachner H, et al. Thymic medullar conduits-associated podoplanin promotes natural regulatory T cells. Immunol Lett. 2013;154:31-41 pubmed 出版商
  1165. Lappalainen S, Tamminen K, Vesikari T, Blazevic V. Comparative immunogenicity in mice of rotavirus VP6 tubular structures and virus-like particles. Hum Vaccin Immunother. 2013;9:1991-2001 pubmed 出版商
  1166. Ke F, Bouillet P, Kaufmann T, Strasser A, Kerr J, Voss A. Consequences of the combined loss of BOK and BAK or BOK and BAX. Cell Death Dis. 2013;4:e650 pubmed 出版商
  1167. Wu X, Satpathy A, Kc W, Liu P, Murphy T, Murphy K. Bcl11a controls Flt3 expression in early hematopoietic progenitors and is required for pDC development in vivo. PLoS ONE. 2013;8:e64800 pubmed 出版商
  1168. Cravens P, Kieseier B, Hussain R, Herndon E, Arellano B, Ben L, et al. The neonatal CNS is not conducive for encephalitogenic Th1 T cells and B cells during experimental autoimmune encephalomyelitis. J Neuroinflammation. 2013;10:67 pubmed 出版商
  1169. Roy S, Stevens M, So L, Edinger A. Reciprocal effects of rab7 deletion in activated and neglected T cells. Autophagy. 2013;9:1009-23 pubmed 出版商
  1170. He L, Marneros A. Macrophages are essential for the early wound healing response and the formation of a fibrovascular scar. Am J Pathol. 2013;182:2407-17 pubmed 出版商
  1171. Xiao H, Shen H, Liu W, Xiong R, Li P, Meng G, et al. Adenosine A2A receptor: a target for regulating renal interstitial fibrosis in obstructive nephropathy. PLoS ONE. 2013;8:e60173 pubmed 出版商
  1172. Gerber S, Sedlacek A, Cron K, Murphy S, Frelinger J, Lord E. IFN-γ mediates the antitumor effects of radiation therapy in a murine colon tumor. Am J Pathol. 2013;182:2345-54 pubmed 出版商
  1173. Billich A, Baumruker T, Beerli C, Bigaud M, Bruns C, Calzascia T, et al. Partial deficiency of sphingosine-1-phosphate lyase confers protection in experimental autoimmune encephalomyelitis. PLoS ONE. 2013;8:e59630 pubmed 出版商
  1174. Zinselmeyer B, Heydari S, Sacristán C, Nayak D, Cammer M, Herz J, et al. PD-1 promotes immune exhaustion by inducing antiviral T cell motility paralysis. J Exp Med. 2013;210:757-74 pubmed 出版商
  1175. Vink P, Smout W, Driessen Engels L, de Bruin A, Delsing D, Krajnc Franken M, et al. In vivo knockdown of TAK1 accelerates bone marrow proliferation/differentiation and induces systemic inflammation. PLoS ONE. 2013;8:e57348 pubmed 出版商
  1176. Gómez Herreros F, Romero Granados R, Zeng Z, Alvarez Quilón A, Quintero C, Ju L, et al. TDP2-dependent non-homologous end-joining protects against topoisomerase II-induced DNA breaks and genome instability in cells and in vivo. PLoS Genet. 2013;9:e1003226 pubmed 出版商
  1177. Hogan T, Shuvaev A, Commenges D, Yates A, Callard R, Thiebaut R, et al. Clonally diverse T cell homeostasis is maintained by a common program of cell-cycle control. J Immunol. 2013;190:3985-93 pubmed 出版商
  1178. Koning J, Kooij G, de Vries H, Nolte M, Mebius R. Mesenchymal stem cells are mobilized from the bone marrow during inflammation. Front Immunol. 2013;4:49 pubmed 出版商
  1179. Li J, Xiong T, Xiao R, Xiong A, Chen J, Altaf E, et al. Anti-CCL25 antibody prolongs skin allograft survival by blocking CCR9 expression and impairing splenic T-cell function. Arch Immunol Ther Exp (Warsz). 2013;61:237-44 pubmed 出版商
  1180. Toker A, Engelbert D, Garg G, Polansky J, Floess S, Miyao T, et al. Active demethylation of the Foxp3 locus leads to the generation of stable regulatory T cells within the thymus. J Immunol. 2013;190:3180-8 pubmed 出版商
  1181. Khan O, Akula M, Skålén K, Karlsson C, Ståhlman M, Young S, et al. Targeting GGTase-I activates RHOA, increases macrophage reverse cholesterol transport, and reduces atherosclerosis in mice. Circulation. 2013;127:782-90 pubmed 出版商
  1182. Kipari T, Hadoke P, Iqbal J, Man T, Miller E, Coutinho A, et al. 11?-hydroxysteroid dehydrogenase type 1 deficiency in bone marrow-derived cells reduces atherosclerosis. FASEB J. 2013;27:1519-31 pubmed 出版商
  1183. Diken M, Kreiter S, Selmi A, Tureci O, Sahin U. Antitumor vaccination with synthetic mRNA: strategies for in vitro and in vivo preclinical studies. Methods Mol Biol. 2013;969:235-46 pubmed 出版商
  1184. Bergmann H, Yabas M, Short A, Miosge L, Barthel N, Teh C, et al. B cell survival, surface BCR and BAFFR expression, CD74 metabolism, and CD8- dendritic cells require the intramembrane endopeptidase SPPL2A. J Exp Med. 2013;210:31-40 pubmed 出版商
  1185. Cevik S, Keskin N, Belkaya S, Ozlu M, Deniz E, Tazebay U, et al. CD81 interacts with the T cell receptor to suppress signaling. PLoS ONE. 2012;7:e50396 pubmed 出版商
  1186. Oldstone M, Edelmann K, McGavern D, Cruite J, Welch M. Molecular anatomy and number of antigen specific CD8 T cells required to cause type 1 diabetes. PLoS Pathog. 2012;8:e1003044 pubmed 出版商
  1187. Sag D, Wingender G, Nowyhed H, Wu R, Gebre A, Parks J, et al. ATP-binding cassette transporter G1 intrinsically regulates invariant NKT cell development. J Immunol. 2012;189:5129-38 pubmed 出版商
  1188. Mathew R, Seiler M, Scanlon S, Mao A, Constantinides M, Bertozzi Villa C, et al. BTB-ZF factors recruit the E3 ligase cullin 3 to regulate lymphoid effector programs. Nature. 2012;491:618-21 pubmed 出版商
  1189. Yassai M, Cooley B, Gorski J. Developmental dynamics of post-selection thymic DN iNKT. PLoS ONE. 2012;7:e43509 pubmed 出版商
  1190. Pagán A, Pepper M, Chu H, Green J, Jenkins M. CD28 promotes CD4+ T cell clonal expansion during infection independently of its YMNM and PYAP motifs. J Immunol. 2012;189:2909-17 pubmed 出版商
  1191. Zhang N, Bevan M. TGF-? signaling to T cells inhibits autoimmunity during lymphopenia-driven proliferation. Nat Immunol. 2012;13:667-73 pubmed 出版商
  1192. Jenkins C, Shevchuk O, Giambra V, Lam S, Carboni J, Gottardis M, et al. IGF signaling contributes to malignant transformation of hematopoietic progenitors by the MLL-AF9 oncoprotein. Exp Hematol. 2012;40:715-723.e6 pubmed 出版商
  1193. Chevrier S, Genton C, Malissen B, Malissen M, Acha Orbea H. Dominant Role of CD80-CD86 Over CD40 and ICOSL in the Massive Polyclonal B Cell Activation Mediated by LAT(Y136F) CD4(+) T Cells. Front Immunol. 2012;3:27 pubmed 出版商
  1194. Barral P, Sanchez Nino M, Van Rooijen N, Cerundolo V, Batista F. The location of splenic NKT cells favours their rapid activation by blood-borne antigen. EMBO J. 2012;31:2378-90 pubmed 出版商
  1195. Hurez V, Daniel B, Sun L, Liu A, Ludwig S, Kious M, et al. Mitigating age-related immune dysfunction heightens the efficacy of tumor immunotherapy in aged mice. Cancer Res. 2012;72:2089-99 pubmed 出版商
  1196. Lumsden J, Nurmukhambetova S, Klein J, Sattabongkot J, Bennett J, Bertholet S, et al. Evaluation of immune responses to a Plasmodium vivax CSP-based recombinant protein vaccine candidate in combination with second-generation adjuvants in mice. Vaccine. 2012;30:3311-9 pubmed 出版商
  1197. Loebbermann J, Schnoeller C, Thornton H, Durant L, Sweeney N, Schuijs M, et al. IL-10 regulates viral lung immunopathology during acute respiratory syncytial virus infection in mice. PLoS ONE. 2012;7:e32371 pubmed 出版商
  1198. Sun L, Hurez V, Thibodeaux S, Kious M, Liu A, Lin P, et al. Aged regulatory T cells protect from autoimmune inflammation despite reduced STAT3 activation and decreased constraint of IL-17 producing T cells. Aging Cell. 2012;11:509-19 pubmed 出版商
  1199. Dutra R, Leite D, Bento A, Manjavachi M, Patrício E, Figueiredo C, et al. The role of kinin receptors in preventing neuroinflammation and its clinical severity during experimental autoimmune encephalomyelitis in mice. PLoS ONE. 2011;6:e27875 pubmed 出版商
  1200. Salti S, Hammelev E, Grewal J, Reddy S, Zemple S, Grossman W, et al. Granzyme B regulates antiviral CD8+ T cell responses. J Immunol. 2011;187:6301-9 pubmed 出版商
  1201. Badeaux A, Yang Y, Cardenas K, Vemulapalli V, Chen K, Kusewitt D, et al. Loss of the methyl lysine effector protein PHF20 impacts the expression of genes regulated by the lysine acetyltransferase MOF. J Biol Chem. 2012;287:429-37 pubmed 出版商
  1202. Wang R, Xie H, Huang Z, Ma J, Fang X, Ding Y, et al. T cell factor 1 regulates thymocyte survival via a RORγt-dependent pathway. J Immunol. 2011;187:5964-73 pubmed 出版商
  1203. Adoro S, McCaughtry T, Erman B, Alag A, Van Laethem F, Park J, et al. Coreceptor gene imprinting governs thymocyte lineage fate. EMBO J. 2012;31:366-77 pubmed 出版商
  1204. Suliman S, Tan J, Xu K, Kousis P, Kowalski P, Chang G, et al. Notch3 is dispensable for thymocyte ?-selection and Notch1-induced T cell leukemogenesis. PLoS ONE. 2011;6:e24937 pubmed 出版商
  1205. Bunnell T, Burbach B, Shimizu Y, Ervasti J. ?-Actin specifically controls cell growth, migration, and the G-actin pool. Mol Biol Cell. 2011;22:4047-58 pubmed 出版商
  1206. Ota N, Wong K, Valdez P, Zheng Y, Crellin N, Diehl L, et al. IL-22 bridges the lymphotoxin pathway with the maintenance of colonic lymphoid structures during infection with Citrobacter rodentium. Nat Immunol. 2011;12:941-8 pubmed 出版商
  1207. Kastenmuller W, Gasteiger G, Subramanian N, Sparwasser T, Busch D, Belkaid Y, et al. Regulatory T cells selectively control CD8+ T cell effector pool size via IL-2 restriction. J Immunol. 2011;187:3186-97 pubmed 出版商
  1208. Sun J, Sukhova G, Zhang J, Chen H, Sjoberg S, Libby P, et al. Cathepsin K deficiency reduces elastase perfusion-induced abdominal aortic aneurysms in mice. Arterioscler Thromb Vasc Biol. 2012;32:15-23 pubmed 出版商
  1209. Clement M, Ladell K, Ekeruche Makinde J, Miles J, Edwards E, Dolton G, et al. Anti-CD8 antibodies can trigger CD8+ T cell effector function in the absence of TCR engagement and improve peptide-MHCI tetramer staining. J Immunol. 2011;187:654-63 pubmed 出版商
  1210. Wojno E, Hosken N, Stumhofer J, O Hara A, Mauldin E, Fang Q, et al. A role for IL-27 in limiting T regulatory cell populations. J Immunol. 2011;187:266-73 pubmed 出版商
  1211. Goldstein J, Balderas R, Marodon G. Continuous activation of the CD122/STAT-5 signaling pathway during selection of antigen-specific regulatory T cells in the murine thymus. PLoS ONE. 2011;6:e19038 pubmed 出版商
  1212. Zimmerman M, Haskins K, Bradley B, Gilman J, Gamboni Robertson F, Flores S. Autoimmune-mediated vascular injury occurs prior to sustained hyperglycemia in a murine model of type I diabetes mellitus. J Surg Res. 2011;168:e195-202 pubmed 出版商
  1213. Murapa P, Ward M, Gandhapudi S, Woodward J, D Orazio S. Heat shock factor 1 protects mice from rapid death during Listeria monocytogenes infection by regulating expression of tumor necrosis factor alpha during fever. Infect Immun. 2011;79:177-84 pubmed 出版商
  1214. Gibbert K, Dietze K, Zelinskyy G, Lang K, Barchet W, Kirschning C, et al. Polyinosinic-polycytidylic acid treatment of Friend retrovirus-infected mice improves functional properties of virus-specific T cells and prevents virus-induced disease. J Immunol. 2010;185:6179-89 pubmed 出版商
  1215. Weisel F, Appelt U, Schneider A, Horlitz J, Van Rooijen N, Korner H, et al. Unique requirements for reactivation of virus-specific memory B lymphocytes. J Immunol. 2010;185:4011-21 pubmed 出版商
  1216. Tait E, Jordan K, Dupont C, Harris T, Gregg B, Wilson E, et al. Virulence of Toxoplasma gondii is associated with distinct dendritic cell responses and reduced numbers of activated CD8+ T cells. J Immunol. 2010;185:1502-12 pubmed 出版商
  1217. Charles E, Joshi S, Ash J, Fox B, Farris A, Bzik D, et al. CD4 T-cell suppression by cells from Toxoplasma gondii-infected retinas is mediated by surface protein PD-L1. Infect Immun. 2010;78:3484-92 pubmed 出版商
  1218. Mohr C, Arapovic J, Mühlbach H, Panzer M, Weyn A, Dölken L, et al. A spread-deficient cytomegalovirus for assessment of first-target cells in vaccination. J Virol. 2010;84:7730-42 pubmed 出版商
  1219. Böiers C, Buza Vidas N, Jensen C, Pronk C, Kharazi S, Wittmann L, et al. Expression and role of FLT3 in regulation of the earliest stage of normal granulocyte-monocyte progenitor development. Blood. 2010;115:5061-8 pubmed 出版商
  1220. Thompson J, Chu Y, Glass J, Tapp A, Brown S. The manganese superoxide dismutase mimetic, M40403, protects adult mice from lethal total body irradiation. Free Radic Res. 2010;44:529-40 pubmed 出版商
  1221. Zavitz C, Bauer C, Gaschler G, Fraser K, Strieter R, Hogaboam C, et al. Dysregulated macrophage-inflammatory protein-2 expression drives illness in bacterial superinfection of influenza. J Immunol. 2010;184:2001-13 pubmed 出版商
  1222. Schuhmann M, Stegner D, Berna Erro A, Bittner S, Braun A, Kleinschnitz C, et al. Stromal interaction molecules 1 and 2 are key regulators of autoreactive T cell activation in murine autoimmune central nervous system inflammation. J Immunol. 2010;184:1536-42 pubmed 出版商
  1223. Fahl S, Crittenden R, Allman D, Bender T. c-Myb is required for pro-B cell differentiation. J Immunol. 2009;183:5582-92 pubmed 出版商
  1224. Zumsteg A, Baeriswyl V, Imaizumi N, Schwendener R, Ruegg C, Christofori G. Myeloid cells contribute to tumor lymphangiogenesis. PLoS ONE. 2009;4:e7067 pubmed 出版商
  1225. Thompson J, Chu Y, Glass J, Brown S. Absence of IL-23p19 in donor allogeneic cells reduces mortality from acute GVHD. Bone Marrow Transplant. 2010;45:712-22 pubmed 出版商
  1226. Wu S, Rhee K, Albesiano E, RABIZADEH S, Wu X, Yen H, et al. A human colonic commensal promotes colon tumorigenesis via activation of T helper type 17 T cell responses. Nat Med. 2009;15:1016-22 pubmed 出版商
  1227. Hu X, Shen H, Tian C, Yu H, Zheng G, XuFeng R, et al. Kinetics of normal hematopoietic stem and progenitor cells in a Notch1-induced leukemia model. Blood. 2009;114:3783-92 pubmed 出版商
  1228. Holcmann M, Stoitzner P, Drobits B, Luehrs P, Stingl G, Romani N, et al. Skin inflammation is not sufficient to break tolerance induced against a novel antigen. J Immunol. 2009;183:1133-43 pubmed 出版商
  1229. Garidou L, Heydari S, Truong P, Brooks D, McGavern D. Therapeutic memory T cells require costimulation for effective clearance of a persistent viral infection. J Virol. 2009;83:8905-15 pubmed 出版商
  1230. Seavey M, Mosmann T. Estradiol-induced vaginal mucus inhibits antigen penetration and CD8(+) T cell priming in response to intravaginal immunization. Vaccine. 2009;27:2342-9 pubmed 出版商
  1231. Schaeffer M, Han S, Chtanova T, van Dooren G, Herzmark P, Chen Y, et al. Dynamic imaging of T cell-parasite interactions in the brains of mice chronically infected with Toxoplasma gondii. J Immunol. 2009;182:6379-93 pubmed 出版商
  1232. Moon J, Chu H, Hataye J, Pagán A, Pepper M, McLachlan J, et al. Tracking epitope-specific T cells. Nat Protoc. 2009;4:565-81 pubmed 出版商
  1233. Tseng K, Chung C, H ng W, Wang S. Early infection termination affects number of CD8+ memory T cells and protective capacities in listeria monocytogenes-infected mice upon rechallenge. J Immunol. 2009;182:4590-600 pubmed 出版商
  1234. Rajasagi N, Kassim S, Kollias C, Zhao X, Chervenak R, Jennings S. CD4+ T cells are required for the priming of CD8+ T cells following infection with herpes simplex virus type 1. J Virol. 2009;83:5256-68 pubmed 出版商
  1235. Hamada H, Garcia Hernandez M, Reome J, Misra S, Strutt T, McKinstry K, et al. Tc17, a unique subset of CD8 T cells that can protect against lethal influenza challenge. J Immunol. 2009;182:3469-81 pubmed 出版商
  1236. Rogers N, Lees M, Gabriel L, Maniati E, Rose S, Potter P, et al. A defect in Marco expression contributes to systemic lupus erythematosus development via failure to clear apoptotic cells. J Immunol. 2009;182:1982-90 pubmed 出版商
  1237. Merck E, Voyle R, MacDonald H. Ly49D engagement on T lymphocytes induces TCR-independent activation and CD8 effector functions that control tumor growth. J Immunol. 2009;182:183-92 pubmed
  1238. Koehn B, Ford M, Ferrer I, Borom K, Gangappa S, Kirk A, et al. PD-1-dependent mechanisms maintain peripheral tolerance of donor-reactive CD8+ T cells to transplanted tissue. J Immunol. 2008;181:5313-22 pubmed
  1239. Wells J, Cowled C, Farzaneh F, Noble A. Combined triggering of dendritic cell receptors results in synergistic activation and potent cytotoxic immunity. J Immunol. 2008;181:3422-31 pubmed
  1240. Serada S, Fujimoto M, Mihara M, Koike N, Ohsugi Y, Nomura S, et al. IL-6 blockade inhibits the induction of myelin antigen-specific Th17 cells and Th1 cells in experimental autoimmune encephalomyelitis. Proc Natl Acad Sci U S A. 2008;105:9041-6 pubmed 出版商
  1241. Waskow C, Liu K, Darrasse Jèze G, Guermonprez P, Ginhoux F, Merad M, et al. The receptor tyrosine kinase Flt3 is required for dendritic cell development in peripheral lymphoid tissues. Nat Immunol. 2008;9:676-83 pubmed 出版商
  1242. Westphal K, Leschner S, Jablonska J, Loessner H, Weiss S. Containment of tumor-colonizing bacteria by host neutrophils. Cancer Res. 2008;68:2952-60 pubmed 出版商
  1243. Mochimaru H, Usui T, Yaguchi T, Nagahama Y, Hasegawa G, Usui Y, et al. Suppression of alkali burn-induced corneal neovascularization by dendritic cell vaccination targeting VEGF receptor 2. Invest Ophthalmol Vis Sci. 2008;49:2172-7 pubmed 出版商
  1244. Sridhar S, Reyes Sandoval A, Draper S, Moore A, Gilbert S, Gao G, et al. Single-dose protection against Plasmodium berghei by a simian adenovirus vector using a human cytomegalovirus promoter containing intron A. J Virol. 2008;82:3822-33 pubmed 出版商
  1245. Ahonen C, Wasiuk A, Fuse S, Turk M, Ernstoff M, Suriawinata A, et al. Enhanced efficacy and reduced toxicity of multifactorial adjuvants compared with unitary adjuvants as cancer vaccines. Blood. 2008;111:3116-25 pubmed 出版商
  1246. Willoughby J, Costello P, Nicolas R, Robinson N, Stamp G, Powrie F, et al. Raf signaling but not the ERK effector SAP-1 is required for regulatory T cell development. J Immunol. 2007;179:6836-44 pubmed
  1247. Venanzi E, Gray D, Benoist C, Mathis D. Lymphotoxin pathway and Aire influences on thymic medullary epithelial cells are unconnected. J Immunol. 2007;179:5693-700 pubmed
  1248. Tyznik A, Bevan M. The surprising kinetics of the T cell response to live antigenic cells. J Immunol. 2007;179:4988-95 pubmed
  1249. Jeannet G, Scheller M, Scarpellino L, Duboux S, Gardiol N, Back J, et al. Long-term, multilineage hematopoiesis occurs in the combined absence of beta-catenin and gamma-catenin. Blood. 2008;111:142-9 pubmed
  1250. Peng J, Kitchen S, West R, Sigler R, Eisenmann K, Alberts A. Myeloproliferative defects following targeting of the Drf1 gene encoding the mammalian diaphanous related formin mDia1. Cancer Res. 2007;67:7565-71 pubmed
  1251. Chen X, Vodanovic Jankovic S, Johnson B, Keller M, Komorowski R, Drobyski W. Absence of regulatory T-cell control of TH1 and TH17 cells is responsible for the autoimmune-mediated pathology in chronic graft-versus-host disease. Blood. 2007;110:3804-13 pubmed
  1252. Moulton R, Mashruwala M, Smith A, Lindsey D, Wetsel R, Haviland D, et al. Complement C5a anaphylatoxin is an innate determinant of dendritic cell-induced Th1 immunity to Mycobacterium bovis BCG infection in mice. J Leukoc Biol. 2007;82:956-67 pubmed
  1253. Lepenies B, Cramer J, Burchard G, Wagner H, Kirschning C, Jacobs T. Induction of experimental cerebral malaria is independent of TLR2/4/9. Med Microbiol Immunol. 2008;197:39-44 pubmed
  1254. Iwabuchi N, Takahashi N, Xiao J, Miyaji K, Iwatsuki K. In vitro Th1 cytokine-independent Th2 suppressive effects of bifidobacteria. Microbiol Immunol. 2007;51:649-60 pubmed
  1255. Kueng H, Leb V, Haiderer D, Raposo G, Thery C, Derdak S, et al. General strategy for decoration of enveloped viruses with functionally active lipid-modified cytokines. J Virol. 2007;81:8666-76 pubmed
  1256. Wu J, Luo L. A protocol for dissecting Drosophila melanogaster brains for live imaging or immunostaining. Nat Protoc. 2006;1:2110-5 pubmed
  1257. Kasler H, Verdin E. Histone deacetylase 7 functions as a key regulator of genes involved in both positive and negative selection of thymocytes. Mol Cell Biol. 2007;27:5184-200 pubmed
  1258. Wu J, Luo L. A protocol for mosaic analysis with a repressible cell marker (MARCM) in Drosophila. Nat Protoc. 2006;1:2583-9 pubmed
  1259. Hamm S, Heit A, Koffler M, Huster K, Akira S, Busch D, et al. Immunostimulatory RNA is a potent inducer of antigen-specific cytotoxic and humoral immune response in vivo. Int Immunol. 2007;19:297-304 pubmed
  1260. de Jersey J, Snelgrove S, Palmer S, Teteris S, Mullbacher A, Miller J, et al. Beta cells cannot directly prime diabetogenic CD8 T cells in nonobese diabetic mice. Proc Natl Acad Sci U S A. 2007;104:1295-300 pubmed
  1261. Hofmann M, Brinkmann V, Zerwes H. FTY720 preferentially depletes naive T cells from peripheral and lymphoid organs. Int Immunopharmacol. 2006;6:1902-10 pubmed
  1262. Taylor P, Tsoni S, Willment J, Dennehy K, Rosas M, Findon H, et al. Dectin-1 is required for beta-glucan recognition and control of fungal infection. Nat Immunol. 2007;8:31-8 pubmed
  1263. Chang S, Wang K, Lu Y, Yang L, Chen W, Lin Y, et al. Characterization of early gamma interferon (IFN-gamma) expression during murine listeriosis: identification of NK1.1+ CD11c+ cells as the primary IFN-gamma-expressing cells. Infect Immun. 2007;75:1167-76 pubmed
  1264. Yang Z, Day Y, Toufektsian M, Xu Y, Ramos S, Marshall M, et al. Myocardial infarct-sparing effect of adenosine A2A receptor activation is due to its action on CD4+ T lymphocytes. Circulation. 2006;114:2056-64 pubmed
  1265. Hu H, Wang B, Borde M, Nardone J, Maika S, Allred L, et al. Foxp1 is an essential transcriptional regulator of B cell development. Nat Immunol. 2006;7:819-26 pubmed
  1266. McLoughlin R, Solinga R, Rich J, Zaleski K, Cocchiaro J, Risley A, et al. CD4+ T cells and CXC chemokines modulate the pathogenesis of Staphylococcus aureus wound infections. Proc Natl Acad Sci U S A. 2006;103:10408-10413 pubmed 出版商
  1267. Chapatte L, Ayyoub M, Morel S, Peitrequin A, Lévy N, Servis C, et al. Processing of tumor-associated antigen by the proteasomes of dendritic cells controls in vivo T-cell responses. Cancer Res. 2006;66:5461-8 pubmed
  1268. Hofmann M, Zerwes H. Identification of organ-specific T cell populations by analysis of multiparameter flow cytometry data using DNA-chip analysis software. Cytometry A. 2006;69:533-40 pubmed
  1269. Irie J, Wu Y, Wicker L, Rainbow D, Nalesnik M, Hirsch R, et al. NOD.c3c4 congenic mice develop autoimmune biliary disease that serologically and pathogenetically models human primary biliary cirrhosis. J Exp Med. 2006;203:1209-19 pubmed
  1270. Chapatte L, Colombetti S, Cerottini J, Lévy F. Efficient induction of tumor antigen-specific CD8+ memory T cells by recombinant lentivectors. Cancer Res. 2006;66:1155-60 pubmed
  1271. Ola T, Williams N. Protection of non-obese diabetic mice from autoimmune diabetes by Escherichia coli heat-labile enterotoxin B subunit. Immunology. 2006;117:262-70 pubmed
  1272. Zhang J, Raper A, Sugita N, Hingorani R, Salio M, Palmowski M, et al. Characterization of Siglec-H as a novel endocytic receptor expressed on murine plasmacytoid dendritic cell precursors. Blood. 2006;107:3600-8 pubmed
  1273. Haque A, Easton A, Smith D, O GARRA A, Van Rooijen N, Lertmemongkolchai G, et al. Role of T cells in innate and adaptive immunity against murine Burkholderia pseudomallei infection. J Infect Dis. 2006;193:370-9 pubmed
  1274. Fukatsu K, Sakamoto S, Hara E, Ueno C, Maeshima Y, Matsumoto I, et al. Gut ischemia-reperfusion affects gut mucosal immunity: a possible mechanism for infectious complications after severe surgical insults. Crit Care Med. 2006;34:182-7 pubmed
  1275. Tsunoda I, Kuang L, Kobayashi Warren M, Fujinami R. Central nervous system pathology caused by autoreactive CD8+ T-cell clones following virus infection. J Virol. 2005;79:14640-6 pubmed
  1276. Krieg C, Han P, Stone R, Goularte O, Kaye J. Functional analysis of B and T lymphocyte attenuator engagement on CD4+ and CD8+ T cells. J Immunol. 2005;175:6420-7 pubmed
  1277. Lu M, Tayu R, Ikawa T, Masuda K, Matsumoto I, Mugishima H, et al. The earliest thymic progenitors in adults are restricted to T, NK, and dendritic cell lineage and have a potential to form more diverse TCRbeta chains than fetal progenitors. J Immunol. 2005;175:5848-56 pubmed
  1278. Garcia Ojeda M, Dejbakhsh Jones S, Chatterjea Matthes D, Mukhopadhyay A, BitMansour A, Weissman I, et al. Stepwise development of committed progenitors in the bone marrow that generate functional T cells in the absence of the thymus. J Immunol. 2005;175:4363-73 pubmed
  1279. Irwin S, Izzo A, Dow S, Skeiky Y, Reed S, Alderson M, et al. Tracking antigen-specific CD8 T lymphocytes in the lungs of mice vaccinated with the Mtb72F polyprotein. Infect Immun. 2005;73:5809-16 pubmed
  1280. Koyama K. Dendritic cell expansion occurs in mesenteric lymph nodes of B10.BR mice infected with the murine nematode parasite Trichuris muris. Parasitol Res. 2005;97:186-90 pubmed
  1281. Rohrbach F, Weth R, Kursar M, Sloots A, Mittrücker H, Wels W. Targeted delivery of the ErbB2/HER2 tumor antigen to professional APCs results in effective antitumor immunity. J Immunol. 2005;174:5481-9 pubmed
  1282. Tivol E, Komorowski R, Drobyski W. Emergent autoimmunity in graft-versus-host disease. Blood. 2005;105:4885-91 pubmed
  1283. Gray P, Arimilli S, Palmer E, Parks G, Alexander Miller M. Altered function in CD8+ T cells following paramyxovirus infection of the respiratory tract. J Virol. 2005;79:3339-49 pubmed
  1284. Kohu K, Sato T, Ohno S, Hayashi K, Uchino R, Abe N, et al. Overexpression of the Runx3 transcription factor increases the proportion of mature thymocytes of the CD8 single-positive lineage. J Immunol. 2005;174:2627-36 pubmed
  1285. Koneru M, Schaer D, Monu N, Ayala A, Frey A. Defective proximal TCR signaling inhibits CD8+ tumor-infiltrating lymphocyte lytic function. J Immunol. 2005;174:1830-40 pubmed
  1286. Hoffmann P, Kench J, Vondracek A, Kruk E, Daleke D, Jordan M, et al. Interaction between phosphatidylserine and the phosphatidylserine receptor inhibits immune responses in vivo. J Immunol. 2005;174:1393-404 pubmed
  1287. Mischenko V, Kapina M, Eruslanov E, Kondratieva E, Lyadova I, Young D, et al. Mycobacterial dissemination and cellular responses after 1-lobe restricted tuberculosis infection of genetically susceptible and resistant mice. J Infect Dis. 2004;190:2137-45 pubmed
  1288. Ito F, Li Q, Shreiner A, Okuyama R, Jure Kunkel M, Teitz Tennenbaum S, et al. Anti-CD137 monoclonal antibody administration augments the antitumor efficacy of dendritic cell-based vaccines. Cancer Res. 2004;64:8411-9 pubmed
  1289. van Santen H, Benoist C, Mathis D. Number of T reg cells that differentiate does not increase upon encounter of agonist ligand on thymic epithelial cells. J Exp Med. 2004;200:1221-30 pubmed
  1290. Zheng S, Jiang J, Shen H, Chen Y. Reduced apoptosis and ameliorated listeriosis in TRAIL-null mice. J Immunol. 2004;173:5652-8 pubmed
  1291. Dalton J, Howell G, Pearson J, Scott P, Carding S. Fas-Fas ligand interactions are essential for the binding to and killing of activated macrophages by gamma delta T cells. J Immunol. 2004;173:3660-7 pubmed
  1292. Prockop S, Petrie H. Regulation of thymus size by competition for stromal niches among early T cell progenitors. J Immunol. 2004;173:1604-11 pubmed
  1293. Seroogy C, Soares L, Ranheim E, Su L, Holness C, Bloom D, et al. The gene related to anergy in lymphocytes, an E3 ubiquitin ligase, is necessary for anergy induction in CD4 T cells. J Immunol. 2004;173:79-85 pubmed
  1294. Mattner J, Wandersee Steinhäuser A, Pahl A, Rollinghoff M, Majeau G, Hochman P, et al. Protection against progressive leishmaniasis by IFN-beta. J Immunol. 2004;172:7574-82 pubmed
  1295. Zhang T, He X, Tsang T, Harris D. Transgenic TCR expression: comparison of single chain with full-length receptor constructs for T-cell function. Cancer Gene Ther. 2004;11:487-96 pubmed
  1296. Hequet O, Vocanson M, Saint Mezard P, Kaiserlian D, Nicolas J, Berard F. CD4+ T cells prevent skin autoimmunity during chronic autologous graft-versus-host-disease. Am J Transplant. 2004;4:872-8 pubmed
  1297. Yuan Y, Shen H, Franklin D, Scadden D, Cheng T. In vivo self-renewing divisions of haematopoietic stem cells are increased in the absence of the early G1-phase inhibitor, p18INK4C. Nat Cell Biol. 2004;6:436-42 pubmed
  1298. Cabarrocas J, Piaggio E, Zappulla J, Desbois S, Mars L, Lassmann H, et al. A transgenic mouse model for T-cell ignorance of a glial autoantigen. J Autoimmun. 2004;22:179-89 pubmed
  1299. Steptoe R, Stankovic S, Lopaticki S, Jones L, Harrison L, Morahan G. Persistence of recipient lymphocytes in NOD mice after irradiation and bone marrow transplantation. J Autoimmun. 2004;22:131-8 pubmed
  1300. Ishihara K, Sawa S, Ikushima H, Hirota S, Atsumi T, Kamimura D, et al. The point mutation of tyrosine 759 of the IL-6 family cytokine receptor gp130 synergizes with HTLV-1 pX in promoting rheumatoid arthritis-like arthritis. Int Immunol. 2004;16:455-65 pubmed
  1301. Chen B, Cui X, Sempowski G, Domen J, Chao N. Hematopoietic stem cell dose correlates with the speed of immune reconstitution after stem cell transplantation. Blood. 2004;103:4344-52 pubmed
  1302. Schleicher U, Mattner J, Blos M, Schindler H, Rollinghoff M, Karaghiosoff M, et al. Control of Leishmania major in the absence of Tyk2 kinase. Eur J Immunol. 2004;34:519-29 pubmed
  1303. Eruslanov E, Majorov K, Orlova M, Mischenko V, Kondratieva T, Apt A, et al. Lung cell responses to M. tuberculosis in genetically susceptible and resistant mice following intratracheal challenge. Clin Exp Immunol. 2004;135:19-28 pubmed
  1304. Morin J, Faideau B, Gagnerault M, Lepault F, Boitard C, Boudaly S. Passive transfer of flt-3L-derived dendritic cells delays diabetes development in NOD mice and associates with early production of interleukin (IL)-4 and IL-10 in the spleen of recipient mice. Clin Exp Immunol. 2003;134:388-95 pubmed
  1305. Turley S, Poirot L, Hattori M, Benoist C, Mathis D. Physiological beta cell death triggers priming of self-reactive T cells by dendritic cells in a type-1 diabetes model. J Exp Med. 2003;198:1527-37 pubmed
  1306. Choi E, Chen J, Wooldridge L, Salio M, Lissina A, Lissin N, et al. High avidity antigen-specific CTL identified by CD8-independent tetramer staining. J Immunol. 2003;171:5116-23 pubmed
  1307. Chen B, Cui X, Sempowski G, Chao N. Growth hormone accelerates immune recovery following allogeneic T-cell-depleted bone marrow transplantation in mice. Exp Hematol. 2003;31:953-8 pubmed
  1308. Lugering A, Kucharzik T, Soler D, Picarella D, Hudson J, Williams I. Lymphoid precursors in intestinal cryptopatches express CCR6 and undergo dysregulated development in the absence of CCR6. J Immunol. 2003;171:2208-15 pubmed
  1309. Wang Z, Morelli A, Hackstein H, Kaneko K, Thomson A. Marked inhibition of transplant vascular sclerosis by in vivo-mobilized donor dendritic cells and anti-CD154 mAb. Transplantation. 2003;76:562-71 pubmed
  1310. Germeraad W, Kawamoto H, Itoi M, Jiang Y, Amagai T, Katsura Y, et al. Development of thymic microenvironments in vitro is oxygen-dependent and requires permanent presence of T-cell progenitors. J Histochem Cytochem. 2003;51:1225-35 pubmed
  1311. Richards M, Liu F, Iwasaki H, Akashi K, Link D. Pivotal role of granulocyte colony-stimulating factor in the development of progenitors in the common myeloid pathway. Blood. 2003;102:3562-8 pubmed
  1312. Chatterjea Matthes D, Garcia Ojeda M, Dejbakhsh Jones S, Jerabek L, Manz M, Weissman I, et al. Early defect prethymic in bone marrow T cell progenitors in athymic nu/nu mice. J Immunol. 2003;171:1207-15 pubmed
  1313. Norris H, Lybarger L, Martin A, Andersen H, Chervenak D, Chervenak R. TCRbeta enhancer activation occurs in some but not all cells with T cell lineage developmental potential. Cell Immunol. 2003;222:164-74 pubmed
  1314. Blos M, Schleicher U, Soares Rocha F, Meissner U, Rollinghoff M, Bogdan C. Organ-specific and stage-dependent control of Leishmania major infection by inducible nitric oxide synthase and phagocyte NADPH oxidase. Eur J Immunol. 2003;33:1224-34 pubmed
  1315. Koyama K. NK1.1+ cell depletion in vivo fails to prevent protection against infection with the murine nematode parasite Trichuris muris. Parasite Immunol. 2002;24:527-33 pubmed
  1316. Egan P, Lawlor K, Alexander W, Wicks I. Suppressor of cytokine signaling-1 regulates acute inflammatory arthritis and T cell activation. J Clin Invest. 2003;111:915-24 pubmed
  1317. Kawamoto H, Ohmura K, Fujimoto S, Lu M, Ikawa T, Katsura Y. Extensive proliferation of T cell lineage-restricted progenitors in the thymus: an essential process for clonal expression of diverse T cell receptor beta chains. Eur J Immunol. 2003;33:606-15 pubmed
  1318. Shinkai K, Mohrs M, Locksley R. Helper T cells regulate type-2 innate immunity in vivo. Nature. 2002;420:825-9 pubmed
  1319. Angulo I, Jiménez Díaz M, García Bustos J, Gargallo D, de las Heras F, Muñoz Fernández M, et al. Candida albicans infection enhances immunosuppression induced by cyclophosphamide by selective priming of suppressive myeloid progenitors for NO production. Cell Immunol. 2002;218:46-58 pubmed
  1320. Culley F, Pollott J, Openshaw P. Age at first viral infection determines the pattern of T cell-mediated disease during reinfection in adulthood. J Exp Med. 2002;196:1381-6 pubmed
  1321. Hsu S, Wu C, Han J, Lai M. Involvement of p38 mitogen-activated protein kinase in different stages of thymocyte development. Blood. 2003;101:970-6 pubmed
  1322. Cawthon A, Alexander Miller M. Optimal colocalization of TCR and CD8 as a novel mechanism for the control of functional avidity. J Immunol. 2002;169:3492-8 pubmed
  1323. Litvinova E, Maury S, Boyer O, Bruel S, Benard L, Boisserie G, et al. Graft-versus-leukemia effect after suicide-gene-mediated control of graft-versus-host disease. Blood. 2002;100:2020-5 pubmed
  1324. Carrithers M, Visintin I, Viret C, Janeway C. Role of genetic background in P selectin-dependent immune surveillance of the central nervous system. J Neuroimmunol. 2002;129:51-7 pubmed
  1325. Yu C, Feng M, Shih H, Lai M. Increased p300 expression inhibits glucocorticoid receptor-T-cell receptor antagonism but does not affect thymocyte positive selection. Mol Cell Biol. 2002;22:4556-66 pubmed
  1326. Prasad S, Goodnow C. Cell-intrinsic effects of non-MHC NOD genes on dendritic cell generation in vivo. Int Immunol. 2002;14:677-84 pubmed
  1327. Carter R, Campbell I, O Donnel K, Wicks I. Vascular cell adhesion molecule-1 (VCAM-1) blockade in collagen-induced arthritis reduces joint involvement and alters B cell trafficking. Clin Exp Immunol. 2002;128:44-51 pubmed
  1328. Walzer T, Arpin C, Beloeil L, Marvel J. Differential in vivo persistence of two subsets of memory phenotype CD8 T cells defined by CD44 and CD122 expression levels. J Immunol. 2002;168:2704-11 pubmed
  1329. Martin P, Ruiz S, Del Hoyo G, Anjuere F, Vargas H, López Bravo M, et al. Dramatic increase in lymph node dendritic cell number during infection by the mouse mammary tumor virus occurs by a CD62L-dependent blood-borne DC recruitment. Blood. 2002;99:1282-8 pubmed
  1330. Martinez del Hoyo G, Martin P, Arias C, Marín A, Ardavin C. CD8alpha+ dendritic cells originate from the CD8alpha- dendritic cell subset by a maturation process involving CD8alpha, DEC-205, and CD24 up-regulation. Blood. 2002;99:999-1004 pubmed
  1331. Grabbe S, Varga G, Beissert S, Steinert M, Pendl G, Seeliger S, et al. Beta2 integrins are required for skin homing of primed T cells but not for priming naive T cells. J Clin Invest. 2002;109:183-92 pubmed
  1332. Wu T, Lee J, Lai Y, Hsu J, Tsai C, Lee Y, et al. Reduced expression of Bcl-2 in CD8+ T cells deficient in the IL-15 receptor alpha-chain. J Immunol. 2002;168:705-12 pubmed
  1333. Chen B, Cui X, Sempowski G, Gooding M, Liu C, Haynes B, et al. A comparison of murine T-cell-depleted adult bone marrow and full-term fetal blood cells in hematopoietic engraftment and immune reconstitution. Blood. 2002;99:364-71 pubmed
  1334. O Connell P, Li W, Wang Z, Specht S, Logar A, Thomson A. Immature and mature CD8alpha+ dendritic cells prolong the survival of vascularized heart allografts. J Immunol. 2002;168:143-54 pubmed
  1335. Das G, Sheridan S, Janeway C. The source of early IFN-gamma that plays a role in Th1 priming. J Immunol. 2001;167:2004-10 pubmed
  1336. Roach D, Martin E, Bean A, Rennick D, Briscoe H, Britton W. Endogenous inhibition of antimycobacterial immunity by IL-10 varies between mycobacterial species. Scand J Immunol. 2001;54:163-70 pubmed
  1337. Zhang J, Kabra N, Cado D, Kang C, Winoto A. FADD-deficient T cells exhibit a disaccord in regulation of the cell cycle machinery. J Biol Chem. 2001;276:29815-8 pubmed
  1338. Lan F, Zeng D, Huie P, Higgins J, Strober S. Allogeneic bone marrow cells that facilitate complete chimerism and eliminate tumor cells express both CD8 and T-cell antigen receptor-alphabeta. Blood. 2001;97:3458-65 pubmed
  1339. Ohmura K, Kawamoto H, Lu M, Ikawa T, Ozaki S, Nakao K, et al. Immature multipotent hemopoietic progenitors lacking long-term bone marrow-reconstituting activity in the aorta-gonad-mesonephros region of murine day 10 fetuses. J Immunol. 2001;166:3290-6 pubmed
  1340. Leite De Moraes M, Hameg A, Pacilio M, Koezuka Y, Taniguchi M, van Kaer L, et al. IL-18 enhances IL-4 production by ligand-activated NKT lymphocytes: a pro-Th2 effect of IL-18 exerted through NKT cells. J Immunol. 2001;166:945-51 pubmed
  1341. Shimizu C, Kawamoto H, Yamashita M, Kimura M, Kondou E, Kaneko Y, et al. Progression of T cell lineage restriction in the earliest subpopulation of murine adult thymus visualized by the expression of lck proximal promoter activity. Int Immunol. 2001;13:105-17 pubmed
  1342. Izeradjene K, Revillard J, Genestier L. Inhibition of thymidine synthesis by folate analogues induces a Fas-Fas ligand-independent deletion of superantigen-reactive peripheral T cells. Int Immunol. 2001;13:85-93 pubmed
  1343. Hayashi K, Natsume W, Watanabe T, Abe N, Iwai N, Okada H, et al. Diminution of the AML1 transcription factor function causes differential effects on the fates of CD4 and CD8 single-positive T cells. J Immunol. 2000;165:6816-24 pubmed
  1344. Martin P, del Hoyo G, Anjuere F, Ruiz S, Arias C, Marín A, et al. Concept of lymphoid versus myeloid dendritic cell lineages revisited: both CD8alpha(-) and CD8alpha(+) dendritic cells are generated from CD4(low) lymphoid-committed precursors. Blood. 2000;96:2511-9 pubmed
  1345. Bauman S, Nichols K, Murphy J. Dendritic cells in the induction of protective and nonprotective anticryptococcal cell-mediated immune responses. J Immunol. 2000;165:158-67 pubmed
  1346. Feng C, Britton W, Palendira U, Groat N, Briscoe H, Bean A. Up-regulation of VCAM-1 and differential expansion of beta integrin-expressing T lymphocytes are associated with immunity to pulmonary Mycobacterium tuberculosis infection. J Immunol. 2000;164:4853-60 pubmed
  1347. de Oca R, Buendia A, Del Rio L, Sanchez J, Salinas J, Navarro J. Polymorphonuclear neutrophils are necessary for the recruitment of CD8(+) T cells in the liver in a pregnant mouse model of Chlamydophila abortus (Chlamydia psittaci serotype 1) infection. Infect Immun. 2000;68:1746-51 pubmed
  1348. Lepault F, Gagnerault M. Characterization of peripheral regulatory CD4+ T cells that prevent diabetes onset in nonobese diabetic mice. J Immunol. 2000;164:240-7 pubmed
  1349. Dejbakhsh Jones S, Strober S. Identification of an early T cell progenitor for a pathway of T cell maturation in the bone marrow. Proc Natl Acad Sci U S A. 1999;96:14493-8 pubmed
  1350. Ikawa T, Kawamoto H, Fujimoto S, Katsura Y. Commitment of common T/Natural killer (NK) progenitors to unipotent T and NK progenitors in the murine fetal thymus revealed by a single progenitor assay. J Exp Med. 1999;190:1617-26 pubmed
  1351. Ohmura K, Kawamoto H, Fujimoto S, Ozaki S, Nakao K, Katsura Y. Emergence of T, B, and myeloid lineage-committed as well as multipotent hemopoietic progenitors in the aorta-gonad-mesonephros region of day 10 fetuses of the mouse. J Immunol. 1999;163:4788-95 pubmed
  1352. Kang J, Coles M, Raulet D. Defective development of gamma/delta T cells in interleukin 7 receptor-deficient mice is due to impaired expression of T cell receptor gamma genes. J Exp Med. 1999;190:973-82 pubmed
  1353. Penttilä J, Anttila M, Varkila K, Puolakkainen M, Sarvas M, Makela P, et al. Depletion of CD8+ cells abolishes memory in acquired immunity against Chlamydia pneumoniae in BALB/c mice. Immunology. 1999;97:490-6 pubmed
  1354. Inaba M, Kurasawa K, Mamura M, Kumano K, Saito Y, Iwamoto I. Primed T cells are more resistant to Fas-mediated activation-induced cell death than naive T cells. J Immunol. 1999;163:1315-20 pubmed
  1355. Deeths M, Kedl R, Mescher M. CD8+ T cells become nonresponsive (anergic) following activation in the presence of costimulation. J Immunol. 1999;163:102-10 pubmed
  1356. Pihlgren M, Arpin C, Walzer T, Tomkowiak M, Thomas A, Marvel J, et al. Memory CD44(int) CD8 T cells show increased proliferative responses and IFN-gamma production following antigenic challenge in vitro. Int Immunol. 1999;11:699-706 pubmed
  1357. Masurier C, Pioche Durieu C, Colombo B, Lacave R, Lemoine F, Klatzmann D, et al. Immunophenotypical and functional heterogeneity of dendritic cells generated from murine bone marrow cultured with different cytokine combinations: implications for anti-tumoral cell therapy. Immunology. 1999;96:569-77 pubmed
  1358. Zeng D, Lewis D, Dejbakhsh Jones S, Lan F, Garcia Ojeda M, Sibley R, et al. Bone marrow NK1.1(-) and NK1.1(+) T cells reciprocally regulate acute graft versus host disease. J Exp Med. 1999;189:1073-81 pubmed
  1359. Kawamoto H, Ohmura K, Fujimoto S, Katsura Y. Emergence of T cell progenitors without B cell or myeloid differentiation potential at the earliest stage of hematopoiesis in the murine fetal liver. J Immunol. 1999;162:2725-31 pubmed
  1360. Sasaki T, Kanke Y, Kudoh K, Misawa Y, Shimizu J, Takita T. Effects of dietary docosahexaenoic acid on surface molecules involved in T cell proliferation. Biochim Biophys Acta. 1999;1436:519-30 pubmed
  1361. Batteux F, Tourneur L, Trebeden H, Charreire J, Chiocchia G. Gene therapy of experimental autoimmune thyroiditis by in vivo administration of plasmid DNA coding for Fas ligand. J Immunol. 1999;162:603-8 pubmed
  1362. Samoilova E, Horton J, Hilliard B, Liu T, Chen Y. IL-6-deficient mice are resistant to experimental autoimmune encephalomyelitis: roles of IL-6 in the activation and differentiation of autoreactive T cells. J Immunol. 1998;161:6480-6 pubmed
  1363. Bix M, Wang Z, Thiel B, Schork N, Locksley R. Genetic regulation of commitment to interleukin 4 production by a CD4(+) T cell-intrinsic mechanism. J Exp Med. 1998;188:2289-99 pubmed
  1364. Spiekermann G, Nagler Anderson C. Oral administration of the bacterial superantigen staphylococcal enterotoxin B induces activation and cytokine production by T cells in murine gut-associated lymphoid tissue. J Immunol. 1998;161:5825-31 pubmed
  1365. Ferrero I, Anjuere F, Azcoitia I, Renno T, MacDonald H, Ardavin C. Viral superantigen-induced negative selection of TCR transgenic CD4+ CD8+ thymocytes depends on activation, but not proliferation. Blood. 1998;91:4248-54 pubmed
  1366. Guttormsen H, Wetzler L, Finberg R, Kasper D. Immunologic memory induced by a glycoconjugate vaccine in a murine adoptive lymphocyte transfer model. Infect Immun. 1998;66:2026-32 pubmed
  1367. Contractor N, Bassiri H, Reya T, Park A, Baumgart D, Wasik M, et al. Lymphoid hyperplasia, autoimmunity, and compromised intestinal intraepithelial lymphocyte development in colitis-free gnotobiotic IL-2-deficient mice. J Immunol. 1998;160:385-94 pubmed
  1368. Salomon B, Cohen J, Masurier C, Klatzmann D. Three populations of mouse lymph node dendritic cells with different origins and dynamics. J Immunol. 1998;160:708-17 pubmed
  1369. Samoilova E, Horton J, Bassiri H, Zhang H, Linsley P, Carding S, et al. B7 blockade prevents activation-induced cell death of thymocytes. Int Immunol. 1997;9:1663-8 pubmed
  1370. Aiba Y, Hirayama F, Ogawa M. Clonal proliferation and cytokine requirement of murine progenitors for natural killer cells. Blood. 1997;89:4005-12 pubmed
  1371. Postel Vinay M, de Mello Coelho V, Gagnerault M, Dardenne M. Growth hormone stimulates the proliferation of activated mouse T lymphocytes. Endocrinology. 1997;138:1816-20 pubmed
  1372. Barrat F, Lesourd B, Louise A, Boulouis H, Vincent Naulleau S, Thibault D, et al. Surface antigen expression in spleen cells of C57B1/6 mice during ageing: influence of sex and parity. Clin Exp Immunol. 1997;107:593-600 pubmed
  1373. Pihlgren M, Dubois P, Tomkowiak M, Sjogren T, Marvel J. Resting memory CD8+ T cells are hyperreactive to antigenic challenge in vitro. J Exp Med. 1996;184:2141-51 pubmed
  1374. Hattori N, Kawamoto H, Katsura Y. Isolation of the most immature population of murine fetal thymocytes that includes progenitors capable of generating T, B, and myeloid cells. J Exp Med. 1996;184:1901-8 pubmed
  1375. Steeber D, Green N, Sato S, Tedder T. Lyphocyte migration in L-selectin-deficient mice. Altered subset migration and aging of the immune system. J Immunol. 1996;157:1096-106 pubmed
  1376. Sumita S, Ozaki S, Okazaki T, Sobajima J, Nakao K. A vascular smooth muscle-specific CD4+ T cell line that induces pulmonary vasculitis in MRL-+/+ mice. Clin Exp Immunol. 1996;105:163-8 pubmed
  1377. Pear W, Aster J, Scott M, Hasserjian R, Soffer B, Sklar J, et al. Exclusive development of T cell neoplasms in mice transplanted with bone marrow expressing activated Notch alleles. J Exp Med. 1996;183:2283-91 pubmed
  1378. Locksley R, Reiner S, Hatam F, Littman D, Killeen N. Helper T cells without CD4: control of leishmaniasis in CD4-deficient mice. Science. 1993;261:1448-51 pubmed
  1379. Mixter P, Russell J, Durie F, Budd R. Decreased CD4-CD8- TCR-alpha beta + cells in lpr/lpr mice lacking beta 2-microglobulin. J Immunol. 1995;154:2063-74 pubmed
  1380. Laouar Y, Ezine S. In vivo CD4+ lymph node T cells from lpr mice generate CD4-CD8-B220+TCR-beta low cells. J Immunol. 1994;153:3948-55 pubmed
  1381. Godfrey D, Kennedy J, Mombaerts P, Tonegawa S, Zlotnik A. Onset of TCR-beta gene rearrangement and role of TCR-beta expression during CD3-CD4-CD8- thymocyte differentiation. J Immunol. 1994;152:4783-92 pubmed
  1382. Ledbetter J, Rouse R, Micklem H, Herzenberg L. T cell subsets defined by expression of Lyt-1,2,3 and Thy-1 antigens. Two-parameter immunofluorescence and cytotoxicity analysis with monoclonal antibodies modifies current views. J Exp Med. 1980;152:280-95 pubmed
  1383. Diamond M, Staunton D, Marlin S, Springer T. Binding of the integrin Mac-1 (CD11b/CD18) to the third immunoglobulin-like domain of ICAM-1 (CD54) and its regulation by glycosylation. Cell. 1991;65:961-71 pubmed
  1384. Vremec D, Zorbas M, Scollay R, Saunders D, Ardavin C, Wu L, et al. The surface phenotype of dendritic cells purified from mouse thymus and spleen: investigation of the CD8 expression by a subpopulation of dendritic cells. J Exp Med. 1992;176:47-58 pubmed
  1385. Takahashi K, Nakata M, Tanaka T, Adachi H, Nakauchi H, Yagita H, et al. CD4 and CD8 regulate interleukin 2 responses of T cells. Proc Natl Acad Sci U S A. 1992;89:5557-61 pubmed
  1386. Schuyler M, Gott K, Shopp G, Crooks L. CD3+ and CD4+ cells adoptively transfer experimental hypersensitivity pneumonitis. Am Rev Respir Dis. 1992;146:1582-8 pubmed
  1387. Ledbetter J, Herzenberg L. Xenogeneic monoclonal antibodies to mouse lymphoid differentiation antigens. Immunol Rev. 1979;47:63-90 pubmed