这是一篇来自已证抗体库的有关小鼠 Calb2的综述,是根据89篇发表使用所有方法的文章归纳的。这综述旨在帮助来邦网的访客找到最适合Calb2 抗体。
Calb2 同义词: CR

Synaptic Systems
domestic rabbit 多克隆(/)
  • 免疫组化-自由浮动切片; 小鼠; 1:1000; 图 5o
Synaptic Systems Calb2抗体(Synaptic Systems, 214102)被用于被用于免疫组化-自由浮动切片在小鼠样本上浓度为1:1000 (图 5o). Cell (2019) ncbi
小鼠 单克隆(37C9)
  • 免疫组化-自由浮动切片; 小鼠; 图 2d
Synaptic Systems Calb2抗体(Synaptic System, 214 111)被用于被用于免疫组化-自由浮动切片在小鼠样本上 (图 2d). J Comp Neurol (2019) ncbi
小鼠 单克隆(37C9)
  • 免疫组化-冰冻切片; 小鼠; 1:1000; 图 3s1a
Synaptic Systems Calb2抗体(Synaptic Systems, 214111)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:1000 (图 3s1a). elife (2018) ncbi
小鼠 单克隆(37C9)
  • 免疫组化; 小鼠; 1:200; 图 1b
Synaptic Systems Calb2抗体(Synaptic systems, 37C9)被用于被用于免疫组化在小鼠样本上浓度为1:200 (图 1b). Front Neural Circuits (2017) ncbi
圣克鲁斯生物技术
小鼠 单克隆(H-5)
  • 免疫组化-冰冻切片; 小鼠; 1:25; 图 5
圣克鲁斯生物技术 Calb2抗体(Santa Cruz Biotechnology, sc-365,956)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:25 (图 5). J Comp Neurol (2020) ncbi
小鼠 单克隆(D-12)
  • 免疫组化; 小鼠; 图 3c
圣克鲁斯生物技术 Calb2抗体(SantaCruz, sc-365989)被用于被用于免疫组化在小鼠样本上 (图 3c). J Comp Neurol (2017) ncbi
艾博抗(上海)贸易有限公司
domestic rabbit 多克隆
艾博抗(上海)贸易有限公司 Calb2抗体(Abcam, ab702)被用于. J Comp Neurol (2020) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 大西洋鳉; 1:100; 图 4
艾博抗(上海)贸易有限公司 Calb2抗体(Abcam, ab702)被用于被用于免疫组化-石蜡切片在大西洋鳉样本上浓度为1:100 (图 4). Toxicology (2019) ncbi
domestic rabbit 单克隆(EPR1799(2))
  • 免疫组化; 小鼠; 图 st1
艾博抗(上海)贸易有限公司 Calb2抗体(Abcam, ab133316)被用于被用于免疫组化在小鼠样本上 (图 st1). Nat Biotechnol (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-自由浮动切片; 小鼠; 1:500; 图 3a
艾博抗(上海)贸易有限公司 Calb2抗体(Abcam, Ab702)被用于被用于免疫组化-自由浮动切片在小鼠样本上浓度为1:500 (图 3a). Front Neurosci (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化; Holothuria glaberrima; 1:100; 图 3
艾博抗(上海)贸易有限公司 Calb2抗体(Abcam, ab702)被用于被用于免疫组化在Holothuria glaberrima样本上浓度为1:100 (图 3). PLoS ONE (2016) ncbi
赛默飞世尔
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:1000; 表 1
赛默飞世尔 Calb2抗体(Thermo Fisher, PA5-16681)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:1000 (表 1). J Comp Neurol (2019) ncbi
domestic rabbit 单克隆(SP13)
  • 免疫组化-石蜡切片; 人类; 1:100; 图 4
赛默飞世尔 Calb2抗体(Thermo Fisher, RM-9113-S0)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100 (图 4). Oncol Lett (2016) ncbi
domestic rabbit 单克隆(SP13)
  • 免疫组化; 人类; 表 2
赛默飞世尔 Calb2抗体(Thermo Scientific, SP13)被用于被用于免疫组化在人类样本上 (表 2). Diagn Cytopathol (2015) ncbi
domestic rabbit 单克隆(SP13)
  • 免疫组化-石蜡切片; 人类
赛默飞世尔 Calb2抗体(Thermo Scientific, SP13)被用于被用于免疫组化-石蜡切片在人类样本上. Biomed Res Int (2014) ncbi
domestic rabbit 单克隆(SP13)
  • 免疫组化; 人类; 1:400
赛默飞世尔 Calb2抗体(Neomarkers, SP13)被用于被用于免疫组化在人类样本上浓度为1:400. Clin Med Insights Case Rep (2012) ncbi
SWant
  • 免疫组化; 小鼠; 1:1000; 图 2d
SWant Calb2抗体(Swant, 7699/4)被用于被用于免疫组化在小鼠样本上浓度为1:1000 (图 2d). elife (2019) ncbi
单克隆(6B3)
  • 免疫组化; 小鼠; 1:500; 图 1a
SWant Calb2抗体(Swant, CG1; 6B3)被用于被用于免疫组化在小鼠样本上浓度为1:500 (图 1a). J Physiol (2018) ncbi
  • 免疫组化; 小鼠; 1:200; 表 1
SWant Calb2抗体(SWANT, 7699/3)被用于被用于免疫组化在小鼠样本上浓度为1:200 (表 1). Brain Struct Funct (2017) ncbi
  • 免疫组化-冰冻切片; 小鼠; 1:1000; 图 1e
SWant Calb2抗体(Swant, 7699/3H)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:1000 (图 1e). Brain Struct Funct (2017) ncbi
  • 免疫组化-自由浮动切片; 大鼠; 1:5000; 图 4
  • 免疫印迹; 大鼠; 1:10,000; 图 6
SWant Calb2抗体(Swant, 7699/3H)被用于被用于免疫组化-自由浮动切片在大鼠样本上浓度为1:5000 (图 4) 和 被用于免疫印迹在大鼠样本上浓度为1:10,000 (图 6). Front Mol Neurosci (2016) ncbi
  • 免疫组化; 小鼠; 1:2000; 图 2
SWant Calb2抗体(Swant, 7699/3H)被用于被用于免疫组化在小鼠样本上浓度为1:2000 (图 2). Mol Psychiatry (2016) ncbi
  • 免疫组化-石蜡切片; 小鼠; 1:500; 图 8
SWant Calb2抗体(Swant, CR7699/3H)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:500 (图 8). J Neurosci Methods (2016) ncbi
  • 免疫组化; 小鼠; 图 7c
SWant Calb2抗体(Swant, 7696)被用于被用于免疫组化在小鼠样本上 (图 7c). Cereb Cortex (2016) ncbi
  • 免疫组化-石蜡切片; 小鼠; 1:1000; 图 s2
SWant Calb2抗体(Swant, 7696)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:1000 (图 s2). Hum Mol Genet (2015) ncbi
SWant Calb2抗体(SWant, 7699/3H)被用于. J Comp Neurol (2015) ncbi
  • 免疫组化-石蜡切片; 小鼠; 1:1000
SWant Calb2抗体(Swant, CR7699/3H)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:1000. Hippocampus (2015) ncbi
  • 免疫组化-自由浮动切片; 小鼠; 1:50,000
SWant Calb2抗体(SWANT, CR 7699/3H)被用于被用于免疫组化-自由浮动切片在小鼠样本上浓度为1:50,000. Cereb Cortex (2015) ncbi
SWant Calb2抗体(Swant, 7699/3H)被用于. J Comp Neurol (2014) ncbi
默克密理博中国
小鼠 单克隆(6B8.2)
  • 免疫组化; 小鼠; 1:200; 图 s3a
默克密理博中国 Calb2抗体(Millipore, MAB1568)被用于被用于免疫组化在小鼠样本上浓度为1:200 (图 s3a). Nat Commun (2019) ncbi
小鼠 单克隆(6B8.2)
  • 免疫组化-石蜡切片; 大鼠; 1:250; 图 s3p
默克密理博中国 Calb2抗体(Merck Millipore, MAB1568)被用于被用于免疫组化-石蜡切片在大鼠样本上浓度为1:250 (图 s3p). Histochem Cell Biol (2019) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:1000; 图 10
默克密理博中国 Calb2抗体(Millipore, AB5054)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:1000 (图 10). J Comp Neurol (2019) ncbi
小鼠 单克隆(6B8.2)
  • 免疫组化-冰冻切片; 小鼠; 图 s6g
默克密理博中国 Calb2抗体(Millipore, MAB1568)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 s6g). Cell (2018) ncbi
小鼠 单克隆(6B8.2)
  • 免疫组化-自由浮动切片; 小鼠; 1:500; 图 2d
默克密理博中国 Calb2抗体(Millipore, MAB1568)被用于被用于免疫组化-自由浮动切片在小鼠样本上浓度为1:500 (图 2d). J Neurosci (2017) ncbi
小鼠 单克隆(6B8.2)
  • 免疫组化-冰冻切片; 小鼠; 1:200; 表 1
默克密理博中国 Calb2抗体(Millipore, MAB1568)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:200 (表 1). J Comp Neurol (2017) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:100; 图 1J
默克密理博中国 Calb2抗体(EMD Millipore, AB5054)被用于被用于免疫组化在小鼠样本上浓度为1:100 (图 1J). elife (2017) ncbi
小鼠 单克隆(6B8.2)
  • 免疫组化-石蜡切片; 大鼠; 1:300
  • 免疫组化; 大鼠; 图 30
默克密理博中国 Calb2抗体(Millipore, MAB1568)被用于被用于免疫组化-石蜡切片在大鼠样本上浓度为1:300 和 被用于免疫组化在大鼠样本上 (图 30). J Toxicol Pathol (2017) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:2000; 图 2d
默克密理博中国 Calb2抗体(Millipore, AB5054)被用于被用于免疫组化在小鼠样本上浓度为1:2000 (图 2d). J Comp Neurol (2017) ncbi
小鼠 单克隆(6B8.2)
  • 免疫组化-石蜡切片; 小鼠; 1:1000; 图 3b
默克密理博中国 Calb2抗体(Millipore, MAB1568)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:1000 (图 3b). Eneuro (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 图 1g
默克密理博中国 Calb2抗体(Millipore, AB5054)被用于被用于免疫组化在小鼠样本上 (图 1g). J Neurosci Res (2017) ncbi
domestic goat 多克隆
  • 免疫组化; 小鼠; 1:1000; 图 s2
默克密理博中国 Calb2抗体(Millipore, AB1550)被用于被用于免疫组化在小鼠样本上浓度为1:1000 (图 s2). Nat Commun (2016) ncbi
小鼠 单克隆(6B8.2)
  • 免疫组化-石蜡切片; 小鼠; 1:100; 图 s1a
默克密理博中国 Calb2抗体(Millipore, MAB1568)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:100 (图 s1a). J Clin Invest (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 大鼠; 图 s10
默克密理博中国 Calb2抗体(Millipore, AB5054)被用于被用于免疫印迹在大鼠样本上 (图 s10). ACS Nano (2016) ncbi
domestic goat 多克隆
  • 免疫组化; 小鼠; 1:500; 图 2
默克密理博中国 Calb2抗体(Merck-Millipore, AB 1550)被用于被用于免疫组化在小鼠样本上浓度为1:500 (图 2). Front Mol Neurosci (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:500; 图 s2
默克密理博中国 Calb2抗体(Millipore, AB5054)被用于被用于免疫组化在小鼠样本上浓度为1:500 (图 s2). Ann Clin Transl Neurol (2016) ncbi
小鼠 单克隆(6B8.2)
  • 免疫组化; 小鼠; 1:100; 图 2
默克密理博中国 Calb2抗体(Millipore, MAB1568)被用于被用于免疫组化在小鼠样本上浓度为1:100 (图 2). Nat Commun (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化; 淋菌; 1:1000; 图 s2
默克密理博中国 Calb2抗体(millipore, ab5054)被用于被用于免疫组化在淋菌样本上浓度为1:1000 (图 s2). PLoS ONE (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化; 大鼠; 1:4000; 图 4
默克密理博中国 Calb2抗体(Millipore, AB5054)被用于被用于免疫组化在大鼠样本上浓度为1:4000 (图 4). Front Cell Neurosci (2016) ncbi
domestic goat 多克隆
  • 免疫组化-冰冻切片; 小鼠
默克密理博中国 Calb2抗体(Millipore, AB1550)被用于被用于免疫组化-冰冻切片在小鼠样本上. Nature (2016) ncbi
domestic goat 多克隆
  • 免疫细胞化学; 小鼠; 1:1000; 图 5
默克密理博中国 Calb2抗体(Chemicon, AB1550)被用于被用于免疫细胞化学在小鼠样本上浓度为1:1000 (图 5). Methods Mol Biol (2016) ncbi
domestic rabbit 多克隆
默克密理博中国 Calb2抗体(Chemicon, AB 5054)被用于. PLoS ONE (2016) ncbi
小鼠 单克隆(6B8.2)
  • 免疫组化; northern tree shrew; 图 1a
默克密理博中国 Calb2抗体(Chemicon, MAB1568)被用于被用于免疫组化在northern tree shrew样本上 (图 1a). J Comp Neurol (2017) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:250; 图 1
默克密理博中国 Calb2抗体(Milipore, ab5054)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:250 (图 1). BMC Cell Biol (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 非洲爪蛙; 1:1000; 图 s3
默克密理博中国 Calb2抗体(Millipore, AB5054)被用于被用于免疫组化-冰冻切片在非洲爪蛙样本上浓度为1:1000 (图 s3). Development (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 图 2
默克密理博中国 Calb2抗体(Millipore, AB5054)被用于被用于免疫组化在小鼠样本上 (图 2). J Neurosci (2016) ncbi
小鼠 单克隆(6B8.2)
  • 免疫组化-冰冻切片; 大鼠; 1:500; 图 s2
默克密理博中国 Calb2抗体(Millipore, MAB1568)被用于被用于免疫组化-冰冻切片在大鼠样本上浓度为1:500 (图 s2). Sci Rep (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:600; 图 1
默克密理博中国 Calb2抗体(Millipore, AB5054)被用于被用于免疫组化在小鼠样本上浓度为1:600 (图 1). Nat Commun (2016) ncbi
小鼠 单克隆(6B8.2)
  • 免疫组化; 小鼠; 1:400; 图 1
默克密理博中国 Calb2抗体(Millipore, MAB1568)被用于被用于免疫组化在小鼠样本上浓度为1:400 (图 1). Nat Commun (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-自由浮动切片; 小鼠; 1:500; 图 6
默克密理博中国 Calb2抗体(Millipore, AB5054)被用于被用于免疫组化-自由浮动切片在小鼠样本上浓度为1:500 (图 6). Gene Ther (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 斑马鱼; 1:1000; 图 1
默克密理博中国 Calb2抗体(Chemicon International, AB5054)被用于被用于免疫组化-石蜡切片在斑马鱼样本上浓度为1:1000 (图 1). J Anat (2016) ncbi
小鼠 单克隆(6B8.2)
  • 免疫组化-石蜡切片; 大鼠; 1:200; 图 4
默克密理博中国 Calb2抗体(Millipore, 6B8.2)被用于被用于免疫组化-石蜡切片在大鼠样本上浓度为1:200 (图 4). Brain Struct Funct (2016) ncbi
小鼠 单克隆(6B8.2)
  • 免疫组化; 小鼠; 1:200; 图 3
默克密理博中国 Calb2抗体(Millipore, MAB1568)被用于被用于免疫组化在小鼠样本上浓度为1:200 (图 3). Int J Dev Neurosci (2015) ncbi
小鼠 单克隆(6B8.2)
  • 免疫组化; 小鼠; 1:1500
默克密理博中国 Calb2抗体(Millipore, MAB1568)被用于被用于免疫组化在小鼠样本上浓度为1:1500. J Neurosci (2015) ncbi
小鼠 单克隆(6B8.2)
  • 免疫组化-冰冻切片; 小鼠; 1:3000; 图 3
默克密理博中国 Calb2抗体(Millipore, MAB 1568)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:3000 (图 3). Mol Brain (2015) ncbi
小鼠 单克隆(6B8.2)
  • 免疫组化; 小鼠; 1:1000
默克密理博中国 Calb2抗体(Millipore, mab1568)被用于被用于免疫组化在小鼠样本上浓度为1:1000. Mol Brain (2015) ncbi
小鼠 单克隆(6B8.2)
  • 免疫细胞化学; 小鼠; 1:1000
  • 免疫组化; 小鼠; 1:1000
默克密理博中国 Calb2抗体(Millipore, Mab1568)被用于被用于免疫细胞化学在小鼠样本上浓度为1:1000 和 被用于免疫组化在小鼠样本上浓度为1:1000. F1000Res (2014) ncbi
小鼠 单克隆(6B8.2)
  • 免疫细胞化学; 小鼠; 1:1000
默克密理博中国 Calb2抗体(Chemicon, MAB1568)被用于被用于免疫细胞化学在小鼠样本上浓度为1:1000. Mol Brain (2014) ncbi
小鼠 单克隆(6B8.2)
  • 免疫组化-冰冻切片; 人类; 1:500; 图 3
默克密理博中国 Calb2抗体(Millipore Chemicon, MAB1568)被用于被用于免疫组化-冰冻切片在人类样本上浓度为1:500 (图 3). Front Neuroanat (2014) ncbi
小鼠 单克隆(6B8.2)
  • 免疫组化; 小鼠; 1:1000
默克密理博中国 Calb2抗体(Millipore, MAB1568)被用于被用于免疫组化在小鼠样本上浓度为1:1000. J Biol Chem (2014) ncbi
小鼠 单克隆(6B8.2)
  • 免疫细胞化学; 人类
默克密理博中国 Calb2抗体(EMD Millipore, MAB1568)被用于被用于免疫细胞化学在人类样本上. Cereb Cortex (2016) ncbi
小鼠 单克隆(6B8.2)
  • 免疫组化; 小鼠; 1:1500; 图 e1
默克密理博中国 Calb2抗体(Millipore, MAB1568)被用于被用于免疫组化在小鼠样本上浓度为1:1500 (图 e1). Nature (2014) ncbi
小鼠 单克隆(6B8.2)
  • 免疫组化-自由浮动切片; 小鼠; 1:1000
默克密理博中国 Calb2抗体(Chemicon, MAB1568)被用于被用于免疫组化-自由浮动切片在小鼠样本上浓度为1:1000. Neuroscience (2014) ncbi
小鼠 单克隆(6B8.2)
  • 免疫组化; 小鼠
默克密理博中国 Calb2抗体(Millipore, MAB1568)被用于被用于免疫组化在小鼠样本上. J Comp Neurol (2014) ncbi
小鼠 单克隆(6B8.2)
  • 免疫组化-自由浮动切片; 小鼠; 1:1000
默克密理博中国 Calb2抗体(Millipore, MAB1568)被用于被用于免疫组化-自由浮动切片在小鼠样本上浓度为1:1000. J Neurosci (2013) ncbi
小鼠 单克隆(6B8.2)
  • 免疫组化-石蜡切片; 大鼠; 1:500
默克密理博中国 Calb2抗体(Millipore, MAB1568)被用于被用于免疫组化-石蜡切片在大鼠样本上浓度为1:500. J Comp Neurol (2013) ncbi
小鼠 单克隆(6B8.2)
  • 免疫组化-冰冻切片; Carollia perspicillata; 1:1000; 图 3d-i
默克密理博中国 Calb2抗体(Millipore, MAB1568)被用于被用于免疫组化-冰冻切片在Carollia perspicillata样本上浓度为1:1000 (图 3d-i). J Neurosci (2013) ncbi
小鼠 单克隆(6B8.2)
  • 免疫组化; 大鼠; 1:500
默克密理博中国 Calb2抗体(Millipore, MAB1568)被用于被用于免疫组化在大鼠样本上浓度为1:500. J Comp Neurol (2013) ncbi
小鼠 单克隆(6B8.2)
  • 免疫组化-石蜡切片; 小鼠; 1:1000
默克密理博中国 Calb2抗体(Chemicon, MAB1568)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:1000. J Comp Neurol (2013) ncbi
小鼠 单克隆(6B8.2)
  • 免疫组化-冰冻切片; 大鼠; 1:1000
默克密理博中国 Calb2抗体(Millipore, MAB1568)被用于被用于免疫组化-冰冻切片在大鼠样本上浓度为1:1000. J Histochem Cytochem (2012) ncbi
小鼠 单克隆(6B8.2)
  • 免疫组化-冰冻切片; 小鼠; 1:1000
默克密理博中国 Calb2抗体(Millipore, MAB1568)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:1000. J Comp Neurol (2010) ncbi
小鼠 单克隆(6B8.2)
  • 免疫组化-自由浮动切片; 大鼠; 1:500
默克密理博中国 Calb2抗体(Chemicon, MAB1568)被用于被用于免疫组化-自由浮动切片在大鼠样本上浓度为1:500. J Comp Neurol (2009) ncbi
小鼠 单克隆(6B8.2)
  • 免疫组化-自由浮动切片; 大鼠; 1:600
默克密理博中国 Calb2抗体(Chemicon, MAB1568)被用于被用于免疫组化-自由浮动切片在大鼠样本上浓度为1:600. J Comp Neurol (2008) ncbi
小鼠 单克隆(6B8.2)
  • 免疫组化-冰冻切片; 小鼠; 1:100
默克密理博中国 Calb2抗体(Chemicon, MAB1568)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:100. J Comp Neurol (2008) ncbi
小鼠 单克隆(6B8.2)
  • 免疫组化; 大鼠; 1:500
默克密理博中国 Calb2抗体(Chemicon, MAB1568)被用于被用于免疫组化在大鼠样本上浓度为1:500. J Comp Neurol (2008) ncbi
小鼠 单克隆(6B8.2)
  • 免疫组化; 小鼠; 1:400
默克密理博中国 Calb2抗体(Chemicon, MAB1568)被用于被用于免疫组化在小鼠样本上浓度为1:400. J Comp Neurol (2005) ncbi
碧迪BD
小鼠 单克隆(34/Calretinin)
  • 免疫组化; African green monkey; 1:2000; 图 2a
碧迪BD Calb2抗体(BD Bioscience, 610908)被用于被用于免疫组化在African green monkey样本上浓度为1:2000 (图 2a). J Comp Neurol (2017) ncbi
小鼠 单克隆(34/Calretinin)
  • 免疫细胞化学; 人类; 1:1000; 表 1
碧迪BD Calb2抗体(BD Biosciences, 610908)被用于被用于免疫细胞化学在人类样本上浓度为1:1000 (表 1). Exp Eye Res (2016) ncbi
小鼠 单克隆(34/Calretinin)
  • 免疫组化-自由浮动切片; 猕猴; 1:2000
碧迪BD Calb2抗体(BD Biosciences, 610908)被用于被用于免疫组化-自由浮动切片在猕猴样本上浓度为1:2000. J Comp Neurol (2015) ncbi
小鼠 单克隆(34/Calretinin)
  • 免疫细胞化学; 人类; 1:200
碧迪BD Calb2抗体(BD Bioscience, 610908)被用于被用于免疫细胞化学在人类样本上浓度为1:200. Stem Cell Rev (2013) ncbi
小鼠 单克隆(34/Calretinin)
  • 免疫组化-冰冻切片; 小鼠; 1:1000
碧迪BD Calb2抗体(BD Transduction Laboratories, 610908)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:1000. J Comp Neurol (2009) ncbi
文章列表
  1. Wakeham C, Ren G, Morgans C. Expression and distribution of trophoblast glycoprotein in the mouse retina. J Comp Neurol. 2020;528:1660-1671 pubmed 出版商
  2. Emam A, Yoffe M, Cardona H, Soares D. Retinal morphology in Astyanax mexicanus during eye degeneration. J Comp Neurol. 2020;528:1523-1534 pubmed 出版商
  3. Genet G, Boyé K, Mathivet T, Ola R, Zhang F, Dubrac A, et al. Endophilin-A2 dependent VEGFR2 endocytosis promotes sprouting angiogenesis. Nat Commun. 2019;10:2350 pubmed 出版商
  4. Szymkowicz D, Sims K, Schwendinger K, Tatnall C, Powell R, Bruce T, et al. Exposure to arsenic during embryogenesis impairs olfactory sensory neuron differentiation and function into adulthood. Toxicology. 2019;420:73-84 pubmed 出版商
  5. Mammone T, Chidlow G, Casson R, Wood J. Improved immunohistochemical detection of phosphorylated mitogen-activated protein kinases in the injured rat optic nerve head. Histochem Cell Biol. 2019;151:435-456 pubmed 出版商
  6. Trouche S, Koren V, Doig N, Ellender T, El Gaby M, Lopes Dos Santos V, et al. A Hippocampus-Accumbens Tripartite Neuronal Motif Guides Appetitive Memory in Space. Cell. 2019;176:1393-1406.e16 pubmed 出版商
  7. Wizeman J, Guo Q, Wilion E, LI J. Specification of diverse cell types during early neurogenesis of the mouse cerebellum. elife. 2019;8: pubmed 出版商
  8. Shin M, Kitazawa A, Yoshinaga S, Hayashi K, Hirata Y, Dehay C, et al. Both excitatory and inhibitory neurons transiently form clusters at the outermost region of the developing mammalian cerebral neocortex. J Comp Neurol. 2019;527:1577-1597 pubmed 出版商
  9. Angelova A, Platel J, B clin C, Cremer H, Cor N. Characterization of perinatally born glutamatergic neurons of the mouse olfactory bulb based on NeuroD6 expression reveals their resistance to sensory deprivation. J Comp Neurol. 2019;527:1245-1260 pubmed 出版商
  10. Kaczmarek Hájek K, Zhang J, Kopp R, Grosche A, Rissiek B, Saul A, et al. Re-evaluation of neuronal P2X7 expression using novel mouse models and a P2X7-specific nanobody. elife. 2018;7: pubmed 出版商
  11. Aktar R, Peiris M, Fikree A, Cibert Goton V, Walmsley M, Tough I, et al. The extracellular matrix glycoprotein tenascin-X regulates peripheral sensory and motor neurones. J Physiol. 2018;596:4237-4251 pubmed 出版商
  12. Dickel D, Ypsilanti A, Pla R, Zhu Y, Barozzi I, Mannion B, et al. Ultraconserved Enhancers Are Required for Normal Development. Cell. 2018;172:491-499.e15 pubmed 出版商
  13. Chandra A, Lee S, Grünert U. Thorny ganglion cells in marmoset retina: Morphological and neurochemical characterization with antibodies against calretinin. J Comp Neurol. 2017;525:3962-3974 pubmed 出版商
  14. Bayguinov P, Ma Y, Gao Y, Zhao X, Jackson M. Imaging Voltage in Genetically Defined Neuronal Subpopulations with a Cre Recombinase-Targeted Hybrid Voltage Sensor. J Neurosci. 2017;37:9305-9319 pubmed 出版商
  15. Seigneur E, Südhof T. Cerebellins are differentially expressed in selective subsets of neurons throughout the brain. J Comp Neurol. 2017;525:3286-3311 pubmed 出版商
  16. DeWalt G, Eldred W. Visual system pathology in humans and animal models of blast injury. J Comp Neurol. 2017;525:2955-2967 pubmed 出版商
  17. Zhang X, Sullivan C, Kratz M, Kasten M, Maness P, Manis P. NCAM Regulates Inhibition and Excitability in Layer 2/3 Pyramidal Cells of Anterior Cingulate Cortex. Front Neural Circuits. 2017;11:19 pubmed 出版商
  18. Bucks S, Cox B, Vlosich B, Manning J, Nguyen T, Stone J. Supporting cells remove and replace sensory receptor hair cells in a balance organ of adult mice. elife. 2017;6: pubmed 出版商
  19. Furukawa S, Nagaike M, Ozaki K. Databases for technical aspects of immunohistochemistry. J Toxicol Pathol. 2017;30:79-107 pubmed 出版商
  20. Wang J, O Sullivan M, Mukherjee D, Punal V, Farsiu S, Kay J. Anatomy and spatial organization of Müller glia in mouse retina. J Comp Neurol. 2017;525:1759-1777 pubmed 出版商
  21. Fraser J, Essebier A, Gronostajski R, Boden M, Wainwright B, Harvey T, et al. Cell-type-specific expression of NFIX in the developing and adult cerebellum. Brain Struct Funct. 2017;222:2251-2270 pubmed 出版商
  22. Sinha R, Lee A, Rieke F, Haeseleer F. Lack of CaBP1/Caldendrin or CaBP2 Leads to Altered Ganglion Cell Responses. Eneuro. 2016;3: pubmed
  23. Giannakopoulou A, Lyras G, Grigoriadis N. Long-term effects of autoimmune CNS inflammation on adult hippocampal neurogenesis. J Neurosci Res. 2017;95:1446-1458 pubmed 出版商
  24. Puighermanal E, Cutando L, Boubaker Vitre J, Honoré E, Longueville S, Hervé D, et al. Anatomical and molecular characterization of dopamine D1 receptor-expressing neurons of the mouse CA1 dorsal hippocampus. Brain Struct Funct. 2017;222:1897-1911 pubmed 出版商
  25. Yao X, Wang M, He X, He F, Zhang S, Lu W, et al. Electrical coupling regulates layer 1 interneuron microcircuit formation in the neocortex. Nat Commun. 2016;7:12229 pubmed 出版商
  26. Ku T, Swaney J, Park J, Albanese A, Murray E, Cho J, et al. Multiplexed and scalable super-resolution imaging of three-dimensional protein localization in size-adjustable tissues. Nat Biotechnol. 2016;34:973-81 pubmed 出版商
  27. Sanges D, Simonte G, Di Vicino U, Romo N, Pinilla I, Nicolas M, et al. Reprogramming Müller glia via in vivo cell fusion regenerates murine photoreceptors. J Clin Invest. 2016;126:3104-16 pubmed 出版商
  28. Akopian A, Kumar S, Ramakrishnan H, Viswanathan S, Bloomfield S. Amacrine cells coupled to ganglion cells via gap junctions are highly vulnerable in glaucomatous mouse retinas. J Comp Neurol. 2019;527:159-173 pubmed 出版商
  29. Bramini M, Sacchetti S, Armirotti A, Rocchi A, Vazquez E, León Castellanos V, et al. Graphene Oxide Nanosheets Disrupt Lipid Composition, Ca(2+) Homeostasis, and Synaptic Transmission in Primary Cortical Neurons. ACS Nano. 2016;10:7154-71 pubmed 出版商
  30. Kim J, Jeong J, Park S, Jeong J, Ryu Y, Song S. Recurrent renal cell carcinoma manifesting as a large intrathoracic fibrotic mass: A case report. Oncol Lett. 2016;11:3835-3838 pubmed
  31. Meyer A, Tetenborg S, Greb H, Segelken J, Dorgau B, Weiler R, et al. Connexin30.2: In Vitro Interaction with Connexin36 in HeLa Cells and Expression in AII Amacrine Cells and Intrinsically Photosensitive Ganglion Cells in the Mouse Retina. Front Mol Neurosci. 2016;9:36 pubmed 出版商
  32. Figueres Oñate M, López Mascaraque L. Adult Olfactory Bulb Interneuron Phenotypes Identified by Targeting Embryonic and Postnatal Neural Progenitors. Front Neurosci. 2016;10:194 pubmed 出版商
  33. Genç B, Jara J, Schultz M, Manuel M, Stanford M, Gautam M, et al. Absence of UCHL 1 function leads to selective motor neuropathy. Ann Clin Transl Neurol. 2016;3:331-45 pubmed 出版商
  34. Liu X, Koehler K, Mikosz A, Hashino E, Holt J. Functional development of mechanosensitive hair cells in stem cell-derived organoids parallels native vestibular hair cells. Nat Commun. 2016;7:11508 pubmed 出版商
  35. Shah B, Lutter D, Bochenek M, Kato K, Tsytsyura Y, Glyvuk N, et al. C3G/Rapgef1 Is Required in Multipolar Neurons for the Transition to a Bipolar Morphology during Cortical Development. PLoS ONE. 2016;11:e0154174 pubmed 出版商
  36. Wang X, Song X, Wu L, Nadler J, Zhan R. Persistent Hyperactivity of Hippocampal Dentate Interneurons After a Silent Period in the Rat Pilocarpine Model of Epilepsy. Front Cell Neurosci. 2016;10:94 pubmed 出版商
  37. Fourgeaud L, Traves P, Tufail Y, Leal Bailey H, Lew E, Burrola P, et al. TAM receptors regulate multiple features of microglial physiology. Nature. 2016;532:240-244 pubmed 出版商
  38. Yoshikawa M, Ouji Y. Induction of Inner Ear Hair Cells from Mouse Embryonic Stem Cells In Vitro. Methods Mol Biol. 2016;1516:257-267 pubmed 出版商
  39. Klooster J, Kamermans M. An Ultrastructural and Immunohistochemical Analysis of the Outer Plexiform Layer of the Retina of the European Silver Eel (Anguilla anguilla L). PLoS ONE. 2016;11:e0152967 pubmed 出版商
  40. Díaz Balzac C, Lázaro Peña M, Vázquez Figueroa L, Díaz Balzac R, Garcia Arraras J. Holothurian Nervous System Diversity Revealed by Neuroanatomical Analysis. PLoS ONE. 2016;11:e0151129 pubmed 出版商
  41. Li J, Su Y, Wang H, Zhao Y, Liao X, Wang X, et al. Repeated Blockade of NMDA Receptors During Adolescence Impairs Reversal Learning and Disrupts GABAergic Interneurons in Rat Medial Prefrontal Cortex. Front Mol Neurosci. 2016;9:17 pubmed 出版商
  42. Day Brown J, Slusarczyk A, Zhou N, Quiggins R, Petry H, Bickford M. Synaptic organization of striate cortex projections in the tree shrew: A comparison of the claustrum and dorsal thalamus. J Comp Neurol. 2017;525:1403-1420 pubmed 出版商
  43. Boggild S, Molgaard S, Glerup S, Nyengaard J. Spatiotemporal patterns of sortilin and SorCS2 localization during organ development. BMC Cell Biol. 2016;17:8 pubmed 出版商
  44. Roque C, Wong H, Lin J, Holt C. Tumor protein Tctp regulates axon development in the embryonic visual system. Development. 2016;143:1134-48 pubmed 出版商
  45. Zhang Q, Gao X, Li C, Feliciano C, Wang D, Zhou D, et al. Impaired Dendritic Development and Memory in Sorbs2 Knock-Out Mice. J Neurosci. 2016;36:2247-60 pubmed 出版商
  46. Kinjo E, Higa G, Santos B, de Sousa E, Damico M, Walter L, et al. Pilocarpine-induced seizures trigger differential regulation of microRNA-stability related genes in rat hippocampal neurons. Sci Rep. 2016;6:20969 pubmed 出版商
  47. Anastasiades P, Marques Smith A, Lyngholm D, Lickiss T, Raffiq S, Kätzel D, et al. GABAergic interneurons form transient layer-specific circuits in early postnatal neocortex. Nat Commun. 2016;7:10584 pubmed 出版商
  48. Canetta S, Bolkan S, Padilla Coreano N, Song L, Sahn R, Harrison N, et al. Maternal immune activation leads to selective functional deficits in offspring parvalbumin interneurons. Mol Psychiatry. 2016;21:956-68 pubmed 出版商
  49. White J, Lin T, Brown A, Arancillo M, Lackey E, Stay T, et al. An optimized surgical approach for obtaining stable extracellular single-unit recordings from the cerebellum of head-fixed behaving mice. J Neurosci Methods. 2016;262:21-31 pubmed 出版商
  50. de Souza C, Nivison Smith L, Christie D, Polkinghorne P, McGhee C, Kalloniatis M, et al. Macromolecular markers in normal human retina and applications to human retinal disease. Exp Eye Res. 2016;150:135-48 pubmed 出版商
  51. Jara J, Stanford M, Zhu Y, Tu M, Hauswirth W, Bohn M, et al. Healthy and diseased corticospinal motor neurons are selectively transduced upon direct AAV2-2 injection into the motor cortex. Gene Ther. 2016;23:272-82 pubmed 出版商
  52. Wagener R, Witte M, Guy J, Mingo Moreno N, Kügler S, Staiger J. Thalamocortical Connections Drive Intracortical Activation of Functional Columns in the Mislaminated Reeler Somatosensory Cortex. Cereb Cortex. 2016;26:820-37 pubmed 出版商
  53. Bettini S, Lazzari M, Ferrando S, Gallus L, Franceschini V. Histopathological analysis of the olfactory epithelium of zebrafish (Danio rerio) exposed to sublethal doses of urea. J Anat. 2016;228:59-69 pubmed 出版商
  54. Chidlow G, Wood J, Knoops B, Casson R. Expression and distribution of peroxiredoxins in the retina and optic nerve. Brain Struct Funct. 2016;221:3903-3925 pubmed
  55. Hakanen J, Salminen M. Defects in neural guidepost structures and failure to remove leptomeningeal cells from the septal midline behind the interhemispheric fusion defects in Netrin1 deficient mice. Int J Dev Neurosci. 2015;47:206-15 pubmed 出版商
  56. Miyoshi G, Young A, PETROS T, Karayannis T, McKenzie Chang M, Lavado A, et al. Prox1 Regulates the Subtype-Specific Development of Caudal Ganglionic Eminence-Derived GABAergic Cortical Interneurons. J Neurosci. 2015;35:12869-89 pubmed 出版商
  57. Sauter J, Ambaye A, Mount S. Increased utilization, verification, and clinical implications of immunocytochemistry: Experience in a northern New England hospital. Diagn Cytopathol. 2015;43:688-95 pubmed 出版商
  58. Laclef C, Anselme I, Besse L, Catala M, Palmyre A, Baas D, et al. The role of primary cilia in corpus callosum formation is mediated by production of the Gli3 repressor. Hum Mol Genet. 2015;24:4997-5014 pubmed 出版商
  59. Imoto Y, Kira T, Sukeno M, Nishitani N, Nagayasu K, Nakagawa T, et al. Role of the 5-HT4 receptor in chronic fluoxetine treatment-induced neurogenic activity and granule cell dematuration in the dentate gyrus. Mol Brain. 2015;8:29 pubmed 出版商
  60. Jin K, Jiang H, Xiao D, Zou M, Zhu J, Xiang M. Tfap2a and 2b act downstream of Ptf1a to promote amacrine cell differentiation during retinogenesis. Mol Brain. 2015;8:28 pubmed 出版商
  61. Castro A, Becerra M, Manso M, Anadón R. Neuronal Organization of the Brain in the Adult Amphioxus (Branchiostoma lanceolatum): A Study With Acetylated Tubulin Immunohistochemistry. J Comp Neurol. 2015;523:2211-32 pubmed 出版商
  62. Puighermanal E, Biever A, Espallergues J, Gangarossa G, De Bundel D, Valjent E. drd2-cre:ribotag mouse line unravels the possible diversity of dopamine d2 receptor-expressing cells of the dorsal mouse hippocampus. Hippocampus. 2015;25:858-75 pubmed 出版商
  63. Molgaard S, Ulrichsen M, Boggild S, Holm M, Vaegter C, Nyengaard J, et al. Immunohistochemical visualization of mouse interneuron subtypes. F1000Res. 2014;3:242 pubmed 出版商
  64. Liu J, Liu B, Zhang X, Yu B, Guan W, Wang K, et al. Calretinin-positive L5a pyramidal neurons in the development of the paralemniscal pathway in the barrel cortex. Mol Brain. 2014;7:84 pubmed 出版商
  65. Heng Y, Zhou B, Harris L, Harvey T, Smith A, Horne E, et al. NFIX Regulates Proliferation and Migration Within the Murine SVZ Neurogenic Niche. Cereb Cortex. 2015;25:3758-78 pubmed 出版商
  66. Weltzien F, Percival K, Martin P, Grünert U. Analysis of bipolar and amacrine populations in marmoset retina. J Comp Neurol. 2015;523:313-34 pubmed 出版商
  67. Radonjić N, Ortega J, Memi F, Dionne K, Jakovcevski I, Zecevic N. The complexity of the calretinin-expressing progenitors in the human cerebral cortex. Front Neuroanat. 2014;8:82 pubmed 出版商
  68. Wang H, Yuan Y, Zhang Z, Yan H, Feng Y, Li W. Dysbindin-1C is required for the survival of hilar mossy cells and the maturation of adult newborn neurons in dentate gyrus. J Biol Chem. 2014;289:29060-72 pubmed 出版商
  69. Radonjić N, Memi F, Ortega J, Glidden N, Zhan H, Zecevic N. The Role of Sonic Hedgehog in the Specification of Human Cortical Progenitors In Vitro. Cereb Cortex. 2016;26:131-43 pubmed 出版商
  70. Abdelzaher E, Abdallah D. Expression of mesothelioma-related markers in meningiomas: an immunohistochemical study. Biomed Res Int. 2014;2014:968794 pubmed 出版商
  71. Karayannis T, Au E, Patel J, Kruglikov I, Markx S, Delorme R, et al. Cntnap4 differentially contributes to GABAergic and dopaminergic synaptic transmission. Nature. 2014;511:236-40 pubmed
  72. Liu Y, Liang X, Ren W, Li B. Expression of ?1- and ?2-adrenoceptors in different subtypes of interneurons in the medial prefrontal cortex of mice. Neuroscience. 2014;257:149-57 pubmed 出版商
  73. Cagle M, Honig M. Parcellation of cerebellins 1, 2, and 4 among different subpopulations of dorsal horn neurons in mouse spinal cord. J Comp Neurol. 2014;522:479-97 pubmed 出版商
  74. Bergami M, Vignoli B, Motori E, Pifferi S, Zuccaro E, Menini A, et al. TrkB signaling directs the incorporation of newly generated periglomerular cells in the adult olfactory bulb. J Neurosci. 2013;33:11464-78 pubmed 出版商
  75. Pose Méndez S, Candal E, Adrio F, Rodriguez Moldes I. Development of the cerebellar afferent system in the shark Scyliorhinus canicula: insights into the basal organization of precerebellar nuclei in gnathostomes. J Comp Neurol. 2014;522:131-68 pubmed 出版商
  76. Delli Carri A, Onorati M, Castiglioni V, Faedo A, Camnasio S, Toselli M, et al. Human pluripotent stem cell differentiation into authentic striatal projection neurons. Stem Cell Rev. 2013;9:461-74 pubmed 出版商
  77. Nivison Smith L, Sun D, Fletcher E, Marc R, Kalloniatis M. Mapping kainate activation of inner neurons in the rat retina. J Comp Neurol. 2013;521:2416-38 pubmed 出版商
  78. M ller B, Butz E, Peichl L, Haverkamp S. The rod pathway of the microbat retina has bistratified rod bipolar cells and tristratified AII amacrine cells. J Neurosci. 2013;33:1014-23 pubmed 出版商
  79. Cox D, Racca C. Differential dendritic targeting of AMPA receptor subunit mRNAs in adult rat hippocampal principal neurons and interneurons. J Comp Neurol. 2013;521:1954-2007 pubmed 出版商
  80. Ivanova E, Lee P, Pan Z. Characterization of multiple bistratified retinal ganglion cells in a purkinje cell protein 2-Cre transgenic mouse line. J Comp Neurol. 2013;521:2165-80 pubmed 出版商
  81. Wakabayashi T, Kosaka J, Mori T, Yamada H. Prolonged expression of Puma in cholinergic amacrine cells during the development of rat retina. J Histochem Cytochem. 2012;60:777-88 pubmed
  82. Carvalho F, Carvalho J, Pereira R, Ceccato B, Lacordia R, Baracat E. Leiomyomatosis peritonealis disseminata associated with endometriosis and multiple uterus-like mass: report of two cases. Clin Med Insights Case Rep. 2012;5:63-8 pubmed 出版商
  83. Kotani T, Murata Y, Ohnishi H, Mori M, Kusakari S, Saito Y, et al. Expression of PTPRO in the interneurons of adult mouse olfactory bulb. J Comp Neurol. 2010;518:119-36 pubmed 出版商
  84. Ingham E, Gunhan E, Fuller P, Fuller C. Immunotoxin-induced ablation of melanopsin retinal ganglion cells in a non-murine mammalian model. J Comp Neurol. 2009;516:125-40 pubmed 出版商
  85. Chua J, Fletcher E, Kalloniatis M. Functional remodeling of glutamate receptors by inner retinal neurons occurs from an early stage of retinal degeneration. J Comp Neurol. 2009;514:473-91 pubmed 出版商
  86. Yang Z, You Y, Levison S. Neonatal hypoxic/ischemic brain injury induces production of calretinin-expressing interneurons in the striatum. J Comp Neurol. 2008;511:19-33 pubmed 出版商
  87. Poche R, Furuta Y, Chaboissier M, Schedl A, Behringer R. Sox9 is expressed in mouse multipotent retinal progenitor cells and functions in Müller glial cell development. J Comp Neurol. 2008;510:237-50 pubmed 出版商
  88. Cox D, Racca C, LeBeau F. Beta-adrenergic receptors are differentially expressed in distinct interneuron subtypes in the rat hippocampus. J Comp Neurol. 2008;509:551-65 pubmed 出版商
  89. Treloar H, Uboha U, Jeromin A, Greer C. Expression of the neuronal calcium sensor protein NCS-1 in the developing mouse olfactory pathway. J Comp Neurol. 2005;482:201-16 pubmed