这是一篇来自已证抗体库的有关小鼠 Cd274的综述,是根据92篇发表使用所有方法的文章归纳的。这综述旨在帮助来邦网的访客找到最适合Cd274 抗体。
Cd274 同义词: A530045L16Rik; B7h1; Pdcd1l1; Pdcd1lg1; Pdl1

BioLegend
大鼠 单克隆(10F.9G2)
  • 流式细胞仪; 小鼠; 图 1e
BioLegend Cd274抗体(BioLegend, 10F.9G2)被用于被用于流式细胞仪在小鼠样本上 (图 1e). Acta Neuropathol Commun (2020) ncbi
大鼠 单克隆(10F.9G2)
  • 流式细胞仪; 小鼠; 图 6c
BioLegend Cd274抗体(BioLegend, 124313)被用于被用于流式细胞仪在小鼠样本上 (图 6c). Cell (2019) ncbi
大鼠 单克隆(10F.9G2)
  • 流式细胞仪; 小鼠; 图 1b
BioLegend Cd274抗体(Biolegend, 10F.9G2)被用于被用于流式细胞仪在小鼠样本上 (图 1b). Front Immunol (2019) ncbi
大鼠 单克隆(10F.9G2)
  • 流式细胞仪; 小鼠; 1:400; 图 3f
BioLegend Cd274抗体(BioLegend, 10F.9G2)被用于被用于流式细胞仪在小鼠样本上浓度为1:400 (图 3f). Nat Med (2019) ncbi
大鼠 单克隆(10F.9G2)
  • 流式细胞仪; 小鼠; 图 s1g
BioLegend Cd274抗体(Biolegend, 124307)被用于被用于流式细胞仪在小鼠样本上 (图 s1g). Cell (2019) ncbi
大鼠 单克隆(MIH7)
  • 流式细胞仪; 小鼠; 图 7c
BioLegend Cd274抗体(BioLegend, MIH7)被用于被用于流式细胞仪在小鼠样本上 (图 7c). J Clin Invest (2019) ncbi
大鼠 单克隆(10F.9G2)
  • 流式细胞仪; 人类; 图 s1e
BioLegend Cd274抗体(BioLegend, 124321)被用于被用于流式细胞仪在人类样本上 (图 s1e). Cell Rep (2018) ncbi
大鼠 单克隆(10F.9G2)
  • 流式细胞仪; 小鼠; 图 4a
BioLegend Cd274抗体(BioLegend, 10F.9G2)被用于被用于流式细胞仪在小鼠样本上 (图 4a). JCI Insight (2018) ncbi
大鼠 单克隆(10F.9G2)
  • 流式细胞仪; 小鼠; 1:150; 图 3b
BioLegend Cd274抗体(BioLegend, 124308)被用于被用于流式细胞仪在小鼠样本上浓度为1:150 (图 3b). Br J Cancer (2019) ncbi
大鼠 单克隆(10F.9G2)
  • 流式细胞仪; 小鼠; 图 s1b
BioLegend Cd274抗体(BioLegend, 10F.9G2)被用于被用于流式细胞仪在小鼠样本上 (图 s1b). J Clin Invest (2019) ncbi
大鼠 单克隆(10F.9G2)
  • 流式细胞仪; 小鼠; 1:200; 图 4h
BioLegend Cd274抗体(BioLegend, 10-F.9G2)被用于被用于流式细胞仪在小鼠样本上浓度为1:200 (图 4h). Nat Commun (2018) ncbi
大鼠 单克隆(10F.9G2)
  • 免疫组化-冰冻切片; 小鼠; 图 6
BioLegend Cd274抗体(BioLegend, 10F.9G2)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 6). J Clin Invest (2018) ncbi
大鼠 单克隆(10F.9G2)
  • 流式细胞仪; 小鼠; 图 1a
BioLegend Cd274抗体(BioLegend, 124307)被用于被用于流式细胞仪在小鼠样本上 (图 1a). Immunity (2018) ncbi
大鼠 单克隆(10F.9G2)
  • 流式细胞仪; 小鼠; 图 s7g
BioLegend Cd274抗体(Biolegend, 124319)被用于被用于流式细胞仪在小鼠样本上 (图 s7g). Immunity (2018) ncbi
大鼠 单克隆(10F.9G2)
  • 流式细胞仪; 人类; 图 s1a
BioLegend Cd274抗体(Biolegend, 124314)被用于被用于流式细胞仪在人类样本上 (图 s1a). Immunity (2018) ncbi
大鼠 单克隆(10F.9G2)
  • 流式细胞仪; 小鼠; 图 s6a
BioLegend Cd274抗体(BioLegend, 10F.9G2)被用于被用于流式细胞仪在小鼠样本上 (图 s6a). J Clin Invest (2018) ncbi
大鼠 单克隆(10F.9G2)
  • 免疫印迹; 小鼠; 1:100; 图 6c
BioLegend Cd274抗体(BioLegend, 124315)被用于被用于免疫印迹在小鼠样本上浓度为1:100 (图 6c). Nat Commun (2018) ncbi
大鼠 单克隆(10F.9G2)
BioLegend Cd274抗体(BioLegend, 10F.9G2)被用于. Oncoimmunology (2018) ncbi
大鼠 单克隆(10F.9G2)
  • 流式细胞仪; 人类; 1:200; 图 s4f
BioLegend Cd274抗体(BioLegend, 10F.9G2)被用于被用于流式细胞仪在人类样本上浓度为1:200 (图 s4f). J Clin Invest (2018) ncbi
大鼠 单克隆(10F.9G2)
  • 流式细胞仪; 小鼠; 图 3d
BioLegend Cd274抗体(bioLegend, 10F.9G2)被用于被用于流式细胞仪在小鼠样本上 (图 3d). J Exp Med (2018) ncbi
大鼠 单克隆(10F.9G2)
  • 流式细胞仪; 小鼠; 1:200; 图 s1a
BioLegend Cd274抗体(BioLegend, 124312)被用于被用于流式细胞仪在小鼠样本上浓度为1:200 (图 s1a). J Clin Invest (2018) ncbi
大鼠 单克隆(10F.9G2)
  • 流式细胞仪; 小鼠; 1:100; 图 4b
BioLegend Cd274抗体(BioLegend, 10F.9G2)被用于被用于流式细胞仪在小鼠样本上浓度为1:100 (图 4b). Nat Commun (2017) ncbi
大鼠 单克隆(10F.9G2)
  • 流式细胞仪; 小鼠; 图 1d
BioLegend Cd274抗体(BioLegend, 10F.9G2)被用于被用于流式细胞仪在小鼠样本上 (图 1d). Immunology (2017) ncbi
大鼠 单克隆(10F.9G2)
  • 流式细胞仪; 小鼠; 图 3a
BioLegend Cd274抗体(Biolegend, 10F.9G2)被用于被用于流式细胞仪在小鼠样本上 (图 3a). Int J Parasitol (2017) ncbi
大鼠 单克隆(10F.9G2)
  • 流式细胞仪; 小鼠; 1:300; 图 1a, 2b
BioLegend Cd274抗体(BioLegend, 124312)被用于被用于流式细胞仪在小鼠样本上浓度为1:300 (图 1a, 2b). Nat Commun (2017) ncbi
大鼠 单克隆(10F.9G2)
  • 流式细胞仪; 小鼠; 图 2b
BioLegend Cd274抗体(BioLegend, 10F.9G2)被用于被用于流式细胞仪在小鼠样本上 (图 2b). Immunology (2017) ncbi
大鼠 单克隆(10F.9G2)
  • 流式细胞仪; 小鼠; 图 1c
BioLegend Cd274抗体(Biolegend, 10 F.9G2)被用于被用于流式细胞仪在小鼠样本上 (图 1c). Sci Rep (2017) ncbi
大鼠 单克隆(10F.9G2)
  • 流式细胞仪; 小鼠; 图 6c
BioLegend Cd274抗体(BioLegend, 10F.9G2)被用于被用于流式细胞仪在小鼠样本上 (图 6c). JCI Insight (2017) ncbi
大鼠 单克隆(10F.9G2)
  • 流式细胞仪; 小鼠; 1:100; 图 S5
BioLegend Cd274抗体(Biolegend, 10F.9G2)被用于被用于流式细胞仪在小鼠样本上浓度为1:100 (图 S5). Proc Natl Acad Sci U S A (2017) ncbi
大鼠 单克隆(10F.9G2)
  • 流式细胞仪; 小鼠; 图 s8b
BioLegend Cd274抗体(BioLegend, 10F.9G2)被用于被用于流式细胞仪在小鼠样本上 (图 s8b). Nature (2016) ncbi
大鼠 单克隆(10F.9G2)
  • 流式细胞仪; 小鼠; 图 4c
  • 流式细胞仪; 人类; 图 4c
BioLegend Cd274抗体(Biolegend, 10F.9G2)被用于被用于流式细胞仪在小鼠样本上 (图 4c) 和 被用于流式细胞仪在人类样本上 (图 4c). J Immunol (2016) ncbi
大鼠 单克隆(10F.9G2)
  • 流式细胞仪; 小鼠; 1:800; 图 3a
BioLegend Cd274抗体(BioLegend, 10F.9G2)被用于被用于流式细胞仪在小鼠样本上浓度为1:800 (图 3a). J Clin Invest (2016) ncbi
大鼠 单克隆(10F.9G2)
  • 流式细胞仪; 小鼠; 图 s4e
BioLegend Cd274抗体(BioLegend, 10F.9G2)被用于被用于流式细胞仪在小鼠样本上 (图 s4e). Proc Natl Acad Sci U S A (2016) ncbi
大鼠 单克隆(10F.9G2)
  • 流式细胞仪; 小鼠; 1:100; 图 1
  • 流式细胞仪; 人类; 1:100; 图 1
BioLegend Cd274抗体(Biolegend, 124319)被用于被用于流式细胞仪在小鼠样本上浓度为1:100 (图 1) 和 被用于流式细胞仪在人类样本上浓度为1:100 (图 1). Nat Commun (2016) ncbi
大鼠 单克隆(10F.9G2)
  • 流式细胞仪; 小鼠; 图 4
BioLegend Cd274抗体(Biolegend, 10F.9G2)被用于被用于流式细胞仪在小鼠样本上 (图 4). PLoS ONE (2016) ncbi
大鼠 单克隆(10F.9G2)
  • 抑制或激活实验; 小鼠; 图 6
  • 流式细胞仪; 小鼠; 图 5
BioLegend Cd274抗体(BioLegend, 10F.9G2)被用于被用于抑制或激活实验在小鼠样本上 (图 6) 和 被用于流式细胞仪在小鼠样本上 (图 5). Clin Cancer Res (2017) ncbi
大鼠 单克隆(10F.9G2)
BioLegend Cd274抗体(BioLegend, 124307)被用于. PLoS ONE (2016) ncbi
大鼠 单克隆(10F.9G2)
  • 流式细胞仪; 小鼠; 图 4m
BioLegend Cd274抗体(Biolegend, 10F.9G2)被用于被用于流式细胞仪在小鼠样本上 (图 4m). Nature (2016) ncbi
大鼠 单克隆(10F.9G2)
  • 流式细胞仪; 小鼠; 图 2e
BioLegend Cd274抗体(BioLegend, 10F.9G2)被用于被用于流式细胞仪在小鼠样本上 (图 2e). Gastroenterology (2016) ncbi
大鼠 单克隆(10F.9G2)
  • 流式细胞仪; 小鼠; 图 3e
BioLegend Cd274抗体(BioLegend, 10F.9G2)被用于被用于流式细胞仪在小鼠样本上 (图 3e). J Immunol (2016) ncbi
大鼠 单克隆(10F.9G2)
  • 流式细胞仪; 小鼠; 图 1
BioLegend Cd274抗体(BioLegend, 10F.9G2)被用于被用于流式细胞仪在小鼠样本上 (图 1). PLoS ONE (2016) ncbi
大鼠 单克隆(10F.9G2)
  • 免疫组化-石蜡切片; 小鼠; 1:150; 图 4b
  • 流式细胞仪; 小鼠
BioLegend Cd274抗体(Biolegend, 10F.9G2)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:150 (图 4b) 和 被用于流式细胞仪在小鼠样本上. J Thorac Oncol (2016) ncbi
大鼠 单克隆(10F.9G2)
  • 流式细胞仪; 小鼠; 1:200; 图 5
BioLegend Cd274抗体(Biolegend, 10F.9G2)被用于被用于流式细胞仪在小鼠样本上浓度为1:200 (图 5). Nat Commun (2016) ncbi
大鼠 单克隆(10F.9G2)
  • 流式细胞仪; 小鼠; 图 6
BioLegend Cd274抗体(BioLegend, 124313)被用于被用于流式细胞仪在小鼠样本上 (图 6). Oncotarget (2015) ncbi
大鼠 单克隆(10F.9G2)
  • 流式细胞仪; 小鼠; 图 5a
BioLegend Cd274抗体(Biolegend, 10F.9G2)被用于被用于流式细胞仪在小鼠样本上 (图 5a). Cancer Res (2015) ncbi
大鼠 单克隆(10F.9G2)
  • 流式细胞仪; 小鼠; 图 3
BioLegend Cd274抗体(BioLegend, 10F.9G2)被用于被用于流式细胞仪在小鼠样本上 (图 3). J Immunol (2015) ncbi
大鼠 单克隆(10F.9G2)
  • 流式细胞仪; 小鼠; 图 1
BioLegend Cd274抗体(BioLegend, 124305)被用于被用于流式细胞仪在小鼠样本上 (图 1). Oncoimmunology (2014) ncbi
大鼠 单克隆(10F.9G2)
  • 抑制或激活实验; 小鼠; 图 5
BioLegend Cd274抗体(Biolegend, 10F.9G2)被用于被用于抑制或激活实验在小鼠样本上 (图 5). Nat Commun (2015) ncbi
大鼠 单克隆(10F.9G2)
  • 抑制或激活实验; 小鼠; 图 6
BioLegend Cd274抗体(BioLegend and BioXcell, 10F.9G2)被用于被用于抑制或激活实验在小鼠样本上 (图 6). J Immunol (2015) ncbi
大鼠 单克隆(10F.9G2)
BioLegend Cd274抗体(BioLegend, 124301)被用于. Infect Immun (2015) ncbi
大鼠 单克隆(10F.9G2)
  • 流式细胞仪; 人类; 图 1
BioLegend Cd274抗体(Biolegend, 10F.9G2)被用于被用于流式细胞仪在人类样本上 (图 1). Cancer Immunol Immunother (2014) ncbi
赛默飞世尔
大鼠 单克隆(MIH5)
  • 流式细胞仪; 小鼠; 图 6c
赛默飞世尔 Cd274抗体(eBioscience, 46-5982-82)被用于被用于流式细胞仪在小鼠样本上 (图 6c). Nat Commun (2018) ncbi
大鼠 单克隆(MIH5)
  • 流式细胞仪; 小鼠; 图 s3
赛默飞世尔 Cd274抗体(Thermo Fisher, 12-5982-81)被用于被用于流式细胞仪在小鼠样本上 (图 s3). Cell (2018) ncbi
大鼠 单克隆(MIH5)
  • 流式细胞仪; 小鼠; 图 2f
赛默飞世尔 Cd274抗体(eBioscience, 13-5982-81)被用于被用于流式细胞仪在小鼠样本上 (图 2f). Cell (2018) ncbi
大鼠 单克隆(MIH5)
  • 流式细胞仪; 小鼠; 图 s1a
赛默飞世尔 Cd274抗体(eBioscience, M1H5)被用于被用于流式细胞仪在小鼠样本上 (图 s1a). Cancer Immunol Immunother (2019) ncbi
大鼠 单克隆(MIH5)
  • 流式细胞仪; 小鼠; 图 e5c
赛默飞世尔 Cd274抗体(eBiosciences, MIH5)被用于被用于流式细胞仪在小鼠样本上 (图 e5c). Nature (2018) ncbi
大鼠 单克隆(MIH5)
  • 流式细胞仪; 小鼠; 1:300; 图 5a
赛默飞世尔 Cd274抗体(eBioscience, 13-5982-85)被用于被用于流式细胞仪在小鼠样本上浓度为1:300 (图 5a). Nat Commun (2017) ncbi
大鼠 单克隆(MIH5)
  • 流式细胞仪; 小鼠
赛默飞世尔 Cd274抗体(eBioscience, 12-5982-82)被用于被用于流式细胞仪在小鼠样本上. Mol Cell (2017) ncbi
domestic rabbit 多克隆
  • 免疫沉淀; 大鼠; 图 2c
  • 免疫细胞化学; 大鼠; 图 5b
  • 免疫印迹; 大鼠; 图 3b
赛默飞世尔 Cd274抗体(Thermo Fisher, PA5-20343)被用于被用于免疫沉淀在大鼠样本上 (图 2c), 被用于免疫细胞化学在大鼠样本上 (图 5b) 和 被用于免疫印迹在大鼠样本上 (图 3b). J Neuroinflammation (2017) ncbi
大鼠 单克隆(1-111A)
  • 流式细胞仪; 小鼠; 图 1f
赛默飞世尔 Cd274抗体(eBioscience, 13-9971-81)被用于被用于流式细胞仪在小鼠样本上 (图 1f). PLoS ONE (2017) ncbi
大鼠 单克隆(MIH5)
  • 流式细胞仪; 小鼠; 图 s5
赛默飞世尔 Cd274抗体(eBioscience, M1H5)被用于被用于流式细胞仪在小鼠样本上 (图 s5). Proc Natl Acad Sci U S A (2017) ncbi
大鼠 单克隆(MIH5)
  • 流式细胞仪; 小鼠; 图 7e
赛默飞世尔 Cd274抗体(eBioscience, MIH5)被用于被用于流式细胞仪在小鼠样本上 (图 7e). J Exp Med (2017) ncbi
大鼠 单克隆(MIH5)
  • 免疫组化; 小鼠; 1:100; 图 5b
  • 免疫印迹; 人类; 1:1000; 图 5g
赛默飞世尔 Cd274抗体(eBioscience, 14-5982)被用于被用于免疫组化在小鼠样本上浓度为1:100 (图 5b) 和 被用于免疫印迹在人类样本上浓度为1:1000 (图 5g). Gut (2017) ncbi
大鼠 单克隆(MIH5)
  • 流式细胞仪; 小鼠; 图 1
赛默飞世尔 Cd274抗体(eBioscience, MIH5)被用于被用于流式细胞仪在小鼠样本上 (图 1). J Clin Invest (2016) ncbi
大鼠 单克隆(MIH5)
  • 免疫细胞化学; 小鼠; 1:500; 图 1
赛默飞世尔 Cd274抗体(eBioscience, MIH5)被用于被用于免疫细胞化学在小鼠样本上浓度为1:500 (图 1). PLoS ONE (2016) ncbi
大鼠 单克隆(MIH5)
  • 流式细胞仪; 小鼠
赛默飞世尔 Cd274抗体(eBioscience, MIH5)被用于被用于流式细胞仪在小鼠样本上. J Immunol (2014) ncbi
大鼠 单克隆(MIH5)
  • 流式细胞仪; 人类
赛默飞世尔 Cd274抗体(eBioscience, MIH5)被用于被用于流式细胞仪在人类样本上. Cancer Res (2014) ncbi
大鼠 单克隆(MIH5)
  • 流式细胞仪; 人类
赛默飞世尔 Cd274抗体(eBioscience, 12-5982-82)被用于被用于流式细胞仪在人类样本上. J Immunol (2014) ncbi
大鼠 单克隆(MIH5)
  • 免疫印迹; 小鼠; 图 1
赛默飞世尔 Cd274抗体(eBiosciences, #16-5982-81)被用于被用于免疫印迹在小鼠样本上 (图 1). Cancer Res (2014) ncbi
大鼠 单克隆(MIH5)
  • 流式细胞仪; 小鼠; 图 3
赛默飞世尔 Cd274抗体(eBioscience, MIH5)被用于被用于流式细胞仪在小鼠样本上 (图 3). J Neuroinflammation (2013) ncbi
大鼠 单克隆(MIH5)
  • 流式细胞仪; 小鼠; 图 s2
赛默飞世尔 Cd274抗体(Ebioscience, MIH5)被用于被用于流式细胞仪在小鼠样本上 (图 s2). PLoS Pathog (2013) ncbi
大鼠 单克隆(MIH5)
  • 流式细胞仪; 小鼠; 图 7
赛默飞世尔 Cd274抗体(eBiosciences, M1H5)被用于被用于流式细胞仪在小鼠样本上 (图 7). Infect Immun (2010) ncbi
大鼠 单克隆(MIH5)
  • 流式细胞仪; 小鼠
赛默飞世尔 Cd274抗体(eBioscience, MIH5)被用于被用于流式细胞仪在小鼠样本上. Tissue Eng Part A (2009) ncbi
大鼠 单克隆(MIH5)
  • 流式细胞仪; 小鼠
赛默飞世尔 Cd274抗体(eBioscience, M1H5)被用于被用于流式细胞仪在小鼠样本上. J Immunol (2008) ncbi
大鼠 单克隆(MIH5)
  • 流式细胞仪; 小鼠
赛默飞世尔 Cd274抗体(eBioscience, MIH5)被用于被用于流式细胞仪在小鼠样本上. Cell Res (2008) ncbi
大鼠 单克隆(MIH5)
  • 流式细胞仪; 小鼠; 图 5a
赛默飞世尔 Cd274抗体(e-Bioscience, MIH5)被用于被用于流式细胞仪在小鼠样本上 (图 5a). Immunobiology (2008) ncbi
大鼠 单克隆(MIH5)
  • 流式细胞仪; 小鼠
赛默飞世尔 Cd274抗体(eBioscience, MIH5)被用于被用于流式细胞仪在小鼠样本上. Eur J Immunol (2006) ncbi
大鼠 单克隆(MIH5)
  • 抑制或激活实验; 小鼠; 10 ug/ml
  • 免疫组化-冰冻切片; 小鼠
  • 流式细胞仪; 小鼠
  • 免疫印迹; 小鼠
赛默飞世尔 Cd274抗体(eBioscience, MIH5)被用于被用于抑制或激活实验在小鼠样本上浓度为10 ug/ml, 被用于免疫组化-冰冻切片在小鼠样本上, 被用于流式细胞仪在小鼠样本上 和 被用于免疫印迹在小鼠样本上. Nephrol Dial Transplant (2004) ncbi
大鼠 单克隆(MIH5)
  • 抑制或激活实验; 小鼠
  • 流式细胞仪; 小鼠
赛默飞世尔 Cd274抗体(eBiosciences, MIH5)被用于被用于抑制或激活实验在小鼠样本上 和 被用于流式细胞仪在小鼠样本上. J Immunol (2004) ncbi
Bio X Cell
大鼠 单克隆(10F.9G2)
  • 抑制或激活实验; 小鼠; 图 2c
Bio X Cell Cd274抗体(BIOXCELL, 10F.9G2)被用于被用于抑制或激活实验在小鼠样本上 (图 2c). Nat Commun (2019) ncbi
大鼠 单克隆(10F.9G2)
  • 抑制或激活实验; 小鼠; ; 图 3b
Bio X Cell Cd274抗体(BXCell, BE0101)被用于被用于抑制或激活实验在小鼠样本上浓度为 (图 3b). Br J Cancer (2019) ncbi
大鼠 单克隆(10F.9G2)
  • 抑制或激活实验; 小鼠; 图 5a
Bio X Cell Cd274抗体(BioXCell, 10F.9G2)被用于被用于抑制或激活实验在小鼠样本上 (图 5a). J Clin Invest (2018) ncbi
大鼠 单克隆(10F.9G2)
  • 抑制或激活实验; 小鼠; 图 4c
Bio X Cell Cd274抗体(BioXcell, 10F.9G2)被用于被用于抑制或激活实验在小鼠样本上 (图 4c). Nat Commun (2017) ncbi
大鼠 单克隆(10F.9G2)
  • 抑制或激活实验; 小鼠; 图 2d
Bio X Cell Cd274抗体(BioXCell, 10F.9G2)被用于被用于抑制或激活实验在小鼠样本上 (图 2d). Proc Natl Acad Sci U S A (2016) ncbi
大鼠 单克隆(10F.9G2)
  • 抑制或激活实验; 小鼠; 图 1c
Bio X Cell Cd274抗体(BioXcell, 10F.9G2)被用于被用于抑制或激活实验在小鼠样本上 (图 1c). Oncoimmunology (2016) ncbi
大鼠 单克隆(10F.9G2)
  • 抑制或激活实验; 小鼠; 图 2f
Bio X Cell Cd274抗体(Bio X Cell, clone 10F.9G2)被用于被用于抑制或激活实验在小鼠样本上 (图 2f). J Immunol (2015) ncbi
大鼠 单克隆(10F.9G2)
  • 抑制或激活实验; 小鼠; 图 s3
Bio X Cell Cd274抗体(BioXCell, 10F.9G2)被用于被用于抑制或激活实验在小鼠样本上 (图 s3). J Immunother Cancer (2015) ncbi
安迪生物R&D
domestic goat 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:100; 图 5a
安迪生物R&D Cd274抗体(RD Systems, AF1019)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:100 (图 5a). Br J Cancer (2019) ncbi
domestic goat 多克隆
  • 免疫细胞化学; 小鼠; 图 1e
  • 免疫印迹; 小鼠; 图 1b
安迪生物R&D Cd274抗体(R&D Systems, AF1019)被用于被用于免疫细胞化学在小鼠样本上 (图 1e) 和 被用于免疫印迹在小鼠样本上 (图 1b). Oncoimmunology (2018) ncbi
domestic rabbit 单克隆(2096C)
  • 免疫印迹; 小鼠; 图 2a
安迪生物R&D Cd274抗体(R&D systems, MAB90781-100)被用于被用于免疫印迹在小鼠样本上 (图 2a). Nature (2018) ncbi
艾博抗(上海)贸易有限公司
domestic rabbit 单克隆(EPR20529)
  • 免疫印迹; 小鼠; 图 3a
艾博抗(上海)贸易有限公司 Cd274抗体(Abcam, AB213480)被用于被用于免疫印迹在小鼠样本上 (图 3a). Cell (2019) ncbi
碧迪BD
大鼠 单克隆(MIH5)
  • 流式细胞仪; 小鼠; 图 5f
碧迪BD Cd274抗体(BD, MIH5)被用于被用于流式细胞仪在小鼠样本上 (图 5f). J Exp Med (2016) ncbi
大鼠 单克隆(MIH5)
  • 流式细胞仪; 小鼠; 图 1d
碧迪BD Cd274抗体(BD Biosciences, MIH5)被用于被用于流式细胞仪在小鼠样本上 (图 1d). J Immunol (2016) ncbi
大鼠 单克隆(MIH5)
  • 流式细胞仪; 小鼠; 1:200; 图 s3
碧迪BD Cd274抗体(BD Biosciences, 558091)被用于被用于流式细胞仪在小鼠样本上浓度为1:200 (图 s3). Nat Commun (2016) ncbi
大鼠 单克隆(MIH5)
  • 流式细胞仪; 小鼠; 图 2
碧迪BD Cd274抗体(BDBioscience, 558091)被用于被用于流式细胞仪在小鼠样本上 (图 2). Mol Oncol (2016) ncbi
大鼠 单克隆(MIH5)
  • 流式细胞仪; 小鼠; 图 4
碧迪BD Cd274抗体(BD, MIH5)被用于被用于流式细胞仪在小鼠样本上 (图 4). Int J Oncol (2016) ncbi
大鼠 单克隆(MIH5)
  • 流式细胞仪; 小鼠; 图 6c
碧迪BD Cd274抗体(BD, MIH5)被用于被用于流式细胞仪在小鼠样本上 (图 6c). Sci Transl Med (2015) ncbi
文章列表
  1. Khorooshi R, Marczynska J, Dieu R, Wais V, Hansen C, Kavan S, et al. Innate signaling within the central nervous system recruits protective neutrophils. Acta Neuropathol Commun. 2020;8:2 pubmed 出版商
  2. Brown C, Gudjonson H, Pritykin Y, Deep D, Lavallée V, Mendoza A, et al. Transcriptional Basis of Mouse and Human Dendritic Cell Heterogeneity. Cell. 2019;179:846-863.e24 pubmed 出版商
  3. Schreiber L, Urbiola C, Das K, Spiesschaert B, Kimpel J, Heinemann F, et al. The lytic activity of VSV-GP treatment dominates the therapeutic effects in a syngeneic model of lung cancer. Br J Cancer. 2019;121:647-658 pubmed 出版商
  4. Mizuno R, Sugiura D, Shimizu K, Maruhashi T, Watada M, Okazaki I, et al. PD-1 Primarily Targets TCR Signal in the Inhibition of Functional T Cell Activation. Front Immunol. 2019;10:630 pubmed 出版商
  5. Hammerich L, Marron T, Upadhyay R, Svensson Arvelund J, Dhainaut M, Hussein S, et al. Systemic clinical tumor regressions and potentiation of PD1 blockade with in situ vaccination. Nat Med. 2019;25:814-824 pubmed 出版商
  6. Binnewies M, Mujal A, Pollack J, Combes A, Hardison E, Barry K, et al. Unleashing Type-2 Dendritic Cells to Drive Protective Antitumor CD4+ T Cell Immunity. Cell. 2019;177:556-571.e16 pubmed 出版商
  7. Poggio M, Hu T, Pai C, Chu B, BELAIR C, Chang A, et al. Suppression of Exosomal PD-L1 Induces Systemic Anti-tumor Immunity and Memory. Cell. 2019;177:414-427.e13 pubmed 出版商
  8. Visekruna A, Hartmann S, Sillke Y, Glauben R, Fischer F, Raifer H, et al. Intestinal development and homeostasis require activation and apoptosis of diet-reactive T cells. J Clin Invest. 2019;129:1972-1983 pubmed 出版商
  9. Rosenzweig N, Dvir Szternfeld R, Tsitsou Kampeli A, Keren Shaul H, Ben Yehuda H, Weill Raynal P, et al. PD-1/PD-L1 checkpoint blockade harnesses monocyte-derived macrophages to combat cognitive impairment in a tauopathy mouse model. Nat Commun. 2019;10:465 pubmed 出版商
  10. Ding L, Kim H, Wang Q, Kearns M, Jiang T, Ohlson C, et al. PARP Inhibition Elicits STING-Dependent Antitumor Immunity in Brca1-Deficient Ovarian Cancer. Cell Rep. 2018;25:2972-2980.e5 pubmed 出版商
  11. Tordesillas L, Lozano Ojalvo D, Dunkin D, Mondoulet L, Agudo J, Merad M, et al. PDL2+ CD11b+ dermal dendritic cells capture topical antigen through hair follicles to prime LAP+ Tregs. Nat Commun. 2018;9:5238 pubmed 出版商
  12. Sato Y, Bolzenius J, Eteleeb A, Su X, Maher C, Sehn J, et al. CD4+ T cells induce rejection of urothelial tumors after immune checkpoint blockade. JCI Insight. 2018;3: pubmed 出版商
  13. Andre P, Denis C, Soulas C, Bourbon Caillet C, Lopez J, Arnoux T, et al. Anti-NKG2A mAb Is a Checkpoint Inhibitor that Promotes Anti-tumor Immunity by Unleashing Both T and NK Cells. Cell. 2018;175:1731-1743.e13 pubmed 出版商
  14. Wu F, Xu P, Chow A, Man S, Kruger J, Khan K, et al. Pre- and post-operative anti-PD-L1 plus anti-angiogenic therapies in mouse breast or renal cancer models of micro- or macro-metastatic disease. Br J Cancer. 2019;120:196-206 pubmed 出版商
  15. Grohmann M, Wiede F, Dodd G, Gurzov E, Ooi G, Butt T, et al. Obesity Drives STAT-1-Dependent NASH and STAT-3-Dependent HCC. Cell. 2018;175:1289-1306.e20 pubmed 出版商
  16. Wu B, Sun X, Gupta H, Yuan B, Li J, Ge F, et al. Adipose PD-L1 Modulates PD-1/PD-L1 Checkpoint Blockade Immunotherapy Efficacy in Breast Cancer. Oncoimmunology. 2018;7:e1500107 pubmed 出版商
  17. Umezu D, Okada N, Sakoda Y, Adachi K, Ojima T, Yamaue H, et al. Inhibitory functions of PD-L1 and PD-L2 in the regulation of anti-tumor immunity in murine tumor microenvironment. Cancer Immunol Immunother. 2019;68:201-211 pubmed 出版商
  18. Vuckovic S, Minnie S, Smith D, Gartlan K, Watkins T, Markey K, et al. Bone marrow transplantation generates T cell-dependent control of myeloma in mice. J Clin Invest. 2019;129:106-121 pubmed 出版商
  19. Sang A, Danhorn T, Peterson J, Rankin A, O Connor B, Leach S, et al. Innate and adaptive signals enhance differentiation and expansion of dual-antibody autoreactive B cells in lupus. Nat Commun. 2018;9:3973 pubmed 出版商
  20. Tilstra J, Avery L, Menk A, Gordon R, Smita S, Kane L, et al. Kidney-infiltrating T cells in murine lupus nephritis are metabolically and functionally exhausted. J Clin Invest. 2018;128:4884-4897 pubmed 出版商
  21. Shi J, Hou S, Fang Q, Liu X, Liu X, Qi H. PD-1 Controls Follicular T Helper Cell Positioning and Function. Immunity. 2018;49:264-274.e4 pubmed 出版商
  22. Stathopoulou C, Gangaplara A, Mallett G, Flomerfelt F, Liniany L, Knight D, et al. PD-1 Inhibitory Receptor Downregulates Asparaginyl Endopeptidase and Maintains Foxp3 Transcription Factor Stability in Induced Regulatory T Cells. Immunity. 2018;49:247-263.e7 pubmed 出版商
  23. Li J, Byrne K, Yan F, Yamazoe T, Chen Z, Baslan T, et al. Tumor Cell-Intrinsic Factors Underlie Heterogeneity of Immune Cell Infiltration and Response to Immunotherapy. Immunity. 2018;49:178-193.e7 pubmed 出版商
  24. Vendetti F, Karukonda P, Clump D, Teo T, Lalonde R, Nugent K, et al. ATR kinase inhibitor AZD6738 potentiates CD8+ T cell-dependent antitumor activity following radiation. J Clin Invest. 2018;128:3926-3940 pubmed 出版商
  25. Du X, Wen J, Wang Y, Karmaus P, Khatamian A, Tan H, et al. Hippo/Mst signalling couples metabolic state and immune function of CD8α+ dendritic cells. Nature. 2018;558:141-145 pubmed 出版商
  26. Hsu J, Xia W, Hsu Y, Chan L, Yu W, Cha J, et al. STT3-dependent PD-L1 accumulation on cancer stem cells promotes immune evasion. Nat Commun. 2018;9:1908 pubmed 出版商
  27. Crosby E, Wei J, Yang X, Lei G, Wang T, Liu C, et al. Complimentary mechanisms of dual checkpoint blockade expand unique T-cell repertoires and activate adaptive anti-tumor immunity in triple-negative breast tumors. Oncoimmunology. 2018;7:e1421891 pubmed 出版商
  28. Hailemichael Y, Woods A, Fu T, He Q, Nielsen M, Hasan F, et al. Cancer vaccine formulation dictates synergy with CTLA-4 and PD-L1 checkpoint blockade therapy. J Clin Invest. 2018;128:1338-1354 pubmed 出版商
  29. Perry C, Muñoz Rojas A, Meeth K, Kellman L, Amezquita R, Thakral D, et al. Myeloid-targeted immunotherapies act in synergy to induce inflammation and antitumor immunity. J Exp Med. 2018;215:877-893 pubmed 出版商
  30. Tang H, Liang Y, Anders R, Taube J, Qiu X, Mulgaonkar A, et al. PD-L1 on host cells is essential for PD-L1 blockade-mediated tumor regression. J Clin Invest. 2018;128:580-588 pubmed 出版商
  31. Zhang J, Bu X, Wang H, Zhu Y, Geng Y, Nihira N, et al. Cyclin D-CDK4 kinase destabilizes PD-L1 via cullin 3-SPOP to control cancer immune surveillance. Nature. 2018;553:91-95 pubmed 出版商
  32. Singh M, Vianden C, Cantwell M, Dai Z, Xiao Z, Sharma M, et al. Intratumoral CD40 activation and checkpoint blockade induces T cell-mediated eradication of melanoma in the brain. Nat Commun. 2017;8:1447 pubmed 出版商
  33. Lynch A, Hawk W, Nylen E, Ober S, Autin P, Barber A. Adoptive transfer of murine T cells expressing a chimeric-PD1-Dap10 receptor as an immunotherapy for lymphoma. Immunology. 2017;152:472-483 pubmed 出版商
  34. van der Vlugt L, Obieglo K, Ozir Fazalalikhan A, Sparwasser T, Haeberlein S, Smits H. Schistosome-induced pulmonary B cells inhibit allergic airway inflammation and display a reduced Th2-driving function. Int J Parasitol. 2017;47:545-554 pubmed 出版商
  35. Liu Z, Ravindranathan R, Kalinski P, Guo Z, Bartlett D. Rational combination of oncolytic vaccinia virus and PD-L1 blockade works synergistically to enhance therapeutic efficacy. Nat Commun. 2017;8:14754 pubmed 出版商
  36. Kogo H, Shimizu M, Negishi Y, Uchida E, Takahashi H. Suppression of murine tumour growth through CD8+ cytotoxic T lymphocytes via activated DEC-205+ dendritic cells by sequential administration of ?-galactosylceramide in vivo. Immunology. 2017;151:324-339 pubmed 出版商
  37. Hartwig T, Montinaro A, von Karstedt S, Sevko A, Surinova S, Chakravarthy A, et al. The TRAIL-Induced Cancer Secretome Promotes a Tumor-Supportive Immune Microenvironment via CCR2. Mol Cell. 2017;65:730-742.e5 pubmed 出版商
  38. Huang A, Peng D, Guo H, Ben Y, Zuo X, Wu F, et al. A human programmed death-ligand 1-expressing mouse tumor model for evaluating the therapeutic efficacy of anti-human PD-L1 antibodies. Sci Rep. 2017;7:42687 pubmed 出版商
  39. Wu J, Sun L, Li H, Shen H, Zhai W, Yu Z, et al. Roles of programmed death protein 1/programmed death-ligand 1 in secondary brain injury after intracerebral hemorrhage in rats: selective modulation of microglia polarization to anti-inflammatory phenotype. J Neuroinflammation. 2017;14:36 pubmed 出版商
  40. Tan S, Chowdhury S, Polak N, Gorrell M, Weninger W. Fibroblast activation protein is dispensable in the anti-influenza immune response in mice. PLoS ONE. 2017;12:e0171194 pubmed 出版商
  41. Yanagita T, Murata Y, Tanaka D, Motegi S, Arai E, Daniwijaya E, et al. Anti-SIRPα antibodies as a potential new tool for cancer immunotherapy. JCI Insight. 2017;2:e89140 pubmed 出版商
  42. Chamoto K, Chowdhury P, Kumar A, Sonomura K, Matsuda F, Fagarasan S, et al. Mitochondrial activation chemicals synergize with surface receptor PD-1 blockade for T cell-dependent antitumor activity. Proc Natl Acad Sci U S A. 2017;114:E761-E770 pubmed 出版商
  43. Troegeler A, Mercier I, Cougoule C, Pietretti D, Colom A, Duval C, et al. C-type lectin receptor DCIR modulates immunity to tuberculosis by sustaining type I interferon signaling in dendritic cells. Proc Natl Acad Sci U S A. 2017;114:E540-E549 pubmed 出版商
  44. Connor L, Tang S, Cognard E, Ochiai S, Hilligan K, Old S, et al. Th2 responses are primed by skin dendritic cells with distinct transcriptional profiles. J Exp Med. 2017;214:125-142 pubmed 出版商
  45. Khan S, Woodruff E, Trapecar M, Fontaine K, Ezaki A, Borbet T, et al. Dampened antiviral immunity to intravaginal exposure to RNA viral pathogens allows enhanced viral replication. J Exp Med. 2016;213:2913-2929 pubmed
  46. Cummings R, Barbet G, Bongers G, Hartmann B, Gettler K, Muniz L, et al. Different tissue phagocytes sample apoptotic cells to direct distinct homeostasis programs. Nature. 2016;539:565-569 pubmed 出版商
  47. Wang S, Campos J, Gallotta M, Gong M, Crain C, Naik E, et al. Intratumoral injection of a CpG oligonucleotide reverts resistance to PD-1 blockade by expanding multifunctional CD8+ T cells. Proc Natl Acad Sci U S A. 2016;113:E7240-E7249 pubmed
  48. Jirmo A, Daluege K, Happle C, Albrecht M, Dittrich A, Busse M, et al. IL-27 Is Essential for Suppression of Experimental Allergic Asthma by the TLR7/8 Agonist R848 (Resiquimod). J Immunol. 2016;197:4219-4227 pubmed
  49. Starobinets H, Ye J, Broz M, Barry K, Goldsmith J, Marsh T, et al. Antitumor adaptive immunity remains intact following inhibition of autophagy and antimalarial treatment. J Clin Invest. 2016;126:4417-4429 pubmed 出版商
  50. Klotz L, Kuzmanov I, Hucke S, Gross C, Posevitz V, Dreykluft A, et al. B7-H1 shapes T-cell-mediated brain endothelial cell dysfunction and regional encephalitogenicity in spontaneous CNS autoimmunity. Proc Natl Acad Sci U S A. 2016;113:E6182-E6191 pubmed
  51. Shi L, Fu T, Guan B, Chen J, Blando J, Allison J, et al. Interdependent IL-7 and IFN-? signalling in T-cell controls tumour eradication by combined ?-CTLA-4+?-PD-1 therapy. Nat Commun. 2016;7:12335 pubmed 出版商
  52. Pizzolla A, Oh D, Luong S, Prickett S, Henstridge D, Febbraio M, et al. High Fat Diet Inhibits Dendritic Cell and T Cell Response to Allergens but Does Not Impair Inhalational Respiratory Tolerance. PLoS ONE. 2016;11:e0160407 pubmed 出版商
  53. Chow K, Delconte R, Huntington N, Tarlinton D, Sutherland R, Zhan Y, et al. Innate Allorecognition Results in Rapid Accumulation of Monocyte-Derived Dendritic Cells. J Immunol. 2016;197:2000-8 pubmed 出版商
  54. Seifert A, Zeng S, Zhang J, Kim T, Cohen N, Beckman M, et al. PD-1/PD-L1 Blockade Enhances T-cell Activity and Antitumor Efficacy of Imatinib in Gastrointestinal Stromal Tumors. Clin Cancer Res. 2017;23:454-465 pubmed 出版商
  55. Baptista M, Keszei M, Oliveira M, Sunahara K, Andersson J, Dahlberg C, et al. Deletion of Wiskott-Aldrich syndrome protein triggers Rac2 activity and increased cross-presentation by dendritic cells. Nat Commun. 2016;7:12175 pubmed 出版商
  56. Zhang Y, Velez Delgado A, Mathew E, Li D, Mendez F, Flannagan K, et al. Myeloid cells are required for PD-1/PD-L1 checkpoint activation and the establishment of an immunosuppressive environment in pancreatic cancer. Gut. 2017;66:124-136 pubmed 出版商
  57. Iwasaki Y, Sugita S, Mandai M, Yonemura S, Onishi A, Ito S, et al. Differentiation/Purification Protocol for Retinal Pigment Epithelium from Mouse Induced Pluripotent Stem Cells as a Research Tool. PLoS ONE. 2016;11:e0158282 pubmed 出版商
  58. Saha A, O Connor R, Thangavelu G, Lovitch S, Dandamudi D, Wilson C, et al. Programmed death ligand-1 expression on donor T cells drives graft-versus-host disease lethality. J Clin Invest. 2016;126:2642-60 pubmed 出版商
  59. Mall C, Sckisel G, Proia D, Mirsoian A, Grossenbacher S, Pai C, et al. Repeated PD-1/PD-L1 monoclonal antibody administration induces fatal xenogeneic hypersensitivity reactions in a murine model of breast cancer. Oncoimmunology. 2016;5:e1075114 pubmed
  60. Seifert L, Werba G, Tiwari S, Giao Ly N, Alothman S, Alqunaibit D, et al. The necrosome promotes pancreatic oncogenesis via CXCL1 and Mincle-induced immune suppression. Nature. 2016;532:245-9 pubmed 出版商
  61. Seifert L, Werba G, Tiwari S, Giao Ly N, Nguy S, Alothman S, et al. Radiation Therapy Induces Macrophages to Suppress T-Cell Responses Against Pancreatic Tumors in Mice. Gastroenterology. 2016;150:1659-1672.e5 pubmed 出版商
  62. Haribhai D, Ziegelbauer J, Jia S, Upchurch K, Yan K, Schmitt E, et al. Alternatively Activated Macrophages Boost Induced Regulatory T and Th17 Cell Responses during Immunotherapy for Colitis. J Immunol. 2016;196:3305-17 pubmed 出版商
  63. Foy S, Sennino B, dela Cruz T, Cote J, Gordon E, Kemp F, et al. Poxvirus-Based Active Immunotherapy with PD-1 and LAG-3 Dual Immune Checkpoint Inhibition Overcomes Compensatory Immune Regulation, Yielding Complete Tumor Regression in Mice. PLoS ONE. 2016;11:e0150084 pubmed 出版商
  64. Azpilikueta A, Agorreta J, Labiano S, Pérez Gracia J, Sánchez Paulete A, Aznar M, et al. Successful Immunotherapy against a Transplantable Mouse Squamous Lung Carcinoma with Anti-PD-1 and Anti-CD137 Monoclonal Antibodies. J Thorac Oncol. 2016;11:524-36 pubmed 出版商
  65. Aloulou M, Carr E, Gador M, Bignon A, Liblau R, Fazilleau N, et al. Follicular regulatory T cells can be specific for the immunizing antigen and derive from naive T cells. Nat Commun. 2016;7:10579 pubmed 出版商
  66. M L, P P, T K, M P, E S, J P, et al. Essential role of HDAC6 in the regulation of PD-L1 in melanoma. Mol Oncol. 2016;10:735-750 pubmed 出版商
  67. MikyÅ¡ková R, Å tÄ›pánek I, Indrová M, Bieblová J, Šímová J, Truxová I, et al. Dendritic cells pulsed with tumor cells killed by high hydrostatic pressure induce strong immune responses and display therapeutic effects both in murine TC-1 and TRAMP-C2 tumors when combined with docetaxel chemotherapy. Int J Oncol. 2016;48:953-64 pubmed 出版商
  68. Patel M, Jacobson B, Ji Y, Drees J, Tang S, Xiong K, et al. Vesicular stomatitis virus expressing interferon-β is oncolytic and promotes antitumor immune responses in a syngeneic murine model of non-small cell lung cancer. Oncotarget. 2015;6:33165-77 pubmed 出版商
  69. Ngiow S, Young A, Jacquelot N, Yamazaki T, Enot D, Zitvogel L, et al. A Threshold Level of Intratumor CD8+ T-cell PD1 Expression Dictates Therapeutic Response to Anti-PD1. Cancer Res. 2015;75:3800-11 pubmed 出版商
  70. Imai Y, Ayithan N, Wu X, Yuan Y, Wang L, Hwang S. Cutting Edge: PD-1 Regulates Imiquimod-Induced Psoriasiform Dermatitis through Inhibition of IL-17A Expression by Innate γδ-Low T Cells. J Immunol. 2015;195:421-5 pubmed 出版商
  71. Tkachev V, Goodell S, Opipari A, Hao L, Franchi L, Glick G, et al. Programmed death-1 controls T cell survival by regulating oxidative metabolism. J Immunol. 2015;194:5789-800 pubmed 出版商
  72. Liechtenstein T, Perez Janices N, Blanco Luquin I, Goyvaerts C, Schwarze J, Dufait I, et al. Anti-melanoma vaccines engineered to simultaneously modulate cytokine priming and silence PD-L1 characterized using ex vivo myeloid-derived suppressor cells as a readout of therapeutic efficacy. Oncoimmunology. 2014;3:e945378 pubmed
  73. Hu Lieskovan S, Mok S, Homet Moreno B, Tsoi J, Robert L, Goedert L, et al. Improved antitumor activity of immunotherapy with BRAF and MEK inhibitors in BRAF(V600E) melanoma. Sci Transl Med. 2015;7:279ra41 pubmed 出版商
  74. Okamura T, Sumitomo S, Morita K, Iwasaki Y, Inoue M, Nakachi S, et al. TGF-β3-expressing CD4+CD25(-)LAG3+ regulatory T cells control humoral immune responses. Nat Commun. 2015;6:6329 pubmed 出版商
  75. McKay J, Egan R, Yammani R, Chen L, Shin T, Yagita H, et al. PD-1 suppresses protective immunity to Streptococcus pneumoniae through a B cell-intrinsic mechanism. J Immunol. 2015;194:2289-99 pubmed 出版商
  76. Jing W, Gershan J, Weber J, Tlomak D, McOlash L, Sabatos Peyton C, et al. Combined immune checkpoint protein blockade and low dose whole body irradiation as immunotherapy for myeloma. J Immunother Cancer. 2015;3:2 pubmed 出版商
  77. Lei G, Zhang C, Lee C. Myeloid-derived suppressor cells impair alveolar macrophages through PD-1 receptor ligation during Pneumocystis pneumonia. Infect Immun. 2015;83:572-82 pubmed 出版商
  78. Tassi I, Claudio E, Wang H, Tang W, Ha H, Saret S, et al. The NF-κB regulator Bcl-3 governs dendritic cell antigen presentation functions in adaptive immunity. J Immunol. 2014;193:4303-11 pubmed 出版商
  79. Zhu Y, Knolhoff B, Meyer M, Nywening T, West B, Luo J, et al. CSF1/CSF1R blockade reprograms tumor-infiltrating macrophages and improves response to T-cell checkpoint immunotherapy in pancreatic cancer models. Cancer Res. 2014;74:5057-69 pubmed 出版商
  80. Ramakrishnan R, Tyurin V, Tuyrin V, Veglia F, Condamine T, Amoscato A, et al. Oxidized lipids block antigen cross-presentation by dendritic cells in cancer. J Immunol. 2014;192:2920-31 pubmed 出版商
  81. Chang S, Kohrt H, Maecker H. Monitoring the immune competence of cancer patients to predict outcome. Cancer Immunol Immunother. 2014;63:713-9 pubmed 出版商
  82. Barsoum I, Smallwood C, Siemens D, Graham C. A mechanism of hypoxia-mediated escape from adaptive immunity in cancer cells. Cancer Res. 2014;74:665-74 pubmed 出版商
  83. Bodhankar S, Chen Y, Vandenbark A, Murphy S, Offner H. PD-L1 enhances CNS inflammation and infarct volume following experimental stroke in mice in opposition to PD-1. J Neuroinflammation. 2013;10:111 pubmed 出版商
  84. Van Der Werf N, Redpath S, Azuma M, Yagita H, Taylor M. Th2 cell-intrinsic hypo-responsiveness determines susceptibility to helminth infection. PLoS Pathog. 2013;9:e1003215 pubmed 出版商
  85. Charles E, Joshi S, Ash J, Fox B, Farris A, Bzik D, et al. CD4 T-cell suppression by cells from Toxoplasma gondii-infected retinas is mediated by surface protein PD-L1. Infect Immun. 2010;78:3484-92 pubmed 出版商
  86. Tasso R, Augello A, Boccardo S, Salvi S, Carida M, Postiglione F, et al. Recruitment of a host's osteoprogenitor cells using exogenous mesenchymal stem cells seeded on porous ceramic. Tissue Eng Part A. 2009;15:2203-12 pubmed 出版商
  87. Saito K, Torii M, Ma N, Tsuchiya T, Wang L, Hori T, et al. Differential regulatory function of resting and preactivated allergen-specific CD4+ CD25+ regulatory T cells in Th2-type airway inflammation. J Immunol. 2008;181:6889-97 pubmed
  88. Sheng H, Wang Y, Jin Y, Zhang Q, Zhang Y, Wang L, et al. A critical role of IFNgamma in priming MSC-mediated suppression of T cell proliferation through up-regulation of B7-H1. Cell Res. 2008;18:846-57 pubmed 出版商
  89. Kanzato H, Fujiwara S, Ise W, Kaminogawa S, Sato R, Hachimura S. Lactobacillus acidophilus strain L-92 induces apoptosis of antigen-stimulated T cells by modulating dendritic cell function. Immunobiology. 2008;213:399-408 pubmed 出版商
  90. Kuipers H, Muskens F, Willart M, Hijdra D, van Assema F, Coyle A, et al. Contribution of the PD-1 ligands/PD-1 signaling pathway to dendritic cell-mediated CD4+ T cell activation. Eur J Immunol. 2006;36:2472-82 pubmed
  91. Schoop R, Wahl P, Le Hir M, Heemann U, Wang M, Wuthrich R. Suppressed T-cell activation by IFN-gamma-induced expression of PD-L1 on renal tubular epithelial cells. Nephrol Dial Transplant. 2004;19:2713-20 pubmed
  92. Smith P, Walsh C, Mangan N, Fallon R, Sayers J, McKenzie A, et al. Schistosoma mansoni worms induce anergy of T cells via selective up-regulation of programmed death ligand 1 on macrophages. J Immunol. 2004;173:1240-8 pubmed