这是一篇来自已证抗体库的有关小鼠 Casp3的综述,是根据1327篇发表使用所有方法的文章归纳的。这综述旨在帮助来邦网的访客找到最适合Casp3 抗体。
Casp3 同义词: A830040C14Rik; AC-3; CASP-3; CC3; CPP-32; CPP32; Caspase-3; Lice; SCA-1; Yama; mldy

艾博抗(上海)贸易有限公司
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 图 1a
艾博抗(上海)贸易有限公司 Casp3抗体(Abcam, ab44976)被用于被用于免疫组化在小鼠样本上 (图 1a). Front Cell Dev Biol (2021) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 图 5a
艾博抗(上海)贸易有限公司 Casp3抗体(Abcam, ab13847)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 5a). Front Microbiol (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 3c
艾博抗(上海)贸易有限公司 Casp3抗体(Abcam, ab2302)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3c). Cell Death Dis (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:500; 图 4c
艾博抗(上海)贸易有限公司 Casp3抗体(Abcam, ab13847)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 4c). Int J Oncol (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:500; 图 2d
艾博抗(上海)贸易有限公司 Casp3抗体(Abcam, ab13847)被用于被用于免疫印迹在小鼠样本上浓度为1:500 (图 2d). Front Cell Dev Biol (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 2h
艾博抗(上海)贸易有限公司 Casp3抗体(Abcam, ab2302)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 2h). Oncol Lett (2021) ncbi
domestic rabbit 多克隆
  • 免疫组化; 斑马鱼; 1:500; 图 6g
艾博抗(上海)贸易有限公司 Casp3抗体(Abcam, ab13847)被用于被用于免疫组化在斑马鱼样本上浓度为1:500 (图 6g). Eneuro (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 大鼠; 1:10,000; 图 3b
艾博抗(上海)贸易有限公司 Casp3抗体(Abcam, AB2302)被用于被用于免疫印迹在大鼠样本上浓度为1:10,000 (图 3b). Mol Med Rep (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 5d, 1b
艾博抗(上海)贸易有限公司 Casp3抗体(Abcam, ab49822)被用于被用于免疫印迹在小鼠样本上 (图 5d, 1b). Aging (Albany NY) (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 4i
艾博抗(上海)贸易有限公司 Casp3抗体(Abcam, ab2302)被用于被用于免疫印迹在人类样本上 (图 4i). Front Cell Dev Biol (2020) ncbi
domestic rabbit 单克隆(EPR21032)
  • 免疫印迹; 人类; 1:5000; 图 4c
艾博抗(上海)贸易有限公司 Casp3抗体(Abcam, ab214430)被用于被用于免疫印迹在人类样本上浓度为1:5000 (图 4c). Mol Med Rep (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:500; 图 4i
艾博抗(上海)贸易有限公司 Casp3抗体(Abcam, ab2302)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 4i). Mol Med Rep (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 6d
艾博抗(上海)贸易有限公司 Casp3抗体(Abcam, ab2302)被用于被用于免疫印迹在小鼠样本上 (图 6d). Aging (Albany NY) (2020) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:500; 图 3c
艾博抗(上海)贸易有限公司 Casp3抗体(Abcam, ab2302)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 3c). Aging (Albany NY) (2020) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 6a
艾博抗(上海)贸易有限公司 Casp3抗体(Abcam, ab49822)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 6a). J Transl Med (2020) ncbi
domestic rabbit 多克隆
  • 免疫组化; 大鼠; 1:100; 图 3a
艾博抗(上海)贸易有限公司 Casp3抗体(Abcam, ab2302)被用于被用于免疫组化在大鼠样本上浓度为1:100 (图 3a). Int J Mol Med (2020) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:100; 图 6g
  • 免疫印迹; 小鼠; 1:1000; 图 6k
艾博抗(上海)贸易有限公司 Casp3抗体(Abcam, ab13847)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:100 (图 6g) 和 被用于免疫印迹在小鼠样本上浓度为1:1000 (图 6k). Front Aging Neurosci (2020) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 2g
艾博抗(上海)贸易有限公司 Casp3抗体(Abcam, ab13847)被用于被用于免疫印迹在人类样本上 (图 2g). Aging (Albany NY) (2020) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 2g
艾博抗(上海)贸易有限公司 Casp3抗体(Abcam, ab2302)被用于被用于免疫印迹在人类样本上 (图 2g). Aging (Albany NY) (2020) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 2f
艾博抗(上海)贸易有限公司 Casp3抗体(Abcam, ab49822)被用于被用于免疫印迹在人类样本上 (图 2f). Aging (Albany NY) (2020) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 大鼠; 1:200; 图 6a
  • 免疫细胞化学; 大鼠; 1:150; 图 5j
  • 免疫印迹; 大鼠; 1:200; 图 7c
艾博抗(上海)贸易有限公司 Casp3抗体(Abcam, ab2302)被用于被用于免疫组化-石蜡切片在大鼠样本上浓度为1:200 (图 6a), 被用于免疫细胞化学在大鼠样本上浓度为1:150 (图 5j) 和 被用于免疫印迹在大鼠样本上浓度为1:200 (图 7c). Mol Med Rep (2020) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 大鼠; 1:1000; 图 1e, 2c, 5g
艾博抗(上海)贸易有限公司 Casp3抗体(Abcam, ab13847)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 1e, 2c, 5g). J Neuroinflammation (2020) ncbi
domestic rabbit 多克隆
艾博抗(上海)贸易有限公司 Casp3抗体(Abcam, ab13847)被用于. Int J Mol Sci (2020) ncbi
domestic rabbit 单克隆(EPR18297)
  • 免疫印迹; 人类; 图 8
艾博抗(上海)贸易有限公司 Casp3抗体(Abcam, ab184787)被用于被用于免疫印迹在人类样本上 (图 8). Biomolecules (2020) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 4h
艾博抗(上海)贸易有限公司 Casp3抗体(Abcam, ab2302)被用于被用于免疫印迹在人类样本上 (图 4h). Aging (Albany NY) (2019) ncbi
domestic rabbit 多克隆
艾博抗(上海)贸易有限公司 Casp3抗体(Abcam, Ab13847-25)被用于. elife (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:500; 图 1d
艾博抗(上海)贸易有限公司 Casp3抗体(Abcam, ab2302)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 1d). Sci Rep (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 大鼠; 1:1000; 图 5b
艾博抗(上海)贸易有限公司 Casp3抗体(Abcam, ab2302)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 5b). Biosci Rep (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 2f
艾博抗(上海)贸易有限公司 Casp3抗体(Abcam, ab2302)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 2f). Biol Open (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 3c, 3g
艾博抗(上海)贸易有限公司 Casp3抗体(Abcam, ab13847)被用于被用于免疫印迹在人类样本上 (图 3c, 3g). Aging (Albany NY) (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 2d, 2e
艾博抗(上海)贸易有限公司 Casp3抗体(Abcam, ab49822)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 2d, 2e). Int J Oncol (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:500; 图 4a
艾博抗(上海)贸易有限公司 Casp3抗体(Abcam, ab2302)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 4a). J Physiol Biochem (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:500; 图 4a
艾博抗(上海)贸易有限公司 Casp3抗体(Abcam, ab13847)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 4a). J Physiol Biochem (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 1c
艾博抗(上海)贸易有限公司 Casp3抗体(Abcam, ab2302)被用于被用于免疫印迹在人类样本上 (图 1c). Eur Rev Med Pharmacol Sci (2019) ncbi
小鼠 单克隆(31A1067)
  • 免疫印迹; 人类; 图 4c
艾博抗(上海)贸易有限公司 Casp3抗体(Abcam, ab13585)被用于被用于免疫印迹在人类样本上 (图 4c). J Pathol (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 大鼠; 图 3d
艾博抗(上海)贸易有限公司 Casp3抗体(Abcam, ab2302)被用于被用于免疫印迹在大鼠样本上 (图 3d). Biosci Rep (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 大鼠; 图 1d
艾博抗(上海)贸易有限公司 Casp3抗体(Abcam, ab4051)被用于被用于免疫印迹在大鼠样本上 (图 1d). Braz J Med Biol Res (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 大鼠; 图 1d
艾博抗(上海)贸易有限公司 Casp3抗体(Abcam, ab49822)被用于被用于免疫印迹在大鼠样本上 (图 1d). Braz J Med Biol Res (2019) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 图 6c
艾博抗(上海)贸易有限公司 Casp3抗体(Abcam, ab13847)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 6c). Nat Commun (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 大鼠; 1:1000; 图 1c
艾博抗(上海)贸易有限公司 Casp3抗体(Abcam, ab13847)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 1c). BMC Biotechnol (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 大鼠; 1:1000; 图 1c
艾博抗(上海)贸易有限公司 Casp3抗体(Abcam, ab44976)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 1c). BMC Biotechnol (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 2h
艾博抗(上海)贸易有限公司 Casp3抗体(Abcam, ab49822)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 2h). Redox Biol (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 2h
艾博抗(上海)贸易有限公司 Casp3抗体(Abcam, ab13847)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 2h). Redox Biol (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 1h
艾博抗(上海)贸易有限公司 Casp3抗体(abcam, ab13847)被用于被用于免疫印迹在小鼠样本上 (图 1h). J Mol Histol (2018) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 1h
艾博抗(上海)贸易有限公司 Casp3抗体(abcam, ab49822)被用于被用于免疫印迹在小鼠样本上 (图 1h). J Mol Histol (2018) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 小鼠; 图 s2g
艾博抗(上海)贸易有限公司 Casp3抗体(Abcam, ab2302)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 s2g). Development (2018) ncbi
小鼠 单克隆(31A1067)
  • 免疫印迹; 小鼠; 1:500; 图 7c
艾博抗(上海)贸易有限公司 Casp3抗体(Abcam, ab13585)被用于被用于免疫印迹在小鼠样本上浓度为1:500 (图 7c). Biomed Pharmacother (2018) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 7d
艾博抗(上海)贸易有限公司 Casp3抗体(Abcam, ab13847)被用于被用于免疫印迹在人类样本上 (图 7d). Cell (2018) ncbi
小鼠 单克隆(ABM1C12)
  • 免疫组化-石蜡切片; domestic rabbit; 1:100; 图 6a
艾博抗(上海)贸易有限公司 Casp3抗体(Abcam, ab208161)被用于被用于免疫组化-石蜡切片在domestic rabbit样本上浓度为1:100 (图 6a). Invest Ophthalmol Vis Sci (2018) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:500; 图 6a
艾博抗(上海)贸易有限公司 Casp3抗体(Abcam, ab44976)被用于被用于免疫印迹在小鼠样本上浓度为1:500 (图 6a). Int J Mol Med (2017) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 图 2u
艾博抗(上海)贸易有限公司 Casp3抗体(Abcam, Ab13847)被用于被用于免疫组化在小鼠样本上 (图 2u). J Dent Res (2017) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 1:1000; 图 5g
艾博抗(上海)贸易有限公司 Casp3抗体(Abcam, ab4051)被用于被用于免疫细胞化学在人类样本上浓度为1:1000 (图 5g). Cell Death Differ (2017) ncbi
domestic rabbit 多克隆
  • 免疫组化; 大鼠; 1:100; 图 7a
艾博抗(上海)贸易有限公司 Casp3抗体(Abcam, ab4051)被用于被用于免疫组化在大鼠样本上浓度为1:100 (图 7a). Pathophysiology (2017) ncbi
domestic rabbit 单克隆(EPR16888)
  • 免疫印迹; 小鼠; 图 6b
艾博抗(上海)贸易有限公司 Casp3抗体(Abcam, ab179517)被用于被用于免疫印迹在小鼠样本上 (图 6b). Autophagy (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:200; 图 2e
艾博抗(上海)贸易有限公司 Casp3抗体(Abcam, ab2302)被用于被用于免疫印迹在小鼠样本上浓度为1:200 (图 2e). J Mol Neurosci (2017) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 大鼠; 图 5c
艾博抗(上海)贸易有限公司 Casp3抗体(Abcam, ab13847)被用于被用于免疫细胞化学在大鼠样本上 (图 5c). Oncotarget (2017) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 图 9e
艾博抗(上海)贸易有限公司 Casp3抗体(abcam, ab13847)被用于被用于免疫组化在小鼠样本上 (图 9e). Nature (2017) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:50; 图 S8A
艾博抗(上海)贸易有限公司 Casp3抗体(Abcam, ab13847)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:50 (图 S8A). J Clin Invest (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 0.5 ug/ml; 图 2
艾博抗(上海)贸易有限公司 Casp3抗体(Abcam, ab4051)被用于被用于免疫组化在小鼠样本上浓度为0.5 ug/ml (图 2). Oncotarget (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 大鼠; 1:500; 图 2
艾博抗(上海)贸易有限公司 Casp3抗体(Abcam, ab13847)被用于被用于免疫组化-冰冻切片在大鼠样本上浓度为1:500 (图 2). Acta Neuropathol Commun (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000
艾博抗(上海)贸易有限公司 Casp3抗体(Abcam, ab-4051)被用于被用于免疫印迹在小鼠样本上浓度为1:1000. Biochem Pharmacol (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:200; 图 s5
艾博抗(上海)贸易有限公司 Casp3抗体(Abcam, ab2302)被用于被用于免疫组化在小鼠样本上浓度为1:200 (图 s5). PLoS Genet (2016) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 1:100; 图 s9
  • 免疫印迹; 人类; 1:1000; 图 s9
艾博抗(上海)贸易有限公司 Casp3抗体(Abcam, ab13847)被用于被用于免疫细胞化学在人类样本上浓度为1:100 (图 s9) 和 被用于免疫印迹在人类样本上浓度为1:1000 (图 s9). Nat Commun (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 大鼠; 图 2
艾博抗(上海)贸易有限公司 Casp3抗体(Abcam, ab2302)被用于被用于免疫印迹在大鼠样本上 (图 2). Mol Brain (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:200; 图 s1d
艾博抗(上海)贸易有限公司 Casp3抗体(Abcam, 4051)被用于被用于免疫组化在小鼠样本上浓度为1:200 (图 s1d). Proc Natl Acad Sci U S A (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 3b
艾博抗(上海)贸易有限公司 Casp3抗体(Abcam, ab13847)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3b). Mol Med Rep (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:4000; 图 4
艾博抗(上海)贸易有限公司 Casp3抗体(Abcam, ab13847)被用于被用于免疫印迹在小鼠样本上浓度为1:4000 (图 4). Nat Commun (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 3
艾博抗(上海)贸易有限公司 Casp3抗体(Abcam, ab2302)被用于被用于免疫印迹在人类样本上 (图 3). J Cancer (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 3
艾博抗(上海)贸易有限公司 Casp3抗体(Abcam, ab2302)被用于被用于免疫印迹在人类样本上 (图 3). Oncol Lett (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 3
艾博抗(上海)贸易有限公司 Casp3抗体(Abcam, ab13847)被用于被用于免疫印迹在人类样本上 (图 3). Oncol Lett (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 3
艾博抗(上海)贸易有限公司 Casp3抗体(Abcam, 13847)被用于被用于免疫印迹在人类样本上 (图 3). Acta Neuropathol Commun (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 2c
艾博抗(上海)贸易有限公司 Casp3抗体(Abcam, ab13847)被用于被用于免疫印迹在人类样本上 (图 2c). PLoS ONE (2016) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 非洲爪蛙; 1:200; 图 8
艾博抗(上海)贸易有限公司 Casp3抗体(Abcam, ab13847)被用于被用于免疫细胞化学在非洲爪蛙样本上浓度为1:200 (图 8). Development (2016) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 1:50; 图 5
  • 免疫组化; 人类; 1:50; 图 5
艾博抗(上海)贸易有限公司 Casp3抗体(Abcam, ab2302)被用于被用于免疫细胞化学在人类样本上浓度为1:50 (图 5) 和 被用于免疫组化在人类样本上浓度为1:50 (图 5). Development (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 1
艾博抗(上海)贸易有限公司 Casp3抗体(Abcam, ab13847)被用于被用于免疫印迹在人类样本上 (图 1). Nat Commun (2016) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 小鼠; 1:200; 图 2
艾博抗(上海)贸易有限公司 Casp3抗体(Abcam, ab13847)被用于被用于免疫细胞化学在小鼠样本上浓度为1:200 (图 2). Biol Reprod (2016) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类
艾博抗(上海)贸易有限公司 Casp3抗体(Abcam, ab2302)被用于被用于免疫细胞化学在人类样本上. J Neurosci (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:300; 图 3a
艾博抗(上海)贸易有限公司 Casp3抗体(Abcam, ab44976)被用于被用于免疫印迹在人类样本上浓度为1:300 (图 3a). Sci Rep (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:200; 图 s3
艾博抗(上海)贸易有限公司 Casp3抗体(Abcam, ab13847)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:200 (图 s3). J Cell Biol (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:800; 图 4
艾博抗(上海)贸易有限公司 Casp3抗体(Abcam, ab2302)被用于被用于免疫印迹在小鼠样本上浓度为1:800 (图 4). Mol Med Rep (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:100; 图 5a
艾博抗(上海)贸易有限公司 Casp3抗体(Abcam, ab4051)被用于被用于免疫组化在小鼠样本上浓度为1:100 (图 5a). Oncol Rep (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:200; 图 3
艾博抗(上海)贸易有限公司 Casp3抗体(Abcam, ab2302)被用于被用于免疫印迹在人类样本上浓度为1:200 (图 3). Mol Med Rep (2016) ncbi
小鼠 单克隆(31A1067)
  • 免疫印迹; 人类; 图 5
艾博抗(上海)贸易有限公司 Casp3抗体(Abcam, 31A1067)被用于被用于免疫印迹在人类样本上 (图 5). Blood Cancer J (2015) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 1
艾博抗(上海)贸易有限公司 Casp3抗体(Abcam, ab2302)被用于被用于免疫印迹在小鼠样本上 (图 1). J Cell Mol Med (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 1
艾博抗(上海)贸易有限公司 Casp3抗体(Abcam, ab4051)被用于被用于免疫印迹在小鼠样本上 (图 1). J Cell Mol Med (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 4e
艾博抗(上海)贸易有限公司 Casp3抗体(Abcam, ab13847)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 4e). J Pathol (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 大鼠; 1:500; 图 6a
艾博抗(上海)贸易有限公司 Casp3抗体(Abcam, ab4051)被用于被用于免疫组化-石蜡切片在大鼠样本上浓度为1:500 (图 6a). Mol Cell Endocrinol (2016) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 大鼠; 1:1000
艾博抗(上海)贸易有限公司 Casp3抗体(Abcam, Ab13847)被用于被用于免疫细胞化学在大鼠样本上浓度为1:1000. Biol Trace Elem Res (2016) ncbi
小鼠 单克隆(31A1067)
  • 免疫印迹; 人类; 1:500
艾博抗(上海)贸易有限公司 Casp3抗体(Abcam, Ab13585)被用于被用于免疫印迹在人类样本上浓度为1:500. Mol Oncol (2015) ncbi
domestic rabbit 多克隆
艾博抗(上海)贸易有限公司 Casp3抗体(Abcam, ab2302)被用于. Mol Ther (2014) ncbi
domestic rabbit 多克隆
艾博抗(上海)贸易有限公司 Casp3抗体(Abcam, ab4051)被用于. Dev Biol (2013) ncbi
圣克鲁斯生物技术
小鼠 单克隆(C-6)
  • 免疫印迹; 大鼠; 1:1000; 图 4d
圣克鲁斯生物技术 Casp3抗体(Santa Cruz, sc-271,759)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 4d). BMC Cardiovasc Disord (2020) ncbi
小鼠 单克隆(31A1067)
  • 免疫印迹; 小鼠; 图 2b, 4b
  • 免疫印迹; 人类; 图 2b
圣克鲁斯生物技术 Casp3抗体(Santa Cruz, SC-56053)被用于被用于免疫印迹在小鼠样本上 (图 2b, 4b) 和 被用于免疫印迹在人类样本上 (图 2b). J Immunother Cancer (2020) ncbi
小鼠 单克隆(C-6)
  • 免疫组化; 小鼠; 1:50; 图 4c
圣克鲁斯生物技术 Casp3抗体(Santa Cruz, sc-271759)被用于被用于免疫组化在小鼠样本上浓度为1:50 (图 4c). Sci Rep (2020) ncbi
小鼠 单克隆(46)
  • 免疫组化-石蜡切片; 大鼠; 1:200; 图 1e, 2e
圣克鲁斯生物技术 Casp3抗体(Santa Cruz Biotechnology, sc-136219)被用于被用于免疫组化-石蜡切片在大鼠样本上浓度为1:200 (图 1e, 2e). Int J Nanomedicine (2020) ncbi
小鼠 单克隆(C-6)
  • 免疫印迹; 人类; 图 2d
圣克鲁斯生物技术 Casp3抗体(Santa Cruz Biotechnology Inc, sc-271759)被用于被用于免疫印迹在人类样本上 (图 2d). Cell Physiol Biochem (2018) ncbi
小鼠 单克隆(46)
  • 免疫印迹; 人类; 图 3c
圣克鲁斯生物技术 Casp3抗体(SantaCruz, sc-136219)被用于被用于免疫印迹在人类样本上 (图 3c). Oncotarget (2017) ncbi
小鼠 单克隆(C-6)
  • 免疫印迹; 人类; 1:2500; 图 4B
圣克鲁斯生物技术 Casp3抗体(Santa cruz, sc-271759)被用于被用于免疫印迹在人类样本上浓度为1:2500 (图 4B). Mol Med Rep (2017) ncbi
小鼠 单克隆(31A1067)
  • 免疫印迹; 人类; 1:1000; 图 2d
圣克鲁斯生物技术 Casp3抗体(Santa Cruz, sc-56053)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 2d). Int J Mol Med (2017) ncbi
小鼠 单克隆(4.1.18)
  • 免疫印迹; 人类; 1:1000; 图 6A
圣克鲁斯生物技术 Casp3抗体(Santa Cruz, sc-65497)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 6A). Int J Mol Med (2017) ncbi
小鼠 单克隆(3CSP01)
  • 免疫印迹; 人类; 图 2j
圣克鲁斯生物技术 Casp3抗体(Santa Cruz, sc-65496)被用于被用于免疫印迹在人类样本上 (图 2j). Biomed Res Int (2017) ncbi
小鼠 单克隆(C-6)
  • 免疫印迹; 人类; 1:1000; 图 4a
圣克鲁斯生物技术 Casp3抗体(Santa Cruz Biotechnology, sc-271759)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 4a). Exp Ther Med (2016) ncbi
小鼠 单克隆
  • 免疫印迹; 人类; 图 3d
圣克鲁斯生物技术 Casp3抗体(Santa Cruz Biotechnology, C-6)被用于被用于免疫印迹在人类样本上 (图 3d). Oncol Rep (2016) ncbi
小鼠 单克隆(C-6)
  • 免疫印迹; 人类; 图 3d
圣克鲁斯生物技术 Casp3抗体(Santa Cruz Biotechnology, C-6)被用于被用于免疫印迹在人类样本上 (图 3d). Oncol Rep (2016) ncbi
小鼠 单克隆(4.1.18)
  • 免疫组化-石蜡切片; 人类; 1:200; 图 4a
  • 免疫印迹; 人类; 1:1000; 图 1g
圣克鲁斯生物技术 Casp3抗体(Santa Cruz, sc-65497)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:200 (图 4a) 和 被用于免疫印迹在人类样本上浓度为1:1000 (图 1g). Mol Med Rep (2016) ncbi
小鼠 单克隆(31A1067)
  • 免疫印迹; 人类; 1:200; 图 5
圣克鲁斯生物技术 Casp3抗体(Santa Cruz, sc-56053)被用于被用于免疫印迹在人类样本上浓度为1:200 (图 5). Oncol Lett (2016) ncbi
小鼠 单克隆(3CSP01)
  • 免疫印迹; 人类; 1:800; 图 6
圣克鲁斯生物技术 Casp3抗体(Santa Cruz, sc-65496)被用于被用于免疫印迹在人类样本上浓度为1:800 (图 6). Int J Biochem Cell Biol (2016) ncbi
小鼠 单克隆(46)
  • 免疫印迹; 小鼠; 图 2c
圣克鲁斯生物技术 Casp3抗体(Santa Cruz, 46)被用于被用于免疫印迹在小鼠样本上 (图 2c). J Biol Chem (2016) ncbi
小鼠 单克隆(C-6)
  • 免疫组化; 小鼠; 图 6
圣克鲁斯生物技术 Casp3抗体(Santa Cruz, 271759)被用于被用于免疫组化在小鼠样本上 (图 6). Sci Rep (2015) ncbi
小鼠 单克隆(31A1067)
  • 免疫印迹; 人类; 1:1000; 图 1
圣克鲁斯生物技术 Casp3抗体(santa Cruz, sc-56053)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 1). Cell Death Dis (2015) ncbi
小鼠 单克隆(CPP324-1-18)
  • 免疫印迹; 人类; 1:200; 图 6
圣克鲁斯生物技术 Casp3抗体(Santa Cruz, sc-56052)被用于被用于免疫印迹在人类样本上浓度为1:200 (图 6). Oncol Lett (2015) ncbi
小鼠 单克隆(46)
  • 免疫印迹; 大鼠; 1:200
圣克鲁斯生物技术 Casp3抗体(Santa Cruz Biotechnology, SC136219)被用于被用于免疫印迹在大鼠样本上浓度为1:200. J Pineal Res (2015) ncbi
小鼠 单克隆(3C119)
  • 免疫组化; 小鼠; 1:400
圣克鲁斯生物技术 Casp3抗体(Santa Cruz Biotechnology, sc-70497)被用于被用于免疫组化在小鼠样本上浓度为1:400. PLoS ONE (2014) ncbi
小鼠 单克隆(C-6)
  • 免疫印迹; 人类
圣克鲁斯生物技术 Casp3抗体(Santa Cruz, sc-271759)被用于被用于免疫印迹在人类样本上. Gene (2014) ncbi
小鼠 单克隆(31A1067)
  • 免疫印迹; 人类; 图 2
圣克鲁斯生物技术 Casp3抗体(Santa Cruz, sc-56053)被用于被用于免疫印迹在人类样本上 (图 2). Autophagy (2014) ncbi
小鼠 单克隆(46)
  • 免疫印迹; 小鼠
圣克鲁斯生物技术 Casp3抗体(Santa Cruz, sc-136219)被用于被用于免疫印迹在小鼠样本上. Eur J Pharmacol (2014) ncbi
小鼠 单克隆(31A1067)
  • 免疫印迹; domestic rabbit; 1:1000
圣克鲁斯生物技术 Casp3抗体(Santa Cruz, sc-56053)被用于被用于免疫印迹在domestic rabbit样本上浓度为1:1000. Eur J Nutr (2014) ncbi
赛默飞世尔
domestic rabbit 重组(9H19L2)
  • 免疫印迹; 小鼠; 1:1000; 图 7a
赛默飞世尔 Casp3抗体(Thermo Fisher Scientific, 9H19L2)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 7a). Antioxidants (Basel) (2020) ncbi
小鼠 单克隆(74T2)
  • 免疫细胞化学; 大鼠; 1:100; 图 3
赛默飞世尔 Casp3抗体(Thermo Scientific, 437,800)被用于被用于免疫细胞化学在大鼠样本上浓度为1:100 (图 3). Cell Biosci (2017) ncbi
小鼠 单克隆(CPP32 4-1-18)
  • 免疫组化; 大鼠; 1:500; 图 4a
赛默飞世尔 Casp3抗体(Pierce, CPP324-1-18)被用于被用于免疫组化在大鼠样本上浓度为1:500 (图 4a). Rom J Morphol Embryol (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 大鼠; 图 3a
赛默飞世尔 Casp3抗体(Thermo Fisher, PAI-29157)被用于被用于免疫组化-石蜡切片在大鼠样本上 (图 3a). Reprod Biol (2016) ncbi
小鼠 单克隆(31A1067)
  • 免疫印迹; 人类; 图 2
赛默飞世尔 Casp3抗体(Thermo Scientific, MA191637)被用于被用于免疫印迹在人类样本上 (图 2). Mol Cancer (2016) ncbi
domestic rabbit 重组(9H19L2)
  • 免疫细胞化学; 人类; 图 5
赛默飞世尔 Casp3抗体(Invitrogen, 700182)被用于被用于免疫细胞化学在人类样本上 (图 5). Radiat Oncol (2016) ncbi
domestic rabbit 重组(9H19L2)
  • 免疫印迹; 人类; 1:500; 图 3h
赛默飞世尔 Casp3抗体(Invitrogen, 9H19L2)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 3h). Mol Cell Biochem (2016) ncbi
小鼠 单克隆(CPP32 4-1-18)
  • 免疫组化-石蜡切片; 大鼠; 1:500; 图 3g
赛默飞世尔 Casp3抗体(LabVision, MA1-16843)被用于被用于免疫组化-石蜡切片在大鼠样本上浓度为1:500 (图 3g). Acta Histochem (2016) ncbi
domestic rabbit 重组(9H19L2)
  • 免疫印迹; 人类; 图 4
赛默飞世尔 Casp3抗体(Thermo Scientific, 9H19L2)被用于被用于免疫印迹在人类样本上 (图 4). Int J Mol Sci (2016) ncbi
domestic rabbit 重组(9H19L2)
  • 免疫细胞化学; 人类; 1:50; 图 2
赛默飞世尔 Casp3抗体(分子探针, 700182)被用于被用于免疫细胞化学在人类样本上浓度为1:50 (图 2). J Assist Reprod Genet (2016) ncbi
domestic rabbit 重组(9H19L2)
  • 免疫组化-石蜡切片; 大鼠; 图 4
赛默飞世尔 Casp3抗体(Thermo Fisher, 700182)被用于被用于免疫组化-石蜡切片在大鼠样本上 (图 4). Ann Anat (2016) ncbi
小鼠 单克隆(CPP32 4-1-18)
  • 免疫印迹; 人类; 1:250; 图 2
赛默飞世尔 Casp3抗体(Zymed Laboratories, MA1-16843)被用于被用于免疫印迹在人类样本上浓度为1:250 (图 2). Exp Ther Med (2015) ncbi
domestic rabbit 重组(9H19L2)
  • 免疫印迹; 人类
赛默飞世尔 Casp3抗体(Invitrogen, 700182)被用于被用于免疫印迹在人类样本上. Nanomedicine (Lond) (2015) ncbi
domestic rabbit 重组(9H19L2)
赛默飞世尔 Casp3抗体(生活技术, 700182)被用于. Methods Mol Biol (2015) ncbi
domestic rabbit 重组(9H19L2)
  • 免疫组化-石蜡切片; 人类; 1:500
赛默飞世尔 Casp3抗体(Invitrogen, 9H19L2)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:500. BMC Cancer (2014) ncbi
小鼠 单克隆(CPP32 4-1-18)
  • 免疫组化-石蜡切片; bees
赛默飞世尔 Casp3抗体(Neomarkers, CPP32)被用于被用于免疫组化-石蜡切片在bees 样本上. Environ Microbiol Rep (2013) ncbi
小鼠 单克隆(CPP32 4-1-18)
  • 免疫组化; 大鼠; 图 5
赛默飞世尔 Casp3抗体(Neomarkers, CPP32)被用于被用于免疫组化在大鼠样本上 (图 5). Clin Orthop Relat Res (2004) ncbi
domestic rabbit 重组(9H19L2)
  • 免疫组化-石蜡切片; 大鼠; 图 4B
赛默飞世尔 Casp3抗体(noco, noca)被用于被用于免疫组化-石蜡切片在大鼠样本上 (图 4B). Exp Physiol (2003) ncbi
Novus Biologicals
小鼠 单克隆(31A1067)
  • 免疫组化; domestic rabbit; 1:100; 图 s7
Novus Biologicals Casp3抗体(Novus Biologicals, NB100-56708)被用于被用于免疫组化在domestic rabbit样本上浓度为1:100 (图 s7). J Cell Mol Med (2020) ncbi
domestic rabbit 多克隆(711-66)
  • 免疫印迹; 人类; 图 1c
Novus Biologicals Casp3抗体(Novus Biologicals, NB100-56113)被用于被用于免疫印迹在人类样本上 (图 1c). Toxicol In Vitro (2017) ncbi
domestic rabbit 多克隆(711-66)
  • 免疫印迹; 人类; 图 7i
Novus Biologicals Casp3抗体(Novus, NB100-56113)被用于被用于免疫印迹在人类样本上 (图 7i). J Cell Biochem (2017) ncbi
domestic rabbit 多克隆(711-66)
  • 免疫印迹; 人类; 图 3e
Novus Biologicals Casp3抗体(Novus Biologicals, NB100-56113)被用于被用于免疫印迹在人类样本上 (图 3e). Exp Cell Res (2017) ncbi
小鼠 单克隆(CPP32 4-1-18)
  • 免疫组化; 小鼠; 图 3
Novus Biologicals Casp3抗体(Novus Biologicals, NB500-210)被用于被用于免疫组化在小鼠样本上 (图 3). Mol Cell Endocrinol (2017) ncbi
小鼠 单克隆(31A1067)
  • 免疫印迹; 人类; 图 4
Novus Biologicals Casp3抗体(Novus Biologicals, NB100-56708)被用于被用于免疫印迹在人类样本上 (图 4). Sci Rep (2016) ncbi
小鼠 单克隆(31A1067)
  • 免疫印迹; 人类; 图 1c
Novus Biologicals Casp3抗体(Imgenex, 31A1067)被用于被用于免疫印迹在人类样本上 (图 1c). Cell Death Dis (2014) ncbi
小鼠 单克隆(31A1067)
  • 免疫印迹; 小鼠; 1:1000; 图 1
Novus Biologicals Casp3抗体(Imgenex, 31A1067)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 1). J Neural Transm (Vienna) (2015) ncbi
小鼠 单克隆(31A1067)
  • 免疫组化; 小鼠
Novus Biologicals Casp3抗体(Novus, NB100-56708)被用于被用于免疫组化在小鼠样本上. Neuroscience (2014) ncbi
小鼠 单克隆(31A1067)
  • 免疫细胞化学; 小鼠
  • 免疫组化; 小鼠; 图 8
Novus Biologicals Casp3抗体(Novus Biologicals, NB100-56708)被用于被用于免疫细胞化学在小鼠样本上 和 被用于免疫组化在小鼠样本上 (图 8). PLoS ONE (2013) ncbi
Enzo Life Sciences
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 1g
Enzo Life Sciences Casp3抗体(ALEXIS Corporation, ADI-AAP-113)被用于被用于免疫印迹在人类样本上 (图 1g). Antioxid Redox Signal (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 1g
Enzo Life Sciences Casp3抗体(ALEXIS Corporation, ADI-AAP-113)被用于被用于免疫印迹在人类样本上 (图 1g). Antioxid Redox Signal (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 1b
Enzo Life Sciences Casp3抗体(Enzo, AAP-113)被用于被用于免疫印迹在人类样本上 (图 1b). Oncotarget (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 1b
Enzo Life Sciences Casp3抗体(Enzo, AAP-113)被用于被用于免疫印迹在人类样本上 (图 1b). Oncotarget (2016) ncbi
小鼠 单克隆(31A1067)
  • 免疫印迹; 人类; 图 2g
Enzo Life Sciences Casp3抗体(Enzo Life Science, 31A1067)被用于被用于免疫印迹在人类样本上 (图 2g). Oncotarget (2015) ncbi
小鼠 单克隆(31A1067)
  • 免疫印迹; 人类
Enzo Life Sciences Casp3抗体(Enzo Life Sciences, 31A1067)被用于被用于免疫印迹在人类样本上. Oncol Rep (2012) ncbi
小鼠 单克隆(31A1067)
  • 免疫印迹; 人类; 1:2000
Enzo Life Sciences Casp3抗体(Alexis, ALX-804-305-C100)被用于被用于免疫印迹在人类样本上浓度为1:2000. Cancer Gene Ther (2007) ncbi
安迪生物R&D
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:200; 图 s6-2f
安迪生物R&D Casp3抗体(R&D Systems, AF835)被用于被用于免疫组化在小鼠样本上浓度为1:200 (图 s6-2f). elife (2020) ncbi
西格玛奥德里奇
domestic rabbit 多克隆
  • 免疫印迹; 大鼠; 1:500; 图 4
西格玛奥德里奇 Casp3抗体(Sigma-Aldrich, SAB 4503294)被用于被用于免疫印迹在大鼠样本上浓度为1:500 (图 4). Int J Mol Med (2016) ncbi
赛信通(上海)生物试剂有限公司
domestic rabbit 单克隆(5A1E)
  • 免疫印迹; 人类; 1:1500; 图 5j
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling, 9664)被用于被用于免疫印迹在人类样本上浓度为1:1500 (图 5j). Clin Transl Med (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 5a
赛信通(上海)生物试剂有限公司 Casp3抗体(CST, 9662S)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 5a). Cell Death Discov (2021) ncbi
domestic rabbit 单克隆(5A1E)
  • 免疫组化-石蜡切片; 人类; 1:100; 图 7c
  • 免疫印迹; 人类; 1:1000; 图 5a
赛信通(上海)生物试剂有限公司 Casp3抗体(CST, 9664S)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100 (图 7c) 和 被用于免疫印迹在人类样本上浓度为1:1000 (图 5a). Cell Death Discov (2021) ncbi
domestic rabbit 单克隆(5A1E)
  • 免疫印迹; 小鼠
赛信通(上海)生物试剂有限公司 Casp3抗体(cell signaling technology, cst9664)被用于被用于免疫印迹在小鼠样本上. Front Physiol (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 s6a
赛信通(上海)生物试剂有限公司 Casp3抗体(CST, 9661)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 s6a). Cancers (Basel) (2021) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:1000; 图 1b
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling, 9661)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:1000 (图 1b). Nat Commun (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 2c
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signalling Technology, 9662)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 2c). Nat Commun (2021) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:1000; 图 2e
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signalling Technology, 9661)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:1000 (图 2e). Nat Commun (2021) ncbi
domestic rabbit 单克隆(8G10)
  • 免疫印迹; 小鼠; 图 7a
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling Technology, 9665)被用于被用于免疫印迹在小鼠样本上 (图 7a). Sci Adv (2021) ncbi
domestic rabbit 单克隆(5A1E)
  • 免疫印迹; 小鼠; 图 7a
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling Technology, 9664)被用于被用于免疫印迹在小鼠样本上 (图 7a). Sci Adv (2021) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling Technology, 9661)被用于被用于免疫组化在小鼠样本上. Sci Adv (2021) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 图 3e
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling Technology, 9661)被用于被用于免疫组化在小鼠样本上 (图 3e). Sci Adv (2021) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 图 4i
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling, 9661S)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 4i). PLoS Pathog (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 5g
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling Technology, 9662)被用于被用于免疫印迹在人类样本上 (图 5g). Cell Death Dis (2021) ncbi
domestic rabbit 单克隆(5A1E)
  • 免疫印迹; 人类; 图 5g
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling Technology, 9664T)被用于被用于免疫印迹在人类样本上 (图 5g). Cell Death Dis (2021) ncbi
domestic rabbit 单克隆(5A1E)
  • 免疫印迹; 小鼠; 图 5b
  • 免疫印迹; 大鼠; 1:2000; 图 1e
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling Technology, 9664S)被用于被用于免疫印迹在小鼠样本上 (图 5b) 和 被用于免疫印迹在大鼠样本上浓度为1:2000 (图 1e). Nutrients (2021) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:200; 图 5a
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling Tech, CST-9661)被用于被用于免疫组化在小鼠样本上浓度为1:200 (图 5a). Cells (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 8f
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signalling, 9662)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 8f). NPJ Breast Cancer (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 8f
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signalling, 9661)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 8f). NPJ Breast Cancer (2021) ncbi
domestic rabbit 单克隆(5A1E)
  • 免疫组化; 小鼠; 1:500; 图 5f
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling Technology, 9664)被用于被用于免疫组化在小鼠样本上浓度为1:500 (图 5f). Front Cell Dev Biol (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:400; 图 3c
赛信通(上海)生物试剂有限公司 Casp3抗体(CST, 9662)被用于被用于免疫印迹在小鼠样本上浓度为1:400 (图 3c). Front Immunol (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 5c
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling Technology, 9662)被用于被用于免疫印迹在小鼠样本上 (图 5c). Cell Death Dis (2021) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 图 5d
  • 免疫印迹; 小鼠; 图 5c
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling Technology, 9661)被用于被用于免疫组化在小鼠样本上 (图 5d) 和 被用于免疫印迹在小鼠样本上 (图 5c). Cell Death Dis (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 5a
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell signaling, 9661)被用于被用于免疫印迹在人类样本上 (图 5a). Sci Rep (2021) ncbi
domestic rabbit 单克隆(5A1E)
  • 免疫印迹; 人类; 1:1000; 图 1e, 1h
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling, 9664)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 1e, 1h). Nat Commun (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 3f
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling, 9662)被用于被用于免疫印迹在小鼠样本上 (图 3f). Front Immunol (2021) ncbi
domestic rabbit 多克隆
  • 免疫组化; 大鼠; 图 s1b
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell signaling, 9661)被用于被用于免疫组化在大鼠样本上 (图 s1b). Gut Microbes (2021) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 1:300; 图 2d
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling, 9661)被用于被用于免疫细胞化学在人类样本上浓度为1:300 (图 2d). JCI Insight (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 2c
赛信通(上海)生物试剂有限公司 Casp3抗体(CST, 9662)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 2c). Nat Commun (2021) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 人类; 1:200; 图 6g
赛信通(上海)生物试剂有限公司 Casp3抗体(CST, 9661)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:200 (图 6g). Nat Commun (2021) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 1:250; 图 5k
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling Technology, 9661)被用于被用于免疫细胞化学在人类样本上浓度为1:250 (图 5k). Nat Commun (2021) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 图 2l
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell signaling Technology, 96625)被用于被用于免疫组化在小鼠样本上 (图 2l). Front Physiol (2021) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:400; 图 1c
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling Technologies, 9661S)被用于被用于免疫组化在小鼠样本上浓度为1:400 (图 1c). elife (2021) ncbi
domestic rabbit 单克隆(5A1E)
  • 免疫印迹; 小鼠; 1:500; 图 4a
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling Technology, 9664)被用于被用于免疫印迹在小鼠样本上浓度为1:500 (图 4a). Antioxidants (Basel) (2021) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:400; 图 1j
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling, 9661)被用于被用于免疫组化在小鼠样本上浓度为1:400 (图 1j). Cancers (Basel) (2021) ncbi
domestic rabbit 单克隆(5A1E)
  • 免疫组化-石蜡切片; 人类; 1:100; 图 7e
赛信通(上海)生物试剂有限公司 Casp3抗体(CST, 9664)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100 (图 7e). Nat Commun (2021) ncbi
domestic rabbit 单克隆(5A1E)
  • 免疫印迹; 人类; 图 4a
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell signaling technology, 9664)被用于被用于免疫印迹在人类样本上 (图 4a). Nat Commun (2021) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 人类; 图 2g
  • 免疫印迹; 人类; 图 3h
赛信通(上海)生物试剂有限公司 Casp3抗体(CST, 9661)被用于被用于免疫组化-石蜡切片在人类样本上 (图 2g) 和 被用于免疫印迹在人类样本上 (图 3h). Cell Death Discov (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 3h
赛信通(上海)生物试剂有限公司 Casp3抗体(CST, 9662)被用于被用于免疫印迹在人类样本上 (图 3h). Cell Death Discov (2021) ncbi
domestic rabbit 单克隆(5A1E)
  • 免疫组化; 小鼠; 1:2000; 图 4f
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell signaling, 9664)被用于被用于免疫组化在小鼠样本上浓度为1:2000 (图 4f). Nat Commun (2021) ncbi
domestic rabbit 单克隆(5A1E)
  • 免疫印迹; 小鼠; 1:1000; 图 2b
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling Technology, 9664)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 2b). Int J Mol Med (2021) ncbi
domestic rabbit 单克隆(5A1E)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling, 9664S)被用于被用于免疫印迹在人类样本上. Sci Adv (2021) ncbi
domestic rabbit 单克隆(5A1E)
  • 免疫印迹; 人类; 图 2a
赛信通(上海)生物试剂有限公司 Casp3抗体(CST, 9664)被用于被用于免疫印迹在人类样本上 (图 2a). Cell Rep (2021) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 图 8g
赛信通(上海)生物试剂有限公司 Casp3抗体(CST, 9661)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 8g). Oncogene (2021) ncbi
domestic rabbit 单克隆(5A1E)
  • 免疫印迹; 大鼠; 1:1000; 图 5b
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell signaling, 9664)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 5b). Sci Rep (2021) ncbi
domestic rabbit 单克隆(5A1E)
  • 免疫细胞化学; 人类; 图 1e
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling Technology, 9664)被用于被用于免疫细胞化学在人类样本上 (图 1e). Cell Rep Med (2021) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:200; 图 2a
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling Technology, 9661S)被用于被用于免疫组化在小鼠样本上浓度为1:200 (图 2a). Curr Res Toxicol (2021) ncbi
domestic rabbit 单克隆(5A1E)
  • 免疫组化-石蜡切片; 小鼠; 1:1000; 图 s3b
赛信通(上海)生物试剂有限公司 Casp3抗体(CST, 9664)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:1000 (图 s3b). Front Cell Dev Biol (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 大鼠; 1:1000; 图 2c
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling, 9662S)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 2c). Exp Ther Med (2021) ncbi
domestic rabbit 单克隆(8G10)
  • 免疫印迹; 人类; 图 1c
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling, 9665)被用于被用于免疫印迹在人类样本上 (图 1c). BMC Cancer (2021) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 人类; 1:1000; 图 6d
  • 免疫印迹; 人类; 图 3d
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling, 9661)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:1000 (图 6d) 和 被用于免疫印迹在人类样本上 (图 3d). Cell Death Discov (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 3d
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling, 9662)被用于被用于免疫印迹在人类样本上 (图 3d). Cell Death Discov (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 6b
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling, 9661S)被用于被用于免疫印迹在小鼠样本上 (图 6b). JCI Insight (2021) ncbi
domestic rabbit 单克隆(8G10)
  • 免疫组化; 小鼠; 1:2000; 图 5a
赛信通(上海)生物试剂有限公司 Casp3抗体(CST, 9665)被用于被用于免疫组化在小鼠样本上浓度为1:2000 (图 5a). PLoS ONE (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 3e, 3f
赛信通(上海)生物试剂有限公司 Casp3抗体(CST, 9661 S)被用于被用于免疫印迹在人类样本上 (图 3e, 3f). Cell Death Discov (2021) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:200
  • 免疫印迹; 小鼠; 1:200
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling Technology, 9661)被用于被用于免疫组化在小鼠样本上浓度为1:200 和 被用于免疫印迹在小鼠样本上浓度为1:200. J Pathol (2021) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:300; 图 1g
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling, 9661)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:300 (图 1g). Front Cell Dev Biol (2021) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 图 5d
赛信通(上海)生物试剂有限公司 Casp3抗体(CST, 9661S)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 5d). Sci Rep (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 s2f
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling, 9661s)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 s2f). Front Cell Dev Biol (2021) ncbi
domestic rabbit 多克隆
  • 其他; 小鼠; 1:1000; 图 5a
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling, 9662S)被用于被用于其他在小鼠样本上浓度为1:1000 (图 5a). Redox Biol (2021) ncbi
domestic rabbit 多克隆
  • 免疫组化; 人类; 图 s3i
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signalling, 9661)被用于被用于免疫组化在人类样本上 (图 s3i). Nat Commun (2021) ncbi
domestic rabbit 单克隆(5A1E)
  • 免疫组化-石蜡切片; 小鼠; 图 5b
赛信通(上海)生物试剂有限公司 Casp3抗体(CST, 9664)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 5b). Reprod Biol (2021) ncbi
domestic rabbit 单克隆(5A1E)
  • 免疫印迹; 小鼠; 图 1d
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell signaling technology, 9664S)被用于被用于免疫印迹在小鼠样本上 (图 1d). Front Pharmacol (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 5a
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling, 9662)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 5a). Onco Targets Ther (2021) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 小鼠; 图 2i
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling, 9661)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 2i). elife (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 6e
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling, 9661S)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 6e). Front Pharmacol (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 3d
赛信通(上海)生物试剂有限公司 Casp3抗体(CST, 9661)被用于被用于免疫印迹在小鼠样本上 (图 3d). PLoS ONE (2021) ncbi
domestic rabbit 单克隆(5A1E)
  • 免疫组化; 小鼠; 1:1000; 图 3a
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling, 9664)被用于被用于免疫组化在小鼠样本上浓度为1:1000 (图 3a). Cell Death Dis (2021) ncbi
domestic rabbit 单克隆(5A1E)
  • 免疫印迹; 人类; 图 3c
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling, 9664)被用于被用于免疫印迹在人类样本上 (图 3c). Cancers (Basel) (2021) ncbi
domestic rabbit 多克隆
  • 免疫组化; 大鼠; 1:200; 图 3b
  • 免疫印迹; 大鼠; 图 3c
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling Technology, 9661)被用于被用于免疫组化在大鼠样本上浓度为1:200 (图 3b) 和 被用于免疫印迹在大鼠样本上 (图 3c). Cell Death Dis (2021) ncbi
domestic rabbit 单克隆(5A1E)
  • 免疫组化-冰冻切片; 小鼠; 图 6d
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling Technology, 9664)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 6d). iScience (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 4b
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling, 9662)被用于被用于免疫印迹在人类样本上 (图 4b). Antioxidants (Basel) (2021) ncbi
domestic rabbit 多克隆
  • 免疫组化; 人类; 图 s10f
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling, 9661)被用于被用于免疫组化在人类样本上 (图 s10f). Adv Sci (Weinh) (2021) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling, 9661S)被用于被用于免疫组化在小鼠样本上. elife (2021) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 人类; 1:100; 图 s2b
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling, 9661)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100 (图 s2b). PLoS Genet (2021) ncbi
domestic rabbit 单克隆(5A1E)
  • 免疫印迹; 人类; 图 1d
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling, 5A1E)被用于被用于免疫印迹在人类样本上 (图 1d). Genes (Basel) (2021) ncbi
domestic rabbit 单克隆(D3E9)
  • 免疫组化; 小鼠; 1:100
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling, 9603)被用于被用于免疫组化在小鼠样本上浓度为1:100. elife (2021) ncbi
domestic rabbit 单克隆(5A1E)
  • 免疫组化; 小鼠; 1:500; 图 1g
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling Technology, 9664)被用于被用于免疫组化在小鼠样本上浓度为1:500 (图 1g). Aging Dis (2021) ncbi
domestic rabbit 单克隆(5A1E)
  • 免疫组化; 小鼠; 1:1000; 图 2d
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling Technology, 9664S)被用于被用于免疫组化在小鼠样本上浓度为1:1000 (图 2d). Genome Biol (2021) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:2000; 图 6a
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling Technology, 9661)被用于被用于免疫组化在小鼠样本上浓度为1:2000 (图 6a). elife (2021) ncbi
domestic rabbit 单克隆(5A1E)
  • 免疫印迹; 小鼠; 图 2a
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling Technology, 9664)被用于被用于免疫印迹在小鼠样本上 (图 2a). Adv Sci (Weinh) (2021) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 鸡; 1:200; 图 3s2
赛信通(上海)生物试剂有限公司 Casp3抗体(CST, 9661S)被用于被用于免疫组化-冰冻切片在鸡样本上浓度为1:200 (图 3s2). elife (2021) ncbi
domestic rabbit 单克隆(5A1E)
  • 免疫印迹; 小鼠; 1:10,000
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling, ab9664)被用于被用于免疫印迹在小鼠样本上浓度为1:10,000. elife (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 5a
赛信通(上海)生物试剂有限公司 Casp3抗体(CST, 9662)被用于被用于免疫印迹在人类样本上 (图 5a). Science (2021) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 图 2g
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling Technology, 9661)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 2g). EBioMedicine (2021) ncbi
domestic rabbit 多克隆
  • 免疫组化-自由浮动切片; 小鼠; 1:200; 图 3c
赛信通(上海)生物试剂有限公司 Casp3抗体(CST, 9661)被用于被用于免疫组化-自由浮动切片在小鼠样本上浓度为1:200 (图 3c). elife (2021) ncbi
domestic rabbit 单克隆(5A1E)
  • 免疫印迹; 人类; 1:1000; 图 3h
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling, 9664)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3h). Cell Death Dis (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 2a
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling Technology, 9662)被用于被用于免疫印迹在人类样本上 (图 2a). Cell Death Dis (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 2a
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling Technology, 9661)被用于被用于免疫印迹在人类样本上 (图 2a). Cell Death Dis (2021) ncbi
domestic rabbit 单克隆(5A1E)
  • 免疫组化; 小鼠; 图 2c
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling, 9664)被用于被用于免疫组化在小鼠样本上 (图 2c). PLoS ONE (2021) ncbi
domestic rabbit 单克隆(5A1E)
  • 免疫印迹; 人类; 图 3d
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling Technology, 9664)被用于被用于免疫印迹在人类样本上 (图 3d). Cell Rep (2021) ncbi
domestic rabbit 多克隆
  • 免疫组化-自由浮动切片; 小鼠; 1:300; 图 s7h
赛信通(上海)生物试剂有限公司 Casp3抗体(CST, 9661)被用于被用于免疫组化-自由浮动切片在小鼠样本上浓度为1:300 (图 s7h). Science (2020) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 5h
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling Technology, 9661)被用于被用于免疫印迹在人类样本上 (图 5h). Mol Cell (2020) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 2a
赛信通(上海)生物试剂有限公司 Casp3抗体(CST, 9661)被用于被用于免疫印迹在小鼠样本上 (图 2a). Nat Commun (2020) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 2a
赛信通(上海)生物试剂有限公司 Casp3抗体(CST, 9662)被用于被用于免疫印迹在小鼠样本上 (图 2a). Nat Commun (2020) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 图 2b
  • 免疫印迹; 小鼠; 图 s3d
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling Technology, 9662)被用于被用于免疫组化在小鼠样本上 (图 2b) 和 被用于免疫印迹在小鼠样本上 (图 s3d). Cell (2021) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 图 2b
  • 免疫印迹; 小鼠; 图 s3d
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling Technology, 9661)被用于被用于免疫组化在小鼠样本上 (图 2b) 和 被用于免疫印迹在小鼠样本上 (图 s3d). Cell (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 7d
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling Technology, 9662)被用于被用于免疫印迹在小鼠样本上 (图 7d). Cell Death Dis (2020) ncbi
domestic rabbit 单克隆(5A1E)
  • 免疫组化; 小鼠; 1:400; 图 1d
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling Technologies, 9664 (5A1E))被用于被用于免疫组化在小鼠样本上浓度为1:400 (图 1d). elife (2020) ncbi
domestic rabbit 单克隆(D3E9)
  • 免疫组化; 小鼠; 图 4d
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling Technology, 9579)被用于被用于免疫组化在小鼠样本上 (图 4d). Cell Rep (2020) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 5c
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling Technology, 9661)被用于被用于免疫印迹在小鼠样本上 (图 5c). Oxid Med Cell Longev (2020) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 5d
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling, 9661)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 5d). elife (2020) ncbi
domestic rabbit 单克隆(5A1E)
  • 免疫印迹; 小鼠; 1:1000
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling Technology, 9664)被用于被用于免疫印迹在小鼠样本上浓度为1:1000. Science (2020) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling Technology, 9661)被用于被用于免疫组化在小鼠样本上. Science (2020) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 图 3d
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling Technology, 9661S)被用于被用于免疫组化在小鼠样本上 (图 3d). FEBS Open Bio (2020) ncbi
domestic rabbit 单克隆(5A1E)
  • 免疫组化-石蜡切片; 人类; 图 6e
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling Technology, 9664)被用于被用于免疫组化-石蜡切片在人类样本上 (图 6e). Mol Oncol (2020) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 2b
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell signaling, 9662)被用于被用于免疫印迹在人类样本上 (图 2b). Cell Commun Signal (2020) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 6e
  • 免疫印迹; 小鼠; 图 3b
赛信通(上海)生物试剂有限公司 Casp3抗体(CST, 9661)被用于被用于免疫印迹在人类样本上 (图 6e) 和 被用于免疫印迹在小鼠样本上 (图 3b). Sci Rep (2020) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:500; 图 6b
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling Technology, 9661)被用于被用于免疫组化在小鼠样本上浓度为1:500 (图 6b). Acta Neuropathol Commun (2020) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 6a
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling Technology, 9662)被用于被用于免疫印迹在小鼠样本上 (图 6a). Autophagy (2020) ncbi
domestic rabbit 单克隆(5A1E)
  • 免疫组化-冰冻切片; 小鼠; 1:100; 图 3s1a
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling Technology, 9664)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:100 (图 3s1a). elife (2020) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 2b
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling technology, 9661)被用于被用于免疫印迹在小鼠样本上 (图 2b). Cell Res (2020) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:200; 图 3a
赛信通(上海)生物试剂有限公司 Casp3抗体(CST, 9661)被用于被用于免疫印迹在小鼠样本上浓度为1:200 (图 3a). Am J Physiol Endocrinol Metab (2020) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:100; 图 1a
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling, 9661)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:100 (图 1a). elife (2020) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 2a
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling Technology, 9662)被用于被用于免疫印迹在人类样本上 (图 2a). BMC Complement Med Ther (2020) ncbi
domestic rabbit 多克隆
  • 免疫组化-自由浮动切片; 小鼠; 1:400; 图 5a
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling Technology, 9661L)被用于被用于免疫组化-自由浮动切片在小鼠样本上浓度为1:400 (图 5a). elife (2020) ncbi
domestic rabbit 多克隆
  • 免疫组化; fruit fly ; 图 1s1a
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling, 9661)被用于被用于免疫组化在fruit fly 样本上 (图 1s1a). elife (2020) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 1:100; 图 2e
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling, 9661)被用于被用于免疫细胞化学在人类样本上浓度为1:100 (图 2e). Oncogenesis (2020) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 3c
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling Technology, 9662S)被用于被用于免疫印迹在小鼠样本上 (图 3c). BMC Cancer (2020) ncbi
domestic rabbit 单克隆(5A1E)
  • 免疫组化; 小鼠; 1:500
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling Technology, 5A1E)被用于被用于免疫组化在小鼠样本上浓度为1:500. J Clin Invest (2020) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:200; 图 6a
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling, 9661)被用于被用于免疫组化在小鼠样本上浓度为1:200 (图 6a). Mol Ther (2020) ncbi
domestic rabbit 单克隆(D3E9)
  • 免疫组化-冰冻切片; 小鼠; 1:1000; 图 s1c
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling, 9579S)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:1000 (图 s1c). Nat Commun (2020) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 4d
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling Technology, 9661)被用于被用于免疫印迹在人类样本上 (图 4d). J Hematol Oncol (2020) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:2000; 图 3c
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling, 9661)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:2000 (图 3c). Nat Commun (2020) ncbi
domestic rabbit 单克隆(5A1E)
  • 免疫组化-冰冻切片; 小鼠; 1:50; 图 5h
赛信通(上海)生物试剂有限公司 Casp3抗体(CST, 9664)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:50 (图 5h). Brain (2020) ncbi
domestic rabbit 单克隆(5A1E)
  • 免疫组化; 小鼠; 1:200; 图 e8f
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signalling Technologies, 9664S)被用于被用于免疫组化在小鼠样本上浓度为1:200 (图 e8f). Nature (2020) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 5b
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling, 9662S)被用于被用于免疫印迹在人类样本上 (图 5b). Cancers (Basel) (2020) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:400; 图 4b
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling Technology, 9661)被用于被用于免疫印迹在小鼠样本上浓度为1:400 (图 4b). elife (2020) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 3e
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling, 9661)被用于被用于免疫印迹在小鼠样本上 (图 3e). elife (2020) ncbi
domestic rabbit 单克隆(5A1E)
  • 免疫印迹; 人类; 1:250; 图 5f
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling Technology, 9664)被用于被用于免疫印迹在人类样本上浓度为1:250 (图 5f). elife (2020) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 3b
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling Technology, 9661s)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 3b). Mol Med Rep (2020) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 0.05 ug/ml; 图 2
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling, 9661)被用于被用于免疫印迹在人类样本上浓度为0.05 ug/ml (图 2). Commun Biol (2020) ncbi
domestic rabbit 多克隆
  • 免疫组化; 大鼠; 1:50; 图 4a
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling Technology, 9661)被用于被用于免疫组化在大鼠样本上浓度为1:50 (图 4a). Mol Ther Methods Clin Dev (2020) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 犬; 1:500; 图 3c
赛信通(上海)生物试剂有限公司 Casp3抗体(CST, 9661)被用于被用于免疫印迹在犬样本上浓度为1:500 (图 3c). Cells (2020) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 犬; 1:500; 图 3c
赛信通(上海)生物试剂有限公司 Casp3抗体(CST, 9662)被用于被用于免疫印迹在犬样本上浓度为1:500 (图 3c). Cells (2020) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 1b, 1c
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling, 9661)被用于被用于免疫印迹在人类样本上 (图 1b, 1c). Cell Death Differ (2020) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 1d
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling Technology, 9662)被用于被用于免疫印迹在人类样本上 (图 1d). Cell Death Dis (2020) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:4000; 图 6d
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell signaling, 9671)被用于被用于免疫组化在小鼠样本上浓度为1:4000 (图 6d). PLoS Negl Trop Dis (2020) ncbi
domestic rabbit 单克隆(5A1E)
  • 免疫细胞化学; 人类; 图 7h
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling, 9664)被用于被用于免疫细胞化学在人类样本上 (图 7h). Cell (2020) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 s1j
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling Technology, 9662)被用于被用于免疫印迹在人类样本上 (图 s1j). Science (2020) ncbi
domestic rabbit 单克隆(5A1E)
  • 免疫印迹; 小鼠; 1:1000; 图 2i
赛信通(上海)生物试剂有限公司 Casp3抗体(CST, 9664)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 2i). J Cell Mol Med (2020) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 猕猴; 1:1000; 图 2e
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling, 9661)被用于被用于免疫印迹在猕猴样本上浓度为1:1000 (图 2e). Aging (Albany NY) (2020) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 猕猴; 1:1000; 图 2e
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling, 9662)被用于被用于免疫印迹在猕猴样本上浓度为1:1000 (图 2e). Aging (Albany NY) (2020) ncbi
domestic rabbit 多克隆
  • 免疫印迹; fruit fly ; 1:1000; 图 5s2a
赛信通(上海)生物试剂有限公司 Casp3抗体(CST, 9661)被用于被用于免疫印迹在fruit fly 样本上浓度为1:1000 (图 5s2a). elife (2020) ncbi
domestic rabbit 单克隆(5A1E)
  • 免疫印迹; 小鼠; 1:750; 图 7a
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling, 9664)被用于被用于免疫印迹在小鼠样本上浓度为1:750 (图 7a). Aging (Albany NY) (2020) ncbi
domestic rabbit 单克隆(5A1E)
  • 免疫组化-石蜡切片; 小鼠; 图 3g
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling, 9664)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 3g). Cell (2020) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 大鼠; 图 4s5b
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling, 9661)被用于被用于免疫印迹在大鼠样本上 (图 4s5b). elife (2020) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:200; 图 4h
赛信通(上海)生物试剂有限公司 Casp3抗体(CST, 9661)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:200 (图 4h). Theranostics (2020) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 小鼠; 图 6d
  • 免疫印迹; 小鼠; 图 6b
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling, 9661)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 6d) 和 被用于免疫印迹在小鼠样本上 (图 6b). Cell Death Dis (2020) ncbi
domestic rabbit 单克隆(5A1E)
  • 免疫印迹; 人类; 图 3d
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling Technology, 9664)被用于被用于免疫印迹在人类样本上 (图 3d). Theranostics (2020) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 3d
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling Technology, 9662)被用于被用于免疫印迹在人类样本上 (图 3d). Theranostics (2020) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:100; 图 2b
  • 免疫印迹; 小鼠; 1:500; 图 2d
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling, 9661)被用于被用于免疫组化在小鼠样本上浓度为1:100 (图 2b) 和 被用于免疫印迹在小鼠样本上浓度为1:500 (图 2d). Front Pharmacol (2020) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 小鼠; 1:250; 图 3f
赛信通(上海)生物试剂有限公司 Casp3抗体(CST, 9661)被用于被用于免疫细胞化学在小鼠样本上浓度为1:250 (图 3f). Nat Commun (2020) ncbi
domestic rabbit 单克隆(5A1E)
  • 免疫组化-石蜡切片; 小鼠; 1:500; 图 s3h
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling, 9664)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:500 (图 s3h). Sci Rep (2020) ncbi
domestic rabbit 单克隆(5A1E)
  • 免疫印迹; 人类; 图 2b
  • 免疫组化-石蜡切片; 小鼠; 1:200; 图 4c
  • 免疫印迹; 小鼠; 图 2b, 4b
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling Technology, 9664T)被用于被用于免疫印迹在人类样本上 (图 2b), 被用于免疫组化-石蜡切片在小鼠样本上浓度为1:200 (图 4c) 和 被用于免疫印迹在小鼠样本上 (图 2b, 4b). J Immunother Cancer (2020) ncbi
domestic rabbit 单克隆(5A1E)
  • 免疫组化; 小鼠; 图 7e
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling, 9664)被用于被用于免疫组化在小鼠样本上 (图 7e). iScience (2020) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 4h
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling, 9661)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 4h). Mol Ther Nucleic Acids (2020) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 3d
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling Technology, #9661)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 3d). EBioMedicine (2020) ncbi
domestic rabbit 单克隆(8G10)
  • 免疫印迹; 小鼠; 1:1000; 图 3d
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling Technology, #9665)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 3d). EBioMedicine (2020) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 2b
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling Technology, 9662)被用于被用于免疫印迹在人类样本上 (图 2b). Oncogenesis (2020) ncbi
domestic rabbit 单克隆(5A1E)
  • 免疫组化-石蜡切片; 小鼠; 图 1f
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling, 9664)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 1f). Toxicol Pathol (2020) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:100; 图 4d
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling Technology, 9661)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:100 (图 4d). PLoS Pathog (2020) ncbi
domestic rabbit 单克隆(D3E9)
  • 免疫印迹; 大鼠; 1:1000; 图 5a
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling, 9579)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 5a). Br J Pharmacol (2020) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 大鼠; 1:1000; 图 5a
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling, 9662)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 5a). Br J Pharmacol (2020) ncbi
domestic rabbit 单克隆(5A1E)
  • 免疫印迹; 人类; 图 2e
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell signaling Technology, 9664)被用于被用于免疫印迹在人类样本上 (图 2e). EBioMedicine (2020) ncbi
domestic rabbit 单克隆(5A1E)
  • 免疫印迹; 人类; 1:1000; 图 3b
赛信通(上海)生物试剂有限公司 Casp3抗体(CST, 9664)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3b). Exp Ther Med (2020) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 大鼠; 1:2000; 图 8c
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling, 9661l)被用于被用于免疫组化-冰冻切片在大鼠样本上浓度为1:2000 (图 8c). Exp Ther Med (2020) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:200; 图 2e
  • 免疫细胞化学; 小鼠; 1:1000; 图 4d
  • 免疫印迹; 小鼠; 1:1000; 图 2f
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling, 9661)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:200 (图 2e), 被用于免疫细胞化学在小鼠样本上浓度为1:1000 (图 4d) 和 被用于免疫印迹在小鼠样本上浓度为1:1000 (图 2f). Biosci Rep (2020) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 6d
赛信通(上海)生物试剂有限公司 Casp3抗体(CST, 9661)被用于被用于免疫印迹在人类样本上 (图 6d). Sci Adv (2020) ncbi
domestic rabbit 单克隆(5A1E)
  • 免疫印迹; 大鼠; 1:1000; 图 7e
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signalling, 9664S)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 7e). Front Cell Neurosci (2019) ncbi
domestic rabbit 单克隆(5A1E)
  • 免疫组化-石蜡切片; 小鼠; 1:150; 图 5a
  • 免疫印迹; 小鼠; 1:1000; 图 5d
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling, 9664S)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:150 (图 5a) 和 被用于免疫印迹在小鼠样本上浓度为1:1000 (图 5d). Cell Death Dis (2020) ncbi
domestic rabbit 单克隆(8G10)
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling Technology, 9665)被用于. Viruses (2020) ncbi
domestic rabbit 单克隆(5A1E)
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling Technology, 9664)被用于. Viruses (2020) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 6g
  • 免疫印迹; 小鼠; 1:1000; 图 3g
赛信通(上海)生物试剂有限公司 Casp3抗体(CST, 9662)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 6g) 和 被用于免疫印迹在小鼠样本上浓度为1:1000 (图 3g). Nat Commun (2020) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:300; 图 5h, 2h
  • 免疫印迹; 小鼠; 1:1000; 图 3g
  • 免疫组化-石蜡切片; 人类; 1:300; 图 6c
  • 免疫印迹; 人类; 1:1000; 图 6g
赛信通(上海)生物试剂有限公司 Casp3抗体(CST, 9661S)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:300 (图 5h, 2h), 被用于免疫印迹在小鼠样本上浓度为1:1000 (图 3g), 被用于免疫组化-石蜡切片在人类样本上浓度为1:300 (图 6c) 和 被用于免疫印迹在人类样本上浓度为1:1000 (图 6g). Nat Commun (2020) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:250; 图 s3e
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling, 9661S)被用于被用于免疫组化在小鼠样本上浓度为1:250 (图 s3e). Nat Commun (2020) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 人类; 图 s1d
  • 免疫印迹; 人类; 图 s1d
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signalling, 9662)被用于被用于免疫组化-石蜡切片在人类样本上 (图 s1d) 和 被用于免疫印迹在人类样本上 (图 s1d). Cell Death Dis (2020) ncbi
domestic rabbit 单克隆(8G10)
  • 免疫印迹; 人类; 图 5h
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling, 8G10)被用于被用于免疫印迹在人类样本上 (图 5h). PLoS ONE (2020) ncbi
domestic rabbit 多克隆
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling, clone D175; 9661S)被用于. J Virol (2020) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; domestic rabbit; 图 2c
赛信通(上海)生物试剂有限公司 Casp3抗体(CST, 9661)被用于被用于免疫组化-石蜡切片在domestic rabbit样本上 (图 2c). BMC Vet Res (2020) ncbi
domestic rabbit 多克隆
  • 免疫组化; 人类; 1:500; 图 6k
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling, 9661)被用于被用于免疫组化在人类样本上浓度为1:500 (图 6k). Acta Neuropathol (2020) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 图 5h
  • 免疫组化; 人类; 图 8c
  • 免疫印迹; 人类; 图 2e
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling, 9662)被用于被用于免疫细胞化学在人类样本上 (图 5h), 被用于免疫组化在人类样本上 (图 8c) 和 被用于免疫印迹在人类样本上 (图 2e). Mol Cancer (2020) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 大鼠; 1:500; 图 6e
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling, 9661)被用于被用于免疫印迹在大鼠样本上浓度为1:500 (图 6e). Front Neurosci (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 大鼠; 1:2000; 图 6
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling, 9661)被用于被用于免疫印迹在大鼠样本上浓度为1:2000 (图 6). Animals (Basel) (2020) ncbi
domestic rabbit 单克隆(5A1E)
  • 免疫组化-石蜡切片; 小鼠; 1:1000; 图 s4
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling Technology, 9664S)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:1000 (图 s4). Science (2020) ncbi
domestic rabbit 单克隆(5A1E)
  • 免疫印迹; 小鼠; 1:1000; 图 4c
赛信通(上海)生物试剂有限公司 Casp3抗体(CST, 9664)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 4c). Sci Rep (2020) ncbi
domestic rabbit 单克隆(5A1E)
  • 免疫组化-石蜡切片; 小鼠; 图 1e
赛信通(上海)生物试剂有限公司 Casp3抗体(CST, 9664)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 1e). J Cell Mol Med (2020) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 s5b
赛信通(上海)生物试剂有限公司 Casp3抗体(CST, 9662S)被用于被用于免疫印迹在小鼠样本上 (图 s5b). J Clin Invest (2020) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 5c
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling Technologies, 9662)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 5c). Cell Death Dis (2020) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 大鼠; 1:1000; 图 4a
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling, 9661)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 4a). Aging (Albany NY) (2020) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:200; 图 5a
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling, 9661)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:200 (图 5a). Cell Death Dis (2020) ncbi
domestic rabbit 单克隆(8G10)
  • 免疫印迹; 小鼠; 1:1000; 图 7a
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling Technology, 9665)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 7a). Cell Death Dis (2020) ncbi
domestic rabbit 单克隆(5A1E)
  • 免疫印迹; 小鼠; 1:1000; 图 7a
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling Technology, 9664)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 7a). Cell Death Dis (2020) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:200; 图 5e
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling, 9661S)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:200 (图 5e). Sci Adv (2020) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:200; 图 s10d
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling, 9661)被用于被用于免疫组化在小鼠样本上浓度为1:200 (图 s10d). Nat Commun (2020) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 6e
赛信通(上海)生物试剂有限公司 Casp3抗体(CST, #9661)被用于被用于免疫印迹在小鼠样本上 (图 6e). Cancer Med (2020) ncbi
domestic rabbit 单克隆(5A1E)
  • 免疫组化; 小鼠; 1:400
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling Technology, 9664S)被用于被用于免疫组化在小鼠样本上浓度为1:400. Nature (2020) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 2c
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling Technology, 9661)被用于被用于免疫印迹在小鼠样本上 (图 2c). Aging (Albany NY) (2020) ncbi
domestic rabbit 单克隆(5A1E)
  • 免疫组化; 小鼠; 1:800; 图 s4
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling, 9664-S,)被用于被用于免疫组化在小鼠样本上浓度为1:800 (图 s4). Proc Natl Acad Sci U S A (2020) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:400; 图 s2
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling, #9661-S)被用于被用于免疫组化在小鼠样本上浓度为1:400 (图 s2). Proc Natl Acad Sci U S A (2020) ncbi
domestic rabbit 单克隆(5A1E)
  • 免疫组化-冰冻切片; 小鼠; 1:100; 图 3k
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling, 9664)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:100 (图 3k). elife (2020) ncbi
domestic rabbit 单克隆(8G10)
  • 免疫印迹; 人类; 图 3d
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling, 9665)被用于被用于免疫印迹在人类样本上 (图 3d). J Cancer (2020) ncbi
domestic rabbit 单克隆(5A1E)
  • 免疫印迹; 人类; 图 3d
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling, 9664)被用于被用于免疫印迹在人类样本上 (图 3d). J Cancer (2020) ncbi
domestic rabbit 单克隆(5A1E)
  • 免疫组化-冰冻切片; 小鼠; 1:100; 图 5c
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling, 9664S)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:100 (图 5c). Nat Commun (2020) ncbi
domestic rabbit 单克隆(D3E9)
  • 免疫组化-冰冻切片; 小鼠; 1:50; 图 5s
赛信通(上海)生物试剂有限公司 Casp3抗体(CST, 9602S)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:50 (图 5s). Nat Commun (2020) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:500; 图 5i
赛信通(上海)生物试剂有限公司 Casp3抗体(CST, 9662S)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:500 (图 5i). Nat Commun (2020) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 大鼠; 1:1000; 图 3c
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling, 9661)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 3c). Int J Mol Med (2020) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 大鼠; 1:1000; 图 3c
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling, 9662)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 3c). Int J Mol Med (2020) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 2c
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling, 9661)被用于被用于免疫印迹在人类样本上 (图 2c). Cell Cycle (2020) ncbi
domestic rabbit 单克隆(5A1E)
  • 免疫组化; 小鼠; 1:200; 图 3e
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling, 9664s)被用于被用于免疫组化在小鼠样本上浓度为1:200 (图 3e). Theranostics (2020) ncbi
domestic rabbit 单克隆(5A1E)
  • 免疫印迹; 小鼠; 1:1000; 图 6b
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling, 9664)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 6b). Cell Mol Gastroenterol Hepatol (2020) ncbi
domestic rabbit 单克隆(5A1E)
  • 免疫组化-石蜡切片; 大鼠; 1:200; 图 7c
  • 免疫印迹; 大鼠; 图 4c
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling, 9664)被用于被用于免疫组化-石蜡切片在大鼠样本上浓度为1:200 (图 7c) 和 被用于免疫印迹在大鼠样本上 (图 4c). Aging (Albany NY) (2019) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:200; 图 5e
赛信通(上海)生物试剂有限公司 Casp3抗体(CST, 9661T)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:200 (图 5e). Nat Commun (2019) ncbi
domestic rabbit 单克隆(5A1E)
  • 免疫印迹; 小鼠; 图 6a
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling Technology, 9664)被用于被用于免疫印迹在小鼠样本上 (图 6a). Oxid Med Cell Longev (2019) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 图 2c
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling, 9661)被用于被用于免疫组化在小鼠样本上 (图 2c). Nature (2020) ncbi
domestic rabbit 单克隆(5A1E)
  • 免疫组化-石蜡切片; 小鼠; 图 s2a
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling, 9664)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 s2a). Acta Neuropathol Commun (2019) ncbi
domestic rabbit 单克隆(5A1E)
  • 免疫组化-冰冻切片; 小鼠; 1:2000; 图 3g
  • 免疫组化-冰冻切片; 人类; 1:2000; 图 6f
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling, 9664)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:2000 (图 3g) 和 被用于免疫组化-冰冻切片在人类样本上浓度为1:2000 (图 6f). elife (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 6d
赛信通(上海)生物试剂有限公司 Casp3抗体(CST, 9661)被用于被用于免疫印迹在人类样本上 (图 6d). Cancer Med (2020) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 s5f
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling, 9661)被用于被用于免疫印迹在小鼠样本上 (图 s5f). Sci Adv (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 4d
赛信通(上海)生物试剂有限公司 Casp3抗体(CST, 9661L)被用于被用于免疫印迹在小鼠样本上 (图 4d). Science (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 4b
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling, 9661T)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 4b). Photochem Photobiol (2020) ncbi
domestic rabbit 单克隆(5A1E)
  • 免疫组化-冰冻切片; 小鼠; 1:300; 图 8a
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signalling, 9664)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:300 (图 8a). J Comp Neurol (2019) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 人类; 1:200; 图 1f
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell signaling Technology, 9661)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:200 (图 1f). BMC Cancer (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 5d
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling Technology, 9662)被用于被用于免疫印迹在人类样本上 (图 5d). Oncogene (2020) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 e2b
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling, 9661)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 e2b). Nature (2019) ncbi
domestic rabbit 单克隆(5A1E)
  • 免疫组化; 小鼠; 1:1000; 图 s3b
赛信通(上海)生物试剂有限公司 Casp3抗体(CST, 9664)被用于被用于免疫组化在小鼠样本上浓度为1:1000 (图 s3b). Nature (2019) ncbi
domestic rabbit 单克隆(5A1E)
  • 免疫组化-石蜡切片; 小鼠; 图 s1c
  • 免疫印迹; 小鼠; 1:1000; 图 s3c
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling, 9664)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 s1c) 和 被用于免疫印迹在小鼠样本上浓度为1:1000 (图 s3c). J Exp Med (2020) ncbi
domestic rabbit 单克隆(8G10)
  • 免疫印迹; 小鼠; 1:1000; 图 s3c
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling, 9665)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 s3c). J Exp Med (2020) ncbi
domestic rabbit 单克隆(5A1E)
  • 免疫组化-冰冻切片; 小鼠; 1:200; 图 3p
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling, 9664)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:200 (图 3p). Sci Adv (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 2k
赛信通(上海)生物试剂有限公司 Casp3抗体(CST, 9661)被用于被用于免疫印迹在人类样本上 (图 2k). Oncogene (2020) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 2k
赛信通(上海)生物试剂有限公司 Casp3抗体(CST, 9662)被用于被用于免疫印迹在人类样本上 (图 2k). Oncogene (2020) ncbi
domestic rabbit 单克隆(5A1E)
  • 免疫印迹; 小鼠; 图 2i
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling, 9664)被用于被用于免疫印迹在小鼠样本上 (图 2i). Cardiovasc Res (2019) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 小鼠; 图 s1c
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling, 9661S)被用于被用于免疫细胞化学在小鼠样本上 (图 s1c). Nat Commun (2019) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 人类; 1:100; 图 2a
赛信通(上海)生物试剂有限公司 Casp3抗体(细胞SIGNALING, 9661s)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100 (图 2a). Front Neurosci (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 8e
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling, 9662)被用于被用于免疫印迹在人类样本上 (图 8e). Biochem Pharmacol (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 8e
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling, 9661)被用于被用于免疫印迹在人类样本上 (图 8e). Biochem Pharmacol (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 4b
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling Technology, 9661L)被用于被用于免疫印迹在小鼠样本上 (图 4b). Sci Rep (2019) ncbi
domestic rabbit 单克隆(5A1E)
  • 免疫印迹; 人类; 图 8c
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling, 5A1E)被用于被用于免疫印迹在人类样本上 (图 8c). Cell Death Dis (2019) ncbi
domestic rabbit 单克隆(5A1E)
  • 免疫印迹; 小鼠; 图 1f
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling Technologies, 9664)被用于被用于免疫印迹在小鼠样本上 (图 1f). Cell Death Dis (2019) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:500; 图 7d
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling, 9661L)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:500 (图 7d). Development (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 6g
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling, 9661)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 6g). Aging (Albany NY) (2019) ncbi
domestic rabbit 多克隆
  • 免疫组化; 人类; 1:100; 图 8e
  • 免疫印迹; 人类; 1:1000; 图 2g
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling Technology, 9661)被用于被用于免疫组化在人类样本上浓度为1:100 (图 8e) 和 被用于免疫印迹在人类样本上浓度为1:1000 (图 2g). Nat Commun (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 10
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling Technology, 9661S)被用于被用于免疫印迹在人类样本上 (图 10). Biomolecules (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 10
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling Technology, 9662S)被用于被用于免疫印迹在人类样本上 (图 10). Biomolecules (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 3b
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling, 9661)被用于被用于免疫印迹在人类样本上 (图 3b). Oncol Lett (2019) ncbi
domestic rabbit 单克隆(5A1E)
  • 免疫组化-石蜡切片; 小鼠; 1:500; 图 s2k
赛信通(上海)生物试剂有限公司 Casp3抗体(cell signaling, 9664)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:500 (图 s2k). Cell (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 4a
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling, 9662)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 4a). Biosci Rep (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹基因敲除验证; 人类; 图 5a
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling, 9662S)被用于被用于免疫印迹基因敲除验证在人类样本上 (图 5a). Sci Adv (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling Technology, 9661)被用于被用于免疫印迹在人类样本上. Nature (2019) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 图 s5d
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling, 9661)被用于被用于免疫组化在小鼠样本上 (图 s5d). Nat Commun (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:250; 图 5b
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling Technology, 9661)被用于被用于免疫印迹在人类样本上浓度为1:250 (图 5b). Anal Cell Pathol (Amst) (2019) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 图 7a
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell signaling, 9661)被用于被用于免疫组化在小鼠样本上 (图 7a). Cell Rep (2019) ncbi
domestic rabbit 单克隆(8G10)
  • 免疫印迹; 小鼠; 图 3d
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling Technology, 9665)被用于被用于免疫印迹在小鼠样本上 (图 3d). Cell (2019) ncbi
domestic rabbit 单克隆(5A1E)
  • 免疫印迹; 小鼠; 图 3d
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling Technology, 9664)被用于被用于免疫印迹在小鼠样本上 (图 3d). Cell (2019) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 图 s6a
  • 免疫组化; 人类; 图 5f
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling, 9661)被用于被用于免疫组化在小鼠样本上 (图 s6a) 和 被用于免疫组化在人类样本上 (图 5f). Mol Cell (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 7a
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling Technology, 9661)被用于被用于免疫印迹在人类样本上 (图 7a). Cell (2019) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:500; 图 5g
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling Technology, 9662)被用于被用于免疫组化在小鼠样本上浓度为1:500 (图 5g). elife (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 5c
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling Technology, 9661)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 5c). Cancer Res (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 5c
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling Technology, 9662)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 5c). Cancer Res (2019) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:200; 图 3s2a
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling, 9661)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:200 (图 3s2a). elife (2019) ncbi
domestic rabbit 单克隆(5A1E)
  • 免疫印迹; 小鼠; 1:1000; 图 2a
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling, 9664)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 2a). J Cell Mol Med (2019) ncbi
domestic rabbit 单克隆(5A1E)
  • 免疫组化; 小鼠; 1:100; 图 s3i
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling, 9664)被用于被用于免疫组化在小鼠样本上浓度为1:100 (图 s3i). Nat Commun (2019) ncbi
domestic rabbit 单克隆(5A1E)
  • 免疫组化-冰冻切片; 小鼠; 1:1000; 图 2d
  • 免疫印迹; 小鼠; 1:1000; 图 6f
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling, 9664)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:1000 (图 2d) 和 被用于免疫印迹在小鼠样本上浓度为1:1000 (图 6f). Autophagy (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 6k
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling Technology, 9662)被用于被用于免疫印迹在人类样本上 (图 6k). Toxicology (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 6h
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling Technology, 9661)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 6h). Cancer Discov (2019) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 图 4c
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling, 9661)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 4c). Cell Death Dis (2019) ncbi
domestic rabbit 单克隆(5A1E)
  • 免疫组化-冰冻切片; 小鼠; 1:500; 图 5e
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling, 9664)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:500 (图 5e). J Cell Biol (2019) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:500; 图 1d
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling, 9661)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:500 (图 1d). Nat Commun (2019) ncbi
domestic rabbit 单克隆(5A1E)
  • 免疫印迹; 人类; 图 2c
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling, 9664)被用于被用于免疫印迹在人类样本上 (图 2c). Biomed Res Int (2019) ncbi
domestic rabbit 单克隆(5A1E)
  • 免疫印迹; 人类; 1:1000; 图 4b
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling Technologies, 9664)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 4b). elife (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 5g
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling, 9661)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 5g). J Cell Sci (2019) ncbi
domestic rabbit 单克隆(5A1E)
  • 免疫组化-石蜡切片; 小鼠; 图 1g
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling, 9664L)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 1g). Cell Mol Gastroenterol Hepatol (2019) ncbi
domestic rabbit 单克隆(5A1E)
  • 免疫印迹; 人类; 1:1000; 图 3
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling Technology, 9664)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3). Sci Rep (2019) ncbi
domestic rabbit 单克隆(D3E9)
  • 免疫细胞化学; 小鼠; 1:500; 图 3g
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signalling Technology, 9579)被用于被用于免疫细胞化学在小鼠样本上浓度为1:500 (图 3g). Nat Commun (2019) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 图 4d
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling Technology, 9661)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 4d). Science (2019) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:200; 图 1j
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signalling, 9661)被用于被用于免疫组化在小鼠样本上浓度为1:200 (图 1j). Nature (2019) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 图 5c
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling, 9661S)被用于被用于免疫细胞化学在人类样本上 (图 5c). Cell Death Dis (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 25 ng/ml; 图 4c
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling, 9662)被用于被用于免疫印迹在小鼠样本上浓度为25 ng/ml (图 4c). Science (2019) ncbi
domestic rabbit 单克隆(5A1E)
  • 免疫印迹; 人类; 图 3c
  • 免疫印迹; 大鼠; 图 3c
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling Technology, 9664)被用于被用于免疫印迹在人类样本上 (图 3c) 和 被用于免疫印迹在大鼠样本上 (图 3c). J Exp Clin Cancer Res (2019) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 图 s2b
  • 免疫印迹; 小鼠; 图 s2a
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling, 9661)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 s2b) 和 被用于免疫印迹在小鼠样本上 (图 s2a). Cell (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 4d
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signalling Technology, 9661)被用于被用于免疫印迹在人类样本上 (图 4d). J Cell Mol Med (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 4d
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signalling Technology, 9662)被用于被用于免疫印迹在人类样本上 (图 4d). J Cell Mol Med (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 4d
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signalling Technology, 9661)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 4d). EMBO Mol Med (2019) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 人类; 图 1b, 2a
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling, 9661)被用于被用于免疫组化-冰冻切片在人类样本上 (图 1b, 2a). BMC Cancer (2019) ncbi
domestic rabbit 单克隆(5A1E)
  • 免疫组化-冰冻切片; 小鼠; 图 3a
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling, 9664)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 3a). Cell (2019) ncbi
domestic rabbit 单克隆(5A1E)
  • 免疫组化; 小鼠; 0.05 ug/ml; 图 1a, s1i
  • 免疫印迹; 小鼠; 图 s2d
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling, 9664)被用于被用于免疫组化在小鼠样本上浓度为0.05 ug/ml (图 1a, s1i) 和 被用于免疫印迹在小鼠样本上 (图 s2d). Science (2019) ncbi
domestic rabbit 单克隆(8G10)
  • 免疫印迹; 小鼠; 图 s2d
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling, 9665)被用于被用于免疫印迹在小鼠样本上 (图 s2d). Science (2019) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:200; 图 e5j
赛信通(上海)生物试剂有限公司 Casp3抗体(CST, 9661)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:200 (图 e5j). Nature (2019) ncbi
domestic rabbit 多克隆
  • 免疫组化; pigs ; 1:200; 图 s10c
赛信通(上海)生物试剂有限公司 Casp3抗体(CST, 9661S)被用于被用于免疫组化在pigs 样本上浓度为1:200 (图 s10c). Nature (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 1b
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling, 9661)被用于被用于免疫印迹在小鼠样本上 (图 1b). Cell Death Differ (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 1b
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling, 9662)被用于被用于免疫印迹在小鼠样本上 (图 1b). Cell Death Differ (2019) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 小鼠; 1:300; 图 s4b
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling, 9661)被用于被用于免疫细胞化学在小鼠样本上浓度为1:300 (图 s4b). Nat Commun (2019) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:250; 图 2s1a
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell signaling, 9661)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:250 (图 2s1a). elife (2019) ncbi
domestic rabbit 单克隆(5A1E)
  • 免疫印迹; 人类; 1:1000; 图 2c
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling, 9664)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 2c). Int J Oncol (2019) ncbi
domestic rabbit 多克隆
  • 免疫组化-自由浮动切片; 小鼠; 图 s18
  • 免疫印迹; 小鼠; 1:1000; 图 4a
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling, 9661)被用于被用于免疫组化-自由浮动切片在小鼠样本上 (图 s18) 和 被用于免疫印迹在小鼠样本上浓度为1:1000 (图 4a). Nat Neurosci (2019) ncbi
domestic rabbit 单克隆(8G10)
  • 免疫印迹; 小鼠; 图 7b
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling, 9665)被用于被用于免疫印迹在小鼠样本上 (图 7b). Cell (2019) ncbi
domestic rabbit 多克隆
  • 免疫组化; 人类; 1:600; 图 s7c
赛信通(上海)生物试剂有限公司 Casp3抗体(CST, 9661)被用于被用于免疫组化在人类样本上浓度为1:600 (图 s7c). Nat Commun (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 2e
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling, 9661)被用于被用于免疫印迹在人类样本上 (图 2e). Cancer Cell Int (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 2e
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling, 9662)被用于被用于免疫印迹在人类样本上 (图 2e). Cancer Cell Int (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 6q
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell signaling, 9662)被用于被用于免疫印迹在小鼠样本上 (图 6q). Aging Cell (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 3f
赛信通(上海)生物试剂有限公司 Casp3抗体(CST, 9662)被用于被用于免疫印迹在人类样本上 (图 3f). BMC Cancer (2019) ncbi
domestic rabbit 单克隆(5A1E)
  • 免疫印迹; 人类; 图 e8d
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling, 9664)被用于被用于免疫印迹在人类样本上 (图 e8d). Nature (2019) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 人类; 图 6e
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling Technology, 9661)被用于被用于免疫组化-石蜡切片在人类样本上 (图 6e). Cancer Res (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 5b
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling Technology, 9661)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 5b). Cancers (Basel) (2019) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 图 4d
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling Technology, 9661)被用于被用于免疫组化在小鼠样本上 (图 4d). Cell Death Dis (2019) ncbi
domestic rabbit 单克隆(5A1E)
  • 免疫细胞化学; 人类; 图 1c
  • 免疫印迹; 人类; 图 4a
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling Technology, 9664)被用于被用于免疫细胞化学在人类样本上 (图 1c) 和 被用于免疫印迹在人类样本上 (图 4a). Front Mol Neurosci (2019) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 图 s7b
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling, 9661)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 s7b). Cell Stem Cell (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 3a
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling, 9661S)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 3a). Aging Cell (2019) ncbi
domestic rabbit 单克隆(5A1E)
  • 免疫组化-冰冻切片; 小鼠; 1:1000; 图 s1a
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling, 5A1E)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:1000 (图 s1a). J Clin Invest (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 4c
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling, 9662)被用于被用于免疫印迹在人类样本上 (图 4c). Cancer Cell Int (2019) ncbi
domestic rabbit 单克隆(5A1E)
  • 免疫印迹; 人类; 图 4c
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling, 9664)被用于被用于免疫印迹在人类样本上 (图 4c). Cell Death Dis (2019) ncbi
domestic rabbit 单克隆(5A1E)
  • 免疫印迹; 小鼠; 图 4d
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling, 9664)被用于被用于免疫印迹在小鼠样本上 (图 4d). Cell Rep (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 2f
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling, 9661)被用于被用于免疫印迹在人类样本上 (图 2f). Mol Cell Probes (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 3b
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling Technology, 9661)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 3b). Nat Commun (2019) ncbi
domestic rabbit 单克隆(5A1E)
  • 免疫印迹; 小鼠; 1:1000; 图 3h
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling, 9664S)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 3h). J Cell Biol (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 3a
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling Technology, 9661)被用于被用于免疫印迹在小鼠样本上 (图 3a). FASEB J (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 s1a
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling, 9661)被用于被用于免疫印迹在人类样本上 (图 s1a). Breast Cancer Res (2019) ncbi
domestic rabbit 单克隆(5A1E)
  • 免疫印迹; 人类; 图 8f
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell signaling, 9664)被用于被用于免疫印迹在人类样本上 (图 8f). elife (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 6c
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling Technology, 9661)被用于被用于免疫印迹在小鼠样本上 (图 6c). Immunity (2019) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 人类; 图 3a
  • 免疫印迹; 人类; 图 7c
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling, 9661)被用于被用于免疫组化-石蜡切片在人类样本上 (图 3a) 和 被用于免疫印迹在人类样本上 (图 7c). Cancer Lett (2019) ncbi
domestic rabbit 单克隆(5A1E)
  • 免疫印迹; 人类; 图 4c
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling, 9664)被用于被用于免疫印迹在人类样本上 (图 4c). Br J Cancer (2019) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 人类; 图 7b
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling Technology, 9661)被用于被用于免疫组化-石蜡切片在人类样本上 (图 7b). Cells (2019) ncbi
domestic rabbit 单克隆(5A1E)
  • 免疫组化; 小鼠; 1:200; 图 s3b
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling, 9664S)被用于被用于免疫组化在小鼠样本上浓度为1:200 (图 s3b). Sci Adv (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 s1c
  • 免疫细胞化学; 人类; 图 3b
赛信通(上海)生物试剂有限公司 Casp3抗体(CST, 9661)被用于被用于免疫印迹在小鼠样本上 (图 s1c) 和 被用于免疫细胞化学在人类样本上 (图 3b). Nat Commun (2019) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 图 6i
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling, 9661)被用于被用于免疫细胞化学在人类样本上 (图 6i). Cell (2019) ncbi
domestic rabbit 单克隆(5A1E)
  • 免疫组化-冰冻切片; 小鼠; 图 5d
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling, 9664)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 5d). Cell Discov (2019) ncbi
domestic rabbit 单克隆(5A1E)
  • 免疫组化-冰冻切片; 小鼠; 图 3g
赛信通(上海)生物试剂有限公司 Casp3抗体(cell signaling, 9664)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 3g). Nature (2019) ncbi
domestic rabbit 单克隆(5A1E)
  • 免疫组化; 小鼠; 1:100; 图 1k
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling, 9664)被用于被用于免疫组化在小鼠样本上浓度为1:100 (图 1k). Nat Commun (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 1b
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling, 9661)被用于被用于免疫印迹在人类样本上 (图 1b). Nature (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 1b
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling, 9662)被用于被用于免疫印迹在人类样本上 (图 1b). Nature (2019) ncbi
domestic rabbit 单克隆(5A1E)
  • 免疫组化-冰冻切片; 小鼠; 1:1000; 图 3e
  • 免疫印迹; 小鼠; 1:1000
赛信通(上海)生物试剂有限公司 Casp3抗体(CST, 9664)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:1000 (图 3e) 和 被用于免疫印迹在小鼠样本上浓度为1:1000. elife (2019) ncbi
domestic rabbit 单克隆(D3E9)
  • 免疫组化-冰冻切片; 小鼠; 1:200; 图 2a
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling Technology, 9579)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:200 (图 2a). Dev Cell (2019) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 图 5l
  • 免疫印迹; 小鼠; 图 5a
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling Technology, 9661)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 5l) 和 被用于免疫印迹在小鼠样本上 (图 5a). Toxicology (2019) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 人类; 图 5h
  • 免疫细胞化学; 人类; 图 5e
  • 免疫组化-石蜡切片; 大鼠; 图 4g
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling Technology, 9661)被用于被用于免疫组化-石蜡切片在人类样本上 (图 5h), 被用于免疫细胞化学在人类样本上 (图 5e) 和 被用于免疫组化-石蜡切片在大鼠样本上 (图 4g). Cytokine (2019) ncbi
domestic rabbit 单克隆(5A1E)
  • 免疫印迹; 人类; 图 s7c
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling, 9664)被用于被用于免疫印迹在人类样本上 (图 s7c). Sci Adv (2019) ncbi
domestic rabbit 单克隆(5A1E)
  • 免疫组化-石蜡切片; 小鼠; 1:200; 图 6i
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling, 9664)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:200 (图 6i). Cell (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 4b
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signalling Technology, 9662)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 4b). Cardiovasc Res (2018) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 1b
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling, 9662)被用于被用于免疫印迹在小鼠样本上 (图 1b). Proc Natl Acad Sci U S A (2019) ncbi
domestic rabbit 单克隆(5A1E)
  • 免疫组化; 小鼠; 图 s7c
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling, 9664)被用于被用于免疫组化在小鼠样本上 (图 s7c). Cell (2019) ncbi
domestic rabbit 单克隆(5A1E)
  • 免疫组化-石蜡切片; 小鼠; 图 s9c
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling, 9664)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 s9c). Science (2018) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 1g
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling Technology, 9662S)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 1g). elife (2018) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 1g
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling Technology, 9661S)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 1g). elife (2018) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:500; 图 s3e
  • 免疫细胞化学; 小鼠; 1:500; 图 s4a
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling, 9661)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:500 (图 s3e) 和 被用于免疫细胞化学在小鼠样本上浓度为1:500 (图 s4a). Mol Psychiatry (2018) ncbi
domestic rabbit 单克隆(5A1E)
  • 免疫组化; 小鼠; 图 6e
  • 免疫印迹; 小鼠; 图 5f
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling, 9664)被用于被用于免疫组化在小鼠样本上 (图 6e) 和 被用于免疫印迹在小鼠样本上 (图 5f). Oncogene (2019) ncbi
domestic rabbit 单克隆(D3E9)
  • 免疫印迹; 小鼠; 图 s1g
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling, D3E9)被用于被用于免疫印迹在小鼠样本上 (图 s1g). Nat Commun (2018) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 1b
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling, 9661)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 1b). Biomed Pharmacother (2019) ncbi
domestic rabbit 单克隆(5A1E)
  • 免疫印迹; 人类; 1:1000; 图 6b
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling, 9664)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 6b). Cancer Sci (2019) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 图 3a
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling, 9661)被用于被用于免疫组化在小鼠样本上 (图 3a). J Neurosci (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 3k
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell signaling, 9661)被用于被用于免疫印迹在人类样本上 (图 3k). PLoS Biol (2018) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 1:400; 图 4d, 4e
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling, 9661)被用于被用于免疫细胞化学在人类样本上浓度为1:400 (图 4d, 4e). Oncogene (2019) ncbi
domestic rabbit 单克隆(5A1E)
  • 免疫组化-石蜡切片; 人类; 1:1000; 图 6c
  • 免疫印迹; 人类; 图 3a, 3b
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling, 9664)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:1000 (图 6c) 和 被用于免疫印迹在人类样本上 (图 3a, 3b). Biomed Pharmacother (2019) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 小鼠; 图 3d
  • 免疫印迹; 小鼠; 1:1000; 图 s14d
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling, 9661)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 3d) 和 被用于免疫印迹在小鼠样本上浓度为1:1000 (图 s14d). Nat Commun (2018) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 2i
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling Technology, 9662)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 2i). Cell Death Dis (2018) ncbi
domestic rabbit 单克隆(5A1E)
  • 免疫印迹; 人类; 1:1000; 图 5a
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling, 9664s)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 5a). J Biol Chem (2018) ncbi
domestic rabbit 单克隆(5A1E)
  • 免疫组化-石蜡切片; 人类; 1:1000; 图 s3a
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling, 9664)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:1000 (图 s3a). Nat Commun (2018) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 s1g
赛信通(上海)生物试剂有限公司 Casp3抗体(CST, 9661)被用于被用于免疫印迹在人类样本上 (图 s1g). Cell Death Differ (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 1d
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling, 9661)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 1d). Cell Death Dis (2018) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 4d
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling, 9661S)被用于被用于免疫印迹在小鼠样本上 (图 4d). Mol Cell Biochem (2019) ncbi
domestic rabbit 单克隆(5A1E)
  • 免疫印迹; 小鼠; 1:2000; 图 2d
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling, 9664)被用于被用于免疫印迹在小鼠样本上浓度为1:2000 (图 2d). Cell Death Dis (2018) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 5g
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling, 9661)被用于被用于免疫印迹在人类样本上 (图 5g). Cell Death Differ (2019) ncbi
domestic rabbit 单克隆(5A1E)
  • 免疫印迹; 人类; 1:1000; 图 3a
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling, 96645)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3a). EMBO Mol Med (2018) ncbi
domestic rabbit 单克隆(5A1E)
  • 免疫组化-石蜡切片; 小鼠; 1:1000; 图 3a
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling Technology, 9664)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:1000 (图 3a). mSphere (2018) ncbi
domestic rabbit 单克隆(5A1E)
  • 免疫组化-石蜡切片; 小鼠; 1:2000; 图 1g
  • 免疫印迹; 人类; 图 s5f
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling, 9664S)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:2000 (图 1g) 和 被用于免疫印迹在人类样本上 (图 s5f). J Clin Invest (2018) ncbi
domestic rabbit 单克隆(5A1E)
  • 免疫印迹; 小鼠; 图 1a
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling, 9664)被用于被用于免疫印迹在小鼠样本上 (图 1a). Mol Neurobiol (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 s15a
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling Technology, 9661S)被用于被用于免疫印迹在人类样本上 (图 s15a). J Clin Invest (2018) ncbi
domestic rabbit 单克隆(5A1E)
  • 免疫细胞化学; 人类; 1:500; 图 s3
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling, 9664)被用于被用于免疫细胞化学在人类样本上浓度为1:500 (图 s3). Front Neurosci (2018) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 3c
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling Technology, 9661S)被用于被用于免疫印迹在人类样本上 (图 3c). Cell Rep (2018) ncbi
domestic rabbit 单克隆(5A1E)
  • 免疫印迹; 小鼠; 图 1a
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling, 9664)被用于被用于免疫印迹在小鼠样本上 (图 1a). Oxid Med Cell Longev (2018) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 s10
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling, 9662)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 s10). Science (2018) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 s7b
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling, 9661s)被用于被用于免疫印迹在人类样本上 (图 s7b). Science (2018) ncbi
domestic rabbit 单克隆(5A1E)
  • 免疫印迹; 人类; 1:1000; 图 s3d
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling, 9664)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 s3d). PLoS ONE (2018) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 5c
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling, ASP175)被用于被用于免疫印迹在小鼠样本上 (图 5c). J Cell Mol Med (2018) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 5c
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling, 9662)被用于被用于免疫印迹在小鼠样本上 (图 5c). J Cell Mol Med (2018) ncbi
domestic rabbit 单克隆(5A1E)
  • 免疫印迹; 小鼠; 图 4e
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling Technology, 39664)被用于被用于免疫印迹在小鼠样本上 (图 4e). Cell Death Dis (2018) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:200; 图 4c
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling, 9661)被用于被用于免疫组化在小鼠样本上浓度为1:200 (图 4c). Breast Cancer Res (2018) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 1:800; 图 s5c
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling, 9661S)被用于被用于免疫细胞化学在人类样本上浓度为1:800 (图 s5c). Nature (2018) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 5b
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling Technology, 9662)被用于被用于免疫印迹在小鼠样本上 (图 5b). Cell Rep (2018) ncbi
domestic rabbit 单克隆(5A1E)
  • 免疫印迹; 人类; 图 4e
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling Technology, 9664)被用于被用于免疫印迹在人类样本上 (图 4e). Cell Death Dis (2018) ncbi
domestic rabbit 单克隆(5A1E)
  • 免疫印迹; 人类; 图 8b
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling Technology, 9664)被用于被用于免疫印迹在人类样本上 (图 8b). Autophagy (2018) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 图 3a
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling, 9661)被用于被用于免疫组化在小鼠样本上 (图 3a). J Clin Invest (2018) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 图 3k
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling, 9661)被用于被用于免疫组化在小鼠样本上 (图 3k). Dev Cell (2018) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 1h
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling Technology, 9661)被用于被用于免疫印迹在小鼠样本上 (图 1h). J Clin Invest (2018) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 人类; 1:300; 图 3k
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling, 9661)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:300 (图 3k). Nat Cell Biol (2018) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 2d
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling, 9661)被用于被用于免疫印迹在人类样本上 (图 2d). Oncotarget (2018) ncbi
domestic rabbit 单克隆(5A1E)
  • 免疫印迹; 人类; 图 3b
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling Technology, 9664)被用于被用于免疫印迹在人类样本上 (图 3b). Oncoimmunology (2018) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 s3a
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling Technology, 9662)被用于被用于免疫印迹在人类样本上 (图 s3a). J Clin Invest (2018) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 大鼠; 图 3c
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling Technology, 9662)被用于被用于免疫印迹在大鼠样本上 (图 3c). Oncotarget (2018) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:200; 图 s14f, s15g, s17d
  • 免疫组化-石蜡切片; 人类; 1:200; 图 s17b
  • 免疫印迹; 人类; 图 4f
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling, 9661)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:200 (图 s14f, s15g, s17d), 被用于免疫组化-石蜡切片在人类样本上浓度为1:200 (图 s17b) 和 被用于免疫印迹在人类样本上 (图 4f). Nat Med (2018) ncbi
domestic rabbit 单克隆(5A1E)
  • 流式细胞仪; 小鼠; 图 s3d
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling, 5A1E)被用于被用于流式细胞仪在小鼠样本上 (图 s3d). Cell Stem Cell (2018) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 图 2c
  • 免疫印迹; 小鼠; 1:1000; 图 7a
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling, 9661)被用于被用于免疫组化在小鼠样本上 (图 2c) 和 被用于免疫印迹在小鼠样本上浓度为1:1000 (图 7a). Nat Commun (2018) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 7a
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling, 9662)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 7a). Nat Commun (2018) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 图 s4a
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling, 9661)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 s4a). Oncogene (2018) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:100; 图 s9d
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling, 9661s)被用于被用于免疫组化在小鼠样本上浓度为1:100 (图 s9d). Science (2018) ncbi
domestic rabbit 单克隆(5A1E)
  • 免疫印迹; 小鼠; 图 2h
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling technology, 9664)被用于被用于免疫印迹在小鼠样本上 (图 2h). Mol Cell (2018) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:500; 图 s7a
  • 免疫印迹; 小鼠; 图 s7c
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling, 9661)被用于被用于免疫组化在小鼠样本上浓度为1:500 (图 s7a) 和 被用于免疫印迹在小鼠样本上 (图 s7c). Sci Adv (2018) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 人类; 图 3d
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling, 9661)被用于被用于免疫组化-石蜡切片在人类样本上 (图 3d). Proc Natl Acad Sci U S A (2018) ncbi
domestic rabbit 单克隆(5A1E)
  • 免疫组化; 小鼠; 图 1c
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling, 9664)被用于被用于免疫组化在小鼠样本上 (图 1c). Nature (2018) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 家羊; 1:1000; 图 4a, 4b
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling, 9661)被用于被用于免疫组化-石蜡切片在家羊样本上浓度为1:1000 (图 4a, 4b). J Neuroinflammation (2018) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 人类; 图 6
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling Technology, 9661)被用于被用于免疫组化-石蜡切片在人类样本上 (图 6). Oncogene (2018) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 3b
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling, 9661)被用于被用于免疫印迹在小鼠样本上 (图 3b). Sci Rep (2018) ncbi
domestic rabbit 单克隆(5A1E)
  • 免疫印迹; 小鼠; 图 2a
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling, 9664)被用于被用于免疫印迹在小鼠样本上 (图 2a). Life Sci (2018) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 6c
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling, 9661)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 6c). Cell Signal (2018) ncbi
domestic rabbit 单克隆(8G10)
  • 免疫印迹; 人类; 1:1000; 图 3d
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell signaling, 9665)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3d). Nat Commun (2018) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 2b
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling, 9662)被用于被用于免疫印迹在小鼠样本上 (图 2b). Cell Signal (2018) ncbi
domestic rabbit 单克隆(5A1E)
  • 免疫组化-冰冻切片; 小鼠; 图 4g
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling Technology, 9664)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 4g). Neuron (2018) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 小鼠; 图 7d
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling, 9661)被用于被用于免疫细胞化学在小鼠样本上 (图 7d). Nat Commun (2018) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:200; 图 s3c
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling, 9661)被用于被用于免疫组化在小鼠样本上浓度为1:200 (图 s3c). Nat Commun (2018) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 3h
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling, 9662S)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3h). Biochem Biophys Res Commun (2018) ncbi
domestic rabbit 单克隆(D3E9)
  • 免疫组化; 小鼠; 图 5c
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling, 9579)被用于被用于免疫组化在小鼠样本上 (图 5c). Proc Natl Acad Sci U S A (2018) ncbi
domestic rabbit 单克隆(8G10)
  • 免疫印迹; 人类; 图 9b
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling, 9665)被用于被用于免疫印迹在人类样本上 (图 9b). Int J Biochem Cell Biol (2018) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 图 s1c
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signalling Tech, 9661S)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 s1c). Biochim Biophys Acta Mol Basis Dis (2018) ncbi
domestic rabbit 单克隆(5A1E)
  • 免疫印迹; 人类; 图 2e
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling, 9664)被用于被用于免疫印迹在人类样本上 (图 2e). Cell (2018) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 2e
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling, 9662)被用于被用于免疫印迹在人类样本上 (图 2e). Cell (2018) ncbi
domestic rabbit 单克隆(5A1E)
  • 免疫组化-石蜡切片; 人类; 图 7d
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling, 9664)被用于被用于免疫组化-石蜡切片在人类样本上 (图 7d). Cell (2018) ncbi
domestic rabbit 单克隆(5A1E)
  • 免疫印迹; 人类; 1:1000; 图 6e
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling, 9664)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 6e). Oncogene (2018) ncbi
domestic rabbit 多克隆
  • 流式细胞仪; 小鼠; 图 4g
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling, Caspase-3)被用于被用于流式细胞仪在小鼠样本上 (图 4g). Cell (2018) ncbi
domestic rabbit 单克隆(D3E9)
  • 流式细胞仪; 小鼠; 图 e6c
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signalling, D3E9)被用于被用于流式细胞仪在小鼠样本上 (图 e6c). Nature (2018) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 5f
赛信通(上海)生物试剂有限公司 Casp3抗体(CST, 9661)被用于被用于免疫印迹在人类样本上 (图 5f). BMC Cancer (2017) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 人类; 1:100; 图 5c
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling, 9661S)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100 (图 5c). Cancer Res (2018) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 6d
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling, 9661)被用于被用于免疫印迹在小鼠样本上 (图 6d). Oncotarget (2017) ncbi
domestic rabbit 单克隆(5A1E)
  • 免疫印迹; 人类; 1:1000; 图 4f
赛信通(上海)生物试剂有限公司 Casp3抗体(CST, 9664)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 4f). Biochem Biophys Res Commun (2018) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 3c
赛信通(上海)生物试剂有限公司 Casp3抗体(CST, 9662)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3c). Biochem Biophys Res Commun (2018) ncbi
domestic rabbit 单克隆(8G10)
  • 免疫印迹; 人类; 图 3f
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling, 9665S)被用于被用于免疫印迹在人类样本上 (图 3f). Oncotarget (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 3a
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signalling, 9661)被用于被用于免疫印迹在小鼠样本上 (图 3a). J Mol Biol (2018) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 3a
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signalling, 9662)被用于被用于免疫印迹在小鼠样本上 (图 3a). J Mol Biol (2018) ncbi
domestic rabbit 单克隆(5A1E)
  • 免疫组化-石蜡切片; 小鼠; 1:200; 图 4c
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling, 9664S)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:200 (图 4c). J Histochem Cytochem (2017) ncbi
domestic rabbit 单克隆(5A1E)
  • 免疫组化; 小鼠; 1:200; 图 5i
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling, 9664)被用于被用于免疫组化在小鼠样本上浓度为1:200 (图 5i). Eneuro (2017) ncbi
domestic rabbit 单克隆(5A1E)
  • 免疫组化-石蜡切片; 小鼠; 图 4f
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling, 9664)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 4f). Proc Natl Acad Sci U S A (2017) ncbi
domestic rabbit 单克隆(5A1E)
  • 免疫组化-冰冻切片; 小鼠; 1:400; 图 4a
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling, 5A1E)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:400 (图 4a). PLoS ONE (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 4d
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling Technology, 9662)被用于被用于免疫印迹在人类样本上 (图 4d). Cell (2017) ncbi
domestic rabbit 单克隆(5A1E)
  • 免疫印迹; 人类; 图 5b
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling, 9664)被用于被用于免疫印迹在人类样本上 (图 5b). Am J Physiol Heart Circ Physiol (2018) ncbi
domestic rabbit 单克隆(5A1E)
  • 免疫组化-冰冻切片; 小鼠; 1:400; 图 s4a
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling Technology, 9664s)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:400 (图 s4a). Development (2017) ncbi
domestic rabbit 单克隆(5A1E)
  • 免疫印迹; 小鼠; 1:1000; 图 1h
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signalling, 9664)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 1h). Sci Rep (2017) ncbi
domestic rabbit 单克隆(8G10)
  • 免疫印迹; 小鼠; 1:1000; 图 1h
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signalling, 9665)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 1h). Sci Rep (2017) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 小鼠; 图 s7b
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling, 9661)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 s7b). J Clin Invest (2017) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:400; 图 2l
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling, 9661)被用于被用于免疫组化在小鼠样本上浓度为1:400 (图 2l). Genes Dev (2017) ncbi
domestic rabbit 单克隆(D3E9)
  • 免疫组化-石蜡切片; 人类; 1:100; 图 6c
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling, 9579)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100 (图 6c). Acta Neuropathol (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 2e
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling, 9661)被用于被用于免疫印迹在人类样本上 (图 2e). Oncogene (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 1g
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling Technology, 9661)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 1g). Nat Cell Biol (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 1b
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling Technology, 9661)被用于被用于免疫印迹在人类样本上 (图 1b). Cancer Res (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 s9b
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling, 9662)被用于被用于免疫印迹在人类样本上 (图 s9b). J Clin Invest (2017) ncbi
domestic rabbit 单克隆(5A1E)
  • 免疫组化; 小鼠; 图 1g
  • 免疫印迹; 人类; 图 s9b
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling, 9664)被用于被用于免疫组化在小鼠样本上 (图 1g) 和 被用于免疫印迹在人类样本上 (图 s9b). J Clin Invest (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 4e
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling, 9661)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 4e). Hepatology (2017) ncbi
domestic rabbit 单克隆(5A1E)
  • 免疫组化; 小鼠; 1:200; 图 3g
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling, 9664S)被用于被用于免疫组化在小鼠样本上浓度为1:200 (图 3g). Genes Dev (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 4f
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling, 9661)被用于被用于免疫印迹在人类样本上 (图 4f). Oncogene (2017) ncbi
domestic rabbit 多克隆
赛信通(上海)生物试剂有限公司 Casp3抗体(cell signaling, 9662)被用于. Oncogene (2017) ncbi
domestic rabbit 单克隆(5A1E)
赛信通(上海)生物试剂有限公司 Casp3抗体(cell signaling, 9664)被用于. Oncogene (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 3a
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling Technologies, 9661)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3a). Nat Cell Biol (2017) ncbi
domestic rabbit 单克隆(5A1E)
  • 免疫组化-石蜡切片; 小鼠; 图 13b
赛信通(上海)生物试剂有限公司 Casp3抗体(cell signaling, 9664)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 13b). J Neurosci (2017) ncbi
domestic rabbit 单克隆(5A1E)
  • 免疫细胞化学; 人类; 图 9e
  • 免疫印迹; 人类; 图 9a
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling, 9664)被用于被用于免疫细胞化学在人类样本上 (图 9e) 和 被用于免疫印迹在人类样本上 (图 9a). J Cell Biol (2017) ncbi
domestic rabbit 单克隆(5A1E)
  • 免疫印迹; 大鼠; 图 6p
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling, 9664)被用于被用于免疫印迹在大鼠样本上 (图 6p). Brain Behav Immun (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 4i
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell signaling, 9661)被用于被用于免疫印迹在人类样本上 (图 4i). Leuk Lymphoma (2018) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 5b
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling Technologies, 9662)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 5b). J Biol Chem (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 5d
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling Technologies, 9661)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 5d). J Biol Chem (2017) ncbi
domestic rabbit 单克隆(5A1E)
  • 免疫组化; 小鼠; 1:200; 图 4a
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling, 9664)被用于被用于免疫组化在小鼠样本上浓度为1:200 (图 4a). Dev Biol (2017) ncbi
domestic rabbit 单克隆(5A1E)
  • 免疫印迹; 人类; 图 2b
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling, 96645)被用于被用于免疫印迹在人类样本上 (图 2b). Cancer Cell (2017) ncbi
domestic rabbit 单克隆(5A1E)
  • 免疫组化-冰冻切片; 小鼠; 图 s2g
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling, 5A1E)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 s2g). Science (2017) ncbi
domestic rabbit 单克隆(8G10)
  • 免疫印迹; 人类; 1:1000; 图 5a
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling Technology, 8G10)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 5a). Immun Inflamm Dis (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 3c
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling, 9662S)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3c). J Biol Chem (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 e4c
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling, 9661)被用于被用于免疫印迹在小鼠样本上 (图 e4c). Nature (2017) ncbi
domestic rabbit 单克隆(5A1E)
  • 免疫组化-冰冻切片; 小鼠; 图 5b
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling, 9664)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 5b). Proc Natl Acad Sci U S A (2017) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 图 2d
  • 免疫印迹; 小鼠; 图 1d
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling, 9661)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 2d) 和 被用于免疫印迹在小鼠样本上 (图 1d). J Clin Invest (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 5a
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling, 9661)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 5a). Int J Mol Med (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 1d
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling, 9662)被用于被用于免疫印迹在人类样本上 (图 1d). Nature (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 1c
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling, 9661S)被用于被用于免疫印迹在人类样本上 (图 1c). Nature (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 s1d
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell signal, 9662)被用于被用于免疫印迹在人类样本上 (图 s1d). Nature (2017) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 犬; 图 4a
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling Technology, 9661)被用于被用于免疫细胞化学在犬样本上 (图 4a). Oncogene (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 2d
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling, 9661)被用于被用于免疫印迹在人类样本上 (图 2d). Gene (2017) ncbi
domestic rabbit 单克隆(D3E9)
  • 免疫印迹; 人类; 图 6c
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling, 9579)被用于被用于免疫印迹在人类样本上 (图 6c). Transl Neurodegener (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 s6
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell signaling, 9661)被用于被用于免疫印迹在人类样本上 (图 s6). Proc Natl Acad Sci U S A (2017) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:200; 图 4j
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling Technology, 9661)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:200 (图 4j). Development (2017) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:100; 图 4c
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling, 9661)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:100 (图 4c). EMBO Mol Med (2017) ncbi
domestic rabbit 单克隆(D3E9)
  • 免疫组化; 小鼠; 1:200; 图 2e
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling, 9579S)被用于被用于免疫组化在小鼠样本上浓度为1:200 (图 2e). PLoS Biol (2017) ncbi
domestic rabbit 单克隆(5A1E)
  • 免疫组化-石蜡切片; 小鼠; 1:100; 图 s2g
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell signaling, 9664)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:100 (图 s2g). Nature (2017) ncbi
domestic rabbit 单克隆(5A1E)
  • 免疫印迹; 人类; 1:1000; 图 5e
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell signaling, 9664)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 5e). Biochem Pharmacol (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹基因敲除验证; 人类; 图 s1d
  • 免疫印迹; 人类; 图 s5e
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling, 9662)被用于被用于免疫印迹基因敲除验证在人类样本上 (图 s1d) 和 被用于免疫印迹在人类样本上 (图 s5e). Nature (2017) ncbi
domestic rabbit 单克隆(5A1E)
  • 免疫组化; 人类; 1:400; 图 s1d
赛信通(上海)生物试剂有限公司 Casp3抗体(CST, 9664)被用于被用于免疫组化在人类样本上浓度为1:400 (图 s1d). J Cell Sci (2017) ncbi
domestic rabbit 单克隆(5A1E)
  • 免疫细胞化学; 小鼠; 1:400; 图 3c
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling, 9664)被用于被用于免疫细胞化学在小鼠样本上浓度为1:400 (图 3c). J Cell Biol (2017) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:300; 图 s1d
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling, 9661)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:300 (图 s1d). J Cell Biol (2017) ncbi
domestic rabbit 单克隆(8G10)
  • 流式细胞仪; 小鼠; 图 2c
  • 免疫印迹; 小鼠; 图 2
赛信通(上海)生物试剂有限公司 Casp3抗体(cell signalling, 8G10)被用于被用于流式细胞仪在小鼠样本上 (图 2c) 和 被用于免疫印迹在小鼠样本上 (图 2). J Clin Invest (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 2b
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling, 9662)被用于被用于免疫印迹在人类样本上 (图 2b). J Cell Biol (2017) ncbi
domestic rabbit 单克隆(5A1E)
  • 免疫印迹; 小鼠; 1:1000; 图 4
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell signaling, 9664S)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 4). Biomed Rep (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 大鼠; 图 1d
  • 免疫印迹; 小鼠; 图 7f
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling, 9661)被用于被用于免疫印迹在大鼠样本上 (图 1d) 和 被用于免疫印迹在小鼠样本上 (图 7f). Clin Exp Pharmacol Physiol (2017) ncbi
domestic rabbit 单克隆(5A1E)
  • 免疫印迹; 人类; 图 4c
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling Technology, 9664)被用于被用于免疫印迹在人类样本上 (图 4c). J Pathol (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 3
赛信通(上海)生物试剂有限公司 Casp3抗体(cell signalling, 9662)被用于被用于免疫印迹在人类样本上 (图 3). Neoplasia (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 大鼠; 1:1000; 图 6a
赛信通(上海)生物试剂有限公司 Casp3抗体(cell signalling, 9662)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 6a). Am J Transl Res (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 s1
赛信通(上海)生物试剂有限公司 Casp3抗体(cell signalling, 9661)被用于被用于免疫印迹在小鼠样本上 (图 s1). Cell Death Dis (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 4a
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell signaling, 9661)被用于被用于免疫印迹在人类样本上 (图 4a). Front Cell Infect Microbiol (2017) ncbi
domestic rabbit 单克隆(5A1E)
  • 免疫印迹; 小鼠; 1:1000; 图 1a, 1b, 2h
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling, 5A1E)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 1a, 1b, 2h). Nat Commun (2017) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 人类; 1:100; 图 s7b
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling, 9661)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100 (图 s7b). Nature (2017) ncbi
domestic rabbit 单克隆(8G10)
  • 免疫印迹; 人类; 图 7a
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling, 9665)被用于被用于免疫印迹在人类样本上 (图 7a). Cancer Immunol Res (2017) ncbi
domestic rabbit 多克隆
  • 免疫组化; 大鼠; 1:5000; 图 1e
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling, 9661S)被用于被用于免疫组化在大鼠样本上浓度为1:5000 (图 1e). J Neurosci (2017) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 小鼠; 图 3e
赛信通(上海)生物试剂有限公司 Casp3抗体(cell signalling, 9661)被用于被用于免疫细胞化学在小鼠样本上 (图 3e). FASEB J (2017) ncbi
domestic rabbit 单克隆(8G10)
  • 免疫印迹; 人类; 图 2c
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling, 9665)被用于被用于免疫印迹在人类样本上 (图 2c). Nucleic Acids Res (2017) ncbi
domestic rabbit 单克隆(5A1E)
  • 免疫印迹; 小鼠; 1:500; 图 6a
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell signaling, 9664)被用于被用于免疫印迹在小鼠样本上浓度为1:500 (图 6a). elife (2017) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 1:250; 图 s3e
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling, 9661S)被用于被用于免疫细胞化学在人类样本上浓度为1:250 (图 s3e). Nature (2017) ncbi
domestic rabbit 多克隆
  • 免疫组化; fruit fly ; 1:500; 图 1e
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling, 9661)被用于被用于免疫组化在fruit fly 样本上浓度为1:500 (图 1e). EMBO J (2017) ncbi
domestic rabbit 单克隆(8G10)
  • 免疫印迹; 人类; 图 3f
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling Technology, Inc., 9665)被用于被用于免疫印迹在人类样本上 (图 3f). Sci Rep (2017) ncbi
domestic rabbit 单克隆(5A1E)
  • 免疫印迹; 人类; 图 3f
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling Technology, Inc., 9664)被用于被用于免疫印迹在人类样本上 (图 3f). Sci Rep (2017) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:200; 图 3d
  • 免疫印迹; 小鼠; 1:200; 图 3e
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling, 9661)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:200 (图 3d) 和 被用于免疫印迹在小鼠样本上浓度为1:200 (图 3e). Nat Commun (2017) ncbi
domestic rabbit 单克隆(5A1E)
  • 免疫印迹; 大鼠; 1:200; 图 2d
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling, 9664)被用于被用于免疫印迹在大鼠样本上浓度为1:200 (图 2d). Toxicology (2017) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:50; 图 4b
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell signaling, 9661)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:50 (图 4b). Arterioscler Thromb Vasc Biol (2017) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 大鼠; 1:500; 图 8
  • 免疫印迹; 大鼠; 1:1000; 图 1f
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling, 9661)被用于被用于免疫组化-冰冻切片在大鼠样本上浓度为1:500 (图 8) 和 被用于免疫印迹在大鼠样本上浓度为1:1000 (图 1f). Brain Behav Immun (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 1a
赛信通(上海)生物试剂有限公司 Casp3抗体(cell signalling, 9662)被用于被用于免疫印迹在人类样本上 (图 1a). Cell Death Dis (2017) ncbi
domestic rabbit 单克隆(8G10)
  • 免疫印迹; 小鼠; 1:1000; 图 4h
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling, 9,665)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 4h). Nat Commun (2017) ncbi
domestic rabbit 单克隆(8G10)
  • 免疫印迹; 小鼠; 图 2b
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling, 9665)被用于被用于免疫印迹在小鼠样本上 (图 2b). Sci Signal (2017) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 图 3g
赛信通(上海)生物试剂有限公司 Casp3抗体(CST, 9661)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 3g). Genes Dev (2017) ncbi
domestic rabbit 单克隆(5A1E)
  • 免疫组化-冰冻切片; 小鼠; 图 7e
赛信通(上海)生物试剂有限公司 Casp3抗体(cst, 9664)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 7e). PLoS ONE (2017) ncbi
domestic rabbit 单克隆(8G10)
  • 免疫印迹; 小鼠; 图 4b
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling, 9665)被用于被用于免疫印迹在小鼠样本上 (图 4b). Biochem Pharmacol (2017) ncbi
domestic rabbit 单克隆(5A1E)
  • 免疫印迹; 小鼠; 图 4b
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling, 9664)被用于被用于免疫印迹在小鼠样本上 (图 4b). Biochem Pharmacol (2017) ncbi
domestic rabbit 单克隆(5A1E)
  • 免疫组化; 小鼠; 1:200; 图 7a
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signalling, Asp175 5A1E)被用于被用于免疫组化在小鼠样本上浓度为1:200 (图 7a). PLoS Pathog (2017) ncbi
domestic rabbit 单克隆(5A1E)
  • 免疫细胞化学; 人类; 图 1b
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling, 9664)被用于被用于免疫细胞化学在人类样本上 (图 1b). Sci Rep (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 3k, 5i, 6f
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling, 9661)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 3k, 5i, 6f). Sci Rep (2017) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:1000; 表 1
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling, 9661)被用于被用于免疫组化在小鼠样本上浓度为1:1000 (表 1). elife (2017) ncbi
domestic rabbit 单克隆(5A1E)
  • 免疫印迹; 人类; 图 1f
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell signalling, 9664)被用于被用于免疫印迹在人类样本上 (图 1f). Cancer Lett (2017) ncbi
domestic rabbit 单克隆(5A1E)
  • 免疫印迹; 人类; 图 1f
赛信通(上海)生物试剂有限公司 Casp3抗体(cell signalling, 9664)被用于被用于免疫印迹在人类样本上 (图 1f). EMBO J (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:2000; 图 4e
赛信通(上海)生物试剂有限公司 Casp3抗体(cell signalling, 9661)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 4e). Sci Rep (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:2000; 图 4e
赛信通(上海)生物试剂有限公司 Casp3抗体(cell signalling, 9662)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 4e). Sci Rep (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 7d
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling, 9661)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 7d). Theranostics (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 Casp3抗体(CST, 9662)被用于被用于免疫印迹在人类样本上. Mol Ther (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 1a
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling, 9662S)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 1a). Mol Cell Biol (2017) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 小鼠; 图 2b
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling, 9669)被用于被用于免疫细胞化学在小鼠样本上 (图 2b). Cell Death Dis (2017) ncbi
domestic rabbit 多克隆
  • 流式细胞仪; 人类; 1:500; 图 10b
  • 免疫细胞化学; 人类; 1:500; 图 8b
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling Technology, 9661)被用于被用于流式细胞仪在人类样本上浓度为1:500 (图 10b) 和 被用于免疫细胞化学在人类样本上浓度为1:500 (图 8b). Sci Rep (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:250; 图 6A
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling, 9661)被用于被用于免疫印迹在人类样本上浓度为1:250 (图 6A). Int J Mol Med (2017) ncbi
domestic rabbit 单克隆(5A1E)
  • 免疫印迹; 小鼠; 1:500; 图 4d
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling, 9664)被用于被用于免疫印迹在小鼠样本上浓度为1:500 (图 4d). Int J Mol Med (2017) ncbi
domestic rabbit 多克隆
  • 流式细胞仪; 人类; 1:250; 图 s1l
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling, 9661)被用于被用于流式细胞仪在人类样本上浓度为1:250 (图 s1l). Cell Stem Cell (2017) ncbi
domestic rabbit 单克隆(5A1E)
  • 免疫组化-石蜡切片; 小鼠; 1:800; 图 st5
  • 免疫组化-石蜡切片; 大鼠; 1:800; 图 st5
  • 免疫组化-石蜡切片; African green monkey; 1:800; 图 st5
  • 免疫组化-石蜡切片; 人类; 1:800; 图 st5
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling Technology, 9664)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:800 (图 st5), 被用于免疫组化-石蜡切片在大鼠样本上浓度为1:800 (图 st5), 被用于免疫组化-石蜡切片在African green monkey样本上浓度为1:800 (图 st5) 和 被用于免疫组化-石蜡切片在人类样本上浓度为1:800 (图 st5). J Toxicol Pathol (2017) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 图 3b
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling Technology, 9661)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 3b). J Cell Biol (2017) ncbi
domestic rabbit 单克隆(5A1E)
  • 免疫组化; 小鼠; 图 8d
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling, 9664S)被用于被用于免疫组化在小鼠样本上 (图 8d). J Exp Med (2017) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 图 s7h
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling, 9661)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 s7h). Nature (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; pigs ; 图 1c
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling, 9662)被用于被用于免疫印迹在pigs 样本上 (图 1c). Sci Rep (2017) ncbi
domestic rabbit 多克隆
  • 免疫组化; 大鼠; 图 2b
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling, 9661)被用于被用于免疫组化在大鼠样本上 (图 2b). Sci Rep (2017) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:150
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling, 9661)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:150. J Clin Invest (2017) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:100; 图 4e
赛信通(上海)生物试剂有限公司 Casp3抗体(cell signalling, 9661)被用于被用于免疫组化在小鼠样本上浓度为1:100 (图 4e). J Clin Invest (2017) ncbi
domestic rabbit 单克隆(5A1E)
  • 免疫印迹; 小鼠; 图 12A
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell signaling, 9664)被用于被用于免疫印迹在小鼠样本上 (图 12A). EBioMedicine (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 s2c
赛信通(上海)生物试剂有限公司 Casp3抗体(CST, 9662)被用于被用于免疫印迹在人类样本上 (图 s2c). Sci Rep (2017) ncbi
domestic rabbit 单克隆(8G10)
  • 免疫印迹; 人类; 图 4c
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling Technology, 8G10)被用于被用于免疫印迹在人类样本上 (图 4c). Neoplasia (2017) ncbi
domestic rabbit 单克隆(5A1E)
  • 免疫印迹; 人类; 图 4c
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling Technology, 5A1E)被用于被用于免疫印迹在人类样本上 (图 4c). Neoplasia (2017) ncbi
domestic rabbit 单克隆(5A1E)
  • 免疫组化-石蜡切片; 小鼠; 1:500; 图 4a
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling, 9664)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:500 (图 4a). Sci Rep (2017) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 斑马鱼; 1:100; 图 s6
  • 免疫细胞化学; 小鼠; 1:100; 图 s6
赛信通(上海)生物试剂有限公司 Casp3抗体(cell signalling, 9661)被用于被用于免疫细胞化学在斑马鱼样本上浓度为1:100 (图 s6) 和 被用于免疫细胞化学在小鼠样本上浓度为1:100 (图 s6). Sci Adv (2016) ncbi
domestic rabbit 单克隆(5A1E)
  • 免疫组化; 小鼠; 1:100; 图 s4
赛信通(上海)生物试剂有限公司 Casp3抗体(New England Biolabs, 9664)被用于被用于免疫组化在小鼠样本上浓度为1:100 (图 s4). Proc Natl Acad Sci U S A (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 4a
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling, 9661)被用于被用于免疫印迹在人类样本上 (图 4a). Peerj (2017) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:200; 图 4e
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling, 9661)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:200 (图 4e). Nat Commun (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 1b
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling, 9661S)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 1b). Nat Commun (2017) ncbi
domestic rabbit 单克隆(5A1E)
  • 免疫组化-石蜡切片; 小鼠; 图 s4e
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell signaling, 5A1E)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 s4e). PLoS Biol (2017) ncbi
domestic rabbit 单克隆(5A1E)
  • 免疫印迹; 人类; 1:1000; 图 3b
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling, 9664)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3b). Oncol Lett (2017) ncbi
domestic rabbit 单克隆(8G10)
  • 免疫印迹; 人类; 1:1000; 图 3b
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling, 9665)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3b). Oncol Lett (2017) ncbi
domestic rabbit 单克隆(5A1E)
  • 免疫印迹; 人类; 图 7e
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signalling, 9654s)被用于被用于免疫印迹在人类样本上 (图 7e). Autophagy (2017) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 1:100; 图 st4
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling, 9661)被用于被用于免疫细胞化学在人类样本上浓度为1:100 (图 st4). Nat Biotechnol (2017) ncbi
domestic rabbit 单克隆(5A1E)
  • 免疫细胞化学; 人类; 1:1000; 图 2c
  • 免疫印迹; 人类; 1:1000; 图 6b
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling, 9664)被用于被用于免疫细胞化学在人类样本上浓度为1:1000 (图 2c) 和 被用于免疫印迹在人类样本上浓度为1:1000 (图 6b). Nat Commun (2017) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 图 1f
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling Technology, 9661S)被用于被用于免疫细胞化学在人类样本上 (图 1f). Cell Stem Cell (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 4d
  • 免疫印迹基因敲除验证; 小鼠; 图 3d
  • 免疫印迹; 小鼠; 图 3d
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling, 9661)被用于被用于免疫印迹在人类样本上 (图 4d), 被用于免疫印迹基因敲除验证在小鼠样本上 (图 3d) 和 被用于免疫印迹在小鼠样本上 (图 3d). Cell Death Differ (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 2a, 2b
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling, 9662)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 2a, 2b). Oncol Lett (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:600; 图 2e
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling, 9661)被用于被用于免疫印迹在人类样本上浓度为1:600 (图 2e). Oncol Lett (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 2a
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling, 9662)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 2a). Radiother Oncol (2017) ncbi
domestic rabbit 单克隆(5A1E)
  • 免疫印迹; 小鼠; 1:1000; 图 5e
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell signaling, 9664)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 5e). PLoS ONE (2017) ncbi
domestic rabbit 单克隆(8G10)
  • 免疫印迹; 人类; 图 2d
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling Technology, 9665)被用于被用于免疫印迹在人类样本上 (图 2d). FEBS Open Bio (2017) ncbi
domestic rabbit 单克隆(5A1E)
  • 免疫印迹; 人类; 图 2d
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling Technology, 9664)被用于被用于免疫印迹在人类样本上 (图 2d). FEBS Open Bio (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:500; 图 6c
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell signaling, 9662)被用于被用于免疫印迹在小鼠样本上浓度为1:500 (图 6c). Clin Sci (Lond) (2017) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 图 2m
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling, 9661)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 2m). J Exp Med (2017) ncbi
domestic rabbit 单克隆(5A1E)
  • 免疫印迹; 人类; 1:1000; 图 8a
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling Technology, 9664)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 8a). PLoS ONE (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 8a
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling Technology, 9662)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 8a). PLoS ONE (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 7a
  • 免疫印迹; 小鼠; 图 2e
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling, 9661)被用于被用于免疫印迹在人类样本上 (图 7a) 和 被用于免疫印迹在小鼠样本上 (图 2e). J Clin Invest (2017) ncbi
domestic rabbit 单克隆(5A1E)
  • 流式细胞仪; 人类; 图 s1
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling, 9664 S)被用于被用于流式细胞仪在人类样本上 (图 s1). Sci Rep (2017) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 小鼠; 1:500; 图 3b
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling, 9661)被用于被用于免疫细胞化学在小鼠样本上浓度为1:500 (图 3b). Nat Commun (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 1f
赛信通(上海)生物试剂有限公司 Casp3抗体(cell signalling, 9661)被用于被用于免疫印迹在人类样本上 (图 1f). elife (2017) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:500; 图 7h
赛信通(上海)生物试剂有限公司 Casp3抗体(cell signalling, 9661)被用于被用于免疫组化在小鼠样本上浓度为1:500 (图 7h). Nat Commun (2017) ncbi
domestic rabbit 单克隆(8G10)
  • 免疫印迹; 大鼠; 1:1000; 图 6e
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling Technology, 9665)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 6e). Nat Commun (2017) ncbi
domestic rabbit 单克隆(5A1E)
  • 免疫印迹; 大鼠; 1:1000; 图 6e
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling Technology, 9664)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 6e). Nat Commun (2017) ncbi
domestic rabbit 多克隆
  • 流式细胞仪; 小鼠; 1:800; 图 1a
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling Technology, 9661S)被用于被用于流式细胞仪在小鼠样本上浓度为1:800 (图 1a). PLoS ONE (2017) ncbi
domestic rabbit 单克隆(8G10)
  • 免疫印迹; 人类; 1:1000; 图 3e
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling, 9665)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3e). Nat Commun (2017) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 大鼠; 1:50; 图 2a
  • 免疫印迹; 大鼠; 1:1000; 图 4d
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling, 9661)被用于被用于免疫组化-石蜡切片在大鼠样本上浓度为1:50 (图 2a) 和 被用于免疫印迹在大鼠样本上浓度为1:1000 (图 4d). Sci Rep (2017) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 图 2a
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling Technology, 9661)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 2a). Mol Cell Biol (2017) ncbi
domestic rabbit 单克隆(5A1E)
  • 免疫印迹; 大鼠; 图 6a
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling, 9664)被用于被用于免疫印迹在大鼠样本上 (图 6a). PLoS ONE (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 1c
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling, 9661)被用于被用于免疫印迹在人类样本上 (图 1c). Oncotarget (2017) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 小鼠; 1:50; 图 3f
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell signaling, 9661)被用于被用于免疫细胞化学在小鼠样本上浓度为1:50 (图 3f). EMBO Mol Med (2017) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:1600; 图 5b
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling, 9661)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:1600 (图 5b). PLoS ONE (2017) ncbi
domestic rabbit 单克隆(5A1E)
  • 免疫组化-石蜡切片; 小鼠; 图 3d
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling, 9664)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 3d). Nat Commun (2017) ncbi
domestic rabbit 单克隆(5A1E)
  • 免疫组化-冰冻切片; 大鼠
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell signaling, 9664S)被用于被用于免疫组化-冰冻切片在大鼠样本上. Tissue Cell (2017) ncbi
domestic rabbit 单克隆(5A1E)
  • 免疫组化-石蜡切片; 大鼠; 1:100
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling Technology, 9664)被用于被用于免疫组化-石蜡切片在大鼠样本上浓度为1:100. Brain Res (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 2c
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling, 9661)被用于被用于免疫印迹在人类样本上 (图 2c). Oncotarget (2017) ncbi
domestic rabbit 单克隆(5A1E)
  • 免疫印迹; 小鼠; 1:500
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell signaling, 9664)被用于被用于免疫印迹在小鼠样本上浓度为1:500. Brain Res (2017) ncbi
domestic rabbit 单克隆(5A1E)
  • 免疫印迹; 人类; 图 7c
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell signaling, 9664)被用于被用于免疫印迹在人类样本上 (图 7c). Oncotarget (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 5e
赛信通(上海)生物试剂有限公司 Casp3抗体(CST, 9662)被用于被用于免疫印迹在小鼠样本上 (图 5e). J Am Heart Assoc (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 5e
赛信通(上海)生物试剂有限公司 Casp3抗体(CST, 9661)被用于被用于免疫印迹在小鼠样本上 (图 5e). J Am Heart Assoc (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 5
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling, 9662)被用于被用于免疫印迹在人类样本上 (图 5). Cell Death Dis (2016) ncbi
domestic rabbit 单克隆(5A1E)
  • 流式细胞仪; 人类; 图 s7e
赛信通(上海)生物试剂有限公司 Casp3抗体(cell signalling, 9664)被用于被用于流式细胞仪在人类样本上 (图 s7e). Nat Commun (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 2g
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling, 9662)被用于被用于免疫印迹在小鼠样本上 (图 2g). Sci Transl Med (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 5f
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling, 9661s)被用于被用于免疫印迹在人类样本上 (图 5f). J Biol Chem (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 大鼠; 图 s8
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signalling, 9662)被用于被用于免疫印迹在大鼠样本上 (图 s8). Oncotarget (2017) ncbi
domestic rabbit 单克隆(5A1E)
  • 免疫印迹; 大鼠; 图 5a
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signalling, 9664)被用于被用于免疫印迹在大鼠样本上 (图 5a). Oncotarget (2017) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 图 s2
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling, 9661)被用于被用于免疫细胞化学在人类样本上 (图 s2). Oncotarget (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 大鼠; 图 9a
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell signaling, 9661)被用于被用于免疫印迹在大鼠样本上 (图 9a). PLoS ONE (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 4c
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling, 9662)被用于被用于免疫印迹在人类样本上 (图 4c). Oncogene (2017) ncbi
domestic rabbit 单克隆(5A1E)
  • 免疫印迹; 大鼠; 图 7b
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell signaling, 9664)被用于被用于免疫印迹在大鼠样本上 (图 7b). Cardiovasc Res (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 大鼠; 图 7b
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell signaling, 9662)被用于被用于免疫印迹在大鼠样本上 (图 7b). Cardiovasc Res (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:200; 图 s13
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling, 9661S)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:200 (图 s13). Breast Cancer Res (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 图 1h
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling Technology, 9661S)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 1h). Mol Cell Biol (2017) ncbi
domestic rabbit 单克隆(8G10)
  • 免疫印迹; 人类; 图 4b
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling, 8G10)被用于被用于免疫印迹在人类样本上 (图 4b). Oncogene (2017) ncbi
domestic rabbit 单克隆(5A1E)
  • 免疫印迹; 人类; 图 2a
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling, 5A1E)被用于被用于免疫印迹在人类样本上 (图 2a). Biochem Biophys Res Commun (2017) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 小鼠; 图 2c
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling, 9661)被用于被用于免疫细胞化学在小鼠样本上 (图 2c). Proc Natl Acad Sci U S A (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:300; 图 s8e
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling, 9661)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:300 (图 s8e). Proc Natl Acad Sci U S A (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 3c
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling, 9662)被用于被用于免疫印迹在人类样本上 (图 3c). Mol Nutr Food Res (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 1g
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling, 9661S)被用于被用于免疫印迹在人类样本上 (图 1g). Antioxid Redox Signal (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 1c
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling, 9661)被用于被用于免疫印迹在人类样本上 (图 1c). Int J Biochem Cell Biol (2017) ncbi
domestic rabbit 多克隆
  • 免疫组化; 人类; 1:100; 图 s3a
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling Technologies, 9661)被用于被用于免疫组化在人类样本上浓度为1:100 (图 s3a). Proc Natl Acad Sci U S A (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:250; 图 6a
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling, 9661)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:250 (图 6a). J Exp Med (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化; fruit fly ; 1:100; 图 5b
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling, 9661S)被用于被用于免疫组化在fruit fly 样本上浓度为1:100 (图 5b). Nat Commun (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 7g
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling, 9661)被用于被用于免疫印迹在人类样本上 (图 7g). Oncotarget (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 图 2a
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signalling, 9661)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 2a). Science (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 8c
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling, 9661)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 8c). Cell Death Dis (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 1a
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell signaling, 9661)被用于被用于免疫印迹在小鼠样本上 (图 1a). JCI Insight (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:500; 图 6b
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling, 9662)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 6b). Int J Mol Sci (2016) ncbi
domestic rabbit 单克隆(5A1E)
  • 免疫印迹; 人类; 1:1000; 图 2c
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling Technology, 9664S)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 2c). Int J Oncol (2017) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:200; 图 4a
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling, 9661)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:200 (图 4a). Neural Dev (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 1g
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling, 9661)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 1g). EMBO Mol Med (2017) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:200; 图 3d
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling, 9661)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:200 (图 3d). Hepatology (2017) ncbi
domestic rabbit 单克隆(5A1E)
  • 免疫组化-冰冻切片; 小鼠; 1:400; 图 6a
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling, 9664)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:400 (图 6a). elife (2016) ncbi
domestic rabbit 单克隆(8G10)
  • 免疫印迹; 人类; 图 2b
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling, 9665)被用于被用于免疫印迹在人类样本上 (图 2b). Int J Nanomedicine (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹基因敲除验证; 小鼠; 图 1
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling, 9661)被用于被用于免疫印迹基因敲除验证在小鼠样本上 (图 1). Oxid Med Cell Longev (2016) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 1:100; 图 s10a
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling, 9661S)被用于被用于免疫细胞化学在人类样本上浓度为1:100 (图 s10a). Nat Med (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 s10a
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling, 9661)被用于被用于免疫印迹在人类样本上 (图 s10a). Oncogene (2017) ncbi
domestic rabbit 单克隆(5A1E)
  • 免疫细胞化学; 人类; 图 2i
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling, 9664)被用于被用于免疫细胞化学在人类样本上 (图 2i). Biochim Biophys Acta Mol Basis Dis (2017) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 图 4c
  • 免疫印迹; 人类; 图 4d
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling, 9662)被用于被用于免疫细胞化学在人类样本上 (图 4c) 和 被用于免疫印迹在人类样本上 (图 4d). PLoS ONE (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 图 2c
  • 免疫印迹; 小鼠; 图 2d
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling, 9661S)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 2c) 和 被用于免疫印迹在小鼠样本上 (图 2d). Cell Death Dis (2016) ncbi
domestic rabbit 单克隆(8G10)
  • 免疫印迹; 人类; 图 3c
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling, 9665)被用于被用于免疫印迹在人类样本上 (图 3c). Oncotarget (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 3c
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling, 9661)被用于被用于免疫印迹在人类样本上 (图 3c). Oncotarget (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:200; 图 st1
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signalling, 9661S)被用于被用于免疫组化在小鼠样本上浓度为1:200 (图 st1). Sci Rep (2016) ncbi
domestic rabbit 单克隆(8G10)
  • 免疫印迹; 人类; 图 5a
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling Technology, 8G10)被用于被用于免疫印迹在人类样本上 (图 5a). Nat Chem Biol (2017) ncbi
domestic rabbit 单克隆(5A1E)
  • 免疫组化-石蜡切片; 人类
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling, 9664)被用于被用于免疫组化-石蜡切片在人类样本上. J Clin Invest (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 图 2
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell signalling, 9661)被用于被用于免疫组化在小鼠样本上 (图 2). Nature (2016) ncbi
domestic rabbit 单克隆(D3E9)
  • 免疫组化-石蜡切片; 大鼠; 1:400; 图 11
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling Technology, 9579)被用于被用于免疫组化-石蜡切片在大鼠样本上浓度为1:400 (图 11). Oncotarget (2016) ncbi
domestic rabbit 单克隆(5A1E)
  • 免疫印迹; 人类; 图 4a
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell signaling, 9664)被用于被用于免疫印迹在人类样本上 (图 4a). Redox Biol (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化; 人类; 1:100; 图 2a
  • 免疫印迹; 人类; 图 1a
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signalling, 9662)被用于被用于免疫组化在人类样本上浓度为1:100 (图 2a) 和 被用于免疫印迹在人类样本上 (图 1a). Apoptosis (2017) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:1000; 图 10
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell signaling, 9661)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:1000 (图 10). J Neurosci (2016) ncbi
domestic rabbit 单克隆(8G10)
  • 免疫印迹; 小鼠; 图 s3c
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling, 9665)被用于被用于免疫印迹在小鼠样本上 (图 s3c). Proc Natl Acad Sci U S A (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:100; 图 s3a
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell signaling, 9661)被用于被用于免疫组化在小鼠样本上浓度为1:100 (图 s3a). Development (2016) ncbi
domestic rabbit 单克隆(D3E9)
  • 免疫组化-石蜡切片; 小鼠; 图 3b
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling, D3E9)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 3b). Acta Neuropathol (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 大鼠; 图 2k
赛信通(上海)生物试剂有限公司 Casp3抗体(CST, 9662S)被用于被用于免疫印迹在大鼠样本上 (图 2k). Oncotarget (2016) ncbi
domestic rabbit 单克隆(D3E9)
  • 免疫组化; 人类; 1:500; 图 4e
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling, 9579)被用于被用于免疫组化在人类样本上浓度为1:500 (图 4e). Nat Cell Biol (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 s5c
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling, 9661)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 s5c). Nat Commun (2016) ncbi
domestic rabbit 单克隆(8G10)
  • 免疫印迹; 人类; 1:1000; 图 s5c
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling, 9665)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 s5c). Nat Commun (2016) ncbi
domestic rabbit 单克隆(5A1E)
  • 流式细胞仪; 人类; 1:800; 图 3b
  • 免疫细胞化学; 人类; 1:800; 图 4d
  • 免疫印迹; 人类; 1:500
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling, 9664)被用于被用于流式细胞仪在人类样本上浓度为1:800 (图 3b), 被用于免疫细胞化学在人类样本上浓度为1:800 (图 4d) 和 被用于免疫印迹在人类样本上浓度为1:500. Mol Neurobiol (2017) ncbi
domestic rabbit 单克隆(5A1E)
  • 免疫组化-石蜡切片; 小鼠; 1:100; 图 5f
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell signaling, 9664S)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:100 (图 5f). Oncotarget (2016) ncbi
domestic rabbit 单克隆(5A1E)
  • 免疫印迹; 大鼠; 图 5b
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling Technology, 9664)被用于被用于免疫印迹在大鼠样本上 (图 5b). PLoS ONE (2016) ncbi
domestic rabbit 单克隆(8G10)
  • 免疫印迹; 大鼠; 图 5b
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling Technology, 9665)被用于被用于免疫印迹在大鼠样本上 (图 5b). PLoS ONE (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 人类; 1:200; 图 4b
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling, 9661)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:200 (图 4b). Oncotarget (2016) ncbi
domestic rabbit 单克隆(8G10)
  • 免疫印迹; 人类; 图 2d
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling, 9665)被用于被用于免疫印迹在人类样本上 (图 2d). Mol Med Rep (2016) ncbi
domestic rabbit 单克隆(5A1E)
  • 免疫组化; 小鼠; 1:100
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling, 9664S)被用于被用于免疫组化在小鼠样本上浓度为1:100. elife (2016) ncbi
domestic rabbit 单克隆(5A1E)
  • 免疫组化; 大鼠; 图 3h
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling, 9664)被用于被用于免疫组化在大鼠样本上 (图 3h). PLoS ONE (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 3
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling, 9661)被用于被用于免疫印迹在人类样本上 (图 3). BMC Cancer (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:600; 图 7c
  • 免疫印迹; 小鼠; 1:1000; 图 7b
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling Technology, 9661)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:600 (图 7c) 和 被用于免疫印迹在小鼠样本上浓度为1:1000 (图 7b). J Biomed Sci (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:500; 图 s4a
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling Technology, 9661)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:500 (图 s4a). Sci Rep (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 3
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signalling, 9662)被用于被用于免疫印迹在人类样本上 (图 3). Oncotarget (2016) ncbi
domestic rabbit 单克隆(5A1E)
  • 免疫印迹; 人类; 图 1c
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling, 5A1E)被用于被用于免疫印迹在人类样本上 (图 1c). Cancer Sci (2016) ncbi
domestic rabbit 单克隆(8G10)
  • 免疫印迹; 小鼠; 1:1000; 图 5a
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling, 9665)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 5a). J Huntingtons Dis (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 2c
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling, 9662S)被用于被用于免疫印迹在人类样本上 (图 2c). Sci Rep (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 2c
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling, 9661)被用于被用于免疫印迹在人类样本上 (图 2c). Sci Rep (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 5a
赛信通(上海)生物试剂有限公司 Casp3抗体(cell signalling, 9662)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 5a). Toxicol Appl Pharmacol (2016) ncbi
domestic rabbit 单克隆(8G10)
  • 免疫印迹; 人类; 图 1a
赛信通(上海)生物试剂有限公司 Casp3抗体(CST, 9665)被用于被用于免疫印迹在人类样本上 (图 1a). Mol Cell Biol (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 3c
赛信通(上海)生物试剂有限公司 Casp3抗体(CST, 9661)被用于被用于免疫印迹在人类样本上 (图 3c). Mol Cell Biol (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 1g
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling, 9662S)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 1g). Nat Med (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 1g
  • 免疫组化-冰冻切片; 小鼠; 1:100; 图 1b
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling, 9661S)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 1g) 和 被用于免疫组化-冰冻切片在小鼠样本上浓度为1:100 (图 1b). Nat Med (2016) ncbi
domestic rabbit 单克隆(5A1E)
  • 免疫细胞化学; 人类; 图 3C
  • 免疫印迹; 人类; 图 3F
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling, 9664)被用于被用于免疫细胞化学在人类样本上 (图 3C) 和 被用于免疫印迹在人类样本上 (图 3F). Genes Dev (2016) ncbi
domestic rabbit 单克隆(5A1E)
  • 免疫印迹; 人类; 1:500; 图 6c
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling, 9664)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 6c). Oncotarget (2016) ncbi
domestic rabbit 单克隆(8G10)
  • 免疫印迹; 人类; 1:2000; 图 6c
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling, 9665)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 6c). Oncotarget (2016) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 1:400; 图 5c
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling, 9661)被用于被用于免疫细胞化学在人类样本上浓度为1:400 (图 5c). Oncotarget (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:200; 图 st1
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling, 9662)被用于被用于免疫印迹在人类样本上浓度为1:200 (图 st1). Nat Commun (2016) ncbi
domestic rabbit 单克隆(5A1E)
  • 免疫组化; 小鼠; 图 4
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling, 9664)被用于被用于免疫组化在小鼠样本上 (图 4). Sci Rep (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 3a
赛信通(上海)生物试剂有限公司 Casp3抗体(cell signalling, 9662)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3a). Oncotarget (2016) ncbi
domestic rabbit 单克隆(5A1E)
  • 免疫印迹; 人类; 1:1000; 图 3a
赛信通(上海)生物试剂有限公司 Casp3抗体(cell signalling, 9664)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3a). Oncotarget (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 3b
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling, 9662)被用于被用于免疫印迹在人类样本上 (图 3b). Oncotarget (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:200; 图 6d
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling, 9661)被用于被用于免疫组化在小鼠样本上浓度为1:200 (图 6d). Oncotarget (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:200
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling, 9661)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:200. Development (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 人类; 图 4c
赛信通(上海)生物试剂有限公司 Casp3抗体(CST, 9661)被用于被用于免疫组化-石蜡切片在人类样本上 (图 4c). Nature (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 2
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell signaling, 9662)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 2). Nat Commun (2016) ncbi
domestic rabbit 单克隆(5A1E)
  • 免疫细胞化学; 大鼠; 图 9d
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling, 9664)被用于被用于免疫细胞化学在大鼠样本上 (图 9d). Mol Cell Biol (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 s7
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell signaling, 9661)被用于被用于免疫印迹在小鼠样本上 (图 s7). Mol Psychiatry (2017) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:200; 图 3
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling, 9661S)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:200 (图 3). Sci Rep (2016) ncbi
domestic rabbit 单克隆(5A1E)
  • 免疫细胞化学; 大鼠; 1:200; 图 9a, 9b
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling, 9664)被用于被用于免疫细胞化学在大鼠样本上浓度为1:200 (图 9a, 9b). J Pharmacol Exp Ther (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:200; 图 s7b
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signalling Technologies, 9661)被用于被用于免疫组化在小鼠样本上浓度为1:200 (图 s7b). Open Biol (2016) ncbi
domestic rabbit 单克隆(5A1E)
  • 免疫印迹; 人类; 图 2
  • 免疫印迹; 大鼠; 图 6
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling Tech, 9664)被用于被用于免疫印迹在人类样本上 (图 2) 和 被用于免疫印迹在大鼠样本上 (图 6). Carcinogenesis (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 4a
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling, 9662)被用于被用于免疫印迹在人类样本上 (图 4a). Oncotarget (2016) ncbi
domestic rabbit 单克隆(5A1E)
  • 免疫印迹; 大鼠; 1:1000; 图 7d
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling, 9664)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 7d). Oncotarget (2016) ncbi
domestic rabbit 单克隆(8G10)
  • 免疫印迹; 大鼠; 1:1000; 图 7d
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling, 9665)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 7d). Oncotarget (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 4f
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling Technology, 9661)被用于被用于免疫印迹在人类样本上 (图 4f). Oncotarget (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 大鼠; 1:1000; 图 8a
  • 免疫印迹; 大鼠; 1:1000; 图 8c
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling, 9661)被用于被用于免疫组化-冰冻切片在大鼠样本上浓度为1:1000 (图 8a) 和 被用于免疫印迹在大鼠样本上浓度为1:1000 (图 8c). Mol Genet Metab (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 5B
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling, 9661)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 5B). PLoS ONE (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:1000; 图 s3i
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell signaling, 9661)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:1000 (图 s3i). Nat Neurosci (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 2
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling, 9662)被用于被用于免疫印迹在人类样本上 (图 2). PLoS ONE (2016) ncbi
domestic rabbit 单克隆(5A1E)
  • 免疫组化; 小鼠; 1:100; 图 s3b
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling Technologies, 9664)被用于被用于免疫组化在小鼠样本上浓度为1:100 (图 s3b). Nat Commun (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:50; 图 4j
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling, 9661)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:50 (图 4j). Front Cell Neurosci (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化; 人类
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling, 9661)被用于被用于免疫组化在人类样本上. J Clin Invest (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:1000; 图 3
  • 流式细胞仪; 小鼠; 1:50; 图 4
  • 免疫印迹; 小鼠; 1:1000; 图 3
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signalling, 9661)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:1000 (图 3), 被用于流式细胞仪在小鼠样本上浓度为1:50 (图 4) 和 被用于免疫印迹在小鼠样本上浓度为1:1000 (图 3). Nat Commun (2016) ncbi
domestic rabbit 单克隆(5A1E)
  • 免疫细胞化学; 人类; 图 7e
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling, 9664)被用于被用于免疫细胞化学在人类样本上 (图 7e). Autophagy (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化; 斑马鱼; 1:500; 图 2d
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling, 9661)被用于被用于免疫组化在斑马鱼样本上浓度为1:500 (图 2d). Neurotox Res (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 3f
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling, 9661)被用于被用于免疫印迹在人类样本上 (图 3f). Oncotarget (2016) ncbi
domestic rabbit 单克隆(D3E9)
  • 免疫细胞化学; 人类; 图 e2a
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling Technology, D3E9)被用于被用于免疫细胞化学在人类样本上 (图 e2a). Nature (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 s15
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling, 9662)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 s15). Nat Commun (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 人类; 1:100; 图 7
  • 免疫印迹; 人类; 1:1000; 图 s15
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling, 9661)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100 (图 7) 和 被用于免疫印迹在人类样本上浓度为1:1000 (图 s15). Nat Commun (2016) ncbi
domestic rabbit 单克隆(5A1E)
  • 免疫印迹; 人类; 1:1000; 图 4b
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling, 9664S)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 4b). Redox Biol (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 1d
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling, 9662)被用于被用于免疫印迹在人类样本上 (图 1d). Sci Rep (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 5b,5c,6b,6c,6d
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling, 9661)被用于被用于免疫印迹在人类样本上 (图 5b,5c,6b,6c,6d). Oncotarget (2016) ncbi
domestic rabbit 单克隆(D3E9)
  • 流式细胞仪; 小鼠; 图 5
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling, 9602S)被用于被用于流式细胞仪在小鼠样本上 (图 5). PLoS Pathog (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 s1
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signalling, 9662S)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 s1). Nat Commun (2016) ncbi
domestic rabbit 单克隆(5A1E)
  • 免疫组化-石蜡切片; 小鼠; 1:1000; 图 7b
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell signaling, 9664)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:1000 (图 7b). Nat Cell Biol (2016) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 小鼠; 图 2e
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell signaling, 9661S)被用于被用于免疫细胞化学在小鼠样本上 (图 2e). J Biol Chem (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 5F
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling, 9662)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 5F). PLoS ONE (2016) ncbi
domestic rabbit 单克隆(5A1E)
  • 免疫印迹; 人类; 图 2a
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling, 9664)被用于被用于免疫印迹在人类样本上 (图 2a). Oncotarget (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 大鼠; 1:1000; 图 4a
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell signaling, 9661)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 4a). J Med Chem (2016) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 大鼠; 1:500; 图 s1
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell signaling, 9661)被用于被用于免疫细胞化学在大鼠样本上浓度为1:500 (图 s1). EMBO J (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 犬; 1:500; 图 3a
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling, 9661)被用于被用于免疫印迹在犬样本上浓度为1:500 (图 3a). Am J Physiol Gastrointest Liver Physiol (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:200; 图 6e
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signalling, 9661S)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:200 (图 6e). Nat Commun (2016) ncbi
domestic rabbit 单克隆(5A1E)
  • 免疫印迹; 大鼠; 图 2a
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling, 9664)被用于被用于免疫印迹在大鼠样本上 (图 2a). Biochem J (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 图 2a
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling, 9661S)被用于被用于免疫组化在小鼠样本上 (图 2a). Nature (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 4
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling, 9662)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 4). Mol Med Rep (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:500; 图 2d
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling Technology, 9662)被用于被用于免疫印迹在小鼠样本上浓度为1:500 (图 2d). Dis Model Mech (2016) ncbi
domestic rabbit 单克隆(5A1E)
  • 免疫印迹; 小鼠; 1:500; 图 2d
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling Technology, 9664)被用于被用于免疫印迹在小鼠样本上浓度为1:500 (图 2d). Dis Model Mech (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:300
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling, 9661)被用于被用于免疫组化在小鼠样本上浓度为1:300. Nat Commun (2016) ncbi
domestic rabbit 单克隆(5A1E)
  • 免疫组化-石蜡切片; 小鼠; 1:150; 图 s1
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling, 9664)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:150 (图 s1). Integr Biol (Camb) (2016) ncbi
domestic rabbit 单克隆(5A1E)
  • 免疫组化; purple urchin; 1:250; 图 4
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling, 9664L)被用于被用于免疫组化在purple urchin样本上浓度为1:250 (图 4). elife (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 2
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling, 9661)被用于被用于免疫印迹在人类样本上 (图 2). BMC Cancer (2016) ncbi
domestic rabbit 单克隆(5A1E)
  • 免疫印迹; 人类; 图 3f, 6a
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling, 9664)被用于被用于免疫印迹在人类样本上 (图 3f, 6a). Oncotarget (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 7a
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling Technology, 9662)被用于被用于免疫印迹在人类样本上 (图 7a). Oncotarget (2016) ncbi
domestic rabbit 单克隆(8G10)
  • 免疫印迹; 人类; 1:1000; 图 1
赛信通(上海)生物试剂有限公司 Casp3抗体(CST, 8G10)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 1). Cell Death Dis (2016) ncbi
domestic rabbit 单克隆(5A1E)
  • 免疫组化-冰冻切片; 小鼠; 1:500; 图 2
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell signaling, 9664S)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:500 (图 2). Mol Neurodegener (2016) ncbi
domestic rabbit 单克隆(5A1E)
  • 免疫印迹; 小鼠; 图 7
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling, 9664)被用于被用于免疫印迹在小鼠样本上 (图 7). Oncotarget (2016) ncbi
domestic rabbit 单克隆(5A1E)
  • 免疫印迹; 人类; 图 s1c
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling, 9664)被用于被用于免疫印迹在人类样本上 (图 s1c). Oncotarget (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:800; 图 6
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell signaling, 9662S)被用于被用于免疫印迹在人类样本上浓度为1:800 (图 6). PLoS ONE (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 7
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell signaling, 9661)被用于被用于免疫印迹在人类样本上 (图 7). BMC Complement Altern Med (2016) ncbi
domestic rabbit 单克隆(8G10)
  • 免疫印迹; 人类; 图 7
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell signaling, 9665)被用于被用于免疫印迹在人类样本上 (图 7). BMC Complement Altern Med (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化; 斑马鱼; 图 6i
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling, 9661)被用于被用于免疫组化在斑马鱼样本上 (图 6i). Nat Commun (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 5g
赛信通(上海)生物试剂有限公司 Casp3抗体(cell signalling, 9661)被用于被用于免疫印迹在人类样本上 (图 5g). Oncotarget (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:400; 图 s2
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling, 9661)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:400 (图 s2). Nat Commun (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 2
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling Tech, 9662S)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 2). Oncol Lett (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 3
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling, 9662S)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3). Sci Rep (2016) ncbi
domestic rabbit 单克隆(5A1E)
  • 免疫印迹; 小鼠; 图 3c
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling, 9664)被用于被用于免疫印迹在小鼠样本上 (图 3c). Cell Death Dis (2016) ncbi
domestic rabbit 单克隆(D3E9)
  • 免疫细胞化学; 人类; 图 4a
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell signaling, 9603)被用于被用于免疫细胞化学在人类样本上 (图 4a). Oncotarget (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:200; 图 s6a
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling, 9661)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:200 (图 s6a). Nature (2016) ncbi
domestic rabbit 单克隆(8G10)
  • 免疫印迹; 人类; 1:1000; 图 2
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling, 9665)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 2). Mol Med Rep (2016) ncbi
domestic rabbit 单克隆(5A1E)
  • 免疫组化; 猕猴; 图 6e
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling, 5A1E)被用于被用于免疫组化在猕猴样本上 (图 6e). J Immunol (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:400; 图 5h
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling, 9661)被用于被用于免疫组化在小鼠样本上浓度为1:400 (图 5h). J Clin Invest (2016) ncbi
domestic rabbit 单克隆(5A1E)
  • 免疫组化; 小鼠; 1:100
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling, 9664S)被用于被用于免疫组化在小鼠样本上浓度为1:100. Aging (Albany NY) (2016) ncbi
domestic rabbit 单克隆(5A1E)
  • 免疫印迹; 人类; 1:1000; 图 4
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling, 9664)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 4). Sci Rep (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 4
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling, 9662)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 4). Sci Rep (2016) ncbi
domestic rabbit 单克隆(5A1E)
  • 免疫组化-石蜡切片; 小鼠; 图 5
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling, 5A1E)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 5). Sci Rep (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:400; 图 3b
赛信通(上海)生物试剂有限公司 Casp3抗体(cell signalling, 9661)被用于被用于免疫组化在小鼠样本上浓度为1:400 (图 3b). Gut (2017) ncbi
domestic rabbit 多克隆
  • 免疫组化; 大鼠; 1:400; 图 7A
  • 免疫印迹; 大鼠; 1:1000; 图 7B
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling, 9662)被用于被用于免疫组化在大鼠样本上浓度为1:400 (图 7A) 和 被用于免疫印迹在大鼠样本上浓度为1:1000 (图 7B). Am J Transl Res (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:100; 图 6h
赛信通(上海)生物试剂有限公司 Casp3抗体(CST, 9661)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:100 (图 6h). Development (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 4
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling Tech, 9662S)被用于被用于免疫印迹在人类样本上 (图 4). Sci Rep (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 图 2-s3c
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling, 9661)被用于被用于免疫组化在小鼠样本上 (图 2-s3c). elife (2016) ncbi
domestic rabbit 单克隆(5A1E)
  • 免疫细胞化学; 小鼠; 1:400; 图 s1f
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling, 5A1E)被用于被用于免疫细胞化学在小鼠样本上浓度为1:400 (图 s1f). Nat Med (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 2
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling, 9662)被用于被用于免疫印迹在人类样本上 (图 2). PLoS ONE (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 人类; 1:300; 图 s11a
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling, 9661)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:300 (图 s11a). Sci Rep (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 大鼠; 1:1000; 表 3
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling, 9662)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (表 3). Oncotarget (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 大鼠; 1:50; 图 3
  • 免疫印迹; 大鼠; 1:1000; 图 3
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling, 9661)被用于被用于免疫组化-石蜡切片在大鼠样本上浓度为1:50 (图 3) 和 被用于免疫印迹在大鼠样本上浓度为1:1000 (图 3). Physiol Rep (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:1000; 表 1
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling, 9662)被用于被用于免疫组化在小鼠样本上浓度为1:1000 (表 1). J Comp Neurol (2017) ncbi
domestic rabbit 单克隆(5A1E)
  • 免疫组化-冰冻切片; 小鼠; 1:200; 图 s2b
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell signaling, 9664)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:200 (图 s2b). J Clin Invest (2016) ncbi
domestic rabbit 单克隆(5A1E)
  • 免疫印迹; 人类; 图 4e
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling, 9664)被用于被用于免疫印迹在人类样本上 (图 4e). Cancer Sci (2016) ncbi
domestic rabbit 单克隆(5A1E)
  • 免疫印迹; 人类; 1:500; 图 s6a
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Siganling, 9664S)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 s6a). Nat Cell Biol (2016) ncbi
domestic rabbit 单克隆(5A1E)
  • 免疫印迹; 人类; 1:1000; 图 3
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling, 9664)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3). Exp Ther Med (2016) ncbi
domestic rabbit 单克隆(8G10)
  • 免疫印迹; 人类; 1:1000; 图 3
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling, 9665)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3). Exp Ther Med (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:1000; 图 3d
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling, 9661S)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:1000 (图 3d). Oncogene (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 5c
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling, 9662)被用于被用于免疫印迹在小鼠样本上 (图 5c). J Transl Med (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:400; 图 s6a
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling, 9661)被用于被用于免疫组化在小鼠样本上浓度为1:400 (图 s6a). Nat Commun (2016) ncbi
domestic rabbit 单克隆(5A1E)
  • 免疫组化-石蜡切片; 小鼠; 1:2000; 图 6d
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling, 5A1E)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:2000 (图 6d). Cancer Res (2016) ncbi
domestic rabbit 单克隆(5A1E)
  • 免疫印迹; 人类; 1:1000; 图 s5
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling, 9664)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 s5). Nat Commun (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 3c
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling, 9662)被用于被用于免疫印迹在人类样本上 (图 3c). Oncotarget (2016) ncbi
domestic rabbit 单克隆(5A1E)
  • 免疫印迹; 人类; 图 3c
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling, 9664)被用于被用于免疫印迹在人类样本上 (图 3c). Oncotarget (2016) ncbi
domestic rabbit 单克隆(5A1E)
  • 免疫印迹; 人类; 1:1000; 图 5
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling, 5A1E)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 5). Sci Rep (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 3c
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling, 9661)被用于被用于免疫印迹在人类样本上 (图 3c). J Biol Chem (2016) ncbi
domestic rabbit 单克隆(8G10)
  • 免疫印迹; 小鼠; 图 7
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling, 9665)被用于被用于免疫印迹在小鼠样本上 (图 7). Hepatology (2016) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 小鼠; 1:200; 图 3a
赛信通(上海)生物试剂有限公司 Casp3抗体(CST, 9661S)被用于被用于免疫细胞化学在小鼠样本上浓度为1:200 (图 3a). Cell Rep (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:400; 图 1c
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling, 9662)被用于被用于免疫印迹在小鼠样本上浓度为1:400 (图 1c). Exp Ther Med (2016) ncbi
domestic rabbit 单克隆(D3E9)
  • 免疫组化; 人类; 1:100; 图 4b
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling Technology, 9579)被用于被用于免疫组化在人类样本上浓度为1:100 (图 4b). Oncotarget (2016) ncbi
domestic rabbit 单克隆(5A1E)
  • 免疫印迹; 人类; 图 7b
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell signaling, 9664)被用于被用于免疫印迹在人类样本上 (图 7b). Oncotarget (2016) ncbi
domestic rabbit 单克隆(5A1E)
  • 免疫印迹; 小鼠; 图 5
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling, 9664)被用于被用于免疫印迹在小鼠样本上 (图 5). PLoS Pathog (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 大鼠; 1:1000; 图 3
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling, 9662)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 3). Sci Rep (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 大鼠; 1:1000; 图 1
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling, 9661)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 1). Sci Rep (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 s3
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling, 9661)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 s3). Nat Commun (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 大鼠; 图 7
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling Technology, 9661S)被用于被用于免疫组化-石蜡切片在大鼠样本上 (图 7). J Nutr Biochem (2016) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 小鼠; 图 s5c
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling, 9669)被用于被用于免疫细胞化学在小鼠样本上 (图 s5c). Nat Biotechnol (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 s2
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling Tech, 9661S)被用于被用于免疫印迹在小鼠样本上 (图 s2). PLoS ONE (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 1e
  • 免疫印迹; 人类; 图 6c
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling, 9661)被用于被用于免疫印迹在小鼠样本上 (图 1e) 和 被用于免疫印迹在人类样本上 (图 6c). Proc Natl Acad Sci U S A (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 图 2
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell signaling, 9661)被用于被用于免疫组化在小鼠样本上 (图 2). PLoS ONE (2016) ncbi
domestic rabbit 单克隆(8G10)
  • 免疫印迹; 人类; 1:1000; 图 1
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell signaling, 9665)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 1). Mol Med Rep (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 人类; 1:200; 图 EV1
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling, 9661)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:200 (图 EV1). EMBO Mol Med (2016) ncbi
domestic rabbit 单克隆(5A1E)
  • 免疫印迹; 人类; 图 3
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling, 9664)被用于被用于免疫印迹在人类样本上 (图 3). Onco Targets Ther (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:200; 图 1
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling, 9661)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:200 (图 1). Sci Rep (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 人类; 1:300; 图 6d
  • 免疫印迹; 人类; 图 6c
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling, 9661S)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:300 (图 6d) 和 被用于免疫印迹在人类样本上 (图 6c). Sci Rep (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 图 s6a
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling, 9661S)被用于被用于免疫组化在小鼠样本上 (图 s6a). Nat Med (2016) ncbi
domestic rabbit 单克隆(5A1E)
  • 免疫印迹; 大鼠; 1:1000; 图 4
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling, 9664)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 4). Mol Med Rep (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 5d
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling, 9661)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 5d). Nat Commun (2016) ncbi
domestic rabbit 单克隆(5A1E)
  • 免疫组化-石蜡切片; 小鼠; 图 2b
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling, 9664)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 2b). Am J Pathol (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 5c
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling, 9661)被用于被用于免疫印迹在人类样本上 (图 5c). Oncotarget (2016) ncbi
domestic rabbit 单克隆(5A1E)
  • 免疫组化-石蜡切片; 人类; 1:300; 图 10
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling, 9664)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:300 (图 10) 和 被用于免疫印迹在人类样本上. Autophagy (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 2
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling, 9661)被用于被用于免疫印迹在小鼠样本上 (图 2). Cell Rep (2016) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 1:500; 图 1
  • 免疫印迹; 人类; 1:500; 图 1
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling, 9661)被用于被用于免疫细胞化学在人类样本上浓度为1:500 (图 1) 和 被用于免疫印迹在人类样本上浓度为1:500 (图 1). Mol Brain (2016) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; fruit fly ; 1:300; 图 5
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling Technology, 9661)被用于被用于免疫细胞化学在fruit fly 样本上浓度为1:300 (图 5). Nat Commun (2016) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 图 3g
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling, 9661)被用于被用于免疫细胞化学在人类样本上 (图 3g). Cell Transplant (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 4
赛信通(上海)生物试剂有限公司 Casp3抗体(cell Signaling Tech, 9662)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 4). Acta Neuropathol Commun (2016) ncbi
domestic rabbit 单克隆(8G10)
  • 免疫印迹; 人类; 1:1000; 图 2
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell signaling, 9665)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 2). Front Microbiol (2016) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 1:400; 图 4
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell signaling, 9661)被用于被用于免疫细胞化学在人类样本上浓度为1:400 (图 4). Sci Rep (2016) ncbi
domestic rabbit 单克隆(D3E9)
  • 免疫印迹; 人类; 图 2f
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling, 9579)被用于被用于免疫印迹在人类样本上 (图 2f). Cell Biol Int (2016) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 1:500; 图 2
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell signaling, 9661)被用于被用于免疫细胞化学在人类样本上浓度为1:500 (图 2). Sci Rep (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:400; 图 7
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling, 9661S)被用于被用于免疫组化在小鼠样本上浓度为1:400 (图 7). EMBO Mol Med (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 3
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling, 9661)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3). J Steroid Biochem Mol Biol (2017) ncbi
domestic rabbit 单克隆(5A1E)
  • 免疫细胞化学; 人类; 1:500; 图 3
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling, 9664)被用于被用于免疫细胞化学在人类样本上浓度为1:500 (图 3). J Steroid Biochem Mol Biol (2017) ncbi
domestic rabbit 单克隆(5A1E)
  • 免疫组化-石蜡切片; 斑马鱼; 1:250; 图 5
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling, 9664)被用于被用于免疫组化-石蜡切片在斑马鱼样本上浓度为1:250 (图 5). elife (2016) ncbi
domestic rabbit 单克隆(8G10)
  • 免疫印迹; 人类; 图 2c
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling, 9665)被用于被用于免疫印迹在人类样本上 (图 2c). Oncotarget (2016) ncbi
domestic rabbit 单克隆(5A1E)
  • 免疫印迹; 人类; 图 2c
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling, 9664)被用于被用于免疫印迹在人类样本上 (图 2c). Oncotarget (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 图 4h
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling, 9661)被用于被用于免疫组化在小鼠样本上 (图 4h). J Pathol (2016) ncbi
domestic rabbit 单克隆(5A1E)
  • 免疫组化-石蜡切片; 小鼠; 图 s3
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell signaling, 9664)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 s3). Cardiovasc Res (2016) ncbi
domestic rabbit 单克隆(5A1E)
  • 免疫组化-石蜡切片; 鸡; 1:400; 图 s5
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling, 9664S)被用于被用于免疫组化-石蜡切片在鸡样本上浓度为1:400 (图 s5). BMC Biol (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 2
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling, 9661)被用于被用于免疫印迹在人类样本上 (图 2). BMC Complement Altern Med (2016) ncbi
domestic rabbit 单克隆(5A1E)
  • 免疫印迹; 小鼠; 1:1000; 图 7a
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling, 9664)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 7a). JCI Insight (2016) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 犬; 1:200; 图 1
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling, 9661s)被用于被用于免疫细胞化学在犬样本上浓度为1:200 (图 1). Nat Commun (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 5d
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling, 9661)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 5d). J Exp Clin Cancer Res (2016) ncbi
domestic rabbit 单克隆(D3E9)
  • 免疫组化; 小鼠; 1:100; 图 s3
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling, D3E9)被用于被用于免疫组化在小鼠样本上浓度为1:100 (图 s3). Nat Commun (2016) ncbi
domestic rabbit 单克隆(8G10)
  • 免疫印迹; 人类; 图 2d
赛信通(上海)生物试剂有限公司 Casp3抗体(cell signalling, 9665)被用于被用于免疫印迹在人类样本上 (图 2d). Oncotarget (2016) ncbi
domestic rabbit 单克隆(5A1E)
  • 免疫组化-冰冻切片; 大鼠; 1:100; 图 3
  • 免疫印迹; 大鼠; 1:1000; 图 3
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell signaling, 9664)被用于被用于免疫组化-冰冻切片在大鼠样本上浓度为1:100 (图 3) 和 被用于免疫印迹在大鼠样本上浓度为1:1000 (图 3). Brain (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 大鼠; 1:1000; 图 4
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling, 9662)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 4). Exp Ther Med (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 4
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling, 9661)被用于被用于免疫印迹在人类样本上 (图 4). Onco Targets Ther (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:500; 图 6
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling, 9661)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 6). Cell Rep (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 大鼠; 1:300
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling, 9661S)被用于被用于免疫组化-冰冻切片在大鼠样本上浓度为1:300. Fertil Steril (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化; fruit fly ; 1:50; 图 s3
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling, 9661)被用于被用于免疫组化在fruit fly 样本上浓度为1:50 (图 s3). Development (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 1b
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling, 9662)被用于被用于免疫印迹在人类样本上 (图 1b). J Mol Med (Berl) (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 4
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling Technology, 9662)被用于被用于免疫印迹在人类样本上 (图 4). Cell Death Dis (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:300; 图 5b
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling, 9661)被用于被用于免疫组化在小鼠样本上浓度为1:300 (图 5b). Diabetologia (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 1
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling, 9662)被用于被用于免疫印迹在小鼠样本上 (图 1). Cell Rep (2016) ncbi
domestic rabbit 单克隆(5A1E)
  • 免疫印迹; 人类; 图 4
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling Technology, 9664)被用于被用于免疫印迹在人类样本上 (图 4). Autophagy (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 图 5
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling, 9661)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 5) 和 被用于免疫印迹在人类样本上. Nat Commun (2016) ncbi
domestic rabbit 单克隆(D3E9)
  • 免疫印迹; 小鼠; 图 6g
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling, 9579)被用于被用于免疫印迹在小鼠样本上 (图 6g). Nat Cell Biol (2016) ncbi
domestic rabbit 单克隆(8G10)
  • 免疫印迹; 大鼠; 1:500; 图 3
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling, 9665S)被用于被用于免疫印迹在大鼠样本上浓度为1:500 (图 3). Biofactors (2016) ncbi
domestic rabbit 单克隆(5A1E)
  • 免疫印迹; 人类; 图 5e
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling, 9664)被用于被用于免疫印迹在人类样本上 (图 5e). Oncotarget (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 5e
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling, 9662)被用于被用于免疫印迹在人类样本上 (图 5e). Oncotarget (2016) ncbi
domestic rabbit 单克隆(5A1E)
  • 免疫印迹; 人类; 1:1000; 图 4
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling Tech, 9664)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 4). Mol Med Rep (2016) ncbi
domestic rabbit 单克隆(5A1E)
  • 免疫印迹; 人类; 图 7a
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling, 9664)被用于被用于免疫印迹在人类样本上 (图 7a). Oncol Rep (2016) ncbi
domestic rabbit 单克隆(5A1E)
  • 免疫组化-石蜡切片; 人类; 图 5
  • 免疫印迹; 人类; 图 5
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling Technology, 9664)被用于被用于免疫组化-石蜡切片在人类样本上 (图 5) 和 被用于免疫印迹在人类样本上 (图 5). PLoS ONE (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化; fruit fly ; 1:300; 图 s4
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling, 96615)被用于被用于免疫组化在fruit fly 样本上浓度为1:300 (图 s4). PLoS Genet (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 5c
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling, 9661)被用于被用于免疫印迹在小鼠样本上 (图 5c). Genes Dev (2016) ncbi
domestic rabbit 单克隆(5A1E)
  • 免疫印迹; 人类; 图 4
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling Technology, 9664)被用于被用于免疫印迹在人类样本上 (图 4). BMC Cancer (2016) ncbi
domestic rabbit 单克隆(5A1E)
  • 免疫组化; 人类; 1:500; 图 4
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling, 5A1E)被用于被用于免疫组化在人类样本上浓度为1:500 (图 4). Nat Commun (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化; 大鼠; 1:200; 图 1
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signalling, 9661s)被用于被用于免疫组化在大鼠样本上浓度为1:200 (图 1). Hum Mol Genet (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化; 人类; 1:150; 图 5h
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling technology, 9661)被用于被用于免疫组化在人类样本上浓度为1:150 (图 5h). EMBO Mol Med (2016) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 小鼠; 1:1000; 图 s4c
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling Technology, 9661)被用于被用于免疫细胞化学在小鼠样本上浓度为1:1000 (图 s4c). Nat Commun (2016) ncbi
domestic rabbit 单克隆(5A1E)
  • 免疫印迹; 人类; 1:500; 图 3
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling, 9664S)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 3). Nat Cell Biol (2016) ncbi
domestic rabbit 单克隆(5A1E)
  • 免疫印迹; African green monkey; 图 s4
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling Tech, 9664)被用于被用于免疫印迹在African green monkey样本上 (图 s4). Cancer Sci (2016) ncbi
domestic rabbit 单克隆(5A1E)
  • 免疫印迹; 人类; 图 1a
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling, 5A1E)被用于被用于免疫印迹在人类样本上 (图 1a). Biochem Biophys Res Commun (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化; 人类; 1:100
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling, 9661)被用于被用于免疫组化在人类样本上浓度为1:100. Dis Model Mech (2016) ncbi
domestic rabbit 单克隆(5A1E)
  • 免疫印迹; 人类; 1:1000; 图 4c
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling, 9664)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 4c). PLoS ONE (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 4c
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling, 9662)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 4c). PLoS ONE (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 图 1a
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling, 9661)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 1a). Immunity (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 s2i
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling, 9662)被用于被用于免疫印迹在小鼠样本上 (图 s2i). Immunity (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 大鼠; 图 3
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling, 9661)被用于被用于免疫印迹在大鼠样本上 (图 3). Int J Mol Sci (2016) ncbi
domestic rabbit 单克隆(5A1E)
  • 免疫印迹; 人类; 1:1000; 图 4f
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling Technology, 9664P)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 4f). Sci Rep (2016) ncbi
domestic rabbit 单克隆(5A1E)
  • 免疫印迹; 人类; 图 2
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling, 9664)被用于被用于免疫印迹在人类样本上 (图 2). Sci Rep (2016) ncbi
domestic rabbit 单克隆(5A1E)
  • 免疫组化-石蜡切片; 小鼠; 1:100; 图 5g
  • 免疫印迹; 小鼠; 1:1000; 图 5d
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling, 9664S)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:100 (图 5g) 和 被用于免疫印迹在小鼠样本上浓度为1:1000 (图 5d). J Biol Chem (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 大鼠; 1:500; 图 4
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling, 9661)被用于被用于免疫印迹在大鼠样本上浓度为1:500 (图 4). J Diabetes Res (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 1f
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling, 9661)被用于被用于免疫印迹在人类样本上 (图 1f). Oncotarget (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 小鼠; 图 9
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell signaling, 9661)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 9). BMC Cancer (2016) ncbi
domestic rabbit 单克隆(5A1E)
  • 免疫印迹; 小鼠; 图 3c-d
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling, 5A1E)被用于被用于免疫印迹在小鼠样本上 (图 3c-d). Proc Natl Acad Sci U S A (2016) ncbi
domestic rabbit 单克隆(5A1E)
  • 免疫印迹; 小鼠; 图 1
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling Technolog, 9664)被用于被用于免疫印迹在小鼠样本上 (图 1). Cell Death Differ (2016) ncbi
domestic rabbit 单克隆(5A1E)
  • 免疫组化-石蜡切片; 小鼠; 1:100; 图 7
  • 免疫印迹; 小鼠; 1:1000; 图 7
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell signaling, 9664)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:100 (图 7) 和 被用于免疫印迹在小鼠样本上浓度为1:1000 (图 7). Oncotarget (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 6b
赛信通(上海)生物试剂有限公司 Casp3抗体(cell signalling, 9661)被用于被用于免疫印迹在人类样本上 (图 6b). J Biol Chem (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 2
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell signaling, 9661)被用于被用于免疫印迹在人类样本上 (图 2). Mol Cancer Ther (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 2
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell signaling, 9662)被用于被用于免疫印迹在人类样本上 (图 2). Mol Cancer Ther (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:200
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell signaling, 9661)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:200. Nat Commun (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:330; 图 7
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling, 9661)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:330 (图 7). Int J Mol Sci (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 5
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling Tech, 9662)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 5). Mol Med Rep (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 2f
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling, 9661)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 2f). Mol Med Rep (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 4
  • 免疫印迹; 小鼠; 图 4
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling Technology, 9661)被用于被用于免疫印迹在人类样本上 (图 4) 和 被用于免疫印迹在小鼠样本上 (图 4). Sci Rep (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 3
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling Tech, 9662)被用于被用于免疫印迹在人类样本上 (图 3). Oncotarget (2016) ncbi
domestic rabbit 单克隆(D3E9)
  • 免疫细胞化学; 小鼠; 图 1e
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell signaling, 9602)被用于被用于免疫细胞化学在小鼠样本上 (图 1e). Oncogenesis (2016) ncbi
domestic rabbit 单克隆(5A1E)
  • 免疫组化-冰冻切片; 小鼠; 图 3b
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell signaling, 9664)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 3b). Oncogenesis (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 1
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling Technology, 9661)被用于被用于免疫印迹在人类样本上 (图 1). Cell Cycle (2016) ncbi
domestic rabbit 单克隆(5A1E)
  • 免疫组化-石蜡切片; 人类; 1:200; 图 s8
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell signaling, 5A1E)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:200 (图 s8). Oncotarget (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 1c
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling, 9662)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 1c). Int J Cancer (2016) ncbi
domestic rabbit 单克隆(5A1E)
  • 免疫组化; 小鼠; 1:250; 图 s1a-c
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling, 9664)被用于被用于免疫组化在小鼠样本上浓度为1:250 (图 s1a-c). Int J Cancer (2016) ncbi
domestic rabbit 单克隆(5A1E)
  • 免疫组化-石蜡切片; 小鼠; 1:200; 图 2
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell signaling, 9664)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:200 (图 2). J Pathol (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 8d
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling, 9661)被用于被用于免疫印迹在人类样本上 (图 8d). J Cell Sci (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 图 5a
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling, 9661)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 5a). Sci Rep (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:100; 表 4
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling, 9669)被用于被用于免疫组化在小鼠样本上浓度为1:100 (表 4). Differentiation (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:1000; 图 8
  • 免疫印迹; 小鼠; 1:1000; 图 9
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling, 9661)被用于被用于免疫组化在小鼠样本上浓度为1:1000 (图 8) 和 被用于免疫印迹在小鼠样本上浓度为1:1000 (图 9). Sci Rep (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 9
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling, 9662)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 9). Sci Rep (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 5
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling, 9661)被用于被用于免疫印迹在人类样本上 (图 5). Oncotarget (2016) ncbi
domestic rabbit 单克隆(5A1E)
  • 免疫印迹; 人类; 图 3a
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling Technology, 9664)被用于被用于免疫印迹在人类样本上 (图 3a). Mol Endocrinol (2016) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 小鼠; 图 s2
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling Technology, 9661)被用于被用于免疫细胞化学在小鼠样本上 (图 s2). elife (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 6a
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling, 9662)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 6a). Int J Biochem Cell Biol (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 6a
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling, 9661)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 6a). Int J Biochem Cell Biol (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 2
赛信通(上海)生物试剂有限公司 Casp3抗体(cell signaling, 9661)被用于被用于免疫印迹在人类样本上 (图 2). Nat Genet (2016) ncbi
domestic rabbit 单克隆(8G10)
  • 免疫印迹; 大鼠; 图 1
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell signaling, 9665)被用于被用于免疫印迹在大鼠样本上 (图 1). Cell Stress Chaperones (2016) ncbi
domestic rabbit 单克隆(5A1E)
  • 免疫印迹; 人类; 1:400; 图 4
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling, 9664)被用于被用于免疫印迹在人类样本上浓度为1:400 (图 4). Mol Cell Endocrinol (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:500; 图 4e
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling, 9662)被用于被用于免疫印迹在小鼠样本上浓度为1:500 (图 4e). Stem Cells (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:250; 图 3
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling Technology, 9661)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:250 (图 3). elife (2016) ncbi
domestic rabbit 单克隆(D3E9)
  • 免疫组化-石蜡切片; 小鼠; 图 5
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling Technologies, 9579S)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 5). Sci Rep (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 图 5e
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling, 9661)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 5e). Cell Metab (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:2000; 图 5
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling Technology, 9669)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 5). Int J Mol Med (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:400; 图 s1b
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling Technology, 9661)被用于被用于免疫组化在小鼠样本上浓度为1:400 (图 s1b). elife (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化; 人类; 1:750; 图 1
  • 免疫印迹; 人类; 图 1
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling, 9661)被用于被用于免疫组化在人类样本上浓度为1:750 (图 1) 和 被用于免疫印迹在人类样本上 (图 1). Cell Death Dis (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 4
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling, 9662)被用于被用于免疫印迹在人类样本上 (图 4). Oncotarget (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 3
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signalling, 9662)被用于被用于免疫印迹在人类样本上 (图 3). Mol Cancer (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 3
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signalling, 9661)被用于被用于免疫印迹在人类样本上 (图 3). Mol Cancer (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 家羊; 1:1000; 图 7
赛信通(上海)生物试剂有限公司 Casp3抗体(cell signaling, 9661)被用于被用于免疫组化-石蜡切片在家羊样本上浓度为1:1000 (图 7). J Neuroinflammation (2016) ncbi
domestic rabbit 单克隆(5A1E)
  • 免疫组化; 人类; 1:1000; 图 5
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling Technology, 9664)被用于被用于免疫组化在人类样本上浓度为1:1000 (图 5). Nat Commun (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 1b
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling, 9661)被用于被用于免疫印迹在人类样本上 (图 1b). Acta Neuropathol (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:300; 图 s1d
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling, 9661)被用于被用于免疫组化在小鼠样本上浓度为1:300 (图 s1d). Nat Commun (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 s1d
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling, 9662)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 s1d). Nat Commun (2016) ncbi
domestic rabbit 单克隆(5A1E)
  • 免疫印迹; 人类; 1:1000; 图 3d
赛信通(上海)生物试剂有限公司 Casp3抗体(New England Biolabs, 9664S)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3d). Mol Cancer Ther (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:100; 图 5
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling, 9661)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:100 (图 5). Sci Rep (2016) ncbi
domestic rabbit 单克隆(5A1E)
  • 免疫印迹; 人类; 图 2
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling, 9664)被用于被用于免疫印迹在人类样本上 (图 2). Oncogene (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化; fruit fly ; 1:1000; 图 3
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling, 9661S)被用于被用于免疫组化在fruit fly 样本上浓度为1:1000 (图 3). Dis Model Mech (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 7
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling, 9662)被用于被用于免疫印迹在小鼠样本上 (图 7). Nat Commun (2016) ncbi
domestic rabbit 单克隆(5A1E)
  • 免疫印迹; 人类; 1:1000; 图 3
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling Technology, 9664)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3). Int J Oncol (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:200; 图 1
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling, 9661)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:200 (图 1). Breast Cancer Res (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 7
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling, 9662)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 7). Oncotarget (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 人类; 图 s6
  • 免疫印迹; 人类; 图 s6
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling, 9661)被用于被用于免疫组化-石蜡切片在人类样本上 (图 s6) 和 被用于免疫印迹在人类样本上 (图 s6). Neoplasia (2016) ncbi
domestic rabbit 单克隆(8G10)
  • 免疫印迹; 人类; 1:1000; 图 s8
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling, 9665)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 s8). J Allergy Clin Immunol (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 5
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling Technology, 9662)被用于被用于免疫印迹在人类样本上 (图 5). Cell Rep (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 2d
赛信通(上海)生物试剂有限公司 Casp3抗体(CST, 9661)被用于被用于免疫印迹在人类样本上 (图 2d). Oncotarget (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 5
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signalling, 9662)被用于被用于免疫印迹在人类样本上 (图 5). Oncotarget (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 5
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signalling, 9661)被用于被用于免疫印迹在人类样本上 (图 5). Oncotarget (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 6
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling, 9662)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 6). Biochem Pharmacol (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 8a
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling, 9661)被用于被用于免疫印迹在小鼠样本上 (图 8a). J Virol (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 3b
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling, 9662)被用于被用于免疫印迹在小鼠样本上 (图 3b). Aging Cell (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling, S9662)被用于被用于免疫印迹在小鼠样本上. J Cell Physiol (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 5
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling, S9661)被用于被用于免疫印迹在小鼠样本上 (图 5). J Cell Physiol (2016) ncbi
domestic rabbit 单克隆(8G10)
  • 免疫印迹; 人类; 图 5b
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling, 9665)被用于被用于免疫印迹在人类样本上 (图 5b). J Diabetes Res (2016) ncbi
domestic rabbit 单克隆(8G10)
  • 免疫印迹; 人类; 图 6c
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling, 9665)被用于被用于免疫印迹在人类样本上 (图 6c). Stem Cells Int (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 s1
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell signaling, 9661)被用于被用于免疫印迹在小鼠样本上 (图 s1). J Cell Biol (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 3
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling Technology, 9662)被用于被用于免疫印迹在人类样本上 (图 3). Cell Death Dis (2016) ncbi
domestic rabbit 单克隆(5A1E)
  • 免疫印迹; 人类; 图 3a
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling, 9664)被用于被用于免疫印迹在人类样本上 (图 3a). Redox Biol (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:800; 图 s3
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling, 9661)被用于被用于免疫组化在小鼠样本上浓度为1:800 (图 s3). Biol Open (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 s1
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling Technology, 96625)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 s1). PLoS ONE (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 6
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling, 9661L)被用于被用于免疫印迹在小鼠样本上 (图 6). Oncotarget (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:200; 图 6
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling Technology, 9661)被用于被用于免疫组化在小鼠样本上浓度为1:200 (图 6). Nat Commun (2016) ncbi
domestic rabbit 单克隆(5A1E)
  • 免疫印迹; 人类; 图 3, 4
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling, 9664)被用于被用于免疫印迹在人类样本上 (图 3, 4). J Biol Chem (2016) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 小鼠; 图 1
  • 免疫印迹; 小鼠; 图 1
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell signaling, 9662)被用于被用于免疫细胞化学在小鼠样本上 (图 1) 和 被用于免疫印迹在小鼠样本上 (图 1). Sci Rep (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 7
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling, 9661)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 7). J Biol Chem (2016) ncbi
domestic rabbit 单克隆(8G10)
  • 免疫印迹; 人类; 1:1000; 图 3a
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling, 9665)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3a). Oncotarget (2016) ncbi
domestic rabbit 单克隆(8G10)
  • 免疫印迹; 人类; 1:500; 图 5
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling Technology, 9665)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 5). Cancer Res (2016) ncbi
domestic rabbit 单克隆(5A1E)
  • 免疫印迹; 人类; 1:500; 图 5
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling Technology, 9664)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 5). Cancer Res (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 3a
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling, 9662S)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3a). Biosci Rep (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 3
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling, 9661)被用于被用于免疫印迹在人类样本上 (图 3). Oncotarget (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 s5
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling Technology, 9662)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 s5). Nature (2016) ncbi
domestic rabbit 单克隆(5A1E)
  • 免疫组化-冰冻切片; 小鼠; 1:100; 图 2
  • 免疫印迹; 人类; 1:1000; 图 s5
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling Technology, 9664)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:100 (图 2) 和 被用于免疫印迹在人类样本上浓度为1:1000 (图 s5). Nature (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化; 人类; 图 7
  • 免疫印迹; 人类; 图 7
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell signaling, 9661)被用于被用于免疫组化在人类样本上 (图 7) 和 被用于免疫印迹在人类样本上 (图 7). Oncotarget (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:200; 图 3a
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling, 9661)被用于被用于免疫印迹在人类样本上浓度为1:200 (图 3a). Sci Rep (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 5g
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling, 9661)被用于被用于免疫印迹在人类样本上 (图 5g). PLoS ONE (2016) ncbi
domestic rabbit 单克隆(5A1E)
  • 免疫印迹; 小鼠; 图 3c
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling, 9664S)被用于被用于免疫印迹在小鼠样本上 (图 3c). Oncogene (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 大鼠; 1:1000; 图 4
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling Technologies, CST9662)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 4). Mol Med Rep (2016) ncbi
domestic rabbit 单克隆(8G10)
  • 免疫印迹; 人类; 图 5
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling, 9665)被用于被用于免疫印迹在人类样本上 (图 5). Oncotarget (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:500; 图 1
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling Technology, 9661)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:500 (图 1). Dis Model Mech (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 5
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell signaling, 9662)被用于被用于免疫印迹在人类样本上 (图 5). Oncotarget (2016) ncbi
domestic rabbit 单克隆(5A1E)
  • 免疫印迹; 小鼠; 图 1
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling, 5A1)被用于被用于免疫印迹在小鼠样本上 (图 1). Data Brief (2015) ncbi
domestic rabbit 单克隆(5A1E)
  • 免疫印迹; 小鼠; 1:1000; 图 3c
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signalling, 9654)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 3c). Reprod Domest Anim (2016) ncbi
domestic rabbit 单克隆(8G10)
  • 免疫印迹; 人类; 图 2a
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling, 9665)被用于被用于免疫印迹在人类样本上 (图 2a). Oncotarget (2016) ncbi
domestic rabbit 单克隆(D3E9)
  • 免疫印迹; 小鼠; 图 7
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling Technology, 9579)被用于被用于免疫印迹在小鼠样本上 (图 7). Mol Med Rep (2016) ncbi
domestic rabbit 单克隆(8G10)
  • 免疫印迹; 小鼠; 图 3
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling, 9665)被用于被用于免疫印迹在小鼠样本上 (图 3). Oncotarget (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 2
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling, 9662)被用于被用于免疫印迹在人类样本上 (图 2). J Biol Chem (2016) ncbi
domestic rabbit 单克隆(5A1E)
  • 免疫印迹; 小鼠; 1:1000; 图 6
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling, 9664)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 6). Nat Commun (2015) ncbi
domestic rabbit 单克隆(5A1E)
  • 免疫印迹; 小鼠; 图 5
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling, 9664)被用于被用于免疫印迹在小鼠样本上 (图 5). Mol Cell Biol (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 6
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signalling, 9662)被用于被用于免疫印迹在人类样本上 (图 6). Oncotarget (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 6
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling, 9662)被用于被用于免疫印迹在人类样本上 (图 6). Oncotarget (2016) ncbi
domestic rabbit 单克隆(D3E9)
  • 免疫组化; 小鼠; 1:400; 图 2c
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling, 9579)被用于被用于免疫组化在小鼠样本上浓度为1:400 (图 2c). Reprod Sci (2016) ncbi
domestic rabbit 单克隆(5A1E)
  • 免疫印迹; 人类; 图 6
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling, 9664)被用于被用于免疫印迹在人类样本上 (图 6). Oncotarget (2015) ncbi
domestic rabbit 单克隆(5A1E)
  • 免疫印迹; 人类; 图 4
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling, 9664)被用于被用于免疫印迹在人类样本上 (图 4). J Cell Biol (2015) ncbi
domestic rabbit 单克隆(8G10)
  • 免疫组化-冰冻切片; 小鼠; 1:100; 图 3h
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signalling, 966515)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:100 (图 3h). J Neuroinflammation (2015) ncbi
domestic rabbit 单克隆(5A1E)
  • 免疫组化-石蜡切片; 小鼠; 图 5
  • 免疫印迹; 小鼠; 图 1
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling, 9664)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 5) 和 被用于免疫印迹在小鼠样本上 (图 1). Am J Transplant (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling, 9661)被用于被用于免疫组化-石蜡切片在小鼠样本上. Cancer Discov (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:100; 图 2
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling Technology, 9661)被用于被用于免疫组化在小鼠样本上浓度为1:100 (图 2). Development (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:100; 图 3e
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling, 9661)被用于被用于免疫组化在小鼠样本上浓度为1:100 (图 3e). Dev Biol (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 7
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling, 9662)被用于被用于免疫印迹在人类样本上 (图 7). Nucleic Acids Res (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 2a
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling, 9662)被用于被用于免疫印迹在人类样本上 (图 2a). Oncotarget (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 4
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling, 9661)被用于被用于免疫印迹在人类样本上 (图 4). Int J Mol Med (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 S5A
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling, 9661)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 S5A). Autophagy (2016) ncbi
domestic rabbit 单克隆(5A1E)
  • 免疫组化-石蜡切片; 小鼠; 图 7A
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling, 9664)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 7A). Autophagy (2015) ncbi
domestic rabbit 单克隆(8G10)
  • 免疫印迹; 人类; 图 1
  • 免疫印迹; 小鼠; 图 1
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling, 9665)被用于被用于免疫印迹在人类样本上 (图 1) 和 被用于免疫印迹在小鼠样本上 (图 1). Sci Rep (2015) ncbi
domestic rabbit 单克隆(8G10)
  • 免疫印迹; 小鼠; 1:1000; 图 7
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling, 9665)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 7). Nat Cell Biol (2015) ncbi
domestic rabbit 单克隆(5A1E)
  • 免疫组化; 人类; 1:50; 图 4c
赛信通(上海)生物试剂有限公司 Casp3抗体(cell signaling, 9664)被用于被用于免疫组化在人类样本上浓度为1:50 (图 4c). J Natl Cancer Inst (2016) ncbi
domestic rabbit 单克隆(8G10)
  • 免疫印迹; 人类; 图 1
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling, 9665)被用于被用于免疫印迹在人类样本上 (图 1). Oncotarget (2015) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 2d
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling, 9661)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 2d). Oncotarget (2016) ncbi
domestic rabbit 单克隆(8G10)
  • 免疫印迹; 人类; 图 5
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling, 8G10)被用于被用于免疫印迹在人类样本上 (图 5). Oncotarget (2015) ncbi
domestic rabbit 单克隆(5A1E)
  • 免疫印迹; 人类; 1:1000; 图 1
  • 免疫印迹; 小鼠; 1:1000; 图 s2
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling Technology, 9664)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 1) 和 被用于免疫印迹在小鼠样本上浓度为1:1000 (图 s2). Proc Natl Acad Sci U S A (2015) ncbi
domestic rabbit 单克隆(8G10)
  • 免疫印迹; 人类; 1:1000; 图 2
  • 免疫印迹; 小鼠; 1:1000; 图 3
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling Technology, 9665)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 2) 和 被用于免疫印迹在小鼠样本上浓度为1:1000 (图 3). Proc Natl Acad Sci U S A (2015) ncbi
domestic rabbit 单克隆(8G10)
  • 免疫印迹; 人类; 图 5
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling Tech, 9665)被用于被用于免疫印迹在人类样本上 (图 5). Oncogenesis (2015) ncbi
domestic rabbit 单克隆(D3E9)
  • 免疫组化-石蜡切片; 人类; 1:100; 图 1
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling Technology, 9579)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100 (图 1). Nat Med (2015) ncbi
domestic rabbit 单克隆(8G10)
  • 免疫印迹; 大鼠; 图 2
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling Technology, 9665)被用于被用于免疫印迹在大鼠样本上 (图 2). Am J Physiol Heart Circ Physiol (2015) ncbi
domestic rabbit 单克隆(5A1E)
  • 免疫印迹; 人类; 图 2e
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling, 9664)被用于被用于免疫印迹在人类样本上 (图 2e). Oncotarget (2015) ncbi
domestic rabbit 单克隆(8G10)
  • 免疫印迹; 人类; 图 6d
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling, 9665)被用于被用于免疫印迹在人类样本上 (图 6d). Oncotarget (2015) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 大鼠; 图 2
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling, 9661)被用于被用于免疫印迹在大鼠样本上 (图 2). Cell Death Differ (2016) ncbi
domestic rabbit 单克隆(8G10)
  • 免疫印迹; 人类; 1:2000; 图 7c
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling, 9665)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 7c). Cell Death Dis (2015) ncbi
domestic rabbit 单克隆(8G10)
  • 免疫印迹; 人类; 图 6
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling, 9665)被用于被用于免疫印迹在人类样本上 (图 6). PLoS ONE (2015) ncbi
domestic rabbit 单克隆(5A1E)
  • 免疫印迹; 人类; 图 6
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling, 9664)被用于被用于免疫印迹在人类样本上 (图 6). PLoS ONE (2015) ncbi
domestic rabbit 单克隆(8G10)
  • 免疫印迹; 人类; 图 s1
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling, 8G10)被用于被用于免疫印迹在人类样本上 (图 s1). Oncotarget (2015) ncbi
domestic rabbit 单克隆(5A1E)
  • 免疫组化; 小鼠; 1:50; 图 s2
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling, 5A1E)被用于被用于免疫组化在小鼠样本上浓度为1:50 (图 s2). Nat Commun (2015) ncbi
domestic rabbit 单克隆(5A1E)
  • 免疫组化-石蜡切片; 小鼠
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling, 9664)被用于被用于免疫组化-石蜡切片在小鼠样本上. Angiogenesis (2016) ncbi
domestic rabbit 单克隆(D3E9)
  • 免疫组化-冰冻切片; 小鼠; 1:50; 图 5
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling, 9579)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:50 (图 5). PLoS ONE (2015) ncbi
domestic rabbit 单克隆(8G10)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling, #9665)被用于被用于免疫印迹在人类样本上. Biochem Pharmacol (2015) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 图 s15
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling, 9661)被用于被用于免疫组化在小鼠样本上 (图 s15). Diabetes (2016) ncbi
domestic rabbit 单克隆(5A1E)
  • 免疫印迹; 大鼠; 1:1000; 图 7
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling, 9664)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 7). Sci Rep (2015) ncbi
domestic rabbit 单克隆(5A1E)
  • 免疫细胞化学; 人类; 图 2
  • 免疫印迹; 人类; 1:100
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling, 9664)被用于被用于免疫细胞化学在人类样本上 (图 2) 和 被用于免疫印迹在人类样本上浓度为1:100. Nature (2015) ncbi
domestic rabbit 单克隆(8G10)
  • 免疫印迹; 小鼠; 图 s4f
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell signaling, 9665)被用于被用于免疫印迹在小鼠样本上 (图 s4f). Kidney Int (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 4c
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling Technologies, 9661)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 4c). Oncogene (2016) ncbi
domestic rabbit 单克隆(5A1E)
  • 免疫组化-石蜡切片; 小鼠; 1:100; 图 4
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling Technology, 9664)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:100 (图 4). Mol Cancer (2015) ncbi
domestic rabbit 单克隆(5A1E)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling Technology, 9664)被用于被用于免疫印迹在人类样本上. PLoS ONE (2015) ncbi
domestic rabbit 单克隆(8G10)
  • 免疫印迹; 人类; 图 1b
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling, 9665)被用于被用于免疫印迹在人类样本上 (图 1b). Microbes Infect (2016) ncbi
domestic rabbit 单克隆(5A1E)
  • 免疫组化-石蜡切片; 大鼠; 1:400; 图 6
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signalling, 9664)被用于被用于免疫组化-石蜡切片在大鼠样本上浓度为1:400 (图 6). Toxicol Mech Methods (2015) ncbi
domestic rabbit 单克隆(8G10)
  • 免疫印迹; 人类; 图 4
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling, 8G10)被用于被用于免疫印迹在人类样本上 (图 4). Oncotarget (2015) ncbi
domestic rabbit 单克隆(5A1E)
  • 免疫印迹; 大鼠; 图 3c
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling Technology, 5A1E)被用于被用于免疫印迹在大鼠样本上 (图 3c). Sci Rep (2015) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 大鼠; 图 4a
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling, 9662)被用于被用于免疫印迹在大鼠样本上 (图 4a). Cell Mol Neurobiol (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:500
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling, 9661)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:500. Glia (2016) ncbi
domestic rabbit 单克隆(5A1E)
  • 免疫印迹; 人类; 图 4
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling, 9664)被用于被用于免疫印迹在人类样本上 (图 4). Oncotarget (2015) ncbi
domestic rabbit 单克隆(5A1E)
  • 免疫印迹; 人类; 图 6
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling, 9664)被用于被用于免疫印迹在人类样本上 (图 6). PLoS ONE (2015) ncbi
domestic rabbit 单克隆(5A1E)
  • 免疫细胞化学; 人类; 图 7a
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling, 5A1E)被用于被用于免疫细胞化学在人类样本上 (图 7a). Photochem Photobiol (2015) ncbi
domestic rabbit 单克隆(8G10)
  • 免疫印迹; 人类; 1:1000; 图 s7
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling, 9665)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 s7). Nat Chem (2015) ncbi
domestic rabbit 单克隆(5A1E)
  • 免疫组化-冰冻切片; 小鼠; 1:100; 图 s7a
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling, 5A1E)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:100 (图 s7a). J Clin Invest (2015) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling Technology, 9661)被用于被用于免疫印迹在人类样本上. Oncogene (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 1k
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling Technology, 9661)被用于被用于免疫印迹在人类样本上 (图 1k). Oncogene (2016) ncbi
domestic rabbit 单克隆(8G10)
  • 免疫印迹; 人类; 1:800; 图 5d
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling TECHNOLOGY, 9665)被用于被用于免疫印迹在人类样本上浓度为1:800 (图 5d). Nat Commun (2015) ncbi
domestic rabbit 单克隆(5A1E)
  • 免疫组化-石蜡切片; 小鼠; 1:50
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling Technology, 9664)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:50. J Mol Histol (2015) ncbi
domestic rabbit 单克隆(5A1E)
  • 流式细胞仪; 人类; 1:250; 图 4
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling, 9664)被用于被用于流式细胞仪在人类样本上浓度为1:250 (图 4). Stem Cell Reports (2015) ncbi
domestic rabbit 单克隆(5A1E)
  • 免疫组化; 人类; 1:100; 图 5
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell signaling, 9664)被用于被用于免疫组化在人类样本上浓度为1:100 (图 5). Nat Commun (2015) ncbi
domestic rabbit 单克隆(5A1E)
  • 免疫组化-石蜡切片; 大鼠; 图 2
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signalling Technology, 9664P)被用于被用于免疫组化-石蜡切片在大鼠样本上 (图 2). PLoS ONE (2015) ncbi
domestic rabbit 单克隆(5A1E)
  • 免疫印迹; 大鼠; 图 6
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling, 9664)被用于被用于免疫印迹在大鼠样本上 (图 6). PLoS ONE (2015) ncbi
domestic rabbit 单克隆(5A1E)
  • 免疫印迹; 人类; 1:500; 图 4b
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling Technology, 5A1E)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 4b). PLoS ONE (2015) ncbi
domestic rabbit 单克隆(8G10)
  • 免疫印迹; 人类; 1:500; 图 4b
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling Technology, 8G10)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 4b). PLoS ONE (2015) ncbi
domestic rabbit 单克隆(D3E9)
  • 免疫印迹; 小鼠; 图 s3
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling Technology, 9579S)被用于被用于免疫印迹在小鼠样本上 (图 s3). Mol Biol Cell (2015) ncbi
domestic rabbit 单克隆(5A1E)
  • 免疫印迹; 小鼠; 1:1000; 图 1
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling Technology, 9664)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 1). Nat Commun (2015) ncbi
domestic rabbit 单克隆(D3E9)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling Technology, 9579)被用于被用于免疫印迹在人类样本上. Sci Rep (2015) ncbi
domestic rabbit 单克隆(5A1E)
  • 免疫组化; 小鼠; 1:400; 图 s3
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell signaling, 9664)被用于被用于免疫组化在小鼠样本上浓度为1:400 (图 s3). Cell Rep (2015) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 图 6
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling Technology, 9661)被用于被用于免疫组化在小鼠样本上 (图 6). Mol Neurobiol (2016) ncbi
domestic rabbit 单克隆(5A1E)
  • 免疫组化-石蜡切片; 人类; 1:200
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling, 9664)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:200. Dig Dis Sci (2015) ncbi
domestic rabbit 单克隆(5A1E)
  • 免疫印迹; 人类; 图 6
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling, 9664S)被用于被用于免疫印迹在人类样本上 (图 6). PLoS ONE (2015) ncbi
domestic rabbit 单克隆(5A1E)
  • 免疫印迹; 人类; 1:5000
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling Technologies, 9664)被用于被用于免疫印迹在人类样本上浓度为1:5000. Am J Cancer Res (2015) ncbi
domestic rabbit 单克隆(5A1E)
  • 免疫细胞化学; 小鼠; 图 6d
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling, 5A1E)被用于被用于免疫细胞化学在小鼠样本上 (图 6d). J Physiol (2015) ncbi
domestic rabbit 单克隆(8G10)
  • 免疫印迹; 人类; 图 3c, 4a
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling, 9665)被用于被用于免疫印迹在人类样本上 (图 3c, 4a). Oncotarget (2015) ncbi
domestic rabbit 单克隆(8G10)
  • 免疫印迹; 人类; 图 2
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling Tech, 9665)被用于被用于免疫印迹在人类样本上 (图 2). Oncotarget (2015) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 人类; 1:250; 图 1g
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling, 9661)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:250 (图 1g). Heart Vessels (2016) ncbi
domestic rabbit 单克隆(5A1E)
  • 免疫细胞化学; 人类; 图 2
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell signaling, 9664)被用于被用于免疫细胞化学在人类样本上 (图 2). Oncotarget (2015) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 2
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell signaling, 9662)被用于被用于免疫印迹在人类样本上 (图 2). Oncogene (2016) ncbi
domestic rabbit 单克隆(5A1E)
  • 免疫印迹; 人类; 图 2
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell signaling, 9664)被用于被用于免疫印迹在人类样本上 (图 2). Oncogene (2016) ncbi
domestic rabbit 单克隆(8G10)
  • 免疫印迹; 人类; 图 6
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling, 9665S)被用于被用于免疫印迹在人类样本上 (图 6). Nucleic Acids Res (2015) ncbi
domestic rabbit 单克隆(5A1E)
  • 免疫组化-石蜡切片; 小鼠; 1:500
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell signaling, 9664)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:500. Dev Biol (2016) ncbi
domestic rabbit 单克隆(8G10)
  • 免疫印迹; 小鼠
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling, 8G10)被用于被用于免疫印迹在小鼠样本上. Nat Immunol (2015) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 图 3
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell signaling, 9661)被用于被用于免疫细胞化学在人类样本上 (图 3). Oncogene (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 2
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling Technology, 9661)被用于被用于免疫印迹在小鼠样本上 (图 2). Oncogene (2016) ncbi
domestic rabbit 单克隆(8G10)
  • 免疫印迹; 人类; 图 4K
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling, 9665)被用于被用于免疫印迹在人类样本上 (图 4K). Autophagy (2015) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 大鼠; 1:1000
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell signaling technology, 9661)被用于被用于免疫印迹在大鼠样本上浓度为1:1000. Arch Toxicol (2016) ncbi
domestic rabbit 单克隆(5A1E)
  • 免疫细胞化学; 小鼠
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling Technology, 9664)被用于被用于免疫细胞化学在小鼠样本上. PLoS ONE (2015) ncbi
domestic rabbit 单克隆(5A1E)
  • 免疫组化-石蜡切片; 人类
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling, 9664)被用于被用于免疫组化-石蜡切片在人类样本上. Biomaterials (2015) ncbi
domestic rabbit 单克隆(5A1E)
  • 免疫组化-石蜡切片; 小鼠; 1:400; 图 5c
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling, 9664)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:400 (图 5c). Cell Death Differ (2016) ncbi
domestic rabbit 单克隆(5A1E)
  • 免疫印迹; 人类; 1:800; 图  4
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling Technology, 9664)被用于被用于免疫印迹在人类样本上浓度为1:800 (图  4). Reproduction (2015) ncbi
domestic rabbit 单克隆(5A1E)
  • 免疫印迹; 小鼠; 1:200; 图 8
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling, 9664)被用于被用于免疫印迹在小鼠样本上浓度为1:200 (图 8). PLoS ONE (2015) ncbi
domestic rabbit 单克隆(5A1E)
  • 免疫组化-石蜡切片; 小鼠; 1:300; 图 7
  • 免疫印迹; 小鼠; 图 s10
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell signaling, 9664S)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:300 (图 7) 和 被用于免疫印迹在小鼠样本上 (图 s10). Nat Neurosci (2015) ncbi
domestic rabbit 单克隆(5A1E)
  • 免疫印迹; 小鼠; 1:1000; 图 4e
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling Technology, 9664S)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 4e). PLoS ONE (2015) ncbi
domestic rabbit 单克隆(5A1E)
  • 免疫印迹; 人类; 1:1000; 图 5
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling Technology, 9664)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 5). Mol Med Rep (2015) ncbi
domestic rabbit 单克隆(8G10)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling Technology, 9665)被用于被用于免疫印迹在人类样本上. Oncol Rep (2015) ncbi
domestic rabbit 单克隆(5A1E)
  • 免疫组化; 小鼠; 1:100; 图 s8
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell signaling, 9664)被用于被用于免疫组化在小鼠样本上浓度为1:100 (图 s8). Nature (2015) ncbi
domestic rabbit 单克隆(5A1E)
  • 免疫细胞化学; 人类; 图 1
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling Technology, 9664)被用于被用于免疫细胞化学在人类样本上 (图 1). Oncotarget (2015) ncbi
domestic rabbit 单克隆(5A1E)
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling, 9664S)被用于. J Comp Neurol (2016) ncbi
domestic rabbit 单克隆(5A1E)
  • 免疫印迹; 大鼠; 图 8
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell signaling, 9664)被用于被用于免疫印迹在大鼠样本上 (图 8). PLoS ONE (2015) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling Technology, 9661)被用于被用于免疫印迹在人类样本上. Oncogene (2016) ncbi
domestic rabbit 单克隆(5A1E)
  • 免疫组化-石蜡切片; 人类; 1:800
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling, 9664)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:800. Placenta (2015) ncbi
domestic rabbit 单克隆(5A1E)
  • 免疫组化-石蜡切片; 小鼠; 图 4a
  • 免疫印迹; 小鼠
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling, 9664)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 4a) 和 被用于免疫印迹在小鼠样本上. Cell Death Dis (2015) ncbi
domestic rabbit 单克隆(5A1E)
  • 免疫印迹; 人类; 1:1000; 图 3
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling, 9664S)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3). Cell Death Dis (2015) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 大鼠; 图 1c
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling, 9662)被用于被用于免疫印迹在大鼠样本上 (图 1c). Mol Neurobiol (2016) ncbi
domestic rabbit 单克隆(5A1E)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling Technology, 9664)被用于被用于免疫印迹在人类样本上. Mol Cancer Ther (2015) ncbi
domestic rabbit 单克隆(5A1E)
  • 免疫印迹; 人类; 图 4e
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling, 9664S)被用于被用于免疫印迹在人类样本上 (图 4e). Sci Rep (2015) ncbi
domestic rabbit 单克隆(8G10)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling Technologies, 9665)被用于被用于免疫印迹在人类样本上. Mol Cancer Res (2015) ncbi
domestic rabbit 单克隆(5A1E)
  • 免疫组化-石蜡切片; 小鼠; 图 6
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell signaling, 9664)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 6). Oncotarget (2015) ncbi
domestic rabbit 单克隆(5A1E)
  • 免疫组化; 小鼠; 1:200
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling Technology, 9664)被用于被用于免疫组化在小鼠样本上浓度为1:200. Mol Brain (2015) ncbi
domestic rabbit 单克隆(5A1E)
  • 免疫印迹; 小鼠; 图 5
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling, 9664)被用于被用于免疫印迹在小鼠样本上 (图 5). Gastroenterology (2015) ncbi
domestic rabbit 单克隆(5A1E)
  • 免疫组化-石蜡切片; 小鼠; 1:200; 图 s1
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling, 9664)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:200 (图 s1). Nat Commun (2015) ncbi
domestic rabbit 单克隆(5A1E)
  • 免疫组化; 小鼠; 1:2000; 图 7
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell signaling, 9664)被用于被用于免疫组化在小鼠样本上浓度为1:2000 (图 7). J Pathol (2015) ncbi
domestic rabbit 单克隆(5A1E)
  • 免疫细胞化学; 人类; 1:400; 图 4
  • 免疫印迹; 人类; 1:1000; 图 1
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling, 9664)被用于被用于免疫细胞化学在人类样本上浓度为1:400 (图 4) 和 被用于免疫印迹在人类样本上浓度为1:1000 (图 1). EMBO Mol Med (2015) ncbi
domestic rabbit 单克隆(8G10)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling Technologies, 9665)被用于被用于免疫印迹在人类样本上. Lab Invest (2015) ncbi
domestic rabbit 单克隆(5A1E)
  • 免疫印迹; 人类; 图 8c
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling Technology, 9664)被用于被用于免疫印迹在人类样本上 (图 8c). J Biol Chem (2015) ncbi
domestic rabbit 单克隆(8G10)
  • 免疫印迹; 人类; 图 s5
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling Technology, 9665)被用于被用于免疫印迹在人类样本上 (图 s5). Cell Cycle (2015) ncbi
domestic rabbit 单克隆(5A1E)
  • 免疫组化; 小鼠; 1:1000
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling Technology, 9664)被用于被用于免疫组化在小鼠样本上浓度为1:1000. J Neurosci (2015) ncbi
domestic rabbit 单克隆(8G10)
  • 免疫印迹; 大鼠; 1:1000
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling Technology, 9665S)被用于被用于免疫印迹在大鼠样本上浓度为1:1000. Mol Med (2015) ncbi
domestic rabbit 单克隆(5A1E)
  • 免疫组化-冰冻切片; 小鼠; 图 3a
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling Technology, 9664)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 3a). PLoS ONE (2015) ncbi
domestic rabbit 单克隆(5A1E)
  • 免疫组化-石蜡切片; 小鼠; 1:200; 图 s9
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling Technologies, 9664)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:200 (图 s9). Cell Death Dis (2015) ncbi
domestic rabbit 单克隆(8G10)
  • 免疫印迹; 大鼠; 1:1000; 图 4
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling, 9665)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 4). PLoS ONE (2015) ncbi
domestic rabbit 单克隆(5A1E)
  • 免疫印迹; 人类; 1:1000; 图 2b
  • 免疫印迹; 小鼠; 1:1000; 图 2c
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling, 9664)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 2b) 和 被用于免疫印迹在小鼠样本上浓度为1:1000 (图 2c). Nat Commun (2015) ncbi
domestic rabbit 单克隆(D3E9)
  • 免疫组化-石蜡切片; 小鼠; 1:300; 图 3a
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling Technology, 9579)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:300 (图 3a). Nat Commun (2015) ncbi
domestic rabbit 单克隆(5A1E)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling Technology, 9664)被用于被用于免疫印迹在人类样本上. Mediators Inflamm (2015) ncbi
domestic rabbit 单克隆(5A1E)
  • 免疫印迹; 人类; 1:1000; 图 3c
  • 免疫组化; 小鼠; 1:200; 图 5b
  • 免疫印迹; 小鼠; 1:1000; 图 5c
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling Technology, 9664)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3c), 被用于免疫组化在小鼠样本上浓度为1:200 (图 5b) 和 被用于免疫印迹在小鼠样本上浓度为1:1000 (图 5c). Mol Med Rep (2015) ncbi
domestic rabbit 单克隆(5A1E)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling Technology, 9664)被用于被用于免疫印迹在人类样本上. Int J Oncol (2015) ncbi
domestic rabbit 单克隆(8G10)
  • 免疫印迹; 小鼠; 1:1000; 图 5a
  • 免疫印迹; 人类; 1:1000; 图 3c
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling, 8G10)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 5a) 和 被用于免疫印迹在人类样本上浓度为1:1000 (图 3c). Mol Med Rep (2015) ncbi
domestic rabbit 单克隆(D3E9)
  • 流式细胞仪; 人类; 1:50
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling Technology, 9602)被用于被用于流式细胞仪在人类样本上浓度为1:50. Mutat Res Genet Toxicol Environ Mutagen (2015) ncbi
domestic rabbit 单克隆(5A1E)
  • 免疫组化-石蜡切片; 小鼠; 图 3e
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling, 9664)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 3e). Cell Death Dis (2015) ncbi
domestic rabbit 单克隆(5A1E)
  • 免疫印迹; 小鼠; 1:1000
赛信通(上海)生物试剂有限公司 Casp3抗体(CST, 9664)被用于被用于免疫印迹在小鼠样本上浓度为1:1000. Mol Biol Cell (2015) ncbi
domestic rabbit 单克隆(5A1E)
  • 免疫印迹; 人类; 图 6
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling, 9664)被用于被用于免疫印迹在人类样本上 (图 6). Oncotarget (2015) ncbi
domestic rabbit 单克隆(5A1E)
  • 免疫印迹; 人类; 图 4
赛信通(上海)生物试剂有限公司 Casp3抗体(cell Signaling Tech, 9664)被用于被用于免疫印迹在人类样本上 (图 4). Cell Death Dis (2015) ncbi
domestic rabbit 单克隆(8G10)
  • 免疫印迹; 人类; 图 s1
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling, 8G10)被用于被用于免疫印迹在人类样本上 (图 s1). Cell Death Dis (2015) ncbi
domestic rabbit 单克隆(5A1E)
  • 其他; 斑马鱼; 图 S2
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling, 9664)被用于被用于其他在斑马鱼样本上 (图 S2). FASEB J (2015) ncbi
domestic rabbit 单克隆(5A1E)
  • 免疫印迹; 人类; 图 3
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signalling, 9664)被用于被用于免疫印迹在人类样本上 (图 3). Oncogene (2015) ncbi
domestic rabbit 单克隆(8G10)
  • 免疫印迹; 小鼠; 图 8f
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling Technology, 9665)被用于被用于免疫印迹在小鼠样本上 (图 8f). Autophagy (2015) ncbi
domestic rabbit 单克隆(5A1E)
  • 免疫印迹; 小鼠; 图 2
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling, 9664S)被用于被用于免疫印迹在小鼠样本上 (图 2). DNA Repair (Amst) (2015) ncbi
domestic rabbit 单克隆(8G10)
  • 免疫印迹; 人类; 图 s4
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling, 8G10)被用于被用于免疫印迹在人类样本上 (图 s4). Cancer Lett (2015) ncbi
domestic rabbit 单克隆(5A1E)
  • 免疫组化-石蜡切片; 小鼠; 1:2000; 图 s9
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling, 5A1E)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:2000 (图 s9). Proc Natl Acad Sci U S A (2015) ncbi
domestic rabbit 单克隆(5A1E)
  • 免疫印迹; 小鼠
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling Technology, 9664S)被用于被用于免疫印迹在小鼠样本上. J Agric Food Chem (2015) ncbi
domestic rabbit 单克隆(8G10)
  • 免疫印迹; 人类; 1:1000
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling Technology, 9665 s)被用于被用于免疫印迹在人类样本上浓度为1:1000. J Exp Clin Cancer Res (2015) ncbi
domestic rabbit 单克隆(5A1E)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling Technology, 9664)被用于被用于免疫印迹在人类样本上. Biochim Biophys Acta (2015) ncbi
domestic rabbit 单克隆(8G10)
  • 免疫印迹; 小鼠; 1:1000; 图 5A
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling, 9665)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 5A). Physiol Rep (2015) ncbi
domestic rabbit 单克隆(5A1E)
  • 免疫组化-石蜡切片; 小鼠; 1:200
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling Technology, 9664)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:200. Oncotarget (2015) ncbi
domestic rabbit 单克隆(8G10)
  • 免疫印迹; 人类; 图 6b
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling, 8G10)被用于被用于免疫印迹在人类样本上 (图 6b). Cell Death Dis (2015) ncbi
domestic rabbit 单克隆(8G10)
  • 免疫印迹; 人类; 1:1000; 图 1A
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling, 9665)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 1A). Mol Med Rep (2015) ncbi
domestic rabbit 单克隆(8G10)
  • 免疫印迹; 小鼠; 图 1
赛信通(上海)生物试剂有限公司 Casp3抗体(CST, Danvers, 9665)被用于被用于免疫印迹在小鼠样本上 (图 1). Cell Death Dis (2015) ncbi
domestic rabbit 单克隆(5A1E)
  • 免疫印迹; 小鼠
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling Technology, 9664)被用于被用于免疫印迹在小鼠样本上. Cell Death Dis (2015) ncbi
domestic rabbit 单克隆(D3E9)
  • 免疫组化; 小鼠; 图 2
  • 免疫印迹; 小鼠; 图 2
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling Technology, 9579S)被用于被用于免疫组化在小鼠样本上 (图 2) 和 被用于免疫印迹在小鼠样本上 (图 2). Nucleic Acids Res (2015) ncbi
domestic rabbit 单克隆(8G10)
  • 免疫印迹; 大鼠; 图 1f
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling, 8G10)被用于被用于免疫印迹在大鼠样本上 (图 1f). J Biol Chem (2015) ncbi
domestic rabbit 单克隆(8G10)
  • 免疫印迹; 人类; 1:1000
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling Technology, 9665)被用于被用于免疫印迹在人类样本上浓度为1:1000. Cancer Lett (2015) ncbi
domestic rabbit 单克隆(5A1E)
  • 免疫组化; 小鼠; 图 3
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling Technology, 9664)被用于被用于免疫组化在小鼠样本上 (图 3). Cancer Cell (2015) ncbi
domestic rabbit 单克隆(8G10)
  • 免疫印迹; 大鼠; 图 1
  • 免疫印迹; 小鼠; 图 s1
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling, 9665)被用于被用于免疫印迹在大鼠样本上 (图 1) 和 被用于免疫印迹在小鼠样本上 (图 s1). Mol Biol Cell (2015) ncbi
domestic rabbit 单克隆(5A1E)
  • 免疫印迹; 人类; 图 2
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling Technology, 9664)被用于被用于免疫印迹在人类样本上 (图 2). Br J Cancer (2015) ncbi
domestic rabbit 单克隆(5A1E)
  • 免疫印迹; 小鼠; 1:200; 图 s6
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell signaling, 5A1E)被用于被用于免疫印迹在小鼠样本上浓度为1:200 (图 s6). Development (2015) ncbi
domestic rabbit 单克隆(5A1E)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling, 5A1E)被用于被用于免疫印迹在人类样本上. Cancer Cell (2015) ncbi
domestic rabbit 单克隆(5A1E)
  • 免疫印迹; 人类; 图 3
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling, 9664)被用于被用于免疫印迹在人类样本上 (图 3). Cancer Lett (2015) ncbi
domestic rabbit 单克隆(8G10)
  • 免疫印迹; 人类; 图 3a
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling Technology Inc., 9665)被用于被用于免疫印迹在人类样本上 (图 3a). Mol Carcinog (2015) ncbi
domestic rabbit 单克隆(8G10)
  • 免疫印迹; 小鼠; 图 s7c
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell signaling, 9665)被用于被用于免疫印迹在小鼠样本上 (图 s7c). Nat Med (2015) ncbi
domestic rabbit 单克隆(5A1E)
  • 免疫组化; 小鼠; 图 s7b
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell signaling, 9664)被用于被用于免疫组化在小鼠样本上 (图 s7b). Nat Med (2015) ncbi
domestic rabbit 单克隆(5A1E)
  • 免疫组化-石蜡切片; 小鼠
  • 免疫印迹; 小鼠
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling, 9664)被用于被用于免疫组化-石蜡切片在小鼠样本上 和 被用于免疫印迹在小鼠样本上. Dev Biol (2015) ncbi
domestic rabbit 单克隆(5A1E)
  • 免疫印迹; 人类; 1:1000
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling Technology, 9664)被用于被用于免疫印迹在人类样本上浓度为1:1000. FASEB J (2015) ncbi
domestic rabbit 单克隆(5A1E)
  • 免疫印迹; 小鼠; 图 4c
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling, 9664)被用于被用于免疫印迹在小鼠样本上 (图 4c). J Hepatol (2015) ncbi
domestic rabbit 单克隆(8G10)
  • 免疫组化-石蜡切片; 人类; 图 3
  • 免疫印迹; 人类; 图 5
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling, 8G10)被用于被用于免疫组化-石蜡切片在人类样本上 (图 3) 和 被用于免疫印迹在人类样本上 (图 5). Phytother Res (2015) ncbi
domestic rabbit 单克隆(5A1E)
  • 免疫印迹; 小鼠; 1:1000
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling Technology, 9664l)被用于被用于免疫印迹在小鼠样本上浓度为1:1000. Invest Ophthalmol Vis Sci (2014) ncbi
domestic rabbit 单克隆(5A1E)
  • 免疫组化-石蜡切片; 人类
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling Technology, 5A1E)被用于被用于免疫组化-石蜡切片在人类样本上. AIDS (2015) ncbi
domestic rabbit 单克隆(8G10)
  • 免疫印迹; 人类; 1:1000
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling Technology, #9665)被用于被用于免疫印迹在人类样本上浓度为1:1000. J Nat Prod (2014) ncbi
domestic rabbit 单克隆(8G10)
  • 免疫印迹; 人类; 图 6
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell signaling, 9665)被用于被用于免疫印迹在人类样本上 (图 6). Sci Rep (2014) ncbi
domestic rabbit 单克隆(5A1E)
  • 免疫组化-石蜡切片; 小鼠; 1:300; 图 6
  • 免疫印迹; 小鼠; 1:1000; 图 7
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling, 9664)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:300 (图 6) 和 被用于免疫印迹在小鼠样本上浓度为1:1000 (图 7). PLoS ONE (2014) ncbi
domestic rabbit 单克隆(5A1E)
  • 免疫组化-冰冻切片; 小鼠; 1:100; 图 s4d
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling, 9664)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:100 (图 s4d). Development (2014) ncbi
domestic rabbit 单克隆(5A1E)
  • 免疫组化-石蜡切片; 小鼠; 1:200; 图 s2a, b
赛信通(上海)生物试剂有限公司 Casp3抗体(cell signaling, cab 9664)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:200 (图 s2a, b). Hum Mol Genet (2015) ncbi
domestic rabbit 单克隆(8G10)
  • 免疫印迹; 小鼠; 图 4
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling, 9665)被用于被用于免疫印迹在小鼠样本上 (图 4). Cell Death Dis (2014) ncbi
domestic rabbit 单克隆(5A1E)
  • 免疫印迹; 小鼠; 图 7
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling, 9664S)被用于被用于免疫印迹在小鼠样本上 (图 7). Circ Res (2015) ncbi
domestic rabbit 单克隆(5A1E)
  • 免疫印迹; 小鼠
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling Technology, 9664)被用于被用于免疫印迹在小鼠样本上. Biochim Biophys Acta (2015) ncbi
domestic rabbit 单克隆(D3E9)
  • 免疫细胞化学; 人类; 图 2
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling, 9579)被用于被用于免疫细胞化学在人类样本上 (图 2). Mol Cancer Res (2015) ncbi
domestic rabbit 单克隆(5A1E)
  • 免疫组化-石蜡切片; 小鼠; 1:200
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling, 9664)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:200. Dev Biol (2014) ncbi
domestic rabbit 单克隆(8G10)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling Technology, 8G10)被用于被用于免疫印迹在人类样本上. Oncotarget (2014) ncbi
domestic rabbit 单克隆(5A1E)
  • 免疫组化-石蜡切片; 人类; 1:200; 图 7
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling, 9664)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:200 (图 7). Nat Cell Biol (2014) ncbi
domestic rabbit 单克隆(5A1E)
  • 免疫细胞化学; 人类; 图 4
赛信通(上海)生物试剂有限公司 Casp3抗体(cell signaling, 9664)被用于被用于免疫细胞化学在人类样本上 (图 4). Oncotarget (2014) ncbi
domestic rabbit 单克隆(8G10)
  • 免疫印迹; 人类; 图 4
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling, 9665)被用于被用于免疫印迹在人类样本上 (图 4). Mol Cancer Res (2014) ncbi
domestic rabbit 单克隆(5A1E)
  • 免疫细胞化学; 人类; 1:400; 图 4d
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling, 9664)被用于被用于免疫细胞化学在人类样本上浓度为1:400 (图 4d). Int J Med Microbiol (2014) ncbi
domestic rabbit 单克隆(5A1E)
  • 免疫组化; 小鼠; 图 3
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling Technology, 9664)被用于被用于免疫组化在小鼠样本上 (图 3). Nat Med (2014) ncbi
domestic rabbit 单克隆(5A1E)
  • 免疫组化; 人类; 1:50
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling, 9664)被用于被用于免疫组化在人类样本上浓度为1:50. Cell Death Dis (2014) ncbi
domestic rabbit 单克隆(5A1E)
  • 免疫组化-冰冻切片; 小鼠; 1:100
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling Technology, 9664L)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:100. J Neurosci (2014) ncbi
domestic rabbit 单克隆(5A1E)
  • 免疫组化-石蜡切片; 小鼠
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling, 9664)被用于被用于免疫组化-石蜡切片在小鼠样本上. Prostate (2014) ncbi
domestic rabbit 单克隆(D3E9)
  • 免疫组化; 小鼠; 1:200; 图 5c,5d,6
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling, mAb9579)被用于被用于免疫组化在小鼠样本上浓度为1:200 (图 5c,5d,6). Int J Cancer (2015) ncbi
domestic rabbit 单克隆(5A1E)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling, 9664)被用于被用于免疫印迹在人类样本上. Br J Cancer (2014) ncbi
domestic rabbit 单克隆(5A1E)
  • 免疫组化; 人类; 图 4
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling, 9664s)被用于被用于免疫组化在人类样本上 (图 4). Oncotarget (2014) ncbi
domestic rabbit 单克隆(5A1E)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling Technology, 9664)被用于被用于免疫印迹在人类样本上. J Biol Chem (2014) ncbi
domestic rabbit 单克隆(5A1E)
  • 免疫印迹; 小鼠
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling Technology, 9664)被用于被用于免疫印迹在小鼠样本上. Biochem Biophys Res Commun (2014) ncbi
domestic rabbit 单克隆(8G10)
  • 免疫印迹; 大鼠; 1:500; 图 4b
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling, 9665)被用于被用于免疫印迹在大鼠样本上浓度为1:500 (图 4b). J Mol Neurosci (2015) ncbi
domestic rabbit 单克隆(5A1E)
  • 免疫组化-石蜡切片; 人类; 图 1
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell signaling, 9664)被用于被用于免疫组化-石蜡切片在人类样本上 (图 1). Cancer Res (2014) ncbi
domestic rabbit 单克隆(5A1E)
  • 免疫印迹; 小鼠
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling Technology, 9664)被用于被用于免疫印迹在小鼠样本上. J Biol Chem (2014) ncbi
domestic rabbit 单克隆(5A1E)
  • 免疫印迹; African green monkey
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling Technology, 9664)被用于被用于免疫印迹在African green monkey样本上. PLoS ONE (2014) ncbi
domestic rabbit 单克隆(5A1E)
  • 免疫组化; 斑马鱼; 1:200
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling, 9664)被用于被用于免疫组化在斑马鱼样本上浓度为1:200. Development (2014) ncbi
domestic rabbit 单克隆(5A1E)
  • 免疫细胞化学; 大鼠
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling Technology, 9654s)被用于被用于免疫细胞化学在大鼠样本上. J Neurol Sci (2014) ncbi
domestic rabbit 单克隆(5A1E)
  • 免疫组化-石蜡切片; 小鼠; 1:100
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling Technology, 9664)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:100. Cancer Res (2014) ncbi
domestic rabbit 单克隆(5A1E)
  • 免疫印迹; 大鼠; 1:500
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling Technology, 9664S)被用于被用于免疫印迹在大鼠样本上浓度为1:500. J Biol Chem (2014) ncbi
domestic rabbit 单克隆(8G10)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling, 9665S)被用于被用于免疫印迹在人类样本上. PLoS ONE (2014) ncbi
domestic rabbit 单克隆(5A1E)
  • 免疫细胞化学; 小鼠; 1:200
  • 免疫印迹; 小鼠; 1:1000
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling Technology, 5A1E)被用于被用于免疫细胞化学在小鼠样本上浓度为1:200 和 被用于免疫印迹在小鼠样本上浓度为1:1000. J Neural Transm (Vienna) (2015) ncbi
domestic rabbit 单克隆(5A1E)
  • 免疫印迹; 人类; 图 2c
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling, 9664)被用于被用于免疫印迹在人类样本上 (图 2c). Anticancer Agents Med Chem (2015) ncbi
domestic rabbit 单克隆(5A1E)
  • 免疫印迹; 小鼠; 1:1000; 图 7
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling, 9664)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 7). Mol Neurodegener (2014) ncbi
domestic rabbit 单克隆(5A1E)
  • 免疫组化-石蜡切片; 小鼠; 1:800
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling Technology, 5A1E)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:800. J Biol Chem (2014) ncbi
domestic rabbit 单克隆(5A1E)
  • 免疫组化-冰冻切片; 小鼠; 1:200
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling, 9664)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:200. Nat Neurosci (2014) ncbi
domestic rabbit 单克隆(5A1E)
  • 免疫印迹; 小鼠; 图 4
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling, 9664)被用于被用于免疫印迹在小鼠样本上 (图 4). J Am Soc Nephrol (2014) ncbi
domestic rabbit 单克隆(5A1E)
  • 免疫印迹; 人类; 1:1000
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signalling, 5A1E)被用于被用于免疫印迹在人类样本上浓度为1:1000. Mol Hum Reprod (2014) ncbi
domestic rabbit 单克隆(5A1E)
  • 免疫印迹; 小鼠; 1:1000; 图 6c
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell signaling, 9664)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 6c). Mol Neurobiol (2015) ncbi
domestic rabbit 单克隆(8G10)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling Technology, 9665)被用于被用于免疫印迹在人类样本上. Cell Death Differ (2014) ncbi
domestic rabbit 单克隆(5A1E)
  • 免疫印迹; 人类; 图 6b
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling, 9664)被用于被用于免疫印迹在人类样本上 (图 6b). Mol Endocrinol (2014) ncbi
domestic rabbit 单克隆(5A1E)
  • 免疫组化-石蜡切片; 人类; 1:200
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling Technology, 9664)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:200. J Biol Chem (2014) ncbi
domestic rabbit 单克隆(5A1E)
  • 免疫细胞化学; 人类; 1:200
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling, 9664)被用于被用于免疫细胞化学在人类样本上浓度为1:200. Biochem Biophys Res Commun (2014) ncbi
domestic rabbit 单克隆(8G10)
  • 免疫印迹; 人类; 1:1000
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling Technology, 9665)被用于被用于免疫印迹在人类样本上浓度为1:1000. PLoS ONE (2014) ncbi
domestic rabbit 单克隆(5A1E)
  • 免疫组化-自由浮动切片; 小鼠; 1:200
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling Technology, 9664)被用于被用于免疫组化-自由浮动切片在小鼠样本上浓度为1:200. PLoS ONE (2014) ncbi
domestic rabbit 单克隆(8G10)
  • 免疫印迹; 人类; 1:1000
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling, 8G10)被用于被用于免疫印迹在人类样本上浓度为1:1000. PLoS ONE (2014) ncbi
domestic rabbit 单克隆(5A1E)
  • 免疫组化-石蜡切片; 小鼠
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling, 9664S)被用于被用于免疫组化-石蜡切片在小鼠样本上. BMC Biol (2014) ncbi
domestic rabbit 单克隆(5A1E)
  • 免疫印迹; 大鼠
赛信通(上海)生物试剂有限公司 Casp3抗体(CST, 9664)被用于被用于免疫印迹在大鼠样本上. FASEB J (2014) ncbi
domestic rabbit 单克隆(5A1E)
  • 免疫组化-石蜡切片; 小鼠; 1:500; 图 3
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell signaling, 9664L)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:500 (图 3). Nature (2014) ncbi
domestic rabbit 单克隆(5A1E)
  • 免疫组化; 人类; 1:200
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling Technology, ASP175 5A1E)被用于被用于免疫组化在人类样本上浓度为1:200. Leuk Lymphoma (2014) ncbi
domestic rabbit 单克隆(8G10)
  • 免疫印迹; 人类; 图 3a
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell signaling, 9665)被用于被用于免疫印迹在人类样本上 (图 3a). PLoS ONE (2014) ncbi
domestic rabbit 单克隆(5A1E)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling, 9664)被用于被用于免疫印迹在人类样本上. PLoS ONE (2014) ncbi
domestic rabbit 单克隆(5A1E)
  • 免疫细胞化学; 人类; 1:400
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell-Signaling, 9664P)被用于被用于免疫细胞化学在人类样本上浓度为1:400. PLoS ONE (2014) ncbi
domestic rabbit 单克隆(8G10)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling Technologies, 8G10)被用于被用于免疫印迹在人类样本上. BMC Cancer (2014) ncbi
domestic rabbit 单克隆(5A1E)
  • 免疫印迹; 人类; 图 1
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling Technology, 5A1E)被用于被用于免疫印迹在人类样本上 (图 1). Cell Death Dis (2014) ncbi
domestic rabbit 单克隆(5A1E)
  • 免疫组化-石蜡切片; 小鼠; 图 1e
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling, 5A1E)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 1e). PLoS ONE (2014) ncbi
domestic rabbit 单克隆(5A1E)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling Technology, 9654)被用于被用于免疫印迹在人类样本上. PLoS ONE (2014) ncbi
domestic rabbit 单克隆(5A1E)
  • 免疫印迹; 大鼠; 1:1000
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling, 9664)被用于被用于免疫印迹在大鼠样本上浓度为1:1000. Biochim Biophys Acta (2014) ncbi
domestic rabbit 单克隆(5A1E)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling, 9664)被用于被用于免疫印迹在人类样本上. Gastroenterology (2014) ncbi
domestic rabbit 单克隆(5A1E)
  • 免疫印迹; 大鼠
  • 免疫组化-石蜡切片; 小鼠
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling Technology, 9664)被用于被用于免疫印迹在大鼠样本上 和 被用于免疫组化-石蜡切片在小鼠样本上. Kidney Int (2014) ncbi
domestic rabbit 单克隆(5A1E)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling, 9664)被用于被用于免疫印迹在人类样本上. Carcinogenesis (2014) ncbi
domestic rabbit 单克隆(5A1E)
  • 免疫印迹; 小鼠; 1:200
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling Technology, 9664S)被用于被用于免疫印迹在小鼠样本上浓度为1:200. Dev Biol (2014) ncbi
domestic rabbit 单克隆(5A1E)
  • 免疫细胞化学; 人类
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling Technology, 9664)被用于被用于免疫细胞化学在人类样本上 和 被用于免疫印迹在人类样本上. J Am Soc Nephrol (2014) ncbi
domestic rabbit 单克隆(8G10)
  • 免疫印迹; 小鼠
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling, 8G10)被用于被用于免疫印迹在小鼠样本上. PLoS ONE (2014) ncbi
domestic rabbit 单克隆(5A1E)
  • 免疫组化; 小鼠
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling, 9664)被用于被用于免疫组化在小鼠样本上. J Biol Chem (2014) ncbi
domestic rabbit 单克隆(5A1E)
  • 免疫细胞化学; 人类; 1:100
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling, 9664)被用于被用于免疫细胞化学在人类样本上浓度为1:100. Toxicol Lett (2014) ncbi
domestic rabbit 单克隆(8G10)
  • 免疫印迹; 人类; 图 s1
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling, 9665)被用于被用于免疫印迹在人类样本上 (图 s1). Nat Chem Biol (2014) ncbi
domestic rabbit 单克隆(8G10)
  • 免疫印迹; 人类; 图 5
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling, 9665)被用于被用于免疫印迹在人类样本上 (图 5). Free Radic Biol Med (2014) ncbi
domestic rabbit 单克隆(5A1E)
  • 免疫印迹; 人类; 图 5
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling, 9664)被用于被用于免疫印迹在人类样本上 (图 5). Free Radic Biol Med (2014) ncbi
domestic rabbit 单克隆(5A1E)
  • 免疫组化-石蜡切片; 小鼠
  • 免疫印迹; 小鼠
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling Technology, 9664)被用于被用于免疫组化-石蜡切片在小鼠样本上 和 被用于免疫印迹在小鼠样本上. J Neurosci (2013) ncbi
domestic rabbit 单克隆(5A1E)
  • 免疫组化-冰冻切片; 小鼠
  • 免疫印迹; 小鼠
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling, 9664)被用于被用于免疫组化-冰冻切片在小鼠样本上 和 被用于免疫印迹在小鼠样本上. Dev Biol (2014) ncbi
domestic rabbit 单克隆(5A1E)
  • 免疫细胞化学; 人类; 1:100
  • 免疫印迹; 人类; 1:1000
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling Technologies, 9664)被用于被用于免疫细胞化学在人类样本上浓度为1:100 和 被用于免疫印迹在人类样本上浓度为1:1000. Endocrinology (2013) ncbi
domestic rabbit 单克隆(5A1E)
  • 免疫印迹; 人类; 1:50-500
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling Technology, 5A1E)被用于被用于免疫印迹在人类样本上浓度为1:50-500. Reprod Biol Endocrinol (2013) ncbi
domestic rabbit 单克隆(8G10)
  • 免疫印迹; 人类; 图 4c
赛信通(上海)生物试剂有限公司 Casp3抗体(cell signalling, 9665)被用于被用于免疫印迹在人类样本上 (图 4c). Int J Cancer (2014) ncbi
domestic rabbit 单克隆(5A1E)
  • 免疫组化; 小鼠
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling Technology, 9664)被用于被用于免疫组化在小鼠样本上. Kidney Int (2013) ncbi
domestic rabbit 单克隆(8G10)
  • 免疫印迹; 人类; 图 2
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling, 8G10)被用于被用于免疫印迹在人类样本上 (图 2). FASEB J (2013) ncbi
domestic rabbit 单克隆(5A1E)
  • 免疫印迹; 大鼠
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling Technology, 9664)被用于被用于免疫印迹在大鼠样本上. Apoptosis (2013) ncbi
domestic rabbit 单克隆(5A1E)
  • 免疫印迹; 小鼠; 1:200
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling Technology, 9664)被用于被用于免疫印迹在小鼠样本上浓度为1:200. Brain Res (2013) ncbi
domestic rabbit 单克隆(5A1E)
  • 免疫印迹; 人类; 1:1000; 图 3
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell signal, 9664)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3). J Cell Mol Med (2013) ncbi
domestic rabbit 单克隆(5A1E)
  • 免疫组化-自由浮动切片; 大鼠; 1:400
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling Technology, 9664)被用于被用于免疫组化-自由浮动切片在大鼠样本上浓度为1:400. Int J Dev Neurosci (2013) ncbi
domestic rabbit 单克隆(5A1E)
  • 免疫印迹; 小鼠
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling Technology, 9664)被用于被用于免疫印迹在小鼠样本上. Free Radic Biol Med (2013) ncbi
domestic rabbit 单克隆(5A1E)
  • 免疫组化-石蜡切片; 小鼠; 1:200
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling, 9664)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:200. PLoS ONE (2013) ncbi
domestic rabbit 单克隆(5A1E)
  • 免疫组化-冰冻切片; 小鼠; 1:200
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling Technology, 9664)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:200. PLoS ONE (2013) ncbi
domestic rabbit 单克隆(5A1E)
  • 免疫印迹; 大鼠
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signalling Technology, 9664)被用于被用于免疫印迹在大鼠样本上. Autophagy (2013) ncbi
domestic rabbit 单克隆(5A1E)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling Technology, 9664)被用于被用于免疫印迹在人类样本上. Mol Cancer Res (2013) ncbi
domestic rabbit 单克隆(5A1E)
  • 免疫细胞化学; 人类
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling, 9664)被用于被用于免疫细胞化学在人类样本上. Mol Oncol (2013) ncbi
domestic rabbit 单克隆(5A1E)
  • 免疫组化-石蜡切片; 大鼠; 1:400
  • 免疫印迹; 大鼠; 1:1000
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling, 9664)被用于被用于免疫组化-石蜡切片在大鼠样本上浓度为1:400 和 被用于免疫印迹在大鼠样本上浓度为1:1000. PLoS ONE (2012) ncbi
domestic rabbit 单克隆(5A1E)
  • 免疫组化-石蜡切片; 小鼠; 1:100
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling, 9664)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:100. Nat Genet (2013) ncbi
domestic rabbit 单克隆(5A1E)
  • 免疫细胞化学; 犬
  • 免疫印迹; 犬
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling Technology, 9664)被用于被用于免疫细胞化学在犬样本上 和 被用于免疫印迹在犬样本上. J Biol Chem (2012) ncbi
domestic rabbit 单克隆(5A1E)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 Casp3抗体(Cell Signaling, 9664)被用于被用于免疫印迹在人类样本上. Int J Cancer (2011) ncbi
Bioworld
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 4b
Bioworld Casp3抗体(Bioworld, bs7004)被用于被用于免疫印迹在小鼠样本上 (图 4b). Cell Death Dis (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:500; 图 1g
Bioworld Casp3抗体(Bioword, BS7004)被用于被用于免疫印迹在小鼠样本上浓度为1:500 (图 1g). Nat Commun (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 大鼠; 1:800; 图 6
Bioworld Casp3抗体(Bio-World, bs7004)被用于被用于免疫印迹在大鼠样本上浓度为1:800 (图 6). Mol Med Rep (2016) ncbi
BioVision
  • 免疫组化-石蜡切片; 小鼠; 1:100; 图 3g
  • 免疫印迹; 小鼠; 1:500; 图 6d
BioVision Casp3抗体(Biovision, 3015-100)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:100 (图 3g) 和 被用于免疫印迹在小鼠样本上浓度为1:500 (图 6d). Clin Sci (Lond) (2017) ncbi
  • 免疫印迹; 大鼠; 1:1000; 图 1
BioVision Casp3抗体(BioVision, 3015-100)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 1). PLoS ONE (2015) ncbi
上海普洛麦格生物产品有限公司
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 小鼠; 图 s3n
上海普洛麦格生物产品有限公司 Casp3抗体(Promega, G7481)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 s3n). Cell (2018) ncbi
domestic rabbit 多克隆
  • 免疫组化; 大鼠; 图 33
上海普洛麦格生物产品有限公司 Casp3抗体(Promega, G748)被用于被用于免疫组化在大鼠样本上 (图 33). J Toxicol Pathol (2017) ncbi
碧迪BD
domestic rabbit 单克隆(C92-605)
  • 免疫组化; 斑马鱼; 1:500; 图 s4a
碧迪BD Casp3抗体(BD Pharmingen, 559565)被用于被用于免疫组化在斑马鱼样本上浓度为1:500 (图 s4a). Front Cell Dev Biol (2021) ncbi
domestic rabbit 单克隆(C92-605)
  • 免疫组化-冰冻切片; 小鼠; 图 1c
碧迪BD Casp3抗体(BD Biosciences, 559565)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 1c). Commun Biol (2021) ncbi
domestic rabbit 单克隆(C92-605)
  • 流式细胞仪; 小鼠; 1:100
碧迪BD Casp3抗体(BD, 561011)被用于被用于流式细胞仪在小鼠样本上浓度为1:100. Nature (2021) ncbi
domestic rabbit 单克隆(C92-605)
  • 流式细胞仪; 小鼠; 1:20; 图 s3e
碧迪BD Casp3抗体(BD Biosciences, 564094)被用于被用于流式细胞仪在小鼠样本上浓度为1:20 (图 s3e). Nature (2021) ncbi
domestic rabbit 单克隆(C92-605)
  • 流式细胞仪; 人类; 图 1b
碧迪BD Casp3抗体(BD Bioscience, 559341)被用于被用于流式细胞仪在人类样本上 (图 1b). Nat Commun (2020) ncbi
domestic rabbit 单克隆(C92-605)
  • 免疫组化; 斑马鱼; 1:500; 图 1s2a
碧迪BD Casp3抗体(BD Biosciences, 559565)被用于被用于免疫组化在斑马鱼样本上浓度为1:500 (图 1s2a). elife (2020) ncbi
domestic rabbit 单克隆(C92-605)
  • 免疫细胞化学; 人类; 1:400; 图 3a
碧迪BD Casp3抗体(BD, 559565)被用于被用于免疫细胞化学在人类样本上浓度为1:400 (图 3a). Cell Death Dis (2020) ncbi
domestic rabbit 单克隆(C92-605)
  • 流式细胞仪; 人类
碧迪BD Casp3抗体(Becton Dickinson, C92-605)被用于被用于流式细胞仪在人类样本上. Apoptosis (2020) ncbi
domestic rabbit 单克隆(C92-605)
  • 免疫组化-冰冻切片; black ferret; 1:300; 图 4s1a
碧迪BD Casp3抗体(BD Pharmingen, 559565)被用于被用于免疫组化-冰冻切片在black ferret样本上浓度为1:300 (图 4s1a). elife (2020) ncbi
domestic rabbit 单克隆(C92-605)
  • 免疫细胞化学; 人类; 图 6e
碧迪BD Casp3抗体(BD Biosciences, 559565)被用于被用于免疫细胞化学在人类样本上 (图 6e). Cell (2019) ncbi
domestic rabbit 单克隆(C92-605)
  • 流式细胞仪; 人类; 图 5c
碧迪BD Casp3抗体(Pharmingen, C92-605)被用于被用于流式细胞仪在人类样本上 (图 5c). J Biol Chem (2019) ncbi
domestic rabbit 单克隆(C92-605)
  • 流式细胞仪; 小鼠; 图 2b
碧迪BD Casp3抗体(BD Bioscience, 550821)被用于被用于流式细胞仪在小鼠样本上 (图 2b). Cell Death Dis (2018) ncbi
domestic rabbit 单克隆(C92-605)
  • 流式细胞仪; 小鼠; 图 4a
碧迪BD Casp3抗体(BD Biosciences, C92-605)被用于被用于流式细胞仪在小鼠样本上 (图 4a). J Clin Invest (2018) ncbi
domestic rabbit 单克隆(C92-605)
  • 免疫组化-冰冻切片; 小鼠; 1:500; 图 s3f
碧迪BD Casp3抗体(BD Biosciences, 559565)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:500 (图 s3f). Proc Natl Acad Sci U S A (2017) ncbi
domestic rabbit 单克隆(C92-605)
  • 抑制或激活实验; 小鼠; 图 4b
碧迪BD Casp3抗体(BD Biosciences, C92-605)被用于被用于抑制或激活实验在小鼠样本上 (图 4b). Science (2017) ncbi
domestic rabbit 单克隆(C92-605)
  • 流式细胞仪; 人类; 图 6d
碧迪BD Casp3抗体(BD Pharmingen, 559341)被用于被用于流式细胞仪在人类样本上 (图 6d). EMBO J (2017) ncbi
domestic rabbit 单克隆(C92-605)
  • 免疫组化-冰冻切片; 小鼠; 1:500; 图 s6f
碧迪BD Casp3抗体(BD Biosciences, 559565)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:500 (图 s6f). Nat Commun (2017) ncbi
domestic rabbit 单克隆(C92-605)
  • 流式细胞仪; 人类; 图 1a
碧迪BD Casp3抗体(BD Biosciences, 559341)被用于被用于流式细胞仪在人类样本上 (图 1a). Cell Stress Chaperones (2017) ncbi
domestic rabbit 单克隆(C92-605)
  • 流式细胞仪; 食蟹猴; 图 5d
碧迪BD Casp3抗体(BD Biosciences, C92-605)被用于被用于流式细胞仪在食蟹猴样本上 (图 5d). J Immunol (2017) ncbi
domestic rabbit 单克隆(C92-605)
  • 流式细胞仪; 小鼠; 图 3f
碧迪BD Casp3抗体(BD Biosciences, C92-605)被用于被用于流式细胞仪在小鼠样本上 (图 3f). Proc Natl Acad Sci U S A (2017) ncbi
domestic rabbit 单克隆(C92-605)
  • 免疫组化; 小鼠; 1:200; 表 1
碧迪BD Casp3抗体(BD Biosciences, 559565)被用于被用于免疫组化在小鼠样本上浓度为1:200 (表 1). elife (2016) ncbi
domestic rabbit 单克隆(C92-605)
  • 免疫组化-冰冻切片; 小鼠; 图 2
碧迪BD Casp3抗体(BD BioSciences, 559565)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 2). Mol Cell Neurosci (2016) ncbi
domestic rabbit 单克隆(C92-605)
  • 流式细胞仪; 人类; 1:500; 图 2c
  • 流式细胞仪; 小鼠; 1:500; 图 2a, 5b
碧迪BD Casp3抗体(BD Pharmingen, 559565)被用于被用于流式细胞仪在人类样本上浓度为1:500 (图 2c) 和 被用于流式细胞仪在小鼠样本上浓度为1:500 (图 2a, 5b). Cell Death Dis (2016) ncbi
domestic rabbit 单克隆(C92-605)
  • 免疫组化; 斑马鱼; 1:500; 图 6
碧迪BD Casp3抗体(BD Pharmingen, 559565)被用于被用于免疫组化在斑马鱼样本上浓度为1:500 (图 6). Dis Model Mech (2016) ncbi
domestic rabbit 单克隆(C92-605)
  • 流式细胞仪; 小鼠; 图 s3
碧迪BD Casp3抗体(BD Biosciences, C92-605)被用于被用于流式细胞仪在小鼠样本上 (图 s3). J Clin Invest (2016) ncbi
单克隆
  • 流式细胞仪; 小鼠; 1:5; 图 4
碧迪BD Casp3抗体(Jackson ImmunoResarch, 550480)被用于被用于流式细胞仪在小鼠样本上浓度为1:5 (图 4). Nat Commun (2016) ncbi
小鼠 单克隆(46/Caspase-3)
  • 免疫印迹; 人类; 图 3c
碧迪BD Casp3抗体(BD Biosciences, 46/caspase-3)被用于被用于免疫印迹在人类样本上 (图 3c). J Biol Chem (2016) ncbi
domestic rabbit 单克隆(C92-605)
  • 流式细胞仪; 人类; 图 s3b
碧迪BD Casp3抗体(BD Biosciences, C92-605)被用于被用于流式细胞仪在人类样本上 (图 s3b). J Leukoc Biol (2016) ncbi
domestic rabbit 单克隆(C92-605)
  • 流式细胞仪; 人类; 图 2
碧迪BD Casp3抗体(BD Bioscience, 559341)被用于被用于流式细胞仪在人类样本上 (图 2). PLoS ONE (2016) ncbi
domestic rabbit 单克隆(C92-605)
  • 免疫组化-冰冻切片; 小鼠
碧迪BD Casp3抗体(BD bioscience, 559565)被用于被用于免疫组化-冰冻切片在小鼠样本上. Oncotarget (2016) ncbi
domestic rabbit 单克隆(C92-605)
  • 流式细胞仪; 人类; 图 5e
碧迪BD Casp3抗体(BD Biosciences, C92-605)被用于被用于流式细胞仪在人类样本上 (图 5e). J Crohns Colitis (2016) ncbi
domestic rabbit 单克隆(C92-605)
  • 流式细胞仪; 人类; 图 4
碧迪BD Casp3抗体(BD BioSciences, 559565)被用于被用于流式细胞仪在人类样本上 (图 4). BMC Cancer (2016) ncbi
domestic rabbit 单克隆(C92-605)
  • 免疫组化-石蜡切片; 小鼠; 1:200; 图 6
碧迪BD Casp3抗体(BD Biosciences, 559565)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:200 (图 6). Development (2016) ncbi
domestic rabbit 单克隆(C92-605)
  • 免疫组化; 小鼠; 1:100; 图 5
碧迪BD Casp3抗体(BD Pharmingen, 559565)被用于被用于免疫组化在小鼠样本上浓度为1:100 (图 5). Autophagy (2016) ncbi
domestic rabbit 单克隆(C92-605)
  • 流式细胞仪; 小鼠; 图 5a
碧迪BD Casp3抗体(BD Pharmingen, C92-605)被用于被用于流式细胞仪在小鼠样本上 (图 5a). Int J Cancer (2016) ncbi
domestic rabbit 单克隆(C92-605)
  • 流式细胞仪; 人类; 图 7
碧迪BD Casp3抗体(BD, 550821)被用于被用于流式细胞仪在人类样本上 (图 7). Oncotarget (2015) ncbi
domestic rabbit 单克隆(C92-605)
  • 免疫组化-冰冻切片; 小鼠; 1:500; 图 2
碧迪BD Casp3抗体(BD Biosciences, 559565)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:500 (图 2). J Neurosci (2015) ncbi
domestic rabbit 单克隆(C92-605)
  • 免疫印迹; 小鼠; 1:1000; 图 7
碧迪BD Casp3抗体(BD Pharmigen, 559565)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 7). Mol Neurodegener (2015) ncbi
domestic rabbit 单克隆(C92-605)
  • 免疫组化; 斑马鱼; 1:1000; 图 1
碧迪BD Casp3抗体(BD Pharmingen, 559565)被用于被用于免疫组化在斑马鱼样本上浓度为1:1000 (图 1). J Am Soc Nephrol (2016) ncbi
domestic rabbit 单克隆(C92-605)
  • 流式细胞仪; 小鼠; 图 s9a
碧迪BD Casp3抗体(Pharmingen, C92-605)被用于被用于流式细胞仪在小鼠样本上 (图 s9a). Proc Natl Acad Sci U S A (2015) ncbi
domestic rabbit 单克隆(C92-605)
  • 流式细胞仪; 人类
碧迪BD Casp3抗体(Pharmingen, 559341)被用于被用于流式细胞仪在人类样本上. Springerplus (2015) ncbi
domestic rabbit 单克隆(C92-605)
  • 免疫印迹; 人类
碧迪BD Casp3抗体(BD Biosciences, 559565)被用于被用于免疫印迹在人类样本上. Oncotarget (2015) ncbi
domestic rabbit 单克隆(C92-605)
  • 免疫细胞化学; 斑马鱼; 图 5
  • 免疫组化; 斑马鱼; 1:200
碧迪BD Casp3抗体(BD Biosciences, 559565)被用于被用于免疫细胞化学在斑马鱼样本上 (图 5) 和 被用于免疫组化在斑马鱼样本上浓度为1:200. Dev Dyn (2015) ncbi
domestic rabbit 单克隆(C92-605)
碧迪BD Casp3抗体(BD Pharmingen, 559565)被用于. J Cereb Blood Flow Metab (2015) ncbi
domestic rabbit 单克隆(C92-605)
  • 流式细胞仪; 人类; 图 3
碧迪BD Casp3抗体(BD Pharmingen, 559341)被用于被用于流式细胞仪在人类样本上 (图 3). Int J Cancer (2015) ncbi
domestic rabbit 单克隆(C92-605)
  • 免疫组化; 小鼠; 1:100
碧迪BD Casp3抗体(BD Biosciences, 559565)被用于被用于免疫组化在小鼠样本上浓度为1:100. Mol Cell Biol (2014) ncbi
domestic rabbit 单克隆(C92-605)
  • 流式细胞仪; 人类
碧迪BD Casp3抗体(BD Biosciences, C92-605)被用于被用于流式细胞仪在人类样本上. J Immunol (2014) ncbi
domestic rabbit 单克隆(C92-605)
  • 免疫印迹; 人类
碧迪BD Casp3抗体(BD Biosciences, 559565)被用于被用于免疫印迹在人类样本上. Int J Cancer (2015) ncbi
domestic rabbit 单克隆(C92-605)
  • 免疫组化; 小鼠; 1:100
碧迪BD Casp3抗体(BD Pharmingen, C92-605)被用于被用于免疫组化在小鼠样本上浓度为1:100. Development (2014) ncbi
domestic rabbit 单克隆(C92-605)
  • 流式细胞仪; 人类; 图 2
碧迪BD Casp3抗体(Becton Dickinson, 559341)被用于被用于流式细胞仪在人类样本上 (图 2). PLoS ONE (2014) ncbi
domestic rabbit 单克隆(C92-605)
  • 免疫细胞化学; 人类
碧迪BD Casp3抗体(BD Biosciences, 559565)被用于被用于免疫细胞化学在人类样本上. J Biol Chem (2014) ncbi
domestic rabbit 单克隆(C92-605)
  • 免疫组化; 斑马鱼
碧迪BD Casp3抗体(BD Pharmingen, C92-605)被用于被用于免疫组化在斑马鱼样本上. Br J Haematol (2014) ncbi
domestic rabbit 单克隆(C92-605)
  • 免疫印迹; 人类
碧迪BD Casp3抗体(BD Biosciences, C92-605)被用于被用于免疫印迹在人类样本上. Mol Pharmacol (2014) ncbi
domestic rabbit 单克隆(C92-605)
  • 免疫细胞化学; 人类
碧迪BD Casp3抗体(BD pharmingen, 559565)被用于被用于免疫细胞化学在人类样本上. Neurobiol Dis (2014) ncbi
domestic rabbit 单克隆(C92-605)
  • 免疫组化; Apteronotus leptorhynchus; 图 5
碧迪BD Casp3抗体(BD, C92-605)被用于被用于免疫组化在Apteronotus leptorhynchus样本上 (图 5). Dev Neurobiol (2014) ncbi
domestic rabbit 单克隆(C92-605)
  • 流式细胞仪; 人类; 表 1
碧迪BD Casp3抗体(BD Horizon, 560627)被用于被用于流式细胞仪在人类样本上 (表 1). Cell Cycle (2014) ncbi
domestic rabbit 单克隆(C92-605)
  • 免疫印迹; 人类
碧迪BD Casp3抗体(BD Biosciences, 559565)被用于被用于免疫印迹在人类样本上. Oncogene (2014) ncbi
小鼠 单克隆(46/Caspase-3)
  • 免疫印迹; 人类
碧迪BD Casp3抗体(Transduction Laboratories, 46)被用于被用于免疫印迹在人类样本上. Cell Death Differ (2012) ncbi
domestic rabbit 单克隆(C92-605)
  • 流式细胞仪; 人类
碧迪BD Casp3抗体(BD Biosciences, C92-605)被用于被用于流式细胞仪在人类样本上. Leuk Res (2012) ncbi
domestic rabbit 单克隆(C92-605)
  • 免疫印迹; 人类; 图 4
碧迪BD Casp3抗体(BD Pharmingen, C92-605)被用于被用于免疫印迹在人类样本上 (图 4). Clin Cancer Res (2011) ncbi
domestic rabbit 单克隆(C92-605)
  • 免疫组化-石蜡切片; 人类
碧迪BD Casp3抗体(BD Biosciences, C92-605)被用于被用于免疫组化-石蜡切片在人类样本上. Hepatology (2007) ncbi
文章列表
  1. Wang Q, Shen Y, Pan Y, Chen K, Ding R, Zou T, et al. Tlr2/4 Double Knockout Attenuates the Degeneration of Primary Auditory Neurons: Potential Mechanisms From Transcriptomic Perspectives. Front Cell Dev Biol. 2021;9:750271 pubmed 出版商
  2. Xia R, Liu T, Li W, Xu X. RNA-binding protein RBM24 represses colorectal tumourigenesis by stabilising PTEN mRNA. Clin Transl Med. 2021;11:e383 pubmed 出版商
  3. Ikeda R, Ushio N, Abdou A, Furuoka H, Nishikawa Y. Toll-Like Receptor 2 is Involved in Abnormal Pregnancy in Mice Infected with Toxoplasma gondii During Late Pregnancy. Front Microbiol. 2021;12:741104 pubmed 出版商
  4. Xu Y, Chen X, Pan S, Wang Z, Zhu X. TM7SF2 regulates cell proliferation and apoptosis by activation of C-Raf/ERK pathway in cervical cancer. Cell Death Discov. 2021;7:299 pubmed 出版商
  5. Ma S, Xu H, Huang W, Gao Y, Zhou H, Li X, et al. Chrysophanol Relieves Cisplatin-Induced Nephrotoxicity via Concomitant Inhibition of Oxidative Stress, Apoptosis, and Inflammation. Front Physiol. 2021;12:706359 pubmed 出版商
  6. Correia de Sousa M, Calo N, Sobolewski C, Gjorgjieva M, Clement S, Maeder C, et al. Mir-21 Suppression Promotes Mouse Hepatocarcinogenesis. Cancers (Basel). 2021;13: pubmed 出版商
  7. Schünke H, Göbel U, Dikic I, Pasparakis M. OTULIN inhibits RIPK1-mediated keratinocyte necroptosis to prevent skin inflammation in mice. Nat Commun. 2021;12:5912 pubmed 出版商
  8. Hoste E, Lecomte K, Annusver K, Vandamme N, Roels J, Maschalidi S, et al. OTULIN maintains skin homeostasis by controlling keratinocyte death and stem cell identity. Nat Commun. 2021;12:5913 pubmed 出版商
  9. Zhu X, Peng S, Wang L, Chen X, Feng C, Liu Y, et al. Identification of phosphoenolpyruvate carboxykinase 1 as a potential therapeutic target for pancreatic cancer. Cell Death Dis. 2021;12:918 pubmed 出版商
  10. Gao C, Deng J, Zhang H, Li X, Gu S, Zheng M, et al. HSPA13 facilitates NF-κB-mediated transcription and attenuates cell death responses in TNFα signaling. Sci Adv. 2021;7:eabh1756 pubmed 出版商
  11. Ban Y, Yu T, Feng B, Lorenz C, Wang X, Baker C, et al. Prickle promotes the formation and maintenance of glutamatergic synapses by stabilizing the intercellular planar cell polarity complex. Sci Adv. 2021;7:eabh2974 pubmed 出版商
  12. Kurth I, Yamaguchi N, Andreu Agullo C, Tian H, Sridhar S, Takeda S, et al. Therapeutic targeting of SLC6A8 creatine transporter suppresses colon cancer progression and modulates human creatine levels. Sci Adv. 2021;7:eabi7511 pubmed 出版商
  13. Sun L, Li Y, Misumi I, Gonzalez Lopez O, Hensley L, Cullen J, et al. IRF3-mediated pathogenicity in a murine model of human hepatitis A. PLoS Pathog. 2021;17:e1009960 pubmed 出版商
  14. Lü Z, Liu H, Song N, Liang Y, Zhu J, Chen J, et al. METTL14 aggravates podocyte injury and glomerulopathy progression through N6-methyladenosine-dependent downregulating of Sirt1. Cell Death Dis. 2021;12:881 pubmed 出版商
  15. Li W, Lin Y, Luo Y, Wang Y, Lu Y, Li Y, et al. Vitamin D Receptor Protects against Radiation-Induced Intestinal Injury in Mice via Inhibition of Intestinal Crypt Stem/Progenitor Cell Apoptosis. Nutrients. 2021;13: pubmed 出版商
  16. Mangold N, Pippin J, Unnersjoe Jess D, Koehler S, Shankland S, Brähler S, et al. The Atypical Cyclin-Dependent Kinase 5 (Cdk5) Guards Podocytes from Apoptosis in Glomerular Disease While Being Dispensable for Podocyte Development. Cells. 2021;10: pubmed 出版商
  17. Gyamfi J, Yeo J, Kwon D, Min B, Cha Y, Koo J, et al. Interaction between CD36 and FABP4 modulates adipocyte-induced fatty acid import and metabolism in breast cancer. NPJ Breast Cancer. 2021;7:129 pubmed 出版商
  18. Gahankari A, Dong C, Bartoletti G, Galazo M, He F. Deregulated Rac1 Activity in Neural Crest Controls Cell Proliferation, Migration and Differentiation During Midbrain Development. Front Cell Dev Biol. 2021;9:704769 pubmed 出版商
  19. Wu Y, Zwaini Z, Brunskill N, Zhang X, Wang H, Chana R, et al. Properdin Deficiency Impairs Phagocytosis and Enhances Injury at Kidney Repair Phase Post Ischemia-Reperfusion. Front Immunol. 2021;12:697760 pubmed 出版商
  20. Tian N, Hu L, Lu Y, Tong L, Feng M, Liu Q, et al. TKT maintains intestinal ATP production and inhibits apoptosis-induced colitis. Cell Death Dis. 2021;12:853 pubmed 出版商
  21. Chiang C, Hong Y. In situ delivery of biobutyrate by probiotic Escherichia coli for cancer therapy. Sci Rep. 2021;11:18172 pubmed 出版商
  22. Xue Y, Morris J, Yang K, Fu Z, Zhu X, Johnson F, et al. SMARCA4/2 loss inhibits chemotherapy-induced apoptosis by restricting IP3R3-mediated Ca2+ flux to mitochondria. Nat Commun. 2021;12:5404 pubmed 出版商
  23. Li B, Lian M, Li Y, Qian Q, Zhang J, Liu Q, et al. Myeloid-Derived Suppressive Cells Deficient in Liver X Receptor α Protected From Autoimmune Hepatitis. Front Immunol. 2021;12:732102 pubmed 出版商
  24. Chen Y, Li J, Menon R, Jayaraman A, Lee K, Huang Y, et al. Dietary spinach reshapes the gut microbiome in an Apc-mutant genetic background: mechanistic insights from integrated multi-omics. Gut Microbes. 2021;13:1972756 pubmed 出版商
  25. Lo Cascio C, McNamara J, Melendez E, Lewis E, Dufault M, Sanai N, et al. Nonredundant, isoform-specific roles of HDAC1 in glioma stem cells. JCI Insight. 2021;6: pubmed 出版商
  26. Goel S, Bhatia V, Kundu S, Biswas T, Carskadon S, Gupta N, et al. Transcriptional network involving ERG and AR orchestrates Distal-less homeobox-1 mediated prostate cancer progression. Nat Commun. 2021;12:5325 pubmed 出版商
  27. Lin J, Liu H, Fukumoto T, Zundell J, Yan Q, Tang C, et al. Targeting the IRE1α/XBP1s pathway suppresses CARM1-expressing ovarian cancer. Nat Commun. 2021;12:5321 pubmed 出版商
  28. Cui M, Atmanli A, Morales M, Tan W, Chen K, Xiao X, et al. Nrf1 promotes heart regeneration and repair by regulating proteostasis and redox balance. Nat Commun. 2021;12:5270 pubmed 出版商
  29. Mu H, Liu X, Geng S, Su D, Chang H, Li L, et al. Epithelial Bone Morphogenic Protein 2 and 4 Are Indispensable for Tooth Development. Front Physiol. 2021;12:660644 pubmed 出版商
  30. Huang J, Xiao R, Wang X, Khadka B, Fang Z, Yu M, et al. MicroRNA‑93 knockdown inhibits acute myeloid leukemia cell growth via inactivating the PI3K/AKT pathway by upregulating DAB2. Int J Oncol. 2021;59: pubmed 出版商
  31. Solano Fonseca R, Metang P, Egge N, Liu Y, Zuurbier K, Sivaprakasam K, et al. Glycolytic preconditioning in astrocytes mitigates trauma-induced neurodegeneration. elife. 2021;10: pubmed 出版商
  32. Hu Y, Li C, Wang X, Chen W, Qian Y, Dai X. TREM2, Driving the Microglial Polarization, Has a TLR4 Sensitivity Profile After Subarachnoid Hemorrhage. Front Cell Dev Biol. 2021;9:693342 pubmed 出版商
  33. Rossino M, Amato R, Amadio M, Rosini M, Basagni F, Cammalleri M, et al. A Nature-Inspired Nrf2 Activator Protects Retinal Explants from Oxidative Stress and Neurodegeneration. Antioxidants (Basel). 2021;10: pubmed 出版商
  34. De Velasco M, Kura Y, Ando N, Sako N, Banno E, Fujita K, et al. Context-Specific Efficacy of Apalutamide Therapy in Preclinical Models of Pten-Deficient Prostate Cancer. Cancers (Basel). 2021;13: pubmed 出版商
  35. Wu Q, Zhang W, Liu Y, Huang Y, Wu H, Ma C. Histone deacetylase 1 facilitates aerobic glycolysis and growth of endometrial cancer. Oncol Lett. 2021;22:721 pubmed 出版商
  36. Kalogirou C, Linxweiler J, Schmucker P, Snaebjornsson M, Schmitz W, Wach S, et al. MiR-205-driven downregulation of cholesterol biosynthesis through SQLE-inhibition identifies therapeutic vulnerability in aggressive prostate cancer. Nat Commun. 2021;12:5066 pubmed 出版商
  37. Partoens M, De Meulemeester A, Giong H, Pham D, Lee J, de Witte P, et al. Modeling Neurodevelopmental Disorders and Epilepsy Caused by Loss of Function of kif2a in Zebrafish. Eneuro. 2021;8: pubmed 出版商
  38. Shi Y, Hou S. Protective effects of metformin against myocardial ischemia‑reperfusion injury via AMPK‑dependent suppression of NOX4. Mol Med Rep. 2021;24: pubmed 出版商
  39. Yuan T, Annamalai K, Naik S, Lupse B, Geravandi S, Pal A, et al. The Hippo kinase LATS2 impairs pancreatic β-cell survival in diabetes through the mTORC1-autophagy axis. Nat Commun. 2021;12:4928 pubmed 出版商
  40. Yan D, Li X, Yang Q, Huang Q, Yao L, Zhang P, et al. Regulation of Bax-dependent apoptosis by mitochondrial deubiquitinase USP30. Cell Death Discov. 2021;7:211 pubmed 出版商
  41. Maurizy C, Abeza C, Lemmers B, Gabola M, Longobardi C, Pinet V, et al. The HSP90/R2TP assembly chaperone promotes cell proliferation in the intestinal epithelium. Nat Commun. 2021;12:4810 pubmed 出版商
  42. He Y, Li H, Yao J, Zhong H, Kuang Y, Li X, et al. HO‑1 knockdown upregulates the expression of VCAM‑1 to induce neutrophil recruitment during renal ischemia‑reperfusion injury. Int J Mol Med. 2021;48: pubmed 出版商
  43. Ye Z, Xu S, Shi Y, Bacolla A, Syed A, Moiani D, et al. GRB2 enforces homology-directed repair initiation by MRE11. Sci Adv. 2021;7: pubmed 出版商
  44. Lupse B, Annamalai K, Ibrahim H, Kaur S, Geravandi S, Sarma B, et al. Inhibition of PHLPP1/2 phosphatases rescues pancreatic β-cells in diabetes. Cell Rep. 2021;36:109490 pubmed 出版商
  45. Yuan S, Zhang P, Wen L, Jia S, Wu Y, Zhang Z, et al. miR-22 promotes stem cell traits via activating Wnt/β-catenin signaling in cutaneous squamous cell carcinoma. Oncogene. 2021;40:5799-5813 pubmed 出版商
  46. Oh H, Choi A, Seo N, Lim J, You J, Chung Y. Protective effect of glycyrrhizin, a direct HMGB1 inhibitor, on post-contrast acute kidney injury. Sci Rep. 2021;11:15625 pubmed 出版商
  47. Clark A, Kugathasan U, Baskozos G, Priestman D, Fugger N, Lone M, et al. An iPSC model of hereditary sensory neuropathy-1 reveals L-serine-responsive deficits in neuronal ganglioside composition and axoglial interactions. Cell Rep Med. 2021;2:100345 pubmed 出版商
  48. Keil Stietz K, Kennedy C, Sethi S, Valenzuela A, Nunez A, Wang K, et al. In utero and lactational PCB exposure drives anatomic changes in the juvenile mouse bladder. Curr Res Toxicol. 2021;2:1-18 pubmed 出版商
  49. Shao C, Lou P, Liu R, Bi X, Li G, Yang X, et al. Hormone-Responsive BMP Signaling Expands Myoepithelial Cell Lineages and Prevents Alveolar Precocity in Mammary Gland. Front Cell Dev Biol. 2021;9:691050 pubmed 出版商
  50. Meng L, Zhang Y, Li D, Shang X, Hao X, Chen X, et al. TIMP3 attenuates cerebral ischemia/reperfusion-induced apoptosis and oxidative stress in neurocytes by regulating the AKT pathway. Exp Ther Med. 2021;22:973 pubmed 出版商
  51. Oiwa K, Hosono N, Nishi R, Scotto L, O Connor O, Yamauchi T. Characterization of newly established Pralatrexate-resistant cell lines and the mechanisms of resistance. BMC Cancer. 2021;21:879 pubmed 出版商
  52. Li P, Cao S, Huang Y, Zhang Y, Liu J, Cai X, et al. A novel chemical inhibitor suppresses breast cancer cell growth and metastasis through inhibiting HPIP oncoprotein. Cell Death Discov. 2021;7:198 pubmed 出版商
  53. Chen H, Zhang Brotzge X, Morozov Y, Li Y, Wang S, Zhang H, et al. Creatine transporter deficiency impairs stress adaptation and brain energetics homeostasis. JCI Insight. 2021;6: pubmed 出版商
  54. Kuroda R, Tominaga K, Kasashima K, Kuroiwa K, Sakashita E, Hayakawa H, et al. Loss of mitochondrial transcription factor A in neural stem cells leads to immature brain development and triggers the activation of the integral stress response in vivo. PLoS ONE. 2021;16:e0255355 pubmed 出版商
  55. Zhang Y, Ma Y, Wu G, Xie M, Luo C, Huang X, et al. SENP1 promotes MCL pathogenesis through regulating JAK-STAT5 pathway and SOCS2 expression. Cell Death Discov. 2021;7:192 pubmed 出版商
  56. Jiao L, Eickhoff R, Egners A, Jumpertz S, Roth J, Erdem M, et al. Deletion of mTOR in liver epithelial cells enhances hepatic metastasis of colon cancer. J Pathol. 2021;255:270-284 pubmed 出版商
  57. Chen F, Sheng L, Xu C, Li J, Ali I, Li H, et al. Ufbp1, a Key Player of Ufm1 Conjugation System, Protects Against Ketosis-Induced Liver Injury via Suppressing Smad3 Activation. Front Cell Dev Biol. 2021;9:676789 pubmed 出版商
  58. Lertpatipanpong P, Lee J, Kim I, Eling T, Oh S, Seong J, et al. The anti-diabetic effects of NAG-1/GDF15 on HFD/STZ-induced mice. Sci Rep. 2021;11:15027 pubmed 出版商
  59. Pang K, Ghim M, Liu C, Tay H, Fhu C, Chia R, et al. Leucine-Rich α-2-Glycoprotein 1 Suppresses Endothelial Cell Activation Through ADAM10-Mediated Shedding of TNF-α Receptor. Front Cell Dev Biol. 2021;9:706143 pubmed 出版商
  60. Eckrich J, Frenis K, Rodriguez Blanco G, Ruan Y, Jiang S, Bayo Jimenez M, et al. Aircraft noise exposure drives the activation of white blood cells and induces microvascular dysfunction in mice. Redox Biol. 2021;46:102063 pubmed 出版商
  61. Prekovic S, Schuurman K, Mayayo Peralta I, Manjón A, Buijs M, Yavuz S, et al. Glucocorticoid receptor triggers a reversible drug-tolerant dormancy state with acquired therapeutic vulnerabilities in lung cancer. Nat Commun. 2021;12:4360 pubmed 出版商
  62. Lin X, Wang C, Zhang Q, Pan Y, Dang S, Zhang W. ADAMTS18 regulates vaginal opening through influencing the fusion of Mullerian duct and apoptosis of vaginal epithelial cells in mice. Reprod Biol. 2021;21:100537 pubmed 出版商
  63. Umans R, Pollock C, Mills W, Clark K, Pan Y, Sontheimer H. Using Zebrafish to Elucidate Glial-Vascular Interactions During CNS Development. Front Cell Dev Biol. 2021;9:654338 pubmed 出版商
  64. Hao L, Zhong W, Sun X, Zhou Z. TLR9 Signaling Protects Alcohol-Induced Hepatic Oxidative Stress but Worsens Liver Inflammation in Mice. Front Pharmacol. 2021;12:709002 pubmed 出版商
  65. Xia Y, Wang G, Jiang M, Liu X, Zhao Y, Song Y, et al. A Novel Biological Activity of the STAT3 Inhibitor Stattic in Inhibiting Glutathione Reductase and Suppressing the Tumorigenicity of Human Cervical Cancer Cells via a ROS-Dependent Pathway. Onco Targets Ther. 2021;14:4047-4060 pubmed 出版商
  66. Johnston S, Parylak S, Kim S, Mac N, Lim C, Gallina I, et al. AAV ablates neurogenesis in the adult murine hippocampus. elife. 2021;10: pubmed 出版商
  67. Marquez Exposito L, Tejedor Santamaria L, Santos Sánchez L, Valentijn F, Cantero Navarro E, Rayego Mateos S, et al. Acute Kidney Injury is Aggravated in Aged Mice by the Exacerbation of Proinflammatory Processes. Front Pharmacol. 2021;12:662020 pubmed 出版商
  68. Mandal P, Lyons J, Burd E, Koval M, Mocarski E, Coopersmith C. Integrated evaluation of lung disease in single animals. PLoS ONE. 2021;16:e0246270 pubmed 出版商
  69. Beaulac H, Gilels F, Zhang J, Jeoung S, White P. Primed to die: an investigation of the genetic mechanisms underlying noise-induced hearing loss and cochlear damage in homozygous Foxo3-knockout mice. Cell Death Dis. 2021;12:682 pubmed 出版商
  70. Lee S, Jung J, Lee Y, Kim S, Kim J, Kim B, et al. Targeting HSF1 as a Therapeutic Strategy for Multiple Mechanisms of EGFR Inhibitor Resistance in EGFR Mutant Non-Small-Cell Lung Cancer. Cancers (Basel). 2021;13: pubmed 出版商
  71. Zhang X, Zhao S, Yuan Q, Zhu L, Li F, Wang H, et al. TXNIP, a novel key factor to cause Schwann cell dysfunction in diabetic peripheral neuropathy, under the regulation of PI3K/Akt pathway inhibition-induced DNMT1 and DNMT3a overexpression. Cell Death Dis. 2021;12:642 pubmed 出版商
  72. Zhang J, Terán G, Popa M, Madapura H, Ladds M, Lianoudaki D, et al. DHODH inhibition modulates glucose metabolism and circulating GDF15, and improves metabolic balance. iScience. 2021;24:102494 pubmed 出版商
  73. Lee S, Kim J, Choi Y, Gong J, Park S, Douangdeuane B, et al. Therapeutic Effects of Dipterocarpus tuberculatus with High Antioxidative Activity Against UV-Induced Photoaging of NHDF Cells and Nude Mice. Antioxidants (Basel). 2021;10: pubmed 出版商
  74. Su S, Chen J, Jiang Y, Wang Y, Vital T, Zhang J, et al. SPOP and OTUD7A Control EWS-FLI1 Protein Stability to Govern Ewing Sarcoma Growth. Adv Sci (Weinh). 2021;8:e2004846 pubmed 出版商
  75. Wang H, Xiong W, Hang S, Wang Y, Zhang S, Liu S. Depletion of SENP1-mediated PPARγ SUMOylation exaggerates intermittent hypoxia-induced cognitive decline by aggravating microglia-mediated neuroinflammation. Aging (Albany NY). 2021;13:15240-15254 pubmed 出版商
  76. Hendley A, Rao A, Leonhardt L, Ashe S, Smith J, Giacometti S, et al. Single-cell transcriptome analysis defines heterogeneity of the murine pancreatic ductal tree. elife. 2021;10: pubmed 出版商
  77. Qiu R, Wu J, Gudenas B, Northcott P, Wechsler Reya R, Lu Q. Depletion of kinesin motor KIF20A to target cell fate control suppresses medulloblastoma tumour growth. Commun Biol. 2021;4:552 pubmed 出版商
  78. Malik N, Yan H, Yang H, Ayaz G, DuBois W, Tseng Y, et al. CBFB cooperates with p53 to maintain TAp73 expression and suppress breast cancer. PLoS Genet. 2021;17:e1009553 pubmed 出版商
  79. Nakajima W, Miyazaki K, Asano Y, Kubota S, Tanaka N. Krüppel-Like Factor 4 and Its Activator APTO-253 Induce NOXA-Mediated, p53-Independent Apoptosis in Triple-Negative Breast Cancer Cells. Genes (Basel). 2021;12: pubmed 出版商
  80. Lau E, Damiani D, Chehade G, Ruiz Reig N, Saade R, Jossin Y, et al. DIAPH3 deficiency links microtubules to mitotic errors, defective neurogenesis, and brain dysfunction. elife. 2021;10: pubmed 出版商
  81. Shu H, Guo Z, Chen X, Qi S, Xiong X, Xia S, et al. Intracerebral Transplantation of Neural Stem Cells Restores Manganese-Induced Cognitive Deficits in Mice. Aging Dis. 2021;12:371-385 pubmed 出版商
  82. Gu X, Wang D, Xu Z, Wang J, Guo L, Chai R, et al. Prevention of acquired sensorineural hearing loss in mice by in vivo Htra2 gene editing. Genome Biol. 2021;22:86 pubmed 出版商
  83. Courtland J, Bradshaw T, Waitt G, Soderblom E, Ho T, Rajab A, et al. Genetic disruption of WASHC4 drives endo-lysosomal dysfunction and cognitive-movement impairments in mice and humans. elife. 2021;10: pubmed 出版商
  84. Liu X, Jiang J, Liao Y, Tang I, Zheng E, Qiu W, et al. Combination Chemo-Immunotherapy for Pancreatic Cancer Using the Immunogenic Effects of an Irinotecan Silicasome Nanocarrier Plus Anti-PD-1. Adv Sci (Weinh). 2021;8:2002147 pubmed 出版商
  85. Baeriswyl T, Dumoulin A, Schaettin M, Tsapara G, Niederkofler V, Helbling D, et al. Endoglycan plays a role in axon guidance by modulating cell adhesion. elife. 2021;10: pubmed 出版商
  86. Wang F, Gervasi M, Boskovic A, Sun F, Rinaldi V, Yu J, et al. Deficient spermiogenesis in mice lacking Rlim. elife. 2021;10: pubmed 出版商
  87. Wei F, Ba S, Jin M, Ci R, Wang X, E F, et al. RNF180 Inhibits Proliferation and Promotes Apoptosis of Colorectal Cancer Through Ubiquitination of WISP1. Front Cell Dev Biol. 2020;8:623455 pubmed 出版商
  88. Wang Q, Gao H, Clark K, Mugisha C, Davis K, Tang J, et al. CARD8 is an inflammasome sensor for HIV-1 protease activity. Science. 2021;371: pubmed 出版商
  89. Merkenschlager J, Finkin S, Ramos V, Kraft J, Cipolla M, Nowosad C, et al. Dynamic regulation of TFH selection during the germinal centre reaction. Nature. 2021;591:458-463 pubmed 出版商
  90. Wang H, Huang J, Sue M, Ho W, Hsu Y, Chang K, et al. Interleukin-24 protects against liver injury in mouse models. EBioMedicine. 2021;64:103213 pubmed 出版商
  91. Li Y, Ritchie E, Steinke C, Qi C, Chen L, Zheng B, et al. Activation of MAP3K DLK and LZK in Purkinje cells causes rapid and slow degeneration depending on signaling strength. elife. 2021;10: pubmed 出版商
  92. Lu M, Qin X, Zhou Y, Li G, Liu Z, Geng X, et al. Long non-coding RNA LINC00665 promotes gemcitabine resistance of Cholangiocarcinoma cells via regulating EMT and stemness properties through miR-424-5p/BCL9L axis. Cell Death Dis. 2021;12:72 pubmed 出版商
  93. Xiong M, Wu M, Dan Peng -, Huang W, Chen Z, Ke H, et al. LncRNA DANCR represses Doxorubicin-induced apoptosis through stabilizing MALAT1 expression in colorectal cancer cells. Cell Death Dis. 2021;12:24 pubmed 出版商
  94. Jubair L, Lam A, Fallaha S, McMillan N. CRISPR/Cas9-loaded stealth liposomes effectively cleared established HPV16-driven tumours in syngeneic mice. PLoS ONE. 2021;16:e0223288 pubmed 出版商
  95. Sanmarco L, Wheeler M, Gutiérrez Vázquez C, Polonio C, Linnerbauer M, Pinho Ribeiro F, et al. Gut-licensed IFNγ+ NK cells drive LAMP1+TRAIL+ anti-inflammatory astrocytes. Nature. 2021;: pubmed 出版商
  96. Huang H, Yu X, Han X, Hao J, Zhao J, Bebek G, et al. Piwil1 Regulates Glioma Stem Cell Maintenance and Glioblastoma Progression. Cell Rep. 2021;34:108522 pubmed 出版商
  97. Zhang X, Zhao H, Wang Y, Di L, Liu X, Qian F, et al. Zenglv Fumai Granule protects cardiomyocytes against hypoxia/reoxygenation-induced apoptosis via inhibiting TRIM28 expression. Mol Med Rep. 2021;23: pubmed 出版商
  98. He S, Ma X, Zheng N, Wang G, Wang M, Xia W, et al. PRDM14 mediates chemosensitivity and glycolysis in drug‑resistant A549/cisplatin cells and their progenitor A549 human lung adenocarcinoma cells. Mol Med Rep. 2021;23: pubmed 出版商
  99. Yang S, Michel K, Jokhi V, Nedivi E, Arlotta P. Neuron class-specific responses govern adaptive myelin remodeling in the neocortex. Science. 2020;370: pubmed 出版商
  100. Hewitt G, Borel V, Segura Bayona S, Takaki T, Ruis P, Bellelli R, et al. Defective ALC1 nucleosome remodeling confers PARPi sensitization and synthetic lethality with HRD. Mol Cell. 2020;: pubmed 出版商
  101. Liu M, Li W, Song F, Zhang L, Sun X. Silencing of lncRNA MIAT alleviates LPS-induced pneumonia via regulating miR-147a/NKAP/NF-κB axis. Aging (Albany NY). 2020;13:2506-2518 pubmed 出版商
  102. Li X, Zhang M, Huang X, Liang W, Li G, Lu X, et al. Ubiquitination of RIPK1 regulates its activation mediated by TNFR1 and TLRs signaling in distinct manners. Nat Commun. 2020;11:6364 pubmed 出版商
  103. Karki R, Sharma B, Tuladhar S, Williams E, Zalduondo L, Samir P, et al. Synergism of TNF-α and IFN-γ Triggers Inflammatory Cell Death, Tissue Damage, and Mortality in SARS-CoV-2 Infection and Cytokine Shock Syndromes. Cell. 2021;184:149-168.e17 pubmed 出版商
  104. Chiu C, Weng Y, Huang Y, Chen R, Liu Y, Yeh T, et al. (D620N) VPS35 causes the impairment of Wnt/β-catenin signaling cascade and mitochondrial dysfunction in a PARK17 knockin mouse model. Cell Death Dis. 2020;11:1018 pubmed 出版商
  105. Atkins A, Xu M, Li M, Rogers N, Pryzhkova M, Jordan P. SMC5/6 is required for replication fork stability and faithful chromosome segregation during neurogenesis. elife. 2020;9: pubmed 出版商
  106. Wilson M, Reske J, Holladay J, Neupane S, Ngo J, Cuthrell N, et al. ARID1A Mutations Promote P300-Dependent Endometrial Invasion through Super-Enhancer Hyperacetylation. Cell Rep. 2020;33:108366 pubmed 出版商
  107. Sun Q, Chen J, Xu L, Kang J, Wu X, Ren Y, et al. MUTYH Deficiency Is Associated with Attenuated Pulmonary Fibrosis in a Bleomycin-Induced Model. Oxid Med Cell Longev. 2020;2020:4828256 pubmed 出版商
  108. Ruan H, Li X, Xu X, Leibowitz B, Tong J, Chen L, et al. eIF4E S209 phosphorylation licenses myc- and stress-driven oncogenesis. elife. 2020;9: pubmed 出版商
  109. Guo H, Chou W, Lai Y, Liang K, Tam J, Brickey W, et al. Multi-omics analyses of radiation survivors identify radioprotective microbes and metabolites. Science. 2020;370: pubmed 出版商
  110. Li Z, Murakoshi M, Ichikawa S, Koshida T, Adachi E, Suzuki C, et al. The sodium-glucose cotransporter 2 inhibitor tofogliflozin prevents diabetic kidney disease progression in type 2 diabetic mice. FEBS Open Bio. 2020;10:2761-2770 pubmed 出版商
  111. Tang S, Wu W, Wan H, Wu X, Chen H. Knockdown of NHP2 inhibits hepatitis B virus X protein-induced hepatocarcinogenesis via repressing TERT expression and disrupting the stability of telomerase complex. Aging (Albany NY). 2020;12:19365-19374 pubmed 出版商
  112. Cai J, Lin K, Cai W, Lin Y, Liu X, Guo L, et al. Tumors driven by RAS signaling harbor a natural vulnerability to oncolytic virus M1. Mol Oncol. 2020;14:3153-3168 pubmed 出版商
  113. Lomphithak T, Choksi S, Mutirangura A, Tohtong R, Tencomnao T, Usubuchi H, et al. Receptor-interacting protein kinase 1 is a key mediator in TLR3 ligand and Smac mimetic-induced cell death and suppresses TLR3 ligand-promoted invasion in cholangiocarcinoma. Cell Commun Signal. 2020;18:161 pubmed 出版商
  114. Tan Y, Sementino E, Liu Z, Cai K, Testa J. Wnt signaling mediates oncogenic synergy between Akt and Dlx5 in T-cell lymphomagenesis by enhancing cholesterol synthesis. Sci Rep. 2020;10:15837 pubmed 出版商
  115. Ifuku M, Hinkelmann L, Kuhrt L, Efe I, Kumbol V, Buonfiglioli A, et al. Activation of Toll-like receptor 5 in microglia modulates their function and triggers neuronal injury. Acta Neuropathol Commun. 2020;8:159 pubmed 出版商
  116. González Rodríguez P, Cheray M, Füllgrabe J, Salli M, Engskog Vlachos P, Keane L, et al. The DNA methyltransferase DNMT3A contributes to autophagy long-term memory. Autophagy. 2020;:1-19 pubmed 出版商
  117. Xi L, Carroll T, Matos I, Luo J, Polak L, Pasolli H, et al. m6A RNA methylation impacts fate choices during skin morphogenesis. elife. 2020;9: pubmed 出版商
  118. Hasenpusch Theil K, Laclef C, Colligan M, Fitzgerald E, Howe K, Carroll E, et al. A transient role of the ciliary gene Inpp5e in controlling direct versus indirect neurogenesis in cortical development. elife. 2020;9: pubmed 出版商
  119. Zhou S, Zhang W, Cai G, Ding Y, Wei C, Li S, et al. Myofiber necroptosis promotes muscle stem cell proliferation via releasing Tenascin-C during regeneration. Cell Res. 2020;30:1063-1077 pubmed 出版商
  120. Sharapov M, Goncharov R, Filkov G, Trofimenko A, Boyarintsev V, Novoselov V. Comparative Study of Protective Action of Exogenous 2-Cys Peroxiredoxins (Prx1 and Prx2) Under Renal Ischemia-Reperfusion Injury. Antioxidants (Basel). 2020;9: pubmed 出版商
  121. Li Z, Zhang H, Huang Y, Huang J, Sun P, Zhou N, et al. Autophagy deficiency promotes triple-negative breast cancer resistance to T cell-mediated cytotoxicity by blocking tenascin-C degradation. Nat Commun. 2020;11:3806 pubmed 出版商
  122. Zhou W, Shao W, Zhang Y, Liu D, Liu M, Jin T. Glucagon-like peptide-1 receptor mediates the beneficial effect of liraglutide in an acute lung injury mouse model involving the thioredoxin-interacting protein. Am J Physiol Endocrinol Metab. 2020;319:E568-E578 pubmed 出版商
  123. Lim C, Or Y, Ong Z, Chung H, Hayashi H, Shrestha S, et al. Estrogen exacerbates mammary involution through neutrophil-dependent and -independent mechanism. elife. 2020;9: pubmed 出版商
  124. Ozcan G, Lim S, Leighton P, Allison W, Rihel J. Sleep is bi-directionally modified by amyloid beta oligomers. elife. 2020;9: pubmed 出版商
  125. Gu J, Zhang Y, Wang X, Xiang J, Deng S, Wu D, et al. Matrine inhibits the growth of natural killer/T-cell lymphoma cells by modulating CaMKIIγ-c-Myc signaling pathway. BMC Complement Med Ther. 2020;20:214 pubmed 出版商
  126. Mancia Leon W, Spatazza J, Rakela B, Chatterjee A, Pande V, Maniatis T, et al. Clustered gamma-protocadherins regulate cortical interneuron programmed cell death. elife. 2020;9: pubmed 出版商
  127. Upadhyay A, Peterson A, Kim M, O Connor M. Muscle-derived Myoglianin regulates Drosophila imaginal disc growth. elife. 2020;9: pubmed 出版商
  128. Coelho R, Ricardo S, Amaral A, Huang Y, Nunes M, Neves J, et al. Regulation of invasion and peritoneal dissemination of ovarian cancer by mesothelin manipulation. Oncogenesis. 2020;9:61 pubmed 出版商
  129. Kuo I, Lee J, Wang Y, Chiang H, Huang C, Hsieh P, et al. Potential enhancement of host immunity and anti-tumor efficacy of nanoscale curcumin and resveratrol in colorectal cancers by modulated electro- hyperthermia. BMC Cancer. 2020;20:603 pubmed 出版商
  130. Mamriev D, Abbas R, Klingler F, Kagan J, Kfir N, Donald A, et al. A small-molecule ARTS mimetic promotes apoptosis through degradation of both XIAP and Bcl-2. Cell Death Dis. 2020;11:483 pubmed 出版商
  131. Chen T, Lennon V, Liu Y, Bosco D, Li Y, Yi M, et al. Astrocyte-microglia interaction drives evolving neuromyelitis optica lesion. J Clin Invest. 2020;130:4025-4038 pubmed 出版商
  132. Luna Sánchez M, Benincá C, Cerutti R, Brea Calvo G, Yeates A, Scorrano L, et al. Opa1 Overexpression Protects from Early-Onset Mpv17-/--Related Mouse Kidney Disease. Mol Ther. 2020;28:1918-1930 pubmed 出版商
  133. Soleilhavoup C, Travaglio M, Patrick K, Garção P, Boobalan E, Adolfs Y, et al. Nolz1 expression is required in dopaminergic axon guidance and striatal innervation. Nat Commun. 2020;11:3111 pubmed 出版商
  134. Zhou X, Chen N, Xu H, Zhou X, Wang J, Fang X, et al. Regulation of Hippo-YAP signaling by insulin-like growth factor-1 receptor in the tumorigenesis of diffuse large B-cell lymphoma. J Hematol Oncol. 2020;13:77 pubmed 出版商
  135. Perkail S, Andricovich J, Kai Y, Tzatsos A. BAP1 is a haploinsufficient tumor suppressor linking chronic pancreatitis to pancreatic cancer in mice. Nat Commun. 2020;11:3018 pubmed 出版商
  136. Hernández I, Cabrera J, Santos Galindo M, Sanchez Martin M, Dominguez V, García Escudero R, et al. Pathogenic SREK1 decrease in Huntington's disease lowers TAF1 mimicking X-linked dystonia parkinsonism. Brain. 2020;143:2207-2219 pubmed 出版商
  137. Kyprianou C, Christodoulou N, Hamilton R, Nahaboo W, Boomgaard D, Amadei G, et al. Basement membrane remodelling regulates mouse embryogenesis. Nature. 2020;582:253-258 pubmed 出版商
  138. Zhang H, Qi L, Du Y, Huang L, Braun F, Kogiso M, et al. Patient-Derived Orthotopic Xenograft (PDOX) Mouse Models of Primary and Recurrent Meningioma. Cancers (Basel). 2020;12: pubmed 出版商
  139. Kim E, Woodruff M, Grigoryan L, Maier B, Lee S, Mandal P, et al. Squalene emulsion-based vaccine adjuvants stimulate CD8 T cell, but not antibody responses, through a RIPK3-dependent pathway. elife. 2020;9: pubmed 出版商
  140. Hastings J, González Rajal A, Latham S, Han J, McCloy R, O Donnell Y, et al. Analysis of pulsed cisplatin signalling dynamics identifies effectors of resistance in lung adenocarcinoma. elife. 2020;9: pubmed 出版商
  141. Warnes G. Flow cytometric detection of hyper-polarized mitochondria in regulated and accidental cell death processes. Apoptosis. 2020;25:548-557 pubmed 出版商
  142. Arai S, Varkaris A, Nouri M, Chen S, Xie L, Balk S. MARCH5 mediates NOXA-dependent MCL1 degradation driven by kinase inhibitors and integrated stress response activation. elife. 2020;9: pubmed 出版商
  143. Liu Y, Jiang B, Cao Y, Chen W, Yin L, Xu Y, et al. High expression levels and localization of Sox5 in dilated cardiomyopathy. Mol Med Rep. 2020;22:948-956 pubmed 出版商
  144. Chen J, Zhang M, Zhang S, Wu J, Xue S. Rno-microRNA-30c-5p promotes myocardial ischemia reperfusion injury in rats through activating NF-κB pathway and targeting SIRT1. BMC Cardiovasc Disord. 2020;20:240 pubmed 出版商
  145. Sola M, Magrin C, Pedrioli G, Pinton S, Salvade A, Papin S, et al. Tau affects P53 function and cell fate during the DNA damage response. Commun Biol. 2020;3:245 pubmed 出版商
  146. Tan J, Zhang X, Li D, Liu G, Wang Y, Zhang D, et al. scAAV2-Mediated C3 Transferase Gene Therapy in a Rat Model with Retinal Ischemia/Reperfusion Injuries. Mol Ther Methods Clin Dev. 2020;17:894-903 pubmed 出版商
  147. Shinada M, Kato D, Kamoto S, Yoshimoto S, Tsuboi M, Yoshitake R, et al. PDPN Is Expressed in Various Types of Canine Tumors and Its Silencing Induces Apoptosis and Cell Cycle Arrest in Canine Malignant Melanoma. Cells. 2020;9: pubmed 出版商
  148. Simula L, Corrado M, Accordi B, Di Rita A, Nazio F, Antonucci Y, et al. JNK1 and ERK1/2 modulate lymphocyte homeostasis via BIM and DRP1 upon AICD induction. Cell Death Differ. 2020;: pubmed 出版商
  149. Ding B, Yuan F, Damle P, Litovchick L, Drapkin R, Grossman S. CtBP determines ovarian cancer cell fate through repression of death receptors. Cell Death Dis. 2020;11:286 pubmed 出版商
  150. Clé M, Barthelemy J, Desmetz C, Foulongne V, Lapeyre L, Bollore K, et al. Study of Usutu virus neuropathogenicity in mice and human cellular models. PLoS Negl Trop Dis. 2020;14:e0008223 pubmed 出版商
  151. Matsumoto N, Tanaka S, Horiike T, Shinmyo Y, Kawasaki H. A discrete subtype of neural progenitor crucial for cortical folding in the gyrencephalic mammalian brain. elife. 2020;9: pubmed 出版商
  152. Nava M, Miroshnikova Y, Biggs L, Whitefield D, Metge F, Boucas J, et al. Heterochromatin-Driven Nuclear Softening Protects the Genome against Mechanical Stress-Induced Damage. Cell. 2020;181:800-817.e22 pubmed 出版商
  153. Zhou Z, He H, Wang K, Shi X, Wang Y, Su Y, et al. Granzyme A from cytotoxic lymphocytes cleaves GSDMB to trigger pyroptosis in target cells. Science. 2020;: pubmed 出版商
  154. Li M, Li C, Ye Z, Huang J, Li Y, Lai W, et al. Sirt3 modulates fatty acid oxidation and attenuates cisplatin-induced AKI in mice. J Cell Mol Med. 2020;24:5109-5121 pubmed 出版商
  155. Du T, Zhu G, Chen Y, Shi L, Liu D, Liu Y, et al. Anterior thalamic nucleus stimulation protects hippocampal neurons by activating autophagy in epileptic monkeys. Aging (Albany NY). 2020;12:6324-6339 pubmed 出版商
  156. Ma X, Zhu Y, Lu J, Xie J, Li C, Shin W, et al. Nicotinamide mononucleotide adenylyltransferase uses its NAD+ substrate-binding site to chaperone phosphorylated Tau. elife. 2020;9: pubmed 出版商
  157. Zhao J, Li G, Zhao X, Lin X, Gao Y, Raimundo N, et al. Down-regulation of AMPK signaling pathway rescues hearing loss in TFB1 transgenic mice and delays age-related hearing loss. Aging (Albany NY). 2020;12:5590-5611 pubmed 出版商
  158. Ruscetti M, Morris J, Mezzadra R, Russell J, Leibold J, Romesser P, et al. Senescence-Induced Vascular Remodeling Creates Therapeutic Vulnerabilities in Pancreas Cancer. Cell. 2020;181:424-441.e21 pubmed 出版商
  159. Ruiz Velasco A, Zi M, Hille S, Azam T, Kaur N, Jiang J, et al. Targeting mir128-3p alleviates myocardial insulin resistance and prevents ischemia-induced heart failure. elife. 2020;9: pubmed 出版商
  160. Chu J, Niu X, Chang J, Shao M, Peng L, Xi Y, et al. Metabolic remodeling by TIGAR overexpression is a therapeutic target in esophageal squamous-cell carcinoma. Theranostics. 2020;10:3488-3502 pubmed 出版商
  161. Lee D, Kam M, Lee S, Lee H, Lee D. Peroxiredoxin 5 deficiency exacerbates iron overload-induced neuronal death via ER-mediated mitochondrial fission in mouse hippocampus. Cell Death Dis. 2020;11:204 pubmed 出版商
  162. Han B, Meng X, Wu P, Li Z, Li S, Zhang Y, et al. ATRX/EZH2 complex epigenetically regulates FADD/PARP1 axis, contributing to TMZ resistance in glioma. Theranostics. 2020;10:3351-3365 pubmed 出版商
  163. Liu D, Bai X, Ma W, Xin D, Chu X, Yuan H, et al. Purmorphamine Attenuates Neuro-Inflammation and Synaptic Impairments After Hypoxic-Ischemic Injury in Neonatal Mice via Shh Signaling. Front Pharmacol. 2020;11:204 pubmed 出版商
  164. Chan K, Nestor J, Huerta T, Certain N, Moody G, Kowal C, et al. Lupus autoantibodies act as positive allosteric modulators at GluN2A-containing NMDA receptors and impair spatial memory. Nat Commun. 2020;11:1403 pubmed 出版商
  165. Mukhtar T, Breda J, Grison A, Karimaddini Z, Grobecker P, Iber D, et al. Tead transcription factors differentially regulate cortical development. Sci Rep. 2020;10:4625 pubmed 出版商
  166. Wang Bishop L, Wehbe M, Shae D, James J, Hacker B, Garland K, et al. Potent STING activation stimulates immunogenic cell death to enhance antitumor immunity in neuroblastoma. J Immunother Cancer. 2020;8: pubmed 出版商
  167. Chu S, Chabon J, Matovina C, Minehart J, Chen B, Zhang J, et al. Loss of H3K36 Methyltransferase SETD2 Impairs V(D)J Recombination during Lymphoid Development. iScience. 2020;23:100941 pubmed 出版商
  168. Zhao J, He L, Yin L. lncRNA NEAT1 Binds to MiR-339-5p to Increase HOXA1 and Alleviate Ischemic Brain Damage in Neonatal Mice. Mol Ther Nucleic Acids. 2020;20:117-127 pubmed 出版商
  169. Zhang J, Huang J, Zhang Y, Zhang X, Zhao L, Li C, et al. Microtubule associated protein 9 inhibits liver tumorigenesis by suppressing ERCC3. EBioMedicine. 2020;53:102701 pubmed 出版商
  170. Reventun P, Sanchez Esteban S, Cook A, Cuadrado I, Roza C, Moreno Gómez Toledano R, et al. Bisphenol A induces coronary endothelial cell necroptosis by activating RIP3/CamKII dependent pathway. Sci Rep. 2020;10:4190 pubmed 出版商
  171. Zang M, Guo J, Liu L, Jin F, Feng X, An G, et al. Cdc37 suppression induces plasma cell immaturation and bortezomib resistance in multiple myeloma via Xbp1s. Oncogenesis. 2020;9:31 pubmed 出版商
  172. Chappell G, Thompson C, Wolf J, Cullen J, Klaunig J, Haws L. Assessment of the Mode of Action Underlying the Effects of GenX in Mouse Liver and Implications for Assessing Human Health Risks. Toxicol Pathol. 2020;48:494-508 pubmed 出版商
  173. Doll J, Hoebe K, Thompson R, Sawtell N. Resolution of herpes simplex virus reactivation in vivo results in neuronal destruction. PLoS Pathog. 2020;16:e1008296 pubmed 出版商
  174. Gallo S, Spilinga M, Albano R, Ferrauto G, Di Gregorio E, Casanova E, et al. Activation of the MET receptor attenuates doxorubicin-induced cardiotoxicity in vivo and in vitro. Br J Pharmacol. 2020;177:3107-3122 pubmed 出版商
  175. Gao Y, Dai X, Li Y, Li G, Lin X, Ai C, et al. Role of Parkin-mediated mitophagy in the protective effect of polydatin in sepsis-induced acute kidney injury. J Transl Med. 2020;18:114 pubmed 出版商
  176. Chen Y, Waqar A, Nishijima K, Ning B, Kitajima S, Matsuhisa F, et al. Macrophage-derived MMP-9 enhances the progression of atherosclerotic lesions and vascular calcification in transgenic rabbits. J Cell Mol Med. 2020;24:4261-4274 pubmed 出版商
  177. Li J, Tao T, Xu J, Liu Z, Zou Z, Jin M. HIF‑1α attenuates neuronal apoptosis by upregulating EPO expression following cerebral ischemia‑reperfusion injury in a rat MCAO model. Int J Mol Med. 2020;45:1027-1036 pubmed 出版商
  178. Tang Y, Xu A, Shao S, Zhou Y, Xiong B, Li Z. Electroacupuncture Ameliorates Cognitive Impairment by Inhibiting the JNK Signaling Pathway in a Mouse Model of Alzheimer's Disease. Front Aging Neurosci. 2020;12:23 pubmed 出版商
  179. Xiang Q, Kang L, Wang J, Liao Z, Song Y, Zhao K, et al. CircRNA-CIDN mitigated compression loading-induced damage in human nucleus pulposus cells via miR-34a-5p/SIRT1 axis. EBioMedicine. 2020;53:102679 pubmed 出版商
  180. Chen Y, Liu Z, Wang Y, Zhuang J, Peng Y, Mo X, et al. FKBP51 induces p53-dependent apoptosis and enhances drug sensitivity of human non-small-cell lung cancer cells. Exp Ther Med. 2020;19:2236-2242 pubmed 出版商
  181. Liu J, Liu Z, Liu G, Gao K, Zhou H, Zhao Y, et al. Spinal cord injury and its underlying mechanism in rats with temporal lobe epilepsy. Exp Ther Med. 2020;19:2103-2112 pubmed 出版商
  182. Lin Y, Huang X, Chang K, Liao K, Tsai N. Encapsulated n-Butylidenephthalide Efficiently Crosses the Blood-Brain Barrier and Suppresses Growth of Glioblastoma. Int J Nanomedicine. 2020;15:749-760 pubmed 出版商
  183. Wan G, An Y, Tao J, Wang Y, Zhou Q, Yang R, et al. MicroRNA-129-5p alleviates spinal cord injury in mice via suppressing the apoptosis and inflammatory response through HMGB1/TLR4/NF-κB pathway. Biosci Rep. 2020;40: pubmed 出版商
  184. Aldonza M, Ku J, Hong J, Kim D, Yu S, Lee M, et al. Prior acquired resistance to paclitaxel relays diverse EGFR-targeted therapy persistence mechanisms. Sci Adv. 2020;6:eaav7416 pubmed 出版商
  185. Zeng S, Bai J, Jiang H, Zhu J, Fu C, He M, et al. Treatment With Liraglutide Exerts Neuroprotection After Hypoxic-Ischemic Brain Injury in Neonatal Rats via the PI3K/AKT/GSK3β Pathway. Front Cell Neurosci. 2019;13:585 pubmed 出版商
  186. Duan X, Liu X, Liu N, Huang Y, Jin Z, Zhang S, et al. Inhibition of keratinocyte necroptosis mediated by RIPK1/RIPK3/MLKL provides a protective effect against psoriatic inflammation. Cell Death Dis. 2020;11:134 pubmed 出版商
  187. Si F, Hu X, Wang C, Chen B, Wang R, Dong S, et al. Porcine Epidemic Diarrhea Virus (PEDV) ORF3 Enhances Viral Proliferation by Inhibiting Apoptosis of Infected Cells. Viruses. 2020;12: pubmed 出版商
  188. Lu G, Li L, Wang B, Kuang L. LINC00623/miR-101/HRAS axis modulates IL-1β-mediated ECM degradation, apoptosis and senescence of osteoarthritis chondrocytes. Aging (Albany NY). 2020;12:3218-3237 pubmed 出版商
  189. Liao Y, Zhao J, Bulek K, Tang F, Chen X, Cai G, et al. Inflammation mobilizes copper metabolism to promote colon tumorigenesis via an IL-17-STEAP4-XIAP axis. Nat Commun. 2020;11:900 pubmed 出版商
  190. Eom T, Han S, Kim J, Blundon J, Wang Y, Yu J, et al. Schizophrenia-related microdeletion causes defective ciliary motility and brain ventricle enlargement via microRNA-dependent mechanisms in mice. Nat Commun. 2020;11:912 pubmed 出版商
  191. Guttà C, Rahman A, Aura C, Dynoodt P, Charles E, Hirschenhahn E, et al. Low expression of pro-apoptotic proteins Bax, Bak and Smac indicates prolonged progression-free survival in chemotherapy-treated metastatic melanoma. Cell Death Dis. 2020;11:124 pubmed 出版商
  192. Rinastiti P, Ikeda K, Rahardini E, Miyagawa K, Tamada N, Kuribayashi Y, et al. Loss of family with sequence similarity 13, member A exacerbates pulmonary hypertension through accelerating endothelial-to-mesenchymal transition. PLoS ONE. 2020;15:e0226049 pubmed 出版商
  193. Martinez L, Garcia G, Contreras D, Gong D, Sun R, Arumugaswami V. Zika Virus Mucosal Infection Provides Protective Immunity. J Virol. 2020;94: pubmed 出版商
  194. Morgaz J, Ventura S, Muñoz Rascón P, Navarrete R, Perez J, Granados M, et al. Assessment of effects of methylene blue on intestinal ischemia and reperfusion in a rabbit model: hemodynamic, histological and immunohistochemical study. BMC Vet Res. 2020;16:54 pubmed 出版商
  195. Shi H, Koronyo Y, Rentsendorj A, Regis G, Sheyn J, Fuchs D, et al. Identification of early pericyte loss and vascular amyloidosis in Alzheimer's disease retina. Acta Neuropathol. 2020;139:813-836 pubmed 出版商
  196. Lu C, Wei Y, Wang X, Zhang Z, Yin J, Li W, et al. DNA-methylation-mediated activating of lncRNA SNHG12 promotes temozolomide resistance in glioblastoma. Mol Cancer. 2020;19:28 pubmed 出版商
  197. Zhuang K, Zuo Y, Sherchan P, Wang J, Yan X, Liu F. Hydrogen Inhalation Attenuates Oxidative Stress Related Endothelial Cells Injury After Subarachnoid Hemorrhage in Rats. Front Neurosci. 2019;13:1441 pubmed 出版商
  198. Li J, Zhang W, Zhu S, Shi F. Nitric Oxide Synthase Is Involved in Follicular Development via the PI3K/AKT/FoxO3a Pathway in Neonatal and Immature Rats. Animals (Basel). 2020;10: pubmed 出版商
  199. Ebright R, Lee S, Wittner B, Niederhoffer K, Nicholson B, Bardia A, et al. Deregulation of ribosomal protein expression and translation promotes breast cancer metastasis. Science. 2020;: pubmed 出版商
  200. Imaizumi Y, Furutachi S, Watanabe T, Miya H, Kawaguchi D, Gotoh Y. Role of the imprinted allele of the Cdkn1c gene in mouse neocortical development. Sci Rep. 2020;10:1884 pubmed 出版商
  201. Markotic A, Flegar D, Grcevic D, Sućur A, Lalić H, Turcić P, et al. LPS-induced inflammation desensitizes hepatocytes to Fas-induced apoptosis through Stat3 activation-The effect can be reversed by ruxolitinib. J Cell Mol Med. 2020;24:2981-2992 pubmed 出版商
  202. Gu Y, Zhu Z, Pei H, Xu D, Jiang Y, Zhang L, et al. Long non-coding RNA NNT-AS1 promotes cholangiocarcinoma cells proliferation and epithelial-to-mesenchymal transition through down-regulating miR-203. Aging (Albany NY). 2020;12:2333-2346 pubmed 出版商
  203. Theivanthiran B, Evans K, Devito N, Plebanek M, Sturdivant M, Wachsmuth L, et al. A tumor-intrinsic PD-L1/NLRP3 inflammasome signaling pathway drives resistance to anti-PD-1 immunotherapy. J Clin Invest. 2020;130:2570-2586 pubmed 出版商
  204. Zhang M, Wang Z, Li B, Sun F, Chen A, Gong M. Identification of microRNA‑363‑3p as an essential regulator of chondrocyte apoptosis in osteoarthritis by targeting NRF1 through the p53‑signaling pathway. Mol Med Rep. 2020;21:1077-1088 pubmed 出版商
  205. Coccia E, Planells Ferrer L, Badillos Rodríguez R, Pascual M, Segura M, Fernández Hernández R, et al. SIVA-1 regulates apoptosis and synaptic function by modulating XIAP interaction with the death receptor antagonist FAIM-L. Cell Death Dis. 2020;11:82 pubmed 出版商
  206. Hou K, Li G, Zhao J, Xu B, Zhang Y, Yu J, et al. Bone mesenchymal stem cell-derived exosomal microRNA-29b-3p prevents hypoxic-ischemic injury in rat brain by activating the PTEN-mediated Akt signaling pathway. J Neuroinflammation. 2020;17:46 pubmed 出版商
  207. Barghouth P, Karabinis P, Venegas A, Oviedo N. Poly(ADP-Ribose) Polymerase-3 Regulates Regeneration in Planarians. Int J Mol Sci. 2020;21: pubmed 出版商
  208. Jiang L, Xu K, Li J, Zhou X, Xu L, Wu Z, et al. Nesfatin-1 suppresses interleukin-1β-induced inflammation, apoptosis, and cartilage matrix destruction in chondrocytes and ameliorates osteoarthritis in rats. Aging (Albany NY). 2020;12:1760-1777 pubmed 出版商
  209. Li T, Li K, Zhang S, Wang Y, Xu Y, Cronin S, et al. Overexpression of apoptosis inducing factor aggravates hypoxic-ischemic brain injury in neonatal mice. Cell Death Dis. 2020;11:77 pubmed 出版商
  210. Yuan B, Zhou X, You Z, Xu W, Fan J, Chen S, et al. Inhibition of AIM2 inflammasome activation alleviates GSDMD-induced pyroptosis in early brain injury after subarachnoid haemorrhage. Cell Death Dis. 2020;11:76 pubmed 出版商
  211. Plemel J, Stratton J, Michaels N, Rawji K, Zhang E, Sinha S, et al. Microglia response following acute demyelination is heterogeneous and limits infiltrating macrophage dispersion. Sci Adv. 2020;6:eaay6324 pubmed 出版商
  212. Ballabio C, Anderle M, Gianesello M, Lago C, Miele E, Cardano M, et al. Modeling medulloblastoma in vivo and with human cerebellar organoids. Nat Commun. 2020;11:583 pubmed 出版商
  213. Ju L, Shan L, Yin B, Song Y. δ-Catenin regulates proliferation and apoptosis in renal cell carcinoma via promoting β-catenin nuclear localization and activating its downstream target genes. Cancer Med. 2020;9:2201-2212 pubmed 出版商
  214. Zhang B, Ma S, Rachmin I, He M, Baral P, Choi S, et al. Hyperactivation of sympathetic nerves drives depletion of melanocyte stem cells. Nature. 2020;577:676-681 pubmed 出版商
  215. Cui J, Duan J, Chu J, Guo C, Xi M, Li Y, et al. Chikusetsu saponin IVa protects pancreatic β cell against intermittent high glucose-induced injury by activating Wnt/β-catenin/TCF7L2 pathway. Aging (Albany NY). 2020;12:1591-1609 pubmed 出版商
  216. Su J, Charalambakis N, Sabbagh U, Somaiya R, Monavarfeshani A, Guido W, et al. Retinal inputs signal astrocytes to recruit interneurons into visual thalamus. Proc Natl Acad Sci U S A. 2020;117:2671-2682 pubmed 出版商
  217. Sivaraj K, Dharmalingam B, Mohanakrishnan V, Jeong H, Kato K, Schröder S, et al. YAP1 and TAZ negatively control bone angiogenesis by limiting hypoxia-inducible factor signaling in endothelial cells. elife. 2020;9: pubmed 出版商
  218. Qiao H, Tan X, Lv D, Xing R, Shu F, Zhong C, et al. Phosphoribosyl pyrophosphate synthetases 2 knockdown inhibits prostate cancer progression by suppressing cell cycle and inducing cell apoptosis. J Cancer. 2020;11:1027-1037 pubmed 出版商
  219. Sheng L, Zhang J, Li L, Xie X, Wen X, Cheng K. Design, Synthesis, and Evaluation of Novel 2-Methoxyestradiol Derivatives as Apoptotic Inducers Through an Intrinsic Apoptosis Pathway. Biomolecules. 2020;10: pubmed 出版商
  220. Wang G, Xu J, Zhao J, Yin W, Liu D, Chen W, et al. Arf1-mediated lipid metabolism sustains cancer cells and its ablation induces anti-tumor immune responses in mice. Nat Commun. 2020;11:220 pubmed 出版商
  221. Laukoter S, Beattie R, Pauler F, Amberg N, Nakayama K, Hippenmeyer S. Imprinted Cdkn1c genomic locus cell-autonomously promotes cell survival in cerebral cortex development. Nat Commun. 2020;11:195 pubmed 出版商
  222. Cai H, Han B, Hu Y, Zhao X, He Z, Chen X, et al. Metformin attenuates the D‑galactose‑induced aging process via the UPR through the AMPK/ERK1/2 signaling pathways. Int J Mol Med. 2020;45:715-730 pubmed 出版商
  223. Singh V, Khalil M, De Benedetti A. The TLK1/Nek1 axis contributes to mitochondrial integrity and apoptosis prevention via phosphorylation of VDAC1. Cell Cycle. 2020;19:363-375 pubmed 出版商
  224. He Y, Li W, Zheng Z, Zhao L, Li W, Wang Y, et al. Inhibition of Protein arginine methyltransferase 6 reduces reactive oxygen species production and attenuates aminoglycoside- and cisplatin-induced hair cell death. Theranostics. 2020;10:133-150 pubmed 出版商
  225. Xing T, Benderman L, Sabu S, Parker J, Yang J, Lu Q, et al. Tight Junction Protein Claudin-7 Is Essential for Intestinal Epithelial Stem Cell Self-Renewal and Differentiation. Cell Mol Gastroenterol Hepatol. 2020;9:641-659 pubmed 出版商
  226. Tang L, Li J, Fu W, Wu W, Xu J. Suppression of FADS1 induces ROS generation, cell cycle arrest, and apoptosis in melanocytes: implications for vitiligo. Aging (Albany NY). 2019;11:11829-11843 pubmed 出版商
  227. Huang X, Ni B, Xi Y, Chu X, Zhang R, You H. Protease-activated receptor 2 (PAR-2) antagonist AZ3451 as a novel therapeutic agent for osteoarthritis. Aging (Albany NY). 2019;11:12532-12545 pubmed 出版商
  228. Quach C, Song Y, Guo H, Li S, Maazi H, Fung M, et al. A truncating mutation in the autophagy gene UVRAG drives inflammation and tumorigenesis in mice. Nat Commun. 2019;10:5681 pubmed 出版商
  229. Zuo Z, Ji M, Zhao K, Su Z, Li P, Hou D, et al. CD47 Deficiency Attenuates Isoproterenol-Induced Cardiac Remodeling in Mice. Oxid Med Cell Longev. 2019;2019:7121763 pubmed 出版商
  230. Lalaoui N, Boyden S, Oda H, Wood G, Stone D, Chau D, et al. Mutations that prevent caspase cleavage of RIPK1 cause autoinflammatory disease. Nature. 2020;577:103-108 pubmed 出版商
  231. Schoof M, Launspach M, Holdhof D, Nguyen L, Engel V, Filser S, et al. The transcriptional coactivator and histone acetyltransferase CBP regulates neural precursor cell development and migration. Acta Neuropathol Commun. 2019;7:199 pubmed 出版商
  232. Bendriem R, Singh S, Aleem A, Antonetti D, Ross M. Tight junction protein occludin regulates progenitor Self-Renewal and survival in developing cortex. elife. 2019;8: pubmed 出版商
  233. Wei X, Yang X, Wang B, Yang Y, Fang Z, Yi C, et al. LncRNA MBNL1-AS1 represses cell proliferation and enhances cell apoptosis via targeting miR-135a-5p/PHLPP2/FOXO1 axis in bladder cancer. Cancer Med. 2020;9:724-736 pubmed 出版商
  234. Zhou Y, Lei J, Xie Q, Wu L, Jin S, Guo B, et al. Fibrinogen-like protein 2 controls sepsis catabasis by interacting with resolvin Dp5. Sci Adv. 2019;5:eaax0629 pubmed 出版商
  235. Moya I, Castaldo S, Van den Mooter L, Soheily S, Sansores Garcia L, Jacobs J, et al. Peritumoral activation of the Hippo pathway effectors YAP and TAZ suppresses liver cancer in mice. Science. 2019;366:1029-1034 pubmed 出版商
  236. Wang Y, Lan Y, Lu H. Opsin3 Downregulation Induces Apoptosis of Human Epidermal Melanocytes via Mitochondrial Pathway. Photochem Photobiol. 2020;96:83-93 pubmed 出版商
  237. Power M, Rogerson L, Schubert T, Berens P, Euler T, Paquet Durand F. Systematic spatiotemporal mapping reveals divergent cell death pathways in three mouse models of hereditary retinal degeneration. J Comp Neurol. 2019;: pubmed 出版商
  238. Sun C, Guo E, Zhou B, Shan W, Huang J, Weng D, et al. A reactive oxygen species scoring system predicts cisplatin sensitivity and prognosis in ovarian cancer patients. BMC Cancer. 2019;19:1061 pubmed 出版商
  239. Chen X, Xiong X, Cui D, Yang F, Wei D, Li H, et al. DEPTOR is an in vivo tumor suppressor that inhibits prostate tumorigenesis via the inactivation of mTORC1/2 signals. Oncogene. 2020;39:1557-1571 pubmed 出版商
  240. Torres Paz J, Leclercq J, Retaux S. Maternally regulated gastrulation as a source of variation contributing to cavefish forebrain evolution. elife. 2019;8: pubmed 出版商
  241. Canon J, Rex K, Saiki A, Mohr C, Cooke K, Bagal D, et al. The clinical KRAS(G12C) inhibitor AMG 510 drives anti-tumour immunity. Nature. 2019;575:217-223 pubmed 出版商
  242. Momcilovic M, Jones A, Bailey S, Waldmann C, Li R, Lee J, et al. In vivo imaging of mitochondrial membrane potential in non-small-cell lung cancer. Nature. 2019;575:380-384 pubmed 出版商
  243. Yan D, Wang J, Sun H, Zamani A, Zhang H, Chen W, et al. TIPE2 specifies the functional polarization of myeloid-derived suppressor cells during tumorigenesis. J Exp Med. 2020;217: pubmed 出版商
  244. Jiao W, Ji J, Xu W, Bu W, Zheng Y, Ma A, et al. Distinct downstream signaling and the roles of VEGF and PlGF in high glucose-mediated injuries of human retinal endothelial cells in culture. Sci Rep. 2019;9:15339 pubmed 出版商
  245. Li J, Liu Z, Wang L, Xu H, Wang Y. Thousand and one kinase 1 protects MCAO-induced cerebral ischemic stroke in rats by decreasing apoptosis and pro-inflammatory factors. Biosci Rep. 2019;39: pubmed 出版商
  246. Lummis N, Sánchez Pavón P, Kennedy G, Frantz A, Kihara Y, Blaho V, et al. LPA1/3 overactivation induces neonatal posthemorrhagic hydrocephalus through ependymal loss and ciliary dysfunction. Sci Adv. 2019;5:eaax2011 pubmed 出版商
  247. Tian M, Gong W, Guo J. Long non-coding RNA SNHG1 indicates poor prognosis and facilitates disease progression in acute myeloid leukemia. Biol Open. 2019;8: pubmed 出版商
  248. Veschi V, Mangiapane L, Nicotra A, Di Franco S, Scavo E, Apuzzo T, et al. Targeting chemoresistant colorectal cancer via systemic administration of a BMP7 variant. Oncogene. 2020;39:987-1003 pubmed 出版商
  249. Oka S, Chin A, Park J, Ikeda S, Mizushima W, Ralda G, et al. Thioredoxin-1 maintains mitochondrial function via mTOR signaling in the heart. Cardiovasc Res. 2019;: pubmed 出版商
  250. Rival C, Xu W, Shankman L, Morioka S, Arandjelovic S, Lee C, et al. Phosphatidylserine on viable sperm and phagocytic machinery in oocytes regulate mammalian fertilization. Nat Commun. 2019;10:4456 pubmed 出版商
  251. Liu J, Yao L, Zhang M, Jiang J, Yang M, Wang Y. Downregulation of LncRNA-XIST inhibited development of non-small cell lung cancer by activating miR-335/SOD2/ROS signal pathway mediated pyroptotic cell death. Aging (Albany NY). 2019;11:7830-7846 pubmed 出版商
  252. Grimaldi A, Pediconi N, Oieni F, Pizzarelli R, Rosito M, Giubettini M, et al. Neuroinflammatory Processes, A1 Astrocyte Activation and Protein Aggregation in the Retina of Alzheimer's Disease Patients, Possible Biomarkers for Early Diagnosis. Front Neurosci. 2019;13:925 pubmed 出版商
  253. Zhu B, Ren C, Du K, Zhu H, Ai Y, Kang F, et al. Olean-28,13b-olide 2 plays a role in cisplatin-mediated apoptosis and reverses cisplatin resistance in human lung cancer through multiple signaling pathways. Biochem Pharmacol. 2019;170:113642 pubmed 出版商
  254. Robinson M, Maximov V, Lallani S, Farooq H, Taylor M, Read R, et al. Upregulation of the chromatin remodeler HELLS is mediated by YAP1 in Sonic Hedgehog Medulloblastoma. Sci Rep. 2019;9:13611 pubmed 出版商
  255. Chollat Namy M, Ben Safta Saadoun T, Haferssas D, Meurice G, Chouaib S, Thiery J. The pharmalogical reactivation of p53 function improves breast tumor cell lysis by granzyme B and NK cells through induction of autophagy. Cell Death Dis. 2019;10:695 pubmed 出版商
  256. Tang C, Han H, Liu Z, Liu Y, Yin L, Cai J, et al. Activation of BNIP3-mediated mitophagy protects against renal ischemia-reperfusion injury. Cell Death Dis. 2019;10:677 pubmed 出版商
  257. Meier S, Alfonsi F, Kurniawan N, Milne M, Kasherman M, Delogu A, et al. The p75 neurotrophin receptor is required for the survival of neuronal progenitors and normal formation of the basal forebrain, striatum, thalamus and neocortex. Development. 2019;146: pubmed 出版商
  258. Yan P, Su Z, Zhang Z, Gao T. LncRNA NEAT1 enhances the resistance of anaplastic thyroid carcinoma cells to cisplatin by sponging miR‑9‑5p and regulating SPAG9 expression. Int J Oncol. 2019;55:988-1002 pubmed 出版商
  259. Wu Q, Yuan X, Bai J, Han R, Li Z, Zhang H, et al. MicroRNA-181a protects against pericyte apoptosis via directly targeting FOXO1: implication for ameliorated cognitive deficits in APP/PS1 mice. Aging (Albany NY). 2019;11:6120-6133 pubmed 出版商
  260. Matsumoto S, Yamamichi T, Shinzawa K, Kasahara Y, Nojima S, Kodama T, et al. GREB1 induced by Wnt signaling promotes development of hepatoblastoma by suppressing TGFβ signaling. Nat Commun. 2019;10:3882 pubmed 出版商
  261. Thangaraj K, Balasubramanian B, Park S, Natesan K, Liu W, Manju V. Orientin Induces G0/G1 Cell Cycle Arrest and Mitochondria Mediated Intrinsic Apoptosis in Human Colorectal Carcinoma HT29 Cells. Biomolecules. 2019;9: pubmed 出版商
  262. Li E, Zhang T, Sun X, Li Y, Geng H, Yu D, et al. Sonic hedgehog pathway mediates genistein inhibition of renal cancer stem cells. Oncol Lett. 2019;18:3081-3091 pubmed 出版商
  263. Cheng C, Biton M, Haber A, Gunduz N, Eng G, Gaynor L, et al. Ketone Body Signaling Mediates Intestinal Stem Cell Homeostasis and Adaptation to Diet. Cell. 2019;178:1115-1131.e15 pubmed 出版商
  264. Ji M, Wang Z, Chen J, Gu L, Chen M, Ding Y, et al. Up-regulated ENO1 promotes the bladder cancer cell growth and proliferation via regulating β-catenin. Biosci Rep. 2019;39: pubmed 出版商
  265. Zhao J, Peng W, Ran Y, Ge H, Zhang C, Zou H, et al. Dysregulated expression of ACTN4 contributes to endothelial cell injury via the activation of the p38-MAPK/p53 apoptosis pathway in preeclampsia. J Physiol Biochem. 2019;: pubmed 出版商
  266. McComb S, Chan P, Guinot A, Hartmannsdottir H, Jenni S, Dobay M, et al. Efficient apoptosis requires feedback amplification of upstream apoptotic signals by effector caspase-3 or -7. Sci Adv. 2019;5:eaau9433 pubmed 出版商
  267. Debruyne D, Dries R, Sengupta S, Seruggia D, Gao Y, Sharma B, et al. BORIS promotes chromatin regulatory interactions in treatment-resistant cancer cells. Nature. 2019;572:676-680 pubmed 出版商
  268. Zhu Y, Huang M, Bushong E, Phan S, Uytiepo M, Beutter E, et al. Class IIa HDACs regulate learning and memory through dynamic experience-dependent repression of transcription. Nat Commun. 2019;10:3469 pubmed 出版商
  269. El Kott A, Shati A, Al Kahtani M, Alqahtani S. Acylated Ghrelin Renders Chemosensitive Ovarian Cancer Cells Resistant to Cisplatin Chemotherapy via Activation of the PI3K/Akt/mTOR Survival Pathway. Anal Cell Pathol (Amst). 2019;2019:9627810 pubmed 出版商
  270. Wang Z, Xiang J, Liu X, Yu S, Manfredsson F, Sandoval I, et al. Deficiency in BDNF/TrkB Neurotrophic Activity Stimulates δ-Secretase by Upregulating C/EBPβ in Alzheimer's Disease. Cell Rep. 2019;28:655-669.e5 pubmed 出版商
  271. Vredevoogd D, Kuilman T, Ligtenberg M, Boshuizen J, Stecker K, de Bruijn B, et al. Augmenting Immunotherapy Impact by Lowering Tumor TNF Cytotoxicity Threshold. Cell. 2019;178:585-599.e15 pubmed 出版商
  272. Colomer C, Margalef P, Villanueva A, Vert A, Pecharroman I, Sole L, et al. IKKα Kinase Regulates the DNA Damage Response and Drives Chemo-resistance in Cancer. Mol Cell. 2019;75:669-682.e5 pubmed 出版商
  273. Zierhut C, Yamaguchi N, Paredes M, Luo J, Carroll T, Funabiki H. The Cytoplasmic DNA Sensor cGAS Promotes Mitotic Cell Death. Cell. 2019;178:302-315.e23 pubmed 出版商
  274. Platel J, Angelova A, Bugeon S, Wallace J, Ganay T, Chudotvorova I, et al. Neuronal integration in the adult mouse olfactory bulb is a non-selective addition process. elife. 2019;8: pubmed 出版商
  275. Jain A, Agostini L, McCarthy G, Chand S, Ramirez A, Nevler A, et al. Poly (ADP) ribose glycohydrolase can be effectively targeted in pancreatic cancer. Cancer Res. 2019;: pubmed 出版商
  276. Zhang H, Sathyamurthy A, Liu F, Li L, Zhang L, Dong Z, et al. Agrin-Lrp4-Ror2 signaling regulates adult hippocampal neurogenesis in mice. elife. 2019;8: pubmed 出版商
  277. Cammalleri M, Dal Monte M, Locri F, Pecci V, De Rosa M, Pavone V, et al. The urokinase-type plasminogen activator system as drug target in retinitis pigmentosa: New pre-clinical evidence in the rd10 mouse model. J Cell Mol Med. 2019;23:5176-5192 pubmed 出版商
  278. Diéguez Hurtado R, Kato K, Giaimo B, Nieminen Kelhä M, Arf H, Ferrante F, et al. Loss of the transcription factor RBPJ induces disease-promoting properties in brain pericytes. Nat Commun. 2019;10:2817 pubmed 出版商
  279. Jung S, Choe S, Woo H, Jeong H, An H, Moon H, et al. Autophagic death of neural stem cells mediates chronic stress-induced decline of adult hippocampal neurogenesis and cognitive deficits. Autophagy. 2019;:1-19 pubmed 出版商
  280. Zhang G, Zhou J, Huang W, Fang M, Yu L, Wang H, et al. Prenatal ethanol exposure-induced a low level of foetal blood cholesterol and its mechanism of IGF1-related placental cholesterol transport dysfunction. Toxicology. 2019;:152237 pubmed 出版商
  281. Zhang J, Lee Y, Dang F, Gan W, Menon A, Katon J, et al. PTEN Methylation by NSD2 Controls Cellular Sensitivity to DNA Damage. Cancer Discov. 2019;: pubmed 出版商
  282. Liu F, Fan D, Yang Z, Tang N, Guo Z, Ma S, et al. TLR9 is essential for HMGB1-mediated post-myocardial infarction tissue repair through affecting apoptosis, cardiac healing, and angiogenesis. Cell Death Dis. 2019;10:480 pubmed 出版商
  283. Ommer A, Figlia G, Pereira J, Datwyler A, Gerber J, Degeer J, et al. Ral GTPases in Schwann cells promote radial axonal sorting in the peripheral nervous system. J Cell Biol. 2019;: pubmed 出版商
  284. Pascual García M, Bonfill Teixidor E, Planas Rigol E, Rubio Perez C, Iurlaro R, Arias A, et al. LIF regulates CXCL9 in tumor-associated macrophages and prevents CD8+ T cell tumor-infiltration impairing anti-PD1 therapy. Nat Commun. 2019;10:2416 pubmed 出版商
  285. Hou N, He X, Yang Y, Fu J, Zhang W, Guo Z, et al. TRPV1 Induced Apoptosis of Colorectal Cancer Cells by Activating Calcineurin-NFAT2-p53 Signaling Pathway. Biomed Res Int. 2019;2019:6712536 pubmed 出版商
  286. Hegde G, de la Cruz C, Giltnane J, Crocker L, Venkatanarayan A, Schaefer G, et al. NRG1 is a critical regulator of differentiation in TP63-driven squamous cell carcinoma. elife. 2019;8: pubmed 出版商
  287. Das R, Schwintzer L, Vinopal S, Roca E, Sylvester M, Oprişoreanu A, et al. New roles for the de-ubiquitylating enzyme OTUD4 in an RNA-protein network and RNA granules. J Cell Sci. 2019;: pubmed 出版商
  288. Wen H, Gao S, Wang Y, Ray M, Magnuson M, Wright C, et al. Myeloid cell-derived HB-EGF Drives Tissue Recovery After Pancreatitis. Cell Mol Gastroenterol Hepatol. 2019;: pubmed 出版商
  289. Frischknecht L, Britschgi C, Galliker P, Christinat Y, Vichalkovski A, Gstaiger M, et al. BRAF inhibition sensitizes melanoma cells to α-amanitin via decreased RNA polymerase II assembly. Sci Rep. 2019;9:7779 pubmed 出版商
  290. Legrand J, Chan A, La H, Rossello F, Ankö M, Fuller Pace F, et al. DDX5 plays essential transcriptional and post-transcriptional roles in the maintenance and function of spermatogonia. Nat Commun. 2019;10:2278 pubmed 出版商
  291. Lee Y, Chen M, Lee J, Zhang J, Lin S, Fu T, et al. Reactivation of PTEN tumor suppressor for cancer treatment through inhibition of a MYC-WWP1 inhibitory pathway. Science. 2019;364: pubmed 出版商
  292. Ellis S, Gomez N, Levorse J, Mertz A, Ge Y, Fuchs E. Distinct modes of cell competition shape mammalian tissue morphogenesis. Nature. 2019;: pubmed 出版商
  293. Slobodnyuk K, Radic N, Ivanova S, Lladó A, Trempolec N, Zorzano A, et al. Autophagy-induced senescence is regulated by p38α signaling. Cell Death Dis. 2019;10:376 pubmed 出版商
  294. Zhao J, Sun H, Zhang J, Wang M, Du X, Zhang J. Long non-coding RNA ANRIL down-regulates microRNA-7 to protect human trabecular meshwork cells in an experimental model for glaucoma. Eur Rev Med Pharmacol Sci. 2019;23:3173-3182 pubmed 出版商
  295. Choi J, Zhong X, McAlpine W, Liao T, Zhang D, Fang B, et al. LMBR1L regulates lymphopoiesis through Wnt/β-catenin signaling. Science. 2019;364: pubmed 出版商
  296. Liu X, Zhao P, Wang X, Wang L, Zhu Y, Song Y, et al. Celastrol mediates autophagy and apoptosis via the ROS/JNK and Akt/mTOR signaling pathways in glioma cells. J Exp Clin Cancer Res. 2019;38:184 pubmed 出版商
  297. Hernández Alvarez M, Sebastian D, Vives S, Ivanova S, Bartoccioni P, Kakimoto P, et al. Deficient Endoplasmic Reticulum-Mitochondrial Phosphatidylserine Transfer Causes Liver Disease. Cell. 2019;177:881-895.e17 pubmed 出版商
  298. Song T, Spillmann D. Transcriptomic analysis reveals cell apoptotic signature modified by heparanase in melanoma cells. J Cell Mol Med. 2019;23:4559-4568 pubmed 出版商
  299. Singh R, Peng S, Viswanath P, Sambandam V, Shen L, Rao X, et al. Non-canonical cMet regulation by vimentin mediates Plk1 inhibitor-induced apoptosis. EMBO Mol Med. 2019;: pubmed 出版商
  300. Klicks J, Maßlo C, Kluth A, Rudolf R, Hafner M. A novel spheroid-based co-culture model mimics loss of keratinocyte differentiation, melanoma cell invasion, and drug-induced selection of ABCB5-expressing cells. BMC Cancer. 2019;19:402 pubmed 出版商
  301. Miao Y, Yang H, Levorse J, Yuan S, Polak L, Sribour M, et al. Adaptive Immune Resistance Emerges from Tumor-Initiating Stem Cells. Cell. 2019;177:1172-1186.e14 pubmed 出版商
  302. He M, Chaurushiya M, Webster J, Kummerfeld S, Reja R, Chaudhuri S, et al. Intrinsic apoptosis shapes the tumor spectrum linked to inactivation of the deubiquitinase BAP1. Science. 2019;364:283-285 pubmed 出版商
  303. Shi Y, Gao W, Lytle N, Huang P, Yuan X, Dann A, et al. Targeting LIF-mediated paracrine interaction for pancreatic cancer therapy and monitoring. Nature. 2019;569:131-135 pubmed 出版商
  304. Vrselja Z, Daniele S, Silbereis J, Talpo F, Morozov Y, Sousa A, et al. Restoration of brain circulation and cellular functions hours post-mortem. Nature. 2019;568:336-343 pubmed 出版商
  305. Krishna Subramanian S, Singer S, Armaka M, Banales J, Hölzer K, Schirmacher P, et al. RIPK1 and death receptor signaling drive biliary damage and early liver tumorigenesis in mice with chronic hepatobiliary injury. Cell Death Differ. 2019;: pubmed 出版商
  306. Montalbán Loro R, Lozano Ureña A, Ito M, Krueger C, Reik W, Ferguson Smith A, et al. TET3 prevents terminal differentiation of adult NSCs by a non-catalytic action at Snrpn. Nat Commun. 2019;10:1726 pubmed 出版商
  307. Noguchi H, Castillo J, Nakashima K, Pleasure S. Suppressor of fused controls perinatal expansion and quiescence of future dentate adult neural stem cells. elife. 2019;8: pubmed 出版商
  308. Liu X, Chen H, Hou Y, Ma X, Ye M, Huang R, et al. Adaptive EGF expression sensitizes pancreatic cancer cells to ionizing radiation through activation of the cyclin D1/P53/PARP pathway. Int J Oncol. 2019;54:1466-1480 pubmed 出版商
  309. Yu C, Li C, Chen I, Lai M, Lin Z, Korla P, et al. YWHAZ amplification/overexpression defines aggressive bladder cancer and contributes to chemo-/radio-resistance by suppressing caspase-mediated apoptosis. J Pathol. 2019;248:476-487 pubmed 出版商
  310. Zhang P, Kishimoto Y, Grammatikakis I, Gottimukkala K, Cutler R, Zhang S, et al. Senolytic therapy alleviates Aβ-associated oligodendrocyte progenitor cell senescence and cognitive deficits in an Alzheimer's disease model. Nat Neurosci. 2019;22:719-728 pubmed 出版商
  311. Zhou B, Kreuzer J, Kumsta C, Wu L, Kamer K, Cedillo L, et al. Mitochondrial Permeability Uncouples Elevated Autophagy and Lifespan Extension. Cell. 2019;177:299-314.e16 pubmed 出版商
  312. Lima Fernandes E, Murison A, da Silva Medina T, Wang Y, Ma A, Leung C, et al. Targeting bivalency de-represses Indian Hedgehog and inhibits self-renewal of colorectal cancer-initiating cells. Nat Commun. 2019;10:1436 pubmed 出版商
  313. Luo H, Jing B, Xia Y, Zhang Y, Hu M, Cai H, et al. WP1130 reveals USP24 as a novel target in T-cell acute lymphoblastic leukemia. Cancer Cell Int. 2019;19:56 pubmed 出版商
  314. Chen L, Yang R, Qiao W, Zhang W, Chen J, Mao L, et al. 1,25-Dihydroxyvitamin D exerts an antiaging role by activation of Nrf2-antioxidant signaling and inactivation of p16/p53-senescence signaling. Aging Cell. 2019;18:e12951 pubmed 出版商
  315. Gennaro V, Wedegaertner H, McMahon S. Interaction between the BAG1S isoform and HSP70 mediates the stability of anti-apoptotic proteins and the survival of osteosarcoma cells expressing oncogenic MYC. BMC Cancer. 2019;19:258 pubmed 出版商
  316. Liu Z, Mar K, Hanners N, Perelman S, Kanchwala M, Xing C, et al. A NIK-SIX signalling axis controls inflammation by targeted silencing of non-canonical NF-κB. Nature. 2019;: pubmed 出版商
  317. Wang Z, Feng X, Molinolo A, Martin D, Vitale Cross L, Nohata N, et al. 4E-BP1 Is a Tumor Suppressor Protein Reactivated by mTOR Inhibition in Head and Neck Cancer. Cancer Res. 2019;: pubmed 出版商
  318. Le Vasseur M, Chen V, Huang K, Vogl W, Naus C. Pannexin 2 Localizes at ER-Mitochondria Contact Sites. Cancers (Basel). 2019;11: pubmed 出版商
  319. Kon N, Wang D, Gu W. Loss of SET reveals both the p53-dependent and the p53-independent functions in vivo. Cell Death Dis. 2019;10:237 pubmed 出版商
  320. Park H, Chung K, An H, Gim J, Hong J, Woo H, et al. Parkin Promotes Mitophagic Cell Death in Adult Hippocampal Neural Stem Cells Following Insulin Withdrawal. Front Mol Neurosci. 2019;12:46 pubmed 出版商
  321. Johansson J, Nászai M, Hodder M, Pickering K, Miller B, Ridgway R, et al. RAL GTPases Drive Intestinal Stem Cell Function and Regeneration through Internalization of WNT Signalosomes. Cell Stem Cell. 2019;24:592-607.e7 pubmed 出版商
  322. Song C, Zhang J, Qi S, Liu Z, Zhang X, Zheng Y, et al. Cardiolipin remodeling by ALCAT1 links mitochondrial dysfunction to Parkinson's diseases. Aging Cell. 2019;18:e12941 pubmed 出版商
  323. Fang G, Qi J, Huang L, Zhao X. LncRNA MRAK048635_P1 is critical for vascular smooth muscle cell function and phenotypic switching in essential hypertension. Biosci Rep. 2019;: pubmed 出版商
  324. Li W, Feng G, Gauthier J, Lokshina I, Higashikubo R, Evans S, et al. Ferroptotic cell death and TLR4/Trif signaling initiate neutrophil recruitment after heart transplantation. J Clin Invest. 2019;129:2293-2304 pubmed 出版商
  325. Liu Y, Wang X, Deng L, Ping L, Shi Y, Zheng W, et al. ITK inhibition induced in vitro and in vivo anti-tumor activity through downregulating TCR signaling pathway in malignant T cell lymphoma. Cancer Cell Int. 2019;19:32 pubmed 出版商
  326. Yan M, Wang J, Ren Y, Li L, He W, Zhang Y, et al. Over-expression of FSIP1 promotes breast cancer progression and confers resistance to docetaxel via MRP1 stabilization. Cell Death Dis. 2019;10:204 pubmed 出版商
  327. Lin K, Qiang W, Zhu M, Ding Y, Shi Q, Chen X, et al. Mammalian Pum1 and Pum2 Control Body Size via Translational Regulation of the Cell Cycle Inhibitor Cdkn1b. Cell Rep. 2019;26:2434-2450.e6 pubmed 出版商
  328. Zhang X, Qin Q, Dai H, Cai S, Zhou C, Guan J. Emodin protects H9c2 cells from hypoxia-induced injury by up-regulating miR-138 expression. Braz J Med Biol Res. 2019;52:e7994 pubmed 出版商
  329. Li K, Meng Z, Jiang L, Xia C, Xu K, Yuan D, et al. CDKL1 promotes the chemoresistance of human oral squamous cell carcinoma cells to hydroxycamptothecin. Mol Cell Probes. 2019;44:57-62 pubmed 出版商
  330. Kurelac I, Iommarini L, Vatrinet R, Amato L, De Luise M, Leone G, et al. Inducing cancer indolence by targeting mitochondrial Complex I is potentiated by blocking macrophage-mediated adaptive responses. Nat Commun. 2019;10:903 pubmed 出版商
  331. Bae D, Moore K, Mella J, Hayashi S, Hollien J. Degradation of Blos1 mRNA by IRE1 repositions lysosomes and protects cells from stress. J Cell Biol. 2019;218:1118-1127 pubmed 出版商
  332. Wang M, Hu J, Yan L, Yang Y, He M, Wu M, et al. High glucose-induced ubiquitination of G6PD leads to the injury of podocytes. FASEB J. 2019;33:6296-6310 pubmed 出版商
  333. Greer Y, Gilbert S, Gril B, Narwal R, Peacock Brooks D, Tice D, et al. MEDI3039, a novel highly potent tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) receptor 2 agonist, causes regression of orthotopic tumors and inhibits outgrowth of metastatic triple-negative breast cancer. Breast Cancer Res. 2019;21:27 pubmed 出版商
  334. Yambire K, Fernández Mosquera L, Steinfeld R, Mühle C, Ikonen E, Milosevic I, et al. Mitochondrial biogenesis is transcriptionally repressed in lysosomal lipid storage diseases. elife. 2019;8: pubmed 出版商
  335. Arora H, Wilcox S, Johnson L, Munro L, Eyford B, Pfeifer C, et al. The ATP-Binding Cassette Gene ABCF1 Functions as an E2 Ubiquitin-Conjugating Enzyme Controlling Macrophage Polarization to Dampen Lethal Septic Shock. Immunity. 2019;50:418-431.e6 pubmed 出版商
  336. Nagaoka K, Bai X, Ogawa K, Dong X, Zhang S, Zhou Y, et al. Anti-tumor activity of antibody drug conjugate targeting aspartate-β-hydroxylase in pancreatic ductal adenocarcinoma. Cancer Lett. 2019;449:87-98 pubmed 出版商
  337. Dufour F, Silina L, Neyret Kahn H, Moreno Vega A, Krucker C, Karboul N, et al. TYRO3 as a molecular target for growth inhibition and apoptosis induction in bladder cancer. Br J Cancer. 2019;120:555-564 pubmed 出版商
  338. Lee J, Sung J, Choi E, Yoon H, Kang B, Hong E, et al. C/EBPβ Is a Transcriptional Regulator of Wee1 at the G₂/M Phase of the Cell Cycle. Cells. 2019;8: pubmed 出版商
  339. Zhang Q, Ji S, Busayavalasa K, Yu C. SPO16 binds SHOC1 to promote homologous recombination and crossing-over in meiotic prophase I. Sci Adv. 2019;5:eaau9780 pubmed 出版商
  340. Haikala H, Anttila J, Marques E, Raatikainen T, Ilander M, Hakanen H, et al. Pharmacological reactivation of MYC-dependent apoptosis induces susceptibility to anti-PD-1 immunotherapy. Nat Commun. 2019;10:620 pubmed 出版商
  341. Yin C, Zhu B, Zhang T, Liu T, Chen S, Liu Y, et al. Pharmacological Targeting of STK19 Inhibits Oncogenic NRAS-Driven Melanomagenesis. Cell. 2019;176:1113-1127.e16 pubmed 出版商
  342. Cai Y, Zhu G, Liu S, Pan Z, Quintero M, Poole C, et al. Indispensable role of the Ubiquitin-fold modifier 1-specific E3 ligase in maintaining intestinal homeostasis and controlling gut inflammation. Cell Discov. 2019;5:7 pubmed 出版商
  343. Gronke K, Hernandez P, Zimmermann J, Klose C, Kofoed Branzk M, Guendel F, et al. Interleukin-22 protects intestinal stem cells against genotoxic stress. Nature. 2019;566:249-253 pubmed 出版商
  344. Rosenzweig N, Dvir Szternfeld R, Tsitsou Kampeli A, Keren Shaul H, Ben Yehuda H, Weill Raynal P, et al. PD-1/PD-L1 checkpoint blockade harnesses monocyte-derived macrophages to combat cognitive impairment in a tauopathy mouse model. Nat Commun. 2019;10:465 pubmed 出版商
  345. Zhang G, Liu Y, Xu L, Sha C, Zhang H, Xu W. Resveratrol alleviates lipopolysaccharide-induced inflammation in PC-12 cells and in rat model. BMC Biotechnol. 2019;19:10 pubmed 出版商
  346. Nassour J, Radford R, Correia A, Fusté J, Schoell B, Jauch A, et al. Autophagic cell death restricts chromosomal instability during replicative crisis. Nature. 2019;565:659-663 pubmed 出版商
  347. Gerber D, Ghidinelli M, Tinelli E, Somandin C, Gerber J, Pereira J, et al. Schwann cells, but not Oligodendrocytes, Depend Strictly on Dynamin 2 Function. elife. 2019;8: pubmed 出版商
  348. Naito H, Iba T, Wakabayashi T, Tai Nagara I, Suehiro J, Jia W, et al. TAK1 Prevents Endothelial Apoptosis and Maintains Vascular Integrity. Dev Cell. 2019;48:151-166.e7 pubmed 出版商
  349. Yuan Z, Zhang H, Hasnat M, Ding J, Chen X, Liang P, et al. A new perspective of triptolide-associated hepatotoxicity: Liver hypersensitivity upon LPS stimulation. Toxicology. 2019;414:45-56 pubmed 出版商
  350. Ren G, Whittaker J, Leonard C, De Rantere D, Pang D, Salo P, et al. CCL22 is a biomarker of cartilage injury and plays a functional role in chondrocyte apoptosis. Cytokine. 2019;115:32-44 pubmed 出版商
  351. May J, Kouri F, Hurley L, Liu J, Tommasini Ghelfi S, Ji Y, et al. IDH3α regulates one-carbon metabolism in glioblastoma. Sci Adv. 2019;5:eaat0456 pubmed 出版商
  352. Liu S, Hausmann S, CARLSON S, Fuentes M, Francis J, Pillai R, et al. METTL13 Methylation of eEF1A Increases Translational Output to Promote Tumorigenesis. Cell. 2019;176:491-504.e21 pubmed 出版商
  353. Jachimowicz R, Beleggia F, Isensee J, Velpula B, Goergens J, Bustos M, et al. UBQLN4 Represses Homologous Recombination and Is Overexpressed in Aggressive Tumors. Cell. 2019;176:505-519.e22 pubmed 出版商
  354. Zhang J, Sheng J, Dong L, Xu Y, Yu L, Liu Y, et al. Cardiomyocyte-specific loss of RMP causes myocardial dysfunction and heart failure. Cardiovasc Res. 2018;: pubmed 出版商
  355. Baranov S, Baranova O, Yablonska S, Suofu Y, Vazquez A, Kozai T, et al. Mitochondria modulate programmed neuritic retraction. Proc Natl Acad Sci U S A. 2019;116:650-659 pubmed 出版商
  356. Moon S, Huang C, Houlihan S, Regunath K, Freed Pastor W, Morris J, et al. p53 Represses the Mevalonate Pathway to Mediate Tumor Suppression. Cell. 2019;176:564-580.e19 pubmed 出版商
  357. Ruscetti M, Leibold J, Bott M, Fennell M, Kulick A, Salgado N, et al. NK cell-mediated cytotoxicity contributes to tumor control by a cytostatic drug combination. Science. 2018;362:1416-1422 pubmed 出版商
  358. LeBlanc L, Lee B, Yu A, Kim M, Kambhampati A, Dupont S, et al. Yap1 safeguards mouse embryonic stem cells from excessive apoptosis during differentiation. elife. 2018;7: pubmed 出版商
  359. Wang M, Tang C, Xing R, Liu X, Han X, Liu Y, et al. WDR81 regulates adult hippocampal neurogenesis through endosomal SARA-TGFβ signaling. Mol Psychiatry. 2018;: pubmed 出版商
  360. Pan W, Moroishi T, Koo J, Guan K. Cell type-dependent function of LATS1/2 in cancer cell growth. Oncogene. 2019;38:2595-2610 pubmed 出版商
  361. Fiore A, Ugel S, De Sanctis F, Sandri S, Fracasso G, Trovato R, et al. Induction of immunosuppressive functions and NF-κB by FLIP in monocytes. Nat Commun. 2018;9:5193 pubmed 出版商
  362. He S, Nian F, Chen W, Yin L, Auchoybur M, Tao Z, et al. I-κB kinase-ε knockout protects against angiotensin II induced aortic valve thickening in apolipoprotein E deficient mice. Biomed Pharmacother. 2019;109:1287-1295 pubmed 出版商
  363. Liang C, Ma Y, Yong L, Yang C, Wang P, Liu X, et al. Y-box binding protein-1 promotes tumorigenesis and progression via the epidermal growth factor receptor/AKT pathway in spinal chordoma. Cancer Sci. 2019;110:166-179 pubmed 出版商
  364. Chen X, Chanda A, Ikeuchi Y, Zhang X, Goodman J, Reddy N, et al. The Transcriptional Regulator SnoN Promotes the Proliferation of Cerebellar Granule Neuron Precursors in the Postnatal Mouse Brain. J Neurosci. 2019;39:44-62 pubmed 出版商
  365. Yin D, Li Y, Fu C, Feng Y. Pro-Angiogenic Role of LncRNA HULC in Microvascular Endothelial Cells via Sequestrating miR-124. Cell Physiol Biochem. 2018;50:2188-2202 pubmed 出版商
  366. Matsuda K, Kobayakawa T, Tsuchiya K, Hattori S, Nomura W, Gatanaga H, et al. Benzolactam-related compounds promote apoptosis of HIV-infected human cells via protein kinase C-induced HIV latency reversal. J Biol Chem. 2019;294:116-129 pubmed 出版商
  367. Tan P, Ye Y, He L, Xie J, Jing J, Ma G, et al. TRIM59 promotes breast cancer motility by suppressing p62-selective autophagic degradation of PDCD10. PLoS Biol. 2018;16:e3000051 pubmed 出版商
  368. Asnaghi L, White D, Key N, Choi J, Mahale A, Alkatan H, et al. ACVR1C/SMAD2 signaling promotes invasion and growth in retinoblastoma. Oncogene. 2019;38:2056-2075 pubmed 出版商
  369. Lou C, Lu H, Ma Z, Liu C, Zhang Y. Ginkgolide B enhances gemcitabine sensitivity in pancreatic cancer cell lines via inhibiting PAFR/NF-кB pathway. Biomed Pharmacother. 2019;109:563-572 pubmed 出版商
  370. Koren E, Yosefzon Y, Ankawa R, Soteriou D, Jacob A, Nevelsky A, et al. ARTS mediates apoptosis and regeneration of the intestinal stem cell niche. Nat Commun. 2018;9:4582 pubmed 出版商
  371. Li H, Feng J, Zhang Y, Feng J, Wang Q, Zhao S, et al. Mst1 deletion attenuates renal ischaemia-reperfusion injury: The role of microtubule cytoskeleton dynamics, mitochondrial fission and the GSK3β-p53 signalling pathway. Redox Biol. 2019;20:261-274 pubmed 出版商
  372. Rivera Reyes A, Ye S, E Marino G, Egolf S, E Ciotti G, Chor S, et al. YAP1 enhances NF-κB-dependent and independent effects on clock-mediated unfolded protein responses and autophagy in sarcoma. Cell Death Dis. 2018;9:1108 pubmed 出版商
  373. De R, Sarkar S, Mazumder S, Debsharma S, Siddiqui A, Saha S, et al. Macrophage migration inhibitory factor regulates mitochondrial dynamics and cell growth of human cancer cell lines through CD74-NF-κB signaling. J Biol Chem. 2018;293:19740-19760 pubmed 出版商
  374. Li Y, Liu Y, Xu H, Jiang G, Van der Jeught K, Fang Y, et al. Heterozygous deletion of chromosome 17p renders prostate cancer vulnerable to inhibition of RNA polymerase II. Nat Commun. 2018;9:4394 pubmed 出版商
  375. Zhao H, Pan W, Chen L, Luo Y, Xu R. Nur77 promotes cerebral ischemia-reperfusion injury via activating INF2-mediated mitochondrial fragmentation. J Mol Histol. 2018;49:599-613 pubmed 出版商
  376. Fauster A, Rebsamen M, Willmann K, César Razquin A, Girardi E, Bigenzahn J, et al. Systematic genetic mapping of necroptosis identifies SLC39A7 as modulator of death receptor trafficking. Cell Death Differ. 2019;26:1138-1155 pubmed 出版商
  377. Yue D, Sun X. Idelalisib promotes Bim-dependent apoptosis through AKT/FoxO3a in hepatocellular carcinoma. Cell Death Dis. 2018;9:935 pubmed 出版商
  378. Han S, Dennis D, Balakrishnan A, Dixit R, Britz O, Zinyk D, et al. A non-canonical role for the proneural gene Neurog1 as a negative regulator of neocortical neurogenesis. Development. 2018;145: pubmed 出版商
  379. Killackey S, Rahman M, Soares F, Zhang A, Abdel Nour M, Philpott D, et al. The mitochondrial Nod-like receptor NLRX1 modifies apoptosis through SARM1. Mol Cell Biochem. 2019;453:187-196 pubmed 出版商
  380. Walia M, Taylor S, Ho P, Martin T, Walkley C. Tolerance to sustained activation of the cAMP/Creb pathway activity in osteoblastic cells is enabled by loss of p53. Cell Death Dis. 2018;9:844 pubmed 出版商
  381. Mohamud Y, Qu J, Xue Y, Liu H, Deng H, Luo H. CALCOCO2/NDP52 and SQSTM1/p62 differentially regulate coxsackievirus B3 propagation. Cell Death Differ. 2019;26:1062-1076 pubmed 出版商
  382. Greenhough A, Bagley C, Heesom K, Gurevich D, Gay D, Bond M, et al. Cancer cell adaptation to hypoxia involves a HIF-GPRC5A-YAP axis. EMBO Mol Med. 2018;10: pubmed 出版商
  383. Cen O, Kannan K, Huck Sappal J, Yu J, Zhang M, Arikan M, et al. Spleen Tyrosine Kinase Inhibitor TAK-659 Prevents Splenomegaly and Tumor Development in a Murine Model of Epstein-Barr Virus-Associated Lymphoma. mSphere. 2018;3: pubmed 出版商
  384. Taparra K, Wang H, Malek R, Lafargue A, Barbhuiya M, Wang X, et al. O-GlcNAcylation is required for mutant KRAS-induced lung tumorigenesis. J Clin Invest. 2018;128:4924-4937 pubmed 出版商
  385. Guo Y, Li H, Ke X, Deng M, Wu Z, Cai Y, et al. Degradation of Caytaxin Causes Learning and Memory Deficits via Activation of DAPK1 in Aging. Mol Neurobiol. 2019;56:3368-3379 pubmed 出版商
  386. Zhao D, Kim Y, Jeong S, Greenson J, Chaudhry M, Hoepting M, et al. Survival signal REG3α prevents crypt apoptosis to control acute gastrointestinal graft-versus-host disease. J Clin Invest. 2018;128:4970-4979 pubmed 出版商
  387. Robbins J, Perfect L, Ribe E, Maresca M, Dangla Valls A, Foster E, et al. Clusterin Is Required for β-Amyloid Toxicity in Human iPSC-Derived Neurons. Front Neurosci. 2018;12:504 pubmed 出版商
  388. Leslie P, Franklin D, Liu Y, Zhang Y. p53 Regulates the Expression of LRP1 and Apoptosis through a Stress Intensity-Dependent MicroRNA Feedback Loop. Cell Rep. 2018;24:1484-1495 pubmed 出版商
  389. Homma T, Kurahashi T, Lee J, Nabeshima A, Yamada S, Fujii J. Double Knockout of Peroxiredoxin 4 (Prdx4) and Superoxide Dismutase 1 (Sod1) in Mice Results in Severe Liver Failure. Oxid Med Cell Longev. 2018;2018:2812904 pubmed 出版商
  390. Cuchet Lourenço D, Eletto D, Wu C, Plagnol V, Papapietro O, CURTIS J, et al. Biallelic RIPK1 mutations in humans cause severe immunodeficiency, arthritis, and intestinal inflammation. Science. 2018;361:810-813 pubmed 出版商
  391. Zhang J, Wu T, Simon J, Takada M, Saito R, Fan C, et al. VHL substrate transcription factor ZHX2 as an oncogenic driver in clear cell renal cell carcinoma. Science. 2018;361:290-295 pubmed 出版商
  392. Yasuda Yamahara M, Rogg M, Yamahara K, Maier J, Huber T, Schell C. AIF1L regulates actomyosin contractility and filopodial extensions in human podocytes. PLoS ONE. 2018;13:e0200487 pubmed 出版商
  393. Xie H, Wang Y, Zhang H, Fan Q, Dai D, Zhuang L, et al. Tubular epithelial C1orf54 mediates protection and recovery from acute kidney injury. J Cell Mol Med. 2018;22:4985-4996 pubmed 出版商
  394. Lin X, Cui M, Xu D, Hong D, Xia Y, Xu C, et al. Liver-specific deletion of Eva1a/Tmem166 aggravates acute liver injury by impairing autophagy. Cell Death Dis. 2018;9:768 pubmed 出版商
  395. Chute C, Yang X, Meyer K, Yang N, O Neil K, Kasza I, et al. Syndecan-1 induction in lung microenvironment supports the establishment of breast tumor metastases. Breast Cancer Res. 2018;20:66 pubmed 出版商
  396. Zimmermann M, Murina O, Reijns M, Agathanggelou A, Challis R, Tarnauskaitė Ž, et al. CRISPR screens identify genomic ribonucleotides as a source of PARP-trapping lesions. Nature. 2018;559:285-289 pubmed 出版商
  397. Peterson B, Campbell J, Ilkayeva O, Grimsrud P, Hirschey M, Newgard C. Remodeling of the Acetylproteome by SIRT3 Manipulation Fails to Affect Insulin Secretion or ? Cell Metabolism in the Absence of Overnutrition. Cell Rep. 2018;24:209-223.e6 pubmed 出版商
  398. Wang H, Bu L, Wang C, Zhang Y, Zhou H, Zhang X, et al. The Hsp70 inhibitor 2-phenylethynesulfonamide inhibits replication and carcinogenicity of Epstein-Barr virus by inhibiting the molecular chaperone function of Hsp70. Cell Death Dis. 2018;9:734 pubmed 出版商
  399. Wang W, Xia Z, Farre J, Subramani S. TRIM37 deficiency induces autophagy through deregulating the MTORC1-TFEB axis. Autophagy. 2018;14:1574-1585 pubmed 出版商
  400. Wang B, Joo J, Mount R, Teubner B, Krenzer A, Ward A, et al. The COPII cargo adapter SEC24C is essential for neuronal homeostasis. J Clin Invest. 2018;128:3319-3332 pubmed 出版商
  401. Zhao C, Dong C, Frah M, Deng Y, Marie C, Zhang F, et al. Dual Requirement of CHD8 for Chromatin Landscape Establishment and Histone Methyltransferase Recruitment to Promote CNS Myelination and Repair. Dev Cell. 2018;45:753-768.e8 pubmed 出版商
  402. Li F, Li Y, Liang H, Xu T, Kong Y, Huang M, et al. HECTD3 mediates TRAF3 polyubiquitination and type I interferon induction during bacterial infection. J Clin Invest. 2018;128:4148-4162 pubmed 出版商
  403. Chhipa R, Fan Q, Anderson J, Muraleedharan R, Huang Y, Ciraolo G, et al. AMP kinase promotes glioblastoma bioenergetics and tumour growth. Nat Cell Biol. 2018;20:823-835 pubmed 出版商
  404. Pearce M, Gamble J, Kopparapu P, O Donnell E, Mueller M, Jang H, et al. Induction of apoptosis and suppression of tumor growth by Nur77-derived Bcl-2 converting peptide in chemoresistant lung cancer cells. Oncotarget. 2018;9:26072-26085 pubmed 出版商
  405. Liu T, Kong W, Tang X, Xu M, Wang Q, Zhang B, et al. The transcription factor Zfp90 regulates the self-renewal and differentiation of hematopoietic stem cells. Cell Death Dis. 2018;9:677 pubmed 出版商
  406. Yang M, Li C, Zhu S, Cao L, Kroemer G, Zeh H, et al. TFAM is a novel mediator of immunogenic cancer cell death. Oncoimmunology. 2018;7:e1431086 pubmed 出版商
  407. Lau A, Chung H, Komada T, Platnich J, Sandall C, Choudhury S, et al. Renal immune surveillance and dipeptidase-1 contribute to contrast-induced acute kidney injury. J Clin Invest. 2018;128:2894-2913 pubmed 出版商
  408. Kim J, Shin S, Kang J, Kim J. HX-1171 attenuates pancreatic β-cell apoptosis and hyperglycemia-mediated oxidative stress via Nrf2 activation in streptozotocin-induced diabetic model. Oncotarget. 2018;9:24260-24271 pubmed 出版商
  409. Ruess D, Heynen G, Ciecielski K, Ai J, Berninger A, Kabacaoglu D, et al. Mutant KRAS-driven cancers depend on PTPN11/SHP2 phosphatase. Nat Med. 2018;24:954-960 pubmed 出版商
  410. Baumgartner C, Toifl S, Farlik M, Halbritter F, Scheicher R, Fischer I, et al. An ERK-Dependent Feedback Mechanism Prevents Hematopoietic Stem Cell Exhaustion. Cell Stem Cell. 2018;22:879-892.e6 pubmed 出版商
  411. Vera Ramirez L, Vodnala S, Nini R, Hunter K, Green J. Autophagy promotes the survival of dormant breast cancer cells and metastatic tumour recurrence. Nat Commun. 2018;9:1944 pubmed 出版商
  412. Rossow L, Veitl S, Vorlova S, Wax J, Kuhn A, Maltzahn V, et al. LOX-catalyzed collagen stabilization is a proximal cause for intrinsic resistance to chemotherapy. Oncogene. 2018;37:4921-4940 pubmed 出版商
  413. Chakrabarti R, Celià Terrassa T, Kumar S, Hang X, Wei Y, Choudhury A, et al. Notch ligand Dll1 mediates cross-talk between mammary stem cells and the macrophageal niche. Science. 2018;360: pubmed 出版商
  414. Bellelli R, Borel V, Logan C, Svendsen J, Cox D, Nye E, et al. Polε Instability Drives Replication Stress, Abnormal Development, and Tumorigenesis. Mol Cell. 2018;70:707-721.e7 pubmed 出版商
  415. Miyamoto Y, Torii T, Tago K, Tanoue A, Takashima S, Yamauchi J. BIG1/Arfgef1 and Arf1 regulate the initiation of myelination by Schwann cells in mice. Sci Adv. 2018;4:eaar4471 pubmed 出版商
  416. Han F, Xia X, Dou M, Wang Y, Xue W, Ding X, et al. Arctigenin: A two-edged sword in ischemia/reperfusion induced acute kidney injury. Biomed Pharmacother. 2018;103:1127-1136 pubmed 出版商
  417. Fan L, Zhang F, Xu S, Cui X, Hussain A, Fazli L, et al. Histone demethylase JMJD1A promotes alternative splicing of AR variant 7 (AR-V7) in prostate cancer cells. Proc Natl Acad Sci U S A. 2018;115:E4584-E4593 pubmed 出版商
  418. Peltzer N, Darding M, Montinaro A, Dráber P, Draberova H, Kupka S, et al. LUBAC is essential for embryogenesis by preventing cell death and enabling haematopoiesis. Nature. 2018;557:112-117 pubmed 出版商
  419. Gussenhoven R, Westerlaken R, Ophelders D, Jobe A, Kemp M, Kallapur S, et al. Chorioamnionitis, neuroinflammation, and injury: timing is key in the preterm ovine fetus. J Neuroinflammation. 2018;15:113 pubmed 出版商
  420. Seidi K, Jahanban Esfahlan R, Monhemi H, Zare P, Minofar B, Daei Farshchi Adli A, et al. NGR (Asn-Gly-Arg)-targeted delivery of coagulase to tumor vasculature arrests cancer cell growth. Oncogene. 2018;37:3967-3980 pubmed 出版商
  421. Miyasato Y, Yoshizawa T, Sato Y, Nakagawa T, Miyasato Y, Kakizoe Y, et al. Sirtuin 7 Deficiency Ameliorates Cisplatin-induced Acute Kidney Injury Through Regulation of the Inflammatory Response. Sci Rep. 2018;8:5927 pubmed 出版商
  422. Zhang X, Zhuang R, Wu H, Chen J, Wang F, Li G, et al. A novel role of endocan in alleviating LPS-induced acute lung injury. Life Sci. 2018;202:89-97 pubmed 出版商
  423. Schönrogge M, Kerndl H, Zhang X, Kumstel S, Vollmar B, Zechner D. α-cyano-4-hydroxycinnamate impairs pancreatic cancer cells by stimulating the p38 signaling pathway. Cell Signal. 2018;47:101-108 pubmed 出版商
  424. Wang S, Liu A, Wu G, Ding H, Huang S, Nahman S, et al. The CPLANE protein Intu protects kidneys from ischemia-reperfusion injury by targeting STAT1 for degradation. Nat Commun. 2018;9:1234 pubmed 出版商
  425. Lee C, Hsieh T. Wuho/WDR4 deficiency inhibits cell proliferation and induces apoptosis via DNA damage in mouse embryonic fibroblasts. Cell Signal. 2018;47:16-26 pubmed 出版商
  426. Zhao Y, Wu X, Li X, Jiang L, Gui X, Liu Y, et al. TREM2 Is a Receptor for β-Amyloid that Mediates Microglial Function. Neuron. 2018;97:1023-1031.e7 pubmed 出版商
  427. Clemente C, Rius C, Alonso Herranz L, Martín Alonso M, Pollán A, Camafeita E, et al. MT4-MMP deficiency increases patrolling monocyte recruitment to early lesions and accelerates atherosclerosis. Nat Commun. 2018;9:910 pubmed 出版商
  428. Khan A, Carpenter B, Santos e Sousa P, Pospori C, Khorshed R, Griffin J, et al. Redirection to the bone marrow improves T cell persistence and antitumor functions. J Clin Invest. 2018;128:2010-2024 pubmed 出版商
  429. Silva C, Peyre E, Adhikari M, Tielens S, Tanco S, Van Damme P, et al. Cell-Intrinsic Control of Interneuron Migration Drives Cortical Morphogenesis. Cell. 2018;172:1063-1078.e19 pubmed 出版商
  430. Duchamp de Lageneste O, Julien A, Abou Khalil R, Frangi G, Carvalho C, Cagnard N, et al. Periosteum contains skeletal stem cells with high bone regenerative potential controlled by Periostin. Nat Commun. 2018;9:773 pubmed 出版商
  431. Kou W, Xu X, Ji S, Chen M, Liu D, Wang K, et al. The inhibition of the effect and mechanism of vascular intimal hyperplasia in Tiam1 knockout mice. Biochem Biophys Res Commun. 2018;497:248-255 pubmed 出版商
  432. Hou Y, Lautrup S, Cordonnier S, Wang Y, Croteau D, Zavala E, et al. NAD+ supplementation normalizes key Alzheimer's features and DNA damage responses in a new AD mouse model with introduced DNA repair deficiency. Proc Natl Acad Sci U S A. 2018;115:E1876-E1885 pubmed 出版商
  433. Yin R, Guo L, Gu J, Li C, Zhang W. Over expressing miR-19b-1 suppress breast cancer growth by inhibiting tumor microenvironment induced angiogenesis. Int J Biochem Cell Biol. 2018;97:43-51 pubmed 出版商
  434. Rogerson C, Gissen P. VPS33B and VIPAR are essential for epidermal lamellar body biogenesis and function. Biochim Biophys Acta Mol Basis Dis. 2018;1864:1609-1621 pubmed 出版商
  435. Su S, Chen J, Yao H, Liu J, Yu S, Lao L, et al. CD10+GPR77+ Cancer-Associated Fibroblasts Promote Cancer Formation and Chemoresistance by Sustaining Cancer Stemness. Cell. 2018;172:841-856.e16 pubmed 出版商
  436. Chung H, Calis J, Wu X, Sun T, Yu Y, Sarbanes S, et al. Human ADAR1 Prevents Endogenous RNA from Triggering Translational Shutdown. Cell. 2018;172:811-824.e14 pubmed 出版商
  437. Janes M, Zhang J, Li L, Hansen R, Peters U, Guo X, et al. Targeting KRAS Mutant Cancers with a Covalent G12C-Specific Inhibitor. Cell. 2018;172:578-589.e17 pubmed 出版商
  438. Gong L, Pan X, Lim C, de Polo A, Little J, Yuan Z. A functional interplay between Δ133p53 and ΔNp63 in promoting glycolytic metabolism to fuel cancer cell proliferation. Oncogene. 2018;37:2150-2164 pubmed 出版商
  439. Daniels A, Froehler M, Pierce J, Nunnally A, Calcutt M, Bridges T, et al. Pharmacokinetics, Tissue Localization, Toxicity, and Treatment Efficacy in the First Small Animal (Rabbit) Model of Intra-Arterial Chemotherapy for Retinoblastoma. Invest Ophthalmol Vis Sci. 2018;59:446-454 pubmed 出版商
  440. Tavazoie M, Pollack I, Tanqueco R, Ostendorf B, Reis B, Gonsalves F, et al. LXR/ApoE Activation Restricts Innate Immune Suppression in Cancer. Cell. 2018;172:825-840.e18 pubmed 出版商
  441. Garaycoechea J, Crossan G, Langevin F, Mulderrig L, Louzada S, Yang F, et al. Alcohol and endogenous aldehydes damage chromosomes and mutate stem cells. Nature. 2018;553:171-177 pubmed 出版商
  442. Cao B, Luo L, Feng L, Ma S, Chen T, Ren Y, et al. A network-based predictive gene-expression signature for adjuvant chemotherapy benefit in stage II colorectal cancer. BMC Cancer. 2017;17:844 pubmed 出版商
  443. Wu Y, Zhang Z, Cenciarini M, Proietti C, Amasino M, Hong T, et al. Tamoxifen Resistance in Breast Cancer Is Regulated by the EZH2-ERα-GREB1 Transcriptional Axis. Cancer Res. 2018;78:671-684 pubmed 出版商
  444. Kim M, Morales L, Baek M, Slaga T, DiGiovanni J, Kim D. UVB-induced nuclear translocation of TC-PTP by AKT/14-3-3? axis inhibits keratinocyte survival and proliferation. Oncotarget. 2017;8:90674-90692 pubmed 出版商
  445. Wang Y, Yin B, Li D, Wang G, Han X, Sun X. GSDME mediates caspase-3-dependent pyroptosis in gastric cancer. Biochem Biophys Res Commun. 2018;495:1418-1425 pubmed 出版商
  446. Shuang W, Hou L, Zhu Y, Li Q, Hu W. Mcl-1 stabilization confers resistance to taxol in human gastric cancer. Oncotarget. 2017;8:82981-82990 pubmed 出版商
  447. Sagulenko V, Vitak N, Vajjhala P, Vince J, Stacey K. Caspase-1 Is an Apical Caspase Leading to Caspase-3 Cleavage in the AIM2 Inflammasome Response, Independent of Caspase-8. J Mol Biol. 2018;430:238-247 pubmed 出版商
  448. Janečková E, Bíliková P, Matalova E. Osteogenic Potential of Caspases Related to Endochondral Ossification. J Histochem Cytochem. 2017;:22155417739283 pubmed 出版商
  449. Tseng K, Danilova T, Domanskyi A, Saarma M, Lindahl M, Airavaara M. MANF Is Essential for Neurite Extension and Neuronal Migration in the Developing Cortex. Eneuro. 2017;4: pubmed 出版商
  450. Xue X, Bredell B, Anderson E, Martin A, Mays C, Nagao Kitamoto H, et al. Quantitative proteomics identifies STEAP4 as a critical regulator of mitochondrial dysfunction linking inflammation and colon cancer. Proc Natl Acad Sci U S A. 2017;114:E9608-E9617 pubmed 出版商
  451. Maurya D, Bohm S, Alenius M. Hedgehog signaling regulates ciliary localization of mouse odorant receptors. Proc Natl Acad Sci U S A. 2017;114:E9386-E9394 pubmed 出版商
  452. Zhao X, Huang L, Xu W, Chen X, Shen Y, Zeng W, et al. Physapubescin B inhibits tumorgenesis and circumvents taxol resistance of ovarian cancer cells through STAT3 signaling. Oncotarget. 2017;8:70130-70141 pubmed 出版商
  453. Peuhu E, Salomaa S, De Franceschi N, Potter C, Sundberg J, Pouwels J. Integrin beta 1 inhibition alleviates the chronic hyperproliferative dermatitis phenotype of SHARPIN-deficient mice. PLoS ONE. 2017;12:e0186628 pubmed 出版商
  454. Gaidt M, Ebert T, Chauhan D, Ramshorn K, Pinci F, Zuber S, et al. The DNA Inflammasome in Human Myeloid Cells Is Initiated by a STING-Cell Death Program Upstream of NLRP3. Cell. 2017;171:1110-1124.e18 pubmed 出版商
  455. Padilla J, Carpenter A, Das N, Kandikattu H, López Ongil S, Martinez Lemus L, et al. TRAF3IP2 mediates high glucose-induced endothelin-1 production as well as endothelin-1-induced inflammation in endothelial cells. Am J Physiol Heart Circ Physiol. 2018;314:H52-H64 pubmed 出版商
  456. Mayer C, Gazumyan A, Kara E, Gitlin A, Golijanin J, Viant C, et al. The microanatomic segregation of selection by apoptosis in the germinal center. Science. 2017;358: pubmed 出版商
  457. Paikari A, D Belair C, Saw D, Blelloch R. The eutheria-specific miR-290 cluster modulates placental growth and maternal-fetal transport. Development. 2017;144:3731-3743 pubmed 出版商
  458. Xu Y, Wang Y, Yao A, Xu Z, Dou H, Shen S, et al. Low Frequency Magnetic Fields Induce Autophagy-associated Cell Death in Lung Cancer through miR-486-mediated Inhibition of Akt/mTOR Signaling Pathway. Sci Rep. 2017;7:11776 pubmed 出版商
  459. Kim J, Park D, Bae H, Park D, Kim D, Lee C, et al. Impaired angiopoietin/Tie2 signaling compromises Schlemm's canal integrity and induces glaucoma. J Clin Invest. 2017;127:3877-3896 pubmed 出版商
  460. Nakagawa N, Li J, Yabuno Nakagawa K, Eom T, Cowles M, Mapp T, et al. APC sets the Wnt tone necessary for cerebral cortical progenitor development. Genes Dev. 2017;31:1679-1692 pubmed 出版商
  461. Hernández I, Torres Peraza J, Santos Galindo M, Ramos Morón E, Fernandez Fernandez M, Pérez Álvarez M, et al. The neuroprotective transcription factor ATF5 is decreased and sequestered into polyglutamine inclusions in Huntington's disease. Acta Neuropathol. 2017;134:839-850 pubmed 出版商
  462. Yu J, Wu H, Liu Z, Zhu Q, Shan C, Zhang K. Advanced glycation end products induce the apoptosis of and inflammation in mouse podocytes through CXCL9-mediated JAK2/STAT3 pathway activation. Int J Mol Med. 2017;40:1185-1193 pubmed 出版商
  463. Jiang X, Bao Y, Liu H, Kou X, Zhang Z, Sun F, et al. VPS34 stimulation of p62 phosphorylation for cancer progression. Oncogene. 2017;36:6850-6862 pubmed 出版商
  464. Giampazolias E, Zunino B, Dhayade S, Bock F, Cloix C, Cao K, et al. Mitochondrial permeabilization engages NF-κB-dependent anti-tumour activity under caspase deficiency. Nat Cell Biol. 2017;19:1116-1129 pubmed 出版商
  465. Jin L, Vu T, Yuan G, Datta P. STRAP Promotes Stemness of Human Colorectal Cancer via Epigenetic Regulation of the NOTCH Pathway. Cancer Res. 2017;77:5464-5478 pubmed 出版商
  466. Kim J, Kim Y, Kim J, Park D, Bae H, Lee D, et al. YAP/TAZ regulates sprouting angiogenesis and vascular barrier maturation. J Clin Invest. 2017;127:3441-3461 pubmed 出版商
  467. Moncsek A, Al Suraih M, Trussoni C, O Hara S, Splinter P, Zuber C, et al. Targeting senescent cholangiocytes and activated fibroblasts with B-cell lymphoma-extra large inhibitors ameliorates fibrosis in multidrug resistance 2 gene knockout (Mdr2-/- ) mice. Hepatology. 2017;: pubmed 出版商
  468. Turrell F, Kerr E, Gao M, Thorpe H, Doherty G, Cridge J, et al. Lung tumors with distinct p53 mutations respond similarly to p53 targeted therapy but exhibit genotype-specific statin sensitivity. Genes Dev. 2017;31:1339-1353 pubmed 出版商
  469. Zhou Y, Huang T, Zhang J, Wong C, Zhang B, Dong Y, et al. TEAD1/4 exerts oncogenic role and is negatively regulated by miR-4269 in gastric tumorigenesis. Oncogene. 2017;36:6518-6530 pubmed 出版商
  470. Gallagher E, Zelenko Z, Neel B, Antoniou I, Rajan L, Kase N, et al. Elevated tumor LDLR expression accelerates LDL cholesterol-mediated breast cancer growth in mouse models of hyperlipidemia. Oncogene. 2017;36:6462-6471 pubmed 出版商
  471. Bitler B, Wu S, Park P, Hai Y, Aird K, Wang Y, et al. ARID1A-mutated ovarian cancers depend on HDAC6 activity. Nat Cell Biol. 2017;19:962-973 pubmed 出版商
  472. Kousa Y, Roushangar R, Patel N, Walter A, Marangoni P, Krumlauf R, et al. IRF6 and SPRY4 Signaling Interact in Periderm Development. J Dent Res. 2017;96:1306-1313 pubmed 出版商
  473. Smith R, Huang Y, Tian T, Vojtasova D, Mesalles Naranjo O, Pollard S, et al. The Transcription Factor Foxg1 Promotes Optic Fissure Closure in the Mouse by Suppressing Wnt8b in the Nasal Optic Stalk. J Neurosci. 2017;37:7975-7993 pubmed 出版商
  474. Wang W, Xia Z, Farré J, Subramani S. TRIM37, a novel E3 ligase for PEX5-mediated peroxisomal matrix protein import. J Cell Biol. 2017;216:2843-2858 pubmed 出版商
  475. Shi Y, Zhang X, Chen C, Tang M, Wang Z, Liang X, et al. Schisantherin A attenuates ischemia/reperfusion-induced neuronal injury in rats via regulation of TLR4 and C5aR1 signaling pathways. Brain Behav Immun. 2017;66:244-256 pubmed 出版商
  476. Xu L, Zhang M, Li H, Guan W, Liu B, Liu F, et al. SH3BGRL as a novel prognostic biomarker is down-regulated in acute myeloid leukemia. Leuk Lymphoma. 2018;59:918-930 pubmed 出版商
  477. Button R, Roberts S, Willis T, Hanemann C, Luo S. Accumulation of autophagosomes confers cytotoxicity. J Biol Chem. 2017;292:13599-13614 pubmed 出版商
  478. van Vliet P, Lin L, Boogerd C, Martin J, Andelfinger G, Grossfeld P, et al. Tissue specific requirements for WNT11 in developing outflow tract and dorsal mesenchymal protrusion. Dev Biol. 2017;429:249-259 pubmed 出版商
  479. Marchesini M, Ogoti Y, Fiorini E, Aktaş Samur A, Nezi L, D Anca M, et al. ILF2 Is a Regulator of RNA Splicing and DNA Damage Response in 1q21-Amplified Multiple Myeloma. Cancer Cell. 2017;32:88-100.e6 pubmed 出版商
  480. Ho L, van Dijk M, Chye S, Messerschmidt D, Chng S, Ong S, et al. ELABELA deficiency promotes preeclampsia and cardiovascular malformations in mice. Science. 2017;357:707-713 pubmed 出版商
  481. Lang M, Jenkins S, Balzano P, Owoyele A, Patel A, Bamezai A. Engaging Ly-6A/Sca-1 triggers lipid raft-dependent and -independent responses in CD4+ T-cell lines. Immun Inflamm Dis. 2017;5:448-460 pubmed 出版商
  482. Li Z, Li D, Choi E, Lapidus R, Zhang L, Huang S, et al. Silencing of solute carrier family 13 member 5 disrupts energy homeostasis and inhibits proliferation of human hepatocarcinoma cells. J Biol Chem. 2017;292:13890-13901 pubmed 出版商
  483. Zhu S, Ding S, Wang P, Wei Z, Pan W, Palm N, et al. Nlrp9b inflammasome restricts rotavirus infection in intestinal epithelial cells. Nature. 2017;546:667-670 pubmed 出版商
  484. Wang R, Cao X, Kulej K, Liu W, Ma T, MacDonald M, et al. Uncovering BRD4 hyperphosphorylation associated with cellular transformation in NUT midline carcinoma. Proc Natl Acad Sci U S A. 2017;114:E5352-E5361 pubmed 出版商
  485. Van T, Polykratis A, Straub B, Kondylis V, Papadopoulou N, Pasparakis M. Kinase-independent functions of RIPK1 regulate hepatocyte survival and liver carcinogenesis. J Clin Invest. 2017;127:2662-2677 pubmed 出版商
  486. Xu P, Tao X, Zhao C, Huang Q, Chang H, Ban N, et al. DTX3L is upregulated in glioma and is associated with glioma progression. Int J Mol Med. 2017;40:491-498 pubmed 出版商
  487. Bononi A, Giorgi C, Patergnani S, Larson D, Verbruggen K, Tanji M, et al. BAP1 regulates IP3R3-mediated Ca2+ flux to mitochondria suppressing cell transformation. Nature. 2017;546:549-553 pubmed 出版商
  488. Kuchay S, Giorgi C, Simoneschi D, Pagan J, Missiroli S, Saraf A, et al. PTEN counteracts FBXL2 to promote IP3R3- and Ca2+-mediated apoptosis limiting tumour growth. Nature. 2017;546:554-558 pubmed 出版商
  489. Shaffer S, Dunagin M, Torborg S, Torre E, Emert B, Krepler C, et al. Rare cell variability and drug-induced reprogramming as a mode of cancer drug resistance. Nature. 2017;546:431-435 pubmed 出版商
  490. Zhang K, Myllymäki S, Gao P, Devarajan R, Kytölä V, Nykter M, et al. Oncogenic K-Ras upregulates ITGA6 expression via FOSL1 to induce anoikis resistance and synergizes with αV-Class integrins to promote EMT. Oncogene. 2017;36:5681-5694 pubmed 出版商
  491. Zhang F, Zhu J, Li J, Zhu F, Zhang P. IRF2-INPP4B axis participates in the development of acute myeloid leukemia by regulating cell growth and survival. Gene. 2017;627:9-14 pubmed 出版商
  492. Sun H, Jiang M, Fu X, Cai Q, Zhang J, Yin Y, et al. Mesencephalic astrocyte-derived neurotrophic factor reduces cell apoptosis via upregulating HSP70 in SHSY-5Y cells. Transl Neurodegener. 2017;6:12 pubmed 出版商
  493. Shin C, Lee M, Han J, Jeong S, Ryu B, Chi S. Identification of XAF1-MT2A mutual antagonism as a molecular switch in cell-fate decisions under stressful conditions. Proc Natl Acad Sci U S A. 2017;114:5683-5688 pubmed 出版商
  494. Chatzeli L, Gaete M, Tucker A. Fgf10 and Sox9 are essential for the establishment of distal progenitor cells during mouse salivary gland development. Development. 2017;144:2294-2305 pubmed 出版商
  495. Feldner A, Adam M, Tetzlaff F, Moll I, Komljenovic D, Sahm F, et al. Loss of Mpdz impairs ependymal cell integrity leading to perinatal-onset hydrocephalus in mice. EMBO Mol Med. 2017;9:890-905 pubmed 出版商
  496. Barazzuol L, Ju L, Jeggo P. A coordinated DNA damage response promotes adult quiescent neural stem cell activation. PLoS Biol. 2017;15:e2001264 pubmed 出版商
  497. Lim J, Ibaseta A, Fischer M, Cancilla B, O Young G, Cristea S, et al. Intratumoural heterogeneity generated by Notch signalling promotes small-cell lung cancer. Nature. 2017;545:360-364 pubmed 出版商
  498. Yue X, Zuo Y, Ke H, Luo J, Lou L, Qin W, et al. Identification of 4-arylidene curcumin analogues as novel proteasome inhibitors for potential anticancer agents targeting 19S regulatory particle associated deubiquitinase. Biochem Pharmacol. 2017;137:29-50 pubmed 出版商
  499. Shen H, Xing C, Cui K, Li Y, Zhang J, Du R, et al. MicroRNA-30a attenuates mutant KRAS-driven colorectal tumorigenesis via direct suppression of ME1. Cell Death Differ. 2017;24:1253-1262 pubmed 出版商
  500. Monel B, Compton A, Bruel T, Amraoui S, Burlaud Gaillard J, Roy N, et al. Zika virus induces massive cytoplasmic vacuolization and paraptosis-like death in infected cells. EMBO J. 2017;36:1653-1668 pubmed 出版商
  501. Wang Y, Gao W, Shi X, Ding J, Liu W, He H, et al. Chemotherapy drugs induce pyroptosis through caspase-3 cleavage of a gasdermin. Nature. 2017;547:99-103 pubmed 出版商
  502. Liu Y, Chen X, Li J. Resveratrol protects against oxidized low‑density lipoprotein‑induced human umbilical vein endothelial cell apoptosis via inhibition of mitochondrial‑derived oxidative stress. Mol Med Rep. 2017;15:2457-2464 pubmed 出版商
  503. Frank S, Berger P, Ljungman M, Miranti C. Human prostate luminal cell differentiation requires NOTCH3 induction by p38-MAPK and MYC. J Cell Sci. 2017;130:1952-1964 pubmed 出版商
  504. Riemer P, Rydenfelt M, Marks M, van Eunen K, Thedieck K, Herrmann B, et al. Oncogenic β-catenin and PIK3CA instruct network states and cancer phenotypes in intestinal organoids. J Cell Biol. 2017;216:1567-1577 pubmed 出版商
  505. Lan P, Fan Y, Zhao Y, Lou X, Monsour H, Zhang X, et al. TNF superfamily receptor OX40 triggers invariant NKT cell pyroptosis and liver injury. J Clin Invest. 2017;127:2222-2234 pubmed 出版商
  506. Ando K, PARSONS M, Shah R, Charendoff C, Paris S, Liu P, et al. NPM1 directs PIDDosome-dependent caspase-2 activation in the nucleolus. J Cell Biol. 2017;216:1795-1810 pubmed 出版商
  507. Hou J, Xue J, Lee M, Sung C. Ginsenoside Rd as a potential neuroprotective agent prevents trimethyltin injury. Biomed Rep. 2017;6:435-440 pubmed 出版商
  508. Jiang P, Zhang D, Qiu H, Yi X, Zhang Y, Cao Y, et al. Tiron ameliorates high glucose-induced cardiac myocyte apoptosis by PKCδ-dependent inhibition of osteopontin. Clin Exp Pharmacol Physiol. 2017;44:760-770 pubmed 出版商
  509. He M, Tan B, Vasan K, Yuan H, Cheng F, Ramos da Silva S, et al. SIRT1 and AMPK pathways are essential for the proliferation and survival of primary effusion lymphoma cells. J Pathol. 2017;242:309-321 pubmed 出版商
  510. Xiao Z, Gaertner S, Morresi Hauf A, Genzel R, Duell T, Ullrich A, et al. Metformin Triggers Autophagy to Attenuate Drug-Induced Apoptosis in NSCLC Cells, with Minor Effects on Tumors of Diabetic Patients. Neoplasia. 2017;19:385-395 pubmed 出版商
  511. Gao Y, Zhuang Z, Gao S, Li X, Zhang Z, Ye Z, et al. Tetrahydrocurcumin reduces oxidative stress-induced apoptosis via the mitochondrial apoptotic pathway by modulating autophagy in rats after traumatic brain injury. Am J Transl Res. 2017;9:887-899 pubmed
  512. Wassermann Dozorets R, Rubinstein M. C/EBPβ LIP augments cell death by inducing osteoglycin. Cell Death Dis. 2017;8:e2733 pubmed 出版商
  513. Deng H, Fung G, Qiu Y, Wang C, Zhang J, Jin Z, et al. Cleavage of Grb2-Associated Binding Protein 2 by Viral Proteinase 2A during Coxsackievirus Infection. Front Cell Infect Microbiol. 2017;7:85 pubmed 出版商
  514. Ahmed S, Macara I. The Par3 polarity protein is an exocyst receptor essential for mammary cell survival. Nat Commun. 2017;8:14867 pubmed 出版商
  515. Shimokawa M, Ohta Y, Nishikori S, Matano M, Takano A, Fujii M, et al. Visualization and targeting of LGR5+ human colon cancer stem cells. Nature. 2017;545:187-192 pubmed 出版商
  516. Zhang X, Fan J, Wang S, Li Y, Wang Y, Li S, et al. Targeting CD47 and Autophagy Elicited Enhanced Antitumor Effects in Non-Small Cell Lung Cancer. Cancer Immunol Res. 2017;5:363-375 pubmed 出版商
  517. Mytych J, Romerowicz Misielak M, Koziorowski M. Long-term culture with lipopolysaccharide induces dose-dependent cytostatic and cytotoxic effects in THP-1 monocytes. Toxicol In Vitro. 2017;42:1-9 pubmed 出版商
  518. Keistler C, Hammarlund E, Barker J, Bond C, DiLeone R, Pittenger C, et al. Regulation of Alcohol Extinction and Cue-Induced Reinstatement by Specific Projections among Medial Prefrontal Cortex, Nucleus Accumbens, and Basolateral Amygdala. J Neurosci. 2017;37:4462-4471 pubmed 出版商
  519. Leal Lasarte M, Franco J, Labrador Garrido A, Pozo D, Roodveldt C. Extracellular TDP-43 aggregates target MAPK/MAK/MRK overlapping kinase (MOK) and trigger caspase-3/IL-18 signaling in microglia. FASEB J. 2017;31:2797-2816 pubmed 出版商
  520. Bhattacharya S, Srinivasan K, Abdisalaam S, Su F, Raj P, Dozmorov I, et al. RAD51 interconnects between DNA replication, DNA repair and immunity. Nucleic Acids Res. 2017;45:4590-4605 pubmed 出版商
  521. Xiong G, Hindi S, Mann A, Gallot Y, Bohnert K, Cavener D, et al. The PERK arm of the unfolded protein response regulates satellite cell-mediated skeletal muscle regeneration. elife. 2017;6: pubmed 出版商
  522. Keckesova Z, Donaher J, De Cock J, Freinkman E, Lingrell S, Bachovchin D, et al. LACTB is a tumour suppressor that modulates lipid metabolism and cell state. Nature. 2017;543:681-686 pubmed 出版商
  523. Foo L, Song S, Cohen S. miR-31 mutants reveal continuous glial homeostasis in the adult Drosophila brain. EMBO J. 2017;36:1215-1226 pubmed 出版商
  524. Zhang C, Jiang H, Wang P, Liu H, Sun X. Transcription factor NF-kappa B represses ANT1 transcription and leads to mitochondrial dysfunctions. Sci Rep. 2017;7:44708 pubmed 出版商
  525. Feng W, Kawauchi D, Körkel Qu H, Deng H, Serger E, Sieber L, et al. Chd7 is indispensable for mammalian brain development through activation of a neuronal differentiation programme. Nat Commun. 2017;8:14758 pubmed 出版商
  526. Chambers T, Santiesteban L, Gomez D, Chambers J. Sab mediates mitochondrial dysfunction involved in imatinib mesylate-induced cardiotoxicity. Toxicology. 2017;382:24-35 pubmed 出版商
  527. Riascos Bernal D, Chinnasamy P, Gross J, Almonte V, Egaña Gorroño L, Parikh D, et al. Inhibition of Smooth Muscle ?-Catenin Hinders Neointima Formation After Vascular Injury. Arterioscler Thromb Vasc Biol. 2017;37:879-888 pubmed 出版商
  528. Rong H, Zhao Z, Feng J, Lei Y, Wu H, Sun R, et al. The effects of dexmedetomidine pretreatment on the pro- and anti-inflammation systems after spinal cord injury in rats. Brain Behav Immun. 2017;64:195-207 pubmed 出版商
  529. Sahu U, Choudhury A, Parvez S, Biswas S, Kar S. Induction of intestinal stemness and tumorigenicity by aberrant internalization of commensal non-pathogenic E. coli. Cell Death Dis. 2017;8:e2667 pubmed 出版商
  530. Grasso S, Chapelle J, Salemme V, Aramu S, Russo I, Vitale N, et al. The scaffold protein p140Cap limits ERBB2-mediated breast cancer progression interfering with Rac GTPase-controlled circuitries. Nat Commun. 2017;8:14797 pubmed 出版商
  531. CAROMILE L, Dortche K, Rahman M, Grant C, Stoddard C, Ferrer F, et al. PSMA redirects cell survival signaling from the MAPK to the PI3K-AKT pathways to promote the progression of prostate cancer. Sci Signal. 2017;10: pubmed 出版商
  532. Boutin A, Liao W, Wang M, Hwang S, Karpinets T, Cheung H, et al. Oncogenic Kras drives invasion and maintains metastases in colorectal cancer. Genes Dev. 2017;31:370-382 pubmed 出版商
  533. Huang H, Liu Y, Wang L, Li W. Age-related macular degeneration phenotypes are associated with increased tumor necrosis-alpha and subretinal immune cells in aged Cxcr5 knockout mice. PLoS ONE. 2017;12:e0173716 pubmed 出版商
  534. Jongbloets B, Lemstra S, Schellino R, Broekhoven M, Parkash J, Hellemons A, et al. Stage-specific functions of Semaphorin7A during adult hippocampal neurogenesis rely on distinct receptors. Nat Commun. 2017;8:14666 pubmed 出版商
  535. Samuel S, Ghosh S, Majeed Y, Arunachalam G, Emara M, Ding H, et al. Metformin represses glucose starvation induced autophagic response in microvascular endothelial cells and promotes cell death. Biochem Pharmacol. 2017;132:118-132 pubmed 出版商
  536. Strangward P, Haley M, Shaw T, Schwartz J, Greig R, Mironov A, et al. A quantitative brain map of experimental cerebral malaria pathology. PLoS Pathog. 2017;13:e1006267 pubmed 出版商
  537. Loo L, Bougen Zhukov N, Tan W. Early spatiotemporal-specific changes in intermediate signals are predictive of cytotoxic sensitivity to TNFα and co-treatments. Sci Rep. 2017;7:43541 pubmed 出版商
  538. Cho H, Um J, Lee J, Kim W, Kang W, Kim S, et al. ENOblock, a unique small molecule inhibitor of the non-glycolytic functions of enolase, alleviates the symptoms of type 2 diabetes. Sci Rep. 2017;7:44186 pubmed 出版商
  539. Sharma R, Ishimaru Y, Davison I, Ikegami K, Chien M, You H, et al. Olfactory receptor accessory proteins play crucial roles in receptor function and gene choice. elife. 2017;6: pubmed 出版商
  540. Tian Y, Wu X, Guo S, Ma L, Huang W, Zhao X. Minocycline attenuates sevoflurane-induced cell injury via activation of Nrf2. Int J Mol Med. 2017;39:869-878 pubmed 出版商
  541. Li K, Mo C, Gong D, Chen Y, Huang Z, Li Y, et al. DDX17 nucleocytoplasmic shuttling promotes acquired gefitinib resistance in non-small cell lung cancer cells via activation of β-catenin. Cancer Lett. 2017;400:194-202 pubmed 出版商
  542. Lafont E, Kantari Mimoun C, Dráber P, De Miguel D, Hartwig T, Reichert M, et al. The linear ubiquitin chain assembly complex regulates TRAIL-induced gene activation and cell death. EMBO J. 2017;36:1147-1166 pubmed 出版商
  543. Fu S, Xu H, Gu M, Liu C, Wang Q, Wan X, et al. Adiponectin deficiency contributes to the development and progression of benign prostatic hyperplasia in obesity. Sci Rep. 2017;7:43771 pubmed 出版商
  544. Lee S, Dempsey Hibbert N, Vimalachandran D, Wardle T, Sutton P, Williams J. Re-examining HSPC1 inhibitors. Cell Stress Chaperones. 2017;22:293-306 pubmed 出版商
  545. Shi J, Bei Y, Kong X, Liu X, Lei Z, Xu T, et al. miR-17-3p Contributes to Exercise-Induced Cardiac Growth and Protects against Myocardial Ischemia-Reperfusion Injury. Theranostics. 2017;7:664-676 pubmed 出版商
  546. Kong P, Zhu X, Geng Q, Xia L, Sun X, Chen Y, et al. The microRNA-423-3p-Bim Axis Promotes Cancer Progression and Activates Oncogenic Autophagy in Gastric Cancer. Mol Ther. 2017;25:1027-1037 pubmed 出版商
  547. Iurlaro R, Püschel F, León Annicchiarico C, O Connor H, Martin S, Palou Gramón D, et al. Glucose Deprivation Induces ATF4-Mediated Apoptosis through TRAIL Death Receptors. Mol Cell Biol. 2017;37: pubmed 出版商
  548. Schumacher M, Hedl M, Abraham C, Bernard J, Lozano P, Hsieh J, et al. ErbB4 signaling stimulates pro-inflammatory macrophage apoptosis and limits colonic inflammation. Cell Death Dis. 2017;8:e2622 pubmed 出版商
  549. Menges S, Minakaki G, Schaefer P, Meixner H, Prots I, Schlötzer Schrehardt U, et al. Alpha-synuclein prevents the formation of spherical mitochondria and apoptosis under oxidative stress. Sci Rep. 2017;7:42942 pubmed 出版商
  550. Wang C, Guo L, Wang S, Wang J, Li Y, Dou Y, et al. Anti-proliferative effect of Jesridonin on paclitaxel-resistant EC109 human esophageal carcinoma cells. Int J Mol Med. 2017;39:645-653 pubmed 出版商
  551. Cen M, Hu P, Cai Z, Fang T, Zhang J, Lu M. TIEG1 deficiency confers enhanced myocardial protection in the infarcted heart by mediating the Pten/Akt signalling pathway. Int J Mol Med. 2017;39:569-578 pubmed 出版商
  552. Shi Z, Lee K, Yang D, Amin S, Verma N, Li Q, et al. Genome Editing in hPSCs Reveals GATA6 Haploinsufficiency and a Genetic Interaction with GATA4 in Human Pancreatic Development. Cell Stem Cell. 2017;20:675-688.e6 pubmed 出版商
  553. Cheng F, Pan Y, Lu Y, Zhu L, Chen S. RNA-Binding Protein Dnd1 Promotes Breast Cancer Apoptosis by Stabilizing the Bim mRNA in a miR-221 Binding Site. Biomed Res Int. 2017;2017:9596152 pubmed 出版商
  554. Furukawa S, Nagaike M, Ozaki K. Databases for technical aspects of immunohistochemistry. J Toxicol Pathol. 2017;30:79-107 pubmed 出版商
  555. Schatton D, Pla Martín D, Marx M, Hansen H, Mourier A, Nemazanyy I, et al. CLUH regulates mitochondrial metabolism by controlling translation and decay of target mRNAs. J Cell Biol. 2017;216:675-693 pubmed 出版商
  556. Ercan E, Han J, Di Nardo A, Winden K, Han M, Hoyo L, et al. Neuronal CTGF/CCN2 negatively regulates myelination in a mouse model of tuberous sclerosis complex. J Exp Med. 2017;214:681-697 pubmed 出版商
  557. Genovese G, Carugo A, TEPPER J, Robinson F, Li L, Svelto M, et al. Synthetic vulnerabilities of mesenchymal subpopulations in pancreatic cancer. Nature. 2017;542:362-366 pubmed 出版商
  558. Genovese N, Domeier T, Telugu B, Roberts R. Enhanced Development of Skeletal Myotubes from Porcine Induced Pluripotent Stem Cells. Sci Rep. 2017;7:41833 pubmed 出版商
  559. Zhu Y, Takayama T, Wang B, Kent A, Zhang M, Binder B, et al. Restenosis Inhibition and Re-differentiation of TGFβ/Smad3-activated Smooth Muscle Cells by Resveratrol. Sci Rep. 2017;7:41916 pubmed 出版商
  560. Whittaker D, Riegman K, Kasah S, Mohan C, Yu T, Sala B, et al. The chromatin remodeling factor CHD7 controls cerebellar development by regulating reelin expression. J Clin Invest. 2017;127:874-887 pubmed 出版商
  561. Wu N, Jia D, Bates B, Basom R, Eberhart C, MacPherson D. A mouse model of MYCN-driven retinoblastoma reveals MYCN-independent tumor reemergence. J Clin Invest. 2017;127:888-898 pubmed 出版商
  562. Shen C, Zhou J, Wang X, Yu X, Liang C, Liu B, et al. Angiotensin-II-induced Muscle Wasting is Mediated by 25-Hydroxycholesterol via GSK3? Signaling Pathway. EBioMedicine. 2017;16:238-250 pubmed 出版商
  563. Nita I, Hostettler K, Tamo L, Medová M, Bombaci G, Zhong J, et al. Hepatocyte growth factor secreted by bone marrow stem cell reduce ER stress and improves repair in alveolar epithelial II cells. Sci Rep. 2017;7:41901 pubmed 出版商
  564. Mori J, Tanikawa C, Ohnishi N, Funauchi Y, Toyoshima O, Ueda K, et al. EPSIN 3, A Novel p53 Target, Regulates the Apoptotic Pathway and Gastric Carcinogenesis. Neoplasia. 2017;19:185-195 pubmed 出版商
  565. Vendetti F, Leibowitz B, Barnes J, Schamus S, Kiesel B, Abberbock S, et al. Pharmacologic ATM but not ATR kinase inhibition abrogates p21-dependent G1 arrest and promotes gastrointestinal syndrome after total body irradiation. Sci Rep. 2017;7:41892 pubmed 出版商
  566. Gomaa A, El Aziz E. Vitamin D reduces high-fat diet induced weight gain and C-reactive protein, increases interleukin-10, and reduces CD86 and caspase-3. Pathophysiology. 2017;24:31-37 pubmed 出版商
  567. Chen W, Wang Z, Missinato M, Park D, Long D, Liu H, et al. Decellularized zebrafish cardiac extracellular matrix induces mammalian heart regeneration. Sci Adv. 2016;2:e1600844 pubmed 出版商
  568. Bruce F, Brown S, Smith J, Fuerst P, Erskine L. DSCAM promotes axon fasciculation and growth in the developing optic pathway. Proc Natl Acad Sci U S A. 2017;114:1702-1707 pubmed 出版商
  569. Ha S, Jin F, Kwak C, Abekura F, Park J, Park N, et al. Jellyfish extract induces apoptotic cell death through the p38 pathway and cell cycle arrest in chronic myelogenous leukemia K562 cells. Peerj. 2017;5:e2895 pubmed 出版商
  570. Liu J, Wang H, Gu J, Deng T, Yuan Z, Hu B, et al. BECN1-dependent CASP2 incomplete autophagy induction by binding to rabies virus phosphoprotein. Autophagy. 2017;13:739-753 pubmed 出版商
  571. Liu W, Wang F, Xu Q, Shi J, Zhang X, Lu X, et al. BCAS2 is involved in alternative mRNA splicing in spermatogonia and the transition to meiosis. Nat Commun. 2017;8:14182 pubmed 出版商
  572. Liu J, Wang Y, Song L, Zeng L, Yi W, Liu T, et al. A critical role of DDRGK1 in endoplasmic reticulum homoeostasis via regulation of IRE1α stability. Nat Commun. 2017;8:14186 pubmed 出版商
  573. Weeden C, Chen Y, Ma S, Hu Y, Ramm G, Sutherland K, et al. Lung Basal Stem Cells Rapidly Repair DNA Damage Using the Error-Prone Nonhomologous End-Joining Pathway. PLoS Biol. 2017;15:e2000731 pubmed 出版商
  574. Li M, Yuan Y, Hu B, Wu L. Study on Lentivirus-Mediated ABCA7 Improves Neurocognitive Function and Related Mechanisms in the C57BL/6 Mouse Model of Alzheimer's Disease. J Mol Neurosci. 2017;61:489-497 pubmed 出版商
  575. Cai L, Wang H, Yang Q. CRKL overexpression promotes cell proliferation and inhibits apoptosis in endometrial carcinoma. Oncol Lett. 2017;13:51-56 pubmed 出版商
  576. Feng L, Zhang J, Zhu N, Ding Q, Zhang X, Yu J, et al. Ubiquitin ligase SYVN1/HRD1 facilitates degradation of the SERPINA1 Z variant/?-1-antitrypsin Z variant via SQSTM1/p62-dependent selective autophagy. Autophagy. 2017;13:686-702 pubmed 出版商
  577. Qi Y, Zhang X, Renier N, Wu Z, Atkin T, Sun Z, et al. Combined small-molecule inhibition accelerates the derivation of functional cortical neurons from human pluripotent stem cells. Nat Biotechnol. 2017;35:154-163 pubmed 出版商
  578. Villar V, Nguyen T, Delcroix V, Terés S, Bouchecareilh M, Salin B, et al. mTORC1 inhibition in cancer cells protects from glutaminolysis-mediated apoptosis during nutrient limitation. Nat Commun. 2017;8:14124 pubmed 出版商
  579. Bershteyn M, Nowakowski T, Pollen A, Di Lullo E, Nene A, Wynshaw Boris A, et al. Human iPSC-Derived Cerebral Organoids Model Cellular Features of Lissencephaly and Reveal Prolonged Mitosis of Outer Radial Glia. Cell Stem Cell. 2017;20:435-449.e4 pubmed 出版商
  580. Tanzer M, Khan N, Rickard J, Etemadi N, Lalaoui N, Spall S, et al. Combination of IAP antagonist and IFNγ activates novel caspase-10- and RIPK1-dependent cell death pathways. Cell Death Differ. 2017;24:481-491 pubmed 出版商
  581. Xu S, Yang Z, Fan Y, Guan B, Jia J, Gao Y, et al. Curcumin enhances temsirolimus-induced apoptosis in human renal carcinoma cells through upregulation of YAP/p53. Oncol Lett. 2016;12:4999-5006 pubmed 出版商
  582. Gan J, Wang F, Mu D, Qu Y, Luo R, Wang Q. RNA interference targeting Aurora-A sensitizes glioblastoma cells to temozolomide chemotherapy. Oncol Lett. 2016;12:4515-4523 pubmed 出版商
  583. Chang V, Tsai Y, Tsai Y, Peng S, Chen S, Chang T, et al. Krüpple-like factor 10 regulates radio-sensitivity of pancreatic cancer via UV radiation resistance-associated gene. Radiother Oncol. 2017;122:476-484 pubmed 出版商
  584. Peng Y, Shi X, Li Z, He X, Sun Y. Particularly interesting Cys-His-rich protein is highly expressed in human intracranial aneurysms and resists aneurysmal rupture. Exp Ther Med. 2016;12:3905-3912 pubmed 出版商
  585. Nakazawa H, Chang K, Shinozaki S, Yasukawa T, Ishimaru K, Yasuhara S, et al. iNOS as a Driver of Inflammation and Apoptosis in Mouse Skeletal Muscle after Burn Injury: Possible Involvement of Sirt1 S-Nitrosylation-Mediated Acetylation of p65 NF-κB and p53. PLoS ONE. 2017;12:e0170391 pubmed 出版商
  586. Chandravanshi B, Bhonde R. Shielding Engineered Islets With Mesenchymal Stem Cells Enhance Survival Under Hypoxia. J Cell Biochem. 2017;118:2672-2683 pubmed 出版商
  587. Cao H, Yu S, Chen D, Jing C, Wang Z, Ma R, et al. Liver X receptor agonist T0901317 reverses resistance of A549 human lung cancer cells to EGFR-TKI treatment. FEBS Open Bio. 2017;7:35-43 pubmed 出版商
  588. Irrera N, Vaccaro M, Bitto A, Pallio G, Pizzino G, Lentini M, et al. BAY 11-7082 inhibits the NF-?B and NLRP3 inflammasome pathways and protects against IMQ-induced psoriasis. Clin Sci (Lond). 2017;131:487-498 pubmed 出版商
  589. Mescher M, Jeong P, Knapp S, Rübsam M, Saynisch M, Kranen M, et al. The epidermal polarity protein Par3 is a non-cell autonomous suppressor of malignant melanoma. J Exp Med. 2017;214:339-358 pubmed 出版商
  590. Aksoy P, Meneses P. The Role of DCT in HPV16 Infection of HaCaTs. PLoS ONE. 2017;12:e0170158 pubmed 出版商
  591. Adams C, Kim A, Mitra R, Choi J, Gong J, Eischen C. BCL-W has a fundamental role in B cell survival and lymphomagenesis. J Clin Invest. 2017;127:635-650 pubmed 出版商
  592. Sizdahkhani S, Feldman M, Piazza M, Ksendzovsky A, Edwards N, Ray Chaudhury A, et al. Somatostatin receptor expression on von Hippel-Lindau-associated hemangioblastomas offers novel therapeutic target. Sci Rep. 2017;7:40822 pubmed 出版商
  593. Yue F, Bi P, Wang C, Shan T, Nie Y, Ratliff T, et al. Pten is necessary for the quiescence and maintenance of adult muscle stem cells. Nat Commun. 2017;8:14328 pubmed 出版商
  594. Pal D, Pertot A, Shirole N, Yao Z, Anaparthy N, Garvin T, et al. TGF-β reduces DNA ds-break repair mechanisms to heighten genetic diversity and adaptability of CD44+/CD24- cancer cells. elife. 2017;6: pubmed 出版商
  595. Xu J, Zhou W, Yang F, Chen G, Li H, Zhao Y, et al. The β-TrCP-FBXW2-SKP2 axis regulates lung cancer cell growth with FBXW2 acting as a tumour suppressor. Nat Commun. 2017;8:14002 pubmed 出版商
  596. Hurst L, Dunmore B, Long L, Crosby A, Al Lamki R, Deighton J, et al. TNFα drives pulmonary arterial hypertension by suppressing the BMP type-II receptor and altering NOTCH signalling. Nat Commun. 2017;8:14079 pubmed 出版商
  597. Oben K, Gachuki B, Alhakeem S, McKenna M, Liang Y, St Clair D, et al. Radiation Induced Apoptosis of Murine Bone Marrow Cells Is Independent of Early Growth Response 1 (EGR1). PLoS ONE. 2017;12:e0169767 pubmed 出版商
  598. Muranen T, Iwanicki M, Curry N, Hwang J, DuBois C, Coloff J, et al. Starved epithelial cells uptake extracellular matrix for survival. Nat Commun. 2017;8:13989 pubmed 出版商
  599. Bai H, Lee J, Chen E, Wang M, Xing Y, Fahmy T, et al. Covalent modification of pericardial patches for sustained rapamycin delivery inhibits venous neointimal hyperplasia. Sci Rep. 2017;7:40142 pubmed 出版商
  600. Yamauchi T, Nishiyama M, Moroishi T, Kawamura A, Nakayama K. FBXL5 Inactivation in Mouse Brain Induces Aberrant Proliferation of Neural Stem Progenitor Cells. Mol Cell Biol. 2017;37: pubmed 出版商
  601. Grzesiak J, Smieszek A, Marycz K. Ultrastructural changes during osteogenic differentiation in mesenchymal stromal cells cultured in alginate hydrogel. Cell Biosci. 2017;7:2 pubmed 出版商
  602. Wonderlich E, Swan Z, Bissel S, Hartman A, Carney J, O Malley K, et al. Widespread Virus Replication in Alveoli Drives Acute Respiratory Distress Syndrome in Aerosolized H5N1 Influenza Infection of Macaques. J Immunol. 2017;198:1616-1626 pubmed 出版商
  603. Ceulemans L, Verbeke L, Decuypere J, Farre R, De Hertogh G, Lenaerts K, et al. Farnesoid X Receptor Activation Attenuates Intestinal Ischemia Reperfusion Injury in Rats. PLoS ONE. 2017;12:e0169331 pubmed 出版商
  604. Li G, Fu R, Shen H, Zhou J, Hu X, Liu Y, et al. Polyphyllin I induces mitophagic and apoptotic cell death in human breast cancer cells by increasing mitochondrial PINK1 levels. Oncotarget. 2017;8:10359-10374 pubmed 出版商
  605. Malek Mohammadi M, Kattih B, Grund A, Froese N, Korf Klingebiel M, Gigina A, et al. The transcription factor GATA4 promotes myocardial regeneration in neonatal mice. EMBO Mol Med. 2017;9:265-279 pubmed 出版商
  606. Hennika T, Hu G, Olaciregui N, Barton K, Ehteda A, Chitranjan A, et al. Pre-Clinical Study of Panobinostat in Xenograft and Genetically Engineered Murine Diffuse Intrinsic Pontine Glioma Models. PLoS ONE. 2017;12:e0169485 pubmed 出版商
  607. Liu X, Shao Z, Jiang W, Lee B, Zha S. PAXX promotes KU accumulation at DNA breaks and is essential for end-joining in XLF-deficient mice. Nat Commun. 2017;8:13816 pubmed 出版商
  608. Engler J, Kursawe N, Solano M, Patas K, Wehrmann S, Heckmann N, et al. Glucocorticoid receptor in T cells mediates protection from autoimmunity in pregnancy. Proc Natl Acad Sci U S A. 2017;114:E181-E190 pubmed 出版商
  609. Dergilev K, Makarevich P, Tsokolaeva Z, Boldyreva M, Beloglazova I, Zubkova E, et al. Comparison of cardiac stem cell sheets detached by Versene solution and from thermoresponsive dishes reveals similar properties of constructs. Tissue Cell. 2017;49:64-71 pubmed 出版商
  610. Erekat N. Cerebellar Purkinje cells die by apoptosis in the shaker mutant rat. Brain Res. 2017;1657:323-332 pubmed 出版商
  611. Kim H, Lee S, Kim C, Kim Y, Ju W, Kim S. Subcellular localization of FOXO3a as a potential biomarker of response to combined treatment with inhibitors of PI3K and autophagy in PIK3CA-mutant cancer cells. Oncotarget. 2017;8:6608-6622 pubmed 出版商
  612. Song L, Yu A, Murray K, Cortopassi G. Bipolar cell reduction precedes retinal ganglion neuron loss in a complex 1 knockout mouse model. Brain Res. 2017;1657:232-244 pubmed 出版商
  613. Mytych J, Wos I, Solek P, Koziorowski M. Protective role of klotho protein on epithelial cells upon co-culture with activated or senescent monocytes. Exp Cell Res. 2017;350:358-367 pubmed 出版商
  614. Sun J, Liu X, Gao H, Zhang L, Ji Q, Wang Z, et al. Overexpression of colorectal cancer oncogene CHRDL2 predicts a poor prognosis. Oncotarget. 2017;8:11489-11506 pubmed 出版商
  615. Chao M, Guo J, Cheng W, Zhu X, She Z, Huang Z, et al. Loss of Caspase-Activated DNase Protects Against Atherosclerosis in Apolipoprotein E-Deficient Mice. J Am Heart Assoc. 2016;5: pubmed 出版商
  616. Ren Z, Aerts J, Vandenplas H, Wang J, Gorbenko O, Chen J, et al. Phosphorylated STAT5 regulates p53 expression via BRCA1/BARD1-NPM1 and MDM2. Cell Death Dis. 2016;7:e2560 pubmed 出版商
  617. Damas N, Marcatti M, Come C, Christensen L, Nielsen M, Baumgartner R, et al. SNHG5 promotes colorectal cancer cell survival by counteracting STAU1-mediated mRNA destabilization. Nat Commun. 2016;7:13875 pubmed 出版商
  618. Polanco M, Parodi S, Piol D, Stack C, Chivet M, Contestabile A, et al. Adenylyl cyclase activating polypeptide reduces phosphorylation and toxicity of the polyglutamine-expanded androgen receptor in spinobulbar muscular atrophy. Sci Transl Med. 2016;8:370ra181 pubmed 出版商
  619. Braganza A, Li J, Zeng X, Yates N, Dey N, Andrews J, et al. UBE3B Is a Calmodulin-regulated, Mitochondrion-associated E3 Ubiquitin Ligase. J Biol Chem. 2017;292:2470-2484 pubmed 出版商
  620. Leow S, Chua S, Venkatachalam G, Shen L, Luo L, Clement M. Sub-lethal oxidative stress induces lysosome biogenesis via a lysosomal membrane permeabilization-cathepsin-caspase 3-transcription factor EB-dependent pathway. Oncotarget. 2017;8:16170-16189 pubmed 出版商
  621. Fodor R, Georgescu A, Grigorescu B, Cioc A, Veres M, Cotoi O, et al. Caspase 3 expression and plasma level of Fas ligand as apoptosis biomarkers in inflammatory endotoxemic lung injury. Rom J Morphol Embryol. 2016;57:951-957 pubmed
  622. Vakana E, Pratt S, Blosser W, Dowless M, Simpson N, Yuan X, et al. LY3009120, a panRAF inhibitor, has significant anti-tumor activity in BRAF and KRAS mutant preclinical models of colorectal cancer. Oncotarget. 2017;8:9251-9266 pubmed 出版商
  623. Kirschmer N, Bandleon S, von Ehrlich Treuenstätt V, Hartmann S, Schaaf A, Lamprecht A, et al. TRPC4? and TRPC4? Similarly Affect Neonatal Cardiomyocyte Survival during Chronic GPCR Stimulation. PLoS ONE. 2016;11:e0168446 pubmed 出版商
  624. Dawar S, Lim Y, Puccini J, White M, Thomas P, Bouchier Hayes L, et al. Caspase-2-mediated cell death is required for deleting aneuploid cells. Oncogene. 2017;36:2704-2714 pubmed 出版商
  625. Wang F, Jia J, Lal N, Zhang D, Chiu A, Wan A, et al. High glucose facilitated endothelial heparanase transfer to the cardiomyocyte modifies its cell death signature. Cardiovasc Res. 2016;112:656-668 pubmed
  626. Pascual G, Avgustinova A, Mejetta S, Martin M, Castellanos A, Attolini C, et al. Targeting metastasis-initiating cells through the fatty acid receptor CD36. Nature. 2017;541:41-45 pubmed 出版商
  627. Lloyd Lewis B, Davis F, Harris O, Hitchcock J, Lourenco F, Pasche M, et al. Imaging the mammary gland and mammary tumours in 3D: optical tissue clearing and immunofluorescence methods. Breast Cancer Res. 2016;18:127 pubmed
  628. Graveline R, Marcinkiewicz K, Choi S, Paquet M, Wurst W, Floss T, et al. The Chromatin-Associated Phf12 Protein Maintains Nucleolar Integrity and Prevents Premature Cellular Senescence. Mol Cell Biol. 2017;37: pubmed 出版商
  629. Janakiraman H, House R, Talwar S, Courtney S, Hazard E, Hardiman G, et al. Repression of caspase-3 and RNA-binding protein HuR cleavage by cyclooxygenase-2 promotes drug resistance in oral squamous cell carcinoma. Oncogene. 2017;36:3137-3148 pubmed 出版商
  630. Suzuki J, Nakajima W, Suzuki H, Asano Y, Tanaka N. Chaperone-mediated autophagy promotes lung cancer cell survival through selective stabilization of the pro-survival protein, MCL1. Biochem Biophys Res Commun. 2017;482:1334-1340 pubmed 出版商
  631. Mukhopadhyay C, Triplett A, Bargar T, HECKMAN C, Wagner K, Naramura M. Casitas B-cell lymphoma (Cbl) proteins protect mammary epithelial cells from proteotoxicity of active c-Src accumulation. Proc Natl Acad Sci U S A. 2016;113:E8228-E8237 pubmed 出版商
  632. Cai H, Liu A. Spop promotes skeletal development and homeostasis by positively regulating Ihh signaling. Proc Natl Acad Sci U S A. 2016;113:14751-14756 pubmed 出版商
  633. Lim S, Hwang S, Yu J, Lim J, Kim H. Lycopene inhibits regulator of calcineurin 1-mediated apoptosis by reducing oxidative stress and down-regulating Nucling in neuronal cells. Mol Nutr Food Res. 2017;61: pubmed 出版商
  634. Seo B, Min K, Woo S, Choe M, Choi K, Lee Y, et al. Inhibition of Cathepsin S Induces Mitochondrial ROS That Sensitizes TRAIL-Mediated Apoptosis Through p53-Mediated Downregulation of Bcl-2 and c-FLIP. Antioxid Redox Signal. 2017;27:215-233 pubmed 出版商
  635. Park S, Jwa E, Shin S, Ju E, Park I, Pak J, et al. Ibulocydine sensitizes human hepatocellular carcinoma cells to TRAIL-induced apoptosis via calpain-mediated Bax cleavage. Int J Biochem Cell Biol. 2017;83:47-55 pubmed 出版商
  636. Retallack H, Di Lullo E, Arias C, Knopp K, Laurie M, Sandoval Espinosa C, et al. Zika virus cell tropism in the developing human brain and inhibition by azithromycin. Proc Natl Acad Sci U S A. 2016;113:14408-14413 pubmed
  637. Li M, Bozzacco L, Hoffmann H, Breton G, Loschko J, Xiao J, et al. Interferon regulatory factor 2 protects mice from lethal viral neuroinvasion. J Exp Med. 2016;213:2931-2947 pubmed
  638. Bangi E, Murgia C, Teague A, Sansom O, Cagan R. Functional exploration of colorectal cancer genomes using Drosophila. Nat Commun. 2016;7:13615 pubmed 出版商
  639. McKenzie C, D Avino P. Investigating cytokinesis failure as a strategy in cancer therapy. Oncotarget. 2016;7:87323-87341 pubmed 出版商
  640. Mosteiro L, Pantoja C, Alcazar N, Marion R, Chondronasiou D, Rovira M, et al. Tissue damage and senescence provide critical signals for cellular reprogramming in vivo. Science. 2016;354: pubmed
  641. Hu J, Li B, Apisa L, Yu H, Entenman S, Xu M, et al. ER stress inhibitor attenuates hearing loss and hair cell death in Cdh23erl/erl mutant mice. Cell Death Dis. 2016;7:e2485 pubmed 出版商
  642. Liu Z, Gan L, Wu T, Feng F, Luo D, Gu H, et al. Adiponectin reduces ER stress-induced apoptosis through PPARα transcriptional regulation of ATF2 in mouse adipose. Cell Death Dis. 2016;7:e2487 pubmed 出版商
  643. Su F, Myers V, Knezevic T, Wang J, Gao E, Madesh M, et al. Bcl-2-associated athanogene 3 protects the heart from ischemia/reperfusion injury. JCI Insight. 2016;1:e90931 pubmed 出版商
  644. Zhu X, Wang K, Zhang K, Zhang T, Yin Y, Xu F. Ziyuglycoside I Inhibits the Proliferation of MDA-MB-231 Breast Carcinoma Cells through Inducing p53-Mediated G2/M Cell Cycle Arrest and Intrinsic/Extrinsic Apoptosis. Int J Mol Sci. 2016;17: pubmed
  645. Morishita M, Kawamoto T, Hara H, Onishi Y, Ueha T, Minoda M, et al. AICAR induces mitochondrial apoptosis in human osteosarcoma cells through an AMPK-dependent pathway. Int J Oncol. 2017;50:23-30 pubmed 出版商
  646. Bosch P, Fuller L, Sleeth C, Weiner J. Akirin2 is essential for the formation of the cerebral cortex. Neural Dev. 2016;11:21 pubmed
  647. Yang S, Lee D, Shin J, Lee S, Baek S, Kim J, et al. Nec-1 alleviates cognitive impairment with reduction of Aβ and tau abnormalities in APP/PS1 mice. EMBO Mol Med. 2017;9:61-77 pubmed 出版商
  648. Ravà M, D Andrea A, Doni M, Kress T, Ostuni R, Bianchi V, et al. Mutual epithelium-macrophage dependency in liver carcinogenesis mediated by ST18. Hepatology. 2017;65:1708-1719 pubmed 出版商
  649. Paris N, Soroka A, Klose A, Liu W, Chakkalakal J. Smad4 restricts differentiation to promote expansion of satellite cell derived progenitors during skeletal muscle regeneration. elife. 2016;5: pubmed 出版商
  650. Shi D, Liu Y, Xi R, Zou W, Wu L, Zhang Z, et al. Caveolin-1 contributes to realgar nanoparticle therapy in human chronic myelogenous leukemia K562 cells. Int J Nanomedicine. 2016;11:5823-5835 pubmed
  651. Grootaert M, Schrijvers D, Hermans M, Van Hoof V, De Meyer G, Martinet W. Caspase-3 Deletion Promotes Necrosis in Atherosclerotic Plaques of ApoE Knockout Mice. Oxid Med Cell Longev. 2016;2016:3087469 pubmed
  652. Zeltner N, Fattahi F, Dubois N, Saurat N, Lafaille F, Shang L, et al. Capturing the biology of disease severity in a PSC-based model of familial dysautonomia. Nat Med. 2016;22:1421-1427 pubmed 出版商
  653. Thompson J, Nguyen Q, Singh M, Pavesic M, Nesterenko I, Nelson L, et al. Rho-associated kinase 1 inhibition is synthetically lethal with von Hippel-Lindau deficiency in clear cell renal cell carcinoma. Oncogene. 2017;36:1080-1089 pubmed 出版商
  654. Roversi F, Pericole F, Machado Neto J, da Silva Santos Duarte A, Longhini A, Corrocher F, et al. Hematopoietic cell kinase (HCK) is a potential therapeutic target for dysplastic and leukemic cells due to integration of erythropoietin/PI3K pathway and regulation of erythropoiesis: HCK in erythropoietin/PI3K pathway. Biochim Biophys Acta Mol Basis Dis. 2017;1863:450-461 pubmed 出版商
  655. Abdelrazek H, Helmy S, Elsayed D, Ebaid H, Mohamed R. Ameliorating effects of green tea extract on cadmium induced reproductive injury in male Wistar rats with respect to androgen receptors and caspase- 3. Reprod Biol. 2016;16:300-308 pubmed 出版商
  656. Martínez Castillo M, Bonilla Moreno R, Alemán Lazarini L, Meraz Rios M, Orozco L, Cedillo Barron L, et al. A Subpopulation of the K562 Cells Are Killed by Curcumin Treatment after G2/M Arrest and Mitotic Catastrophe. PLoS ONE. 2016;11:e0165971 pubmed 出版商
  657. Filliol A, Piquet Pellorce C, Le Seyec J, Farooq M, Genet V, Lucas Clerc C, et al. RIPK1 protects from TNF-α-mediated liver damage during hepatitis. Cell Death Dis. 2016;7:e2462 pubmed 出版商
  658. Park J, Lee C, Kim H, Kim D, Son J, Ko E, et al. Suppression of the metastatic spread of breast cancer by DN10764 (AZD7762)-mediated inhibition of AXL signaling. Oncotarget. 2016;7:83308-83318 pubmed 出版商
  659. Cousins F, Kirkwood P, Saunders P, Gibson D. Evidence for a dynamic role for mononuclear phagocytes during endometrial repair and remodelling. Sci Rep. 2016;6:36748 pubmed 出版商
  660. Bassett E, Tokarew N, Allemano E, Mazerolle C, Morin K, Mears A, et al. Norrin/Frizzled4 signalling in the preneoplastic niche blocks medulloblastoma initiation. elife. 2016;5: pubmed 出版商
  661. Okondo M, Johnson D, Sridharan R, Go E, Chui A, Wang M, et al. DPP8 and DPP9 inhibition induces pro-caspase-1-dependent monocyte and macrophage pyroptosis. Nat Chem Biol. 2017;13:46-53 pubmed 出版商
  662. Marichal T, Gaudenzio N, El Abbas S, Sibilano R, Zurek O, Starkl P, et al. Guanine nucleotide exchange factor RABGEF1 regulates keratinocyte-intrinsic signaling to maintain skin homeostasis. J Clin Invest. 2016;126:4497-4515 pubmed 出版商
  663. Dallavalle C, Albino D, Civenni G, Merulla J, Ostano P, Mello Grand M, et al. MicroRNA-424 impairs ubiquitination to activate STAT3 and promote prostate tumor progression. J Clin Invest. 2016;126:4585-4602 pubmed 出版商
  664. Lin J, Kumari S, Kim C, Van T, Wachsmuth L, Polykratis A, et al. RIPK1 counteracts ZBP1-mediated necroptosis to inhibit inflammation. Nature. 2016;540:124-128 pubmed 出版商
  665. Pan S, Li S, Hu Y, Zhang H, Liu Y, Jiang H, et al. Resveratrol post-treatment protects against neonatal brain injury after hypoxia-ischemia. Oncotarget. 2016;7:79247-79261 pubmed 出版商
  666. Kitsati N, Mantzaris M, Galaris D. Hydroxytyrosol inhibits hydrogen peroxide-induced apoptotic signaling via labile iron chelation. Redox Biol. 2016;10:233-242 pubmed 出版商
  667. Pu X, Storr S, Zhang Y, Rakha E, Green A, Ellis I, et al. Caspase-3 and caspase-8 expression in breast cancer: caspase-3 is associated with survival. Apoptosis. 2017;22:357-368 pubmed 出版商
  668. Yu W, Parakramaweera R, Teng S, Gowda M, Sharad Y, Thakker Varia S, et al. Oxidation of KCNB1 Potassium Channels Causes Neurotoxicity and Cognitive Impairment in a Mouse Model of Traumatic Brain Injury. J Neurosci. 2016;36:11084-11096 pubmed
  669. Tahmasebi S, Jafarnejad S, Tam I, Gonatopoulos Pournatzis T, Matta Camacho E, Tsukumo Y, et al. Control of embryonic stem cell self-renewal and differentiation via coordinated alternative splicing and translation of YY2. Proc Natl Acad Sci U S A. 2016;113:12360-12367 pubmed
  670. Lian G, Dettenhofer M, Lu J, Downing M, Chenn A, Wong T, et al. Filamin A- and formin 2-dependent endocytosis regulates proliferation via the canonical Wnt pathway. Development. 2016;143:4509-4520 pubmed
  671. Laclair K, Donde A, Ling J, Jeong Y, Chhabra R, Martin L, et al. Depletion of TDP-43 decreases fibril and plaque β-amyloid and exacerbates neurodegeneration in an Alzheimer's mouse model. Acta Neuropathol. 2016;132:859-873 pubmed
  672. Sun H, Zhang M, Cheng K, Li P, Han S, Li R, et al. Resistance of glioma cells to nutrient-deprived microenvironment can be enhanced by CD133-mediated autophagy. Oncotarget. 2016;7:76238-76249 pubmed 出版商
  673. Graus Nunes F, Marinho T, Barbosa da Silva S, Aguila M, Mandarim de Lacerda C, Souza Mello V. Differential effects of angiotensin receptor blockers on pancreatic islet remodelling and glucose homeostasis in diet-induced obese mice. Mol Cell Endocrinol. 2017;439:54-64 pubmed 出版商
  674. Parrales A, Ranjan A, Iyer S, Padhye S, Weir S, Roy A, et al. DNAJA1 controls the fate of misfolded mutant p53 through the mevalonate pathway. Nat Cell Biol. 2016;18:1233-1243 pubmed 出版商
  675. Schlierf A, Altmann E, Quancard J, Jefferson A, Assenberg R, Renatus M, et al. Targeted inhibition of the COP9 signalosome for treatment of cancer. Nat Commun. 2016;7:13166 pubmed 出版商
  676. Kunzler A, Zeidán Chuliá F, Gasparotto J, Girardi C, Klafke K, Petiz L, et al. Changes in Cell Cycle and Up-Regulation of Neuronal Markers During SH-SY5Y Neurodifferentiation by Retinoic Acid are Mediated by Reactive Species Production and Oxidative Stress. Mol Neurobiol. 2017;54:6903-6916 pubmed 出版商
  677. Fielitz K, Althoff K, De Preter K, Nonnekens J, Ohli J, Elges S, et al. Characterization of pancreatic glucagon-producing tumors and pituitary gland tumors in transgenic mice overexpressing MYCN in hGFAP-positive cells. Oncotarget. 2016;7:74415-74426 pubmed 出版商
  678. Ulbrich F, Kaufmann K, Meske A, Lagrèze W, Augustynik M, Buerkle H, et al. The CORM ALF-186 Mediates Anti-Apoptotic Signaling via an Activation of the p38 MAPK after Ischemia and Reperfusion Injury in Retinal Ganglion Cells. PLoS ONE. 2016;11:e0165182 pubmed 出版商
  679. Takai K, Le A, Weaver V, Werb Z. Targeting the cancer-associated fibroblasts as a treatment in triple-negative breast cancer. Oncotarget. 2016;7:82889-82901 pubmed 出版商
  680. Arora R, Sawney S, Saini V, Steffi C, Tiwari M, Saluja D. Esculetin induces antiproliferative and apoptotic response in pancreatic cancer cells by directly binding to KEAP1. Mol Cancer. 2016;15:64 pubmed
  681. Yang L, Liu Y, Wang M, Qian Y, Dong X, Gu H, et al. Quercetin-induced apoptosis of HT-29 colon cancer cells via inhibition of the Akt-CSN6-Myc signaling axis. Mol Med Rep. 2016;14:4559-4566 pubmed 出版商
  682. Khalaj K, Luna R, de França M, de Oliveira W, Peixoto C, Tayade C. RNA binding protein, tristetraprolin in a murine model of recurrent pregnancy loss. Oncotarget. 2016;7:72486-72502 pubmed 出版商
  683. Southard S, Kim J, Low S, Tsika R, Lepper C. Myofiber-specific TEAD1 overexpression drives satellite cell hyperplasia and counters pathological effects of dystrophin deficiency. elife. 2016;5: pubmed 出版商
  684. Pang Y, Dai X, Roller A, Carter K, Paul I, Bhatt A, et al. Early Postnatal Lipopolysaccharide Exposure Leads to Enhanced Neurogenesis and Impaired Communicative Functions in Rats. PLoS ONE. 2016;11:e0164403 pubmed 出版商
  685. Hrgovic I, Doll M, Kleemann J, Wang X, Zoeller N, Pinter A, et al. The histone deacetylase inhibitor trichostatin a decreases lymphangiogenesis by inducing apoptosis and cell cycle arrest via p21-dependent pathways. BMC Cancer. 2016;16:763 pubmed
  686. Seemann S, Lupp A. Administration of AMD3100 in endotoxemia is associated with pro-inflammatory, pro-oxidative, and pro-apoptotic effects in vivo. J Biomed Sci. 2016;23:68 pubmed
  687. Parween S, Kostromina E, Nord C, Eriksson M, Lindstrom P, Ahlgren U. Intra-islet lesions and lobular variations in ?-cell mass expansion in ob/ob mice revealed by 3D imaging of intact pancreas. Sci Rep. 2016;6:34885 pubmed 出版商
  688. Guan S, Zhao Y, Lu J, Yu Y, Sun W, Mao X, et al. Second-generation proteasome inhibitor carfilzomib sensitizes neuroblastoma cells to doxorubicin-induced apoptosis. Oncotarget. 2016;7:75914-75925 pubmed 出版商
  689. Nonomiya Y, Noguchi K, Tanaka N, Kasagaki T, Katayama K, Sugimoto Y. Effect of AKT3 expression on MYC- and caspase-8-dependent apoptosis caused by polo-like kinase inhibitors in HCT 116 cells. Cancer Sci. 2016;107:1877-1887 pubmed 出版商
  690. Vodicka P, Chase K, Iuliano M, Tousley A, Valentine D, Sapp E, et al. Autophagy Activation by Transcription Factor EB (TFEB) in Striatum of HDQ175/Q7 Mice. J Huntingtons Dis. 2016;5:249-260 pubmed
  691. Wang C, Zhang F, Cao Y, Zhang M, Wang A, Xu M, et al. Etoposide Induces Apoptosis in Activated Human Hepatic Stellate Cells via ER Stress. Sci Rep. 2016;6:34330 pubmed 出版商
  692. Wei R, Lin S, Wu W, Chen L, Li C, Chen H, et al. A microtubule inhibitor, ABT-751, induces autophagy and delays apoptosis in Huh-7 cells. Toxicol Appl Pharmacol. 2016;311:88-98 pubmed 出版商
  693. Joo D, Tang Y, Blonska M, Jin J, Zhao X, Lin X. Regulation of Linear Ubiquitin Chain Assembly Complex by Caspase-Mediated Cleavage of RNF31. Mol Cell Biol. 2016;36:3010-3018 pubmed
  694. Choi Y, Maki T, Mandeville E, Koh S, Hayakawa K, Arai K, et al. Dual effects of carbon monoxide on pericytes and neurogenesis in traumatic brain injury. Nat Med. 2016;22:1335-1341 pubmed 出版商
  695. Fogarty L, Song B, Suppiah Y, Hasan S, Martin H, Hogan S, et al. Bcl-xL dependency coincides with the onset of neurogenesis in the developing mammalian spinal cord. Mol Cell Neurosci. 2016;77:34-46 pubmed 出版商
  696. Yoffe Y, David M, Kalaora R, Povodovski L, Friedlander G, Feldmesser E, et al. Cap-independent translation by DAP5 controls cell fate decisions in human embryonic stem cells. Genes Dev. 2016;30:1991-2004 pubmed 出版商
  697. Cao R, Meng Z, Liu T, Wang G, Qian G, Cao T, et al. Decreased TRPM7 inhibits activities and induces apoptosis of bladder cancer cells via ERK1/2 pathway. Oncotarget. 2016;7:72941-72960 pubmed 出版商
  698. Asnaghi L, Tripathy A, Yang Q, Kaur H, Hanaford A, Yu W, et al. Targeting Notch signaling as a novel therapy for retinoblastoma. Oncotarget. 2016;7:70028-70044 pubmed 出版商
  699. Ghorai A, Sarma A, Chowdhury P, Ghosh U. PARP-1 depletion in combination with carbon ion exposure significantly reduces MMPs activity and overall increases TIMPs expression in cultured HeLa cells. Radiat Oncol. 2016;11:126 pubmed
  700. Treindl F, Ruprecht B, Beiter Y, Schultz S, Döttinger A, Staebler A, et al. A bead-based western for high-throughput cellular signal transduction analyses. Nat Commun. 2016;7:12852 pubmed 出版商
  701. Xiong J, Zhou M, Wang Y, Chen L, Xu W, Wang Y, et al. Protein Kinase D2 Protects against Acute Colitis Induced by Dextran Sulfate Sodium in Mice. Sci Rep. 2016;6:34079 pubmed 出版商
  702. Krepler C, Xiao M, Samanta M, Vultur A, Chen H, Brafford P, et al. Targeting Notch enhances the efficacy of ERK inhibitors in BRAF-V600E melanoma. Oncotarget. 2016;7:71211-71222 pubmed 出版商
  703. Shi Y, Yu Y, Wang Z, Wang H, Bieerkehazhi S, Zhao Y, et al. Second-generation proteasome inhibitor carfilzomib enhances doxorubicin-induced cytotoxicity and apoptosis in breast cancer cells. Oncotarget. 2016;7:73697-73710 pubmed 出版商
  704. D Andrea A, Gritti I, Nicoli P, Giorgio M, Doni M, Conti A, et al. The mitochondrial translation machinery as a therapeutic target in Myc-driven lymphomas. Oncotarget. 2016;7:72415-72430 pubmed 出版商
  705. Bain V, Gordon J, O Neil J, Ramos I, Richie E, Manley N. Tissue-specific roles for sonic hedgehog signaling in establishing thymus and parathyroid organ fate. Development. 2016;143:4027-4037 pubmed
  706. Wang D, Kon N, Lasso G, Jiang L, Leng W, Zhu W, et al. Acetylation-regulated interaction between p53 and SET reveals a widespread regulatory mode. Nature. 2016;538:118-122 pubmed 出版商
  707. Carbonneau M, M Gagné L, Lalonde M, Germain M, Motorina A, Guiot M, et al. The oncometabolite 2-hydroxyglutarate activates the mTOR signalling pathway. Nat Commun. 2016;7:12700 pubmed 出版商
  708. Hayes H, Zhang L, Becker T, Haldeman J, Stephens S, Arlotto M, et al. A Pdx-1-Regulated Soluble Factor Activates Rat and Human Islet Cell Proliferation. Mol Cell Biol. 2016;36:2918-2930 pubmed 出版商
  709. Pérez Cañamás A, Benvegnù S, Rueda C, Rábano A, Satrústegui J, Ledesma M. Sphingomyelin-induced inhibition of the plasma membrane calcium ATPase causes neurodegeneration in type A Niemann-Pick disease. Mol Psychiatry. 2017;22:711-723 pubmed 出版商
  710. Ranjan K, Pathak C. Expression of FADD and cFLIPL balances mitochondrial integrity and redox signaling to substantiate apoptotic cell death. Mol Cell Biochem. 2016;422:135-150 pubmed
  711. Waasdorp M, Duitman J, Florquin S, Spek C. Protease-activated receptor-1 deficiency protects against streptozotocin-induced diabetic nephropathy in mice. Sci Rep. 2016;6:33030 pubmed 出版商
  712. Olianas M, Dedoni S, Onali P. LPA1 Mediates Antidepressant-Induced ERK1/2 Signaling and Protection from Oxidative Stress in Glial Cells. J Pharmacol Exp Ther. 2016;359:340-353 pubmed
  713. Thamodaran V, Bruce A. p38 (Mapk14/11) occupies a regulatory node governing entry into primitive endoderm differentiation during preimplantation mouse embryo development. Open Biol. 2016;6: pubmed 出版商
  714. Hesler R, Huang J, Starr M, Treboschi V, Bernanke A, Nixon A, et al. TGF-?-induced stromal CYR61 promotes resistance to gemcitabine in pancreatic ductal adenocarcinoma through downregulation of the nucleoside transporters hENT1 and hCNT3. Carcinogenesis. 2016;37:1041-1051 pubmed 出版商
  715. Heulot M, Chevalier N, Puyal J, Margue C, Michel S, Kreis S, et al. The TAT-RasGAP317-326 anti-cancer peptide can kill in a caspase-, apoptosis-, and necroptosis-independent manner. Oncotarget. 2016;7:64342-64359 pubmed 出版商
  716. Wang S, Jiang L, Han Y, Chew S, Ohara Y, Akatsuka S, et al. Urokinase-type plasminogen activator receptor promotes proliferation and invasion with reduced cisplatin sensitivity in malignant mesothelioma. Oncotarget. 2016;7:69565-69578 pubmed 出版商
  717. Park S, Jo D, Jo S, Shin D, Shim S, Jo Y, et al. Inhibition of never in mitosis A (NIMA)-related kinase-4 reduces survivin expression and sensitizes cancer cells to TRAIL-induced cell death. Oncotarget. 2016;7:65957-65967 pubmed 出版商
  718. Cudré Cung H, Zavadakova P, Do Vale Pereira S, Remacle N, Henry H, Ivanisevic J, et al. Ammonium accumulation is a primary effect of 2-methylcitrate exposure in an in vitro model for brain damage in methylmalonic aciduria. Mol Genet Metab. 2016;119:57-67 pubmed 出版商
  719. Edinger N, Lebendiker M, Klein S, Zigler M, Langut Y, Levitzki A. Targeting polyIC to EGFR over-expressing cells using a dsRNA binding protein domain tethered to EGF. PLoS ONE. 2016;11:e0162321 pubmed 出版商
  720. Chen Y, Kuo H, Bornschein U, Takahashi H, Chen S, Lu K, et al. Foxp2 controls synaptic wiring of corticostriatal circuits and vocal communication by opposing Mef2c. Nat Neurosci. 2016;19:1513-1522 pubmed 出版商
  721. Twardziok M, Kleinsimon S, Rolff J, Jäger S, Eggert A, Seifert G, et al. Multiple Active Compounds from Viscum album L. Synergistically Converge to Promote Apoptosis in Ewing Sarcoma. PLoS ONE. 2016;11:e0159749 pubmed 出版商
  722. Muzumdar M, Dorans K, Chung K, Robbins R, Tammela T, Gocheva V, et al. Clonal dynamics following p53 loss of heterozygosity in Kras-driven cancers. Nat Commun. 2016;7:12685 pubmed 出版商
  723. Magalhães A, Rivera C. NKCC1-Deficiency Results in Abnormal Proliferation of Neural Progenitor Cells of the Lateral Ganglionic Eminence. Front Cell Neurosci. 2016;10:200 pubmed 出版商
  724. Wu Y, Xie R, Liu X, Wang J, Peng Y, Tang W, et al. Knockdown of FOXK1 alone or in combination with apoptosis-inducing 5-FU inhibits cell growth in colorectal cancer. Oncol Rep. 2016;36:2151-9 pubmed 出版商
  725. Jones R, Robinson T, Liu J, Shrestha M, Voisin V, Ju Y, et al. RB1 deficiency in triple-negative breast cancer induces mitochondrial protein translation. J Clin Invest. 2016;126:3739-3757 pubmed 出版商
  726. Fern ndez Majada V, Welz P, Ermolaeva M, Schell M, Adam A, Dietlein F, et al. The tumour suppressor CYLD regulates the p53 DNA damage response. Nat Commun. 2016;7:12508 pubmed 出版商
  727. Peng Y, Miao H, Wu S, Yang W, Zhang Y, Xie G, et al. ABHD5 interacts with BECN1 to regulate autophagy and tumorigenesis of colon cancer independent of PNPLA2. Autophagy. 2016;12:2167-2182 pubmed
  728. Kasica N, Podlasz P, Sundvik M, Tamas A, Reglodi D, Kaleczyc J. Protective Effects of Pituitary Adenylate Cyclase-Activating Polypeptide (PACAP) Against Oxidative Stress in Zebrafish Hair Cells. Neurotox Res. 2016;30:633-647 pubmed
  729. Cunningham C, Li S, Vizeacoumar F, Bhanumathy K, Lee J, Parameswaran S, et al. Therapeutic relevance of the protein phosphatase 2A in cancer. Oncotarget. 2016;7:61544-61561 pubmed 出版商
  730. Jordan N, Bardia A, Wittner B, Benes C, Ligorio M, Zheng Y, et al. HER2 expression identifies dynamic functional states within circulating breast cancer cells. Nature. 2016;537:102-106 pubmed 出版商
  731. Nakazawa S, Oikawa D, Ishii R, Ayaki T, Takahashi H, Takeda H, et al. Linear ubiquitination is involved in the pathogenesis of optineurin-associated amyotrophic lateral sclerosis. Nat Commun. 2016;7:12547 pubmed 出版商
  732. Dhillon R, Parker J, Syed Y, Edgley S, Young A, Fawcett J, et al. Axonal plasticity underpins the functional recovery following surgical decompression in a rat model of cervical spondylotic myelopathy. Acta Neuropathol Commun. 2016;4:89 pubmed 出版商
  733. Yuan S, Pardue S, Shen X, Alexander J, Orr A, Kevil C. Hydrogen sulfide metabolism regulates endothelial solute barrier function. Redox Biol. 2016;9:157-166 pubmed 出版商
  734. Nagano T, Nakano M, Nakashima A, Onishi K, Yamao S, Enari M, et al. Identification of cellular senescence-specific genes by comparative transcriptomics. Sci Rep. 2016;6:31758 pubmed 出版商
  735. Pomares H, Palmeri C, Iglesias Serret D, Moncunill Massaguer C, Saura Esteller J, Núñez Vázquez S, et al. Targeting prohibitins induces apoptosis in acute myeloid leukemia cells. Oncotarget. 2016;7:64987-65000 pubmed 出版商
  736. Wang H, Li M, Hung C, Sinha M, Lee L, Wiesner D, et al. MyD88 Shapes Vaccine Immunity by Extrinsically Regulating Survival of CD4+ T Cells during the Contraction Phase. PLoS Pathog. 2016;12:e1005787 pubmed 出版商
  737. Ohmer M, Weber A, Sutter G, Ehrhardt K, Zimmermann A, Häcker G. Anti-apoptotic Bcl-XL but not Mcl-1 contributes to protection against virus-induced apoptosis. Cell Death Dis. 2016;7:e2340 pubmed 出版商
  738. Martin K, Pritchett J, Llewellyn J, Mullan A, Athwal V, Dobie R, et al. PAK proteins and YAP-1 signalling downstream of integrin beta-1 in myofibroblasts promote liver fibrosis. Nat Commun. 2016;7:12502 pubmed 出版商
  739. Hoare M, Ito Y, Kang T, Weekes M, Matheson N, Patten D, et al. NOTCH1 mediates a switch between two distinct secretomes during senescence. Nat Cell Biol. 2016;18:979-92 pubmed 出版商
  740. Sun L, Fan G, Shan P, Qiu X, Dong S, Liao L, et al. Regulation of energy homeostasis by the ubiquitin-independent REG? proteasome. Nat Commun. 2016;7:12497 pubmed 出版商
  741. Pfister J, D Mello S. Regulation of Neuronal Survival by Nucleophosmin 1 (NPM1) Is Dependent on Its Expression Level, Subcellular Localization, and Oligomerization Status. J Biol Chem. 2016;291:20787-97 pubmed 出版商
  742. Kang M, Park K, Yang J, Lee C, Oh S, Yun J, et al. miR-6734 Up-Regulates p21 Gene Expression and Induces Cell Cycle Arrest and Apoptosis in Colon Cancer Cells. PLoS ONE. 2016;11:e0160961 pubmed 出版商
  743. Li H, Yang X, Wang G, Li X, Tao D, Hu J, et al. KDM4B plays an important role in mitochondrial apoptosis by upregulating HAX1 expression in colorectal cancer. Oncotarget. 2016;7:57866-57877 pubmed 出版商
  744. Duan H, Lee J, Moon S, Arora D, Li Y, Lim H, et al. Discovery, Synthesis, and Evaluation of 2,4-Diaminoquinazolines as a Novel Class of Pancreatic ?-Cell-Protective Agents against Endoplasmic Reticulum (ER) Stress. J Med Chem. 2016;59:7783-800 pubmed 出版商
  745. Shi Y, He Z, Jia Z, Xu C. Inhibitory effect of metformin combined with gemcitabine on pancreatic cancer cells in vitro and in vivo. Mol Med Rep. 2016;14:2921-8 pubmed 出版商
  746. Vingill S, Brockelt D, Lancelin C, Tatenhorst L, Dontcheva G, Preisinger C, et al. Loss of FBXO7 (PARK15) results in reduced proteasome activity and models a parkinsonism-like phenotype in mice. EMBO J. 2016;35:2008-25 pubmed 出版商
  747. Ronaghan N, Shang J, Iablokov V, Zaheer R, Colarusso P, Dion S, et al. The serine protease-mediated increase in intestinal epithelial barrier function is dependent on occludin and requires an intact tight junction. Am J Physiol Gastrointest Liver Physiol. 2016;311:G466-79 pubmed 出版商
  748. Gerling M, Büller N, Kirn L, Joost S, Frings O, Englert B, et al. Stromal Hedgehog signalling is downregulated in colon cancer and its restoration restrains tumour growth. Nat Commun. 2016;7:12321 pubmed 出版商
  749. Noonan H, Metelo A, Kamei C, Peterson R, Drummond I, Iliopoulos O. Loss of vhl in the zebrafish pronephros recapitulates early stages of human clear cell renal cell carcinoma. Dis Model Mech. 2016;9:873-84 pubmed 出版商
  750. Bartlett J, Trivedi P, Yeung P, Kienesberger P, Pulinilkunnil T. Doxorubicin impairs cardiomyocyte viability by suppressing transcription factor EB expression and disrupting autophagy. Biochem J. 2016;473:3769-3789 pubmed
  751. Strilic B, Yang L, Albarrán Juárez J, Wachsmuth L, Han K, Müller U, et al. Tumour-cell-induced endothelial cell necroptosis via death receptor 6 promotes metastasis. Nature. 2016;536:215-8 pubmed
  752. Ma W, Jiang J, Li M, Wang H, Zhang H, He X, et al. The clinical significance of forkhead box protein A1 and its role in colorectal cancer. Mol Med Rep. 2016;14:2625-31 pubmed 出版商
  753. Cheng H, Gaddis D, Wu R, McSkimming C, Haynes L, Taylor A, et al. Loss of ABCG1 influences regulatory T cell differentiation and atherosclerosis. J Clin Invest. 2016;126:3236-46 pubmed 出版商
  754. Zhang L, Ren F, Zhang X, Wang X, Shi H, Zhou L, et al. Peroxisome proliferator-activated receptor alpha acts as a mediator of endoplasmic reticulum stress-induced hepatocyte apoptosis in acute liver failure. Dis Model Mech. 2016;9:799-809 pubmed 出版商
  755. Lai M, Gonzalez Martin A, Cooper A, Oda H, Jin H, Shepherd J, et al. Regulation of B-cell development and tolerance by different members of the miR-17∼92 family microRNAs. Nat Commun. 2016;7:12207 pubmed 出版商
  756. Reginensi A, Enderle L, Gregorieff A, Johnson R, Wrana J, McNeill H. A critical role for NF2 and the Hippo pathway in branching morphogenesis. Nat Commun. 2016;7:12309 pubmed 出版商
  757. Freddo A, Shoffner S, Shao Y, Taniguchi K, Grosse A, Guysinger M, et al. Coordination of signaling and tissue mechanics during morphogenesis of murine intestinal villi: a role for mitotic cell rounding. Integr Biol (Camb). 2016;8:918-28 pubmed 出版商
  758. Krupke O, Zysk I, Mellott D, Burke R. Eph and Ephrin function in dispersal and epithelial insertion of pigmented immunocytes in sea urchin embryos. elife. 2016;5: pubmed 出版商
  759. Martinez L, Thames E, Kim J, Chaudhuri G, Singh R, Pervin S. Increased sensitivity of African American triple negative breast cancer cells to nitric oxide-induced mitochondria-mediated apoptosis. BMC Cancer. 2016;16:559 pubmed 出版商
  760. Liu H, Li W, Yu X, Gao F, Duan Z, Ma X, et al. EZH2-mediated Puma gene repression regulates non-small cell lung cancer cell proliferation and cisplatin-induced apoptosis. Oncotarget. 2016;7:56338-56354 pubmed 出版商
  761. Wang Y, Wang Y, Li G. TRPC1/TRPC3 channels mediate lysophosphatidylcholine-induced apoptosis in cultured human coronary artery smooth muscles cells. Oncotarget. 2016;7:50937-50951 pubmed 出版商
  762. Anta B, Pérez Rodríguez A, Castro J, García Domínguez C, Ibiza S, Martínez N, et al. PGA1-induced apoptosis involves specific activation of H-Ras and N-Ras in cellular endomembranes. Cell Death Dis. 2016;7:e2311 pubmed 出版商
  763. Alves S, Marais T, Biferi M, Furling D, Marinello M, El Hachimi K, et al. Lentiviral vector-mediated overexpression of mutant ataxin-7 recapitulates SCA7 pathology and promotes accumulation of the FUS/TLS and MBNL1 RNA-binding proteins. Mol Neurodegener. 2016;11:58 pubmed 出版商
  764. Pang J, Wu Y, Peng J, Yang P, Kuai L, Qin X, et al. Potential implications of Apolipoprotein E in early brain injury after experimental subarachnoid hemorrhage: Involvement in the modulation of blood-brain barrier integrity. Oncotarget. 2016;7:56030-56044 pubmed 出版商
  765. Ho J, Hsu R, Wu C, Liao G, Gao H, Wang T, et al. Reduced miR-550a-3p leads to breast cancer initiation, growth, and metastasis by increasing levels of ERK1 and 2. Oncotarget. 2016;7:53853-53868 pubmed 出版商
  766. Liu M, Feng L, Sun P, Liu W, Wu W, Jiang B, et al. A Novel Bufalin Derivative Exhibited Stronger Apoptosis-Inducing Effect than Bufalin in A549 Lung Cancer Cells and Lower Acute Toxicity in Mice. PLoS ONE. 2016;11:e0159789 pubmed 出版商
  767. Jeong H, Cho Y, Kim K, Kim Y, Kim K, Na Y, et al. Anti-lipoapoptotic effects of Alisma orientalis extract on non-esterified fatty acid-induced HepG2 cells. BMC Complement Altern Med. 2016;16:239 pubmed 出版商
  768. Yoo S, Pascoe H, Pereira T, Kondo S, Jacinto A, Zhang X, et al. Plexins function in epithelial repair in both Drosophila and zebrafish. Nat Commun. 2016;7:12282 pubmed 出版商
  769. Wu J, Lei H, Zhang J, Chen X, Tang C, Wang W, et al. Momordin Ic, a new natural SENP1 inhibitor, inhibits prostate cancer cell proliferation. Oncotarget. 2016;7:58995-59005 pubmed 出版商
  770. Stergiopoulos A, Politis P. Nuclear receptor NR5A2 controls neural stem cell fate decisions during development. Nat Commun. 2016;7:12230 pubmed 出版商
  771. Bao H, Liu P, Jiang K, Zhang X, Xie L, Wang Z, et al. Huaier polysaccharide induces apoptosis in hepatocellular carcinoma cells through p38 MAPK. Oncol Lett. 2016;12:1058-1066 pubmed
  772. Cheng Y, Huang C, Lee Y, Tien L, Ku W, Chien R, et al. Knocking down of heat-shock protein 27 directs differentiation of functional glutamatergic neurons from placenta-derived multipotent cells. Sci Rep. 2016;6:30314 pubmed 出版商
  773. Fujiwara T, Zhou J, Ye S, Zhao H. RNA-binding protein Musashi2 induced by RANKL is critical for osteoclast survival. Cell Death Dis. 2016;7:e2300 pubmed 出版商
  774. Saisana M, Griffin S, May F. Importance of the type I insulin-like growth factor receptor in HER2, FGFR2 and MET-unamplified gastric cancer with and without Ras pathway activation. Oncotarget. 2016;7:54445-54462 pubmed 出版商
  775. Kojima Y, Volkmer J, McKenna K, Civelek M, Lusis A, Miller C, et al. CD47-blocking antibodies restore phagocytosis and prevent atherosclerosis. Nature. 2016;536:86-90 pubmed
  776. Geng J, Li J, Huang T, Zhao K, Chen Q, Guo W, et al. A novel manganese complex selectively induces malignant glioma cell death by targeting mitochondria. Mol Med Rep. 2016;14:1970-8 pubmed 出版商
  777. Ocón B, Aranda C, Gámez Belmonte R, Suárez M, Zarzuelo A, Martinez Augustin O, et al. The glucocorticoid budesonide has protective and deleterious effects in experimental colitis in mice. Biochem Pharmacol. 2016;116:73-88 pubmed 出版商
  778. DeGottardi M, Okoye A, Vaidya M, Talla A, Konfe A, Reyes M, et al. Effect of Anti-IL-15 Administration on T Cell and NK Cell Homeostasis in Rhesus Macaques. J Immunol. 2016;197:1183-98 pubmed 出版商
  779. Ding L, Hayes M, Photenhauer A, Eaton K, Li Q, Ocadiz Ruiz R, et al. Schlafen 4-expressing myeloid-derived suppressor cells are induced during murine gastric metaplasia. J Clin Invest. 2016;126:2867-80 pubmed 出版商
  780. Gygli P, Chang J, Gokozan H, Catacutan F, Schmidt T, Kaya B, et al. Cyclin A2 promotes DNA repair in the brain during both development and aging. Aging (Albany NY). 2016;8:1540-70 pubmed 出版商
  781. Naito M, Mori M, Inagawa M, Miyata K, Hashimoto N, Tanaka S, et al. Dnmt3a Regulates Proliferation of Muscle Satellite Cells via p57Kip2. PLoS Genet. 2016;12:e1006167 pubmed 出版商
  782. Belvedere R, Bizzarro V, Forte G, Dal Piaz F, Parente L, Petrella A. Annexin A1 contributes to pancreatic cancer cell phenotype, behaviour and metastatic potential independently of Formyl Peptide Receptor pathway. Sci Rep. 2016;6:29660 pubmed 出版商
  783. Tsuboki J, Fujiwara Y, Horlad H, Shiraishi D, Nohara T, Tayama S, et al. Onionin A inhibits ovarian cancer progression by suppressing cancer cell proliferation and the protumour function of macrophages. Sci Rep. 2016;6:29588 pubmed 出版商
  784. Zhang Y, Velez Delgado A, Mathew E, Li D, Mendez F, Flannagan K, et al. Myeloid cells are required for PD-1/PD-L1 checkpoint activation and the establishment of an immunosuppressive environment in pancreatic cancer. Gut. 2017;66:124-136 pubmed 出版商
  785. Fang J, Jia C, Zheng Z, Ye X, Wei B, Huang L, et al. Periprostatic implantation of neural differentiated mesenchymal stem cells restores cavernous nerve injury-mediated erectile dysfunction. Am J Transl Res. 2016;8:2549-61 pubmed
  786. Wang C, Guo S, Wang J, Yan X, Farrelly M, Zhang Y, et al. Reactivation of ERK and Akt confers resistance of mutant BRAF colon cancer cells to the HSP90 inhibitor AUY922. Oncotarget. 2016;7:49597-49610 pubmed 出版商
  787. Huang Z, Hu J, Pan J, Wang Y, Hu G, Zhou J, et al. YAP stabilizes SMAD1 and promotes BMP2-induced neocortical astrocytic differentiation. Development. 2016;143:2398-409 pubmed 出版商
  788. Chen Z, Wang Z, Pang J, Yu Y, Bieerkehazhi S, Lu J, et al. Multiple CDK inhibitor dinaciclib suppresses neuroblastoma growth via inhibiting CDK2 and CDK9 activity. Sci Rep. 2016;6:29090 pubmed 出版商
  789. Nooh H, Nour Eldien N. The dual anti-inflammatory and antioxidant activities of natural honey promote cell proliferation and neural regeneration in a rat model of colitis. Acta Histochem. 2016;118:588-595 pubmed 出版商
  790. Forsberg D, Horn Z, Tserga E, Smedler E, Silberberg G, Shvarev Y, et al. CO2-evoked release of PGE2 modulates sighs and inspiration as demonstrated in brainstem organotypic culture. elife. 2016;5: pubmed 出版商
  791. Rozo M, Li L, Fan C. Targeting ?1-integrin signaling enhances regeneration in aged and dystrophic muscle in mice. Nat Med. 2016;22:889-96 pubmed 出版商
  792. Peng H, Cheng Y, Hsu Y, Wu G, Kuo C, Liou J, et al. MPT0B098, a Microtubule Inhibitor, Suppresses JAK2/STAT3 Signaling Pathway through Modulation of SOCS3 Stability in Oral Squamous Cell Carcinoma. PLoS ONE. 2016;11:e0158440 pubmed 出版商
  793. Stock K, Estrada M, Vidic S, Gjerde K, Rudisch A, Santo V, et al. Capturing tumor complexity in vitro: Comparative analysis of 2D and 3D tumor models for drug discovery. Sci Rep. 2016;6:28951 pubmed 出版商
  794. Simile M, Latte G, Demartis M, Brozzetti S, Calvisi D, Porcu A, et al. Post-translational deregulation of YAP1 is genetically controlled in rat liver cancer and determines the fate and stem-like behavior of the human disease. Oncotarget. 2016;7:49194-49216 pubmed 出版商
  795. Bai H, Wang M, Foster T, Hu H, He H, Hashimoto T, et al. Pericardial patch venoplasty heals via attraction of venous progenitor cells. Physiol Rep. 2016;4: pubmed 出版商
  796. Park K, Luo X, Mooney S, Yungher B, Belin S, Wang C, et al. Retinal ganglion cell survival and axon regeneration after optic nerve injury in naked mole-rats. J Comp Neurol. 2017;525:380-388 pubmed 出版商
  797. Boogerd C, Aneas I, Sakabe N, Dirschinger R, Cheng Q, Zhou B, et al. Probing chromatin landscape reveals roles of endocardial TBX20 in septation. J Clin Invest. 2016;126:3023-35 pubmed 出版商
  798. Takagi Y, Shimada K, Shimada S, Sakamoto A, Naoe T, Nakamura S, et al. SPIB is a novel prognostic factor in diffuse large B-cell lymphoma that mediates apoptosis via the PI3K-AKT pathway. Cancer Sci. 2016;107:1270-80 pubmed 出版商
  799. Walerych D, Lisek K, Sommaggio R, Piazza S, Ciani Y, Dalla E, et al. Proteasome machinery is instrumental in a common gain-of-function program of the p53 missense mutants in cancer. Nat Cell Biol. 2016;18:897-909 pubmed 出版商
  800. Li Q, Guo Y, Chen F, Liu J, Jin P. Stromal cell-derived factor-1 promotes human adipose tissue-derived stem cell survival and chronic wound healing. Exp Ther Med. 2016;12:45-50 pubmed
  801. Su Q, Zhang B, Zhang L, Dang T, Rowley D, Ittmann M, et al. Jagged1 upregulation in prostate epithelial cells promotes formation of reactive stroma in the Pten null mouse model for prostate cancer. Oncogene. 2017;36:618-627 pubmed 出版商
  802. Shen J, Li Z, Li L, Lu L, Xiao Z, Wu W, et al. Vascular-targeted TNF? and IFN? inhibits orthotopic colorectal tumor growth. J Transl Med. 2016;14:187 pubmed 出版商
  803. Evrard S, Lecce L, Michelis K, Nomura Kitabayashi A, Pandey G, Purushothaman K, et al. Endothelial to mesenchymal transition is common in atherosclerotic lesions and is associated with plaque instability. Nat Commun. 2016;7:11853 pubmed 出版商
  804. Yang D, Yuan Q, Balakrishnan A, Bantel H, Klusmann J, Manns M, et al. MicroRNA-125b-5p mimic inhibits acute liver failure. Nat Commun. 2016;7:11916 pubmed 出版商
  805. Hall Z, Ament Z, Wilson C, Burkhart D, Ashmore T, Koulman A, et al. Myc Expression Drives Aberrant Lipid Metabolism in Lung Cancer. Cancer Res. 2016;76:4608-18 pubmed 出版商
  806. Hong A, Tseng Y, Cowley G, Jonas O, Cheah J, Kynnap B, et al. Integrated genetic and pharmacologic interrogation of rare cancers. Nat Commun. 2016;7:11987 pubmed 出版商
  807. Ono H, Basson M, Ito H. P300 inhibition enhances gemcitabine-induced apoptosis of pancreatic cancer. Oncotarget. 2016;7:51301-51310 pubmed 出版商
  808. Meinhardt G, Saleh L, Otti G, Haider S, Velicky P, Fiala C, et al. Wingless ligand 5a is a critical regulator of placental growth and survival. Sci Rep. 2016;6:28127 pubmed 出版商
  809. Akabane S, Matsuzaki K, Yamashita S, Arai K, Okatsu K, Kanki T, et al. Constitutive Activation of PINK1 Protein Leads to Proteasome-mediated and Non-apoptotic Cell Death Independently of Mitochondrial Autophagy. J Biol Chem. 2016;291:16162-74 pubmed 出版商
  810. Roychowdhury S, McCullough R, Sanz Garcia C, Saikia P, Alkhouri N, Matloob A, et al. Receptor interacting protein 3 protects mice from high-fat diet-induced liver injury. Hepatology. 2016;64:1518-1533 pubmed 出版商
  811. Zhai W, Chen D, Shen H, Chen Z, Li H, Yu Z, et al. A1 adenosine receptor attenuates intracerebral hemorrhage-induced secondary brain injury in rats by activating the P38-MAPKAP2-Hsp27 pathway. Mol Brain. 2016;9:66 pubmed 出版商
  812. Rowald K, Mantovan M, Passos J, Buccitelli C, Mardin B, Korbel J, et al. Negative Selection and Chromosome Instability Induced by Mad2 Overexpression Delay Breast Cancer but Facilitate Oncogene-Independent Outgrowth. Cell Rep. 2016;15:2679-91 pubmed 出版商
  813. Ding G, Zhao J, Jiang D. Allicin inhibits oxidative stress-induced mitochondrial dysfunction and apoptosis by promoting PI3K/AKT and CREB/ERK signaling in osteoblast cells. Exp Ther Med. 2016;11:2553-2560 pubmed
  814. Fang W, Yao M, Brummer G, Acevedo D, Alhakamy N, Berkland C, et al. Targeted gene silencing of CCL2 inhibits triple negative breast cancer progression by blocking cancer stem cell renewal and M2 macrophage recruitment. Oncotarget. 2016;7:49349-49367 pubmed 出版商
  815. Cheng M, Liu L, Lao Y, Liao W, Liao M, Luo X, et al. MicroRNA-181a suppresses parkin-mediated mitophagy and sensitizes neuroblastoma cells to mitochondrial uncoupler-induced apoptosis. Oncotarget. 2016;7:42274-42287 pubmed 出版商
  816. Wang T, Pan D, Zhou Z, You Y, Jiang C, Zhao X, et al. Dectin-3 Deficiency Promotes Colitis Development due to Impaired Antifungal Innate Immune Responses in the Gut. PLoS Pathog. 2016;12:e1005662 pubmed 出版商
  817. Yin Y, Wang Y, Gao D, Ye J, Wang X, Fang L, et al. Accumulation of human full-length tau induces degradation of nicotinic acetylcholine receptor α4 via activating calpain-2. Sci Rep. 2016;6:27283 pubmed 出版商
  818. Boada Romero E, Serramito Gómez I, Sacristán M, Boone D, Xavier R, Pimentel Muiños F. The T300A Crohn's disease risk polymorphism impairs function of the WD40 domain of ATG16L1. Nat Commun. 2016;7:11821 pubmed 出版商
  819. Shruthi K, Reddy S, Reddy P, Shivalingam P, Harishankar N, Reddy G. Amelioration of neuronal cell death in a spontaneous obese rat model by dietary restriction through modulation of ubiquitin proteasome system. J Nutr Biochem. 2016;33:73-81 pubmed 出版商
  820. Quarta M, Brett J, DiMarco R, de Morrée A, Boutet S, Chacon R, et al. An artificial niche preserves the quiescence of muscle stem cells and enhances their therapeutic efficacy. Nat Biotechnol. 2016;34:752-9 pubmed 出版商
  821. Park J, Kotani T, Konno T, Setiawan J, Kitamura Y, Imada S, et al. Promotion of Intestinal Epithelial Cell Turnover by Commensal Bacteria: Role of Short-Chain Fatty Acids. PLoS ONE. 2016;11:e0156334 pubmed 出版商
  822. Chesnokova V, Zonis S, Zhou C, Recouvreux M, Ben Shlomo A, Araki T, et al. Growth hormone is permissive for neoplastic colon growth. Proc Natl Acad Sci U S A. 2016;113:E3250-9 pubmed 出版商
  823. Roy A, Femel J, Huijbers E, Spillmann D, Larsson E, Ringvall M, et al. Targeting Serglycin Prevents Metastasis in Murine Mammary Carcinoma. PLoS ONE. 2016;11:e0156151 pubmed 出版商
  824. Tatsuno T, Nakamura Y, Ma S, Tomosugi N, Ishigaki Y. Nonsense-mediated mRNA decay factor Upf2 exists in both the nucleoplasm and the cytoplasm. Mol Med Rep. 2016;14:655-60 pubmed 出版商
  825. Fessler E, Drost J, van Hooff S, Linnekamp J, Wang X, Jansen M, et al. TGFβ signaling directs serrated adenomas to the mesenchymal colorectal cancer subtype. EMBO Mol Med. 2016;8:745-60 pubmed 出版商
  826. Lin K, Cheng S, Tsai S, Tsai J, Lin C, Cheung C. Delivery of a survivin promoter-driven antisense survivin-expressing plasmid DNA as a cancer therapeutic: a proof-of-concept study. Onco Targets Ther. 2016;9:2601-13 pubmed 出版商
  827. Ashino T, Yamamoto M, Numazawa S. Nrf2/Keap1 system regulates vascular smooth muscle cell apoptosis for vascular homeostasis: role in neointimal formation after vascular injury. Sci Rep. 2016;6:26291 pubmed 出版商
  828. Gren S, Janciauskiene S, Sandeep S, Jonigk D, Kvist P, Gerwien J, et al. The protease inhibitor cystatin C down-regulates the release of IL-? and TNF-? in lipopolysaccharide activated monocytes. J Leukoc Biol. 2016;100:811-822 pubmed
  829. Ranjan A, Srivastava S. Penfluridol suppresses pancreatic tumor growth by autophagy-mediated apoptosis. Sci Rep. 2016;6:26165 pubmed 出版商
  830. Cherepanova O, Gomez D, Shankman L, Swiatlowska P, Williams J, Sarmento O, et al. Activation of the pluripotency factor OCT4 in smooth muscle cells is atheroprotective. Nat Med. 2016;22:657-65 pubmed 出版商
  831. Liu L, Wang C, Lin Y, Xi Y, Li H, Shi S, et al. Suppression of calcium?sensing receptor ameliorates cardiac hypertrophy through inhibition of autophagy. Mol Med Rep. 2016;14:111-20 pubmed 出版商
  832. Xu Z, Bu Y, Chitnis N, Koumenis C, Fuchs S, Diehl J. miR-216b regulation of c-Jun mediates GADD153/CHOP-dependent apoptosis. Nat Commun. 2016;7:11422 pubmed 出版商
  833. Shen Z, Liu Y, Dewidar B, Hu J, Park O, Feng T, et al. Delta-Like Ligand 4 Modulates Liver Damage by Down-Regulating Chemokine Expression. Am J Pathol. 2016;186:1874-1889 pubmed 出版商
  834. Itoh Y, Higuchi M, Oishi K, Kishi Y, Okazaki T, Sakai H, et al. PDK1-Akt pathway regulates radial neuronal migration and microtubules in the developing mouse neocortex. Proc Natl Acad Sci U S A. 2016;113:E2955-64 pubmed 出版商
  835. Zhao J, Niu X, Li X, Edwards H, Wang G, Wang Y, et al. Inhibition of CHK1 enhances cell death induced by the Bcl-2-selective inhibitor ABT-199 in acute myeloid leukemia cells. Oncotarget. 2016;7:34785-99 pubmed 出版商
  836. Xue H, Yuan G, Guo X, Liu Q, Zhang J, Gao X, et al. A novel tumor-promoting mechanism of IL6 and the therapeutic efficacy of tocilizumab: Hypoxia-induced IL6 is a potent autophagy initiator in glioblastoma via the p-STAT3-MIR155-3p-CREBRF pathway. Autophagy. 2016;12:1129-52 pubmed 出版商
  837. Tortola L, Nitsch R, Bertrand M, Kogler M, Redouane Y, Kozieradzki I, et al. The Tumor Suppressor Hace1 Is a Critical Regulator of TNFR1-Mediated Cell Fate. Cell Rep. 2016;15:1481-1492 pubmed 出版商
  838. De Filippis L, Halikere A, McGowan H, Moore J, Tischfield J, Hart R, et al. Ethanol-mediated activation of the NLRP3 inflammasome in iPS cells and iPS cells-derived neural progenitor cells. Mol Brain. 2016;9:51 pubmed 出版商
  839. Kant R, Yen C, Lu C, Lin Y, Li J, Chen Y. Identification of 1,2,3,4,6-Penta-O-galloyl-?-d-glucopyranoside as a Glycine N-Methyltransferase Enhancer by High-Throughput Screening of Natural Products Inhibits Hepatocellular Carcinoma. Int J Mol Sci. 2016;17: pubmed 出版商
  840. Le T, Vuong L, Kim A, Hsu Y, Choi K. 14-3-3 proteins regulate Tctp-Rheb interaction for organ growth in Drosophila. Nat Commun. 2016;7:11501 pubmed 出版商
  841. Zeng X, Han I, Abd El Barr M, Aljuboori Z, Anderson J, Chi J, et al. The Effects of Thermal Preconditioning on Oncogenic and Intraspinal Cord Growth Features of Human Glioma Cells. Cell Transplant. 2016;25:2099-2109 pubmed 出版商
  842. Onesto E, Colombrita C, Gumina V, Borghi M, Dusi S, Doretti A, et al. Gene-specific mitochondria dysfunctions in human TARDBP and C9ORF72 fibroblasts. Acta Neuropathol Commun. 2016;4:47 pubmed 出版商
  843. O Santos A, Parrini M, Camonis J. RalGPS2 Is Essential for Survival and Cell Cycle Progression of Lung Cancer Cells Independently of Its Established Substrates Ral GTPases. PLoS ONE. 2016;11:e0154840 pubmed 出版商
  844. Maza P, Suzuki E. Histoplasma capsulatum-Induced Cytokine Secretion in Lung Epithelial Cells Is Dependent on Host Integrins, Src-Family Kinase Activation, and Membrane Raft Recruitment. Front Microbiol. 2016;7:580 pubmed 出版商
  845. Chen P, Hsiao J, Sirois C, Chamberlain S. RBFOX1 and RBFOX2 are dispensable in iPSCs and iPSC-derived neurons and do not contribute to neural-specific paternal UBE3A silencing. Sci Rep. 2016;6:25368 pubmed 出版商
  846. Huang J, CHEN C, Gu H, Li C, Fu X, Jiang M, et al. Mesencephalic astrocyte-derived neurotrophic factor reduces cell apoptosis via upregulating GRP78 in SH-SY5Y cells. Cell Biol Int. 2016;40:803-11 pubmed 出版商
  847. Bell C, Hendriks D, Moro S, Ellis E, Walsh J, Renblom A, et al. Characterization of primary human hepatocyte spheroids as a model system for drug-induced liver injury, liver function and disease. Sci Rep. 2016;6:25187 pubmed 出版商
  848. Körbelin J, Dogbevia G, Michelfelder S, Ridder D, Hunger A, Wenzel J, et al. A brain microvasculature endothelial cell-specific viral vector with the potential to treat neurovascular and neurological diseases. EMBO Mol Med. 2016;8:609-25 pubmed 出版商
  849. Silva S, Levy D, Ruiz J, de Melo T, Isaac C, Fidelis M, et al. Oxysterols in adipose tissue-derived mesenchymal stem cell proliferation and death. J Steroid Biochem Mol Biol. 2017;169:164-175 pubmed 出版商
  850. He S, Mansour M, Zimmerman M, Ki D, Layden H, Akahane K, et al. Synergy between loss of NF1 and overexpression of MYCN in neuroblastoma is mediated by the GAP-related domain. elife. 2016;5: pubmed 出版商
  851. Wang W, Zhan M, Li Q, Chen W, Chu H, Huang Q, et al. FXR agonists enhance the sensitivity of biliary tract cancer cells to cisplatin via SHP dependent inhibition of Bcl-xL expression. Oncotarget. 2016;7:34617-29 pubmed 出版商
  852. Guinot A, Lehmann H, Wild P, Frew I. Combined deletion of Vhl, Trp53 and Kif3a causes cystic and neoplastic renal lesions. J Pathol. 2016;239:365-73 pubmed 出版商
  853. Chatterjee I, Baruah J, Lurie E, Wary K. Endothelial lipid phosphate phosphatase-3 deficiency that disrupts the endothelial barrier function is a modifier of cardiovascular development. Cardiovasc Res. 2016;111:105-18 pubmed 出版商
  854. McKey J, Martire D, de Santa Barbara P, Faure S. LIX1 regulates YAP1 activity and controls the proliferation and differentiation of stomach mesenchymal progenitors. BMC Biol. 2016;14:34 pubmed 出版商
  855. Choi H, Kim M, Choi Y, Shin Y, Cho S, Ko S. Rhus verniciflua Stokes (RVS) and butein induce apoptosis of paclitaxel-resistant SKOV-3/PAX ovarian cancer cells through inhibition of AKT phosphorylation. BMC Complement Altern Med. 2016;16:122 pubmed 出版商
  856. Hull T, Boddu R, Guo L, Tisher C, Traylor A, Patel B, et al. Heme oxygenase-1 regulates mitochondrial quality control in the heart. JCI Insight. 2016;1:e85817 pubmed
  857. Song J, Wang Y, Teng M, Zhang S, Yin M, Lu J, et al. Cordyceps militaris induces tumor cell death via the caspase?dependent mitochondrial pathway in HepG2 and MCF?7 cells. Mol Med Rep. 2016;13:5132-40 pubmed 出版商
  858. Wagstaff L, Goschorska M, Kozyrska K, Duclos G, Kucinski I, Chessel A, et al. Mechanical cell competition kills cells via induction of lethal p53 levels. Nat Commun. 2016;7:11373 pubmed 出版商
  859. Hu Z, Lv G, Li Y, Li E, Li H, Zhou Q, et al. Enhancement of anti-tumor effects of 5-fluorouracil on hepatocellular carcinoma by low-intensity ultrasound. J Exp Clin Cancer Res. 2016;35:71 pubmed 出版商
  860. Rios A, Fu N, Jamieson P, Pal B, Whitehead L, Nicholas K, et al. Essential role for a novel population of binucleated mammary epithelial cells in lactation. Nat Commun. 2016;7:11400 pubmed 出版商
  861. Zhang Y, Shen L, Stupack D, Bai N, Xun J, Ren G, et al. JMJD3 promotes survival of diffuse large B-cell lymphoma subtypes via distinct mechanisms. Oncotarget. 2016;7:29387-99 pubmed 出版商
  862. Yin S, Jian F, Chen Y, Chien S, Hsieh M, Hsiao P, et al. Induction of IL-25 secretion from tumour-associated fibroblasts suppresses mammary tumour metastasis. Nat Commun. 2016;7:11311 pubmed 出版商
  863. Delbary Gossart S, Lee S, Baroni M, Lamarche I, Arnone M, Canolle B, et al. A novel inhibitor of p75-neurotrophin receptor improves functional outcomes in two models of traumatic brain injury. Brain. 2016;139:1762-82 pubmed 出版商
  864. Zeng W, Liu Q, Chen Z, Wu X, Zhong Y, Wu J. Silencing of hERG1 Gene Inhibits Proliferation and Invasion, and Induces Apoptosis in Human Osteosarcoma Cells by Targeting the NF-?B Pathway. J Cancer. 2016;7:746-57 pubmed 出版商
  865. Shen L, Wen N, Xia M, Zhang Y, Liu W, Xu Y, et al. Calcium efflux from the endoplasmic reticulum regulates cisplatin-induced apoptosis in human cervical cancer HeLa cells. Oncol Lett. 2016;11:2411-2419 pubmed
  866. Jeong J, Noh M, Choi J, Lee H, Kim S. Neuroprotective and antioxidant activities of bamboo salt soy sauce against H2O2-induced oxidative stress in rat cortical neurons. Exp Ther Med. 2016;11:1201-1210 pubmed
  867. Xiao L, Shi X, Zhang Y, Zhu Y, Zhu L, Tian W, et al. YAP induces cisplatin resistance through activation of autophagy in human ovarian carcinoma cells. Onco Targets Ther. 2016;9:1105-14 pubmed 出版商
  868. Conway A, Van Nostrand E, Pratt G, Aigner S, Wilbert M, Sundararaman B, et al. Enhanced CLIP Uncovers IMP Protein-RNA Targets in Human Pluripotent Stem Cells Important for Cell Adhesion and Survival. Cell Rep. 2016;15:666-679 pubmed 出版商
  869. Hellstrom M, Moreno Moya J, Bandstein S, Bom E, Akouri R, Miyazaki K, et al. Bioengineered uterine tissue supports pregnancy in a rat model. Fertil Steril. 2016;106:487-496.e1 pubmed 出版商
  870. Carrasco Rando M, Atienza Manuel A, Martin P, Burke R, Ruiz Gomez M. Fear-of-intimacy-mediated zinc transport controls the function of zinc-finger transcription factors involved in myogenesis. Development. 2016;143:1948-57 pubmed 出版商
  871. Zheng G, Li N, Jia X, Peng C, Luo L, Deng Y, et al. MYCN-mediated miR-21 overexpression enhances chemo-resistance via targeting CADM1 in tongue cancer. J Mol Med (Berl). 2016;94:1129-1141 pubmed
  872. Hall A, Lu W, Godfrey J, Antonov A, Paicu C, Moxon S, et al. The cytoskeleton adaptor protein ankyrin-1 is upregulated by p53 following DNA damage and alters cell migration. Cell Death Dis. 2016;7:e2184 pubmed 出版商
  873. Iida A, Seino Y, Fukami A, Maekawa R, Yabe D, Shimizu S, et al. Endogenous GIP ameliorates impairment of insulin secretion in proglucagon-deficient mice under moderate beta cell damage induced by streptozotocin. Diabetologia. 2016;59:1533-1541 pubmed 出版商
  874. Aaes T, Kaczmarek A, Delvaeye T, De Craene B, De Koker S, Heyndrickx L, et al. Vaccination with Necroptotic Cancer Cells Induces Efficient Anti-tumor Immunity. Cell Rep. 2016;15:274-87 pubmed 出版商
  875. Dey A, Mustafi S, Saha S, Kumar Dhar Dwivedi S, Mukherjee P, Bhattacharya R. Inhibition of BMI1 induces autophagy-mediated necroptosis. Autophagy. 2016;12:659-70 pubmed 出版商
  876. Seidel P, Remus M, Delacher M, Grigaravicius P, Reuss D, Frappart L, et al. Epidermal Nbn deletion causes premature hair loss and a phenotype resembling psoriasiform dermatitis. Oncotarget. 2016;7:23006-18 pubmed 出版商
  877. Yosef R, Pilpel N, Tokarsky Amiel R, Biran A, Ovadya Y, Cohen S, et al. Directed elimination of senescent cells by inhibition of BCL-W and BCL-XL. Nat Commun. 2016;7:11190 pubmed 出版商
  878. Su K, Cao J, Tang Z, Dai S, He Y, Sampson S, et al. HSF1 critically attunes proteotoxic stress sensing by mTORC1 to combat stress and promote growth. Nat Cell Biol. 2016;18:527-39 pubmed 出版商
  879. Negis Y, Karabay A. Expression of cell cycle proteins in cortical neurons-Correlation with glutamate-induced neurotoxicity. Biofactors. 2016;42:358-67 pubmed 出版商
  880. Kurbatskaya K, Phillips E, Croft C, Dentoni G, Hughes M, Wade M, et al. Upregulation of calpain activity precedes tau phosphorylation and loss of synaptic proteins in Alzheimer's disease brain. Acta Neuropathol Commun. 2016;4:34 pubmed 出版商
  881. Slørdahl T, Abdollahi P, Vandsemb E, Rampa C, Misund K, Baranowska K, et al. The phosphatase of regenerating liver-3 (PRL-3) is important for IL-6-mediated survival of myeloma cells. Oncotarget. 2016;7:27295-306 pubmed 出版商
  882. Cheng C, Jiao J, Qian Y, Guo X, Huang J, Dai M, et al. Curcumin induces G2/M arrest and triggers apoptosis via FoxO1 signaling in U87 human glioma cells. Mol Med Rep. 2016;13:3763-70 pubmed 出版商
  883. Wang H, Zhang H, Chen X, Zhao T, Kong Q, Yan M, et al. The decreased expression of electron transfer flavoprotein ? is associated with tubular cell apoptosis in diabetic nephropathy. Int J Mol Med. 2016;37:1290-8 pubmed 出版商
  884. Sumiyoshi H, Matsushita A, Nakamura Y, Matsuda Y, Ishiwata T, Naito Z, et al. Suppression of STAT5b in pancreatic cancer cells leads to attenuated gemcitabine chemoresistance, adhesion and invasion. Oncol Rep. 2016;35:3216-26 pubmed 出版商
  885. Lian Y, Yuan J, Cui Q, Feng Q, Xu M, Bei J, et al. Upregulation of KLHDC4 Predicts a Poor Prognosis in Human Nasopharyngeal Carcinoma. PLoS ONE. 2016;11:e0152820 pubmed 出版商
  886. Garcia C, Videla Richardson G, Dimopoulos N, Fernandez Espinosa D, Miriuka S, Sevlever G, et al. Human Pluripotent Stem Cells and Derived Neuroprogenitors Display Differential Degrees of Susceptibility to BH3 Mimetics ABT-263, WEHI-539 and ABT-199. PLoS ONE. 2016;11:e0152607 pubmed 出版商
  887. Upadhyay M, Martino Cortez Y, Wong Deyrup S, Tavares L, Schowalter S, Flora P, et al. Transposon Dysregulation Modulates dWnt4 Signaling to Control Germline Stem Cell Differentiation in Drosophila. PLoS Genet. 2016;12:e1005918 pubmed 出版商
  888. Chen S, Wang C, Yeo S, Liang C, Okamoto T, Sun S, et al. Distinct roles of autophagy-dependent and -independent functions of FIP200 revealed by generation and analysis of a mutant knock-in mouse model. Genes Dev. 2016;30:856-69 pubmed 出版商
  889. Huang J, Yao C, Chuang S, Yeh C, Lee L, Chen R, et al. Honokiol inhibits sphere formation and xenograft growth of oral cancer side population cells accompanied with JAK/STAT signaling pathway suppression and apoptosis induction. BMC Cancer. 2016;16:245 pubmed 出版商
  890. Jun S, Jung Y, Suh H, Wang W, Kim M, Oh Y, et al. LIG4 mediates Wnt signalling-induced radioresistance. Nat Commun. 2016;7:10994 pubmed 出版商
  891. Viringipurampeer I, Metcalfe A, Bashar A, Sivak O, Yanai A, Mohammadi Z, et al. NLRP3 inflammasome activation drives bystander cone photoreceptor cell death in a P23H rhodopsin model of retinal degeneration. Hum Mol Genet. 2016;25:1501-16 pubmed 出版商
  892. Yang Y, Xu Y, Ding C, Khoudja R, Lin M, Awonuga A, et al. Comparison of 2, 5, and 20 % O2 on the development of post-thaw human embryos. J Assist Reprod Genet. 2016;33:919-27 pubmed 出版商
  893. Gruosso T, Mieulet V, Cardon M, Bourachot B, Kieffer Y, Devun F, et al. Chronic oxidative stress promotes H2AX protein degradation and enhances chemosensitivity in breast cancer patients. EMBO Mol Med. 2016;8:527-49 pubmed 出版商
  894. Nagao M, Ogata T, Sawada Y, Gotoh Y. Zbtb20 promotes astrocytogenesis during neocortical development. Nat Commun. 2016;7:11102 pubmed 出版商
  895. Liu X, Xiao Z, Han L, Zhang J, Lee S, Wang W, et al. LncRNA NBR2 engages a metabolic checkpoint by regulating AMPK under energy stress. Nat Cell Biol. 2016;18:431-42 pubmed 出版商
  896. Ezawa I, Sawai Y, Kawase T, Okabe A, Tsutsumi S, Ichikawa H, et al. Novel p53 target gene FUCA1 encodes a fucosidase and regulates growth and survival of cancer cells. Cancer Sci. 2016;107:734-45 pubmed 出版商
  897. Li B, Chen D, Li W, Xiao D. 20(S)-Protopanaxadiol saponins inhibit SKOV3 cell migration. Oncol Lett. 2016;11:1693-1698 pubmed
  898. Matsumoto M, Nakajima W, Seike M, Gemma A, Tanaka N. Cisplatin-induced apoptosis in non-small-cell lung cancer cells is dependent on Bax- and Bak-induction pathway and synergistically activated by BH3-mimetic ABT-263 in p53 wild-type and mutant cells. Biochem Biophys Res Commun. 2016;473:490-6 pubmed 出版商
  899. Carrasco A, Fernández Bañares F, Pedrosa E, Salas A, Loras C, Rosinach M, et al. Regional Specialisation of T Cell Subsets and Apoptosis in the Human Gut Mucosa: Differences Between Ileum and Colon in Healthy Intestine and Inflammatory Bowel Diseases. J Crohns Colitis. 2016;10:1042-54 pubmed 出版商
  900. Galán M, Varona S, Orriols M, Rodríguez J, Aguiló S, Dilmé J, et al. Induction of histone deacetylases (HDACs) in human abdominal aortic aneurysm: therapeutic potential of HDAC inhibitors. Dis Model Mech. 2016;9:541-52 pubmed 出版商
  901. Wong C, Poulin K, Tong G, Christou C, Kennedy M, Falls T, et al. Adenovirus-Mediated Expression of the p14 Fusion-Associated Small Transmembrane Protein Promotes Cancer Cell Fusion and Apoptosis In Vitro but Does Not Provide Therapeutic Efficacy in a Xenograft Mouse Model of Cancer. PLoS ONE. 2016;11:e0151516 pubmed 出版商
  902. Vlantis K, Wullaert A, Polykratis A, Kondylis V, Dannappel M, Schwarzer R, et al. NEMO Prevents RIP Kinase 1-Mediated Epithelial Cell Death and Chronic Intestinal Inflammation by NF-κB-Dependent and -Independent Functions. Immunity. 2016;44:553-567 pubmed 出版商
  903. Huang Y, Chen C, Tang K, Sheen J, Tiao M, Tain Y, et al. Postnatal High-Fat Diet Increases Liver Steatosis and Apoptosis Threatened by Prenatal Dexamethasone through the Oxidative Effect. Int J Mol Sci. 2016;17:369 pubmed 出版商
  904. Ranjan K, Pathak C. FADD regulates NF-κB activation and promotes ubiquitination of cFLIPL to induce apoptosis. Sci Rep. 2016;6:22787 pubmed 出版商
  905. Gao X, Feng J, He Y, Xu F, Fan X, Huang W, et al. hnRNPK inhibits GSK3β Ser9 phosphorylation, thereby stabilizing c-FLIP and contributes to TRAIL resistance in H1299 lung adenocarcinoma cells. Sci Rep. 2016;6:22999 pubmed 出版商
  906. Zhao H, Wang H, Bauzon F, Lu Z, Fu H, Cui J, et al. Deletions of Retinoblastoma 1 (Rb1) and Its Repressing Target S Phase Kinase-associated protein 2 (Skp2) Are Synthetic Lethal in Mouse Embryogenesis. J Biol Chem. 2016;291:10201-9 pubmed 出版商
  907. Prause M, Mayer C, Brorsson C, Frederiksen K, Billestrup N, Størling J, et al. JNK1 Deficient Insulin-Producing Cells Are Protected against Interleukin-1β-Induced Apoptosis Associated with Abrogated Myc Expression. J Diabetes Res. 2016;2016:1312705 pubmed 出版商
  908. Atiq R, Hertz R, Eldad S, Smeir E, Bar Tana J. Suppression of B-Raf(V600E) cancers by MAPK hyper-activation. Oncotarget. 2016;7:18694-704 pubmed 出版商
  909. Shukla P, Chaudhry K, Mir H, Gangwar R, Yadav N, Manda B, et al. Chronic ethanol feeding promotes azoxymethane and dextran sulfate sodium-induced colonic tumorigenesis potentially by enhancing mucosal inflammation. BMC Cancer. 2016;16:189 pubmed 出版商
  910. Wang G, Liu X, Gaertig M, Li S, Li X. Ablation of huntingtin in adult neurons is nondeleterious but its depletion in young mice causes acute pancreatitis. Proc Natl Acad Sci U S A. 2016;113:3359-64 pubmed 出版商
  911. Barroso González J, Auclair S, Luan S, Thomas L, Atkins K, Aslan J, et al. PACS-2 mediates the ATM and NF-κB-dependent induction of anti-apoptotic Bcl-xL in response to DNA damage. Cell Death Differ. 2016;23:1448-57 pubmed 出版商
  912. Dhar S, Kumar A, Zhang L, Rimando A, Lage J, Lewin J, et al. Dietary pterostilbene is a novel MTA1-targeted chemopreventive and therapeutic agent in prostate cancer. Oncotarget. 2016;7:18469-84 pubmed 出版商
  913. Kemp M, Sancar A. ATR Kinase Inhibition Protects Non-cycling Cells from the Lethal Effects of DNA Damage and Transcription Stress. J Biol Chem. 2016;291:9330-42 pubmed 出版商
  914. Ardini E, Menichincheri M, Banfi P, Bosotti R, De Ponti C, Pulci R, et al. Entrectinib, a Pan-TRK, ROS1, and ALK Inhibitor with Activity in Multiple Molecularly Defined Cancer Indications. Mol Cancer Ther. 2016;15:628-39 pubmed 出版商
  915. Wang W, Jossin Y, Chai G, Lien W, Tissir F, Goffinet A. Feedback regulation of apical progenitor fate by immature neurons through Wnt7-Celsr3-Fzd3 signalling. Nat Commun. 2016;7:10936 pubmed 出版商
  916. Cárdenas H, Arango D, Nicholas C, Duarte S, Nuovo G, He W, et al. Dietary Apigenin Exerts Immune-Regulatory Activity in Vivo by Reducing NF-κB Activity, Halting Leukocyte Infiltration and Restoring Normal Metabolic Function. Int J Mol Sci. 2016;17:323 pubmed 出版商
  917. Jing H, Sun W, Fan J, Zhang Y, Yang J, Jia J, et al. Shikonin induces apoptosis of HaCaT cells via the mitochondrial, Erk and Akt pathways. Mol Med Rep. 2016;13:3009-16 pubmed 出版商
  918. Wu J, Chi L, Chen Z, Lu X, Xiao S, Zhang G, et al. Functional analysis of the TMPRSS2:ERG fusion gene in cisplatin‑induced cell death. Mol Med Rep. 2016;13:3173-80 pubmed 出版商
  919. Persaud S, Park S, Ishigami Yuasa M, Koyano Nakagawa N, Kagechika H, Wei L. All trans-retinoic acid analogs promote cancer cell apoptosis through non-genomic Crabp1 mediating ERK1/2 phosphorylation. Sci Rep. 2016;6:22396 pubmed 出版商
  920. Gilormini M, Malesys C, Armandy E, Manas P, Guy J, Magne N, et al. Preferential targeting of cancer stem cells in the radiosensitizing effect of ABT-737 on HNSCC. Oncotarget. 2016;7:16731-44 pubmed 出版商
  921. Yang S, Meng J, Yang Y, Liu H, Liu J, Zhang Y, et al. A HSP60-targeting peptide for cell apoptosis imaging. Oncogenesis. 2016;5:e201 pubmed 出版商
  922. Köhler C, Koalick D, Fabricius A, Parplys A, Borgmann K, Pospiech H, et al. Cdc45 is limiting for replication initiation in humans. Cell Cycle. 2016;15:974-85 pubmed 出版商
  923. Eriksson J, Le Joncour V, Nummela P, Jahkola T, Virolainen S, Laakkonen P, et al. Gene expression analyses of primary melanomas reveal CTHRC1 as an important player in melanoma progression. Oncotarget. 2016;7:15065-92 pubmed 出版商
  924. Waldeck K, Cullinane C, Ardley K, Shortt J, Martin B, Tothill R, et al. Long term, continuous exposure to panobinostat induces terminal differentiation and long term survival in the TH-MYCN neuroblastoma mouse model. Int J Cancer. 2016;139:194-204 pubmed 出版商
  925. Kai T, Tsukamoto Y, Hijiya N, Tokunaga A, Nakada C, Uchida T, et al. Kidney-specific knockout of Sav1 in the mouse promotes hyperproliferation of renal tubular epithelium through suppression of the Hippo pathway. J Pathol. 2016;239:97-108 pubmed 出版商
  926. Hong J, Lee J, Chung I. Telomerase activates transcription of cyclin D1 gene through an interaction with NOL1. J Cell Sci. 2016;129:1566-79 pubmed 出版商
  927. Yufune S, Satoh Y, Akai R, Yoshinaga Y, Kobayashi Y, Endo S, et al. Suppression of ERK phosphorylation through oxidative stress is involved in the mechanism underlying sevoflurane-induced toxicity in the developing brain. Sci Rep. 2016;6:21859 pubmed 出版商
  928. Roque C, Wong H, Lin J, Holt C. Tumor protein Tctp regulates axon development in the embryonic visual system. Development. 2016;143:1134-48 pubmed 出版商
  929. Gonçalves A, Thorsteinsdóttir S, Deries M. Rapid and simple method for in vivo ex utero development of mouse embryo explants. Differentiation. 2016;91:57-67 pubmed 出版商
  930. Ma Y, Guo H, Zhang L, Tao L, Yin A, Liu Z, et al. Estrogen replacement therapy-induced neuroprotection against brain ischemia-reperfusion injury involves the activation of astrocytes via estrogen receptor β. Sci Rep. 2016;6:21467 pubmed 出版商
  931. Stojcheva N, Schechtmann G, Sass S, Roth P, Florea A, Stefanski A, et al. MicroRNA-138 promotes acquired alkylator resistance in glioblastoma by targeting the Bcl-2-interacting mediator BIM. Oncotarget. 2016;7:12937-50 pubmed 出版商
  932. Liao B, McManus S, Hughes W, Schmitz Peiffer C. Flavin-Containing Monooxygenase 3 Reduces Endoplasmic Reticulum Stress in Lipid-Treated Hepatocytes. Mol Endocrinol. 2016;30:417-28 pubmed 出版商
  933. Farini A, Sitzia C, Cassinelli L, Colleoni F, Parolini D, Giovanella U, et al. Inositol 1,4,5-trisphosphate (IP3)-dependent Ca2+ signaling mediates delayed myogenesis in Duchenne muscular dystrophy fetal muscle. Development. 2016;143:658-69 pubmed 出版商
  934. Zhang W, Kim P, Chen Z, Lokman H, Qiu L, Zhang K, et al. MiRNA-128 regulates the proliferation and neurogenesis of neural precursors by targeting PCM1 in the developing cortex. elife. 2016;5: pubmed 出版商
  935. Zhang W, Shi H, Zhang M, Liu B, Mao S, Li L, et al. Poly C binding protein 1 represses autophagy through downregulation of LC3B to promote tumor cell apoptosis in starvation. Int J Biochem Cell Biol. 2016;73:127-136 pubmed 出版商
  936. Nyhan M, O Donovan T, Boersma A, Wiemer E, McKenna S. MiR-193b promotes autophagy and non-apoptotic cell death in oesophageal cancer cells. BMC Cancer. 2016;16:101 pubmed 出版商
  937. Braun D, Sadowski C, Kohl S, Lovric S, Astrinidis S, Pabst W, et al. Mutations in nuclear pore genes NUP93, NUP205 and XPO5 cause steroid-resistant nephrotic syndrome. Nat Genet. 2016;48:457-65 pubmed 出版商
  938. Hong M, Nam K, Kim K, Kim S, Kim I. The small molecule '1-(4-biphenylylcarbonyl)-4-(5-bromo-2-methoxybenzyl) piperazine oxalate' and its derivatives regulate global protein synthesis by inactivating eukaryotic translation initiation factor 2-alpha. Cell Stress Chaperones. 2016;21:485-97 pubmed 出版商
  939. Rotondi S, Modarelli A, Oliva M, Rostomyan L, Sanità P, Ventura L, et al. Expression of Peroxisome Proliferator-Activated Receptor alpha (PPARα) in somatotropinomas: Relationship with Aryl hydrocarbon receptor Interacting Protein (AIP) and in vitro effects of fenofibrate in GH3 cells. Mol Cell Endocrinol. 2016;426:61-72 pubmed 出版商
  940. Tang Y, Hong Y, Bai H, Wu Q, Chen C, Lang J, et al. Plant Homeo Domain Finger Protein 8 Regulates Mesodermal and Cardiac Differentiation of Embryonic Stem Cells Through Mediating the Histone Demethylation of pmaip1. Stem Cells. 2016;34:1527-40 pubmed 出版商
  941. Bouilloux F, Thireau J, Ventéo S, Farah C, Karam S, Dauvilliers Y, et al. Loss of the transcription factor Meis1 prevents sympathetic neurons target-field innervation and increases susceptibility to sudden cardiac death. elife. 2016;5: pubmed 出版商
  942. Nakagawa A, Adams C, Huang Y, Hamarneh S, Liu W, Von Alt K, et al. Selective and reversible suppression of intestinal stem cell differentiation by pharmacological inhibition of BET bromodomains. Sci Rep. 2016;6:20390 pubmed 出版商
  943. Davidson S, Papagiannakopoulos T, Olenchock B, Heyman J, Keibler M, Luengo A, et al. Environment Impacts the Metabolic Dependencies of Ras-Driven Non-Small Cell Lung Cancer. Cell Metab. 2016;23:517-28 pubmed 出版商
  944. Zhang Y, Zou C, Yang S, Fu J. P120 catenin attenuates the angiotensin II-induced apoptosis of human umbilical vein endothelial cells by suppressing the mitochondrial pathway. Int J Mol Med. 2016;37:623-30 pubmed 出版商
  945. Li Y, Liu J, Gao D, Wei J, Yuan H, Niu X, et al. Age-related changes in hypertensive brain damage in the hippocampi of spontaneously hypertensive rats. Mol Med Rep. 2016;13:2552-60 pubmed 出版商
  946. Franco C, Jones M, Bernabeu M, Vion A, Barbacena P, Fan J, et al. Non-canonical Wnt signalling modulates the endothelial shear stress flow sensor in vascular remodelling. elife. 2016;5:e07727 pubmed 出版商
  947. Flanagan L, Meyer M, Fay J, Curry S, Bacon O, Duessmann H, et al. Low levels of Caspase-3 predict favourable response to 5FU-based chemotherapy in advanced colorectal cancer: Caspase-3 inhibition as a therapeutic approach. Cell Death Dis. 2016;7:e2087 pubmed 出版商
  948. De Toni E, Ziesch A, Rizzani A, Török H, Hocke S, Lü S, et al. Inactivation of BRCA2 in human cancer cells identifies a subset of tumors with enhanced sensitivity towards death receptor-mediated apoptosis. Oncotarget. 2016;7:9477-90 pubmed 出版商
  949. Dos Santos E, Carneiro Lobo T, Aoki M, Levantini E, Bassères D. Aurora kinase targeting in lung cancer reduces KRAS-induced transformation. Mol Cancer. 2016;15:12 pubmed 出版商
  950. Ophelders D, Gussenhoven R, Lammens M, Küsters B, Kemp M, Newnham J, et al. Neuroinflammation and structural injury of the fetal ovine brain following intra-amniotic Candida albicans exposure. J Neuroinflammation. 2016;13:29 pubmed 出版商
  951. Sun H, Luo L, Lal B, Ma X, Chen L, Hann C, et al. A monoclonal antibody against KCNK9 K(+) channel extracellular domain inhibits tumour growth and metastasis. Nat Commun. 2016;7:10339 pubmed 出版商
  952. Jiang P, Gan M, Yen S, Moussaud S, McLean P, Dickson D. Proaggregant nuclear factor(s) trigger rapid formation of ?-synuclein aggregates in apoptotic neurons. Acta Neuropathol. 2016;132:77-91 pubmed 出版商
  953. Chen N, Chyau C, Lee Y, Tseng H, Chou F. Promotion of mitotic catastrophe via activation of PTEN by paclitaxel with supplement of mulberry water extract in bladder cancer cells. Sci Rep. 2016;6:20417 pubmed 出版商
  954. Nakazawa M, Eisinger Mathason T, Sadri N, Ochocki J, Gade T, Amin R, et al. Epigenetic re-expression of HIF-2α suppresses soft tissue sarcoma growth. Nat Commun. 2016;7:10539 pubmed 出版商
  955. Lopez J, Bessou M, Riley J, Giampazolias E, Todt F, Rochegüe T, et al. Mito-priming as a method to engineer Bcl-2 addiction. Nat Commun. 2016;7:10538 pubmed 出版商
  956. Esfandiari A, Hawthorne T, Nakjang S, Lunec J. Chemical Inhibition of Wild-Type p53-Induced Phosphatase 1 (WIP1/PPM1D) by GSK2830371 Potentiates the Sensitivity to MDM2 Inhibitors in a p53-Dependent Manner. Mol Cancer Ther. 2016;15:379-91 pubmed 出版商
  957. Ottesen E, Howell M, Singh N, Seo J, Whitley E, Singh R. Severe impairment of male reproductive organ development in a low SMN expressing mouse model of spinal muscular atrophy. Sci Rep. 2016;6:20193 pubmed 出版商
  958. Podmirseg S, Jäkel H, Ranches G, Kullmann M, Sohm B, Villunger A, et al. Caspases uncouple p27(Kip1) from cell cycle regulated degradation and abolish its ability to stimulate cell migration and invasion. Oncogene. 2016;35:4580-90 pubmed 出版商
  959. Bouge A, Parmentier M. Tau excess impairs mitosis and kinesin-5 function, leading to aneuploidy and cell death. Dis Model Mech. 2016;9:307-19 pubmed 出版商
  960. Thornton T, Delgado P, Chen L, Salas B, Krementsov D, Fernández M, et al. Inactivation of nuclear GSK3β by Ser(389) phosphorylation promotes lymphocyte fitness during DNA double-strand break response. Nat Commun. 2016;7:10553 pubmed 出版商
  961. Long C, Guo W, Zhou H, Wang J, Wang H, Sun X. Triptolide decreases expression of latency-associated nuclear antigen 1 and reduces viral titers in Kaposi's sarcoma-associated and herpesvirus-related primary effusion lymphoma cells. Int J Oncol. 2016;48:1519-30 pubmed 出版商
  962. Powell E, Shao J, Yuan Y, Chen H, Cai S, Echeverria G, et al. p53 deficiency linked to B cell translocation gene 2 (BTG2) loss enhances metastatic potential by promoting tumor growth in primary and metastatic sites in patient-derived xenograft (PDX) models of triple-negative breast cancer. Breast Cancer Res. 2016;18:13 pubmed 出版商
  963. Button R, Vincent J, Strang C, Luo S. Dual PI-3 kinase/mTOR inhibition impairs autophagy flux and induces cell death independent of apoptosis and necroptosis. Oncotarget. 2016;7:5157-75 pubmed 出版商
  964. Tadokoro T, Gao X, Hong C, Hotten D, Hogan B. BMP signaling and cellular dynamics during regeneration of airway epithelium from basal progenitors. Development. 2016;143:764-73 pubmed 出版商
  965. Couderc C, Boin A, Fuhrmann L, Vincent Salomon A, Mandati V, Kieffer Y, et al. AMOTL1 Promotes Breast Cancer Progression and Is Antagonized by Merlin. Neoplasia. 2016;18:10-24 pubmed 出版商
  966. Yan Y, Tan K, Li C, Tran T, Chao S, Sugrue R, et al. Human nasal epithelial cells derived from multiple subjects exhibit differential responses to H3N2 influenza virus infection in vitro. J Allergy Clin Immunol. 2016;138:276-281.e15 pubmed 出版商
  967. Audet Walsh Ã, Papadopoli D, Gravel S, Yee T, Bridon G, Caron M, et al. The PGC-1α/ERRα Axis Represses One-Carbon Metabolism and Promotes Sensitivity to Anti-folate Therapy in Breast Cancer. Cell Rep. 2016;14:920-931 pubmed 出版商
  968. Heo J, Kim W, Choi K, Bae S, Jeong J, Kim K. XIAP-associating factor 1, a transcriptional target of BRD7, contributes to endothelial cell senescence. Oncotarget. 2016;7:5118-30 pubmed 出版商
  969. Goulielmaki M, Koustas E, Moysidou E, Vlassi M, Sasazuki T, Shirasawa S, et al. BRAF associated autophagy exploitation: BRAF and autophagy inhibitors synergise to efficiently overcome resistance of BRAF mutant colorectal cancer cells. Oncotarget. 2016;7:9188-221 pubmed 出版商
  970. Koyani C, Kitz K, Rossmann C, Bernhart E, Huber E, Trummer C, et al. Activation of the MAPK/Akt/Nrf2-Egr1/HO-1-GCLc axis protects MG-63 osteosarcoma cells against 15d-PGJ2-mediated cell death. Biochem Pharmacol. 2016;104:29-41 pubmed 出版商
  971. Jiang C, Fang X, Jiang Y, Shen F, Hu Z, Li X, et al. TNF-α induces vascular endothelial cells apoptosis through overexpressing pregnancy induced noncoding RNA in Kawasaki disease model. Int J Biochem Cell Biol. 2016;72:118-124 pubmed 出版商
  972. Baer A, Lundberg L, Swales D, Waybright N, Pinkham C, Dinman J, et al. Venezuelan Equine Encephalitis Virus Induces Apoptosis through the Unfolded Protein Response Activation of EGR1. J Virol. 2016;90:3558-72 pubmed 出版商
  973. Kao S, Soares V, Kristiansen A, Stankovic K. Activation of TRAIL-DR5 pathway promotes sensorineural degeneration in the inner ear. Aging Cell. 2016;15:301-8 pubmed 出版商
  974. Villarroel Espíndola F, Tapia C, González Stegmaier R, Concha I, Slebe J. Polyglucosan Molecules Induce Mitochondrial Impairment and Apoptosis in Germ Cells Without Affecting the Integrity and Functionality of Sertoli Cells. J Cell Physiol. 2016;231:2142-52 pubmed 出版商
  975. Draney C, Hobson A, Grover S, Jack B, Tessem J. Cdk5r1 Overexpression Induces Primary β-Cell Proliferation. J Diabetes Res. 2016;2016:6375804 pubmed 出版商
  976. Moriwaki K, Chan F. Regulation of RIPK3- and RHIM-dependent Necroptosis by the Proteasome. J Biol Chem. 2016;291:5948-59 pubmed 出版商
  977. Zhu N, Wang H, Wang B, Wei J, Shan W, Feng J, et al. A Member of the Nuclear Receptor Superfamily, Designated as NR2F2, Supports the Self-Renewal Capacity and Pluripotency of Human Bone Marrow-Derived Mesenchymal Stem Cells. Stem Cells Int. 2016;2016:5687589 pubmed 出版商
  978. Korwitz A, Merkwirth C, Richter Dennerlein R, Tröder S, Sprenger H, Quirós P, et al. Loss of OMA1 delays neurodegeneration by preventing stress-induced OPA1 processing in mitochondria. J Cell Biol. 2016;212:157-66 pubmed 出版商
  979. Schirmer M, Trentin L, Queudeville M, Seyfried F, Demir S, Tausch E, et al. Intrinsic and chemo-sensitizing activity of SMAC-mimetics on high-risk childhood acute lymphoblastic leukemia. Cell Death Dis. 2016;7:e2052 pubmed 出版商
  980. Liu X, Ward K, Xavier C, Jann J, Clark A, Pang I, et al. The novel triterpenoid RTA 408 protects human retinal pigment epithelial cells against H2O2-induced cell injury via NF-E2-related factor 2 (Nrf2) activation. Redox Biol. 2016;8:98-109 pubmed 出版商
  981. Loebel D, Plageman T, Tang T, Jones V, Muccioli M, Tam P. Thyroid bud morphogenesis requires CDC42- and SHROOM3-dependent apical constriction. Biol Open. 2016;5:130-9 pubmed 出版商
  982. Qiu Z, Sun R, Mo X, Li W. The p70S6K Specific Inhibitor PF-4708671 Impedes Non-Small Cell Lung Cancer Growth. PLoS ONE. 2016;11:e0147185 pubmed 出版商
  983. Wang S, Ni H, Dorko K, Kumer S, Schmitt T, Nawabi A, et al. Increased hepatic receptor interacting protein kinase 3 expression due to impaired proteasomal functions contributes to alcohol-induced steatosis and liver injury. Oncotarget. 2016;7:17681-98 pubmed 出版商
  984. Camlin N, Sobinoff A, Sutherland J, Beckett E, Jarnicki A, Vanders R, et al. Maternal Smoke Exposure Impairs the Long-Term Fertility of Female Offspring in a Murine Model. Biol Reprod. 2016;94:39 pubmed 出版商
  985. Kim Y, Nam H, Lee J, Park D, Kim C, Yu Y, et al. Methylation-dependent regulation of HIF-1α stability restricts retinal and tumour angiogenesis. Nat Commun. 2016;7:10347 pubmed 出版商
  986. Crowder R, Dicker D, El Deiry W. The Deubiquitinase Inhibitor PR-619 Sensitizes Normal Human Fibroblasts to Tumor Necrosis Factor-related Apoptosis-inducing Ligand (TRAIL)-mediated Cell Death. J Biol Chem. 2016;291:5960-70 pubmed 出版商
  987. Kitamura A, Nakayama Y, Shibasaki A, Taki A, Yuno S, Takeda K, et al. Interaction of RNA with a C-terminal fragment of the amyotrophic lateral sclerosis-associated TDP43 reduces cytotoxicity. Sci Rep. 2016;6:19230 pubmed 出版商
  988. Chhibber Goel J, Coleman Vaughan C, Agrawal V, Sawhney N, Hickey E, Powell J, et al. γ-Secretase Activity Is Required for Regulated Intramembrane Proteolysis of Tumor Necrosis Factor (TNF) Receptor 1 and TNF-mediated Pro-apoptotic Signaling. J Biol Chem. 2016;291:5971-85 pubmed 出版商
  989. Park K, Yun H, Quang T, Oh H, Lee D, Auh Q, et al. 4-Methoxydalbergione suppresses growth and induces apoptosis in human osteosarcoma cells in vitro and in vivo xenograft model through down-regulation of the JAK2/STAT3 pathway. Oncotarget. 2016;7:6960-71 pubmed 出版商
  990. Amato K, Wang S, Tan L, Hastings A, Song W, Lovly C, et al. EPHA2 Blockade Overcomes Acquired Resistance to EGFR Kinase Inhibitors in Lung Cancer. Cancer Res. 2016;76:305-18 pubmed 出版商
  991. Rooney G, Goodwin A, Depeille P, Sharir A, Schofield C, Yeh E, et al. Human iPS Cell-Derived Neurons Uncover the Impact of Increased Ras Signaling in Costello Syndrome. J Neurosci. 2016;36:142-52 pubmed 出版商
  992. Ho N, Morrison J, Silva A, Coomber B. The effect of 3-bromopyruvate on human colorectal cancer cells is dependent on glucose concentration but not hexokinase II expression. Biosci Rep. 2016;36:e00299 pubmed 出版商
  993. Terranova Barberio M, Roca M, Zotti A, Leone A, Bruzzese F, Vitagliano C, et al. Valproic acid potentiates the anticancer activity of capecitabine in vitro and in vivo in breast cancer models via induction of thymidine phosphorylase expression. Oncotarget. 2016;7:7715-31 pubmed 出版商
  994. Wilhelm K, Happel K, Eelen G, Schoors S, Oellerich M, Lim R, et al. FOXO1 couples metabolic activity and growth state in the vascular endothelium. Nature. 2016;529:216-20 pubmed 出版商
  995. Zhao F, Huang W, Zhang Z, Mao L, Han Y, Yan J, et al. Triptolide induces protective autophagy through activation of the CaMKKβ-AMPK signaling pathway in prostate cancer cells. Oncotarget. 2016;7:5366-82 pubmed 出版商
  996. Cao L, Li H, Lin W, Tan H, Xie L, Zhong Z, et al. Morphine, a potential antagonist of cisplatin cytotoxicity, inhibits cisplatin-induced apoptosis and suppression of tumor growth in nasopharyngeal carcinoma xenografts. Sci Rep. 2016;6:18706 pubmed 出版商
  997. Lv H, Zhang Z, Wu X, Wang Y, Li C, Gong W, et al. Preclinical Evaluation of Liposomal C8 Ceramide as a Potent anti-Hepatocellular Carcinoma Agent. PLoS ONE. 2016;11:e0145195 pubmed 出版商
  998. Xie C, Ginet V, Sun Y, Koike M, Zhou K, Li T, et al. Neuroprotection by selective neuronal deletion of Atg7 in neonatal brain injury. Autophagy. 2016;12:410-23 pubmed 出版商
  999. Dey A, Robitaille M, Remke M, Maier C, Malhotra A, Gregorieff A, et al. YB-1 is elevated in medulloblastoma and drives proliferation in Sonic hedgehog-dependent cerebellar granule neuron progenitor cells and medulloblastoma cells. Oncogene. 2016;35:4256-68 pubmed 出版商
  1000. Zhang H, Xiong Z, Wang J, Zhang S, Lei L, Yang L, et al. Glucagon-like peptide-1 protects cardiomyocytes from advanced oxidation protein product-induced apoptosis via the PI3K/Akt/Bad signaling pathway. Mol Med Rep. 2016;13:1593-601 pubmed 出版商
  1001. Lub S, Maes A, Maes K, De Veirman K, De Bruyne E, Menu E, et al. Inhibiting the anaphase promoting complex/cyclosome induces a metaphase arrest and cell death in multiple myeloma cells. Oncotarget. 2016;7:4062-76 pubmed 出版商
  1002. Mardaryev A, Liu B, Rapisarda V, Poterlowicz K, Malashchuk I, Rudolf J, et al. Cbx4 maintains the epithelial lineage identity and cell proliferation in the developing stratified epithelium. J Cell Biol. 2016;212:77-89 pubmed 出版商
  1003. Lin Y, Zhuang J, Li H, Zhu G, Zhou S, Li W, et al. Vaspin attenuates the progression of atherosclerosis by inhibiting ER stress-induced macrophage apoptosis in apoE‑/‑ mice. Mol Med Rep. 2016;13:1509-16 pubmed 出版商
  1004. Benedykcinska A, Ferreira A, Lau J, Broni J, Richard Loendt A, Henriquez N, et al. Generation of brain tumours in mice by Cre-mediated recombination of neural progenitors in situ with the tamoxifen metabolite endoxifen. Dis Model Mech. 2016;9:211-20 pubmed 出版商
  1005. Abdel Hamid A, Firgany A, Ali E. Effect of memantine: A NMDA receptor blocker, on ethambutol-induced retinal injury. Ann Anat. 2016;204:86-92 pubmed 出版商
  1006. Wang F, Feng Y, Li P, Wang K, Feng L, Liu Y, et al. RASSF10 is an epigenetically inactivated tumor suppressor and independent prognostic factor in hepatocellular carcinoma. Oncotarget. 2016;7:4279-97 pubmed 出版商
  1007. Suga K, Saito A, Akagawa K. Data supporting ER stress response in NG108-15 cells involves upregulation of syntaxin 5 expression and reduced amyloid β peptide secretion. Data Brief. 2015;5:782-8 pubmed 出版商
  1008. Lei X, Cui K, Liu Q, Zhang H, Li Z, Huang B, et al. Exogenous Estradiol Benzoate Induces Spermatogenesis Disorder through Influencing Apoptosis and Oestrogen Receptor Signalling Pathway. Reprod Domest Anim. 2016;51:75-84 pubmed 出版商
  1009. García V, Lara Chica M, Cantarero I, Sterner O, Calzado M, Muñoz E. Galiellalactone induces cell cycle arrest and apoptosis through the ATM/ATR pathway in prostate cancer cells. Oncotarget. 2016;7:4490-506 pubmed 出版商
  1010. Márquez J, Mena J, Hernandez Unzueta I, Benedicto A, Sanz E, Arteta B, et al. Ocoxin® oral solution slows down tumor growth in an experimental model of colorectal cancer metastasis to the liver in Balb/c mice. Oncol Rep. 2016;35:1265-72 pubmed 出版商
  1011. Wang Y, Xu S, Xu W, Yang H, Hu P, Li Y. Sodium formate induces autophagy and apoptosis via the JNK signaling pathway of photoreceptor cells. Mol Med Rep. 2016;13:1111-8 pubmed 出版商
  1012. Chen Y, Tsou B, Hu S, Ma H, Liu X, Yen Y, et al. Autophagy induction causes a synthetic lethal sensitization to ribonucleotide reductase inhibition in breast cancer cells. Oncotarget. 2016;7:1984-99 pubmed 出版商
  1013. Gopal K, Gowtham M, Sachin S, Ravishankar Ram M, Shankar E, Kamarul T. Attrition of Hepatic Damage Inflicted by Angiotensin II with α-Tocopherol and β-Carotene in Experimental Apolipoprotein E Knock-out Mice. Sci Rep. 2015;5:18300 pubmed 出版商
  1014. Monian P, Jiang X. The Cellular Apoptosis Susceptibility Protein (CAS) Promotes Tumor Necrosis Factor-related Apoptosis-inducing Ligand (TRAIL)-induced Apoptosis and Cell Proliferation. J Biol Chem. 2016;291:2379-88 pubmed 出版商
  1015. Ogura Y, Hindi S, Sato S, Xiong G, Akira S, Kumar A. TAK1 modulates satellite stem cell homeostasis and skeletal muscle repair. Nat Commun. 2015;6:10123 pubmed 出版商
  1016. Huang X, Huang S, Guo F, Xu F, Cheng P, Ye Y, et al. Dose-dependent inhibitory effects of zoledronic acid on osteoblast viability and function in vitro. Mol Med Rep. 2016;13:613-22 pubmed 出版商
  1017. Kaizuka T, Mizushima N. Atg13 Is Essential for Autophagy and Cardiac Development in Mice. Mol Cell Biol. 2016;36:585-95 pubmed 出版商
  1018. Soto Nuñez M, Díaz Morales K, Cuautle Rodríguez P, Torres Flores V, Lopez Gonzalez J, Mandoki Weitzner J, et al. Single-cell microinjection assay indicates that 7-hydroxycoumarin induces rapid activation of caspase-3 in A549 cancer cells. Exp Ther Med. 2015;10:1789-1795 pubmed
  1019. Trzeciecka A, Klossowski S, Bajor M, Zagozdzon R, Gaj P, Muchowicz A, et al. Dimeric peroxiredoxins are druggable targets in human Burkitt lymphoma. Oncotarget. 2016;7:1717-31 pubmed 出版商
  1020. Cataldo A, Cheung D, Balsari A, Tagliabue E, Coppola V, Iorio M, et al. miR-302b enhances breast cancer cell sensitivity to cisplatin by regulating E2F1 and the cellular DNA damage response. Oncotarget. 2016;7:786-97 pubmed 出版商
  1021. Tronnes A, Koschnitzky J, Daza R, Hitti J, Ramirez J, Hevner R. Effects of Lipopolysaccharide and Progesterone Exposures on Embryonic Cerebral Cortex Development in Mice. Reprod Sci. 2016;23:771-8 pubmed 出版商
  1022. Andzinski L, Kasnitz N, Stahnke S, Wu C, Gereke M, von Köckritz Blickwede M, et al. Type I IFNs induce anti-tumor polarization of tumor associated neutrophils in mice and human. Int J Cancer. 2016;138:1982-93 pubmed 出版商
  1023. Yang B, Zhang M, Gao J, Li J, Fan L, Xiang G, et al. Small molecule RL71 targets SERCA2 at a novel site in the treatment of human colorectal cancer. Oncotarget. 2015;6:37613-25 pubmed 出版商
  1024. Ittig S, Schmutz C, Kasper C, Amstutz M, Schmidt A, Sauteur L, et al. A bacterial type III secretion-based protein delivery tool for broad applications in cell biology. J Cell Biol. 2015;211:913-31 pubmed 出版商
  1025. Dahlke C, Saberi D, Ott B, Brand Saberi B, Schmitt John T, Theiss C. Inflammation and neuronal death in the motor cortex of the wobbler mouse, an ALS animal model. J Neuroinflammation. 2015;12:215 pubmed 出版商
  1026. Ashraf M, Schwelberger H, Brendel K, Feurle J, Andrassy J, Kotsch K, et al. Exogenous Lipocalin 2 Ameliorates Acute Rejection in a Mouse Model of Renal Transplantation. Am J Transplant. 2016;16:808-20 pubmed 出版商
  1027. Dimitrova N, Gocheva V, Bhutkar A, Resnick R, Jong R, Miller K, et al. Stromal Expression of miR-143/145 Promotes Neoangiogenesis in Lung Cancer Development. Cancer Discov. 2016;6:188-201 pubmed 出版商
  1028. Alexandrova S, Kalkan T, Humphreys P, Riddell A, Scognamiglio R, Trumpp A, et al. Selection and dynamics of embryonic stem cell integration into early mouse embryos. Development. 2016;143:24-34 pubmed 出版商
  1029. Schill E, Lake J, Tusheva O, Nagy N, Bery S, Foster L, et al. Ibuprofen slows migration and inhibits bowel colonization by enteric nervous system precursors in zebrafish, chick and mouse. Dev Biol. 2016;409:473-88 pubmed 出版商
  1030. Cristini A, Park J, Capranico G, Legube G, Favre G, Sordet O. DNA-PK triggers histone ubiquitination and signaling in response to DNA double-strand breaks produced during the repair of transcription-blocking topoisomerase I lesions. Nucleic Acids Res. 2016;44:1161-78 pubmed 出版商
  1031. Alsafadi S, Tourpin S, Bessoltane N, Salomé Desnoulez S, Vassal G, André F, et al. Nuclear localization of the caspase-3-cleaved form of p73 in anoikis. Oncotarget. 2016;7:12331-43 pubmed 出版商
  1032. Huang Y, Chen Y, Lai Y, Cheng C, Lin T, Su Y, et al. Resveratrol alleviates the cytotoxicity induced by the radiocontrast agent, ioxitalamate, by reducing the production of reactive oxygen species in HK-2 human renal proximal tubule epithelial cells in vitro. Int J Mol Med. 2016;37:83-91 pubmed 出版商
  1033. Sin J, Andres A, Taylor D, Weston T, Hiraumi Y, Stotland A, et al. Mitophagy is required for mitochondrial biogenesis and myogenic differentiation of C2C12 myoblasts. Autophagy. 2016;12:369-80 pubmed 出版商
  1034. Wang Z, Liu N, Liu K, Zhou G, Gan J, Wang Z, et al. Autophagy mediated CoCrMo particle-induced peri-implant osteolysis by promoting osteoblast apoptosis. Autophagy. 2015;11:2358-69 pubmed 出版商
  1035. Phillips D, Xiao Y, Lam L, Litvinovich E, Roberts Rapp L, Souers A, et al. Loss in MCL-1 function sensitizes non-Hodgkin's lymphoma cell lines to the BCL-2-selective inhibitor venetoclax (ABT-199). Blood Cancer J. 2015;5:e368 pubmed 出版商
  1036. Draganov D, Gopalakrishna Pillai S, Chen Y, Zuckerman N, Moeller S, Wang C, et al. Modulation of P2X4/P2X7/Pannexin-1 sensitivity to extracellular ATP via Ivermectin induces a non-apoptotic and inflammatory form of cancer cell death. Sci Rep. 2015;5:16222 pubmed 出版商
  1037. Sun S, Shi G, Sha H, Ji Y, Han X, Shu X, et al. IRE1α is an endogenous substrate of endoplasmic-reticulum-associated degradation. Nat Cell Biol. 2015;17:1546-55 pubmed 出版商
  1038. Askoxylakis V, Ferraro G, Kodack D, Badeaux M, Shankaraiah R, Seano G, et al. Preclinical Efficacy of Ado-trastuzumab Emtansine in the Brain Microenvironment. J Natl Cancer Inst. 2016;108: pubmed 出版商
  1039. Ahn H, Kim K, Shin K, Lim K, Kim J, Lee J, et al. Ell3 stabilizes p53 following CDDP treatment via its effects on ubiquitin-dependent and -independent proteasomal degradation pathways in breast cancer cells. Oncotarget. 2015;6:44523-37 pubmed 出版商
  1040. Hu J, Man W, Shen M, Zhang M, Lin J, Wang T, et al. Luteolin alleviates post-infarction cardiac dysfunction by up-regulating autophagy through Mst1 inhibition. J Cell Mol Med. 2016;20:147-56 pubmed 出版商
  1041. Ko T, Chin H, Chuah C, Huang J, Ng K, Khaw S, et al. The BIM deletion polymorphism: A paradigm of a permissive interaction between germline and acquired TKI resistance factors in chronic myeloid leukemia. Oncotarget. 2016;7:2721-33 pubmed 出版商
  1042. Zhou X, Wei J, Chen F, Xiao X, Huang T, He Q, et al. Epigenetic downregulation of the ISG15-conjugating enzyme UbcH8 impairs lipolysis and correlates with poor prognosis in nasopharyngeal carcinoma. Oncotarget. 2015;6:41077-91 pubmed 出版商
  1043. Kyathanahalli C, Organ K, Moreci R, Anamthathmakula P, Hassan S, Caritis S, et al. Uterine endoplasmic reticulum stress-unfolded protein response regulation of gestational length is caspase-3 and -7-dependent. Proc Natl Acad Sci U S A. 2015;112:14090-5 pubmed 出版商
  1044. Shen W, Chang A, Wang J, Zhou W, Gao R, Li J, et al. TIFA, an inflammatory signaling adaptor, is tumor suppressive for liver cancer. Oncogenesis. 2015;4:e173 pubmed 出版商
  1045. Huang L, Holtzinger A, Jagan I, BeGora M, Lohse I, Ngai N, et al. Ductal pancreatic cancer modeling and drug screening using human pluripotent stem cell- and patient-derived tumor organoids. Nat Med. 2015;21:1364-71 pubmed 出版商
  1046. Nichols C, Shepherd D, Knuckles T, Thapa D, Stricker J, Stapleton P, et al. Cardiac and mitochondrial dysfunction following acute pulmonary exposure to mountaintop removal mining particulate matter. Am J Physiol Heart Circ Physiol. 2015;309:H2017-30 pubmed 出版商
  1047. Li K, Gao B, Li J, Chen H, Li Y, Wei Y, et al. ZNF32 protects against oxidative stress-induced apoptosis by modulating C1QBP transcription. Oncotarget. 2015;6:38107-26 pubmed 出版商
  1048. Abu Alainin W, Gana T, Liloglou T, Olayanju A, Barrera L, Ferguson R, et al. UHRF1 regulation of the Keap1-Nrf2 pathway in pancreatic cancer contributes to oncogenesis. J Pathol. 2016;238:423-33 pubmed 出版商
  1049. Vétillard A, Jonchère B, Moreau M, Toutain B, Henry C, Fontanel S, et al. Akt inhibition improves irinotecan treatment and prevents cell emergence by switching the senescence response to apoptosis. Oncotarget. 2015;6:43342-62 pubmed 出版商
  1050. Campo Verde Arboccó F, Sasso C, Actis E, Carón R, Hapon M, Jahn G. Hypothyroidism advances mammary involution in lactating rats through inhibition of PRL signaling and induction of LIF/STAT3 mRNAs. Mol Cell Endocrinol. 2016;419:18-28 pubmed 出版商
  1051. Ci X, Li B, Ma X, Kong F, Zheng C, Björkholm M, et al. Bortezomib-mediated down-regulation of telomerase and disruption of telomere homeostasis contributes to apoptosis of malignant cells. Oncotarget. 2015;6:38079-92 pubmed 出版商
  1052. Sabirzhanov B, Stoica B, Zhao Z, Loane D, Wu J, Dorsey S, et al. miR-711 upregulation induces neuronal cell death after traumatic brain injury. Cell Death Differ. 2016;23:654-68 pubmed 出版商
  1053. Guo W, Zhang Y, Ling Z, Liu X, Zhao X, Yuan Z, et al. Caspase-3 feedback loop enhances Bid-induced AIF/endoG and Bak activation in Bax and p53-independent manner. Cell Death Dis. 2015;6:e1919 pubmed 出版商
  1054. Spiesberger K, Paulfranz F, Egger A, Reiser J, Vogl C, Rudolf Scholik J, et al. Large-Scale Purification of r28M: A Bispecific scFv Antibody Targeting Human Melanoma Produced in Transgenic Cattle. PLoS ONE. 2015;10:e0140471 pubmed 出版商
  1055. Courtaut F, Derangère V, Chevriaux A, Ladoire S, Cotte A, Arnould L, et al. Liver X receptor ligand cytotoxicity in colon cancer cells and not in normal colon epithelial cells depends on LXRβ subcellular localization. Oncotarget. 2015;6:26651-62 pubmed 出版商
  1056. Liu X, Chandramouly G, Rass E, Guan Y, Wang G, Hobbs R, et al. LRF maintains genome integrity by regulating the non-homologous end joining pathway of DNA repair. Nat Commun. 2015;6:8325 pubmed 出版商
  1057. Login H, HÃ¥glin S, Berghard A, Bohm S. The Stimulus-Dependent Gradient of Cyp26B1+ Olfactory Sensory Neurons Is Necessary for the Functional Integrity of the Olfactory Sensory Map. J Neurosci. 2015;35:13807-18 pubmed 出版商
  1058. Janssen L, Dupont L, Bekhouche M, Noel A, Leduc C, Voz M, et al. ADAMTS3 activity is mandatory for embryonic lymphangiogenesis and regulates placental angiogenesis. Angiogenesis. 2016;19:53-65 pubmed 出版商
  1059. Zaitoun I, Johnson R, Jamali N, Almomani R, Wang S, Sheibani N, et al. Endothelium Expression of Bcl-2 Is Essential for Normal and Pathological Ocular Vascularization. PLoS ONE. 2015;10:e0139994 pubmed 出版商
  1060. Mattiolo P, Yuste V, Boix J, Ribas J. Autophagy exacerbates caspase-dependent apoptotic cell death after short times of starvation. Biochem Pharmacol. 2015;98:573-86 pubmed 出版商
  1061. Norlin S, Parekh V, Naredi P, Edlund H. Asna1/TRC40 Controls β-Cell Function and Endoplasmic Reticulum Homeostasis by Ensuring Retrograde Transport. Diabetes. 2016;65:110-9 pubmed 出版商
  1062. Liu L, Li C, Lu Y, Zong X, Luo C, Sun J, et al. Baclofen mediates neuroprotection on hippocampal CA1 pyramidal cells through the regulation of autophagy under chronic cerebral hypoperfusion. Sci Rep. 2015;5:14474 pubmed 出版商
  1063. Werner A, Iwasaki S, McGourty C, Medina Ruiz S, Teerikorpi N, Fedrigo I, et al. Cell-fate determination by ubiquitin-dependent regulation of translation. Nature. 2015;525:523-7 pubmed 出版商
  1064. Sorrell S, Golder Z, Johnstone D, Frankl F. Renal peroxiredoxin 6 interacts with anion exchanger 1 and plays a novel role in pH homeostasis. Kidney Int. 2016;89:105-112 pubmed 出版商
  1065. Blanco F, Jimbo M, Wulfkuhle J, Gallagher I, Deng J, Enyenihi L, et al. The mRNA-binding protein HuR promotes hypoxia-induced chemoresistance through posttranscriptional regulation of the proto-oncogene PIM1 in pancreatic cancer cells. Oncogene. 2016;35:2529-41 pubmed 出版商
  1066. Tian F, Clift M, Casey A, del Pino P, Pelaz B, Conde J, et al. Investigating the role of shape on the biological impact of gold nanoparticles in vitro. Nanomedicine (Lond). 2015;10:2643-57 pubmed 出版商
  1067. Pearson H, McGlinn E, Phesse T, Schlüter H, Srikumar A, Gödde N, et al. The polarity protein Scrib mediates epidermal development and exerts a tumor suppressive function during skin carcinogenesis. Mol Cancer. 2015;14:169 pubmed 出版商
  1068. Sirohi K, Kumari A, Radha V, Swarup G. A Glaucoma-Associated Variant of Optineurin, M98K, Activates Tbk1 to Enhance Autophagosome Formation and Retinal Cell Death Dependent on Ser177 Phosphorylation of Optineurin. PLoS ONE. 2015;10:e0138289 pubmed 出版商
  1069. Barros B, Maza P, Alcantara C, Suzuki E. Paracoccidioides brasiliensis induces recruitment of α3 and α5 integrins into epithelial cell membrane rafts, leading to cytokine secretion. Microbes Infect. 2016;18:68-77 pubmed 出版商
  1070. Hasan S, Sultana S. Geraniol attenuates 2-acetylaminofluorene induced oxidative stress, inflammation and apoptosis in the liver of wistar rats. Toxicol Mech Methods. 2015;25:559-73 pubmed 出版商
  1071. Machado Neto J, de Melo Campos P, Favaro P, Lazarini M, da Silva Santos Duarte A, Lorand Metze I, et al. Stathmin 1 inhibition amplifies ruxolitinib-induced apoptosis in JAK2V617F cells. Oncotarget. 2015;6:29573-84 pubmed 出版商
  1072. Seko Y, Fujimura T, Yao T, Taka H, Mineki R, Okumura K, et al. Secreted tyrosine sulfated-eIF5A mediates oxidative stress-induced apoptosis. Sci Rep. 2015;5:13737 pubmed 出版商
  1073. Yao K, Wu J, Zhang J, Bo J, Hong Z, Zu H. Protective Effect of DHT on Apoptosis Induced by U18666A via PI3K/Akt Signaling Pathway in C6 Glial Cell Lines. Cell Mol Neurobiol. 2016;36:801-9 pubmed 出版商
  1074. James R, Hillis J, Adorján I, Gration B, Mundim M, Iqbal A, et al. Loss of galectin-3 decreases the number of immune cells in the subventricular zone and restores proliferation in a viral model of multiple sclerosis. Glia. 2016;64:105-21 pubmed 出版商
  1075. Bida O, Gidoni M, Ideses D, Efroni S, Ginsberg D. A novel mitosis-associated lncRNA, MA-linc1, is required for cell cycle progression and sensitizes cancer cells to Paclitaxel. Oncotarget. 2015;6:27880-90 pubmed 出版商
  1076. Heishima K, Mori T, Sakai H, Sugito N, Murakami M, Yamada N, et al. MicroRNA-214 Promotes Apoptosis in Canine Hemangiosarcoma by Targeting the COP1-p53 Axis. PLoS ONE. 2015;10:e0137361 pubmed 出版商
  1077. Yapislar H, Taşkın E, Ozdas S, Akin D, Sonmez E. Counteraction of Apoptotic and Inflammatory Effects of Adriamycin in the Liver Cell Culture by Clinopitolite. Biol Trace Elem Res. 2016;170:373-81 pubmed 出版商
  1078. Salva K, Wood G. Epigenetically Enhanced Photodynamic Therapy (ePDT) is Superior to Conventional Photodynamic Therapy for Inducing Apoptosis in Cutaneous T-Cell Lymphoma. Photochem Photobiol. 2015;91:1444-51 pubmed 出版商
  1079. Lee I, Jung K, Kim I, Lee H, Kim M, Yun S, et al. Human neural stem cells alleviate Alzheimer-like pathology in a mouse model. Mol Neurodegener. 2015;10:38 pubmed 出版商
  1080. Cañeque T, Gomes F, Mai T, Maestri G, Malacria M, Rodriguez R. Synthesis of marmycin A and investigation into its cellular activity. Nat Chem. 2015;7:744-51 pubmed 出版商
  1081. Manieri N, Mack M, Himmelrich M, Worthley D, Hanson E, Eckmann L, et al. Mucosally transplanted mesenchymal stem cells stimulate intestinal healing by promoting angiogenesis. J Clin Invest. 2015;125:3606-18 pubmed 出版商
  1082. Li X, Liang Q, Liu W, Zhang N, Xu L, Zhang X, et al. Ras association domain family member 10 suppresses gastric cancer growth by cooperating with GSTP1 to regulate JNK/c-Jun/AP-1 pathway. Oncogene. 2016;35:2453-64 pubmed 出版商
  1083. Fan L, Peng G, Sahgal N, Fazli L, Gleave M, Zhang Y, et al. Regulation of c-Myc expression by the histone demethylase JMJD1A is essential for prostate cancer cell growth and survival. Oncogene. 2016;35:2441-52 pubmed 出版商
  1084. Wan X, Chen Z, Choi W, Gee H, Hildebrandt F, Zhou W. Loss of Epithelial Membrane Protein 2 Aggravates Podocyte Injury via Upregulation of Caveolin-1. J Am Soc Nephrol. 2016;27:1066-75 pubmed 出版商
  1085. Iansante V, Choy P, Fung S, Liu Y, Chai J, Dyson J, et al. PARP14 promotes the Warburg effect in hepatocellular carcinoma by inhibiting JNK1-dependent PKM2 phosphorylation and activation. Nat Commun. 2015;6:7882 pubmed 出版商
  1086. Veselá B, Svandová E, Vanden Berghe T, Tucker A, Vandenabeele P, Matalova E. Non-apoptotic role for caspase-7 in hair follicles and the surrounding tissue. J Mol Histol. 2015;46:443-55 pubmed 出版商
  1087. Laperle A, Hsiao C, Lampe M, Mortier J, Saha K, Palecek S, et al. α-5 Laminin Synthesized by Human Pluripotent Stem Cells Promotes Self-Renewal. Stem Cell Reports. 2015;5:195-206 pubmed 出版商
  1088. He S, Zhao Z, Yang Y, O Connell D, Zhang X, Oh S, et al. Truncating mutation in the autophagy gene UVRAG confers oncogenic properties and chemosensitivity in colorectal cancers. Nat Commun. 2015;6:7839 pubmed 出版商
  1089. Nuccitelli R, Berridge J, Mallon Z, Kreis M, Athos B, Nuccitelli P. Nanoelectroablation of Murine Tumors Triggers a CD8-Dependent Inhibition of Secondary Tumor Growth. PLoS ONE. 2015;10:e0134364 pubmed 出版商
  1090. Bejaoui M, Pantazi E, De Luca V, Panisello A, Folch Puy E, Hotter G, et al. Carbonic Anhydrase Protects Fatty Liver Grafts against Ischemic Reperfusion Damage. PLoS ONE. 2015;10:e0134499 pubmed 出版商
  1091. Marzagalli M, Casati L, Moretti R, Montagnani Marelli M, Limonta P. Estrogen Receptor β Agonists Differentially Affect the Growth of Human Melanoma Cell Lines. PLoS ONE. 2015;10:e0134396 pubmed 出版商
  1092. Miyamoto Y, Torii T, Takada S, Ohno N, Saitoh Y, Nakamura K, et al. Involvement of the Tyro3 receptor and its intracellular partner Fyn signaling in Schwann cell myelination. Mol Biol Cell. 2015;26:3489-503 pubmed 出版商
  1093. Lim G, Albrecht T, Piske M, Sarai K, Lee J, Ramshaw H, et al. 14-3-3ζ coordinates adipogenesis of visceral fat. Nat Commun. 2015;6:7671 pubmed 出版商
  1094. Kao S, Stankovic K. Transactivation of human osteoprotegerin promoter by GATA-3. Sci Rep. 2015;5:12479 pubmed 出版商
  1095. Parchem R, Moore N, Fish J, Parchem J, Braga T, Shenoy A, et al. miR-302 Is Required for Timing of Neural Differentiation, Neural Tube Closure, and Embryonic Viability. Cell Rep. 2015;12:760-73 pubmed 出版商
  1096. Chu Y, Ko C, Wang W, Wang S, Gean P, Kuo Y, et al. Astrocytic CCAAT/Enhancer Binding Protein δ Regulates Neuronal Viability and Spatial Learning Ability via miR-135a. Mol Neurobiol. 2016;53:4173-4188 pubmed 出版商
  1097. Jiao L, Inhoffen J, Gan Schreier H, Tuma Kellner S, Stremmel W, Sun Z, et al. Deficiency of Group VIA Phospholipase A2 (iPLA2β) Renders Susceptibility for Chemical-Induced Colitis. Dig Dis Sci. 2015;60:3590-602 pubmed 出版商
  1098. Jiang S, Zou Z, Nie P, Wen R, Xiao Y, Tang J. Synergistic Effects between mTOR Complex 1/2 and Glycolysis Inhibitors in Non-Small-Cell Lung Carcinoma Cells. PLoS ONE. 2015;10:e0132880 pubmed 出版商
  1099. Demel H, Feuerecker B, Piontek G, Seidl C, Blechert B, Pickhard A, et al. Effects of topoisomerase inhibitors that induce DNA damage response on glucose metabolism and PI3K/Akt/mTOR signaling in multiple myeloma cells. Am J Cancer Res. 2015;5:1649-64 pubmed
  1100. Quintana P, Soto D, Poirot O, Zonouzi M, Kellenberger S, Muller D, et al. Acid-sensing ion channel 1a drives AMPA receptor plasticity following ischaemia and acidosis in hippocampal CA1 neurons. J Physiol. 2015;593:4373-86 pubmed 出版商
  1101. Yang S, Lin H, Chang V, Chen C, Liu Y, Wang J, et al. Lovastatin overcomes gefitinib resistance through TNF-α signaling in human cholangiocarcinomas with different LKB1 statuses in vitro and in vivo. Oncotarget. 2015;6:23857-73 pubmed
  1102. Patergnani S, Giorgi C, Maniero S, Missiroli S, Maniscalco P, Bononi I, et al. The endoplasmic reticulum mitochondrial calcium cross talk is downregulated in malignant pleural mesothelioma cells and plays a critical role in apoptosis inhibition. Oncotarget. 2015;6:23427-44 pubmed
  1103. Pulito C, Mori F, Sacconi A, Casadei L, Ferraiuolo M, Valerio M, et al. Cynara scolymus affects malignant pleural mesothelioma by promoting apoptosis and restraining invasion. Oncotarget. 2015;6:18134-50 pubmed
  1104. Grewal N, Franken R, Mulder B, Goumans M, Lindeman J, Jongbloed M, et al. Histopathology of aortic complications in bicuspid aortic valve versus Marfan syndrome: relevance for therapy?. Heart Vessels. 2016;31:795-806 pubmed 出版商
  1105. Wang J, Ma L, Tang X, Zhang X, Qiao Y, Shi Y, et al. Doxorubicin induces apoptosis by targeting Madcam1 and AKT and inhibiting protein translation initiation in hepatocellular carcinoma cells. Oncotarget. 2015;6:24075-91 pubmed
  1106. Ciamporcero E, Shen H, Ramakrishnan S, Yu Ku S, Chintala S, Shen L, et al. YAP activation protects urothelial cell carcinoma from treatment-induced DNA damage. Oncogene. 2016;35:1541-53 pubmed 出版商
  1107. Shan C, Lin J, Hou J, Liu H, Chen S, Chen A, et al. Chemical intervention of the NM23-H2 transcriptional programme on c-MYC via a novel small molecule. Nucleic Acids Res. 2015;43:6677-91 pubmed 出版商
  1108. Noda K, Mishina Y, Komatsu Y. Constitutively active mutation of ACVR1 in oral epithelium causes submucous cleft palate in mice. Dev Biol. 2016;415:306-313 pubmed 出版商
  1109. Bruchard M, Rebé C, Derangère V, Togbé D, Ryffel B, Boidot R, et al. The receptor NLRP3 is a transcriptional regulator of TH2 differentiation. Nat Immunol. 2015;16:859-70 pubmed 出版商
  1110. Goodman C, Sato T, Peck A, Girondo M, Yang N, Liu C, et al. Steroid induction of therapy-resistant cytokeratin-5-positive cells in estrogen receptor-positive breast cancer through a BCL6-dependent mechanism. Oncogene. 2016;35:1373-85 pubmed 出版商
  1111. Wang J, Chen S, Sun C, Chien T, Chern Y. A central role of TRAX in the ATM-mediated DNA repair. Oncogene. 2016;35:1657-70 pubmed 出版商
  1112. Wu P, Yen J, Kou M, Wu M. Luteolin and Apigenin Attenuate 4-Hydroxy-2-Nonenal-Mediated Cell Death through Modulation of UPR, Nrf2-ARE and MAPK Pathways in PC12 Cells. PLoS ONE. 2015;10:e0130599 pubmed 出版商
  1113. Wiersma V, de Bruyn M, Wei Y, van Ginkel R, Hirashima M, Niki T, et al. The epithelial polarity regulator LGALS9/galectin-9 induces fatal frustrated autophagy in KRAS mutant colon carcinoma that depends on elevated basal autophagic flux. Autophagy. 2015;11:1373-88 pubmed 出版商
  1114. Liu G, Wang Z, Wang Z, Yang D, Liu Z, Wang L. Mitochondrial permeability transition and its regulatory components are implicated in apoptosis of primary cultures of rat proximal tubular cells exposed to lead. Arch Toxicol. 2016;90:1193-209 pubmed 出版商
  1115. Yuri S, Nishikawa M, Yanagawa N, Jo O, Yanagawa N. Maintenance of Mouse Nephron Progenitor Cells in Aggregates with Gamma-Secretase Inhibitor. PLoS ONE. 2015;10:e0129242 pubmed 出版商
  1116. Cerella C, Muller F, Gaigneaux A, Radogna F, Viry E, Chateauvieux S, et al. Early downregulation of Mcl-1 regulates apoptosis triggered by cardiac glycoside UNBS1450. Cell Death Dis. 2015;6:e1782 pubmed 出版商
  1117. Hirt C, Papadimitropoulos A, Muraro M, Mele V, Panopoulos E, Cremonesi E, et al. Bioreactor-engineered cancer tissue-like structures mimic phenotypes, gene expression profiles and drug resistance patterns observed "in vivo". Biomaterials. 2015;62:138-46 pubmed 出版商
  1118. Schuler F, Baumgartner F, Klepsch V, Chamson M, Müller Holzner E, Watson C, et al. The BH3-only protein BIM contributes to late-stage involution in the mouse mammary gland. Cell Death Differ. 2016;23:41-51 pubmed 出版商
  1119. Weigelin B, Bolaños E, Teijeira A, Martinez Forero I, Labiano S, Azpilikueta A, et al. Focusing and sustaining the antitumor CTL effector killer response by agonist anti-CD137 mAb. Proc Natl Acad Sci U S A. 2015;112:7551-6 pubmed 出版商
  1120. Zhang Q, Yu S, Huang X, Tan Y, Zhu C, Wang Y, et al. New insights into the function of Cullin 3 in trophoblast invasion and migration. Reproduction. 2015;150:139-49 pubmed 出版商
  1121. Nagata T, Yasukawa H, Kyogoku S, Oba T, Takahashi J, Nohara S, et al. Cardiac-Specific SOCS3 Deletion Prevents In Vivo Myocardial Ischemia Reperfusion Injury through Sustained Activation of Cardioprotective Signaling Molecules. PLoS ONE. 2015;10:e0127942 pubmed 出版商
  1122. Kang J, Shen W, Zhou C, Xu D, Macdonald R. The human epilepsy mutation GABRG2(Q390X) causes chronic subunit accumulation and neurodegeneration. Nat Neurosci. 2015;18:988-96 pubmed 出版商
  1123. Hua W, Huang H, Tan L, Wan J, Gui H, Zhao L, et al. CD36 Mediated Fatty Acid-Induced Podocyte Apoptosis via Oxidative Stress. PLoS ONE. 2015;10:e0127507 pubmed 出版商
  1124. Han Y, Lee J, Lee S. Fucoidan inhibits the migration and proliferation of HT-29 human colon cancer cells via the phosphoinositide-3 kinase/Akt/mechanistic target of rapamycin pathways. Mol Med Rep. 2015;12:3446-3452 pubmed 出版商
  1125. Moon J, Eo S, Lee J, Park S. Quercetin-induced autophagy flux enhances TRAIL-mediated tumor cell death. Oncol Rep. 2015;34:375-81 pubmed 出版商
  1126. Klotz L, Norman S, Vieira J, Masters M, Rohling M, Dubé K, et al. Cardiac lymphatics are heterogeneous in origin and respond to injury. Nature. 2015;522:62-7 pubmed
  1127. Coudé M, Braun T, Berrou J, Dupont M, Bertrand S, Massé A, et al. BET inhibitor OTX015 targets BRD2 and BRD4 and decreases c-MYC in acute leukemia cells. Oncotarget. 2015;6:17698-712 pubmed
  1128. Andrews W, Davidson K, Tamamaki N, Ruhrberg C, Parnavelas J. Altered proliferative ability of neuronal progenitors in PlexinA1 mutant mice. J Comp Neurol. 2016;524:518-34 pubmed 出版商
  1129. Matsumoto T, Urushido M, Ide H, Ishihara M, Hamada Ode K, Shimamura Y, et al. Small Heat Shock Protein Beta-1 (HSPB1) Is Upregulated and Regulates Autophagy and Apoptosis of Renal Tubular Cells in Acute Kidney Injury. PLoS ONE. 2015;10:e0126229 pubmed 出版商
  1130. Scala F, Brighenti E, Govoni M, Imbrogno E, Fornari F, Treré D, et al. Direct relationship between the level of p53 stabilization induced by rRNA synthesis-inhibiting drugs and the cell ribosome biogenesis rate. Oncogene. 2016;35:977-89 pubmed 出版商
  1131. Sarr D, Bracken T, Owino S, Cooper C, Smith G, Nagy T, et al. Differential roles of inflammation and apoptosis in initiation of mid-gestational abortion in malaria-infected C57BL/6 and A/J mice. Placenta. 2015;36:738-49 pubmed 出版商
  1132. Deutsch M, Graffeo C, Rokosh R, Pansari M, Ochi A, Levie E, et al. Divergent effects of RIP1 or RIP3 blockade in murine models of acute liver injury. Cell Death Dis. 2015;6:e1759 pubmed 出版商
  1133. Cheng H, Liang Y, Kuo Y, Chuu C, Lin C, Lee M, et al. Identification of thioridazine, an antipsychotic drug, as an antiglioblastoma and anticancer stem cell agent using public gene expression data. Cell Death Dis. 2015;6:e1753 pubmed 出版商
  1134. Huang C, Chao C, Lee Y, Lu M, Cheng J, Yang Y, et al. Paraquat Induces Cell Death Through Impairing Mitochondrial Membrane Permeability. Mol Neurobiol. 2016;53:2169-88 pubmed 出版商
  1135. Waters A, Stewart J, Atigadda V, Mroczek Musulman E, Muccio D, Grubbs C, et al. Preclinical Evaluation of a Novel RXR Agonist for the Treatment of Neuroblastoma. Mol Cancer Ther. 2015;14:1559-69 pubmed 出版商
  1136. Baker E, Taylor S, Gupte A, Sharp P, Walia M, Walsh N, et al. BET inhibitors induce apoptosis through a MYC independent mechanism and synergise with CDK inhibitors to kill osteosarcoma cells. Sci Rep. 2015;5:10120 pubmed 出版商
  1137. Fisher M, Keillor J, Xu W, Eckert R, Kerr C. Transglutaminase Is Required for Epidermal Squamous Cell Carcinoma Stem Cell Survival. Mol Cancer Res. 2015;13:1083-94 pubmed 出版商
  1138. Liu H, Du L, Wang R, Wei C, Liu B, Zhu L, et al. High frequency of loss of PTEN expression in human solid salivary adenoid cystic carcinoma and its implication for targeted therapy. Oncotarget. 2015;6:11477-91 pubmed
  1139. Vong K, Leung C, Behringer R, Kwan K. Sox9 is critical for suppression of neurogenesis but not initiation of gliogenesis in the cerebellum. Mol Brain. 2015;8:25 pubmed 出版商
  1140. Bettaieb A, Jiang J, Sasaki Y, Chao T, Kiss Z, Chen X, et al. Hepatocyte Nicotinamide Adenine Dinucleotide Phosphate Reduced Oxidase 4 Regulates Stress Signaling, Fibrosis, and Insulin Sensitivity During Development of Steatohepatitis in Mice. Gastroenterology. 2015;149:468-80.e10 pubmed 出版商
  1141. Donis Maturano L, Sánchez Torres L, Cerbulo Vázquez A, Chacón Salinas R, García Romo G, Orozco Uribe M, et al. Prolonged exposure to neutrophil extracellular traps can induce mitochondrial damage in macrophages and dendritic cells. Springerplus. 2015;4:161 pubmed 出版商
  1142. Wilson C, Jurk D, Fullard N, Banks P, Page A, Luli S, et al. NFκB1 is a suppressor of neutrophil-driven hepatocellular carcinoma. Nat Commun. 2015;6:6818 pubmed 出版商
  1143. Pértega Gomes N, Felisbino S, Massie C, Vizcaíno J, Coelho R, Sandi C, et al. A glycolytic phenotype is associated with prostate cancer progression and aggressiveness: a role for monocarboxylate transporters as metabolic targets for therapy. J Pathol. 2015;236:517-30 pubmed 出版商
  1144. Meidhof S, Brabletz S, Lehmann W, Preca B, Mock K, Ruh M, et al. ZEB1-associated drug resistance in cancer cells is reversed by the class I HDAC inhibitor mocetinostat. EMBO Mol Med. 2015;7:831-47 pubmed 出版商
  1145. Maity G, De A, Das A, Banerjee S, Sarkar S, Banerjee S. Aspirin blocks growth of breast tumor cells and tumor-initiating cells and induces reprogramming factors of mesenchymal to epithelial transition. Lab Invest. 2015;95:702-17 pubmed 出版商
  1146. Wang W, Huang X, Xin H, Fu M, Xue A, Wu Z. TRAF Family Member-associated NF-κB Activator (TANK) Inhibits Genotoxic Nuclear Factor κB Activation by Facilitating Deubiquitinase USP10-dependent Deubiquitination of TRAF6 Ligase. J Biol Chem. 2015;290:13372-85 pubmed 出版商
  1147. Xia X, Gholkar A, Senese S, Torres J. A LCMT1-PME-1 methylation equilibrium controls mitotic spindle size. Cell Cycle. 2015;14:1938-47 pubmed 出版商
  1148. Szabo N, Da Silva R, Sotocinal S, Zeilhofer H, Mogil J, Kania A. Hoxb8 intersection defines a role for Lmx1b in excitatory dorsal horn neuron development, spinofugal connectivity, and nociception. J Neurosci. 2015;35:5233-46 pubmed 出版商
  1149. Ding Y, Xu Y, Shuai X, Shi X, Chen X, Huang W, et al. Reg3? Overexpression Protects Pancreatic ? Cells from Cytokine-Induced Damage and Improves Islet Transplant Outcome. Mol Med. 2015;20:548-558 pubmed 出版商
  1150. Jia D, Duan F, Peng P, Sun L, Ruan Y, Gu J. Pyrroloquinoline-quinone suppresses liver fibrogenesis in mice. PLoS ONE. 2015;10:e0121939 pubmed 出版商
  1151. Ngo J, Matsuyama M, Kim C, Poventud Fuentes I, Bates A, Siedlak S, et al. Bax deficiency extends the survival of Ku70 knockout mice that develop lung and heart diseases. Cell Death Dis. 2015;6:e1706 pubmed 出版商
  1152. Wong M, Nicholson C, Holloway A, Hardy D. Maternal nicotine exposure leads to impaired disulfide bond formation and augmented endoplasmic reticulum stress in the rat placenta. PLoS ONE. 2015;10:e0122295 pubmed 出版商
  1153. Popp M, Maquat L. Attenuation of nonsense-mediated mRNA decay facilitates the response to chemotherapeutics. Nat Commun. 2015;6:6632 pubmed 出版商
  1154. Salvucci O, Ohnuki H, Maric D, Hou X, Li X, Yoon S, et al. EphrinB2 controls vessel pruning through STAT1-JNK3 signalling. Nat Commun. 2015;6:6576 pubmed 出版商
  1155. Shen X, Sun W, Shi Y, Xing Z, Su X. Altered viral replication and cell responses by inserting microRNA recognition element into PB1 in pandemic influenza A virus (H1N1) 2009. Mediators Inflamm. 2015;2015:976575 pubmed 出版商
  1156. Ma W, Na M, Tang C, Wang H, Lin Z. Overexpression of N-myc downstream-regulated gene 1 inhibits human glioma proliferation and invasion via phosphoinositide 3-kinase/AKT pathways. Mol Med Rep. 2015;12:1050-8 pubmed 出版商
  1157. Wang Y, Han A, Chen E, Singh R, Chichester C, Moore R, et al. The cranberry flavonoids PAC DP-9 and quercetin aglycone induce cytotoxicity and cell cycle arrest and increase cisplatin sensitivity in ovarian cancer cells. Int J Oncol. 2015;46:1924-34 pubmed 出版商
  1158. Wei Z, Yu D, Bi Y, Cao Y. A disintegrin and metalloprotease 17 promotes microglial cell survival via epidermal growth factor receptor signalling following spinal cord injury. Mol Med Rep. 2015;12:63-70 pubmed 出版商
  1159. Cheung J, Dickinson D, Moss J, Schuler M, Spellman R, Heard P. Histone markers identify the mode of action for compounds positive in the TK6 micronucleus assay. Mutat Res Genet Toxicol Environ Mutagen. 2015;777:7-16 pubmed 出版商
  1160. Quang C, Leboucher S, Passaro D, Fuhrmann L, Nourieh M, Vincent Salomon A, et al. The calcineurin/NFAT pathway is activated in diagnostic breast cancer cases and is essential to survival and metastasis of mammary cancer cells. Cell Death Dis. 2015;6:e1658 pubmed 出版商
  1161. ErLin S, WenJie W, LiNing W, BingXin L, MingDe L, Yan S, et al. Musashi-1 maintains blood-testis barrier structure during spermatogenesis and regulates stress granule formation upon heat stress. Mol Biol Cell. 2015;26:1947-56 pubmed 出版商
  1162. Xiang W, He J, Huang C, Chen L, Tao D, Wu X, et al. miR-106b-5p targets tumor suppressor gene SETD2 to inactive its function in clear cell renal cell carcinoma. Oncotarget. 2015;6:4066-79 pubmed
  1163. Shi S, Wang Q, Xu J, Jang J, Padilla M, Nyunoya T, et al. Synergistic anticancer effect of cisplatin and Chal-24 combination through IAP and c-FLIPL degradation, Ripoptosome formation and autophagy-mediated apoptosis. Oncotarget. 2015;6:1640-51 pubmed
  1164. Kramer D, Schön M, Bayerlová M, Bleckmann A, Schön M, Zörnig M, et al. A pro-apoptotic function of iASPP by stabilizing p300 and CBP through inhibition of BRMS1 E3 ubiquitin ligase activity. Cell Death Dis. 2015;6:e1634 pubmed 出版商
  1165. Morlé A, Garrido C, Micheau O. Hyperthermia restores apoptosis induced by death receptors through aggregation-induced c-FLIP cytosolic depletion. Cell Death Dis. 2015;6:e1633 pubmed 出版商
  1166. Jeffery J, Neyt C, Moore W, Paterson S, Bower N, Chenevix Trench G, et al. Cep55 regulates embryonic growth and development by promoting Akt stability in zebrafish. FASEB J. 2015;29:1999-2009 pubmed 出版商
  1167. Long J, Schoonen P, Graczyk D, O Prey J, Ryan K. p73 engages A2B receptor signalling to prime cancer cells to chemotherapy-induced death. Oncogene. 2015;34:5152-62 pubmed 出版商
  1168. Liu K, Zhao E, Ilyas G, Lalazar G, Lin Y, Haseeb M, et al. Impaired macrophage autophagy increases the immune response in obese mice by promoting proinflammatory macrophage polarization. Autophagy. 2015;11:271-84 pubmed 出版商
  1169. Suganya R, Chakraborty A, Miriyala S, Hazra T, Izumi T. Suppression of oxidative phosphorylation in mouse embryonic fibroblast cells deficient in apurinic/apyrimidinic endonuclease. DNA Repair (Amst). 2015;27:40-8 pubmed 出版商
  1170. Yu J, Fox Z, Crimp J, Littleford H, Jowdry A, Jackman W. Hedgehog signaling regulates dental papilla formation and tooth size during zebrafish odontogenesis. Dev Dyn. 2015;244:577-90 pubmed 出版商
  1171. Lu K, Fang X, Feng L, Jiang Y, Zhou X, Liu X, et al. The STAT3 inhibitor WP1066 reverses the resistance of chronic lymphocytic leukemia cells to histone deacetylase inhibitors induced by interleukin-6. Cancer Lett. 2015;359:250-8 pubmed 出版商
  1172. Ek C, D Angelo B, Baburamani A, Lehner C, Leverin A, Smith P, et al. Brain barrier properties and cerebral blood flow in neonatal mice exposed to cerebral hypoxia-ischemia. J Cereb Blood Flow Metab. 2015;35:818-27 pubmed 出版商
  1173. Suo H, Song J, Zhou Y, Liu Z, Yi R, Zhu K, et al. Induction of apoptosis in HCT-116 colon cancer cells by polysaccharide of Larimichthys crocea swim bladder. Oncol Lett. 2015;9:972-978 pubmed
  1174. Eikawa S, Nishida M, Mizukami S, Yamazaki C, Nakayama E, Udono H. Immune-mediated antitumor effect by type 2 diabetes drug, metformin. Proc Natl Acad Sci U S A. 2015;112:1809-14 pubmed 出版商
  1175. Kim S, Nam S, Friedman M. The Tomato Glycoalkaloid α-Tomatine Induces Caspase-Independent Cell Death in Mouse Colon Cancer CT-26 Cells and Transplanted Tumors in Mice. J Agric Food Chem. 2015;63:1142-1150 pubmed 出版商
  1176. Tao Y, Xu L, Lu J, Hu S, Fang F, Cao L, et al. Early B-cell factor 3 (EBF3) is a novel tumor suppressor gene with promoter hypermethylation in pediatric acute myeloid leukemia. J Exp Clin Cancer Res. 2015;34:4 pubmed 出版商
  1177. Seeßle J, Liebisch G, Schmitz G, Stremmel W, Chamulitrat W. Palmitate activation by fatty acid transport protein 4 as a model system for hepatocellular apoptosis and steatosis. Biochim Biophys Acta. 2015;1851:549-65 pubmed 出版商
  1178. Xiao Y, Ma C, Yi J, Wu S, Luo G, Xu X, et al. Suppressed autophagy flux in skeletal muscle of an amyotrophic lateral sclerosis mouse model during disease progression. Physiol Rep. 2015;3: pubmed 出版商
  1179. Chow H, Dong B, Duron S, Campbell D, Ong C, Hoeflich K, et al. Group I Paks as therapeutic targets in NF2-deficient meningioma. Oncotarget. 2015;6:1981-94 pubmed
  1180. Wang S, Geng Z, Shi N, Li X, Wang Z. Dose-dependent effects of selenite (Se(4+)) on arsenite (As(3+))-induced apoptosis and differentiation in acute promyelocytic leukemia cells. Cell Death Dis. 2015;6:e1596 pubmed 出版商
  1181. Xia J, Chen S, Lv Y, Lu L, Hu W, Zhou Y. ZGDHu-1 induces Gâ‚‚/M phase arrest and apoptosis in Kasumi-1 cells. Mol Med Rep. 2015;11:3398-404 pubmed 出版商
  1182. Saveljeva S, Mc Laughlin S, Vandenabeele P, Samali A, Bertrand M. Endoplasmic reticulum stress induces ligand-independent TNFR1-mediated necroptosis in L929 cells. Cell Death Dis. 2015;6:e1587 pubmed 出版商
  1183. Liu L, Zou P, Zheng L, Linarelli L, Amarell S, Passaro A, et al. Tamoxifen reduces fat mass by boosting reactive oxygen species. Cell Death Dis. 2015;6:e1586 pubmed 出版商
  1184. Sykora P, Misiak M, Wang Y, Ghosh S, Leandro G, Liu D, et al. DNA polymerase β deficiency leads to neurodegeneration and exacerbates Alzheimer disease phenotypes. Nucleic Acids Res. 2015;43:943-59 pubmed 出版商
  1185. Mir S, George N, Zahoor L, Harms R, Guinn Z, SARVETNICK N. Inhibition of autophagic turnover in β-cells by fatty acids and glucose leads to apoptotic cell death. J Biol Chem. 2015;290:6071-85 pubmed 出版商
  1186. Zanotto Filho A, Braganhol E, Klafke K, Figueiró F, Terra S, Paludo F, et al. Autophagy inhibition improves the efficacy of curcumin/temozolomide combination therapy in glioblastomas. Cancer Lett. 2015;358:220-31 pubmed 出版商
  1187. Hill R, Kuijper S, Lindsey J, Petrie K, Schwalbe E, Barker K, et al. Combined MYC and P53 defects emerge at medulloblastoma relapse and define rapidly progressive, therapeutically targetable disease. Cancer Cell. 2015;27:72-84 pubmed 出版商
  1188. Wang S, Park S, Kodali V, Han J, Yip T, Chen Z, et al. Identification of protein disulfide isomerase 1 as a key isomerase for disulfide bond formation in apolipoprotein B100. Mol Biol Cell. 2015;26:594-604 pubmed 出版商
  1189. Hennig D, Müller S, Wichmann C, Drube S, Pietschmann K, Pelzl L, et al. Antagonism between granulocytic maturation and deacetylase inhibitor-induced apoptosis in acute promyelocytic leukaemia cells. Br J Cancer. 2015;112:329-37 pubmed 出版商
  1190. Suzuki D, Sahu R, Leu N, Senoo M. The carboxy-terminus of p63 links cell cycle control and the proliferative potential of epidermal progenitor cells. Development. 2015;142:282-90 pubmed 出版商
  1191. Girotti M, Lopes F, Preece N, Niculescu Duvaz D, Zambon A, Davies L, et al. Paradox-breaking RAF inhibitors that also target SRC are effective in drug-resistant BRAF mutant melanoma. Cancer Cell. 2015;27:85-96 pubmed 出版商
  1192. Chen Y, Wei M, Wang C, Lee H, Pan S, Gao M, et al. Dual phosphoinositide 3-kinase/mammalian target of rapamycin inhibitor is an effective radiosensitizer for colorectal cancer. Cancer Lett. 2015;357:582-90 pubmed 出版商
  1193. Kaushik G, Venugopal A, Ramamoorthy P, Standing D, Subramaniam D, Umar S, et al. Honokiol inhibits melanoma stem cells by targeting notch signaling. Mol Carcinog. 2015;54:1710-21 pubmed 出版商
  1194. Yoda A, Adelmant G, Tamburini J, Chapuy B, Shindoh N, Yoda Y, et al. Mutations in G protein β subunits promote transformation and kinase inhibitor resistance. Nat Med. 2015;21:71-5 pubmed 出版商
  1195. Bisson J, Mills B, Paul Helt J, Zwaka T, Cohen E. Wnt5a and Wnt11 inhibit the canonical Wnt pathway and promote cardiac progenitor development via the Caspase-dependent degradation of AKT. Dev Biol. 2015;398:80-96 pubmed 出版商
  1196. Liu W, Lin Y, Yan X, Ding Y, Wu Y, Chen W, et al. Hepatitis B virus core protein inhibits Fas-mediated apoptosis of hepatoma cells via regulation of mFas/FasL and sFas expression. FASEB J. 2015;29:1113-23 pubmed 出版商
  1197. Healy M, Chow J, Byrne F, Breen D, Leitinger N, Li C, et al. Dietary effects on liver tumor burden in mice treated with the hepatocellular carcinogen diethylnitrosamine. J Hepatol. 2015;62:599-606 pubmed 出版商
  1198. Guo L, Shen Y, Zhao X, Guo L, Yu Z, Wang D, et al. Curcumin combined with oxaliplatin effectively suppress colorectal carcinoma in vivo through inducing apoptosis. Phytother Res. 2015;29:357-65 pubmed 出版商
  1199. Nashine S, Liu Y, Kim B, Clark A, Pang I. Role of C/EBP homologous protein in retinal ganglion cell death after ischemia/reperfusion injury. Invest Ophthalmol Vis Sci. 2014;56:221-31 pubmed 出版商
  1200. Holloway A, Simmonds M, Azad A, Fox J, Storey A. Resistance to UV-induced apoptosis by β-HPV5 E6 involves targeting of activated BAK for proteolysis by recruitment of the HERC1 ubiquitin ligase. Int J Cancer. 2015;136:2831-43 pubmed 出版商
  1201. Ortiz F, Acuña Castroviejo D, Doerrier C, Dayoub J, López L, Venegas C, et al. Melatonin blunts the mitochondrial/NLRP3 connection and protects against radiation-induced oral mucositis. J Pineal Res. 2015;58:34-49 pubmed 出版商
  1202. Somsouk M, Estes J, Deléage C, Dunham R, Albright R, Inadomi J, et al. Gut epithelial barrier and systemic inflammation during chronic HIV infection. AIDS. 2015;29:43-51 pubmed 出版商
  1203. Dejos C, Voisin P, Bernard M, Régnacq M, Bergès T. Canthin-6-one displays antiproliferative activity and causes accumulation of cancer cells in the G2/M phase. J Nat Prod. 2014;77:2481-7 pubmed 出版商
  1204. Li S, Song Y, Zhang H, Jin B, Liu Y, Liu W, et al. UbcH10 overexpression increases carcinogenesis and blocks ALLN susceptibility in colorectal cancer. Sci Rep. 2014;4:6910 pubmed 出版商
  1205. Tao W, Moore R, Smith E, Xu X. Hormonal induction and roles of Disabled-2 in lactation and involution. PLoS ONE. 2014;9:e110737 pubmed 出版商
  1206. Stacchiotti A, Favero G, Giugno L, Lavazza A, Reiter R, Rodella L, et al. Mitochondrial and metabolic dysfunction in renal convoluted tubules of obese mice: protective role of melatonin. PLoS ONE. 2014;9:e111141 pubmed 出版商
  1207. Vanhoutteghem A, Messiaen S, Hervé F, Delhomme B, Moison D, Petit J, et al. The zinc-finger protein basonuclin 2 is required for proper mitotic arrest, prevention of premature meiotic initiation and meiotic progression in mouse male germ cells. Development. 2014;141:4298-310 pubmed 出版商
  1208. Baek J, Schmidt E, Viceconte N, Strandgren C, Pernold K, Richard T, et al. Expression of progerin in aging mouse brains reveals structural nuclear abnormalities without detectible significant alterations in gene expression, hippocampal stem cells or behavior. Hum Mol Genet. 2015;24:1305-21 pubmed 出版商
  1209. Lin H, Lin S, Chung Y, Vonderfecht S, Camden J, Flodby P, et al. Dynamic involvement of ATG5 in cellular stress responses. Cell Death Dis. 2014;5:e1478 pubmed 出版商
  1210. Ikeda Y, Shirakabe A, Maejima Y, Zhai P, Sciarretta S, Toli J, et al. Endogenous Drp1 mediates mitochondrial autophagy and protects the heart against energy stress. Circ Res. 2015;116:264-78 pubmed 出版商
  1211. Jung H, Tatar A, Tu Y, Nobumori C, Yang S, Goulbourne C, et al. An absence of nuclear lamins in keratinocytes leads to ichthyosis, defective epidermal barrier function, and intrusion of nuclear membranes and endoplasmic reticulum into the nuclear chromatin. Mol Cell Biol. 2014;34:4534-44 pubmed 出版商
  1212. Pfister C, Pfrommer H, Tatagiba M, Roser F. Detection and quantification of apoptosis in primary cells using Taqman® protein assay. Methods Mol Biol. 2015;1219:57-73 pubmed 出版商
  1213. Xu H, Zhou Y, Coughlan K, Ding Y, Wang S, Wu Y, et al. AMPKα1 deficiency promotes cellular proliferation and DNA damage via p21 reduction in mouse embryonic fibroblasts. Biochim Biophys Acta. 2015;1853:65-73 pubmed 出版商
  1214. Kocher B, White L, Piwnica Worms D. DAPK3 suppresses acini morphogenesis and is required for mouse development. Mol Cancer Res. 2015;13:358-67 pubmed 出版商
  1215. Lockhart M, Boukens B, Phelps A, Brown C, Toomer K, Burns T, et al. Alk3 mediated Bmp signaling controls the contribution of epicardially derived cells to the tissues of the atrioventricular junction. Dev Biol. 2014;396:8-18 pubmed 出版商
  1216. He H, Liu X, Wang D, Wang Y, Liu L, Zhou H, et al. SAHA inhibits the transcription initiation of HPV18 E6/E7 genes in HeLa cervical cancer cells. Gene. 2014;553:98-104 pubmed 出版商
  1217. Maney N, Reynolds G, Krippner Heidenreich A, Hilkens C. Dendritic cell maturation and survival are differentially regulated by TNFR1 and TNFR2. J Immunol. 2014;193:4914-4923 pubmed 出版商
  1218. Idogawa M, Ohashi T, Sugisaka J, Sasaki Y, Suzuki H, Tokino T. Array-based genome-wide RNAi screening to identify shRNAs that enhance p53-related apoptosis in human cancer cells. Oncotarget. 2014;5:7540-8 pubmed
  1219. Lu H, Clauser K, Tam W, Fröse J, Ye X, Eaton E, et al. A breast cancer stem cell niche supported by juxtacrine signalling from monocytes and macrophages. Nat Cell Biol. 2014;16:1105-17 pubmed 出版商
  1220. Goldshmit Y, Trangle S, Kloog Y, Pinkas Kramarski R. Interfering with the interaction between ErbB1, nucleolin and Ras as a potential treatment for glioblastoma. Oncotarget. 2014;5:8602-13 pubmed
  1221. Moskwa P, Zinn P, Choi Y, Shukla S, Fendler W, Chen C, et al. A functional screen identifies miRs that induce radioresistance in glioblastomas. Mol Cancer Res. 2014;12:1767-78 pubmed 出版商
  1222. Zur Bruegge J, Hanisch C, Einspanier R, Alter T, Gölz G, Sharbati S. Arcobacter butzleri induces a pro-inflammatory response in THP-1 derived macrophages and has limited ability for intracellular survival. Int J Med Microbiol. 2014;304:1209-17 pubmed 出版商
  1223. Herranz D, Ambesi Impiombato A, Palomero T, Schnell S, Belver L, Wendorff A, et al. A NOTCH1-driven MYC enhancer promotes T cell development, transformation and acute lymphoblastic leukemia. Nat Med. 2014;20:1130-7 pubmed 出版商
  1224. Guo W, Liu R, Bhardwaj G, Yang J, Changou C, Ma A, et al. Targeting Btk/Etk of prostate cancer cells by a novel dual inhibitor. Cell Death Dis. 2014;5:e1409 pubmed 出版商
  1225. Lin Y, Pang X, Huang G, Jamison S, Fang J, Harding H, et al. Impaired eukaryotic translation initiation factor 2B activity specifically in oligodendrocytes reproduces the pathology of vanishing white matter disease in mice. J Neurosci. 2014;34:12182-91 pubmed 出版商
  1226. Valkenburg K, Yu X, De Marzo A, Spiering T, Matusik R, Williams B. Activation of Wnt/β-catenin signaling in a subpopulation of murine prostate luminal epithelial cells induces high grade prostate intraepithelial neoplasia. Prostate. 2014;74:1506-20 pubmed 出版商
  1227. Jeitany M, Pineda J, Liu Q, Porreca R, Hoffschir F, Desmaze C, et al. A preclinical mouse model of glioma with an alternative mechanism of telomere maintenance (ALT). Int J Cancer. 2015;136:1546-58 pubmed 出版商
  1228. Kolosenko I, Fryknäs M, Forsberg S, Johnsson P, Cheon H, Holvey Bates E, et al. Cell crowding induces interferon regulatory factor 9, which confers resistance to chemotherapeutic drugs. Int J Cancer. 2015;136:E51-61 pubmed 出版商
  1229. Liakhovitskaia A, Rybtsov S, Smith T, Batsivari A, Rybtsova N, Rode C, et al. Runx1 is required for progression of CD41+ embryonic precursors into HSCs but not prior to this. Development. 2014;141:3319-23 pubmed 出版商
  1230. Passaro C, Volpe M, Botta G, Scamardella E, Perruolo G, Gillespie D, et al. PARP inhibitor olaparib increases the oncolytic activity of dl922-947 in in vitro and in vivo model of anaplastic thyroid carcinoma. Mol Oncol. 2015;9:78-92 pubmed 出版商
  1231. Kaistha B, Honstein T, Muller V, Bielak S, Sauer M, Kreider R, et al. Key role of dual specificity kinase TTK in proliferation and survival of pancreatic cancer cells. Br J Cancer. 2014;111:1780-7 pubmed 出版商
  1232. Yi T, Kabha E, Papadopoulos E, Wagner G. 4EGI-1 targets breast cancer stem cells by selective inhibition of translation that persists in CSC maintenance, proliferation and metastasis. Oncotarget. 2014;5:6028-37 pubmed
  1233. Kemp M, Gaddameedhi S, Choi J, Hu J, Sancar A. DNA repair synthesis and ligation affect the processing of excised oligonucleotides generated by human nucleotide excision repair. J Biol Chem. 2014;289:26574-83 pubmed 出版商
  1234. Deegan S, Saveljeva S, Gupta S, Macdonald D, Samali A. ER stress responses in the absence of apoptosome: a comparative study in CASP9 proficient vs deficient mouse embryonic fibroblasts. Biochem Biophys Res Commun. 2014;451:367-73 pubmed 出版商
  1235. Noack M, Richter Landsberg C. Activation of autophagy by rapamycin does not protect oligodendrocytes against protein aggregate formation and cell death induced by proteasomal inhibition. J Mol Neurosci. 2015;55:99-108 pubmed 出版商
  1236. Ostapoff K, Cenik B, Wang M, Ye R, Xu X, Nugent D, et al. Neutralizing murine TGF?R2 promotes a differentiated tumor cell phenotype and inhibits pancreatic cancer metastasis. Cancer Res. 2014;74:4996-5007 pubmed 出版商
  1237. Resch U, Cuapio A, Sturtzel C, Hofer E, de Martin R, Holper Schichl Y. Polyubiquitinated tristetraprolin protects from TNF-induced, caspase-mediated apoptosis. J Biol Chem. 2014;289:25088-100 pubmed 出版商
  1238. Kuma A, Yamada S, Wang K, Kitamura N, Yamaguchi T, Iwai Y, et al. Role of WNT10A-expressing kidney fibroblasts in acute interstitial nephritis. PLoS ONE. 2014;9:e103240 pubmed 出版商
  1239. Desideri E, Vegliante R, Cardaci S, Nepravishta R, Paci M, Ciriolo M. MAPK14/p38?-dependent modulation of glucose metabolism affects ROS levels and autophagy during starvation. Autophagy. 2014;10:1652-65 pubmed 出版商
  1240. McGraw H, Culbertson M, Nechiporuk A. Kremen1 restricts Dkk activity during posterior lateral line development in zebrafish. Development. 2014;141:3212-21 pubmed 出版商
  1241. Baraz R, Cisterne A, Saunders P, Hewson J, Thien M, Weiss J, et al. mTOR inhibition by everolimus in childhood acute lymphoblastic leukemia induces caspase-independent cell death. PLoS ONE. 2014;9:e102494 pubmed 出版商
  1242. Lin B, Gupta D, Heinen C. Human pluripotent stem cells have a novel mismatch repair-dependent damage response. J Biol Chem. 2014;289:24314-24 pubmed 出版商
  1243. Yang W, Shen Y, Chen Y, Chen L, Wang L, Wang H, et al. Mesencephalic astrocyte-derived neurotrophic factor prevents neuron loss via inhibiting ischemia-induced apoptosis. J Neurol Sci. 2014;344:129-38 pubmed 出版商
  1244. Yan J, Zhong N, Liu G, Chen K, Liu X, Su L, et al. Usp9x- and Noxa-mediated Mcl-1 downregulation contributes to pemetrexed-induced apoptosis in human non-small-cell lung cancer cells. Cell Death Dis. 2014;5:e1316 pubmed 出版商
  1245. Balci T, Prykhozhij S, Teh E, Da as S, McBride E, Liwski R, et al. A transgenic zebrafish model expressing KIT-D816V recapitulates features of aggressive systemic mastocytosis. Br J Haematol. 2014;167:48-61 pubmed 出版商
  1246. Jeon H, Kim S, Jin X, Park J, Kim S, Joshi K, et al. Crosstalk between glioma-initiating cells and endothelial cells drives tumor progression. Cancer Res. 2014;74:4482-92 pubmed 出版商
  1247. Kraemer B, Snow J, Vollbrecht P, Pathak A, Valentine W, Deutch A, et al. A role for the p75 neurotrophin receptor in axonal degeneration and apoptosis induced by oxidative stress. J Biol Chem. 2014;289:21205-16 pubmed 出版商
  1248. Shieh J, Shen C, Chang W, Cheng H, Chan Y, Huang W, et al. An increase in reactive oxygen species by deregulation of ARNT enhances chemotherapeutic drug-induced cancer cell death. PLoS ONE. 2014;9:e99242 pubmed 出版商
  1249. Kaneko Y, Ota A, Nakashima A, Nagasaki H, Kodani Y, Mori K, et al. Lipopolysaccharide treatment arrests the cell cycle of BV-2 microglial cells in G? phase and protects them from UV light-induced apoptosis. J Neural Transm (Vienna). 2015;122:187-99 pubmed 出版商
  1250. Benzina S, Harquail J, Jean S, Beauregard A, Colquhoun C, Carroll M, et al. Deoxypodophyllotoxin isolated from Juniperus communis induces apoptosis in breast cancer cells. Anticancer Agents Med Chem. 2015;15:79-88 pubmed
  1251. Kukreja L, Kujoth G, Prolla T, Van Leuven F, Vassar R. Increased mtDNA mutations with aging promotes amyloid accumulation and brain atrophy in the APP/Ld transgenic mouse model of Alzheimer's disease. Mol Neurodegener. 2014;9:16 pubmed 出版商
  1252. Soares F, Tattoli I, Rahman M, Robertson S, Belcheva A, Liu D, et al. The mitochondrial protein NLRX1 controls the balance between extrinsic and intrinsic apoptosis. J Biol Chem. 2014;289:19317-30 pubmed 出版商
  1253. Kielar M, Tuy F, Bizzotto S, Lebrand C, de Juan Romero C, Poirier K, et al. Mutations in Eml1 lead to ectopic progenitors and neuronal heterotopia in mouse and human. Nat Neurosci. 2014;17:923-33 pubmed 出版商
  1254. Ying Y, Kim J, Westphal S, Long K, Padanilam B. Targeted deletion of p53 in the proximal tubule prevents ischemic renal injury. J Am Soc Nephrol. 2014;25:2707-16 pubmed 出版商
  1255. Velicky P, Haider S, Otti G, Fiala C, Pollheimer J, Knöfler M. Notch-dependent RBPJ? inhibits proliferation of human cytotrophoblasts and their differentiation into extravillous trophoblasts. Mol Hum Reprod. 2014;20:756-66 pubmed 出版商
  1256. Li T, Yang D, Li J, Tang Y, Yang J, Le W. Critical role of Tet3 in neural progenitor cell maintenance and terminal differentiation. Mol Neurobiol. 2015;51:142-54 pubmed 出版商
  1257. Cazanave S, Wang X, Zhou H, Rahmani M, Grant S, Durrant D, et al. Degradation of Keap1 activates BH3-only proteins Bim and PUMA during hepatocyte lipoapoptosis. Cell Death Differ. 2014;21:1303-12 pubmed 出版商
  1258. Wang Y, Zhou D, Chen S. SGK3 is an androgen-inducible kinase promoting prostate cancer cell proliferation through activation of p70 S6 kinase and up-regulation of cyclin D1. Mol Endocrinol. 2014;28:935-48 pubmed 出版商
  1259. Zhu G, Fan Z, Ding M, Mu L, Liang J, Ding Y, et al. DNA damage induces the accumulation of Tiam1 by blocking ?-TrCP-dependent degradation. J Biol Chem. 2014;289:15482-94 pubmed 出版商
  1260. Cai L, Wang D, Fisher A, Wang Z. Identification of a genetic interaction between the tumor suppressor EAF2 and the retinoblastoma protein (Rb) signaling pathway in C. elegans and prostate cancer cells. Biochem Biophys Res Commun. 2014;447:292-8 pubmed 出版商
  1261. Ishikawa K, Saiki S, Furuya N, Yamada D, Imamichi Y, Li Y, et al. P150glued-associated disorders are caused by activation of intrinsic apoptotic pathway. PLoS ONE. 2014;9:e94645 pubmed 出版商
  1262. Bailey K, Rahimi Balaei M, Mannan A, Del Bigio M, Marzban H. Purkinje cell compartmentation in the cerebellum of the lysosomal Acid phosphatase 2 mutant mouse (nax - naked-ataxia mutant mouse). PLoS ONE. 2014;9:e94327 pubmed 出版商
  1263. Wang X, Stafford W, Mazurkiewicz M, Fryknäs M, Brjnic S, Zhang X, et al. The 19S Deubiquitinase inhibitor b-AP15 is enriched in cells and elicits rapid commitment to cell death. Mol Pharmacol. 2014;85:932-45 pubmed 出版商
  1264. Chou C, Huang N, Jhuang S, Pan H, Peng N, Cheng J, et al. Ubiquitin-conjugating enzyme UBE2C is highly expressed in breast microcalcification lesions. PLoS ONE. 2014;9:e93934 pubmed 出版商
  1265. Li Y, Pan J, Wei C, Chen J, Liu Y, Liu J, et al. LIM homeodomain transcription factor Isl1 directs normal pyloric development by targeting Gata3. BMC Biol. 2014;12:25 pubmed 出版商
  1266. Smith I, Godinez G, Singh B, McCaughey K, Alcantara R, Gururaja T, et al. Inhibition of Janus kinase signaling during controlled mechanical ventilation prevents ventilation-induced diaphragm dysfunction. FASEB J. 2014;28:2790-803 pubmed 出版商
  1267. Lu T, Aron L, Zullo J, Pan Y, Kim H, Chen Y, et al. REST and stress resistance in ageing and Alzheimer's disease. Nature. 2014;507:448-54 pubmed 出版商
  1268. Hassan H, Varney M, Jain S, Weisenburger D, Singh R, Dave B. Disruption of chromosomal locus 1p36 differentially modulates TAp73 and ΔNp73 expression in follicular lymphoma. Leuk Lymphoma. 2014;55:2924-31 pubmed 出版商
  1269. Petazzi P, Akizu N, Garcia A, Estarás C, Martinez de Paz A, Rodríguez Paredes M, et al. An increase in MECP2 dosage impairs neural tube formation. Neurobiol Dis. 2014;67:49-56 pubmed 出版商
  1270. Iwasaki K, Sudo H, Yamada K, Ito M, Iwasaki N. Cytotoxic effects of the radiocontrast agent iotrolan and anesthetic agents bupivacaine and lidocaine in three-dimensional cultures of human intervertebral disc nucleus pulposus cells: identification of the apoptotic pathways. PLoS ONE. 2014;9:e92442 pubmed 出版商
  1271. Liu X, McMurphy T, Xiao R, Slater A, Huang W, Cao L. Hypothalamic gene transfer of BDNF inhibits breast cancer progression and metastasis in middle age obese mice. Mol Ther. 2014;22:1275-1284 pubmed 出版商
  1272. Jami M, Hou J, Liu M, Varney M, Hassan H, Dong J, et al. Functional proteomic analysis reveals the involvement of KIAA1199 in breast cancer growth, motility and invasiveness. BMC Cancer. 2014;14:194 pubmed 出版商
  1273. Xia Y, Chang T, Wang Y, Liu Y, Li W, Li M, et al. YAP promotes ovarian cancer cell tumorigenesis and is indicative of a poor prognosis for ovarian cancer patients. PLoS ONE. 2014;9:e91770 pubmed 出版商
  1274. Fernandez Estevez M, Casarejos M, Lopez Sendon J, Garcia Caldentey J, Ruiz C, Gomez A, et al. Trehalose reverses cell malfunction in fibroblasts from normal and Huntington's disease patients caused by proteosome inhibition. PLoS ONE. 2014;9:e90202 pubmed 出版商
  1275. Guerzoni C, Amatori S, Giorgi L, Manara M, Landuzzi L, Lollini P, et al. An aza-macrocycle containing maltolic side-arms (maltonis) as potential drug against human pediatric sarcomas. BMC Cancer. 2014;14:137 pubmed 出版商
  1276. Nakajima W, Hicks M, Tanaka N, Krystal G, Harada H. Noxa determines localization and stability of MCL-1 and consequently ABT-737 sensitivity in small cell lung cancer. Cell Death Dis. 2014;5:e1052 pubmed 出版商
  1277. Berkenkamp B, Susnik N, Baisantry A, Kuznetsova I, Jacobi C, Sörensen Zender I, et al. In vivo and in vitro analysis of age-associated changes and somatic cellular senescence in renal epithelial cells. PLoS ONE. 2014;9:e88071 pubmed 出版商
  1278. Nikitin P, Price A, McFadden K, Yan C, Luftig M. Mitogen-induced B-cell proliferation activates Chk2-dependent G1/S cell cycle arrest. PLoS ONE. 2014;9:e87299 pubmed 出版商
  1279. Borkham Kamphorst E, Schaffrath C, Van De Leur E, Haas U, Tihaa L, Meurer S, et al. The anti-fibrotic effects of CCN1/CYR61 in primary portal myofibroblasts are mediated through induction of reactive oxygen species resulting in cellular senescence, apoptosis and attenuated TGF-? signaling. Biochim Biophys Acta. 2014;1843:902-14 pubmed 出版商
  1280. Wang H, Lewsadder M, Dorn E, Xu S, Lakshmana M. RanBP9 overexpression reduces dendritic arbor and spine density. Neuroscience. 2014;265:253-62 pubmed 出版商
  1281. Li A, Morton J, Ma Y, Karim S, Zhou Y, Faller W, et al. Fascin is regulated by slug, promotes progression of pancreatic cancer in mice, and is associated with patient outcomes. Gastroenterology. 2014;146:1386-96.e1-17 pubmed 出版商
  1282. Li J, Xu Z, Jiang L, Mao J, Zeng Z, Fang L, et al. Rictor/mTORC2 protects against cisplatin-induced tubular cell death and acute kidney injury. Kidney Int. 2014;86:86-102 pubmed 出版商
  1283. Wang C, Wang J, Liu Z, Ma X, Wang X, Jin H, et al. Ubiquitin-specific protease 2a stabilizes MDM4 and facilitates the p53-mediated intrinsic apoptotic pathway in glioblastoma. Carcinogenesis. 2014;35:1500-9 pubmed 出版商
  1284. Nandan M, Ghaleb A, Liu Y, Bialkowska A, McConnell B, Shroyer K, et al. Inducible intestine-specific deletion of Krüppel-like factor 5 is characterized by a regenerative response in adult mouse colon. Dev Biol. 2014;387:191-202 pubmed 出版商
  1285. Byron A, Randles M, Humphries J, Mironov A, Hamidi H, Harris S, et al. Glomerular cell cross-talk influences composition and assembly of extracellular matrix. J Am Soc Nephrol. 2014;25:953-66 pubmed 出版商
  1286. Mahajan I, Chen M, Muro I, Robertson J, Wright C, Bratton S. BH3-only protein BIM mediates heat shock-induced apoptosis. PLoS ONE. 2014;9:e84388 pubmed 出版商
  1287. Basu S, Rajakaruna S, De Arcangelis A, Zhang L, Georges Labouesse E, Menko A. ?6 integrin transactivates insulin-like growth factor receptor-1 (IGF-1R) to regulate caspase-3-mediated lens epithelial cell differentiation initiation. J Biol Chem. 2014;289:3842-55 pubmed 出版商
  1288. Clave S, Joya X, Salat Batlle J, Garcia Algar O, Vall O. Ethanol cytotoxic effect on trophoblast cells. Toxicol Lett. 2014;225:216-21 pubmed 出版商
  1289. Wang W, Wang Y, Chen H, Xing Y, Li F, Zhang Q, et al. Orphan nuclear receptor TR3 acts in autophagic cell death via mitochondrial signaling pathway. Nat Chem Biol. 2014;10:133-40 pubmed 出版商
  1290. Traniello I, Sîrbulescu R, Ilieş I, Zupanc G. Age-related changes in stem cell dynamics, neurogenesis, apoptosis, and gliosis in the adult brain: a novel teleost fish model of negligible senescence. Dev Neurobiol. 2014;74:514-30 pubmed 出版商
  1291. Rubio N, Verrax J, Dewaele M, Verfaillie T, Johansen T, Piette J, et al. p38(MAPK)-regulated induction of p62 and NBR1 after photodynamic therapy promotes autophagic clearance of ubiquitin aggregates and reduces reactive oxygen species levels by supporting Nrf2-antioxidant signaling. Free Radic Biol Med. 2014;67:292-303 pubmed 出版商
  1292. Del Nagro C, Choi J, Xiao Y, Rangell L, Mohan S, Pandita A, et al. Chk1 inhibition in p53-deficient cell lines drives rapid chromosome fragmentation followed by caspase-independent cell death. Cell Cycle. 2014;13:303-14 pubmed 出版商
  1293. Crowther A, Gama V, Bevilacqua A, Chang S, Yuan H, Deshmukh M, et al. Tonic activation of Bax primes neural progenitors for rapid apoptosis through a mechanism preserved in medulloblastoma. J Neurosci. 2013;33:18098-108 pubmed 出版商
  1294. Guo M, Cao Y, Wang T, Song X, Liu Z, Zhou E, et al. Baicalin inhibits Staphylococcus aureus-induced apoptosis by regulating TLR2 and TLR2-related apoptotic factors in the mouse mammary glands. Eur J Pharmacol. 2014;723:481-8 pubmed 出版商
  1295. Otero J, Kalaszczynska I, Michowski W, Wong M, Gygli P, Gokozan H, et al. Cerebellar cortical lamination and foliation require cyclin A2. Dev Biol. 2014;385:328-39 pubmed 出版商
  1296. Setyarani M, Zinellu A, Carru C, Zulli A. High dietary taurine inhibits myocardial apoptosis during an atherogenic diet: association with increased myocardial HSP70 and HSF-1 but not caspase 3. Eur J Nutr. 2014;53:929-37 pubmed 出版商
  1297. Kyathanahalli C, Marks J, Nye K, Lao B, Albrecht E, Aberdeen G, et al. Cross-species withdrawal of MCL1 facilitates postpartum uterine involution in both the mouse and baboon. Endocrinology. 2013;154:4873-84 pubmed 出版商
  1298. O Brien M, Carbin S, Morrison J, Smith T. Decreased myometrial p160 ROCK-1 expression in obese women at term pregnancy. Reprod Biol Endocrinol. 2013;11:79 pubmed 出版商
  1299. Yu P, Yan M, Lai H, Huang R, Chou Y, Lin W, et al. Downregulation of miR-29 contributes to cisplatin resistance of ovarian cancer cells. Int J Cancer. 2014;134:542-51 pubmed 出版商
  1300. Higes M, Juarranz A, Dias Almeida J, Lucena S, Botías C, Meana A, et al. Apoptosis in the pathogenesis of Nosema ceranae (Microsporidia: Nosematidae) in honey bees (Apis mellifera). Environ Microbiol Rep. 2013;5:530-6 pubmed 出版商
  1301. Palavicini J, Lloyd B, Hayes C, Bianchi E, Kang D, Dawson Scully K, et al. RanBP9 Plays a Critical Role in Neonatal Brain Development in Mice. PLoS ONE. 2013;8:e66908 pubmed 出版商
  1302. He W, Wang Q, Srinivasan B, Xu J, Padilla M, Li Z, et al. A JNK-mediated autophagy pathway that triggers c-IAP degradation and necroptosis for anticancer chemotherapy. Oncogene. 2014;33:3004-13 pubmed 出版商
  1303. Zhou D, Tan R, Lin L, Zhou L, Liu Y. Activation of hepatocyte growth factor receptor, c-met, in renal tubules is required for renoprotection after acute kidney injury. Kidney Int. 2013;84:509-20 pubmed 出版商
  1304. Huang B, Ray P, Iwasaki K, Tsuji Y. Transcriptional regulation of the human ferritin gene by coordinated regulation of Nrf2 and protein arginine methyltransferases PRMT1 and PRMT4. FASEB J. 2013;27:3763-74 pubmed 出版商
  1305. Zhuo X, Wu Y, Ni Y, Liu J, Gong M, Wang X, et al. Isoproterenol instigates cardiomyocyte apoptosis and heart failure via AMPK inactivation-mediated endoplasmic reticulum stress. Apoptosis. 2013;18:800-10 pubmed 出版商
  1306. Tokami H, Ago T, Sugimori H, Kuroda J, Awano H, Suzuki K, et al. RANTES has a potential to play a neuroprotective role in an autocrine/paracrine manner after ischemic stroke. Brain Res. 2013;1517:122-32 pubmed 出版商
  1307. Backman L, Danielson P. Akt-mediated anti-apoptotic effects of substance P in Anti-Fas-induced apoptosis of human tenocytes. J Cell Mol Med. 2013;17:723-33 pubmed 出版商
  1308. Bajic D, Commons K, Soriano S. Morphine-enhanced apoptosis in selective brain regions of neonatal rats. Int J Dev Neurosci. 2013;31:258-66 pubmed 出版商
  1309. Valente A, Yoshida T, Clark R, Delafontaine P, Siebenlist U, Chandrasekar B. Advanced oxidation protein products induce cardiomyocyte death via Nox2/Rac1/superoxide-dependent TRAF3IP2/JNK signaling. Free Radic Biol Med. 2013;60:125-35 pubmed 出版商
  1310. Kim B, Zaveri H, Shchelochkov O, Yu Z, Hernandez Garcia A, Seymour M, et al. An allelic series of mice reveals a role for RERE in the development of multiple organs affected in chromosome 1p36 deletions. PLoS ONE. 2013;8:e57460 pubmed 出版商
  1311. Kim H, Woo H, Ryu J, Bok J, Kim J, Choi S, et al. Conditional deletion of pten leads to defects in nerve innervation and neuronal survival in inner ear development. PLoS ONE. 2013;8:e55609 pubmed 出版商
  1312. Sirohi K, Chalasani M, Sudhakar C, Kumari A, Radha V, Swarup G. M98K-OPTN induces transferrin receptor degradation and RAB12-mediated autophagic death in retinal ganglion cells. Autophagy. 2013;9:510-27 pubmed 出版商
  1313. Han J, Soletti R, Sadarangani A, Sridevi P, Ramirez M, Eckmann L, et al. Nuclear expression of ?-catenin promotes RB stability and resistance to TNF-induced apoptosis in colon cancer cells. Mol Cancer Res. 2013;11:207-18 pubmed 出版商
  1314. Li L, Yang G, Ren C, Tanimoto R, Hirayama T, Wang J, et al. Glioma pathogenesis-related protein 1 induces prostate cancer cell death through Hsc70-mediated suppression of AURKA and TPX2. Mol Oncol. 2013;7:484-96 pubmed 出版商
  1315. Cao L, Li L, Lin D, Zuo Z. Isoflurane induces learning impairment that is mediated by interleukin 1? in rodents. PLoS ONE. 2012;7:e51431 pubmed 出版商
  1316. Nakanishi Y, Seno H, Fukuoka A, Ueo T, Yamaga Y, Maruno T, et al. Dclk1 distinguishes between tumor and normal stem cells in the intestine. Nat Genet. 2013;45:98-103 pubmed 出版商
  1317. Cho K, Park J, Piggott A, Salim A, Gorfe A, Parton R, et al. Staurosporines disrupt phosphatidylserine trafficking and mislocalize Ras proteins. J Biol Chem. 2012;287:43573-84 pubmed 出版商
  1318. Gallagher S, Kofman A, Huszar J, Dannenberg J, Depinho R, Braun R, et al. Distinct requirements for Sin3a in perinatal male gonocytes and differentiating spermatogonia. Dev Biol. 2013;373:83-94 pubmed 出版商
  1319. Heinz L, Rebsamen M, Rossi D, Staehli F, Schroder K, Quadroni M, et al. The death domain-containing protein Unc5CL is a novel MyD88-independent activator of the pro-inflammatory IRAK signaling cascade. Cell Death Differ. 2012;19:722-31 pubmed 出版商
  1320. Ferro M, Giuberti G, Zappavigna S, Perdonà S, Facchini G, Sperlongano P, et al. Chondroitin sulphate enhances the antitumor activity of gemcitabine and mitomycin-C in bladder cancer cells with different mechanisms. Oncol Rep. 2012;27:409-15 pubmed 出版商
  1321. Balsas P, Galán Malo P, Marzo I, Naval J. Bortezomib resistance in a myeloma cell line is associated to PSM?5 overexpression and polyploidy. Leuk Res. 2012;36:212-8 pubmed 出版商
  1322. Xargay Torrent S, Lopez Guerra M, Saborit Villarroya I, Rosich L, Campo E, Roué G, et al. Vorinostat-induced apoptosis in mantle cell lymphoma is mediated by acetylation of proapoptotic BH3-only gene promoters. Clin Cancer Res. 2011;17:3956-68 pubmed 出版商
  1323. Hirata H, Hinoda Y, Nakajima K, Kawamoto K, Kikuno N, Ueno K, et al. Wnt antagonist DKK1 acts as a tumor suppressor gene that induces apoptosis and inhibits proliferation in human renal cell carcinoma. Int J Cancer. 2011;128:1793-803 pubmed 出版商
  1324. Koschny R, Ganten T, Sykora J, Haas T, Sprick M, Kolb A, et al. TRAIL/bortezomib cotreatment is potentially hepatotoxic but induces cancer-specific apoptosis within a therapeutic window. Hepatology. 2007;45:649-58 pubmed
  1325. Kasman L, Lu P, Voelkel Johnson C. The histone deacetylase inhibitors depsipeptide and MS-275, enhance TRAIL gene therapy of LNCaP prostate cancer cells without adverse effects in normal prostate epithelial cells. Cancer Gene Ther. 2007;14:327-34 pubmed
  1326. Damron T, Horton J, Naqvi A, Margulies B, Strauss J, Grant W, et al. Decreased proliferation precedes growth factor changes after physeal irradiation. Clin Orthop Relat Res. 2004;:233-42 pubmed
  1327. Uhal B, Rayford H, Zhuang J, Li X, Laukka J, Soledad Conrad V. Apoptosis-dependent acute lung injury and repair after intratracheal instillation of noradrenaline in rats. Exp Physiol. 2003;88:269-75 pubmed