这是一篇来自已证抗体库的有关小鼠 Calb1的综述,是根据143篇发表使用所有方法的文章归纳的。这综述旨在帮助来邦网的访客找到最适合Calb1 抗体。
Calb1 同义词: Brain-2; CB; Calb; Calb-1

西格玛奥德里奇
小鼠 单克隆(CB-955)
  • 免疫组化; 小鼠; 1:2000; 图 3a
  • 免疫印迹; 小鼠; 1:5000; 图 4d
西格玛奥德里奇 Calb1抗体(Sigma, C9848)被用于被用于免疫组化在小鼠样本上浓度为1:2000 (图 3a) 和 被用于免疫印迹在小鼠样本上浓度为1:5000 (图 4d). elife (2020) ncbi
小鼠 单克隆(CB-955)
西格玛奥德里奇 Calb1抗体(Sigma, C-9848)被用于. Oncogenesis (2020) ncbi
小鼠 单克隆(CB-955)
  • 免疫组化-冰冻切片; 小鼠; 1:500; 图 s1c
西格玛奥德里奇 Calb1抗体(Sigma Aldrich, C9848)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:500 (图 s1c). Nat Commun (2020) ncbi
小鼠 单克隆(CB-955)
  • 免疫组化-石蜡切片; 小鼠; 1:1000; 图 2c
西格玛奥德里奇 Calb1抗体(Millipore Sigma, C9848)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:1000 (图 2c). Dis Model Mech (2020) ncbi
小鼠 单克隆(CB-955)
  • 免疫组化; 大鼠; 1:4000; 图 1s3
西格玛奥德里奇 Calb1抗体(Sigma, C9848)被用于被用于免疫组化在大鼠样本上浓度为1:4000 (图 1s3). elife (2019) ncbi
小鼠 单克隆(CB-955)
  • 免疫组化; 小鼠; 图 1a
西格玛奥德里奇 Calb1抗体(Sigma-Aldrich, C9848)被用于被用于免疫组化在小鼠样本上 (图 1a). Cell Rep (2019) ncbi
小鼠 单克隆(CB-955)
  • 免疫组化; 小鼠; 1:7000; 图 1b
西格玛奥德里奇 Calb1抗体(Sigma, C9848)被用于被用于免疫组化在小鼠样本上浓度为1:7000 (图 1b). elife (2019) ncbi
小鼠 单克隆(CB-955)
  • 免疫印迹; 小鼠; 1:1000; 图 5k
西格玛奥德里奇 Calb1抗体(Sigma, C9848)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 5k). J Comp Neurol (2020) ncbi
小鼠 单克隆(CB-955)
  • 免疫组化; 小鼠; 1:200; 图 1
西格玛奥德里奇 Calb1抗体(Sigma, C9848)被用于被用于免疫组化在小鼠样本上浓度为1:200 (图 1). J Neurosci Res (2019) ncbi
小鼠 单克隆(CB-955)
  • 免疫印迹; 小鼠; 1:5000; 图 7b
西格玛奥德里奇 Calb1抗体(Sigma-Aldrich, C9848)被用于被用于免疫印迹在小鼠样本上浓度为1:5000 (图 7b). Nat Commun (2018) ncbi
小鼠 单克隆(CB-955)
  • 免疫组化-石蜡切片; 小鼠; 图 3b
西格玛奥德里奇 Calb1抗体(Sigma-Aldrich, C9848)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 3b). Neuron (2018) ncbi
小鼠 单克隆(CB-955)
  • 免疫组化-冰冻切片; 小鼠; 1:500; 图 1e
西格玛奥德里奇 Calb1抗体(Sigma-Aldrich, C9848)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:500 (图 1e). Sci Rep (2018) ncbi
小鼠 单克隆(CB-955)
  • 免疫组化-石蜡切片; 大鼠; 1:600; 图 5b
西格玛奥德里奇 Calb1抗体(Sigma-Aldrich, c-9848)被用于被用于免疫组化-石蜡切片在大鼠样本上浓度为1:600 (图 5b). Am J Physiol Renal Physiol (2018) ncbi
小鼠 单克隆(CB-955)
  • 免疫组化-冰冻切片; 小鼠; 1:500; 图 4a
  • 免疫印迹; 小鼠; 图 4b
西格玛奥德里奇 Calb1抗体(Sigma-Aldrich, C9848)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:500 (图 4a) 和 被用于免疫印迹在小鼠样本上 (图 4b). J Comp Neurol (2017) ncbi
小鼠 单克隆(CL-300)
  • 免疫组化-冰冻切片; 小鼠; 图 3d
  • 免疫印迹; 小鼠; 图 3b
西格玛奥德里奇 Calb1抗体(Sigma-Aldrich, C8666)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 3d) 和 被用于免疫印迹在小鼠样本上 (图 3b). J Neurosci (2017) ncbi
小鼠 单克隆(CB-955)
  • 免疫组化-冰冻切片; zebra finch; 1:2000; 图 4h
西格玛奥德里奇 Calb1抗体(Sigma-Aldrich, C9848)被用于被用于免疫组化-冰冻切片在zebra finch样本上浓度为1:2000 (图 4h). J Comp Neurol (2017) ncbi
小鼠 单克隆(CB-955)
  • 免疫组化-石蜡切片; 小鼠; 图 6e
西格玛奥德里奇 Calb1抗体(Sigma-Aldrich, CB-955)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 6e). Histochem Cell Biol (2017) ncbi
小鼠 单克隆(CB-955)
  • 免疫组化-冰冻切片; 小鼠; 1:200; 表 1
西格玛奥德里奇 Calb1抗体(Sigma, C9848)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:200 (表 1). J Comp Neurol (2017) ncbi
小鼠 单克隆(CL-300)
  • 免疫组化-自由浮动切片; 大鼠; 1:200; 图 2b
西格玛奥德里奇 Calb1抗体(Sigma-Aldrich, C-8666)被用于被用于免疫组化-自由浮动切片在大鼠样本上浓度为1:200 (图 2b). Brain Struct Funct (2017) ncbi
小鼠 单克隆(CB-955)
  • 免疫组化; 小鼠; 1:1500; 图 3Ab
西格玛奥德里奇 Calb1抗体(Sigma, C9848)被用于被用于免疫组化在小鼠样本上浓度为1:1500 (图 3Ab). Sci Rep (2017) ncbi
小鼠 单克隆(CB-955)
  • 免疫组化-石蜡切片; 大鼠; 1:500
  • 免疫组化-石蜡切片; 小鼠; 1:3000
  • 免疫组化; 小鼠; 图 26
西格玛奥德里奇 Calb1抗体(Sigma-Aldrich, C9848)被用于被用于免疫组化-石蜡切片在大鼠样本上浓度为1:500, 被用于免疫组化-石蜡切片在小鼠样本上浓度为1:3000 和 被用于免疫组化在小鼠样本上 (图 26). J Toxicol Pathol (2017) ncbi
小鼠 单克隆(CB-955)
  • 免疫组化; 小鼠; 图 4a
西格玛奥德里奇 Calb1抗体(Sigma, C-9848)被用于被用于免疫组化在小鼠样本上 (图 4a). Sci Rep (2017) ncbi
小鼠 单克隆(CB-955)
  • 免疫组化-石蜡切片; 小鼠; 图 3a
西格玛奥德里奇 Calb1抗体(Sigma, C9848)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 3a). J Lipid Res (2017) ncbi
小鼠 单克隆(CB-955)
  • 免疫组化-石蜡切片; 大鼠; 1:3750
西格玛奥德里奇 Calb1抗体(Sigma, C9848)被用于被用于免疫组化-石蜡切片在大鼠样本上浓度为1:3750. Brain Res (2017) ncbi
小鼠 单克隆(CB-955)
  • 免疫组化-石蜡切片; 小鼠; 1:200; 图 s2c
西格玛奥德里奇 Calb1抗体(Sigma, C9848)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:200 (图 s2c). Nat Neurosci (2017) ncbi
小鼠 单克隆(CB-955)
  • 免疫组化-自由浮动切片; 小鼠; 1:200; 图 4
西格玛奥德里奇 Calb1抗体(Sigma, C9848)被用于被用于免疫组化-自由浮动切片在小鼠样本上浓度为1:200 (图 4). Cell Rep (2016) ncbi
小鼠 单克隆(CB-955)
  • 免疫组化; 小鼠; 图 1a
西格玛奥德里奇 Calb1抗体(Sigma-Aldrich, C9848)被用于被用于免疫组化在小鼠样本上 (图 1a). Endocrinology (2016) ncbi
小鼠 单克隆(CB-955)
  • 免疫组化; 小鼠; 图 6
西格玛奥德里奇 Calb1抗体(Sigma-Aldrich, C9848)被用于被用于免疫组化在小鼠样本上 (图 6). Cell (2016) ncbi
小鼠 单克隆(CB-955)
  • 免疫组化; 小鼠; 1:500; 图 s1
西格玛奥德里奇 Calb1抗体(Sigma, C9848)被用于被用于免疫组化在小鼠样本上浓度为1:500 (图 s1). Transl Psychiatry (2016) ncbi
小鼠 单克隆(CB-955)
  • 免疫组化; 小鼠; 1:500; 表 1
西格玛奥德里奇 Calb1抗体(Sigma, C9848)被用于被用于免疫组化在小鼠样本上浓度为1:500 (表 1). J Comp Neurol (2017) ncbi
小鼠 单克隆(CB-955)
  • 免疫组化; 小鼠; 1:100; 图 7
西格玛奥德里奇 Calb1抗体(Sigma-Aldrich, C9848)被用于被用于免疫组化在小鼠样本上浓度为1:100 (图 7). Mol Ther Methods Clin Dev (2016) ncbi
小鼠 单克隆(CB-955)
  • 免疫组化-自由浮动切片; 小鼠; 1:500; 图 6f
西格玛奥德里奇 Calb1抗体(Sigma-Aldrich, C9848)被用于被用于免疫组化-自由浮动切片在小鼠样本上浓度为1:500 (图 6f). Dis Model Mech (2016) ncbi
小鼠 单克隆(CB-955)
  • 免疫印迹; 小鼠; 1:1000; 图 s3
西格玛奥德里奇 Calb1抗体(Sigma, C9848)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 s3). Nat Commun (2016) ncbi
小鼠 单克隆(CB-955)
  • 免疫组化-石蜡切片; 小鼠; 图 2h
西格玛奥德里奇 Calb1抗体(Sigma, C9848)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 2h). Cell Rep (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:50; 图 s1a
西格玛奥德里奇 Calb1抗体(Sigma, C7354)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:50 (图 s1a). J Clin Invest (2016) ncbi
小鼠 单克隆(CB-955)
  • 免疫细胞化学; 小鼠; 1:1000; 图 5
西格玛奥德里奇 Calb1抗体(Sigma, C9848)被用于被用于免疫细胞化学在小鼠样本上浓度为1:1000 (图 5). Histochem Cell Biol (2016) ncbi
小鼠 单克隆(CB-955)
  • 免疫组化-冰冻切片; 小鼠; 1:400; 图 6c
西格玛奥德里奇 Calb1抗体(Sigma-Aldrich, C9848)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:400 (图 6c). J Neurosci (2016) ncbi
小鼠 单克隆(CB-955)
  • 免疫组化-冰冻切片; 大鼠; 1:1000; 图 1a
西格玛奥德里奇 Calb1抗体(Sigma Chemical Co., C9848)被用于被用于免疫组化-冰冻切片在大鼠样本上浓度为1:1000 (图 1a). J Comp Neurol (2017) ncbi
小鼠 单克隆(CB-955)
  • 免疫印迹; 小鼠; 1:5000; 图 3
西格玛奥德里奇 Calb1抗体(Sigma-Aldrich, CB-955)被用于被用于免疫印迹在小鼠样本上浓度为1:5000 (图 3). PLoS ONE (2016) ncbi
小鼠 单克隆(CB-955)
  • 免疫组化; 小鼠; 1:3000; 图 1
西格玛奥德里奇 Calb1抗体(Sigma-Aldrich, C9848)被用于被用于免疫组化在小鼠样本上浓度为1:3000 (图 1). Eneuro (2016) ncbi
小鼠 单克隆(CB-955)
  • 免疫组化; 大鼠; 1:500; 图 1
西格玛奥德里奇 Calb1抗体(Sigma, C9848)被用于被用于免疫组化在大鼠样本上浓度为1:500 (图 1). Dis Model Mech (2016) ncbi
小鼠 单克隆(CB-955)
  • 免疫组化; African green monkey; 1:250; 图 5
  • 免疫组化; 小鼠; 1:250; 图 5
西格玛奥德里奇 Calb1抗体(Sigma, C9848)被用于被用于免疫组化在African green monkey样本上浓度为1:250 (图 5) 和 被用于免疫组化在小鼠样本上浓度为1:250 (图 5). Neural Plast (2016) ncbi
小鼠 单克隆(CB-955)
  • 免疫组化-石蜡切片; 小鼠; 1:200; 图 1c
西格玛奥德里奇 Calb1抗体(Sigma-Aldrich, CB-955)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:200 (图 1c). Cell Mol Neurobiol (2017) ncbi
小鼠 单克隆(CB-955)
  • 免疫组化-冰冻切片; 小鼠; 图 2
  • 免疫印迹; 小鼠; 图 2
西格玛奥德里奇 Calb1抗体(Sigma-Aldrich, C9848)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 2) 和 被用于免疫印迹在小鼠样本上 (图 2). Stem Cell Reports (2016) ncbi
小鼠 单克隆(CB-955)
  • 免疫细胞化学; 人类; 1:1000; 表 1
西格玛奥德里奇 Calb1抗体(Sigma, C9848)被用于被用于免疫细胞化学在人类样本上浓度为1:1000 (表 1). Exp Eye Res (2016) ncbi
小鼠 单克隆(CB-955)
  • 免疫组化; 小鼠; 1:500; 图 s3
西格玛奥德里奇 Calb1抗体(Sigma, C9848)被用于被用于免疫组化在小鼠样本上浓度为1:500 (图 s3). Nature (2016) ncbi
小鼠 单克隆(CL-300)
  • 免疫组化; 小鼠; 1:160,000; 图 7d
西格玛奥德里奇 Calb1抗体(Sigma, C-8666)被用于被用于免疫组化在小鼠样本上浓度为1:160,000 (图 7d). Cereb Cortex (2016) ncbi
小鼠 单克隆(CB-955)
  • 免疫组化; 小鼠; 1:2000; 图 3
西格玛奥德里奇 Calb1抗体(Sigma-Aldrich, C9848)被用于被用于免疫组化在小鼠样本上浓度为1:2000 (图 3). Dis Model Mech (2016) ncbi
小鼠 单克隆(CB-955)
  • 免疫组化-冰冻切片; 小鼠; 图 1g
西格玛奥德里奇 Calb1抗体(Sigma-Aldrich, C9848)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 1g). Autophagy (2015) ncbi
小鼠 单克隆(CB-955)
  • 免疫组化-冰冻切片; 小鼠; 图 3e
西格玛奥德里奇 Calb1抗体(Sigma, C9848)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 3e). Development (2015) ncbi
小鼠 单克隆(CB-955)
  • 免疫组化-冰冻切片; 小鼠; 1:3000; 图 4
西格玛奥德里奇 Calb1抗体(Sigma, C9848)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:3000 (图 4). Mol Brain (2015) ncbi
小鼠 单克隆(CB-955)
  • 免疫组化-冰冻切片; 小鼠; 1:200; 图 4
  • 免疫印迹; 小鼠; 1:5000; 图 4
西格玛奥德里奇 Calb1抗体(Sigma, C9848)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:200 (图 4) 和 被用于免疫印迹在小鼠样本上浓度为1:5000 (图 4). PLoS Genet (2015) ncbi
小鼠 单克隆(CB-955)
  • 免疫组化; 小鼠; 1:600; 图 6
西格玛奥德里奇 Calb1抗体(Sigma-Aldrich, c-9848)被用于被用于免疫组化在小鼠样本上浓度为1:600 (图 6). J Clin Invest (2015) ncbi
小鼠 单克隆(CB-955)
  • 免疫组化; 小鼠; 1:1000
西格玛奥德里奇 Calb1抗体(Sigma, C9848)被用于被用于免疫组化在小鼠样本上浓度为1:1000. J Neurosci (2015) ncbi
小鼠 单克隆(CB-955)
  • 免疫组化-自由浮动切片; 小鼠; 1:1000; 图 1
西格玛奥德里奇 Calb1抗体(Sigma, C9848)被用于被用于免疫组化-自由浮动切片在小鼠样本上浓度为1:1000 (图 1). Nat Neurosci (2015) ncbi
小鼠 单克隆(CB-955)
  • 免疫组化-冰冻切片; 小鼠; 1:500
西格玛奥德里奇 Calb1抗体(Sigma-Aldrich, C9848)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:500. Development (2015) ncbi
小鼠 单克隆(CB-955)
  • 免疫组化; 小鼠; 1:1000; 图 8A
西格玛奥德里奇 Calb1抗体(Sigma, C9848)被用于被用于免疫组化在小鼠样本上浓度为1:1000 (图 8A). J Comp Neurol (2015) ncbi
小鼠 单克隆(CB-955)
  • 免疫组化; 小鼠
西格玛奥德里奇 Calb1抗体(Sigma-Aldrich, C9848)被用于被用于免疫组化在小鼠样本上. Tissue Barriers (2014) ncbi
小鼠 单克隆(CB-955)
  • 免疫组化; 猕猴; 1:2000
西格玛奥德里奇 Calb1抗体(Sigma, C9848)被用于被用于免疫组化在猕猴样本上浓度为1:2000. Front Neuroanat (2014) ncbi
小鼠 单克隆(CB-955)
  • 免疫组化-石蜡切片; 小鼠; 1:200; 图 1
西格玛奥德里奇 Calb1抗体(Sigma, C9848)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:200 (图 1). EMBO Mol Med (2015) ncbi
小鼠 单克隆(CB-955)
  • 免疫细胞化学; 小鼠; 1:500
  • 免疫组化; 小鼠; 1:500
西格玛奥德里奇 Calb1抗体(Sigma- Aldrich, C9848)被用于被用于免疫细胞化学在小鼠样本上浓度为1:500 和 被用于免疫组化在小鼠样本上浓度为1:500. F1000Res (2014) ncbi
小鼠 单克隆(CB-955)
  • 免疫组化-石蜡切片; 小鼠; 1:500
西格玛奥德里奇 Calb1抗体(Sigma-Aldrich, C9848)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:500. Cell Tissue Res (2015) ncbi
小鼠 单克隆(CB-955)
  • 免疫沉淀; 人类
  • 免疫组化; 人类; 1:2500
  • 免疫印迹; 人类; 1:2000
西格玛奥德里奇 Calb1抗体(Sigma, C9848)被用于被用于免疫沉淀在人类样本上, 被用于免疫组化在人类样本上浓度为1:2500 和 被用于免疫印迹在人类样本上浓度为1:2000. Acta Neuropathol (2014) ncbi
小鼠 单克隆(CB-955)
  • 免疫细胞化学; 大鼠; 1:2500
  • 免疫印迹; 大鼠; 1:3000
西格玛奥德里奇 Calb1抗体(Sigma-Aldrich, C9848)被用于被用于免疫细胞化学在大鼠样本上浓度为1:2500 和 被用于免疫印迹在大鼠样本上浓度为1:3000. Acta Histochem Cytochem (2014) ncbi
小鼠 单克隆(CB-955)
  • 免疫组化; 小鼠; 图 s3
西格玛奥德里奇 Calb1抗体(Sigma-Aldrich, C9848)被用于被用于免疫组化在小鼠样本上 (图 s3). Biol Open (2014) ncbi
小鼠 单克隆(CB-955)
  • 免疫细胞化学; 人类
西格玛奥德里奇 Calb1抗体(Sigma-Aldrich, C9848)被用于被用于免疫细胞化学在人类样本上. Cereb Cortex (2016) ncbi
小鼠 单克隆(CB-955)
  • 免疫组化-冰冻切片; 猕猴; 1:2000
西格玛奥德里奇 Calb1抗体(Sigma-Aldrich, c9848)被用于被用于免疫组化-冰冻切片在猕猴样本上浓度为1:2000. J Comp Neurol (2014) ncbi
小鼠 单克隆(CB-955)
  • 免疫组化-石蜡切片; 小鼠; 1:1000
西格玛奥德里奇 Calb1抗体(Sigma, CB-955)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:1000. Transl Psychiatry (2014) ncbi
小鼠 单克隆(CB-955)
  • 免疫组化; 小鼠
西格玛奥德里奇 Calb1抗体(Sigma, C9848)被用于被用于免疫组化在小鼠样本上. Brain Struct Funct (2015) ncbi
小鼠 单克隆(CB-955)
  • 免疫组化; 大鼠; 1:500
西格玛奥德里奇 Calb1抗体(Sigma, CB-955)被用于被用于免疫组化在大鼠样本上浓度为1:500. Exp Eye Res (2014) ncbi
小鼠 单克隆(CB-955)
  • 免疫组化; 小鼠; 1:10,000
西格玛奥德里奇 Calb1抗体(Sigma, C9848)被用于被用于免疫组化在小鼠样本上浓度为1:10,000. Dev Cell (2014) ncbi
小鼠 单克隆(CB-955)
  • 免疫组化-自由浮动切片; 小鼠; 1:3000
西格玛奥德里奇 Calb1抗体(Sigma, C9848)被用于被用于免疫组化-自由浮动切片在小鼠样本上浓度为1:3000. Cell Tissue Res (2014) ncbi
小鼠 单克隆(CB-955)
  • 免疫组化-冰冻切片; 小鼠; 1:2000; 图 6d
西格玛奥德里奇 Calb1抗体(Sigma, C9848)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:2000 (图 6d). Nat Neurosci (2014) ncbi
小鼠 单克隆(CB-955)
  • 免疫组化; 小鼠; 1:1000
西格玛奥德里奇 Calb1抗体(Sigma-Aldrich, C9848)被用于被用于免疫组化在小鼠样本上浓度为1:1000. Brain Struct Funct (2015) ncbi
小鼠 单克隆(CB-955)
  • 免疫组化-石蜡切片; 小鼠; 1:100
西格玛奥德里奇 Calb1抗体(Sigma-Aldrich, C9848)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:100. PLoS ONE (2014) ncbi
小鼠 单克隆(CB-955)
  • 免疫组化-自由浮动切片; 小鼠; 1:1000
西格玛奥德里奇 Calb1抗体(Sigma, C9848)被用于被用于免疫组化-自由浮动切片在小鼠样本上浓度为1:1000. Anat Rec (Hoboken) (2014) ncbi
小鼠 单克隆(CB-955)
  • 免疫组化-石蜡切片; 大鼠; 1:500
西格玛奥德里奇 Calb1抗体(Sigma Chemical, CB955)被用于被用于免疫组化-石蜡切片在大鼠样本上浓度为1:500. Toxicol Lett (2014) ncbi
小鼠 单克隆(CL-300)
  • 免疫组化-冰冻切片; 小鼠
  • 免疫印迹; 小鼠
西格玛奥德里奇 Calb1抗体(Sigma, C8666)被用于被用于免疫组化-冰冻切片在小鼠样本上 和 被用于免疫印迹在小鼠样本上. Dev Biol (2014) ncbi
小鼠 单克隆(CB-955)
  • 免疫组化-石蜡切片; 小鼠; 1:500
西格玛奥德里奇 Calb1抗体(Sigma, C9848)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:500. Cancer Res (2013) ncbi
小鼠 单克隆(CB-955)
  • 免疫组化-石蜡切片; 小鼠; 1:500
西格玛奥德里奇 Calb1抗体(Sigma Aldrich, C9848)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:500. Gene Expr Patterns (2013) ncbi
小鼠 单克隆(CB-955)
  • 免疫组化-石蜡切片; pigs ; 1:500
西格玛奥德里奇 Calb1抗体(Sigma-Aldrich, CB955)被用于被用于免疫组化-石蜡切片在pigs 样本上浓度为1:500. Toxicon (2013) ncbi
小鼠 单克隆(CB-955)
  • 酶联免疫吸附测定; 小鼠; 1:1000
  • 免疫印迹; 小鼠; 1:1000
西格玛奥德里奇 Calb1抗体(Sigma, C9848)被用于被用于酶联免疫吸附测定在小鼠样本上浓度为1:1000 和 被用于免疫印迹在小鼠样本上浓度为1:1000. Exp Neurol (2013) ncbi
小鼠 单克隆(CB-955)
  • 免疫组化; 小鼠
西格玛奥德里奇 Calb1抗体(Sigma, C9848)被用于被用于免疫组化在小鼠样本上. J Comp Neurol (2014) ncbi
小鼠 单克隆(CL-300)
  • 免疫组化-冰冻切片; 小鼠; 1:1000
西格玛奥德里奇 Calb1抗体(Sigma, CL300)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:1000. Mol Vis (2013) ncbi
小鼠 单克隆(CB-955)
  • 免疫组化; 猕猴; 1:10,000
西格玛奥德里奇 Calb1抗体(Sigma, C-9848)被用于被用于免疫组化在猕猴样本上浓度为1:10,000. J Comp Neurol (2013) ncbi
小鼠 单克隆(CB-955)
  • 免疫组化; 小鼠; 1:2000
西格玛奥德里奇 Calb1抗体(Sigma, C9848)被用于被用于免疫组化在小鼠样本上浓度为1:2000. Exp Neurol (2013) ncbi
小鼠 单克隆(CB-955)
  • 免疫组化; 小鼠; 1:4000
西格玛奥德里奇 Calb1抗体(Sigma, C9848)被用于被用于免疫组化在小鼠样本上浓度为1:4000. Neurotox Res (2013) ncbi
小鼠 单克隆(CB-955)
  • 免疫组化; 小鼠; 1:200
西格玛奥德里奇 Calb1抗体(Sigma, C9848)被用于被用于免疫组化在小鼠样本上浓度为1:200. Nat Neurosci (2011) ncbi
小鼠 单克隆(CB-955)
  • 免疫组化-冰冻切片; 猕猴; 1:3000
西格玛奥德里奇 Calb1抗体(Sigma, C9848)被用于被用于免疫组化-冰冻切片在猕猴样本上浓度为1:3000. J Comp Neurol (2011) ncbi
小鼠 单克隆(CB-955)
  • 免疫组化-冰冻切片; 小鼠; 1:100
西格玛奥德里奇 Calb1抗体(Sigma, C9848)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:100. J Comp Neurol (2012) ncbi
小鼠 单克隆(CL-300)
  • 免疫组化-冰冻切片; domestic rabbit; 1:1000
西格玛奥德里奇 Calb1抗体(Sigma, C8666)被用于被用于免疫组化-冰冻切片在domestic rabbit样本上浓度为1:1000. J Comp Neurol (2011) ncbi
小鼠 单克隆(CB-955)
  • 免疫组化-冰冻切片; 小鼠; 1:2500 - 1:5000
  • 免疫组化-冰冻切片; 大鼠; 1:2500 - 1:5000
  • 免疫组化-冰冻切片; African green monkey; 1:2500 - 1:5000
  • 免疫组化-冰冻切片; domestic rabbit; 1:2500 - 1:5000
西格玛奥德里奇 Calb1抗体(Sigma, C9848)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:2500 - 1:5000, 被用于免疫组化-冰冻切片在大鼠样本上浓度为1:2500 - 1:5000, 被用于免疫组化-冰冻切片在African green monkey样本上浓度为1:2500 - 1:5000 和 被用于免疫组化-冰冻切片在domestic rabbit样本上浓度为1:2500 - 1:5000. J Comp Neurol (2011) ncbi
小鼠 单克隆(CL-300)
  • 免疫组化-冰冻切片; 鸡; 1:500
西格玛奥德里奇 Calb1抗体(Sigma, CL3002)被用于被用于免疫组化-冰冻切片在鸡样本上浓度为1:500. J Comp Neurol (2010) ncbi
小鼠 单克隆(CB-955)
  • 免疫组化; 小鼠; 1:40,000
西格玛奥德里奇 Calb1抗体(Sigma-Aldrich, C9848)被用于被用于免疫组化在小鼠样本上浓度为1:40,000. J Comp Neurol (2010) ncbi
小鼠 单克隆(CB-955)
  • 免疫组化-自由浮动切片; pigs
西格玛奥德里奇 Calb1抗体(Sigma-Aldrich, C9848)被用于被用于免疫组化-自由浮动切片在pigs 样本上. J Comp Neurol (2010) ncbi
小鼠 单克隆(CB-955)
  • 免疫组化-冰冻切片; 大鼠; 1:3000
西格玛奥德里奇 Calb1抗体(Sigma-Aldrich, C9848)被用于被用于免疫组化-冰冻切片在大鼠样本上浓度为1:3000. J Comp Neurol (2010) ncbi
小鼠 单克隆(CB-955)
  • 免疫组化-自由浮动切片; 小鼠; 1:1000
西格玛奥德里奇 Calb1抗体(Sigma Chemical, C9848)被用于被用于免疫组化-自由浮动切片在小鼠样本上浓度为1:1000. J Comp Neurol (2010) ncbi
小鼠 单克隆(CB-955)
  • 免疫组化; 小鼠; 1:500
西格玛奥德里奇 Calb1抗体(Sigma, C9848)被用于被用于免疫组化在小鼠样本上浓度为1:500. J Comp Neurol (2009) ncbi
小鼠 单克隆(CL-300)
  • 免疫组化-冰冻切片; 牛; 1:100-1:500
西格玛奥德里奇 Calb1抗体(Sigma, C8666)被用于被用于免疫组化-冰冻切片在牛样本上浓度为1:100-1:500. J Comp Neurol (2009) ncbi
小鼠 单克隆(CB-955)
  • 免疫组化; 小鼠; 1:2,500
西格玛奥德里奇 Calb1抗体(Sigma-Aldrich, C9848)被用于被用于免疫组化在小鼠样本上浓度为1:2,500. J Comp Neurol (2009) ncbi
小鼠 单克隆(CB-955)
  • 免疫组化-冰冻切片; African green monkey; 1:500
西格玛奥德里奇 Calb1抗体(Sigma, C9848)被用于被用于免疫组化-冰冻切片在African green monkey样本上浓度为1:500. J Comp Neurol (2008) ncbi
小鼠 单克隆(CB-955)
  • 免疫组化-自由浮动切片; 大鼠; 1:400
西格玛奥德里奇 Calb1抗体(Sigma, C9848)被用于被用于免疫组化-自由浮动切片在大鼠样本上浓度为1:400. J Comp Neurol (2008) ncbi
小鼠 单克隆(CB-955)
  • 免疫组化-冰冻切片; 小鼠; 1:500
西格玛奥德里奇 Calb1抗体(Sigma, C9848)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:500. J Comp Neurol (2008) ncbi
小鼠 单克隆(CB-955)
  • 免疫组化-冰冻切片; 小鼠; 1:500
西格玛奥德里奇 Calb1抗体(Sigma-Aldrich, C9848)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:500. J Comp Neurol (2008) ncbi
小鼠 单克隆(CB-955)
  • 免疫组化-冰冻切片; 小鼠; 1:1000
西格玛奥德里奇 Calb1抗体(Sigma, C9848)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:1000. J Comp Neurol (2008) ncbi
小鼠 单克隆(CB-955)
  • 免疫组化-自由浮动切片; 大鼠; 1:8000
西格玛奥德里奇 Calb1抗体(Sigma, C9848)被用于被用于免疫组化-自由浮动切片在大鼠样本上浓度为1:8000. J Comp Neurol (2008) ncbi
小鼠 单克隆(CL-300)
  • 免疫组化; 小鼠; 1:10,000; 图 8
西格玛奥德里奇 Calb1抗体(Sigma, C8666)被用于被用于免疫组化在小鼠样本上浓度为1:10,000 (图 8). J Comp Neurol (2008) ncbi
小鼠 单克隆(CL-300)
  • 免疫组化-冰冻切片; 鸡
  • 免疫印迹; 鸡; 1:1000
西格玛奥德里奇 Calb1抗体(Sigma, CL300)被用于被用于免疫组化-冰冻切片在鸡样本上 和 被用于免疫印迹在鸡样本上浓度为1:1000. J Comp Neurol (2008) ncbi
小鼠 单克隆(CB-955)
  • 免疫组化-石蜡切片; 小鼠; 1:3,000
  • 免疫细胞化学; 小鼠; 1:1,000
西格玛奥德里奇 Calb1抗体(Sigma-Aldrich, C9848)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:3,000 和 被用于免疫细胞化学在小鼠样本上浓度为1:1,000. J Comp Neurol (2007) ncbi
小鼠 单克隆(CB-955)
  • 免疫组化; 小鼠; 1:3,000
西格玛奥德里奇 Calb1抗体(Sigma, C 9848)被用于被用于免疫组化在小鼠样本上浓度为1:3,000. J Comp Neurol (2007) ncbi
小鼠 单克隆(CL-300)
  • 免疫组化-自由浮动切片; 大鼠; 1:500
西格玛奥德里奇 Calb1抗体(Sigma, C8666)被用于被用于免疫组化-自由浮动切片在大鼠样本上浓度为1:500. J Comp Neurol (2007) ncbi
小鼠 单克隆(CL-300)
  • 免疫组化-自由浮动切片; 大鼠; 1:500
西格玛奥德里奇 Calb1抗体(Sigma, C8666)被用于被用于免疫组化-自由浮动切片在大鼠样本上浓度为1:500. J Comp Neurol (2007) ncbi
小鼠 单克隆(CL-300)
  • 免疫组化-冰冻切片; 小鼠; 1:1000
西格玛奥德里奇 Calb1抗体(Sigma, C8666)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:1000. J Comp Neurol (2007) ncbi
小鼠 单克隆(CB-955)
  • 免疫组化-冰冻切片; 小鼠
西格玛奥德里奇 Calb1抗体(Sigma, C9848)被用于被用于免疫组化-冰冻切片在小鼠样本上. J Comp Neurol (2007) ncbi
小鼠 单克隆(CB-955)
  • 免疫组化-冰冻切片; 猕猴; 1:1000
西格玛奥德里奇 Calb1抗体(Sigma, CB955)被用于被用于免疫组化-冰冻切片在猕猴样本上浓度为1:1000. J Comp Neurol (2006) ncbi
小鼠 单克隆(CB-955)
  • 免疫组化-冰冻切片; 大鼠; 1:25000
西格玛奥德里奇 Calb1抗体(Sigma, C9848)被用于被用于免疫组化-冰冻切片在大鼠样本上浓度为1:25000. J Comp Neurol (2006) ncbi
小鼠 单克隆(CL-300)
  • 免疫组化; 小鼠; 1:100
西格玛奥德里奇 Calb1抗体(Sigma, CL300)被用于被用于免疫组化在小鼠样本上浓度为1:100. J Comp Neurol (2006) ncbi
小鼠 单克隆(CL-300)
  • 免疫组化-冰冻切片; 小鼠; 1:800
西格玛奥德里奇 Calb1抗体(Sigma, C8666)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:800. J Comp Neurol (2006) ncbi
小鼠 单克隆(CB-955)
  • 免疫组化-冰冻切片; 小鼠; 1:6000
西格玛奥德里奇 Calb1抗体(Sigma, C9848)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:6000. J Comp Neurol (2006) ncbi
小鼠 单克隆(CB-955)
  • 免疫组化; pigs ; 1:3000
西格玛奥德里奇 Calb1抗体(Sigma, C9848)被用于被用于免疫组化在pigs 样本上浓度为1:3000. J Comp Neurol (2006) ncbi
小鼠 单克隆(CB-955)
  • 免疫组化; 小鼠; 1:1000
西格玛奥德里奇 Calb1抗体(Sigma, C9848)被用于被用于免疫组化在小鼠样本上浓度为1:1000. J Comp Neurol (2005) ncbi
艾博抗(上海)贸易有限公司
domestic rabbit 单克隆(EP3478)
  • 免疫组化-冰冻切片; 小鼠; 图 s5c
艾博抗(上海)贸易有限公司 Calb1抗体(Abcam, ab108404)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 s5c). MBio (2020) ncbi
小鼠 单克隆(CB-955)
  • 免疫细胞化学; 小鼠; 图 6c
艾博抗(上海)贸易有限公司 Calb1抗体(abcam, ab82812)被用于被用于免疫细胞化学在小鼠样本上 (图 6c). Int J Mol Sci (2018) ncbi
小鼠 单克隆(CB-955)
  • 免疫组化-石蜡切片; 犬; 1:200; 图 st2
艾博抗(上海)贸易有限公司 Calb1抗体(Abcam, ab82812)被用于被用于免疫组化-石蜡切片在犬样本上浓度为1:200 (图 st2). J Toxicol Pathol (2017) ncbi
小鼠 单克隆(CB-955)
  • 免疫组化-石蜡切片; 大鼠; 1:30; 图 1b, 2b
艾博抗(上海)贸易有限公司 Calb1抗体(Abcam, ab82812)被用于被用于免疫组化-石蜡切片在大鼠样本上浓度为1:30 (图 1b, 2b). Int J Mol Med (2016) ncbi
小鼠 单克隆(CB-955)
  • 免疫组化-石蜡切片; 人类; 1:200; 表 1
艾博抗(上海)贸易有限公司 Calb1抗体(Abcam, ab82812)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:200 (表 1). Glia (2017) ncbi
小鼠 单克隆(CB-955)
  • 免疫组化; 小鼠; 图 st1
艾博抗(上海)贸易有限公司 Calb1抗体(Abcam, ab82812)被用于被用于免疫组化在小鼠样本上 (图 st1). Nat Biotechnol (2016) ncbi
小鼠 单克隆(CB-955)
  • 免疫组化; 小鼠; 1:1000; 图 2
艾博抗(上海)贸易有限公司 Calb1抗体(Abcam, ab82812)被用于被用于免疫组化在小鼠样本上浓度为1:1000 (图 2). Neuron (2016) ncbi
小鼠 单克隆(CB-955)
  • 免疫组化; 小鼠; 1:2000; 图 1d
艾博抗(上海)贸易有限公司 Calb1抗体(Abcam, ab82812)被用于被用于免疫组化在小鼠样本上浓度为1:2000 (图 1d). Nat Neurosci (2015) ncbi
圣克鲁斯生物技术
小鼠 单克隆(D-4)
  • 免疫组化-冰冻切片; 小鼠; 1:200; 图 2
圣克鲁斯生物技术 Calb1抗体(Thermo, sc-365360)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:200 (图 2). Physiol Rep (2020) ncbi
小鼠 单克隆(D-4)
  • 免疫组化-冰冻切片; 小鼠; 1:100; 图 3k
圣克鲁斯生物技术 Calb1抗体(Santa, sc-365360)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:100 (图 3k). J Comp Neurol (2020) ncbi
小鼠 单克隆(D-4)
  • 免疫组化-石蜡切片; 人类; 图 4f
圣克鲁斯生物技术 Calb1抗体(Santa Cruz, sc-365360)被用于被用于免疫组化-石蜡切片在人类样本上 (图 4f). Int J Mol Med (2016) ncbi
Synaptic Systems
鸡 多克隆
  • 免疫组化-冰冻切片; 小鼠; 图 1c
Synaptic Systems Calb1抗体(Synaptic Systems, 214006)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 1c). PLoS Biol (2019) ncbi
小鼠 单克隆(351C10)
  • 免疫组化-冰冻切片; 小鼠; 1:200; 图 3s2b
Synaptic Systems Calb1抗体(Synaptic Systems, 214011)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:200 (图 3s2b). elife (2018) ncbi
豚鼠 多克隆
  • 免疫组化-自由浮动切片; 人类; 1:250; 图 1
Synaptic Systems Calb1抗体(SYnaptic SYstems, 214004)被用于被用于免疫组化-自由浮动切片在人类样本上浓度为1:250 (图 1). Sci Rep (2016) ncbi
豚鼠 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:1000; 图 7
Synaptic Systems Calb1抗体(Synaptic Systems, 214 004)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:1000 (图 7). J Comp Neurol (2016) ncbi
小鼠 单克隆(351C10)
  • 免疫组化; 小鼠; 1:5000; 图 2
Synaptic Systems Calb1抗体(Synaptic Systems, 214 011)被用于被用于免疫组化在小鼠样本上浓度为1:5000 (图 2). Hippocampus (2016) ncbi
小鼠 单克隆(351C10)
  • 免疫组化; 小鼠; 1:2000; 图 6
Synaptic Systems Calb1抗体(Synaptic Systems, 214011)被用于被用于免疫组化在小鼠样本上浓度为1:2000 (图 6). Front Cell Neurosci (2014) ncbi
Novus Biologicals
鸡 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:2000; 图 1s2f
Novus Biologicals Calb1抗体(Novus biologicals, NBP2-50028)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:2000 (图 1s2f). elife (2020) ncbi
武汉博士德生物工程有限公司
鸡 多克隆
  • 免疫组化; 小鼠; 图 1e
武汉博士德生物工程有限公司 Calb1抗体(Boster, M03047-2)被用于被用于免疫组化在小鼠样本上 (图 1e). Cell Rep (2019) ncbi
赛默飞世尔
domestic rabbit 多克隆
赛默飞世尔 Calb1抗体(Thermo, PA1-931)被用于. PLoS ONE (2015) ncbi
赛信通(上海)生物试剂有限公司
domestic rabbit 单克隆(C26D12)
  • 免疫组化-石蜡切片; 小鼠; 1:400; 图 s6b
赛信通(上海)生物试剂有限公司 Calb1抗体(CST, 2173)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:400 (图 s6b). Nat Commun (2019) ncbi
domestic rabbit 单克隆(C26D12)
  • 免疫组化-自由浮动切片; 小鼠; 图 5b
赛信通(上海)生物试剂有限公司 Calb1抗体(Cell Signaling, 2173)被用于被用于免疫组化-自由浮动切片在小鼠样本上 (图 5b). Sci Transl Med (2018) ncbi
domestic rabbit 单克隆(C26D12)
  • 免疫组化-冰冻切片; 小鼠; 1:500
赛信通(上海)生物试剂有限公司 Calb1抗体(Cell Signaling, 2173)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:500. Brain Struct Funct (2015) ncbi
文章列表
  1. Burger C, Alevy J, Casasent A, Jiang D, Albrecht N, Liang J, et al. LKB1 coordinates neurite remodeling to drive synapse layer emergence in the outer retina. elife. 2020;9: pubmed 出版商
  2. Hreha T, Collins C, Daugherty A, Twentyman J, Paluri N, Hunstad D. TGFβ1 orchestrates renal fibrosis following Escherichia coli pyelonephritis. Physiol Rep. 2020;8:e14401 pubmed 出版商
  3. Zhang R, Liakath Ali K, Sudhof T. Latrophilin-2 and latrophilin-3 are redundantly essential for parallel-fiber synapse function in cerebellum. elife. 2020;9: pubmed 出版商
  4. Zocchi L, Mehta A, Wu S, Wu J, Gu Y, Wang J, et al. Chromatin remodeling protein HELLS is critical for retinoblastoma tumor initiation and progression. Oncogenesis. 2020;9:25 pubmed 出版商
  5. Salimi H, Cain M, Jiang X, Roth R, Beatty W, Sun C, et al. Encephalitic Alphaviruses Exploit Caveola-Mediated Transcytosis at the Blood-Brain Barrier for Central Nervous System Entry. MBio. 2020;11: pubmed 出版商
  6. Ballabio C, Anderle M, Gianesello M, Lago C, Miele E, Cardano M, et al. Modeling medulloblastoma in vivo and with human cerebellar organoids. Nat Commun. 2020;11:583 pubmed 出版商
  7. Rodriguez Gil J, Watkins Chow D, Baxter L, Elliot G, Harper U, Wincovitch S, et al. Genetic background modifies phenotypic severity and longevity in a mouse model of Niemann-Pick disease type C1. Dis Model Mech. 2020;13: pubmed 出版商
  8. Ocasio J, Babcock B, Malawsky D, Weir S, Loo L, Simon J, et al. scRNA-seq in medulloblastoma shows cellular heterogeneity and lineage expansion support resistance to SHH inhibitor therapy. Nat Commun. 2019;10:5829 pubmed 出版商
  9. Karube F, Takahashi S, Kobayashi K, Fujiyama F. Motor cortex can directly drive the globus pallidus neurons in a projection neuron type-dependent manner in the rat. elife. 2019;8: pubmed 出版商
  10. Joshi D, Zhang C, Babujee L, Vevea J, August B, Sheng Z, et al. Inappropriate Intrusion of an Axonal Mitochondrial Anchor into Dendrites Causes Neurodegeneration. Cell Rep. 2019;29:685-696.e5 pubmed 出版商
  11. Park H, Kim T, Kim J, Yamamoto Y, Tanaka Yamamoto K. Inputs from Sequentially Developed Parallel Fibers Are Required for Cerebellar Organization. Cell Rep. 2019;28:2939-2954.e5 pubmed 出版商
  12. Wu B, Blot F, Wong A, Os rio C, Adolfs Y, Pasterkamp R, et al. TRPC3 is a major contributor to functional heterogeneity of cerebellar Purkinje cells. elife. 2019;8: pubmed 出版商
  13. Lu W, Chen S, Chen X, Hu J, Xuan A, Ding S. Localization of area prostriata and its connections with primary visual cortex in rodent. J Comp Neurol. 2020;528:389-406 pubmed 出版商
  14. Insolia V, Priori E, Gasperini C, Coppa F, Cocchia M, Iervasi E, et al. Prolidase enzyme is required for extracellular matrix integrity and impacts on postnatal cerebellar cortex development. J Comp Neurol. 2020;528:61-80 pubmed 出版商
  15. Rojek K, Krzemien J, Dolezyczek H, Boguszewski P, Kaczmarek L, Konopka W, et al. Amot and Yap1 regulate neuronal dendritic tree complexity and locomotor coordination in mice. PLoS Biol. 2019;17:e3000253 pubmed 出版商
  16. Saifetiarova J, Bhat M. Ablation of cytoskeletal scaffolding proteins, Band 4.1B and Whirlin, leads to cerebellar purkinje axon pathology and motor dysfunction. J Neurosci Res. 2019;97:313-331 pubmed 出版商
  17. Ou Yang M, Kurz J, Nomura T, Popovic J, Rajapaksha T, Dong H, et al. Axonal organization defects in the hippocampus of adult conditional BACE1 knockout mice. Sci Transl Med. 2018;10: pubmed 出版商
  18. Betlazar C, Harrison Brown M, Middleton R, Banati R, Liu G. Cellular Sources and Regional Variations in the Expression of the Neuroinflammatory Marker Translocator Protein (TSPO) in the Normal Brain. Int J Mol Sci. 2018;19: pubmed 出版商
  19. Paul S, Dansithong W, Figueroa K, Scoles D, Pulst S. Staufen1 links RNA stress granules and autophagy in a model of neurodegeneration. Nat Commun. 2018;9:3648 pubmed 出版商
  20. Kaczmarek Hájek K, Zhang J, Kopp R, Grosche A, Rissiek B, Saul A, et al. Re-evaluation of neuronal P2X7 expression using novel mouse models and a P2X7-specific nanobody. elife. 2018;7: pubmed 出版商
  21. Rousseaux M, Tschumperlin T, Lu H, Lackey E, Bondar V, Wan Y, et al. ATXN1-CIC Complex Is the Primary Driver of Cerebellar Pathology in Spinocerebellar Ataxia Type 1 through a Gain-of-Function Mechanism. Neuron. 2018;97:1235-1243.e5 pubmed 出版商
  22. Ogawa Y, Kakumoto K, Yoshida T, Kuwako K, Miyazaki T, Yamaguchi J, et al. Elavl3 is essential for the maintenance of Purkinje neuron axons. Sci Rep. 2018;8:2722 pubmed 出版商
  23. West C, Welling P, West D, Coleman R, Cheng K, Chen C, et al. Renal and colonic potassium transporters in the pregnant rat. Am J Physiol Renal Physiol. 2018;314:F251-F259 pubmed 出版商
  24. Hunter D, Manglapus M, Bachay G, Claudepierre T, Dolan M, Gesuelli K, et al. CNS synapses are stabilized trans-synaptically by laminins and laminin-interacting proteins. J Comp Neurol. 2017;: pubmed 出版商
  25. Yang Y, Yang S, Guo J, Cui Y, Tang B, Li X, et al. Synergistic Toxicity of Polyglutamine-Expanded TATA-Binding Protein in Glia and Neuronal Cells: Therapeutic Implications for Spinocerebellar Ataxia 17. J Neurosci. 2017;37:9101-9115 pubmed 出版商
  26. Ikeda M, Krentzel A, Oliver T, Scarpa G, Remage Healey L. Clustered organization and region-specific identities of estrogen-producing neurons in the forebrain of Zebra Finches (Taeniopygia guttata). J Comp Neurol. 2017;525:3636-3652 pubmed 出版商
  27. Katsumata O, Mori M, Sawane Y, Niimura T, Ito A, Okamoto H, et al. Cellular and subcellular localization of ADP-ribosylation factor 6 in mouse peripheral tissues. Histochem Cell Biol. 2017;148:577-596 pubmed 出版商
  28. Seigneur E, Südhof T. Cerebellins are differentially expressed in selective subsets of neurons throughout the brain. J Comp Neurol. 2017;525:3286-3311 pubmed 出版商
  29. Hormigo S, Gómez Nieto R, Sancho C, Herrero Turrión J, Carro J, López D, et al. Morphological correlates of sex differences in acoustic startle response and prepulse inhibition through projections from locus coeruleus to cochlear root neurons. Brain Struct Funct. 2017;222:3491-3508 pubmed 出版商
  30. Subashini C, Dhanesh S, Chen C, Riya P, Meera V, Divya T, et al. Wnt5a is a crucial regulator of neurogenesis during cerebellum development. Sci Rep. 2017;7:42523 pubmed 出版商
  31. Furukawa S, Nagaike M, Ozaki K. Databases for technical aspects of immunohistochemistry. J Toxicol Pathol. 2017;30:79-107 pubmed 出版商
  32. Valkova C, Liebmann L, Kramer A, Hübner C, Kaether C. The sorting receptor Rer1 controls Purkinje cell function via voltage gated sodium channels. Sci Rep. 2017;7:41248 pubmed 出版商
  33. Xie C, Gong X, Luo J, Li B, Song B. AAV9-NPC1 significantly ameliorates Purkinje cell death and behavioral abnormalities in mouse NPC disease. J Lipid Res. 2017;58:512-518 pubmed 出版商
  34. Erekat N. Cerebellar Purkinje cells die by apoptosis in the shaker mutant rat. Brain Res. 2017;1657:323-332 pubmed 出版商
  35. Zhou W, Zhou L, Shi H, Leng Y, Liu B, Zhang S, et al. Expression of glycine receptors and gephyrin in rat medial vestibular nuclei and flocculi following unilateral labyrinthectomy. Int J Mol Med. 2016;38:1481-1489 pubmed 出版商
  36. Mildner A, Huang H, Radke J, Stenzel W, Priller J. P2Y12 receptor is expressed on human microglia under physiological conditions throughout development and is sensitive to neuroinflammatory diseases. Glia. 2017;65:375-387 pubmed 出版商
  37. Goebbels S, Wieser G, Pieper A, Spitzer S, Weege B, Yan K, et al. A neuronal PI(3,4,5)P3-dependent program of oligodendrocyte precursor recruitment and myelination. Nat Neurosci. 2017;20:10-15 pubmed 出版商
  38. Alvarez Saavedra M, De Repentigny Y, Yang D, O Meara R, Yan K, Hashem L, et al. Voluntary Running Triggers VGF-Mediated Oligodendrogenesis to Prolong the Lifespan of Snf2h-Null Ataxic Mice. Cell Rep. 2016;17:862-875 pubmed 出版商
  39. Moe Y, Kyi Tha Thu C, Tanaka T, Ito H, Yahashi S, Matsuda K, et al. A Sexually Dimorphic Area of the Dorsal Hypothalamus in Mice and Common Marmosets. Endocrinology. 2016;157:4817-4828 pubmed
  40. La Manno G, Gyllborg D, Codeluppi S, Nishimura K, Salto C, Zeisel A, et al. Molecular Diversity of Midbrain Development in Mouse, Human, and Stem Cells. Cell. 2016;167:566-580.e19 pubmed 出版商
  41. Alexander M, Gasperini M, Tsai P, Gibbs D, Spinazzola J, Marshall J, et al. Reversal of neurobehavioral social deficits in dystrophic mice using inhibitors of phosphodiesterases PDE5A and PDE9A. Transl Psychiatry. 2016;6:e901 pubmed 出版商
  42. Cubillos S, Norgauer J. Low vitamin D-modulated calcium-regulating proteins in psoriasis vulgaris plaques: S100A7 overexpression depends on joint involvement. Int J Mol Med. 2016;38:1083-92 pubmed 出版商
  43. Patel M, Sons S, Yudintsev G, Lesicko A, Yang L, Taha G, et al. Anatomical characterization of subcortical descending projections to the inferior colliculus in mouse. J Comp Neurol. 2017;525:885-900 pubmed 出版商
  44. Hickmott J, Chen C, Arenillas D, Korecki A, Lam S, Molday L, et al. PAX6 MiniPromoters drive restricted expression from rAAV in the adult mouse retina. Mol Ther Methods Clin Dev. 2016;3:16051 pubmed 出版商
  45. Wolf H, Damme M, Stroobants S, D Hooge R, Beck H, Hermans Borgmeyer I, et al. A mouse model for fucosidosis recapitulates storage pathology and neurological features of the milder form of the human disease. Dis Model Mech. 2016;9:1015-28 pubmed 出版商
  46. Reginensi A, Enderle L, Gregorieff A, Johnson R, Wrana J, McNeill H. A critical role for NF2 and the Hippo pathway in branching morphogenesis. Nat Commun. 2016;7:12309 pubmed 出版商
  47. Liu J, Liu J, Holmström K, Menazza S, Parks R, Fergusson M, et al. MICU1 Serves as a Molecular Gatekeeper to Prevent In Vivo Mitochondrial Calcium Overload. Cell Rep. 2016;16:1561-1573 pubmed 出版商
  48. Ku T, Swaney J, Park J, Albanese A, Murray E, Cho J, et al. Multiplexed and scalable super-resolution imaging of three-dimensional protein localization in size-adjustable tissues. Nat Biotechnol. 2016;34:973-81 pubmed 出版商
  49. Sanges D, Simonte G, Di Vicino U, Romo N, Pinilla I, Nicolas M, et al. Reprogramming Müller glia via in vivo cell fusion regenerates murine photoreceptors. J Clin Invest. 2016;126:3104-16 pubmed 出版商
  50. Schmitt D, Funk N, Blum R, Asan E, Andersen L, Rülicke T, et al. Initial characterization of a Syap1 knock-out mouse and distribution of Syap1 in mouse brain and cultured motoneurons. Histochem Cell Biol. 2016;146:489-512 pubmed 出版商
  51. Kruger L, O Malley H, Hull J, Kleeman A, Patino G, Isom L. ?1-C121W Is Down But Not Out: Epilepsy-Associated Scn1b-C121W Results in a Deleterious Gain-of-Function. J Neurosci. 2016;36:6213-24 pubmed 出版商
  52. Kuramoto E, Pan S, Furuta T, Tanaka Y, Iwai H, Yamanaka A, et al. Individual mediodorsal thalamic neurons project to multiple areas of the rat prefrontal cortex: A single neuron-tracing study using virus vectors. J Comp Neurol. 2017;525:166-185 pubmed 出版商
  53. van Loon E, Little R, Prehar S, Bindels R, Cartwright E, Hoenderop J. Calcium Extrusion Pump PMCA4: A New Player in Renal Calcium Handling?. PLoS ONE. 2016;11:e0153483 pubmed 出版商
  54. Bouvier D, Jones E, Quesseveur G, Davoli M, A Ferreira T, Quirion R, et al. High Resolution Dissection of Reactive Glial Nets in Alzheimer's Disease. Sci Rep. 2016;6:24544 pubmed 出版商
  55. Hirano A, Liu X, Boulter J, Grove J, Pérez de Sevilla Müller L, Barnes S, et al. Targeted Deletion of Vesicular GABA Transporter from Retinal Horizontal Cells Eliminates Feedback Modulation of Photoreceptor Calcium Channels. Eneuro. 2016;3: pubmed 出版商
  56. Figueroa K, Paul S, Calì T, Lopreiato R, Karan S, Frizzarin M, et al. Spontaneous shaker rat mutant - a new model for X-linked tremor/ataxia. Dis Model Mech. 2016;9:553-62 pubmed 出版商
  57. Bouskila J, Javadi P, Elkrief L, Casanova C, Bouchard J, Ptito M. A Comparative Analysis of the Endocannabinoid System in the Retina of Mice, Tree Shrews, and Monkeys. Neural Plast. 2016;2016:3127658 pubmed 出版商
  58. Di Pietro C, Marazziti D, La Sala G, Abbaszadeh Z, Golini E, Matteoni R, et al. Primary Cilia in the Murine Cerebellum and in Mutant Models of Medulloblastoma. Cell Mol Neurobiol. 2017;37:145-154 pubmed 出版商
  59. Li M, Lu G, Hu J, Shen X, Ju J, Gao Y, et al. EVA1A/TMEM166 Regulates Embryonic Neurogenesis by Autophagy. Stem Cell Reports. 2016;6:396-410 pubmed 出版商
  60. Villette V, Guigue P, Picardo M, Sousa V, Leprince E, Lachamp P, et al. Development of early-born ?-Aminobutyric acid hub neurons in mouse hippocampus from embryogenesis to adulthood. J Comp Neurol. 2016;524:2440-61 pubmed 出版商
  61. de Souza C, Nivison Smith L, Christie D, Polkinghorne P, McGhee C, Kalloniatis M, et al. Macromolecular markers in normal human retina and applications to human retinal disease. Exp Eye Res. 2016;150:135-48 pubmed 出版商
  62. Ruegsegger C, Stucki D, Steiner S, Angliker N, Radecke J, Keller E, et al. Impaired mTORC1-Dependent Expression of Homer-3 Influences SCA1 Pathophysiology. Neuron. 2016;89:129-46 pubmed 出版商
  63. Jackman S, Turecek J, Belinsky J, Regehr W. The calcium sensor synaptotagmin 7 is required for synaptic facilitation. Nature. 2016;529:88-91 pubmed 出版商
  64. Wagener R, Witte M, Guy J, Mingo Moreno N, Kügler S, Staiger J. Thalamocortical Connections Drive Intracortical Activation of Functional Columns in the Mislaminated Reeler Somatosensory Cortex. Cereb Cortex. 2016;26:820-37 pubmed 出版商
  65. Sikora J, Leddy J, Gulinello M, Walkley S. X-linked Christianson syndrome: heterozygous female Slc9a6 knockout mice develop mosaic neuropathological changes and related behavioral abnormalities. Dis Model Mech. 2016;9:13-23 pubmed 出版商
  66. Zhen Y, Li W. Impairment of autophagosome-lysosome fusion in the buff mutant mice with the VPS33A(D251E) mutation. Autophagy. 2015;11:1608-22 pubmed 出版商
  67. Hurtado R, Zewdu R, Mtui J, Liang C, Aho R, Kurylo C, et al. Pbx1-dependent control of VMC differentiation kinetics underlies gross renal vascular patterning. Development. 2015;142:2653-64 pubmed 出版商
  68. Hooper A, Maguire J. Characterization of a novel subtype of hippocampal interneurons that express corticotropin-releasing hormone. Hippocampus. 2016;26:41-53 pubmed 出版商
  69. Imoto Y, Kira T, Sukeno M, Nishitani N, Nagayasu K, Nakagawa T, et al. Role of the 5-HT4 receptor in chronic fluoxetine treatment-induced neurogenic activity and granule cell dematuration in the dentate gyrus. Mol Brain. 2015;8:29 pubmed 出版商
  70. Dansithong W, Paul S, Figueroa K, Rinehart M, Wiest S, Pflieger L, et al. Ataxin-2 regulates RGS8 translation in a new BAC-SCA2 transgenic mouse model. PLoS Genet. 2015;11:e1005182 pubmed 出版商
  71. Grimm P, Lazo Fernández Y, Delpire E, Wall S, Dorsey S, Weinman E, et al. Integrated compensatory network is activated in the absence of NCC phosphorylation. J Clin Invest. 2015;125:2136-50 pubmed 出版商
  72. Greenlee J, Clawson S, Hill K, Wood B, Clardy S, Tsunoda I, et al. Anti-Yo antibody uptake and interaction with its intracellular target antigen causes Purkinje cell death in rat cerebellar slice cultures: a possible mechanism for paraneoplastic cerebellar degeneration in humans with gynecological or breast cancers. PLoS ONE. 2015;10:e0123446 pubmed 出版商
  73. Szabo N, Da Silva R, Sotocinal S, Zeilhofer H, Mogil J, Kania A. Hoxb8 intersection defines a role for Lmx1b in excitatory dorsal horn neuron development, spinofugal connectivity, and nociception. J Neurosci. 2015;35:5233-46 pubmed 出版商
  74. Zonouzi M, Scafidi J, Li P, McEllin B, Edwards J, Dupree J, et al. GABAergic regulation of cerebellar NG2 cell development is altered in perinatal white matter injury. Nat Neurosci. 2015;18:674-82 pubmed 出版商
  75. Liu Z, Brunskill E, Boyle S, Chen S, Turkoz M, Guo Y, et al. Second-generation Notch1 activity-trap mouse line (N1IP::CreHI) provides a more comprehensive map of cells experiencing Notch1 activity. Development. 2015;142:1193-202 pubmed 出版商
  76. Pérez de Sevilla Müller L, Sargoy A, Fernández Sánchez L, Rodriguez A, Liu J, Cuenca N, et al. Expression and cellular localization of the voltage-gated calcium channel α2δ3 in the rodent retina. J Comp Neurol. 2015;523:1443-60 pubmed 出版商
  77. Khairallah H, El Andalousi J, Simard A, Haddad N, Chen Y, Hou J, et al. Claudin-7, -16, and -19 during mouse kidney development. Tissue Barriers. 2014;2:e964547 pubmed 出版商
  78. Filézac de L Etang A, Maharjan N, Cordeiro Braña M, Ruegsegger C, Rehmann R, Goswami A, et al. Marinesco-Sjögren syndrome protein SIL1 regulates motor neuron subtype-selective ER stress in ALS. Nat Neurosci. 2015;18:227-38 pubmed 出版商
  79. Dopeso Reyes I, Rico A, Roda E, Sierra S, Pignataro D, Lanz M, et al. Calbindin content and differential vulnerability of midbrain efferent dopaminergic neurons in macaques. Front Neuroanat. 2014;8:146 pubmed 出版商
  80. Ito H, Fujita K, Tagawa K, Chen X, Homma H, Sasabe T, et al. HMGB1 facilitates repair of mitochondrial DNA damage and extends the lifespan of mutant ataxin-1 knock-in mice. EMBO Mol Med. 2015;7:78-101 pubmed 出版商
  81. Molgaard S, Ulrichsen M, Boggild S, Holm M, Vaegter C, Nyengaard J, et al. Immunohistochemical visualization of mouse interneuron subtypes. F1000Res. 2014;3:242 pubmed 出版商
  82. Sharaf A, Rahhal B, Spittau B, Roussa E. Localization of reelin signaling pathway components in murine midbrain and striatum. Cell Tissue Res. 2015;359:393-407 pubmed 出版商
  83. Schubert M, Panja D, Haugen M, Bramham C, Vedeler C. Paraneoplastic CDR2 and CDR2L antibodies affect Purkinje cell calcium homeostasis. Acta Neuropathol. 2014;128:835-52 pubmed 出版商
  84. Masuda C, Takeuchi S, J Bisem N, R Vincent S, Tooyama I. Immunohistochemical Localization of an Isoform of TRK-Fused Gene-Like Protein in the Rat Retina. Acta Histochem Cytochem. 2014;47:75-83 pubmed 出版商
  85. Liu C, Lin C, Gao C, May Simera H, Swaroop A, Li T. Null and hypomorph Prickle1 alleles in mice phenocopy human Robinow syndrome and disrupt signaling downstream of Wnt5a. Biol Open. 2014;3:861-70 pubmed 出版商
  86. Radonjić N, Memi F, Ortega J, Glidden N, Zhan H, Zecevic N. The Role of Sonic Hedgehog in the Specification of Human Cortical Progenitors In Vitro. Cereb Cortex. 2016;26:131-43 pubmed 出版商
  87. Gray D, Engle J, Rudolph M, Recanzone G. Regional and age-related differences in GAD67 expression of parvalbumin- and calbindin-expressing neurons in the rhesus macaque auditory midbrain and brainstem. J Comp Neurol. 2014;522:4074-84 pubmed 出版商
  88. Lotta L, Conrad K, Cory Slechta D, Schor N. Cerebellar Purkinje cell p75 neurotrophin receptor and autistic behavior. Transl Psychiatry. 2014;4:e416 pubmed 出版商
  89. Sengul G, Fu Y, Yu Y, Paxinos G. Spinal cord projections to the cerebellum in the mouse. Brain Struct Funct. 2015;220:2997-3009 pubmed 出版商
  90. Gaillard F, Kuny S, Sauve Y. Retinal distribution of Disabled-1 in a diurnal murine rodent, the Nile grass rat Arvicanthis niloticus. Exp Eye Res. 2014;125:236-43 pubmed 出版商
  91. Keeley P, Whitney I, Madsen N, St John A, Borhanian S, Leong S, et al. Independent genomic control of neuronal number across retinal cell types. Dev Cell. 2014;30:103-9 pubmed 出版商
  92. Cho S, Jeon J, Chun D, Yeo S, Kim I. Anoctamin 1 expression in the mouse auditory brainstem. Cell Tissue Res. 2014;357:563-9 pubmed 出版商
  93. Katyal S, Lee Y, Nitiss K, Downing S, Li Y, Shimada M, et al. Aberrant topoisomerase-1 DNA lesions are pathogenic in neurodegenerative genome instability syndromes. Nat Neurosci. 2014;17:813-21 pubmed 出版商
  94. Verslegers M, Van Hove I, Dekeyster E, Gantois I, Hu T, D Hooge R, et al. MMP-2 mediates Purkinje cell morphogenesis and spine development in the mouse cerebellum. Brain Struct Funct. 2015;220:1601-17 pubmed 出版商
  95. Fuchs M, Brandst tter J, Regus Leidig H. Evidence for a Clathrin-independent mode of endocytosis at a continuously active sensory synapse. Front Cell Neurosci. 2014;8:60 pubmed 出版商
  96. Hum S, Rymer C, Schaefer C, Bushnell D, Sims Lucas S. Ablation of the renal stroma defines its critical role in nephron progenitor and vasculature patterning. PLoS ONE. 2014;9:e88400 pubmed 出版商
  97. Yu Y, Fu Y, Watson C. The inferior olive of the C57BL/6J mouse: a chemoarchitectonic study. Anat Rec (Hoboken). 2014;297:289-300 pubmed 出版商
  98. Kao F, Su S, Carlson G, Liao W. MeCP2-mediated alterations of striatal features accompany psychomotor deficits in a mouse model of Rett syndrome. Brain Struct Funct. 2015;220:419-34 pubmed 出版商
  99. Akane H, Shiraki A, Imatanaka N, Akahori Y, Itahashi M, Abe H, et al. Glycidol induces axonopathy and aberrations of hippocampal neurogenesis affecting late-stage differentiation by exposure to rats in a framework of 28-day toxicity study. Toxicol Lett. 2014;224:424-32 pubmed 出版商
  100. Otero J, Kalaszczynska I, Michowski W, Wong M, Gygli P, Gokozan H, et al. Cerebellar cortical lamination and foliation require cyclin A2. Dev Biol. 2014;385:328-39 pubmed 出版商
  101. Huang Y, Dai L, Gaines D, Droz Rosario R, Lu H, Liu J, et al. BCCIP suppresses tumor initiation but is required for tumor progression. Cancer Res. 2013;73:7122-33 pubmed 出版商
  102. Vestin A, Mills A. The tumor suppressor Chd5 is induced during neuronal differentiation in the developing mouse brain. Gene Expr Patterns. 2013;13:482-9 pubmed 出版商
  103. Cholich L, Marquez M, Pumarola I Batlle M, Gimeno E, Teibler G, Rios E, et al. Experimental intoxication of guinea pigs with Ipomoea carnea: behavioural and neuropathological alterations. Toxicon. 2013;76:28-36 pubmed 出版商
  104. Cops E, Sashindranath M, Daglas M, Short K, da Fonseca Pereira C, Pang T, et al. Tissue-type plasminogen activator is an extracellular mediator of Purkinje cell damage and altered gait. Exp Neurol. 2013;249:8-19 pubmed 出版商
  105. Cagle M, Honig M. Parcellation of cerebellins 1, 2, and 4 among different subpopulations of dorsal horn neurons in mouse spinal cord. J Comp Neurol. 2014;522:479-97 pubmed 出版商
  106. Zhang L, Wahlin K, Li Y, Masuda T, Yang Z, Zack D, et al. RIT2, a neuron-specific small guanosine triphosphatase, is expressed in retinal neuronal cells and its promoter is modulated by the POU4 transcription factors. Mol Vis. 2013;19:1371-86 pubmed
  107. Decampo D, Fudge J. Amygdala projections to the lateral bed nucleus of the stria terminalis in the macaque: comparison with ventral striatal afferents. J Comp Neurol. 2013;521:3191-216 pubmed 出版商
  108. Dougherty S, Reeves J, Lesort M, Detloff P, Cowell R. Purkinje cell dysfunction and loss in a knock-in mouse model of Huntington disease. Exp Neurol. 2013;240:96-102 pubmed 出版商
  109. Li J, Xue Z, Deng S, Luo X, Patrylo P, Rose G, et al. Amyloid plaque pathogenesis in 5XFAD mouse spinal cord: retrograde transneuronal modulation after peripheral nerve injury. Neurotox Res. 2013;24:1-14 pubmed 出版商
  110. Szulwach K, Li X, Li Y, Song C, Wu H, Dai Q, et al. 5-hmC-mediated epigenetic dynamics during postnatal neurodevelopment and aging. Nat Neurosci. 2011;14:1607-16 pubmed 出版商
  111. Puthussery T, Gayet Primo J, Taylor W, Haverkamp S. Immunohistochemical identification and synaptic inputs to the diffuse bipolar cell type DB1 in macaque retina. J Comp Neurol. 2011;519:3640-56 pubmed 出版商
  112. Wu F, Sapkota D, Li R, Mu X. Onecut 1 and Onecut 2 are potential regulators of mouse retinal development. J Comp Neurol. 2012;520:952-69 pubmed 出版商
  113. Jones B, Kondo M, Terasaki H, Watt C, Rapp K, Anderson J, et al. Retinal remodeling in the Tg P347L rabbit, a large-eye model of retinal degeneration. J Comp Neurol. 2011;519:2713-33 pubmed 出版商
  114. Hirano A, Brandstätter J, Morgans C, Brecha N. SNAP25 expression in mammalian retinal horizontal cells. J Comp Neurol. 2011;519:972-88 pubmed 出版商
  115. Wahlin K, Hackler L, Adler R, Zack D. Alternative splicing of neuroligin and its protein distribution in the outer plexiform layer of the chicken retina. J Comp Neurol. 2010;518:4938-62 pubmed 出版商
  116. McClellan K, Stratton M, Tobet S. Roles for gamma-aminobutyric acid in the development of the paraventricular nucleus of the hypothalamus. J Comp Neurol. 2010;518:2710-28 pubmed 出版商
  117. Guo C, Hirano A, Stella S, Bitzer M, Brecha N. Guinea pig horizontal cells express GABA, the GABA-synthesizing enzyme GAD 65, and the GABA vesicular transporter. J Comp Neurol. 2010;518:1647-69 pubmed 出版商
  118. Hundahl C, Hannibal J, Fahrenkrug J, DeWilde S, Hay Schmidt A. Neuroglobin expression in the rat suprachiasmatic nucleus: colocalization, innervation, and response to light. J Comp Neurol. 2010;518:1556-69 pubmed 出版商
  119. Martín Ibáñez R, Crespo E, Urbán N, Sergent Tanguy S, Herranz C, Jaumot M, et al. Ikaros-1 couples cell cycle arrest of late striatal precursors with neurogenesis of enkephalinergic neurons. J Comp Neurol. 2010;518:329-51 pubmed 出版商
  120. Jakovcevski I, Siering J, Hargus G, Karl N, Hoelters L, Djogo N, et al. Close homologue of adhesion molecule L1 promotes survival of Purkinje and granule cells and granule cell migration during murine cerebellar development. J Comp Neurol. 2009;513:496-510 pubmed 出版商
  121. Kihara A, Paschon V, Cardoso C, Higa G, Castro L, Hamassaki D, et al. Connexin36, an essential element in the rod pathway, is highly expressed in the essentially rodless retina of Gallus gallus. J Comp Neurol. 2009;512:651-63 pubmed 出版商
  122. Guo C, Stella S, Hirano A, Brecha N. Plasmalemmal and vesicular gamma-aminobutyric acid transporter expression in the developing mouse retina. J Comp Neurol. 2009;512:6-26 pubmed 出版商
  123. Martínez Navarrete G, Angulo A, Martín Nieto J, Cuenca N. Gradual morphogenesis of retinal neurons in the peripheral retinal margin of adult monkeys and humans. J Comp Neurol. 2008;511:557-80 pubmed 出版商
  124. Yang Z, You Y, Levison S. Neonatal hypoxic/ischemic brain injury induces production of calretinin-expressing interneurons in the striatum. J Comp Neurol. 2008;511:19-33 pubmed 出版商
  125. Poche R, Furuta Y, Chaboissier M, Schedl A, Behringer R. Sox9 is expressed in mouse multipotent retinal progenitor cells and functions in Müller glial cell development. J Comp Neurol. 2008;510:237-50 pubmed 出版商
  126. Kawano J, Tanizawa Y, Shinoda K. Wolfram syndrome 1 (Wfs1) gene expression in the normal mouse visual system. J Comp Neurol. 2008;510:1-23 pubmed 出版商
  127. O Brien B, Caldwell J, Ehring G, Bumsted O Brien K, Luo S, Levinson S. Tetrodotoxin-resistant voltage-gated sodium channels Na(v)1.8 and Na(v)1.9 are expressed in the retina. J Comp Neurol. 2008;508:940-51 pubmed 出版商
  128. Reznikov L, Reagan L, Fadel J. Activation of phenotypically distinct neuronal subpopulations in the anterior subdivision of the rat basolateral amygdala following acute and repeated stress. J Comp Neurol. 2008;508:458-72 pubmed 出版商
  129. Raven M, Orton N, Nassar H, Williams G, Stell W, Jacobs G, et al. Early afferent signaling in the outer plexiform layer regulates development of horizontal cell morphology. J Comp Neurol. 2008;506:745-58 pubmed
  130. Wahlin K, Moreira E, Huang H, Yu N, Adler R. Molecular dynamics of photoreceptor synapse formation in the developing chick retina. J Comp Neurol. 2008;506:822-37 pubmed
  131. Ahlemeyer B, Neubert I, Kovacs W, Baumgart Vogt E. Differential expression of peroxisomal matrix and membrane proteins during postnatal development of mouse brain. J Comp Neurol. 2007;505:1-17 pubmed
  132. Elshatory Y, Deng M, Xie X, Gan L. Expression of the LIM-homeodomain protein Isl1 in the developing and mature mouse retina. J Comp Neurol. 2007;503:182-97 pubmed
  133. Ding J, Weinberg R. Distribution of soluble guanylyl cyclase in rat retina. J Comp Neurol. 2007;502:734-45 pubmed
  134. Ding J, Weinberg R. Distribution of soluble guanylyl cyclase in rat retina. J Comp Neurol. 2007;500:734-45 pubmed
  135. Bayley P, Morgans C. Rod bipolar cells and horizontal cells form displaced synaptic contacts with rods in the outer nuclear layer of the nob2 retina. J Comp Neurol. 2007;500:286-98 pubmed
  136. Gargini C, Terzibasi E, Mazzoni F, Strettoi E. Retinal organization in the retinal degeneration 10 (rd10) mutant mouse: a morphological and ERG study. J Comp Neurol. 2007;500:222-38 pubmed
  137. Higo N, Oishi T, Yamashita A, Murata Y, Matsuda K, Hayashi M. Expression of protein kinase C-substrate mRNAs in the basal ganglia of adult and infant macaque monkeys. J Comp Neurol. 2006;499:662-76 pubmed
  138. Meyer E, Illig K, Brunjes P. Differences in chemo- and cytoarchitectural features within pars principalis of the rat anterior olfactory nucleus suggest functional specialization. J Comp Neurol. 2006;498:786-95 pubmed
  139. Johnson D, Donovan S, Dyer M. Mosaic deletion of Rb arrests rod differentiation and stimulates ectopic synaptogenesis in the mouse retina. J Comp Neurol. 2006;498:112-28 pubmed
  140. Navarro Quiroga I, Hernandez Valdes M, Lin S, Naegele J. Postnatal cellular contributions of the hippocampus subventricular zone to the dentate gyrus, corpus callosum, fimbria, and cerebral cortex. J Comp Neurol. 2006;497:833-45 pubmed
  141. Lee E, Mann L, Rickman D, Lim E, Chun M, Grzywacz N. AII amacrine cells in the distal inner nuclear layer of the mouse retina. J Comp Neurol. 2006;494:651-62 pubmed
  142. Liu S, Gao N, Hu H, Wang X, Wang G, Fang X, et al. Distribution and chemical coding of corticotropin-releasing factor-immunoreactive neurons in the guinea pig enteric nervous system. J Comp Neurol. 2006;494:63-74 pubmed
  143. Treloar H, Uboha U, Jeromin A, Greer C. Expression of the neuronal calcium sensor protein NCS-1 in the developing mouse olfactory pathway. J Comp Neurol. 2005;482:201-16 pubmed