这是一篇来自已证抗体库的有关小鼠 Cd34的综述,是根据293篇发表使用所有方法的文章归纳的。这综述旨在帮助来邦网的访客找到最适合Cd34 抗体。
Cd34 同义词: AU040960

赛默飞世尔
大鼠 单克隆(RAM34)
  • 流式细胞仪; 小鼠; 图 1f
赛默飞世尔 Cd34抗体(Invitrogen, RAM34)被用于被用于流式细胞仪在小鼠样本上 (图 1f). Exp Mol Med (2021) ncbi
大鼠 单克隆(RAM34)
  • 流式细胞仪; 小鼠; 1:50
赛默飞世尔 Cd34抗体(eBioscience, 48-0341-82)被用于被用于流式细胞仪在小鼠样本上浓度为1:50. Cells (2021) ncbi
大鼠 单克隆(RAM34)
  • 流式细胞仪; 小鼠
赛默飞世尔 Cd34抗体(Thermo Fisher Scientific, 11-0341-82)被用于被用于流式细胞仪在小鼠样本上. BMC Biol (2021) ncbi
大鼠 单克隆(RAM34)
  • 流式细胞仪; 小鼠; 图 ds1c
赛默飞世尔 Cd34抗体(Thermo Fisher Scientific, 11-0341-82)被用于被用于流式细胞仪在小鼠样本上 (图 ds1c). Cell Rep (2021) ncbi
大鼠 单克隆(RAM34)
  • 流式细胞仪; 小鼠; 表 2
赛默飞世尔 Cd34抗体(Thermo Fisher, 50-0341-82)被用于被用于流式细胞仪在小鼠样本上 (表 2). Int J Mol Sci (2021) ncbi
大鼠 单克隆(RAM34)
  • 流式细胞仪; 小鼠; 1:100
赛默飞世尔 Cd34抗体(eBioscience, RAM34)被用于被用于流式细胞仪在小鼠样本上浓度为1:100. Nat Commun (2021) ncbi
大鼠 单克隆(RAM34)
  • 流式细胞仪; 小鼠; 图 s1-1f
赛默飞世尔 Cd34抗体(eBioscience, RAM34)被用于被用于流式细胞仪在小鼠样本上 (图 s1-1f). elife (2021) ncbi
大鼠 单克隆(RAM34)
  • 免疫组化; 小鼠; 1:100; 图 1c
赛默飞世尔 Cd34抗体(Invitrogen, RAM34)被用于被用于免疫组化在小鼠样本上浓度为1:100 (图 1c). Aging Cell (2021) ncbi
大鼠 单克隆(RAM34)
  • 流式细胞仪; 小鼠; 1:2000; 图 s1-1
赛默飞世尔 Cd34抗体(ThermoFisher Scientific, 11-0341-82)被用于被用于流式细胞仪在小鼠样本上浓度为1:2000 (图 s1-1). elife (2020) ncbi
大鼠 单克隆(RAM34)
  • 流式细胞仪; 小鼠; 图 2a
赛默飞世尔 Cd34抗体(eBioscience, RAM34)被用于被用于流式细胞仪在小鼠样本上 (图 2a). Aging (Albany NY) (2020) ncbi
大鼠 单克隆(RAM34)
  • 流式细胞仪; 小鼠
赛默飞世尔 Cd34抗体(eBioscience, RAM34)被用于被用于流式细胞仪在小鼠样本上. elife (2020) ncbi
大鼠 单克隆(RAM34)
  • 免疫细胞化学; 小鼠; 1:200; 图 2a
赛默飞世尔 Cd34抗体(eBioscience, RAM34)被用于被用于免疫细胞化学在小鼠样本上浓度为1:200 (图 2a). elife (2020) ncbi
大鼠 单克隆(RAM34)
  • 流式细胞仪; 小鼠; 1:200; 图 s1-3b
赛默飞世尔 Cd34抗体(Thermo Fisher, 48-0341-80)被用于被用于流式细胞仪在小鼠样本上浓度为1:200 (图 s1-3b). elife (2020) ncbi
大鼠 单克隆(RAM34)
  • 流式细胞仪; 小鼠; 图 1c
赛默飞世尔 Cd34抗体(Thermo Fisher, RAM34)被用于被用于流式细胞仪在小鼠样本上 (图 1c). Sci Adv (2020) ncbi
大鼠 单克隆(RAM34)
  • 流式细胞仪; 小鼠; 图 s1b
赛默飞世尔 Cd34抗体(eBioscience, RAM34)被用于被用于流式细胞仪在小鼠样本上 (图 s1b). Science (2020) ncbi
大鼠 单克隆(RAM34)
  • 流式细胞仪; 小鼠; 1:100; 图 s7a
赛默飞世尔 Cd34抗体(Invitrogen, 13-C0341-82)被用于被用于流式细胞仪在小鼠样本上浓度为1:100 (图 s7a). Nature (2020) ncbi
大鼠 单克隆(RAM34)
  • 流式细胞仪; 小鼠; 图 s2a
赛默飞世尔 Cd34抗体(eBioscience, 11-0341)被用于被用于流式细胞仪在小鼠样本上 (图 s2a). Cell (2019) ncbi
大鼠 单克隆(RAM34)
  • 流式细胞仪; 小鼠; 图 3a
赛默飞世尔 Cd34抗体(Thermo Fisher Scientific, 48-0341-82)被用于被用于流式细胞仪在小鼠样本上 (图 3a). Sci Rep (2019) ncbi
大鼠 单克隆(RAM34)
  • 流式细胞仪; 小鼠; 1:100; 图 e1b, e3h
赛默飞世尔 Cd34抗体(eBioscience, 11-0341-85)被用于被用于流式细胞仪在小鼠样本上浓度为1:100 (图 e1b, e3h). Nature (2019) ncbi
大鼠 单克隆(RAM34)
  • 流式细胞仪; 小鼠; 图 s1l
赛默飞世尔 Cd34抗体(eBioscience, 11-0341-82)被用于被用于流式细胞仪在小鼠样本上 (图 s1l). Cell (2019) ncbi
大鼠 单克隆(RAM34)
  • 流式细胞仪; 小鼠; 图 1a
赛默飞世尔 Cd34抗体(Thermo Fisher, RAM34)被用于被用于流式细胞仪在小鼠样本上 (图 1a). Sci Rep (2019) ncbi
大鼠 单克隆(RAM34)
  • 流式细胞仪; 小鼠; 1:700; 图 ex3a
赛默飞世尔 Cd34抗体(eBioscience, 11-0341-85)被用于被用于流式细胞仪在小鼠样本上浓度为1:700 (图 ex3a). Nature (2019) ncbi
大鼠 单克隆(RAM34)
  • 流式细胞仪; 小鼠; 图 3a
赛默飞世尔 Cd34抗体(eBioscience, RAM34)被用于被用于流式细胞仪在小鼠样本上 (图 3a). Blood (2019) ncbi
大鼠 单克隆(RAM34)
  • 流式细胞仪; 小鼠; 图 1d
赛默飞世尔 Cd34抗体(eBioscience, 11-0341-85)被用于被用于流式细胞仪在小鼠样本上 (图 1d). Cell Stem Cell (2018) ncbi
大鼠 单克隆(RAM34)
  • 流式细胞仪; 小鼠; 图 1b
赛默飞世尔 Cd34抗体(eBiosciences, RAM34)被用于被用于流式细胞仪在小鼠样本上 (图 1b). EMBO J (2018) ncbi
大鼠 单克隆(RAM34)
  • 流式细胞仪; 小鼠; 图 1b
赛默飞世尔 Cd34抗体(eBioscience, RAM34)被用于被用于流式细胞仪在小鼠样本上 (图 1b). Genome Biol (2018) ncbi
大鼠 单克隆(RAM34)
  • 流式细胞仪; 小鼠; 图 6b
赛默飞世尔 Cd34抗体(BD Biosciences, 11-0341-82)被用于被用于流式细胞仪在小鼠样本上 (图 6b). Cell Stem Cell (2018) ncbi
大鼠 单克隆(RAM34)
  • 流式细胞仪; 小鼠; 图 s1a
赛默飞世尔 Cd34抗体(eBioscience, 11-0341-85)被用于被用于流式细胞仪在小鼠样本上 (图 s1a). Stem Cell Reports (2018) ncbi
大鼠 单克隆(RAM34)
  • 流式细胞仪; 小鼠; 图 1e
赛默飞世尔 Cd34抗体(eBioscience, RAM34)被用于被用于流式细胞仪在小鼠样本上 (图 1e). Cell Death Dis (2018) ncbi
大鼠 单克隆(RAM34)
  • 流式细胞仪; 小鼠; 图 1g
赛默飞世尔 Cd34抗体(eBioscience, RAM34)被用于被用于流式细胞仪在小鼠样本上 (图 1g). Cell Death Dis (2018) ncbi
大鼠 单克隆(RAM34)
  • 流式细胞仪; 小鼠; 1:50; 图 7a
赛默飞世尔 Cd34抗体(eBioscience, 50-0341-82)被用于被用于流式细胞仪在小鼠样本上浓度为1:50 (图 7a). Mol Cell Biol (2018) ncbi
大鼠 单克隆(RAM34)
  • 流式细胞仪; 小鼠; 图 s1e
赛默飞世尔 Cd34抗体(eBiosciences, RAM34)被用于被用于流式细胞仪在小鼠样本上 (图 s1e). Cell Stem Cell (2018) ncbi
大鼠 单克隆(RAM34)
  • 流式细胞仪; 小鼠; 图 s1a
赛默飞世尔 Cd34抗体(eBiosciences, RAM34)被用于被用于流式细胞仪在小鼠样本上 (图 s1a). Cell Discov (2018) ncbi
大鼠 单克隆(RAM34)
  • 流式细胞仪; 小鼠; 图 2c
赛默飞世尔 Cd34抗体(eBioscience, RAM34)被用于被用于流式细胞仪在小鼠样本上 (图 2c). Mol Cell Biol (2018) ncbi
大鼠 单克隆(RAM34)
  • 流式细胞仪; 小鼠; 图 1f
赛默飞世尔 Cd34抗体(eBioscience, 13-0341-82)被用于被用于流式细胞仪在小鼠样本上 (图 1f). Cell Death Dis (2018) ncbi
大鼠 单克隆(RAM34)
  • 流式细胞仪; 小鼠; 1:67; 图 s5d
赛默飞世尔 Cd34抗体(eBioscience, 50-0341-82)被用于被用于流式细胞仪在小鼠样本上浓度为1:67 (图 s5d). Nat Commun (2018) ncbi
大鼠 单克隆(RAM34)
  • 免疫组化; 小鼠; 1:200; 图 e3b
赛默飞世尔 Cd34抗体(Thermo Fisher, 14-0341-82)被用于被用于免疫组化在小鼠样本上浓度为1:200 (图 e3b). Nature (2018) ncbi
大鼠 单克隆(RAM34)
  • 流式细胞仪; 小鼠; 1:400; 图 2a
赛默飞世尔 Cd34抗体(eBioscience, 48-0341-82)被用于被用于流式细胞仪在小鼠样本上浓度为1:400 (图 2a). J Clin Invest (2018) ncbi
大鼠 单克隆(RAM34)
  • 流式细胞仪; 小鼠; 图 s1
赛默飞世尔 Cd34抗体(eBiosciences, RAM34)被用于被用于流式细胞仪在小鼠样本上 (图 s1). Cell (2018) ncbi
大鼠 单克隆(RAM34)
  • 流式细胞仪; 小鼠; 图 2d
赛默飞世尔 Cd34抗体(eBiosciences, 11-0341)被用于被用于流式细胞仪在小鼠样本上 (图 2d). Cell (2018) ncbi
大鼠 单克隆(RAM34)
  • 流式细胞仪; 小鼠; 图 2a
赛默飞世尔 Cd34抗体(eBioscience, RAM-34)被用于被用于流式细胞仪在小鼠样本上 (图 2a). Nat Commun (2018) ncbi
大鼠 单克隆(RAM34)
  • 流式细胞仪; 小鼠; 1:100; 图 3a
赛默飞世尔 Cd34抗体(eBioscience, 50-0341-80)被用于被用于流式细胞仪在小鼠样本上浓度为1:100 (图 3a). Cell (2017) ncbi
大鼠 单克隆(RAM34)
  • 流式细胞仪; 小鼠; 图 s1a
赛默飞世尔 Cd34抗体(eBiosciences, 11-0341-85)被用于被用于流式细胞仪在小鼠样本上 (图 s1a). Nature (2017) ncbi
大鼠 单克隆(RAM34)
  • 免疫组化-冰冻切片; 小鼠; 1:150; 图 5a
赛默飞世尔 Cd34抗体(eBioscience, RAM34)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:150 (图 5a). Nat Commun (2017) ncbi
大鼠 单克隆(RAM34)
  • 免疫细胞化学; 小鼠; 图 3b
赛默飞世尔 Cd34抗体(eBiosciences, 11-0341)被用于被用于免疫细胞化学在小鼠样本上 (图 3b). Sci Rep (2017) ncbi
大鼠 单克隆(RAM34)
  • 流式细胞仪; 小鼠; 图 1c,d
赛默飞世尔 Cd34抗体(eBioscience, RAM34)被用于被用于流式细胞仪在小鼠样本上 (图 1c,d). EMBO J (2017) ncbi
大鼠 单克隆(RAM34)
  • 流式细胞仪; 小鼠; 图 s1g
赛默飞世尔 Cd34抗体(eBiosciences, 11-0341-85)被用于被用于流式细胞仪在小鼠样本上 (图 s1g). Nature (2017) ncbi
大鼠 单克隆(RAM34)
  • 流式细胞仪; 小鼠; 图 4a
赛默飞世尔 Cd34抗体(eBiosciences, RAM34)被用于被用于流式细胞仪在小鼠样本上 (图 4a). J Exp Med (2017) ncbi
大鼠 单克隆(RAM34)
  • 流式细胞仪; 小鼠; 图 3e
赛默飞世尔 Cd34抗体(eBiosciences, Ram34)被用于被用于流式细胞仪在小鼠样本上 (图 3e). Methods Mol Biol (2017) ncbi
大鼠 单克隆(RAM34)
  • 免疫组化-冰冻切片; 小鼠; 1:100; 图 3l
赛默飞世尔 Cd34抗体(eBioscience, RAM34)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:100 (图 3l). Genes Dev (2017) ncbi
大鼠 单克隆(RAM34)
  • 流式细胞仪; 小鼠; 图 2c
赛默飞世尔 Cd34抗体(eBiosciences, RAM34)被用于被用于流式细胞仪在小鼠样本上 (图 2c). Proc Natl Acad Sci U S A (2017) ncbi
大鼠 单克隆(RAM34)
  • 流式细胞仪; 小鼠; 图 s4
赛默飞世尔 Cd34抗体(EBioscience, RAM34)被用于被用于流式细胞仪在小鼠样本上 (图 s4). Haematologica (2017) ncbi
大鼠 单克隆(RAM34)
  • 流式细胞仪; 小鼠; 图 s2a
赛默飞世尔 Cd34抗体(eBioscience, RAM34)被用于被用于流式细胞仪在小鼠样本上 (图 s2a). Oncotarget (2017) ncbi
大鼠 单克隆(RAM34)
  • 流式细胞仪; 小鼠
赛默飞世尔 Cd34抗体(eBioscience, RAM34)被用于被用于流式细胞仪在小鼠样本上. J Cell Physiol (2017) ncbi
大鼠 单克隆(RAM34)
  • 流式细胞仪; 小鼠; 图 s2b
赛默飞世尔 Cd34抗体(eBioscience, 48-0341-80)被用于被用于流式细胞仪在小鼠样本上 (图 s2b). Nucleic Acids Res (2017) ncbi
大鼠 单克隆(RAM34)
  • 流式细胞仪; 大鼠; 图 1a
赛默飞世尔 Cd34抗体(eBioscience, 11-0341-82)被用于被用于流式细胞仪在大鼠样本上 (图 1a). Int J Mol Med (2017) ncbi
大鼠 单克隆(RAM34)
  • 流式细胞仪; 小鼠; 图 2d
赛默飞世尔 Cd34抗体(eBioscience, RAM34)被用于被用于流式细胞仪在小鼠样本上 (图 2d). Cell Death Dis (2016) ncbi
大鼠 单克隆(RAM34)
  • 流式细胞仪; 小鼠; 图 1G
赛默飞世尔 Cd34抗体(eBioscience, 50-0341-82)被用于被用于流式细胞仪在小鼠样本上 (图 1G). Cell (2016) ncbi
大鼠 单克隆(RAM34)
  • 流式细胞仪; 小鼠; 图 3d
赛默飞世尔 Cd34抗体(eBioscience, 48-0341)被用于被用于流式细胞仪在小鼠样本上 (图 3d). Sci Rep (2016) ncbi
大鼠 单克隆(RAM34)
  • 流式细胞仪; 小鼠; 图 st1
赛默飞世尔 Cd34抗体(eBioscience, RAM34)被用于被用于流式细胞仪在小鼠样本上 (图 st1). J Immunol (2016) ncbi
大鼠 单克隆(RAM34)
  • 流式细胞仪; 人类; 1:50
赛默飞世尔 Cd34抗体(eBioscience, RAM34)被用于被用于流式细胞仪在人类样本上浓度为1:50. Nat Commun (2016) ncbi
大鼠 单克隆(RAM34)
  • 免疫组化-石蜡切片; 小鼠; 1:100; 图 5c
赛默飞世尔 Cd34抗体(eBioscience, RAM34)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:100 (图 5c). Dev Biol (2016) ncbi
大鼠 单克隆(RAM34)
  • 流式细胞仪; 小鼠; 图 s1b
赛默飞世尔 Cd34抗体(eBiosciences, 11-0341-81)被用于被用于流式细胞仪在小鼠样本上 (图 s1b). J Clin Invest (2016) ncbi
大鼠 单克隆(MEC14.7)
  • 免疫组化-石蜡切片; 小鼠; 图 6a
赛默飞世尔 Cd34抗体(Pierce Biotech, MA5-17825)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 6a). Int Immunopharmacol (2016) ncbi
大鼠 单克隆(RAM34)
  • 流式细胞仪; 小鼠; 图 4a
赛默飞世尔 Cd34抗体(ebioscience, 11-0341-82)被用于被用于流式细胞仪在小鼠样本上 (图 4a). PLoS ONE (2016) ncbi
大鼠 单克隆(RAM34)
  • 流式细胞仪; 小鼠; 1:200; 图 7a
赛默飞世尔 Cd34抗体(eBioscience, 11-0341-81)被用于被用于流式细胞仪在小鼠样本上浓度为1:200 (图 7a). Nat Commun (2016) ncbi
大鼠 单克隆(RAM34)
  • 流式细胞仪; 小鼠; 图 ex1b
赛默飞世尔 Cd34抗体(eBioscience, RAM34)被用于被用于流式细胞仪在小鼠样本上 (图 ex1b). Nature (2016) ncbi
大鼠 单克隆(RAM34)
  • 免疫组化; 小鼠; 图 4a
赛默飞世尔 Cd34抗体(eBioscience, RAM34)被用于被用于免疫组化在小鼠样本上 (图 4a). PLoS ONE (2016) ncbi
大鼠 单克隆(RAM34)
  • 流式细胞仪; 小鼠; 图 1
赛默飞世尔 Cd34抗体(eBioscience, RAM34)被用于被用于流式细胞仪在小鼠样本上 (图 1). Immunity (2016) ncbi
大鼠 单克隆(RAM34)
  • 流式细胞仪; 小鼠; 图 s3a
赛默飞世尔 Cd34抗体(eBioscience, 14-0341)被用于被用于流式细胞仪在小鼠样本上 (图 s3a). Eur J Cell Biol (2016) ncbi
大鼠 单克隆(RAM34)
  • 流式细胞仪; 小鼠; 图 s1
赛默飞世尔 Cd34抗体(eBioscience, 14-0341-85)被用于被用于流式细胞仪在小鼠样本上 (图 s1). Leukemia (2016) ncbi
大鼠 单克隆(RAM34)
  • 流式细胞仪; 小鼠; 图 s1
赛默飞世尔 Cd34抗体(eBioscience, 11-0341-85)被用于被用于流式细胞仪在小鼠样本上 (图 s1). Nat Cell Biol (2016) ncbi
大鼠 单克隆(RAM34)
  • 流式细胞仪; 小鼠
赛默飞世尔 Cd34抗体(eBioscience, 56-0341)被用于被用于流式细胞仪在小鼠样本上. Biol Open (2016) ncbi
大鼠 单克隆(RAM34)
  • 流式细胞仪; 小鼠; 图 st1
赛默飞世尔 Cd34抗体(eBioscience, RAM34)被用于被用于流式细胞仪在小鼠样本上 (图 st1). Nature (2016) ncbi
大鼠 单克隆(RAM34)
  • 流式细胞仪; 小鼠; 图 3
赛默飞世尔 Cd34抗体(eBioscience, RAM34)被用于被用于流式细胞仪在小鼠样本上 (图 3). PLoS ONE (2016) ncbi
大鼠 单克隆(RAM34)
  • 流式细胞仪; 小鼠; 1:400; 图 7
赛默飞世尔 Cd34抗体(eBioscience, RAM34)被用于被用于流式细胞仪在小鼠样本上浓度为1:400 (图 7). PLoS ONE (2016) ncbi
大鼠 单克隆(RAM34)
  • 流式细胞仪; 小鼠; 1:50
赛默飞世尔 Cd34抗体(eBioscience, 50-0341)被用于被用于流式细胞仪在小鼠样本上浓度为1:50. Science (2016) ncbi
大鼠 单克隆(RAM34)
  • 流式细胞仪; 小鼠
赛默飞世尔 Cd34抗体(eBioscience, RAM34)被用于被用于流式细胞仪在小鼠样本上. Nature (2016) ncbi
大鼠 单克隆(RAM34)
  • 流式细胞仪; 小鼠; 图 s12
赛默飞世尔 Cd34抗体(ebioscience, 11-0341-85)被用于被用于流式细胞仪在小鼠样本上 (图 s12). Nat Commun (2016) ncbi
大鼠 单克隆(RAM34)
  • 流式细胞仪; 小鼠; 1:100; 图 s1a
赛默飞世尔 Cd34抗体(eBioscience, 50-0341-80)被用于被用于流式细胞仪在小鼠样本上浓度为1:100 (图 s1a). Nat Cell Biol (2016) ncbi
大鼠 单克隆(RAM34)
  • 流式细胞仪; 小鼠
赛默飞世尔 Cd34抗体(eBioscience, RAM34)被用于被用于流式细胞仪在小鼠样本上. J Clin Invest (2016) ncbi
大鼠 单克隆(RAM34)
  • 流式细胞仪; 大鼠; 图 2
赛默飞世尔 Cd34抗体(eBioscience, 12-0341)被用于被用于流式细胞仪在大鼠样本上 (图 2). Mol Med Rep (2016) ncbi
大鼠 单克隆(RAM34)
  • 流式细胞仪; 人类; 图 2
赛默飞世尔 Cd34抗体(eBioscience, 13-0341)被用于被用于流式细胞仪在人类样本上 (图 2). Nat Med (2015) ncbi
大鼠 单克隆(RAM34)
  • 流式细胞仪; 小鼠; 图 1b
赛默飞世尔 Cd34抗体(eBioscience, 50-0341)被用于被用于流式细胞仪在小鼠样本上 (图 1b). J Exp Med (2015) ncbi
大鼠 单克隆(RAM34)
  • 流式细胞仪; 小鼠; 1:25
赛默飞世尔 Cd34抗体(eBioscience, 11-0341-85)被用于被用于流式细胞仪在小鼠样本上浓度为1:25. Nat Commun (2015) ncbi
大鼠 单克隆(RAM34)
  • 流式细胞仪; 人类; 图 2g
赛默飞世尔 Cd34抗体(eBioscience, 50-0341- 82)被用于被用于流式细胞仪在人类样本上 (图 2g). Nature (2015) ncbi
大鼠 单克隆(RAM34)
  • 流式细胞仪; 小鼠; 图 1
赛默飞世尔 Cd34抗体(eBioscience, RAM34)被用于被用于流式细胞仪在小鼠样本上 (图 1). PLoS ONE (2015) ncbi
大鼠 单克隆(RAM34)
  • 流式细胞仪; 小鼠; 图 2
赛默飞世尔 Cd34抗体(eBioscience, RAM34)被用于被用于流式细胞仪在小鼠样本上 (图 2). PLoS ONE (2015) ncbi
大鼠 单克隆(RAM34)
  • 流式细胞仪; 小鼠; 图 2
赛默飞世尔 Cd34抗体(eBioscience, 11-0341-82)被用于被用于流式细胞仪在小鼠样本上 (图 2). PLoS ONE (2015) ncbi
大鼠 单克隆(RAM34)
  • 免疫组化; 小鼠; 1:50; 图 5c
赛默飞世尔 Cd34抗体(eBioscience, RAM34)被用于被用于免疫组化在小鼠样本上浓度为1:50 (图 5c). J Invest Dermatol (2015) ncbi
大鼠 单克隆(RAM34)
  • 流式细胞仪; 小鼠; 图 s1
赛默飞世尔 Cd34抗体(eBioscience, 11-0341-82)被用于被用于流式细胞仪在小鼠样本上 (图 s1). Cell Death Dis (2015) ncbi
大鼠 单克隆(RAM34)
  • 免疫组化; 小鼠; 1:50; 图 7
赛默飞世尔 Cd34抗体(eBoiscience, 14-0341-85)被用于被用于免疫组化在小鼠样本上浓度为1:50 (图 7). Nat Cell Biol (2015) ncbi
大鼠 单克隆(RAM34)
  • 流式细胞仪; 小鼠; 1:30
赛默飞世尔 Cd34抗体(eBioscience, RAM34)被用于被用于流式细胞仪在小鼠样本上浓度为1:30. PLoS ONE (2015) ncbi
大鼠 单克隆(RAM34)
  • 流式细胞仪; 人类; 表 5
赛默飞世尔 Cd34抗体(eBioscience, RAM34)被用于被用于流式细胞仪在人类样本上 (表 5). Gastroenterology (2015) ncbi
大鼠 单克隆(RAM34)
  • 流式细胞仪; 小鼠; 图 2
赛默飞世尔 Cd34抗体(eBiosciences, RAM34)被用于被用于流式细胞仪在小鼠样本上 (图 2). Stem Cell Res (2015) ncbi
大鼠 单克隆(RAM34)
  • 流式细胞仪; 小鼠; 图 1
赛默飞世尔 Cd34抗体(eBioscience, RAM34)被用于被用于流式细胞仪在小鼠样本上 (图 1). J Exp Med (2015) ncbi
大鼠 单克隆(RAM34)
  • 流式细胞仪; 小鼠; 图 s1
赛默飞世尔 Cd34抗体(eBioscience, 50-0341)被用于被用于流式细胞仪在小鼠样本上 (图 s1). Sci Transl Med (2015) ncbi
大鼠 单克隆(RAM34)
  • 流式细胞仪; 小鼠; 表 s3
赛默飞世尔 Cd34抗体(eBioscience, RAM34)被用于被用于流式细胞仪在小鼠样本上 (表 s3). PLoS ONE (2015) ncbi
大鼠 单克隆(RAM34)
  • 流式细胞仪; 小鼠; 图 1
赛默飞世尔 Cd34抗体(eBiosciences, RAM34)被用于被用于流式细胞仪在小鼠样本上 (图 1). Blood (2015) ncbi
大鼠 单克隆(RAM34)
  • 流式细胞仪; 小鼠
赛默飞世尔 Cd34抗体(eBioscience, RAM34)被用于被用于流式细胞仪在小鼠样本上. J Proteome Res (2015) ncbi
大鼠 单克隆(RAM34)
  • 流式细胞仪; 小鼠; 图 s3
赛默飞世尔 Cd34抗体(eBioscience, RAM34)被用于被用于流式细胞仪在小鼠样本上 (图 s3). Exp Hematol (2015) ncbi
大鼠 单克隆(RAM34)
  • 流式细胞仪; 小鼠; 图 2
赛默飞世尔 Cd34抗体(eBioscience, RAM34)被用于被用于流式细胞仪在小鼠样本上 (图 2). Development (2015) ncbi
大鼠 单克隆(RAM34)
  • 流式细胞仪; 小鼠; 1:400
赛默飞世尔 Cd34抗体(eBioscience, 13-0341-82)被用于被用于流式细胞仪在小鼠样本上浓度为1:400. Proc Natl Acad Sci U S A (2014) ncbi
大鼠 单克隆(RAM34)
  • 流式细胞仪; 小鼠; 图 s1
赛默飞世尔 Cd34抗体(eBioscience, 11-0341-85)被用于被用于流式细胞仪在小鼠样本上 (图 s1). Nature (2014) ncbi
大鼠 单克隆(RAM34)
  • 流式细胞仪; 小鼠
赛默飞世尔 Cd34抗体(eBioscience, 50-0341)被用于被用于流式细胞仪在小鼠样本上. J Clin Invest (2014) ncbi
大鼠 单克隆(RAM34)
  • 流式细胞仪; 小鼠
赛默飞世尔 Cd34抗体(eBioscience, RAM34)被用于被用于流式细胞仪在小鼠样本上. Sci Rep (2014) ncbi
大鼠 单克隆(RAM34)
  • 流式细胞仪; 小鼠
赛默飞世尔 Cd34抗体(eBioscience, 50-0341-82)被用于被用于流式细胞仪在小鼠样本上. Nat Med (2014) ncbi
大鼠 单克隆(RAM34)
  • 流式细胞仪; 小鼠; 10 ug/ml; 表 1
赛默飞世尔 Cd34抗体(eBioscience, RAM34)被用于被用于流式细胞仪在小鼠样本上浓度为10 ug/ml (表 1). PLoS ONE (2013) ncbi
大鼠 单克隆(RAM34)
  • 免疫组化; 小鼠
赛默飞世尔 Cd34抗体(eBioscience, 13-0341-85)被用于被用于免疫组化在小鼠样本上. Cell Death Differ (2014) ncbi
大鼠 单克隆(RAM34)
  • 流式细胞仪; 人类
  • 免疫组化; 小鼠
赛默飞世尔 Cd34抗体(eBioscience, RAM34)被用于被用于流式细胞仪在人类样本上 和 被用于免疫组化在小鼠样本上. Int J Med Sci (2013) ncbi
大鼠 单克隆(RAM34)
  • 流式细胞仪; 小鼠; 1:100
赛默飞世尔 Cd34抗体(eBioscience, 13-0341-81)被用于被用于流式细胞仪在小鼠样本上浓度为1:100. Genes Dev (2013) ncbi
大鼠 单克隆(RAM34)
  • 流式细胞仪; 小鼠; 图 6a
赛默飞世尔 Cd34抗体(eBiosciences, RAM34)被用于被用于流式细胞仪在小鼠样本上 (图 6a). Nat Methods (2013) ncbi
大鼠 单克隆(RAM34)
  • 流式细胞仪; 小鼠; 图 7
赛默飞世尔 Cd34抗体(eBioscience, RAM34)被用于被用于流式细胞仪在小鼠样本上 (图 7). PLoS ONE (2013) ncbi
大鼠 单克隆(RAM34)
  • 流式细胞仪; 小鼠
赛默飞世尔 Cd34抗体(eBioscience, RAM-34)被用于被用于流式细胞仪在小鼠样本上. Biomed Res Int (2013) ncbi
大鼠 单克隆(RAM34)
  • 流式细胞仪; 小鼠
赛默飞世尔 Cd34抗体(eBioscience, 11-0341)被用于被用于流式细胞仪在小鼠样本上. Exp Hematol (2012) ncbi
大鼠 单克隆(RAM34)
  • 流式细胞仪; 小鼠
赛默飞世尔 Cd34抗体(eBioscience, RAM34)被用于被用于流式细胞仪在小鼠样本上. Haematologica (2011) ncbi
大鼠 单克隆(RAM34)
  • 免疫组化; 小鼠; 1:50; 图 3
赛默飞世尔 Cd34抗体(eBioscience, RAM34)被用于被用于免疫组化在小鼠样本上浓度为1:50 (图 3). EMBO J (2011) ncbi
大鼠 单克隆(MEC14.7)
  • 流式细胞仪; 小鼠; 图 2
赛默飞世尔 Cd34抗体(Invitrogen, MEC 14.7)被用于被用于流式细胞仪在小鼠样本上 (图 2). Blood (2010) ncbi
大鼠 单克隆(MEC 14.7)
  • 流式细胞仪; 小鼠; 图 2
赛默飞世尔 Cd34抗体(Invitrogen, MEC 14.7)被用于被用于流式细胞仪在小鼠样本上 (图 2). Blood (2010) ncbi
大鼠 单克隆(RAM34)
  • 流式细胞仪; 小鼠; 图 1, 2, 3
赛默飞世尔 Cd34抗体(eBioscience, RAM34)被用于被用于流式细胞仪在小鼠样本上 (图 1, 2, 3). Blood (2010) ncbi
大鼠 单克隆(RAM34)
  • 流式细胞仪; 小鼠; 图 1
赛默飞世尔 Cd34抗体(eBioscience, RAM34)被用于被用于流式细胞仪在小鼠样本上 (图 1). Blood (2009) ncbi
大鼠 单克隆(RAM34)
  • 流式细胞仪; 小鼠; 图 1
赛默飞世尔 Cd34抗体(eBioscience, 17-0341)被用于被用于流式细胞仪在小鼠样本上 (图 1). Stem Cells Dev (2010) ncbi
大鼠 单克隆(RAM34)
  • 流式细胞仪; 小鼠; 图 s5
赛默飞世尔 Cd34抗体(eBioscience, RAM34)被用于被用于流式细胞仪在小鼠样本上 (图 s5). Nat Immunol (2008) ncbi
大鼠 单克隆(MEC14.7)
  • 流式细胞仪; 小鼠
赛默飞世尔 Cd34抗体(Invitrogen/Caltag Laboratories, MEC14.7)被用于被用于流式细胞仪在小鼠样本上. Cancer Res (2007) ncbi
大鼠 单克隆(RAM34)
  • 流式细胞仪; 小鼠; 图 1
赛默飞世尔 Cd34抗体(eBioscience, RAM34)被用于被用于流式细胞仪在小鼠样本上 (图 1). J Leukoc Biol (2007) ncbi
大鼠 单克隆(RAM34)
  • 流式细胞仪; 小鼠; 图 6
赛默飞世尔 Cd34抗体(eBioscience, RAM34)被用于被用于流式细胞仪在小鼠样本上 (图 6). Blood (2006) ncbi
艾博抗(上海)贸易有限公司
domestic rabbit 单克隆(EP373Y)
  • 免疫印迹; 小鼠; 1:1000; 图 5a
艾博抗(上海)贸易有限公司 Cd34抗体(Abcam, ab81289)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 5a). J Diabetes Res (2021) ncbi
domestic rabbit 单克隆(EP373Y)
  • 免疫组化-石蜡切片; 小鼠; 1:3000; 图 3a
艾博抗(上海)贸易有限公司 Cd34抗体(Abcam, ab81289)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:3000 (图 3a). Front Immunol (2021) ncbi
domestic rabbit 单克隆(EP373Y)
  • 免疫组化; 大鼠; 图 5
艾博抗(上海)贸易有限公司 Cd34抗体(Abcam, ab81289)被用于被用于免疫组化在大鼠样本上 (图 5). Front Physiol (2021) ncbi
domestic rabbit 单克隆(EP373Y)
  • 流式细胞仪; 人类
艾博抗(上海)贸易有限公司 Cd34抗体(Abcam, ab81289)被用于被用于流式细胞仪在人类样本上. Theranostics (2021) ncbi
domestic rabbit 单克隆(EP373Y)
  • 免疫组化; 人类; 1:200; 图 10
艾博抗(上海)贸易有限公司 Cd34抗体(Abcam, ab81289)被用于被用于免疫组化在人类样本上浓度为1:200 (图 10). Biomedicines (2021) ncbi
domestic rabbit 单克隆(EP373Y)
  • 免疫组化-石蜡切片; 人类; 1:200; 图 s1g
艾博抗(上海)贸易有限公司 Cd34抗体(Abcam, ab81289)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:200 (图 s1g). Bone Res (2021) ncbi
domestic rabbit 单克隆(EP373Y)
  • 免疫组化-石蜡切片; 大鼠; 1:2500; 图 1c
艾博抗(上海)贸易有限公司 Cd34抗体(Abcam, ab81289)被用于被用于免疫组化-石蜡切片在大鼠样本上浓度为1:2500 (图 1c). Exp Ther Med (2021) ncbi
大鼠 单克隆(MEC 14.7)
  • 免疫组化; 小鼠; 1:200; 图 2a
艾博抗(上海)贸易有限公司 Cd34抗体(Abcam, ab8158)被用于被用于免疫组化在小鼠样本上浓度为1:200 (图 2a). Cancer Res (2021) ncbi
domestic rabbit 单克隆(EP373Y)
  • 免疫组化; 小鼠; 1:200; 图 s1h
艾博抗(上海)贸易有限公司 Cd34抗体(Abcam, ab81289)被用于被用于免疫组化在小鼠样本上浓度为1:200 (图 s1h). Nat Commun (2021) ncbi
domestic rabbit 单克隆(EP373Y)
  • 免疫组化-冰冻切片; 小鼠; 1:200; 图 s1a, s1b
艾博抗(上海)贸易有限公司 Cd34抗体(Abcam, ab81289)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:200 (图 s1a, s1b). J Clin Invest (2021) ncbi
domestic rabbit 单克隆(EP373Y)
  • 免疫组化; 小鼠; 图 1b
艾博抗(上海)贸易有限公司 Cd34抗体(abcam, ab81289)被用于被用于免疫组化在小鼠样本上 (图 1b). Nat Commun (2021) ncbi
domestic rabbit 单克隆(EP373Y)
  • 免疫组化-石蜡切片; 人类; 1:100; 图 2c
  • 免疫组化-石蜡切片; 小鼠; 1:100; 图 2c
艾博抗(上海)贸易有限公司 Cd34抗体(Abcam, ab81289)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100 (图 2c) 和 被用于免疫组化-石蜡切片在小鼠样本上浓度为1:100 (图 2c). Genes Dev (2021) ncbi
domestic rabbit 单克隆(EP373Y)
  • 免疫组化-石蜡切片; 人类; 1:500; 图 1c
艾博抗(上海)贸易有限公司 Cd34抗体(Abcam, ab81289)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:500 (图 1c). Aging (Albany NY) (2021) ncbi
domestic rabbit 单克隆(EP373Y)
  • 免疫印迹; 小鼠; 1:10,000; 图 7c
艾博抗(上海)贸易有限公司 Cd34抗体(Abcam, ab81289)被用于被用于免疫印迹在小鼠样本上浓度为1:10,000 (图 7c). Sci Rep (2021) ncbi
小鼠 单克隆(QBEND-10)
  • 免疫组化-石蜡切片; 大鼠; 1:400; 图 4a
艾博抗(上海)贸易有限公司 Cd34抗体(Abcam, ab8536)被用于被用于免疫组化-石蜡切片在大鼠样本上浓度为1:400 (图 4a). Mol Med Rep (2021) ncbi
domestic rabbit 单克隆(EP373Y)
  • 免疫组化-石蜡切片; 人类; 1:2000; 图 7b
艾博抗(上海)贸易有限公司 Cd34抗体(Abcam, ab81289)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:2000 (图 7b). Aging (Albany NY) (2020) ncbi
domestic rabbit 单克隆(EP373Y)
  • 免疫组化; 人类
艾博抗(上海)贸易有限公司 Cd34抗体(Abcam, ab81289)被用于被用于免疫组化在人类样本上. elife (2020) ncbi
domestic rabbit 单克隆(EP373Y)
  • 免疫印迹; domestic rabbit; 1:10,000; 图 6b
艾博抗(上海)贸易有限公司 Cd34抗体(Abcam, ab81289)被用于被用于免疫印迹在domestic rabbit样本上浓度为1:10,000 (图 6b). Invest Ophthalmol Vis Sci (2020) ncbi
domestic rabbit 单克隆(EP373Y)
  • 免疫组化-石蜡切片; 小鼠; 图 2b
艾博抗(上海)贸易有限公司 Cd34抗体(Abcam, ab81289)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 2b). Front Cell Dev Biol (2020) ncbi
domestic rabbit 单克隆(EP373Y)
  • 免疫组化-石蜡切片; 大鼠; 1:1000; 图 5
艾博抗(上海)贸易有限公司 Cd34抗体(Abcam, ab81289)被用于被用于免疫组化-石蜡切片在大鼠样本上浓度为1:1000 (图 5). Medicina (Kaunas) (2020) ncbi
domestic rabbit 单克隆(EP373Y)
  • 免疫组化-石蜡切片; 大鼠; 1:200; 图 5a
艾博抗(上海)贸易有限公司 Cd34抗体(Abcam, ab81289)被用于被用于免疫组化-石蜡切片在大鼠样本上浓度为1:200 (图 5a). BMJ Open Diabetes Res Care (2020) ncbi
domestic rabbit 单克隆(EP373Y)
  • 免疫组化-石蜡切片; 人类; 1:100; 图 1h
艾博抗(上海)贸易有限公司 Cd34抗体(Abcam, ab81289)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100 (图 1h). Front Oncol (2020) ncbi
domestic rabbit 单克隆(EP373Y)
  • 免疫组化-石蜡切片; 大鼠; 1:200; 图 5
艾博抗(上海)贸易有限公司 Cd34抗体(Abcam, ab81289)被用于被用于免疫组化-石蜡切片在大鼠样本上浓度为1:200 (图 5). Heliyon (2020) ncbi
大鼠 单克隆(MEC 14.7)
  • 免疫组化-石蜡切片; 小鼠; 1:50; 图 1c
艾博抗(上海)贸易有限公司 Cd34抗体(Abcam, ab8158)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:50 (图 1c). Stem Cell Res Ther (2020) ncbi
domestic rabbit 单克隆(EP373Y)
  • 免疫组化-石蜡切片; 小鼠; 1:300; 图 s14a, s14b
艾博抗(上海)贸易有限公司 Cd34抗体(Abcam, ab81289)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:300 (图 s14a, s14b). Nat Commun (2020) ncbi
domestic rabbit 单克隆(EP373Y)
  • 免疫组化-石蜡切片; 人类; 1:600; 图 2c
艾博抗(上海)贸易有限公司 Cd34抗体(Abcam, ab81289)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:600 (图 2c). Sci Rep (2020) ncbi
domestic rabbit 单克隆
  • 免疫组化-石蜡切片; 小鼠; 1:1000; 图 1f
艾博抗(上海)贸易有限公司 Cd34抗体(Abcam, ab198395)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:1000 (图 1f). BMC Cancer (2019) ncbi
domestic rabbit 单克隆(EP373Y)
  • 免疫组化-石蜡切片; 人类; 1:100; 图 4d
艾博抗(上海)贸易有限公司 Cd34抗体(Abcam, AB81289)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100 (图 4d). Nature (2019) ncbi
domestic rabbit 单克隆(EP373Y)
  • 免疫组化-石蜡切片; 人类; 1:100; 图 1e
艾博抗(上海)贸易有限公司 Cd34抗体(Abcam, ab81289)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100 (图 1e). Int J Oncol (2019) ncbi
domestic rabbit 单克隆(EP373Y)
  • 免疫组化-冰冻切片; 小鼠; 图 1a
艾博抗(上海)贸易有限公司 Cd34抗体(Abcam, ab81289)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 1a). Cell Rep (2019) ncbi
小鼠 单克隆(QBEND-10)
  • 免疫组化-石蜡切片; 人类; 图 1c
艾博抗(上海)贸易有限公司 Cd34抗体(Abcam, ab8536)被用于被用于免疫组化-石蜡切片在人类样本上 (图 1c). J Clin Invest (2019) ncbi
大鼠 单克隆(MEC 14.7)
  • 流式细胞仪; 小鼠; 1:100; 图 s1
艾博抗(上海)贸易有限公司 Cd34抗体(Abcam, ab8158)被用于被用于流式细胞仪在小鼠样本上浓度为1:100 (图 s1). Bone Res (2018) ncbi
domestic rabbit 单克隆(EP373Y)
  • 免疫组化; 人类; 图 6c
艾博抗(上海)贸易有限公司 Cd34抗体(Abcam, ab81289)被用于被用于免疫组化在人类样本上 (图 6c). Oncogene (2018) ncbi
大鼠 单克隆(MEC14.7)
  • 免疫组化; 小鼠; 1:300; 图 3
艾博抗(上海)贸易有限公司 Cd34抗体(Abcam, ab23830)被用于被用于免疫组化在小鼠样本上浓度为1:300 (图 3). PLoS ONE (2017) ncbi
domestic rabbit 单克隆(EP373Y)
  • 免疫组化; 小鼠; 1:100; 图 5c
艾博抗(上海)贸易有限公司 Cd34抗体(Abcam, ab81289)被用于被用于免疫组化在小鼠样本上浓度为1:100 (图 5c). Nat Commun (2017) ncbi
domestic rabbit 单克隆(EP373Y)
  • 流式细胞仪; 人类; 图 3
艾博抗(上海)贸易有限公司 Cd34抗体(Abcam, ab81289)被用于被用于流式细胞仪在人类样本上 (图 3). J Cell Mol Med (2017) ncbi
大鼠 单克隆(MEC 14.7)
  • 免疫组化-石蜡切片; 小鼠; 图 4a
艾博抗(上海)贸易有限公司 Cd34抗体(Abcam, MEC14.7)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 4a). Sci Rep (2016) ncbi
小鼠 单克隆(QBEND-10)
  • 免疫细胞化学; 人类; 图 1
艾博抗(上海)贸易有限公司 Cd34抗体(Abcam, Ab8536)被用于被用于免疫细胞化学在人类样本上 (图 1). J Tissue Eng Regen Med (2018) ncbi
domestic rabbit 单克隆(EP373Y)
  • 免疫组化-石蜡切片; 人类; 图 2b
艾博抗(上海)贸易有限公司 Cd34抗体(Abcam, EP373Y)被用于被用于免疫组化-石蜡切片在人类样本上 (图 2b). Am J Pathol (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化; 大鼠; 图 4
艾博抗(上海)贸易有限公司 Cd34抗体(Abcam, ab185732)被用于被用于免疫组化在大鼠样本上 (图 4). Front Pharmacol (2016) ncbi
domestic rabbit 单克隆(EP373Y)
  • 免疫组化-石蜡切片; 人类; 1:500; 图 s5a
艾博抗(上海)贸易有限公司 Cd34抗体(Abcam, ab81289)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:500 (图 s5a). Mol Cancer Res (2016) ncbi
domestic rabbit 单克隆(EP373Y)
  • 免疫组化-石蜡切片; 人类; 1:300; 图 8
艾博抗(上海)贸易有限公司 Cd34抗体(abcam, ab81289)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:300 (图 8). Oncotarget (2016) ncbi
小鼠 单克隆(QBEND-10)
  • 免疫组化-石蜡切片; 大鼠; 1:400; 图 s1
艾博抗(上海)贸易有限公司 Cd34抗体(abcam, ab8536)被用于被用于免疫组化-石蜡切片在大鼠样本上浓度为1:400 (图 s1). Sci Rep (2016) ncbi
domestic rabbit 单克隆(EP373Y)
  • 免疫组化-石蜡切片; 人类; 1:800; 图 2e
艾博抗(上海)贸易有限公司 Cd34抗体(Abcam, EP373Y)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:800 (图 2e). Am J Dermatopathol (2016) ncbi
domestic rabbit 单克隆(EP373Y)
  • 免疫细胞化学; 人类; 1:200; 图 4
艾博抗(上海)贸易有限公司 Cd34抗体(Abcam, ab81289)被用于被用于免疫细胞化学在人类样本上浓度为1:200 (图 4). Nat Commun (2016) ncbi
小鼠 单克隆(QBEND-10)
  • 免疫细胞化学; 人类; 图 3a
艾博抗(上海)贸易有限公司 Cd34抗体(Abcam, Ab8536)被用于被用于免疫细胞化学在人类样本上 (图 3a). Cytotherapy (2015) ncbi
大鼠 单克隆(MEC 14.7)
  • 免疫组化-冰冻切片; 小鼠; 1:50
艾博抗(上海)贸易有限公司 Cd34抗体(Abcam, ab8158)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:50. Sci Rep (2015) ncbi
domestic rabbit 单克隆(EP373Y)
  • 免疫印迹; 人类; 1:500; 图 5
艾博抗(上海)贸易有限公司 Cd34抗体(Abcam, ab81289)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 5). Sci Rep (2015) ncbi
domestic rabbit 单克隆(EP373Y)
  • 免疫组化; 人类; 1:250; 图 1
艾博抗(上海)贸易有限公司 Cd34抗体(Abcam, ab81289)被用于被用于免疫组化在人类样本上浓度为1:250 (图 1). Cancer Sci (2015) ncbi
大鼠 单克隆(MEC14.7)
  • 流式细胞仪; 小鼠; 图 1
艾博抗(上海)贸易有限公司 Cd34抗体(Abcam, ab23830)被用于被用于流式细胞仪在小鼠样本上 (图 1). Mol Med Rep (2015) ncbi
domestic rabbit 单克隆(EP373Y)
  • 免疫组化-石蜡切片; 人类; 1:400; 图 2a, 4c
艾博抗(上海)贸易有限公司 Cd34抗体(Abcam, ab81289)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:400 (图 2a, 4c). Drug Des Devel Ther (2015) ncbi
大鼠 单克隆(MEC 14.7)
  • 免疫细胞化学; 小鼠; 图 3
艾博抗(上海)贸易有限公司 Cd34抗体(Abcam, ab8158)被用于被用于免疫细胞化学在小鼠样本上 (图 3). PLoS ONE (2015) ncbi
大鼠 单克隆(MEC 14.7)
  • 免疫组化-石蜡切片; 人类; 1:50; 图 7B
艾博抗(上海)贸易有限公司 Cd34抗体(Abcam, ab8158)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:50 (图 7B). Sci Rep (2015) ncbi
大鼠 单克隆(MEC 14.7)
  • 免疫组化-冰冻切片; 小鼠; 图 6
艾博抗(上海)贸易有限公司 Cd34抗体(abcam, ab8158)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 6). Brain Res (2015) ncbi
大鼠 单克隆(MEC 14.7)
  • 免疫细胞化学; 小鼠
艾博抗(上海)贸易有限公司 Cd34抗体(Abcam, ab8158)被用于被用于免疫细胞化学在小鼠样本上. J Cell Mol Med (2014) ncbi
domestic rabbit 单克隆(EP373Y)
  • 免疫组化-冰冻切片; 小鼠; 1:100
艾博抗(上海)贸易有限公司 Cd34抗体(Abcam, ab81289)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:100. Biochem Biophys Res Commun (2014) ncbi
大鼠 单克隆(MEC 14.7)
  • 免疫细胞化学; 小鼠
  • 免疫细胞化学; 人类
艾博抗(上海)贸易有限公司 Cd34抗体(Abcam, ab8158)被用于被用于免疫细胞化学在小鼠样本上 和 被用于免疫细胞化学在人类样本上. Cancer Sci (2014) ncbi
domestic rabbit 单克隆(EP373Y)
  • 免疫印迹; 人类; 1:2000
艾博抗(上海)贸易有限公司 Cd34抗体(Abcam, ab81289)被用于被用于免疫印迹在人类样本上浓度为1:2000. PLoS ONE (2014) ncbi
大鼠 单克隆(MEC 14.7)
  • 免疫组化-石蜡切片; 小鼠; 1:50
艾博抗(上海)贸易有限公司 Cd34抗体(Abcam, ab8158)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:50. Tissue Eng Part A (2014) ncbi
大鼠 单克隆(MEC 14.7)
  • 免疫组化-冰冻切片; 人类; 1:100
艾博抗(上海)贸易有限公司 Cd34抗体(Abcam, ab8158)被用于被用于免疫组化-冰冻切片在人类样本上浓度为1:100. J Cell Mol Med (2014) ncbi
大鼠 单克隆(MEC 14.7)
  • 免疫细胞化学; 小鼠; 1:100
艾博抗(上海)贸易有限公司 Cd34抗体(Abcam, ab8158)被用于被用于免疫细胞化学在小鼠样本上浓度为1:100. J Cell Mol Med (2013) ncbi
大鼠 单克隆(MEC 14.7)
  • 免疫印迹; 小鼠
艾博抗(上海)贸易有限公司 Cd34抗体(Abcam, MEC14.7)被用于被用于免疫印迹在小鼠样本上. Environ Health Perspect (2013) ncbi
大鼠 单克隆(MEC 14.7)
  • 免疫组化; 小鼠; 1:50
艾博抗(上海)贸易有限公司 Cd34抗体(Abcam, ab8158)被用于被用于免疫组化在小鼠样本上浓度为1:50. Oncogene (2014) ncbi
domestic rabbit 单克隆(EP373Y)
  • 免疫组化-石蜡切片; 人类; 1:100
艾博抗(上海)贸易有限公司 Cd34抗体(Abcam, ab81289)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100. Oncol Lett (2013) ncbi
大鼠 单克隆(MEC 14.7)
  • 免疫组化-石蜡切片; 大鼠
艾博抗(上海)贸易有限公司 Cd34抗体(Abcam, ab8158)被用于被用于免疫组化-石蜡切片在大鼠样本上. Cancer Sci (2011) ncbi
BioLegend
大鼠 单克隆(MEC14.7)
  • 流式细胞仪; 小鼠; 1:200; 图 5a
BioLegend Cd34抗体(Biolegend, 119307)被用于被用于流式细胞仪在小鼠样本上浓度为1:200 (图 5a). Int J Mol Sci (2021) ncbi
大鼠 单克隆(MEC14.7)
  • 流式细胞仪; 小鼠
BioLegend Cd34抗体(Biolegend, 119302)被用于被用于流式细胞仪在小鼠样本上. Cancer Cell (2021) ncbi
仓鼠 单克隆(HM34)
  • 流式细胞仪; 小鼠; 1:300; 图 s1f
BioLegend Cd34抗体(Biolegend, 128609)被用于被用于流式细胞仪在小鼠样本上浓度为1:300 (图 s1f). Nat Commun (2021) ncbi
大鼠 单克隆(MEC14.7)
  • 免疫组化-冰冻切片; 小鼠; 1:80; 图 1b
BioLegend Cd34抗体(BioLegend, 119302)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:80 (图 1b). J Clin Invest (2021) ncbi
仓鼠 单克隆(HM34)
  • 流式细胞仪; 小鼠; 图 4d
BioLegend Cd34抗体(Biolegend, HM34)被用于被用于流式细胞仪在小鼠样本上 (图 4d). J Biol Chem (2020) ncbi
大鼠 单克隆(MEC14.7)
  • 流式细胞仪; 小鼠; 图 s3e
BioLegend Cd34抗体(Biolegend, MEC14.7)被用于被用于流式细胞仪在小鼠样本上 (图 s3e). BMC Immunol (2020) ncbi
大鼠 单克隆(MEC14.7)
  • 流式细胞仪; 大鼠; 图 2
BioLegend Cd34抗体(Biolegend, 119307)被用于被用于流式细胞仪在大鼠样本上 (图 2). Exp Ther Med (2020) ncbi
仓鼠 单克隆(HM34)
  • 流式细胞仪; 小鼠; 1:50; 图 2a
BioLegend Cd34抗体(BioLegend, 128611)被用于被用于流式细胞仪在小鼠样本上浓度为1:50 (图 2a). Stem Cell Res Ther (2020) ncbi
大鼠 单克隆(MEC14.7)
  • mass cytometry; 小鼠; 1:100; 图 s32a, s32c
BioLegend Cd34抗体(Biolegend, 119302)被用于被用于mass cytometry在小鼠样本上浓度为1:100 (图 s32a, s32c). Nat Commun (2020) ncbi
大鼠 单克隆(SA376A4)
  • 流式细胞仪; 小鼠; 图 s2a
BioLegend Cd34抗体(Biolegend, 152208)被用于被用于流式细胞仪在小鼠样本上 (图 s2a). Cell (2019) ncbi
仓鼠 单克隆(HM34)
  • 流式细胞仪; 小鼠; 图 5a
BioLegend Cd34抗体(Biolegend, 128612)被用于被用于流式细胞仪在小鼠样本上 (图 5a). Cell Rep (2019) ncbi
大鼠 单克隆(MEC14.7)
  • 流式细胞仪; 小鼠; 图 1a
BioLegend Cd34抗体(BioLegend, 119307)被用于被用于流式细胞仪在小鼠样本上 (图 1a). Antioxid Redox Signal (2019) ncbi
大鼠 单克隆(MEC14.7)
  • 流式细胞仪; 小鼠; 1:20; 图 s2a
BioLegend Cd34抗体(Biolegend, MEC14.7)被用于被用于流式细胞仪在小鼠样本上浓度为1:20 (图 s2a). Nat Commun (2018) ncbi
大鼠 单克隆(MEC14.7)
  • 流式细胞仪; 小鼠; 图 s1a
BioLegend Cd34抗体(Biolegend, 119307)被用于被用于流式细胞仪在小鼠样本上 (图 s1a). Cell (2018) ncbi
仓鼠 单克隆(HM34)
  • 流式细胞仪; 小鼠; 图 s2d
BioLegend Cd34抗体(BioLegend, 128606)被用于被用于流式细胞仪在小鼠样本上 (图 s2d). Cell (2018) ncbi
仓鼠 单克隆(HM34)
  • 流式细胞仪; 小鼠; 图 s3c
BioLegend Cd34抗体(BioLegend, HM34)被用于被用于流式细胞仪在小鼠样本上 (图 s3c). J Clin Invest (2017) ncbi
大鼠 单克隆(MEC14.7)
  • 免疫组化-石蜡切片; 小鼠; 图 5b
BioLegend Cd34抗体(Biolegend, 119301)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 5b). Cancer Res (2017) ncbi
仓鼠 单克隆(HM34)
  • 流式细胞仪; 小鼠; 图 st2
BioLegend Cd34抗体(Biolegend, 128607)被用于被用于流式细胞仪在小鼠样本上 (图 st2). Nature (2016) ncbi
大鼠 单克隆(MEC14.7)
  • 免疫组化; 人类; 图 1a
BioLegend Cd34抗体(Biolegend, 119301)被用于被用于免疫组化在人类样本上 (图 1a). J Clin Invest (2016) ncbi
大鼠 单克隆(MEC14.7)
  • 流式细胞仪; 小鼠; 图 1
BioLegend Cd34抗体(Biolegend, 119310)被用于被用于流式细胞仪在小鼠样本上 (图 1). Stem Cell Reports (2016) ncbi
仓鼠 单克隆(HM34)
  • 流式细胞仪; 小鼠; 图 3e
BioLegend Cd34抗体(Biolegend, 128612)被用于被用于流式细胞仪在小鼠样本上 (图 3e). J Transl Med (2016) ncbi
大鼠 单克隆(MEC14.7)
  • 流式细胞仪; 小鼠
BioLegend Cd34抗体(BioLegend, 119304)被用于被用于流式细胞仪在小鼠样本上. Nat Cell Biol (2016) ncbi
大鼠 单克隆(MEC14.7)
  • 流式细胞仪; 小鼠
BioLegend Cd34抗体(Biolegend, MEC14.7)被用于被用于流式细胞仪在小鼠样本上. Oncotarget (2016) ncbi
仓鼠 单克隆(HM34)
  • 流式细胞仪; 小鼠; 1:20; 图 2
BioLegend Cd34抗体(Biolegend, 128611)被用于被用于流式细胞仪在小鼠样本上浓度为1:20 (图 2). Stem Cells Transl Med (2016) ncbi
大鼠 单克隆(MEC14.7)
  • 免疫组化-石蜡切片; 小鼠
BioLegend Cd34抗体(Biolegend, MEC14.7)被用于被用于免疫组化-石蜡切片在小鼠样本上. EMBO Mol Med (2016) ncbi
仓鼠 单克隆(HM34)
  • 流式细胞仪; 小鼠; 图 1
BioLegend Cd34抗体(Biolegend, HM34)被用于被用于流式细胞仪在小鼠样本上 (图 1). Aging (Albany NY) (2016) ncbi
大鼠 单克隆(MEC14.7)
  • 流式细胞仪; 小鼠; 图 8
BioLegend Cd34抗体(BioLegend, MEC14.7)被用于被用于流式细胞仪在小鼠样本上 (图 8). Mol Metab (2015) ncbi
大鼠 单克隆(MEC14.7)
  • 免疫组化-石蜡切片; 小鼠; 1:100; 图 s1
BioLegend Cd34抗体(Biolegend, MEC14.7)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:100 (图 s1). PLoS ONE (2015) ncbi
仓鼠 单克隆(HM34)
  • 流式细胞仪; 小鼠; 图 8
BioLegend Cd34抗体(BioLegend, 128609)被用于被用于流式细胞仪在小鼠样本上 (图 8). Oncoimmunology (2014) ncbi
大鼠 单克隆(MEC14.7)
  • 免疫组化-石蜡切片; 人类; 1:100
BioLegend Cd34抗体(BioLegend, MEC14.7)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100. Hepatology (2015) ncbi
仓鼠 单克隆(HM34)
BioLegend Cd34抗体(Biolegend, 128612)被用于. J Vis Exp (2014) ncbi
大鼠 单克隆(MEC14.7)
  • 流式细胞仪; 小鼠; 1:200
BioLegend Cd34抗体(Biolegend, 119314)被用于被用于流式细胞仪在小鼠样本上浓度为1:200. Nat Commun (2014) ncbi
圣克鲁斯生物技术
小鼠 单克隆(B-6)
  • 免疫细胞化学; 小鼠; 图 4b
圣克鲁斯生物技术 Cd34抗体(Santa Cruz, sc-74499)被用于被用于免疫细胞化学在小鼠样本上 (图 4b). Mol Ther Nucleic Acids (2019) ncbi
大鼠 单克隆(MEC 14.7)
  • 免疫组化; 小鼠; 1:500; 图 6b
圣克鲁斯生物技术 Cd34抗体(Santa Cruz Biotechnology, sc-18917)被用于被用于免疫组化在小鼠样本上浓度为1:500 (图 6b). Mol Cell Biol (2017) ncbi
小鼠 单克隆(B-6)
  • 免疫组化-石蜡切片; 人类; 1:200
圣克鲁斯生物技术 Cd34抗体(Santa Cruz, sc-74499)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:200. Oncol Lett (2016) ncbi
小鼠 单克隆(B-6)
  • 免疫细胞化学; 人类; 图 4
圣克鲁斯生物技术 Cd34抗体(Santa Cruz Biotechnology, sc-74499)被用于被用于免疫细胞化学在人类样本上 (图 4). Int J Mol Med (2016) ncbi
小鼠 单克隆(B-6)
  • 免疫组化-石蜡切片; 人类; 1:100; 图 6
圣克鲁斯生物技术 Cd34抗体(santa Cruz, sc-74499)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100 (图 6). Oncotarget (2016) ncbi
小鼠 单克隆(B-6)
  • 免疫组化-石蜡切片; 人类; 1:100; 图 2
圣克鲁斯生物技术 Cd34抗体(Santa Cruz, sc-74499)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100 (图 2). Sci Rep (2016) ncbi
大鼠 单克隆(MEC 14.7)
  • 免疫组化; 人类; 1:100; 图 4
圣克鲁斯生物技术 Cd34抗体(santa Cruz, sc-18917)被用于被用于免疫组化在人类样本上浓度为1:100 (图 4). Oncotarget (2016) ncbi
小鼠 单克隆(B-6)
  • 免疫细胞化学; 人类; 1:100; 图 13a
  • 免疫组化; 小鼠; 1:100; 图 5a
圣克鲁斯生物技术 Cd34抗体(Santa Cruz, SC-74499)被用于被用于免疫细胞化学在人类样本上浓度为1:100 (图 13a) 和 被用于免疫组化在小鼠样本上浓度为1:100 (图 5a). PLoS ONE (2015) ncbi
大鼠 单克隆(MEC 14.7)
  • 免疫组化-石蜡切片; 人类; 1:100; 图 7B
圣克鲁斯生物技术 Cd34抗体(Santa Cruz, sc-18917)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100 (图 7B). Sci Rep (2015) ncbi
大鼠 单克隆(MEC 14.7)
  • 免疫组化-冰冻切片; 小鼠; 1:200
圣克鲁斯生物技术 Cd34抗体(Santa Cruz, sc-18917)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:200. Sci Rep (2014) ncbi
大鼠 单克隆(MEC 14.7)
  • 免疫组化-冰冻切片; 小鼠
圣克鲁斯生物技术 Cd34抗体(Santa Cruz, sc-18917)被用于被用于免疫组化-冰冻切片在小鼠样本上. F1000Res (2013) ncbi
伯乐(Bio-Rad)公司
大鼠 单克隆(MEC14.7)
  • 免疫组化-石蜡切片; 小鼠; 1:100; 图 2g
伯乐(Bio-Rad)公司 Cd34抗体(BioRad (Serotec), MCA1825)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:100 (图 2g). NPJ Breast Cancer (2021) ncbi
大鼠 单克隆(MEC14.7)
  • 免疫组化; 小鼠; 1:50; 图 2c
伯乐(Bio-Rad)公司 Cd34抗体(Serotec, MCA1825GA)被用于被用于免疫组化在小鼠样本上浓度为1:50 (图 2c). Oncotarget (2016) ncbi
大鼠 单克隆(MEC14.7)
  • 免疫组化-石蜡切片; 小鼠; 1:500; 图 3
伯乐(Bio-Rad)公司 Cd34抗体(AbD Serotec, MCA18256)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:500 (图 3). BMC Cancer (2016) ncbi
亚诺法生技股份有限公司
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:200; 图 7
亚诺法生技股份有限公司 Cd34抗体(abnova, PAB18289)被用于被用于免疫组化在小鼠样本上浓度为1:200 (图 7). Am J Transl Res (2016) ncbi
Novus Biologicals
大鼠 单克隆(MEC 14.7)
  • 流式细胞仪; 小鼠; 图 2b
Novus Biologicals Cd34抗体(Novus Biologicals, NB600-1071)被用于被用于流式细胞仪在小鼠样本上 (图 2b). Mol Med Rep (2016) ncbi
北京傲锐东源
小鼠 单克隆(QBEND/10)
  • 免疫组化-石蜡切片; 人类; 1:100; 图 3
北京傲锐东源 Cd34抗体(Origene, QBEnd10)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100 (图 3). Ultrasound Med Biol (2015) ncbi
武汉博士德生物工程有限公司
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 1:200; 图 5i
武汉博士德生物工程有限公司 Cd34抗体(Boster, PA1334)被用于被用于免疫细胞化学在人类样本上浓度为1:200 (图 5i). elife (2019) ncbi
碧迪BD
大鼠 单克隆(RAM34)
  • 流式细胞仪; 小鼠; 1:200; 图 5d
碧迪BD Cd34抗体(BD, 560238)被用于被用于流式细胞仪在小鼠样本上浓度为1:200 (图 5d). Cell Biosci (2021) ncbi
大鼠 单克隆(RAM34)
  • 流式细胞仪; 小鼠; 1:100
碧迪BD Cd34抗体(BD Biosciences, 560230)被用于被用于流式细胞仪在小鼠样本上浓度为1:100. Cancer Res (2021) ncbi
大鼠 单克隆(RAM34)
  • 流式细胞仪; 小鼠
碧迪BD Cd34抗体(BD Pharmingen, 562608)被用于被用于流式细胞仪在小鼠样本上. Nat Commun (2021) ncbi
大鼠 单克隆(RAM34)
  • 流式细胞仪; 小鼠
碧迪BD Cd34抗体(BD Biosciences, 562608)被用于被用于流式细胞仪在小鼠样本上. Cell Rep (2021) ncbi
大鼠 单克隆(RAM34)
  • 免疫组化; 小鼠; 图 1g
碧迪BD Cd34抗体(BD Biosciences, RAM34)被用于被用于免疫组化在小鼠样本上 (图 1g). Sci Rep (2021) ncbi
大鼠 单克隆(RAM34)
  • 免疫组化; 小鼠; 1:25; 图 2e
碧迪BD Cd34抗体(PharMingen, 553731)被用于被用于免疫组化在小鼠样本上浓度为1:25 (图 2e). elife (2020) ncbi
大鼠 单克隆(RAM34)
  • 免疫组化-冰冻切片; 小鼠; 1:200; 图 6b
碧迪BD Cd34抗体(BD Biosciences, 553731)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:200 (图 6b). elife (2020) ncbi
大鼠 单克隆(RAM34)
  • 流式细胞仪; 小鼠; 图 2b
碧迪BD Cd34抗体(BD Pharmingen, RAM34)被用于被用于流式细胞仪在小鼠样本上 (图 2b). Biol Open (2019) ncbi
大鼠 单克隆(RAM34)
  • 流式细胞仪; 小鼠; 1:200; 图 e4g
碧迪BD Cd34抗体(BD Biosciences, 553731)被用于被用于流式细胞仪在小鼠样本上浓度为1:200 (图 e4g). Nature (2019) ncbi
大鼠 单克隆(RAM34)
  • 流式细胞仪; 小鼠; 图 1b
碧迪BD Cd34抗体(Becton Dickinson, 560230)被用于被用于流式细胞仪在小鼠样本上 (图 1b). Cell Rep (2019) ncbi
大鼠 单克隆(RAM34)
  • 流式细胞仪; 小鼠; 图 1a
碧迪BD Cd34抗体(Pharmingen, RAM34)被用于被用于流式细胞仪在小鼠样本上 (图 1a). PLoS ONE (2019) ncbi
大鼠 单克隆(RAM34)
  • 流式细胞仪; 小鼠; 图 5a
碧迪BD Cd34抗体(BD Biosciences, RAM34)被用于被用于流式细胞仪在小鼠样本上 (图 5a). J Exp Med (2019) ncbi
大鼠 单克隆(RAM34)
  • 流式细胞仪; 小鼠; 图 s5a
碧迪BD Cd34抗体(BD Pharmingen, RAM34)被用于被用于流式细胞仪在小鼠样本上 (图 s5a). Blood (2018) ncbi
大鼠 单克隆(RAM34)
  • 流式细胞仪; 小鼠; 图 4a
碧迪BD Cd34抗体(BD, RAM34)被用于被用于流式细胞仪在小鼠样本上 (图 4a). Toxicol Appl Pharmacol (2018) ncbi
大鼠 单克隆(RAM34)
  • 流式细胞仪; 小鼠; 图 s6
碧迪BD Cd34抗体(BD, RAM34)被用于被用于流式细胞仪在小鼠样本上 (图 s6). Stem Cell Reports (2018) ncbi
大鼠 单克隆(RAM34)
  • 流式细胞仪; 人类; 图 s3i
碧迪BD Cd34抗体(BD Biosciences, 553733)被用于被用于流式细胞仪在人类样本上 (图 s3i). Cell (2018) ncbi
大鼠 单克隆(RAM34)
  • 流式细胞仪; 小鼠; 图 4a
碧迪BD Cd34抗体(BD Pharmingen, RAM34)被用于被用于流式细胞仪在小鼠样本上 (图 4a). Int J Cancer (2018) ncbi
大鼠 单克隆(RAM34)
  • 流式细胞仪; 小鼠; 图 2e
碧迪BD Cd34抗体(BD Pharmigen, 553733)被用于被用于流式细胞仪在小鼠样本上 (图 2e). Nat Genet (2018) ncbi
大鼠 单克隆(RAM34)
  • 流式细胞仪; 小鼠
碧迪BD Cd34抗体(BD, 562608)被用于被用于流式细胞仪在小鼠样本上. Nature (2018) ncbi
大鼠 单克隆(RAM34)
  • 流式细胞仪; 小鼠; 1:100; 图 1c
碧迪BD Cd34抗体(BD, RAM34)被用于被用于流式细胞仪在小鼠样本上浓度为1:100 (图 1c). Oncotarget (2018) ncbi
大鼠 单克隆(RAM34)
  • 流式细胞仪; 小鼠; 图 1b
碧迪BD Cd34抗体(BD Pharmagen, RAM34)被用于被用于流式细胞仪在小鼠样本上 (图 1b). Oncogene (2018) ncbi
大鼠 单克隆(RAM34)
  • 免疫组化; 小鼠; 1:50; 图 2d
碧迪BD Cd34抗体(BD Biosciences, RAM34)被用于被用于免疫组化在小鼠样本上浓度为1:50 (图 2d). Proc Natl Acad Sci U S A (2018) ncbi
大鼠 单克隆(RAM34)
  • 流式细胞仪; 小鼠; 图 2b
碧迪BD Cd34抗体(BD Biosciences, RAM34)被用于被用于流式细胞仪在小鼠样本上 (图 2b). Cell Res (2018) ncbi
大鼠 单克隆(RAM34)
  • 免疫组化; 小鼠; 图 4a
碧迪BD Cd34抗体(BD Biosciences, 551387)被用于被用于免疫组化在小鼠样本上 (图 4a). J Cell Biol (2017) ncbi
大鼠 单克隆(RAM34)
  • 流式细胞仪; 小鼠; 图 s2b
碧迪BD Cd34抗体(BD Biosciences, RAM34)被用于被用于流式细胞仪在小鼠样本上 (图 s2b). J Clin Invest (2017) ncbi
  • 流式细胞仪; 人类; 图 2b
碧迪BD Cd34抗体(BD PharmingenTM, 341071)被用于被用于流式细胞仪在人类样本上 (图 2b). Cell J (2017) ncbi
大鼠 单克隆(RAM34)
  • 流式细胞仪; 小鼠; 表 1
碧迪BD Cd34抗体(BD Pharmingen, RAM34)被用于被用于流式细胞仪在小鼠样本上 (表 1). Methods Mol Biol (2017) ncbi
大鼠 单克隆(RAM34)
  • 流式细胞仪; 小鼠; 1:200; 图 2a
碧迪BD Cd34抗体(BD Pharmingen, RAM34)被用于被用于流式细胞仪在小鼠样本上浓度为1:200 (图 2a). Genes Dev (2017) ncbi
大鼠 单克隆(RAM34)
  • 免疫细胞化学; 小鼠; 表 s1
碧迪BD Cd34抗体(BD PharMingen, 553731)被用于被用于免疫细胞化学在小鼠样本上 (表 s1). Cell Stem Cell (2017) ncbi
  • 流式细胞仪; 小鼠; 图 2
碧迪BD Cd34抗体(BD Bioscience, 341071)被用于被用于流式细胞仪在小鼠样本上 (图 2). Iran J Basic Med Sci (2016) ncbi
大鼠 单克隆(RAM34)
  • 流式细胞仪; 小鼠; 图 1
碧迪BD Cd34抗体(BD Biosciences, 560238)被用于被用于流式细胞仪在小鼠样本上 (图 1). Sci Rep (2016) ncbi
大鼠 单克隆(RAM34)
  • 流式细胞仪; 人类; 图 1
碧迪BD Cd34抗体(BD Biosciences, 553733)被用于被用于流式细胞仪在人类样本上 (图 1). PLoS ONE (2016) ncbi
大鼠 单克隆(RAM34)
  • 流式细胞仪; 小鼠; 图 s1
碧迪BD Cd34抗体(Beckton Dickinson, 560238)被用于被用于流式细胞仪在小鼠样本上 (图 s1). Oncotarget (2016) ncbi
大鼠 单克隆(RAM34)
  • 流式细胞仪; 小鼠
碧迪BD Cd34抗体(BD Biosciences, RAM34)被用于被用于流式细胞仪在小鼠样本上. Proc Natl Acad Sci U S A (2016) ncbi
大鼠 单克隆(RAM34)
  • 流式细胞仪; 小鼠
碧迪BD Cd34抗体(Becton, RAM34)被用于被用于流式细胞仪在小鼠样本上. Nature (2016) ncbi
大鼠 单克隆(RAM34)
  • 流式细胞仪; 小鼠; 图 2b
碧迪BD Cd34抗体(BD Pharmingen, RAM34)被用于被用于流式细胞仪在小鼠样本上 (图 2b). Sci Rep (2016) ncbi
大鼠 单克隆(RAM34)
  • 流式细胞仪; 小鼠; 图 1a
碧迪BD Cd34抗体(BD Biosciences, RAM34)被用于被用于流式细胞仪在小鼠样本上 (图 1a). Stem Cell Res (2016) ncbi
大鼠 单克隆(RAM34)
  • 免疫组化-石蜡切片; 小鼠; 图 7
碧迪BD Cd34抗体(BD Biosciences, 553731)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 7). PLoS ONE (2016) ncbi
大鼠 单克隆(RAM34)
  • 流式细胞仪; 小鼠; 1:60
碧迪BD Cd34抗体(BD Biosciences, 560238)被用于被用于流式细胞仪在小鼠样本上浓度为1:60. Nat Med (2016) ncbi
大鼠 单克隆(RAM34)
  • 流式细胞仪; 小鼠; 图 s2a
碧迪BD Cd34抗体(BD Pharmingen, RAM34)被用于被用于流式细胞仪在小鼠样本上 (图 s2a). Stem Cells Dev (2016) ncbi
大鼠 单克隆(RAM34)
  • 流式细胞仪; 小鼠; 图 2
碧迪BD Cd34抗体(BD Biosciences, RAM34)被用于被用于流式细胞仪在小鼠样本上 (图 2). J Immunol (2016) ncbi
大鼠 单克隆(RAM34)
  • 流式细胞仪; 小鼠; 图 5
碧迪BD Cd34抗体(BD Bioscience, 562608)被用于被用于流式细胞仪在小鼠样本上 (图 5). Nat Commun (2016) ncbi
大鼠 单克隆(RAM34)
  • 免疫细胞化学; 人类; 表 1
碧迪BD Cd34抗体(PharMingen, RAM34)被用于被用于免疫细胞化学在人类样本上 (表 1). Stem Cells Int (2016) ncbi
大鼠 单克隆(RAM34)
  • 流式细胞仪; 小鼠; 图 1
碧迪BD Cd34抗体(BD Biosciences, 560238)被用于被用于流式细胞仪在小鼠样本上 (图 1). Int J Mol Med (2016) ncbi
大鼠 单克隆(RAM34)
  • 流式细胞仪; 小鼠; 图 1d
碧迪BD Cd34抗体(BD Pharmingen, RAM34)被用于被用于流式细胞仪在小鼠样本上 (图 1d). elife (2016) ncbi
大鼠 单克隆(RAM34)
  • 流式细胞仪; 小鼠
碧迪BD Cd34抗体(BD, RAM34)被用于被用于流式细胞仪在小鼠样本上. Nature (2016) ncbi
大鼠 单克隆(RAM34)
  • 流式细胞仪; 小鼠; 图 2c
碧迪BD Cd34抗体(BD Biosciences, RAM34)被用于被用于流式细胞仪在小鼠样本上 (图 2c). Stem Cells (2016) ncbi
大鼠 单克隆(RAM34)
  • 流式细胞仪; 小鼠
碧迪BD Cd34抗体(BD, 560230)被用于被用于流式细胞仪在小鼠样本上. Nature (2016) ncbi
大鼠 单克隆(RAM34)
  • 流式细胞仪; 小鼠
碧迪BD Cd34抗体(BD Pharmigen, 560230)被用于被用于流式细胞仪在小鼠样本上. Nature (2016) ncbi
大鼠 单克隆(RAM34)
  • 流式细胞仪; 小鼠; 图 4
碧迪BD Cd34抗体(BD Biosciences, 551387)被用于被用于流式细胞仪在小鼠样本上 (图 4). PLoS ONE (2015) ncbi
大鼠 单克隆(RAM34)
  • 流式细胞仪; 人类; 图 1b
碧迪BD Cd34抗体(BD, 551387)被用于被用于流式细胞仪在人类样本上 (图 1b). J Exp Med (2015) ncbi
  • 流式细胞仪; 人类
碧迪BD Cd34抗体(BD Biosciences, 341071)被用于被用于流式细胞仪在人类样本上. PLoS ONE (2015) ncbi
大鼠 单克隆(RAM34)
  • 流式细胞仪; 小鼠; 图 1b
碧迪BD Cd34抗体(BD Bioscience, RAM34)被用于被用于流式细胞仪在小鼠样本上 (图 1b). Mol Cell Biol (2015) ncbi
大鼠 单克隆(RAM34)
  • 流式细胞仪; 小鼠; 图 3
碧迪BD Cd34抗体(BD, 553733)被用于被用于流式细胞仪在小鼠样本上 (图 3). Hum Mol Genet (2015) ncbi
大鼠 单克隆(RAM34)
  • 流式细胞仪; 小鼠
碧迪BD Cd34抗体(BD Biosciences, RAM34)被用于被用于流式细胞仪在小鼠样本上. PLoS ONE (2014) ncbi
大鼠 单克隆(RAM34)
  • 流式细胞仪; 小鼠; 图 2
碧迪BD Cd34抗体(BD, RAW34)被用于被用于流式细胞仪在小鼠样本上 (图 2). Stem Cells (2015) ncbi
大鼠 单克隆(RAM34)
  • 免疫组化-石蜡切片; 小鼠
碧迪BD Cd34抗体(BD, 553731)被用于被用于免疫组化-石蜡切片在小鼠样本上. Biomed Mater (2014) ncbi
大鼠 单克隆(RAM34)
  • 流式细胞仪; 小鼠; 1.25 ug/ml
碧迪BD Cd34抗体(BD Biosciences, RAM34)被用于被用于流式细胞仪在小鼠样本上浓度为1.25 ug/ml. Am J Physiol Lung Cell Mol Physiol (2014) ncbi
大鼠 单克隆(RAM34)
  • 免疫组化-石蜡切片; 人类
碧迪BD Cd34抗体(BD Biosciences, RAM34)被用于被用于免疫组化-石蜡切片在人类样本上. Mol Cell Biol (2014) ncbi
大鼠 单克隆(RAM34)
  • 免疫组化-冰冻切片; 小鼠; 1:250
碧迪BD Cd34抗体(BD, 553731)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:250. J Clin Invest (2014) ncbi
大鼠 单克隆(RAM34)
  • 流式细胞仪; 小鼠
碧迪BD Cd34抗体(BD, 560230)被用于被用于流式细胞仪在小鼠样本上. Nature (2014) ncbi
大鼠 单克隆(RAM34)
  • 免疫组化-冰冻切片; 小鼠; 1:300
碧迪BD Cd34抗体(BD, 553731)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:300. Exp Dermatol (2014) ncbi
大鼠 单克隆(RAM34)
  • 流式细胞仪; 小鼠
碧迪BD Cd34抗体(BD Pharmingen, 551387)被用于被用于流式细胞仪在小鼠样本上. Methods Enzymol (2014) ncbi
大鼠 单克隆(RAM34)
  • 流式细胞仪; 小鼠
碧迪BD Cd34抗体(BD Biosciences-US, RAM34)被用于被用于流式细胞仪在小鼠样本上. Oncogene (2014) ncbi
大鼠 单克隆(RAM34)
  • 流式细胞仪; 小鼠; 10 ug/ml
碧迪BD Cd34抗体(BD Biosciences, 560230)被用于被用于流式细胞仪在小鼠样本上浓度为10 ug/ml. Stem Cells (2013) ncbi
大鼠 单克隆(RAM34)
  • 免疫细胞化学; 小鼠; 1:750
碧迪BD Cd34抗体(BD Pharmingen, 553731)被用于被用于免疫细胞化学在小鼠样本上浓度为1:750. Genes Dev (2013) ncbi
大鼠 单克隆(RAM34)
  • 流式细胞仪; 小鼠; 1:20
碧迪BD Cd34抗体(BD Biosciences, RAM34)被用于被用于流式细胞仪在小鼠样本上浓度为1:20. Vasc Cell (2013) ncbi
文章列表
  1. Tian D, Li J, Zou L, Lin M, Shi X, Hu Y, et al. Adenosine A1 Receptor Deficiency Aggravates Extracellular Matrix Accumulation in Diabetic Nephropathy through Disturbance of Peritubular Microenvironment. J Diabetes Res. 2021;2021:5584871 pubmed 出版商
  2. Cha S, Lee S, Wang J, Zhao Q, Bai D. Enhanced Circadian Clock in MSCs-Based Cytotherapy Ameliorates Age-Related Temporomandibular Joint Condyle Degeneration. Int J Mol Sci. 2021;22: pubmed 出版商
  3. Shibad V, Bootwala A, Mao C, Bader H, Vo H, Landesman Bollag E, et al. L2pB1 Cells Contribute to Tumor Growth Inhibition. Front Immunol. 2021;12:722451 pubmed 出版商
  4. Zhu N, Wang L, Guo H, Jia J, Gu L, Wang X, et al. Thalidomide Suppresses Angiogenesis Through the Signal Transducer and Activator of Transcription 3/SP4 Signaling Pathway in the Peritoneal Membrane. Front Physiol. 2021;12:712147 pubmed 出版商
  5. Zhang S, Zhu D, Li Z, Huang K, Hu S, Lutz H, et al. A stem cell-derived ovarian regenerative patch restores ovarian function and rescues fertility in rats with primary ovarian insufficiency. Theranostics. 2021;11:8894-8908 pubmed 出版商
  6. Lee Y, Kim T, Kim Y, Kim S, Lee S, Seo S, et al. Microbiota-derived lactate promotes hematopoiesis and erythropoiesis by inducing stem cell factor production from leptin receptor+ niche cells. Exp Mol Med. 2021;53:1319-1331 pubmed 出版商
  7. Huang Z, Feng J, Feng X, Chan L, Lu J, Lei L, et al. Loss of signal transducer and activator of transcription 3 impaired the osteogenesis of mesenchymal progenitor cells in vivo and in vitro. Cell Biosci. 2021;11:172 pubmed 出版商
  8. Aleksandrovych V, Wrona A, Bereza T, Pitynski K, Gil K. Oviductal Telocytes in Patients with Uterine Myoma. Biomedicines. 2021;9: pubmed 出版商
  9. Gan Y, He J, Zhu J, Xu Z, Wang Z, Yan J, et al. Spatially defined single-cell transcriptional profiling characterizes diverse chondrocyte subtypes and nucleus pulposus progenitors in human intervertebral discs. Bone Res. 2021;9:37 pubmed 出版商
  10. Tillie R, Theelen T, van Kuijk K, Temmerman L, de Bruijn J, Gijbels M, et al. A Switch from Cell-Associated to Soluble PDGF-B Protects against Atherosclerosis, despite Driving Extramedullary Hematopoiesis. Cells. 2021;10: pubmed 出版商
  11. Zhan C, Sun Y, Pan J, Chen L, Yuan T. Effect of the Notch4/Dll4 signaling pathway in early gestational intrauterine infection on lung development. Exp Ther Med. 2021;22:972 pubmed 出版商
  12. Coudert L, Osseni A, Gangloff Y, Schaeffer L, Leblanc P. The ESCRT-0 subcomplex component Hrs/Hgs is a master regulator of myogenesis via modulation of signaling and degradation pathways. BMC Biol. 2021;19:153 pubmed 出版商
  13. Nguyen Tran H, Nguyen T, Chen C, Hsu T. Endothelial Reprogramming Stimulated by Oncostatin M Promotes Inflammation and Tumorigenesis in VHL-Deficient Kidney Tissue. Cancer Res. 2021;81:5060-5073 pubmed 出版商
  14. Hutton C, Heider F, Blanco Gómez A, Banyard A, Kononov A, Zhang X, et al. Single-cell analysis defines a pancreatic fibroblast lineage that supports anti-tumor immunity. Cancer Cell. 2021;: pubmed 出版商
  15. Tulotta C, Lefley D, Moore C, Amariutei A, Spicer Hadlington A, Quayle L, et al. IL-1B drives opposing responses in primary tumours and bone metastases; harnessing combination therapies to improve outcome in breast cancer. NPJ Breast Cancer. 2021;7:95 pubmed 出版商
  16. Ortega Molina A, Lebrero Fernández C, Sanz A, Deleyto Seldas N, Plata Gómez A, Menéndez C, et al. Inhibition of Rag GTPase signaling in mice suppresses B cell responses and lymphomagenesis with minimal detrimental trade-offs. Cell Rep. 2021;36:109372 pubmed 出版商
  17. Khan I, Del Guzzo C, Shao A, Cho J, Du R, Cohen A, et al. The CD200-CD200R Axis Promotes Squamous Cell Carcinoma Metastasis via Regulation of Cathepsin K. Cancer Res. 2021;81:5021-5032 pubmed 出版商
  18. Shen Y, Shami A, Moritz L, Larose H, Manske G, Ma Q, et al. TCF21+ mesenchymal cells contribute to testis somatic cell development, homeostasis, and regeneration in mice. Nat Commun. 2021;12:3876 pubmed 出版商
  19. Esteves de Lima J, Bou Akar R, Machado L, Li Y, Drayton Libotte B, Dilworth F, et al. HIRA stabilizes skeletal muscle lineage identity. Nat Commun. 2021;12:3450 pubmed 出版商
  20. West J, Austin E, Rizzi E, Yan L, Tanjore H, Crabtree A, et al. KCNK3 Mutation Causes Altered Immune Function in Pulmonary Arterial Hypertension Patients and Mouse Models. Int J Mol Sci. 2021;22: pubmed 出版商
  21. Barker K, Etesami N, Shenoy A, Arafa E, Lyon de Ana C, Smith N, et al. Lung-resident memory B cells protect against bacterial pneumonia. J Clin Invest. 2021;131: pubmed 出版商
  22. Lopez Ramirez M, Lai C, Soliman S, Hale P, Pham A, Estrada E, et al. Astrocytes propel neurovascular dysfunction during cerebral cavernous malformation lesion formation. J Clin Invest. 2021;131: pubmed 出版商
  23. Tichy E, Ma N, Sidibe D, Loro E, Kocan J, Chen D, et al. Persistent NF-κB activation in muscle stem cells induces proliferation-independent telomere shortening. Cell Rep. 2021;35:109098 pubmed 出版商
  24. Tsutsui K, Machida H, Nakagawa A, Ahn K, Morita R, Sekiguchi K, et al. Mapping the molecular and structural specialization of the skin basement membrane for inter-tissue interactions. Nat Commun. 2021;12:2577 pubmed 出版商
  25. Geng G, Liu J, Xu C, Pei Y, Chen L, Mu C, et al. Receptor-mediated mitophagy regulates EPO production and protects against renal anemia. elife. 2021;10: pubmed 出版商
  26. Piñeiro Hermida S, Martinez P, Blasco M. Short and dysfunctional telomeres protect from allergen-induced airway inflammation. Aging Cell. 2021;20:e13352 pubmed 出版商
  27. Kimura K, Ramirez K, Nguyen T, Yamashiro Y, Sada A, Yanagisawa H. Contribution of PDGFRα-positive cells in maintenance and injury responses in mouse large vessels. Sci Rep. 2021;11:8683 pubmed 出版商
  28. Seavey C, Pobbati A, Hallett A, Ma S, Reynolds J, Kanai R, et al. WWTR1(TAZ)-CAMTA1 gene fusion is sufficient to dysregulate YAP/TAZ signaling and drive epithelioid hemangioendothelioma tumorigenesis. Genes Dev. 2021;35:512-527 pubmed 出版商
  29. Zhang Z, Guo X, Guo X, Yu R, Qian M, Wang S, et al. MicroRNA-29a-3p delivery via exosomes derived from engineered human mesenchymal stem cells exerts tumour suppressive effects by inhibiting migration and vasculogenic mimicry in glioma. Aging (Albany NY). 2021;12: pubmed 出版商
  30. Fujita Y, Ichikawa D, Sugaya T, Ohata K, Tanabe J, Inoue K, et al. Angiotensin II type 1a receptor loss ameliorates chronic tubulointerstitial damage after renal ischemia reperfusion. Sci Rep. 2021;11:982 pubmed 出版商
  31. Khalaf N, Al Μehatab D, Fathallah D. Vascular endothelial ERp72 is involved in the inflammatory response in a rat model of skeletal muscle injury. Mol Med Rep. 2021;23: pubmed 出版商
  32. Zaro B, Noh J, Mascetti V, Demeter J, George B, Zukowska M, et al. Proteomic analysis of young and old mouse hematopoietic stem cells and their progenitors reveals post-transcriptional regulation in stem cells. elife. 2020;9: pubmed 出版商
  33. You X, Wu J, Wang Y, Liu Q, Cheng Z, Zhao X, et al. Galectin-1 promotes vasculogenic mimicry in gastric adenocarcinoma via the Hedgehog/GLI signaling pathway. Aging (Albany NY). 2020;12:21837-21853 pubmed 出版商
  34. Bai L, Lyu Y, Shi G, Li K, Huang Y, Ma Y, et al. Polymerase I and transcript release factor transgenic mice show impaired function of hematopoietic stem cells. Aging (Albany NY). 2020;12:20152-20162 pubmed 出版商
  35. Xu J, Wang Y, Hsu C, Negri S, Tower R, Gao Y, et al. Lysosomal protein surface expression discriminates fat- from bone-forming human mesenchymal precursor cells. elife. 2020;9: pubmed 出版商
  36. Wang Y, Gao G, Wu Y, Wang Y, Wu X, Zhou Q. S100A4 Silencing Facilitates Corneal Wound Healing After Alkali Burns by Promoting Autophagy via Blocking the PI3K/Akt/mTOR Signaling Pathway. Invest Ophthalmol Vis Sci. 2020;61:19 pubmed 出版商
  37. Wang L, Zheng J, Pathak J, Chen Y, Liang D, Yang L, et al. SLIT2 Overexpression in Periodontitis Intensifies Inflammation and Alveolar Bone Loss, Possibly via the Activation of MAPK Pathway. Front Cell Dev Biol. 2020;8:593 pubmed 出版商
  38. Ricci B, Tycksen E, Celik H, Belle J, Fontana F, Civitelli R, et al. Osterix-Cre marks distinct subsets of CD45- and CD45+ stromal populations in extra-skeletal tumors with pro-tumorigenic characteristics. elife. 2020;9: pubmed 出版商
  39. Chaushu L, Rahmanov Gavrielov M, Chaushu G, Vered M. Palatal Wound Healing with Primary Intention in a Rat Model-Histology and Immunohistomorphometry. Medicina (Kaunas). 2020;56: pubmed 出版商
  40. Arnold L, Cecchini A, Stark D, Ihnat J, Craigg R, Carter A, et al. EphA7 promotes myogenic differentiation via cell-cell contact. elife. 2020;9: pubmed 出版商
  41. Ray S, Chee L, Matson D, Palermo N, Bresnick E, Hewitt K. Sterile α-motif domain requirement for cellular signaling and survival. J Biol Chem. 2020;295:7113-7125 pubmed 出版商
  42. Tan J, Lin C, Chen G. Vasomodulation of peripheral blood flow by focused ultrasound potentiates improvement of diabetic neuropathy. BMJ Open Diabetes Res Care. 2020;8: pubmed 出版商
  43. Liu Q, He H, Yuan Y, Zeng H, Wang Z, Luo W. Novel Expression of EGFL7 in Osteosarcoma and Sensitivity to Cisplatin. Front Oncol. 2020;10:74 pubmed 出版商
  44. Luker A, Graham L, Smith T, Camarena C, Zellner M, Gilmer J, et al. The DNA methyltransferase inhibitor, guadecitabine, targets tumor-induced myelopoiesis and recovers T cell activity to slow tumor growth in combination with adoptive immunotherapy in a mouse model of breast cancer. BMC Immunol. 2020;21:8 pubmed 出版商
  45. Jiang M, Bi X, Duan X, Pang N, Wang H, Yuan H, et al. Adipose tissue-derived stem cells modulate immune function in vivo and promote long-term hematopoiesis in vitro using the aGVHD model. Exp Ther Med. 2020;19:1725-1732 pubmed 出版商
  46. Niethamer T, Stabler C, Leach J, Zepp J, Morley M, Babu A, et al. Defining the role of pulmonary endothelial cell heterogeneity in the response to acute lung injury. elife. 2020;9: pubmed 出版商
  47. Sasaki T, Niizuma K, Kanoke A, Matsui K, Ogita S, Rashad S, et al. Octacalcium phosphate collagen composite (OCP/Col) enhance bone regeneration in a rat model of skull defect with dural defect. Heliyon. 2020;6:e03347 pubmed 出版商
  48. Hou M, Han J, Li G, Kwon M, Jiang J, Emani S, et al. Multipotency of mouse trophoblast stem cells. Stem Cell Res Ther. 2020;11:55 pubmed 出版商
  49. Park M, Kim H, Lee H, Zabel B, Bae Y. Novel CD11b+Gr-1+Sca-1+ myeloid cells drive mortality in bacterial infection. Sci Adv. 2020;6:eaax8820 pubmed 出版商
  50. Uckelmann H, Kim S, Wong E, Hatton C, Giovinazzo H, Gadrey J, et al. Therapeutic targeting of preleukemia cells in a mouse model of NPM1 mutant acute myeloid leukemia. Science. 2020;367:586-590 pubmed 出版商
  51. Zhang B, Ma S, Rachmin I, He M, Baral P, Choi S, et al. Hyperactivation of sympathetic nerves drives depletion of melanocyte stem cells. Nature. 2020;577:676-681 pubmed 出版商
  52. Tan G, Pryce B, Stabio A, Brigande J, Wang C, Xia Z, et al. Tgfβ signaling is critical for maintenance of the tendon cell fate. elife. 2020;9: pubmed 出版商
  53. Kim J, Fei L, Yin W, Coquenlorge S, Rao Bhatia A, Zhang X, et al. Single cell and genetic analyses reveal conserved populations and signaling mechanisms of gastrointestinal stromal niches. Nat Commun. 2020;11:334 pubmed 出版商
  54. Delev D, Daka K, Heynckes S, Gaebelein A, Franco P, Pfeifer D, et al. Long-term epilepsy-associated tumors: transcriptional signatures reflect clinical course. Sci Rep. 2020;10:96 pubmed 出版商
  55. Sun C, Guo E, Zhou B, Shan W, Huang J, Weng D, et al. A reactive oxygen species scoring system predicts cisplatin sensitivity and prognosis in ovarian cancer patients. BMC Cancer. 2019;19:1061 pubmed 出版商
  56. Kito Y, Hanamatsu Y, Kawashima K, Saigo C, Takeuchi T. A unique transgenic mouse model exhibiting a myeloproliferative disease-like phenotype. Biol Open. 2019;8: pubmed 出版商
  57. Ramachandran P, Dobie R, Wilson Kanamori J, Dora E, Henderson B, Luu N, et al. Resolving the fibrotic niche of human liver cirrhosis at single-cell level. Nature. 2019;575:512-518 pubmed 出版商
  58. Yoshimi A, Lin K, Wiseman D, Rahman M, Pastore A, Wang B, et al. Coordinated alterations in RNA splicing and epigenetic regulation drive leukaemogenesis. Nature. 2019;574:273-277 pubmed 出版商
  59. Liu Z, Gu Y, Chakarov S, Blériot C, Kwok I, Chen X, et al. Fate Mapping via Ms4a3-Expression History Traces Monocyte-Derived Cells. Cell. 2019;178:1509-1525.e19 pubmed 出版商
  60. Nagai M, Noguchi R, Takahashi D, Morikawa T, Koshida K, Komiyama S, et al. Fasting-Refeeding Impacts Immune Cell Dynamics and Mucosal Immune Responses. Cell. 2019;178:1072-1087.e14 pubmed 出版商
  61. Park M, Kim A, Manandhar S, Oh S, Jang G, Kang L, et al. CCN1 interlinks integrin and hippo pathway to autoregulate tip cell activity. elife. 2019;8: pubmed 出版商
  62. Peng T, Deng X, Tian F, Li Z, Jiang P, Zhao X, et al. The interaction of LOXL2 with GATA6 induces VEGFA expression and angiogenesis in cholangiocarcinoma. Int J Oncol. 2019;: pubmed 出版商
  63. Hu Z, Zhou M, Wu Y, Li Z, Liu X, Wu L, et al. ssODN-Mediated In-Frame Deletion with CRISPR/Cas9 Restores FVIII Function in Hemophilia A-Patient-Derived iPSCs and ECs. Mol Ther Nucleic Acids. 2019;17:198-209 pubmed 出版商
  64. Lüscher Firzlaff J, Chatain N, Kuo C, Braunschweig T, Bochynska A, Ullius A, et al. Hematopoietic stem and progenitor cell proliferation and differentiation requires the trithorax protein Ash2l. Sci Rep. 2019;9:8262 pubmed 出版商
  65. Wilkinson A, Ishida R, Kikuchi M, Sudo K, Morita M, Crisostomo R, et al. Long-term ex vivo haematopoietic-stem-cell expansion allows nonconditioned transplantation. Nature. 2019;: pubmed 出版商
  66. Lukowski S, Patel J, Andersen S, Sim S, Wong H, Tay J, et al. Single-Cell Transcriptional Profiling of Aortic Endothelium Identifies a Hierarchy from Endovascular Progenitors to Differentiated Cells. Cell Rep. 2019;27:2748-2758.e3 pubmed 出版商
  67. Yin M, Zhou H, Lin C, Long L, Yang X, Zhang H, et al. CD34+KLF4+ Stromal Stem Cells Contribute to Endometrial Regeneration and Repair. Cell Rep. 2019;27:2709-2724.e3 pubmed 出版商
  68. Baryawno N, Przybylski D, Kowalczyk M, Kfoury Y, Severe N, Gustafsson K, et al. A Cellular Taxonomy of the Bone Marrow Stroma in Homeostasis and Leukemia. Cell. 2019;177:1915-1932.e16 pubmed 出版商
  69. Peng L, Guo H, Ma P, Sun Y, Dennison L, Aplan P, et al. HoxA9 binds and represses the Cebpa +8 kb enhancer. PLoS ONE. 2019;14:e0217604 pubmed 出版商
  70. Takagaki S, Yamashita R, Hashimoto N, Sugihara K, Kanari K, Tabata K, et al. Galactosyl carbohydrate residues on hematopoietic stem/progenitor cells are essential for homing and engraftment to the bone marrow. Sci Rep. 2019;9:7133 pubmed 出版商
  71. Halvarsson C, Rörby E, Eliasson P, Lang S, Soneji S, Jönsson J. Putative role of NF-kB but not HIF-1α in hypoxia-dependent regulation of oxidative stress in hematopoietic stem and progenitor cells. Antioxid Redox Signal. 2019;: pubmed 出版商
  72. McAlpine C, Kiss M, Rattik S, He S, Vassalli A, Valet C, et al. Sleep modulates haematopoiesis and protects against atherosclerosis. Nature. 2019;566:383-387 pubmed 出版商
  73. Rowe R, Lummertz da Rocha E, Sousa P, Missios P, Morse M, Marion W, et al. The developmental stage of the hematopoietic niche regulates lineage in MLL-rearranged leukemia. J Exp Med. 2019;216:527-538 pubmed 出版商
  74. Paudel S, Baral P, Ghimire L, Bergeron S, Jin L, De Corte J, et al. CXCL1 regulates neutrophil homeostasis in pneumonia-derived sepsis caused by Streptococcus pneumoniae serotype 3. Blood. 2019;: pubmed 出版商
  75. Hu Y, Guo F, Xu Y, Li P, Lu Z, McVey D, et al. Long noncoding RNA NEXN-AS1 mitigates atherosclerosis by regulating the actin-binding protein NEXN. J Clin Invest. 2019;129:1115-1128 pubmed 出版商
  76. Cai Z, Kotzin J, Ramdas B, Chen S, Nelanuthala S, Palam L, et al. Inhibition of Inflammatory Signaling in Tet2 Mutant Preleukemic Cells Mitigates Stress-Induced Abnormalities and Clonal Hematopoiesis. Cell Stem Cell. 2018;23:833-849.e5 pubmed 出版商
  77. Chen X, Zhi X, Wang J, Su J. RANKL signaling in bone marrow mesenchymal stem cells negatively regulates osteoblastic bone formation. Bone Res. 2018;6:34 pubmed 出版商
  78. Rao T, Gupta M, Softic S, Wang L, Jang Y, Thomou T, et al. Attenuation of PKCδ enhances metabolic activity and promotes expansion of blood progenitors. EMBO J. 2018;37: pubmed 出版商
  79. Grigoryan A, Guidi N, Senger K, Liehr T, Soller K, Marka G, et al. LaminA/C regulates epigenetic and chromatin architecture changes upon aging of hematopoietic stem cells. Genome Biol. 2018;19:189 pubmed 出版商
  80. Hsu J, Dayaram T, Tovy A, De Braekeleer E, Jeong M, Wang F, et al. PPM1D Mutations Drive Clonal Hematopoiesis in Response to Cytotoxic Chemotherapy. Cell Stem Cell. 2018;23:700-713.e6 pubmed 出版商
  81. Chorzalska A, Morgan J, Ahsan N, Treaba D, Olszewski A, Petersen M, et al. Bone marrow-specific loss of ABI1 induces myeloproliferative neoplasm with features resembling human myelofibrosis. Blood. 2018;: pubmed 出版商
  82. Li H, Li D, He Z, Fan J, Li Q, Liu X, et al. The effects of Nrf2 knockout on regulation of benzene-induced mouse hematotoxicity. Toxicol Appl Pharmacol. 2018;358:56-67 pubmed 出版商
  83. Morales Hernández A, Martinat A, Chabot A, Kang G, McKinney Freeman S. Elevated Oxidative Stress Impairs Hematopoietic Progenitor Function in C57BL/6 Substrains. Stem Cell Reports. 2018;11:334-347 pubmed 出版商
  84. Pulikkan J, Hegde M, Ahmad H, Belaghzal H, Illendula A, Yu J, et al. CBFβ-SMMHC Inhibition Triggers Apoptosis by Disrupting MYC Chromatin Dynamics in Acute Myeloid Leukemia. Cell. 2018;174:172-186.e21 pubmed 出版商
  85. Wang X, Dong F, Zhang S, Yang W, Yu W, Wang Z, et al. TGF-?1 Negatively Regulates the Number and Function of Hematopoietic Stem Cells. Stem Cell Reports. 2018;11:274-287 pubmed 出版商
  86. Feng Y, Liao Y, Huang W, Lai X, Luo J, Du C, et al. Mesenchymal stromal cells-derived matrix Gla protein contribute to the alleviation of experimental colitis. Cell Death Dis. 2018;9:691 pubmed 出版商
  87. Liu T, Kong W, Tang X, Xu M, Wang Q, Zhang B, et al. The transcription factor Zfp90 regulates the self-renewal and differentiation of hematopoietic stem cells. Cell Death Dis. 2018;9:677 pubmed 出版商
  88. Ghanem L, Kromer A, Silverman I, Ji X, Gazzara M, Nguyen N, et al. Poly(C)-Binding Protein Pcbp2 Enables Differentiation of Definitive Erythropoiesis by Directing Functional Splicing of the Runx1 Transcript. Mol Cell Biol. 2018;38: pubmed 出版商
  89. Baumgartner C, Toifl S, Farlik M, Halbritter F, Scheicher R, Fischer I, et al. An ERK-Dependent Feedback Mechanism Prevents Hematopoietic Stem Cell Exhaustion. Cell Stem Cell. 2018;22:879-892.e6 pubmed 出版商
  90. Stefani F, Eberstål S, Vergani S, Kristiansen T, Bengzon J. Low-dose irradiated mesenchymal stromal cells break tumor defensive properties in vivo. Int J Cancer. 2018;143:2200-2212 pubmed 出版商
  91. Rothberg J, Maganti H, Jrade H, Porter C, Palidwor G, Cafariello C, et al. Mtf2-PRC2 control of canonical Wnt signaling is required for definitive erythropoiesis. Cell Discov. 2018;4:21 pubmed 出版商
  92. Gozdecka M, Meduri E, Mazan M, Tzelepis K, Dudek M, Knights A, et al. UTX-mediated enhancer and chromatin remodeling suppresses myeloid leukemogenesis through noncatalytic inverse regulation of ETS and GATA programs. Nat Genet. 2018;50:883-894 pubmed 出版商
  93. Hyrenius Wittsten A, Pilheden M, Sturesson H, Hansson J, Walsh M, Song G, et al. De novo activating mutations drive clonal evolution and enhance clonal fitness in KMT2A-rearranged leukemia. Nat Commun. 2018;9:1770 pubmed 出版商
  94. Baba O, Horie T, Nakao T, Hakuno D, Nakashima Y, Nishi H, et al. MicroRNA 33 Regulates the Population of Peripheral Inflammatory Ly6Chigh Monocytes through Dual Pathways. Mol Cell Biol. 2018;38: pubmed 出版商
  95. Toosi B, El Zawily A, Truitt L, Shannon M, Allonby O, Babu M, et al. EPHB6 augments both development and drug sensitivity of triple-negative breast cancer tumours. Oncogene. 2018;37:4073-4093 pubmed 出版商
  96. Peltzer N, Darding M, Montinaro A, Dráber P, Draberova H, Kupka S, et al. LUBAC is essential for embryogenesis by preventing cell death and enabling haematopoiesis. Nature. 2018;557:112-117 pubmed 出版商
  97. Salomè M, Magee A, Yalla K, Chaudhury S, Sarrou E, Carmody R, et al. A Trib2-p38 axis controls myeloid leukaemia cell cycle and stress response signalling. Cell Death Dis. 2018;9:443 pubmed 出版商
  98. Sampath S, Sampath S, Ho A, Corbel S, Millstone J, Lamb J, et al. Induction of muscle stem cell quiescence by the secreted niche factor Oncostatin M. Nat Commun. 2018;9:1531 pubmed 出版商
  99. Liakath Ali K, Mills E, Sequeira I, Lichtenberger B, Pisco A, Sipilä K, et al. An evolutionarily conserved ribosome-rescue pathway maintains epidermal homeostasis. Nature. 2018;556:376-380 pubmed 出版商
  100. Han Y, Liu Q, Hou J, Gu Y, Zhang Y, Chen Z, et al. Tumor-Induced Generation of Splenic Erythroblast-like Ter-Cells Promotes Tumor Progression. Cell. 2018;173:634-648.e12 pubmed 出版商
  101. Zhang Y, Xia F, Liu X, Yu Z, Xie L, Liu L, et al. JAM3 maintains leukemia-initiating cell self-renewal through LRP5/AKT/?-catenin/CCND1 signaling. J Clin Invest. 2018;128:1737-1751 pubmed 出版商
  102. Tsubaki T, Kadonosono T, Sakurai S, Shiozawa T, Goto T, Sakai S, et al. Novel adherent CD11b+ Gr-1+ tumor-infiltrating cells initiate an immunosuppressive tumor microenvironment. Oncotarget. 2018;9:11209-11226 pubmed 出版商
  103. Rehrauer H, Wu L, Blum W, Pecze L, Henzi T, Serre Beinier V, et al. How asbestos drives the tissue towards tumors: YAP activation, macrophage and mesothelial precursor recruitment, RNA editing, and somatic mutations. Oncogene. 2018;37:2645-2659 pubmed 出版商
  104. Giurisato E, Xu Q, Lonardi S, Telfer B, Russo I, Pearson A, et al. Myeloid ERK5 deficiency suppresses tumor growth by blocking protumor macrophage polarization via STAT3 inhibition. Proc Natl Acad Sci U S A. 2018;115:E2801-E2810 pubmed 出版商
  105. Kaufmann E, Sanz J, Dunn J, Khan N, Mendonça L, Pacis A, et al. BCG Educates Hematopoietic Stem Cells to Generate Protective Innate Immunity against Tuberculosis. Cell. 2018;172:176-190.e19 pubmed 出版商
  106. Christ A, Günther P, Lauterbach M, Duewell P, Biswas D, Pelka K, et al. Western Diet Triggers NLRP3-Dependent Innate Immune Reprogramming. Cell. 2018;172:162-175.e14 pubmed 出版商
  107. Mitroulis I, Ruppova K, Wang B, Chen L, Grzybek M, Grinenko T, et al. Modulation of Myelopoiesis Progenitors Is an Integral Component of Trained Immunity. Cell. 2018;172:147-161.e12 pubmed 出版商
  108. Zhang C, Yi W, Li F, Du X, Wang H, Wu P, et al. Eosinophil-derived CCL-6 impairs hematopoietic stem cell homeostasis. Cell Res. 2018;28:323-335 pubmed 出版商
  109. Guarnerio J, Mendez L, Asada N, Menon A, Fung J, Berry K, et al. A non-cell-autonomous role for Pml in the maintenance of leukemia from the niche. Nat Commun. 2018;9:66 pubmed 出版商
  110. Yao J, Guihard P, Wu X, Blázquez Medela A, Spencer M, Jumabay M, et al. Vascular endothelium plays a key role in directing pulmonary epithelial cell differentiation. J Cell Biol. 2017;216:3369-3385 pubmed 出版商
  111. Ebner F, Sedlyarov V, Tasciyan S, Ivin M, Kratochvill F, Gratz N, et al. The RNA-binding protein tristetraprolin schedules apoptosis of pathogen-engaged neutrophils during bacterial infection. J Clin Invest. 2017;127:2051-2065 pubmed 出版商
  112. Bagchi S, He Y, Zhang H, Cao L, Van Rhijn I, Moody D, et al. CD1b-autoreactive T cells contribute to hyperlipidemia-induced skin inflammation in mice. J Clin Invest. 2017;127:2339-2352 pubmed 出版商
  113. Ge Y, Gomez N, Adam R, Nikolova M, Yang H, Verma A, et al. Stem Cell Lineage Infidelity Drives Wound Repair and Cancer. Cell. 2017;169:636-650.e14 pubmed 出版商
  114. Emadedin M, Labibzadeh N, Fazeli R, Mohseni F, Hosseini S, Moghadasali R, et al. Percutaneous Autologous Bone Marrow-Derived Mesenchymal Stromal Cell Implantation Is Safe for Reconstruction of Human Lower Limb Long Bone Atrophic Nonunion. Cell J. 2017;19:159-165 pubmed
  115. Hérault A, Binnewies M, Leong S, Calero Nieto F, Zhang S, Kang Y, et al. Myeloid progenitor cluster formation drives emergency and leukaemic myelopoiesis. Nature. 2017;544:53-58 pubmed 出版商
  116. Ramirez GarciaLuna J, Chan D, Samberg R, Abou Rjeili M, Wong T, Li A, et al. Defective bone repair in mast cell-deficient Cpa3Cre/+ mice. PLoS ONE. 2017;12:e0174396 pubmed 出版商
  117. Wang X, Chen H, Tian R, Zhang Y, Drutskaya M, Wang C, et al. Macrophages induce AKT/β-catenin-dependent Lgr5+ stem cell activation and hair follicle regeneration through TNF. Nat Commun. 2017;8:14091 pubmed 出版商
  118. Liao L, Song M, Li X, Tang L, Zhang T, Zhang L, et al. E3 Ubiquitin Ligase UBR5 Drives the Growth and Metastasis of Triple-Negative Breast Cancer. Cancer Res. 2017;77:2090-2101 pubmed 出版商
  119. Ohgaki R, Ohmori T, Hara S, Nakagomi S, Kanai Azuma M, Kaneda Nakashima K, et al. Essential Roles of L-Type Amino Acid Transporter 1 in Syncytiotrophoblast Development by Presenting Fusogenic 4F2hc. Mol Cell Biol. 2017;37: pubmed 出版商
  120. Kasaai B, Caolo V, Peacock H, Lehoux S, Gomez Perdiguero E, Luttun A, et al. Erythro-myeloid progenitors can differentiate from endothelial cells and modulate embryonic vascular remodeling. Sci Rep. 2017;7:43817 pubmed 出版商
  121. Guidi N, Sacma M, Ständker L, Soller K, Marka G, Eiwen K, et al. Osteopontin attenuates aging-associated phenotypes of hematopoietic stem cells. EMBO J. 2017;36:840-853 pubmed 出版商
  122. Gatto S, Puri P, Malecova B. Single Cell Gene Expression Profiling of Skeletal Muscle-Derived Cells. Methods Mol Biol. 2017;1556:191-219 pubmed 出版商
  123. Ho T, Warr M, Adelman E, Lansinger O, Flach J, Verovskaya E, et al. Autophagy maintains the metabolism and function of young and old stem cells. Nature. 2017;543:205-210 pubmed 出版商
  124. Stanley R, Piszczatowski R, Bartholdy B, Mitchell K, McKimpson W, Narayanagari S, et al. A myeloid tumor suppressor role for NOL3. J Exp Med. 2017;214:753-771 pubmed 出版商
  125. Moestrup K, Andersen M, Jensen K. Isolation and In Vitro Characterization of Epidermal Stem Cells. Methods Mol Biol. 2017;1553:67-83 pubmed 出版商
  126. Vermillion M, Lei J, Shabi Y, Baxter V, Crilly N, McLane M, et al. Intrauterine Zika virus infection of pregnant immunocompetent mice models transplacental transmission and adverse perinatal outcomes. Nat Commun. 2017;8:14575 pubmed 出版商
  127. Ritschka B, Storer M, Mas A, Heinzmann F, Ortells M, Morton J, et al. The senescence-associated secretory phenotype induces cellular plasticity and tissue regeneration. Genes Dev. 2017;31:172-183 pubmed 出版商
  128. Guimarães Camboa N, Cattaneo P, Sun Y, Moore Morris T, Gu Y, Dalton N, et al. Pericytes of Multiple Organs Do Not Behave as Mesenchymal Stem Cells In Vivo. Cell Stem Cell. 2017;20:345-359.e5 pubmed 出版商
  129. Stzepourginski I, Nigro G, Jacob J, Dulauroy S, Sansonetti P, Eberl G, et al. CD34+ mesenchymal cells are a major component of the intestinal stem cells niche at homeostasis and after injury. Proc Natl Acad Sci U S A. 2017;114:E506-E513 pubmed 出版商
  130. Cañete A, Carmona R, Ariza L, Sanchez M, Rojas A, Muñoz Chápuli R. A population of hematopoietic stem cells derives from GATA4-expressing progenitors located in the placenta and lateral mesoderm of mice. Haematologica. 2017;102:647-655 pubmed 出版商
  131. Rychtarčíková Z, Lettlova S, Tomkova V, Korenkova V, Langerova L, Simonova E, et al. Tumor-initiating cells of breast and prostate origin show alterations in the expression of genes related to iron metabolism. Oncotarget. 2017;8:6376-6398 pubmed 出版商
  132. Costa D, Principi E, Lazzarini E, Descalzi F, Cancedda R, Castagnola P, et al. LCN2 overexpression in bone enhances the hematopoietic compartment via modulation of the bone marrow microenvironment. J Cell Physiol. 2017;232:3077-3087 pubmed 出版商
  133. Yang J, Tanaka Y, Seay M, Li Z, Jin J, Garmire L, et al. Single cell transcriptomics reveals unanticipated features of early hematopoietic precursors. Nucleic Acids Res. 2017;45:1281-1296 pubmed 出版商
  134. Monfared M, Minaee B, Rastegar T, Khrazinejad E, Barbarestani M. Sertoli cell condition medium can induce germ like cells from bone marrow derived mesenchymal stem cells. Iran J Basic Med Sci. 2016;19:1186-1192 pubmed
  135. Wang D, Ding X, Xue W, Zheng J, Tian X, Li Y, et al. A new scaffold containing small intestinal submucosa and mesenchymal stem cells improves pancreatic islet function and survival in vitro and in vivo. Int J Mol Med. 2017;39:167-173 pubmed 出版商
  136. Le Q, Yao W, Chen Y, Yan B, Liu C, Yuan M, et al. GRK6 regulates ROS response and maintains hematopoietic stem cell self-renewal. Cell Death Dis. 2016;7:e2478 pubmed 出版商
  137. Yu V, Yusuf R, Oki T, Wu J, Saez B, Wang X, et al. Epigenetic Memory Underlies Cell-Autonomous Heterogeneous Behavior of Hematopoietic Stem Cells. Cell. 2016;167:1310-1322.e17 pubmed 出版商
  138. Zhang G, Zhang J, Zhu C, Lin L, Wang J, Zhang H, et al. MicroRNA-98 regulates osteogenic differentiation of human bone mesenchymal stromal cells by targeting BMP2. J Cell Mol Med. 2017;21:254-264 pubmed 出版商
  139. Barnett F, Rosenfeld M, Wood M, Kiosses W, Usui Y, Marchetti V, et al. Macrophages form functional vascular mimicry channels in vivo. Sci Rep. 2016;6:36659 pubmed 出版商
  140. Holen I, Lefley D, Francis S, Rennicks S, Bradbury S, Coleman R, et al. IL-1 drives breast cancer growth and bone metastasis in vivo. Oncotarget. 2016;7:75571-75584 pubmed 出版商
  141. Rantakari P, Jäppinen N, Lokka E, Mokkala E, Gerke H, Peuhu E, et al. Fetal liver endothelium regulates the seeding of tissue-resident macrophages. Nature. 2016;538:392-396 pubmed 出版商
  142. Yue G, Xie S, Lee J, Kwok H, Gao S, Nian Y, et al. New potential beneficial effects of actein, a triterpene glycoside isolated from Cimicifuga species, in breast cancer treatment. Sci Rep. 2016;6:35263 pubmed 出版商
  143. Shenoy A, Jin Y, Luo H, Tang M, Pampo C, Shao R, et al. Epithelial-to-mesenchymal transition confers pericyte properties on cancer cells. J Clin Invest. 2016;126:4174-4186 pubmed 出版商
  144. Liu Z, Tian R, Li Y, Zhang L, Shao H, Yang C, et al. SDF-1?-induced dual pairs of E-selectin/ligand mediate endothelial progenitor cell homing to critical ischemia. Sci Rep. 2016;6:34416 pubmed 出版商
  145. Mittal S, Omoto M, Amouzegar A, Sahu A, Rezazadeh A, Katikireddy K, et al. Restoration of Corneal Transparency by Mesenchymal Stem Cells. Stem Cell Reports. 2016;7:583-590 pubmed 出版商
  146. Sidney L, Hopkinson A. Corneal keratocyte transition to mesenchymal stem cell phenotype and reversal using serum-free medium supplemented with fibroblast growth factor-2, transforming growth factor-β3 and retinoic acid. J Tissue Eng Regen Med. 2018;12:e203-e215 pubmed 出版商
  147. Johnston L, Hsu C, Krier Burris R, Chhiba K, Chien K, McKenzie A, et al. IL-33 Precedes IL-5 in Regulating Eosinophil Commitment and Is Required for Eosinophil Homeostasis. J Immunol. 2016;197:3445-3453 pubmed
  148. Urrutia M, Fernandez S, Gonzalez M, Vilches R, Rojas P, Vásquez M, et al. Overexpression of Glutamate Decarboxylase in Mesenchymal Stem Cells Enhances Their Immunosuppressive Properties and Increases GABA and Nitric Oxide Levels. PLoS ONE. 2016;11:e0163735 pubmed 出版商
  149. Kretzschmar C, Roolf C, Timmer K, Sekora A, Knübel G, Murua Escobar H, et al. Polymorphisms of the murine mitochondrial ND4, CYTB and COX3 genes impact hematopoiesis during aging. Oncotarget. 2016;7:74460-74472 pubmed 出版商
  150. Goguet Rubio P, Seyran B, Gayte L, Bernex F, Sutter A, Delpech H, et al. E4F1-mediated control of pyruvate dehydrogenase activity is essential for skin homeostasis. Proc Natl Acad Sci U S A. 2016;113:11004-9 pubmed 出版商
  151. Wang L, Xu D, Qiao Z, Shen L, Dai H, Ji Y. Follicular dendritic cell sarcoma of the spleen: A case report and review of the literature. Oncol Lett. 2016;12:2062-2064 pubmed
  152. Lu X, Chen Q, Rong Y, Yang G, Li C, Xu N, et al. LECT2 drives haematopoietic stem cell expansion and mobilization via regulating the macrophages and osteolineage cells. Nat Commun. 2016;7:12719 pubmed 出版商
  153. Olsson A, Venkatasubramanian M, Chaudhri V, Aronow B, Salomonis N, Singh H, et al. Single-cell analysis of mixed-lineage states leading to a binary cell fate choice. Nature. 2016;537:698-702 pubmed 出版商
  154. Nazari B, Rice L, Stifano G, Barron A, Wang Y, Korndorf T, et al. Altered Dermal Fibroblasts in Systemic Sclerosis Display Podoplanin and CD90. Am J Pathol. 2016;186:2650-64 pubmed 出版商
  155. Yang Z, Zimmerman S, Tsunezumi J, Braitsch C, Trent C, Bryant D, et al. Role of CD34 family members in lumen formation in the developing kidney. Dev Biol. 2016;418:66-74 pubmed 出版商
  156. Antonova L, Sevostyanova V, Kutikhin A, Mironov A, Krivkina E, Shabaev A, et al. Vascular Endothelial Growth Factor Improves Physico-Mechanical Properties and Enhances Endothelialization of Poly(3-hydroxybutyrate-co-3-hydroxyvalerate)/Poly(?-caprolactone) Small-Diameter Vascular Grafts In vivo. Front Pharmacol. 2016;7:230 pubmed 出版商
  157. Waterstrat A, Rector K, Geiger H, Liang Y. Quantitative trait gene Slit2 positively regulates murine hematopoietic stem cell numbers. Sci Rep. 2016;6:31412 pubmed 出版商
  158. You L, Li L, Zou J, Yan K, Belle J, Nijnik A, et al. BRPF1 is essential for development of fetal hematopoietic stem cells. J Clin Invest. 2016;126:3247-62 pubmed 出版商
  159. Abdullah C, Li Z, Wang X, Jin Z. Depletion of T lymphocytes ameliorates cardiac fibrosis in streptozotocin-induced diabetic cardiomyopathy. Int Immunopharmacol. 2016;39:251-264 pubmed 出版商
  160. Agarwal S, Drake J, Qureshi A, Loder S, Li S, Shigemori K, et al. Characterization of Cells Isolated from Genetic and Trauma-Induced Heterotopic Ossification. PLoS ONE. 2016;11:e0156253 pubmed 出版商
  161. Seki T, Hosaka K, Lim S, Fischer C, Honek J, Yang Y, et al. Endothelial PDGF-CC regulates angiogenesis-dependent thermogenesis in beige fat. Nat Commun. 2016;7:12152 pubmed 出版商
  162. Nguyen L, Fifis T, Christophi C. Vascular disruptive agent OXi4503 and anti-angiogenic agent Sunitinib combination treatment prolong survival of mice with CRC liver metastasis. BMC Cancer. 2016;16:533 pubmed 出版商
  163. Gunnarsson A, Christensen R, Li J, Jensen U. Global gene expression and comparison between multiple populations in the mouse epidermis. Stem Cell Res. 2016;17:191-202 pubmed 出版商
  164. Hoppe P, Schwarzfischer M, Loeffler D, Kokkaliaris K, Hilsenbeck O, Moritz N, et al. Early myeloid lineage choice is not initiated by random PU.1 to GATA1 protein ratios. Nature. 2016;535:299-302 pubmed 出版商
  165. Cox A, Barrandon O, Cai E, Rios J, Chavez J, Bonnyman C, et al. Resolving Discrepant Findings on ANGPTL8 in ?-Cell Proliferation: A Collaborative Approach to Resolving the Betatrophin Controversy. PLoS ONE. 2016;11:e0159276 pubmed 出版商
  166. Lukjanenko L, Jung M, Hegde N, Perruisseau Carrier C, Migliavacca E, Rozo M, et al. Loss of fibronectin from the aged stem cell niche affects the regenerative capacity of skeletal muscle in mice. Nat Med. 2016;22:897-905 pubmed 出版商
  167. Siemerink M, Hughes M, Dallinga M, Gora T, Cait J, Vogels I, et al. CD34 Promotes Pathological Epi-Retinal Neovascularization in a Mouse Model of Oxygen-Induced Retinopathy. PLoS ONE. 2016;11:e0157902 pubmed 出版商
  168. Sun L, Zhang H, Bi L, Shi Y, Xing C, Tang L, et al. Angiopoietin-1 facilitates recovery of hematopoiesis in radiated mice. Am J Transl Res. 2016;8:2011-21 pubmed
  169. Shen J, Li Z, Li L, Lu L, Xiao Z, Wu W, et al. Vascular-targeted TNF? and IFN? inhibits orthotopic colorectal tumor growth. J Transl Med. 2016;14:187 pubmed 出版商
  170. Terashima A, Okamoto K, Nakashima T, Akira S, Ikuta K, Takayanagi H. Sepsis-Induced Osteoblast Ablation Causes Immunodeficiency. Immunity. 2016;44:1434-43 pubmed 出版商
  171. Horrillo A, Porras G, Ayuso M, González Manchón C. Loss of endothelial barrier integrity in mice with conditional ablation of podocalyxin (Podxl) in endothelial cells. Eur J Cell Biol. 2016;95:265-76 pubmed 出版商
  172. Kessler B, Sharma V, Zhou Q, Jing X, Pike L, Kerege A, et al. FAK Expression, Not Kinase Activity, Is a Key Mediator of Thyroid Tumorigenesis and Protumorigenic Processes. Mol Cancer Res. 2016;14:869-82 pubmed 出版商
  173. Abramowski P, Krasemann S, Ernst T, Lange C, Ittrich H, Schweizer M, et al. Mesenchymal Stromal/Stem Cells Do Not Ameliorate Experimental Autoimmune Encephalomyelitis and Are Not Detectable in the Central Nervous System of Transplanted Mice. Stem Cells Dev. 2016;25:1134-48 pubmed 出版商
  174. Patenaude J, Perreault C. Thymic Mesenchymal Cells Have a Distinct Transcriptomic Profile. J Immunol. 2016;196:4760-70 pubmed 出版商
  175. Wen S, Dooner M, Cheng Y, Papa E, Del Tatto M, Pereira M, et al. Mesenchymal stromal cell-derived extracellular vesicles rescue radiation damage to murine marrow hematopoietic cells. Leukemia. 2016;30:2221-2231 pubmed 出版商
  176. Pietras E, Mirantes Barbeito C, Fong S, Loeffler D, Kovtonyuk L, Zhang S, et al. Chronic interleukin-1 exposure drives haematopoietic stem cells towards precocious myeloid differentiation at the expense of self-renewal. Nat Cell Biol. 2016;18:607-18 pubmed 出版商
  177. Carofino B, Ayanga B, Tracey L, Brooke Bisschop T, Justice M. PRDM14 promotes RAG-dependent Notch1 driver mutations in mouse T-ALL. Biol Open. 2016;5:645-53 pubmed 出版商
  178. Itkin T, Gur Cohen S, Spencer J, Schajnovitz A, Ramasamy S, Kusumbe A, et al. Distinct bone marrow blood vessels differentially regulate haematopoiesis. Nature. 2016;532:323-8 pubmed 出版商
  179. Yosef R, Pilpel N, Tokarsky Amiel R, Biran A, Ovadya Y, Cohen S, et al. Directed elimination of senescent cells by inhibition of BCL-W and BCL-XL. Nat Commun. 2016;7:11190 pubmed 出版商
  180. Almeida C, Fernandes S, Ribeiro Junior A, Keith Okamoto O, Vainzof M. Muscle Satellite Cells: Exploring the Basic Biology to Rule Them. Stem Cells Int. 2016;2016:1078686 pubmed 出版商
  181. Cui J, Zhang F, Wang Y, Liu J, Ming X, Hou J, et al. Macrophage migration inhibitory factor promotes cardiac stem cell proliferation and endothelial differentiation through the activation of the PI3K/Akt/mTOR and AMPK pathways. Int J Mol Med. 2016;37:1299-309 pubmed 出版商
  182. Park S, Choi Y, Jung N, Yu Y, Ryu K, Kim H, et al. Myogenic differentiation potential of human tonsil-derived mesenchymal stem cells and their potential for use to promote skeletal muscle regeneration. Int J Mol Med. 2016;37:1209-20 pubmed 出版商
  183. Braun J, Meixner A, Brachner A, Foisner R. The GIY-YIG Type Endonuclease Ankyrin Repeat and LEM Domain-Containing Protein 1 (ANKLE1) Is Dispensable for Mouse Hematopoiesis. PLoS ONE. 2016;11:e0152278 pubmed 出版商
  184. Yang Y, Xu J, Chen H, Fei X, Tang Y, Yan Y, et al. MiR-128-2 inhibits common lymphoid progenitors from developing into progenitor B cells. Oncotarget. 2016;7:17520-31 pubmed 出版商
  185. Miller M, Rosten P, Lemieux M, Lai C, Humphries R. Meis1 Is Required for Adult Mouse Erythropoiesis, Megakaryopoiesis and Hematopoietic Stem Cell Expansion. PLoS ONE. 2016;11:e0151584 pubmed 出版商
  186. Dai L, Peng X, Tan E, Zhang J. Tumor-associated antigen CAPERα and microvessel density in hepatocellular carcinoma. Oncotarget. 2016;7:16985-95 pubmed 出版商
  187. Cruz F, Borg Z, Goodwin M, Coffey A, Wagner D, Rocco P, et al. CD11b+ and Sca-1+ Cells Exert the Main Beneficial Effects of Systemically Administered Bone Marrow-Derived Mononuclear Cells in a Murine Model of Mixed Th2/Th17 Allergic Airway Inflammation. Stem Cells Transl Med. 2016;5:488-99 pubmed 出版商
  188. Wang L, Siegenthaler J, Dowell R, Yi R. Foxc1 reinforces quiescence in self-renewing hair follicle stem cells. Science. 2016;351:613-7 pubmed 出版商
  189. Wang X, Ma C, Zong Z, Xiao Y, Li N, Guo C, et al. A20 inhibits the motility of HCC cells induced by TNF-α. Oncotarget. 2016;7:14742-54 pubmed 出版商
  190. Vance M, Llanga T, Bennett W, Woodard K, Murlidharan G, Chungfat N, et al. AAV Gene Therapy for MPS1-associated Corneal Blindness. Sci Rep. 2016;6:22131 pubmed 出版商
  191. Malecova B, Dall Agnese A, Madaro L, Gatto S, Coutinho Toto P, Albini S, et al. TBP/TFIID-dependent activation of MyoD target genes in skeletal muscle cells. elife. 2016;5: pubmed 出版商
  192. Zhao W, Wang C, Liu R, Wei C, Duan J, Liu K, et al. Effect of TGF-β1 on the Migration and Recruitment of Mesenchymal Stem Cells after Vascular Balloon Injury: Involvement of Matrix Metalloproteinase-14. Sci Rep. 2016;6:21176 pubmed 出版商
  193. Chen J, Miyanishi M, Wang S, Yamazaki S, Sinha R, Kao K, et al. Hoxb5 marks long-term haematopoietic stem cells and reveals a homogenous perivascular niche. Nature. 2016;530:223-7 pubmed 出版商
  194. Lu K, Nakagawa M, Thummar K, RATHINAM C. Slicer Endonuclease Argonaute 2 Is a Negative Regulator of Hematopoietic Stem Cell Quiescence. Stem Cells. 2016;34:1343-53 pubmed 出版商
  195. Sundarkrishnan L, Bradish J, Oliai B, Hosler G. Cutaneous Cellular Pseudoglandular Schwannoma: An Unusual Histopathologic Variant. Am J Dermatopathol. 2016;38:315-8 pubmed 出版商
  196. Lee B, Koo J, Yun Jun J, Gavrilova O, Lee Y, Seo A, et al. A mouse model for a partially inactive obesity-associated human MC3R variant. Nat Commun. 2016;7:10522 pubmed 出版商
  197. Stefanovic M, Tutusaus A, Martinez Nieto G, Bárcena C, de Gregorio E, Moutinho C, et al. Targeting glucosylceramide synthase upregulation reverts sorafenib resistance in experimental hepatocellular carcinoma. Oncotarget. 2016;7:8253-67 pubmed 出版商
  198. Luchsinger L, de Almeida M, Corrigan D, Mumau M, Snoeck H. Mitofusin 2 maintains haematopoietic stem cells with extensive lymphoid potential. Nature. 2016;529:528-31 pubmed 出版商
  199. Catarinella M, Monestiroli A, Escobar G, Fiocchi A, Tran N, Aiolfi R, et al. IFNα gene/cell therapy curbs colorectal cancer colonization of the liver by acting on the hepatic microenvironment. EMBO Mol Med. 2016;8:155-70 pubmed 出版商
  200. Lasigliè D, Boero S, Bauer I, Morando S, Damonte P, Cea M, et al. Sirt6 regulates dendritic cell differentiation, maturation, and function. Aging (Albany NY). 2016;8:34-49 pubmed
  201. García Prat L, Martínez Vicente M, Perdiguero E, Ortet L, Rodríguez Ubreva J, Rebollo E, et al. Autophagy maintains stemness by preventing senescence. Nature. 2016;529:37-42 pubmed 出版商
  202. Guye P, Ebrahimkhani M, Kipniss N, Velazquez J, Schoenfeld E, Kiani S, et al. Genetically engineering self-organization of human pluripotent stem cells into a liver bud-like tissue using Gata6. Nat Commun. 2016;7:10243 pubmed 出版商
  203. Wei L, Wang H, Yang F, Ding Q, Zhao J. Interleukin-17 potently increases non-small cell lung cancer growth. Mol Med Rep. 2016;13:1673-80 pubmed 出版商
  204. Kaplan J, Marshall M, C McSkimming C, Harmon D, Garmey J, Oldham S, et al. Adipocyte progenitor cells initiate monocyte chemoattractant protein-1-mediated macrophage accumulation in visceral adipose tissue. Mol Metab. 2015;4:779-94 pubmed 出版商
  205. Ge Y, Zhang L, Nikolova M, Reva B, Fuchs E. Strand-specific in vivo screen of cancer-associated miRNAs unveils a role for miR-21(∗) in SCC progression. Nat Cell Biol. 2016;18:111-21 pubmed 出版商
  206. Cole C, Verdoni A, Ketkar S, Leight E, Russler Germain D, Lamprecht T, et al. PML-RARA requires DNA methyltransferase 3A to initiate acute promyelocytic leukemia. J Clin Invest. 2016;126:85-98 pubmed 出版商
  207. Hu Y, Zhang Y, Tian K, Xun C, Wang S, Lv D. Effects of nerve growth factor and basic fibroblast growth factor dual gene modification on rat bone marrow mesenchymal stem cell differentiation into neuron-like cells in vitro. Mol Med Rep. 2016;13:49-58 pubmed 出版商
  208. Wen Q, Yang Q, Goldenson B, Malinge S, Lasho T, Schneider R, et al. Targeting megakaryocytic-induced fibrosis in myeloproliferative neoplasms by AURKA inhibition. Nat Med. 2015;21:1473-80 pubmed 出版商
  209. Forni M, Ramos Maia Lobba A, Pereira Ferreira A, Sogayar M. Simultaneous Isolation of Three Different Stem Cell Populations from Murine Skin. PLoS ONE. 2015;10:e0140143 pubmed 出版商
  210. Varney M, Niederkorn M, Konno H, Matsumura T, Gohda J, Yoshida N, et al. Loss of Tifab, a del(5q) MDS gene, alters hematopoiesis through derepression of Toll-like receptor-TRAF6 signaling. J Exp Med. 2015;212:1967-85 pubmed 出版商
  211. Alvarez S, Diaz M, Flach J, Rodriguez Acebes S, López Contreras A, Martinez D, et al. Replication stress caused by low MCM expression limits fetal erythropoiesis and hematopoietic stem cell functionality. Nat Commun. 2015;6:8548 pubmed 出版商
  212. Sidney L, Branch M, Dua H, Hopkinson A. Effect of culture medium on propagation and phenotype of corneal stroma-derived stem cells. Cytotherapy. 2015;17:1706-22 pubmed 出版商
  213. Fong C, Gilan O, Lam E, Rubin A, Ftouni S, Tyler D, et al. BET inhibitor resistance emerges from leukaemia stem cells. Nature. 2015;525:538-42 pubmed 出版商
  214. Bose C, Megyesi J, Shah S, Hiatt K, Hall K, Karaduta O, et al. Evidence Suggesting a Role of Iron in a Mouse Model of Nephrogenic Systemic Fibrosis. PLoS ONE. 2015;10:e0136563 pubmed 出版商
  215. Zou R, Lin Q, Huang W, Li X, Cao Y, Zhang J, et al. Quantitative Contrast-Enhanced Ultrasonic Imaging Reflects Microvascularization in Hepatocellular Carcinoma and Prognosis after Resection. Ultrasound Med Biol. 2015;41:2621-30 pubmed 出版商
  216. Zhao J, Li H, Zhou R, Ma G, Dekker J, Tucker H, et al. Foxp1 Regulates the Proliferation of Hair Follicle Stem Cells in Response to Oxidative Stress during Hair Cycling. PLoS ONE. 2015;10:e0131674 pubmed 出版商
  217. Zhang J, Li L, Baldwin A, Friedman A, Paz Priel I. Loss of IKKβ but Not NF-κB p65 Skews Differentiation towards Myeloid over Erythroid Commitment and Increases Myeloid Progenitor Self-Renewal and Functional Long-Term Hematopoietic Stem Cells. PLoS ONE. 2015;10:e0130441 pubmed 出版商
  218. Charmsaz S, Beckett K, Smith F, Bruedigam C, Moore A, Al Ejeh F, et al. EphA2 Is a Therapy Target in EphA2-Positive Leukemias but Is Not Essential for Normal Hematopoiesis or Leukemia. PLoS ONE. 2015;10:e0130692 pubmed 出版商
  219. Osada S, Minematsu N, Oda F, Akimoto K, Kawana S, Ohno S. Atypical Protein Kinase C Isoform, aPKCλ, Is Essential for Maintaining Hair Follicle Stem Cell Quiescence. J Invest Dermatol. 2015;135:2584-2592 pubmed 出版商
  220. de Melo S, Bittencourt S, Ferrazoli E, da Silva C, da Cunha F, da Silva F, et al. The Anti-Tumor Effects of Adipose Tissue Mesenchymal Stem Cell Transduced with HSV-Tk Gene on U-87-Driven Brain Tumor. PLoS ONE. 2015;10:e0128922 pubmed 出版商
  221. Espana Agusti J, Tuveson D, Adams D, Matakidou A. A minimally invasive, lentiviral based method for the rapid and sustained genetic manipulation of renal tubules. Sci Rep. 2015;5:11061 pubmed 出版商
  222. Foster J, Gouveia R, Connon C. Low-glucose enhances keratocyte-characteristic phenotype from corneal stromal cells in serum-free conditions. Sci Rep. 2015;5:10839 pubmed 出版商
  223. Liang X, Ding Y, Zhang Y, Chai Y, He J, Chiu S, et al. Activation of NRG1-ERBB4 signaling potentiates mesenchymal stem cell-mediated myocardial repairs following myocardial infarction. Cell Death Dis. 2015;6:e1765 pubmed 出版商
  224. Iglesias Bartolomé R, Torres D, Marone R, Feng X, Martin D, Simaan M, et al. Inactivation of a Gα(s)-PKA tumour suppressor pathway in skin stem cells initiates basal-cell carcinogenesis. Nat Cell Biol. 2015;17:793-803 pubmed 出版商
  225. Liechtenstein T, Perez Janices N, Blanco Luquin I, Goyvaerts C, Schwarze J, Dufait I, et al. Anti-melanoma vaccines engineered to simultaneously modulate cytokine priming and silence PD-L1 characterized using ex vivo myeloid-derived suppressor cells as a readout of therapeutic efficacy. Oncoimmunology. 2014;3:e945378 pubmed
  226. Liu X, Wang J, Li S, Li L, Huang M, Zhang Y, et al. Histone deacetylase 3 expression correlates with vasculogenic mimicry through the phosphoinositide3-kinase / ERK-MMP-laminin5γ2 signaling pathway. Cancer Sci. 2015;106:857-66 pubmed 出版商
  227. Zeng S, Wang L, Li P, Wang W, Yang J. Mesenchymal stem cells abrogate experimental asthma by altering dendritic cell function. Mol Med Rep. 2015;12:2511-20 pubmed 出版商
  228. Siegemund S, Shepherd J, Xiao C, Sauer K. hCD2-iCre and Vav-iCre mediated gene recombination patterns in murine hematopoietic cells. PLoS ONE. 2015;10:e0124661 pubmed 出版商
  229. Marks Bluth J, Khanna A, Chandrakanthan V, Thoms J, Bee T, Eich C, et al. SMAD1 and SMAD5 Expression Is Coordinately Regulated by FLI1 and GATA2 during Endothelial Development. Mol Cell Biol. 2015;35:2165-72 pubmed 出版商
  230. Hayashi Y, Bardsley M, Toyomasu Y, Milosavljevic S, Gajdos G, Choi K, et al. Platelet-Derived Growth Factor Receptor-α Regulates Proliferation of Gastrointestinal Stromal Tumor Cells With Mutations in KIT by Stabilizing ETV1. Gastroenterology. 2015;149:420-32.e16 pubmed 出版商
  231. Sohn J, Lu A, Tang Y, Wang B, Huard J. Activation of non-myogenic mesenchymal stem cells during the disease progression in dystrophic dystrophin/utrophin knockout mice. Hum Mol Genet. 2015;24:3814-29 pubmed 出版商
  232. Li C, Xiong Y, Yang X, Wang L, Zhang S, Dai N, et al. Lost expression of ADAMTS5 protein associates with progression and poor prognosis of hepatocellular carcinoma. Drug Des Devel Ther. 2015;9:1773-83 pubmed 出版商
  233. Rao T, Marks Bluth J, Sullivan J, Gupta M, Chandrakanthan V, Fitch S, et al. High-level Gpr56 expression is dispensable for the maintenance and function of hematopoietic stem and progenitor cells in mice. Stem Cell Res. 2015;14:307-22 pubmed 出版商
  234. Tesio M, Tang Y, Müdder K, Saini M, von Paleske L, Macintyre E, et al. Hematopoietic stem cell quiescence and function are controlled by the CYLD-TRAF2-p38MAPK pathway. J Exp Med. 2015;212:525-38 pubmed 出版商
  235. Moding E, Castle K, Perez B, Oh P, Min H, Norris H, et al. Tumor cells, but not endothelial cells, mediate eradication of primary sarcomas by stereotactic body radiation therapy. Sci Transl Med. 2015;7:278ra34 pubmed 出版商
  236. Fang J, Zhou H, Zhang C, Shang L, Zhang L, Xu J, et al. A novel vascular pattern promotes metastasis of hepatocellular carcinoma in an epithelial-mesenchymal transition-independent manner. Hepatology. 2015;62:452-65 pubmed 出版商
  237. Bei Y, Zhou Q, Fu S, Lv D, Chen P, Chen Y, et al. Cardiac telocytes and fibroblasts in primary culture: different morphologies and immunophenotypes. PLoS ONE. 2015;10:e0115991 pubmed 出版商
  238. Pannu J, Belle J, Forster M, Duerr C, Shen S, Kane L, et al. Ubiquitin specific protease 21 is dispensable for normal development, hematopoiesis and lymphocyte differentiation. PLoS ONE. 2015;10:e0117304 pubmed 出版商
  239. Hu W, Dooley J, Chung S, Chandramohan D, Cimmino L, Mukherjee S, et al. miR-29a maintains mouse hematopoietic stem cell self-renewal by regulating Dnmt3a. Blood. 2015;125:2206-16 pubmed 出版商
  240. Bárcena C, Stefanovic M, Tutusaus A, Martinez Nieto G, Martinez L, García Ruiz C, et al. Angiogenin secretion from hepatoma cells activates hepatic stellate cells to amplify a self-sustained cycle promoting liver cancer. Sci Rep. 2015;5:7916 pubmed 出版商
  241. Azimzadeh O, Sievert W, Sarioglu H, Merl Pham J, Yentrapalli R, Bakshi M, et al. Integrative proteomics and targeted transcriptomics analyses in cardiac endothelial cells unravel mechanisms of long-term radiation-induced vascular dysfunction. J Proteome Res. 2015;14:1203-19 pubmed 出版商
  242. Schollaert K, Stephens M, Gray J, Fulkerson P. Generation of eosinophils from cryopreserved murine bone marrow cells. PLoS ONE. 2014;9:e116141 pubmed 出版商
  243. Krysiak K, Tibbitts J, Shao J, Liu T, Ndonwi M, Walter M. Reduced levels of Hspa9 attenuate Stat5 activation in mouse B cells. Exp Hematol. 2015;43:319-30.e10 pubmed 出版商
  244. Karamitros D, Patmanidi A, Kotantaki P, Potocnik A, Bähr Ivacevic T, Benes V, et al. Geminin deletion increases the number of fetal hematopoietic stem cells by affecting the expression of key transcription factors. Development. 2015;142:70-81 pubmed 出版商
  245. Ito A, Fujimura M, Niizuma K, Kanoke A, Sakata H, Morita Fujimura Y, et al. Enhanced post-ischemic angiogenesis in mice lacking RNF213; a susceptibility gene for moyamoya disease. Brain Res. 2015;1594:310-20 pubmed 出版商
  246. Sakamoto H, Takeda N, Arai F, Hosokawa K, García P, Suda T, et al. Determining c-Myb protein levels can isolate functional hematopoietic stem cell subtypes. Stem Cells. 2015;33:479-90 pubmed 出版商
  247. Wang W, Kissig M, Rajakumari S, Huang L, Lim H, Won K, et al. Ebf2 is a selective marker of brown and beige adipogenic precursor cells. Proc Natl Acad Sci U S A. 2014;111:14466-71 pubmed 出版商
  248. Zorin V, Komlev V, Zorina A, Khromova N, Solovieva E, Fedotov A, et al. Octacalcium phosphate ceramics combined with gingiva-derived stromal cells for engineered functional bone grafts. Biomed Mater. 2014;9:055005 pubmed 出版商
  249. McGowan S, McCoy D. Regulation of fibroblast lipid storage and myofibroblast phenotypes during alveolar septation in mice. Am J Physiol Lung Cell Mol Physiol. 2014;307:L618-31 pubmed 出版商
  250. Wang F, Song Y, Bei Y, Zhao Y, Xiao J, Yang C. Telocytes in liver regeneration: possible roles. J Cell Mol Med. 2014;18:1720-6 pubmed 出版商
  251. Guseva D, Rizvanov A, Salafutdinov I, Kudryashova N, Palotás A, Islamov R. Over-expression of Oct4 and Sox2 transcription factors enhances differentiation of human umbilical cord blood cells in vivo. Biochem Biophys Res Commun. 2014;451:503-9 pubmed 出版商
  252. Fukumoto M, Amanuma T, Kuwahara Y, Shimura T, Suzuki M, Mori S, et al. Guanine nucleotide-binding protein 1 is one of the key molecules contributing to cancer cell radioresistance. Cancer Sci. 2014;105:1351-9 pubmed 出版商
  253. Hong C, Muller L, Boyiadzis M, Whiteside T. Isolation and characterization of CD34+ blast-derived exosomes in acute myeloid leukemia. PLoS ONE. 2014;9:e103310 pubmed 出版商
  254. Flach J, Bakker S, Mohrin M, Conroy P, Pietras E, Reynaud D, et al. Replication stress is a potent driver of functional decline in ageing haematopoietic stem cells. Nature. 2014;512:198-202 pubmed 出版商
  255. Ueda J, Ho J, Lee K, Kitajima S, Yang H, Sun W, et al. The hypoxia-inducible epigenetic regulators Jmjd1a and G9a provide a mechanistic link between angiogenesis and tumor growth. Mol Cell Biol. 2014;34:3702-20 pubmed 出版商
  256. Yin C, Zhang T, Qiao L, Du J, Li S, Zhao H, et al. TLR7-expressing cells comprise an interfollicular epidermal stem cell population in murine epidermis. Sci Rep. 2014;4:5831 pubmed 出版商
  257. Chung Y, Kim E, Abdel Wahab O. Femoral bone marrow aspiration in live mice. J Vis Exp. 2014;: pubmed 出版商
  258. Moding E, Lee C, Castle K, Oh P, Mao L, Zha S, et al. Atm deletion with dual recombinase technology preferentially radiosensitizes tumor endothelium. J Clin Invest. 2014;124:3325-38 pubmed 出版商
  259. Hellesøy M, Blois A, Tiron C, Mannelqvist M, Akslen L, Lorens J. Akt1 activity regulates vessel maturation in a tissue engineering model of angiogenesis. Tissue Eng Part A. 2014;20:2590-603 pubmed 出版商
  260. Sanchez Gurmaches J, Guertin D. Adipocytes arise from multiple lineages that are heterogeneously and dynamically distributed. Nat Commun. 2014;5:4099 pubmed 出版商
  261. Weston W, Zayas J, Perez R, George J, Jurecic R. Dynamic equilibrium of heterogeneous and interconvertible multipotent hematopoietic cell subsets. Sci Rep. 2014;4:5199 pubmed 出版商
  262. Yang Y, Sun W, Wu S, Xiao J, Kong X. Telocytes in human heart valves. J Cell Mol Med. 2014;18:759-65 pubmed 出版商
  263. Witkiewicz H, Oh P, Schnitzer J. I. Embryonal vasculature formation recapitulated in transgenic mammary tumor spheroids implanted pseudo-orthotopicly into mouse dorsal skin fold: the organoblasts concept. F1000Res. 2013;2:8 pubmed 出版商
  264. Cosgrove B, Gilbert P, Porpiglia E, Mourkioti F, Lee S, Corbel S, et al. Rejuvenation of the muscle stem cell population restores strength to injured aged muscles. Nat Med. 2014;20:255-64 pubmed 出版商
  265. Sousa Victor P, Gutarra S, García Prat L, Rodriguez Ubreva J, Ortet L, Ruiz Bonilla V, et al. Geriatric muscle stem cells switch reversible quiescence into senescence. Nature. 2014;506:316-21 pubmed 出版商
  266. Liao X, Nguyen H. Epidermal expression of Lgr6 is dependent on nerve endings and Schwann cells. Exp Dermatol. 2014;23:195-8 pubmed 出版商
  267. Majka S, Miller H, Helm K, Acosta A, Childs C, Kong R, et al. Analysis and isolation of adipocytes by flow cytometry. Methods Enzymol. 2014;537:281-96 pubmed 出版商
  268. Hittinger M, Czyz Z, Huesemann Y, Maneck M, Botteron C, Kaeufl S, et al. Molecular profiling of single Sca-1+/CD34+,- cells--the putative murine lung stem cells. PLoS ONE. 2013;8:e83917 pubmed 出版商
  269. Xiao J, Wang F, Liu Z, Yang C. Telocytes in liver: electron microscopic and immunofluorescent evidence. J Cell Mol Med. 2013;17:1537-42 pubmed 出版商
  270. de Craene B, Denecker G, Vermassen P, Taminau J, Mauch C, Derore A, et al. Epidermal Snail expression drives skin cancer initiation and progression through enhanced cytoprotection, epidermal stem/progenitor cell expansion and enhanced metastatic potential. Cell Death Differ. 2014;21:310-20 pubmed 出版商
  271. Alessio A, Beltrame M, Nascimento M, Vicente C, de Godoy J, Silva J, et al. Circulating progenitor and mature endothelial cells in deep vein thrombosis. Int J Med Sci. 2013;10:1746-54 pubmed 出版商
  272. Xu Y, Swartz K, Siu K, Bhattacharyya M, Minella A. Fbw7-dependent cyclin E regulation ensures terminal maturation of bone marrow erythroid cells by restraining oxidative metabolism. Oncogene. 2014;33:3161-71 pubmed 出版商
  273. Muruganandan S, Dranse H, Rourke J, McMullen N, Sinal C. Chemerin neutralization blocks hematopoietic stem cell osteoclastogenesis. Stem Cells. 2013;31:2172-82 pubmed 出版商
  274. Singh S, Gundavarapu S, Smith K, Chand H, Saeed A, Mishra N, et al. Gestational exposure of mice to secondhand cigarette smoke causes bronchopulmonary dysplasia blocked by the nicotinic receptor antagonist mecamylamine. Environ Health Perspect. 2013;121:957-64 pubmed 出版商
  275. Yucel G, Altindag B, Gomez Ospina N, Rana A, Panagiotakos G, Lara M, et al. State-dependent signaling by Cav1.2 regulates hair follicle stem cell function. Genes Dev. 2013;27:1217-22 pubmed 出版商
  276. Redecke V, Wu R, Zhou J, Finkelstein D, Chaturvedi V, High A, et al. Hematopoietic progenitor cell lines with myeloid and lymphoid potential. Nat Methods. 2013;10:795-803 pubmed 出版商
  277. Navone S, Marfia G, Nava S, Invernici G, Cristini S, Balbi S, et al. Human and mouse brain-derived endothelial cells require high levels of growth factors medium for their isolation, in vitro maintenance and survival. Vasc Cell. 2013;5:10 pubmed 出版商
  278. Tripathi P, Wang Y, Coussens M, Manda K, Casey A, Lin C, et al. Activation of NFAT signaling establishes a tumorigenic microenvironment through cell autonomous and non-cell autonomous mechanisms. Oncogene. 2014;33:1840-9 pubmed 出版商
  279. Vink P, Smout W, Driessen Engels L, de Bruin A, Delsing D, Krajnc Franken M, et al. In vivo knockdown of TAK1 accelerates bone marrow proliferation/differentiation and induces systemic inflammation. PLoS ONE. 2013;8:e57348 pubmed 出版商
  280. Roehrich M, Spicher A, Milano G, Vassalli G. Characterization of cardiac-resident progenitor cells expressing high aldehyde dehydrogenase activity. Biomed Res Int. 2013;2013:503047 pubmed 出版商
  281. Wang W, Jiang H, Zhu H, Zhang H, Gong J, Zhang L, et al. Overexpression of high mobility group box 1 and 2 is associated with the progression and angiogenesis of human bladder carcinoma. Oncol Lett. 2013;5:884-888 pubmed
  282. Jenkins C, Shevchuk O, Giambra V, Lam S, Carboni J, Gottardis M, et al. IGF signaling contributes to malignant transformation of hematopoietic progenitors by the MLL-AF9 oncoprotein. Exp Hematol. 2012;40:715-723.e6 pubmed 出版商
  283. Ripich T, Jessberger R. SWAP-70 regulates erythropoiesis by controlling ?4 integrin. Haematologica. 2011;96:1743-52 pubmed 出版商
  284. Petersson M, Brylka H, Kraus A, John S, Rappl G, Schettina P, et al. TCF/Lef1 activity controls establishment of diverse stem and progenitor cell compartments in mouse epidermis. EMBO J. 2011;30:3004-18 pubmed 出版商
  285. Yamana D, Shimizu T, Fan Y, Miura T, Nanashima N, Yamada T, et al. Decrease of hepatic stellate cells in rats with enhanced sensitivity to clofibrate-induced hepatocarcinogenesis. Cancer Sci. 2011;102:735-41 pubmed 出版商
  286. Paz H, Lynch M, Bogue C, Gasson J. The homeobox gene Hhex regulates the earliest stages of definitive hematopoiesis. Blood. 2010;116:1254-62 pubmed 出版商
  287. Böiers C, Buza Vidas N, Jensen C, Pronk C, Kharazi S, Wittmann L, et al. Expression and role of FLT3 in regulation of the earliest stage of normal granulocyte-monocyte progenitor development. Blood. 2010;115:5061-8 pubmed 出版商
  288. Guibal F, Alberich Jorda M, Hirai H, Ebralidze A, Levantini E, Di Ruscio A, et al. Identification of a myeloid committed progenitor as the cancer-initiating cell in acute promyelocytic leukemia. Blood. 2009;114:5415-25 pubmed 出版商
  289. Tamaki T, Uchiyama Y, Okada Y, Tono K, Masuda M, Nitta M, et al. Clonal differentiation of skeletal muscle-derived CD34(-)/45(-) stem cells into cardiomyocytes in vivo. Stem Cells Dev. 2010;19:503-12 pubmed 出版商
  290. Waskow C, Liu K, Darrasse Jèze G, Guermonprez P, Ginhoux F, Merad M, et al. The receptor tyrosine kinase Flt3 is required for dendritic cell development in peripheral lymphoid tissues. Nat Immunol. 2008;9:676-83 pubmed 出版商
  291. Peng J, Kitchen S, West R, Sigler R, Eisenmann K, Alberts A. Myeloproliferative defects following targeting of the Drf1 gene encoding the mammalian diaphanous related formin mDia1. Cancer Res. 2007;67:7565-71 pubmed
  292. Voehringer D, van Rooijen N, Locksley R. Eosinophils develop in distinct stages and are recruited to peripheral sites by alternatively activated macrophages. J Leukoc Biol. 2007;81:1434-44 pubmed
  293. Gupta R, Karpatkin S, Basch R. Hematopoiesis and stem cell renewal in long-term bone marrow cultures containing catalase. Blood. 2006;107:1837-46 pubmed