这是一篇来自已证抗体库的有关小鼠 Cd28的综述,是根据158篇发表使用所有方法的文章归纳的。这综述旨在帮助来邦网的访客找到最适合Cd28 抗体。
赛默飞世尔
Syrian golden hamster 单克隆(37.51)
  • 抑制或激活实验; 小鼠; 图 1d
赛默飞世尔 Cd28抗体(Thermo Fisher, 16-0281)被用于被用于抑制或激活实验在小鼠样本上 (图 1d). J Exp Med (2022) ncbi
Syrian golden hamster 单克隆(37.51)
  • 抑制或激活实验; 小鼠; 图 5c
赛默飞世尔 Cd28抗体(eBioscience, 16-0281-85)被用于被用于抑制或激活实验在小鼠样本上 (图 5c). J Clin Invest (2022) ncbi
Syrian golden hamster 单克隆(37.51)
  • 抑制或激活实验; 小鼠; 1 ug/ml; 图 s1g
赛默飞世尔 Cd28抗体(eBiocience, 16-0281-82)被用于被用于抑制或激活实验在小鼠样本上浓度为1 ug/ml (图 s1g). EMBO Mol Med (2022) ncbi
Syrian golden hamster 单克隆(37.51)
  • 抑制或激活实验; 小鼠
赛默飞世尔 Cd28抗体(Invitrogen, 37.51)被用于被用于抑制或激活实验在小鼠样本上. Arthritis Res Ther (2021) ncbi
Syrian golden hamster 单克隆(37.51)
  • 流式细胞仪; 小鼠
赛默飞世尔 Cd28抗体(eBioscience, 37.51)被用于被用于流式细胞仪在小鼠样本上. Mucosal Immunol (2021) ncbi
Syrian golden hamster 单克隆(37.51)
  • 流式细胞仪; 人类; 图 2e
赛默飞世尔 Cd28抗体(eBioscience, 37.51)被用于被用于流式细胞仪在人类样本上 (图 2e). Cell (2020) ncbi
Syrian golden hamster 单克隆(37.51)
  • 流式细胞仪; 小鼠; 图 1d
赛默飞世尔 Cd28抗体(eBiosciences, 37.51)被用于被用于流式细胞仪在小鼠样本上 (图 1d). J Exp Med (2019) ncbi
Syrian golden hamster 单克隆(37.51)
  • 流式细胞仪; 人类; 图 6a
赛默飞世尔 Cd28抗体(eBioscience, 37.51)被用于被用于流式细胞仪在人类样本上 (图 6a). Front Immunol (2018) ncbi
Syrian golden hamster 单克隆(37.51)
  • 抑制或激活实验; 小鼠; 图 s5b
赛默飞世尔 Cd28抗体(Thermo Fisher Scientific, 16-0281-82)被用于被用于抑制或激活实验在小鼠样本上 (图 s5b). Immunity (2018) ncbi
Syrian golden hamster 单克隆(37.51)
  • 流式细胞仪; 小鼠; 图 2a
赛默飞世尔 Cd28抗体(eBioscience, 12-0281-82)被用于被用于流式细胞仪在小鼠样本上 (图 2a). Immunity (2017) ncbi
Syrian golden hamster 单克隆(37.51)
  • 抑制或激活实验; 小鼠; 图 s2d
赛默飞世尔 Cd28抗体(eBiosciences, 16-0281-82)被用于被用于抑制或激活实验在小鼠样本上 (图 s2d). Science (2017) ncbi
Syrian golden hamster 单克隆(37.51)
  • 抑制或激活实验; 小鼠; 图 3
赛默飞世尔 Cd28抗体(Ebioscience, 16-0281-82)被用于被用于抑制或激活实验在小鼠样本上 (图 3). Sci Rep (2017) ncbi
Syrian golden hamster 单克隆(37.51)
  • 抑制或激活实验; 小鼠; 图 7
赛默飞世尔 Cd28抗体(eBioscience, 37.51)被用于被用于抑制或激活实验在小鼠样本上 (图 7). Mol Cells (2017) ncbi
Syrian golden hamster 单克隆(37.51)
  • 抑制或激活实验; 小鼠; 图 5
赛默飞世尔 Cd28抗体(eBioscience, 37.51)被用于被用于抑制或激活实验在小鼠样本上 (图 5). Oncoimmunology (2016) ncbi
Syrian golden hamster 单克隆(37.51)
  • 抑制或激活实验; 小鼠; 图 2f
赛默飞世尔 Cd28抗体(eBioscience, 37.51)被用于被用于抑制或激活实验在小鼠样本上 (图 2f). Front Immunol (2016) ncbi
Syrian golden hamster 单克隆(37.51)
  • 抑制或激活实验; 小鼠; 2 ug/ml
赛默飞世尔 Cd28抗体(eBioscience, 37.51)被用于被用于抑制或激活实验在小鼠样本上浓度为2 ug/ml. elife (2017) ncbi
Syrian golden hamster 单克隆(37.51)
  • 抑制或激活实验; 小鼠; 图 s3e
赛默飞世尔 Cd28抗体(Affymetrix eBioscience, 16-0281)被用于被用于抑制或激活实验在小鼠样本上 (图 s3e). Nature (2016) ncbi
Syrian golden hamster 单克隆(37.51)
  • 抑制或激活实验; 小鼠; 图 9a
赛默飞世尔 Cd28抗体(eBioscience, 37.51)被用于被用于抑制或激活实验在小鼠样本上 (图 9a). J Clin Invest (2016) ncbi
Syrian golden hamster 单克隆(37.51)
  • 抑制或激活实验; 小鼠; 1 ug/ml; 图 s6c
赛默飞世尔 Cd28抗体(BD Pharmingen, 16-0281-85)被用于被用于抑制或激活实验在小鼠样本上浓度为1 ug/ml (图 s6c). J Clin Invest (2016) ncbi
Syrian golden hamster 单克隆(37.51)
  • 抑制或激活实验; 小鼠; 图 1e
赛默飞世尔 Cd28抗体(eBioscience, 37-51)被用于被用于抑制或激活实验在小鼠样本上 (图 1e). Nature (2016) ncbi
Syrian golden hamster 单克隆(37.51)
  • 抑制或激活实验; 小鼠; 8 ug/ml; 图 s5c
赛默飞世尔 Cd28抗体(eBioscience, 16-0281-85)被用于被用于抑制或激活实验在小鼠样本上浓度为8 ug/ml (图 s5c). Sci Signal (2016) ncbi
Syrian golden hamster 单克隆(37.51)
  • 抑制或激活实验; 小鼠; 图 3h
赛默飞世尔 Cd28抗体(eBiosience, 16-0281-86)被用于被用于抑制或激活实验在小鼠样本上 (图 3h). Nat Commun (2016) ncbi
Syrian golden hamster 单克隆(37.51)
  • 抑制或激活实验; 小鼠; 图 5g
赛默飞世尔 Cd28抗体(eBioscience, 14-0281-81)被用于被用于抑制或激活实验在小鼠样本上 (图 5g). J Allergy Clin Immunol (2017) ncbi
Syrian golden hamster 单克隆(37.51)
  • 抑制或激活实验; 小鼠; 3 ug/ml; 图 2
赛默飞世尔 Cd28抗体(eBioscience, 37.51)被用于被用于抑制或激活实验在小鼠样本上浓度为3 ug/ml (图 2). Nat Immunol (2016) ncbi
Syrian golden hamster 单克隆(37.51)
  • 抑制或激活实验; 小鼠; 图 s2c
赛默飞世尔 Cd28抗体(eBiosciences, 37.51)被用于被用于抑制或激活实验在小鼠样本上 (图 s2c). Dev Cell (2016) ncbi
Syrian golden hamster 单克隆(37.51)
  • 流式细胞仪; 小鼠; 1:1000; 图 2c
赛默飞世尔 Cd28抗体(eBioscience, 37.51)被用于被用于流式细胞仪在小鼠样本上浓度为1:1000 (图 2c). Nat Immunol (2016) ncbi
Syrian golden hamster 单克隆(37.51)
  • 抑制或激活实验; 小鼠; 图 4
赛默飞世尔 Cd28抗体(eBioscience, 37.51)被用于被用于抑制或激活实验在小鼠样本上 (图 4). elife (2016) ncbi
Syrian golden hamster 单克隆(37.51)
  • 抑制或激活实验; 小鼠; 图 4
赛默飞世尔 Cd28抗体(eBioscience, 37.51)被用于被用于抑制或激活实验在小鼠样本上 (图 4). J Exp Med (2016) ncbi
Syrian golden hamster 单克隆(37.51)
  • 流式细胞仪; 小鼠; 图 s9
赛默飞世尔 Cd28抗体(eBioscience, 14-02281-86)被用于被用于流式细胞仪在小鼠样本上 (图 s9). Sci Rep (2016) ncbi
Syrian golden hamster 单克隆(37.51)
  • 抑制或激活实验; 小鼠; 图 4a
赛默飞世尔 Cd28抗体(eBioscience, 37.51)被用于被用于抑制或激活实验在小鼠样本上 (图 4a). Nat Genet (2016) ncbi
Syrian golden hamster 单克隆(37.51)
  • 抑制或激活实验; 小鼠; 图 4a
赛默飞世尔 Cd28抗体(eBiosciences, 37.51)被用于被用于抑制或激活实验在小鼠样本上 (图 4a). Immunol Cell Biol (2016) ncbi
Syrian golden hamster 单克隆(37.51)
  • 流式细胞仪; 小鼠; 图 2
赛默飞世尔 Cd28抗体(eBioscience, 37.51)被用于被用于流式细胞仪在小鼠样本上 (图 2). J Virol (2016) ncbi
Syrian golden hamster 单克隆(37.51)
  • 抑制或激活实验; 小鼠; 图 1f
  • 流式细胞仪; 小鼠; 1 ug/ml; 图 1b
赛默飞世尔 Cd28抗体(eBioscience, 37.51)被用于被用于抑制或激活实验在小鼠样本上 (图 1f) 和 被用于流式细胞仪在小鼠样本上浓度为1 ug/ml (图 1b). Nat Immunol (2015) ncbi
Syrian golden hamster 单克隆(37.51)
  • 抑制或激活实验; 小鼠; 1:500
赛默飞世尔 Cd28抗体(eBioscience, 37.51)被用于被用于抑制或激活实验在小鼠样本上浓度为1:500. J Immunol (2015) ncbi
Syrian golden hamster 单克隆(37.51)
  • 流式细胞仪; 小鼠; 表 s1
赛默飞世尔 Cd28抗体(eBiosciences, 37.51)被用于被用于流式细胞仪在小鼠样本上 (表 s1). Biochem Biophys Res Commun (2015) ncbi
Syrian golden hamster 单克隆(37.51)
  • 抑制或激活实验; 小鼠
赛默飞世尔 Cd28抗体(eBioscience, 37.51)被用于被用于抑制或激活实验在小鼠样本上. J Immunol (2015) ncbi
Syrian golden hamster 单克隆(37.51)
  • 流式细胞仪; 小鼠; 图 1
赛默飞世尔 Cd28抗体(eBioscience, 37.51)被用于被用于流式细胞仪在小鼠样本上 (图 1). J Bone Miner Res (2015) ncbi
Syrian golden hamster 单克隆(37.51)
  • 抑制或激活实验; 小鼠; 图 2
赛默飞世尔 Cd28抗体(eBioscience, 37.51)被用于被用于抑制或激活实验在小鼠样本上 (图 2). Eur J Immunol (2015) ncbi
Syrian golden hamster 单克隆(37.51)
  • 流式细胞仪; 小鼠; 图 3a
赛默飞世尔 Cd28抗体(eBioscience, 12-0281-81)被用于被用于流式细胞仪在小鼠样本上 (图 3a). Shock (2015) ncbi
Syrian golden hamster 单克隆(37.51)
  • 抑制或激活实验; 小鼠; 2 ug/ml
赛默飞世尔 Cd28抗体(eBioscience, 37.51)被用于被用于抑制或激活实验在小鼠样本上浓度为2 ug/ml. J Leukoc Biol (2015) ncbi
Syrian golden hamster 单克隆(37.51)
  • 抑制或激活实验; 小鼠; 5 ug/ml
  • 流式细胞仪; 小鼠; 5 ug/ml
赛默飞世尔 Cd28抗体(eBioscience, 37.51)被用于被用于抑制或激活实验在小鼠样本上浓度为5 ug/ml 和 被用于流式细胞仪在小鼠样本上浓度为5 ug/ml. J Leukoc Biol (2015) ncbi
Syrian golden hamster 单克隆(37.51)
  • 流式细胞仪; 小鼠
赛默飞世尔 Cd28抗体(eBioscience, 37.51)被用于被用于流式细胞仪在小鼠样本上. EMBO J (2014) ncbi
Syrian golden hamster 单克隆(37.51)
  • 抑制或激活实验; 小鼠; 图 1e
赛默飞世尔 Cd28抗体(eBioscience, 37.51)被用于被用于抑制或激活实验在小鼠样本上 (图 1e). Nat Immunol (2014) ncbi
Syrian golden hamster 单克隆(37.51)
  • 流式细胞仪; 小鼠
赛默飞世尔 Cd28抗体(eBioscience, 37.51)被用于被用于流式细胞仪在小鼠样本上. J Virol (2014) ncbi
Syrian golden hamster 单克隆(37.51)
  • 抑制或激活实验; 小鼠; 图 1
赛默飞世尔 Cd28抗体(eBioscience, 16-0281-86)被用于被用于抑制或激活实验在小鼠样本上 (图 1). PLoS ONE (2014) ncbi
Syrian golden hamster 单克隆(37.51)
  • 抑制或激活实验; 小鼠
赛默飞世尔 Cd28抗体(eBioscience, 37.51)被用于被用于抑制或激活实验在小鼠样本上. Proc Natl Acad Sci U S A (2014) ncbi
Syrian golden hamster 单克隆(37.51)
  • 抑制或激活实验; 小鼠
赛默飞世尔 Cd28抗体(eBioscience, 37.51)被用于被用于抑制或激活实验在小鼠样本上. J Immunol (2014) ncbi
Syrian golden hamster 单克隆(37.51)
  • 流式细胞仪; 小鼠; 2 ug/ml
赛默飞世尔 Cd28抗体(eBioscience, 37.51)被用于被用于流式细胞仪在小鼠样本上浓度为2 ug/ml. Immunology (2014) ncbi
Syrian golden hamster 单克隆(37.51)
  • 流式细胞仪; 小鼠; 图 4
赛默飞世尔 Cd28抗体(eBioscience, 37.51)被用于被用于流式细胞仪在小鼠样本上 (图 4). Scand J Immunol (2014) ncbi
Syrian golden hamster 单克隆(37.51)
  • 抑制或激活实验; 小鼠; 图 6
赛默飞世尔 Cd28抗体(eBioscience, 16028185)被用于被用于抑制或激活实验在小鼠样本上 (图 6). Autophagy (2013) ncbi
Syrian golden hamster 单克隆(37.51)
  • 抑制或激活实验; 小鼠; 0.2 ug/ml
赛默飞世尔 Cd28抗体(eBioscience, 37.51)被用于被用于抑制或激活实验在小鼠样本上浓度为0.2 ug/ml. Cell Res (2008) ncbi
Syrian golden hamster 单克隆(37.51)
  • 流式细胞仪; 小鼠; 图 1
赛默飞世尔 Cd28抗体(eBiosciences, 37.51)被用于被用于流式细胞仪在小鼠样本上 (图 1). J Leukoc Biol (2007) ncbi
Syrian golden hamster 单克隆(37.51)
  • 流式细胞仪; 小鼠; 10 ug/ml; 图 2
赛默飞世尔 Cd28抗体(eBioscience, 37.51)被用于被用于流式细胞仪在小鼠样本上浓度为10 ug/ml (图 2). J Immunol (2005) ncbi
BioLegend
Syrian golden hamster 单克隆(37.51)
  • 流式细胞仪; 小鼠; 图 6a
BioLegend Cd28抗体(BioLegend, 37.51)被用于被用于流式细胞仪在小鼠样本上 (图 6a). Proc Natl Acad Sci U S A (2022) ncbi
Syrian golden hamster 单克隆(37.51)
  • 抑制或激活实验; 小鼠; 2.5 ug/ml; 图 1a
BioLegend Cd28抗体(BioLegend, 37.51)被用于被用于抑制或激活实验在小鼠样本上浓度为2.5 ug/ml (图 1a). Sci Rep (2022) ncbi
Syrian golden hamster 单克隆(37.51)
  • 抑制或激活实验; 小鼠; 图 s2
BioLegend Cd28抗体(BioLegend, 37.51)被用于被用于抑制或激活实验在小鼠样本上 (图 s2). J Immunother Cancer (2021) ncbi
Syrian golden hamster 单克隆(37.51)
  • 抑制或激活实验; 小鼠; 2 ug/ml; 图 5b
BioLegend Cd28抗体(BioLegend, 102102)被用于被用于抑制或激活实验在小鼠样本上浓度为2 ug/ml (图 5b). Nat Commun (2021) ncbi
Syrian golden hamster 单克隆(37.51)
  • 流式细胞仪; 小鼠; 1:200
BioLegend Cd28抗体(Biolegend, 102114)被用于被用于流式细胞仪在小鼠样本上浓度为1:200. Commun Biol (2021) ncbi
Syrian golden hamster 单克隆(37.51)
  • 抑制或激活实验; 小鼠; 1 ug/ml; 图 12f
BioLegend Cd28抗体(BioLegend, 102101)被用于被用于抑制或激活实验在小鼠样本上浓度为1 ug/ml (图 12f). Cell Mol Gastroenterol Hepatol (2021) ncbi
Syrian golden hamster 单克隆(37.51)
  • 抑制或激活实验; 小鼠; 1 ug/ml; 图 1k
BioLegend Cd28抗体(Biolegend, 102115)被用于被用于抑制或激活实验在小鼠样本上浓度为1 ug/ml (图 1k). Nat Commun (2021) ncbi
Syrian golden hamster 单克隆(37.51)
  • 流式细胞仪; 小鼠; 图 1a
BioLegend Cd28抗体(BioLegend, 37.51)被用于被用于流式细胞仪在小鼠样本上 (图 1a). Aging Cell (2021) ncbi
Syrian golden hamster 单克隆(37.51)
  • 流式细胞仪; 小鼠; 图 7
BioLegend Cd28抗体(BioLegend, 102116)被用于被用于流式细胞仪在小鼠样本上 (图 7). elife (2020) ncbi
Syrian golden hamster 单克隆(37.51)
  • 抑制或激活实验; 小鼠; 1 ug/ml; 图 1h
BioLegend Cd28抗体(BioLegend, 37.51)被用于被用于抑制或激活实验在小鼠样本上浓度为1 ug/ml (图 1h). Sci Adv (2020) ncbi
Syrian golden hamster 单克隆(37.51)
  • 抑制或激活实验; 小鼠; 5 ug/ml; 图 5d
BioLegend Cd28抗体(Biolegend, 102116)被用于被用于抑制或激活实验在小鼠样本上浓度为5 ug/ml (图 5d). Nat Commun (2019) ncbi
Syrian golden hamster 单克隆(37.51)
  • 抑制或激活实验; 小鼠; 1-10 ug/ml; 图 2a
BioLegend Cd28抗体(BioLegend, 37.51)被用于被用于抑制或激活实验在小鼠样本上浓度为1-10 ug/ml (图 2a). Proc Natl Acad Sci U S A (2019) ncbi
Syrian golden hamster 单克隆(37.51)
  • 抑制或激活实验; 小鼠; 0.5 ug/ml; 图 1a
BioLegend Cd28抗体(BioLegend, 37.51)被用于被用于抑制或激活实验在小鼠样本上浓度为0.5 ug/ml (图 1a). J Clin Invest (2019) ncbi
Syrian golden hamster 单克隆(37.51)
  • 流式细胞仪; 小鼠; 图 1b
BioLegend Cd28抗体(BioLegend, 37.51)被用于被用于流式细胞仪在小鼠样本上 (图 1b). Sci Rep (2019) ncbi
Syrian golden hamster 单克隆(37.51)
  • 抑制或激活实验; 小鼠; 图 s8a
BioLegend Cd28抗体(BioLegend, 102101)被用于被用于抑制或激活实验在小鼠样本上 (图 s8a). Nat Commun (2018) ncbi
小鼠 单克隆(E18)
  • 流式细胞仪; 小鼠; 图 2g
BioLegend Cd28抗体(BioLegend, E18)被用于被用于流式细胞仪在小鼠样本上 (图 2g). Circulation (2018) ncbi
小鼠 单克隆(E18)
  • 流式细胞仪; 小鼠; 图 s5a
BioLegend Cd28抗体(Biolegend, E18)被用于被用于流式细胞仪在小鼠样本上 (图 s5a). Front Immunol (2018) ncbi
Syrian golden hamster 单克隆(37.51)
  • 抑制或激活实验; 小鼠; 图 2a
BioLegend Cd28抗体(BioLegend, 37.51)被用于被用于抑制或激活实验在小鼠样本上 (图 2a). Cell Death Differ (2017) ncbi
Syrian golden hamster 单克隆(37.51)
  • 抑制或激活实验; 小鼠; 图 5a
BioLegend Cd28抗体(BioLegend, 37.51)被用于被用于抑制或激活实验在小鼠样本上 (图 5a). J Exp Med (2017) ncbi
Syrian golden hamster 单克隆(37.51)
  • 抑制或激活实验; 小鼠; 2 ug/ml; 图 3b
BioLegend Cd28抗体(BioLegend, 37.51)被用于被用于抑制或激活实验在小鼠样本上浓度为2 ug/ml (图 3b). Front Immunol (2017) ncbi
Syrian golden hamster 单克隆(37.51)
  • 抑制或激活实验; 小鼠; 图 5c
BioLegend Cd28抗体(BioLegend, 37.51)被用于被用于抑制或激活实验在小鼠样本上 (图 5c). Nat Commun (2017) ncbi
Syrian golden hamster 单克隆(37.51)
  • 流式细胞仪; 小鼠; 5 ug/ml; 图 4A
BioLegend Cd28抗体(Biolegend, 37.51)被用于被用于流式细胞仪在小鼠样本上浓度为5 ug/ml (图 4A). Proc Natl Acad Sci U S A (2017) ncbi
小鼠 单克隆(E18)
  • 流式细胞仪; 小鼠; 图 2b
BioLegend Cd28抗体(BioLegend, E18)被用于被用于流式细胞仪在小鼠样本上 (图 2b). PLoS Pathog (2017) ncbi
Syrian golden hamster 单克隆(37.51)
  • 抑制或激活实验; 小鼠; 5 ug/ml
BioLegend Cd28抗体(Biolegend, 37.51)被用于被用于抑制或激活实验在小鼠样本上浓度为5 ug/ml. Sci Rep (2016) ncbi
Syrian golden hamster 单克隆(37.51)
  • 抑制或激活实验; 小鼠; 图 1e
BioLegend Cd28抗体(BioLegend, 37.51)被用于被用于抑制或激活实验在小鼠样本上 (图 1e). Nat Commun (2016) ncbi
Syrian golden hamster 单克隆(37.51)
  • 酶联免疫吸附测定; 小鼠
BioLegend Cd28抗体(BioLegend, 37.51)被用于被用于酶联免疫吸附测定在小鼠样本上. J Immunol (2017) ncbi
小鼠 单克隆(E18)
  • 抑制或激活实验; 小鼠; 图 7a
BioLegend Cd28抗体(BioLegend, E18)被用于被用于抑制或激活实验在小鼠样本上 (图 7a). J Clin Invest (2016) ncbi
Syrian golden hamster 单克隆(37.51)
  • 抑制或激活实验; 小鼠; 图 5a
BioLegend Cd28抗体(Biolegend, 37.51)被用于被用于抑制或激活实验在小鼠样本上 (图 5a). Biochim Biophys Acta (2016) ncbi
Syrian golden hamster 单克隆(37.51)
  • 抑制或激活实验; 小鼠; 图 2b
BioLegend Cd28抗体(BioLegend, 37.5)被用于被用于抑制或激活实验在小鼠样本上 (图 2b). Nat Commun (2016) ncbi
Syrian golden hamster 单克隆(37.51)
  • 抑制或激活实验; 小鼠; 图 s3
BioLegend Cd28抗体(BioLegend, 37.5)被用于被用于抑制或激活实验在小鼠样本上 (图 s3). Cancer Immunol Immunother (2016) ncbi
Syrian golden hamster 单克隆(37.51)
  • 抑制或激活实验; 小鼠; 2 ug/ml; 图 2a
BioLegend Cd28抗体(BioLegend, 37.51)被用于被用于抑制或激活实验在小鼠样本上浓度为2 ug/ml (图 2a). J Immunol (2016) ncbi
Syrian golden hamster 单克隆(37.51)
  • 抑制或激活实验; 小鼠; 图 3
BioLegend Cd28抗体(Biolegend, 37.51)被用于被用于抑制或激活实验在小鼠样本上 (图 3). Nat Immunol (2016) ncbi
Syrian golden hamster 单克隆(37.51)
  • 抑制或激活实验; 小鼠; 图 s6a
BioLegend Cd28抗体(BioLegend, 37.51)被用于被用于抑制或激活实验在小鼠样本上 (图 s6a). Gastroenterology (2016) ncbi
Syrian golden hamster 单克隆(37.51)
  • 抑制或激活实验; 小鼠
BioLegend Cd28抗体(BioLegend, 37.51)被用于被用于抑制或激活实验在小鼠样本上. Nat Commun (2016) ncbi
Syrian golden hamster 单克隆(37.51)
  • 抑制或激活实验; 小鼠; 2 ug/ml; 图 4
BioLegend Cd28抗体(BioLegend, 102102)被用于被用于抑制或激活实验在小鼠样本上浓度为2 ug/ml (图 4). PLoS ONE (2016) ncbi
小鼠 单克隆(E18)
  • 流式细胞仪; 小鼠; 图 s1
BioLegend Cd28抗体(Biolegend, E18)被用于被用于流式细胞仪在小鼠样本上 (图 s1). Proc Natl Acad Sci U S A (2016) ncbi
Syrian golden hamster 单克隆(37.51)
  • 抑制或激活实验; 人类; 图 1
BioLegend Cd28抗体(BioLegend, 37.51)被用于被用于抑制或激活实验在人类样本上 (图 1). J Immunol (2015) ncbi
Syrian golden hamster 单克隆(37.51)
  • 免疫沉淀; 小鼠
BioLegend Cd28抗体(Biolegend, 37.51)被用于被用于免疫沉淀在小鼠样本上. Infect Immun (2015) ncbi
Syrian golden hamster 单克隆(37.51)
  • 抑制或激活实验; 小鼠; 2 ug/ml
BioLegend Cd28抗体(Biolegend, 37.51)被用于被用于抑制或激活实验在小鼠样本上浓度为2 ug/ml. Oncotarget (2015) ncbi
小鼠 单克隆(E18)
  • 流式细胞仪; 小鼠; 图 1
BioLegend Cd28抗体(BioLegend, E18)被用于被用于流式细胞仪在小鼠样本上 (图 1). J Immunol (2015) ncbi
Syrian golden hamster 单克隆(37.51)
  • 抑制或激活实验; 小鼠; 20 ug/ml; 图 1
BioLegend Cd28抗体(BioLegend, 37.51)被用于被用于抑制或激活实验在小鼠样本上浓度为20 ug/ml (图 1). Sci Signal (2014) ncbi
Syrian golden hamster 单克隆(37.51)
  • 抑制或激活实验; 小鼠; 图 s2c
BioLegend Cd28抗体(Biolegend, 102102)被用于被用于抑制或激活实验在小鼠样本上 (图 s2c). Nat Immunol (2014) ncbi
Syrian golden hamster 单克隆(37.51)
  • 抑制或激活实验; 小鼠; 0.5 ug/ml
BioLegend Cd28抗体(BioLegend, 37.51)被用于被用于抑制或激活实验在小鼠样本上浓度为0.5 ug/ml. J Clin Invest (2014) ncbi
Bio X Cell
Syrian golden hamster 单克隆(37.51)
  • 抑制或激活实验; 小鼠; 5 ug/ml; 图 5s1
Bio X Cell Cd28抗体(Bio X Cell, BE0015-1)被用于被用于抑制或激活实验在小鼠样本上浓度为5 ug/ml (图 5s1). elife (2021) ncbi
Syrian golden hamster 单克隆(37.51)
  • 抑制或激活实验; 小鼠; 图 2e
Bio X Cell Cd28抗体(BioXcell, 37.51)被用于被用于抑制或激活实验在小鼠样本上 (图 2e). elife (2020) ncbi
Syrian golden hamster 单克隆(37.51)
  • 抑制或激活实验; 小鼠; 1 ug/ml; 图 3a
Bio X Cell Cd28抗体(BioXcell, 37.51)被用于被用于抑制或激活实验在小鼠样本上浓度为1 ug/ml (图 3a). Biomolecules (2020) ncbi
Syrian golden hamster 单克隆(37.51)
  • 抑制或激活实验; 小鼠; 图 2h
Bio X Cell Cd28抗体(BioXCell, 37.51)被用于被用于抑制或激活实验在小鼠样本上 (图 2h). Science (2019) ncbi
Syrian golden hamster 单克隆(37.51)
  • 抑制或激活实验; 小鼠; 图 5b, 6a
Bio X Cell Cd28抗体(Bio X Cell, 37.51)被用于被用于抑制或激活实验在小鼠样本上 (图 5b, 6a). J Exp Med (2019) ncbi
Syrian golden hamster 单克隆(37.51)
  • 抑制或激活实验; 小鼠; 10 ug/ml
Bio X Cell Cd28抗体(Bio X Cell, 37.51)被用于被用于抑制或激活实验在小鼠样本上浓度为10 ug/ml. J Clin Invest (2019) ncbi
Syrian golden hamster 单克隆(37.51)
  • 抑制或激活实验; 小鼠; 2 ug/ml; 图 s3a
Bio X Cell Cd28抗体(Bio X Cell, 37.51)被用于被用于抑制或激活实验在小鼠样本上浓度为2 ug/ml (图 s3a). Nature (2019) ncbi
Syrian golden hamster 单克隆(37.51)
  • 抑制或激活实验; 小鼠; 10 ug/ml; 图 4a
Bio X Cell Cd28抗体(BioXcell, 37.51)被用于被用于抑制或激活实验在小鼠样本上浓度为10 ug/ml (图 4a). J Clin Invest (2018) ncbi
Syrian golden hamster 单克隆(37.51)
  • 抑制或激活实验; 小鼠; 2 ug/ml; 图 1a
Bio X Cell Cd28抗体(BioXcell, 37.51)被用于被用于抑制或激活实验在小鼠样本上浓度为2 ug/ml (图 1a). Cancer Immunol Immunother (2019) ncbi
Syrian golden hamster 单克隆(37.51)
  • 抑制或激活实验; 小鼠; 图 s1b
Bio X Cell Cd28抗体(BioXcell, 37.51)被用于被用于抑制或激活实验在小鼠样本上 (图 s1b). Science (2016) ncbi
Syrian golden hamster 单克隆(37.51)
  • 抑制或激活实验; 小鼠; 图 s4a
Bio X Cell Cd28抗体(BioXcell, 37.51)被用于被用于抑制或激活实验在小鼠样本上 (图 s4a). Oncogene (2017) ncbi
Syrian golden hamster 单克隆(37.51)
  • 抑制或激活实验; 人类
Bio X Cell Cd28抗体(Bio X cell, 37.51)被用于被用于抑制或激活实验在人类样本上. Science (2016) ncbi
Syrian golden hamster 单克隆(37.51)
  • 抑制或激活实验; 小鼠; 图 4a
Bio X Cell Cd28抗体(BioXCell, 37.51)被用于被用于抑制或激活实验在小鼠样本上 (图 4a). Immunity (2015) ncbi
艾博抗(上海)贸易有限公司
大鼠 单克隆(RM0386-17E9)
  • 抑制或激活实验; 小鼠; 5 ug/ml; 图 7d
艾博抗(上海)贸易有限公司 Cd28抗体(Abcam, ab205136)被用于被用于抑制或激活实验在小鼠样本上浓度为5 ug/ml (图 7d). Nucleic Acids Res (2021) ncbi
大鼠 单克隆(RM0386-17E9)
  • 免疫印迹; 小鼠; 1:1000; 图 6c
艾博抗(上海)贸易有限公司 Cd28抗体(Abcam, ab205136)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 6c). Nat Commun (2018) ncbi
仓鼠 单克隆(PV-1)
  • 免疫印迹; 人类
艾博抗(上海)贸易有限公司 Cd28抗体(Abcam, ab25234)被用于被用于免疫印迹在人类样本上. Nat Commun (2015) ncbi
圣克鲁斯生物技术
Syrian golden hamster 单克隆(37.51.1)
  • 抑制或激活实验; 人类
圣克鲁斯生物技术 Cd28抗体(Santa Cruz, sc-12727)被用于被用于抑制或激活实验在人类样本上. PLoS ONE (2014) ncbi
Exbio
小鼠 单克隆(CD28.2)
  • 流式细胞仪; 人类; 图 3a
Exbio Cd28抗体(Exbio, CD28.2)被用于被用于流式细胞仪在人类样本上 (图 3a). J Virol (2018) ncbi
碧迪BD
仓鼠 单克隆(37.51)
  • 抑制或激活实验; 小鼠; 5 ug/ml; 图 1a
碧迪BD Cd28抗体(BD, 553294)被用于被用于抑制或激活实验在小鼠样本上浓度为5 ug/ml (图 1a). Cell Rep (2022) ncbi
仓鼠 单克隆(37.51)
  • 抑制或激活实验; 小鼠; 1 ug/ml; 图 s7a
碧迪BD Cd28抗体(BD Biosciences, 37.51)被用于被用于抑制或激活实验在小鼠样本上浓度为1 ug/ml (图 s7a). PLoS Pathog (2022) ncbi
仓鼠 单克隆(37.51)
  • 抑制或激活实验; 小鼠; 2 ug/ml; 图 6b
碧迪BD Cd28抗体(BD Pharmingen, 37.51)被用于被用于抑制或激活实验在小鼠样本上浓度为2 ug/ml (图 6b). JCI Insight (2021) ncbi
仓鼠 单克隆(37.51)
  • 抑制或激活实验; 小鼠; 2 ug/ml; 图 4a
碧迪BD Cd28抗体(BD, 553294)被用于被用于抑制或激活实验在小鼠样本上浓度为2 ug/ml (图 4a). Aging (Albany NY) (2020) ncbi
仓鼠 单克隆(37.51)
  • 抑制或激活实验; 小鼠; 4 ug/ml; 图 2i
碧迪BD Cd28抗体(BD Pharmingen, 37.51)被用于被用于抑制或激活实验在小鼠样本上浓度为4 ug/ml (图 2i). Science (2020) ncbi
仓鼠 单克隆(37.51)
  • 抑制或激活实验; 小鼠; 图 9a
碧迪BD Cd28抗体(BD, 557393)被用于被用于抑制或激活实验在小鼠样本上 (图 9a). J Exp Med (2017) ncbi
仓鼠 单克隆(37.51)
  • 流式细胞仪; 小鼠; 图 1a
碧迪BD Cd28抗体(BD Biosciences, 37.51)被用于被用于流式细胞仪在小鼠样本上 (图 1a). J Immunol (2017) ncbi
仓鼠 单克隆(37.51)
  • 流式细胞仪; 小鼠
碧迪BD Cd28抗体(BD Pharmingen, 37.51)被用于被用于流式细胞仪在小鼠样本上. Proc Natl Acad Sci U S A (2017) ncbi
仓鼠 单克隆(37.51)
  • 抑制或激活实验; 小鼠; 1 ug/ml
碧迪BD Cd28抗体(BD biosciences, 553294)被用于被用于抑制或激活实验在小鼠样本上浓度为1 ug/ml. Sci Rep (2017) ncbi
仓鼠 单克隆(37.51)
  • 其他; 小鼠; 图 1c
碧迪BD Cd28抗体(BD, 37.51)被用于被用于其他在小鼠样本上 (图 1c). J Clin Invest (2017) ncbi
仓鼠 单克隆(37.51)
  • 其他; 小鼠; 2 ug/ml; 图 4
碧迪BD Cd28抗体(BD Biosciences, 553295)被用于被用于其他在小鼠样本上浓度为2 ug/ml (图 4). Sci Rep (2017) ncbi
仓鼠 单克隆(37.51)
  • 抑制或激活实验; 小鼠; 图 s1
碧迪BD Cd28抗体(BD Bioscience, 37.51)被用于被用于抑制或激活实验在小鼠样本上 (图 s1). Sci Rep (2017) ncbi
仓鼠 单克隆(37.51)
  • 抑制或激活实验; 小鼠
碧迪BD Cd28抗体(BD, 37.51)被用于被用于抑制或激活实验在小鼠样本上. J Biol Chem (2017) ncbi
仓鼠 单克隆(37.51)
  • 抑制或激活实验; 小鼠; 图 s3c
碧迪BD Cd28抗体(BD Pharmingen, 37.51)被用于被用于抑制或激活实验在小鼠样本上 (图 s3c). Proc Natl Acad Sci U S A (2016) ncbi
仓鼠 单克隆(37.51)
  • 流式细胞仪; 小鼠; 图 5c
碧迪BD Cd28抗体(Biolegend, 553296)被用于被用于流式细胞仪在小鼠样本上 (图 5c). Oncoimmunology (2016) ncbi
仓鼠 单克隆(37.51)
  • 抑制或激活实验; 小鼠; 4 ug/ml
碧迪BD Cd28抗体(BD Pharmingen, 37.51)被用于被用于抑制或激活实验在小鼠样本上浓度为4 ug/ml. Science (2016) ncbi
仓鼠 单克隆(37.51)
  • 抑制或激活实验; 小鼠
碧迪BD Cd28抗体(BD Pharmingen, 37.51)被用于被用于抑制或激活实验在小鼠样本上. J Clin Invest (2016) ncbi
仓鼠 单克隆(37.51)
  • 流式细胞仪; 人类; 图 1
碧迪BD Cd28抗体(BD Biosciences, 553294)被用于被用于流式细胞仪在人类样本上 (图 1). PLoS ONE (2016) ncbi
仓鼠 单克隆(37.51)
  • 抑制或激活实验; 小鼠; 1 ug/ml
碧迪BD Cd28抗体(BD Biosciences, 553295)被用于被用于抑制或激活实验在小鼠样本上浓度为1 ug/ml. Sci Rep (2016) ncbi
仓鼠 单克隆(37.51)
  • 流式细胞仪; 小鼠; 图 1a, 1b, 1c
碧迪BD Cd28抗体(BD, 37.51)被用于被用于流式细胞仪在小鼠样本上 (图 1a, 1b, 1c). J Exp Med (2016) ncbi
仓鼠 单克隆(37.51)
  • 免疫细胞化学; 小鼠
碧迪BD Cd28抗体(BD, 37.51)被用于被用于免疫细胞化学在小鼠样本上. PLoS Pathog (2016) ncbi
仓鼠 单克隆(37.51)
  • 抑制或激活实验; 小鼠; 图 3d
碧迪BD Cd28抗体(BD Biosciences, 553295)被用于被用于抑制或激活实验在小鼠样本上 (图 3d). Immunol Cell Biol (2017) ncbi
仓鼠 单克隆(37.51)
  • 抑制或激活实验; 小鼠; 1 ug/ml; 图 3
碧迪BD Cd28抗体(BD Pharmingen, 553295)被用于被用于抑制或激活实验在小鼠样本上浓度为1 ug/ml (图 3). Mol Med Rep (2016) ncbi
仓鼠 单克隆(37.51)
  • 抑制或激活实验; 小鼠; 图 3b
碧迪BD Cd28抗体(BD Biosciences, 37.51)被用于被用于抑制或激活实验在小鼠样本上 (图 3b). Nat Commun (2016) ncbi
仓鼠 单克隆(37.51)
  • 流式细胞仪; 小鼠; 2 ug/ml
碧迪BD Cd28抗体(Becton Dickinson, 37.51)被用于被用于流式细胞仪在小鼠样本上浓度为2 ug/ml. Nature (2016) ncbi
仓鼠 单克隆(37.51)
  • 抑制或激活实验; 小鼠; 0.25 ug/ml
碧迪BD Cd28抗体(BD Biosciences, 37.51)被用于被用于抑制或激活实验在小鼠样本上浓度为0.25 ug/ml. J Immunol (2016) ncbi
仓鼠 单克隆(37.51)
  • 抑制或激活实验; 小鼠
碧迪BD Cd28抗体(BD Biosciences, 553294)被用于被用于抑制或激活实验在小鼠样本上. Sci Rep (2016) ncbi
仓鼠 单克隆(37.51)
  • 抑制或激活实验; 小鼠; 图 1
碧迪BD Cd28抗体(BD Pharmingen, 553294)被用于被用于抑制或激活实验在小鼠样本上 (图 1). Proc Natl Acad Sci U S A (2016) ncbi
仓鼠 单克隆(37.51)
  • 抑制或激活实验; 小鼠; 图 3i
碧迪BD Cd28抗体(BD Pharmingen, 37.51)被用于被用于抑制或激活实验在小鼠样本上 (图 3i). Nat Med (2015) ncbi
仓鼠 单克隆(37.51)
  • 抑制或激活实验; 小鼠; 5,000 ug/ml; 图 1a
碧迪BD Cd28抗体(BD Pharmingen Biosciences, 37.51)被用于被用于抑制或激活实验在小鼠样本上浓度为5,000 ug/ml (图 1a). PLoS ONE (2015) ncbi
仓鼠 单克隆(37.51)
  • 抑制或激活实验; 小鼠; 图 2
碧迪BD Cd28抗体(BD, 553295)被用于被用于抑制或激活实验在小鼠样本上 (图 2). PLoS ONE (2015) ncbi
仓鼠 单克隆(37.51)
  • 抑制或激活实验; 小鼠; 2 ug/ml
碧迪BD Cd28抗体(BD Pharmingen, 553294)被用于被用于抑制或激活实验在小鼠样本上浓度为2 ug/ml. Stem Cell Res Ther (2015) ncbi
仓鼠 单克隆(37.51)
  • 抑制或激活实验; 小鼠
碧迪BD Cd28抗体(BD, 37.51)被用于被用于抑制或激活实验在小鼠样本上. Nature (2015) ncbi
仓鼠 单克隆(37.51)
  • 抑制或激活实验; 小鼠; 10 ug/ml; 图 2
碧迪BD Cd28抗体(BD, 37.51)被用于被用于抑制或激活实验在小鼠样本上浓度为10 ug/ml (图 2). J Exp Med (2014) ncbi
仓鼠 单克隆(37.51)
  • 抑制或激活实验; 人类; 1 ug/ml
  • 抑制或激活实验; 小鼠; 1 ug/ml
碧迪BD Cd28抗体(BD, 553295)被用于被用于抑制或激活实验在人类样本上浓度为1 ug/ml 和 被用于抑制或激活实验在小鼠样本上浓度为1 ug/ml. Atherosclerosis (2014) ncbi
仓鼠 单克隆(37.51)
  • 流式细胞仪; 小鼠
碧迪BD Cd28抗体(BD Biosciences, 37.51)被用于被用于流式细胞仪在小鼠样本上. J Mol Cell Cardiol (2014) ncbi
仓鼠 单克隆(37.51)
  • 抑制或激活实验; 小鼠; 1 ug/ml
碧迪BD Cd28抗体(BD Pharmingen, 37.51)被用于被用于抑制或激活实验在小鼠样本上浓度为1 ug/ml. PLoS ONE (2014) ncbi
仓鼠 单克隆(37.51)
  • 抑制或激活实验; 小鼠
碧迪BD Cd28抗体(BD PharMingen, 37.51)被用于被用于抑制或激活实验在小鼠样本上. Immunol Cell Biol (2014) ncbi
仓鼠 单克隆(37.51)
  • 免疫组化; 小鼠; 1:500
碧迪BD Cd28抗体(BD, 553295)被用于被用于免疫组化在小鼠样本上浓度为1:500. PLoS ONE (2014) ncbi
仓鼠 单克隆(37.51)
  • 抑制或激活实验; 小鼠; 0.5 ug/ml
碧迪BD Cd28抗体(BD Biosciences, 37.51)被用于被用于抑制或激活实验在小鼠样本上浓度为0.5 ug/ml. J Neuroimmunol (2014) ncbi
仓鼠 单克隆(37.51)
  • 抑制或激活实验; 小鼠; 1 ug/ml
碧迪BD Cd28抗体(BD, 553295)被用于被用于抑制或激活实验在小鼠样本上浓度为1 ug/ml. PLoS ONE (2014) ncbi
仓鼠 单克隆(37.51)
  • 抑制或激活实验; 小鼠; 2 ug/ml
碧迪BD Cd28抗体(BD Biosciences, 37.51)被用于被用于抑制或激活实验在小鼠样本上浓度为2 ug/ml. J Immunol (2014) ncbi
仓鼠 单克隆(37.51)
  • 抑制或激活实验; 小鼠; 1 ug/ml
碧迪BD Cd28抗体(BD Biosciences, 37.51)被用于被用于抑制或激活实验在小鼠样本上浓度为1 ug/ml. Int Immunol (2014) ncbi
仓鼠 单克隆(37.51)
  • 抑制或激活实验; 小鼠; 10 ug/ml
碧迪BD Cd28抗体(BD Pharmingen, 37.51)被用于被用于抑制或激活实验在小鼠样本上浓度为10 ug/ml. J Immunol (2013) ncbi
仓鼠 单克隆(37.51)
  • 抑制或激活实验; 小鼠; 1 ug/ml; 图 2
碧迪BD Cd28抗体(BD Pharmingen, 553294)被用于被用于抑制或激活实验在小鼠样本上浓度为1 ug/ml (图 2). Cell Commun Signal (2011) ncbi
文章列表
  1. Pi xf1 eros A, Kulkarni A, Gao H, Orr K, Glenn L, Huang F, et al. Proinflammatory signaling in islet β cells propagates invasion of pathogenic immune cells in autoimmune diabetes. Cell Rep. 2022;39:111011 pubmed 出版商
  2. Laffey K, Stiles R, Ludescher M, Davis T, Khwaja S, Bram R, et al. Early expression of mature αβ TCR in CD4-CD8- T cell progenitors enables MHC to drive development of T-ALL bearing NOTCH mutations. Proc Natl Acad Sci U S A. 2022;119:e2118529119 pubmed 出版商
  3. Lu L, Li T, Feng X, Liu Z, Liu Y, Chao T, et al. Excessive immunosuppression by regulatory T cells antagonizes T cell response to schistosome infection in PD-1-deficient mice. PLoS Pathog. 2022;18:e1010596 pubmed 出版商
  4. Liu M, Wu C, Luo S, Hua Q, Chen H, Weng Y, et al. PERK reprograms hematopoietic progenitor cells to direct tumor-promoting myelopoiesis in the spleen. J Exp Med. 2022;219: pubmed 出版商
  5. Aarts J, van Caam A, Chen X, Marijnissen R, Helsen M, Walgreen B, et al. Local inhibition of TGF-β1 signaling improves Th17/Treg balance but not joint pathology during experimental arthritis. Sci Rep. 2022;12:3182 pubmed 出版商
  6. Yang K, Han J, Asada M, Gill J, Park J, Sathe M, et al. Cytoplasmic RNA quality control failure engages mTORC1-mediated autoinflammatory disease. J Clin Invest. 2022;132: pubmed 出版商
  7. Zhou Q, Liang J, Yang T, Liu J, Li B, Li Y, et al. Carfilzomib modulates tumor microenvironment to potentiate immune checkpoint therapy for cancer. EMBO Mol Med. 2022;14:e14502 pubmed 出版商
  8. Liu H, Pedros C, Kong K, Canonigo Balancio A, Xue W, Altman A. Leveraging the Treg-intrinsic CTLA4-PKCη signaling pathway for cancer immunotherapy. J Immunother Cancer. 2021;9: pubmed 出版商
  9. Uyanik B, Goloudina A, Akbarali A, Grigorash B, Petukhov A, Singhal S, et al. Inhibition of the DNA damage response phosphatase PPM1D reprograms neutrophils to enhance anti-tumor immune responses. Nat Commun. 2021;12:3622 pubmed 出版商
  10. Kim C, Park S, Lee S, Kim Y, Jang S, Woo S, et al. NSrp70 is a lymphocyte-essential splicing factor that controls thymocyte development. Nucleic Acids Res. 2021;49:5760-5778 pubmed 出版商
  11. Glassman C, Su L, Majri Morrison S, Winkelmann H, Mo F, Li P, et al. Calibration of cell-intrinsic interleukin-2 response thresholds guides design of a regulatory T cell biased agonist. elife. 2021;10: pubmed 出版商
  12. Akgul A, Maddaloni M, Jun S, Nelson A, Odreman V, Hoffman C, et al. Stimulation of regulatory T cells with Lactococcus lactis expressing enterotoxigenic E. coli colonization factor antigen 1 retains salivary flow in a genetic model of Sjögren's syndrome. Arthritis Res Ther. 2021;23:99 pubmed 出版商
  13. Voisin M, Shrestha E, Rollet C, Nikain C, Josefs T, Mahe M, et al. Inhibiting LXRα phosphorylation in hematopoietic cells reduces inflammation and attenuates atherosclerosis and obesity in mice. Commun Biol. 2021;4:420 pubmed 出版商
  14. Petty A, Dai R, Lapalombella R, Baiocchi R, Benson D, Li Z, et al. Hedgehog-induced PD-L1 on tumor-associated macrophages is critical for suppression of tumor-infiltrating CD8+ T cell function. JCI Insight. 2021;6: pubmed 出版商
  15. Mao F, Lv Y, Hao C, Teng Y, Liu Y, Cheng P, et al. Helicobacter pylori-Induced Rev-erbα Fosters Gastric Bacteria Colonization by Impairing Host Innate and Adaptive Defense. Cell Mol Gastroenterol Hepatol. 2021;12:395-425 pubmed 出版商
  16. Minns D, Smith K, Alessandrini V, Hardisty G, Melrose L, Jackson Jones L, et al. The neutrophil antimicrobial peptide cathelicidin promotes Th17 differentiation. Nat Commun. 2021;12:1285 pubmed 出版商
  17. Nian Y, Iske J, Maenosono R, Minami K, Heinbokel T, Quante M, et al. Targeting age-specific changes in CD4+ T cell metabolism ameliorates alloimmune responses and prolongs graft survival. Aging Cell. 2021;20:e13299 pubmed 出版商
  18. Zhao L, Hu S, Davila M, Yang J, Lin Y, Albanese J, et al. Coordinated co-migration of CCR10+ antibody-producing B cells with helper T cells for colonic homeostatic regulation. Mucosal Immunol. 2021;14:420-430 pubmed 出版商
  19. Pasciuto E, Burton O, Roca C, Lagou V, Rajan W, Theys T, et al. Microglia Require CD4 T Cells to Complete the Fetal-to-Adult Transition. Cell. 2020;182:625-640.e24 pubmed 出版商
  20. Gryzik S, Hoang Y, Lischke T, Mohr E, Venzke M, Kadner I, et al. Identification of a super-functional Tfh-like subpopulation in murine lupus by pattern perception. elife. 2020;9: pubmed 出版商
  21. Cai L, Chao G, Li W, Zhu J, Li F, Qi B, et al. Activated CD4+ T cells-derived exosomal miR-142-3p boosts post-ischemic ventricular remodeling by activating myofibroblast. Aging (Albany NY). 2020;12:7380-7396 pubmed 出版商
  22. Wang J, Li P, Yu Y, Fu Y, Jiang H, Lu M, et al. Pulmonary surfactant-biomimetic nanoparticles potentiate heterosubtypic influenza immunity. Science. 2020;367: pubmed 出版商
  23. Chen H, Cong X, Wu C, Wu X, Wang J, Mao K, et al. Intratumoral delivery of CCL25 enhances immunotherapy against triple-negative breast cancer by recruiting CCR9+ T cells. Sci Adv. 2020;6:eaax4690 pubmed 出版商
  24. Canel M, Taggart D, Sims A, Lonergan D, Waizenegger I, Serrels A. T-cell co-stimulation in combination with targeting FAK drives enhanced anti-tumor immunity. elife. 2020;9: pubmed 出版商
  25. Park Y, Cho M, Choi G, Na H, Chung Y. A Critical Regulation of Th17 Cell Responses and Autoimmune Neuro-Inflammation by Ginsenoside Rg3. Biomolecules. 2020;10: pubmed 出版商
  26. Shi L, Wang J, Ding N, Zhang Y, Zhu Y, Dong S, et al. Inflammation induced by incomplete radiofrequency ablation accelerates tumor progression and hinders PD-1 immunotherapy. Nat Commun. 2019;10:5421 pubmed 出版商
  27. Leone R, Zhao L, Englert J, Sun I, Oh M, Sun I, et al. Glutamine blockade induces divergent metabolic programs to overcome tumor immune evasion. Science. 2019;366:1013-1021 pubmed 出版商
  28. Krovi S, Kappler J, Marrack P, Gapin L. Inherent reactivity of unselected TCR repertoires to peptide-MHC molecules. Proc Natl Acad Sci U S A. 2019;116:22252-22261 pubmed 出版商
  29. Rasoulouniriana D, Santana Magal N, Gutwillig A, Farhat Younis L, Wine Y, Saperia C, et al. A distinct subset of FcγRI-expressing Th1 cells exert antibody-mediated cytotoxic activity. J Clin Invest. 2019;129:4151-4164 pubmed 出版商
  30. Humeniuk P, Geiselhart S, Battin C, Webb T, Steinberger P, Paster W, et al. Generation of a Jurkat-based fluorescent reporter cell line to evaluate lipid antigen interaction with the human iNKT cell receptor. Sci Rep. 2019;9:7426 pubmed 出版商
  31. Kotov J, Kotov D, Linehan J, Bardwell V, Gearhart M, Jenkins M. BCL6 corepressor contributes to Th17 cell formation by inhibiting Th17 fate suppressors. J Exp Med. 2019;216:1450-1464 pubmed 出版商
  32. Xing S, Gai K, Li X, Shao P, Zeng Z, Zhao X, et al. Tcf1 and Lef1 are required for the immunosuppressive function of regulatory T cells. J Exp Med. 2019;: pubmed 出版商
  33. Anandagoda N, Willis J, Hertweck A, Roberts L, Jackson I, Gökmen M, et al. microRNA-142-mediated repression of phosphodiesterase 3B critically regulates peripheral immune tolerance. J Clin Invest. 2019;129:1257-1271 pubmed 出版商
  34. Karmaus P, Chen X, Lim S, Herrada A, Nguyen T, Xu B, et al. Metabolic heterogeneity underlies reciprocal fates of TH17 cell stemness and plasticity. Nature. 2019;565:101-105 pubmed 出版商
  35. Muscate F, Stetter N, Schramm C, Schulze zur Wiesch J, Bosurgi L, Jacobs T. HVEM and CD160: Regulators of Immunopathology During Malaria Blood-Stage. Front Immunol. 2018;9:2611 pubmed 出版商
  36. Klement J, Paschall A, Redd P, Ibrahim M, Lu C, Yang D, et al. An osteopontin/CD44 immune checkpoint controls CD8+ T cell activation and tumor immune evasion. J Clin Invest. 2018;128:5549-5560 pubmed 出版商
  37. Singh A, Khare P, Obaid A, Conlon K, Basrur V, Depinho R, et al. SUMOylation of ROR-γt inhibits IL-17 expression and inflammation via HDAC2. Nat Commun. 2018;9:4515 pubmed 出版商
  38. Qiao G, Bucsek M, Winder N, Chen M, Giridharan T, Olejniczak S, et al. β-Adrenergic signaling blocks murine CD8+ T-cell metabolic reprogramming during activation: a mechanism for immunosuppression by adrenergic stress. Cancer Immunol Immunother. 2019;68:11-22 pubmed 出版商
  39. Kim H, Mun Y, Lee K, Park Y, Park J, Park J, et al. T cell microvilli constitute immunological synaptosomes that carry messages to antigen-presenting cells. Nat Commun. 2018;9:3630 pubmed 出版商
  40. Stathopoulou C, Gangaplara A, Mallett G, Flomerfelt F, Liniany L, Knight D, et al. PD-1 Inhibitory Receptor Downregulates Asparaginyl Endopeptidase and Maintains Foxp3 Transcription Factor Stability in Induced Regulatory T Cells. Immunity. 2018;49:247-263.e7 pubmed 出版商
  41. Gisterå A, Klement M, Polyzos K, Mailer R, Duhlin A, Karlsson M, et al. LDL-Reactive T Cells Regulate Plasma Cholesterol Levels and Development of Atherosclerosis in Humanized Hypercholesterolemic Mice. Circulation. 2018;: pubmed 出版商
  42. Prado C, Gaiazzi M, Gonzalez H, Ugalde V, Figueroa A, Osorio Barrios F, et al. Dopaminergic Stimulation of Myeloid Antigen-Presenting Cells Attenuates Signal Transducer and Activator of Transcription 3-Activation Favouring the Development of Experimental Autoimmune Encephalomyelitis. Front Immunol. 2018;9:571 pubmed 出版商
  43. Kishore M, Cheung K, Fu H, Bonacina F, Wang G, Coe D, et al. Regulatory T Cell Migration Is Dependent on Glucokinase-Mediated Glycolysis. Immunity. 2017;47:875-889.e10 pubmed 出版商
  44. Moreno Cubero E, Subira D, Sanz de Villalobos E, Parra Cid T, Madejon A, Miquel J, et al. According to Hepatitis C Virus (HCV) Infection Stage, Interleukin-7 Plus 4-1BB Triggering Alone or Combined with PD-1 Blockade Increases TRAF1low HCV-Specific CD8+ Cell Reactivity. J Virol. 2018;92: pubmed 出版商
  45. Lingel H, Wissing J, Arra A, Schanze D, Lienenklaus S, Klawonn F, et al. CTLA-4-mediated posttranslational modifications direct cytotoxic T-lymphocyte differentiation. Cell Death Differ. 2017;24:1739-1749 pubmed 出版商
  46. Miao T, Symonds A, Singh R, Symonds J, Ogbe A, Omodho B, et al. Egr2 and 3 control adaptive immune responses by temporally uncoupling expansion from T cell differentiation. J Exp Med. 2017;214:1787-1808 pubmed 出版商
  47. Singh R, Miao T, Symonds A, Omodho B, Li S, Wang P. Egr2 and 3 Inhibit T-bet-Mediated IFN-? Production in T Cells. J Immunol. 2017;198:4394-4402 pubmed 出版商
  48. Fu G, Xu Q, Qiu Y, Jin X, Xu T, Dong S, et al. Suppression of Th17 cell differentiation by misshapen/NIK-related kinase MINK1. J Exp Med. 2017;214:1453-1469 pubmed 出版商
  49. Martinez Jimenez C, Eling N, Chen H, Vallejos C, Kolodziejczyk A, Connor F, et al. Aging increases cell-to-cell transcriptional variability upon immune stimulation. Science. 2017;355:1433-1436 pubmed 出版商
  50. González Pérez G, Lamousé Smith E. Gastrointestinal Microbiome Dysbiosis in Infant Mice Alters Peripheral CD8+ T Cell Receptor Signaling. Front Immunol. 2017;8:265 pubmed 出版商
  51. Klein J, Moses K, Zelinskyy G, Sody S, Buer J, Lang S, et al. Combined toll-like receptor 3/7/9 deficiency on host cells results in T-cell-dependent control of tumour growth. Nat Commun. 2017;8:14600 pubmed 出版商
  52. Wang H, Mo L, Xiao X, An S, Liu X, Ba J, et al. Pplase of Dermatophagoides farinae promotes ovalbumin-induced airway allergy by modulating the functions of dendritic cells in a mouse model. Sci Rep. 2017;7:43322 pubmed 出版商
  53. Knudson K, Pritzl C, Saxena V, Altman A, Daniels M, Teixeiro E. NFκB-Pim-1-Eomesodermin axis is critical for maintaining CD8 T-cell memory quality. Proc Natl Acad Sci U S A. 2017;114:E1659-E1667 pubmed 出版商
  54. Zhang H, Qi Y, Yuan Y, Cai L, Xu H, Zhang L, et al. Paeoniflorin Ameliorates Experimental Autoimmune Encephalomyelitis via Inhibition of Dendritic Cell Function and Th17 Cell Differentiation. Sci Rep. 2017;7:41887 pubmed 出版商
  55. Beavis P, Henderson M, Giuffrida L, Mills J, Sek K, Cross R, et al. Targeting the adenosine 2A receptor enhances chimeric antigen receptor T cell efficacy. J Clin Invest. 2017;127:929-941 pubmed 出版商
  56. Hwang I, Kim K, Choi S, Lomunova M. Potentiation of T Cell Stimulatory Activity by Chemical Fixation of a Weak Peptide-MHC Complex. Mol Cells. 2017;40:24-36 pubmed 出版商
  57. Seo W, Muroi S, Akiyama K, Taniuchi I. Distinct requirement of Runx complexes for TCRβ enhancer activation at distinct developmental stages. Sci Rep. 2017;7:41351 pubmed 出版商
  58. Vähätupa M, Aittomaki S, Martinez Cordova Z, May U, Prince S, Uusitalo Jarvinen H, et al. T-cell-expressed proprotein convertase FURIN inhibits DMBA/TPA-induced skin cancer development. Oncoimmunology. 2016;5:e1245266 pubmed 出版商
  59. Nowyhed H, Chandra S, Kiosses W, Marcovecchio P, Andary F, Zhao M, et al. ATP Binding Cassette Transporter ABCA7 Regulates NKT Cell Development and Function by Controlling CD1d Expression and Lipid Raft Content. Sci Rep. 2017;7:40273 pubmed 出版商
  60. Troegeler A, Mercier I, Cougoule C, Pietretti D, Colom A, Duval C, et al. C-type lectin receptor DCIR modulates immunity to tuberculosis by sustaining type I interferon signaling in dendritic cells. Proc Natl Acad Sci U S A. 2017;114:E540-E549 pubmed 出版商
  61. Blanquiceth Y, Rodríguez Perea A, Tabares Guevara J, Correa L, Sánchez M, Ramirez Pineda J, et al. Increase of Frequency and Modulation of Phenotype of Regulatory T Cells by Atorvastatin Is Associated with Decreased Lung Inflammatory Cell Infiltration in a Murine Model of Acute Allergic Asthma. Front Immunol. 2016;7:620 pubmed 出版商
  62. Araujo L, Khim P, Mkhikian H, Mortales C, Demetriou M. Glycolysis and glutaminolysis cooperatively control T cell function by limiting metabolite supply to N-glycosylation. elife. 2017;6: pubmed 出版商
  63. Kinosada H, Yasunaga J, Shimura K, Miyazato P, Onishi C, Iyoda T, et al. HTLV-1 bZIP Factor Enhances T-Cell Proliferation by Impeding the Suppressive Signaling of Co-inhibitory Receptors. PLoS Pathog. 2017;13:e1006120 pubmed 出版商
  64. Hayakawa M, Hayakawa H, Petrova T, Ritprajak P, Sutavani R, Jiménez Andrade G, et al. Loss of Functionally Redundant p38 Isoforms in T Cells Enhances Regulatory T Cell Induction. J Biol Chem. 2017;292:1762-1772 pubmed 出版商
  65. Karki R, Man S, Malireddi R, Kesavardhana S, Zhu Q, Burton A, et al. NLRC3 is an inhibitory sensor of PI3K-mTOR pathways in cancer. Nature. 2016;540:583-587 pubmed 出版商
  66. Bieber K, Witte M, Sun S, Hundt J, Kalies K, Dräger S, et al. T cells mediate autoantibody-induced cutaneous inflammation and blistering in epidermolysis bullosa acquisita. Sci Rep. 2016;6:38357 pubmed 出版商
  67. Angela M, Endo Y, Asou H, Yamamoto T, Tumes D, Tokuyama H, et al. Fatty acid metabolic reprogramming via mTOR-mediated inductions of PPAR? directs early activation of T cells. Nat Commun. 2016;7:13683 pubmed 出版商
  68. Cecchinato V, Bernasconi E, Speck R, Proietti M, Sauermann U, D Agostino G, et al. Impairment of CCR6+ and CXCR3+ Th Cell Migration in HIV-1 Infection Is Rescued by Modulating Actin Polymerization. J Immunol. 2017;198:184-195 pubmed
  69. Hammer A, Yang G, Friedrich J, Kovacs A, Lee D, Grave K, et al. Role of the receptor Mas in macrophage-mediated inflammation in vivo. Proc Natl Acad Sci U S A. 2016;113:14109-14114 pubmed
  70. Li J, Shayan G, Avery L, Jie H, Gildener Leapman N, Schmitt N, et al. Tumor-infiltrating Tim-3+ T cells proliferate avidly except when PD-1 is co-expressed: Evidence for intracellular cross talk. Oncoimmunology. 2016;5:e1200778 pubmed
  71. Sen D, Kaminski J, Barnitz R, Kurachi M, Gerdemann U, Yates K, et al. The epigenetic landscape of T cell exhaustion. Science. 2016;354:1165-1169 pubmed
  72. Paszkiewicz P, Fräßle S, Srivastava S, Sommermeyer D, Hudecek M, Drexler I, et al. Targeted antibody-mediated depletion of murine CD19 CAR T cells permanently reverses B cell aplasia. J Clin Invest. 2016;126:4262-4272 pubmed 出版商
  73. Massaad M, Zhou J, Tsuchimoto D, Chou J, Jabara H, Janssen E, et al. Deficiency of base excision repair enzyme NEIL3 drives increased predisposition to autoimmunity. J Clin Invest. 2016;126:4219-4236 pubmed 出版商
  74. Peng M, Yin N, Chhangawala S, Xu K, Leslie C, Li M. Aerobic glycolysis promotes T helper 1 cell differentiation through an epigenetic mechanism. Science. 2016;354:481-484 pubmed
  75. Urrutia M, Fernandez S, Gonzalez M, Vilches R, Rojas P, Vásquez M, et al. Overexpression of Glutamate Decarboxylase in Mesenchymal Stem Cells Enhances Their Immunosuppressive Properties and Increases GABA and Nitric Oxide Levels. PLoS ONE. 2016;11:e0163735 pubmed 出版商
  76. Arunachalam P, Mishra R, Badarinath K, Selvam D, Payeli S, Stout R, et al. Toll-Like Receptor 9 Activation Rescues Impaired Antibody Response in Needle-free Intradermal DNA Vaccination. Sci Rep. 2016;6:33564 pubmed 出版商
  77. Roncagalli R, Cucchetti M, Jarmuzynski N, Gregoire C, Bergot E, Audebert S, et al. The scaffolding function of the RLTPR protein explains its essential role for CD28 co-stimulation in mouse and human T cells. J Exp Med. 2016;213:2437-2457 pubmed
  78. Lexmond W, Goettel J, Lyons J, Jacobse J, Deken M, Lawrence M, et al. FOXP3+ Tregs require WASP to restrain Th2-mediated food allergy. J Clin Invest. 2016;126:4030-4044 pubmed 出版商
  79. Eil R, Vodnala S, Clever D, Klebanoff C, Sukumar M, Pan J, et al. Ionic immune suppression within the tumour microenvironment limits T cell effector function. Nature. 2016;537:539-543 pubmed 出版商
  80. Janssen E, Tohme M, Hedayat M, Leick M, Kumari S, Ramesh N, et al. A DOCK8-WIP-WASp complex links T cell receptors to the actin cytoskeleton. J Clin Invest. 2016;126:3837-3851 pubmed 出版商
  81. Ishikura S, Tsunoda T, Nakabayashi K, Doi K, Koyanagi M, Hayashi K, et al. Molecular mechanisms of transcriptional regulation by the nuclear zinc-finger protein Zfat in T cells. Biochim Biophys Acta. 2016;1859:1398-1410 pubmed 出版商
  82. Kuwahara M, Ise W, Ochi M, Suzuki J, Kometani K, Maruyama S, et al. Bach2-Batf interactions control Th2-type immune response by regulating the IL-4 amplification loop. Nat Commun. 2016;7:12596 pubmed 出版商
  83. Wang H, Li M, Hung C, Sinha M, Lee L, Wiesner D, et al. MyD88 Shapes Vaccine Immunity by Extrinsically Regulating Survival of CD4+ T Cells during the Contraction Phase. PLoS Pathog. 2016;12:e1005787 pubmed 出版商
  84. Alberdi M, Iglesias M, Tejedor S, Merino R, Lopez Rodriguez C, Aramburu J. Context-dependent regulation of Th17-associated genes and IFN? expression by the transcription factor NFAT5. Immunol Cell Biol. 2017;95:56-67 pubmed 出版商
  85. Weiss J, Chen W, Nyuydzefe M, Trzeciak A, Flynn R, Tonra J, et al. ROCK2 signaling is required to induce a subset of T follicular helper cells through opposing effects on STATs in autoimmune settings. Sci Signal. 2016;9:ra73 pubmed 出版商
  86. Xu Y, Zhao F, Qiu Q, Chen K, Wei J, Kong Q, et al. The ER membrane-anchored ubiquitin ligase Hrd1 is a positive regulator of T-cell immunity. Nat Commun. 2016;7:12073 pubmed 出版商
  87. Terracina K, Graham L, Payne K, Manjili M, Baek A, Damle S, et al. DNA methyltransferase inhibition increases efficacy of adoptive cellular immunotherapy of murine breast cancer. Cancer Immunol Immunother. 2016;65:1061-73 pubmed 出版商
  88. Deng Z, Rong Y, Teng Y, Zhuang X, Samykutty A, Mu J, et al. Exosomes miR-126a released from MDSC induced by DOX treatment promotes lung metastasis. Oncogene. 2017;36:639-651 pubmed 出版商
  89. Stentzel S, Teufelberger A, Nordengrün M, Kolata J, Schmidt F, Van Crombruggen K, et al. Staphylococcal serine protease-like proteins are pacemakers of allergic airway reactions to Staphylococcus aureus. J Allergy Clin Immunol. 2017;139:492-500.e8 pubmed 出版商
  90. Gu L, Deng W, Sun X, Zhou H, Xu Q. Rapamycin ameliorates CCl4-induced liver fibrosis in mice through reciprocal regulation of the Th17/Treg cell balance. Mol Med Rep. 2016;14:1153-61 pubmed 出版商
  91. Arbore G, West E, Spolski R, Robertson A, Klos A, Rheinheimer C, et al. T helper 1 immunity requires complement-driven NLRP3 inflammasome activity in CD4⁺ T cells. Science. 2016;352:aad1210 pubmed 出版商
  92. Göbel K, Pankratz S, Asaridou C, Herrmann A, Bittner S, Merker M, et al. Blood coagulation factor XII drives adaptive immunity during neuroinflammation via CD87-mediated modulation of dendritic cells. Nat Commun. 2016;7:11626 pubmed 出版商
  93. Contreras F, Prado C, Gonzalez H, Franz D, Osorio Barrios F, Osorio F, et al. Dopamine Receptor D3 Signaling on CD4+ T Cells Favors Th1- and Th17-Mediated Immunity. J Immunol. 2016;196:4143-9 pubmed 出版商
  94. Swamy M, Pathak S, Grzes K, Damerow S, Sinclair L, van Aalten D, et al. Glucose and glutamine fuel protein O-GlcNAcylation to control T cell self-renewal and malignancy. Nat Immunol. 2016;17:712-20 pubmed 出版商
  95. Oudhoff M, Braam M, Freeman S, Wong D, Rattray D, Wang J, et al. SETD7 Controls Intestinal Regeneration and Tumorigenesis by Regulating Wnt/?-Catenin and Hippo/YAP Signaling. Dev Cell. 2016;37:47-57 pubmed 出版商
  96. Martin B, Wang C, Zhang C, Kang Z, Gulen M, Zepp J, et al. T cell-intrinsic ASC critically promotes T(H)17-mediated experimental autoimmune encephalomyelitis. Nat Immunol. 2016;17:583-92 pubmed 出版商
  97. Ravindran R, Loebbermann J, Nakaya H, Khan N, Ma H, Gama L, et al. The amino acid sensor GCN2 controls gut inflammation by inhibiting inflammasome activation. Nature. 2016;531:523-527 pubmed 出版商
  98. Apostolidis S, Rodríguez Rodríguez N, Suárez Fueyo A, Dioufa N, Ozcan E, Crispín J, et al. Phosphatase PP2A is requisite for the function of regulatory T cells. Nat Immunol. 2016;17:556-64 pubmed 出版商
  99. Seifert L, Werba G, Tiwari S, Giao Ly N, Nguy S, Alothman S, et al. Radiation Therapy Induces Macrophages to Suppress T-Cell Responses Against Pancreatic Tumors in Mice. Gastroenterology. 2016;150:1659-1672.e5 pubmed 出版商
  100. Kabat A, Harrison O, Riffelmacher T, Moghaddam A, Pearson C, Laing A, et al. The autophagy gene Atg16l1 differentially regulates Treg and TH2 cells to control intestinal inflammation. elife. 2016;5:e12444 pubmed 出版商
  101. Hu H, Wang H, Xiao Y, Jin J, Chang J, Zou Q, et al. Otud7b facilitates T cell activation and inflammatory responses by regulating Zap70 ubiquitination. J Exp Med. 2016;213:399-414 pubmed 出版商
  102. Hwang S, Jang S, Kim M, Kim L, Kim B, Kim H, et al. YY1 inhibits differentiation and function of regulatory T cells by blocking Foxp3 expression and activity. Nat Commun. 2016;7:10789 pubmed 出版商
  103. Kim K, Kim N, Lee G. Transcription Factors Oct-1 and GATA-3 Cooperatively Regulate Th2 Cytokine Gene Expression via the RHS5 within the Th2 Locus Control Region. PLoS ONE. 2016;11:e0148576 pubmed 出版商
  104. Ying W, Tseng A, Chang R, Wang H, Lin Y, Kanameni S, et al. miR-150 regulates obesity-associated insulin resistance by controlling B cell functions. Sci Rep. 2016;6:20176 pubmed 出版商
  105. Bandyopadhyay S, Quinn T, Scandiuzzi L, Basu I, Partanen A, Tomé W, et al. Low-Intensity Focused Ultrasound Induces Reversal of Tumor-Induced T Cell Tolerance and Prevents Immune Escape. J Immunol. 2016;196:1964-76 pubmed 出版商
  106. Vincendeau M, Hadian K, Messias A, Brenke J, Hålander J, Griesbach R, et al. Inhibition of Canonical NF-κB Signaling by a Small Molecule Targeting NEMO-Ubiquitin Interaction. Sci Rep. 2016;6:18934 pubmed 出版商
  107. Vivar O, Masi G, Carpier J, Magalhaes J, Galgano D, Pazour G, et al. IFT20 controls LAT recruitment to the immune synapse and T-cell activation in vivo. Proc Natl Acad Sci U S A. 2016;113:386-91 pubmed 出版商
  108. Jabara H, Boyden S, Chou J, Ramesh N, Massaad M, Benson H, et al. A missense mutation in TFRC, encoding transferrin receptor 1, causes combined immunodeficiency. Nat Genet. 2016;48:74-8 pubmed 出版商
  109. Wei R, Hu Y, Dong F, Xu X, Hu A, Gao G. Hepatoma cell-derived leptin downregulates the immunosuppressive function of regulatory T-cells to enhance the anti-tumor activity of CD8+ T-cells. Immunol Cell Biol. 2016;94:388-99 pubmed 出版商
  110. Verma S, Weiskopf D, Gupta A, McDonald B, Peters B, Sette A, et al. Cytomegalovirus-Specific CD4 T Cells Are Cytolytic and Mediate Vaccine Protection. J Virol. 2016;90:650-8 pubmed 出版商
  111. Alam M, Gaida M, Bergmann F, Lasitschka F, Giese T, Giese N, et al. Selective inhibition of the p38 alternative activation pathway in infiltrating T cells inhibits pancreatic cancer progression. Nat Med. 2015;21:1337-43 pubmed 出版商
  112. Chen X, Serrano D, Mayhue M, Hoebe K, Ilangumaran S, Ramanathan S. GIMAP5 Deficiency Is Associated with Increased AKT Activity in T Lymphocytes. PLoS ONE. 2015;10:e0139019 pubmed 出版商
  113. Nakatsukasa H, Zhang D, Maruyama T, Chen H, Cui K, Ishikawa M, et al. The DNA-binding inhibitor Id3 regulates IL-9 production in CD4(+) T cells. Nat Immunol. 2015;16:1077-84 pubmed 出版商
  114. Pearce V, Bouabe H, MacQueen A, Carbonaro V, Okkenhaug K. PI3Kδ Regulates the Magnitude of CD8+ T Cell Responses after Challenge with Listeria monocytogenes. J Immunol. 2015;195:3206-17 pubmed 出版商
  115. Silva O, Crocetti J, Humphries L, Burkhardt J, Miceli M. Discs Large Homolog 1 Splice Variants Regulate p38-Dependent and -Independent Effector Functions in CD8+ T Cells. PLoS ONE. 2015;10:e0133353 pubmed 出版商
  116. Kamachi F, Isshiki T, Harada N, Akiba H, Miyake S. ICOS promotes group 2 innate lymphoid cell activation in lungs. Biochem Biophys Res Commun. 2015;463:739-45 pubmed 出版商
  117. McCully M, Collins P, Hughes T, Thomas C, Billen J, O Donnell V, et al. Skin Metabolites Define a New Paradigm in the Localization of Skin Tropic Memory T Cells. J Immunol. 2015;195:96-104 pubmed 出版商
  118. Sharma S, Chintala N, Vadrevu S, Patel J, Karbowniczek M, Markiewski M. Pulmonary alveolar macrophages contribute to the premetastatic niche by suppressing antitumor T cell responses in the lungs. J Immunol. 2015;194:5529-38 pubmed 出版商
  119. Richardson E, Shukla S, Sweet D, Wearsch P, Tsichlis P, Boom W, et al. Toll-like receptor 2-dependent extracellular signal-regulated kinase signaling in Mycobacterium tuberculosis-infected macrophages drives anti-inflammatory responses and inhibits Th1 polarization of responding T cells. Infect Immun. 2015;83:2242-54 pubmed 出版商
  120. Rao E, Zhang Y, Zhu G, Hao J, Persson X, Egilmez N, et al. Deficiency of AMPK in CD8+ T cells suppresses their anti-tumor function by inducing protein phosphatase-mediated cell death. Oncotarget. 2015;6:7944-58 pubmed
  121. Fischer N, Elson G, Magistrelli G, Dheilly E, Fouque N, Laurendon A, et al. Exploiting light chains for the scalable generation and platform purification of native human bispecific IgG. Nat Commun. 2015;6:6113 pubmed 出版商
  122. Buchwald Z, Yang C, Nellore S, Shashkova E, Davis J, Cline A, et al. A Bone Anabolic Effect of RANKL in a Murine Model of Osteoporosis Mediated Through FoxP3+ CD8 T Cells. J Bone Miner Res. 2015;30:1508-22 pubmed 出版商
  123. Tan J, Chan S, Lo C, Deane J, McDonald C, Bernard C, et al. Amnion cell-mediated immune modulation following bleomycin challenge: controlling the regulatory T cell response. Stem Cell Res Ther. 2015;6:8 pubmed 出版商
  124. Hill E, Ng T, Burton B, Oakley C, Malik K, Wraith D. Glycogen synthase kinase-3 controls IL-10 expression in CD4(+) effector T-cell subsets through epigenetic modification of the IL-10 promoter. Eur J Immunol. 2015;45:1103-15 pubmed 出版商
  125. Gu A, Zhang S, Wang Y, Xiong H, Curtis T, Wan Y. A critical role for transcription factor Smad4 in T cell function that is independent of transforming growth factor β receptor signaling. Immunity. 2015;42:68-79 pubmed 出版商
  126. Shindo Y, Unsinger J, Burnham C, Green J, Hotchkiss R. Interleukin-7 and anti-programmed cell death 1 antibody have differing effects to reverse sepsis-induced immunosuppression. Shock. 2015;43:334-43 pubmed 出版商
  127. Sakaguchi S, Hombauer M, Hassan H, Tanaka H, Yasmin N, Naoe Y, et al. A novel Cd8-cis-regulatory element preferentially directs expression in CD44hiCD62L+ CD8+ T cells and in CD8αα+ dendritic cells. J Leukoc Biol. 2015;97:635-44 pubmed 出版商
  128. Rutz S, Kayagaki N, Phung Q, Eidenschenk C, Noubade R, Wang X, et al. Deubiquitinase DUBA is a post-translational brake on interleukin-17 production in T cells. Nature. 2015;518:417-21 pubmed 出版商
  129. Reynolds A, Kuraoka M, Kelsoe G. Natural IgM is produced by CD5- plasma cells that occupy a distinct survival niche in bone marrow. J Immunol. 2015;194:231-42 pubmed 出版商
  130. Lou Q, Zhang W, Liu G, Ma Y. The C-type lectin OCILRP2 costimulates EL4 T cell activation via the DAP12-Raf-MAP kinase pathway. PLoS ONE. 2014;9:e113218 pubmed 出版商
  131. Arndt B, Witkowski L, Ellwart J, Seissler J. CD8+ CD122+ PD-1- effector cells promote the development of diabetes in NOD mice. J Leukoc Biol. 2015;97:111-20 pubmed 出版商
  132. Jurkin J, Henkel T, Nielsen A, Minnich M, Popow J, Kaufmann T, et al. The mammalian tRNA ligase complex mediates splicing of XBP1 mRNA and controls antibody secretion in plasma cells. EMBO J. 2014;33:2922-36 pubmed 出版商
  133. Backer R, Helbig C, Gentek R, Kent A, Laidlaw B, Dominguez C, et al. A central role for Notch in effector CD8(+) T cell differentiation. Nat Immunol. 2014;15:1143-51 pubmed 出版商
  134. Fos C, Bécart S, Canonigo Balancio A, Boehning D, Altman A. Association of the EF-hand and PH domains of the guanine nucleotide exchange factor SLAT with IP₃ receptor 1 promotes Ca²⁺ signaling in T cells. Sci Signal. 2014;7:ra93 pubmed 出版商
  135. Naik E, Webster J, DeVoss J, Liu J, Suriben R, Dixit V. Regulation of proximal T cell receptor signaling and tolerance induction by deubiquitinase Usp9X. J Exp Med. 2014;211:1947-55 pubmed 出版商
  136. Bennaceur K, Atwill M, Al Zhrany N, Hoffmann J, Keavney B, BREAULT D, et al. Atorvastatin induces T cell proliferation by a telomerase reverse transcriptase (TERT) mediated mechanism. Atherosclerosis. 2014;236:312-20 pubmed 出版商
  137. Wu C, He S, Peng Y, Kushwaha K, Lin J, Dong J, et al. TSLPR deficiency attenuates atherosclerotic lesion development associated with the inhibition of TH17 cells and the promotion of regulator T cells in ApoE-deficient mice. J Mol Cell Cardiol. 2014;76:33-45 pubmed 出版商
  138. Lin C, Lo S, Hsu C, Hsieh C, Chang Y, Hou B, et al. T-cell autophagy deficiency increases mortality and suppresses immune responses after sepsis. PLoS ONE. 2014;9:e102066 pubmed 出版商
  139. Boyoglu Barnum S, Chirkova T, Todd S, Barnum T, Gaston K, Jorquera P, et al. Prophylaxis with a respiratory syncytial virus (RSV) anti-G protein monoclonal antibody shifts the adaptive immune response to RSV rA2-line19F infection from Th2 to Th1 in BALB/c mice. J Virol. 2014;88:10569-83 pubmed 出版商
  140. Gerlach K, Hwang Y, Nikolaev A, Atreya R, Dornhoff H, Steiner S, et al. TH9 cells that express the transcription factor PU.1 drive T cell-mediated colitis via IL-9 receptor signaling in intestinal epithelial cells. Nat Immunol. 2014;15:676-86 pubmed 出版商
  141. Bedke T, Iannitti R, De Luca A, Giovannini G, Fallarino F, Berges C, et al. Distinct and complementary roles for Aspergillus fumigatus-specific Tr1 and Foxp3+ regulatory T cells in humans and mice. Immunol Cell Biol. 2014;92:659-70 pubmed 出版商
  142. Assi H, Espinosa J, Suprise S, SOFRONIEW M, Doherty R, Zamler D, et al. Assessing the role of STAT3 in DC differentiation and autologous DC immunotherapy in mouse models of GBM. PLoS ONE. 2014;9:e96318 pubmed 出版商
  143. Qian L, Zhang M, Wu S, Zhong Y, Van Tol E, Cai W. Alkylglycerols modulate the proliferation and differentiation of non-specific agonist and specific antigen-stimulated splenic lymphocytes. PLoS ONE. 2014;9:e96207 pubmed 出版商
  144. Ntranos A, Hall O, Robinson D, Grishkan I, Schott J, Tosi D, et al. FTY720 impairs CD8 T-cell function independently of the sphingosine-1-phosphate pathway. J Neuroimmunol. 2014;270:13-21 pubmed 出版商
  145. Koga T, Hedrich C, Mizui M, Yoshida N, Otomo K, Lieberman L, et al. CaMK4-dependent activation of AKT/mTOR and CREM-? underlies autoimmunity-associated Th17 imbalance. J Clin Invest. 2014;124:2234-45 pubmed 出版商
  146. Martins K, Steffens J, Van Tongeren S, Wells J, Bergeron A, Dickson S, et al. Toll-like receptor agonist augments virus-like particle-mediated protection from Ebola virus with transient immune activation. PLoS ONE. 2014;9:e89735 pubmed 出版商
  147. Bashour K, Gondarenko A, Chen H, Shen K, Liu X, Huse M, et al. CD28 and CD3 have complementary roles in T-cell traction forces. Proc Natl Acad Sci U S A. 2014;111:2241-6 pubmed 出版商
  148. Yang C, Li J, Chiu L, Lan J, Chen D, Chuang H, et al. Dual-specificity phosphatase 14 (DUSP14/MKP6) negatively regulates TCR signaling by inhibiting TAB1 activation. J Immunol. 2014;192:1547-57 pubmed 出版商
  149. Hu Y, Xiao H, Shi T, Oppenheim J, Chen X. Progranulin promotes tumour necrosis factor-induced proliferation of suppressive mouse CD4? Foxp3? regulatory T cells. Immunology. 2014;142:193-201 pubmed 出版商
  150. Lee P, Puppi M, Schluns K, Yu Lee L, Dong C, Lacorazza H. The transcription factor E74-like factor 4 suppresses differentiation of proliferating CD4+ T cells to the Th17 lineage. J Immunol. 2014;192:178-88 pubmed 出版商
  151. Iwata A, Kawashima S, Kobayashi M, Okubo A, Kawashima H, Suto A, et al. Th2-type inflammation instructs inflammatory dendritic cells to induce airway hyperreactivity. Int Immunol. 2014;26:103-14 pubmed 出版商
  152. Salinas N, Olguín J, Castellanos C, Saavedra R. T cell suppression in vitro during Toxoplasma gondii infection is the result of IL-2 competition between Tregs and T cells leading to death of proliferating T cells. Scand J Immunol. 2014;79:1-11 pubmed 出版商
  153. Sumitomo S, Fujio K, Okamura T, Morita K, Ishigaki K, Suzukawa K, et al. Transcription factor early growth response 3 is associated with the TGF-?1 expression and the regulatory activity of CD4-positive T cells in vivo. J Immunol. 2013;191:2351-9 pubmed 出版商
  154. Roy S, Stevens M, So L, Edinger A. Reciprocal effects of rab7 deletion in activated and neglected T cells. Autophagy. 2013;9:1009-23 pubmed 出版商
  155. Dufner A, Schamel W. B cell antigen receptor-induced activation of an IRAK4-dependent signaling pathway revealed by a MALT1-IRAK4 double knockout mouse model. Cell Commun Signal. 2011;9:6 pubmed 出版商
  156. Sheng H, Wang Y, Jin Y, Zhang Q, Zhang Y, Wang L, et al. A critical role of IFNgamma in priming MSC-mediated suppression of T cell proliferation through up-regulation of B7-H1. Cell Res. 2008;18:846-57 pubmed 出版商
  157. Nakae S, Iwakura Y, Suto H, Galli S. Phenotypic differences between Th1 and Th17 cells and negative regulation of Th1 cell differentiation by IL-17. J Leukoc Biol. 2007;81:1258-68 pubmed
  158. Krieg C, Han P, Stone R, Goularte O, Kaye J. Functional analysis of B and T lymphocyte attenuator engagement on CD4+ and CD8+ T cells. J Immunol. 2005;175:6420-7 pubmed