这是一篇来自已证抗体库的有关小鼠 Calb2的综述,是根据39篇发表使用所有方法的文章归纳的。这综述旨在帮助来邦网的访客找到最适合Calb2 抗体。
Calb2 同义词: CR

Synaptic Systems
小鼠 单克隆(37C9)
  • 免疫组化-自由浮动切片; 小鼠; 1:1000; 图 4a
Synaptic Systems Calb2抗体(Synaptic systems, 214111)被用于被用于免疫组化-自由浮动切片在小鼠样本上浓度为1:1000 (图 4a). elife (2020) ncbi
豚鼠 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:1000; 图 1e
Synaptic Systems Calb2抗体(Synaptic Systems, 214104)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:1000 (图 1e). Mol Neurodegener (2020) ncbi
domestic rabbit 多克隆
  • 免疫组化-自由浮动切片; 小鼠; 1:1000; 图 5o
Synaptic Systems Calb2抗体(Synaptic Systems, 214102)被用于被用于免疫组化-自由浮动切片在小鼠样本上浓度为1:1000 (图 5o). Cell (2019) ncbi
小鼠 单克隆(37C9)
  • 免疫组化-自由浮动切片; 小鼠; 图 2d
Synaptic Systems Calb2抗体(Synaptic System, 214 111)被用于被用于免疫组化-自由浮动切片在小鼠样本上 (图 2d). J Comp Neurol (2019) ncbi
小鼠 单克隆(37C9)
  • 免疫组化-冰冻切片; 小鼠; 1:1000; 图 3s1a
Synaptic Systems Calb2抗体(Synaptic Systems, 214111)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:1000 (图 3s1a). elife (2018) ncbi
小鼠 单克隆(37C9)
  • 免疫组化; 小鼠; 1:200; 图 1b
Synaptic Systems Calb2抗体(Synaptic systems, 37C9)被用于被用于免疫组化在小鼠样本上浓度为1:200 (图 1b). Front Neural Circuits (2017) ncbi
赛默飞世尔
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:1000; 表 1
赛默飞世尔 Calb2抗体(Thermo Fisher, PA5-16681)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:1000 (表 1). J Comp Neurol (2019) ncbi
domestic rabbit 单克隆(SP13)
  • 免疫组化-石蜡切片; 人类; 1:100; 图 4
赛默飞世尔 Calb2抗体(Thermo Fisher, RM-9113-S0)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100 (图 4). Oncol Lett (2016) ncbi
domestic rabbit 单克隆(SP13)
  • 免疫组化; 人类; 表 2
赛默飞世尔 Calb2抗体(Thermo Scientific, SP13)被用于被用于免疫组化在人类样本上 (表 2). Diagn Cytopathol (2015) ncbi
domestic rabbit 多克隆
赛默飞世尔 Calb2抗体(生活技术, PA5-34688)被用于. J Neurochem (2015) ncbi
domestic rabbit 单克隆(SP13)
  • 免疫组化-石蜡切片; 人类
赛默飞世尔 Calb2抗体(Thermo Scientific, SP13)被用于被用于免疫组化-石蜡切片在人类样本上. Biomed Res Int (2014) ncbi
domestic rabbit 单克隆(SP13)
  • 免疫组化; 人类; 1:400
赛默飞世尔 Calb2抗体(Neomarkers, SP13)被用于被用于免疫组化在人类样本上浓度为1:400. Clin Med Insights Case Rep (2012) ncbi
圣克鲁斯生物技术
小鼠 单克隆(H-5)
  • 免疫组化-冰冻切片; 小鼠; 1:25; 图 5
圣克鲁斯生物技术 Calb2抗体(Santa Cruz Biotechnology, sc-365,956)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:25 (图 5). J Comp Neurol (2020) ncbi
小鼠 单克隆(D-12)
  • 免疫组化; 小鼠; 图 3c
圣克鲁斯生物技术 Calb2抗体(SantaCruz, sc-365989)被用于被用于免疫组化在小鼠样本上 (图 3c). J Comp Neurol (2017) ncbi
艾博抗(上海)贸易有限公司
domestic rabbit 多克隆
艾博抗(上海)贸易有限公司 Calb2抗体(Abcam, ab702)被用于. J Comp Neurol (2020) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 大西洋鳉; 1:100; 图 4
艾博抗(上海)贸易有限公司 Calb2抗体(Abcam, ab702)被用于被用于免疫组化-石蜡切片在大西洋鳉样本上浓度为1:100 (图 4). Toxicology (2019) ncbi
domestic rabbit 单克隆(EPR1799(2))
  • 免疫组化; 小鼠; 图 st1
艾博抗(上海)贸易有限公司 Calb2抗体(Abcam, ab133316)被用于被用于免疫组化在小鼠样本上 (图 st1). Nat Biotechnol (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-自由浮动切片; 小鼠; 1:500; 图 3a
艾博抗(上海)贸易有限公司 Calb2抗体(Abcam, Ab702)被用于被用于免疫组化-自由浮动切片在小鼠样本上浓度为1:500 (图 3a). Front Neurosci (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化; Holothuria glaberrima; 1:100; 图 3
艾博抗(上海)贸易有限公司 Calb2抗体(Abcam, ab702)被用于被用于免疫组化在Holothuria glaberrima样本上浓度为1:100 (图 3). PLoS ONE (2016) ncbi
SWant
单克隆(6B3)
  • 免疫细胞化学; 小鼠; 1:500; 图 4b
SWant Calb2抗体(Swant, 6B3)被用于被用于免疫细胞化学在小鼠样本上浓度为1:500 (图 4b). elife (2020) ncbi
  • 免疫组化; 小鼠; 1:1000; 图 2d
SWant Calb2抗体(Swant, 7699/4)被用于被用于免疫组化在小鼠样本上浓度为1:1000 (图 2d). elife (2019) ncbi
单克隆(6B3)
  • 免疫组化; 小鼠; 1:500; 图 1a
SWant Calb2抗体(Swant, CG1; 6B3)被用于被用于免疫组化在小鼠样本上浓度为1:500 (图 1a). J Physiol (2018) ncbi
  • 免疫组化; 小鼠; 1:200; 表 1
SWant Calb2抗体(SWANT, 7699/3)被用于被用于免疫组化在小鼠样本上浓度为1:200 (表 1). Brain Struct Funct (2017) ncbi
  • 免疫组化-冰冻切片; 小鼠; 1:1000; 图 1e
SWant Calb2抗体(Swant, 7699/3H)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:1000 (图 1e). Brain Struct Funct (2017) ncbi
  • 免疫组化-自由浮动切片; 大鼠; 1:5000; 图 4
  • 免疫印迹; 大鼠; 1:10,000; 图 6
SWant Calb2抗体(Swant, 7699/3H)被用于被用于免疫组化-自由浮动切片在大鼠样本上浓度为1:5000 (图 4) 和 被用于免疫印迹在大鼠样本上浓度为1:10,000 (图 6). Front Mol Neurosci (2016) ncbi
  • 免疫组化; 小鼠; 1:2000; 图 2
SWant Calb2抗体(Swant, 7699/3H)被用于被用于免疫组化在小鼠样本上浓度为1:2000 (图 2). Mol Psychiatry (2016) ncbi
  • 免疫组化-石蜡切片; 小鼠; 1:500; 图 8
SWant Calb2抗体(Swant, CR7699/3H)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:500 (图 8). J Neurosci Methods (2016) ncbi
  • 免疫组化; 小鼠; 图 7c
SWant Calb2抗体(Swant, 7696)被用于被用于免疫组化在小鼠样本上 (图 7c). Cereb Cortex (2016) ncbi
  • 免疫组化-石蜡切片; 小鼠; 1:1000; 图 s2
SWant Calb2抗体(Swant, 7696)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:1000 (图 s2). Hum Mol Genet (2015) ncbi
SWant Calb2抗体(SWant, 7699/3H)被用于. J Comp Neurol (2015) ncbi
  • 免疫组化-石蜡切片; 小鼠; 1:1000
SWant Calb2抗体(Swant, CR7699/3H)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:1000. Hippocampus (2015) ncbi
  • 免疫组化-自由浮动切片; 小鼠; 1:50,000
SWant Calb2抗体(SWANT, CR 7699/3H)被用于被用于免疫组化-自由浮动切片在小鼠样本上浓度为1:50,000. Cereb Cortex (2015) ncbi
SWant Calb2抗体(Swant, 7699/3H)被用于. J Comp Neurol (2014) ncbi
碧迪BD
小鼠 单克隆(34/Calretinin)
  • 免疫细胞化学; 大鼠; 1:50; 图 s7a
  • 免疫细胞化学; 人类; 1:50; 图 s4a
  • 免疫组化; 人类; 图 4b4
碧迪BD Calb2抗体(BD Bioscience, 610908)被用于被用于免疫细胞化学在大鼠样本上浓度为1:50 (图 s7a), 被用于免疫细胞化学在人类样本上浓度为1:50 (图 s4a) 和 被用于免疫组化在人类样本上 (图 4b4). EBioMedicine (2019) ncbi
小鼠 单克隆(34/Calretinin)
  • 免疫组化; African green monkey; 1:2000; 图 2a
碧迪BD Calb2抗体(BD Bioscience, 610908)被用于被用于免疫组化在African green monkey样本上浓度为1:2000 (图 2a). J Comp Neurol (2017) ncbi
小鼠 单克隆(34/Calretinin)
  • 免疫细胞化学; 人类; 1:1000; 表 1
碧迪BD Calb2抗体(BD Biosciences, 610908)被用于被用于免疫细胞化学在人类样本上浓度为1:1000 (表 1). Exp Eye Res (2016) ncbi
小鼠 单克隆(34/Calretinin)
  • 免疫组化-自由浮动切片; 猕猴; 1:2000
碧迪BD Calb2抗体(BD Biosciences, 610908)被用于被用于免疫组化-自由浮动切片在猕猴样本上浓度为1:2000. J Comp Neurol (2015) ncbi
小鼠 单克隆(34/Calretinin)
  • 免疫细胞化学; 人类; 1:200
碧迪BD Calb2抗体(BD Bioscience, 610908)被用于被用于免疫细胞化学在人类样本上浓度为1:200. Stem Cell Rev (2013) ncbi
小鼠 单克隆(34/Calretinin)
  • 免疫组化-冰冻切片; 小鼠; 1:1000
碧迪BD Calb2抗体(BD Transduction Laboratories, 610908)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:1000. J Comp Neurol (2009) ncbi
文章列表
  1. Coré N, Erni A, Hoffmann H, Mellon P, Saurin A, Beclin C, et al. Stem cell regionalization during olfactory bulb neurogenesis depends on regulatory interactions between Vax1 and Pax6. elife. 2020;9: pubmed 出版商
  2. Manzano Nieves G, Bravo M, Baskoylu S, Bath K. Early life adversity decreases pre-adolescent fear expression by accelerating amygdala PV cell development. elife. 2020;9: pubmed 出版商
  3. Rice H, Marcassa G, Chrysidou I, Horré K, Young Pearse T, Müller U, et al. Contribution of GABAergic interneurons to amyloid-β plaque pathology in an APP knock-in mouse model. Mol Neurodegener. 2020;15:3 pubmed 出版商
  4. Wakeham C, Ren G, Morgans C. Expression and distribution of trophoblast glycoprotein in the mouse retina. J Comp Neurol. 2020;528:1660-1671 pubmed 出版商
  5. Emam A, Yoffe M, Cardona H, Soares D. Retinal morphology in Astyanax mexicanus during eye degeneration. J Comp Neurol. 2020;528:1523-1534 pubmed 出版商
  6. Szymkowicz D, Sims K, Schwendinger K, Tatnall C, Powell R, Bruce T, et al. Exposure to arsenic during embryogenesis impairs olfactory sensory neuron differentiation and function into adulthood. Toxicology. 2019;420:73-84 pubmed 出版商
  7. Wang M, Xiong L, Jiang L, Lu Y, Liu F, Song L, et al. miR-4739 mediates pleural fibrosis by targeting bone morphogenetic protein 7. EBioMedicine. 2019;41:670-682 pubmed 出版商
  8. Trouche S, Koren V, Doig N, Ellender T, El Gaby M, Lopes Dos Santos V, et al. A Hippocampus-Accumbens Tripartite Neuronal Motif Guides Appetitive Memory in Space. Cell. 2019;176:1393-1406.e16 pubmed 出版商
  9. Wizeman J, Guo Q, Wilion E, LI J. Specification of diverse cell types during early neurogenesis of the mouse cerebellum. elife. 2019;8: pubmed 出版商
  10. Angelova A, Platel J, B clin C, Cremer H, Cor N. Characterization of perinatally born glutamatergic neurons of the mouse olfactory bulb based on NeuroD6 expression reveals their resistance to sensory deprivation. J Comp Neurol. 2019;527:1245-1260 pubmed 出版商
  11. Kaczmarek Hájek K, Zhang J, Kopp R, Grosche A, Rissiek B, Saul A, et al. Re-evaluation of neuronal P2X7 expression using novel mouse models and a P2X7-specific nanobody. elife. 2018;7: pubmed 出版商
  12. Aktar R, Peiris M, Fikree A, Cibert Goton V, Walmsley M, Tough I, et al. The extracellular matrix glycoprotein tenascin-X regulates peripheral sensory and motor neurones. J Physiol. 2018;596:4237-4251 pubmed 出版商
  13. Chandra A, Lee S, Grünert U. Thorny ganglion cells in marmoset retina: Morphological and neurochemical characterization with antibodies against calretinin. J Comp Neurol. 2017;525:3962-3974 pubmed 出版商
  14. DeWalt G, Eldred W. Visual system pathology in humans and animal models of blast injury. J Comp Neurol. 2017;525:2955-2967 pubmed 出版商
  15. Zhang X, Sullivan C, Kratz M, Kasten M, Maness P, Manis P. NCAM Regulates Inhibition and Excitability in Layer 2/3 Pyramidal Cells of Anterior Cingulate Cortex. Front Neural Circuits. 2017;11:19 pubmed 出版商
  16. Fraser J, Essebier A, Gronostajski R, Boden M, Wainwright B, Harvey T, et al. Cell-type-specific expression of NFIX in the developing and adult cerebellum. Brain Struct Funct. 2017;222:2251-2270 pubmed 出版商
  17. Puighermanal E, Cutando L, Boubaker Vitre J, Honoré E, Longueville S, Hervé D, et al. Anatomical and molecular characterization of dopamine D1 receptor-expressing neurons of the mouse CA1 dorsal hippocampus. Brain Struct Funct. 2017;222:1897-1911 pubmed 出版商
  18. Ku T, Swaney J, Park J, Albanese A, Murray E, Cho J, et al. Multiplexed and scalable super-resolution imaging of three-dimensional protein localization in size-adjustable tissues. Nat Biotechnol. 2016;34:973-81 pubmed 出版商
  19. Akopian A, Kumar S, Ramakrishnan H, Viswanathan S, Bloomfield S. Amacrine cells coupled to ganglion cells via gap junctions are highly vulnerable in glaucomatous mouse retinas. J Comp Neurol. 2019;527:159-173 pubmed 出版商
  20. Kim J, Jeong J, Park S, Jeong J, Ryu Y, Song S. Recurrent renal cell carcinoma manifesting as a large intrathoracic fibrotic mass: A case report. Oncol Lett. 2016;11:3835-3838 pubmed
  21. Figueres Oñate M, López Mascaraque L. Adult Olfactory Bulb Interneuron Phenotypes Identified by Targeting Embryonic and Postnatal Neural Progenitors. Front Neurosci. 2016;10:194 pubmed 出版商
  22. Díaz Balzac C, Lázaro Peña M, Vázquez Figueroa L, Díaz Balzac R, Garcia Arraras J. Holothurian Nervous System Diversity Revealed by Neuroanatomical Analysis. PLoS ONE. 2016;11:e0151129 pubmed 出版商
  23. Li J, Su Y, Wang H, Zhao Y, Liao X, Wang X, et al. Repeated Blockade of NMDA Receptors During Adolescence Impairs Reversal Learning and Disrupts GABAergic Interneurons in Rat Medial Prefrontal Cortex. Front Mol Neurosci. 2016;9:17 pubmed 出版商
  24. Canetta S, Bolkan S, Padilla Coreano N, Song L, Sahn R, Harrison N, et al. Maternal immune activation leads to selective functional deficits in offspring parvalbumin interneurons. Mol Psychiatry. 2016;21:956-68 pubmed 出版商
  25. White J, Lin T, Brown A, Arancillo M, Lackey E, Stay T, et al. An optimized surgical approach for obtaining stable extracellular single-unit recordings from the cerebellum of head-fixed behaving mice. J Neurosci Methods. 2016;262:21-31 pubmed 出版商
  26. de Souza C, Nivison Smith L, Christie D, Polkinghorne P, McGhee C, Kalloniatis M, et al. Macromolecular markers in normal human retina and applications to human retinal disease. Exp Eye Res. 2016;150:135-48 pubmed 出版商
  27. Wagener R, Witte M, Guy J, Mingo Moreno N, Kügler S, Staiger J. Thalamocortical Connections Drive Intracortical Activation of Functional Columns in the Mislaminated Reeler Somatosensory Cortex. Cereb Cortex. 2016;26:820-37 pubmed 出版商
  28. Sauter J, Ambaye A, Mount S. Increased utilization, verification, and clinical implications of immunocytochemistry: Experience in a northern New England hospital. Diagn Cytopathol. 2015;43:688-95 pubmed 出版商
  29. Laclef C, Anselme I, Besse L, Catala M, Palmyre A, Baas D, et al. The role of primary cilia in corpus callosum formation is mediated by production of the Gli3 repressor. Hum Mol Genet. 2015;24:4997-5014 pubmed 出版商
  30. Debertin G, Kántor O, Kovács Öller T, Balogh L, Szabó Meleg E, Orbán J, et al. Tyrosine hydroxylase positive perisomatic rings are formed around various amacrine cell types in the mammalian retina. J Neurochem. 2015;134:416-28 pubmed 出版商
  31. Castro A, Becerra M, Manso M, Anadón R. Neuronal Organization of the Brain in the Adult Amphioxus (Branchiostoma lanceolatum): A Study With Acetylated Tubulin Immunohistochemistry. J Comp Neurol. 2015;523:2211-32 pubmed 出版商
  32. Puighermanal E, Biever A, Espallergues J, Gangarossa G, De Bundel D, Valjent E. drd2-cre:ribotag mouse line unravels the possible diversity of dopamine d2 receptor-expressing cells of the dorsal mouse hippocampus. Hippocampus. 2015;25:858-75 pubmed 出版商
  33. Heng Y, Zhou B, Harris L, Harvey T, Smith A, Horne E, et al. NFIX Regulates Proliferation and Migration Within the Murine SVZ Neurogenic Niche. Cereb Cortex. 2015;25:3758-78 pubmed 出版商
  34. Weltzien F, Percival K, Martin P, Grünert U. Analysis of bipolar and amacrine populations in marmoset retina. J Comp Neurol. 2015;523:313-34 pubmed 出版商
  35. Abdelzaher E, Abdallah D. Expression of mesothelioma-related markers in meningiomas: an immunohistochemical study. Biomed Res Int. 2014;2014:968794 pubmed 出版商
  36. Pose Méndez S, Candal E, Adrio F, Rodriguez Moldes I. Development of the cerebellar afferent system in the shark Scyliorhinus canicula: insights into the basal organization of precerebellar nuclei in gnathostomes. J Comp Neurol. 2014;522:131-68 pubmed 出版商
  37. Delli Carri A, Onorati M, Castiglioni V, Faedo A, Camnasio S, Toselli M, et al. Human pluripotent stem cell differentiation into authentic striatal projection neurons. Stem Cell Rev. 2013;9:461-74 pubmed 出版商
  38. Carvalho F, Carvalho J, Pereira R, Ceccato B, Lacordia R, Baracat E. Leiomyomatosis peritonealis disseminata associated with endometriosis and multiple uterus-like mass: report of two cases. Clin Med Insights Case Rep. 2012;5:63-8 pubmed 出版商
  39. Chua J, Fletcher E, Kalloniatis M. Functional remodeling of glutamate receptors by inner retinal neurons occurs from an early stage of retinal degeneration. J Comp Neurol. 2009;514:473-91 pubmed 出版商