这是一篇来自已证抗体库的有关小鼠 Cd3d的综述,是根据662篇发表使用所有方法的文章归纳的。这综述旨在帮助来邦网的访客找到最适合Cd3d 抗体。
Cd3d 同义词: T3d

赛默飞世尔
大鼠 单克隆(17A2)
  • 流式细胞仪; 小鼠; 1:50
赛默飞世尔 Cd3d抗体(eBioscience, 11-0032-82)被用于被用于流式细胞仪在小鼠样本上浓度为1:50. Nat Commun (2022) ncbi
仓鼠 单克隆(145-2C11)
  • 流式细胞仪; 人类; 1:100; 图 s5a
赛默飞世尔 Cd3d抗体(Invitrogen, 17-0031-81)被用于被用于流式细胞仪在人类样本上浓度为1:100 (图 s5a). Nat Commun (2022) ncbi
domestic rabbit 单克隆(SP7)
  • 免疫组化; 小鼠
赛默飞世尔 Cd3d抗体(Thermo Fisher Scientific, RM-9107-S)被用于被用于免疫组化在小鼠样本上. Nat Commun (2022) ncbi
domestic rabbit 单克隆(SP7)
  • 免疫组化-石蜡切片; 小鼠; 1:300; 图 5d
赛默飞世尔 Cd3d抗体(Epredia Labvision, RM9107R7)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:300 (图 5d). Cell Mol Gastroenterol Hepatol (2022) ncbi
Syrian golden hamster 单克隆(eBio500A2 (500A2))
  • 流式细胞仪; 小鼠; 图 7c, 7d, 7e
赛默飞世尔 Cd3d抗体(eBioscience, 56-0033-82)被用于被用于流式细胞仪在小鼠样本上 (图 7c, 7d, 7e). PLoS Pathog (2022) ncbi
仓鼠 单克隆(145-2C11)
  • 流式细胞仪; 小鼠; 图 7c, 7d, 7e
赛默飞世尔 Cd3d抗体(eBioscience, 11-0031-86)被用于被用于流式细胞仪在小鼠样本上 (图 7c, 7d, 7e). PLoS Pathog (2022) ncbi
domestic rabbit 单克隆(SP7)
  • 免疫组化-冰冻切片; 大鼠; 1:500; 图 5c
赛默飞世尔 Cd3d抗体(Thermo Fisher, MA1-90582)被用于被用于免疫组化-冰冻切片在大鼠样本上浓度为1:500 (图 5c). Sci Rep (2022) ncbi
仓鼠 单克隆(145-2C11)
  • 流式细胞仪; 小鼠; 图 s1l
赛默飞世尔 Cd3d抗体(eBioscience, 11-0031-85)被用于被用于流式细胞仪在小鼠样本上 (图 s1l). Cell Rep (2022) ncbi
大鼠 单克隆(17A2)
  • 流式细胞仪; 小鼠; 1:100; 图 1c, s3b
赛默飞世尔 Cd3d抗体(eBioscience, 56-0032-82)被用于被用于流式细胞仪在小鼠样本上浓度为1:100 (图 1c, s3b). Development (2022) ncbi
仓鼠 单克隆(145-2C11)
  • 抑制或激活实验; 小鼠; 1 ug/ml; 图 1d
赛默飞世尔 Cd3d抗体(Thermo Fisher, 16-0031)被用于被用于抑制或激活实验在小鼠样本上浓度为1 ug/ml (图 1d). J Exp Med (2022) ncbi
仓鼠 单克隆(145-2C11)
  • 流式细胞仪; 小鼠
赛默飞世尔 Cd3d抗体(ThermoFisher, MA5-17655)被用于被用于流式细胞仪在小鼠样本上. iScience (2022) ncbi
仓鼠 单克隆(145-2C11)
  • 流式细胞仪; 小鼠; 1:40; 图 s4b
赛默飞世尔 Cd3d抗体(Thermo Fisher, 12-0031-82)被用于被用于流式细胞仪在小鼠样本上浓度为1:40 (图 s4b). J Clin Invest (2022) ncbi
大鼠 单克隆(17A2)
  • 流式细胞仪; 小鼠; 图 s3
赛默飞世尔 Cd3d抗体(Invitrogen, 11-0032-82)被用于被用于流式细胞仪在小鼠样本上 (图 s3). J Neuroinflammation (2022) ncbi
仓鼠 单克隆(145-2C11)
  • 流式细胞仪; 小鼠; 图 1b
赛默飞世尔 Cd3d抗体(eBioscience, 145-2C11)被用于被用于流式细胞仪在小鼠样本上 (图 1b). Front Immunol (2021) ncbi
仓鼠 单克隆(145-2C11)
  • 流式细胞仪; 小鼠; 图 s3, 4a
赛默飞世尔 Cd3d抗体(eBioscience, 145-2C11)被用于被用于流式细胞仪在小鼠样本上 (图 s3, 4a). Int J Mol Sci (2022) ncbi
仓鼠 单克隆(145-2C11)
  • 抑制或激活实验; 小鼠; 图 5c
赛默飞世尔 Cd3d抗体(eBioscience, 16-0031-85)被用于被用于抑制或激活实验在小鼠样本上 (图 5c). J Clin Invest (2022) ncbi
仓鼠 单克隆(145-2C11)
  • 抑制或激活实验; 小鼠; 2 ug/ml; 图 s1g
赛默飞世尔 Cd3d抗体(eBiocience, 16-0031-85)被用于被用于抑制或激活实验在小鼠样本上浓度为2 ug/ml (图 s1g). EMBO Mol Med (2022) ncbi
大鼠 单克隆(17A2)
  • 流式细胞仪; 人类; 图 s2b
赛默飞世尔 Cd3d抗体(Thermo Fisher Scientific, 17A2)被用于被用于流式细胞仪在人类样本上 (图 s2b). Front Immunol (2021) ncbi
大鼠 单克隆(17A2)
  • 流式细胞仪; 小鼠
赛默飞世尔 Cd3d抗体(eBioscience, 56-0032-82)被用于被用于流式细胞仪在小鼠样本上. Theranostics (2021) ncbi
大鼠 单克隆(17A2)
  • 流式细胞仪; 小鼠; 图 s4b
赛默飞世尔 Cd3d抗体(eBioscience, 47-0032-82)被用于被用于流式细胞仪在小鼠样本上 (图 s4b). Cell Rep (2021) ncbi
大鼠 单克隆(17A2)
  • 流式细胞仪; 小鼠; 1:100; 图 4c
赛默飞世尔 Cd3d抗体(eBioscience, 48-0032-82)被用于被用于流式细胞仪在小鼠样本上浓度为1:100 (图 4c). Cells (2021) ncbi
仓鼠 单克隆(145-2C11)
  • 流式细胞仪; 小鼠; 1:800
赛默飞世尔 Cd3d抗体(eBioscience, 12-0031-82)被用于被用于流式细胞仪在小鼠样本上浓度为1:800. Cells (2021) ncbi
仓鼠 单克隆(145-2C11)
  • 免疫组化-石蜡切片; 小鼠; 1:50; 图 7f
赛默飞世尔 Cd3d抗体(Thermo Invitrogen, 300318)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:50 (图 7f). Arterioscler Thromb Vasc Biol (2021) ncbi
仓鼠 单克隆(145-2C11)
  • 流式细胞仪; 小鼠; 图 1a
赛默飞世尔 Cd3d抗体(eBiosciences, 145-2C11)被用于被用于流式细胞仪在小鼠样本上 (图 1a). Aging Dis (2021) ncbi
domestic rabbit 单克隆(SP7)
  • 免疫组化; 小鼠; 1:500; 图 3c
赛默飞世尔 Cd3d抗体(THERMOFISHER, MA5-14,524)被用于被用于免疫组化在小鼠样本上浓度为1:500 (图 3c). Sci Rep (2021) ncbi
仓鼠 单克隆(145-2C11)
  • 流式细胞仪; 小鼠; 1:100; 图 6f
赛默飞世尔 Cd3d抗体(Invitrogen, 35-0031-80)被用于被用于流式细胞仪在小鼠样本上浓度为1:100 (图 6f). Cell Rep (2021) ncbi
domestic rabbit 单克隆(SP7)
  • 免疫组化-石蜡切片; 小鼠; 1:150; 图 3b
赛默飞世尔 Cd3d抗体(ThermoScientific, MA5-14524)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:150 (图 3b). J Inflamm Res (2021) ncbi
仓鼠 单克隆(145-2C11)
  • 流式细胞仪; 小鼠; 1:200; 图 s5
赛默飞世尔 Cd3d抗体(eBiosciences, 145-2C11)被用于被用于流式细胞仪在小鼠样本上浓度为1:200 (图 s5). Nat Commun (2021) ncbi
大鼠 单克隆(17A2)
  • 流式细胞仪; 小鼠; 图 s7
赛默飞世尔 Cd3d抗体(eBioscience, 460032-80)被用于被用于流式细胞仪在小鼠样本上 (图 s7). Mol Cancer (2021) ncbi
仓鼠 单克隆(145-2C11)
  • 流式细胞仪; 小鼠; 图 2a
赛默飞世尔 Cd3d抗体(eBioscience, 25-0031-81)被用于被用于流式细胞仪在小鼠样本上 (图 2a). Cell Mol Gastroenterol Hepatol (2021) ncbi
仓鼠 单克隆(145-2C11)
  • 流式细胞仪; 小鼠; 图 1d, 3f
赛默飞世尔 Cd3d抗体(eBioscience/Thermo Scientific, 145-2C11)被用于被用于流式细胞仪在小鼠样本上 (图 1d, 3f). Mucosal Immunol (2021) ncbi
domestic rabbit 单克隆(SP7)
  • 免疫组化; 人类; 1:100; 图 1d
赛默飞世尔 Cd3d抗体(Thermo Fisher Scientific, SP7)被用于被用于免疫组化在人类样本上浓度为1:100 (图 1d). Neuropathol Appl Neurobiol (2021) ncbi
仓鼠 单克隆(145-2C11)
  • 流式细胞仪; 小鼠; 1:1000; 图 2i
赛默飞世尔 Cd3d抗体(eBioscience, 145-2C11)被用于被用于流式细胞仪在小鼠样本上浓度为1:1000 (图 2i). Nat Commun (2021) ncbi
仓鼠 单克隆(145-2C11)
  • 流式细胞仪; 小鼠
赛默飞世尔 Cd3d抗体(eBioscience, 48-0031-82)被用于被用于流式细胞仪在小鼠样本上. Mucosal Immunol (2021) ncbi
仓鼠 单克隆(145-2C11)
  • 流式细胞仪; 小鼠; 图 1a
赛默飞世尔 Cd3d抗体(eBioscience, 145-2C11)被用于被用于流式细胞仪在小鼠样本上 (图 1a). Acta Naturae (2021) ncbi
大鼠 单克隆(17A2)
  • 流式细胞仪; 小鼠; 1:200; 图 s6d
赛默飞世尔 Cd3d抗体(eBioscience, 11-0032-82)被用于被用于流式细胞仪在小鼠样本上浓度为1:200 (图 s6d). Nat Commun (2021) ncbi
仓鼠 单克隆(145-2C11)
  • 流式细胞仪; 小鼠; 图 s3
赛默飞世尔 Cd3d抗体(Thermo Fisher, 145-2C11)被用于被用于流式细胞仪在小鼠样本上 (图 s3). Cell Death Dis (2021) ncbi
大鼠 单克隆(17A2)
  • 抑制或激活实验; 小鼠
赛默飞世尔 Cd3d抗体(Invitrogen, 17A2)被用于被用于抑制或激活实验在小鼠样本上. Arthritis Res Ther (2021) ncbi
大鼠 单克隆(17A2)
  • 流式细胞仪; 小鼠; 1:200
赛默飞世尔 Cd3d抗体(Invitrogen, 48-0032-82)被用于被用于流式细胞仪在小鼠样本上浓度为1:200. Front Immunol (2021) ncbi
仓鼠 单克隆(145-2C11)
  • 流式细胞仪; 小鼠; 图 s4a
赛默飞世尔 Cd3d抗体(eBioscience, 17-0031-83)被用于被用于流式细胞仪在小鼠样本上 (图 s4a). Blood (2021) ncbi
仓鼠 单克隆(145-2C11)
  • 流式细胞仪; 小鼠
赛默飞世尔 Cd3d抗体(eBioscience, 145-2C11)被用于被用于流式细胞仪在小鼠样本上. Front Immunol (2021) ncbi
大鼠 单克隆(17A2)
  • 流式细胞仪; 小鼠; 1:100; 图 5e
赛默飞世尔 Cd3d抗体(ThermoFisher, 17-0032-82)被用于被用于流式细胞仪在小鼠样本上浓度为1:100 (图 5e). FASEB J (2021) ncbi
仓鼠 单克隆(145-2C11)
  • 流式细胞仪; 小鼠; 图 2a, 2b, s10
赛默飞世尔 Cd3d抗体(eBioscience, 45-0031-82)被用于被用于流式细胞仪在小鼠样本上 (图 2a, 2b, s10). Nat Commun (2021) ncbi
大鼠 单克隆(17A2)
  • 免疫组化-石蜡切片; 小鼠; 1:100; 图 s6e
赛默飞世尔 Cd3d抗体(Invitrogen, 14-0032-82)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:100 (图 s6e). Sci Adv (2021) ncbi
仓鼠 单克隆(145-2C11)
  • 免疫印迹; 小鼠; 1:1000; 图 3f
赛默飞世尔 Cd3d抗体(Thermofisher, 145-2C11)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 3f). Protein Cell (2021) ncbi
大鼠 单克隆(17A2)
  • 流式细胞仪; 小鼠; 图 s8
赛默飞世尔 Cd3d抗体(eBioscience, 17-0032-82)被用于被用于流式细胞仪在小鼠样本上 (图 s8). Commun Biol (2021) ncbi
仓鼠 单克隆(145-2C11)
  • 流式细胞仪; 小鼠; 1:200; 图 s1
赛默飞世尔 Cd3d抗体(eBiosciences, 17-0031-82)被用于被用于流式细胞仪在小鼠样本上浓度为1:200 (图 s1). Nat Immunol (2021) ncbi
仓鼠 单克隆(145-2C11)
  • 免疫组化-冰冻切片; 小鼠; 1:500; 图 s1c
  • 流式细胞仪; 小鼠; 1:100; 图 1a, 2
赛默飞世尔 Cd3d抗体(eBioscience, 14003182)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:500 (图 s1c) 和 被用于流式细胞仪在小鼠样本上浓度为1:100 (图 1a, 2). J Neuroinflammation (2021) ncbi
仓鼠 单克隆(145-2C11)
  • 流式细胞仪; 小鼠; 1:200; 图 4b
赛默飞世尔 Cd3d抗体(eBioscience, 145-2C11)被用于被用于流式细胞仪在小鼠样本上浓度为1:200 (图 4b). EMBO Rep (2021) ncbi
domestic rabbit 单克隆(SP7)
  • 免疫组化-石蜡切片; 小鼠; 1:600; 图 e1j
赛默飞世尔 Cd3d抗体(Thermo Fischer, RM-9107-S1)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:600 (图 e1j). EMBO Rep (2021) ncbi
大鼠 单克隆(17A2)
  • 流式细胞仪; 小鼠
赛默飞世尔 Cd3d抗体(Invitrogen, 48-0032-82)被用于被用于流式细胞仪在小鼠样本上. J Clin Invest (2021) ncbi
大鼠 单克隆(17A2)
  • 免疫组化; 小鼠; 图 2g
赛默飞世尔 Cd3d抗体(eBioscience, 14-0032-81)被用于被用于免疫组化在小鼠样本上 (图 2g). Theranostics (2021) ncbi
仓鼠 单克隆(145-2C11)
  • 流式细胞仪; 小鼠
赛默飞世尔 Cd3d抗体(Invitrogen, 145-2C11)被用于被用于流式细胞仪在小鼠样本上. Aging Cell (2021) ncbi
仓鼠 单克隆(145-2C11)
  • 流式细胞仪; 小鼠; 1:100
赛默飞世尔 Cd3d抗体(eBioscience, 145-2 C11)被用于被用于流式细胞仪在小鼠样本上浓度为1:100. elife (2020) ncbi
仓鼠 单克隆(145-2C11)
  • 流式细胞仪; 小鼠; 1:200
赛默飞世尔 Cd3d抗体(Invitrogen, 145-2C11)被用于被用于流式细胞仪在小鼠样本上浓度为1:200. Hepatol Commun (2020) ncbi
仓鼠 单克隆(145-2C11)
  • 流式细胞仪; 小鼠
赛默飞世尔 Cd3d抗体(Thermo Fisher, 145-2C11)被用于被用于流式细胞仪在小鼠样本上. Front Immunol (2020) ncbi
仓鼠 单克隆(145-2C11)
  • 流式细胞仪; 小鼠; 1:200
赛默飞世尔 Cd3d抗体(eBioscience, 145-C2 C11)被用于被用于流式细胞仪在小鼠样本上浓度为1:200. elife (2020) ncbi
仓鼠 单克隆(145-2C11)
  • 流式细胞仪; 小鼠
赛默飞世尔 Cd3d抗体(eBioscience, 145-2C11)被用于被用于流式细胞仪在小鼠样本上. Aging Cell (2020) ncbi
仓鼠 单克隆(145-2C11)
  • 流式细胞仪; 小鼠; 1:100
赛默飞世尔 Cd3d抗体(Thermo Fisher Scientific, 145-C2 C11)被用于被用于流式细胞仪在小鼠样本上浓度为1:100. elife (2020) ncbi
仓鼠 单克隆(145-2C11)
  • 流式细胞仪; 小鼠; 图 s2a
  • 免疫组化; 小鼠
赛默飞世尔 Cd3d抗体(eBioscience, 145-2C11)被用于被用于流式细胞仪在小鼠样本上 (图 s2a) 和 被用于免疫组化在小鼠样本上. Cell (2020) ncbi
大鼠 单克隆(17A2)
  • 免疫组化-冰冻切片; 小鼠; 图 4g
赛默飞世尔 Cd3d抗体(eBioscience, 17A2)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 4g). Sci Immunol (2020) ncbi
仓鼠 单克隆(145-2C11)
  • 免疫组化; 小鼠; 图 4a
赛默飞世尔 Cd3d抗体(eBioscience, 16-0031)被用于被用于免疫组化在小鼠样本上 (图 4a). Basic Res Cardiol (2020) ncbi
Syrian golden hamster 单克隆(eBio500A2 (500A2))
  • 免疫组化-冰冻切片; 小鼠; 1:200; 图 2d
赛默飞世尔 Cd3d抗体(Thermo Fisher, 500A2)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:200 (图 2d). elife (2020) ncbi
仓鼠 单克隆(145-2C11)
  • 免疫组化-冰冻切片; 小鼠; 1:50; 图 4i
赛默飞世尔 Cd3d抗体(ThermoFisher, 14-0031-82)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:50 (图 4i). Nat Commun (2020) ncbi
仓鼠 单克隆(145-2C11)
  • 流式细胞仪; 人类; 1:100; 图 6a
赛默飞世尔 Cd3d抗体(eBioscience, 145-2C11)被用于被用于流式细胞仪在人类样本上浓度为1:100 (图 6a). Front Immunol (2020) ncbi
大鼠 单克隆(17A2)
  • 流式细胞仪; 小鼠; 1:300; 图 s7b
赛默飞世尔 Cd3d抗体(Invitrogen, 11-0032-82)被用于被用于流式细胞仪在小鼠样本上浓度为1:300 (图 s7b). Cell Res (2020) ncbi
大鼠 单克隆(17A2)
  • 免疫组化; 小鼠; 1:100; 图 6e
赛默飞世尔 Cd3d抗体(eBioscience, 14-0032)被用于被用于免疫组化在小鼠样本上浓度为1:100 (图 6e). Proc Natl Acad Sci U S A (2020) ncbi
Syrian golden hamster 单克隆(500A2)
  • 流式细胞仪; 小鼠; 1 ug/ml; 图 s3a, s20a, s20c
赛默飞世尔 Cd3d抗体(eBioscience, 500A2)被用于被用于流式细胞仪在小鼠样本上浓度为1 ug/ml (图 s3a, s20a, s20c). Science (2020) ncbi
仓鼠 单克隆(145-2C11)
  • 流式细胞仪; 小鼠; 图 s1
赛默飞世尔 Cd3d抗体(eBioscience, 145-2C11)被用于被用于流式细胞仪在小鼠样本上 (图 s1). elife (2020) ncbi
仓鼠 单克隆(145-2C11)
  • 流式细胞仪; 小鼠; 图 3c
赛默飞世尔 Cd3d抗体(Thermo Fisher, 145-2C11)被用于被用于流式细胞仪在小鼠样本上 (图 3c). Sci Adv (2020) ncbi
大鼠 单克隆(17A2)
  • 免疫组化-石蜡切片; 小鼠; 图 5a
赛默飞世尔 Cd3d抗体(eBioscience, 17A2)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 5a). Acta Neuropathol (2020) ncbi
大鼠 单克隆(17A2)
  • 流式细胞仪; 小鼠; 图 5a
赛默飞世尔 Cd3d抗体(eBioscience, 17-0032-82)被用于被用于流式细胞仪在小鼠样本上 (图 5a). Aging (Albany NY) (2020) ncbi
大鼠 单克隆(17A2)
  • 免疫组化; 小鼠; 1:800; 图 s3a
赛默飞世尔 Cd3d抗体(eBioscience, 14?C0032-81)被用于被用于免疫组化在小鼠样本上浓度为1:800 (图 s3a). Nature (2020) ncbi
仓鼠 单克隆(145-2C11)
  • 流式细胞仪; 小鼠; 1:800; 图 s15b
赛默飞世尔 Cd3d抗体(Thermo Fisher, 48-0031-80)被用于被用于流式细胞仪在小鼠样本上浓度为1:800 (图 s15b). Nat Commun (2020) ncbi
大鼠 单克隆(17A2)
  • 流式细胞仪; 小鼠; 图 s3a, s3b, s7c
赛默飞世尔 Cd3d抗体(ThermoFisher, 48-0032-82)被用于被用于流式细胞仪在小鼠样本上 (图 s3a, s3b, s7c). Cell Rep (2019) ncbi
大鼠 单克隆(17A2)
  • 流式细胞仪; 小鼠; 1:200; 图 6
赛默飞世尔 Cd3d抗体(eBioscience, 17-0032)被用于被用于流式细胞仪在小鼠样本上浓度为1:200 (图 6). JCI Insight (2020) ncbi
仓鼠 单克隆(145-2C11)
  • 流式细胞仪; 小鼠; 图 e9g
赛默飞世尔 Cd3d抗体(eBioscience, 145-2C11)被用于被用于流式细胞仪在小鼠样本上 (图 e9g). Nature (2019) ncbi
仓鼠 单克隆(145-2C11)
  • 流式细胞仪; 小鼠; 1:50; 图 e1a
赛默飞世尔 Cd3d抗体(eBioscience, 145-2C11)被用于被用于流式细胞仪在小鼠样本上浓度为1:50 (图 e1a). Nature (2020) ncbi
大鼠 单克隆(17A2)
  • 流式细胞仪; 小鼠
赛默飞世尔 Cd3d抗体(eBioscience, 17A2)被用于被用于流式细胞仪在小鼠样本上. Front Immunol (2019) ncbi
大鼠 单克隆(17A2)
  • 免疫组化; 小鼠; 1:200; 图 3h
赛默飞世尔 Cd3d抗体(Ebioscience, 14?C0032-81)被用于被用于免疫组化在小鼠样本上浓度为1:200 (图 3h). Cell Stem Cell (2019) ncbi
大鼠 单克隆(17A2)
  • 流式细胞仪; 小鼠; 图 s2k
赛默飞世尔 Cd3d抗体(eBioscience, 56-0032-82)被用于被用于流式细胞仪在小鼠样本上 (图 s2k). Sci Adv (2019) ncbi
大鼠 单克隆(17A2)
  • 流式细胞仪; 小鼠; 1:40; 图 s3a
赛默飞世尔 Cd3d抗体(eBioscience, 17-0032-82)被用于被用于流式细胞仪在小鼠样本上浓度为1:40 (图 s3a). Nat Commun (2019) ncbi
大鼠 单克隆(17A2)
  • 流式细胞仪; 小鼠; 1:100; 图 s7d
赛默飞世尔 Cd3d抗体(eBioscience, 50-0032-82)被用于被用于流式细胞仪在小鼠样本上浓度为1:100 (图 s7d). Cancer Cell (2019) ncbi
仓鼠 单克隆(145-2C11)
  • 流式细胞仪; 小鼠; 1:100; 图 s7d
赛默飞世尔 Cd3d抗体(Invitrogen, 35-0031-80)被用于被用于流式细胞仪在小鼠样本上浓度为1:100 (图 s7d). Cancer Cell (2019) ncbi
仓鼠 单克隆(145-2C11)
  • 免疫组化-冰冻切片; 小鼠; 1:200; 图 2e
赛默飞世尔 Cd3d抗体(eBioscience, 145-2C11)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:200 (图 2e). Sci Adv (2019) ncbi
domestic rabbit 单克隆(SP7)
  • 免疫组化-石蜡切片; 小鼠; 1:100; 图 3b
赛默飞世尔 Cd3d抗体(Themo, SP7)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:100 (图 3b). elife (2019) ncbi
仓鼠 单克隆(145-2C11)
  • 流式细胞仪; 小鼠; 图 3g, e7h
赛默飞世尔 Cd3d抗体(eBioscience, 48-0031-82)被用于被用于流式细胞仪在小鼠样本上 (图 3g, e7h). Nature (2019) ncbi
大鼠 单克隆(17A2)
  • 流式细胞仪; 小鼠; 1:200; 图 e2n
赛默飞世尔 Cd3d抗体(eBioscience, 17A2)被用于被用于流式细胞仪在小鼠样本上浓度为1:200 (图 e2n). Nature (2019) ncbi
仓鼠 单克隆(145-2C11)
  • 流式细胞仪; 小鼠; 1:1000; 图 e2j, e8a
赛默飞世尔 Cd3d抗体(eBioscience, 145-2C11)被用于被用于流式细胞仪在小鼠样本上浓度为1:1000 (图 e2j, e8a). Nature (2019) ncbi
domestic rabbit 单克隆(SP7)
  • 免疫组化-石蜡切片; 人类; 1:150; 图 s4a
赛默飞世尔 Cd3d抗体(Thermofisher, MA1-90582)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:150 (图 s4a). Cancer Cell (2019) ncbi
仓鼠 单克隆(145-2C11)
  • 流式细胞仪; 小鼠; 图 1a
赛默飞世尔 Cd3d抗体(eBioscience, 145-2C11)被用于被用于流式细胞仪在小鼠样本上 (图 1a). Sci Rep (2019) ncbi
仓鼠 单克隆(145-2C11)
  • 流式细胞仪; 小鼠; 1:200; 图 s1e
赛默飞世尔 Cd3d抗体(eBioscience, 11-0031-82)被用于被用于流式细胞仪在小鼠样本上浓度为1:200 (图 s1e). Nat Commun (2019) ncbi
Syrian golden hamster 单克隆(eBio500A2 (500A2))
  • 免疫组化-冰冻切片; 小鼠; 1:50; 图 1a
赛默飞世尔 Cd3d抗体(eBioscience, eBio500A2)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:50 (图 1a). J Exp Med (2019) ncbi
Syrian golden hamster 单克隆(500A2)
  • 流式细胞仪; 小鼠; 图 2d
赛默飞世尔 Cd3d抗体(Thermo Fisher Scientific, HM3428)被用于被用于流式细胞仪在小鼠样本上 (图 2d). J Clin Invest (2019) ncbi
仓鼠 单克隆(145-2C11)
  • 流式细胞仪; 小鼠; 图 2d
赛默飞世尔 Cd3d抗体(Thermo Fisher Scientific, 12-0031-83)被用于被用于流式细胞仪在小鼠样本上 (图 2d). J Clin Invest (2019) ncbi
仓鼠 单克隆(145-2C11)
  • 流式细胞仪; 小鼠; 1:1000; 图 5a
赛默飞世尔 Cd3d抗体(eBioscience, 11-0031)被用于被用于流式细胞仪在小鼠样本上浓度为1:1000 (图 5a). Cell (2019) ncbi
大鼠 单克隆(17A2)
  • 流式细胞仪; 小鼠; 1:100; 图 s3d
赛默飞世尔 Cd3d抗体(eBioscience, 48-0032-82)被用于被用于流式细胞仪在小鼠样本上浓度为1:100 (图 s3d). Cell (2019) ncbi
仓鼠 单克隆(145-2C11)
  • 流式细胞仪; 小鼠; 图 4a
赛默飞世尔 Cd3d抗体(eBioscience, 145-2C11)被用于被用于流式细胞仪在小鼠样本上 (图 4a). Immune Netw (2018) ncbi
仓鼠 单克隆(145-2C11)
  • 流式细胞仪; 小鼠; 图 6a
赛默飞世尔 Cd3d抗体(eBioscience, 17-0031-83)被用于被用于流式细胞仪在小鼠样本上 (图 6a). Cell (2019) ncbi
大鼠 单克隆(17A2)
  • 免疫组化; 小鼠; 1:400; 图 1a
赛默飞世尔 Cd3d抗体(eBioscience, 17A2)被用于被用于免疫组化在小鼠样本上浓度为1:400 (图 1a). Neuroscience (2019) ncbi
仓鼠 单克隆(145-2C11)
  • 免疫组化-冰冻切片; 小鼠; 图 1e
  • 流式细胞仪; 小鼠; 图 s1a
赛默飞世尔 Cd3d抗体(eBioscience, 2C11)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 1e) 和 被用于流式细胞仪在小鼠样本上 (图 s1a). Nat Commun (2018) ncbi
Syrian golden hamster 单克隆(eBio500A2 (500A2))
  • 免疫组化-石蜡切片; 小鼠; 图 4a
赛默飞世尔 Cd3d抗体(eBiosciences, ebio500A2)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 4a). Ann Rheum Dis (2019) ncbi
仓鼠 单克隆(145-2C11)
  • 流式细胞仪; 小鼠; 图 s3b
赛默飞世尔 Cd3d抗体(eBiosciences, 145-2 C11)被用于被用于流式细胞仪在小鼠样本上 (图 s3b). Ann Rheum Dis (2019) ncbi
大鼠 单克隆(17A2)
  • 流式细胞仪; 小鼠; 图 s3a
赛默飞世尔 Cd3d抗体(Thermo Fisher, 17A2)被用于被用于流式细胞仪在小鼠样本上 (图 s3a). J Clin Invest (2019) ncbi
大鼠 单克隆(17A2)
  • 流式细胞仪; 小鼠; 1:100; 图 s3f
赛默飞世尔 Cd3d抗体(eBioscience, 56-0032-80)被用于被用于流式细胞仪在小鼠样本上浓度为1:100 (图 s3f). Nat Commun (2018) ncbi
大鼠 单克隆(17A2)
  • 流式细胞仪; 小鼠; 图 1b
赛默飞世尔 Cd3d抗体(eBioscience, 17A2)被用于被用于流式细胞仪在小鼠样本上 (图 1b). PLoS Pathog (2018) ncbi
大鼠 单克隆(17A2)
  • 流式细胞仪; 小鼠; 图 1d
赛默飞世尔 Cd3d抗体(eBioscience, 47-0032-82)被用于被用于流式细胞仪在小鼠样本上 (图 1d). J Exp Med (2018) ncbi
仓鼠 单克隆(145-2C11)
  • 流式细胞仪; 小鼠; 1:100; 图 s3b
赛默飞世尔 Cd3d抗体(eBioscience, 45-0031-82)被用于被用于流式细胞仪在小鼠样本上浓度为1:100 (图 s3b). Nat Commun (2018) ncbi
仓鼠 单克隆(145-2C11)
  • 流式细胞仪; 小鼠; 图 6b
赛默飞世尔 Cd3d抗体(eBioscience, 145?\2C11)被用于被用于流式细胞仪在小鼠样本上 (图 6b). EMBO J (2019) ncbi
大鼠 单克隆(17A2)
  • 免疫组化-石蜡切片; 小鼠; 图 6c
  • 流式细胞仪; 小鼠; 图 6b
赛默飞世尔 Cd3d抗体(eBioscience, 17A2)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 6c) 和 被用于流式细胞仪在小鼠样本上 (图 6b). Front Microbiol (2018) ncbi
仓鼠 单克隆(145-2C11)
  • 流式细胞仪; 小鼠; 图 6d
赛默飞世尔 Cd3d抗体(eBioscience, 145-2C11)被用于被用于流式细胞仪在小鼠样本上 (图 6d). Obesity (Silver Spring) (2018) ncbi
大鼠 单克隆(17A2)
  • 免疫组化-冰冻切片; 小鼠; 1:30; 图 s7c
赛默飞世尔 Cd3d抗体(eBioscience, 50-0032)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:30 (图 s7c). Cell Res (2018) ncbi
大鼠 单克隆(17A2)
  • 流式细胞仪; 小鼠; 图 1a
赛默飞世尔 Cd3d抗体(eBioscience, 17A2)被用于被用于流式细胞仪在小鼠样本上 (图 1a). Front Immunol (2018) ncbi
仓鼠 单克隆(145-2C11)
  • 抑制或激活实验; 小鼠; 图 s5b
赛默飞世尔 Cd3d抗体(Thermo Fisher Scientific, 16-0031-82)被用于被用于抑制或激活实验在小鼠样本上 (图 s5b). Immunity (2018) ncbi
大鼠 单克隆(17A2)
  • 抑制或激活实验; 小鼠; 图 s3b
赛默飞世尔 Cd3d抗体(eBioscience, 17A2)被用于被用于抑制或激活实验在小鼠样本上 (图 s3b). Eur J Immunol (2018) ncbi
仓鼠 单克隆(145-2C11)
  • 流式细胞仪; 小鼠; 1:250; 图 s11a
赛默飞世尔 Cd3d抗体(Thermo Fisher Scientific, 47-0031-82)被用于被用于流式细胞仪在小鼠样本上浓度为1:250 (图 s11a). Nat Commun (2018) ncbi
domestic rabbit 单克隆(SP7)
  • 免疫组化; 小鼠; 1:20; 图 2m
赛默飞世尔 Cd3d抗体(Thermo Fisher, SP7)被用于被用于免疫组化在小鼠样本上浓度为1:20 (图 2m). J Exp Med (2018) ncbi
大鼠 单克隆(17A2)
  • 流式细胞仪; 小鼠; 图 1c
赛默飞世尔 Cd3d抗体(eBioscience, 17A2)被用于被用于流式细胞仪在小鼠样本上 (图 1c). Front Immunol (2018) ncbi
仓鼠 单克隆(145-2C11)
  • 流式细胞仪; 小鼠; 图 s2a
赛默飞世尔 Cd3d抗体(ThermoFisher, 145-2C11)被用于被用于流式细胞仪在小鼠样本上 (图 s2a). PLoS Pathog (2018) ncbi
domestic rabbit 单克隆(SP7)
  • 免疫组化-石蜡切片; 人类; 图 3b
赛默飞世尔 Cd3d抗体(Thermo Fisher Scientific, Sp7)被用于被用于免疫组化-石蜡切片在人类样本上 (图 3b). J Clin Invest (2018) ncbi
仓鼠 单克隆(145-2C11)
  • 流式细胞仪; 小鼠; 图 1c
赛默飞世尔 Cd3d抗体(eBiosciences, 145-2C11)被用于被用于流式细胞仪在小鼠样本上 (图 1c). Cell Stem Cell (2018) ncbi
大鼠 单克隆(17A2)
  • 流式细胞仪; 小鼠; 1:150; 图 s3a
赛默飞世尔 Cd3d抗体(eBioscience, 17-0032-80)被用于被用于流式细胞仪在小鼠样本上浓度为1:150 (图 s3a). Nat Commun (2018) ncbi
大鼠 单克隆(17A2)
  • 流式细胞仪; 小鼠; 图 s2
赛默飞世尔 Cd3d抗体(eBioscience, 17A2)被用于被用于流式细胞仪在小鼠样本上 (图 s2). Cancer Res (2018) ncbi
大鼠 单克隆(17A2)
  • 流式细胞仪; 人类; 图 5e
赛默飞世尔 Cd3d抗体(eBioscience, 17A2)被用于被用于流式细胞仪在人类样本上 (图 5e). Mol Ther Methods Clin Dev (2018) ncbi
仓鼠 单克隆(145-2C11)
  • 流式细胞仪; 小鼠; 图 s5d
赛默飞世尔 Cd3d抗体(ebioscience, 145-2C11)被用于被用于流式细胞仪在小鼠样本上 (图 s5d). Science (2018) ncbi
仓鼠 单克隆(145-2C11)
  • 流式细胞仪; 小鼠; 图 1
赛默飞世尔 Cd3d抗体(eBioscience, 145-2C11)被用于被用于流式细胞仪在小鼠样本上 (图 1). Front Immunol (2018) ncbi
大鼠 单克隆(17A2)
  • 免疫组化-冰冻切片; 小鼠; 1:1000; 图 1b
赛默飞世尔 Cd3d抗体(Thermo Fisher, 17A2)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:1000 (图 1b). J Clin Invest (2018) ncbi
大鼠 单克隆(17A2)
  • 流式细胞仪; 小鼠; 1:100; 图 5a
赛默飞世尔 Cd3d抗体(eBiosciences, 17A2)被用于被用于流式细胞仪在小鼠样本上浓度为1:100 (图 5a). Nat Commun (2018) ncbi
大鼠 单克隆(17A2)
  • 流式细胞仪; 小鼠; 图 s1a
赛默飞世尔 Cd3d抗体(eBioscience, 17A2)被用于被用于流式细胞仪在小鼠样本上 (图 s1a). J Clin Invest (2018) ncbi
大鼠 单克隆(17A2)
  • 流式细胞仪; 小鼠; 图 s2b
赛默飞世尔 Cd3d抗体(eBioscience, 17A2)被用于被用于流式细胞仪在小鼠样本上 (图 s2b). Cell Metab (2018) ncbi
Syrian golden hamster 单克隆(eBio500A2 (500A2))
  • 免疫组化; 小鼠; 图 s1b
赛默飞世尔 Cd3d抗体(eBioscience, eBio500A2)被用于被用于免疫组化在小鼠样本上 (图 s1b). Science (2018) ncbi
仓鼠 单克隆(145-2C11)
  • 流式细胞仪; 小鼠; 图 s4a
赛默飞世尔 Cd3d抗体(eBiosciences, 145-2C11)被用于被用于流式细胞仪在小鼠样本上 (图 s4a). PLoS ONE (2018) ncbi
仓鼠 单克隆(145-2C11)
  • 抑制或激活实验; 小鼠; 图 1b
赛默飞世尔 Cd3d抗体(Thermo Fisher Scientific, 145-2C11)被用于被用于抑制或激活实验在小鼠样本上 (图 1b). J Immunol (2018) ncbi
仓鼠 单克隆(145-2C11)
  • 流式细胞仪; 小鼠; 图 s1a
赛默飞世尔 Cd3d抗体(eBioscience, 145-2C11)被用于被用于流式细胞仪在小鼠样本上 (图 s1a). J Exp Med (2018) ncbi
仓鼠 单克隆(145-2C11)
  • 流式细胞仪; 小鼠; 图 s11c
赛默飞世尔 Cd3d抗体(eBioscience, 145-2C11)被用于被用于流式细胞仪在小鼠样本上 (图 s11c). Science (2018) ncbi
大鼠 单克隆(17A2)
  • 流式细胞仪; 小鼠; 图 4f
赛默飞世尔 Cd3d抗体(eBiosciences, 17A2)被用于被用于流式细胞仪在小鼠样本上 (图 4f). J Clin Invest (2018) ncbi
仓鼠 单克隆(145-2C11)
  • 流式细胞仪; 小鼠; 1:100; 图 1c
赛默飞世尔 Cd3d抗体(eBioscience, 12-0031-82)被用于被用于流式细胞仪在小鼠样本上浓度为1:100 (图 1c). Development (2018) ncbi
Syrian golden hamster 单克隆(eBio500A2 (500A2))
  • 免疫组化-冰冻切片; 小鼠; 图 1g
赛默飞世尔 Cd3d抗体(eBioscience, eBio500A2)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 1g). Proc Natl Acad Sci U S A (2018) ncbi
仓鼠 单克隆(145-2C11)
  • 流式细胞仪; 小鼠; 图 s4c
赛默飞世尔 Cd3d抗体(eBioscience, 145-2C11)被用于被用于流式细胞仪在小鼠样本上 (图 s4c). Nature (2018) ncbi
Syrian golden hamster 单克隆(eBio500A2 (500A2))
  • 流式细胞仪; 小鼠; 图 s2d
赛默飞世尔 Cd3d抗体(eBiosciences, 11-0033-82)被用于被用于流式细胞仪在小鼠样本上 (图 s2d). Cell (2018) ncbi
仓鼠 单克隆(145-2C11)
  • 流式细胞仪; 小鼠; 图 3b
赛默飞世尔 Cd3d抗体(eBioscience, 145-2C11)被用于被用于流式细胞仪在小鼠样本上 (图 3b). Nature (2018) ncbi
仓鼠 单克隆(145-2C11)
  • 流式细胞仪; 小鼠; 图 2d
赛默飞世尔 Cd3d抗体(eBioscience, 145-2C11)被用于被用于流式细胞仪在小鼠样本上 (图 2d). Nat Commun (2018) ncbi
仓鼠 单克隆(145-2C11)
  • 流式细胞仪; 小鼠; 图 6a
赛默飞世尔 Cd3d抗体(eBiosciences, 12-0031-85)被用于被用于流式细胞仪在小鼠样本上 (图 6a). Cell (2018) ncbi
仓鼠 单克隆(145-2C11)
  • 流式细胞仪; 小鼠; 图 1a
赛默飞世尔 Cd3d抗体(eBioscience, 145-2C11)被用于被用于流式细胞仪在小鼠样本上 (图 1a). J Immunol (2018) ncbi
仓鼠 单克隆(145-2C11)
  • 流式细胞仪; 小鼠; 图 7a
赛默飞世尔 Cd3d抗体(eBioscience, 145-2C11)被用于被用于流式细胞仪在小鼠样本上 (图 7a). Cell (2017) ncbi
domestic rabbit 单克隆(SP7)
  • 免疫组化-石蜡切片; 小鼠; 图 2b
赛默飞世尔 Cd3d抗体(ThermoFisher, SP7)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 2b). Cell (2017) ncbi
大鼠 单克隆(17A2)
  • 流式细胞仪; 小鼠; 1:400
赛默飞世尔 Cd3d抗体(ebioscience, 17A2)被用于被用于流式细胞仪在小鼠样本上浓度为1:400. Nat Commun (2017) ncbi
仓鼠 单克隆(145-2C11)
  • 流式细胞仪; 小鼠; 图 3a
赛默飞世尔 Cd3d抗体(eBiosciences, 145-2C11)被用于被用于流式细胞仪在小鼠样本上 (图 3a). Proc Natl Acad Sci U S A (2017) ncbi
仓鼠 单克隆(145-2C11)
  • 流式细胞仪; 小鼠; 图 4a
赛默飞世尔 Cd3d抗体(eBioscience, 145-2C11)被用于被用于流式细胞仪在小鼠样本上 (图 4a). J Clin Invest (2017) ncbi
仓鼠 单克隆(145-2C11)
  • 免疫细胞化学; 小鼠; 1:50; 图 1g
赛默飞世尔 Cd3d抗体(eBioscience, 2C11)被用于被用于免疫细胞化学在小鼠样本上浓度为1:50 (图 1g). Nat Commun (2017) ncbi
仓鼠 单克隆(145-2C11)
  • 免疫组化; 小鼠; 图 s3b
赛默飞世尔 Cd3d抗体(eBioscience, 145-2c11)被用于被用于免疫组化在小鼠样本上 (图 s3b). FASEB J (2017) ncbi
大鼠 单克隆(17A2)
  • 流式细胞仪; 小鼠; 图 3c
赛默飞世尔 Cd3d抗体(eBioscience, 56-032)被用于被用于流式细胞仪在小鼠样本上 (图 3c). J Immunol (2017) ncbi
大鼠 单克隆(17A2)
  • 流式细胞仪; 小鼠; 图 3d
赛默飞世尔 Cd3d抗体(eBiosciences, 48-0032-80)被用于被用于流式细胞仪在小鼠样本上 (图 3d). J Exp Med (2017) ncbi
仓鼠 单克隆(145-2C11)
  • 流式细胞仪; 小鼠; 图 s6g
赛默飞世尔 Cd3d抗体(eBiosciences, 145-2C11)被用于被用于流式细胞仪在小鼠样本上 (图 s6g). Nature (2017) ncbi
Syrian golden hamster 单克隆(eBio500A2 (500A2))
  • 流式细胞仪; 小鼠; 表 s1
赛默飞世尔 Cd3d抗体(eBioscience, 11-0033-82)被用于被用于流式细胞仪在小鼠样本上 (表 s1). J Clin Invest (2017) ncbi
仓鼠 单克隆(145-2C11)
  • 流式细胞仪; 小鼠; 图 1
赛默飞世尔 Cd3d抗体(eBiosciences, 45-0031-80)被用于被用于流式细胞仪在小鼠样本上 (图 1). J Exp Med (2017) ncbi
仓鼠 单克隆(145-2C11)
  • 抑制或激活实验; 小鼠; 图 s15g
赛默飞世尔 Cd3d抗体(eBiosciences, 145-2C11)被用于被用于抑制或激活实验在小鼠样本上 (图 s15g). Science (2017) ncbi
大鼠 单克隆(17A2)
  • 流式细胞仪; 小鼠; 图 s1.4b
赛默飞世尔 Cd3d抗体(eBiosciences, 17A2)被用于被用于流式细胞仪在小鼠样本上 (图 s1.4b). Proc Natl Acad Sci U S A (2017) ncbi
仓鼠 单克隆(145-2C11)
  • 流式细胞仪; 小鼠; 图 1c
赛默飞世尔 Cd3d抗体(eBiosciences, 145-2C11)被用于被用于流式细胞仪在小鼠样本上 (图 1c). J Exp Med (2017) ncbi
Syrian golden hamster 单克隆(eBio500A2 (500A2))
  • 流式细胞仪; 小鼠; 图 1b
赛默飞世尔 Cd3d抗体(ebioscience, eBio500A2)被用于被用于流式细胞仪在小鼠样本上 (图 1b). J Exp Med (2017) ncbi
大鼠 单克隆(17A2)
  • 流式细胞仪; 小鼠; 1 ug/ml; 图 4b
赛默飞世尔 Cd3d抗体(eBioscience, 17A2)被用于被用于流式细胞仪在小鼠样本上浓度为1 ug/ml (图 4b). Int J Parasitol (2017) ncbi
仓鼠 单克隆(145-2C11)
  • 其他; 小鼠; 图 s2a
赛默飞世尔 Cd3d抗体(eBiosciences, 145-2C11)被用于被用于其他在小鼠样本上 (图 s2a). J Clin Invest (2017) ncbi
仓鼠 单克隆(145-2C11)
  • 流式细胞仪; 小鼠; 图 s2c
赛默飞世尔 Cd3d抗体(eBioscience, 145-2C11)被用于被用于流式细胞仪在小鼠样本上 (图 s2c). Nature (2017) ncbi
仓鼠 单克隆(145-2C11)
  • 抑制或激活实验; 小鼠; 图 s2d
赛默飞世尔 Cd3d抗体(eBiosciences, 16-0031-82)被用于被用于抑制或激活实验在小鼠样本上 (图 s2d). Science (2017) ncbi
大鼠 单克隆(17A2)
  • 抑制或激活实验; 小鼠; 图 6e
赛默飞世尔 Cd3d抗体(eBioscience, 16-0032-85)被用于被用于抑制或激活实验在小鼠样本上 (图 6e). Oncogene (2017) ncbi
大鼠 单克隆(17A2)
  • 流式细胞仪; 小鼠; 图 s8i
赛默飞世尔 Cd3d抗体(eBioscience, 17A2)被用于被用于流式细胞仪在小鼠样本上 (图 s8i). Nature (2017) ncbi
仓鼠 单克隆(145-2C11)
  • 免疫组化; 小鼠; 1:200; 图 9
赛默飞世尔 Cd3d抗体(eBioscience, 2C11)被用于被用于免疫组化在小鼠样本上浓度为1:200 (图 9). PLoS ONE (2017) ncbi
仓鼠 单克隆(145-2C11)
  • 流式细胞仪; 小鼠; 1:400; 图 s1c
赛默飞世尔 Cd3d抗体(eBioscience, 145-2C11)被用于被用于流式细胞仪在小鼠样本上浓度为1:400 (图 s1c). Nat Commun (2017) ncbi
仓鼠 单克隆(145-2C11)
  • 流式细胞仪; 小鼠; 图 4a
赛默飞世尔 Cd3d抗体(eBiosciences, 11-0031-85)被用于被用于流式细胞仪在小鼠样本上 (图 4a). J Orthop Res (2017) ncbi
仓鼠 单克隆(145-2C11)
  • 流式细胞仪; 小鼠; 图 1c,d
赛默飞世尔 Cd3d抗体(eBioscience, 145-2C11)被用于被用于流式细胞仪在小鼠样本上 (图 1c,d). EMBO J (2017) ncbi
仓鼠 单克隆(145-2C11)
  • 流式细胞仪; 小鼠; 图 2a
赛默飞世尔 Cd3d抗体(Affymetrix eBioscience, 145-2C11)被用于被用于流式细胞仪在小鼠样本上 (图 2a). Front Immunol (2017) ncbi
大鼠 单克隆(17A2)
  • 流式细胞仪; 小鼠; 图 s2g
赛默飞世尔 Cd3d抗体(eBiosciences, 17-0032-82)被用于被用于流式细胞仪在小鼠样本上 (图 s2g). Nature (2017) ncbi
仓鼠 单克隆(145-2C11)
  • 抑制或激活实验; 小鼠; 图 3
赛默飞世尔 Cd3d抗体(Ebioscience, 16-0031-82)被用于被用于抑制或激活实验在小鼠样本上 (图 3). Sci Rep (2017) ncbi
仓鼠 单克隆(145-2C11)
  • 流式细胞仪; 小鼠; 图 4a
赛默飞世尔 Cd3d抗体(eBiosciences, 145-2C11)被用于被用于流式细胞仪在小鼠样本上 (图 4a). J Exp Med (2017) ncbi
仓鼠 单克隆(145-2C11)
  • 流式细胞仪; 小鼠; 图 S6
赛默飞世尔 Cd3d抗体(eBioscience, 145-2C11)被用于被用于流式细胞仪在小鼠样本上 (图 S6). Sci Rep (2017) ncbi
仓鼠 单克隆(145-2C11)
  • 流式细胞仪; 小鼠; 1:200; 图 5a
赛默飞世尔 Cd3d抗体(eBioscience, 25-0031)被用于被用于流式细胞仪在小鼠样本上浓度为1:200 (图 5a). Nat Commun (2017) ncbi
仓鼠 单克隆(145-2C11)
  • 流式细胞仪; 小鼠; 图 7
赛默飞世尔 Cd3d抗体(eBioscience, 145.2C11)被用于被用于流式细胞仪在小鼠样本上 (图 7). PLoS ONE (2017) ncbi
仓鼠 单克隆(145-2C11)
  • 流式细胞仪; 小鼠; 图 1d
赛默飞世尔 Cd3d抗体(eBioscience, 11-0031)被用于被用于流式细胞仪在小鼠样本上 (图 1d). Sci Rep (2017) ncbi
大鼠 单克隆(CD3-12)
  • 免疫组化-冰冻切片; 猕猴; 图 2a
赛默飞世尔 Cd3d抗体(Thermo Fischer, CD3-12)被用于被用于免疫组化-冰冻切片在猕猴样本上 (图 2a). Proc Natl Acad Sci U S A (2017) ncbi
仓鼠 单克隆(145-2C11)
  • 流式细胞仪; 小鼠; 图 4a
赛默飞世尔 Cd3d抗体(eBioscience, 45-0031)被用于被用于流式细胞仪在小鼠样本上 (图 4a). J Clin Invest (2017) ncbi
仓鼠 单克隆(145-2C11)
  • 流式细胞仪; 小鼠; 图 6c
赛默飞世尔 Cd3d抗体(eBiosciences, 145-2C11)被用于被用于流式细胞仪在小鼠样本上 (图 6c). Cell Mol Life Sci (2017) ncbi
仓鼠 单克隆(145-2C11)
  • 流式细胞仪; 小鼠; 图 s2
赛默飞世尔 Cd3d抗体(eBiosciences, 145-2C11)被用于被用于流式细胞仪在小鼠样本上 (图 s2). Invest Ophthalmol Vis Sci (2017) ncbi
大鼠 单克隆(17A2)
  • 流式细胞仪; 小鼠; 图 s3
赛默飞世尔 Cd3d抗体(eBiosciences, 17A2)被用于被用于流式细胞仪在小鼠样本上 (图 s3). Invest Ophthalmol Vis Sci (2017) ncbi
仓鼠 单克隆(145-2C11)
  • 流式细胞仪; 小鼠; 图 2c
赛默飞世尔 Cd3d抗体(ebioscience, 145-2C11)被用于被用于流式细胞仪在小鼠样本上 (图 2c). Leuk Res (2017) ncbi
仓鼠 单克隆(145-2C11)
  • 流式细胞仪; 小鼠; 图 1g
赛默飞世尔 Cd3d抗体(eBioscience, 145-2C11)被用于被用于流式细胞仪在小鼠样本上 (图 1g). J Immunol (2017) ncbi
仓鼠 单克隆(145-2C11)
  • 流式细胞仪; 小鼠; 1:80; 图 1e
赛默飞世尔 Cd3d抗体(eBioscience, 145-2C11)被用于被用于流式细胞仪在小鼠样本上浓度为1:80 (图 1e). Nat Immunol (2017) ncbi
仓鼠 单克隆(145-2C11)
  • 抑制或激活实验; 小鼠; 图 2f
赛默飞世尔 Cd3d抗体(eBioscience, 145-2C11)被用于被用于抑制或激活实验在小鼠样本上 (图 2f). Front Immunol (2016) ncbi
仓鼠 单克隆(145-2C11)
  • 抑制或激活实验; 小鼠; 1 ug/ml
赛默飞世尔 Cd3d抗体(eBioscience, 145-2 C11)被用于被用于抑制或激活实验在小鼠样本上浓度为1 ug/ml. elife (2017) ncbi
仓鼠 单克隆(145-2C11)
  • 流式细胞仪; 小鼠; 图 2l
赛默飞世尔 Cd3d抗体(eBioscience, 17-0031-83)被用于被用于流式细胞仪在小鼠样本上 (图 2l). Sci Rep (2017) ncbi
仓鼠 单克隆(145-2C11)
  • 流式细胞仪; 小鼠; 1:200; 图 4a
赛默飞世尔 Cd3d抗体(eBioscience, 145-2C11)被用于被用于流式细胞仪在小鼠样本上浓度为1:200 (图 4a). Mol Vis (2016) ncbi
仓鼠 单克隆(145-2C11)
  • 流式细胞仪; 小鼠; 图 1
赛默飞世尔 Cd3d抗体(eBioscience, 145-2C11)被用于被用于流式细胞仪在小鼠样本上 (图 1). J Exp Med (2017) ncbi
大鼠 单克隆(17A2)
  • 流式细胞仪; 小鼠; 图 7G
赛默飞世尔 Cd3d抗体(eBioscience, 48-0032-80)被用于被用于流式细胞仪在小鼠样本上 (图 7G). J Immunol (2017) ncbi
仓鼠 单克隆(145-2C11)
  • 流式细胞仪; 小鼠; 图 1h
赛默飞世尔 Cd3d抗体(eBioscience, 145-2C11)被用于被用于流式细胞仪在小鼠样本上 (图 1h). J Exp Med (2017) ncbi
domestic rabbit 单克隆(SP7)
  • 免疫组化-石蜡切片; 小鼠; 1:150; 图 5
赛默飞世尔 Cd3d抗体(Thermo Fischer Scientific, MA5-14524)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:150 (图 5). Oncotarget (2017) ncbi
仓鼠 单克隆(145-2C11)
  • 流式细胞仪; 小鼠
赛默飞世尔 Cd3d抗体(eBioscience, 145-2C11)被用于被用于流式细胞仪在小鼠样本上. PLoS ONE (2016) ncbi
仓鼠 单克隆(145-2C11)
  • 流式细胞仪; 小鼠; 图 s2
赛默飞世尔 Cd3d抗体(eBioscience, 13-0031-75)被用于被用于流式细胞仪在小鼠样本上 (图 s2). Nucleic Acids Res (2017) ncbi
大鼠 单克隆(17A2)
  • 流式细胞仪; 小鼠; 图 s2a
赛默飞世尔 Cd3d抗体(eBioscience, 17-0032-80)被用于被用于流式细胞仪在小鼠样本上 (图 s2a). Nucleic Acids Res (2017) ncbi
大鼠 单克隆(17A2)
  • 免疫组化; 小鼠; 1:300; 图 4a
赛默飞世尔 Cd3d抗体(eBioscience, 50-0032)被用于被用于免疫组化在小鼠样本上浓度为1:300 (图 4a). J Exp Med (2017) ncbi
仓鼠 单克隆(145-2C11)
  • 抑制或激活实验; 小鼠; 图 2b
赛默飞世尔 Cd3d抗体(eBiosciences, 2C11)被用于被用于抑制或激活实验在小鼠样本上 (图 2b). Mol Cells (2016) ncbi
仓鼠 单克隆(145-2C11)
  • 抑制或激活实验; 小鼠; 图 s3e
赛默飞世尔 Cd3d抗体(Affymetrix eBioscience, 145-2C11)被用于被用于抑制或激活实验在小鼠样本上 (图 s3e). Nature (2016) ncbi
仓鼠 单克隆(145-2C11)
  • 流式细胞仪; 小鼠; 图 3
赛默飞世尔 Cd3d抗体(eBioscience, 145-2C11)被用于被用于流式细胞仪在小鼠样本上 (图 3). Sci Rep (2016) ncbi
仓鼠 单克隆(145-2C11)
  • 流式细胞仪; 小鼠; 图 5j
赛默飞世尔 Cd3d抗体(eBioscience, 145-2C11)被用于被用于流式细胞仪在小鼠样本上 (图 5j). Am J Physiol Lung Cell Mol Physiol (2017) ncbi
仓鼠 单克隆(145-2C11)
  • 流式细胞仪; 小鼠; 图 5a
赛默飞世尔 Cd3d抗体(eBioscience, 145-2C11)被用于被用于流式细胞仪在小鼠样本上 (图 5a). Cell (2016) ncbi
domestic rabbit 单克隆(SP7)
  • 免疫组化; 小鼠; 图 s1b
赛默飞世尔 Cd3d抗体(ThermoFisher, RM9107)被用于被用于免疫组化在小鼠样本上 (图 s1b). PLoS ONE (2016) ncbi
仓鼠 单克隆(145-2C11)
  • 流式细胞仪; 小鼠
赛默飞世尔 Cd3d抗体(eBioscience, 145-2c11)被用于被用于流式细胞仪在小鼠样本上. Cell Death Dis (2016) ncbi
仓鼠 单克隆(145-2C11)
  • 流式细胞仪; 小鼠; 图 5a
赛默飞世尔 Cd3d抗体(eBioscience, 12-0031)被用于被用于流式细胞仪在小鼠样本上 (图 5a). J Cell Mol Med (2017) ncbi
仓鼠 单克隆(145-2C11)
  • 流式细胞仪; 小鼠; 图 4f
赛默飞世尔 Cd3d抗体(eBioscience, 145-2c11)被用于被用于流式细胞仪在小鼠样本上 (图 4f). Nature (2016) ncbi
仓鼠 单克隆(145-2C11)
  • 流式细胞仪; 小鼠; 1:200; 图 4c
赛默飞世尔 Cd3d抗体(eBioscience, 145-2C11)被用于被用于流式细胞仪在小鼠样本上浓度为1:200 (图 4c). Nat Commun (2016) ncbi
仓鼠 单克隆(145-2C11)
  • 流式细胞仪; 小鼠; 图 2a
赛默飞世尔 Cd3d抗体(eBioscience, 145-2C11)被用于被用于流式细胞仪在小鼠样本上 (图 2a). Proc Natl Acad Sci U S A (2016) ncbi
仓鼠 单克隆(145-2C11)
  • 流式细胞仪; 小鼠; 图 s4b
赛默飞世尔 Cd3d抗体(eBioscience, 145-2C11)被用于被用于流式细胞仪在小鼠样本上 (图 s4b). Nature (2016) ncbi
domestic rabbit 单克隆(SP7)
  • 免疫组化-石蜡切片; 人类; 图 1e
赛默飞世尔 Cd3d抗体(Thermo Scientific, SP7)被用于被用于免疫组化-石蜡切片在人类样本上 (图 1e). Glia (2017) ncbi
仓鼠 单克隆(145-2C11)
  • 流式细胞仪; 小鼠; 1:400; 图 2a
赛默飞世尔 Cd3d抗体(eBioscience, 145-2C11)被用于被用于流式细胞仪在小鼠样本上浓度为1:400 (图 2a). J Clin Invest (2016) ncbi
仓鼠 单克隆(145-2C11)
  • 抑制或激活实验; 小鼠; 图 9a
  • 流式细胞仪; 小鼠; 图 s2c
赛默飞世尔 Cd3d抗体(eBioscience, 145-2C11)被用于被用于抑制或激活实验在小鼠样本上 (图 9a) 和 被用于流式细胞仪在小鼠样本上 (图 s2c). J Clin Invest (2016) ncbi
domestic rabbit 单克隆(SP7)
  • 免疫组化-冰冻切片; 人类; 1:150; 图 2b
赛默飞世尔 Cd3d抗体(Thermo-Fisher, SP7)被用于被用于免疫组化-冰冻切片在人类样本上浓度为1:150 (图 2b). J Proteome Res (2017) ncbi
仓鼠 单克隆(145-2C11)
  • 流式细胞仪; 小鼠
赛默飞世尔 Cd3d抗体(eBiosciences, 145-2C11)被用于被用于流式细胞仪在小鼠样本上. Mucosal Immunol (2017) ncbi
仓鼠 单克隆(145-2C11)
  • 流式细胞仪; 小鼠; 1:100; 图 1a
赛默飞世尔 Cd3d抗体(eBiosciences, 145-2C11)被用于被用于流式细胞仪在小鼠样本上浓度为1:100 (图 1a). Nat Commun (2016) ncbi
大鼠 单克隆(17A2)
  • 流式细胞仪; 小鼠; 图 s3
赛默飞世尔 Cd3d抗体(eBioscience, 56-0032-82)被用于被用于流式细胞仪在小鼠样本上 (图 s3). Sci Rep (2016) ncbi
仓鼠 单克隆(145-2C11)
  • 流式细胞仪; 小鼠
赛默飞世尔 Cd3d抗体(eBioscience, 2C11)被用于被用于流式细胞仪在小鼠样本上. J Allergy Clin Immunol (2017) ncbi
大鼠 单克隆(17A2)
  • 免疫组化-冰冻切片; 小鼠
  • 流式细胞仪; 小鼠; 1:100
赛默飞世尔 Cd3d抗体(eBioscience, 17A2)被用于被用于免疫组化-冰冻切片在小鼠样本上 和 被用于流式细胞仪在小鼠样本上浓度为1:100. Proc Natl Acad Sci U S A (2016) ncbi
仓鼠 单克隆(145-2C11)
  • 抑制或激活实验; 小鼠; 图 3
赛默飞世尔 Cd3d抗体(eBioscience, 145-2C11)被用于被用于抑制或激活实验在小鼠样本上 (图 3). PLoS ONE (2016) ncbi
domestic rabbit 单克隆(SP7)
  • 免疫组化-石蜡切片; 小鼠; 图 2a
赛默飞世尔 Cd3d抗体(Thermo Fisher Scientific, SP7)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 2a). Immunol Cell Biol (2017) ncbi
仓鼠 单克隆(145-2C11)
  • 流式细胞仪; 小鼠; 图 s7h
赛默飞世尔 Cd3d抗体(eBiosciences, 145-2C11)被用于被用于流式细胞仪在小鼠样本上 (图 s7h). Nature (2016) ncbi
domestic rabbit 单克隆(SP7)
  • 免疫组化-石蜡切片; 小鼠; 图 s1a
赛默飞世尔 Cd3d抗体(实验室视觉, SP7)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 s1a). Am J Pathol (2016) ncbi
仓鼠 单克隆(145-2C11)
  • 抑制或激活实验; 小鼠; 图 1e
赛默飞世尔 Cd3d抗体(eBioscience, 145-2C11)被用于被用于抑制或激活实验在小鼠样本上 (图 1e). Nature (2016) ncbi
domestic rabbit 单克隆(SP7)
  • 免疫组化-石蜡切片; 人类; 1:50
赛默飞世尔 Cd3d抗体(Thermo Scientific, SP7)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:50. Clin Cancer Res (2017) ncbi
仓鼠 单克隆(145-2C11)
  • 流式细胞仪; 小鼠; 图 S3
赛默飞世尔 Cd3d抗体(eBioscience, clone 145-2C11)被用于被用于流式细胞仪在小鼠样本上 (图 S3). PLoS ONE (2016) ncbi
仓鼠 单克隆(145-2C11)
  • 流式细胞仪; 小鼠; 图 2h
赛默飞世尔 Cd3d抗体(eBioscience, 145-2C11)被用于被用于流式细胞仪在小鼠样本上 (图 2h). J Leukoc Biol (2017) ncbi
Syrian golden hamster 单克隆(eBio500A2 (500A2))
  • 流式细胞仪; 小鼠; 1:200; 表 1
赛默飞世尔 Cd3d抗体(eBiosciences, eBio500A2)被用于被用于流式细胞仪在小鼠样本上浓度为1:200 (表 1). Nat Commun (2016) ncbi
仓鼠 单克隆(145-2C11)
  • 流式细胞仪; 小鼠
赛默飞世尔 Cd3d抗体(Ebioscience, 11-0031)被用于被用于流式细胞仪在小鼠样本上. BMC Complement Altern Med (2016) ncbi
仓鼠 单克隆(145-2C11)
  • 流式细胞仪; 小鼠; 图 1b
赛默飞世尔 Cd3d抗体(eBioscience, 145-2C11)被用于被用于流式细胞仪在小鼠样本上 (图 1b). J Exp Med (2016) ncbi
大鼠 单克隆(17A2)
  • 流式细胞仪; 小鼠; 1:80; 图 10a
赛默飞世尔 Cd3d抗体(Ebioscience, 17-0032)被用于被用于流式细胞仪在小鼠样本上浓度为1:80 (图 10a). NMR Biomed (2016) ncbi
Syrian golden hamster 单克隆(eBio500A2 (500A2))
  • 流式细胞仪; 小鼠; 图 1b
赛默飞世尔 Cd3d抗体(eBioscience, 500A2)被用于被用于流式细胞仪在小鼠样本上 (图 1b). J Exp Med (2016) ncbi
大鼠 单克隆(17A2)
  • 流式细胞仪; 小鼠; 图 1c
赛默飞世尔 Cd3d抗体(eBioscience, 17A2)被用于被用于流式细胞仪在小鼠样本上 (图 1c). J Exp Med (2016) ncbi
仓鼠 单克隆(145-2C11)
  • 抑制或激活实验; 小鼠; 2 ug/ml; 图 2b
赛默飞世尔 Cd3d抗体(eBioscience, 145-2C11)被用于被用于抑制或激活实验在小鼠样本上浓度为2 ug/ml (图 2b). J Exp Med (2016) ncbi
仓鼠 单克隆(145-2C11)
  • 流式细胞仪; 小鼠; 图 7
赛默飞世尔 Cd3d抗体(eBioscience, 145-2C11)被用于被用于流式细胞仪在小鼠样本上 (图 7). Nat Commun (2016) ncbi
仓鼠 单克隆(145-2C11)
  • 流式细胞仪; 小鼠
赛默飞世尔 Cd3d抗体(eBioscience, 145-2C11)被用于被用于流式细胞仪在小鼠样本上. J Exp Med (2016) ncbi
大鼠 单克隆(17A2)
  • 流式细胞仪; 小鼠; 图 3c
赛默飞世尔 Cd3d抗体(eBioscience, 17A2)被用于被用于流式细胞仪在小鼠样本上 (图 3c). J Clin Invest (2016) ncbi
仓鼠 单克隆(145-2C11)
  • 流式细胞仪; 小鼠; 图 3c
赛默飞世尔 Cd3d抗体(eBioscience, 145-2C11)被用于被用于流式细胞仪在小鼠样本上 (图 3c). J Clin Invest (2016) ncbi
仓鼠 单克隆(145-2C11)
  • 流式细胞仪; 小鼠; 图 s1a
赛默飞世尔 Cd3d抗体(eBiosciences, 45-0031-80)被用于被用于流式细胞仪在小鼠样本上 (图 s1a). J Clin Invest (2016) ncbi
仓鼠 单克隆(145-2C11)
  • 流式细胞仪; 小鼠; 图 4o
赛默飞世尔 Cd3d抗体(eBioscience, 145-2C11)被用于被用于流式细胞仪在小鼠样本上 (图 4o). Am J Pathol (2016) ncbi
仓鼠 单克隆(145-2C11)
  • 流式细胞仪; 小鼠; 图 1a
赛默飞世尔 Cd3d抗体(BD Pharmingen or eBioscience, 2C11)被用于被用于流式细胞仪在小鼠样本上 (图 1a). Mol Cell Biol (2016) ncbi
仓鼠 单克隆(145-2C11)
  • 流式细胞仪; 小鼠; 图 s6a
赛默飞世尔 Cd3d抗体(ebioscience, 145-2C11)被用于被用于流式细胞仪在小鼠样本上 (图 s6a). J Clin Invest (2016) ncbi
domestic rabbit 单克隆(SP7)
  • 免疫组化-石蜡切片; 人类; 图 1
赛默飞世尔 Cd3d抗体(Thermo Fisher, RM9107-S1)被用于被用于免疫组化-石蜡切片在人类样本上 (图 1). Clin Exp Metastasis (2016) ncbi
仓鼠 单克隆(145-2C11)
  • 抑制或激活实验; 小鼠; 8 ug/ml; 图 s5c
赛默飞世尔 Cd3d抗体(eBioscience, 16-0031-85)被用于被用于抑制或激活实验在小鼠样本上浓度为8 ug/ml (图 s5c). Sci Signal (2016) ncbi
大鼠 单克隆(17A2)
  • 流式细胞仪; 小鼠; 图 1a
赛默飞世尔 Cd3d抗体(eBioscience, 17A2)被用于被用于流式细胞仪在小鼠样本上 (图 1a). Immunity (2016) ncbi
仓鼠 单克隆(145-2C11)
  • 抑制或激活实验; 小鼠; 图 3h
赛默飞世尔 Cd3d抗体(eBiosience, 16-0031-86)被用于被用于抑制或激活实验在小鼠样本上 (图 3h). Nat Commun (2016) ncbi
仓鼠 单克隆(145-2C11)
  • 流式细胞仪; 小鼠; 图 ex1b
赛默飞世尔 Cd3d抗体(eBioscience, 145-2C11)被用于被用于流式细胞仪在小鼠样本上 (图 ex1b). Nature (2016) ncbi
Syrian golden hamster 单克隆(eBio500A2 (500A2))
  • 流式细胞仪; 小鼠; 图 1g
赛默飞世尔 Cd3d抗体(eBioscience, eBio500A2)被用于被用于流式细胞仪在小鼠样本上 (图 1g). Nature (2016) ncbi
domestic rabbit 单克隆(SP7)
  • 免疫组化-石蜡切片; 小鼠; 图 6
赛默飞世尔 Cd3d抗体(Thermo Scientific, MA5-14524)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 6). JCI Insight (2016) ncbi
仓鼠 单克隆(145-2C11)
  • 抑制或激活实验; 小鼠; 1 ug/ml
赛默飞世尔 Cd3d抗体(eBioscience, 16-0031)被用于被用于抑制或激活实验在小鼠样本上浓度为1 ug/ml. Nat Commun (2016) ncbi
仓鼠 单克隆(145-2C11)
  • 流式细胞仪; 小鼠
赛默飞世尔 Cd3d抗体(eBioscience, 25-0031-82)被用于被用于流式细胞仪在小鼠样本上. Nat Immunol (2016) ncbi
仓鼠 单克隆(145-2C11)
  • 流式细胞仪; 小鼠; 图 5
赛默飞世尔 Cd3d抗体(eBioscience, 145-2C11)被用于被用于流式细胞仪在小鼠样本上 (图 5). Immunity (2016) ncbi
仓鼠 单克隆(145-2C11)
  • 流式细胞仪; 小鼠
赛默飞世尔 Cd3d抗体(eBioscience, 12-0031-81)被用于被用于流式细胞仪在小鼠样本上. J Allergy Clin Immunol (2017) ncbi
仓鼠 单克隆(145-2C11)
  • 流式细胞仪; 小鼠; 1:200; 图 1h
赛默飞世尔 Cd3d抗体(eBioscience, 145-2C11)被用于被用于流式细胞仪在小鼠样本上浓度为1:200 (图 1h). Nat Commun (2016) ncbi
domestic rabbit 单克隆(SP7)
  • 免疫组化-石蜡切片; 人类; 1:100; 图 s1c
赛默飞世尔 Cd3d抗体(Thermo Scientific, SP7)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100 (图 s1c). Oncotarget (2016) ncbi
仓鼠 单克隆(145-2C11)
  • 抑制或激活实验; 小鼠; 2 ug/ml; 图 1
赛默飞世尔 Cd3d抗体(eBioscience, 145-2C11)被用于被用于抑制或激活实验在小鼠样本上浓度为2 ug/ml (图 1). Stem Cells Dev (2016) ncbi
仓鼠 单克隆(145-2C11)
  • 流式细胞仪; 小鼠
赛默飞世尔 Cd3d抗体(eBiosciences, 145-2C11)被用于被用于流式细胞仪在小鼠样本上. Bio Protoc (2016) ncbi
仓鼠 单克隆(145-2C11)
  • 流式细胞仪; 小鼠; 图 3f
赛默飞世尔 Cd3d抗体(eBiosciences, 145-2C11)被用于被用于流式细胞仪在小鼠样本上 (图 3f). PLoS ONE (2016) ncbi
仓鼠 单克隆(145-2C11)
  • 抑制或激活实验; 小鼠; 图 3b
赛默飞世尔 Cd3d抗体(eBioscience, 145-2C11)被用于被用于抑制或激活实验在小鼠样本上 (图 3b). Nat Commun (2016) ncbi
仓鼠 单克隆(145-2C11)
  • 流式细胞仪; 小鼠; 图 s4
赛默飞世尔 Cd3d抗体(eBioscience, 145-2C11)被用于被用于流式细胞仪在小鼠样本上 (图 s4). Sci Rep (2016) ncbi
仓鼠 单克隆(145-2C11)
  • 流式细胞仪; 小鼠; 1:66; 图 2f
赛默飞世尔 Cd3d抗体(eBioscience, 45-0031-82)被用于被用于流式细胞仪在小鼠样本上浓度为1:66 (图 2f). Nat Cell Biol (2016) ncbi
仓鼠 单克隆(145-2C11)
  • 流式细胞仪; 小鼠; 1:200; 图 s3
赛默飞世尔 Cd3d抗体(eBioscience, 17-0031-80)被用于被用于流式细胞仪在小鼠样本上浓度为1:200 (图 s3). Nat Commun (2016) ncbi
大鼠 单克隆(17A2)
  • 免疫组化; 小鼠; 1:100; 图 1
赛默飞世尔 Cd3d抗体(eBioscience, 14-0032)被用于被用于免疫组化在小鼠样本上浓度为1:100 (图 1). Nat Commun (2016) ncbi
大鼠 单克隆(17A2)
  • 流式细胞仪; 小鼠
赛默飞世尔 Cd3d抗体(eBioscience, 17-0032-82)被用于被用于流式细胞仪在小鼠样本上. Nat Cell Biol (2016) ncbi
仓鼠 单克隆(145-2C11)
  • 抑制或激活实验; 小鼠; 5 ug/ml; 图 2
赛默飞世尔 Cd3d抗体(eBioscience, 2C11)被用于被用于抑制或激活实验在小鼠样本上浓度为5 ug/ml (图 2). Nat Immunol (2016) ncbi
仓鼠 单克隆(145-2C11)
  • 流式细胞仪; 小鼠; 图 2d
赛默飞世尔 Cd3d抗体(eBiosciences, 145-2C11)被用于被用于流式细胞仪在小鼠样本上 (图 2d). Sci Rep (2016) ncbi
仓鼠 单克隆(145-2C11)
  • 免疫组化; 小鼠; 图 4b
赛默飞世尔 Cd3d抗体(eBioscience, 145-2C11)被用于被用于免疫组化在小鼠样本上 (图 4b). Oncotarget (2016) ncbi
大鼠 单克隆(17A2)
  • 免疫组化; 人类; 1:100; 图 s3
  • 流式细胞仪; 小鼠; 1:100; 图 s4
赛默飞世尔 Cd3d抗体(eBioscience, 17A2)被用于被用于免疫组化在人类样本上浓度为1:100 (图 s3) 和 被用于流式细胞仪在小鼠样本上浓度为1:100 (图 s4). Nat Commun (2016) ncbi
Syrian golden hamster 单克隆(eBio500A2 (500A2))
  • 免疫组化-冰冻切片; 小鼠; 图 3a
赛默飞世尔 Cd3d抗体(生活技术, 500A2)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 3a). Eur J Immunol (2016) ncbi
仓鼠 单克隆(145-2C11)
  • 流式细胞仪; 小鼠; 1:200; 图 s5
赛默飞世尔 Cd3d抗体(ebioscience, 45-0031-82)被用于被用于流式细胞仪在小鼠样本上浓度为1:200 (图 s5). J Clin Invest (2016) ncbi
仓鼠 单克隆(145-2C11)
  • 流式细胞仪; 小鼠; 图 3b
赛默飞世尔 Cd3d抗体(eBioscience, 11-0031-82)被用于被用于流式细胞仪在小鼠样本上 (图 3b). Oncoimmunology (2016) ncbi
仓鼠 单克隆(145-2C11)
  • 抑制或激活实验; 小鼠; 图 s2c
赛默飞世尔 Cd3d抗体(eBiosciences, 145-2C11)被用于被用于抑制或激活实验在小鼠样本上 (图 s2c). Dev Cell (2016) ncbi
仓鼠 单克隆(145-2C11)
  • 流式细胞仪; 小鼠; 1:1000; 图 2c
赛默飞世尔 Cd3d抗体(eBioscience, 145-2C11)被用于被用于流式细胞仪在小鼠样本上浓度为1:1000 (图 2c). Nat Immunol (2016) ncbi
domestic rabbit 单克隆(SP7)
  • 免疫组化-石蜡切片; 小鼠; 1:500; 图 s2b
赛默飞世尔 Cd3d抗体(Thermo Fisher Scientific, SP7)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:500 (图 s2b). PLoS ONE (2016) ncbi
domestic rabbit 单克隆(SP7)
  • 流式细胞仪; 小鼠; 1:150; 图 4
赛默飞世尔 Cd3d抗体(Thermo Fischer Scientific, SP7)被用于被用于流式细胞仪在小鼠样本上浓度为1:150 (图 4). J Intern Med (2016) ncbi
大鼠 单克隆(17A2)
  • 流式细胞仪; 小鼠
赛默飞世尔 Cd3d抗体(eBioscience, 17-A2)被用于被用于流式细胞仪在小鼠样本上. J Transl Med (2016) ncbi
仓鼠 单克隆(145-2C11)
  • 抑制或激活实验; 小鼠; 图 4
赛默飞世尔 Cd3d抗体(eBioscience, 145-2C11)被用于被用于抑制或激活实验在小鼠样本上 (图 4). elife (2016) ncbi
仓鼠 单克隆(145-2C11)
  • 抑制或激活实验; 小鼠; 图 4
赛默飞世尔 Cd3d抗体(eBioscience, 145-2C11)被用于被用于抑制或激活实验在小鼠样本上 (图 4). J Exp Med (2016) ncbi
domestic rabbit 单克隆(SP7)
  • 免疫组化-石蜡切片; 小鼠; 图 5
赛默飞世尔 Cd3d抗体(Thermo Scientific, MA1-90582)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 5). PLoS ONE (2016) ncbi
仓鼠 单克隆(145-2C11)
  • 流式细胞仪; 小鼠; 1:100
赛默飞世尔 Cd3d抗体(eBioscience, 145-2C11)被用于被用于流式细胞仪在小鼠样本上浓度为1:100. Nat Commun (2016) ncbi
domestic rabbit 单克隆(SP7)
  • 免疫组化; 小鼠; 1:200; 图 4
赛默飞世尔 Cd3d抗体(Neomarkers, RM-9107-5)被用于被用于免疫组化在小鼠样本上浓度为1:200 (图 4). Peerj (2016) ncbi
仓鼠 单克隆(145-2C11)
  • 免疫组化-冰冻切片; 小鼠; 图 5e
赛默飞世尔 Cd3d抗体(eBiosciences, 145-2C11)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 5e). PLoS Pathog (2016) ncbi
domestic rabbit 单克隆(SP7)
  • 免疫组化-石蜡切片; 小鼠; 1:50; 图 4b
赛默飞世尔 Cd3d抗体(Thermo Fisher, SP7)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:50 (图 4b). J Thorac Oncol (2016) ncbi
大鼠 单克隆(17A2)
  • 流式细胞仪; 小鼠; 图 1
赛默飞世尔 Cd3d抗体(eBioscience, 14-0032-85)被用于被用于流式细胞仪在小鼠样本上 (图 1). Sci Rep (2016) ncbi
仓鼠 单克隆(145-2C11)
  • 流式细胞仪; 小鼠; 图 s1
赛默飞世尔 Cd3d抗体(eBioscience, 12-0031-82)被用于被用于流式细胞仪在小鼠样本上 (图 s1). Sci Rep (2016) ncbi
仓鼠 单克隆(145-2C11)
  • 流式细胞仪; 小鼠; 图 1e
赛默飞世尔 Cd3d抗体(eBiosciences, 145-2C11)被用于被用于流式细胞仪在小鼠样本上 (图 1e). Science (2016) ncbi
仓鼠 单克隆(145-2C11)
  • 流式细胞仪; 小鼠; 图 1
赛默飞世尔 Cd3d抗体(eBioscience, 145-2C11)被用于被用于流式细胞仪在小鼠样本上 (图 1). J Immunol (2016) ncbi
仓鼠 单克隆(145-2C11)
  • 流式细胞仪; 小鼠
赛默飞世尔 Cd3d抗体(eBioscience, 11-0031-85)被用于被用于流式细胞仪在小鼠样本上. Nature (2016) ncbi
大鼠 单克隆(17A2)
  • 流式细胞仪; 小鼠; 图 3
赛默飞世尔 Cd3d抗体(eBioscience, 46-0032-82)被用于被用于流式细胞仪在小鼠样本上 (图 3). Front Immunol (2015) ncbi
仓鼠 单克隆(145-2C11)
  • 抑制或激活实验; 小鼠; 图 1c
赛默飞世尔 Cd3d抗体(Fisher Scientific, 145-2C11)被用于被用于抑制或激活实验在小鼠样本上 (图 1c). J Leukoc Biol (2016) ncbi
domestic rabbit 单克隆(SP7)
  • 免疫印迹; 大鼠; 1:100; 图 13
赛默飞世尔 Cd3d抗体(Thermo Scientific, RM9107)被用于被用于免疫印迹在大鼠样本上浓度为1:100 (图 13). Nat Med (2016) ncbi
大鼠 单克隆(17A2)
  • 流式细胞仪; 小鼠; 图 6
赛默飞世尔 Cd3d抗体(eBioscience, 17A2)被用于被用于流式细胞仪在小鼠样本上 (图 6). PLoS Biol (2015) ncbi
大鼠 单克隆(17A2)
  • 免疫组化; 小鼠; 图 1
赛默飞世尔 Cd3d抗体(eBioscience, 17A2)被用于被用于免疫组化在小鼠样本上 (图 1). J Clin Invest (2016) ncbi
domestic rabbit 单克隆(SP7)
  • 免疫组化-石蜡切片; 人类; 1:500; 图 1
赛默飞世尔 Cd3d抗体(Thermo Fisher, SP7)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:500 (图 1). APMIS (2016) ncbi
大鼠 单克隆(17A2)
  • 免疫组化; 小鼠; 图 1d
赛默飞世尔 Cd3d抗体(eBioscience, 17A2)被用于被用于免疫组化在小鼠样本上 (图 1d). Science (2016) ncbi
仓鼠 单克隆(145-2C11)
  • 抑制或激活实验; 小鼠; 图 4a
赛默飞世尔 Cd3d抗体(eBioscience, 145-2C1)被用于被用于抑制或激活实验在小鼠样本上 (图 4a). Nat Genet (2016) ncbi
大鼠 单克隆(17A2)
  • 抑制或激活实验; 小鼠; 图 4a
赛默飞世尔 Cd3d抗体(eBiosciences, 17A2)被用于被用于抑制或激活实验在小鼠样本上 (图 4a). Immunol Cell Biol (2016) ncbi
domestic rabbit 单克隆(SP7)
  • 免疫组化-石蜡切片; 人类; 1:2000; 图 1
赛默飞世尔 Cd3d抗体(Neomarkers, RM-9107-S)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:2000 (图 1). Acta Neuropathol Commun (2015) ncbi
仓鼠 单克隆(145-2C11)
  • 流式细胞仪; 小鼠
赛默飞世尔 Cd3d抗体(eBioscience, 25-0031)被用于被用于流式细胞仪在小鼠样本上. Cell Res (2016) ncbi
Syrian golden hamster 单克隆(eBio500A2 (500A2))
  • 流式细胞仪; 小鼠
赛默飞世尔 Cd3d抗体(eBioscience, HMb1-1)被用于被用于流式细胞仪在小鼠样本上. Mol Metab (2015) ncbi
仓鼠 单克隆(145-2C11)
  • 流式细胞仪; 小鼠; 1:100; 图 1
赛默飞世尔 Cd3d抗体(eBioscience, 145-2C11)被用于被用于流式细胞仪在小鼠样本上浓度为1:100 (图 1). PLoS ONE (2015) ncbi
仓鼠 单克隆(145-2C11)
  • 流式细胞仪; 小鼠; 图 1a
赛默飞世尔 Cd3d抗体(eBioscience, 2C11)被用于被用于流式细胞仪在小鼠样本上 (图 1a). Nat Immunol (2016) ncbi
仓鼠 单克隆(145-2C11)
  • 流式细胞仪; 小鼠
赛默飞世尔 Cd3d抗体(eBioscience, 145-2C11)被用于被用于流式细胞仪在小鼠样本上. J Clin Invest (2016) ncbi
仓鼠 单克隆(145-2C11)
  • 流式细胞仪; 小鼠
赛默飞世尔 Cd3d抗体(eBioscience, 145-2C11)被用于被用于流式细胞仪在小鼠样本上. J Immunol (2016) ncbi
仓鼠 单克隆(145-2C11)
  • 流式细胞仪; 小鼠; 图 3
赛默飞世尔 Cd3d抗体(eBioscience, 145-2C11)被用于被用于流式细胞仪在小鼠样本上 (图 3). J Exp Med (2015) ncbi
仓鼠 单克隆(145-2C11)
  • 抑制或激活实验; 小鼠
赛默飞世尔 Cd3d抗体(eBiosciences, 2C11)被用于被用于抑制或激活实验在小鼠样本上. Methods Mol Biol (2016) ncbi
domestic rabbit 单克隆(SP7)
  • 免疫组化-石蜡切片; 人类; 图 1c
赛默飞世尔 Cd3d抗体(Thermo Scientific, SP7)被用于被用于免疫组化-石蜡切片在人类样本上 (图 1c). J Exp Clin Cancer Res (2015) ncbi
仓鼠 单克隆(145-2C11)
  • 流式细胞仪; 小鼠; 图 6
赛默飞世尔 Cd3d抗体(eBioscience, 145-211)被用于被用于流式细胞仪在小鼠样本上 (图 6). PLoS ONE (2015) ncbi
仓鼠 单克隆(145-2C11)
  • 流式细胞仪; 小鼠; 图 7
赛默飞世尔 Cd3d抗体(eBioscience, 25-0031-82)被用于被用于流式细胞仪在小鼠样本上 (图 7). Infect Immun (2016) ncbi
domestic rabbit 单克隆(SP7)
  • 免疫组化-石蜡切片; 人类; 图 1c
赛默飞世尔 Cd3d抗体(Labvision, SP7)被用于被用于免疫组化-石蜡切片在人类样本上 (图 1c). Nat Med (2015) ncbi
仓鼠 单克隆(145-2C11)
  • 流式细胞仪; 小鼠; 图 2f
赛默飞世尔 Cd3d抗体(eBioscience, 12-0031)被用于被用于流式细胞仪在小鼠样本上 (图 2f). J Exp Med (2015) ncbi
大鼠 单克隆(17A2)
  • 流式细胞仪; 小鼠; 1:400
赛默飞世尔 Cd3d抗体(eBioscience, 50-0032-82)被用于被用于流式细胞仪在小鼠样本上浓度为1:400. Nat Commun (2015) ncbi
domestic rabbit 单克隆(SP7)
  • 免疫组化-石蜡切片; 人类; 1:250; 表 1
赛默飞世尔 Cd3d抗体(Thermo Scientific, SP7)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:250 (表 1). Medicine (Baltimore) (2015) ncbi
仓鼠 单克隆(145-2C11)
  • 流式细胞仪; 小鼠; 1:200; 图 2
赛默飞世尔 Cd3d抗体(eBioscience, 45-0031-82)被用于被用于流式细胞仪在小鼠样本上浓度为1:200 (图 2). Nat Commun (2015) ncbi
大鼠 单克隆(17A2)
  • 流式细胞仪; 小鼠; 1:200; 图 2
赛默飞世尔 Cd3d抗体(eBioscience, 47-0032-82)被用于被用于流式细胞仪在小鼠样本上浓度为1:200 (图 2). Nat Commun (2015) ncbi
仓鼠 单克隆(145-2C11)
  • 流式细胞仪; 小鼠
赛默飞世尔 Cd3d抗体(eBioscience, 145-2C11)被用于被用于流式细胞仪在小鼠样本上. J Immunol (2015) ncbi
大鼠 单克隆(17A2)
  • 免疫组化; 小鼠; 1:500
赛默飞世尔 Cd3d抗体(eBioscience, 16003285)被用于被用于免疫组化在小鼠样本上浓度为1:500. Cell Mol Immunol (2017) ncbi
domestic rabbit 单克隆(SP7)
  • 免疫组化-石蜡切片; 人类; 图 6a
赛默飞世尔 Cd3d抗体(Thermo, SP7)被用于被用于免疫组化-石蜡切片在人类样本上 (图 6a). Clin Exp Immunol (2016) ncbi
仓鼠 单克隆(145-2C11)
  • 流式细胞仪; 小鼠; 1:500; 图 3c, 3d
赛默飞世尔 Cd3d抗体(eBioscience, 12-0031)被用于被用于流式细胞仪在小鼠样本上浓度为1:500 (图 3c, 3d). Endocrinology (2015) ncbi
大鼠 单克隆(17A2)
  • 流式细胞仪; 小鼠; 图 2g
赛默飞世尔 Cd3d抗体(eBioscience, 17-0032-82)被用于被用于流式细胞仪在小鼠样本上 (图 2g). Gut (2016) ncbi
仓鼠 单克隆(145-2C11)
  • 流式细胞仪; 小鼠; 图 5b
赛默飞世尔 Cd3d抗体(eBiosciences, 45-2C11)被用于被用于流式细胞仪在小鼠样本上 (图 5b). Nat Immunol (2015) ncbi
仓鼠 单克隆(145-2C11)
  • 抑制或激活实验; 小鼠; 图 1f
  • 流式细胞仪; 小鼠; 1 ug/ml; 图 1b
赛默飞世尔 Cd3d抗体(eBioscience, 145-2C11)被用于被用于抑制或激活实验在小鼠样本上 (图 1f) 和 被用于流式细胞仪在小鼠样本上浓度为1 ug/ml (图 1b). Nat Immunol (2015) ncbi
仓鼠 单克隆(145-2C11)
  • 流式细胞仪; 小鼠; 图 5
赛默飞世尔 Cd3d抗体(eBioscience, 11-C0031)被用于被用于流式细胞仪在小鼠样本上 (图 5). PLoS ONE (2015) ncbi
仓鼠 单克隆(145-2C11)
  • 抑制或激活实验; 小鼠
赛默飞世尔 Cd3d抗体(eBioscience, 145-2C11)被用于被用于抑制或激活实验在小鼠样本上. J Immunol (2015) ncbi
仓鼠 单克隆(145-2C11)
  • 流式细胞仪; 小鼠; 图 5a
赛默飞世尔 Cd3d抗体(EBioscience, 145-2C11)被用于被用于流式细胞仪在小鼠样本上 (图 5a). Am J Transplant (2016) ncbi
大鼠 单克隆(17A2)
  • 流式细胞仪; 小鼠; 图 s1a
赛默飞世尔 Cd3d抗体(eBioscience, 17A2)被用于被用于流式细胞仪在小鼠样本上 (图 s1a). Retrovirology (2015) ncbi
Syrian golden hamster 单克隆(500A2)
  • 流式细胞仪; 小鼠; 图 1
赛默飞世尔 Cd3d抗体(Caltag Laboratories, HM3421)被用于被用于流式细胞仪在小鼠样本上 (图 1). Sci Rep (2015) ncbi
仓鼠 单克隆(145-2C11)
  • 流式细胞仪; 小鼠; 图 2e
赛默飞世尔 Cd3d抗体(eBiosciences, 145-2C11)被用于被用于流式细胞仪在小鼠样本上 (图 2e). Eur J Immunol (2015) ncbi
domestic rabbit 单克隆(SP7)
  • 免疫组化-石蜡切片; 人类; 图 s1
赛默飞世尔 Cd3d抗体(Thermo, SP7)被用于被用于免疫组化-石蜡切片在人类样本上 (图 s1). PLoS ONE (2015) ncbi
仓鼠 单克隆(145-2C11)
  • 流式细胞仪; 小鼠; 图 2
赛默飞世尔 Cd3d抗体(eBioscience, 145-2C11)被用于被用于流式细胞仪在小鼠样本上 (图 2). Cell Mol Immunol (2016) ncbi
domestic rabbit 单克隆(SP7)
  • 免疫组化; 人类; 图 4a
赛默飞世尔 Cd3d抗体(Thermo Scientific, MA1?C90582)被用于被用于免疫组化在人类样本上 (图 4a). Oncoimmunology (2015) ncbi
大鼠 单克隆(17A2)
  • 流式细胞仪; 小鼠; 图 s2
赛默飞世尔 Cd3d抗体(eBioscience, 17A2)被用于被用于流式细胞仪在小鼠样本上 (图 s2). Leukemia (2016) ncbi
大鼠 单克隆(17A2)
  • 流式细胞仪; 小鼠
赛默飞世尔 Cd3d抗体(eBiosciences, 48-003280)被用于被用于流式细胞仪在小鼠样本上. Autophagy (2015) ncbi
仓鼠 单克隆(145-2C11)
  • 流式细胞仪; 小鼠; 图 1
赛默飞世尔 Cd3d抗体(eBioscience, 12-0031-82)被用于被用于流式细胞仪在小鼠样本上 (图 1). PLoS ONE (2015) ncbi
domestic rabbit 单克隆(SP7)
  • 免疫组化; 人类
赛默飞世尔 Cd3d抗体(Thermo Fisher Scientific, SP7)被用于被用于免疫组化在人类样本上. World J Urol (2016) ncbi
大鼠 单克隆(17A2)
  • 免疫组化-冰冻切片; 小鼠; 1:500; 图 1
赛默飞世尔 Cd3d抗体(eBioscience, 17A2)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:500 (图 1). Nature (2015) ncbi
仓鼠 单克隆(145-2C11)
  • 流式细胞仪; 小鼠; 图 2
赛默飞世尔 Cd3d抗体(eBioscience, 145-2C11)被用于被用于流式细胞仪在小鼠样本上 (图 2). Nat Immunol (2015) ncbi
仓鼠 单克隆(145-2C11)
  • 免疫组化-石蜡切片; 人类; 图 2
赛默飞世尔 Cd3d抗体(ebiosciences, 145-2C11)被用于被用于免疫组化-石蜡切片在人类样本上 (图 2). Nat Biotechnol (2015) ncbi
仓鼠 单克隆(145-2C11)
  • 免疫组化; 小鼠; 图 10b
赛默飞世尔 Cd3d抗体(eBioscience, 145-2C11)被用于被用于免疫组化在小鼠样本上 (图 10b). Nat Commun (2015) ncbi
domestic rabbit 单克隆(SP7)
  • 免疫组化-石蜡切片; 猕猴; 1:100
赛默飞世尔 Cd3d抗体(Lab Vision/NeoMarkers, SP7)被用于被用于免疫组化-石蜡切片在猕猴样本上浓度为1:100. PLoS ONE (2015) ncbi
仓鼠 单克隆(145-2C11)
  • 流式细胞仪; 小鼠
赛默飞世尔 Cd3d抗体(eBiosciences, 145-2C11)被用于被用于流式细胞仪在小鼠样本上. PLoS ONE (2015) ncbi
仓鼠 单克隆(145-2C11)
  • 流式细胞仪; 小鼠; 图 4
赛默飞世尔 Cd3d抗体(eBiosciences, 2C11)被用于被用于流式细胞仪在小鼠样本上 (图 4). Nat Commun (2015) ncbi
大鼠 单克隆(17A2)
  • 抑制或激活实验; 小鼠
赛默飞世尔 Cd3d抗体(eBioscience, 17A2)被用于被用于抑制或激活实验在小鼠样本上. J Immunol (2015) ncbi
domestic rabbit 单克隆(SP7)
  • 免疫组化-石蜡切片; 小鼠; 7.5 ug/ml; 图 6a
赛默飞世尔 Cd3d抗体(Thermo Scientific, RM-9107-S)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为7.5 ug/ml (图 6a). Vet Pathol (2016) ncbi
domestic rabbit 单克隆(SP7)
  • 免疫组化; 人类; 图 4h
赛默飞世尔 Cd3d抗体(ThermoFischer, SP7)被用于被用于免疫组化在人类样本上 (图 4h). Eur J Hum Genet (2016) ncbi
domestic rabbit 单克隆(SP7)
  • 免疫组化-石蜡切片; 小鼠; 1:300; 图 1
赛默飞世尔 Cd3d抗体(Thermo Fisher Scientific, SP-7)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:300 (图 1). PLoS ONE (2015) ncbi
仓鼠 单克隆(145-2C11)
  • 流式细胞仪; 小鼠; 1:12
赛默飞世尔 Cd3d抗体(eBioscience, 145-2C11)被用于被用于流式细胞仪在小鼠样本上浓度为1:12. PLoS ONE (2015) ncbi
仓鼠 单克隆(145-2C11)
  • 流式细胞仪; 小鼠; 图 3
赛默飞世尔 Cd3d抗体(eBioscience, 145-2C11)被用于被用于流式细胞仪在小鼠样本上 (图 3). J Exp Med (2015) ncbi
domestic rabbit 单克隆(SP7)
  • 免疫组化; 人类
  • 免疫沉淀; 小鼠
赛默飞世尔 Cd3d抗体(Thermo Scientific, SP7)被用于被用于免疫组化在人类样本上 和 被用于免疫沉淀在小鼠样本上. Dig Dis Sci (2015) ncbi
domestic rabbit 单克隆(SP7)
  • 免疫组化; 人类; 1:100
赛默飞世尔 Cd3d抗体(Lab Vision, SP7)被用于被用于免疫组化在人类样本上浓度为1:100. PLoS ONE (2015) ncbi
domestic rabbit 单克隆(SP7)
  • 免疫组化; 小鼠; 图 3
赛默飞世尔 Cd3d抗体(Thermo Scientific, RM9107-s)被用于被用于免疫组化在小鼠样本上 (图 3). Cancer Biol Ther (2015) ncbi
仓鼠 单克隆(145-2C11)
  • 流式细胞仪; 小鼠; 图 8
赛默飞世尔 Cd3d抗体(eBioscience, 145-2C11)被用于被用于流式细胞仪在小鼠样本上 (图 8). PLoS ONE (2015) ncbi
domestic rabbit 单克隆(SP7)
  • 免疫组化; 小鼠; 1:100; 图 s3a
赛默飞世尔 Cd3d抗体(Neomarkers, RM9107)被用于被用于免疫组化在小鼠样本上浓度为1:100 (图 s3a). Nat Commun (2015) ncbi
大鼠 单克隆(17A2)
  • 流式细胞仪; 小鼠; 图 s1
赛默飞世尔 Cd3d抗体(eBioscience, 17A2)被用于被用于流式细胞仪在小鼠样本上 (图 s1). Nat Immunol (2015) ncbi
仓鼠 单克隆(145-2C11)
  • 免疫组化; 小鼠; 1:100; 图 1
赛默飞世尔 Cd3d抗体(eBioscience, 145-2C11)被用于被用于免疫组化在小鼠样本上浓度为1:100 (图 1). J Immunol (2015) ncbi
仓鼠 单克隆(145-2C11)
  • 流式细胞仪; 小鼠; 图 4
赛默飞世尔 Cd3d抗体(eBioscience, 145-2c11)被用于被用于流式细胞仪在小鼠样本上 (图 4). Infect Immun (2015) ncbi
仓鼠 单克隆(145-2C11)
  • 流式细胞仪; 小鼠; 图 1
赛默飞世尔 Cd3d抗体(eBioscience, 145-2C11)被用于被用于流式细胞仪在小鼠样本上 (图 1). PLoS Pathog (2015) ncbi
大鼠 单克隆(17A2)
  • 流式细胞仪; 小鼠; 图 1
赛默飞世尔 Cd3d抗体(eBioscience, 17A2)被用于被用于流式细胞仪在小鼠样本上 (图 1). J Bone Miner Res (2015) ncbi
domestic rabbit 单克隆(SP7)
  • 免疫组化; 人类; 1:25; 图 2d
赛默飞世尔 Cd3d抗体(Thermo Fisher Scientific, RM9107S)被用于被用于免疫组化在人类样本上浓度为1:25 (图 2d). elife (2015) ncbi
domestic rabbit 单克隆(SP7)
  • 免疫组化-石蜡切片; 小鼠; 表 1
赛默飞世尔 Cd3d抗体(NeoMarkers, RM 9107)被用于被用于免疫组化-石蜡切片在小鼠样本上 (表 1). Methods Mol Biol (2015) ncbi
仓鼠 单克隆(145-2C11)
  • 流式细胞仪; 小鼠; 图 s2
赛默飞世尔 Cd3d抗体(eBiosciences, 145-2C11)被用于被用于流式细胞仪在小鼠样本上 (图 s2). Blood (2015) ncbi
仓鼠 单克隆(145-2C11)
  • 抑制或激活实验; 小鼠; 图 2
赛默飞世尔 Cd3d抗体(eBioscience, 145-2C11)被用于被用于抑制或激活实验在小鼠样本上 (图 2). Eur J Immunol (2015) ncbi
仓鼠 单克隆(145-2C11)
  • 流式细胞仪; 小鼠
赛默飞世尔 Cd3d抗体(eBioscience, 145-2C11)被用于被用于流式细胞仪在小鼠样本上. Eur J Immunol (2015) ncbi
仓鼠 单克隆(145-2C11)
  • 流式细胞仪; 小鼠; 图 3
赛默飞世尔 Cd3d抗体(ebioscience, 145-2C11)被用于被用于流式细胞仪在小鼠样本上 (图 3). Proc Natl Acad Sci U S A (2015) ncbi
仓鼠 单克隆(145-2C11)
  • 流式细胞仪; 小鼠; 图 5
赛默飞世尔 Cd3d抗体(eBioscience (Affymetrix), 145-2C11)被用于被用于流式细胞仪在小鼠样本上 (图 5). J Immunol (2015) ncbi
仓鼠 单克隆(145-2C11)
  • 流式细胞仪; 小鼠
赛默飞世尔 Cd3d抗体(eBioscience, 145-2C11)被用于被用于流式细胞仪在小鼠样本上. J Leukoc Biol (2015) ncbi
仓鼠 单克隆(145-2C11)
  • 流式细胞仪; 小鼠; 图 2
赛默飞世尔 Cd3d抗体(eBioscience, 145-2c11)被用于被用于流式细胞仪在小鼠样本上 (图 2). PLoS Pathog (2015) ncbi
仓鼠 单克隆(145-2C11)
  • 流式细胞仪; 小鼠; 表 1
赛默飞世尔 Cd3d抗体(eBioscience, 145-2C11)被用于被用于流式细胞仪在小鼠样本上 (表 1). J Neuroinflammation (2015) ncbi
仓鼠 单克隆(145-2C11)
  • 流式细胞仪; 小鼠; 图 2
赛默飞世尔 Cd3d抗体(BD/eBioscience, 145-2C11)被用于被用于流式细胞仪在小鼠样本上 (图 2). Exp Hematol (2015) ncbi
仓鼠 单克隆(145-2C11)
  • 抑制或激活实验; 小鼠; 1 ug/ml
赛默飞世尔 Cd3d抗体(eBioscience, 145-2C11)被用于被用于抑制或激活实验在小鼠样本上浓度为1 ug/ml. J Leukoc Biol (2015) ncbi
domestic rabbit 单克隆(SP7)
  • 免疫组化-自由浮动切片; 人类
赛默飞世尔 Cd3d抗体(Lab Vision, SP7)被用于被用于免疫组化-自由浮动切片在人类样本上. Arthritis Rheumatol (2015) ncbi
仓鼠 单克隆(145-2C11)
  • 流式细胞仪; 小鼠; 图 1
赛默飞世尔 Cd3d抗体(Ebioscience, 145-2C11)被用于被用于流式细胞仪在小鼠样本上 (图 1). Immunol Cell Biol (2015) ncbi
仓鼠 单克隆(145-2C11)
  • 流式细胞仪; 小鼠
赛默飞世尔 Cd3d抗体(eBioscience, 145-2C11)被用于被用于流式细胞仪在小鼠样本上. Development (2015) ncbi
大鼠 单克隆(17A2)
  • 流式细胞仪; 小鼠; 图 s1
赛默飞世尔 Cd3d抗体(eBioscience, 17A2)被用于被用于流式细胞仪在小鼠样本上 (图 s1). J Leukoc Biol (2015) ncbi
仓鼠 单克隆(145-2C11)
  • 流式细胞仪; 小鼠
赛默飞世尔 Cd3d抗体(eBiosciences, 145-2C11)被用于被用于流式细胞仪在小鼠样本上. J Am Heart Assoc (2014) ncbi
大鼠 单克隆(17A2)
  • 流式细胞仪; 小鼠
赛默飞世尔 Cd3d抗体(eBioscience, 17A2)被用于被用于流式细胞仪在小鼠样本上. Mucosal Immunol (2015) ncbi
仓鼠 单克隆(145-2C11)
  • 流式细胞仪; 小鼠; 图 5e
赛默飞世尔 Cd3d抗体(eBioscience, 25-0031)被用于被用于流式细胞仪在小鼠样本上 (图 5e). Nat Biotechnol (2015) ncbi
domestic rabbit 单克隆(SP7)
  • 免疫组化-石蜡切片; 人类; 1:150
赛默飞世尔 Cd3d抗体(Thermo Scientific Labvision, SP7)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:150. J Am Acad Dermatol (2015) ncbi
大鼠 单克隆(17A2)
  • 流式细胞仪; 人类; 图 2
赛默飞世尔 Cd3d抗体(eBioscience, 17A2)被用于被用于流式细胞仪在人类样本上 (图 2). Clin Cancer Res (2015) ncbi
仓鼠 单克隆(145-2C11)
  • 流式细胞仪; 小鼠; 图 s3
赛默飞世尔 Cd3d抗体(ebioscience, 145-2C11)被用于被用于流式细胞仪在小鼠样本上 (图 s3). J Natl Cancer Inst (2015) ncbi
大鼠 单克隆(17A2)
  • 流式细胞仪; 小鼠; 图 1
赛默飞世尔 Cd3d抗体(eBioscience, 17A2)被用于被用于流式细胞仪在小鼠样本上 (图 1). J Immunol (2015) ncbi
大鼠 单克隆(17A2)
  • 流式细胞仪; 小鼠
赛默飞世尔 Cd3d抗体(eBioscience, 17A2)被用于被用于流式细胞仪在小鼠样本上. elife (2014) ncbi
仓鼠 单克隆(145-2C11)
  • 流式细胞仪; 小鼠
赛默飞世尔 Cd3d抗体(eBioscience, 145-2C11)被用于被用于流式细胞仪在小鼠样本上. Proc Natl Acad Sci U S A (2014) ncbi
仓鼠 单克隆(145-2C11)
  • 抑制或激活实验; 小鼠; 1 ug/ml
  • 流式细胞仪; 小鼠; 1 ug/ml
赛默飞世尔 Cd3d抗体(eBioscience, 145-2C11)被用于被用于抑制或激活实验在小鼠样本上浓度为1 ug/ml 和 被用于流式细胞仪在小鼠样本上浓度为1 ug/ml. J Leukoc Biol (2015) ncbi
仓鼠 单克隆(145-2C11)
  • 抑制或激活实验; 小鼠; 图 1e
赛默飞世尔 Cd3d抗体(eBioscience, 145-2C11)被用于被用于抑制或激活实验在小鼠样本上 (图 1e). Nat Immunol (2014) ncbi
仓鼠 单克隆(145-2C11)
  • 流式细胞仪; 小鼠; 图 5
赛默飞世尔 Cd3d抗体(eBioscience, 145-2C11)被用于被用于流式细胞仪在小鼠样本上 (图 5). J Virol (2015) ncbi
仓鼠 单克隆(145-2C11)
  • 流式细胞仪; 小鼠; 图 5
赛默飞世尔 Cd3d抗体(生活技术, 145-2C11)被用于被用于流式细胞仪在小鼠样本上 (图 5). Eur J Immunol (2015) ncbi
仓鼠 单克隆(145-2C11)
  • 流式细胞仪; 小鼠
赛默飞世尔 Cd3d抗体(eBioscience, 145-2c11)被用于被用于流式细胞仪在小鼠样本上. PLoS ONE (2014) ncbi
domestic rabbit 单克隆(SP7)
  • 免疫组化-石蜡切片; 人类
赛默飞世尔 Cd3d抗体(Thermo Scientific, SP7)被用于被用于免疫组化-石蜡切片在人类样本上. Cancer Immunol Immunother (2015) ncbi
仓鼠 单克隆(145-2C11)
  • 流式细胞仪; 小鼠; 1:300
赛默飞世尔 Cd3d抗体(eBioscience, 145-2C11)被用于被用于流式细胞仪在小鼠样本上浓度为1:300. PLoS ONE (2014) ncbi
domestic rabbit 单克隆(SP7)
  • 免疫组化; 人类; 1:150
赛默飞世尔 Cd3d抗体(THERMO SC, SP7)被用于被用于免疫组化在人类样本上浓度为1:150. BMC Clin Pathol (2014) ncbi
domestic rabbit 单克隆(SP7)
  • 免疫组化-石蜡切片; 小鼠; 图 4
赛默飞世尔 Cd3d抗体(Thermo Fisher Scientific, SP7)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 4). J Exp Med (2014) ncbi
仓鼠 单克隆(145-2C11)
  • 流式细胞仪; 小鼠; 图 3c
赛默飞世尔 Cd3d抗体(ebioscience, 14-0031-82)被用于被用于流式细胞仪在小鼠样本上 (图 3c). Clin Cancer Res (2015) ncbi
仓鼠 单克隆(145-2C11)
  • 流式细胞仪; 小鼠
赛默飞世尔 Cd3d抗体(eBioscience, 145-2C11)被用于被用于流式细胞仪在小鼠样本上. Proc Natl Acad Sci U S A (2014) ncbi
仓鼠 单克隆(145-2C11)
  • 流式细胞仪; 人类
赛默飞世尔 Cd3d抗体(eBioscience, 145-2C11)被用于被用于流式细胞仪在人类样本上. Cancer Res (2014) ncbi
大鼠 单克隆(17A2)
  • 流式细胞仪; 小鼠
赛默飞世尔 Cd3d抗体(eBioscience, 50-0032-82)被用于被用于流式细胞仪在小鼠样本上. Nature (2014) ncbi
仓鼠 单克隆(145-2C11)
  • 流式细胞仪; 小鼠
赛默飞世尔 Cd3d抗体(eBioscience, 25-0031-82)被用于被用于流式细胞仪在小鼠样本上. Eur J Immunol (2014) ncbi
仓鼠 单克隆(145-2C11)
  • 免疫组化-冰冻切片; 小鼠
  • 流式细胞仪; 小鼠
赛默飞世尔 Cd3d抗体(eBioscience, 145-2C11)被用于被用于免疫组化-冰冻切片在小鼠样本上 和 被用于流式细胞仪在小鼠样本上. J Exp Med (2014) ncbi
大鼠 单克隆(17A2)
  • 流式细胞仪; 小鼠; 图 s5
赛默飞世尔 Cd3d抗体(eBioscience, 17A2)被用于被用于流式细胞仪在小鼠样本上 (图 s5). Mucosal Immunol (2015) ncbi
仓鼠 单克隆(145-2C11)
  • 流式细胞仪; 小鼠
赛默飞世尔 Cd3d抗体(eBioscience, 145-2C11)被用于被用于流式细胞仪在小鼠样本上. Int Immunol (2014) ncbi
大鼠 单克隆(17A2)
  • 流式细胞仪; 小鼠
赛默飞世尔 Cd3d抗体(eBioscience, 17A2)被用于被用于流式细胞仪在小鼠样本上. J Virol (2014) ncbi
仓鼠 单克隆(145-2C11)
  • 流式细胞仪; 小鼠
赛默飞世尔 Cd3d抗体(eBioscience, 145-2C11)被用于被用于流式细胞仪在小鼠样本上. J Immunol (2014) ncbi
仓鼠 单克隆(145-2C11)
  • 流式细胞仪; 小鼠
赛默飞世尔 Cd3d抗体(eBioscience, 145-2C11)被用于被用于流式细胞仪在小鼠样本上. J Infect Dis (2014) ncbi
大鼠 单克隆(17A2)
  • 流式细胞仪; 小鼠
赛默飞世尔 Cd3d抗体(eBioscience, 17A2)被用于被用于流式细胞仪在小鼠样本上. J Immunol (2014) ncbi
仓鼠 单克隆(145-2C11)
  • 流式细胞仪; 小鼠
赛默飞世尔 Cd3d抗体(eBioscience, 145-2C11)被用于被用于流式细胞仪在小鼠样本上. Int Immunol (2014) ncbi
仓鼠 单克隆(145-2C11)
  • 抑制或激活实验; 小鼠; 图 s2c
赛默飞世尔 Cd3d抗体(eBioscience, 16-0031-85)被用于被用于抑制或激活实验在小鼠样本上 (图 s2c). Nat Immunol (2014) ncbi
domestic rabbit 单克隆(SP7)
  • 免疫组化-石蜡切片; 人类; 1:2000
赛默飞世尔 Cd3d抗体(Neomarkers, RM-9107-S)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:2000. J Neurol Neurosurg Psychiatry (2014) ncbi
domestic rabbit 单克隆(SP7)
  • 免疫组化-石蜡切片; 小鼠; 1:200
赛默飞世尔 Cd3d抗体(Labvision, RM-9107-S0)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:200. Mucosal Immunol (2014) ncbi
domestic rabbit 单克隆(SP7)
  • 免疫组化-石蜡切片; 人类
赛默飞世尔 Cd3d抗体(Fisher/Thermo Scientific, SP7)被用于被用于免疫组化-石蜡切片在人类样本上. PLoS ONE (2014) ncbi
仓鼠 单克隆(145-2C11)
  • 免疫组化-冰冻切片; 小鼠
赛默飞世尔 Cd3d抗体(eBioscience, 25-0031-81)被用于被用于免疫组化-冰冻切片在小鼠样本上. Gene Ther (2014) ncbi
仓鼠 单克隆(145-2C11)
  • 抑制或激活实验; 小鼠; 图 1
赛默飞世尔 Cd3d抗体(eBioscience, 16-0031-81)被用于被用于抑制或激活实验在小鼠样本上 (图 1). PLoS ONE (2014) ncbi
大鼠 单克隆(17A2)
  • 流式细胞仪; 小鼠; 图 s1
赛默飞世尔 Cd3d抗体(eBioscience, 17A2)被用于被用于流式细胞仪在小鼠样本上 (图 s1). PLoS Pathog (2014) ncbi
Syrian golden hamster 单克隆(eBio500A2 (500A2))
  • 免疫组化-石蜡切片; 小鼠; 1:100
赛默飞世尔 Cd3d抗体(eBioscience, eBio500A2)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:100. Bone (2014) ncbi
大鼠 单克隆(17A2)
  • 免疫细胞化学; 人类; 表 2
赛默飞世尔 Cd3d抗体(eBioscience, 17A2)被用于被用于免疫细胞化学在人类样本上 (表 2). J Clin Invest (2014) ncbi
仓鼠 单克隆(145-2C11)
  • 流式细胞仪; 小鼠
赛默飞世尔 Cd3d抗体(eBioscience, 145-2C11)被用于被用于流式细胞仪在小鼠样本上. PLoS ONE (2014) ncbi
Syrian golden hamster 单克隆(eBio500A2 (500A2))
  • 流式细胞仪; 小鼠; 表 1
赛默飞世尔 Cd3d抗体(eBioscience, 500A2)被用于被用于流式细胞仪在小鼠样本上 (表 1). Nat Immunol (2014) ncbi
仓鼠 单克隆(145-2C11)
  • 流式细胞仪; 小鼠; 表 1
赛默飞世尔 Cd3d抗体(eBioscience, 145-2C11)被用于被用于流式细胞仪在小鼠样本上 (表 1). Nat Immunol (2014) ncbi
domestic rabbit 单克隆(SP7)
  • 免疫组化-石蜡切片; 人类
赛默飞世尔 Cd3d抗体(Thermo Fisher Scientific, SP7)被用于被用于免疫组化-石蜡切片在人类样本上. Circ Arrhythm Electrophysiol (2014) ncbi
domestic rabbit 单克隆(SP7)
  • 免疫组化; 人类; 1:100
赛默飞世尔 Cd3d抗体(Labvision/Thermo Scientific, SP7)被用于被用于免疫组化在人类样本上浓度为1:100. PLoS Pathog (2014) ncbi
domestic rabbit 单克隆(SP7)
  • 免疫细胞化学; 人类; 1:100
赛默飞世尔 Cd3d抗体(Thermo Scientific, SP7)被用于被用于免疫细胞化学在人类样本上浓度为1:100. J Crohns Colitis (2014) ncbi
仓鼠 单克隆(145-2C11)
  • 抑制或激活实验; 小鼠
赛默飞世尔 Cd3d抗体(eBioscience, 145-2C11)被用于被用于抑制或激活实验在小鼠样本上. Proc Natl Acad Sci U S A (2014) ncbi
仓鼠 单克隆(145-2C11)
  • 流式细胞仪; 小鼠
赛默飞世尔 Cd3d抗体(eBioscience, 145-2C11)被用于被用于流式细胞仪在小鼠样本上. J Immunol (2014) ncbi
仓鼠 单克隆(145-2C11)
  • 抑制或激活实验; 小鼠
赛默飞世尔 Cd3d抗体(eBioscience, 145-2C11)被用于被用于抑制或激活实验在小鼠样本上. J Immunol (2014) ncbi
Syrian golden hamster 单克隆(eBio500A2 (500A2))
  • 流式细胞仪; 小鼠; 5 ug/ml
赛默飞世尔 Cd3d抗体(eBioscience, eBio500A2)被用于被用于流式细胞仪在小鼠样本上浓度为5 ug/ml. Immunology (2014) ncbi
仓鼠 单克隆(145-2C11)
  • 流式细胞仪; 小鼠
赛默飞世尔 Cd3d抗体(Caltag, 1452C11)被用于被用于流式细胞仪在小鼠样本上. PLoS ONE (2013) ncbi
仓鼠 单克隆(145-2C11)
  • 免疫细胞化学; 小鼠
赛默飞世尔 Cd3d抗体(eBioscience, 145-2C11)被用于被用于免疫细胞化学在小鼠样本上. Eur J Immunol (2014) ncbi
大鼠 单克隆(17A2)
  • 流式细胞仪; 小鼠
赛默飞世尔 Cd3d抗体(ebioscience, 17A2)被用于被用于流式细胞仪在小鼠样本上. J Immunol (2014) ncbi
仓鼠 单克隆(145-2C11)
  • 流式细胞仪; 小鼠
赛默飞世尔 Cd3d抗体(eBioscience, 145-2C11)被用于被用于流式细胞仪在小鼠样本上. PLoS ONE (2013) ncbi
domestic rabbit 单克隆(SP7)
  • 免疫组化-石蜡切片; 人类; 1:500; 图 1
赛默飞世尔 Cd3d抗体(Lab Vision, SP7)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:500 (图 1). J Neuropathol Exp Neurol (2013) ncbi
大鼠 单克隆(17A2)
  • 流式细胞仪; 小鼠; 图 s1
赛默飞世尔 Cd3d抗体(eBioscience, 17A2)被用于被用于流式细胞仪在小鼠样本上 (图 s1). Nature (2013) ncbi
仓鼠 单克隆(145-2C11)
  • 流式细胞仪; 小鼠
赛默飞世尔 Cd3d抗体(eBioscience, 1452C11)被用于被用于流式细胞仪在小鼠样本上. Stem Cells (2014) ncbi
仓鼠 单克隆(145-2C11)
  • 流式细胞仪; 小鼠; 1:100; 图 s2
赛默飞世尔 Cd3d抗体(eBioscience, 11-0031-82)被用于被用于流式细胞仪在小鼠样本上浓度为1:100 (图 s2). PLoS ONE (2013) ncbi
Syrian golden hamster 单克隆(eBio500A2 (500A2))
  • 流式细胞仪; 小鼠; 图 1
赛默飞世尔 Cd3d抗体(eBioscience, eBio500A2)被用于被用于流式细胞仪在小鼠样本上 (图 1). PLoS ONE (2013) ncbi
大鼠 单克隆(17A2)
  • 免疫组化-冰冻切片; 小鼠; 1:1,000
  • 流式细胞仪; 小鼠
赛默飞世尔 Cd3d抗体(eBioscience, 14-0032-82)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:1,000 和 被用于流式细胞仪在小鼠样本上. J Comp Neurol (2013) ncbi
Syrian golden hamster 单克隆(eBio500A2 (500A2))
  • 抑制或激活实验; 小鼠
赛默飞世尔 Cd3d抗体(eBiosciences, 140033)被用于被用于抑制或激活实验在小鼠样本上. Nature (2013) ncbi
domestic rabbit 单克隆(SP7)
  • 免疫组化-石蜡切片; 人类; 1:2000; 图 1
赛默飞世尔 Cd3d抗体(Neomarkers, RM-9107-S)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:2000 (图 1). Brain (2013) ncbi
domestic rabbit 单克隆(SP7)
  • 免疫组化-石蜡切片; 人类; 1:150; 表 2
赛默飞世尔 Cd3d抗体(Labvision, SP7)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:150 (表 2). PLoS ONE (2012) ncbi
仓鼠 单克隆(145-2C11)
  • 抑制或激活实验; 小鼠; 10 ug/ml
赛默飞世尔 Cd3d抗体(eBioscience, 145-2C11)被用于被用于抑制或激活实验在小鼠样本上浓度为10 ug/ml. J Immunol Methods (2013) ncbi
Syrian golden hamster 单克隆(500A2)
  • 免疫组化-冰冻切片; 小鼠; 图 2
赛默飞世尔 Cd3d抗体(Invitrogen, clone 500A2)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 2). J Immunol (2013) ncbi
Syrian golden hamster 单克隆(eBio500A2 (500A2))
  • 流式细胞仪; 小鼠
赛默飞世尔 Cd3d抗体(Caltag Laboratories, 500-A2)被用于被用于流式细胞仪在小鼠样本上. PLoS ONE (2012) ncbi
domestic rabbit 单克隆(SP7)
  • 免疫组化-冰冻切片; 小鼠; 1:50; 图 s3
赛默飞世尔 Cd3d抗体(Thermoscientific, RM-9107-S1)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:50 (图 s3). PLoS Pathog (2012) ncbi
大鼠 单克隆(17A2)
  • 流式细胞仪; 人类; 图 s9
赛默飞世尔 Cd3d抗体(eBioscience, 17A2)被用于被用于流式细胞仪在人类样本上 (图 s9). PLoS Pathog (2012) ncbi
仓鼠 单克隆(145-2C11)
  • 流式细胞仪; 小鼠
赛默飞世尔 Cd3d抗体(eBioscience, 145-2C11)被用于被用于流式细胞仪在小鼠样本上. PLoS ONE (2012) ncbi
仓鼠 单克隆(145-2C11)
  • 流式细胞仪; 小鼠
赛默飞世尔 Cd3d抗体(eBioscience, 13-0031)被用于被用于流式细胞仪在小鼠样本上. Exp Hematol (2012) ncbi
仓鼠 单克隆(145-2C11)
  • 流式细胞仪; 小鼠
赛默飞世尔 Cd3d抗体(eBioscience, 145-2C11)被用于被用于流式细胞仪在小鼠样本上. Front Immunol (2012) ncbi
大鼠 单克隆(17A2)
  • 流式细胞仪; 小鼠
赛默飞世尔 Cd3d抗体(eBioscience, 17A2)被用于被用于流式细胞仪在小鼠样本上. PLoS ONE (2012) ncbi
domestic rabbit 单克隆(SP7)
  • 免疫组化; 人类; 1:100; 图 1
赛默飞世尔 Cd3d抗体(Thermo Scientific, RM-9107-S1)被用于被用于免疫组化在人类样本上浓度为1:100 (图 1). PLoS Pathog (2012) ncbi
domestic rabbit 单克隆(SP7)
  • 免疫组化; 小鼠
赛默飞世尔 Cd3d抗体(Neomarkers, RM9107)被用于被用于免疫组化在小鼠样本上. Oncotarget (2011) ncbi
domestic rabbit 单克隆(SP7)
  • 免疫组化; 人类; 1:150; 图 2
赛默飞世尔 Cd3d抗体(Lab Vision, RM-9107)被用于被用于免疫组化在人类样本上浓度为1:150 (图 2). Breast Cancer Res (2011) ncbi
仓鼠 单克隆(145-2C11)
  • 流式细胞仪; 犬
赛默飞世尔 Cd3d抗体(eBiosciences, 13003185)被用于被用于流式细胞仪在犬样本上. J Biol Chem (2012) ncbi
大鼠 单克隆(17A2)
  • 流式细胞仪; 小鼠
赛默飞世尔 Cd3d抗体(eBioscience, 17A2)被用于被用于流式细胞仪在小鼠样本上. J Exp Med (2011) ncbi
大鼠 单克隆(17A2)
  • 流式细胞仪; 小鼠; 图 3
赛默飞世尔 Cd3d抗体(eBioscience, 17A2)被用于被用于流式细胞仪在小鼠样本上 (图 3). PLoS ONE (2011) ncbi
仓鼠 单克隆(145-2C11)
  • 流式细胞仪; 小鼠
赛默飞世尔 Cd3d抗体(eBioscience, 145-2C11)被用于被用于流式细胞仪在小鼠样本上. Haematologica (2011) ncbi
仓鼠 单克隆(145-2C11)
  • 流式细胞仪; 小鼠; 图 3
赛默飞世尔 Cd3d抗体(eBioscience, 145-2C11)被用于被用于流式细胞仪在小鼠样本上 (图 3). Nat Immunol (2011) ncbi
domestic rabbit 单克隆(SP7)
  • 免疫组化-石蜡切片; 人类
  • 免疫组化; 人类
赛默飞世尔 Cd3d抗体(Thermo Scientific, SP7)被用于被用于免疫组化-石蜡切片在人类样本上 和 被用于免疫组化在人类样本上. Hum Pathol (2012) ncbi
仓鼠 单克隆(145-2C11)
  • 流式细胞仪; 小鼠
赛默飞世尔 Cd3d抗体(eBioscience, 145-2C11)被用于被用于流式细胞仪在小鼠样本上. PLoS ONE (2011) ncbi
domestic rabbit 单克隆(SP7)
  • 免疫组化; 人类; 1:150; 图 5C
赛默飞世尔 Cd3d抗体(Thermo Scientific, RM-9107-S1)被用于被用于免疫组化在人类样本上浓度为1:150 (图 5C). Proc Natl Acad Sci U S A (2012) ncbi
大鼠 单克隆(17A2)
  • 流式细胞仪; 小鼠
赛默飞世尔 Cd3d抗体(eBioscience, ebio 47-0032)被用于被用于流式细胞仪在小鼠样本上. PLoS ONE (2011) ncbi
domestic rabbit 单克隆(SP7)
  • 免疫组化-石蜡切片; 人类; 1:150; 表 2
赛默飞世尔 Cd3d抗体(Lab vision, RM-9107)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:150 (表 2). Breast Cancer (Auckl) (2011) ncbi
仓鼠 单克隆(145-2C11)
  • 流式细胞仪; 小鼠; 图 5
赛默飞世尔 Cd3d抗体(eBioscience, 145-2C11)被用于被用于流式细胞仪在小鼠样本上 (图 5). Immunol Cell Biol (2012) ncbi
仓鼠 单克隆(145-2C11)
  • 流式细胞仪; 小鼠
赛默飞世尔 Cd3d抗体(eBiosciences, 145-2C11)被用于被用于流式细胞仪在小鼠样本上. PLoS ONE (2011) ncbi
domestic rabbit 单克隆(SP7)
  • 免疫组化-石蜡切片; 人类
  • 免疫组化; 人类
赛默飞世尔 Cd3d抗体(Thermo, SP7)被用于被用于免疫组化-石蜡切片在人类样本上 和 被用于免疫组化在人类样本上. Int J Surg Pathol (2014) ncbi
domestic rabbit 单克隆(SP7)
  • 免疫组化-石蜡切片; 人类; 图 3
  • 免疫组化; 人类
赛默飞世尔 Cd3d抗体(Thermo Fisher, SP7)被用于被用于免疫组化-石蜡切片在人类样本上 (图 3) 和 被用于免疫组化在人类样本上. J Endocrinol (2011) ncbi
仓鼠 单克隆(145-2C11)
  • 流式细胞仪; 小鼠; 图 4
赛默飞世尔 Cd3d抗体(eBioscience, 145-2C11)被用于被用于流式细胞仪在小鼠样本上 (图 4). J Immunol (2010) ncbi
Syrian golden hamster 单克隆(eBio500A2 (500A2))
  • 流式细胞仪; 小鼠; 图 4
赛默飞世尔 Cd3d抗体(eBioscience, eBio500A2)被用于被用于流式细胞仪在小鼠样本上 (图 4). J Immunol (2010) ncbi
Syrian golden hamster 单克隆(eBio500A2 (500A2))
  • 流式细胞仪; 小鼠; 表 1
赛默飞世尔 Cd3d抗体(eBioscience, eBio500A2)被用于被用于流式细胞仪在小鼠样本上 (表 1). J Immunol (2010) ncbi
Syrian golden hamster 单克隆(eBio500A2 (500A2))
  • 流式细胞仪; 小鼠; 图 1
赛默飞世尔 Cd3d抗体(eBioscience, 500A2)被用于被用于流式细胞仪在小鼠样本上 (图 1). J Immunol (2010) ncbi
Syrian golden hamster 单克隆(eBio500A2 (500A2))
  • 流式细胞仪; 小鼠
赛默飞世尔 Cd3d抗体(eBioscience, 500A2)被用于被用于流式细胞仪在小鼠样本上. Am J Pathol (2009) ncbi
仓鼠 单克隆(145-2C11)
  • 流式细胞仪; 小鼠; 图 3
赛默飞世尔 Cd3d抗体(eBioscience, 145-2C11)被用于被用于流式细胞仪在小鼠样本上 (图 3). J Immunol (2009) ncbi
仓鼠 单克隆(145-2C11)
  • 流式细胞仪; 小鼠; 图 s3
赛默飞世尔 Cd3d抗体(eBioscience, 145-2C11)被用于被用于流式细胞仪在小鼠样本上 (图 s3). PLoS ONE (2009) ncbi
仓鼠 单克隆(145-2C11)
  • 流式细胞仪; 小鼠
赛默飞世尔 Cd3d抗体(eBioscience, 145-2C11)被用于被用于流式细胞仪在小鼠样本上. J Immunol (2009) ncbi
domestic rabbit 单克隆(SP7)
  • 免疫组化; 人类; 1:150; 图 1
赛默飞世尔 Cd3d抗体(Lab Vision, RM-9107)被用于被用于免疫组化在人类样本上浓度为1:150 (图 1). PLoS ONE (2008) ncbi
仓鼠 单克隆(145-2C11)
  • 抑制或激活实验; 小鼠; 0.1 ug/ml
赛默飞世尔 Cd3d抗体(eBioscience, 145-2C11)被用于被用于抑制或激活实验在小鼠样本上浓度为0.1 ug/ml. Cell Res (2008) ncbi
仓鼠 单克隆(145-2C11)
  • 抑制或激活实验; 小鼠; 5 ug/ml
赛默飞世尔 Cd3d抗体(Invitrogen, 2C11)被用于被用于抑制或激活实验在小鼠样本上浓度为5 ug/ml. Mol Cell Biol (2008) ncbi
大鼠 单克隆(17A2)
  • 流式细胞仪; 小鼠
赛默飞世尔 Cd3d抗体(eBioscience, 17A2)被用于被用于流式细胞仪在小鼠样本上. Blood (2008) ncbi
仓鼠 单克隆(145-2C11)
  • 流式细胞仪; 小鼠
赛默飞世尔 Cd3d抗体(eBioscience, 145-2C11)被用于被用于流式细胞仪在小鼠样本上. Mol Vis (2007) ncbi
仓鼠 单克隆(145-2C11)
  • 流式细胞仪; 小鼠; 图 3
赛默飞世尔 Cd3d抗体(Invitrogen, 145.2C11)被用于被用于流式细胞仪在小鼠样本上 (图 3). Blood (2007) ncbi
仓鼠 单克隆(145-2C11)
  • 抑制或激活实验; 小鼠
赛默飞世尔 Cd3d抗体(eBioscience, 145-2C11)被用于被用于抑制或激活实验在小鼠样本上. J Immunol (2007) ncbi
Syrian golden hamster 单克隆(500A2)
  • 抑制或激活实验; 小鼠; 4 ug/ml
赛默飞世尔 Cd3d抗体(Invitrogen Life Technologies, 500A2)被用于被用于抑制或激活实验在小鼠样本上浓度为4 ug/ml. J Immunol (2007) ncbi
仓鼠 单克隆(145-2C11)
  • 流式细胞仪; 小鼠; 图 2
赛默飞世尔 Cd3d抗体(eBioscience, 145-2C11)被用于被用于流式细胞仪在小鼠样本上 (图 2). J Virol (2006) ncbi
Syrian golden hamster 单克隆(500A2)
  • 流式细胞仪; 小鼠; 图 3
赛默飞世尔 Cd3d抗体(Caltag Laboratories, 500A2)被用于被用于流式细胞仪在小鼠样本上 (图 3). J Immunol (2006) ncbi
仓鼠 单克隆(145-2C11)
  • 免疫组化-冰冻切片; 小鼠; 1:100; 图 1
赛默飞世尔 Cd3d抗体(eBioscience, 145-2C11)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:100 (图 1). Int J Cancer (2006) ncbi
仓鼠 单克隆(145-2C11)
  • 流式细胞仪; 小鼠; 图 5
赛默飞世尔 Cd3d抗体(eBioscience, 145-2C11)被用于被用于流式细胞仪在小鼠样本上 (图 5). Blood (2006) ncbi
仓鼠 单克隆(145-2C11)
  • 流式细胞仪; 小鼠; 图 1
赛默飞世尔 Cd3d抗体(eBioscience, 145-2C11)被用于被用于流式细胞仪在小鼠样本上 (图 1). J Immunol (2005) ncbi
仓鼠 单克隆(145-2C11)
  • 免疫组化-冰冻切片; 小鼠
赛默飞世尔 Cd3d抗体(eBioscience, 145-2C11)被用于被用于免疫组化-冰冻切片在小鼠样本上. Invest Ophthalmol Vis Sci (2005) ncbi
仓鼠 单克隆(145-2C11)
  • 流式细胞仪; 小鼠
赛默飞世尔 Cd3d抗体(eBiosciences, 145-2C11)被用于被用于流式细胞仪在小鼠样本上. Infect Immun (2005) ncbi
仓鼠 单克隆(145-2C11)
  • 抑制或激活实验; 小鼠
赛默飞世尔 Cd3d抗体(eBioscience, 145-2C11)被用于被用于抑制或激活实验在小鼠样本上. Proc Natl Acad Sci U S A (2005) ncbi
仓鼠 单克隆(145-2C11)
  • 流式细胞仪; 小鼠; 图 2
赛默飞世尔 Cd3d抗体(Caltag, 145-2C11)被用于被用于流式细胞仪在小鼠样本上 (图 2). Int Immunol (2002) ncbi
仓鼠 单克隆(145-2C11)
  • 流式细胞仪; 小鼠
赛默飞世尔 Cd3d抗体(caltag, 145 2C11)被用于被用于流式细胞仪在小鼠样本上. Eur J Immunol (1995) ncbi
Syrian golden hamster 单克隆(500A2)
  • 流式细胞仪; 小鼠
赛默飞世尔 Cd3d抗体(noco, 500A2)被用于被用于流式细胞仪在小鼠样本上. Nature (1987) ncbi
仓鼠 单克隆(145-2C11)
  • 流式细胞仪; 小鼠; 表 3
  • 免疫沉淀; 小鼠; 图 2
  • 免疫细胞化学; 小鼠; 图 1
赛默飞世尔 Cd3d抗体(noco, 145-2C11)被用于被用于流式细胞仪在小鼠样本上 (表 3), 被用于免疫沉淀在小鼠样本上 (图 2) 和 被用于免疫细胞化学在小鼠样本上 (图 1). Proc Natl Acad Sci U S A (1987) ncbi
仓鼠 单克隆(145-2C11)
  • 抑制或激活实验; 小鼠; 图 2
赛默飞世尔 Cd3d抗体(noco, 145-2C11)被用于被用于抑制或激活实验在小鼠样本上 (图 2). J Immunol (1987) ncbi
Syrian golden hamster 单克隆(500A2)
  • 抑制或激活实验; 小鼠; 0.5-10 ug/ml; 图 1
赛默飞世尔 Cd3d抗体(noco, noca)被用于被用于抑制或激活实验在小鼠样本上浓度为0.5-10 ug/ml (图 1). Nature (1992) ncbi
艾博抗(上海)贸易有限公司
domestic rabbit 单克隆(SP7)
  • 免疫组化; 小鼠; 1:200; 图 3g
艾博抗(上海)贸易有限公司 Cd3d抗体(Abcam, ab21703)被用于被用于免疫组化在小鼠样本上浓度为1:200 (图 3g). elife (2022) ncbi
domestic rabbit 单克隆(SP7)
  • 免疫组化-石蜡切片; 小鼠; 1:200; 图 s8a
  • 免疫组化-石蜡切片; 人类; 图 s3a, 2a
艾博抗(上海)贸易有限公司 Cd3d抗体(Abcam, ab16669)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:200 (图 s8a) 和 被用于免疫组化-石蜡切片在人类样本上 (图 s3a, 2a). Theranostics (2022) ncbi
domestic rabbit 单克隆(SP7)
  • 免疫组化-石蜡切片; 小鼠; 图 2g
艾博抗(上海)贸易有限公司 Cd3d抗体(Abcam, ab16669)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 2g). Cell Rep (2022) ncbi
domestic rabbit 单克隆(SP7)
  • 免疫组化-冰冻切片; 大鼠; 1:200; 图 4a
艾博抗(上海)贸易有限公司 Cd3d抗体(Abcam, ab16669)被用于被用于免疫组化-冰冻切片在大鼠样本上浓度为1:200 (图 4a). Front Pharmacol (2022) ncbi
domestic rabbit 单克隆(SP7)
  • 免疫组化-石蜡切片; 小鼠; 1:100; 图 5e, s6
  • 免疫组化-石蜡切片; 人类; 1:100; 图 1e
艾博抗(上海)贸易有限公司 Cd3d抗体(Abcam, ab16669)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:100 (图 5e, s6) 和 被用于免疫组化-石蜡切片在人类样本上浓度为1:100 (图 1e). Proc Natl Acad Sci U S A (2022) ncbi
domestic rabbit 单克隆(SP7)
  • 免疫组化-石蜡切片; 小鼠; 图 3b
艾博抗(上海)贸易有限公司 Cd3d抗体(Abcam, ab16669)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 3b). Cell Rep (2022) ncbi
domestic rabbit 单克隆(SP7)
  • 免疫组化-冰冻切片; 小鼠; 1:100; 图 3f
艾博抗(上海)贸易有限公司 Cd3d抗体(Abcam, ab16669)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:100 (图 3f). J Neuroinflammation (2022) ncbi
domestic rabbit 单克隆(SP7)
  • 免疫组化-石蜡切片; 大鼠; 1:300; 图 4c
艾博抗(上海)贸易有限公司 Cd3d抗体(Abcam, ab16669)被用于被用于免疫组化-石蜡切片在大鼠样本上浓度为1:300 (图 4c). Int J Mol Sci (2021) ncbi
domestic rabbit 单克隆(SP7)
  • 免疫组化; 人类; 1:100; 图 2a
艾博抗(上海)贸易有限公司 Cd3d抗体(Abcam, ab16669)被用于被用于免疫组化在人类样本上浓度为1:100 (图 2a). Front Immunol (2021) ncbi
domestic rabbit 单克隆(SP7)
  • 免疫组化-石蜡切片; 小鼠; 1:100; 图 7a
艾博抗(上海)贸易有限公司 Cd3d抗体(Abcam, ab16669)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:100 (图 7a). Sci Rep (2021) ncbi
domestic rabbit 单克隆(SP7)
  • 免疫组化; 小鼠; 1:200; 图 5e
艾博抗(上海)贸易有限公司 Cd3d抗体(Abcam, ab16669)被用于被用于免疫组化在小鼠样本上浓度为1:200 (图 5e). Int J Mol Sci (2021) ncbi
domestic rabbit 单克隆(SP7)
  • 免疫组化-石蜡切片; 人类; 1:200; 图 s5c
艾博抗(上海)贸易有限公司 Cd3d抗体(Abcam, ab16669)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:200 (图 s5c). Bone Res (2021) ncbi
domestic rabbit 单克隆(SP7)
  • 免疫组化-石蜡切片; 人类; 图 1f
  • 免疫组化-冰冻切片; 小鼠; 图 6c
艾博抗(上海)贸易有限公司 Cd3d抗体(Abcam, ab16669)被用于被用于免疫组化-石蜡切片在人类样本上 (图 1f) 和 被用于免疫组化-冰冻切片在小鼠样本上 (图 6c). Circulation (2021) ncbi
domestic rabbit 单克隆(SP7)
  • 免疫组化; 小鼠; 1:100; 图 4a
艾博抗(上海)贸易有限公司 Cd3d抗体(Abcam, ab16669)被用于被用于免疫组化在小鼠样本上浓度为1:100 (图 4a). Am J Cancer Res (2021) ncbi
domestic rabbit 单克隆(SP7)
  • 免疫组化-石蜡切片; 小鼠; 图 3f
艾博抗(上海)贸易有限公司 Cd3d抗体(Abcam, ab16669)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 3f). Mol Cancer (2021) ncbi
domestic rabbit 单克隆(SP7)
  • 免疫组化-石蜡切片; 小鼠; 图 1h
艾博抗(上海)贸易有限公司 Cd3d抗体(Abcam, ab16669)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 1h). Adv Sci (Weinh) (2021) ncbi
domestic rabbit 单克隆(SP7)
  • 免疫组化; 人类; 1:400; 图 4b
艾博抗(上海)贸易有限公司 Cd3d抗体(abcam, ab16669)被用于被用于免疫组化在人类样本上浓度为1:400 (图 4b). Nat Commun (2021) ncbi
domestic rabbit 单克隆(SP7)
  • 免疫印迹; 人类; 1:100
艾博抗(上海)贸易有限公司 Cd3d抗体(Abcam, ab16669)被用于被用于免疫印迹在人类样本上浓度为1:100. Cell Death Dis (2021) ncbi
domestic rabbit 单克隆(SP7)
  • 免疫组化-石蜡切片; 小鼠; 图 3a
艾博抗(上海)贸易有限公司 Cd3d抗体(Abcam, SP7)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 3a). J Clin Invest (2021) ncbi
domestic rabbit 单克隆(SP7)
  • 免疫组化; 小鼠; 1:100; 图 2e
艾博抗(上海)贸易有限公司 Cd3d抗体(Abcam, ab16669)被用于被用于免疫组化在小鼠样本上浓度为1:100 (图 2e). elife (2020) ncbi
domestic rabbit 单克隆(SP7)
  • 免疫组化-石蜡切片; 小鼠; 1:100; 图 1d
艾博抗(上海)贸易有限公司 Cd3d抗体(Abcam, ab16669)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:100 (图 1d). J Am Soc Nephrol (2020) ncbi
domestic rabbit 单克隆(SP7)
  • 免疫组化-石蜡切片; 小鼠; 1:100; 图 1d
艾博抗(上海)贸易有限公司 Cd3d抗体(Abcam, ab16669)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:100 (图 1d). Cell Death Dis (2020) ncbi
domestic rabbit 单克隆(SP7)
  • 免疫组化; 人类; 1:200; 图 1a
艾博抗(上海)贸易有限公司 Cd3d抗体(Abcam, Ab16669)被用于被用于免疫组化在人类样本上浓度为1:200 (图 1a). Nat Commun (2020) ncbi
domestic rabbit 单克隆(SP7)
  • 免疫组化-石蜡切片; 人类; 1:200; 图 s1a
艾博抗(上海)贸易有限公司 Cd3d抗体(Abcam, ab16669)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:200 (图 s1a). Sci Rep (2019) ncbi
domestic rabbit 单克隆(SP7)
  • 免疫组化-石蜡切片; 小鼠; 图 4h
艾博抗(上海)贸易有限公司 Cd3d抗体(Abcam, ab16669)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 4h). Cell (2019) ncbi
domestic rabbit 单克隆(SP7)
  • 免疫组化-石蜡切片; 小鼠; 图 3g
艾博抗(上海)贸易有限公司 Cd3d抗体(Abcam, ab16669)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 3g). J Clin Invest (2019) ncbi
domestic rabbit 单克隆(SP7)
  • 免疫组化-石蜡切片; 小鼠; 图 2d
艾博抗(上海)贸易有限公司 Cd3d抗体(Abcam, ab16669)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 2d). J Clin Invest (2019) ncbi
domestic rabbit 单克隆(SP7)
  • 免疫组化; 小鼠; 1:100; 图 5h
艾博抗(上海)贸易有限公司 Cd3d抗体(Abcam, ab16669)被用于被用于免疫组化在小鼠样本上浓度为1:100 (图 5h). Nat Commun (2019) ncbi
domestic rabbit 单克隆(SP7)
  • 免疫组化-石蜡切片; 小鼠; 1:100
艾博抗(上海)贸易有限公司 Cd3d抗体(abcam, ab16669)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:100. Nature (2018) ncbi
domestic rabbit 单克隆(SP7)
  • 免疫组化; 小鼠; 1:100; 图 2b
艾博抗(上海)贸易有限公司 Cd3d抗体(Abcam, SP7)被用于被用于免疫组化在小鼠样本上浓度为1:100 (图 2b). Front Immunol (2018) ncbi
domestic rabbit 单克隆(SP7)
  • 免疫组化-冰冻切片; 小鼠; 1:100; 图 4g, 5f
艾博抗(上海)贸易有限公司 Cd3d抗体(Abcam, ab16669)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:100 (图 4g, 5f). J Neurovirol (2018) ncbi
domestic rabbit 单克隆(SP7)
  • 免疫组化-石蜡切片; 小鼠; 1:100; 图 s13a
艾博抗(上海)贸易有限公司 Cd3d抗体(Abcam, ab16669)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:100 (图 s13a). Nat Commun (2018) ncbi
domestic rabbit 单克隆(SP7)
  • 免疫组化-冰冻切片; 小鼠; 图 s3h
艾博抗(上海)贸易有限公司 Cd3d抗体(Abcam, SP7)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 s3h). J Clin Invest (2018) ncbi
domestic rabbit 单克隆(SP7)
  • 免疫组化-石蜡切片; 小鼠; 1:100; 图 2
艾博抗(上海)贸易有限公司 Cd3d抗体(Abcam, SP7)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:100 (图 2). J Immunol (2018) ncbi
domestic rabbit 单克隆(SP7)
  • 免疫组化-石蜡切片; 小鼠; 图 2a
艾博抗(上海)贸易有限公司 Cd3d抗体(Abcam, ab16669)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 2a). Am J Transl Res (2017) ncbi
domestic rabbit 单克隆(SP7)
  • 免疫组化-石蜡切片; 人类; 表 1
艾博抗(上海)贸易有限公司 Cd3d抗体(Abcam, ab16669)被用于被用于免疫组化-石蜡切片在人类样本上 (表 1). Cell (2017) ncbi
domestic rabbit 单克隆(SP7)
  • 免疫组化-石蜡切片; 小鼠; 1:200; 图 5d
艾博抗(上海)贸易有限公司 Cd3d抗体(Abcam, ab16669)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:200 (图 5d). Genes Dev (2017) ncbi
domestic rabbit 单克隆(SP7)
  • 免疫组化; 人类; 图 5a
艾博抗(上海)贸易有限公司 Cd3d抗体(Abcam, SP7)被用于被用于免疫组化在人类样本上 (图 5a). Oncoimmunology (2017) ncbi
domestic rabbit 单克隆(SP7)
  • 免疫组化-冰冻切片; 小鼠; 1:100
  • 免疫组化-石蜡切片; 小鼠; 1:100
  • 免疫组化; 小鼠; 图 37
  • 免疫组化-冰冻切片; 大鼠; 1:100
  • 免疫组化-石蜡切片; 大鼠; 1:100
  • 免疫组化-石蜡切片; pigs ; 1:200
  • 免疫组化-石蜡切片; African green monkey; 1:200
  • 免疫组化-冰冻切片; 猫; 1:100
  • 免疫组化-石蜡切片; 猫; 1:100
艾博抗(上海)贸易有限公司 Cd3d抗体(Abcam, ab16669)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:100, 被用于免疫组化-石蜡切片在小鼠样本上浓度为1:100, 被用于免疫组化在小鼠样本上 (图 37), 被用于免疫组化-冰冻切片在大鼠样本上浓度为1:100, 被用于免疫组化-石蜡切片在大鼠样本上浓度为1:100, 被用于免疫组化-石蜡切片在pigs 样本上浓度为1:200, 被用于免疫组化-石蜡切片在African green monkey样本上浓度为1:200, 被用于免疫组化-冰冻切片在猫样本上浓度为1:100 和 被用于免疫组化-石蜡切片在猫样本上浓度为1:100. J Toxicol Pathol (2017) ncbi
domestic rabbit 单克隆(SP7)
  • 免疫组化-石蜡切片; 小鼠; 1:200; 图 6a
艾博抗(上海)贸易有限公司 Cd3d抗体(Abcam, 16669)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:200 (图 6a). J Clin Invest (2017) ncbi
domestic rabbit 单克隆(SP7)
  • 免疫组化-冰冻切片; 人类; 1:100
艾博抗(上海)贸易有限公司 Cd3d抗体(Abcam, SP7)被用于被用于免疫组化-冰冻切片在人类样本上浓度为1:100. Nature (2017) ncbi
domestic rabbit 单克隆(SP7)
  • 免疫组化-冰冻切片; 小鼠; 1:50; 图 s3e
艾博抗(上海)贸易有限公司 Cd3d抗体(Abcam, ab16669)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:50 (图 s3e). EMBO Mol Med (2017) ncbi
domestic rabbit 单克隆(SP7)
  • 免疫组化-石蜡切片; 小鼠; 1:100; 图 6b
艾博抗(上海)贸易有限公司 Cd3d抗体(Abcam, ab16669)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:100 (图 6b). Nat Commun (2017) ncbi
domestic rabbit 单克隆(SP7)
  • 免疫组化-石蜡切片; 小鼠; 1:100; 图 6G-I
艾博抗(上海)贸易有限公司 Cd3d抗体(Abcam, ab-16669)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:100 (图 6G-I). Mol Cancer Res (2017) ncbi
domestic rabbit 单克隆(SP7)
  • 免疫组化-冰冻切片; 小鼠; 图 4a
艾博抗(上海)贸易有限公司 Cd3d抗体(Abcam, ab16669)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 4a). Am J Physiol Heart Circ Physiol (2016) ncbi
domestic rabbit 单克隆(SP7)
  • 免疫组化; 小鼠; 1:100; 表 1
艾博抗(上海)贸易有限公司 Cd3d抗体(Abcam, ab16669)被用于被用于免疫组化在小鼠样本上浓度为1:100 (表 1). J Neurovirol (2017) ncbi
domestic rabbit 单克隆(SP7)
  • 免疫组化-石蜡切片; 小鼠; 图 6d
艾博抗(上海)贸易有限公司 Cd3d抗体(Abcam, ab16669)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 6d). Kidney Int (2016) ncbi
domestic rabbit 单克隆(SP7)
  • 免疫组化-石蜡切片; 人类; 图 9a
艾博抗(上海)贸易有限公司 Cd3d抗体(Abcam, ab16669)被用于被用于免疫组化-石蜡切片在人类样本上 (图 9a). Oncotarget (2016) ncbi
domestic rabbit 单克隆(SP7)
  • 免疫组化-石蜡切片; 人类; 图 1c
艾博抗(上海)贸易有限公司 Cd3d抗体(Abcam, SP7)被用于被用于免疫组化-石蜡切片在人类样本上 (图 1c). Science (2016) ncbi
domestic rabbit 单克隆(SP7)
  • 免疫组化-石蜡切片; 小鼠; 图 4
艾博抗(上海)贸易有限公司 Cd3d抗体(Abcam, ab16669)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 4). Arthritis Res Ther (2016) ncbi
domestic rabbit 单克隆(SP7)
  • 免疫组化-石蜡切片; pigs ; 1:200; 图 7
艾博抗(上海)贸易有限公司 Cd3d抗体(Abcam, ab16669)被用于被用于免疫组化-石蜡切片在pigs 样本上浓度为1:200 (图 7). PLoS ONE (2016) ncbi
domestic rabbit 单克隆(SP7)
  • 免疫组化-石蜡切片; 小鼠; 1:100; 图 10a
艾博抗(上海)贸易有限公司 Cd3d抗体(Abcam, SP7)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:100 (图 10a). Infect Immun (2016) ncbi
domestic rabbit 单克隆(SP7)
  • 免疫组化-石蜡切片; 小鼠; 图 7
艾博抗(上海)贸易有限公司 Cd3d抗体(Abcam, 16669)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 7). Cardiovasc Res (2016) ncbi
domestic rabbit 单克隆(SP7)
  • 免疫组化-石蜡切片; pigs ; 图 9
艾博抗(上海)贸易有限公司 Cd3d抗体(Abcam, ab16669)被用于被用于免疫组化-石蜡切片在pigs 样本上 (图 9). J Am Heart Assoc (2016) ncbi
domestic rabbit 单克隆(SP7)
  • 免疫组化-石蜡切片; 小鼠
艾博抗(上海)贸易有限公司 Cd3d抗体(AbCam, SP7)被用于被用于免疫组化-石蜡切片在小鼠样本上. EMBO Mol Med (2016) ncbi
domestic rabbit 单克隆(SP7)
  • 免疫组化-石蜡切片; 人类; 1:200; 图 1b
艾博抗(上海)贸易有限公司 Cd3d抗体(abcam, SP7)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:200 (图 1b). Spine (Phila Pa 1976) (2016) ncbi
domestic rabbit 单克隆(SP7)
  • 免疫组化; 小鼠; 1:60
艾博抗(上海)贸易有限公司 Cd3d抗体(Abcam, ab16669)被用于被用于免疫组化在小鼠样本上浓度为1:60. Endocrinology (2015) ncbi
domestic rabbit 单克隆(SP7)
  • 免疫组化-石蜡切片; 小鼠; 图 3c
艾博抗(上海)贸易有限公司 Cd3d抗体(Abcam, SP7)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 3c). Nature (2015) ncbi
domestic rabbit 单克隆(SP7)
  • 免疫组化; 人类; 1:100
艾博抗(上海)贸易有限公司 Cd3d抗体(Abcam, ab16669)被用于被用于免疫组化在人类样本上浓度为1:100. Breast Cancer Res (2015) ncbi
domestic rabbit 单克隆(SP7)
  • 免疫组化-石蜡切片; 大鼠
艾博抗(上海)贸易有限公司 Cd3d抗体(abcam, SP7)被用于被用于免疫组化-石蜡切片在大鼠样本上. PLoS ONE (2015) ncbi
domestic rabbit 单克隆(SP7)
  • 免疫组化-石蜡切片; 小鼠; 1:500; 图 s4
艾博抗(上海)贸易有限公司 Cd3d抗体(Abcam, ab16669)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:500 (图 s4). Nat Cell Biol (2014) ncbi
domestic rabbit 单克隆(SP7)
  • 免疫组化; pigs
艾博抗(上海)贸易有限公司 Cd3d抗体(Abcam, ab16669)被用于被用于免疫组化在pigs 样本上. Acta Vet Scand (2014) ncbi
domestic rabbit 单克隆(SP7)
  • 免疫组化-石蜡切片; 小鼠; 图 4
艾博抗(上海)贸易有限公司 Cd3d抗体(Abcam, SP7)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 4). PLoS ONE (2014) ncbi
伯乐(Bio-Rad)公司
大鼠 单克隆(KT3)
  • 免疫组化; 小鼠; 1:200; 图 s6a
伯乐(Bio-Rad)公司 Cd3d抗体(Bio-Rad, MCA500GT)被用于被用于免疫组化在小鼠样本上浓度为1:200 (图 s6a). Proc Natl Acad Sci U S A (2022) ncbi
大鼠 单克隆(KT3)
  • 免疫组化-石蜡切片; 小鼠; 图 5
伯乐(Bio-Rad)公司 Cd3d抗体(AbD Serotec, KT3)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 5). Cell Death Dis (2016) ncbi
大鼠 单克隆(KT3)
  • 免疫组化-石蜡切片; 小鼠; 1:300; 图 4
伯乐(Bio-Rad)公司 Cd3d抗体(Serotec, MCA500G)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:300 (图 4). Oncotarget (2016) ncbi
大鼠 单克隆(KT3)
  • 免疫组化; 小鼠; 1:50; 图 4d
伯乐(Bio-Rad)公司 Cd3d抗体(AbD Serotec, KT3)被用于被用于免疫组化在小鼠样本上浓度为1:50 (图 4d). PLoS ONE (2014) ncbi
大鼠 单克隆(KT3)
  • 免疫组化; 小鼠
伯乐(Bio-Rad)公司 Cd3d抗体(Serotec, MCA500G)被用于被用于免疫组化在小鼠样本上. PLoS ONE (2014) ncbi
大鼠 单克隆(KT3)
  • 免疫细胞化学; 小鼠; 1:200
伯乐(Bio-Rad)公司 Cd3d抗体(Serotec, MCA500GA)被用于被用于免疫细胞化学在小鼠样本上浓度为1:200. Nat Med (2013) ncbi
圣克鲁斯生物技术
大鼠 单克隆(17A2)
  • 免疫组化; 小鼠; 1:500; 图 2
圣克鲁斯生物技术 Cd3d抗体(Santa Cruz Biotechnology, sc-18843)被用于被用于免疫组化在小鼠样本上浓度为1:500 (图 2). Nat Neurosci (2016) ncbi
大鼠 单克隆(17A2)
  • 免疫组化-冰冻切片; 小鼠; 1:200
圣克鲁斯生物技术 Cd3d抗体(Santa Cruz, sc-18843)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:200. Glia (2016) ncbi
大鼠 单克隆(KT3)
  • 免疫组化-冰冻切片; 小鼠; 1:100
圣克鲁斯生物技术 Cd3d抗体(Santa Cruz, KT3)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:100. Development (2007) ncbi
丹科医疗器械技术服务(上海)有限公司
多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:20; 图 s6b
丹科医疗器械技术服务(上海)有限公司 Cd3d抗体(Dako, N1580)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:20 (图 s6b). Nat Commun (2016) ncbi
多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:10; 图 5a
丹科医疗器械技术服务(上海)有限公司 Cd3d抗体(Dako, N1580)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:10 (图 5a). PLoS ONE (2016) ncbi
多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:10; 图 4a
丹科医疗器械技术服务(上海)有限公司 Cd3d抗体(Dako, N1580)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:10 (图 4a). PLoS ONE (2016) ncbi
碧迪BD
小鼠 单克隆(UCHT1)
  • 流式细胞仪; 人类; 图 2d
碧迪BD Cd3d抗体(BD Biosciences, UCHT1)被用于被用于流式细胞仪在人类样本上 (图 2d). Med Oncol (2022) ncbi
小鼠 单克隆(UCHT1)
  • 流式细胞仪; 人类; 图 8a
碧迪BD Cd3d抗体(BD Biosciences, UCHT1)被用于被用于流式细胞仪在人类样本上 (图 8a). J Clin Invest (2022) ncbi
小鼠 单克隆(UCHT1)
  • 流式细胞仪; 人类; 图 s7
碧迪BD Cd3d抗体(BD Pharmingen, 555332)被用于被用于流式细胞仪在人类样本上 (图 s7). Oncoimmunology (2022) ncbi
小鼠 单克隆(UCHT1)
  • 流式细胞仪; 人类; 1:300; 图 6a
碧迪BD Cd3d抗体(BD Biosciences, UCHT1)被用于被用于流式细胞仪在人类样本上浓度为1:300 (图 6a). Nat Commun (2021) ncbi
小鼠 单克隆(UCHT1)
  • 流式细胞仪; 人类; 图 3c, 3d
碧迪BD Cd3d抗体(BD Bioscience, UCHT1)被用于被用于流式细胞仪在人类样本上 (图 3c, 3d). J Immunother Cancer (2021) ncbi
小鼠 单克隆(UCHT1)
  • 流式细胞仪; 人类
碧迪BD Cd3d抗体(BD Biosciences, 555341)被用于被用于流式细胞仪在人类样本上. Cell (2021) ncbi
小鼠 单克隆(UCHT1)
  • 流式细胞仪; 人类; 图 1b
碧迪BD Cd3d抗体(BD, UCHT1)被用于被用于流式细胞仪在人类样本上 (图 1b). Acta Neuropathol (2021) ncbi
小鼠 单克隆(UCHT1)
  • 流式细胞仪; 人类; 1:500
碧迪BD Cd3d抗体(BD, 555332)被用于被用于流式细胞仪在人类样本上浓度为1:500. Cell (2021) ncbi
小鼠 单克隆(UCHT1)
  • 流式细胞仪; 人类; 图 4
碧迪BD Cd3d抗体(BD Bioscience, UCHT1)被用于被用于流式细胞仪在人类样本上 (图 4). Aging Cell (2021) ncbi
小鼠 单克隆(UCHT1)
  • 流式细胞仪; 人类; 1:50; 图 3s2a
碧迪BD Cd3d抗体(BD Biosciences, UCHT1)被用于被用于流式细胞仪在人类样本上浓度为1:50 (图 3s2a). elife (2020) ncbi
小鼠 单克隆(UCHT1)
  • 流式细胞仪; 人类; 图 3a
碧迪BD Cd3d抗体(BD, UCHT1)被用于被用于流式细胞仪在人类样本上 (图 3a). BMC Cancer (2020) ncbi
小鼠 单克隆(UCHT1)
  • 其他; 小鼠
碧迪BD Cd3d抗体(BD Biosciences, UCHT1)被用于被用于其他在小鼠样本上. Nat Commun (2020) ncbi
小鼠 单克隆(UCHT1)
  • 流式细胞仪; 人类; 1:100; 图 1f
碧迪BD Cd3d抗体(BD, UCHT1)被用于被用于流式细胞仪在人类样本上浓度为1:100 (图 1f). elife (2020) ncbi
小鼠 单克隆(UCHT1)
  • 流式细胞仪; 人类; 图 1a
碧迪BD Cd3d抗体(BD, UCHT-1)被用于被用于流式细胞仪在人类样本上 (图 1a). Rheumatology (Oxford) (2020) ncbi
小鼠 单克隆(UCHT1)
  • 抑制或激活实验; 人类; 1 ug/ml; 图 1d
碧迪BD Cd3d抗体(BD Biosciences, 550368)被用于被用于抑制或激活实验在人类样本上浓度为1 ug/ml (图 1d). elife (2020) ncbi
小鼠 单克隆(UCHT1)
  • 流式细胞仪; 人类; 图 5c
碧迪BD Cd3d抗体(BD Bioscience, 560365)被用于被用于流式细胞仪在人类样本上 (图 5c). Stem Cell Res Ther (2020) ncbi
小鼠 单克隆(UCHT1)
  • 流式细胞仪; 人类; 图 s3a
碧迪BD Cd3d抗体(BD, UCHT1)被用于被用于流式细胞仪在人类样本上 (图 s3a). Science (2019) ncbi
小鼠 单克隆(UCHT1)
  • 流式细胞仪; 人类; 图 10c, 12c
碧迪BD Cd3d抗体(BD Biosciences, 555335)被用于被用于流式细胞仪在人类样本上 (图 10c, 12c). Hum Vaccin Immunother (2020) ncbi
小鼠 单克隆(UCHT1)
  • 流式细胞仪; 人类; 图 3d
碧迪BD Cd3d抗体(BD Biosciences, UCHT1)被用于被用于流式细胞仪在人类样本上 (图 3d). Nature (2019) ncbi
小鼠 单克隆(UCHT1)
  • 流式细胞仪; 人类; 1:20; 图 5k, s22c
碧迪BD Cd3d抗体(BD Biosciences, 561416)被用于被用于流式细胞仪在人类样本上浓度为1:20 (图 5k, s22c). Nat Commun (2019) ncbi
小鼠 单克隆(UCHT1)
  • 流式细胞仪; 人类; 图 s1
碧迪BD Cd3d抗体(BD Biosciences, UCHT1)被用于被用于流式细胞仪在人类样本上 (图 s1). JCI Insight (2019) ncbi
小鼠 单克隆(UCHT1)
  • mass cytometry; 人类; 图 s1
碧迪BD Cd3d抗体(BD, UCHT1)被用于被用于mass cytometry在人类样本上 (图 s1). J Exp Med (2019) ncbi
小鼠 单克隆(UCHT1)
  • 免疫组化-冰冻切片; 人类; 图 1b
碧迪BD Cd3d抗体(BD Biosciences, UCHT1)被用于被用于免疫组化-冰冻切片在人类样本上 (图 1b). J Clin Invest (2019) ncbi
小鼠 单克隆(UCHT1)
  • 流式细胞仪; 人类; 图 s1a
碧迪BD Cd3d抗体(BD Biosciences, UCHT1)被用于被用于流式细胞仪在人类样本上 (图 s1a). Eur J Immunol (2019) ncbi
小鼠 单克隆(UCHT1)
  • 流式细胞仪; 人类; 图 1a
碧迪BD Cd3d抗体(BD, UCHT1)被用于被用于流式细胞仪在人类样本上 (图 1a). Immunol Cell Biol (2019) ncbi
小鼠 单克隆(UCHT1)
  • 流式细胞仪; 人类; 图 s1a
碧迪BD Cd3d抗体(BD Biosciences, UCHT1)被用于被用于流式细胞仪在人类样本上 (图 s1a). Proc Natl Acad Sci U S A (2018) ncbi
小鼠 单克隆(UCHT1)
  • 流式细胞仪; 人类; 图 1a
碧迪BD Cd3d抗体(BD Pharmingen, UCHT1)被用于被用于流式细胞仪在人类样本上 (图 1a). Front Immunol (2018) ncbi
小鼠 单克隆(UCHT1)
  • 流式细胞仪; 人类; 图 s7b
碧迪BD Cd3d抗体(BD, 555916)被用于被用于流式细胞仪在人类样本上 (图 s7b). Eur J Immunol (2018) ncbi
小鼠 单克隆(UCHT1)
  • 流式细胞仪; 人类; 图 6h, 6i
碧迪BD Cd3d抗体(BD, UCHT1)被用于被用于流式细胞仪在人类样本上 (图 6h, 6i). Cancer Res (2018) ncbi
小鼠 单克隆(UCHT1)
  • 免疫组化-冰冻切片; 人类; 图 2a
  • 流式细胞仪; 人类; 图 1b
碧迪BD Cd3d抗体(BD Biosciences, UCHT1)被用于被用于免疫组化-冰冻切片在人类样本上 (图 2a) 和 被用于流式细胞仪在人类样本上 (图 1b). J Exp Med (2018) ncbi
小鼠 单克隆(UCHT1)
  • 流式细胞仪; 人类; 图 1
碧迪BD Cd3d抗体(BD Biosciences, 555916)被用于被用于流式细胞仪在人类样本上 (图 1). Oncotarget (2018) ncbi
小鼠 单克隆(UCHT1)
  • 流式细胞仪; 人类; 图 14
碧迪BD Cd3d抗体(BD Bioscience, UCHT1)被用于被用于流式细胞仪在人类样本上 (图 14). Front Immunol (2018) ncbi
小鼠 单克隆(UCHT1)
  • 流式细胞仪; 人类; 图 1e
碧迪BD Cd3d抗体(BD, 555332)被用于被用于流式细胞仪在人类样本上 (图 1e). J Exp Med (2018) ncbi
小鼠 单克隆(UCHT1)
  • 流式细胞仪; 人类; 图 3e
碧迪BD Cd3d抗体(BD Biosciences, 561806)被用于被用于流式细胞仪在人类样本上 (图 3e). Cell (2018) ncbi
小鼠 单克隆(UCHT1)
  • 流式细胞仪; 人类; 图 1a
碧迪BD Cd3d抗体(BD Biosciences, UCHT - 1)被用于被用于流式细胞仪在人类样本上 (图 1a). Front Immunol (2017) ncbi
小鼠 单克隆(UCHT1)
  • 流式细胞仪; 人类; 图 s2
碧迪BD Cd3d抗体(BD, UCHT1)被用于被用于流式细胞仪在人类样本上 (图 s2). Nat Commun (2017) ncbi
小鼠 单克隆(UCHT1)
  • 流式细胞仪; 人类; 图 s4a
碧迪BD Cd3d抗体(BD, UCHT1)被用于被用于流式细胞仪在人类样本上 (图 s4a). J Immunol (2017) ncbi
小鼠 单克隆(UCHT1)
  • 流式细胞仪; 人类
碧迪BD Cd3d抗体(BD Biosciences, UCHT1)被用于被用于流式细胞仪在人类样本上. J Immunol (2017) ncbi
小鼠 单克隆(UCHT1)
  • 流式细胞仪; 人类
碧迪BD Cd3d抗体(BD Biosciences, UCHT1)被用于被用于流式细胞仪在人类样本上. Nature (2017) ncbi
小鼠 单克隆(UCHT1)
  • 流式细胞仪; 人类; 图 1d
碧迪BD Cd3d抗体(BD Pharmingen, UCHT1)被用于被用于流式细胞仪在人类样本上 (图 1d). J Clin Invest (2017) ncbi
小鼠 单克隆(UCHT1)
  • 流式细胞仪; 人类; 图 5a
碧迪BD Cd3d抗体(BD Biosciences, UCHT1)被用于被用于流式细胞仪在人类样本上 (图 5a). Cancer Res (2017) ncbi
小鼠 单克隆(UCHT1)
  • 流式细胞仪; 人类; 图 6b
碧迪BD Cd3d抗体(BD Biosciences, 561807)被用于被用于流式细胞仪在人类样本上 (图 6b). Mol Ther Methods Clin Dev (2017) ncbi
小鼠 单克隆(UCHT1)
  • 流式细胞仪; 人类; 表 2
碧迪BD Cd3d抗体(BD, UCHT-1)被用于被用于流式细胞仪在人类样本上 (表 2). J Immunol Methods (2017) ncbi
小鼠 单克隆(UCHT1)
  • 流式细胞仪; 人类; 图 s2
碧迪BD Cd3d抗体(BD Biosciences, UCHT1)被用于被用于流式细胞仪在人类样本上 (图 s2). Nature (2017) ncbi
小鼠 单克隆(UCHT1)
  • 抑制或激活实验; 人类; 图 2e
碧迪BD Cd3d抗体(BD, 555329)被用于被用于抑制或激活实验在人类样本上 (图 2e). Sci Rep (2017) ncbi
小鼠 单克隆(UCHT1)
  • 流式细胞仪; 小鼠; 图 s4
碧迪BD Cd3d抗体(BD Biosciences, 555335)被用于被用于流式细胞仪在小鼠样本上 (图 s4). Nat Commun (2017) ncbi
小鼠 单克隆(UCHT1)
  • 流式细胞仪; 人类; 图 1b
碧迪BD Cd3d抗体(BD Biosciences, 555335)被用于被用于流式细胞仪在人类样本上 (图 1b). Oncotarget (2017) ncbi
小鼠 单克隆(UCHT1)
  • 流式细胞仪; 人类; 图 S1a
碧迪BD Cd3d抗体(BD, 561807)被用于被用于流式细胞仪在人类样本上 (图 S1a). Sci Rep (2017) ncbi
小鼠 单克隆(UCHT1)
  • 流式细胞仪; 人类; 图 5
碧迪BD Cd3d抗体(BD Biosciences, UCHT1)被用于被用于流式细胞仪在人类样本上 (图 5). Genome Med (2017) ncbi
小鼠 单克隆(UCHT1)
  • 流式细胞仪; 人类
碧迪BD Cd3d抗体(BD Bioscience, UCHT1)被用于被用于流式细胞仪在人类样本上. Sci Rep (2017) ncbi
小鼠 单克隆(UCHT1)
  • 流式细胞仪; 人类; 1:100; 图 2a
碧迪BD Cd3d抗体(BD Biosciences, UCHT1)被用于被用于流式细胞仪在人类样本上浓度为1:100 (图 2a). J Leukoc Biol (2017) ncbi
小鼠 单克隆(UCHT1)
  • 流式细胞仪; 人类
碧迪BD Cd3d抗体(BD Biosciences, UCHT1)被用于被用于流式细胞仪在人类样本上. J Virol (2017) ncbi
小鼠 单克隆(UCHT1)
  • 流式细胞仪; African green monkey; 图 s3a
碧迪BD Cd3d抗体(Beckton Dickinson, UCHT1)被用于被用于流式细胞仪在African green monkey样本上 (图 s3a). Nat Commun (2016) ncbi
小鼠 单克隆(UCHT1)
  • 流式细胞仪; 人类; 图 6
碧迪BD Cd3d抗体(BD Biosciences, UCHTI)被用于被用于流式细胞仪在人类样本上 (图 6). New Microbiol (2016) ncbi
小鼠 单克隆(UCHT1)
  • 流式细胞仪; 人类
碧迪BD Cd3d抗体(BD, UCHT1)被用于被用于流式细胞仪在人类样本上. J Exp Med (2016) ncbi
小鼠 单克隆(UCHT1)
  • 流式细胞仪; 人类; 图 5a
碧迪BD Cd3d抗体(BD, UCHT1)被用于被用于流式细胞仪在人类样本上 (图 5a). J Exp Med (2016) ncbi
小鼠 单克隆(UCHT1)
  • 流式细胞仪; 人类; 图 1a
碧迪BD Cd3d抗体(BD, UCHT1)被用于被用于流式细胞仪在人类样本上 (图 1a). Clin Immunol (2016) ncbi
小鼠 单克隆(UCHT1)
  • 流式细胞仪; 人类; 图 s1a
碧迪BD Cd3d抗体(BD Biosciences, UCHT1)被用于被用于流式细胞仪在人类样本上 (图 s1a). J Immunol (2016) ncbi
小鼠 单克隆(UCHT1)
  • 流式细胞仪; 人类; 图 2e
碧迪BD Cd3d抗体(BD Biosciences, UCHT1)被用于被用于流式细胞仪在人类样本上 (图 2e). J Immunol (2016) ncbi
小鼠 单克隆(UCHT1)
  • 流式细胞仪; 人类; 图 s2
碧迪BD Cd3d抗体(BD Bioscience, UCHT1)被用于被用于流式细胞仪在人类样本上 (图 s2). J Clin Invest (2016) ncbi
小鼠 单克隆(UCHT1)
  • 流式细胞仪; 人类; 图 s3
碧迪BD Cd3d抗体(BD Biosciences, UCHT1)被用于被用于流式细胞仪在人类样本上 (图 s3). Sci Rep (2016) ncbi
小鼠 单克隆(UCHT1)
  • 流式细胞仪; 人类; 图 5e
碧迪BD Cd3d抗体(BD Biosciences, UCHT1)被用于被用于流式细胞仪在人类样本上 (图 5e). J Immunol (2016) ncbi
小鼠 单克隆(UCHT1)
  • 流式细胞仪; 人类; 1:40; 图 3
碧迪BD Cd3d抗体(BD PharMingen, 560365)被用于被用于流式细胞仪在人类样本上浓度为1:40 (图 3). Oncoimmunology (2016) ncbi
小鼠 单克隆(UCHT1)
  • 流式细胞仪; 人类; 图 s1a
碧迪BD Cd3d抗体(BD Biosciences, UCHT1)被用于被用于流式细胞仪在人类样本上 (图 s1a). Eur J Immunol (2016) ncbi
小鼠 单克隆(UCHT1)
  • 流式细胞仪; 人类; 图 4
碧迪BD Cd3d抗体(BD Biosciences, UCHT1)被用于被用于流式细胞仪在人类样本上 (图 4). Ann Clin Transl Neurol (2016) ncbi
小鼠 单克隆(UCHT1)
  • 流式细胞仪; 人类; 图 1d
碧迪BD Cd3d抗体(BD Biosciences, 555335)被用于被用于流式细胞仪在人类样本上 (图 1d). Oncotarget (2016) ncbi
小鼠 单克隆(UCHT1)
  • 流式细胞仪; 人类
碧迪BD Cd3d抗体(BD Bioscience, UCHT1)被用于被用于流式细胞仪在人类样本上. J Immunol (2016) ncbi
小鼠 单克隆(UCHT1)
  • 抑制或激活实验; 人类; 1 ug/ml
碧迪BD Cd3d抗体(BD Biosciences, UCHT1)被用于被用于抑制或激活实验在人类样本上浓度为1 ug/ml. J Immunol (2016) ncbi
小鼠 单克隆(UCHT1)
  • 流式细胞仪; 人类; 图 1
碧迪BD Cd3d抗体(BD Biosciences, UCHT1)被用于被用于流式细胞仪在人类样本上 (图 1). PLoS ONE (2015) ncbi
小鼠 单克隆(UCHT1)
  • 抑制或激活实验; 小鼠; 图 1c
碧迪BD Cd3d抗体(BD Biosciences, 555329)被用于被用于抑制或激活实验在小鼠样本上 (图 1c). Nat Commun (2015) ncbi
小鼠 单克隆(UCHT1)
  • 流式细胞仪; 人类; 图 1
碧迪BD Cd3d抗体(BD Biosciences, UCHT1)被用于被用于流式细胞仪在人类样本上 (图 1). PLoS Pathog (2015) ncbi
小鼠 单克隆(UCHT1)
  • 流式细胞仪; 人类
碧迪BD Cd3d抗体(BD, 555332)被用于被用于流式细胞仪在人类样本上. Cytotherapy (2015) ncbi
小鼠 单克隆(UCHT1)
  • 流式细胞仪; 人类
碧迪BD Cd3d抗体(Becton Dickinson, UCHT1)被用于被用于流式细胞仪在人类样本上. Biol Blood Marrow Transplant (2015) ncbi
小鼠 单克隆(UCHT1)
  • 流式细胞仪; 猕猴
碧迪BD Cd3d抗体(BD Biosciences, UCHT1)被用于被用于流式细胞仪在猕猴样本上. Vaccine (2015) ncbi
小鼠 单克隆(UCHT1)
  • 流式细胞仪; 人类; 图 2a
碧迪BD Cd3d抗体(BD Biosciences, UCHT1)被用于被用于流式细胞仪在人类样本上 (图 2a). Ann Rheum Dis (2016) ncbi
小鼠 单克隆(UCHT1)
  • 流式细胞仪; 人类
碧迪BD Cd3d抗体(BD, 560366)被用于被用于流式细胞仪在人类样本上. J Exp Med (2015) ncbi
小鼠 单克隆(UCHT1)
  • 流式细胞仪; 人类; 图 4
碧迪BD Cd3d抗体(BD Biosciences, UCHT1)被用于被用于流式细胞仪在人类样本上 (图 4). J Immunol (2015) ncbi
小鼠 单克隆(UCHT1)
  • 抑制或激活实验; 人类
碧迪BD Cd3d抗体(BD Pharmingen, 555329)被用于被用于抑制或激活实验在人类样本上. J Immunol Methods (2015) ncbi
小鼠 单克隆(UCHT1)
  • 流式细胞仪; 人类; 图 S1
碧迪BD Cd3d抗体(BD Pharmingen, UCHT1)被用于被用于流式细胞仪在人类样本上 (图 S1). Retrovirology (2015) ncbi
小鼠 单克隆(UCHT1)
  • 流式细胞仪; 人类
碧迪BD Cd3d抗体(BD Biosciences, UCHT1)被用于被用于流式细胞仪在人类样本上. J Immunol (2015) ncbi
小鼠 单克隆(UCHT1)
  • 流式细胞仪; 人类
碧迪BD Cd3d抗体(BD Biosciences, UCHT1)被用于被用于流式细胞仪在人类样本上. PLoS ONE (2015) ncbi
小鼠 单克隆(UCHT1)
  • 流式细胞仪; 人类; 图 1e
碧迪BD Cd3d抗体(BD Biosciences, UCHT1)被用于被用于流式细胞仪在人类样本上 (图 1e). J Immunol (2015) ncbi
小鼠 单克隆(UCHT1)
  • 流式细胞仪; 人类
碧迪BD Cd3d抗体(BD Biosciences, UCHT1)被用于被用于流式细胞仪在人类样本上. PLoS ONE (2015) ncbi
小鼠 单克隆(UCHT1)
  • 流式细胞仪; 人类
碧迪BD Cd3d抗体(BD Pharmingen, 555335)被用于被用于流式细胞仪在人类样本上. Alcohol (2015) ncbi
小鼠 单克隆(UCHT1)
  • 流式细胞仪; 人类
碧迪BD Cd3d抗体(Becton Dickinson, UCHT1)被用于被用于流式细胞仪在人类样本上. J Leukoc Biol (2015) ncbi
小鼠 单克隆(UCHT1)
  • 流式细胞仪; 人类; 2.5:100
碧迪BD Cd3d抗体(BD, 555335)被用于被用于流式细胞仪在人类样本上浓度为2.5:100. Cytometry A (2015) ncbi
小鼠 单克隆(UCHT1)
  • 流式细胞仪; 人类
碧迪BD Cd3d抗体(BD, UCHT1)被用于被用于流式细胞仪在人类样本上. Eur J Cancer (2015) ncbi
小鼠 单克隆(UCHT1)
  • 抑制或激活实验; 人类; 1 ug/ml
碧迪BD Cd3d抗体(BD, UCHT1)被用于被用于抑制或激活实验在人类样本上浓度为1 ug/ml. Nat Immunol (2015) ncbi
小鼠 单克隆(UCHT1)
  • 抑制或激活实验; 人类; 1 ug/ml; 图 2
碧迪BD Cd3d抗体(BD Pharmingen, 555329)被用于被用于抑制或激活实验在人类样本上浓度为1 ug/ml (图 2). Mol Cell Biol (2015) ncbi
小鼠 单克隆(UCHT1)
  • 流式细胞仪; 人类
碧迪BD Cd3d抗体(BD Biosciences, UCHT1)被用于被用于流式细胞仪在人类样本上. PLoS ONE (2014) ncbi
小鼠 单克隆(UCHT1)
  • 流式细胞仪; 人类
碧迪BD Cd3d抗体(BD Biosciences, UCHT1)被用于被用于流式细胞仪在人类样本上. PLoS Pathog (2014) ncbi
小鼠 单克隆(UCHT1)
  • 流式细胞仪; 小鼠; 图 s3
碧迪BD Cd3d抗体(Pharmingen, 555332)被用于被用于流式细胞仪在小鼠样本上 (图 s3). Stem Cell Res (2014) ncbi
小鼠 单克隆(UCHT1)
  • 流式细胞仪; 人类
碧迪BD Cd3d抗体(BD Biosciences, UCHT1)被用于被用于流式细胞仪在人类样本上. J Immunol (2014) ncbi
小鼠 单克隆(UCHT1)
  • 流式细胞仪; 人类
碧迪BD Cd3d抗体(BD Pharmingen, UCHT1)被用于被用于流式细胞仪在人类样本上. J Hepatol (2015) ncbi
小鼠 单克隆(UCHT1)
  • 流式细胞仪; 人类
  • 免疫细胞化学; 人类
碧迪BD Cd3d抗体(BD Biosciences, UCHT1)被用于被用于流式细胞仪在人类样本上 和 被用于免疫细胞化学在人类样本上. J Immunol (2014) ncbi
小鼠 单克隆(UCHT1)
  • 流式细胞仪; 人类
碧迪BD Cd3d抗体(BD Pharmingen, UCHT1)被用于被用于流式细胞仪在人类样本上. Inflamm Bowel Dis (2014) ncbi
小鼠 单克隆(UCHT1)
  • 免疫细胞化学; 小鼠
碧迪BD Cd3d抗体(PharMingen, UCHT1)被用于被用于免疫细胞化学在小鼠样本上. Hum Pathol (2014) ncbi
小鼠 单克隆(UCHT1)
  • 流式细胞仪; 人类
碧迪BD Cd3d抗体(BD Biosciences, UCHT1)被用于被用于流式细胞仪在人类样本上. J Immunol (2014) ncbi
小鼠 单克隆(UCHT1)
  • 流式细胞仪; 人类
碧迪BD Cd3d抗体(BD Biosciences, UCHT1)被用于被用于流式细胞仪在人类样本上. Immunobiology (2015) ncbi
小鼠 单克隆(UCHT1)
  • 流式细胞仪; 人类
碧迪BD Cd3d抗体(BD Horizon, UCHT1)被用于被用于流式细胞仪在人类样本上. Clin Cancer Res (2014) ncbi
小鼠 单克隆(UCHT1)
  • 流式细胞仪; 人类
碧迪BD Cd3d抗体(BD Biosciences, UCHT1)被用于被用于流式细胞仪在人类样本上. J Immunol (2014) ncbi
小鼠 单克隆(UCHT1)
  • 流式细胞仪; 人类; 图 s1
碧迪BD Cd3d抗体(BD Bioscience, UCHT1)被用于被用于流式细胞仪在人类样本上 (图 s1). J Immunol (2014) ncbi
小鼠 单克隆(UCHT1)
  • 流式细胞仪; 人类
碧迪BD Cd3d抗体(BD Biosciences, UCHT1)被用于被用于流式细胞仪在人类样本上. Blood (2014) ncbi
小鼠 单克隆(UCHT1)
  • 流式细胞仪; 人类
碧迪BD Cd3d抗体(BD Biosciences, UCHT1)被用于被用于流式细胞仪在人类样本上. J Immunol (2014) ncbi
小鼠 单克隆(UCHT1)
  • 流式细胞仪; 人类; 1:20
碧迪BD Cd3d抗体(BD Biosciences, 560365)被用于被用于流式细胞仪在人类样本上浓度为1:20. J Immunol (2014) ncbi
小鼠 单克隆(UCHT1)
  • 流式细胞仪; 人类
碧迪BD Cd3d抗体(BD, UCHT1)被用于被用于流式细胞仪在人类样本上. J Exp Med (2014) ncbi
小鼠 单克隆(UCHT1)
  • 流式细胞仪; 人类
碧迪BD Cd3d抗体(BD Biosciences, UCHT1)被用于被用于流式细胞仪在人类样本上. J Clin Immunol (2014) ncbi
小鼠 单克隆(UCHT1)
  • 流式细胞仪; 人类
碧迪BD Cd3d抗体(Becton Dickinson, UCHT1)被用于被用于流式细胞仪在人类样本上. Biomed Res Int (2014) ncbi
小鼠 单克隆(UCHT1)
  • 流式细胞仪; 人类; 1.6:100
碧迪BD Cd3d抗体(BD Biosciences, UCHT1)被用于被用于流式细胞仪在人类样本上浓度为1.6:100. J Clin Invest (2014) ncbi
小鼠 单克隆(UCHT1)
  • 流式细胞仪; 人类
碧迪BD Cd3d抗体(BD Biosciences, UCHT1)被用于被用于流式细胞仪在人类样本上. Int J Cancer (2014) ncbi
小鼠 单克隆(UCHT1)
  • 流式细胞仪; 人类
碧迪BD Cd3d抗体(BD, 555332)被用于被用于流式细胞仪在人类样本上. Nat Med (2014) ncbi
小鼠 单克隆(UCHT1)
  • 流式细胞仪; 人类
碧迪BD Cd3d抗体(BD/Pharmingen, UCHT1)被用于被用于流式细胞仪在人类样本上. J Infect Dis (2014) ncbi
小鼠 单克隆(UCHT1)
  • 流式细胞仪; 人类
碧迪BD Cd3d抗体(BD Bioscience, UCHT1)被用于被用于流式细胞仪在人类样本上. J Infect Dis (2014) ncbi
小鼠 单克隆(UCHT1)
  • 流式细胞仪; 人类
碧迪BD Cd3d抗体(BD Biosciences, UCHT1)被用于被用于流式细胞仪在人类样本上. Retrovirology (2013) ncbi
小鼠 单克隆(UCHT1)
  • 流式细胞仪; 人类
碧迪BD Cd3d抗体(BD, UCHT1)被用于被用于流式细胞仪在人类样本上. Ann Rheum Dis (2014) ncbi
小鼠 单克隆(UCHT1)
  • 流式细胞仪; 人类; 图 5
碧迪BD Cd3d抗体(BD Pharmingen, 555332)被用于被用于流式细胞仪在人类样本上 (图 5). Cell Transplant (2014) ncbi
小鼠 单克隆(UCHT1)
  • 免疫组化-冰冻切片; 人类; 0.25 ug/ml
碧迪BD Cd3d抗体(BD Pharmingen, 555330)被用于被用于免疫组化-冰冻切片在人类样本上浓度为0.25 ug/ml. Neuropathol Appl Neurobiol (2014) ncbi
文章列表
  1. Tran N, Ferreira L, Alvarez Moya B, Buttiglione V, Ferrini B, Zordan P, et al. Continuous sensing of IFNα by hepatic endothelial cells shapes a vascular antimetastatic barrier. elife. 2022;11: pubmed 出版商
  2. Yang P, Qin H, Li Y, Xiao A, Zheng E, Zeng H, et al. CD36-mediated metabolic crosstalk between tumor cells and macrophages affects liver metastasis. Nat Commun. 2022;13:5782 pubmed 出版商
  3. Xu D, Ma R, Ju Y, Song X, Niu B, Hong W, et al. Cholesterol sulfate alleviates ulcerative colitis by promoting cholesterol biosynthesis in colonic epithelial cells. Nat Commun. 2022;13:4428 pubmed 出版商
  4. Selle J, Dinger K, Jentgen V, Zanetti D, Will J, Georgomanolis T, et al. Maternal and perinatal obesity induce bronchial obstruction and pulmonary hypertension via IL-6-FoxO1-axis in later life. Nat Commun. 2022;13:4352 pubmed 出版商
  5. Ma Z, Zhang W, Dong B, Xin Z, Ji Y, Su R, et al. Docetaxel remodels prostate cancer immune microenvironment and enhances checkpoint inhibitor-based immunotherapy. Theranostics. 2022;12:4965-4979 pubmed 出版商
  6. Pi xf1 eros A, Kulkarni A, Gao H, Orr K, Glenn L, Huang F, et al. Proinflammatory signaling in islet β cells propagates invasion of pathogenic immune cells in autoimmune diabetes. Cell Rep. 2022;39:111011 pubmed 出版商
  7. Hannawi Y, Ewees M, Moore J, Zweier J. Characterizing CD38 Expression and Enzymatic Activity in the Brain of Spontaneously Hypertensive Stroke-Prone Rats. Front Pharmacol. 2022;13:881708 pubmed 出版商
  8. Tosti E, Almeida A, Tran T, Barbachan E Silva M, Broin P, Dubin R, et al. Loss of MMR and TGFBR2 Increases the Susceptibility to Microbiota-Dependent Inflammation-Associated Colon Cancer. Cell Mol Gastroenterol Hepatol. 2022;14:693-717 pubmed 出版商
  9. Lu L, Li T, Feng X, Liu Z, Liu Y, Chao T, et al. Excessive immunosuppression by regulatory T cells antagonizes T cell response to schistosome infection in PD-1-deficient mice. PLoS Pathog. 2022;18:e1010596 pubmed 出版商
  10. Deal B, Reynolds L, PATTERSON C, Janjic J, Pollock J. Behavioral and inflammatory sex differences revealed by celecoxib nanotherapeutic treatment of peripheral neuroinflammation. Sci Rep. 2022;12:8472 pubmed 出版商
  11. Omari S, Geraghty D, Khalafallah A, Venkat P, Shegog Y, Ragg S, et al. Optimized flow cytometric detection of transient receptor potential vanilloid-1 (TRPV1) in human hematological malignancies. Med Oncol. 2022;39:81 pubmed 出版商
  12. Ozmadenci D, Shankara Narayanan J, Andrew J, Ojalill M, Barrie A, Jiang S, et al. Tumor FAK orchestrates immunosuppression in ovarian cancer via the CD155/TIGIT axis. Proc Natl Acad Sci U S A. 2022;119:e2117065119 pubmed 出版商
  13. Saxena V, Piao W, Li L, Paluskievicz C, Xiong Y, Simon T, et al. Treg tissue stability depends on lymphotoxin beta-receptor- and adenosine-receptor-driven lymphatic endothelial cell responses. Cell Rep. 2022;39:110727 pubmed 出版商
  14. Cortes J, Filip I, Albero R, Patiño Galindo J, Quinn S, Lin W, et al. Oncogenic Vav1-Myo1f induces therapeutically targetable macrophage-rich tumor microenvironment in peripheral T cell lymphoma. Cell Rep. 2022;39:110695 pubmed 出版商
  15. Meléndez E, Chondronasiou D, Mosteiro L, Mart xed nez de Villarreal J, Fern xe1 ndez Alfara M, Lynch C, et al. Natural killer cells act as an extrinsic barrier for in vivo reprogramming. Development. 2022;149: pubmed 出版商
  16. Liu M, Wu C, Luo S, Hua Q, Chen H, Weng Y, et al. PERK reprograms hematopoietic progenitor cells to direct tumor-promoting myelopoiesis in the spleen. J Exp Med. 2022;219: pubmed 出版商
  17. Sibilio A, Suñer C, Fernández Alfara M, Martín J, Berenguer A, Calon A, et al. Immune translational control by CPEB4 regulates intestinal inflammation resolution and colorectal cancer development. iScience. 2022;25:103790 pubmed 出版商
  18. Cui H, Liu F, Fang Y, Wang T, Yuan B, Ma C. Neuronal FcεRIα directly mediates ocular itch via IgE-immune complex in a mouse model of allergic conjunctivitis. J Neuroinflammation. 2022;19:55 pubmed 出版商
  19. Araujo A, Abaurrea A, Azcoaga P, L xf3 pez Velazco J, Manzano S, Rodriguez J, et al. Stromal oncostatin M cytokine promotes breast cancer progression by reprogramming the tumor microenvironment. J Clin Invest. 2022;132: pubmed 出版商
  20. Zheng W, Feng Y, Zeng Z, Ye M, Wang M, Liu X, et al. Choroid plexus-selective inactivation of adenosine A2A receptors protects against T cell infiltration and experimental autoimmune encephalomyelitis. J Neuroinflammation. 2022;19:52 pubmed 出版商
  21. Besnard M, S xe9 razin C, Ossart J, Moreau A, Vimond N, Flippe L, et al. Anti-CD45RC antibody immunotherapy prevents and treats experimental autoimmune polyendocrinopathy-candidiasis-ectodermal dystrophy syndrome. J Clin Invest. 2022;132: pubmed 出版商
  22. Pinkert J, Boehm H, Trautwein M, Doecke W, Wessel F, Ge Y, et al. T cell-mediated elimination of cancer cells by blocking CEACAM6-CEACAM1 interaction. Oncoimmunology. 2022;11:2008110 pubmed 出版商
  23. Guo X, Kimura A, Namekata K, Harada C, Arai N, Takeda K, et al. ASK1 signaling regulates phase-specific glial interactions during neuroinflammation. Proc Natl Acad Sci U S A. 2022;119: pubmed 出版商
  24. Almishri W, Swain L, D Mello C, Le T, Urbanski S, Nguyen H. ADAM Metalloproteinase Domain 17 Regulates Cholestasis-Associated Liver Injury and Sickness Behavior Development in Mice. Front Immunol. 2021;12:779119 pubmed 出版商
  25. Keller E, Dvorina N, Jørgensen T. Spontaneous CD4+ T Cell Activation and Differentiation in Lupus-Prone B6.Nba2 Mice Is IFNAR-Independent. Int J Mol Sci. 2022;23: pubmed 出版商
  26. Yang K, Han J, Asada M, Gill J, Park J, Sathe M, et al. Cytoplasmic RNA quality control failure engages mTORC1-mediated autoinflammatory disease. J Clin Invest. 2022;132: pubmed 出版商
  27. Castoldi G, Carletti R, Ippolito S, Stella A, Zerbini G, Pelucchi S, et al. Angiotensin Type 2 and Mas Receptor Activation Prevents Myocardial Fibrosis and Hypertrophy through the Reduction of Inflammatory Cell Infiltration and Local Sympathetic Activity in Angiotensin II-Dependent Hypertension. Int J Mol Sci. 2021;22: pubmed 出版商
  28. Zhou Q, Liang J, Yang T, Liu J, Li B, Li Y, et al. Carfilzomib modulates tumor microenvironment to potentiate immune checkpoint therapy for cancer. EMBO Mol Med. 2022;14:e14502 pubmed 出版商
  29. Fahy N, Palomares Cabeza V, Lolli A, Witte Bouma J, Merino A, Ridwan Y, et al. Chondrogenically Primed Human Mesenchymal Stem Cells Persist and Undergo Early Stages of Endochondral Ossification in an Immunocompetent Xenogeneic Model. Front Immunol. 2021;12:715267 pubmed 出版商
  30. Naruse H, Itoh S, Itoh Y, Kagioka T, Abe M, Hayashi M. The Wnt/β-catenin signaling pathway has a healing ability for periapical periodontitis. Sci Rep. 2021;11:19673 pubmed 出版商
  31. Jiang Y, Yuan Y, Chen M, Li S, Bai J, Zhang Y, et al. PRMT5 disruption drives antitumor immunity in cervical cancer by reprogramming T cell-mediated response and regulating PD-L1 expression. Theranostics. 2021;11:9162-9176 pubmed 出版商
  32. Bruno K, Macomb L, Morales Lara A, Mathews J, Frisancho J, Yang A, et al. Sex-Specific Effects of Plastic Caging in Murine Viral Myocarditis. Int J Mol Sci. 2021;22: pubmed 出版商
  33. Zhang Y, McGrath K, Ayoub E, Kingsley P, Yu H, Fegan K, et al. Mds1CreERT2, an inducible Cre allele specific to adult-repopulating hematopoietic stem cells. Cell Rep. 2021;36:109562 pubmed 出版商
  34. Gan Y, He J, Zhu J, Xu Z, Wang Z, Yan J, et al. Spatially defined single-cell transcriptional profiling characterizes diverse chondrocyte subtypes and nucleus pulposus progenitors in human intervertebral discs. Bone Res. 2021;9:37 pubmed 出版商
  35. Moreira T, Mangani D, Cox L, Leibowitz J, Lobo E, Oliveira M, et al. PD-L1+ and XCR1+ dendritic cells are region-specific regulators of gut homeostasis. Nat Commun. 2021;12:4907 pubmed 出版商
  36. Tillie R, Theelen T, van Kuijk K, Temmerman L, de Bruijn J, Gijbels M, et al. A Switch from Cell-Associated to Soluble PDGF-B Protects against Atherosclerosis, despite Driving Extramedullary Hematopoiesis. Cells. 2021;10: pubmed 出版商
  37. Dhawan U, Bhattacharya P, Narayanan S, Manickam V, Aggarwal A, Subramanian M. Hypercholesterolemia Impairs Clearance of Neutrophil Extracellular Traps and Promotes Inflammation and Atherosclerotic Plaque Progression. Arterioscler Thromb Vasc Biol. 2021;41:2598-2615 pubmed 出版商
  38. Hoffman R, Huang S, Chalasani G, Vallejo A. Disparate Recruitment and Retention of Plasmacytoid Dendritic Cells to The Small Intestinal Mucosa between Young and Aged Mice. Aging Dis. 2021;12:1183-1196 pubmed 出版商
  39. Liot S, El Kholti N, Balas J, Genestier L, Verrier B, Valcourt U, et al. Development of thymic tumor in [LSL:KrasG12D; Pdx1-CRE] mice, an adverse effect associated with accelerated pancreatic carcinogenesis. Sci Rep. 2021;11:15075 pubmed 出版商
  40. Bruand M, Barras D, Mina M, Ghisoni E, Morotti M, Lanitis E, et al. Cell-autonomous inflammation of BRCA1-deficient ovarian cancers drives both tumor-intrinsic immunoreactivity and immune resistance via STING. Cell Rep. 2021;36:109412 pubmed 出版商
  41. Dalla Pietà A, Cappuzzello E, Palmerini P, Ventura A, Visentin A, Astori G, et al. Innovative therapeutic strategy for B-cell malignancies that combines obinutuzumab and cytokine-induced killer cells. J Immunother Cancer. 2021;9: pubmed 出版商
  42. Li D, Edwards R, Manne K, Martinez D, Schäfer A, Alam S, et al. In vitro and in vivo functions of SARS-CoV-2 infection-enhancing and neutralizing antibodies. Cell. 2021;184:4203-4219.e32 pubmed 出版商
  43. Al Ani M, Elemam N, Hachim I, Raju T, Muhammad J, Hachim M, et al. Molecular Examination of Differentially Expressed Genes in the Brains of Experimental Autoimmune Encephalomyelitis Mice Post Herceptin Treatment. J Inflamm Res. 2021;14:2601-2617 pubmed 出版商
  44. Lacy M, Burger C, Shami A, Ahmadsei M, Winkels H, Nitz K, et al. Cell-specific and divergent roles of the CD40L-CD40 axis in atherosclerotic vascular disease. Nat Commun. 2021;12:3754 pubmed 出版商
  45. Ostriker A, Xie Y, Chakraborty R, Sizer A, Bai Y, Ding M, et al. TET2 Protects Against Vascular Smooth Muscle Cell Apoptosis and Intimal Thickening in Transplant Vasculopathy. Circulation. 2021;144:455-470 pubmed 出版商
  46. Wang J, Zhang Y, Xiao Y, Yuan X, Li P, Wang X, et al. Boosting immune surveillance by low-dose PI3K inhibitor facilitates early intervention of breast cancer. Am J Cancer Res. 2021;11:2005-2024 pubmed
  47. Yan C, Saleh N, Yang J, Nebhan C, Vilgelm A, Reddy E, et al. Novel induction of CD40 expression by tumor cells with RAS/RAF/PI3K pathway inhibition augments response to checkpoint blockade. Mol Cancer. 2021;20:85 pubmed 出版商
  48. Zhang X, Liu X, Zhou W, Du Q, Yang M, Ding Y, et al. Blockade of IDO-Kynurenine-AhR Axis Ameliorated Colitis-Associated Colon Cancer via Inhibiting Immune Tolerance. Cell Mol Gastroenterol Hepatol. 2021;12:1179-1199 pubmed 出版商
  49. Oikonomou N, Schuijs M, Chatzigiagkos A, Androulidaki A, Aidinis V, Hammad H, et al. Airway epithelial cell necroptosis contributes to asthma exacerbation in a mouse model of house dust mite-induced allergic inflammation. Mucosal Immunol. 2021;14:1160-1171 pubmed 出版商
  50. Zhang H, Xia Y, Wang F, Luo M, Yang K, Liang S, et al. Aldehyde Dehydrogenase 2 Mediates Alcohol-Induced Colorectal Cancer Immune Escape through Stabilizing PD-L1 Expression. Adv Sci (Weinh). 2021;8:2003404 pubmed 出版商
  51. Zimmer T, Broekaart D, Luinenburg M, Mijnsbergen C, Anink J, Sim N, et al. Balloon cells promote immune system activation in focal cortical dysplasia type 2b. Neuropathol Appl Neurobiol. 2021;47:826-839 pubmed 出版商
  52. Roca C, Burton O, Gergelits V, Prezzemolo T, Whyte C, Halpert R, et al. AutoSpill is a principled framework that simplifies the analysis of multichromatic flow cytometry data. Nat Commun. 2021;12:2890 pubmed 出版商
  53. Borkner L, Curham L, Wilk M, Moran B, Mills K. IL-17 mediates protective immunity against nasal infection with Bordetella pertussis by mobilizing neutrophils, especially Siglec-F+ neutrophils. Mucosal Immunol. 2021;14:1183-1202 pubmed 出版商
  54. Kalinina A, Khromykh L, Kazansky D, Deykin A, Silaeva Y. Suppression of the Immune Response by Syngeneic Splenocytes Adoptively Transferred to Sublethally Irradiated Mice. Acta Naturae. 2021;13:116-126 pubmed 出版商
  55. Lin Q, Rong L, Jia X, Li R, Yu B, Hu J, et al. IFN-γ-dependent NK cell activation is essential to metastasis suppression by engineered Salmonella. Nat Commun. 2021;12:2537 pubmed 出版商
  56. Ercolano G, Gomez Cadena A, Dumauthioz N, Vanoni G, Kreutzfeldt M, Wyss T, et al. PPARɣ drives IL-33-dependent ILC2 pro-tumoral functions. Nat Commun. 2021;12:2538 pubmed 出版商
  57. Flamini S, Sergeev P, Viana de Barros Z, Mello T, Biagioli M, Paglialunga M, et al. Glucocorticoid-induced leucine zipper regulates liver fibrosis by suppressing CCL2-mediated leukocyte recruitment. Cell Death Dis. 2021;12:421 pubmed 出版商
  58. Akgul A, Maddaloni M, Jun S, Nelson A, Odreman V, Hoffman C, et al. Stimulation of regulatory T cells with Lactococcus lactis expressing enterotoxigenic E. coli colonization factor antigen 1 retains salivary flow in a genetic model of Sjögren's syndrome. Arthritis Res Ther. 2021;23:99 pubmed 出版商
  59. Lisk C, Yuen R, Kuniholm J, Antos D, Reiser M, Wetzler L. CD169+ Subcapsular Macrophage Role in Antigen Adjuvant Activity. Front Immunol. 2021;12:624197 pubmed 出版商
  60. Ingelfinger F, Krishnarajah S, Kramer M, Utz S, Galli E, Lutz M, et al. Single-cell profiling of myasthenia gravis identifies a pathogenic T cell signature. Acta Neuropathol. 2021;141:901-915 pubmed 出版商
  61. Dejnirattisai W, Zhou D, Ginn H, Duyvesteyn H, Supasa P, Case J, et al. The antigenic anatomy of SARS-CoV-2 receptor binding domain. Cell. 2021;184:2183-2200.e22 pubmed 出版商
  62. Sewastianik T, Straubhaar J, Zhao J, Samur M, Adler K, Tanton H, et al. miR-15a/16-1 deletion in activated B cells promotes plasma cell and mature B-cell neoplasms. Blood. 2021;137:1905-1919 pubmed 出版商
  63. Fallon E, Chung C, Heffernan D, Chen Y, De Paepe M, Ayala A. Survival and Pulmonary Injury After Neonatal Sepsis: PD1/PDL1's Contributions to Mouse and Human Immunopathology. Front Immunol. 2021;12:634529 pubmed 出版商
  64. Berg N, Li J, Kim B, Mills T, Pei G, Zhao Z, et al. Hypoxia-inducible factor-dependent induction of myeloid-derived netrin-1 attenuates natural killer cell infiltration during endotoxin-induced lung injury. FASEB J. 2021;35:e21334 pubmed 出版商
  65. Santos Zas I, Lemari xe9 J, Zlatanova I, Cachanado M, Seghezzi J, Benamer H, et al. Cytotoxic CD8+ T cells promote granzyme B-dependent adverse post-ischemic cardiac remodeling. Nat Commun. 2021;12:1483 pubmed 出版商
  66. Zarb Y, Sridhar S, Nassiri S, Utz S, Schaffenrath J, Maheshwari U, et al. Microglia control small vessel calcification via TREM2. Sci Adv. 2021;7: pubmed 出版商
  67. Yuan J, Cai T, Zheng X, Ren Y, Qi J, Lu X, et al. Potentiating CD8+ T cell antitumor activity by inhibiting PCSK9 to promote LDLR-mediated TCR recycling and signaling. Protein Cell. 2021;12:240-260 pubmed 出版商
  68. Song L, Chang R, Sun X, Lu L, Gao H, Lu H, et al. Macrophage-derived EDA-A2 inhibits intestinal stem cells by targeting miR-494/EDA2R/β-catenin signaling in mice. Commun Biol. 2021;4:213 pubmed 出版商
  69. Ballet R, Brennan M, Brandl C, Feng N, Berri J, Cheng J, et al. A CD22-Shp1 phosphatase axis controls integrin β7 display and B cell function in mucosal immunity. Nat Immunol. 2021;22:381-390 pubmed 出版商
  70. Klemke L, De Oliveira T, Witt D, Winkler N, Bohnenberger H, Bucala R, et al. Hsp90-stabilized MIF supports tumor progression via macrophage recruitment and angiogenesis in colorectal cancer. Cell Death Dis. 2021;12:155 pubmed 出版商
  71. Malone K, Diaz Diaz A, Shearer J, Moore A, Waeber C. The effect of fingolimod on regulatory T cells in a mouse model of brain ischaemia. J Neuroinflammation. 2021;18:37 pubmed 出版商
  72. Aslam M, Alemdehy M, Kwesi Maliepaard E, Muhaimin F, Caganova M, Pardieck I, et al. Histone methyltransferase DOT1L controls state-specific identity during B cell differentiation. EMBO Rep. 2021;22:e51184 pubmed 出版商
  73. Suah A, Tran D, Khiew S, Andrade M, Pollard J, Jain D, et al. Pregnancy-induced humoral sensitization overrides T cell tolerance to fetus-matched allografts in mice. J Clin Invest. 2021;131: pubmed 出版商
  74. Hu Z, Luo C, Hurtado P, Li H, Wang S, Hu B, et al. Brain-derived neurotrophic factor precursor in the immune system is a novel target for treating multiple sclerosis. Theranostics. 2021;11:715-730 pubmed 出版商
  75. Webb L, Fra Bido S, Innocentin S, Matheson L, Attaf N, Bignon A, et al. Ageing promotes early T follicular helper cell differentiation by modulating expression of RBPJ. Aging Cell. 2021;20:e13295 pubmed 出版商
  76. Gregorova M, Morse D, Brignoli T, Steventon J, Hamilton F, Albur M, et al. Post-acute COVID-19 associated with evidence of bystander T-cell activation and a recurring antibiotic-resistant bacterial pneumonia. elife. 2020;9: pubmed 出版商
  77. Lund M, Howard C, Thurecht K, Campbell D, Mahler S, Walsh B. A bispecific T cell engager targeting Glypican-1 redirects T cell cytolytic activity to kill prostate cancer cells. BMC Cancer. 2020;20:1214 pubmed 出版商
  78. Harro C, Perez Sanz J, Costich T, Payne K, Anadon C, Chaurio R, et al. Methyltransferase inhibitors restore SATB1 protective activity against cutaneous T cell lymphoma in mice. J Clin Invest. 2021;131: pubmed 出版商
  79. Jensen I, Jensen S, Sjaastad F, Gibson Corley K, Dileepan T, Griffith T, et al. Sepsis impedes EAE disease development and diminishes autoantigen-specific naive CD4 T cells. elife. 2020;9: pubmed 出版商
  80. Gao L, Li B, Wang J, Shen D, Yang M, Sun R, et al. Activation of Liver X Receptor α Sensitizes Mice to T-Cell Mediated Hepatitis. Hepatol Commun. 2020;4:1664-1679 pubmed 出版商
  81. Myers D, Abram C, Wildes D, Belwafa A, Welsh A, Schulze C, et al. Shp1 Loss Enhances Macrophage Effector Function and Promotes Anti-Tumor Immunity. Front Immunol. 2020;11:576310 pubmed 出版商
  82. Tseng H, Xiong W, Badeti S, Yang Y, Ma M, Liu T, et al. Efficacy of anti-CD147 chimeric antigen receptors targeting hepatocellular carcinoma. Nat Commun. 2020;11:4810 pubmed 出版商
  83. Lauver M, Goetschius D, Netherby Winslow C, Ayers K, Jin G, Haas D, et al. Antibody escape by polyomavirus capsid mutation facilitates neurovirulence. elife. 2020;9: pubmed 出版商
  84. Ricci B, Tycksen E, Celik H, Belle J, Fontana F, Civitelli R, et al. Osterix-Cre marks distinct subsets of CD45- and CD45+ stromal populations in extra-skeletal tumors with pro-tumorigenic characteristics. elife. 2020;9: pubmed 出版商
  85. Florian M, Leins H, Gobs M, Han Y, Marka G, Soller K, et al. Inhibition of Cdc42 activity extends lifespan and decreases circulating inflammatory cytokines in aged female C57BL/6 mice. Aging Cell. 2020;:e13208 pubmed 出版商
  86. Piersma S, Poursine Laurent J, Yang L, Barber G, Parikh B, Yokoyama W. Virus infection is controlled by hematopoietic and stromal cell sensing of murine cytomegalovirus through STING. elife. 2020;9: pubmed 出版商
  87. Pasciuto E, Burton O, Roca C, Lagou V, Rajan W, Theys T, et al. Microglia Require CD4 T Cells to Complete the Fetal-to-Adult Transition. Cell. 2020;182:625-640.e24 pubmed 出版商
  88. Harbour S, DiToro D, Witte S, Zindl C, Gao M, Schoeb T, et al. TH17 cells require ongoing classic IL-6 receptor signaling to retain transcriptional and functional identity. Sci Immunol. 2020;5: pubmed 出版商
  89. Lubos N, van der Gaag S, Gerçek M, Kant S, Leube R, Krusche C. Inflammation shapes pathogenesis of murine arrhythmogenic cardiomyopathy. Basic Res Cardiol. 2020;115:42 pubmed 出版商
  90. Viau A, Baaziz M, Aka A, Mazloum M, Nguyen C, Kuehn E, et al. Tubular STAT3 Limits Renal Inflammation in Autosomal Dominant Polycystic Kidney Disease. J Am Soc Nephrol. 2020;31:1035-1049 pubmed 出版商
  91. Stebegg M, Bignon A, Hill D, Silva Cayetano A, Krueger C, Vanderleyden I, et al. Rejuvenating conventional dendritic cells and T follicular helper cell formation after vaccination. elife. 2020;9: pubmed 出版商
  92. von Roemeling C, Wang Y, Qie Y, Yuan H, Zhao H, Liu X, et al. Therapeutic modulation of phagocytosis in glioblastoma can activate both innate and adaptive antitumour immunity. Nat Commun. 2020;11:1508 pubmed 出版商
  93. Gao M, Wang T, Ji L, Bai S, Tian L, Song H. Therapy With Carboplatin and Anti-PD-1 Antibodies Before Surgery Demonstrates Sustainable Anti-Tumor Effects for Secondary Cancers in Mice With Triple-Negative Breast Cancer. Front Immunol. 2020;11:366 pubmed 出版商
  94. Kim J, Jeong J, Jung J, Jeon H, Lee S, Lim J, et al. Immunological characteristics and possible pathogenic role of urinary CD11c+ macrophages in lupus nephritis. Rheumatology (Oxford). 2020;: pubmed 出版商
  95. Hajaj E, Eisenberg G, Klein S, Frankenburg S, Merims S, Ben David I, et al. SLAMF6​ deficiency augments tumor killing and skews toward an effector phenotype revealing it as a novel T cell checkpoint. elife. 2020;9: pubmed 出版商
  96. Hu X, Deng Q, Ma L, Li Q, Chen Y, Liao Y, et al. Meningeal lymphatic vessels regulate brain tumor drainage and immunity. Cell Res. 2020;30:229-243 pubmed 出版商
  97. Lindner P, Paul S, Eckstein M, Hampel C, Muenzner J, Erlenbach Wuensch K, et al. EMT transcription factor ZEB1 alters the epigenetic landscape of colorectal cancer cells. Cell Death Dis. 2020;11:147 pubmed 出版商
  98. Lu H, Kim S, Steelman A, Tracy K, Zhou B, Michaud D, et al. STAT3 signaling in myeloid cells promotes pathogenic myelin-specific T cell differentiation and autoimmune demyelination. Proc Natl Acad Sci U S A. 2020;117:5430-5441 pubmed 出版商
  99. Wang J, Li P, Yu Y, Fu Y, Jiang H, Lu M, et al. Pulmonary surfactant-biomimetic nanoparticles potentiate heterosubtypic influenza immunity. Science. 2020;367: pubmed 出版商
  100. Tizian C, Lahmann A, Hölsken O, Cosovanu C, Kofoed Branzk M, Heinrich F, et al. c-Maf restrains T-bet-driven programming of CCR6-negative group 3 innate lymphoid cells. elife. 2020;9: pubmed 出版商
  101. Park M, Kim H, Lee H, Zabel B, Bae Y. Novel CD11b+Gr-1+Sca-1+ myeloid cells drive mortality in bacterial infection. Sci Adv. 2020;6:eaax8820 pubmed 出版商
  102. Williams G, Marmion D, Schonhoff A, Jurkuvenaite A, Won W, Standaert D, et al. T cell infiltration in both human multiple system atrophy and a novel mouse model of the disease. Acta Neuropathol. 2020;139:855-874 pubmed 出版商
  103. Liu Z, Wen J, Wu C, Hu C, Wang J, Bao Q, et al. MicroRNA-200a induces immunosuppression by promoting PTEN-mediated PD-L1 upregulation in osteosarcoma. Aging (Albany NY). 2020;12:1213-1236 pubmed 出版商
  104. Yu M, Guo G, Huang L, Deng L, Chang C, Achyut B, et al. CD73 on cancer-associated fibroblasts enhanced by the A2B-mediated feedforward circuit enforces an immune checkpoint. Nat Commun. 2020;11:515 pubmed 出版商
  105. Zhang B, Ma S, Rachmin I, He M, Baral P, Choi S, et al. Hyperactivation of sympathetic nerves drives depletion of melanocyte stem cells. Nature. 2020;577:676-681 pubmed 出版商
  106. Kimura S, Nakamura Y, Kobayashi N, Shiroguchi K, Kawakami E, Mutoh M, et al. Osteoprotegerin-dependent M cell self-regulation balances gut infection and immunity. Nat Commun. 2020;11:234 pubmed 出版商
  107. Queckborner S, Syk Lundberg E, Gemzell Danielsson K, Davies L. Endometrial stromal cells exhibit a distinct phenotypic and immunomodulatory profile. Stem Cell Res Ther. 2020;11:15 pubmed 出版商
  108. Le Nours J, Gherardin N, Ramarathinam S, Awad W, Wiede F, Gully B, et al. A class of γδ T cell receptors recognize the underside of the antigen-presenting molecule MR1. Science. 2019;366:1522-1527 pubmed 出版商
  109. Leylek R, Alcántara Hernández M, Lanzar Z, Lüdtke A, Perez O, Reizis B, et al. Integrated Cross-Species Analysis Identifies a Conserved Transitional Dendritic Cell Population. Cell Rep. 2019;29:3736-3750.e8 pubmed 出版商
  110. Ward L, Lee D, Sharma A, Wang A, Naouar I, Ma X, et al. Siponimod therapy implicates Th17 cells in a preclinical model of subpial cortical injury. JCI Insight. 2020;5: pubmed 出版商
  111. Hang S, Paik D, Yao L, Kim E, Jamma T, Lu J, et al. Bile acid metabolites control TH17 and Treg cell differentiation. Nature. 2019;576:143-148 pubmed 出版商
  112. Vagnozzi R, Maillet M, Sargent M, Khalil H, Johansen A, Schwanekamp J, et al. An acute immune response underlies the benefit of cardiac stem cell therapy. Nature. 2020;577:405-409 pubmed 出版商
  113. Ma A, Motyka B, Gutfreund K, Shi Y, George R. A dendritic cell receptor-targeted chimeric immunotherapeutic protein (C-HBV) for the treatment of chronic hepatitis B. Hum Vaccin Immunother. 2020;16:756-778 pubmed 出版商
  114. Strickley J, Messerschmidt J, Awad M, Li T, Hasegawa T, Ha D, et al. Immunity to commensal papillomaviruses protects against skin cancer. Nature. 2019;: pubmed 出版商
  115. Haque A, Moriyama M, Kubota K, Ishiguro N, Sakamoto M, Chinju A, et al. CD206+ tumor-associated macrophages promote proliferation and invasion in oral squamous cell carcinoma via EGF production. Sci Rep. 2019;9:14611 pubmed 出版商
  116. Sanz Ortega L, Rojas J, Portilla Y, Pérez Yagüe S, Barber D. Magnetic Nanoparticles Attached to the NK Cell Surface for Tumor Targeting in Adoptive Transfer Therapies Does Not Affect Cellular Effector Functions. Front Immunol. 2019;10:2073 pubmed 出版商
  117. Chen M, Reed R, Lane A. Chronic Inflammation Directs an Olfactory Stem Cell Functional Switch from Neuroregeneration to Immune Defense. Cell Stem Cell. 2019;25:501-513.e5 pubmed 出版商
  118. Wolf Y, Bartok O, Patkar S, Eli G, Cohen S, Litchfield K, et al. UVB-Induced Tumor Heterogeneity Diminishes Immune Response in Melanoma. Cell. 2019;179:219-235.e21 pubmed 出版商
  119. Lee Y, Riopel M, Cabrales P, Bandyopadhyay G. Hepatocyte-specific HIF-1α ablation improves obesity-induced glucose intolerance by reducing first-pass GLP-1 degradation. Sci Adv. 2019;5:eaaw4176 pubmed 出版商
  120. Pascual García M, Bonfill Teixidor E, Planas Rigol E, Rubio Perez C, Iurlaro R, Arias A, et al. LIF regulates CXCL9 in tumor-associated macrophages and prevents CD8+ T cell tumor-infiltration impairing anti-PD1 therapy. Nat Commun. 2019;10:2416 pubmed 出版商
  121. Dangaj D, Bruand M, Grimm A, Ronet C, Barras D, Duttagupta P, et al. Cooperation between Constitutive and Inducible Chemokines Enables T Cell Engraftment and Immune Attack in Solid Tumors. Cancer Cell. 2019;35:885-900.e10 pubmed 出版商
  122. Pellin D, Loperfido M, Baricordi C, Wolock S, Montepeloso A, Weinberg O, et al. A comprehensive single cell transcriptional landscape of human hematopoietic progenitors. Nat Commun. 2019;10:2395 pubmed 出版商
  123. Sivaram N, McLaughlin P, Han H, Petrenko O, Jiang Y, Ballou L, et al. Tumor-intrinsic PIK3CA represses tumor immunogenecity in a model of pancreatic cancer. J Clin Invest. 2019;130: pubmed 出版商
  124. Kobayakawa K, Ohkawa Y, Yoshizaki S, Tamaru T, Saito T, Kijima K, et al. Macrophage centripetal migration drives spontaneous healing process after spinal cord injury. Sci Adv. 2019;5:eaav5086 pubmed 出版商
  125. Swaims Kohlmeier A, Haddad L, Li Z, Brookmeyer K, Baker J, Widom C, et al. Chronic immune barrier dysregulation among women with a history of violence victimization. JCI Insight. 2019;4: pubmed 出版商
  126. Fernandez I, Baxter R, Garcia Perez J, Vendrame E, Ranganath T, Kong D, et al. A novel human IL2RB mutation results in T and NK cell-driven immune dysregulation. J Exp Med. 2019;216:1255-1267 pubmed 出版商
  127. Kellish P, Shabashvili D, Rahman M, Nawab A, Guijarro M, Zhang M, et al. Oncolytic virotherapy for small-cell lung cancer induces immune infiltration and prolongs survival. J Clin Invest. 2019;129:2279-2292 pubmed 出版商
  128. Walens A, DiMarco A, Lupo R, Kroger B, Damrauer J, Alvarez J. CCL5 promotes breast cancer recurrence through macrophage recruitment in residual tumors. elife. 2019;8: pubmed 出版商
  129. Esterházy D, Canesso M, Mesin L, Muller P, de Castro T, Lockhart A, et al. Compartmentalized gut lymph node drainage dictates adaptive immune responses. Nature. 2019;569:126-130 pubmed 出版商
  130. Jacome Galarza C, Percin G, Muller J, Mass E, Lazarov T, Eitler J, et al. Developmental origin, functional maintenance and genetic rescue of osteoclasts. Nature. 2019;568:541-545 pubmed 出版商
  131. Dang A, Teles R, Weiss D, Parvatiyar K, Sarno E, Ochoa M, et al. IL-26 contributes to host defense against intracellular bacteria. J Clin Invest. 2019;129:1926-1939 pubmed 出版商
  132. Cassetta L, Fragkogianni S, Sims A, Swierczak A, Forrester L, Zhang H, et al. Human Tumor-Associated Macrophage and Monocyte Transcriptional Landscapes Reveal Cancer-Specific Reprogramming, Biomarkers, and Therapeutic Targets. Cancer Cell. 2019;35:588-602.e10 pubmed 出版商
  133. Kumar P, Rajasekaran K, Nanbakhsh A, Gorski J, Thakar M, Malarkannan S. IL-27 promotes NK cell effector functions via Maf-Nrf2 pathway during influenza infection. Sci Rep. 2019;9:4984 pubmed 出版商
  134. Cao Y, Trillo Tinoco J, Sierra R, Anadon C, Dai W, Mohamed E, et al. ER stress-induced mediator C/EBP homologous protein thwarts effector T cell activity in tumors through T-bet repression. Nat Commun. 2019;10:1280 pubmed 出版商
  135. Remmerswaal E, Hombrink P, Nota B, Pircher H, ten Berge I, van Lier R, et al. Expression of IL-7Rα and KLRG1 defines functionally distinct CD8+ T-cell populations in humans. Eur J Immunol. 2019;49:694-708 pubmed 出版商
  136. Melo Gonzalez F, Kammoun H, Evren E, Dutton E, Papadopoulou M, Bradford B, et al. Antigen-presenting ILC3 regulate T cell-dependent IgA responses to colonic mucosal bacteria. J Exp Med. 2019;216:728-742 pubmed 出版商
  137. Anandagoda N, Willis J, Hertweck A, Roberts L, Jackson I, Gökmen M, et al. microRNA-142-mediated repression of phosphodiesterase 3B critically regulates peripheral immune tolerance. J Clin Invest. 2019;129:1257-1271 pubmed 出版商
  138. Davies A, Kim H, González Cano R, Choi J, Back S, Roh S, et al. Natural Killer Cells Degenerate Intact Sensory Afferents following Nerve Injury. Cell. 2019;176:716-728.e18 pubmed 出版商
  139. Banki Z, Krabbendam L, Klaver D, Leng T, Kruis S, Mehta H, et al. Antibody opsonization enhances MAIT cell responsiveness to bacteria via a TNF-dependent mechanism. Immunol Cell Biol. 2019;97:538-551 pubmed 出版商
  140. Fan J, Liu L, Liu Q, Cui Y, Yao B, Zhang M, et al. CKIP-1 limits foam cell formation and inhibits atherosclerosis by promoting degradation of Oct-1 by REGγ. Nat Commun. 2019;10:425 pubmed 出版商
  141. Wheeler M, Jaronen M, Covacu R, Zandee S, Scalisi G, Rothhammer V, et al. Environmental Control of Astrocyte Pathogenic Activities in CNS Inflammation. Cell. 2019;176:581-596.e18 pubmed 出版商
  142. Lee Y, Ju J, Shon W, Oh S, Min C, Kang M, et al. Skewed Dendritic Cell Differentiation of MyD88-Deficient Donor Bone Marrow Cells, Instead of Massive Expansion as Myeloid-Derived Suppressor Cells, Aggravates GVHD. Immune Netw. 2018;18:e44 pubmed 出版商
  143. Collins P, Cella M, Porter S, Li S, Gurewitz G, Hong H, et al. Gene Regulatory Programs Conferring Phenotypic Identities to Human NK Cells. Cell. 2019;176:348-360.e12 pubmed 出版商
  144. Hu K, Huang Q, Liu C, Li Y, Liu Y, Wang H, et al. c-Jun/Bim Upregulation in Dopaminergic Neurons Promotes Neurodegeneration in the MPTP Mouse Model of Parkinson's Disease. Neuroscience. 2019;399:117-124 pubmed 出版商
  145. Percin G, Eitler J, Kranz A, Fu J, Pollard J, Naumann R, et al. CSF1R regulates the dendritic cell pool size in adult mice via embryo-derived tissue-resident macrophages. Nat Commun. 2018;9:5279 pubmed 出版商
  146. Nayar S, Campos J, Smith C, Iannizzotto V, Gardner D, Colafrancesco S, et al. Phosphatidylinositol 3-kinase delta pathway: a novel therapeutic target for Sjögren's syndrome. Ann Rheum Dis. 2019;78:249-260 pubmed 出版商
  147. Sharma D, Malik A, Guy C, Vogel P, Kanneganti T. TNF/TNFR axis promotes pyrin inflammasome activation and distinctly modulates pyrin inflammasomopathy. J Clin Invest. 2019;129:150-162 pubmed 出版商
  148. Dias J, Boulouis C, Gorin J, van den Biggelaar R, Lal K, Gibbs A, et al. The CD4-CD8- MAIT cell subpopulation is a functionally distinct subset developmentally related to the main CD8+ MAIT cell pool. Proc Natl Acad Sci U S A. 2018;115:E11513-E11522 pubmed 出版商
  149. Wilgenburg B, Loh L, Chen Z, Pediongco T, Wang H, Shi M, et al. MAIT cells contribute to protection against lethal influenza infection in vivo. Nat Commun. 2018;9:4706 pubmed 出版商
  150. Jensen I, Winborn C, Fosdick M, Shao P, Tremblay M, Shan Q, et al. Polymicrobial sepsis influences NK-cell-mediated immunity by diminishing NK-cell-intrinsic receptor-mediated effector responses to viral ligands or infections. PLoS Pathog. 2018;14:e1007405 pubmed 出版商
  151. Kelly A, Günaltay S, McEntee C, Shuttleworth E, Smedley C, Houston S, et al. Human monocytes and macrophages regulate immune tolerance via integrin αvβ8-mediated TGFβ activation. J Exp Med. 2018;215:2725-2736 pubmed 出版商
  152. Sheng C, Yao C, Wang Z, Chen H, Zhao Y, Xu D, et al. Cyclophilin J limits inflammation through the blockage of ubiquitin chain sensing. Nat Commun. 2018;9:4381 pubmed 出版商
  153. Deng M, Gui X, Kim J, Xie L, Chen W, Li Z, et al. LILRB4 signalling in leukaemia cells mediates T cell suppression and tumour infiltration. Nature. 2018;562:605-609 pubmed 出版商
  154. Er J, Koean R, Ding J. Loss of T-bet confers survival advantage to influenza-bacterial superinfection. EMBO J. 2019;38: pubmed 出版商
  155. Brun P, Scarpa M, Marchiori C, Conti J, Kotsafti A, Porzionato A, et al. Herpes Simplex Virus Type 1 Engages Toll Like Receptor 2 to Recruit Macrophages During Infection of Enteric Neurons. Front Microbiol. 2018;9:2148 pubmed 出版商
  156. Stephens J, Bailey J, Hang H, Rittell V, Dietrich M, Mynatt R, et al. Adipose Tissue Dysfunction Occurs Independently of Obesity in Adipocyte-Specific Oncostatin Receptor Knockout Mice. Obesity (Silver Spring). 2018;26:1439-1447 pubmed 出版商
  157. Chen J, Cai Z, Bai M, Yu X, Zhang C, Cao C, et al. The RNA-binding protein ROD1/PTBP3 cotranscriptionally defines AID-loading sites to mediate antibody class switch in mammalian genomes. Cell Res. 2018;28:981-995 pubmed 出版商
  158. Cheng Y, Zhu X, Wang X, Zhuang Q, Huyan X, Sun X, et al. Trichinella spiralis Infection Mitigates Collagen-Induced Arthritis via Programmed Death 1-Mediated Immunomodulation. Front Immunol. 2018;9:1566 pubmed 出版商
  159. Stathopoulou C, Gangaplara A, Mallett G, Flomerfelt F, Liniany L, Knight D, et al. PD-1 Inhibitory Receptor Downregulates Asparaginyl Endopeptidase and Maintains Foxp3 Transcription Factor Stability in Induced Regulatory T Cells. Immunity. 2018;49:247-263.e7 pubmed 出版商
  160. Baens M, Stirparo R, Lampi Y, Verbeke D, Vandepoel R, Cools J, et al. Malt1 self-cleavage is critical for regulatory T cell homeostasis and anti-tumor immunity in mice. Eur J Immunol. 2018;48:1728-1738 pubmed 出版商
  161. Cho S, Lee H, Yu I, Choi Y, Huang H, Hashemifar S, et al. Differential cell-intrinsic regulations of germinal center B and T cells by miR-146a and miR-146b. Nat Commun. 2018;9:2757 pubmed 出版商
  162. Desimio M, Giuliani E, Ferraro A, Adorno G, Doria M. In Vitro Exposure to Prostratin but Not Bryostatin-1 Improves Natural Killer Cell Functions Including Killing of CD4+ T Cells Harboring Reactivated Human Immunodeficiency Virus. Front Immunol. 2018;9:1514 pubmed 出版商
  163. Voigt J, Malone D, Dias J, Leeansyah E, Björkström N, Ljunggren H, et al. Proteome analysis of human CD56neg NK cells reveals a homogeneous phenotype surprisingly similar to CD56dim NK cells. Eur J Immunol. 2018;48:1456-1469 pubmed 出版商
  164. Arnold I, Artola Borán M, Tallón de Lara P, Kyburz A, Taube C, OTTEMANN K, et al. Eosinophils suppress Th1 responses and restrict bacterially induced gastrointestinal inflammation. J Exp Med. 2018;215:2055-2072 pubmed 出版商
  165. Jung I, Kim Y, Yu H, Lee M, Kim S, Lee J. CRISPR/Cas9-Mediated Knockout of DGK Improves Antitumor Activities of Human T Cells. Cancer Res. 2018;78:4692-4703 pubmed 出版商
  166. Manresa Arraut A, Johansen F, Brakebusch C, Issazadeh Navikas S, Hasseldam H. RhoA Drives T-Cell Activation and Encephalitogenic Potential in an Animal Model of Multiple Sclerosis. Front Immunol. 2018;9:1235 pubmed 出版商
  167. Abel A, Tiwari A, Gerbec Z, Siebert J, Yang C, Schloemer N, et al. IQ Domain-Containing GTPase-Activating Protein 1 Regulates Cytoskeletal Reorganization and Facilitates NKG2D-Mediated Mechanistic Target of Rapamycin Complex 1 Activation and Cytokine Gene Translation in Natural Killer Cells. Front Immunol. 2018;9:1168 pubmed 出版商
  168. Gu C, Borjabad A, Hadas E, Kelschenbach J, Kim B, Chao W, et al. EcoHIV infection of mice establishes latent viral reservoirs in T cells and active viral reservoirs in macrophages that are sufficient for induction of neurocognitive impairment. PLoS Pathog. 2018;14:e1007061 pubmed 出版商
  169. Honeycutt J, Liao B, Nixon C, Cleary R, Thayer W, Birath S, et al. T cells establish and maintain CNS viral infection in HIV-infected humanized mice. J Clin Invest. 2018;128:2862-2876 pubmed 出版商
  170. Baumgartner C, Toifl S, Farlik M, Halbritter F, Scheicher R, Fischer I, et al. An ERK-Dependent Feedback Mechanism Prevents Hematopoietic Stem Cell Exhaustion. Cell Stem Cell. 2018;22:879-892.e6 pubmed 出版商
  171. García Nores G, Ly C, Cuzzone D, Kataru R, Hespe G, Torrisi J, et al. CD4+ T cells are activated in regional lymph nodes and migrate to skin to initiate lymphedema. Nat Commun. 2018;9:1970 pubmed 出版商
  172. Sayin I, Radtke A, Vella L, Jin W, Wherry E, Buggert M, et al. Spatial distribution and function of T follicular regulatory cells in human lymph nodes. J Exp Med. 2018;215:1531-1542 pubmed 出版商
  173. Hu X, Majchrzak K, Liu X, Wyatt M, Spooner C, Moisan J, et al. In Vitro Priming of Adoptively Transferred T Cells with a RORγ Agonist Confers Durable Memory and Stemness In Vivo. Cancer Res. 2018;78:3888-3898 pubmed 出版商
  174. Li C, Psatha N, Wang H, Singh M, Samal H, Zhang W, et al. Integrating HDAd5/35++ Vectors as a New Platform for HSC Gene Therapy of Hemoglobinopathies. Mol Ther Methods Clin Dev. 2018;9:142-152 pubmed 出版商
  175. Donaldson G, Ladinsky M, Yu K, Sanders J, Yoo B, Chou W, et al. Gut microbiota utilize immunoglobulin A for mucosal colonization. Science. 2018;360:795-800 pubmed 出版商
  176. Shi Y, Zhang P, Wang G, Liu X, Sun X, Zhang X, et al. Description of organ-specific phenotype, and functional characteristics of tissue resident lymphocytes from liver transplantation donor and research on immune tolerance mechanism of liver. Oncotarget. 2018;9:15552-15565 pubmed 出版商
  177. Kling J, Jordan M, Pitt L, Meiners J, Thanh Tran T, Tran L, et al. Temporal Regulation of Natural Killer T Cell Interferon Gamma Responses by β-Catenin-Dependent and -Independent Wnt Signaling. Front Immunol. 2018;9:483 pubmed 出版商
  178. Vogl T, Stratis A, Wixler V, Voller T, Thurainayagam S, Jorch S, et al. Autoinhibitory regulation of S100A8/S100A9 alarmin activity locally restricts sterile inflammation. J Clin Invest. 2018;128:1852-1866 pubmed 出版商
  179. Vigolo M, Chambers M, Willen L, Chevalley D, Maskos K, Lammens A, et al. A loop region of BAFF controls B cell survival and regulates recognition by different inhibitors. Nat Commun. 2018;9:1199 pubmed 出版商
  180. Kawano Y, Zavidij O, Park J, Moschetta M, Kokubun K, Mouhieddine T, et al. Blocking IFNAR1 inhibits multiple myeloma-driven Treg expansion and immunosuppression. J Clin Invest. 2018;128:2487-2499 pubmed 出版商
  181. Macdougall C, Wood E, Loschko J, Scagliotti V, Cassidy F, Robinson M, et al. Visceral Adipose Tissue Immune Homeostasis Is Regulated by the Crosstalk between Adipocytes and Dendritic Cell Subsets. Cell Metab. 2018;27:588-601.e4 pubmed 出版商
  182. Moriyama S, Brestoff J, Flamar A, Moeller J, Klose C, Rankin L, et al. β2-adrenergic receptor-mediated negative regulation of group 2 innate lymphoid cell responses. Science. 2018;359:1056-1061 pubmed 出版商
  183. Metghalchi S, Vandestienne M, Haddad Y, Esposito B, Dairou J, Tedgui A, et al. Indoleamine 2 3-dioxygenase knockout limits angiotensin II-induced aneurysm in low density lipoprotein receptor-deficient mice fed with high fat diet. PLoS ONE. 2018;13:e0193737 pubmed 出版商
  184. Zukor K, Wang H, Siddharthan V, Julander J, Morrey J. Zika virus-induced acute myelitis and motor deficits in adult interferon ??/? receptor knockout mice. J Neurovirol. 2018;24:273-290 pubmed 出版商
  185. Messlinger H, Sebald H, Heger L, Dudziak D, Bogdan C, Schleicher U. Monocyte-Derived Signals Activate Human Natural Killer Cells in Response to Leishmania Parasites. Front Immunol. 2018;9:24 pubmed 出版商
  186. Sokhi U, Liber M, Frye L, Park S, Kang K, Pannellini T, et al. Dissection and function of autoimmunity-associated TNFAIP3 (A20) gene enhancers in humanized mouse models. Nat Commun. 2018;9:658 pubmed 出版商
  187. A Verghese D, Demir M, Chun N, Fribourg M, Cravedi P, Llaudó I, et al. T Cell Expression of C5a Receptor 2 Augments Murine Regulatory T Cell (TREG) Generation and TREG-Dependent Cardiac Allograft Survival. J Immunol. 2018;200:2186-2198 pubmed 出版商
  188. Perry C, Muñoz Rojas A, Meeth K, Kellman L, Amezquita R, Thakral D, et al. Myeloid-targeted immunotherapies act in synergy to induce inflammation and antitumor immunity. J Exp Med. 2018;215:877-893 pubmed 出版商
  189. Dejea C, Fathi P, Craig J, Boleij A, Taddese R, Geis A, et al. Patients with familial adenomatous polyposis harbor colonic biofilms containing tumorigenic bacteria. Science. 2018;359:592-597 pubmed 出版商
  190. Chennupati V, Veiga D, Maslowski K, Andina N, Tardivel A, Yu E, et al. Ribonuclease inhibitor 1 regulates erythropoiesis by controlling GATA1 translation. J Clin Invest. 2018;128:1597-1614 pubmed 出版商
  191. Solanki A, Yanez D, Ross S, Lau C, Papaioannou E, Li J, et al. Gli3 in fetal thymic epithelial cells promotes thymocyte positive selection and differentiation by repression of Shh. Development. 2018;145: pubmed 出版商
  192. Siracusa F, McGrath M, Maschmeyer P, Bardua M, Lehmann K, Heinz G, et al. Nonfollicular reactivation of bone marrow resident memory CD4 T cells in immune clusters of the bone marrow. Proc Natl Acad Sci U S A. 2018;115:1334-1339 pubmed 出版商
  193. Vo L, Kinney M, Liu X, Zhang Y, Barragan J, Sousa P, et al. Regulation of embryonic haematopoietic multipotency by EZH1. Nature. 2018;553:506-510 pubmed 出版商
  194. Lin H, Wei S, Hurt E, Green M, Zhao L, Vatan L, et al. Host expression of PD-L1 determines efficacy of PD-L1 pathway blockade-mediated tumor regression. J Clin Invest. 2018;128:805-815 pubmed 出版商
  195. Christ A, Günther P, Lauterbach M, Duewell P, Biswas D, Pelka K, et al. Western Diet Triggers NLRP3-Dependent Innate Immune Reprogramming. Cell. 2018;172:162-175.e14 pubmed 出版商
  196. Garaycoechea J, Crossan G, Langevin F, Mulderrig L, Louzada S, Yang F, et al. Alcohol and endogenous aldehydes damage chromosomes and mutate stem cells. Nature. 2018;553:171-177 pubmed 出版商
  197. Guarnerio J, Mendez L, Asada N, Menon A, Fung J, Berry K, et al. A non-cell-autonomous role for Pml in the maintenance of leukemia from the niche. Nat Commun. 2018;9:66 pubmed 出版商
  198. Tissino E, Benedetti D, Herman S, ten Hacken E, Ahn I, Chaffee K, et al. Functional and clinical relevance of VLA-4 (CD49d/CD29) in ibrutinib-treated chronic lymphocytic leukemia. J Exp Med. 2018;215:681-697 pubmed 出版商
  199. Barrow A, Edeling M, Trifonov V, Luo J, Goyal P, Bohl B, et al. Natural Killer Cells Control Tumor Growth by Sensing a Growth Factor. Cell. 2018;172:534-548.e19 pubmed 出版商
  200. Gee M, Han A, Lofgren S, Beausang J, Mendoza J, Birnbaum M, et al. Antigen Identification for Orphan T Cell Receptors Expressed on Tumor-Infiltrating Lymphocytes. Cell. 2018;172:549-563.e16 pubmed 出版商
  201. Burrack A, Malhotra D, Dileepan T, Osum K, Swanson L, Fife B, et al. Cutting Edge: Allograft Rejection Is Associated with Weak T Cell Responses to Many Different Graft Leukocyte-Derived Peptides. J Immunol. 2018;200:477-482 pubmed 出版商
  202. Krishnan B, Massilamany C, Basavalingappa R, Gangaplara A, Rajasekaran R, Afzal M, et al. Epitope Mapping of SERCA2a Identifies an Antigenic Determinant That Induces Mainly Atrial Myocarditis in A/J Mice. J Immunol. 2018;200:523-537 pubmed 出版商
  203. Kortlever R, Sodir N, Wilson C, Burkhart D, Pellegrinet L, Brown Swigart L, et al. Myc Cooperates with Ras by Programming Inflammation and Immune Suppression. Cell. 2017;171:1301-1315.e14 pubmed 出版商
  204. Jeong J, Hong S, Kwon O, Ghang B, Hwang I, Kim Y, et al. CD14+ Cells with the Phenotype of Infiltrated Monocytes Consist of Distinct Populations Characterized by Anti-inflammatory as well as Pro-inflammatory Activity in Gouty Arthritis. Front Immunol. 2017;8:1260 pubmed 出版商
  205. Mao A, Ishizuka I, Kasal D, Mandal M, Bendelac A. A shared Runx1-bound Zbtb16 enhancer directs innate and innate-like lymphoid lineage development. Nat Commun. 2017;8:863 pubmed 出版商
  206. Arthur Huang K, Chen M, Huang Y, Shih S, Chiu C, Lin J, et al. Epitope-associated and specificity-focused features of EV71-neutralizing antibody repertoires from plasmablasts of infected children. Nat Commun. 2017;8:762 pubmed 出版商
  207. Bern M, Beckman D, Ebihara T, Taffner S, Poursine Laurent J, White J, et al. Immunoreceptor tyrosine-based inhibitory motif-dependent functions of an MHC class I-specific NK cell receptor. Proc Natl Acad Sci U S A. 2017;114:E8440-E8447 pubmed 出版商
  208. Salio M, Gasser O, González López C, Martens A, Veerapen N, Gileadi U, et al. Activation of Human Mucosal-Associated Invariant T Cells Induces CD40L-Dependent Maturation of Monocyte-Derived and Primary Dendritic Cells. J Immunol. 2017;199:2631-2638 pubmed 出版商
  209. Cole C, Russler Germain D, Ketkar S, Verdoni A, Smith A, Bangert C, et al. Haploinsufficiency for DNA methyltransferase 3A predisposes hematopoietic cells to myeloid malignancies. J Clin Invest. 2017;127:3657-3674 pubmed 出版商
  210. Zhang Y, Liu Y, Chen H, Zheng X, Xie S, Chen W, et al. TIM-1 attenuates the protection of ischemic preconditioning for ischemia reperfusion injury in liver transplantation. Am J Transl Res. 2017;9:3665-3675 pubmed
  211. Yi W, Gupta S, Ricker E, Manni M, Jessberger R, Chinenov Y, et al. The mTORC1-4E-BP-eIF4E axis controls de novo Bcl6 protein synthesis in T cells and systemic autoimmunity. Nat Commun. 2017;8:254 pubmed 出版商
  212. Funken D, Ishikawa Ankerhold H, Uhl B, Lerchenberger M, Rentsch M, Mayr D, et al. In situ targeting of dendritic cells sets tolerogenic environment and ameliorates CD4+ T-cell response in the postischemic liver. FASEB J. 2017;31:4796-4808 pubmed 出版商
  213. Gorvel L, Korenfeld D, Tung T, Klechevsky E. Dendritic Cell-Derived IL-32?: A Novel Inhibitory Cytokine of NK Cell Function. J Immunol. 2017;199:1290-1300 pubmed 出版商
  214. Papa I, Saliba D, Ponzoni M, Bustamante S, Canete P, Gonzalez Figueroa P, et al. TFH-derived dopamine accelerates productive synapses in germinal centres. Nature. 2017;547:318-323 pubmed 出版商
  215. Sitrin J, Suto E, Wuster A, Eastham Anderson J, Kim J, Austin C, et al. The Ox40/Ox40 Ligand Pathway Promotes Pathogenic Th Cell Responses, Plasmablast Accumulation, and Lupus Nephritis in NZB/W F1 Mice. J Immunol. 2017;199:1238-1249 pubmed 出版商
  216. Alloatti A, Rookhuizen D, Joannas L, Carpier J, Iborra S, Magalhaes J, et al. Critical role for Sec22b-dependent antigen cross-presentation in antitumor immunity. J Exp Med. 2017;214:2231-2241 pubmed 出版商
  217. Zheng C, Zheng L, Yoo J, Guo H, Zhang Y, Guo X, et al. Landscape of Infiltrating T Cells in Liver Cancer Revealed by Single-Cell Sequencing. Cell. 2017;169:1342-1356.e16 pubmed 出版商
  218. Ridings Figueroa R, Stewart E, Nesterova T, Coker H, Pintacuda G, Godwin J, et al. The nuclear matrix protein CIZ1 facilitates localization of Xist RNA to the inactive X-chromosome territory. Genes Dev. 2017;31:876-888 pubmed 出版商
  219. Hattori A, Tsunoda M, Konuma T, Kobayashi M, Nagy T, Glushka J, et al. Cancer progression by reprogrammed BCAA metabolism in myeloid leukaemia. Nature. 2017;545:500-504 pubmed 出版商
  220. Kraakman M, Lee M, Al Sharea A, Dragoljevic D, Barrett T, Montenont E, et al. Neutrophil-derived S100 calcium-binding proteins A8/A9 promote reticulated thrombocytosis and atherogenesis in diabetes. J Clin Invest. 2017;127:2133-2147 pubmed 出版商
  221. Miao T, Symonds A, Singh R, Symonds J, Ogbe A, Omodho B, et al. Egr2 and 3 control adaptive immune responses by temporally uncoupling expansion from T cell differentiation. J Exp Med. 2017;214:1787-1808 pubmed 出版商
  222. Ip W, Hoshi N, Shouval D, Snapper S, Medzhitov R. Anti-inflammatory effect of IL-10 mediated by metabolic reprogramming of macrophages. Science. 2017;356:513-519 pubmed 出版商
  223. Audzevich T, Bashford Rogers R, Mabbott N, Frampton D, Freeman T, Potocnik A, et al. Pre/pro-B cells generate macrophage populations during homeostasis and inflammation. Proc Natl Acad Sci U S A. 2017;114:E3954-E3963 pubmed 出版商
  224. Ma S, Wan X, Deng Z, Shi L, Hao C, Zhou Z, et al. Epigenetic regulator CXXC5 recruits DNA demethylase Tet2 to regulate TLR7/9-elicited IFN response in pDCs. J Exp Med. 2017;214:1471-1491 pubmed 出版商
  225. Cottineau J, Kottemann M, Lach F, Kang Y, Vély F, Deenick E, et al. Inherited GINS1 deficiency underlies growth retardation along with neutropenia and NK cell deficiency. J Clin Invest. 2017;127:1991-2006 pubmed 出版商
  226. Gaggianesi M, Turdo A, Chinnici A, Lipari E, Apuzzo T, Benfante A, et al. IL4 Primes the Dynamics of Breast Cancer Progression via DUSP4 Inhibition. Cancer Res. 2017;77:3268-3279 pubmed 出版商
  227. Lehmann C, Baranska A, Heidkamp G, Heger L, Neubert K, Lühr J, et al. DC subset-specific induction of T cell responses upon antigen uptake via Fc? receptors in vivo. J Exp Med. 2017;214:1509-1528 pubmed 出版商
  228. van der Vlugt L, Obieglo K, Ozir Fazalalikhan A, Sparwasser T, Haeberlein S, Smits H. Schistosome-induced pulmonary B cells inhibit allergic airway inflammation and display a reduced Th2-driving function. Int J Parasitol. 2017;47:545-554 pubmed 出版商
  229. Bruce D, Stefanski H, Vincent B, Dant T, Reisdorf S, Bommiasamy H, et al. Type 2 innate lymphoid cells treat and prevent acute gastrointestinal graft-versus-host disease. J Clin Invest. 2017;127:1813-1825 pubmed 出版商
  230. Tian L, Goldstein A, Wang H, Ching Lo H, Sun Kim I, Welte T, et al. Mutual regulation of tumour vessel normalization and immunostimulatory reprogramming. Nature. 2017;544:250-254 pubmed 出版商
  231. Martinez Jimenez C, Eling N, Chen H, Vallejos C, Kolodziejczyk A, Connor F, et al. Aging increases cell-to-cell transcriptional variability upon immune stimulation. Science. 2017;355:1433-1436 pubmed 出版商
  232. He W, Wang C, Mu R, Liang P, Huang Z, Zhang J, et al. MiR-21 is required for anti-tumor immune response in mice: an implication for its bi-directional roles. Oncogene. 2017;36:4212-4223 pubmed 出版商
  233. Chang K, Smith S, Sullivan T, Chen K, Zhou Q, West J, et al. Long-Term Engraftment and Fetal Globin Induction upon BCL11A Gene Editing in Bone-Marrow-Derived CD34+ Hematopoietic Stem and Progenitor Cells. Mol Ther Methods Clin Dev. 2017;4:137-148 pubmed 出版商
  234. van der Velden V, Flores Montero J, Perez Andres M, Martin Ayuso M, Crespo O, Blanco E, et al. Optimization and testing of dried antibody tube: The EuroFlow LST and PIDOT tubes as examples. J Immunol Methods. 2017;: pubmed 出版商
  235. Lefrançais E, Ortiz Muñoz G, Caudrillier A, Mallavia B, Liu F, Sayah D, et al. The lung is a site of platelet biogenesis and a reservoir for haematopoietic progenitors. Nature. 2017;544:105-109 pubmed 出版商
  236. Tewes S, Gueler F, Chen R, Gutberlet M, Jang M, Meier M, et al. Functional MRI for characterization of renal perfusion impairment and edema formation due to acute kidney injury in different mouse strains. PLoS ONE. 2017;12:e0173248 pubmed 出版商
  237. Descours B, Petitjean G, López Zaragoza J, Bruel T, Raffel R, Psomas C, et al. CD32a is a marker of a CD4 T-cell HIV reservoir harbouring replication-competent proviruses. Nature. 2017;543:564-567 pubmed 出版商
  238. Barthels C, Ogrinc A, Steyer V, Meier S, Simon F, Wimmer M, et al. CD40-signalling abrogates induction of RORγt+ Treg cells by intestinal CD103+ DCs and causes fatal colitis. Nat Commun. 2017;8:14715 pubmed 出版商
  239. Wagner J, Jaurich H, Wallner C, Abraham S, Becerikli M, Dadras M, et al. Diminished bone regeneration after debridement of posttraumatic osteomyelitis is accompanied by altered cytokine levels, elevated B cell activity, and increased osteoclast activity. J Orthop Res. 2017;35:2425-2434 pubmed 出版商
  240. Guidi N, Sacma M, Ständker L, Soller K, Marka G, Eiwen K, et al. Osteopontin attenuates aging-associated phenotypes of hematopoietic stem cells. EMBO J. 2017;36:840-853 pubmed 出版商
  241. Perander M, Al Mahdi R, Jensen T, Nunn J, Kildalsen H, Johansen B, et al. Regulation of atypical MAP kinases ERK3 and ERK4 by the phosphatase DUSP2. Sci Rep. 2017;7:43471 pubmed 出版商
  242. Pardi N, Secreto A, Shan X, Debonera F, Glover J, Yi Y, et al. Administration of nucleoside-modified mRNA encoding broadly neutralizing antibody protects humanized mice from HIV-1 challenge. Nat Commun. 2017;8:14630 pubmed 出版商
  243. Baranek T, Morello E, Valayer A, Aimar R, Bréa D, Henry C, et al. FHL2 Regulates Natural Killer Cell Development and Activation during Streptococcus pneumoniae Infection. Front Immunol. 2017;8:123 pubmed 出版商
  244. Ho T, Warr M, Adelman E, Lansinger O, Flach J, Verovskaya E, et al. Autophagy maintains the metabolism and function of young and old stem cells. Nature. 2017;543:205-210 pubmed 出版商
  245. Wang H, Mo L, Xiao X, An S, Liu X, Ba J, et al. Pplase of Dermatophagoides farinae promotes ovalbumin-induced airway allergy by modulating the functions of dendritic cells in a mouse model. Sci Rep. 2017;7:43322 pubmed 出版商
  246. Stanley R, Piszczatowski R, Bartholdy B, Mitchell K, McKimpson W, Narayanagari S, et al. A myeloid tumor suppressor role for NOL3. J Exp Med. 2017;214:753-771 pubmed 出版商
  247. Huang A, Peng D, Guo H, Ben Y, Zuo X, Wu F, et al. A human programmed death-ligand 1-expressing mouse tumor model for evaluating the therapeutic efficacy of anti-human PD-L1 antibodies. Sci Rep. 2017;7:42687 pubmed 出版商
  248. Ren J, Zhang X, Liu X, Fang C, Jiang S, June C, et al. A versatile system for rapid multiplex genome-edited CAR T cell generation. Oncotarget. 2017;8:17002-17011 pubmed 出版商
  249. Wouters K, Gaens K, Bijnen M, Verboven K, Jocken J, Wetzels S, et al. Circulating classical monocytes are associated with CD11c+ macrophages in human visceral adipose tissue. Sci Rep. 2017;7:42665 pubmed 出版商
  250. Su S, Zou Z, Chen F, Ding N, Du J, Shao J, et al. CRISPR-Cas9-mediated disruption of PD-1 on human T cells for adoptive cellular therapies of EBV positive gastric cancer. Oncoimmunology. 2017;6:e1249558 pubmed 出版商
  251. Zamarin D, Holmgaard R, Ricca J, Plitt T, Palese P, Sharma P, et al. Intratumoral modulation of the inducible co-stimulator ICOS by recombinant oncolytic virus promotes systemic anti-tumour immunity. Nat Commun. 2017;8:14340 pubmed 出版商
  252. Vaitaitis G, Yussman M, Waid D, Wagner D. Th40 cells (CD4+CD40+ Tcells) drive a more severe form of Experimental Autoimmune Encephalomyelitis than conventional CD4 T cells. PLoS ONE. 2017;12:e0172037 pubmed 出版商
  253. Furukawa S, Nagaike M, Ozaki K. Databases for technical aspects of immunohistochemistry. J Toxicol Pathol. 2017;30:79-107 pubmed 出版商
  254. Zhang H, Qi Y, Yuan Y, Cai L, Xu H, Zhang L, et al. Paeoniflorin Ameliorates Experimental Autoimmune Encephalomyelitis via Inhibition of Dendritic Cell Function and Th17 Cell Differentiation. Sci Rep. 2017;7:41887 pubmed 出版商
  255. Ramjee V, Li D, Manderfield L, Liu F, Engleka K, Aghajanian H, et al. Epicardial YAP/TAZ orchestrate an immunosuppressive response following myocardial infarction. J Clin Invest. 2017;127:899-911 pubmed 出版商
  256. Mylvaganam G, Rios D, Abdelaal H, Iyer S, Tharp G, Mavigner M, et al. Dynamics of SIV-specific CXCR5+ CD8 T cells during chronic SIV infection. Proc Natl Acad Sci U S A. 2017;114:1976-1981 pubmed 出版商
  257. Rao D, Gurish M, Marshall J, Slowikowski K, Fonseka C, Liu Y, et al. Pathologically expanded peripheral T helper cell subset drives B cells in rheumatoid arthritis. Nature. 2017;542:110-114 pubmed 出版商
  258. O CONNOR D, Clutterbuck E, Thompson A, Snape M, Ramasamy M, Kelly D, et al. High-dimensional assessment of B-cell responses to quadrivalent meningococcal conjugate and plain polysaccharide vaccine. Genome Med. 2017;9:11 pubmed 出版商
  259. Berlato C, Khan M, Schioppa T, Thompson R, Maniati E, Montfort A, et al. A CCR4 antagonist reverses the tumor-promoting microenvironment of renal cancer. J Clin Invest. 2017;127:801-813 pubmed 出版商
  260. van Nieuwenhuijze A, Dooley J, Humblet Baron S, Sreenivasan J, Koenders M, Schlenner S, et al. Defective germinal center B-cell response and reduced arthritic pathology in microRNA-29a-deficient mice. Cell Mol Life Sci. 2017;74:2095-2106 pubmed 出版商
  261. Edwards R, Kopp S, Ifergan I, Shui J, Kronenberg M, Miller S, et al. Murine Corneal Inflammation and Nerve Damage After Infection With HSV-1 Are Promoted by HVEM and Ameliorated by Immune-Modifying Nanoparticle Therapy. Invest Ophthalmol Vis Sci. 2017;58:282-291 pubmed 出版商
  262. Hattori A, McSkimming D, Kannan N, Ito T. RNA binding protein MSI2 positively regulates FLT3 expression in myeloid leukemia. Leuk Res. 2017;54:47-54 pubmed 出版商
  263. Goverse G, Molenaar R, Macia L, Tan J, Erkelens M, Konijn T, et al. Diet-Derived Short Chain Fatty Acids Stimulate Intestinal Epithelial Cells To Induce Mucosal Tolerogenic Dendritic Cells. J Immunol. 2017;198:2172-2181 pubmed 出版商
  264. Dror E, Dalmas E, Meier D, Wueest S, Thévenet J, Thienel C, et al. Postprandial macrophage-derived IL-1β stimulates insulin, and both synergistically promote glucose disposal and inflammation. Nat Immunol. 2017;18:283-292 pubmed 出版商
  265. Tauriainen J, Scharf L, Frederiksen J, Naji A, Ljunggren H, Sonnerborg A, et al. Perturbed CD8+ T cell TIGIT/CD226/PVR axis despite early initiation of antiretroviral treatment in HIV infected individuals. Sci Rep. 2017;7:40354 pubmed 出版商
  266. Blanquiceth Y, Rodríguez Perea A, Tabares Guevara J, Correa L, Sánchez M, Ramirez Pineda J, et al. Increase of Frequency and Modulation of Phenotype of Regulatory T Cells by Atorvastatin Is Associated with Decreased Lung Inflammatory Cell Infiltration in a Murine Model of Acute Allergic Asthma. Front Immunol. 2016;7:620 pubmed 出版商
  267. Araujo L, Khim P, Mkhikian H, Mortales C, Demetriou M. Glycolysis and glutaminolysis cooperatively control T cell function by limiting metabolite supply to N-glycosylation. elife. 2017;6: pubmed 出版商
  268. Atkin Smith G, Paone S, Zanker D, Duan M, Phan T, Chen W, et al. Isolation of cell type-specific apoptotic bodies by fluorescence-activated cell sorting. Sci Rep. 2017;7:39846 pubmed 出版商
  269. Malek Mohammadi M, Kattih B, Grund A, Froese N, Korf Klingebiel M, Gigina A, et al. The transcription factor GATA4 promotes myocardial regeneration in neonatal mice. EMBO Mol Med. 2017;9:265-279 pubmed 出版商
  270. Larabee C, Desai S, Agasing A, Georgescu C, Wren J, Axtell R, et al. Loss of Nrf2 exacerbates the visual deficits and optic neuritis elicited by experimental autoimmune encephalomyelitis. Mol Vis. 2016;22:1503-1513 pubmed
  271. Chen S, Cai C, Li Z, Liu G, Wang Y, Blonska M, et al. Dissection of SAP-dependent and SAP-independent SLAM family signaling in NKT cell development and humoral immunity. J Exp Med. 2017;214:475-489 pubmed 出版商
  272. Tang J, Shen D, Caranasos T, Wang Z, Vandergriff A, Allen T, et al. Therapeutic microparticles functionalized with biomimetic cardiac stem cell membranes and secretome. Nat Commun. 2017;8:13724 pubmed 出版商
  273. Guan X, Lapak K, Hennessey R, Yu C, Shakya R, Zhang J, et al. Stromal Senescence By Prolonged CDK4/6 Inhibition Potentiates Tumor Growth. Mol Cancer Res. 2017;15:237-249 pubmed 出版商
  274. Weindel C, Richey L, Mehta A, Shah M, Huber B. Autophagy in Dendritic Cells and B Cells Is Critical for the Inflammatory State of TLR7-Mediated Autoimmunity. J Immunol. 2017;198:1081-1092 pubmed 出版商
  275. Xu X, Han L, Zhao G, Xue S, Gao Y, Xiao J, et al. LRCH1 interferes with DOCK8-Cdc42-induced T cell migration and ameliorates experimental autoimmune encephalomyelitis. J Exp Med. 2017;214:209-226 pubmed 出版商
  276. Zhang Y, Yu J, Grachtchouk V, Qin T, Lumeng C, Sartor M, et al. Genomic binding of PAX8-PPARG fusion protein regulates cancer-related pathways and alters the immune landscape of thyroid cancer. Oncotarget. 2017;8:5761-5773 pubmed 出版商
  277. Lamprianou S, Gysemans C, Bou Saab J, Pontes H, Mathieu C, Meda P. Glibenclamide Prevents Diabetes in NOD Mice. PLoS ONE. 2016;11:e0168839 pubmed 出版商
  278. Yang J, Tanaka Y, Seay M, Li Z, Jin J, Garmire L, et al. Single cell transcriptomics reveals unanticipated features of early hematopoietic precursors. Nucleic Acids Res. 2017;45:1281-1296 pubmed 出版商
  279. Gadani S, Smirnov I, Smith A, Overall C, Kipnis J. Characterization of meningeal type 2 innate lymphocytes and their response to CNS injury. J Exp Med. 2017;214:285-296 pubmed 出版商
  280. Nair V, Song M, Ko M, Oh K. DNA Demethylation of the Foxp3 Enhancer Is Maintained through Modulation of Ten-Eleven-Translocation and DNA Methyltransferases. Mol Cells. 2016;39:888-897 pubmed 出版商
  281. Karki R, Man S, Malireddi R, Kesavardhana S, Zhu Q, Burton A, et al. NLRC3 is an inhibitory sensor of PI3K-mTOR pathways in cancer. Nature. 2016;540:583-587 pubmed 出版商
  282. Bieber K, Witte M, Sun S, Hundt J, Kalies K, Dräger S, et al. T cells mediate autoantibody-induced cutaneous inflammation and blistering in epidermolysis bullosa acquisita. Sci Rep. 2016;6:38357 pubmed 出版商
  283. Yanagisawa H, Hashimoto M, Minagawa S, Takasaka N, Ma R, Moermans C, et al. Role of IL-17A in murine models of COPD airway disease. Am J Physiol Lung Cell Mol Physiol. 2017;312:L122-L130 pubmed 出版商
  284. Moroishi T, Hayashi T, Pan W, Fujita Y, Holt M, Qin J, et al. The Hippo Pathway Kinases LATS1/2 Suppress Cancer Immunity. Cell. 2016;167:1525-1539.e17 pubmed 出版商
  285. Weyandt J, Carney J, Pavlisko E, Xu M, Counter C. Isoform-Specific Effects of Wild-Type Ras Genes on Carcinogen-Induced Lung Tumorigenesis in Mice. PLoS ONE. 2016;11:e0167205 pubmed 出版商
  286. Le Q, Yao W, Chen Y, Yan B, Liu C, Yuan M, et al. GRK6 regulates ROS response and maintains hematopoietic stem cell self-renewal. Cell Death Dis. 2016;7:e2478 pubmed 出版商
  287. Siegers G, Barreira C, Postovit L, Dekaban G. CD11d ?2 integrin expression on human NK, B, and ?? T cells. J Leukoc Biol. 2017;101:1029-1035 pubmed 出版商
  288. Meng C, Li Z, Fang W, Song Z, Yang D, Li D, et al. Cytochrome P450 26A1 modulates natural killer cells in mouse early pregnancy. J Cell Mol Med. 2017;21:697-710 pubmed 出版商
  289. Cummings R, Barbet G, Bongers G, Hartmann B, Gettler K, Muniz L, et al. Different tissue phagocytes sample apoptotic cells to direct distinct homeostasis programs. Nature. 2016;539:565-569 pubmed 出版商
  290. Hirako I, Ataide M, Faustino L, Assis P, Sorensen E, Ueta H, et al. Splenic differentiation and emergence of CCR5+CXCL9+CXCL10+ monocyte-derived dendritic cells in the brain during cerebral malaria. Nat Commun. 2016;7:13277 pubmed 出版商
  291. Carroll V, Lafferty M, Marchionni L, Bryant J, Gallo R, Garzino Demo A. Expression of HIV-1 matrix protein p17 and association with B-cell lymphoma in HIV-1 transgenic mice. Proc Natl Acad Sci U S A. 2016;113:13168-13173 pubmed
  292. Cheeseman H, Olejniczak N, Rogers P, Evans A, King D, Ziprin P, et al. Broadly Neutralizing Antibodies Display Potential for Prevention of HIV-1 Infection of Mucosal Tissue Superior to That of Nonneutralizing Antibodies. J Virol. 2017;91: pubmed 出版商
  293. Dong L, Yu W, Zheng H, Loh M, Bunting S, Pauly M, et al. Leukaemogenic effects of Ptpn11 activating mutations in the stem cell microenvironment. Nature. 2016;539:304-308 pubmed 出版商
  294. Michailidou I, Naessens D, Hametner S, Guldenaar W, Kooi E, Geurts J, et al. Complement C3 on microglial clusters in multiple sclerosis occur in chronic but not acute disease: Implication for disease pathogenesis. Glia. 2017;65:264-277 pubmed 出版商
  295. Starobinets H, Ye J, Broz M, Barry K, Goldsmith J, Marsh T, et al. Antitumor adaptive immunity remains intact following inhibition of autophagy and antimalarial treatment. J Clin Invest. 2016;126:4417-4429 pubmed 出版商
  296. Omiya S, Omori Y, Taneike M, Protti A, Yamaguchi O, Akira S, et al. Toll-like receptor 9 prevents cardiac rupture after myocardial infarction in mice independently of inflammation. Am J Physiol Heart Circ Physiol. 2016;311:H1485-H1497 pubmed 出版商
  297. Adair J, Waters T, Haworth K, Kubek S, Trobridge G, Hocum J, et al. Semi-automated closed system manufacturing of lentivirus gene-modified haematopoietic stem cells for gene therapy. Nat Commun. 2016;7:13173 pubmed 出版商
  298. Zukor K, Wang H, Hurst B, Siddharthan V, van Wettere A, Pilowsky P, et al. Phrenic nerve deficits and neurological immunopathology associated with acute West Nile virus infection in mice and hamsters. J Neurovirol. 2017;23:186-204 pubmed 出版商
  299. Massaad M, Zhou J, Tsuchimoto D, Chou J, Jabara H, Janssen E, et al. Deficiency of base excision repair enzyme NEIL3 drives increased predisposition to autoimmunity. J Clin Invest. 2016;126:4219-4236 pubmed 出版商
  300. Holzlechner M, Strasser K, Zareva E, Steinhäuser L, Birnleitner H, Beer A, et al. In Situ Characterization of Tissue-Resident Immune Cells by MALDI Mass Spectrometry Imaging. J Proteome Res. 2017;16:65-76 pubmed 出版商
  301. Mascarell L, Airouche S, Berjont N, Gary C, Gueguen C, Fourcade G, et al. The regulatory dendritic cell marker C1q is a potent inhibitor of allergic inflammation. Mucosal Immunol. 2017;10:695-704 pubmed 出版商
  302. Gabanti E, Bruno F, Scaramuzzi L, Mangione F, Zelini P, Gerna G, et al. Predictive value of human cytomegalovirus (HCMV) T-cell response in the control of HCMV infection by seropositive solid-organ transplant recipients according to different assays and stimuli. New Microbiol. 2016;39:247-258 pubmed
  303. Georgiev H, Ravens I, Benarafa C, Forster R, Bernhardt G. Distinct gene expression patterns correlate with developmental and functional traits of iNKT subsets. Nat Commun. 2016;7:13116 pubmed 出版商
  304. Lopez Guadamillas E, Fernandez Marcos P, Pantoja C, Muñoz Martin M, Martinez D, Gomez Lopez G, et al. p21Cip1 plays a critical role in the physiological adaptation to fasting through activation of PPAR?. Sci Rep. 2016;6:34542 pubmed 出版商
  305. Ramirez Carrozzi V, Sambandam A, Zhou M, Yan D, Kang J, Wu X, et al. Combined blockade of the IL-13 and IL-33 pathways leads to a greater inhibition of type 2 inflammation over inhibition of either pathway alone. J Allergy Clin Immunol. 2017;139:705-708.e6 pubmed 出版商
  306. Ippagunta S, Gangwar R, Finkelstein D, Vogel P, Pelletier S, Gingras S, et al. Keratinocytes contribute intrinsically to psoriasis upon loss of Tnip1 function. Proc Natl Acad Sci U S A. 2016;113:E6162-E6171 pubmed
  307. Hrdinka M, Sudan K, Just S, Drobek A, Stepanek O, Schluter D, et al. Normal Development and Function of T Cells in Proline Rich 7 (Prr7) Deficient Mice. PLoS ONE. 2016;11:e0162863 pubmed 出版商
  308. Milanovic M, Heise N, De Silva N, Anderson M, Silva K, Carette A, et al. Differential requirements for the canonical NF-?B transcription factors c-REL and RELA during the generation and activation of mature B cells. Immunol Cell Biol. 2017;95:261-271 pubmed 出版商
  309. Wang Y, Ma C, Ling Y, Bousfiha A, Camcioglu Y, Jacquot S, et al. Dual T cell- and B cell-intrinsic deficiency in humans with biallelic RLTPR mutations. J Exp Med. 2016;213:2413-2435 pubmed
  310. Roncagalli R, Cucchetti M, Jarmuzynski N, Gregoire C, Bergot E, Audebert S, et al. The scaffolding function of the RLTPR protein explains its essential role for CD28 co-stimulation in mouse and human T cells. J Exp Med. 2016;213:2437-2457 pubmed
  311. Kaneda M, Messer K, Ralainirina N, Li H, Leem C, Gorjestani S, et al. PI3Kγ is a molecular switch that controls immune suppression. Nature. 2016;539:437-442 pubmed 出版商
  312. Rudemiller N, Patel M, Zhang J, Jeffs A, Karlovich N, Griffiths R, et al. C-C Motif Chemokine 5 Attenuates Angiotensin II-Dependent Kidney Injury by Limiting Renal Macrophage Infiltration. Am J Pathol. 2016;186:2846-2856 pubmed 出版商
  313. Wahid R, Fresnay S, Levine M, Sztein M. Cross-reactive multifunctional CD4+ T cell responses against Salmonella enterica serovars Typhi, Paratyphi A and Paratyphi B in humans following immunization with live oral typhoid vaccine Ty21a. Clin Immunol. 2016;173:87-95 pubmed 出版商
  314. Eil R, Vodnala S, Clever D, Klebanoff C, Sukumar M, Pan J, et al. Ionic immune suppression within the tumour microenvironment limits T cell effector function. Nature. 2016;537:539-543 pubmed 出版商
  315. George J, Saito M, Tsuta K, Iwakawa R, Shiraishi K, Scheel A, et al. Genomic Amplification of CD274 (PD-L1) in Small-Cell Lung Cancer. Clin Cancer Res. 2017;23:1220-1226 pubmed 出版商
  316. Uhde A, Herder V, Akram Khan M, Ciurkiewicz M, Schaudien D, Teich R, et al. Viral Infection of the Central Nervous System Exacerbates Interleukin-10 Receptor Deficiency-Mediated Colitis in SJL Mice. PLoS ONE. 2016;11:e0161883 pubmed 出版商
  317. Hoegl S, Ehrentraut H, Brodsky K, Victorino F, Golden Mason L, Eltzschig H, et al. NK cells regulate CXCR2+ neutrophil recruitment during acute lung injury. J Leukoc Biol. 2017;101:471-480 pubmed 出版商
  318. Jackson Jones L, Duncan S, Magalhaes M, Campbell S, Maizels R, McSorley H, et al. Fat-associated lymphoid clusters control local IgM secretion during pleural infection and lung inflammation. Nat Commun. 2016;7:12651 pubmed 出版商
  319. Zhang S, Liu X, Mei L, Wang H, Fang F. Epigallocatechin-3-gallate (EGCG) inhibits imiquimod-induced psoriasis-like inflammation of BALB/c mice. BMC Complement Altern Med. 2016;16:334 pubmed 出版商
  320. Vasilopoulou E, Kolatsi Joannou M, Lindenmeyer M, White K, Robson M, Cohen C, et al. Loss of endogenous thymosin β4 accelerates glomerular disease. Kidney Int. 2016;90:1056-1070 pubmed 出版商
  321. Guo H, Cranert S, Lu Y, Zhong M, Zhang S, Chen J, et al. Deletion of Slam locus in mice reveals inhibitory role of SLAM family in NK cell responses regulated by cytokines and LFA-1. J Exp Med. 2016;213:2187-207 pubmed 出版商
  322. Muller Durovic B, Lanna A, Covre L, Mills R, Henson S, Akbar A. Killer Cell Lectin-like Receptor G1 Inhibits NK Cell Function through Activation of Adenosine 5'-Monophosphate-Activated Protein Kinase. J Immunol. 2016;197:2891-2899 pubmed 出版商
  323. Inoue T, Griffin D, Huq R, Samuel E, Ruano S, Stinnett G, et al. Characterization of a novel MR-detectable nanoantioxidant that mitigates the recall immune response. NMR Biomed. 2016;29:1436-44 pubmed 出版商
  324. Drennan M, Govindarajan S, Verheugen E, Coquet J, Staal J, McGuire C, et al. NKT sublineage specification and survival requires the ubiquitin-modifying enzyme TNFAIP3/A20. J Exp Med. 2016;213:1973-81 pubmed 出版商
  325. Yoon J, Leyva Castillo J, Wang G, Galand C, Oyoshi M, Kumar L, et al. IL-23 induced in keratinocytes by endogenous TLR4 ligands polarizes dendritic cells to drive IL-22 responses to skin immunization. J Exp Med. 2016;213:2147-66 pubmed 出版商
  326. He C, Duan X, Guo N, Chan C, Poon C, Weichselbaum R, et al. Core-shell nanoscale coordination polymers combine chemotherapy and photodynamic therapy to potentiate checkpoint blockade cancer immunotherapy. Nat Commun. 2016;7:12499 pubmed 出版商
  327. Henry E, Sy C, Inclan Rico J, Espinosa V, Ghanny S, Dwyer D, et al. Carbonic anhydrase enzymes regulate mast cell-mediated inflammation. J Exp Med. 2016;213:1663-73 pubmed 出版商
  328. Lund A, Wagner M, Fankhauser M, Steinskog E, Broggi M, Spranger S, et al. Lymphatic vessels regulate immune microenvironments in human and murine melanoma. J Clin Invest. 2016;126:3389-402 pubmed 出版商
  329. You L, Li L, Zou J, Yan K, Belle J, Nijnik A, et al. BRPF1 is essential for development of fetal hematopoietic stem cells. J Clin Invest. 2016;126:3247-62 pubmed 出版商
  330. You Y, Tan J, Dai H, Chen H, Xu X, Yang A, et al. MiRNA-22 inhibits oncogene galectin-1 in hepatocellular carcinoma. Oncotarget. 2016;7:57099-57116 pubmed 出版商
  331. Gerling M, Büller N, Kirn L, Joost S, Frings O, Englert B, et al. Stromal Hedgehog signalling is downregulated in colon cancer and its restoration restrains tumour growth. Nat Commun. 2016;7:12321 pubmed 出版商
  332. Paquin Proulx D, Gibbs A, Bachle S, Checa A, Introini A, Leeansyah E, et al. Innate Invariant NKT Cell Recognition of HIV-1-Infected Dendritic Cells Is an Early Detection Mechanism Targeted by Viral Immune Evasion. J Immunol. 2016;197:1843-51 pubmed 出版商
  333. Barin J, Talor M, Schaub J, Diny N, Hou X, Hoyer M, et al. Collaborative Interferon-? and Interleukin-17 Signaling Protects the Oral Mucosa from Staphylococcus aureus. Am J Pathol. 2016;186:2337-52 pubmed 出版商
  334. Dorand R, Nthale J, Myers J, Barkauskas D, Avril S, Chirieleison S, et al. Cdk5 disruption attenuates tumor PD-L1 expression and promotes antitumor immunity. Science. 2016;353:399-403 pubmed 出版商
  335. Chen S, Miyazaki M, Chandra V, Fisch K, Chang A, Murre C. Id3 Orchestrates Germinal Center B Cell Development. Mol Cell Biol. 2016;36:2543-52 pubmed 出版商
  336. Lesina M, Wörmann S, Morton J, Diakopoulos K, Korneeva O, Wimmer M, et al. RelA regulates CXCL1/CXCR2-dependent oncogene-induced senescence in murine Kras-driven pancreatic carcinogenesis. J Clin Invest. 2016;126:2919-32 pubmed 出版商
  337. Schweiger T, Berghoff A, Glogner C, Glueck O, Rajky O, Traxler D, et al. Tumor-infiltrating lymphocyte subsets and tertiary lymphoid structures in pulmonary metastases from colorectal cancer. Clin Exp Metastasis. 2016;33:727-39 pubmed 出版商
  338. Gölz G, Alter T, Bereswill S, Heimesaat M. The Immunopathogenic Potential of Arcobacter butzleri - Lessons from a Meta-Analysis of Murine Infection Studies. PLoS ONE. 2016;11:e0159685 pubmed 出版商
  339. Weiss J, Chen W, Nyuydzefe M, Trzeciak A, Flynn R, Tonra J, et al. ROCK2 signaling is required to induce a subset of T follicular helper cells through opposing effects on STATs in autoimmune settings. Sci Signal. 2016;9:ra73 pubmed 出版商
  340. Wang S, Xia P, Chen Y, Huang G, Xiong Z, Liu J, et al. Natural Killer-like B Cells Prime Innate Lymphocytes against Microbial Infection. Immunity. 2016;45:131-44 pubmed 出版商
  341. Xu Y, Zhao F, Qiu Q, Chen K, Wei J, Kong Q, et al. The ER membrane-anchored ubiquitin ligase Hrd1 is a positive regulator of T-cell immunity. Nat Commun. 2016;7:12073 pubmed 出版商
  342. Hoppe P, Schwarzfischer M, Loeffler D, Kokkaliaris K, Hilsenbeck O, Moritz N, et al. Early myeloid lineage choice is not initiated by random PU.1 to GATA1 protein ratios. Nature. 2016;535:299-302 pubmed 出版商
  343. Ibiza S, García Cassani B, Ribeiro H, Carvalho T, Almeida L, Marques R, et al. Glial-cell-derived neuroregulators control type 3 innate lymphoid cells and gut defence. Nature. 2016;535:440-443 pubmed 出版商
  344. Konkalmatt P, Asico L, Zhang Y, Yang Y, Drachenberg C, Zheng X, et al. Renal rescue of dopamine D2 receptor function reverses renal injury and high blood pressure. JCI Insight. 2016;1: pubmed
  345. Brinkman C, Iwami D, Hritzo M, Xiong Y, Ahmad S, Simon T, et al. Treg engage lymphotoxin beta receptor for afferent lymphatic transendothelial migration. Nat Commun. 2016;7:12021 pubmed 出版商
  346. Kathania M, Khare P, Zeng M, Cantarel B, Zhang H, Ueno H, et al. Itch inhibits IL-17-mediated colon inflammation and tumorigenesis by ROR-?t ubiquitination. Nat Immunol. 2016;17:997-1004 pubmed 出版商
  347. Bereswill S, Alutis M, Grundmann U, Fischer A, Göbel U, Heimesaat M. Interleukin-18 Mediates Immune Responses to Campylobacter jejuni Infection in Gnotobiotic Mice. PLoS ONE. 2016;11:e0158020 pubmed 出版商
  348. Terashima A, Okamoto K, Nakashima T, Akira S, Ikuta K, Takayanagi H. Sepsis-Induced Osteoblast Ablation Causes Immunodeficiency. Immunity. 2016;44:1434-43 pubmed 出版商
  349. Stentzel S, Teufelberger A, Nordengrün M, Kolata J, Schmidt F, Van Crombruggen K, et al. Staphylococcal serine protease-like proteins are pacemakers of allergic airway reactions to Staphylococcus aureus. J Allergy Clin Immunol. 2017;139:492-500.e8 pubmed 出版商
  350. Saha A, O Connor R, Thangavelu G, Lovitch S, Dandamudi D, Wilson C, et al. Programmed death ligand-1 expression on donor T cells drives graft-versus-host disease lethality. J Clin Invest. 2016;126:2642-60 pubmed 出版商
  351. Ruhland M, Loza A, Capietto A, Luo X, Knolhoff B, Flanagan K, et al. Stromal senescence establishes an immunosuppressive microenvironment that drives tumorigenesis. Nat Commun. 2016;7:11762 pubmed 出版商
  352. Salvi V, Vermi W, Gianello V, Lonardi S, Gagliostro V, Naldini A, et al. Dendritic cell-derived VEGF-A plays a role in inflammatory angiogenesis of human secondary lymphoid organs and is driven by the coordinated activation of multiple transcription factors. Oncotarget. 2016;7:39256-39269 pubmed 出版商
  353. Abramowski P, Krasemann S, Ernst T, Lange C, Ittrich H, Schweizer M, et al. Mesenchymal Stromal/Stem Cells Do Not Ameliorate Experimental Autoimmune Encephalomyelitis and Are Not Detectable in the Central Nervous System of Transplanted Mice. Stem Cells Dev. 2016;25:1134-48 pubmed 出版商
  354. van der Heiden M, van Zelm M, Bartol S, de Rond L, Berbers G, Boots A, et al. Differential effects of Cytomegalovirus carriage on the immune phenotype of middle-aged males and females. Sci Rep. 2016;6:26892 pubmed 出版商
  355. Seehus C, Kaye J. In vitro Differentiation of Murine Innate Lymphoid Cells from Common Lymphoid Progenitor Cells. Bio Protoc. 2016;6: pubmed
  356. Loyon R, Picard E, Mauvais O, Queiroz L, Mougey V, Pallandre J, et al. IL-21-Induced MHC Class II+ NK Cells Promote the Expansion of Human Uncommitted CD4+ Central Memory T Cells in a Macrophage Migration Inhibitory Factor-Dependent Manner. J Immunol. 2016;197:85-96 pubmed 出版商
  357. Akashi K, Saegusa J, Sendo S, Nishimura K, Okano T, Yagi K, et al. Knockout of endothelin type B receptor signaling attenuates bleomycin-induced skin sclerosis in mice. Arthritis Res Ther. 2016;18:113 pubmed 出版商
  358. Stein S, Mack E, Rome K, Pajcini K, Ohtani T, Xu L, et al. Trib2 Suppresses Tumor Initiation in Notch-Driven T-ALL. PLoS ONE. 2016;11:e0155408 pubmed 出版商
  359. Göbel K, Pankratz S, Asaridou C, Herrmann A, Bittner S, Merker M, et al. Blood coagulation factor XII drives adaptive immunity during neuroinflammation via CD87-mediated modulation of dendritic cells. Nat Commun. 2016;7:11626 pubmed 出版商
  360. Brandstätter O, Schanz O, Vorac J, König J, Mori T, Maruyama T, et al. Balancing intestinal and systemic inflammation through cell type-specific expression of the aryl hydrocarbon receptor repressor. Sci Rep. 2016;6:26091 pubmed 出版商
  361. Welte T, Kim I, Tian L, Gao X, Wang H, Li J, et al. Oncogenic mTOR signalling recruits myeloid-derived suppressor cells to promote tumour initiation. Nat Cell Biol. 2016;18:632-44 pubmed 出版商
  362. Cook A, McDonnell A, Lake R, Nowak A. Dexamethasone co-medication in cancer patients undergoing chemotherapy causes substantial immunomodulatory effects with implications for chemo-immunotherapy strategies. Oncoimmunology. 2016;5:e1066062 pubmed
  363. Szalay G, Martinecz B, Lénárt N, Kornyei Z, Orsolits B, Judák L, et al. Microglia protect against brain injury and their selective elimination dysregulates neuronal network activity after stroke. Nat Commun. 2016;7:11499 pubmed 出版商
  364. Yao Y, Norris E, Mason C, Strickland S. Laminin regulates PDGFR?(+) cell stemness and muscle development. Nat Commun. 2016;7:11415 pubmed 出版商
  365. Pietras E, Mirantes Barbeito C, Fong S, Loeffler D, Kovtonyuk L, Zhang S, et al. Chronic interleukin-1 exposure drives haematopoietic stem cells towards precocious myeloid differentiation at the expense of self-renewal. Nat Cell Biol. 2016;18:607-18 pubmed 出版商
  366. Swamy M, Pathak S, Grzes K, Damerow S, Sinclair L, van Aalten D, et al. Glucose and glutamine fuel protein O-GlcNAcylation to control T cell self-renewal and malignancy. Nat Immunol. 2016;17:712-20 pubmed 出版商
  367. Song Z, Li Z, Li D, Fang W, Liu H, Yang D, et al. Seminal plasma induces inflammation in the uterus through the ?? T/IL-17 pathway. Sci Rep. 2016;6:25118 pubmed 出版商
  368. Riabov V, Yin S, Song B, Avdic A, Schledzewski K, Ovsiy I, et al. Stabilin-1 is expressed in human breast cancer and supports tumor growth in mammary adenocarcinoma mouse model. Oncotarget. 2016;7:31097-110 pubmed 出版商
  369. Li Z, Hodgkinson T, Gothard E, Boroumand S, Lamb R, Cummins I, et al. Epidermal Notch1 recruits RORγ(+) group 3 innate lymphoid cells to orchestrate normal skin repair. Nat Commun. 2016;7:11394 pubmed 出版商
  370. Yamashita K, Kawata K, Matsumiya H, Kamekura R, Jitsukawa S, Nagaya T, et al. Bob1 limits cellular frequency of T-follicular helper cells. Eur J Immunol. 2016;46:1361-70 pubmed 出版商
  371. Chang C, Petrie T, Clark A, Lin X, Sondergaard C, Griffiths L. Mesenchymal Stem Cell Seeding of Porcine Small Intestinal Submucosal Extracellular Matrix for Cardiovascular Applications. PLoS ONE. 2016;11:e0153412 pubmed 出版商
  372. Haemmerle M, Bottsford Miller J, Pradeep S, Taylor M, Choi H, Hansen J, et al. FAK regulates platelet extravasation and tumor growth after antiangiogenic therapy withdrawal. J Clin Invest. 2016;126:1885-96 pubmed 出版商
  373. Vandenberk L, Garg A, Verschuere T, Koks C, Belmans J, Beullens M, et al. Irradiation of necrotic cancer cells, employed for pulsing dendritic cells (DCs), potentiates DC vaccine-induced antitumor immunity against high-grade glioma. Oncoimmunology. 2016;5:e1083669 pubmed
  374. Oudhoff M, Braam M, Freeman S, Wong D, Rattray D, Wang J, et al. SETD7 Controls Intestinal Regeneration and Tumorigenesis by Regulating Wnt/?-Catenin and Hippo/YAP Signaling. Dev Cell. 2016;37:47-57 pubmed 出版商
  375. Komori M, Lin Y, Cortese I, Blake A, Ohayon J, Cherup J, et al. Insufficient disease inhibition by intrathecal rituximab in progressive multiple sclerosis. Ann Clin Transl Neurol. 2016;3:166-79 pubmed 出版商
  376. Martin B, Wang C, Zhang C, Kang Z, Gulen M, Zepp J, et al. T cell-intrinsic ASC critically promotes T(H)17-mediated experimental autoimmune encephalomyelitis. Nat Immunol. 2016;17:583-92 pubmed 出版商
  377. van der Burgh R, Meeldijk J, Jongeneel L, Frenkel J, Bovenschen N, van Gijn M, et al. Reduced serpinB9-mediated caspase-1 inhibition can contribute to autoinflammatory disease. Oncotarget. 2016;7:19265-71 pubmed 出版商
  378. Osterloh A, Papp S, Moderzynski K, Kuehl S, Richardt U, Fleischer B. Persisting Rickettsia typhi Causes Fatal Central Nervous System Inflammation. Infect Immun. 2016;84:1615-1632 pubmed 出版商
  379. Gossmann J, Stolte M, Lohoff M, Yu P, Moll R, Finkernagel F, et al. A Gain-Of-Function Mutation in the Plcg2 Gene Protects Mice from Helicobacter felis-Induced Gastric MALT Lymphoma. PLoS ONE. 2016;11:e0150411 pubmed 出版商
  380. Frodermann V, Van Duijn J, van Puijvelde G, van Santbrink P, Lagraauw H, de Vries M, et al. Heat-killed Staphylococcus aureus reduces atherosclerosis by inducing anti-inflammatory macrophages. J Intern Med. 2016;279:592-605 pubmed 出版商
  381. Tagliamonte M, Petrizzo A, Napolitano M, Luciano A, Rea D, Barbieri A, et al. A novel multi-drug metronomic chemotherapy significantly delays tumor growth in mice. J Transl Med. 2016;14:58 pubmed 出版商
  382. Kabat A, Harrison O, Riffelmacher T, Moghaddam A, Pearson C, Laing A, et al. The autophagy gene Atg16l1 differentially regulates Treg and TH2 cells to control intestinal inflammation. elife. 2016;5:e12444 pubmed 出版商
  383. Hu H, Wang H, Xiao Y, Jin J, Chang J, Zou Q, et al. Otud7b facilitates T cell activation and inflammatory responses by regulating Zap70 ubiquitination. J Exp Med. 2016;213:399-414 pubmed 出版商
  384. Singhal G, Fisher F, Chee M, Tan T, El Ouaamari A, Adams A, et al. Fibroblast Growth Factor 21 (FGF21) Protects against High Fat Diet Induced Inflammation and Islet Hyperplasia in Pancreas. PLoS ONE. 2016;11:e0148252 pubmed 出版商
  385. Gupta S, Itagaki R, Zheng X, Batkai S, Thum S, Ahmad F, et al. miR-21 promotes fibrosis in an acute cardiac allograft transplantation model. Cardiovasc Res. 2016;110:215-26 pubmed 出版商
  386. Ludigs K, Jandus C, Utzschneider D, Staehli F, Bessoles S, Dang A, et al. NLRC5 shields T lymphocytes from NK-cell-mediated elimination under inflammatory conditions. Nat Commun. 2016;7:10554 pubmed 出版商
  387. Kanazawa H, Tseliou E, Dawkins J, de Couto G, Gallet R, Malliaras K, et al. Durable Benefits of Cellular Postconditioning: Long-Term Effects of Allogeneic Cardiosphere-Derived Cells Infused After Reperfusion in Pigs with Acute Myocardial Infarction. J Am Heart Assoc. 2016;5: pubmed 出版商
  388. Gibson Corley K, Boyden A, Leidinger M, Lambertz A, Ofori Amanfo G, Naumann P, et al. A method for histopathological study of the multifocal nature of spinal cord lesions in murine experimental autoimmune encephalomyelitis. Peerj. 2016;4:e1600 pubmed 出版商
  389. Garcia Bates T, Kim E, Concha Benavente F, Trivedi S, Mailliard R, Gambotto A, et al. Enhanced Cytotoxic CD8 T Cell Priming Using Dendritic Cell-Expressing Human Papillomavirus-16 E6/E7-p16INK4 Fusion Protein with Sequenced Anti-Programmed Death-1. J Immunol. 2016;196:2870-8 pubmed 出版商
  390. Gillespie A, Teoh J, Lee H, Prince J, Stadnisky M, Anderson M, et al. Genomic Modifiers of Natural Killer Cells, Immune Responsiveness and Lymphoid Tissue Remodeling Together Increase Host Resistance to Viral Infection. PLoS Pathog. 2016;12:e1005419 pubmed 出版商
  391. Azpilikueta A, Agorreta J, Labiano S, Pérez Gracia J, Sánchez Paulete A, Aznar M, et al. Successful Immunotherapy against a Transplantable Mouse Squamous Lung Carcinoma with Anti-PD-1 and Anti-CD137 Monoclonal Antibodies. J Thorac Oncol. 2016;11:524-36 pubmed 出版商
  392. Ying W, Tseng A, Chang R, Wang H, Lin Y, Kanameni S, et al. miR-150 regulates obesity-associated insulin resistance by controlling B cell functions. Sci Rep. 2016;6:20176 pubmed 出版商
  393. Cao Y, Amezquita R, Kleinstein S, Stathopoulos P, Nowak R, O Connor K. Autoreactive T Cells from Patients with Myasthenia Gravis Are Characterized by Elevated IL-17, IFN-γ, and GM-CSF and Diminished IL-10 Production. J Immunol. 2016;196:2075-84 pubmed 出版商
  394. Tubo N, Fife B, Pagán A, Kotov D, Goldberg M, Jenkins M. Most microbe-specific naïve CD4? T cells produce memory cells during infection. Science. 2016;351:511-4 pubmed 出版商
  395. Caballero Franco C, Guma M, Choo M, Sano Y, Enzler T, Karin M, et al. Epithelial Control of Gut-Associated Lymphoid Tissue Formation through p38?-Dependent Restraint of NF-?B Signaling. J Immunol. 2016;196:2368-76 pubmed 出版商
  396. Luchsinger L, de Almeida M, Corrigan D, Mumau M, Snoeck H. Mitofusin 2 maintains haematopoietic stem cells with extensive lymphoid potential. Nature. 2016;529:528-31 pubmed 出版商
  397. Wang L, Jiang Y, Song X, Guo C, Zhu F, Wang X, et al. Pdcd4 deficiency enhances macrophage lipoautophagy and attenuates foam cell formation and atherosclerosis in mice. Cell Death Dis. 2016;7:e2055 pubmed 出版商
  398. Catarinella M, Monestiroli A, Escobar G, Fiocchi A, Tran N, Aiolfi R, et al. IFNα gene/cell therapy curbs colorectal cancer colonization of the liver by acting on the hepatic microenvironment. EMBO Mol Med. 2016;8:155-70 pubmed 出版商
  399. Lu K, Tounsi A, Shridhar N, Küblbeck G, Klevenz A, Prokosch S, et al. Dickkopf-3 Contributes to the Regulation of Anti-Tumor Immune Responses by Mesenchymal Stem Cells. Front Immunol. 2015;6:645 pubmed 出版商
  400. Whibley N, Tritto E, Traggiai E, Kolbinger F, Moulin P, Brees D, et al. Antibody blockade of IL-17 family cytokines in immunity to acute murine oral mucosal candidiasis. J Leukoc Biol. 2016;99:1153-64 pubmed 出版商
  401. Zhang T, Zhang Y, Cui M, Jin L, Wang Y, Lv F, et al. CaMKII is a RIP3 substrate mediating ischemia- and oxidative stress-induced myocardial necroptosis. Nat Med. 2016;22:175-82 pubmed 出版商
  402. Gallego Ortega D, Ledger A, Roden D, Law A, Magenau A, Kikhtyak Z, et al. ELF5 Drives Lung Metastasis in Luminal Breast Cancer through Recruitment of Gr1+ CD11b+ Myeloid-Derived Suppressor Cells. PLoS Biol. 2015;13:e1002330 pubmed 出版商
  403. Zahavi T, Lanton T, Divon M, Salmon A, Peretz T, Galun E, et al. Sorafenib treatment during partial hepatectomy reduces tumorgenesis in an inflammation-associated liver cancer model. Oncotarget. 2016;7:4860-70 pubmed 出版商
  404. Egan C, Sodhi C, Good M, Lin J, Jia H, Yamaguchi Y, et al. Toll-like receptor 4-mediated lymphocyte influx induces neonatal necrotizing enterocolitis. J Clin Invest. 2016;126:495-508 pubmed
  405. Liu T, Weng S, Wang M, Huang W. Nontuberculous mycobacterial infection with concurrent IgG4-related lymphadenopathy. APMIS. 2016;124:216-20 pubmed 出版商
  406. Kiermaier E, Moussion C, Veldkamp C, Gerardy Schahn R, de Vries I, Williams L, et al. Polysialylation controls dendritic cell trafficking by regulating chemokine recognition. Science. 2016;351:186-90 pubmed 出版商
  407. Traka M, Podojil J, McCarthy D, Miller S, Popko B. Oligodendrocyte death results in immune-mediated CNS demyelination. Nat Neurosci. 2016;19:65-74 pubmed 出版商
  408. Jabara H, Boyden S, Chou J, Ramesh N, Massaad M, Benson H, et al. A missense mutation in TFRC, encoding transferrin receptor 1, causes combined immunodeficiency. Nat Genet. 2016;48:74-8 pubmed 出版商
  409. Wei R, Hu Y, Dong F, Xu X, Hu A, Gao G. Hepatoma cell-derived leptin downregulates the immunosuppressive function of regulatory T-cells to enhance the anti-tumor activity of CD8+ T-cells. Immunol Cell Biol. 2016;94:388-99 pubmed 出版商
  410. Höftberger R, Leisser M, Bauer J, Lassmann H. Autoimmune encephalitis in humans: how closely does it reflect multiple sclerosis ?. Acta Neuropathol Commun. 2015;3:80 pubmed 出版商
  411. Liu Q, Yang R, Huang X, Zhang H, He L, Zhang L, et al. Genetic lineage tracing identifies in situ Kit-expressing cardiomyocytes. Cell Res. 2016;26:119-30 pubmed 出版商
  412. Qian B, Ji M, Qiu Y, Pan T, Wang B, Mao S, et al. Is There any Correlation Between Pathological Profile of Facet Joints and Clinical Feature in Patients With Thoracolumbar Kyphosis Secondary to Ankylosing Spondylitis?: An Immunohistochemical Investigation. Spine (Phila Pa 1976). 2016;41:E512-8 pubmed 出版商
  413. Kaplan J, Marshall M, C McSkimming C, Harmon D, Garmey J, Oldham S, et al. Adipocyte progenitor cells initiate monocyte chemoattractant protein-1-mediated macrophage accumulation in visceral adipose tissue. Mol Metab. 2015;4:779-94 pubmed 出版商
  414. Schachtner H, Weimershaus M, Stache V, Plewa N, Legler D, Höpken U, et al. Loss of Gadkin Affects Dendritic Cell Migration In Vitro. PLoS ONE. 2015;10:e0143883 pubmed 出版商
  415. Zhong C, Cui K, Wilhelm C, Hu G, Mao K, Belkaid Y, et al. Group 3 innate lymphoid cells continuously require the transcription factor GATA-3 after commitment. Nat Immunol. 2016;17:169-78 pubmed 出版商
  416. Cole C, Verdoni A, Ketkar S, Leight E, Russler Germain D, Lamprecht T, et al. PML-RARA requires DNA methyltransferase 3A to initiate acute promyelocytic leukemia. J Clin Invest. 2016;126:85-98 pubmed 出版商
  417. Skeldon A, Morizot A, Douglas T, Santoro N, Kursawe R, Kozlitina J, et al. Caspase-12, but Not Caspase-11, Inhibits Obesity and Insulin Resistance. J Immunol. 2016;196:437-47 pubmed 出版商
  418. Zhang Z, Wu N, Lu Y, Davidson D, Colonna M, Veillette A. DNAM-1 controls NK cell activation via an ITT-like motif. J Exp Med. 2015;212:2165-82 pubmed 出版商
  419. Sekiya T, Yoshimura A. In Vitro Th Differentiation Protocol. Methods Mol Biol. 2016;1344:183-91 pubmed 出版商
  420. Deisting W, Raum T, Kufer P, Baeuerle P, Münz M. Impact of Diverse Immune Evasion Mechanisms of Cancer Cells on T Cells Engaged by EpCAM/CD3-Bispecific Antibody Construct AMG 110. PLoS ONE. 2015;10:e0141669 pubmed 出版商
  421. Oh Y, Park H, Shin J, Lee J, Park H, Kho D, et al. Ndrg1 is a T-cell clonal anergy factor negatively regulated by CD28 costimulation and interleukin-2. Nat Commun. 2015;6:8698 pubmed 出版商
  422. Li L, Xu L, Yan J, Zhen Z, Ji Y, Liu C, et al. CXCR2-CXCL1 axis is correlated with neutrophil infiltration and predicts a poor prognosis in hepatocellular carcinoma. J Exp Clin Cancer Res. 2015;34:129 pubmed 出版商
  423. Stachtea X, Tykesson E, van Kuppevelt T, Feinstein R, Malmström A, Reijmers R, et al. Dermatan Sulfate-Free Mice Display Embryological Defects and Are Neonatal Lethal Despite Normal Lymphoid and Non-Lymphoid Organogenesis. PLoS ONE. 2015;10:e0140279 pubmed 出版商
  424. Ruan S, Samuelson D, Assouline B, Morre M, Shellito J. Treatment with Interleukin-7 Restores Host Defense against Pneumocystis in CD4+ T-Lymphocyte-Depleted Mice. Infect Immun. 2016;84:108-19 pubmed 出版商
  425. Alam M, Gaida M, Bergmann F, Lasitschka F, Giese T, Giese N, et al. Selective inhibition of the p38 alternative activation pathway in infiltrating T cells inhibits pancreatic cancer progression. Nat Med. 2015;21:1337-43 pubmed 出版商
  426. Varney M, Niederkorn M, Konno H, Matsumura T, Gohda J, Yoshida N, et al. Loss of Tifab, a del(5q) MDS gene, alters hematopoiesis through derepression of Toll-like receptor-TRAF6 signaling. J Exp Med. 2015;212:1967-85 pubmed 出版商
  427. Alvarez S, Diaz M, Flach J, Rodriguez Acebes S, López Contreras A, Martinez D, et al. Replication stress caused by low MCM expression limits fetal erythropoiesis and hematopoietic stem cell functionality. Nat Commun. 2015;6:8548 pubmed 出版商
  428. Liu K, Yang K, Wu B, Chen H, Chen X, Chen X, et al. Tumor-Infiltrating Immune Cells Are Associated With Prognosis of Gastric Cancer. Medicine (Baltimore). 2015;94:e1631 pubmed 出版商
  429. Zanvit P, Konkel J, Jiao X, Kasagi S, Zhang D, Wu R, et al. Antibiotics in neonatal life increase murine susceptibility to experimental psoriasis. Nat Commun. 2015;6:8424 pubmed 出版商
  430. Li S, Dislich B, Brakebusch C, Lichtenthaler S, Brocker T. Control of Homeostasis and Dendritic Cell Survival by the GTPase RhoA. J Immunol. 2015;195:4244-56 pubmed 出版商
  431. Yeung H, Lo P, Ng D, Fong W. Anti-tumor immunity of BAM-SiPc-mediated vascular photodynamic therapy in a BALB/c mouse model. Cell Mol Immunol. 2017;14:223-234 pubmed 出版商
  432. Masek Hammerman K, Peeva E, Ahmad A, Menon S, Afsharvand M, Peng Qu R, et al. Monoclonal antibody against macrophage colony-stimulating factor suppresses circulating monocytes and tissue macrophage function but does not alter cell infiltration/activation in cutaneous lesions or clinical outcomes in patients with cutaneous lupu. Clin Exp Immunol. 2016;183:258-70 pubmed 出版商
  433. Shirasuna K, Karasawa T, Usui F, Kobayashi M, Komada T, Kimura H, et al. NLRP3 Deficiency Improves Angiotensin II-Induced Hypertension But Not Fetal Growth Restriction During Pregnancy. Endocrinology. 2015;156:4281-92 pubmed 出版商
  434. Loyer X, Paradis V, Hénique C, Vion A, Colnot N, Guerin C, et al. Liver microRNA-21 is overexpressed in non-alcoholic steatohepatitis and contributes to the disease in experimental models by inhibiting PPARα expression. Gut. 2016;65:1882-1894 pubmed 出版商
  435. James R, Hillis J, Adorján I, Gration B, Mundim M, Iqbal A, et al. Loss of galectin-3 decreases the number of immune cells in the subventricular zone and restores proliferation in a viral model of multiple sclerosis. Glia. 2016;64:105-21 pubmed 出版商
  436. Guo L, Huang Y, Chen X, Hu Li J, Urban J, Paul W. Innate immunological function of TH2 cells in vivo. Nat Immunol. 2015;16:1051-9 pubmed 出版商
  437. Nakatsukasa H, Zhang D, Maruyama T, Chen H, Cui K, Ishikawa M, et al. The DNA-binding inhibitor Id3 regulates IL-9 production in CD4(+) T cells. Nat Immunol. 2015;16:1077-84 pubmed 出版商
  438. Wang X, Huang Z, Chen Y, Lu X, Zhu P, Wen K, et al. A Multiple Antigenic Peptide Mimicking Peptidoglycan Induced T Cell Responses to Protect Mice from Systemic Infection with Staphylococcus aureus. PLoS ONE. 2015;10:e0136888 pubmed 出版商
  439. Pearce V, Bouabe H, MacQueen A, Carbonaro V, Okkenhaug K. PI3Kδ Regulates the Magnitude of CD8+ T Cell Responses after Challenge with Listeria monocytogenes. J Immunol. 2015;195:3206-17 pubmed 出版商
  440. Matsuda Y, Wang X, Oishi H, Guan Z, Saito M, Liu M, et al. Spleen Tyrosine Kinase Modulates Fibrous Airway Obliteration and Associated Lymphoid Neogenesis After Transplantation. Am J Transplant. 2016;16:342-52 pubmed 出版商
  441. Leeansyah E, Svärd J, Dias J, Buggert M, Nyström J, Quigley M, et al. Arming of MAIT Cell Cytolytic Antimicrobial Activity Is Induced by IL-7 and Defective in HIV-1 Infection. PLoS Pathog. 2015;11:e1005072 pubmed 出版商
  442. Lee Y, Liu C, Liao M, Sukhova G, Shirakawa J, Abdennour M, et al. Deficiency of FcϵR1 Increases Body Weight Gain but Improves Glucose Tolerance in Diet-Induced Obese Mice. Endocrinology. 2015;156:4047-58 pubmed 出版商
  443. Zhang W, Smythe J, Frith E, Belfield H, Clarke S, Watt S, et al. An innovative method to generate a Good Manufacturing Practice-ready regulatory T-cell product from non-mobilized leukapheresis donors. Cytotherapy. 2015;17:1268-79 pubmed 出版商
  444. Littwitz Salomon E, Akhmetzyanova I, Vallet C, Francois S, Dittmer U, Gibbert K. Activated regulatory T cells suppress effector NK cell responses by an IL-2-mediated mechanism during an acute retroviral infection. Retrovirology. 2015;12:66 pubmed 出版商
  445. Fujimura N, Xu B, Dalman J, Deng H, Aoyama K, Dalman R. CCR2 inhibition sequesters multiple subsets of leukocytes in the bone marrow. Sci Rep. 2015;5:11664 pubmed 出版商
  446. Lowe K, Navarro Núñez L, Bénézech C, Nayar S, Kingston B, Nieswandt B, et al. The expression of mouse CLEC-2 on leucocyte subsets varies according to their anatomical location and inflammatory state. Eur J Immunol. 2015;45:2484-93 pubmed 出版商
  447. Patyka M, Malamud D, Weissman D, Abrams W, Kurago Z. Periluminal Distribution of HIV-Binding Target Cells and Gp340 in the Oral, Cervical and Sigmoid/Rectal Mucosae: A Mapping Study. PLoS ONE. 2015;10:e0132942 pubmed 出版商
  448. Jiang Y, Gao Q, Wang L, Guo C, Zhu F, Wang B, et al. Deficiency of programmed cell death 4 results in increased IL-10 expression by macrophages and thereby attenuates atherosclerosis in hyperlipidemic mice. Cell Mol Immunol. 2016;13:524-34 pubmed 出版商
  449. Jasinski Bergner S, Stoehr C, Bukur J, Massa C, Braun J, Hüttelmaier S, et al. Clinical relevance of miR-mediated HLA-G regulation and the associated immune cell infiltration in renal cell carcinoma. Oncoimmunology. 2015;4:e1008805 pubmed
  450. Saulep Easton D, Vincent F, Quah P, Wei A, Ting S, Croce C, et al. The BAFF receptor TACI controls IL-10 production by regulatory B cells and CLL B cells. Leukemia. 2016;30:163-72 pubmed 出版商
  451. Weindel C, Richey L, Bolland S, Mehta A, Kearney J, Huber B. B cell autophagy mediates TLR7-dependent autoimmunity and inflammation. Autophagy. 2015;11:1010-24 pubmed 出版商
  452. Stenger E, Chiang K, Haight A, Qayed M, Kean L, Horan J. Use of Alefacept for Preconditioning in Multiply Transfused Pediatric Patients with Nonmalignant Diseases. Biol Blood Marrow Transplant. 2015;21:1845-52 pubmed 出版商
  453. Charmsaz S, Beckett K, Smith F, Bruedigam C, Moore A, Al Ejeh F, et al. EphA2 Is a Therapy Target in EphA2-Positive Leukemias but Is Not Essential for Normal Hematopoiesis or Leukemia. PLoS ONE. 2015;10:e0130692 pubmed 出版商
  454. Horn T, Laus J, Seitz A, Maurer T, Schmid S, Wolf P, et al. The prognostic effect of tumour-infiltrating lymphocytic subpopulations in bladder cancer. World J Urol. 2016;34:181-7 pubmed 出版商
  455. Soares A, Müller T, Chege G, Williamson A, Burgers W. Transient global T cell activation after vaccination of rhesus macaques with a DNA-poxvirus vaccine regimen for HIV. Vaccine. 2015;33:3435-9 pubmed 出版商
  456. Kerkman P, Fabre E, van der Voort E, Zaldumbide A, Rombouts Y, Rispens T, et al. Identification and characterisation of citrullinated antigen-specific B cells in peripheral blood of patients with rheumatoid arthritis. Ann Rheum Dis. 2016;75:1170-6 pubmed 出版商
  457. Louveau A, Smirnov I, Keyes T, Eccles J, Rouhani S, Peske J, et al. Structural and functional features of central nervous system lymphatic vessels. Nature. 2015;523:337-41 pubmed 出版商
  458. Boisson B, Laplantine E, Dobbs K, Cobat A, Tarantino N, Hazen M, et al. Human HOIP and LUBAC deficiency underlies autoinflammation, immunodeficiency, amylopectinosis, and lymphangiectasia. J Exp Med. 2015;212:939-51 pubmed 出版商
  459. Hernández P, Mahlakõiv T, Yang I, Schwierzeck V, Nguyen N, Guendel F, et al. Interferon-λ and interleukin 22 act synergistically for the induction of interferon-stimulated genes and control of rotavirus infection. Nat Immunol. 2015;16:698-707 pubmed 出版商
  460. Chen H, Sun J, Huang Z, Hou H, Arcilla M, Rakhilin N, et al. Comprehensive models of human primary and metastatic colorectal tumors in immunodeficient and immunocompetent mice by chemokine targeting. Nat Biotechnol. 2015;33:656-60 pubmed 出版商
  461. McCully M, Collins P, Hughes T, Thomas C, Billen J, O Donnell V, et al. Skin Metabolites Define a New Paradigm in the Localization of Skin Tropic Memory T Cells. J Immunol. 2015;195:96-104 pubmed 出版商
  462. Peske J, Thompson E, Gemta L, Baylis R, Fu Y, Engelhard V. Effector lymphocyte-induced lymph node-like vasculature enables naive T-cell entry into tumours and enhanced anti-tumour immunity. Nat Commun. 2015;6:7114 pubmed 出版商
  463. Vettermann C, Victor H, Sun Y, Plewa C, Gupta S. A signaling-enhanced chimeric receptor to activate the ICOS pathway in T cells. J Immunol Methods. 2015;424:14-9 pubmed 出版商
  464. Li Y, Kang G, Duan L, Lu W, Katze M, Lewis M, et al. SIV Infection of Lung Macrophages. PLoS ONE. 2015;10:e0125500 pubmed 出版商
  465. Berent Maoz B, Montecino Rodriguez E, Fice M, Casero D, Seet C, Crooks G, et al. The expansion of thymopoiesis in neonatal mice is dependent on expression of high mobility group a 2 protein (Hmga2). PLoS ONE. 2015;10:e0125414 pubmed 出版商
  466. DaFonseca S, Niessl J, Pouvreau S, Wacleche V, Gosselin A, Cleret Buhot A, et al. Impaired Th17 polarization of phenotypically naive CD4(+) T-cells during chronic HIV-1 infection and potential restoration with early ART. Retrovirology. 2015;12:38 pubmed 出版商
  467. Bouchery T, Kyle R, Camberis M, Shepherd A, Filbey K, Smith A, et al. ILC2s and T cells cooperate to ensure maintenance of M2 macrophages for lung immunity against hookworms. Nat Commun. 2015;6:6970 pubmed 出版商
  468. Sharma S, Chintala N, Vadrevu S, Patel J, Karbowniczek M, Markiewski M. Pulmonary alveolar macrophages contribute to the premetastatic niche by suppressing antitumor T cell responses in the lungs. J Immunol. 2015;194:5529-38 pubmed 出版商
  469. Rogers R, Eastham Anderson J, DeVoss J, Lesch J, Yan D, Xu M, et al. Image Analysis-Based Approaches for Scoring Mouse Models of Colitis. Vet Pathol. 2016;53:200-10 pubmed 出版商
  470. Kreiter S, Vormehr M, van de Roemer N, Diken M, Löwer M, Diekmann J, et al. Mutant MHC class II epitopes drive therapeutic immune responses to cancer. Nature. 2015;520:692-6 pubmed 出版商
  471. Maiwald S, Motazacker M, van Capelleveen J, Sivapalaratnam S, van der Wal A, van der Loos C, et al. A rare variant in MCF2L identified using exclusion linkage in a pedigree with premature atherosclerosis. Eur J Hum Genet. 2016;24:86-91 pubmed 出版商
  472. Heinzmann D, Bangert A, Müller A, von Ungern Sternberg S, Emschermann F, Schönberger T, et al. The Novel Extracellular Cyclophilin A (CyPA) - Inhibitor MM284 Reduces Myocardial Inflammation and Remodeling in a Mouse Model of Troponin I -Induced Myocarditis. PLoS ONE. 2015;10:e0124606 pubmed 出版商
  473. Siegemund S, Shepherd J, Xiao C, Sauer K. hCD2-iCre and Vav-iCre mediated gene recombination patterns in murine hematopoietic cells. PLoS ONE. 2015;10:e0124661 pubmed 出版商
  474. Tabariès S, Ouellet V, Hsu B, Annis M, Rose A, Meunier L, et al. Granulocytic immune infiltrates are essential for the efficient formation of breast cancer liver metastases. Breast Cancer Res. 2015;17:45 pubmed 出版商
  475. Kim P, Nakano H, Das P, Chen M, Rowe R, Chou S, et al. Flow-induced protein kinase A-CREB pathway acts via BMP signaling to promote HSC emergence. J Exp Med. 2015;212:633-48 pubmed 出版商
  476. Zhou J, Amran F, Kramski M, Angelovich T, Elliott J, Hearps A, et al. An NK Cell Population Lacking FcRγ Is Expanded in Chronically Infected HIV Patients. J Immunol. 2015;194:4688-97 pubmed 出版商
  477. Lougaris V, Ravelli A, Villanacci V, Salemme M, Soresina A, Fuoti M, et al. Gastrointestinal Pathologic Abnormalities in Pediatric- and Adult-Onset Common Variable Immunodeficiency. Dig Dis Sci. 2015;60:2384-9 pubmed 出版商
  478. Yukl S, Shergill A, Girling V, Li Q, Killian M, Epling L, et al. Site-specific differences in T cell frequencies and phenotypes in the blood and gut of HIV-uninfected and ART-treated HIV+ adults. PLoS ONE. 2015;10:e0121290 pubmed 出版商
  479. McClintock S, Warner R, Ali S, Chekuri A, Dame M, Attili D, et al. Monoclonal antibodies specific for oncofetal antigen--immature laminin receptor protein: Effects on tumor growth and spread in two murine models. Cancer Biol Ther. 2015;16:724-32 pubmed 出版商
  480. Ohnuma K, Hatano R, Aune T, Otsuka H, Iwata S, Dang N, et al. Regulation of pulmonary graft-versus-host disease by IL-26+CD26+CD4 T lymphocytes. J Immunol. 2015;194:3697-712 pubmed 出版商
  481. Strick Marchand H, Dusséaux M, Darche S, Huntington N, Legrand N, Masse Ranson G, et al. A novel mouse model for stable engraftment of a human immune system and human hepatocytes. PLoS ONE. 2015;10:e0119820 pubmed 出版商
  482. Van Den Ham K, Shio M, Rainone A, Fournier S, Krawczyk C, Olivier M. Iron prevents the development of experimental cerebral malaria by attenuating CXCR3-mediated T cell chemotaxis. PLoS ONE. 2015;10:e0118451 pubmed 出版商
  483. Grabner B, Schramek D, Mueller K, Moll H, Svinka J, Hoffmann T, et al. Disruption of STAT3 signalling promotes KRAS-induced lung tumorigenesis. Nat Commun. 2015;6:6285 pubmed 出版商
  484. Wensveen F, Jelenčić V, Valentić S, Å estan M, Wensveen T, Theurich S, et al. NK cells link obesity-induced adipose stress to inflammation and insulin resistance. Nat Immunol. 2015;16:376-85 pubmed 出版商
  485. Otsuki S, Sawada H, Yodoya N, Shinohara T, Kato T, Ohashi H, et al. Potential contribution of phenotypically modulated smooth muscle cells and related inflammation in the development of experimental obstructive pulmonary vasculopathy in rats. PLoS ONE. 2015;10:e0118655 pubmed 出版商
  486. Feuerstein R, Seidl M, Prinz M, Henneke P. MyD88 in macrophages is critical for abscess resolution in staphylococcal skin infection. J Immunol. 2015;194:2735-45 pubmed 出版商
  487. Zhan R, Han Q, Zhang C, Tian Z, Zhang J. Toll-Like receptor 2 (TLR2) and TLR9 play opposing roles in host innate immunity against Salmonella enterica serovar Typhimurium infection. Infect Immun. 2015;83:1641-9 pubmed 出版商
  488. Sell S, Dietz M, Schneider A, Holtappels R, Mach M, Winkler T. Control of murine cytomegalovirus infection by γδ T cells. PLoS Pathog. 2015;11:e1004481 pubmed 出版商
  489. Buchwald Z, Yang C, Nellore S, Shashkova E, Davis J, Cline A, et al. A Bone Anabolic Effect of RANKL in a Murine Model of Osteoporosis Mediated Through FoxP3+ CD8 T Cells. J Bone Miner Res. 2015;30:1508-22 pubmed 出版商
  490. Hladik F, Burgener A, Ballweber L, Gottardo R, Vojtech L, Fourati S, et al. Mucosal effects of tenofovir 1% gel. elife. 2015;4: pubmed 出版商
  491. Crncec I, Pathria P, Svinka J, Eferl R. Induction of colorectal cancer in mice and histomorphometric evaluation of tumors. Methods Mol Biol. 2015;1267:145-64 pubmed 出版商
  492. Hu W, Dooley J, Chung S, Chandramohan D, Cimmino L, Mukherjee S, et al. miR-29a maintains mouse hematopoietic stem cell self-renewal by regulating Dnmt3a. Blood. 2015;125:2206-16 pubmed 出版商
  493. Hill E, Ng T, Burton B, Oakley C, Malik K, Wraith D. Glycogen synthase kinase-3 controls IL-10 expression in CD4(+) effector T-cell subsets through epigenetic modification of the IL-10 promoter. Eur J Immunol. 2015;45:1103-15 pubmed 出版商
  494. Franckaert D, Schlenner S, Heirman N, Gill J, Skogberg G, Ekwall O, et al. Premature thymic involution is independent of structural plasticity of the thymic stroma. Eur J Immunol. 2015;45:1535-47 pubmed 出版商
  495. Das D, Feng Y, Mallis R, Li X, Keskin D, Hussey R, et al. Force-dependent transition in the T-cell receptor β-subunit allosterically regulates peptide discrimination and pMHC bond lifetime. Proc Natl Acad Sci U S A. 2015;112:1517-22 pubmed 出版商
  496. Karsten C, Laumonnier Y, Eurich B, Ender F, Bröker K, Roy S, et al. Monitoring and cell-specific deletion of C5aR1 using a novel floxed GFP-C5aR1 reporter knock-in mouse. J Immunol. 2015;194:1841-55 pubmed 出版商
  497. Spada R, Rojas J, Pérez Yagüe S, Mulens V, Cannata Ortiz P, Bragado R, et al. NKG2D ligand overexpression in lupus nephritis correlates with increased NK cell activity and differentiation in kidneys but not in the periphery. J Leukoc Biol. 2015;97:583-98 pubmed 出版商
  498. Afshar M, Richards S, Mann D, Cross A, Smith G, Netzer G, et al. Acute immunomodulatory effects of binge alcohol ingestion. Alcohol. 2015;49:57-64 pubmed 出版商
  499. Sullivan B, Teijaro J, de la Torre J, Oldstone M. Early virus-host interactions dictate the course of a persistent infection. PLoS Pathog. 2015;11:e1004588 pubmed 出版商
  500. Djukic M, Sostmann N, Bertsch T, Mecke M, Nessler S, Manig A, et al. Vitamin D deficiency decreases survival of bacterial meningoencephalitis in mice. J Neuroinflammation. 2015;12:208 pubmed 出版商
  501. Krysiak K, Tibbitts J, Shao J, Liu T, Ndonwi M, Walter M. Reduced levels of Hspa9 attenuate Stat5 activation in mouse B cells. Exp Hematol. 2015;43:319-30.e10 pubmed 出版商
  502. Sakaguchi S, Hombauer M, Hassan H, Tanaka H, Yasmin N, Naoe Y, et al. A novel Cd8-cis-regulatory element preferentially directs expression in CD44hiCD62L+ CD8+ T cells and in CD8αα+ dendritic cells. J Leukoc Biol. 2015;97:635-44 pubmed 出版商
  503. Bende R, Slot L, Hoogeboom R, Wormhoudt T, Adeoye A, Guikema J, et al. Stereotypic rheumatoid factors that are frequently expressed in mucosa-associated lymphoid tissue-type lymphomas are rare in the labial salivary glands of patients with Sjögren's syndrome. Arthritis Rheumatol. 2015;67:1074-83 pubmed 出版商
  504. Ueno N, Lodoen M, Hickey G, Robey E, Coombes J. Toxoplasma gondii-infected natural killer cells display a hypermotility phenotype in vivo. Immunol Cell Biol. 2015;93:508-13 pubmed 出版商
  505. Karamitros D, Patmanidi A, Kotantaki P, Potocnik A, Bähr Ivacevic T, Benes V, et al. Geminin deletion increases the number of fetal hematopoietic stem cells by affecting the expression of key transcription factors. Development. 2015;142:70-81 pubmed 出版商
  506. Evrard M, Chong S, Devi S, Chew W, Lee B, Poidinger M, et al. Visualization of bone marrow monocyte mobilization using Cx3cr1gfp/+Flt3L-/- reporter mouse by multiphoton intravital microscopy. J Leukoc Biol. 2015;97:611-9 pubmed 出版商
  507. Bigley V, McGovern N, Milne P, Dickinson R, Pagan S, Cookson S, et al. Langerin-expressing dendritic cells in human tissues are related to CD1c+ dendritic cells and distinct from Langerhans cells and CD141high XCR1+ dendritic cells. J Leukoc Biol. 2015;97:627-34 pubmed 出版商
  508. Harmon E, Fronhofer V, Keller R, Feustel P, Zhu X, Xu H, et al. Anti-inflammatory immune skewing is atheroprotective: Apoe−/−FcγRIIb−/− mice develop fibrous carotid plaques. J Am Heart Assoc. 2014;3:e001232 pubmed 出版商
  509. Nemes E, Kagina B, Smit E, Africa H, Steyn M, Hanekom W, et al. Differential leukocyte counting and immunophenotyping in cryopreserved ex vivo whole blood. Cytometry A. 2015;87:157-65 pubmed 出版商
  510. Yin Y, Qin T, Wang X, Lin J, Yu Q, Yang Q. CpG DNA assists the whole inactivated H9N2 influenza virus in crossing the intestinal epithelial barriers via transepithelial uptake of dendritic cell dendrites. Mucosal Immunol. 2015;8:799-814 pubmed 出版商
  511. Kim J, Li W, Choi Y, Lewin S, Verbeke C, Dranoff G, et al. Injectable, spontaneously assembling, inorganic scaffolds modulate immune cells in vivo and increase vaccine efficacy. Nat Biotechnol. 2015;33:64-72 pubmed 出版商
  512. Weihrauch M, Richly H, von Bergwelt Baildon M, Becker H, Schmidt M, Hacker U, et al. Phase I clinical study of the toll-like receptor 9 agonist MGN1703 in patients with metastatic solid tumours. Eur J Cancer. 2015;51:146-56 pubmed 出版商
  513. Peroni A, Colato C, Schena D, Rongioletti F, Girolomoni G. Histiocytoid Sweet syndrome is infiltrated predominantly by M2-like macrophages. J Am Acad Dermatol. 2015;72:131-9 pubmed 出版商
  514. Svatek R, Zhao X, Morales E, Jha M, Tseng T, Hugen C, et al. Sequential intravesical mitomycin plus Bacillus Calmette-Guérin for non-muscle-invasive urothelial bladder carcinoma: translational and phase I clinical trial. Clin Cancer Res. 2015;21:303-11 pubmed 出版商
  515. Kobold S, Steffen J, Chaloupka M, Grassmann S, Henkel J, Castoldi R, et al. Selective bispecific T cell recruiting antibody and antitumor activity of adoptive T cell transfer. J Natl Cancer Inst. 2015;107:364 pubmed 出版商
  516. Fahl S, Harris B, Coffey F, Wiest D. Rpl22 Loss Impairs the Development of B Lymphocytes by Activating a p53-Dependent Checkpoint. J Immunol. 2015;194:200-9 pubmed
  517. Baptista A, Roozendaal R, Reijmers R, Koning J, Unger W, Greuter M, et al. Lymph node stromal cells constrain immunity via MHC class II self-antigen presentation. elife. 2014;3: pubmed 出版商
  518. Schwartz C, Turqueti Neves A, Hartmann S, Yu P, Nimmerjahn F, Voehringer D. Basophil-mediated protection against gastrointestinal helminths requires IgE-induced cytokine secretion. Proc Natl Acad Sci U S A. 2014;111:E5169-77 pubmed 出版商
  519. Dominguez Villar M, Gautron A, de Marcken M, Keller M, Hafler D. TLR7 induces anergy in human CD4(+) T cells. Nat Immunol. 2015;16:118-28 pubmed 出版商
  520. Arndt B, Witkowski L, Ellwart J, Seissler J. CD8+ CD122+ PD-1- effector cells promote the development of diabetes in NOD mice. J Leukoc Biol. 2015;97:111-20 pubmed 出版商
  521. Makowski S, Wang Z, Pomerantz J. A protease-independent function for SPPL3 in NFAT activation. Mol Cell Biol. 2015;35:451-67 pubmed 出版商
  522. Thompson I, Mann E, Stokes M, English N, Knight S, Williamson D. Specific activation of dendritic cells enhances clearance of Bacillus anthracis following infection. PLoS ONE. 2014;9:e109720 pubmed 出版商
  523. Backer R, Helbig C, Gentek R, Kent A, Laidlaw B, Dominguez C, et al. A central role for Notch in effector CD8(+) T cell differentiation. Nat Immunol. 2014;15:1143-51 pubmed 出版商
  524. Luetke Eversloh M, Hammer Q, Durek P, Nordström K, Gasparoni G, Pink M, et al. Human cytomegalovirus drives epigenetic imprinting of the IFNG locus in NKG2Chi natural killer cells. PLoS Pathog. 2014;10:e1004441 pubmed 出版商
  525. Morales D, Monte K, Sun L, Struckhoff J, Agapov E, Holtzman M, et al. Novel mode of ISG15-mediated protection against influenza A virus and Sendai virus in mice. J Virol. 2015;89:337-49 pubmed 出版商
  526. Edwards C, Best S, Gun S, Claser C, James K, de Oca M, et al. Spatiotemporal requirements for IRF7 in mediating type I IFN-dependent susceptibility to blood-stage Plasmodium infection. Eur J Immunol. 2015;45:130-41 pubmed 出版商
  527. Wilson E, Bial J, Tarlow B, Bial G, Jensen B, Greiner D, et al. Extensive double humanization of both liver and hematopoiesis in FRGN mice. Stem Cell Res. 2014;13:404-12 pubmed 出版商
  528. Å krnjug I, Guzmán C, Rueckert C, Ruecker C. Cyclic GMP-AMP displays mucosal adjuvant activity in mice. PLoS ONE. 2014;9:e110150 pubmed 出版商
  529. Maney N, Reynolds G, Krippner Heidenreich A, Hilkens C. Dendritic cell maturation and survival are differentially regulated by TNFR1 and TNFR2. J Immunol. 2014;193:4914-4923 pubmed 出版商
  530. Spaan M, Kreefft K, de Graav G, Brouwer W, de Knegt R, ten Kate F, et al. CD4+ CXCR5+ T cells in chronic HCV infection produce less IL-21, yet are efficient at supporting B cell responses. J Hepatol. 2015;62:303-10 pubmed 出版商
  531. Lu H, Clauser K, Tam W, Fröse J, Ye X, Eaton E, et al. A breast cancer stem cell niche supported by juxtacrine signalling from monocytes and macrophages. Nat Cell Biol. 2014;16:1105-17 pubmed 出版商
  532. Novinger L, Ashikaga T, Krag D. Identification of tumor-binding scFv derived from clonally related B cells in tumor and lymph node of a patient with breast cancer. Cancer Immunol Immunother. 2015;64:29-39 pubmed 出版商
  533. Maneva Radicheva L, Amatya C, Parker C, Ellefson J, Radichev I, Raghavan A, et al. Autoimmune diabetes is suppressed by treatment with recombinant human tissue Kallikrein-1. PLoS ONE. 2014;9:e107213 pubmed 出版商
  534. Ramnath N, van de Luijtgaarden K, van der Pluijm I, van Nimwegen M, van Heijningen P, Swagemakers S, et al. Extracellular matrix defects in aneurysmal Fibulin-4 mice predispose to lung emphysema. PLoS ONE. 2014;9:e106054 pubmed 出版商
  535. Yu C, Becker C, Metang P, Marches F, Wang Y, Toshiyuki H, et al. Human CD141+ dendritic cells induce CD4+ T cells to produce type 2 cytokines. J Immunol. 2014;193:4335-43 pubmed 出版商
  536. Perino G, Ricciardi B, Jerabek S, Martignoni G, Wilner G, Maass D, et al. Implant based differences in adverse local tissue reaction in failed total hip arthroplasties: a morphological and immunohistochemical study. BMC Clin Pathol. 2014;14:39 pubmed 出版商
  537. Landy J, Al Hassi H, Ronde E, English N, Mann E, Bernardo D, et al. Innate immune factors in the development and maintenance of pouchitis. Inflamm Bowel Dis. 2014;20:1942-9 pubmed 出版商
  538. Yu J, Zuo Z, Zhang W, Yang Q, Zhang Y, Tang Y, et al. Identification of immunophenotypic subtypes with different prognoses in extranodal natural killer/T-cell lymphoma, nasal type. Hum Pathol. 2014;45:2255-62 pubmed 出版商
  539. Naik E, Webster J, DeVoss J, Liu J, Suriben R, Dixit V. Regulation of proximal T cell receptor signaling and tolerance induction by deubiquitinase Usp9X. J Exp Med. 2014;211:1947-55 pubmed 出版商
  540. Davey M, Morgan M, Liuzzi A, Tyler C, Khan M, Szakmany T, et al. Microbe-specific unconventional T cells induce human neutrophil differentiation into antigen cross-presenting cells. J Immunol. 2014;193:3704-3716 pubmed 出版商
  541. Kreiser S, Eckhardt J, Kuhnt C, Stein M, Krzyzak L, Seitz C, et al. Murine CD83-positive T cells mediate suppressor functions in vitro and in vivo. Immunobiology. 2015;220:270-9 pubmed 出版商
  542. Dai M, Yip Y, Hellstrom I, Hellstrom K. Curing mice with large tumors by locally delivering combinations of immunomodulatory antibodies. Clin Cancer Res. 2015;21:1127-38 pubmed 出版商
  543. Ohue Y, Kurose K, Mizote Y, Matsumoto H, Nishio Y, Isobe M, et al. Prolongation of overall survival in advanced lung adenocarcinoma patients with the XAGE1 (GAGED2a) antibody. Clin Cancer Res. 2014;20:5052-63 pubmed 出版商
  544. Bending D, Pesenacker A, Ursu S, Wu Q, Lom H, Thirugnanabalan B, et al. Hypomethylation at the regulatory T cell-specific demethylated region in CD25hi T cells is decoupled from FOXP3 expression at the inflamed site in childhood arthritis. J Immunol. 2014;193:2699-708 pubmed 出版商
  545. Arlehamn C, Seumois G, Gerasimova A, Huang C, Fu Z, Yue X, et al. Transcriptional profile of tuberculosis antigen-specific T cells reveals novel multifunctional features. J Immunol. 2014;193:2931-40 pubmed 出版商
  546. Denton A, Roberts E, Linterman M, Fearon D. Fibroblastic reticular cells of the lymph node are required for retention of resting but not activated CD8+ T cells. Proc Natl Acad Sci U S A. 2014;111:12139-44 pubmed 出版商
  547. Zhu Y, Knolhoff B, Meyer M, Nywening T, West B, Luo J, et al. CSF1/CSF1R blockade reprograms tumor-infiltrating macrophages and improves response to T-cell checkpoint immunotherapy in pancreatic cancer models. Cancer Res. 2014;74:5057-69 pubmed 出版商
  548. Flach J, Bakker S, Mohrin M, Conroy P, Pietras E, Reynaud D, et al. Replication stress is a potent driver of functional decline in ageing haematopoietic stem cells. Nature. 2014;512:198-202 pubmed 出版商
  549. Larsen J, Dall M, Antvorskov J, Weile C, Engkilde K, Josefsen K, et al. Dietary gluten increases natural killer cell cytotoxicity and cytokine secretion. Eur J Immunol. 2014;44:3056-67 pubmed 出版商
  550. Lee Chang C, Bodogai M, Moritoh K, Olkhanud P, Chan A, Croft M, et al. Accumulation of 4-1BBL+ B cells in the elderly induces the generation of granzyme-B+ CD8+ T cells with potential antitumor activity. Blood. 2014;124:1450-9 pubmed 出版商
  551. Longman R, Diehl G, Victorio D, Huh J, Galan C, Miraldi E, et al. CX?CR1? mononuclear phagocytes support colitis-associated innate lymphoid cell production of IL-22. J Exp Med. 2014;211:1571-83 pubmed 出版商
  552. Stenfeldt C, Pacheco J, Borca M, Rodriguez L, Arzt J. Morphologic and phenotypic characteristics of myocarditis in two pigs infected by foot-and mouth disease virus strains of serotypes O or A. Acta Vet Scand. 2014;56:42 pubmed 出版商
  553. Knoop K, McDonald K, McCrate S, McDole J, Newberry R. Microbial sensing by goblet cells controls immune surveillance of luminal antigens in the colon. Mucosal Immunol. 2015;8:198-210 pubmed 出版商
  554. Kawasaki N, Rillahan C, Cheng T, Van Rhijn I, Macauley M, Moody D, et al. Targeted delivery of mycobacterial antigens to human dendritic cells via Siglec-7 induces robust T cell activation. J Immunol. 2014;193:1560-6 pubmed 出版商
  555. Honjo K, Kubagawa Y, Suzuki Y, Takagi M, Ohno H, Bucy R, et al. Enhanced auto-antibody production and Mott cell formation in Fc?R-deficient autoimmune mice. Int Immunol. 2014;26:659-72 pubmed 出版商
  556. Boyoglu Barnum S, Chirkova T, Todd S, Barnum T, Gaston K, Jorquera P, et al. Prophylaxis with a respiratory syncytial virus (RSV) anti-G protein monoclonal antibody shifts the adaptive immune response to RSV rA2-line19F infection from Th2 to Th1 in BALB/c mice. J Virol. 2014;88:10569-83 pubmed 出版商
  557. Cowan J, McCarthy N, Parnell S, White A, Bacon A, Serge A, et al. Differential requirement for CCR4 and CCR7 during the development of innate and adaptive ??T cells in the adult thymus. J Immunol. 2014;193:1204-12 pubmed 出版商
  558. Gomez A, Willcox N, Vrolix K, Hummel J, Nogales Gadea G, Saxena A, et al. Proteasome inhibition with bortezomib depletes plasma cells and specific autoantibody production in primary thymic cell cultures from early-onset myasthenia gravis patients. J Immunol. 2014;193:1055-1063 pubmed 出版商
  559. Vogelzang A, Perdomo C, Zedler U, Kuhlmann S, Hurwitz R, Gengenbacher M, et al. Central memory CD4+ T cells are responsible for the recombinant Bacillus Calmette-Guérin ?ureC::hly vaccine's superior protection against tuberculosis. J Infect Dis. 2014;210:1928-37 pubmed 出版商
  560. Zhou Q, Ho A, Schlitzer A, Tang Y, Wong K, Wong F, et al. GM-CSF-licensed CD11b+ lung dendritic cells orchestrate Th2 immunity to Blomia tropicalis. J Immunol. 2014;193:496-509 pubmed 出版商
  561. Lepore M, de Lalla C, Gundimeda S, Gsellinger H, Consonni M, Garavaglia C, et al. A novel self-lipid antigen targets human T cells against CD1c(+) leukemias. J Exp Med. 2014;211:1363-77 pubmed 出版商
  562. Mise Omata S, Alles N, Fukazawa T, Aoki K, Ohya K, Jimi E, et al. NF-?B RELA-deficient bone marrow macrophages fail to support bone formation and to maintain the hematopoietic niche after lethal irradiation and stem cell transplantation. Int Immunol. 2014;26:607-18 pubmed 出版商
  563. Gerlach K, Hwang Y, Nikolaev A, Atreya R, Dornhoff H, Steiner S, et al. TH9 cells that express the transcription factor PU.1 drive T cell-mediated colitis via IL-9 receptor signaling in intestinal epithelial cells. Nat Immunol. 2014;15:676-86 pubmed 出版商
  564. Haider L, Simeonidou C, Steinberger G, Hametner S, Grigoriadis N, Deretzi G, et al. Multiple sclerosis deep grey matter: the relation between demyelination, neurodegeneration, inflammation and iron. J Neurol Neurosurg Psychiatry. 2014;85:1386-95 pubmed 出版商
  565. Nandi B, Pai C, Huang Q, Prabhala R, Munshi N, Gold J. CCR6, the sole receptor for the chemokine CCL20, promotes spontaneous intestinal tumorigenesis. PLoS ONE. 2014;9:e97566 pubmed 出版商
  566. Barbosa R, Silva S, Silva S, Melo A, Pereira Santos M, Barata J, et al. Reduced BAFF-R and increased TACI expression in common variable immunodeficiency. J Clin Immunol. 2014;34:573-83 pubmed 出版商
  567. Jakobsson T, Vedin L, Hassan T, Venteclef N, Greco D, D AMATO M, et al. The oxysterol receptor LXR? protects against DSS- and TNBS-induced colitis in mice. Mucosal Immunol. 2014;7:1416-28 pubmed 出版商
  568. Helm O, Mennrich R, Petrick D, Goebel L, Freitag Wolf S, Roder C, et al. Comparative characterization of stroma cells and ductal epithelium in chronic pancreatitis and pancreatic ductal adenocarcinoma. PLoS ONE. 2014;9:e94357 pubmed 出版商
  569. Rocca C, Ur S, Harrison F, Cherqui S. rAAV9 combined with renal vein injection is optimal for kidney-targeted gene delivery: conclusion of a comparative study. Gene Ther. 2014;21:618-28 pubmed 出版商
  570. Qian L, Zhang M, Wu S, Zhong Y, Van Tol E, Cai W. Alkylglycerols modulate the proliferation and differentiation of non-specific agonist and specific antigen-stimulated splenic lymphocytes. PLoS ONE. 2014;9:e96207 pubmed 出版商
  571. Dupont C, Christian D, Selleck E, Pepper M, Leney Greene M, Harms Pritchard G, et al. Parasite fate and involvement of infected cells in the induction of CD4+ and CD8+ T cell responses to Toxoplasma gondii. PLoS Pathog. 2014;10:e1004047 pubmed 出版商
  572. Könnecke I, Serra A, El Khassawna T, Schlundt C, Schell H, Hauser A, et al. T and B cells participate in bone repair by infiltrating the fracture callus in a two-wave fashion. Bone. 2014;64:155-65 pubmed 出版商
  573. Itoua Maïga R, Lemieux J, Roy A, Simard C, Néron S. Flow cytometry assessment of in vitro generated CD138+ human plasma cells. Biomed Res Int. 2014;2014:536482 pubmed 出版商
  574. Gros A, Robbins P, Yao X, Li Y, Turcotte S, Tran E, et al. PD-1 identifies the patient-specific CD8? tumor-reactive repertoire infiltrating human tumors. J Clin Invest. 2014;124:2246-59 pubmed 出版商
  575. Koga T, Hedrich C, Mizui M, Yoshida N, Otomo K, Lieberman L, et al. CaMK4-dependent activation of AKT/mTOR and CREM-? underlies autoimmunity-associated Th17 imbalance. J Clin Invest. 2014;124:2234-45 pubmed 出版商
  576. Prinz P, Mendler A, Brech D, Masouris I, Oberneder R, Noessner E. NK-cell dysfunction in human renal carcinoma reveals diacylglycerol kinase as key regulator and target for therapeutic intervention. Int J Cancer. 2014;135:1832-41 pubmed 出版商
  577. Vanoaica L, Richman L, Jaworski M, Darshan D, Luther S, Kühn L. Conditional deletion of ferritin h in mice reduces B and T lymphocyte populations. PLoS ONE. 2014;9:e89270 pubmed 出版商
  578. Magri G, Miyajima M, Bascones S, Mortha A, Puga I, Cassis L, et al. Innate lymphoid cells integrate stromal and immunological signals to enhance antibody production by splenic marginal zone B cells. Nat Immunol. 2014;15:354-364 pubmed 出版商
  579. Rizzo S, Basso C, Troost D, Aronica E, Frigo A, Driessen A, et al. T-cell-mediated inflammatory activity in the stellate ganglia of patients with ion-channel disease and severe ventricular arrhythmias. Circ Arrhythm Electrophysiol. 2014;7:224-9 pubmed 出版商
  580. Wang B, Dai S, Dong Z, Sun Y, Song X, Guo C, et al. The modulation of endoplasmic reticulum stress by chemical chaperone upregulates immune negative cytokine IL-35 in apolipoprotein E-deficient mice. PLoS ONE. 2014;9:e87787 pubmed 出版商
  581. Sereti I, Estes J, Thompson W, Morcock D, Fischl M, Croughs T, et al. Decreases in colonic and systemic inflammation in chronic HIV infection after IL-7 administration. PLoS Pathog. 2014;10:e1003890 pubmed 出版商
  582. Naviglio S, Arrigo S, Martelossi S, Villanacci V, Tommasini A, Loganes C, et al. Severe inflammatory bowel disease associated with congenital alteration of transforming growth factor beta signaling. J Crohns Colitis. 2014;8:770-4 pubmed 出版商
  583. Bashour K, Gondarenko A, Chen H, Shen K, Liu X, Huse M, et al. CD28 and CD3 have complementary roles in T-cell traction forces. Proc Natl Acad Sci U S A. 2014;111:2241-6 pubmed 出版商
  584. Mercadante A, Perobelli S, Alves A, Gonçalves Silva T, Mello W, Gomes Santos A, et al. Oral combined therapy with probiotics and alloantigen induces B cell-dependent long-lasting specific tolerance. J Immunol. 2014;192:1928-37 pubmed 出版商
  585. Yang C, Li J, Chiu L, Lan J, Chen D, Chuang H, et al. Dual-specificity phosphatase 14 (DUSP14/MKP6) negatively regulates TCR signaling by inhibiting TAB1 activation. J Immunol. 2014;192:1547-57 pubmed 出版商
  586. Hu Y, Xiao H, Shi T, Oppenheim J, Chen X. Progranulin promotes tumour necrosis factor-induced proliferation of suppressive mouse CD4? Foxp3? regulatory T cells. Immunology. 2014;142:193-201 pubmed 出版商
  587. Walker C, Hautefort I, Dalton J, Overweg K, Egan C, Bongaerts R, et al. Intestinal intraepithelial lymphocyte-enterocyte crosstalk regulates production of bactericidal angiogenin 4 by Paneth cells upon microbial challenge. PLoS ONE. 2013;8:e84553 pubmed 出版商
  588. McGuire D, Rowse A, Li H, Peng B, Sestero C, Cashman K, et al. CD5 enhances Th17-cell differentiation by regulating IFN-? response and ROR?t localization. Eur J Immunol. 2014;44:1137-42 pubmed 出版商
  589. Kim H, Lee H, Chang Y, Pichavant M, Shore S, Fitzgerald K, et al. Interleukin-17-producing innate lymphoid cells and the NLRP3 inflammasome facilitate obesity-associated airway hyperreactivity. Nat Med. 2014;20:54-61 pubmed 出版商
  590. Cairo C, Longinaker N, Cappelli G, Leke R, Ondo M, Djokam R, et al. Cord blood V?2V?2 T cells provide a molecular marker for the influence of pregnancy-associated malaria on neonatal immunity. J Infect Dis. 2014;209:1653-62 pubmed 出版商
  591. Murphy K, Erickson J, Johnson C, Seiler C, Bedi J, Hu P, et al. CD8+ T cell-independent tumor regression induced by Fc-OX40L and therapeutic vaccination in a mouse model of glioma. J Immunol. 2014;192:224-33 pubmed 出版商
  592. Griffiths K, Stylianou E, Poyntz H, Betts G, Fletcher H, McShane H. Cholera toxin enhances vaccine-induced protection against Mycobacterium tuberculosis challenge in mice. PLoS ONE. 2013;8:e78312 pubmed 出版商
  593. Krishnan S, Wilson E, Sheikh V, Rupert A, Mendoza D, Yang J, et al. Evidence for innate immune system activation in HIV type 1-infected elite controllers. J Infect Dis. 2014;209:931-9 pubmed 出版商
  594. Luan G, Gao Q, Guan Y, Zhai F, Zhou J, Liu C, et al. Upregulation of adenosine kinase in Rasmussen encephalitis. J Neuropathol Exp Neurol. 2013;72:1000-8 pubmed 出版商
  595. Nussbaum J, Van Dyken S, von Moltke J, Cheng L, Mohapatra A, Molofsky A, et al. Type 2 innate lymphoid cells control eosinophil homeostasis. Nature. 2013;502:245-8 pubmed 出版商
  596. Povinelli B, Nemeth M. Wnt5a regulates hematopoietic stem cell proliferation and repopulation through the Ryk receptor. Stem Cells. 2014;32:105-15 pubmed 出版商
  597. Bittner S, Ruck T, Schuhmann M, Herrmann A, Moha Ou Maati H, Bobak N, et al. Endothelial TWIK-related potassium channel-1 (TREK1) regulates immune-cell trafficking into the CNS. Nat Med. 2013;19:1161-5 pubmed 出版商
  598. Pioli P, Dahlem T, Weis J, Weis J. Deletion of Snai2 and Snai3 results in impaired physical development compounded by lymphocyte deficiency. PLoS ONE. 2013;8:e69216 pubmed 出版商
  599. Rommel P, Bosque D, Gitlin A, Croft G, Heintz N, Casellas R, et al. Fate mapping for activation-induced cytidine deaminase (AID) marks non-lymphoid cells during mouse development. PLoS ONE. 2013;8:e69208 pubmed 出版商
  600. Gautron L, Rutkowski J, Burton M, Wei W, Wan Y, Elmquist J. Neuronal and nonneuronal cholinergic structures in the mouse gastrointestinal tract and spleen. J Comp Neurol. 2013;521:3741-67 pubmed 出版商
  601. Maddaluno L, Rudini N, Cuttano R, Bravi L, Giampietro C, Corada M, et al. EndMT contributes to the onset and progression of cerebral cavernous malformations. Nature. 2013;498:492-6 pubmed 出版商
  602. Li H, Pauza C. Critical roles for Akt kinase in controlling HIV envelope-mediated depletion of CD4 T cells. Retrovirology. 2013;10:60 pubmed 出版商
  603. Melis L, Van Praet L, Pircher H, Venken K, Elewaut D. Senescence marker killer cell lectin-like receptor G1 (KLRG1) contributes to TNF-? production by interaction with its soluble E-cadherin ligand in chronically inflamed joints. Ann Rheum Dis. 2014;73:1223-31 pubmed 出版商
  604. Fischer M, Wimmer I, Hoftberger R, Gerlach S, Haider L, Zrzavy T, et al. Disease-specific molecular events in cortical multiple sclerosis lesions. Brain. 2013;136:1799-815 pubmed 出版商
  605. Jacobs S, Plessers J, Pinxteren J, Roobrouck V, Verfaillie C, Van Gool S. Mutual interaction between human multipotent adult progenitor cells and NK cells. Cell Transplant. 2014;23:1099-110 pubmed 出版商
  606. Brana C, Frossard M, Pescini Gobert R, Martinier N, Boschert U, Seabrook T. Immunohistochemical detection of sphingosine-1-phosphate receptor 1 and 5 in human multiple sclerosis lesions. Neuropathol Appl Neurobiol. 2014;40:564-78 pubmed 出版商
  607. Nichele I, Zamo A, Bertolaso A, Bifari F, Tinelli M, Franchini M, et al. VR09 cell line: an EBV-positive lymphoblastoid cell line with in vivo characteristics of diffuse large B cell lymphoma of activated B-cell type. PLoS ONE. 2012;7:e52811 pubmed 出版商
  608. Kłossowicz M, Scirka B, Suchanek J, Marek Bukowiec K, Kisielow P, Aguado E, et al. Assessment of caspase mediated degradation of linker for activation of T cells (LAT) at a single cell level. J Immunol Methods. 2013;389:9-17 pubmed 出版商
  609. Irla M, Guenot J, Sealy G, Reith W, Imhof B, Serge A. Three-dimensional visualization of the mouse thymus organization in health and immunodeficiency. J Immunol. 2013;190:586-96 pubmed 出版商
  610. Yassai M, Cooley B, Gorski J. Developmental dynamics of post-selection thymic DN iNKT. PLoS ONE. 2012;7:e43509 pubmed 出版商
  611. O CONNOR T, Frei N, Sponarova J, Schwarz P, Heikenwalder M, Aguzzi A. Lymphotoxin, but not TNF, is required for prion invasion of lymph nodes. PLoS Pathog. 2012;8:e1002867 pubmed 出版商
  612. Daigneault M, de Silva T, Bewley M, Preston J, Marriott H, Mitchell A, et al. Monocytes regulate the mechanism of T-cell death by inducing Fas-mediated apoptosis during bacterial infection. PLoS Pathog. 2012;8:e1002814 pubmed 出版商
  613. Golias J, Schwarzer M, Wallner M, Kverka M, Kozakova H, Srůtková D, et al. Heat-induced structural changes affect OVA-antigen processing and reduce allergic response in mouse model of food allergy. PLoS ONE. 2012;7:e37156 pubmed 出版商
  614. Jenkins C, Shevchuk O, Giambra V, Lam S, Carboni J, Gottardis M, et al. IGF signaling contributes to malignant transformation of hematopoietic progenitors by the MLL-AF9 oncoprotein. Exp Hematol. 2012;40:715-723.e6 pubmed 出版商
  615. Chevrier S, Genton C, Malissen B, Malissen M, Acha Orbea H. Dominant Role of CD80-CD86 Over CD40 and ICOSL in the Massive Polyclonal B Cell Activation Mediated by LAT(Y136F) CD4(+) T Cells. Front Immunol. 2012;3:27 pubmed 出版商
  616. Loebbermann J, Schnoeller C, Thornton H, Durant L, Sweeney N, Schuijs M, et al. IL-10 regulates viral lung immunopathology during acute respiratory syncytial virus infection in mice. PLoS ONE. 2012;7:e32371 pubmed 出版商
  617. Zeng M, Southern P, Reilly C, Beilman G, Chipman J, Schacker T, et al. Lymphoid tissue damage in HIV-1 infection depletes naïve T cells and limits T cell reconstitution after antiretroviral therapy. PLoS Pathog. 2012;8:e1002437 pubmed 出版商
  618. Schneckenleithner C, Bago Horvath Z, Dolznig H, Neugebauer N, Kollmann K, Kolbe T, et al. Putting the brakes on mammary tumorigenesis: loss of STAT1 predisposes to intraepithelial neoplasias. Oncotarget. 2011;2:1043-54 pubmed
  619. West N, Milne K, Truong P, MacPherson N, Nelson B, Watson P. Tumor-infiltrating lymphocytes predict response to anthracycline-based chemotherapy in estrogen receptor-negative breast cancer. Breast Cancer Res. 2011;13:R126 pubmed 出版商
  620. Badeaux A, Yang Y, Cardenas K, Vemulapalli V, Chen K, Kusewitt D, et al. Loss of the methyl lysine effector protein PHF20 impacts the expression of genes regulated by the lysine acetyltransferase MOF. J Biol Chem. 2012;287:429-37 pubmed 出版商
  621. Randall K, Chan S, Ma C, Fung I, Mei Y, Yabas M, et al. DOCK8 deficiency impairs CD8 T cell survival and function in humans and mice. J Exp Med. 2011;208:2305-20 pubmed 出版商
  622. Galand C, Donnou S, Crozet L, Brunet S, Touitou V, Ouakrim H, et al. Th17 cells are involved in the local control of tumor progression in primary intraocular lymphoma. PLoS ONE. 2011;6:e24622 pubmed 出版商
  623. Ripich T, Jessberger R. SWAP-70 regulates erythropoiesis by controlling ?4 integrin. Haematologica. 2011;96:1743-52 pubmed 出版商
  624. Ota N, Wong K, Valdez P, Zheng Y, Crellin N, Diehl L, et al. IL-22 bridges the lymphotoxin pathway with the maintenance of colonic lymphoid structures during infection with Citrobacter rodentium. Nat Immunol. 2011;12:941-8 pubmed 出版商
  625. Lorenzi L, Lonardi S, Petrilli G, Tanda F, Bella M, Laurino L, et al. Folliculocentric B-cell-rich follicular dendritic cells sarcoma: a hitherto unreported morphological variant mimicking lymphoproliferative disorders. Hum Pathol. 2012;43:209-15 pubmed 出版商
  626. Deswal S, Schulze A, Hofer T, Schamel W. Quantitative analysis of protein phosphorylations and interactions by multi-colour IP-FCM as an input for kinetic modelling of signalling networks. PLoS ONE. 2011;6:e22928 pubmed 出版商
  627. Ruffell B, Au A, Rugo H, Esserman L, Hwang E, Coussens L. Leukocyte composition of human breast cancer. Proc Natl Acad Sci U S A. 2012;109:2796-801 pubmed 出版商
  628. Hemmers S, Teijaro J, Arandjelovic S, Mowen K. PAD4-mediated neutrophil extracellular trap formation is not required for immunity against influenza infection. PLoS ONE. 2011;6:e22043 pubmed 出版商
  629. West N, Panet Raymond V, Truong P, Alexander C, Babinszky S, Milne K, et al. Intratumoral Immune Responses Can Distinguish New Primary and True Recurrence Types of Ipsilateral Breast Tumor Recurrences (IBTR). Breast Cancer (Auckl). 2011;5:105-15 pubmed 出版商
  630. Yan S, Wang L, Liu N, Wang Y, Chu Y. Critical role of interleukin-17/interleukin-17 receptor axis in mediating Con A-induced hepatitis. Immunol Cell Biol. 2012;90:421-8 pubmed 出版商
  631. Tousif S, Singh Y, Prasad D, Sharma P, Van Kaer L, Das G. T cells from Programmed Death-1 deficient mice respond poorly to Mycobacterium tuberculosis infection. PLoS ONE. 2011;6:e19864 pubmed 出版商
  632. Petrilli G, Lorenzi L, Paracchini R, Ubiali A, Schumacher R, Cabassa P, et al. Epstein-Barr virus-associated adrenal smooth muscle tumors and disseminated diffuse large B-cell lymphoma in a child with common variable immunodeficiency: a case report and review of the literature. Int J Surg Pathol. 2014;22:712-21 pubmed 出版商
  633. Reuwer A, van Eijk M, Houttuijn Bloemendaal F, van der Loos C, Claessen N, Teeling P, et al. The prolactin receptor is expressed in macrophages within human carotid atherosclerotic plaques: a role for prolactin in atherogenesis?. J Endocrinol. 2011;208:107-17 pubmed 出版商
  634. Tait E, Jordan K, Dupont C, Harris T, Gregg B, Wilson E, et al. Virulence of Toxoplasma gondii is associated with distinct dendritic cell responses and reduced numbers of activated CD8+ T cells. J Immunol. 2010;185:1502-12 pubmed 出版商
  635. Zavitz C, Bauer C, Gaschler G, Fraser K, Strieter R, Hogaboam C, et al. Dysregulated macrophage-inflammatory protein-2 expression drives illness in bacterial superinfection of influenza. J Immunol. 2010;184:2001-13 pubmed 出版商
  636. Zou Y, Chen T, Han M, Wang H, Yan W, Song G, et al. Increased killing of liver NK cells by Fas/Fas ligand and NKG2D/NKG2D ligand contributes to hepatocyte necrosis in virus-induced liver failure. J Immunol. 2010;184:466-75 pubmed 出版商
  637. MANICONE A, Huizar I, McGuire J. Matrilysin (Matrix Metalloproteinase-7) regulates anti-inflammatory and antifibrotic pulmonary dendritic cells that express CD103 (alpha(E)beta(7)-integrin). Am J Pathol. 2009;175:2319-31 pubmed 出版商
  638. Fahl S, Crittenden R, Allman D, Bender T. c-Myb is required for pro-B cell differentiation. J Immunol. 2009;183:5582-92 pubmed 出版商
  639. Zumsteg A, Baeriswyl V, Imaizumi N, Schwendener R, Ruegg C, Christofori G. Myeloid cells contribute to tumor lymphangiogenesis. PLoS ONE. 2009;4:e7067 pubmed 出版商
  640. Hamada H, Garcia Hernandez M, Reome J, Misra S, Strutt T, McKinstry K, et al. Tc17, a unique subset of CD8 T cells that can protect against lethal influenza challenge. J Immunol. 2009;182:3469-81 pubmed 出版商
  641. Milne K, Barnes R, Girardin A, Mawer M, Nesslinger N, Ng A, et al. Tumor-infiltrating T cells correlate with NY-ESO-1-specific autoantibodies in ovarian cancer. PLoS ONE. 2008;3:e3409 pubmed 出版商
  642. Sheng H, Wang Y, Jin Y, Zhang Q, Zhang Y, Wang L, et al. A critical role of IFNgamma in priming MSC-mediated suppression of T cell proliferation through up-regulation of B7-H1. Cell Res. 2008;18:846-57 pubmed 出版商
  643. Gwack Y, Srikanth S, Oh Hora M, Hogan P, Lamperti E, Yamashita M, et al. Hair loss and defective T- and B-cell function in mice lacking ORAI1. Mol Cell Biol. 2008;28:5209-22 pubmed 出版商
  644. Jeannet G, Scheller M, Scarpellino L, Duboux S, Gardiol N, Back J, et al. Long-term, multilineage hematopoiesis occurs in the combined absence of beta-catenin and gamma-catenin. Blood. 2008;111:142-9 pubmed
  645. Jiang L, Yang P, He H, Li B, Lin X, Hou S, et al. Increased expression of Foxp3 in splenic CD8+ T cells from mice with anterior chamber-associated immune deviation. Mol Vis. 2007;13:968-74 pubmed
  646. Borsellino G, Kleinewietfeld M, Di Mitri D, Sternjak A, Diamantini A, Giometto R, et al. Expression of ectonucleotidase CD39 by Foxp3+ Treg cells: hydrolysis of extracellular ATP and immune suppression. Blood. 2007;110:1225-32 pubmed
  647. Sevigny C, Li L, Awad A, Huang L, McDuffie M, Linden J, et al. Activation of adenosine 2A receptors attenuates allograft rejection and alloantigen recognition. J Immunol. 2007;178:4240-9 pubmed
  648. Kurek D, Garinis G, van Doorninck J, van der Wees J, Grosveld F. Transcriptome and phenotypic analysis reveals Gata3-dependent signalling pathways in murine hair follicles. Development. 2007;134:261-72 pubmed
  649. Xin K, Mizukami H, Urabe M, Toda Y, Shinoda K, Yoshida A, et al. Induction of robust immune responses against human immunodeficiency virus is supported by the inherent tropism of adeno-associated virus type 5 for dendritic cells. J Virol. 2006;80:11899-910 pubmed
  650. Day Y, Huang L, Ye H, Li L, Linden J, Okusa M. Renal ischemia-reperfusion injury and adenosine 2A receptor-mediated tissue protection: the role of CD4+ T cells and IFN-gamma. J Immunol. 2006;176:3108-14 pubmed
  651. Geng H, Zhang G, Xiao H, Yuan Y, Li D, Zhang H, et al. HSP70 vaccine in combination with gene therapy with plasmid DNA encoding sPD-1 overcomes immune resistance and suppresses the progression of pulmonary metastatic melanoma. Int J Cancer. 2006;118:2657-64 pubmed
  652. Gupta R, Karpatkin S, Basch R. Hematopoiesis and stem cell renewal in long-term bone marrow cultures containing catalase. Blood. 2006;107:1837-46 pubmed
  653. Krieg C, Han P, Stone R, Goularte O, Kaye J. Functional analysis of B and T lymphocyte attenuator engagement on CD4+ and CD8+ T cells. J Immunol. 2005;175:6420-7 pubmed
  654. Takeuchi A, Usui Y, Takeuchi M, Hattori T, Kezuka T, Suzuki J, et al. CCR5-deficient mice develop experimental autoimmune uveoretinitis in the context of a deviant effector response. Invest Ophthalmol Vis Sci. 2005;46:3753-60 pubmed
  655. Irwin S, Izzo A, Dow S, Skeiky Y, Reed S, Alderson M, et al. Tracking antigen-specific CD8 T lymphocytes in the lungs of mice vaccinated with the Mtb72F polyprotein. Infect Immun. 2005;73:5809-16 pubmed
  656. Nakae S, Suto H, Kakurai M, Sedgwick J, Tsai M, Galli S. Mast cells enhance T cell activation: Importance of mast cell-derived TNF. Proc Natl Acad Sci U S A. 2005;102:6467-72 pubmed
  657. Futagawa T, Akiba H, Kodama T, Takeda K, Hosoda Y, Yagita H, et al. Expression and function of 4-1BB and 4-1BB ligand on murine dendritic cells. Int Immunol. 2002;14:275-86 pubmed
  658. Lepault F, Gagnerault M, Faveeuw C, Bazin H, Boitard C. Lack of L-selectin expression by cells transferring diabetes in NOD mice: insights into the mechanisms involved in diabetes prevention by Mel-14 antibody treatment. Eur J Immunol. 1995;25:1502-7 pubmed
  659. Havran W, Poenie M, Kimura J, Tsien R, Weiss A, Allison J. Expression and function of the CD3-antigen receptor on murine CD4+8+ thymocytes. Nature. 1987;330:170-3 pubmed
  660. Leo O, Foo M, Sachs D, Samelson L, Bluestone J. Identification of a monoclonal antibody specific for a murine T3 polypeptide. Proc Natl Acad Sci U S A. 1987;84:1374-8 pubmed
  661. Samelson L, O Shea J, Luong H, Ross P, Urdahl K, Klausner R, et al. T cell antigen receptor phosphorylation induced by an anti-receptor antibody. J Immunol. 1987;139:2708-14 pubmed
  662. Harding F, McArthur J, Gross J, Raulet D, Allison J. CD28-mediated signalling co-stimulates murine T cells and prevents induction of anergy in T-cell clones. Nature. 1992;356:607-9 pubmed